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ABSTRACT

The rigid non-trivially associated tensor category C is constructed from left
coset representatives M of a subgroup G of a finite group X. There is also
a braided category D made from C by a double construction. In this the-
sis we consider some basic useful facts about D, including the fact that it
is a modular category (modulo a matrix being invertible). Also we give a
definition of the character of an object in this category as an element of a
braided Hopf algebra in the category. The definition is shown to be adjoint
invariant and multiplicative. A detailed example is given. Next we show an
equivalence of categories between the non-trivially associated double D and
the trivially associated category of representations of the double of the group
D(X). Moreover, we show that the braiding for D extends to a partially de-
fined braiding on C, and also we look at an algebra A € C, using this partial
braiding. Finally, ideas for further research are included.

NOTATION.

In this thesis references are indicated by square brackets [ | and equations are
numbered in round brackets ( ), where (a.b) denotes equation b in chapter
a.
This thesis has been typeset using TEX, except the appendix has been done
using the Mathematica program, and some figures using the Visio program.
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1 Introduction

Group factorizations are very common in mathematics. Among their uses is the bi-
crossproduct construction which is one of the primary sources of non-commutative and
non-cocommutative Hopf algebras.

It is well known that for every factorization X = GM of a group into two subgroups G
and M, a Hopf algebra H = kM4 k(G) can be constructed, where kM is the group Hopf
algebra of M and k(G) is the Hopf algebra of functions on G. Here kM has a basis given
by the elements of M, with multiplication given by the group product in M (in general
not commutative), and comultiplication given by As = s ® s (which is cocommutative).
The functions k(G) have basis given by 6, for u € G (assuming that G is finite). The

product is just multiplication of functions, which is commutative, and the coproduct is

ZS511,:: j{: 6v696w,

v,wEGvw=u

which is in general not cocommutative. In the symbol kM« k(G), the > part means
that kM acts on k(G), and the <« part means that k(G) coacts on kM. The bicrossprod-
uct Hopf algebras are generally non-commutative and non-cocommutative. These bi-
crossproduct Hopf algebras arose in the work by S. Majid in an algebraic approach to
quantum-gravity [16]. Also they have been noted in the work by M. Takeuchi in connec-
tion with extension theory [25].

A number of Hopf algebra constructions related to knot and three manifold invariants
have been developed. Among them is the Quantum Double construction of V. G. Drinfeld
which associates to a general Hopf algebra H a quasitriangular Hopf algebra D(H), and
induces a braiding on the category of its representations [7]. In [5] E. J. Beggs, J. Gould

1



and S. Majid have computed the quantum double and braiding for the bicrossproduct Hopf
algebras associated to the factorization X = GM which led to an interesting generalization
of crossed modules to bicrossed bimodules.

The coproduct on a Hopf algebra means that a tensor product can be defined for
representations. The idea of tensor product is formalized in the definition of a tensor or
monoidal category. If the Hopf algebra has a quasitriangular structure, there is a map
of representations from V ® W to W ® V, making the category of representations into
a braided tensor category. These categories have a description in terms of diagrams of
crossing lines, giving a direct calculation of the associated knot invariants.

In [4] E. Beggs has introduced a construction of a non-trivially associated tensor
category C from data which is a choice of left coset representatives M for a subgroup G of
a finite group X. This introduces a binary operation - and a G-valued ‘cocycle’ 7 on M.
There is also a double construction where X is viewed as a subgroup of a larger group.
This gives rise to a braided category D, which is the category of representations of an
algebra D, which is itself in the category, and it is this category that we concentrate on
in this thesis.

It is our aim in this thesis to find more results using this coset construction introduced
in [4]. For example, we show that the non-trivially associated Hopf algebra D has rep-
resentations which have characters in the same way that the representations of a finite
group have characters, and also that the category of its representations has a modular
structure in the same way that the category of representations of the double of a group
has a modular structure.

This thesis will make continual use of formulae and ideas from [4] which is itself based



on the papers [5, 6], but is mostly self contained in terms of notation and definitions. The
book [19] has been used as a standard reference for tensor categories and braided Hopf
algebras, and [29, 3] as references for modular categories.

An outline of the thesis is the following:

In chapter 1 we include some important definitions and results which are related to
our work. We begin by giving basic algebraic definitions, then the definitions of algebras
and coalgebras are given. Next we give the definitions of bialgebras and Hopf algebras
as algebraic systems in which the structures of algebras and coalgebras are interrelated
by certain laws. The definitions of monoidal categories, rigid categories and braided
categories are given with examples in the second section. The coset construction for
braided categories is explained depending on [4] in the third section.

In the last section we include some standard definitions, theorems and results for the
representations and characters of finite groups. We will consider Hopf algebra analogues
of some of these results later.

In chapter 2 we consider some basic facts about the braided category D which are
useful but do not fit in any subsequent chapter. We begin with an example of the braided
category D which will be used later. Then the category D is shown to be a ribbon
category. The question of whether the braided Hopf algebra D is braided commutative
or cocommutative in the category D is considered. Finally we look at the construction of
integrals in the category D.

In general the category C is not braided, but it contains the braided category D by
forgetting the G-grading and the M-action. In chapter 3 we show that the braiding for

D extends to a partially defined braiding on C. Moreover, we look at the algebra A € C



again, using this partial braiding and find a strange one sided braided counit. This may
have some relevance to the work by J. Green, D. Nichols and E. Taft on one sided Hopf
structures [8]. The chapter continues by showing that A is isomorphic to A* as objects in
C, and calculate the coproduct on A*.

There remain the problems of a star structure on the objects in C and the existence
of an antipode on A. While no definitive conclusion was reached on these matters, it
is shown in the last section that more morphisms can be added to C to make a richer
structure. More work in this direction may possibly shed light on the problems mentioned.

We begin chapter 4 by describing the indecomposable objects in C, in a similar
manner to that used in [6]. A detailed example is given using the group Dg. Then we show
how to find the dual objects in the category, and again illustrate this with the example.
Next we explicitly evaluate in D the standard diagram for trace in a ribbon category [19).
Then we define the character of an object in D as an element of the dual of the braided
Hopf algebra D. This element is shown to be right adjoint invariant. Additionally, we
show that the character is multiplicative for the tensor product of objects. A formula is
found for the character in D in terms of characters of group representations. Finally we
use integrals to construct abstract projection operators to show that general objects in D
can be split into a sum of simple objects.

In chapter 5 we show that the category D of the representations of the non-trivially
associated algebra D has a modular structure, in the same way that the category of
representations of the double of a group has a modular structure. We begin the chapter
by giving the definition of modular category, and some other important definitions and

results. The ribbon maps are calculated for the indecomposable objects in our example



category of section 4.2. The last ingredient needed for a modular category is the trace of
the double braiding, and this is calculated in D in terms of group characters. Then the
matrices S, T and C implementing the modular representation are calculated explicitly
for our example.

In chapter 6 we show an equivalence of categories between the double D of the
non-trivially associated tensor category, constructed from left coset representatives of a
subgroup of a finite group X, and the category of representations of the Drinfeld double
of the group, D(X).

In chapter 7, the last chapter, we consider ideas for further research. This includes
some detailed calculations on the matrix group SU,, where there is no single continuous
choice of coset representatives for the subgroup of diagonal matrices.

In the appendix we include the main part of the Mathematica files that show the
modularity of the category D for the example discussed in chapter 5.

Chapter 4 (except section 4.6), chapter 5 and chapter 6 have already been sent for
publication as a paper by myself and my supervisor E. J. Beggs [2].

Throughout the thesis we assume that all groups mentioned, unless otherwise stated,
are finite, and that all vector spaces are finite dimensional. We take the base field k& to

be the complex numbers C.



Chapter 1

Preliminaries

1.1 Hopf Algebra

Hopf algebras or quantum groups are an exciting generalization of group algebras, and
also of function algebras on groups. ”They have many remarkable properties and they
come with a wealth of examples and applications in pure mathematics and mathematical
physics”[20]. Moreover, quantum groups are clearly indicative of a more general non-
commutative geometry.

Hopf algebras first appeared in the work of H. Hopf in connection with the cohomology
of groups, and also in the work of G. I. Kac in the study of group duals. Hopf algebra
also came up in the representation theory of Lie groups and algebraic groups. The text

books [24], [1] and [13] are important references for Hopf algebras.



There are also finite-dimensional Hopf algebras such as bicrossproduct Hopf algebras

associated to the factorization of finite groups (see [6], [5] and [4]).

In this section we give the definition of Hopf algebras. We begin by giving basic
algebraic definitions, then the definitions of algebras and coalgebras are given. Finally,
we give the definitions of bialgebras and Hopf algebras as algebraic systems in which the

structures of algebras and coalgebras are interrelated by certain laws.

Recall that a group (G, -) is a set G with an associative multiplication -, a unit element
e such that e-g = g = g-e for all g € G, and for which every element g has an inverse g~!
such that gg~!' = g7'g =e. If g,9, = g,9, for all g,,g, € G, then G is called an abelian

group.

For the groups G and H, a homomorphism ¢ : G — H is a map satisfying

#(9192) = ¢(91)¢(g2) for all gi,92 € G.

A group G can act on a structure from the left or from the right. We say that G acts
on a set M from the right, if for every element u € G there is a map from M to M, say

s — (s<u), such that
(s<av)<u=s<vu, forallu,ve G, andse M.
In the same way, G can act on M from the left [19].

Finally, the transposition map, or the twist map, 7: VW — W®V is defined
by

Tv®w)=w®v, for veV and we W.



