

 Swansea University E-Theses ___

Designing domain specific lanaguages for verification and

applications to the railway domain.

James, Phillip

 How to cite: ___
James, Phillip (2014) Designing domain specific lanaguages for verification and applications to the railway domain..

thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42823

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42823
http://www.swansea.ac.uk/library/researchsupport/ris-support/

D esigning D om ain Specific Languages
for Verification and A pplica tions to th e

Railw ay D om ain

Phillip Jam es

Subm itted to Swansea University in fulfilment
of the requirements for the Degree of Doctor of Philosophy

Swansea University
Prifysgol Abertawe

Department of Computer Science
Swansea U niversity

January 2014

ProQuest Number: 10821210

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821210

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration
This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed (candidate)

Date ...

Statem ent 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

Signed (candidate)

DateS.)..../.!./..*!*....................

Statem ent 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed (candidate)

Date

Abstract

The development and application of formal methods is a long standing challenge within
the field of Computer Science. One particular challenge that remains is their uptake
into industrial practices. Even though many successful research projects have illustrated
the applicability of formal methods to industrial practice, their use within industry
is often still limited. This thesis introduces a methodology for developing domain
specific languages for modelling and verification that aims to aid in the uptake of formal
methods within industry. It also concretely illustrates the success of this methodology
for the railway domain.

The presented methodology addresses some of the issues limiting the use of formal
methods within industrial practices. Concretely it addresses issues surrounding faithful
modelling, scalability of verification, and accessibility to modelling and verification
processes for practitioners within the domain. To achieve a faithful, scalable and
accessible procedures, we present a design methodology for creating domain specific
languages based around the C a s l specification language. At the core of this methodology
is a domain specific language that abstracts away technical details of Computer Science
from the end user. The starting point for the suggested methodology is an informal
domain description in the form of a UML class diagram. The result is a graphical
tooling environment encapsulating formal modelling and verification for systems from
the given domain.

As well as presenting the various steps involved in our methodology, the thesis
provides the technical constructions required for the methodology. Namely, various
institutions supporting the capture of UML class diagrams, and an institution comor­
phism from these into M o d a l C a s l . We also propose the use of domain specific lemmas
for supporting verification within a domain. Finally, to illustrate that our methodology
meets our aims of being faithful, scalable and accessible, we successfully apply it to
two example problems from the railway domain. One of which is an industrial example
supplied by Invensys Rail. The application to these problems results in the OnTrack
toolset that encapsulates, into an accessible graphical editor, various approaches for
verification within the railway domain.

Acknowledgements

I would like to show my appreciation and gratitude to Dr. Markus Roggenbach for his
continued support, guidance and patience throughout the time it has taken to complete
this work. He has successfully guided me through the rocky roads of a PhD and I have
learnt so much from the times we have spent together.

My thanks is extended to my examiners Prof. Magne Haveraaen and Prof. John
Tucker. Their valuable time and comments have helped improve this thesis. I would also
like to thank all of the Department of Computer Science for making my time in Swansea
so memorable. I especially thank Dr. Anton Setzer for being my second supervisor, and
Prof. Faron Moller and Dr. Arnold Beckmann for their insightful comments towards
this work. A special thank you also goes to Erwin R. Catesbeiana (Jr) for signalling me
towards the end of the tunnel. I am also grateful for the continued interest and time of
Simon Chadwick, Dominic Taylor and David Johnson from Invensys Rail.

During my time as a PhD student I have had the privilege of meeting and working
with many great friends. I thank both Fredrik Nordvall Forsberg and Matthew Gwynne
for (literally) being at my side every day. Without Fredrik there would be many hills
that would have remained unconquered, whilst Matt often provided a needed source of
distraction. I also thank Liam O’Reilly for providing a hotline for support on both a
professional and personal level. I would like to thank the following close friends who have
all contributed in so many different ways to this thesis: Stephen Richards, Temeshgen
Kahsai, Hoang Nga Nguyen, Karim Kanso, Andrew Lawrence, Casper Bach Poulsen,
Margit Hanssen, Matt Edmunds, Ian Doidge, Liam Betsworth, Jennifer Pearson, Tom
Owen, Simon Robinson and Patrick Oladimeji.

A big thank you goes to Edward Thom for his thorough proof reading. I also thank
Edward, his wife Alison and daughter Rachel for the many “mini breaks” tha t often
provided a much needed rest.

A special thank you is reserved for my family. Gregory my Dad, Corinne my
Mum, Michael my brother, Kimberley my sister and Dilwyn, Beryl and Sylvia my
Grandparents. Your continued love, support and encouragement made all this possible,
thank you.

Finally, I am eternally grateful to my wife Emma for sharing this often tricky journey
with me. Together, with your love, any mountain feels conquerable. I truly thank you.

Contents

1 Introduction 1
1.1 Domain Specific Languages for V erifica tion 1
1.2 A Design M ethodology.. 2
1.3 Modelling and Verification in the Railway D o m a in 6
1.4 Aims and C ontribu tions... 8
1.5 Published M a te ria l.. 10
1.6 Chapter Overview ... 12

1 B ackground M ateria l 15

2 Domain Specific Languages 17
2.1 Introduction, History and M otivations.. 17
2.2 Why Develop D SLs.. 19
2.3 Industrial Examples of Domain Specific L anguages.................................. 20
2.4 Domain Specific Language Design... 21
2.5 UML Class Diagrams for DSL D escrip tions.. 25
2.6 Eclipse Frameworks: EMF, GMF and E psilon... 27

3 The Railway Dom ain and DSLs 33
3.1 Industrial Practice in the Railway D om ain... 33
3.2 Bjprner’s D S L .. 35
3.3 Sample Formalisation in R S L ... 38
3.4 Related Work on DSLs and the Railway D o m a in 39

4 Specification Formalisms, Institutions and Proof Support 43
4.1 The Common Algebraic Specification Language.. 43
4.2 ModalCASL... 51
4.3 Institutions and Institution C om orphism s... 53
4.4 The PCFOLr I n s t i tu t io n .. 55
4.5 The SubPCFOLr I n s t i tu t io n ... 60
4.6 An Institution for Modal L o g ic .. 62
4.7 Tool Support: Hets and Automatic Theorem Proving.............................. 67

ix

II M eth o d o lo g y C onstru ction 69

5 From DSLs to CASL 71
5.1 UML Class Diagrams for D S L s .. 71
5.2 An Institution for UML Class D iag ram s... 73
5.3 Stereotypes for Dynamical A sp e c ts .. 83
5.4 From Class Diagrams with Rigidity Constraints to Modal CASL 87
5.5 Crafting a Formal D SL .. 91

6 Supporting Verification of DSLs 95
6.1 Railway D y n am ics.. 95
6.2 Modelling Dynamics and Safety in CASL ... 101
6.3 Validating our Modelling Through Instantiation... 105
6.4 Domain Specific Property Supporting L e m m a s ... 108
6.5 A Note on Faithful M odelling... I l l
6.6 Verification of Real World Scheme P la n s ..112

7 Creating Graphical Tool Support 117
7.1 Motivation for Graphical T ooling .. 117
7.2 The OnTrack Toolset A rch itec tu re ... 118
7.3 OnTrack Implementation for Bjprner’s D S L ..120
7.4 Generation of Formal CASL Specifications...123
7.5 General Domain Abstractions Over D S L s ...126
7.6 A Summary of O n T rack .. 128

8 Invensys Rail Data M odel 131
8.1 Concepts from the I R D M ... 131
8.2 Capturing IRDM within our In s ti tu tio n ..134
8.3 Translation to M odalC A SL ..138
8.4 Modelling Industrial Standard Dynamics..139
8.5 Supporting Verification ..142
8.6 Formulating and Verifying IRDM M o d e ls .. 142

IH C on clu sion s 145

9 Conclusions and Future Work 147
9.1 A Methodology for DSL D esign ... 147
9.2 Future Research Directions ... 149

Bibliography 151

A Bjprner’s Narrative 163
A .l Structure N arrative... 163
A.2 Dynamics Narrative .. 164

B Bjprner in M odalCasl 167

C Bj0rner in CASL 171
C.l Bjprner’s DSL in C A S L ...171
C.2 An Example Track P l a n .. 173

D M odelling M ovement Authorities 181

E DSL Lemmas in CASL 183

Chapter 1

Introduction

C ontents
1.1 Domain Specific Languages for V erifica tion ... 1

1.2 A Design M e th o d o lo g y ... 2

1.3 Modelling and Verification in the Railway D o m a in 6

1.4 Aims and C ontribu tions... 8

1.5 Published M aterial .. 10
1.6 Chapter O v erv iew .. 12

Formal verification of railway control software has been identified as one of the Grand
Challenges of Computer Science [Jac04]. As is typical with formal methods, this
challenge comes in three parts: the first addresses the question of whether the proposed
mathematical models faithfully represent the physical systems of concern; the second is
a question of whether the proposed technologies scale up to systems of an industrial
size and complexity; the third is the question of how to employ and utilise available
technologies in a manner that is accessible to practitioners in the domain of interest
and not just to the developers of the approach. This chapter introduces the aims and
contributions of this thesis towards overcoming these issues.

1.1 D om ain Specific Languages for Verification

For many years, the application of verification processes such as model checking and
interactive theorem proving to varying industrial case studies has been successfully
illustrated, e.g. see [Sim94, BGOO, Win02, WR03, PGHD04, HKRS09, JamlO]. Even
though these approaches have been successful from a Computer Science perspective,
the adoption of formal methods within industry is still limited [BH06] due to questions
around faithful modelling, scalability and accessibility. W ithout experts in the field
of formal verification, the modelling approaches presented are often in a form that is
acceptable to computer scientists, but not to the engineer working within the domain.

1

1. Introduction

These presentations thus lead to doubts in the approach by the engineers and a low level
of confidence towards the capabilities of the approach to correctly capture the systems
being modelled. At the same time, many methods of verification are prone to suffering
from a scalability problem that makes their application to large industrial problems
lengthy and often unfeasible. Finally, tool support for verification procedures is often
aimed towards a Computer Science audience interested in verification and hence is not
easily accessible to engineers outside the field of formal methods. This thesis presents
a new approach to solve these issues for a given application domain. The approach
combines a broad range of results to bridge the gap between theoretical verification
approaches and practical application. The underlying theme to the approach is that

“Domain Specific Languages (DSLs) can aid with modelling, verification
and encapsulation of formal methods tools within a given domain”.

In this thesis, we show this hypothesis to be true within the railway domain. To this
end, we provide a general methodology for the integration of the formal methods within
industrial design processes. We base our work on the C a s l algebraic specification
language [Mos04b, BM04] and automated theorem proving. We apply this methodology
to two comprehensive case studies from the railway domain, demonstrating the chosen
methodology achieves our three design aims.

1.2 A D esign M ethodology

To achieve a faithful, scalable and accessible modelling and verification procedure, we
present a design methodology for creating domain specific languages [MHS05, FP10]
based around the C a s l specification language. Domain specific languages (DSLs) aim to
abstract away technical details of Computer Science from the domain engineer, allowing
them to create programs or specifications without having to be an expert programmer
or specifier. Considering Figure 1.1, the starting point for the suggested methodology
is an informal domain description, as is often found within industry in the form of
natural language and accompanying UML (Unified Modelling Language) [Objll]. It
is commonly the case that graphical notations are used to depict the elements found
within these domain descriptions. The result of following the presented methodology is
the creation of a graphical domain specific language that not only makes the task of
automatic verification possible, but also scalable. Such verification gains are achievable
via careful design of the domain specific language to ensure it captures and exploits
domain knowledge relevant to the class of properties which one would like to verify.
The overall result from our methodology is a graphical tooling environment which
incorporates a “push button” verification process for critical systems within the given
domain. The methodology is not only theoretically sound but also ensures faithful
modelling and verification techniques that scale and are supported by tools that are
usable by the every day domain engineer.

2

1.2. A Design Methodology

Input Generates

Extended
Extended

Modelling

Graphical
Images

DSL Graphical
Editor

Natural
Language

UML Class
Diagram

Tooling
Specification

In GMF

Modal CASL
Specification

(UML CD)

Modal CASL
Specification

(Natural Lang.)

CASL
Specification

Enriched With
DS Lemmas

Figure 1.1: A methodology for designing domain specific languages aimed at verification.

Concretely, the methodology results in two processes. The first is designing the
domain specific language and associated tool support. The second a verification process
used when applying the tools output from the design phase.

1.2.1 D esign in g th e D SL and Tool Support:

The design process is undertaken by a team comprising of a computer scientist working
in close collaboration with a domain engineer. A close working relationship ensures the
resulting domain modelling is faithful. Considering Figure 1.1, the following steps are
involved in the design process:

1. Informal DSL Design and Automatic Translation. The first step in the methodol­
ogy involves the domain engineer classifying all the concepts, attributes, relations
etc. within the domain into an informal DSL using UML class diagrams [Objll]
and accompanying natural language descriptions (or, in the language of Bj0rner,
a narrative [Bj0O9]). This step is often already undertaken within industry when
describing a domain. It is also standard practice to use UML class diagrams
for this task, see for example [RailO, AG07]. From such UML class diagrams,
names and relations can be automatically extracted and translated into a formal
specification in M o d a l C a s l . We suggest and support a particular automatic
translation from UML class diagrams to M o d a l C a s l that we define in Chapter 5.
We also apply this translation to our two case studies within the railway domain.

2. DSL Analysis. Next, the domain engineer and computer scientist consider the
resulting formal M o d a l C a s l specification. At this stage, the M o d a l C a s l
specification may be extended to incorporate the natural language descriptions
from the informal domain description. They may also be extended with proof
goals encoding any properties to be proven in the verification step. At this point,
for the sake of better proof support, we suggest the application of an existing

3

1. Introduction

automatic translation from M o d a l C a s l to C a s l . Once both are happy all
elements of the domain are modelled faithfully, the computer scientist can begin
the task of supporting the DSL with domain specific lemmas. Naturally, there
cannot be a universal solution to finding such domain specific lemmas. However,
in our experience, for all the DSLs we have considered, such lemmas have existed
and followed from knowledge of the domain engineer. We discuss such lemmas
in Chapter 6 and show that these lemmas allow for scalable verification based
on ideas that are often inherent within the domain. Overall, this step ensures
faithful modelling of the domain, giving the domain engineer a higher level of
confidence in the approach. It also enables scalability of the approach through
the application of domain specific lemmas.

3. Graphical Editor Creation. The creation of a domain specific language is often
aided by the use of a development framework. There are several examples of
such tools including ASF+SDF [vdBvDH+01] a meta-environment based on a
combination of the algebraic specification formalism ASF and the syntax defining
language SDF. ASF+SDF allows creation of domain specific languages and tools
such as parsers, compilers and static analysers for the created language. There
is also M etaEdit+ [KLR96], which is an industrial tool allowing the creation of
visual domain specific languages. Interestingly, MetaEdit+ has been used to create
a domain specific modelling for railway layouts, see [KLR96]. With respect to our
methodology, we make use of the Graphical Modelling Framework, GMF [Gro09].
GMF is an Eclipse plugin that provides the infrastructure to create, from a UML
like model, a Java based graphical editor. Based on the UML class diagrams
captured in Step 1, the domain engineer and computer scientist use GMF to create
a tooling environment for the DSL. This allows for elements to be presented in the
tool in a way that is accessible to the domain engineer through use of graphical
representations that are native to the domain. Such an approach is illustrated
in Chapter 7 where we give details of the OnTrack Toolset for modelling and
verification within the railway domain. The result of this step is a tool that allows
graphical description of systems formulated over the informal DSL, that is, the
UML class diagram and accompanying narrative.

4. Model Transformation Development. The final step in the methodology is down
to the computer scientist. The editor designed in Step 3 is open (via the Epsilon
framework [KRPP13]) to extension with model transformations [SK03, Kus06,
KRPP13]. Such transformations allow for the graphical models produced by the
editor to be translated to text. Thus, the graphical editor can be extended with
model transformations to allow output of C a s l specifications formulated using
the specifications from Step 2. The development of these model transformations is
illustrated in Chapter 7. The result of this process is a tool for generation of formal
models that is readily usable by engineers from the domain under consideration.

Overall, following this design process ensures we meet our three aims: faithful
modelling is achieved by starting with an informal industrial description and forming a

4

1.2. A Design Methodology

formal specification through a close working relationship between the domain engineer
and computer scientist; scalability of the verification procedure is achieved through the
domain knowledge captured in property supporting domain specific lemmas; finally,
accessibility to the specification and verification of systems is achieved through graphical
tooling incorporating domain specific concepts and constructs.

1.2.2 T h e V erification P rocess:

The result of applying our methodology is a framework to accommodate the verification
process illustrated in Figure 1.2. This process is undertaken purely by the domain
engineer using the toolset gained from the design process and follows three main steps:

Entered
IntoModel In Informal

DSL
Graphical DSL

Editor

Automatically
Translated

Entered
IntoFormal Model

In CASL
ProducesThe Heterogenous

Tbolset
Verification Result

Figure 1.2: A verification process based on the designed tools.

1. Model Development Based on the Informal DSL. The first (optional) step within
industry is to outline or specify a design informally. This step should be undertaken,
and often is, using the vocabulary outlined within the informal DSL captured by
Step 1 of the design process.

2. Graphical Modelling. Next, the domain engineer can encode the system design
using the graphical editor. Once encoded, the engineer can then automatically
produce formal specifications ready for verification. As the graphical editor
contains constructs that are specific to the domain, the learning cost for a domain
engineer is minimal due to familiarity with the editor constructs.

3. Verification. Finally, the formal specifications produced in Step 2 can be auto­
matically verified using (in our case for C a s l specification) the Heterogeneous
Toolset H e t s [MML07]. Due to the domain specific lemmas that were developed
during the design process, such verification is “Push Button”.

Each step in this verification process meets the aim of being accessible thanks to the
tools constructed as part of the design methodology.

1.2.3 A p p lica tion w ith in th e R ailw ay D om ain

The railway domain is a prominent example of where formal methods have successfully
been applied, but uptake of such methods within industry is limited. Approaches

5

1. Introduction

that have been taken include algebraic specification, e.g. [Bj0O9], process algebraic
modelling and verification, e.g. [Win02, PGHD04], and model oriented specification,
where, for example the B method has been used in order to verify part of the Paris Metro
railway [BGOO] in terms of both safety and liveness properties. The above approaches
have illustrated the successful application of formal methods to the railway domain, but
all fail to comment on the faithfulness and applicability of such processes by domain
engineers. Many of the approaches also note problems with scalability or are illustrated
on small industrial examples where the question of scalability is unclear.

Along with presenting the technical details enabling the methodology in Figure 1.1,
this thesis, in co-operation with Invensys Rail, instantiates the methodology with both
academic and industrial examples for verification within the railway domain. Invensys
Rail [Invl3] are a world leading supplier of railway solutions, varying from control
software to trackside equipment. Our association with Invensys Rail has led to faithful
railway models that are formal and analysable by current verification technologies. Also,
we do not want to hide the engineering knowledge held by our industrial partners,
and have exploited this knowledge in several places to gain clever domain specific
abstractions that aid with verification, thus presenting a “proof of concept” that our
approach works in practice.

The first presented application to the railway domain was inspired by Bjprner [Bj0O9],
whose natural language specification of the railway domain we follow for our academic
example. Bjprner has given a formal version of this natural language specification
using the Raise Specification Language (RSL) [RAI93]. In contrast, we focus on using
C a s l , the Common Algebraic Specification Language [Mos04b] for our methodology, as
it provides us wfith more features than RSL, including, importantly, established tool
support in the form of the Heterogeneous Toolset (H e t s) [MML07]. For our industrial
example, we use as a starting point the Invensys Rail Data Model [RailO] which has
been developed by our industrial partner and aims to describe all elements in the railway
domain. For both Bjprner’s domain description and the Invensys Rail Data Model,
we successfully provide a set of domain based lemmas that aid with verification. This
demonstrates our overall aim that domain specific languages can be designed to support
automatic verification. We then present the OnTrack tool which is a graphical railway
layout specification tool that we have designed in co-operation with Invensys Rail, thus
ensuring accessibility to the described verification process by railway engineers. Finally,
to illustrate that our approach does in fact reach the aim of scalability and allow for
the verification process described in Section 1.2.2, we model and automatically verify
several real world railway designs. This verification ensures that train collisions do not
occur within those models.

1.3 M odelling and Verification in the Railway D om ain

In recent years there has been a large amount of interest [FH98, BjpOO, BGOO, Win02,
WR03, BCJ+04, PGHD04, KMS08, Bj0O9, Haxl2, Winl2] in the application of formal
methods, including formal verification of systems within the railway domain. Here we

6

1.3. Modelling and Verification in the Railway Domain

concentrate particularly on the formal verification of railway computer systems with
regards to safety properties.

Various forms of formal methods have been applied for safety verification within
railways. These include approaches using process algebraic modelling and verifica­
tion in CSP (Communicating Sequential Processes) by Winter [Win02] and classical
contributions by Simpson [Sim94] and Morley [Mor93]. Approaches using SAT-based
model checking [KMS08, JamlO, JR10] and also model-oriented specification using
the B method [BGOO] have also been considered. W ith respect to specification lan­
guages, Haxthausen has used techniques from Algebraic Specification [HPOO], whilst
the algebraic specification language ASF-SDF [Ber89] has been used for language pro­
totyping of DSLs in areas as diverse as railway interlockings [GvVK95] and financial
products [AvDR95]. With respect to modelling, Dines Bjprner has notably developed a
DSL for the railway domain [BjpOO, BGP99, Bj0O3, Bj0O9, BCS99]. Bjprner’s DSL - the
DSL on which we build later - has been applied in the PRaCoSy (People’s Republic of
China Railway Computing System) project to model a 600km line between Zhengzhou
and Wuhan [BCS99].

There have been a number of approaches that apply model checking to the verification
of concrete control programs from the railway domain. For example a comparison of the
use of different model checkers in the analysis of control tables has been conducted by
Ferrari et al. [FMGF11]. They state that model checking large interlocking systems is
unfeasible with current state-of-the-art model checkers, in particular SPIN and NuSMV.
However, James et al. [JamlO] demonstrate better results and the feasibility of a lower
level approach involving program slicing. Also, Winter in a recent paper [Winl2]
has considered different optimising strategies for model checking using NuSMV and
demonstrates the efficiency of their approach on very large models. Others have also
applied theorem proving to the verification of railway interlocking systems, for example,
the Advance FP7 project [adv] is aimed at developing Event-B models of such systems
and verifying comparable safety properties. A number of prominent studies from the
B community towards large scale verification include [LFFP11, SBRG12, A ntll]. A
detailed comparison with these approaches is not appropriate for this thesis as our
approach is at a higher level of abstraction. The justification for this higher level of
abstraction is that our industrial partners wish to have feedback during the design
process of interlocking systems, before the costly development of the concrete interlocking
system begins.

Finally, there are several projects with a close relevance to this work. The first
is the development environment for verification of railway control systems created by
Haxthausen and Peleska [HP07]. This environment includes a DSL allowing modelling
of control systems, and an automatic translation from models described in this DSL
to executable control programs. At each level of production, various safety checking
steps are taken. The difference between our approach and this one is twofold. Firstly,
we present a methodology that is independent of the domain, whereas the approach by
Peleska is focused in particular on railway control systems. Secondly, their approach is
based on three levels of verification ending with a concrete control program. Whereas
in this thesis we concentrate on the design level, considering how to provide graphical

7

1. Introduction

tool support with verification for such a level. Next, is the SafeCap project [saf] which
has the aim of improving railway capacity safely by integrating proof-based reasoning
about time and state-based models. Part of the project aims to develop an intuitive
graphical domain-specific language [IR12a] for the railway domain with a tailored
toolset [IR12b, ILR13] supporting verification of railway plans. Their approach is based
on Event B [AbrlO] and the Rodin framework [ABH+10]. The approach taken in the
development of this graphical language is inspired by the methodology we present in
this thesis (in fact, the SafeCap DSL and Toolset is developed in co-operation with the
author of this thesis). Finally, recent work by Kanso [Kanl3] presents a framework
that aids in the development of verified railway interlockings. The framework is built
around the Agda theorem prover and has been applied to verify two existing railway
control systems. The approach by Kanso also presents novel results on integrating
model checking into the interactive theorem prover Agda. Here we differ to Kanso, as
we concentrate on designing verification processes with industrial applicability in mind,
rather than applying new formal methods to industry in an exemplary fashion.

1.4 A im s and C ontributions

As stated above, the overall aim of this thesis is to show and explore the hypothesis
that domain specific languages can aid with verification. The main result of this thesis
is a novel design methodology for creating domain specific modelling languages for
verification. It provides the theoretical framework forming the basis of this methodology,
and illustrates, concretely for the railway domain, that applying the methodology results
in a practical and usable graphical specification tool with automatic verification support.
The work that has been completed can be split into the following main results:

UML Class Diagrams to M odal CASL: The first result of this thesis is to provide
the theoretical.framework allowing one to utilise industrial DSLs, formulated as UML
class diagrams, for verification. As UML class diagrams only capture the static system
aspects, we make the realistic assumption that the class diagram is accompanied with
some natural language specification describing the dynamic system aspects. Often, for
Railways this situation is given, as we shall see later, by generally accepted standard
literature, for example, the description by Kerr [KR01].

On the technical side, the construction we provide is based on institution theory:
to capture realistic class diagrams, we extend the UML class diagram institution by
Cengarle and Knapp [CKTW08] with numerous concepts. UML class diagrams also
describe invariants that hold during all executions of a system. However, they do
not offer the ability of capturing a system’s dynamics. To allow for this, we employ
M o d a l C a s l [Mos04a] as a general framework for specifying Kripke-structures. We give
an institution comorphism, or semantic preserving map, from UML class diagrams to
M o d a l C a s l . Part of this mapping is a general construction, namely that of a Pointed
Powerset Institution, which factors out a general construction principle necessary for
connecting UML class diagrams with an arbitrary institution capturing system dynamics.

1.4- Aims and Contributions

In M o d a l C a s l , we then model system dynamics according to the natural language
specification describing the dynamic system aspects. For the sake of better proof
support, we apply an already established institution comorphism from M o d a l C a s l to
C a s l [Mos04b]. Overall, the result of this translation allows the direct importation of
DSL specifications from industry into the design methodology we have proposed.

Dom ain Specific Lemma Design: The second part of the proposed methodology
is to support the formal DSL from above with sufficient lemmas for verification. We
suggest the following approach: Given a DSL for a particular class of systems and a set
of properties one is interested in, the DSL can be systematically extended with domain
specific lemmas to allow for automatic verification. We claim that such an approach
can be applied whenever one designs or adapts a DSL for verification. The overall aim
of our approach is to develop a “push button” verification process for critical systems.

Formally, we consider our DSL as a loose specification, the logical closure of which
we regard as implicitly encoded “domain knowledge” . The second result of this thesis
shows how to systematically exploit this “domain knowledge” for automatic verification,
particularly within the railway domain. Concretely, we show that for a given property,
one can make certain parts of the DSL explicit in the form of lemmas proven once and
for all over the DSL. Given a concrete model described using such a DSL, these lemmas
can be exploited to aid verification. In general, for a DSL the verification aims are
known in advance. Hence, it is possible to provide a set of supporting lemmas that
make verification feasible for these known aims.

To illustrate the usefulness of such lemmas, we extend the C a s l DSL gained from our
translation from UML for automatic proof support. Finally, we model and automatically
verify several track plans provided by our industrial partner Invensys Rail as real-world
challenges. This provides concrete evidence that exploiting domain knowledge eases
verification. To provide proof support, we use various automated theorem provers which
are accessible via the Heterogeneous tool-set [MML07].

The OnTrack Toolset: The third result of this thesis is the OnTrack Toolset. On­
Track provides graphical tool support for specifying and verifying railway layouts. It is
the resulting DSL editor gained from applying our methodology and encapsulates the
verification process for the railway domain. OnTrack automates workflows for railway
verification, starting with graphical scheme plans and finishing with automatically
generated formal models set up for verification. OnTrack is grounded on the domain
specification language by Bjprner and allows for generation of C a s l models prepared
for verification using the domain specific lemmas from the previous section. In addition
to this, OnTrack has also been designed in a way tha t allows it to be generic in the
formal specification language used. For example, we have also extended OnTrack to
produce CSP||B models [JTT+13].

To create the OnTrack Toolset, we have used the GMF framework [Gro09] that
provides the means for the user to take a UML class diagram and create a graphical
editor for concepts contained within this diagram. From this, we have implemented

9

1. Introduction

various model transformations using the Epsilon framework [KRPP13]. These model
transformations allow the production of formal models. They also make the toolset
extendable in the sense that production of formal models in any given formal specification
language is possible through the implementation of another model transformation. Our
use of a DSL as the basis for OnTrack also allows for the formulation of abstractions that
work for verification in several formal specification languages, and independent of the
verification applied approach. This approach illustrates that abstraction principles are
often inherent to the domain under consideration and not only to the formal specification
language used.

In Chapter 7, we give details of the implementation of OnTrack using GMF. We
also show how the model to text transformation for generating C a s l models has been
implemented, illustrating how the tool can be extended to produce formal models in
other formal specification languages.

Industrial Application to the Invensys Rail Data Model: Throughout the
thesis, we use the established academic domain modelling of Dines Bjprner to illustrate
our approach. To illustrate that our approach not only works for academic scenarios and
that we have achieved our aim of having industrial strength support for verification, we
also present results based on our industrial partners domain modelling. We firstly show
that our UML to M o d a l C a s l translation scales up to industrial size UML diagrams
in the form of the Invensys Rail Data Model [RailO]. Then, we show that extension
of this domain specific language with our presented domain specific', lemmas allows for
successful verification. We again verify several real world scenarios from our industrial
partner. This illustrates that the core concepts of our methodology are applicable on
an industrial level. Finally, work towards an industrial strength editor is ongoing, and
discussions regarding technology transfer to Invensys rail are underway.

1.5 P ublished M aterial

The work presented in this thesis draws from a series of publications at various confer­
ences and workshops. These include:

Designing Domain Specific Languages for Verification: First Steps [JR11]
(Phillip James and Markus Roggenbach. ATE 2011)
Presents a first attempt at a methodology for designing domain specific languages for
verification. The paper outlines the main steps of the methodology and gives a small
example illustrating how it aids verification. The methodology presented in this thesis
adapts and extends the first approach from this paper.

Designing Domain Specific Languages - A Craftsman’s Approach for the
Railway Domain using CASL [JKMR13]
(Phillip James, Alexander Knapp, Till Mossakowski and Markus Roggenbach. WADT
2012)

10

1.5. Published Material

Presents the main theoretical results of the translation from UML class diagrams to
M o d a l C a s l including a new UML class diagram institution and a comorphism from
this to M o d a l C a s l . The paper also presents the application of this comorphism to
Bj0rner’s DSL. Chapter 5 is mainly based on the results in this paper. For this paper,
guidance on UML and UML institutions was provided by Alexander Knapp, and details
on the M o d a l C a s l institution were provided by Till Mossakowski.

Using Domain Specific Languages to Support Verification in the Railway
Domain [JBR13]
(Phillip James, Arnold Beckmann and Markus Roggenbach. HVC 2012)
This short paper and accompanying poster presents some first results on creating
domain specific lemmas for the railway domain. The work also presents a domain based
abstraction technique for railways. The results given in Chapter 6 of the thesis build on
this work, but in a more refined form. Arnold Beckmann provided input on techniques
for measuring the theoretical improvements gained in terms of proof complexity. In this
thesis, we do not consider such proof theoretic measurements.

OnTrack: An Open Tooling Environment For Railway Verification [JTT+13]
(Phillip James, Matthew Trumble, Helen Treharne, Markus Roggenbach and Steve
Schneider. NFM 2013)
Presents the first version of the OnTrack tooling environment. The paper gives details
about the tool architecture including a discussion of the domain based abstractions that
are implemented in the tool. It also gives details of a CSP||B model transformation
for generating formal models in CSP||B. Finally, it discusses how to extend the tool
to produce formal models in other specification languages. The work presented in this
paper constitutes part of Chapter 7. The tool was developed in co-operation with
Matthew Trumble and Helen Treharne at Surrey University. The editor construction
was a joint effort, the model abstractions were implemented by the author of this
thesis, and Matthew Trumble and Helen Treharne provided the model transformation
to CSP||B.

Verification of Scheme Plans using CSP||B [JMN+13]
(Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider,
Helen Treharne, Matthew Trumble and David Williams. FM-RAIL-BOK 2013)
Presents an overview of the approaches taken in various papers [MNR+ 13, MNR+12a,
MNR+12b, MNR+12c] towards the verification of railway scheme plans in CSP||B. The
aim of the paper is to form part of a body of knowledge on railway verification. The
work presented is a result of a joint effort and ongoing collaboration between members
of Computer Science Departments at both Swansea and Surrey University. Our main
contribution to this work was towards the presented abstractions, experiments and the
tooling environment provided by OnTrack. The author was also involved in the design
of the CSP||B models. Some aspects of the paper are presented in Chapter 7 of the
thesis.

11

1. Introduction

Verification of Solid State Interlocking Programs [JKL+13]
(Phillip James, Karim Kanso, Andy Lawrence, Faron Moller, Markus Roggenbach,
Monika Seisenberger and Anton Setzer. FM-RAIL-BOK 2013)
The main results in this paper combine the work of three previous MRes projects
(including that of the author of this thesis) towards the Model Checking of concrete
interlocking programs. Once again, the presented work is aimed at an established body
of knowledge publication. The work presented in this paper does not directly contribute
to this thesis.

On M odelling and Verifying Railway Interlockings: Tracking Train Lengths
[To appear in SCP]
(Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider
and Helen Treharne. Accepted for publication in Science of Computer Programming)
Presents an approach towards modelling the lengths of trains, extending previous work
on modelling and verification using CSP||B. The paper is based on the following techni­
cal report: On modelling and verifying railway interlockings: Tracking train lengths.
Technical Report CS-13-03, University of Surrey, 2012. The main results in this paper,
although related, are not presented in this thesis as we consider an approach based on
the C a s l specification language.

Techniques for M odelling and Verifying Large Scale Railway Interlockings
[To appear in STTT]
(Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider
and Helen Treharne. Accepted for publication in STTT)
Presents an approach towards modelling and verification using CSP||B. The paper
presents abstractions which are included in the OnTrack tool and were developed jointly
by all authors of the paper. As these abstractions have been implemented in OnTrack
in a manner that is independent of the formal specification language used, they are
presented briefly in Chapter 7.

1.6 C hapter O verview

The remainder of this thesis is outlined as follows:

Background Material:

Chapter 2 introduces, in some depth, the field of domain specific languages
and their design. It considers the classical motivations for developing domain
specific languages, along with the benefits they can bring to the more traditional
application domain of programming languages. This chapter also explores various
frameworks for creating domain specific languages and associated tools. It gives
various industrial examples of domain specific languages and tools. Finally, the

12

1.6. Chapter Overview

chapter concludes with a discussion of the Eclipse frameworks applied in our
methodology.

Chapter 3 considers the railway domain and various domain specific languages
and modelling approaches that have been designed for the railway domain. This
includes a detailed look at both industrial practice within the railway domain and
Bj0rner’s DSL which is used for illustration throughout the thesis.

Chapter 4 introduces the theoretical background on specification formalisms and
institution theory. It presents the reader to both C a s l and M o d a l C a s l on the
syntactical and semantic level. It also discusses the Heterogeneous Toolset (H e t s)
and the various theorem provers that we use for proof support throughout the
thesis.

Methodology Construction:

In Chapter 5 we introduce our new institution for UML class diagrams and the
comorphism we have defined into ModalCasl. We discuss the concepts of UML
class diagrams tha t we capture, and also present the general construction of a
pointed powerset institution for capturing dynamical aspects of systems. Finally,
we illustrate both the institution and comorphism using Bjprner’s DSL.
Continuing from our comorphism presentation, Chapter 6 shows how to extend
the resulting C a s l specifications to allow for verification. This chapter introduces
and illustrates the use of domain specific property supporting lemmas for the
railway domain. Such lemmas make verification of real world systems possible.
This chapter concludes by presenting various verification results that were made
possible through application of the supporting lemmas.
Chapter 7 brings together the results of the previous chapters into the OnTrack
toolset. We present details on the implementation of OnTrack using the GMF
development process and show how to implement model transformations for
generation of formal specifications. We then discuss the ability of OnTrack to
implement domain abstractions that are independent of the formal verification
procedure.

In Chapter 8 we apply our methodology to the Invensys Rail Data Model. We
show that our UML class diagram institution and comorphism to M o d a l C a s l
capture the required elements. We also show that the domain specific lemmas we
introduced previously in Chapter 6 also apply to the Invensys Rail Data Model.
This chapter ends by providing verification results for models formulated using
this Data Model.

Conclusions:

Finally, in Chapter 9 we draw the thesis to a close by summarising our proposed
design methodology. We give concluding remarks on applying the methodology
and comment on future areas of interest towards extending the methodology.

13

Part I

Background M aterial

15

Chapter 2

Domain Specific Languages

C ontents
2.1 Introduction, History and M otivations....................
2.2 Why Develop D S L s ...

2.3 Industrial Examples of Domain Specific Languages

2.4 Domain Specific Language D e s ig n
2.5 UML Class Diagrams for DSL Descriptions

2.6 Eclipse Frameworks: EMF, GMF and Epsilon . .
25
27

20
19
17

21

Throughout all areas of Science, one can compare approaches that are general in principle
or specific to the task at hand. A general principle gives a solution to several problems
of a similar manner. Whereas a specific solution often solves the problem in a more
comprehensive manner, but can be applied to significantly less problems. In this section,
we consider these approaches in Computer Science where the differences are exemplified
by general purpose languages (GPLs) and domain specific languages (DSLs) respectively.
We focus on DSLs as these are of greater relevance to our work. In our discussion,
we consider the usual characteristics of DSLs, how to design DSLs and comment on
several particularly successful DSLs. We briefly discuss UML class diagrams which are
commonly used for the definition of DSLs and finally, we consider several Eclipse [eel]
based tooling frameworks provided to support DSL design.

2.1 Introduction, H istory and M otivations

Domain specific languages (DSLs) [FP10, MHS05], also known as special purpose [Wex81]
or little/mini languages [vDK98], are languages that have been designed and tailored
for a specific application domain. Some examples of domain specific languages in­
clude Risla [AvDR95], Hancock [BFRSOO] and the well known Backus Naur Form or
BNF [Knu64]. Another example of such a language is the commonly used HTML [Gra95,
RLHJ99], which was designed explicitly with webpage creation in mind. HTML has

17

2. Domain Specific Languages

specific features such as elements, tags and attributes that allow the specification of
structure within a web page. The advantages of having these domain specific features
are apparent as HTML has become the de facto standard for webpage creation due to
its expressiveness and ease of application. Here, when we speak about expressiveness,
we refer to how easily a user of the language can construct and speak about the objects
they desire. Expressiveness can often be explored by considering how intuitive various
language constructs are. The disadvantage of domain specific languages are that they
are often costly to design and require both domain and language design expertise.

The question of what constitutes a domain specific language is a complex one.
Several attempts have been made to characterise exactly what constitutes a domain
specific language [MHS05, FP10, Tah08]. Here we present an overview and combination
of these attempts to classify such languages. The main features of domain specific
languages are often classified as follows:

Expressiveness and Generality The main telling feature of whether a language is
domain specific is if it trades expressiveness for generality. Expressiveness of a language
covers aspects of how easy it is to express various, often domain specific, ideas using
the constructs appearing in the language. Whereas generality tries to provide generic
constructs that can be used together for many application domains. A language is often
called domain specific if it provides tailored notations and constructs for a particular
application domain. Such tailored notations and constructs allow programmers from
the domain to easily express the things they require. For example, if we consider a
language such as HTML, it can only be used to specify layout. It is not a programming
language but a markup language used as input to a web renderer. Hence we could
probably not write a program such as quick sort using HTML. Whereas a language such
as C [KR88] is Turing complete, and could be used to create any computable function
or program. HTML trades generality for expressiveness, allowing users to easily specify
web page layout. Using C, a task such as text layout may be possible, but would not
necessarily be straightforward given the constructs and notations provided by C.

Extension and Restriction Another telling feature of a domain specific language,
is that the language is based on some existing language which has either been:

1. extended with extra features and constructs that are only applicable to the domain
under consideration, or

2. restricted to a sub language allowing the re-use of tools and other features available
for the language, but providing insurance that only certain ‘restricted’ programs
may be created using the language.

A typical example of restriction of a language is Spark Ada [Bar97] which is a restricted
version of Ada [Pyl85]. Spark Ada has been designed especially for the domain of critical
software development and only contains those Ada constructs that are considered to be
“safe” . For example, there are harsh restrictions on concurrency. The benefits that come
with this restriction are again visible as reasoning about the runtime behaviour of a

18

2.2. Why Develop DSLs

Spark Ada program is often easier than reasoning about an Ada program and also, any
Spark Ada program can be compiled using any Ada compiler. Hence the development
of new compilers for the Spark Ada language was not needed. Such re-use of tools often
means that development costs for new domain specific languages can be reduced in
comparison to designing a new language from scratch.

An example of extension, is the EBNF or Extended Backus Naur Form lan­
guage [IEC96]. EBNF provides syntactic extensions to traditional BNF tha t allow
the user to express repetition and optional statements more easily, for example through
the use of regular expressions such as the * notation. Today, EBNF is often used over
BNF.

L ibraries and A P Is The final and maybe not so convincing classification of a
domain specific language, is a language that is provided by a programming library or
API (Application Programming Interface) for an existing general purpose language. A
good example of such a library, is the NAG library [HP88] which provides a collection
of numerical algorithms. Such a library often defines functions that are relevant to
a specific domain, and hence in turn allow domain engineers access to the features
that they need without having to implement the features themselves. Taking this into
account, we now consider the benefits and costs of designing a DSL completely from the
drawing board. In the following section we provide arguments to clarify such a decision.

2.2 W hy D evelop DSLs

Given the wide range of general purpose languages available, and the often high costs
involved in development, it is not always clear why a domain specific language should
be developed. The following list, based on the arguments presented by Mernik et al.
[MHS05], provides a compelling argument for domain specific language design.

Analysis and Verification: Developing a domain specific language allows aspects relating
to verification, optimisation and existing processes to be taken into account. For
example, domain specific knowledge could be incorporated into the language which
in turn could help verification of programs created using the language. This is
the approach we emphasise throughout this thesis.

Re-use: Domain specific languages are often developed with re-use in mind. That is,
constructs are created to allow maximum re-use of ideas and concepts for the
application domain. Krueger [Kru92] highlights re-usability as an advantage of
domain specific languages. The inclusion of domain specific notations for re-use
are often highly useful in the application of the language.

Readability: Definability of domain specific notations is sometimes out of the scope of
existing languages. For example, special keywords may not be definable using an
existing language. A typical example of this is that many programming languages
do not allow the use of infix mathematical notation. For example, the expression

19

2. Domain Specific Languages

“Div(a,b)” can be defined, but the infix expression “a Div b” can often not be
defined.

