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Abstract

The research described in this thesis aimed to evaluate the intrinsic DNA curvature of 
the region of the TP53 tumour suppressor gene that codes for the sequence-specific DNA- 
binding domain of the p53 protein, a key protein that protects the cell from chemical insults 
and tumourogenesis. There have been no previous attempts to experimentally investigate the 
intrinsic DNA curvature within TP53 or its relation to the functional or structural properties of 
the gene, such as DNA repair and nucleosomal architecture. The present study used 
theoretical models of TP53 in concert with an atomic force microscopy based experimental 
investigation of TP53 DNA molecules to analyse intrinsic DNA curvature within the gene. This 
was achieved by developing a novel software platform for the atomic force microscopy based 
investigation of DNA curvature, named ADIPAS. Dinucleotide wedge models of DNA curvature 
were used to model TP53 in order to investigate the relationship between intrinsic DNA 
curvature and the structure and function of the gene. ADIPAS was applied to atomic force 
microscopy images of TP53 DNA molecules immobilised on a mica surface in order to 
experimentally measure intrinsic DNA curvature. The experimental findings were compared to 
theoretical models of intrinsic curvature in TP53. The resulting intrinsic curvature profiles 
showed that exons exhibited significantly lower intrinsic DNA curvature than introns within 
TP53, this was also shown to be true for regions of slow DNA repair. This indicated that DNA 
curvature may play a role in TP53 as a controlling factor for nucleosomal architecture to 
facilitate open chromatin and active DNA transcription. The evolutionary selection for intrinsic 
curvature may have played a role in the development of exons with low intrinsic DNA 
curvature. Low intrinsic curvature in exon position has also been implicated in the reduced 
efficiency of DNA repair in a number of cancer specific mutation hotspots.
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1.1 The Structure of Deoxyribonucleic Acid

Deoxyribonucleic acid (DNA) is a duplex of two polymers each individually constructed 

of nucleotide subunits. The duplex is connected by complementary base pairing between 

individual nucleotides. Nucleotides are further subdivided into chemical residues. The 

structure of DNA has been detailed below (Section 1.1.1.-1.1.4.) on a range of scales: the 

primary structure of DNA (nucleotides), the interactions that create the dipolymeric chains 

typically found in vivo (complementary base pairing) and the secondary structure of DNA (the 

double helix).

1.1.1 Primary Structure -  Mononucleotides

Each nucleotide subunit consists of a phosphate residue, a sugar moiety and one of 

four nucleobases, often referred to as bases (Figure 1.1.).

The nucleobases are heterocyclic aromatic organic nitrogen-containing compounds. 

There are four nucleobases commonly found in DNA: adenine (A), guanine (G), thymine (T) and 

cytosine (C). There are two fundamental types of nitrogenous bases found in DNA: the purine 

bases, adenine and guanine, and the pyrimidine bases, thymine and cytosine. Nucleobases 

provide the molecular structure required for hydrogen bonding and complementary base 

pairing that gives rise to the dipolymeric structure of DNA found in vivo, discussed later.

The sugar residues in DNA are universally the pentose sugar monosaccharide, 2- 

deoxyribose, with the formula H-(C=0)-(CH2)-(CH0H)3-H. This distinguishes DNA from 

ribonucleic acid (RNA), another important biological nucleic acid, in that RNA contains ribose 

rather than 2-deoxyribose. Nucleobases are connected to the sugar residue via N-glycosidic 

linkages that involve base ring nitrogens, N-9 for purines or N -l for pyrimidines connected to 

the C-l of the pentose sugar. The sugar and base together are called a nucleoside.

Each nucleoside is connected to the next via a phosphodiester bond between a 

phosphate residue at the third and fifth carbon atoms of adjacent nucleosides. Nucleosides 

with phosphate residue bound at the 5' terminus of the sugar ring are referred to as 

nucleotides. The asymmetric phosphodiester bonds give the DNA its directionality. Repeating 

sugar and phosphate groups form the 'sugar-phosphate backbone' of the DNA molecule. The 

labels 5-prime (5') and 3-prime (3') are assigned to the ends of the DNA polymer that 

terminate with a phosphate group and hydroxyl group respectively.
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Base

Phosphate

o

o

OH OH
Sugar

Figure 1.1. -  An example o f the adenine m ononucleotide. The d iffe re n t chemical residues are 
indicated: phosphate (green), sugar (blue) and base (red). All m ononucleotides fo llo w  this 
basic s tructu re  but w ill have a d iffe ren t base.
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1.1.2 Complementary Base Pairing

DNA in vivo does not exist as a single chain. Rather, it is found as two polymer chains 

bound to one another by hydrogen bonds between nucleobases. Two bound nucleotides are 

referred to as a base pair (bp). The DNA complementary base pairing principle operates 

because specific geometrical requirements exist in the formation of hydrogen bonds between 

the heterocyclic amines. This leads to optimal geometries between complementary purines 

and pyrimidines. In canonical base pairing, guanine forms a base pair with cytosine while 

adenine forms a base pair with thymine (Figure 1.2.). Adenine and thymine form, 

complementary base pairs via two hydrogen bonds between their respective bases. Cytosine 

and guanine form complementary base pairs via three hydrogen bonds between their 

respective bases. Therefore, the secondary strand, often called the complementary strand, has 

an opposite and complementary nucleotide sequence to the primary strand e.g. the 

complementary base pair sequence for ACTG would be TGAC. Conventionally, the primary 

strand is written in a 5' to 3' direction and the complementary strand in the 3' to 5' direction.

K C

NH

deoxyribose

r \  / N^ C Hex./ v deoxyribose
N

Thymine Adenine

NH

HN deoxyribose

deoxyribose H,N

Cytosine Guanine

Figure 1.2. -  Complementary base pairing schematic. Hydrogen bonds between base pairs are 
indicated by a broken dotted line. Only the bases involved in forming complementary 
hydrogen bonds are shown, the point where the base pair joins to the deoxyribose is 
indicated.
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1.1.3 Secondary Structure -  The Double Helix

The tw o  com plem entary strands o f DNA fo rm  the u ltim ate  biological un it o f DNA, the 

'doub le  helix' (Figure 1.3.). The double helix can be imagined as a vastly long rope ladder 

tw isted  about its central axis, w ith  the sugar-phosphate backbone fo rm ing  the o u te r 'rope ' 

support and the base paired nucleobases fo rm ing  the rungs. The phosphate 'backbone' o f DNA 

has a strongly negative charge. In the m ost com m only observed fo rm  o f the double helix, the 

B-form, the helical nature o f DNA causes the nucleotides to  spiral around the central axis and 

fo rm  tw o  grooves w ith in  the phosphate backbone. These grooves are repeated along the 

double helix. The m inor groove occurs when backbones are in close p rox im ity  and the m ajor 

groove when they are fa r apart. M any sequence-specific DNA binding pro teins w ill 

p re ferentia lly  bind in the  m ajor groove as it displays more base identify ing  chemical groups 

than the m inor groove (Xiong and M utta iya , 2001). The m ost com m on class o f eukaryotic DNA- 

binding transcrip tion  factors are zinc-coordinating proteins, which in teract w ith  the m ajor 

groove o f DNA. However, there  are also a num ber o f m inor groove binding proteins, such as 

the TATA-box binding pro te in  which is involved in the in itia tion  o f transcrip tion  by eukaryotic 

organisms (Bewley et a!., 1998).

0.34 nm

Minor ^  
Groove

Nucleotide <-------- >
Base Pair < >

Major
Groove

v

Figure 1.3. -  The general s tructure  o f the  DNA double helix in B-DNA. The distances in 

nanom etres represent standard m easurements. The m ajor features o f the B-form helix are 

indicated (Baumann e to l.,  1997).
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1.1.4 Helical Polymorphisms

The DNA helix was described as having a radius of 1 nanometre (nm) and pitch of 3.4 

nm, by its discoverers James Watson and Francis Crick, with one complete turn about its axis 

every 10.5 bp (Watson and Crick, 1953). Whilst the true dimensions of DNA vary when in 

different ionic solutions, these values act as an excellent rule of thumb (Baumann et al., 1997). 

This structure of DNA, later termed B-form DNA or B-DNA, was found to be one of many 

related helical structures that DNA can adopt. However, the B-form of the double helix is by far 

the most predominant of the possible helical structures that DNA adopts within the cell 

(Richmond and Davey, 2003). A generalised structure of B-DNA is presented in Figure 1.3.

While the B-form of DNA is thought to predominate in nature there are a number of 

different forms that DNA will adopt under both artificial and physiological conditions 

(Richmond and Davey, 2003). Of these possible forms only A-DNA and Z-DNA have been 

proposed to occur naturally (Figure 1.4.). Shortly after the discovery of B-form DNA by Watson 

and Crick the A-form of DNA was discovered by Franklin and Gosling (Franklin and Gosling, 

1953). A-DNA has a shorter, broader helix when compared to B-form DNA with a helical turn of 

11 bp in comparison to the 10-10.5 bp of B-DNA (Basham etal., 1995). The formation of A-DNA 

is thought to have a role in transcriptional regulation (Llewellyn et al., 2009) and may also form 

when DNA is bound by a ligand (Lu et al., 2000). The propensity of DNA to adopt the A-form is 

sequence dependent, the major determinant for the formation of A-DNA is the hydration of 

phosphates along the backbone (Lu et al., 2000).

Whereas A-DNA has a shorter, squatter structure compared to B-DNA, Z-DNA is quite 

the opposite. Z-DNA adopts a long left handed helical structure that repeats every 2 base pairs 

with 12 base pairs per turn (Dickerson et al., 1982). The major and minor grooves in Z-DNA 

show little difference in width. Z-DNA has typically been difficult to study as it is only 

transiently formed under certain biological conditions (Zhang et al., 2006). A variety of 

conditions have been shown to promote the formation of Z-DNA including high salt conditions, 

multiple repeats of the GC dinucleotide and negative supercoiling. While there is no definitive 

role for Z-DNA in the cell it has been hypothesised that Z-DNA forms to provide torsional relief 

for supercoiled DNA during transcription as the propensity for Z-DNA formation is found in 

regions of high transcription (Champ et al., 2004).
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A-DNA B-DNA Z-DNA

Figure 1.4. Generalised structures o f A-, B- and Z- DNA. The image is owned by Richard 

W heeler (w w w .richa rdw hee le r.ne t).

1.2 Intrinsic DNA Curvature

The discovery and characterisation o f DNA curvature  was an increm enta l process 

con tribu ted  to  by m u ltip le  researchers. The quantifica tion  o f DNA curvature  alongside e ffo rts  

to  fu lly  characterise and model its occurrence are still ongoing. The discovery o f sequence- 

specific DNA curvature had a pro found influence on biologists studying DNA packaging, 

recognition and transcrip tion . The idea o f DNA as a featureless repeating polym er has long 

been dispelled. Asym m etrical kinks and bends are known to  be caused by the binding o f 

proteins and chemical ligands (Xiong and M utta iya , 2001; Cassina e t al., 2011). However, 

external d is to rtion  is not necessary fo r local structura l polym orphism s w ith in  DNA. DNA th a t is 

free o f bound proteins displays heterogeneity  in structure  th a t is en tire ly  dependent upon 

local DNA sequence and, to  a still d isputed degree, long-range sequence context. This local 

heterogeneity m anifests as a sm ooth curvature  over a num ber o f helical tu rns th a t is 

dependent upon the local DNA sequence. DNA curvature and bending can be quantified  as 

angles in degrees (°) o r radians (rads) between tw o  base pairs or, on a larger scale, between 

helical turns.
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1.2.1 The Discovery of DNA Curvature

The influence of sequence on the angle between base pairs was first hinted at by DNA 

X-ray fiber diagrams twenty years after the discovery of the B-form of DNA (Bram, 1973). The 

role of local DNA sequence in the generation of DNA curvature was later confirmed and 

further elucidated by other experimental techniques, such as gel electrophoretic mobility and 

nucleotide digestion (Wang, 1979; Dickerson and Drew, 1981a; Wu and Crothers, 1984). The 

most conclusive evidence of sequence control of curvature and a huge source of information 

on DNA structure, was provided by the first X-ray crystal structures of DNA (Dickerson and 

Drew, 1981b).

The focus of research efforts over the last few decades, after confirmation that DNA 

intrinsic curvature had a sequence dependent component, has been mainly to identify and 

attempt to make quantitative measures of the influence of DNA sequence on curvature. The 

first attempt at this suggested that large amounts of eukaryotic DNA may be curved and that 

this intrinsic DNA curvature was likely to facilitate packing within the nucleosome (Trifonov 

and Sussman, 1980). Further experimentation confirmed that AA tracts in phase with repeats 

in the DNA helix cause gradual curvature (Marini et al., 1982; Wu and Crothers, 1984). DNA 

sequences other than AA-TT repeats generate curvature to a greater or lesser extent. Larger 

scale structural context and environmental conditions, such as the amount and type of ions 

within solution, also plays a role (Haran et al., 1994). The discovery that divalent cations induce 

curvature in DNA explained discrepancies between experiments in solution and X-ray 

crystallography data and effectively settled the debate concerning DNA sequence dependent 

curvature (Brukner et al., 1994). The occurrence of intrinsic, sequence-dependent DNA 

curvature is now widely accepted.

1.2.2 Biological Roles for DNA Curvature

Intrinsic DNA curvature has been confirmed to be involved in a number of biological 

processes and has been implicated in many more. A selection of these have been presented 

below:

1.2.2.1 Protein Binding

As proteins are the ultimate effectors of processes involved in the transcription, 

replication and repair of DNA the effects of curvature and flexibility on protein binding have 

important biological implications. A number of DNA binding proteins introduce a local 

deformation, sometimes called a kink or bend, on binding (Luscombe et al., 2000). Still other 

proteins recognise regions of DNA that are sufficiently curved either intrinsically or due to 

environmental or chemical factors (Missura et al., 2001). It is likely that the structure of DNA,
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either large scale curvature or localised kinking, is used by proteins to distinguish between 

members of the same DNA-binding protein family (Rohs et al., 2010). Therefore, DNA 

curvature may have been selected during evolution for at least three major reasons: to 

facilitate histone binding and chromatin remodelling (Anselmi et al., 2000; Cairns, 2009), as a 

feature recognised by a number of specialised proteins (Missura et al., 2001; Rohs et al., 2010) 

and a facilitator of DNA binding by ligands by reducing the mechanical cost of deformation due 

to intrinsic DNA curvature or flexibility. This provides a role for DNA curvature in a number of 

biological processes which will be detailed below.

A classic example of a protein with activity influenced by DNA curvature is DNase I. 

DNase I requires access to the minor groove of DNA in order to function (Suck, 1994). The 

activity of DNase I becomes markedly higher in intrinsically bent DNA that more often presents 

access to the minor groove; similarly, highly flexible DNA will also provide access to the minor 

groove more frequently than rigid DNA. This property of DNase I has been taken advantage of 

by researchers to study the curvature and flexibility of experimental DNA sequences (Brukner 

eta!., 1995a).

1.2.2.2 Nucleosome Affinity and Chromatin Structure

One of the first roles discovered for DNA curvature was its involvement in the 

nucleosome affinity of DNA sequences (Satchwell et al., 1986). Histones are the proteins that 

package DNA within eukaryotic cells. Histones wind DNA around a number of nucleosomal 

proteins. The DNA thus packaged is called chromatin. The involvement of intrinsic DNA 

curvature in nucleosome affinity has not been fully explained and is only one factor that 

determines nucleosome affinity (Nair, 2010). However, it has been observed that nucleosome 

formation favours DNA with low flexibility and high curvature, via two mechanisms: decreasing 

the free energy of DNA distortion by nucleosomes and by increasing the energy cost that the 

corresponding DNA free form spends to release a part of the spine of water displaced by 

histone interactions (Anselmi et al., 1999, 2000). The intrinsic curvature of DNA has also been 

implicated in the process of chromatin remodelling necessary for DNA transcription and 

replication (Cairns, 2009).

1.2.2.3 Transcription

DNA curvature plays a multitude of roles in DNA transcription. Highly curved DNA is 

present in the promoter region in prokaryotic organisms (Asayama and Ohyama, 2000). This 

motif is so prevalent in prokaryotes that DNA curvature, alongside other physio-chemical 

properties of DNA, has been used to identify and characterise different promoter regions 

(Jauregui, 2003). It has also been hypothesised that DNA curvature plays a role in the
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termination of transcription in prokaryotes (Kozobay-Avraham et al., 2006). Additionally, 

proteins introduce sharp bends that regulate the propagation of supercoiling in prokaryotic 

DNA, indicating another role for DNA curvature in prokaryotic transcription (Leng and 

McMacken, 2002).

Prokaryotic genomes only contain three different promoter elements (-10, -35 

promoters and upstream elements) whereas eukaryotic genomes contain a wide variety of 

promoter elements (Struhl, 1999). Therefore, the involvement of DNA curvature in 

transcriptional regulation of eukaryotic organisms is less clear, due to its increased complexity. 

However, a number of curved DNA motifs are found clustered in and around promoter regions 

in eukaryotic genomes (Ohyama, 2005). This has led researchers to propose a number of 

functions for DNA curvature in eukaryotic transcription including: as a structural feature 

recognised by transcription factors, regulation of transcription in association with 

transcription-factor-induced bending of DNA and as an organising factor for local chromatin. 

Theoretical DNA curvature measurements have also been incorporated into efforts to identify 

novel promoters in eukaryotes (Abeel et al., 2008).

1.2.2.4 DNA Damage and Repair

In many DNA damage pathways DNA damage is recognised due to the conformational 

effect on DNA such as double strand breaks and single strand nicks. In the case of the 

nucleotide excision repair (NER) pathway, damage is recognised by local bends formed by 

chemical adducts (Missura et al., 2001). The key damage recognition proteins involved in NER 

pathway, XPA and RPA, have been shown to detect damage not by identification of adducted 

bases but by the conformational irregularities that they produce (Missura et al., 2001). 

However, both XPA and RPA recognise different aspects of conformational change. XPA was 

shown to have a high affinity for sharply and rigidly bent sections of the duplex DNA, often 

caused by bulky DNA adducts, while RPA recognises single strand DNA loops, mainly formed 

due to mismatches.

While this alone indicates a role for DNA curvature in NER, more compelling evidence 

has recently been published. The local DNA sequence bordering a bulky chemical adduct was 

shown to have a measurable effect on the repair efficiency of the NER pathway (Cai et al., 

2009, 2010). These studies indicated that the role for DNA curvature and flexibility is that of a 

destabilising or stabilising factor in the presentation of DNA adducts for repair. Gel 

electrophoretic experiments and molecular dynamic (MD) simulations have indicated that 

rigidly bent DNA presents a wider minor groove leading to more efficient excision and repair of 

DNA lesions. The bulky adduct under investigation for these studies was benzo[a]pyrene diol 

epoxide (BPDE), a chemical carcinogen heavily involved in the initiation and progression of
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lung cancer (Hecht, 2002; Kometani et al., 2009). DNA curvature has also been identified as a 

possible protective factor for the protection of prokaryotic chromosomes from viruses (Abel 

and Mrazek, 2012). On an additional note, the tertiary structure of DNA has been shown to 

effect the rates of adduct formation (Raney et al., 1993).

1.3 Defining DNA Curvature

It is necessary to distinguish between curvature and local bending. Local bending is the 

deviation from an ideal straight helix over a fraction of a helical turn, whereas DNA curvature is 

the conformation of a DNA tract measured over a number of helical turns (Goodsell and 

Dickerson, 1994). Curvature therefore discounts local writhe within the helix whilst giving a 

measure of how curved a sequence is on a macro scale (Figure 1.5.). A section of DNA with 

high curvature may be constructed from many locally straight DNA sections and include only a 

few bent sequences if the majority of the bent sequences are curved in the same direction. 

Similarly, a section of DNA with a high degree of non-uniform local bending, or writhe, may 

have functionally no curvature over a number of helical turns.

A

bent

uncurved

bentunbent

curved

Figure 1.5. - Comparison of local bending and curvature in curved and uncurved section of 
DNA. A) A section of DNA with a large degree of local bending (writhe) which has low overall 
curvature. B) A section of DNA with a low degree of local bending interspersed with sections of 
straight DNA which have a large degree of curvature. Each individual section represents a 
helical turn or short series of base pairs. The figure is adapted from Goodsell and Dickerson, 
1994.
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1.4 The Experimental Investigation of DNA Curvature and Flexibility

With the discovery of the propensity of DNA sequences to intrinsically bend it became 

clear that there was a need to measure and quantify curvature. There have been a number of 

different methodologies developed for measuring the curvature of DNA sequences. One of the 

obstacles in quantifying DNA curvature has been that DNA is a naturally dynamic polymer and 

has a degree of sequence-specific flexibility (Hagerman, 1988). In many experiments this has 

required the considerations of the static (curvature) and dynamic (flexibility) contributions to 

DNA curvature. As DNA curvature and flexibility are both determined by DNA sequence 

context the study of curvature often goes hand-in-hand with the study of flexibility. Some 

studies were unable to determine which parameter, curvature or flexibility, contributed to the 

observed changes in DNA conformation and instead amalgamated both parameters into a 

single metric of DNA deformability (Brukner et o/., 1995b). There are also individual measures 

of DNA flexibility; for example, DNA persistence length (£) measures the distance over which 

DNA retains its original trajectory (Bednar et al., 1995). A number of different methodologies 

for investigating DNA curvature and flexibility have been detailed below.

1.4.1 Gel Mobility

One of the simplest and most commonly used experiment procedures for the 

measurement of curvature has been polyacrylamide gel electrophoresis. Curved DNA 

sequences have been observed with unexpected gel mobility {e.g. Dlakic & Harrington, 1998a; 

Marini et al., 1982; Zinkel & Crothers, 1990). A number of models have been proposed that 

relate intrinsic curvature to the mobility of DNA in gel electrophoresis. Some of these models 

have formed the basis of popular dinucleotide models of curvature {e.g. Trifonov and Sussman, 

1980; Bolshoy et al., 1991; De Santis et al., 1988; Ulanovsky and Trifonov, 1987). The models 

explain the results of the gel mobility experiments and typically only consider the intrinsic 

curvature of a DNA tract. DNA flexibility is not considered as a large component of these 

models.

1.4.2 Bendability Experiments

The physical characteristics that influence the affinity of DNA for a number of proteins 

have been exploited by researchers studying DNA curvature in a series of related experiments. 

The fractional occurrence of DNA sequences in chromatin taken from chicken erythrocyte cells 

has been used to generate an index of the bendability of DNA sequences (Satchwell et al., 

1986). This experiment exploited the affinity of nucleoproteins for curved DNA. The activity of 

DNase I, a DNA degradation enzyme, is dependent upon access to the minor groove of DNA 

(Brukner et al., 1995a). Flexible or intrinsically curved DNA presented the minor groove at a
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higher rate than uncurved and inflexible sequences. The propensity of sequences to be cut by 

DNase I was taken as a measure of DNA curvature and flexibility.

1.4.3 DNA Cyclisation Kinetics

Another methodology developed for the study of DNA curvature is DNA cyclisation 

kinetics. This typically involves measuring the ratio of linear DNA molecules that circularise in a 

solution containing DNA ligase (Shore and Baldwin, 1983). The probability of forming a closed 

circle is related to the persistence length, a measure of DNA flexibility, of the DNA molecule. 

Researchers have worked on a large pool of DNA sequences to develop theoretical and 

computer generated models of cyclisation kinetics {e.g. Shore and Baldwin, 1983; Shimada and 

Yamakawa, 1984; De Santis et al., 1996; Merlitz et al., 1998; Levene and Crothers, 1986). The 

resulting models consider both the curvature and flexibility of experimental DNA sequences in 

the resulting model.

1.4.4 X-ray Crystallography and Nuclear Magnetic Resonance Imaging

Other techniques that have been invaluable for the study of DNA curvature are X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy. X-ray fibre diagrams 

gave the first indications that DNA had intrinsic curvature (Bram, 1973). X-ray crystallography 

was the first tool available for the elucidation of representative roll, tilt and twist parameters 

for oligonucleotides. However, there are a number of possible conformations for an individual 

DNA molecule of which a crystal structure represents only one (El Hassan and Calladine, 1996). 

Additionally, crystal packing can have a large effect on the resulting structure and it is 

necessary to study multiple structures from different crystallisation environments in order to 

produce a representative picture of DNA structure (Dickerson et al., 1994). In some cases the 

outcome of multiple experiments has produced diametrically opposite results (Crothers et al., 

1990; Dickerson et al., 1994; Goodsell et al., 1994). X-ray crystallography was the basis for a 

theoretical model that considered the contribution of both DNA curvature and flexibility 

(Olson et al., 1998).

NMR spectroscopy of DNA is a powerful tool for studying DNA structure (Young et al., 

1995; Dornberger et al., 1998; Travers, 2004). NMR results have been shown to be significantly 

better at predicting curvature in experimental DNA than X-ray crystallography (Gabrielian and 

Pongor, 1996). NMR also allows for the investigation of structures in solution, something 

which X-ray crystallography is unable to provide. However, NMR is unable to provide long 

range information about structures under investigation (Young et al., 1995). The recent 

application of small angle X-ray diffraction "fingerprinting" to DNA structures in solution could
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provide a bridge between the two methodologies and a useful tool for evaluating the results of 

molecular dynamics (MD) simulations (Zuo et al., 2006).

1.4.5 Molecular Dynamic Simulations

Molecular dynamics simulations exist on the line between experimental and 

theoretical methodologies and allow researchers to test hypothesis in a meaningful way. MD 

simulations are computer models of the movement of atoms and molecules and the 

interaction of inter-atomic forces. MD simulations of DNA have shown, at least in the general 

features, to resemble NMR or X-ray crystallography data (Young et al., 1995; Dixit et al., 2004). 

However, variances in methodological and simulation parameters imply a level of uncertainty 

in the outcome of MD simulations. The results of MD simulations have also been shown to 

deviate from expected experimental outcomes, especially within AT rich DNA sequences 

(Cheatham and Young, 2000; Zuo et al., 2006). MD simulations lack a sufficiently complete 

library of molecular structures to provide a comprehensive answer to the question of their 

adherence to experimental data (Beveridge et al., 2004). Promising tools for checking the 

veracity of MD simulations, such as small angle X-ray diffraction, have recently been developed 

(Zuo et al., 2006). Molecular dynamics can provide useful information on local DNA properties 

and will become more accurate and powerful as increasing amounts of experimental data 

become available with which to refine the method.

1.4.6 Atomic Force and Electron Microscopy

Atomic force microscopy (AFM), also called scanning force microscopy, and electron 

microscopy (EM) provide additional information in the form of measurements of the contour 

length of individual DNA molecules and ensemble population of molecules (Bednar et al., 

1995; Rivetti et al., 1996). AFM has often been preferentially used for investigations of DNA 

curvature as the sample preparation procedures are simpler than those required for EM. In the 

preparation of DNA for EM it is necessary to treat DNA with heavy metals. AFM imaging of 

DNA can be performed using a range of different buffers in either air or liquid. Early AFM and 

EM experiments often dealt with the dynamic contribution of sequence to curvature. The 

works of Scipioni and colleagues gave researchers solid theoretical grounds for the separation 

of the effects of sequence on intrinsic DNA curvature and flexibility (Zuccheri et al., 2001b; 

Scipioni et al., 2002a). The authors showed that by accounting for both the direction and the 

magnitude of DNA curvature by AFM imaging it was possible to measure the static and 

dynamic contributions to curvature.
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1.4.7 Experimental Separation of DNA Curvature and DNA Flexibility

In order to evaluate both the static and dynamic contributions to DNA curvature, i.e. 

curvature and flexibility, they must be experimentally separated. The first experiments that 

probed sequence-specific DNA flexibility used DNA tracts designed to have anomalous 

curvature or flexibility. Examples of such experiments include: controlling curvature with in- 

phase (Rivetti et al., 1998) and out of phase A-tracts (Bednar et al., 1995), base pair 

mismatches (Kahn et al., 1994; Grove et al., 1996), a single nick in the DNA backbone (Le Cam 

et al., 1994), single-stranded sections in the DNA sequence (Rivetti et al., 1998), asymmetric 

charge neutralizations of the phosphate backbone (Hardwidge, 2002) and double-stranded 

linker regions between two tracts of triple-helix DNA (Akiyama and Hogan, 1997). AFM was the 

method of investigation in the first experiments that could conclusively claim to separate the 

contributions of intrinsic curvature and flexibility in 'real' DNA sequences, as opposed to 

constructed test DNA sequences (Zuccheri et al., 2001b; Scipioni et al., 2002a). AFM has also 

been used to compare theoretical models of DNA flexibility to experimental DNA tracts 

(Marilley et al., 2005) and has shown that on short scales DNA is more flexible than predicted 

by classical models of DNA curvature (Wiggins et al., 2006).

1.5 Atomic Force Microscopy as a Tool for Studying DNA

The atomic force microscope was developed by Binnig, Quate and Gerber in 1986 

(Binnig et al., 1986). The precursor to the AFM was the scanning tunnelling microscope which 

earned Binnig and Rohrer the Nobel Prize in Physics (Binnig and Rohrer, 1993). The AFM 

functions by measuring the interaction between a sample surface and a nanoscale size probe. 

As this interaction is mechanical, not optical, it can take measurements of a surface on scales 

much smaller than the optical diffraction limit. The resolution of AFM images is on a 

nanometre scale. Measurements of interaction forces between the tip and the sample are also 

possible and routine. The nanoscale probe is typically a flexible cantilever on which is mounted 

a very small, sharp tip.

The tip is moved over the surface, much like the stylus of a record player. Deflections 

in the movement of the cantilever are detected by a laser coupled to a photodiode that 

reflects off the back of the cantilever. Nanoscale movements between the tip and surface can 

be precisely controlled by a piezoelectric element in the scanner head or the motor stage on 

which the sample is mounted (Figure 1.6.). AFM has become one of the most widely used tools 

for investigations in biology at the nanoscale. Another advantage of the physical nature of AFM 

is that it can be performed in both ambient (air) and solution (liquid) environments. This has 

important implications for studies investigating both naked DNA and DNA-protein interactions.

28



Detector

Photodiode
_Q
"O

u_

Cantilever With Tip

Scanning Stage

Figure 1.6. - Schematic representation o f an atom ic force m icroscope. The red line represents 
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1.5.1 AFM Imaging Modes

A number of different imaging modes have been developed for AFM imaging. In 

contact mode a tip is passed in close proximity to a sample surface. Deflections in the 

cantilever relate to deformations on the experimental surface. Contact mode is not typically 

considered a suitable technique for imaging DNA as there is a large possibility of the tip 

breaking or perturbing DNA during scanning (Hansma et al., 1994). An offshoot of this mode is 

the direct manipulation of DNA on the surface using the AFM probe. This can be used for 

nano-dissection of DNA samples (An et al., 2005) and has been used for highly accurate 

screening and selection of fluorescently labelled DNA from individual cells (Di Bucchianico et 

al., 2011).

Intermittent contact mode, often called tapping mode, is typically used in AFM studies 

of DNA. This mode overcomes some of the most problematic imaging factors such as surface 

adhesion, friction and electrostatic forces by only bringing the tip into intermittent contact 

with the surface. The tip is oscillated near the resonant frequency of the cantilever. The tip is 

not dragged along the surface as in contact mode. Instead the oscillating tip is brought into 

light contact with the surface. The oscillation of the tip is maintained at a constant level by a 

feedback loop. As the tip interacts with the surface the oscillation is dampened. The reduction 

in oscillation amplitude is used to map features on the experimental surface. This is highly 

effective for imaging DNA, where shear forces can cause damage to the sample (Hansma et al., 

1994).

1.5.2 A Brief History of AFM and DNA Imaging

The first commercially available AFM was released in 1989. It was not long before the 

power of the system was applied to biological problems. The first published reproducible AFM 

images of naked DNA were produced in 1992 (Hansma et al., 1992). For the first decade after 

the development of the AFM many DNA researchers applied themselves to methodological 

problems with imaging DNA under AFM. A huge amount of methodological literature was 

published during this time, for example: researchers explored different ways of preparing DNA 

for imaging (Allison et al., 1992; Bezanilla et al., 1995; Thomson et al., 1996), the resolution 

limits of AFM imaging (Mou et al., 1995), imaging DNA in liquid (Hansma et al., 1992; 

Lyubchenko, 1993), enzymatic reactions and degradation of DNA (Bezanilla et al., 1994), 

humidity effects on the height of DNA on mica (Vesenka et al., 1993), imaging of DNA-protein 

complexes (Allen et al., 1992) and, importantly, the application of intermittent contact mode 

to imaging DNA (Hansma et al., 1994).
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1.5.3 DNA Dynamics

AFM allows the researcher not just to visualise immobilised DNA but also DNA freely 

able to move on a surface in liquid buffers. This property makes AFM one of the only available 

tools for direct visualisation of DNA dynamics. It has been used for a number of different 

studies: the visualisation of DNA transiently forming non-B-form tertiary structures (Tiner et 

al., 2001), formation and recognition of stem-loop structures (Lonskaya et al., 2005), the 

formation of cruciform structures (Mikheikin et al., 2006), manipulation of DNA structure by 

protein interaction (Jiao et al., 2001), the gradual melting of replication origins (Marilley et al., 

2007a) and the dynamic movement of nucleosomes (Shlyakhtenko et al., 2009). Additionally, 

researchers have begun to incorporate time-lapse imaging of individual DNA molecules into 

studies of DNA curvature (Marilley et al., 2005). The recent development of reliable high speed 

AFM imaging techniques has expanded the scope of studies investigating DNA dynamics. The 

ability to image DNA behaviour or interactions over millisecond time-scales has begun to yield 

promising results and will continue to do so over the next few years (Lyubchenko et al., 2011).

1.5.4 Mechanical Measurements of DNA by AFM.

AFM has also been used to measure the mechanical elastic forces in the DNA duplex 

(Bustamante et al., 2000). One end of a single DNA molecule was attached to the AFM tip and 

the other end attached to the surface. By pulling the tip at a constant force away from the 

surface and measuring the deflection the elasticity of the DNA molecule can be measured. A 

related application has been applied to measure the energy required to unzip double stranded 

DNA (Krautbauer et al., 2003). One complementary sequence is bound to an AFM tip and 

another to a sample surface, they are brought into contact, allowed to hybridise and then 

pulled apart. This has been a valuable source of information for theoretical models of inter­

helical forces (Cocco et al., 2002). The interaction forces between proteins and DNA can be 

measured in a similar way (Bartels et al., 2007).

1.5.5 DNA-Ligand Interactions

AFM has obvious utility for visualising DNA-protein interactions. Some of the first 

applications of AFM to DNA imaged the interaction between DNA and nucleoproteins 

(Lyubchenko et al., 1995). The deformation of DNA caused by the binding of proteins can be 

observed in air and liquid conditions (Yoshimura et al., 2000; Lysetska et al., 2002). This has 

proved invaluable in efforts to understand DNA transcription (Hamon et al., 2007), repair 

(Yaneva et al., 1997; Wang et al., 2003; Jiang and Marszalek, 2011) and replication (Yoshimura 

et al., 2000; Lysetska et al., 2002). AFM has become a routinely utilised tool in studies of DNA- 

protein interactions.
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AFM has also been used to assess chemical interactions and the structural 

perturbations caused by bulky adducts. For example, the chemical carcinogen BPDE, caused a 

local bend of at least 30 % in supercoiled plasmid DNA (Pietrasanta et al., 2000). AFM can 

measure the changes in molecule length and persistence length attributed to intercalation by a 

number of chemical agents (Pastre et al., 2005). Sufficiently large numbers of measurements 

over a range of different concentrations of the chemical allowed for a measurement of 

intercalating efficiency and estimation of the number of intercalating molecules (Cassina et al.,

2011).

1.5.6 AFM for the Analysis of DNA Curvature and Flexibility

The first steps in the analysis of macromolecular structure of DNA by direct imaging 

were performed using EM. These initial experiments utilised protein end-labels to orient DNA 

molecules to generate profiles of the curvature of plasmid DNA (Muzard et al., 1990). These 

experiments were used as a basis for the first experiments that used AFM to probe intrinsic 

DNA curvature. The first examples of the analysis of DNA bending by AFM studied molecules 

designed with sections of artificially modified flexibility or conformational changes induced by 

proteins (Rivetti et al., 1998; Cam et al., 1999). It was not until the work of Scipioni and 

colleagues that a solid mathematical underpinning was developed for application to AFM 

images of DNA (Zuccheri et al., 2001b; Scipioni et al., 2002a, 2002b). These works proved that 

the contributions of both intrinsic curvature and flexibility to DNA conformation could be 

individually determined for an ensemble of DNA molecules by AFM analysis. These studies 

used real DNA sequences as opposed to sequences constructed with anomalous regions of 

curvature or flexibility.

Other studies have generated novel mechanisms for DNA molecule orientation and 

have studied profiles of curvature from a number of well characterised DNA sequences (Ficarra 

et al., 2005b; Milani et al., 2007; Buzio et al., 2012). More recent studies have begun to 

investigate the functional role of DNA curvature, such as characterising curvature profiles at 

the origin of replication (Marilley, 2000; Marilley et al., 2007a, 2007b) and the role of DNA 

curvature in activating the interleukin 2 receptor alpha gene (Milani et al., 2011). One of the 

most exciting advances of recent years is the detection of the conformational changes induced 

by single nucleotide polymorphisms in the human osteopontin gene by AFM analysis (Buzio et 

al., 2012). The detection of conformational changes induced by such minor modifications to 

the DNA sequences suggests an exciting future of AFM based analysis of intrinsic DNA 

curvature.

32



1.5.7 Adhesion of DNA to an Imaging Substrate

A major experimental consideration for AFM analysis of DNA is the selection of an 

appropriate imaging substrate and buffer. There are few suitable atomically flat substrates 

that will bind or can be caused to bind DNA. One of the most popular methods of DNA 

preparation is the use of a mica substrate and a divalent cation containing buffer. The mica 

surface has a negative charge which is unsuitable for binding DNA. However, by using 

positively charged divalent cations, that have an affinity for both the negatively charged DNA 

phosphate backbone and the mica surface, a cationic bridge is formed. One of the benefits of 

this method is that cationic radius has been shown to influence the strength of adhesion, 

therefore the strength of DNA binding can be varied by changing the constituent divalent 

cations and concentration of the buffer (Hansma and Laney, 1996). Chemical modification by 

spermidine, l-(3-aminopropyl)silatrane and 3-aminopropyltriethoxy silane is also routinely 

used to make the mica surface suitable for DNA binding (Lyubchenko et al., 2011). The routine 

use of highly oriented pyrolytic graphite is complicated by its hydrophobic nature (Oliveira 

Brett and Chiorcea Paquim, 2005). The typical substrate used in AFM analyses of DNA 

curvature is mica and the buffer used is typically a divalent cation containing buffer of either 

Mg2+ or Ni2+ (Scipioni et al., 2002a; Ficarra et al., 2005b; Buzio et al., 2012). The use of Mg2+ 

cations has been shown to produce a weak bond between the DNA and mica which allows for 

the DNA to equilibrate on the surface and adopt its preferred conformation (Rivetti et al., 

1996).

1.6 Image Processing of AFM Images of DNA

For an AFM-based study of intrinsic DNA curvature the image processing steps applied 

to the resulting images are of central importance. There are a number of methodological 

considerations to consider which are likely to influence the output of the study. AFM is a 

relatively high throughput technology. The imaging of naked DNA is free from high contrast 

topographic features and so requires only minimal oversight from the user. Large amounts of 

images can be captured in an automated manner on most commercial AFMs using proprietary 

software or in-house code. There are two major bottlenecks to consider when gathering 

sufficient data for a study of DNA curvature: image capture speed and image processing speed. 

The time it takes to capture a typical AFM image is significant. A number of factors effect the 

speed of imaging and include: image size, resolution (pixels per line), the size of the AFM probe 

and the quality of cantilever tuning in intermittent contact mode. With the advent of 

commercially available, high speed AFM imaging (Schitter et al., 2007) with automatic image 

quality control (Kaemmer, 2011), this bottleneck will soon be overcome. The second 

bottleneck is the time it takes to process large amounts of AFM images. A number of authors
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have detailed image processing workflows for automating the collection of AFM images 

(Sanchez-Sevilla et al., 2002; Masotti et al., 2004; Ficarra et al., 2005a, 2005b). There are a 

limited number of commercially and freely available options of varying application and 

versatility (Collins, 2007; Horcas et al., 2007; Barret, 2008; Necas and Klapetek, 2011).

1.6.1 Image Processing Software Categorised by Level of Automation

The area of image processing for AFM-DNA images can be broadly divided into three 

categories: manual methods, semi-automated methods and fully automated methods. Manual 

methods require a user to 'draw' the backbone line of the DNA molecule using the mouse 

cursor (Rivetti et al., 1996). These methodologies have been described as 'tedious and time 

consuming' (Wang et al., 2007). Semi interactive measurements of DNA contour length require 

the user to specify a number of points along each DNA molecule in an image after which the 

software performs an algorithmically 'guided walk' to find the highest foreground pixels 

between the specific points (Marek et al., 2005). Fully automated methods typically have both 

an unsupervised thresholding algorithm for the identification of foreground pixels and 

automated algorithms for the removal of imaging artefacts (e.g. Ficarra et al., 2005a, 2005b; 

Fang et al., 1998; Spisz et al., 1998; Sanchez-Sevilla et al., 2002; Wiggins et al., 2006). In some 

notable publications the authors have used combinations of semi- and fully automated 

algorithms (Ficarra et al., 2005a, 2005b). In these cases the authors have compared both 

methodologies or used the automated method only for processing computer simulated DNA 

images. The semi- and fully automated methodologies have been found to be largely 

comparable (Ficarra et al., 2005b). The authors concluded with the statement 'the semi­

automated procedure can be very effective for selecting molecules of interest because of the 

ability of the human-eye to distinguish molecules from background noise or artefacts' (pg. 

2082, Ficarra et al., 2005b).

1.6.2 Image Processing Toolboxes

A small number of programs for the platform specific toolboxes have been developed 

by research groups for the analysis of AFM images of DNA. The ALEX toolbox for MATLAB was 

the first image analysis platform for this purpose (Rivetti et al., 1996). It has been used in a 

number of publications by members and associates of Dr. Rivetti's group (Zuccheri et al., 

2001a, 2001b; Scipioni et al., 2002b). However, the ALEX toolbox has not been updated since 

its publication, it has limited user documentation and is not freely available to download. A 

similar application, named Scanning Adventure, has also been developed (Sanchez-Sevilla et 

al., 2002). This software has been used by a number of authors associated with the original 

research group (Marilley et al., 2005, 2007b; Milani et al., 2011).
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A num ber o f free ly  or com m ercially available image analysis p la tform s o ffe r some 

application to  AFM images o f DNA. For example, flexib le  image processing p la tfo rm s such as 

ImageJ (Collins, 2007) have a num ber o f packages th a t can be adapted fo r AFM imaging. O ther 

AFM specific solutions include Image SXM (Barret, 2008), WSxM (Horcas e t al., 2007) and 

Gwyddion (Necas and Klapetek, 2011). Many o f these so ftw are  p la tfo rm s w ill a llow  the  user to  

v iew  and m anipulate AFM images from  a num ber o f m ajor AFM m anufacturers. However, 

there  is very little  o r no possible custom isation available on such softw are p la tfo rm s; making 

complex analysis tim e-consum ing and impractical.

1.6.3 Common Image Processing Steps used on AFM Images of DNA

The aims o f an image analysis package fo r AFM images o f DNA are to  take an input 

AFM image, identify  DNA molecules, extract th e ir o rien ta tion  and o u tp u t the DNA contour 

using a m eaningful coord inate  system. There are a num ber o f confounding factors tha t 

necessarily have to  be understood and appreciated in o rder to  achieve this, which have been 

discussed in la ter sections. W hile there  has been no de fin itive  w o rk flow  fo r th is  type o f 

analysis, the w ork flow  published by Ficarra e t al., is debatably the most com plete and deta iled 

cu rren tly  available (Ficarra e t al., 2005a). There are a num ber o f com m on steps th a t have been 

adopted by researchers over the last 15 years: a single or m u ltip le  plane fittin g  step, removal 

or reduction o f noise, extraction  o f foreground objects, repeated erosion o f fo reground 

objects to  one pixel thinness and removal o r erroneous (also called 'spurious') branches from  

foreground objects to  leave the backbone o f the DNA con tour (Figure 1.7.).
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Figure 1.7. -  Common steps in image processing toolboxes fo r AFM images o f DNA.
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1.6.3.1 Plane Fitting

This step has also been called flattening and is typically the first step in image analysis. 

AFM imaging usually produces a large amount of Z-height variation on a line-by-line basis. This 

variation is reduced or removed by fitting and subtracting a variable degree polynomial to each 

line of the image to produce a flat image. Many authors will fit and subtract a two or three 

degree polynomial to the image data (Bustamante and Rivetti, 1996). It is not unusual to fit 

multiple polynomials to an image to ensure that it is uniformly flat (Sanchez-Sevilla et al., 

2002). Plane fitting should not effect the resulting analysis unless the Z-height of the image is 

of considerable interest.

1.6.3.2 Noise Reduction/Noise Filtering

There are a number of different sources of imaging noise that can effect AFM imaging 

such as acoustic, electrical, vibration, surface interaction and cantilever tuning. Correction for 

these noises in an automated manner is impractical. They can be classed as impulsive noise 

and filtered using a 3x3 median filter which is effective at removing impulsive noise (Ficarra et 

al., 2005b). Other filters have been used by researchers in AFM image analysis on an image to 

image basis, such as the Weiner, Gaussian (Ficarra et al., 2005b) and average filters (Spisz et 

al., 1998). The 3x3 median filter is the most often used by researchers (Sanchez-Sevilla et al., 

2002; Ficarra et al., 2005a, 2005b). A 5x5 median filter has also been used (Sundstrom, 2008). 

There are reports of applications that do not use an image filter (Rivetti et al., 1996; Rivetti and 

Codeluppi, 2001). Any filter that will increase the signal to noise ratio of the target image 

without causing distortion to the image is suitable for application.

1.6.3.3 Thresholding

This step is sometimes called Image Segmentation and should not be confused with 

Molecule Extraction. It is the separation of the foreground and background pixels. Manual 

methods do not need this step as the DNA contour is interactively selected by the user (Rivetti 

and Codeluppi, 2001). A number of automated and semi-automated methods have been 

employed: slider based interactive selection of a single (upper) or double (upper and lower) 

level thresholding (Marek et al., 2005), treating the background and foreground pixel 

intensities as two separate distributions and fitting Gaussian curves (Fang et al., 1998), 

manually chosen threshold values (Sanchez-Sevilla et al., 2002), algorithmically calculated 

thresholds such as the Ridler and Otsu threshold (Ficarra et al., 2005a) and custom 

methodologies (Rivetti eta!., 1996).
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1.6.3.4 Skeletonisation/Thinning/Erosion

This step ideally results in the transformation of thick foreground DNA molecules into 

'backbone' contours of one pixel thickness. Thinning involves an algorithm that iteratively 

removes (erodes) connected pixels on the outside of the binary object. There are a set of 

constraints, the most important of which is that thinning cannot 'break' an image object into 

multiple image objects i.e. it must stay connected. A number of algorithms have been used for 

skeletonising DNA molecules: the algorithm of Zhang and Suen which required the addition of 

a 'corner removal' step for pixels connected in an L pattern (Zhang and Suen, 1984; Spisz et al., 

1998), the need to remove corner pixels has been circumvented by using the thinning 

algorithm of Brugal and Chassery (Brugal and Chassery, 1977; Sanchez-Sevilla et al., 2002) and 

utilising custom binary image masks (Ficarra et al., 2005a). Comprehensive reviews of thinning 

algorithms are available (Lam et al., 1992). An optional step, called end-point retrieval, 

recovers pixels removed during thinning that have Z-heights above the image threshold value 

that could be considered important for the continuity of the DNA backbone contour at the end 

of the molecule (Spisz et al., 1998; Ficarra et al., 2004, 2005b).