Definition 1.1.1 [19] An algebra, or an associative k-algebra with unit, is a k-vector
space A together with two k-linear maps, multiplication - : AQ A — A andunitn:k — A

such that the following diagrams are commutative:

a) associativity b) unit
ARARA—2" , A A k@ A—2" 404 —28" _ Agk
id@'J/ ‘J gJ’ 'j EJ’
ARA — 5 A A —2 . 04 — 2 4

The two outside vertical maps in b) are given by scalar multiplication. Also in b) the usual

identity element in A is given by setting 14 = n(1x).
For two algebras A and B, the tensor product A® B is an algebra with multiplication
(a1 ® by)(az ® by) = a1a; @ by by, for all a;,a, € A and by, by € B,

and has vector space given by the tensor product of the vector spaces A and B.
The algebra A is commutative if and only if - o 7 = - | where 7 is the twist map. The

linear map f is said to be an algebra map if it respects the algebra structure, i.e.
flab) = f(a)f(b) ~ and  f(1)=1.
Now we dualize the notion of algebra to get the following definition.
Definition 1.1.2 [19] A coalgebra, or a coassociative k-coalgebra with counit, is a k-

vector space C' together with two k-linear maps, comultiplication A : C — C ® C and

8



counit €:C — k such that the following diagrams are commutative:

a) coassociativity b) counit
cecec®l cec koC— 2" _cgc —2% cek
id® A]A A] g[ A] g[

cC®C A ¢ C "" c —%2 ¢

The two outside vertical maps in b) are given by c — 1®c and c — ¢c®1, for anyc € C.
Note that the commutative diagrams here are obtained from the commutiave diagrams in

the definition of an algebra by reversing arrows.

In symbols, coassociativity means (A ® id) o A = (id ® A) o A, and that € is a counit
means (e ®id) o A(c) =c = (id®e) o A(c) for all c € C.

The coalgebra C' is said to be cocommutative if 70 A = A, where 7 is the twist map.

For two coalgebras C and D, the tensor product C ® D is also a coalgebra with vector
space given by the tensor product of the vector spaces C' and D, and comultiplication
given by A(c®d) = c;®d; ®c; ®dy where, A(c) =) cq)®c@) and A(d) =3 dpy®
d), forallc € Cand d € D.

The map f is said to be a coalgebra map if it respects the coalgebra structure, i.e.
(f®f)loA=Aof, and €of =c¢

Notation. [24, 22] Let C be any coalgebra with comultiplication A : C — C ® C. We

give a sigma notation for A as follows:

Ac) = Z ca) ® ¢(2) forany ceC.

9



The subscripts (1) and (2) are symbolic and do not indicate particular elements of C.
When A must be applied more than once the power of the notation becomes apparent.
For example, the coassociativity diagram gives that » ¢y ® @ ® @) = > )y ®

(1) ® €(2), Which can simply written as Ay(c) =3 cay) ® ¢2) ® ¢(3)- In general we write

An_l(c) = Z c) ® .... ®C(n).

A, _1(c) is the element obtained by applying the coassociativity (n — 1) times. According

to this notation the counit diagram says that

Z e(cy)ce) = Z e(cy)cqy=c  forall ceC.

Definition 1.1.3 [22] A k-vector space H tis a bialgebra if (H,-,n) is an algebra,
(H,A,¢€) is a coalgebra and either of the following equivalent conditions holds:
1) A and € are algebra maps.

2) - and n are coalgebra maps.

Definition 1.1.4 [19] A Hopf algebra H is a bialgebra equipped with a linear map S :

H — H, called the antipode, satisfying
(S®id)oA=-(ld®S)o A =nock,
which can be illustrated by the following commutative diagram:

S®id d®S

H®H H®H HeH
H noe noe H

10



Note that in sigma notation, S satisfies

> (Shay) b =Y hay(She) = e(h)1,  forall he H.

The antipode map in Hopf algebra plays a similar role to that of the inverse map which
sends each element to its inverse in a group, although it is not required that S? = id.
Moreover, we do not assume that S as a linear map has an inverse S~! although this is

always so if H is a finite dimensional Hopf algebra.

Proposition 1.1.5 [19] The antipode map S of a Hopf algebra H is unique and also is:
1- an antialgebra map, i.e. S(hqy hy) = S(h)) S(hqy) and S(1) =1,
2- an anticoalgebra map, i.e. (S® S)o A(h) =70Ao0S(h) and eS(h) = e(h), for all

h € H, where T is the twist map.

Proof. For the complete proof of this proposition see [19].

We shall now see that for every finite Hopf algebra H there is a dual Hopf algebra
H* = Homy(H, k). H and H* determine a non-degenerate bilinear form (, ) : H*@H — k
via (¢, h) = ¢(h). By non-degenerate we mean that (¢, h) = 0 for all h € H implies that
¢ =0, and (¢, h) =0 for all ¢ € H* implies that h = 0. If $: V — W is k-linear, then
¢* : W* — V* is given by ¢*(f)(v) = f(¢(v))for all f € W*andv € V. The explicit

formulae that determine the Hopf algebra structure on H* from that on H are as follows:

(@9, h) = (6@, Ah), (Lh) =e(h), ($1)=€(4), 1)

($,hg) = (Ad,h®g), (5(¢),h) = (¢,5(h)),

forallh,g € H and ¢,v¢ € H*. Two Hopf algebras A and B are said to be dual if there is
a non-degenerate bilinear form (, ) : A® B — k, satisfying the rules mentioned in (1.1).

11



Example 1.1.6 [20] Let G be any finite group and let H = kG be its group algebra (the
vector space with basis Y~ A - g where g € G and A, € k, which just means that the
elements of kG is a linear combination of the elements of G). Then H is bialgebra via
the following: The product in G, 1 =e, Ag=g® g and ¢(g) = 1 for all g € G where e
is the identity element of G. Moreover, H is a Hopf algebra by defining S(g) = g~ for
each g € G. In fact, G does not need to be finite for kG to be a Hopf algebra, but we will

be interested in the finite case.

1.2 Braided Categories

The idea of Hopf algebras in braided categories goes back to Milnor and Moore [21]. The
notion of braided category plays an important role in quantum group theory. S. Majid
(see [19]) studies Hopf algebras in braided categories under the name ”braided groups”
with an algebraic motivation from biproduct construction as well as many motivations
from physics [27]. In this section, as well as throughout the thesis, with respect to the
braided categories and Hopf algebras in braided categories, we heavily rely on the work

by S. Majid in [19].

Definition 1.2.1 [19] A category C is a collection (class) of objects V., W, Z, U, etc, de-
noted by obj(C), and a set Morc(V, W) of morphisms for each pair (V, W) of objects of C
(if C is clear we write More(V,W) = Mor(V,W)). The sets Mor(V,W) and Mor(Z,U)
are disjoint unless (V,W) = (Z,U). There should also be a composition operation o such
that for allV, W, Z, U €C and ¢ € Mor(V,W), ¢ € Mor(W,Z) and ¢ € Mor(Z,U) :

1) There should be an element @ o ¢ in Mor(V,Z),

12



2) the associativity property of o holds, i.e. (pop)op =¢o(po),

3) every set Mor(W, W) should contain an identity element idw such that p oidw = ¢
and idw o ¢ = ¢.

A morphism ¢ € Mor(V,W) is called an isomorphism if there exists a morphism
¢t € Mor(W,V) such that po ¢! € Mor(W,W) and ¢~ o ¢ € Mor(V,V) are identity

morphisms.

Definition 1.2.2 A category D is called a subcategory of the category C if the objects
of D form a subclass of the objects of C, i.e. 0bj(D) C 0bj(C), and for any two objects
V, W of D, Morp(V,W) C Morc(V,W), in particular 1y € Morp(V,V) is the same as
ly € Morc(V,V). If Morp(V,W) = Morc(V,W) for all V, W in D, then D is called a

full subcategory of C.

Definition 1.2.3 [19] Let C and D be two categories. A (covariant) functor F : C — D is
a ‘map‘ between the two categories which respects their structure. Thus for every V € C,
we specify an object F(V) € D, and for every morphism ¢ : V. — W, we specify a
morphism F(¢) : F(V) — F(W) such that F(¢pop) = F(¢p)oF(¢) for any two morphisms

@, ¥ for which ¢ o4 is defined in C, and F(idv) = idp(v) .

Definition 1.2.4 [19] Let C and D be two categories. A contravariant functor F : C — D
is a ‘map " between the two categories which for every V € C specifies an object F(V) € D,
and for every morphism ¢ : V. — W specifies a morphism F(¢) : F(W) — F(V) such
that F(¢p o) = F(¢) o F(¢) for any two morphisms ¢, ¢ for which ¢ o is defined in C,

and F(ldv) = ldF(V) .

13



Example 1.2.5 a) Set, the category of all sets with Mor(A, B) the set of all maps from
A to B for any two sets A, B. The composition fog for f € Mor(A, B), g € Mor(B,C)
for any objects A, B, C in obj(Set) is the usual composition of maps and 14 € Mor(A, A)
is the identity map on A.

b) Let C = Group be the category of all groups. Obj(Group) is the class of all groups. If G
and H are two groups, then Mor(G, H) is the set of all group homomorphisms from G to
H. The composition of two group homomorphisms is also a group homomorphism and for
any three group homomorphisms the associativity property is satisfied. The identity map
idg € Mor(G, G) is also a group homomorphism. The category Group is a subcategory of

the category Set but it is not a full subcategory.

Example 1.2.6 For a unital algebra A, let C = M 4 be the category of right A-modules.
The objects of My, obj(Ma), is the class of all vector spaces on which A acts. The
morphisms are the linear maps that commute with the action of A. An example of a
functor is the forgetful functor F': M4 — Vec that assigns to each representation its

underlying vector space ( i.e. throws away the action of A).