Productivity: Domain specific languages are also able to improve the software de­
velopment cycle. For example, Hermans [HPvD09] shows that domain specific
languages can ease the design and implementation phases of a project. Similarly
having a domain specific language allows for easier maintenance as shown by
Deursen and Klint [vDK98]. Here, due to domain specific languages, domain
engineers are able to easily understand and maintain the existing programs.

Along with this list of advantages, surveys into the success of domain specific
languages in industry are often conducted to show the improvement that can be
obtained from developing a domain specific language. A particular example of such a
survey is given by Hermans [HPvD09], where the impacts of a domain specific language
called ACA.Net are studied. Here the application is a visual language used to build
web services. The language was found to greatly improve both reliability of software
and productivity when creating software in a multiple number of projects.

Given these advantages, it is obvious that when designed in the correct way, a
domain specific language can be highly useful and often required in specific domains.
For this reason, Heering and Sloane [MHS05] have tried to capture a general design
process for developing such domain specific languages. Here, different ‘design patterns’
are given for all the stages of domain specific language design, beginning from the
decision to design a new language through to the implementation of the language and
corresponding tool support. To continue our discussion into domain specific languages,
we consider some specific languages that have been successfully designed and applied to
solve an issue within a particular domain.

2.3 Industrial Exam ples of D om ain Specific Languages

In this section, we briefly review some existing domain specific languages, commenting
on the main features of each. The purpose of this section is to give an insight into when
domain specific languages can be useful, and how they provide these additional useful
features. The application areas for the domain specific languages we present are wide
and varied, demonstrating how vast the subject area of domain specific languages is.
Some further sources for examples of domain specific languages include the surveys by
Deursen and Klint [vDKVOO], and Mernik et al. [MHS05].

RISLA (1995) RISLA or Rente Informatie Systeem Language [AvDR95] is a domain
specific language for use within the banking domain. It is a language for designing
interest rate based products, and was developed using the ASF+SDF meta environ­
ment [vdBvDH+01]. A product description written in RISLA is eventually compiled
into a COBOL implementation. The document discusses how RISLA captures key
notations for product descriptions, and how it solves some discrepancies that were

20

2-4- Domain Specific Language Design

apparent before its use. Overall, the key features of RISLA include modularity and
re-usability.

APOSTLE (1997) APOSTLE [Bru97] is a domain specific language created for
parallel discrete event simulation. Parallel discrete event simulation, sometimes called
distributed simulation, refers to the execution of a single discrete event simulation
program on a parallel computer. The main motivation for creation of APOSTLE was
that domain engineers, namely simulation practitioners, should not be required to have
a detailed understanding of the underlying protocols involved in parallel discrete event
simulation in order to apply the technology. The article outlines several rounds of
implementation of the language, and spends time discussing how types in a domain
specific language play an important role, especially to the semantics of the language.
The results of creating the language are not only increased expressability for the domain,
but also a fairly generic language for the domain.

Hancock (2000) The Hancock [BFRSOO] domain specific language was designed
for computing with customer data collected from telephone calls, for example call
lengths or numbers dialled. The motivations for designing the language included that
certain features, such as data traversal, could not be directly represented using libraries
of general purpose languages. The language itself is eventual compiled down to C,
but provides better data abstraction mechanisms than would be possible in C. These
methods help when dealing with the vast amount of data involved in the telephone
industry. The designers of the language comment that Hancock makes the programmers
task much easier, and also that the language should greatly reduce errors [BFRSOO].

A C A .N ET (2009) ACA.NET or Avanade Connected architectures for .Net [HPvD09]
is a domain specific language used to describe how to create web services using the
Microsoft’s .Net framework [TL03]. The language is currently in its fourth version. It
aims to provide a highly reusable set of architecture components that help to accelerate
the design process of applications. The ACA.NET domain specific language has been
heavily analysed against success by Hermans et al. [HPvD09]. The results indicate that
users of the language find it helps to improve reliability whilst also reducing development
costs.

2.4 D om ain Specific Language D esign

In this section, we explore various platforms enabling the creation of DSLs. We
concentrate our efforts on the ASF+SDF [Ber89, vdBvDH+01] language for aiding in
the design of domain specific languages. Firstly we introduce ASF, then we study SDF.
Next, we look at the combination of ASF+SDF and the meta environment [vdBvDH+01]
that is provided for tool generation. Finally, we comment on some commercially available
platforms such as MetaEdit+ [SLTM91, KLR96].

21

2. Domain Specific Languages

2.4.1 T he A lgebraic Specification Form alism

ASF or the algebraic specification formalism [Ber89], is a formalism for specifying
abstract data types using initial semantics. It supports modularised specifications which
can contain the following features: importing and parametrisation, hiding, overloading
of functions, infix operators and positive conditional equations. A typical specification
written in ASF can be viewed as a set of modules that describe algebras. Such a module
includes a set of sorts and function declarations, i.e. the signature, a set of variable
declarations allowing the user to define terms over the declared variables, i.e. the syntax,
and finally a set of equations, i.e. the properties. In ASF, each module specifies an
initial algebra. A simple ASF specification is given in Figure 2.1.

The main features of this module are as follows: The exports keyword represents
sorts and functions that are exported by the module. These sorts and functions are
then visible by any module that imports this module. Any sorts and functions declared
outside this are only visible within the given module; the so r ts keyword, declares that
the following elements are sorts for use within the module; the functions keyword
declares that the following lines are functions/operations of the module along with their
profiles; the v a r ia b le s keyword declares variables to be used within the equations
of the module; finally, the equations keyword declares equations/axioms that must
hold for any algebras that satisfy the module. These equations are formed using the
previously defined functions and variables.

An important feature that is highlighted by the module in Figure 2.1, is the initial
algebra semantics used in ASF. That is, the module specifies the Booleans up to
isomorphism. No formulae expressing the “no junk” and “no confusion” properties are
needed due to the initial semantics. This is in contrast to the loose semantics employed,
as we see in detail later, by the C a s l specification language.

2.4 .2 T he S yn tax D efin ition Form alism

SDF, or the Syntax Definition Formalism [Ber89, HHKR89], is a description language
allowing users to define custom syntax. SDF is similar to the tools Lexx [LMB92]
and Yacc [LMB92] which are commonly used for syntax definitions of programming
languages. The advantage of SDF is that it is possible to combine SDF with many
different programming or specification languages, the most popular combination is with
ASF. The combination with ASF allows users to specify both the syntax and semantics
for a specific language they wish to design. SDF itself, allows the definition of both
lexical and context free syntax. We will briefly review SDF through the means of
an example. For further reading on SDF the reader is referred to [Ber89, HHKR89].
Figure 2.2 shows a typical definition of syntax for the Booleans in SDF.
The le x ic a l syntax section of the specification allows the usual white space escape
characters to be used as part of the syntax for Booleans. Here, the lexical syntax
specifies that spaces, carriage returns and line breaks can be used. The con tex t-free
section of the specification is concerned with defining the context-free grammar for the
Booleans. The grammar defines terminal tokens t t and f f , and non terminal tokens or

22

2-4- Domain Specific Language Design

module Bools
begin

exports
begin

sorts Bool
functions:

tt: -> Bool
ff: -> Bool
and: Bool # Bool -> Bool
or: Bool # Bool -> Bool

end

functions
not : Bool -> Bool

variables
a,b: -> Bool

equations
[1] not(tt) = ff
[2] not(ff) = tt
[3] or(a,b) = not(andCnot(a),not(b)))
[4] and(tt,a) = a
[5] and(ff,a) = ff

end Bools

Figure 2.1: Specification of the Booleans in ASF.

and and. Further examples of SDF definitions can be found in [Ber89].

2.4 .3 A S F + S D F

ASF+SDF [Ber89] is the combination of the Algebraic Specification Formalism with the
Syntax Definition Formulation. It has been developed at the CWI (Centrum Wiskunde
and Informatica) department in Amsterdam. The combination allows users to describe
both syntactical and semantic details of the language which they are aiming to design.
The aim of ASF+SDF is to aid in the creation of domain specific languages.

ASF+SDF comes with a powerful meta-environment [vdBvDH+01] for prototypical
tool creation. The ASF+SDF met a-environment can be described as “an interactive
development environment for the automatic generation of interactive systems for con­
structing language definitions and generating tools for them” [vdBvDH+01]. That is,
the meta-environment provides the user with several features including: syntax editing
tools for creating and editing ASF+SDF specifications; compilation of such ASF+SDF
specifications into language tools such as language parsers, debuggers, editors and

23

2. Domain Specific Languages

module Bools
begin

lexical syntax
layout SPACE
functions

[\t\n\r] -> SPACE
context-free syntax

sorts Bool
functions

tt -> Bool
ff -> Bool
Bool or Bool -> Bool
Bool and Bool -> Bool

end Bools

Figure 2.2: Specification of the syntax for the Booleans in SDF.

compilers; finally, user interface extensionality via user defined features. Together, these
features combine to allow users to define and generate integrated development tools for
their given language definition.

An application of ASF+SDF which is of particular interest to us, is an application
to Vital Processor Interlockings (VPI’s) [GvVK95] as used by Dutch railways. In
their work, Groote et al. analyse and verify safety properties against VPI’s. The
VPI’s are programmed using Vital Logic Code (VLC). VLC is then modelled using a
process algebraic approach. The main application of ASF+SDF was in creating several
tools through prototyping. The prototypical tools created by the ASF+SDF meta­
environment were translated down to more efficient tools using the C programming
language. For example, a parser for translating VLC into propositional logic was
developed using ASF+SDF. This then enabled the verification of the interlockings
using SAT Solvers. The outcome of using ASF+SDF was mainly the reduction in time
required to develop prototype tools in comparison with estimates based on not using
ASF+SDF.

2.4 .4 C om m ercial P latform s

We briefly comment on some of the commercial platforms that are available for domain
specific language design. We refrain from a discussion of Eclipse based platforms at this
stage, and discuss them in more detail later in Section 2.6.

DSL Tools: DSL Tools [CJKW07] is a toolkit provided by Microsoft for the design of
domain specific languages within the Visual Studio development environment. It
allows for the creation of graphical UML like languages which can be edited within

24

2.5. UML Class Diagrams for DSL Descriptions

the Visual Studio IDE. It also allows the production of various tool like code
generators. For prototyping a DSL, DSL Tools provides a proprietary notation for
meta modelling but lacks a mechanism for model to model transformations [SK03].
Interestingly, studies by Pelechano et al. [PAMC06] have found that developing
a DSL with Eclipse based tools is easier than with DSL Tools, but the resulting
development environment from creating a DSL with DSL Tools is easier for users
to learn to use.

MetaEdit+: M etaEdit+ [SLTM91, KLR96] is one of the most popular commercially
available DSL design tools. It allows users to put objects, with properties, onto a
panel and connect objects with relationships. The tool-set includes a Diagram
Editor, Object browser and the possibility for code generation. When designing a
DSL within MetaEdit-f the user is not required to write any code. Instead, there
are a series of editors that allow the user to create objects for the DSL and to
attach graphical representations to them. Similarly, for each object the user can
generate code. This code generation is completely open and the user is free to
generate whatever they wish. The main element lacking within M etaEdit+ is a
validation process for such produced code.

AToM3: Finally, AToM3 [LV02] is a tool providing features for meta modelling of
domain specific languages. It allows users to create a meta model for the DSL
using a built-in editor for a subset of UML class diagram features. Prolog [Wie96]
constraints can be attached to elements of this diagram to constrain the features
of the DSL. Finally, a visual syntax can be attached to elements of the class
diagram. One of the main interesting features of ATOM3 is that it allows users
to create multiple viewpoints to one underlying domain specific language. These
viewpoints are given in the form of projections of the underlying meta model of
the DSL [PALG08].

2.5 UM L Class D iagram s for DSL D escriptions

UML Class Diagrams [Objll] are industrially accepted for modelling a variety of systems
across numerous domains. Often they are used to describe all elements and relationships
occurring within a domain. As such, a UML Class Diagram can be thought of as
describing a domain specific language (DSL), and many tools and frameworks use UML
class diagrams as a starting point for the description of a domain specific language. A
typical example of such an endeavour is given by the Data Model [RailO] of our research
partner Invensys Rail. It aims to describe all elements within the railway domain. In this
section, we briefly discuss the components that form UML class diagrams. As a running
example throughout the thesis, we use Bjprner’s DSL for the railway domain [Bj0O3].
Bjprner’s classification for the Railway domain is illustrated using a UML class diagram
in Figure 2.3. We will discuss the domain specific components of the diagram later in
Chapter 3, here we discuss the UML class diagram constructs.

25

2. Domain Specific Languages

hasLine hasStatxon

allstate:hashas

has

Line

P a th

UID

Point

Track

Linear

S tation A llStates

*id: UID
Net

U nltS tate

C onnector

U st[L inear]

•■•isOpent): Boolean
Route

S et[U nltS tate]

♦isWellFormedf): Boolear
List[Pair[U nit,Path]]

*isValidPath(): Boolean
Palr[C onnector,C onnector]

♦ «dynamic>> isClosedAt(): Booleai
Unit

Figure 2.3: A UML class diagram for Bjorner's DSL for the railway domain.

2 .5 .1 E le m e n ts o f C lass D iag ram s

The UML diagram in Figure 2.3 illustrates many of the main features of class diagrams.
Here, we give a very brief introduction to these concepts, further details can be found
in [Obj 11]- Overall Figure 2.3 contains:

• Classes, represented by a box, e.g. Net. Unit. Station etc. These represent concepts
in the railway domain.

• Properties, listed inside a class, e.g. id : UID in the class Net expresses that all Nets
have an identifier of type UID (Unique Identifier).

• Generalisations, represented by an unfilled arrow head, e.g. Point and Linear are
generalisations of Unit.

• Associations, represented by a line/arrow between two classes, e.g. the has link
between Unit and Connector. Associations can have direction, and also multiplicities
associated with them. The multiplicities on the has association between Unit and
Connector can be read as: “One Unit has two or more connectors”.

• Compositions, represented by a filled diamond, e.g. the hasLine composition for
Net and Line, tell us that one class “is made up of” another class. In a similar
fashion to associations, compositions can also have multiplicities.

• Operations are also represented inside a class, e.g. the isOpen operation of type
B oolean inside the Route class.

Such a class diagram can be thought of as describing all the components that can be
found within a domain.

26

2.6. Eclipse Frameworks: EMF , GMF and Epsilon

Here, we note that the query operations we consider throughout this work can be
seen as parameterised properties. We also do not treat operations that can modify the
state of an object.

2.6 Eclipse F ram ew orks: E M F , G M F an d E psilon

In this section, we discuss the main Eclipse IDE components and plugins that we use
for creating domain specific languages and the associated tool support. To this end, we
discuss the Eclipse Modelling Framework (EMF) [SBMP08], the Graphical Modelling
Framework (GMF) [Gro09] and Epsilon [KRPP13]. Each of these plugins are developed
for Model Driven Engineering and Development [Ken02, BBG+05] of domain specific
languages.

2 .6 .1 T h e E clip se M o d e llin g F ram ew o rk

Many people consider the core of a language to be it's abstract syntax. From an abstract
syntax, one can develop artefacts such as a concrete syntax or model transformations to
another abstract syntax. The Eclipse Modelling Framework [SBMP08] is a modelling
framework and code generation facility for building tools and other applications based
on a structured data model. Part of this framework includes Ecore [SBMP08] which is
a UML class diagram like language for describing meta models for DSLs. This model
is stored using the XMI (XML based) file format and can be edited using a number
of varying viewpoints. From such a XMI model specification, EMF provides tools
and runtime support for producing various Java classes for the model, along with a
set of adaptor classes that enable viewing and editing of the model. Finally, such a
model serves as the basis for creating a graphical syntax for a DSL using the graphical
modelling framework.

EClass
HeReferenceTypename: S t r i n g

< e A t t r i b u t e s eRefe rences*

VaeAttnbuteType EReference
name: S t r i n g

EDataType
♦name: S t r in g

EAtrrlbute

Figure 2.4: Ecore Meta Model for a simplified version of Ecore.

In Figure 2.4 we give a UML class diagram view of the Ecore model for a simplified
version of Ecore itself. That is. as Ecore is nothing but a language to describe abstract
syntax, Figure 2.4 gives the meta model for this language. This shows that the Ecore
language contains the concepts EClass, EAttribute, EReference, and EDataType. All
elements have a name property except EDataTypes. The intuitive names correspond to
what each element represents in the Ecore language. That is, we can define EClasses

27

2. Domain Specific Languages

which can have EAttributes of a certain type given by EDatatype. Finally, there can be
EReferences between EClasses representing an association between the EClasses. These
concepts fit well with some of the UML class diagram concepts defined in Section 2.5,
showing the close relationship between Ecore and UML class diagrams.

2 .6 .2 T h e G ra p h ic a l M o d ellin g F ram ew o rk

The GMF or Graphical Modelling Framework project [Gro09] provides the features
allowing one to develop, from an Ecore meta model, a graphical concrete syntax for a
domain specific language. The result of applying the GMF process is a graphical editor
encapsulating this graphical concrete syntax. Such an editor is shown in Figure 2.5.
This editor consists of a drawing canvas (in the centre) and a palette (right hand side).
Graphical elements from the palette can be dragged and positioned onto the drawing
canvas. Overall, the editor can be used to produce model instances of the domain
specific language described by the underlying Ecore meta model.

£ *dout>le.*unction.b)oefnercomplete_dia9rem n

C
♦ ba * a* * «c \

?
♦ S3

" □

Palette t>

♦ unrtHasCt
♦ Un**asC2
♦ Linear
♦ Pomt
♦ Pc*ntHesC3
♦ Connector
♦ Signal
♦ SjgnalPtace
♦ SignalPSace
♦ ControlTaOle

♦ Entry ♦ ** ♦ *a + ♦ AO + » * AC ♦ ah <- aj a t m

< ' .o © r-.n>oie =3 Properties tt
* Signal

Cor# Property value

i A 1 □

m m m Controls Routes
Name
Ptaced At Connector
Placed On Linear

♦ Route 1A
a Si
♦ Connector
♦ Linear Entry

Figure 2.5: An example GMF Editor (OnTrack) for railway track plans.

GMF uses the Graphical Editing Framework GEF for many of its features, but
provides a useful development framework on top of GEF. The main features of GMF can
be split into two components: a tooling framework for developing graphical editors and
a runtime framework for running such editors. Here, we discuss the tooling component.

2.6.2.1 G M F Tooling

The tooling component of GMF provides easy access and model driven editing to
several models that are required to create a GMF editor plugin. Figure 2.6 shows the
development process for a typical GMF editor.

28

2.6. Eclipse Frameworks: EMF, GMF and Epsilon

Tooling Model
D efinition

D om ain M eta
M odel (Ecore) C re a te GMF

P ro jec t
D evelop
M odels

-yrvr

G raphical Model M apping Model
Definition D efinition

s . _____ ^ S

GMF E ditor

Figure 2.6: The steps involved in developing a GMF Editor.

To begin, a new project is created. As part of creating a new GMF project, the user
is required to bind the project to an underlying Ecore meta model. Next, the user fills
in details for the following models:

Graphical Definition Model: The graphical definition model is where the user can
define the various figures to be used for the concrete syntax. Figures are designed
for any classes and relationships that need to be present in the editor from the
underlying Ecore model. These figures are then collected into a Figure Gallery.

Tooling Definition Model: As illustrated in Figure 2.5, most editors created using
GMF include a palette allowing users to create and work with constructs from
the concrete syntax of the DSL. The tooling definition model is where users can
define and design the elements to be included and displayed in the palette.

Mapping Model: The mapping model is one of the most important models. It is where
one can define how elements from the graphical definition model and tooling
definition model are linked to elements from the underlying Ecore domain meta
model. The mapping model is used as a key element in deriving the main features
of the GMF editor.

Generator Model: Finally, the generator model combines the information of the
previous models with details that are needed to generate code for the editor. The
generation of this model from the mapping model is often an automatic step,
however it is possible to customise this model to include advanced features such as
extension points [Gro09] if required. Finally, this model can be used to generate
a domain specific language editor similar to the one shown in Figure 2.5.

29

2. Domain Specific Languages

In Chapter 7, we return to the discussion of these various models for the design of
the OnTrack toolset. Further details and examples of developing GMF editors can be
found in [SBMP08, Gro09|.

2.6 .3 M od el Transform ations and T ext G eneration

Often, the development of a GMF editor is motivated by the possibility of producing,
from an instance model created by the editor, some sort of output usually in the form of
text or program code. Similarly, many people wish to transform the model into a slightly
different model, or compare it to another model that may be an instance of a different
meta model. To help with these tasks, users can make use of what are known as model
transformations. Although there are several possible frameworks for defining model
transformations based on EMF meta model, e.g. QVT [SBMP08], JET [SBMP08] and
Xpand [EFH+04], we will concentrate our review on the technology we use in this thesis,
namely Epsilon [KRPP13].

2.6.3.1 Epsilon

Epsilon, the extensible platform of integrated languages for model management [KRPP13],
provides a family of languages and features for defining and applying model transforma­
tions, comparisons, validation and code generation. In the case of Ecore meta models,
the main types of model transformation which are of interest to us arc:

1. Model to model transformation (M2M): Model to model transformations define
how a model instance of one Ecore meta model can be transformed into a model
instance of (optionally) another Ecore meta model. For example, a simple model
transformation of a model instance of the meta model in Figure 2.4 might be to
add to the instance a new “EClass” called Class from which all other classes in the
model instance are related via an “isA” association. Later, in Chapter 7, we will
see how we use this type of transformation to implement abstractions for models.

2. Model to text transformation (M2T): Model to text transformations can be
viewed as model to model transformations, where the output model is simply
an instance of the (very general) meta model defining sequences of characters.
Such transformations are often used for code generation from a given model to a
programming language. Later in Chapter 7, we will use this type of transformation
to generate formal specifications from graphical models. Interestingly when
generating text, one can opt to use a meta model for the output text or to skip
the meta model and simply directly output text.

To support the above model transformations Epsilon provides several languages [KRPP13]
of which we consider and use:

EOL: The Epsilon object language that provides a common set of model management
constructs. EOL forms the base language of which the other Epsilon languages
are constructed.

30

2.6. Eclipse Frameworks: EMF, GMF and Epsilon

ETL: The Epsilon transformation language for specifying model to model transforma­
tions.

EGL: The Epsilon generation language for model to text transformations. EGL
provides a templating feature for code generation without requiring a meta model
for the output model.

EWL: Finally, the Epsilon wizard language for defining and executing transformation
workflows, including activating transformations from a GMF editor.

More details on these languages and their formal definitions can be found in the
Epsilon book by Kolovos et al. [KRPP13].

31

Chapter 3

The Railway Dom ain and DSLs

C ontents
3.1 Industrial Practice in the Railway D o m a in 33
3.2 Bj0rner’s D S L 35
3.3 Sample Formalisation in R S L 38
3.4 Related Work on DSLs and the Railway D o m a in 39

In this chapter, we introduce the railway domain and several DSLs that have been
developed for it. In particular, we discuss common terminology used by railway
engineers and describe the typical design process for developing scheme plans and
interlockings. We then explore some formalisations of the railway domain into do­
main specific languages, particularly the domain modelling undertaken by Dines
Bjprner [BGP99, BjpOO, Bj0O3, BCJ+04, Bj0O9]. Finally, we detail some ongoing
and related work towards the development of DSLs for the railway domain.

3.1 Industrial P ractice in the Railw ay D om ain

In industry, companies such as our industrial partner, Invensys Rail [Invl3], undertake
domain engineering with the aim to “describe all concepts, components and properties
within the railway domain” [RailO]. This modelling, for example, includes features such
as rail topology (the graph underlying the railway), dimensions (e.g, where tracks are
with regards to certain reference points), geography (e.g., gradient of a track), civil
structures (buildings, bridges etc.), track equipment (signals, points etc.) and signalling
(routes, speed restrictions etc.). Common across all such approaches for the railway
domain is the informal notion of a track plan as a term to describe layouts of junctions
and stations. Such a track plan is a combination of topological information and the
conceptual abstraction of routes. Track plans are often developed as part of processes
prescribed by Railway Authorities, such as Network Rail’s Governance for Railway
Investment Projects (GRIP) process. The first four phases of the GRIP process define

33

3. The Railway Domain and DSLs

la l la2 la3 la4 P I la5 laG la7 la8 la9 la b) P 2 l a l l la'12 P lat A la !3
A I------- 1------------ 1----------1-------- 1---------sr---------1------------------- 1-------- 1 i----------1---------1------------------- 1------7 -----------1--------1--------1-----------1-------- 1 X

c l c2 c.3 c4 c5 \ c 6 c7 c.8 c (J clO e l l c l2 / c l3 c l4 c l5 clG c l7

c l 8 c.19 c20 c21 c22 c 2 3 \ c24 c25 c2G c27 c28 / c29 c30 c,31 c32 c33 c34
B I--------1------------ 1----------1-------- 1-------------------- 1------- 1----------1— — I----------1---------1------------— -h-------------------1--------1--------1-----------1--------1 Y

lb l lb 2 lb3 lb 4 lb 5 P 3 lbG lb7 lb8 lb 9 P 4 lblO l b l l lb l2 P la tB lb l3

Figure 3.1: A modified track plan from a London Underground station.

the track plan and routes of the railway to be constructed. While phase five - the
detailed design - is contracted to a signalling company, such as Invensys, who choose
appropriate track equipment, add control information to the track plan, and implement
concrete control systems for running the railway. An example of such a track plan is
shown in Figure 3.1.

The intended operation of the train station shown in Figure 3.1 is: (1) trains enter
at A using track lal, they then proceed on the upper line to platform Plat A (i.e. taking
route RAX); (2) alternatively, they pass over switch points P I and P3 to the lower line
and proceed to platform PlatB (i.e. taking route RAY); (3) trains from PlatA pass to
the lower line using switch points P 2 and P4 and leave using track lb 1 at B (i.e. taking
route RXB); (4) trains from PlatB stay on the lower line and leave using track lbl at
B (i.e. taking route RYB). These four pathways are called routes. Notice that it is a
design decision which pathways form routes, as in the above track plan there is no route
starting from A through points P I, P3,P4 and P2 to platform PlatB. A route can be
assigned for use by a train (is “open”), if all tracks on the route are unoccupied and the
relevant switch points are correctly set. Such a track plan is usually paired with a set of
control and release tables [KR01] to form a scheme plan. This scheme plan gives details
of the conditions required for availability of a route. For example, Figure 3.2 gives a
typical control table for our example station. It prescribes that a given route can be
assigned when all tracks in the “clear” column are not occupied by a train, and the
points in the “normal” and “reverse” columns are set in those positions. The control
table tells us concretely that route RAX can be assigned to a train when units lal, la2,
la3, la4, PI, la5, . . . , lal2, PlatA, lal3 are unoccupied and points PI and P2 are set to
their normal positions, that is, allow trains to travel from left to right along the top
line of Figure 3.1.

Route Clear Normal Reverse
RAX
RAY
RXB
RYB

lal, la2, la3, la4, PI, la5, . . . , lal2, PlatA, lal3
lal, la2, la3, la4, PI, P3, . . . , lbl2, PlatB, lbl3

la l2, la ll, P2, P4, . . . , lb3, lb2, lbl
lbl2, lb ll, lblO, P4, . . . , lb3, lb2, lbl

PI, P2
P4
P3

P3, P4

PI, P3
P2, P4

Figure 3.2: Example control table.

The concrete operational setting and unsetting of points and routes is controlled by
a so-called interlocking that is implemented based on this scheme plan. Interlockings

34

3.2. Bj0rner’s DSL

provide a safety layer between the controller and the track, see Figure 3.3. In order
to move a train, the controller issues a request to set a route. The interlocking uses
rules and track information to determine whether it is safe to permit this request: if so,
the interlocking will change the state of the track (move points, set signals, etc.) and
inform the controller that the request was granted; otherwise the interlocking will not
change the track state.

In te r lo c k in g

P h y s ic a l R a ilw ay

H u m a n In p u t

Figure 3.3: Interlocking control within the railway.

In this thesis, we do not consider the concrete implementation of such an interlocking.
Verification of safety properties over concrete interlocking systems has been considered
by several others [FH98, PGHD04, HP07, KMS08, JamlO]. We focus on a higher level
of verification. That is, we consider verification of the design of Scheme Plans which
contain the logic that is used for the implementation of interlockings.

3.2 B j0rner’s DSL

In an academic setting, the process of identifying, classifying and precisely defining the
elements of a domain has been coined as “Domain Engineering” by Dines Bjprner [Bj0O9].
We now discuss Bjprner’s classification [BGP99, Bj0OO, Bj0O3, BCJ+04, Bj0O9], i.e.,
DSL, for the Railway domain. Bj0rner gives such a description using natural language
via a narrative [Bj0O3]. We explain this narrative over the following sections. The full
narrative as given by Bjprner can be found in Appendix A.

Figure 3.4 shows the hierarchy of concepts for the static parts of Bjprner’s DSL.
A railway is a Net, built from Station(s) that are connected via Line(s). A station
can have a complex structure, including Tracks, Switch Points (also called points) and
Linear Units. Tracks and Lines can only contain Linear Units. All Unit(s) are attached
together via Connector(s). Along with defining these concepts, Bjprner stipulates
various well-formedness conditions on such a model, for example, “No two distinct lines
and/or stations share units” or “Every line of a net is connected to exactly two, distinct
stations” [Bj0O3, BjpOO].

London’s tube map, part of which is given in Figure 3.5, can easily be described
with these terms: The shown part of the underground map consists of three nets,
namely the District Line (green), the Circle Line (yellow), and the Central Line (red);
these nets share several stations (Notting Hill Gate belongs to all three nets, whereas
Queensway belongs only to the Central Line); there are lines, e.g. between Notting

35

3. The Railway Domain and DSLs

LinoStation

U n i t

Switch Point

Figure 3.4: Static concepts from Bjorner's DSL.

Notting
Hill Gate

Q ueensw ay M<olland
Park

High S treet
Kensington

Figure 3.5: Excerpt from London’s tube map.

Hill Gate and Queensway, some of which are shared between various nets. Similarly,
Bjprner’s approach contains the necessary terms to describe the track plan given in
Figure 3.1. The whole track plan forms a station. This station contains all elements
such as switch points p l,p 2 ,p ‘3 and p4 along with linear units /a .l,/a2 ,. . . ,/613 and
connectors cl, c2, . . . , c34. Platforms PlatA and PlatB can be considered as linear
units. Finally, sequences of linear units within the station form tracks, for example, the
sequence of linear units lalJ.a2,laS,la4 before point P I can be seen as forming a track.

From this point on, we shall only consider the elements of Bjorner's DSL which we
require to model the track plans we are interested in. Therefore, some of the conditions
stipulated by Bjprner do not apply. For example, the track plan given in Figure 3.1 is
open ended on the left hand side, whereas Bjorner considers only closed track plans.
Hence, axioms regarding closed networks, for example the condition ‘‘all nets must
contain two stations" (leaving no open lines), do not apply to our models.

36

3.2. Bj0rner’s DSL

3.2 .1 D ynam ics in B j0rner

Bj0rner’s DSL gains dynamics by attaching a state to each unit [Bj0O3]. Each unit
can be in one of several states at any given time. Such a state is represented using
a set of paths, where a single path is given by a pair of distinct connectors (c, c'). A
path expresses that a train is allowed to move along a given unit in the direction from
connector c to connector c'. For example, considering Figure 3.1, the single direction
of travel along the top line would mean that unit lal could, at a given time, be open
along the path (cl, c2). As a second example, Figure 3.6 shows the states that Bjprner
considers possible for a switch. To combine a unit and a path across that unit, Bj0rner
introduces the notion of a unit path pair which simply forms pairs from units and a
valid path across them.

CtoMd C C"

c*

Figure 3.6: Valid states of a switch according to Bjprner’s modelling [Bj0O3].

Trains are not an explicit part of Bjprner’s DSL. Instead, Bjprner describes the
concept of a route, which is a dynamic ’’window” around a train. Concretely, routes
are lists of connected units and paths along them. That is, routes are well formed lists
of unit path pairs, where well formed means that adjacent units are in fact adjacent
elements of the track plan, and that the direction dictated by adjacent paths in the list
“match” . For example, the route from A to A of Figure 3.1 would be captured as the
following list:

[(lal, (cl, c2)), (la2, (c2, c3)), . . . , (pi, (c5, c6)), . . . (/al3, (cl6, cl7))],

whereas:

[(lal, (c2, cl)), (la2, (c2, c3)), . . . , (pi, (c5, c6)), . . . (Zal3, (cl6, cl7))]

would not be a valid route, as the neighbouring connectors for paths across lal and la2
do not “match”. Finally, a route is considered to be open for use if all units within the
route are open for the correct path across them.

Bjprner stipulates that a route can be dynamically changed over time using a
movement function that, for a given time, gives the set of assigned routes. This
movement function can extend or shrink a route by adding or removing a unit at one
or both of its ends. Train movements can then be modelled using this function. For

37

3. The Railway Domain and DSLs

example, Figure 3.7 illustrates how the movement of a train through (an initial section
of) the railway given in Figure 3.1 could be modelled using a movement function that
is dependent on time.

Time Routes Assigned New Operation Type
0 0 extension
1 [(lal,(cl,c2))] extension
2 [(lal,(cl,c2)), (Ia2,(c2,c3))] extension and reduction
3 [(Ia2,(c2,c3)), (Ia3,(c3,c4))j extension and reduction
4 [(Ia3,(c3,c4)), (Ia4,(c4,c5))] extension and reduction
5 [(Ia4,(c4,c5)), (Pl,(c5,c6))] extension
6 [(Ia4,(c4,c5)), (Pl,(c5,c6)), (Ia5,(c6,c7))] reduction
7 [(Pl,(c5,c6)), (Ia5,(c6,c7))] extension and reduction
8 [(Ia5,(c6,c7)), (Ia6,(c7,c8))]

Figure 3.7: Example of modelling train movements using Bjprner’s DSL.

Later in Chapter 6 we will comment on some alterations to the modelling of routes
by Bjprner to fit with common industrial practice, within the UK.

3.3 Sam ple Form alisation in RSL

Bjprner has formalised his narrative in (the algebraic part of) RSL [RAI93], for example,
see [BjpOO, Bj0O3j. Here we show the basic elements of this encoding.

Bj0rner declares a sort symbol for each of the static concepts: Net, Line , Station ,
Track , Unit and Connector:

type Net, Linear, Switch, Track, Unit, Connector
Then units are classified into “switch points” and “linear units” via test functions:

is_Linear: Unit -> Bool
is_Switch: Unit -> Bool

Here, Bool is the built-in datatype of booleans in RSL. Observer functions are then
declared which give, e.g., for a specific net, the set of all stations belonging to it:

obs_Stations: Net -> Station-set
Here, -set is the built-in constructor of sets in RSL. This signature allows Bjprner to
express the static well-formedness conditions we discussed earlier. For example the
condition that “no two distinct stations share units” , is formulated in RSL as:

Vn : Net; s , s' : Station •
s,s' € obsStations(n) A s / s' => obsJJnits(s) n obsTJnits^s) = {}.

38

3-4- Related Work on DSLs and the Railway Domain

In a similar manner, Bj0rner encodes the dynamics of railways, for example, paths
are specified in RSL as:

type Pair’ = C x C
Path = { I (c,c’) :Pair . not(c = 001}

Here, we can see that the condition stating that a path is formed over two distinct
connectors is captured during the construction of the type. Using such paths, Bjprner
encodes routes as sequences of pairs of units and such paths:

type Route’ = (Unit x Path)*
Route = {|r:Route’ . wellforaed(r)I>

Again, the well-formedness check over routes is encoded into the type construction using
the auxiliary predicate well formed : Route'. This predicate is then encoded as:

wellf ormed(r) = len(r) > 0 A Vz : Nat • i £ inds(r)

let(zz, (c, c')) = r(i) in (c, c') £ obsStates(u) A i -f 1 £ inds r
=>■ let(_, (c", _)) = r(i + 1) in d = c"

where inds(r) simply gives the indexes of elements in the list r, obsStates(u) gives
the observable states of a unit u and represents an unnamed variable. This predicate
basically states that a route is well formed, if for all unit path pairs in the route, the
path is a possible path of some state of the unit, and all “neighbouring” connectors
within the paths of the route are identical. The full presentation of Bjprner’s DSL
encoded using RSL can be found in [Bj0O3]. From this point onward, we shall use
C a s l rather than RSL as our chosen specification language. This is mainly due to
the greater level of proof support that is available for C a s l in the form of the H e t s
environment [MML07].

3.4 R elated W ork on DSLs and th e R ailw ay D om ain

At this point, we reflect on some further DSL based approaches for the railway domain
and consider how the work in this thesis differs.

3.4 .1 R C SD L anguage

The Railway Control Systems Domain language (RCSD) is a domain specific language
for the design of railway control systems developed by Kirsten Mewes [Mew09, MewlO].
Part of this work consists of a very detailed domain analysis in a natural language style
that is similar to Bjprner. This analysis forms the basis of RCSD. The developed domain
specific language is motivated by a model-driven engineering approach [Ken02] to system
design, and has been developed using both M etaEdit+ [KLR96] and UML [Objll].
There is also a variant of RCSD, known as RCSD-UML, which is developed completely

39

3. The Railway Domain and DSLs

using the UML framework. The language incorporates knowledge from domain engineers
about the domain into its static and dynamic semantics as well as using common domain
notation for its concrete syntax. This ensures that modelling is simplified for the every
day domain engineer. The approach by Mewes also considers the development of test
suites over models created in the proposed DSL. To this end, Mewes presents details on
the selection of suitable tests based on knowledge of the domain. This allows domain
specific constraints to be included into the models and ensures that certain validation
checks around correct functionality can be checked at the model level, before software
has been developed. Finally, the work also contributes to compiling a collection of
domain specific properties that one may consider for validation and verification within
the railway domain. Even though the work presented by Mewes is very detailed in the
design of the RCSD domain specific language, relatively little is considered with respect
to verification. Within this thesis, we concentrate much less on the design of DSLs from
the domain perspective, leaving this to the domain engineer. However, we do show how
domain knowledge captured within a domain specific specification can be exploited to
allow for successful automatic verification.

3.4 .2 A D om ain Specific C onstru ction Fram ework

Work by Haxthausen [HP07] has explored the development of a domain specific frame­
work for automated construction and verification of railway control systems. The
framework consists of a three tiered approach:

DSL for specification: The top layer is a domain specific language for use by domain
engineers. This domain specific language allows specification of railway control
systems. The framework also provides static checking of properties such as
well-formedness over these specifications.

Model generation: The second tier of the framework is model generation from a given
specification. The framework includes a generator that automatically generates a
model control program based on the specification given by the design engineer. At
this level, the framework provides links to model checkers allowing for bounded
model checking of various safety properties.

Code compilation: Finally, the framework allows for code generation from a given
system model. This is once again automated, and the framework provides a third
level of verification in that checks are performed over the generated code to ensure
certain properties are maintained through the generation process.

The work presented is very complete for the railway domain, however it is developed
specifically for the railway domain, and as such, does not comment on applications to
other domains. In this thesis, we provide a generic, systematic, methodology for DSL
construction for any given domain and apply it to the railway domain for illustration
purposes.

40

3.4■ Related Work on DSLs and the Railway Domain

3 .4 .3 SafeC ap D SL and T oolset

Finally, the SafeCap toolset [IR12b] provides a tooling platform that supports reasoning
about railway capacity while ensuring system safety. We note, that this toolset has
been developed in a collaboration between the author of this thesis and members of
the Computer Science department at Newcastle University. For its base, the toolset
uses the SafeCap DSL [IR12a]. This DSL attempts to capture, at a suitable level of
abstraction, track topology, route and path definitions and signalling rules. By design,
the SafeCap DSL is extensible in that one can dynamically define further attributes
for all the predefined language elements and these are then automatically reflected in
the SafeCap Toolset. Overall, the toolset aims to allow signalling engineers to design
stations and junctions, to check their safety, and to evaluate the potential improvements
in capacity whilst applying various alteration patterns that change the railway scheme
plans. The platform uses a combination of Event B specification with model checking
and SMT solving to verify (bounded) system safety. The toolset also includes several
plug-ins that evaluate various capacity parameters.

In a similar manner to the methodology we present (in fact, motivated by the
presented methodology), the tool uses Eclipse technology, including the EMF and GMF
frameworks. However, in contrast to the presented methodology, the DSL used in the
tool has been defined independently by the developers of the tool. This is in part due to
the considerations towards capacity analysis at which the tool is focused. Also, such an
approach has led to the developed DSL being focused towards Event B analysis. Thus
differing to our aim, see Chapter 7, of decoupling the DSL from the formal specification
language and in turn allowing tooling environments to be openly extendable for other
specification languages.

41

Chapter 4

Specification Formalisms,
Institutions and P roof Support

C ontents
4.] The Common Algebraic Specification L a n g u a g e 43
4.2 M o d a lC A S L ... 51
4.3 Institutions and Institution C om orphism s.. 53
4.4 The PCFOL= In s t i tu t io n .. 55
4.5 The SubPCFOLr In s t i tu t io n ... 60
4.6 An Institution for Modal L o g ic .. 62
4.7 Tool Support: Hets and Automatic Theorem P r o v in g 67

In this chapter, we introduce the C a s l and M o d a l C a s l specification languages along
with the framework of institutions and institution comorphisms. We firstly present each
language on the syntactic level, illustrating how the features of each language can be
applied to model a small railway example. We then present the technical details of
both languages on the semantic level. For this, we give details of the institutions that
underlie C a s l and M o d a l C a s l and present an institution comorphism for translating
M o d a l C a s l specifications to C a s l specifications. Finally, we discuss the Heterogeneous
Toolset (H e t s) and the various theorem provers that are incorporated into this toolset
to provide proof support for C a s l .

4.1 T he Com m on A lgebraic Specification Language

The Common Algebraic Specification Language [Mos04b, BM04], known as C a s l , is
a specification formalism developed by the CoFI initiative [Mos97] throughout the
late 1990’s. The aim of the CoFI initiative was to design a Common Framework for
Algebraic Specification and Development in an attempt to create a de facto platform
for algebraic specification. The main motivation for the CoFI initiative came from

43

4. Specification Formalisms, Institutions and Proof Support

the existence of a number of competing algebraic specification languages with varying
levels of tool support and industrial uptake. Examples of such languages include
ACT-O NE/ACT-TW O [EM85, CEW93], ASF [Ber89], ASF-SDF [Kli93, DHK96],
OBJ [GWM+93], CafeOBJ [DF98], Larch [GH93], RSL [RAI93], Extended ML [KST97]
and Maude [MFS+07]. Overall, C a s l incorporates many of the features of these other
languages including partial functions, sub-sorting and sort generation constraints. In
this section, we shall informally introduce and describe the main features of C a s l . A
full formal description is given in Section 4.3.

4 .1 .1 M od ellin g C on stru cts

C a s l allows one to model systems at various levels of abstraction by providing various
levels of specification. These include basic (unstructured) specifications, structured
specifications and architectural specifications. Basic specifications form the atoms of
structured specifications. Structured specifications support the building of complex
specifications from simpler specifications, allowing for separation of concerns when
modelling large systems. Finally, architectural specifications allow for specifying software
architectures, for example, modules within a software package. In this section, we give a
brief overview of the constructs C a s l provides for writing basic specifications. A more
detailed description of the C a s l language and its semantics can be found in The C a s l
Reference Manual [Mos04b]. We illustrate the C a s l constructs using specifications for
time. The concept of time is central to several of the railway domain elements in Dines
Bjprner [BjpOO, Bj0O9] domain modelling. These examples are based on work presented
in [JR11, 0 ’R12].

