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Summary

In this thesis an implicit Semi-Discrete Stabilized extended Finite Element for­
mulation has been successfully developed and implemented for laminar Newto­
nian incompressible fluid flows. In doing so we have contributed to the research 
into the field of incompressible fluid flows, multiphase flow and fluid-rigid body 
interaction.

The fluid flows are governed by the incompressible viscous Navier-Stokes 
equations, using a Finite Element formulation to model the fluid behaviour nu­
merically. A Semi-Discrete time integration scheme was implemented, discretizing 
in space, leaving the system of ordinary differential equations to be integrated 
in time. Initially the classical Galerkin method is used to formulate the bound­
ary value problem from the governing equations, however stability issues due to 
incompressibility and dominant advection terms force the implementation of the 
stabilized formulation, i.e. SUPG/PSPG. This approach gives greater flexibility 
in choice of velocity/pressure interpolations, such as equal order functions. The 
time integration schemes (Generalized a method and Generalized Midpoint rule) 
were compared and contrasted, with the Generalized a method demonstrating 
improved convergence. The highly nonlinear form of the governing equations 
required an implicit iterative solver and the Newton-Raphson procedure was cho­
sen. Several tests were performed throughout the formulation of the boundary 
value problem to validate the implementation. The result, a robust, efficient and 
accurate unsteady incompressible Newtonian fluid formulation.

extended FEM was introduced by adding terms to the FEM formulation 
in a Partition of Unity framework. With the addition of complex solution pro­
cedures X-FEM was implemented and tested for multiphase and fluid-rigid body 
interaction, demonstrating the attractive qualities of this method.
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Chapter 1

Introduction.

In this work we will consider the methods for modelling fluid mechanics problems 
using the Finite Element Method.

1.1 Fluid M echanics.

Fluid mechanics problems have a considerable influence on modern engineering 
design and analysis that cannot be underestimated. We find fluid flow related 
problems in many areas of civil, chemical, mechanical, electrical, and aerospace 
engineering, such as in bridge design; pipe design; design of combustion engines; 
design of electronic circuits; and design of aircraft wings.

In fact fluid mechanics problems, including those with discontinuous in­
terfaces, are so commonly encountered in engineering, that there is consider­
able commercial motivation to understand and the accurately predict fluid flows. 
However whilst the stimulus and numerical methods have been available for some 
time, it is only recently that the means to model such flows has become avail­
able. The advances in computer technology have moved powerful computational 
facilities from the domain of large institutions, to the desk of every researcher, 
and correspondingly there has been an explosion in fluid research. We could even 
suggest that the advancement in computational fluid mechanics matches that of 
improvements in computer technology.

The aim of this thesis is to contribute to current research into the field of 
fluid mechanics; to restrict the scope of this thesis we will only consider laminar 
Newtonian incompressible fluid flows. In particular this thesis will focus on the 
numerical methods used to accurately model laminar Newtonian incompressible 
fluid flows with reference to interface modelling, and develop a robust, accurate
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and efficient numerical procedure for its solution.
In the following section there is a brief description of the numerical approach 

for this thesis, which then concludes with thesis structure.

1.2 M ethodology.

1.2.1 Governing Equations.

Research into computational fluid mechanics is still very active and there are 
many physical relationships that are still not fully understood, such as the be­
haviour described by the full Navier-Stokes equations governing Newtonian fluids. 
The full Navier-Stokes equations are so complex that these equations are almost 
impossible to solve in their present state. Therefore to reduce the computational 
cost required to obtain an accurate solution it is common to treat certain vari­
ables as constants thereby reducing the overall nonlinearity of the equations. We 
will also only consider laminar problems as fluid problems such as turbulent flow 
are extremely difficult to model. Therefore in this work the laminar Newtonian 
incompressible viscous Navier-Stokes are employed as the governing equations.

1.2.2 N um erical M ethod.

There a various numerical methods available to solve partial differential equations, 
such as those found in fluid flow problems. These include Finite Difference, Finite 
Element, Boundary Element, Finite Element and Finite Volume methods. Each 
of these methods have advantages and disadvantages which make them suitable 
for certain problems but unsuitable for others. However for the sake of brevity 
only one method is chosen, namely the Finite Element Method, as the method 
can be extended in a Partition of Unity framework to include interface capturing 
functions to create the extended Finite Element Method. For further details of 
these numerical methods there are numerous texts on the subject, see Ferziger 
and Peric [31], Hughes [42], Zienkiewicz and Taylor [89], Wagner et al [8 6 ] and 
references within.

1.2.3 Solution Strategy.

The resulting boundary value problem is a strongly nonlinear mixed Galerkin 
formulation. The Newton-Raphson procedure is implemented to solve for the
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unknowns, using a sparse solver to improve speed efficiency.

1.2.4 S tab ility  and T im e Integration.

The stability of a numerical method is of paramount importance, and to this end 
we employ the SUPG/PSPG stabilizing formulation, see Hughes et al [47] and 
Tezduyar et al [82]

For transient flow the temporal domain must also be considered in addi­
tion to the discretized spatial domain, provided by the Finite Element formula­
tion. There are two recognised schemes which combine time integration schemes 
with spatial Stabilized Finite Element formulations, and they are separated into 
schemes which discretize the spatial domain and apply a discrete time integra­
tion scheme and those which discretize both spatial and temporal domains by 
Finite Elements, i.e. Semi-Discrete and Space-Time Finite Element Methods re­
spectively, see Dettmer and Peric [27] and references within. The semi-discrete 
scheme is employed here.

1.2.5 M odelling interfaces.

Generally numerical simulations of the interfaces are based on two distinct meth­
ods, which approach the analysis from completely different directions. They are 
commonly known as Interface Tracking (IT) and Interface Capturing (IC) algo­
rithms.

In Interface Tracking the mesh topology is designed to specifically to match 
the geometry of the interface e.g. placement of nodes on the actual line of in­
terface. If the interface evolves in time or translates then the mesh will deform 
with the fluid, thereby allowing for accurate satisfaction of the conservation laws. 
However this can lead to excessive mesh distortion and computationally expen­
sive remeshing. A commonly used Interface Tracking algorithm is the Arbitrary 
Lagrangian Eulerian scheme.

The Interface Capturing methods use (commonly) a fixed mesh, which does 
not necessarily conform with the interface, allowing instead, for the interface to 
cut elements at any point. These methods are particularly suited for evolving 
interfaces, the independence of the analysis from the mesh produces a method 
which is considerably more flexible than the Interface Tracking method. However 
the detachment of the solution from the mesh can lead to non physical mass 
transfer, which over long time integration problems can lead to significant errors.
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To avoid problems there are various schemes to sharpen the solution; some of 
these appear to be just post processing methods and should be treated with some 
sceptism. The Interface Capturing method will be employed for this work, using 
the so called extended Finite Element Method, see Wagner et al [8 6 ], Stolarska 
et al [72], Chessa and Belytschko [17], and Sukumar [74, 73].

1.3 Thesis Structure.

The structure of the thesis is as follows:

C hapter 2: A M athem atical Introduction to  Fluids M echanics.

This chapter introduces the reader to the field of fluid mechanics, and in particular 
Newtonian fluids and the governing equations that model their behaviour. The 
governing equations, known as the Navier-Stokes equations are derived from the 
conservation laws and the constitutive equations to form the basis of the following 
chapters. We also briefly consider Stokes flow, a sub set of the full Navier-Stokes 
equations, and derive an analytical solution for the X-FEM chapters.

Chapter 3: F in ite E lem ent M ethods for Fluid flows.

The General Finite Element method is presented here, prior to its use in Chapter 
4.

Chapter 4: Stabilized Finite Elem ents M ethods for fluid flows.

In this chapter we continue the mathematical description of the Finite Element 
Method with an indepth look at the classical Galerkin method and the problems 
associated with its use. We consider why the classical Galerkin FEM formulation, 
when applied to the steady state incompressible Navier-Stokes equations, fails 
for certain problem types. Two representative model problems i.e. advection- 
diffusion and Stokes flow equation are employed to demonstrate this. At this 
point we introduce Stabilized methods, as a means to overcome the numerical 
deficiencies. Finally the two model problems are used to show the improvement 
in the solution due the stabilized SUPG/PSPG method.

Chapter 5: Im plicit T im e Integration Schemes for th e incom pressible  

N avier-Stokes equations focusing on the G eneralized-a M ethod.

Transient flows are addressed as a continuation to the Finite Element formulations
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discussed previously in Chapters 3 & 4. Here various Semi-Discrete temporal in­
tegration schemes are developed in conjunction with the spatial Finite Element 
Method resulting in the unsteady incompressible viscous Navier-Stokes equations. 
Each scheme is assessed for its suitability and a comparison of methods is made 
through the use of numerical examples. Finally the numerical results and the 
observations made are discussed in detail.

Chapter 6: M odelling Interfaces in Fluid M echanic Problem s.

In this chapter we are concerned with the accurate modelling of the type of in­
terfaces that can occur in fluid flows, e.g. multiphase fluids or fluid rigid body 
interaction. Of the various approaches available to model these types of problem, 
we concern ourselves only with extended Finite Element Method (X-FEM) and 
the process of enrichment that it entails. A simple ID bar problem used demon­
strate the effectiveness of the X-FEM formulation. We conclude this chapter by 
describing the actual processes of implementation, including local spatial refine­
ment algorithms, search algorithms etc.

Chapter 7: X-FEM  - Num erical R esults.

In this chapter we present numerical examples to compare and contrasted X-FEM 
against FEM.
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Chapter 2 

A M athem atical Introduction to  

Fluids M echanics.

The purpose of this chapter is to introduce the reader to the field of fluid mechan­
ics, and in particular Newtonian1 fluids and the governing equations that model 
their behaviour.

The chapter will be laid out in the following manner: initially a brief in­
troduction to fluid mechanics is presented, which is followed by a more indepth 
look at the fundamental concepts that govern the physical systems under con­
sideration. This will include the derivation of the governing equations from first 
principles, illustrating the assumptions made and mathematical techniques used. 
The resulting equations will be presented in full. Finally specific aspects of fluid 
flows particular to this work will be discussed and certain analytical solutions 
provided, for future reference in later chapters.

The field of fluid mechanics is a very large area of study and it would be 
impossible to cover every aspect of this area of study in this thesis. There are a 
great number of published works that are entirely dedicated to the subject of fluid 
mechanics. Therefore should the reader wish to obtain a greater understanding 
of the subject they should refer to Currie [24], Chorin and Marsden [20], Meyer 
[58], Serrin [67], Lamb [52] and Landau and Lifthtz [53] to name but a few.

1 Newtonian fluids are the most common fluids on this planet, and includes air and water 
etc.
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2.1 Introduction to Fluid M echanics.

The derivation of the equations governing the motions of fluids is approached 
from two different directions:

The first approach is to study fluids at molecular level, as fluid matter is 
discrete at a microscopic level, treating the fluid as a collection of molecules. In 
this approach the motion is governed by the laws of dynamics and probability. 
This method is the most accurate depiction of the actual physics of a fluid; at 
present it is unable to deal with dense gases or liquids.

The second approach assumes that a fluid is a continuous matter, and the 
behaviour of individual molecules are ignored, i.e. that the properties of the fluid 
are continuous functions of time and position. Whilst this assumption works well 
for most fluids, it is unsuitable for a few special cases, e.g. thin gases, for shock, 
or high altitude near the edge of space, where pressure is extremely low, and in 
these particular situations the fluid is very discontinuous. For most macroscopic 
phenomena that occur in nature it is believed that this method is extremely 
accurate.

The first approach is the most accurate of the two options however the 
second of the two approaches will be used, as the method is considered to be 
a good approximation for all but a few specialized cases, none of which will be 
covered, and it is considerably less complex, as it avoids mathematical difficulties, 
such as those caused by probability etc. Therefore the purpose of this thesis it will 
be assumed that the fluid is a continuum, and for fluids the properties necessary to 
describe fluid behaviour are the field variables density, velocity, internal stresses 
and viscosity.

2.2 Fluid Flow - A M athem atical Overview.

In this thesis we are concerned with modelling fluid flows, and in particular New­
tonian fluid flows which possess inertia, viscosity, and which are incompressible. 
In order to accurately describe the behaviour of Newtonian fluid flows through 
the medium of mathematics it is important that the governing equations are 
representative of the fluid response.

The system of equations which describes the full 3D, viscous nature of fluid 
are often extremely complex due to the influence of viscosity on the flow and 
are not open to mathematically rigorous analysis. However the inclusion of shear
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stresses, 2 resulting from viscosity, into the equations of motion results in a system 
of equations that are recognized to provide the best approximation for the motion 
of a Newtonian fluid. This system of equations is known as the Navier-Stokes 
equations. The Navier-Stokes equations were first developed by Navier in 1831, 
with a more rigorous proof provided by Stokes in 1845, and have stood without 
modification since their first introduction. Sadly there is no known general so­
lution of the Navier-Stokes, although the relatively recent advances in numerical 
methods have been extremely successful in obtaining accurate approximations of 
the solution.

In this section the full Navier-Stokes equations are derived; it should be 
noted that in particular this work is restricted to incompressible Newtonian flu­
ids and the final set of equations will reflect this. Firstly the tools required to 
derive the Navier-Stokes equations are developed followed by the derivation of 
the equations from the conservation laws and constitutive equations.

2.2.1 M athem atical M ethods.

In order to derive the Navier-Stokes equations, the knowledge of certain mathe­
matical theorems and techniques are required. These are explained in reasonable 
detail within this section, however for a more in-depth understanding, the reader 
should consult standard mathematical texts, see Donea and Huerta [28], Lamb 
[52], and Abbott and Brasco [1 ].

2.2.1.1 M aterial and Spatial C oordinate system s.

Before we continue we must first consider which coordinate system is most suited 
to the analysis:

2 for a small fluid element



Time Volume Density
0 V Po
t V P

Time Volume Density
0 V Po
t V P

X3

tim e= t

X2e2

tim e= 0 for all tim e

(a) Material (b) Spatial

Figure 2 .1 : Material and Spatial Descriptions

There exists two commonly used coordinate systems, see Figure 2.1, that may be 
used to describe the behaviour of the body whose motion is under consideration:

M aterial. The Material coordinate system, which is otherwise known as the 
Lagrangian reference system, moves with (is attached to) the particular mass of 
fluid under consideration. The conservation laws are applied to the mass of fluid, 
and whilst the global position, volume V and surface S may vary in time, there 
may not be any fluxes on the surface. For this reference frame the only indepen­
dent variables are the initial spatial coordinates x®, x\, x® and time t°

Spatial. The Spatial coordinate system, also referred to as the Eulerian reference 
system, is a stationary system. The fluid flows through a control volume and all 
observations, with regards to the behaviour of the fluid, are confined to within 
the boundaries of the control volume. The control volume is itself an arbitrary 
but fixed region of space with volume V and surface S remaining constant in 
time. The independent variables for this framework are the spatial coordinates 

, x2, x3 and time t
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2 .2 .1 . 2  Coordinate Systems for the Continuum Model.

Let P represent any of the continuum properties mentioned previously. The 
essential mathematical simplification of the continuum model is that the average 
properties in a volume element dV  surrounding a point are considered to represent 
the point itself. This is equivalent to a fictitious continuous material, locally 
homogeneous, with a value of (3 at every point within the fluid at each instant of 
time. Thus the two coordinate systems, Material and Spatial, can be represented 
as:

M aterial (Lagrangian)

/3 = (3(xp,t ) or (3 =P(xlp,x 2p,x3p,t) (2 .1 )

Spatial (Eulerian)

13 = (3(x,t) or (3 =/3(xu x2,x3,t) (2 .2 )

2.2.1.3 M aterial Derivative.

The material Derivative is also known as the substantial derivative. Let (3 once 
again represent the value of some fluid property, i.e. velocity, density etc., and 
X\,X2  x3 the coordinates of a Material point using the Spatial coordinate system. 
Calculate the rate of change of the value of (3 at this Material point3.

d/3 = + |^ -d x 2  + |^ -d x 3  + ^ d t  (2.3)OX\ OX2 OX3  Ot
dxi, dx2 , dx3  can be related to dt by:

dx i = u\dt dx 2  = U2 dt dx 3  = u3dt (2-4)

where u  is the velocity field. At this point we introduce the term to denote 
differentiation following the motion of the fluid Substituting (2.4) into (2.3) 
the Material derivative term ^  in relation to the Spatial derivative is obtained 
as

Dp _  dp dp dp dp
~ d ^ Ul + d ^ U2 + d ^ U 3+ dt. (2'5)

Material Derivative Substantial Derivative

Equ (2.5) can be rewritten in vector form as:

DP dP . i .  m  m (2.6)

3This task is in concept essentially Lagrangian, but completed using the Eulerian reference 

system
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2.2.1.4 G auss’s Theorem .

Gauss’s theorem for the scalar field (3 states that:

Jv(t) Js(t)
[  V(3dV= [  j3ndS (2.7)

where n  is the unit vector normal to the surface.

2.2.1.5 D ivergence Theorem .

The Divergence Theorem is an extension of Gauss’s theorem for use with vector 
functions. The resulting equation for the vector field (3 is as follows:

This theorem is mainly used in order to move from volume integrals, to the easier 
to interpret surface integrals.

2.2.1.6 Control Volum es (C V ).

The Control Volume4  chosen is arbitrary, i.e. it has arbitrary limits of integration. 
The resulting equation for the field variable (3 is:

where £  is a differential operator. In order to satisfy (2.9) the following differential 
form must also be true:

This statement is only true if the CV is arbitrary.

2.2 .1 .7  R eynolds Transport Theorem .

The choice of which coordinate system to use is generally dependent on the type of 
problem, i.e. for fluid flows the Spatial system is more commonly used, however 
in solid mechanics both are used with equal success. However irrespective of 
which coordinate system is used it is often necessary, during formulation of the 
governing equations, to cross between the Material and Spatial systems. In such 
situations it is common to use the Reynolds Transport Theorem. This general

4The type of CV chosen is completely independent of the choice of the coordinate system

(2.8 )

(2.9)

m = 0 (2 .10)
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theorem relates derivatives in the Material framework to those in the Spatial
framework.

The Reynolds Transport Theorem is a special case of the Leibnitz5 Theorem, 
and is based upon the assumption that the arbitrary velocity of the moving 
volume is actually the velocity of a Material point:

Therefore the volume is no longer arbitrary and the volume becomes a Material 
Volume. The Reynolds Transport Theorem reads:

2.3 The Navier-Stokes equations - Derivation of  

the governing equations.

In this section the Navier-Stokes equations are derived from the conservation 
laws and constitutive equations is shown, using mathematical methods discussed 
previously. The equations are derived in tensor form and it is assumed that the 
reader has a good grasp of tensor algebra.

2.3.1 C onservation Laws

The equations that govern the motion of fluids follow the principles laid down by 
the Conservation Laws6  - Mass, Momentum and Energy. The Mass, Momentum 
and Energy Conservation Laws are as follows:

Principle of the Conservation of Mass.
The rate of change of the mass in a Material region is zero.

Principle o f the Conservation of Momentum.
The rate of change of momentum of a Material region is equal to the forces applied 
to it (Newton’s second law of motion).

5For completeness the derivation of the Leibnitz’s theorem is presented in Appendix A.
6The Conservation laws, have been observed to be valid when the length scales are sufficiently

large, as to contain a large quantity of molecules.

w = u (2 .11)

(2.12)
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Principle o f the Conservation o f Energy.
The rate of change of energy within a Material region is equal to the rate that 
energy is received by the region due to the total work done and heat (Application 
of the First law of thermodynamics to fluid flows).

The above laws will be systematically converted into mathematical form below.

2.3.2 Principle o f C onservation o f M ass

The mathematical representation of the Principle of Conservation of Mass can be 
written as:

-~m = 0 (2-13)dt
where m is the mass of the body. The mass enclosed by Material volume, i.e. a 
Material region, can be described by the local value of density:

m = [  pdV 
Jv(t)

where p is the density. Substituting (2.14) into (2.13):
D_
Dt f  pdV = 0 

J v  I

(2.14)

(2.15)
rv(t)

Applying the Reynolds’s Transport Theorem (2.12), derived in an earlier section, 
the Material derivative (2.15) can be converted into its Spatial form.

k /v̂ -X [ i + v- «
The RHS of (2.16) is commonly known as the Continuity Equation. On the 
assumption that the volume is arbitrary, see Section 2.2.1.6, it follows:

dV (2.16)

|  + v.(H = o
dp
— + u  • Vp +p(V ■ u) = 0

^ v '
Substantial 

Derivative (2.6)

-jf + p(v •«) =  0

(2.17a)

(2.17b)

(2.17c)

If the fluid is incompressible or nearly incompressible the Material derivative in 
(2.17c) will be equal to zero. If the first term of (2.17c) is zero then it follows that 
the second term must also be zero. The Continuity equation for an incompressible 
fluid is reduced to:

' ' (2-18)V • u = 0
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2.3.3 Principle o f Conservation o f M om entum .

The Principle of Conservation of Momentum states that the rate of change of 
momentum will be equal to the forces applied. There are two distinct groups of 
forces:

Body forces.
Forces due to external influences - such as gravitational & electromagnetic forces. 

Surface forces.
Forces of stress - this is a consequence of the rest of the continuum acting on the 
surface of the body, includes viscous & pressure forces.

The body forces are defined as forces per unit volume dV - to determine the total 
body force pg is integrated over the whole volume V. The surface forces are due 
to stresses experienced on the surface of the body and are defined per unit surface 
area dS - these are called traction forces h and are integrated over the surface of 
the volume S.

Figure 2.2: forces acting on a fluid element

where g is the acceleration due to gravity. The mathematical representation of 
the Principle of Conservation of Momentum can be written as:

-pp [  pudV = f  hdS + f  pgdV (2-19)
Dt Jv(t ) Js(t) Jv(t )

The forces acting on the surface of the body can be written in terms of the stress
tensor cr7 and the unit vector normal to the surface n

h =  <r n  (2.20)

r There are nine components of stress at any given point, one normal component and two 

shear components per coordinate plane” - I. G. Currie, Fundamentals of Fluid Mechanics. 

ctji, 022, 033 normal components and 012, cr13, 021, 023, 031, 032 shear components.
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• By substituting (2.20) into the surface integral on the RHS of (2.19), and 
applying the Divergence theorem, 2.2.1.5, the resultant term will be f v^  V • 
erdV.

• By applying the Reynolds Transport Theorem to the Material derivative on 
the LHS of (2.19), it will be transformed into its Spatial form.

On completion of these two steps (2.19) can be rewritten using only volume 
integrals and Spatial terms. It follows that:

/
Jv(t )

Q
T ^ ( P U )  +  V  • ( p U  0  U ) dV

- L
V • adV  + [  pgdV (2 .2 1 )

v(t) Jv(t )

Equ (2 .2 1 ) can be rearranged into a form which resembles (2.9). Based on the 
assumption that the volume is totally arbitrary, then the following equation is 
also true:

d— {pu) + V -(p u ® u ) = V'Cr + pg (2.22)

By using the common tensor identities we note that:

V • (pu ®u) = (u- V)pu + (V • u)pu

Therefore (2.22) can be expanded as:

dp du / _ N /_  N _~^u  + —  p +  {u • V)pu + (V • u)pu = V • cr + pg

(2.23)

(2.24)

which can be rearranged in order to make the equation more recognizable by its 
parts:

%  + (V -u )P u  + p = V • cr + pg (2.25)

Continuity Equation Substantial Derivative

Finally the equation governing the change of momentum in a body of fluid, writ­
ten in the Spatial coordinate system is as follows:

du
p 3>+1 1 SO

,
i

=  V • cr + pg (2.26)

2.3.4 Principle o f C onservation o f Energy.

Recall that the first law of thermodynamics, states:

Definition 2.1: The time rate of change of a material region’s internal and kinetic 
energy is equal to the rate of heat transferred to the material region less the rate
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of work done by the material region.

This can be mathematically stated as: 

DE DQ DW
Dt Dt Dt 

DEwhere accumulation of internal energy

DW  rate of work done by external forces

(2.27)

Dt
DQ
Dt heat transferred to the material volume

The following three blocks of equations will been used to expand the terms found 
in (2.27).

2.3.4.1 Accum ulation o f Internal Energy Term.

T i - m L , E d v  (228a)

where E = e + \-u • u  (2.28b)

E  —> Total energy per unit mass 

e —> Internal energy per unit mass 
1 T, . .- u  • u —► Kinetic energy per unit massZ

2.3.4.2 Work D one Term.

DW DxDW = Dx f

— f  u ' P Q d V  +  f  u  • hdS  (2.29)
Jv(t) Js(t )

where /  —> Force

u  —> Velocity

pg —> External Body forces, see Figure 2.2 

h —> Surface Traction forces, see Figure 2.2
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2.3.4.3 H eat Transfer Term.

= — [  q • ndS  (2.30a)
D t  JS(t)

where + / ---- ► Outflow/Inflow through the surface of the body

/ q • ndS
Js(t )

(2.30a)

The integral of the conservation of energy for a moving volume can be written by 
combining (2.28a), (2.29), & (2.30a) into (2.27) to obtain (2.31a)8 &; (2.31b):

A

As with the previous principles, i.e. Conservation of Mass & Momentum, the 
Reynolds Transport Theorem and the Divergence Theorem will transform the 
Material derivatives into Spatial derivatives, and convert surface integrals into 
volume integrals respectively.

2.3.4.4 M aterial Derivative to  Spatial Derivative.

Applying the Reynolds Transport Theorem to (2.28a).

u ’ hcLb > Work Done
Internal energy

Heat Transfer

f  (pE)dV = f  ~ (pE )dV +  f  V • (pEu)dV
Jv(t) Jv(t) a t  JV(t)

(2.32a)

Continuity Equation

(2.32b)

Substantial Derivative

(2.32c)

(2.32d)

8Work done on fluid by the force is the negative of work done by the fluid
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2.3.4.5 Surface Integrals to  Volum e Integrals.

Using the Divergence theorem on all surface integrals in (2.31).

f  u  • hdS = I  V • (cru)dV (2.33a)
Js(t) Jv(t)

j q • ndS = j  V • qdV (2.33b)
Js(t ) Jv(t)

The total energy per unit mass E  is the sum of two terms, i.e. kinetic energy and 
internal energy. E  will be replaced in all the following equations by (2.28b).

The assumption that the volume is arbitrary, as previously applied at (2.21), 
allows the rule defined by (2.9) to be used on the following equation. By applying 
the changes presented by (2.33) &; (2.32) to (2.31) gives:

P ^ ( e + • u) = u ■ pg + V • (au) -  V • q (2.34)

Expanding both sides of (2.34)

J^(Pe + ipu • u) + V • [(pe + ipu  • u)'u =
2 ' /

d(pe) . . d{u) . .
+ V • (peu) + pu • + pu • (u • V)u =

u  • pg + u  • (V • cr) + cr : V Tu — V • q (2.35)

The first two terms on the LHS of (2.35) can be further expanded. Of the resulting 
four terms, two cancel as they form the Continuity equation:

de „  du ,
p—  + pu • Ve + pu • —  + pu • (w • V)m =

u  ■ pg + u  • (V • cr) +  (T : VTw — V q  (2.36)

The equation derived from the Principle of Conservation of Momentum, (2.26), 
can be rearranged in terms of the time derivative of velocity (see below).

du  , ,p—  = -p (u  • V)u  + V • cr + pg (2.37)

Equ (2.37) can be used to simplify (2.35)

d&p— + pu ■ Ve = (T : VTw — V • q (2.38)C/L

a" is symmetrical and therefore the term cr : VTw can be rewritten as cr : Vu.
The final mathematical form of the Principle of Conservation of Energy is:

<9ep— + pu ■ Ve = cr : Vu — V • qdt (2.39)
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2.3.5 C onstitu tive equations.

Kinematic equations and generic principles, e.g. the derived equations for the 
conservation laws, are very general formulations which broadly describe the re­
sponse of material in question, however in order for them to be representative of 
the type of problem being studied it is important that the chosen system provides 
the correct response prediction. This requires, in short, the governing equations 
to be tailored to suit and be applicable to the particular material model, and 
provide a model of certain relations which are particular to the material and 
analysis, e.g. large strain material models are different to small strain material 
models. The constitutive equations are the manner in which material models are 
integrated with the kinematic equations to form the governing equations.

For the fluid flow case, there are various material models available, e.g. New­
tonian, non-Newtonian, incompressible, compressible etc which allow the users 
to tailor the kinematic response to the particular fluid and flow conditions. The 
particular material model used throughout this thesis was developed to emulate 
viscous Newtonian incompressible flow. When the Newtonian flow constitutive 
equations are incorporated with the kinematic equations the resulting governing 
equation is commonly known as the Navier-Stokes equations.

The material model introduces further unknowns and they include the stress 
tensor cr with the deformation rate tensor e, and the heat-flux gradient q with 
the temperature gradient VT. These added unknowns, with associated equations 
are introduced below.

2.3.5.1 Stress-Strain rate constitu tive equation.

For a Newtonian fluid9  it is assumed that the stress tensor and the strain rate 
tensor are linearly related10. The stress-strain rate relationship is given as:

(2.40) 

where

e(u) = Vsm =  i(V u  +  Vr u) (2.41)z
9Newtonian fluids are the most commonly found fluids on this planet and they include water, 

air etc.
10All fluids which do not demonstrate linearity between the rate of deformation and stress, 

i.e. have nonlinear stress-strain relationship, are classified as a Non-Newtonian fluid.

cr = —p i  + A(V • u )I  4 - 2 pe(u)
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and p is the dynamic viscosity, A is the second viscosity coefficient, I  is used 
to denote the identity tensor and p the pressure. V su  is called the rate of 
deformation (or strain rate) tensor 11. For the case of incompressible fluids, as 
shown earlier by (2.18) V • u = 0 and consequently (2.40) can be written as:

a  = —p i  + 2 fie{u) (2.42)

2 .3.5 . 2  Heat flux - tem perature gradient constitutive equation.

The flux term in the energy equation (2.30) is a consequence of heat transfer 
due to conduction, and is usually governed by Fouriers law, i.e. Fourier’s law of 
heat conduction. Fourier’s law states that heat flux is proportional to the local 
temperature gradient, and is given as:

(2.43)

where n is thermal conductivity.

q = kV T

2.4 The Full Navier-Stokes Equations.

Combined, the equations (2.43), (2.40), (2.39), (2.26) and (2.18) form what is 
known as the Navier-Stokes equations for incompressible fluid flow. For conve­
nience they have been reproduced below:

^
m + { u ' v ) u = V ■ a  +  pg

|  + p(v -«) =  o

cr = —p i  +  A(V • u )I  -I- 2pe(u)
de

p—  + pu ■ Ve - cr : Vu — V q  

q = kVT

(2.44a)

(2.44b)

(2.44c)

(2.44d)

(2.44e)

2.5 The Incompressible Navier-Stokes equations.

Previously we have derived the full Navier-Stokes equations, see Sections 2.3 and 
2.4. The reader will note that the full Navier-Stokes equations are extremely 
complex, reliant on many different variables, each increasing the nonlinearity of 
the overall equation. Such is the complexity that it is almost impossible to solve

11 The operator Vs represents the symmetric tensor
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this equation (2.44) in its present state. Therefore to reduce the computational 
cost required to obtain an accurate solution it is common to treat certain variables 
as constants.

The incompressible Navier Stokes equations model flows where the density is 
constant, however to reduce the nonlinearities, viscosities and thermal conductiv­
ity are also treated as constants i.e. ppX n = constant12. The incompressibility 
condition is usually connected to the Mach number1 3  where it is assumed that 
for a small Mach number the variation in density is small, in comparison to the 
pressure variation, which is large. The justification lies with the energy equa­
tion, and a more indepth explanation can be found in Peyret and Taylor [64] and 
Cramer [23].

Remark 2.1: Incompressibility Constraint.
In Section 4-2 we will note that the incompressibility constraint requires special 
consideration when developing the Finite Element formulation. Incorrect consid­
eration of incompressibility will lead to spurious and nonphysical oscillations in 
the pressure field.

When incompressibility is applied to (2.44b) it becomes:

(V • u) = 0  (2.45a)

=> or = —p i  -I- 2pe(u) (2.45b)

This step results in the uncoupling of the energy equation1 4  from the Navier-
Stokes equations, allowing for a solution to be reached without regard to the
temperature variation15. The temperature can be solved once u Sz p are found 
should the temperature be required.

We can also ignore that pressure p is a thermodynamic function of density 
and temperature because density is assumed constant and the energy equation 
is uncoupled from the system of equations. Pressure p can be treated as just 
another variable.