Definition 1.2.7 [19] A monoidal category is (C,®,1,®,l,r), where C is a category
and ® : C x C — C is a functor which is associative in the sense that there is a nat-
ural equivalence ® : ( ® )® — ®( ® ) which just means that there are given functorial

isomorphisms
Sywz: (VOIW)®Z2VRWRLZ), forall VW, ZeC,

obeying the pentagon condition given in the diagram below . A unit object 1 is also
required and natural equivalences between the functors ( ) ® 1, 1 ® () and the identity
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functor C — C, i.e. there should be given functorial isomorphisms ly : V 2V &1 and

ry V=218V, obeying the triangle condition given in the diagram below.

VeW)e(ZeU)

e N
(V®l)®Wi>V®(l®W) (VeW)®zZ)eU VeWe(Zel))
1®id \ /ider (midl Iid@é
VoW VeWeZ)eU—Ve(WeZz)eU)
a) The triangle condition b) The pentagon condition

Example 1.2.8 The category Set of sets is a monoidal category with ® = X, the direct
product of sets. The category Vec of vector spaces is also monoidal category with ® the
usual tensor product. In both cases, the isomorphisms are the obvious ones. The unit

objects are the singleton set for the category Set and the field k for the category Vec.

Definition 1.2.9 [/19/ A braided monoidal (or quasitensor) category (C,®,V¥) is a
monoidal category which is commutative in the sense that there is a natural equivalence
between the two functors @ ,8% : C x C — C, which just means that there are given

functorial isomorphisms

UVyw:VOW =WV, forall VVIWeC,

obeying the hexagon conditions in the following diagram:

Ve (We®Z) Vew)®Zz
id®‘\Il/ \@‘1 @/ \\It@id
Ve ZeW) (VeW)® Z Ve (We2Z) WeV)eZ
q>—1l J‘I’ \pl lq)
VezZ)W Zo(VeWw) WezZ)eV We(VeJz)
T ®id\, ot o\, /ide v
(ZV)eW We((ZeV)
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If we suppress ®, the hexagon conditions can be given by the following formulas:

\PV®W,Z:\IIV,Z o \IlW,Zy "IlV,W®Z=\I}V,Z o \va,w, forall VW, ZeC(C.

Definition 1.2.10 [19] An object V' in a monoidal category C has a left dual or is Tigid
if there is an object V* and morphisms evy : V*® V — 1, coevy : 1 — V ® V* such that

19V 28 Vev)eV L ve(VeV) ¥ velxy,

IR

V
Vel S e (Ve V) I (e V)Vt Y 1g v 2 v,
compose to idy and idy«, respectively. Also if V and W are rigid in C and ¢: V — W is
a morphism in the category, then ¢* = (evy ®id)o (id® ¢ ®id)o (id ® coevyy) : W* — V*,

18 called the dual or the adjoint morphism of ¢.

Definition 1.2.11 [19] If every object in the monoidal category C has a dual, then we

say that C is a rigid monoidal category.

A morphism T : V' — W, a tensor product F' : V@ W — Y, the braid Yy :
VoW —- W® YV and the mapsevy : V¥®V — 1 and coevy : 1 — V & V* in tensor

categories are represented in terms of diagrams as the following in order:

o 0 X U

figure 1.1
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The definition of dual and the adjoint morphism can be given in terms of diagrams as

the following, in order, read from top to bottom:

v v V. figure1.2 V v v
Some axioms of a Hopf algebra can be illustrated for the unit, counit, associativity,

coassociativity and the antipode, in order, by the following diagrams:

SR
A - A ) @

figure 1.3

In the following diagram we give the homomorphism property for a braided coproduct

and the braided antihomomorphism property of S in order, where H is any braided Hopf

H H
A
’ A = ;
H H H H

figure 1.4

algebra: H H
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Proposition 1.2.12 [20/ If H is an algebra in a rigid tensor category, then its dual H*

is a coalgebra in the category using the following definitions:

H* H*
H* H*
H* H* H* H*
figure 1.4:  a-comultiplication b- counit

Proof. First we check the counit property for ¢* as following

18



Now we check the coassociativity of the comultiplication

B0




Proposition 1.2.13 [20] If H 1is a coalgebra in a rigid tensor category, then its dual H*

is an algebra in the category using the following definitions:

H* H* H* H*
* H* H*
H* H*
figure 1.5:  a-multiplication b- unit

Proof. First we check the unit property for n*

)
o
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J

Now we check the associativity property for the multiplication

H* H* H* H

NI
N2




H* H* H* H*
H* H* H* H
*

* *

AN

Proposition 1.2.14 [20] If H 1is a braided Hopf algebra in a rigid braided category, then

we can make H* into a braided Hopf algebra by the following definitions:

H* H* H* H*
w I I
H* H*
H* H*
H* H*
*
o B e b
H* H*
H* H*

figure 1.6: Definitions of multiplication, unit, comultiplication, counit, and antipode on H*
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Proof. We have already proved in the previous two propositions that unit, counit, as-
sociativity and coassociativity properties are held. So we only need to prove the property

for §* and the compatibility condition. We now check the property for S* as the following:




Lastly we check the compatibility condition between the multiplication and the comulti-

plication as the following
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1.3 The coset construction for braided categories

Although all the results in this section are in [4], they are included for the sake of com-
pleteness and as they are the base for many parts of the thesis. The definitions and the
main results only are included and those who are interested in the details and the proofs
can see the original paper [4] by E. Beggs. In this section, frequently the same phrasing

is used as in [4].
Definition 1.3.1 /4] For a group X and a subgroup G, we call M C X a set of left
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coset representatives if for every x € X there is a unique s € M so that x € Gs. The

decomposition x = us for u € G and s € M is called the unique factorization of z.

In what follows, M C X is assumed to be a set of left coset representatives for the

subgroup G C X. In addition, the identity in X will be denoted by e.

Definition 1.3.2 [{] For s,t € M we define 7(s,t) € G and s-t € M by the unique
factorization st = 7(s,t)(s - t) in X. The functions>: M xG — G and<a: M xG— M
are also defined by the unique factorization su = (s> u)(s<u) for s,s<u € M and

u,s>bu € G.

It was shown that the binary operation (M, -) has a unique left identity e,, € M and also
has the right division property (i.e. there is a unique solution p € M to the equation
p-s=tforall s,t € M). If e € M then e, = e is also a right identity [4].

The result of the next proposition will be used at many places in the thesis:

Proposition 1.3.3 [/] For t,s,p € M and u,v € G, the following identities between

(M,-) and T hold:
so(t>u) =7(s,t)((s ) l>u)7'(s<1(tl>u),t<lu)_1 and (s t)<qu= (s<a(tvu))-(tau),
spuv = (spu)((squ)pv) and s<uv=(s<u)<v,
7(p,s)7(p-s,t) = (pv T(S,t))T(pdT(S,t), s-t) and (pdr(s,t)) (s t)=(p-s)-t.
In what follows, unless otherwise stated, we assume that e € M to make things easier.It

was proved in [4] that for all £ € M and v € G, the following identities hold:

edqu=¢, edPV =0, tbe=¢, tde=1.
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Example 1.3.4 [{] Let X be the dihedral group Dg = {a,b : a® = b%> = e, ab = ba®), whose
elements we list as {e, a,a?, a®, a, a5, b, ba, ba?, ba’, ba%,ba}, and let G be the non-abelian
normal subgroup of order 6 generated by a® and b, i.e. G = {e,a? a* b, ba? ba'}. We
choose M = {e,a}. The T function is given by 7(a,a) = a2, and all other combinations
giving e. The operation < is trivial, and > is given by a acting on G as the permutation
(b,ba*,ba?), i.e. a>b = ba* etc. Note that though (M,-) is a group, > is not a group

action.

The tensor category C was defined in [4] as the following: Take a category C of
finite dimensional vector spaces over a field k, whose objects are right representations of
the group G and have M-gradings, i.e. an object V can be written as €., Vs . € is said
to be a homogeneous element of V' if £ € V; for some s € M, with grade (§) = s. In
this thesis we assume in our formulae that we have chosen homogeneous elements of the
relevant objects, as the general elements are just linear combinations of the homogeneous
elements. The action for the representation is written as 9: V x G — V. In addition
it is supposed that the action and the grading satisfy the compatibility condition, i.e.
(€au) = (£) <u. The morphisms in the category C were defined to be linear maps which
preserve both the grading and the action, i.e. for a morphism ¥ : V. — W we have

(¥(€)) = (&) and ¥(€)u = I(u) forall € V and uwe G [4].

Proposition 1.3.5 [4]/ C can be made into a tensor category by taking V @ W to be the

usual vector space tensor product, with actions and gradings given by

(E®@n)=(&) (n) and (£®@n)3u=_EI((n>u)® ndu.

Formorphisms&:V—»V andﬁ:Wﬂw, the morphism9®19:V®W—>I~/®W 18
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defined by (0@ I)(EQN) =0(&) @V(n) forE €V andneW.

For the tensor operation, the identity is just the vector space k with trivial G-action and
grade e € M. For any object V the morphisms Iy : V - V®kandry : V - kQV are

given by Iy (§) =€ ® 1 and ry(€) = 1 ® €, where 1 is the multiplicative identity in & [4].

Proposition 1.3.6 [/ There is an associator dyyw : (UQV)QW — U (V@ W)
given by

o((@n) ®() =£3r((n). ()@ (ne]).