In general, a C a s l basic specification consists of a set of declarations of symbols
(i.e. names) for sorts (the data types of the specification), symbols and corresponding
profiles for operations (total and partial functions on the sorts), symbols and profiles for
predicates (relations on the sorts), and a set of axioms and constraints which restrict
the interpretations of the declared symbols. The axioms are formula’s expressed in
first order logic with equality, with the usual connectives and universal quantifiers;
furthermore, they may make assertions regarding definedness (e.g. of the results of
partial functions) and subsorting. We begin with an explanation of these constructs
using the following relatively simple specification of discrete time.

spec T im e =
so rt Time
ops 0 : Time;

sue : Time —>■ Time;
pre : Time —>? Time

p red : Time x Time
end

T h e a b o v e C a s l s p e c if ic a t io n h a s th e n a m e T i m e . I t sp ec ifie s th a t th e r e is e x a c t ly
o n e s o r t s y m b o l, n a m e ly Time, a c o n s ta n t fu n c t io n s y m b o l (a fu n c t io n s y m b o l w ith

44

4-1. The Common Algebraic Specification Language

no arguments) 0, a total function symbol sue from sort Time to sort Time, a partial
function symbol pre from sort Time to sort Time and a predicate symbol
over Time x Time. The intention of these declared symbols is for the sue function to
increment time by a single time unit, pre to decrement time by a single time unit and

to be the binary predicate for less than or equal using infix notation over time.
For this specification, the axiom set $ is empty.

W ithin C a s l , each specification gives rise to a formal object called the signature
of the specification. We will go into the formal details of such signatures later in
Section 4.5.1. For now, we say that a C a s l signature £ = (S , TF, PF, P, <s) is a five
tuple where

• S' is a set of sort symbols,

• T F and PF are families of sets of total and partial function symbols respectively,
each with a profile giving its argument and target sorts,

• P is a family of predicate symbols, each with a profile giving the sorts it ranges
over, and

• <s is a reflexive and transitive sub-sort relation.

Using the above specification of Time as an example, we have the signature £time =
(S ,T F ,P F ,P ,< s) where S — {Time}, T F = {0, sue}, P F — {pre} and
P = {__ < = <s= {{Time, Time)}.

Remark 4.1 As overloading is not present in this example we have omitted profiles on
families of sets for ease of reading. Further details on this are given in Section 4.5.1.

Semantically, each C a s l signature has a class of many-sorted models, or algebras,
associated with it. The class of models for a given signature £ is denoted by mod(£).
Each model gives an interpretation to each of the symbols in a signature. Each sort
symbol is interpreted using a non-empty carrier set. Each constant is assigned a
particular element of the corresponding carrier set. Function symbols are interpreted
by functions over the correct carrier sets. Finally, predicates are interpreted by sets of
elements, from the correct carrier set, for which the predicate holds. Given our signature
for the Time specification, one possible model M is given by:

M-Time = {1}
(0) m = 1
{suc)M { 1) = 1
{pre)M { 1) = 1
(- < = -) m = {}

where we use the notation MTime for the carrier set of the sort Time in model M and
similarly for functions and predicates.

Remark 4.2 We have omitted the interpretation of the subsort relation as it does not
play a role in this example. This relation is covered in more detail in Section 4.5.2.

45

4■ Specification Formalisms, Institutions and Proof Support

This model (often called the one point model) interprets the sort Time with a
singleton carrier set containing the element 1. As there is only one element in this
carrier set, there is no choice for the interpretation of the symbol 0 and also the function
symbol sue which must map 1 to 1, as both are total functions. As, pre is partial, there
is a choice between it being undefined for the element 1 or defined as it is in the above
model. Similarly, there is a choice in the interpretation of the predicate symbol
where we have chosen to state that it is empty, or false for all elements of the carrier set.
Here, we also note that C a s l does not allow for empty carrier sets in models, hence the
presented model is minimal in terms of the size of the carrier set. The presented model
is somewhat counter intuitive to what one would expect from the signature, however it
is indeed a valid model. The following is a somewhat more intuitive model:

N Time = N
(0) n = 0
(swc)jv(n) = n + 1

(pre)N (n) f n — 1 if n > 0
(undefined otherwise

(- < = —) m - {(n, m) G N x N n ^ m}

This model interprets Time using a model of the natural numbers. There are infinitely
many more models in the model class for the signature of specification T i m e .

To control the number of models a specification has, C a s l allows the use of axioms.
The specification T im e does not contain any axioms, and hence the formal meaning of
all declared symbols is “loose”, that is, the symbols can currently take on any possibly
meaning within a given model. This in turn means that model class of the specification
T im e is the same as the model class of the signature of T i m e . However, if we wish
to control the meaning of say then we can add to the above specification the
following axiom: V n : Time • 0 < = n. This axiom states that the constant 0 is, in some
sense, the first possible time. Adding this axiom leads to the following specification
T i m e ’:

spec T i m e ’ =
sort Time
ops 0 : Time;

sue : Time —»• Time;
pre : Time —»? Time

pred : Time x Time
V n : Time • 0 < = n

end

We denote the set of axioms within a specification by $. Interestingly, we can see
that the specification Time ’ including this axiom has less models than the specification
T i m e , as the model M given above is a model of T im e but not a model of T i m e ’. This
is because M does not exhibit the property stated by the axiom. Similarly, we can see
that the model N is a model of both the given specifications.

46

4-1. The Common Algebraic Specification Language

Each specification S P = (E, <f>) is a combination of a signature E and a set of axioms
<b. As we have seen, like signatures, a specification gives rise to a class of models, namely
all the models of its signature which satisfy all of its axioms, that is,

M od(S'P) = {M £ | mod(E)| | M |= $}

where M \= $ if and only if M |= <p for all ip £ 4>.
Finally, notice that our specification T i m e ’ still contains loosely specified elements,

for example there are no axioms concerning the function pre. This means that we do
not have a single element model class, but instead have many models. We note that we
could further specify time, by adding further axioms, to ensure we only have a single
model (up to isomorphism). However this loose specification of time is enough for us to
demonstrate several features of C a s l and, as we shall see later Section 4.7, is enough
to carry out some proofs. This follows a general approach to specification, in that
the intended model is contained within the model class, but there are also many non
standard models within the model class. However, these non standard models often
still exhibit the properties one is interested in. The advantage of such an approach is
twofold. Firstly, it requires less of a specification effort, and secondly it can lead to
better results for proof support, as it provides a smaller axiomatic base for automatic
provers to consider.

4 .1 .2 A M in iature R ailw ay S p ecification

We now look at a slightly more interesting example of a C a s l specification using a
subset of the DSL proposed by Bjprner [BjpOO, Bj0O9]. This example illustrates some
further features of C a s l , including subsorting. The following specification captures the
notion of linear units, and switches (or points) form Bjprner’s DSL.

spec R a i l w a y E l e m e n t s =
T i m e ’

then sorts Connector;
Linear, Switch < Unit

pred __ has -connector __ : Unit x Connector
ops ci, c2 : Unit —>• Connector;

c3 : Switch Connector
sort State
op s ta te -a t__ : Unit x Time —> State;
V s : Switch; I : Linear • -> s = I %(1)%
V u : Unit • cl (u) = c2(u) %(2)%
V s : Switch • -i c3(s) = c l{s) A c3(s) — c2(s) %(3)%
V I : Linear; c : Connector •

I has-connector c <=> c = cl (I) V c = c2(l) %(4)%
V s : Switch; c : Connector •

s has-connector c <;=> c = cl (s) V c = c2(s) V c = c3(s) %(5)%
end

47

4■ Specification Formalisms, Institutions and Proof Support

Firstly, this specification, named R a il w a y E l e m e n t s , imports the specification
T i m e ’ that was declared earlier. This is via the use of the keyword t h e n . This import
is one of many forms of specification structuring mechanisms provided by C a s l . It
makes the symbols and axioms available in T i m e ’ available and applicable within
R a il w a y E l e m e n t s , more details can be found in [Mos04b].

Next, R a il w a y E l e m e n t s declares four sorts, namely Connector, Linear, Switch
and Unit. Interestingly, here we see another feature of C a s l in the form of sub-sorting
using the < symbol. Linear and Switch are sub-sorts of Unit. This tells us that all
Linear units and Switches are also basic Units. Semantically, as we shall see later,
subsorting is done through injection functions. The < symbol is a shorthand for s <
t. It declares an injection function from sort s to sort t, a partial projection function
from sort t to sort s, and a membership predicate that tests whether elements of sort t
have a counterpart in sort s. Here we note that explicit casting is usually not required
in formulae as the tools associated with C a s l often deal with it automatically. Linear
units and switches can be placed and connected together using connectors, from the
sort Connector. Following Bjprner’s DSL, linear units and switches are connected using
a single connector between them.

The next element declared is a predicate _Jias-connector__ which allows units and
connectors to be related: linear units have two connectors and switches have three
connectors according to Bjprner [Bj0O3]. These restrictions are not present from the
definition of the predicate, but will be specified later using axioms. Along with this
predicate, there are several total functions. The first two functions, cl and c2, give us
access to the two connectors of a unit, and hence can be applied to both linear units
and switches. The c3 function gives us access to the third connector of a switch and
hence cannot be applied to linear units.

Next, we define the sort State, this will be used to capture the state of a unit. For
now, we leave this sort (along with various other elements) loose. To go with this, we
then define an operation, s ta te -a t— allowing us to observe the state of a unit at a
given point in time.

Finally, we add some axioms to control the interpretations of the symbols we have
introduced so far. The axioms state:

1. Linear units and switches are not the same.

2. Connectors on units are distinct.

3. The extra connector for a switch is distinct.

4. Coupling the predicate —has-connector__ with cl and c2 for units.

5. Coupling the predicate —has-connector— with c3 for switches.

4 .1 .3 A N o te on Free T yp es

In the above R a il w a y E l e m e n t s specification, we have modelled State as a loose sort.
This allows us, if needed, to extend this specification and add more details about the

48

4-1. The Common Algebraic Specification Language

elements of the State sort. For example, we may consider the state of a unit to be the
position of the physical tracks, e.g. a switch could be in normal or reverse position,
and a linear unit could always be in a fixed position. Alternatively, we could consider
State to be similar to that of the unit state considered by Bjprner, that is, a pair of
connectors dictating which directions along a unit a train can travel. Taking the former
as an example, we can use the C a s l construct of a free type [Mos04b] to tightly specify
what elements are within the State sort:

free ty p e State ::= normal \ reverse \ moving

This definition states that there are three constants normal, reverse and moving
(between normal and reverse), each representing a state of a unit. The free type also
forces all interpretations of State to have exactly three carrier set elements, one for each
constant. That is the free type captures the notions of “no junk” and “no confusion” .
Thus, in this case, the free type is just shorthand for expressing that there are three
constants, all carrier set elements axe accessible via these three constants and finally,
that these three constants must have different values.

4 .1 .4 M od ellin g a Ju n ction

In the railway domain it is quite common to find so called junctions. This construction
is so common that it is useful to model this as a separate specification both for
methodological reasons, i.e., reuse of code and theorem proving support (see our
work in [JR11]). To allow such structuring, C a s l provides several general structuring
constructs, namely:

• Naming: Specifications can be named, such as the above T i m e ’ specification.

• Parameters: Named specifications can have parameters that are in fact other
specifications that can be instantiated.

• Union: Taking the union of two specifications.

• Extension: Extending a specification with another possibly partial specification.
Note that this differs to union, as the second specification can refer to elements
declared in the first specification.

• Renaming: Finally, the symbols of a specification can be renamed.

Iu3

lul s lu2

Figure 4.1: A typical railway junction.

49

4■ Specification Formalisms, Institutions and Proof Support

To illustrate some of these features, we now show how a junction can be modelled
with the railway elements we have introduced so far. To do this, we make use of so
called generic specifications [Mos04b]. These allow for the parametrization discussed
above. Figure 4.1 illustrates our modelling, where s is a switch and lu l, lu2 and lu3
are associated linear units.

The following is a generic C a s l specification that models such a junction:

s p e c J u n c t i o n

[o p s lul, lu2, lu3 : Linear; s : Switch
• 1 lul - lu2
• -i lu2 - lu3
• lul = lu3]

g i v e n R a il w a y E l e m e n t s =
• c2(lul) = cl (s)
• c2(s) = cl (lu2)
• c3(s) = cl (lu3)

e n d

The generic specification J u n c t i o n has two main parts, namely:

• a formal parameter that is a C a s l specification. They are written within square
brackets, like above. Such a formal parameter declares the elements needed for
use later in the body of the specification. For example, a junction requires three
linear units (lul, lu2 and lu3) and a switch (s). In our case, the formal parameter
also contains axioms that ensure the linear units are all unique. These axioms can
be thought of as assumptions over the formal parameter. From a semantic point
of view, there may be more linear units and switches in a given actual parameter
as these are not captured in the formal parameter using a free type.

• a body which is a partial C a s l specification that can use the symbols from the
formal parameter. Within this, we declare three axioms that connect the units
from the formal parameter in the correct manner.

It also uses the keyword g i v e n tha t allows the formal parameter to make use of the
symbols available in R a il w a y E l e m e n t s .

Finally, such a generic specification can be instantiated by providing an actual
parameter. For example, we can instantiate the junction specification with the following:

s p e c J u n c t i o n P a r a m =
R a il w a y E l e m e n t s

t h e n o p s lul, lu2, lu3 : Linear-,
si : Switch

• -i lul = lu2
• -i lul — lu3
• -i lu2 = lu3

e n d

50

4-2. ModalCASL

Any axioms within the formal parameter of the generic specification must be implied
by the actual parameter during instantiation. For example, any actual parameter to
the junction must guarantee the conditions over the uniqueness of the linear units it
provides. This is clearly the case with the above actual parameter.

4 .1 .5 Im plied P rop erties

The last C a s l feature we introduce is that of an implied property [Mos04b]. Such a
property or lemma is a first-order formula which should hold for the whole model class
of a specification. For example, if we consider the generic junction specification given
in the previous section, we may wish to check that there are two distinct connectors
for linear unit lul. This should be the case even though we have not specified the
connectors. In C a s l this can be expresses using the keywords t h e n % im p lie s :

t h e n %implies
• 3 cnl , cn2 : Connector

• -i cnl = cn2 A lul hasConnector cnl
A lul hasConnector cn2

This allows us to extend the specification adding proof obligations that should be
implied by the previous axioms in the specification. At this point, new signature elements
can not be introduced. The keyword % im p l ie s is a special C a s l comment [Mos04b]
that indicates to tools that the axioms in the extension should be implied by the already
specified axioms. We will see later in Section 4.7 that this will set up proof obligations to
be proven. We also discuss tool support for proving such an implication in Section 4.7.

This concludes our presentation of C a s l , the semantic details for C a s l are discussed
later in Section 4.5. For information on other constructs available in C a s l , we refer
to [Mos04b, BM04].

4.2 M odalCASL

M o d a l C a s l is an extension of the C a s l specification language with constructs for
Modal Logic [HC96, Mos04a, MC10]. In this section, we motivate the use of M o d a l ­
C a s l for modelling dynamical aspects of systems, especially within the railway domain.
To do this, we mainly consider the use of rigid and flexible operations and predicates as
provided by M o d a l C a s l [Mos04a]. Later in Section 4.6 we will consider the semantic
details of M o d a l C a s l .

4 .2 .1 D ynam ics in R ailw ays

So far in this chapter, we have introduced a relatively small specification for railway
components. Even with this small selection, we have seen that some components of the
railway change over time, whereas others do not. For example, the operation s ta te -a t__
: Unit x Time —» State gives, for a given unit, the state it is in at a particular time.

51

4. Specification Formalisms, Institutions and Proof Support

Where time has been specified as a particular sort. Modal Logic [HC96] deals with
the concept of Kripke structures [HC96] where there is the view of different worlds
with accessibility relations (or modalities) between worlds. For such worlds and the
relations between them, one can consider what properties one would like to hold. For
example, we can think of such worlds representing different points in time, with the
accessibility relation between worlds being the advancement of time. M o d a l C a s l
allows us to take such a view, where each world is specified by a specification, and
modalities can be used to describe how elements of this specification change between
these worlds. The following specification illustrates how M o d a l C a s l provides us with
such modal constructs, namely modalities and the key words flexible and rigid, for
naturally modelling this kind of dynamical concept.

l o g i c M o d a l

s p e c M o d a l E x a m p l e =
m o d a l i t y time {}

r ig i d p r e d __hasConnector__ : Unit x Connector
r ig i d o p s cl, c2 : Unit —>■ Connector;

c3 : Switch -A Connector
f l e x i b l e o p -state-at: Unit State

e n d

In the above specification, we can see the use of the M o d a l C a s l keywords r ig i d and
f l e x i b l e . Semantically, the interpretation of rigid is that any predicates or operations
marked as rigid remain the same throughout all worlds. Considering our example, we
can see that the predicate—hasConnector—. and its corresponding operations cl, c2 and
c3 are marked as rigid, and thus stay the same throughout all time. This naturally
models the topological aspects of a track plan perfectly, as they (up to building new
railway lines) do not change over time. However, we can see that the operation s ta te -a t
has a changed profile that has become unary over the sort Unit, and has been marked
as f l e x ib l e . This marking means that the value returned by the s ta te^a t operation is
dependent on the current world, or in our view, the current time.

4 .2 .2 M odal P rop erties

In addition to extending C a s l with new signature elements, M o d a l C a s l also extends
the property building connectives of C a s l . T wo new connectives are provided, namely:
(M)tp and [M]tp where M is some modality sort and ip some property. Both these
connectives have the usual modal logic interpretation, that is:

• (M)p is interpreted as ip must hold “in some” world that is reachable via the
modality M in one step.

• [M]ip is interpreted as ip must hold “in every” world that is reachable via the
modality M in one step.

52

4-3. Institutions and Institution Comorphisms

The semantic details of this extension are given in Section 4.6.3. For information on
how M o d a l C a s l extends C a s l , we refer to [Mos04a]. In Chapter 5 we will see further
how this natural modelling of system dynamics fits well with the capture of UML class
diagrams describing DSLs. We will also see that it is possible to translate M o d a l C a s l
specifications into equivalent C a s l specification in Section 4.6.4. These two steps not
only allow for the natural capturing of DSLs, but also for the strong proof support that
is available for C a s l to be available for verification purposes over such DSLs.

4.3 Institu tions and In stitu tion C om orphism s

The theoretical framework of an institution, as introduced by Goguen and Burstall [GB92],
is based on category theory [ML98] and is used for describing logics. Institutions were
devised to be used as an abstract framework for capturing the intuitive structure of a
logical system, including the syntax, semantics and satisfaction notions within a logic.
Informally, an institution consists of a collection of signatures with signature morphisms.
Then for each signature there is a collection of sentences, models and a satisfaction
relation between the sentences and models such that the satisfaction condition holds.
The satisfaction condition captures the idea that “tru th is invariant under notational
change” . Formally, following Mossakowski [Mos02], we define an institution I as:

Definition 4.3 (Institution) An institution I = (SIGN7, sen7, mod7, |=7) where:

• SIGN7 is the signature category.

• sen7 : SIGN7 —> SET is the sentence functor, where SET is the category where
objects are sets and morphisms are total functions between sets.

• mod7 : (SIGN7)op —> CAT is the model functor, where CAT is the category where
objects are categories and morphisms are functors between categories.

• | = 2 C |mod7(E)| x sen7(E) is the satisfaction relation, for each E : SIGN7,

such that the satisfaction condition holds: for every signature morphism a : E —)■ E' in
SIGN7,

mod7(cr){M') | = 2 •<=>• M ' (=2 , sen7(cr)(</?)

holds for every sentence ip G sen7(E) and for every E'-model M ' G | mod7(E')|.

Remark 4.4 We omit the index I when it is clear from the context. Similarly, for
notational convenience, we introduce the common shorthands [Mos02] and write cr{p)
for sen7((j)(<£>) and M'\a for mod7(<j)(M/). For example, with these shorthands, the
satisfaction condition for an institution becomes: for each signature morphism a : E —> E'
in SIGN,

M'\cj v? <=> M ' (=£/

for each E'-model M' G | mod7(E/)| and E-sentence <p G sen7(E).

53

4■ Specification Formalisms, Institutions and Proof Support

The category SIGN7 contains a collection of signatures and signature morphisms
mapping symbols between signatures in a compatible manner. The functor sen7 :
SIGN7 —> SET maps each signature E £ | SIGN7 | to the set of sentences sen7(E)
over the signature E. It also maps each signature morphism a : E —>• E' to the
sentence translation function sen7(cr) : sen7(E) —» sen7(E') that translates sentences
formed over E to sentences formed over E'. The functor mod7 : (SIGN7)op -» CAT
maps each signature E £ | SIGN7 | to the category mod7(E) of E-models and model
morphisms. It also maps each signature morphism <j : E —> E' to the reduct functor
mod7(cr) : mod7(E7) —> mod7(E). This reduct functor reduces models over the signature
E' to models over the signature E. Similarly, model morphisms are reduced to model
morphisms between reduced models. Here, notice that morphism composition is reversed
as the mod7 functor is contravariant. Finally, the satisfaction condition ensures that the
satisfaction relation is preserved across translation of sentences and reducts of models.
The overall situation is captured neatly in Figure 4.2.

SIGN SET

sen(E)
sen sen(cr)

sen(E'

mod(E) mod(E')

Figure 4.2: Diagram representing the notion of an institution [0’R12].

Given the notion of an institution, one can consider what it means to map between
two institutions. The notion of an institution representation [Mos02] or co-morphism
between two institutions allows signatures, sentences and models to be translated
between institutions. Informally, given two institutions I and J , an institution co­
morphism consists of a translation of I signatures to J presentations, a translation of
I sentences to J sentences and a contravariant translation of J models to I models

54

4-4• The PCFOL Institution

such that a translated model satisfies a sentence if, and only if, the original model
satisfies the translated sentence. Formally, following Mossakowski [Mos02] we define an
institution comorphism as:

Definition 4.5 (Institution Comorphism) Given institutions I and J , an institution
co-morphism /i = ($,a,/9) : I —» J consists of:

• a functor $: SIGN7 —> PresJ ,

• a natural transformation a : Sen7 —>■ Sen"7 o$, and

• a natural transformation /? : M od^o^0̂ —>■ Mod7, and

such that the following representation condition is satisfied for all E E Sign7, M ' E
Mod'7 o<E>op and <p E Sen7:

^ t==Sig(^>(S)) a(T) ^ ^ [= 2 (f-
The functor $ intuitively maps signature of one institution into signatures of another

(where axioms can be used to control certain interpretations and hence, the functor
maps to presentations). The natural transformation a maps objects and morphisms of
the sentence category of the first institution into objects and morphisms of the sentence
category of the second institution, taking into account the signature map $. Next,
the natural transformation /? maps the models and model morphisms of the second
institution to corresponding models and model morphisms of the first institution again
taking into account the signature map <E>. Finally, the satisfaction condition ensures
that the above mapping preserves truth of formulae within models.

As examples of institutions, we consider the SubPCFOL= institution that underlies
C a s l along with the institution for M o d a l C a s l . We then present an institution
comorphism from M o d a l C a s l into C a s l .

4.4 The P C F O Ir Institu tion

We now present the PCFOL= (partial first order logic with sort generation constraints
and equality) institution based on Mossakowski’s presentation [Mos02]. This is the
institution that forms the basis for SubPCFOLT that underlies C a s l . In our presenta­
tion, we omit several proofs, and refer the reader to the work of Mossakowski for these
details [Mos02].

4 .4 .1 PCFOL= S ignatures

Firstly, we define the signature elements of PCFOLr:

Definition 4.6 (PCFOL= Signature) A PCFOLr signature E = (S ,T F ,P F ,P) con­
sists of:

• a set S' of sort symbols,

55

4. Specification Formalisms, Institutions and Proof Support

• two S * x F-sorted families, T F = (TFWyS)wes*,seS °f total function symbols and
P F = (PFw,s)wes*,s£S of partial function symbols, such that TFWjS n PFŴS — 0
for each (it;, s) £ S* x S ,

• a family P = (Pw)wes* of predicate symbols.

R em ark 4.7 For notational convenience, we write / : w —>■ s E T F for / E TFWjS,
/ : w —>■? s E P F for / E PFW>S and p : w £ P for p £ Pw. Also, given a finite
string w = (si , . . . , sn) and sets MSl, . . . , M Sn, we write Mw for the Cartesian product
M Sl x . . . x MSn.

Given two signatures E = (S ,T F , PF, P) and E' = (5', T F ', P F ', P '), we define the
notion of a signature morphism as:

D efin ition 4.8 {PCFOLr Signature Morphism) A PCFOLr signature morphism a :
E —> E' consists of:

• a map as : S —»■ S',

• a map cr^s : P F ^ U PFW>S -> F F ^ , (u,)ifTs (.s) U ^ s * (tu)>(Ts (s) preserving totality,
for each w £ S*,s £ S, and

• a map crp : Pw ^ Pas*{wy

Finally, defining identities and composition in the obvious way results in the category
of PCFOL=-signatures.

4 .4 .2 PCFOL= M od els

Given a PCFOL= signature E = (S ,T F , PF, P), we define a model of this signature as:

D efin ition 4.9 {PCFOLr Model) A PCFOL= Y,-model M consists of

• a non-empty carrier set M s for each s £ S,

• a partial function {fw,s)M from Mw to M s for each / E PFW S,

• a total function {fw,s)M from Mw to M s for each / E TFWjS,

• a relation {pw)m Q M w for each p £ Pw.

R em ark 4.10 For notational convenience, we write Jm for partial/total functions
{fw,s)M and for predicates we write p m for {pw)m -

Given two models M, N , we define the notion of a model morphism as:

D efin ition 4.11 {PCFOL= Model Morphism) A PCFOLr E-homomorphism h : M -*
A" is a family of functions h = {hs : M s —> N s)ses such that:

56

4-4• The PCFOL~ Institution

• for all / G TFWta U PFWt8 and (a i , . . . , a„) G Mw such that (f w ,s) M (a 1 , • • •, an)
is defined and where w = (s i , . . . , sn), it holds that h s ((f WtS) M { a > i , . . . ,an)) =
(f w , s) N (h S l (a i) , . . . , h Sn (a n)) , and similarly,

• for all p G Pw and (a i , . .. ,an) G Mw, where w = (s i , . . . , s n), it holds that
(a i , . . . , an) G (pw)m implies (hSl{ai), . . . ,hSn(an)) G (pw)n -

Finally, defining identities and composition in the obvious way results in the category
of PCFOLr E-models.

We now consider the notion of model reducts for PCFOL= models. Let a : E —» E'
be a PCFOL= signature morphism and M' be a E'-model, model reducts are defined
as:

D efin ition 4.12 (PCFOLr Model Reduct) Then the reduct M' \a of M' is the E-model
M with:

• Ms := M^S(s) for all s G 5,

• (fw,s)M := (^ , s(/))a/' for all / G TFW,S U PFW,S, and

• (Pw)m ■= {(?w{p))m ' for all p e Pw.

Similarly, given a PCFOL= E'-homomorphism h! : M' —>■ N', we define its reduct
as:

D efin ition 4.13 (PCFOL= Model Morphism Reduct) The reduct of h'\a : M'\a N'\a
is given by (h'\a)s := h'aS^ for each s G S.

Finally, once again defining identities and composition in the obvious way, gives us
the functor mod.

4 .4 .3 PCFOL= Sentences

We now consider sentences for PCFOLr. Given a PCFOL= signature E = (S , T F , PF, P),
we define:

D efinition 4.14 (Variables) Variables over E are given by an S'-sorted, pairwise disjoint
family X = (Xs)s, s .

D efin ition 4.15 (Terms) The set of terms T^(X)S of sort 5 G S, over E with variables
in X is given by the least set satisfying:

• x G T ^ (X)S, if x G X s, and

• fw,s{ti> ■••)*«) £ T z (X)s, if U G T x(X)Si (i = 1 .. .n), / G TFWfS U PFWfS, and
w = (s i , . . . , s n).

D efin ition 4.16 (Atomic Formulae) The set of atomic formulae, AFj^(X) with variables
in X is given by the least set satisfying:

57

4. Specification Formalisms, Institutions and Proof Support

• predicates: p w { t\ , . . . t n) E AFE(X), if U E T^(X)Si, p w E Pw, and
w = (s i , . . . , s n) g S*,

• existential equations: t\ = £ 2 E AF^(X), if £i, £ 2 G T z (X)s,s G 5,

• strong equations: t\ = t2 G AFs(X)if £ 1 ? £ 2 G Tx(X)s,s G S', and

• definedness assertions: deft G ylFs(X),if t G T%(X).

D efin ition 4 .17 (First Order Formulae) The set of first-order E-formulae, FO^{X),
with variables in X is given by the least set satisfying:

• atomic formulae: AF^{X) C FO^(X),

• falsity: F G FOz(X) ,

• conjunction: p A ip G FOs(X),iS<p,il> e FOe(X),

• implication: cp => 'ip £ FOz(X) , if p,ip E FOj;(X), and

• universal quantification: Vx : s • p G FO's(X), if p E FO^{X U {x : s}), s E S

R em ark 4.18 We use the usual abbreviations -iip for p =$> F, tp\/ for ~'{-'<p A -'ip),
T for ->F and 3x : s • <p for -iVx : s • -'p. We also omit brackets where possible.

PCFOL= includes the notion of sort generation constraints, that is, that some set of
sorts is generated by some set of functions. A sort generation constraint over a signature
E can be formally captured as:

D efin ition 4.19 (Sort Generation Constraint) A sort generation constraint over a
• • _

signature E is given by a triple (S ,F ,0), where 0 : E —> E for some signature E =

(S ,T F ,P F ,P) , S c l S and F C T F U PF.

Here, the sort generation constraint contains a signature morphism component that
is required for them to be translated along signature morphisms without conflicting
with the satisfaction condition. We can now define the E-sentences for PCFOLr.

D efin ition 4.20 (Sentences) A PCFOLr E-sentence is a closed first order formula
over E or a sort generation constraint over E.

Next, to define sentence translation along a signature morphism, we firstly need
to consider what is means to translate a variable set. Given a signature morphism
a : E —> E' and a variable set X over E, we can obtain the variable set <r(X) over E'
by cr(X)s> Ucr5 (s)=s' This translation can be extended to atomic and first-order
formulae via an inductive definition over the structure of the formulae [Mos02]. Finally,

• •
the translation of a sort generation constraint (S , F , 6) is the sort generation constraint
(S ,F ,a o 0) .

58

4-4- The PCFOL Institution

Considering the sentence translation we have outlined above, it is straightforward
to see that translation along the identity signature morphism is the identity, and that
translation along a composition of two signature morphisms is the composition of the
sentence translations along the individual signature morphisms. Hence, this gives us
the functor sen.

4 .4 .4 T h e P C F O L = S a tis fa c tio n R e la t io n

In order to define satisfaction of sentences we first define term evaluation. We note
that variable valuations are total, but the value of a term given a variable assignment
may be undefined. This could arise thanks to the application of a partial function
during evaluation of a term. Given a total variable valuation v : X —> M we define term
evaluation as:

D efin ition 4.21 (Term Evaluation) The term evaluation : Ts(A') —>-?M is induc­
tively defined by:

• vl{x) v(x) for all x £ X s and all s £ S.

• (fw,s{t 1 , • • • ,fn)) : =
(if vliiU) is defined (z = 1 .. .n) and
4 (fw,s)M{vai(ti), • • •, *4(fn)) is defined
f undefined otherwise

for all / £ TFWt8 U PFW,S and L £ T ^(X)Si (i = 1 . . . n), where w = (s i , . . . , sn).

We can now define the satisfiability of a first-order formula p £ FO ^(X) with
respect to a valuation v : X —>■ M:

D efinition 4.22 (Satisfaction f=) Satisfaction of a first-order formula p £ FO%(X) is
given by:

• v)rPw(ti, • • • , tn) iff J (l) is defined (i = 1 . . . n) and (z/#(£i),. . . , z^(£n)) £ (pw)m -

• v f= t\ = t2 iff v^{t\) and ^ (£ 2) are both defined and equal.

• v 1= t i —t2 iff v^{ti) and ^ (£ 2) are either both undefined, or both are defined and
equal.

• v |= deft iff i^(£) is defined.

• not v \— F.

• v \= (p A'ljj iff v \= ip and v \= ip.

• v[=(p=>'ipiSi'\=(p implies v \= if.

• v \=Mx \ s • p iff for all extended valuations Q : X U {x : s} —> M (i.e., valuations
where it holds that £(?/) = u(y) for all y £ X \ {x : s}) we have C, \= p.

59

4. Specification Formalisms, Institutions and Proof Support

M \= (p holds for a many-sorted E-model M and a first-order formula </?, iff for all
variable valuations v (into M) we have v |= ip.

• •
A sort generation constraint (S, F, 6) is satisfied in a E-model M, if the carriers of

• •
M\q of the sorts in S are generated by the function symbols in F, that is, for every sort

• _
s G S and every value a G {M\q)s, there is a E-term t containing only function symbols

• •
from F and variables of sorts not in S such that i${t) = a for some assignment v into
M\e.

This concludes our presentation of PCFOL~. Full details including a proof of the
satisfaction condition for PCFOLr are presented by Mossakowski [Mos02]. We now
consider SubPCFOL^ which extends PCFOLr to an institution with sub-sorting.

4.5 The SubPCFOL= Institu tion

We now present the SubPCFOLr (partial first order logic with sort generation con­
straints, equality and sub-sorting) institution which underlies C asl. Our presentation
is again based on Mossakowski’s work [Mos02].

4.5.1 SubPCFOL= S ignatures

The SubPCFOL= institution extends PCFOLr signature with the notion of subsorting.
To do this, signatures from PCFOLr are extended with a reflexive and transitive subsort
relation.

Definition 4.23 (SubPCFOL= Signature) A SubPCFOL= signature E = (S,TF, PF,
P,<s) consists of:

• a PCFOLr signature, and

• a reflexive and transitive subsort relation <s over the set S of sorts.

As this added subsort relation is not antisymmetric, it allows for the definition of
isomorphic sorts via injections. Also note, that <s can be extended in a pointwise
manner to sequences of sorts. We can then define overloading on subsorts:

D efinition 4.24 (Overloading Relations) Let / : w\ —> si, f : W2 —> S2 £ T F U PF.
Then / : w\ —Y S\ f : » S2 iff there exist w G S*,s G S such that w <s w\, w <s
W2 , si <s s, and S2 s. Let p : w\,p : W2 G P. Then p : w\ ~ p p : W2 iff there exists
w G S* such that w <s W\ and w <s W2 -

A signature morphism is nothing but a PCFOL= signature morphism that preserves
< s, and ~ p , i.e. we have:

Definition 4.25 (SubPCFOLr Signature Morphism) A SubPCFOL= signature mor­
phism a : E —» E' is a PCFOLr signature morphism that satisfies:

60

4-5. The SubPCFOL Institution

• si < 5 S2 implies crs (si) < 5 / crs (s2) for all Si,S2 G S (preservation of <s),

• f : w i ^ S i ~ F f : w 2 ->S2 implies cr£1|S1(/) = cr£2,S2(/)
for all / G T F U P F (preservation of simp), and

• p : wq ~ p p : u>2 implies cr^(p) = cr^2 (p) for all p G P (preservation of simp).

Next, the standard way to deal with subsorting on the model level, is to attach to
SubPCFOLr signatures both injection and projection functions, and an element-hood
predicate. This can be accomplished by formulating a functor 2 : SubPCFOL^-signatures
—> PCFOLr-signatures.

Definition 4.26 (2 Functor) Given a SubPCFOL= signature £ = (S,TF, PF, P, <s)
we associate to it a PCFOLr signature £ = (S ,TF , PF, P) that extends £ with:

• a total injection function symbol i n j s s, : s —> s' for each pair of sorts s <s s',

• a partial projection function symbol p rs, s : s' —»?s for each pair of sorts s < s s',
and

• a unary membership predicate symbol G®/i s' for each pair of sorts s < 5 s'.

Given a signature morphism a : £ —» £ ' , we extend it to a signature morphism
a : £ —)•£' by mapping the injections, projections and memberships in £ to the
corresponding injections, projections and memberships in £ '.

Remark 4.27 From this point onward, we drop the subscripts on the injection and
projection functions if they are clear from the context. We also write t G s instead of
Ĝ z (t) if s' is clear from the context.

This now allows a relatively simple definition of SubPCFOLr models.

4 .5 .2 SubPCFOL= M odels

SubPCFOLr models can now be captured as PCFOLr models of an extended £
signature:

Definition 4.28 (SubPCFOL= Models) SubPCFOL= £-models are PCFOLr £-models
satisfying the following set of axioms J (£) (Note: variables are universally quantified):

1. identity: i n j s s{x) = x for s G S.

2 . embedding injectivity: i n j s s,(x) = i n j s s,(y) => x = y for s <s s'.

3. transitivity: i n j s/ //(in js /(a:)) = i n j s s//(r) for s < s s' < s s''.

4. projection: p rs,)S(in jS)S,(z)) = x for s < 5 s'.

5. projection injectivity: p rs, (x) = p rs/ s(?/) =4> x = y for s < s s'.

61

4. Specification Formalisms, Institutions and Proof Support

6. membership: e®, (x) <=> def p rs, s(x) for s <s s' .

7. function monotonicity: in j a,>s(/w/)fl/(in jSl|S/ (xi) , . . . , i n j Sn ^(a:n))) =
i njs /Ls(A|'/,s'/(i I1js 1)s'/(aT), • • • > in j Sn,S"(^n))) f°r fw',s' fw",s" i
where w <s w', w", w = (sj, . . . , sn), w' = (s i , . . . , s'n), w" = (s'/, and
s', s" < 5 s.

8. predicate monotonicity: p ^ /(in jSl s/ (#1) , . . . , i n jSn s> (^n)) ^
pw" (in jSltS" (x i) , . . . , i n jSn < (xn)) for pw> pw„,
where w <s w',w", w = (s i , . . . , s n), w' = (s[, . . . , s'n), and w" = (s", . . . , s").

Model morphisms for SubPCFOLr models are now nothing but PCFOLr morphisms
of S-models. Similarly, model reducts for SubPCFOLr can be defined to be model
reducts in PCFOLr [Mos02].

4 .5 .3 S u b P C F O L = S en te n ces a n d S a tis fa c tio n

SubPCFOL= sentences are just ordinary E-sentences and Sentence translation along
a SubPCFOLr signature morphism a is just sentence translation along the PCFOLr
signature morphism a.

Finally, the satisfaction relation and satisfaction condition can be inherited from
PCFOLr as models and sentences are taken from P C F O lr .

This draws to a close our presentation of the SubPCFOLr institution underlying
C a s l .

4.6 A n In stitu tion for M odal Logic

As described in Section 4.2, M o d a l C a s l [Mos04a] extends C a s l with elements of
Modal Logic [HC96, Mos04a] . Here we present the institution underlying M o d a l C a s l .
We shall call this the ModalSubPCFOLr institution. Again, we omit proof details and
refer the reader to [Mos04a, MC10].

4 .6.1 M o d a l S u b P C F O L = S ig n a tu re s

M o d a l C a s l extends C a s l signatures with the notion of “flexible” operations, predicates
and modalities. Modalities are introduced in two forms, firstly as basic modalities and
secondly as sets of modalities defined by some terms. Formally we have:

D efinition 4.29 (ModalSubPCFOLr Signatures) A ModalSubPCFOL= signature 'Em =
(S, T F , PF, P, <s, Fr , Pr , M, SM) consists of:

• a SubPCFOL= signature (S ,T F ,P F ,P , < s),

• a predicate Fr C T F U P F marking functions as rigid,

• a predicate Pr C P marking predicates as rigid,

62

4-6. An Institution for Modal Logic

• a set of modalities M, and

• a set of modality sorts SM C S.

Given two ModalSubPCFOL= signatures Em = (S ,T F ,P F ,P ,< s,Fr ,Pr ,M,SM)
and T/m = (S', TF' , PF', P ' , <'s, FR, PR, M\ SM’), we can define a signature morphism
as:

D efinition 4.30 (ModalSubPCFOLr Signature Morphism) A ModalSubPCFOLr sig­
nature morphism gm '• Em —> E'M consists of:

• a SubPCFOLr signature morphism
<7 : (S, TF, PF, P, < s) -y (S', TF', PF', P', <'s) ,

• a mapping gm • M —> M’ between modalities, and

• a mapping gsm • SM —> SM’ between modality sorts

such that rigidity and modalities are preserved, i.e.

• g(Fr) = Fr (preservation of rigid functions)

• g(Pr) = PR (preservation of rigid predicates)

• gm(M) = M’ (preservation of modalities), and

• &sm{SM) = SM’ (preservation of modality sorts).

Defining identities and composition in the obvious way leads to the category of
ModalSubPCFOLr-signatures. Next, we consider the notion of a ModalSubPCFOL=
Model.

4 .6 .2 ModalSubPCFOLr M odels

Modal Logic is built upon the idea of worlds [HC96, Mos04a], each of which is defined
(usually) by some first order model. Between such worlds, there is then an accessi­
bility relation for each given modality. These elements are reflected directly in the
ModalSubPCFOL= models.

D efin ition 4.31 (ModalSubPCFOLr Models) A ModalSubPCFOLr model is a tuple
K = (W, b {®m}m6 M) {®c}c€.Mw(s),s£SMi {Mw}wew) consisting of:

• a set of worlds W,

• an initial world i G W,

• a binary accessibility relation am C W x W for each modality m G M,

• a binary accessibility relation ac C W x W for each carrier element c of the
interpretation of a modality sort s G SM, and

63

4. Specification Formalisms, Institutions and Proof Support

• a SubPCFOL~ model M w for each world w G W,

such that the carrier sets and interpretations of rigid function and predicate symbols is
the same in all SubPCFOLr models, i.e.

• carrier sets: Mw(s) = Mv(s) for all w, v G W, s G S,
(we sometimes just write M(s), as carrier sets are independent of the worlds.)

• functions: Mw(f) = M v(f) for all w, v G W, f G Fr : t —> s U Pr : t —)• s, t G
S*,s G 5, and

• predicates: Mw(p) = Mv(p) for all w,v E W,p £ P r : t , t £ S*

and the accessibility relations ac are preserved under the embedding of a carrier
element along subsort injection, i.e., for all s,s' £ S with s < s' it holds that: for all
c £ M(s),c' G M(s') with c' = M (in js^){c) we have (v,w) G a c 4 (v,w) G <v for all
v, w G W .

R em ark 4.32 Here we explicitly include a distinguished initial world into the models.
This differs from Mossakowski and Girlea [MC10, Mos04a], but is required later in
Section 5.4.