1.6.3.5 Removal of Image Artefacts/Critical Molecule Removal

During this step obvious image artefacts or erroneous or unsuitable molecules are 

removed. This includes molecules that are in contact with the image boundaries as the extent 

of these molecules is unknown, the removal of two molecules that overlap, the removal of 

'blobs' below a certain threshold size in pixels and the removal of self-circularised or self­

overlapping molecules (Spisz et al., 1997; Ficarra et al., 2005b). The removal of molecules with 

obviously erroneous contour lengths has also been applied after DNA contour identification 

and xyz coordinate extraction (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al., 2005).

1.6.3.6 Removal of Spurious Branches or 'Pruning'

This has been identified as the most computationally intensive step for automated 

methods during image processing (Ficarra et al., 2005a). The analogy most often used in the 

literature for a thinned DNA molecule is that of a tree trunk with a number of 'spurious 

branches' that protrude from the 'trunk' of the DNA backbone contour. These branches are 

introduced by the thinning procedure. Manual and semi-automated methods typically do not 

need this step as the DNA contours are identified interactively by the user on a pixel-by-pixel 

or section-by-section basis (Marek et al., 2005). A section-by-section approach will include an 

algorithm for identifying the most likely intervening pixels and will not create branches. A 

number of methods have been previously employed for branch removal: the use of image 

masks for the identification of 'branches' (Ficarra et al., 2005a), considering the problem in
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terms of graph optimisation where the longest path is considered as the true DNA contour 

(Cirrone, 2007) and undocumented methods (Spisz etal., 1998).

1.6.3.7 Molecular Extraction

In experiments where only the length of the DNA molecule is considered it is only 

necessary to return the position of each pixel in relation to its neighbouring pixels (i.e. 

diagonal, horizontal or vertical) or as a custom 'chain code' (Spisz et al., 1998; Rivetti and 

Codeluppi, 2001). For the study of DNA curvature each pixel position is recorded in Cartesian 

coordinates (Ficarra et al., 2005a). This must be performed iteratively from one end to the 

other in order to preserve the order of the coordinates for further analysis to be possible.

1.6.4 Data Processing and Analysis of DNA Molecules

After image processing there are a number of different physical descriptors that can be 

estimated from the resulting data. These include contour length, intrinsic DNA curvature, DNA 

flexibility, DNA persistence length and other customised analyses. The approaches and 

methods used by previous researchers are discussed below.

1.6.4.1 DNA Contour Length Calculation

A number of different methods for calculation of the length of DNA molecules from 

AFM images have arisen over the last decade. Digitisation of DNA contours has the effect of 

smoothing out small structural features below the pixel resolution of the DNA image or, 

alternatively, pixelising an otherwise smooth DNA contour. Therefore, it is not enough to 

simply measure the length of the digitised line but also to reconstruct an estimation of the true 

contour length. This problem has been identified for some time and a comprehensive review 

of different binary length estimation algorithms and their application to DNA contours is 

available (Rivetti and Codeluppi, 2001). Some of the most common length estimators are 

presented include the:

Freeman Estimator/Euclidean Distance - The simplest of the length estimators is the 

Freeman estimator (Freeman et al., 1970; Spisz et al., 1998). Pixel orientation is considered in 

terms of Euclidean distance i.e. to be in one of two states; either a single horizontal or vertical 

move or a 'knights' move of one up/down and one left/right. A value of 1.0 is assigned to the 

horizontal/vertical move and 1.4 to the 'knights' move. The sum of these values is multiplied 

by a correction factor based upon the resolution of the image in nanometres (i.e. size of image 

in nm divided by number of pixels) and the outcome is considered the length of the DNA 

molecule. This approach can lead to a length overestimation of as much as 8 % for something 

as simple as a digitised straight line (Sanchez-Sevilla et al., 2002).
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Kulpa Estimator - The Kulpa estimator is a simple modification of the Freeman 

estimator. It substitutes the values 0.948 and 1.343 for 1.0 and 1.4 respectively (Kulpa, 1977). 

This has the benefit of being both simple to implement and giving a good estimation of 

reconstructed DNA contour length (Rivetti and Codeluppi, 2001). It has been used by a number 

of authors (Rivetti and Codeluppi, 2001; Marek et al., 2005).

Adjustment of Pixel Values by Weighted Average - Ficarra et al., applied an ad hoc 

methodology to the problem of length estimation (Ficarra et al., 2005a). The first step of the 

method is to transform each pixel coordinate into a weighted average of the surrounding pixel 

coordinates. The weight to use for the average is experimentally determined for each dataset. 

The reconstructed length is then calculated as for the Freeman estimator. The reasoning 

behind this approach is that DNA has continuous curvature and the position of each base pair 

is dependent upon the preceding and succeeding base pair. As a digitised line is a rough 

approximation of a curve a smoothing step is necessary prior to calculating curvature. The 

authors reported a more accurate length calculation than any of the methods previously 

detailed (Ficarra etal., 2004).

Signal Processing Method -  This method treated the DNA contour as a signal 

processing problem and applied a Fast-Fourier transform of the coordinate data, followed by 

Gaussian filtering and normalisation (Sanchez-Sevilla et al., 2002). This method produced an 

estimated length more in-line with expectation than the Freeman estimator alone.

It is clear that there is no consensus method for length estimation within the current 

literature. Since the work of Rivetti and Codeluppi in 2001 there has not been a systematic 

attempt to compare any of the more recently developed contour length estimators (Rivetti 

and Codeluppi, 2001). Individual researchers are free to select a suitably accurate method 

from those available from the literature based upon their own criteria.

1.6.4.2 Persistence Length

The most widely used experimentally determined measure of polymer flexibility is 

persistence length, sometimes denoted as 5 or P. Persistence length is a measure of the 

'persistence' of the memory of the initial chain direction. It is considered a measure of polymer 

rigidity, rather than flexibility, as it measures the distance over which a polymer maintains its 

original orientation. The persistence length of a polymer is defined as the "the length over 

which the average deflection of the polymer axis caused by thermal agitation is 1 rad." (pg. 67, 

Virstedt et al., 2004). Although persistence length is a measure of rigidity, it is determined by 

both a static (curvature) and a dynamic (thermal fluctuations or flexibility) component (Bednar 

etal., 1995).
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The persistence length of DNA has been investigated using a number of techniques 

including rotational diffusion (Elias and Eden, 1981), light scattering (Sobel and Harpst, 1991), 

DNA cyclisation (Crothers et al., 1992) and single molecule extension (Baumann et al., 1997). 

These experiments determined a persistence length for DNA of ~140-180 bp (48-61 nm) and 

the consensus persistence length of ~50 nm is usually used for B-DNA (Hagerman, 1988). 

Persistence length has been used as an important global indicator of DNA equilibration on 

sample substrates (Rivetti et al., 1996) and as a measure of chemical intercalation and adduct 

formation (Pastre et al., 2005; Cassina et al., 2011).

Persistence length is relatively simple to measure from AFM images of DNA. The two 

requirements for calculating persistence length from DNA images are accurate measurements 

of the position of the DNA contour along its length and a large enough sample size of DNA 

molecules. This end-to-end measure is then compared to predictions made by the WLC model 

of DNA flexibility (Cassina et al., 2011). The persistence length of DNA estimated from AFM 

images varies depending on the buffer and adhesion conditions used (Rivetti et al., 1996). 

Using a Mg2+ containing buffer the persistence length of DNA measured by AFM is often cited 

as being ~50 nm (Rivetti et al., 1996). Considerable deviation from this consensus value has 

been reported from as low as 36 nm (Lysetska et al., 2002) to as high as 56 nm (Podesta et al., 

2005). As an example of the effects of differing buffer conditions on persistence length, a Ni2+ 

containing buffer produces a persistence length of between 30-36 nm on a mica surface 

(Hansma etal., 1997; Lysetska etal., 2002).

1.6.4.3 Calculation of DNA Curvature and Flexibility from AFM Images

A standard methodology for calculating intrinsic DNA curvature from AFM images has 

been well detailed within the literature (Scipioni et al., 2002a; Ficarra et al., 2005b). The first 

step is to select a set number of points along each DNA molecule at regular intervals. This 

separates each molecule into a number of comparable line sections or vectors. Direct 

comparison between points requires the assumption that all the molecules under investigation 

are complete DNA molecules of identical 'real' length in base pairs.

In order to achieve this, interpolants are fitted to each molecule. This step is 

sometimes considered to be a smoothing step. There is no consensus method for interpolation 

and the methods used have included a variable degree polynomial that fitted a number of 

points below a user defined threshold value (Ficarra et al., 2005b), a number of variable 

degree cubic splines over a window of 5 pixels (Sundstrom, 2008) and simply standardising for 

length (Zuccheri et al., 2001b; Scipioni et al., 2002a). There is very little consideration for the 

effect smoothing or interpolant type may have on curvature angle calculation within the 

current literature.
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The curvature of a line in space is calculated as the derivative of the tangent vector 

along the line. The modulus of curvature is the inverse of the curvature radius and its direction 

is the main normal of the curve (Timoshenko and Goodier, 1986). In the case of DNA, the 

helical axis corresponds to a line and the curvature is the vectorial product of the DNA 

sequence. Curvature represents the angular deviation between the local helical axis at n and 

n+1 base pairs, n being a point (base pair, pixel or other contour length measure) in the 

sequence.

DNA can be considered in terms of first order elasticity due to its relatively high rigidity 

(Scipioni et al., 2002a). The contribution of thermal noise imposing local variations of the 

structure of DNA is considered zero over a sufficiently large sample size (Ficarra et al., 2005b). 

Under these assumptions the intrinsic curvature is calculated as the mean angle value of a 

sufficiently large population of DNA molecules. The flexibility of the DNA sequence at point n is 

the standard deviation of the assembled curvature angles at point n. The output of this 

methodology has been shown to be comparable to several theoretical dinucleotide wedge 

models of curvature in a number of publications (Zuccheri et al., 2001b; Scipioni et al., 2002a; 

Ficarra et al., 2005b; Buzio et al., 2012).

1.6.5 Experimental Orientation of DNA for AFM Imaging

For researchers to probe the site of interaction of proteins with DNA or to investigate 

sequence-specific curvature it is necessary to orient the DNA experimentally. The first 

attempts at orientation of DNA molecules used 5 nm colloidal gold spheres to label one end of 

a linear DNA molecule (Shaiu et al., 1993). Researchers also identified enzymatic 'nicks' using 

biotin-streptavidin probes (Murray et al., 1993). The use of repeating dimeric DNA sequences 

removed the need for end-labelling in particular experiments (Zuccheri et al., 2001b). This 

experimental method involved creating a DNA molecule that was symmetrical around a central 

point, i.e. both halves of the DNA molecules have identical sequences oriented in different 

directions.

There are several post-imaging processing methodologies for molecule orientation. The 

fragment flipping (FF) algorithm has been well detailed in a pair of related publications 

(Masotti et al., 2004; Ficarra et al., 2005b). Simplistically, it is a method for orientation of a 

large population of molecules based upon their intrinsic curvature. Each molecule is 'flipped' 

into one of its four possible orientations on the flat surface. The orientation of each DNA 

molecule that reduces the mean column variance within the entire dataset is retained and the 

algorithm iterates upon every molecule within the dataset. This continues until the dataset 

meets a minimum optimal objective function, the objective function being the mean of the 

column variance of the dataset. This method has been shown to be very effective for
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theoretical molecules and to give good experimental fit with the De Santis model of curvature. 

However, a valid concern has been raised that the algorithm relies upon a 'hill-climbing' 

optimisation routine that is sensitive to local minima (Buzio et al., 2012).

The method described by Buzio et al., is also a post-processing method that takes a 

very different approach than the FF algorithm (Buzio et al., 2012). This method generates a 

profile for each molecule. This profile is the ratio of the curvature at symmetrical points along 

a single molecule. This chain descriptor, averaged over a suitable number of molecules, give an 

individual profile for a DNA sequence. This is not a typical orientation method as it does not 

identify either end of an individual molecule. The authors showed that the resulting profile is 

sensitive enough to identify single nucleotide polymorphisms between two sequences within 

the human osteopontin gene.

Another method for post-image processing orientation of DNA molecules uses the 

theoretical pitch of DNA (Milani et al., 2011). The pitch was calculated using 3D theoretical 

models projected on to a 2D surface. The Z-height measured from experimental images is 

recorded and the traces are aligned with the theoretical pitch.

1.7 Theoretical Models of DNA Curvature

Theoretical models of intrinsic DNA curvature have great utility in the study of DNA 

curvature. In order to calculate theoretical DNA curvature, it is first necessary to model the 

structure of a DNA tract in three dimensions (3D). DNA dinucleotide structure can be 

characterised by six dinucleotide parameters: slide, shift, rise, tilt, roll and twist. These base 

pair geometries define the position of each base pair relative to the preceding nucleotide. Tilt 

and roll define bending angles between spatially adjacent base pairs. Twist is a rotation angle 

between two base pairs. Rise is the vertical displacement between two base pairs. Shift and 

slide are in-plane dislocations between base pairs. A simple schematic illustrating base pair 

geometries is presented in Figure 1.8. There are a number of other parameters, such as 

propeller twist, the rotation of one base pair in relation to the next, that describe inter- or 

intra-base pair geometries that have either a negligible or no net effect on the macro structure 

of DNA and will not be discussed further.

The 3D positions of each base pair within a DNA tract can be calculated by placing the 

first base pair at the origin of a Cartesian coordinate system (i.e. x,y,z co-ordinates) and then 

calculating the position of the next base pair using the parameters of roll, tilt and twist and 

translating them using a rise parameter (Vlahovicek and Pongor, 2000). Either a model-specific 

rise value is used for each base pair step or a constant value is chosen to reflect the ideal form 

of DNA, e.g. 3.4 A for B-DNA (Saenger, 1984). Relevant dinucleotide wedge models provide the
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dinucleotide step parameters necessary for modelling curvature (Ulanovsky and Trifonov, 

1987; De Santis et al., 1988; Bolshoy et al., 1991; Olson et al., 1998)

The calculation of the deviation in the helical axis at each base pair step can be a 

complex task, requiring the application of intricate matrix algebra (Ulanovsky and Trifonov, 

1987). However, for B-DNA a simpler approach is often adopted by calculating the vector 

normals between each base pair using the base pair parameters. This has been used to great 

effect in programs such as CURVATURE for high speed and high throughput curvature analysis 

of DNA sequences (Goodsell and Dickerson, 1994).

Z Z

Shift (Dx)

Slide (Dy) Roll {p)

Rise (Dz) Twist (w)

Figure 1.8. - Base pair geometry parameters of slide, shift, rise, tilt, roll and twist. The influence 
of each parameter on dinucleotide positions is indicated by a coordinate system. The base pair 
reference frame is constructed such that the x-axis points away from the minor groove edge of 
a base or base pair and the y-axis points toward the sequence strand. Adapted from El Hassan 
and Calladine, 1997.
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1.7.1 Formative Models of DNA Curvature

Experimental curvature models attempt to extract base pair geometry parameters, be 

they roll, tilt, twist or relative scales of bendability, from experimental data. Researchers over 

the last few decades have used a variety of different experimental datasets and mathematical 

tools in attempts to estimate geometric base pair parameters from synthetic DNA 

oligonucleotides. Underlying these attempts and allowing for a context in which to interpret 

experimental results are the formative models of intrinsic DNA curvature. These underlying 

models are distinct from the individual experimental models of curvature described later; 

underlying models form a context by which di-, tri- and tetra-nucleotide models can be 

interpreted. There are a number of formative models that attempt to explain the occurrence 

of DNA curvature. Only two of the most popular are discussed below.

1.7.1.1 The Junction Model

The Junction model in its first incarnation was developed to explain observation of 

angles forming at the junction between A- and B-DNA (Seising et al., 1979). The structure of 

DNA, i.e. base stacking and hydrogen bonding, was preserved at the junction. The premise of 

the Junction model is that at the intersection, or junction, between normal DNA and an 

adenine-rich tract there is a change in the direction of the helical axis and a bend is formed 

(Figure 1.9.A). The Junction model considers distant AT/TA base pairs to have a significant 

effect on the angle between AA-TT dinucleotides i.e. that long-range influences of DNA 

sequence are considered relevant.

1.7.1.2 The Wedge Model

The Wedge model was first proposed to explain the correlation of sequence repeats 

within chromatin DNA sequences and was limited to considering the periodic repeat of AA-TT 

dinucleotides (Trifonov and Sussman, 1980). The original premise of the Wedge model was 

that non-parallel dinucleotides, i.e. dinucleotides forming a bent wedge, would cause 

unidirectional curvature in the helical axis (Figure 1.9.B). This model has since been refined and 

considers bending to occur primarily in AT rich sequences but also, to a lesser magnitude, in 

other DNA sequences (Cooper and Hagerman, 1987; Ulanovsky and Trifonov, 1987). The 

outcome of this model is smooth bending across the DNA sequence made up of incremental 

additive wedges with the dinucleotide as the unit of curvature. The model does not consider 

long range influences of DNA sequence on curvature.
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Junction Model

Wedge Model

Figure 1.9. - Schematic representation of the Junction (A) and Wedge (B) models. In the 
Junction model the helix axis deflection (0) occurs at the interface of B-DNA and A-tracts (B'- 
DNA). In the Wedge model the A-tracts are curved (0). However, the Wedge model does not 
necessarily consider the general-sequence B-DNA between A-tracts to be straight.
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1.7.2 Di-, Tri- And Tetra- Nucleotide Models of DNA Curvature

There is no consensus about which formative model most accurately describes 

sequence-specific DNA curvature. However, the base pair geometric parameters that are 

extracted from experimental data are often comparable even if the magnitudes of the 

reported parameters differ (Kanhere, 2003).

1.7.2.1 Dinucleotide Models

Dinucleotide models generate dinucleotide roll and tilt parameters from experimental 

datasets. While a full review and comparison is outside the purview of this study a selection of 

different models pertinent to AFM imaging of DNA are detailed below. The Calladine and Drew 

model was put forward to explain anomalous gel migration experiments in a number of test 

DNA sequences (Calladine et al., 1988). The dinucleotide parameters were inferred from gel 

retardation experiments and compared against X-ray diffraction experiments. The Bolshoy 

model parameters were chosen to explain DNA circularisation and gel retardation experiments 

(Bolshoy et al., 1991). This model has the largest deviations from the consensus twist and tilt 

angles of other models. The De Santis model calculated roll, twist and tilt angles from 

conformation energy calculations of dinucleotide steps (De Santis et al., 1988). The resulting 

parameters were compared to the result of gel mobility experiments of 62 different synthetic 

oligonucleotides. The Olson model extracted dinucleotide parameters from a large set of DNA- 

protein X-ray crystal complexes. In addition to roll, twist and tilt angles the model also 

incorporates translational parameters of shift, slide and rise. Flexibility of the dinucleotide 

steps was also estimated from dispersion values of crystal complex data (Olson et al., 1998). 

The De Santis, Bolshoy and Olson models are considered Wedge models and the Calladine and 

Drew model is considered a Junction model.

1.7.2.2 Trinucleotide Models

The bending parameters have also been assessed for models of curvature on a scale 

larger than dinucleotide scale. The following trinucleotide models have also been called 

Bendability models. The experimental results rely upon the propensity of an oligonucleotide to 

be deformed as a measure of curvature and flexibility. The details of the two major 

trinucleotide experiments have been described in Section 1.4.2. The results of these 

experiments have been amalgamated into the Consensus Bendability model (Gabrielian and 

Pongor, 1996). Trinucleotide models have been shown to be improvements over dinucleotide 

models (Brukner et al., 1995b; Gabrielian and Pongor, 1996). However, trinucleotide models 

show little correlation between individual trinucleotide parameters and do not provide
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accessible three dimensional parameter values for researchers wishing to simulate DNA in 3D 

space (Brukneretal., 1995b).

1.7.2.3 Tetranucleotide Models

There are a number of different context specific instances where nearest neighbour 

interactions have been shown to influence individual dinucleotide angles (Brukner et al., 

1995b; Lankas et al., 2003). In the case of A-tracts even longer range effects have been 

observed (Burkhoff and Tullius, 1987). Tetranucleotide models can be considered 

improvements over di- and tri- nucleotide models as they begin to address some of these 

issues. A collaborative effort by the Ascona B-DNA Consortium has provided a library of MD 

simulations of all 136 tetranucleotides (Lavery et al., 2010). However, they are based upon the 

outcome of MD simulations and, as previously mentioned (Section 1.4.5.), there are some valid 

concerns about the comparability of MD to experimental data.

1.7.3 Comparison of Theoretical Models

Tri- and tetra-nucleotide models have been considered improvements over 

dinucleotide models due to the ability to encompass more locally derived sequence 

fluctuations than dinucleotide models (Goodsell and Dickerson, 1994; Gabrielian and Pongor, 

1996; Dlakic and Harrington, 1998b). Gel retardation experiments on phased repeat sequences 

have concluded that trinucleotide models are an improvement over dinucleotide models 

(Brukner et al., 1995a; Dlakic and Harrington, 1998b). However, a study using a large 

experimental dataset of NMR measurements of DNA in solution observed that trinucleotide 

models failed to predict curvature in many of the most extensively studied experimental 

sequences (Kanhere, 2003). The study concluded that trinucleotide models, as combinations of 

measurements of both intrinsic curvature and flexibility, made poor predictions of DNA 

curvature. By contrast dinucleotide models showed good predictive power for all sequences 

under investigation with the exception of a phased GGGCCC motif. Both Wedge and Junction 

models typically have weak predictive power for certain GC rich sequence motifs, sometimes 

generating predicted curvature with the wrong direction to that observed in experimental data 

(Brukner et al., 1994). It should be noted that curvature within the GGGCCC motif has only 

been observed when in solution containing divalent cations, so the low predictions could be 

due to experimental design (Brukner et al., 1994). A quantitative assessment of 

tetranucleotide models and their predictive power in comparison to di- and tri- nucleotide 

models has yet to be made.
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1.7.4 Comparison of Theoretical Models to Experimental AFM Studies

A number of theoretical dinucleotide models have been used in AFM based studies of 

DNA. The two most often utilised by researchers are the De Santis and the Bolshoy models. 

The De Santis model has been shown to provide a good estimation of real DNA curvature 

measured by AFM in air in a number of studies (Anselmi et al., 1999; Scipioni et al., 2002a; 

Ficarra et al., 2005b; Buzio et al., 2012). The same holds true for the Bolshoy model for liquid 

and air imaging, although the majority of research using the Bolshoy model has been in liquid 

(Sanchez-Sevilla et al., 2002; Milani et al., 2007, 2011; Buzio etal., 2012). Both of these models 

have been compared by previous authors and were found to be comparable in the prediction 

of the position, but not magnitude, of curvature peaks (Buzio et al., 2012). This was in 

agreement with a statistical analysis of the power of dinucleotide models to predict curvature 

in X-ray crystallography data that concluded that each dinucleotide model was as good a 

choice as any other for the prediction of intrinsic curvature (Crothers, 1998). The Olson model 

has not been the subject of critical comparison to curvature profiles in any available 

publication. However, it has shown to produce a good prediction of DNA flexibility in liquid 

(Marilley et al., 2005).

The worm-like chain (WLC) model of semi-flexible polymers provides a good 

framework for generating theoretical persistence length measurements of DNA (Bustamante 

et al., 1994). It has been shown to provide a good fit to most experimental AFM studies 

measuring persistence length of DNA (Bednar et al., 1995; Rivetti et al., 1996; Pastre et al., 

2005; Cassina et al., 2011; Buzio et al., 2012). It should be noted that on short scales DNA has 

been shown to be more flexible than predicted by the WLC model in AFM imaging (Wiggins et 

al., 2006).

1.8 Theoretical Measurements of Curvature in AFM Imaging

Theoretical estimation of a number of different physical DNA parameters have been 

performed in AFM studies for over a decade. The creation of computer simulated DNA 

molecules has been important for estimating the error implicit in image analysis methods, for 

hypothesis generation and hypothesis testing.

One of the first recorded instances, to this authors knowledge, of a comparison of 

theoretical predictions of DNA curvature to the experimental DNA curvature computed from 

physical scanning methodologies was the comparison of multiple theoretical models to the 

curvature of a linearised pBR322 plasmid (Muzard et al., 1990). This research was carried out 

using electron microscopy, but the images generated are qualitatively comparable to AFM 

based techniques.
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The work of Scipioni and co-workers created a strong mathematical foundation for 

later researchers to study DNA curvature and flexibility (Zuccheri et al., 2001b; Scipioni et al., 

2002a). They showed that there was a mathematical basis for the separation of the DNA 

curvature and DNA flexibility using AFM imaging. They also compared dinucleotide wedge 

models of curvature to experimental AFM measurements of DNA curvature and flexibility, 

showing good correlation between the results (Scipioni et al., 2002a). They further extended 

this work to dynamic time-lapse images of DNA molecules (Scipioni et al., 2002b).

Rivetti et al., put forward the first standardised workflow for the generation of 

computer-simulated AFM images (Rivetti and Codeluppi, 2001). By generating simulated AFM 

images it allowed the authors to assess various contour length estimators. This approach has 

been adopted by many other researchers in a complete or modified form (Ficarra et al., 2005a, 

2005b; Marek et al., 2005; Wiggins et al., 2006; Buzio et al., 2012). Later researchers added 

curvature measurements generated from dinucleotide models of DNA curvature to the 

computer-simulated AFM images for hypothesis and method testing (Ficarra et al., 2005b; 

Buzio et al., 2012).

Other theoretical measures have been used for comparison to AFM images including 

comparing the theoretical phase of DNA to experimentally determined contour height (Milani 

et al., 2011), curvature ratio profiles for base pair sequences (Buzio et al., 2012), the prediction 

of promoter regions in AFM images (Marilley et al., 2007b) and the flexibility of DNA molecules 

(Scipioni et al., 2002a; Marilley et al., 2005; Wiggins et al., 2006).

1.8.1 Programs for Analysis of Intrinsic DNA Curvature

There are a number of freely available programs for the analysis of structural and 

physiochemical properties of DNA. One of the oldest programs for the analysis of DNA 

curvature is BEND (Goodsell and Dickerson, 1994). This work described the first attempt to 

distinguish between local bending and intrinsic curvature. The program CURVATURE also 

calculates curvature for a number of popular dinucleotide models of DNA in the same way as 

BEND (Shpigelman et al., 1993). DNAIive is a web application able to calculate a wide ranging 

number of structural and chemical measurements such as bendability, flexibility, nucleosome 

occupancy and a variety of different curvature models from DNA sequence (Goni et al., 2008). 

DNAIive also feeds directly into the Human Genome Browser allowing for the annotation of an 

input sequence with a wide range of published data (Kent et al., 2002).

For many researchers it is often necessary to reconstruct and visually assess 3D DNA 

structure. There are number of different tools available for this purpose that do not require a 

high degree of molecular modelling knowledge such as: DIAMOD (Dlakic and Harrington, 

1998a), FREEHELIX (Dickerson and Chiu, 1997), Model.it (Vlahovicek and Pongor, 2000),
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Curves/Curves+ (Lavery et al., 2009), Madbend (Strahs and Schlick, 2000) and 3DNA (Lu and 

Olson, 2003). While many of these tools sometimes offer overlapping utility there are many 

complementary novel features. For instance, Curves+ includes an in-built tool for mapping the 

helical axis of DNA and 3DNA allows for the reconstruction of very large scale (<2000 bp) DNA 

molecules that other programs struggle with or simply do not allow. Many of these programs 

also have web servers hosting a range of applications. In particular 3DNA has a variety of 

molecular modelling applications with a large degree of flexibility for the advanced user. It also 

has a web application, w3DNA, which provides a simple user interface for the main features of 

3DNA (Zheng et al., 2009).

1.8.2 Other Theoretical Estimators of Physical DNA Parameters

There has long been an effort to model the occupancy of nucleosomes in the genomes 

of eukaryotic organisms based on DNA sequence. Many computational approaches have been 

developed for the prediction of nucleosome occupancy or exclusion. A number of these tools 

are available on-line as web servers, for example: NuPop uses a Hidden Markov model to 

predict nucleosome occupancy from S. cerevisiae genome data (Xi et al., 2010), NXsensor 

identifies a number of nucleosome exclusion sequences from the literature and identifies 

those regions that are within less than 147 bp of two exclusion sites as a region of nucleosome 

exclusion (Luykx et al., 2006) and NuScore calculates nucleosome affinity based upon the 

estimation of the energy cost of the structural deformation imposed on DNA within the 

nucleosome core particle (Tolstorukov et al., 2008).

1.8.3 Computer Generated AFM Images

In order to make predictions from dinucleotide wedge models that are comparable to 

the output of AFM based curvature analysis, computer simulated AFM images of DNA are 

often used (Cognet et al., 1999; Rivetti and Codeluppi, 2001; Ficarra et al., 2005b; Buzio et al.,

2012). The first time simulated images of DNA had been used by researchers; Cognet et al., 

used simulated DNA as a comparison for electron microscopy of DNA when probing 

persistence length in 1999 (Cognet et al., 1999). It was only after the work of Rivetti et al., that 

computer simulated AFM images became commonly used (Rivetti et al., 1996). Simulated 

images of DNA have been used in a number of studies; for generating a 'base line' length 

estimate for testing digitised line estimators (Rivetti and Codeluppi, 2001 ), testing of the FF 

algorithm (Ficarra et al., 2005b), hypothesis testing for novel algorithms (Buzio et al., 2012), for 

comparison of persistence length (Bednar et al., 1995) and as controls for automated image 

processing and analysis packages (Ficarra etal., 2005a).
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There were a number of common steps that the previously mentioned studies shared. 

These steps were standardised by Rivetti and Codeluppi and have been used in an 

approximately similar form by later studies (Rivetti and Codeluppi, 2001). The DNA 'chain' was 

considered, at a basic level, to be made up of a series of rigid rods each representing a single 

base pair. The rods themselves were assigned a size of 0.34 nm, which is the consensus size of 

B-form DNA (Rivetti and Codeluppi, 2001). The position of the next rod in the chain was 

considered a function of the flexibility of the polymer and the curvilinear length of the rod. The 

flexibility was calculated based upon the persistence length of the polymer, approximately 53 

nm was taken as a typical value for B-DNA persistence length (Rivetti et al., 1996). This allowed 

for the construction of a Gaussian probability curve of angles from which an appropriate angle 

was selected at random per base pair step. Plotting each rod in the chain with a random angle 

from the Gaussian distribution produced a 2D image of a DNA polymer. This was made more 

comparable to a real AFM image by applying a 'grid' at the resolution of the desired image and 

setting each 'pixel' within the grid that contained DNA to 1. Additional sources of noise or 

variation found in AFM images such as Gaussian noise or tip convolution were added to user 

specification. The Z-height can be set by the operator but is more typically left as binary 1 and 

0 measurements. This approach allows for the estimation of the effects of digitalisation on a 

DNA strand, the effects of additive impulsive noise and regular tip convolution.

As a further step some authors have added a curvature value to the simulated images 

(Ficarra et al., 2005b; Buzio et al., 2012). A curvature measurement is calculated for each base 

pair step and is used as the mean value of the Gaussian flexibility distribution. Dinucleotide 

wedge models have effective synergy with this method and it is not hard to see why they are 

so popular with researchers.

In order to convert dinucleotide wedge models to dinucleotide angles that can be used 

to simulate DNA molecules in 2D there are a number of important criteria that must be met 

(Buzio etal., 2012). Firstly, a theoretical framework must be identified which is able to produce 

3D models of DNA. Secondly, a method for extrapolation of 3D models to their preferred 

conformation in two dimensions must be identified. Finally, the 2D models can be used as 

angle values to create computer simulated AFM images.
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1.8.4 Modelling DNA in 3D

On the first point, the generation of robust 3D models of curvature, there are a 

number of well tested options available to the researcher presented earlier (Section 1.7.4.). 

The preferred methodology within the literature is the use of the nearest-neighbour, static 

dinucleotide wedge models. These models treat each base pair as an individual section with a 

number of experimentally determined parameters that describe the geometric position of one 

base pair in relation to the preceding base pair. There are a number of different sets of 

parameters that have been experimentally determined by different research groups using 

different technologies and experimental conditions (Section 1.7.2.1.).

The dinucleotide parameters can be used to generate a series of xyz coordinates based 

upon tilt roll and twist parameters and their translations: shift, slide and rise (Figure 1.8.). Bend 

angles can be calculated between two consecutive base pairs (a dinucleotide step). However 

bend angles are typically unsigned as the idea of a positive or negative angle is meaningless 

without a reference frame. While these theoretical absolute angles are valuable for 

investigations of DNA bending they are of less use in reconstructing curvature in two 

dimensions.

1.8.5 Modelling DNA in 2D

The understanding of the deposition of DNA on to a flat surface is a complex 

undertaking and not within the purview of this project. In order to simulate curvature in 2D 

there are two available approaches. The first approach uses the underlying assumption that 

the curvature modulus (magnitude) of a DNA tract will stay the same when the DNA tract is 

deposited on a 2D surface while the phase of curvature (direction) will adapt to the changes in 

the DNA conformation (Scipioni et al., 2002a). This allowed the authors to simulate the 

resulting curvature and infer a positive or negative curvature for base pair steps.

The second approach, proposed by Buzio et al., has been termed Geometric 

Deposition within this study (Buzio et al., 2012). The methodology flattens a 3D model of a 

DNA tract to simulate deposition (Figure 1.10). The method separates the 3D model into a 

number of sections. A 2D plane of best fit is calculated for each section and the xyz coordinates 

are projected onto each plane to give a representation of the 3D model in 2D. This model 

assumes that the transformation from 3D to 2D will do so with a minimum number of twists in 

the DNA backbone. Consequently this implies a minimum energy increase in conformational 

energy during the flattening process, which, as long as reasonable restraints are applied to the 

plane fitting process, is in line with mean field models of DNA deposition (Sushko et al., 2006).
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Figure 1.10. - Examples o f a 3D DNA molecule pro jected on to  tw o  dim ensions by G eom etric 
Deposition. (A) 3D representa tion o f the human osteopontin  gene. (B) 2D pro jection o f the 
human osteopontin  gene. The figure was adapted from  Buzio e t al., 2012.
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1.9 TP53- The Tumour Protein 53 Gene

The gene of interest in this study is Tumour Protein 53 (TP53). The protein encoded by 

TP53, named protein 53 (p53) due to its apparent molecular mass of 53 kilodalton on a sodium 

dodecyl sulfate polyacrylamide gel, was discovered in 1979 (Lane and Crawford, 1979). It 

wasn't until 1991 that p53 was identified as a tumour suppressor gene (Levine et al., 1991). It 

is an important regulator of the cell cycle and has a key role in regulating cellular responses to 

genotoxic insults by its influence on programmed cell death, DNA repair and synthesis, 

senescence, transcription and genomic plasticity (Vogelstein and Kinzler, 1992).

1.9.1 The Role of p53 in the Cell

The protein encoded by TP53 is part of a family of genes involved in regulating cellular 

stress alongside its paralogs p63 and p73 (Hollstein and Hainaut, 2010). The p53 protein is 

present at a constant low level within healthy cells and is upregulated under stress or DNA 

damage. The protein acts as a transcription factor as well as forming complexes with other 

regulatory proteins in the cell (Whibley et al., 2009). As a transcription factor, p53 protects the 

cell against tumour growth and carcinogenesis by binding to response elements in a host of 

key genes. The genes regulated by p53 form the front line of defence against cellular stress 

and genotoxic insult and include genes that control cell cycle arrest, maintenance of genetic 

integrity, inhibition of angiogenesis, cellular senescence and apoptosis. The p53 protein also 

protects the cell through roles other than that of a transcription factor, for example p53 

translocates to the mitochondria on cues from death stimuli (Mihara et al., 2003). This 

translocation leads to cellular apoptosis.

1.9.2 Structure of TP53

TP53 is located on chromosome 17 (17pl3). It is composed of 11 exons (protein coding 

regions). There is a notably large intronic (non-coding) region between exon 1 and 2. There are 

a number of functional domains within the p53 protein itself (Figure 1.11.). The transactivation 

region (Exon 2-4) is involved in activating other genes as part of the response to cellular stress, 

the sequence-specific DNA-binding region (Exon 5-8) is the active site of the protein involved in 

the recognition of DNA motifs, the nuclear localization and oligomerisation regions (Exon 9-11) 

have roles in localising p53 and formation of the final functional p53 tetramer. TP53 is heavily 

transcriptionally regulated and there are at least 10 identified isoforms of p53 due to a number 

of multiple splice sites within the gene (Hollstein and Hainaut, 2010).

The p53 protein arose early in evolutionary history and TP53 has remarkable 

evolutionary conservation between species (Lane et al., 2010). The p53 protein in Placozoans, 

the simplest of free living multi-cellular organisms containing only four types of cells, has the
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same key features and role shared by p53 in humans (Figure 1.12.). This conservation o f p53 

highlights its im portance to  cellu lar processes. The m ost highly conserved regions o f the gene, 

considered exon 5 to  exon 8, are also the m ost m utated in sporadic somatic cancers and up to  

95% o f all m utations occur w ith in  these highly conserved regions (Hollstein et al., 1991). The 

exons tha t lie in the most highly conserved region o f TP53 code fo r the DNA sequence-specific 

binding dom ain o f p53. This dom ain is required fo r the  correct function ing  o f p53 as a 

transcrip tion factor.

Transactivation
Dom ain

M utation Hotspots and 
the Sequence S pecific  
DN A Binding Dom ain

273

Tetramerisation, 
N uclear Localisation 
and D N A-D am age 

Recognition Dom ain

Missense

i a J L l l l f t i i l i

282

17-29 97 EVOLUTIONARILY CONSERVED ------292. 324 —  352

1

TExons 2-4 Exons 5-8 Exons 9-11

Figure 1.11. - Schematic o f the p53 gene. The p53 p ro te in  consists o f 393 am ino acids w ith  
functiona l domains, evo lu tionarily  conserved dom ains and regions designated as m uta tiona l 
hotspots. Functional domains include the  transactiva tion  region (am ino acids 20-42), 
sequence-specific DNA-binding region (am ino acids 100-293), nuclear localization sequence 
(amino acids 316-325), and o ligom erisation region (am ino acids 319-360). Evolutionarily 
conserved domains are indicated as black areas (am ino acids 17-29 , 97-292, and 324-352). 
Seven m uta tiona l hotspot regions w ith in  the  large conserved dom ain are identified : am ino 
acids 130-142, 151-164, 171-181, 193-200, 213-223 , 234-258 , and 270-286 (chequered 
blocks). Vertical lines above the schematic are missense m utations, the  height o f the bar 
represents the relative frequency o f the m uta tions and locations o f particu larly prevalent 
m utation hotspots are labelled. The figure was adapted from  Hussain and Harris, 1999.
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1.9.3 Mutations in TP53 and the Role of TP53 in Carcinogenesis

TP53 has been the subject of intensive study as a model for understanding cell growth 

and cancer progression. TP53 is very important for the growth and regulation of cells; 

mutations that cause incorrect functioning in p53 give insight into these biological processes. 

TP53 is one of the most intensively studied cancer genes and there are online resources that 

collate the available literature on TP53 mutation such as the International Agency for Research 

on Cancer (IARC) p53 database (Hernandez-Boussard et al., 1999).

TP53 is mutated in 50 % of all human cancers (Greenblatt etal., 1994). This percentage 

varies with cancer type, for example mutation frequency has been estimated to be 

approximately 60 % in lung cancer and 50 % in skin cancer (Biesalski et al., 1998; Rigel, 2008). 

The acquisition of TP53 mutations is a multi-stage process, where mutations can be picked up 

at an early or late stage in carcinogenesis. Tumours that contain TP53 mutations have been 

shown to be more aggressive, in general, than those not carrying TP53 mutation (Harris and 

Hollstein, 1993).

The etiologies of multiple types of cancer are specific to both the tissue type and 

mutagen involved in the initiation of carcinogenesis. There are specific patterns of somatic 

mutation hotspots that arise during cancer progression. Codons 175, 248 and 273 are the most 

frequently mutated hotspots in many cancers with the exception of lung, skin, larynx, bladder 

and liver carcinomas (Petitjean et al., 2007). Many mutation hotspots have been linked to 

specific mutagens or are selected during carcinogenesis due to pro-carcinogenic properties. 

Many cancer types are associated with specific pathogens for the initiation of carcinogenesis. 

Chemical carcinogens from cigarette smoke are implicated in about 90 % of all lung cancers 

(Biesalski etal., 1998). The mutation hotspots in codons 157,158,175, 245, 248, and 273 have 

been linked to chemical carcinogens such as benzo[a]pyrene diol epoxide (BPDE) in cigarette 

smoke (Pfeifer et al., 2002). Approximately 90 % of skin cancers are caused by exposure to 

ultraviolet (UV) radiation (Rigel, 2008). Hotspots at codons 151, 177, 196, 245, 248, 278, 286 

and 294 are considered to be caused by UV light (Drouin and Therrien, 1997). The patterns of 

mutations that arise in TP53 are as varied as the cancers themselves. The vast majority of 

mutation hotspots occur in the exons within conserved regions that code for the sequence- 

specific DNA-binding domain of the p53 protein.

The downstream effects of mutations are varied because TP53 regulates and is 

regulated by a great many genes. Missense mutations in exons 5-8 often prolong the half-life 

of the mutant protein (Pfeifer et al., 2002). Mutations can also cause p53 to gain new functions 

leading to oncogenic properties (Petitjean et al., 2007). For example mutations in codon 175 

that lead to conversion of argenine to histidine always cause p53 to gain oncogenic functions.
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Environmentally caused mutations within TP53 are not the only causative factor for 

impaired p53 function. Continued infection with human papillomas virus can lead to cervical 

cancer by inhibiting p53 function (Klug et al., 2001). Germ-line mutations in TP53 can cause a 

high predisposition in individuals to the occurrence of multiple types of cancer at a young age, 

such as in Li-Fraumeni syndrome (Hisada et al., 1998). Common polymorphisms localised to 

different parts of the world can also predispose individuals or whole populations to certain 

cancer types (Olivier et al., 2010).

1.9.4 Regions of Slow DNA Repair in TP53

DNA repair mechanisms have been shown to have heterogeneous repair efficiency 

throughout the human genome (Bohr, 1987). For example, actively transcribed genes are 

preferentially repaired over other parts of the genome by transcription coupled repair 

mechanisms (Bohr, 1987; Surralles et al., 2002). This has been observed to consistently hold 

true for TP53 (Denissenko et al., 1998). Of particular interest is that DNA repair speed in TP53 

is sequence-specific and mutation hotspots within TP53 genes are also regions of slow repair 

(Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). Regions of slow repair were 

observed in a number of cancer specific hotspots within these studies, such as codons 157, 248 

and 273 which are mutation hotspots in lung cancer (Denissenko et al., 1998) and codons 177, 

196 and 278 which are mutation hotspots in skin cancer (Tornaletti and Pfeifer, 1994). The 

mechanism underlying preferential sequence-specific repair is little understood and has been 

attributed to the accessibility of the DNA due to the .local chromatin structure (Bohr, 1987). As 

nucleosome affinity is largely attributable to DNA sequence-specific curvature and flexibility 

this certainly provides grounds for hypothesising that there is a role for DNA curvature in the 

recognition and repair of DNA damage.
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1.10 Aims and Objectives

The research described in this thesis aims to evaluate the intrinsic curvature of the 

region of TP53 that codes for the sequence-specific DNA-binding domain of the p53 protein. 

This region contains exons 5, 6, 7 and 8 all of which are commonly mutated during 

carcinogenesis. This region is critical for the correct functioning of the p53 protein, which in 

turn regulates the main cellular defences against chemical insults and protects against 

tumourogenesis. Understanding the processes of DNA mutation and repair in TP53 is of 

paramount importance to efforts to understand the cause and progression of cancer. The 

highly conserved region of TP53 contains regions of slow repair which are currently poorly 

understood. Intrinsic DNA curvature has previously been identified as a factor involved in a 

number of biological processes, such as: DNA repair, nucleosome positioning and DNA 

transcription. Due to this involvement there was reason to believe that DNA curvature could 

influence the activity of DNA repair proteins at sites of slow DNA repair. The initial hypothesis 

was that the intrinsic DNA curvature located at, or flanking, regions of TP53 that contain 

mutation hotspots or regions of slow repair would exhibit different curvature patterns to other 

regions.

In order to achieve these aims it was necessary to accurately measure the 

macromolecular conformation of TP53. AFM was selected as a suitable primary method of 

investigation alongside well established theoretical models of DNA curvature. A TP53 DNA 

sequence that contained exons 5, 6, 7, 8 and 9 was identified. The polymerase chain reaction 

(PCR) was applied to generate experimental DNA molecules (Chapter 2). Two methods of DNA 

orientation were identified from the literature as being applicable to the large DNA sequence 

under investigation; the FF algorithm and end-labelling of TP53 with streptavidin. These were 

applied to two overlapping PCR products of the TP53 DNA sequence of interest in order to 

evaluate the reproducibility of intrinsic curvature measurements by AFM. A binding buffer of 

magnesium chloride (MgCI2) was identified from the literature as providing suitably weak 

binding to a mica surface for intrinsic curvature measurements of DNA to be possible.

Due to the lack of software for the analysis of AFM images the first objective was to 

create software with the capability of processing AFM images of DNA to representative binary 

DNA contours. Additionally, experimental considerations lacking from the literature such as 

selection of interpolator techniques and choice base pair intervals over which to calculate 

curvature angles were considered. To this end, a number of tools for image processing and 

DNA analysis were developed and encompassed within a user interface for ease of use 

(Chapter 3).
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The second objective was to explore the available theoretical models of DNA curvature 

applicable to TP53 sequences. The need for generating computer simulated AFM images of 

TP53 for comparison to real AFM images was identified. These simulated AFM images allowed 

for statistical and hypothetical testing on ideal images of TP53 DNA before application to real 

AFM images. The relationships between exons, regions of slow repair and DNA curvature were 

investigated using dinucleotide wedge models of DNA curvature. This approach allowed for the 

additional hypothesis that exon positions within TP53 exhibit significantly lower curvature 

when compared to intron positions (Chapter 4).

The third objective was to evaluate two methods of DNA molecule orientation for 

application to TP53. The first methodology applied was the only protein-label free technique 

applicable to large TP53 DNA molecules, the FF algorithm. Application of the FF algorithm 

avoided any possible interaction between DNA and protein end-labels. The algorithm was 

initially tested on computer simulated AFM images of TP53. It was then applied to AFM images 

of real TP53 DNA (Chapter 5). The second orientation methodology used streptavidin end- 

labels attached to biotinylated PCR products of TP53 for orientation (Chapter 6). The resulting 

curvature profiles were compared to theoretical predictions and statistically analysed.
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CHAPTER 2: GENERAL MATERIALS AND METHODS
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2.1 Design and Preparation of an Experimental DNA Template for TP53

2.1.1 TP53 Sequence and PCR Primer Design

The TP53 sequences used for this study were taken from the consensus sequence 

presented in the IARC TP53 database, a compilation of TP53 sequences taken from human 

population studies (Hernandez-Boussard et al., 1999). Two sequences were investigated: a 

1855 bp sequence covering exons 5-7 (11828 to 13682 in IARC Database notation) and a 2500 

bp molecule covering exons 5-9 (11828 to 14328 in IARC Database notation). Both sequences 

had the same start point and the 2500 bp sequence fully overlapped the 1855 bp sequence. 

The full sequence is presented in Figure 2.1.

The sequences were designed with two key objectives in mind. Firstly, to assess the 

curvature within the section of DNA coding for the DNA sequence-specific binding region 

(Hollstein et al., 1991). This region was of particular interest as 95 % of TP53 mutations have 

been observed to occur within this DNA tract. The nature of the overlapping sections also 

allowed for the evaluation of the inter-experiment variation in AFM measurements of 

curvature. The PCR product containing exons 5 through to 7 (1855 bp) was named 'Exon 5-7' in 

the main text. The PCR product containing exons 5 through to 9 (2500 bp) was named 'Exon 5- 

9' in the main text. Capitalisation of 'Exon' within the main text indicates a reference to one of 

these experimental DNA sequences or molecules.