Next the rigidity of C was shown in [4] as the following, supposing that (M, -) has right
inverses, i.e. for every s € M there is an s € M so that s- st =e: Let V = D.crr Vs,

where £ € V; corresponds to (£) = s. Now take the dual vector space V*, and set
rt={aeV :aly, =0 Vt#s}

Then V* = @, Vii, and we define (o) = s when o € V. We define the evaluation
map ev : V*®V — k by ev(a,§) = a(f). The grading on V* has been designed so
that this map preserves gradings. Considering the action <u, if we apply evaluation to
a3((€)>u) ® €3u we should get a(£)Iu = a(£). To do this we define (ad((&)pu))(£u) =

a(§), or if we put n = £u we get
(ea(((mau)pu)) = a(nau™) = (a((npu™) ™) (7).
If this is rearranged to give a<w, we get the following formula:

(azw)(n) = a(n3r((m)*, (m) () >o™ )7 ((n) ™, ((m)Faw™)7)). (1.2)

29



For the coevaluation map to be defined, a basis {{} of each V; was taken and a corre-
sponding dual basis {£} of each Vi, ie 1(€) = d¢,. Then these bases were put together

for all s € M to get the following definition:

coev(l) = Y &ar((&)", () @,

{€basis

which was proved to be a morphism in C [4].

The algebra A in the tensor category C was constructed in [4] so that the group
action and the grading in the definition of C can be combined as the following: Consider
a single object A, a vector space spanned by a basis §; ® u for s € M and u € G. For any

object V in C defineamap i: V® A — V by
£3(6s ® u) = 0s,6)€u . (1.3)

This map was shown to be a morphism in C only if (£)-(0;Q@u) = (£3u) i.e. s-(6sQ@u) = s<tu

if (€) = s. If we put a = (0; ® u), the action of v € G is given by
(0s ® U)W = Ggq(apr) ® (a>v)luw. (1.4)

It was also proved in [4] that the action and the grading on A are consistent as well as

that the action <: V ® A — V is a morphism in the category for any object V in C.

Proposition 1.3.7 [{] The formula for the product u for A in C consistent with the

action above, where a = (6, @ u) and b = (6; @ v), is given by
(65 @ u)(6: ® V) = b1 saubsar(ap) ® T(a,b) uv.

Proposition 1.3.8 [// Multiplication u: A® A — A is a morphism and associative in
C. Also there is an identity I for the multiplication and an algebra map € : A — k in the
category given by
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I=Z(5t®e, €(0s @ Uu) = s .

The identity I has the trivial action on all objects in C. Also the action of h € A on the

object k is just multiplication by e(h), and e(I) =1 .

Next the braided tensor category D was defined in [4] as the following: A category
D is obtained from the category C by considering additional structures of a function
5: M®V — V and a G-grading [£| € G for £ in every object V in D. The following

connections between the gradings and actions are required:

Inu| = ((mpw) " nlu , s (n) = (s5n) - (s<inl) ,
(1.5)
(s, ()" (s>nl) = 7((s5n), s<nl) " sBn] .

The operation 5 is an action of M, which is defined to mean that t5: V — V is linear for

all objects V in D and all t € M, and also that
p5(t5k) = (p' - t5k)ar (p'a(t>|x]), talx]) ", (1.6)

for any k € V, where p' = par({t5k), ta|s|)7(t, (k))~!. A cross relation between the two

actions is also required,

(3577)21((3<1|77|)(>u) = (s<1(<77)l>u))5(7721u). (L.7)

Note that the morphisms in the category D are linear maps preserving both gradings and
both actions. From the conditions above, it was shown that the connections between the

gradings and the actions can be given by the following factorizations in X [4]:

|s5n| 71 (s5n) = (saln)|n| " m) (s<lnl) !, Indul T (nqu) = u” gl (n)u. (1.8)
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To make D into a tensor category, the G-grading and the M-action on the tensor products

were given as the following:

€ ®nl =7({€), (m) " ]Il ,
(1.9)
(s97((£), (n)))5(€ ® ) = (s5€)ar(sal€], (m))7 ({(s<l&])om), s<lélin]) ™ @ (salé])on.
Proposition 1.3.9 [4] The gradings on the tensor product V.® W of objects V and W

in D are given by the following factorization in X: |£ ® n| & ®n) = |n|7H€|7H(E)(n) .

Proof.

@7 HE@m) = [€@nT (&) - (m) = € ®@n|T'T((€), () (€N (n) = InlIEITH(E)(m) . O

It was shown that these gradings are consistent with the actions as specified in (1.8),
and the function & applied to V ® W satisfies the condition (1.3) to be an M-action. In

addition, the functions & and < satisfy the cross relation (1.7) on V@ W [4].

Theorem 1.3.10 [/ D is a braided tensor category when the following structures are
given:

The identity object is k, with trivial gradings and actions.

The associator ® and the maps | and r are defined as for C.

The braiding ¥V : VW — W YV is defined by V(€ ®@n) = (£)bn ® &X|n] .
A double construction was defined as the following;:

Definition 1.3.11 [/ Give the set Y, which is identical to the group X, a binary oper-

ation o defined by

(us) o (vt) = vust = vut(s,t)(s-t) for uw,v€ G and s,t€ M.
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The functions 3: Y x X - Y and 7 : Y xY — X are defined by y3r = z7'yz and

7(vt,wp) = 7(t,p) . Also we define the functiont:Y x X — X by
vtbwp = v lupy’ = twpt'—l , where vtdwp =v't , v,weGand t,pe M.

It was proved in [4] that the maps <, 5 and 7 satisfy all the conditions listed in (1.3.3)
by giving (Y, o) the place of (M,-), and giving the group X the place of G. Moreover,
it was proved that the element e, = fm tem = e is a left identity for Y, which is not in
general a right identity, and that the operation (Y, o) has the right division property. It
was also shown that the corresponding left inverse is given by the formula (vt)f = v=1t71,
forveGandte M.

Returning to the case where e € M, a Y valued grading on the objects of D was

introduced by ||€]| = |£|7*(€). Using previous results, it was shown that ||n3u|| = ||n||<wu,

[ls5nll = lInlla(s<inl)~" and [[€ @ nll = [I€]| o [I7ll.

Proposition 1.3.12 [4] The map 3:V x X — V defined by £dus = (£3u)ds foru € G
and s € M, where

¢as = ((sh<lg|™h)€)ar(s", s)

is a Tight action of the group X on 'V, for any object V in D. Moreover ||£dus|| = ||€]|<us.

Proposition 1.3.13 [4] The X -action on tensor products in the category D is given by
€@ = (ElInlsz)) ® naz.

Proposition 1.3.14 [4] The braiding V , in terms of the X -action, is given by

Y(E®n) =na((€)an) T @&y , TTHE @n) =13 A e an).
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Next the Hopf algebra D in the braided category D was defined in [4] as the following:

Introduce a vector space D with basis , ® z for y € Y and z € X. Then define

'fa((sy ®z)= €l &z . (1.10)

We note that D is an object of D with grade y o ||é, ® z|| = yz and action

(6y ® )z = bya(a52) ® (a52) 'z, (1.11)
for z € X, where a = ||, ® z||. Then the associative multiplication p on D consistent
with the action is

(8y ® ) (6w ® 2) = Suyas Syzr(ap) ® 7(a,b) 'zz, (1.12)

where y,w € Y, z,z € X and b = ||6,, ® z||. Also p is a morphism in the category D.
This much was done before in C. The additional ingredient we have in D is the
braiding. The braiding can be used to define a coproduct for D which consequently gives
the tensor product structure in D.
In the following figure we give, in order, the symbols we shall use for the braiding ¥,

the action 4: V ® D — V, the counit, the unit, the product and the coproduct:

X Fde v A

Definition 1.3.15 [// The product pu and the coproduct A on D in the category D are
defined by the following diagrams respectively:
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D D V. D D vV W D
V4
= ) =l'llll
vV W

A% v
figure 1.8

Using the previous definition it was shown that (D, u, A) is a bialgebra [4]. First, it was
proved that A is multiplicative i.e.

vV W D D Vv W D D

figure 1.9

Next, it was shown that A is coassociative by proving that the following equivalence

is true:
uyv W D uvVv WwW D
/7 yd | e /
I | ] ‘ ] ‘ ] = ‘ ] L| ] L ‘ J
U A% W U A% W
figure 1.10

Finally, a rigid braided category was defined noting that (Y, o) has right inverses. The
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definitions of the dual and the corresponding evaluation and coevaluation maps, consid-
ered previously for C, can be also used in D. Recall that the morphisms in D are required
to preserve the actions and the gradings. The following diagrams represent, in order, the

evaluation, the coevaluation and the morphism 7" : V' — W in the category D:

vV D V D
LAY
v Vv
W w

figure 1.11
The last thing was needed to show that D is a braided Hopf algebra in the category

D, is the following definition for the antipode:

Definition 1.3.16 [4] The antipode S : D — D in D is defined by the following diagram:

figure 1.12
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1.4 Representations and characters of finite groups

In this section we include some important definitions, theorems and results for the rep-
resentations and characters of the classical finite groups. We will study many of these in

the case of Hopf algebras.

Definition 1.4.1 [23] Let V' be a vector space over a field k and let GL(V') be the group
of isomorphisms of V onto itself. Suppose G is a finite group with identity element
1 and with composition (s,t) + st for s,t € G. A linear representation of G in
V is a homomorphism p : G — GL(V) defined by p(s) = ps, i.e. it associates with
each element s € G an element p, of GL(V) in such a way the following equality holds

Pst = ps pt for s,t € G.

If such p is given, we say that V is a representation space of G, or simply, a representation
of G. In what follows, we restrict ourselves to the case where V has finite dimension.
Suppose now we have a finite dimensional vector space V, and let n be its dimension.