12There is no a priori reason to assume that constant density solutions correspond to constant 
y  A k solutions

13Flow speed divided by the speed of sound in the material
14This only possible due to constant viscosities.
15It & p can solved independently of the energy equation (2.44e), using (2.44a), (2.45a) & 

(2.45b), i.e. (2.44e) has been uncoupled.
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2.5.1 C lassification o f Flow  - R eynolds num ber, Laminar 

and Turbulent flows.

In order to determine the principles which are applicable to the particular problem 
being studied it is important to classify the flow type. The various types of 
flow lend themselves to being categorized in the following manner: Laminar or 
Turbulent, Steady or Unsteady, Rotational or Irrotational and Uniform or Non- 
uniform. For the purposes of this thesis, only the first two categories are of 
interest.

2.5.1.1 R eynolds number, and Laminar and Turbulent flow.

Laminar flow.
All the fluid particles proceed along parallel paths , with no transverse component 
of velocity.

Turbulent flow.
The progression of the fluid particles is irregular, with individual particles being 
subject to fluctuating transverse velocities so that the motion of the fluid is ed­
dying. One consequence of the cross current velocities is a more uniform velocity 
distribution when compared with laminar flows. This is due to the interchange 
of momentum between fast moving fluid particles near the centre and the slower 
moving fluid particles near the walls. This also causes large energy loss in the flow.

The criterion which distinguishes laminar flow from turbulent flow, is the funda­
mental characteristic of flow and is given as the ratio between the inertial forces 
with viscous forces, universally known as the Reynolds number, a dimensionless 
term which is written as:

Re = (2.46)
t1

where Re, U, D, p and p are the Reynolds number, characteristic velocity, char­
acteristic length, density, and kinematic viscosity respectively.

It is possible to write a dimensionless form of the Navier-Stokes equations 
with Re as the only parameter16, highlighting the characterizing effect of the 
Reynolds number on fluid flows. It is also apparent from Equ (2.46) that low

16This is achieved by non-dimensionalizing the velocity, pressure, spatial and temporal terms 

and replacing the kinematic viscosity by the inverse of Re
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Reynolds number flows are dominated by viscous forces whereas high Reynolds 
number flows are inertia dominated.

It is observed from experimental data that low Reynolds number flows are 
laminar and high Reynolds number flows are generally turbulent, with the transi­
tion occurring at certain critical Reynolds number range. The point of transition 
is often denoted as R e ^ , and is completely dependent on the problem under con­
sideration. It is generally accepted for flows through circular pipes, that the flow 
can be considered laminar for a Re < 2000 and fully turbulent for a Re > 4000.

Laminar flows are fully understood and for simple boundary conditions 
the velocity distribution can be analyzed by analytical means, however due to 
irregular nature turbulent flow has defied rigorous mathematical treatment, and 
solutions of turbulent flow rely on empirical or semi empirical relationships.

Because of the nature of laminar flows it is often appropriate to model lami­
nar flows using a 2D framework, and laminar flow numerical simulations can give 
accurate results. In contrast turbulent flows contain within them 3D structures 
which are extremely complex and erratic, and on a particle scale appear to be 
completely random. Whilst it is still theoretically possible to model turbulent flow 
using the general Navier-Stokes equations, in practice this is rarely the possible. 
Modelling such a complex phenomenon would require such a fine discretization of 
the domain that the subsequent model would be too large to solve using current 
software and technology. It is for this reason that it is common practice to modify 
the governing equations to solve for mean flow and express turbulent effects by 
means of turbulent viscosity and use wall functions to model near wall effects. An 
in-depth review of turbulence research can be found in Ferziger and Peric [31].

Turbulence is not considered in this work, hence all numerical examples 
involve fluid flows with a Reynolds number in the laminar range.

2.5.1.2 Steady and U nsteady Flow.

Steady.
A flow is said to be steady when the conditions at any point are constant with 
respect to time. This definition leads to the conclusion that turbulent flow can 
not be truly steady. However it is convenient to assume that the main criterion is 
the general fluid motion, whilst erratic fluctuations are considered secondary ef­
fects. This allows the assumption that a flow with a constant discharge is steady.
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Unsteady.
As a corollary it follows that a flow is unsteady if the conditions vary with time.

For many practical problems the flows can be considered to be steady. This 
is an advantage, as the time variable in unsteady flow complicates the analysis 
considerably, and in some cases unsteady flow can be reduced to steady flow by 
virtue of the principle of relative motion. In this work both steady and unsteady 
flows are considered.

2.5.2 Incom pressibility and C onvection.

The numerical solution of the Navier-Stokes equations for incompressible fluid 
flow is not a straightforward process, and before introducing the Finite Element 
techniques that will provide the basis of all numerical methods in this thesis, it 
is prudent to briefly mention the difficulties faced. In this section the difficulties 
which need to be addressed are discussed.

2.5.2.1 Convective term s.

Convection also poses a problem for those wishing to numerically solve the Navier- 
Stokes equations, due to the nonlinear and non symmetric convection terms found 
in the momentum equations, see (2.26). This problem becomes more apparent 
with an increasing flow Reynolds number, as high Reynolds number flows are con­
vection dominated, and stabilization techniques must be applied to the governing 
equations in order to obtain a meaningful result. See Section 4.1.

2.5.2.2 Incompressibility.

The continuity equation for the incompressibility condition, see (2.17c), states 
that the velocity field must be divergence free. The constraint leads to certain 
numerical difficulties which must be addressed correctly, otherwise they become 
a source of numerical instability, adversely effecting the entire solution.

The requirement for divergence free velocity, paired with a pressure un­
known that is not related to a constitutive equation, allows pressures inclusion1 7  

in the momentum equation to be used to satisfy the incompressibility constraint. 
Thus pressure becomes, in essence, a Lagrangian multiplier to enforce the incom­
pressibility constraint. This leads to a coupling between the velocity and pressure

17introducing an additional degree of freedom
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unknowns and it is the velocity/pressure relationship which is the origin of the 
difficulties faced.See Section 4.2.

There are various methods available which allow the difficulties encountered in 
incompressibility and convection to be circumvented. These methods are in the 
realm of Finite Elements and their implementation, and as such the actual me­
chanics of circumventing the issues mentioned above are discussed in a later and 
more appropriate section.

2.5.3 Stokes flow.

Stokes flow is a sub set of the full Navier-Stokes equations, in which the govern­
ing equations are written neglecting the time-dependent and convective terms, 
otherwise known as inertia terms. In this section Stokes flow will be covered in 
some depth as Stokes flow and the ability to produce an exact solution for this 
flow type plays an important part in chapters 6  & 7 of this thesis.

2.5.3.1 Stokes Flow - A nalytical Solution - Flow past a rigid cylinder.

Flow round bodies at very small Reynolds numbers (creeping motion) is of inter­
est to those studying flow around small particles. The flow is entirely laminar, 
no separation occurs and there is no disturbed wake. Stokes developed a math­
ematical solution for this case, in which it is assumed that viscous forces are 
large in comparison with the inertial forces. It should be noted however, that 
this assumption is only really applicable a finite distance from the particle, as at 
distances very far from the particle the velocity gradients are small and viscous 
forces becomes negligible. The effect of this will be discussed in detail at a later 
stage.

The analytical solution for this particular phenomenon, i.e. 2D flow past a 
particle, which is considered to be a rigid cylinder of infinite length - normal to 
the axes, in an infinite domain, will be used in a future chapter, therefore it is of 
interest and is briefly reviewed here. The Stokes equations for an incompressible, 
very viscous fluid are:

V • <r = 0 V sG fi (2.47)

V ■ u = 0 V sG fl (2.48)
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or expanding (2.47):

—Vp + fiS/2u = 0 (2.49)

The analytical solution will be found in terms of the stream function ip written 
using planar polar coordinates r  and 9. The velocity u  is given as:

1  dip dip 
u  = r ~aeer ~ ~free (2.50)

where er and e# are unit vectors. Velocity in the coordinate directions are:

1  dip dip
Ur~ r d e ’ U$~ dr 

The stream function ip is given:

V V  = 0  or V2 (V2VO = 0

where

d2 I d  I S 2 V2  =  T—r + -T -  +

(2.51)

(2.52)

(2.53)dr2 r dr r2 d62

Taking the centre of the cylinder to be the origin, where the velocity U far from 
the cylinder is uniform, the boundary conditions are:

Ur =  Ug = 0, at r = a
dip dip

" ^  =  0 ’ < £  =  °

(2.54)

(2.55)

ur = U cos 6, ue = —U sin#,
dip dip=> —  = Ur cos 9, —  = U sin 6
dd dr

at r = oo (2.56)

(2.57)

where U is magnitude of the velocity along the axis 0 = 0. Based on the boundary 
conditions at infinity:

ip = rU sin 9 as r —► oo 

Concluding that the solution of Equ (2.52) will resemble Equ (2.58):

ip(r, 9) = UF(r) sin 9 

Therefore Equ (2.52) reduces to:

r d r \ d r j  r 2
F(r) = 0

(2.58)

(2.59)

(2.60)
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Integrating Equ (2.59) gives the solution for ^>(r, 6) in terms of A - D:

?/>(r, 0) =  ̂At3  + Br In r + Cr + —^ sin 6 (2-61)

where A - D are constants which are determined through the use of the prescribed 
boundary conditions. However there are no linear combination of ipi & ^ 2  as 
r —► 0 0  and this results in two different solutions. With no unique solution, the 
situation is known as Stokes Paradox.

It is possible to arrive at a useful solution by applying the exact wall bound­
ary conditions and determining the unknowns using a better approximation to 
that provided by Stokes equations. This leads to the solution:

ur = sin# — \ r  — r In (~ \  (2.62)2r 2 \(jl J
q 2  2  j>

uq = cos# — - r  + rIn ( —') (2.63)2 r 2 V a /

which can be rewritten for the cartesian coordinate system, i.e. ux &; uy where

ux = ur cos 6 — u q  sin 0 (2.64)

uy = ur sin 6 + uq cos 6 (2.65)

Finally we arrive at:

(R2 — r2) cos2  6 + r2 In + |( r 2  — R2)
Ulx = ------------------------------------------------------  (2.66)

(R2 — r2) sin 6 cos 9 . .uly =  i  L ----------  (2.67)

2ucos6 * .p = - (2.68)r

where R  is the radius of the cylinder.

It should be noted once again that these functions are not applicable far from the 
cylinder, however it will be shown later that this constraint is not problematic. 
The functions can be presented graphically:
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Figure 2.3: ux flow - Velocity Contour Plots
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Figure 2.4: ux flow - Pressure Contour Plots

The work so far has only considered flow in the x-direction, however if the pro­

cess, (2.61)-(2.68) is repeated, such tha t the function for 0 , see (2.59), becomes 

0 (r , 0) =  F (r ) cos 0 , then functions for flow in the y-direction are produced.

(R 2 — r 2) sin 0 cos 9 . .
u2x =   ~2  (2.69)

[R? — r 2) cos2 6 — r2 \n +  \ { r2 — R 2) 
u2y =  - 5- ^   (2.70)

P =
sin#

(2.71)
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Figure 2.5: uy flow - Velocity Contour Plots
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Figure 2.6: uy flow - Pressure Contour Plots

Assuming linear variation between flows in x-direction and y-direction these two 

sets of equations can prescribe velocity profiles for flow in any direction.
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2.6 Conclusion.

In this chapter the basic equations that govern the physics of fluid flow have 
been derived by applying the basic conservation laws i.e. mass, momentum, and 
energy, to the fluid under consideration. The desired outcome were equations 
in the spatial or Eulerian coordinate system, however an arbitrary volume of 
fluid in a material or Lagrangian context was used, and then transformed to 
a spatial reference system through the use of the Reynolds transport theorem. 
The resulting equations were inadequate to accurately describe the behaviour 
of the fluid and further equations, known as the Constitutive equations were 
introduced at this point. The Constitutive equations are particular to the fluid 
type, therefore stress-strain rate relationship for Newtonian fluids and heat flux- 
temperature gradient relationship were used. Finally the equations that govern 
Newtonian fluid flow, i.e. the Navier-Stokes equations, were arrived at.

To conclude the chapter incompressible viscous Navier-Stokes equations, 
including flow classification, and a brief review of Stokes flow1 8  with an analytical 
solution were discussed.

18A subset of the Navier-Stokes equations
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Chapter 3 

Finite Element M ethods for 

Fluid Flows.

In the previous chapter the basic equations that govern fluid flow, in particular 
those which are used to describe incompressible viscous flow, were derived. The 
complexity of these equations negates the use of an analytical approach, thus the 
only option is to solve numerically. This chapter is focused on the mathematical 
background that forms the basis of the Finite Element Method, a numerical 
method which is commonly used to solve the Navier-Stokes equations in fluid 
flow problems.

The chapter is laid out in the following manner: initially there will be a short 
introduction to numerical methods, and in particular the FEM, which will be 
followed by some graphical examples of its applications in modern day engineering 
in general. In the main section the actual process of producing a FEM model from 
governing equations will be explained, including the use of variational principles 
to obtain the weak form of the governing equations, and the discretization of 
the domain into smaller subdomains. Finally the solution procedure is discussed, 
followed by a brief conclusion.

3.1 Brief Introduction to the Finite Elem ent M ethod.

There a various methods available to solve Partial Differential Equations, such 
as those found in fluid flow problems, numerically and these include Finite Dif­
ference, Finite Element, Boundary Element and Finite Volume methods. Each 
of these methods have advantages and disadvantages which make them suitable 
for certain problems but unsuitable for others. For the sake of brevity we only
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consider the method chosen to realize the ideas discussed within this thesis, i.e. 

the Finite Element Method, however should the reader wish to extend their un­

derstanding of numerical methods there are numerous texts on the subject, see 

Hughes [42], Zienkiewicz and Taylor [89] or Bathe [6].

A Finite Element solution.

Establish a set of governing algebraic equations which define the nature of the 

problem, and solve.

The Finite Element Method or FEM is only a relatively recent discovery but al­

ready it has had a profound effect on engineering. Since its first emergence in the 

1950’s-1960’s it has grown from a m athem atical idea to become a corner stone of 

modern day engineering, and yet its full potential is only partially realized. In 

this present day the FEM is widely used in commercial applications, e.g. struc­

tural dynamics, fluid flow, heat transfer, acoustics, magnetostatics, electrostatics, 

medicine, weather forecasting, to list but a few, and it is now possible to achieve 

an unprecedented level of understanding through their use.

3.1.1 Current U sage.

The applicability of the Finite Element M ethod to analyze many engineering 

problems is presented succinctly in picture form at1.

Figure 3.1: FE Analysis of flow past a circular cylinder

1 Images 3.2, 3.3, 3.4 were obtained from www.hexa.ru.
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(b) (c) (d)

Figure 3.2: FE Analysis of the human body, (a) Modelling a knee joint (b) actual 

bone (c)-(d) bone model
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(b) (c)

(d) (e)

Figure 3.3: FE Analysis of car impact, (a) model of car (b)-(e) evolution of the 

impact in time

Figure 3.4: FE Analysis turbines blades, (a) Original mesh (b) deformation of 

blade (c) stress in the blade
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3.2 Basics of F inite Elem ent M odelling.

The essence of FEM is to solve a system equation to obtain approximate solutions 
of boundary value problems. FEM follows the following steps: 1) pre-processing of 
input data - continuous2 functions and partial different equations are discretized 
to form vectors and matrices ; 2) computation to solve the matrix equation; and 3) 
post-processing of output results, to retrieve the solution from the discretization.

This section provides a basic introduction to Finite Element procedures, with 
emphasis placed on the particular methods associated with modelling the incom­
pressible Navier-Stokes equations.

3.2.1 W eak Form o f th e Boundary Value Problem .

The process of spatial discretization by the Finite Element Method is based upon 
an integral form of the partial differential equations. The first task is the for­
mulation of a (continuous) variational problem associated with the given partial 
differential equation and its boundary conditions. The method most often chosen 
for this process is the Weighted Residual method, and in particular the classical 
Galerkin method.

3.2.1.1 Variational Principles - The W eighted Residual Formulation.

Variational methods, of which the Weighted Residual method is a member, are 
the first step in the process of transforming the boundary value problem to a 
usable Finite Element formulation.

Definition 3.1: A ’Variational Principle’ specifies a scalar quantity (functional) 
II which is defined by an integral form3

where u is an unknown function and F and E are specified differential operators. 
The general rules for deriving variational principles (the unknown function) from 
non linear differential equations are complicated and even the tests necessary to 
establish the existence of such variational principles are not simple*.

2 A function is defined over some region in space over which it is continuous - a FE formulation

is a discrete approximation of this continuous function.
3Zienkiewicz and Taylor, The Finite Element Method, Vol 1.
4Zienkiewicz and Taylor, The Finite Element Method, Vol 1.
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In essence the approach is to find the solution of the continuum problem (u ) 
such that the stationarity of II is invoked, with respect to the state variables, i.e. 
511 = 0 for all values of 8u. If such a variational principle can be found then it is 
possible to obtain an approximate solution, in the standard integral form, which 
is suitable for Finite Element Analysis.

The ability to solve boundary value problems which would otherwise have 
no classical solution, such as the Navier-Stokes equations, and the ability to 
take into account the boundary conditions in a manner which is considered more 
appropriate, e.g. for (4.3) the boundary condition becomes part of the weak form, 
are considered to be the main advantages of variational methods.

The standard variational approach commonly used for FEM analysis of fluid 
dynamics problems is the Weighted Residual method, and this method will be 
used throughout the remainder of this work.

There are numerous texts which give a detailed mathematical review, see Fin- 
layson [32] and Mikhlin [59], of the background and justification of variational 
methods, however this knowledge is not necessary to be able to apply Weighted 
Residual method and as such will not be given here.

However it is important at this point to define the main components of the 
Weighted Residual method, i.e. the boundary conditions, test and trial functions 
and the spatial discretization of the domain.

3.2.1.2 The Dirichlet and Neumann boundary conditions.

The domain Yl is an open region of Rn*d with a piecewise smooth boundary T, 
where nsd is the number of spatial dimensions. The boundary Y can be decom­
posed as:

Y = Ygu Y h k  0 =  r 5nrfc (3 .1 )

where the boundary Y consists of two parts (3.1), the so called Dirichlet bound­
ary conditions where the primary unknowns are prescribed and the Neumann 
boundary conditions where the derivatives of the primary unknowns are defined. 
The Dirichlet boundary is denoted by Yg and the Neumann boundary is denoted 
by Yh.

Prescribed velocities g on the surface u = g Vx E Yg (3.2)

Prescribed fluxes h on the surface Yh q{u) - n  = h Va; E Yh (3.3)
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where the solution variable u represents any physical field, such as the tempera­
ture distribution over the domain, q(u) is flux and a linear function of the first 
derivatives of u and x G Q, C Mnsd and the outward unit normal vector, to the 
fluid surface, is n. The unknown function u may also be a vector field, in which 
case the boundary conditions will be altered slightly.

3.2.1.3 Sobolev Spaces.

The spatial discretization by the Finite Element Method is based upon the dis­
crete representation of the weak integral form of the partial differential equations. 
This requires that certain functions spaces be defined - known as Sobolev spaces. 
A Sobolev space is a Hilbert space and is denoted by (TC). For the Finite Ele­
ment Method Sobolev spaces are used to approximate functions which are square 
integrable, and have square integrable first derivatives over the computational 
domain Q, i.e. the trial and test functions. A more detailed account of Sobolev 
spaces can be found in Adams [2].

3.2.1.4 Trial and Test Functions.

The first step in the Weighted Residual method leading to a Finite Element 
discretization of the model problem is the formulation of the weak (variational) 
form of the boundary value problem. This is achieved through the use of the two 
sets of functions: test or weighting (W) functions and trial solution (V) functions.

The first set of functions, the so called test functions, are denoted by W  
and consists of all functions which are square integrable, have square integrable 
first derivatives over the computational domain and vanish on the Dirichlet 
portion of the boundary. The Finite Element approximation space necessary for 
the correct discretization is:

W = { i o € H 1(fl)|«) =  0on T J  (3.4)

The second set of functions, trial, are similar to the test functions, however these 
functions are required to satisfy the Dirichlet boundary condition on Tg. The FE 
approximation space is:

V = {u G | u = ug onTff} (3.5)

The sets V and W  are approximated by the subsets Vh and W h respectively, i.e. 
Vh C  V & W h C W and are in part characterized by the partition of the domain.
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3.2.1.5 Partition of the dom ain.

The domain Cl can now be considered to be discretized into Finite Elements, 
where Cl is subdivided into nei subdomains, which are denoted by Cle.

n el

Q =  ( J  n e n a f  = 0 for e ^ f  (3.6)
e=l

Each subdomain has a piecewise smooth boundary Te = where subscript h 
indicates that the relevant variables belong to a finite dimensional space5. The 
test function wh G W h vanishes on T5 whilst the trial function uh is an approx­
imation which lies in Vh, and satisfies the boundary condition uj on Tg, with a 
precision defined by h. The interpolation spaces can be defined as:

V*= {nk e-Hl ( a ) \ u h \ ^ e V k(Qe) ,u h \xers= u g} (3.7)

W h = {to* e H\Sl) I wh U ti.6  n ( f i e), wh Usrs=  0} (3.8)

where Vk{Cle) is the space of all polynomials defined on f2e, complete to order 
k >  1.

3.2.1.6 Classical Galerkin Formulation.

One important Weighted Residual scheme is known as the Galerkin method or the 
Bubnov-Galerkin method, see Gresho et al [36] and Thomee [83]. The classical 
Galerkin method and variations of the classical Galerkin method will be adopted 
in the Finite Element work of this thesis.

Below the process of formulating a (continuous) variational problem associated 
with the given partial differential equation and its boundary conditions is shown 
for a model boundary value problem. Introducing Poissons equation:

—V2u = s Vx ECl (3.9)

where the quantity s represents a specified source term, and Cl is enclosed by a 
piecewise smooth boundary T.

The first step leading to the spatial discretization of the model problem (3.9) 
is the formulation of the weak (or variational) form of the boundary value prob­
lem. This is achieved by the multiplication of the governing equation with a test 
function w (see Section 3.2.1.4).

— j  wV2udCl =  j  wsdCl (3.10)
</ f t  J o

5h is the characteristic length
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The integration of weak form (3.10) over the domain and the application of 
the divergence theorem results:

Note that the use of the divergence theorem has allowed for the Neumann bound­
ary condition to be introduced naturally. The form of (3.12) means that it can 
be written in the format:

where a(w, u) and S(w) are a bilinear and a linear form, respectively. Provided 
u G V, the Dirichlet boundary condition on Tg is satisfied, and the model problem 
can be stated as:

Through the use of Lax-Milgram Lemma one can show that a weak solution u G V 
of (3.14) is unique, however this proof is not shown here, see Donea and Huerta 
[28] for further details.

Thus one arrives directly at the classical Galerkin formulation of the original 
model, where the weak form (3.14) is restricted to the finite dimensional spaces 
Vh C  V and VVh C  W. The weak form now reads:

(3.11)

Considering the following

1. if w G W then w = 0onTff, see (3.4)

2. q(u) n  = h, see (3.3)

the weak form (3.10) becomes:

/  (Vw • Vu)dQ, =  /  wsdCl + /
«I ci J r

whdT (3.12)

a(w, u) = S(w) (3.13)

find u G V such that a(w,u) = S(w) Vw £ W (3.14)

find uk 6 Vh such that a(wh, uh) = S(wh) Vui'1 € W h (3.15)

where the approximate solution uh «  u satisfies the Dirichlet boundary condition 
exactly whilst only satisfying the Neumann boundary condition in the weak sense.
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3.2.2 Finite Elements.

The Finite Element M ethod generates an approximate solution using a systematic 

approach which consists of using finite dimensional subspaces for the trial and 

test functions. In the previous section the necessary m athematical background 

for these subspaces was provided, and in this section the discretization of the 

domain, and associated methods are discussed.

3.2.2.1 Discretization.

(a) 2D mesh - triangular elements (b) 3D mesh - tetrahedral elements

Figure 3.5: FE meshes

The subspaces De are obtained through the partition of the domain 17, such th a t a 

mesh of non-overlapping elements is created. These elements, otherwise known as 

Finite Elements, can take the form of many different geometrical shapes, such as 

triangles, and quadrilaterals in 2D, Figure 3.5(a) and tetrahedra and hexahedra 

in 3D, Figure 3.5(b).

The work in this thesis is only concerned with 2D simulations and no further 

mention will be made of 3D modelling processes; the methodology is identical 

although 3D meshing is considerably more complex than th a t of 2D.

3.2.2.2 Mapping.

The Finite Element M ethod is a powerful tool because it is easily standardized 

for computer implementation. W hen the domain is discretized the result is a 

mesh of Finite Elements De which are all unique in location and size. Mapping is 

a technique th a t standardizes the calculations of a typical element irrespective of
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its size or global location in the domain, by relating a Param etric element domain 

□ to Finite Element domain Qe.

The map from param etric coordinates £ G □ to coordinates x h G De is given 

by the relationship

x h =  x(g) = ^ 2  (3-16)
/

Param etric element domain □ Finite Element FF

Figure 3.6: Mapping transformation

Equ (3.16) for a 2D three noded triangular element (i.e. nne — 3), see Figure 3.6, 

can be written as:

3
x h = ' y ] N I (€,rj)xI (3.17a)

or in m atrix format:

A = 1 
3

y h =  ^ 2 N i ( ^ v ) y i

x

A =  1

X i  X 2 X s  

V\ V2 2/3

Ni

N2

n 3

where the shape functions N i  are given as:

(3.17b)

(3.18)

Ni = l -  £ - r ) (3.19)
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3.2.2.3 Shape Functions.

Figure 3.7: Graphical representation of shape function Nj  in a 2D domain

The shape function N j  6 is used to interpolate the nodal values wi of a function 

w h G W '  within an element. The expression for wh is given, over an element, as:

wh = N f d )  Wl ^ G □ (3.20)

=> W h = N ^ x ' 1) w t x h G Qe (3.21)

where the value of N j  at the nodes, see Figure 3.7 is:

N x{xj)  = 8U = i 1 I = J  (3.22)
I  0 I *  J

where Sjj is the Kronecker delta function, and / ,  J  = 1,2, ...nne.

3.2.2.4 Isoparam etric Mapping.

An element is classified as isoparametric when the shape functions used to de­

fine the mapping between □ —> Qe and the function w h are the same, i.e. the 

shape function th a t defines (3.16) also serves to define (3.21) . The isoparametric 

concept leads to an convenient framework for computer implementation and is 

generally attribu ted  to Taig [75] and Irons [48].

6N j a polynomial whose order is governed by the number of nodes per element
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3.2.3 Solution Procedure.

The classical Galerkin formulation, see (3.15), reads: 
For W h C W and Vh C V  find uh G W h such that:

a(wh,uh) = S(wh) Vwh e W (3.23)

Using the Finite Element discretizations, (3.21), for wh and uh the classical 
Galerkin formulation reads:

nei
a(wh, uh) = wikjjUj =  in • FCw (3.24a)

e=l

S(wh) = wif i  = w ■ F (3.24b)
e=l

where w  and u  are the nnd-dimensional vectors of the nodal values of the test w h 
and trial solution uh functions respectively. The stiffness matrix K  and external 
force vector f  result from the assembly of the element contributions:

K  = A net i k e F  = A net xf e (3.25)

where A  represents the assembly operator7 acting on the local element matrix 
and nodal vectors. Since w  is arbitrary, (3.24) can be rewritten as

K u  = F  (3.26)

and the original continuous field problem have been transformed into a system of 
equations in terms of discrete unknowns, which can be solved. For a system of 
nonlinear equations, the Galerkin formulation may be written as

Tlel

a(wh,uh) = '^2wIrj{u1,u2, ...,unne) = w R
e= l
nel

S{wh) = Y dw , f ‘I = w - F

(3.27a)

(3.27b)
e=l

where R  is a nonlinear function of u  assembled from rf as:

7*1 ( i t ) U i

R  = U  =

f n neH _ _Unne_

(3.28)

Therefore

R(u) = F  (3.29)

represents the nonlinear counterpart of (3.26)
7The addition of the element contributions to the appropriate locations in the global matrices 

and vectors
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3.2.3.1 N ew ton-R aphson Iterative Solver

The Newton-Raphson iterative solver is possibly one of the most widely used 
and most rapidly convergent processes available for the solution of nonlinear 
equations, and is commonly found in standard texts on numerical procedures, 
including Bathe [6], and papers such as Stoer and Bulirsch [71], and Ortega and 
Rheinboldt [62]. The basic premise of the Newton Raphson scheme for nonlinear 
equations is to rewrite (3.29) in the form:

K u  = R  — F  (3.30)

where the tangent stiffness K  is given by:

K = ™  (3.31)

and solve iteratively using the process described in Box.(l).

For i = 1,2,3,....
1 Estimate u t+At and calculate R t+ A t

2 Compute R t+ A t ~ F t+At

3 Check solution convergence. If || Rt+At -- Ft+At ||^  tolerance Then Goto 8
4 Compute tangent stiffness K t+ A t = dR

du

5 Solve K } $  AuW = Rt+At -  Ft+At
6 Update =  uf+^l + Au<‘>

7 Goto 2
8 Exit

Box 1: Newton-Raphson procedure for the solution of nonlinear problem
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3.3 Conclusion

It was noted in Chapter 2 that the complexity of the Navier-Stokes equations 
suited a numerical approach to the solution. In this chapter the numerical ap­
proach to solving partial different equations was developed in readiness for future 
chapters.

The chosen numerical method was the Finite Element Method (FEM), and 
for the sake of brevity no other method was discussed. The FEM however was 
developed in reasonable detail, from governing equations to FEM model, including 
the formulation of the weak form, discretization of the domain and the solution 
procedure.

Should the reader wish for more information on any subjects discussed within 
this chapter the author directs the reader to articles and books cited.
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Chapter 4 

Stabilized Finite Elem ents 

M ethods for Fluid Flows.

Previously the mathematical methods and theories which form the basis of the 
Finite Element Method were discussed. In this present chapter we continue the 
mathematical description of the Finite Element Method with a more indepth look 
at the classical Galerkin method, as introduced previously.

It is well known that the classical Galerkin method is unsuitable for solv­
ing the incompressible Navier-Stokes equations. The solutions obtained using 
a Finite Element formulation generated by this method exhibit spurious oscil­
lations, caused by inconsistencies in the velocity and pressure fields. It will be 
shown that spurious oscillations found in the velocity field are due to the con­
vection term (u ■ V)u whilst the pressure instabilities are attributed to equal 
order interpolations of velocity and pressure. However the development of stabi­
lized Galerkin methods will circumvent the difficulties typically associated with 
the classical Galerkin method. The end result will be a technique which main­
tains solution accuracy, facilitates more convenient FE approximations, whilst 
counteracting the inconsistencies mentioned earlier.

The order of the chapter will be a brief discussion concerning instabilities due 
to the convection term, i.e. velocity, followed by the development of the steady 
state ID advection diffusion problem from governing equations to the weak form, 
including a brief numerical example. This will simply highlight the problems 
faced when modelling convection dominated flows. Afterwards the discussion 
will continue to oscillations in the pressure field and here the steady state Navier- 
Stokes equations will be used. Finally in this section the technique of stabilization 
will be covered and the previous examples will be reproduced to show the effect
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of the stabilization on the solution results. For the sake of simplicity this chapter 

is restricted to steady state fluid flow, however the methodology shown here is 

equally applicable to the unsteady formulations discussed in later chapters.

4.1 Spurious O scillations caused  by V elocity.

It is well known th a t the classical Galerkin method leads to the best approxima­

tion in the energy norm for self adjoint problems 1 such as those typically found 

in solid mechanics. However this characteristic is lost when problems, such as 

those commonly found in fluid mechanics2, are governed by non-symmetric op­

erators. For problems involving highly non symmetric operators e.g. convection 

dominated problems, additional numerical difficulties arise. In these situations 

the classical Galerkin method is found to be inadequate and the solution tends to 

exhibit spurious and globally propagating oscillations, see Figure 4.1. The insta­

bilities develop in areas where the boundary layer is strong and the inability of the 

classical Galerkin method to resolve this boundary layer causes the oscillations 

which spread through the entire domain.

— C la ss ic a l G alerkin

— A nalytical

A————i

Figure 4.1: Numerical and analytical(displaced) solution for the case of a propa­

gating rectangular wave, modeled using the ID advection-diffusion equations

^elf-adjoint - An operator which is symmetrical
2For fluid problems poorly resolved internal and boundary layers can be identified as the 

original source of the oscillations.