The oligonucleotide PCR primers for these two DNA sequences are presented below:

TP53 e5-7/9F = CATCTCTCCTGGGGATGCA

TP53 e5-7R (1855 bp) = TCTACTCCCAACCACCCTTG

(Reverse Complement) = CAAGGGTGGTTGGGAGTAGA

TP53 e5-9R (2500 bp) = CAGGCAAAGTCATAGAACCA

(Reverse Complement) = TGGTTCTATGACTTTGCCTG
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1 CATCTCTCCT GGGGATGCAG AACTTTTCTT TTTCTTCATC CACGTGTATT CCTTGGCTTT
61 TGAAAATAAG CTCCTGACCA GGCTTGGTGG CTCACACCTG CAATCCCAGC ACTCTCAAAG

121 AGGCCAAGGC AGGCAGATCA CCTGAGCCCA GGAGTTCAAG ACCAGCCTGG GTAACATGAT
181 GAAACCTCGT CTCTACAAAA AAATACAAAA AATTAGCCAG GCATGGTGGT GCACACCTAT
241 AGTCCCAGCC ACTTAGGAGG CTGAGGTGGG AAGATCACTT GAGGCCAGGA GATGGAGGCT
301 GCAGTGAGCT GTGATCACAC CACTGTGCTC CAGCCTGAGT GACAGAGCAA GACCCTATCT
361 CAAAAAAAAA AAAAAAAAAG AAAAGCTCCT GAGGTGTAGA CGCCAACTCT CTCTAGCTCG
421 CTAGTGGGTT GCAGGAGGTG CTTACGCATG TTTGTTTCTT TGCTGCCGTC TTCCAGTTGC
481 TTTATCTGTT CACTTGTGCC CTGACTTTCA ACTCTGTCTC CTTCCTCTTC CTACAGTACT
541 CCCCTGCCCT CAACAAGATG TTTTGCCAAC TGGCCAAGAC CTGCCCTGTG CAGCTGTGGG
601 TTGATTCCAC ACCCCCGCCC GGCACCCGCG TCCGCGCCAT GGCCATCTAC AAGCAGTCAC
661 AGCACATGAC GGAGGTTGTG AGGCGCTGCC CCCACCATGA GCGCTGCTCA GATAGCGATG
721 GTGAGCAGCT GGGGCTGGAG AGACGACAGG GCTGGTTGCC CAGGGTCCCC AGGCCTCTGA
781 TTCCTCACTG ATTGCTCTTA GGTCTGGCCC CTCCTCAGCA TCTTATCCGA GTGGAAGGAA
841 ATTTGCGTGT GGAGTATTTG GATGACAGAA ACACTTTTCG ACATAGTGTG GTGGTGCCCT
901 ATGAGCCGCC TGAGGTCTGG TTTGCAACTG GGGTCTCTGG GAGGAGGGGT TAAGGGTGGT
961 TGTCAGTGGC CCTCCAGGTG AGCAGTAGGG GGGCTTTCTC CTGCTGCTTA TTTGACCTCC

1021 CTATAACCCC ATGAGATGTG CAAAGTAAAT GGGTTTAACT ATTGCACAGT TGAAAAAACT
1081 GAAGCTTACA GAGGCTAAGG GCCTCCCCTG CTTGGCTGGG CGCAGTGGCT CATGCCTGTA
1141 ATCCCAGCAC TTTGGGAGGC CAAGGCAGGC GGATCACGAG GTTGGGAGAT CGAGACCATC
1201 CTGGCTAACG GTGAAACCCC GTCTCTACTG AAAAATACAA AAAAAAATTA GCCGGGCGTG
1261 GTGCTGGGCA CCTGTAGTCC CAGCTACTCG GGAGGCTGAG GAAGGAGAAT GGCGTGAACC
1321 TGGGCGGTGG AGCTTGCAGT GAGCTGAGAT CACGCCACTG CACTCCAGCC TGGGCGACAG
1381 AGCGAGATTC CATCTCAAAA A A A A A A A A A A AAGGCCTCCC CTGCTTGCCA CAGGTCTCCC
1441 CAAGGCGCAC TGGCCTCATC TTGGGCCTGT GTTATCTCCT AGGTTGGCTC TGACTGTACC
1501 ACCATCCACT ACAACTACAT GTGTAACAGT TCCTGCATGG GCGGCATGAA CCGGAGGCCC
1561 ATCCTCACCA TCATCACACT GGAAGACTCC AGGTCAGGAG CCACTTGCCA CCCTGCACAC
1621 TGGCCTGCTG TGCCCCAGCC TCTGCTTGCC TCTGACCCCT GGGCCCACCT CTTACCGATT
1681 TCTTCCATAC TACTACCCAT CCACCTCTCA TCACATCCCC GGCGGGGAAT CTCCTTACTG
1741 CTCCCACTCA GTTTTCTTTT CTCTGGCTTT GGGACCTCTT AACCTGTGGC TTCTCCTCCA
1801 CCTACCTGGA GCTGGAGCTT AGGCTCCAGA CAAGG G TG G TTG G G A  G T A G A ' /

1861 CCTGGTTTTT TAAATGGGAC AGGTAGGACC TGATTTCCTT ACTGCCTCTT GCTTCTCTTT
1921 TCCTATCCTG AGTAGTGGTA ATCTACTGGG ACGGAACAGC TTTGAGGTGC GTGTTTGTGC
1981 CTGTCCTGGG AGAGACCGGC GCACAGAGGA AGAGAATCTC CGCAAGAAAG GGGAGCCTCA
2041 CCACGAGCTG CCCCCAGGGA GCACTAAGCG AGGTAAGCAA GCAGGACAAG AAGCGGTGGA
2101 GGAGACCAAG GGTGCAGTTA TGCCTCAGAT TCACTTTTAT CACCTTTCCT TGCCTCTTTC
2161 CTAGCACTGC CCAACAACAC CAGCTCCTCT CCCCAGCCAA AGAAGAAACC ACTGGATGGA
2221 GAATATTTCA CCCTTCAGGT ACTAAGTCTT GGGACCTCTT ATCAAGTGGA AAGTTTCCAG
2281 TCTAACACTC AAAATGCCGT TTTCTTCTTG ACTGTTTTAC CTGCAATTGG GGCATTTGCC
2341 ATCAGGGGGC AGTGATGCCT CAAAGACAAT GGCTCCTGGT TGTAGCTAAC TAACTTCAGA
2401 ACACCAACTT ATACCATAAT ATATATTTTA AAGGACCAGA CCAGCTTTCA AAAAGAAAAT
2461 TGTTAAAGAG AGCATGAAAA TGGTTCTATG ACTTTGCCTG

Exon 7

Exon 5

Exon 9

Exon 8

Exon 6

Figure 2.1. -  TP53 consensus sequence from  the IARC Database. Exon positions are ind icated in 
red. The shared fo rw ard  p rim er is indicated in ye llow . The reverse Exon 5-7 p rim er is indicated 
in blue and the reverse Exon 5-9 prim er in greeij. Base pair num bering begins at the  sta rt o f 
the experim enta l DNA sequence.
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2.1.2 PCR of Template TP53 DNA

PCR amplifications were prepared in 50 pi of ddH20. The reaction mixture included 10 

pi of reaction buffer (Promega, Cat.# M791A) for a final concentration of 1.5 mM MgCI2/ 0.2 

mM of each nucleotide (Promega, Cat.# C1141), 0.4 pM of both upstream and downstream 

primers, 2.5 u of Expand High FidelityPLUS PCR System (Roche, Cat.# 04743725001), and less 

than 50 pg of template DNA. The template DNA was human genomic DNA (Promega, Cat.# 

G1471). Primers were purchased from Eurofins (Eurofins MWG Operon). The primers for 

relevant reactions contained a 5' biotin end-label (Chapter 6).

The initial reaction for all products was a PCR amplification using Exon 5-9 primers. A 

second amplification step was introduced for the generation of all experimental reactions. The 

nested amplification from the product of the initial reaction ensured the fidelity of the final 

product in the case of any non-specific amplification products.

2.1.3 Reaction Conditions

Optimised reaction conditions were as follows: hot start of 5 min at 95 °C, 

denaturation step of 95 °C for 30 s, annealing step of 60 °C for 30 s, extension step of 72 °C for 

60 s /  90 s (Exon 5-7 /  Exon 5-9), the previous three steps are repeated 35 times. A final 

extension step of 72 °C for 5 min and a hot stop step of 95 °C for 5 min were introduced to 

prevent the dimerisation of primers and amplification products. Primer optimisation has been 

presented in Appendix 1.

2.1.4 Agarose Gel Electrophoresis

PCR products were checked on a 1 % agarose gel stained with EtBr imaged under UV. 

Agarose gels were run for an appropriate time in order to resolve and distinguish ladder and 

sample bands (30-45 mins, 100 V). PCR products were purified using a QIAquick PCR 

Purification Kit (QIAGEN, Cat # 28104) and re-eluted in double distilled H20 or imaging buffer 

for storage at 4 °C/20 °C. Products were rechecked after purification on a 1% agarose gel. 

Product quantity and quality was established using a spectrophotometer 

(NanoDrop/NanoDrop Lite, Thermo Scientific). The final amplification product after spin 

column purification was sequenced (Source BioScience, Nottingham, UK). This allowed for any 

deviation from the theoretical DNA sequence to be identified (Appendix 1.).
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2.2 Streptavidin End-Labelling of Biotinylated DNA

2.2.1 Dot Blot Analysis of 5' Biotinylated DNA

It was necessary to ensure that the biotin end-label remained viable after PCR 

amplification and purification. This was performed using a dot blotting analysis. The dot blot 

apparatus is prewashed thoroughly with 1% SDS and then with sterile water prior to use. 

Hybond-N nylon membrane and Whatman 3MM filter paper was cut to cover the required 

number of wells. Both the nylon membrane and the filter paper were pre-soaked in 2X SSC 

buffer (30 mM sodium citrate, pH 7.0, 0.3 M, NaCI) for 5 minutes. DNA sample of between 100 

ng and 250 ng of DNA were diluted to 100 pi with sterile ddH20  and boiled for 10 minutes. 

Samples were quickly chilled in an ice-water bath. An equal volume of freshly made 1 M NaOH 

was added and incubated at room temperature for 20 minutes.

DNA solutions were applied to the apparatus according to the manufacturer's 

instructions and allowed to incubate with the membrane at room temperature for 10 minutes. 

The solution was drawn through the apparatus under vacuum. Membrane were incubated in 

100 ml of neutralizing solution (1 mM EDTA, 1.5 M NaCI, 0.5 M Tris, pH 7.2) for 30 minutes. 

Membranes were rinsed thoroughly with 2X SSC and air-dried before the addition of 

hybridisation probes. Streptavidin-horseradish peroxidase mix (Vector Laboratories, Cat.# SA- 

5704 ) was diluted 1/3000 with 1 x SCC and added to the membranes and allowed to incubate 

overnight. SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, Cat.# 34079) 

was added and the membranes were imaged using a Gel Doc EQ System (Bio-Rad, Hercules).

2.2.2 5' End-Labelled of DNA with Streptavidin for AFM Imaging.

DNA was purified using a QIAquick PCR Purification Kit (QIAGEN, Cat # 28104) to remove 

biotinylated primers that could compete with 5' biotin for streptavidin end label. The 

purification step was repeated when necessary. The DNA concentration was diluted to 10 x the 

concentration used in AFM imaging. A 3:1/2:1 molar ratio of streptavidin to sample DNA 

(Sigma-Aldrich UK, Cat # S4762) was incubated overnight at 4°C before AFM imaging. Labelled 

and control unlabelled samples were run on a 1% agarose gel (Section 2.1.4.) in order to 

identify end labelling before AFM imaging.
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2.3 Preparation of DNA for AFM Imaging

DNA was diluted down to an appropriate concentration for imaging (~ 1 ng/pl) in the 

binding buffer. Binding buffer was Tris 10 mM, MgCI2 10 mM, NaCI 5 mM pH 7.5. The Mg2+ 

buffer was used for AFM imaging as it has been previously reported by authors as providing 

good imaging conditions for relaxed DNA conformations at various concentrations of EtBr 

treatment (Coury et al., 1996; Pope et al., 2000). The buffer has been observed to provide a 

weak bind to mica surfaces that was appropriate for AFM analysis of DNA curvature (Rivetti et 

al., 1996; Scipioni et al., 2002a). DNA was applied to freshly cleaved muscovite mica and 

allowed to incubate at room temperature for 1-3 min before washing with ddH20 (Millipore). 

The mica surface was dried under vacuum before AFM imaging.

2.4 AFM Imaging Conditions

All AFM imaging was performed on a NanoWizard 2 BioScience AFM using closed loop 

settings (JPK, Instruments, Berlin, Germany). The instrument operated in intermittent contact 

mode to minimise the possible damage caused by tip-sample interactions. The cantilever of 

choice was an ACTA probe (AppNano, Santa Clara, USA) with a spring constant of between 25- 

75 N/m (nominal 40 N/m) and a ~6 nm radius of curvature (ROC).

Images were collected in a 3x3 pm square with a pixel resolution of 1024x1024. This 

gives a width of 5.86/2.93 nm per pixel respectively, for both image resolutions. The 

proportional and integral gains and scan frequencies (typically between 0.8 -  2.0 Hz per line) 

were optimised for each tip and image set. Large amounts of images were collected for each 

sample using the Experiment Planner software (JPK, Instruments, Berlin, Germany) and in- 

house code. Each image was offset from the previous image by the width of the image (3 pm) 

in either the x or y plane. The thermal drift of the scanner head was not found to lead to the 

collection of duplicate molecules over long experiments. Example AFM images have been 

presented in Appendix 2.

2.5 Generating Computer Simulated AFM Images of TP53

Computer simulated AFM images were created using the method detailed by Buzio et 

al., 2012. The De Santis dinucleotide wedge model was used to create all simulated AFM 

images for comparison to experimental AFM images unless stated otherwise within the text 

(De Santis et al., 1988). The simulated images were generated using a persistence length of 53 

nm, Gaussian noise with a variance of 0.025 and tip convolution by a simulated tip of 6nm 

ROC. The images were created to be comparable to experimental DNA sequences detailed in 

Section 2.1.1. Simulated AFM images were processed using the image processing software 

detailed in Chapter 3. The full method has been detailed below.
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2.5.1 3D Models of TP53 using w3DNA

Two d iffe ren t param eter sets tha t have been previously validated fo r AFM 

m easurements o f DNA were selected as theore tica l values; those put fo rw ard  by De Santis et 

al. 1988 and Olson et al. 1998. These d inucleotide models w ill be referred to  in th is te x t by the 

names o f th e ir  firs t authors (De Santis et al., 1988; Olson et al., 1998).

3DNA allows fo r the  visualisation, analysis and reconstruction o f DNA in silico (Lu and 

Olson, 2008). The web in terface fo r  the  application, w3DNA, was used to  reconstruct 3D 

models o f TP53 DNA using a predefined set o f d inucleotide  param eters deta iled in Table 2.1. 

Non-applicable param eters (i.e. sh ift and slide fo r  the De Santis m odel) were set to  0. The De 

Santis model o f curvature  conta ined only base pair transitions so a constant base pair rise 

value o f 0.34 A was selected as a consensus value from  the lite ra tu re  (Saenger, 1984).

Olson D inucleotide Parameters (Olson et al., 1998)

Dinucleotide Step Twist, deg Tilt, deg Roll, deg Shift, A Slide, A Rise, A
CG 36.10 0.00 5.40 0.00 0.41 3.39

CA 37.30 0.50 4.70 0.09 0.53 3.33

TA 37.80 0.00 3.30 0.00 0.05 3.42

AG 31.90 -1.70 4.50 0.09 -0.25 3.34

GG 32.90 -0.10 3.60 0.05 -0.22 3.42

AA 35.10 -1.40 0.70 -0.03 -0.08 3.27

GA 36.30 -1.50 1.90 -0.28 0.09 3.37

AT 29.30 0.00 1.10 0.00 -0.59 3.31

AC 31.50 -0.10 0.70 0.13 -0.58 3.36

GC 33.60 0.00 0.30 0.00 -0.38 3.40

De Santis D inucleotide Parameters (Scipioni et al., 2002a)

Dinucleotide Step Twist, deg Tilt, deg Roll, deg
CG 33.50 0.00 4.60

CA 34.10 0.40 6.80

TA 34.50 0.00 8.00

AG 34.40 -1.60 1.00

GG 33.10 -0.60 1.30

AA 36.00 -0.50 -5.40

GA 34.60 -1.70 2.00

AT 35.30 0.00 -7.30

AC 33.70 -2.70 -2.50

GC 33.30 0.00 -3.70

Table 2.1. - D inucleotide param eters used fo r the  generation o f 3D models o f TP53. A value o f 
0.34 A value was used fo r the  De Santis model as a generally accepted rise fo r B-form  DNA. 
A tom ic coordinates fo r each base pair were averaged to  give an approxim ation  o f the centre o f 
the DNA strand.
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2.5.2 Simulated Deposition of DNA on a 2D Surface -  Geometric Deposition

In order to extrapolate a simplistic simulation of the deposition of DNA onto a 2D surface 

it is necessary to fit a series of best fit (least squares) planes (Buzio et al., 2012). Constraints 

were placed upon the plane fitting allowing no local fluctuations in either the x, y or z 

directions that exceed 2 nm from the plane. This was accomplished by fitting a plane to each 

xyz coordinate sequentially beginning with the 5' (Exon 5) end of the sequence. Orthogonal 

regression using principal components analysis was used to find the plane of best fit (Scholkopf 

et al., 2005). If the plane had local variation (the local error of the fit) of less than 2 nm (20 A) 
then another xyz coordinate was added and the best fit plane recalculated. This was iterated 

upon until the local error exceeded 2 nm. The next plane was then fitted to the succeeding 

series of xyz coordinates in the same manner. An additional constraint was added; if there 

were less than 50 bp left of the sequence when the local error was greater than 2 nm then no 

more planes were fitted and the remaining base pairs were included when calculating the final 

plane.

Calculating the angle in radians of the intersection of the planes was possible using the 

formula:

6intercept =  arccos (d o t(N l, N 2 )/ (norm iN V ) * n o rm (N 2 ))

Where N1 was the coefficients of the normal vector of the preceding plane (Plane 1) 

and N2 was the coefficients of the succeeding plane (Plane 2). By rotating the xyz coordinates 

of Plane 2 along the axis of the line of intersection of both planes by the inverse of the angle of 

intersection we bring them into line with Plane 1 (Figure 2.2.). The rotation was applied to all 

coordinates following Plane 2. The plane normals for each section was recalculated after each 

rotation. The xyz coordinates were projected onto a flat xy plane. The projection was the fit of 

orthogonal regression.

Finally, a local correction was applied at the point of intersection between two planes. 

A linear line was fitted to the two helical turns preceding and succeeding the point of 

intersection. The intersection angle of the two lines was calculated and xy coordinates 

succeeding the point of intersection are rotated by the inverse of the angle. The correction 

was introduced between the xyz points of each succeeding plane due to the observation that a 

large angle being intermittently introduced at this intersection. As DNA was unlikely to adopt a 

kinked structure except under chemical or physical stress and as deposition conditions 

assumed that the DNA equilibrates on the surface this should result in minimal physical stress. 

As the true angle at the point of intersection between two planes was unknown then a 

constant angle of 0° was chosen as a suitable compromise. The suitability of this local
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correction from  th is m ethod was discussed w ith  the  original authors in a private 

com m unication (Buzio et al., 2012).

A
Original XYZ Data

Planes Fitted
Plane 1

Plane Normals 
And 

Resulting Angle

D 0

Plane Adjustment

Figure 2.2. - Simple representa tion o f the G eom etric Deposition m ethod. A) Original xyz 
coordinates fo r a DNA m olecule. B) Two planes are fitte d  to  the  xyz coordinates (least squares 
w ith  a m axim um  erro r o f 2 nm per point). C) The angle betw een the plane norm al vecto r is 
calculated. D) The inverse o f calculated angle was used as angle o f ro ta tion  along the  axis o f 
the line o f in tercep tion  between the tw o  planes.
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2.5.3 Simple 2D DNA Chains

The angle between each base pair xy coordinate from the flattened 3D model was 

calculated by treating coordinates as a series of vectors. The angles in radians between 

subsequent vectors were calculated using the formulae:

perpendicular dot product = —a(2) x b( 1) + a( 1) x b(2) 

dot = a( 1) x b( 1) + a(2) x fc(2)

0 = arctan(perpendicular dot product, dot)

Where vector a was the product of [x(i-l) y(i-l)]-[x(i) y(i)] and vector b was [x(i) y(i)]- 

[x(i+l) y(i+l)]. The subsequent series of signed curvature angles had an angle value per base 

pair. Clockwise angles were denoted as positive and counter-clockwise as negative. A 

curvature angle was calculated for each base pair using the curvature profile as the mean of a 

normal Gaussian probability distribution with a standard deviation of a  =  -yJT/l where I was 

the length of the section of DNA, in this case 0.34 nm, $ was the persistence length of DNA, in 

this case 53 nm (Rivetti and Codeluppi, 2001). A random start point was determined within a

grid of user defined size in nanometres {e.g. 3000 nm by 3000 nm). A random trajectory was

generated for the first DNA chain. Subsequent points were plotted using the formulae:

x(i) = x(i — 1) + (I x cos(cum6(i)))

y(0 = y(l -  1) + (I x sin(cumd(i)))

Where cumO was the cumulative angle along the line segment plus the curvature 

value for the dinucleotide at point / and I were the length of a base pair in nm (0.34 nm). The 

final image resolution was user defined and corresponded to AFM image resolution. The xy 

coordinates were converted to AFM image coordinates i.e. (xy/size in nm) multiplied by the 

resolution in pixels. Values that were outside of the user defined grid area were removed. Any 

pixels in the final image that contained a section of DNA were set to 1 (i.e. a binary image of a 

DNA molecule is created). Examples of raw xy coordinates for each base pair and digitised 

images have been included in Figure 2.3.A and Figure 2.3.B.
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Figure 2.3. - Examples o f a theore tica l AFM images at each step in its p roduction . A) xy 
coordinates fo r each base pair o f a theore tica l DNA m olecule. B) M u ltip le  m olecules at the 
resolution o f an AFM image. C) Theoretical AFM image a fte r 3D tip  convo lu tion w ith  a tip  o f 6 
nm ROC. D) Final theore tica l AFM image a fte r the  add ition  o f Gaussian noise (variance = 
0.025).
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2.5.4 Tip Convolution

A 3D spherical function was passed over each binary image to emulate the effect of 

imaging DNA molecules with an AFM tip. The spherical function had a user defined radius (r) 

equal to that of the radius of curvature of an AFM tip. The function was evaluated over an a x a 

grid, where a is double the radius of the sphere in pixel resolution [i.e. all possible points on 

the image that the sphere can inhabit).

sphere =  sqrt ( ( r A2) — (x(a.min \ &rnax)*'£) ~  (y(.amin• ^maje)A2 ))

This equation provided the Z-height of a sphere centred on a single pixel [xy). All 

values above 0 were removed to produce a half sphere. The radius of the half sphere was 

added to each value within the half sphere to produce a half sphere with a Z-height of zero at 

[x y]. The binary AFM image was padded with an appropriate number of zeros. The expected Z 

of the half sphere was then compared to the actual Z-height of the AFM image at each pixel. 

The discrepancy, if greater than zero, was the final recorded height at that pixel (Figure 2.4.). 

An example of an image after tip convolution has been included in Figure 2.3.C.

I  I

Figure 2.4. Representation of 3D spherical convolution of a binary image in 2D. A spherical 
function is passed over a binary image and evaluated at each pixel. If any values in the binary 
image are larger than the expectation of the spherical function then the value of the final 
image is increased by the difference (Z).

2.5.5 Finishing Theoretical AFM Images.

A user defined amount of Gaussian noise was added to the final images (variance = 

0.025). The images were saved as uncompressed TIFF files. This file format was similar to that 

used by AFM manufacturer JPK. An example of a completed AFM image is presented in Figure 

2.3.D.
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2.5.6 Orientation of Molecules Post-Image Processing

The orig inal xy coordinates o f each theore tica l m olecule were stored in an image specific 

variable i.e. one xy  coordinate fo r each base pair. The end points o f each DNA m olecule a fte r 

image processing were compared to  the firs t xy coord inate , corresponding to  the 5' end o f the 

DNA strand o f the stored xy values. The correct endpo in t was determ ined as having the  lowest 

Euclidean distance between itse lf and the theore tica l xy  value (Figure 2.5.). The xy  coordinates 

were aligned correctly, the in itia l xy coordinates being the  5' end o f the m olecule.
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320 _L

300 320 340 360 380 400 420 440 460

Figure 2.5. - Example o f a lignm ent o f post-image processing DNA m olecule (blue) to  its 
theore tica l predecessor (red). The circles (blue and red) are the 5' end o f the  DNA m olecule. In 
this example both  ends have been aligned.
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2.6 Image Processing of AFM Images

Images were processed using the image processing software detailed in Chapter 3. All 

AFM images were plane fitted/flattened using a nine degree polynomial. Image processing was 

performed in a semi-automated manner for experimentally obtain AFM images. A median 3 x 3  

filter was used to reduce noise. Other filters, such as a Gaussian 3 x 3  filter, were used where 

appropriate to extract the orientation of DNA contours from images with higher impulsive 

noise. A foreground threshold was visually identified and confirmation was provided by the 

user to ensure good fidelity of automated DNA identification to the DNA contour.

For simulated AFM image processing was performed in a fully automated manner. A 

median 3 x 3  filter was used to reduce noise. A threshold value was obtained automatically 

(Otsu, 1979). All DNA contours that lay within a range of ±200 nm of the theoretical size of the 

DNA molecule were recovered.

For appropriate experiments streptavidin end-labels were automatically identified. The 

Z-height of the first and last 3 pixels was compared. The end with the largest mean Z-height 

was designated as end-labelled with streptavidin. The presence of the streptavidin end-label 

was visually confirmed by the operator.

2.7 Statistical Analysis

All data processing and analysis was performed off-line using the Matlab R2007b 

commercial software package (MATLAB R2007b, The MathWorks Inc., Natick, MA, 2007). The 

normality of data was checked with a Shapiro-Wilk test (Shapiro and Wilk, 1965). The majority 

of the data was found to be non-normal and therefore non-parametric statistical tests were 

used, p-values lower than 0.05 were considered significant unless otherwise stated within the 

text. In order to compare intrinsic curvature or flexibility profiles the Spearman Rank 

Correlation coefficient was calculated (Spearman, 1904). In order to compare curvature values 

that occurred within exons regions to intron regions the sections of curvature profiles that 

corresponded to exons positions were identified from the IARC database (Hernandez-Boussard 

etal., 1999). Exon values were compared using a Kruskal-Wallis test (Kruskal and Wallis, 1952).

2.7.1 Analysis of DNA Contours

DNA contour length was calculated using the Kulpa estimator (Kulpa, 1977). A 

comparable number of points were fitted to DNA contours by fitting a linear interpolant. 

Intrinsic DNA curvature and flexibility was calculated in the standard manner dictated from the 

literature (Scipioni et al., 2002a; Ficarra et al., 2005b). The fragment flipping algorithm was 

instituted using the Greedy algorithm (Ficarra et al., 2005b). A full analysis workflow with 

detailed explanations is presented in Chapter 3.
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2.7.2 Curvature Peak Comparison

The largest peaks o f curvature were identified  w ith in  theo re tica l intrinsic DNA 

curvature  profiles. The peaks th a t m ost closely corresponded to  these key peaks from  

experim enta l curvature  profiles were identified . The peak sh ift fo r each m atching peak was 

calculated as a percentage value o f the standardised length o f the DNA sequences under 

investigation.

2.7.3 Visually Displaying Curvature Profiles

Two m ethods fo r calculating curvature pro files have been used w ith in  the main body 

o f the te x t (Figure 2.6.). The firs t m ethod is referred to  w ith in  the  te x t as unsigned curvature 

profiles. Unsigned curvature profiles consider curvature angle regardless o f the d irection  o f 

curvature on the mica surface. Unsigned curvature profiles w ere generated as the average o f 

all absolute curvature  angles w ith in  a dataset. This m ethod is com parable to  calculating the 

curvature m odulus (or m agnitude) and is also som etim es called 'absolute cu rva ture ' w ith in  the 

lite ra tu re . The second m ethod, called signed curvature profiles, consider both  the m agnitude 

and d irection  o f curvature. Signed curvature pro files were generated as the average o f all 

curvature angles w ith in  a dataset. Right-handed (clockwise) angles were considered positive.
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Figure 2.6. Examples o f unsigned (A) and signed (B) curvature  profiles. The broken red line in B 

represents a curvature  o f 0.0 radians.
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CHAPTER 3: DESIGN AND IMPLEMENTATION OF THE
ADIPAS IMAGE PROCESSING PLATFORM FOR THE 

IDENTIFICATION AND ANALYSIS OF DNA IN ATOMIC FORCE
MICROSCOPY IMAGES
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3.1 Introduction

3.1.1 Image Processing of AFM Images

In order to measure DNA curvature from AFM images the DNA contour must be 

extracted. Therefore, an image processing package must be able to accept an AFM image, 

identify DNA molecules, extract their orientation and output it in a meaningful and accurate 

co-ordinate system. In order to perform these steps the software must be able to flatten the 

DNA image, remove or reduce noise, extract foreground objects [i.e. DNA), repeatedly erode 

each foreground object until it is only one pixel thin and remove the erroneous branches 

created by erosion to leave the 'backbone' of the DNA contour (Ficarra et al., 2005b). A brief 

summary has been provided in Figure 3.1.

There are few freely or commercially available programs that could be used for such an 

application, examples include ImageJ (Collins, 2007) and Gwyddion (Necas and Klapetek, 

2011). However, there is very little or no customisation possible using such software making 

further analysis time-consuming and impractical. For the analysis of DNA curvature and 

flexibility there is a pressing need to process large amounts of complex image data and 

perform very specific tasks. It is this need for customisation and flexibility that drives the 

majority of AFM researchers working with DNA to develop their own in-house software.

The first study to produce a simple image processing workflow and associated general 

user interface (GUI) for extracting DNA contours was the ALEX toolbox (Rivetti et al., 1996). 

However, the ALEX toolbox has not been updated since its publication, has limited 

documentation for the user and is not freely available to download. The same is true for much 

of the research group-developed software (Sanchez-Sevilla et al., 2002; Ficarra et al., 2005b). 

Therefore, the best option available to a researcher wishing to investigate intrinsic DNA 

curvature by AFM is to develop their own software.
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Figure 3.1. - S im plified image processing, data processing and data analysis w o rk flow . The 
example AFM images are o f TP53 Exon 5-9 DNA.
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3.1.2 Analysis of DNA Contours Extracted from AFM Images

There are a number of analyses that can be applied to DNA contours extracted from 

AFM images. The length of the DNA molecules can be reconstructed from the digitised DNA 

contour using a variety of estimators (Rivetti and Codeluppi, 2001). The persistence length of 

an ensemble of DNA molecules can be calculated (Cassina et al., 2011). Of central interest to 

this study, intrinsic curvature and flexibility can be measured from the ensemble of DNA 

contours (Figure 3.1.).

In order to analyse DNA curvature each DNA contour must be fitted with a fixed 

number of comparable points in order to standardise the length of the molecule, an 

interpolant is often used to this end (Ficarra etal., 2005b). The length of each DNA molecule is 

then assumed to be equal regardless of the measured contour length. The angle of deviation 

from a straight line is calculated for each consecutive point. By averaging these angles over a 

large population of molecules the average intrinsic DNA curvature can be calculated (Scipioni 

et al., 2002a). Flexibility can be calculated by the variance around the average curvature 

values. The resulting 'curvature profile' is representative of the intrinsic curvature of the DNA 

sequence.

There are a number of considerations for curvature analysis of DNA by AFM that have 

not been clearly tackled in the current literature. There is no consensus method for selecting 

an interpolator technique during length standardisation although it is likely that the choice 

will have an impact, however small, on the resulting curvature angles (Scipioni et al., 2002a; 

Ficarra et al., 2005b; Marilley et al., 2005; Buzio et al., 2012). There is little consideration 

within the literature for the number of points fitted to the DNA molecule (i.e. the base pair 

window size) in order to calculate curvature. A typical study will fit a number of points close to 

the theoretical maximum resolution of the AFM image (Ficarra et al., 2005b). For example, 

each pixel may be 2.92 nm long, the equivalent to approximately 8.5 bp, and a point would 

then be fitted for every 10.5 bp of the standardised length of the DNA molecule. At this low 

resolution there is likely to be a high degree of variation cause by digitising the DNA contour. 

An estimation of this variation has not been provided within the current literature and will be 

considered within the present study.
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3.1.3 Aims and Objectives

The primary aim of this chapter was to produce a software package that could 

experimentally determine DNA curvature and flexibility from AFM images of DNA molecules 

using multiple methods available from peer reviewed literature. In order to achieve these 

goals the ADIPAS (AFM DNA Image Processing and Analysis Software) software was developed 

to provide a flexible approach to image processing and analysis suitable for multiple 

experiments on AFM images of DNA. This pipeline aims to be accessible to the general user 

and provide reliable and reproducible results.

The ADIPAS software was able to read an input AFM image, rescale the data, plane 

fit/flatten, filter for noise, threshold the image to identify foreground pixels (DNA molecules), 

skeletonise and 'prune' the resulting skeleton and finally extract xyz coordinates. The software 

calculated angles between adjacent points at user defined intervals along a DNA contour, 

created a curvature matrix of the resulting data and allowed either the direct creation of 

curvature and flexibility profiles or application of the FF algorithm. Other experimental 

measures were also instituted including reconstructed DNA contour length and persistence 

length calculation. Other experimental tools were developed during the project. This included 

a method for the visual identification of appropriate base pair window sizes for the calculation 

of curvature angles. An experiment that determined the selection of an appropriate 

interpolant type for the analysis pipeline has also been detailed. In order to facilitate high- 

throughput analysis of DNA images and usability a GUI was developed for ADIPAS. The GUI was 

developed to be usable with the minimum of training or knowledge of DNA studies of AFM.
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3.2 Development of ADIPAS

3.2.1 Programming Platform

The AFM DNA Image Processing and Analysis Software (ADIPAS) software was 

developed in the Matlab 7.5.0 programming platform with the image processing and statistics 

toolboxes (Mathworks, Cambridge, UK). This programming environment is compatible with all 

major operating systems.

3.2.2 Image Processing Pipeline

3.2.2.1 Plane Fitting

Input AFM image files were read as greyscale intensity data. A nine degree polynomial 

was fitted to each line of the image in turn. The polynomial was subtracted from the source 

data in order to fit each line to a horizontal plane. This step was repeated using a polynomial 

fitted to the lowest seventieth percentile of Z-height data in order to ignore extreme values 

and smooth inconsistencies in the background. A similar method was used by previous authors 

and ensured that the resulting image surface was extremely flat and suitable for further image 

processing (Sanchez-Sevilla et al., 2002). The number of iterations and the degree of the 

polynomial fitted could be specified by the user.

3.2.2.2 Image Filtering

While AFM has a higher signal-to-noise ratio than other comparable techniques there 

was still a variable level of noise in each image (Hansma and Hoh, 1994). This noise was 

attributable to a variety of sources: impurities in the sample, sub-optimal cantilever tuning, 

cantilever wear over a large number of images, surface-tip interactions, external acoustic 

vibration sources and poorly grounded equipment producing electrical feedback. A number of 

filters were implemented into the image analysis software platform. The default filter was a 

3x3 median filter, used as a baseline filter for low or locally occurring noise (Ficarra et al., 

2005b). Other filters were utilised on a case-by-case basis and included a 3x3 Gaussian filter 

and a 3x3 average filter. Included in this step was a line-by-line adaptive histogram for 

increasing height contrast and a 3D background subtraction. These final two options were not 

image filters but were similarly used to improve image quality on an image-by-image basis.

3.2.2.3 Image Thresholding

The purpose of image thresholding was to separate background (sample surface) and 

foreground (DNA molecule) pixels. During this step the image was simplified into a binary 

image where background pixels were 'O' and foreground pixels were T .  The foreground 

contained areas of interest that were likely to be experimental DNA molecules. A threshold
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value was identified which was used as a cut-off value above which all Z-height values were 

considered foreground pixels. This value was determined by either a visually interactive user- 

defined threshold value or an automatically determined threshold value. Both approaches 

have been incorporated into the software. For very good contrast, theoretical or low noise 

AFM image automatic thresholding can produce very accurate and reproducible results using 

the Otsu method (Otsu, 1979). For moderate to high noise images it was more suitable to 

visually inspect the resulting thresholded image to ensure good agreement with the original 

image. This was achieved using a slider that controlled the threshold value below which pixel 

intensity was considered background. The slider covered all values of the greyscale image.

3.2.2.4 Thinning/Skeletonisation

Successive outlying pixels were removed from the binary image until only a 'skeleton' 

of one pixel thickness remained. This was achieved using the default image erosion algorithm 

in Matlab with one hundred passes (Lam etal., 1992).

3.2.2.5 Removal of Image Artefacts and Overlapping Molecules

Isolated pixels were removed from the image. Foreground pixels in contact with the 

image boundary were removed as it was impossible to determine how far they extended 

outside of the image boundary. Any molecules that were circular or formed a circular pocket 

were removed as it was not possible to determine which overlapping branch of the molecule 

was followed when extracting image coordinates. Only DNA molecules which contained a 

number of pixels within a user defined maxima and minima were retained for the next step. 

This reduced processing time for the next stage and removed clearly erroneous molecules such 

as fragments or DNA molecules lying end-to-end.

3.2.2.6 Removal of Spurious Branches

Skeietonisation of an image produced additional 'branches' from the backbone of the 

DNA contour. These branches occurred due to increases in thickness along a DNA molecule or 

imaging artefacts such as tip smear. In order to remove branches all spurious 'endpoint' pixels 

were identified and removed (Figure 3.2.). These were any pixels that were only adjacent to 

one other pixel in an immediate 3x3 pixel grid area. This was repeated until only two endpoints 

remained. During the process of removing these pixels any branches that ceased to grow were 

removed. The final two branches that remained were the branches that added the longest 

length to the molecule and formed the DNA contour or skeleton. When two branches of equal 

length co-existed at one end of the molecule one of the two branches was removed at 

random. Molecules that had more than two endpoints were not included in the final dataset.
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Figure 3.2. - Simple example o f the a lgorithm  fo r the  rem oval o f 'spurious branches' in a binary 
image. Black squares represent pixels th a t conta in Z data corresponding to  a skeletonised DNA 
m olecule. Grey pixels are pixels identified  as 'endpo in ts '. Endpoints are saved to  a separate 
variable. W h ite  squares represent background pixels. Squares m arked w ith  an X represent 
pixels th a t have been rem oved. A) In itia l b inary image w ith  tw o  spurious branches. B) Endpoint 
pixels have been identified  (grey) and stored in a separate variable. C) Endpoint iden tifica tion  
is repeated. Branch 1 ceased to  grow  and is the re fo re  rem oved. D) Endpoint iden tifica tion  is 
repeated. Branch 2 has ceased to  continue grow ing and is rem oved. There are only tw o  
endpoints to  the 'core ' o f the skeleton. E) The rem aining branches are added back in to  the 
binary image as part o f the 'skeleton core'.
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3.2.2.7 Identification of Molecule of Interest

Molecules of interest were displayed visually within the ADIPAS GUI. The binary 

skeleton was displayed on top of the original image allowing for visual assessment of the 

fidelity of the image processing method. Molecules that adhered to the original image and 

were not sample or image artefacts were selected by the user for extraction during the next 

step. The end pixel that corresponded to the highest Z-height values within the original 

unfiltered plane fitted image was automatically identified with a red circle as the end-labelled 

end of the DNA molecule. In experiments without protein or small molecule end-labelling this 

option was disabled. The user visually confirmed endpoint tags to ensure that the program 

correctly identified protein end labels. Alternatively, the user could specify that the label was 

present at the opposite end. DNA molecules that were visually confirmed to be erroneous 

were removed. All DNA molecules were recovered during automated analysis of computer 

simulated AFM images.

3.2.2.8 Extraction of Coordinate Data

Pixel coordinates for the contours of DNA molecules identified during the previous 

step were extracted in sequential manner. The output was an ordered series of pixel 

coordinates from the first to final endpoint pixels. Corresponding Z-height values from this 

coordinate list were extracted from the image generated during the Plane Fitting step. If the 

experiment included visual or Z-height end-labels then the first coordinate removed was from 

the side of the DNA molecule that was confirmed to contain the end label. In the cases where 

no end labels were specified the program began extraction at a random endpoint pixel.
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3.2.3 Design of a General User Interface for ADIPAS

A GUI was developed for ADIPAS that allowed the operator to visually check each 

stage of the image processing workflow. The purpose of the GUI was to facilitate high- 

throughput analysis of DNA images (Figures 3.3-3.7.).

On accessing the software the first prompt for the user was to input an image file 

(Figure 3.3.). This created a pop-up for file selection familiar to any user of modern operating 

systems. Directly below the 'Get Files' button was a textual input panel where the name of a 

file containing workspace variables from a previous session could be manually inputted. Image 

processing that was performed after the name of a valid file has been entered using 'Get Files' 

continued the numbering system of the previous file/dataset. Additionally, output data 

contained the information within the input file.

Once an image file, or series of files, had been selected the GUI displayed a plane fitted 

version of the AFM image file and highlighted a series of tick boxes and sliders (Figure 3.4.). 

The tick boxes represented image noise filters that could be applied to the displayed image by 

selecting the appropriate tick box followed by the 'Refresh Filter' button (Figure 3.5.). The 

'Contrast' slider modified the maximum and minimum Z-height value in the displayed image 

and was dynamically updated. The 'Reset Image' button returned the image to its original 

state. Any contrast adjustment was retained in the overlaid output image.

The sliders located below the filter tick boxes controlled the upper and lower 

threshold value for the image. On selection of either slider the image was converted to a 

binary black and white image (Figure 3.6.). The threshold was dynamically updated as the 

slider position was changed by the user. The image could be reset to its original state by 

pressing the 'Reset Image' button or by applying another image filter.

On selecting the 'Done' button below the threshold sliders a pop-up window appeared 

during the branch removal step (Section 3.2.2.6.). As the most time consuming stage of the 

image processing platform (between 5-30 seconds dependent on the number of detected 

molecules) the pop-up window indicated the number of molecules that remained to be 

processed for branch removal.

After the branch removal was completed the original image appeared overlaid by the 

skeletonised DNA contours (Figure 3.7.). A red circle indicated the end with the largest Z- 

height for each molecule. This allowed for identification of end-label proteins if included as 

part of experimental design. A series of labelled tick boxes was highlighted to the right of the 

displayed image. The tick boxes corresponded to the appropriately labelled overlaid DNA 

molecules in the displayed image. Unchecking a tick box and selecting the 'Refresh' button 

removed the overlaid molecule from the image. Similarly, reselecting a tick box and pressing
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'Refresh' caused the molecule to reappear on the image. A button labelled 'Flip' was located to 

the left of each tick box. Selecting this button when a molecule was overlaid on the displayed 

image caused the circle denoting the 'tagged' end of the molecule to swap endpoints. This 

stage also allowed for the removal of obviously erroneous DNA molecules, DNA contours that 

had not followed the observable DNA molecule with acceptable fidelity or otherwise 

undesirable DNA molecules.

On pressing the 'End' button all molecules visibly overlaid on the displayed image 

would have xyz data individually extracted in a sequential manner beginning with the end 

designated as 'tagged' by a red circle. The software saved the overlaid image file as a 

compressed jpeg. Information on the name of the source file, name of the overlaid output 

image and DNA contour xyz pixel coordinate were saved as a data file. The detected molecules 

in the file were labelled sequentially in ascending order beginning with zero unless a previous 

workspace was loaded before beginning image processing (Figure 3.3.).

The software continued to open the subsequent image file if a series of image files 

were selected. If there were no more files for processing the software closed. Alternatively, if 

the tick box located at the bottom of the screen labelled 'Reprocess Image' was checked then 

the software reloaded the previous file and treated it as a new image for further processing. 

This was useful when DNA molecules were not detected by the first pass of the software.
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D

TO
CD

CD
CuOTO
E

"g  -.= *4—
CD °1_ 4->TO -C

CuD4-<
JC »- 
Cuo <D 
CD -C  JC ^
M 2

Co
Q _  ■*“ 'cuo "ti
1/1 * “  —sJO

TO
cTO
to
CD
Xo

-Q

u

91

bo
tto

m
 

of
 

th
e 

im
ag

e.



3.2.4 Data Processing and Analysis Pipeline

The aim in the development of an analysis pipeline was to allow for a comprehensive 

investigation of physical measurements of DNA molecules extracted from AFM images. The 

pipeline allowed for a large amount of input xy coordinates from a large cohort of DNA 

molecules to be processed to produce measurements of reconstructed molecule length, DNA 

persistence length, intrinsic DNA curvature and DNA flexibility. Additionally, the FF algorithm 

of DNA orientation was reproduced from the original publication (Ficarra et al., 2005b). The 

tools developed were sufficient to the task of analysing 'real' and theoretical AFM images of 

DNA molecules with the end result of measuring intrinsic curvature. Critically, the analysis 

platform enabled a full analysis of a DNA sequence, such as the TP53 gene, with the aim of 

estimating DNA curvature, DNA flexibility, reconstructed length, persistence length and a full 

evaluation of the FF algorithm. This has been fully detailed in Chapter 5.

3.2.4.1 Calculation of DNA Contour Length

The length calculation was based upon a modified Euclidean distance measurement 

called the Kulpa Estimator (Kulpa, 1977). This simple estimator of distance was obtained by 

first calculating the Euclidean distance between each pixel using the equation below:

d(p, q) =  V (p 1 -  q1) 2 +  (p 2 -  q2) 2

In the equation above p and q are pixel xy coordinates. There were only two unique 

states for pixel orientation. This was either side-by-side in the horizontal or vertical plain or 

diagonal. Two pixels side by side were scored as having a Euclidean distance of 1 and those in 

the diagonal plane as 1.4. The Kulpa estimator used the modified values of 0.948 and 1.343 

(Figure 3.8). The sum total of all the pixel distances was calculated and converted into 

nanometres based upon the size and resolution of the image.

Euclidean
Distance

Kulpa
Estimator

1.00 1.00

0.948 0.948

1.40

1.343

Figure 3.8. - Pixel coordinates distance as calculated for using Euclidean distance (i.e. the 
Freeman estimator) and the Kulpa estimator. The squares represent individual pixels and the 
rounded line represents the distance measured.
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3.2.4.2 Persistence Length Calculation

Persistence length is an important global statistic of polymer flexibility. According to 

the WLC model of DNA flexibility (Rivetti et al., 1996) the mean trajectory of an intrinsically 

straight chain in 2-D is given by the equation:

Where R2 is the mean curvilinear distance of the polymer in Euclidean distance,  ̂ is the 

persistence length of the polymer and L is the curvilinear distance/contour length of the 

polymer. Solving this equation for different values of  ̂over a range of values of L allows the 

construction of WLC models of the end-to-end distance of DNA chains.

In order to calculate the persistence length of DNA from a set of Veal' DNA images, 

experimental <  R2 >  was calculated. The experimental <  R2 >  was compared to theoretical 

<  R2 >  values for a range of £ generated using the equation above. For each £ the value of L 

varied in a range of n0 to nL where n is an evenly spaced range of contour lengths from zero to 

~300 nm. An upper limit of ~300 nm was obtained from the literature (Cassina et al., 2011). 