With respect to ModalSubPCFOL~ model morphisms, we ensure that modality
relations between worlds are preserved, along with the first order structure of a world:

D efinition 4.33 Given two ModalSubPCFOLr models over the same signature, say
K = {W, z, {um}m£/w, {ac}c£M(s),s€S/W5 {^w}w£w) and
L = (V,j,{bm}m€M,{bc}c€N(s),s€SM,{Nv}vev), a model morphism is a mapping (/ :
W —> V, {f w}W£W) : K L such that:

• f(i) — j , that is, initial worlds are preserved,

• (w,v) G am => (f(w) , f (v)) G bm for all w,v G W,m G M, that is, modality
relations are preserved,

• (w,v) G ac => {f{yj) ,f (v)) G &/w(c) for all w,v G W,c G M(s) ,s G SM, that is,
modality relations are preserved for carrier elements of modality sorts, and

• f w : Mw —> Nf(wj, for all w G W is a SubPCFOLr model morphism.

Together with the standard definition of identity and composition, ModalSubPCFOL=
models and model morphisms form the category ModalSubPCFOL=-models.

Next we consider model reducts:

D efinition 4.34 (ModalSubPCFOL= Model Reduct) Given a ModalSubPCFOL= signa­
ture morphism a : E —»• E', the reduct of a ModalSubPCFOLr model
K = {^c\cEN(s),sESMi {^v}vEv') fO a model
L = (W,i , {am}meM, {a c } ce M (s) , s e S M , {Mw}weW) along a is given by:

64

4-6. An Institution for Modal Logic

• W = V,

• i = j,

• dm = 6 aM(m) for all m E M

• ac = 6 C where c E f°r all s £ SM, and

• Mw - (A^)!^ for all w E W.

This definition straightforwardly keeps the initial world and relations between sets
of worlds in the reduced model intact. Similarly, for model morphisms the mappings
between sets of worlds remains, whilst the mapping of the first-order structure of each
world is reduced along the corresponding SubPCFOL= morphism reduct.

Definition 4.35 (ModalSubPCFOL= Model Morphism Reduct) Given a
ModalSubPCFOLr signature morphism a : E —> S ', the reduct of a model morphism
(/'» i fDweW') ■ K f -» V is (/ ' |CT, G W ’) where:

• f \ a = f and

• fyj |(j is the standard SubPCFOLr model morphism reduct for all w G W ' .

4.6 .3 ModalSubPCFOL= Sen tences

Sentences for ModalSubPCFOL= are an extension of SubPCFOLr sentences with two
new connectives, namely [m] and (m) where m is a modality or a term in a modal sort.
These connectives represent the usual modal operators box and diamond. We also note
that the sentences of SubPCFOL= are extended to allow definitions for terms of modal
sorts. As this definition is straightforward but lengthy, we refer the reader to [MC1 0].
With respect to sentence translation, we extend SubPCFOL= sentence translation.
Below we present the rules for sentence translation of these new connectives:

Definition 4.36 (ModalSubPCFOL= Sentence Translation) Given a
ModalSubPCFOLr signature morphism a : £ —» S ' we define the translation of sentences
by:

• Sen{a)((m)' <p) — (a{rn))' Sen{cr){ip)

• 5en(a)([m]V) = [o{m)]'Sen{o){ip)

Finally, we do not present the formal detail of satisfaction as it is somewhat lengthy.
Instead, we refer the reader to [MC10, Mos04a]. We note that the ModalC asl
satisfaction is based on the satisfaction for Casl outlined in Section 4.4.4 where
intuitively the extension states:

• (m)ip holds if ip holds in some world reachable in one step via m.

• [m]ip holds if p holds in all worlds reachable in one step via m.

65

4. Specification Formalisms, Institutions and Proof Support

This concludes our presentation of the M o d a l C a s l institution. We now consider a
simple comorphism from M o d a l C a s l to C a s l .

4 .6 .4 A n In stitu tio n C om orphism from M od al CA SL to CASL

To provide an insight into translations between institutions, we now give and overview of
how M o d a l C a s l specifications can be turned into C a s l specifications. Full details are
given by Mossakowski in [Mos04a, Mos02]. The comorphism consists of the following:

Signature translation: Sorts are unchanged, but a sort W (for “worlds”) is added, as
well as a constant init : W and a binary relation R : W x W. Rigid operation
and predicate symbols are kept unchanged. For flexible operation and predicate
symbols, W is added as an extra argument.

Sentence translation: Sentences are translated according to the standard translation.

Model translation: A C a s l model is turned into a M o d a l C a s l by keeping the carrier
sets (note that M o d a l C a s l enforces constant domains) as well as the rigid
operations and predicates. The set of worlds and the accessibility relation are
obtained by the interpretation of w and R respectively. The flexible operations
and predicates are obtained by using the current world as the extra argument of
the C a s l operation respectively predicate.

This comorphism has been implemented in the H e t s toolset. Considering our
example M o d a l C a s l specification from Section 4.2, applying the above translation
leads to the following C a s l specification:

spec M o d a l In C A S L =
sorts Connector, Linear, State, Switch, Unit, g-World
sorts Linear, Switch < Unit
op init : g-World
op cl : Unit —> Connector
op c2 : Unit —> Connector
op c3 : Switch —> Connector
op state-at : g-World x Unit —> State
pred __hasConnector__ : Unit x Connector
pred g_R[time] : g-World x g_World

end

In this specification, we can clearly see that a sort g-World has been added, along
with the distinguished initial world init and a binary predicate g-R[time] over worlds.
We can then see that all rigid operations and predicates have been translated to
corresponding operations and predicates with no change to their profile. Finally,
we can see that the profile of the flexible operation state-at has been changed to
g-World x Unit —»■ State, which now includes the sort g-World.

66

4-7. Tool Support: Hets and Automatic Theorem Proving

4.7 Tool S u p p o rt: H e ts an d A u to m a tic T h e o re m
P ro v in g

Over the last few sections, we have introduced both C a s l and M o d a l C a s l , and given
modelling scenarios to which each are suited. Such an approach of using various different
languages for different modelling tasks is known as Heterogeneous Specification [SAA02],
This is widely accepted for the specification of large systems where heterogeneous multi­
logic specifications are needed due to the fact that complex problems often have different
aspects that are best specified in different logics. With respect to C a s l and M o d a l C a s l ,
tool support comes in the form of H e t s . the Heterogeneous Tool Set [MML07].. H e t s
is a proof environment centered around C a s l and languages that are restrictions
or extensions of C a s l . H e t s is based around implementations of logics that form
institutions. Translations between these logics are then given by implementations of
institution comorphisms and morphisms. H e t s also uses development graphs [MAH06]
to track the structural information between heterogeneous specifications. It supports
parsing and static analysis of specifications written in C a s l and M o d a l C a s l , along
with many other specification languages. Figure 4.3 shows the H e t s development
graph for the miniature railway introduced in Section 4.1.2. In this graph we can
see the structure of the specifications we have introduced. Each bubble represents a
specification, the various arrows represent imports, and the red bubble represents that
there are open proof goals, namely the implied property we introduced in Section 4.1.5.
Finally. H e t s also acts as a broker to various proof assistants and automatic theorem
provers some of which we introduce below.

Figure 4.3: The H e t s development graph for out miniature railway specification.

4.7 .1 T h e o re m P ro v e rs

Within H e t s , there are several theorem provers that can be called to discharge
proofs. For example, the implication given in Section 4.1.5 can easily be discharged by
SPASS [WBH+02] and Vampire [RV01]. Translations to the underlying logics of the

67

4- Specification Formalisms, Institutions and Proof Support

various provers are again implemented as institution comorphisms. Although H e t s has
support for interactive theorem provers such as Isabelle [NPW02] for higher order logic,
we will make use of the following (fairly similar) automatic provers:

SPASS [WBH+02] which is an automatic theorem prover for first-order logic with
equality. SPASS is a resolution based solver with the ability to produce proof
trees.

Vampire [RV0 1] which is another automatic theorem prover for first-order logic both
with or without equality. Vampire is also a resolution based solver which has a
high focus towards efficiency.

The E Theorem Prover [Sch0 2] which is a first-order logic with equality theorem prover
that applies saturation techniques. E can also produce a list of proof steps taken
to prove a given goal.

The in te r fa c e p ro v id e d to su c h p ro v e rs is sh o w n in F ig u re 4.4. w h e re we h av e th e
p ro o f goal fro m o u r m in ia tu re ra ilw a y ex a m p le lo a d ed re a d y for p ro v in g w ith SPASS.
H e t s t r a n s la te s th e ax io m b ase o f th e spec ifica tion an d th e p ro o f o b lig a tio n in to SPASS'

r-% SPASS: m initure_railw ay_Junction E1
Options:

Timeout: 10 ;
Extra Options:

Include preceding proven
theorem s in next proof a ttem pt

B Save problem batch

St Prove Prove all

Results:
S tatus: Proved
Used Axioms:

declaration?
declarationO
a rg re s tr ic tio n _ p _ h asC o n n ec to r_
declaration?

Save df g File Show Oetails

Save config Close

F igu re 4.4: SPASS prover in terface from H e t s .

input language and then passes them onto SPASS. The window shown in Figure 4.4
allows us to attempt to discharge the proof obligation via SPASS. The open proof goals
are shown in the upper left area, here we only have the one property we have specified
as an open goal. Next, we can see that SPASS is able to prove this simple implication
automatically by the green plus symbol next to the axiom on the top left of the figure.
Finally, the lower right portion of the window shows us axioms used for the proof (most
are unnamed as we did not label them in the previous specifications).

Coals:

M **!_<

Help

08

Part II

M ethodology Construction

69

Chapter 5

From DSLs to CASL

C ontents
5.1 UML Class Diagrams for D S L s .. 71
5.2 An Institution for UML Class D iagram s.. 73
5.3 Stereotypes for Dynamical Aspects .. 83
5.4 From Class Diagrams with Rigidity Constraints to Modal CASL . . 87
5.5 Crafting a Formal D S L ... 91

In this chapter, we present the technical framework for allowing domain specific languages
formulated using UML class diagrams to be captured in C a s l . In particular, we present
a new institution for UML class diagrams through extension of the UML class diagram
institution by Cengarle and Knapp [CK08] with numerous concepts typically appearing
in applications. Along with this, we give a comorphism mapping from this institution
into M o d a l C a s l . A s part of this mapping, we present the institution construction of a
pointed power set institution. This construction factors out a general principle necessary
for connecting UML class diagrams with an arbitrary institution capturing system
dynamics. Finally, for the sake of better proof support, we use an already established
comorphism to translate from M o d a l C a s l to C a s l . Throughout the chapter, we
use examples from Bjprner’s DSL for illustration. Overall, this approach allows us to
directly import DSL specifications from industry into the methodology proposed in this
thesis.

5.1 UM L Class D iagram s for DSLs

As we have seen in chapter 2 and 3, UML Class Diagrams [Objll] are industrially
accepted for modelling a variety of systems across numerous domains. Often they are
used to describe all elements and relationships occurring within a domain. As such, a
UML Class Diagram can be thought of as describing a domain specific language. A
typical example of such an endeavour is given by the Data Model [RailO] of our research
partner Invensys Rail which aims to describe all elements within the railway domain.

71

5. From DSLs to CASL

In this chapter, we describe how to utilise industrial DSLs from the railway domain,
formulated as UML class diagrams, for verification. As UML class diagrams only capture
the static system aspects, we make the realistic assumption that the class diagram is
accompanied with some natural language specification describing the dynamic system
aspects. For Railways this situation is given thanks to generally accepted standard
literature, e.g., [KR01].

Our work closely relates to the various approaches that utilise UML as a graphical
frontend for formal methods. In this respect, we follow the approach of Cengarle and
Knapp [CKTW08, CK08]. In their approach, a UML diagram can be described in
its “natural” semantics and its relations to other UML diagram types is expressed by
appropriate translations. Overall, this results in a compositional semantics for UML as
each diagram type is treated individually. It also separates concerns: first a semantics
is given, then a translation is defined. This differs from monolithic constructions,
which first select a fixed, usually small number of UML diagrams and then give a
semantics by translation into an established formalism. A first such attempt with C a s l
as the underlying formalism was given in [HCBOO]. Yet another example of this second
approach is the UML-RSDS method [LCA04], UML-RSDS translates specifications
consisting of class diagrams, state machines and OCL into B. Class diagram annotations
in the form of stereotypes steer the translation. Lano et al. [LCA04] give a railway
example, however, not to the extent of defining a DSL. Another example of this kind is
the approach taken within the INESS project [dSWPll]. The INESS project defines a
DSL whose components are mapped into xUML. These are then translated to Promela
in order to verify railway systems with the SPIN model checker. Besides the different
approach to semantics, our construction allows for theorem proving technology rather
than for model checking. A third approach is given by Meng and Aichernig [MA03],
who define various semantics for class diagrams depending on their use in software
development. Their overall approach is of a co-algebraic nature. The most abstract
level, defined as the “object type” semantics, is close to the view we take on class
diagrams. The more concrete levels equip objects with a (hidden) state and a transition
structure, and visibility tags for attributes and methods.

We begin by presenting an institution for capturing proper UML class diagrams, as
used in Figure 2.3. To do this, we first consider the elements of UML class diagrams
that we are going to capture with our constructions. We then discuss the introduction
of Stereotypes [Objll] to such class diagrams for allowing the capture of dynamical
aspects and present a general construction on institutions for capturing this stereotype.

5.1.1 C on stru cts from U M L C lass D iagram s

Before presenting our institution for class diagrams, we first consider the various elements
of UML class diagrams that we capture. We also highlight the main restrictions of our
construction.

To begin, we consider the elements of class diagrams that are considered by
Holt [Hol04]. The work we present captures all of the basic class diagram elements
discuss by Holt. For example, we capture classes, arrows, relationships, generalisation,

72

5.2. An Institution for UML Class Diagrams

properties etc. However, we refrain from a distinction between aggregation and compo­
sition, and only capture a particular notion of composition. We also capture a restricted
version of operations, namely operations that do not alter the state of an object. Such
operations are often called query operations. Finally, we exclude constraints from our
class diagram institution as these are usually written using natural language or another
UML diagram type. Such constraints have also not been required in the applications
we have considered.

Finally, with respect to the capture of data types, we consider a restricted type
system compared to, for example, the work of Cengarle and Knapp [CKTW08, CK08].
In their work, they use a notationally involved natural transformation to extend a class
diagram allowing for the capture of recursive type constructs. However, for our work,
such types are not needed, thus instead we use “built-in” types capturing the basic
types and type formers we require. Concretely we allow for Booleans, Lists, Sets and
Pairs.

5.2 A n In stitu tion for UM L Class D iagram s

At a high level, following the UML class diagram standard interpretation [Objll], the
UML class diagram institution is constructed as follows: The signatures are used to
capture all classes, relationships, and features of a UML class diagram. The models
comprise of all objects and links between objects that comply to the UML class diagram.
Finally, the sentences describe the multiplicities of the associations and compositions
within the class diagram. We note, that in order to provide generic access to primitive
types, like Boolean, and type constructors like List, we treat these as built-in types with
a standard meaning. We also note, that for technical reasons concerning empty sorts in
C a s l , we assume that all other classes are inhabited, i.e., to contain at least one object,
for example the null object.

5.2 .1 C lass D iagram S ignatures

Firstly we define the objects of the UML class diagram signature category. The
signatures of the UML class diagram institution are given by class nets:

Definition 5.1 (Class Nets) A class net E = ((C, <c), K, P, M, A) comprises of

• a class hierarchy (C, <c), i-e., a partial order where C is a set of class names and
the partial ordering relation <c represents a generalisation relation on C, where
we say that c\ is a sub-class of C2 if c\ <c C2 ■ This partial order is also closed
with respect to the built-in type Boolean (i.e., Boolean £ C), and “downwards”
closed with respect to the unary built-in type formers List and Set, and the binary
built-in type former Pair (i.e., if List[c] £ C or Set[c] £ C, then c £ C; and if
Pair[ci,C2] £ C, then ci,C2 £ C);

• a set K of instance specifications declarations of the form k : c with k an instance
specification name and c £ C;

73

5. From DSLs to CASL

• a set P of property declarations of the form c.p{x\ : C] , . . . , £ n : cn) : d with
c, c i , . . . , cn, d g C , n > 0 , x i , . .. , x n formal parameter names and p a property
name (where the parentheses are dropped if the property declaration has no
arguments);

• a set M of composition declarations of the form c+r : d with c, d G C and r a
composition role name. Roles are used to describe the part played by a class
within a composition. Even though roles are optional within UML class diagrams,
here we make them explicit. If no role name is given, then we simply use the
name of the class itself;

• and a set A of association declarations of the form a{rq : c i , . . . ,rn : cn} with
n > 2, c i , . . . , c n G C, a an association name, and r i , . . . , r n association role
names. Again, roles are used to highlight the part played by a class within an
association;

such that the following properties are satisfied:

• firstly we require that supertypes of built-in types and type formers are forbidden,
for example, forbidding Boolean < c for all c 7 ̂ Boolean.

• we require uniqueness of role names for several elements within the class net,
namely:

1 . instance specification names are unique: if Aq : c\ and k2 : c2 are different
instance specification declarations in K, then Aq f ^ k 2\

2 . property names are unique along the generalisation relation: if c\.p\(x\\ :
cn , • • • ,xini : cini) : ci and c2 .£ 2 (2 2 1 : c2 i , . . . , x 2n2 '■ c2 n2) : c'2 are different
property declarations in P and c\ <c c2, then p\ 7 ̂p2;

3. composition role names are unique along the generalisation relation: if
C\+r\ : ci and c2 *-r2 : c'2 are different composition declarations in M and
ci <c c2, then rq 7 ̂ r 2;

4. nullary property and composition role names are unique along the gener­
alisation relation: if ci.pi : c[is a nullary property declaration in P and
c2+r2 : c'2 is a composition declaration in M and cj <c c2, then p\ 7 - r2\
and if ci^ri : ci is a composition declaration in M and c2 .p2 : c2 is a nullary
property declaration in P and c\ <c c2, then rq 7 ̂p2;

5. association role names are unique: if a{?q : c i , . . . , r n : Cn} is an association
declaration in A and i 7 ̂j , 1 < i , j < n, then 7q 7 ̂rj\

• Finally, we require that composition declarations are cycle-free, that is, if ci*ri :
c2, . . . , cn+rn : cn + 1 G M, then cn + 1 7 ̂ ci.

As an example, considering the UML class diagram in Figure 2.3, we gain the following
class net:

74

5.2. An Institution for UML Class Diagrams

Classes: {Net, Station, . . . , Pair[Unit, Path], List[P air [Unit, Path]]}
G eneralisations: Point < Unit, . . . , Route < List[Pair[Unit, Path]]
P ro p ertie s : {Net.id : UID, . . . , Route.isOpen(r : Route)-.Boolean}
C om positions: {Station +has : Unit, Station +has: Track}
A ssociations: {stateAt(unit: Unit, state : UnitState), . . . }

Here we can see the inclusion of default role names, for example, for the stateAt
association. It has a role name unit for the Unit class involved in the association and
similarly a state role name for the UnitState.

Next, for morphisms between class nets, we define:

D efinition 5.2 (Class Net Morphisms) A class net morphism a — (7 , n, it, p, a) : £ =
((C, <C),K, P , M , A) ^ T = {{D, <D), L, Q, N, B) is given by

• a class hierarchy map 7 : (C, <c) -» (D, <d) such that 7 is a monotone map from
(C, <c) to (D , <£>), i.e., 7 (c) <d 7 {c') if c <c U and homomorphic with respect
to types and type formers, i.e., 7 (Boolean) = Boolean, 7 (List[c]) = List[7 (c)] for
all c E C, etc.

• an instance specification map k : K —>• L such that if n{k : c) = I : d £ L, then
d = 7 (c);

• a property declaration map 7r : P —»■ Q such that if r(c.p(xi : C\,. . . , xm : Cm) : c') —
d.q(yi : d \ , . . . ,yn : dn) : d' E Q, then m = n, d = 7 (c), di = 7 (cj) for all
1 < i < m, and d' = 7 (d');

• a composition declaration map p, : M —»■ N such that if p(c+r : c') = d+s : d' E M,
then d = 7 (c) and d' — 7 (d1);

• an association declaration map a : A —* B such that n-ary association declarations
are mapped to n-ary association declarations along 7 , that is, cn(a{ri : c \ , . . . , rn :
cn}) = b{s\ : d \ , . . . , sm : dm} E B, then there is a bijective map p : {7 7 , . . . , rn} —>
{s i , . . . , sm} with dj — 7 (ci) if p(ri) = sy, we denote this bijective map p also by
Pa•

We define the composition of signature morphisms to be pointwise composition of
each component function. That is:

D efin ition 5.3 (Class Net Morphism Composition) Given a = (7 , K,r,p, a) : £ =
((C,<c) , K , P , M , A) -► £ ' = ((C' ,<c y , K ' , P ' , M f,A f) and <r' = (7 ' , tt', pf, a1) :
S ' = ((C' ,<c y , K f,P ' ,M ' ,A ') -> £" = ({C",<c)" ,K" ,P " ,M ",A") . We define a
candidate: a' o a = (7 ' o 7 , k' o k, tt' o 7r, p,' o p, a' o a) : E = ((C, < c) , K , P, M, A) —>•
E" - {{C", <c)", K " , P", M", A"))

Identity morphisms are defined in the expected way:

75

5. From DSLs to CASL

Definition 5.4 (Class Net Identity Morphisms) A candidate class net identity mor­
phism ida = (idj, idK, id^ id^ , ida) : £ = ((C, <c), K , P, M, A) £ = ((C, <c),K, P, M, A)
is given by:

• a class hierarchy map 7 : (C, <c) —> (C, <c) mapping C (->• C and <c <c;

• an instance specification map k : K —» K mapping k : c i-> k : c;

• a property declaration map idn : (P —> P) mapping c.p(x 1 : C \ , . . . , xn : cn) : c' h->

c.p(xi : ci , . . . , a;n : cn) : c';

• a composition declaration map idM : (M —>• M) mapping c+r : c' (->■ c+r : d

• an association map ida : (a a) mapping a{ri : c i , . . . , r n : cn} ^ a{r\ :
C l j ■ • • , Tn : C n }

Lemma 5.5 (The Category Cl of Class Nets) Class nets and class net morphisms with
composition and identity as defined by the above candidates form the category of class
nets, denoted by Cl.

Proof. Considering composition, given a = (7 , k, 7t, fi, a) : £ = ((C, <c),K, P, M, A) —>
s ' = ((C', < c y, K', P \ M ', A'), (T' - (7 ' , 7T', /x', a ') : £ ' = ((C', <c)\ K \ P \ M ' ,A ’) ->
£" = ((C", <c)" 1 K " , P" 1 M " , A") an d a' o a = (7 ' o 7 , ^ 0 o 7r , / i 'o p , a ' o a)
we show th a t com position form s a valid m orphism :

• (7 ; 0 7) trivially preserves monotonicity of < c as it is nothing but function
composition.

• If (k' o K,)(k : c) = k" : c" 6 K" then we require that c" = (7 ' o 7)(c).
This follows as we know K(k : c) — k' : c'inK' s.t. k' : d G K' and that
K'(k' : c') = k" : c" G AT") s.t. fc" : c" G A". Hence we are done.

• Cases for conditions on tt1 o 71 and /x' o // follow similarly.

• Finally, a ' o a trivially preserves bijectivity (as it is nothing but function composi­
tion).

Hence composition morphisms are morphisms in Cl. Composition is also trivially
associative as composition is defined as pointwise function composition. Finally, identity
morphisms as defined are trivially morphisms which are left and right unit in Cl. □

5.2 .2 C lass D iagram M odels

A £-model of the UML class diagram for a class net is given by an instance net, defined
as follows:

Definition 5.6 (Instance Nets) Given a class net £ = ((C, < c) ,K ,P ,M ,A) a model
of this net is a 12-instance net 1 = (Cx , K x , Px , M 1 , Ax) consisting of interpretations
for all declarations where

76

5.2. An Institution for UML Class Diagrams

• C1 is a class interpretation mapping each c e C to a non-empty set such that
Cx {c\) C Cx {c2) if ci <c C2 with standard mappings for types and type formers,
that is, (^(Boolean) = {f f , t t} , C^Listfc]) = (Cx (c))* (where V* denotes the
finite sequences over V), Cx(Set[c]) = p{Cx (c)) (where p{V) denotes the powerset
of F), and Cx (Pa\r[ci, C2]) = C ^ c i) x Cx (c2);

• K x is an instance specification interpretation mapping each k : c E K to an
element of Cx {c)\

• P x is a property declaration interpretation mapping each c.p(x 1 : Ci,. . . , x n : cn) :
d E P to a partial map Cx (c) x Cx {c\) x • • • x Cx (cn) —>? Cx (c');

• M x is a composition declaration interpretation mapping each c+r : d E M to a
map Cx (c) -> p(Cx (d));

• Ax is an association declaration interpretation mapping each a(ri : c i , . . . , r n :
Cn) E A to a subset of]~Ii<z<n CZ{ci)->

such that

• instance specifications k\ : c and ^ 2 : c with k\ 7 ̂ k2 are interpreted differently:
K x {k\ : c) Y K x {k2 : c), and

• each instance has at most one owner: if o' E M x (c\+r\ : c/1)(oi) Pi M x (c2*r2 :
C2 X0 2), then 0 1 = 0 2 .

An example excerpt of an instance net for the class net given in Section 2.5 (namely
Figure 2.3) is:

(^(N et) = {LondonUnderground}
(^(Station) = {Charing, . . . , P icad illy }
(^(Connector) = {cl, c2 , c3 , . . . }
Cx (Pair [Connector, Connector]) = {(d> cl), (cl, c2), (c2 , cl), (c2 , c2) , . . . }
P J (Net.lD : UID) : Cz (Net) -+? CJ (UID) where

LondonUnderground (->• "LUG" etc.
P ;r(Route.isOpen : Boolean) : (^(Route) —>? CJ (Boolean) where

R1 !->■ tt etc.
M-^NeUhas : Station) : CJ (Net) —>■ ^ (^ (S ta tion)) where

LondonUnderground {Charing, . . . , P icad illy }
^ (s ta te A t(...)) = {(Lm ,{(cl,c2)}),(LU 2,{(c2,c3)}),...}

For model morphisms, we define Y-instance net morphisms as:

D efinition 5.7 (Instance Net Morphisms) A E-instance net morphism X =
(CX, K X, P X, M X,A X) J = (CJ , K J , P J , M J , A J) over a class net
E = ((C ,< c) ,K ,P ,M ,A) is given by a map £ E T\.cec . C x {c) C^(c) such that
all interpretations of declarations are mapped homomorphically, that is:

77

5. From, DSLs to CASL

• including interpretations of all types and type formers, for example,
C(Pair[ci,c2])(oi,o2) = (C(ci)(oi),C(c2)(o2)) for all ci,c2 € C, o1 e Cx {ci),
o2 e Cx {c2)

• K ^ (k : c) = C(c)(Kx (k : c)) for each k : c E K;

• P J {c.p(xi:c1 , . . . , x n :cn) : c ,){C{c)(o),C(ci){oi),...,C(cn)(on)) = C(c!){Px
(c.p(xi : c i , . . . , x n : cn) : c')(o, oi , . . . , on)) for each c.p : c' G P and o G Cx {c),
oi G Cz (ci) , . . . , on G Cx (cn) (where = means that if either side is defined, then
also the other side is defined and equal);

• (o r : c')(£(c)(o)) = C,{c'){Px (o r : c')(o)) for each o r : d G M and o G Cx {c)\

• AJ (a{ri : c i , . . . , r n : cn}) = {{n ^ C(ci)(t (n)), . . . , rn ^ C(cn)(i(^n))} | t G
Ax (a{r1 : d , . . . , r n})}.

Once again, we define composition of morphisms to be pointwise composition of
each component map:

Definition 5.8 (Composition of Instance Net Morphisms) Given
C : 1 = {CX, K X, P X, M X,AX) J ' = (CX\ K X\ P X\ M X\ A X') and
C' : Z' = (CX' , K X\ P X\ M X' ,A X') -> J " = (Cx" , K X" ,P X" , M X",AX"). We define
a candidate: (C o £)(c) = C'(c) o (̂ (c) for all cGC.

Finally, identity morphism are defined in the expected way:

Definition 5.9 (Identity Instance Net Morphisms) An candidate instance net identity
morphism idx : X = (Cx , K x, P1 , M x, A 1) X = (Cx , K x , Px , M x , A1) is given by
idz{c) = id‘Cx(c) f°r c G C.

Lemma 5.10 (Instance Nets form the Category Inst(E)) E-instance nets as object
and E-instance net morphisms with composition and identity as defined above form the
category of E-instance nets, denoted by Inst(E).

Proof. Considering composition, given £ : X = {Cx , K x , Px , M x, Ax) —y T — {Cx>, K x' ,
PX' , M X' ,A X'), C : X' = {Cx>, K X>,P X>, M X' ,A X') X" = [Cx" , K X" ,PX" , M X",AX)
we show that the composition Cf ° C forms a valid morphism:

• K x"(k : c) = (("' o QI{c){Kx {k : c)) holds as (£' o C)(c)
(.K x (k : c)) = C'(((c))(Kx (k : c)) by definition of composition and K x (k : c) =
C(C{c))(Kx (k : c)) by definition of composition. Hence we are done.

• Cases for conditions on P, M and A follow similarly.

Hence composed morphisms are morphisms in Inst(E). Composition is also trivially
associative as composition is defined as pointwise function composition. Finally, identity
morphisms as defined are trivially morphisms which are left and right unit in Inst(E). □

78

5.2. An Institution for UML Class Diagrams

For reducts of instance nets and instance net morphisms, let a = (7 , k, 7t, /i, a) : E =
{{C, <c) ,K , P, M, A) —> T = ((D, <d),L, Q , N, B) be a class net morphism. Then we
have:

D efinition 5.11 The reduct of a T-instance net J = (D^ , ,Q^ , , B ^) along a
is the E-instance net J \ u = {C^\u, K ^ a, P ^ a, M ^ \a, A^\<J) formed by component-wise
reducts, that is:

• CJ \a{c) = DJ {'y{c));

• K ^ \ a(k : c) = : c));

• P J \a{c.p{xi : c i , . .. , x n : cn) : c') = Qj {tt(c.p {xi : c1}. . . , xn : cn) : c'));

• M^^a(c^r : d) = N^(p,(c+r : c'));

• A J \a{a{ri : c i , . . . , r n : cn}) = B J (a(a{n : c i , . . . , r n : cn})).

Lem m a 5.12 Model reducts are E-models.

Proof. Let a = (7 , «, t t , a) : E = ((C,<c) , K , P , M , A) —> T = ((D ,< d) ,L , Q ,
N ,B) be a class net morphism. Let J7 = (D ^ , , Q ^ , , B ^) be a T-instance net.
Considering the reduct J \ a = (C^ICT, , P^ \a, , A ^ ^) we have:

• C^I<T(ci) C C‘7 Ict(c2) if ci < c C2 as we know 7 (d) < 7 (c2) as 7 is monotonic and
IF-7" (7 (d)) < D ^(7 (c2)) as J7 is a T instance net.

• K.3\a{k : c) 6 C^la (c) as C^(c) = (7 (c)) and : c) = {n{k : c)) and
we know that {n{k : c)) G {^{c)).

• P^ICT is trivially a map mapping each c.p(x 1 : c i , . . . , xn : cn) : c' £ P to a partial
map CJ \a(c) x C'v̂ lcr x • ■ • x C ^ CT —>■? C l̂ l<T(c/) as has this property.

• Conditions for la and follow similarly to the conditions for p3 \a.

Finally, it follows by definition that each instance in J \ a “has at most one owner”. □

In a similar manner, for instance net morphisms we define reducts as:

D efinition 5.13 (Instance Net Morphsism Reduct) The reduct of a T-instance net
morphism £ : J \ —> J 2 along a is the E-instance net morphism £|cr : J \ \u —>■ with
£|<r(c) = C(7(c))-

Lem m a 5.14 Model reduct morphisms are morphisms in Catop.

Proof. Given £ : J \ = (D , L^ , Q^1, N ^ , B ^1) —> J 2 — (D^2, L^2, Q^2, N ^2, B ^2) as
a T-instance net morphism. We show £|cr : J\ \a = [D^ u, L^*7, Q^l*7, AN7"1!0-, —>•

— (D ^ a, L ^ a,Q^2la , AN72!*7, B ^ 2 la) is a valid morphism. Firstly, by definition we
know £|cr(c) — C(7 (c)) 5 hence:

79

5. From DSLs to CASL

• K ^ a(k : c) = <^(c)(K^^a(k : c)) as ^ (c) (K ^ a (k : c)) = £(7 (c)) K ^ a) and we
know K ^ (k : c) = £(7 (c))(/f^(/c : c)) is a valid morphism. Hence we are done
for this case.

• Cases for P ^ through to A ^ follow in a similar manner. □

We can now formulate the model reduct functor.

Lemma 5.15 (Instance Reduct Functor — |cr) The cr-reducts of T-instance nets and
T-instance net morphisms yield a functor — |a : Inst(T) —> Inst(E).

Proof. Given Lemma 5.12 and Lemma 5.14 it follows that identities are preserved.
Therefore it remains to show — |<r is functorial. That is, (£' o £)|<r(c) = (,'\cr{c) o £|<r(c).
By definition (£' o £)|<r(c) = (£' 0 C)(t(c)) and C'(7 (c)) 0 C(7 (c)) hence we are done. □

Similarly, we can now show that:

Lemma 5.16 (Inst is a functor.) Inst : Cl —» Catop is a functor.

Proof. Follows from Lemma 5.10 and Lemma 5.15. As Lemma 5.10 shows that Inst(E)
forms a category and Lemma 5.15 shows that (—)|cr is a morphism between such
categories. Finally, it is trivial to see that identities are preserved. □

5.2 .3 M u ltip lic ity Form ulae as Sen tences

For the sentences of the UML class diagram institution we use the multiplicity constraints
from the class diagram. We define:

Definition 5.17 (Multiplicity Formulae) The multiplicity formulae are strings formed
over the following grammar:

Frm ::= NumLit < FunExpr \ FunExpr < NumLit \ Composition !
FunExpr ::= f f Composition \ # Association [Role{, Role)*]

Composition Class+Role : Class
Association ::= Name{Role : Class(, Role : Class)*}

Class w— Name
Role Name

NumLit ::= 0 | 1 | • • •

where Name is a set of strings. The <-formulae express constraints on the cardinalities
of composition and association declarations, i.e., how many instances are allowed to be
in a certain relation with others. The ^-expressions return the number of links in an
association when some roles are fixed. The !-formulae for compositions express that the
owning end must not be empty.

The set of sentences or E-multiplicity constraints Mult{E) for a class net E is given
by the multiplicity formulae in Frm such that all mentioned elements of Composition
and Association correspond to composition declarations and association declarations of

80

5.2. An Institution for UML Class Diagrams

E respectively, and the Role names mentioned in the last clause of FunExpr occur in
the mentioned association.

Some of the cardinality constraints of the running example in Figure 2.3 can be
expressed with multiplicity formulae as follows:

• Station^has : Track ! — each Track is owned by a Station via has,

• 2 < #has(connector : Connector, unit : Unit) [unit] — association has links each
Unit to at least two Connectors,

• #stateAt(unitState : UnitState, unit : Unit) [unit] = 1 — association stateAt links
each Unit to exactly one UnitState.

Note that in the above, we have used formulae with = instead of two formulae with
< where the left hand side and the right hand side are switched.

The translation of a formula ip E Mult(E) along a class net morphism a —
(7 , k, 7r, /Li, a) : E —> T, written as a(p), is given by simply applying a to composi­
tions, associations, and role names as follows:

Definition 5.18 (Sentence Translation for Multiplicity Formulae) The translation of a
formula <p E Mult(E) along a class net morphism a — (7 , k , 7t, p ,a) : E —>• T is given by:

a{£ < # a{ ri : ci, . . . ,rn : cn}[rh , . .. , r*J) = I < # o (a{ r 1 : ci, . . . ,r„ : cn})
...,Pa(0]

o (# a { r i \ c i , . . . , r n \cn} \ r i ^ . . . , r im]<£) = # a (a { n : ci, . . . , rn : cn})
[Pa(rn), ■ • • ,Pa(rim)] <£

Finally, we gain the fact that Mult forms a functor.

Lem m a 5.19 Mult : Cl —>• Set is a functor.

Proof. We know by definition that Mult(E) is a set and hence an object in Set. We
also know by definition that sentence translation is a function and hence a morphism
in Set. It remains to show that Mult is functorial. Given a : E —> E7 and a' :
E' —> E" and a sentence p we have that Mult{a' o a){p) — (Mult(a') o Mult{a)){p)
as (Mult{(j') o Mult(u)){ip) = Mult{(j'){Mult{cr){Lp)) and composition of morphisms is
nothing but component-wise function composition. □

Finally, we come to the satisfaction relation.

D efinition 5.20 (Satisfaction Relation for Class Nets) The E-satisfaction relation
— |=£ — C |Inst(E)| x Sen(E) of the UML class diagram institution is defined for each
E-instance net I = (C1 , K x , P x , M x , Ax) as

&{£ < #c-*r : c')
a(#c+r : c' < £)
a{c+r : c'!)

£ < #M(c^r : d)

#fj,(c+r : c') < £
fi(c+r : c')\

81

5. From DSLs to CASL

X | = 2 £ < ^ o r : d
X |=s i^o+r : c' < £
X f= 2 c+r : d\

X 1=2 £ < # a (r i : ci,
: cn)[rh: . . . , r im\

X (= 2 i 'Ci, . . . , rn : cn)
K , . . . , r im\ <£

Vo G Cz (c). [£]] < |M ;I(c^r : c')(o)|
Vo G CJ (c). |M x (c+r : c')(o)| < p]
Vo' G C ^ c ') . 3o G Cx (c) .

M x (c+r : c')(o) = o'

Vo*, G C1 ^) , . . . ,o*m G Cx (cim).
PJ < IP G Ax (a(ri : c i , . . . , rn : cn))
i l l = ° i \ i ■ • ■ i t i m = ° i m } I

Vojj G C x (ci1) , . . . , Ojm G C x (cim) .
|{£ G ^ J (a (r i : C i , . . . , r n : cn)) |
th = oiy, . . . , t im = 0 jm}| < p]

where [—J : NumLit —» Z maps a numerical literal to an integer.

Using this definition, we can show the satisfaction condition for the UML class
diagram institution, that is:

Lemma 5.21 (Satisfaction Condition for Class Diagrams) Let E = ((C, <c)> Pi M, A)
and T = ((D, <£>), L , Q, N, B) be class nets, let a = (7 , k, 7r, /r, a) : E —» T be a class net
morphism, let J = (D ^ , I P , , B ^) be a T-instance net, and let y? G Mult(E) .
Then the satisfaction condition holds:

J" |=T (?(ip) <=> J V (=2 V7

for each a : E —>• T in Cl, each J G | Inst(T)|, and each y? G Mult(E).

Proof. We make a case distinction over the kind of multiplicity constraint <p.

Case: ip = £ < #c+r : d is given by:

J (=T o~(£ < # o r : d)
J \=T £ < #n(c+r : d) -<=7
J H t ̂Si if{d+s '• d!) -<=>•
Vp G D J {^(c)). p] < |N J (d+s : d')(p)|
Vp G D J ('f(c)). p] < \NJ (p(c+r : c'))(p)| «=>
Vo G C ^ p) . p] < : c')(o)| -<=>
J V ̂< # o r : d

Case: y? = # o r : d < £ is analogous to the above case.

(sentence translation)
(ass. fi{c*r : d) = (d^$: d'))

(sat. rel. and d = 7 (c))
(defn. /i)

(model reduct)
(sat. rel.)

Case: <p = o r : c'! is given by:

82

5.3. Stereotypes for Dynamical Aspects

J |=T cr(or : c'!) (sentence translation)
J |= t p(c+r : c')\ (ass. p(c+r : c') = (d+s : d'))
J N t d+s : d'\ (sat. rel. and d = 7 (c))
Vp' G D J {^{c’)) . 3p G D J {^{c)).

N^(d+s : d'))(p) = p1 (defn. p)
Vp' G D J (^(c')). 3p G D J (7 (c)).

{p{c+r : c'))(p) = p' <£=> (model reduct)
Vo 'GCJ la (c ') . 3oGCJ la (c).
M ^ICT(c^r : c')(o) = o' <̂=4> (sat. rel.)
J|<r |=s c+r : c'!

Case: ^ = £ < # a { n : c j, . . . , rn : cn , . . . , rim] is given by:

J h r &{£ < # a { n : ci, . . . , r n : c * } ^ , . . . , r imj)
•<=>■ (sentence translation)

J Nt ^ < # a (a { n : ci, : cn})[pa (ru), . . . , Pa (n m)]
<*=> (ass. a(a{ri : ci, . . . , r n : cn}) = 6 {si : di, . . . ,s n : dn}))

J 1=T £ < # (H si : d i , . . . , sn : dn}) [si l 5 • • • 5 S * m]

(sat. rel. and dj = 7 (cj))
Vp*! G DJ (7 (ch)) , . . . ,pim G D J (i(cim)) .

{£} < |{« G £ J (&{s i : d i , . . . , s n : dn}) | u{sh) = ph , . . . , u(sim) = pim} |
■<=> (defn. a)

Vph G DJ ('y(cn)), • • ■ ,Pim e D J (j(cim)) .
M < |{u e B J (a(a{ri : c i , . . . , rn : c„}))

I u{pa{ril)) = p u , . . . , u {p a(rim)) = p im}|
(model reduct)

V0 u z C ^ (c h) , . . . , o i m e C ^ { c im).
M < |{t 6 A J ^(a{ri c„}) \ t(ri t) = oh , . . . , t(rim) = oim}\

■<=>■ (sat. rel.)
£JI t^D £ 5; : Ci, . . . , rn : cn}[r i l 1 • • ■ 1 T i m]

Case: <p = j fa{r\ : ci, . . . , rn : cn}[r*!, . . . , r*m] < £ is analogous to the above case.

□
Prom this, we obtain our class diagram institution:

T heorem 5.22 (ClDiag is an Institution) ClDiag = (Cl, Inst, Mult, (=) forms an insti­
tution.

Proof. Follows from Lemma 5.5, Lemma 5.16 and Lemma 5.21. □

5.3 S tereotypes for D ynam ical A sp ects

As we have seen in Section 3.2.1, the railway domain has a variety of concepts that
can change over time. It also has a variety of concepts that are static for all time. For

83

5. From DSLs to CASL

hasLine IhasStation

a l l S t a t e shashas

has

Line

P a th

UID

P o in tL inear

S ta tio n A llS ta tes

N et

U n itS ta te

C o n n ec to r

U st[L in ea r]

*isWeilFormed(): Boolean
Li s t [Pa irt Unit, P a th]]

S e t[U n itS ta te]

»«<dynamlc>> isOpenQ: Boolean
R oute

*isValidPath(): Boolean
Pa i r[Co n n e c t or, Con n e c to r]

♦«dynamic>> isClosedAt(): Boolean
Unit

Figure 5.1: A UML class diagram with Stereotypes for Bjorner's DSL.

example, consider the track plan in Figure 3.1 and the UML class diagram in Figure 5.1.
Here, the h a s relation between Connectors and Linear units clearly remains the same
over the time we are interested in the system1. However, if we consider, for example
the StateAt relation between Units and UnitStates, it is clear that the state of a point
may change over time, e.g. see Figure 3.6. To allow UML Class Diagrams to capture
this dual nature of systems, we introduce a so-called UML stereotype, as is common
practice for UML [Objll]. To the “pure” UML class diagram for Bjorner's DSL given in
Figure 2.3 we add a stereotype « d y n a m ic» . In Figure 5.1 this appears for the association
StateAt and the two operations isClosedAt for routes and isO pen for units. All other
elements are considered to be < rig id» . These domain-specific stereotypes are intended
to make clear which parts of an object structure complying to the class diagram can
change over time. i.e.. are « d y n a m ic » like StateAt. and which parts have to be kept fixed
over time, i.e., are « r ig id » , e.g., the objects of Net, Station. Line. etc.