Then n will be also the degree of the representation under consideration.

Example 1.4.2 Let G be a finite group with identity element 1. Suppose that G acts on
a finite set X, i.e. for each s € G, there is given a permutation z +— sz of X satisfying
lz =z, s(tx) = (st)z for each s,t € G andx € X. Let V be a vector space having a basis
(ex)zex- Let ps be the linear map of V into V which sends e, to es; for s € G. Then the
linear representation of G, p, obtained here is called the permutation representation

associated with X [23].
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Definition 1.4.3 (23] Let p : G — GL(V) be a linear representation of G in V. and
let W be a vector subspace of V. W is said to be a subrepresentation of V, if W
is stable under the action of G, i.e. if x € W, then ps(x) € W for all s € G. Thus

ply : G — GL(W) is a linear representation of G in W.

It is proved in [23] that if V' is a representation of G and W is a subrepresentation of V/,

then there is a complement W,, of W which is also a subrepresentation of V.

Definition 1.4.4 [25] A linear representation p : G — GL(V) is said to be irreducible
(or simple) if V is not 0 and if no vector subspace of V' is stable under G, except of course

0 and V itself.

Note that the second condition is equivalent to saying that V is not a direct sum of two
representations, except for the trivial decomposition V = 0@ V. Any representation of
degree 1 is irreducible. The irreducible representations are used to construct the others

by means of direct sum as we can see in the following theorem:

Theorem 1.4.5 FEvery representation can be written as a direct sum of irreducible rep-

resentations.

This theorem can be proved using the mathematical induction on dim(V) and taking in
account what was mentioned after definition 1.4.3 [23].

Now we mention some important definitions and results about the characters of the
representations. Let V be a vector space over the feild k. If V has a finite basis (e;) of n
elements, then each linear map f: V — V of GL(V), can be defined by a square matrix

(fi;) of order n. The coeflicients f;; belong to the field k, and they are obtained by the
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formula f(e;) = >, fije;. The trace of f is defined by the scalar given by the following

formula:

Definition 1.4.6 [23] Let p: G — GL(V) be a linear representation of G in 'V and let

s € G . Then the character of the representation p is given by the following formula:

Proposition 1.4.7 [12] Let G be finite group with identity element 1, p : G — GL(V)
be a linear representation of G in V, a vector space over the field C, of order n, and let

x be the character of p. Then, for s,t € G, the following equalities holds
x(1) =dim(V)=n , x(tst™) = x(s).

Proposition 1.4.8 /28] Let Vi and V;, be two representations of the finite group G, and
let x1 and x2 be their characters. Then the character of their direct sum representation,
V1@ Vs, is the sum of their characters, x1+ Xx2; and the character of their tensor product,

Vi ® Vs, is the product of their characters, x1 X2 -

Proposition 1.4.9 (Schur’s Lemma) /28] Let p' : G — GL(V1) and p" : G — GL(V,)
be two irreducible representations of G and let f : Vi — V4 be a linear map satisfying
ps o f=fops forallseG. Then we have the following:

1) If p and p’ are not isomorphic (i.e. f: Vi — Vyisa I-1 correspondence), then f = 0.

2)IfVi=Vyand p = p’, then f is a scalar multiple of the identity endomorphism Idy, .
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Chapter 2

Further results on the category D

In this chapter we consider some basic facts about the braided category D which are
useful but do not fit in any particular later chapter. We begin with an example of the
braided category D which will be used later. Then the category D is shown to be a ribbon
category. The question of whether the braided Hopf algebra D is braided commutative
or cocommutative in the category D is considered. Finally we look at the construction of

integrals in the category D.

2.1 An example of the category D

Take X to be the dihedral group Dg = (a,b : a® = b? = e,ab = ba®), whose elements
we list as {e,a,a?, a3, a*,a’ b, ba,ba?, ba®, ba*,ba’}, and G to be the non-abelian normal
subgroup of order 6 generated by a®? and b, i.e. G = {e,a?, a%,b,ba?,ba*}. We choose
M = {e,a}. The center of D is the subgroup {e, a3}, and it has the following conjugacy

classes: {e}, {a®}, {a?,a'}, {a,a®}, {b,ba?, ba*} and {ba,ba®,ba’}.
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The category D consists of right representations of the group X = Dg which are graded
by Y = Ds (as a set), using the actions <: ¥ x X - Y and5:Y x X — X which are
defined as follows:

~ S | " —1
ydx =z~ yzr, and vibr =v xv =trt

for ze X,yeY,v,v €Gand t,t € M where vtdz =v't.

2.2 The ribbon map on the category D

In this section we show that the rigid braided category D is a ribbon category. This

material has been included in [2]. A ribbon category itself is defined as the following:

Definition 2.2.1 A ribbon category is a rigid braided category equipped with a transfor-

mation 6 € Nat(id, id) satisfying the following conditions:
Ovew = Uogw © Uy © (v ®0w), 6y=id, (6v)" =by-,

for any objects V. and W in the category. If such a 0 exists, then it is called a ribbon

transformation (see [19]).

As a simple example, the category of finite dimensional vector spaces over the field &k

is a ribbon category with trivial ribbon transformation 8y = idy (see [13)).

Theorem 2.2.2  The ribbon transformation 8y : V. — V' for any object V' in D can be

defined by Oy (§) = £3]|€]].

Proof. In the following lemmas we show that the required properties hold. [
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Lemma 2.2.3 0y is a morphism in the category.
Proof. Begin by checking the X-grade, for £ € V
16w @)l = [l llell]| = lighaliel = Tell-

Now we check the X-action, i.e. that 6y (£dz) = 6y (£)dz.

Oy (§az) = (§az)dl|€az|| = (Eaz)([|€]|<x)

= &z |¢lle = (€Al€lDaz = Oy (§)2z. O
Lemma 2.2.4 For any two objects V and W in D,

Ovew = Uygw © Yigy © (Gy @0w) = (Oy ® 6w ) o Ygy o Tygy

This can also be described by figure 2.1:

Vv W vV W Vv W

e - !\j - 8

Vv W Vv W v W
figure 2.1

Proof. First calculate ¥ (¥(£ ® 7)) for ¢ € V and n € W, beginning with

U (L(E@n) = T(nAEanl)™ ®@&nl). (2.1)
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To simplify what follows we shall use the substitutions

n =&l and £ =na(({E)<nl)
so equation (2.1) can be rewritten as

V(¥(Een) = ¥(E @)
=7 3((€) )™t ® €3 .
As 0 = €aln| = €3nl, then |y'| = [€3lnl| = ((&)vInl)"élnl, so
&3n'| = na((E)anl)™ ((€) > Inl) €]l
= na(({&) > 1)) ((€)<lnD)) " l€lIn|
= n3n|7 (&) I€lIm].

Hence if we put y = [|€ @ 7l| = [|¢]l o lInll = [n]™* [¢]7*(€) (),

V(T(E@n))AlE@nll = EAnI(E) < ) pBlIE @ nl) @ nalnl ™ (1),

where, using (2.4),

ay ! N S ~ - ~
p=lE A = [€ An || € Anl) = Il Ay~ = lInll 2y~

pellE@nll = (nllay sy = (Inllsy™) 7,

(2.2)

(2.3)

(2.4)

As ||€'aln||| = vt = |Inll 2y~?, by unique factorization, ¢ = (¢')<|n’|. Then |n||sy~" =

(n) y‘lt/_l, which implies that

(€' <l )7 InllBy ™) = Inle' " ¢yim)™ = liel -

Substituting this in (2.5) gives

T(T(Een)dlE®n| =&l ® nalnll. O
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Lemma 2.2.5 For the unit object 1 = C in D, 6, is the identity.
Proof. For any object V in D, 6y : V — V is defined by

Ov(§) =& lgl for L€V
If we choose V =1 =C then 0;(§) =(de=¢€ as ||| =e O

Lemma 2.2.6  For any object V in D, (By)* = Oy (see figure 2.2).

v v

® | . ®

4 v

figure 2.2
Proof. Begin with

coevy(l)= Y EAF(fEln N oé= Y €ar((OF(6)) ®f

£€ basis of V €€ basis of V

For a € V*, we follow figure 2.2 and calculate

() (@) = (evaly @id) Y. o7 (ae (0 (% )N @F)). @7

£€ basis of V

Now as 7((6)%, (€)) = (6)"(¢),
[€a7({&)" ()7 || = llgl 3 (&) (en~
= (O e le @E© o
= (O"@ e @,
By (£37((€)"(€))™) = (€ar (), €)™ all€ar(lell”, llelh) ™ |
= £3({E)THO O e e )
= £lgITH )
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The next step is to find
o7 (a® (62l ) ©€)) = (aa7(l€ale ™ L 1EN) ™
® (€3l 9" ™)) @&
As
l€ale el = el alel (©
= ("Il €7 () el o)
= 7(()" @ lel™ "
= 7({©)" ) IEI7 (&) ()", ()
= (&), () 1€ (©p (" (€)™) (©) 47", N ™),
then as [I€]] = [l¢]I" = lgl7(()", €)71(©)",
27 (a® ((€3le7©" ) ©€)) = (adr (©ar(©" €) €)™
® (€3l (9" )) @&

Put v = ()%, (€)™ = (MO andw = r((©)<w, (€))7 = ((O<w)(€)*) ™, then

substituting in (2.7) gives

(6v)'(0) = (evaly ®id) > ((e2w)@ (€2l ) )) @& (28)

