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Abstract

The research described in this thesis aimed to evaluate the intrinsic DNA curvature of
the region of the TP53 tumour suppressor gene that codes for the sequence-specific DNA-
binding domain of the p53 protein, a key protein that protects the cell from chemical insults
and tumourogenesis. There have been no previous attempts to experimentally investigate the
intrinsic DNA curvature within TP53 or its relation to the functional or structural properties of
the gene, such as DNA repair and nucleosomal architecture. The present study used
theoretical models of TP53 in concert with an atomic force microscopy based experimental
investigation of TP53 DNA molecules to analyse intrinsic DNA curvature within the gene. This
was achieved by developing a novel software platform for the atomic force microscopy based
investigation of DNA curvature, named ADIPAS. Dinucleotide wedge models of DNA curvature
were used to model TP53 in order to investigate the relationship between intrinsic DNA
curvature and the structure and function of the gene. ADIPAS was applied to atomic force
microscopy images of TP53 DNA molecules immobilised on a mica surface in order to
experimentally measure intrinsic DNA curvature. The experimental findings were compared to
theoretical models of intrinsic curvature in TP53. The resulting intrinsic curvature profiles
showed that exons exhibited significantly lower intrinsic DNA curvature than introns within
TP53, this was also shown to be true for regions of slow DNA repair. This indicated that DNA
curvature may play a role in TP53 as a controlling factor for nucleosomal architecture to
facilitate open chromatin and active DNA transcription. The evolutionary selection for intrinsic
curvature may have played a role in the development of exons with low intrinsic DNA
curvature. Low intrinsic curvature in exon position has also been implicated in the reduced
efficiency of DNA repair in a number of cancer specific mutation hotspots.
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1.1 The Structure of Deoxyribonucleic Acid

Deoxyribonucleic acid (DNA) is a duplex of two polymers each individually constructed
of nucleotide subunits. The duplex is connected by complementary base pairing between
individual nucleotides. Nucleotides are further subdivided into chemical residues. The
structure of DNA has been detailed below (Section 1.1.1.-1.1.4.) on a range of scales: the
primary structure of DNA (nucleotides), the interactions that create the dipolymeric chains
typically found in vivo (complementary base pairing) and the secondary structure of DNA (the

double helix).

1.1.1 Primary Structure — Mononucleotides

Each nucleotide subunit consists of a phosphate residue, a sugar moiety and one of
four nucleobases, often referred to as bases (Figure 1.1.).

The nucleobases are heterocyclic aromatic organic nitrogen-containing compounds.
There are four nucleobases commonly found in DNA: adenine (A), guanine (G), thymine (T) and
cytosine (C). There are two fundamental types of nitrogenous bases found in DNA: the purine
bases, adenine and guanine, and the pyrimidine bases, thymine and cytosine. Nucleobases
provide the molecular structure required for hydrogen bonding and complementary base
pairing that gives rise to the dipolymeric structure of DNA found in vivo, discussed later.

The sugar residues in DNA are universally the pentose sugar monosaccharide, 2-
deoxyribose, with the formula H-(C=0)-(CH,)-(CHOH);-H. This distinguishes DNA from
ribonucleic acid (RNA), another important biological nucleic acid, in that RNA contains ribose
rather than 2-deoxyribose. Nucleobases are connected to the sugar residue via N-glycosidic
linkages that involve base ring nitrogens, N-9 for purines or N-1 for pyrimidines connected to
the C-1 of the pentose sugar. The sugar and base together are called a nucleoside.

Each nucleoside is connected to the next via a phosphodiester bond between a
phosphate residue at the third and fifth carbon atoms of adjacent nucleosides. Nucleosides
with phosphate residue bound at the 5 terminus of the sugar ring are referred to as
nucleotides. The asymmetric phosphodiester bonds give the DNA its directionality. Repeating
sugar and phosphate groups form the ‘sugar-phosphate backbone’ of the DNA molecule. The
labels 5-prime (5) and 3-prime (3’) are assigned to the ends of the DNA polymer that

terminate with a phosphate group and hydroxyl group respectively.
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Base

Phosphate

OH OH

Sugar

Figure 1.1. - An example of the adenine mononucleotide. The different chemical residues are
indicated: phosphate (green), sugar (blue) and base (red). All mononucleotides follow this
basic structure but will have a different base.
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1.1.2 Complementary Base Pairing

DNA in vivo does not exist as a single chain. Rather, it is found as two polymer chains
bound to one another by hydrogen bonds between nucleobases. Two bound nucleotides are
referred to as a base pair (bp). The DNA complementary base pairing principle operates
because specific geometrical requirements exist in the formation of hydrogen bonds between
the heterocyclic amines. This leads to optimal geometries between complementary purines
and pyrimidines. In canonical base pairing, guanine forms a base pair with cytosine while
adenine forms a base pair with thymine (Figure 1.2.). Adenine and thymine form.
complementary base pairs via two hydrogen bonds between their respective bases. Cytosine
and guanine form complementary base pairs via three hydrogen bonds between their
respective bases. Therefore, the secondary strand, often called the complementary strand, has
an opposite and complementary nucleotide sequence to the primary strand e.g. the
complementary base pair sequence for ACTG would be TGAC. Conventionally, the primary

strand is written in a 5’ to 3’ direction and the complementary strand in the 3’ to 5’ direction.

H3C 0 """ HzN N::;}C:H
</ NH e V\M/N “deoxyribose
/N‘< =
deoxyribose 0]
Thymine Adenine

2 L}}: H
</ _%N ------- HN>\_‘S\’N“deoxyri bose

Cytosine Guanine

Figure 1.2. — Complementary base pairing schematic. Hydrogen bonds between base pairs are
indicated by a broken dotted line. Only the bases involved in forming complementary
hydrogen bonds are shown, the point where the base pair joins to the deoxyribose is
indicated.
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1.1.3 Secondary Structure - The Double Helix

The two complementary strands of DNA form the ultimate biological unit of DNA, the
'double helix' (Figure 1.3.). The double helix can be imagined as a vastly long rope ladder
twisted about its central axis, with the sugar-phosphate backbone forming the outer 'rope’
support and the base paired nucleobases forming the rungs. The phosphate 'backbone' of DNA
has a strongly negative charge. In the most commonly observed form of the double helix, the
B-form, the helical nature of DNA causes the nucleotides to spiral around the central axis and
form two grooves within the phosphate backbone. These grooves are repeated along the
double helix. The minor groove occurs when backbones are in close proximity and the major
groove when they are far apart. Many sequence-specific DNA binding proteins will
preferentially bind in the major groove as it displays more base identifying chemical groups
than the minor groove (Xiong and Muttaiya, 2001). The most common class of eukaryotic DNA-
binding transcription factors are zinc-coordinating proteins, which interact with the major
groove of DNA. However, there are also a number of minor groove binding proteins, such as
the TATA-box binding protein which is involved in the initiation of transcription by eukaryotic

organisms (Bewley et al., 1998).

0.34 nm
Major
Groove
\Y;

Minor A

Groove
Nucleotide <--———-- >
Base Pair < S

Figure 1.3. - The general structure of the DNA double helix in B-DNA. The distances in
nanometres represent standard measurements. The major features of the B-form helix are

indicated (Baumann etol., 1997).
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1.1.4 Helical Polymorphisms

The DNA helix was described as having a radius of 1 nanometre (nm) and pitch of 3.4
nm, by its discoverers James Watson and Francis Crick, with one complete turn about its axis
every 10.5 bp (Watson and Crick, 1953). Whilst the true dimensions of DNA vary when in
different ionic solutions, these values act as an excellent rule of thumb (Baumann et al., 1997).
This structure of DNA, later termed B-form DNA or B-DNA, was found to be one of many
related helical structures that DNA can adopt. However, the B-form of the double helix is by far
the most predominant of the possible helical structures that DNA adopts within the cell
(Richmond and Davey, 2003). A generalised structure of B-DNA is presented in Figure 1.3.

While the B-form of DNA is thought to predominate in nature there are a number of
different forms that DNA will adopt under both artificial and physiological conditions
(Richmond and Davey, 2003). Of these possible forms only A-DNA and Z-DNA have been
proposed to occur naturally (Figure 1.4.). Shortly after the discovery of B-form DNA by Watson
and Crick the A-form of DNA was discovered by Franklin and Gosling (Franklin and Gosling,
1953). A-DNA has a shorter, broader helix when compared to B-form DNA with a helical turn of
11 bp in comparison to the 10-10.5 bp of B-DNA (Basham et al., 1995). The formation of A-DNA
is thought to have a role in transcriptional regulation (Llewellyn et a/., 2009) and may also form
when DNA is bound by a ligand (Lu et al., 2000). The propensity of DNA to adopt the A-form is
sequence dependent, the major determinant for the formation of A-DNA is the hydration of
phosphates along the backbone (Lu et al., 2000).

Whereas A-DNA has a shorter, squatter structure compared to B-DNA, Z-DNA is quite
the opposite. Z-DNA adopts a long left handed helical structure that repeats every 2 base pairs
with 12 base pairs per turn (Dickerson et al., 1982). The major and minor grooves in Z-DNA
show little difference in width. Z-DNA has typically been difficult to study as it is only
transiently formed under certain biological conditions (Zhang et al., 2006). A variety of
conditions have been shown to promote the formation of Z-DNA including high salt conditions,
multiple repeats of the GC dinucleotide and negative supercoiling. While there is no definitive
role for Z-DNA in the cell it has been hypothesised that Z-DNA forms to provide torsional relief
for supercoiled DNA during transcription as the propensity for Z-DNA formation is found in

regions of high transcription (Champ et al., 2004).
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A-DNA B-DNA Z-DNA

Figure 1.4. Generalised structures of A-, B- and Z- DNA. The image is owned by Richard

Wheeler (www.richardwheeler.net).

1.2 Intrinsic DNA Curvature

The discovery and characterisation of DNA curvature was an incremental process
contributed to by multiple researchers. The quantification of DNA curvature alongside efforts
to fully characterise and model its occurrence are still ongoing. The discovery of sequence-
specific DNA curvature had a profound influence on biologists studying DNA packaging,
recognition and transcription. The idea of DNA as a featureless repeating polymer has long
been dispelled. Asymmetrical kinks and bends are known to be caused by the binding of
proteins and chemical ligands (Xiong and Muttaiya, 2001; Cassina et al., 2011). However,
external distortion is not necessary for local structural polymorphisms within DNA. DNA that is
free of bound proteins displays heterogeneity in structure that is entirely dependent upon
local DNA sequence and, to a still disputed degree, long-range sequence context. This local
heterogeneity manifests as a smooth curvature over a number of helical turns that is
dependent upon the local DNA sequence. DNA curvature and bending can be quantified as
angles in degrees (°) or radians (rads) between two base pairs or, on a larger scale, between

helical turns.
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1.2.1 The Discovery of DNA Curvature

The influence of sequence on the angle between base pairs was first hinted at by DNA
X-ray fiber diagrams twenty years after the discovery of the B-form of DNA (Bram, 1973). The
role of local DNA sequence in the generation of DNA curvature was later confirmed and
further elucidated by other experimental techniques, such as gel electrophoretic mobility and
nucleotide digestion (Wang, 1979; Dickersoh and Drew, 1981a; Wu and Crothers, 1984). The
most conclusive evidence of sequence control of curvature and a huge source of information
on DNA structure, was provided by the first X-ray crystal structures of DNA (Dickerson and
Drew, 1981b).

The focus of research efforts over the last few decades, after confirmation that DNA
intrinsic curvature had a sequence dependent component, has been mainly to identify and
attempt to make quantitative measures of the influence of DNA sequence on curvature. The
first attempt at this suggested that large amounts of eukaryotic DNA may be curved and that
this intrinsic DNA curvature was likely to facilitate packing within the nucleosome (Trifonov
and Sussman, 1980). Further experimentation confirmed that AA tracts in phase with repeats
in the DNA helix cause gradual curvature (Marini et al., 1982; Wu and Crothers, 1984). DNA
sequences other than AA-TT repeats generate curvature to a greater or lesser extent. Larger
scale structural context and environmental conditions, such as the amount and type of ions
within solution, also plays a role (Haran et al., 1994). The discovery that divalent cations induce
curvature in DNA explained discrepancies between experiments in solution and X-ray
crystallography data and effectively settled the debate concerning DNA sequence dependent
curvature (Brukner et al., 1994). The occurrence of intrinsic, sequence-dependent DNA

curvature is now widely accepted.
1.2.2 Biological Roles for DNA Curvature

Intrinsic DNA curvature has been confirmed to be involved in a number of biological
processes and has been implicated in many more. A selection of these have been presented

below:

1.2.2.1 Protein Binding

As proteins are the ultimate effectors of processes involved in the transcription,
replication and repair of DNA the effects of curvature and flexibility on protein binding have
important biological implications. A number of DNA binding proteins introduce a local
deformation, sometimes called a kink or bend, on binding (Luscombe et al., 2000). Still other
proteins recognise regions of DNA that are sufficiently curved either intrinsically or due to

environmental or chemical factors (Missura et al., 2001). It is likely that the structure of DNA,
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either large scale curvature or localised kinking, is used by proteins to distinguish between
members of the same DNA-binding protein family (Rohs et al., 2010). Therefore, DNA
curvature may have been selected during evolution for at least three major reasons: to
facilitate histone binding and chromatin remodelling (Anselmi et al., 2000; Cairns, 2009), as a
feature recognised by a number of specialised proteins (Missura et al., 2001; Rohs et al., 2010)
and a facilitator of DNA binding by ligands by reducing the mechanical cost of deformation due
to intrinsic DNA curvature or flexibility. This provides a role for DNA curvature in a number of
biological processes which will be detailed below.

A classic example of a protein with activity influenced by DNA curvature is DNase |.
DNase | requires access to the minor groove of DNA in order to function (Suck, 1994). The
activity of DNase | becomes markedly higher in intrinsically bent DNA that more often presents
access to the minor groove; similarly, highly flexible DNA will also provide access to the minor
groove more frequently than rigid DNA. This property of DNase | has been taken advantage of
by researchers to study the curvature and flexibility of experimental DNA sequences (Brukner

et al., 1995a).
1.2.2.2 Nucleosome Affinity and Chromatin Structure

One of the first roles discovered for DNA curvature was its involvement in the
nucleosome affinity of DNA sequences (Satchwell et al., 1986). Histones are the proteins that
package DNA within eukaryotic cells. Histones wind DNA around a number of nucleosomal
proteins. The DNA thus packaged is called chromatin. The involvement of intrinsic DNA
curvature in nucleosome affinity has not been fully explained and is only one factor that
determines nucleosome affinity (Nair, 2010). However, it has been observed that nucleosome
formation favours DNA with low flexibility and high curvature, via two mechanisms: decreasing
the free energy of DNA distortion by nucleosomes and by increasing the energy cost that the
corresponding DNA free form spends to release a part of the spine of water displaced by
histone interactions (Anselmi et al., 1999, 2000). The intrinsic curvature of DNA has also been
implicated in the process of chromatin remodelling necessary for DNA transcription and

replication (Cairns, 2009).

1.2.2.3 Transcription

DNA curvature plays a multitude of roles in DNA transcription. Highly curved DNA is
present in the promoter region in prokaryotic organisms (Asayama and Ohyama, 2000). This
motif is so prevalent in prokaryotes that DNA curvature, alongside other physio-chemical
properties of DNA, has been used to identify and characterise different promoter regions

(Jauregui, 2003). It has also been hypothesised that DNA curvature plays a role in the
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termination of transcription in prokaryotes (Kozobay-Avraham et al., 2006). Additionally,
proteins introduce sharp bends that regulate the propagation of supercoiling in prokaryotic
DNA, indicating another role for DNA curvature in prokaryotic transcription (Leng and
McMacken, 2002).

Prokaryotic genomes only contain three different promoter elements (-10, -35
promoters and upstream elements) whereas eukaryotic genomes contain a wide variety of
promoter elements (Struhl, 1999). Therefore, the involvement of DNA curvature in
transcriptional regulation of eukaryotic organisms is less clear, due to its increased complexity.
However, a number of curved DNA motifs are found clustered in and around promoter regions
in eukaryotic genomes (Ohyama, 2005). This has led researchers to propose a number of
functions for DNA curvature in eukaryotic transcription including: as a structural feature
recognised by transcription factors, regulation of transcription in association with
transcription-factor-induced bending of DNA and as an organising factor for local chromatin.
Theoretical DNA curvature measurements have also been incorporated into efforts to identify

novel promoters in eukaryotes (Abeel et al., 2008).

1.2.2.4 DNA Damage and Repair

In many DNA damage pathways DNA damage is recognised due to the conformational
effect on DNA such as double strand breaks and single strand nicks. in the case of the
nucleotide excision repair (NER) pathway, damage is recognised by local bends formed by
chemical adducts (Missura et al., 2001). The key damage recognition proteins involved in NER
pathway, XPA and RPA, have been shown to detect damage not by identification of adducted
bases but by the conformational irregularities that they produce (Missura et al., 2001).
However, both XPA and RPA recognise different aspects of conformational change. XPA was
shown to have a high affinity for sharply and rigidly bent sections of the duplex DNA, often
caused by bulky DNA adducts, while RPA recognises single strand DNA loops, mainly formed
due to mismatches.

While this alone indicates a role for DNA curvature in NER, more compelling evidence
has recently been published. The local DNA sequence bordering a bulky chemical adduct was
shown to have a measurable effect on the repair efficiency of the NER pathway (Cai et dl.,
2009, 2010). These studies indicated that the role for DNA curvature and flexibility is that of a
destabilising or stabilising factor in the presentation of DNA adducts for repair. Gel
electrophoretic experiments and molecular dynamic (MD) simulations have indicated that
rigidly bent DNA presents a wider minor groove leading to more efficient excision and repair of
DNA lesions. The bulky adduct under investigation for these studies was benzo[a]pyrene diol

epoxide (BPDE), a chemical carcinogen heavily involved in the initiation and progression of
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lung cancer (Hecht, 2002; Kometani et al., 2009). DNA curvature has also been identified as a
possible protective factor for the protection of prokaryotic chromosomes from viruses (Abel
and Mrdazek, 2012). On an additional note, the tertiary structure of DNA has been shown to

effect the rates of adduct formation (Raney et al., 1993).

1.3 Defining DNA Curvature

It is necessary to distinguish between curvature and local bending. Local bending is the
deviation from an ideal straight helix over a fraction of a helical turn, whereas DNA curvature is
the conformation of a DNA tract measured over a number of helical turns (Goodsell and
Dickerson, 1994). Curvature therefore discounts local writhe within the helix whilst giving a
measure of how curved a sequence is on a macro scale (Figure 1.5.). A section of DNA with
high curvature may be constructed from many locally straight DNA sections and include only a
few bent sequences if the majority of the bent sequences are curved in the same direction.
Similarly, a section of DNA with a high degree of non-uniform local bending, or writhe, may

have functionally no curvature over a number of helical turns.

A

bent

Figure 1.5. - Comparison of local bending and curvature in curved and uncurved section of
DNA. A) A section of DNA with a large degree of local bending (writhe) which has low overall
curvature. B) A section of DNA with a low degree of local bending interspersed with sections of
straight DNA which have a large degree of curvature. Each individual section represents a
helical turn or short series of base pairs. The figure is adapted from Goodsell and Dickerson,
1994.
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1.4 The Experimental Investigation of DNA Curvature and Flexibility

With the discovery of the propensity of DNA sequences to intrinsically bend it became
clear that there was a need to measure and quantify curvature. There have been a number of
different methodologies developed for measuring the curvature of DNA sequences. One of the
obstacles in quantifying DNA curvature has been that DNA is a naturally dynamic polymer and
has a degree of sequence-specific flexibility (Hagerman, 1988). In many experiments this has
required the considerations of the static (curvature) and dynamic (flexibility) contributions to
DNA curvature. As DNA curvature and flexibility are both determined by DNA sequence
context the study of curvature often goes hand-in-hand with the study of flexibility. Some
studies were unable to determine which parameter, curvature or flexibility, contributed to the
observed changes in DNA conformation and instead amalgamated both parameters into a
single metric of DNA deformability (Brukner et al., 1995b). There are also individual measures
of DNA flexibility; for example, DNA persistence length (§) measures the distance over which
DNA retains its original trajectory (Bednar et al., 1995). A number of different methodologies

for investigating DNA curvature and flexibility have been detailed below.

1.4.1 Gel Mobility

One of the simplest and most commonly used experiment procedures for the
measurement of curvature has been polyacrylamide gel electrophoresis. Curved DNA
sequences have been observed with unexpected gel mobility (e.g. Dlakic & Harrington, 1998a;
Marini et al., 1982; Zinkel & Crothers, 1990). A number of models have been proposed that
relate intrinsic curvature to the mobility of DNA in gel electrophoresis. Some of these models
have formed the basis of popular dinucleotide models of curvature (e.g. Trifonov and Sussman,
1980; Bolshoy et al., 1991; De Santis et al., 1988; Ulanovsky and Trifonov, 1987). The models
explain the results of the gel mobility experiments and typically only consider the intrinsic
curvature of a DNA tract. DNA flexibility is not considered as a large component of these

models.

1.4.2 Bendability Experiments

The physical characteristics that influence the affinity of DNA for a number of proteins
have been exploited by researchers studying DNA curvature in a series of related experiments.
The fractional occurrence of DNA sequences in chromatin taken from chicken erythrocyte cells
has been used to generate an index of the bendability of DNA sequences (Satchwell et al.,
1986). This experiment exploited the affinity of nucleoproteins for curved DNA. The activity of
DNase I, a DNA degradation enzyme, is dependent upon access to the minor groove of DNA

(Brukner et al., 1995a). Flexible or intrinsically curved DNA presented the minor groove at a

25



higher rate than uncurved and inflexible sequences. The propensity of sequences to be cut by

DNase | was taken as a measure of DNA curvature and flexibility.
1.4.3 DNA Cyclisation Kinetics

Another methodology developed for the study of DNA curvature is DNA cyclisation
kinetics. This typically involves measuring the ratio of linear DNA molecules that circularise in a
solution containing DNA ligase (Shore and Baldwin, 1983). The probability of forming a closed
circle is related to the persistence length, a measure of DNA flexibility, of the DNA molecule.
Researchers have worked on a large pool of DNA sequences to develop theoretical and
computer generated models of cyclisation kinetics (e.g. Shore and Baldwin, 1983; Shimada and
Yamakawa, 1984; De Santis et al., 1996; Merlitz et al., 1998; Levene and Crothers, 1986). The
resulting models consider both the curvature and flexibility of experimental DNA sequences in

the resulting model.

1.4.4 X-ray Crystallography and Nuclear Magnetic Resonance Imaging

Other techniques that have been invaluable for the study of DNA curvature are X-ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy. X-ray fibre diagrams
gave the first indications that DNA had intrinsic curvature (Bram, 1973). X-ray crystallography
was the first tool available for the elucidation of representative roll, tilt and twist parameters
for oligonucleotides. However, there are a number of possible conformations for an individual
DNA molecule of which a crystal structure represents only one (El Hassan and Calladine, 1996).
Additionally, crystal packing can have a large effect on the resulting structure and it is
necessary to study multiple structures from different crystallisation environments in order to
produce a representative picture of DNA structure (Dickerson et al., 1994). In some cases the
outcome of multiple experiments has produced diametrically opposite results (Crothers et al.,
1990; Dickerson et al., 1994; Goodsell et al., 1994). X-ray crystallography was the basis for a
theoretical model that considered the contribution of both DNA curvature and flexibility
(Olson et al., 1998).

NMR spectroscopy of DNA is a powerful tool for studying DNA structure (Young et al.,
1995; Dornberger et al., 1998; Travers, 2004). NMR results have been shown to be significantly
better at predicting curvature in experimental DNA than X-ray crystallography (Gabrielian and
Pongor, 1996). NMR also allows for the investigation of structures in solution, something
which X-ray crystallography is unable to provide. However, NMR is unable to provide long
range information about structures under investigation (Young et al., 1995). The recent

application of small angle X-ray diffraction "fingerprinting" to DNA structures in solution could
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provide a bridge between the two methodologies and a useful tool for evaluating the results of

molecular dynamics (MD) simulations (Zuo et al., 2006).

1.4.5 Molecular Dynamic Simulations

Molecular dynamics simulations exist on the line between experimental and
theoretical methodologies and allow researchers to test hypothesis in a meaningful way. MD
simulations are computer models of the movement of atoms and molecules and the
interaction of inter-atomic forces. MD simulations of DNA have shown, at least in the general
features, to resemble NMR or X-ray crystallography data (Young et al., 1995; Dixit et al., 2004).
However, variances in methodological and simulation parameters imply a level of uncertainty
in the outcome of MD simulations. The results of MD simulations have also been shown to
deviate from expected experimental outcomes, especially within AT rich DNA sequences
(Cheatham and Young, 2000; Zuo et al., 2006). MD simulations lack a sufficiently complete
library of molecular structures to provide a comprehensive answer to the question of their
adherence to experimental data (Beveridge et al., 2004). Promising tools for checking the
veracity of MD simulations, such as small angle X-ray diffraction, have recently been developed
(Zuo et al., 2006). Molecular dynamics can provide useful information on local DNA properties
and will become more accurate and powerful as increasing amounts of experimental data

become available with which to refine the method.

1.4.6 Atomic Force and Electron Microscopy

Atomic force microscopy (AFM), also called scanning force microscopy, and electron
microscopy (EM) provide additional information in the form of measurements of the contour
length of individual DNA molecules and ensemble population of molecules (Bednar et al.,
1995; Rivetti et al., 1996). AFM has often been preferentially used for investigations of DNA
curvature as the sample preparation procedures are simpler than those required for EM. In the
preparation of DNA for EM it is necessary to treat DNA with heavy metals. AFM imaging of
DNA can be performed using a range of different buffers in either air or liquid. Early AFM and
EM experiments often dealt with the dynamic contribution of sequence to curvature. The
works of Scipioni and colleagues gave researchers solid theoretical grounds for the separation
of the effects of sequence on intrinsic DNA curvature and flexibility (Zuccheri et al., 2001b;
Scipioni et al., 2002a). The authors showed that by accounting for both the direction and the
magnitude of DNA curvature by AFM imaging it was possible to measure the static and

dynamic contributions to curvature.
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1.4.7 Experimental Separation of DNA Curvature and DNA Flexibility

In order to evaluate both the static and dynamic contributions to DNA curvature, i.e.
curvature and flexibility, they must be experimentally separated. The first experiments that
probed sequence-specific DNA flexibility used DNA tracts designed to have anomalous
curvature or flexibility. Examples of such experiments include: controlling curvature with in-
phase (Rivetti et al., 1998) and out of phase A-tracts (Bednar et al., 1995), base pair
mismatches (Kahn et al., 1994; Grove et al., 1996), a single nick in the DNA backbone (Le Cam
et al., 1994), single-stranded sections in the DNA sequence (Rivetti et al., 1998), asymmetric
charge neutralizations of the phosphate backbone (Hardwidge, 2002) and double-stranded
linker regions between two tracts of triple-helix DNA (Akiyama and Hogan, 1997). AFM was the
method of investigation in the first experiments that could conclusively claim to separate the
contributions of intrinsic curvature and flexibility in ‘real’ DNA sequences, as opposed to
constructed test DNA sequences (Zuccheri et al., 2001b; Scipioni et al., 2002a). AFM has also
been used to compare theoretical models of DNA flexibility to experimental DNA tracts
(Marilley et al., 2005) and has shown that on short scales DNA is more flexible than predicted
by classical models of DNA curvature (Wiggins et al., 2006).

1.5 Atomic Force Microscopy as a Tool for Studying DNA

The atomic force microscope was developed by Binnig, Quate and Gerber in 1986
(Binnig et al., 1986). The precursor to the AFM was the scanning tunnelling microscope which
earned Binnig and Rohrer the Nobel Prize in Physics (Binnig and Rohrer, 1993). The AFM
functions by measuring the interaction between a sample surface and a nanoscale size probe.
As this interaction is mechanical, not optical, it can take measurements of a surface on scales
much smaller than the optical diffraction limit. The resolution of AFM images is on a
nanometre scale. Measurements of interaction forces between the tip and the sample are also
possible and routine. The nanoscale probe is typically a flexible cantilever on which is mounted
a very small, sharp tip.

The tip is moved over the surface, much like the stylus of a record player. Deflections
in the movement of the cantilever are detected by a laser coupled to a photodiode that
reflects off the back of the cantilever. Nanoscale movements between the tip and surface can
be precisely controlled by a piezoelectric element in the scanner head or the motor stage on
which the sample is mounted (Figure 1.6.). AFM has become one of the most widely used tools
for investigations in biology at the nanoscale. Another advantage of the physical nature of AFM
is that it can be performed in both ambient (air) and solution (liquid) environments. This has

important implications for studies investigating both naked DNA and DNA-protein interactions.
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Figure 1.6. - Schematic representation of an atomic force microscope. The red line represents
the laser used to track the oscillation of the cantilever.
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1.5.1 AFM Imaging Modes

A number of different imaging modes have been developed for AFM imaging. In
contact mode a tip is passed in close proximity to a sample surface. Deflections in the
cantilever relate to deformations on the experimental surface. Contact mode is not typically
considered a suitable technique for imaging DNA as there is a large possibility of the tip
breaking or perturbing DNA during scanning (Hansma et al., 1994). An offshoot of this mode is
the direct manipulation of DNA on the surface using the AFM probe. This can be used for
nano-dissection of DNA samples (An et al., 2005) and has been used for highly accurate
screening and selection of fluorescently labelled DNA from individual cells (Di Bucchianico et
al., 2011).

Intermittent contact mode, often called tapping mode, is typically used in AFM studies
of DNA. This mode overcomes some of the most problematic imaging factors such as surface
adhesion, friction and electrostatic forces by only bringing the tip into intermittent contact
with the surface. The tip is oscillated near the resonant frequency of the cantilever. The tip is
not dragged along the surface as in contact mode. Instead the oscillating tip is brought into
light contact with the surface. The oscillation of the tip is maintained at a constant level by a
feedback loop. As the tip interacts with the surface the oscillation is dampened. The reduction
in oscillation amplitude is used to map features on the experimental surface. This is highly
effective for imaging DNA, where shear forces can cause damage to the sample (Hansma et al.,

1994).

1.5.2 A Brief History of AFM and DNA Imaging

The first commercially available AFM was released in 1989. It was not long before the
power of the system was applied to biological problems. The first published reproducible AFM
images of naked DNA were produced in 1992 (Hansma et al., 1992). For the first decade after
the development of the AFM many DNA researchers applied themselves to methodological
problems with imaging DNA under AFM. A huge amount of methodological literature was
published during this time, for example: researchers explored different ways of preparing DNA
for imaging (Allison et al., 1992; Bezanilla et al., 1995; Thomson et al., 1996), the resolution
limits of AFM imaging (Mou et al., 1995), imaging DNA in liquid (Hansma et al., 1992;
Lyubchenko, 1993), enzymatic reactions and degradation of DNA (Bezanilla et al., 1994),
humidity effects on the height of DNA on mica (Vesenka et al., 1993), imaging of DNA—protein
complexes (Allen et al., 1992) and, importantly, the application of intermittent contact mode

to imaging DNA (Hansma et al., 1994).
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1.5.3 DNA Dynamics

AFM allows the researcher not just to visualise immobilised DNA but also DNA freely
able to move on a surface in liquid buffers. This property makes AFM one of the only available
tools for direct visualisation of DNA dynamics. It has been used for a number of different
studies: the visualisation of DNA transiently forming non-B-form tertiary structures (Tiner et
al., 2001), formation and recognition of stem-loop structures (Lonskaya et al., 2005), the
formation of cruciform structures (Mikheikin et al., 2006), manipulation of DNA structure by
protein interaction (Jiao et al., 2001), the gradual melting of replication origins (Marilley et al.,
2007a) and the dynamic movement of nucleosomes (Shlyakhtenko et al., 2009). Additionally,
researchers have begun to incorporate time-lapse imaging of individual DNA molecules into
studies of DNA curvature (Marilley et al., 2005). The recent development of reliable high speed
AFM imaging techniques has expanded the scope of studies investigating DNA dynamics. The
ability to image DNA behaviour or interactions over millisecond time-scales has begun to yield

promising results and will continue to do so over the next few years (Lyubchenko et al., 2011).

1.5.4 Mechanical Measurements of DNA by AFM.

AFM has also been used to measure the mechanical elastic forces in the DNA duplex
(Bustamante et al., 2000). One end of a single DNA molecule was attached to the AFM tip and
the other end attached to the surface. By pulling the tip at a constant force away from the
surface and measuring the deflection the elasticity of the DNA molecule can be measured. A
related application has been applied to measure the energy required to unzip double stranded
DNA (Krautbauer et al., 2003). One complementary sequence is bound to an AFM tip and
another to a sample surface, they are brought into contact, allowed to hybridise and then
pulled apart. This has been a valuable source of information for theoretical models of inter-
helical forces (Cocco et al., 2002). The interaction forces between proteins and DNA can be

measured in a similar way (Bartels et al., 2007).

1.5.5 DNA-Ligand Interactions

AFM has obvious utility for visualising DNA-protein interactions. Some of the first
applications of AFM to DNA imaged the interaction between DNA and nucleoproteins
(Lyubchenko et al., 1995). The deformation of DNA caused by the binding of proteins can be
observed in air and liquid conditions (Yoshimura et al., 2000; Lysetska et al., 2002). This has
proved invaluable in efforts to understand DNA transcription (Hamon et al., 2007), repair
(Yaneva et al., 1997; Wang et al., 2003; Jiang and Marszalek, 2011) and replication (Yoshimura
et al., 2000; Lysetska et al., 2002). AFM has become a routinely utilised tool in studies of DNA-

protein interactions.
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AFM has also been used to assess chemical interactions and the structural
perturbations caused by bulky adducts. For example, the chemical carcinogen BPDE, caused a
local bend of at least 30 % in supercoiled plasmid DNA (Pietrasanta et al., 2000). AFM can
measure the changes in molecule length and persistence length attributed to intercalation by a
number of chemical agents (Pastré et al., 2005). Sufficiently large numbers of measurements
over a range of different concentrations of the chemical allowed for a measurement of
intercalating efficiency and estimation of the number of intercalating molecules (Cassina et al.,

2011).

1.5.6 AFM for the Analysis of DNA Curvature and Flexibility

The first steps in the analysis of macromolecular structure of DNA by direct imaging
were performed using EM. These initial experiments utilised protein end-labels to orient DNA
molecules to generate profiles of the curvature of plasmid DNA (Muzard et al., 1990). These
experiments were used as a basis for the first experiments that used AFM to probe intrinsic
DNA curvature. The first examples of the analysis of DNA bending by AFM studied molecules
designed with sections of artificially modified flexibility or conformational changes induced by
proteins (Rivetti et al., 1998; Cam et al, 1999). It was not until the work of Scipioni and
colleagues that a solid mathematical underpinning was developed for application to AFM
images of DNA (Zuccheri et al., 2001b; Scipioni et al., 2002a, 2002b). These works proved that
the contributions of both intrinsic curvature and flexibility to DNA conformation could be
individually determined for an ensemble of DNA molecules by AFM analysis. These studies
used real DNA sequences as opposed to sequences constructed with anomalous regions of
curvature or flexibility. |

Other studies have generated novel mechanisms for DNA molecule orientation and
have studied profiles of curvature from a number of well characterised DNA sequences (Ficarra
et al., 2005b; Milani et al., 2007; Buzio et al., 2012). More recent studies have begun to
investigate the functional role of DNA curvature, such as characterising curvature profiles at
the origin of replication (Marilley, 2000; Marilley et al., 2007a, 2007b) and the role of DNA
curvature in activating the interleukin 2 receptor alpha gene (Milani et al., 2011). One of the
most exciting advances of recent years is the detection of the conformational changes induced
by single nucleotide polymorphisms in the human osteopontin gene by AFM analysis (Buzio et
al., 2012). The detection of conformational changes induced by such minor modifications to
the DNA sequences suggests an exciting future of AFM based analysis of intrinsic DNA

curvature.
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1.5.7 Adhesion of DNA to an Imaging Substrate

A major experimental consideration for AFM analysis of DNA is the selection of an
appropriate imaging substrate and buffer. There are few suitable atomically flat substrates
that will bind or can be caused to bind DNA. One of the most popular methods of DNA
preparation is the use of a mica substrate and a divalent cation containing buffer. The mica
surface has a negative charge which is unsuitable for binding DNA. However, by using
positively charged divalent cations, that have an affinity for both the negatively charged DNA
phosphate backbone and the mica surface, a cationic bridge is formed. One of the benefits of
this method is that cationic radius has been shown to influence the strength of adhesion,
therefore the strength of DNA binding can be varied by changing the constituent divalent
cations and concentration of the buffer (Hansma and Laney, 1996). Chemical modification by
spermidine, 1-(3-aminopropyl)silatrane and 3-aminopropyltriethoxy silane is also routinely
used to make the mica surface suitable for DNA binding (Lyubchenko et al., 2011). The routine
use of highly oriented pyrolytic graphite is complicated by its hydrophobic nature (Oliveira
Brett and Chiorcea Paquim, 2005). The typical substrate used in AFM analyses of DNA
curvature is mica and the buffer used is typically a divalent cation containing buffer of either
Mg?* or Ni** (Scipioni et al., 2002a; Ficarra et al., 2005b; Buzio et al., 2012). The use of Mg®*
cations has been shown to produce a weak bond between the DNA and mica which allows for
the DNA to equilibrate on the surface and adopt its preferred conformation (Rivetti et al.,

1996).

1.6 Image Processing of AFM Images of DNA

For an AFM-based study of intrinsic DNA curvature the image processing steps applied
to the resulting images are of central importance. There are a number of methodological
considerations to consider which are likely to influence the output of the study. AFM is a
relatively high throughput technology. The imaging of naked DNA is free from high contrast
topographic features and so requires only minimal oversight from the user. Large amounts of
images can be captured in an automated manner on most commercial AFMs using proprietary
software or in-house code. There are two major bottlenecks to consider when gathering
sufficient data for a study of DNA curvature: image capture speed and image processing speed.
The time it takes to capture a typical AFM image is significant. A number of factors effect the
speed of imaging and include: image size, resolution (pixels per line), the size of the AFM probe
and the quality of cantilever tuning in intermittent contact mode. With the advent of
commercially available, high speed AFM imaging (Schitter et al., 2007) with automatic image
quality control (Kaemmer, 2011), this bottleneck will soon be overcome. The second

bottleneck is the time it takes to process large amounts of AFM images. A number of authors
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have detailed image processing workflows for automating the collection of AFM images
(Sanchez-Sevilla et al., 2002; Masotti et al., 2004; Ficarra et al., 2005a, 2005b). There are a
limited number of commercially and freely available options of varying application and

versatility (Collins, 2007; Horcas et al., 2007; Barret, 2008; Necas and Klapetek, 2011).

1.6.1 Image Processing Software Categorised by Level of Automation

The area of image processing for AFM-DNA images can be broadly divided into three
categories: manual methods, semi-automated methods and fully automated methods. Manual
methods require a user to ‘draw’ the backbone line of the DNA molecule using the mouse
cursor (Rivetti et al., 1996). These methodologies have been described as ‘tedious and time
consuming’ (Wang et al., 2007). Semi interactive measurements of DNA contour length require
the user to specify a number of points along each DNA molecule in an image after which the
software performs an algorithmically ‘guided walk’ to find the highest foreground pixels
between the specific points (Marek et al., 2005). Fully automated methods typically have both
an unsupervised thresholding algorithm for the identification of foreground pixels and
automated algorithms for the removal of imaging artefacts (e.g. Ficarra et al., 2005a, 2005b;
Fang et al., 1998; Spisz et al., 1998; Sanchez-Sevilla et al., 2002; Wiggins et al., 2006). In some
notable publications the authors have used combinations of semi- and fully automated
algorithms (Ficarra et al., 2005a, 2005b). In these cases the authors have compared both
methodologies or used the automated method only for processing computer simulated DNA
images. The semi- and fully automated methodologies have been found to be largely
comparable (Ficarra et al., 2005b). The authors concluded with the statement ‘the semi-
automated procedure can be very effective for selecting molecules of interest because of the
ability of the human-eye to distinguish molecules from background noise or artefacts’ (pg.

2082, Ficarra et al., 2005b).

1.6.2 Image Processing Toolboxes

A small number of programs for the platform specific toolboxes have been developed
by research groups for the analysis of AFM images of DNA. The ALEX toolbox for MATLAB was
the first image analysis platform for this purpose (Rivetti et al., 1996). It has been used in a
number of publications by members and associates of Dr. Rivetti’s group (Zuccheri et al.,
2001a, 2001b; Scipioni et al., 2002b). However, the ALEX toolbox has not been updated since
its publication, it has limited user documentation and is not freely available to download. A
similar application, named Scanning Adventure, has also been developed (Sanchez-Sevilla et
al., 2002). This software has been used by a number of authors associated with the original

research group (Marilley et al., 2005, 2007b; Milani et al., 2011).
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A number of freely or commercially available image analysis platforms offer some
application to AFM images of DNA. For example, flexible image processing platforms such as
Imaged (Collins, 2007) have a number of packages that can be adapted for AFM imaging. Other
AFM specific solutions include Image SXM (Barret, 2008), WSxM (Horcas et al., 2007) and
Gwyddion (Necas and Klapetek, 2011). Many of these software platforms will allow the user to
view and manipulate AFM images from a number of major AFM manufacturers. However,
there is very little or no possible customisation available on such software platforms; making

complex analysis time-consuming and impractical.

1.6.3 Common Image Processing Steps used on AFM Images of DNA

The aims of an image analysis package for AFM images of DNA are to take an input
AFM image, identify DNA molecules, extract their orientation and output the DNA contour
using a meaningful coordinate system. There are a number of confounding factors that
necessarily have to be understood and appreciated in order to achieve this, which have been
discussed in later sections. While there has been no definitive workflow for this type of
analysis, the workflow published by Ficarra et al., is debatably the most complete and detailed
currently available (Ficarra et al., 2005a). There are a number of common steps that have been
adopted by researchers over the last 15 years: a single or multiple plane fitting step, removal
or reduction of noise, extraction of foreground objects, repeated erosion of foreground
objects to one pixel thinness and removal or erroneous (also called 'spurious') branches from

foreground objects to leave the backbone of the DNA contour (Figure 1.7.).

Plane Fitted Noise Filtered Thresholded Skeletonised and Selection of

Image G Image 0 Image > 'Pruned’ Image Molecules

XYy
21 34
21 35
22 35
23 35

Figure 1.7. - Common steps in image processing toolboxes for AFM images of DNA.
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1.6.3.1 Plane Fitting

This step has also been called flattening and is typically the first step in image analysis.
AFM imaging usually produces a large amount of Z-height variation on a line-by-line basis. This
variation is reduced or removed by fitting and subtracting a variable degree polynomial to each
line of the image to produce a flat image. Many authors will fit and subtract a two or three
degree polynomial to the image data (Bustamante and Rivetti, 1996). It is not unusual to fit
multiple polynomials to an image to ensure that it is uniformly flat (Sanchez-Sevilla et al.,
2002). Plane fitting should not effect the resulting analysis unless the Z-height of the image is

of considerable interest.

1.6.3.2 Noise Reduction/Noise Filtering

There are a number of different sources of imaging noise that can effect AFM imaging
such as acoustic, electrical, vibration, surface interaction and cantilever tuning. Correction for
these noises in an automated manner is impractical. They can be classed as impulsive noise
and filtered using a 3x3 median filter which is effective at removing impulsive noise (Ficarra et
al., 2005b). Other filters have been used by researchers in AFM image analysis on an image to
image basis, such as the Weiner, Gaussian (Ficarra et al., 2005b) and average filters (Spisz et
al., 1998). The 3x3 median filter is the most often used by researchers (Sanchez-Sevilla et al.,
2002; Ficarra et al., 2005a, 2005b). A 5x5 median filter has also been used (Sundstrom, 2008).
There are reports of applications that do not use an image filter (Rivetti et al., 1996; Rivetti and
Codeluppi, 2001). Any filter that will increase the signal to noise ratio of the target image

without causing distortion to the image is suitable for application.

1.6.3.3 Thresholding

This step is sometimes called Image Segmentation and should not be confused with
Molecule Extraction. It is the separation of the foreground and background pixels. Manual
methods do not need this step as the DNA contour is interactively selected by the user (Rivetti
and Codeluppi, 2001). A number of automated and semi-automated methods have been
employed: slider based interactive selection of a single (upper) or double (upper and lower)
level thresholding (Marek et al., 2005), treating the background and foreground pixel
intensities as two separate distributions and fitting Gaussian curves (Fang et al., 1998),
manually chosen threshold values (Sanchez-Sevilla et al.,, 2002), algorithmically calculated
thresholds such as the Ridler and Otsu threshold (Ficarra et al., 2005a) and custom
methodologies (Rivetti et al., 1996).
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1.6.3.4 Skeletonisation/Thinning/Erosion

This step ideally results in the transformation of thick foreground DNA molecules into
‘backbone’ contours of one pixel thickness. Thinning involves an algorithm that iteratively
removes (erodes) connected pixels on the outside of the binary object. There are a set of
constraints, the most important of which is that thinning cannot ‘break’ an image object into
multiple image objects i.e. it must stay connected. A number of algorithms have been used for
skeletonising DNA molecules: the algorithm of Zhang and Suen which required the addition of
a ‘corner removal’ step for pixels connected in an L pattern (Zhang and Suen, 1984; Spisz et al.,
1998), the need to remove corner pixels has been circumvented by using the thinning
algorithm of Brugal and Chassery (Brugal and Chassery, 1977; Sanchez-Sevilla et al., 2002) and
utilising custom binary image masks (Ficarra et al., 2005a). Comprehensive reviews of thinning
algorithms are available (Lam et al.,, 1992). An optional step, called end-point retrieval,
recovers pixels removed during thinning that have Z-heights above the image threshold value
that could be considered important for the continuity of the DNA backbone contour at the end

of the molecule (Spisz et al., 1998; Ficarra et al., 2004, 2005b).