To capture these stereotypes within our UML institution, we have developed the
general institution construction of a pointed power set institution. This construction
factors out a general principle necessary for connecting UML class diagrams with an
arbitrary institution capturing system dynamics by capturing the nature of the dynamic
stereotype. Namely, this situation of dynamics arises for any reactive formalism that one
wants to link to UML class diagrams and that is able to change the system configuration.
Therefore, we decided to factor out the mediating construction into an institution
independent powerset construction with regards to the models. Here we work with
pointed powersets in order to represent initial states. After presenting this construction,
we show how we can use it with our class diagram institution to give the required
capturing of dynamic and rigid stereotypes.

1 That is, we do not consider modelling, for example, construction changes to the railway.

84

5.3. Stereotypes for Dynamical Aspects

5.3.1 A n In stitu tio n C apturing D ynam ics

Let J' = (Sig'^, Sew*, Mod,jr, \=*) be an institution. We define an institution p\J?
over that inherits the sentences from JL It then has as models pointed powersets
(Mo, Ad) of models of For each of these models, we then require that:

1 . All inherited sentences have to hold in all models of Ad, and

2 . in each model (Mo, Ad) over a signature E all elements of Ad “behave” like Mo
for a certain part T of the signature E.

The intuitive insight behind this definition, is that the certain part T of the signature,
for which all models “behave” the same, can be used to capture the rigid elements of a
class diagram. Whereas the dynamical aspects are free to change their interpretation
throughout the models. Formally we have:

R em ark 5.23 Throughout our definition we use the explicit form of a model as a
pair (Mo, Ad). We note that the distinguished model Mo is included for clarity within
the construction. It can be removed from the models, as long as the models in Ad all
“behave” in the same manner for the elements within T.

D efinition 5.24 (Signature Category Sigp*J?) We define the signature category Sig^*^
of p \ ^ as follows: The objects of S i g ^ * a r e the morphisms a : T —> E in Sig^.

A morphism (7 ,p) : (a : T —» E) —> (a' : T' —»• E') of Sigp*'* consists of morphisms
7 : T —y r ' a n d p : E —» E' in Sig^ such that <r' o 7 = p o a.

We then define that sentences of p\J? are inherited from the underlying category,
namely from the signature of the target of the underlying signature morphism:

D efinition 5.25 (Sentences Functor for Senp**) Define the sentence functor Senp** :
Sigp1*' ̂ -> Set of p \J t by Senp** (a : T —> E) = Sen* (Yf) and Sen^**^ , p) = Sen* (p).

Considering models, we now define the model category and the functor Modp*^ of
p \ J as:

D efinition 5.26 (Model Category and Functor of p \ ^) We define the contra-variant
model functor Modp*^ : (Sigp**)op Cat of p\J^ as follows:

Let (<r : r —> E) be a signature in |SigpI*^|. For mapping u we have: The objects
of Mod p**(a) are the pairs (Mo, Ad) with Mo G |ModJ?(E)| and Ad a sub -set of
|M od^(E)| such that Mo G Ad and the model reduct Mod* (a)(M) = Mod*(a)(Mo)
for each M G Ad. A morphism of Modp*'^(cr) from (Mo, Ad) to (Mq, Ad') is a morphism
Xo : Mo —> M q in ModJ?(cr) where Ad and Ad' satisfy the condition tha t for every
M G Ad there is a M ' G Ad' and a morphism x '• M —> M'.

Then, let (7 , p) : (cr : T —> E) —> (r : A —> T) be a morphism in Sigp*^. For mapping
(7 ,p) we have: Modp** (7 , p)(No,M) = (Mod^(p)(iVo), {M od^(p)(N) \ N G J\f}) and
Modp** (7 , p)(ipo) = Mod* (p)('ipo).

85

5. From DSLs to CASL

Finally, we consider the satisfaction relation for p\

D efinition 5.27 (Satisfaction relation for p\J^) For each (a : T —> E) G |Sigp*'^|, we
define the satisfaction relation — — Q |Modp*'^(a : T —> E)| x Senp*jr(cr : T —*
S) of by (M0 , M) H S C e <P ^ V M e M . M ^ p .

Here, we see that satisfaction simply lifts and holds if all models (including Mo as
we have Mo G M) satisfy the given sentence ip. From this, we can show the satisfaction
condition and hence, that p \ ^ forms an institution.

T heorem 5.28 (p\J? is an institution) Sig83*^, Senp*'^, Mod83*^, \=p*,jr) forms an
institution. □

Proof. Given the definitions above, it remains to show the satisfaction condition, that
is:

M odP^(7,p)(Mo,7W) (= £ £ e 9 ^ {M0, M) h & L s ' S e n ^ ^ , p)(V) .

for each model (Mq,M.) G | M o d (o' : T' —> £ ') | , signature morphism (7 ,/?) : (a :
r —»•£)—>■ (a ' : T' —> £ ') G Sig83*' ̂ and sentence ip G S e n ^ (a : F —> £) .

Let (7 , p) : (cr : T —> £) —>■ (o' : T' —* £ ') be a signature morphism in Sig83* i p be a
sentence in Sen'** (a : T —>• £) and finally let (Mo. Mi) be a model G |Modp* / (cr' : T' —>
£ ')|. Then we have:

Mod83*"^(7 , p) (M o , M) (V5 (defn. of model reduct)
(Mod^(p)(M0),
{Mod^(p) (M) | M G M }) V7 (defn. of sat. rel.)
VM G {ModJir(p)(M) | M G M } . M j='£ ip (defn. set comprehension)
VM G Mf .ModJ?(p)(M) (= 2 <p <==> (sat. cond. for J?)
VM £ M . M \=£, Sen^ (p) (ip) (defn. of sat. rel.)

(M0, Ml) ha'*r'->£' ^en 83*J?(7 ,p)(<)̂ .

□

5.3.2 U sin g p\J? for U M L C lass D iagram s w ith R ig id ity C onstraints

We now apply this construction to the UML class diagram institution ClDiag to represent
rigidity. We note that in the following, we assume all signature elements of the class
diagram to be consistently and completely annotated with the stereotypes <rigid» and
«dynam ic». For consistency rules we mean, for example, that: Boolean is «rigid» and if
a class c is «d yn am ic» , then List[c] is «dynam ic> as well, etc. Also, classes c that are
added by the signature closure are <rigid> unless forced to be <dynam ic> by consistency
rules.

The first step of our approach is to form a class net T consisting only of those
elements that are stereotyped with <srigid». Along with this, we additionally form the

86

5-4- From Class Diagrams with Rigidity Constraints to Modal CASL

full class net £. As the signatures of ClDiag are set-based, there is a simple inclusion
morphism from the rigid class net T to the full class net £ . We take this inclusion
as the signature <r in p*ClDiag. Thus, the meaning of all elements stereotyped with
«rigid» is fixed by their meanings in the distinguished state. In fact, for representing
UML class diagrams with rigidity constraints it is enough to work with those signatures
in p \ClDiag that are inclusions in the category of signatures Cl of ClDiag. We denote
this institution by p ^ ClDiag.

Prom this point onward, we will consider how we can map from p'p*ClDiag into
M o d a l C a s l .

R em ark 5.29 At this point we note that there is a trivial simple institution comorphism
from p i ,# to (which also applies to ClDiag). Namely, we define the functor

: Sigp*^ -A Pres'^ by : T ->• £) = (£,0) and (7 , p) = p.
We then define the natural transformation a : Senp*,jr —> Sen^ o by
^cr-r^E^) = ^ for c/? G 5enjr (£). Finally, we define the natural transformation ^ \
Mod^o M o d ^ by S t * ^ { M) = (M, {M}) and = X• Then,
by definition we obtain:

T heorem 5.30 pP'*^ ̂ a p*s,.f forms a simple institution comor­
phism from p\J? to J*. □

5.4 From Class D iagram s w ith R igid ity C onstraints to
M odal CASL

In the following, we give a sketch of a simple institution comorphism from UML class
diagrams with rigidity constraints to M o d a l C a s l : Let (T C £) be a signature2 in
|Sigp*̂ clDiag| with corresponding class net £ = ((C, <c)> F, M, A). We map (T C £)
to the following M o d a l C a s l presentation:

$ (r C £) = (((5, TF, PF, P, <), FRigid, PRigid, modalities, modality Sorts), Ax).

Throughout this section, we illustrate the mapping using examples from the class
diagram for Bjprner’s DSL as given in Figure 5.1. The full result of the mapping is
given in Appendix B.

We begin by considering the components of a class diagram that are connected
via generalisation. Let us denote the connected components of <c by ee(<c) and the
connected component of a class name3 c E C by [c] <c , i.e., cc(<c) = {[c]<c | c E C } .
We then define the sorts of our M o d a l C a s l signatures as

S — C U cc(<c)-

2Here we notice the use of C as for our construction we only consider signature morphisms that are
inclusions.

3Here we assume [c]<c = {<:}, if t is the top sort of the component of c.

87

5. From DSLs to CASL

Here, the possibly additional top sorts cc(<c) mediate between the C asl semantics
(which allows for models M with sm % tM for sorts s < t) and the UML class diagram
semantics (which requires models I with s1 C t1 for s <c t).

The sub-sort relation < is given by the union of the following relations:

< = <C u {(c, [c]<c) I c G C] U {([cj<c , [c]<c) I c G C}

We note that as part of our translation, we often include and (possibly) instantiate
specifications from the C a s l Basic Datatypes [BM04] for any built-in types from
the class diagram, e.g. for the class Boolean and class involving type formers such as
Pair[ci, C2]■ Such an instantiation, for example, for the sort PairConnectorConnector is
specified by instantiating the C a s l P a ir specification and renaming the sort name:

P A iR [so r t Connector] [s o r t Connector] w i t h
Pair [s o r t Connector] [s o r t Connector] h-> PairConnectorConnector

Here, we assume that the semantics of each predefined type and type former is an
element of the model class of the respective monomorphic Casl datatype.

Prom the elements of the comorphism we have given so far, the following is a result
of applying these translations to our running example for Bjprner’s DSL:

% % Classes:
s o r t s Net, Station, Unit, . . . , UID
% % Hierarchy:
s o r t s Point, Linear < Unit; . . . ; Route < ListPairUnitPath

We can see that there are sorts for each of the classes within the class diagram, and
that the class hierarchy has been captured in ModalCasl by subsorting.

Next, the total function symbols TF simply comprise of the instance specification
declarations:

TF = {k : c | k : c G K}.

Similarly, the partial function symbols PF comprise of the property declarations:

PF — {p : c x ci • ■ • x cn — c' | c.p(xi : c \ , . . . , xn : cn) : d G P}.

For these functions, the classification into “rigid” and “flexible” can be obtained
directly from the signature (T C £) g |Sigp*̂ clDiag|. That is, we gain Ffugid by taking
the instance specifications and property declarations given in T. Considering Bjprner’s
DSL, there are only property declarations and hence we obtain:

% % Properties:
r ig i d o p id : Net -»? UID
f l e x i b l e o p s isClosedAt : Unit —>? Boolean;

5-4■ From Class Diagrams with Rigidity Constraints to Modal CASL

Here, we can see that id is rigid and isClosedAt is flexible, as prescribed by the
stereotype in the class diagram.

Next, the predicate symbols P comprise the composition declarations M and the
association declarations A. Again, Pjngid can be obtained by considering those elements
in T. As well as these, a predicate isAlive is added for each sort in S. This predicate
is used to model “flexible” sort interpretations in M o d a lC a s l. It arises from the
interpretation of classes as objects in the class diagram. The predicate is Alive is rigid if
the corresponding class is rigid. Overall, we obtain:

P = {r : c x c' | c+r : d G M } U (for compositions)
{a : Ci x • • • x cn \ a(ri : c i , . . . , rn : cn) G A} U (for associations)
{isAlive : c \ c G C] (isAlive)

Considering the running example, we obtain the following ModalC asl:

%% Compositions:
rigid preds : Station x Unit; : Station x Track;

%% Associations:
rigid preds : Unit x Connector; _Jias__ : Linear x Connector; . . .

%% Is Alive preds:
rigid preds isAlive : Net; isAlive : Station; isAlive : Unit; . . . ; isAlive : UID;

For our institution comorphism, the modalities set Mior our M o d a lC a s l is just
{e}, and the modality Sorts set SM is simply empty. That is the models have exactly
one accessibility relation defined between worlds. Naturally, representing class diagrams
in ModalCasl imposes no constraints on this relation.

Finally, we need to add some axioms to our ModalC asl for the constraints from
our class diagram institution and also to capture the multiplicities constraints from
the class diagram institution. The first group of axioms stipulates that arguments of
operations and predicates need to be “alive” . That is, for operations and predicates
capturing the class diagram elements of instance specifications, property declarations,
composition declarations and association declarations. Whilst the second group of
axioms corresponds to the condition on S-instance nets that each instance has at most
one owner. Overall we gain the following:

Ax = {isAlive{k : c) \ k : c £ K)
U {Vx : c,xi : c i , . . . , x n : Cn.def p (x , x i , . . . , x n) =>>

isAlive{x) A isAlive{x\) A . . . isAlive(xn) |
c.p(xi : c i , . .. , x n : cn) : d G P }

U {Vx : c, x' : d.r(x, x') ==> isAlive(x) A isAlive{x') \ c+r : d G M }
U {Vzi : c i , . . . , x n : cn.a{xi,. . . , x n)

isAlive{x\) A . . . isAlive(xn) | a(ri : c\ , .. ., rn : cn) G A}
U {Vxi : [ci]<c ,x 2 : [c2]<c ,z : [ci]<c . r{x i ,x) A r(x2 ,x) => x\ = x 2 \

c\+r\ : ci,C2 f 2 : d2 £ M, [ci]<c = [c2]<c , [ci]<c = [^]<c }

89

5. From DSLs to CASL

Then, as we have seen, the sentences of ClDiag are the sentences of ClDiag, that
is, the multiplicity constraints imposed in the class diagram. These can be systematically
encoded in first order logic using “poor man’s counting” , e.g. [EFT94], by providing
the necessary number of variables. We note that we do not use a standard specification
of numbers as this would increase the axiomatic base for automatic verification (see
Chapter 6). For example, the constraint # (o r : c') > n is translated to the following
axiom:

Vx : c 3yi , . . . ,yn : d . pwDifferent(yi,. . . ,y„)A r(x ,y i) A • • • A r(x ,yn)

were, pwDifferent(y±, . . . ,yn) encodes y* ^ yj for i ± j , 1 < z, j < n.
This axiom states that for every value x in c we find at least n different values in

d of which x is related via r. A typical example of the mapping for a composition
constraint from Bjprner’s DSL is:

#(Station+station : Unit) > 1

where the resulting M o d a lC a sl axiom would be:

Vs : Station.3ul : Unit.station(s,ul).

Similarly, an example of a constraint on an association would be:

2 < #has(connector : Connector, unit : Unit)[unit]

and the resulting ModalCasl axiom would be:

Vu : Unit. 3 cl, c2 : Connector. cl d1 c2 A has(cl, u) A has(c2, u).

Finally, with regards to models, we define how to turn a M od alC asl model into a
corresponding instance net. Let M. be a M o d a lC asl model in |ModMoDALCASL(4>(r C
£))|, let W be the sets of worlds in M , i £ W the initial world, and Mw the C a s l
models associated with each world w G W.

In the following, we use the abbreviations [x] = (in jc ^) mw(x) for x G cmw', and
LxJ = (pr[c]>c)Mw(ar) for x G [c]Mw.

We first define for each w, how to turn its associated C a s l model Mw into a
E-instance net /3(MW) = (CMw, K Mw, P M™, M m™, A m™):

• If c does not involve a type former: CMw(c) = {[x] | x G cmw, isAlive(x)}.
If c involves a type former, we take the representation of the corresponding type
in the instance net.

. K M™(k:c) = \(k{hc)Mw].

• P Mw{c.p{x i : c i , . . . , x n : cn) : c')(y, yu . . . , yn) = \{P(c,Cl,...,cn),c')Mw(ly\,
LyiJ,..., LynJ)l for all y G CMw(c), yi G C M“ (c i),. . . , yn G C Mw(cn).

90

5.5. Crafting a Formal DSL

• M Mw(o*r : d)(x) = [\y] \ (rCt(j)Mw([x\,y)} for all x G C Mw(c).

• A Mw(a(ri : c i , . . . , r n : cn)) = { (M , • • •, M) | (x1 , . . . , x n) G (a(Ci,...Cn>)M1J,}-
for all c G C Mw(c).

From the above construction we get that (3(M) — (0(Ms), \3 (M W) I w G W}) is a
model in |ModprciDiag(r C £)|.

We can now give a proof that the mapping we have defined forms a comorphism.

T heorem 5.31 (A comorphism from p^ClD iag to ModalCasl) The described map­
ping forms a comorphism.

Proof. Given the definitions above, it remains to show the satisfaction condition, that
is:

M Hsig(4>(S)) a (v) Pz(M) b s ¥> •
The proof follows from a case distinction over p. Here we sketch the case of £ < f£c+r.

Case: p = £ < ifc+r : d is given by:

M ^Sig($(rcE)) '• c')
(defn. a)

M l=Sig($(rcE)) V x : c 3 y u . . . , y n :c! . pwDifferent(yi, . . . , yn)
A r(x,yi) A ••• A r (x ,y n)

(defn. sat. rel.)
Vw G W .M w hsig^TCE)) Vx : c 3 2/i,. •., yn ■ d . pwDifferent(yx, . . . , y n)

A r(x,y\) A ••• A r (x ,yn)

This axiom ensures that the underlying carrier sets of d in all models have at least
I distinct elements. It also ensures that these elements are in relation r with the carrier
set elements of c. If we now consider the right hand side, we obtain the same restriction
for the underlying carrier sets of the instance net:

Pz(M) t=^r _»s I < # o r : d <^> (defn. (3)
((3(Mi), {f3(Mw) | w G W } I < # o r : d (defn. sat. rel.)
Vm G {/3(MW) | w G W }.m £ < #c+r : d ■<=> (defn. set comprehension)
Viu G W(3(Mw) £ < #c+r : d

All other cases for p follow in a similar manner. □

5.5 Crafting a Formal DSL

To conclude this chapter, we now demonstrate how to create a formal DSL with the
techniques developed in the thesis so far. This process, outlined in Figure 5.2, fits with
the methodology we are presenting in this thesis.

91

5. From DSLs to CASL

Modelling: Add
Stereotypes

Translation CD

Modelling Narrative

Translation Specs
+

Modelling

Class Diagram
+

Narrative o
Class Diagram

(enriched with stereotypes)
+ Narrative t=4>

CD Specification
then

Narrative Specification
(Both In Modal CASL)

c4>
CASL Specification

then
Time

Figure 5.2: Process for capturing a DSL.

Step 1. Start by creating a UML class diagram giving concepts and relationships
between concepts within the desired domain. Add an accompanying narrative
to describe dynamical aspects as illustrated in Chapter 3. These documents are
commonly used in industry, and hence art' often already available, see, e.g., [RailO].
Next, in a modelling step, add stereotypes (as discussed in Section 5.3). These
stereotypes are used to describe elements which remain static or are dynamic
within the system.

Result: Class diagram and Narrative'.

Step 2 . Using the comorphism defined in Section 5.4. translate the class diagram
into M o d a l C a s l . Next, extend the resulting M o d a l C a s l specification by a
modelling of any narrative elements not captured within the class diagram.
For example, considering the narrative of what it means for a Route to be “open"
from Bjorner's DSL we can produce the following M o d a l C a s l specification:

flexible op isOpen : Route —>? Booleo.ii
V r : Route; upp : Unit, Path Pair; u : Unit; us : UnitState; p : Path
• is Open (r) = tt

<=> r has upp A upp get Unit u A upp get Path p
A u stateAt, us A us has p

Also, at this point any verification conditions required can be modelled and added
to the specification.

Result,: M o d a l C a s l spec if ica tion c a p tu r in g th e class d ia g ra m a n d N a r ra t iv e .

Step 3. Finally, the last step of the process is to apply the existing M o d a l C a s l to
C a s l comorphism [Mos02, Mos04a] to gain a C a s l Specification of the DSL. This
will allow connection to multiple theorem provers for later use in verification. If
appropriate, one can also specify in C a s l how worlds evolve, e.g., by adding a
loose specification of discrete time.

Result,: C a s l spec if ica t ion of th e fo rm a l DSL.

To illustrate the overall result of this process, Appendix C.l gives the full translation
of Bjprner’s DSL into C a s l . In this specification, we have both instantiated various
specification capturing types, e.g. Lists and Pairs, and also given a loose specification of

92

5.5. Crafting a Formal DSL

time as the modality gained from M o d a l C a s l . Finally, Appendix C.2 also gives an
example model of the track plan from Figure 3.1 formulated using this C a s l DSL. We
note that in these specifications, several of the operations and predicates have had their
profiles changed to use mix fix notation for ease of readability.

93

Chapter 6

Supporting Verification of DSLs

C ontents
6.1 Railway D y n am ics...
6.2 Modelling Dynamics and Safety in CASL

6.3 Validating our Modelling Through Instantiation 105
108
111

101

95

6.4 Domain Specific Property Supporting Lemmas

6.5 A Note on Faithful Modelling

6.6 Verification of Real World Scheme Plans . . . 112

In this chapter, we explore automatic verification for domain specific languages. We
show that via careful design and extension of a domain specific language, it is possible
to automatically check properties over models formulated in the DSL. Concretely,
we illustrate the approach using Bjprner’s domain specific language for the railway
domain captured in C a s l . A s we have seen, such a domain specific language is a loose
specification, the logical closure of which we regard as implicitly encoded “domain
knowledge” . We show that we can systematically exploit this “domain knowledge” to
allow for successful automatic verification.

6.1 Railway D ynam ics

As presented thus far, Bjprner’s DSL has been translated to C a sl with the correct
features for modelling the layout and static structure of a railway track plan. We
now consider an extension to Bjprner’s DSL. This extension allows the formulation of
elements related to dynamic railway control. In particular, we consider the elements
of a control table and release table. Together with a track plan, these form what is
commonly referred to as a scheme plan. Figure 6.1 gives the scheme plan for a simple
pass through station as considered by Moller et al. [MNR+13].

Such a scheme plan is used as a design document for implementation of the main
controller for railways, namely an interlocking [KR01]. An interlocking system gathers

95

6. Supporting Verification of DSLs

LB1

P I P2

Route Clear Normal Reverse Route Point (Cleared By)
RAl LAI, PI, LA2 PI RAl P1(P1)
RA2 P 2 , LA3 P2 RA2 P2(P2)
RBI LAI, PI, LB1 PI RBI P1(LA3)
RB2 P 2 , LA3 P2 RB2 P2(LA3)

Figure 6.1: A Scheme Plan for a Simple Pass Through Station. Top: Track Plan,
Bottom Left: Control Table, Bottom Right: Release Table.

train locations, and sends out commands to control signal aspects and point positions.
The control table aspect of a scheme plan determines how the interlocking system sets
signals and points for routes. Each route has a corresponding signal that allows entry
into the route. For each route, there is one row in the control table describing the
conditions under which the corresponding signal can show proceed for that route. For
example, the first row in the control table for the pass through station in Figure 6.1
states that route R A l is open (or can be set) if units LAI, PI and LA 2 are not occupied,
and point PI is in normal position. The interlocking also allocates so called locks on
points to particular route requests. These locks ensure that the point remain locked in
position. Such locks are then released according to the information contained in the
release table. For example, the first row of the release table in Figure 6.1 states that for
route R A l the point P I can be released by the point itself becoming clear. Releasing
of these locks allows the corresponding points to be configured and used within another
route. The checking of the logic of these tables with respect the topology of the track
plan is vital in avoiding train collisions. Later in Section 6.1.3 we will see that this
forms the basis of our verification problem.

Finally, the last element in the dynamical aspects of railways is that of train
movements. Above, we have described how access to certain routes is granted, and
areas of tracks can be released. This follows conventional railway signalling [KR01].
However, the newer ETCS [ERT0 2] standard builds on this conventional signalling with
the notion of a movement authority. A movement authority can be thought of as an
area of a railway for which a given train has been granted access to travel along. For
example, a train may be granted access to move along units LAI and PI in Figure 6.1.
At any given time, a movement authority (or sequence of regions) can be assigned to a
train. Before a train is allowed to move through a railway, it must gain a movement
authority for the parts of the railway it would like to use. The standard operation of
interlockings for assigning movement authorities to trains is given by the following rules:

• Extension: Initially, no train has a movement authority. A request can be made

96

6.1. Railway Dynamics

for a train to travel along a particular route. If the route is available (as dictated
by the control table) then the trains movement authority can be extended to
include that route. The movement authority for a train can contain multiple
routes. For example, a train travelling through our example station may be given
a movement authority to use routes RAl and RA2.

• Release: As a train travels through its movement authority, it releases areas from
its authority. A train can release areas of a route depending on the release table
for that route. For example, a train travelling on route RAl through our example
station can release unit LAI and point P I from its movement authority once it
has exited point PI.

Such an approach towards movement authorities allows the example run illustrated in
Figure 6 .2 . This run illustrates that train A releases the use of point P I before it exits
the full route RAl. This allows for train B to use route RBI whilst the end of route
RAl is still in use by train A.

Tim e LAI P I LA2 LB1 P2 LA3

0
1 1 ^a

- - - - -

2 - 1--- ^a
3 - 1--- ''a - -

4 - 1--- ’'a - - -

5 - 1--- ’'b 1--- ’'a - - -
6 - - 1--- ’'a - -
7 - - 1--- ’'a - 1--- ’'b -
8 - - 1--- ̂a - -
9 _ _ 1 ''a _ -

10 _ _ - _ 1 ''a
11 _ _ _ _ _ 1 ''a
12 - - - - - -

Figure 6.2: A time/position diagram for an example run of the station scheme plan.

6 .1 .1 M od ellin g A ssu m p tion s

Before discussing our modelling approach for movement authorities in detail, we list
the assumptions that we have made about the various railway systems involved in our
modelling. We assume:

Correct System Operation: We assume that all track side components such as signals
and point detection units are fully functional and correctly working. This is simply
a separation of concerns, as we do not aim to explore any aspects of fault tolerance
within our modelling.

97

6. Supporting Verification of DSLs

Scheme Plan Restrictions: We impose a number of boundaries for our modelling. That
is, we consider complex railway scheme plans, but impose some restrictions on
the features of such scheme plans, namely:

• No crossover tracks. We restrict ourselves to linear track units and points as
these are the most common railway track units. Also, other approaches have
shown that it is possible to model crossovers using a pair of points [MNR+ 12a]
and hence, no interesting modelling challenges remain.

• Optimal Release Tables. We assume that a release table exhibits the property
that all points are released “optimally” from a capacity point of view, that is,
they are released as soon as the point is cleared by a train if travelling towards
the point, or released at the end of the route if travelling away from a point.
This assumption allows us to define, as we shall see later, the smallest regions
for verification. The assumption also ensures that any verification performed
is correct given any release table that releases a lock on a point with any
track occurring later than the point. That is, our verification considers the
most critical possible scenario.

• Discrete time. All our modelling is based on discrete time only. This is
justified as interlockings work in a cycling control manner, where each control
loop iteration takes a few seconds depending on the concrete interlocking.

• Two aspect signalling only. In all our models, we consider signals with only
two aspects, namely “Stop” and “Proceed”. These are indicated by a red and
green light respectively. Considering two aspect signalling rather than say
four aspect signalling (see [KR01]) is enough to allow us to consider safety
of railway systems, but does not allow us to reason accurately, for example,
about train speeds and system capacity.

• Bi-directional Routes are of Equivalent Length. Finally, the current gran­
ularity of regions presented in Section 6 .1 . 2 requires that opposing routes
that consist of only linear tracks are of the same length. As, in general, most
routes contain a point [KR01] we exclude a very small, and often simple,
track plans by this restriction.

Human Behaviour: Finally, we make some assumptions on human behaviour. That is,
we assume a train driver does not drive a train outside the movement authority it
has been granted, and that signallers request a maximum of one route per time
step. This again is separation of concerns, and in fact this second assumption is
ensured by most interlockings to stop race conditions on routes.

With these assumptions in place, we introduce the notion of a region of a railway. These
regions will allow us to correctly model movement authorities.

6.1 .2 In trodu cin g R eg ion s for M ovem ent

To allow us to correctly model the extension and release of movement authorities, we
introduce the ability to assign certain regions of track to a train. We define the notion of

98

6.1. Railway Dynamics

a region to be a collection of units of a track plan and then define a movement authority
to be a sequence of such regions. These regions allow areas of a track to be reserved and
released in the typical fashion for train control. A movement authority then represents
all the regions of a track layout that a train has been granted access to. Such regions
are categorised by both the topological routes of a track plan, and the release point
from the release table. For example, considering the pass through station in Figure 6.1,
we can split the topological routes at the units outlined by the release table to gain
the possible regions of the scheme plan. The splitting of the pass through station into
regions is illustrated in Figure 6.3.

RG3
LB1

LAI
X I h

LA2 LA3
h 1 Y

PI
J L J L

P2
RGl RG2 RG4

Figure 6.3: Regions of the simple station.

The regions are defined using the release points within the release table to break up
a route at the given release unit. Mathematically, we can define the set of regions as
the union of the regions of all routes:

D efinition 6.1 (Regions of a Route) To compute the regions of a given route R we
define the function Regions : List[Unit] x List[Unit\ —» Set[Unit\ as:

Regions ([iq , u2 , . . . ,w n], []) = { [^ i , . . . , un]}
Reg i ons([u i , U2 , . . . , un\ , [r i , r 2 , . . . , r n]) = {[ui,. . . , uk]} U

Regions ([uk+i , .. - ,u n], [r2, . . . , r n])

where = r\. Now, for the given route r, we define the regions of that route to
be Regions(units(r),releaseTable(r)) where units(r) is simply the units of the route
and releaseTable(r) is the topologically ordered list of release units occurring in the
release table for r.

For example, considering Figure 6.3 and the route PA l, we have: Regions([LAl, P I,
LA2], [PI]) = {LAI, P I} U Regions([LA2], []) = {LAI, P I} U {LA2}. These regions
allow for modelling of the interlocking behaving taking in to account-the release tables.
As an example, we can see that region R G l contains all the units of routes R A l and
R B I up to and including the release point for P I, as given by the release table. Then
after this release point we gain regions RG 2 and RG3 representing the remaining units
from the routes respectively. Such an approach allows, the train movements given in
Figure 6.2 to be captured as the following series of movement authority assignments:

99

6. Supporting Verification of DSLs

Time Train A Movement Authority Train B Movement Authority
0 {} {}
1 {RG1,RG2} {}
2 {R G l,R G 2 } {}
3 {RG2 } {}
4 {RG2 } {RG1,RG3}
5 {RG2 } {RG1,RG3}
6 {RG2 } {RG3}
7 {RG2 } {RGA}
8 {RG2 } {RGA}
9 {RG2 } {}
1 0 {RG4} {}
1 1 {RG4} {}
1 2 {} {}

With this approach in mind, we can now consider what sort of safety properties one
might like to prove over the design of a given scheme.

6.1 .3 D iscu ssion on Safety P roperties

When modelling and verifying railway control components, there are many variations
of safety property that could be considered. For example, on the concrete level of an
interlocking, one may want to check the concrete property that “Signal x only shows
green when route y is free to use” [KMS08, JR10]. Alternatively, when checking the
design of a scheme plan, one could follow the approach by Moller et al. [MNR+13] and
check that the control table ensures:

• collision-freedom: excluding two trains occupying the same track unit;

• run-through-freedom: stating that whenever a train enters a point, the point is
set to cater for this; e.g., when a train travels from PI LAI to track LA2, point
PI is set so that it connects itself to LA2 (and not to LB1);

• no-derailment: stating that whenever a train occupies a point, the point doesn’t
move under it.

Our aim differs slightly, as all these approaches consider classical signalling, whereas
we consider the assignment of movement authorities which is outlined by the newer
ERTMS standard [ERT02]. We aim to automatically verify train stations modelled using
the above approach with respect to the safety principle that “overlapping movement
authorities are not assigned at the same time”. Such a property is at a higher level
than the concrete properties mentioned above. However, as movement authorities are
extended depending on the rules of the control table, we do in fact cover the property of
collision freedom under the assumption that trains are well behaved. That is, if trains
stay within their given movement authority, and movement authorities are proven to
never overlap, then we know that two trains cannot occupy the same track unit.

100

6.2. Modelling Dynamics and Safety in CASL

6.2 M odelling D ynam ics and Safety in CASL

Taking Bj0 rner’s DSL in C a s l as a starting point, we now show how we have extended
the C a s l models to include a modelling of regions, movement authorities and safety.

6.2 .1 M odelling M ovem ent

Firstly, to model regions, we instantiate the specification of List with the sort Units
from Bjprner’s DSL (see Appendix D). This list specification follows the C a s l standard
library [Mos04b], however it contains a smaller number of axioms. This smaller axiomatic
base is still enough to prove the required properties in Section 6 . 6 but improves the
performance of various automatic theorem provers. We then make a subsort of this
called Region. This allows us, as presented above, to model regions as a collection of
units. Similarly, we capture movement authorities by instantiating the specification of
List with these regions and making a subsort MA:

L iS T [so r t Unit]
t h e n

L i s t [s o r t Region]
t h e n

s o r t Region < List[Unit]
s o r t MA < List[Region]

Next, we model the assignment of a movement authority at a given time as a
predicate assigned : MA x Time. We then add an axiom that states that only an empty
movement authority can be assigned initially, that is at time 0 :

p r e d assigned : MA x Time
• V m : MA • assigned(m, 0) =>• m = [] %(no_ma_0)%

We note, that for simplicity, regions and movement authorities are both modelled
using lists. However, lists are a stronger data type than is necessary for modelling
regions, as regions do not reflect all list operations.

Similarly, to model the fact that a train can be granted a movement authority at any
time, we add an axiom that states the empty movement authority is always available
for a train to request an extension to:

• V t : Time • assigned{\\ as MA , t) %([]_assigned_at_ all_times)%

We then add an axiom that states when the predicate assigned can be true for non
empty lists. To simplify the definition, we make use of predicates canExtend : MA x
Time and canReduce : MA x Time whose definitions we discuss next. The axiom given
below allows for movement authorities at some time suc(t) to remain assigned as they
were at time t, become extended from time t and also to reduce from time t. It also

6. Supporting Verification of DSLs

states that only one of these possibilities can occur for a given movement authority at a
given time. This definition matches the expected behaviour of movement authorities
given in Section 6 .1 .

• V mal : MA ; t : Time
• -i mal — []

=> assigned(mal, suc(t))
(assigned(mal, t) A -> canExtend(mal, t) A -> canReduce{maf t))
V (-i assigned(mal, t) A canExtend(maf t) A canReduce(maf t))
V (-i assigned{maf t) A canExtend(mal, t) A canReduce(maf t))

% (assigned _defn) %

The predicate canExtend : MA x Time is true for a given movement authority mal,
at a given time t, when the following conditions are met: (1) there exists a movement
authority m a2 and a route r such that the movement authority ma 2 is assigned at t,
and can be extended to m al by route r. Here, the topological information of valid
extensions from the track plan are encoded using the predicate ext : MA x Route x
MA. We control the behaviour of this predicate by adding the following axiom:

• ext(mal, r, ma2) => ma2 = mal + + regions(r) %(ext_defn)%

stating that ext behaves like list concatenation for the elements it is defined for. (2) The
route used for the extension is open at the given time - where the predicate MsOpenAt—
: Unit x Time is used (as we shall see later in Section 6.2.2) to encode the clear table
conditions of a route; (3) If the movement authority which is being extended is non
empty1, it becomes not assigned. This is encoded in C as l as:

V mal : MA; t : Time
• canExtend (mal, t)

<=> 3 ma2 : MA; r : Route
• assigned(ma2, t) A ext(ma2, r, mal)

A r is Open At t
A (assigned(ma2, suc(t)) => ma2 = []) %(extends_defn)%

In a similar manner, the predicate canReduce : MA x Time is true, at a given time
t and for a given movement authority m al, if there exists a region rg such that the
region concatenated at the head of m al was assigned at t and becomes unassigned at
suc(t).

V mal : MA; t : Time
• canReduce (ma 1, t)

<=>3 rg : Region
• assigned((rg :: m a l) as MA, t) A assigned((rg :: mal) as MA, suc(t))

% (reduces_defn) %

1 This check is required as we want the empty movement authority to always be assigned.

102

6.2. Modelling Dynamics and Safety in CASL

Finally, we would like to ensure that, in line with our assumptions, only one movement
authority can be extended at any given time, this is captured using the following axiom:

• V i : Time
• V ml, m2 : MA

• (assigned(ml, suc(t)) => canExtend(ml, t)) A
(assigned(m2, suc(t)) => canExtend(m2, t))

=4> mi = m^ %(one_MA_changes)%

6 .2 .2 M odelling C ontrol Tables and R o u te A va ilab ility

The above modelling of movement authorities requires the definition of what it means
for a route to be open. As we have seen, this information is given by the control table
for a scheme plan. With respect to collisions, the clear column of a clear table states
that certain track units must not be occupied by a train for a route to be granted. To
model this, we introduce the predicate clear : Route x Unit. We then use this predicate
to encode that a particular unit occurs within the clear column for the given route. As
an example, the control table given in Figure 6.1 would be encoded as:

• clear(RAl, L A I)
• clear(RAl, PI)
• clear(RAl, LA 2)
• clear (RBI, L A l)
• clear(RBl, PI)
• clear(RBl, LB1)
• clear(RA2, P2)
• clear(RA2, LAS)
• clear(RB2, P2)
• clear(RB2, LAS)

Here we note, that due to the fact that clear may be specified loosely for a given
scheme plan, we obtain models where clear holds for more tracks than is stated. However,
this does not disturb our verification proofs, as later we check properties concerning all
models, and hence if clear is not specified tightly enough, it will appear at this point.

In a similar manner, we can use predicates to encode the normal and reverse columns
of the control table. However we note that we are interested in collision freedom only.
As the normal and reverse columns of a control table ensure that derailments do not
occur, we exclude these definitions. Using these predicates we can give the following
definition of what it means for a route to be open:

V r : Route; t : Time • r isOpenAt t «=> V u : Unit • clear(r, u) => u isOpenAt t

This axiom states that a route r is open at a given time t, if for all units u for which
clear(r, u) holds, the unit u is open at t.

103

6. Supporting Verification of DSLs

Finally, we have yet to consider what is means for a unit to be occupied. Within
the operation of an interlocking a unit is in use when a train is detected on a particular
track. In our modelling, we abstract on the concrete position of a train and instead
say that if a region is assigned to some train, then at least one of the units within that
region will report that it is occupied by a train. This is captured by the following axiom:

• V £ : Time; r : Route; rg : Region; ma : MA
• assigned (ma, t) A rg eps regions (r) A rg eps ma
=> 3 u : Unit; upp : UnitPathPair

• -i u isOpenAt t A u eps rg A getUnit(upp) = u A upp eps r
%(occupied)%

This axiom makes use of the operation regions : Route —> MA that, for a given route
gives the regions it has been split into via our modelling. It also uses the operations eps
for list elementhood and getUnit for returning the unit component of a UnitPathPair.

Although this axiom is fairly loose, i.e. we do not even impose the restriction that
trains should move in the correct direction, we will show in Section 6 . 6 later that this is
enough to prove the safety property we discuss next.

6 .2 .3 M od ellin g our Safety P rop erty

In Section 6.1.3 we discuss the safety property that we would like to verify, namely that
“overlapping movement authorities are not assigned at the same time”. To model such a
property, we introduce the auxiliary predicate share : MA x MA that encodes what it
means for two movement authorities to overlap:

pred share : MA x MA
V ml, m2 : MA

• share (ml, m2) 4^ 3 rg : Region • rg eps ml A rg eps m2
% (share_defn) %

Finally, this allows us to model safety using the following formula:

V t : Time, ml, m2 : MA
• share(mal, ma2)
=>■ mal — ma2 V -i (assigned(mal, t) A assigned (ma2, t)) % (safety) %

It states that if two movement authorities share a region, then either they are the
same, or that they are never both assigned at the same time. This concludes our
modelling for movement authorities and safety, next we consider why this modelling is
appropriate and argue its correctness.

104

6.3. Validating our Modelling Through Instantiation

6.3 V alidating our M odelling Through Instantiation

With the axioms we have presented in place, we validate our modelling of movement
authorities via a presentation of an example concrete model and proof using the scheme
plan given in Figure 6 .1 . An excerpt of the encoding of the dynamical aspects of this
scheme plan in C asl is given below:

free type Route ::= R A l \ RBI \ RA2 \ RB2
• R A l — UnitPathPair (LAI, path(caO, ca l)) :: (unitPathPair (PI, path(cal, ca2))

:: (unitPathPair(LA2, path(ca2, ca3)) :: []))
• RBI — unitPathPair (LAI, path(caO, cal)) :: (unitPathPair (PI, path(cal, cbO))

:: (unitPathPair(bl, path(cbO, cbl)) :: []))

free type Region ::= RGl \ RG2 \ RG3 \ RG4
• RGl = LAI :: (PI :: [])
• RG2 = LA2 :: []

• regions(RAl) = RGl :: (RG2 :: [])
• regions(RA2) = RG4 []

free type MA ::= MAI \ MA2 | MAS \ MA4 | MA5 \ MA6 | M A I \
MA8 | MA9 | []

• MAI = RGl :: (RG2 :: [])
• MA2 = RGl :: (RG3 :: [])

To validate our model, we consider the transition system given in Figure 6.4. The
transition system shows the possible assignment of movement authorities for the scheme
plan given in Figure 6.1 under the assumption of a single train. That is, a system where
we only consider assignments of a single movement authority. The transition system
shows transitions possible in a real world setting. We now use C asl to model a series of
proof goals representing the states and transitions of this system. Through proving that
our modelling approach captures this transition system, we know that any property
that is proven over our model holds for the real world system.