£€ basis of V

For a given term in the sum to be non-zero, we require

lell = €1l = Nl€ll™ = lere, (2.9)

and we proceed under this assumption. Now calculate

evaly ((a@w) ® (€3] )) = (Ba(ll€lsp))(€ap) = B(E) (2.10)
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where p = |¢€]72(€)" ! and B = adw (||€]|5p)~t. Next we want to find ||€]|5p. To do

this, we first find

l€ll2p = (€)* 1€l 161~ ©) 1617 ©*

(2.11)
= v HE[THE v =0T ET ((€) b u)((€) <v),
and hence
IEllEp = (&) p((€) av) ™
= (©) €17 O v (&) av) ™! (2.12)
= (&) €7 () > ).
Thus
B=adw((&vv) €)™
= a3(&)" 7 (O av) T (&) b)) (2.13)
= ad()v(()v) T E[(€) T = adfgl(e) "
Now substituting these last equations in (2.8) gives
(6v) () = > (edllall) (). € (2.14)
€€ basis of V with [£[(§) " =[la||
Take a basis &, ... ., &, with (@ o )(&) being 1 if i = 1, and 0 otherwise. Then

(6v)"(0) = & + 0=cadlla| =bv(a),

where &1, &, . . ., &, is the dual basis of V* defined by §; (&)=20:; - O
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2.3 The Hopf algebra D is braided cocommutative

We consider a braided Hopf algebra E in a braided category S, in which F has a right

action on the objects in & given by the morphism

v E

v
figure 2.3

and the action on tensor product is given by

vV W E vV W E

v
figure 2.4

Definition 2.3.1 The opposite coproduct, A%, for the algebra E in S can be defined by

the following diagram for the representations V and W of E in S:

vV W E VvV W E
/
[ l ] L l ] = %
A w Vv A%
figure 2.5
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Lemma 2.3.2 For the representations V and W of E in S, the opposite coproduct, A,

satisfies the following

\'% vV W E
w h l
A% w
figure 2.6
proof.
vV W E vV w \% W E
/ —
] | I
\'% w \%

Proposition 2.3.3 For the algebra E the opposite coproduct, A,is coassociative, i.e.

Uuv W E uv w E
AN &

NP

NG
/

[ I ’ ] L ’ ] = , ] [ ‘ ] ’ |

U A% 8] W

figure 2.7
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In our case for the category D, we can say more:

Proposition 2.3.4 Using the definition of the opposite coproduct in 2.3.1, the braided

Hopf algebra D in the category D is cocommutative.

Proof. vV W D vV W D V W D
biﬁp
/ = =
[ ]| ] <
A% W \% W \% w
vV W D vV W D
A
/
= | | | ] | l ]
A% W A\ W
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2.4 The Hopf algebra D is not braided commutative

After knowing that the algebra D is braided cocommutative we would like to know whether
it is braided commutative or not, i.e. whether for £ and 7 in D the following equation is

satisfied:

pEen) =pu(¥(E®n) ? (2.15)

Put £ =6, ® z and 7 = §,, ® z, then the left hand side of (2.15) becomes

(0y ® ) (6w ® 2) = duyaz Oyar(ap) ® T(a, b lzz, (2.16)
where a = [|6, ® z| = [[€]| = [§]7'(€) and b = (|6, ® 2| = ||In]| = |n|~*(n). On the other
hand ¥(§ @ n) = n3((§)<nl) ™ ® £3n| = (duw ® 2)3({&)<Inl) ™" ® (6, ® z)3n], so
p(Y(E®N)) = (Swaws(eramp-1 © BEUE<IND ™) 2((E)<ln) ™) (Syatasi)y ® (aB|n]) " z|nl)

= Oya(asinl), waz((€)alnl) ! O(wa(vs((€)alnl)=1))ar(ad((€)in) = b3ln)

® T(ad(&)<lnl) ™", b3Anl) T (EE((E)<lnl) ) T 2((E)<lnl) T (aBlnl) " zIn] -
(2.17)

To check the § function the statement wz({€)<|n|)~!(as|n|)~! = y should be the same as
widz~! =y, ie.
wz((€)<Inl) " (aSln]) 'z = w,

which means

wz((§)alnl) (s nl) "z = 2((§)<ln)) T (aB[n)) " zw. (2.18)
Now to calculate (ab|n|)({(£)<|n]), put a = |£]7HE) = vt, () =t and || = w then using
the fact that vtSwp = v lwpy’ = twpt ", where vtdwp = v't’ we get

o~ vt = o (o) (taw) = v't
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So t' = (taw) = ((€)<ln|) which implies (aB[n])((€)<ln]) = tw = (€)|n]. Thus (2.18)
becomes

wz((§)Inl) "'z = 2((E)In]) 2w (2.19)

To check whether this is always true or not we consider the following example:

Example 2.4.1 Consider ezample 2.1. Now let (0y ® z) = (Spgn ® ba™) and (0, ® z) =

(Oper @ ba?). Then we need to check if the following equation holds:
baPba?({Bpan @ ba™)|0per @ bal|)~rba™ = ba?((Jpen @ ba™)|dper @ ba?|) " *ba™ba? . (2.20)
To do so we need to calculate ||0pen ® ba™||, which we do as follows
ba™ o ||8pen @ ba™|| = ba"Iba™ = (ba™) *ba"ba™ = ba®™".
Put ||6par ®ba™|| = b%aP, where o = 0,1 and 3 is even, then b*aPba™ = b**+1a" P = ba?™ "
which implies o = 0 and § =2n — 2m . Thus

Héba,n ® bam” = |5ba" ® baml—l <6ba" ® bam> — a2n—2m c G,

which implies that |Open ® ba™| = a®™ 2" and (pan @ ba™) = e. So the left hand side of
(2.20) is

baPba?|Sper @ ba?|'ba™ = baPba®a®"?%ba™ = ba? P,
on the other hand the right hand side of (2.20) is

ba?|8per ® bal| " ba™ba? = ba%a*P~*ba™baP = ba®*F "1™

which shows that the left hand side of (2.20) is not equal to the right hand side, otherwise
g—p+m=,3p—q—m, t.e. 29 —4p+2m is a multiple of 6 which is not always true.

Therefore, we conclude that D is not braided commutative.
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2.5 Integrals in D

In the literature there are two definitions of integral, depending on whether it is viewed

as an operator or an element.

Definition 2.5.1 [19] Let H be a Hopf algebra over the field k. A left integral on H is a
non identically zero linear map [ : H — k satisfying (id® [) o A=mno [. In the same

way the right integrals are defined. If f 1 =1, then the integrals are called normalised.

Definition 2.5.2 [19, 15] Let H be a Hopf algebra over the field k. A non-zero element
A € H is called a left integral if hA = e(h)A for all h € H. Similarly, A € H is called a
right integral if Ah = e(h)A for allh € H. An element A € H is called integral if it is

both right and left integral. Integrals are normalised if e(A) = 1.
These definitions are of course connected, for example:

Proposition 2.5.3 Given a left integral [ : H — k, if we set A* € H* to be equal to

H H H’ H*
figure 2.8

i.e. A* € H* is a right integral in H*.
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Proof. We use the standard braided Hopf algebra structure on H* given in 1.2.14.
Hi

L. H. S- = — =

*

5 ¢

Now we consider our categories and give specific examples of integrals. First we give

a useful lemma from [18].

Lemma 2.5.4

figure 2.9
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We can now give the following definition of a left integral from [18] as the following:

Definition 2.5.5 For a braided Hopf algebra H, define [ : H — k by
/(h) = trace(Ly 0 S$%) Vh e H,

where Ly, is the left multiplication by h. This can be illustrated by the following diagram:

H H

@ /

figure 2.10

Proposition 2.5.6 [18] The integral [ defined in 2.5.5 is a left integral, i.e.

L4

H
figure 2.11
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The definition of integral does not require the category to be braided. Here we give

an example of an integral in C.

Proposition 2.5.7 Let A be the algebra in the category C given in section 1.3, then the

element A =) 0. ®u for u € G is an integral element.

Proof. We need to prove that A = Y 6. ® u is both right and left integral, so for any

element h = (§; @ v) € H we have

Ah=(> 6. Qu)(6,®v) = (6 ®u)(6:®V) =D byequbear(ap) ® T(a, ) uv,

U
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where a = (6, ® u) and b = (6 ® v). But we know that e<u = e and e<r(a,b) = e.
Moreover, e (§. ® u) = equ = e. Also because a = (§. @ u) = e, then 7(a,b) = 7(e, b) = e.

Now as uv is an element in G, then we get
Ah=51 Y 6. @uv =6y A = e(h)A,

so A =3 6. ®uis aright integral . Next we want to show that it is also a left integral,

so we start with

hA = ((St ® ’U)(Z be ® ’LL) = Z(dt ® v)(ée ® 'LL) = Z Je,tqv 5t<‘r(b,a) ® T(b’ a)_lvu’

where b = (0; ® v) and a = (6. ® u). But we know that t<e = t. Moreover, ¢t = 1
implies e = t<w or eqv™! = e = t. Also because a = (6,®u) = e, then 7(b,a) = 7(b,e) = e.

Now as vu is an clement in G, then we get

hA = Gcpa Y 6 ®vU =001 > e ®vu=6eA=e(h)A. O
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Chapter 3

A partial braiding on C

In general the category C is not braided, but it contains the braided category D by
forgetting the G-grading and the M-action. In fact, the braiding for D extends to a
partially defined braiding on C, as we show in this chapter.

We also look at the algebra A € C again, using this partial braiding and find a strange
one sided braided counit. This may have some relevance to the work by J. Green, D.
Nichols and E. Taft on one sided Hopf structures [8].

The chapter continues by showing that A is isomorphic to A* as objects in C, and
calculate the coproduct on A*.