1.6.3.5 Removal of Image Artefacts/Critical Molecule Removal

During this step obvious image artefacts or erroneous or unsuitable molecules are
removed. This includes molecules that are in contact with the image boundaries as the extent
of these molecules is unknown, the removal of two molecules that overlap, the removal of
‘blobs’ below a certain threshold size in pixels and the removal of self-circularised or self-
overlapping molecules (Spisz et al., 1997; Ficarra et al., 2005b). The removal of molecules with
obviously erroneous contour lengths has also been applied after DNA contour identification

and xyz coordinate extraction (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al., 2005).

1.6.3.6 Removal of Spurious Branches or ‘Pruning’

This has been identified as the most computationally intensive step for automated
methods during image processing (Ficarra et al., 2005a). The analogy most often used in the
literature for a thinned DNA molecule is that of a tree trunk with a number of ‘spurious
branches’ that protrude from the ‘trunk’ of the DNA backbone contour. These branches are
introduced by the thinning procedure. Manual and semi-automated methods typically do not
need this step as the DNA contours are identified interactively by the user on a pixel-by-pixel
or section-by-section basis (Marek et al., 2005). A section-by-section approach will include an
algorithm for identifying the most likely intervening pixels and will not create branches. A
number of methods have been previously employed for branch removal: the use of image

masks for the identification of ‘branches’ (Ficarra et al., 2005a), considering the problem in
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terms of graph optimisation where the longest path is considered as the true DNA contour

(Cirrone, 2007) and undocumented methods (Spisz et al., 1998).

1.6.3.7 Molecular Extraction

In experiments where only the length of the DNA molecule is considered it is only
necessary to return the position of each pixel in relation to its neighbouring pixels (i.e.
diagonal, horizontal or vertical) or as a custom ‘chain code’ (Spisz et al., 1998; Rivetti and
Codeluppi, 2001). For the study of DNA curvature each pixel position is recorded in Cartesian
coordinates (Ficarra et al., 2005a). This must be performed iteratively from one end to the

other in order to preserve the order of the coordinates for further analysis to be possible.

1.6.4 Data Processing and Analysis of DNA Molecules

After image processing there are a number of different physical descriptors that can be
estimated from the resulting data. These include contour length, intrinsic DNA curvature, DNA
flexibility, DNA persistence length and other customised analyses. The approaches and

methods used by previous researchers are discussed below.

1.6.4.1 DNA Contour Length Calculation

A number of different methods for calculation of the length of DNA molecules from
AFM images have arisen over the last decade. Digitisation of DNA contours has the effect of
smoothing out small structural features below the pixel resolution of the DNA image or,
alternatively, pixelising an otherwise smooth DNA contour. Therefore, it is not enough to
simply measure the length of the digitised line but also to reconstruct an estimation of the true
contour length. This problem has been identified for some time and a comprehensive review
of different binary length estimation algorithms and their application to DNA contours is
available (Rivetti and Codeluppi, 2001). Some of the most common length estimators are
presented include the:

Freeman Estimator/Euclidean Distance - The simplest of the length estimators is the
Freeman estimator (Freeman et al., 1970; Spisz et al., 1998). Pixel orientation is considered in
terms of Euclidean distance i.e. to be in one of two states; either a single horizontal or vertical
move or a ‘knights’ move of one up/down and one left/right. A value of 1.0 is assigned to the
horizontal/vertical move and 1.4 to the ‘knights’ move. The sum of these values is multiplied
by a correction factor based upon the resolution of the image in nanometres (/.e. size of image
in nm divided by number of pixels) and the outcome is considered the length of the DNA
molecule. This approach can lead to a length overestimation of as much as 8 % for something

as simple as a digitised straight line (Sanchez-Sevilla et al., 2002).
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Kulpa Estimator - The Kulpa estimator is a simple modification of the Freeman
estimator. It substitutes the values 0.948 and 1.343 for 1.0 and 1.4 respectively (Kulpa, 1977).
This has the benefit of being both simple to implement and giving a good estimation of
reconstructed DNA contour length (Rivetti and Codeluppi, 2001). It has been used by a number
of authors (Rivetti and Codeluppi, 2001; Marek et al., 2005).

Adjustment of Pixel Values by Weighted Average - Ficarra et al., applied an ad hoc
methodology to the problem of length estimation (Ficarra et al., 2005a). The first step of the
method is to transform each pixel coordinate into a weighted average of the surrounding pixel
coordinates. The weight to use for the average is experimentally determined for each dataset.
The reconstructed length is then calculated as for the Freeman estimator. The reasoning
behind this approach is that DNA has continuous curvature and the position of each base pair
is dependent upon the preceding and succeeding base pair. As a digitised line is a rough
approximation of a curve a smoothing step is necessary prior to calculating curvature. The
authors reported a more accurate length calculation than any of the methods previously
detailed (Ficarra et al., 2004).

Signal Processing Method — This method treated the DNA contour as a signal
processing problem and applied a Fast-Fourier transform of the coordinate data, followed by
Gaussian filtering and normalisation (Sanchez-Sevilla et al., 2002). This method produced an
estimated length more in-line with expectation than the Freeman estimator alone.

It is clear that there is no consensus method for length estimation within the current
literature. Since the work of Rivetti and Codeluppi in 2001 there has not been a systematic
attempt to compare any of the more recently developed contour length estimators (Rivetti
and Codeluppi, 2001). Individual researchers are free to select a suitably accurate method

from those available from the literature based upon their own criteria.

1.6.4.2 Persistence Length

The most widely used experimentally determined measure of polymer flexibility is
persistence length, sometimes denoted as § or P. Persistence length is a measure of the
‘persistence’ of the memory of the initial chain direction. It is considered a measure of polymer
rigidity, rather than flexibility, as it measures the distance over which a polymer maintains its
original orientation. The persistence length of a polymer is defined as the “the length over
which the average deflection of the polymer axis caused by thermal agitation is 1 rad.” (pg. 67,
Virstedt et al., 2004). Although persistence length is a measure of rigidity, it is determined by
both a static (curvature) and a dynamic (thermal fluctuations or flexibility) component (Bednar

etal., 1995).
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The persistence length of DNA has been investigated using a number of techniques
including rotational diffusion (Elias and Eden, 1981), light scattering (Sobel and Harpst, 1991),
DNA cyclisation (Crothers et al., 1992) and single molecule extension (Baumann et al., 1997).
These experiments determined a persistence length for DNA of ~140-180 bp (48-61 nm) and
the consensus persistence length of ~50 nm is usually used for B-DNA (Hagerman, 1988).
Persistence length has been used as an important global indicator of DNA equilibration on
sample substrates (Rivetti et al., 1996) and as a measure of chemical intercalation and adduct
formation (Pastré et al., 2005; Cassina et al., 2011).

Persistence length is relatively simple to measure from AFM images of DNA. The two
requirements for calculating persistence length from DNA images are accurate measurements
of the position of the DNA contour along its length and a large enough sample size of DNA
molecules. This end-to-end measure is then compared to predictions made by the WLC model
of DNA flexibility (Cassina et al., 2011). The persistence length of DNA estimated from AFM
images varies depending on the buffer and adhesion conditions used (Rivetti et a/., 1996).
Using a Mg®* containing buffer the persistence length of DNA measured by AFM is often cited
as being ~50 nm (Rivetti et al., 1996). Considerable deviation from this consensus value has
been reported from as low as 36 nm (Lysetska et al., 2002) to as high as 56 nm (Podesta et al.,
2005). As an example of the effects of differing buffer conditions on persistence length, a Ni**
containing buffer produces a persistence length of between 30-36 nm on a mica surface

(Hansma et al., 1997; Lysetska et al., 2002).
1.6.4.3 Calculation of DNA Curvature and Flexibility from AFM Images

A standard methodology for calculating intrinsic DNA curvature from AFM images has
been well detailed within the literature (Scipioni et al., 2002a; Ficarra et al., 2005b). The first
step is to select a set number of points along each DNA molecule at regular intervals. This
separates each molecule into a number of comparable line sections or vectors. Direct
comparison between points requires the assumption that all the molecules under investigation
are complete DNA molecules of identical ‘real’ length in base pairs.

In order to achieve this, interpolants are fitted to each molecule. This step is
sometimes considered to be a smoothing step. There is no consensus method for interpolation
and the methods used have included a variable degree polynomial that fitted a number of
points below a user defined threshold value (Ficarra et al., 2005b), a number of variable
degree cubic splines over a window of 5 pixels (Sundstrom, 2008) and simply standardising for
length (Zuccheri et al., 2001b; Scipioni et al., 2002a). There is very little consideration for the
effect smoothing or interpolant type may have on curvature angle calculation within the

current literature.
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The curvature of a line in space is calculated as the derivative of the tangent vector
along the line. The modulus of curvature is the inverse of the curvature radius and its direction
is the main normal of the curve (Timoshenko and Goodier, 1986). In the case of DNA, the
helical axis corresponds to a line and the curvature is the vectorial product of the DNA
sequence. Curvature represents the angular deviation between the local helical axis at n and
n+1 base pairs, n being a point (base pair, pixel or other contour length measure) in the
sequence.

DNA can be considered in terms of first order elasticity due to its relatively high rigidity
(Scipioni et al., 2002a). The contribution of thermal noise imposing local variations of the
structure of DNA is considered zero over a sufficiently large sample size (Ficarra et al., 2005b).
Under these assumptions the intrinsic curvature is calculated as the mean angle value of a
sufficiently large population of DNA molecules. The flexibility of the DNA sequence at point n is
the standard deviation of the assembled curvature angles at point n. The output of this
methodology has been shown to be comparable to several theoretical dinucleotide wedge
models of curvature in a number of publications (Zuccheri et al., 2001b; Scipioni et al., 2002a;

Ficarra et al., 2005b; Buzio et al., 2012).

1.6.5 Experimental Orientation of DNA for AFM Imaging

For researchers to probe the site of interaction of proteins with DNA or to investigate
sequence-specific curvature it is necessary to orient the DNA experimentally. The first
attempts at orientation of DNA molecules used 5 nm colloidal gold spheres to label one end of
a linear DNA molecule (Shaiu et al., 1993). Researchers also identified enzymatic ‘nicks’ using
biotin-streptavidin probes (Murray et al., 1993). The use of repeating dimeric DNA sequences
removed the need for end-labelling in particular experiments (Zuccheri et al., 2001b). This
experimental method involved creating a DNA molecule that was symmetrical around a central
point, i.e. both halves of the DNA molecules have identical sequences oriented in different
directions.

There are several post-imaging processing methodologies for molecule orientation. The
fragment flipping (FF) algorithm has been well detailed in a pair of related publications
(Masotti et al., 2004; Ficarra et al., 2005b). Simplistically, it is a method for orientation of a
large population of molecules based upon their intrinsic curvature. Each molecule is ‘flipped’
into one of its four possible orientations on the flat surface. The orientation of each DNA
molecule that reduces the mean column variance within the entire dataset is retained and the
algorithm iterates upon every molecule within the dataset. This continues until the dataset
meets a minimum optimal objective function, the objective function being the mean of the

column variance of the dataset. This method has been shown to be very effective for
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theoretical molecules and to give good experimental fit with the De Santis model of curvature.
However, a valid concern has been raised that the algorithm relies upon a ‘hill-climbing’
optimisation routine that is sensitive to local minima (Buzio et al., 2012).

The method described by Buzio et al., is also a post-processing method that takes a
very different approach than the FF algorithm (Buzio et al., 2012). This method generates a
profile for each molecule. This profile is the ratio of the curvature at symmetrical points along
a single molecule. This chain descriptor, averaged over a suitable number of molecules, give an
individual profile for a DNA sequence. This is not a typical orientation method as it does not
identify either end of an individual molecule. The authors showed that the resulting profile is
sensitive enough to identify single nucleotide polymorphisms between two sequences within
the human osteopontin gene.

Another method for post-image processing orientation of DNA molecules uses the
theoretical pitch of DNA (Milani et al., 2011). The pitch was calculated using 3D theoretical
models projected on to a 2D surface. The Z-height measured from experimental images is

recorded and the traces are aligned with the theoretical pitch.

1.7 Theoretical Models of DNA Curvature

Theoretical models of intrinsic DNA curvature have great utility in the study of DNA
curvature. In order to calculate theoretical DNA curvature, it is first necessary to model the
structure of a DNA tract in three dimensions (3D). DNA dinucleotide structure can be
characterised by six dinucleotide parameters: slide, shift, rise, tilt, roll and twist. These base
pair geometries define the position of each base pair relative to the preceding nucleotide. Tilt
and roll define bending angles between spatially adjacent base pairs. Twist is a rotation angle
between two base pairs. Rise is the vertical displacement between two base pairs. Shift and
slide are in-plane dislocations between base pairs. A simple schematic illustrating base pair
geometries is presented in Figure 1.8. There are a number of other parameters, such as
propeller twist, the rotation of one base pair in relation to the next, that describe inter- or
intra-base pair geometries that have either a negligible or no net effect on the macro structure
of DNA and will not be discussed further.

The 3D positions of each base pair within a DNA tract can be calculated by placing the
first base pair at the origin of a Cartesian coordinate system (i.e. x,y,z co-ordinates) and then
calculating the position of the next base pair using the parameters of roll, tilt and twist and
translating them using a rise parameter (Vlahovicek and Pongor, 2000). Either a model-specific
rise value is used for each base pair step or a constant value is chosen to reflect the ideal form

of DNA, e.g. 3.4 A for B-DNA (Saenger, 1984). Relevant dinucleotide wedge models provide the
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dinucleotide step parameters necessary for modelling curvature (Ulanovsky and Trifonov,
1987; De Santis et al., 1988; Bolshoy et al., 1991; Olson et al., 1998)

The calculation of the deviation in the helical axis at each base pair step can be a
complex task, requiring the application of intricate matrix algebra (Ulanovsky and Trifonov,
1987). However, for B-DNA a simpler approach is often adopted by calculating the vector
normals between each base pair using the base pair parameters. This has been used to great
effect in programs such as CURVATURE for high speed and high throughput curvature analysis
of DNA sequences (Goodsell and Dickerson, 1994).
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Figure 1.8. - Base pair geometry parameters of slide, shift, rise, tilt, roll and twist. The influence
of each parameter on dinucleotide positions is indicated by a coordinate system. The base pair
reference frame is constructed such that the x-axis points away from the minor groove edge of
a base or base pair and the y-axis points toward the sequence strand. Adapted from El Hassan
and Calladine, 1997.
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1.7.1 Formative Models of DNA Curvature

Experimental curvature models attempt to extract base pair geometry parameters, be
they roll, tilt, twist or relative scales of bendability, from experimental data. Researchers over
the last few decades have used a variety of different experimental datasets and mathematical
tools in attempts to estimate geometric base pair parameters from synthetic DNA
oligonucleotides. Underlying these attempts and allowing for a context in which to interpret
experimental results are the formative models of intrinsic DNA curvature. These underlying
models are distinct from the individual experimental models of curvature described later;
underlying models form a context by which di-, tri- and tetra-nucleotide models can be
interpreted. There are a number of formative models that attempt to explain the occurrence

of DNA curvature. Only two of the most popular are discussed below.

1.7.1.1 The Junction Model

The Junction model in its first incarnation was developed to explain observation of
angles forming at the junction between A- and B-DNA (Selsing et al., 1979). The structure of
DNA, i.e. base stacking and hydrogen bonding, was preserved at the junction. The premise of
the Junction model is that at the intersection, or junction, between normal DNA and an
adenine-rich tract there is a change in the direction of the helical axis and a bend is formed
(Figure 1.9.A). The Junction model considers distant AT/TA base pairs to have a significant
effect on the angle between AA-TT dinucleotides i.e. that long-range influences of DNA

sequence are considered relevant.

1.7.1.2 The Wedge Model

The Wedge model was first proposed to explain the correlation of sequence repeats
within chromatin DNA sequences and was limited to considering the periodic repeat of AA-TT
dinucleotides (Trifonov and Sussman, 1980). The original premise of the Wedge model was
that non-parallel dinucleotides, ie. dinucleotides forming a bent wedge, would cause
unidirectional curvature in the helical axis (Figure 1.9.B). This model has since been refined and
considers bending to occur primarily in AT rich sequences but also, to a lesser magnitude, in
other DNA sequences (Cooper and Hagerman, 1987; Ulanovsky and Trifonov, 1987). The
outcome of this model is smooth bending across the DNA sequence made up of incremental
additive wedges with the dinucleotide as the unit of curvature. The model does not consider

long range influences of DNA sequence on curvature.
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Figure 1.9. - Schematic representation of the Junction (A) and Wedge (B) models. In the
Junction model the helix axis deflection (8) occurs at the interface of B-DNA and A-tracts (B'-
DNA). In the Wedge model the A-tracts are curved (8). However, the Wedge model does not
necessarily consider the general-sequence B-DNA between A-tracts to be straight.
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1.7.2 Di-, Tri- And Tetra- Nucleotide Models of DNA Curvature

There is no consensus about which formative model most accurately describes
sequence-specific DNA curvature. However, the base pair geometric parameters that are
extracted from experimental data are often comparable even if the magnitudes of the

reported parameters differ (Kanhere, 2003).

1.7.2.1 Dinucleotide Models

Dinucleotide models generate dinucleotide roll and tilt parameters from experimental
datasets. While a full review and comparison is outside the purview of this study a selection of
different models pertinent to AFM imaging of DNA are detailed below. The Calladine and Drew
model was put forward to explain anomalous gel migration experiments in a number of test
DNA sequences (Calladine et al., 1988). The dinucleotide parameters were inferred from gel
retardation experiments and compared against X-ray diffraction experiments. The Bolshoy
model parameters were chosen to explain DNA circularisation and gel retardation experiments
(Bolshoy et al., 1991). This model has the largest deviations from the consensus twist and tilt
angles of other models. The De Santis model calculated roll, twist and tilt angles from
conformation energy calculations of dinucleotide steps (De Santis et al., 1988). The resulting
parameters were compared to the result of gel mobility experiments of 62 different synthetic
oligonucleotides. The Olson model extracted dinucleotide parameters from a large set of DNA-
protein X-ray crystal complexes. In addition to roll, twist and tilt angles the model also
incorporates translational parameters of shift, slide and rise. Flexibility of the dinucleotide
steps was also estimated from dispersion values of crystal complex data (Olson et al., 1998).
The De Santis, Bolshoy and Olson models are considered Wedge models and the Calladine and

Drew model is considered a Junction model.

1.7.2.2 Trinucleotide Models

The bending parameters have also been assessed for models of curvature on a scale
larger than dinucleotide scale. The following trinucleotide models have also been called
Bendability models. The experimental results rely upon the propensity of an oligonucleotide to
be deformed as a measure of curvature and flexibility. The details of the two major
trinucleotide experiments have been described in Section 1.4.2. The results of these
experiments have been amalgamated into the Consensus Bendability model (Gabrielian and
Pongor, 1996). Trinucleotide models have been shown to be improvements over dinucleotide
models (Brukner et al., 1995b; Gabrielian and Pongor, 1996). However, trinucleotide models

show little correlation between individual trinucleotide parameters and do not provide
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accessible three dimensional parameter values for researchers wishing to simulate DNA in 3D

space (Brukner et al., 1995b).
1.7.2.3 Tetranucleotide Models

There are a number of different context specific instances where nearest neighbour
interactions have been shown to influence individual dinucleotide angles (Brukner et al.,
1995b; Lanka$ et al., 2003). In the case of A-tracts even longer range effects have been
observed (Burkhoff and Tullius, 1987). Tetranucleotide models can be considered
improvements over di- and tri- nucleotide models as they begin to address some of these
issues. A collaborative effort by the Ascona B-DNA Consortium has provided a library of MD
simulations of all 136 tetranucleotides (Lavery et al., 2010). However, they are based upon the
outcome of MD simulations and, as previously mentioned (Section 1.4.5.), there are some valid

concerns about the comparability of MD to experimental data.

1.7.3 Comparison of Theoretical Models

Tri- and tetra-nucleotide models have been considered improvements over
dinucleotide models due to the ability to encompass more locally derived sequence
fluctuations than dinucleotide models (Goodsell and Dickerson, 1994; Gabrielian and Pongor,
1996; Dlakic and Harrington, 1998b). Gel retardation experiments on phased repeat sequences
have concluded that trinucleotide models are an improvement over dinucleotide models
(Brukner et al., 1995a; Dlakic and Harrington, 1998b). However, a study using a large
experimental dataset of NMR measurements of DNA in solution observed that trinucleotide
models failed to predict curvature in many of the most extensively studied experimental
sequences (Kanhere, 2003). The study concluded that trinucleotide models, as combinations of
measurements of both intrinsic curvature and flexibility, made poor predictions of DNA
curvature. By contrast dinucleotide models showed good predictive power for all sequences
under investigation with the exception of a phased GGGCCC motif. Both Wedge and Junction
models typically have weak predictive power for certain GC rich sequence motifs, sometimes
generating predicted curvature with the wrong direction to that observed in experimental data
(Brukner et al., 1994). It should be noted that curvature within the GGGCCC motif has only
been observed when in solution containing divalent cations, so the low predictions could be
due to experimental design (Brukner et al., 1994). A quantitative assessment of
tetranucleotide models and their predictive power in comparison to di- and tri- nucleotide

models has yet to be made.
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1.7.4 Comparison of Theoretical Models to Experimental AFM Studies

A number of theoretical dinucleotide models have been used in AFM based studies of
DNA. The two most often utilised by researchers are the De Santis and the Bolshoy models.
The De Santis model has been shown to provide a good estimation of real DNA curvature
measured by AFM in air in a number of studies (Anselmi et al., 1999; Scipioni et al., 2002a;
Ficarra et al., 2005b; Buzio et al., 2012). The same holds true for the Bolshoy model for liquid
and air imaging, although the majority of research using the Bolshoy model has been in liquid
{Sanchez-Sevilla et al., 2002; Milani et al., 2007, 2011; Buzio et al., 2012). Both of these models
have been compared by previous authors and were found to be comparable in the prediction
of the position, but not magnitude, of curvature peaks (Buzio et al., 2012). This was in
agreement with a statistical analysis of the power of dinucleotide models to predict curvature
in X-ray crystallography data that concluded that each dinucleotide model was as good a
choice as any other for the prediction of intrinsic curvature (Crothers, 1998). The Olson model
has not been the subject of critical comparison to curvature profiles in any available
publication. However, it has shown to produce a good prediction of DNA flexibility in liquid
(Marilley et al., 2005).

The worm-like chain (WLC) model of semi-flexible polymers provides a good
framework for generating theoretical persistence length measurements of DNA (Bustamante
et al., 1994). It has been shown to provide a good fit to most experimental AFM studies
measuring persistence length of DNA (Bednar et al., 1995; Rivetti et al., 1996; Pastré et al.,
2005; Cassina et al., 2011; Buzio et al., 2012). It should be noted that on short scales DNA has
been shown to be more flexible than predicted by the WLC model in AFM imaging (Wiggins et
al., 2006).

1.8 Theoretical Measurements of Curvature in AFM Imaging

Theoretical estimation of a number of different physical DNA parameters have been
performed in AFM studies for over a decade. The creation of computer simulated DNA
molecules has been important for estimating the error implicit in image analysis methods, for
hypothesis generation and hypothesis testing.

One of the first recorded instances, to this authors knowledge, of a comparison of
theoretical predictions of DNA curvature to the experimental DNA curvature computed from
physical scanning methodologies was the comparison of multiple theoretical models to the
curvature of a linearised pBR322 plasmid (Muzard et al., 1990). This research was carried out
using electron microscopy, but the images generated are qualitatively compar_able to AFM

based techniques.
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The work of Scipioni and co-workers created a strong mathematical foundation for
fater researchers to study DNA curvature and flexibility (Zuccheri et al., 2001b; Scipioni et al.,
2002a). They showed that there was a mathematical basis for the separation of the DNA
curvature and DNA flexibility using AFM imaging. They also compared dinucleotide wedge
models of curvature to experimental AFM measurements of DNA curvature and flexibility,
showing good correlation between the results (Scipioni et al., 2002a). They further extended
this work to dynamic time-lapse images of DNA molecules (Scipioni et al., 2002b).

Rivetti et al., put forward the first standardised workflow for the generation of
computer-simulated AFM images (Rivetti and Codeluppi, 2001). By generating simulated AFM
images it allowed the authors to assess various contour length estimators. This approach has
been adopted by many other researchers in a complete or modified form (Ficarra et al., 2005a,
2005b; Marek et al., 2005; Wiggins et al., 2006; Buzio et al., 2012). Later researchers added
curvature measurements generated from dinucleotide models of DNA curvature to the
computer-simulated AFM images for hypothesis and method testing (Ficarra et al., 2005b;
Buzio et al., 2012).

Other theoretical measures have been used for comparison to AFM images including
comparing the theoretical phase of DNA to experimentally determined contour height {(Milani
et al., 2011), curvature ratio profiles for base pair sequences (Buzio et al., 2012), the prediction
of promoter regions in AFM images (Marilley et al., 2007b) and the flexibility of DNA molecules
(Scipioni et al., 2002a; Marilley et al., 2005; Wiggins et al., 2006).

1.8.1 Programs for Analysis of Intrinsic DNA Curvature

There are a number of freely available programs for the analysis of structural and
physiochemical properties of DNA. One of the oldest programs for the analysis of DNA
curvature is BEND (Goodsell and Dickerson, 1994). This work described the first attempt to
distinguish between local bending and intrinsic curvature. The program CURVATURE also
calculates curvature for a number of popular dinucleotide models of DNA in the same way as
BEND (Shpigelman et al., 1993). DNAlive is a web application able to calculate a wide ranging
number of structural and chemical measurements such as bendability, flexibility, nucleosome
occupancy and a variety of different curvature models from DNA sequence (Goiii et al., 2008).
DNAlive also feeds directly into the Human Genome Browser allowing for the annotation of an
input sequence with a wide range of published data (Kent et al., 2002).

For many researchers it is often necessary to reconstruct and visually assess 3D DNA
structure. There are number of different tools available for this purpose that do not require a
high degree of molecular modelling knowledge such as: DIAMOD (Dlakic and Harrington,

1998a), FREEHELIX (Dickerson and Chiu, 1997), Model.it (Vlahovicek and Pongor, 2000),
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Curves/Curves+ (Lavery et al., 2009}, Madbend (Strahs and Schlick, 2000) and 3DNA (Lu and
Olson, 2003). While many of these tools sometimes offer overlapping utility there are many
complementary novel features. For instance, Curves+ includes an in-built tool for mapping the
helical axis of DNA and 3DNA allows for the reconstruction of very large scale (<2000 bp) DNA
molecules that other programs struggle with or simply do not allow. Many of these programs
also have web servers hosting a range of applications. In particular 3DNA has a variety of
molecular modelling applications with a large degree of flexibility for the advanced user. It also
has a web application, w3DNA, which provides a simple user interface for the main features of

3DNA (Zheng et al., 2009).

1.8.2 Other Theoretical Estimators of Physical DNA Parameters

There has long been an effort to model the occupancy of nucleosomes in the genomes
of eukaryotic organisms based on DNA sequence. Many computational approaches have been
developed for the prediction of nucleosome occupancy or exclusion. A number of these tools
are available on-line as web servers, for example: NuPop uses a Hidden Markov model to
predict nucleosome occupancy from S. cerevisiae genome data (Xi et al., 2010), NXsensor
identifies a number of nucleosome exclusion sequences from the literature and identifies
those regions that are within less than 147 bp of two exclusion sites as a region of nucleosome
exclusion (Luykx et al., 2006) and NuScore calculates nucleosome affinity based upon the
estimation of the energy cost of the structural deformation imposed on DNA within the

nucleosome core particle (Tolstorukov et al., 2008).
1.8.3 Computer Generated AFM Images

In order to make predictions from dinucleotide wedge models that are comparable to
the output of AFM based curvature analysis, computer simulated AFM images of DNA are
often used (Cognet et al., 1999; Rivetti and Codeluppi, 2001; Ficarra et al., 2005b; Buzio et al.,
2012). The first time simulated images of DNA had been used by researchers; Cognet et al.,
used simulated DNA as a comparison for electron microscopy of DNA when probing
persistence length in 1999 (Cognet et al., 1999). It was only after the work of Rivetti et a/., that
computer simulated AFM images became commonly used (Rivetti et al., 1996). Simulated
images of DNA have been used in a number of studies; for generating a ‘base line’ length
estimate for testing digitised line estimators (Rivetti and Codeluppi, 2001) , testing of the FF
algorithm (Ficarra et al., 2005b), hypothesis testing for novel algorithms (Buzio et al., 2012), for
comparison of persistence length (Bednar et al., 1995) and as controls for automated image

processing and analysis packages (Ficarra et al., 2005a).
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There were a number of common steps that the previously mentioned studies shared.
These steps were standardised by Rivetti and Codeluppi and have been used in an
approximately similar form by later studies (Rivetti and Codeluppi, 2001). The DNA ‘chain’ was
considered, at a basic level, to be made up of a series of rigid rods each representing a single
base pair. The rods themselves were assigned a size of 0.34 nm, which is the consensus size of
B-form DNA (Rivetti and Codeluppi, 2001). The position of the next rod in the chain was
considered a function of the flexibility of the polymer and the curvilinear length of the rod. The
flexibility was calculated based upon the persistence length of the polymer, approximately 53
nm was taken as a typical value for B-DNA persistence length (Rivetti et al., 1996). This allowed
for the construction of a Gaussian probability curve of angles from which an appropriate angle
was selected at random per base pair step. Plotting each rod in the chain with a random angle
from the Gaussian distribution produced a 2D image of a DNA polymer. This was made more
comparable to a real AFM image by applying a ‘grid’ at the resolution of the desired image and
setting each ‘pixel’ within the grid that contained DNA to 1. Additional sources of noise or
variation found in AFM images such as Gaussian noise or tip convolution were added to user
specification. The Z-height can be set by the operator but is more typically left as binary 1 and
0 measurements. This approach allows for the estimation of the effects of digitalisation on a
DNA strand, the effects of additive impulsive noise and regular tip convolution.

As a further step some authors have added a curvature value to the simulated images
(Ficarra et al., 2005b; Buzio et al., 2012). A curvature measurement is calculated for each base
pair step and is used as the mean value of the Gaussian flexibility distribution. Dinucleotide
wedge models have effective synergy with this method and it is not hard to see why they are
so popular with researchers.

In order to convert dinucleotide wedge models to dinucleotide angles that can be used
to simulate DNA molecules in 2D there are a number of important criteria that must be met
(Buzio et al., 2012). Firstly, a theoretical framework must be identified which is able to produce
3D models of DNA. Secondly, a method for extrapolation of 3D models to their preferred
conformation in two dimensions must be identified. Finally, the 2D models can be used as

angle values to create computer simulated AFM images.
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1.8.4 Modelling DNA in 3D

On the first point, the generation of robust 3D models of curvature, there are a
number of well tested options available to the researcher presented earlier (Section 1.7.4.).
The preferred methodology within the literature is the use of the nearest-neighbour, static
dinucleotide wedge models. These models treat each base pair as an individual section with a
number of experimentally determined parameters that describe the geometric position of one
base pair in relation to the preceding base pair. There are a number of different sets of
parameters that have been experimentally determined by different research groups using
different technologies and experimental conditions (Section 1.7.2.1.).

The dinucleotide parameters can be used to generate a series of xyz coordinates based
upon tilt roll and twist parameters and their translations: shift, slide and rise (Figure 1.8.). Bend
angles can be calculated between two consecutive base pairs (a dinucleotide step). However
bend angles are typically unsigned as the idea of a positive or negative angle is meaningless
without a reference frame. While these theoretical absolute angles are valuable for
investigations of DNA bending they are of less use in reconstructing curvature in two

dimensions.

1.8.5 Modelling DNA in 2D

The understanding of the deposition of DNA on to a flat surface is a complex
undertaking and not within the purview of this project. In order to simulate curvature in 2D
there are two available approaches. The first approach uses the underlying assumption that
the curvature modulus (magnitude) of a DNA tract will stay the same when the DNA tract is
deposited on a 2D surface while the phase of curvature (direction) will adapt to the changes in
the DNA conformation (Scipioni et al.,, 2002a). This allowed the authors to simulate the
resulting curvature and infer a positive or negative curvature for base pair steps.

The second approach, proposed by Buzio et al, has been termed Geometric
Deposition within this study (Buzio et al., 2012). The methodology flattens a 3D model of a
DNA tract to simulate deposition (Figure 1.10). The method separates the 3D model into a
number of sections. A 2D plane of best fit is calculated for each section and the xyz coordinates
are projected onto each plane to give a representation of the 3D model in 2D. This model
assumes that the transformation from 3D to 2D will do so with a minimum number of twists in
the DNA backbone. Consequently this implies a minimum energy increase in conformational
energy during the flattening process, which, as long as reasonable restraints are applied to the

plane fitting process, is in line with mean field models of DNA deposition (Sushko et al., 2006).
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Figure 1.10. - Examples of a 3D DNA molecule projected onto two dimensions by Geometric
Deposition. (A) 3D representation of the human osteopontin gene. (B) 2D projection of the
human osteopontin gene. The figure was adapted from Buzio et al.,, 2012.
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1.9 TP53-The Tumour Protein 53 Gene

The gene of interest in this study is Tumour Protein 53 (TP53). The protein encoded by
TP53, named protein 53 (p53) due to its apparent molecular mass of 53 kilodalton on a sodium
dodecyl sulfate polyacrylamide gel, was discovered in 1979 (Lane and Crawford, 1979). It
wasn’t until 1991 that p53 was identified as a tumour suppressor gene (Levine et al., 1991). It
is an important regulator of the cell cycle and has a key role in regulating cellular responses to
genotoxic insults by its influence on programmed cell death, DNA repair and synthesis,

senescence, transcription and genomic plasticity (Vogelstein and Kinzler, 1992).

1.9.1 The Role of p53 in the Cell

The protein encoded by TP53 is part of a family of genes involved in regulating cellular
stress alongside its paralogs p63 and p73 (Hollstein and Hainaut, 2010). The p53 protein is
present at a constant low level within healthy cells and is upregulated under stress or DNA
damage. The protein acts as a transcription factor as well as forming complexes with other
regulatory proteins in the cell (Whibley et al., 2009). As a transcription factor, p53 protects the
cell against tumour growth and carcinogenesis by binding to response elements in a host of
key genes. The genes regulated by p53 form the front line of defence against cellular stress
and genotoxic insult and include genes that control cell cycle arrest, maintenance of genetic
integrity, inhibition of angiogenesis, cellular senescence and apoptosis. The p53 protein also
protects the cell through roles other than that of a transcription factor, for example p53
translocates to the mitochondria on cues from death stimuli (Mihara et al., 2003). This

translocation leads to cellular apoptosis.

1.9.2 Structure of TP53

TP53 is located on chromosome 17 (17p13). It is composed of 11 exons (protein coding
regions). There is a notably large intronic (non-coding) region between exon 1 and 2. There are
a number of functional domains within the p53 protein itself (Figure 1.11.). The transactivation
region (Exon 2-4) is involved in activating other genes as part of the response to cellular stress,
the sequence-specific DNA-binding region (Exon 5-8) is the active site of the protein involved in
the recognition of DNA motifs, the nuclear localization and oligomerisation regions (Exon 9-11)
have roles in localising p53 and formation of the final functional p53 tetramer. TP53 is heavily
transcriptionally regulated and there are at least 10 identified isoforms of p53 due to a number
of multiple splice sites within the gene (Hollstein and Hainaut, 2010).

The p53 protein arose early in evolutionary history and TP53 has remarkable
evolutionary conservation between species (Lane et al., 2010). The p53 protein in Placozoans,

the simplest of free living multi-cellular organisms containing only four types of cells, has the
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same key features and role shared by p53 in humans (Figure 1.12.). This conservation of p53
highlights its importance to cellular processes. The most highly conserved regions of the gene,
considered exon 5 to exon 8, are also the most mutated in sporadic somatic cancers and up to
95% of all mutations occur within these highly conserved regions (Hollstein et al., 1991). The
exons that lie in the most highly conserved region of TP53 code for the DNA sequence-specific
binding domain of p53. This domain is required for the correct functioning of p53 as a

transcription factor.

T tivati Mutation Hotspots and Tetramerisation,
ransactivation the Sequence Specific Nuclear Localisation
Domain
DNA Binding Domain and DNA-Damage
Recognition Domain
273
282
Missense
iaJLIIIftiili
17-29 97 EVOLUTIONARILY CONSERVED ------ 292. 324 — 352
1
T
Exons 2-4 Exons 5-8 Exons 9-11

Figure 1.11. - Schematic of the p53 gene. The p53 protein consists of 393 amino acids with
functional domains, evolutionarily conserved domains and regions designated as mutational
hotspots. Functional domains include the transactivation region (amino acids 20-42),
sequence-specific DNA-binding region (amino acids 100-293), nuclear localization sequence
(amino acids 316-325), and oligomerisation region (amino acids 319-360). Evolutionarily
conserved domains are indicated as black areas (amino acids 17-29, 97-292, and 324-352).
Seven mutational hotspot regions within the large conserved domain are identified: amino
acids 130-142, 151-164, 171-181, 193-200, 213-223, 234-258, and 270-286 (chequered
blocks). Vertical lines above the schematic are missense mutations, the height of the bar
represents the relative frequency of the mutations and locations of particularly prevalent
mutation hotspots are labelled. The figure was adapted from Hussain and Harris, 1999.
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1.9.3 Mutations in TP53 and the Role of TP53 in Carcinogenesis

TP53 has been the subject of intensive study as a model for understanding cell growth
and cancer progression. TP53 is very important for the growth and regulation of cells;
mutations that cause incorrect functioning in p53 give insight into these biological processes.
TP53 is one of the most intensively studied cancer genes and there are online resources that
collate the available literature on TP53 mutation such as the International Agency for Research
on Cancer (IARC) p53 database (Hernandez-Boussard et al., 1999).

TP53 is mutated in 50 % of all human cancers (Greenblatt et al., 1994). This percentage
varies with cancer type, for example mutation frequency has béen estimated to be
approximately 60 % in lung cancer and 50 % in skin cancer (Biesalski et al., 1998; Rigel, 2008).
The acquisition of TP53 mutations is a multi-stage process, where mutations can be picked up
at an early or late stage in carcinogenesis. Tumours that contain TP53 mutations have been
shown to be more aggressive, in general, than those not carrying TP53 mutation (Harris and
Hollstein, 1993).

The etiologies of multiple types of cancer are specific to both the tissue type and
mutagen involved in the initiation of carcinogenesis. There are specific patterns of somatic
mutation hotspots that arise during cancer progression. Codons 175, 248 and 273 are the most
frequently mutated hotspots in many cancers with the exception of lung, skin, larynx, bladder
and liver carcinomas (Petitjean et al., 2007). Many mutation hotspots have been linked to
specific mutagens or are selected during carcinogenesis due to pro-carcinogenic properties.
Many cancer types are associated with specific pathogens for the initiation of carcinogenesis.
Chemical carcinogens from cigarette smoke are implicated in about 90 % of all lung cancers
(Biesalski et al., 1998). The mutation hotspots in codons 157, 158, 175, 245, 248, and 273 have
been linked to chemical carcinogens such as benzo[a]pyrene diol epoxide (BPDE) in cigarette
smoke (Pfeifer et al., 2002). Approximately 90 % of skin cancers are caused by exposure to
ultraviolet (UV) radiation (Rigel, 2008). Hotspots at codons 151, 177, 196, 245, 248, 278, 286
and 294 are considered to be caused by UV light (Drouin and Therrien, 1997). The patterns of
mutations that arise in 7P53 are as varied as the cancers themselves. The vast majority of
mutation hotspots occur in the exons within conserved regions that code for the sequence-
specific DNA-binding domain of the p53 protein.

The downstream effects of mutations are varied because TP53 regulates and is
regulated by a great many genes. Missense mutations in exons 5-8 often prolong the half-life
of the mutant protein (Pfeifer et al., 2002). Mutations can also cause p53 to gain new functions
leading to oncogenic properties (Petitjean et al., 2007). For example mutations in codon 175

that lead to conversion of argenine to histidine always cause p53 to gain oncogenic functions.
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Environmentally caused mutations within TP53 are not the only causative factor for
impaired p53 function. Continued infection with human papillomas virus can lead to cervical
cancer by inhibiting p53 function (Klug et al., 2001). Germ-line mutations in TP53 can cause a
high predisposition in individuals to the occurrence of multiple types of cancer at a young age,
such as in Li—-Fraumeni syndrome (Hisada et al., 1998). Common polymorphisms localised to
different parts of the world can also predispose individuals or whole populations to certain

cancer types (Olivier et al., 2010).
1.9.4 Regions of Slow DNA Repair in TP53

DNA repair mechanisms have been shown to have heterogeneous repair efficiency
throughout the human genome (Bohr, 1987). For example, actively transcribed genes are
preferentially repaired over other parts of the genome by transcription coupled repair
mechanisms (Bohr, 1987; Surrallés et al., 2002). This has been observed to consistently hold
true for TP53 (Denissenko et al., 1998). Of particular interest is that DNA repair speed in TP53
is sequence-specific and mutation hotspots within TP53 genes are also regions of slow repair
(Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). Regions of slow repair were
observed in a number of cancer specific hotspots within these studies, such as codons 157, 248
and 273 which are mutation hotspots in lung cancer (Denissenko et al., 1998) and codons 177,
196 and 278 which are mutation hotspots in skin cancer (Tornaletti and Pfeifer, 1994). The
mechanism underlying preferential sequence-specific repair is little understood and has been
attributed to the accessibility of the DNA due to the Jocal chromatin structure (Bohr, 1987). As
nucleosome affinity is largely attributable to DNA sequence-specific curvature and flexibility
this certainly provides grounds for hypothesising that there is a role for DNA curvature in the

recognition and repair of DNA damage.
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1.10 Aims and Objectives

The research described in this thesis aims to evaluate the intrinsic curvature of the
region of TP53 that codes for the sequence-specific DNA-binding domain of the p53 protein.
This region contains exons 5, 6, 7 and 8 all of which are commonly mutated during
carcinogenesis. This region is critical for the correct functioning of the p53 protein, which in
turn regulates the main cellular defences against chemical insults and protects against
tumourogenesis. Understanding the processes of DNA mutation and repair in TP53 is of
paramount importance to efforts to understand the cause and progression of cancer. The
highly conserved region of TP53 contains regions of slow repair which are currently poorly
understood. Intrinsic DNA curvature has previously been identified as a factor involved in a
number of biological processes, such as: DNA repair, nucleosome positioning and DNA
transcription. Due to this involvement there was reason to believe that DNA curvature could
influence the activity of DNA repair proteins at sites of slow DNA repair. The initial hypothesis
was that the intrinsic DNA curvature located at, or flanking, regions of TP53 that contain
mutation hotspots or regions of slow repair would exhibit different curvature patterns to other
regions.

In order to achieve these aims it was necessary to accurately measure the
macromolecular conformation of TP53. AFM was selected as a suitable primary method of
investigation alongside well established theoretical models of DNA curvature. A TP53 DNA
sequence that contained exons 5, 6, 7, 8 and 9 was identified. The polymerase chain reaction
(PCR) was applied to generate experimental DNA molecules (Chapter 2). Two methods of DNA
orientation were identified from the literature as being applicable to the large DNA sequence
under investigation; the FF algorithm and end-labelling of TP53 with streptavidin. These were
applied to two overlapping PCR products of the TP53 DNA sequence of interest in order to
evaluate the reproducibility of intrinsic curvature measurements by AFM. A binding buffer of
magnesium chloride (MgCl,) was identified from the literature as providing suitably weak
binding to a mica surface for intrinsic curvature measurements of DNA to be possible.

Due to the lack of software for the analysis of AFM images the first objective was to
create software with the capability of processing AFM images of DNA to representative binary
DNA contours. Additionally, experimental considerations lacking from the literature such as
selection of interpolatory techniques and choice base pair intervals over which to calculate
curvature angles were considered. To this end, a number of tools for image processing and
DNA analysis were developed and encompassed within a user interface for ease of use

(Chapter 3).
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The second objective was to explore the available theoretical models of DNA curvature
applicable to TP53 sequences. The need for generating computer simulated AFM images of
TP53 for comparison to real AFM images was identified. These simulated AFM images allowed
for statistical and hypothetical testing on ideal images of TP53 DNA before application to real
AFM images. The relationships between exons, regions of slow repair and DNA curvature were
investigated using dinucleotide wedge models of DNA curvature. This approach allowed for the
additional hypothesis that exon positions within TP53 exhibit significantly lower curvature
when compared to intron positions (Chapter 4).

The third objective was to evaluate two methods of DNA molecule orientation for
application to TP53. The first methodology applied was the only protein-label free technique
applicable to large TP53 DNA molecules, the FF algorithm. Application of the FF algorithm
avoided any possible interaction between DNA and protein end-labels. The algorithm was
initially tested on computer simulated AFM images of TP53. It was then applied to AFM images
of real TP53 DNA (Chapter 5). The second orientation methodology used streptavidin end-
labels attached to biotinylated PCR products of TP53 for orientation (Chapter 6). The resulting

curvature profiles were compared to theoretical predictions and statistically analysed.
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CHAPTER 2:

GENERAL MATERIALS AND METHODS
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2.1 Design and Preparation of an Experimental DNA Template for TP53
2.1.1 TP53 Sequence and PCR Primer Design

The TP53 sequences used for this study were taken from the consensus sequence
presented in the |IARC TP53 database, a compilation of TP53 sequences taken from human
population studies (Hernandez-Boussard et al., 1999). Two sequences were investigated: a
1855 bp sequence covering exons 5-7 (11828 to 13682 in IARC Database notation) and a 2500
bp molecule covering exons 5-9 (11828 to 14328 in IARC Database notation). Both sequences
had the same start point and the 2500 bp sequence fully overlapped the 1855 bp sequence.
The full sequence is presented in Figure 2.1.