47



There are various methods which can reduce or eliminate the oscillations, e.g. 
mesh refinement, ALE and stabilization. Mesh refinement in the affected areas 
is an obvious choice as the oscillations are caused by rapidly changing solutions, 
i.e. where the solution is not smooth, however this is not desirable due to the 
increase in problem size. ALE has been shown to improve the solution, as pre­
sented by Macfadden [56] for a simple ID heat flow problem, but this method 
is computationally difficult to implement, and for > 1 can lead to exces­
sive mesh distortion. Stabilization is a popular option, and one which uses a 
method often found in Finite Difference simulations, i.e. the addition of artificial 
diffusion3. The artificial diffusion balances the reduced diffusion of the classical 
Galerkin method, suppressing the oscillations; it can also cause loss of accuracy 
if too overdiffusive. Therefore care must be taken when choosing the level of 
artificial diffusion applied to avoid an incorrect solution.

In order to understand the underdiffusive nature of the classical Galerkin 
method the ID Advection Diffusion problem is developed below, from governing 
equations to numerical example, using the Galerkin method.

4.1.1 FEM  Form ulation - ID  Steady S tate A dvection  D if­

fusion.

In order to model the problem the boundary value problem must be defined, and 
for numerical modelling this means the boundary value problem consists of a 
set of differential equations, a specification of the domain of interest, boundary 
conditions (BC’s) and initial conditions (IC’s). The domain of interest represents 
space over which the solution is sought and is fixed in space i.e. an Eulerian 
coordinate system, the boundary conditions represent prescribed values on the 
domain boundary and the initial conditions correspond to the prescribed values 
on the entire domain at the initial time step.

4.1.1.1 T he Governing Equations.

Recalling the incompressible Navier-Stokes equations derived in Chapter 2, the 
steady state one dimensional version reads:

p(tf + uxujX) -  (fiujX)jX -  qx = 0 (4.1)

3This method is applicable to the Finite Element Method due to the similar way which both 
methods approximate the differential operators
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where ux is a scalar unknown in the x spatial direction, /z is diffusion coefficient, 
qx is the source term. Here the standard notation for derivatives are used:

, . . du du (fu  . .ux -- u{x) u = —  u,x = —  u,xx = —  (4.2)

The ID steady state advection-diffusion equation is a linear form of the Navier- 
Stokes equation, see (4.1):

ft + (o^x) -  (Attt g ) , g = 0 Vx e ft (4.3)
convection dif fusion

where a is a given free velocity field defined over the spatial domain. Note that the 
inherent nonlinearity due to the convection term of the Navier-Stokes equation 
has been removed. The equation (4.3) still contains additional nonlinearities 
which appear if any of the following terms are dependent on the scalar unknown 
u, e.g. diffusion /z, free velocity a. However in this section it is assumed that /z, 
a are independent, and therefore (4.3) is a linear differential equation.

It is sometimes useful to introduce, at this stage, the term

Pea = ^  (4.4)
2/z v ’

where the global Peclet number PeG is inversely proportional to /z4. We can 
rewrite (4.5) to give:

^  + 2fiPe ^  ^  _  a j ^  [ux  ̂x -q x = 0 \fx G ft (4.5)

convection diffusion

In consideration (4.10) demonstrates the fundamental difficulty faced in solving 
flow problems in general: as the Peclet number increases, i.e. PeG > 1, the 
solution becomes dominated by the convection term. However as the Peclet 
number decreases, i.e. PeG < 1, the problem becomes diffusion dominated. 
Therefore the analysis must be able to solve for the response initially governed 
by diffusion at low Peclet numbers, and convection for large Peclet numbers.

4.1.1.2 Dom ain and B C ’s.

The boundary conditions were described previously, Section 3.2.1.2, however they 
are briefly repeated here. Let f2 =]0, L[ denote the spatial domain with a piecewise 
smooth boundary T. Considering only the Dirichlet boundary condition:

Prescribed fluxes g on the surface T u = g Vx £ T (4.6)

4If both L  & ax are constant, which is an acceptable assumption for this problem.
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The boundary value problem is given as: find a value for u which satisfies (4.3) 
Vx 6 and the prescribed boundary conditions.

4.1.1.3 Finite Elem ent Spaces.

The Finite Element approximation spaces necessary for the correct discretization 
of the governing equations are defined as:

• ^  C MN represents the closure of the physical spatial domain, in N  dimen­
sions. Therefore fiUT, where T is the boundary.

• The spatial domain Q, is discretized into nei Finite Elements, with charac­
teristic length Ax = xi+i — Xi

• For Semi-Discrete formulations the trial and test functions can be defined 
as:

Trial

V" =  {uh e H \Q ), uhxea. e  P *($n  uh\xer = g}

Test

W h = {«,* e H \Q ), w ^ a, e Pk(Qe), K/*Ur = 0 }

where H 1 denotes the usual Sobolev space of functions with square-integrable 
values and derivatives on Q whilst Pk(fle) is the space of all polynomials 
defined on f2e, complete to order k > 1.

4.1.1.4 F inite Elem ent D iscretization.

The next step in the Finite Element formulation is the discretization of the spatial 
domain5. As introduced previously the general Finite Element discretization 
applied to the field of the unknown variable can be written as:

uh = Y ,N i{x )u j wh = Ni (x)wj (4.7)

where the linear shape function Nj which denotes the shape function for node /, 
and is used to interpolate the nodal values of uj, and its virtual counterpart wj.

5 Reduces a continuous-system mathematical model into a discrete idealization
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4.1.1.5 Weak Form.

The process involves multiplying the governing equation (4.3) with the test func­

tion w,  and the integration, over the spatial domain, of the resulting terms. The 

variational (weak) formulation of the boundary value problem (4.3), ignoring ex­

ternal forces terms, applying the classical Galerkin method is as follows:

G{u,w)  = [  
Jn

= / w 
n

rt +  (axu x) -  ( / iux)i3 dx = 0 (4.8)

Applying the divergence theorem to the second term on the RHS and taking into 

account the Dirichlet boundary condition (4.6) 6 gives:

G(u,w)  = [  
Jn

w - tf  + w  • (axu }X) -  wfX • (fJLUtX) dx =  0 (4.9)

The final step of performing the Finite Element discretization of the weak form 

(4.9) leads to the following statem ent: Solve for uh £ V h such tha t \/wh £ W ;'

G (u‘
7lel r r xi+1

'’wh) = J 2
i =  1 l J x i

w ■ H + w • (axu x) -  w x • (liu x) dx =  0 \/x £]0, L[

(4.10)

4.1.2 N um erical Exam ple - F ixed Boundary Problem .

The ID Steady State Advection Diffusion Fixed Boundary Problem is used to 

dem onstrate the underdiffusive nature of the classical Galerkin method.

UO

Figure 4.2: Advection-diffusion for ID fixed boundary condition problem

6We assume that the flux on the surface is zero, i.e. w  ■ [/iu>x] =  0.
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M odel.

The solutions are obtained for PeG = 1, 10 100 with increasingly refined meshes 
(5, 10, 20, 50, 100 elements) using a ID 2 noded element. The value of PeG is 
achieved by setting ax = 1, L — 1 and varying fi = 0.005, 0.05, &0.5.

Geom etry.

(4.n)

Boundary Conditions.

w(0) = u q  u ( L )  =  u l  (4-12)

M esh.

Ax = - L , — L , — L , — L , —  L (4.13)
5 ’ 10 ’ 20 ’ 50 ’ 100  ̂ ;

Exact Solution.

The exact solution7 for the boundary value problem is given by:

u  —  u q  _  e 2  l  x  —  1  

Ul — Uq e2Pe° — 1
(4.14)

Num erical R esults.

Figure 4.3 shows the plots for different values of PeG and Pee. These charts 
demonstrate the solution behaviour, and it is noticeable that for Pee >1.0 the 
numerical solution is not comparable to the exact solution and the results are 
beset by nonphysical oscillation.

rExact solution is derived in Appendix B
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Figure 4.3: Comparison of FEM solution with exact solution for P eG =  1, 10, 100 

for meshes with 5, 10, 20, 50 and 100 elements
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Discussion.
In Figure 4.3 the results obtained from the solution of the model problem are 
presented, where PeG and Pee represent the global Peclet number and the local 
Peclet number respectively. Pee is defined by:

Pee = a-fr <4-15)
The above figure highlights the difficulties faced by the classical Galerkin method. 
The solutions which do not exhibit strong boundary layers are not affected by 
spurious oscillations, however those which do have strong boundary layers are af­
fected and in these cases the solution is completely governed by the oscillations. 
It is apparent from Figure 4.3 that presence of a strong boundary layer is related 
to the value of PeG, however it can be seen that mesh refinement has a positive 
outcome on affected solutions. Therefore we can state that the numerical accu­
racy of the solution is governed by Pee. For Pee <1.0 the results closely match 
the exact solution whereas solutions with Pee >1.0  show spurious oscillations. 
Therefore the inference can be drawn that it is Pee that is the true measure of 
the solution and not PeG.

This conclusion can be further proved by the following simple example. Consider 
the equation for a ID element, written in vector form:

(wi wi+i) ' ( f 
i=i V

i-H1 l"

t-H11
1

i 1
+  JL- ^  Ax

—! 1

Ui
= 0 (4.16)

obtained by substituting in the equations for u, w and N  into (4.10), where N  
for linear ID shape function is given as:

Ni = Xi+i — x 
Ax Ni+1 =

x — Xi 
Ax (4.17)

The nodal forces for two neighbouring elements are assembled into a global matrix 
and expanded and written in terms of u<_i, Ui and tq+i.

Pee — 1 Ui-|_i -|- 2Ui Pee + 1 i = 0 (4.18)

which can be rearranged making Ui the subject:

1 -  Pee 1 + Pee
Ui — ~ Ui-(_i -|- “ Ui—\ (4.19)
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One will note that (4.19) is actually the central difference scheme for the governing 
equations; it is well known that this scheme is unsuitable for modelling advection 
dominated problems.

We demonstrate this by substituting in the values iij_i = 0 and ui + 1 = 1 into

The result is negative if Pee > 1!

Conclusion.

In conclusion the instabilities in the velocity field can be circumvented by mesh 
refinement, which in the case of the ID Advection Diffusion problem is not an 
important factor, however for large scale 2D or 3D simulations this constraint is 
extremely computationally expensive and should be avoided where possible.

(4.19):

Ui (4.20)

(4.21)
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4.2  In com p ressib ility  C onstrain t.

The dependent variables of the governing equations developed in C hapter 2 are 

velocity and pressure, which in a FE setting, the classical Galerkin formulation 

gives rise to what is term ed mixed methods8. It is well known th a t the mixed 

Galerkin formulation requires careful consideration when applied to near or fully 

incompressible fluid flow problems. Taylor et al [76] found th a t the application of 

equal order interpolations lead to good velocity solutions yet the pressure solution 

was meaningless9, see Figure 4.4. However when mixed interpolations10 were 

employed, the solution for both fields were more accurate. Babuska [5] and Brezzi 

[14] produced a m athematical framework for understanding this behaviour, which 

specifies th a t the interpolating functions must satisfy certain stability conditions, 

i.e. the FE approximation spaces for pressure and velocity cannot be chosen 

independently. This is known as the Babuska, & Brezzi (or inf-sup) condition. 

Detailed information, including the derivation of the proof and the significance 

of complying to the constraint in mixed-method formulations, can be found in 

Brezzi [15] and Girault and Raviart [35].

Figure 4.4: Pressure plot: Numerical solution for the lid driven cavity example, 

modelled using the classical Galerkin formulation on a refined mesh.

8FE approximation of two or more vector/scalar fields
9Equal order interpolations generally leads to a singular matrix

10Unequal interpolations
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Prom a computational viewpoint the Babuska & Brezzi condition leads to in­
convenient numerical procedures, in many cases seemingly natural combinations 
cause large pressure oscillations in the pressure field. These oscillations are preva­
lent throughout the pressure solution and unlike the oscillations caused by the 
convection term in the previous section even increased mesh refinement has no 
effect, see Figure 4.4. Various numerical techniques have been suggested to avoid 
the inconvenience of Babuska & Brezzi condition, and these will be discussed in 
great detail in a later section of this chapter, under the heading of Stabilization.

In order to highlight problems caused by the incompressibility constraint we 
will now look at the Stokes equations and a numerical example i.e. the lid driven 
cavity.

4.2.1 FEM  Form ulation - Stokes equation.

The Stokes equation is special case of the Navier-Stokes equations and is suited 
to the consideration of the incompressibility condition because the convection 
term, which proved to be unstable under certain conditions, see Section 4.1.1, 
has been removed. Therefore all solutions obtained using the Stokes equation
will be unaffected by the spurious oscillations caused by convection.

4.2.1.1 The Governing Equations.

Recall the Stokes equations, see (2.47)-(2.48):

V ■ cr = 0 Vjc G 12 (4.22)

V • u = 0 V sG fi (4.23)

4.2.1.2 Domain and B C ’s.

The domain 12 is an open region of Ensd, therefore 12 U T where V is the piecewise 
smooth boundary and nsd is the number of spatial dimensions. Considering only 
the Dirichlet boundary condition:

Prescribed velocities g on the surface T u = g Wx G T (4.24)

where x  G 12 C Rnsd, and the outward unit normal vector, to the fluid surface, 
is n. The boundary value problem consists of finding u  and p which satisfy both 
Equ (4.22) & Equ (4.23) and the prescribed boundary condition (4.24).
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4.2.1.3 Finite Elem ent Spaces.

The Finite Element approximation spaces necessary for the correct discretization 
of the governing equations are defined as:

• The spatial domain Q, is discretized into nei Finite Elements.

• For Semi-Discrete formulations the trial and test functions for the velocity 
field can be defined as:

Trial

Vk = {uh e u k|*=n. e P ^ ( Q ‘), = g}

Test

w h = {wh e F 1(n)n-‘’", to*Uen« 6 p£dim(ne), = o}
whilst for the pressure field

p h = {ph\ph e c°(fi) n Ll(U), p 'W  e ft(ne)}

where H indim denotes the usual Sobolev space of functions with square- 
integrable values and derivatives on Q, C° is the space of continuous func­
tions on O, Lq denotes space of the square-integrable functions L2{Vt) mod­
ulo constants, whilst Pk(Cle)ndim is the space of all polynomials defined on 
f2e, complete to order k > 1 and ridim is the number of degrees of free­
dom. Note: since there are no pressure boundary conditions imposed on 
the pressure field, the test and trial spaces for pressure coincide.

4.2.1.4 F inite Elem ent D iscretization.

As introduced previously the General Finite Element discretization applied to
the velocity and pressure fields can be written as:

uh = ^  N i(x)ui w h = Ni(x)w i (4.25)

Ph ='52 Ni (x)Pi Qh = N^ x)(li (4-26)

where the linear shape function Nj which denotes the shape function for node I, 
and is used to interpolate the nodal values of « / & pi, and its virtual counterparts
Wi & qi.

If the Finite Element spaces are chosen accordingly, i.e. as defined by the 
boundary value problem, see (4.31), then the approximations for velocity and
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pressure will be computationally convenient equal order piecewise polynomials.

piecewise polynomials elements, as mentioned earlier, however there are certain 
limitations to this method and these are highlighted by the following numerical 
example.

4.2.1.5 Weak Form.

The weak form of (4.22) is reached by applying the classical Galerkin method, 
as presented in the section describing ID Advection Diffusion. Ignoring external 
forces terms the weak form of the Stokes equation is given as:

where w and q are velocity and pressure weighting or test functions respectively. 
Applying the Greens theorem to the integral of the diffusion term w  • [V • o]dVt 
it follows:

Using the Dirichlet boundary condition, where w = 0 on T, (4.28) can be rewrit­
ten by substituting in (4.29):

By substituting (4.30) into (4.27) the boundary value problem of (4.22)-(4.23) 
reads: Find uh G Vh and ph G V h for all wh G W h and qh G V h.

There are distinct advantages to be gained from the use of equal order linear

w • crndT (4.28)
Jo, Jfi J r

Since the stress tensor a  is symmetric it follows that:

(4.29)

(4.30)

G(uh,w h,ph,qh) = -  j  e(wh) : a (u h,ph)dU + f  qh ■ [V • uh]<Kl =  0 (4.31)■ h
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4.2.2 N um erical Exam ple - Lid D riven Cavity.

The Lid Driven cavity example is used to dem onstrate the shortcomings of using 

equal order piecewise linear velocity-pressure elements:

Model.
The solution is obtained for Re =  100, with solution velocity, density and fluid 

viscosity as u = 1 v =  0, p =  1 and y  — 0.01 respectively, with increasingly 

refined meshes, using a 2D 3 noded triangular element.

Geometry.
The cavity has unit depth and unit width, and the boundary conditions of the 

problem are represented in the diagram below:

u=1 v=0

u=0
v=0

u=0
v=0

P=0 u=0 v=0

Figure 4.5: Model: Geometry and Boundary Conditions 

Boundary Conditions.
The velocity boundary conditions are given as zero for the entire boundary in 

both x  and y directions, with the exception of the top boundary (including the 

corner nodes)11 which is prescribed a unit horizontal velocity. Pressure is fixed 

at an arbitrary point, which for this example, is midpoint of the bottom  boundary.

Mesh.
In order to highlight the failure of progressive mesh refinement to produce a sta­

ble solution the example is carried out for 3 mesh sizes of increasing refinement, 

i.e. 232 (910) &{3604} elements and 137 (496) & {1883} nodes, see Figure 4.6.

11 Known as flo w  past a ’leaky ’ cavity
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(a) 232 elements (b) 910 elements (c) 3604 elements

Figure 4.6: Meshes: 232 (910) and {3604} elements and 137 (496) and {1883} 

nodes

Numerical Results.
Figure 4.7—̂ Figure 4.9 show the solution results for the lid driven ’leaky’ cavity. 

The figures represent the results for 3604 element mesh for velocity and pressure, 

for both 2D and 3D plots.

(a) 2D

Figure 4.7: Velocity in x-direction u for 

mesh

(b) 3D

lid driven cavity example for 3604 element
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Figure 4.8: 

mesh

(a) 2D (b) 3D

Velocity in y-direction v for lid driven cavity example for 3604 element

>- 0.5

(a) 2D (b) 3D

Pressure p for lid driven cavity example for 3604 element meshFigure 4.9:
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Discussion.

Figure 4.9 show the results from the simulation for the largest of the 3 meshes, 
i.e. 3604 elements. It is clear to see that the pressure field is affected by the 
spurious oscillations, and it was noted that the pressure solution showed no signs 
of improvement through the use of mesh refinement.

The results for the velocity plots are seemingly not affected by the oscillations 
in the pressure field, as demonstrated in Figure 4.7 & Figure 4.8. This obser­
vation remains unchanged irrespective of the mesh density. However this result 
is expected as the Stokes equations lack the convection terms which previously 
spoiled the velocity field for the ID advection diffusion example, see Section4.1.

As mentioned previously the inability of the classical Galerkin method to 
properly resolve the pressure field is entirely due its failure to satisfy the Babuska- 
Brezzi condition. If the velocity and pressure finite element spaces are not chosen 
in accordance to the Babuska-Brezzi constraint then the solutions using con­
venient velocity-pressure interpolations, such as those used here, will suffer and 
the good stability and convergence properties of the Galerkin method will be lost.

Conclusion.

As shown in the previous two sections, the classical Galerkin method suffers from 
instabilities which can lead to spurious oscillations in both velocity and pressure 
fields. The root of the problem is its inability i) to properly resolve rapidly 
changing interior and boundary layers in the velocity field and ii) to properly 
consider the Babuska & Brezzi condition, leading to problems in the pressure 
field. It has been shown that certain techniques, such as mesh refinement, can 
reduce or cancel entirely the oscillations in the velocity field, however nothing has 
been presented so far in this work that allows us to circumvent the Babuska h  
Brezzi condition.

In the next section a technique will be developed that will allow solution of 
the incompressible fluid dynamics problems. This method is commonly known 
as the Stabilized Finite Element Method and is present here.
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4.3 S tab ilization .

The problems encountered from the use of the classical Galerkin method has lead 

to considerable interest into stabilized methods. In 1975 Zienkiewicz et al [88] first 

discussed the shortcomings of the classical Galerkin method and introduced the 

first Finite Element stabilization schemes, known as the Upwind Finite Element 

formulation. This method was based upon a modified weighting functions which 

weighted the upstream element more than the downstream element, i.e. modelled 

in the form of a Petrov-Galerkin formulation, see Figure 4.10:

(a) Classical Galerkin

D irection  o f F low

(b) Petrov-Galerkin

Figure 4.10: Representative ID Shape functions

For the Petrov-Galerkin formulation the weighting function may be selected from 

a different class of functions than  the approxim ate solution, i.e. Galerkin for­

mulation Wi = Ni whilst for the Petrov-Galerkin formulation Wi ^  Ni or more 

specifically:

f  he
Wi = Ni +  aw* where / w*dx = -f — (4-32)

where Wi is the Petrov-Galerkin weighting function and he is the characteristic 

length of the element. See Figure 4.11.

However the initial attem pts in creating a workable Petrov-Galerkin scheme 

where not completely successful, with the method suffering severe shortcomings 

when it was applied to all but the most simple simulations. Since the initial 

forays into creating workable stabilization methods there has been further work, 

carried out by a number of authors, including Codina [22], Galeo and Gomes [34], 

Hughes et al [43] and Heinrich et al [38], and references within. The result was 

a practically convenient modification of the classical Galerkin variational form of 

the problem.

64



(a) Ni

(b) w*

Figure 4.11: Streamline-upwinding/Petrov-Galerkin shape function. (a)+ (b)= (c)

This method adds artificial diffusion to combat the oscillations caused by a dom­

inant convection term and artificially compensates for the circumvention of the 

Babuska-Brezzi condition. The end result is stabilization which suppresses the 

oscillations both in the velocity and pressure fields and allows for the use of equal 

order u-p  interpolations, normally unstable within the Galerkin framework, but 

which become convergent in the stabilization framework enhancing stability and 

keeping consistency.

Among those most commonly used stabilization methods are the Streamline 

Upwind/Petrov-Galerkin (SUPG) in combination with the Pressure Stabilizing/Petrov- 

Galerkin (PSPG) and Galerkin Least Squares (GLS), see Hannani [37]. In the 

following section it will be shown th a t whilst the SUPG and GLS methods are 

different, they coincide for linear piecewise elements, such as those used within 

this work.

4.3.1 V elocity Stabilization - SU P G .

The spurious oscillations in the velocity field were observed by Brooks et al [16] 

who noted th a t they had no physical meaning. Further studies into this phe­

nomenon by Donea [28] suggest th a t the classical Galerkin framework produces 

a system tha t is under diffusive. Donea transformed the Galerkin discretization 

back into a partial differential equation and compared the result with the origi-
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nal governing equation. He found that the classical Galerkin scheme introduces a 
truncation error in the diffusion operator and this truncation error has a negative 
value for all values of the Peclet number. Therefore he concluded that a modi­
fied version of the original governing equations was actually being solved by the 
classical Galerkin method, one with a reduced diffusion coefficient. It was also 
proved that this error increased as the value of Pe grew and in this situation no 
stable solution is guaranteed.

The most obvious solution to this problem is to re introduce the lost diffusion 
into the Galerkin formulation artificially. The process of adding artificial diffu­
sion1̂  not as simple as it may seem. The value of this artificial diffusion will 
vary over the domain and is dependent on the local values of velocity, diffusion 
and mesh size, however an incorrect value will result in an over diffusive or under 
diffusive solution which are both undesired results.

Hughes and Brookes noted that artificial diffusion caused unwanted and ex­
cessive crosswind diffusion13 in 2D and 3D simulations, and in a series of papers 
Hughes and Brooks [43] proposed methods which allowed for the artificial diffu­
sion to be applied only in streamline direction i.e. in the direction ax and not 
transversely. This observation lead to the concept of Streamline Upwinding (SU) 
schemes. Initially the SU weighting function was added only to the convective 
term and it was found to be accurate for ID problems but accuracy was still 
an issue for multidimensional problems. In a subsequent paper by Hughes and 
Brooks [44] this technique was applied to all terms in the equation to obtain a 
consistent formulation and the Streamline Upwinding/Petrov-Galerkin method 
was born.

4.3.1.1 Stream line U pw inding/Petrov-G alerkin Formulation.

Consider the weak formulation of the ID advection diffusion equation, as intro­
duced in Section 4.1.1.5, with added artificial diffusion:

pxi+i r
^ 2  W h  - r t h  +  W h  • ( a x U hx ) +  ( n  +  f l a r t ) w hx  • U hx

i= i  L J

dx = 0 (4.33)

where it is assumed that nart = fjLart(ax,fi,Ax), and that fiart —> 0 as A x  —► 0 in 
order to maintain consistency of the original equations, see Johnson and Saranen 
[51] and Hirsch [39].

12 Otherwise known as balancing diffusion
13Diffusion normal to the streamlines
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Applying the artificial diffusion only in the streamline direction the formula­
tion (4.33) becomes:

n el

dx = 0 (4.34)
et rxi+i

wh ■ + wh • {axuhx) + f!Whx • uhx + raxwhx • axuhx
i = i  J x i L

This is known as the Streamline diffusion method. Because of the inclusion of 
ax into the artificial diffusion term, f i art becomes r  in order to account for the 
inclusion of time => r  = r(t,al, fi, Ax). Note that it is important to maintain 
the consistency of the scheme, and due to the choice of linear elements, r  must
tend to zero as the spatial mesh is refined i.e. r  —> 0 as A x  —► 0, see Jansen [49]
and Droux et al [29]. Should Semi-Discrete linear Finite Element interpolations 
be used then (4.33) can be categorized as a special case of:

nel I>xi + 1 r
2 J  / \wh • + wh • (axuhx) + • uhx dx (4.35)
i=l \- ’ ’ ’ J

pxi+i r 1
+ /  TsupG (a*whx) K  + a*uhx + V^xx] dx = 0 (4.36)

» = i L  -•

Equ (4.35) can rewritten in condensed form:

n el  /*

i = l  ,/a:*

where

wh =

wh [jdh + ax + fiu^] dx = 0 (4.37)

+  J s u p g  (axW %)

Galerkin Weighting

(4.38)
U pwindWeighting

When (4.37) is compared with the Petrov-Galerkin formulation (4.32) it is obvious 
that (4.37) is a Petrov-Galerkin formulation. However to recognize the fact that 
the artificial diffusion is only added in the direction of the flow the formulation 
(4.35) is often known as the Streamline-upwinding/Petrov-Galerkin method.

The SUPG formulation is applied in the repeat of the numerical example, see 
Section 4.1.2, to demonstrate the advantages of the SUPG stabilization.
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4.3.2 N um erical Exam ple - Stabilized ID  A dvection  D if­

fusion Fixed Boundary Problem .

In Section 4.1 the classical Galerkin method was shown to be deficient in the 

analysis of convection dominated problems and this was proved conclusively by 

ID Advection-Diffusion example tha t followed. The solutions from the example 

were rendered useless by oscillations which had no physical meaning; it was noted 

tha t positive results, in comparison to the exact solution of the problem, could 

be obtained by reducing the element size. However this is not a necessarily the 

best method as this leads to an increase in com putational time.

In a continuation of the ID Advection-Diffusion example, Section 4.1.2, Figure

4.3 is repeated here with the SUPG stabilization term  included in the boundary 

value problem. Only the results which suffered from insufficient numerical dam p­

ing, i.e. Pe > 1 are presented. The results are conclusive of the improvement 

derived from including the SUPG term into the classical Galerkin formulation.
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Figure 4.12: Solution improvement of SUPG Stabilization: Comparison of m eth­

ods - Classical Galerkin & Streamlined-Upwinding /  Petrov-Galerkin with Exact 

solution
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4.3.3 Pressure Stabilization  - P SP G .

The instabilities found within the pressure field if the Babuska & Brezzi condi­
tion is disregarded were discussed in Section 4.2. It was shown that the classical 
Galerkin method is unable to satisfy the Babuska & Brezzi condition when con­
venient equal order u — p interpolations are used. The result from the numerical 
example i.e. Stokes equations - lid driven cavity, showed that the pressure field 
was spoiled by spurious oscillations and even mesh refinement proved to be inef­
fective in their removal.

In this section pressure stabilizing methods are used to circumvent of the 
Babuska & Brezzi condition, and it is shown that it is possible, through their 
application, to remove the instabilities caused by incorrect consideration of the 
Babuska &; Brezzi condition.

4.3.3.1 Pressure Stabilizing/Petrov-G alerkin Formulation.

Hughes et al [45] considered the difficulties faced when solving the Stokes equa­
tions, and correctly understood that the key requirement was the satisfaction of a 
stability condition and that it involved both pressure and velocity interpolations. 
He suggested a new formulation which not only satisfied the Babuska &, Brezzi 
condition, and possessed better stability properties than the classical Galerkin for 
the Stokes equations but also allowed for equal order interpolations to be used. 
The proposed formulation, given by Hughes reads: Find uh G Vh and ph G V h 
for all wh G W h and qh G V h.

n e l p

^ 2  /  w h ■ [Vp* -  2/xV ■ £(«'“)] +  qh • [V • u h]dn =  0 (4.39)

where

w h = w h + TpspG^Qh (4.40)
' v /

Galerkin Weighting PressureWeighting

By virtue of the fact that the weighting function is w h with an added term, the 
above formulation can be classified as a Petrov-Galerkin method, and is commonly 
known as Pressure Stabilizing/Petrov-Galerkin method or PSPG.

Therefore in a similar manner to the advection diffusion problem, the im­
proved formulation represents the classical Galerkin formulation +  stabilizing 
term and tpspg —> 0 as /ie —>• 0 in order to maintain consistency.

Details of the implementation of this procedure are given later in Chapter 5.
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4.3 .4  Num erical Exam ple - Stabilized Lid D riven Cavity.

The example introduced earlier, see section 4.2.2, as a show case of the problems 

caused by incorrect consideration of the Babuska-Brezzi condition is presented 

briefly to qualify previous statem ents th a t stabilization is capable of successfully 

suppressing the oscillations in the pressure field.

In a repeat of the example introduced in Section 4.2.2, the pressure plot using 

the stabilized formulation is shown below. In order for a direct comparison a non 

stabilized pressure plot is also shown:

Figure 4.13: Pressure plot using a refined mesh without stabilization

>

0t5 0 \ SX
(a) (b)

Figure 4.14: Pressure plot using a refined mesh for the stabilized PSPG formula­

tion
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4.3 .5  Galerkin Least Squares Form ulation - GLS.

The conceptual framework of the Galerkin/Least Squares method was originally
developed by Hughes and Brooks, [16], [46] as a generalized SUPG method for 
higher order elements, as part of an extended investigation into stabilized meth-

supplemented by the Least Squares term of the residual of the governing equa­
tions. Significantly the method allows for the use of low and equal order interpo­
lation of the pressure and velocity fields, thus providing an efficient FE framework 
whilst preserving the accuracy of the Galerkin method and enhanced stability for

[45] for pressure stabilization.
The Galerkin/Least Squares(GLS) variational formulation is obtained by adding 

a further term to the classical Galerkin variational formulation. The extra term 
is a weighted Least Squares term of the governing equation and is added as shown 
below for the case of the full Navier-Stokes equations:

is the Linear differential operator and r  is the stabilization parameter, and is 
regarded as the weighting function of the Least Squares term. Note that the Least

is consistent for any value of r, however this is only true for quadratic or higher 
order elements. The elements used for both ID and 2D simulations in this work 
are linear, and in this situation the second derivatives disappear, therefore to 
maintain the consistency of the formulation r  must tend to zero as the spatial 
mesh is refined, see Jansen [49] and Droux et al [29] for further details regarding 
the consistency of this scheme. As a result the diffusive part vanishes. In addition 
the Semi-Discrete formulation means that w must also be omitted.

ods. In the Galerkin/Least Squares method the classical Galerkin formulation is

advection dominated problems. In particular see Hughes et al [46] and Brooks 
et al [16] regarding stabilization for advection dominated problems and Hughes

(4.41)

(4.42)

L(wh, qh) = p w h + (wfc • V )w h -  V • <r(wh, qh) (4.43)

Rh(uh,ph) = p u h + (uh ■ V )uh -  V • a(uh,ph) (4.44)

where Rh(uh,ph) is the residual of the strong form of the problem (4.3), L(wh, qh)

Squares term tends to zero as uh —► u  or A x  —> 0 and the variational formulation
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4.3.6 S U P G /P S P G  Form ulation.

In section 4.3.1 the SUPG method was introduced as possible solution to the os­
cillatory behaviour caused by convection dominated flows as discussed in Section 
4.1. Subsequently the PSPG method was shown to circumvent the Babuska Sz 
Brezzi 4.2 successfully. Tezduyar [81] suggested that the two formulations could 
be combined to form the SUPG/PSPG method, also see Tezduyar [77] for a re­
view of Stabilized Finite Element Methods for the incompressible Navier-Stokes 
equations

Here the combined SUPG/PSPG formulation is presented for the case of the 
full incompressible viscous Navier-Stokes equations.