There remain the problems of a star structure on the objects in C and the existence
of an antipode on A. While no definitive conclusion was reached on these matters, it
is shown in the last section that more morphisms can be added to C to make a richer

structure. Possibly more work in this direction can shed light on the problems mentioned.
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3.1 A partial braiding on C

We define Uy : VW - W®V for VeCand W e D, and use the usual diagram

notation for Yy : 1% 17,74
%% Vv

Proposition 3.1.1 LetV € C and W € D, then the braiding ¥ : VW — WV which
is defined by V(E®@n) = ()bn®EQ|n| for E € V and n € W is a morphism in C. This

s the same as given in 1.8.14.

Proof. To prove that ¥ : V@W — W ® V is a morphism in C we need to show that

U preserves the M-grade and the G-action. We first check the M-grade as follows

(T(E@n) = ((E)Bn @ E3nl) = ((€)5n) - (£3nl)
= (&) - ((&)<Inl) = (&) - (n) = (€ @),

as required. The forth equality according to lemma 3.2.3. Now to check the G-action we

need to show that ¥ ((£ ® n)v) = ¥ (€ ® n)v. To do so we start as follows

L.H.S. =¥((£®n)w) = ¥ (&((n)>v) ® nv)
= (€3({mpv))s(n2v) ® (E3((n)ev))dlnv|
= ((©)a((n)pv))5(n2v) ® EA((n)>v) Nl
= ((€)a({mpv))s(n2w) @ E3((mpv) ((n)pv) " nlv

= ((€)<((n)pv))5(n2w) & E3lnlv .
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On the other hand
R.H.5. = ¥({®n)v = ({§)>n @ £n|)<w
= ((©)pm3((&3lnl)pv) ® (&3ln))2w
= ((&)pm3(((€)alnlv) ® Edlnlv,

which is the same as the L. H. S. where

({€)a((mpv))s(n2v) = ((E)sm)3(((E)<Inl)po) ,
according to the cross relation between the actions mentioned in equation (1.7). O

Proposition 3.1.2 Let V € C and W € D. Then for a morphism T :V — V' inC

the following equality is true:

vV W VvV W
w Vv w Vv
figre 3.1

Proof. We need to prove that U(T(¢) ®n) = (id® T)¥(£ ® ). So we start as follows

L.H.S. =¥ (T(§) ®n) = (T(€))sn @ T()3n| = (€)sn ® (T(£))n -
The last equality happens because T" is a morphism in C so it preserves the M-grade. On
the other hand
RHS =(1d@T)¥(E®n) = (id® T)((£)bn ® £3|n|)
— ()50 ® T(Edln]) = ()5n & (T(€))an]
The last equality happens because 7" is a morphism in C so it preserves the G-action. [
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Proposition 3.1.3 Let V € C and W € D. Then for a morphism T :W — W' inD

%4

figre 3.2

the following equality is true:

Proof. We need to prove that ¥ (£ ® T'(n)) = (T ®id)¥(£ ® n). So we start as follows

L.HS =%(E®T(n)) = ()5T(n) ® AT ()| = (€)5(T(n)) ® &3n}
The last equality happens because T is a morphism in D so it preserves the G-grade. On
the other hand
RHS =(T®id)¥(En) = (Teid)((€)bn ® £€3|n|)
= T((§)5n) ® &3ln| = ()5(T(n)) ® & .
The last equality happens because T is a morphism in D so it preserves the M-action. U

Next we see that the algebra A in C described in [4] is the image of an object in D.

3.2 The algebra A as an object in D

In section (1.3) we defined an algebra A in C whose representations were exactly the
objects of C. In this section we show that it is possible to put a G-grade and M-action on
A so that it becomes an object in D. The multiplication and the identity given in (1.3.8)
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are morphisms in D, so A is an algebra in D. However the action (1.3) of A on objects in
D is shown not to be a morphism in D.
We can now ask if, using the braiding in D, A becomes a braided Hopf algebra. The

answer in general is no, but some structure is recovered.

Definition 3.2.1 Let A be the algebra, given in section (1.3), in the category C. For an

element 6, @ u € A, we define the G-grading by |6s ® u| = u and the M-action by

t5(0s ® U) = O(sar(tt £)-1)4L)am—1 & W(tDU),
where w = 7(b,t<u)7(t,a)™}, a = (6, @ u), b satisfiest-a =b- (t<u),u € G and s,t € M.
Theorem 3.2.2  The algebra A defined in 3.2.11is an object in the braided tensor cate-
gory D .
Proof. The proof is given by the following lemmas. [

Lemma 3.2.3 The algebra A defined in 3.2.1 satisfies the following connections between

the gradings and actions:
[n2v] = ((mpv) " nlv , ¢~ (n) = (tsn) - (taln])

7(t, ()7 (telnl) = T((t5n), taln]) " [t5n] .
Proof. Firstly, to prove that the algebra A satisfies the equation |ndv] = ((n)pv)~tnlv

we put n = ds @ u and start with the left hand side as follows

L.H.S. = [nav| = |(8s ® u)dv| = |(Ssa(asv) ® (abv) " uv)| = (abv)tuv = R.H.S,

where a = () = (§; @ u) and |n| = |ds @ u| = u.
Secondly, the equation t-(n) = t-a = (tbn) - (t<|n|). is satisfied directly from the definition
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of b if we put b= (tbn).
Finally, to show that the algebra A mentioned in 3.2.1 satisfies the equation 7(¢, (n))~*(t>|n|) =

7({(t5n), ta|n|)t|t5n| we start as follows

R.H.S. = 7({t5n), t<|n|)Htdn| = 7( b, t<u) " t5(6s ® u)|
= 7( b, t<u) "8 (sar(tt 1)1 ) L)1 @ W(DU)| = 7(b, tw) " Tw(t>u)
= 7(b,t<au) 7 (b, tau)7(t,a) " {tou) = 7(¢,a) " (t>u) = L.H.S,

where w = 7(b,t<u)7(¢,a)™! as mentioned in 3.2.1. O

Lemma 3.2.4 Let A be the algebra defined in 3.2.1, then for k € A and p,t € M the
following equation is satisfied where p = par((t5k), ta|k|)T(t, (K))~1:
po(t5k) = (p - t§,‘$)ZIT(p/<(tI>IK,|),t<||,‘€|)_1 .
Proof. We equivalently need to prove that
(pB(tSn))ZlT(plq(tDMD,t<1|/~c|) =(p - tbK).
Put k = §; ® u, and to calculate the left hand side we calculate the following:

50, Qu) =0, ®u,

where v = w(tpu), s’ = ((sar(t5,8)71) - tH) ™, w = 7(b, tu)7(t,a) " ,a = (6; @ u),b =

(t5(6s ®u)),u € G and s,t € M. Note that b satisfies t - a = b - (t<u). Then
POy @ u) =8y ®u’,

where v’ = w'(pu), s = ((S'QT(pL,p)—l) 'pL)Qw'_l, w' = 7(c,pau)7(p,b)"!, and
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c= (6 ®u") satisfies p- b= c- (pau’). Now if we set z = 7 (p<w(t>u), t<u) then

v =w (prw(teu)) = w (pow) ((paw)>(tbu))
= w (ppw)7(paw, t) (((paw) - t)ou) 7 (paw(tou), tdu)—l
= w (ppw)T(p<w, t)(B>u)z"t,
where t = (p<w) - t, so the left hand side is given by
LHS =6y ®u)az= Oy a(evz) ® (02) 7 u' 2
= byt gy @ (@2) 7 w' (ppw)T(paw, t)(Bu) = §n @ u' .
To simplify u” we need to calculate the following

(z)™! w = (cl>'r(p<1ul,t<1u))_l7'(c, pdu')r(p,b)_l

= (o7 (pant’, taw)) " e (pa) (e - (p<w)) M7 (p, b)

= (e>r(pau, tau)) T e (pau) b p7t = (o7 (pau’, taw)) T e (pau’) (bau) (bau) ol p !

= (@>r(pau, taw)) " er(pau’, tau) ((peu') - (baw)) (t<w) "o~ p~!

= (car(pau’, tau)) ((paw) - t)<u) (tau) ™67 p~?

- T((cd'r(pdul,tdu)), ((paw) - t)<1u)> ((m(pqu’,tqu)) ((per') - (t<Ju)))(t<1u)'1b_1p_1
— 7(caz, Eau) ((c- (p<u')) - (t<u)> (tau) "o~ p ! = 7(caz, Tau) ((p b)- (mu)) (t<u)~2b~1p2
= 7(cqz, Tau) ( (par (b, tu)) tqu))>(t<1u)*1b—1 pt
T(caz, fau) ( par (b, tau)) )(tdu) 1p=1p1
r(caz, Fau) ((par(b, t<u)r(t, @)") - ¢) - ) (t<u) 167 p?
7(caz, F<u) ( paw) - )(tdu ~1p=1 -1

= r(caz, tau)(F - a)(tau) "6 p~! = 7(caz, Fau)r(E, ) Fa (tau) " b

Now as b(t<u) = 7(b,t<u) (b - (twu)) = 7(b,tau)(t - a) = 7(b,tau)7(t,a)*ta = wta and
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pwt = (ppw)(p<ww) t = (ppw)7(p<w,t)t we get

(>2) tw' = 7(caz, tau)r(t,a) it w i pTt = 7(cqz, tau)T(E, a) " T(paw, t) " (pow) T

So

"

u" = 7(cqz, tau)r(F,a) " (Eou) .
Also s can be simplified as

"t " 1

s" = s <a(wz) = ((sar(p",p)™") - p¥)a(ppw)T(paw, t)7(, a)7(caz, tau) " .