This produced a prediction of <  R2 >  over a range of contour lengths and values of

The experimental estimation of <  R2 >  for a series of DNA molecules was 

straightforward. A linear interpolant was fitted between each pixel within each molecule in a 

sufficiently large dataset. The width of a pixel in nanometres was calculated {i.e. size of the 

image in nanometres divided by the number of pixels). This allowed for the selection of a 

series of points within the DNA molecule that were n0 to nL curvilinear distance from the 

beginning of the molecule. The end-to-end distance (R2) between the start point (n0) and point 

of interest (nx) was then calculated in nm2. This was repeated sequentially over an appropriate 

number of points (n0-n j for each DNA molecule. This provided an ordered series of ascending 

values for the curvilinear distance along an individual DNA molecule (R2). These values were 

calculated for a sufficiently large number of DNA molecules and averaged (<  R2 > ).

In order to identify the most appropriate persistence length for experimental DNA it is 

necessary to identify which value of  ̂produces <  R2 >  from the WLC model that most closely 

match experimental <  R2 >  values. A number of values of  ̂ are used to generate <  R2 >  

from the WLC and the closest fit was identified using root mean square error (RMSE). The 

solution to the equation that best matches experimental <  R2 >  values provided the 

persistence length for experimental DNA (Figure 3.9.A). The quality of the fit can be visually 

confirmed by using a plot similar to that in Figure 3.9.B. If the plot significantly deviates from 

all theoretical predications made by the WLC model it may be necessary to assess the fit using 

other statistical tools.
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RMSE of Fitted Model Model Fit
x 10*

5

4 5

4

3 5

3

2 5

2

1 5

1

0 6

0
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Curvilinear Distance (nm)
200 250 3009( 0

Figure 3.9. - Examples o f experim enta lly dete rm ined DNA persistence length by comparison to  
theore tica l values o f <R2> using the WLC m odel. A) Plot o f the  RMSE fits  o f R2 generated using 
a range o f persistence length values against experim enta l R2 values from  the WLC m odel. B) 
Experimental R2 values (red line) alongside R2 values (broken blue) predicted by the WLC model 
fo r a DNA m olecule o f persistence length o f 60 nm over a range o f cu rv ilinear distances o f 0- 
300 nm.
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3.2.4.3 Calculating Curvature Angles From DNA Molecules

3.2.4.3.1 Identification of Comparable Points in a Set of DNA Molecules

Pixel values extracted during the image processing step were fitted with a piecewise 

interpolation technique that passed through each point. The choice of interpolant was 

experimentally assessed and is presented in Section 3.2.5.I. To obtain a comparable number 

of data points for each molecule a suitable number of coordinates were selected at equal 

intervals along the DNA molecule (Zuccheri et al., 2001b; Scipioni et al., 2002a).

3.2.4.3.2 Base Pair Window Size

The number of points fitted per DNA molecule determined the base pair window 

size at which curvature angles were calculated. As curvature angles were calculated over three 

points the base pair window size was twice the distance of one fitted point. For example, a 

researcher wishing to calculate curvature at an interval size of 21 base pairs for a 1855 bp DNA 

molecule would fit a point every 10.5 bp. Therefore, 177 coordinates (1855 bp divided by 10.5 

bp) would be selected from the interpolated DNA contour at regular intervals. Examples of 

coordinate selection over a number of base pair window sizes and the outcome angles 

calculated are presented in Figure 3.10.

3.2.4.3.3 Angle Calculation

In order to study curvature the angular deviation from the backbone line was 

calculated. Individual xy coordinate steps were treated as vectors. The dot product and the 

perpendicular dot product were used to find the angle of intersection between sequential 

vectors using the formulae in below (schematic in Figure 3.11):

theta =  arctan(perpedicu lar dot product, dot product)

The resulting angle in radians (rads) was considered positive if it was a clockwise 

(right-handed) angle and negative if it was counter clockwise (left-handed). On rotation of a 

line around a central point the sign (+/-) of the angles will not change based upon the 

trajectory of the line. This is visualised using a simple series of pixel angles in Figure 3.12.
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0 27808
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0 6113
=0 2701
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Figure 3.10. - Examples o f angles calculated over fo u r base pair w indow  sizes. A) Base pair 
w indow  size o f 21 bp - 1  po in t fitte d  per pixel in original m olecule. B) Base pair w indow  size o f 
42 bp- 1 points fitte d  per 2 pixels in original m olecule. C) Base pair w indow  size o f 84 bp 1 
po in t fitte d  per 4 pixels in orig inal m olecule. D) Base pair w indow  size o f 400 bp -1  po in t fitte d  
per 20 pixels in o rig inal m olecule. Red lines represent orig inal data points. Blue circles 
represent points fitte d  a t regularly spaced intervals o f orig inal data. Angle values were 
calculated as the  backbone deviation  from  a stra ight line.

96



X Y ( / + 1 )

Figure 3.11. - Representation o f the curvature angle at po in t This was calculated from  the 
angle o f intersection between both lines X Y (i-l) to  XY(i) and XY(i) to  XV(/'+l) . Note th is  would  
be a negative angle as it is counter clockwise ro ta tion .
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Figure 3.12. - Angle calculation fo r a line ro ta ted  around a centra l po in t (red circle). The line 
section was replicated m ultip le  tim es around the centra l po in t w ith  d iffe ren t o rien ta tions. All 
angles were calculated along the lines from  the  centra l red circle to  the  end o f the  lines. Angles 
were calculated at the in tersection po in t o f each section o f the line. Angles along the line were 
identical in each ro ta tion  although the d irection  o f the  line changes. All angles calculated fo r a 
comparable po in t along the line were identical independent o f ro ta tion .
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3.2.4.4 Calculation of Curvature Profiles.

The observable curvature of a DNA strand imaged by AFM is composed of two factors: 

intrinsic curvature (C0) and flexibility (f). Intrinsic curvature is a product of local interactions 

between dinucleotides and consecutive base pair steps. Flexibility is the perturbation of DNA 

on interaction with the local environment. Both of these elements are products of DNA 

sequence. Therefore, observable curvature of a DNA sequence of base pair length can be 

described by the equation below:

C(n) =  C0 00  + / ( n )

Where C was the observable curvature at point n along the DNA sequence C0 was the 

intrinsic curvature and /  was the flexibility. Due to its relatively high rigidity DNA has been 

shown to follow first order elasticity theory (Scipioni et al., 2002a). The contribution of thermal 

noise imposing local variations of the structure of DNA was considered zero over a sufficiently 

large sample size (Ficarra et al., 2005b). Therefore averaging over a sufficiently large 

population of DNA molecules the intrinsic curvature at point n was calculated using the 

equation below. The flexibility parameter was characterised by the standard deviation at point 

n.

C0( n ) =  <C(n)) =  C0(n ) + / ( n )

In order to generate a curvature profile for an aligned set of DNA molecules of number 

N each molecule was sampled S number of times along its standardised length (Section 

3.2.4.3.I.). This gave a matrix of curvature values M  (N x S). Each row (n) of the matrix was a 

separate DNA molecule. Each column was a series of angle measurements at a comparable 

position along the length of the DNA molecule (s). The mean value of the rows gave the 

curvature profile for the dataset. The curvature profile had a length equal to S. The standard 

deviation at each point of S was the flexibility profile. The final curvature profile was composed 

of either signed or unsigned values. To produce an unsigned curvature profile (also called 

absolute curvature) all angles were made absolute before taking the average. The unsigned 

curvature profile took into account the magnitude of curvature and disregarded the direction 

of curvature. To produce a signed curvature profile both the size and direction of the curvature 

were considered. A sample schematic of a curvature matrix is provided in Table 3.1.
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Position along the DNA Molecule in Base Pairs
End of

10.5 bp 21 bp 31.5 bp 42 bp Molecule
(S)

Molecule 1 0.165 0.073 -1.854 0.026 -0.251

Molecule 2 0.250 0.085 4.875 0.300 -0.186

Molecule 3 0.357 -0.404 0.444 -0.444 -0.444

• • •

Molecule N 0 0.444 -0.444 0.435 -0.435 0.424

*

Mean

Standard

Deviation

Curvature 0.165 4.875 -1.854 0.026 -1.854 0.026

Flexibility 0.152 1.375 -0.894 0.563 -0.440 1.126

Table 3.1. Schematic of a curvature matrix of dimensions N x S. The curvature profile was the 
mean value of the column and flexibility profile is its standard deviation. Both profiles were of 
length 1 x S. The outcome was a signed curvature profile.
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3.2.4.5 Fragment Flipping Algorithm

Each DNA molecule adopts one of four different conformations on a mica surface 

(Figure 3.13). The FF algorithm assumes that there is an underlying consensus curvature profile 

to the DNA molecules. If all molecules are oriented correctly then the objective function of the 

FF algorithm, the mean column variance, will be at a minimum.

The FF algorithm was instituted using a Greedy algorithm, looping throughout the 

curvature matrix multiple times to find an optimal solution to the objective function. The 

Greedy algorithm was found to be optimal compared to other well-known general-purpose 

heuristic solvers (Ficarra eta!., 2005b). A curvature matrix was constructed for a cohort of DNA 

molecules. The angles corresponding to the curvature of an individual molecule were then 

transformed into each possible orientation [i.e. invert sign, flip direction or both, see Figure 

3.13.) and the mean of the column variances was recorded for each orientation (Figure 3.14), 

this value was the objective function of the algorithm (Figure 3.15). The molecule orientation 

that reduced the objective function the largest amount was then adopted for that molecule. 

This was applied to all of the molecules within the dataset. This was iterated upon for the 

dataset multiple times until the objective function did not significantly change, assessed by the 

Kolmogorov-Smirnoff test, over a user defined number of passes (default = 25). Curvature 

profiles were constructed from the resulting curvature matrix as previously detailed.

Figure 3.13. -  All possible orientations of a DNA molecule on a flat surface. The shape of the 
molecule was the same in each orientation but the direction of the molecule changed.



Position along the DNA Molecule in Base Pairs

10.5 bp 21 bp 31.5 bp 42 bp 52.5 bp

Molecule 1 1 2 3 4 5

Molecule 2 5 4 3 2 1

Molecule 3 -1 -2 -3 -4 -5 Mean Varianci

Molecule 4 -5 -4 -4 -2 -1 15.12

i Flip Molecule 1

10.5 bp 21 bp 31.5 bp 42 bp 52.5 bp

Molecule 1 -1 -2 -3 -4 -5 «—

Molecule 2 5 4 3 2 1

Molecule 3 -1 -2 -3 -4 -5

Molecule 4 -5 -4 -4 -2 -1 11.25

i Flip Molecule 2

10.5 bp 21 bp 31.5 bp 42 bp 52.5 bp

Molecule 1 -1 -2 -3 -4 -5

Molecule 2 -1 -2 -3 -4 -5 « —

Molecule 3 -1 -2 -3 -4 -5

Molecule 4 -5 -4 -4 -2 -1 2.05
■•■■ Flip Until No Significant Change in
* Variance for 25 Iterations

10.5 bp 21 bp 31.5 bp 42 bp 52.5 bp

Molecule 1 -1 -2 -3 -4 -5

Molecule 2 -1 -2 -3 -4 -5 Final Mean

Molecule 3 -1 -2 -3 -4 -5 Variance

Molecule 4 -1 -2 -4 -4 -5 0.05

Figure 3.14. - Demonstration of the FF algorithm on an example curvature matrix using the 
Greedy algorithm. Each individual DNA molecule was flipped into four different orientations. 
The orientation that reduced the objective function of the FF algorithm (the mean of the 
column variances) by the largest amount was retained. The process was repeated with all 
molecules in the dataset until there was no significant change in variation for a used-defined 
number of whole dataset iterations.
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Objective Function of Fragment Flipping Algorithm
0 1295

0.129

0 1285

0 128
c
|  0.1275
c

^  0.127
>

0.1265-Qo
0 126

0 1255

0.125

0 1245
0 5 2 5

4Iteration Number x 10

Figure 3.15. - Example o f the change in the FF objective  function  using the  Greedy algorithm . 
The objective  function , the mean o f the co lum n variances in the curvature  m atrix, was 
recorded at the end o f each ite ra tion  and p lo tted  against the  appropria te  ite ra tion  num ber.
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3.2.5 Evaluation of Methods for Calculating Interpolants and Selecting Appropriate Base

Pair Window Sizes for Curvature Analysis

A lack of consideration for the choice of interpolator method used to fit a series of 

regularly spaced points to DNA contours in order to calculate curvature angles was identified 

within the current literature. Similarly, the window size in base pairs used to select an 

appropriate number of points to fit to DNA contours for the calculation of curvature angles 

was not considered in many studies. Instead, studies typically fitted a number of points close 

to the number of pixels that made up individual molecules. The choice of interpolant was likely 

to have an influence on the curvature angles calculated on this scale. At low base pair window 

sizes there was likely to be an increased influence of DNA molecule variance and image noise 

on the calculation of curvature angles.

The following sections contain experimental work aimed at the selection of an optimal 

interpolation technique from those presented within the literature. Furthermore, a method of 

Visual thresholding' for identification of suitable base pair windows for curvature calculation 

has been developed. This methodology was novel and allowed the identification of digitisation 

effects on AFM images of DNA and for the selection of appropriate window sizes in base pairs 

for the calculation of curvature angles on an experiment-by-experiment basis.

3.2.5.1 Selection of an Interpolant

In order to take a number of comparable curvature angles along DNA contours the 

length of each molecule had to be standardised (Rivetti and Codeluppi, 2001). A number of 

points were then interpolated along the standardised length. From the standardised length a 

suitable number of points were selected at regular intervals. The angles between these points 

were calculated.

There have been a number of methods used to smooth the DNA xy pixel coordinates 

by previous authors: constrained 'interpolator splines' (Ficarra et al., 2005a), piecewise fitting 

of polynomials every 5 coordinates (Ficarra et al., 2005a) and a complex method of spline 

fitting (Sundstrom, 2008). Other authors did not include this step (Zuccheri et al., 2001b; 

Scipioni et al., 2002a). The effect, if any, of interpolant selection on curvature measurements is 

not covered in any available published material. It is likely that the choice of 

smoothing/interpolant will effect curvature measurement at the smallest base pair windows 

where the effect of digitisation of the DNA contour is most pronounced.

In order to select an appropriate interpolant a number of methods were compared. 

Four methods of interpolation were implemented for comparison; piecewise linear 

interpolation, cubic spline interpolation, piecewise cubic hermite interpolation and piecewise 

polynomial fitting (Examples in Figure 3.16). The first three methods were available within the
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Matlab programming environment. Each methodology created a series of interpolator splines 

that were constrained to pass through each pixel coordinate. The linear method joined each 

point with a straight linear line (Figure 3.16.B). The methods used for the construction of 

splines for the cubic and hermite interpolants were very similar and both involved the fitting of 

piecewise splines (Figure 3.16.C+D). However, the hermite was typically more suitable for 

curved data. The end result of this was that hermite spline interpolation involved less 

oscillation, was less likely to overshoot in non-smooth data and typically adhered more tightly 

to the data (Figure 3.16.D). The final method, detailed by Ficarra et al., was implemented as 

described by the authors (Ficarra et al., 2005a). A three degree polynomial was fitted every 

five coordinate points (Figure 3.16.E).

A set of computer generated AFM images of TP53 Exon 5-7 was used to test the choice 

of interpolant. The original xy coordinates per base pair were retained and used for orientation 

of molecules after image processing by aligning the processed molecules with their original 

orientation (Section 2.5.6.). The Euclidean distance between each original base pair and the 

comparable section after image processing was calculated. This value was used to measure the 

similarity between the final positions of xy coordinates generated using the different 

interpolation methods and the original DNA molecule before digitisation. The results ordered 

from highest similarity to lowest were; polynomial (2.83xl03), linear (3.41xl04), cubic 

(3.42xl04) and hermite (3.42xl04).

The clear choice of interpolant method was the polynomial, however a number of 

inconsistent artefacts were observed during implementation (Figure 3.17). These artefacts 

were not observed with the other interpolant types. The polynomial method was not 

implemented; it was considered that it is better to have consistently slightly poorer but 

predictable similarity rather than inconsistent and unpredictable artefacts. There was little 

difference between the remaining interpolant types. However, the linear interpolant 

(effectively the original digitised DNA contour) gave the best results and was implemented 

within the software.
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Cubic Hermite

Polynomial

Figure 3.16. - Effect o f in te rpo lan t on curvature o f the DNA contour. A) Original trace a 
theoretica l TP53 Exon 5-7 m olecule B) Piecewise linear in te rpo la tion . C) Cubic spline 
in te rpo la tion  D) Piecewise cubic herm ite  in te rpo la ting  polynom ial. E) Polynomial in te rpo la tion  
(3 degree polynom ial over 5 x-y coordinates). The green lines are the theore tica l trace o f the 
DNA molecule, red lines represent pixel coordinates o f the  DNA m olecule a fte r d ig itisation and 
the blue lines are the reconstruction  o f the pixel coordinates a fte r in te rpo la tion .

106



167

166

165

164

163

162

161

160

159

158
436 437 438 439 440 442 443441

37 5

3 6 5

36 5

3 4 6

33 5

342 5 343 343 5 344 345 345 5 346

185

184

183

182

181

180

179

178

177

176

175

611 5 612 612 5 613 613 5 614 614 5 615 615 5 616 616 5
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3.2.5.2 Creating a Visual Threshold for Selecting Base Pair Window Size

Many researchers work at the lowest possible resolution afforded by AFM imaging. 

Often this resolution borders one pixel per curvature angle measurement. The following 

research has shown that this may not be the best resolution for a reproducible analysis, with 

supporting evidence described below. This study has described a method of visually selecting 

an appropriate window size of curvature for the AFM user alongside outputs that gives 

information on the quality of the data at that resolution.

3.2.5.3 Influence of Base Pair Window Size on Curvature Profiles

While there is a consensus method for the calculation of curvature from AFM images 

there is little consideration of how the base pair window size for curvature and flexibility will 

effect the observed curvature within the literature. In order to tackle this issue curvature 

profiles were generated for a test dataset of simulated AFM images over a wide range of base 

pair windows (Figure. 3.18). The images were processed using the image processing software 

detailed in this chapter. A number of points were fitted to the resulting xy coordinates at 

regular intervals. These intervals corresponded to the appropriate number of points for each 

of the base pair windows under investigation. The range used experimentally began below the 

limit of AFM resolution of the current experiment of 21 bp with a point fitted every 10.5 bp. 

The range extended up to a maximum often points fitted per molecule. The full details on the 

generation of computer simulated AFM images are presented in Chapter 4.

At low base pair window sizes (Figure 3.18 - light green lines) there was observably a 

greater degree of variation in absolute curvature profiles (Figure 3.18.A+B). Unsigned 

curvature did not consider the direction of the curvature. This contrast between peak and 

trough steadily increased at larger window sizes. The signed curvature profiles (Figure 3.18.C) 

also showed a steady increase in contrast between peaks and troughs at larger window sizes.
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Figure 3.18. - V isualisation o f the e ffect th a t the  base pair sample w indow  has on the curvature 
pro file  o f TP53 Exon 5-7 from  com puter simulated AFM images. A) Unsigned curvature profiles 
(all angles are considered positive) fo r w indow  sizes from  10.5 bp to  270 bp. B) Unsigned 
curvature profiles fo r w indow  sizes from  10.5 bp to  185 bp. C) Signed curvature  pro file  o f TP53 
Exon 5-7 (both positive and negative curvature values are considered) w ith  w indow  sizes from
10.5 bp to  270 bp. The position along the molecule was standardised from  0 to  1. Zero 
corresponds to  the 5' end o f the molecule. The co lour scale is from  10.5 bp (light green) to  
~270 bp (dark brown).
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3.2.5.4 Influence of Base Pair Window Size on Mean Curvature

It was observed that when the base pair window size at which curvature was 

calculated was increased there was a reproducible effect on the mean curvature measured 

(Figure 3.19.). There was a peak at low window size followed by a trough and then a nearly 

linear increase. This effect was observed in multiple experiments. The effect was both an 

artefact of the data and an interesting finding.

The changes observed could be attributed to a gradation of different properties of the 

digitised DNA contour. The number of data points fitted at a low window size was nearly equal 

to average number of pixels per molecule. Where this was true there was a constrained 

number of different calculable angles (0, 0.78 and 1.57 radians) with a known maxima value of 

1.57 radians.

If the window size was reduced below the average number of pixels per molecule then 

there were more points fitted than there were pixels. This led to multiple samples being taken 

from within one or two consecutive pixels (i.e. the calculated angle is 0.00 radians) and had the 

effect of reducing the mean curvature. This effect can be observed at window sizes below ~21 

bp in Figure 3.19.A.

The trough at ~40-80 bp could be attributed to a window size that fits a point every 2- 

4 pixels for a large number of DNA molecules within the data set. At this scale there was still a 

limited number of physical orientations that the digitised DNA could conform to, however 

there were many more than those available at the scale of one point per pixel. While the 

maximum curvature could still be 1.57 radians for an individual point it was far more likely to 

be lower than this. Pixelated DNA could never take up a conformation of greater than 1.57 

radians at a window size of 1 point every 2-4 pixels. Additional pixels would be removed during 

the erosion step of image processing. Additionally, within this range of window sizes some 

molecules would be fitted with one point for every two pixels. This had the effect of smoothing 

out the jagged pixelation/digitisation of the DNA contour and was likely to reduce the mean 

curvature.

At window sizes in excess of 60 bp the mean curvature began to rise again. At this 

window size the DNA was able to take up a wide range of conformations and could begin to 

double back upon itself (For an example see Figure 3.10.D). As the largest measurable 

curvature began to rise the net effect was an increase in mean curvature (Fig 3.19.A.).

110



Mean Curvature vs Base Pair Window Size
0 36

0 34

0 32

V>
CO

0 28

I  0 26
3o
C 0 24

5  022

0 2

0 18

0 16
160

Base Pair Window Size (bp)
200 260 300 350 400100

Mean Flexibility vs Base Pair Window Size
0 35

0 26

>s

.5
x

£  0 15
c

0 05

250 300 350100 150 200
Base Pair Window Size (bp)

400
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3.2.5.5 Creating a Visual Threshold for Selecting Optimal Base Pair Window Size

The observation of the mean unsigned (absolute) curvature alongside prior knowledge 

of how these trends occurred allowed for the segmentation of the mean curvature plot into a 

number of different sections. These groupings allow the researchers, on a per experiment 

basis, to know if the curvature measured can be attributed to digitisation of the DNA contour, 

local curvature or large scale curvature (Figure. 3.20.B).

There were a number of ways to approach this problem. The chosen approach was 

both simple to implement and visually easy to understand. The plot was smoothed (10 point 

average), the maximum curvature of the first peak and the minimum value of the central 

trough were identified. On taking the average value between these two measurements a 

reproducible threshold was produced. This could be applied across multiple experiments 

assuming the relationship between base pair window and average curvature stayed constant.

Any window sizes smaller than the window size of the peak maxima (indicated with a 

red circle in Figure 3.20.A) were sub-optimal as they began to sample multiple times within 

individual pixels. Figure 3.20 shows both the simple threshold (Figure 3.20.A) and the mean 

curvature with the proposed labels (Figure 3.20.B). The region from the average line and the 

first peak maxima was characterised as the 'pixel region', where a large proportion of 

molecules had a number of points fitted similar to or equal to their length in pixels. Within this 

region the choice of interpolant would have an effect on the curvature measured alongside the 

effects of DNA contour digitisation. The trough below the average line could be considered the 

'local curvature' region, where the curvature measurements were free of the effects of 

digitisation. The minima value could be considered an optimum value. Any values that 

occurred within the region of window sizes larger than the average line could be considered to 

be curvature on the large scale, or 'gross curvature'.
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Figure 3.20. - Proposed segm entation o f the  mean curvature  fo r a range o f base pair w indows. 
A) Example o f the thresho ld  m odel. B) Mean curvature  w ith  each section labelled and 
highlighted. Profiles were generated fo r a set o f sim ulated AFM images (1171 molecules) o f 
TP53 Exon 5-7. Mean curvature  values were calculated as the  mean value o f the curvature 
p ro file  at each w indow  size. The green line is raw data, the blue line is a te n -po in t sm oothed 
average. The red circles indicate the maxima and m inima o f the  sm oothed data. The m inima 
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th ree  labelled regions; the  pixel region (red), local curvature  (blue) and gross curvature 
(green).

113



3.2.5.6 The Effect of Base Pair Window Size on Minimum and Maximum Curvature

A number of factors were investigated to ensure that the peak in mean curvature at 

low base pair window size was due to the influence of digitisation on the curve. Firstly, the 

maximum and minimum curvature values for each dataset were calculated over a range of 

base pair windows (Figure 3.21.A). These measurements were the maxima and minima of 

angles calculated from DNA molecules (not the maxima/minima of the curvature profile). 

Curvature values were calculated from simulated AFM images of TP53 Exon 5-7 (n=1171). The 

base pair window size was used to fit an appropriate number of linearly spaced points to each 

individual molecule for curvature calculations. It was observed that the matching maximum 

curvature values recorded within the dataset increased as base pair window size decreased 

(Figure 3.21.A). The graph peaked at the smallest window sizes. The value of the largest angle 

measured was 1.5708 radians, the angle of a right angle, which is the largest angle possible for 

two adjacent pixels. At this threshold window size the profile was measuring true 'pixel 

angles'. The highest base pair window that measures 1.5708 radians is 21 bp. It could be 

assumed any window size below 21 bp measured primarily pixel angles (i.e. 0.0, 0.78 and 1.57 

radians) for all molecules. All minimum curvature measurements lay below 4.60 x 10*4 radians 

at each base pair window size and therefore could functionally be considered zero.

The number of individual curvature angles that matched the maxima and minima for 

the entire dataset were recorded at each base pair window size (Figure 3.21.B.). Occurrences 

of multiple maxima and minima that were non-unique began to occur regularly below the 50 

bp window. It is likely that at this resolution the number of points fitted along a significant 

proportion of the dataset matched the number of pixels that describe individual molecules. At 

this window size the curvature angles calculated were non-unique: 1.5, 0.75 or 0 (only possible 

angles formed between three adjacent pixels). Multiple occurrences of non-unique values at 

such resolutions were expected due to the limited number of different conformations three 

adjacent pixels could assume. At larger base pair windows it was likely that points fitted would 

generate unique maximum curvature values as the maximum values were dictated by the local 

curvature over a number of points rather than the conformation of three or four pixels (which 

have a restricted number of different orientations). The window size with the largest matching 

minima and maxima value was 19 bp. This value was in good agreement with the lowest 

appropriate resolution of the simulated AFM images of approximately 18 bp.
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3.3 Discussion

3.3.1 Publishing and Distribution

The image processing GUI and associated analysis software have been developed in 

the Matlab 7.5.0. programming environment. Matlab is compatible with all major operating 

systems (Windows, Macintosh and Linux). The ADIPAS GUI is intended for peer reviewed 

publication with an associated Matlab Toolbox distributed through the Mathworks website. 

Additionally, the software will be made available as a distributable executable file for users 

without Matlab using a Matlab compiler for multiple operating systems (Hernandez-Boussard 

et al., 1999). The analysis pipeline will also be published and distributed at a later date as an 

extension of ADIPAS when a GUI has been finalised.

3.3.2 Comparability of ADIPAS to Previous Image Processing Pipelines

The ADIPAS image processing software described in this chapter was more 

comprehensive than other packages currently available for AFM image analysis. Many 

different techniques have been included in the software package from multiple previous 

studies. These include the option for automated or semi-automated image processing, a range 

of image filters, interactive contrast adjustment, interactive or automated thresholding, 

automated DNA molecule recovery and branch removal and fully annotated output images. 

The ADIPAS GUI allowed for operators to analyse AFM images of DNA with only minimal 

training. The easy access provided by the GUI, alongside the level of automation and number 

of available image processing options allows for quick and easy processing of large numbers of 

AFM images.

The steps involved in the image processing toolbox were modelled on the methods 

detailed by Ficarra et al., with some amendments to the methodology (Ficarra et al., 2005a, 

2005b). A major deviation from this work was the exclusion of the Fragment Point Recovery 

step. This was initially implemented in ADIPAS and was removed due to the detrimental effect 

that it had on the speed of the image processing platform. The recovery of points around the 

DNA skeleton was computationally simple to implement. The pixels directly bordering the DNA 

skeleton after thinning were identified and any with Z-height above the image specific 

threshold were recovered and reintroduced into the DNA skeleton. This was repeated for each 

valid pixel. However, this step was found to introduce a large number of 'spurious branches' to 

each DNA molecule processed. This is likely to be less pronounced in low noise, high contrast 

images.

The removal of spurious branches was the most computationally intensive step within 

the image processing pipeline (Ficarra et al., 2005a). The introduction of additional branches
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dramatically reduced the speed of image processing, which was suboptimal for an image 

processing platform with the core aim of efficiently processing large volumes of AFM images. 

With the introduction of more computationally complex but faster methods of binary line 

tracing, such as live-wire image segmentation, the Fragment Point Recovery step could be 

reintroduced into ADIPAS without negatively impacting image processing speed (Hamarneh, 

2005).

3.3.3 Identification of Image Processing Steps with Potential for Future Improvements

In terms of image processing speed the software was sufficiently fast to process large 

amounts of AFM images. The processing speed of a typical AFM image was between 10-30 

seconds for the semi-automatic option and 5-10 seconds when fully automated. The majority 

of processing time was consumed with the selection of the user-defined threshold value, 

image filters and molecules of interest. In the case of computer-simulated AFM images these 

stages were entirely automated, as the level of image noise and the occurrence of erroneous 

molecules was considerably lower. The image filtering steps could be made redundant by 

implementing an automatic de-noising filter. A recent example uses the statistical features of 

noise sources present within an image to identify and de-noise the image (Subashini and 

Bharathi, 2011).

A number of automatic thresholding methods were available within the current 

literature. A selection of these methods have been reviewed in relation to their applicability to 

AFM images of DNA (Ficarra et al., 2005a). Automatic thresholding using the Otsu threshold, 

found to be suitable by the aforementioned review, has been incorporated into the software. 

The Otsu threshold was found, by the present study, to be suitable for computer simulated 

AFM images or low-noise, high-contrast AFM images. However, real AFM images display image 

quality degradation over long experiments due to. tip wear and other factors. This made the 

Otsu threshold unsuitable for the majority of real AFM images used in this study. The user- 

defined threshold implemented in ADIPAS allows interactive visual selection of molecules. This 

was found to be more suitable for the majority of real AFM images collected during this study. 

To improve the application of automatic thresholding to real AFM images more 

computationally complex automated thresholding algorithms could be incorporated into the 

software. A suitable algorithm exists and functions by adaptively thresholding based upon local 

image intensity (Gatos et al., 2008). This would improve the applicability of automatic 

thresholding to AFM images of variable noise and contrast. The implementation of accurate 

automatic thresholding in addition to the previously discussed automated de-noising 

techniques would dramatically reduce the need for operator interaction during AFM image 

processing.
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The method used for the removal of spurious branches in the software had the 

advantage of being both quick and effective for the detection of DNA contours. The algorithm 

iterated upon the same molecule for its execution and so it was still moderately time intensive. 

Methods for direct tracing of the longest path through a DNA contour, without iteration would 

improve the speed of this step. The current method is both quick and efficient at DNA contour 

detection and spurious branch removal. Without implementing another tracing algorithm into 

the software no quantitative comparison was possible.

3.3.4 ADIPAS General User Interface

Image processing of large volumes of AFM images was necessary for the analysis of 

DNA curvature and flexibility. This can be both time consuming and tedious for the user. 

Automation can alleviate this. However, as previously discussed, automation is only applicable 

to computer simulated AFM images or very high quality real AFM images. Automation applied 

to even moderate quality images failed to recognise DNA molecules and produced tracing 

errors i.e. false positives. Either of these eventualities would introduce bias or error into the 

resulting analysis.

The solution to this was a semi-automated GUI. The ADIPAS GUI allowed key decisions, 

such as identification of automatically traced contours as an experimental DNA molecule, to be 

made by the user and automates non-decision making steps. GUIs have been built for image 

processing packages by previous authors. For example the ALEX toolbox for Matlab had a 

functioning GUI for tracing plasmid DNA molecules and has been applied to linear DNA 

molecules (Rivetti et al., 1996; Scipioni et al., 2002a) The advantages of a GUI is that it allows 

interactive modification of visual image filters, selection of accurate threshold value and 

identification of DNA molecules. The current GUI was comprehensive in its level of automation 

and interaction. The key decisions made by the user included: choice of image noise filter, 

determination of image threshold value, molecule selection and necessity of image 

reprocessing. As previously detailed the first two key decisions could be removed if suitably 

efficient and accurate algorithms were implemented. The user determined selection of DNA 

molecules was a necessary step; it allowed for the removal of obviously erroneous DNA 

complexes, such as overlapping molecules overlooked by the image processing software and 

DNA molecules joined end-to-end.

During the design stages of ADIPAS there were two options available for the 

identification and removal of DNA molecules by the user. The first option was to include all 

DNA molecules processed by the software in the final dataset that would be edited at a later 

time by the operator (Ficarra et al., 2005b). This had the advantage of increased automation, 

requiring less oversight by the user during image processing. The second option involved
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selecting DNA molecules during image processing. This had two advantages. Firstly, few 

erroneous DNA molecules were carried through to the analysis stage. Secondly, it allowed the 

user to reprocess images that exhibited promising DNA molecules that were not detected by 

the semi-automated software during its first pass. The second option was instituted in ADIPAS 

as it gave higher DNA molecule recovery per image. This also had the unforeseen advantage of 

reducing the variable size of the analysis dataset. This was sometimes a problem as Matlab 

does have a maximum memory cache size which can be exceeded by very large workspace 

variables.

In summary, the GUI provided a balance of functionality and automation. Individual 

image processing time was 10-30 seconds per image, making image processing of large 

volumes of AFM images time consuming. However, semi-automation with operator oversight 

was preferable when compared to the alternatives: full automation requiring thorough 

removal of erroneous molecules during post-processing or the absence of a GUI requiring vast 

amounts of tedious operator input per image. The ability of the human eye to identify DNA 

molecules from background has been commented on by previous authors (Ficarra et al., 

2005b). The current GUI combines the benefits of automation with the decision making 

oversight of a human user.

3.3.5 The Analysis Pipeline

The analysis pipeline incorporated methodologies from a number of studies into one 

package. It provided many of the common analysis methods used by modern researchers in 

the field of DNA nanobiology. The analysis pipeline achieved the primary aim of the study as it 

was able to measure the intrinsic DNA curvature and flexibility of TP53 or any other DNA tract 

of interest.

The calculation of DNA bend angles and persistence length measurement was 

performed using standard methodologies available from the literature (Scipioni et al., 2002a; 

Ficarra et al., 2005b; Cassina et al., 2011; Buzio et al., 2012). The FF algorithm was 

implemented using the Greedy algorithm as recommended by the original authors (Ficarra et 

al., 2005b). The FF algorithm was tested for accuracy and fidelity in Chapter 5.

The Kulpa DNA contour length estimator was incorporated into the software, in 

preference to other methodologies described in the available review of DNA length estimators 

(Rivetti and Codeluppi, 2001). The Kulpa estimator had the advantages of providing both an 

accurate estimate of DNA contour length and being simple to implement (Rivetti and 

Codeluppi, 2001). It produced a maximum length underestimate of -1.6 % for computer 

simulated AFM images and a maximum underestimation of -6.9 % on 'real' DNA images. It had 

the advantage over the ad hoc methodology described by Ficarra et al., of not requiring prior
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experimentation to determine a 'correction factor' for DNA length estimation (Ficarra et al., 

2005a). As the Kulpa estimator uses constant values for estimating contour length it is 

comparable between experiments. A multitude of other contour length estimators could be 

implemented for comparability with the Kulpa length estimator at a later date.

3.3.6 Consideration of Base Pair Window Size on Curvature

This is the first study, to the author's knowledge, that has considered the window size 

(in base pairs or pixels) over which to calculate curvature or flexibility and the possible 

downstream effect on measurements of physical parameters. The majority of research on DNA 

using AFM used the minimum base pair window size for calculating physical parameters based 

on the micrograph resolution (e.g. Ficarra et al., 2005b; Buzio et al., 2012; Cassina et al., 2011; 

Scipioni et al., 2002a, 2002b). However, at low base pair resolution there was a considerable 

influence of digitisation of the DNA contour on the curvature profile produced (Section 3.2.5.). 

The choice of interpolant influences the resulting curvature at this resolution. While there is no 

way to know if this had a significant impact on the results of previous studies, it was a factor 

that needed to be considered in order to produce the most representative estimates of 

intrinsic curvature and flexibility.

This study developed a method of visual thresholding to allow the user to assess the 

effect of base pair window size on curvature measurements on a per experiment basis (Section 

S.2.S.2.). This method did not calculate an estimation of potential error or suggest a 

statistically optimal base pair window size. Rather, it identified a range of base pair window 

sizes that offered little to no interference from DNA contour digitisation and allowed the 

researcher to make a judgement about the selection of the experimental window size. This 

simple method, along with the classification system suggested, provided a foundation for 

future researchers to build upon. A more comprehensive study into the common effects of 

pixelation/digitisation on physical parameters is lacking in the current literature. This research 

represented progress towards facilitating accurate comparisons of curvature profiles across 

multiple experiments.

3.3.7 Choice of Interpolant

The identification of pixelation/digitisation effects on angle measurements resulted in 

the need to identify an optimal interpolant from the available literature. There have been a 

number of interpolation methodologies presented by various authors (Section 3.2.5.1.). Each 

research group presents a preferred methodology. The current literature does not provide a 

systematic review of interpolant methodologies or their impact on curvature measurements. 

This study has compared the method detailed by Ficarra et al., and a simplified version of the
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methodology suggested by Sundstrom (Ficarra et al., 2005a; Sundstrom, 2008). The method 

used by Ficarra et al., was taken from the paper on automated fragment sizing rather than the 

paper on curvature computation as the method described in the latter paper was obscurely 

worded (Ficarra et al., 2005a, 2005b). It was assumed that the techniques used in both papers 

were the same; that fitting 'segmental chains' was the same as fitting polynomials.

During the analysis (Section 3.2.5.1.) an issue was raised with the method of 

polynomial fitting. Segmented polynomials introduced intermittent breaks and moderate 

deviations in the expected orientation of the DNA molecule between pixels. It is unclear if 

these problems were encountered by the original authors or if they corrected for these 

systematic errors (Ficarra et al., 2005a).

When comparing the remaining three techniques there was very little difference in the 

curves fitted (i.e. linear, hermite, cubic). The three were constrained to pass through each pixel 

coordinate. Similar results could be predicted for any line fitting technique with rigorous 

constraints placed upon it, such as a series of polynomials with very small RMSE. The final 

choice of interpolant used in this study was the linear interpolant as it produced the least 

deviation from theoretical xy coordinates. This is similar to the methods used by previous 

authors for DNA contour length and persistence length estimation (Rivetti et al., 1996; Rivetti 

and Codeluppi, 2001; Scipioni eta!., 2002a).

3.3.8 Proposing a GUI for the ADIPAS Analysis Pipeline

The most time and operator intensive portion of DNA curvature analysis was image 

processing. Therefore, image processing was prioritised over the analysis pipeline for 

development of a GUI. However, many of the individual steps in the pipeline produce an 

automated and labelled graphical output. For example, R2 can be calculated and compared to 

theoretical values in order to estimate the persistence length of a set of DNA molecules with a 

single function. Similarly, curvature and flexibility profiles can be generated from a raw set of 

pixel coordinates. The steps and considerations presented in this study provide a good 

schematic for future nano-biologists to complete a working GUI. Further improvements could 

include: a number of dinucleotide wedge model parameters in the style of CURVATURE 

allowing comparison to experimentally produced curvature profiles (Shpigelman et al., 1993), 

integration of novel techniques for curvature analysis (Buzio et al., 2012) and multiple DNA 

contour length calculation methods for comparison (Rivetti and Codeluppi, 2001). Additionally, 

simple modifications made to the analysis pipeline would make it suitable for calculation of 

intrinsic DNA curvature and flexibility for time lapse experiments of DNA dynamics (Scipioni et 

al., 2002b).
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3.3.9 Limits of the Available AFM Analysis Software

None of the available software, including the software developed in this study, made 

any attempts to remove the effects of tip convolution from an image. The problem is widely 

acknowledged (Li, 2007; Sundstrom, 2008) and algorithms exist solely for the purpose of tip 

deconvolution of AFM images (Villarrubia, 1997). Another source of blurring, thermal drift, is 

also not accounted for in any of the available software. Thermal drift can cause blurring in 

images and algorithms suited to tackling this problem are available (Carasso, 1999). However, 

thermal drift is often circumvented by investigators using closed-loop settings available on 

most modern AFMs. Closed-loop scanning monitors the physical position of the scanner and 

corrects for drift introduced while driving the scanner head. Closed-loop settings have been 

used in this study.

The process of DNA adsorption to the mica surface is poorly understood. It has been 

observed that DNA sometimes undergoes a transition from B- to A- form DNA on the mica 

surface (Rivetti and Codeluppi, 2001). This effect has also been attributed to condensation of 

the DNA on interaction with the cation loaded mica surface (Sanchez-Sevilla et al., 2002). 

Accurate models to account for this possible transition would allow for more accurate length 

calculations in DNA measurements. Interestingly, it has been theorised that increasingly 

accurate intrinsic DNA curvature calculations will allow for improved contour length estimation 

by modelling the predicted DNA contours as a series of arcs and straight sections (Sundstrom, 

2008). The ADIPAS software would be an ideal platform for the development of such a length 

estimator.
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3.4 Conclusions

The ADIPAS software has been developed with the primary aim of analysing intrinsic 

curvature and flexibility of TP53 DNA molecules. The lack of flexible and available AFM image 

analysis tools was identified from the current literature and internet search engines. To this 

end ADIPAS was able to analyse AFM images of DNA and calculate curvature from the resulting 

coordinate data. The software incorporated analysis methods from a range of previous studies, 

allowing the use of a range of image filters, rescaling of image contrast, automated or operator 

interactive thresholding, automated branch removal and molecule selection. ADIPAS allowed 

for a more comprehensive analysis of the structural properties of DNA molecules than any 

other available software pipeline. It was scalable, allowing analysis of DNA molecules from a 

range of different AFM images sizes. ADIPAS presented the image analysis portion of its 

package in a GUI that would allow even unskilled operators to process AFM images of DNA 

after only limited training. The GUI for the analysis portion of ADIPAS will be developed in the 

future using the same flexible design philosophy. Other estimates of statistical and physical 

DNA measurements, such as DNA contour length and persistence length, were implemented 

into the software. The software is aimed at online distribution and publication with the hope 

that it will be of use to researchers within the field and also to encourage further investigation 

of DNA curvature by allowing other research groups to overcome the large technological 

hurdle of in-house software development necessary for this type of investigation.

Considerations such as choice of interpolation technique prior to curvature calculation 

have been investigated before implementation into the pipeline. Additionally, a novel visual 

method of identifying potential interference of digitisation noise in curvature calculations has 

been developed. These considerations have been applied to real AFM molecules and have 

been expanded upon in later chapters. These developments provide a strong foundation for 

future researchers to build upon and also represent progress towards improving accessibility 

to the field of DNA curvature investigation as AFM technology becomes more widespread.
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CHAPTER 4: GENERATING AND EVALUATING THEORETICAL
MODELS OF INTRINSIC DNA CURVATURE IN TP53
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4.1 Introduction

The theoretical estimation of a number of different physical DNA parameters have 

been performed in AFM studies for over a decade. The creation of computer simulated DNA 

molecules has been important for estimating the error implicit in image analysis methods and 

for the generation and testing of hypotheses. The first standardised workflow for the 

generation of computer-simulated AFM images was put forward by Rivetti et al., 1996. This 

approach has been adopted by many other researchers in a complete or modified form 

(Ficarra et al., 2005a, 2005b; Marek et al., 2005; Wiggins et al., 2006; Buzio et al., 2012). 

Intrinsic DNA curvature measurements can be added for improved hypothesis and method 

testing (Ficarra et al., 2005b; Buzio et al., 2012). No current studies have included a sequence 

specific flexibility parameter. Most studies rely upon a constant value of flexibility derived from 

the average persistence length of DNA of ~53 nm (Rivetti et al., 1996).

Other theoretical measures have been used for comparison to AFM images including 

comparison of the theoretically determined pitch to DNA contour height (Milani et al., 2011), 

curvature ratio profiles for base pair sequences (Buzio et al., 2012), the prediction of promoter 

regions in AFM images (Marilley et al., 2007b) and DNA flexibility (Scipioni et al., 2002a; 

Marilley et al., 2005; Wiggins et al., 2006).

A number of dinucleotide wedge models have been used In AFM based studies of DNA. 

The two most often utilised by researchers are the De Santis and the Bolshoy models (De 

Santis et al., 1988; Bolshoy et al., 1991). The De Santis model used energy minimisation 

calculations to generate base pair parameters from gel electrophoresis experiments. It has 

been compared to real AFM measurements of DNA curvature by a number of groups and has 

unanimously been in good agreement under ambient (air) conditions (Anselmi et al., 1999; 

Scipioni et al., 2002a; Ficarra et al., 2005b; Buzio et al., 2012). The same holds true for the 

Bolshoy model, calculated from gel migration data, for liquid and air imaging (Sanchez-Sevilia 

et al., 2002; Milani et al., 2007, 2011; Buzio et al., 2012). Both of these models have been 

compared by previous authors and were found to be comparable in the prediction of the 

position, but not magnitude, of curvature peaks (Buzio et al., 2012). This was in agreement 

with a statistical analysis of the power of dinucleotide models to predict curvature in X-ray 

crystallography data that concluded that each dinucleotide model was as good a choice as any 

other for the prediction of intrinsic curvature (Crothers, 1998). The Olson model, based upon 

data mined from DNA-protein X-ray crystal complex experiments, has not been the subject of 

critical comparison to curvature profiles in any available publication (Olson et al., 1998). 

However, it has been used to compare against flexibility measurements of DNA using AFM 

(Marilley et al., 2005).
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4.1.1 Aims and Objectives

The primary aim of the research in this chapter was to assess the theoretical curvature 

of the TP53 gene that codes for the sequence-specific DNA-binding region of the p53 protein. 

To this end the De Santis model of curvature was used to predict the intrinsic curvature of 

TP53. This allowed for the statistical evaluation of the relationship between intrinsic DNA 

curvature and functional regions of the gene. Intrinsic curvature in regions of TP53 that have 

been shown to exhibit slow DNA repair were considered separately. Other relevant physical 

theoretical measurements of TP53, such as nucleosome affinity, were also assessed.

The secondary aim of the research in this chapter was to generate computer simulated 

AFM images of TP53 in order to make realistic predictions about intrinsic DNA curvature in real 

AFM images. To this end the De Santis and Olson dinucleotide wedge models were used to 

create computer simulated AFM images of TP53. The De Santis model has been compared to 

real AFM measurements of DNA curvature by a number of groups and has unanimously been 

in good agreement. The Olson model has previously been used to compare against flexibility 

measurements of DNA using AFM, but not curvature measurements. The De Santis model was 

included as a gold standard for comparability to AFM data. The Olson model was included to 

assess the effect the inclusion of DNA translations would have on the relevance of a model to 

experimental AFM measurements. Two different simulated deposition methodologies were 

tested. The same two overlapping TP53 PCR product DNA sequences that were used formed 

the basis of the analysis described in later chapters. The resulting theoretical curvature profiles 

were statistically analysed to generate expectations for curvature measured from real TP53 

DNA.
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4.2 Results

4.2.1 3D Model of TP53

3DNA allows for the visualisation, analysis and reconstruction of DNA in silico (Lu and 

Olson, 2008). The web interface for the application, w3DNA, was used to reconstruct 3D 

models of TP53 DNA using a predefined set of dinucleotide parameters (Section 2.5.1.). 3D 

models are presented in Figure 4.1.

The resulting 3D models of TP53 were relatively planar; the majority of both 3D 

models molecular structure lies in two dimensions. The Olson model (Figure 4.1.C+D) was 

observably less curved than the De Santis model (Figure 4.1.A+B.). The 5' sections of all of the 

molecules were relatively straight. The De Santis model showed regions of moderately large- 

scale curvature towards each end of the DNA fragment. There was a great deal more 'writhe' 

present in the De Santis model when compared to the Olson model.