G s u p g / p s p g ( u h , iih, w h, ph, qh) = G(uh, u h, w h,ph, qh) (4.45)

where w  is the modified SUPG/PSPG weighting function. Equ (4.38) and (4.40) 
combine to give:

W h = W h + TSUPG p(wh • V ) ^  + TpsPG^Qh (4.46)' '>-----V-----'
Galerkin Weighting Upwind Weighting Pressure Weighting

Equ (4.46) is often rewritten in a shortened version i.e. w h = w h + Sh + eh, with
T s u p g  and t p s p g  replaced by ru and rp respectively to represent velocity and 
pressure stabilization, thus allowing for independent control of the velocity and 
pressure stabilization:

Sh = rup(wh • V )uh (4.47)

eh = TpVqh (4.48)

where Sh is the specific velocity weighting function and eh is the specific pressure 
weighting function.

4.3 .7  S U P G /P S P G  or GLS.

The reader will note that the SUPG/PSPG and the GLS formulations become 
identical if the Finite Element interpolation is linear, as the diffusion term in the 
Least Squares term disappears and if ru = rp.

Both formulations exhibit good convergence and stability properties, and in 
comparison to the classical Galerkin method both prove to be superior, as was 
shown by Johnson et al [51].In this thesis only linear elements are considered and 
in this situation both formulations coincide. However for simplicity the formula­
tion will be called under one name i.e. SUPG/PSPG.
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4.3.7.1 Stabilization Param eter.

The correct choice of stabilization parameter r  is imperative if good solution 
accuracy is to be assured, and numerous texts can be found on this subject, 
including Johnson and Saranen [51], Dettmer and Peric et al [27] and Donea and 
Huerta [28]. r  is defined by:

h

where

C =  , ■ ■ (4.50)

1 + (* R ^ )

and the element Reynolds number Reh:

Re* =  *!£!£ (4.51)
2/z v '

where the variables pi and p2 are scaling parameters, and uh represents the fluid
velocity in the element whilst h equals the characteristic length, which for 2D
h = 2y/A/7r is adopted, for element areas A.

Both Johnson and Saranen [51] and Hughes et al [45] have considered the
requirements that govern the choice of r  in order to achieve the best rate of
convergence. Johnson and coworkers only considered the convection-dominated
limits case of the Navier-Stokes equations and they concluded that the order of
r  is 0 (/i2). Whilst Hughes considered the limits for diffusion dominated flows
and arrived at conclusion that r  should be in the order of O (h). The manner in
which this criteria is met is described below:

lim £ = p2Reh Diffusion limit => r = 7 —h2 = 0 ((h )2) (4.52)
Reh—*0 4 fl

lim C — Pi Convection limit => r = -j^—h — O(h) (4.53)
Reh—*oo

Equ (4.52) demonstrates how the parameters p\ and limit the behaviour of
For this thesis the values of & /V 4 are defined as:

p1 = 30 A = 100 (4.54)

Therefore the values of ru and rp are defined as:

* V’+(*) 1 Vi+0 )
Details of the implementation of this procedure are given in Chapter 5.

14 The effect of varying (3 was noted to be small unless the values of (3 are at the extremes.
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4.4 N um erica l E xam p le - S tab ilized  Lid D riven  

Cavity.

The second example will be for a flow past a ’non leaky’ cavity using the stabi­

lized Navier-Stokes equations for incompressible viscous flow, and the results will 

be compared directly to those obtained by Ghia et al 15. The purpose of this 

example is to highlight the excellent solutions obtained through the use of the 

PSPG /SU PG  method for relatively coarse meshes.

Model.
In order to compare the results with those given by Ghia et al the simulation was 

carried out for comparable Reynolds numbers. Both u and p are fixed at unity and 

fluid viscosity p  was varied in order to regulated Re, i.e. p  =  0.01 => Re =  100, 

p  =  0.0025 =k Re = 400, p = 0.001 ^  Re = 1000, p = 0.0002 =s> Re = 5000, & 

p = 0.0001 => Re = 10000. The problem was modeled with increasingly refined 

meshes, using a 2D 3 noded triangular element.

Geometry.
The cavity has unit depth and unit width, and the boundary conditions of the 

problem are represented in the diagram below:

u=1 v=0

u=0
v=0

u=0
v=0

P=0 u=0 v=0

Figure 4.15: Model: Geometry and Boundary Conditions

15Ghia’s results are regularly used to bench mark results for flow past a ’non leaky’ cavity - 

produced using a Finite Difference scheme on very dense meshes
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Boundary Conditions.
The velocity boundary conditions are given as zero for the entire boundary in 

both x and y directions, with the exception of the top boundary (excluding the 

corner nodes)16 which is prescribed a unit horizontal velocity. Pressure is fixed 

at an arbitrary point, which for this example, is midpoint of the bottom  boundary.

Mesh.
3 mesh sizes of increasing refinement, i.e. 3604, (8076) and [15818] elements and 

1883, (4159) and [8076] nodes were used, see Figure 4.16.

(a) 232 elements (b) 910 elements (c) 3604 elements

Figure 4.16: Meshes: 3604 (8076) and {15818} elements and 1883 (4159) and 

{8076} nodes

Numerical Results.
Figure 4.17 shows the pressure and velocity contour plots for Re =  100, 1000, 10000 

for the ’non-leaky’ lid driven cavity example.

Figure 4.18 shows the velocity profile for u and v for the horizontal and vertical 

axes of symmetry respectively. They are presented and compared with results by 

Ghia.

16Known as flo w  past a ’no n  le a k y ’ cavity
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Figure 4.17: Pressure and Velocity contour plots for the lid driven cavity flow 

problem for an ’non leaky’ cavity for Re =  100,1000,10000
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Figure 4.18: Comparison of numerical results performed using the SU PG /PSPG  

formulation with those obtained by Ghia et al
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D iscussion.

It is clear from Figure 4.6 that there is a marked improvement in solution due to 
the implementation of the stabilizing SUPG/PSPG formulation, when compared 
to solutions were stabilization is absent. Both the velocity and pressure contour 
plots are free of the non-physical oscillations which were prevalent in the classi­
cal Galerkin solution seen previously in Section 4.1 & (4.2). In addition to this 
Figure 4.18 demonstrates that the accuracy of the solution is unaffected by the 
SUPG/PSPG formulation, as the velocity plots in x and y axes are comparable 
to the results obtained by Ghia. In addition to this the meshes used are, in some 
cases, considerably coarser than those used by Ghia, and a reduced level of accu­
racy could be expected.

Conclusion.

The results from this example highlight the benefits of the SUPG/PSPG for­
mulation over the classical Galerkin method, i.e. circumvention of the Babuska 
&; Brezzi condition, resulting in an improved pressure field. In addition added 
diffusion in the streamline direction counteracts the effects of the under diffusive 
classical Galerkin method, with no loss of accuracy.
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4.5 Conclusion.

The focus of this chapter has been the classical Galerkin method, its application 
to the incompressible viscous Navier-Stokes equations, and the techniques that 
have been developed, namely stabilized methods, to circumvent the inherent and 
undesirable effects of the classical Galerkin method.

We have shown that the classical Galerkin formulation is under diffusive for 
convection dominate problems and does not satisfy the Babuska & Brezzi condi­
tion when equal order interpolations are used, causing non physical oscillations 
to occur in both the velocity and pressure fields respectively. Two numerical ex­
amples were presented [Stokes flow problem and ID advection diffusion problem] 
to validate these statements.

A stabilized formulation was introduced to circumvent the Babuska & Brezzi 
condition and correct other failings of the classical Galerkin method. The sta­
bilization (SUPG/PSPG) was added in a Petrov-Galerkin framework and was 
shown to be successful in controlling non physical oscillations in two numerical 
examples [ID advection diffusion, lid driven cavity].

In the next chapter the stabilized formulation will be developed for unsteady 
flows.
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Chapter 5

Im plicit Tim e Integration  

Schemes for the incom pressible 

Navier-Stokes equations focusing 

on the Generalized-a M ethod.

Most fluid flow problems can be classified as transient, however the computa­
tional expense of modelling transient problems, e.g. in particular turbulence, has 
restricted research. With the ever increasing computational capability of mod­
ern day computers the expense is no longer prohibitive and in response to this, 
research is being focused more and more on unsteady flows, and in particular 
temporal integration schemes.

In this chapter transient flows are addressed as a continuation to the Finite 
Element formulations discussed previously in Chapters 3 & 4. Here various tem­
poral integration schemes are developed in conjunction with the spatial Finite El­
ement Method for the solution of unsteady incompressible viscous Navier-Stokes 
equations. Each scheme will be assessed for its suitability and a comparison of 
methods will be made through the use of numerical examples, which are discussed 
in detail at the end of this chapter.

5.1 Introduction.

In transient flows it is often necessary to integrate a broad range of temporal and 
spatial scales over large periods of time, and it has long been realized that a suc­
cessful time integration scheme needs to possess a certain degree of algorithmic
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damping. In particular the scheme needs to control high frequency modes which 
are often poorly resolved by the spatial discretization of the domain, and can lead 
to non-physical instabilities if left undamped. However, as previously mentioned 
in Section 4.3, the application of damping to reduce or nullify non-physical in­
stabilities is a complicated process, and one that must be carefully considered. If 
left undamped poorly resolved high frequency can cause the iterative solution to 
collapse, however too much damping and important lower frequency modes will 
also be damped and the dynamics of the resolved scales will not be faithfully rep­
resented. Therefore a time integration scheme featuring controllable numerical 
dissipation is required, and they are discussed presently.

There are various implicit methods which can be employed to integrate the 
Navier-Stokes equations in time, and they can be divided into 2  separate cate­
gories, Discrete time integration and Time Finite Element Methods. Within each 
category there are a variety of schemes, however these schemes are often problem 
specific with substantially varying properties, performing well for certain prob­
lems, yet failing on one or more type of problem. These schemes are unsuitable 
candidates for an all purpose scheme, and it is uncommon to find a general all 
purpose scheme that performs well for all problem types. In this work we intend 
to introduce a time integration scheme, known as the Generalized-o: method, as 
an all purpose scheme suitable for fluid flows.

5.1.1 Com bined T im e In tegration /Sp atia l F in ite E lem ent 

form ulations.

In Chapter 4 we introduced the steady state formulations. In this chapter time 
integration schemes are presented, and accordingly we introduce an extra domain 
i.e. the temporal domain. Therefore in addition to a discretized spatial domain 
the temporal domain must also be considered. There are two recognised schemes 
which combine time integration schemes with spatial Stabilized Finite Element 
formulations, and they are separated into schemes which discretize the spatial 
domain only and those which discretize both spatial and temporal domains, i.e. 
Semi-Discrete and Space-Time Finite Element Methods respectively.
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Sem i-Discrete Finite Element Methods.
Semi-Discrete methods only discretize the spatial domain using the Finite Ele­
ment Method, whilst leaving a system of ordinary differential equations to be 
integrated in time. For non moving domains (see Space-Time Finite Element 
Methods) this temporal integration scheme is considered to be the most appro­
priate, see Jansen et al [50] and Dettmer and Peric et al [27] and references within.

Space-Time Finite Element Methods.
In addition to the spatial discretization found in the Semi-Discrete method, the 
Space-Time method also discretizes the temporal domain. In reality this means 
that the solutions spaces and weighting functions are given a temporal dependence 
as well as a spatial dependence. Both Shakib et al [6 8 ], [69] and Tezduyar et al 
[78] have proposed and analysed Space-Time Finite Element Methods, and found 
that whilst the solutions were accurate, the extra computational cost could not be 
justified for standard simulations. However for simulations which involve moving 
domains, deforming bodies etc, the added cost is considered to be justifiable 
because the Space-Time formulation allows for a consistent method with which 
to track the moving boundary.

5.1.2 S tability  of T im e Integration.

The choice of the integration method is often dependent upon the problem anal­
ysed and the reasons for these choices lies in the stability constraints of the phe­
nomenon being analysed. Generally for computational fluid dynamics explicit 
schemes are used whilst for structural dynamics implicit schemes are preferred. 
However when fluids and solids are modelled within the same problem, such as 
for fluid-structure interaction it is sometimes difficult to decide which approach 
is most suitable.
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Explicit Schemes.
For explicit schemes the stability criteria state that, for a linear convection equa­
tion, the Courant (C) number must be lower than one, i.e.

C = u A t/A x  ^  1  where x = Xi & u = Ui for i = 1 , 2 ,3 (5.1)

which simply stated means that the flow cannot advance more than one element 
spacing during one timestep, in any given coordinate direction1. However the 
timestep restriction imposed by the stability condition can sometimes be strin­
gent compared to the time scales required by the solution. In addition to this 
explicit schemes require large amounts of data storage to store the history of the 
solution but do not require factorization of the stiffness matrix to advance in time 
which is a distinct advantage.

Im plicit Schemes.
Implicit methods have the advantage of being typically unconditionally stable in 
terms of linear analysis, however they require the factorization of the stiffness 
matrix (at least once every timestep2) and therefore require considerably more 
computational time.

Because the critical time step for an explicit integration scheme of the fluid re­
sponse is often larger than the critical time step required by the structural re­
sponse, it is common, for fluid structure interaction problems, to couple different 
integration operators. In this manner conditionally stable explicit schemes are 
used to integrate the fluid response whilst using unconditionally stable implicit 
schemes for the structural response. However difficulties can arise when choosing 
which method to use, and how they should be coupled. And in addition to this 
an unconditionally stable implicit scheme is required by incompressible flow sim­
ulations for the pressure equations. Therefore in order to avoid such confusion 
and to deal with the pressure constraints we will implement an Implicit method.

The chosen Implicit time integration method for this work will be Generalized- 
a method for all unsteady flow simulations. The Generalized-a method is an 
implicit method introduced as an extension of the so called HHT scheme by

1 Although this general rule is a governing factor in most explicit schemes there are exceptions 

to this, namely the Runge-Kutta scheme which violates this restriction within the order of

magnitude.
2 Only when A t  is not constant
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Chung and Hulbert [2 1 ]. It was initially considered for structural problems only, 
however Jansen et al [50] used this scheme to model the stabilized Navier-Stokes 
equations with success and this has confirmed by Dettmer et al [27]. In this work 
we intend to confirm the applicability of the Generalized-cc method for a number 
of different fluid dynamics problems.

The Generalized midpoint rule will also be considered here in order to provide 
a comparison of schemes. A scalar model problem will used to present their 
properties.

5.2 Scalar M odel Problem .

In this section a scalar model problem will be presented and this will form the 
basis for the analysis of the time integration schemes in later sections.

The model problem can be written as a first order ordinary differential equa­
tion:

y = Xy (5.2)

The initial value problem, consists of finding a function y = y(t) which satisfies
(5.2) and the initial condition given by y(0) = yo, where yo is given. The exact 
solution is written as:

y = yoext (5.3)

Therefore it follows, from (5.3), that

\yn+i\ < \yn\ x > o  (5.4)

\yn+i\ = \yn\ A = 0 (5.5)

where yn and yn+i are used to approximate y(tn) and y(tn+1 ), tn+\ > tn and
At = tn + 1 — tn. The amplification factor A is given as:

A = 3fa+x ^  A =  eAAt (5.6)
Vn

Considering (5.4) & (5.5) the amplification factor has the following condition:

|A| s: 1 (5.7)

where |A| is the spectral radius and is often denoted by p.

P = |A| (5.8)
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To make the model problem (5.2) reflect both the advective and diffusive phe­
nomena A - the eigenvalue associated with a chosen mode, is a complex number,
i.e.

A = — £ + iw  (5.9)

where the difference between w  and £ and their numerical counterparts w h and 
£h represents the amount of numerical dispersion and numerical damping, respec­
tively.

From this point the scalar model problem will be used to compare the two 
timestepping schemes and their respective properties.

5.2.1 G eneralized M idpoint R ule.

Introducing at this point the Generalized Midpoint rule for integrating (5.2) from 
tn to tn+i.

yn + 1  = 72/n+i + (1 -  7)yn (5-10)
Vn+ 1 Vn /  rr -| -i \

Vn+ 7  —  ^  (5-11)

where 0 ^  7  ^  1. Substituting (5.10) h  (5.11) into (5.2):

2/n+i -  Vn ~ AAt[7 ?/n+i + (1 -  7 )yn\ = 0 (5.12)

Rearrangement of (5.12) into the equation for the amplification factor results in:

A* = 1 +  0- ~  ^  (5.13)
1  -  7 AAt V ^

Similarly by inserting (5.13) & (5.9) into the equation for the spectral radius the 
following equation is obtained3:

k / ( ! - ( ! -  7 )gAt) 2  +  ( ( 1  -  rfw A t ) 2

9 V (l +  7eA< ) 2  +  (7»’At)2 ^ - L*>

5.2.1 . 1  Stability.

It is important that the timestepping scheme is stable in order to ascertain con­
vergence of the algorithm, i.e. yn —► y(tn) as At —► 0. Therefore if (5.4) &: (5.5) 
are taken to be the stability conditions, then on evaluation of (5.13) it is found 
that unconditional stability is achieved when:

lim Ah = -— — =>• (5.15)
AtX—>00 7  2

3 Calculation by Mathematica
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For values of 7  < |  stability is only achieved for a given value of A when an upper 
bound value of the time step is imposed - this is called conditional stability. 
However it can be shown that the time step is proportional to h2, where h is the 
mesh size parameter, and this is an inconvenient constraint which is best avoided. 
Therefore unconditionally stable algorithms are generally preferred. The limit of 
p, for unconditional stability, is given as:

/ t  = lim ph = ^— 2 (5.16)
A t—>00 7

More usefully (5.16) can be rearranged to make 7  the subject
1 _

i  +  p *

where 0  When pJo = 1 the method is known as the Trapezoidal Method
and when pj  ̂= 0 the Backward Euler Method

7 = (5-17)

5.2.1.2 Convergence.

Once again considering the model problem (5.2), written with force term F:

y - X hy - F  = 0 (5.18)

If (5.18) is discretized in both spatial and temporal domains, by substituting in 
(5.6), (5.10), (5.11) and (5.13):

yn + 1 -  Ahyn -  Y ~ ^ K t \ Fn+y = 0  (5'19)

Replacing the approximations yn+1 and yn with their exact counterparts, y(tn+1 ) 
and y(tn) respectively:

y(tn+1 ) -  Ay(tn) -  Ln = A t • t  (5.20)

where Ln = T ^ h \ K ^ ' n + 7  and r  represents the truncation error.

Using a finite Taylor expansion on y(tn+1 ) and y(tn), in terms of y(tn+1), and the 
model equation to eliminate time derivatives of y{tn+1) it is possible to arrive at 
the following expression4,

t = (1 -  2'y)0(At1) + 0{A t2) (5.21)

It is obvious from (5.21) that the Generalized Midpoint rule is first-order accurate 
method, except for the special case where 7  =  \  or —  1, then the second order 
accuracy is achieved.

4 The expansion and resulting algebraic manipulation is time consuming and is not included

here, see Hughes [42] for further details
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Remark 5.1: Trapezoidal rule.

For convection dominated flour1, where p^  =  1 (or very near I), AAt —> oo and 

A =  — 1 the solution exhibits a ’sawtooth’ pattern which manifests itself frequently 

in computations, see Figure 5.1. For such cases it is often appropriate to use a 

value which is strictly less than one.

Figure 5.1: Numerical example:- Flow past a circular cylinder. Plot C l against

time for Re =  400 A t = 0.0025 p^  =  1 with a medium dense mesh

5.2.2 Generalized-a M ethod.

We introduce at this point the Generalized-c* method for integrating (5.2) from 

tn to tn+1 where tn+l = tn + A t.

Vn+atTn — ^Un+otf

Vn+1 = Vn +  A ty n +  At~/(yn+1 -  yn) 

Vn+am Vn ^m(?/n+1 Vn)

Vn+otf Vn 4" QfiVn+l Vn)

(5.22)

(5.23)

(5.24)

(5.25)

(5.22)—>(5.25) can be combined to produce a system which takes the form

ayn+1 =  byn — > y n+1 = cyn (5.26)

where the amplification m atrix c =  a~lb and the solution vector at tn is given 

by yn = (yn, A y n)T. (5.26) is rewritten in m atrix format as

Vn+l 1

A ty n-\-\ " d
a m - ( p i f - \ ) ^ \ A t  a m — 7

AA t a m — 1 +  a f \ A t ( l  — 7 )
Vn 

&tyn

(5.27)

’The effect is less for linear problems
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where d = am — oif'yXAt. It is fairly straightforward to show that if yn = A yn-1 

is combined with (5.26) and the rate terms, i.e. yn+\ ,ynh y n-\ are removed then 
it follows that, see Hughes [42]:

Un+i = tr(c)yn -  det(c)yn-i  (5.28)

Using a finite Taylor expansion on y(tn+1 ) and y{tn- 1 ), in terms of y(tn) in time, 
in a similar manner to the analysis of the Generalized Midpoint rule, it is possible 
to arrive at the following expression which assures second order accuracy:

7 = ^ +  <Xm-<Xf (5.29)

Rearrangement of (5.29), and taking into account (5.6) gives:

A2 — tr(c) A + det(c) = 0 (5.30)

which is the characteristic equation for c (see Chung and Hulbert [21] and Zienkiewicz 
and Taylor [89]), it is possible to find eigenvalues of c to prove stability however 
this is an enormous task when it would be far simpler to find the stability con­
straints through the use of limiting values. The Routh-Hurwitz criterion defines 
the stability constraint.

Remark 5.2: Routh-Hurwitz criterion.
A characteristic polynomial is given below:

CQZ2  +  CiZ +  c 2 =  0 ( 5 . 31)

The Routh-Hurwitz criterion for stability requires that the modulus of the roots of 
a stability polynomial or of the associated amplification matrix be less or equal to 
one or more simply:

C q > 0  C i ^ O  C2 > 0  ( 5 .32)

The limiting values are given as At —> 0 and At —> oo

lim Ah = \ 1 -  —  ,1  1 (5.33)^-0 \ j

lim Ah = f e - a4 r l , 1 -  — 1 (5.34)
A t—too I 2(o:m — a / )  +  1 o tf  I
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Therefore the requirements for unconditional stability are:

<*m > oif ^  i  (5.35)

Once again it is convenient to specify the stability parameters in terms of the 
spectral radius pj ,̂ where:

pZ0  = max(\A1 \,\A 2\) (5.36)

Therefore it follows from (5.34) that:

am = \  ? ~ P°° a , = , 1  , (5.37)
2  1  + p*, '  1  + p*, v

where 0 ^  ^  1. The Generalized-o: method has the ability to control the high
frequencies damping (within resolution) exactly, for p1̂  = 0 . 0  the method will re­
move the highest frequencies, yet for pj  ̂= 1 . 0  it has the property of introducing 
no damping regardless of the timestep. However p^ = 1.0 is equivalent to the 
Trapezoidal rule which as noted previously suffers occasionally from ’sawtooth- 
ing’. If the desired effect is no damping then p^ should be given a value close to 
one but which is not one.

5.3 Step-by-step solution algorithms.

The time integration algorithms i.e. Generalized-a method and the Generalized
Midpoint rule, yield incremental time stepping algorithms. The time stepping
procedure is explained briefly for both algorithms below.

The scalar model problem, see Section 5.2, is reintroduced in a form which is 
commonly found in fluid flow problems, i.e. in a nonlinear form:

v = Kv)y (5-38)

Following the same steps as applied previously for the linear form we arrive at:

yn + 1  = k h(yn+1 ,yn) yn (5.39)

The dependence of Ah on the unknown variable produces an implicit scheme for 
the solution of yn+\.

By the same process the nonlinear time integration schemes also produce im­
plicit solution equations. To solve implicit equations requires an implicit solver,
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and a commonly used solver is the Newton Raphson iterative solver, as described 
previously in Chapter 3. Both Generalized-a method and the Generalized Mid­
point rule use this procedure, however due to the difference in time integration 
used by the two methods the solution procedures are different.

Generalized M idpoint R ule for the M odel Problem .

Equations (5.10) & (5.11) are both written in terms of yn + 1 and yn, therefore:

G(yn+i,yn) = 0  (5.40)

The Newton-Raphson procedure for updating the next timestep are given as:

1 . Solve G(yn+Uyn) = 0 for yn + 1

2. Update yn <- yn + 1

3. Goto 1.

G eneralized-a M ethod for the M odel Problem .

The process is similar to that given for the Midpoint rule. Equ (5.22), (5.23), 
(5.25) and (5.24) are all required to produce equations for the solution at tn + 1

i.e. yn + 1 and yn+\. The method is shown below:

Equ (5.23) is rearranged to produce

1 1 (1  -  7 )  .

^ 7 1 + 1 =^yAtV n + 1  ~  7 A t Vn 7  5̂'41^

which is substituted into (5.24) to remove the dependence on the unknown term

Vn+l-

.(i) (i) \  . / c  . r jx
yn+cm = ^ - / n i l  -  +  (1 ~ ~ )V n  (5-42)

Equ (5.42) and (5.25) give (5.22) in terms of the only unknown yn + 1 and this 
gives:

G(yn+i,yn,yn) = 0  (5.43)

As a result; one extra variable yn is required for the solution at the next time 
step. This addition leads to a slightly more complex iterative procedure:

90



1 . Solve G(yn+i,ynjyn) = 0  for yn + 1

2. When Residual ^  tol calculate yn+\ with (5.41)

3. Update yn, yn <- yn+u yn + 1

4. Goto 1

5.3.1 Com parison o f Schem es.

Integration Method Stability Order of 
Accuracy

phr  oo Memory
Requirements

Backward Euler U nconditionally 1 0 . 0 Vn

Stable
Trapezoidal rule Unconditionally 2 1 . 0 Vn

Stable
Generalized Midpoint rule U nconditionally 1 - 2 user Vn

Stable defined
Generalized-a method U nconditionally 2 user Vn j Vn

Stable defined

Table 5.1: Comparison of time stepping algorithms

Remark 5.3: Storage requirements.
The Generalized-a method has larger storage requirements in comparison to the 
other schemes - the number of stored variables from the previous time step has 
doubled.

Dettmer and Peric [27], with some Backward Euler analysis carried out by Shakib 
Sz Hughes [6 8 ], conducted an indepth study of each time integration method 
combined with the Stabilized Finite Element Method using a Fourier analysis 
and the conclusions drawn are compiled here:

• Convergence is assured for p > 0  as long as Ax  —> 0 , At —> 0  and r  —► 0

• for pure advection i.e. /i = 0  the methods converge for any value of r
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• The accuracy of the solution is mesh dependent and is irrespective of the 
method used.

• Spatial discretization has an effect on numerical damping when r  > 0.

• r  is a characterizing parameter and may effect the accuracy of the solution 
if incorrectly chosen.

• the choice of a time dependent r  is ill advised, as reduction of the timestep 
leads to a reduction in numerical damping for unresolved high frequencies.

Dettmer concluded that the parameter is the determining factor for the damp­
ing characteristics of two schemes. He also showed that the numerical damping 
effect on the lower frequencies is less for the Generalized-a method than it is for 
Generalized Midpoint rule.

5.4 Im plem entation of T im estepping in FEM .

In this section the stabilized ID Advection Diffusion and Navier Stokes equations

numerical example which will follow.

5.4.1 ID  A dvection  D iffusion.

The weak form of the stabilized steady ID advection diffusion equations were 
previously developed, in Section 4.3.1. The unsteady formulation is easily ob­
tained, through the inclusion of the time derivative (previously crossed out). The 
stabilized unsteady formulation is written here for convenience:

where p, ax, uh, uh, ru, and wh are diffusion, free velocity in the x spatial direc­
tion, the trial function of the scalar unknown, the time derivative of the scalar 
unknown, the stabilization parameter and the test function respectively. For 
further discussion regarding the stabilization, discretization etc, please refer to 
Chapter 4. Note that the expression (5.44) is semi discrete, i.e. spaces has been

will be combined with the two time integration schemes in preparation for the

nel fXi+ 1
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Integration Method a i & 2 <24 &5 Qq

Backward Euler 1 0 0
1

A t
1

A t
0

Trapezoidal rule 1

2
1

2 0
1

A t
1

A t
0

Generalized Midpoint rule 7 1 - 7 0
1

A t
1

A t
0

Generalized-a method 1 ~  O L f 0
1 a m

A t  7
— 1 

A t  7
I —

7

Table 5.2: Timestepping Parameters ai —► a6  described in terms of a:/, a m and 7  

discretized, whilst time remains continuous.

Equ (5.44) can rewritten in condensed form:

n e l i> x i + 1

^ 2  wh [uh + axuhx + fiuhxx] dx = 0 (5.45)
i = 1 J x i

where

w \  + tu (axwhx) (5.46)wh
Galerkin Weighting UpwindWeighting

and ru, developed in Section 4.3.7.1, has been rewritten for the ID case. ru for ID 
advection-diffusion problems is often referred to as rspace, see Shakib and Hughes 
[6 8 ], however for consistency the term ru will be used throughout to define the 
velocity stabilization parameter,

Az 1  , n h 2 axAx
Tu =  Tn  1 0 W here P S  =  9 „  (5 '4 7 )" U a ;  /  /  \  2 2/X

1  + (^ r)

In order to emphasize the method used to incorporate time integration into the 
weak form, (5.44) has been re written with uh and uh replaced by Up and u1̂:

G(w,u,u)=  (5.48)

Y 2  I Wh -uhp + wh - (axuha x) +  fiwhx • u^x + T u  (axwhx) [iip +  axuha x\ dx = 0 
i = i  J x i  L
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dU / 1-T\
at

where uj-j and u represent linear combinations of wj; and u j+1:

= alUn+l + a2 Un + a3 ̂  (5.49)

ltjg = fl4̂ + 1  + d5^n + a6 ^n (5.50)

For each time integration scheme the coefficients a*, where i = 1 —► 6 , have a 
definite value which is determined by the time step size and spectral radius, and 
these are given in Table 5.2. The parameters 7 , amt and 0 7  in Table 5.2 are 
defined by:

1 3 - p S ' 1  1

“ m _ 2  1  +  /!4  “ ' “ l +  p*, 7 - 2 + " m ( J

5.4.2 2D Incom pressible viscous N avier-Stokes.

5.4.2.1 The G overning Equations.

Recall the full incompressible viscous Navier-Stokes equations:

-  V • cr = 0 (5.52)

V • u  = 0  (5.53)

cr = —p i  + 2 pe(u) (5.54)

e(u) = ^(Vit + (Vu)T) (5.55)
La

5.4.2.2 D om ain and B C ’s.

The domain f2 is an open region of Mnsd, therefore f2 U T where T is the piecewise 
smooth boundary and n3d is the number of spatial dimensions.

Prescribed velocities g on the surface Vg u = g Vx G (5.56)

Prescribed fluxes h on the surface Th cr ■ n  = h Vx G Th (5.57)

where x G ft C Mnsd, and the outward unit normal vector, to the fluid surface, is 
n.

5.4.2.3 F inite Elem ent Spaces.

The Finite Element approximation spaces necessary for the correct discretization 
of the governing equations are defined as: The spatial discretization occurs in a 
finite dimensional space H l (Q)ndim defined as:
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where £ denotes the set of elements resulting from the Finite Element discretiza­
tion of the computational domain into Q.e subdomains. The trial and test 
functions for the velocity field, V and W respectively are as follows:

V* =  {uh 6  H \a ) n«"', u * U n« e P ^ ( Q e), u*|xer, = !/}

W* = {id* e to*Uen« e  to*legr, =  0 }

whilst for the pressure field

v h = {p*|pk e C°(Q) n L20(Q), p*ueS2, 6 pfc(ne)}

where H indim denotes the usual Sobolev space of functions with square-integrable 
values and derivatives on Q, C° is the space of continuous functions on Cl, Lq 
denotes space of the square-integrable functions L 2(Q)  modulo constants, whilst 
Pk(Q,e)ndim is the space of all polynomials defined on f2e, complete to order k > 1 
and ridim is the number of degrees of freedom. Note: since there are no pressure 
boundary conditions imposed on the pressure field, the test and trial spaces for 
pressure coincide.

5.4.2.4 Finite E lem ent D iscretization.

As introduced previously the General Finite Element discretization applied to
the velocity and pressure fields can be written as:

u h = ^ 2  Ni{x)uj w h = ^ 2  Ni(x)wi (5.58)

ph = ^ 2  Ni(x)Pl qh = ^ 2  n i(x )Qi (5-59)

5.4.2.5 W eak Form

We can write the stabilized Petrov-Galerkin formulation, in terms of & iip 6,
as: Find uh G Vh and ph G V h such that Vwh G  W h and Vqh G  V h 7 .