The sequences were designed with two key objectives in mind. Firstly, to assess the
curvature within the section of DNA coding for the DNA sequence-specific binding region
(Hollstein et al., 1991). This region was of particular interest as 95 % of TP53 mutations have
been observed to occur within this DNA tract. The nature of the overlapping sections also
allowed for the evaluation of the inter-experiment variation in AFM measurements of
curvature. The PCR product containing exons 5 through to 7 (1855 bp) was named ‘Exon 5-7’ in
the main text. The PCR product containing exons 5 through to 9 (2500 bp) was named ‘Exon 5-
9’ in the main text. Capitalisation of ‘Exon’ within the main text indicates a reference to one of
these experimental DNA sequences or molecules.

The oligonucleotide PCR primers for these two DNA sequences are presented below:

TP53 e5-7/9F = CATCTCTCCTGGGGATGCA
TP53 e5-7R (1855 bp) = TCTACTCCCAACCACCCTTG
(Reverse Complement) = CAAGGGTGGTTGGGAGTAGA
TP53 e5-9R (2500 bp) = CAGGCAAAGTCATAGAACCA
(Reverse Complement) = TGGTTCTATGACTTTGCCTG
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121
181
241
301
361
421
481
541
601
661
721
781
841
901
961
1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801
1861
1921
1981
2041
2101
2161
2221
2281
2341
2401
2461

CATCTCTCCT
TGAAAATAAG
AGGCCAAGGC
GAAACCTCGT
AGTCCCAGCC
GCAGTGAGCT
CAAAAAAAAA
CTAGTGGGTT
TTTATCTGTT
CCCCTGCCCT
TTGATTCCAC
AGCACATGAC
GTGAGCAGCT
TTCCTCACTG
ATTTGCGTGT
ATGAGCCGCC
TGTCAGTGGC
CTATAACCCC
GAAGCTTACA
ATCCCAGCAC
CTGGCTAACG
GTGCTGGGCA
TGGGCGGTGG
AGCGAGATTC
CAAGGCGCAC
ACCATCCACT
ATCCTCACCA
TGGCCTGCTG
TCTTCCATAC
CTCCCACTCA
CCTACCTGGA
CCTGGTTTTT
TCCTATCCTG
CTGTCCTGGG
CCACGAGCTG
GGAGACCAAG
CTAGCACTGC
GAATATTTCA
TCTAACACTC
ATCAGGGGGC
ACACCAACTT

TGTTAAAGAG

GGGGATGCAG
CTCCTGACCA
AGGCAGATCA
CTCTACAAAA
ACTTAGGAGG
GTGATCACAC
AAAAAAAAAG
GCAGGAGGTG
CACTTGTGCC
CAACAAGATG
ACCcCcCcGCcC
GGAGGTTGTG
GGGGCTGGAG
ATTGCTCTTA
GGAGTATTTG
TGAGGTCTGG
CCTCCAGGTG
ATGAGATGTG
GAGGCTAAGG
TTTGGGAGGC
GTGAAACCCC
CCTGTAGTCC
AGCTTGCAGT
CATCTCAAAA
TGGCCTCATC
ACAACTACAT
TCATCACACT
TGCCCCAGCC
TACTACCCAT
GTTTTCTTTT
GCTGGAGCTT
TAAATGGGAC
AGTAGTGGTA
AGAGACCGGC
CCCCCAGGGA
GGTGCAGTTA
CCAACAACAC
CCCTTCAGGT
AAAATGCCGT
AGTGATGCCT
ATACCATAAT
AGCATGAAAA

AACTTTTCTT
GGCTTGGTGG
CCTGAGCCCA
AAATACAAAA
CTGAGGTGGG
CACTGTGCTC
AAAAGCTCCT
CTTACGCATG
CTGACTTTCA
TTTTGCCAAC
GGCACCCGCG
AGGCGCTGCC
AGACGACAGG
GGTCTGGCCC
GATGACAGAA
TTTGCAACTG
AGCAGTAGGG
CAAAGTAAAT
GCCTCCCCTG
CAAGGCAGGC
GTCTCTACTG
CAGCTACTCG
GAGCTGAGAT
AAAAAAAAAA
TTGGGCCTGT
GTGTAACAGT
GGAAGACTCC
TCTGCTTGCC
CCACCTCTCA
CTCTGGCTTT
AGGCTCCAGA
AGGTAGGACC
ATCTACTGGG
GCACAGAGGA
GCACTAAGCG
TGCCTCAGAT
CAGCTCCTCT
ACTAAGTCTT
TTTCTTCTTG
CAAAGACAAT
ATATATTTTA

TGGTTCTATG

TTTCTTCATC
CTCACACCTG
GGAGTTCAAG
AATTAGCCAG
AAGATCACTT
CAGCCTGAGT
GAGGTGTAGA
TTTGTTTCTT
ACTCTGTCTC
TGGCCAAGAC
TCCGCGCCAT
CCCACCATGA
GCTGGTTGCC
CTCCTCAGCA
ACACTTTTCG
GGGTCTCTGG
GGGCTTTCTC
GGGTTTAACT
CTTGGCTGGG
GGATCACGAG
AAAAATACAA
GGAGGCTGAG
CACGCCACTG
AAGGCCTCCC
GTTATCTCCT
TCCTGCATGG
AGGTCAGGAG
TCTGACCCCT
TCACATCCCC
GGGACCTCTT

CAAGG
TGATTTCCTT
ACGGAACAGC
AGAGAATCTC
AGGTAAGCAA
TCACTTTTAT
CCCCAGCCAA
GGGACCTCTT
ACTGTTTTAC
GGCTCCTGGT
AAGGACCAGA

ACTTTGCCTG

CACGTGTATT
CAATCCCAGC
ACCAGCCTGG
GCATGGTGGT
GAGGCCAGGA
GACAGAGCAA
CGCCAACTCT
TGCTGCCGTC
CTTCCTCTTC
CTGCCCTGTG
GGCCATCTAC
GCGCTGCTCA
CAGGGTCCCC
TCTTATCCGA
ACATAGTGTG
GAGGAGGGGT
CTGCTGCTTA
ATTGCACAGT
CGCAGTGGCT
GTTGGGAGAT
AAAAAAATTA
GAAGGAGAAT
CACTCCAGCC
CTGCTTGCCA
AGGTTGGCTC
GCGGCATGAA
CCACTTGCCA
GGGCCCACCT
GGCGGGGAAT
AACCTGTGGC
GTGGTTGGGA
ACTGCCTCTT
TTTGAGGTGC
CGCAAGAAAG
GCAGGACAAG
CACCTTTCCT
AGAAGAAACC
ATCAAGTGGA
CTGCAATTGG
TGTAGCTAAC

CCAGCTTTCA

CCTTGGCTTT
ACTCTCAAAG
GTAACATGAT
GCACACCTAT
GATGGAGGCT
GACCCTATCT
CTCTAGCTCG
TTCCAGTTGC
CTACAGTACT
CAGCTGTGGG
AAGCAGTCAC
GATAGCGATG
AGGCCTCTGA
GTGGAAGGAA
GTGGTGCCCT
TAAGGGTGGT
TTTGACCTCC
TGAAAAAACT
CATGCCTGTA
CGAGACCATC
GCCGGGCGTG
GGCGTGAACC
TGGGCGACAG
CAGGTCTCCC
TGACTGTACC
CCGGAGGCCC
CCCTGCACAC
CTTACCGATT
CTCCTTACTG
TTCTCCTCCA
GTAGA' /

GCTTCTCTTT
GTGTTTGTGC
GGGAGCCTCA
AAGCGGTGGA
TGCCTCTTTC
ACTGGATGGA
AAGTTTCCAG
GGCATTTGCC
TAACTTCAGA

AAAAGAAAAT

Exon 5

Exon 6

Exon 7

Exon 8

Exon 9

Figure 2.1. - TP53 consensus sequence from the IARC Database. Exon positions are indicated in

red. The shared forward primer is indicated in yellow. The reverse Exon 5-7 primer is indicated
in blue and the reverse Exon 5-9 primer in greeij. Base pair numbering begins at the start of

the experimental DNA sequence.
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2.1.2 PCR of Template TP53 DNA

PCR amplifications were prepared in 50 ul of ddH,0. The reaction mixture included 10
u! of reaction buffer (Promega, Cat.# M791A) for a final concentration of 1.5 mM MgCl,, 0.2
mM of each nucleotide (Promega, Cat.# C1141), 0.4 uM of both upstream and downstream
primers, 2.5 u of Expand High Fidelity""® PCR System (Roche, Cat.# 04743725001), and less
than 50 pg of template DNA. The template DNA was human genomic DNA (Promega, Cat.#
G1471). Primers were purchased from Eurofins (Eurofins MWG Operon). The primers for
relevant reactions contained a 5’ biotin end-label (Chapter 6).

The initial reaction for all products was a PCR amplification using Exon 5-9 primers. A
second amplification step was introduced for the generation of all experimental reactions. The
nested amplification from the product of the initial reaction ensured the fidelity of the final

product in the case of any non-specific amplification products.

2.1.3 Reaction Conditions

Optimised reaction conditions were as follows: hot start of 5 min at 95 °C,
denaturation step of 95 °C for 30 s, annealing step of 60 °C for 30 s, extension step of 72 °C for
60 s / 90 s (Exon 5-7 / Exon 5-9), the previous three steps are repeated 35 times. A final
extension step of 72 °C for 5 min and a hot stop step of 95 °C for 5 min were introduced to
prevent the dimerisation of primers and amplification products. Primer optimisation has been

presented in Appendix 1.

2.1.4 Agarose Gel Electrophoresis

PCR products were checked on a 1 % agarose gel stained with EtBr imaged under UV.
Agarose gels were run for an appropriate time in order to resolve and distinguish ladder and
sample bands (30-45 mins, 100 V). PCR products were purified using a QlAquick PCR
Purification Kit (QIAGEN, Cat # 28104) and re-eluted in double distilled H,0 or imaging buffer
for storage at 4 °C/20 °C. Products were rechecked after purification on a 1% agarose gel.
Product quantity and quality was established using a spectrophotometer
(NanoDrop/NanoDrop Lite, Thermo Scientific). The final amplification product after spin
column purification was sequenced (Source BioScience, Nottingham, UK). This allowed for any

deviation from the theoretical DNA sequence to be identified (Appendix 1.).
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2.2 Streptavidin End-Labelling of Biotinylated DNA
2.2.1 Dot Blot Analysis of 5’ Biotinylated DNA

It was necessary to ensure that the biotin end-label remained viable after PCR
amplification and purification. This was performed using a dot blotting analysis. The dot blot
apparatus is prewashed thoroughly with 1% SDS and then with sterile water prior to use.
Hybond-N nylon membrane and Whatman 3MM filter paper was cut to cover the required
number of wells. Both the nylon membrane and the filter paper were pre-soaked in 2X SSC
buffer (30 mM sodium citrate, pH 7.0, 0.3 M, NaCl) for 5 minutes. DNA sample of between 100
ng and 250 ng of DNA were diluted to 100 pl with sterile ddH,0 and boiled for 10 minutes.
Samples were quickly chilled in an ice-water bath. An equal volume of freshly made 1 M NaOH
was added and incubated at room temperature for 20 minutes.

DNA solutions were applied to the apparatus according to the manufacturer’s
instructions and allowed to incubate with the membrane at room temperature for 10 minutes.
The solution was drawn through the apparatus under vacuum. Membrane were incubated in
100 ml of neutralizing solution (1 mM EDTA, 1.5 M NaCl, 0.5 M Tris, pH 7.2) for 30 minutes.
Membranes were rinsed thoroughly with 2X SSC and air-dried before the addition of
hybridisation probes. Streptavidin-horseradish peroxidase mix (Vector Laboratories, Cat.# SA-
5704 ) was diluted 1/3000 with 1 x SCC and added to the membranes and allowed to incubate
overnight. SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, Cat.# 34079)

was added and the membranes were imaged using a Gel Doc EQ System (Bio-Rad, Hercules).

2.2.2 5'End-lLabelled of DNA with Streptavidin for AFM Imaging.

DNA was purified using a QlAquick PCR Purification Kit (QIAGEN, Cat # 28104) to remove
biotinylated primers that could compete with 5 biotin for streptavidin end label. The
purification step was repeated when necessary. The DNA concentration was diluted to 10 x the
concentration used in AFM imaging. A 3:1/2:1 molar ratio of streptavidin to sample DNA
(Sigma-Aldrich UK, Cat # S4762) was incubated overnight at 4°C before AFM imaging. Labelled
and control unlabelled samples were run on a 1% agarose gel (Section 2.1.4.) in order to

identify end labelling before AFM imaging.
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2.3 Preparation of DNA for AFM Imaging

DNA was diluted down to an appropriate concentration for imaging (~ 1 ng/ul) in the
binding buffer. Binding buffer was Tris 10 mM, MgCl, 10 mM, NaCl 5 mM pH 7.5. The Mg**
buffer was used for AFM imaging as it has been previously reported by authors as providing
good imaging conditions for relaxed DNA conformations at various concentrations of EtBr
treatment (Coury et al., 1996; Pope et al., 2000). The buffer has been observed to provide a
weak bind to mica surfaces that was appropriate for AFM analysis of DNA curvature (Rivetti et
al., 1996; Scipioni et al., 2002a). DNA was applied to freshly cleaved muscovite mica and
allowed to incubate at room temperature for 1-3 min before washing with ddH,0 (Millipore).

The mica surface was dried under vacuum before AFM imaging.

2.4 AFM Imaging Conditions

All AFM imaging was performed on a NanoWizard 2 BioScience AFM using closed foop
settings (JPK, Instruments, Berlin, Germany). The instrument operated in intermittent contact
mode to minimise the possible damage caused by tip-sample interactions. The cantilever of
choice was an ACTA probe (AppNano, Santa Clara, USA) with a spring constant of between 25-
75 N/m (nominal 40 N/m) and a ~6 nm radius of curvature (ROC).

Images were collected in a 3x3 um square with a pixel resolution of 1024x1024. This
gives a width of 5.86/2.93 nm per pixel respectively, for both image resolutions. The
proportional and integral gains and scan frequencies (typically between 0.8 — 2.0 Hz per line)
were optimised for each tip and image set. Large amounts of images were collected for each
sample using the Experiment Planner software (JPK, Instruments, Berlin, Germany) and in-
house code. Each image was offset from the previous image by the width of the image (3 um)
in either the x or y plane. The thermal drift of the scanner head was not found to lead to the
collection of duplicate molecules over long experiments. Example AFM images have been

presented in Appendix 2.

2.5 Generating Computer Simulated AFM Images of TP53

Computer simulated AFM images were created using the method detailed by Buzio et
al., 2012. The De Santis dinucleotide wedge model was used to create all simulated AFM
images for comparison to experimental AFM images unless stated otherwise within the text
(De Santis et al., 1988). The simulated images were generated using a persistence length of 53
nm, Gaussian noise with a variance of 0.025 and tip convolution by a simulated tip of 6nm
ROC. The images were created to be comparable to experimental DNA sequences detailed in
Section 2.1.1. Simulated AFM images were processed using the image processing software

detailed in Chapter 3. The full method has been detailed below.
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2.5.1 3D Models of TP53 using w3DNA

Two different parameter sets that have been previously validated for AFM
measurements of DNA were selected as theoretical values; those put forward by De Santis et
al. 1988 and Olson et al. 1998. These dinucleotide models will be referred to in this text by the
names of their first authors (De Santis et al., 1988; Olson et al., 1998).

3DNA allows for the visualisation, analysis and reconstruction of DNA in silico (Lu and
Olson, 2008). The web interface for the application, w3DNA, was used to reconstruct 3D
models of TP53 DNA using a predefined set of dinucleotide parameters detailed in Table 2.1.
Non-applicable parameters (i.e. shift and slide for the De Santis model) were set to 0. The De
Santis model of curvature contained only base pair transitions so a constant base pair rise

value of 0.34 A was selected as a consensus value from the literature (Saenger, 1984).

Olson Dinucleotide Parameters (Olson et al., 1998)
Dinucleotide Step  Twist, deg Tilt, deg Roll, deg Shift, A Slide, A Rise, A

CG 36.10 0.00 5.40 0.00 0.41 3.39
CA 37.30 0.50 4.70 0.09 0.53 3.33
TA 37.80 0.00 3.30 0.00 0.05 3.42
AG 31.90 -1.70 4.50 0.09 -0.25 3.34
GG 32.90 -0.10 3.60 0.05 -0.22 3.42
AA 35.10 -1.40 0.70 -0.03 -0.08 3.27
GA 36.30 -1.50 1.90 -0.28 0.09 3.37
AT 29.30 0.00 1.10 0.00 -0.59 3.31
AC 31.50 -0.10 0.70 0.13 -0.58 3.36
GC 33.60 0.00 0.30 0.00 -0.38 3.40

De Santis Dinucleotide Parameters (Scipioni et al., 2002a)

Dinucleotide Step Twist, deg Tilt, deg Roll, deg
CG 33.50 0.00 4.60
CA 34.10 0.40 6.80
TA 34.50 0.00 8.00
AG 34.40 -1.60 1.00
GG 33.10 -0.60 1.30
AA 36.00 -0.50 -5.40
GA 34.60 -1.70 2.00
AT 35.30 0.00 -7.30
AC 33.70 -2.70 -2.50
GC 33.30 0.00 -3.70

Table 2.1. - Dinucleotide parameters used for the generation of 3D models of TP53. A value of
0.34 A value was used for the De Santis model as a generally accepted rise for B-form DNA.
Atomic coordinates for each base pair were averaged to give an approximation of the centre of
the DNA strand.
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2.5.2 Simulated Deposition of DNA on a 2D Surface — Geometric Deposition

In order to extrapolate a simplistic simulation of the deposition of DNA onto a 2D surface
it is necessary to fit a series of best fit (least squares) planes (Buzio et al., 2012). Constraints
were placed upon the plane fitting allowing no local fluctuations in either the x, y or z
directions that exceed 2 nm from the plane. This was accomplished by fitting a plane to each
xyz coordinate sequentially beginning with the 5’ (Exon 5) end of the sequence. Orthogonal
regression using principal components analysis was used to find the plane of best fit (Scholkopf
et al., 2005). If the plane had local variation (the local error of the fit) of less than 2 nm (20 A)
then another xyz coordinate was added and the best fit plane recalculated. This was iterated
upon until the local error exceeded 2 nm. The next plane was then fitted to the succeeding
series of xyz coordinates in the same manner. An additional constraint was added; if there
were less than 50 bp left of the sequence when the local error was greater than 2 nm then no
more planes were fitted and the remaining base pairs were included when calculating the final
plane.

Calculating the angle in radians of the intersection of the planes was possible using the
formula:

BOintercept = arccos (dot(N1,N2)/(norm(N1) x norm(N2))

Where N1 was the coefficients of the normal vector of the preceding plane (Plane 1)
and N2 was the coefficients of the succeeding plane (Plane 2). By rotating the xyz coordinates
of Plane 2 along the axis of the line of intersection of both planes by the inverse of the angle of
intersection we bring them into line with Plane 1 (Figure 2.2.). The rotation was applied to all
coordinates following Plane 2. The plane normals for each section was recalculated after each
rotation. The xyz coordinates were projected onto a flat xy plane. The projection was the fit of
orthogonal regression.

Finally, a local correction was applied at the point of intersection between two planes.
A linear line was fitted to the two helical turns preceding and succeeding the point of
intersection. The intersection angle of the two lines was calculated and xy coordinates
succeeding the point of intersection are rotated by the inverse of the angle. The correction
was introduced between the xyz points of each succeeding plane due to the observation that a
large angle being intermittently introduced at this intersection. As DNA was unlikely to adopt a
kinked structure except under chemical or physical stress and as deposition conditions
assumed that the DNA equilibrates on the surface this should result in minimal physical stress.
As the true angle at the point of intersection between two planes was unknown then a

constant angle of 0° was chosen as a suitable compromise. The suitability of this local
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correction from this method was discussed with the original authors in a private

communication (Buzio et al., 2012).

A
Original XYZ Data
Planes Fitted
Plane 1
Plane Normals
And
Resulting Angle
D 0

Plane Adjustment

Figure 2.2. - Simple representation of the Geometric Deposition method. A) Original xyz
coordinates for a DNA molecule. B) Two planes are fitted to the xyz coordinates (least squares
with a maximum error of 2 nm per point). C) The angle between the plane normal vector is
calculated. D) The inverse of calculated angle was used as angle of rotation along the axis of
the line of interception between the two planes.
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2.5.3 Simple 2D DNA Chains

The angle between each base pair xy coordinate from the flattened 3D model was
calculated by treating coordinates as a series of vectors. The angles in radians between

subsequent vectors were calculated using the formulae:

perpendicular dot product = —a(2) X b(1) + a(l) x b(2)
dot = a(1) x b(1) + a(2) x b(2)

6 = arctan(perpendicular dot product, dot)

Where vector a was the product of [x(i-1) y(i-1)]-[x(i} y(i)] and vector b was [x(i) y(i}]-
[x(i+1) y(i+1)]. The subsequent series of signed curvature angles had an angle value per base
pair. Clockwise angles were denoted as positive and counter-clockwise as negative. A

curvature angle was calculated for each base pair using the curvature profile as the mean of a

normal Gaussian probability distribution with a standard deviation of o = JU_E where [/ was
the length of the section of DNA, in this case 0.34 nm, § was the persistence length of DNA, in
this case 53 nm (Rivetti and Codeluppi, 2001). A random start point was determined within a
grid of user defined size in nanometres (e.g. 3000 nm by 3000 nm). A random trajectory was

generated for the first DNA chain. Subsequent points were plotted using the formulae:

x(i)
y(@)

x(i—1) + (I X cos(cum8(i)))
y(i—-1) + (I X sin(cum8(i)))

Where cum@ was the cumulative angle along the line segment plus the curvature
value for the dinucleotide at point i and | were the length of a base pair in nm (0.34 nm). The
final image resolution was user defined and corresponded to AFM image resolution. The xy
coordinates were converted to AFM image coordinates i.e. (xy/size in nm) multiplied by the
resolution in pixels. Values that were outside of the user defined grid area were removed. Any
pixels in the final image that contained a section of DNA were set to 1 (i.e. a binary image of a
DNA molecule is created). Examples of raw xy coordinates for each base pair and digitised

images have been included in Figure 2.3.A and Figure 2.3.B.
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Figure 2.3. - Examples of a theoretical AFM images at each step in its production. A) xy
coordinates for each base pair of a theoretical DNA molecule. B) Multiple molecules at the
resolution of an AFM image. C) Theoretical AFM image after 3D tip convolution with atip of 6
nm ROC. D) Final theoretical AFM image after the addition of Gaussian noise (variance =
0.025).
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2.5.4 Tip Convolution

A 3D spherical function was passed over each binary image to emulate the effect of
imaging DNA molecules with an AFM tip. The spherical function had a user defined radius (r)
equal to that of the radius of curvature of an AFM tip. The function was evaluated over an a x a
grid, where a is double the radius of the sphere in pixel resolution (i.e. all possible points on

the image that the sphere can inhabit).

sphere = sqrt ((r*2) — (X(amin’ Amax)"2) = (V(Amin: Amax)"2))

This equation provided the Z-height of a sphere centred on a single pixel (xy). All
values above 0 were removed to produce a half sphere. The radius of the half sphere was
added to each value within the half sphere to produce a half sphere with a Z-height of zero at
[x y). The binary AFM image was padded with an appropriate number of zeros. The expected Z
of the half sphere was then compared to the actual Z-height of the AFM image at each pixel.
The discrepancy, if greater than zero, was the final recorded height at that pixel (Figure 2.4.).

An example of an image after tip convolution has been included in Figure 2.3.C.

Figure 2.4. Representation of 3D spherical convolution of a binary image in 2D. A spherical
function is passed over a binary image and evaluated at each pixel. If any values in the binary
image are larger than the expectation of the spherical function then the value of the final
image is increased by the difference (2).

2.5.5 Finishing Theoretical AFM Images.

A user defined amount of Gaussian noise was added to the final images (variance =
0.025). The images were saved as uncompressed TIFF files. This file format was similar to that
used by AFM manufacturer JPK. An example of a completed AFM image is presented in Figure

2.3.D.
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2.5.6 Orientation of Molecules Post-lmage Processing

The original xy coordinates of each theoretical molecule were stored in an image specific
variable i.e. one xy coordinate for each base pair. The end points of each DNA molecule after
image processing were compared to the first xy coordinate, corresponding to the 5' end of the
DNA strand of the stored xy values. The correct endpoint was determined as having the lowest
Euclidean distance between itself and the theoretical xy value (Figure 2.5.). The xy coordinates

were aligned correctly, the initial xy coordinates being the 5' end of the molecule.
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Figure 2.5. - Example of alignment of post-image processing DNA molecule (blue) to its
theoretical predecessor (red). The circles (blue and red) are the 5' end of the DNA molecule. In
this example both ends have been aligned.
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2.6 Image Processing of AFM Images

Images were processed using the image processing software detailed in Chapter 3. All
AFM images were plane fitted/flattened using a nine degree polynomial. Image processing was
performed in a semi-automated manner for experimentally obtain AFM images. A median 3 x 3
filter was used to reduce noise. Other filters, such as a Gaussian 3 x 3 filter, were used where
appropriate to extract the orientation of DNA contours from images with higher impulsive
noise. A foreground threshold was visually identified and confirmation was provided by the
user to ensure good fidelity of automated DNA identification to the DNA contour.

For simulated AFM image processing was performed in a fully automated manner. A
median 3 x 3 filter was used to reduce noise. A threshold value was obtained automatically
(Otsu, 1979). All DNA contours that lay within a range of +200 nm of the theoretical size of the
DNA molecule were recovered.

For appropriate experiments streptavidin end-labels were automatically identified. The
Z-height of the first and last 3 pixels was compared. The end with the largest mean Z-height
was designated as end-labelled with streptavidin. The presence of the streptavidin end-label

was visually confirmed by the operator.

2.7 Statistical Analysis

All data processing and analysis was performed off-line using the Matlab R2007b
commercial software package (MATLAB R2007b, The MathWorks Inc., Natick, MA, 2007). The
normality of data was checked with a Shapiro-Wilk test (Shapiro and Wilk, 1965). The majority
of the data was found to be non-normal and therefore non-parametric statistical tests were
used, p-values lower than 0.05 were considered significant unless otherwise stated within the
text. In order to compare intrinsic curvature or flexibility profiles the Spearman Rank
Correlation coefficient was calculated (Spearman, 1904). In order to compare curvature values
that occurred within exons regions to intron regions the sections of curvature profiles that
corresponded to exons positions were identified from the IARC database (Hernandez-Boussard

et al., 1999). Exon values were compared using a Kruskal-Wallis test (Kruskal and Wallis, 1952).

2.7.1 Analysis of DNA Contours

DNA contour length was calculated using the Kulpa estimator (Kulpa, 1977). A
comparable number of points were fitted to DNA contours by fitting a linear interpolant.
Intrinsic DNA curvature and flexibility was calculated in the standard manner dictated from the
literature (Scipioni et al., 2002a; Ficarra et al., 2005b). The fragment flipping algorithm was
instituted using the Greedy algorithm (Ficarra et al., 2005b). A full analysis workflow with

detailed explanations is presented in Chapter 3.
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2.7.2 Curvature Peak Comparison

The largest peaks of curvature were identified within theoretical intrinsic DNA
curvature profiles. The peaks that most closely corresponded to these key peaks from
experimental curvature profiles were identified. The peak shift for each matching peak was
calculated as a percentage value of the standardised length of the DNA sequences under

investigation.

2.7.3 Visually Displaying Curvature Profiles

Two methods for calculating curvature profiles have been used within the main body
of the text (Figure 2.6.). The first method is referred to within the text as unsigned curvature
profiles. Unsigned curvature profiles consider curvature angle regardless of the direction of
curvature on the mica surface. Unsigned curvature profiles were generated as the average of
all absolute curvature angles within a dataset. This method is comparable to calculating the
curvature modulus (or magnitude) and is also sometimes called 'absolute curvature' within the
literature. The second method, called signed curvature profiles, consider both the magnitude
and direction of curvature. Signed curvature profiles were generated as the average of all

curvature angles within a dataset. Right-handed (clockwise) angles were considered positive.
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Figure 2.6. Examples of unsigned (A) and signed (B) curvature profiles. The broken red line in B

represents a curvature of 0.0 radians.
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CHAPTER 3: DESIGN AND IMPLEMENTATION OF THE
ADIPAS IMAGE PROCESSING PLATFORM FOR THE
IDENTIFICATION AND ANALYSIS OF DNA IN ATOMIC FORCE
MICROSCOPY IMAGES
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3.1 Introduction
3.1.1 Image Processing of AFM Images

In order to measure DNA curvature from AFM images the DNA contour must be
extracted. Therefore, an image processing package must be able to accept an AFM image,
identify DNA molecules, extract their orientation and output it in a meaningful and accurate
co-ordinate system. In order to perform these steps the software must be able to flatten the
DNA image, remove or reduce noise, extract foreground objects (i.e. DNA), repeatedly erode
each foreground object until it is only one pixel thin and remove the erroneous branches
created by erosion to leave the ‘backbone’ of the DNA contour (Ficarra et al., 2005b). A brief
summary has been provided in Figure 3.1.

There are few freely or commercially available programs that could be used for such an
application, examples include ImageJ (Collins, 2007) and Gwyddion (Necas and Klapetek,
2011). However, there is very little or no customisation possible using such software making
further analysis time-consuming and impractical. For the analysis of DNA curvature and
flexibility there is a pressing need to process large amounts of complex image data and
perform very specific tasks. It is this need for customisation and flexibility that drives the
majority of AFM researchers working with DNA to develop their own in-house software.

The first study to produce a simple image processing workflow and associated general
user interface (GUI) for extracting DNA contours was the ALEX toolbox (Rivetti et al., 1996).
However, the ALEX toolbox has not been updated since its publication, has limited
documentation for the user and is not freely available to download. The same is true for much
of the research group-developed software (Sanchez-Sevilla et al., 2002; Ficarra et al., 2005b).
Therefore, the best option available to a researcher wishing to investigate intrinsic DNA

curvature by AFM is to develop their own software.

77



" o
a
°o 3 LD LO
(o] no N0 no
v @ H s
D o CN rsi rsi
o))
co
~0
@
(o
re V“\)I)
o &
‘c. T(E]):)
2> ¢
@ 3
i
P a
co

Image Processing Work Flow

-~

c

eIl 2]
O (N8B &0
I=|Q<a ngO I8

a I3

fé

oo eeatEs

ogy

%

221

LD LD

on m

H (N

i rsi

o

N <o

Figure 3.1. - Simplified image processing, data processing and data analysis workflow. The

example AFM images are of TP53 Exon 5-9 DNA.
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3.1.2 Analysis of DNA Contours Extracted from AFM Images

There are a number of analyses that can be applied to DNA contours extracted from
AFM images. The length of the DNA molecules can be reconstructed from the digitised DNA
contour using a variety of estimators (Rivetti and Codeluppi, 2001). The persistence length of
an ensemble of DNA molecules can be calculated (Cassina et al., 2011). Of central interest to
this study, intrinsic curvature and flexibility can be measured from the ensemble of DNA
contours (Figure 3.1.).

In order to analyse DNA curvature each DNA contour must be fitted with a fixed
number of comparable points in order to standardise the length of the molecule, an
interpolant is often used to this end (Ficarra et al., 2005b). The length of each DNA molecule is
then assumed to be equal regardless of the measured contour length. The angle of deviation
from a straight line is calculated for each consecutive point. By averaging these angles over a
large population of molecules the average intrinsic DNA curvature can be calculated (Scipioni
et al., 2002a). Flexibility can be calculated by the variance around the average curvature
values. The resulting ‘curvature profile’ is representative of the intrinsic curvature of the DNA
sequence.

There are a number of considerations for curvature analysis of DNA by AFM that have
not been clearly tackled in the current literature. There is no consensus method for selecting
an interpolatory technique during length standardisation although it is likely that the choice
will have an impact, however small, on the resulting curvature angles (Scipioni et al., 2002a;
Ficarra et al., 2005b; Marilley et al., 2005; Buzio et al., 2012). There is little consideration
within the literature for the number of points fitted to the DNA molecule (i.e. the base pair
window size) in order to calculate curvature. A typical study will fit a number of points close to
the theoretical maximum resolution of the AFM image (Ficarra et al., 2005b). For example,
each pixel may be 2.92 nm long, the equivalent to approximately 8.5 bp, and a point would
then be fitted for every 10.5 bp of the standardised length of the DNA molecule. At this low
resolution there is likely to be a high degree of variation cause by digitising the DNA contour.
An estimation of this variation has not been provided within the current literature and will be

considered within the present study.
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3.1.3 Aims and Objectives

The primary aim of this chapter was to produce a software package that could
experimentally determine DNA curvature and flexibility from AFM images of DNA molecules
using multiple methods available from peer reviewed literature. In order to achieve these
goals the ADIPAS (AFM DNA Image Processing and Analysis Software) software was developed
to provide a flexible approach to image processing and analysis suitable for multiple
experiments on AFM images of DNA. This pipeline aims to be accessible to the general user
and provide reliable and reproducible results.

The ADIPAS software was able to read an input AFM image, rescale the data, plane
fit/flatten, filter for noise, threshold the image to identify foreground pixels (DNA molecules),
skeletonise and ‘prune’ the resulting skeleton and finally extract xyz coordinates. The software
calculated angles between adjacent points at user defined intervals along a DNA contour,
created a curvature matrix of the resulting data and allowed either the direct creation of
curvature and flexibility profiles or application of the FF algorithm. Other experimental
measures were also instituted including reconstructed DNA contour length and persistence
length calculation. Other experimental tools were developed during the project. This included
a method for the visual identification of appropriate base pair window sizes for the calculation
of curvature angles. An experiment that determined the selection of an appropriate
interpolant type for the analysis pipeline has also been detailed. In order to facilitate high-
throughput analysis of DNA images and usability a GUI was developed for ADIPAS. The GUI was

developed to be usable with the minimum of training or knowledge of DNA studies of AFM.
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3.2 Development of ADIPAS
3.2.1 Programming Platform

The AFM DNA Image Processing and Analysis Software (ADIPAS) software was
developed in the Matlab 7.5.0 programming platform with the image processing and statistics
toolboxes (Mathworks, Cambridge, UK). This programming environment is compatible with all

major operating systems.

3.2.2 Image Processing Pipeline
3.2.2.1 Plane Fitting

Input AFM image files were read as greyscale intensity data. A nine degree polynomial
was fitted to each line of the image in turn. The polynomial was subtracted from the source
data in order to fit each line to a horizontal plane. This step was repeated using a polynomial
fitted to the lowest seventieth percentile of Z-height data in order to ignore extreme values
and smooth inconsistencies in the background. A similar method was used by previous authors
and ensured that the resulting image surface was extremely flat and suitable for further image
processing (Sanchez-Sevilla et al., 2002). The number of iterations and the degree of the

polynomial fitted could be specified by the user.

3.2.2.2 Image Filtering

While AFM has a higher signal-to-noise ratio than other comparable techniques there
was still a variable level of noise in each image (Hansma and Hoh, 1994). This noise was
attributable to a variety of sources: impurities in the sample, sub-optimal cantilever tuning,
cantilever wear over a large number of images, surface-tip interactions, external acoustic
vibration sources and poorly grounded equipment producing electrical feedback. A number of
filters were implemented into the image analysis software platform. The default filter was a
3x3 median filter, used as a baseline filter for low or locally occurring noise (Ficarra et al.,
2005b). Other filters were utilised on a case-by-case basis and included a 3x3 Gaussian filter
and a 3x3 average filter. Included in this step was a line-by-line adaptive histogram for
increasing height contrast and a 3D background subtraction. These final two options were not

image filters but were similarly used to improve image quality on an image-by-image basis.

3.2.2.3 Image Thresholding

The purpose of image thresholding was to separate background (sample surface) and
foreground (DNA molecule) pixels. During this step the image was simplified into a binary
image where background pixels were ‘0’ and foreground pixels were ‘1’. The foreground

contained areas of interest that were likely to be experimental DNA molecules. A threshold
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value was identified which was used as a cut-off value above which all Z-height values were
considered foreground pixels. This value was determined by either a visually interactive user-
defined threshold value or an automatically determined threshold value. Both approaches
have been incorporated into the software. For very good contrast, theoretical or low noise
AFM image automatic thresholding can produce very accurate and reproducible results using
the Otsu method (Otsu, 1979). For moderate to high noise images it was more suitable to
visually inspect the resulting thresholded image to ensure good agreement with the original
image. This was achieved using a slider that controlled the threshold value below which pixel

intensity was considered background. The slider covered all values of the greyscale image.

3.2.2.4 Thinning/Skeletonisation

Successive outlying pixels were removed from the binary image until only a ‘skeleton’
of one pixel thickness remained. This was achieved using the default image erosion algorithm

in Matlab with one hundred passes (Lam et al., 1992).

3.2.2.5 Removal of Image Artefacts and Overlapping Molecules

Isolated pixels were removed from the image. Foreground pixels in contact with the
image boundary were removed as it was impossible to determine how far they extended
outside of the image boundary. Any molecules that were circular or formed a circular pocket
were removed as it was not possible to determine which overlapping branch of the molecule
was followed when extracting image coordinates. Only DNA molecules which contained a
number of pixels within a user defined maxima and minima were retained for the next step.
This reduced processing time for the next stage and removed clearly erroneous molecules such

as fragments or DNA molecules lying end-to-end.

3.2.2.6 Removal of Spurious Branches

Skeletonisation of an image produced additional ‘branches’ from the backbone of the
DNA contour. These branches occurred due to increases in thickness along a DNA molecule or
imaging artefacts such as tip smear. In order to remove branches all spurious ‘endpoint’ pixels
were identified and removed (Figure 3.2.). These were any pixels that were only adjacent to
one other pixel in an immediate 3x3 pixel grid area. This was repeated until only two endpoints
remained. During the process of removing these pixels any branches that ceased to grow were
removed. The final two branches that remained were the branches that added the longest
length to the molecule and formed the DNA contour or skeleton. When two branches of equal
length co-existed at one end of the molecule one of the two branches was removed at

random. Molecules that had more than two endpoints were not included in the final dataset.
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Endpoint

Branch 2

Branch 1

Endpoint

Kev

Full Pixel

Identified End Point

[X] Removed Pixel

Background Pixel

Figure 3.2. - Simple example of the algorithm for the removal of 'spurious branches' in a binary
image. Black squares represent pixels that contain Z data corresponding to a skeletonised DNA
molecule. Grey pixels are pixels identified as 'endpoints’. Endpoints are saved to a separate
variable. White squares represent background pixels. Squares marked with an X represent
pixels that have been removed. A) Initial binary image with two spurious branches. B) Endpoint
pixels have been identified (grey) and stored in a separate variable. C) Endpoint identification
is repeated. Branch 1 ceased to grow and is therefore removed. D) Endpoint identification is
repeated. Branch 2 has ceased to continue growing and is removed. There are only two
endpoints to the 'core' of the skeleton. E) The remaining branches are added back into the

binary image as part of the 'skeleton core'.
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3.2.2.7 Identification of Molecule of Interest

Molecules of interest were displayed visually within the ADIPAS GUI. The binary
skeleton was displayed on top of the original image allowing for visual assessment of the
fidelity of the image processing method. Molecules that adhered to the original image and
were not sample or image artefacts were selected by the user for extraction during the next
step. The end pixel that corresponded to the highest Z-height values within the original
unfiltered plane fitted image was automatically identified with a red circle as the end-labelled
end of the DNA molecule. In experiments without protein or small molecule end-labelling this
option was disabled. The user visually confirmed endpoint tags to ensure that the program
correctly identified protein end labels. Alternatively, the user could specify that the label was
present at the opposite end. DNA molecules that were visually confirmed to be erroneous
were removed. All DNA molecules were recovered during automated analysis of computer

simulated AFM images.

3.2.2.8 Extraction of Coordinate Data

Pixel coordinates for the contours of DNA molecules identified during the previous
step were extracted in sequential manner. The output was an ordered series of pixel
coordinates from the first to final endpoint pixels. Corresponding Z-height values from this
coordinate list were extracted from the image generated during the Plane Fitting step. If the
experiment included visual or Z-height end-labels then the first coordinate removed was from
the side of the DNA molecule that was confirmed to contain the end label. In the cases where

no end labels were specified the program began extraction at a random endpoint pixel.
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3.2.3 Design of a General User Interface for ADIPAS

A GUI was developed for ADIPAS that allowed the operator to visually check each
stage of the image processing workflow. The purpose of the GUI was to facilitate high-
throughput analysis of DNA images (Figures 3.3-3.7.).

On accessing the software the first prompt for the user was to input an image file
(Figure 3.3.). This created a pop-up for file selection familiar to any user of modern operating
systems. Directly below the ‘Get Files’ button was a textual input panel where the name of a
file containing workspace variables from a previous session could be manually inputted. Image
processing that was performed after the name of a valid file has been entered using ‘Get Files’
continued the numbering system of the previous file/dataset. Additionally, output data
contained the information within the input file.

Once an image file, or series of files, had been selected the GUI displayed a plane fitted
version of the AFM image file and highlighted a series of tick boxes and sliders (Figure 3.4.).
The tick boxes represented image noise filters that could be applied to the displayed image by
selecting the appropriate tick box followed by the ‘Refresh Filter’ button (Figure 3.5.). The
‘Contrast’ slider modified the maximum and minimum Z-height value in the displayed image
and was dynamically updated. The ‘Reset Image’ button returned the image to its original
state. Any contrast adjustment was retained in the overlaid output image.

The sliders located below the filter tick boxes controlled the upper and lower
threshold value for the image. On selection of either slider the image was converted to a
binary black and white image (Figure 3.6.). The threshold was dynamically updated as the
slider position was changed by the user. The image could be reset to its original state by
pressing the ‘Reset Image’ button or by applying another image filter.

On selecting the ‘Done’ button below the threshold sliders a pop-up window appeared
during the branch removal step (Section 3.2.2.6.). As the most time consuming stage of the
image processing platform (between 5-30 seconds dependent on the number of detected
molecules) the pop-up window indicated the number of molecules that remained to be
processed for branch removal.

After the branch removal was completed the original image appeared overlaid by the
skeletonised DNA contours (Figure 3.7.). A red circle indicated the end with the largest Z-
height for each molecule. This allowed for identification of end-label proteins if included as
part of experimental design. A series of labelled tick boxes was highlighted to the right of the
displayed image. The tick boxes corresponded to the appropriately labelled overlaid DNA
molecules in the displayed image. Unchecking a tick box and selecting the ‘Refresh’ button

removed the overlaid molecule from the image. Similarly, reselecting a tick box and pressing
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‘Refresh’ caused the molecule to reappear on the image. A button labelled ‘Flip’ was located to
the left of each tick box. Selecting this button when a molecule was overlaid on the displayed
image caused the circle denoting the ‘tagged’ end of the molecule to swap endpoints. This
stage also allowed for the removal of obviously erroneous DNA molecules, DNA contours that
had not followed the observable DNA molecule with acceptable fidelity or otherwise
undesirable DNA molecules.

On pressing the ‘End’ button all molecules visibly overlaid on the displayed image
would have xyz data individually extracted in a sequential manner beginning with the end
designated as ‘tagged’ by a red circle. The software saved the overlaid image file as a
compressed jpeg. Information on the name of the source file, name of the overlaid output
image and DNA contour xyz pixel coordinate were saved as a data file. The detected molecules
in the file were labelled sequentially in ascending order beginning with zero unless a previous
workspace was loaded before beginning image processing (Figure 3.3.).

The software continued to open the subsequent image file if a series of image files
were selected. If there were no more files for processing the software closed. Alternatively, if
the tick box located at the bottom of the screen labelled ‘Reprocess Image’ was checked then
the software reloaded the previous file and treated it as a new image for further processing.

This was useful when DNA molecules were not detected by the first pass of the software.
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3.2.4 Data Processing and Analysis Pipeline

The aim in the development of an analysis pipeline was to allow for a comprehensive
investigation of physical measurements of DNA molecules extracted from AFM images. The
pipeline allowed for a large amount of input xy coordinates from a large cohort of DNA
molecules to be processed to produce measurements of reconstructed molecule length, DNA
persistence length, intrinsic DNA curvature and DNA flexibility. Additionally, the FF algorithm
of DNA orientation was reproduced from the original publication (Ficarra et al., 2005b). The
tools developed were sufficient to the task of analysing ‘real’ and theoretical AFM images of
DNA molecules with the end result of measuring intrinsic curvature. Critically, the analysis
platform enabled a full analysis of a DNA sequence, such as the TP53 gene, with the aim of
estimating DNA curvature, DNA flexibility, reconstructed length, persistence length and a full

evaluation of the FF algorithm. This has been fully detailed in Chapter 5.
3.2.4.1 Calculation of DNA Contour Length

The length calculation was based upon a modified Euclidean distance measurement
called the Kulpa Estimator (Kulpa, 1977). This simple estimator of distance was obtained by

first calculating the Euclidean distance between each pixel using the equation below:

d(p,q) = (@' — q1)? + (p? — q?)?

In the equation above p and g are pixel xy coordinates. There were only two unique
states for pixel orientation. This was either side-by-side in the horizontal or vertical plain or
diagonal. Two pixels side by side were scored as having a Euclidean distance of 1 and those in
the diagonal plane as 1.4. The Kulpa estimator used the modified values of 0.948 and 1.343
(Figure 3.8). The sum total of all the pixel distances was calculated and converted into

nanometres based upon the size and resolution of the image.

Euclidean 1.00 1.00 1.40
Distance
1 o I
Kulpa
. 0.948 0.948 1.343
Estimator

Figure 3.8. - Pixel coordinates distance as calculated for using Euclidean distance (i.e. the
Freeman estimator) and the Kulpa estimator. The squares represent individual pixels and the
rounded line represents the distance measured.
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3.2.4.2 Persistence Length Calculation

Persistence length is an important global statistic of polymer flexibility. According to
the WLC model of DNA flexibility (Rivetti et al., 1996) the mean trajectory of an intrinsically

straight chain in 2-D is given by the equation:
2 L
<R2>2D= 4'£L 1—2(1—3 ZE)

Where R? is the mean curvilinear distance of the polymer in Euclidean distance, € is the
persistence length of the polymer and L is the curvilinear distance/contour length of the
polymer. Solving this equation for different values of § over a range of values of L allows the
construction of WLC models of the end-to-end distance of DNA chains.