4.2.2 Plane Fitting

In order to extrapolate a simplistic simulation of the geometric deposition of DNA onto 

a 2D surface it was necessary to fit a series of best fit (least squares) planes that allowed for no 

xyz coordinates to exceed a local deviation from the plane of best fit by more than 2 nm 

(Section 2.5.2.).

A plane was fitted for the De Santis model of TP53 on average every 277 bp and every 

416 bp for the Olson model (Figure 4.2.). The number of planes fitted was an indicator of the 

amount of 'writhe' within the 3D model. This confirmed the visual observations made in the 

previous section about the shape of each 3D model, i.e. that the De Santis model produced a 

more curved molecule with greater 'writhe' (Figure 4.2.A+B). Additionally, many of the planes 

fitted to the Olson model lie within a similar plane, which emphasised the planarity of 

molecules generated using Olson parameters (Figure 4.2.C+D).
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Figure 4.1. - 3D TP53 DNA molecular orientations generated using two different dinucleotide 
parameter sets. Atomic coordinates were generated from w3DNA and the average xyz 
coordinate value for each base pair was plotted. Axis units are in angstroms (A). A) TP53 Exon 
5-7 using De Santis parameters. B) TP53 Exon 5-9 using De Santis parameters. C) TP53 Exon 5-7 
using Olson parameters. A) TP53 Exon 5-9 using Olson parameters.
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planes. D) TP53 Exon 5-9 using Olson param eters -  6 planes. Planes are fitte d  w ith  no more 
than 2 nm o f local deviation from  the plane. A tom ic coordinates were generated from  w3DNA. 
Axis units are in angstroms (A). DNA in consecutive planes is been highlighted in red and blue.

129



4.2.3 Geometric Deposition of 3D Models onto a 2D surface.

The xyz coordinates detailed in the previous section were rotated along the line of 

intersection between succeeding planes until all xyz coordinates lay within one plane. The 

resulting xyz coordinates were projected onto a flat xy plane. A local correction was made at 

the point where two planes intersected as previously detailed (Section 2.5.2.).

It was observed that the Olson model of curvature contained a great deal less 

curvature than that predicted by the De Santis model. The Exon 5-7 molecule produced a 

consensus convex shape in both models. The projection of Exon 5-9 was in slight disagreement 

between both models, the final three 3' planes in the Olson model were orientated in a 

different direction to those in the De Santis model. This was most likely because the increased 

curvature in the De Santis model led to a preferential rotation of the seventh fitted plane 

(Figure 4.3.B). If this was not the case the De Santis model would have been expected to adopt 

a horse-shoe shape when deposited on a 2D surface.

The distance between each coordinate was calculated for each model and projection. 

The final 2D projection led to a length contraction of 2.6% for De Santis and 3.6 % for Olson 

model as compared to the original 3D molecule. This was a slight increase in contraction over 

the 1.5 % reported by previous authors on different DNA sequences (Buzio et al., 2012).
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4.2.4 Creation of Computer-Simulated AFM Images of TP53 for Curvature Analysis

Computer simulated AFM images were generated for both Exon 5-7 and Exon 5-9 using 

the De Santis and Olson dinucleotide wedge models. Datasets of over 1000 molecules were 

collected from the computer simulated AFM images for both sequences using the Geometric 

Deposition method. The correct orientation of each molecule was ascertained as described in 

Section 2.5.6. Three test datasets were generated:

•  Curvature Images -  The DNA molecules were generated using a fixed value of 

curvature at each base pair step identified from the De Santis and Olson dinucleotide 

wedge model [i.e. they were all identical). The only sources of image variation were 

the orientation of the DNA molecules, the effect of digitisation of the DNA contour 

and the effect of skeletonisation on the resulting AFM images.

•  Flexibility Images - The DNA molecules were generated using a variable value of

curvature at each base pair step. The mean value of the Gaussian distribution of

curvature angles at each step was the same as that used in Curvature Images. The 

variation around the mean value was determined using a persistence length of 53 nm 

(Rivetti et al., 1996). The flexibility of DNA molecules provided another source of 

variation in addition to that of contour digitisation.

•  Theoretical AFM Images - The DNA molecules were generated in the same way as the 

Flexibility Images but also had both tip convolution (6 nm ROC) and Gaussian noise 

(variance = 0.025) added as additional sources of experimental variation. These 

images were the most comparable to real AFM images and had additional sources for 

potential variance between molecules as the images were subjected to noise filtering 

and automatic thresholding (i.e. all image processing steps of the ADIPAS software 

were applied).

132



4.2.5 Reconstructed Contour Length of Simulated DNA Molecules

The length of simulated DNA molecules in nanometres was calculated (Section 2.7.1.). 

Images were subjected to image noise and DNA molecule conformational flexibility (Section 

4.2.4.) to investigate the effects that these conditions had on the final contour length 

estimates. The results are summarised in Table 4.1. and reconstructed length distributions in 

Figure 4.4.

Curvature images were as close to as invariable AFM images as possible. There was no 

tip convolution, no noise and no DNA molecule flexibility. The orientation of each molecule in 

2D space led to a degree of variability based upon the digitisation of the DNA contour. The 

standard deviation for this set was the lowest for both samples. The standard deviation was 

larger for the Exon 5-9 dataset.

The idealised Curvature images exhibited a reconstructed length which was larger 

(Exon 5-7 - 3.60 %; Exon 5-9 - 3.49 %) than a theoretical value based upon 0.34 nm per base 

pair step. This length increase was likely due to the effects of contour digitisation. The second 

set of DNA molecules, Flexibility images, contained no noise or tip convolution but did contain 

a flexibility parameter i.e. each angle was selected at random from a Gaussian distribution with 

a mean angle taken from a theoretical curvature profile. An increase in the standard deviation 

of angles was observed and a shorter average length for both Exon 5-7 and Exon 5-9.

The final set of images, Theoretical AFM images, included a flexibility parameter, tip 

convolution (6 nm ROC) and Gaussian noise (variance = 0.025). They exhibited the smallest 

average reconstructed length and the largest deviation from the mean. This set also had the 

smallest difference between mean reconstructed length and theoretical length (0.61% and 

0.43%).
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Exon 5-7 Number of 
Molecules

Mean
(nm)

Standard 
Deviation (nm)

Percentage Difference from 
Theoretical (%)

Theoretical - 630 - -

Curvature
Images

1198 654 2.96 3.60

Flexibility
Images

1253 646 4.48 2.40

Theoretical 
AFM Images

1171 634 5.97 0.61

Exon 5-9 Number of 
Molecules

Mean
(nm)

Standard 
Deviation (nm)

Percentage Difference from 
Theoretical (%)

Theoretical - 850 - -

Curvature
Images

1181 881 3.88 3.49

Flexibility
Images

1046 870 5.18 2.29

Theoretical 
AFM Images

913 854 10.17 0.53

Table 4.1. - Summary o f reconstructed length m easurem ents o f DNA molecules taken from  
images w ith  various am ounts o f noise added. The theore tica l length value was 0.34 nm per bp 
step. Curvature  images were generated using angle values taken d irectly  from  the De Santis 
curvature p ro file . The Flexib ility  images had values taken from  a Gaussian d is tribu tion  
generated using a persistence length o f 53 nm. Theoretical AFM  images w ere the same images 
as Flexibility  images w ith  tip  convo lu tion  (6 nm ROC) and Gaussian noise (variance = 0.025) 
added. The De Santis d inucleotide  wedge m odel was used as a basis fo r curvature 
measurem ents fo r  each set.
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Figure 4.4. - D istribution  o f reconstructed length m easurem ent o f theore tica l DNA molecules. 
A) TP53 Exon 5-7. B) TP53 Exon 5-9. Curvature  images w ere generated using angle values taken 
d irectly  from  the De Santis curvature  pro file . The Flexib ility  images had values taken from  a 
Gaussian d is tribu tion  generated using a persistence length o f 53 nm. Theoretical AFM  images 
were the same images as the Flexib ility  set w ith  tip  convo lu tion  (6 nm ROC) and Gaussian noise 
(variance = 0.025) added. The De Santis model was used as a basis fo r curvature 
m easurem ents fo r each set. The theo re tica l length values fo r B-DNA are indicated w ith  a 
broken line.
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4.2.6 Generation of Idealised Curvature Profiles after Image Processing

Within the literature the theoretical curvature profile has been often compared to 

experimental curvature profiles produced by an ensemble of AFM images. This approach is 

valid; however, there has been little consideration of the effects of contour digitisation or 

image processing on the resulting curvature profiles. By using the Curvature simulated TP53 

AFM images the effect of contour digitisation on curvature profiles was assessed. Only the 

trajectory of the DNA molecules in simulated images was different; so the only source of 

variation between curvature angles was caused by DNA contour digitisation. Both signed and 

unsigned curvature profiles were produced from the simulated images. The unsigned 

curvature profiles were comparable, at least in identification of peaks and troughs with the 

output of CURVATURE (Shpigelman et al., 1993). The appropriate base pair window size was 

used when generating profiles in CURVATURE for comparison. The results of this comparison 

are summarised in Figure 4.5.

The De Santis model gave a larger average curvature value and a more curved 

theoretical DNA molecule (Section 4.2.2.). The general features of the simulated and 

theoretical curvature profiles at the 42 bp window of curvature were largely similar (Figure

4.5.B.). Many of the key peaks and troughs were retained after digitisation of the DNA 

molecule. There was little to no peak shift for the major peaks of curvature (this was 

quantitatively measured in a later section). While there were a few common features retained 

between the theoretical and experimental curvature profiles for the 21 bp window the lack of 

obviously large peaks within the theoretical profiles made visual comparison difficult (Figure

4.5.A.). Additionally, the more homogenous curvature of the 21 bp window size profile made 

this resolution of curvature unlikely to be suitable for further analysis.

The Olson model had lower average curvature than the De Santis model (Figure

4.5.C+D). There was little obvious similarity between the theoretical and simulated AFM 

profiles after contour digitisation and image processing. Peaks that occurred within the 

theoretical profile at ~0.4 and ~0.7 (Figure 4.5.D.) were not present in the curvature profile 

after contour digitisation. As there was little comparability between curvature profiles 

measured from simulated AFM images and theoretical curvature profiles in even these most 

idealised of AFM images the Olson model was not pursued further as a basis for comparison to 

experimental AFM images of DNA molecules.
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Figure 4.5. - Comparison o f theore tica l profiles generated in CURVATURE to  curvature profiles 
generated from  ideal com pute r generated AFM images o f TP53 Exon 5-9. Theoretical 
curvature profiles (black) were generated in CURVATURE using a 21 bp (A+C) and a 42 bp (B+D) 
w indow . Experimental profiles (blue) were produced from  a large set (~1000 molecules) o f 
AFM images conta in ing com pute r generated DNA m olecules w ith  no deviation from  an ideal 
curvature p ro file  appropria te  fo r  the  m odel comparison.
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4.2.7 Effect of Imaging Conditions on Curvature Profiles.

The three simulated TP53 AFM image sample sets with various degrees of molecule 

flexibility and image noise addition were used to assess effects of these factors on the resulting 

curvature profiles (Section 4.2.4.). All molecules within the datasets were correctly oriented. 

Curvature profiles for both signed and unsigned curvature were generated using a 42 bp 

window for calculating curvature angles (Figure 4.6).

In the unsigned curvature profiles (Fig 4.6.A+B) it was observed that the contrast 

between peaks was greater in the test set with no flexibility parameter (Curvature images). It 

was observed that the background curvature was higher in both profiles with sources of 

molecule flexibility or image noise (Flexibility and Theoretical AFM images) than the idealised 

Curvature images. Both Flexibility and Theoretical AFM  images had approximately the same 

baseline curvature. As the Theoretical AFM images were Flexibility images with the addition of 

tip convolution and Gaussian noise then the increase in the baseline in comparison to 

Curvature images was attributed to the addition of flexibility to the simulated molecules. With 

the addition of flexibility, tip convolution and Gaussian noise the shape of the underlying 

profile was retained but the contrast between large peaks and troughs was reduced. The 

signed curvature profiles were observably very similar under all noise conditions and the 

characteristic shape of the curvature profile was retained (Fig 4.6.C+D.). A slight smoothing of 

the peak apex was observed indicating that there may have been a small amount of peak shift 

in the samples with additional sources of image noise and molecule variation (Section 4.2.13.).
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Figure 4.6. - Comparison o f reconstructed curvature pro files from  datasets th a t variously had 
DNA m olecule fle x ib ility  and image noise. A) TP53 Exon 5-7 unsigned curvature  profiles. B) 
TP53 Exon 5-9 unsigned curvature  profiles. C) TP53 Exon 5-7 signed curvature  profiles. D) TP53 
Exon 5-9 signed curvature profiles. Unsigned curvature is calculated from  absolute angles 
w ith in  the dataset. Exons are highlighted in red and read from  le ft to  right in ascending order. 
The w indow  size o f curvature is 42 bp.
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4.2.8 Computer Generated Curvature Profiles for Comparison with Experimental AFM

Images

By producing computer-generated AFM images of idealised DNA molecules that 

adhered perfectly to the theoretical curvature parameters of the De Santis model a realistic 

expectation for curvature profiles was generated for comparison with experimental data. 

Curvature profiles were generated at a base pair window size of 42 bp and used for 

comparison to experimental images in later chapters (Figure 4.7.). There were a number of 

prominent peaks that were expected to be retained in experimental TP53 curvature profiles.

The unsigned curvature profiles considered all angles to be positive regardless of 

direction. As observed in the previous section, there was a more extreme effect of increasing 

variation on the unsigned curvature profiles than the signed curvature profiles. The resulting 

profiles exhibited reduced contrast on increasing noise. There were a number of key features 

retained in all the profiles that were expected to be observed in experimental profiles 

generated for real DNA molecules. These included: peaks of curvature preceding exon 5 and 

following exon 9, a number of large curvature peaks in the intronic region between exons 6 

and 7 and a multitude of moderate to large peaks of curvature at the 3' end of the sequence. 

Perhaps the most important observation was that all exon positions occurred in regions of low 

curvature, with the exception of exon 7 which contained a small peak.

The signed curvature profiles of TP53, considered clockwise angles to be positive and 

anticlockwise angles to be negative. The Geometric Deposition method predicted that there 

would be two troughs of negative curvature at either end of the molecule and that the 

majority of the curvature in the rest of the molecule would be in the opposite (positive) 

direction to the end region curvature. Exon positions were in regions of low curvature (i.e. they 

were close to the dotted line denoting 0.0 radians of curvature).

140



TP53 Exon 5-7 TP53 Exon 5-9
035035

0 30 3

"O
CD
C
ap

'<S)
C
=)

|  0 25|  0.25

0202

0150.15
0 2  0 3 0 4 0 5 0 6

Standardised Position
0 2  0.3 0 4  0.5 0 6  0 7

Standardised Position
0 9 1

0 3

02

■D
5.

o
0 2

-0.3

-0 4
0.2 0 3  0.4 0.5 0.6 0.7 0.8 0.9

Standardised Position

02
0 15

0 05

“D ¥ 0(U e
C i «■<*
CuQ 11 -01IS) °

-0 15

-0.2
-0 26

-0 3,
0 2  0.3 0 4  0 5  0.6 0 7  0 8  0 9

Standardised Position

Figure 4.7. - Curvature profiles from  sim ulated AFM images o f TP53 DNA at a 42 bp w indow  o f 

curvature fo r  com parison to  experim enta l TP53 curvature profiles.

141



4.2.9 Signed Curvature Profiles Generated using the Scipioni Method

Scipioni e t al., estim ated the likely deposition  o rien ta tion  o f DNA molecules by 

m athem atical m ethods (Scipioni e t al., 2002a). The same m ethod was applied to  TP53 

sequences. The underlying assum ption was th a t the curvature m odulus (m agnitude) o f a DNA 

trac t w ould stay the same when the DNA trac t is deposited on a 2D surface while  the phase o f 

curvature (d irection) adapts to  the changes in the DNA confo rm ation  (Scipioni e t al., 2002a). 

The curvature profiles were provided by the  original authors by private com m unication (Figure 

4.8.).

The m axim um  region o f curvature  fo r TP53 Exon 5-7 was +0.16 radians at the 5' end o f 

the sequence. The maxim um  region o f curvature fo r TP53 Exon 5-9 was ~+0.18 at the 3' end o f 

the sequence. It was observed from  both profiles th a t exon positions typ ica lly  lay w ith in  

regions o f low  curvature (close to  the do tted  line denoting 0.0 radians o f curvature). All o f the 

m ajor peaks in curvature occurred during in tron ic  positions.
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0.1 0.2 0.3 0.4 0.5 0.6 0 7  0.8 0.9
Standardised Postion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 4.8. - Signed curvature p ro file  generated using the  m ethod deta iled by Scipioni e t al., 
using the De Santis model o f curvature (Scipioni e t al., 2002a). A) TP53 Exon 5-7. B) TP53 Exon 
5-9. Curvature is p lo tted  against standardised position along the DNA sequence. Exon positions 
are indicated by shaded red areas and are read in ascending o rder (e.g. Exon 5-7 reads from  
le ft to  right exon 5, 6 then 7). The grey line represents the raw data calculated fo r every base 
pair. The blue line is a sm oothed p ro file  averaged over 42 base pairs.
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4.2.10 Comparison of 2D Deposition Methodologies

Both the m ethods deta iled by Buzio e t al., (Buzio e t al., 2012) and Scipioni e t al., 

(Scipioni et al., 2002a) were applied to  model the likely deposition o f TP53 on a fla t surface. 

The firs t m ethod used a geom etric  m in im isation approach to  m odel likely deposition on to  a 

fla t surface. The second m ethod used the phase o f DNA as a guideline fo r the  d irection  o f DNA. 

Both m odels used the  De Santis m odel o f curvature. The comparison o f the results using a 42 

bp w ind ow  size over which curvature  angles were calculated is displayed in Figure 4.9. There 

w ere notable d ifferences betw een the tw o  predictions. Firstly, the G eom etric Deposition 

m odel included the add itiona l noise o f d ig itisation; which had the e ffect o f increasing the 

theo re tica l curvature at all large curvature  peaks and increased the w id th  o f a num ber o f large 

peaks. The models predicted opposite  curvature at the te rm ina l ends o f TP53 Exon 5-9 and the 

5' end o f TP53 Exon 5-7.
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Figure 4.9. - Comparison o f signed curvature  profiles generated using the  m ethod deta iled in 
Scipioni e t al., 2002 (blue line) and the  m ethod deta iled by Buzio e t al., 2012 (red line) using 
the  De Santis m odel o f curvature. A) TP53 Exon 5-7. B) TP53 Exon 5-9.
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4.2.11 Analysis of Correlation between Curvature Profiles of Simulated AFM Images of TP53

A correlation analyses was performed between curvature profiles produced by the 

Curvature and Theoretical Image samples. This allowed for an assessment of the effects of 

DNA molecule flexibility and image noise on the reproducibility and comparability of curvature 

profiles. This was repeated for curvature profiles calculated using different base pair window 

sizes for the calculation of curvature (21 bp, 42 bp and 63 bp). The majority of profiles 

exhibited a non-normal distribution (Shapiro-Wilks, p= <0.05) so a Spearman's Rank correlation 

test was used (Table 4.2.).

Each base pair window size exhibited significant correlation between noisy and non- 

noisy profiles. All correlation coefficients were positive, indicating a positive correlation. The 

strength of the positive trend increased on increasing base pair window size in both signed and 

unsigned curvature profiles. The correlation measured was weaker in the unsigned curvature 

profiles at all comparable window sizes. The 21 bp window size for unsigned curvature 

exhibited a very weak positive trend (Rho = 0.15) in comparison to other profiles.

Correlation analysis was also performed on the overlapping portions of the Exon 5-7 

and Exon 5-9 (Table 4.2.). Three base pair window sizes were analysed: 21 bp, 42 bp and 63 bp. 

The profiles were created using 'noisy' Theoretical AFM images (Section 4.2.4.). Each base pair 

window size for both signed and unsigned profiles showed positive significant correlation of 

varying strength. The signed curvature profiles all exhibited a very strong positive trend (Rho = 

> 0.9). The unsigned profiles exhibited a positive trend that increased on increasing window 

size. The unsigned 21 bp profile showed the lowest significant positive correlation (Rho = 0.26) 

of all window sizes.

144



Base Pair Window 
Size

Correlation with and without image 
and measurement noise

Correlation between 
overlapping Exon 5-7 and 

Exon 5-9 profiles
Unsigned
C urvature

Spearman's 
Correlation (Rho)

p-value Spearman's 
Correlation (Rho)

p-value

21 bp 0.15 <0.05 0.26 <0.05

42 bp 0.69 <0.05 0.50 <0.05

63 bp 0.89 <0.05 0.76 <0.05

Signed Curvature

21 bp 0.88 <0.05 0.90 <0.05

42 bp 0.95 <0.05 0.95 <0.05

63 bp 0.98 <0.05 0.96 <0.05

Table 4.2 -  Correspondence analysis using Spearman's Rank co rre la tion  applied to  sim ulated 
AFM images w ith  and w ith o u t noise add ition  and betw een overlapping sections o f Exon 5-7 
and Exon 5-9 curvature profiles. The firs t (columns 3 and 4) comparison was between 
sim ulated image w ith  and w ith o u t image and m easurem ent noise. Sources o f noise were: a 
fle x ib ility  param eter fo r the  p rediction o f DNA confo rm ation  = 53), tip  convo lu tion  (ROC = 6 
nm) and Gaussian noise (variance = 0.025) added to  the final images. The second com parison 
was betw een overlapping sections o f curvature  profiles fo r  Exon 5-7 and Exon 5-9. All profiles 
had image and m easurem ent noise added as described above.
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4.2.12 Comparison of Peaks Estimated from CURVATURE and Curvature Reconstructed for

Computer Simulated AFM Images of TP53

A curvature profile was calculated for TP53 Exon 5-9 using CURVATURE on default 

settings and using the De Santis model of curvature (De Santis et al., 1988; Gohlke, 1994). The 

ten peaks with the highest curvature values were identified. This was repeated using a 

curvature profile reconstructed from computer simulated AFM images for TP53 Exon 5-9 at a 

42 bp window of curvature. The curvature profile reconstructed from the computer simulated 

AFM images used a signed profile (considered direction of curvature) in which all of the angles 

had been made absolute (positive); this was the most comparable the profile could be made to 

the output of CURVATURE (Figure 4.10).

The ten largest peaks were identified from both profiles. A comparison of peaks 

showed that there were notable differences. A number of peaks that occurred in the 

CURVATURE profile were merged into one peak (0.5 and 0.93 standardised length), which was 

expected considering the difference between the resolution of the curvature profiles 

(CURVATURE provided a resolution of one measurement per dinucleotide whereas theoretical 

AFM images provided a resolution of one point per 21 bp). There were a number of peaks 

within the reconstructed profile that were not present at comparably large magnitudes within 

the CURVATURE profile (1.8, 6.3 and 0.97 standardised length). Additionally, there was a peak 

within the CURVATURE profile that was not present within the reconstructed profile at a 

comparable magnitude (0.34 standardised length).
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Figure 4.10. - Comparison o f ten m ajor peaks w ith in  curvature profiles generated using 
d iffe ren t approaches. A) Curvature pro file  produced from  CURVATURE (Shpigelman e t al., 
1993). B) Curvature pro file  reconstructed from  com pute r simulated AFM images using a 42 bp 
w indow  o f curvature. Peaks were identified  as the ten  peaks w ith  largest curvature value 
w ith in  a profile . Peaks are indicated w ith  red circles.

147



4.2.13 Estimation of Peak Shift after Noise Addition

The ten largest peaks of curvature were identified in the intrinsic DNA curvature 

profiles reconstructed from an ideal set of computer simulated AFM images with no flexibility 

parameter (Curvature images -  Section 4.2.4.). The peaks that most closely corresponded to 

these key peaks from curvature profiles produced from AFM image with a degree of molecule 

variation and image noise were recorded (Theoretical AFM images -  Section 4.2.4.). The peak 

shift was calculated as a percentage value for three base pair window sizes of curvature: 21 bp, 

42 bp and 63 bp (Figure 4.11).

The 21 bp window of curvature produced a mean peak shift of 0.63 %. However, it was 

necessary to apply a Savitzky-Golay smoothing filter (9 degrees, 15 points) to identify the 

corresponding peaks. The maximum peak shift detected was 1.2 % or 31.5 bp and visually the 

pattern of peaks was dissimilar to the noiseless images. Only 8 of the 10 peaks were accurately 

identified in the noisy image, indicating that two of the peaks had merged or been lost. The 

magnitude of curvature at the detected peaks was not significantly different (Paired t-test, t = 

0.75, p = 0.47).

The 42 bp window of curvature produced a mean peak shift of 0.59 %. The maximum 

peak shift detected was 0.84 % or 21 bp. Visually, the pattern of peaks was similar between 

the images. The two peaks at the 3' end of the molecule in the noiseless profile had merged 

into one peak in the noisy image. The magnitude of curvature at the detected peaks was not 

significantly different (Paired t-test, t = 0.14, p = 0.89).

The 63 bp window of curvature produced a mean peak shift of 0.25 %. The maximum 

peak shift detected was 1.3 % or 31.5 bp. Visually the pattern of peaks was similar between 

the images and all peaks were identified. The magnitude of curvature at the detected peaks 

was significantly different between the profiles (Paired t-test, t = 4.37, p = <0.05).
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Figure 4.11. Comparison o f ten m ajor peaks from  curva ture  profiles reconstructed from  
sim ulated AFM images o f TP53 before and a fte r the add ition  o f DNA m olecule fle x ib ility  and 
image noise. Three base pair w indow  sizes o f curvature  w ith  and w ith o u t sources o f image 
noise are presented. Sources o f noise were: a fle x ib ility  param eter fo r the prediction o f DNA 
confo rm a tion  = 53), tip  convo lu tion  (ROC = 6 nm) and Gaussian noise (variance = 0.025) 
added to  the  final images. Peaks are identified  w ith  a red circle.
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4.2.14 Curvature and Regions of Slow Repair.

Six regions of slow DNA repair within the TP53 gene were identified from the available 

literature: codons 177, 196 and 278 in skin cancer (Tornaletti and Pfeifer, 1994) and codons 

157, 248 and 273 in lung cancer (Denissenko et ol., 1998). These codons are also common 

mutation hotspots. Curvature values were calculated from CURVATURE for TP53 Exon 5-9 

using the defaults setting and the De Santis model of curvature (Shpigelman et al., 1993). 

Curvature values for the three nucleotides in each codon position (n = 18) were statistically 

compared to the rest of the sequence (n = 2482) using the Kruskal-Wallis test. Regions of slow 

repair showed significantly lower median curvature (Kruskal-Wallis, p = <0.05) than the rest of 

the profile (Figure 4.12).

The Kruskal-Wallis test was performed on curvature values that corresponded to the 

regions of slow repair from curvature profiles generated from simulated AFM images of TP53 

using a 42 bp window of curvature. The curvature for region of slow repair in the signed profile 

was not significantly different from curvature throughout the rest of the gene (Kruskal-Wallis, 

p = 0.32). The curvature for region of slow repair in the unsigned profile was not significantly 

different from curvature throughout the rest of the gene (Kruskal-Wallis, p = 0.06).
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Figure 4.12. - Comparison o f curvature profiles w ith  regions o f slow repair in TP53 Exon 5-9. A) 
C urvature p ro file  generated using CURVATURE (De Santis curvature , de fau lt settings) B) 
Unsigned curvature  pro file  from  sim ulated AFM images using a 42 bp w indow  o f curvature (De 
Santis curvature , no fle x ib ility  o r noise). C) Signed curvature  p ro file  from  sim ulated AFM 
images using a 42 bp w indow  o f curvature (De Santis m odel, no fle x ib ility  o r noise). The length 
o f the  DNA sequence was standardised on a scale o f zero to  one; zero is 5 ' and 1 is 3' end o f 
the  sequence. Regions o f slow repair are indicated w ith  small red circles.
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4.2.15 Statistical Comparison of Exon Curvature to Intron Curvature

Curvature values th a t lay w ith in  the exon positions as designated by the IARC database 

were sta tistica lly compared to  in tron  positions (Hernandez-Boussard et a!., 1999). The 

d is tribu tion  o f data was largely non-param etric  and the Kruskal-Wallis test was used to  test 

comparisons. Each curvature value w ith in  the exon boundaries in standardised length was 

designated as 'exon'.

The curvature values o f exon positions were pooled and compared against in tron  

positions (Table 4.3.). Exons had sign ificantly low er curvature  in unsigned 42 bp and 63 bp 

profiles. Exons had significantly low er curvature  in the signed 21 bp pro file . A curvature pro file  

generated using CURVATURE had sign ificantly low er curvature  in exons than introns.

The individual exons were com pared to  in tron ic  regions i.e. all values th a t did no t lie 

w ith in  an exon region (Table 4.4.). Curvature values were calculated from  CURVATURE fo r 

TP53 Exon 5-9 using the defaults setting and the De Santis m odel o f curvature (Shpigelman e t 

at., 1993). The median values fo r exon and in tron  regions were compared. Exons 5, 6 and 7 

each had sign ificantly low er curvature  than in tron  regions. Exon 8 and 9 did not exh ib it 

sign ificantly d iffe ren t curvature from  in tron ic  regions.

Curvature values fo r TP53 Exon 5-9 were generated from  simulated AFM images from  

the 'no isy' Theoretical AFM  Images sample at th ree  w indow s o f curvature: 21 bp, 42 bp and 63 

bp. Exons in signed curvature profiles had no sign ificantly d iffe ren t curvature than from  

introns. Exon 5 had a s ign ificantly low er curvature than in tron  regions in the  42 bp and 63 bp 

w indow s o f curvature.

Kruskal-Wallis (p-value)
Exon 5-9 Window Size Unsigned

Curvature
Signed

Curvature
CURVATURE 

(32 bp)
21 bp 0.40 <0.05 -

42 bp <0.05 0.25 <0.05

63 bp <0.05 0.24 -

Table 4.3. - Summary o f the Kruskal-Wallis tes t applied to  the  pooled curvature  and fle x ib ility  
o f exon positions to  the pooled curvature  and fle x ib ility  o f in tron  positions. The d is tribu tion  o f 
data points was non-norm al and not size m atched; a Kruskal-W allis test was used to  test fo r 
significant d ifferences between median values. S ignificant p-values are highlighted in red.
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CURVATURE
Base Pair W indow  

(bp)

Exon
5

Exon
6

Exon
7

Exon
8

Exon
9

Intron

32 bp
N um ber o f Sample 

Points
184 113 110 137 63 -

M edian Curvature  
(rads)

0.06 0.10 0.10 0.18 0.15 0.13

Kruskal-W allis (p) <0.05 <0.05 <0.05 0.08 0.06 -

Absolute
Curvature

Base Pair W indow  

(bp)

Exon
5

Exon
6

Exon
7

Exon
8

Exon
9

Intron

21 bp
Num ber o f  Sample 

Points
18 11 10 13 6 -

M edian Curvature  
(rads)

0.29 0.30 0.30 0.30 0.30 0.30

Kruskal-W allis (p) 0.06 0.99 0.69 0.99 0.36 -

42 bp
Num ber o f Sample 

Points
8 6 6 6 3 -

M edian Curvature  
(rads)

0.17 0.17 0.18 0.18 0.19 0.19

Kruskal-W allis (p) <0.05 0.10 0.66 0.40 0.82 -

63 bp
N um ber o f  Sample 

Points
6 3 3 4 2 -

M edian Curvature  
(rads)

0.31 0.31 0.33 0.32 0.34 0.32

Kruskal-W allis (p) <0.05 0.08 0.92 0.49 0.30 -

Signed Curvature
Base Pair W indow  

(bp)

Exon
5

Exon
6

Exon
7

Exon
8

Exon
9

Intron

21 bp
Num ber o f Sample 

Points
18 11 10 13 6 -

M edian Curvature  
(rads)

-0.01 -0.02 -0.02 -0.00 -0.04 -0.00

Kruskal-W allis (p) 0.29 0.24 0.78 0.08 0.13 -

42 bp
N um ber o f  Sample 

Points
8 6 6 6 3 -

M edian Curvature  
(rads)

-0.01 -0.05 -0.02 -0.05 -0.07 -

Kruskal-W allis (p) 0.68 0.61 0.87 0.10 0.67 -

63 bp
N um ber o f  Sample 

Points
6 3 3 4 2 -

M edian Curvature  
(rads)

-0.02 -0.00 -0.03 -0.05 -0.01 -0.01

Kruskal-W allis (p) 0.37 0.68 0.95 0.25 0.92 -

Table 4.4. - Summary o f statistical analysis o f comparisons betw een curvature  measurements 
o f exon and in tron  positions fo r TP53 Exon 5-9. The d is tribu tion  o f data points was non-norm al 
and no t size m atched; a Kruskal-W allis test was used to  test fo r  sign ificant d ifferences between 
m edian values. Significant p-values are highlighted in red.
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4.2.16 Nucleosome Positioning Using Theoretical Models

It was observed that a number of exonic regions within TP53 exhibited very low 

theoretical curvature. The possible physiological significance of this observation was 

investigated. Low intrinsic curvature is a feature of DNA that is unlikely to be included within 

the nucleosome (Figure 4.13.). A number of motifs that are unfavourable for binding by 

histones have been compiled (Luykx et a!., 2006). These motifs were termed Nucleosome 

Exclusion Sites (NXS) by the authors. The NXSensor software package was created that 

identifies these exclusion sites and predicts regions that are unlikely to be bound by 

nucleosomes based upon the proximity of NXS. Approximately 147 base pairs are wrapped 

around the nucleosome core. The presence of two NXS within 147 base pairs indicates a region 

that is unlikely to be occupied by a nucleosome. The NXsensor software was applied to the 

TP53 DNA sequences and a number of NXS were identified. Of particular interest were two 

NXS in close proximity to one another at the beginning and end of Exon 5 (Figure 4.13.C). This 

indicated that theoretically nucleosomes were unlikely to occupy Exon 5. The other NXS 

occurred within introns and none were close enough together to create a nucleosome 

exclusion region.

The NuPop algorithm was also applied to TP53 (Xi et al., 2010). This method explicitly 

models the nucleosome linker DNA and was trained on nucleosome positioning data from S. 

cerevisioe. The outcome of the model was a probability value for the start of nucleosome 

occupancy (Figure 4.13.A.) and an occupancy score (Figure 4.13.B.). The results for TP53 

showed a regular pattern of likely nucleosome occupancy regions. The major intron regions 

were likely to be wrapped up in the histone core. All of the exons were predicted to be 

occupied by nucleosomes with the exception of exon 6 which contains a central region of low 

occupancy. The 5' border of exon 5 also contained a region that was highly unlikely to be 

occupied by a nucleosome.
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Figure 4.13. - Summary o f nucleosome position ing a lgorithm s applied to  TP53. A) The 
p robab ility  o f the sta rt o f nucleosome binding from  NuPop. B) Nucleosome occupancy score 
from  NuPop. C) Nucleosome exclusion sites from  NXSensor (green section). The nucleosome 
occupancy score is from  0, low  like lihood o f occupancy, to  1, high like lihood o f occupancy. 
Only the  m ost p rom inen t nucleosome exclusion site is shown fo r NXSensor, all o the r exclusion 
sites were scattered th ro ug h ou t in tron  positions. Exons 5 to  9 are h ighlighted in red and read 
in ascending o rder from  le ft to  righ t (5' to  3').
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4.3 Discussion

4.3.1 Simulating Deposition of 3D TP53 models onto 2D surfaces

The two dinucleotide parameter sets were used to model 3D molecules of TP53 

(Section 2.5.1.). The 3D molecules had the same shape but a considerable difference in the 

magnitude of curvature. This suggested that the models predicted curvature in the same 

regions but differed in the estimation of the magnitude of curvature. The De Santis prediction 

of TP53 3D shape was more curved than the Olson prediction and required more planes to be 

fitted in order to 'flatten' it into 2D (Figure 4.2 - Planes fitted every: De Santis = 277 bp; Olson = 

416 bp). For comparison, in the work by Buzio et al., the authors fitted a plane approximately 

once every 222 bp i.e. 6 planes were fitted to a 1332 bp sequence (Buzio et al., 2012). This was 

shown to have implications for the simulated deposition methods discussed later and the 

applicability of the Olson model to the study.

There were two available methodologies for projecting 3D models of DNA onto 2D 

surfaces. The first was a mathematical model that assumed that during deposition of DNA the 

local intrinsic curvature remained the same while the curvature phase changed to 

accommodate modifications in DNA architecture (Scipioni et al., 2002a). This was kindly 

generated for TP53 sequences by the original author in a private communication (Scipioni et 

al., 2002a). The second approach, Geometric Deposition, assumed that DNA would undergo 

the least possible conformational changes in order to equilibrate on the mica (Buzio et al., 

2012). There were benefits and limitations to both methods. The Geometric Deposition 

method was complex to implement, but required minimal understanding of underlying theory. 

The phase method required a complete understanding of the underlying mathematics of DNA 

curvature and flexibility. It was for this reason that phase curvature profiles were generated 

for this study by the original authors. This has also been the case for other studies, perhaps 

indicating that this methodology is too complex for common usage (Buzio et al., 2012).

Although both methods have different underlying assumptions they have been 

observed to produce very similar results (Buzio et al., 2012). Application of both methods to 

TP53 indicated that there were two regions of disagreement between the models about the 

direction (phase) of DNA curvature: the central intron region between exon 6 and exon 7 and 

the region beginning during exon 8 until the end of the sequence (Section 4.2.10.). These 

differences were likely to be due to conformational changes introduced by Geometric 

Deposition to accommodate the larger scale curvature of the De Santis model. Figure 4.3 

illustrates this; the Olson model, with a lesser degree of curvature, had a difference in DNA 

direction at the 3' end of Exon 5-9 in comparison to the De Santis model. The large degree of 

twist needed to flatten the 3' end section of the De Santis model is likely to account for the
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discrepancy between the deposition predictions. It should be noted that both models were 

just predictions of possible molecule orientation and experimental results can been used to 

amend the predictions, such as by modifying the direction of the predicted curvature to match 

experimental results (Buzio et al., 2012).

4.3.2 Evaluation of a Suitable Dinucleotide Parameter Set for Comparison to Experimental

AFM Images

Curvature profiles produced from computer simulated AFM images using the De Santis 

and Olson dinucleotide wedge parameters were compared (Section 4.2.6.). It quickly became 

apparent that the Olson model would be unsuitable for studying TP53. The De Santis 

parameters produced an unsigned profile in good agreement with that generated by other 

methods. The Olson model produced a homogenous, featureless profile that did not exhibit 

characteristic peaks that had been predicted by CURVATURE. The curved regions predicted by 

the Olson model were obscured by even the minimal noise introduced by digitising the DNA 

contour. An initial target of this study was to obtain a sequence-specific flexibility profile for 

TP53 using the Olson model. Where communication was achieved, authors were unable to 

provide this study with a clear methodology for calculating flexibility from dinucleotide 

parameters or to calculate these values for TP53 DNA sequences (Olson et al., 1998; Marilley 

et al., 2005). It is possible that had the flexibility parameters corresponding to the Olson model 

been included then the model would have been more suitable for comparison to AFM imaging. 

The De Santis model provided a well tested and robust dinucleotide parameter set for 

comparison to real AFM images and was used exclusively within the current study.

4.3.3 Evaluation of the Effects of Digitisation of DNA Contour Length

The effect of digitisation alone increased the contour length of DNA as measured by 

the Kulpa estimator (Section 4.2.5.). The overestimation decreased on the addition of a 

flexibility constant to the DNA molecules and again on addition of Gaussian noise/tip 

convolution. The percentage difference values for the datasets with the most sources of 

variation was 0.61 % and 0.53 % for Exon 5-7 and Exon 5-9 respectively (Table 4.1). This 

presented a better agreement between reconstructed length and theory than the -1.2% 

underestimate observed by previous authors (Rivetti and Codeluppi, 2001). The introduction of 

flexibility to the DNA molecules may have led to a larger degree of local writhe within the 

molecules that would have been removed by digitisation of DNA contours or skeletonisation of 

the resulting images.

This allowed for a prediction of increased underestimation of contour length in real 

AFM images that have larger sources of image and measurement noise. In real AFM images
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the expected underestimation using the Kulpa estimator was between -4.5 to -6.9 % (Rivetti 

and Codeluppi, 2001). The standard deviation of the simulated images was greater in the 

larger molecules; this was expected as there was a longer contour length over which variations 

can be introduced by digitisation. In conclusion, the Kulpa estimator provided an accurate 

reconstructed length of TP53 in simulated images but may deviate to a greater extent in real 

AFM images.

4.3.4 Evaluation of the Effects of Molecule Variation and Image Noise on Curvature

Profiles

Curvature profiles were produced with variable amounts of image noise and DNA 

flexibility (Section 4.2.7.). There was very good visual agreement between the major peaks in 

the profiles for both signed and unsigned curvature. It was observed that on addition of noise 

the unsigned curvature profiles had reduced peak contrast. Real AFM images have stronger 

sources of noise and variation. Therefore, the expectation for real AFM images was a greater 

reduction in peak to background contrast and loss of smaller peaks. This is not the case with 

the signed curvature profile. Due to this, signed curvature profiles were used where possible 

for experiments on real AFM images. Sources of molecule variation also had an impact on the 

comparability of curvature profiles at low base pair window sizes (Section 4.2.11.). The 21 bp 

window was near the minimum resolution of the micrograph (~18 bp). Image and molecule 

variation had an increased effect on curvature measurements at low base pair windows 

(Section 3.2.5.)

4.3.5 Evaluation of Peak Shift on the Addition of Image Noise

Peak shift in the curvature profiles of two sets of images, one containing noise and one 

without, was evaluated using a range of base pair windows (Section 4.2.13.). The 21 bp profile 

produced a peak shift of 1.2 % of the standardised length. The introduction of noise caused 

two of the major peaks to become unidentifiable in the noisy profile. Additionally, the peak to 

background contrast was poor and it was necessary to smooth the profile to identify peaks in 

both noisy and noiseless profiles. This base pair window of curvature was unsuitable for this 

sort of analysis. At larger window sizes the influence of image noise was reduced. The 42 bp 

and 63 bp profiles had a percentage peak shift equivalent to a single data point. Both larger 

window sizes were suitable for analysis of real images.

4.3.6 Identification of Suitable Base Pair Window Size for Curvature Calculation

The correlation between curvature profiles produced by overlapping DNA sequences has 

been assessed (Section 4.2.11.). The 21 bp window size was unsuitable for analysis of TP53 due
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to the poor comparability between the 21 base pair window size profile and the output of 

curvature (Section 4.2.7.), weak correlation between ideal and noisy images indicating poor 

reproducibility (Section 4.2.11) and the loss of key peaks (section 4.2.12.). The 21 bp window 

size is close to the minimum window size dictated by the resolution of the images (~18 bp) and 

it is likely that it is strongly influenced by the digitisation of the DNA contour. Larger window 

sizes provided a better peak contrast and were less influenced by sources of molecule and 

image variation. The 42 bp and 63 bp window size were used in the study for experimental 

AFM images of TP53 for this reason.

4.3.7 Features of Curvature Profiles Lost or Accentuated after Digitisation

It was clear that a number of peaks had been merged in the simulated AFM image 

profiles in comparison to the output of curvature (Section 4.2.12.) All of the peaks predicted by 

CURVATURE had been retained with the exception of one peak that occurred in the region of 

exon 6. What was surprising was that two curvature peaks had been introduced in the 

simulated AFM image profile. These peaks occurred in the region of exon 7 and near the 3' end 

of the sequence. The base pair window over which curvature was calculated from the 

simulated AFM images was larger than the curvature profiles calculated using CURVATURE. 

The peaks that were unique to the simulated AFM image profiles may have represented 

curvature that occurred over a larger scale. This larger scale curvature would not have been 

detected by CURVATURE, which calculates curvature using a dinucleotide site base pair 

window. Alternatively, these peaks may have been introduced by the simulated deposition 

method. Either way, the curvature profiles produced from simulated AFM images were more 

comparable to curvature profiles produced from real AFM images than those produced by 

other methods. The peak differences highlighted the need to generate models of curvature, 

using computer-simulated AFM images, for comparison to AFM image real data; the curvature 

profile produced by CURVATURE, although based upon the same set of dinucleotide 

parameters (De Santis) generated a different expectation.

4.3.8 The Intrinsic DNA Curvature of Exons in TP53

On statistical analysis of TP53 curvature profiles, exon positions exhibited significantly 

lower curvature than the introns positions in TP53 (Section 4.2.15.). This is most evident in the 

curvature profiles produced by CURVATURE. The reduced curvature predicted by the De Santis 

dinucleotide wedge model was significantly lower in exons 5, 6 and 7. Exons 8 and 9 were not 

significant. However, they were bordered by regions of high curvature. This could have 

increased the curvature measured within the region designated as 'exon' as curvature is 

averaged over a bp window of 31 bp by the CURVATURE algorithm. The pooled curvature
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values of all exons exhibited significantly lower than curvature in pooled introns. In order to 

evaluate whether this trend was likely to be observed in real AFM images of TP53 curvature 

profiles from simulated AFM images were analysed. The results indicated that only exon 5 was 

likely to exhibit significantly reduced curvature in unsigned curvature profiles of 42 bp or 

above. The significance of exons 6 and 7 are likely to be lost in real AFM images. However, the 

statistically significance of the reduction of curvature in pooled exon to intron positions is likely 

to be retained in real AFM images.

This observation has interesting implications. TP53 is heavily conserved in evolution 

due to its key importance to cell regulation and repair (Lane et al., 2010). The reduced 

curvature in exons may indicate that the structural architecture of coding regions in TP53 has 

been selected for during evolution. Alternatively, the low curvature could be a by-product of 

the accumulation of GC base pair content in coding sections of DNA throughout evolutionary 

time (Galtier et al., 2001). If intrinsic DNA curvature is actively selected for then this is most 

likely due to the influence of curvature on nucleosome positioning and the maintenance of 

nucleosome structure (Shrader and Crothers, 1990; Virstedt et al., 2004). Although curvature 

has been shown to influence transcription and replication, the impact of curvature is 

predominantly in the origins of replication and promoter regions of genes (Ohyama, 2005; 

Marilley et al., 2007b). The sequence under investigation contains no promoters or replication 

origins so the role of intrinsic curvature in TP53 is likely to be structural. Low levels of DNA 

curvature in genes have been linked to open chromatin and active transcription (Vinogradov, 

2003). TP53 is constantly transcribed at a low level within the cell, and its transcription is 

tightly regulated, so evolutionary selection for DNA architecture to enhance stable 

transcription is likely to be beneficial (Hollstein and Hainaut, 2010). The theory of evolutionary 

selection for architectural features in genes has been previously proposed and favours active 

selection for intrinsic curvature rather than selection for GC content leading to reduced 

curvature (Vinogradov, 2003).

4.3.9 Intrinsic DNA Curvature in Regions of Slow Repair in TP53

There are number of sites in TP53 that have been shown to exhibit slow DNA repair of 

bulky chemical adducts (Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). The 

curvature values for slow repair codons, produced in CURVATURE, were statistically analysed 

and found to exhibit significantly lower curvature in comparison to the remaining TP53 

sequence (Section 4.2.14.). However, regions of slow repair were localised to exons within 

TP53 which independently exhibited reduced curvature (Section 4.2.8.). The possibility of low 

curvature in slow repair codons being caused by the localisation of the codons to exons has 

not been discounted.
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Reduced curvature in codons of slow repair may indicate a role for curvature in DNA 

repair in TP53. The local DNA sequence bordering a chemical bulky adduct was shown to have 

a measurable effect on the repair efficiency via the NER pathway (Cai et al., 2009, 2010). Two 

of the key proteins in the NER pathway, XPA and RPA, specifically recognise DNA structural 

deformities due to chemical adduction and are also required to deform DNA in order to 

function (Missura et al., 2001). Studies have concluded that DNA curvature may have a role as 

a stabilising factor in the presentation of DNA adducts for repair (Cai et al., 2009, 2010). Gel 

electrophoretic experiments and molecular dynamic simulations indicate that rigidly bent DNA 

sequences present a wider minor groove leading to more efficient excision and repair of the 

DNA lesion. The DNA adduct used in these studies, BPDE, was derived from benzo[a]pyrene, a 

chemical carcinogen heavily involved in the initiation and progression of lung cancer (Hecht, 

2002; Kometani et al., 2009). BPDE has also been implicated as a causative agent for the three 

lung cancer specific sites of slow repair used in this study (Denissenko et al., 1998; Hussain et 

al., 2001). Therefore, it can be hypothesised that the regions of slow repair in TP53 may be due 

to, at least in part, the low curvature of slow repair codons causing reduced presentation of 

the chemical adduct for removal by the NER pathway.