6As shown previously in Section 5.4.1
7The integral of diffusion term w  • [V • cr]dCl is simplified to f Q £ ( w h) : crhd£t through 

the use of the Greens theorem, as demonstrated in Section 4.2.1.5.
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G(u*,uh0 ,w h,p*+1 ,qh) = [  w h - p( u h0  + u ha -V u ha) ( m -  [  e(wh) : (r(u*,p*+1)dn
«/ fi </ o

+  I qh • [V • u ^ dn  -  f  to'* • h dr
Jo. Jrh
nel p

+ E  /  + « •  v )“ £) -  ^ +1)]rfn
e = l  • ' « '

nel p

+ Y ,  I  + («£ • V)u5) -  V p ^ i ) ] ^  = o
e = l  ‘/ « e

(5.60)

where iip and represent linear combinations of u j, u j and m̂ +1:

= ai^n+l + «2 Wn + a3«n (5-61)
Up = a4 u ^ + 1  + a5 u„ + a6wj (5.62)

and Sh is the specific velocity weighting function and eh is the specific pressure 
weighting function:

8 h = rup(wh • V)u£ (5.63)

eh = -TpVqh (5.64)

The stress tensor <r, and the deformation rate tensor e are:

<K«a.Pn+l) =  -Pn+lJ+2pe(Ua) (5-65)

£ « )  =  Vsuha =  i  (V«S +  W J  (5.66)

and p,, p, u h, ph, ru, tp and w h are diffusion, density, velocity vector, the velocity 
and pressure stabilization parameters and the test function respectively.

A set of nonlinear equations are obtained in terms of u n + 1 h  pn + 1 by intro­
ducing (5.61)—>(5.65) into (5.60) and for each timestep these equations are solved
using the Newton-Raphson procedure as described in Section 5.2.
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5.5 Num erical Exam ples.

A total of three numerical examples will be used in the validation of the techniques 
described in the this chapter. They have been chosen as the best method of 
highlighting the advantages and disadvantages for each technique discussed, and 
they are generally regarded to be standard benchmarks for fluid flow problems.

• ID Advection-Diffusion - Propagation of a rectangular wave.

• 2D Navier-Stokes - Flow past a 2D cylinder.

The numerical examples are briefly discussed here.

Propagation o f a rectangular wave.

This example is an extension of the ID advection diffusion examples from Chapter 
4, i.e. the fixed boundary problem is replaced by a propagating rectangular wave. 
These examples are considered to be the steady and unsteady versions of the same 
problem, i.e. modelling a jump in the main solution variable.

The main outcome from this example is the demonstration that stabilization 
is effective, in a manner which can be easily demonstrated graphically, for tran­
sient problems as it is for steady state problems.

Flow past a 2D Cylinder.

The viscous incompressible flow past a bluff body is a well recognised natural 
phenomena, and can be found in a variety of engineering applications, such as in 
heat exchangers, flow around chimneys, bridge piers, stays, antennae, and arrays 
of nuclear fuel rods, etc. Consequently the theoretical and practical significance 
has lead to investigations into the physical mechanisms, arising from the very 
complex behaviour and the interactive loading between the body and the viscous 
fluid. These mechanisms have been studied in great detail both experimentally 
and, recently, also numerically. It is for this reason that this type of problem is 
perfectly suited to fulfill the requirements of this chapter.

In order to compare the different formulations discussed within this chapter 
two examples of newtonian incompressible viscous flow past bluff bodies are used 
to perform the analysis, and they are:

• flow past a circular cylinder, and

• flow past a square cylinder with near wall effects
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The two examples can be classified as Flow past a 2D Cylinder which is the gen­
eral description for the series of problems of which the two above belong, yet they 
can be considered to be sufficiently different to warrant their inclusion.

These examples are suitable for the purposes of this section because there is 
considerable literature available and they are simple problems to setup and run 
effectively. In addition to this the results themselves are suited to graphical 
representation and they are commonly used, as in this thesis, to benchmark new 
methods.

These three examples will be used to consider the effects to solution accuracy, 
speed, and stability caused by altering the solution algorithm.

In order that these simulations can be replicated the exact details of each 
benchmark test are recorded in full.

5.5.1 Program s - Introduction  to  1DFLO W  &; FEAP.

In order to conduct the research effectively it was obvious that the techniques 
proposed would need to be validated against benchmark tests. Not only are 
these techniques relatively new, untried & untested, but the complexity of the 
benchmark tests necessitate the use of computers. As mentioned earlier in this 
chapter, the Finite Element Method’s growth in popularity is a direct result of 
improvements made in the field of high powered computers, and software. It 
is for this reason that there are now many commercial Finite Element software 
packages available. However it was realized from the beginning that it would 
not be possible to conduct the research for this PhD using any of the standard 
commercial packages available, as their capabilities did not extend into all aspects 
of this research. The other options were to either ’design and build’ a FEM 
application, or find a application that could be easily tailored to requirements.

It was apparent that actually writing a FE software application from initial 
conception to final product would be time consuming, whereas tailoring a basic 
’all round’ FE application would be relatively simple. It therefore became nec­
essary to find a FE software package that would be easy to modify and be open 
access, i.e. a freely available source code.
The following FE applications have used to run the simulations for this thesis: 
1DFLOW and FEAPpv.
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5.5.1.1 1DFLOW .

This software application was designed and written by the author from concept 
to perform ID heat transfer simulations. Its initial capabilities included vari­
ous timestepping schemes, namely General Midpoint rule, Backward Euler, and 
the Trapezoidal rule implemented in conjunction with the Predictor-Corrector 
time integration scheme, see Shakib and Hughes [6 8 ], Eulerian and Arbitrary 
Lagrangian Eulerian (ALE) solutions, stabilization in the form of Streamline Up- 
winding Petrov-Galerkin, and Gaussian elimination solver. As this work evolved 
further additions have been made, and include Enrichment for fluid structure in­
teraction, augmenting timestepping to include the Generalized-o: method. Also 
added were Newton-Raphson iterative scheme to solve non-linear simulations and 
a Sparse & Bandwidth solver to improve solution times, all of which were required 
by the addition of Enrichment.

1DFLOW is used as the basis of all previous and forthcoming one dimensional 
simulations.

5.5.1.2 FE A Ppv - F inite Elem ent Analysis Program  person a l version .

FEAP is a general purpose Finite Element Analysis program, designed for re­
search and educational use. It is was originally written by the research group at 
Berkeley headed by R.L. Taylor to accompany the reference books ’The Finite 
Element Method’, by O.C. Zienkiewicz and R.L. Taylor. Since its development 
FEAP has grown in size and capabilities, and now two releases exist, FEAP and 
FEAPpv. FEAP is now a licensed software application, whereas FEAPpv is still 
distributed freely for educational and research purposes.

FEAPpv perfectly suited the requirements for this PhD. It is easily understood 
due to the extensive manuals accompanying the program, it contains a simple 
graphical interface, and it has been designed assuming the user would wish to 
increase its capabilities. In addition to this the source code is freely available and 
regularly updated with new routines. As such FEAPpv v6  is used as the basis of 
all two dimensional simulations.

To the standard FEAPpv we have added numerous capabilities. They include 
all the capabilities of 1DFLOW for two dimensions and added to this are meshing 
capabilities, and a new graphical interface. Some of the additions are enrichment 
based, and are explained in Chapter 5.
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FEAPpv is used as the basis of all previous and forthcoming two dimensional 
simulations.

5.6 Num erical Exam ple - Propagation of a R ect­

angular Wave.

The Propagation of a Rectangular wave is often used to validate the implementa­
tion of time integration schemes for ID Advection Diffusion problems. It will be 
employed to demonstrate and confirm the conclusions drawn previously in this

classified by time integration scheme, stabilization factor and the element Courant 
number Ch, given by:

Ch = ^ a x (5.67)

The mesh and ax are both constant for all solutions, therefore in order to vary 
the Courant number At is varied.

Geometry.

chapter.

M odel.

In this example both pure advection (fi = 0 & Peh = oo) and advection-diffusion 
(l± = 0.00005 Sz Peh = 10) cases will be considered. The numerical results are be

ft =]0 ,L[ (5.68)

Boundary Conditions.

u(0,t) = 0 u(L,t) = 0 (5.69)

Initial C onditions.

u(a;,0) = l c ^ x ^ d  (c = 0.1L, d = 0.2L)

u(x, 0 ) = 0  elsewhere

(5.70)

(5.71)

M esh.

(5.72)
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Exact Solution - Pure Advection.
For this example the diffusion param eter fi = 0, see (4.5) for ID advection diffu­

sion equation.

u(x,  t) = 1 c + axt ^  x  ^  d +  axt (5.73)

u(x , t )  =■ 0 elsewhere (5-74)

0.8
0.6
0.4

0.2

- 0.2
-0.4

0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.2: Exact solution for the Pure advection case

Exact Solution - Advection Diffusion.
For this example the diffusion param eter is given a nominal value /.i = 0.00005.

0.8
0.6
0.4

0.2

- 0.2 —  

-0.4
0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.3: Exact solution for the advection diffusion case



Num erical R esults.

Figure 5.4 shows the plot of u(x, t) at t = 0.5s. Comparison is provided of the 
classical Galerkin formulation with the SUPG formulation for the pure advection 
and advection diffusion cases for Ch = 0 .0 1 , 0 .1 0 ,1.00. The results are obtained 
by using the Generalized-a method p = 0.0, and neiem = 1000.

Figure 5.5 shows the plot of u(x,t) at t = 0.5s. Comparison is provided of the 
classical Galerkin formulation with the SUPG formulation for the pure advection 
and advection diffusion cases for Ch = 0 .0 1 , 0 .1 0 , 1 .0 0 . The results are obtained 
by using the Generalized-o; method p^  = 0.5, and neiem = 1000.

Figure 5.6 shows the plot of u(x, t) at t = 0.5s. Comparison is provided of the 
classical Galerkin formulation with the SUPG formulation for the pure advection 
and advection diffusion cases for Ch = 0.01,0.10,1.00. The results are obtained 
by using the Generalized Midpoint rule p^  = 0.0, and neiem = 1 0 0 0 .

Figure 5.7 shows the plot of u(x, t) at t = 0.5s. Comparison is provided of the 
classical Galerkin formulation with the SUPG formulation for the pure advection 
and advection diffusion cases for Ch = 0.01,0.10,1.00. The results are obtained 
by using the Generalized Midpoint rule p^  = 0.5, and neiem = 1000.

Figure 5.8 shows the plot of u(x, t) at t = 0.5s. Comparison is provided of the 
classical Galerkin formulation with the SUPG formulation for the pure advection 
and advection diffusion cases for Ch = 0.01,0.10,1.00. The results are obtained 
by using the Generalized-o: method p^  = 1.0, and neiem = 1000.
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Figure 5.4: Solution for the Generalized-a method p =  0.0, at t=0.5s for 1000

element mesh
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Figure 5.5: Solution for the Generalized-a method p^  =  0.5, at t=0.5s for 1000
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Figure 5.7: Solution for the Generalized M idpoint rule p^  =  0.5, at t=0.5s for

1000 element mesh
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Figure 5.8: Solution for the Generalized Midpoint p^  =  1.0, Trapezoidal rule or 

Generalized-o; method p^  =  1.0, at t=0.5s for 1000 element mesh
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Discussion.
The following conclusions have been drawn from the results of the numerical sim­
ulation of ID propagating rectangular wave example.

Mesh Dependency.
The time integration schemes all tend to the same solution as A t —> 0 for the 
same mesh. Therefore the solution is mesh dependent.

Convergence.
The Generalized-a method converges to the solution faster than the Generalized 
Midpoint rule. This is apparent in a comparison of Figure 5.4 and Figure 5.5 
with Figure 5.6 and Figure 5.7. The mesh dependent solution is achieved when 
Ch = 0 . 1  for the Generalized-a method i.e. SolutionCh=0.i ~  Solution^/^ 0 1  

whilst this point is only reached by Generalized Midpoint rule solution when 
Ch = 0.01. This property can be attributed to the second order accuracy in time.

Damping.
The unstabilized Generalized-a method, for similar ph, appears to gives solutions 
which suffer from excessive high frequency oscillations whilst the Generalized 
Midpoint rules appears to be artificially diffusive. In both cases the oscillations 
appear to worsen as Ch —> 0 .

This leads to the conclusion that as Ch —► 0 the solution tends to the mesh de­
pendent solution which exhibits a more pronounced interface, which, as discussed 
previously in Section 4.1, lead to greater oscillations. In the case of the General­
ized Midpoint rule the artificial diffusion introduced by the scheme manages to 
suppress these oscillations to some extent. However the Generalized-o; method 
appears to be victim of its own success, i.e. improved convergence properties 
leads to greater spurious oscillation.

It was also noted that if the diffusion coefficient is appreciable, then artificial 
diffusion properties of the Generalized Midpoint rule has little or no effect on the 
solution.

Stabilization.
The difference in the solution between the classical Galerkin formulation and that 
of the SUPG can be attributed to the correct choice of stabilizing parameter ru.
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Advection diffusion.
For this case the classical Galerkin formulation is comparable to the stabilized 
formulations. The effect of diffusion on the solution is to dampen or ’smooth’ the 
interface, negating the problems caused with the convection term, such that the 
spurious oscillations that affected the pure advection case are reduced.

109



5.7 Flow past a circular cylinder.

Flow around a circular cylinder has been well documented and is considered one 
of the classical problems of fluid dynamics - to gain complete understanding of 
the fluid dynamics of the flow requires an understanding of fundamental subjects, 
such as the boundary layer, the free shear layer, and the dynamics of the vortices.

In this section there will be a brief introduction into the background of this 
example, followed by a review of the literature available, and finally a numeri­
cal simulation will be performed to compare the methods developed in previous 
chapters with the results discussed and conclusions drawn.

5.7.1 Background.

It is always difficult to pinpoint precisely the date and author of first discov­
ery, and this seems the case with the periodic phenomenon associated with flow 
past a circular cylinder. Although the effect of wind causing vibrations in wires 
(Aeolian tones) have been known for some time, it was Strouhal’s experimental 
observations (1878) that first correctly identified the physics of the problem. The 
experiments confirmed that the frequency of vibration was dictated by the ve­
locity of the air flow not the elastic properties of the wire and two years later 
Rayleigh deduced that the frequency was actually Reynolds number dependent.

However it was not until the early 20th century that the importance of, what 
is now known as, the von Karman vortex street became appreciated - previous 
observations were only concerned themselves with the relation between vibra­
tion frequency and flow velocity; notably in the 15th century Leonardo da Vinci 
produced drawings showing the vortex formation, although they were sketched 
symmetrically. In 1911 von Karman produced his famous theory of the vortex 
street stimulating long lasting interest in the subject.

5.7.2 D escription  o f Flow  dynam ics.

For small Re the flow is symmetrical; as Re increases it becomes increasingly 
asymmetrical and at Re ~  6  closed eddies begin to form behind the cylinder. 
The inline length of the eddies region grows linearly with the Reynolds number, 
and as Re approaches Re^t ( Re ~  30 — 40), oscillations appear within the eddies 
region. The onset of vortex shedding ensues at R e ^  ~  49 when the closed eddies 
behind the cylinder become detached to form a vortex street. For the range of
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49 ^  Re ^  150 vortices are generated with almost perfect periodicity, which 
are characterized by dimensionless frequency (Strouhal number) which increases 
smoothly from 0 . 1 2  — 0.19. Whilst the vortices are formed at fixed intervals 
within this Reynolds range, irregularities can appear downstream of the cylinder 
as interaction between the vortices occur. Experimentally it has been noted 
that somewhere between Re = 150 and Re = 194 the generation of the vortices 
becomes irregular and we see the onset of 3D structures in the wake, from this 
point forward there are very few qualitative changes in the flow up to Re = 104. 
At high Reynolds numbers there is overall periodicity much like the vortex street, 
but the detailed motion of the fluid is increasingly random, i.e. turbulence is 
present.

An exact solution for this problem only exists for infinitesimal Reynolds num­
bers, Oseen [63], for larger Re we become reliant on close approximations. There 
are increasingly accurate numerical calculations based on direct approximations 
of the Navier-Stokes equations for the flow regime of attached eddies. For the 
vortex street in roads have been made into understanding the phenomena, but 
it is only recently that it has been possible to accurately deduce the general 
paths of the fluid elements; as yet no analytical solutions has been found. There 
have been attempts to model interaction between vortices using the Navier-Stokes 
equations, but the results show great sensitivity to flow history and the imposed 
boundary conditions, even if they are far from the cylinder.

5.7.3 Initial work.

The initial work carried out to define the different flow regimes of flow past a 
circular cylinder was by Roshko [65], Further work has since been carried to in­
vestigate and correlate this work, such as Bloor [11]. Within the Reynolds number

Unseparated Flow

Fixed pair of Foppl vortices in wake. 

Laminar vortex street 

Transition to turbulence in vortex street 

Turbulent vortex street

! Of 0 —>+ 1 0 4 there

0 < Re < 6

6  to 15 < Re < 49

49 < Re < 150

150 < Re < 300

300 < Re < 3 x
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(a) Laminar flow (b) Vortex shedding

Figure 5.9: Streamlines around a circular cylinder for different regimes

Since Roshko’s [66] initial research there has been considerable work into flow past 

a cylinder and its effects, most experimental, some numerically based. Many of 

these investigations have studied the relationship between the Reynolds number 

and the frequency of the vortex shedding as defined by the Strouhal number (S r  = 

fA/uoo where /  is the shedding frequency, is the free stream velocity and A  is 

the diameter of the cylinder). In particular the detailed review by Williamson [87], 

is considered to be a defining study into this relationship, firmly establishing the 

existence of a universal Reynolds-Strouhal number relationship from experimental 

evidence, after accounting for experimental errors such as cylinder vibration, end 

effects, and shear in the oncoming flow free stream  etc.

Such has been the interest into this field th a t it can now be sub divided into 

more specific areas, as the focus moves from gaining an understanding of overall 

picture, as investigated by Roshko in his early work, to focusing on distinct areas 

of this complex topic separately. These sub divisions include the study of arrays 

of cylinders, wake, near wall effects, spring mounted cylinders for inline/cross flow 

vibration, vibration damping and boundary layers to name a few. In this section 

we are interested in benchmarking various timestepping schemes, and flow past a 

circular cylinder is suitable vehicle with which to achieve this aim, therefore the 

focus will remain on the overall dynamics of the flow.

5.7.4 3D Structures.

Advancements have been made in the understanding of wake vortex dynamics 

due to studies into 3D phenomena which have led to explanations for long mis­

understood phenomena which have always been assumed to have 2D origins. 

Williamson [87] discusses the advances made in the understanding of the onset of
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3D phenomena and states that the onset of instability is Re=49 and at Re=190- 
260 a 3D wake transition develops. However it is standard practice in numerical 
literature to treat the flow as 2D for Re > 190, whilst recognizing that the 2D 
calculations will not be truly representative of the actual flow at these Reynolds

drag and lift coefficients will be slightly larger than the values one would expect 
from a 3D study.

5.8 Num erical Exam ple - Flow past a circular 

cylinder.

M odel.

In this example the viscous incompressible flow past a circular cylinder in an 
infinite domain is considered. The inflow is assumed to be uniform at infinity 
and is denoted as uQG, with diameter of the cylinder denoted A, and density and 
the viscosity of the fluid p and p respectively.

The simulations performed will use differing mesh densities, timesteps and 
timestepping methods for Reynolds numbers of 100, 400, & 1000. In order to 
obtain these Re numbers the following values were used p = 1.0, p = 0.01 for 
velocities uQ0 = 1.0, = 4.0 and Uqq = 10.0.

We should note that the long term solution for this problem is periodic vortex 
shedding which subjects the cylinder to oscillating lift and drag forces which act 
normal and parallel to the flow, Fl & Fp respectively, at a frequency f s 8. The 
non-dimensional lift Cl and drag Cd coefficients, and the Strouhal number Sr 
are defined as:

Geometry.

The computational domain is often only an approximation of the actual domain, 
and as noted in an earlier section, the closeness of the computational domain 
to the object can have great effects on the solution accuracy. In addition to

numbers. Also having reviewed other such studies it has been noted that the

(5.75)

2 Fd „  2 Fl (5.76)

8The lift force oscillation frequency is half the frequency of the drag force oscillation. It is 

standard practice to use the frequency of the lift force.
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-Xu- -Xcl-

Figure 5.10: Geometry of the domain

this many types of boundary condition are only appropriate when placed at a 
sufficiently large distance away from the region where accuracy is paramount. 
However in the process of meeting these requirements we inadvertently adversely 
affect the computational cost. In practice the designer of the example must weigh 
the advantages and disadvantages and decide which is a more critical restraint: 
-accuracy or -time. In most cases it is appropriate for a balance to be reached 
where both restraints are adequately satisfied.

There have been many investigations into the most appropriate computational 
domain for this type of example, i.e. flow past a circular cylinder in an infinite 
domain. The two factors to consider are the position of the cylinder in regard to 
the (1 ) inflow/outflow boundaries and (2 ) lateral boundaries.

Inflow/Outflow Boundary.
There have been various papers which have considered solution accuracy with re­
gards to varying the distances xu and Xd, e.g. Tezduyar et al [82] and Behr et al 
[8 ]. It was found, with the commonly used traction free boundary condition ap­
plied to the outflow boundary, that solution quantities such as Strouhal number, 
drag and lift, were insensitive to variation in the distance Xd• However if Xd was 
less than 6  cylinder diameters, marked differences, including lose of periodicity 
and tending to steady state, were noted. There is much less information regard­

114



ing the length xu, though it is regularly placed as close as 5 cylinder diameters 
from the cylinder, as used by Dettmer and Peric et al [27].

Using trial values for xu and Xd the inflow and outflow boundaries were lo­
cated at 5 and 16 diameters respectively from centre of the cylinder - there is 
little of interest in the region of flow upstream of the cylinder and the need to 
accurately represent the wake requires boundary placement further downstream 
than the critical distance found by Behr and Tezduyar [8 ] [82]. Sensitivity tests 
were performed varying the initial lengths of xu and Xd and the investigation sug­
gests that the effects due to the outflow boundaries become negligible beyond 16 
diameters. However it was found that the inflow boundary distance was situated 
too close and should be placed further away in order that the results are more 
representative of the problem, for an improved solution for little increased com­
putational cost the distance xu has been chosen as cylinder diameters. Therefore 
xu = 1CL4 and Xd = 16A

Lateral Boundary.
Behr et al [7], and Lei et al [54] have all considered the effects of the lateral 
boundary on the solution quantities i.e. Strouhal number, and drag/lift coeffi­
cients. Behr in his paper discusses the problems of using a poorly constructed 
domain to benchmark timestepping schemes. He compares a commonly used 
transient method i.e. flow past a circular cylinder, as the benchmarking example 
for Re = 100. He concludes that the effect of a near lateral boundary is far greater 
than the effects due to a near inflow/outflow boundary and require extra care in 
their placement. The data presented by Behr suggests that in order to remove 
the effects of the lateral boundary on the shedding phenomena the boundary 
should be placed, at least, 8  cylinder diameters from the cylinder; too close and 
the primary solution parameter, Strouhal number, will be artificially high. It is 
possible to envisage a situation where a dissipative timestepping scheme (low­
ering the Strouhal number) is combined with closely spaced lateral boundaries 
(increasing the Strouhal number) to produce shedding characteristics which are 
comparable to experimental observations. Therefore in an investigation, such as 
in this thesis, where the frequency is used as an accuracy indicator, boundary 
placement is as important as mesh refinement.

Dettmer and Peric [27] in his comparable study of timestepping schemes has 
chosen closely spaced lateral boundaries for the simulation of flow past a circu­
lar cylinder. As for the inflow/outflow, we can compare results from simulations
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v = 0

p  = 0
u = 0
v = 0

v = 0

1 0 0 - 160-

Figure 5.11: The problem setup - the domain with the boundary conditions - u, 
v, and p are the velocity in the x and y directions and pressure respectively

carried out using similarly constructed meshes with larger lateral spacing. Once 
again the improvement in the Strouhal number is worth the computational cost.

In conclusion the cylinder is centred vertically in the domain and placed hori­
zontally such that there is maximum accuracy whilst preserving efficiency. The 
lateral, inflow and outflow boundaries are located at 8 ,1 0 , and 16 diameters from 
the centre of the cylinder respectively. A slight imperfection in the geometry 
has been introduced into the model to initiate unsteady flow. This has been 
achieved by moving one of the lateral boundaries by 0 .1 % of the overall width 
of the domain, in order to place the cylinder slightly off-centre and remove the 
symmetrical nature of the geometry.

Boundary Conditions.

The Navier-Stokes problem must be completed with suitable initial and boundary 
conditions to form a well-posed initial boundary value problem. In the following 
section the initial and boundary conditions that form the initial boundary value 
problem for this problem are explained.
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Velocity Boundary Conditions.

A uniform velocity is assigned to the inflow boundary. The outflow boundary we 

specify a Neumann-type boundary condition for velocity which corresponds to a 

zero viscous stress tensor. This has been chosen such th a t the flow crossing the 

boundary is not affected by the presence of the boundary, therefore vortices ap­

proaching the outflow boundary cross the boundary undisturbed by its presence. 

There is a no-slip and no penetration condition on the cylinder wall and finally 

a zero normal velocity at the lateral boundaries.

The inflow velocity uQ0 was reached by smoothly increasing the velocity com­

ponent u a t the inflow boundary from 0 —> u00 over a set time period. This was 

achieved using the section of the sine curve shown below as a loading curve, see 

Figure 5.12. The loading time ranges for Re =  100, 400 Sz 1000 are [0,4], [0,1] 

and [0,0.4] respectively.

0.75

0.5

0.25

0

sin 0>(t tmifi)

Figure 5.12: Loading Curve

Pressure Boundary Conditions.

No initial condition need be set for the pressure unknown. This is a direct conse­

quence of the absence of a time derivative for pressure in the governing equations. 

Pressure also only needs to be specified a t one point within the domain and de­

fined with an arbitrary value, in order to provide a unique solution. This is due 

the fact th a t pressure is only present by its gradient in the governing equations. 

The placement of the fixed pressure node is also arbitrary, therefore for these 

examples pressure has been fixed on the outflow boundary.
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M e s h .

The 3 meshes were produced for this example using ELFEN software (1896, -3006- 

, *5436* elements and 997, -1569-, *2811* nodes). All were generated using the 

same geometries, applying the boundary conditions discussed earlier, each with a 

different mesh density. To ensure an optimal solution the mesh near to the bluff 

body was refined in order to model the dynamics of the problem accurately.

For the investigation into the effects of the domain size on the solution it 

was im portant to remove any dependance on near field refinement, therefore the 

larger mesh was constructed using the smaller mesh. See Figure 5.13

1 8 — p jg g l

i p m
m

■

Figure 5.13: Nested Mesh

(a) 1896 elements

iViViW.V.ViViWiWiW>VAVAViŴ
to a m m a m a m a m a m a i

(b) 3006 elements (c) 5436 elements

Figure 5.14: Meshes for the flow past a circular cylinder.
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N um erical R esults.

Figure 5.15 are velocity/pressure plots for the solution Re = 225. These plots 
clearly demonstrate the vortices shedding from behind the cylinder.

Figure 5.16 —> Figure 5.18 document the evolution in time of the lift and drag 
coefficients, for different Reynolds number.

Figure 5.19 shows a close up of the pressure isolines for one complete oscillation, 
whilst Figure 5.20 —> Figure 5.21 shows the evolution of the lift coefficient, with 
corresponding pressure isolines.

Figure 5.22 —► Figure 5.24 are the full documentation of the numerical results 
recorded for this example. A comparison of time stepping schemes (Generalized-a 
method and Generalized Midpoint rule) for different Reynolds number and mesh 
densities (1896, -3006-, *5436* elements and 997, -1569-, *2811* nodes), in terms 
of Strouhal number and the amplitude of lift coefficient. Note that for Re = 1000 
the coarse mesh is not represented as the Newton-Raphson scheme fails.

Figure 5.25 show the Strouhal and lift coefficients as the spatial refinement in­
creases. To determine the effect of spatial refinement the example was repeated 
for Re= 100, 400 and 1000, for domains with high density meshes, i.e. 10182, 
(16449), [20243] elements and 5224, (8393), [10281] nodes. The timesteps were 
small, such that the solutions had asymptotically converged as At —» 0  and could 
be considered to be independent of the time integration scheme.
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(a) u

(b) v

(c) p

Figure 5.15: Velocity/Pressure contour plots - Re =  225, Generalized-o: method 

phoo = 0-9, neiem = 5436
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1.45

1.4

1.35

1.3

1.25

1.2

1.15

(a) C L (b) C D

Figure 5.16: Evolution of Lift Cl and Drag Co  coefficients in time. Re =  100, 

A t = 0.01, Generalized-o method p'L = 0.9, n e/em =  5436

(a) C L (b) C D

Figure 5.17: Evolution of Lift C l and Drag Co  coefficients in time. Re =  400, 

A t = 0.0025, Generalized-o method p^  =  0.9, neiem = 5436

1

0.5

0

-0.5

■1

-1.5

(a) C L (b) C D

Figure 5.18: Evolution of Lift C l and Drag Co  coefficients in time. Re =  1000, 

A t =  0.001, Generalized-o: method p^  =  0.9, neiern =  5436
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(a) t - 125s

(c) t --- 126s

(e) t = 127s

(g) t = 128s

(b) t = 129s

(d) t = 130s

(f) t = 131s

Figure 5.19: Pressure Contours - One complete oscillation Re =  100, A£ =  0.1, 

Generalized-o: method p^  =  0.9, neiem = 5436
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-0.05

-0 . 1

-0.15

-0 . 2

Figure 5.20: CL against time - Re =  100, A t = 0.1,Generalized-o method p1̂  

0.9, neiern -  5436

(a) t — 10s

(c) t = 20s

e) t = 40s

(g) t = 60s

(b) t - 80s

(d) t = 100s

(f) t = 120s

Figure 5.21: Pressure Contours - Re =  100, A t  =  0.1, Generalized-o: method 

pSo =  ° '9> nelem = 5436
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Figure 5.22: Re=100 - Convergence of Strouhal number S t  and Lift coefficient 

CL. AM - Generalized-a method, GM PR - Generalized Midpoint rule, BE - 

Backward Euler, T R  -Trapezoidal rule
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Figure 5.25: Convergence of the Strouhal number and lift coefficient as h —> 0 

for meshes of 1896, -3006-, *5436*, {10182}, (16449), [20243] elements and 997, 

-1569-, *2811*, {5224}, (8393), [10281] nodes
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Discussion.
Because the ID Advection Diffusion equations are a simplified version of the 
Navier Stokes equations it is expected that they will share many common solu­
tion attributes. Therefore the conclusions drawn from ID propagating rectangular 
wave can also be drawn for, and indeed have been confirmed by the solutions for 
flow past a circular cylinder. These conclusions are reiterated briefly below:

Mesh Dependency.
Figure 5.22—► Figure 5.24 highlight the conclusion made previously that the so­
lutions are mesh dependent for coarse, and irrespective of the time stepping al­
gorithm, the solutions tend to a certain result as A t —> 0. However, Figure 5.25 
demonstrates that the solution becomes mesh independent as the spatial refine­
ment increases, i.e. a plateau is reached as h —► 0 .

Convergence.
Figure 5.22—>Figure 5.24 also demonstrate the improved convergence properties 
of the Generalized-a method in comparison to the Generalized Midpoint rule, 
here shown by the shallower gradient of the Generalized-o: method plots.

It appears from the previous two examples that a value of p^ = 1.0 gives bet­
ter convergence than solutions where p^  is close to zero. However in Section 5.2 
the problems associated with p^  = 1 . 0  were discussed, and it was recommended 
that a value close to 1.0 be used. Therefore it is the author’s considered opinion 
that pJo = 0.9 is the most suitable compromise. The results plotted in Fig­
ure 5.22—̂Figure 5.24 include data for the Generalized-o: methods for p^  = 0.9. 
There seems to be little or no effect on the convergence properties when compared 
to the values for pj  ̂= 1.0, therefore p^ = 0.9 has the advantages yet none of the 
disadvantages associated with p = 1 .0 .

Pressure and velocity stabilization.
The pressure field is free of the spurious oscillations which were apparent in the 
unstabilized lid driven cavity problem. The velocity field is also free of non 
physical oscillations for realistic time steps.
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5.9 Flow past a square cylinder w ith near wall 

effects.

Flow past a square cylinder with near wall effects is an investigation into the 
problem of confined flows with a built in obstruction. This type of problem expe­
riences the same phenomenon as the free flow example, see Section 5.7. However 
when a cylinder is placed in the vicinity of a solid wall the mean structure and 
dynamic behavior of the wake alter significantly from the behaviour exhibited by 
the same flow for an infinite domain. The close proximity of the wall suppresses 
the oscillatory behaviour of the fluid as boundary layer9  effects begin to dominate.