In order to calculate the persistence length of DNA from a set of ‘real’ DNA images,
experimental < R? > was calculated. The experimental < R? > was compared to theoretical
< R? > values for a range of £ generated using the equation above. For each § the value of L
varied in a range of n, to n; where n is an evenly spaced range of contour lengths from zero to
~300 nm. An upper limit of *~300 nm was obtained from the literature (Cassina et al., 2011).
This produced a prediction of < R? > over a range of contour lengths and values of £.

The experimental estimation of < R?> for a series of DNA molecules was
straightforward. A linear interpolant was fitted between each pixel within each molecule in a
sufficiently large dataset. The width of a pixel in nanometres was calculated (i.e. size of the
image in nanometres divided by the number of pixels). This allowed for the selection of a
series of points within the DNA molecule that were ny to n; curvilinear distance from the
beginning of the molecule. The end-to-end distance (R?) between the start point (n,) and point
of interest (n,,) was then calculated in nm”. This was repeated sequentially over an appropriate
number of points (ny-n;) for each DNA molecule. This provided an ordered series of ascending
values for the curvilinear distance along an individual DNA molecule (R?). These values were
calculated for a sufficiently large number of DNA molecules and averaged (< R? >).

In order to identify the most appropriate persistence length for experimental DNA it is
necessary to identify which value of £ produces < R? > from the WLC model that most closely
match experimental < R? > values. A number of values of £ are used to generate < R? >
from the WLC and the closest fit was identified using root mean square error (RMSE). The
solution to the equation that best matches experimental < R? > values provided the
persistence length for experimental DNA (Figure 3.9.A). The quality of the fit can be visually
confirmed by using a plot similar to that in Figure 3.9.B. If the plot significantly deviates from
all theoretical predications made by the WLC model it may be necessary to assess the fit using

other statistical tools.
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RMSE of Fitted Model Model Fit
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Curvilinear Distance (nm)

Figure 3.9. - Examples of experimentally determined DNA persistence length by comparison to
theoretical values of <R2> using the WLC model. A) Plot of the RMSE fits of R2generated using
a range of persistence length values against experimental R2values from the WLC model. B)
Experimental R2values (red line) alongside R2values (broken blue) predicted by the WLC model
for a DNA molecule of persistence length of 60 nm over a range of curvilinear distances of 0-
300 nm.

94



3.2.4.3 Calculating Curvature Angles From DNA Molecules
3.2.4.3.1 Identification of Comparable Points in a Set of DNA Molecules

Pixel values extracted during the image processing step were fitted with a piecewise
interpolation technique that passed through each point. The choice of interpolant was
experimentally assessed and is presented in Section 3.2.5.1. To obtain a comparable number
of data points for each molecule a suitable number of coordinates were selected at equal

intervals along the DNA molecule (Zuccheri et al., 2001b; Scipioni et al., 2002a).
3.2.4.3.2 Base Pair Window Size

The number of points fitted per DNA molecule determined the base pair window
size at which curvature angles were calculated. As curvature angles were calculated over three
points the base pair window size was twice the distance of one fitted point. For example, a
researcher wishing to calculate curvature at an interval size of 21 base pairs for a 1855 bp DNA
molecule would fit a point every 10.5 bp. Therefore, 177 coordinates (1855 bp divided by 10.5
bp) would be selected from the interpolated DNA contour at regular intervals. Examples of
coordinate selection over a number of base pair window sizes and the outcome angles

calculated are presented in Figure 3.10.
3.2.4.3.3 Angle Calculation

In order to study curvature the angular deviation from the backbone line was
calculated. Individual xy coordinate steps were treated as vectors. The dot product and the
perpendicular dot product were used to find the angle of intersection between sequential

vectors using the formulae in below (schematic in Figure 3.11):
theta = arctan(perpedicular dot product, dot product)
The resulting angle in radians (rads) was considered positive if it was a clockwise
(right-handed) angle and negative if it was counter clockwise (left-handed). On rotation of a

line around a central point the sign (+/-) of the angles will not change based upon the

trajectory of the line. This is visualised using a simple series of pixel angles in Figure 3.12.
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Figure 3.10. - Examples of angles calculated over four base pair window sizes. A) Base pair
window size of 21 bp -1 point fitted per pixel in original molecule. B) Base pair window size of
42 bp- 1 points fitted per 2 pixels in original molecule. C) Base pair window size of 84 bp 1
point fitted per 4 pixels in original molecule. D) Base pair window size of 400 bp -1 point fitted
per 20 pixels in original molecule. Red lines represent original data points. Blue circles
represent points fitted at regularly spaced intervals of original data. Angle values were

calculated as the backbone deviation from a straight line.
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XY (1+1)

Figure 3.11. - Representation of the curvature angle at point This was calculated from the
angle of intersection between both lines XY(i-/) to XY(i) and XY(i) to XV(/'+l) . Note this would
be a negative angle as it is counter clockwise rotation.
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Figure 3.12. - Angle calculation for a line rotated around a central point (red circle). The line
section was replicated multiple times around the central point with different orientations. All
angles were calculated along the lines from the central red circle to the end of the lines. Angles
were calculated at the intersection point of each section of the line. Angles along the line were
identical in each rotation although the direction of the line changes. All angles calculated for a
comparable point along the line were identical independent of rotation.
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3.2.4.4 Calculation of Curvature Profiles.

The observable curvature of a DNA strand imaged by AFM is composed of two factors:
intrinsic curvature (Co) and flexibility (f). Intrinsic curvature is a product of local interactions
between dinucleotides and consecutive base pair steps. Flexibility is the perturbation of DNA
on interaction with the local environment. Both of these elements are products of DNA
sequence. Therefore, observable curvature of a DNA sequence of base pair length can be

described by the equation below:

Cm) =Co(m) +f(n)

Where C was the observable curvature at point n along the DNA sequence C, was the
intrinsic curvature and f was the flexibility. Due to its relatively high rigidity DNA has been
shown to follow first order elasticity theory (Scipioni et al., 2002a). The contribution of thermal
noise imposing local variations of the structure of DNA was considered zero over a sufficiently
large sample size (Ficarra et al., 2005b). Therefore averaging over a sufficiently large
population of DNA molecules the intrinsic curvature at point n was calculated using the
equation below. The flexibility parameter was characterised by the standard deviation at point

n.

Co(m) = (C(n)) = Co(n) +f(n)

In order to generate a curvature profile for an aligned set of DNA molecules of number
N each molecule was sampled S number of times along its standardised length (Section
3.2.4.3.1.). This gave a matrix of curvature values M (N x S). Each row (n) of the matrix was a
separate DNA molecule. Each column was a series of angle measurements at a comparable
position along the length of the DNA molecule (s). The mean value of the rows gave the
curvature profile for the dataset. The curvature profile had a length equal to S. The standard
deviation at each point of S was the flexibility profile. The final curvature profile was composed
of either signed or unsigned values. To produce an unsigned curvature profile (also called
absolute curvature) all angles were made absolute before taking the average. The unsigned
curvature profile took into account the magnitude of curvature and disregarded the direction
of curvature. To produce a signed curvature profile both the size and direction of the curvature

were considered. A sample schematic of a curvature matrix is provided in Table 3.1.
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Molecule 1
Molecule 2

Molecule 3

Molecule N

Curvature

Flexibility

Position along the DNA Molecule in Base Pairs

End of
10.5bp 21bp 31.5bp 42bp e Molecule
(S)
0.165 0.073 -1.854 0.026 | ..ccoovuene. -0.251
0.250 0.085 4.875 0300 | .o, -0.186
0.357 -0.404 0.444 -0.444 | ... -0.444
0 0.444 -0.444 0.435 -0.435 0.424
v v v v v v
0.165 4.875 -1.854 0.026 -1.854 0.026
0.152 1.375 -0.894 0.563 -0.440 1.126

Mean

Standard

Deviation

Table 3.1. Schematic of a curvature matrix of dimensions N x S. The curvature profile was the
mean value of the column and flexibility profile is its standard deviation. Both profiles were of

length 1 x S. The outcome was a signed curvature profile.
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3.2.4.5 Fragment Flipping Algorithm

Each DNA molecule adopts one of four different conformations on a mica surface
(Figure 3.13). The FF algorithm assumes that there is an underlying consensus curvature profile
to the DNA molecules. If all molecules are oriented correctly then the objective function of the
FF algorithm, the mean column variance, will be at a minimum.

The FF algorithm was instituted using a Greedy algorithm, looping throughout the
curvature matrix multiple times to find an optimal solution to the objective function. The
Greedy algorithm was found to be optimal compared to other well-known general-purpose
heuristic solvers (Ficarra et al., 2005b). A curvature matrix was constructed for a cohort of DNA
molecules. The angles corresponding to the curvature of an individual molecule were then
transformed into each possible orientation (i.e. invert sign, flip direction or both, see Figure
3.13.) and the mean of the column variances was recorded for each orientation (Figure 3.14),
this value was the objective function of the algorithm (Figure 3.15). The molecule orientation
that reduced the objective function the largest amount was then adopted for that molecule.
This was applied to all of the molecules within the dataset. This was iterated upon for the
dataset multiple times until the objective function did not significantly change, assessed by the
Kolmogorov-Smirnoff test, over a user defined number of passes (default = 25). Curvature

profiles were constructed from the resulting curvature matrix as previously detailed.

Figure 3.13. — All possible orientations of a DNA molecule on a flat surface. The shape of the
molecule was the same in each orientation but the direction of the molecule changed.




Molecule 1
Molecule 2
Molecule 3

Molecule 4

Molecule 1
Molecule 2
Molecule 3

Molecule 4

Molecule 1
Molecule 2
Molecule 3

Molecule 4

Molecule 1
Molecule 2
Molecule 3

Molecule 4

Position along the DNA Molecule in Base Pairs

21 bp

10.5 bp

10.5 bp

10.5bp

10.5 bp

21 bp

21 bp
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L TTTY]
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3 4
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-4 -2
Flip Molecule 1

315bp 42 bp

-3 -4
3 2
-3 -4
-4 -2

Flip Molecule 2

31.5bp 42 bp

-3 -4
-3 -4
3 -4
-4 -2

-5 Mean Variance

-1 15.12

-1 11.25

-1 2.05

Flip Until No Significant Change in

Variance for 25 Iterations

31.5bp 42 bp

-3 -4
-3 -4
-3 -4
-4 -4

52.5bp
-5
-5 Final Mean
-5 Variance
-5 0.05

Figure 3.14. - Demonstration of the FF algorithm on an example curvature matrix using the
Greedy algorithm. Each individual DNA molecule was flipped into four different orientations.
The orientation that reduced the objective function of the FF aigorithm (the mean of the
column variances) by the largest amount was retained. The process was repeated with all
molecules in the dataset until there was no significant change in variation for a used-defined

number of whole dataset iterations.
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Objective Function of Fragment Flipping Algorithm
0 1295

0.129
0 1285

0 128

| 0.1275
0.127

0.1265
0 126

0 1255
0.125

0 1245
05 25

Iteration Number

Figure 3.15. - Example of the change in the FF objective function using the Greedy algorithm.
The objective function, the mean of the column variances in the curvature matrix, was
recorded at the end of each iteration and plotted against the appropriate iteration number.

103



3.2.5 Evaluation of Methods for Calculating Interpolants and Selecting Appropriate Base

Pair Window Sizes for Curvature Analysis

A lack of consideration for the choice of interpolatory method used to fit a series of
regularly spaced points to DNA contours in order to calculate curvature angles was identified
within the current literature. Similarly, the window size in base pairs used to select an
appropriate number of points to fit to DNA contours for the calculation of curvature angles
was not considered in many studies. Instead, studies typically fitted a number of points close
to the number of pixels that made up individual molecules. The choice of interpolant was likely
to have an influence on the curvature angles calculated on this scale. At low base pair window
sizes there was likely to be an increased influence of DNA molecule variance and image noise
on the calculation of curvature angles.

The following sections contain experimental work aimed at the selection of an optimal
interpolation technique from those presented within the literature. Furthermore, a method of
‘visual thresholding’ for identification of suitable base pair windows for curvature calculation
has been developed. This methodology was novel and allowed the identification of digitisation
effects on AFM images of DNA and for the selection of appropriate window sizes in base pairs

for the calculation of curvature angles on an experiment-by-experiment basis.
3.2.5.1 Selection of an Interpolant

In order to take a number of comparable curvature angles along DNA contours the
length of each molecule had to be standardised (Rivetti and Codeluppi, 2001). A number of
points were then interpolated along the standardised length. From the standardised length a
suitable number of points were selected at regular intervals. The angles between these points
were calculated.

There have been a number of methods used to smooth the DNA xy pixel coordinates
by previous authors: constrained ‘interpolatory splines’ (Ficarra et al., 2005a), piecewise fitting
of polynomials every 5 coordinates (Ficarra et al., 2005a) and a complex method of spline
fitting (Sundstrom, 2008). Other authors did not include this step (Zuccheri et al., 2001b;
Scipioni et al., 2002a). The effect, if any, of interpolant selection on curvature measurements is
not covered in any available published material. It is likely that the choice of
smoothing/interpolant will effect curvature measurement at the smallest base pair windows
where the effect of digitisation of the DNA contour is most pronounced.

In order to select an appropriate interpolant a number of methods were compared.
Four methods of interpolation were implemented for comparison; piecewise linear
interpolation, cubic spline interpolation, piecewise cubic hermite interpolation and piecewise

polynomial fitting (Examples in Figure 3.16). The first three methods were available within the
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Matlab programming environment. Each methodology created a series of interpolatory splines
that were constrained to pass through each pixel coordinate. The linear method joined each
point with a straight linear line (Figure 3.16.B). The methods used for the construction of
splines for the cubic and hermite interpolants were very similar and both involved the fitting of
piecewise splines (Figure 3.16.C+D). However, the hermite was typically more suitable for
curved data. The end result of this was that hermite spline interpolation involved less
oscillation, was less likely to overshoot in non-smooth data and typically adhered more tightly
to the data (Figure 3.16.D). The final method, detailed by Ficarra et al., was implemented as
described by the authors (Ficarra et al.,, 2005a). A three degree polynomial was fitted every
five coordinate points (Figure 3.16.E).

A set of computer generated AFM images of TP53 Exon 5-7 was used to test the choice
of interpolant. The original xy coordinates per base pair were retained and used for orientation
of molecules after image processing by aligning the processed molecules with their original
orientation (Section 2.5.6.). The Euclidean distance between each original base pair and the
comparable section after image processing was calculated. This value was used to measure the
similarity between the final positions of xy coordinates generated using the different
interpolation methods and the original DNA molecule before digitisation. The results ordered
from highest similarity to lowest were; polynomial (2.83x10%), linear (3.41x10%), cubic
(3.42x10%) and hermite (3.42x10%).

The clear choice of interpolant method was the polynomial, however a number of
inconsistent artefacts were observed during implementation (Figure 3.17). These artefacts
were not observed with the other interpolant types. The polynomial method was not
implemented; it was considered that it is better to have consistently slightly poorer but
predictable similarity rather than inconsistent and unpredictable artefacts. There was little
difference between the remaining interpolant types. However, the linear interpolant
(effectively the original digitised DNA contour) gave the best results and was implemented

within the software.
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Cubic Hermite

Polynomial

Figure 3.16. - Effect of interpolant on curvature of the DNA contour. A) Original trace a
theoretical TP53 Exon 5-7 molecule B) Piecewise linear interpolation. C) Cubic spline
interpolation D) Piecewise cubic hermite interpolating polynomial. E) Polynomial interpolation
(3 degree polynomial over 5 x-y coordinates). The green lines are the theoretical trace of the
DNA molecule, red lines represent pixel coordinates of the DNA molecule after digitisation and
the blue lines are the reconstruction of the pixel coordinates after interpolation.
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Figure 3.17. - Examples of artefacts created by the polynomial interpolation methodology.
A) Contour breaks. B) Large deviations at sharp angles. C) Inconsistently following the DNA
backbone. Three degree polynomials were fitted over five x-y coordinates.
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3.2.5.2 Creating a Visual Threshold for Selecting Base Pair Window Size

Many researchers work at the lowest possible resolution afforded by AFM imaging.
Often this resolution borders one pixel per curvature angle measurement. The following
research has shown that this may not be the best resolution for a reproducible analysis, with
supporting evidence described below. This study has described a method of visually selecting
an appropriate window size of curvature for the AFM user alongside outputs that gives

information on the quality of the data at that resolution.

3.2.5.3 Influence of Base Pair Window Size on Curva;ure Profiles

While there is a consensus method for the calculation of curvature from AFM images
there is little consideration of how the base pair window size for curvature and flexibility will
effect the observed curvature within the literature. In order to tackle this issue curvature
profiles were generated for a test dataset of simulated AFM images over a wide range of base
pair windows (Figure. 3.18). The images were processed using the image processing software
detailed in this chapter. A number of points were fitted to the resulting xy coordinates at
regular intervals. These intervals corresponded to the appropriate number of points for each
of the base pair windows under investigation. The range used experimentally began below the
limit of AFM resolution of the current experiment of 21 bp with a point fitted every 10.5 bp.
The range extended up to a maximum of ten points fitted per molecule. The full details on the
generation of computer simulated AFM images are presented in Chapter 4.

At low base pair window sizes (Figure 3.18 - light green lines) there was observably a
greater degree of variation in absolute curvature profiles (Figure 3.18.A+B). Unsigned
curvature did not consider the direction of the curvature. This contrast between peak and
trough steadily increased at larger window sizes. The signed curvature profiles (Figure 3.18.C)

also showed a steady increase in contrast between peaks and troughs at larger window sizes.

108



Absoluts Curvature Measured over a Number of Base Pair Windows

09

08

07

B 06
* 05
04
Signed Curvature Measured over a Number of Base Pair Windows
03
02
01 02 03 04 05 06 07 08 09 1
Standardised Position
£ -02
Absolute Curvature Measured over a Number of Base Pair Windows
0 01 02 03 04 05 06 07 08 09 1
Standardised Position
Colour Scale
£ 03
Small Large
Curvature Curvature
Window Window

01 02 03 04 05 06 07 08 09 1
Standardised Position

Figure 3.18. - Visualisation of the effect that the base pair sample window has on the curvature
profile of TP53 Exon 5-7 from computer simulated AFM images. A) Unsigned curvature profiles
(all angles are considered positive) for window sizes from 10.5 bp to 270 bp. B) Unsigned
curvature profiles for window sizes from 10.5 bp to 185 bp. C) Signed curvature profile of TP53
Exon 5-7 (both positive and negative curvature values are considered) with window sizes from
10.5 bp to 270 bp. The position along the molecule was standardised from 0 to 1. Zero
corresponds to the 5' end of the molecule. The colour scale is from 10.5 bp (light green) to
~270 bp (dark brown).
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3.2.5.4 Influence of Base Pair Window Size on Mean Curvature

It was observed that when the base pair window size at which curvature was
calculated was increased there was a reproducible effect on the mean curvature measured
(Figure 3.19.). There was a peak at low window size followed by a trough and then a nearly
linear increase. This effect was observed in multiple experiments. The effect was both an
artefact of the data and an interesting finding.

The changes observed could be attributed to a gradation of different properties of the
digitised DNA contour. The number of data points fitted at a low window size was nearly equal
to average number of pixels per molecule. Where this was true there was a constrained
number of different calculable angles (0, 0.78 and 1.57 radians) with a known maxima value of
1.57 radians.

If the window size was reduced below the average number of pixels per molecule then
there were more points fitted than there were pixels. This led to multiple samples being taken
from within one or two consecutive pixels (i.e. the calculated angle is 0.00 radians) and had the
effect of reducing the mean curvature. This effect can be observed at window sizes below ~21
bp in Figure 3.19.A.

The trough at ~40-80 bp could be attributed to a window size that fits a point every 2-
4 pixels for a large number of DNA molecules within the data set. At this scale there was still a
limited number of physical orientations that the digitised DNA could conform to, however
there were many more than those available at the scale of one point per pixel. While the
maximum curvature could still be 1.57 radians for an individual point it was far more likely to
be lower than this. Pixelated DNA could never take up a conformation of greater than 1.57
radians at a window size of 1 point every 2-4 pixels. Additional pixels would be removed during
the erosion step of image processing. Additionally, within this range of window sizes some
molecules would be fitted with one point for every two pixels. This had the effect of smoothing
out the jagged pixelation/digitisation of the DNA contour and was likely to reduce the mean
curvature.

At window sizes in excess of 60 bp the mean curvature began to rise again. At this
window size the DNA was able to take up a wide range of conformations and could begin to
double back upon itself (For an example see Figure 3.10.D). As the largest measurable

curvature began to rise the net effect was an increase in mean curvature (Fig 3.19.A.).
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Figure 3.19. - The effect of base pair window size on unsigned mean curvature and flexibility.
A) Mean curvature plotted against base pair window size. B) Mean flexibility plotted against
base pair window size. Profiles were generated for a set of simulated AFM images (1171
molecules) of TP53 Exon 5-7. Mean curvature and flexibility values were calculated as the
mean value of the respective profile at each window size.



3.2.5.5 Creating a Visual Threshold for Selecting Optimal Base Pair Window Size

The observation of the mean unsigned (absolute) curvature alongside prior knowledge
of how these trends occurred allowed for the segmentation of the mean curvature plot into a
number of different sections. These groupings allow the researchers, on a per experiment
basis, to know if the curvature measured can be attributed to digitisation of the DNA contour,
local curvature or large scale curvature (Figure. 3.20.B).

There were a number of ways to approach this problem. The chosen approach was
both simple to implement and visually easy to understand. The plot was smoothed (10 point
average), the maximum curvature of the first peak and the minimum value of the central
trough were identified. On taking the average value between these two measurements a
reproducible threshold was produced. This could be applied across multiple experiments
assuming the relationship between base pair window and average curvature stayed constant.

Any window sizes smaller than the window size of the peak maxima (indicated with a
red circle in Figure 3.20.A) were sub-optimal as they began to sample multiple times within
individual pixels. Figure 3.20 shows both the simple threshold (Figure 3.20.A) and the mean
curvature with the proposed labels (Figure 3.20.B). The region from the average line and the
first peak maxima was characterised as the ‘pixel region’, where a large proportion of
molecules had a number of points fitted similar to or equal to their length in pixels. Within this
region the choice of interpolant would have an effect on the curvature measured alongside the
effects of DNA contour digitisation. The trough below the average line could be considered the
‘local curvature’ region, where the curvature measurements were free of the effects of
digitisation. The minima value could be considered an optimum value. Any values that
occurred within the region of window sizes larger than the average line could be considered to

be curvature on the large scale, or ‘gross curvature’.
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Figure 3.20. - Proposed segmentation of the mean curvature for a range of base pair windows.
A) Example of the threshold model. B) Mean curvature with each section labelled and
highlighted. Profiles were generated for a set of simulated AFM images (1171 molecules) of
TP53 Exon 5-7. Mean curvature values were calculated as the mean value of the curvature
profile at each window size. The green line is raw data, the blue line is a ten-point smoothed
average. The red circles indicate the maxima and minima of the smoothed data. The minima
values are 31.44 nm and 30.48 nm Exon 5-7 and Exon 5-9 respectively. The red line represents
a line drawn through the average value between the maxima and the minima. In B there are
three labelled regions; the pixel region (red), local curvature (blue) and gross curvature
(green).
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3.2.5.6 The Effect of Base Pair Window Size on Minimum and Maximum Curvature

A number of factors were investigated to ensure that the peak in mean curvature at
low base pair window size was due to the influence of digitisation on the curve. Firstly, the
maximum and minimum curvature values for each dataset were calculated over a range of
base pair windows (Figure 3.21.A). These measurements were the maxima and minima of
angles calculated from DNA molecules (not the maxima/minima of the curvature profile).
Curvature values were calculated from simulated AFM images of TP53 Exon 5-7 (n=1171). The
base pair window size was used to fit an appropriate number of linearly spaced points to each
individual molecule for curvature calculations. It was observed that the matching maximum
curvature values recorded within the dataset increased as base pair window size decreased
(Figure 3.21.A). The graph peaked at the smallest window sizes. The value of the largest angle
measured was 1.5708 radians, the angle of a right angle, which is the largest angle possible for
two adjacent pixels. At this threshold window size the profile was measuring true ’‘pixel
angles’. The highest base pair window that measures 1.5708 radians is 21 bp. It could be
assumed any window size below 21 bp measured primarily pixel angles (i.e. 0.0, 0.78 and 1.57
radians) for all molecules. All minimum curvature measurements lay below 4.60 x 10™ radians
at each base pair window size and therefore could functionally be considered zero.

The number of individual curvature angles that matched the maxima and minima for
the entire dataset were recorded at each base pair window size (Figure 3.21.B.). Occurrences
of multiple maxima and minima that were non-unique began to occur regularly below the 50
bp window. It is likely that at this resolution the number of points fitted along a significant
proportion of the dataset matched the number of pixels that describe individual molecules. At
this window size the curvature angles calculated were non-unique: 1.5, 0.75 or O (only possible
angles formed between thrée adjacent pixels). Multiple occurrences of non-unique values at
such resolutions were expected due to the limited number of different conformations three
adjacent pixels could assume. At larger base pair windows it was likely that points fitted would
generate unique maximum curvature values as the maximum values were dictated by the local
curvature over a number of points rather than the conformation of three or four pixels (which
have a restricted number of different orientations). The window size with the largest matching
minima and maxima value was 19 bp. This value was in good agreement with the lowest

appropriate resolution of the simulated AFM images of approximately 18 bp.
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Figure 3.21. - Count of dataset extrema at various base pair windows sizes. A) Maximum
and minimum curvature measurements plotted against the base pair window for
simulated AFM images of TP53 Exon 5-7. B) The number of unique angles that match the
dataset maxima and minima at a range of curvature windows for simulated AFM images of
TP53 Exon 5-7. The maximum and minima were calculated for individual points within the
whole dataset of simulated AFM images of TP53 Exon 5-7 (n=1171). The base pair window
size was used as a guide to fit an appropriate number of linearly spaced points to each
individual molecule for curvature calculation.
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3.3 Discussion

3.3.1 Publishing and Distribution

The image processing GUI and associated analysis software have been developed in
the Matlab 7.5.0. programming environment. Matlab is compatible with all major operating
systems (Windows, Macintosh and Linux). The ADIPAS GUI is intended for peer reviewed
publication with an associated Matlab Toolbox distributed through the Mathworks website.
Additionally, the software will be made available as a distributable executable file for users
without Matlab using a Matlab compiler for multiple operating systems (Hernandez-Boussard
et al., 1999). The analysis pipeline will also be published and distributed at a later date as an

extension of ADIPAS when a GUI has been finalised.

3.3.2 Comparability of ADIPAS to Previous Image Processing Pipelines

The ADIPAS image processing software described in this chapter was more
comprehensive than other packages currently available for AFM image analysis. Many
different techniques have been included in the software package from multiple previous
studies. These include the option for automated or semi-automated image processing, a range
of image filters, interactive contrast adjustment, interactive or automated thresholding,
automated DNA molecule recovery and branch removal and fully annotated output images.
The ADIPAS GUI allowed for operators to analyse AFM images of DNA with only minimal
training. The easy access provided by the GUI, alongside the level of automation and number
of available image processing options allows for quick and easy processing of large numbers of
AFM images.

The steps involved in the image processing toolbox were modelled on the methods
detailed by Ficarra et al., with some amendments to the methodology (Ficarra et al., 20053,
2005b). A major deviation from this work was the exclusion of the Fragment Point Recovery
step. This was initially implemented in ADIPAS and was removed due to the detrimental effect
that it had on the speed of the image processing platform. The recovery of points around the
DNA skeleton was computationally simple to implement. The pixels directly bordering the DNA
skeleton after thinning were identified and any with Z-height above the image specific
threshold were recovered and reintroduced into the DNA skeleton. This was repeated for each
valid pixel. However, this step was found to introduce a large number of ‘spurious branches’ to
each DNA molecule processed. This is likely to be less pronounced in low noise, high contrést
images.

The removal of spurious branches was the most computationally intensive step within

the image processing pipeline (Ficarra et al., 2005a). The introduction of additional branches

116



dramatically reduced the speed of image processing, which was suboptimal for an image
processing platform with the core aim of efficiently processing large volumes of AFM images.
With the introduction of more computationally complex but faster methods of binary line
tracing, such as live-wire image segmentation, the Fragment Point Recovery step could be
reintroduced into ADIPAS without negatively impacting image processing speed (Hamarneh,

2005).

3.3.3 Identification of Image Processing Steps with Potential for Future Improvements

In terms of image processing speed the software was sufficiently fast to process large
amounts of AFM images. The processing speed of a typical AFM image was between 10-30
seconds for the semi-automatic option and 5-10 seconds when fully automated. The majority
of processing time was consumed with the selection of the user-defined threshold value,
image filters and molecules of interest. In the case of computer-simulated AFM images these
stages were entirely automated, as the level of image noise and the occurrence of erroneous
molecules was considerably lower. The image filtering steps could be made redundant by
implementing an automatic de-noising filter. A recent example uses the statistical features of
noise sources present within an image to identify and de-noise the image (Subashini and
Bharathi, 2011).

A number of automatic thresholding methods were available within the current
literature. A selection of these methods have been reviewed in relation to their applicability to
AFM images of DNA (Ficarra et al., 2005a). Automatic thresholding using the Otsu threshold,
found to be suitable by the aforementioned review, has been incorporated into the software.
The Otsu threshold was found, by the present study, to be suitable for computer simulated
AFM images or low-noise, high-contrast AFM images. However, real AFM images display image
quality degradation over long experiments due to. tip wear and other factors. This made the
Otsu threshold unsuitable for the majority of real AFM images used in this study. The user-
defined threshold implemented in ADIPAS allows interactive visual selection of molecules. This
was found to be more suitable for the majority of real AFM images collected during this study.
To improve the application of automatic thresholding to real AFM images more
computationally complex automated thresholding algorithms could be incorporated into the
software. A suitable algorithm exists and functions by adaptively thresholding based upon local
image intensity (Gatos et al., 2008). This would improve the applicability of automatic
thresholding to AFM images of variable noise and contrast. The implementation of accurate
automatic thresholding in addition to the previously discussed automated de-noising
techniques would dramatically reduce the need for operator interaction during AFM image

processing.
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The method used for the removal of spurious branches in the software had the
advantage of being both quick and effective for the detection of DNA contours. The algorithm
iterated upon the same molecule for its execution and so it was still moderately time intensive.
Methods for direct tracing of the longest path through a DNA contour, without iteration would
improve the speed of this step. The current method is both quick and efficient at DNA contour
detection and spurious branch removal. Without implementing another tracing algorithm into

the software no quantitative comparison was possible.

3.3.4 ADIPAS General User Interface

Image processing of large volumes of AFM images was necessary for the analysis of
DNA curvature and flexibility. This can be both time consuming and tedious for the user.
Automation can alleviate this. However, as previously discussed, automation is only applicable
to computer simulated AFM images or very high quality real AFM images. Automation applied
to even moderate quality images failed to recognise DNA molecules and produced tracing
errors i.e. false positives. Either of these eventualities would introduce bias or error into the
resulting analysis.

The solution to this was a semi-automated GUI. The ADIPAS GUI allowed key decisions,
such as identification of automatically traced contours as an experimental DNA molecule, to be
made by the user and automates non-decision making steps. GUIs have been built for image
processing packages by previous authors. For example the ALEX toolbox for Matlab had a
functioning GUI for tracing plasmid DNA molecules and has been applied to linear DNA
molecules (Rivetti et al., 1996; Scipioni et al., 2002a) The advantages of a GUI is that it allows
interactive modification of visual image filters, selection of accurate threshold value and
identification of DNA molecules. The current GUI was comprehensive in its level of automation
and interaction. The key decisions made by the user included: choice of image noise filter,
determination of image threshold value, molecule selection and necessity of image
reprocessing. As previously detailed the first two key decisions could be removed if suitably
efficient and accurate algorithms were implemented. The user determined selection of DNA
molecules was a necessary step; it allowed for the removal of obviously erroneous DNA
complexes, such as overlapping molecules overlooked by the image processing software and
DNA molecules joined end-to-end.

During the design stages of ADIPAS there were two options available for the
identification and removal of DNA molecules by the user. The first option was to include all
DNA molecules processed by the software in the final dataset that would be edited at a later
time by the operator (Ficarra et al., 2005b). This had the advantage of increased automation,

requiring less oversight by the user during image processing. The second option involved
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selecting DNA molecules during image processing. This had two advantages. Firstly, few
erroneous DNA molecules were carried through to the analysis stage. Secondly, it allowed the
user to reprocess images that exhibited promising DNA molecules that were not detected by
the semi-automated software during its first pass. The second option was instituted in ADIPAS
as it gave higher DNA molecule recovery per image. This also had the unforeseen advantage of
reducing the variable size of the analysis dataset. This was sometimes a problem as Matlab
does have a maximum memory cache size which can be exceeded by very large workspace
variables.

In summary, the GUI provided a balance of functionality and automation. Individual
image processing time was 10-30 seconds per image, making image processing of large
volumes of AFM images time consuming. However, semi-automation with operator oversight
was preferable when compared to the alternatives: full automation requiring thorough
removal of erroneous molecules during post-processing or the absence of a GUI requiring vast
amounts of tedious operator input per image. The ability of the human eye to identify DNA
molecules from background has been commented on by previous authors (Ficarra et al.,
2005b). The current GUI combines the benefits of automation with the decision making

oversight of a human user.

3.3.5 The Analysis Pipeline

The analysis pipeline incorporated methodologies from a number of studies into one
package. It provided many of the common analysis methods used by modern researchers in
the field of DNA nanobiology. The analysis pipeline achieved the primary aim of the study as it
was able to measure the intrinsic DNA curvature and flexibility of 7P53 or any other DNA tract
of interest.

The calculation of DNA bend angles and persistence length measurement was
performed using standard methodologies available from the literature (Scipioni et al., 2002a;
Ficarra et al, 2005b; Cassina et al., 2011; Buzio et al., 2012). The FF algorithm was
implemented using the Greedy algorithm as recommended by the original authors (Ficarra et
al., 2005b). The FF algorithm was tested for accuracy and fidelity in Chapter 5.

The Kulpa DNA contour length estimator was incorporated into the software, in
preference to other methodologies described in the available review of DNA length estimators
(Rivetti and Codeluppi, 2001). The Kulpa estimator had the advantages of providing both an
accurate estimate of DNA contour length and being simple to implement (Rivetti and
Codeluppi, 2001). It produced a maximum length underestimate of -1.6 % for computer
simulated AFM images and a maximum underestimation of -6.9 % on ‘real’ DNA images. It had

the advantage over the ad hoc methodology described by Ficarra et al., of not requiring prior
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experimentation to determine a ‘correction factor’ for DNA length estimation (Ficarra et al.,
2005a). As the Kulpa estimator uses constant values for estimating contour length it is
comparable between experiments. A multitude of other contour length estimators could be

implemented for comparability with the Kulpa length estimator at a later date.

3.3.6 Consideration of Base Pair Window Size on Curvature

This is the first study, to the author’s knowledge, that has considered the window size
(in base pairs or pixels) over which to calculate curvature or flexibility and the possible
downstream effect on measurements of physical parameters. The majority of research on DNA
using AFM used the minimum base pair window size for calculating physical parameters based
on the micrograph resolution (e.g. Ficarra et al., 2005b; Buzio et al., 2012; Cassina et al., 2011;
Scipioni et al., 2002a, 2002b). However, at low base pair resolution there was a considerable
influence of digitisation of the DNA contour on the curvature profile produced (Section 3.2.5.).
The choice of interpolant influences the resulting curvature at this resolution. While there is no
way to know if this had a significant impact on the results of previous studies, it was a factor
that needed to be considered in order to produce the most representative estimates of
intrinsic curvature and flexibility.

This study developed a method of visual thresholding to allow the user to assess the
effect of base pair window size on curvature measurements on a per experiment basis (Section
3.2.5.2.). This method did not calculate an estimation of potential error or suggest a
statistically optimal base pair window size. Rather, it identified a range of base pair window
sizes that offered little to no interference from DNA contour digitisation and allowed the
researcher to make a judgement about the selection of the experimental window size. This
simple method, along with the classification system suggested, provided a foundation for
future researchers to build upon. A more comprehensive study into the common effects of
pixelation/digitisation on physical parameters is lacking in the current literature. This research
represented progress towards facilitating accurate comparisons of curvature profiles across

multiple experiments.

3.3.7 Choice of Interpolant

The identification of pixelation/digitisation effects on angle measurements resulted in
the need to identify an optimal interpolant from the available literature. There have been a
number of interpolation methodologies presented by various authors (Section 3.2.5.1.). Each
research group presents a preferred methodology. The current literature does not provide a
systematic review of interpolant methodologies or their impact on curvature measurements.

This study has compared the method detailed by Ficarra et al., and a simplified version of the
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methodology suggested by Sundstrom (Ficarra et al., 2005a; Sundstrom, 2008). The method
used by Ficarra et al., was taken from the paper on automated fragment sizing rather than the
paper on curvature computation as the method described in the latter paper was obscurely
worded (Ficarra et al., 2005a, 2005b). It was assumed that the techniques used in both papers
were the same; that fitting ‘segmental chains’ was the same as fitting polynomials.

During the analysis (Section 3.2.5.1.) an issue was raised with the method of
polynomial fitting. Segmented polynomials introduced intermittent breaks and moderate
deviations in the expected orientation of the DNA molecule between pixels. It is unclear if
these problems were encountered by the original authors or if they corrected for these
systematic errors (Ficarra et al., 2005a).

When comparing the remaining three techniques there was very little difference in the
curves fitted (i.e. linear, hermite, cubic). The three were constrained to pass through each pixel
coordinate. Similar results could be predicted for any line fitting technique with rigorous
constraints placed upon it, such as a series of polynomials with very small RMSE. The final
choice of interpolant used in this study was the linear interpolant as it produced the least
deviation from theoretical xy coordinates. This is similar to the methods used by previous
authors for DNA contour length and persistence length estimation (Rivetti et al., 1996; Rivetti

and Codeluppi, 2001; Scipioni et al., 2002a).

3.3.8 Proposing a GUI for the ADIPAS Analysis Pipeline

The most time and operator intensive portion of DNA curvature analysis was image
processing. Therefore, image processing was prioritised over the analysis pipeline for
development of a GUl. However, many of the individual steps in the pipeline produce an
automated and labelled graphical output. For example, R can be calculated and compared to
theoretical values in order to estimate the persistence length of a set of DNA molecules with a
single function. Similarly, curvature and flexibility profiles can be generated from a raw set of
pixel coordinates. The steps and considerations presented in this study provide a good
schematic for future nano-biologists to complete a working GUI. Further improvements could
include: a number of dinucleotide wedge model parameters in the style of CURVATURE
allowing comparison to experimentally produced curvature profiles (Shpigelman et al., 1993),
integration of novel techniques for curvature analysis (Buzio et al., 2012) and multiple DNA
contour length calculation methods for comparison (Rivetti and Codeluppi, 2001). Additionally,
simple modifications made to the analysis pipeline would make it suitable for calculation of
intrinsic DNA curvature and flexibility for time lapse experiments of DNA dynamics (Scipioni et

al., 2002b).
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3.3.9 Limits of the Available AFM Analysis Software

None of the available software, including the software developed in this study, made
any attempts to remove the effects of tip convolution from an image. The problem is widely
acknowledged (Li, 2007; Sundstrom, 2008) and algorithms exist solely for the purpose of tip
deconvolution of AFM images (Villarrubia, 1997). Another source of blurring, thermal drift, is
also not accounted for in any of the available software. Thermal drift can cause blurring in
images and algorithms suited to tackling this problem are available (Carasso, 1999). However,
thermal drift is often circumvented by investigators using closed-loop settings available on
most modern AFMs. Closed-loop scanning monitors the physical position of the scanner and
corrects for drift introduced while driving the scanner head. Closed-loop settings have been
used in this study.

The process of DNA adsorption to the mica surface is poorly understood. It has been
observed that DNA sometimes undergoes a transition from B- to A- form DNA on the mica
surface (Rivetti and Codeluppi, 2001). This effect has also been attributed to condensation of
the DNA on interaction with the cation loaded mica surface (Sanchez-Sevilla et al., 2002).
Accurate models to account for this possible transition would allow for more accurate length
calculations in DNA measurements. Interestingly, it has been theorised that increasingly
accurate intrinsic DNA curvature calculations will allow for improved contour length estimation
by modelling the predicted DNA contours as a series of arcs and straight sections (Sundstrom,
2008). The ADIPAS software would be an ideal platform for the development of such a length

estimator.
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3.4 Conclusions

The ADIPAS software has been developed with the primary aim of analysing intrinsic
curvature and flexibility of TP53 DNA molecules. The lack of flexible and available AFM image
analysis tools was identified from the current literature and internet search engines. To this
end ADIPAS was able to analyse AFM images of DNA and calculate curvature from the resulting
coordinate data. The software incorporated analysis methods from a range of previous studies,
allowing the use of a range of image filters, rescaling of image contrast, automated or operator
interactive thresholding, automated branch removal and molecule selection. ADIPAS allowed
for a more comprehensive analysis of the structural properties of DNA molecules than any
other available software pipeline. It was scalable, allowing analysis of DNA molecules from a
range of different AFM images sizes. ADIPAS presented the image analysis portion of its
package in a GUI that would allow even unskilled operators to process AFM images of DNA
after only limited training. The GUI for the analysis portion of ADIPAS will be developed in the
future using the same flexible design philosophy. Other estimates of statistical and physica!
DNA measurements, such as DNA contour length and persistence length, were implemented
into the software. The software is aimed at online distribution and publication with the hope
that it will be of use to researchers within the field and also to encourage further investigation
of DNA curvature by allowing other research groups to overcome the large technological
hurdle of in-house software development necessary for this type of investigation.

Considerations such as choice of interpolation technique prior to curvature calculation
have been investigated before implementation into the pipeline. Additionally, a novel visual
method of identifying potential interference of digitisation noise in curvature calculations has
been developed. These considerations have been applied to real AFM molecules and have
been expanded upon in later chapters. These developments provide a strong foundation for
future researchers to build upon and also represent progress towards improving accessibility

to the field of DNA curvature investigation as AFM technology becomes more widespread.
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CHAPTER 4: GENERATING AND EVALUATING THEORETICAL
MODELS OF INTRINSIC DNA CURVATURE IN TP53
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4.1 Introduction

The theoretical estimation of a number of different physical DNA parameters have
been performed in AFM studies for over a decade. The creation of computer simulated DNA
molecules has been important for estimating the error implicit in image analysis methods and
for the generation and testing of hypotheses. The first standardised workflow for the
generation of computer-simulated AFM images was put forward by Rivetti et al., 1996. This
approach has been adopted by many other researchers in a complete or modified form
(Ficarra et al., 2005a, 2005b; Marek et al., 2005; Wiggins et al., 2006; Buzio et al., 2012).
Intrinsic DNA curvature measurements can be added for improved hypothesis and method
testing (Ficarra et al., 2005b; Buzio et al., 2012). No current studies have included a sequence
specific flexibility parameter. Most studies rely upon a constant value of flexibility derived from
the average persistence length of DNA of ~53 nm (Rivetti et al., 1996).

Other theoretical measures have been used for comparison to AFM images including
comparison of the theoretically determined pitch to DNA contour height (Milani et al., 2011),
curvature ratio profiles for base pair sequences (Buzio et al., 2012), the prediction of promoter
regions in AFM images (Marilley et al., 2007b) and DNA flexibility (Scipioni et al., 2002a;
Marilley et al., 2005; Wiggins et al., 2006).

A number of dinucleotide wedge models have been used in AFM based studies of DNA.
The two most often utilised by researchers are the De Santis and the Bolshoy models (De
Santis et al., 1988; Bolshoy et al., 1991). The De Santis model used energy minimisation
calculations to generate base pair parameters from gel electrophoresis experiments. It has
been compared to real AFM measurements of DNA curvature by a number of groups and has
una.nimously been in good agreement under ambient (air) conditions (Anselmi et al., 1999;
Scipioni et al., 2002a; Ficarra et al., 2005b; Buzio et al., 2012). The same holds true for the
Bolshoy model, calculated from gel migration data, for liquid and air imaging (Sanchez-Sevilla
et al., 2002; Milani et al., 2007, 2011; Buzio et al., 2012). Both of these models have been
compared by previous authors and were found to be comparable in the prediction of the
position, but not magnitude, of curvature peaks (Buzio et al., 2012). This was in agreement
with a statistical analysis of the power of dinucleotide models to predict curvature in X-ray
crystallography data that concluded that each dinucleotide model was as good a choice as any
other for the prediction of intrinsic curvature (Crothers, 1998). The Olson model, based upon
data mined from DNA—protein X-ray crystal complex experiments, has not been the subject of
critical comparison to curvature profiles in any available publication (Olson et al., 1998).
However, it has been used to compare against flexibility measurements of DNA using AFM

(Marilley et al., 2005).
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4.1.1 Aims and Objectives

The primary aim of the research in this chapter was to assess the theoretical curvature
of the TP53 gene that codes for the sequence-specific DNA-binding region of the p53 protein.
To this end the De Santis model of curvature was used to predict the intrinsic curvature of
TP53. This allowed for the statistical evaluation of the relationship between intrinsic DNA
curvature and functional regions of the gene. Intrinsic curvature in regions of TP53 that have
been shown to exhibit slow DNA repair were considered separately. Other relevant physical
theoretical measurements of TP53, such as nucleosome affinity, were also assessed.