To validate that our modelling allows for the assignments given in the transition
system, we specify the following proof goals describing the movement authorities that
are assignable over the first four time steps of the system. As all states can be reached
within four steps, this ensures all states in Figure 6.4 are captured by our model.

then %implies
V m : MA
• - 1 m = [] => -i assigned(m, 0) %(Time_0)%
• assigned(m, suc(0)) => m = MAI V m = MA2 V m — [] %(Time_l)%
• assigned(m, suc(suc(0))) => m = MAI V m = MA2 V

105

6. Supporting Verification of DSLs

m = MA4 V m = MA5 V m — MA6 V
m — MA7 V m = [] %(Time_2)%

• assigned(m, suc(suc(suc(0)))) => m — MAI V m = M/42 V
m = MA4 V m = Mt45 V m — MA6 V
m = MA7 V m = M/45 V m — MA9 V m = [] %(Time_3)%

• assigned(m, suc(suc(suc(suc => m = MAI V
m — M/42 V m = M/45 V m — MA4 V
m = M/45 V m = M/45 V m = MA7 V
m = M/45 V m = M/4P V m = [] %(Time_4)%

Figure 6.4: Transition system for movement authority assignment under the assumption
of a single train.

We also encode the possible movements in and out of each state within the transition
system given in Figure 6.4. This ensures that all the transitions that can be performed
by the real world system are captured by model.

106

73

6.3. Validating our Modelling Through Instantiation

th e n %implies
V t : Time
• assigned([], t) => assh/ned([], suc(t)) V assigned(MAl, suc(t))

V assigned(MA2, suc(t)) %(State_Empty)%
• assigned(MAl, t) => as signed {MA1 , suc(t)) V assigned(MA4, suc{t))

V assigned(MA6 , suc(t)) %(State_MAl_Out)%
• assigned(MAl, suc(t)) => assigned(MAl, £)

V assigned([], £) %(State_MAl Jn)%
• assigned(MA2, £) => assigned(MA2, suc(t)) V assigned(MA5, suc(t))

V assigned(MA7, suc(t)) %(State_MA2_0ut)%
• assigned(MA2, suc(t)) => assigned(MA2 , £)

V assigned ([], £) %(State_MA2_In)%

• assigned(MA9, suc(t))
=> assigned(MA9, £) V assigned(MA7. t.)

V assigned(MA5, £) %(State_MA9_In)%

For example, the axiom labelled %(State_Empty)% describes that from the state where
no movement authority is assigned, we can get to two possible states, namely where
movement authorities MAI or MA2 are assigned. Using Hets, we can discharge each
of these proof goals automatically. Figure 6.5 shows the Hets proof window with each
goal discharged. It highlights in the top left of each window, the series of proof goals
with a green symbol next them. This shows that Hets has successfully discharged
the proof.

c
Coals: Selected goalfs):

(♦) TtmeO Proof details Display
[*) Tlme_1
[♦] T im e?

Sublogic of currently selected theory.
CASL SulPeCFOli

[*] Time_3
[♦] Time_4

Pick theorem prover:

SPASS
VSE
Vampire
darwin

All None invert Selected comorphism path:

Select open goals j id_CASL.SulPeCFOL-;CASl.2SubC :

Fine grained composition o f theory
Axioms to include: Theorems to include if proven:
Axl Tlme_0
Ax 2 Time_t
Ax 3 Time_2
Ax4 Time_3

Time 4
All None Invert

Deselect form er theorem s All None Invert
_________________ ___ _________________ - ___- __________

Show theory Show selected theory Close

Coals: Selected goalfs):

(*] S ta teE m pty Proof details Display
(*] S tate MAI j n
(*] State_MA1_Out

Sublogic of currently selected theory
CASt.SutPeCFOl*

[+] State_MA2_ln
H State_MA2 0 u t
(*] State MA3_ln
[•*) Sta te_M A3_Out
(*] State_MA4_ln
fj.1 O a f * MA A r \

Pick theorem prover:

MathServe Broker
QuickCheck
SPASS
VSE

All None invert Selected comorphism path:

Select open goals
ld.CASL.SulPeCFOL=;CASL2SubC ?

Fine grained com position of theory
Axioms to include: Theorems to include if proven:
Time_0 State_Empty
Time_1 State_MAl_m
Time_2 State_MA1_Out
Time_3 State_MA2_ln
— State_MA2_Out

All None invert O a r * M i l In

Deselect form er theorem s All ij None || invert

Show theory Show selected theory Close

Figure 6.5: Proof windows showing discharged proof goals.

The validation we have provided illustrates th a t our modelling of movement au­
thorities matches the real world expectations of movement authorities. W ith this level

107

6. Supporting Verification of DSLs

of confidence within our modelling, we move on to consider verification of real world
scheme plans.

6.3 .1 U nsu ccessfu l V erification O ver B j0rner’s D SL

Overall, the capturing of Bjprner’s DSL along with our extension of movement authorities
in CASL is intuitive and relatively straightforward for railway engineers to follow.
However, with respect to verification, SPASS, Vampire and eProver were all unable to
directly prove our safety principle (within six hours per prover). Even with the addition
of the following property specific axiom for induction over time, all the provers still fail:

• (V m al, ma2 : MA • share(mal, ma2)
=> mal = ma2 V -i (assigned(mal, 0) A assigned(ma2, 0))) %% Base Case
A
V t : Time • (V m al, ma2 : MA • share (mal, ma2)

=> mal = ma2 V -> (assigned(mal, t) A assigned(ma2, t)))
=> (V mal, ma2 : MA • share(mal, ma2)

=> mal = ma2 V -> (assigned(mal, suc(t)) A assigned(ma2, suc(t))))
%% Step Case

=> V t : Time • (V mal, ma2 : MA • share (mal, ma2)
mal = ma2 V -> (assigned(mal, t) A assigned(ma2, t)))

This is not surprising, as Bj0 rner intended to provide a strong language for modelling,
and we have aimed to model movement authorities intuitively. However, the concept of
a movement authority and our safety principle lend themselves, on the general level
of the railway domain, to natural abstractions that we now show can be exploited for
verification.

6.4 D om ain Specific Property Supporting Lemmas

Within the railway domain, it is understood that control tables are vital in ensuring
safety. In our presentation we can see that movement authorities are extended depending
on the rules of the control table. That is, for a movement authority to be extended by
the regions of a route, that route must be open. Thus, we consider simplifying our proof
goal for safety to a goal that considers the control table. Through some domain analysis,
we can reduce the reasoning on the level of movement authorities, to a reasoning on
the level of topological routes and the control table. That is, under the condition that
the predicate ext is encoded faithfully for the given model (i.e. that for all movement
authorities m l, m 2 and routes r we have ext(m l,r ,m 2) only if m 2 is the extension of
m l with the regions of r), then the scheme plan exhibits the following property:

for all routes, if a region of the route being assigned at a particular time implies that
the route is not open at that time, then two overlapping movement authorities cannot be

assigned at the same time.

108

6-4- Domain Specific Property Supporting Lemmas

This is captured formally by the following lemma:

Lem m a 6 . 2 (Property Reduction to Routes) Given a faithfully modelled scheme plan
S P then

V t : Time; ml, m2 : MA • share(ml, m2)
=> m l — m2 V -i (assigned(ml, t) A assigned(m2, t)) %(*)%

if and only if,

V t : Time; r : Route; rg : Region; ma : MA
• assigned(ma, t) A rg eps ma A rg eps regions(r)

=>• -i r isOpenAt t %(**)%

Proof. Following from the axioms presented in Section 6.2 we have:

<=: Let us assume (**). The proof is given by induction on time t.
In the base case (t=0), (*) is true. This is the case as only the empty movement
authority is assigned at time 0 (given by axiom %(no_ma_0)%). Let m l, m2 be
two movement authorities such that share(ml,m2) holds. We consider two cases:
(1) if m l = m2 then the implication holds trivially;
(2) if m l ^ m2 then only one of these movement authorities can be the empty move­
ment authority. Let, without loss of generality, m l []. Then assigned(ml, 0) is
false (by axiom %(no_ma_0)%), hence the implication holds.
For the step case we have to show that:

V t : Time •
(V ml, m2 : MA • share(ml, m2)

=> m l = m2 V -i (assigned(ml, t) A assigned (m2, t))) %(ih)%
=>
(V ml, m2 : MA • share(ml, m2)

=> m l = m2 V -i (assigned(ml, suc(t)) A assigned(m2, suc(t))))

Let us assume (ih) for all movement authorities m l ,m2. Let m l', m2' be two
movement authorities such that share(ml',m ') holds. We consider two cases:

(1) if m l' = m 2 ' then the implication holds trivially;

(2) if m l' 7 ̂ m2' then we need to show -> (assigned(ml’, t) A assigned(m2’,
t)). By case distinction over the definition of the predicate assigned (axiom
%(assigned_defn)%), we show that (assigned(m 1 ’, t) A assigned(m2’, t)) is not
possible and hence the implication holds.

• Case 1: (assigned(ml \ suc(t)) A assigned(m2\ suc(t))) => assigned(ml \ t)
A assigned (m 2’, t) does not hold, as it contradicts the assumed induction
hypothesis (ih).

109

6. Supporting Verification of DSLs

• Case 2: (assigned(ml’, suc(t)) A assigned(m2’, suc(t))) =>• canExtend(ml’, t)
A canExtend (m 2’, t) does not hold, as it contradicts with axiom
%(one_ma_changes)% stating that only one movement authority extends per
time step.

• Case 3: (assigned(ml’, suc(t)) A assigned(m2’, suc(t))) => assigned(ml’, t)
A canExtend (m 2’, t). Given that share(ml’, m 2’) holds, by the definition
of the predicate share (axiom %(share_defn)%) we know that there exists a
region rg such that rg E m l ’ and rg E m 2’. Let us consider what it means
for canExtend(m2’, t) to hold, i.e. instantiating axiom %(extend_defn)% with
m2' gives:

canExtend (m 2’, t) o
3 ma : MA; r : Route •

assigned (ma, t) A ext(ma, r, m 2’) A
r isOpenAt t A
(-i ma — [] => -i assigned(ma, suc(t)))

Hence, we have two cases to consider for the shared region rg:
(1) if rg E ma, then by (**), all routes r' such that rg E regions(r') are not
open. Hence given axiom %(ext_defn)%, which tells us that ext acts like list
concatenation, we know that -> r isOpenAt t. Thus we have a contradiction
that canExtend(m2!,t) must hold, but also r isOpenAt t must hold;
(2) if rg ma then by axiom %(ext_defn)% we know that share(ml',ma)
holds. We also know, by the definition of canExtend (axiom %(extends_defn)%)
that assigned(ma,t) holds and similarly by our case assumption that
assigned(ml', t) holds. Now if m l' 7 ̂ma then we gain a contradiction to our
induction hypothesis (ih). Whereas, if m l' = ma, then by the definition of
canExtend (axiom %(extends_defn)%), we know that ->assigned(ma, suc(t))
and hence that ~^assigned(ml', suc(t)). This again contradicts our case
assumption that assigned(ml', t) holds.

• Case 4: (assigned (m l ’, suc(t)) A assigned(m2’, suc(t))) => canExtend (m l ’,
t) A assigned(m2’, t): Analogous to Case 3.

• Case 5-9: The remaining cases involve the reduction of one movement
authority that is already assigned. Hence, each case follows from the definition
of canReduce %(reduces_defn)% and our induction hypothesis (ih).

=>: Let us assume (*). The proof is by contradiction.

We assume (**) does not hold, that is, we know there exists a route r such that:

3 t : Time; r : Route; rg : Region; ma : MA
• assigned (ma, t) A rg eps ma A rg eps regions (r)

=> r isOpenAt t

110

6.5. A Note on Faithful Modelling

Given this, this route can be used for an extension to another movement authority
even though it is assigned. Assume at some time £', such that suc(t') = t there exist
movement authorities raal,m a2 such that ext(mal,r ,ma2) and rg G ma2. Then
the predicate canExtend (axiom %(extends_defn)%) holds for ma2 at time t. Thus,
by the definition of assigned (axiom %(assigned_defn)%) ma2 can become assigned
at time suc(t'), i.e. time t. Now we have the situation tha t assigned(ma,t) and
assigned(ma2,t) hold, but so does share(ma,ma2) (axiom %(share_defn)%) over
the region rg. Hence we have a contradiction to (**).

□
The result of this lemma is that we can effectively reduce the verification problem

over movement authorities to a simpler problem over route openness.

6.4 .1 A u tom atic P r o o f o f D SL Lem m as

The proof we have presented above has also been encoded in C a s l and automatically
discharged using H e t s . The specification for this encoding is given in Appendix E. To
do this, the overall proof goal was split into the nine cases given above. Each of these
cases were then discharged as an implied axiom of our extended DSL using SPASS.
Overall, the proof of these nine cases takes a total of 42 seconds. Finally, we encoded
an implication showing that these nine cases do in fact lead to Lemma 6 .2 . Again, this
proof can be automatically discharged with SPASS and took 87 seconds. Giving a total
proof time of 129 seconds.

At this point, we note that as this lemma is completely independent of any concrete
scheme plan formulated using our extended DSL. Hence, once it has been proven as
a consequence of the DSL, it can be used to aid with verification of any scheme plan
formulated using the extended DSL. However, we note that it is the responsibility of the
computer scientist extending the DSL to ensure these proofs still hold if any changes
are made to the underlying DSL.

6.5 A N ote on Faithful M odelling

In the previous sections, we have presented a modelling of movement authorities that
extends Bjprner’s original DSL. We have also mentioned that elements of the extension
should be encoded faithfully with respect to the original scheme plan. For example,
the operation regions : Route —> MA should be encoded such that concatenating the
resulting list of regions (or MA) for a route gives exactly the list of units occurring in a
route. In this section, we illustrate that it is possible to prove that the elements in the
extension of the modelling for a concrete scheme plan match the original elements of
the scheme plan. This ensures that confidence is maintained in the fact that anything
proven over the extended scheme plan holds for the scheme plan formulated in the
original DSL. We illustrate such an approach using the scheme plan in Figure 6.1 and
the operation regions.

I l l

6. Supporting Verification of DSLs

Consider route R A l from the single station scheme plan (Figure 6 .1), with our
modelling using regions, this route gets split into regions R G l and RG2. Thus, we would
encode regions(RAl) = RGl :: (RG2 :: []) where .RGl and RG2 have the definitions
RG l = LAI :: (PI :: []) and RG2 — LA2 :: [] respectively. Now, we can add the
following proof goal to our model:

t h e n % im p lie s
V u : Unit
• 3 upp : UnitPathPair

• getUnit(upp) = u A upp eps R A l
«=> 3 rg : Region • rg eps regions(RAl) A u eps rg

ensuring that all the units of route R A l appear in the regions of R A l and vice versa.
Such a proof goal is then discharged using the provers in H e t s . Similar proof goals can
be added over all predicates and operations involved in the extension. This ensures that
the extensions to the scheme plan are encoded correctly with respect to the original
scheme plan. Later in Chapter 7 we see how the models we have presented can be
generated via model transformations where such checks again ensure the correctness of
the implemented model transformation.

6.6 Verification o f R eal W orld Schem e P lans

In this section, we apply our extended DSL by modelling a variety of real world stations
and junctions, and verifying that they meet our defined safety property. To begin, we
discuss the specification structure we have in place.

6 .6 .1 S p ecification S tructure

In this thesis so far, we have outlined a series of extensions to Bjprner’s original DSL.
Before continuing to give verification results, we briefly comment on the specification
structure our approach has led to.

Considering Figure 6 . 6 we can see, that our specifications begin with the Datatypes
(D a t a t y p e s) and DSL (DSL) gained from our translation of the UML class diagram.
We then extend these specifications with D S L E x t e n s io n for modelling the narrative
aspects of the original informal DSL. Concretely for Bjprner’s DSL this includes our
modelling of movement authorities. Next, we can see that the property supporting
lemmas (D S L e m m a s) are added to aid with verification. These are added as implied
axioms over the extended DSL. This illustrates that these lemmas are independent of
any scheme plan formulated in the DSL, however that a change in the DSL would require
these lemmas to be re-proven. Next, we see the specification C o n c r e t e S c h e m e P l a n
that encodes a particular track plan and its associated movement authorities and control
tables. Finally, we can see the proof goals for proving safety are added (S a f e t y) . These
are again added as implied axioms, and are then proven relative to the given concrete

112

6.6. Verification of Real World Scheme Plans

spec D S L F o r V e r i f i c a t i o n =
D a t a t y p e s %% From the UML class diagram.

then
DSL %% From the UML class diagram.

then
D S L E x t e n s io n %% From the narrative.

then % im plies
D S L e m m a s %% Extension with proof support.

then
C o n c r e t e S c h e m e P l a n %% Specific scheme plan.

then % im plies
S a f e t y %% Safety properties to be proven.

end

Figure 6 .6 : Specification Structure.

scheme plan. Given this verification setup, we now discuss the encoding and verification
of several scheme plans.

6 .6 .2 V erification R esu lts

The track plan in Figure 3.1 (TP-A) and each track plan in Figure 6.7 (TP-B to TP-D)
have been modelled in Bjprner’s extended DSL including our modelling of movement
authorities. Following the specification structure in Figure 6 .6 , we have added a then
%implies block for the proof of safety. This block is structured in two parts, the first
contains lemmas to be proven, then the second our overall proof goal. The aim of the
lemmas from the first block is similar to the case distinction lemmas in Section 6.4.
That is, they help the automatic prover in proving our final goal. For verification using
Bjprner’s DSL, these lemmas are in the form of our final proof goal instantiated for
each route. Such lemmas can be easily automatically generated by static analysis. That
is, taking route RAl as an example, we have:

V t : Time; rg : Region', ma : MA
• assigned(ma, t) A rg eps ma A rg eps regions (RAl)

=> -i R A l isOpenAt t

Once these lemmas have been automatically proven, they can be used to help deduce
our overall proof goal:

then % im p lie s
V t : Time; r : Route; rg : Region; ma : MA

• assigned (ma, t) A rg eps ma A rg eps regions (r)
=> -i r isOpenAt t

end

113

6. Supporting Verification of DSLs

lal la2
X I 1 h

(a) A pass through station (TP-B)

PI la3 la4 Plat la5 la6 P2
— I------------ 1------------- 1------------1—

la7 la8
h Y

SX H 1--------- 1--------- h
lbl lb2 lb3 lb4 lb5

(b) A double junction (TP-C)

SY

la4 la5P2
A

PI P3

B
lb4lbl lb2 lb3 lb5 lb6 lb7P4

(c) A terminal station (TP-D)

Plat A lal la2
A

P2 P3 la3
B

PlatB lbl lb2 PI

PlatC lei lc2 P4
C

P5 P6 lc3
D

PlatD ldl ld2

i X

Figure 6.7: Verified track plans.

The verification times presented in Figure 6 . 8 show that verification is now possible
over our extended version on Bjprner’s DSL. To this end, we have successfully automat­
ically verified four track plans of real world complexity (see Figure 6.7). The proofs
have been performed on a 3GHz quad core machine with 8 GB of RAM running Ubuntu
12.04.

Track Plan Routes Lemma Proofs (s) Safety Proof (s) Avg. Memory (MB)
TP-A 236.10 20.46 489.64
TP-B 54.54 10.04 176.88
TP-C 23.88 6.57 90.36
TP-D 194.41 22.34 188.07

Figure 6 .8 : Verification times for the given track plans.

Overall, all proofs are completed relatively quickly, with the longest proof time
being for track plan TP-A. Interestingly, this is due to the number of units contained
within this track plan. It is also interesting to note that the track plans that look more
complicated, i.e. TP-C and TP-D are relatively quick to verify. This is due to the fact

114

6.6. Verification of Real World Scheme Plans

that these track plans get split into many smaller regions compared with the fewer
larger regions of track plan TP-A. Each of these small regions is represented by a list
containing few elements within our modelling. Hence, the automatic theorem prover
does not need to search to such a depth to find a proof. This point is also illustrated by
the increased average memory usage for TP-A.

Overall, these results shows that the DSL as introduced by Bjprner and extended
by us is rich enough to allow natural abstractions and establish lemmas which give a
measurable effect for verification.

115

Chapter 7

Creating Graphical Tool Support

C ontents
7.1 Motivation for Graphical Tooling ... 117

7.2 The OnTrack Toolset A rch itec tu re ... 118

7.3 OnTrack Implementation for Bjprner’s D S L .. 120

7.4 Generation of Formal CASL S p ec ifica tio n s .. 123

7.5 General Domain Abstractions Over D S L s ... 126

7.6 A Summary of O nT rack .. 128

This chapter describes the OnTrack tool1 for generating formal models from graphical
scheme plans for railway signalling systems. Here, we motivate and present the devel­
opment of the tool and discuss the main architecture of the tool. Along with this, we
present the model transformations required to generate C a s l models. This discussion
serves as an illustration on how the tool can be extended for other formalisms. OnTrack
also contains the ability to output CSP||B models [JTT+ 13], however we refrain from a
discussion of these models here. Finally, the tool allows the user to apply abstractions
that are formed purely over the DSL. These abstractions are independent of the formal
modelling language used. We briefly discuss these abstractions and how they can be
applied to aid with verification of models formulated in various different specification
languages.

7.1 M otivation for G raphical Tooling

Within the railway industry, defining graphical descriptions is the de facto method of
designing railway networks. These graphical descriptions enable an engineer to visually
represent the tracks and signals etc., within a railway network. Up until now, we have
presented several C a s l specifications for varying aspects of the railway domain. We

1 OnTrack is available for download from http://ww w.csp-b.org.

117

7. Creating Graphical Tool Support

have also shown how to support these models with domain specific lemmas allowing
for successful automatic verification. However, although these models use terminology
from the railway domain, the modelling approaches presented are not in a form that is
common knowledge for the everyday engineer working within the railway domain. In
this chapter, we introduce the OnTrack toolset that, following the aims we have set out
for this thesis, achieves the goal of encapsulating formal methods for the railway domain.
Overall, the OnTrack toolset is a modelling and verification environment that allows
graphical scheme plan descriptions to be captured and supported by formal verification.
Thus, it provides a bridge between railway domain notations and formal specification.
This meets the third aim of this thesis, namely to make formal methods accessible to
domain engineers.

In OnTrack. we also emphasise the use of a DSL and decoupling this DSL from the
verification method. One of the novelties of this is that we define abstractions 0 1 1 the
DSL in order to yield an optimised description prior to formal analysis. Importantly,
these abstractions allow benefits for verification in different formal languages. Also, due
to the way OnTrack has been designed, it is easily extendable to allow the generation
of formal models in any given modelling language. Thus meaning that the graphical
editor of OnTrack can be used as a basis for generating different formal specifications in
different languages. Finally, OnTrack is designed for the railway domain, but the clear
separation of an editor with support for abstractions from the chosen formal language
is a principle more widely applicable.

7.2 T h e O nT rack Toolset A rch itec tu re

In this section we highlight the main architecture of OnTrack with respect to the model
transformations that are implemented within the toolset. OnTrack has been created
using the GMF framework [Gro09] and multiple associated Epsilon [KRPPld] model
transformations.

Abstract
Schem e Plan

Track
Plan

G e n e r a t e ^
T a b le s

 ^

A b s t r a c t
(a _ D 5 L)

Scheme
Plan

DSL Meta-Model

R e p r e s e n t— I------
r

■>i Abstract 1
: Formal j

j Scheme Plan:

G e n e r a t e fo r V fe rifica tio n
 >

R e p r e s e n t Formal

Abstract
Specification

A b s t r a c t
(a_FS L)

I G e n e r a t e fo r V e r i f ic a tio n

Scheme Plan:

FSL Meta-Model

Concrete
Specification

Text

Figure 7.1: The OnTrack workflow.

Figure 7.1 shows the architecture that we employ in OnTrack. Firstly, considering
the bottom horizontal workflow, a user initially draws a Track Plan using the graphical
front end. Then the first transformation. Generate Tables leads to a Scheme Plan, which

118

7.2. The OnTrack Toolset Architecture

is a track plan and its associated control tables. Generation of control tables has been
previously studied [MY09] and here we implement a technique that produces control
tables based on track topology and signal positions. That is, we form all possible routes
between pairs of signals. Control tables, as we have seeii, contain information about
when routes can be granted, see [KR01] for details. Track plans and scheme plans are
models formulated relative to Bjprner’s DSL meta model, see Figure 2.3. A scheme plan
is then the basis for subsequent workflows that support its verification. Scheme plans
can then be translated to formal specifications. This can be achieved in two possible
ways, indicated by the optional dashed box in Figure 7.1:

1. Using a meta model for the formal specification language.

The first option is to have a meta model describing the formal specification
language. A Represent transformation then translates a Scheme Plan into an
equivalent Formal Scheme Plan over the meta model of the formal specification
language. Then various Generate for Verification model to text transformations
turn a Formal Scheme Plan into a Formal Specification Text ready for verification
using external tools. These Generate for Verification transformations can enrich
the models appropriately for verification, for example by including the DSL
lemmas discussed in Section 6.4. Here, the advantage of this approach is that the
Generate for Verification transformations can be defined generally for the formal
specification language meta model.

2. Direct generation of a formal specification.

The second approach is to directly generate a formal specification. Thus only the
Generate for Verification model to text transformations need to be implemented.
Once again, these transformations turn a Scheme Plan into a Formal Specification
Text ready for verification. Again, these Generate for Verification transformations
can still enrich the models appropriately for verification.

The horizontal workflow, described above, provides a validated transformation (via
manual review of the transformations) yielding a formal specification tha t faithfully
represents a scheme plan. Within OnTrack, the first approach has been taken for the
generation of CSP||B [JTT+13]. Whilst here, we highlight the second approach that we
have taken for the generation of C a s l .

The top level of the workflow shows the ability of OnTrack to include abstractions.
We are interested in abstractions to ease verification. In [JBR13] we identified domain
specific abstractions over scheme plans and similarly Moller et al. [MNR+ 13] have
identified abstractions representing topological insights from the domain. Interestingly,
these abstractions are all formulated over railway scheme plans, and as such are
independent of the formal specification language being used. In OnTrack we provide
the ability to define such topological abstractions with respect to the DSL, thus they
are decoupled from the formal specification language. We discuss an example of such
an abstraction later in Section 7.5.

119

7. Creating Graphical Tool Support

7.3 O nT rack Im p le m e n ta t io n for B jp rn e r ’s DSL

OnTrack implements the workflow from Section 7.2 in a typical EM F/G M F/Epsilon
architecture [GroOO. SBMP08, KRPP13]. That is. as discussed in Section 2.6.2 a
graphical editor realised in GMF is the front end for the user. As a basis for our tool,
we have taken a modified version of the DSL developed by Bjoiner. The concepts
outlined in Figure 2.3 of Bjorner’s DSL can easily (with some slight modifications e.g.
see Section 7.6) be captured within an ECORE meta model that underlies our toolset.
Practically, this ECORE meta model is a UML class diagram represented using XML.

£ *doubleJunctiorLbjoernercomplete_didgrdm 0 ° □

4 -

c
4 51

Palette >

k % at L* •

♦ UmtHisCl

g ♦ umtHasQ

9 ♦ linear

♦ Point

. . . -_____ ______________ ♦ PomtMasO

\ ♦ Connector
♦ BA ♦ 88 ♦ BC \

\ ♦ Signal

f l \ ♦ S^nalPtace

® \ ♦ SignatPUce.

4 H \ ♦ ContrcffaWe
1--------- “ 1 - - - — * 1 -------- — - ' 1 ----------- d------------4 —

♦ Entry ♦ AA ♦ Ai 4 K ♦ AC ♦ * ♦ * ♦ « ♦ * ♦ W

S * C P roperty IS t f g f v “ n

♦ Signal

Core value

m m Controls Routes ♦ Route 1A
Name ‘ • S I

Placed At Connector ♦ Connector

Ptaced On linear ♦ Linear Entry

Figure 7.2: A screenshot of “OnTrack" modelling a station.

Implementing a GMF front-end for this meta model involves selecting the concepts of
the meta model that should become graphical constructs within the editor and assigning
graphical images to them. Figure 7.2 shows the OnTrack editor that consists of a
drawing canvas and a palette. Graphical elements from the palette can be positioned
onto the drawing canvas. For example, the linear unit element from Bjorner is now a
drawable element. W ithin the editor, the Epsilon Wizard Language (EWL) for model
transformations has been used to implement calls to the various scripts realising different
transformations. Below, we give some details on the main models involved in the design
of OnTrack. before discussing details of the model transformations for generating C a s l
specifications.

120

7.3. OnTrack Implementation for B jorner’s DSL

7.3.1 O n T rack G ra p h ic a l M o d e l

The graphical model defines the graphical elements to be used within the GMF editor.
For OnTrack, we have opted to use a series of SVG (Scalable Vector Graphic) figures
for classes within Bjorner’s DSL. Figure 7.3 shows several of the figures we have used
for given classes.

? _ «
Figure 7.3: The OnTrack SVG Figures for signals, linear units and points.

We have defined relationships between the classes as connections in the form of
lines between SVG Figures. The full graphical model storing the information on these
various figures is given in Figure 7.4.

[*b R esou rce S et

* ffl p la tfo r m :/r e s o u r c e /B jo e r n e r _ C o m p le te /m o d e l/B jo e r n e r C o m p le te .g m f graph

T C anvas b jo e r n e r c o m p le te

► <■ F igure G allery D efau lt

► ❖ Figure G allery SVG Figures

❖ N o d e Linear (LinearSVG)

❖ N o d e P o int (PointSV G)

❖ N o d e C o n n ec to r (ConSVG)

❖ N o d e S ignal (SigSVG)

❖ N o d e C o n tr o lla b le (C ontrolT ableF igure)

❖ C on n ec tion U nitH asCI

❖ C on n ec tion U nitH asC2

C o n n ec tion PointH asC 3

C o n n ec tion S ign alP laced O n L inear

C on n ec tion S ign a lP laced A tC on n ector

❖ D iagram L abel L in earN am e

<► D iagram L ab el P o in tN a m e

D iagram L ab el P o in tP o in tN a m e

D iagram L abel S ign a lN am e

Figure 7.4: The graphical model definition for OnTrack.

From the graphical model definition in Figure 7.4, we can see that concepts such as
Point and Linear are represented as drawable nodes, with an associated SVG filename,
within the GMF editor. Also notice th a t even though unit is an explicit concept in
Bjprner's DSL. it has no direct representation as a drawable node within the graphical
model. This is because we do not want users to be able to draw units, bu t only in
their concrete forms of point and linear. We also observe that the element signal does
not explicitly occur within Bjorner’s DSL. however from a graphical perspective when
designing scheme plans, railway engineers use signals to distinguish route boundaries.
The second aspect we see from the graphical definition is tha t relationships such as

121

7. Creating Graphical Tool Support

UnitHasCl (unit has connector from Bjorner's DSL) are represented graphically as
connections between nodes and thus do not have an associated SVG file. Finally, we
see a list of Diagram Labels that are used for displaying elements such as a name of a
signal 011 the diagram.

A ‘ B joernercom plete.gm ftool S3 = n
|fo Resource Set

» >* platform ;/resource/B joerner_C om plete/m odel/B joernerC om plete.gm ftool
T o Tool Registry

• © P ale tte b joernercom pletePa le tte

T ♦ Tool Croup bjoernercom plete

i M i n i m i i
► ♦ C reation Tool Linear

► ♦ C reation Tool Point
► ♦ C reation Tool Connector
► ♦ C reation Tool UnitHasCl
► * C reation Tool UnicHasC2
► ♦ Creation Tool PointHasC3
* ♦ C reation Tool SignalPlacedOnLinear
► ❖ Creation Tool SignalPlacedAtConnector
► ♦ C reation Tool ControlTable

Selection Parent List Tree Table Tree with Columns

_ Problem s » Javadoc t Dec a • B P roperties 8 ' tj 1L

P roperty value
Description j r e c r e a te new Signal
Title !<» Signal

Figure 7.5: The tooling model definition for OnTrack.

7.3 .2 O n T rack T oo ling M odel

The tooling model defines the elements that can be selected from the palette of the
GM F editor. The tooling model for OnTrack is shown in Figure 7.5. The elements
appearing in this tooling model can be seen in the palette on the right hand side of the
editor in Figure 7.2.

The tooling model simply contains a list of creation tools. We have defined a
creation tool for each element appearing in the OnTrack graphical model. For example,
there are creation tools for each of the nodes Signal, Linear etc, and also for each
of the connections UnitHasCl, unitHasC2 etc. The properties box (at the bottom of
Figure 7.5) shows the details that a user is presented when creating an element on the
canvas. For example, a user will be shown the text “Create a new signal” when selecting
a signal element from the palette.

7.3 .3 O n T rack M a p p in g M o d e l

Finally, the mapping model for OnTrack, given in Figure 7.6. links the graphical model
elements to their creation tools defined by the tooling model.

In particular, Figure 7.6 shows the specific mapping details for the Point element
of Bjprner's DSL. It shows tha t the underlying model Element for a Point (which is a

122

7.4■ Generation of Formal CASL Specifications

0 *BjoernerComplete.gmfm ap £3 ■= n
;{d Resource Set

T C platform :/resource/B joerner_C om plete/m odet/B joernerC om plete.gm fm ap
T ♦ Mapping

T 0 Top N ode R eference <hasUnits:Point/Point>

► a Top N ode Reference <hasConnectors:Connector/Connector>
► a Top N ode R eference <hasllnits:Linear/Linear>

► a Top N ode R eference <hasSignals:Signal/Signal»
► a Top N ode R eference <hasControlTable:ControlTable/ControlTable>

Selection Parent List Tree Table Tree with Columns

2b Pi obit. • D P roperties £3 •* U
P roperty _____________________________ If tl j l t

T Domain m eta inform ation

Element i P o in t-> Unit
» Misc

R elated Diagrams
* Visual rep resen ta tion

A ppearance Style
C ontext Menu
Diagram Node ♦ N ode Point (PomtSVC)
Tool •a Creation Tool Point

Figure 7.0: The mapping model definition for OnTrack.

sub class of Unit) is created by the Creation Tool Point from the tooling model and
is represented by the NodePoint figure from the graphical model. This means that in
the resulting editor, whenever the user selects the Point element from the palette, the
corresponding NodePoint figure will be drawn to the canvas, and the underlying Point,
(and hence Unit) element created in the model instance.

Finally, using the three presented models, a generation model for the OnTrack editor
was automatically created, and the code for the editor in Figure 7.2 was generated
from this model. The generated OnTrack editor has been extended with a series of
model transformations defined using the Epsilon framework [KRPP13]. These model
transformations implement the transformations that are shown in the OnTrack workflow
in Figure 7.1. The first transformation Generate Tables, automatically computes a
control table for a track plan and is implemented as a model to model transformation
using the Epsilon Wizard Language (EWL). We omit details of this transformation and
focus instead 0 1 1 the more interesting transformations for the Generate for Verification
and Abstraction transformations.

7.4 G en e ra tio n of Form al CASL Specifications

Here we describe the second approach of generating formal specification, namely the
direct implementation of the Generate for Verification transformations. We illustrate
this approach for the concrete case of C a s l specifications. For a discussion of the
Represent transformations, we refer the reader to our work 0 1 1 OnTrack’s transformations
allowing output of CSP| B specifications |.JTT+ 13].

The Generate for Verification transformation translates meta model instances of
Bjorner's DSL into formal specification text. This transformation is implemented

123

7. Creating Graphical Tool Support

using the Epsilon Generation Language (EGL) [KRPP13] for generating text. We have
designed the generation such that it mirrors the specification structure in Section 6 .6 .
EGL allows template files to be written describing the text to be generated. These
templates provide two main features for outputting text, namely the ability to output
static text and to output dynamic text. Static text is considered text that is always
generated independent of the model that the text is being generated for. Whilst Dynamic
text is text that is text dependent on the given model. By default, any text written
in an EGL template is considered to be static text. For example we know that the
specification of datatypes, Bjprners DSL specification and similarly our extension of this
with dynamical aspects is the same for all models. Hence this is rather straightforwardly
encoded as static text to be always output, for example see Figure 7.7.

1 . spec Pair [sort S] [sort T] =
2 . sort Pair[S,T]
3. ops first: Pair[S,T] -> S;
4. second: Pair[S,T] -> T;
5.
6.

pair: S * T -> Pair[S,T]

7.
8.
9 .

spec ExactBjoernerStaticSignature =

1 0 . sorts Net, Station, Unit, Connector
1 1 . sorts Linear, Switch < Unit ...
1 2 .
13. preds _hasLine__: Net * Line;
14. _hasStation__: Net * Station
15.

Figure 7.7: Example of static text generation for datatypes and Bjprner’s DSL.

Later in the same EGL template, we can then specify the output of the concrete
track plan. Obviously, the details of the text to be generated for the track plan depends
on the concrete model under consideration. For example, consider the free type of Units.
Such a free type is built from the concrete elements of linear units and switch points
contained within the graphical model. Hence we can specify the template in Figure 7.8
for the dynamic generation of the free type Unit. The result of applying this EGL
fragment, for example, to the concrete track plan in Figure 3 .1 is the following CASL
specification fragment:

free type Unit ::= lal I la2 I la3 I la4 I PI I ... I lbl2 I lbl3.

Considering Figure 7.8, the first element of EGL that we notice is the use of [° /0 and °/0] .
Any text specified between such a set of brackets is interpreted as code. For example,

124

l . f . Generation of Formal CASL Specifications

1. [7.
2. var r a i l : RailDiagram := R a ilD ia g r a m .a llln s ta n c e s O .a t(0);
3. 4/J
4.
5. [°/0i f (r a i l .h a s U n i t s . s i z e > 0){°/0]
6 . fr e e type U nit ::=
7. [7.
8 . var i := 0 ;
9. w h ile (i < r a i l .h a s U n i t s . s i z e () - l) { %]
1 0 . [7.
1 1 . vax u n it : U nit := r a i l .h a s U n i t s . a t (i) ;
12. i := i+ 1 ;
13. 7.1
14. [7o=unit. id7«] 1
15. [7«>7o]
16.
17. [7.
18. var u n it : U nit := r a i l .h a s U n it s . a t (i) ;
19. 7ol
2 0 . [7o=unit. id'/.]
21. [%>%]

Figure 7.8: Dynamic text generation for the concrete elements of the free type Unit.

the line var rail : RailDiagram := RailDiagram.alllnstancesO .at(0); is a
line of EGL code for declaring the variable rail and assigning to it the current track
plan instance within the graphical editor. This variable, can then be used throughout
the EGL template to refer to the current model instance.
Next, we see an EGL if statement (line 5). This statement checks the number of elements
in the hasU nits relation of the current rail diagram. If there are linear units or points
that have been drawn in the diagram, the code inside the if statement is executed. The
first line within the if statement is a piece of static text to be generated. That is, as
long as the if statement is entered, the text free type Unit : := will always be output
by the EGL template. Lines 9 through to 15 perform a loop through the units of the
concrete track plan instance. For each unit up until the last but one in the collection
the dynamic text generation [70= u n it . id°/0] is executed (line 14). Here, the dynamic
text generation also contains the = symbol. This indicates that the text following is a
piece of code that returns a value. For example, u n i t . id is a field containing the name
that has been given to the current unit element. This name will then be output by
the generation process. The dynamic text generation block on line 14 is immediately
followed by the static text generation “ I” . This produces the “ I” symbol between

125

7. Creating Graphical Tool Support

elements of the free type. Finally, after the while statement there is another block of
code (lines 17 to 20) that outputs the last unit identifier in the collection. For this unit,
there is no static generation of the “ I ” symbol which matches the expected output for
the definition of a C asl free type.

In a similar manner to the presented free type generation, it is possible to continue
to explore the elements of the diagram generating the concrete track plan specification
in C a s l . For example the various predicates and operations that encode the topology
of the track plan are all represented in the diagram through associations similar to
the “hasU nit” from Figure 7.8. Finally, after generation of the track plan, the safety
property to be proven over the track plan can also be generated through a combination
of static and dynamic text generation. The result is a full C asl specification ready for
verification of the current editor model instance.

7.5 G eneral D om ain A bstractions Over DSLs

The OnTrack workflow outlined in Section 7.2 allows for abstraction mechanisms for
verification to be defined over the DSL. As these abstractions can be formulated purely
over the DSL, it means that they can be applied independently to the chosen formal
language being generated. Although, we note that it is vital that the abstractions axe
shown to be valid for the formal approach being used. That is, considering Figure 7.1,
any abstraction apsL formulated over the DSL induces a corresponding abstraction
apsL over the formal models being produced. This apsL should then be shown correct
for the formal approach being applied. To illustrate this point, we have implemented
a particular ansL abstraction (See Figure 7.9) based on the simplifying scheme plan
abstraction by Moller et al. [MNR+13].

BA BB BC BD

Abstraction

AC AG AH AJ

Figure 7.9: An example abstraction by Moller et al. implemented in OnTrack.

The abstraction technique defined by Moller et al. [MNR+ 13] involves “collapsing”
various sequences of units into single units. For example, considering the track plans
in Figure 7.9, as presented by Moller et al. [MNR+13]. We can see that track sections
AA, A B and AC are collapsed into the single track section AC. This abstraction has

126

7.5. General Domain Abstractions Over DSLs

1. rule abs
2. transform rd: Input!RailDiagram to
3. rd2 : Target! RailDiagram {
4.
c

rd.computeAbstractions0;
O •
6. for(ut:Unit in rd.hasUnits){
7. if(not (toDelete.contains(ut))){
8. if(consToBeMapped.contains(ut.hasCl))
9.
10. ut.hasCl = ut.hasCl.getMappingO;
11. >
12. if(consToBeMapped.contains(ut.hasC2))
13. {
14. ut.hasC2 = ut.hasC2.getMapping();
15. >
16. rd2.hasUnits.add(ut);
17. >
18. >
19.
20. //Omitted code: similar computation with
21. connectors and signals//
22.
23. rd2. computeTablesO ;
24. >

Figure 7.10: ETL rule for abstract model transformation.

been shown correct, and to improve the feasibility of verification thanks to a reduction
in the number of elements to be considered [MNR+13].

The given abstraction has been implemented at the DSL level within OnTrack. It
is implemented using the Epsilon Transformation Language (ETL) [KRPP13] that is
designed for model to model transformations. Figure 7.10 gives an excerpt of a main
part of the transformation. The presented algorithm uses the following list structures:

• toDelete: storing units to be removed from the track plan, and

• consToBeMapped: storing which connectors from the track plan require renaming,
ensuring the new track plan is properly connected.

The abs rule performs as follows: lines 2 and 3 state that the rule translates the given
rail diagram rd to another rd2. The fourth line calls the operation computeAbstractionO
on rd to compute which units can be collapsed and to populate the lists with appropriate

127

7. Creating Graphical Tool Support

values. For example, considering Figure 7.9, toD elete = [AA, A B , B A , B B , BC, AD,
AE,AE, A/]. Next, the algorithm will consider every unit u t within the rail diagram
rd (line 6). If u t is not in the list toD elete (line 7), then the algorithm will perform
analysis on the connectors of ut. If connector one of u t is within the set of connectors
requiring renaming (line 8), then the first connector of u t is renamed using a call to the
(omitted) operation getMappingO (line 10). Lines 12 to 15 of the algorithm perform
these steps for connector two of u t. After this computation, the modified unit u t is
added as an element to the new rail diagram rd 2 (line 16). The algorithm continues
in a similar manner, computing which connectors and signals should be added to rd 2 .
Finally, an operation computeTables is called to compute a new control table for the
new rail diagram rd2. The result of this translation is that units AA, AB, BA, BB, BC, AD,
AE, AF,and Al are removed from the track plan to produce the abstract track plan in
Figure 7.9.