Additionally, the mechanism underlying sequence-specific DNA repair has also been 

attributed to the accessibility of the DNA due to the local chromatin structure (Bohr, 1987). As 

curvature has an active role in nucleosome positioning and the maintenance of nucleosome 

structure it may also effect DNA repair efficiency indirectly through nucleosome positioning 

(Shrader and Crothers, 1990; Anselmi et al., 1999).

4.3.10 Nucleosome Positioning

Nucleosome positioning algorithms were applied to TP53 but failed to produce a 

consistent result (Section 4.2.16). NXsensor identified a large nucleosome exclusion site within 

exon 5. NuPop instead predicted that nucleosomes would be unlikely to occupy intronic 

regions of TP53 with, perhaps, the exception of exon 6. Both algorithms are equally valid, but 

identify nucleosome occupancy/exclusion differently. NXsensor identifies sequence motifs 

unfavourable for nucleosome binding and NuPop explicitly models linker DNA. While the 

results from the different algorithms do not corroborate one another they do indicate that the 

nucleosome occupancy of TP53 should be investigated further, especially in relation to DNA 

curvature and repair. The potential for exon 5 or 6 to be excluded from the nucleosome core 

has interesting implications for DNA damage models. For example, exon 5 is highly mutated in 

lung cancer (Denissenko et al., 1996). One of the major carcinogens involved in lung cancer, 

BPDE, has shown preferential binding to DNA not contained in the nucleosome core (Jack and 

Brookes, 1982; Kurian et al., 1985). Intrinsic DNA curvature has an active role in nucleosome
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positioning and the maintenance of nucleosome structure (Shrader and Crothers, 1990; 

Anselmi et al., 1999). It may therefore indirectly influence DNA damage rates and DNA repair 

rates, as discussed in the previous section, indirectly via control of nucleosome architecture.

4.3.11 Limitations of Theoretical Models

The results presented in this study have highlighted how valuable theoretical models 

are for generating and testing hypotheses. However, they do possess a number of limitations. 

One of the limitations of this study has been the lack of sequence-specific DNA flexibility 

parameters for creating computer simulated AFM images. The current study used a constant 

persistence length value for modelling DNA although flexibility is known to be sequence- 

dependent (Hagerman, 1988). A number of DNA flexibility models do exist but not all are 

applicable to the problem. For example, both bendability trinucleotide models, normalized 

melting temperatures and stacking energies offer a measure of flexibility but do not provide 

values that can be easily converted to a measure of persistence length (Brukner et al., 1995b; 

Scipioni et al., 2002a). The most promising method was the unavailable crystallographic 

deformity data (Olson et al., 1998; Marilley et al., 2005). Estimates of sequence-specific 

flexibility would allow for better evaluation of the influence of flexibility on curvature.

Another well reported source of unmodellable variation is the shortening of DNA 

measured in both air and buffer by AFM. The shortening of DNA has been variably attributed 

to a B- to A-form DNA transition (Rivetti and Codeluppi, 2001) and electrostatic interactions 

with the cation loaded mica surface (Sanchez-Sevilla eta!., 2002). The source of this shortening 

has yet to be conclusively identified. However, shortening is assumed to be uniformly 

distributed throughout the DNA molecules (Buzio et al., 2012). If DNA shortening is due to a B- 

to A-DNA transition, then the propensity of DNA to transition has been shown to be sequence 

dependent (Ivanov and Minchenkova, 1995). Currently, due to limited understanding of the 

underlying cause of DNA shortening, the assumption of uniform condensation must be used. In 

the eventuality that DNA shortening is confirmed to be due to B- to A-DNA transition, efforts 

will be needed to model the effect on curvature measurement from individual molecules.

Other sources of experimental variation in AFM imaging cannot be accounted for by 

theoretical models. DNA molecules can break during DNA deposition; if the break is sufficiently 

close to either end then the molecule will be treated as a full length molecule in the analysis. 

There is no way of identifying erroneous DNA molecules that still lie within the expected 

reconstructed length distribution. These molecules are likely to cause a widening of curvature 

peaks in real DNA analysis and a shortening of average DNA contour length. Additionally, the 

likelihood of breakage may be sequence dependent and create a second weak overlapping 

curvature profile which will be introduced as an experimental source of variation.
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4.4 Conclusions

Theoretical models have provided a working hypothesis for the section of the TP53 gene 

that codes for the sequence-specific DNA-binding region of the p53 protein. Exon positions 

exhibited significantly lower curvature than intron positions. The evolution of low curvature in 

exons may be caused by selection for nucleosomal architecture in TP53. This selection for low 

curvature, to promote stable transcription, may have implications for DNA damage and repair 

in this most crucial of genes. Low DNA curvature has also been shown to be associated with 

regions of slow DNA repair in TP53, introducing another role for DNA curvature in the 

functioning of TP53. Exons 5 and 6 were predicted to be excluded from the nucleosome core 

by separate nucleosome positioning algorithms. The propensity to transition from B-DNA to A- 

DNA was also found to be lowest in exon 5. A number of factors including intrinsic DNA 

curvature, nucleosome positioning and propensity for structural transition may collectively 

contribute to a very different structure for exons within TP53. Exon 5 in particular was 

consistently found to have significant differences. This could indicate that it has a distinctly 

different structural architecture from other regions of the TP53 gene.

The use of simulated AFM images allowed for a number of predictions to be made about 

the AFM based analysis of TP53. The experimentally determined contour length of TP53 DNA 

molecules would be an underestimate in comparison to the theoretical estimates of B-DNA 

length. A number of key peaks would be retained in the curvature profiles processed using the 

ADIPAS software. Curvature profiles would be more reproducible at comparable window sizes 

for signed profiles in comparison to unsigned curvature profiles. Exon 5 would be expected to 

have significantly lower curvature in comparison to intron regions in the experimental 

curvature profiles. Finally, pooled curvature measurements of exon positions would likely be 

significantly lower when compared to pooled intron curvature.

The use of simulated AFM images also produced guidelines for the analysis of real AFM 

images of TP53. The 21 bp window size for calculating curvature angles was shown to be 

unsuitable for the analysis of curvature in TP53. Larger base pair window sizes were more 

suitable. Theoretical curvature profiles were generated at a representative base pair window 

size for further comparison to real AFM images.
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CHAPTER 5: INTRINSIC DNA CURVATURE ANALYSIS BY
APPLICATION OF THE FRAGMENT FLIPPING ALGORITHM TO 

EXONS 5 TO 9 OF THE TP53 GENE
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5.1 Introduction

5.1.1 Methods of DNA Orientation in Nano-Biology

The precise investigation of intrinsic DNA curvature and flexibility is important for 

understanding the physical interactions of DNA with other biomolecules. To this end, AFM is a 

very useful tool for the researcher, allowing nanoscale measurements of the physical 

conformation of DNA molecules. One of the problems faced by nano-biologists working with 

DNA is the identification of the correct orientation of DNA on a surface. Researchers have 

overcome this problem by using protein end-labels (Shaiu et al., 1993; Marilley et al., 2005). 

However, limited local interaction between the protein end-label and DNA have been reported 

(Marilley et al., 2005). There are a number of other methods for the orientation of DNA 

molecules without end-labelling, such as using palindromic DNA dimers (Scipioni et al., 2002a), 

using symmetrical curvature ratios (Buzio et al., 2012), orientation based upon theoretical 

models of twist and Z-height (Milani et al., 2011) and the FF algorithm which uses local 

curvature measurements to orient DNA molecules within a dataset (Ficarra et al., 2005b). The 

subject of the research detailed in this chapter is the last of the methods listed, the FF 

algorithm (Ficarra etal., 2005b).

5.1.2 The Fragment Flipping Algorithm

The FF algorithm has been well detailed in a number of related publications (Masotti 

et al., 2004; Ficarra et al., 2005b). The FF algorithm has been shown by the authors to be 

effective for real and simulated AFM images and the results have been in good agreement with 

the De Santis model of curvature. The FF algorithm has been applied to both repeat dimers 

and linear non-palindromic DNA. The algorithm uses the mean in variance within local 

curvature measurements as the objective function of a hill-climbing optimisation routine. The 

aim of the routine is to reduce the variation within the dataset to reach an optimum state. The 

intrinsic curvature can then be calculated from the orientated DNA dataset using well 

researched mathematical methods (Scipioni et al., 2002a). Therefore, the FF algorithm is 

considered a post-processing method of molecule orientation. It introduces no experimental 

end-labels and it is this quality that makes it desirable to the researcher. The only potential 

perturbations to the curvature of the DNA are controlled by the researcher, such as the choice 

of buffer, temperature and adhesion method.
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5.1.3 The Underlying Assumptions of the Fragment Flipping Algorithm

The FF algorithm makes a number of assumptions: that the intrinsic curvature is 

measurable within DNA molecules, that the measurable curvature is greater than background 

thermal perturbations (i.e. there is sufficiently high signal-to-noise ratio), that all the DNA 

molecules have a random orientation on the surface and the FF algorithm finds the global 

optimum configuration of the majority of DNA molecules. As to the first and second points, 

that DNA intrinsic curvature can be measurable using AFM techniques, it is well documented 

that this is the case within the available literature (Cognet et al., 1999; Zuccheri et al., 2001b; 

Scipioni et al., 2002a). For the third point, that all DNA molecules have random orientation on 

the surface, there is evidence that this may not be the case; the face of the DNA double helix 

that contains the most thymine has been shown to preferentially bind to inorganic surfaces 

(Sampaolese et al., 2002). On the final point, that the global optimum curvature is found by 

the FF algorithm, a valid concern with the FF algorithm has been raised (Buzio et al., 2012). The 

authors noted that the FF algorithm is a hill-climbing optimisation algorithm and, in this 

respect, is sensitive to solutions that provide local minima in its objective function instead of 

the global minima (i.e. it will find a suitable solution, but that solution may not be the desired 

'global' solution). The authors provided an example where this was the case. This is a well 

documented limitation of hill-climbing algorithms (Morris, 1993).

5.1.4 Aims and Objectives

The main aim was to evaluate whether the FF algorithm can accurately reconstruct 

curvature from TP53 DNA. In order to achieve this, the FF algorithm was initially tested using 

computer simulated AFM images of TP53. Using the simulated images as a guideline, alongside 

guidance tools that had been previously developed, the FF algorithm was applied to 'real' TP53 

DNA molecules. The resulting intrinsic curvature profiles were compared to theoretical 

curvature models that had been previously generated. The fidelity and applicability of the FF 

algorithm to TP53 DNA sequences was investigated and discussed.
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5.2 Results

5.2.1 Testing the Fragment Flipping Algorithm using Computer Generated AFM Images.

A large number of computer simulated AFM images were generated for both Exon 5-7 

and Exon 5-9 using the De Santis dinucleotide wedge model as described in Chapter 4. 

Datasets of over 1000 molecules were collected from the computer simulated AFM images for 

both sequences. The correct orientation of each molecule was ascertained as described in 

Section 2.5.6. Three test datasets were generated:

•  Curvature Images -  The DNA molecules were generated using a fixed value of 

curvature at each base pair step identified from the De Santis dinucleotide wedge 

model [i.e. they were all identical). The only sources of image variation were the 

orientation of the DNA molecules, the effect of digitisation of the DNA contour and 

the effect of skeletonisation on the resulting AFM images.

•  Flexibility Images - The DNA molecules were generated using a variable value of 

curvature at each base pair step. The mean value of the Gaussian distribution of 

curvature angles at each step was the same as that used in Curvature Images. The 

variation around the mean value was determined using a persistence length of 53 nm. 

The flexibility of DNA molecules provided another source of variation in addition to 

that of contour digitisation.

•  Theoretical AFM Images - The DNA molecules were generated in the same way as the 

Flexibility Images but also had both tip convolution (6 nm ROC) and Gaussian noise 

(variance = 0.025) added as additional sources of experimental variation. These 

images were the most comparable to real AFM images and had additional sources for 

potential variance between molecules as the images were subjected to noise filtering 

and automatic thresholding (i.e. all image processing steps of the ADIPAS software 

were applied).
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5.2.1.1 Accuracy of the Fragment Flipping Algorithm on Increasing Image Noise and DNA 

Conformational Flexibility

Theoretical molecules were oriented from 5' to 3' within a curvature matrix (a table of 

all molecules with angles calculated at a number of comparable points). The molecules were 

randomly flipped into one of the four possible orientations available to them. The 

transformation was recorded at each step. The FF algorithm was then applied to the curvature 

matrix. The orientation of each molecule in comparison to its original orientation was recorded 

after each iteration of the algorithm. This was repeated at three different window sizes for 

measuring curvature angles; 21 bp, 42 bp and 84 bp. The 21 bp window was included to assess 

the effect on the FF algorithm at curvature window sizes close to minimum based upon 

resolution of AFM images. A summary of the results is provided in Table 5.1.

At the smallest bp window, 21 bp, the FF algorithm was at its lowest accuracy for all 

test samples. For Exon 5-7 the outcome was complete random orientation of DNA molecules. 

For Exon 5-9 the 21 bp window was more effective at ~50 % accuracy. For larger bp windows 

the FF algorithm worked at nearly 100 % accuracy for the idealised Curvature Images. There 

was a drop in accuracy with the introduction of DNA molecule flexibility and image noise to a 

minimum accuracy of 87.15 % in Exon 5-7 using Theoretical AFM Images. It should be noted 

there was a difference in percentage accuracy on repetition which has been investigated in the 

next section. An example of the resulting curvature profiles has been presented in Figure 5.1. 

There was less visible effect of lower FF accuracy on signed curvature profiles than unsigned 

curvature profiles.
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Exon 5-7 No. of 
Molecules

21 bp Window 42 bp Window 84 bp Window

Max.
Similarly
Oriented

%
Correctly
Oriented

Max.
Similarly
Oriented

%
Correctly
Oriented

Max.
Similarly
Oriented

%
Correctly
Oriented

Curvature
Images

1198 331 27.63 % 1197 99.92 % 1198 100%

Flexibility
Images

1171 370 32.00 % 1151 98.29 % 1118 95.47 %

Theoretical
AFM
Images

1253 311 24.82 % 1092 87.15 % 991 97.06 %

Exon 5-9 No. of 
Molecules

21 bp Window 42 bp Window 84 bp Window

Max.
Similarly
Oriented

%
Correctly
Oriented

Max.
Similarly
Oriented

%
Correctly
Oriented

Max.
Similarly
Oriented

%
Correctly
Oriented

Curvature
Images

1181 617 52.24 % 1181 100.00 % 1181 100.00 %

Flexibility
Images

1046 680 65.09 % 984 94.07 % 971 92.93 %

Theoretical
AFM
Images

913 471 51.59% 842 92.22 % 823 92.22 %

Table 5.1. - Summary of the number and percentage of molecules correctly oriented by the FF 
algorithm. A correctly oriented TP53 dataset of curvature measurements from simulated DNA 
molecules was generated. The orientation of each DNA molecule was transformed randomly in 
one of the four possible orientations. The FF algorithm detailed by Ficarra etal., 2005 has been 
applied and the maximum number of molecules in a single orientation was recorded as the 
percentage'Correctly Oriented'.
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5.2.1.2 Effects of Base Pair Windows Size on the Accuracy of the FF Algorithm.

It was observed in the previous section that base pair window size had a measurable 

effect on the fidelity of the FF algorithm. By testing a number of window sizes it was possible 

to estimate the effect that window size had on the number of correctly oriented DNA 

molecules. A dataset of 1171 molecules from the Theoretical AFM Images sample was used.

The dataset was correctly oriented using the method described in Section 2.5.6. It was 

then randomised, the orientation of the molecules (in comparison to its original orientation) 

was recorded during randomisation, curvature angles were calculated for a number of window 

sizes and the FF algorithm was applied. The maximum number of DNA molecules oriented in 

the same direction was scored and converted into a percentage. This was repeated three times 

to give the average percentage accuracy. Standard deviation was used as a measure of 

variability at each base pair window (Figure 5.2.). The FF algorithm failed completely at the 

lowest window size of 21 bp; orientating only ~ 25 % of molecules in the same direction, which 

is nearly complete randomisation. The FF algorithm produced reproducibly good results (>85 % 

oriented correctly) between the window sizes of 32-84 bp. The maximum accuracy of the FF 

algorithm was 88.24 % at a window size of 49 base pairs.

The deviation of the accuracy of the FF algorithm was assessed at each base pair 

window. Poor reproducibility was observed at window sizes below 36 bp. The window size that 

exhibited the maximum amount of variability in the accuracy was the 34 bp widow (standard 

deviation = 19.47 %). The window sizes of 34-103 bp showed little to no variation in FF 

accuracy.
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5.2.2 Application of the FF Algorithm to Real AFM Images of TP53

5.2.2.1 Collection of AFM Images

A large number of AFM images of the PCR product of TP53 Exon 5-7 and Exon 5-9 were 

collected. The AFM images were processed using the ADIPAS software detailed in Chapter 3. 

The DNA molecules were deposited on the mica surface in Mg2+ containing buffer in order to 

allow weak binding and surface equilibration (Hansma and Laney, 1996; Rivetti et al., 1996). A 

dataset of more than 1000 DNA molecules was processed for both TP53 PCR products (Table 

5.2.).

5.2.2.2 Reconstructed Length Measurements

Reconstructed length measurements were calculated for both the TP53 Exon 5-7 and 

Exon 5-9 datasets. TP53 Exon 5-7 exhibited a non-normal distribution before and after log 

transformation (Shapiro-Wilks, p = <0.05). The median contour length of Exon 5-7 was 598 nm. 

TP53 Exon 5-9 exhibited a non-normal before and after log transformation (Shapiro-Wilks, 

p=<0.05). The median contour length of Exon 5-9 was 835 nm. A summary of the 

reconstructed contour lengths of Exon 5-7 and Exon 5-9 can be found in Table 5.2.

It was observed that there were a number of molecules with contour lengths that did 

not lie within the main distribution and were far from the median values. It was necessary to 

remove these outlying molecules; this was achieved by selecting a number of molecules 

around the median value of the distribution for further analysis. The removal of obviously 

erroneous molecules has been performed in numerous studies (Scipioni et al., 2002a; Ficarra 

et al., 2005b; Marek et al., 2005). For further analysis 1000 molecules were selected around 

the median value. After this outlier removal the median of Exon 5-7 was 603 nm and Exon 5-9 

was 840 nm. The reconstructed contour length values before and after outlier removal are 

presented in Figure 5.3. and Table 5.2.
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TP53 Exon 5-7 Number Of 
Molecules

Normality Test 
[Shapiro-Wilks] 

(p-value)

Median (nm) IQR
[Q3-Q1]

(nm)

O rig ina l Data 1433 <0.05 598 41.34

Outliers Removed 1000 <0.05 603 25.51

TP53 Exon 5-9

O rig ina l Data 1546 <0.05 835 34.95

Outliers Removed 1000 <0.05 840 18.58

Table 5.2. - Summary o f the reconstructed length o f TP53 Exon 5-7 and TP53 Exon 5-9 datasets 
d irec tly  from  image processing softw are and a fte r outlie rs rem oval. The m edian and 
in te rquartile  range (IQR) values were generated from  the  reconstructed length m easurem ents 
from  the appropria te  datasets. The Shapiro-W ilks test fo r no rm a lity  was perform ed on 
reconstructed length m easurem ents from  the same datasets. S ignificant p-values fo r the 
Shapiro-W ilks tes t are indicated in red.

174



Original Data (n = 1433)

Outlier Removed (n = 1000)
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Reconstructed Length (nm)

Original Data (n = 1546)

Outlier Removed (n = 1000)

600 700 800300 400 500 900 1000

Reconstructed Length (nm)

Figure 5.3. - D istributions o f reconstructed con tour length o f TP53 m olecules before and a fte r 
o u tlie r rem oval. A) Boxplot o f reconstructed length o f Exon 5-7 and a fte r o u tlie r rem oval. B) 
Boxplot o f reconstructed length o f Exon 5-9 and a fte r o u tlie r rem oval. On each box, the central 
m ark is the median, the edges o f the box are the 25th and 75th percentiles, the whiskers 
extend to  the m ost extrem e data points not considered outliers, and outlie rs are p lo tted  
ind iv idua lly as red crosses.
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5.2.23 Persistence Length

Persistence length fo r both the TP53 Exon 5-7 and Exon 5-9 datasets was calculated as 

detailed in Section 3.2.4.2. (Figure 5.4.). The persistence length o f DNA was investigated over a 

curvilinear distance range o f 0-400 nm. The persistence length calculated fo r Exon 5-7 was ^ = 

52 nm and Exon 5-9 was £; = 49 nm. M odel fitt in g  over a sm aller range o f con tour lengths (0- 

300 nm) produced sm aller persistence length m easurem ents fo r both  DNA sequences o f ^ = 49 

nm and ^ = 47 nm fo r Exon 5-7 and Exon 5-9 respectively.
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Figure 5.4. - Experim entally determ ined DNA persistence length fo r TP53 Exon 5-7 and Exon 5- 
9 by comparison to  theore tica l values o f <R2> from  the WLC m odel. A) Plot o f the RMSE fits  o f 
<R2> generated using the  WLC theo ry  using a range o f persistence lengths fo r experim enta l 
<R2> o f TP53 Exon 5-7. B) Experimental <R2> values (red line) o f TP53 Exon 5-7 alongside 
predicted <R2> values (broken blue) fo r the  WLC m odel a t a persistence length o f 52 nm fo r  a 
range o f curv ilinear distances from  0-400 nm. C) Plot o f the RMSE fits  o f <R2> generated using 
the WLC theo ry  using a range o f persistence lengths fo r  experim enta l <R2> o f TP53 Exon 5-9. 
D) Experimental <R2> values (red line) o f TP53 Exon 5-9 alongside predicted <R2> values 
(broken blue) fo r the WLC m odel at a persistence length o f 49 nm fo r a range o f curvilinear 
distances from  0-400 nm.
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5.2.2.4 Selection of Base Pair Window for Curvature Calculation

Having previously observed that the FF algorithm was more accurate within a certain 

range of base pair window sizes (Section 5.2.1.) it was necessary to identify a window size to 

use on experimental DNA molecules. The lowest approximate window size for the resolution 

of the images was ~18 bp. Typically a base pair window size close to the resolution limit of the 

image is used by researchers (Ficarra et a!., 2005b). However, the 21 bp window size was 

previously shown to be unsuitable for TP53 sequence when using computer generated AFM 

images (Section 4.2.11.). Computer simulated AFM images are 'ideal' images and only contain 

a few controlled sources of noise. The failure of the FF algorithm on simulated DNA molecules 

indicated that it would be unlikely to work on experimental images that have greater sources 

of image noise and DNA molecule variance.

There were a number of sources of information available for the selection of 

appropriate base pair windows. Firstly, there was the experiment that evaluated the accuracy 

of the FF algorithm at a range of base pair window size (Section 5.2.1.2.). The window sizes 

with minimum variance and maximum accuracy suggested a base pair range of 34-84 bp. The 

Visual Threshold, developed in Section 3.2.5.2., was also applied (Figure 5.5.). This allowed for 

the visual assessment of curvature calculated over a range of base pair window sizes. This was 

used to identify the influence of digitisation of the DNA contour on curvature angle 

measurements. Both Exon 5-7 and Exon 5-9 followed the expected pattern. The minimum 

curvature values were 55 nm for Exon 5-7 and 46 bp for Exon 5-9. The Visual Threshold 

suggested a range of window sizes of 34-80 bp for Exon 5-7 in remarkable agreement with the 

experimentally determined optimum FF algorithm window sizes.

The window sizes of 42 bp and 63 bp were used for further analysis. In some instances 

the window size of 21 bp has been included for comparison to previous research. The window 

sizes of 42 and 63 bp lie within experimentally determined optimal ranges. Additionally, these 

window sizes have been shown to provide good curvature peak-to-background contrast in 

theoretical studies of TP53 (Section 4.2.6.). Both window sizes are multiples of a helical turn 

(10.5 bp in B-DNA) and can be discussed in terms of a biologically relevant measure.
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Figure 5.5. - Visual Threshold o f mean curvature  fo r TP53. A) TP53 Exon 5-7 (m in im um  = 55 
bp). B) TP53 Exon 5-9 (m in im um  = 46 bp). Mean curvature  is p lo tted  as a green line, sm oothed 
(three po in t m oving average) as blue, the  maxima and m inim a values are denoted as red 
circles and the  thresho ld  as a red line.
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5.2.2.5 Curvature Profiles Generated using the Fragment Flipping Algorithm

The FF algorithm was applied to the unoriented set of DNA molecules after outlier 

removal. There are 1000 molecules in the final set for both Exon 5-7 and Exon 5-9. A full 

description of the FF algorithm can be found in Section 3.2.4.5. and in the original publication 

(Ficarra et al., 2005b). The resulting curvature profiles are presented in Figure 5.6. Signed 

profiles were calculated as the mean value per base pair window interval of a dataset with 

both negative and positive curvature angles. Unsigned profiles were calculated as the mean 

value per base pair window where all angles were considered positive i.e. there was no 

direction attributed to the curvature angles. Profiles were smoothed (three point moving 

average) to improve the peak-to-background contrast and highlight trends in the curvature 

profiles.

The FF algorithm was initially applied to unoriented sets of DNA molecules. The 

curvature profiles before and after application of the FF algorithm were recorded. The results 

are presented in Figure 5.6. It was observed that the profiles before the FF algorithm was 

applied exhibited weak trends in curvature, perhaps indicating that not all DNA molecules 

were randomly oriented on the mica surface. The curvature profiles after application of the FF 

algorithm exhibited strong similarities to profiles produced before FF. At the 42 bp window the 

majority of the curvature had been flipped to one end of the molecule. The pattern of 

curvature for both Exon 5-7 and Exon 5-9 was in almost perfect agreement with the profile 

before FF. A similar effect was observed at the 63 bp window of curvature, although there was 

less visual agreement between the profiles. The magnitude of curvature measured after 

application of the FF algorithm was larger than the initial profiles before FF. However, the 

positions of many peaks were in good agreement.
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Figure 5.6. - Comparison o f curvature  p ro files before and a fte r app lica tion o f the FF a lgorithm . 
A) TP53 Exon 5-7 42 bp curvature  w indow . B) TP53 Exon 5-7 63 bp curvature w indow . C) TP53 
Exon 5-9 42 bp curvature w indow . D) TP53 Exon 5-9 63 bp curvature  w indow . Raw profiles are 
indicated w ith  broken grey lines and pro files a fte r FF a lgorithm  are indicated w ith  blue lines. 
Curvature is in radians and the d irection  o f curvature  is indicated (signed curvature). The 
position along the p ro file  is standardised from  0-1 (5' to  3').
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5.2.2.6 Reapplication of the Fragment Flipping Algorithm after Randomisation of DNA 

Orientation

The similarity between the profiles before and after FF orientation indicated that the 

algorithm was being influenced by the weak initial trends in the curvature of TP53 (Section 

5.2.2.5.). The assumption was made that the weak trends in the curvature profiles were 

providing a local solution to the objective function of the FF algorithm. This has been observed 

in other studies (Buzio et a i,  2012). In order to overcome this problem the orientation of the 

DNA molecules within both datasets were randomised before reapplication of the FF 

algorithm.

To avoid the effects of local solutions to the objective function of the FF algorithm 

further steps were taken. The FF algorithm was repeated ten times on randomised DNA 

molecules. The results were aligned and averaged. This was the equivalent of applying the FF 

algorithm to the results of the FF algorithm. If randomisation has the effect of modifying this 

local solution then sufficient randomisations and reapplication of the FF algorithms may 

provide a number of local or global solutions that, when averaged, would produce a consensus 

profile. The aim of this experiment was to establish whether the FF algorithm can provide a 

consensus outcome for the DNA sequences of interest.

The signed curvature after randomisation and re-application of the FF algorithm is 

presented in Figure 5.7 alongside theoretical curvature profiles. Curvature angles were 

calculated using the appropriate base pair window before application of the FF algorithm. 

Theoretical curvature profiles were calculated separately for each base pair window size and 

rescaled to allow visual comparison to experimental curvature profiles.

The outcome for Exon 5-7 at a 42 bp window provided an unclear result (Figure 5.7. 

A.). The magnitude of the curvature peaks measured was small and there were few clear 

trends within the data before and after smoothing. It was not clear if the curvature profiles 

produced were representative of the DNA sequence. At a larger window of curvature, 63 bp, 

there were more obvious trends within the data (Figure 5.7.B). There were similarities 

between the theoretical profiles and the experimental profiles towards the ends of the DNA 

sequence. These similarities were less clear within the centre of the sequence. The peak of 

curvature between 0.3 and 0.4 standardised length, roughly corresponded to Exon 5 and 6, 

was unexpectedly large relative to the rest of the profile.

The curvature profile for Exon 5-9 at a 42 bp window of curvature provided a number 

of peaks of curvature with which to make a comparison to theoretical models (Figure 5.7.C.). 

There was good visual correlation between a number of experimental peaks within the 

curvature profile and agreement peaks within the theoretical profile although the direction of
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the peaks may d iffe r. This was especially strong fo r peaks near e ithe r end o f the molecule. The 

63 bp w indow  o f curvature o f Exon 5-9 provided even greater contrast between peaks and 

there  was a consensus shape between the tw o  base pair w indow  sizes (Figure 5.7.D.). There 

was good visual agreem ent between the occurrences o f peaks at the  end o f the DNA 

sequence, d isregarding the sign o f curvature. This visual agreem ent was weaker at the  centre 

o f the DNA sequence, although there  were a num ber o f corresponding peaks between the 

profiles.
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Figure 5.7. - Experimental curvature profiles fo r TP53 aligned w ith  theore tica l curvature 
profiles. A) TP53 Exon 5-7 42 bp curvature  w indow . B) TP53 Exon 5-7 63 bp curvature w indow . 
C) TP53 Exon 5-9 42 bp curvature w indow . D) TP53 Exon 5-9 63 bp curvature w indow . 
Experim ental profiles are indicated in blue and theore tica l in grey. Curvature is in radians and 
the  d irection  o f curvature is indicated. The position along the  p ro file  has been standardised 
from  0-1 (5' to  3 '). The 42 bp w indow  profiles were sm oothed w ith  a 3 -po in t average filte r. 
Theoretical profiles have been rescaled fo r com parison to  the  experim ental profiles. 
Theoretical curvature  profiles were produced from  the De Santis d inucleotide  m o d e l.
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5.2.2.7 Comparison of Curvature Profiles to Amended Theoretical Profiles

The Geometric Deposition model for simulating adsorption of DNA produced 

theoretical profiles that were comparable to the experimental profiles for Exon 5-9. This model 

gave an approximation to the actual average geometry of adsorbed molecules. There may be 

relevant differences between the projected geometry of the DNA molecules and the 

experimentally observed trajectory of DNA molecules. This must be considered when 

comparing experimental and theoretical profiles and adjustment to the theoretical must be 

made a posteriori (Figure 5.8.). An example of this was provided by the original authors of the 

method (Buzio et al., 2012). The authors observed a preferential 180° rotation between 

neighbouring sections of DNA and used this to adjust the results of the deposition model. 

Practically, this was performed by inverting the sign of the region containing the preferential 

twist in the relevant theoretical curvature profiles {i.e. values changed from positive to 

negative and vice versa). This sort of modification of the chain architecture cannot be 

predicted by current theoretical models as it is a direct product of the adsorption process.

TP53 Exon 5-9 was the first to be considered as it provided the clearest comparison 

between experimental and theoretical peaks in curvature. Two preferential 180° twists within 

the DNA sequence were proposed to provide a better agreement between experimental and 

theoretical curvature. The first proposed twist occurred between exon 5 and 6 and continued 

for a short way into the intronic region between exons 6 and 7. The second twist occurred at 

the 3' end of the DNA sequence and incorporated exons 8 and 9. There was very good visual 

similarity between both the occurrence of curvature peaks and the curvature direction for 

both windows of curvature (Figure 5.8.C+D.).

A correlation analysis was performed between the theoretical and experimental 

profiles before and after a preferential twist was introduced to the theoretical data (Table 

5.3.). Application of the FF algorithm at a 42 bp window showed significant weak positive 

correlation with the original theoretical projection (Spearman's, Rho = 0.21; p = <0.05). After 

amending the projection a posteriori the profiles exhibited an improved correlation 

(Spearman's, Rho = 0.49; p = <0.005). Application of the FF algorithm at a 63 bp window 

showed no significant correlation with the original theoretical projection (Spearman's, Rho = 

0.09; p = 0.44). After amending the projection a posteriori the profiles exhibited a moderate 

significant correlation (Spearman's, Rho = 0.60; p = <0.05). Theoretical profiles were in better 

agreement with experimental profiles at a larger base pair window size, in agreement with 

predictions made from simulated AFM images of TP53 (Section 4.2.11.).

The potential occurrence of preferential twists within the DNA sequence of Exon 5-7 

was less easily accounted for due to the reduced degree of similarity between the theoretical
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and experim enta l curvature  profiles (Figure 5.8.A+B). However, assuming sim ilar adsorption 

behaviour betw een the  sequences, a 180° tw is t was in troduced between exon 5 and 6 and 

continued in to  the in tron ic  region between exons 6 and 7. This accounts fo r a small am ount o f 

the deviation betw een the theore tica l and experim enta l curvature  pro files although there 

were still d issim ilarities w ith in  the  centre o f the profile . A co rre la tion  analysis was perform ed 

between the theore tica l and experim enta l profiles before  and a fte r a p re ferentia l tw is t was 

applied to  the  theore tica l data (Table 5.3.). Significant positive co rre la tion  was observed fo r 

Exon 5-7 at a 63 bp w indow  o f curvature using the amended theore tica l p ro file  (Rho = 0.31, p = 

<0.05).

Spearman's Rank Correlation Coefficient

Original Theoretical Projection Amended Theoretical Projection

Exon 5-7 Window Size Rho p-value Rho p-value

42 bp -0.97 0.47 0.31 <0.05

63 bp 0.10 0.36 0.06 0.60

Exon 5-9 Window Size Rho p-value Rho p-value

42 bp 0.21 <0.05 0.49 <0.05

63 bp 0.09 0.44 0.60 <0.05

Table 5.3. -  Spearman's Rank co rre la tion  between experim enta l and theore tica l curvature 
profiles o f TP53 before  and a fte r am ending the theore tica l p ro file  using a poste rio ri 
knowledge. Significant p-values are indicated in red.
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Figure 5.8. - Experimental curvature  profiles fo r TP53 aligned w ith  theore tica l curvature 
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5.2.2.8 Assessing the Peak Shift of Key Curvature Peaks

Ten key peaks were identified in the theoretical profiles as the peaks with the largest 

magnitude of curvature. This was performed for the 42 bp and 63 bp windows of curvature. 

This was performed using the data for Exon 5-9 and the theoretical profiles amended with two 

180° preferential twists (Section 5.2.2.7.). Peaks of curvature that corresponded to the 

theoretical peaks were identified in the experimental profile produced by the FF algorithm.

The 42 bp window of curvature showed a number of similarities between the 

occurrences of peak positions although the magnitude and sometime direction of the peaks 

was different. Nine of the ten key peaks were identified in the experimental profile. The only 

key peak not identified was likely to have merged into one peak in the experimental profile 

(green circle in Figure 5.9.A+C). The average peak shift of the identified peaks between 

prediction and experimental profiles was 1.31 % or 32.75 bp. The magnitude of corresponding 

curvature peak values were significantly different (Wilcoxon Rank Sum, p = <0.00).

The 63 bp window of curvature showed a number of similarities in the occurrence of 

peak positions although the magnitude of the peaks was different. Eight of the ten key peaks 

were identified in the experimental profile. Two key peaks were not identified. One of these 

key peaks was likely to have merged into one peak in the experimental profile (green circle in 

Figure 5.9.B+D). The other peak was missing from the experimental profile. Additionally, there 

was a notably large peak in the experimental profile that was not present within the 

theoretical profile that could have been produced from the merging of multiple peaks (red 

circles in Figure 5.9.B+D). The average peak shift of the eight identified peaks between 

prediction and experimental profiles was 2.25 % or 56.25 bp. The magnitude of corresponding 

curvature peak values were significantly different (Wilcoxon Rank Sum, p = <0.00).
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5.2.2.9 Observations on the Final Curvature Profiles for TP53

The final curvature profiles for TP53 were aligned with exon and intron positions 

(Figure 5.10.). There were fewer peaks in the curvature profile of Exon 5-7 at the 42 bp 

window and fewer observations could be made. Exon 5-7 at a 63 bp window showed gradually 

modulating curvature with the largest peak at the 5' end of the DNA sequence. Exon positions 

in Exon 5-7 at a window size of 42 bp and 63 bp occurred during small peaks in curvature. Exon 

5-7 shared few visual similarities with theoretical profiles (Section 5.2.2.6.) and this provided a 

reason to assume that the FF algorithm had failed to reconstruct the true intrinsic curvature of 

the Exon 5-7 DNA sequence.

The Exon 5-9 curvature profiles were in good agreement with the theoretical profiles 

(Section 5.2.2.7.). Exon 5 exhibited very low curvature (close to the broken red line denoting 

0.0 radians of curvature) at both window sizes. Exon 6 showed a peak in curvature within the 

42 bp profile that was not present within the 63 bp profile. This peak was expected from 

theoretical models but may have been obscured at larger window sizes. Exon 7 occurred 

directly after a large peak in curvature in both window sizes. Exon 8 occurred as a trough in 

curvature in the 42 bp profile, which was in agreement with theoretical models, and during a 

peak in the 63 bp profile. The expected small trough may have been obscured by noise in the 

larger window size profile. Exon 9 was in full agreement with theoretical expectation as it 

appears as a small peak of moderate curvature within both window sizes. A statistical analysis 

of unsigned curvature values of exon positions compared to intron positions indicated that 

exon 5 had significantly reduced curvature than intronic positions at the 63 bp window of 

curvature (Kruskal-Wallis, p = <0.05). This was not the case for other exons or for exon 5 at the 

42 bp window. Exon 5 was the only exon predicted to exhibit significant curvature using 

simulated AFM images (Section 4.3.8.).

Exon 5-9 shared good visual similarity with theoretical curvature profiles (Section 

5.2.2.7.). This similarity increases on the addition of two preferential twists into the theoretical 

profiles. The similarity suggested that the FF algorithm was functioning correctly for this 

molecule and that the De Santis model of curvature was providing a good estimation of 

intrinsic DNA curvature.
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TP53 Exon 5-7 42 bp curvature  w indow . B) TP53 Exon 5-7 63 bp curvature  w indow . C) TP53 
Exon 5-9 42 bp curvature  w indow . D) TP53 Exon 5-9 63 bp curvature  w indow . Exon positions 
are highlighted in red. Curvature is in radians and the d irection  o f curvature  is indicated 
(signed curvature). The position along the p ro file  has been standardised from  0-1 (5' to  3'). The 
42 bp w indow  profiles were sm oothed w ith  a 3 -po in t average filte r.
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5.3 Discussion

5.3.1 The Effects of Image Noise and DNA Molecule Conformational Flexibility on FF

Accuracy

The accuracy of the FF algorithm was tested using simulated images before it was 

applied to real AFM images of TP53. The accuracy of the FF algorithm was initially tested on 

ideal AFM images and then AFM images with the addition of DNA flexibility and image noise 

(Section 5.2.1.1.). The most striking observation was the failure of the FF algorithm at the 21 

bp window of curvature. DNA molecules were completely randomly oriented at the 21 bp 

window for Exon 5-7 (25 % accuracy) and only half were correctly oriented for Exon 5-9. This 

window size of curvature was close to minimum resolution of the images (~18 bp). Low base 

pair window sizes were previously shown to be effected by digitisation of the DNA contour 

(Section 4.3.4.) and curvature measurements were significantly influenced by experimentally 

introduced variation at this window size. These two sources of variation were likely to have 

had a significant impact on the accuracy of the FF algorithm at the 21 bp window size. The 

original authors of the FF algorithm used base pair window sizes close to the maximum 

resolution of the AFM images (Ficarra etal., 2005b). One of the theoretical samples used in the 

study was reported to have an accuracy of only 76.19 %. This low accuracy may have been 

caused by the effects of digitisation.

The FF algorithm at larger base pair windows exhibited improved accuracy in excess of 

87 % (42 bp and 63 bp -  Table 5.1). The FF algorithm correctly oriented 99.92-100.00 % of all 

DNA molecules in simulated images sets that contained inflexible, idealised DNA molecules. 

The addition of sources of DNA flexibility and image noise caused a decrease in the accuracy of 

the FF algorithm at all base pair windows. This was most pronounced in the shorter Exon 5-7 

molecule at a 42 bp window size. Even with the addition of image noise the accuracy of the FF 

algorithm at larger base pair window sizes was greater than the accuracy reported by the 

original authors of the FF algorithm of between 76.19 % - 96.97 % (Ficarra et a!., 2005b). The 

improved accuracy in the present study may be attributed to the poorer resolution of 

simulated images used in the previous study (3.91 and 7.81 nm per pixel in comparison with 

the 2.92 per pixel of this study) and the considerable differences between intrinsic curvature 

profiles. Additionally, the original authors did not consider the potential for variation 

introduced by DNA contour digitisation on angle calculations; instead points were fitted to 

each DNA molecule close to the resolution of the images.
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5.3.2 Evaluation of the Effects of Base Pair Window Size on the Accuracy of the FF

Algorithm

The base pair window size used to calculate curvature had a measurable effect on the 

accuracy of the FF algorithm (Section 5.3.1.). At low (<34 bp) and high (>200 bp) window sizes 

the FF algorithm produced poor results with a large degree of variability upon repetition. The 

window sizes that produced the most accurate reconstruction by the FF algorithm (>85 %) 

were between 31 and 81 bp. It was likely that these base pair window sizes provided the best 

peak-to-background contrast for optimal FF accuracy. At lower base pair window sizes the 

influence of noise and digitisation increased, effectively reducing the ability of the FF algorithm 

to function with any degree of accuracy.

This analysis indicated that there were a number of factors that needed to be 

considered before applying the FF algorithm to real AFM images. Firstly, the choice of pixel 

resolution will influence curvature measurement due to pixilation/digitisation noise. Low pixel 

resolutions may introduce higher levels of DNA contour variance during image processing and 

mask small-scale curvature features that are necessary for accurate orientation by the FF 

algorithm. The second and more important consideration identified was the base pair window 

size at which to calculate comparable curvature angles before application of the FF algorithm.

5.3.3 Selection of a Base Pair Window for Application of the FF Algorithm to Real AFM

Images of TP53

The previously discussed experiments were used as a guideline for selection of an 

appropriate base pair window size to calculate curvature angles before application of the FF 

algorithm to experimental TP53 DNA (Section 5.2.1.). Additionally, the Visual Threshold 

developed in Section 3.2.6.5. was also applied to the experimental AFM molecule to ascertain 

which base pair window sizes were effected by digitisation noise. The window sizes suggested 

by both methods were in excellent agreement (Visual Threshold -  34-80 bp; window size 

experiment -  31-81 bp). This is a further indication that the accuracy of the FF algorithm is 

dependent upon peak-to-background contrast and that the window size over which to 

calculate curvature angle was an important consideration.

5.3.4 Reconstructed Length Measurements of AFM images of TP53

Reconstructed lengths were calculated for both TP53 DNA sequences using the Kulpa 

estimator (Section 5.2.2.2.). Approximately 0.34 nm per base pair was used as a consensus 

length for B-DNA taken from X-ray crystallography experiments (Saenger, 1984). The median 

reconstructed length measurement of 603 nm for TP53 Exon 5-7 slightly underestimated the 

theoretical measurement of B-form DNA of 631 nm by -4.36 %. A similarly small
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underestimation was observed for Exon 5-9 with a theoretical value of 850 nm in comparison 

to the experimental measurement of 840 nm for an underestimation of only -1.20 %. These 

percentage differences were within the experimental boundary of less than -6.9 % previously 

identified for the Kulpa estimator (Rivetti and Codeluppi, 2001). The distribution of the length 

around the median value was higher in the smaller molecule, which was the opposite of the 

trend expected from theoretical measurements (Section 4.2.5.). The variation around the 

median value (standard deviation - Exon 5-7 = 16.17; Exon 5-9 = 12.04) was still comparable to 

the standard deviation values of between 22.4 and 112.7 reported by previous authors (Rivetti 

and Codeluppi, 2001; Scipioni et al., 2002a).

5.3.5 Persistence Length Measurements of TP53

The persistence lengths calculated for TP53 DNA molecules (Exon 5-7,  ̂= 52; Exon 5-9, 

£ = 49) were in good agreement with flexibility reported by other authors of around ~50 nm for 

Mg2+ deposited DNA (Rivetti et al., 1996; Moreno-Herrero et al., 2006; Wiggins et al., 2006; 

Buzio et al., 2012). These results suggested that DNA molecules deposited under these 

experimental conditions were thermodynamically equilibrated within two dimensions before 

immobilisation on the mica surface. This was the intended outcome when the Mg2+ buffer was 

selected for the present study. It allows for the estimation of curvature values from TP53 

molecules under the most minimal of surface interactions.

5.3.6 Identifying Pre-Existing Curvature Trends in TP53 and the Effect of the FF Algorithm

Before the initial application of the FF algorithm pre-existing curvature patterns were 

identified in the unoriented sets of DNA molecules. After application of the FF algorithm the 

curvature profiles that were produced closely resembled the pattern of curvature present in 

the unoriented dataset (Section 5.3.6.). A similar effect had been noticed by previous authors 

using the FF algorithm (Buzio et al., 2012). The authors illustrated that the pre-existing trends 

in the unoriented data led to local minima in the objective function of the FF algorithm (the 

mean column variance). The local minima were reached before the desired global minima. 

These authors produced an example DNA sequence where the FF algorithm failed to produce 

meaningful results.

5.3.7 Amendments to the FF Algorithm

The original authors of the FF algorithm, assumed that DNA molecules deposited on a 

mica surface would be unoriented (Ficarra et al., 2005b). This has been shown to be, at least in 

terms of direction (i.e. up or down on the mica surface) of curvature, to be partially false. For 

example, the thymine rich strand of DNA preferentially binds to inorganic crystal surfaces, such
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as mica (Sampaolese et al., 2002). It is unclear if this is the case in this study. However, there 

were weak but clear trends within the unoriented data. It was assumed that this provided the 

FF algorithm with a 'local minima' to its objective function.

In order to remove pre-existing trends from curvature profiles the orientation of each 

molecule in the analysis was completely randomised before reapplication of the FF algorithm 

(Section 5.2.2.6.). This satisfied the assumption that DNA molecules on a mica surface would 

be randomly oriented. The results were repeated multiple times, aligned and averaged to 

avoid isolated instances of local minima effecting the outcome of the FF algorithm. Assuming 

there was some underlying profile discernible by the FF algorithm it should have been 

identified by this method. The resulting profile, effectively flipping the result of the FF 

algorithm, provided a consensus curvature profile for both Exon 5-7 and Exon 5-9. A similar 

approach has been used by previous authors (Buzio et al., 2012). The approach used by these 

authors was also to randomise before flipping, but to repeat multiple times and select the 

curvature profile that presented the lowest solution to the objective function. This 

represented a major hurdle for easy application of the FF algorithm and may be avoided in 

future studies by using other optimisation algorithms less effected by existing trends.