The secondary aim of the research in this chapter was to generate computer simulated
AFM images of TP53 in order to make realistic predictions about intrinsic DNA curvature in real
AFM images. To this end the De Santis and Olson dinucleotide wedge models were used to
create computer simulated AFM images of TP53. The De Santis model has been compared to
real AFM measurements of DNA curvature by a number of groups and has unanimously been
in good agreement. The Olson model has previously been used to compare against flexibility
measurements of DNA using AFM, but not curvature measurements. The De Santis model was
included as a gold standard for comparability to AFM data. The Olson model was included to
assess the effect the inclusion of DNA translations would have on the relevance of a model to
experimental AFM measurements. Two different simulated deposition methodologies were
tested. The same two overlapping TP53 PCR product DNA sequences that were used formed
the basis of the analysis described in later chapters. The resulting theoretical curvature profiles
were statistically analysed to generate expectations for curvature measured from real TP53

DNA,
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4.2 Results
4.2.1 3D Model of TP53

3DNA allows for the visualisation, analysis and reconstruction of DNA in silico (Lu and
Olson, 2008). The web interface for the application, w3DNA, was used to reconstruct 3D
models of TP53 DNA using a predefined set of dinucleotide parameters (Section 2.5.1.). 3D
models are presented in Figure 4.1.

The resulting 3D models of TP53 were relatively planar; the majority of both 3D
models molecular structure lies in two dimensions. The Olson model (Figure 4.1.C+D) was
observably less curved than the De Santis model (Figure 4.1.A+B.). The 5’ sections of all of the
molecules were relatively straight. The De Santis model showed regions of moderately large-
scale curvature towards each end of the DNA fragment. There was a great deal more ‘writhe’

present in the De Santis model when compared to the Olson model.

4.2.2 Plane Fitting

In order to extrapolate a simplistic simulation of the geometric deposition of DNA onto
a 2D surface it was necessary to fit a series of best fit (least squares) planes that allowed for no
xyz coordinates to exceed a local deviation from the plane of best fit by more than 2 nm
(Section 2.5.2.).

A plane was fitted for the De Santis model of TP53 on average every 277 bp and every
416 bp for the Olson model (Figure 4.2.). The number of planes fitted was an indicator of the
amount of ‘writhe’ within the 3D model. This confirmed the visual observations made in the
previous section about the shape of each 3D model, i.e. that the De Santis model produced a
more curved molecule with greater ‘writhe’ (Figure 4.2.A+B). Additionally, many of the planes
fitted to the Olson model lie within a similar plane, which emphasised the planarity of

molecules generated using Olson parameters (Figure 4.2.C+D).
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Figure 4.1. - 3D TP53 DNA molecular orientations generated using two different dinucleotide
parameter sets. Atomic coordinates were generated from w3DNA and the average xyz
coordinate value for each base pair was plotted. Axis units are in angstroms (A). A) TP53 Exon
5-7 using De Santis parameters. B) TP53 Exon 5-9 using De Santis parameters. C) TP53 Exon 5

7

using Olson parameters. A) TP53 Exon 5-9 using Olson parameters.
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Figure 4.2. - Least squares plane fitted 3D TP53 DNA generated
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dinucleotide parameters sets. A) TP53 Exon 5-7 using De Santis parameters - 6 planes. B) TP53
Exon 5-9 using De Santis parameters - 9 planes. C) TP53 Exon 5-7 using Olson parameters - 5
planes. D) TP53 Exon 5-9 using Olson parameters - 6 planes. Planes are fitted with no more
than 2 nm of local deviation from the plane. Atomic coordinates were generated from w3DNA.
Axis units are in angstroms (A). DNA in consecutive planes is been highlighted in red and blue.
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4.2.3 Geometric Deposition of 3D Models onto a 2D surface.

The xyz coordinates detailed in the previous section were rotated along the line of
intersection between succeeding planes until all xyz coordinates lay within one plane. The
resulting xyz coordinates were projected onto a flat xy plane. A local correction was made at
the point where two planes intersected as previously detailed (Section 2.5.2.).

It was observed that the Olson model of curvature contained a great deal less
curvature than that predicted by the De Santis model. The Exon 5-7 molecule produced a
consensus convex shape in both models. The projection of Exon 5-9 was in slight disagreement
between both models, the final three 3’ planes in the Olson model were orientated in a
different direction to those in the De Santis model. This was most likely because the increased
curvature in the De Santis model led to a preferential rotation of the seventh fitted plane
(Figure 4.3.B). If this was not the case the De Santis model would have been expected to adopt
a horse-shoe shape when deposited on a 2D surface.

The distance between each coordinate was calculated for each model and projection.
The final 2D projection led to a length contraction of 2.6% for De Santis and 3.6 % for Olson
model as compared to the original 3D molecule. This was a slight increase in contraction over

the 1.5 % reported by previous authors on different DNA sequences (Buzio et al., 2012).
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Figure 4.3. - 2D projection of 3D TP53 DNA by plane fitting. A) TP53 Exon 5-7 using De Santis
parameters - 6 planes. B) TP53 Exon 5-9 using De Santis parameters - 9 planes. C) TP53 Exon
5-7 using Olson parameters - 5 planes. A) TP53 Exon 5-9 using Olson parameters - 6 Planes. 3D
coordinates were projected onto least squares fitting planes. Planes are rotated into alignment
with one another. Planes were fitted with no more than 2 nm of local deviation from the
plane. Atomic coordinates were generated from w3DNA. Axis units are in angstroms (A). DNA
in consecutive planes is highlighted in red and blue.
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4.2.4 Creation of Computer-Simulated AFM Images of TP53 for Curvature Analysis

Computer simulated AFM images were generated for both Exon 5-7 and Exon 5-9 using
the De Santis and Olson dinucleotide wedge models. Datasets of over 1000 molecules were
collected from the computer simulated AFM images for both sequences using the Geometric
Deposition method. The correct orientation of each molecule was ascertained as described in

Section 2.5.6. Three test datasets were generated:

e Curvature Images — The DNA molecules were generated using a fixed value of
curvature at each base pair step identified from the De Santis and Olson dinucleotide
wedge model (i.e. they were all identical). The only sources of image variation were
the orientation of the DNA molecules, the effect of digitisation of the DNA contour
and the effect of skeletonisation on the resulting AFM images.

e Flexibility Images - The DNA molecules were generated using a variable value of
curvature at each base pair step. The mean value of the Gaussian distribution of
curvature angles at each step was the same as that used in Curvature Images. The
variation around the mean value was determined using a persistence length of 53 nm
(Rivetti et al., 1996). The flexibility of DNA molecules provided another source of
variation in addition to that of contour digitisation.

e Theoretical AFM images - The DNA molecules were generated in the same way as the
Flexibility Images but also had both tip convolution (6 nm ROC) and Gaussian noise
(variance = 0.025) added as additional sources of experimental variation. These
images were the most comparable to real AFM images and had additional sources for
potential variance between molecules as the images were subjected to noise filtering
and automatic thresholding (i.e. all image processing steps of the ADIPAS software

were applied).
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4.2.5 Reconstructed Contour Length of Simulated DNA Molecules

The length of simulated DNA molecules in nanometres was calculated (Section 2.7.1.).
Images were subjected to image noise and DNA molecule conformational flexibility (Section
4.2.4.) to investigate the effects that these conditions had on the final contour length
estimates. The results are summarised in Table 4.1. and reconstructed length distributions in
Figure 4.4.

Curvature images were as close to as invariable AFM images as possible. There was no
tip convolution, no noise and no DNA molecule flexibility. The orientation of each molecule in
2D space led to a degree of variability based upon the digitisation of the DNA contour. The
standard deviation for this set was the lowest for both samples. The standard deviation was
larger for the Exon 5-9 dataset.

The idealised Curvature images exhibited a reconstructed length which was larger
(Exon 5-7 - 3.60 %; Exon 5-9 - 3.49 %) than a theoretical value based upon 0.34 nm per base
pair step. This length increase was likely due to the effects of contour digitisation. The second
set of DNA molecules, Flexibility images, contained no noise or tip convolution but did contain
a flexibility parameter i.e. each angle was selected at random from a Gaussian distribution with
a mean angle taken from a theoretical curvature profile. An increase in the standard deviation
of angles was observed and a shorter average length for both Exon 5-7 and Exon 5-9.

The final set of images, Theoretical AFM images, included a flexibility parameter, tip
convolution (6 nm ROC) and Gaussian noise (variance = 0.025). They exhibited the smallest
average reconstructed length and the largest deviation from the mean. This set also had the
smallest difference between mean reconstructed length and theoretical length {0.61% and

0.43%).
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Exon 5-7

Theoretical

Curvature
Images
Flexibility
Images
Theoretical
AFM Images
Exon 5-9

Theoretical

Curvature
Images
Flexibility
Images
Theoretical
AFM Images

Number of
Molecules

1198

1253

1171

Number of
Molecules

1181

1046

913

Mean
(nm)
630

654

646

634
Mean

(nm)
850

881

870

854

Standard
Deviation (nm)

2.96

4.48

5.97
Standard

Deviation (nm)

3.88
5.18

10.17

Percentage Difference from
Theoretical (%)

3.60

2.40

0.61

Percentage Difference from
Theoretical (%)

3.49

2.29

0.53

Table 4.1. - Summary of reconstructed length measurements of DNA molecules taken from
images with various amounts of noise added. The theoretical length value was 0.34 nm per bp

step. Curvature images were generated using angle values taken directly from the De Santis

curvature profile.

The Flexibility images had values taken from a Gaussian distribution

generated using a persistence length of 53 nm. Theoretical AFM images were the same images
as Flexibility images with tip convolution (6 nm ROC) and Gaussian noise (variance = 0.025)

added. The De Santis dinucleotide wedge model

measurements for each set.

was used as a basis for curvature
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Figure 4.4. - Distribution of reconstructed length measurement of theoretical DNA molecules.
A) TP53 Exon 5-7. B) TP53 Exon 5-9. Curvature images were generated using angle values taken
directly from the De Santis curvature profile. The Flexibility images had values taken from a
Gaussian distribution generated using a persistence length of 53 nm. Theoretical AFM images
were the same images as the Flexibility set with tip convolution (6 nm ROC) and Gaussian noise
(variance = 0.025) added. The De Santis model was used as a basis for curvature
measurements for each set. The theoretical length values for B-DNA are indicated with a
broken line.
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4.2.6 Generation of Idealised Curvature Profiles after Image Processing

Within the literature the theoretical curvature profile has been often compared to
experimental curvature profiles produced by an ensemble of AFM images. This approach is
valid; however, there has been little consideration of the effects of contour digitisation or
image processing on the resulting curvature profiles. By using the Curvature simulated TP53
AFM images the effect of contour digitisation on curvature profiles was assessed. Only the
trajectory of the DNA molecules in simulated images was different; so the only source of
variation between curvature angles was caused by DNA contour digitisation. Both signed and
unsigned curvature profiles were produced from the simulated images. The unsigned
curvature profiles were comparable, at least in identification of peaks and troughs with the
output of CURVATURE (Shpigelman et al., 1993). The appropriate base pair window size was
used when generating profiles in CURVATURE for comparison. The results of this comparison
are summarised in Figure 4.5.

The De Santis model gave a larger average curvature value and a more curved
theoretical DNA molecule (Section 4.2.2.). The general features of the simulated and
theoretical curvature profiles at the 42 bp window of curvature were largely similar (Figure
4.5.B.). Many of the key peaks and troughs were retained after digitisation of the DNA
molecule. There was little to no peak shift for the major peaks of curvature (this was
quantitatively measured in a later section). While there were a few common features retained
between the theoretical and experimental curvature profiles for the 21 bp window the lack of
obviously large peaks within the theoretical profiles made visual comparison difficult (Figure
4.5.A.). Additionally, the more homogenous curvature of the 21 bp window size profile made
this resolution of curvature unlikely to be suitable for further analysis.

The Olson model had lower average curvature than the De Santis model (Figure
4.5.C+D). There was little obvious similarity between the theoretical and simulated AFM
profiles after contour digitisation and image processing. Peaks that occurred within the
theoretical profile at ~0.4 and ~0.7 (Figure 4.5.D.) were not present in the curvature profile
after contour digitisation. As there was little comparability between curvature profiles
measured from simulated AFM images and theoretical curvature profiles in even these most
idealised of AFM images the Olson model was not pursued further as a basis for comparison to

experimental AFM images of DNA molecules.
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Figure 4.5. - Comparison of theoretical profiles generated in CURVATURE to curvature profiles
generated from ideal computer generated AFM images of TP53 Exon 5-9. Theoretical
curvature profiles (black) were generated in CURVATURE using a 21 bp (A+C) and a 42 bp (B+D)
window. Experimental profiles (blue) were produced from a large set (~1000 molecules) of
AFM images containing computer generated DNA molecules with no deviation from an ideal

curvature profile appropriate for the model comparison.
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4.2.7 Effect of Imaging Conditions on Curvature Profiles.

The three simulated 7P53 AFM image sample sets with various degrees of molecule
flexibility and image noise addition were used to assess effects of these factors on the resulting
curvature profiles (Section 4.2.4.). All molecules within the datasets were correctly oriented.
Curvature profiles for both signed and unsigned curvature were generated using a 42 bp
window for calculating curvature angles (Figure 4.6).

In the unsigned curvature profiles (Fig 4.6.A+B) it was observed that the contrast
between peaks was greater in the test set with no flexibility parameter (Curvature images). It
was observed that the background curvature was higher in both profiles with sources of
molecule flexibility or image noise (Flexibility and Theoretical AFM images) than the idealised
Curvature images. Both Flexibility and Theoretical AFM images had approximately the same
baseline curvature. As the Theoretical AFM images were Flexibility images with the addition of
tip convolution and Gaussian noise then the increase in the baseline in comparison to
Curvature images was attributed to the addition of flexibility to the simulated molecules. With
the addition of flexibility, tip convolution and Gaussian noise the shape of the underlying
profile was retained but the contrast between large peaks and troughs was reduced. The
signed curvature profiles were observably very similar under all noise conditions and the
characteristic shape of the curvature profile was retained (Fig 4.6.C+D.). A slight smoothing of
the peak apex was observed indicating that there may have been a small amount of peak shift

in the samples with additional sources of image noise and molecule variation (Section 4.2.13.).
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Figure 4.6. - Comparison of reconstructed curvature profiles from datasets that variously had
DNA molecule flexibility and image noise. A) TP53 Exon 5-7 unsigned curvature profiles. B)
TP53 Exon 5-9 unsigned curvature profiles. C) TP53 Exon 5-7 signed curvature profiles. D) TP53
Exon 5-9 signed curvature profiles. Unsigned curvature is calculated from absolute angles
within the dataset. Exons are highlighted in red and read from left to right in ascending order.
The window size of curvature is 42 bp.
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4.2.8 Computer Generated Curvature Profiles for Comparison with Experimental AFM

Images

By producing computer-generated AFM images of idealised DNA molecules that
adhered perfectly to the theoretical curvature parameters of the De Santis model a realistic
expectation for curvature profiles was generated for comparison with experimental data.
Curvature profiles were generated at a base pair window size of 42 bp and used for
comparison to experimental images in later chapters (Figure 4.7.). There were a number of
prominent peaks that were expected to be retained in experimental TP53 curvature profiles.

The unsigned curvature profiles considered all angles to be positive regardless of
direction. As observed in the previous section, there was a more extreme effect of increasing
variation on the unsigned curvature profiles than the signed curvature profiles. The resulting
profiles exhibited reduced contrast on increasing noise. There were a number of key features
retained in all the profiles that were expected to be observed in experimental profiles
generated for real DNA molecules. These included: peaks of curvature preceding exon 5 and
following exon 9, a number of large curvature peaks in the intronic region between exons 6
and 7 and a multitude of moderate to large peaks of curvature at the 3’ end of the sequence.
Perhaps the most important observation was that all exon positions occurred in regions of low
curvature, with the exception of exon 7 which contained a small peak.

The signed curvature profiles of TP53, considered clockwise angles to be positive and
anticlockwise angles to be negative. The Geometric Deposition method predicted that there
would be two troughs of negative curvature at either end of the molecule and that the
majority of the curvature in the rest of the molecule would be in the opposite (positive)
direction to the end region curvature. Exon positions were in regions of low curvature (i.e. they

were close to the dotted line denoting 0.0 radians of curvature).
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Figure 4.7. - Curvature profiles from simulated AFM images of TP53 DNA at a 42 bp window of

curvature for comparison to experimental TP53 curvature profiles.
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4.2.9 Signed Curvature Profiles Generated using the Scipioni Method

Scipioni et al., estimated the likely deposition orientation of DNA molecules by
mathematical methods (Scipioni et al, 2002a). The same method was applied to TP53
sequences. The underlying assumption was that the curvature modulus (magnitude) of a DNA
tract would stay the same when the DNA tract is deposited on a 2D surface while the phase of
curvature (direction) adapts to the changes in the DNA conformation (Scipioni et al.,, 2002a).
The curvature profiles were provided by the original authors by private communication (Figure
4.8)).

The maximum region of curvature for TP53 Exon 5-7 was +0.16 radians at the 5' end of
the sequence. The maximum region of curvature for TP53 Exon 5-9 was ~+0.18 at the 3' end of
the sequence. It was observed from both profiles that exon positions typically lay within
regions of low curvature (close to the dotted line denoting 0.0 radians of curvature). All of the

major peaks in curvature occurred during intronic positions.
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Figure 4.8. - Signed curvature profile generated using the method detailed by Scipioni et al.,
using the De Santis model of curvature (Scipioni et al., 2002a). A) TP53 Exon 5-7. B) TP53 Exon
5-9. Curvature is plotted against standardised position along the DNA sequence. Exon positions
are indicated by shaded red areas and are read in ascending order (e.g. Exon 5-7 reads from
left to right exon 5, 6 then 7). The grey line represents the raw data calculated for every base
pair. The blue line is a smoothed profile averaged over 42 base pairs.
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4.2.10 Comparison of 2D Deposition Methodologies

Both the methods detailed by Buzio et al., (Buzio et al, 2012) and Scipioni et al.,

(Scipioni et al., 2002a) were applied to model the likely deposition of TP53 on a flat surface.

The first method used a geometric minimisation approach to model likely deposition onto a

flat surface. The second method used the phase of DNA as a guideline for the direction of DNA.

Both models used the De Santis model of curvature. The comparison of the results using a 42

bp window size over which curvature angles were calculated is displayed in Figure 4.9. There

were notable differences between the two predictions. Firstly, the Geometric Deposition

model included the additional noise of digitisation; which had the effect of increasing the

theoretical curvature at all large curvature peaks and increased the width of a number of large

peaks. The models predicted opposite curvature at the terminal ends of TP53 Exon 5-9 and the

5'end of TP53 Exon 5-7.
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Figure 4.9. - Comparison of signed curvature profiles generated using the method detailed in
Scipioni et al., 2002 (blue line) and the method detailed by Buzio et al., 2012 (red line) using
the De Santis model of curvature. A) TP53 Exon 5-7. B) TP53 Exon 5-9.
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4.2.11 Analysis of Correlation between Curvature Profiles of Simulated AFM Images of TP53

A correlation analyses was performed between curvature profiles produced by the
Curvature and Theoretical Image samples. This allowed for an assessment of the effects of
DNA molecule flexibility and image noise on the reproducibility and comparability of curvature
profiles. This was repeated for curvature profiles calculated using different base pair window
sizes for the calculation of curvature (21 bp, 42 bp and 63 bp). The majority of profiles
exhibited a non-normal distribution (Shapiro-Wilks, p= <0.05) so a Spearman’s Rank correlation
test was used (Table 4.2.).

Each base pair window size exhibited significant correlation between noisy and non-
noisy profiles. All correlation coefficients were positive, indicating a positive correlation. The
strength of the positive trend increased on increasing base pair window size in both signed and
unsigned curvature profiles. The correlation measured was weaker in the unsigned curvature
profiles at all comparable window sizes. The 21 bp window size for unsigned curvature
exhibited a very weak positive trend (Rho = 0.15) in comparison to other profiles.

Correlation analysis was also performed on the overlapping portions of the Exon 5-7
and Exon 5-9 (Table 4.2.). Three base pair window sizes were analysed: 21 bp, 42 bp and 63 bp.
The profiles were created using ‘noisy’ Theoretical AFM images (Section 4.2.4.). Each base pair
window size for both signed and unsigned profiles showed positive significant correlation of
varying strength. The signed curvature profiles all exhibited a very strong positive trend (Rho =
> 0.9). The unsigned profiles exhibited a positive trend that increased on increasing window
size. The unsigned 21 bp profile showed the lowest significant positive correlation (Rho = 0.26)

of all window sizes.
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Base Pair Window
Size

Unsigned

Curvature

21 bp

42 bp

63 bp

Signed Curvature

21 bp

42 bp

63 bp

Correlation with and without image

and measurement noise

Spearman's
Correlation (Rho)

0.15

0.69

0.89

0.88

0.95

0.98

p-value

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

Correlation between
overlapping Exon 5-7 and
Exon 5-9 profiles

Spearman's
Correlation (Rho)
0.26
0.50

0.76

0.90

0.95

0.96

p-value

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

Table 4.2 - Correspondence analysis using Spearman's Rank correlation applied to simulated
AFM images with and without noise addition and between overlapping sections of Exon 5-7

and Exon 5-9 curvature profiles. The first

(columns 3 and 4) comparison was between

simulated image with and without image and measurement noise. Sources of noise were: a

flexibility parameter for the prediction of DNA conformation

= 53), tip convolution (ROC =6

nm) and Gaussian noise (variance = 0.025) added to the final images. The second comparison

was between overlapping sections of curvature profiles for Exon 5-7 and Exon 5-9. All profiles

had image and measurement noise added as described above.
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4.2.12 Comparison of Peaks Estimated from CURVATURE and Curvature Reconstructed for
Computer Simulated AFM Images of TP53

A curvature profile was calculated for TP53 Exon 5-9 using CURVATURE on default
settings and using the De Santis model of curvature (De Santis et al., 1988; Gohlke, 1994). The
ten peaks with the highest curvature values were identified. This was repeated using a
curvature profile reconstructed from computer simulated AFM images for TP53 Exon 5-9 at a
42 bp window of curvature. The curvature profile reconstructed from the computer simulated
AFM images used a signed profile (considered direction of curvature) in which all of the angles
had been made absolute (positive); this was the most comparable the profile could be made to
the output of CURVATURE (Figure 4.10).

The ten largest peaks were identified from both profiles. A comparison of peaks
showed that there were notable differences. A number of peaks that occurred in the
CURVATURE profile were merged into one peak (0.5 and 0.93 standardised length), which was
expected considering the difference between the resolution of the curvature profiles
(CURVATURE provided a resolution of one measurement per dinucleotide whereas theoretical
AFM images provided a resolution of one point per 21 bp). There were a number of peaks
within the reconstructed profile that were not present at comparably large magnitudes within
the CURVATURE profile (1.8, 6.3 and 0.97 standardised length). Additionally, there was a peak
within the CURVATURE profile that was not present within the reconstructed profile at a

comparable magnitude (0.34 standardised length).
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Figure 4.10. - Comparison of ten major peaks within curvature profiles generated using
different approaches. A) Curvature profile produced from CURVATURE (Shpigelman et al.,
1993). B) Curvature profile reconstructed from computer simulated AFM images using a 42 bp
window of curvature. Peaks were identified as the ten peaks with largest curvature value

within a profile. Peaks are indicated with red circles.
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4.2.13 Estimation of Peak Shift after Noise Addition

The ten largest peaks of curvature were identified in the intrinsic DNA curvature
profiles reconstructed from an ideal set of computer simulated AFM images with no flexibility
parameter (Curvature images — Section 4.2.4.). The peaks that most closely corresponded to
these key peaks from curvature profiles produced from AFM image with a degree of molecule
variation and image noise were recorded (Theoretical AFM images — Section 4.2.4.). The peak
shift was calculated as a percentage value for three base pair window sizes of curvature: 21 bp,
42 bp and 63 bp (Figure 4.11).

The 21 bp window of curvature produced a mean peak shift of 0.63 %. However, it was
necessary to apply a Savitzky-Golay smoothing filter (9 degrees, 15 points) to identify the
corresponding peaks. The maximum peak shift detected was 1.2 % or 31.5 bp and visually the
pattern of peaks was dissimilar to the noiseless images. Only 8 of the 10 peaks were accurately
identified in the noisy image, indicating that two of the peaks had merged or been lost. The
magnitude of curvature at the detected peaks was not significantly different (Paired t-test, t =
0.75, p = 0.47).

The 42 bp window of curvature produced a mean peak shift of 0.59 %. The maximum
peak shift detected was 0.84 % or 21 bp. Visually, the pattern of peaks was similar between
the images. The two peaks at the 3’ end of the molecule in the noiseless profile had merged
into one peak in the noisy image. The magnitude of curvature at the detected peaks was not
significantly different (Paired t-test, t = 0.14, p = 0.89).

The 63 bp window of curvature produced a mean peak shift of 0.25 %. The maximum
peak shift detected was 1.3 % or 31.5 bp. Visually the pattern of peaks was similar between
the images and all peaks were identified. The magnitude of curvature at the detected peaks

was significantly different between the profiles (Paired t-test, t = 4.37, p = <0.05).
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Figure 4.11. Comparison of ten major peaks from curvature profiles reconstructed from
simulated AFM images of TP53 before and after the addition of DNA molecule flexibility and
image noise. Three base pair window sizes of curvature with and without sources of image
noise are presented. Sources of noise were: a flexibility parameter for the prediction of DNA
conformation = 53), tip convolution (ROC = 6 nm) and Gaussian noise (variance = 0.025)
added to the final images. Peaks are identified with a red circle.

149



4.2.14 Curvature and Regions of Slow Repair.

Six regions of slow DNA repair within the TP53 gene were identified from the available
literature: codons 177, 196 and 278 in skin cancer (Tornaletti and Pfeifer, 1994) and codons
157, 248 and 273 in lung cancer (Denissenko et al., 1998). These codons are also common
mutation hotspots. Curvature values were calculated from CURVATURE for 7P53 Exon 5-9
using the defaults setting and the De Santis model of curvature (Shpigelman et al., 1993).
Curvature values for the three nucleotides in each codon position (n = 18) were statistically
compared to the rest of the sequence (n = 2482) using the Kruskal-Wallis test. Regions of slow
repair showed significantly lower median curvature (Kruskal-Wallis, p = <0.05) than the rest of
the profile (Figure 4.12).

The Kruskal-Wallis test was performed on curvature values that corresponded to the
regions of slow repair from curvature profiles generated from simulated AFM images of TP53
using a 42 bp window of curvature. The curvature for region of slow repair in the signed profile
was not significantly different from curvature throughout the rest of the gene (Kruskal-Wallis,
p = 0.32). The curvature for region of slow repair in the unsigned profile was not significantly

different from curvature throughout the rest of the gene (Kruskal-Wallis, p = 0.06).
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Figure 4.12. - Comparison of curvature profiles with regions of slow repair in TP53 Exon 5-9. A)
Curvature profile generated using CURVATURE (De Santis curvature, default settings) B)
Unsigned curvature profile from simulated AFM images using a 42 bp window of curvature (De
Santis curvature, no flexibility or noise). C) Signed curvature profile from simulated AFM
images using a 42 bp window of curvature (De Santis model, no flexibility or noise). The length
of the DNA sequence was standardised on a scale of zero to one; zero is 5' and 1 is 3' end of
the sequence. Regions of slow repair are indicated with small red circles.
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4.2.15 Statistical Comparison of Exon Curvature to Intron Curvature

Curvature values that lay within the exon positions as designated by the IARC database
were statistically compared to intron positions (Hernandez-Boussard et al., 1999). The
distribution of data was largely non-parametric and the Kruskal-Wallis test was used to test
comparisons. Each curvature value within the exon boundaries in standardised length was
designated as 'exon'.

The curvature values of exon positions were pooled and compared against intron
positions (Table 4.3.). Exons had significantly lower curvature in unsigned 42 bp and 63 bp
profiles. Exons had significantly lower curvature in the signed 21 bp profile. A curvature profile
generated using CURVATURE had significantly lower curvature in exons than introns.

The individual exons were compared to intronic regions i.e. all values that did not lie
within an exon region (Table 4.4.). Curvature values were calculated from CURVATURE for
TP53 Exon 5-9 using the defaults setting and the De Santis model of curvature (Shpigelman et
at., 1993). The median values for exon and intron regions were compared. Exons 5, 6 and 7
each had significantly lower curvature than intron regions. Exon 8 and 9 did not exhibit
significantly different curvature from intronic regions.

Curvature values for TP53 Exon 5-9 were generated from simulated AFM images from
the 'noisy' Theoretical AFM Images sample at three windows of curvature: 21 bp, 42 bp and 63
bp. Exons in signed curvature profiles had no significantly different curvature than from
introns. Exon 5 had a significantly lower curvature than intron regions in the 42 bp and 63 bp

windows of curvature.

Kruskal-Wallis (p-value)

Exon 5-9 Window Size Unsigned Signed CURVATURE
Curvature Curvature (32 bp)
21 bp 0.40 <0.05 -
42 bp <0.05 0.25 <0.05
63 bp <0.05 0.24 -

Table 4.3. - Summary of the Kruskal-Wallis test applied to the pooled curvature and flexibility
of exon positions to the pooled curvature and flexibility of intron positions. The distribution of
data points was non-normal and not size matched; a Kruskal-Wallis test was used to test for
significant differences between median values. Significant p-values are highlighted in red.
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CURVATURE
Base Pair Window

(bp)

32 bp

Absolute
Curvature
Base Pair Window

(bp)
21 bp

42 bp

63 bp

Signed Curvature
Base Pair Window

(bp)

21 bp

42 bp

63 bp

Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)

Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)
Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)
Number ofSample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)

Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)
Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)
Number of Sample
Points
Median Curvature
(rads)
Kruskal-Wallis (p)

Exon

184

0.06

<0.05

Exon

18

0.29

0.06

0.31

<0.05

Exon

18

-0.01

0.29

-0.01

0.68

-0.02

0.37

Exon

<0.05

Exon

11

0.30

0.99

0.31

0.08

Exon

11

-0.02

0.24

-0.05

0.61

-0.00

0.68

Exon

<0.05

Exon

10

0.30

0.69

0.33

0.92

Exon

10

-0.02

0.78

-0.02

0.87

-0.03

0.95

0.08

Exon

13

0.30

0.99

0.32

0.49

Exon

13

-0.00

0.08

-0.05

0.25

Exon

0.06

Exon

0.30

0.36

0.34

0.30

Exon

-0.07

0.67

-0.01

0.92

Intron

Intron

0.30

0.32

Intron

-0.00

-0.01

Table 4.4. - Summary of statistical analysis of comparisons between curvature measurements
of exon and intron positions for TP53 Exon 5-9. The distribution of data points was non-normal
and not size matched; a Kruskal-Wallis test was used to test for significant differences between
median values. Significant p-values are highlighted in red.
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4.2.16 Nucleosome Positioning Using Theoretical Models

It was observed that a number of exonic regions within TP53 exhibited very low
theoretical curvature. The possible physiological significance of this observation was
investigated. Low intrinsic curvature is a feature of DNA that is unlikely to be included within
the nucleosome (Figure 4.13.). A number of motifs that are unfavourable for binding by
histones have been compiled (Luykx et al., 2006). These motifs were termed Nucleosome
Exclusion Sites (NXS) by the authors. The NXSensor software package was created that
identifies these exclusion sites and predicts regions that are unlikely to be bound by
nucleosomes based upon the proximity of NXS. Approximately 147 base pairs are wrapped
around the nucleosome core. The presence of two NXS within 147 base pairs indicates a region
that is unlikely to be occupied by a nucleosome. The NXsensor software was applied to the
TP53 DNA sequences and a number of NXS were identified. Of particular interest were two
NXS in close proximity to one another at the beginning and end of Exon 5 (Figure 4.13.C). This
indicated that theoretically nucleosomes were unlikely to occupy Exon 5. The other NXS
occurred within introns and none were close enough together to create a nucleosome
exclusion region.

The NuPop algorithm was also applied to TP53 (Xi et al., 2010). This method explicitly
models the nucleosome linker DNA and was trained on nucleosome positioning data from S.
cerevisiae. The outcome of the model was a probability value for the start of nucleosome
occupancy (Figure 4.13.A.) and an occupancy score (Figure 4.13.B.). The results for TP53
showed a regular pattern of likely nucleosome occupancy regions. The major intron regions
were likely to be wrapped up in the histone core. All of the exons were predicted to be
occupied by nucleosomes with the exception of exon 6 which contains a central region of low
occupancy. The 5’ border of exon 5 also contained a region that was highly unlikely to be

occupied by a nucleosome.
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Figure 4.13. - Summary of nucleosome positioning algorithms applied to TP53. A) The
probability of the start of nucleosome binding from NuPop. B) Nucleosome occupancy score
from NuPop. C) Nucleosome exclusion sites from NXSensor (green section). The nucleosome
occupancy score is from 0, low likelihood of occupancy, to 1, high likelihood of occupancy.
Only the most prominent nucleosome exclusion site is shown for NXSensor, all other exclusion
sites were scattered throughout intron positions. Exons 5 to 9 are highlighted in red and read

in ascending order from left to right (5' to 3').
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4.3 Discussion
4.3.1 Simulating Deposition of 3D TP53 models onto 2D surfaces

The two dinucleotide parameter sets were used to model 3D molecules of TP53
(Section 2.5.1.). The 3D molecules had the same shape but a considerable difference in the
magnitude of curvature. This suggested that the models predicted curvature in the same
regions but differed in the estimation of the magnitude of curvature. The De Santis prediction
of TP53 3D shape was more curved than the Olson prediction and required more planes to be
fitted in order to ‘flatten’ it into 2D (Figure 4.2 - Planes fitted every: De Santis = 277 bp; Olson =
416 bp). For comparison, in the work by Buzio et al., the authors fitted a plane approximately
once every 222 bp i.e. 6 planes were fitted to a 1332 bp sequence (Buzio et al., 2012). This was
shown to have implications for the simulated deposition methods discussed later and the
applicability of the Olson model to the study.

There were two available methodologies for projecting 3D models of DNA onto 2D
surfaces. The first was a mathematical model that assumed that during deposition of DNA the
local intrinsic curvature remained the same while the curvature phase changed to
accommodate modifications in DNA architecture (Scipioni et al., 2002a). This was kindly
generated for TP53 sequences by the original author in a private communication (Scipioni et
al., 2002a). The second approach, Geometric Deposition, assumed that DNA would undergo
the least possible conformational changes in order to equilibrate on the mica (Buzio et al.,
2012). There were benefits and limitations to both methods. The Geometric Deposition
method was complex to implement, but required minimal understanding of underlying theory.
The phase method required a complete understanding of the underlying mathematics of DNA
curvature and flexibility. It was for this reason that phase curvature profiles were generated
for this study by the original authors. This has also been the case for other studies, perhaps
indicating that this methodology is too complex for common usage (Buzio et al., 2012).

Although both methods have different underlying assumptions they have been
observed to produce very similar results (Buzio et al., 2012). Application of both methods to
TP53 indicated that there were two regions of disagreement between the models about the
direction (phase) of DNA curvature: the central intron region between exon 6 and exon 7 and
the region beginning during exon 8 until the end of the sequence (Section 4.2.10.). These
differences were likely to be due to conformational changes introduced by Geometric
Deposition to accommodate the larger scale curvature of the De Santis model. Figure 4.3
illustrates this; the Olson model, with a lesser degree of curvature, had a difference in DNA
direction at the 3’ end of Exon 5-9 in comparison to the De Santis model. The large degree of

twist needed to flatten the 3’ end section of the De Santis model is likely to account for the
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discrepancy between the deposition predictions. It should be noted that both models were
just predictions of possible molecule orientation and experimental results can been used to
amend the predictions, such as by modifying the direction of the predicted curvature to match

experimental results (Buzio et al., 2012).

4.3.2 Evaluation of a Suitable Dinucleotide Parameter Set for Comparison to Experimental

AFM Images

Curvature profiles produced from computer simulated AFM images using the De Santis
and Olson dinucleotide wedge parameters were compared (Section 4.2.6.). It quickly became
apparent that the Olson model would be unsuitable for studying TP53. The De Santis -
parameters produced an unsigned profile in good agreement with that generated by other
methods. The Olson model produced a homogenous, featureless profile that did not exhibit
characteristic peaks that had been predicted by CURVATURE. The curved regions predicted by
the Olson model were obscured by even the minimal noise introduced by digitising the DNA
contour. An initial target of this study was to obtain a sequence-specific flexibility profile for
TP53 using the Olson model. Where communication was achieved, authors were unable to
provide this study with a clear methodology for calculating flexibility from dinucleotide
parameters or to calculate these values for TP53 DNA sequences (Olson et al., 1998; Marilley
et al., 2005). It is possible that had the flexibility parameters corresponding to the Olson model
been included then the mode! would have been more suitable for comparison to AFM imaging.
The De Santis model provided a well tested and robust dinucleotide parameter set for

comparison to real AFM images and was used exclusively within the current study.

4.3.3 Evaluation of the Effects of Digitisation of DNA Contour Length

The effect of digitisation alone increased the contour length of DNA as measured by
the Kulpa estimator (Section 4.2.5.). The overestimation decreased on the addition of a
flexibility constant to the DNA molecules and again on addition of Gaussian noise/tip
convolution. The percentage difference values for the datasets with the most sources of
variation was 0.61 % and 0.53 % for Exon 5-7 and Exon 5-9 respectively (Table 4.1). This
presented a better agreement between reconstructed length and theory than the -1.2%
underestimate observed by previous authors (Rivetti and Codeluppi, 2001). The introduction of
flexibility to the DNA molecules may have led to a larger degree of local writhe within the
molecules that would have been removed by digitisation of DNA contours or skeletonisation of
the resulting images.

This allowed for a prediction of increased underestimation of contour length in real

AFM images that have larger sources of image and measurement noise. In real AFM images
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the expected underestimation using the Kulpa estimator was between -4.5 to -6.9 % (Rivetti
and Codeluppi, 2001). The standard deviation of the simulated images was greater in the
larger molecules; this was expected as there was a longer contour length over which variations
can be introduced by digitisation. In conclusion, the Kulpa estimator provided an accurate
reconstructed length of TP53 in simulated images but may deviate to a greater extent in real

AFM images.

4.3.4 Evaluation of the Effects of Molecule Variation and Image Noise on Curvature

Profiles

Curvature profiles were produced with variable amounts of image noise and DNA
flexibility (Section 4.2.7.). There was very good visual agreement between the major peaks in
the profiles for both signed and unsigned curvature. It was observed that on addition of noise
the unsigned curvature profiles had reduced peak contrast. Real AFM images have stronger
sources of noise and variation. Therefore, the expectation for real AFM images was a greater
reduction in peak to background contrast and loss of smaller peaks. This is not the case with
the signed curvature profile. Due to this, sighed curvature profiles were used where possible
for experiments on real AFM images. Sources of molecule variation also had an impact on the
comparability of curvature profiles at low base pair window sizes (Section 4.2.11.). The 21 bp
window was near the minimum resolution of the micrograph (~18 bp). Image and molecule
variation had an increased effect on curvature measurements at low base pair windows

(Section 3.2.5.)

4.3.5 Evaluation of Peak Shift on the Addition of Image Noise

Peak shift in the curvature profiles of two sets of images, one containing noise and one
without, was evaluated using a range of base pair windows (Section 4.2.13.). The 21 bp profile
produced a peak shift of 1.2 % of the standardised length. The introduction of noise caused
two of the major peaks to become unidentifiable in the noisy profile. Additionally, the peak to
background contrast was poor and it was necessary to smooth the profile to identify peaks in
both noisy and noiseless profiles. This base pair window of curvature was unsuitable for this
sort of analysis. At larger window sizes the influence of image noise was reduced. The 42 bp
and 63 bp profiles had a percentage peak shift equivalent to a single data point. Both larger

window sizes were suitable for analysis of real images.

4.3.6 Identification of Suitable Base Pair Window Size for Curvature Calculation

The correlation between curvature profiles produced by overlapping DNA sequences has

been assessed (Section 4.2.11.). The 21 bp window size was unsuitable for analysis of TP53 due
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to the poor comparability between the 21 base pair windon size profile and the output of
curvature (Section 4.2.7.), weak correlation between ideal and noisy images indicating poor
reproducibility (Section 4.2.11) and the loss of key peaks (section 4.2.12.). The 21 bp window
size is close to the minimum window size dictated by the resolution of the images (~18 bp) and
it is likely that it is strongly influenced by the digitisation of the DNA contour. Larger window
sizes provided a better peak contrast and were less influenced by sources of molecule and
image variation. The 42 bp and 63 bp window size were used in the study for experimental

AFM images of TP53 for this reason.

4.3.7 Features of Curvature Profiles Lost or Accentuated after Digitisation

It was clear that a number of peaks had been merged in the simulated AFM image
profiles in comparison to the output of curvature (Section 4.2.12.) All of the peaks predicted by
CURVATURE had been retained with the exception of one peak that occurred in the region of
exon 6. What was surprising was that two curvature peaks had been introduced in the
simulated AFM image profile. These peaks occurred in the region of exon 7 and near the 3’ end
of the sequence. The base pair window over which curvature was calculated from the
simulated AFM images was larger than the curvature profiles calculated using CURVATURE.
The peaks that were unique to the simulated AFM image profiles may have represented
curvature that occurred over a larger scale. This larger scale curvature would not have been
detected by CURVATURE, which calculates curvature using a dinucleotide site base pair
window. Alternatively, these peaks may have been introduced by the simulated deposition
method. Either way, the curvature profiles produced from simulated AFM images were more
comparable to curvature profiles produced from real AFM images than those produced by
other methods. The peak differences highlighted the need to generate models of curvature,
using computer-simulated AFM images, for comparison to AFM image real data; the curvature
profile produced by CURVATURE, although based upon the same set of dinucleotide

parameters (De Santis) generated a different expectation.

4.3.8 The Intrinsic DNA Curvature of Exons in TP53

On statistical analysis of TP53 curvature profiles, exon positions exhibited significantly
lower curvature than the introns positions in TP53 (Section 4.2.15.). This is most evident in the
curvature profiles produced by CURVATURE. The reduced curvature predicted by the De Santis
dinucleatide wedge model was significantly lower in exons 5, 6 and 7. Exons 8 and 9 were not
significant. However, they were bordered by regions of high curvature. This could have
increased the curvature measured within the region designated as ‘exon’ as curvature is

averaged over a bp window of 31 bp by the CURVATURE algorithm. The pooled curvature
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values of all exons exhibited significantly lower than curvature in pooled introns. In order to
evaluate whether this trend was likely to be observed in real AFM images of TP53 curvature
profiles from simulated AFM images were analysed. The results indicated that only exon 5 was
likely to exhibit significantly reduced curvature in unsigned curvature profiles of 42 bp or
above. The significance of exons 6 and 7 are likely to be lost in real AFM images. However, the
statistically significance of the reduction of curvature in pooled exon to intron positions is likely
to be retained in real AFM images.

This observation has interesting implications. TP53 is heavily conserved in evolution
due to its key importance to cell regulation and repair (Lane et a/,, 2010). The reduced
curvature in exons may indicate that the structural architecture of coding regions in TP53 has
been selected for during evolution. Alternatively, the low curvature could be a by-product of
the accumulation of GC base pair content in coding sections of DNA throughout evolutionary
time (Galtier et al., 2001). If intrinsic DNA curvature is actively selected for then this is most
likely due to the influence of curvature on nucleosome positioning and the maintenance of
nucleosome structure (Shrader and Crothers, 1990; Virstedt et al., 2004). Although curvature
has been shown to influence transcription and replication, the impact of curvature is
predominantly in the origins of replication and promoter regions of genes (Ohyama, 2005;
Marilley et al., 2007b). The sequence under investigation contains no promoters or replication
origins so the role of intrinsic curvature in TP53 is likely to be structural. Low levels of DNA
curvature in genes have been linked to open chromatin and active transcription (Vinogradov,
2003). TP53 is constantly transcribed at a low level within the cell, and its transcription is
tightly regulated, so evolutionary selection for DNA architecture to enhance stable
transcription is likely to be beneficial (Hollstein and Hainaut, 2010). The theory of evolutionary
selection for architectural features in genes has been previously proposed and favours active
selection for intrinsic curvature rather than selection for GC content leading to reduced

curvature (Vinogradov, 2003).

4.3.9 Intrinsic DNA Curvature in Regions of Slow Repair in TP53

There are number of sites in TP53 that have been shown to exhibit slow DNA repair of
bulky chemical adducts (Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). The
curvature values for slow repair codons, produced in CURVATURE, were statistically analysed
and found to exhibit significantly lower curvature in comparison to the remaining TP53
sequence (Section 4.2.14.). However, regions of slow repair were localised to exons within
TP53 which independently exhibited reduced curvature (Section 4.2.8.). The possibility of low
curvature in slow repair codons being caused by the localisation of the codons to exons has

not been discounted.
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Reduced curvature in codons of slow repair may indicate a role for curvature in DNA
repair in TP53. The local DNA sequence bordering a chemical bulky adduct was shown to have
a measurable effect on the repair efficiency via the NER pathway (Cai et al., 2009, 2010). Two
of the key proteins in the NER pathway, XPA and RPA, specifically recognise DNA structural
deformities due to chemical adduction and are also required to deform DNA in order to
function (Missura et al., 2001). Studies have concluded that DNA curvature may have a role as
a stabilising factor in the presentation of DNA adducts for repair (Cai et al., 2009, 2010). Gel
electrophoretic experiments and molecular dynamic simulations indicate that rigidly bent DNA
sequences present a wider minor groove leading to more efficient excision and repair of the
DNA lesion. The DNA adduct used in these studies, BPDE, was derived from benzo[a]pyrene, a
chemical carcinogen heavily involved in the initiation and progression of lung cancer (Hecht,
2002; Kometani et al., 2009). BPDE has also been implicated as a causative agent for the three
lung cancer specific sites of slow repair used in this study (Denissenko et al., 1998; Hussain et
al., 2001). Therefore, it can be hypothesised that the regions of slow repair in TP53 may be due
to, at least in part, the low curvature of slow repair codons causing reduced presentation of
the chemical adduct for removal by the NER pathway.