The analysis of flow past square cylinders with near wall effects has a dominant 
role to play in many technical applications, such as building aerodynamics and 
cooling of electronics etc. Most research has been focused towards high Re flows 
i.e. Re > 104, for circular cylinders, Lei et al [54] etc; or for square cylinders, see 
Bosch et al [12], Durao et al [30] and Martinuzzi et al [57]. However a few studies 
have considered the influence of near wall effects for laminar flow, see Breuer et 
al [13], Davis and Moore [25], Li and Humphrey [55] and Turki et al [84].

In this section a brief discussion is given regarding previous investigations 
into the field of flow past a square cylinder focusing on the influence of the wall 
proximity on the Strouhal number, and lift &; drag coefficients. These will be 
followed by a numerical simulation for flows past a square cylinder, using the 
Generalized-o; method for 3 blockage ratios Q, | ,  | ) . Finally the results and 
conclusion will be discussed in detail.

9 The boundary layer is a region where the velocity drops rapidly to zero to satisfy the no 

slip condition at the lateral boundary. The direct effects of viscosity are felt only within the 

boundary layer.
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5.9.1 D escription  of Flow D ynam ics.

(a) Re =  3

(d) Re =  200

Figure 5.26: Streamlines around a square cylinder for different Reynolds numbers 

for |  blockage ratio.

Flow past a confined square cylinder has various distinct regimes which are Re 

dependent in a similar manner to free flow past circular cylinder. The distin­

guishing feature between the two problems is th a t for confined flow the value of 

Re for each regime change will be partially dependent on the blockage ratio.

For small Re (ie <  1) viscous forces dominate and no separation occurs at 

the cylinder surface. Increasing the Re the flow first separates from the cylinder 

at the trailing edges, and forms a closed steady recirculation region consisting 

of 2 symmetric vortices behind the body. As Re increases to Recr^ the vortices 

increase in size and strength until at R e ^ t the vortices s ta rt to detach and we 

begin to observe von Karm an vortex street. The strength (or circulation) of these 

vortices is directly related to the periodic loading of the cylinder and the mixing 

rate of the near wake. A further increase in Re and the flow begins to separate 

from the leading edges of the body, and the circulation is generated at the point 

of separation. The onset of this phenomenon is not clearly defined in literature 

but has been assessed at Re ~  100 — 150 for a |  blockage, see Breuer et al [13], 

Okajima [61], Franke et al [33]. At this point the simulation can still be classed 

as 2D. However beyond this point we will s ta rt to see 3D structures in the wake, 

and Franke and Breuer provide guidance, suggesting tha t Re > 300 is the limit
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beyond which 3D structures should be expected and the transition to turbulence 
begins in the free shear layers. It is for this reason the Re range studied here will 
be between Recr̂  and Re = 300.

It should be noted that due to the defined points of separation for flow around 
a square cylinder that aerodynamics coefficients are less dependent on Re than 
circular structures.

5.9.2 In itial Work.

In comparison to the free flow problem, the near wall effects problem requires 
a further two parameters to describe the fluid behaviour, i.e. inflow profile and 
blockage ratio (3. Davis et al [25, 26] demonstrated that the inflow velocity 
profile had a appreciable effect on the frequency of the vortex shedding. He also 
noted that a correctly applied theoretical velocity profile may not produce a fully 
developed laminar flow profile, therefore careful consideration is needed before 
direct comparisons of numerical and experimental data are made. The second 
parameter, the blockage ratio (3 is defined as (3 = ^  where A is the cylinder 
width, and D is the square distance between the lateral boundaries. The change 
in flow from free flow to confined flow is marked when the critical blockage ratio 
(3crit is reached and any further increase in f3 causes a suppression in the vortex 
shedding.

Davis et al [26] investigated flow past a square cylinder with near wall effects 
for a large range of Re for blockage ratios of (3 = \  and (3 = | ,  both numerically 
and experimentally. Davis found, and has since been confirmed by Breuer et al 
[13], Turki et al [84] to name a few, that the proximity of the walls leads to 
increased drag coefficient and Strouhal number.

5.10 Num erical Exam ple - Flow past a square 

cylinder w ith near wall effects.

M odel.

In this example the viscous incompressible flow past a square cylinder with near 
wall effects is considered. The blockages ratios are (3 = J, |  for Re = 60 — 300 
using the Generalized-a method. The inflow is assumed to be parabolic at infinity 
such that the flow matches fully developed laminar flow upstream of the blockage. 
The maximum velocity is denoted as umax, with width of the cylinder denoted A,
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and density and the viscosity of the fluid p and p respectively.
The simulations performed will use varying Re from Re^t —*■ 30010 (timesteps 

and umax will vary accordingly). Timestepping method will be the Generalized-o; 
method for = 0.9. In order to obtain the values of Re the following values 
were used p =  1 , p = 0 .0 1 .

We should note that the long term solution for this problem is periodic vortex 
shedding which subjects the cylinder to oscillating lift and drag forces which act 
normal and parallel to the flow, Fl & F& respectively, at a frequency f s 11. The 
non-dimensional lift Cl and drag Cd coefficients, and the Strouhal number Sr 
are repeated here:

Re = PUqqA
U r

(5.77)

Cn =
2 FlD CL =

2 Ft (5.78)
PU2ooA PU>loA

Geometry.

The only geometrical consideration in this example is the distance of the inflow 
and outflow boundaries from the square cylinder. Because of the effect an incor­
rect inflow velocity profile may have on the final outcome it is imperative that it 
is correctly positioned whilst taking numerical cost into account.

-Xu- -Xd-

Figure 5.27: Domain

Inflow/Outflow Boundary.
Turki et al [84], Breuer et al [13] and the author considered solution accuracy 
with regards to varying the distances xu and Xd- A series of sensitivity tests were 
performed in accordance with Turki and it was noted that for xu > 10 widths and 
Xd > 15 widths negligible gains were made.

10Turki et al [84] provide guidance on the value of Recrit for the blockage ratio
11 The lift force oscillation frequency is half the frequency of the drag force oscillation. It is

standard practice to use the frequency of the lift force.
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Lateral Boundary.
The lateral boundary was placed at 2 widths, 3 widths, and 4 widths either side 
of the centre of the cylinder for the blockage ratios J, |  respectively.

In conclusion the cylinder is centred vertically in the domain and placed hor­
izontally such that there is maximum accuracy whilst preserving efficiency. A 
slight imperfection in the geometry has been introduced into the model to initi­
ate unsteady flow. This has been achieved by moving one of the lateral boundaries 
by 0 .1 % of the overall width of the domain, in order to place the cylinder slightly 
off-centre and remove the symmetrical nature of the geometry.

Boundary Conditions.

The Navier-Stokes problem must be completed with suitable initial and bound­
ary conditions to form a well-posed initial boundary problem. In the following 
section the initial and boundary conditions that form the initial boundary value 
problem for this problem are explained.

v = 0, u = 0
2A/3A/4A

2A/3A/4A

U  =  U '

v = 0
10

u=0 
v = 0

v = Q; u = 0
-10A-

p  =  0

-15A-

Figure 5.28: The problem setup - the domain with the boundary conditions - u, 
v , and p are the velocity in the x and y directions and pressure respectively

Velocity Boundary Conditions.
A parabolic velocity profile is assigned to the inflow boundary, where the fluid 
velocity u is given as a function of the Umax and the distance from the centre of 
flow y ,

The outflow boundary is specified as Neumann-type boundary condition for ve­
locity which corresponds to a zero viscous stress tensor. This has been chosen 
such that the flow crossing the boundary is not affected by the presence of the
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boundary, therefore vortices approaching the outflow boundary cross the bound­

ary undisturbed by its presence. There is a no-slip and no penetration condition 

011 the cylinder wall and at the lateral boundaries.

The inflow velocity umax was reached by smoothly increasing the velocity 

component u a t the inflow boundary from 0 —> umax over a set time period, in a 

process described previously in Figure 5.12.

Pressure Boundary Conditions.

The pressure boundary is defined as previously described for the flow past a cir­

cular cylinder example, see Section5.7. It is fixed arbitrarily at the midpoint of 

the outflow boundary.

Mesh.
The 3 meshes were produced for this example using ELFEN software ( | ,  £

blockages, with 9454, (9920), [9510] elements and 4933, (5140), and [4908] nodes). 

Each mesh had a different geometries to represent the changing blockage values, 

whilst maintaining the width of the square cylinder. The boundary conditions 

were applied as prescribed previously. To ensure an optimal solution the mesh 

near to the cylinder (160 nodes in to tal to define the cylinder) was refined in 

order to model the dynamics of the problem accurately. In addition to refined 

meshing around the cylinder refinements are also placed at the lateral boundary 

near the blockage in order to improve the resolution of the solution.

(a) |  blockage

(b) |  blockage
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(c) |  blockage

Figure 5/29: Meshes for flow past a square cylinder with near wall effects for | ,  

£ blockages => 9454, (9920), [9510] elements and 4933, (5140), and [4908] nodes

Numerical Results.
Figure 5.30—̂ Figure 5.31 are velocity/pressure plots for the solution Re =  200 for 

£ blockages. These plots clearly dem onstrate the vortices shedding from be­

hind the cylinder, and the restrictive effect of the reducing the distance between 

the exterior walls.

Figure 5.32 shows the evolution of the lift coefficient for the |  blockage

ratios and free flow, dem onstrating the effect of blockage on lift.

Figure 5.33 shows the evolution of pressure isolines for the |  blockage.

Figure 5.34—̂ Figure 5.36 show the numerical results recorded for this example, 

Strouhal numbers, lift and drag coefficients against the Reynolds number, plotted 

along side data  from Breuer et al [13] and Turki et al [84]. The plots for the |  

blockage ratio diverges from Turki’s observed results a t Re «  200, however Turki’s 

results for Strouhal numbers, lift and drag coefficients seem to show a change in 

flow at Re ~  200 which is not captured in the results obtained in this work. The 

most obvious explanation is the large discrepancy in spatial refinement of the 

mesh used here compared to  Turki’s meshes.
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(b) v

(c) p

Figure 5.30: |  blockage - Velocity/Pressure contour plots - Re =  200, Generalized- 

a  method p^  = 0.9, neiem =  5436
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Figure 5.31: \  blockage - Velocity/Pressure contour plots - Re =  200, Generalized- 

a  method p1̂  = 0.9, n eiera =  5436
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(c) |  Blockage (d) Free flow

Figure 5.32: Evolution of lift C l coefficients in time. Re =  150, A t = 0.01, 

Generalized-o: method p^  =  0.9



(a) Streamlines t =  300s

(b) t =  Is

(c) t =  5s

(d) t  =  15s

(e) t =  40s

(f) t =  60s

Figure 5.33: (a) Streamlines, (b)-(f) Evolution of pressure Isolines - Re =  150, 

A t =  0.01, Generalized-ct method p^  =  0.9, \  Blockage
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Figure 5.34: Comparison of |  blockage results for Strouhal number S r , lift Cl 

and drag Cd coefficients. Author - A£ =  0.1 —> 0.01, 4908 nodes, 160 nodes over 

cylinder surface. Turki et al [84] - A t =  0.01, 9394 nodes, 400 nodes over cylinder 

surface
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Figure 5.35: Comparison of |  blockage results for Strouhal number Sr, lift Cl 

and drag Cd coefficients. Author - A t  =  0.1 —> 0.01, 5140 nodes, 160 nodes over 

cylinder surface. Turki et al [84] - A t  = 0.01, 8174 nodes, 400 nodes over cylinder 

surface
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Figure 5.36: Comparison of |  blockage results for Strouhal number S r , lift Cl 

and drag Co  coefficients. Author - A£ =  0.1 —► 0.01, 4933 nodes, 160 nodes over 

cylinder surface. Turki et al [84] - A t  = 0.01, 6954 nodes, 400 nodes over cylinder 

surface
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D iscussion.

This example has reaffirmed the conclusions drawn for Propagating rectangular 
wave and Flow past a circular cylinder. The Generalized-o method pj  ̂= 0.9 has 
produced results which are comparable with data provided by Turki et al [84] and 
Breuer et al [13], and stabilization has given solutions that are free of spurious 
oscillation.

The solution results plotted for the Strouhal number, lift and drag coefficients, 
see Figure 5.34-Figure 5.36, can be favourably compared with data obtained from 
Turki and Breuer. However the results for the \  blockage for Re > 200 are 
inconsistent with Turki’s observations. It is the authors considered opinion that 
the inconsistency is due to differences in the construction of the domain, and not 
due to stabilization nor timestepping algorithm.
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5.11 Conclusions.

In this chapter we have focused on the stabilized unsteady incompressible viscous 
Navier-Stokes equations, and the time integration schemes that are fundamental 
to the modelling unsteady flows, showcasing three numerical examples which 
demonstrate the solution properties.

From the steady state FEM formulation developed in Chapter 4, we included 
the time dependent terms of the Navier-Stokes equations that had otherwise been 
ignored, to arrive at the formulation for unsteady flow. The inclusion of time de­
pendent terms required a suitable method to model both the spatial and temporal 
domains and we chose a method commonly known as Semi-discrete time integra­
tion schemes to perform this task. Semi-Discrete methods only discretize the 
spatial domain using the Finite Element Method, whilst leaving a system of ordi­
nary differential equations to be integrated in time. Discretization of the spatial 
domain has been dealt with previously however we required a time integration 
scheme to model the temporal domain, such as the Generalized-o: method and the 
Generalized Midpoint rule. Both the Generalized-o; method and the Generalized 
Midpoint rule were developed and implemented into the FEM formulation and 
the solutions were obtained for 3 different numerical examples. The observations 
from the numerical examples are summarized here.

• Irrespective of the time integration scheme, all 3 examples converge to a 
mesh dependent solution, however as refinement increase the variance be­
tween solutions decreases, until a plateau is reached.

• The Generalized-o method converges to the solution faster than the Gener­
alized Midpoint rule. However it was noted that both schemes are identical 
when pj  ̂= 1.0, otherwise known as the Trapezoidal rule.

• It was determined that pj  ̂ =  1.0 could lead to Sawtoothing therefore it is 
more practicable to use a value of p^ which is distinctly not 1.0. We chose 
pJo = 0.9 as it maintains the advantages of p^ = 1.0 yet does not suffer the 
disadvantages.

• The pressure field is free of the spurious oscillations which were apparent 
in the unstabilized lid driven cavity problem. The velocity field is also free 
of non physical oscillations for realistic time steps.
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• The Newton-Raphson performed well, with quadratic convergence for all 
timesteps and mesh densities, unless the timestep was either too large or 
the spatial discretization too coarse then the procedure failed.

From these observations we can conclude that the Generalized-a: method is an ef­
ficient time integration scheme, which when used in conjunction with stabilization 
and the Newton-Raphson procedure produces a solution procedure that is robust.

In the examples for chapters 3 and 4 we encountered problems which contained 
interfaces in one of the solution variables, however the interface was largely ig­
nored as the focus was concentrated elsewhere. In the next chapter the work 
focuses on modelling fluid flow problems that contain interfaces and the methods 
that can be integrated into the stabilized formulation in an attempt to model the 
interface more accurately.
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Chapter 6

M odelling Interfaces in Fluid  

Dynam ic Problem s.

Interfaces occur in many physical problems, and are evident in both fluid and 
solid dynamics problems, e.g. material interfaces, strain localization, shocks, 
moving surfaces, crack propagation, multiphase fluid flow etc. and, of course, are 
the major phenomenon found in fluid-structure interaction problems. Modelling 
problems with interfaces has proven to be challenging concept, and one which is 
considerably more complex to model. Often the interface will be the focus of the 
analysis, i.e. such as in crack propagation, and an accurate representation of the 
interface remains the major obstacle in the simulation of this class of problem.

In this chapter we are concerned with the accurate modelling of the type of 
interfaces that can occur in fluid flows, e.g. multiphase fluids or fluid structure 
interaction. There are various approaches to this problem, which are briefly ex­
plained, however we only concern ourselves with the extended Finite Element 
Method (X-FEM) and the process of enrichment that it entails. Initially we dis­
cuss the development of X-FEM from a General Finite Element Method with 
added terms in a partition of unity framework, followed by a simple ID bar 
problem as a demonstration^ its capability to model interfaces accurately. Rec­
ognizing that X-FEM is considerably more complicated to implement than FEM 
we conclude this chapter by describing the actual processes of implementation, 
including local spatial refinement algorithms, search algorithms etc.
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6.1 Introduction .

In modelling problems with interfaces the difficulties encountered are twofold:

i) capturing the interface accurately

ii) knowing the position of the interface at all times

In order to achieve a successful result the numerical algorithm needs to take 

account of the above criteria. Generally numerical simulations of the interfaces 

are based 011 two distinct methods, which approach the analysis from completely 

different directions. They are commonly known as Interface Tracking (IT) and 

Interface Capturing (IC) algorithm s1 are illustrated in Figure 6.1 and these are 

explained in brief below:

(a) Interface Tracking (b) Interface Capturing

Figure 6.1: Examples of Interface modelling methods

6.1.1 Interface Tracking.

In Interface Tracking the mesh topology is designed specifically to match the ge­

ometry of the interface e.g. placement of nodes on the actual line of the interface2. 

Should the problem include an evolving interface, i.e. shock, or if the interface is 

moving, i.e. free surface, then the mesh quickly becomes outdated, and continued

M ethods also used to model interfaces include Meshless methods but these are not discussed 

here
2Numerical simulation using General Finite Element Methods have difficulty capturing these 

interfaces with any accuracy if they cut elements
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accuracy can no longer be guaranteed. Commonly in these situations the mesh is 
altered to reflect the ever changing geometry of the problem. If the displacements 
of the interface are small it may be possible to match the movement of interface 
by updating the mesh without changing the connectivities. However this process 
can lead to extremely deformed meshes and requires other considerations to be 
taken into account as the numerical simulation would no longer be strictly Eu- 
lerian, but Arbitrary Lagrangian Eulerian (ALE). In these situations, i.e. when 
the deformation of the mesh becomes too large for the ALE approach to work, 
it is often necessary to perform remeshing i.e. generating a new set of nodes 
and connectivities. Remeshing is expensive, requiring a complete regeneration of 
the mesh, projection of data from the old mesh to the new mesh and adapting 
visualization techniques during postprocessing, all of which are costly and time 
consuming, even more so if the requirement for remeshing is at every timestep.

Interface Tracking generally guarantees a level of accuracy but sacrifices the 
efficiency of the analysis and should be avoided wherever possible if any other 
reliable method exists. Examples of Interface Tracking algorithms are Arbitrary 
Lagrangian Eulerian methods, see Huerta et al [41] and deforming Space-Time 
Finite Element formulations, see Tezduyar et al [79, 80].

6.1.2 Interface Capturing.

The Interface Capturing methods use (commonly) a fixed mesh, which does not 
conform to the interfaces present3  allowing, instead, for the interface to cut el­
ements at any point. The interface is marked by function which is itself dis­
continuous or the gradient is discontinuous, defining two distinct values: this 
function is commonly known as an Enrichment function. The process of using 
enrichment functions to define the interface places heavy reliance on the reso­
lution of the mesh to capture the interface accurately, and often highly refined 
meshes are required to achieve an acceptable level of accuracy - even so this often 
produces results which are not as accurate as those obtained through Interfacing 
Tracking methods. To avoid large meshes whilst maintaining accuracy Enhanced 
Discretization Interface Capturing Techniques (EDICT) have been introduced. 
EDICT avoids the use of excessively refined meshes by refining the mesh at the 
interface only, thus giving improved definition of the interface without the added

3The independence of the analysis from the mesh produces a method which is considerably 

more flexible when considering moving interfaces
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computational cost.
Examples of Interface Capturing algorithms are Volume of Fluid methods, see 

[40], and Level Set methods, see Sukumar [73], Stolarska et al [72] and Chessa 
and Zienkiewicz [17].

In this chapter the focus turns to the modelling of arbitrary interfaces found 
commonly in fluid dynamics problems, using an Interface Capturing method, 
commonly known as the extended Finite Element Method (X-FEM).

The main attraction of X-FEM is the ability to use an Eulerian mesh, where 
the interface causing the effect being studied is not physically present in the 
mesh, e.g. in flow past a cylinder, the cylinder is represented by an absence 
of mesh, i.e. normally a hole is left in the mesh to represent the cylinder, see 
Figure 6.1. X-FEM in contrast enables the interface to be placed on top of 
the mesh mathematically, and this allows for certain problems to be solved where 
otherwise it would require substantial and computationally expensive re-meshing, 
and postprocessing.

Following a brief introduction into X-FEM, there will be a more detailed look 
at the method, which will include a brief ID example and the formulation of the 
method. Finally the implementation of X-FEM into FEAP will be discussed and 
examples of the method produced with concluding remarks.

6.2 ex ten d ed  Finite Elem ent M ethods (X-FEM ).

X-FEM is the General Finite Element Method with added terms in a Partition 
of Unity Method (PUM) framework.

The extended Finite Element Method (X-FEM), first proposed by Belytschko and 
Black [9] and Moes et al [60], is the union of the General Finite Element Method 
(GFEM) and additional functions, in a framework provided by the Partition of 
Unity Method (PUM), see Babuska et al [5]. This process allows for some aspects 
of the functional behaviour of the solution field, which are know a priori, to be 
included in the analysis, thereby enriching the solution. In addition many of the 
techniques and methods commonly associated with FEM can be applied to X- 
FEM. Therefore the methods and formulations previously discussed in Chapter 
3, 4 &; 5 i.e. the Stabilized Finite Element Method and time integration schemes, 
are applicable to X-FEM.
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Belytschko et al [10] first considered the possibilities of modelling interfaces 

using PUM in the X-FEM structure, and this method was first applied to  dis­

continuity analysis for solid mechanics problems, specifically, for the analysis of 

crack propagation. Since then X-FEM has been used in many classes of problems, 

including 3D crack modelling - Sukumar et al [74], in particulate Stokes flow - 

Wagner et al [86], whereas discontinuities in derivatives have been applied by 

Chessa et al [18] for solidification problems.

In order to understand the m athem atical background of X-FEM a brief overview 

of the PUM is given here.

6.2.1 Partition  o f U nity  Enrichm ent (P U M ).

Figure 6.2: Typical discretization of a domain with enrichment. Illustrates the 

three distinct types of domain found in a local enrichment scheme, i.e. standard 

domain, enriched domain and finally the transitional domain

n std C 12, n enr C D, Qbld C D, (6.1)

The first type is the standard domain f l std, and in this domain the elements are 

not enriched, i.e. none of the element nodes are enriched. This is the default
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domain type. The second domain type, Enriched domain Clenr requires that all 
elemental nodes are enriched. For the final domain type, Transitional Domain 
Clbld, the element must contain enriched nodes, as well unenriched nodes. The 
position of an element in relation to the interface will dictate into which domain 
a particular element will fall.

A description of each of the domain types is given in more detail below:

6 .2 .1 . 1  Cl - S tandard Domain.

The domain Cl is discretized into finite elements and nodes

where Cl is sub divided into elements (De), and nodes (x i ). £ and Af represent 
the sets of elements and nodes respectively. The General Finite Element basis is 
given as:

thus proving that any function (f>(x) can be reproduced in the domain by the 
local function Ni{x)(j){x). This is an important consequence of using the PUM 
framework for enrichment.

(6.2)
e€£

(6.3)

IeM

where Nj(x) is the shape function of node I  and B spans the space of piecewise 
continuous polynomials. The General Finite Element approximation of a scalar 
variable w(a;) is written as:

(6.5)
izN

The shape functions form a partition of unity

(6.6)
l€ N

Therefore it follows from (6 .6 ) that:

(6.7)
l€Af
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6.2.1.2 f l enr -  Enriched Dom ain.

Whilst it is possible to enrich the entire domain, this is rarely needed and often 
would prove to be an inefficient use of computational resources. It is more com­
mon to restrict enrichment to the sections of the domain ft where it is required.
The union of all subdomains in which the solution is to be enriched is denoted
by ftenr:

arr = 1J (6.8)
e € Senr

where Senr C S, and represents the elements that require enriching. If any node 
I lies in ftenr then it becomes an enriched node and included in the subset M enr, 
where J\fenr c  Af.

If 4>(x) is an enrichment function, the enriched Finite Element basis, for a 
local Partition of Unity method, is given by

Benr = B® (J N,{x)<t>{x) (6.9)
I  £ j \ f e n r

If the basis of the scalar variable w(a;), see (6.5) is enriched with the ap­
proximation becomes:

wh(x) = ^  iV/(a;)w/ + Nj(x)(f)(x)ai (6.10)
i  e r f  i e J \ f e n r

where a/ is the scalar enrichment variable. By fixing the enrichment scalar vari­
able a/ to zero, see (6.10), the General Finite Element interpolation (6.5) is 
recovered. The enrichment shape function Nj helps to maintain sparsity of the 
global system matrix by contributing to w(a;) only where TV/ is non-zero, i.e. 
within the support of the node I.

In some situations it may be necessary to enrich using vector enrichment, 
therefore the resulting approximation would read:

tie
w h(x) = '^2n i (x)wi + ^2  ^ 2  Ni(x)(j>a(x)aaI (6.11)

I e A f  a = l  l € A f e n r

where n# is the order of the enrichment vector.

6.2.1.3 flbld - Transitional D om ain (B lending).

The third and final domain, the transitional domain, acts as a buffer zone between 
domains with fully enriched elements and domains with standard elements. This
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area is considered to be partially enriched, and therefore the elements do not form 
a partition of unity.

Blending is important and necessary to the approximation properties and con­
vergence of the enrichment scheme. However it has been shown in Sukumar et 
al [73] that blending effects the convergence rate of the solution, yet error anal­
ysis of methods which ignore blending have also been shown to be deficient, see 
Chessa et al [19]. Therefore it is important that blending is implemented and 
that the choice of blending is carefully considered as it can often be crucial to the 
success of the solution. Both Chessa and Sukumar suggested procedures, such as 
enhanced strain elements, to improve the blending algorithm and some success 
was achieved, however in this thesis only standard blending is implemented.

Remark 6.1: In Brief.
Note that if aai = 1 and wj = 0 then:

6.3 Im plem entation of the X-FEM  for fluid flows.

X-FEM is typically a complex procedure to implement, and the numerical ap­
proach to the problem requires careful consideration. In this section the entire 
process will be laid bare for the readers understanding and examples will be used, 
wherever possible, to ensure maximum clarity.

The remainder of this chapter will be laid out in the following manner. Initially 
there will be a brief introduction into the requirements for a successful implemen­
tation, followed by a simple ID example which will give an overall impression on 
the methods involved. Subsequently the algorithms necessary to implement X- 
FEM and enrichment in both ID and 2 D numerical simulations will be developed 
and discussed in detail with examples to illustrate why it is important to the 
overall success of the solution.

As mentioned in the previous sections, the basis of X-FEM for fluids is the General 
Finite Element Method as developed in Chapters 3, 4, and 5, therefore in order
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to successfully implement X-FEM we need to build upon techniques discussed 
in the previous chapters, and add new methods specialized for enrichment. The 
transformation from General Finite Element Method to X-FEM can be achieved 
in three steps:

• augment the General Finite Element discretization with a Partition of Unity 
method, see (6 .1 1 ), and select an appropriate enrichment function.

• implement an algorithm to locate and position the interface

• implement an algorithm to accurately model the interface.

At this point it seems appropriate to include a simple ID example to demonstrate 
X-FEM in its most simple form.

6.4 Num erical Exam ple - X-FEM  Simple ID  Ex­

ample.

Now is a good time to briefly review a simple enrichment example, and test the 
ability of the enrichment method to model discontinuities:

Problem  1. Three rods, of similar length but of differing materials and cross 
sections, are joined end on end, to form a bar of length (1500mm). The bar, 
which contains 2 discontinuities - positioned at 500mm and 1000mm from node 
A, is restrained at node A and is subjected to an axial force at node G. Calculate 
the displacement at node C, E & G.

A comparison will be made between solutions that situate the discontinuity 
on a node (which should exactly mirror the analytical solution) and those that 
do not:

• analytical solution (using the stress-strain relationship)

• 3 element FEM (discontinuities on nodes)

• 4 element FEM (discontinuities mid-element)

• 4 element FEM with enrichment using Gauss Quadrature (discontinuities 
mid-element)
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250mm 250mm 250mm 250mm 250mm 250mm

E ac — 70 x i t fN /r r im  E ce  = 200 x 10^ N /m m  E eg — 100 x 10'lN /m m

A a c  =  1963.5mm2 A c e  — 1134.1mm2 A eg  — 1000mm2

o a c  — 40 M P a

The force Frequired to give the prescribed stress value g ac-

F  = g AC  x =  7.854 x 104A

=> gac -  40.00M Pa

opf? — 69.25M P a  

g  eg  — 78.54M P a

The stress values in the three distinct bar sections AC,CE & EF, highlight the 

stress discontinuities in the bar. These discontinuities will need to be properly 

considered if an accurate solution is required.

Analytical Solution (i).
The stress values are used to calculate the strain, and displacements in each rod:

= ~dx ~  (6' 13)
=> U = 4  x L (6.14)

E

where e is the engineering strain, E  is Young’s modulus, L  is original length of 

the rod, and U is displacement or change in length of the rod due to the axial 

force F  .

It has been dem onstrated th a t the problem is discontinuous, with regards to 

stress, and (6.13) shows tha t U must also be discontinuous.
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The exact nodal displacements for this simple problem are:

Ua = 0 .0 0 0 mm  

Uc = 0.286mm 

Ue = 0.459mm 

Uq = 0.852mm

6.4.1 FEM  Solution.

The governing equation for axial loading of a ID bar element can be written as:

EA^-x- — 0  wheredx2

U \x= Q  ~  o

dU\ -  F~ T ~ \x= L  — rdx

(6.15a)

(6.15b)

(6.15c)

using the Galerkin formulation to obtain the weak form, where w is the test 
function

/Jo
w EA d?U

dx2 dx = 0 (6.16)

integrating by parts and substituting in Equ (6.15c)

LL dw dU - E A —-dx  = Fdec dec (6.17)

and the General Finite Element discretization applied to displacement U and the 
test function w can be written as:

Uh =  ^ 2  NiUi w h =  Y JNi Wi (6.18)

therefore the axial stiffness for a ID bar is:

= EPAP I B T Bdx where BT
I

dN- 
dx 

dN- 
. dx .

(6.19)

where Ae, ke and Ni(x)Sz iV2 (a;) are the element cross sectional area, element 
stiffness and ID linear shape functions respectively, where:

7V7■ / \ ^  A r / \Ni(x) = N2(x) = - (6.20)
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0 L

Figure 6.3: Graphical representation of Ni & N2

Therefore the element stiffness k„ can be rewritten:

- 1_  EeAe
ftp —

1

- 1 1

(6 .21)

Three elem ent FEM  solution (ii).

The three elements are: AC, CE, EG. Inserting the elemental values of Young’s 
modulus, cross sectional area and length, for each section of the bar, into (6 .2 1 ) 
produces three different local stiffness matrices.

kAC = 

kcE = 

ksG —

70 x 103  x 1963.5 
500

200 x 103  x 1134.1 
500

1 0 0  x 1 0 3  x 1 0 0 0 . 0  

500

1

- 1

’ 1  

- 1

1

- 1

- 1

1

- 1

1

- 1

1

These can be assembled together to form the global stiffness matrix - the global 
stiffness matrix is assembled from the components of the three local stiffness 
matrices following the format laid out in (6 .2 2 ).

(6 .22)

1.11
k a c

b.12
k a c 0 0

b.21
k AC

b. 22 I 1.11
"'AC t  "'CE

b. 12
k CE 0

0 b.21
* CE

b.22 _i_ jlII
K'CE ' ^EG

b.12
K'EG

0 0 b.21
k EG

b.22
k EG

resulting in the following stiffness matrix:

A Global —

274890 -274890 0 0
-274890 728530 -453640 0

0 -453640 653640 -200000
0 0 -200000 200000

(6.23)
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The loading vector is also assembled in a similar manner.

FGlobal =

R a

0

0

78540

(6.24)

274890 -274890 0 0 ~Ua R a

-274890 728530 -453640 0 Uc 0

0 -453640 653640 - 2 0 0 0 0 0 UE 0

0 0 - 2 0 0 0 0 0 2 0 0 0 0 0 UF 78540

where Ra is the reaction at node A. (6.23) & (6.24) are assembled with the vector 
of unknown displacements to create a system of equations which can be solved.

(6.25)

The nodal displacements obtained from the FEM solution for the three element 
problem are:

Ua — 0 .0 0 0 mm 

Uc = 0.286mm 

Ue = 0.459mm 

Uq = 0.852mm

Four elem ent FEM  solution (iii).