5.3.8 Comparisons of Curvature Profiles to Theoretical Profiles of TP53

The consensus curvature profile for Exon 5-9 provided an excellent agreement to the 

theoretical prediction (Section 5.2.2.7). The visual comparison was as good as those produced 

by previous studies using the FF algorithm (Ficarra et al., 2005b; Buzio et al., 2012). The 

agreement was improved by introducing two 180° preferential twists to the theoretical profile 

at two positions. The justification for this was detailed in Section 5.2.2.7. and has been used by 

previous researchers (Buzio et al., 2012). It was highly likely that Exon 5-9 adopted a slightly 

different conformation on the surface than that predicted by the Geometric Deposition 

method. The increased agreement between the theory and experimental profile was visible in 

both 42 bp and 63 bp windows of curvature. Both windows had the FF algorithm applied 

separately and produced a similar result. Correlation analysis after amending the theoretical 

curvature profile showed strong significant positive correlation between experimental profile 

and theory (63 bp - Rho = 0.56, p = <0.05). Spearman's correlation coefficient values were not 

as high as the prediction based on simulated AFM images of Rho = ~0.9 (Section 4.2.11.). This 

was likely to be due to increased sources of interference in real AFM images and also the 

reduced accuracy of the FF algorithm. Additionally, exon 5 showed significantly lower 

curvature in Exon 5-9 (Kruskal Wallis, p = <0.05) which was in good agreement with predictions 

made using simulated AFM images (Section 4.2.15.). Overall TP53 Exon 5-9 provided excellent 

agreement with predictions based upon the De Santis dinucleotide wedge model.
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Exon 5-7 exhibited a curvature profile that had low visual similarity to the theoretical 

profile. The general shape of the flipped curvature profile at the 63 bp window of curvature 

was in moderate agreement with the theory with the exception of the region between 0.5 and 

0.7 standardised length. There was only one instance of Exon 5-7 showing significant 

correlation between theoretical and experimental profiles (Table 5.3 -  Amended 42 bp, Rho = 

0.31, p = <0.05). It seemed likely the FF algorithm failed to correctly orient the majority of the 

DNA molecules for Exon 5-7. One explanation may be that Exon 5-7 showed a greater 

underestimation in comparison to theoretical length and may have undergone partial 

condensation or transition to A-DNA (Rivetti and Codeluppi, 2001; Sanchez-Sevilla et al., 2002). 

This may have been facilitated by differences in the surface charge of the mica sheets. 

Alternatively, there may have been a repeated curvature motif in Exon 5-7 that was not 

accounted for by the De Santis dinucleotide wedge model that made it unsuitable for the FF 

algorithm. Unfortunately, due to the nature of the FF algorithm, the true orientation of the 

curvature profile was unknown and a definitive comparison was not possible.

5.3.9 Evaluating the Agreement between Experimental and Theoretical Curvature by Peak

Shift for Exon 5-9

As TP53 Exon 5-9 showed good visual agreement to the theoretical De Santis curvature 

profile the degree of peak shift between the experimental profile and the dinucleotide model 

was evaluated (Section 5.2.2.8.) At a 42 bp window the peak shift was 1.31 % and at a 63 bp 

window the peak shift was 2.25 %. These values were slightly larger than estimations based on 

simulated AFM images of 0.84 % and 1.27 % (Section 4.2.13.). Increases in peak shift 

percentages were expected due to the increased sources of molecule variance and image 

noise in real AFM images in comparison to simulated images.

It should be noted that not all peaks present in the theoretical profile were identified 

in the FF profile. The majority of these peaks can be accounted for by the merging of nearby 

peaks. This also accounts for the large peak introduced by the FF algorithm. The direction of 

the peaks {i.e. positive/negative) was not considered in the peak analysis; only their presence 

or absence. The direction of curvature was dependent on the conformation of the DNA 

molecules on the surface, which was itself dependent on the process of deposition. The 

methods of simulated deposition provided only one estimate of curvature direction as 

discussed more fully in the previous section. The addition or loss of peaks by the FF algorithm 

has been observed by previous authors (Buzio et al., 2012). Experiments using simulated DNA 

molecules have indicated that the FF algorithm is most likely functioning at somewhere below 

~87% accuracy at the two base pair window sizes estimated (Section 5.2.1). This may be
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sufficient to explain some of the discrepancies between the experimental and theoretical 

profiles.

5.3.10 The Problem of Orientation after Flipping

Curvature profiles after application of the amended FF algorithm were aligned to 

provide the best agreement to theoretical profiles generated in Chapter 4. The need for this 

type of orientation has been considered a flaw in the FF algorithm by previous researchers 

(Buzio et al., 2012). This can be avoided by the use of palindromic repeat dimers of the DNA 

tract under investigation (Ficarra et al., 2005b). This created a repeat pattern in the final 

curvature profiles allowing orientation of the regions of resulting curvature profiles. The 

present study required the use of a large DNA molecule in order to cover the entire nucleotide 

sequence that codes for the sequence-specific DNA-binding domain of TP53. This sequence 

would have been too large to image as a palindromic dimers (~5 kb). Although imaging of large 

DNA molecules (>2.5 kb) is possible using AFM, the time taken to collect a sufficiently large 

number of images to perform curvature analysis would have been impractical (Reed et al., 

2007). However, this approach may be suitable for future studies on smaller regions of interest 

in TP53, such as exon positions, or other genes.

There was no suggested final orientation to the output of the FF algorithm. Therefore, 

detailed theoretical models were needed for comparison. These models alone were time- 

consuming and complex to produce. Additionally, their applicability to the results of the FF 

algorithm are limited if the results are sufficiently variable, as seen for TP53 Exon 5-7. The 

need for these models greatly reduces the utility of the FF algorithm to researchers. Finally, 

there is no internal gauge as to the accuracy of the final output of the FF algorithm other than 

visual agreement with theoretical models. Idealised percentage accuracy can be generated for 

the FF algorithm using theoretical images, as has been performed in this study. This should be 

performed as an experiment-by-experiment optimisation.
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5.4 Conclusions

The FF algorithm produced a curvature profile in good agreement with theoretical 

profiles of TP53 Exon 5-9. The results for Exon 5-9 indicated that intrinsic DNA curvature in 

TP53 was accurately predicted by the De Santis model of curvature. Furthermore, the majority 

of predicted peaks were present within the FF reconstructed profile although the magnitude of 

curvature was significantly different. Exon 5 was observed to exhibit significantly reduced 

curvature in comparison to intronic regions as predicted by the De Santis model of curvature. 

The experimental result indicated that there were some disagreements between the simulated 

deposition model and experimental DNA conformation. These results highlighted the 

inaccuracy of methods for simulating the deposition of DNA molecules on a flat surface. The FF 

algorithm was less successful for Exon 5-7, failing to produce a curvature in good agreement 

with theoretical profiles.

This study has identified a number of potential pitfalls when applying the FF algorithm 

to real DNA that had not been discussed by the original authors. The identification of an 

appropriate window over which to calculate curvature has been proven to be extremely 

important for the accurate reconstruction of curvature by the FF algorithm. This effect was 

quantified and could be used as a template for other researchers wishing to use the FF 

algorithm. A simple method of randomisation and repetition was also proposed for profiles 

containing weak curvature trends before application of the FF algorithm.
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CHAPTER 6: ANALYSIS OF INTRINSIC DNA CURVATURE AND
FLEXIBILITY OF EXONS 5 TO 9 OF THE TP53 GENE USING 

STREPTAVIDIN END-LABELLING
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6.1 Introduction

6.1.1 End Labelling of DNA Molecules for Orientation by AFM Analysis

The first reproducible AFM images of naked DNA were published in 1992 (Hansma et 

al., 1992). It was not long before researchers realised the need for the identification of the 

orientation of DNA, a uniform and relatively featureless polymer. The first AFM based attempt 

at end-labelling used a chimeric fusion protein between streptavidin and two immunoglobulin 

G-binding domains of staphylococcal protein A (Murray et al., 1993). Later that year another 

successful example made use of 5 nm colloidal gold spheres as a label for linear DNA molecules 

(Shaiu et al., 1993). These techniques had been adapted from previous research on DNA using 

EM which labelled DNA with an avidin-ferritin-biotin complex (Muzard et al., 1990). Protein 

labelling has also been used to identify structural features such as enzymatic 'nicks' (Murray et 

al., 1993), abasic sites (Sun et al., 2001) and direct haplotyping of DNA sequences by AFM 

(Woolley et al., 2000). One study used dual labelling with different size proteins to identify 

both structural motifs and orientation (Woolley et al., 2000; Sun et al., 2001). AFM analysis 

was used to differentiate between the proteins by width, height or visual analysis. Protein 

labels have been shown to be effective for the study of DNA curvature and flexibility in a 

number of studies (Muzard et al., 1990; Cognet et al., 1999; Marilley et al., 2005). Examples of 

protein end labels used in previous studies are presented in Figure 6.1.
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Figure 6.1. - Example images o f end-labelled DNA taken from  the available lite ra tu re . A) End- 
labelling using a ch im eric fusion p ro te in  between s trep tavid in  and tw o  im m unoglobu lin  G- 
binding dom ains o f staphylococcal p ro te in  A (M urray e t al., 1993). B) End-labelling using 5nm 
collo idal gold spheres bound to  s trep tav id in -b io tin  (Shaiu e t al., 1993). C) End-labelling using a 
s trep tav id in -b io tin  complex (M arilley  e t al., 2005).



6.1.2 Potential Conformational Effects on Local DNA Structure by Streptavidin End-

Labelling

Streptavidin is a tetrameric protein with a high affinity for the vitamin biotin (Weber et 

al., 1989). Biotin can be optionally incorporated into commercially available oligonucleotide 

PCR primers making the production of streptavidin-biotin end-labelled products for AFM 

analysis relatively simple. Some authors have commented that protein labelling could effect 

the DNA localised around the tag (Buzio et al., 2012). This has been observed in one study that 

used streptavidin end-labelling of DNA imaging in air, although the nature and extent of the 

perturbation were not discussed (Marilley et al., 2005). The reported interaction was not 

observed by the authors during liquid AFM imaging. However, this interaction was likely to be 

due to sample preparation methods as numerous authors have not reported any perturbation 

of the local structure of DNA when using streptavidin labelling for curvature or conformational 

analysis (Murray et al., 1993; Rivetti et al., 1996; Woolley et al., 2000; Neish et al., 2002; Seong 

et al., 2002). A study specifically looking at DNA bound to mica under different conditions 

reported that streptavidin did not effect the ability of DNA to equilibrate onto a mica surface 

or have any measurable effect on DNA persistence length (Rivetti et al., 1996). Other authors 

have called it a model ligand for DNA end-labelling (Neish et al., 2002).

6.1.3 Aims and Objectives

A level of variability was observed in the curvature analysis of TP53 by application of 

the FF algorithm in Chapter 5. In order to provide further corroboration of theoretical 

curvature measurements produced in Chapter 4 the following study utilised AFM analysis of 

TP53 PCR products 5' end-labelled with a biotin molecule. The biotin molecules were 

conjugated to streptavidin proteins in order to provide orientation to a suitably large number 

of DNA molecules. Two PCR products were under investigation: one spanning exons 5 to 7 and 

the other exons 5 to 9. Thus oriented using the streptavidin end-label the DNA molecules were 

used to generate intrinsic DNA curvature and flexibility profiles for TP53. The experimental 

results were compared and contrasted with theoretical models that had been previously 

generated from simulated AFM images. An assessment of the curvature profiles and the 

relationship between curvature and exon positions was attempted alongside comparison of 

the two different experimental molecules used.
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6.2 Results

6.2.1 Confirmation of Streptavidin End-Labelling

6.2.1.1 Identification of Streptavidin Binding using a Band Shift Assay.

A fte r incubation o f strep tavid in  w ith  5' b io tiny la ted  TP53 DNA the product was run on 

a 1% agarose gel stained w ith  e th id ium  brom ide (Figure 6.2.). A slight but noticeable band sh ift 

was observed in the  s trep tavid in  labelled PCR product com pared to  the unlabelled. All bands 

occurred w ith in  the expected height range o f 2500 bp.

Streptavidin Bound Unbound

M i------------  ̂ \ i------------ -̂-----

Figure 6.2. - Comparison o f 
s trep tavid in  bound and 
unbound 5' b io tiny la ted  TP53 
Exon 5-9 PCR am plifica tion  
product. Lane M contained 
New England Biolabs 1 Kb 
DNA ladder. Lane 2 and 3 
conta ined 5' b io tinyla ted  
TP53 Exon 5-9 (2500 bp) 
incubated w ith  streptavid in  
overn ight. Lane 4 and 5 
conta ined 5' b io tinyla ted 
TP53 Exon 5-9.
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6.2.1.2 Identification of Streptavidin Binding by Dot Blot Analysis

As a secondary con firm ation  o f the effic iency o f b io tiny la ted  TP53 DNA to  bind free 

strep tavid in  a Dot Blot analysis was perform ed. This was perform ed on the prim ers used in the 

PCR am p lifica tion  o f genom ic DNA as a qua lity  con tro l fo r p rim er b io tiny la tion  (Figure 6.3.) and 

on the fina l PCR product fo r AFM analysis (Figure 6.4.). Strong banding was observed in the 

p rim er lanes. Weak to  in te rm ed ia te  strength banding was observed in the lanes conta in ing 

b io tiny la ted  PCR product. This was in line w ith  expectation as the same w eight to  w eight ratio  

o f p rim er to  PCR p roduct contains a sm aller am ount o f b io tin  molecules.

30 s

60s

120 s

I Figure 6.3. - Dot b lo t o f b io tiny la ted  p rim er DNA. Lane 1 contained 
100 ng o f 5' b io tiny la ted  TP53 Exon 5-9 am plifica tion  product. Lane 2 
conta ined 100 ng o f b io tiny la ted  5' p rim er used in the am p lifica tion  o f 
the DNA product used in Lane 1. Lane 3 contained 100 ng o f a 
negative contro l DNA th a t conta ined no b io tin . Three d iffe ren t 
exposure tim es (30, 60 and 120 s) are shown.
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Figure 6.4. - Dot b lo t o f TP53 PCR product and b io tiny la ted  p rim er 
DNA. Lane 1 contains 5' b io tiny la ted  TP53 Exon 5-7 am p lifica tion  
product. Lane 2 contained the unb io tiny la ted  TP53 Exon 5-7 
am p lifica tion  product. Lane 4 contained the 5' p rim er used in the 
am p lifica tion  o f the PCR product used in Lane 1. Lane 5 contained a 
negative contro l DNA. Each lane contains 250 ng o f DNA.
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6.2.2 Collection of Experimental AFM Images of 5' End-Labelled TP53 DNA

A large num ber o f AFM images were collected o f TP53 DNA labelled w ith  streptavid in  

(examples in Figure 6.5). The final num ber o f DNA contours extracted from  the images was 

1305 fo r Exon 5-7 and 588 fo r  Exon 5-9.

/ v /

187.5 nm

375 nm

S  ̂ i

* •

375 nm 
--------------

Figure 6.5. -  Examples o f TP53 DNA end-labelled w ith  s trep tav id in -b io tin . End labels are 
indicated w ith  w h ite  arrows. An example o f m u ltip le  TP53 m olecules bound to  one 
strep tavid in  molecules is indicated w ith  a red arrow . Scale bars are in nanom etres.
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6.2.3 Removal of Unsuitable DNA Molecules by Z-Height Analysis.

During AFM image processing the Z-height values were recorded for each molecule 

included within TP53 Exon 5-9 and TP53 Exon 5-7 datasets. The values were background 

corrected by fitting and subtracting a 1 degree polynomial. The contour length of each 

molecule was standardised from 0 to 1 by interpolating a linear line between each pixel 

coordinate and selecting a set number of equally spaced points. The mean Z-height at each 

comparable point was calculated (Figure 6.6.A. and Figure 6.6.C.).

To ensure that only labelled molecules were analysed a Z-correction step was

introduced. Z-height at each end of each molecule was compared. The values analysed lay 

within a standardised length of 0-0.05 and 0.95-1.0 (the beginning and end 5 % of the 

molecule) where the streptavidin end-label was observed. The expectation was that the Z- 

values for the labelled end of each molecule would be larger than the unlabelled end. Any 

molecules that were not in line with this expectation were removed from the analysis. For 

TP53 Exon 5-7 a total of 365 (940 molecules remaining) molecules were removed from a set of 

1305 molecules to give an error rate of 27.96 %. For TP53 Exon 5-9 a total of 85 molecules (503 

molecules remaining) were removed from a set of 588 molecules. This gave an error rate of 

14.46 %. The final number of DNA molecules remaining after Z-correction was 940 for TP53

Exon 5-7 and 503 for TP53 Exon 5-9.

The mean Z-height was recalculated (Figure 6.6.B and Figure 6.6.D). It can be observed 

that the Z-height at the unlabelled end (1.0 in standardised notation) was reduced after Z 

correction, as per expectation. However the Exon 5-9 dataset still retained a small peak in 

mean Z-height at the untagged end (Figure 6.6.D. - green square).
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Figure 6.6. - Mean Z-height values at standardised length fo r TP53 Exon 5-7 and Exon 5-9 
molecules. A) Z-heights o f orig ina l dataset fo r TP53 Exon 5-9. B) Z-height o f TP53 Exon 5-9 a fte r 
Z-correction. C) Z-height o f orig inal dataset fo r  TP53 Exon 5-7. D) Z-height o f TP53 Exon 5-9 
a fte r Z-correction. Z-heights were background corrected by subtracting a 1 degree polynom ia l 
and averaged fo r each dataset. The con tour length m easurem ents (x-axis) were standardised 
to  a scale o f 0 to  1. Z-correction was im plem ented by rem oving all m olecules w ith  a greater 
mean Z-height at the untagged end than the  tagged end (i.e. com paring the firs t and last 5% o f 
each molecule). A small increase in Z-height fo r Exon 5-7 remained a fte r Z-correction (green 
square).
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6.2.4 Reconstructed Length Measurements

Reconstructed length measurements were calculated for the datasets after Z- 

correction (Figure 6.7.). TP53 Exon 5-7 exhibited a non-normal distribution before and after log 

transformation (Shapiro-Wilks, p = <0.05). Exon 5-7 had a median contour length value of 563 

nm. TP53 Exon 5-9 exhibited a non-normal before and after log transformation (Shapiro-Wilks, 

p = <0.05). Exon 5-9 had a median value of 767 nm. A summary of the reconstructed length of 

Exon 5-7 and Exon 5-9 can be found in Table 6.1 and Figure 6.7.

There were a number of molecules in the Z-corrected dataset with contour lengths 

that did not lie within the main distribution. It was necessary to remove these outlying 

molecules; this was achieved by selecting out a number of molecules around the median value 

of the distribution for further analysis. The removal of obviously erroneous molecules has been 

performed in numerous studies (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al., 

2005). The relevant statistics of the dataset before and after outlier removal are presented in 

Table 6.1.

Approximately 0.34 nm per base pair was the consensus length for B-DNA taken from 

X-ray crystallography experiments (Saenger, 1984). The median reconstructed length 

measurement of 560 nm for TP53 Exon 5-7 underestimated the theoretical measurement of B- 

DNA of 631 nm (1855 bp x 0.34 nm) by 11.17 %. The same held true for Exon 5-9 with a 

theoretical value of 850 nm compared to the experimental measurement of 771 nm. This was 

a 9.24 % underestimation. A similarly large reduction in reconstructed length in comparison to 

theoretical length for B-DNA was not observed in unlabelled DNA (4.36 %. and 1.20 % for Exon 

5-7 and Exon 5-9 respectively -  Section 5.2.2.2.).
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Figure 6.7. - Boxplot o f reconstructed length m easurem ents fo r  TP53. A) TP53 Exon 5-7. B) 
TP53 Exon 5-9. On each box, the centra l red mark is the median, the edges o f the blue box are 
the 25th and 75th percentiles, the  whiskers extend to  the  m ost extrem e data points not 
considered outliers, and ou tlie rs  are p lo tted  ind iv idua lly as red crosses. Theoretical con tour 
length m easurem ents fo r A-DNA and B-DNA are indicated w ith  a broken line (Saenger, 1984).
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TP53 Exon 5-7 Number Of 
Molecules

Normality Test 
[Shapiro-Wilks,] 

(p-value)

Median (nm) IQR
[Q3-Q1]

(nm)

O rig ina l Data 1305 <0.05 565 82.21

Z-Corrected 940 <0.05 563 83.58

Outliers Removed 800 <0.05 560 72.95

TP53 Exon 5-9

O rig ina l Data 588 <0.05 767 64.66

Z-Corrected 503 <0.05 767 63.46

O utliers Removed 450 <0.05 772 54.66

Table 6.1. - Summary o f the  p roperties o f TP53 Exon 5-7 and TP53 Exon 5-9 datasets at each 
stage o f o u tlie r m olecule iden tifica tion  and removal. The m edian and IQR values were 
generated from  the reconstructed length m easurem ents from  the  appropria te  dataset. The 
Shapiro-W ilks test fo r no rm a lity  was perform ed on reconstructed length m easurem ents from  
the  same datasets. S ignificant p-values are indicated in red.
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6.2.5 Analysis of Correlation between End-Label Z-Height and Reconstructed Length.

There have been reports o f in teraction  betw een the p ro te in  end labels and 

experim enta l DNA sequences (M arilley  et al., 2005). W hile  the  nature o f the in teraction  was 

not exp lic itly  stated by the authors the possibility o f in teraction  was investigated. The 

m axim um  end-label height, taken as the m axim um  Z-value o f the firs t and last 12 data points 

o f each m olecule, was p lo tted  against the reconstructed length o f each m olecule (Figure 6.8.). 

A co rre la tion  analysis was perform ed on each set o f molecules. Exon 5-7 exhib ited no 

co rre la tion  (Spearman's Rank, Rho = -0.05, p = 0.15) and Exon 5-9 exhib ited  significant weak 

negative co rre la tion  (Spearman's Rank , Rho = -0.40, p = <0.05).

Exon 5-7 Exon 5-9

Tag Height (pm) Tag Height (pm)

Figure 6.8. - M axim um  end-label height p lo tted  against con tour length m easurem ents o f DNA 
molecules. A) TP53 Exon 5-7. B) TP53 Exon 5-9.The m axim um  Z-height o f the  firs t 10 % o f a 
m olecule was taken as the m axim um  tag height.
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6.2.6 Persistence Length Measurements of TP53

The persistence length fo r both  Exon 5-7 and Exon 5-9 TP53 datasets was calculated as 

detailed in Section 3.2.4.2. The range o f curvilinear distances investigated was 0-200 nm and 0- 

300nm (Figure 6.9 and Figure 6.10). The persistence length calculated fo r the range o f 0-200 

was J; = 56 and $; = 54 fo r Exons 5-7 and Exons 5-9 respectively. The persistence length 

calculated fo r the  range o f 0-300 was ^ = 61 and ^ = 60 fo r Exons 5-7 and Exons 5-9 

respectively.
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Figure 6.9. - Experim entally de term ined DNA persistence length fo r Exon 5-7 by com parison to  
theore tica l values o f <R2> from  the  WLC m odel. A) RMSE o f fitte d  models generated from  the 
WLC theo ry using a range o f persistence lengths fo r experim ental <R2> values. B) Experimental 
<R2> values (red line) alongside predicted <R2> values (broken blue) fo r the  WLC m odel at a 
persistence length o f 56 nm fo r a range o f curvilinear distances from  0-200 nm. C) RMSE o f 
fitte d  m odels generated from  the WLC theo ry  using a range o f persistence lengths fo r 
experim enta l <R2> values. D) Experimental <R2> values (red line) alongside predicted <R2> 
values (broken blue) fo r the WLC m odel at a persistence length o f 61 nm fo r a range o f 
curv ilinear distances from  0-300 nm.
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Figure 6.10. - Experim entally determ ined DNA persistence length fo r Exon 5-9 by comparison 
to  theore tica l values o f <R2> from  the WLC m odel. A) RMSE o f fitte d  m odels generated from  
the WLC theo ry  using a range o f persistence lengths fo r experim enta l <R2> values. B) 
Experimental <R2> values (red line) alongside predicted <R2> values (broken blue) fo r the  WLC 
model at a persistence length o f 54 nm fo r a range o f curv ilinear distances from  0-200 nm. C) 
RMSE o f f itte d  m odels generated from  the WLC theo ry  using a range o f persistence lengths fo r 
experim enta l <R2> values. D) Experimental <R2> values (red line) alongside predicted <R2> 
values (broken blue) fo r the  WLC m odel at a persistence length o f 60 nm fo r a range o f 
curvilinear distances from  0-300 nm.
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6.2.7 Selection of Base Pair Window for Curvature Calculation

It has previously been shown that at low window sizes there was a measurable effect 

of digitisation on DNA contours (Section 4.2.7.). There were a number of sources of 

information available for the selection of appropriate base pair window sizes. The Visual 

Threshold was applied to TP53 Exon 5-7 and Exon 5-9, detailed and developed in Section

3.2.5.2. This allowed for the visual assessment of curvature calculated over a range of base pair 

windows sizes. This was used to identify the influence of digitisation of the DNA contour on 

curvature angle measurements. The results of the Visual Threshold are shown in Figure 6.11. 

Both Exon 5-7 and Exon 5-9 followed the expected pattern. The minimum curvature window 

sizes were 62 nm for Exon 5-7 and 45 nm for Exon 5-9. The ranges of acceptable base pair 

windows suggested were 38 -1 0 3  bp for Exon 5-7 and 27 - 74 bp for Exon 5-9.

Another method for measuring the influence of digitisation on curvature angle 

calculations was to look at the dataset maximum and minimum angles calculated and the 

number of matching occurrences of the extrema values within the dataset. The results are 

presented in Figure 6.12. It was observable that below a window size of 31 bp there were 

multiple instances of individual angles that matched the dataset extrema. This was more 

pronounced in Exon 5-7. This indicated that at window sizes lower than 31 bp the choice of 

interpolant would have an effect on curvature measurements.

The window sizes of 42 bp and 63 bp were used for further analysis. In some instances 

the window size of 21 bp was included for comparison to previous research. The window sizes 

of 42 and 63 bp lie within experimentally determined optimal ranges. Additionally, these 

window sizes have been shown to provide good curvature peak-to-background contrast in 

theoretical studies of TP53 (Section 4.2.7.).
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Figure 6.11. -  The Visual Threshold applied to  the mean curvature  o f TP53. A) TP53 Exon 5-7 
(m inim a = 62 bp). B) TP53 Exon 5-9 (m inim a = 45 bp). Mean curvature  is p lo tted  as a green 
line, sm oothed (three po in t m oving average) as blue, the  maxima and m inim a values are 
denoted as red circles. The thresho ld  is denoted as a red line, acceptable w indow s o f curvature 
lie below  the thresho ld  line.
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6.2.8 Unsigned Curvature for Exon 5-7

For TP53 Exon 5-7 all base pair window sizes exhibited gradually modulating curvature 

across the molecule with peaks of high curvature at each end (Figure 6.13.) The highest peaks 

of curvature within the main body of the profiles occurred within the intron between exons 6 

and 7 in the 42 bp profile and within the intronic region before exon 5 in the 63 bp profile. 

Exon 5 exhibited the lowest curvature of all the exon regions and the lowest curvature values 

of the corresponding profiles. Exon 5 was bordered by regions of moderate curvature in both 

profiles. Similarly, there was a slight trough in curvature for exon 6 in both profiles, bordered 

by regions of moderate curvature. Exon 7 occurred as a small curvature peak in all profiles.

An analysis of curvature between experimental and theoretical profiles showed no 

significant correlation for either window size (Spearman's Rank: 42 bp - Rho = 0.04, p = 0.71; 

63 bp -  rho = 0.14, p = 0.29). However, there were a number of visually identifiable similarities. 

A peak-trough-peak pattern in the intron between exon 6 and 7 was apparent in the 

experimental and theoretical profiles, but with lesser contrast in the experimental profile. A 

large peak at the 5' end of the 63 bp profile could correspond with an amalgamation of the 

two large peaks observable within the theoretical profile. The theoretical profiles did not 

predict the extent of the large dip in curvature in exon 5 observed within both experimental 

profiles.
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Figure 6.13. - Unsigned curvature profiles fo r TP53 Exon 5-7 (n=800) calculated over a range o f 
base pair w indow s and com parable theore tica l profiles. The base pair w indow  size is shown on 
the le ft hand side o f the  figure. Profiles were sm oothed w ith  a th ree  po in t average filte r. Exon 
positions are highlighted in red in ascending o rder from  le ft to  right. Experimental profiles are 
indicated by a blue line and theore tica l pro files by a green line. Theoretical profiles were 
generated using the De Santis model o f curvature  and the  G eom etric Deposition m ethod. 
Theoretical profiles were rescaled fo r easy visual com parison (z-axis shows theore tica l 
curvature  values w here applicable). The length o f the m olecule was standardised from  zero to  
one (5' to  3').
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6.2.9 Unsigned Curvature for TP53 Exon 5-9

Unsigned curvature profiles of Exon 5-9 are presented in Figure 6.14. All exons, with 

the exception of exon 6, exhibited a trough in local curvature at both window sizes. This was 

especially apparent for exon 6 in both profiles and exon 8 in the 63 bp profile. Exon 6 and exon 

8 respectively bordered by or encompass the two lowest regions of curvature in both profiles. 

Exon 5 had a trough in local curvature towards the 3' end of the exon and the 5' end of the 

exon began with a region of moderate curvature. The same was observable for exon 8. Within 

the 42 bp profile the largest peaks of curvature, excluding the end regions, occurred before 

exon 5 and after exon 9. The 63 bp window size profile exhibited a large peak of curvature 

within the intron between exon 6 and 7.

An analysis of curvature between experimental and theoretical profiles showed no 

significant correlation for either window size (Spearman's Rank: 42 bp - Rho = -0.19, p = 0.04; 

63 bp -  Rho = <0.00, p = 0.98). The experimental and theoretical profiles have some visual 

similarities. The central intron, between exon 6 and exon 7 for both window sizes contained a 

noticeable increase in curvature in both experimental and theoretical profiles. The local region 

bordering exons 8 and 9 was in good agreement with theoretical profiles; two observable 

troughs in curvature encompassed both exons. The large peak of curvature directly preceding 

exon 5 corresponded with a prominent peak in the theoretical profile. Exons 6 and 7 contained 

a peak in experimental profiles which was not present in theoretical profiles. The large peaks 

iof curvature predicted at either end of the sequence were notably missing from all 

(experimental profiles. The large curvature peak may have been included in the large regions of 

curvature at each end of the molecule.
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Figure 6.14. - Unsigned curvature  profiles fo r TP53 Exon 5-9 (n=450) calculated over a range o f 
base pair w indow s and com parable theore tica l profiles. The base pair w indow  size was shown 
on the  le ft hand side o f the figure. Profiles were sm oothed w ith  a three  po in t average filte r. 
Exon positions are h ighlighted in red in ascending o rde r from  le ft to  right. Experimental 
p ro files are ind icated by a blue line and theo re tica l pro files by a green line. Theoretical profiles 
w ere generated using the  De Santis model o f curvature and the  G eom etric Deposition m ethod. 
Theoretical pro files are rescaled fo r easy visual com parison (z-axis shows theore tica l curvature 
values w here applicable). The length o f the m olecule was standardised from  zero to  one (5' to

3').
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6.2.10 Signed Curvature for Exon 5-7

Within the signed curvature profiles of Exon 5-7 it was observed that exon positions 

occurred in, or were bounded by, regions of lower curvature (Figure 6.15.). Exon 5 and 6 

bordered a change in the direction of curvature in all profiles. Exon 5 and Exon 7 consistently 

contained a slight reduction in curvature. Exon 6 occurred at a transition between two curved 

regions with different directions of curvature. The largest peaks of curvature were contained 

within intron regions at both window sizes. The largest peaks of curvature predominated at 

either end of the molecule. However, within the 63 bp profile one of the most extreme peaks 

of curvature occurred between Exon 5 and Exon 6.

An analysis of curvature between experimental and theoretical profiles showed no 

significant correlation for either window size (Spearman's Rank: 42 bp - Rho = 0.17, p = 0.11; 

63 bp -  Rho = 0.24, p = 0.07). The p-value for the 63 bp window was borderline for statistical 

significance and may have indicated a weak positive correlation. There were strong visual 

similarities between the theoretical and experimental profiles at both window sizes (42 and 63 

bp). This visual similarity was apparent within the general shape of the profile, although not in 

the magnitude of the peaks. In addition to this, some of the peaks had opposite direction of 

curvature to those predicted by the theoretical profile. At both window sizes exon 5 and exon 

6 contained a region of negative curvature which was also apparent within the theoretical 

profiles. The intron region between exon 6 and 7 contained peaks of positive curvature in 

experimental and theoretical profiles. The 3' end of the DNA sequence also exhibited 

similarities in shape, although the theoretical profile predicted almost no curvature within this 

region while the experimental profile exhibited a small peak in curvature. The protein labelled 

5' end of the molecule showed the largest differences between experimental and theoretical 

profiles. The trough at around 0.1 standardised length in the theoretical profiles may have 

corresponded with the large peak in the experimental profiles.
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Figure 6.15. - Signed curvature  profiles fo r TP53 Exon 5-7 (n=800) calculated over a range o f 
base pair w indow s and com parable theore tica l profiles. The base pair w indow  size is shown on 
the le ft hand side o f the  figure. Profiles were sm oothed w ith  a th ree  po in t average filte r. Exon 
positions are highlighted in red in ascending o rder from  le ft to  right. Experimental profiles are 
indicated by a blue line and theore tica l profiles by a green line. Theoretical profiles were 
generated using the De Santis m odel o f curvature and the G eom etric Deposition m ethod. 
Theoretical profiles are rescaled fo r  easy visual comparison (z-axis shows theore tica l curvature 
values where applicable). The length o f the  m olecule was standardised from  zero to  one (5' to  

3').
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6.2.11 Signed Curvature for Exon 5-9

Exons 5, 7, 8 and 9 occurred within regions of low curvature relative to the rest of the 

profile (Figure 6.16.). This was the case at each base pair window size. Exon 6 appeared as a 

small peak in curvature at all window sizes. The region between exons 8 and 9 contained a 

large peak in curvature. Exon 9 showed a small localised curvature peak in the 42 bp profile 

that was absent from the 63 bp profile. The largest peak (~0.03 radians) in curvature occurred 

within the intron region between exons 6 and 7. Another large peak in curvature occurred 

between exons 8 and 9. There were two closely spaced peaks of moderate curvature at the 5' 

end of the sequence before exon 5.

An analysis of curvature between experimental and theoretical profiles showed no 

significant correlation for either window size (Spearman's Rank: 42 bp - Rho = 0.05, p=0.60; 63 

bp -  Rho = 0.12, p=0.30). The general shapes of the theoretical and experimental curvature 

profiles showed moderate visual comparability in the occurrence of peaks, if not their direction 

or magnitude. There was slightly less visual agreement at larger window sizes which was 

attributed to a larger shifting of the location of the peaks within the higher window size 

profile. The region containing exon 5 and exon 6 and the region containing and bordering exon 

8 were comparable between experimental and theoretical profiles. The intron region between 

exon 6 and exon 7 showed dissimilarity to the theoretical profile.
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Figure 6.16. - Signed curvature  profiles fo r TP53 Exon 5-9 (n=800) calculated over a range o f 
base pair w indow s and com parable theore tica l profiles. The base pair w indow  size is shown on 
the le ft hand side o f the figure. Profiles were sm oothed w ith  a th ree  po in t average filte r. Exon 
positions are highlighted in red in ascending o rder from  le ft to  right. Experimental profiles are 
indicated by a blue line and theore tica l profiles by a green line. Theoretical profiles were 
generated using the De Santis m odel o f curvature  and the Geom etric Deposition m ethod. 
Theoretical profiles are rescaled fo r easy visual comparison (z-axis shows theore tica l curvature 
values where applicable). The length o f the  m olecule was standardised from  zero to  one (5' to  

3').
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6.2.12 Comparison of Curvature and Flexibility Profiles between Exon 5-7 and Exon 5-9

The curvature  profiles generated in Section 6.2.8 - 6.2.11. were aligned. The data 

points o f Exon 5-9 th a t corresponded to  the sequence in Exon 5-7 were compared using a 

Spearman's Rank co rre la tion  coe ffic ien t at 21bp, 42 bp and 63 bp w indow  sizes. The results o f 

the corre la tion  analysis are presented in Table 6.2. The aligned profiles are presented fo r visual 

analysis in Figure 6.17. None o f the aligned curvature pro files had a sign ificant corre la tion  

using the Spearman's co rre la tion  coeffic ient. Visually there  was little  s im ila rity  between 

profiles. This was a ttr ibu ted  to  the sh ift in localisation o f key peaks. Even a small am ount o f 

peak sh ift w ou ld  have reduced the  po in t-to -po in t com parab ility  o f the profiles and made the 

Spearman's Rank corre la tion  coeffic ien t unsuitable fo r statistical comparisons.

Unsigned
Curvature

Signed
Curvature

Window Size (bp) RHO P-Value RHO P-Value

21 0.08 0.38 <0.00 0.97

42 0.07 0.55 0.05 0.63

63 0.11 0.40 0.08 0.56

Table 6.2. - Summary o f the Spearman's Rank corre la tion  coeffic ient and associated P-values 
fo r  tw o  experim enta l TP53 molecules. The curvature values across a range o f base pair w indow  
sizes were compared fo r TP53 Exon 5-7 (1855 bp) and TP53 Exon 5-9 (2500 bp). The 
appropria te  num ber o f data points were selected from  the exon 5 end o f the  TP53 Exon 5-9 
dataset and aligned w ith  the TP53 5-7 data.
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6.2.13 Analysis of Flexibility in TP53

Flexibility Profiles were calculated for 21, 42 and 63 bp windows sizes for both Exon 5- 

7 and Exon 5-9 (Figure 6.18). The sections of the Exon 5-9 profile that corresponded to the 

Exon 5-7 profiles were aligned. A correlation analysis showed no significant correlation 

(Spearman's Rank, 42 bp - Rho = 0.11, p = 0.32; 63 bp - Rho = 0.16, p = 0.22).

The 42 bp profiles indicated that the intronic region between exon 6 and 7 contained a 

large moderate degree of flexibility. Exons 5 and 6 both showed mixed regions of moderate to 

low local flexibility in both Exon 5-7 and Exon 5-9 profiles. The border of exon 6 contained the 

lowest flexibility value in either profile. Exon 7 showed a local trough in the Exon 5-9 profile 

which was in disagreement with the peak displayed in the Exon 5-7 profile. Notably within the 

Exon 5-9 profile all exons occurred in regions of low flexibility. Exons 6 and 8 displayed the 

lowest flexibility relative to the rest of the Exon 5-9 profile.

The 63 bp profile for Exon 5-7 displayed a large region of flexibility at the 5' end of the 

profile. This was in disagreement with the Exon 5-9 profile which displayed a reduction in 

flexibility. The Exon 5-7 profile displayed only one notable region of reduced flexibility in exon 

5. A small local dip occurred during exon 6; however this was no larger than other dips in 

flexibility of surrounding regions. The Exon 5-9 profile was more heterogeneous. The central 

region encompassing the intronic region between exons 6 and 7, exon 7 itself and continuing 

up to and immediately preceding exon 8 showed the largest flexibility. The lowest regions of 

curvature occurred immediately before exon 5 and following exon 6. Exons 6, 8 and 9 

displayed small local reductions in flexibility.

The general flexibility trend across base pair windows favoured low flexibility in exon 

positions. This was evident to varying degrees across the profiles. The best agreement 

between the profiles occurred at a window size of 42 bp. This window size indicated that exons 

5 and 6 display reduced local flexibility of which exon 6 was particularly extreme. Both exons 8 

and 9 also displayed lower curvature in the 42 bp and 63 bp profiles. Exon 7 displayed a less 

consistent pattern and there was little consensus between the numerous profiles. The intronic 

regions between exon 6 and 7 contained most of the flexibility peaks in all profiles.
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6.2.14 Estimation of Experimental Peak Shift of Key Peaks

Ten key curvature peaks were identified in the theoretical profiles. Key peaks were 

defined as the peaks with maximum curvature within the theoretical profile. This was 

performed using the data for Exon 5-9 at a 63 bp window of curvature for signed and unsigned 

curvature profiles as this showed the most visually identifiable peaks (Figure 6.19.). The 

profiles were smoothed using a three point average filter before peak identification.

Within the signed theoretical curvature profile of Exon 5-9 nine key peaks were 

identified. Seven peaks within the experimental profile occurred at comparable locations. Two 

key peaks were missing from the experimental profile (Figure 6.19. - green circles). The mean 

peak shift calculated for the remaining peaks was 3.26 % or 81.37 bp. The largest individual 

peak shift was 8.86 % or 221.51 bp. The distribution of the magnitude of curvature of the 

matched peaks was significantly different between the experimental and theoretical (Wilcoxon 

signed-rank, p = <0.05).

Within the unsigned theoretical curvature profile ten key peaks were identified. The 

experimental profile contained nine peaks that corresponded to the location of the key peaks 

(Figure 6.19 - green circles). The average peak shift calculated for the remaining peaks was 

3.51 % or 87.83 bp. The largest individual peak shift was 8.86 % or 221.52 bp. The distribution 

of the magnitude of curvature of the matched peaks was significantly different between the 

experimental and theoretical (Wilcoxon signed-rank test, p= <0.05).
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6.2.15 Analysis of Curvature within Exon and Intron Regions

The curvature values that corresponded to exon base pair positions as designated by 

the IARC database were statistically compared to intronic positions (Hernandez-Boussard et 

al., 1999). The distribution of curvature was mostly non-normal and was analysed using the 

non-parametric Kruskal-Wallis test. Three windows of curvature were analysed: 21 bp, 42 bp 

and 63 bp (Table 6.3.).

Exon 5 of TP53 Exon 5-7 had significantly lower unsigned curvature than intronic 

regions at base pair window sizes of 42 and 63 bp. Exon 5 of TP53 Exon 5-7 exhibited the 

lowest median curvature and exon 7 exhibited the largest. None of the signed curvature values 

of exon positions produced a significant result. For TP53 Exon 5-9 none of the individual exons 

showed significant difference from intronic DNA in either signed or unsigned curvature profiles 

(Table 6.4).

The pooled curvature and flexibility of exon positions was compared to intronic 

curvature (Table 6.5.). Exon positions exhibited significant differences in their unsigned 

curvature and flexibility measurements at window sizes of 42 bp and 63 bp in Exon 5-7. 

Similarly, significant results were observed in unsigned curvature and flexibility profiles at a 

window size of 42 bp for Exon 5-9. The occurrence of significant differences in both unsigned 

curvature and flexibility for the same window size was not unexpected as they were related 

measures.
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Unsigned Curvature

Bose Pair W indow  (bp) Exon 5 Exon 6 Exon 7 Intron

21 bp Num ber o f Sample Points 16 10 10 -

M edian Curvature (rads) 0.29 0.29 0.29 0.29

Kruskal-W allis (p) 0.41 0.17 0.92 -

42 bp N um ber o f Sample Points 8 5 5 -

M edian Curvature (rads) 0.27 0.27 0.28 0.28

Kruskal-W allis (p) <0.05 0.19 0.63 -

63 bp N um ber o f  Sample Points 6 3 3 -

M edian Curvature (rads) 0.26 0.27 0.28 0.27

Kruskal-W allis (p) <0.05 0.22 0.41 -

Signed Curvature

Bose Pair W indow  (bp) Exon 5 Exon 6 Exon 7 Intron

21 bp N um ber o f  Sample Points 16 10 10 -

M edian Curvature (rads) -0.01 0.00 -0.01 -0.00

Kruskal-W allis (p) 0.23 0.63 0.29 -

42 bp N um ber o f  Sample Points 8 5 5 -

M edian Curvature (rads) -0.01 0.00 -0.01 0.00

Kruskal-W allis (p) 0.07 0.60 0.24 -

63 bp N um ber o f Sample Points 6 3 3 -

M edian Curvature (rads) -0.01 0.01 -0.02 0.00

Kruskal-W allis (p) 0.11 0.40 0.41 -

Table 6.3. - Summary o f m easurem ents made in comparisons between curvature 
m easurem ents o f exon positions and in tron  positions fo r TP53 Exon 5-7. The d is tribu tion  o f 
data points was non-norm al and not size matched; a Kruskal-W allis test was used to  test fo r 
significant d ifferences betw een median values. Significant p-values are highlighted in red.
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Unsigned
Curvature

Base Pair 
Window (bp)

Exon 5 Exon 6 Exon 7 Exon 8 Exon 9 Intron

21 bp Number o f Sample 
Points

18 11 10 13 6 “

Median Curvature 
(rads)

0.28 0.27 0.29 0.29 0.28 0.28

Kruskal-Wallis (p) 0.47 0.09 0.16 0.05 0.44 “

42 bp Number o f Sample 
Points

8 6 6 6 3 "

Median Curvature 
(rads)

0.26 0.25 0.26 0.26 0.26 0.26

Kruskal-Wallis (p) 0.47 0.26 0.78 0.09 0.29 “

63 bp Number o f Sample 
Points

6 3 3 4 2 “

Median Curvature 
(rads)

0.25 0.26 0.25 0.25 0.25 0.25

Kruskal-Wallis (p) 0.71 1.00 0.30 0.05 0.63 “

Signed
Curvature

Base Pair 
Window (bp)

Exon 5 Exon 6 Exon 7 Exon 8 Exon 9 Intron

21 bp Number o f Sample 
Points

18 11 10 13 6

Median Curvature 
(rads)

-0.00 0.01 0.00 0.00 0.01 -0.00

Kruskal-Wallis (p) 0.74 0.53 0.90 0.92 0.34

42 bp Number o f Sample 
Points

8 6 6 6 3 “

Median Curvature 
(rads)

-0.00 <0.00 <0.00 -0.00 0.01 0.00

Kruskal-Wallis (p) 0.763 0.473 0.958 0.804 0.695 “

63 bp Number o f Sample 
Points

6 3 3 4 2 ~

Median Curvature 
(rads)

0.01 0.01 0.01 0.00 0.00 0.00

Kruskal-Wallis (p) 0.37 0.28 0.61 0.96 0.68 ~

Table 6.4. - Summary of measurements made in comparisons between curvature 
measurements of exon positions and intron positions for TP53 Exon 5-9 DNA molecules. The 
distribution of data points was non-normal and not size matched; a Kruskal-Wallis test was 
used to test for significant differences between median values.
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Kruskal-Wallis (p-value)

Exon 5-7 Window Size Unsigned

Curvature

Signed Curvature Flexibility

21 bp 0.25 0.30 0.50

42 bp <0.05 0.15 <0.05

63 bp <0.05 0.28 <0.05

Exon 5-9 Window Size Unsigned

Curvature

Signed Curvature Flexibility

21 bp 0.35 0.43 0.44

42 bp <0.05 0.67 <0.05

63 bp 0.11 0.35 0.58

Table 6.5. - Summary o f the Kruskal-W allis tes t applied to  the  pooled curvature and fle x ib ility  
o f exon positions to  the pooled curvature  and fle x ib ility  o f in tron  positions. The d is tribu tion  o f 
data points was non-norm al and no t size m atched; a Kruskal-Wallis test was used to  test fo r 
significant d ifferences betw een m edian values. Significant p-values are highlighted in red.
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6.3 Discussion

Experimental intrinsic DNA curvature profiles show little statistical similarity to 

theoretical profiles previous generated in Chapter 4. However, there is a moderate degree of 

visual similarity between the profiles which is more exaggerated in signed curvature profiles. 

This visual similarity is limited to the positional occurrence of peaks rather than the direction 

or magnitude of curvature. Pooled exon positions within TP53 DNA exhibited significantly 

lower curvature and flexibility than intron positions. This was particularly prevalent within 

particular exon 5. This is in good agreement with theoretical prediction of curvature from 

simulated DNA images (Chapter 4). The relevance and significance of these finding is discussed 

in more depth in the sections below.