Additionally, the mechanism underlying sequence-specific DNA repair has also been
attributed to the accessibility of the DNA due to the local chromatin structure (Bohr, 1987). As
curvature has an active role in nucleosome positioning and the maintenance of nucleosome
structure it may also effect DNA repair efficiency indirectly through nucleosome positioning

(Shrader and Crothers, 1990; Anselmi et al., 1999).

4.3.10 Nucleosome Positioning

Nucleosome positioning algorithms were applied to TP53 but failed to produce a
consistent result (Section 4.2.16). NXsensor identified a large nucleosome exclusion site within
exon 5. NuPop instead predicted that nucleosomes would be unlikely to occupy intronic
regions of TP53 with, perhaps, the exception of exon 6. Both algorithms are equally valid, but
identify nucleosome occupancy/exclusion differently. NXsensor identifies sequence motifs
unfavourable for nucleosome binding and NuPop explicitly models linker DNA. While the
results from the different algorithms do not corroborate one another they do indicate that the
nucleosome occupancy of TP53 should be investigated further, especially in relation to DNA
curvature and repair. The potential for exon 5 or 6 to be excluded from the nucleosome core
has interesting implications for DNA damage models. For example, exon 5 is highly mutated in
lung cancer {Denissenko et al., 1996). One of the major carcinogens involved in lung cancer,
BPDE, has shown preferential binding to DNA not contained in the nucleosome core (Jack and

Brookes, 1982; Kurian et al., 1985). Intrinsic DNA curvature has an active role in nucleosome
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positioning and the maintenance of nucleosome structure (Shrader and Crothers, 1990;
Anselmi et al., 1999). It may therefore indirectly influence DNA damage rates and DNA repair

rates, as discussed in the previous section, indirectly via control of nucleosome architecture.

4.3.11 Limitations of Theoretical Models

The results presented in this study have highlighted how valuable theoretical models
are for generating and testing hypotheses. However, they do possess a number of limitations.
One of the limitations of this study has been the lack of sequence-specific DNA flexibility
parameters for creating computer simulated AFM images. The current study used a constant
persistence length value for modelling DNA although flexibility is known to be sequence-
dependent (Hagerman, 1988). A number of DNA flexibility models do exist but not all are
applicable to the problem. For example, both bendability trinucleotide models, normalized
melting temperatures and stacking energies offer a measure of flexibility but do not provide
values that can be easily converted to a measure of persistence length (Brukner et a/., 1995b;
Scipioni et al., 2002a). The most promising method was the unavailable crystallographic
deformity data (Olson et al., 1998; Marilley et al., 2005). Estimates of sequence-specific
flexibility would allow for better evaluation of the influence of flexibility on curvature.

Another well reported source of unmodellable variation is the shortening of DNA
measured in both air and buffer by AFM. The shortening of DNA has been variably attributed
to a B- to A-form DNA transition (Rivetti and Codeluppi, 2001) and electrostatic interactions
with the cation loaded mica surface (Sanchez-Sevilla et al., 2002). The source of this shortening
has yet to be conclusively identified. However, shortening is assumed to be uniformly
distributed throughout the DNA molecules (Buzio et al., 2012). If DNA shortening is due to a B-
to A-DNA transition, then the propensity of DNA to transition has been shown to be sequence
dependent (lvanov and Minchenkova, 1995). Currently, due to limited understanding of the
underlying cause of DNA shortening, the assumption of uniform condensation must be used. In
the eventuality that DNA shortening is confirmed to be due to B- to A-DNA transition, efforts
will be needed to model the effect on curvature measurement from individual molecules.

Other sources of experimental variation in AFM imaging cannot be accounted for by
theoretical models. DNA molecules can break during DNA deposition; if the break is sufficiently
close to either end then the molecule will be treated as a full length molecule in the analysis.
There is no way of identifying erroneous DNA molecules that still lie within the expected
reconstructed length distribution. These molecules are likely to cause a widening of curvature
peaks in real DNA analysis and a shortening of average DNA contour length. Additionally, the
likelihood of breakage may be sequence dependent and create a second weak overlapping

curvature profile which will be introduced as an experimental source of variation.
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4.4 Conclusions

Theoretical models have provided a working hypothesis for the section of the TP53 gene
that codes for the sequence-specific DNA-binding region of the p53 protein. Exon positions
exhibited significantly lower curvature than intron positions. The evolution of low curvature in
exons may be caused by selection for nucleosomal architecture in TP53. This selection for low
curvature, to promote stable transcription, may have implications for DNA damage and repair
in this most crucial of genes. Low DNA curvature has also been shown to be associated with
regions of slow DNA repair in TP53, introducing another role for DNA curvature in the
functioning of TP53. Exons 5 and 6 were predicted to be excluded from the nucleosome core
by separate nucleosome positioning algorithms. The propensity to transition from B-DNA to A-
DNA was also found to be lowest in exon 5. A number of factors including intrinsic DNA
curvature, nucleosome positioning and propensity for structural transition may collectively
contribute to a very different structure for exons within TP53. Exon 5 in particular was
consistently found to have significant differences. This could indicate that it has a distinctly
different structural architecture from other regions of the TP53 gene.

The use of simulated AFM images allowed for a number of predictions to be made about
the AFM based analysis of TP53. The experimentally determined contour length of TP53 DNA
molecules would be an underestimate in comparison to the theoretical estimates of B-DNA
length. A number of key peaks would be retained in the curvature profiles processed using the
ADIPAS software. Curvature profiles would be more reproducible at comparable window sizes
for signed profiles in comparison to unsigned curvature profiles. Exon 5 would be expected to
have significantly lower curvature in comparison to intron regions in the experimental
curvature profiles. Finally, pooled curvature measurements of exon positions would likely be
significantly lower when compared to pooled intron curvature.

The use of simulated AFM images also produced guidelines for the analysis of real AFM
images of TP53. The 21 bp window size for calculating curvature angles was shown to be
unsuitable for the analysis of curvature in 7TP53. Larger base pair window sizes were more
suitable. Theoretical curvature profiles were generated at a representative base pair window

size for further comparison to real AFM images.
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CHAPTER 5: INTRINSIC DNA CURVATURE ANALYSIS BY
APPLICATION OF THE FRAGMENT FLIPPING ALGORITHM TO
EXONS 5 TO 9 OF THE TP53 GENE
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5.1 Introduction
5.1.1 Methods of DNA Orientation in Nano-Biology

The precise investigation of intrinsic DNA curvature and flexibility is important for
understanding the physical interactions of DNA with other biomolecules. To this end, AFM is a
very useful tool for the researcher, allowing nanoscale measurements of the physical
conformation of DNA molecules. One of the problems faced by nano-biologists working with
DNA is the identification of the correct orientation of DNA on a surface. Researchers have
overcome this problem by using protein end-labels (Shaiu et al., 1993; Marilley et al., 2005).
However, limited local interaction between the protein end-label and DNA have been reported
(Marilley et al., 2005). There are a number of other methods for the orientation of DNA
molecules without end-labelling, such as using palindromic DNA dimers (Scipioni et al., 2002a),
using symmetrical curvature ratios (Buzio et al., 2012), orientation based upon theoretical
models of twist and Z-height (Milani et al., 2011) and the FF algorithm which uses local
curvature measurements to orient DNA molecules within a dataset (Ficarra et al., 2005b). The
subject of the research detailed in this chapter is the last of the methods listed, the FF
algorithm (Ficarra et al., 2005b).

5.1.2 The Fragment Flipping Algorithm

The FF algorithm has been well detailed in a number of related publications (Masotti
et al., 2004; Ficarra et al., 2005b). The FF algorithm has been shown by the authors to be
effective for real and simulated AFM images and the results have been in good agreement with
the De Santis model of curvature. The FF algorithm has been applied to both repeat dimers
and linear non-palindromic DNA. The algorithm uses the mean in variance within local
curvature measﬁrements as the objective function of a hill-climbing optimisation routine. The
aim of the routine is to reduce the variation within the dataset to reach an optimum state. The
intrinsic curvature can then be calculated from the orientated DNA dataset using well
researched mathematical methods (Scipioni et al., 2002a). Therefore, the FF algorithm is
considered a post-processing method of molecule orientation. It introduces no experimental
end-labels and it is this quality that makes it desirable to the researcher. The only potential
perturbations to the curvature of the DNA are controlled by the researcher, such as the choice

of buffer, temperature and adhesion method.
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5.1.3 The Underlying Assumptions of the Fragment Flipping Algorithm

The FF algorithm makes a number of assumptions: that the intrinsic curvature is
measurable within DNA molecules, that the measurable curvature is greater than background
thermal perturbations (i.e. there is sufficiently high signal-to-noise ratio), that all the DNA
molecules have a random orientation on the surface and the FF algorithm finds the global
optimum configuration of the majority of DNA molecules. As to the first and second points,
that DNA intrinsic curvature can be measurable using AFM techniques, it is well documented
that this is the case within the available literature (Cognet et al., 1999; Zuccheri et al., 2001b;
Scipioni et al., 2002a). For the third point, that all DNA molecules have random orientation on
the surface, there is evidence that this may not be the case; the face of the DNA double helix
that contains the most thymine has been shown to preferentially bind to inorganic surfaces
(Sampaolese et al., 2002). On the final point, that the global optimum curvature is found by
the FF algorithm, a valid concern with the FF algorithm has been raised (Buzio et al., 2012). The
authors noted that the FF algorithm is a hill-climbing optimisation algorithm and, in this
respect, is sensitive to solutions that provide local minima in its objective function instead of
the global minima (i.e. it will find a suitable solution, but that solution may not be the desired
‘global’ solution). The authors provided an example where this was the case. This is a well

documented limitation of hill-climbing algorithms (Morris, 1993).

5.1.4 Aims and Objectives

The main aim was to evaluate whether the FF algorithm can accurately reconstruct
curvature from TP53 DNA. In order to achieve this, the FF algorithm was initially tested using
computer simulated AFM images of TP53. Using the simulated images as a guideline, alongside
guidance tools that had been previously developed, the FF algorithm was applied to ‘real’ TP53
DNA molecules. The resulting intrinsic curvature profiles were compared to theoretical
curvature models that had been previously generated. The fidelity and applicability of the FF

algorithm to TP53 DNA sequences was investigated and discussed.
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5.2 Results
5.2.1 Testing the Fragment Flipping Algorithm using Computer Generated AFM Images.

A large number of computer simulated AFM images were generated for both Exon 5-7
and Exon 5-9 using the De Santis dinucleotide wedge model as described in Chapter 4.
Datasets of over 1000 molecules were collected from the computer simulated AFM images for
both sequences. The correct orientation of each molecule was ascertained as described in

Section 2.5.6. Three test datasets were generated:

e Curvature Images — The DNA molecules were generated using a fixed value of
curvature at each base pair step identified from the De Santis dinucleotide wedge
model (i.e. they were all identical). The only sources of image variation were the
orientation of the DNA molecules, the effect of digitisation of the DNA contour and
the effect of skeletonisation on the resulting AFM images.

e Flexibility Images - The DNA molecules were generated using a variable value of
curvature at each base pair step. The mean value of the Gaussian distribution of
curvature angles at each step was the same as that used in Curvature Images. The
variation around the mean value was determined using a persistence length of 53 nm.
The flexibility of DNA molecules provided another source of variation in addition to
that of contour digitisation.

e Theoretical AFM Images - The DNA molecules were generated in the same way as the
Flexibility Images but also had both tip convolution (6 nm ROC) and Gaussian noise
(variance = 0.025) added as additional sources of experimental variation. These
images were the most comparable to real AFM images and had additional sources for
potential variance between molecules as the images were subjected to noise filtering
and automatic thresholding (i.e. all image processing steps of the ADIPAS software

were applied).
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5.2.1.1 Accuracy of the Fragment Flipping Algorithm on Increasing Image Noise and DNA

Conformational Flexibility

Theoretical molecules were oriented from 5’ to 3’ within a curvature matrix (a table of
all molecules with angles calculated at a number of comparable points). The molecules were
randomly flipped into one of the four possible orientations available to them. The
transformation was recorded at each step. The FF algorithm was then applied to the curvature
matrix. The orientation of each molecule in comparison to its original orientation was recorded
after each iteration of the algorithm. This was repeated at three different window sizes for
measuring curvature angles; 21 bp, 42 bp and 84 bp. The 21 bp window was included to assess
the effect on the FF algorithm at curvature window sizes close to minimum based upon
resolution of AFM images. A summary of the results is provided in Table 5.1.

At the smallest bp window, 21 bp, the FF algorithm was at its lowest accuracy for all
test samples. For Exon 5-7 the outcome was complete random orientation of DNA molecules.
For Exon 5-9 the 21 bp window was more effective at ~50 % accuracy. For larger bp windows
the FF algorithm worked at nearly 100 % accuracy for the idealised Curvature Images. There
was a drop in accuracy with the introduction of DNA molecule flexibility and image noise to a
minimum accuracy of 87.15 % in Exon 5-7 using Theoretical AFM Images. It should be noted
there was a difference in percentage accuracy on repetition which has been investigated in the
next section. An example of the resulting curvature profiles has been presented in Figure 5.1.
There was less visible effect of lower FF accuracy on signed curvature profiles than unsigned

curvature profiles.
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Exon 5-7 No. of 21 bp Window 42 bp Window 84 bp Window
Molecules
Max. % Max. % Max. %
Similarly | Correctly | Similarly Correctly Similarly Correctly
Oriented | Oriented Oriented Oriented Oriented Oriented
Curvature 1198 331 27.63% 1197 99.92 % 1198 100%
Images
Flexibility 1171 370 32.00% 1151 98.29 % 1118 95.47 %
Images
Theoretical 1253 311 24.82% 1092 87.15% 991 97.06 %
AFM
Images
Exon 5-9 No. of 21 bp Window 42 bp Window 84 bp Window
Molecules
Max. % Max. % Max. %
Similarly | Correctly | Similarly Correctly Similarly Correctly
Oriented | Oriented Oriented Oriented Oriented Oriented
Curvature 1181 617 52.24 % 1181 100.00 % 1181 100.00 %
Images
Flexibility 1046 680 65.09 % 984 94.07 % 971 9293 %
Images
Theoretical 913 471 51.59 % 842 92.22 % 823 92.22 %
AFM
Images

Table 5.1. - Summary of the number and percentage of molecules correctly oriented by the FF
algorithm. A correctly oriented TP53 dataset of curvature measurements from simulated DNA
molecules was generated. The orientation of each DNA molecule was transformed randomly in
one of the four possible orientations. The FF algorithm detailed by Ficarra et al., 2005 has been
applied and the maximum number of molecules in a single orientation was recorded as the

percentage ‘Correctly Oriented’.
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Figure 5.1. - Comparison of reconstructed curvature profiles from computer simulated AFM
images with using the FF Algorithm. The computer simulated experimental sample is indicated
within the central legend. The window size of curvature is 42 bp.
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5.2.1.2 Effects of Base Pair Windows Size on the Accuracy of the FF Algorithm.

It was observed in the previous section that base pair window size had a measurable
effect on the fidelity of the FF algorithm. By testing a number of window sizes it was possible
to estimate the effect that window size had on the number of correctly oriented DNA
molecules. A dataset of 1171 molecules from the Theoretical AFM Images sample was used.

The dataset was correctly oriented using the method described in Section 2.5.6. It was
then randomised, the orientation of the molecules (in comparison to its original orientation)
was recorded during randomisation, curvature angles were calculated for a number of window
sizes and the FF algorithm was applied. The maximum number of DNA molecules oriented in
the same direction was scored and converted into a percentage. This was repeated three times
to give the average percentage accuracy. Standard deviation was used as a measure of
variability at each base pair window (Figure 5.2.). The FF algorithm failed completely at the
lowest window size of 21 bp; orientating only ~ 25 % of molecules in the same direction, which
is nearly complete randomisation. The FF algorithm produced reproducibly good results (>85 %
oriented correctly) between the window sizes of 32-84 bp. The maximum accuracy of the FF
algorithm was 88.24 % at a window size of 49 base pairs.

The deviation of the accuracy o'f the FF algorithm was assessed at each base pair
window. Poor reproducibility was observed at window sizes below 36 bp. The window size that
exhibited the maximum amount of variability in the accuracy was the 34 bp widow (standard
deviation = 19.47 %). The window sizes of 34-103 bp showed little to no variation in FF

accuracy.

171



100

@ o= O & x0°

*No2

50 100 150 200 250 300 350 400 460 600 550 600
Quvatire Window Size ()
100
C
0
X1
1
V)
3
70 80 90 100 110 120 130

20 30 40 50 60
Qrvature Window Size (p)

Figure 5.2. - The average percentage of correctly oriented DNA molecules within a dataset over
a range of base pair window sizes. A) Base pair window size range of 21 to 600 base pairs. B)
Base pair window size range of 21 to 130 base pairs. Average values (blue line) were generated
from three repeats of the FF algorithm on 1171 Exon 5-7 simulated DNA molecules or random
orientation. The maximum number of DNA molecules with the same orientation were scored
and converted into a percentage. The variation in the percentage accuracy was characterised

by the standard deviation of three repeats (red line).
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5.2.2 Application of the FF Algorithm to Real AFM Images of TP53
5.2.2.1 Collection of AFM Images

A large number of AFM images of the PCR product of TP53 Exon 5-7 and Exon 5-9 were
collected. The AFM images were processed using the ADIPAS software detailed in Chapter 3.
The DNA molecules were deposited on the mica surface in Mg** containing buffer in order to
allow weak binding and surface equilibration {(Hansma and Laney, 1996; Rivetti et al., 1996). A
dataset of more than 1000 DNA molecules was processed for both TP53 PCR products (Table
5.2.).

5.2.2.2 Reconstructed Length Measurements

Reconstructed length measurements were calculated for both the TP53 Exon 5-7 and
Exon 5-9 datasets. TP53 Exon 5-7 exhibited a non-normal distribution before and after log
transformation (Shapiro-Wilks, p = <0.05). The median contour length of Exon 5-7 was 598 nm.
TP53 Exon 5-9 exhibited a non-normal before and after log transformation (Shapiro-Wilks,
p=<0.05). The median contour length of Exon 5-9 was 835 nm. A summary of the
reconstructed contour lengths of Exon 5-7 and Exon 5-9 can be found in Table 5.2.

It was observed that there were a number of molecules with contour lengths that did
not lie within the main distribution and were far from the median values. It was necessary to
remove these outlying molecules; this was achieved by selecting a number of molecules
around the median value of the distribution for further analysis. The removal of obviously
erroneous molecules has been performed in numerous studies (Scipioni et al., 2002a; Ficarra
et al., 2005b; Marek et al., 2005). For further analysis 1000 molecules were selected around
the median value. After this outlier removal the median of Exon 5-7 was 603 nm and Exon 5-9
was 840 nm. The reconstructed contour length values before and after outlier removal are

presented in Figure 5.3. and Table 5.2.
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TP53 Exon 5-7 Number Of Normality Test Median (nm) IQR

Molecules [Shapiro-Wilks] [@3-Q1]
(p-value) (nm)
Original Data 1433 <0.05 598 41.34
Outliers Removed 1000 <0.05 603 25.51
TP53 Exon 5-9
Original Data 1546 <0.05 835 34.95
Outliers Removed 1000 <0.05 840 18.58

Table 5.2. - Summary of the reconstructed length of TP53 Exon 5-7 and TP53 Exon 5-9 datasets
directly from image processing software and after outliers removal. The median and
interquartile range (IQR) values were generated from the reconstructed length measurements
from the appropriate datasets. The Shapiro-Wilks test for normality was performed on
reconstructed length measurements from the same datasets. Significant p-values for the
Shapiro-Wilks test are indicated in red.
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Figure 5.3. - Distributions of reconstructed contour length of TP53 molecules before and after
outlier removal. A) Boxplot of reconstructed length of Exon 5-7 and after outlier removal. B)
Boxplot of reconstructed length of Exon 5-9 and after outlier removal. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are plotted

individually as red crosses.
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5.2.23 Persistence Length

Persistence length for both the TP53 Exon 5-7 and Exon 5-9 datasets was calculated as
detailed in Section 3.2.4.2. (Figure 5.4.). The persistence length of DNA was investigated over a
curvilinear distance range of 0-400 nm. The persistence length calculated for Exon 5-7 was * =
52 nm and Exon 5-9 was £ = 49 nm. Model fitting over a smaller range of contour lengths (0-
300 nm) produced smaller persistence length measurements for both DNA sequences of » =49

nm and * =47 nm for Exon 5-7 and Exon 5-9 respectively.
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Figure 5.4. - Experimentally determined DNA persistence length for TP53 Exon 5-7 and Exon 5-
9 by comparison to theoretical values of <R2> from the WLC model. A) Plot of the RMSE fits of
<R2> generated using the WLC theory using a range of persistence lengths for experimental
<R2> of TP53 Exon 5-7. B) Experimental <R2> values (red line) of TP53 Exon 5-7 alongside
predicted <R2> values (broken blue) for the WLC model at a persistence length of 52 nm for a
range of curvilinear distances from 0-400 nm. C) Plot of the RMSE fits of <R2> generated using
the WLC theory using a range of persistence lengths for experimental <R2> of TP53 Exon 5-9.
D) Experimental <R2> values (red line) of TP53 Exon 5-9 alongside predicted <R2> values
(broken blue) for the WLC model at a persistence length of 49 nm for a range of curvilinear
distances from 0-400 nm.
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5.2.2.4 Selection of Base Pair Window for Curvature Calculation

Having previously observed that the FF algorithm was more accurate within a certain
range of base pair window sizes (Section 5.2.1.) it was necessary to identify a window size to
use on experimental DNA molecules. The lowest approximate window size for the resolution
of the images was ~18 bp. Typically a base pair window size close to the resolution limit of the
image is used by researchers (Ficarra et al., 2005b). However, the 21 bp window size was
previously shown to be unsuitable for TP53 sequence when using computer generated AFM
images (Section 4.2.11.). Computer simulated AFM images are ‘ideal’ images and only contain
a few controlled sources of noise. The failure of the FF algorithm on simulated DNA molecules
indicated that it would be unlikely to work on experimental images that have greater sources
of image noise and DNA molecule variance.

There were a number of sources of information available for the selection of
appropriate base pair windows. Firstly, there was the experiment that evaluated the accuracy
of the FF algorithm at a range of base pair window size (Section 5.2.1.2.). The window sizes
with minimum variance and maximum accuracy suggested a base pair range of 34-84 bp. The
Visual Threshold, developed in Section 3.2.5.2., was also applied (Figure 5.5.). This allowed for
the visual assessment of curvature calculated over a range of base pair window sizes. This was
used to identify the influence of digitisation of the DNA contour on curvature angle
measurements. Both Exon 5-7 and Exon 5-9 followed the expected pattern. The minimum
curvature values were 55 nm for Exon 5-7 and 46 bp for Exon 5-9. The Visual Threshold
suggested a range of window sizes of 34-80 bp for Exon 5-7 in remarkable agreement with the
experimentally determined optimum FF algorithm window sizes.

The window sizes of 42 bp and 63 bp were used for further analysis. In some instances
the window size of 21 bp has been included for comparison to previous research. The window
sizes of 42 and 63 bp lie within experimentally determined optimal ranges. Additionally, these
window sizes have been shown to provide good curvature peak-to-background contrast in
theoretical studies of TP53 (Section 4.2.6.). Both window sizes are multiples of a helical turn

(10.5 bp in B-DNA) and can be discussed in terms of a biologically relevant measure.
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Figure 5.5. - Visual Threshold of mean curvature for TP53. A) TP53 Exon 5-7 (minimum = 55
bp). B) TP53 Exon 5-9 (minimum =46 bp). Mean curvature is plotted as a green line, smoothed
(three point moving average) as blue, the maxima and minima values are denoted as red
circles and the threshold as a red line.
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5.2.2.5 Curvature Profiles Generated using the Fragment Flipping Algorithm

The FF algorithm was applied to the unoriented set of DNA molecules after outlier
removal. There are 1000 molecules in the final set for both Exon 5-7 and Exon 5-9. A full
description of the FF algorithm can be found in Section 3.2.4.5. and in the original publication
(Ficarra et al., 2005b). The resulting curvature profiles are presented in Figure 5.6. Signed
profiles were calculated as the mean value per base pair window interval of a dataset with
both negative and positive curvature angles. Unsigned profiles were calculated as the mean
value per base pair window where all angles were considered positive i.e. there was no
direction attributed to the curvature angles. Profiles were smoothed (three point moving
average) to improve the peak-to-background contrast and highlight trends in the curvature
profiles.

The FF algorithm was initially applied to unoriented sets of DNA molecules. The
curvature profiles before and after application of the FF algorithm were recorded. The results
are presented in Figure 5.6. It was observed that the profiles before the FF algorithm was
applied exhibited weak trends in curvature, perhaps indicating that not all DNA molecules
were randomly oriented on the mica surface. The curvature profiles after application of the FF
algorithm exhibited strong similarities to profiles produced before FF. At the 42 bp window the
majority of the curvature had been flipped to one end of the molecule. The pattern of
curvature for both Exon 5-7 and Exon 5-9 was in almost perfect agreement with the profile
before FF. A similar effect was observed at the 63 bp window of curvature, although there was
less visual agreement between the profiles. The magnitude of curvature measured after
application of the FF algorithm was larger than the initial profiles before FF. However, the

positions of many peaks were in good agreement.
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Figure 5.6. - Comparison of curvature profiles before and after application of the FF algorithm.
A) TP53 Exon 5-7 42 bp curvature window. B) TP53 Exon 5-7 63 bp curvature window. C) TP53
Exon 5-9 42 bp curvature window. D) TP53 Exon 5-9 63 bp curvature window. Raw profiles are
indicated with broken grey lines and profiles after FF algorithm are indicated with blue lines.
Curvature is in radians and the direction of curvature is indicated (signed curvature). The
position along the profile is standardised from 0-1 (5'to 3').
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5.2.2.6 Reapplication of the Fragment Flipping Algorithm after Randomisation of DNA

Orientation

The similarity between the profiles before and after FF orientation indicated that the
algorithm was being influenced by the weak initial trends in the curvature of TP53 (Section
5.2.2.5.). The assumption was made that the weak trends in the curvature profiles were
providing a local solution to the objective function of the FF algorithm. This has been observed
in other studies (Buzio et al., 2012). In order to overcome this problem the orientation of the
DNA molecules within both datasets were randomised before reapplication of the FF
algorithm.

To avoid the effects of local solutions to the objective function of the FF algorithm
further steps were taken. The FF algorithm was repeated ten times on randomised DNA
molecules. The results were aligned and averaged. This was the equivalent of applying the FF
algorithm to the results of the FF algorithm. If randomisation has the effect of modifying this
local solution then sufficient randomisations and reapplication of the FF algorithms may
provide a number of local or global solutions that, when averaged, would produce a consensus
profile. The aim of this experiment was to establish whether the FF algorithm can provide a
consensus outcome for the DNA sequences of interest.

The signed curvature after randomisation and re-application of the FF algorithm is
presented in Figure 5.7 alongside theoretical curvature profiles. Curvature angles were
calculated using the appropriate base pair window before application of the FF algorithm.
Theoretical curvature profiles were calculated separately for each base pair window size and
rescaled to allow visual comparison to experimental curvature profiles.

The outcome for Exon 5-7 at a 42 bp window provided an unclear result (Figure 5.7.
A.). The magnitude of the curvature peaks measured was small and there were few clear
trends within the data before and after smoothing. It was not clear if the curvature profiles
produced were representative of the DNA sequence. At a larger window of curvature, 63 bp,
there were more obvious trends within the data (Figure 5.7.B). There were similarities
between the theoretical profiles and the experimental profiles towards the ends of the DNA
sequence. These similarities were less clear within the centre of the sequence. The peak of
curvature between 0.3 and 0.4 standardised length, roughly corresponded to Exon 5 and 6,
was unexpectedly large relative to the rest of the profile.

The curvature profile for Exon 5-9 at a 42 bp window of curvature provided a number
of peaks of curvature with which to make a comparison to theoretical models (Figure 5.7.C.).
There was good visual correlation between a number of experimental peaks within the

curvature profile and agreement peaks within the theoretical profile although the direction of
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the peaks may differ. This was especially strong for peaks near either end of the molecule. The
63 bp window of curvature of Exon 5-9 provided even greater contrast between peaks and
there was a consensus shape between the two base pair window sizes (Figure 5.7.D.). There
was good visual agreement between the occurrences of peaks at the end of the DNA
sequence, disregarding the sign of curvature. This visual agreement was weaker at the centre

of the DNA sequence, although there were a number of corresponding peaks between the

profiles.
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Figure 5.7. - Experimental curvature profiles for TP53 aligned with theoretical curvature

profiles. A) TP53 Exon 5-7 42 bp curvature window. B) TP53 Exon 5-7 63 bp curvature window.
C) TP53 Exon 5-9 42 bp curvature window. D) TP53 Exon 5-9 63 bp curvature window.
Experimental profiles are indicated in blue and theoretical in grey. Curvature is in radians and
the direction of curvature is indicated. The position along the profile has been standardised
from 0-1 (5' to 3'). The 42 bp window profiles were smoothed with a 3-point average filter.
Theoretical profiles have been rescaled for comparison to the experimental profiles.
Theoretical curvature profiles were produced from the De Santis dinucleotide model.
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5.2.2.7 Comparison of Curvature Profiles to Amended Theoretical Profiles

The Geometric Deposition model for simulating adsorption of DNA produced
theoretical profiles that were comparable to the experimental profiles for Exon 5-9. This model
gave an approximation to the actual average geometry of adsorbed molecules. There may be
relevant differences between the projected geometry of the DNA molecules and the
experimentally observed trajectory of DNA molecules. This must be considered when
comparing experimental and theoretical profiles and adjustment to the theoretical must be
made a posteriori (Figure 5.8.). An example of this was provided by the original authors of the
method (Buzio et al., 2012). The authors observed a preferential 180° rotation between
neighbouring sections of DNA and used this to adjust the results of the deposition model.
Practically, this was performed by inverting the sign of the region containing the preferential
twist in the relevant theoretical curvature profiles (i.e. values changed from positive to
negative and vice versa). This sort of modification of the chain architecture cannot be
predicted by current theoretical models as it is a direct product of the adsorption process.

TP53 Exon 5-9 was the first to be considered as it provided the clearest comparison
between experimental and theoretical peaks in curvature. Two preferential 180° twists within
the DNA sequence were proposed to provide a better agreement between experimental and
theoretical curvature. The first proposed twist occurred between exon 5 and 6 and continued
for a short way into the intronic region between exons 6 and 7. The second twist occurred at
the 3’ end of the DNA sequence and incorporated exons 8 and 9. There was very good visual
similarity between both the occurrence of curvature peaks and the curvature direction for
both windows of curvature (Figure 5.8.C+D.).

A correlation analysis was performed betweeﬁ the theoretical and experimental
profiles before and after a preferential twist was introduced to the theoretical data (Table
5.3.). Application of the FF algorithm at a 42 bp window showed significant weak positive
correlation with the original theoretical projection (Spearman’s, Rho = 0.21; p = <0.05). After
amending the projection a posteriori the profiles exhibited an improved correlation
(Spearman’s, Rho = 0.49; p = <0.005). Application of the FF algorithm at a 63 bp window
showed no significant correlation with the original theoretical projection (Spearman’s, Rho =
0.09; p = 0.44). After amending the projection a posteriori the profiles exhibited a moderate
significant correlation (Spearman’s, Rho = 0.60; p = <0.05). Theoretical profiles were in better
agreement with experimental profiles at a larger base pair window size, in agreement with
predictions made from simulated AFM images of TP53 (Section 4.2.11.).

The potential occurrence of preferential twists within the DNA sequence of Exon 5-7

was less easily accounted for due to the reduced degree of similarity between the theoretical
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and experimental curvature profiles (Figure 5.8.A+B). However, assuming similar adsorption
behaviour between the sequences, a 180° twist was introduced between exon 5 and 6 and
continued into the intronic region between exons 6 and 7. This accounts for a small amount of
the deviation between the theoretical and experimental curvature profiles although there
were still dissimilarities within the centre of the profile. A correlation analysis was performed
between the theoretical and experimental profiles before and after a preferential twist was
applied to the theoretical data (Table 5.3.). Significant positive correlation was observed for

Exon 5-7 at a 63 bp window of curvature using the amended theoretical profile (Rho =0.31, p =

<0.05).
Spearman's Rank Correlation Coefficient
Original Theoretical Projection Amended Theoretical Projection
Exon 5-7 Window Size Rho p-value Rho p-value
42 bp -0.97 0.47 0.31 <0.05
63 bp 0.10 0.36 0.06 0.60
Exon 5-9 Window Size Rho p-value Rho p-value
42 bp 0.21 <0.05 0.49 <0.05
63 bp 0.09 0.44 0.60 <0.05
Table 5.3. - Spearman's Rank correlation between experimental and theoretical curvature

profiles of TP53 before and after amending the theoretical profile using a posteriori
knowledge. Significant p-values are indicated in red.
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Figure 5.8. - Experimental curvature profiles for TP53 aligned
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with theoretical curvature

profiles with preferential twist. A) TP53 Exon 5-7 42 bp curvature window. B) TP53 Exon 5-7 63
bp curvature window. C) TP53 Exon 5-9 42 bp curvature window. D) TP53 Exon 5-9 63 bp
curvature window. Experimental profiles are in blue and theoretical are in grey. The proposed
preferential twist in the theoretical profile is highlighted in green. Theoretical profiles (De
Santis) have been rescaled for comparison to the experimental profiles. Curvature is in radians
and the direction of curvature is indicated (signed curvature). The position along the profile
has been standardised from 0-1 (5' to 3'). The 42 bp window profiles were smoothed with a 3-

point average filter.
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5.2.2.8 Assessing the Peak Shift of Key Curvature Peaks

Ten key peaks were identified in the theoretical profiles as the peaks with the largest
magnitude of curvature. This was performed for the 42 bp and 63 bp windows of curvature.
This was performed using the data for Exon 5-9 and the theoretical profiles amended with two
180° preferential twists (Section 5.2.2.7.). Peaks of curvature that corresponded to the
theoretical peaks were identified in the experimental profile produced by the FF algorithm.

The 42 bp window of curvature showed a number of similarities between the
occurrences of peak positions although the magnitude and sometime direction of the peaks
was different. Nine of the ten key peaks were identified in the experimental profile. The only
key peak not identified was likely to have merged into one peak in the experimental profile
{(green circle in Figure 5.9.A+C). The average peak shift of the identified peaks between
prediction and experimental profiles was 1.31 % or 32.75 bp. The magnitude of corresponding
curvature peak values were significantly different (Wilcoxon Rank Sum, p = <0.00).

The 63 bp window of curvature showed a number of similarities in the occurrence of
peak positions although the magnitude of the peaks was different. Eight of the ten key peaks
were identified in the experimental profile. Two key peaks were not identified. One of these
key peaks was likely to have merged into one peak in the experimental profile (green circle in
Figure 5.9.B+D). The other peak was missing from the experimental profile. Additionally, there
was a notably large peak in the experimental profile that was not present within the
theoretical profile that could have been produced from the merging of multiple peaks (red
circles in Figure 5.9.B+D). The average peak shift of the eight identified peaks between
prediction and experimental profiles was 2.25 % or 56.25 bp. The magnitude of corresponding

curvature peak values were significantly different (Wilcoxon Rank Sum, p = <0.00).
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Figure 5.9. - Identification of key peaks between experimental and theoretical profiles. Key

peaks were identified as those with the largest curvature values in the theoretical profiles. Key
peaks are shown with small red circles. Proposed regions where peaks merged are indicated

with circles (red and green).
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5.2.2.9 Observations on the Final Curvature Profiles for TP53

The final curvature profiles for TP53 were aligned with exon and intron positions
(Figure 5.10.). There were fewer peaks in the curvature profile of Exon 5-7 at the 42 bp
window and fewer observations could be made. Exon 5-7 at a 63 bp window showed gradually
modulating curvature with the largest peak at the 5’ end of the DNA sequence. Exon positions
in Exon 5-7 at a window size of 42 bp and 63 bp occurred during small peaks in curvature. Exon
5-7 shared few visual similarities with theoretical profiles (Section 5.2.2.6.) and this provided a
reason to assume that the FF algorithm had failed to reconstruct the true intrinsic curvature of
the Exon 5-7 DNA sequence.

The Exon 5-9 curvature profiles were in good agreement with the theoretical profiles
(Section 5.2.2.7.). Exon 5 exhibited very low curvature (close to the broken red line denoting
0.0 radians of curvature) at both window sizes. Exon 6 showed a peak in curvature within the
42 bp profile that was not present within the 63 bp profile. This peak was expected from
theoretical models but may have been obscured at larger window sizes. Exon 7 occurred
directly after a large peak in curvature in both window sizes. Exon 8 occurred as a trough in
curvature in the 42 bp profile, which was in agreement with theoretical models, and during a
peak in the 63 bp profile. The expected small trough may have been obscured by noise in the
larger window size profile. Exon 9 was in full agreement with theoretical expectation as it
appears as a small peak of moderate curvature within both window sizes. A statistical analysis
of unsigned curvature values of exon positions compared to intron positions indicated that
exon 5 had significantly reduced curvature than intronic positions at the 63 bp window of
curvature (Kruskal-Wallis, p = <0.05). This was not the case for other exons or for exon 5 at the
42 bp window. Exon 5 was the only exon predicted to exhibit significant curvature using
simulated AFM images (Section 4.3.8.).

Exon 5-9 shared good visual similarity with theoretical curvature profiles (Section
5.2.2.7.). This similarity increases on the addition of two preferential twists into the theoretical
profiles. The similarity suggested that the FF algorithm was functioning correctly for this
molecule and that the De Santis model of curvature was providing a good estimation of

intrinsic DNA curvature.
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Figure 5.10. - Final experimental curvature profiles for TP53 with exon positions highlighted. A)

TP53 Exon 5-7 42 bp curvature window. B) TP53 Exon 5-7 63 bp curvature window. C) TP53
Exon 5-9 42 bp curvature window. D) TP53 Exon 5-9 63 bp curvature window. Exon positions
are highlighted in red. Curvature is in radians and the direction of curvature is indicated
(signed curvature). The position along the profile has been standardised from 0-1 (5'to 3'). The

42 bp window profiles were smoothed with a 3-point average filter.

189



5.3 Discussion

5.3.1 The Effects of Image Noise and DNA Molecule Conformational Flexibility on FF

Accuracy

The accuracy of the FF algorithm was tested using simulated images before it was
applied to real AFM images of TP53. The accuracy of the FF algorithm was initially tested on
ideal AFM images and then AFM images with the addition of DNA flexibility and image noise
(Section 5.2.1.1.). The most striking observation was the failure of the FF algorithm at the 21
bp window of curvature. DNA molecules were completely randomly oriented at the 21 bp
window for Exon 5-7 (25 % accuracy) and only half were correctly oriented for Exon 5-9. This
window size of curvature was close to minimum resolution of the images (~18 bp). Low base
pair window sizes were previously shown to be effected by digitisation of the DNA contour
(Section 4.3.4.) and curvature measurements were significantly influenced by experimentally
introduced variation at this window size. These two sources of variation were likely to have
had a significant impact on the accuracy of the FF algorithm at the 21 bp window size. The
original authors of the FF algorithm used base pair window sizes close to the maximum
resolution of the AFM images (Ficarra et al., 2005b). One of the theoretical samples used in the
study was reported to have an accuracy of only 76.19 %. This low accuracy may have been
caused by the effects of digitisation.

The FF algorithm at larger base pair windows exhibited improved accuracy in excess of
87 % (42 bp and 63 bp — Table 5.1). The FF algorithm correctly oriented 99.92-100.00 % of all
DNA molecules in simulated images sets that contained inflexible, idealised DNA molecules.
The addition of sources of DNA flexibility and image noise caused a decrease in the accuracy of
the FF algorithm at all base pair windows. This was most pronounced in the shorter Exon 5-7
molecule at a 42 bp window size. Even with the addition of image noise the accuracy of the FF
algorithm at larger base pair window sizes was greater than the accuracy reported by the
original authors of the FF algorithm of between 76.19 % - 96.97 % (Ficarra et al., 2005b). The
improved accuracy in the present study may be attributed to the poorer resolution of
simulated images used in the previous study (3.91 and 7.81 nm per pixel in comparison with
the 2.92 per pixel of this study) and the considerable differences between intrinsic curvature
profiles. Additionally, the original authors did not consider the potential for variation
introduced by DNA contour digitisation on angle calculations; instead points were fitted to

each DNA molecule close to the resolution of the images.
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5.3.2 Evaluation of the Effects of Base Pair Window Size on the Accuracy of the FF

Algorithm

The base pair window size used to calculate curvature had a measurable effect on the
accuracy of the FF algorithm (Section 5.3.1.). At low (<34 bp) and high (>200 bp) window sizes
the FF algorithm produced poor results with a large degree of variability upon repetition. The
window sizes that produced the most accurate reconstruction by the FF algorithm (>85 %)
were between 31 and 81 bp. It was likely that these base pair window sizes provided the best
peak-to-background contrast for optimal FF accuracy. At lower base pair window sizes the
influence of noise and digitisation increased, effectively reducing the ability of the FF algorithm
to function with any degree of accuracy.

This analysis indicated that there were a number of factors that needed to be
considered before applying the FF algorithm to real AFM images. Firstly, the choice of pixel
resolution will influence curvature measurement due to pixilation/digitisation noise. Low pixel
resolutions may introduce higher levels of DNA contour variance during image processing and
mask small-scale curvature features that are necessary for accurate orientation by the FF
algorithm. The second and more important consideration identified was the base pair window

size at which to calculate comparable curvature angles before application of the FF algorithm.

5.3.3 Selection of a Base Pair Window for Application of the FF Algorithm to Real AFM
' Images of TP53

The previously discussed experiments were used as a guideline for selection of an
appropriate base pair window size to calculate curvature angles before application of the FF
algorithm to experimental 7P53 DNA (Section 5.2.1.). Additionally, the Visual Threshold
developed in Section 3.2.6.5. was also applied to the experimental AFM molecule to ascertain
which base pair window sizes were effected by digitisation noise. The window sizes suggested
by both methods were in excellent agreement (Visual Threshold — 34-80 bp; window size
experiment — 31-81 bp). This is a further indication that the accuracy of the FF algorithm is
dependent upon peak-to-background contrast and that the window size over which to

calculate curvature angle was an important consideration.

5.3.4 Reconstructed Length Measurements of AFM images of TP53

Reconstructed lengths were calculated for both TP53 DNA sequences using the Kulpa
estimator (Section 5.2.2.2.). Approximately 0.34 nm per base pair was used as a consensus
length for B-DNA taken from X-ray crystallography experiments (Saenger, 1984). The median
reconstructed length measurement of 603 nm for TP53 Exon 5-7 slightly underestimated the

theoretical measurement of B-form DNA of 631 nm by -4.36 %. A similarly small
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underestimation was observed for Exon 5-9 with a theoretical value of 850 nm in comparison
to the experimental measurement of 840 nm for an underestimation of only -1.20 %. These
percentage differences were within the experimental boundary of less than -6.9 % previously
identified for the Kulpa estimator (Rivetti and Codeluppi, 2001). The distribution of the length
around the median value was higher in the smaller molecule, which was the opposite of the
trend expected from theoretical measurements (Section 4.2.5.). The variation around the
median value (standard deviation - Exon 5-7 = 16.17; Exon 5-9 = 12.04) was still comparable to
the standard deviation values of between 22.4 and 112.7 reported by previous authors (Rivetti

and Codeluppi, 2001; Scipioni et al., 2002a).

5.3.5 Persistence Length Measurements of TP53

The persistence lengths calculated for 7P53 DNA molecules (Exon 5-7, § = 52; Exon 5-9,
§ = 49) were in good agreement with flexibility reported by other authors of around ~50 nm for
Mg2+ deposited DNA (Rivetti et al., 1996; Moreno-Herrero et al., 2006; Wiggins et al., 2006;
Buzio et al., 2012). These results suggested that DNA molecules deposited under these
experimental conditions were thermodynamically equilibrated within two dimensions before
immobilisation on the mica surface. This was the intended outcome when the Mg** buffer was
selected for the present study. It allows for the estimation of curvature values from 7P53

molecules under the most minimal of surface interactions.

5.3.6 Identifying Pre-Existing Curvature Trends in TP53 and the Effect of the FF Algorithm

Before the initial application of the FF algorithm pre-existing curvature patterns were
identified in the unoriented sets of DNA molecules. After application of the FF algorithm the
curvature profiles that were produced closely resembled the pattern of curvature present in
the unoriented dataset (Section 5.3.6.). A similar effect had been noticed by previous authors
using the FF algorithm (Buzio et al., 2012). The authors illustrated that the pre-existing trends
in the unoriented data led to local minima in the objective function of the FF algorithm (the
mean column variance). The local minima were reached before the desired global minima.
These authors produced an example DNA sequence where the FF algorithm failed to produce

meaningful results.

5.3.7 Amendments to the FF Algorithm

The original authors of the FF algorithm, assumed that DNA molecules deposited on a
mica surface would be unoriented (Ficarra et al., 2005b). This has been shown to be, at least in
terms of direction (i.e. up or down on the mica surface) of curvature, to be partially false. For

example, the thymine rich strand of DNA preferentially binds to inorganic crystal surfaces, such
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as mica (Sampaolese et al., 2002). It is unclear if this is the case in this study. However, there
were weak but clear trends within the unoriented data. It was assumed that this provided the
FF algorithm with a ‘local minima’ to its objective function.

In order to remove pre-existing trends from curvature profiles the orientation of each
molecule in the analysis was completely randomised before reapplication of the FF algorithm
(Section 5.2.2.6.). This satisfied the assumption that DNA molecules on a mica surface would
be randomly oriented. The results were repeated multiple times, aligned and averaged to
avoid isolated instances of local minima effecting the outcome of the FF algorithm. Assuming
there was some underlying profile discernible by the FF algorithm it should have been
identified by this method. The resulting profile, effectively flipping the result of the FF
algorithm, provided a consensus curvature profile for both Exon 5-7 and Exon 5-9. A similar
approach has been used by previous authors (Buzio et al., 2012). The approach used by these
authors was also to randomise before flipping, but to repeat multiple times and select the
curvature profile that presented the lowest solution to the objective function. This
represented a major hurdle for easy application of the FF algorithm and may be avoided in

future studies by using other optimisation algorithms less effected by existing trends.