Overall, implementing abstraction in the presented manner results in an automatic
generation process for computing abstractions that is formulated over scheme plans.
Thus, it is independent of the specification language under consideration.

7.6 A Sum m ary of OnTrack

The OnTrack toolset achieves the aim of automating the production of formal specifi­
cations from a graphical model. Thus providing a toolset that is usable by engineers
from the railway domain to produce formal C a sl specifications ready for verification.
This meets the third objective of our methodology as it makes formal specification
available to domain engineers in a format that is accessible to them. In this chapter,
we have illustrated how OnTrack can be extended to output formal specifications in
further languages through the implementation of a Generate for Verification model
transformation. We have also shown that the toolset allows for abstractions to be defined
over the DSL in order to produce optimised railway models, from which transformations
to formal specifications can be defined. Importantly, these abstractions are decoupled
from the formal specifications. We note that work is currently underway to show that
the implemented abstraction technique discussed in Section 7.5 is also valid for the
C asl modelling approach discussed throughout this thesis. In building the tool, we have
shown that the encoding of the DSL into a meta model is relatively straightforward,
however we do note that there needs to be a close relationship between the graphical
artefacts and the meta model. The overall result from this chapter is a graphical tooling
environment that incorporates a “push button” verification process for critical systems
within the railway domain.

7.6.1 E valuation o f th e Im p lem en ta tion P rocess

To conclude this chapter, we give a reflection on the OnTrack implementation process.
In building the tool, the encoding of the DSL into an ECORE meta model is

straightforward. However, we point out that the original DSL from industry may need
extensions to allow certain graphical elements to be described. That is, there needs to

128

7.6. A Summary of OnTrack

be a close relationship between the graphical artefacts of the tool and the DSL meta
model. For example, the original UML class diagram for Bjprner’s DSL (Figure 2.3)
gives a “has” relationship between Unit and Connector with the constraint that each
Unit “has” at least 2 Connectors. Considering the graphical representation of this
relation, the constraint imposes that there must be two elements in the relation. Hence,
there must be two graphical lines connecting to a unit to represent the two elements of
the relation. But to gain these two graphical elements requires the underlying meta
model to have two separate relations between Unit and Connector. These relations are
illustrated in the graphical model definition in Figure 7.4 where we can see UnitHasCl
and also UnitHasC2. We note that these changes are only required for relations that
need a graphical representation.

Finally, we note that once a graphical editor has been created, the implementation
of model transformations for text generation is relatively straightforward. This is thanks
to the language constructs that are provided by the Epsilon framework for exploring
the given model. Overall, the EMF/GMF/Epsilon combination provides a powerful and
easy to use tooling framework that supports the design of graphical editors with model
transformation capabilities. In our experience, there are no severe limitations of these
frameworks and thus we would suggest that they would be useful in a universal setting.

129

Chapter 8

Invensys Rail D ata M odel

C o n t e n t s

8.1 Concepts from the IR D M .. 131
8.2 Capturing IRDM within our Institution.. 134
8.3 Translation to ModalCASL... 138
8.4 Modelling Industrial Standard D ynam ics... 139
8.5 Supporting Verification... 142
8.6 Formulating and Verifying IRDM M odels... 142

In this chapter, we consider the application of our methodology to an industrial example
in the form of the Invensys Rail Data Model (IRDM) [RailO]. We begin by introducing
the main aspects of the model. We then apply the steps of our methodology to allow
for automatic verification of models formulated within the data model. We illustrate
that: (1) the IRDM can be captured within the class diagram institution we have
presented; (2) our pointed powerset construction and comorphism to M o d a l C a s l can
then be applied and the resulting specification translated to CASL; (3) this specification
can then be extended to include a modelling of dynamical aspects from the railway
domain; (4) the extended DSL can be supported with domain specific lemmas to allow
for verification; and, (5) due to these lemmas, we show that verification for models
formulated using this data model is possible by verifying several scheme plans. Overall,
this chapter illustrates that the techniques we have presented within the thesis are
applicable, and also scale to industrial sized models.

8.1 C oncepts from th e IR D M

We begin by outlining the main features of the Invensys Rail Data Model (IRDM).
The model is currently still under development, therefore we comment on the most
recent version provided to us [RailO]. We also note, tha t the example modelling and

131

8. Invensys Rail Data Model

verification we provide is based on this version, and as more details are finalised, the
models may have to be adapted accordingly.

Overall, the model is constructed using several layers. The layers specify different
levels and aspects of the railway domain. The six main layers of the model are aimed
at capturing:

• Topology such as the basic connectivity of track segments.

• Dimensions providing dimensions for the positioning of track segments and
various structures.

• Geography for physical a ttribu tes of track segments, including gradients and
curvatures etc.

• Civil Structures covering details of buildings, bridges, stations etc.

• Track Equipment for elements placed around the track, such its signals, points,
wires etc.

• Signalling capturing signalling constructs and principles including routes and
speed restrictions.

Each layer is specified individually, although layers can extend classes specified in other
layers. For example a simple track segment from the topology layer may be extended to
contain details of its length in the dimensioned layer. The model is constructed using
a combination of UML class diagrams and natural language descriptions. Figure 8.1
introduces an excerpt of the IRDM class diagram containing the main concepts that
we are interested in for modelling track plans and verifying safety. We note th a t this
diagram has already been labelled with the stereotypes required for our construction.

Figure 8.1: A UML Class Diagram for part of the Invensys Rail Data Model.

132

8.1. Concepts from the IRDM

At the top of the Invensys Rail Data Model is a class called IRRDM Object. This
class has one simply property, which is a unique identifier. All classes inherit from
this class and hence inherit the unique identifier property. Overall, the railway domain
is modelled as a graph like structure. A typical railway is represented as a collection
of Nodes and Edges. Nodes have various types and represent areas of interest 011 the
railway. For example, a BoundaryNode is used to represent the end of a region of railway,
and a JunctionNode is used to represent a junction on the railway. Along each edge,
other areas of interest can be defined, for example, CivilStructures such as Stations and
Platforms. For an edge, dimensions can be defined and associated to certain elements.
The class DimEdge, which is a specialised type of edge, is used as a basic measuring
reference point for positioning elements along an edge. For example, consider Figure 8.2.
A DimEdge can be associated to a series of DimEdgeLocations. DimEdgeLocations
allow the modelling of where elements such as TrackSideEquipment are placed 011 the
railway. Dimensioned edges can be segmented into DimEdgeSections which allows the
position of train detection equipment such as TrackCircuits to be described. In a similar
manner, a DimArea is used to define interesting areas within the railway. A good
example of such an area is a route along which a train can travel.

Direction of MeasurementNode Node
DimEdge

DimEdge
Position

Portal
DimEdge
Section

DimArea

Figure 8.2: An excerpt from the Invensys Rail Data Model showing dimensional aspects
of the model.

The remainder of the concepts within the UML class diagram represent common
railway equipment such as: Signals that can indicate certain SignalAspects to drivers
of trains; Routes that are predefined paths through the railway; Points that allow the
tracks of the railway to “split” ; and finally, TrackCircuits and TrackCircuitUnits, which
can be used to detect where trains are along a given edge. We note that types such as
UID and Int are considered built-in from this point onward.

8.1.1 M o d e llin g a S ta t io n U sing IR D M

In a similar manner to Bjorner's DSL, the Invensys Rail da ta model can be used to
describe the layout of track plans. For example, consider the track plan in Figure 8.3.
The figure shows a pass through station, similar to the one presented in Chapter 6.
Firstly, one can see the graph like structure of the model, with nodes being represented
by small circles and edges connecting lines between nodes. For example, at either
end of the track plan we can see boundary nodes D N l and BN2, whilst we can also
see two junction nodes where the track splits. Connecting these nodes, we can see a

133

8. Invensys Rail Data Model

BNl

Simple Platform
Node

-" V 5—
Junc'tloo..

Node

Dim Area

TC8 BN 2

Boundary
Node

Edge

Figure 8.3: A track plan (TP-B) modelled using the IRDM.

series of simple edges. We note that each of these edges can be specialised further into
dimensioned edges, as required for any elements being placed along the edge. In the
center of the track plan we can see a platform, which would consist of information
including the dim edge section describing the dimensions of the section of the edge it
occupies. Within the track plan we can also see particular items of track equipment and
track side equipment. For example within each of the junction nodes there are points
PI and P2 and also we can see some signals Si and S2. Each of these signals have two
aspects (or coloured lamps) that it can show, namely Proceed, represented by a green
lamp, and Stop represented by a red lamp1. Finally, we can see a dim area marked on
the diagram using dotted lines running between signal SI and boundary node DN2.
This area is associated to a particular route and consists of a series of track circuits. For
example, we can see the marked dim area corresponds to route RIB and includes track
circuits, TC2. TC7 and TC>8. Such track circuits are types of track equipment used to
detect the presence of a train and report back to the interlocking system. Hence, there
is only one track circuit covering both branches of each of the points.

8.2 C a p tu r in g IR D M w ith in ou r In s t i tu t io n

The first step of our methodology is to formalise the Invensys Rail UML class diagrams
in Figure 8.1 using our class diagram institution. Then, using the comorphism defined
in Section 5.4 we can translate this class diagram into a M o d a l C a s l specification.
Here we give some examples showing how our UML class diagram institution captures
the IRDM class diagram, before discussing the M o d a l C a s l specification obtained from
applying our comorphism.

8 .2 . 1 T h e IR D M C lass N e t

Firstly, we give the class net for the IRDM UML class diagram given in Figure 8.1.
For the class net, we have CN — ((Classes. Generalisations), Instances, Properties,
Compositions, Associations) where:

^ e r e we note th a t often signalling systems contain more aspects, typically four, but for the purpose
of illustration of techniques we only consider two aspect signalling.

134

8.2. Capturing IRDM within our Institution

Classes

Generalisations :=

{IRRDMObject, Node, Edge, JunctionNode, BoundaryNode,
SimpleNode, Point, CivilStructure, Station, Platform, DimArea,
. . . , SignalHead, SignalLamp, Signal A spect} .

Node < IRRDMObject, Edge < IRRDMObject, . . . , Junc­
tionNode < Node, BoundaryNode < Node, SimpleNode <
Node, Point < JunctionNode, . . . , Station < CivilStructure,
Platform < CivilStructure.

Properties := {IRRDMObject.ID : UID, Node.NodeType : Int, Junc­
tionNode.JunctionType : Int, . . . , JunctionNode.AltPath2
: UID x UID, BoundaryNode.Primary Edge: UID, . . . , Sig-
nalAspect.Reported : Int, SignalAspect.Driven : Int}.

Compositions := {CivilStructure ♦Area : DimArea, DimArea ♦definedArea :
DimEdgeLocation, . . . , Route ♦point : RoutePoints, Signal-
Head ♦hasLamp : SignalLamp}.

Associations := {locations{dimedge : DimEdge, dimedgelocation :
DimEdgeLocation}, has{ trackcircuit : TrackCircuit,
trackcircuitjoint : TrackCircuitJoint}, . . . , shows{ signal-
head : SignalHead, signalaspect : SignalAspect}}.

We note that where role names for compositions and associations are not defined within
the UML class diagram, we simply use the name of the class in lower case. It is also a
simple process to check that the above forms a valid class net according to the definition
in Section 5.5.

8.2 .2 M u ltip lic ity C onstra in ts w ith in IR D M

Next, for an example of the sentences from the IRDM class diagram, we formalise some
of the composition and association multiplicities from Figure 8.1:

CivilStucture^Area : D im A rea!

DimArea^DefinedArea : DimEdgeLocation !

TrackEquipment^PlacedAt : D im EdgeLocation!

1 < #shows{signalhead : SignalHead, signalAspect : Signal Aspect} [shows]

1 < # loca tion s{d im ed ge : Dim Edge,dim edgelocation : DimEdgeLocation}[locations]

#portconnections{trackcircuit : TrackCircuit,

trackcircuitunit : TrackCircuitUnit}[portconnections] = 1

135

8. Invensys Rail Data Model

We note that we have once again used formulae with = instead of two formulae with <
where the left hand side and the right hand side are switched.

8 .2 .3 A n E xam ple In stan ce N et

In order to validate that our above presentation, namely the IRDM class net and
corresponding multiplicity constraints, allow us to capture a scheme plan, we give an
example instance net. We consider the following (partial) formalisation of the track
plan in Figure 8.3 into an instance net:

C x (Node)
(^(B ou n d aryN od e)
(^ (J u n c tio n N o d e)
^ (P l a t f o r m)

P I (IRRDMObject.lD : UID)

jPJ (Edge.startNode)

{BN1, BN2, JN1, JN2, SN1, SN2}
{BN1,BN2}
{JN1,JN2}
{Platforml}

^ (IR R D M O b jec t) -V? C J (UID)
where
BN1 i-> "BN1"
BN2 "BN2" etc.
Node) : C J (Edge) ->? C r (Node)
where
El BN1 etc.

M I (CivilStructure»Area : DimArea) : (^(CivilStructure) — > ^ (C-^Dim Area))
where
Platform 1 (->■ Area5 etc.

^ I (C o n tr o ls (. . .)) = {(SI, Rl), (S2,R2),. .. } etc.

One can easily check that such an instance net conforms to the multiplicity constraints
given by the class diagram. For example, it is clear that all Platforms are required
to have at least one corresponding DimArea. This is due to the fact that Platform is
a subclass of CivilStructure and we have the constraint CivilStuctureWrea : DimArea !.
From our above instance net, we can also see that P la tf orml is associated to Area5,
and thus for this platform, the constraint is met.

This concludes the application of the first step of our methodology, namely the
formalisation of the IRDM class diagram within the institution given in Chapter 5.

136

8.2. Capturing IRDM within our Institution

spec I R D M =

%% Classes
sorts IRRDMObject, Node, Edge, JunctionNode,

BoundaryNode, SimpleNode, Point, UID,
CivilStructure, DimEdge, DimArea, DimEdgeLocation,
TrackCircuit, Track Circuit Unit, SignalHead, SignalAspect . . .

%% Hierarchy
sorts JVode, Edge, JunctionNode, BoundaryNode,

SimpleNode, Point < IRRDMObject

%% Is Alive Preds
rigid preds

is Alive : IRRDMObject;
is Alive : Node;
is Alive : Edge;

%% Static Associations and Compositions
rigid preds

__area__ : CivilStructure x DimArea;
__definedarea__ : DimArea x DimEdgeLocation;
__locations__ : DimEdge x DimEdgeLocation;
__portconnections__ : TrackCircuit x TrackCircuitUnit

%% Dynamic Associations and Compositions
flexible pred

s h o w s — : SignalHead x Signal Aspect
%% Properties
rigid ops

id : IRRDMObject —>• C/ID;
startnode : Edge —>■ Node;
endnode : Edge —>■ Node;
primary edge : A/ode —>■ Edge;
secondaryedge : Node —>■ Ddge

%% Axioms
V c : CivilStructure • 3 d : DimArea • c area d

end

F ig u re 8 .4: T r a n s la t io n o f IR D M c la s s d ia g r a m to M o d a l C a s l .

137

8. Invensys Rail Data Model

8.3 Translation to M odalCASL

Using our formalisation of IRDM within our class diagram institution, we can now
apply our general pointed power set construction given in Section 5.3. This allows us
to gain a model which includes the capture of the stereotypes from the IRDM. Here,
the only element marked as dynamic is the “shows” association between Signals and
SignalHeads. By manually applying the comorphism outlined in Section 5.4 we gain
the M o d a l C asl specification given in Figure 8.4.

From this translation, we can see that classes (all of which were rigid) have been
translated to sorts along with a rigid “isAlive” predicate for each class. For example,
we have sorts IRRDMObject, BoundaryNode, etc. Built-in types, for example, UID,
etc. have also been translated to sorts. Next the class hierarchy has been translated
into subsorting definitions. For example, we have Node < IRRDMObject etc. Rigid
compositions have been translated into predicates with axioms for the multiplicity
constraints. For example, __area__ and the corresponding axiom for this predicate
stating that there is at least one DimArea for each CivilStructure. Similarly, rigid
associations have been translated into predicates with axioms capturing the multiplicity
constraints. Properties have then been translated into operations. For example, the
property of Edges to have a start Node has been translated to startnode : Edge —> Node.
Finally, the dynamic association “shows” for SignalHeads has been translated into the
flexible predicate s h o w s __ : SignalHead x Signal Aspect.

8.3.1 T ranslation to CASL

To conclude the application of the second step of our methodology, we can now translate
the M o d a l C asl specification gained above to C a s l . This translation can be performed
automatically using the H e t s toolset and the comorphism discussed in Section 4.6.4.
To provide a feeling of the resulting C a s l , we present a modelling of the track plan in
Figure 8.3. An excerpt of this model is given in Figure 8.5. We note that once again,
this model includes the renaming of the modality introduced by the comorphism to the
sort Time, and the instantiation of several types.

spec I R D M S i g n a t u r e =
T im e

then sorts Node, Edge, DimArea, CivilStructure, . . . < IRRDMObject
sort UID
sorts BoundaryNode, SimpleNode, JunctionNode < Node
sort Signal < TrackSideEquipment
sort Route < DimArea
sort TrackCircuit < TrackEquipment

free type UID ::= bnl \ bn2 \ jn l \ jn2 \ snl \ . ..

138

8.4• Modelling Industrial Standard Dynamics

free ty p e Node ::= BN1 \ BN2 \ JN1 | JN2 \ SN1 | SN2 | . ..
free ty p e BoundaryNode BN1 \ BN2
free ty p e Route ::= R lA \ R IB | R2
free ty p e Signal ::= S i \ S2

op id : IRRDMObject —>> UID
op primaryEdge : BoundaryNode —> UID
op secondaryEdge : BoundaryNode -> UID
op edgel : SimpleNode —> UID

pred controls : Signal x Route

• id(B N l) — bnl
• id(BN2) = bn2
• id (E l) = el

• secondaryEdge(BNl) — el
• primaryEdge (JN1) = el
• secondaryEdge(JNl) = e2
• edgel (SN1) — e2

• controls(Sl, R lA)
• controls(Sl, R IB)
• controls(S2, # 2)

end

Figure 8.5: Example Casl model of the track plan in Figure 8.3.

Considering the specification in Figure 8.5, we can see how several of the track plan
elements are modelled. For example, we can see how every element of the model has a
UID associated to it through the operation id : IRRDMObject -a UID (note that every
sort is a subsort of IRRDMObject). Similarly, we can see how the topology of the track
plan is captured through axioms controlling the use of the operations primaryEdge,
secondaryEdge etc. Finally, we can see that certain signals control certain routes via
the predicate modelling the controls association. For example, we have that signal Si
controls R A l.

8.4 M odelling Industrial Standard D ynam ics

The IRDM has the aim of capturing all the concepts within the railway domain, however
it does not cover full details of how these concepts can change over time. In several
places, there are references to the dynamics of railways within the narrative describing

139

8. Invensys Rail Data Model

classes. For example, for the route class, the following can be found in the narrative:
“The Route class defines a signalling route in the data and is derived from the foundation
DimArea class. The route is treated as a signalling area.” This clearly shows that
Routes are used as an area for signalling, and hence are a data element that is used by
the dynamic signalling systems. Therefore, to model the dynamic aspects of railways
that we are interested in for verification, we use the standard signalling approach for
movement authorities from the ERTMS standard [ERT0 2]. This signalling approach
is the same as the approach taken in Chapter 6 . However, here we show how such a
signalling approach can be defined on top of the data elements of the IRDM.

We begin by considering the notion of a route. As we can see from Figure 8.3, in the
Invensys Rail Data Model a route covers a dimensioned area that includes a series of
track circuits. For example, the route RIB includes track circuits TC2, TC7 and TC8.
Such track circuits are the railway components that are used to detect whether or not a
train is occupying that section of track. Hence, it is standard within the railway domain
that concrete tracks appearing within a physical railway have a corresponding track
circuit. When considering a typical control table, the clear column captures exactly
which track circuits need to report that they are clear of trains for a route to be declared
as available. Figure 8 . 6 gives the control table in terms of track circuits for the routes
of the track plan in Figure 8.3.

Route Clear Normal Reverse
RlA TC 2 , TC3, TC4, TC5 PI
RIB TC 2 , TC7, TC 6 , TC 8 PI, P2
R2 TC 6 , TC 8 P2

Figure 8 .6 : A control table for the track plan in Figure 8.3.

In a similar manner to the clear predicate in Chapter 6 , we introduce a predicate
isClearAt that captures whether a track circuit is clear at a given Time:

p red isClearAt— : TrackCircuit x Time

This now allows us to express that Routes are formed of such detection units, i.e. are
lists of track circuits:

so rt Route < List[TrackCircuit)

Here we note, that this definition fits with the multiplicity constraints imposed by
the IRDM towards Routes being a sub type of DimAreas. That is, Routes must
contain at least one TrackCircuit (via compositions through DimEdgeSection and
TrackEquipment).

Considering the modelling of dynamics using movement authorities and regions in
Chapter 6 , we can see that this definition of the type Route is in fact, very close to
Bjprner’s definition of the type Route. Namely that both are a list type over elements
that can be open (in Bjprner’s terms) or clear (in Invensys terms). This is no coincidence,

140

8-4- Modelling Industrial Standard Dynamics

as the dynamic modelling we have provided for Bjprner’s DSL follows a standard used
throughout the railway domain. However, it is common practice for different railway
companies to use differing terminologies for concepts within the railway domain. Hence,
with a small adoption to the dynamic modelling of movement authorities, namely the
replacement of unitPathPairs with TrackCircuits as route elements, we can re-use the
domain specific theory and lemmas we have presented for supporting verification of
scheme plans formulated over Bjprner’s DSL. That is, we specify the following type
system for regions and movement authorities:

sort Region < List[TrackCircuit]
sort MA < List[Region]

From this point onward, the general rules for the changing of movement authorities
and control tables can be adapted to the new type system and hence re-used. For
example, we can adapt the definition of a control table and route openness from our
dynamic modelling for Bjprner’s DSL to consider the terminology used by Invensys.
That is, we can use TrackCircuits for the definition of clear instead of Units:

SPEC ControlTable =
I R D M C o n t r o l

then V r : Route; t : Time
• r is Open At t

V tc : TrackCircuit • clear(r, tc) tc isClearAt t
end

As a larger example of the adaption outlined above, in Figure 8.7 we have included
an excerpt of the encoding of the dynamics for the track plan in Figure 8.3. This
example illustrates the definition of the concrete routes of the track plan. It also gives a
definition for the concrete regions formed over the track plan and the relation between
routes and regions through the regions operation.

spec StationRoutes =
IRDMSignature

then Control
then

• R lA = TC2 :: (TC3 :: {TC4 :: (TC5 :: [])))
• R IB = TC2 :: (TC7 :: (TC6 :: (TC8 :: [])))
• R2 = TC6 :: (TC8 :: [])

free type Region ::= RG l \ RG2 | RG3 \ RG4 \ RG5

141

8. Invensys Rail Data Model

• RG1 = TC2 :: []
• RG2 = TC3 :: (TC4 :: (TC5 :: []))
• RG3 = TC7 :: []
• = TC6 :: (TCS :: [])
• regions(RlA) = RG1 :: (RG2 :: [])
• regions(RlB) = RG1 :: (RG3 :: (RG4 []))
• regions(R2) = RG4 []

end

Figure 8.7: Example C asl model for the dynamics of the track plan in Figure 8.3

This concludes the application of the third step of our methodology, namely the
extension of the IRDM DSL gained from the UML class diagram with a modelling of
the natural language dynamical aspects.

8.5 Supporting Verification

Finally, the last step of our methodology is to support the extended DSL with a series
of lemmas to support verification. Here, the dynamics that have been added and the
safety property we consider are standard for movement authorities. This means that
we can re-use the theory developed in Chapter 6 . That is, the domain specific lemmas
presented in Chapter 6 can be re-used with this new type system for IRDM. Hence,
they can also be applied to aid with verification of scheme plans modelled over the
IRDM. This illustrates an important point within the railway domain. Namely that the
domain specific lemmas we have introduced are built around insights within the railway
domain on the operation of movement authorities. Hence, with small adaptations, these
lemmas can be applied throughout different modelling approaches towards the domain.
This in turn illustrates that the design of a language incorporating a solid domain
understanding can lead to results that improve verification within that domain. Overall,
the lemmas we have presented provide scalable verification over different starting DSLs
and for the verification of movement authorities in general.

8.6 Form ulating and Verifying IR D M M odels

To illustrate that the modelling and verification of models formulated using the IRDM
DSL presented above is possible, we once again consider the track plans from Figure 6.7.
Each of these have been modelled, along with the track plan in Figure 8.3, using the
IRDM. These track plans are illustrated in Figure 8 .8 . The automatic verification
results are then given in Figure 8.9.

Here, we can see some interesting results. Firstly, the verification times are much
smaller than those obtained from Bjprner’s setting. Although we note that this is down

142

8.6. Formulating and Verifying IRDM Models

(a) A pass through sta tion (T P-A) modelled in IRDM.

BN4

-O
BN6

(c) A term inal sta tion (TP-D) modelled in IRDM

PlatformA PP
TCI TC2

TC3

w
TC4 TC5 TC6 TC7 TC8

JSN4SN3

®.N.4 PlatformC
••...}---------------- TC 13TCI 2TC9

TC11

®.N.6 piatformD
TCI 5

Figure 8 .8 : Various track plans modelled and verified using IRDM.

to the higher level of track abstraction we have used when modelling the scheme plans
with the IRDM setting. For example, units LAI, LA2, LAS and LA4 from modelling
the station using Bjorner's approach (Figure 3.1) are considered as a single edge and
hence track circuit in the IRDM based modelling (TP-A in Figure 8 .8). This has the
effect of reducing the length of lists representing routes, and hence makes exploration
of these lists easier for automatic provers. Also, we note that the elements contained
within the list structures in Bjorner’s setting, namely pairs of units and paths, are
much more complicated than the simple track circuit elements within the IRDM setting.
Finally, the last point of interest with these results is the rise in time to verify TP-D.
Whereas with Bjorner’s setting the proof time for TP-A was the largest due to routes

BNl
■t-Ti

\:
TC2 TC3 JN2

O" .3 .

-cj -

: JSN2

TC\
7

“O

SN3:, •

rrcio
r , P3 TC8 r TC9 P4;- >

JN3 SN5 JN4 BN 4

(b) A double junction (T P-C) modelled in IRDM
BN2 BN3

TC2 TC6
IB?BNl SN1 SN2PI

TC5TCI TC4P2
TT3

SN3

P4
TC8 TC9BNS TC10SN4|N4

8. Invensys Rail Data Model

Track Plan Route Lemma Times (s) Proof Time(s) Avg. Memory (MB)
TP-A 9.79 1.58 36.63
TP-B 1.65 1 . 1 2 6.85
TP-C 4.76 1.24 22.49
TP-D 45.32 2.69 76.10

Figure 8.9: Verification times for the given track plans formulated using IRDM.

for this track plan containing many elements. Here we see that the main increase in
time is caused by the increase in the number of routes being considered, i.e. TP-D has
eight routes while TP-B only has four routes. Again, we believe this is due to the fact
that each route in the above IRDM models contains a smaller number of elements than
the corresponding route in the model formulated using Bjprner’s DSL .

This concludes our application of our methodology to the industrial setting of the
Invensys Rail Data Model. We have illustrated that our methodology is not only useful
for faithfully capturing the IRDM, but also provides a scalable verification process for
real world scheme plans.

144

Part III

Conclusions

145

Chapter 9

Conclusions and Future Work

C ontents
9.1 A Methodology for DSL Design ... 147
9.2 Future Research Directions.. 149

The final chapter of this thesis presents a short summary of the work that has been
completed and reviews the main contributions of the thesis. We then discuss directions
for possible future work that complements and extends the work we have presented.

9.1 A M ethodology for DSL D esign

In this thesis, we have introduced a novel design methodology for creating domain
specific languages for system specification and verification. We have supported our
hypothesis that domain specific languages can aid with verification and shown it to
be valid within the railway domain. The methodology we have proposed is based
on the C a sl specification language and, taking industrial documents as a starting
point, results in a domain specific tooling environment for modelling and verification.
Concretely, the methodology outlines two processes, which for readability are given again
in Figures 9.1 and 9.2. The first process, illustrated in Figure 9.1, focuses on .designing
a domain specific language and associated tool support. The second process, illustrated
in Figure 9.2, is a verification process that can be followed when applying the tools
output from the design phase. To illustrate that our methodology is useful in practice,
we have applied both these processes to two separate approaches within the railway
domain. The first approach considers the academically based domain specification by
Bjprner [BjpOO, Bj0O3, BCJ+04, Bj0O9]. The second approach considers the industrial
data model provided by our industrial partners Invensys Rail [RailO]. For each of
these examples, we have provided concrete evidence of faithful modelling and successful
verification of several real world railway scheme plans. Finally, we have presented
and discussed the OnTrack toolset which is the result of applying our methodology
to Bjprner’s domain specification. To ensure that our methodology meets our three

147

9. Conclusions and Future Work

aims of providing (1) faithful modelling and (2) scalable verification in a manner that is
(3) accessible to domain engineers, we have provided the following main contributions
within this thesis:

Input

Automatic Translation

TranslationExtended

Modelling

DSL Graphical
Editor

Graphical
Images

CASL
Specification

Tooling
Specification

Specification
(UML CD)

N a tu ra l
L an g u a g e

U M L Class
Diagram

Modal CASL
Specification
(Natural Lang.)

DS Lemmas

Figure 9.1: Our methodology for designing domain specific languages aimed at verifica­
tion.

Faithful capture of UML class diagrams in M o d a l C a s l : The first result of this thesis
is to provide the theoretical framework allowing one to utilise industrial DSLs
formulated as UML class diagrams for verification. To achieve this, we have
presented an institution for capturing UML class diagrams. We have then shown
how dynamical aspects of UML class diagrams can be captured via an institution
independent construction. Overall, this allows the direct importation of informal
specifications from industry into the design methodology we have proposed.

Domain specific lemmas for the railway domain allowing scalable verification: The
second part of the methodology conjectures that the close incorporation of domain
knowledge into the system modelling process can provide useful lemmas for
verification. We have given examples of such lemmas for the railway domain, and
shown how they can be incorporated into the DSL being designed. We have then
illustrated that these lemmas allow for successful verification of models formulated
in the DSL, concretely for several real world railway scheme plans. Interestingly,
the domain specific lemmas we have presented have shown to be applicable to two
different approaches towards formalising the railway domain. We conjecture that
such lemmas are likely to exist in other domains where verification is required.

Development of accessible graphical tool support: Finally, we have presented the
OnTrack toolset for generation of formal models from graphical scheme plans.
OnTrack is the resulting DSL editor gained from applying our methodology and
encapsulates the presented verification process for the railway domain. OnTrack

148

9.2. Future Research Directions

provides railway engineers with a graphical form of specification with supported
verification techniques for scheme plans within the railway domain.

Entered
IntoModel in Informal

DSL Graphical DSL
Editor

Automatically
Translated

Entered
IntoFormal Model

In CASL
ProducesThe Heterogenous

Toolset
Verification Result

Figure 9.2: A verification process based on the designed tools.

Putting these point together, this thesis has successfully supported our original
hypothesis that domain specific languages can aid with modelling and verification, in
particularly within the railway domain. Along with supporting our hypothesis, we
have also successfully illustrated: (1) a first use of algebraic specification for modelling
railway systems; and (2) tin1 use of automated theorem proving for railway verification
on the design level. Bringing these points together results in a strong case for the use
of domain specific languages in the setting of system specification and verification.

9.2 F u tu re R esea rch D irec tions

There are a number of interesting extensions that could be considered for the work we
have presented. Below we outline some possible future research directions.

B ackw ards m odel transfo rm ations for failed proofs: The methodology we have
presented does not explore how visual feedback of failed proof attempts could be
displayed to the user. Currently, the only feedback provided to the user is in the form
of a named proof goal that has failed. Even though, this provides the ability to show,
for example, which route a particular proof fails for, finding problems within the scheme
plan editor can still be tedious. Hence, a particularly interesting topic for future work
would be to explore how to present failed proofs graphically on the scheme plan level.
Such visualisations have been considered by Marchi et al. [dSWPll], and it would
be interesting to investigate if such visualisations are possible within OnTrack. One
possible approach to solve this, could be to implement a model transformation from the
output of the proof, back to the graphical DSL meta model. This would require some
elements for failed proof representation to be added to the DSL meta model. Then, a
graphical definition would have to be developed for displaying elements of this type
when they occur within a model. Finally, a backwards model transformation could be
defined, instantiating these elements with details of the failed verification attempt.

149

9. Conclusions and Future Work

Im plem entation of the presented comorphism in Hets: In Chapter 5 of this
thesis, we have defined both an institution for UML class diagrams and also a comorphism
into M o d a l C a s l . Currently, the formalisation of a UML class diagram and also
obtaining the resulting M o d a l C asl from applying the given comorphism is a process
that must be completed by hand. Such a task is often tedious, and also error prone.
The Heterogeneous Toolset (H e t s) [MML07] makes extensive use of institutions and
their relations to provide tool support for various logics. Hence, one future direction of
research could be to implement the presented institutions and translations within H e t s .
This would require the implementation of a parser, static analyser and abstract syntax
for the new UML class diagram institution within H e t s . Finally, an implementation of
the comorphism to M o d a l C asl would also be required.

Abstractions for CASL: In Section 7.5, we explored an abstraction technique
by Moller et al. [MNR+13] for simplifying scheme plans before verification. As this
technique is currently implemented within OnTrack at the DSL level, it is possible to
apply the technique before generating a C asl specification representing the resulting
abstract scheme plan. Currently, the correctness of this abstraction within the C a sl
modelling approach has not been considered. Hence, for it to be applied to verify, for
example, abstract versions of the scheme plans in Figure 6.7, a formal proof for the
abstraction should be given over the presented C asl modelling approach.

Technology transfer to Invensys Rail: Within the thesis we have successfully
shown that two out of the three of the main steps of our methodology can be applied
to the Invensys Rail Data Model [RailO]. However, we have not presented or yet
implemented a graphical tooling environment based around this data model. Discussions
towards the development of this environment and technology transfer to Invensys Rail
are currently ongoing. It is currently unclear if a new tool will be defined and developed,
or if OnTrack will be extended with model transformations between Bjprner’s DSL
and the Invensys Rail data model. This second approach would allow the re-use of the
current graphical front-end from OnTrack for generation of models formulated within
the Invensys Rail data model.

Generalising our approach to other domains: Finally, the work we have pre­
sented in this thesis takes a first step towards the field of domain specific languages
being designed for verification. Considering a larger setting, it would be interesting to
consider further domains of application, for example within the field of financial systems
or air traffic control. Such an application could lead to a generalisation or refinement
of our methodology, improving its applicability to other domains. For example, a
wider application of the methodology could lead to a general theory for the design and
development of domain specific lemmas supporting verification that is independent of
the domain.

150

Bibliography

[ABH+10]

[AbrlO]

[adv]

[AG07]

[Antll]

[AvDR95]

[Bar97]

[BBG+05]

[BCJ+04]

[BCS99]

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for
modelling and reasoning in event-b. International journal on software
tools for technology transfer, 12(6):447-466, 2010.

Jean-Raymond Abrial. Modeling in Event-B: system and software engi­
neering. Cambridge University Press, 2010.

Advance FP7 project, h t t p : / /www. a d v a n c e - ic t. eu/. Last accessed:
12/09/2013.

Siemens AG. Siemens Railcom Manager,
h t t p : //w 3 . siem ens. co .u k /m o b ili ty /u k /e n /ra il_ so lu tio n s /
ra il_au tom ation /con tro l_ in f ormat io n / r a i l com/pages/
railcommanager .aspx, 2007. Last accessed: 12/09/2013.

Marc Antoni, 2011. Practical formal validation method of interlocking
systems, DCDS’l l Keynote Speaker.

B.R.T Arnold, A. van Deursen, and M. Res. An algebraic specification
of a language for describing financial products. In Martin Wirsing,
editor, ICSE-17 Workshop on Formal Methods Application in Software
Engineering, pages 6-13. IEEE, April 1995.

J. Barnes. High integrity Ada: the SPARK approach. Addison-Wesley,
1997.

Sami Beydeda, Matthias Book, Volker Gruhn, et al. Model-driven
software development, volume 15. Springer Heidelberg, 2005.

D. Bjprner, P. Chiang, M. S. T. Jacobsen, J. K. Hansen, M. P. Madsen,
and M. Penicka. Towards a formal model of CyberRail. In R. Jacquart,
editor, International Federation for Information Processing: Congress
Topical Sessions, volume 156, pages 657-664. Kluwer, 2004.

D. Bjprner, G. Chris, and P. Spren. Scheduling and Rescheduling of
Trains. LNCS, 1999.

151

Bibliography

[Ber89]

[BFRSOO]

[BGOO]

[BGP99]

[BH06]

[Bj0 OO]

[BJ0O3]

[Bj0 O9]

[BM04]

[Bru97]

[CEW93]

[CJKW07]

[CK08]

152

J. A. Bergstra. Algebraic Specification. ACM, 1989.

D. Bonachea, K. Fisher, A. Rogers, and F. Smith. Hancock: a language
for processing very large-scale data. SIGPLAN Notice, 35(1): 163—176,
2000 .

J. Boulanger and M. Gallardo. Validation and verification of METEOR
safety software. In j. Allen, R. J. Hill, C. A. Brebbia, G. Sciutto, and
S. Sone, editors, Computers in Railways VII, volume 7, pages 189-200.
WIT Press, 2000.

D. Bj0 rner, C. George, and S. Prehn. Scheduling and rescheduling of
trains. Industrial Strength Formal Methods in Practice, 1:157-184, 1999.

Jonathan P. Bowen and Michael G. Hinchey. Ten commandments of
formal methods ...ten years later. IEEE Computer, 39(l):40-48, 2006.

Dines Bjprner. Formal Software Techniques for Railway Systems.
CTS2000: 9th IFAC Symposium on Control in Transportation Systems,
pages 1 - 1 2 , 2 0 0 0 .

D. Bjprner. Dynamics of Railway Nets: On an Interface between Auto­
matic Control and Software Engineering. CTS2003: 10th IFAC Sympo­
sium on Control in Transportation Systems, 2003.

Dines Bjprner. Domain Engineering Technology Management, Research
and Engineering. Japan Advanced Institute of Science and Technology,
2009.

M. Bidoit and P.D. Mosses. Casl User Manual - Introduction to Using
the Common Algebraic Specification Language, volume 2900 of LNCS.
Springer, 2004.

D. Bruce. What makes a good domain-specific language? APOSTLE,
and its approach to parallel discrete event simulation. In P. Ciancarini
and C. Hankin, editors, Proceedings First ACM Sigplan Workshop on
Domain-Specific Languages. ACM, 1997.

Ingo Classen, Hartmut Ehrig, and Dietmar Wolz. Algebraic specification
techniques and tools for software development: the A CT approach. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1993.

Steve Cook, Gareth Jones, Stuart Kent, and Alan Cameron Wills.
Domain-specific development with visual studio dsl tools. Addison-Wesley
Professional, 2007.

MarAa Victoria Cengarle and Alexander Knapp. An institution for
UML 2.0 static structures. Technical Report TUM-I0807, Technische
Universitat Munchen, 2008.

Bibliography

[CKTW08]

[DF98]

[DHK96]

[dSWPll]

[eel]

[EFH+04]

[EFT94]

[EM85]

[ERT02]

[FH98]

[FMGF11]

[FP10]

Marfa Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin
Wirsing. A Heterogeneous Approach to UML Semantics. In Pierpaolo
Degano, Rocco De Nicola, and Jose Meseguer, editors, Concurrency,
Graphs and Models, LNCS 5065, pages 383-402. Springer, 2008.

Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Lan­
guage, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification, volume 6 of AM A ST Series in Computing. World Scientific,
1998.

Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Pro­
totyping: An Algebraic Specification Approach: Vol. V. World Scientific
Publishing Co., Inc., 1996.

Osmar Marchi dos Santos, Jim Woodcock, and Richard F. Paige. Using
model transformation to generate graphical counter-examples for the
formal analysis of xUML models. In ICECCS, pages 117-126. IEEE
Computer Society, 2011.

The Eclipse IDE homepage, h ttp ://w w w .e c lip se .o rg /. Last accessed:
12/09/2013.

Sven Efftinge, Peter Friese, Arno Hase, Dennis Hubner, Clemens Kadura,
Bernd Kolb, Jan Kohnlein, Dieter Moroff, Karsten Thoms, Markus
Volter, et al. Xpand documentation. Technical report, Technical report,
Eclipse Documentation. 2004-2010., 2004.

H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer,
1994.

Hartmut Ehrig and B. Mahr. Fundamentals of Algebraic Specification I.
Springer, Secaucus, NJ, USA, 1985.

ERTMS User Group. UNISIG: ERTMS/ETCS system requirements
specification, 2 0 0 2 .

Wan Fokkink and Paul Hollingshead. Verification of interlockings: from
control tables to ladder logic diagrams. In J.F. Groote, S.P. Luttik, and
J.J. van Wamel, editors, FMICS’98. CWI, 1998.

A. Ferrari, G. Magnani, D. Grasso, and A. Fantechi. Model checking
interlocking control tables. FO RM S/FORM AT 2010, pages 107-115,
2011 .

M. Fowler and R. Parsons. Domain Specific Languages. Addison-Wesley,
1 edition, 2 0 1 0 .

153

Bibliography

[GB92]

[GH93]

[Gra95]

[Gro09]

[GvVK95]

[GWM+93]

[Haxl2]

[HC96]

[HCBOO]

[HHKR89]

[HKRS09]

[Hol04]

[HP 88]

154

J. A. Goguen and R. M. Burstall. Institutions: abstract model theory
for specification and programming. J. ACM , 39(1):95-146, 1992.

John V. Guttag and James J. Horning. Larch: languages and tools for
formal specification. Springer, New York, NY, USA, 1993.

I. S. Graham. The HTML SourceBook. John Wiley and Sons, 3 edition,
1995.

Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. Addison-Wesley Professional, 2009.

J. F. Groote, S.F.M. van Vlijmen, and J.W.C. Koorn. The safety
guaranteeing system at station hoorn-kersenboogerd. Technical report,
Utrecht University, 1995.

Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi,
and Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor,
Applications of Algebraic Specification using OBJ. Cambridge University
Press, 1993.

A. E. Haxthausen. Automated generation of safety requirements from
railway interlocking tables. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and
Validation. Applications and Case Studies, volume 7610 of Lecture Notes
in Computer Science, pages 261-275. Springer Berlin Heidelberg, 2 0 1 2 .

George Edward Hughes and Maxwell John Cresswell. A new introduction
to modal logic. Burns & Oates, 1996.

H. Hussmann, M. Cerioli, and H. Baumeister. From uml to casl (static
part). Technical Report DISI-TR-00-06, DISI-Universit di Genova, 2000.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF Reference Manual. SIGPLAN Notice, 24(11):43-
75, 1989.