6.3.1 Visual Identification of Streptavidin End Labelling

The quality of the end-label biotin incorporated into the PCR primer was checked by 

dot blot analysis and the final product by band shift assay (Sections 6.2.1.1. and Section

6.2.1.2.). The small band shift was similar to previously reported results (Seong et al., 2002). 

end-labelled TP53 DNA produced a number of molecules in AFM with clearly identifiable 5' 

labels (Figure 6.5.). There were a number of molecules that either lacked end-labels or in 

which identification of the end-label was problematic. Additionally, streptavidin has four 

available binding sites for biotin which led to the imaging of DNA molecules bound together as 

dimers, trimers and tetramers [e.g. Figure 6.5. -  red arrow). This necessitated the processing 

of multiple images in order to collect sufficient molecules for curvature analysis. The use of 

larger streptavidin fusion proteins would improve visual label identification in future studies 

(Rivetti et al., 1996). The ideal end-label would be a monomeric avidin fusion protein (Sun et 

al.t 2001). This would present an improvement for image processing efficiency over the current 

method as it would provide both a one-to-one molecule binding ratio and a more easily 

identifiable tag. An example of this type of protein label has been used as a probe for abasic 

sites in DNA molecules (Sun et al., 2001). Additionally, optimisation of the streptavidin to DNA 

ratio has previously achieved end-labelling efficiencies of greater than 90 % (Seong et al., 

2002).

6.3.2 Height of DNA and Streptavidin End-Labelling

The streptavidin end-label was clearly identifiable in the Z-height measurements of 

DNA molecules (Section 6.2.3.). Previous authors have reported variable average height values 

for streptavidin imaged by AFM ranging from 0.61 nm (Seong et al., 2002), 1.7 nm (Woolley et 

al., 2000) and 2.31 nm (Neish et al., 2002). The average height of the streptavidin end-label 

investigated in this study was ~0.725 nm which is within the range of values reported by
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previous studies. The height of DNA, ~2 nm, was measured from X-ray experiments (Saenger, 

1984). AFM measurements of the height of DNA have been universally lower than the 

expected value. The heights measured vary between 0.7 (Moreno-Herrero et al., 2003) and

1.28 nm (Yang et al., 2007). The present study observed a DNA height of 350-475 nm. This was 

lower than the values reported by other authors. This was not considered a cause for concern 

as the variability of AFM height measurements of soft matter, such as DNA or proteins, has 

been well reported (Yang et al., 2007). This variability in height measurements has been 

attributed to a number of factors including humidity (Thundat, 1992), tip size, tip loading force, 

salt deposition, electrostatic attraction between the molecule and the substrate (Yang et al., 

2007), cantilever oscillation frequency and tip adhesion to the sample (Noort van et al., 1997). 

Another consideration after image collection was the amount of plane fitting used to produce 

a flat AFM image. The plane fitting used in this study was slightly more rigorous than typically 

used in image processing studies of AFM; two passes of flattening were applied to produce the 

flattest possible images for analysis. This did not negatively impact on visual end-label 

identification.

6.3.3 Post-Image Processing Identification of Unsuitable DNA Molecules

Any molecules that had a larger Z-height at the unlabelled 3' end in comparison to the 

5' end-label were removed from the analysis (Section 6.2.3.). This ensured that only correctly 

labelled DNA molecules remained for further analysis. After Z-correction there remained a 

small Z-height increase in the unlabelled end of the Exon 5-7 dataset. This could have been due 

to a number of factors e.g. the tip may have picked up a small amount of experimental DNA 

causing the 'sticky' free end of the molecule to bind to the tip and appear larger than it was, 

there could be non-specific binding of streptavidin, unbound streptavidin or local 'bunching' of 

the DNA. Alternatively, it could have been due to tip-DNA interactions caused by the oscillation 

frequency of the cantilever (Noort van et al., 1997). The potential for a small amount of 

incorrectly orientated molecules to have been present after Z-correction has been considered 

during the analysis.

6.3.4 Evaluation of Local Streptavidin-DNA Interactions

An unspecified form of DNA-streptavidin interaction has been reported by a previous 

study (Marilley et al., 2005). Other studies have not observed any local interaction between 

DNA and streptavidin (Murray et al., 1993; Rivetti et al., 1996; Woolley et al., 2000; Neish et 

al., 2002; Seong et al., 2002). In order to identify whether the streptavidin was binding local 

DNA or obscuring DNA by being localised on top of a DNA strand, a correlation analysis was 

performed between the DNA length and the streptavidin end-label height (Section 6.2.5.). A 

similar approach has been used by other authors to assess protein-DNA interactions (Woolley
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et al., 2000). Increased streptavidin label height correlated weakly with decreased DNA 

contour length in the Exon 5-9 dataset. This may have impacted on both the curvature 

measurements of DNA at the site of the streptavidin label and on the selection of comparable 

points across multiple molecules. The implications of this were considered during further 

analysis.

6.3.5 Reconstructed Length Measurements of TP53

The DNA contour length was calculated for both DNA molecules, Exon 5-7 and Exon 5- 

9 (Table 6.1.). A number of obvious outliers were observed. These were removed before 

further analysis. These molecules represented broken DNA fragments, DNA molecules bound 

end-to-end or otherwise erroneous conformations. The removal of obvious outliers has been 

performed in other studies (Scipioni et al., 2002a; Ficarra et al., 2005b; Marek et al., 2005).

The distributions of DNA contour lengths were observed to be non-normally 

distributed so non-parametric descriptors and statistical tests were used. This was contrary to 

other studies that typically use the mean and standard deviation. Parametric equivalents have 

been included for comparison where they are appropriate. The median contour lengths after 

outlier removal were lower than expectations for B-DNA. These produced underestimations of

11.17 % and 9.24 % for Exon 5-7 and Exon 5-9 respectively. The estimate of deviation from the 

theoretical value for the Kulpa estimator was tested to be effectively nil for simulated DNA 

molecules (Section 4.2.5.). However, DNA contour lengths reported in AFM studies of DNA are 

typically lower than the expected value for B-DNA. Examples include underestimations of 6.9 % 

using the Kulpa estimator in a Mg2* buffer (Rivetti and Codeluppi, 2001), 8 % on polylysine 

coated mica (Van Noort et al., 2004) and both 4.4 % and 12.13 % for DNA in a Ni2* buffer 

(Lysetska et al., 2002; Sanchez-Sevilla et al., 2002). The underestimation in this study was only 

slightly lower than other reported contour lengths. The variation observed between 

streptavidin labelled and unlabelled DNA in this study maybe indicative of changes in the 

electrostatic potential of the mica surface, minute variations in the buffer conditions or slight 

interaction with the streptavidin end-label.

The contour length showed IQRs of 11.58 % and 6.35 %. In order for comparison to the 

work of previous authors the standard deviations of the distributions were calculated. The 

standard deviations were 7.21 % and 4.30 % for Exon 5-7 and Exon 5-9 respectively. The 

increased variability within the Exon 5-7 dataset may have partially contributed to its lower 

median length estimate. Similar standard deviations (6 %) have had low or negligible effects on 

curvature measurements by previous authors (Scipioni et al., 2002a).
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6.3.6 DNA Condensation or a Partial B- to A-Form DNA Transition

The reduction of contour length on adsorption to a surface has been variously 

attributed to a partial transformation of the DNA from B- to A-form on the mica surface 

(Rivetti and Codeluppi, 2001) and condensation due to interactions with the cation loaded 

surface (Sanchez-Sevilla et al., 2002). A-form is likely to be approximately 30 % shorter than B- 

DNA of the same length (Ficarra et al., 2005b). An underestimate of 9-11 % was observed in 

this study and may have been indicative of a partial transition. The expected length estimates 

have been included alongside the length distribution in Figure 6.7. The propensity to transition 

between structural forms is sequence dependent (Basham et al., 1995; Ivanov and 

Minchenkova, 1995). During a typical experiment the length of DNA is considered to be 

uniform along each DNA molecule (Buzio et al., 2012). Assuming a structural transition had 

occurred then the length of each base pair would no longer be uniform. The effect on the 

resulting curvature profiles would be a widening of peaks of curvature and possibly a shifting 

of positions of curvature peaks. There are no models currently available to simulate this effect 

for comparison. A length estimation method that considered both contour length and contour 

height when calculating the reconstructed length of a DNA molecule has been recently 

published and may account for some of the length variation observed in this experiment (Buzio 

et al., 2012).

Alternatively, the reduction in length observed may have been due to local surface 

interactions (Sanchez-Sevilla et al., 2002), the systematic underestimation by the digitised 

contour length estimator or a combination of both factors. It was not possible to rule out 

interaction with the streptavidin label as a contributing factor to the length underestimation as 

weak interaction was observed with Exon 5-9 (Section 6.2.5). The length reduction observed 

may be indicative of streptavidin-DNA interaction on or near the 5' end label. Alternatively, 

variations in the buffer or surface conditions could have contributed to the observed contour 

length variation.

6.3.7 Persistence Length of End-Labelled TP53

The persistence length of TP53 for a contour length range of 0-300 was  ̂= 61 and £ = 

60 for Exons 5-7 and Exons 5-9 respectively (Section 6.2.6.). This is higher than often cited ~50 

nm persistence length for B-form DNA using a Mg2+ buffer (Rivetti et al., 1996). However, 

considerable deviation from this consensus value has been reported by previous studies; for 

example, persistence lengths have been reported of 55 nm (Van Noort et al., 2004), 56 nm 

(Podesta et al., 2005), 42 nm (Marek et al., 2005) and as low as 36 nm (Lysetska et al., 2002). 

These previous studies used buffers containing the same cation, Mg2+. However the previous 

studies had different salt concentrations, which is likely to contribute to the variations in
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measured DNA persistence length (Rivetti et a i,  1996). In comparison to these previous 

studies it seems that TP53 in this study was slightly more rigid than the expectation for B-DNA. 

However, when considering a contour length range of 0-200 the persistence length values 

were  ̂ = 56 and £ = 54 for Exons 5-7 and Exons 5-9 respectively. These values are in better 

agreement with the consensus persistence length value of B-DNA. A central region of high 

curvature causing an overall decrease in the flexibility of the polymer may account for the 

observed persistence length, such as that predicted by theoretical curvature profiles (Section 

4.2.8.). Other alternative explanations could be put forward, such as surface interactions 

causing modification to the typical conformation of the DNA molecules or a partial B- to A-DNA 

transition caused by dehydration (Charney et a i,  1991).

As a note of interest, some other authors have observed a systematic decrease in <R2> 

measurements above ~250-300 nm (Rivetti et a i, 1998; Moreno-Herrero et a i, 2006; Buzio et 

a i,  2012). This was not observed in either TP53 sequence. The authors that observed the 

decrease in <R2>at larger curvilinear distances used DNA sequences either constructed with in- 

phase A-tracts (Rivetti et a i, 1998) or that contained hyperperiodicity (Moreno-Herrero et a i, 

2006). The decrease in <R2> was considered the signature of intrinsic curvature that forced the 

DNA to assume a more compact structure than would be readily assumed by linear DNA of the 

same length. This does not seem to be the case with the experimental TP53 molecules. 

Overall, the persistence length of the end-labelled DNA indicated that samples were well 

equilibrated on the mica. The binding observed may have been a little stronger than was 

expected for a weak cationic buffer (Rivetti et a i, 1996). This stronger binding may have been 

due to unexpected variation in the charge of the mica or the concentration of the binding 

buffer.

6.3.8 Selection of a Window of Curvature for Curvature Analysis

It has previously been shown that the effect of digitisation of the DNA contour has a 

measurable effect on curvature angles at low base pair windows (Section 3.2.6.3.). The Visual 

Threshold, developed in Section 3.2.6.5. was applied to TP53 Exon 5-7 and Exon 5-9 (Section 

6.2.7.). This analysis method suggested window sizes for both molecules were in good 

agreement; 38-103 bp for Exon 5-7 and 27-74 bp for Exon 5-9. The angles calculated from the 

suggested ranges should have been free of the effects of digitisation. As corroboration other 

checks were also applied. The maximum angle calculated at a number of window sizes was 

identified alongside the numbers of individual angles that matched the appropriate maxima 

(Figure 6.12.). It is observable that below a window size of 31 bp there were multiple individual 

angles that match the dataset extrema. Curvature profiles produced from base pair windows 

below this value risked introducing variation due to effects of DNA contour digitisation.
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The base pair window sizes of 42 bp and 63 bp lay within the experimentally 

determined optimal ranges and were used for the analysis that followed. These window sizes 

had previously provided good peak to background contrast for TP53 (Section 4.2.6.). These 

window sizes were multiples of one helical turn (10.5 bp in B-DNA) and so could be discussed 

in terms of a biologically relevant measure.

6.3.9 Curvature Analysis of TP53

Both signed and unsigned curvature profiles were produced for Exon 5-7 and Exon 5-9 

and compared to theoretical profiles. Although the experiment included no method for 

determining the direction of curvature i.e. whether a molecule was up or down on the mica. 

However, directionality was observed in the experimental profiles. This was likely due to the 

thymine rich strand of DNA preferentially binding to the mica surface (Sampaolese et al., 

2002). The direction of the curvature was aligned with the experimental profiles to give the 

best visual similarity.

6.3.9.1 Unsigned Curvature Profiles of TP53 Exon 5-7

The only exon that was expected to produce a statistically significant reduction in 

curvature was exon 5 (Section 4.2.15.). This proved to be the case for the Exon 5-7 sample 

which showed a visible trough within the curvature profile corresponding to the region 

containing exon 5 (Section 6.2.8. + 6.2.15.). Exon 6 was expected to show low curvature and 

exon 7 a small peak. This pattern was observed in the curvature profile for Exon 5-7. The 

curvature in exon 6 and 7 was not significantly different from intronic regions, in line with the 

expectation from simulated images.

There was no significant correlation between the curvature profiles and corresponding 

theoretical profiles (Section 6.2.8.). There were some visual similarities between the 

experimental and theoretical profiles, notably large regions of curvature in the intron between 

exons 6 and 7 and a large peak in curvature at the 5' end of the 63 bp window of curvature. 

This may indicate that although there was no statistically significant correlation between 

experimental and theoretical profiles this may be due to peak shift. A small amount of peak 

shift would have reduced the effectiveness of the correlation analysis by removing the 

assumption of point-to-point comparability between experimental and theoretical profiles.

6.3.9.2 Unsigned Curvature Profiles of TP53 Exon 5-9

The expectation from theoretical studies was that all exons in the experimental 

molecules would exhibit a local reduction in curvature, with perhaps the exception of exon 7. 

The experimental Exon 5-9 profiles exhibited dips in curvature at all exons with the exception
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of exon 6 which bordered a region of low curvature (Section 6.2.9.). The curvature values 

corresponding to exon positions were not significantly different from intronic curvature values 

at either window size (Section 6.2.15.). There was no significant correlation between the 

curvature profiles and corresponding theoretical profiles (Section 6.2.9.). There were some 

visual similarities between the experimental and theoretical profiles, such as the 

aforementioned dips in curvature at exon positions, peaks of curvature in the intron between 

exon 6 and exon 7 and the occurrence of a peak in curvature immediately before exon 5. The 

working hypothesis for this study was that exons would exhibit reduced curvature with respect 

to intron positions. This seemed to be true visually; however, it was not statistically proven.

6.3.9.3 Signed Curvature Profiles of TP53 Exon 5-7

Exon 5-7 showed good visual agreement with signed theoretical profiles of TP53. The 

major regions of positive and negative curvature were present in both profiles and follow 

similar patterns (Section 6.2.10.). The exon positions showed low levels of curvature or 

bordered regions of low curvature. The largest curvature peaks occur in intron regions, in line 

with the expectation. Interestingly, there was a small peak of curvature between exon 5 and 6 

that was not present in the unsigned profiles. The cause of this peak was unknown and the 

peak was not observed to such an obvious degree in Exon 5-9. This peak may have been 

produced by the inclusion of erroneously oriented molecules (Section 6.2.3.) or may be a 

region of curvature that was not predicted by the De Santis dinucleotide wedge model.

The 5' end region exhibited the least visual similarity. This may have been caused by 

the presence of the streptavidin end label, either through weak local interactions or the 

inability of image processing software to correctly trace a straight line through a circular 

streptavidin molecule. Correlation between experimental and theoretical profiles was not 

significant (Section 6.2.10.). However, the 63 bp window produced a p-value (Spearman's 

Rank: Rho = 0.24, p = 0.07) which was borderline, perhaps indicating that with a smaller 

amount of variation the visible similarities would also have been statistically significant.

6.3.9.4 Signed Curvature Profiles of Exon 5-9

Exon 5-9 showed good visual agreement with signed theoretical profiles of TP53. The 

major regions of positive and negative curvature were present in both profiles and followed 

similar patterns (Section 6.2.11.). The exon positions showed low levels of curvature or 

bordered regions of low curvature with the exception of exon 6 which occurred at a small 

peak. The largest peaks of curvature occurred in intronic regions. These results were in good 

agreement with theoretical predictions. The region with the least visual similarity was the 

central intronic region, between exons 6 and 7. Statistical correlation between experimental
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and theoretical profiles was not significant (Section 6.2.11). It seems likely that there was 

sufficient variation between curvature profiles to limit the applicability of correlation tests, but 

that the profiles still retained some visually identifiable trends.

6.3.10 Comparability of Profiles between Experiments

The main objective for analysing two overlapping DNA molecules of TP53 was to 

evaluate the reproducibility of AFM based curvature analysis. Experimental profiles were 

compared with an aim to assess this (Section 6.2.12.). The correlation analysis for comparable 

sections of each molecule showed no significant correlation. Visually there was little similarity 

between the profiles. This would indicate that there was a considerable degree of variability 

between the curvature profiles resulting from multiple experiments.

6.3.11 Flexibility Profiles

Exon 7 appeared to be the most flexible exon (Section 6.2.13). Exons 8 and 9 appeared 

to be the least flexible. Exon 5 was observed to have regions of moderate flexibility and also 

regions of low flexibility across multiple profiles. The same was observed for Exon 6, which was 

variably the least flexible exon or occurred immediately before a region of low flexibility. The 

region where least agreement was observed between the profiles was the site of 5' end label. 

This variation in the observed flexibility may have been caused by the weak protein-DNA 

interaction observed in the Exon 5-9 sample (Section 6.2.5.).

6.3.12 The Curvature of Exons in TP53

The statistical analysis of curvature showed that exon 5 exhibited significantly reduced 

curvature. This is the same trend predicted from simulated AFM images of TP53. The other 

profiles did not produce any statistically significant differences from intronic positions. The 

major trend within curvature profiles was that the majority of exons had reduced curvature in 

comparison to the surrounding regions. Exon 5 had greatly reduced curvature in all profiles, 

signed and unsigned. This trend was less clear for exon 6 which variably exhibited very low 

curvature in unsigned profiles and a peak in the signed profiles. Exon 6 was observed as having 

low to moderate flexibility. Exon 7 was a similar case, exhibiting both small peaks and reduced 

curvature in different profiles. The expectation for exon 7 was a small peak; however, the peak 

may have been masked in some profiles by moderate to high flexibility. Overall the curvature 

profiles support the original hypothesis of low curvature in exon positions. Additionally, the 

signed profiles had very good visual agreement with the theory. However, due to the lack of 

correlation between the profiles there was a level of doubt about agreement between the 

theoretical and experimental profiles.
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Notably absent from the profiles were the large peaks of curvature before exon 5 and 

after exon 8. The end regions had less physical restraints upon them as they were only 

constrained by DNA at one end. This could have led to increased flexibility in the end regions 

of the DNA molecules. The increased flexibility and curvature observed at both ends of the 

molecule provided some corroboration of this explanation (Section 6.3.9. and Figure 6.18.).

The trends observed in this study could be investigated further by extension of the 

current method. A suitable further analysis would include end-labelled PCR products for each 

exon and intron region considered as separate samples. The curvature and flexibility of each 

exon may be investigated at higher resolutions using sharper tips such as carbon nanotubes 

(Woolley et al., 2000). Furthermore the use of liquid imaging and time-lapse based 

experimentation may provide improved flexibility profiles for TP53 and allow the application of 

other theoretical models for DNA dynamics (Scipioni et al., 2002b; Marilley et al., 2005). This 

type of single molecule experiment is ideally suited to end-labelled DNA molecules.

6.3.13 Differential Effect of Experimental Variation on Signed and Unsigned Profiles

The signed curvature profiles had improved visual similarity between experimental 

and theoretical profiles when compared to the unsigned profiles. This improvement of signed 

over unsigned profiles was predicted by simulated images (Section 4.2.11.). It was likely due to 

the differential impact of image noise between the two types of profile. The signed profiles 

had both magnitude and direction of curvature, while the unsigned had only magnitude. 

Experimental variation may reduce the magnitude of curvature in a signed profile. However, it 

is unlikely to change the direction of curvature. Unsigned profiles were only comparable on the 

magnitude of curvature which is effected by variation or noise. The signed profiles were 

compared using both magnitude and direction of curvature, of which direction was likely to be 

less effected by noise or variation.

6.3.14 Identification of Sources of Experimental Variation

Simulated AFM images of TP53 indicated that, with little experimental noise, the base 

pair windows used in this study were likely to produce comparable theoretical and 

experimental profiles (Section 4.2.11.). However, this was clearly not the case for real AFM 

images as not a single curvature profile exhibited a strong significant correlation to theoretical 

profiles. A number of sources of experimental variation could have contributed to this. The 

reconstructed length measured for TP53 indicated that the DNA may have undergone a partial 

transition to A-form DNA or DNA condensation; both possibilities were not accounted for by 

the theoretical models. The curvature and flexibility differences between A- and B-DNA were
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not accounted for by the theoretical models, rendering comparison to theoretical profiles 

problematic.

The persistence length of the experimental DNA also indicated that it was slightly more 

rigid than expected. This is likely to have effected the magnitude of curvature rather than its 

position. The measured unsigned curvature was lower for all profiles than predicted which 

might be a corroboration of the reduced experimental flexibility of TP53. Alternatively, 

reduced magnitude may be attributed to sample preparation. Washing with distilled water 

after adsorption of the DNA to the mica decreases the cationic charge on the phosphate 

backbone of DNA by removing Mg2+ and causing increased repulsion between negatively 

charged DNA molecules (Moreno-Herrero et al., 2006; Marilley et al., 2007a). This increased 

repulsion between DNA molecules would have reduced the measurable curvature.

Impulsive image noise was previously shown to negatively effect the comparability of 

curvature profiles from simulated images (Section 4.2.11.). The sources and intensity of noise 

in real images was much higher than in simulated images. There were also other sources of 

variation that were unaccounted for such as fragmented molecules, small scale looping or 

sharp kinking below the resolution of the AFM image and possible false positive in the end- 

labelling analysis (Section 6.2.3.). All of these factors were possible sources of variation within 

the final curvature profile either through modification of the magnitude of curvature or 

through shifting of key peaks.

6.3.15 Peak Shift in Curvature Profiles

Peak shift was evaluated for the major peaks within the Exon 5-9 profile as an 

experimental estimate of peak shift within this study (Section 6.2.14.). The average peak shift 

was ~3.39 % of the standardised length of the sequences. The maximum peak shift measured 

was 8.86 %. For the individual peaks where this was the case this was likely to represent a 

different curvature peak altogether. Only one large deviation was observed per profile. The 

inclusion of these peaks with a large amount of peak shift may have caused the average peak 

shift to be an overestimation. It is difficult to compare peak shift with other studies as this 

measure is often not quantified. However, the peak shift reported in a previous study was 

lower than the average peak shift observed in the current study by ~2% (Ficarra et al., 2005b). 

A partial B- to A-form DNA transition may provide an explanation for the observed peak shift. 

This was discussed in Section 6.4.5.

Changes in the magnitude of curvature were unlikely to effect the outcomes of 

correlation analyses. However, experimental variation leading to peak shift within the profiles 

would have had a negative impact on correlation analyses as point-to-point comparability is an
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underlying assumption. The observed peak shift was likely to have had a large impact on the 

outcome of correlation analyses that have been carried out between curvature profiles.

It should be noted that different peaks were missing from the signed and unsigned 

curvature profiles, highlighting the need to use both types of profiles where possible. The 

amount of peak shift detected was very similar between the methods. As the data has not 

been treated differently, other than the direction of the curvature before smoothing, this is in 

line with the expectation.

6.3.16 A Potential Role of Curvature in Post-Transcriptional Modification

It was observed that, in signed curvature profiles, exons often occurred in regions of 

low curvature that bordered a change in the direction of curvature (Sections 6.2.10-11.). This 

could prove to be informative for modelling DNA deposition and adsorption. Regions of low 

curvature and flexibility may be less likely to undergo structural changes during adsorption. 

The impact of this would be that flexible regions bordering inflexible regions would 

preferentially kink in order to conform to the 2D surface.

The change in the curvature regime at the border of exons suggests a role in post- 

transcriptional modification of RNA, namely the removal of introns from RNA transcripts. GC 

content and related sequence motifs are recognised during post-transcriptional splicing of RNA 

(Amit et al., 2012). GC content was explicitly investigated in the study, which is closely linked 

to intrinsic DNA curvature. The change in the structural regime of curvature on the border of 

exons may represent a recognition factor for the spliceozome or other associated proteins. 

This is an area that could be investigated in more depth in future studies.
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6.4 Conclusion

The end-labelling approach to curvature investigation has produced an overarching 

assessment of the physical properties of the region of TP53 that codes for the sequence- 

specific binding domain of the p53 protein. The most interesting and prevalent trend was a 

lowering of intrinsic curvature in the exon positions of TP53. This trend was in good agreement 

with theoretical predictions of TP53 and has interesting biological implications for DNA 

transcription, mutagenesis and repair. Furthermore, a potential role has been identified for 

curvature in post-transcriptional modification that will require further investigation by future 

studies.

A number of methodological considerations have been identified by the present study 

including the importance of the window size over which to consider calculating curvature 

angles. The need for improved physical models of DNA deposition has been highlighted as well 

as a need for improved statistical analysis methodologies. It is also clear from the present 

study that the current methods for statistical analysis of curvature profiles that have been 

used by previous authors, such as visual comparison and peak comparison, are unsuitable for 

profiles with a small degree of peak shift or inter-experiment variation. An additional aim for 

future studies would be to identify or develop statistical tools that could provide more 

application to intrinsic DNA curvature and flexibility profiles produced by AFM imaging of DNA.
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CHAPTER 7: CONCLUSION
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7.1 The Investigation of Intrinsic DNA Curvature in TP53

TP53 is a key cancer gene. The mutation and dysfunction of TP53 is considered a 

hallmark of carcinogenesis. The primary aim of the present study was to evaluate the intrinsic 

curvature of the region of TP53 that codes for the DNA sequence-specific binding domain of 

the p53 protein. This region of TP53 is critical for the correct functioning of the p53 protein 

which regulates the main cellular defences against chemical insults and tumourogenesis. TP53 

is highly conserved within evolution, occurring in a recognisable form in even the most simple 

of multi-cellular organisms. TP53 has codons that exhibit slow DNA repair; these codons are 

also major mutation hotspots. In order to evaluate the intrinsic DNA curvature of TP53 over a 

large scale the gene was investigated using both theoretical methods and AFM.

7.2 ADIPAS -  A Software Suite for AFM Based Analysis of DNA Curvature

There is currently a lack of available software for the analysis of AFM images of DNA. 

The first objective of the present study was to create a software platform with the capability of 

calculating intrinsic curvature from AFM images of DNA. A complete software suite of image 

processing and analyses tools was developed in order to facilitate the AFM based study of DNA 

(Chapter 3). This analysis suite was named ADIPAS (AFM DNA Image Processing and Analysis 

Software). ADIPAS was developed with the primary aim of analysing intrinsic curvature of TP53 

DNA molecules. To this end ADIPAS was able to analyse AFM images of DNA and calculate 

curvature from the resulting coordinate data. The software incorporated analysis methods 

from a range of previous studies. ADIPAS allowed for a more comprehensive analysis of the 

structural properties of DNA molecules than any other available software pipeline. ADIPAS 

presented the image analysis portion of its package in a GUI that would allow even unskilled 

operators to process AFM images of DNA after only limited training. Other estimates of 

statistical and physical DNA measurements, such as DNA contour length and persistence 

length, were implemented into the software. The software is aimed at online distribution and 

publication with the hope that it will be of use to researchers within the field and also to 

encourage further investigation of DNA curvature by allowing research groups to overcome 

the large technological hurdle of in-house software development necessary for this type of 

investigation.

During the development of ADIPAS a number of novel considerations were identified. 

The most important of which was that at low base pair window sizes there was a significant 

influence of DNA contour digitisation of the resulting curvature angles. A novel method for 

identifying the effects of digitisation on angle measurements was developed and named the 

Visual Threshold. This consideration has not been investigated or even discussed to any great 

extent by previous researchers. The Visual Threshold was applied to real AFM images of TP53
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and was invaluable in the selection of appropriate curvature window sizes. Additionally, the 

prediction of the Visual Threshold was shown to coincide with accuracy of the FF algorithm 

showing its utility for application to real AFM images of DNA (Chapter 5). These developments 

provide a strong foundation for researchers to build upon in future studies and represent 

progress towards improving accessibility to the field of DNA curvature investigation as AFM 

technology becomes more widespread.

7.3 The Investigation of Intrinsic DNA Curvature of TP53 using Theoretical Curvature

Models

Theoretical dinucleotide wedge models were utilised for the investigation of DNA 

curvature (Chapter 4). The De Santis model of curvature, previously shown to be appropriate 

for AFM based studies of DNA, was used as the primary dinucleotide wedge model of 

curvature. The De Santis model predicted significantly reduced curvature in exon 5, 6 and 7 in 

comparison to DNA curvature of intronic regions. Furthermore, the model indicated that both 

exons 8 and 9 were regions of locally reduced curvature that were not significantly different 

from the curvature of intron regions. The lack of statistical significance may be attributed to 

the curvature peaks that flanked the exons and the methodological necessity of averaging over 

a base pair window of at least one or two helical turns. Both exons 5 and 6 were implicated as 

being DNA linker regions between nucleosomes by theoretical models.

Additionally, codons within TP53 that have been shown by previous studies to exhibit 

impaired DNA repair were shown in the present study to have significantly reduced intrinsic 

curvature in comparison to the rest of the TP53 DNA sequence.

7.4 The Investigation of Intrinsic DNA Curvature of TP53 using AFM

The generation of simulated AFM images of TP53 based upon the De Santis model 

allowed for predictions about potential observation in real AFM images of DNA. The AFM 

portion of the study was approached using two separate investigative methodologies. The first 

methodology used was the post-image processing orientation of TP53 molecules by the FF 

algorithm (Chapter 5). The results for this indicated a significant positive correlation between 

the theoretical predictions and the experimental curvature profiles for TP53 and raised some 

methodological considerations for the FF algorithm that were overcome during the study.

The second approach was the use of streptavidin end-labelling for DNA orientation. 

The curvature profiles generated using this method did not show significant correlation to 

curvature profiles produced from simulated AFM images. This was attributed to a curvature 

peak shift caused by DNA condensation on the mica surface or a partial B- to A-form DNA 

transition. However, the expected trends in DNA curvature were still evident. This included a
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significant reduction in curvature at exon regions in comparison to intron regions. Exon 5 also 

individually exhibited significantly lower DNA curvature than intron regions in both 

experiments. Both approaches provided corroboration of the predictions made using the De 

Santis dinucleotide wedge models of DNA curvature. In addition to this exon position 

experimentally exhibited moderate to low flexibility with the exception of exon 7 (Section 

6.2.13.).

Of the two methodologies the FF algorithm provided curvature profiles most 

statistically comparable to theoretical profiles. However, it was more analytically demanding 

to implement and there were many methodological considerations that needed to be 

addressed when considering the output. Streptavidin end-labelling was analytically simpler to 

implement, but the output was less comparable to theoretical profiles. For future studies, the 

FF algorithm would be recommended for smaller, palindromic DNA molecules. Larger 

molecules should be approached using streptavidin end-labelling followed by application of 

the FF algorithm as a final corroboration of the resulting curvature profiles. This would remove 

any remaining uncertainly about molecule orientation and allow for a very high degree of 

confidence in the resulting profiles.

7.5 Exons as Regions of Low Intrinsic DNA Curvature.

TP53 is heavily conserved in evolution due to its key importance in cell regulation, 

maintenance and repair (Lane et al., 2010). The reduced curvature of exon positions within 

TP53 may indicate that the structural architecture of the coding regions has been selected for 

during evolution. Alternatively, low intrinsic DNA curvature could be a by-product of the 

accumulation of GC base pair content in coding sections of DNA throughout evolutionary time 

(Galtier et al., 2001). If intrinsic DNA curvature has been actively selected for, then it is most 

likely to be due to the influence of curvature on nucleosome positioning and the maintenance 

of nucleosome structure (Shrader and Crothers, 1990; Virstedt et al., 2004). Although 

curvature has been shown to influence transcription and replication, the impact of curvature is 

predominantly in the origins of replication and promoter regions of genes (Ohyama, 2005; 

Marilley et al., 2007b). As the TP53 sequences that were investigated contained no promoters 

or replication origins, the role of intrinsic curvature in TP53 is likely to be structural. Low levels 

of DNA curvature in genes have been related to open chromatin and active transcription 

(Vinogradov, 2003). TP53 is constantly transcribed at a low level within the cell, and its 

transcription is tightly regulated, so evolutionary selection for DNA architecture to enhance 

stable transcription would be beneficial to TP53 (Hollstein and Hainaut, 2010). The theory of 

evolutionary selection for architectural features in genes has been proposed previously and
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favours active selection for intrinsic curvature rather than selection for GC content leading to 

reduced curvature (Vinogradov, 2003).

7.6 Low Intrinsic DNA Curvature at Sites of Slow Repair in TP53

There are a number of sites in TP53 that have shown impaired DNA repair of bulky 

chemical adducts (Tornaletti and Pfeifer, 1994; Denissenko et al., 1998; Zhu, 2000). Codons 

exhibiting slow repair were found to have a significant reduction in curvature in comparison to 

the remaining TP53 sequence using theoretical models (Section 4.2.14.). However, regions of 

slow repair were localised to exons which independently exhibited reduced curvature. 

Therefore, the current experiment did not discount the possibility that the low curvature in 

slow DNA repair codons was due to localisation within exons rather than a structural feature of 

the slow DNA repair codons themselves.

Reduced curvature in codons of slow repair implied a role for intrinsic curvature in the 

repair of DNA in TP53. The local DNA sequence bordering a chemical bulky adduct has been 

shown to have a measurable effect on the repair efficiency via the NER pathway (Cai et al., 

2009, 2010). Two of the key proteins, XPA and RPA, in the NER pathway specifically recognise 

DNA structural deformities due to chemical adduction and are also required to deform DNA in 

order to function (Missura et al., 2001). Studies have concluded that DNA curvature may have 

a role as a stabilising factor in the presentation of DNA adducts for repair (Cai et al., 2009, 

2010). Gel electrophoretic experiments and molecular dynamics simulations indicate that 

rigidly bent DNA sequences present a wider minor groove leading to more efficient excision 

and repair of the DNA lesions. The DNA adduct used in these studies was BPDE, derived from 

benzo[a]pyrene, a chemical carcinogen heavily involved in the initiation and progression of 

lung cancer (Hecht, 2002; Kometani et al., 2009). BPDE has also been implicated as a causative 

agent for the three lung cancer specific mutation hotspot codons that exhibited slow DNA 

repair (Denissenko et al., 1998; Hussain et al., 2001). Although the evidence for low flexibility 

in exon positions is not as strong as the evidence for low curvature it seem likely that flexibility 

also plays a role in adduct repair. The combination of low flexibility and low curvature in TP53 

exons may collaborate to reduce the presentation of chemical adducts at these sites. 

Therefore, it was hypothesised that the regions of slow repair in TP53 may be due, at least in 

part, to the straight and rigid nature of the DNA causing a reduced presentation of chemical 

adducts for removal by the NER pathway.

7.7 Low DNA Curvature and Nucleosome Occupancy in TP53

Nucleosome affinity algorithms applied to TP53 indicated that both exon 5 and exon 6 

were unlikely to be occupied by nucleosomes (Chapter 4). The mechanism underlying reduced
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sequence-specific DNA repair efficiency has also been attributed to the accessibility of the DNA 

due to the local chromatin structure (Bohr, 1987). As curvature has an active role in 

nucleosome positioning and the maintenance of nucleosome structure it may also affect DNA 

repair efficiency indirectly through nucleosome positioning (Shrader and Crothers, 1990; 

Anselmi et al., 1999). The potential for exon 5 and 6 to be excluded from the nucleosome core 

has interesting implications for DNA damage models. For example, exon 5 is highly mutated in 

lung cancer (Denissenko et al., 1996). One of the major carcinogens involved in lung cancer, 

BPDE, has been shown to preferentially bind to DNA not contained in the nucleosome core 

(Jack and Brookes, 1982; Kurian et al., 1985). Intrinsic DNA curvature has an active role in 

nucleosome positioning and the maintenance of nucleosome structure (Shrader and Crothers, 

1990; Anselmi et al., 1999). It may therefore influence DNA damage rates and DNA repair rates 

indirectly via control of nucleosome architecture.

As has been observed in the present study all exons show a local reduction in intrinsic 

curvature. Nucleosomes have been shown to exhibit affinity for curved DNA sequences of low 

flexibility rather than uncurved DNA sequences (Anselmi et al., 1999). This local reduction in 

curvature may represent large scale structural motif for exclusion from the nucleosome core. 

The reduced flexibility of exons within TP53 may provide another energetic barrier to 

nucleosome formation. It is unlikely that this large scale structural motif would be identified by 

nucleosome affinity algorithms working on smaller scales (Xi et al., 2010). Exon 7 shows the 

most deviation from the trend within TP53 of low curvature and low flexibility, having 

moderate curvature and moderate to high flexibility. The high flexibility alone could provide an 

energetic barrier to nucleosome formation. The evolutionary benefit to TP53 would be to 

promote open chromatin structure and enhanced transcription of TP53. The downstream 

effects of this selection would be increased mutation rate by environmental carcinogens due 

to the increased affinity of key carcinogens for open chromatin and a decrease in repair rates 

because of poor presentation of chemical adducts for excision.

7.8 A Potential Role of Curvature in Post-Transcriptional Modification

It was observed that, in signed curvature profiles, exons often occurred in regions of 

low curvature that bordered a change in the direction of curvature (Chapter 6). The change in 

the curvature regime at the border of exons suggests a role in post-transcriptional 

modification of RNA, namely the removal of introns from the RNA transcript. GC content and 

related sequence motifs are recognised during post-transcriptional splicing of RNA (Amit et al., 

2012). GC content was explicitly investigated in the study, which is closely linked to intrinsic 

DNA curvature. The change in the structural regime of curvature on the border of exons may
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represent a recognition factor for the spliceozome or other associated proteins. This is an area 

that could be investigated in more depth in future studies.

7.9 Future Studies on the intrinsic DNA Curvature of TP53

The present study has successfully evaluated the intrinsic DNA curvature of TP53 and 

has indicated that exons have recognisable structural differences from introns within the same 

gene. The study has hypothesised that DNA repair efficiency of mutation hotspots may be 

influenced by DNA curvature via both the structural presentation of adducts for excision and 

the control of chromatin architecture within exons. This suggests a number of beneficial 

avenues for further investigation. The curvature in individual exons could be further quantified 

at improved resolution by the use of smaller, end-labelled PCR products of individual exons 

using sharper AFM tips such as carbon nanotubes (Woolley et al., 2000). Alternatively, this 

could be achieved using small palindromic dimers and the application of the FF algorithm. 

Time-lapse DNA dynamics experiments on TP53 would elucidate the relationship between 

intrinsic DNA curvature and flexibility in exon positions (Suzuki et al., 2011).

Furthermore, AFM has been successfully applied to visualise nucleosome affinity and 

dynamics in both air and liquid (Van Vugt et al., 2009; Filenko et al., 2012). The application of 

these techniques to TP53 DNA would allow for the experimental testing of the hypotheses 

developed as an outcome of the present study. An alternative experimental route would be to 

directly investigate the repair efficiency of NER repair enzymes on damaged TP53 by AFM 

imaging in real time (Lysetska etal., 2002).

Finally, the investigation of exonic DNA curvature could be quickly extended to other 

highly evolutionarily conserved genes using the theoretical framework for investigation 

developed in this study. The control of chromatin architecture by DNA curvature has already 

been established by previous authors. The investigation of large scale curvature features may 

provide another tool for the evaluation of nucleosome affinity and could potentially be used to 

identify regions of evolutionary conservation.
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Appendix 1

A .I.2. Optimisation of PCR Conditions

Genomic DNA was used as a tem p la te  fo r PCR am plifica tion  using p rim er sets TP53 

Exon 5-7 and Exon 5-9. A basic PCR protoco l (95 °C fo r 30 s, 60 °C fo r 30 s, 72 °C fo r 30 s, repeat 

30 tim es) was adopted as a fram ew ork  and m odified. The extension tim es w ere extended to  

60 s and 90 s fo r Exon 5-7 (1855 bp) and Exon 5-9 (2500 bp) respectively as they are both 

considered large DNA tem plates. An add itiona l extension step o f 72 °C fo r 5 min was added at 

the end o f the p ro toco l to  ensure fu ll p rim er extension. The add ition  o f a ho t s ta rt and hot 

stop (95 °C fo r  10 m in) was found  to  be necessary to  stop d im erisation o f prim ers and products 

in certa in am plifica tions. A range o f annealing tem pera tures was used in o rder to  find  an 

optim al tem pera ture  (Figure A .1.1.). This was experim enta lly identified  as 60 °C fo r both  Exon 

5-7 and Exon 5-9 (Figure A .1.2.).

Figure A .1.1. - Comparison o f PCR 
am p lifica tion  products o f TP53 
Exon 5-9 using a range o f 
annealing tem pera tures (50 °C -  
60 °C). Lane M contains a New 
England Biolabs 1 Kb DNA ladder. 
The expected (2500 bp) band is 
indicated w ith  a black arrow . 
There was observable m ultip le  
banding w ith in  the  50°C- 56°C 
tem pera tu re  range.

Figure A .1.2. - Replicates o f TP53 
samples prepared fo r AFM 
analysis. Lanes M contain NEB 1 
Kb DNA ladder. The firs t five 
sample lanes contained replicates 
o f TP53 Exon 5-7 (1855 bp). The 
second five sample lanes 
conta ined replicates o f TP53 Exon 
5-9 (2500 bp). The right hand 
labels show the  size o f the 
pe rtinen t m arker bands in 
kilobases (kb).

T e m p e ra tu re  Range (°C )

M  r 50 52 54 56 58 6(P
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A .I.2. Elimination of Non-Specific Bands

In some PCR am plifica tions o f the b io tiny la ted  TP53 Exon 5-9 PCR products there  was 

an observable non-specific band at around 1.4 Kb. Due to  the non-rep roduc ib ility  o f th is band 

it was likely due to  uncontro llab le  variations in e ithe r the  therm al cycler tem pera ture  or the 

qua lity  o f purchased PCR reagents. In o rder to  remove the non-specific band another series o f 

PCR am plifica tions were perform ed on the TP53 Exon 5-9 PCR sample. No non-specific bands 

were observed in the  second round o f am plifica tions (Figure A .1.3.). TP33 Exon 5-7 products 

are all am plified  from  the  firs t round o f TP53 Exon 5-9 PCR products.

M  1 2 3

Figure A .1.3. - Comparison o f in itia l and secondary PCR 
am p lifica tion  o f TP53 Exon 5-9 PCR product. Lane M 
contains G eneruler 1 Kb DNA Ladder. Lane 2 contained 
TP53 Exon 5-9 ream plified PCR product. Lane 3 
contained TP53 Exon 5-9 o f PCR product from  human 
genom ic DNA. The expected (2500 bp) band is indicted 
w ith  a black a rrow . Non-specific band at 1.4 kb is 
indicated w ith  a red arrow .

A .I.3. Estimation of Error Rate of PCR for AFM Analysis.

The e rro r rate o f PCR is non-neglig ible (Cha and Thilly, 1993). In o rder to  m inim ise 

po ten tia l base pair e rrors a High F idelity Taq polymerase blend w ith  a proofread ing pro te in  

was used during th is study fo r all samples prepared fo r AFM. The Expand High F ide lityPLUS PCR 

System (Roche,UK) has a reported e rro r rate o f 2.4x 1 0 6 base pairs per cycle. The average cycle 

num ber fo r  am plifica tion  was 30 cycles. This gives an e rro r rate o f 7.2x 10'5 per base pair per 

am p lifica tion  (30 cycles m u ltip lied  by an e rro r rate o f 2.4x 10'6). TP53 Exon 5-7 is a 1855 bp 

DNA m olecule and gives an e rro r rate o f 0.134 per am plifica tion . TP53 Exon 5-9 was a 2500 bp 

DNA m olecule and gave an e rro r rate o f 0.18 per am plifica tion .
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A.1.4. Sequencing Summary

DNA sequencing was carried ou t on parts o f the am plified experim enta l m olecule to  

con firm  am p lifica tion  fid e lity  and to  detect any polym orphism s tha t may be w ith in  the human 

genom ic DNA sample compared to  a consensus sequence taken from  the  IARC TP53 database 

(Hernandez-Boussard e t al., 1999). The IARC TP53 database is a com pila tion  o f TP53 sequences 

taken from  human popula tion  studies. The 2500 bp m olecule (from  11828 to  14328 in IARC 

Database no ta tion ) was sequenced from  11828-12669 and then from  13223-14328. This 

covered all o f the m ajor exons except fo r exon 6, which was only partia lly  sequenced. Only tw o  

points o f deviation from  the consensus IARC sequence w ere detected. The SNP (validated in 

human populations) at 25051, com m only guanine, was detected as a thym ine  in the 

experim enta l DNA. Additiona lly , the consensus sequence o f CCAGCTTTCAAAAAGA (14311- 

14327) was detected as CCAGCTTCAAAAAAGA. A thym ine  was deleted and an adenine 

inserted in the A -tract o f the experim enta l molecule.

A .I.5. Estimating the Effect of DNA Polymorphisms on Theoretical Curvature

The e ffect o f the base pair deviations from  the IARC consensus sequences was 

estim ated using theore tica l models. CURVATURE was used to  model both  sequences (Figure 

A .1.4.). The C-T trans ition  at the  5 ' end o f the sequences had only a small net e ffect on the 

curvature  pro file . The inse rtion /de le tion  at the 3' end o f the sequences had a more noticeable, 

a lthough small, e ffec t on the curvature  pro file . N either polym orph ism  was likely to  have a 

measurable e ffect on the experim enta l outcom e.

01 0 2  0.3 0 4  0.5 0 6  0 7  0.B 0.9 1

Standardised Position

Figure A .1.4. - Effect o f base pair deviations on intrinsic DNA curvature  o f TP53. The IARC 
consensus sequence is shown in blue and the results o f sequencing o f PCR product in red. The 
length o f TP53 was standardised using a scale o f zero to  one. Exon positions are highlighted in 
red in ascending o rder from  le ft to  right. Curvature pro files were generated using CURVATURE 
(Shpigelman e t al., 1993). The de fau lt settings and the De Santis m odel o f curvature  were used 
to  produce curvature  profiles.
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Appendix 2

Figure A .2.1. -  Example o f AFM images o f TP53 Exon 5-7 1855 bp DNA molecules. Images were 
captured at a size o f 3x3 pM , a reso lu tion o f 1024x1024 and w ith  6 nm ROC cantilevers. The 
scale bar (white) represents 1 pM .
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Figure A.2.2. -  Example o f AFM images o f TP53 Exon 5-9 2500 bp DNA molecules. Images were 
captured at a size o f 3x3 pM , a reso lu tion o f 1024x1024 and w ith  6 nm ROC cantilevers. The 
scale bar represents 1 pM .



Figure A .2.3. -  Example o f AFM images o f TP53 DNA molecules 5' end-labelled w ith  
strep tavid in . Images were captured at a size o f 3x3 pM , a reso lu tion o f 1024x1024 and w ith  6 
nm ROC cantilevers. The scale bar represents 1 pM .
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