5.3.8 Comparisons of Curvature Profiles to Theoretical Profiles of TP53

The consensus curvature profile for Exon 5-9 provided an excellent agreement to the
theoretical prediction (Section 5.2.2.7). The visual comparison was as good as those produced
by previous studies using the FF algorithm (Ficarra et al., 2005b; Buzio et al., 2012). The
agreement was improved by introducing two 180° preferential twists to the theoretical profile
at two positions. The justification for this was detailed in Section 5.2.2.7. and has been used by
previous researchers (Buzio et al., 2012). It was highly likely that Exon 5-9 adopted a slightly
different conformation on the surface than that predicted by the Geometric Deposition
method. The increased agreement between the theory and experimental profile was visible in
both 42 bp and 63 bp windows of curvature. Both windows had the FF algorithm applied
separately and produced a similar result. Correlation analysis after amending the theoretical
curvature profile showed strong significant positive correlation between experimental profile
and theory (63 bp - Rho = 0.56, p = <0.05). Spearman’s correlation coefficient values were not
as high as the prediction based on simulated AFM images of Rho = ~0.9 (Section 4.2.11.). This
was likely to be due to increased sources of interference in real AFM images and also the
reduced accuracy of the FF algorithm. Additionally, exon 5 showed significantly lower
curvature in Exon 5-9 (Kruskal Wallis, p = <0.05) which was in good agreement with predictions
made using simulated AFM images (Section 4.2.15.). Overall TP53 Exon 5-9 provided excellent

agreement with predictions based upon the De Santis dinucleotide wedge model.
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Exon 5-7 exhibited a curvature profile that had low visual similarity to the theoretical
profile. The general shape of the flipped curvature profile at the 63 bp window of curvature
was in moderate agreement with the theory with the exception of the region between 0.5 and
0.7 standardised length. There was only one instance of Exon 5-7 showing significant
correlation between theoretical and experimental profiles (Table 5.3 — Amended 42 bp, Rho =
0.31, p = <0.05). It seemed likely the FF algorithm failed to correctly orient the majority of the
DNA molecules for Exon 5-7. One explanation may be that Exon 5-7 showed a greater
underestimation in comparison to theoretical length and may have undergone partial
condensation or transition to A-DNA (Rivetti and Codeluppi, 2001; Sanchez-Sevilla et al., 2002).
This may have been facilitated by differences in the surface charge of the mica sheets.
Alternatively, there may have been a repeated curvature motif in Exon 5-7 that was not
accounted for by the De Santis dinucleotide wedge model that made it unsuitable for the FF
algorithm. Unfortunately, due to the nature of the FF algorithm, the true orientation of the

curvature profile was unknown and a definitive comparison was not possible.

5.3.9 Evaluating the Agreement between Experimental and Theoretical Curvature by Peak

Shift for Exon 5-9

As TP53 Exon 5-9 showed good visual agreement to the theoretical De Santis curvature
profile the degree of peak shift between the experimental profile and the dinucleotide model
was evaluated (Section 5.2.2.8.) At a 42 bp window the peak shift was 1.31 % and at a 63 bp
window the peak shift was 2.25 %. These values were slightly larger than estimations based on
simulated AFM images of 0.84 % and 1.27 % (Section 4.2.13.). increases in peak shift
percentages were expected due to the increased sources of molecule variance and image
noise in real AFM images in comparison to simulated images.

it should be noted that not all peaks present in the theoretical profile were identified
in the FF profile. The majority of these peaks can be accounted for by the merging of nearby
peaks. This also accounts for the large peak introduced by the FF algorithm. The direction of
the peaks (i.e. positive/negative) was not considered in the peak analysis; only their presence
or absence. The direction of curvature was dependent on the conformation of the DNA
molecules on the surface, which was itself dependent on the process of deposition. The
methods of simulated deposition provided only one estimate of curvature direction as
discussed more fully in the previous section. The addition or loss of peaks by the FF algorithm
has been observed by previous authors (Buzio et al., 2012). Experiments using simulated DNA
molecules have indicated that the FF algorithm is most likely functioning at somewhere below

~87% accuracy at the two base pair window sizes estimated (Section 5.2.1). This may be
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sufficient to explain some of the discrepancies between the experimental and theoretical

profiles.

5.3.10 The Problem of Orientation after Flipping

Curvature profiles after application of the amended FF algorithm were aligned to
provide the best agreement to theoretical profiles generated in Chapter 4. The need for this
type of orientation has been considered a flaw in the FF algorithm by previous researchers
(Buzio et al., 2012). This can be avoided by the use of palindromic repeat dimers of the DNA
tract under investigation (Ficarra et al., 2005b). This created a repeat pattern in the final
curvature profiles allowing orientation of the regions of resulting curvature profiles. The
present study required the use of a large DNA molecule in order to cover the entire nucleotide
sequence that codes for the sequence-specific DNA-binding domain of TP53. This sequence
would have been too large to image as a palindromic dimers (~5 kb). Although imaging of large
DNA molecules (>2.5 kb) is possible using AFM, the time taken to collect a sufficiently large
number of images to perform curvature analysis would have been impractical (Reed et al.,
2007). However, this approach may be suitable for future studies on smaller regions of interest
in TP53, such as exon positions, or other genes.

There was no suggested final orientation to the output of the FF algorithm. Therefore,
detailed theoretical models were needed for comparison. These models alone were time-
consuming and complex to produce. Additionally, their applicability to the results of the FF
algorithm are limited if the results are sufficiently variable, as seen for TP53 Exon 5-7. The
need for these models greatly reduces the utility of the FF algorithm to researchers. Finally,
there is no internal gauge as to the accuracy of the final output of the FF algorithm other than
visual agreement with theoretical models. Idealised percentage accuracy can be generated for
the FF algorithm using theoretical images, as has been performed in this study. This should be

performed as an experiment-by-experiment optimisation.
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5.4 Conclusions

The FF algorithm produced a curvature profile in good agreement with theoretical
profiles of 7P53 Exon 5-9. The results for Exon 5-9 indicated that intrinsic DNA curvature in
TP53 was accurately predicted by the De Santis model of curvature. Furthermore, the majority
of predicted peaks were present within the FF reconstructed profile although the magnitude of
curvature was significantly different. Exon 5 was observed to exhibit significantly reduced
curvature in comparison to intronic regions as predicted by the De Santis model of curvature.
The experimental result indicated that there were some disagreements between the simulated
deposition model and experimental DNA conformation. These results highlighted the
inaccuracy of methods for simulating the deposition of DNA molecules on a flat surface. The FF
algorithm was less successful for Exon 5-7, failing to produce a curvature in good agreement
with theoretical profiles.

This study has identified a number of potential pitfalls when applying the FF algorithm
to real DNA that had not been discussed by the original authors. The identification of an
appropriate window over which to calculate curvature has been proven to be extremely
important for the accurate reconstruction of curvature by the FF algorithm. This effect was
quantified and could be used as a template for other researchers wishing to use the FF
algorithm. A simple method of randomisation and repetition was also proposed for profiles

containing weak curvature trends before application of the FF algorithm.
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CHAPTER 6: ANALYSIS OF INTRINSIC DNA CURVATURE AND
FLEXIBILITY OF EXONS 5 TO 9 OF THE TP53 GENE USING
STREPTAVIDIN END-LABELLING
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6.1 Introduction
6.1.1 End Labelling of DNA Molecules for Orientation by AFM Analysis

The first reproducible AFM images of naked DNA were published in 1992 (Hansma et
al., 1992). It was not long before researchers realised the need for the identification of the
orientation of DNA, a uniform and relatively featureless polymer. The first AFM based attempt
at end-labelling used a chimeric fusion protein between streptavidin and two immunoglobulin
G-binding domains of staphylococcal protein A (Murray et al., 1993). Later that year another
successful example made use of 5 nm colloidal gold spheres as a label for linear DNA molecules
(Shaiu et al., 1993). These techniques had been adapted from previous research on DNA using
EM which labelled DNA with an avidin-ferritin-biotin complex (Muzard et al., 1990). Protein
labelling has also been used to identify structural features such as enzymatic ‘nicks’ (Murray et
al., 1993), abasic sites (Sun et al., 2001) and direct haplotyping of DNA sequences by AFM
(Woolley et al., 2000). One study used dual labelling with different size proteins to identify
both structural motifs and orientation (Woolley et al., 2000; Sun et al., 2001). AFM analysis
was used to differentiate between the proteins by width, height or visual analysis. Protein
labels have been shown to be effective for the study of DNA curvature and flexibility in a
number of studies (Muzard et al., 1990; Cognet et al., 1999; Marilley et al., 2005). Examples of

protein end labels used in previous studies are presented in Figure 6.1.
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Figure 6.1. - Example images of end-labelled DNA taken from the available literature. A) End-
labelling using a chimeric fusion protein between streptavidin and two immunoglobulin G-
binding domains of staphylococcal protein A (Murray et al., 1993). B) End-labelling using 5nm
colloidal gold spheres bound to streptavidin-biotin (Shaiu et al., 1993). C) End-labelling using a

streptavidin-biotin complex (Marilley et al., 2005).



6.1.2 Potential Conformational Effects on Local DNA Structure by Streptavidin End-

Labelling

Streptavidin is a tetrameric protein with a high affinity for the vitamin biotin (Weber et
al., 1989). Biotin can be optionally incorporated into commercially available oligonucleotide
PCR primers making the production of streptavidin-biotin end-labelled products for AFM
analysis relatively simple. Some authors have commented that protein labelling could effect
the DNA localised around the tag (Buzio et al., 2012). This has been observed in one study that
used streptavidin end-labelling of DNA imaging in air, although the nature and extent of the
perturbation were not discussed (Marilley et al., 2005). The reported interaction was not
observed by the authors during liquid AFM imaging. However, this interaction was likely to be
due to sample preparation methods as numerous authors have not reported any perturbation
of the local structure of DNA when using streptavidin labelling for curvature or conformational
analysis (Murray et al., 1993; Rivetti et al., 1996; Woolley et al., 2000; Neish et al., 2002; Seong
et al., 2002). A study specifically looking at DNA bound to mica under different conditions
reported that streptavidin did not effect the ability of DNA to equilibrate onto a mica surface
or have any measurable effect on DNA persistence length (Rivetti et al., 1996). Other authors

have called it a model ligand for DNA end-labelling (Neish et al., 2002).

6.1.3 Aims and Objectives

A level of variability was observed in the curvature analysis of TP53 by application of
the FF algorithm in Chapter 5. In order to provide further corroboration of theoretical
curvature measurements produced in Chapter 4 the following study utilised AFM analysis of
TP53 PCR products 5’ end-labelled with a biotin molecule. The biotin molecules were
conjugated to streptavidin proteins in order to provide orientation to a suitably large number
of DNA molecules. Two PCR products were under investigation: one spanning exons 5 to 7 and
the other exons 5 to 9. Thus oriented using the streptavidin end-label the DNA molecules were
used to generate intrinsic DNA curvature and flexibility profiles for TP53. The experimental
results were compared and contrasted with theoretical models that had been previously
generated from simulated AFM images. An assessment of the curvature profiles and the
relationship between curvature and exon positions was attempted alongside comparison of

the two different experimental molecules used.
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6.2 Results
6.2.1 Confirmation of Streptavidin End-Labelling
6.2.1.1 Identification of Streptavidin Binding using a Band Shift Assay.

After incubation of streptavidin with 5' biotinylated TP53 DNA the product was run on
a 1% agarose gel stained with ethidium bromide (Figure 6.2.). A slight but noticeable band shift
was observed in the streptavidin labelled PCR product compared to the unlabelled. All bands

occurred within the expected height range of 2500 bp.

Streptavidin Bound Unbound
Y IR S— A \i A

Figure 6.2. - Comparison of
streptavidin bound and
unbound &' biotinylated TP53
Exon 5-9 PCR amplification
product. Lane M contained
New England Biolabs 1 Kb
DNA Iladder. Lane 2 and 3
contained 5' Dbiotinylated
TP53 Exon 5-9 (2500 bp)
incubated with streptavidin
overnight. Lane 4 and 5
contained 5' biotinylated
TP53 Exon 5-9.
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6.2.1.2

Identification of Streptavidin Binding by Dot Blot Analysis

As a secondary confirmation of the efficiency of biotinylated TP53 DNA to bind free

streptavidin a Dot Blot analysis was performed. This was performed on the primers used in the

PCR amplification of genomic DNA as a quality control for primer biotinylation (Figure 6.3.) and

on the final PCR product for AFM analysis (Figure 6.4.). Strong banding was observed in the

primer lanes. Weak to intermediate strength banding was observed in the lanes containing

biotinylated PCR product. This was in line with expectation as the same weight to weight ratio

of primer to PCR product contains a smaller amount of biotin molecules.
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Figure 6.3. - Dot blot of biotinylated primer DNA. Lane 1 contained
100 ng of 5' biotinylated TP53 Exon 5-9 amplification product. Lane 2
contained 100 ng of biotinylated 5' primer used in the amplification of
the DNA product used in Lane 1. Lane 3 contained 100 ng of a
negative control DNA that contained no biotin. Three different
exposure times (30, 60 and 120 s) are shown.

Figure 6.4. - Dot blot of TP53 PCR product and biotinylated primer
DNA. Lane 1 contains 5' biotinylated TP53 Exon 5-7 amplification
product. Lane 2 contained the wunbiotinylated TP53 Exon 5-7
amplification product. Lane 4 contained the 5' primer used in the
amplification of the PCR product used in Lane 1. Lane 5 contained a
negative control DNA. Each lane contains 250 ng of DNA.
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6.2.2 Collection of Experimental AFM Images of 5' End-Labelled TP53 DNA

A large number of AFM images were collected of TP53 DNA labelled with streptavidin
(examples in Figure 6.5). The final number of DNA contours extracted from the images was

1305 for Exon 5-7 and 588 for Exon 5-9.

v/

187.5 nm

SAi

*o

375 nm 375 nm

Figure 6.5. - Examples of TP53 DNA end-labelled with streptavidin-biotin. End labels are
indicated with white arrows. An example of multiple TP53 molecules bound to one
streptavidin molecules is indicated with ared arrow. Scale bars are in nanometres.
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6.2.3 Removal of Unsuitable DNA Molecules by Z-Height Analysis.

During AFM image processing the Z-height values were recorded for each molecule
included within TP53 Exon 5-9 and TP53 Exon 5-7 datasets. The values were background
corrected by fitting and subtracting a 1 degree polynomial. The contour length of each
molecule was standardised from O to 1 by interpolating a linear line between each pixel
coordinate and selecting a set number of equally spaced points. The mean Z-height at each
comparable point was calculated (Figure 6.6.A. and Figure 6.6.C.).

To ensure that only labelled molecules were analysed a Z-correction step was
introduced. Z-height at each end of each molecule was compared. The values analysed lay
within a standardised length of 0-0.05 and 0.95-1.0 (the beginning and end 5 % of the
molecule) where the streptavidin end-label was observed. The expectation was that the Z-
values for the labelled end of each molecule would be larger than the unlabelled end. Any
molecules that were not in line with this expectation were removed from the analysis. For
TP53 Exon 5-7 a total of 365 (940 molecules remaining) molecules were removed from a set of
1305 molecules to give an error rate of 27.96 %. For TP53 Exon 5-9 a total of 85 molecules (503
molecules remaining) were removed from a set of 588 molecules. This gave an error rate of
14.46 %. The final number of DNA molecules remaining after Z-correction was 940 for 7TP53
Exon 5-7 and 503 for TP53 Exon 5-9.

The mean Z-height was recalculated (Figure 6.6.B and Figure 6.6.D). It can be observed
that the Z-height at the unlabelled end (1.0 in standardised notation) was reduced after Z
correction, as per expectation. However the Exon 5-9 dataset still retained a small peak in

mean Z-height at the untagged end (Figure 6.6.D. - green square).
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Figure 6.6. - Mean Z-height values at standardised length for TP53 Exon 5-7 and Exon 5-9
molecules. A) Z-heights of original dataset for TP53 Exon 5-9. B) Z-height of TP53 Exon 5-9 after
Z-correction. C) Z-height of original dataset for TP53 Exon 5-7. D) Z-height of TP53 Exon 5-9
after Z-correction. Z-heights were background corrected by subtracting a 1 degree polynomial
and averaged for each dataset. The contour length measurements (x-axis) were standardised
to a scale of 0 to 1. Z-correction was implemented by removing all molecules with a greater
mean Z-height at the untagged end than the tagged end (i.e. comparing the first and last 5% of
each molecule). A small increase in Z-height for Exon 5-7 remained after Z-correction (green
square).
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6.2.4 Reconstructed Length Measurements

Reconstructed length measurements were calculated for the datasets after Z-
correction (Figure 6.7.). TP53 Exon 5-7 exhibited a non-normal distribution before and after log
transformation (Shapiro-Wilks, p = <0.05). Exon 5-7 had a median contour length value of 563
nm. TP53 Exon 5-9 exhibited a non-normal before and after log transformation (Shapiro-Wilks,
p = <0.05). Exon 5-9 had a median value of 767 nm. A summary of the reconstructed length of
Exon 5-7 and Exon 5-9 can be found in Table 6.1 and Figure 6.7.

There were a number of molecules in the Z-corrected dataset with contour lengths
that did not lie within the main distribution. It was necessary to remove these outlying
molecules; this was achieved by selecting out a number of molecules around the median value
of the distribution for further analysis. The removal of obviously erroneous molecules has been
performed in numerous studies (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al.,
2005). The relevant statistics of the dataset before and after outlier removal are presented in
Table 6.1.

Approximately 0.34 nm per base pair was the consensus length for B-DNA taken from
X-ray crystallography experiments (Saenger, 1984). The median reconstructed length
measurement of 560 nm for TP53 Exon 5-7 underestimated the theoretical measurement of B-
DNA of 631 nm (1855 bp x 0.34 nm) by 11.17 %. The same held true for Exon 5-9 with a
theoretical value of 850 nm compared to the experimental measurement of 771 nm. This was
a 9.24 % underestimation. A similarly large reduction in reconstructed length in comparison to
theoretical length for B-DNA was not observed in unlabelled DNA (4.36 %. and 1.20 % for Exon
5-7 and Exon 5-9 respectively — Section 5.2.2.2.).
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Figure 6.7. - Boxplot of reconstructed length measurements for TP53. A) TP53 Exon 5-7. B)
TP53 Exon 5-9. On each box, the central red mark is the median, the edges of the blue box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually as red crosses. Theoretical contour
length measurements for A-DNA and B-DNA are indicated with a broken line (Saenger, 1984).
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TP53 Exon 5-7

Original Data

Z-Corrected

Outliers Removed

TP53 Exon 5-9

Original Data

Z-Corrected

Outliers Removed

Number Of
Molecules

1305

940

800

588

503

450

Normality Test
[Shapiro-Wilks,]
(p-value)

<0.05

<0.05

<0.05

<0.05

<0.05

<0.05

Median (nm)

565

563

560

767

767

772

IQR
[Q3-Q1]
(nm)
82.21

83.58

72.95

64.66

63.46

54.66

Table 6.1. - Summary of the properties of TP53 Exon 5-7 and TP53 Exon 5-9 datasets at each

stage of outlier molecule

identification and

removal.

The median and

IQR values were

generated from the reconstructed length measurements from the appropriate dataset. The

Shapiro-Wilks test for normality was performed on reconstructed length measurements from

the same datasets. Significant p-values are indicated in red.
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6.2.5 Analysis of Correlation between End-Label Z-Height and Reconstructed Length.

There have been reports of interaction between the protein end Ilabels and
experimental DNA sequences (Marilley et al., 2005). While the nature of the interaction was
not explicitly stated by the authors the possibility of interaction was investigated. The
maximum end-label height, taken as the maximum Z-value of the first and last 12 data points
of each molecule, was plotted against the reconstructed length of each molecule (Figure 6.8.).
A correlation analysis was performed on each set of molecules. Exon 5-7 exhibited no
correlation (Spearman's Rank, Rho = -0.05, p = 0.15) and Exon 5-9 exhibited significant weak

negative correlation (Spearman's Rank , Rho =-0.40, p = <0.05).

Exon 5-7 Exon 5-9

Tag Height (pm) Tag Height (pm)

Figure 6.8. - Maximum end-label height plotted against contour length measurements of DNA
molecules. A) TP53 Exon 5-7. B) TP53 Exon 5-9.The maximum Z-height of the first 10 % of a
molecule was taken as the maximum tag height.
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6.2.6 Persistence Length Measurements of TP53

The persistence length for both Exon 5-7 and Exon 5-9 TP53 datasets was calculated as
detailed in Section 3.2.4.2. The range of curvilinear distances investigated was 0-200 nm and 0-
300nm (Figure 6.9 and Figure 6.10). The persistence length calculated for the range of 0-200
was J = 56 and § = 54 for Exons 5-7 and Exons 5-9 respectively. The persistence length
calculated for the range of 0-300 was » = 61 and » = 60 for Exons 5-7 and Exons 5-9

respectively.
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Figure 6.9. - Experimentally determined DNA persistence length for Exon 5-7 by comparison to
theoretical values of <R2> from the WLC model. A) RMSE of fitted models generated from the
WLC theory using a range of persistence lengths for experimental <R2> values. B) Experimental
<R2> values (red line) alongside predicted <R2> values (broken blue) for the WLC model at a
persistence length of 56 nm for a range of curvilinear distances from 0-200 nm. C) RMSE of
fitted models generated from the WLC theory using a range of persistence lengths for
experimental <R2> values. D) Experimental <R2> values (red line) alongside predicted <R2
values (broken blue) for the WLC model at a persistence length of 61 nm for a range of
curvilinear distances from 0-300 nm.
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Figure 6.10. - Experimentally determined DNA persistence length for Exon 5-9 by comparison
to theoretical values of <R2> from the WLC model. A) RMSE of fitted models generated from
the WLC theory using a range of persistence lengths for experimental <R2> values. B)
Experimental <R2> values (red line) alongside predicted <R2> values (broken blue) for the WLC
model at a persistence length of 54 nm for a range of curvilinear distances from 0-200 nm. C)
RMSE of fitted models generated from the WLC theory using a range of persistence lengths for
experimental <R2> values. D) Experimental <R2> values (red line) alongside predicted <R2>
values (broken blue) for the WLC model at a persistence length of 60 nm for a range of
curvilinear distances from 0-300 nm.
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6.2.7 Selection of Base Pair Window for Curvature Calculation

It has previously been shown that at low window sizes there was a measurable effect
of digitisation on DNA contours (Section 4.2.7.). There were a number of sources of
information available for the selection of appropriate base pair window sizes. The Visual
Threshold was applied to TP53 Exon 5-7 and Exon 5-9, detailed and developed in Section
3.2.5.2. This allowed for the visual assessment of curvature calculated over a range of base pair
windows sizes. This was used to identify the influence of digitisation of the DNA contour on
curvature angle measurements. The results of the Visual Threshold are shown in Figure 6.11.
Both Exon 5-7 and Exon 5-9 followed the expected pattern. The minimum curvature window
sizes were 62 nm for Exon 5-7 and 45 nm for Exon 5-9. The ranges of acceptable base pair
windows suggested were 38 — 103 bp for Exon 5-7 and 27 - 74 bp for Exon 5-9.

Another method for measuring the influence of digitisation on curvature angle
calculations was to look at the dataset maximum and minimum angles calculated and the
number of matching occurrences of the extrema values within the dataset. The results are
presented in Figure 6.12. It was observable that below a window size of 31 bp there were
multiple instances of individual angles that matched the dataset extrema. This was more
pronounced in Exon 5-7. This indicated that at window sizes lower than 31 bp the choice of
interpolant would have an effect on curvature measurements.

The window sizes of 42 bp and 63 bp were used for further analysis. In some instances
the window size of 21 bp was included for comparison to previous research. The window sizes
of 42 and 63 bp lie within experimentally determined optimal ranges. Additionally, these
window sizes have been shown to provide good curvature peak-to-background contrast in

theoretical studies of TP53 (Section 4.2.7.).
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Figure 6.11. - The Visual Threshold applied to the mean curvature of TP53. A) TP53 Exon 5-7
(minima = 62 bp). B) TP53 Exon 5-9 (minima = 45 bp). Mean curvature is plotted as a green
line, smoothed (three point moving average) as blue, the maxima and minima values are
denoted as red circles. The threshold is denoted as a red line, acceptable windows of curvature
lie below the threshold line.
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Figure 6.12. - Number of individual angles within the dataset that match the dataset extrema.
A) TP53 Exon 5-7. B) TP53 Exon 5-9. Angles were calculated at a number of equally spaced
points appropriate for the base pair window. Plots were truncated at a base pair window size
of 50 bp as no values above zero occurred at larger window sizes. Matching maxima are
indicated in red and matching minima in blue.
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6.2.8 Unsigned Curvature for Exon 5-7

For TP53 Exon 5-7 all base pair window sizes exhibited gradually modulating curvature
across the molecule with peaks of high curvature at each end (Figure 6.13.) The highest peaks
of curvature within the main body of the profiles occurred within the intron between exons 6
and 7 in the 42 bp profile and within the intronic region before exon 5 in the 63 bp profile.
Exon 5 exhibited the lowest curvature of all the exon regions and the lowest curvature values
of the corresponding profiles. Exon 5 was bordered by regions of moderate curvature in both
profiles. Similarly, there was a slight trough in curvature for exon 6 in both profiles, bordered
by regions of moderate curvature. Exon 7 occurred as a small curvature peak in all profiles.

An analysis of curvature between experimental and theoretical profiles showed no
significant correlation for either window size (Spearman’s Rank: 42 bp - Rho = 0.04, p = 0.71;
63 bp —rho = 0.14, p = 0.29). However, there were a number of visually identifiable similarities.
A peak-trough-peak pattern in the intron between exon 6 and 7 was apparent in the
experimental and theoretical profiles, but with lesser contrast in the experimental profile. A
large peak at the 5’ end of the 63 bp profile could correspond with an amalgamation of the
two large peaks observable within the theoretical profile. The theoretical profiles did not
predict the extent of the large dip in curvature in exon 5 observed within both experimental

profiles.
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Figure 6.13. - Unsigned curvature profiles for TP53 Exon 5-7 (n=800) calculated over a range of
base pair windows and comparable theoretical profiles. The base pair window size is shown on
the left hand side of the figure. Profiles were smoothed with athree point average filter. Exon
positions are highlighted in red in ascending order from left to right. Experimental profiles are
indicated by a blue line and theoretical profiles by a green line. Theoretical profiles were
generated using the De Santis model of curvature and the Geometric Deposition method.
Theoretical profiles were rescaled for easy visual comparison (z-axis shows theoretical
curvature values where applicable). The length of the molecule was standardised from zero to
one (5'to 3').

216



6.2.9 Unsigned Curvature for TP53 Exon 5-9

Unsigned curvature profiles of Exon 5-9 are presented in Figure 6.14. All exons, with
the exception of exon 6, exhibited a trough in local curvature at both window sizes. This was
especially apparent for exon 6 in both profiles and exon 8 in the 63 bp profile. Exon 6 and exon
8 respectively bordered by or encompass the two lowest regions of curvature in both profiles.
Exon 5 had a trough in local curvature towards the 3’ end of the exon and the 5’ end of the
exon began with a region of moderate curvature. The same was observable for exon 8. Within
the 42 bp profile the largest peaks of curvature, excluding the end regions, occurred before
exon 5 and after exon 9. The 63 bp window size profile exhibited a large peak of curvature
within the intron between exon 6 and 7.

An analysis of curvature between experimental and theoretical profiles showed no
significant correlation for either window size (Spearman’s Rank: 42 bp - Rho =-0.19, p = 0.04;
63 bp — Rho = <0.00, p = 0.98). The experimental and theoretical profiles have some visual
similarities. The central intron, between exon 6 and exon 7 for both window sizes contained a
noticeable increase in curvature in both experimental and theoretical profiles. The local region
bordering exons 8 and 9 was in good agreement with theoretical profiles; two observable
‘troughs in curvature encompassed both exons. The large peak of curvature directly preceding
exon 5 corresponded with a prominent peak in the theoretical profile. Exons 6 and 7 contained
a peak in experimental profiles which was not present in theoretical profiles. The large peaks
of curvature predicted at either end of the sequence were notably missing from all
experimental profiles. The large curvature peak may have been included in the large regions of

«curvature at each end of the molecule.
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Figure 6.14. - Unsigned curvature profiles for TP53 Exon 5-9 (n=450) calculated over a range of
base pair windows and comparable theoretical profiles. The base pair window size was shown
on the left hand side of the figure. Profiles were smoothed with a three point average filter.
Exon positions are highlighted in red in ascending order from left to right. Experimental
profiles are indicated by a blue line and theoretical profiles by a green line. Theoretical profiles
were generated using the De Santis model of curvature and the Geometric Deposition method.
Theoretical profiles are rescaled for easy visual comparison (z-axis shows theoretical curvature
values where applicable). The length of the molecule was standardised from zero to one (5' to

3").
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6.2.10 Signed Curvature for Exon 5-7

Within the signed curvature profiles of Exon 5-7 it was observed that exon positions
occurred in, or were bounded by, regions of lower curvature (Figure 6.15.). Exon 5 and 6
bordered a change in the direction of curvature in all profiles. Exon 5 and Exon 7 consistently
contained a slight reduction in curvature. Exon 6 occurred at a transition between two curved
regions with different directions of curvature. The largest peaks of curvature were contained
within intron regions at both window sizes. The largest peaks of curvature predominated at
either end of the molecule. However, within the 63 bp profile one of the most extreme peaks
of curvature occurred between Exon 5 and Exon 6.

An analysis of curvature between experimental and theoretical profiles showed no
significant correlation for either window size (Spearman’s Rank: 42 bp - Rho = 0.17, p = 0.11;
63 bp — Rho = 0.24, p = 0.07). The p-value for the 63 bp window was borderline for statistical
significance and may have indicated a weak positive correlation. There were strong visual
similarities between the theoretical and experimental profiles at both window sizes (42 and 63
bp). This visual similarity was apparent within the general shape of the profile, although not in
the magnitude of the peaks. In addition to this, some of the peaks had opposite direction of
curvature to those predicted by the theoretical profile. At both window sizes exon 5 and exon
6 contained a region of negative curvature which was also apparent within the theoretical
profiles. The intron region between exon 6 and 7 contained peaks of positive curvature in
experimental and theoretical profiles. The 3’ end of the DNA sequence also exhibited
similarities in shape, although the theoretical profile predicted almost no curvature within this
region while the experimental profile exhibited a small peak in curvature. The protein labelled
5’ end of the molecule showed the largest differences between experimental and theoretical
profiles. The trough at around 0.1 standardised length in the theoretical profiles may have

corresponded with the large peak in the experimental profiles.

219



Experimental

Curvature

3'op

-0 005

-0015

01 02 03 04 05 06 07 08 09
Standardised Length

0.1 02 0.3 0.4 0.5 0.6 0.7
Standardised Length

Experimental And Theoretical
Curvature

£ o001

— 0005

6--0 005
2001

=0015

02 0.3 04 0.5 0.6 07 08 09
Standardised Length

r- -001

0.2 03 0.4 05 06 07
Standardised Length

016 c

006 3

<006 o

Figure 6.15. - Signed curvature profiles for TP53 Exon 5-7 (n=800) calculated over a range of
base pair windows and comparable theoretical profiles. The base pair window size is shown on
the left hand side of the figure. Profiles were smoothed with athree point average filter. Exon
positions are highlighted in red in ascending order from left to right. Experimental profiles are
indicated by a blue line and theoretical profiles by a green line. Theoretical profiles were
generated using the De Santis model of curvature and the Geometric Deposition method.

Theoretical profiles are rescaled for easy visual comparison (z-axis shows theoretical curvature
values where applicable). The length of the molecule was standardised from zero to one (5' to

3.
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6.2.11 Signed Curvature for Exon 5-9

Exons 5, 7, 8 and 9 occurred within regions of low curvature relative to the rest of the
profile (Figure 6.16.). This was the case at each base pair window size. Exon 6 appeared as a
small peak in curvature at all window sizes. The region between exons 8 and 9 contained a
large peak in curvature. Exon 9 showed a small localised curvature peak in the 42 bp profile
that was absent from the 63 bp profile. The largest peak (~0.03 radians) in curvature occurred
within the intron region between exons 6 and 7. Another large peak in curvature occurred
between exons 8 and 9. There were two closely spaced peaks of moderate curvature at the 5’
end of the sequence before exon 5.

An analysis of curvature between experimental and theoretical profiles showed no
significant correlation for either window size (Spearman’s Rank: 42 bp - Rho = 0.05, p=0.60; 63
bp — Rho = 0.12, p=0.30). The general shapes of the theoretical and experimental curvature
profiles showed moderate visual comparability in the occurrence of peaks, if not their direction
or magnitude. There was slightly less visual agreement at larger window sizes which was
attributed to a larger shifting of the location of the peaks within the higher window size
profile. The region containing exon 5 and exon 6 and the region containing and bordering exon
8 were comparable between experimental and theoretical profiles. The intron region between

exon 6 and exon 7 showed dissimilarity to the theoretical profile.
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Figure 6.16. - Signed curvature profiles for TP53 Exon 5-9 (n=800) calculated over a range of
base pair windows and comparable theoretical profiles. The base pair window size is shown on
the left hand side of the figure. Profiles were smoothed with athree point average filter. Exon
positions are highlighted in red in ascending order from left to right. Experimental profiles are
indicated by a blue line and theoretical profiles by a green line. Theoretical profiles were
generated using the De Santis model of curvature and the Geometric Deposition method.
Theoretical profiles are rescaled for easy visual comparison (z-axis shows theoretical curvature
values where applicable). The length of the molecule was standardised from zero to one (5' to

3').
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6.2.12 Comparison of Curvature and Flexibility Profiles between Exon 5-7 and Exon 5-9

The curvature profiles generated in Section 6.2.8 - 6.2.11. were aligned. The data
points of Exon 5-9 that corresponded to the sequence in Exon 5-7 were compared using a
Spearman's Rank correlation coefficient at 21bp, 42 bp and 63 bp window sizes. The results of
the correlation analysis are presented in Table 6.2. The aligned profiles are presented for visual
analysis in Figure 6.17. None of the aligned curvature profiles had a significant correlation
using the Spearman's correlation coefficient. Visually there was little similarity between
profiles. This was attributed to the shift in localisation of key peaks. Even a small amount of
peak shift would have reduced the point-to-point comparability of the profiles and made the

Spearman's Rank correlation coefficient unsuitable for statistical comparisons.

Unsigned Signed

Curvature Curvature
Window Size (bp) RHO P-Value RHO P-Value
21 0.08 0.38 <0.00 0.97
42 0.07 0.55 0.05 0.63
63 0.11 0.40 0.08 0.56

Table 6.2. - Summary of the Spearman's Rank correlation coefficient and associated P-values
for two experimental TP53 molecules. The curvature values across a range of base pair window
sizes were compared for TP53 Exon 5-7 (1855 bp) and TP53 Exon 5-9 (2500 bp). The
appropriate number of data points were selected from the exon 5 end of the TP53 Exon 5-9
dataset and aligned with the TP53 5-7 data.
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Figure 6.17. Comparison of overlapping sections of curvature profile for Exon 5-7 and Exon 5-9.

The sections of the Exon 5-9 profile that correspond to the Exon 5-7 profiles were aligned.

Exon 5-7 is denoted by a blue line and Exon 5-9 by a green line. The length of the molecule was

standardised from zero to one (5' to 3'). The dotted red line represents a curvature angle of

zero radians. Exon positions are indicated by highlighted red regions in ascending order from

left to right.
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6.2.13 Analysis of Flexibility in TP53

Flexibility Profiles were calculated for 21, 42 and 63 bp windows sizes for both Exon 5-
7 and Exon 5-9 (Figure 6.18). The sections of the Exon 5-9 profile that corresponded to the
Exon 5-7 profiles were aligned. A correlation analysis showed no significant correlation
(Spearman’s Rank, 42 bp - Rho = 0.11, p = 0.32; 63 bp - Rho = 0.16, p = 0.22).

The 42 bp profiles indicated that the intronic region between exon 6 and 7 contained a
large moderate degree of flexibility. Exons 5 and 6 both showed mixed regions of moderate to
low local flexibility in both Exon 5-7 and Exon 5-9 profiles. The border of exon 6 contained the
lowest flexibility value in either profile. Exon 7 showed a local trough in the Exon 5-9 profile
which was in disagreement with the peak displayed in the Exon 5-7 profile. Notably within the
Exon 5-9 profile all exons occurred in regions of low flexibility. Exons 6 and 8 displayed the
lowest flexibility relative to the rest of the Exon 5-9 profile.

The 63 bp profile for Exon 5-7 displayed a large region of flexibility at the 5’ end of the
profile. This was in disagreement with the Exon 5-9 profile which displayed a reduction in
flexibility. The Exon 5-7 profile displayed only one notable region of reduced flexibility in exon
5. A small local dip occurred during exon 6; however this was no larger than other dips in
flexibility of surrounding regions. The Exon 5-9 profile was more heterogeneous. The central
region encompassing the intronic region between exons 6 and 7, exon 7 itself and continuing
up to and immediately preceding exon 8 showed the largest flexibility. The lowest regions of
curvature occurred immediqtely before exon 5 and following exon 6. Exons 6, 8 and 9
displayed small local reductions in flexibility.

The general flexibility trend across base pair windows favoured low flexibility in exon
positions. This was evident to varying degrees across the profiles. The best agreement
between the profiles occurred at a window size of 42 bp. This window size indicated that exons
5 and 6 display reduced local flexibility of which exon 6 was particularly extreme. Both exons 8
and 9 also displayed lower curvature in the 42 bp and 63 bp profiles. Exon 7 displayed a less
consistent pattern and there was little consensus between the numerous profiles. The intronic

regions between exon 6 and 7 contained most of the flexibility peaks in all profiles.
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Figure 6.18. - Flexibility profiles for TP53 calculated over a range of base pair windows. A) 42bp
Window. B) 63bp Window. Flexibility values were generated for an appropriate number of
linearly spaced points for the base pair window of each molecule. A flexibility profile was
generated from the standard deviation of each comparable point. The Exon 5-7 sequence is
indicated by a green line, the Exon 5-9 sequence in blue. The profiles were smoothed with a 3-
point average filter. Exon positions are highlighted in red in ascending order from left to right.
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6.2.14 Estimation of Experimental Peak Shift of Key Peaks

Ten key curvature peaks were identified in the theoretical profiles. Key peaks were
defined as the peaks with maximum curvature within the theoretical profile. This was
performed using the data for Exon 5-9 at a 63 bp window of curvature for signed and unsigned
curvature profiles as this showed the most visually identifiable peaks (Figure 6.19.). The
profiles were smoothed using a three point average filter before peak identification.

Within the signed theoretical curvature profile of Exon 5-9 nine key peaks were
identified. Seven peaks within the experimental profile occurred at comparable locations. Two
key peaks were missing from the experimental profile (Figure 6.19. - green circles). The mean
peak shift calculated for the remaining peaks was 3.26 % or 81.37 bp. The largest individual
peak shift was 8.86 % or 221.51 bp. The distribution of the magnitude of curvature of the
matched peaks was significantly different between the experimental and theoretical (Wilcoxon
signed-rank, p = <0.05).

Within the unsigned theoretical curvature profile ten key peaks were identified. The
experimental profile contained nine peaks that corresponded to the location of the key peaks
(Figure 6.19 - green circles). The average peak shift calculated for the remaining peaks was
3.51 % or 87.83 bp. The largest individual peak shift was 8.86 % or 221.52 bp. The distribution
of the magnitude of curvature of the matched peaks was significantly different between the

experimental and theoretical (Wilcoxon signed-rank test, p= <0.05).
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Figure 6.19. - Identification of key peaks between experimental and theoretical profiles in TP53
Exon 5-9. A 63 bp window of curvature was used for all profiles. Key peaks were defined as
those with the largest curvature values in the theoretical profiles. Key peaks are shown with

small red circles. Key peaks within the theoretical profiles missing from the corresponding

experimental profiles are indicated with a green circle. The profiles were smoothed using a

three point average filter before peak identification.
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6.2.15 Analysis of Curvature within Exon and Intron Regions

The curvature values that corresponded to exon base pair positions as designated by
the IARC database were statistically compared to intronic positions (Hernandez-Boussard et
al., 1999). The distribution of curvature was mostly non-normal and was analysed using the
non-parametric Kruskal-Wallis test. Three windows of curvature were analysed: 21 bp, 42 bp
and 63 bp (Table 6.3.).

Exon 5 of TP53 Exon 5-7 had significantly lower unsigned curvature than intronic
regions at base pair window sizes of 42 and 63 bp. Exon 5 of TP53 Exon 5-7 exhibited the
lowest median curvature and exon 7 exhibited the largest. None of the signed curvature values
of exon positions produced a significant result. For TP53 Exon 5-9 none of the individual exons
showed significant difference from intronic DNA in either signed or unsigned curvature profiles
(Table 6.4).

The pooled curvature and flexibility of exon positions was compared to intronic
curvature (Table 6.5.). Exon positions exhibited significant differences in their unsigned
curvature and flexibility measurements at window sizes of 42 bp and 63 bp in Exon 5-7.
Similarly, significant results were observed in unsigned curvature and flexibility profiles at a
window size of 42 bp for Exon 5-9. The occurrence of significant differences in both unsigned
curvature and flexibility for the same window size was not unexpected as they were related

measures.
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Unsigned Curvature

Bose Pair Window (bp) Exon 5 Exon 6 Exon 7 Intron

21 bp Number of Sample Points 16 10 10

Median Curvature (rads) 0.29 0.29 0.29 0.29

Kruskal-Wallis (p) 0.41 0.17 0.92

42 bp Number of Sample Points 8 5 5

Median Curvature (rads) 0.27 0.27 0.28 0.28

Kruskal-Wallis (p) <0.05 0.19 0.63

63 bp Number of Sample Points 6 3 3

Median Curvature (rads) 0.26 0.27 0.28 0.27

Kruskal-Wallis (p) <0.05 0.22 0.41 -
Signed Curvature
Bose Pair Window (bp) Exon 5 Exon 6 Exon7 Intron
21 bp Number of Sample Points 16 10 10 -

Median Curvature (rads) -0.01 0.00 -0.01 -0.00

Kruskal-Wallis (p) 0.23 0.63 0.29 -

42 bp Number of Sample Points 8 5 5 -

Median Curvature (rads) -0.01 0.00 -0.01 0.00

Kruskal-Wallis (p) 0.07 0.60 0.24 -
63 bp Number of Sample Points 6 3 3 -
Median Curvature (rads) -0.01 0.01 -0.02 0.00
Kruskal-Wallis (p) 0.11 0.40 0.41 -
Table 6.3. - Summary of measurements made in comparisons between curvature

measurements of exon positions and intron positions for TP53 Exon 5-7. The distribution of
data points was non-normal and not size matched; a Kruskal-Wallis test was used to test for
significant differences between median values. Significant p-values are highlighted in red.
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Unsigned
Curvature
Base Pair Exon5 | Exon6 | Exon7 | Exon 8 Exon9 | Intron
Window (bp)
21 bp Number of Sample 18 11 10 13 6 -
Points
Median Curvature 0.28 0.27 0.29 0.29 0.28 0.28
(rads)
Kruskal-Wallis (p) 0.47 0.09 0.16 0.05 0.44 -
42 bp Number of Sample 8 6 6 6 3 -
Points
Median Curvature 0.26 0.25 0.26 0.26 0.26 0.26
(rads)
Kruskal-Wallis (p) 0.47 0.26 0.78 0.09 0.29 -
63 bp Number of Sample 6 3 3 4 2 -
Points
Median Curvature 0.25 0.26 0.25 0.25 0.25 0.25
(rads)
Kruskal-Wallis (p) 0.71 1.00 0.30 0.05 0.63 -
Signed
Curvature
Base Pair Exon5 | Exon6 | Exon7 | Exon 8 Exon 9 | Intron
Window (bp)
21 bp Number of Sample 18 11 10 13 6 -
Points
Median Curvature -0.00 0.01 0.00 0.00 0.01 -0.00
(rads)
Kruskal-Wallis (p) 0.74 0.53 0.90 0.92 0.34 -
42 bp Number of Sample 8 6 6 6 3 -
Points
Median Curvature -0.00 <0.00 <0.00 -0.00 0.01 0.00
(rads)
Kruskal-Wallis (p) 0.763 0.473 0.958 0.804 0.695 -
63 bp Number of Sample 6 3 3 4 2 -
Points
Median Curvature 0.01 0.01 0.01 0.00 0.00 0.00
(rads)
Kruskal-Wallis (p) 0.37 0.28 0.61 0.96 0.68 -
Table 6.4. - Summary of measurements made in comparisons between curvature

measurements of exon positions and intron positions for TP53 Exon 5-9 DNA molecules. The
distribution of data points was non-normal and not size matched; a Kruskal-Wallis test was
used to test for significant differences between median values.
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Exon 5-7 Window Size

21 bp
42 bp
63 bp

Exon 5-9 Window Size

21 bp
42 bp

63 bp

Unsigned
Curvature
0.25
<0.05
<0.05
Unsigned
Curvature
0.35
<0.05

0.11

Kruskal-Wallis (p-value)

Signed Curvature

0.30
0.15
0.28

Signed Curvature

0.43
0.67

0.35

Flexibility

0.50
<0.05
<0.05

Flexibility

0.44
<0.05

0.58

Table 6.5. - Summary of the Kruskal-Wallis test applied to the pooled curvature and flexibility

of exon positions to the pooled curvature and flexibility of intron positions. The distribution of

data points was non-normal and not size matched; a Kruskal-Wallis test was used to test for

significant differences between median values. Significant p-values are highlighted in red.
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6.3 Discussion

Experimental intrinsic DNA curvature profiles show little statistical similarity to
theoretical profiles previous generated in Chapter 4. However, there is a moderate degree of
visual similarity between the profiles which is more exaggerated in signed curvature profiles.
This visual similarity is limited to the positional occurrence of peaks rather than the direction
or magnitude of curvature. Pooled exon positions within 7P53 DNA exhibited significantly
lower curvature and flexibility than intron positions. This was particularly prevalent within
particular exon 5. This is in good agreement with theoretical prediction of curvature from
simulated DNA images (Chapter 4). The relevance and significance of these finding is discussed

in more depth in the sections below.