G. Holland, T. Kahsai, M. Roggenbach, and B. H. Schlingloff. To­
wards formal testing of jet engine Rolls-Royce BR725. In L. Czaja
and M. Szczuka, editors, Proceedings 18th International Conference on
Concurrency, Specification and Programming. Springer, 2009.

John Holt. Uml for systems. Engineering Watching the Wheels. The
Institute of Electrical Engineers, 2004.

T. Hopkins and C. Phillips. Numerical methods in practice: using the
NAG library. Addison Wesley, 1988.

Bibliography

[HPOO]

[HP07]

[HPvD09]

[IEC96]

[ILR13]

[Invl3]

[IR12a]

[IR12b]

[Jac04]

[J a m l O]

[JBR13]

[JKL+13]

A. E. Haxthausen and J. Peleska. Formal development and verification
of a distributed railway control system. IEEE Trans. Software Eng.,
26(8):687—701, 2000.

Anne Haxthausen and Jan Peleska. A domain-oriented, model-based
approach for construction and verification of railway control systems. In
Cliff Jones, Zhiming Liu, and Jim Woodcock, editors, Formal Methods
and Hybrid Real-Time Systems, volume 4700 of LNCS, pages 320-348.
Springer, 2007.

F. Hermans, M. Pinzger, and A. van Deursen. Domain-Specific Lan­
guages in Practice: A User Study on the Success Factors. Model Driven
Engineering Languages and Systems, 5795:423-437, 2009.

Extended Backus Naur Form, 1996. ISO/IEC Standard 14977.

Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky. The SafeCap
platform for modelling railway safety and capacity. Technical report,
Computing Science, Newcastle University, 2013.

Invensys Rail, www.invensys.com, Last accessed: 12/09/2013.

Alexei Iliasov and Alexander Romanovsky. SafeCap domain language
for reasoning about safety and capacity. Technical report, Computing
Science, Newcastle University, 2012.

Alexei Iliasov and Alexander Romanovsky. The SafeCap toolset for
improving railway capacity while ensuring its safety. Technical report,
Computing Science, Newcastle University, 2012.

R. Jacquart, editor. IFIP 18th World Computer Congress, Topical
Sessions. Kluwer, 2004.

P. James. SAT-based Model Checking and its applications to Train
Control Software. Master’s thesis, Swansea University, 2010.

Phillip James, Arnold Beckmann, and Markus Roggenbach. Using
domain specific languages to support verification in the railway domain.
In Armin Biere, Amir Nahir, and Tanja Vos, editors, Hardware and
Software: Verification and Testing, volume 7857 of Lecture Notes in
Computer Science. Springer, 2013.

Phillip James, Karim Kanso, Andy Lawrence, Faron Moller, Markus
Roggenbach, Monika Seisenberger, and Anton Setzer. Verification of
solid state interlocking programs. In FM-RAIL-BOK 2013, To Appear,
2013.

155

Bibliography

[JKMR13]

[JMN+13]

[JR10]

[JR1 1]

[JTT+13]

[Kanl3]

[Ken02]

[Kli93]

[KLR96]

[KMS08]

156

Phillip James, Alexander Knapp, Till Mossakowski, and Markus Roggen­
bach. Designing domain specific languages - a craftsman’s approach
for the railway domain using cash In WADT 2012, Lecture Notes in
Computer Science. Springer, 2013.

Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach,
Steve Schneider, Helen Treharne, Matthew Trumble, and David Williams.
Verification of Scheme Plans using CSP||B. In FM-RAIL-BOK 2013, To
Appear, 2013.

Phillip James and Markus Roggenbach. Automatically Verifying Railway
Interlockings using SAT-based Model Checking. In Jens Bendispoto,
Michael Leuschel, and Markus Roggenbach, editors, AVoCSTO - Proceed­
ings of the Tenth International Workshop on Automated Verification of
Critical Systems, volume 35. Electronic Communications of the EASST,
2010 .

Phillip James and Markus Roggenbach. Designing domain specific
languages for verification: First steps. In Georg Struth Peter Hofner,
Annabelle Mclver, editor, ATE-2011 - Proceedings of the First Workshop
on Automated Theory Engineering, volume 760 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011.

P. James, M. Trumble, H. Treharne, M. Roggenbach, and S. Schneider.
OnTrack: An open tooling environment for railway verification. In
Proceedings of NFM ’13: Fifth NASA Formal Methods Symposium, 2013.

Karim Kanso. Agda as a Platform for the Development of Verified
Railway Interlocking Systems. PhD thesis, Deptartment of Computer
Science, Swansea University, UK, August 2013.

Stuart Kent. Model driven engineering. In Integrated Formal Methods,
pages 286-298. Springer, 2 0 0 2 .

P. Klint. A meta-environment for generating programming environments.
ACM Trans. Softw. Eng. Methodol., 2(2):176-201, 1993.

Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit-I- a fully
configurable multi-user and multi-tool case and came environment. In
Panos Constantopoulos, John Mylopoulos, and Yannis Vassiliou, editors,
Advanced Information Systems Engineering, volume 1080 of Lecture
Notes in Computer Science, pages 1-21. Springer Berlin Heidelberg,
1996.

K. Kanso, F. Moller, and A. Setzer. Verification of safety properties in
railway interlocking systems defined with ladder logic. In M. Calder and
A. Miller, editors, AVOCS08. Glasgow University, 2008.

Bibliography

[Knu64]

[KR8 8]

[KR01]

[KRPP13]

[Kru92]

[KST97]

[Kus06]

[LCA04]

[LFFP11]

[LMB92]

[LV02]

[MA03]

[MAH06]

[MClO]

D. E. Knuth. Backus Normal Form vs. Backus Naur Form. Communica­
tions ACM, 7(12):735-736, 1964.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, 1988.

D. Kerr and T. Rowbotham. Introduction To Railway Signalling. Insti­
tution of Railway Signal Engineers, 2001.

D.S. Kolovos, L. Rose, R.F. Paige, and F.A. Polack. The Epsilon Book,
2013.

C. W. Krueger. Software reuse. ACM Computing Survey, 24(2):131-183,
1992.

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition
of extended ML: a gentle introduction. Theoretical Computer Science,
173(2):445-484, 1997.

Jochen Kuster. Definition and validation of model transformations.
Software and Systems Modeling, 5(3):233-259, 2006.

K. Lano, D. Clark, and K. Androutsopoulos. UML to B: Formal Verifica­
tion of Object-Oriented Models. In IFM ’04, LNCS 2999, pages 187-206.
Springer, 2004.

M. Leuschel, J. Falampin, F. Fritz, and D. Plagge. Automated property
verification for large scale B models with ProB. Formal Asp. Comput.,
23(6):683-709, 2011.

J. Levine, T. Mason, and D. Brown. Lex and Yacc, 2nd edition. O’Reilly,
1992.

Juande Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism
and meta-modelling. In Ralf-Detlef Kutsche and Herbert Weber, editors,
Fundamental Approaches to Software Engineering, volume 2306 of Lecture
Notes in Computer Science, pages 174-188. Springer Berlin Heidelberg,
2002 .

S. Meng and B. Aichernig. Towards a Coalgebraic Semantics of UML:
Class Diagrams and Use Cases. Technical report, Technical Report 272,
UNU/IIST, 2003.

Till Mossakowski, Serge Autexier, and Dieter Hutter. Development
graphs: proof management for structured specifications. The Journal of
Logic and Algebraic Programming, 67(1):114—145, 2006.

Till Mossakowski and Girlea Codruta. An Extended Modal Logic Insti­
tution. Master’s thesis, Bremen University, 2010.

157

Bibliography

[Mew09]

[MewlO]

[MFS+07]

[MHS05]

[ML98]

[MML07]

[MNR+12a]

[MNR+1 2 b]

[MNR+12c]

[MNR+13]

[Mor93]

158

Kirsten Mewes. Domain-specific modeling, validation, and verification of
railway control systems. In Holger Giese, Michaela Huhn, Ulrich Nickel,
and Bernhard Schatz, editors, MBEES, volume 2009-01 of Informatik-
Bericht, pages 57-66. TU Braunschweig, Institut fur Software Systems
Engineering, 2009.

Kirsten Mewes. Domain-specific Modelling of Railway Control Systems
with Integrated Verification and Validation. PhD thesis, University of
Bremen, 2010.

Clavel Manuel, Duran Francisco, Eker Steven, Lincoln Patrick, Martf-
Oliet Narciso, Meseguer Jose, and Talcott Carolyn. All about Maude - A
High-Performance Logical Framework, volume XXII. Springer, 2007.

M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Computing Survey, 37(4):316-344, 2005.

Saunders Mac Lane. Categories for the working mathematician. Graduate
texts in mathematics. Springer, 2nd edition, 1998.

T. Mossakowski, C. Maeder, and K. Liittich. The Heterogeneous Tool
Set, H e t s . In O. Grumberg and M. Huth, editors, TACAS, volume 4424
of Lecture Notes in Computer Science. Springer, 2007.

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider,
and Helen Treharne. CSP||B Modelling for Railway Verification: The
Double Junction Case Study. In AVOCS’12, 2012.

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider,
and Helen Treharne. CSP||B modelling for railway verification: the
Double Junction case study. Technical report, Department of Computing
Technical Report CS-12-03, 2 0 1 2 .

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider,
and Helen Treharne. Using ProB and CSP||B for railway modelling. In
Proceedings of the Posters and Tool demos Session, iFM 2012 and ABZ
2012, 2012 .

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider,
and Helen Treharne. Defining and Model Checking Abstractions of
Complex Railway Models using CSP||B. In Armin Biere, Amir Nahir,
and Tanja Vos, editors, Hardware and Software: Verification and Testing,
volume 7857 of Lecture Notes in Computer Science. Springer, 2013.

Matthew J. Morley. Safety in railway signalling data: A behavioural
analysis. In 6th International Workshop on HOLTPA, pages 464-474.
Springer, 1993.

Bibliography

[Mos97]

[Mos02]

[Mos04a]

[Mos04b]

[MY09]

[NPW02]

[Objll]

[0 ’R12]

[PALG08]

[PAMC06]

[PGHD04]

[Pyl85]

[RAI93]

Peter D. Mosses. CoFI: The common framework initiative for algebraic
specification and development. In Michel Bidoit and Max Dauchet,
editors, TAPSOFT’97, LNCS 1214, pages 115-137. Springer, 1997.

Till Mossakowski. Relating Casl with other specification languages:
The institution level. Theoretical Computer Science, 286(2):367—475,
2002 .

T. Mossakowski. ModalCASL — Specification with Multi-Modal Logics.
Language Summary, 2004.

P. D. Mosses, editor. CASL Reference Manual, volume 2960. Springer,
2004.

Ahmad Mirabadi and Bemani Yazdi. Automatic generation and veri­
fication of railway interlocking control tables using FSM and NuSMV.
Signal, 3, 2009.

T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic. LNCS 2283. Springer, London, UK, 2002.

Object Managment Group. Unified Modeling Language (UML), v2.4.1,
2011 .

Liam O’Reilly. Structured Specification with Processes and Data — The­
ory, Tools and Applications. PhD thesis, Swansea University, 2012.

Francisco Perez Andres, Juan Lara, and Esther Guerra. Domain specific
languages with graphical and textual views. In Andy Schurr, Manfred
Nagl, and Albert Zundorf, editors, Applications of Graph Transfor­
mations with Industrial Relevance, volume 5088 of Lecture Notes in
Computer Science, pages 82-97. Springer Berlin Heidelberg, 2008.

Vicente Pelechano, Manoli Albert, Javier Munoz, and Carlos Cetina.
Building tools for model driven development comparing Microsoft DSL
tools and Eclipse modeling plugins. In Proceedings of the 11th Conference
on Software Engineering and Database. ACM, 2006.

J. Peleska, D. Grofie, A. E. Haxthausen, and R. Drechsler. Automated
verification for train control systems. In E. Schnieder and G. Tarnai,
editors, Proceedings of Formal Methods for Automation and Safety in
Railway and Automotive Systems. Technical University of Braunschweig,
2004.

I.C. Pyle. The Ada programming language. Prentice Hall, 1985.

RAISE Language Group. The RAISE specification language. Prentice
Hall, 1993.

159

Bibliography

[RailO]

[RLHJ99]

[RVOl]

[SAA0 2]

[saf]

[SBMP08]

[SBRG1 2]

[Sch.0 2]

[Sim94]

[SK03]

[SLTM91]

[Tah08]

[TL03]

160

Invensys Rail. Invensys Rail Data Model - Version 1 A, 2010.

D. Raggett, A. Le Hors, and I. Jacobs. HTML 4.01 Specification. W3C
recommendation, 24:1-389, 1999.

Alexandre Riazanov and Andrei Voronkov. Vampire 1 .1 . In Automated
Reasoning, pages 376-380. Springer, 2001.

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. Foundations
for a combination of heterogeneous specification components. Electronic
Notes in Theoretical Computer Science, 66(4):114 - 133, 2 0 0 2 .

The SafeCap project, h t tp : / / s a f e c a p .c s .n c l .a c .u k . Last accessed:
12/09/2013.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

Denis Sabatier, Lilian Burdy, Antoine Requet, and Jerome Guery. Formal
proofs for the nyct line 7 (flushing) modernization project. In ABZ, pages
369-372, 2012.

Stephan Schulz. E-a brainiac theorem prover. A I Comm,unications,
15(2):111—126, 2002.

A. Simpson. A formal specification of an automatic train protection
system. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, FME ’94-
Proceedings of the Second International Symposium of Formal Methods
Europe on Industrial Benefit of Formal Methods. Springer, 1994.

Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. Software, IEEE ,
20(5):42-45, 2003.

Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti
Marttiin. Metaedit - a flexible graphical environment for methodol­
ogy modelling. In Rudolf Andersen, Jr. Bubenko, JanisA., and Arne
SA^lvberg, editors, Advanced Information Systems Engineering, volume
498 of Lecture Notes in Computer Science, pages 168-193. Springer
Berlin Heidelberg, 1991.

W. Taha. Domain-Specific Languages. In H. Fahmy, A. Wahba, M. El-
Kharashi, A. El-Din, M. Sobh, and M.taher, editors, Proceedings of
International Conference on Com- puter Engineering and Systems (IC-
CES) 2008. Ain Shams University, 2008.

T.L. Thai and H.Q. Lam. NET framework essentials. O’Reilly Media, 3
edition, 2003.

Bibliography

[vdBvDH+01]

[vDK98]

[vDKVOO]

[WBH+02]

[Wex81]

[Wie96]

[Win02]

[Winl2]

[WR03]

M. van den Brand, A. van Deursen, J. Heering, H. De Jong, M. De Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder, et al. The
ASF+SDF Meta-environment: A Component-Based Language Develop­
ment Environment. LNCS, 2027:365-370, 2001.

A. van Deursen and P. Klint. Little Languages: Little Maintenance?
Journal of Software Maintenance: Research and Practice, 10(2):75-92,
1998.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an
annotated bibliography. SIGPLAN Notice, 35(6):26-36, 2000.

C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and
D. Topic. SPASS version 2.0. In A. Voronkov, editor, Automated
Deduction - CADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 275-279. Springer, July 27-30 2 0 0 2 .

R.L. Wexelblat. History of programming languages. Academic Press,
1981.

Jan Wielemaker. Swi-prolog 2.7 - reference manual, 1996.

K. Winter. Model checking railway interlocking systems. Australian
Computer Science Communications, 24(1):303-310, 2 0 0 2 .

Kirsten Winter. Optimising ordering strategies for symbolic model
checking of railway interlockings. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Applications and Case Studies, volume 7610 of Lecture
Notes in Computer Science, pages 246-260. Springer Berlin Heidelberg,
2012 .

K. Winter and N. J. Robinson. Modelling large railway interlockings
and model checking small ones. In M. J. Oudshoorn, editor, ACSC
J03: Proceedings of the 26th Australasian computer science conference.
Australian Computer Society, 2003.

161

A ppendix A

Bj0rner’s Narrative

Below we present Bjprner’s natural language specification capturing the railway domain,
as given in [Bj0O3].

A .l Structure N arrative

We introduce the phenomena of railway nets, lines, stations, tracks, (rail) units, and
connectors.

1 . A railway net consists of one or more lines and two or more stations.

2 . A railway net consists of rail units.

3. A line is a linear sequence of one or more linear rail units.

4. The rail units of a line must be rail units of the railway net of the line.

5. A station is a set of one or more rail units.

6 . The rail units of a station must be rail units of the railway net of the station.

7. No two distinct lines and/or stations of a railway net share rail units.

8 . A station consists of one or more tracks.

9. A track is a linear sequence of one or more linear rail units.

10. No two distinct tracks share rail units.

1 1 . The rail units of a track must be rail units of the station (of that track).

1 2 . A rail unit is either a linear, or is a switch, or is a simple crossover, or is a
switchable crossover, etc., rail unit.

13. A rail unit has one or more connectors.

163

A. Bj0rner’s Narrative

14. A linear rail unit has two distinct connectors, a switch rail unit has three distinct
connectors, crossover rail units have four distinct connectors (whether simple or
switchable), etc.

15. For every connector there are at most two rail units which have that connector in
common.

16. Every line of a railway net is connected to exactly two, distinct stations of that
railway net.

17. A linear sequence of (linear) rail units is a non-cyclic sequence of linear units such
that neighbouring units share connectors.

A .2 D ynam ics N arrative

We introduce defined concepts such as paths through rail units, state of rail units, rail
unit state spaces, routes through a railway network, open and closed routes, trains on
the railway net, and train movement on the railway net.

1 . A path, p : P , is a pair of connectors, (c, c7), which are distinct, and of some unit.

2 . A state, u : Sigm a , of a unit is the set of all open paths of that unit (at the time
observed).

3. A unit may, over its operational life, attain any of a (possibly small) number of
different states u j , Q .

4. A route is a sequence of pairs of units and paths - such that the path of a unit/path
pair is a possible path of some state of the unit, and such that “neighbouring”
connectors are identical.

5. An open route is a route such that all its paths are open. A train is modelled as a
route.

6 . Train movement is modelled as a discrete function (i.e., a map) from time to
routes such that for any two adjacent times the two corresponding routes differ
by at most one of the following:

• a unit path pair has been deleted (removed) from one end of the route;

• a unit path pair has been deleted (removed) from the other end of the route;

• a unit path pair has been added (joined) from one end of the route;

• a unit path pair has been added (joined) from the other end of the route;

• a unit path pair has been added (joined) from one end of the route, and
another unit path pair has been deleted (removed) from the other end of the
route;

164

A .2. Dynamics Narrative

• a unit path pair has been added (joined) from the other of the route, and
another unit path par has been deleted (removed) from the one end of the
route;

• or there has been no changes with respect to the route (yet the train may
have moved);

7. and such that the new route is a well-formed route.

We shall arbitrarily think of “one end” as the “left end” , and “the other end” , hence,
as the “right end” - where ‘left’, in a model where elements of a list is indexed from 1

to its length, means the index 1 position, and ‘right’ means the last index position of
the list.

165

A ppendix B

Bj0rner in M odalCasl

Below we present the ModalCasl for Bj0 rner’s DSL.

library appendixB

logic Modal

spec ModalBjoerner =

%% Classifiers
sorts Net, Station, Unit, Connector, Line, Track, Linear,

Point, Path, UnitState, AllStates, Route, UnitPathPair,
ListLinear, ListUnitPathPair, SetUnitState, SetPath,
PairConCon, PairUnitPath, Boolean, UID

%% Hierarchy
sorts Point, Linear < Unit
sorts Track, Line < ListLinear
sort Path < PairConCon
sort UnitState < SetPath
sort AllState < SetUnitState
sort Route < ListUnitPathPair

%% Is Alive Preds
rigid preds
is Alive : Net;
is Alive : Station;
is Alive : Unit;
is Alive : Connector;
is Alive : Line;
is Alive : Track;
isAlive : Linear;

167

B. Bj0rner in M o d a l C a s l

is Alive : Point;
is Alive : Path;
is Alive : UnitState;
isAlive : AllStates;
is Alive : Route;
isAlive : UnitPathPair;
is Alive : ListLinear;
isAlive : ListUnitPathPair;
isAlive : SetUnitState;
isAlive : SetPath;
isAlive : PairConCon;
isAlive : PairUnitPath;
isAlive : Boolean

%% Instance Specs
rigid op tt : Boolean
rigid op f f : Boolean

%% Associations and Compositions
rigid preds
_JiasLine__ : /vet x Lme;
JiasStation__ : x Station;

—has— : Station x f/m£;
—hasTrack— : Station x Track;
—has Connector— : Unit x Connector;
—allStates— : Unit x SetUnitState;
—has— : Linear x Connector;
—has— : x Connector

flexible pred s ta t e A t— : Unit x UnitState

%% Properties
rigid ops
id : Net -0 - UID;
isWellFormed : ListUnitPathPair —>■ Boolean;
isValidPath : PairConCon —> Boolean

flexible ops
isClosedAt : Unit —> Boolean;
isOpen : Route —> Boolean

%% Composition and Multiplicity Axioms
• V n :

• 3 si, s2 : Station

168

• -i si — s2 A n hasStation si A n hasStation s2

• V s : Station • 3 u : Unit • s has u

%% Alive Axioms
• isAlive(tt)
• is Alive (ff)

end

169

A ppendix C

Bj0rner in CASL

C .l B j0rner’s DSL in CASL

B elow w e g ive th e s ig n a tu re o f B j0 rn e r ’s D S L a f te r m a p p in g i t to C a s l . W e n o te t h a t
se v e ra l ty p e s h av e b e e n in s ta n t ia te d a n d so m e o p e ra tio n s g iv en a m ix fix profile .

l i b r a r y B j o e r n e r A ll

f r o m B a s ic / S im p l e D a t a t y p e s g e t B o o l e a n

spec PAiR[sort S] [sort T] =
so rt Pair[S,T]
ops first : Pair[S,T] —> S;

second : Pair[S: T] —> T;
pair : S x T —»■ Pair[S,T]

V s : S ; t : T
• first(pair(s, t)) = s
• second(pair(s, t)) = t

end

spec GENERATELiST[sort Elem] =
so rt List[Elem]
free ty p e List[Elem\ [] | -j.:^{Elem\ List[Elem])
ops : List[Elem\ x List[Elem\ —> List[Elem\;

[] : List[Elem\;
: Elem x List[Elem] —> List\Elem\

V x : Elem ; L, K : List[Elem\
• \ \ + + K = K
• (x :: L) + + K = x :: (L + + K)

end

spec LiST[sort Elem] =

171

C. Bj0rner in CASL

GENERATELlST[sort Elem,]
then %def

pred __eps__ : Elem x List[Elem\
V x, y : Elem; L, if : Lzs£[i^em]
• -i x eps []
• x eps x :: L
• (x eps y v. L x eps L) if x = y

end

spec Time
sort, Time
ops 0 : Time;

sue : Time —> Time
pred : Time x Time
V x, y, z : Time
• 0 < suc(x)
• suc(x) < suc(y) if x < y
• -i suc(x) < 0

• - 1 suc(x) < X

• x < suc(x)
• - I X < X

end

spec B j o e r n e r S i g n a t u r e =
B o o l e a n

then T im e
then L i s t [sort Linear]
then L i s t [sort Path]
then L i s t [sort UnitState]
then LlST[sort UnitPathPair]
then PAiR[sort Unit][sort Path]

with Pair[Unit,Path] UnitPathPair, pair (->• unitPathPair,
first : Pair [Unit, Path] —> Unit i-> getUnit,
second : Pair[Unit,Path] —> Path getPath

then PAlR[sort Connector] [sort Connector]
with first : Pair [Connector, Connector] —> Connector cl,

second : Pair [Connector, Connector] —> Connector i—>•
then sorts Net, Station, Unit, Connector, UID

sorts Linear, Point < Unit
sorts Line, Track < List[Linear]
sort Path < Pair [Connector, Connector]
sort AllStates < List[UnitState]
sort Route < List[UnitPathPair]
sort UnitState < List[Path]

172

C.2. An Example Track Plan

preds —hasLine— : Net x line;
__hasStation__ : Net x Station;
—hasUnit— : Station x Unit;
__hasTrack__ : Station x Track;
—hasConnector— : Unit x Connector;
—has Unit— : Track x Unit;
—allStates — : Unit x Lis^t/niiS'faie];
—has— : Linear x Connector;
—has— : Point x Connector

preds isAlive : Net;
isAlive : Station;
isAlive : Unit;
isAlive : Connector;
isAlive : Line;
isAlive : Track;
isAlive : Linear;
isAlive : Point;
isAlive : Pai/i;
isAlive : UnitState;
isAlive : AllStates;
isAlive : Route;
isAlive : UnitPathPair;
isAlive : List[Linear\;
isAlive : List[UnitPathPair\;
isAlive : List[UnitState\;
isAlive : List [Path];
isAlive : Boolean

p red s t a t e —A t— : £7ni£ x UnitState x Time
ops id : iVei —»

isWellFormed : Lis£[£/ni£Pa£/iPair] —>■ Boolean;
isValidPath : Pair [Connector, Connector] -» Boolean

ops isClosedAt : Unit x Time —>■ Boolean;
isOpen : Route x Time —> Boolean

op pa£/z : Connector x Connector —>? Pa£/i
V ci, c2 : Connector
• path(cl, c2) = pair(cl, ci?) as Path

% (sort _inject ion _for_pair) %
end

C.2 A n Exam ple Track P lan

Below we give an example track plan modelled in Bjprner’s DSL.

spec StationStatic =

173

C. Bj0rner in CASL

B j o e r n e r S i g n a t u r e
th e n free ty p e Net ::= stationNet

free ty p e Station ::= stationStation
free ty p e
Connector

al \ a2 \ a3 \ a4 \ a5 \ a6 \ a7 \ a8 \ a9 \ alO | a ll
| al3 | al4 | al5 \ bl \ b2 | b3 \ b4 \ b5 \ b6 | 67 | b8
| blO | b ll | bl2 | bl3 \ bl4 \ b!5 \ w \ x \ y \ z \ plpS

ops lineln, lineOut : Line
free ty p e
Linear

lal \ la2 | la3 \ la4 \ la5 \ la6 \ la7 \ la8 | la9 \ lalO
| lu ll | lal2 | lal3 \ Ibl \ ib2 \ lb3 \ lb4 \ lb5 | lb6 \ Ibl
| lb9 | lb 10 | lb 11 | Ibl2 \ lb 13 \ platforml \ platform2

free ty p e Point ::= p i \ p2 \ p3 \ p4
ops trackl, track2, track3, track4, dummyln, dummyOut

: Track
• trackl = la5 :: (lad :: (la7 :: (la8 :: (la9 :: (lalO :: [])))))
• track2 = la ll :: (lal2 :: (platforml :: (lal3 :: [])))
• tracks = lb6 :: (lb7 :: (lb8 :: (lb9 :: [])))
• track4 = IblO :: (lo ll :: (lb 12 :: (platform2 :: (IblS :: []))))
• stationStation hasUnit la5
• stationStation hasUnit la6
• stationStation hasUnit la7
• stationStation hasUnit la8
• stationStation hasUnit la9
• stationStation hasUnit lalO
• stationStation hasUnit la ll
• stationStation hasUnit lal2
• stationStation hasUnit platforml
• stationStation hasUnit lal3
• stationStation hasUnit lb6
• stationStation hasUnit lb7
• stationStation hasUnit lb8
• stationStation hasUnit lb9
• stationStation hasUnit lb 10
• stationStation hasUnit lb 11
• stationStation hasUnit Ibl2
• stationStation hasUnit platform2
• stationStation hasUnit lb 13
• stationStation hasUnit pi
• stationStation hasUnit p2
• stationStation hasUnit p3
• stationStation hasUnit p4

al2
b9
p2p4

lb8

174

C.2. An Example Track Plan

• stationStation hasTrack trackl
• stationStation hasTrack track2
• stationStation hasTrack tracks
• stationStation hasTrack track4

trackl hasUnit la5
trackl hasUnit la6
trackl hasUnit la l
trackl hasUnit la8
trackl hasUnit la9
trackl hasUnit lalO
trac.k2 hasUnit la ll
track2 hasUnit lal2
track2 hasUnit lal 3
tracks hasUnit lb6
tracks hasUnit Ibl
tracks hasUnit lb8
tracks hasUnit lb9
track4 hasUnit IblO
track4 hasUnit lb 11
track4 hasUnit lbl2
track4 hasUnit IblS

• lal hasConnector w
• lal hasConnector al
• la2 hasConnector al
• la2 hasConnector a2
• laS hasConnector a2
• laS hasConnector aS
• la4 hasConnector aS
• la4 hasConnector a4
• p i hasConnector a4
• p i hasConnector a5
• p i hasConnector plpS
• la5 hasConnector a5
• la5 hasConnector a6
• la6 hasConnector a6
• la6 hasConnector a7
• la l hasConnector a l
• la l hasConnector a8
• la8 hasConnector a8
• la8 hasConnector a9
• la9 hasConnector a9
• la9 hasConnector alO
• la 10 hasConnector alO
• lalO hasConnector a l l

175

C. Bj0rner in CASL

• p2 hasConnector a ll
• p2 hasConnector al2
• p2 hasConnector p2p4
• la ll hasConnector al2
• la ll hasConnector al3
• la l2 hasConnector al3
• lal2 hasConnector al4
• platforml hasConnector al4
• platforml hasConnector aid
• lal3 hasConnector al5
• lal2 hasConnector x
• Ibl hasConnector y
• Ibl hasConnector bl
• lb2 hasConnector bl
• lb2 hasConnector b2
• lb3 hasConnector b2
• lb3 hasConnector b3
• lb4 hasConnector b3
• lb4 hasConnector b4
• lb5 hasConnector b4
• lb5 hasConnector b5
• p3 hasConnector b5
• p3 hasConnector b6
• p3 hasConnector plp3
• lb6 hasConnector b6
• lb6 hasConnector b7
• Ibl hasConnector b l
• Ibl hasConnector b8
• lb8 hasConnector b8
• lb8 hasConnector b9
• lb9 hasConnector b9
• lb9 hasConnector blO
• p4 hasConnector blO
• p4 hasConnector b ll
• p4 hasConnector p2p4
• IblO hasConnector b ll
• IblO hasConnector bl2
• Ibll hasConnector bl2
• Ibll hasConnector bl3
• lb 12 hasConnector bl3
• lbl2 hasConnector bl4
• platform2 hasConnector bl4
• platform2 hasConnector bl5
• Ibl3 hasConnector bl5

176

C.2. An Example Track Plan

• lbl3 hasConnector z
V p : Path
• p = path(w, a l) V p = path(al, a5) V p — path(a2, a5)

V |) = path(a3, a4) M p — path(a4, a5) V p = path(a5, a6)
M p = path(a6, a7) M p — path(a7, a8) V p = path(a8, a9)
V p = path(a9, aiO) V p = path(alO, a ll)
V p = path(a ll, al2) M p = path(a!2, al3)
V p = path(al3, al4) V p = path(al4, al5) V p — path(al5, a:)
V p = path(x, a i5) V p = path(al5, al4) V p = path(al4, W5)
V p = path(al3, W5) V p = path(al2, p2p4)
V p = path{p2p4, blO) V p = path(a4, plp3)
V p = path(plp3, b6) V p = path(b6, 67) V p — path(b7, 65)
V p — path(b8, b9) V p = path(b9, WO) V p — path(blO, 6 i i)
V p = path(bll, bl2) V p = path(bl2, bl3)
V p — path(bl3, bl4) V p = path(bl4, bl5) V p = path(bl5, z)
V p = path(z, bl5) V p = path(bl5, bl4) V p = path(bl4, bl3)
V p — path(bl3, bl2) V p = path(bl2, b ll)
V p = path(bll, blO) V p = path(blO, b9) V p = path(b9, 65)
V p = path(b8, 67) V p = path(b7, 60) V p — path(b6, 65)
V p = path(b5, b4) V p = path(b4, 65) V p = path(b3, b2)
V p = path(b2, 6 i) V p = path(bl, y)

ops flWX, W Z , tfXF,
V r : Route
• r = tfWX M r — RWZ V r = tfX F V r = # Z F V r = []
• flWX

= unitPathPair (lal, path(w, a l))
:: (unitPathPair (la2, path (a 1, a5))

:: (unitPathPair(la3, path(a2, a3))
:: (unitPathPair(la4, path(a3, a4))

:: (unitPathPair(pi, path(a4, a5))
:: (unitPathPair(la5, path(a5, a6))

:: (unitPathPair(la6, path(a6, a7))
:: (unitPathPair(la7, path(a7, a8))

:: (unitPathPair(la8, path(a8, a9))
:: (unitPathPair(la9, path(a9, alO))

:: (unitPathPair(lal0,
path(alO, a l l))

:: (unitPathPair(p2,
path(all, al2))

:: (unitPathPair (la 11,
path(al2,
a 13))

:: (unitPathPair(lal2,
path (a 13,

177

C. Bj0rner in CASL

0,1 4))
:: (unitPathPair(platforml,

path(al4,
a l5))

:: (unitPathPair(lal3,
path(al5,
x))

■■■■ 0)))))))))))))))
» RWZ

= unitPathPair (lal, path(w, a l))
:: (unitPathPair(la2, path(al, a2))

:: (unitPathPair(la3, path(a2, a3))
:: (unitPathPair(la4, path(a3, a4))

:: (unitPathPair(pi, path(a4, plp3))
:: (unitPathPair(p3, path(plp3, b6))

:: (unitPathPair(lb6, path(b6, b7))
:: (unitPathPair(lb7, path(b7, b8))

:: (unitPathPair(lb8, path(b8, b9))
:: (unitPathPair(lb9, path(b9, blO))

:: (unitPathPair(p4, path(blO, b ll))
:: (unitPathPair(lb 10,

path(bll, bl2))
:: (unitPathPair(Ibll,

path(bl2,
bis))

:: (unitPathPair(lb 12,
path(bl3,
bi4))

:: (unitPathPair(platform2,
path(bl4,
615))

:: (unitPathPair(lb 13,
path (b 15,
z))

:: 0)))))))))))))))
•

= unitPathPair (lal 3, path(al5, x))
:: (unitPathPair(platforml, path(al4, al5))

:: (unitPathPair(lal2, path(al3, a!4))
:: (unitPathPair(lall, path(al2, al3))

:: (unitPathPair(p2, path(p2p4i a 12))
:: (unitPathPair(p4, path(blO, p2p4))

:: (unitPathPair(lb9, path(b9, blO))
:: (unitPathPair(lb8, path(b8, b9))

178

C.2. An Example Track Plan

:: (unitPathPair (lb7, path(b7, b8))
:: (unitPathPair(lb6, path(b6, 67))

:: (unitPathPair(p3, path(b5, 65))
:: (unitPathPair(lb5,

path(b4, 65))
:: (unitPathPair(lb4,

path(b3, 6 ^))
:: (unitPathPair(lb5,

path(b2,
65))

:: (unitPathPair(lb2,
path(bl,
6 2))

:: (unitPathPair(Ibl,
path(y,
bl))

■■ I D))))))))))))))
. RZK

= unitPathPair (lb 13, path(bl5, z))
:: (unitPathPair(platform2, path(bl4, bl5))

:: (unitPathPair(lb 12, path(bl3, bl4))
:: (unitPathPair(Ibll, path(bl2, b l3))

:: (unitPathPair(lb 10, path(bll, b l2))
:: (unitPathPair(p4, path(blO, b ll))

:: (unitPathPair(lb9, path(b9, blO))
:: (unitPathPair(lb8, path(b8, b9))

:: (unitPathPair(lb7, path(b7, b8))
:: (unitPathPair(lb6, path(b6, 67))

:: (unitPathPair(p3, path(b5, b6))
:: (unitPathPair(lb5,

path(b4, 65))
:: (unitPathPair(lb4i

path(b3, b4))
:: (unitPathPair(lb3,

path(b2,
bS))

:: (unitPathPair(lb2,
path(bl,
be))

:: (unitPathPair(Ibl,
path(y,
bi))

■■ 0)))))))))))))))
end

179

A ppendix D

M odelling M ovem ent A uthorities

spec Control =
CommonSignature

then LiST[sort Unit]
then List [sort Region]
then sort Region < List[Unit]

sort MA < List[Region]
pred assigned : MA x Time
pred ext : MA x Route x MA
op regions : Route —> MA
pred canExtend : MA x Time
pred canReduce : MA x Time
pred clear : Route x Unit
pred __isOpenAt__ : Unit x Time

% % No MA at 0.
• V m : MA • m = [] =>■ -i assigned(m, 0)

% % [] assigned at all times.
• V £ : Time • assigned([] as MA , t)

% % E x tend ing /reducing a MA.
• V mal : MA\ t : Time

• -i mal = []
=> assigned(mal, suc(i))

=> (assigned{mal, t) A -< canExtend (mal, t)
A -i canReduce(ma 1, t))

V (- i assigned(mal, t) A canExtend (mal, t)
A -i canReduce (mal, £))

V (- i assigned(mal, t) A -> canExtend (mal, t)

%(no_ma_0)%

%([] _alLtime) %

181

D. Modelling Movement Authorities

A canReduce (mal, t))
%(assigned_if)%

V mal : MA; t : Time
• canExtend (mal, t)

3 ma2 : MA; r : Route
• (assigned(ma2, t)

A (-i ma2 = [] => -i assigned(ma2, suc(t)))
A ext(ma2, r, m al))

A r is Open At t
% (extends) %

• canReduce (ma 1, t)
^ 3 rg : Region

• assigned((rg :: mal) as MA, £)
A -i assigned((rg :: m al) as MA, suc(t))

% (reduces) %

%% Only one MA changes at any time.
• V i : Time

• V m l, m2 : MA
• (assigned(ml, suc(t)) canExtend(ml, t))

A (assignea(m2, suc(t)) canExtend(m2, t))
m l — m2

% (one_ch anges) %

%% Unit not open when.
• V r : Route; rg : Region; ma : MA

• rg eps regions(r) A rg eps ma A assigned(ma, t)
a 3 m : Unit; upp : UnitPathPair

• u eps rg A getUnit(upp) = u A upp eps r
A -i u isOpenAt t

%(unit_in_use)%
%% Ext acts like ++
• V mal, ma2 : MA; r : Route

• ext (mal, r, ma2) => ma£ = mal + + regions (r)
%(ext_defn)%

end

spec C o n t r o l T a b l e =
C o n t r o l

then V r : Route; t : Time
• r isOpenAt t u : Unit • clear(r, u) => u isOpenAt t

% (Route_open_defn) %
end

182

A p p e n d i x E

DSL Lemmas in CASL

spec P r o o f =
S h a r e

then • V r : Route; t : Time; rg : Region; ma : MA
• assigned (ma, t) A rg eps ma A rg eps regions (r)

=> -i r isOpenAt t
% (toProveForModel) %

then %implies
%% Base case
• V mi, m2, mal, ma2 : MA

• share (mal, ma2)
=> mal = ma2 V -> (assigned(mal, 0) A assigned(ma2, 0))

%(base_case)%

%% step case
• V mal, ma2 : MA; t : Time

• share(mal, ma2) A assigned(mal, suc(t))
A assigned(ma2, suc(t))
=> (as signed (mal, t) A assigned(ma2, t))

V (canExtend(mal, t) A canExtend(ma2, t))
V (assigned(mal, t) A canExtend(ma2, t))
V (assigned(ma2, t) A canExtend (mal, t))
V (canReduce(mal, t) A canReduce(ma2, t))
V (canReduce(mal, t) A canExtend(ma2, t))
V (canReduce(ma2, t) A canExtend (mal, t))
V (assigned(mal, t) A canReduce(ma2, t))
V (canReduce(mal, t) A assigned(ma2, t))

% (case_analy sis) %
V £ : Time
• (V mai, ma2 : MA

• share (mal, ma2)

183

E. DSL Lemmas in CASL

=> mal = ma2 V -> (assigned(mal, £) A assigned(ma2, £)))
=> V m al, : MA

• share (mal, ma2)
A (assigned(mal, £) A assigned(ma2, t))
=> mal — ma2

V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))
% (easel)%

V t : Time
• (V mal, ma£ : MA

• share(mal, ma2)
=4> mal = ma2 V -> (assigned(mal, t) A assigned(ma2, t)))

=>■ V mal, : MA
• share(mal, ma2) A (canExtend(mal, t) A canExtend(ma2, t))

=4> mal = rnoS
V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))

%(case2)%
V £ : Time
• (V mal, ma2 : MA

• share(mal, ma2)
=> mal = ma# V -i (assigned(mal, t) A assigned(ma2, £)))

=>• V mal, ma2 : MA
• share (mal, ma2)

A (assigned(mal, t) A canExtend(ma2, t))
=> mal — ma2

V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))
%(case3)%

V t : Time
• (V mal, ma£ : MA

• share (mal, ma2)
=>■ mal = ma2 V -i (assigned(mal, t) A assigned(ma2, £)))

=>■ V mal, ma2 : MA
• share (mal, ma2)

A (canExtend(mal, t) A assigned(ma2, t))
=> mal - mai?

V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))
%(case4)%

V £ : Time
• (V mal, ma£ : MA

• share(mal, ma2)
=>• mal — ma2 V -> (assigned(mal, t) A assigned(ma2, £)))

=> V mal, ma2 : MA
• share(mal, ma2) A (canReduce(mal, £) A canReduce(ma2, £))

=> mal = ma£
V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))

184

%(case5)%
V £ : Time
• (V m al, ma2 : MA

• share (mal, ma2)
=>- mai = mai? V -> (assigned(mal, £) A assigned(ma2, t)))

=$■ V mal, ma2 : MA
• share(mal, ma2) A (canReduce(mal, t) A canExtend(ma2, t))

=> mal - ma2
V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))

%(case6)%
V t : Time
• (V mal, ma2 : MA

• share (mal, ma2)
=> mai = ma2 V -i (assigned(mal, t) A assigned(ma2, t)))

=> V mal, ma2 : MA
• share(mal, ma2) A (canReduce(ma2, t) A canExtend(mal, t))

=> m al =
V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))

%(case7)%
V t : Time
• (V mal, ma2 : MA

• share (mal, ma2)
=>• mal = ma2 V -> (assigned(mal, t) A assigned(ma2, t)))

=>• V mai, ma2 : MA
• share(mal, ma2)

A (canReduce(ma2, t) A assigned(mal, t))
=>• mal = ma2

V -i (as signed (mal, suc(t)) A assigned(ma2, suc(t)))
%(case8)%

V £ : Tzme
• (V mai, ma£ : MA

• share (mal, ma2)
=> mal = ma^ V -> (assigned(mal, t) A assigned(ma2, £)))

=> V mal, ma2 : MA
• share(mal, ma2)

A (canReduce(mal, t) A assigned(ma2, £))
=4> mai = mai?

V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))
%(case9)%

t h e n % im p lie s
V £ : T£me
• (V mal, ma2 : MA

• share (mal, ma2)
=> mai = mai? V (assigned(mal, £) A assigned(ma2, £)))

185

E. DSL Lemmas in CASL

=> V m al, ma2 : MA
• share (mal, ma2)

=>- mal - ma2
V -i (assigned(mal, suc(t)) A assigned(ma2, suc(t)))

% (lemma) %
end

186