Once again solving the problem described in Section 6.4; this time there are 
four elements AB, BD, DF, FG, two of which contain discontinuities at their 
midpoint. The values of Young’s modulus and cross sectional area for elements 
with a discontinuity within its boundary will be assumed to be constant, e.g. for 
mid element discontinuity Eqe — \E qd +  \E de-

There is no need to explain or even show the process leading to the four 
element solution, as it has been covered previously by the three element solution. 
However the results are as follows:

Ua = 0 .0 0 0 mm 

Ub = 0.143mm 

Ud = 0.358mm 

Up — 0.598mm 

Uq = 0.795mm

Uq = 0.251mm 

Ue — 0.478mm
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6.4.2 FEM  Solution w ith  Enrichm ent.

The formulation is identical to the Finite Element solution described above. The 
addition of enrichment to the solution algorithm requires increased degrees of 
freedom per node, and a slightly more complex axial stiffness matrix.

The general Finite Element interpolation (6.18) is augmented by enrichment 
functions to become:

U h(Ui,a,i ,x) =  J 2 N i ( x ) ( U i  +  <t>(x)ai)
i

= ^ 2  Ni(x)Ui + ^ 2  Ni{x )<t>(x)<h (6.26)
i i

where a* is the enrichment variable, and <t>{x) the enrichment shape function. The 
axial stiffness formulation (6.19) is altered to reflect (6.26):

k™ = EeAe [  6 B UTB u dx k%a = EeAe [  * B UTB adx
Jo Jo

k f  = EeAe [  6 B aTB u dx kaea = EeAe [  * B aTB adx (6.27)
Jo Jo

kP =
hJJU UUa 
"'e e
uaU h.aa 

, e e
(6.28)

The choice of the enrichment shape function (p(x) - as part of Ni(x)(f)(x)ai, will 
define the vector B aT, and Ni(x)Ui will continue to define B UT. The new vectors 
are to reflect that BT has become two separate entities due to the inclusion of 
enrichment.

For this problem we require a shape function which is discontinuous in order 
to accurately portray the stress discontinuity within the bar. Whilst other shape 
functions can be used just as successfully, we have chosen:

x
(j){x) = — x0

<t>(x) =  1 -
X - X r

L Xq

0  < x < xQ

Xq < x < L

(6.29)

(6.30)

H o-koW

Figure 6.4: Graphical representation of 4>{x)
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and in response 

B ut =

B ut =

dN\ 
dx 

dN2 
. dx .

dN  i 
dx 

dN±
. dx .

tdoT
0—*xo

tdclTn x0̂ L
^ Xô x) + N l^ ^  

d- t ^ L ( x )  +

0 < x < xQ (6.31a) 

xQ < x < 1 (6.31b)

Equ (6.31b) h  (6.31a) are substituted into (6.27). An expanded version of k^a is 
printed below to make the method more transparent.

P X 0 P L ,

k ^  = E ^ XoAo^Xo B UTB ^ x dx + EXô LAXô L B UTB ^ Ldx (6.32) 
Jo J X o

The complete element axial stiffness matrix is assembled (with the vector of 
unknowns along side) and shown next to a non enriched stiffness matrix for 
comparison,

„enrich

’ U i '

L.UU uUa 
K'e e u i + 1 j^non-enrich __ \ ue u o '

jr.aU feaa (Zj
6

0 0

0>i+1

U i

ui+1 

0  

0

(6.33)

Four element FEM  solution with enrichment (discontinuities mid-element) 
(iv).
Rather than integrating analytically to obtain the element axial stiffness, which 
would be a laborious process, we will integrate numerically using Gauss Quadra­
ture. A brief review of the method of Gauss Quadrature and how it is applied in 
this case:

j  f(x)dx = a\}{ri) +  a2f( r 2) + ...... +  a „ /(rn) (6.34)

where for ID

O ii =  w ,
ib -a ) Wi = weighting at Gauss Point 

Ti = global position of Gauss Point

For the case of enrichment (6.34) can be rewritten

p L  p x 0  p L

/ f(pc)dx — / fo^Xo(x)dx + / f Xô L{x)dx 
J o  J o  J  x0

— A/o—Xo^l) + fofo —*x0 ( 2̂ ) +  + Pnfo

+ l l f x 0̂ L { n )  + 12fx0̂ L(r2) + ...... + ”fnfx0̂ L (̂ n) (6.35)
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The minimum number of integration points per discontinuous element is two, 
as there must be at least one Gauss point before and after the discontinuity for 
the numerical integration to be accurate. Using a total of four Gauss points per 
discontinuous element, i.e. 2  Gauss points on each side of the discontinuity, the 
weights and positions, for a element of length 500mm, are as follows 4:

0 —> x0 Xq—̂ L  (6.36)

W\ = \ Xi = 52.831 xi = 302.831 (6.37)

ti/2  = l X2  — 197.169 z 2 = 447.169 (6.38)

assuming for a {-1, +1} isoparametric element that 7*1 = & r 2 = -J=. These
values, and those for integrating with more or less Gauss Points can be found in 
most standard FE texts in tabular form.

The complete assembled axial stiffness matrix and loading vector

" 5497 8 0 - 5 4 9 7 8 0 0 0 0 0 0 0 0 o ' ~uA~ " R a  "
- 5 4 9 7 8 0 9140 4 5 0 89375 - 3 6 4 2 6 5 0 89375 0 0 0 U b 0

0 0 0 0 0 0 0 0 0 0 a A 0
0 89375 0 364265 - 8 9 3 7 5 0 3642 6 5 0 0 0 ob 0
0 - 3 6 4 2 6 5 0 - 8 9 3 7 5 6 9 1 0 8 5 - 3 2 6 8 2 0 - 2 1 6 1 9 5 - 1 2 6 8 2 0 0 0 Ud 0
0 0 0 0 - 3 2 6 8 2 0 7 2 6820 126820 126820 - 4 0 0 0 0 0 0 U F 0
0 89375 0 364265 - 2 1 6 1 9 5 126820 69 1 0 8 5 3268 2 0 0 0 0£) 0
0 0 0 0 - 1 2 6 8 2 0 126820 3268 2 0 3268 2 0 0 0 a F 0
0 0 0 0 0 - 4 0 0 0 0 0 0 0 4000 0 0 0 UG 78540
0 0 0 0 0 0 0 0 0 0_ - a G _ 0

System (6.39) is solved by removing both a a & (Lg- The solution

Ua = 0 .0 0 0 mm 

Ub = 0.143 mm 

Ud = 0.372mm 

Up — 0.655mm 

Uq = 0.852mm

a a = 0 .0 0 0 mm 

as = 0.060mm 

an = —0.003mm 

aF — —0.106mm 

a,G = 0 .0 0 0 mm

(6.39)

We use the Finite Element interpolation (6.26) to calculate the values for dis­
placement mid element, i.e. Uc &Ue - Figure 6.5 can be used as a reference.

4It should be noted that due to the discontinuity the numerical integration has been split 

into 2 separate parts (see (6.35)), i.e. integrating over two subelements. We treat the bar as if 

it is 500m in length, however we integrate over two 250mm lengths
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N1

Hj

Figure 6.5: Standard (TV) and Enrichment (0) Shape functions

At node C using (6.26) for a mid element discontinuity5 x Q =

Uc = ^2  Ni(x)ui + Ni{x)<j)(x)ai
i=  1 2 = 1

=  N i ( x 0)Ub  +  N 2( x 0)U d  d- N \ ( x 0)<f>(x0) a B +  N 2{x 0)(f)(x0) a D 

= 0.5 x 0.143mm +  0.5 x 0.372mm +  0.5 x 1 x 0.060mm +  0.5 x 1 x —0.003mm

Uc = 0.286mm 

Following the same process for Ud

Ud — 0.459mm

6.4.3 Com parison of Solutions.

0.6

CL
0 .4

0.2

x (mm)

1250 15000 250 500 750 1000
•i. Analytical Solution ■iii. 4  E lem ent (discontinuity a t mid e lem ent)

•ii. 3 E lem ent (discontinuity at node) - * - i v .  4  E lem ent E nriched (enrichm ent added )

(a) Plot of nodal displacements for i, ii, iii, iv

5This calculation could be performed for any value of x Q and produce the same result.
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■B— ii. 3 E lem ent (discontinuity a t node) -*fc-iv. 4 E lem ent E nriched (en richm ent ad d ed )

(b) Plot of stresses for i, ii, iii, iv

Figure 6.6: The displacement and stress results for the ID bar example

Figure 6.6(b) clearly dem onstrates th a t the ID bar problem is a discontinuous 

problem. The bar is made up of three different materials and this leads to dis­

continuities which are apparent in the stress distribution of Figure 6.6(b). The 

observations for this example are given below:

• As expected the only non exact solution is the General Finite Element 

formulation with discontinuities a t mid element, i.e. solution iii.. The 

General Finite Element solution iii. was unable to take account of the 

discontinuities i.e. inaccuracies regarding the Young’s modulus and cross 

sectional area for the two discontinuous elements, and this lead to errors in 

the final displacements.

• The solution iv. highlights one of the benefits of enrichment, i.e. enrich­

ment produces the correct global nodal values, regardless whether the values 

of enrichment data  are accounted for or not in the final result. If accurate 

interior displacements are required, a t any point within the mesh, it is nec­

essary to account for the enrichment result in the displacement calculations.
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6.4.4 D isadvantages o f Enrichm ent.

Whilst the enrichment method has been shown to produce accurate solutions, 
albeit only in ID, there are a few notable disadvantages which became apparent 
at this early stage:

• the enriched FEM requires more accurate integration

• interpolating results to find values at mid element (or at any other point 
along the element) is awkward.

• increases the number of degrees of freedom.

The first disadvantage is unavoidable, and is a direct result of the need for a 
more accurate solution. The second is normally not important as it is a logi­
cal process and can be performed automatically. The final disadvantage is more 
serious. Doubling the number of degrees of freedom for a small problem is rela­
tively simple, however if the number of degrees of freedom is already large, then 
doubling this value will considerably increase the solution time. It may even be 
considered more economical to increase the mesh density rather than implement 
enrichment. However there are ways to partially circumvent this problem, and 
these are explained below:

1 . only include the enrichment capability for elements which require enrich­
ment.

This method is the most appropriate as it limits the number of degrees of 
freedom, however it is very awkward to implement and leads to difficulties 
compiling the global stiffness matrix if the discontinuity is moving.

2 . Static Condensation

Static condensation is employed to reduce the number of element degrees of 
freedom and thus, in effect, to partially solve the local system of equations, 
i.e. stiffness matrix K  and the residual vector R , prior to assembly of the 
global system of equations.

It is possible to partly solve the system of equations at element level by 
statically condensing the larger enrichment matrices to the size of an un­
enriched matrix. The stiffness matrix shown below was calculated using 
the same mesh as for solution iv., however this was statically condensed at 
element level and assembled.
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549780 -549780 0 0 0 UA Ra

-549780 892116 -342336 0 0 Ub 0

0 -342336 619944 -277608 0 Ud = 0

0 0 -277608 677608 -400000 uF 0

0 0 0 -400000 400000 Uc 78540
(6.40)

This solves to give

UA =  0.000mm 

Ub = 0.143 m m  

Uq — 0.372m m  

Up = 0.655m m  

Uq = 0.852mm

Which is exactly the same displacement result as obtained from solution 

iv..

•  generally only few elements require enrichment, therefore the advan­

tage gained far outweighs the extra com putational expense of solving 

at element level. If the percentage of enriched nodes increases then 

this method becomes inefficient.

•  there would be the same number of degrees of freedom for every time 

step.

•  finding the enrichment values would require extra com putation post­

solution

Both methods have there advantages and disadvantages, however Option 1 min­

imizes the number of degrees of freedom and does not require extra solution 

algorithm at element level, therefore we will use this method for modelling dis­

continuous problems.

6.4.5 Conclusion - ID  Enrichm ent Exam ple.

In Section 6.3 the steps for a successful outcome when modelling problems th a t 

contained interfaces were defined. It was noted th a t the solution was reliant upon
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proper implementation of the Finite Element enrichment discretization, on the 
solution algorithms ability to correctly locate the position of the discontinuity 
and accurately model the discontinuity.

In the case of the simple enrichment example above, i.e. displacement in a one 
dimensional discontinuous bar - Section 6.4, the criteria were relatively simple to 
achieve:

• The Finite Element enrichment discretization was performed correctly and 
an appropriate enrichment function was used.

• The position of the discontinuities were known, stationary and the discon­
tinuity only cut each element once.

• The discontinuous elements were modelled accurately because the Gauss 
quadrature method was able integrate each element exactly.

Therefore a successful solution was achieved because the X-FEM criteria were 
fulfilled correctly.

6.5 X-FEM  Algorithm s.

In the case of a two dimensional problem the enrichment process is considerably 
more involved than in ID problems, as simple methods used in ID problems be­
come significantly more complex. In this section the methods used to ensure that 
the above criteria are fulfilled are discussed in detail. In addition to this certain 
algorithms specific to programming and their implementation into 1DFLOW and 
FEAP will be explained.

The section will be divided into two subsections, firstly Interface Location 
followed by Interface Modelling. Interface Location will encompass all necessary 
methods to accurately position the interface at every point on the mesh, whilst 
Interface Modelling entails accurately integrating the enriched elements. These 
methods will be developed into a general all purpose algorithms.

In order to demonstrate the algorithms numerical examples are used as case 
studies. The numerical examples chosen are ID Advection Diffusion for ID i.e. 
propagating rectangular wave using Heaviside enrichment, and Particulate flow 
simulations, i.e. fluid flow past a stationary particle, with Stokes flow enrichment.
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6.6 Interface Location.

The process of locating an interface can be divided in to two sub-processes, i) 
locating the movement every timestep, and ii) selecting the elements that require 
enriching and blending, and they are described in detail below.

6.6.1 M otion  of th e Interface.

Calculating the motion of the interface is dependent on the type of problem 
being considered. In certain scenarios the movement of the interface cannot be 
predetermined, as each movement is dependent on global equilibrium6, such as in 
the study of crack propagation or multi-particle flow. In other cases the position 
can be predetermined, i.e. problems with stationary interfaces or those which 
follow a fixed path.

Both enrichment numerical examples are of the second category, i.e. the 
position of the interface is predetermined7, therefore the method of calculating 
the exact position at every timestep is straightforward. If a point on the interface 
is denoted x and the velocity is given by a* then the new position of x U* is given 
as:

U* = + x (6-41)

For the propagating rectangular wave the global position of the actual interfaces 
are defined, whereas for particulate flow the interface is defined by the centre of 
the particle.

6.6.2 Search A lgorithm .

It is important to know the location of the interface at all times, and know which 
elements require full enrichment i.e. Qenr, partial enrichment i.e. Q,bld and those 
which are not enriched i.e. Qstd.

For a stationary interface, such as a particle in Figure 6.7, it is only necessary 
to obtain this information once, as its position will not vary during the simulation 
and the background mesh is fixed. However in the case of a moving interface this 
information needs to be collated every time step, whilst the mesh remains fixed

6Which alters with every movement of the interface
7It is assumed that both examples model the movement of incompressible solids therefore 

the position of the interface in a local framework is unchanging, however globally the position 
can vary
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Figure 6.7: Particle superimposed on to a mesh

the interface may move freely, and the information from a previous time step 

may no longer be applicable. Collating the positional information every time is a 

laborious process and could conceivably be the most time consuming routine in 

the entire solution, so it is imperative to make the search as efficient as possible.

The method chosen to search for the elemental da ta  uses a system of domains 

to break down the mesh into smaller regions. It is no longer necessary to search 

the entire mesh to find specific elemental data, as the same information can be 

found by searching over a small percentage of the total number of elements. The 

main advantage of this method is a time advantage, which is achieved when there 

are many time steps used, as initial costs are high during the period when a li­

brary of all elemental information is constructed. The main disadvantage is the 

need to store a large amount of da ta  for the duration of the computation, however 

this is unavoidable if quick search methods are required.

Search by Domains.
This search algorithm divides the mesh into regions of interest, i.e. domains. 

Each domain is made up of smaller domains in a pyramid type structure. In or­

der to find an element at a certain coordinate the search algorithm progressively 

searches a smaller and smaller area, focusing the search with every step until only 

a small portion of the entire mesh needs to be searched using a standard search 

routine.
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Description of Method

The entire meshed region is classified as Level 1. The Level 1 domain is divided 

into 4 equally sized Level 2 domains, and these in turn  are all divided into 16 Level

3 domains. This process will continue until there are small number of elements 

e.g. «100, in each of the domains (Level n). In order to improve the search each 

domain a t all levels contains the address of its parent, its neighbours and also its

4 children. See Figure 6.8 & Figure 6.9.

Level 

1  

2 

3

n 2(n-i)x2

In the diagram, see Figure 6.8 the domain hierarchy is explained in pictorial 

format using a flowchart8.

An example of the division of a simple 2D unstructured mesh using domains is 

presented in Figure 6.9.

No Domains
2 0 x2

21x2
(6-42)ozxz

8In truncated form due to it size
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Figure 6.8: Flow Chart of Domain Hierarchy
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(a) Level 1 Domains 1

(c) Level 3 Domains 6 —> 21

(b) Level 2 Domains 2 —> 5

(d) Level 4 Domains 22 —> 85

Figure 6.9: Actual division of mesh by domains
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Example - Search Algorithm.
The Domain search method is compared to that of a standard sequential search. 
Efficiency is quantified by comparing the number of steps required for each search 
to finish successfully.

N e a r e s t  n o d e  s e a r c h

Sequential search Dom ain search 

25600 nodes 5 le v e ls

le v e l  5 -  to ta l  256 domains 

«  100 nodes in each le v e l 5 domain 

Maximum 16 steps per le v e l to  determine 

in  which domain the coordinates l i e  

16 x 5 +  lOOnodes

25600 steps 180 steps

It is shown by this simple example that the time saving is large after the initial 
process of building a library of elemental data is completed.

6.7 Interface M odelling.

6.7.1 Local M esh refinem ent and N um erical Integration.

The task of meshing the numerical domain is performed in the pre-processing 
stage, however it is sometimes necessary to carry out low level meshing to im­
plement a more accurate numerical integration procedure, during the solution 
process. The main advantages of this method is the ability to model the interface 
accurately and irrespective of the mesh size/interface length ratio. This results 
in accurate solutions from relatively coarse meshes.

This section will be used to explain the implementation of mesh refinement 
and corresponding numerical integration for selected elements. The 2D particu­
late flow example using Stokes flow enrichment will be used to demonstrate this 
method.

In this chapter the General Finite Element discretization, see (6.5), was ex­
tended to accommodate enrichment, see (6.11), to become X-FEM; the numerical 
integration procedure used successfully for the General Finite Element formula­
tion is not appropriate when applied to X-FEM. The current numerical integra-
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Figure 6.10: Standard 2D linear shape function - 3 Internal Gauss points

(a) Standard 2D linear 
shape function

(b) Enrichment function

Figure 6.11: Shape functions for Enrichment - 4 Subelements, 3 Internal Gauss 

points per subelement

tion scheme, i.e. Gauss quadrature9 with 3 internal Gauss points for 2D triangular 

elements, see Figure 6.10 is only suitable for integrating linear shape functions. 

W ith the added enrichment the numerical integration scheme would be required 

to model the interface and integrate nonlinear functions over the element, as the 

product Nj(x)c/)(x) is nonlinear.

The commonly used method, and the one implemented here, is to subdivide 

the element into subelements which do not cross the interface and perform nu­

9Gauss quadrature is a commonly used method for numerical integration, and is widely 
written about, see Bathe [6].
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merical integration over these subelements, see Moes et al [60], and Belytschko 

et al [10]. The purpose of the local mesh refinement is to improve the accuracy 

of numerical integration for enriched elements. The edges of the subelements 

define the path of the interface and the increased number of integration points 

interpolate the nonlinear shape function more accurately, see Figure 6.11.

In the next section the complete process of mesh refinement and numerical 

integration will be explained.

6.7.2 M esh R efinem ent.

In order to perform mesh refinement we must first specify which elements require 

it i.e. elements th a t are intersected by the interface, see Figure 6.12:

Figure 6.12: Elements intersected by particle

In the case of Particulate fluid flow, the interface is assumed to be particle, which 

to simplify the analysis is assumed to be circular and is defined by the equation 

of a circle:

R 2 =  (x -  x 0)2 +  (y -  y0)2 (6.43)

where x  & y are the cartesian coordinates in 2D space, xo & yo are the coordinates

of the centre of the particle and R  is the radius of the particle. If the centre of

the particle is at the origin then:

R 2 — x 2 — y2 >  0 I Exterior of the particle
2  2  2  I (6'44)R  — x — y < 0 I Interior of the particle
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The Domains search algorithm is used to find the nodes closest to the particle 

surface (interior/exterior), and this information is used to identify the elements 

intersected, see Figure 6.13

T

239 .

224,

208.2 0 6 ‘0 7

Figure 6.13: Elements intersected by particle

Each element is considered individually. The point of intersection of the surface 

of the particle with the two edges of the element, see Figure 6.14, is calculated10.

Figure 6.14: Intersected element by an interface

W ith this information the process of locating the interface is complete. The next 

solution process is the division of the intersected elements into smaller subele­

ments and the description of this methods follows below.

10Equating the equation of the line of the element edge and equation describing the interface 
leaves a quadratic which can be solved simply
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6.7.2.1 Subelem ents.

The division of an element into subelements is performed in order to split the 

element into smaller integration areas, thereby improving accuracy. It also allows 

for the interface to be modelled globally, over the domain, and locally, within an 

element.

Figure 6.15: Element divided into 4 subelements

To subdivide the element into smaller subelements and match the subelement 

with the interface requires various steps. Initially a isoparametric element in 

(£ — V space is subdivided into subelements and the result is mapped onto each 

individual element in x — y space. In the next stage the interface is defined within 

the element by molding the nodes of the subelements to match the interface. 

Finally the integration points are mapped from £ — 7/ space into each subelement 

individually in x — y space, then transformed back into £ — 77 space one more time 

to calculate their weighting for Gauss quadrature.

6 .7.2 .2 Isoparam etric Element and Mapping.

The background to isoparametric elements and mapping was shown in Section 

3.2.2.2, however to fulfill the requirements of enrichment and improve numerical 

integration we will be performing mappings for subelements and it is necessary 

to introduce the naming convention for element and subelements nodes:

£ — 77 element coordinates 

£ — 77 subelement coordinates 

x — y element coordinates 

x — y subelement coordinates

C i ,  V i ,  Q ,  I 2 ,  C ,  V3

r s e  c s e  s e  c s e  s t

S I  , ' / l  , S 2  , '12 , S 3  , " 3

aq, y lt x 2, y2, z 3, y3

ys\ ,  A e, vs2 , x3, yT
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Therefore the transformation from £ — 77 —> x — y for a subelement node, with 

given coordinates in £ — 7/ space is written:

(6.45)

N-{e
X\ X% x3 ' x f

N s2e =
y\ yl yl.

_N£e_ yr.

where

^ r  = i - t f - r j ?  N r  = t r  =

If we take a isoparametric element in £ — 77 space, Figure 6.16

(6.46)

1

0.8

0.6

0.4

0.2

0,0 0 2 0  4 0.6 0.8 1

Figure 6.16: Isoparam etric element in ^ — 77 space

This element can be subdivided into any number of subelements. To dem onstrate 

the process a dense mesh (100 subelements) and a coarse mesh (4 subelements) 

are shown below:

(a) 4 subelements, 6 subnodes

1

(b) 100 subelements, 66 subnodes

Figure 6.17: Subdivision of Isoparametric element
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and thus the elements shown in Figure 6.17 £ — 77 —> £ — become:

0.14

0.12

>-

0.1

0.08

0.14

0.12

>-

0.1

008

X

(a) 4 subelements, 6 subnodes (b) 100 subelements, 66 subnodes

Figure 6.18: Transformed £ — 77 —> x  — y

In the next stage of the process the shape of the interface is defined by repo­

sitioning subnodes so tha t the edges of the subelements delineate the interface. 

This process is carried out prior the calculation of the position of the integration 

points because certain subelements will change and therefore alter the internal 

layout of the subelements.

T >

Figure 6.19: Intersected elements are subdivided for integration

The repositioning of the subnodes to define the interface is a simple process. A 

search is performed to ascertain which subnodes lie closest to the interface, and 

these are repositioned to lie on the interface. This method is best understood 

when it is displayed and below Figure 6.18 is redrawn to account for the interface:
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0.14

0.12

>-

0.1

0 08

X

0.14

0.12

>
0.1

0.08

X

(a) 4 subelements, 6 subnodes (b) 100 subelements, 66 subnodes

Figure 6.20: Repositioned subnodes to account for interface

The result of this process for the whole interface is shown graphically in Figure 

6.21 and shows the elements intersected by the particle surface subdivided into 4 

and 100 subelements, respectively.

The mapping of the subelements to x  — y  space generates the coordinates of every 

subnode which will be used in the next process, i.e. calculating the position of 

the element integration points.

6 .7.2.3 Element Integration Points.

Each subelement will be initially treated as separate entity to calculate the po­

sition of the integration points for numerical integration. For the purposes of 

numerical integration Gauss quadrature with three internal Gauss points will 

continue to be used. The integration points in £ — ij space for the isoparametric 

element defined in Figure 6.16 are given as:

Integration Point £gp rhp
1 0.66666 0.16666

2 0.16666 0.66666

3 0.16666 0.16666

Positioning each subelement Gauss point within the element in x — y space and 

calculating their weighting is complicated and requires two transformations:
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N
\

\\

/

(d)

Figure 6.21: (a)(c) Elements crossed by the interface are subdivided in prepara­

tion; (b)(d) The subnodes are repositioned to describe the surface of the interface; 

(a)(b) 4 subelements per element; (c)(d) 100 subelements per element
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0

0
0 1

Figure 6.22: Mapping from £ — 77 space to x  — y and back again

1. £ — 77 —> rr — y isoparametric Gauss points —► subelement Gauss points

where

~N f

TVf
rf.se rf.se rf.se
X1 x 2 3 —

’ rfdP'

y  1 y  2 y  3
_N lP_

vT_

jv?p =  l - e r - r f  j v f  =  « r  , v f 9P

(6.47)

(6.48)

2. x — y  —> £ — 77 all subelement Gauss points in the element —> element 

isoparametric Gauss points

where

- 1

* ? A  2 x 3
,r 9P

y \ y i v l . 1 *»•
 t

o •o
1__

__
_

N 9p

iV f

JV?P =  1 -  £9P -  JVfp =  £9P A/|p =  773P

(6.49)

(6.50)

The main disadvantage of enrichment is the need to accurately position and 

model the interface, as the process is com putationally expensive. Therefore mesh 

refinement is best restricted to a minimum number of elements, i.e. where the 

improvement in solution outweigh the costs involved.

In the following section the choice of enrichment is explained.
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6.8 Enrichment Functions.

An enrichment function can take the form of either a scalar or vector field and 
is dependent on the problem and the interface modelled. A scalar field increases 
the number of unknowns the process is more general and is easily augmented 
with further enrichment should such needs arise, whilst vector field enrichment 
ties component enrichment fields together, thereby reducing the overall number 
of unknowns.

Scalar function enrichment has already been demonstrated in the ID axially 
loaded bar example and in the case of the two numerical examples, scalar enrich­
ment is also utilized. Enrichment using a scalar field is applied to the propagating 
rectangular wave, and Particulate flow.

The enriched Finite Element approximation is rewritten:

TIE
u h{ x ) =  J 2  N i { x ) m  +  Ni{x)</>a(x )aaI (6.51)

IeAf a=l l£Afenr

=  ' % 2 n i ( x ) u i +  53  A / ( 3 j ) 0 i ( x ) o u  +  . . .  +  ^  ^ N i{x)(f)n{x )ani 
i gjV JeA/'enr ieAfenr

(6.52)

The manner in which this is applied to FEM code is briefly shown below:

k Uu brt'uai brt'uan

fca,\u b" ' a i a i  • • bn ' a i a n

fcanu bn 'o n a i b• ft' a n a n _
/

Ke

U

ax

0>n.

ai

• an 
R e

(6.53)

where the k  & r  are a 9x9 matrix and 9x1 vector respectively for the 2D problem, 
and represent constructions using the following Finite Element discretization:

kuu ^ w h =  ^  Ni(x)w Uh = ^ 2  ATj(a;)w/
l£Af l€ M

k __n'ttai ► w h =  ^  Ni(x)w Uh = ^ 2  Ni ( * ) 0 i  (x)au
IeNenr

k  __•"aitt ► w h =  ^  Nj(x)(f)i(x)w uh = ^ 2  A j(a ;)u j
l£tfenr /€ M

k _"'aiai -> w h =  ^  Ni(x)4>i(x)w
/gjVenr

u h = ^  Ni{x)(j)\{x)au
ieMenr

(6.54)

(6.56)
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• kuu - standard (velocity/pressure) weighting function and standard (veloc­
ity/pressure) solution variable discretizations.

• kuai ~ standard (velocity/pressure) weighting function and enrichment (ve­
locity/pressure) solution variable discretizations.

• kaiU - enrichment (velocity/pressure) weighting function and standard (ve­
locity/pressure) solution variable discretizations.

• kaiai - enrichment (velocity/pressure) weighting function and enrichment 
(velocity/pressure) solution variable discretizations.

6.8.1 ID  Enrichm ent Functions.

For propagation of the ID rectangular wave two enrichment functions were con­
sidered:

1. Heaviside

-  H(x) (6.58)

Xo
X

where H(x) is the step function

0  for x < xq 
+ 1  for x > xq

(6.59)

2 . Test function

Xo
x

where

for x < X q 

for x > X q

(6.60)
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6.8.2 2D Enrichm ent Functions.

The enrichment functions are given by the vector and scalar fields derived for 

Stokes flow, see 2.5.3.1. As mentioned previously these functions are only ap­

plicable to regions near the particle surface. As the enrichment is only applied 

to element intersected by the particle surface we can assume this constraint is 

satisfied.

The enrichment functions, split in Velocity Enrichment and Pressure Enrich­

ment, were derived in Chapter 2 and are rew ritten here for convenience.

Velocity Enrichment.

If the point under consideration is internal to the particle then:

0 i(x )  =  O 0 2(a) =  0 (6.61)

< f > l , x ( x )  =  01,1/ =  0 02 ,x (z )  =  02, y  = 0 (6.62)

otherwise

( t i2 -  r 2) cos2 6 +  r 2 In [ f  ] +  \ { r2 -  K2)
0 iu = -------------------------- r2      (6.63a)

(R 2 - r 2)sin(9cos6> coU
0iu = ------------- o------------  (6.63b)

. (r2 — R 2) sin# cos# . nA .
02u -    ’- 2------------  (6.64a)

(H 2 — r 2) cos2 # -  r 2 lni-^1 +  \ { r 2  — R 2)
02, =      ------ ------------ (6.64b)

The velocity enrichment functions are shown graphically for the element below:

Figure 6.23: Location of plots

183



(a.) (pin (b) (piy

Figure 6.24: Enrichment shape functions (pi

(a) (p2u (b) (p2v

Figure 6.25: Enrichment shape functions (p2

6.8.3 Pressure Enrichm ent.

K  = (6.65)

^  (6.66)

Some authors advocate the use of pressure enrichment in the formulation. Our 

initial tests have not shown any advantage in using the above enrichment. There­

fore pressure enrichment will not be employed in this work.
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6.8.4 Boundary C onditions.

In order to study the ability of enrichment to model interfaces, two different 

boundary condition approaches were considered.

1. In the rectangular propagating wave example the interface was treated  as a 

two phase fluid problem i.e. the boundary conditions were left unchanged 

from those used for an unenriched solution. The aim was to study the 

ability of enrichment to produce an accurate solution w ithout the aid of 

fixed nodes to enforce the exact solution.

2. The Particulate fluid flow example was treated as a rigid body analysis, and 

the nodes in the interior of the body were constrained to exactly satisfy the 

motion of the body. This was achieved by constructing a velocity field in the 

enrichment region th a t was equal to the translation and rotation of the body. 

The other enrichment fields vanish inside the body and surface so the total 

solution in the interior matches the body’s motion. For a stationary particle 

this is a straightforward process as there are no translations or rotations to 

consider and the internal and surface nodes are set at u ( x )  = 0 .  See Table 

(6.1) for particle boundary conditions.