6.3.1 Visual Identification of Streptavidin End Labelling

The quality of the end-label biotin incorporated into the PCR primer was checked by
dot blot analysis and the final product by band shift assay (Sections 6.2.1.1. and Section
6.2.1.2.). The small band shift was similar to previously reported results (Seong et al., 2002).
end-labelled TP53 DNA produced a number of molecules in AFM with clearly identifiable 5’
labels (Figure 6.5.). There were a number of molecules that either lacked end-labels or in
which identification of the end-label was problematic. Additionally, streptavidin has four
available binding sites for biotin which led to the imaging of DNA molecules bound together as
dimers, trimers and tetramers (e.g. Figure 6.5. — red arrow). This necessitated the processing
of multiple images in order to collect sufficient molecules for curvature analysis. The use of
larger streptavidin fusion proteins would improve visual label identification in future studies
(Rivetti et al., 1996). The ideal end-label would be a monomeric avidin fusion protein (Sun et
al., 2001). This would present an improvement for image processing efficiency over the current
method as it would provide both a one-to-one molecule binding ratio and a more easily
identifiable tag. An example of this type of protein label has been used as a probe for abasic
sites in DNA molecules (Sun et al., 2001). Additionally, optimisation of the streptavidin to DNA
ratio has previously achieved end-labelling efficiencies of greater than 90 % (Seong et al.,

2002).

6.3.2 Height of DNA and Streptavidin End-Labelling

The streptavidin end-label was clearly identifiable in the Z-height measurements of
DNA molecules (Section 6.2.3.). Previous authors have reported variable average height values
for streptavidin imaged by AFM ranging from 0.61 nm (Seong et al., 2002), 1.7 nm (Woolley et
al., 2000) and 2.31 nm (Neish et al., 2002). The average height of the streptavidin end-label

investigated in this study was ~0.725 nm which is within the range of values reported by
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previous studies. The height of DNA, ~2 nm, was measured from X-ray experiments (Saenger,
1984). AFM measurements of the height of DNA have been universally lower than the
expected value. The heights measured vary between 0.7 (Moreno-Herrero et al., 2003) and
1.28 nm (Yang et al., 2007). The present study observed a DNA height of 350-475 nm. This was
lower than the values reported by other authors. This was not considered a cause for concern
as the variability of AFM height measurements of soft matter, such as DNA or proteins, has
been well reported (Yang et al., 2007). This variability in height measurements has been
attributed to a number of factors including humidity (Thundat, 1992), tip size, tip loading force,
salt deposition, electrostatic attraction between the molecule and the substrate (Yang et al.,
2007), cantilever oscillation frequency and tip adhesion to the sample (Noort van et al., 1997).
Another consideration after image collection was the amount of plane fitting used to produce
a flat AFM image. The plane fitting used in this study was slightly more rigorous than typically
used in image processing studies of AFM; two passes of flattening were applied to produce the
flattest possible images for analysis. This did not negatively impact on visual end-label

identification.
6.3.3 Post-Image Processing Identification of Unsuitable DNA Molecules

Any molecules that had a larger Z-height at the unlabelled 3’ end in comparison to the
5’ end-label were removed from the analysis (Section 6.2.3.). This ensured that only correctly
labelled DNA molecules remained for further analysis. After Z-correction there remained a
small Z-height increase in the unlabelled end of the Exon 5-7 dataset. This could have been due
to a number of factors e.g. the tip may have picked up a small amount of experimental DNA
causing the ‘sticky’ free end of the molecule to bind to the tip and appear larger than it was,
there could be non-specific binding of streptavidin, unbound streptavidin or local ‘bunching’ of
the DNA. Alternatively, it could have been due to tip-DNA interactions caused by the oscillation
frequency of the cantilever (Noort van et al., 1997). The potential for a small amount of
incorrectly orientated molecules to have been present after Z-correction has been considered

during the analysis.
6.3.4 Evaluation of Local Streptavidin-DNA Interactions

An unspecified form of DNA-streptavidin interaction has been reported by a previous
study (Marilley et al., 2005). Other studies have not observed any local interaction between
DNA and streptavidin (Murray et al., 1993; Rivetti et al., 1996; Woolley et al., 2000; Neish et
al., 2002; Seong et al., 2002). In order to identify whether the streptavidin was binding local
DNA or obscuring DNA by being localised on top of a DNA strand, a correlation analysis was
performed between the DNA length and the streptavidin end-label height (Section 6.2.5.). A

similar approach has been used by other authors to assess protein-DNA interactions (Woolley
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et al., 2000). Increased streptavidin label height correlated weakly with decreased DNA
contour length in the Exon 5-9 dataset. This may have impacted on both the curvature
measurements of DNA at the site of the streptavidin label and on the selection of comparable
points across multiple molecules. The implications of this were considered during further

analysis.

6.3.5 Reconstructed Length Measurements of 7P53

The DNA contour length was calculated for both DNA molecules, Exon 5-7 and Exon 5-
9 (Table 6.1.). A number of obvious outliers were observed. These were removed before
further analysis. These molecules represented broken DNA fragments, DNA molecules bound
end-to-end or otherwise erroneous conformations. The removal of obvious outliers has been
performed in other studies (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al., 2005).

The distributions of DNA contour lengths were observed to be non-normally
distributed so non-parametric descriptors and statistical tests were used. This was contrary to
other studies that typically use the mean and standard deviation. Parametric equivalents have
been included for comparison where they are appropriate. The median contour lengths after
outlier removal were lower than expectations for B-DNA. These produced underestimations of
11.17 % and 9.24 % for Exon 5-7 and Exon 5-9 respectively. The estimate of deviation from the
theoretical value for the Kulpa estimator was tested to be effectively nil for simulated DNA
molecules (Section 4.2.5.). However, DNA contour lengths reported in AFM studies of DNA are
typically lower than the expected value for B-DNA. Examples include underestimations of 6.9 %
using the Kulpa estimator in a Mg buffer (Rivetti and Codeluppi, 2001), 8 % on polylysine
coated mica (Van Noort et al., 2004) and both 4.4 % and 12.13 % for DNA in a Ni** buffer
(Lysetska et al., 2002; Sanchez-Sevilla et al., 2002). The underestimation in this study was only
slightly lower than other reported contour lengths. The variation observed between
streptavidin labelled and unlabelled DNA in this study maybe indicative of changes in the
electrostatic potential of the mica surface, minute variations in the buffer conditions or slight
interaction with the streptavidin end-label.

The contour length showed IQRs of 11.58 % and 6.35 %. In order for comparison to the
work of previous authors the standard deviations of the distributions were calculated. The
standard deviations were 7.21 % and 4.30 % for Exon 5-7 and Exon 5-9 respectively. The
increased variability within the Exon 5-7 dataset may have partially contributed to its lower
median length estimate. Similar standard deviations (6 %) have had low or negligible effects on

curvature measurements by previous authors (Scipioni et al., 2002a).
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6.3.6 DNA Condensation or a Partial B- to A-Form DNA Transition

The reduction of contour length on adsorption to a surface has been variously
attributed to a partial transformation of the DNA from B- to A-form on the mica surface
(Rivetti and Codeluppi, 2001) and condensation due to interactions with the cation loaded
surface (Sanchez-Sevilla et al., 2002). A-form is likely to be approximately 30 % shorter than B-
DNA of the same length (Ficarra et al., 2005b). An underestimate of 9-11 % was observed in
this study and may have been indicative of a partial transition. The expected length estimates
have been included alongside the length distribution in Figure 6.7. The propensity to transition
between structural forms is sequence dependent (Basham et al, 1995; Ivanov and
Minchenkova, 1995). During a typical experiment the length of DNA is considered to be
uniform along each DNA molecule (Buzio et al., 2012). Assuming a structural transition had
occurred then the length of each base pair would no longer be uniform. The effect on the
resulting curvature profiles would be a widening of peaks of curvature and possibly a shifting
of positions of curvature peaks. There are no models currently available to simulate this effect
for comparison. A length estimation method that considered both contour length and contour
height when calculating the reconstructed length of a DNA molecule has been recently
published and may account for some of the length variation observed in this experiment (Buzio
et al., 2012).

Alternatively, the reduction in length observed may have been due to local surface
interactions (Sanchez-Sevilla et al., 2002), the systematic underestimation by the digitised
contour length estimator or a combination of both factors. It was not possible to rule out
interaction with the streptavidin label as a contributing factor to the length underestimation as
weak interaction was observed with Exon 5-9 (Section 6.2.5). The length reduction observed
may be indicative of streptavidin-DNA interaction on or near the 5 end label. Alternatively,
variations in the buffer or surface conditions could have contributed to the observed contour

length variation.

6.3.7 Persistence Length of End-Labelled TP53

The persistence length of TP53 for a contour length range of 0-300 was § =61 and § =
60 for Exons 5-7 and Exons 5-9 respectively (Section 6.2.6.). This is higher than often cited ~50
nm persistence length for B-form DNA using a Mg”* buffer (Rivetti et al., 1996). However,
considerable deviation from this consensus value has been reported by previous studies; for
example, persistence lengths have been reported of 55 nm (Van Noort et al., 2004), 56 nm
(Podesta et al., 2005), 42 nm (Marek et al., 2005) and as low as 36 nm (Lysetska et al., 2002).
These previous studies used buffers containing the same cation, Mg®*. However the previous

studies had different salt concentrations, which is likely to contribute to the variations in
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measured DNA persistence length (Rivetti et al., 1996). In comparison to these previous
studies it seems that TP53 in this study was slightly more rigid than the expectation for B-DNA.
However, when considering a contour length range of 0-200 the persistence length values
were § = 56 and § = 54 for Exons 5-7 and Exons 5-9 respectively. These values are in better
agreement with the consensus persistence length value of B-DNA. A central region of high
curvature causing an overall decrease in the flexibility of the polymer may account for the
observed persistence length, such as that predicted by theoretical curvature profiles (Section
4.2.8.). Other alternative explanations could be put forward, such as surface interactions
causing modification to the typical conformation of the DNA molecules or a partial B- to A-DNA
transition caused by dehydration (Charney et al., 1991).

As a note of interest, some other authors have observed a systematic decrease in <R®>
measurements above ~250-300 nm (Rivetti et al., 1998; Moreno-Herrero et al., 2006; Buzio et
al., 2012). This was not observed in either TP53 sequence. The authors that observed the
decrease in <R*>at larger curvilinear distances used DNA sequences either constructed with in-
phase A-tracts (Rivetti et al., 1998) or that contained hyperperiodicity (Moreno-Herrero et al.,
2006). The decrease in <R*> was considered the signature of intrinsic curvature that forced the
DNA to assume a more compact structure than would be readily assumed by linear DNA of the
same length. This does not seem to be the case with the experimental TP53 molecules.
Overall, the persistence length of the end-labelled DNA indicated that samples were well
equilibrated on the mica. The binding observed may have been a little stronger than was
expected for a weak cationic buffer (Rivetti et al., 1996). This stronger binding may have been
due to unexpected variation in the charge of the mica or the concentration of the binding

buffer.

6.3.8 Selection of a Window of Curvature for Curvature Analysis

It has previously been shown that the effect of digitisation of the DNA contour has a
measurable effect on curvature angles at low base pair windows (Section 3.2.6.3.). The Visual
Threshold, developed in Section 3.2.6.5. was applied to TP53 Exon 5-7 and Exon 5-9 (Section
6.2.7.). This analysis method suggested window sizes for both molecules were in good
agreement; 38-103 bp for Exon 5-7 and 27-74 bp for Exon 5-9. The angles calculated from the
suggested ranges should have been free of the effects of digitisation. As corroboration other
checks were also applied. The maximum angle calculated at a number of window sizes was
identified alongside the numbers of individual angles that matched the appropriate maxima
(Figure 6.12.). It is observable that below a window size of 31 bp there were multiple individual
angles that match the dataset extrema. Curvature profiles produced from base pair windows

below this value risked introducing variation due to effects of DNA contour digitisation.
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The base pair window sizes of 42 bp and 63 bp lay within the experimentally
determined optimal ranges and were used for the analysis that followed. These window sizes
had previously provided good peak to background contrast for TP53 (Section 4.2.6.). These
window sizes were multiples of one helical turn (10.5 bp in B-DNA) and so could be discussed

in terms of a biologically relevant measure.

6.3.9 Curvature Analysis of TP53

Both signed and unsigned curvature profiles were produced for Exon 5-7 and Exon 5-9
and compared to theoretical profiles. Although the experiment included no method for
determining the direction of curvature i.e. whether a molecule was up or down on the mica.
However, directionality was observed in the experimental profiles. This was likely due to the
thymine rich strand of DNA preferentially binding to the mica surface (Sampaolese et al.,
2002). The direction of the curvature was aligned with the experimental profiles to give the

best visual similarity.

6.3.9.1 Unsigned Curvature Profiles of TP53 Exon 5-7

The only exon that was expected to produce a statistically significant reduction in
curvature was exon 5 (Section 4.2.15.). This proved to be the case for the Exon 5-7 sample
which showed a visible trough within the curvature profile corresponding to the region
containing exon 5 (Section 6.2.8. + 6.2.15.). Exon 6 was expected to show low curvature and
exon 7 a small peak. This pattern was observed in the curvature profile for Exon 5-7. The
curvature in exon 6 and 7 was not significantly different from intronic regions, in line with the
expectation from simulated images.

There was no significant correlation between the curvature profiles and corresponding
theoretical profiles (Section 6.2.8.). There were some visual similarities between the
experimental and theoretical profiles, notably large regions of curvature in the intron between
exons 6 and 7 and a large peak in curvature at the 5’ end of the 63 bp window of curvature.
This may indicate that although there was no statistically significant correlation between
experimental and theoretical profiles this may be due to peak shift. A small amount of peak
shift would have reduced the effectiveness of the correlation analysis by removing the

assumption of point-to-point comparability between experimental and theoretical profiles.

6.3.9.2 Unsigned Curvature Profiles of TP53 Exon 5-9

The expectation from theoretical studies was that all exons in the experimental
molecules would exhibit a local reduction in curvature, with perhaps the exception of exon 7.

The experimental Exon 5-9 profiles exhibited dips in curvature at all exons with the exception
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of exon 6 which bordered a region of low curvature (Section 6.2.9.). The curvature values
corresponding to exon positions were not significantly different from intronic curvature values
at either window size (Section 6.2.15.). There was no significant correlation between the
curvature profiles and corresponding theoretical profiles (Section 6.2.9.). There were some
visual similarities between the experimental and theoretical profiles, such as the
aforementioned dips in curvature at exon positions, peaks of curvature in the intron between
exon 6 and exon 7 and the occurrence of a peak in curvature immediately before exon 5. The
working hypothesis for this study was that exons would exhibit reduced curvature with respect

to intron positions. This seemed to be true visually; however, it was not statistically proven.

6.3.9.3 Signed Curvature Profiles of TP53 Exon 5-7

Exon 5-7 showed good visual agreement with signed theoretical profiles of TP53. The
major regions of positive and negative curvature were present in both profiles and follow
similar patterns (Section 6.2.10.). The exon positions showed low levels of curvature or
bordered regions of low curvature. The largest curvature peaks occur in intron regions, in line
with the expectation. Interestingly, there was a small peak of curvature between exon 5 and 6
that was not present in the unsigned profiles. The cause of this peak was unknown and the
peak was not observed to such an obvious degree in Exon 5-9. This peak may have been
produced by the inclusion of erroneously oriented molecules (Section 6.2.3.) or may be a
region of curvature that was not predicted by the De Santis dinucleotide wedge model.

The 5’ end region exhibited the least visual similarity. This may have been caused by
the presence of the streptavidin end label, either through weak local interactions or the
inability of image processing software to correctly trace a straight line through a circular
streptavidin molecule. Correlation between experimental and theoretical profiles was not
significant (Section 6.2.10.). However, the 63 bp window produced a p-value (Spearman’s
Rank: Rho = 0.24, p = 0.07) which was borderline, perhaps indicating that with a smaller

amount of variation the visible similarities would also have been statistically significant.

6.3.9.4 Signed Curvature Profiles of Exon 5-9

Exon 5-9 showed good visual agreement with signed theoretical profiles of TP53. The
major regions of positive and negative curvature were present in both profiles and followed
similar patterns (Section 6.2.11.). The exon positions showed low levels of curvature or
bordered regions of low curvature with the exception of exon 6 which occurred at a small
peak. The largest peaks of curvature occurred in intronic regions. These resuits were in good
agreement with theoretical predictions. The region with the least visual similarity was the

central intronic region, between exons 6 and 7. Statistical correlation between experimental
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and theoretical profiles was not significant (Section 6.2.11). It seems likely that there was
sufficient variation between curvature profiles to limit the applicability of correlation tests, but

that the profiles still retained some visually identifiable trends.

6.3.10 Comparability of Profiles between Experiments

The main objective for analysing two overlapping DNA molecules of TP53 was to
evaluate the reproducibility of AFM based curvature analysis. Experimental profiles were
compared with an aim to assess this (Section 6.2.12.). The correlation analysis for comparable
sections of each molecule showed no significant correlation. Visually there was little similarity
between the profiles. This would indicate that there was a considerable degree of variability

between the curvature profiles resulting from multiple experiments.

6.3.11 Flexibility Profiles

Exon 7 appeared to be the most flexible exon (Section 6.2.13). Exons 8 and 9 appeared
to be the least flexible. Exon 5 was observed to have regions of moderate flexibility and also
regions of low flexibility across multiple profiles. The same was observed for Exon 6, which was
variably the least flexible exon or occurred immediately before a region of low flexibility. The
region where least agreement was observed between the profiles was the site of 5’ end label.
This variation in the observed flexibility may have been caused by the weak protein-DNA

interaction observed in the Exon 5-9 sample (Section 6.2.5.).

6.3.12 The Curvature of Exons in TP53

The statistical analysis of curvature showed that exon 5 exhibited significantly reduced
curvature. This is the same trend predicted from simulated AFM images of TP53. The other
profiles did not produce any statistically significant differences from intronic positions. The
major trend within curvature profiles was that the majority of exons had reduced curvature in
comparison to the surrounding regions. Exon 5 had greatly reduced curvature in all profiles,
signed and unsigned. This trend was less clear for exon 6 which variably exhibited very low
curvature in unsigned profiles and a peak in the signed profiles. Exon 6 was observed as having
low to moderate flexibility. Exon 7 was a similar case, exhibiting both small peaks and reduced
curvature in different profiles. The expectation for exon 7 was a small peak; however, the peak
may have been masked in some profiles by moderate to high flexibility. Overall the curvature
profiles support the original hypothesis of low curvature in exon positions. Additionally, the
signed profiles had very good visual agreement with the theory. However, due to the lack of
correlation between the profiles there was a level of doubt about agreement between the

theoretical and experimental profiles.
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Notably absent from the profiles were the large peaks of curvature before exon 5 and
after exon 8. The end regions had less physical restraints upon them as they were only
constrained by DNA at one end. This could have led to increased flexibility in the end regions
of the DNA molecules. The increased flexibility and curvature observed at both ends of the
molecule provided some corroboration of this explanation (Section 6.3.9. and Figure 6.18.).

The trends observed in this study could be investigated further by extension of the
current method. A suitable further analysis would include end-labelled PCR products for each
exon and intron region considered as separate samples. The curvature and flexibility of each
exon may be investigated at higher resolutions using sharper tips such as carbon nanotubes
(Woolley et al., 2000). Furthermore the use of liquid imaging and time-lapse based
experimentation may provide improved flexibility profiles for TP53 and allow the application of
other theoretical models for DNA dynamics (Scipioni et al., 2002b; Marilley et al., 2005). This

type of single molecule experiment is ideally suited to end-labelled DNA molecules.

6.3.13 Differential Effect of Experimental Variation on Signed and Unsigned Profiles

The signed curvature profiles had improved visual similarity between experimental
and theoretical profiles when compared to the unsigned profiles. This improvement of signed
over unsigned profiles was predicted by simulated images (Section 4.2.11.). It was likely due to
the differential impact of image noise between the two types of profile. The signed profiles
had both magnitude and direction of curvature, while the unsigned had only magnitude.
Experimental variation may reduce the magnitude of curvature in a signed profile. However, it
is unlikely to change the direction of curvature. Unsigned profiles were only comparable on the
magnitude of curvature which is effected by variation or noise. The signed profiles were
compared using both magnitude and direction of curvature, of which direction was likely to be

less effected by noise or variation.

6.3.14 Identification of Sources of Experimental Variation

Simulated AFM images of TP53 indicated that, with little experimental noise, the base
pair windows used in this study were likely to produce comparable theoretical and
experimental profiles (Section 4.2.11.). However, this was clearly not the case for real AFM
images as not a single curvature profile exhibited a strong significant correlation to theoretical
profiles. A number of sources of experimental variation could have contributed to this. The
reconstructed length measured for TP53 indicated that the DNA may have undergone a partial
transition to A-form DNA or DNA condensation; both possibilities were not accounted for by

the theoretical models. The curvature and flexibility differences between A- and B-DNA were
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not accounted for by the theoretical models, rendering comparison to theoretical profiles
problematic.

The persistence length of the experimental DNA also indicated that it was slightly more
rigid than expected. This is likely to have effected the magnitude of curvature rather than its
position. The measured unsigned curvature was lower for all profiles than predicted which
might be a corroboration of the reduced experimental flexibility of TP53. Alternatively,
reduced magnitude may be attributed to sample preparation. Washing with distilled water
after adsorption of the DNA to the mica decreases the cationic charge on the phosphate
backbone of DNA by removing Mg” and causing increased repulsion between negatively
charged DNA molecules (Moreno-Herrero et al., 2006; Marilley et al., 2007a). This increased
repulsion between DNA molecules would have reduced the measurable curvature.

Impulsive image noise was previously shown to negatively effect the comparability of
curvature profiles from simulated images (Section 4.2.11.). The sources and intensity of noise
in real images was much higher than in simulated images. There were also other sources of
variation that were unaccounted for such as fragmented molecules, small scale looping or
sharp kinking below the resolution of the AFM image and possible false positive in the end-
labelling analysis (Section 6.2.3.). All of these factors were possible sources of variation within
the final curvature profile either through modification of the magnitude of curvature or

through shifting of key peaks.

6.3.15 Peak Shift in Curvature Profiles

Peak shift was evaluated for the major peaks within the Exon 5-9 profile as an
experimental estimate of peak shift within this study (Section 6.2.14.). The average peak shift
was ~3.39 % of the standardised length of the sequences. The maximum peak shift measured
was 8.86 %. For the individual peaks where this was the case this was likely to represent a
different curvature peak altogether. Only one large deviation was observed per profile. The
inclusion of these peaks with a large amount of peak shift may have caused the average peak
shift to be an overestimation. It is difficult to compare peak shift with other studies as this
measure is often not quantified. However, the peak shift reported in a previous study was
lower than the average peak shift observed in the current study by ~2% (Ficarra et al., 2005b).
A partial B- to A-form DNA transition may provide an explanation for the observed peak shift.
This was discussed in Section 6.4.5.

Changes in the magnitude of curvature were unlikely to effect the outcomes of
correlation analyses. However, experimental variation leading to peak shift within the profiles

would have had a negative impact on correlation analyses as point-to-point comparability is an
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underlying assumption. The observed peak shift was likely to have had a large impact on the
outcome of correlation analyses that have been carried out between curvature profiles.

It should be noted that different peaks were missing from the signed and unsigned
curvature profiles, highlighting the need to use both types of profiles where possible. The
amount of peak shift detected was very similar between the methods. As the data has not
been treated differently, other than the direction of the curvature before smoothing, this is in

line with the expectation.
6.3.16 A Potential Role of Curvature in Post-Transcriptional Modification

It was observed that, in signed curvature profiles, exons often occurred in regions of
low curvature that bordered a change in the direction of curvature (Sections 6.2.10-11.). This
could prove to be informative for modelling DNA deposition and adsorption. Regions of low
curvature and flexibility may be less likely to undergo structural changes during adsorption.
The impact of this would be that flexible regions bordering inflexible regions would
preferentially kink in order to conform to the 2D surface.

The change in the curvature regime at the border of exons suggests a role in post-
transcriptional modification of RNA, namely the removal of introns from RNA transcripts. GC
content and related sequence motifs are recognised during post-transcriptional splicing of RNA
(Amit et al., 2012). GC content was explicitly investigated in the study, which is closely linked
to intrinsic DNA curvature. The change in the structural regime of curvature on the border of
exons may represent a recognition factor for the spliceozome or other associated proteins.

This is an area that could be investigated in more depth in future studies.
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6.4 Conclusion

The end-labelling approach to curvature investigation has produced an overarching
assessment of the physical properties of the region of TP53 that codes for the sequence-
specific binding domain of the p53 protein. The most interesting and prevalent trend was a
lowering of intrinsic curvature in the exon positions of 7P53. This trend was in good agreement
with theoretical predictions of TP53 and has interesting biological implications for DNA
transcription, mutagenesis and repair. Furthermore, a potential role has been identified for
curvature in post-transcriptional modification that will require further investigation by future
studies.

A number of methodological considerations have been identified by the present study
including the importance of the window size over which to consider calculating curvature
angles. The need for improved physical models of DNA deposition has been highlighted as well
as a need for improved statistical analysis methodologies. It is also clear from the present
study that the current methods for statistical analysis of curvature profiles that have been
used by previous authors, such as visual comparison and peak comparison, are unsuitable for
profiles with a small degree of peak shift or inter-experiment variation. An additional aim for
future studies would be to identify or develop statistical tools that could provide more

application to intrinsic DNA curvature and flexibility profiles produced by AFM imaging of DNA.
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CHAPTER 7: CONCLUSION
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7.1 The Investigation of Intrinsic DNA Curvature in TP53

TP53 is a key cancer gene. The mutation and dysfunction of TP53 is considered a
hallmark of carcinogenesis. The primary aim of the present study was to evaluate the intrinsic
curvature of the region of TP53 that codes for the DNA sequence-specific binding domain of
the p53 protein. This region of TP53 is critical for the correct functioning of the p53 protein
which regulates the main cellular defences against chemical insults and tumourogenesis. TP53
is highly conserved within evolution, occurring in a recognisable form in even the most simple
of multi-cellular organisms. TP53 has codons that exhibit slow DNA repair; these codons are
also major mutation hotspots. In order to evaluate the intrinsic DNA curvature of TP53 over a

large scale the gene was investigated using both theoretical methods and AFM.
7.2 ADIPAS - A Software Suite for AFM Based Analysis of DNA Curvature

There is currently a lack of available software for the analysis of AFM images of DNA.
The first objective of the present study was to create a software platform with the capability of
calculating intrinsic curvature from AFM images of DNA. A complete software suite of image
processing and analyses tools was developed in order to facilitate the AFM based study of DNA
(Chapter 3). This analysis suite was named ADIPAS (AFM DNA Image Processing and Analysis
Software). ADIPAS was developed with the primary aim of analysing intrinsic curvature of TP53
DNA molecules. To this end ADIPAS was able to analyse AFM images of DNA and calculate
curvature from the resulting coordinate data. The software incorporated analysis methods
from a range of previous studies. ADIPAS allowed for a more comprehensive analysis of the
structural properties of DNA molecules than any other available software pipeline. ADIPAS
presented the image analysis portion of its package in a GUI that would allow even unskilled
operators to process AFM images of DNA after only limited training. Other estimates of
statistical and physical DNA measurements, such as DNA contour length and persistence
length, were implemented into the software. The software is aimed at online distribution and
publication with the hope that it will be of use to researchers within the field and also to
encourage further investigation of DNA curvature by allowing research groups to overcome
the large technological hurdle of in-house software development necessary for this type of
investigation.

During the development of ADIPAS a number of novel considerations were identified.
The most important of which was that at low base pair window sizes there was a significant
influence of DNA contour digitisation of the resulting curvature angles. A novel method for
identifying the effects of digitisation on angle measurements was developed and named the
Visual Threshold. This consideration has not been investigated or even discussed to any great

extent by previous researchers. The Visual Threshold was applied to real AFM images of TP53
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and was invaluable in the selection of appropriate curvature window sizes. Additionally, the
prediction of the Visual Threshold was shown to coincide with accuracy of the FF algorithm
showing its utility for application to real AFM images of DNA (Chapter 5). These developments
provide a strong foundation for researchers to build upon in future studies and represent
progress towards improving accessibility to the field of DNA curvature investigation as AFM

technology becomes more widespread.

7.3 The Investigation of Intrinsic DNA Curvature of TP53 using Theoretical Curvature

Models

Theoretical dinucleotide wedge models were utilised for the investigation of DNA
curvature (Chapter 4). The De Santis model of curvature, previously shown to be appropriate
for AFM based studies of DNA, was used as the primary dinucleotide wedge model of
curvature. The De Santis model predicted significantly reduced curvature in exon 5, 6 and 7 in
comparison to DNA curvature of intronic regions. Furthermore, the model indicated that both
exons 8 and 9 were regions of locally reduced curvature that were not significantly different
from the curvature of intron regions. The lack of statistical significance may be attributed to
the curvature peaks that flanked the exons and the methodological necessity of averaging over
a base pair window of at least one or two helical turns. Both exons 5 and 6 were implicated as
being DNA linker regions between nucleosomes by theoretical models.

Additionally, codons within TP53 that have been shown by previous studies to exhibit
impaired DNA repair were shown in the present study to have significantly reduced intrinsic

curvature in comparison to the rest of the TP53 DNA sequence.
7.4 The Investigation of Intrinsic DNA Curvature of TP53 using AFM

The generation of simulated AFM images of TP53 based upon the De Santis model
allowed for predictions about potential observation in real AFM images of DNA. The AFM
portion of the study was approached using two separate investigative methodologies. The first
methodology used was the post-image processing orientation of TP53 molecules by the FF
algorithm (Chapter 5). The results for this indicated a significant positive correlation between
the theoretical predictions and the experimental curvature profiles for TP53 and raised some
methodological considerations for the FF algorithm that were overcome during the study.

The second approach was the use of streptavidin end-labelling for DNA orientation.
The curvature profiles generated using this method did not show significant correlation to
curvature profiles produced from simulated AFM images. This was attributed to a curvature
peak shift caused by DNA condensation on the mica surface or a partial B- to A-form DNA

transition. However, the expected trends in DNA curvature were still evident. This included a
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significant reduction in curvature at exon regions in comparison to intron regions. Exon 5 also
individually exhibited significantly lower DNA curvature than intron regions in both
experiments. Both approaches provided corroboration of the predictions made using the De
Santis dinucleotide wedge models of DNA curvature. In addition to this exon position
experimentally exhibited moderate to low flexibility with the exception of exon 7 (Section
6.2.13.).

Of the two methodologies the FF algorithm provided curvature profiles most
statistically comparable to theoretical profiles. However, it was more analytically demanding
to implement and there were many methodological considerations that needed to be
addressed when considering the output. Streptavidin end-labelling was analytically simpler to
implement, but the output was less comparable to theoretical profiles. For future studies, the
FF algorithm would be recommended for smaller, palindromic DNA molecules. Larger
molecules should be approached using streptavidin end-labelling followed by application of
the FF algorithm as a final corroboration of the resulting curvature profiles. This would remove
any remaining uncertainly about molecule orientation and allow for a very high degree of

confidence in the resulting profiles.
7.5 Exons as Regions of Low Intrinsic DNA Curvature.

TP53 is heavily conserved in evolution due to its key importance in cell regulation,
maintenance and repair (Lane et al., 2010). The reduced curvature of exon positions within
TP53 may indicate that the structural architecture of the coding regions has been selected for
during evolution. Alternatively, low intrinsic DNA curvature could be a by-product of the
accumulation of GC base pair content in coding sections of DNA throughout evolutionary time
(Galtier et al., 2001). If intrinsic DNA curvature has been actively selected for, then it is most
likely to be due to the influence of curvature on nucleosome positioning and the maintenance
of nucleosome structure (Shrader and Crothers, 1990; Virstedt et al., 2004). Although
curvature has been shown to influence transcription and replication, the impact of curvature is
predominantly in the origins of replication and promoter regions of genes (Ohyama, 2005;
Marilley et al., 2007b). As the TP53 sequences that were investigated contained no promoters
or replication origins, the role of intrinsic curvature in TP53 is likely to be structural. Low levels
of DNA curvature in genes have been related to open chromatin and active transcription
(Vinogradov, 2003). TP53 is constantly transcribed at a low level within the cell, and its
transcription is tightly regulated, so evolutionary selection for DNA architecture to enhance
stable transcription would be beneficial to 7P53 (Hollstein and Hainaut, 2010). The theory of

evolutionary selection for architectural features in genes has been proposed previously and
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favours active selection for intrinsic curvature rather than selection for GC content leading to

reduced curvature (Vinogradov, 2003).

7.6 Low Intrinsic DNA Curvature at Sites of Slow Repair in TP53

There are a number of sites in TP53 that have shown impaired DNA repair of bulky
chemical adducts (Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). Codons
exhibiting slow repair were found to have a significant reduction in curvature in comparison to
the remaining TP53 sequence using theoretical models (Section 4.2.14.). However, regions of
slow repair were localised to exons which independently exhibited reduced curvature.
Therefore, the current experiment did not discount the possibility that the low curvature in
slow DNA repair codons was due to localisation within exons rather than a structural feature of
the slow DNA repair codons themselves.

Reduced curvature in codons of slow repair implied a role for intrinsic curvature in the
repair of DNA in TP53. The local DNA sequence bordering a chemical bulky adduct has been
shown to have a measurable effect on the repair efficiency via the NER pathway (Cai et al.,
2009, 2010). Two of the key proteins, XPA and RPA, in the NER pathway specifically recognise
DNA structural deformities due to chemical adduction and are also required to deform DNA in
order to function (Missura et al., 2001). Studies have concluded that DNA curvature may have
a role as a stabilising factor in the presentation of DNA adducts for repair (Cai et al., 2009,
2010). Gel electrophoretic experiments and molecular dynamics simulations indicate that
rigidly bent DNA sequences present a wider minor groove leading to more efficient excision
and repair of the DNA lesions. The DNA adduct used in these studies was BPDE, derived from
benzo[a]pyrene, a chemical carcinogen heavily involved in the initiation and progression of
lung cancer (Hecht, 2002; Kometani et al., 2009). BPDE has also been implicated as a causative
agent for the three lung cancer specific mutation hotspot codons that exhibited slow DNA
repair (Denissenko et al., 1998; Hussain et al., 2001). Although the evidence for low flexibility
in exon positions is not as strong as the evidence for low curvature it seem likely that flexibility
also plays a role in adduct repair. The combination of low flexibility and low curvature in TP53
exons may collaborate to reduce the presentation of chemical adducts at these sites.
Therefore, it was hypothesised that the regions of slow repair in TP53 may be due, at least in
part, to the straight and rigid nature of the DNA causing a reduced presentation of chemical

adducts for removal by the NER pathway.

7.7 Low DNA Curvature and Nucleosome Occupancy in TP53

Nucleosome affinity algorithms applied to TP53 indicated that both exon 5 and exon 6

were unlikely to be occupied by nucleosomes (Chapter 4). The mechanism underlying reduced
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sequence-specific DNA repair efficiency has also been attributed to the accessibility of the DNA
due to the local chromatin structure (Bohr, 1987). As curvature has an active role in
nucleosome positioning and the maintenance of nucleosome structure it may also affect DNA
repair efficiency indirectly through nucleosome positioning (Shrader and Crothers, 1990;
Anselmi et al., 1999). The potential for exon 5 and 6 to be excluded from the nucleosome core
has interesting implications for DNA damage models. For example, exon 5 is highly mutated in
lung cancer (Denissenko et al., 1996). One of the major carcinogens involved in lung cancer,
BPDE, has been shown to preferentially bind to DNA not contained in the nucleosome core
(Jack and Brookes, 1982; Kurian et al., 1985). Intrinsic DNA curvature has an active role in
nucleosome positioning and the maintenance of nucleosome structure (Shrader and Crothers,
1990; Anselmi et al., 1999). It may therefore influence DNA damage rates and DNA repair rates
indirectly via control of nucleosome architecture.

As has been observed in the present study all exons show a local reduction in intrinsic
curvature. Nucleosomes have been shown to exhibit affinity for curved DNA sequences of low
flexibility rather than uncurved DNA sequences (Anselmi et al., 1999). This local reduction in
curvature may represent large scale structural motif for exclusion from the nucleosome core.
The reduced flexibility of exons within TP53 may provide another energetic barrier to
nucleosome formation. It is unlikely that this large scale structural motif would be identified by
nucleosome affinity algorithms working on smaller scales (Xi et al., 2010). Exon 7 shows the
most deviation from the trend within TP53 of low curvature and low flexibility, having
moderate curvature and moderate to high flexibility. The high flexibility alone could provide an
energetic barrier to nucleosome formation. The evolutionary benefit to TP53 would be to
promote open chromatin structure and enhanced transcription of 7P53. The downstream
effects of this selection would be increased mutation rate by environmental carcinogens due
to the increased affinity of key carcinogens for open chromatin and a decrease in repair rates

because of poor presentation of chemical adducts for excision.

7.8 A Potential Role of Curvature in Post-Transcriptional Modification

It was observed that, in signed curvature profiles, exons often occurred in regions of
low curvature that bordered a change in the direction of curvature (Chapter 6). The change in
the curvature regime at the border of exons suggests a role in post-transcriptional
modification of RNA, namely the removal of introns from the RNA transcript. GC content and
related sequence motifs are recognised during post-transcriptional splicing of RNA (Amit et al.,
2012). GC content was explicitly investigated in the study, which is closely linked to intrinsic

DNA curvature. The change in the structural regime of curvature on the border of exons may
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represent a recognition factor for the spliceozome or other associated proteins. This is an area

that could be investigated in more depth in future studies.

7.9 Future Studies on the Intrinsic DNA Curvature of TP53

The present study has successfully evaluated the intrinsic DNA curvature of 7P53 and
has indicated that exons have recognisable structural differences from introns within the same
gene. The study has hypothesised that DNA repair efficiency of mutation hotspots may be
influenced by DNA curvature via both the structural presentation of adducts for excision and
the control of chromatin architecture within exons. This suggests a number of beneficial
avenues for further investigation. The curvature in individual exons could be further quantified
at improved resolution by the use of smaller, end-labelled PCR products of individual exons
using sharper AFM tips such as carbon nanotubes (Woolley et al., 2000). Alternatively, this
could be achieved using small palindromic dimers and the application of the FF algorithm.
Time-lapse DNA dynamics experiments on TP53 would elucidate the relationship between
intrinsic DNA curvature and flexibility in exon positions (Suzuki et al., 2011).

Furthermore, AFM has been successfully applied to visualise nucleosome affinity and
dynamics in both air and liquid (Van Vugt et al., 2009; Filenko et al., 2012). The application of
these techniques to TP53 DNA would allow for the experimental testing of the hypotheses
developed as an outcome of the present study. An alternative experimental route would be to
directly investigate the repair efficiency of NER repair enzymes on damaged T7P53 by AFM
imaging in real time (Lysetska et al., 2002).

Finally, the investigation of exonic DNA curvature could be quickly extended to other
highly evolutionarily conserved genes using the theoretical framework for investigation
developed in this study. The control of chromatin architecture by DNA curvature has already
been established by previous authors. The investigation of large scale curvature features may
provide another tool for the evaluation of nucleosome affinity and could potentially be used to

identify regions of evolutionary conservation.
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Appendix 1
A.l.2. Optimisation of PCR Conditions

Genomic DNA was used as a template for PCR amplification using primer sets TP53
Exon 5-7 and Exon 5-9. A basic PCR protocol (95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, repeat
30 times) was adopted as a framework and modified. The extension times were extended to
60 s and 90 s for Exon 5-7 (1855 bp) and Exon 5-9 (2500 bp) respectively as they are both
considered large DNA templates. An additional extension step of 72 °C for 5 min was added at
the end of the protocol to ensure full primer extension. The addition of a hot start and hot
stop (95 °C for 10 min) was found to be necessary to stop dimerisation of primers and products
in certain amplifications. A range of annealing temperatures was used in order to find an
optimal temperature (Figure A.1.1.). This was experimentally identified as 60 °C for both Exon

5-7 and Exon 5-9 (Figure A.1.2.).

Temperature Range (°C)

M r50 52 54 56 58 OP

Figure A.1.1. - Comparison of PCR
amplification products of TP53
Exon 5-9 using a range of
annealing temperatures (50 °C -
60 °C). Lane M contains a New
England Biolabs 1 Kb DNA ladder.
The expected (2500 bp) band is
indicated with a black arrow.
There was observable multiple
banding within the 50°C- 56°C
temperature range.

Figure A.1.2. - Replicates of TP53
samples prepared for AFM
analysis. Lanes M contain NEB 1
Kb DNA ladder. The first five
sample lanes contained replicates
of TP53 Exon 5-7 (1855 bp). The
second five sample lanes
contained replicates of TP53 Exon
5-9 (2500 bp). The right hand
labels show the size of the
pertinent marker bands in
kilobases (kb).
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A .1.2. Elimination of Non-Specific Bands

In some PCR amplifications of the biotinylated TP53 Exon 5-9 PCR products there was
an observable non-specific band at around 1.4 Kb. Due to the non-reproducibility of this band
it was likely due to uncontrollable variations in either the thermal cycler temperature or the
quality of purchased PCR reagents. In order to remove the non-specific band another series of
PCR amplifications were performed on the TP53 Exon 5-9 PCR sample. No non-specific bands
were observed in the second round of amplifications (Figure A.1.3.). TP33 Exon 5-7 products

are all amplified from the first round of TP53 Exon 5-9 PCR products.

Figure A.1.3. - Comparison of initial and secondary PCR
amplification of TP53 Exon 5-9 PCR product. Lane M
contains Generuler 1 Kb DNA Ladder. Lane 2 contained
TP53 Exon 5-9 reamplified PCR product. Lane 3
contained TP53 Exon 5-9 of PCR product from human
genomic DNA. The expected (2500 bp) band is indicted
with a black arrow. Non-specific band at 1.4 kb is
indicated with a red arrow.

A .1.3. Estimation of Error Rate of PCR for AFM Analysis.

The error rate of PCR is non-negligible (Cha and Thilly, 1993). In order to minimise
potential base pair errors a High Fidelity Tag polymerase blend with a proofreading protein
was used during this study for all samples prepared for AFM. The Expand High FidelityRLS PCR
System (Roche,UK) has a reported error rate of 2.4x 106 base pairs per cycle. The average cycle
number for amplification was 30 cycles. This gives an error rate of 7.2x 10'5per base pair per
amplification (30 cycles multiplied by an error rate of 2.4x 10'6). TP53 Exon 5-7 is a 1855 bp
DNA molecule and gives an error rate of 0.134 per amplification. TP53 Exon 5-9 was a 2500 bp

DNA molecule and gave an error rate of 0.18 per amplification.
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A.1.4. Sequencing Summary

DNA sequencing was carried out on parts of the amplified experimental molecule to
confirm amplification fidelity and to detect any polymorphisms that may be within the human
genomic DNA sample compared to a consensus sequence taken from the IARC TP53 database
(Hernandez-Boussard et al., 1999). The IARC TP53 database is a compilation of TP53 sequences
taken from human population studies. The 2500 bp molecule (from 11828 to 14328 in IARC
Database notation) was sequenced from 11828-12669 and then from 13223-14328. This
covered all of the major exons except for exon 6, which was only partially sequenced. Only two
points of deviation from the consensus IARC sequence were detected. The SNP (validated in
human populations) at 25051, commonly guanine, was detected as a thymine in the
experimental DNA. Additionally, the consensus sequence of CCAGCTTTCAAAAAGA (14311-
14327) was detected as CCAGCTTCAAAAAAGA. A thymine was deleted and an adenine

inserted in the A-tract of the experimental molecule.

A .1.5. Estimating the Effect of DNA Polymorphisms on Theoretical Curvature

The effect of the base pair deviations from the IARC consensus sequences was
estimated using theoretical models. CURVATURE was used to model both sequences (Figure
A.1.4.). The C-T transition at the 5' end of the sequences had only a small net effect on the
curvature profile. The insertion/deletion at the 3' end of the sequences had a more noticeable,
although small, effect on the curvature profile. Neither polymorphism was likely to have a

measurable effect on the experimental outcome.

01 02 0.3 04 0.5 06 07 0.B 0.9 1

Standardised Position

Figure A.1.4. - Effect of base pair deviations on intrinsic DNA curvature of TP53. The IARC
consensus sequence is shown in blue and the results of sequencing of PCR product in red. The
length of TP53 was standardised using a scale of zero to one. Exon positions are highlighted in
red in ascending order from left to right. Curvature profiles were generated using CURVATURE
(Shpigelman et al., 1993). The default settings and the De Santis model of curvature were used
to produce curvature profiles.
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Appendix 2

Figure A.2.1. - Example of AFM images of TP53 Exon 5-7 1855 bp DNA molecules. Images were
captured at a size of 3x3 pM, a resolution of 1024x1024 and with 6 nm ROC cantilevers. The
scale bar (white) represents 1 pM.

255



Figure A.2.2. - Example of AFM images of TP53 Exon 5-9 2500 bp DNA molecules. Images were
captured at a size of 3x3 pM, a resolution of 1024x1024 and with 6 nm ROC cantilevers. The
scale bar represents 1 pM.



Figure A.2.3. - Example of AFM images of TP53 DNA molecules 5' end-labelled with
streptavidin. Images were captured at a size of 3x3 pM, a resolution of 1024x1024 and with 6
nm ROC cantilevers. The scale bar represents 1 pM.
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