Figure 6.26: Boundary Conditions of enrichment nodes near to the particle sur­

face. O  nodes enriched with Stokes flow solution. □  nodes with FE degrees of 

freedom set to rigid body motion
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Nodal DoF Internal nodes b.c Intersected nodes b.c External nodes b.c
u 1 1 0

V 1 1 0

p  0 0 0

Oi\x 1 0 1

a \y  1 0 1

P l a  1 1 1

0>2x 1 0 1

0>2 y 1 0 1

P2a  1 1 1

Table 6.1: Boundary conditions for Particle in Stokes flow example. The bound­
ary condition for each solution variable 1  = fixed, 0 = free. Internal node - the 
node is in the interior of particle and is not a support of an element intersected 
by the interface, Intersected node - is a support of an element intersected by the 
interface, External node - is not affected by the interface.

Remark 6.2: Moving interface.
A moving interface requires constantly changing boundary conditions, therefore it 
is important that a robust framework is in place to change boundary conditions 
during the solution process, including storage of permanent boundary conditions, 
and re-initialization of solver at every timestep.
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6.9 Conclusion

The process of implementing X-FEM has been covered in this chapter. Integration 
of extra terms in a PUM framework into the General Finite Element formulation 
to form X-FEM, provides a framework which allows problems which incorporate 
interfaces to be modelled accurately whilst maintaining a computationally cost 
effective numerical process. In order to implement X-FEM required new methods 
and approaches previously not required by the GFEM, such as:

• Mesh refinement for improved numerical integration

• Search algorithms

• Variable boundary conditions

• Increased degrees of freedom

• Additional shape functions, i.e. Enrichment

• Differing element solution procedure for each Sub domain e.g. Enriched, 
Blending, and standard.

X-FEM is computationally expensive, and requires considerable storage for the 
increased number of operations performed by the solution algorithm. However 
the improvement in solutions and the accurate modelling of the interface will 
be shown to outweigh the disadvantages. In the next chapter two numerical 
examples will be used to demonstrate the ability of X-FEM.
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Chapter 7

X-FEM  - Num erical R esults.

X-FEM is implemented according to the method explained in Chapter 6  using 
the stabilized FE formulation and software programs developed for this work. 
The X-FEM solutions are benchmarked against the stabilized FEM and/or the 
exact solution for a direct comparison and the success of X-FEM and the imple­
mentation will be judged from these solution results.

To ensure that X-FEM is a properly functioning method two numerical ex­
amples are presented in this chapter. The examples have been chosen because 
they represent the different aspects of X-FEM, i.e. ID & 2D and stationary & 
evolving in time, are i) Propagation of a Rectangular Wave, and ii) Uniform flow 
past a stationary particle. The first example is a repeat of a previous example 
from Chapter 5 and the second is an example of Stokes flow.

The data compiled previously for this example clearly demonstrates the im­
proved solution achieved from stabilized FEM, i.e. the results are less affected 
by spurious oscillations, than those obtained using the classical Galerkin method. 
For this reason only stabilized X-FEM is considered here.

7.1 Propagation of a Rectangular Wave.

The Propagation of a Rectangular wave was used previously in Chapter 5 to 
validate the effectiveness of timestepping algorithms i.e. Generalized Midpoint 
rule and the Generalized-o: method. In this chapter the example will be used to 
assess the interface capturing ability of X-FEM in ID.

Both Aliabadi and Tezduyar [4] and Chessa and Beltschko [17] have considered 
two-phase fluid problems similar to the propagating rectangular wave example, 
albeit in two dimensions. Chessa implemented X-FEM with some success and was
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able to achieve good solution results on a relatively coarse mesh. Aliabadi imple­
mented an interface sharpening/mass conservation (IS/MC)algorithm to achieve 
almost exact results for a 2D advection of a circle problem. The solution results

Only pure advection (/z = 0 & Peh = oo) is considered, as the ability of X-FEM 
to maintain a sharp interface is negated by an advection diffusion solution. The 
Heaviside enrichment function is used, though other enrichment function can and 
are used successfully to model similar problems.

Geometry.

of Aliabadi will be discussed in greater depth in the Discussion section of this 
example.

The initial boundary value problem will be reiterated here for ease.

M odel.

n=]o,L[ (7.1)

Boundary C onditions.

u(0,t) = 0 u(L,t) = 0 (7.2)

Initial Conditions.

u(:r,0) = l c < x ^  d (c = 0.1L, d = 0.2L)

u(x, 0 ) = 0  elsewhere

(7.3)

(7.4)

M esh.

(7.5)
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Exact Solution.
Pure Advection - For this example the diffusion param eter /r =  0, see (4.5) for 

ID advection diffusion equation.

1.4

1.2 - - -  

1

0.8
0 . 6

0.4
0 . 2

0 ---
- 0.2
-0.4

0.4 0.5 0.6 0.7 0 .8 0.9

Figure 7.1: Exact solution for the Pure advection case

Numerical Results.
Figure 7.2 shows the plot of the rectangular wave at t = 0.5s, and includes the 

analytical, FEM and X-FEM solutions for C h = 0.1,1.0 for both Generalized 

Midpoint rule and the Generalized-a method.

u (x , t) = 1 c +  axt ^  x  ^  d +  axt

u (x , t) = 0 elsewhere

(7.6)

(7.7)

190



Ch -  1.0 Ch = 0.1

E xact X-FEM   FEM

Figure 7.2: Comparison X-FEM solution with FEM and exact solutions for dif­

ferent timestepping algorithms and C h
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Discussion.
It is important to separate the effects due the timestepping algorithms and those 
due to X-FEM.

Timestepping Algorithm.
The conclusions drawn for the timestepping algorithms in Chapter 5 are also 
apparent in the X-FEM results:

• Convergence. The Generalized-a method converges sooner as A t —> 0 than 
the Generalized Midpoint rule.

• Limits of method. The Generalized Midpoint rule for values of ph < 1.0 suf­
fers from too much numerical damping. When ph —> 1.0 both the Midpoint 
rule and the Generalized-a method solutions suffer from spurious oscilla­
tions when larger timesteps are used.

X-FEM.
The success of X-FEM is dependent on the correct implementation of both the 
interface modelling and location algorithms; should one fail then the whole X- 
FEM solution fails. In this example the results demonstrate of the potential of 
X-FEM, however they also show the problems associated with X-FEM.

• Interface Capturing. Both Ch = 1.0 and Ch = 0.1 X-FEM solutions give 
better results than those obtained by the FEM. This seen in the improved 
resolution at downstream stream corner of each interface and the steeper 
slope of the interface. This result is apparent for all timestepping algo­
rithms.

For the timestepping algorithms that suffer from too much numerical damp­
ing, the enrichment alleviates the disadvantage of too much damping by 
forcing a more accurate depiction of the interface onto the solution. This 
is especially apparent for Ch = 1.0.

For the timestepping algorithms which exhibit oscillations for large timesteps, 
the addition of enrichment increases the oscillations amplitude. The oscil­
lations originate from incorrect spatial resolution of the interface, and the 
addition of enrichment aggravates the situation by enforcing the interface
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at every timestep therefore maintaining the cause of the oscillations, lead­

ing to increased amplitude. In contrast FEM does not suffer this because 

the interface is soon smoothed by the time integration scheme, reducing the 

cause of the oscillations, which lessen.

The advantage gained from using the improved convergence properties of 

the Generalized-o; method are canceled by this phenomenon; it is easily 

circumvented by a well posed boundary value problem.

• Interface Location. It can be assumed th a t the interface location algorithm 

functioned correctly for C h =  1.0 and C h =  0.1 solutions, as both exhibit 

the effects of enrichment at the required locations. Figure 7.3 dem onstrates 

the deterioration of the solution if the locating algorithm wrongly positions 

the interface at the start of a simulation:

0.4

0.2

0.58 0.620.59 0.6 0.61

Figure 7.3: Effects of an error in locating the interface. Solution at t = 0.5s - 

actual s ta rt position 0.1.

Therefore we can conclude tha t correct positioning of the interface has a 

significant effect on the overall outcome of a simulation.

• Improvements. Observations in papers studying two phase fluid flows, see 

Aliabadi and Tezduyar[4], suggest th a t X-FEM struggles in maintaining 

global mass conservation for long term  time integration of two phase fluids. 

The effect is non negligible and non physical mass transfer tha t can lead 

to significant errors; the extent of the non physical mass transfer will be 

dependent on the nature of the formulation, as well as the application.
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In order to maintain mass conservation Aliabadi implements Interface Sharp­
ening algorithms for the post advection solution, in effect post-processing 
the solution results.

On face value this approach appears to be flawed for problems where the 
exact solution is not known, however it is appreciated that this method can 
provide significantly improved solution results for difficult problems. There­
fore it is the authors opinion that the methods such as sharpening required 
continued investigation into the appropriate use of such methods. Aliabadi 
also places the interface over 2-3 elements, in the form of a parabola, in ef­
fect removing the discontinuous interface from the problem. This technique 
creates a requirement for a sufficiently refined mesh to avoid the interface 
extending out further than necessary.

These methods are not implemented in this work, and therefore the Ali- 
abadi’s results are not comparable. The motivation of this example was 
to document the functionality of X-FEM to model interfaces, unaided by 
further methods which would disguise the solution properties of the method.

Conclusion.
i

The results from this example are demonstrative of the capability of X-FEM. We 
| have shown that X-FEM offers a improved solution over the standard FEM for a
| two phase fluid. However X-FEM requires a well posed boundary value problem
i if it is to avoid certain pitfalls described in the Discussion above.
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7.2 Flow past a stationary particle.

In this we will repeating an example described in Wagner et al [8 6 , 85], i.e. a 
Stokes flow type problem - Flow past a stationary particle.

In order for this example to successfully demonstrate X-FEM it is important 
that the solutions are directly comparable to an exact solution. Sadly Stokes flow 
for the problem of laminar flow past a 2D cylinder, as discussed in Chapter 2, 
has no analytical solution at infinity. However for a finite domain, with known 
boundary conditions, an analytical solution exists1.

Two separate simulations are performed in this section, using identical do­
mains, with differing external boundary conditions. The results for each simula­
tion will be obtained for X-FEM and FEM to compare and contrast the observa­
tions and to demonstrate the effectiveness of X-FEM.

The first example will verify the X-FEM against a known analytical solution, 
using the enrichment function as the external boundary conditions and as en­
richment. In this situation the solution is enriched with the exact solution. The 
second will demonstrate the more commonly found problem, i.e. uniform flow, 
however the enrichment and external boundary conditions are not the same func­
tion. This example will test the ability of not exact enrichment to model the 
solution accurately.

M odel

The examples will model laminar flow past a stationary particle in a finite do­
main with fixed boundary conditions using the Stokes equations2 to enrich the 
solution. The X-FEM solutions are produced for two different sets of external 
boundary conditions, i.e. enrichment velocity boundary conditions and unit ve­
locity boundary conditions.

The enrichment functions utilized for both examples are </>Q, see (6.63a) & 
(6.64a). The inflow is assumed to be laminar and is denoted as u , and density 
and viscosity of the fluid given as p and p respectively (the following values were 
used p = 1 , /i =  0.01). Timestepping method will be the Generalized-o; method 
for p^  = 0.9.

1Only applicable at finite distance from the cylinder
2i.e. incompressible viscous Navier Stokes equations ignoring time dependent and convective 

terms
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G eom etry

n * = ] - i , i [  = ] - i , i [  (7 .8 )

The particle radius R  is 0.2 and is located at the origin of the domain, whilst the 

distance from the particle centre is denoted by r.

p = 0-- - p=0------

(a) XFEM domain (b) FEM domain

Figure 7.4: Domain geometry and problem setup for X-FEM and FEM BV P’s - 

u, v, and p are the velocity in the x  and y  directions and pressure respectively

Boundary Conditions.
The Navier-Stokes problem must be completed with suitable initial and boundary 

conditions to form a well-posed initial boundary problem. The initial and bound­

ary conditions tha t form the initial boundary value problem for this problem are 

explained below.

Velocity Boundary Conditions

A velocity profile is assigned to the inflow/outflow/lateral boundaries, where the 

fluid velocity u  is given as:

Exact enrichment example u  = 4>\ (7-9)

Unit velocity example u x = 1 (7-10)

For the comparable general FEM problem there is a no-slip and no penetration 

condition on the particle surface.
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Pressure Boundary Conditions.
A Pressure enrichment function was developed alongside the velocity enrichment; 
the pressure boundary condition requirements for the Navier-Stokes equations 
specifies that no initial condition need be set for the pressure unknown. The 
placement of the fixed pressure node is also arbitrary, therefore for these exam­
ples pressure has been fixed in the centre of the particle, in conjunction with 
Figure 7.4.

M esh.

All meshes were produced for this example using ELFEN software. A total three 
pairs of meshes were generated (X-FEM - or nonconforming and FEM - or con­
forming), with increasing spatial refinement. X-FEM mesh 516, (1024), [1726] 
elements and 287, (553), [916] nodes, and FEM mesh 416, (1512), [2896] ele­
ments and 228, (808), [1522] nodes.

The FEM meshes are denser in comparison to the X-FEM meshes in order to 
properly define the particle’s surface.
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Conforming FEM Mesh X-FEM Mesh

(a) 416 elements 228 nodes (b) 516 elements 287 nodes

(c) 1512 elements 808 nodes (d) 1024 elements 553 nodes

'3
P h

(e) 2896 elements 1522 nodes (f) 1726 elements 916 nodes

Figure 7.5: X-FEM and FEM Meshes - X-FEM mesh 516, (1024), [1726] elements 

and 287, (553), [916] nodes, and FEM mesh 416, (1512), [2896] elements and 228, 

(808), [1522] nodes
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Num erical R esults - E xact enrichm ent exam ple.

In this example the enrichment function is the exact solution to the problem, 
therefore we can expect a solution which matches the exact solution.

Figure 7.6 shows the three pairs of meshes were generated in order to compare 
X-FEM with FEM for different levels of mesh coarseness. For Pairs 1 & 3 there is 
a direct comparison between the exact solution and the solutions obtained from 
X-FEM and FEM, see Figure 7.6.

Only the charts for u are produced as these are the most demonstrative of the 
accuracy of X-FEM; v h  p results are produced for the Pair 2 case in the form 
of contour plots, see Figure 7.9.

Figure 7.8—̂Figure 7.7 show for Pair 2 the comparison is more indepth. In ad­
dition to the X-FEM and FEM solutions there are 2 solutions obtained using 
FEM on a non-conforming mesh. In these solutions the FEM algorithm was used 

| in conjunction with the X-FEM mesh; the particle was modelled by setting the
nodes interior and exterior to the particle surface to zero velocity, i.e. were given 
fixed boundary conditions. The intention is to highlight the results that would 
be achieved on a nonconforming mesh if X-FEM was not implemented.

i

!i
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-0.8 -0.2 0 02 0 .4 0.6 0.81 -0.8 -0.6 -0 .4 -0.2 0 0.2 0 .4 0.6 0.8 -0.6 -0 .4 11 1

X a x is  Y ax is

(a) Pair 1 - u  velocity from y  =  0 plane (b) Pair 1 - u  velocity from x  =  0 plane

- - 1 4

-0 .4 -0 .2 0 0.2 0 .4 0.6 0.8 1-0.8 -0 .4 -0.2 0 0.2 0 .4 0.6 0.8 1 -0.8 -0 .61 -0 .6 1

(c) Pair 3 - u  velocity from y  =  0 plane (d) Pair 3 - u  velocity from x  =  0 plane

E x a c t so lu tio n  *  X -FEM  so lu tio n  ♦  C o n fo rm in g  m e s h  - FEM  so lu tio n

Figure 7.6: Pair 1 & 3 - Comparison of u - exact solution with FEM and X-FEM 

solutions
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-1 -0.8  -0.6  -0.4  -0.2  0  0.2  0.4  0.6  0.8  1

X ax is

(a) Conforming FEM solution

-1 -0.8  -0.6  -0.4 -0.2  0 0.2  0.4 0.6  0.8  1

X ax is

(b) X-FEM solution

0.8
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0.2

0.16

3  0.12
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0 0 4

0
0.35-0 2 0.2 0.2 0.25 0.3 0.4-0.8 -0.6 -0 4 0 0.4 0 6 0.8 11

X a x is  X ax is

(c) Non conforming FEM solution (d) Zoom of charts (a)(b) & (c)

•E x a c t  so lu tio n  •  N on  c o n fo rm in g  m e s h  - FEM  so lu tio n  (IN TERIO R)

■X-FEM so lu tio n  A  ■ N on  c o n fo rm in g  m e s h  - FEM  so lu tio n  (EX TE R IO R )

■C onform ing m e s h  - FEM  so lu tio n

Figure 7.7: Pair 2 - u velocity from y = 0 plane, for X-FEM (using different mesh 

solutions) and FEM. (c) represents the FEM driven solution on the X-FEM mesh 

- for fixed nodes interior to the particle surface and for fixed nodes just exterior 

to the particle surface
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(a) Conforming FEM solution (b) X-FEM solution
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Y axis

(c) Non conforming FEM solution (d) Zoom of charts (a)(b) & (c)

“ “ E x ac t so lu tio n  ♦  N on  c o n fo rm in g  m e s h  - FEM  so lu tio n  (IN TERIO R)

M X-FEM  so lu tio n  A  N on c o n fo rm in g  m e s h  - FEM  so lu tio n  (E X T E R IO R )

♦  C o n fo rm in g  m e s h  - FEM  so lu tio n

Figure 7.8: Pair 2 - u velocity from x  =  0 plane, for X-FEM (using different mesh 

solutions) and FEM. (c) represents the FEM driven solution on the X-FEM mesh 

- for fixed nodes interior to the particle surface and for fixed nodes just exterior 

to the particle surface
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Conforming FEM Mesh X-FEM Mesh
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Figure 7.9: Pair 2 - Comparison of velocity and pressure contour plots
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N um erical R esults - U nit velocity  boundary conditions.

In this example the enrichment function is not the exact solution to the problem 
being modelled.

Only the Pair 2 meshes will be considered in this example.

Figure 7.10 u, v & p results are produced for the Pair 2 case in the form of contour 
plots.

Figure 7.11 plots u, v velocity profile offset at y=0.21.
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Conforming FEM Mesh X-FEM Mesh
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Figure 7.10: Pair 2 - Comparison of velocity and pressure contour plots

P
■  5.656 

W  4 862 
W  4.069 
—  3 5 7 5  
|— j 2.481 
L J  1.687
■  0.894■ 0.100
■  -0.694
■  -1.488
H  -2.281
■  -3.075
■  -3.869
■  -4.663
■  -5.456

0.75 

0.5 

0.25 

> 0 
-0.25 

-0.5 

-0.75

205
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X-FEM u  F E M u  X-FEM v  FEM v

Figure 7.11: u  & v a t y=0.21

Discussion.
Due to the stationary nature of the problem the difficulties faced in continuously 

locating the interface, as seen previously in the ID propagating rectangular wave 

example, see Section 7.1, have been avoided in this example. Also in this example 

the treatm ent of the interior and exterior nodes close to the interface is different 

to the method used in the ID example. The ID example modelled two phase fluid 

flow and all nodes were free, whilst for the Stokes flow past a stationary particle 

examples the interface is assumed to be a boundary of a solid particle and there­

fore all enriched nodes are given fixed boundary conditions. The solution close to 

the particle surface is therefore entirely dependent on the enrichment function, 

and any failing can be correctly a ttribu ted  to the incorrect implementation of the 

X-FEM method.

Enrichment velocity boundary conditions.

The first Stokes flow example is a direct comparison between the X-FEM, FEM 

and the exact solutions.

•  Figure 7.6 show the velocity profiles for the coarse mesh (a) & (b) and a 

fine mesh (c) & (d). Comparatively there is little to differentiate between 

the X-FEM, FEM and exact solutions.

•  Figure 7.7 & 7.8 shows the results for a medium coarse mesh, separated 

into individual plots for a more indepth analysis. In addition to the X- 

FEM and FEM solution plots (for u along the x  and y axes) are plots (plot 

(c) for both figures) for an FEM  driven solution using the X-FEM mesh,
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i.e. effectively an X-FEM solution without the application of enrichment. 
The purpose of this plot is to demonstrate the effect enrichment has on the 
X-FEM solution. In plot (d) for both figures is a close up at the point of 
enrichment, i.e. particle surface, with the all velocity profiles plotted. The 
X-FEM result is shown clearly not to be exact however the deviation is 
minimal and considerably better in comparison to the FEM nonconforming 
solution.

• Figures 7.9 are contour plots for u ,v  & p for X-FEM and FEM. These plots 
give an overall indication of the performance of X-FEM and notably the 
result for p are not as accurate as the u plot. The pressure ranges for the 
X-FEM and FEM p plots are slightly different however this issues requires 
further investigation. This is not a reflection on the performance of the 
schemes.

• Though not apparent in this results the author noted that the accuracy 
of the solution was dependent on the proximity of the external fixed node 
to the particle surface. The closer node the more accurate the X-FEM 
approximation. This was not so readily apparent for the finer mesh as close 
proximity was always assured.

Numerical Results - Unit velocity example.
The first Stokes flow example demonstrated that the FEM solution was a good 
approximation of the exact solution. The second Stokes flow example is a com­
parison of the X-FEM and FEM solutions for a u x = 1.0 external boundary 
condition.

• Figure 7.9 are contour plots for u, v h  p for X-FEM and FEM. All three 
contour X-FEM plots i.e. u ,v& p , deviate slightly from the FEM solutions.

• Figure 7.11 shows the u Sz v velocity profiles for y =  0.21 axis. The results 
are comparable with little deviation from the FEM solution.

General Observations.
The motivation for these examples was given by Wagner et al [86], and the results 
obtained here in this thesis are directly comparable to Wagner’s data. But it 
should be noted that Wagner has omitted to include pressure plots in his paper.
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7.3 Conclusions.

X-FEM has been proven to be a powerful tool for numerical simulations. All 
the examples provided a good demonstration of the potential of X-FEM, and 
the solutions can be classified as a success. The clear advantage of X-FEM is 
its ability to be applied at any point within the domain without the need to 
remesh the domain. This is an extremely attractive quality when compared to 
the classical adaptive simulations of problems with moving interfaces.

Wagner et al [86] determined that it was possible to achieve acceptable 2D 
X-FEM results on meshes with almost element size interfaces. The observations 
in this work support this statement for fluid rigid body interaction only; for
multiphase fluids this would lead to difficulties in maintaining the interface, and
subsequently large solution errors would occur due to non physical mass transfer. 
The reason behind this discrepancy was touched upon previously, when it was 
noted that Interface Modelling methods fail to satisfy conservations laws for long 
time integration problems. For fluid rigid body interaction problems the fixed 
boundary conditions maintain the interface, and the enrichment is used to en- 

j force the solution but not the interface, however in multiphase fluid flows mass
\ conservation becomes a problem because the enrichment functions are required
| to enforce the solution and the interface.

i
1
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Chapter 8

Conclusions.

In this thesis an implicit Semi-Discrete Stabilized extended Finite Element for­
mulation has been successfully developed and implemented for laminar Newto­
nian incompressible fluid flows. In doing so we have contributed to the research 
into the field of incompressible fluid flows, multiphase flow and fluid-rigid body 
interaction.

8.1 General Conclusions.

8.1.1 Governing Equations

In Chapter 2 we developed the full Navier-Stokes equations, however these equa­
tions are complex and are difficult to solve in their present state, therefore the 
equations were simplified by introducing incompressibility condition etc. thereby 
reducing the overall nonlinearity of the equations. We will also only considered 
laminar problems as fluid problems such as turbulent flow are extremely difficult 
to model. The resulting equations i.e. the laminar incompressible Navier-Stokes 
equations, were used throughout to govern the fluid behaviour and form the basis 
of all numerical methods discussed in this thesis.

8.1.2 N ew ton-R aphson  Procedure.

Due to the highly nonlinear nature of the problem we proposed the Newton- 
Raphson iterative solution procedure. However in order to implement the Newton- 
Raphson procedure we first had to linearize the governing equations, yielding a 
consistent stiffness matrix, see Slijepcevic [70]. This approach produced a robust 
and efficient method which demonstrated quadratic convergence for all but one
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numerical example. Unsurprisingly the procedure failed for a coarse mesh for a 
solution with a large timestep.

8.1.3 N um erical M ethod  - F in ite Elem ent M ethod.

The complexity of the problem prevented considerations of an analytical ap­
proach, therefore a numerical approach was advocated in the form of the Finite 
Element Method. In Chapter 3 we introduced the Finite Element Method and 
the Galerkin Weighted Residual method to formulate the weak form of the gov­
erning equations. It was soon determined that the Galerkin method required 
computationally inconvenient velocity/pressure interpolations, see Alexandrou et 
al [3], to satisfy the Babuska & Brezzi condition and in an effort to circumvent the 
Babuska & Brezzi condition and correct other failings of the Galerkin method a 
stabilized formulation was implemented. The stabilization was added in a Petrov- 
Galerkin framework and was shown to be successful in controlling non physical 
oscillations in two numerical examples [Id advection diffusion, lid driven cavity].

8.1 .4  T im e Integration.

In the following chapter we focused on unsteady fluid flows, and the integration 
of the temporal domain into the FE formulation of the previous chapter. A semi- 
discrete method, with a solid mechanics background, see Chung and Hulbert [21] 
and proposed for computational fluid dynamics by Jansen et al [50], was chosen 
to perform time integration. The scheme known as the Generalized-a method 
was implemented; the Generalized Midpoint rule was also implemented to act 
as a comparative scheme. Three numerical examples [Id advection diffusion for 
a propagating rectangular wave, flow past a circular cylinder, flow past a square 
cylinder with near wall effects] were used to validate the time integration schemes, 
with the Generalized-a method demonstrating improved convergence properties 
over Generalized Midpoint rule. We also noted that = 1.0 caused difficulties 
which could be avoided without sacrificing the improved solution properties of 
the Generalized-a method if =  0.9.
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8.1.5 N um erical M ethod  - ex ten d ed  F in ite Elem ent M ethod .

In the final chapters we extended the stabilized FEM formulation to include the 
extended Finite Element Method (X-FEM) as a method for modelling interfacial 
fluid flows. X-FEM is an extension of the General Finite Element Method with 
added terms in a Partition of Unity Method (PUM) framework, and is in the 
group of interface modelling methods known as Interface Capturing methods, i.e. 
uses a fixed mesh, which does not conform to the interfaces present.

The implementation of X-FEM proved to be a complex and challenging pro­
cess, requiring additional methods to be incorporated into the existing solution 
procedure, including enrichment, interface location and modelling algorithms. 
These methods were described in some depth. Two problem types were modelled 
to validate X-FEM [ID two phase fluid flow, rigid particle in Stokes flow]. Each 
example represented a different focus, i.e. multiphase fluid flow and fluid-rigid 
body interaction, and required different problem setup, and different enrichment 
functions.

8.1.5.1 Enrichment.

The enrichment functions were problem dependent. For the [ID advection diffu­
sion two phase fluid] example a Heaviside function was used to great effect, with 
considerable improvement over the FEM solution; it was noted that matching 
results could be obtained using other similar enrichment functions. The 2D en­
richment functions for the [rigid particle in Stokes flow] example were obtained 
from an analytical solution, for a finite domain, of Stokes equations i.e. subset 
of the full Navier-Stokes equations developed Chapter 2, see Wagner [86]. The 
solutions were comparable to those obtain from similar FEM simulation, demon­
strating the applicability of X-FEM for fluid-rigid body interaction problems.

The X-FEM results demonstrated that X-FEM was a method that had the ad­
vantages of the General Finite Element Method i.e. robustness, efficiency etc, yet 
was capable of modelling interfaces accurately and independently of the mesh.

8.2 Recom m endations for future work.

The success of X-FEM should be followed up with further study into areas touched 
upon in this thesis i.e. level set methods, see Sukumar [73], pressure enrichment,
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improved blending methods, fluid-rigid body interaction modelling moving par­
ticles, and multi-particle flow with lubrication, see Wagner et al [86]. These 
methods would help develop the understanding of the potential of X-FEM, and 
they would also allow us to perform obvious continuation to the examples demon­
strated in Chapter 7, i.e. multi particle flow simulations.
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A ppendix A

Leibnitz’s Theorem.

/•6(a)
r(a) = / 7 (2  ,a)dx (A.l)

J  a(a)

The Leibnitz Theorem gives a formula for the differentiation of a definite integral 
whose limits are functions of the differential variable.

Consider a simple one dimensional example:

»6(a) 

i(a)

A combination of the chain rule and the fundamental theorem of calculus 
yields the Liebnitz Theorem. The one dimensional case can be written as:

dT d f b{a) , /*6(a) $ 7  . .d 6  . . .  .da . .
—  = —  7  {x,a)dx =  — dx +-j(b (a ),a )- -------7  (a(a),a)—  (A.2)
da d a j a{a) Ja{a) da da da

The theorem can also be developed for three dimensional fluid flows. In this 
case the Leibnitz Theorem separates the time derivatives of integral quantities 
into two distinct terms, i.e. changes that are happening inside the boundaries 
and changes which occur due to fluxes through the boundaries.

Consider the below equation:

r(f) = [  7  dV (A.3)
Jv(t )

The value of the time derivative of the variable T is of interest; the limits of 
the integration are time dependent. From the definition of a derivative:

d r _ d L 
dt dt j  7dV = lim I A  f /  7(* + At)dV -  (  'i(t)dv\ \  (A.4)

J V ( t ) L JV( t+ At )  JV(t )  J J

Equ (A.4) can be rewritten by adding and subtracting the term f v ^  7 (t +
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At)dV inside the limit 
dT _  d_ 
dt dtdV = i (  7 ^  = Jv' V ( t )

lim < f 7 (t + At)dV — f 7 (t + At)dV > (A.5a)
At—0  ̂AH Jv(t+At) Jv(t) -1 J

+ i!mn lX 7 f  f  7 + 7 ( ^ 1 1 (A.5b)At— 0  y At L J J

Equ (A.5a) is the equivalent of fixing the integrand and varying the volume, 
and (A.5b) the equivalent of fixing the volume and varying the integrand. Also 
it will be noted that (A.5b) is the derivative of 7  with respect to time, and (A.5) 
becomes:

07^  f  yW  = lim |  J_ [ f  7(( + At)dVl l  + [
dt dt JV(t) At—0  ̂A t \-Jv(t+At)-v(t) J J Jv(t) dt dV

(A.6 )

The term (A.5a) represents the integral of the difference in volume from t to 
t + At. This integral can be transformed to a surface integral by observing that:

dV = dist x dS (A.7)

where dist is the orthogonal distance between the two volumes at V(t) and 
V(t + A t) , n normal to the surface and w is a velocity vector of points on the 
moving surface S(t):

dist = w • nA£

Completing the limit process and replacing dV by w ■ nA tdS:

(  ^rd V  + [  7 (t)w • ndS 
Jv i^  = J t /  7dv" = /  §<d v + /  7(t)’ J V ( t )  Jv(t )  01 Js(t)dt 'V (t) 

total rate of change

(A.8 )

(A.9)

rate of change 
inside volume

' S ( t )

net flow through 
bounding surface

By applying the Divergence Theorem (2.8) to (A.9) the three dimensional 
scalar version of the Leibnitz Theorem reads.

(A.1 0 )

Brief Comparison The simple one dimension Leibnitz Theorem (A.3) and 
three dimensional version (A.9) are comparable. In the ID case there was no 
surface integral to evaluate, we simply consider the function at its endpoints. 
The terms &; ^  are the velocities of the bounding surface and are equivalent 
to w, whereas the terms 7 (b(a)) h  7 (^(0 :)) are equivalent to the 7  evaluated on 
the surface.

7 , { v v , v - L i < K + L v w d v
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A ppendix B

Stokes flow solution for a finite 

dom ain

We use standard procedure for solving linear homogeneous equations, to obtain 
the solution of the differential equation (4.3), rewritten for ease below:

(/lU,x),x Qx ~  0 Vic £ (B.l)
convection dif fusion

Equ (B.l), can be rewritten in the form of a simple quadratic equation, where 
u is replaced by r:

axr  — fir2 = 0 =>■ ri  =  0 r2 =  —  (B.2)

Therefore the solution of u(x)  can be written as:

u(x) = Cierix + C2er2X (B.3)

where C\ and C2 are constants. If the solutions of (B.2) are substituted into 
(B.3) we arrive at:

u(x) = Cie0x + c 2e f z (B.4)

The boundary conditions are given as:

rz(O) =  uq —> Uo =Ci + C2 (B.5a)

u(L) = ul -> u l =C\ + C2e2Pe (B.5b)

u(x)  =  u —> u =  Ci  +  C2e2^ x (B.5c)

Rearranging (B.5a):

Cx = u0 -  C2 (B.6)
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which can be substituted separately into (B.5b) and (B.5c) resulting in the 
following equations for C2 '.

^ 0  1 u  — Uq , .

c * =  i ^ p r r I  and  c * =  ^ T T I  {R 7)

which can be equated to give the following equation:

2 — x  1U — Uq e  L — 1

Ul ~ Uq e2Pe — 1
(B.8)
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