On the other hand, note that p’ = paw and p’ - t = ¢ then we get

RHS. = ((p -t)ok) = (B5(6; ®u)) =6 @

where 4 = w(tbu), § = ((sar(tt,8)7) - tF)<w ™!, @ = 7(b, Taw)7(£,a) "1, b = (I5(6, @ u))
satisfies £ - a = b - (f<u). To show the equivalence between the left and the right hand
sides we need to show that b = c<z, which we do as follows
b (faw) =1 -a= ((paw)-t)-a= ((pawr(t,a) - (t-a) = ((par(b,taw)) - (b- (t<u))

= (p-b) - (tau) = (c- (pau)) - (tau) = (car(pau, t<u)) - ((pau’) - (t<w))

= (car(pau, tau)) - (((paw)a(t>u)) - (taw)) = (car(paw, taw)) - (((paw) - t)<w)

= (c<z) - (t<w),

as required. Thus " = @. Now we only need to show that s” = 3, i.e.

((s'ar(@*,p) ™) - ) alppw) 7 (pew, 8) = ((sar(E",)7") - £) .

If we apply -t to both sides then we need to prove

(", ) ™) - pE)alpow)r(paw, ) - £ = s,
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so we start with the left hand side of the above equation noting that p'L = (paw)” =

pla(ppw) and T = p -t as follows

VN

((s'<r(p",p)™) ") alppw)r(paw, 1)) - T = ((((s'<r(p",p)™) - p*)alpow) ) ar(pew, 1)) -
= (((re™ ™) s w)) - 5") )arpan,t)) - £
((s'<rt, ) (protmow) (057 (¥ 1)) - (¢ (P, 1) ) - (- )
= (((5 " ("o ow)) (o7, 1) (0 ar @, 0)or (e, 0)71) ) - 27) - 9) -2
((

(8'<T(pL,p)"1(le>(p>w))) -p'L) -p') -t

’ _ 1L 1L ’
= ((8 ar(p®, p) 7 (p">(pow)) T(p ,p)) (p -p)) -t
— (((sar(t5,5)™) - t5)cw (o, p) = (oo (pow)) (0, 8)) -
= ((sar(th, )™ ) - th) -t =,
as required. Note that for the fourth equality we have applied ®~! and in the equality

before the last we have used the following:

1

(0", p)w = pPpw = p* (pow)(pw) = (p“>(pow))p P = ("> (pow)) (@, p). O

Lemma 3.2.5 The algebra A, defined in 3.2.1, satisfies the cross relation between the

two actions, i.e. forn € A, t € M and v € G we have:
(tsm3((t<lnl)pv) = (ta((n)ov))5(nw).

Proof. Letn=465Qu, a=(n) = (J; ®u) and b = (tbn) = (t5(ds ® u)), which satisfies

t-a=0b-(t<u). Then we start with the left hand side as follows
L.H.S. = (t51)3((t<n|)pv) = (6y ® u')a((tqu)bv)

= 0y a(bo((taupr)) @ (bD((tqu)Dv))_lul((t<lu)l>v) =0;Qu,
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where v’ = w(tou), s = ((sar(tf,t)™1)-tE)<w™! and w = 7(b, tau)7(t,a) . Now we need
to simplify @ and 5. So first we calculate the following
(o> ((tau)pv)) = 7(b, t<u) ((b- (tau))bv) T (ba((tau)po)), (tau)w) ™
= 7(b, t<u) ((t - a)l>v)7'(b<1((t<1u)l>v)),tquv)—l,
but % is given by
U= (bl>((t<|u)l>v))_lu' ((tauw)pv)
= 7 (ba((tau)>v)), tauw) (¢ - a)pv) (¢, a) 7 (tvu) ((bau)ov)
= 7 (ba((t<u)>v) ), t<uv) ((t - a)DU)—lT(t, a)~ (touw),
and also 5 is given by
§=sa(be((tau)pv)) = ((sar(th,¢) ™) - t5) aqw™ (b ((tau)ov))
= ((sar(th,¢)71) - th)ar(t, a)7 (b, tau) ™ (b ((t<u)>v))
= ((sar(t",t)™") - tY)ar(t, a) ((t - a)D’U)T(bQ((tQU)D’U)),tQUU)_l :
On the other hand if we put £ = (¢<((n)>v)) = (t<(a>v)) and note that {((§, ®u)v) = a<w,
then we get
R.H.S. = (ta((n)p>v))s(nv) = (ta(abv))5((6s ® u)v)
= (t<1(al>v))5(55<.(aw) ® (abv)_luv) =0;Q1,
where @ = @((t<a(abv))>((a>v) " uv)), § = ((sa(avv)r(tL,2)71) - tF) <! and
W= T(((tq(abv))B(nZw)) , (tq(abv))d(abv)'luv)T((t<1(al>v)) , (a<1v))_1
= 7({(t5m3((tau)>v)) , tauv) 7 ((ta(a>v)), (aw)) ™
= 7(((t5n))<((tau)pv) , tauv) (T, (a<w)) ™
= 7(ba((t<u)pv) , tauv)7 (¢, (a<w))”
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To simplify % we need to calculate the following:

(ta(apv))o((apv) " 'uv) = ((td(abv))b(abv)_l) (tbuv) = (tb(abv))_l(tbuv),
so 4 and § can be rewritten as
@ = 7(ba((tau)pv) , tauv) 7 (1, (a<w))_1 (tb(abv))_l(tbuv)

§ = ((sa(avv)7(#,8)71) - i) ar (%, (a<w)) 7 (ba((t<u)ov) , taun) ™.

So to have & = 4 we need the following equation to be true:
(1, (aw)) 7 (t>(apv)) T = ((¢- a)pv) I r(ta) 7!
which can be rewritten as
(tl>(al>v))—1 = 7(ta((n)pv), (a<w))((¢- a)[>v)_1'r(t, a)™?

which is true according to the identities between (M, -) and 7. So we only need now to

show that § = §, which can be shown if we have the following equality true:

((saladv)r(E,8)71) - tF)ar (F, (aw)) = ((s<r(t5,1)7) - th)<ar (¢, a) ((t - a)pv),
which can be equivalently written as
((s<(avv)7(F5,8)71) - 75) = ((s<r(th,8)7Y) - t5)ar(t, @) (¢ - a)ov) T (t<((n)pv) , (a<w)) ™"
= ((sar(t5,8)71) - th)a(te(avv))
- ((sqr(tL,t)-l)q(t%(w(aw)))) : (tLq(tD(aDv)))
- (sd(abv)r(tLq(tD(aDv)) , t<1(al>v))_1) - (ta(to(avv)))
where t£0(t>(abv)) = 7(£2, t) (abv)7 (tra(t>(a>v)) , t<(a>v)) ™ was used in the last equal-

ity. To show that the above equality is true we only need to show that (t<1(al>v))L =
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tLa(t>(apv)). Put (a>v) = v’ then we want to show (tav') = tha(tov'), ie. (tha(tov’)) -

(tav') = e which is true as
tha(tov) - (k') = (- t)w = e’ =e.
Therefore, the L.H.S. = R.H.S. as required. []

Remark 3.2.6 If G # {e}, then the algebra action3: V ® A — V is not a morphism in
the category D as it does not preserve the G-grade. The G-grade of £3(0,@u) = 0, ¢)€u
is |€au] = ((E)pu) 7Y é|u = (s>bu)7H€|u. On the other hand the G-grade of &€ ® (6 ® u)
is 7({(£),a)|€|u where a = (6s ® u). To have a morphism in D we require that (sbu) =
7({€),a). But we know that s-a = s<u which implies that (s>u)(s - a) = (sdu)(s<wu) = su.
On the other hand we know that 7({£),a)(s - a) = sa. So the equality only holds if

a=u€eGNM={e}

Proposition 3.2.7 For (6s ® u), (6: ® v) € A, the multiplication map p: AQA — A

which 1s defined by (see 1.3.8)
/,1,((63 ® u) ® (6t ® ’U)) = 6t,s<1u 6s<1‘r(a,b) ® ’T(a, b)_luv )
is a morphism in D, wheret,s € M, u,v € G, a = (0, @ u) and b = (§; ® v).

Proof. To prove that the map u: A® A — A is a morphism in D we only need
to prove that it preserves the G-grade and the M-action, as we already know that it is a

morphism in C. For the grading we start as

|(6s Ru)® (6 ® U)| = 7({d; ®u), (6 @ v))}ds ® u| |6; @ v| = T(a,b) uv.
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On the other hand
|5t,s<u Osar(ap) ® T(a,b) T u v| =71(a,b) T uv,
as required. So u does preserve the G-grade. Next to show that u preserves the M-action
we start as follows
L.H.S. = (par(a,b))5((6:; @ u) ® (6 ®v)) = (p5(8; ® 1))z ® (paw)5(6; @ v),
where z = 7(pau, b)7({ (p<u)5(d; ® v)),pquv)—l . On the other hand

"

RHS - (p<JT(a, b))EJt,sdu (qur(a,b) ® T(a,, b)_luv) — 5t,s<lu 65111 ® u

where v = w" ((p<1¢(a,b))l>r(a, b)"luv), s = ((sqr(a,b)T((pqr(a, b))L, (pdT(a,b)))_l)-

(par(a, b))L) " w

¢ (pquv) . We want to get L.H.S. = R.H.S., and to do so we start with the left hand

Ht

= 7(c, pauv)7 (p<r(a,b), a'b)—l, and csatisfies (p<r(a,b))-(a-b) =

side and do the following calculation

(pau)5(6, @ v) = (6 ® V')

where v’ = w'((pau)pv), t = ((th((pdu)L, (pqu))—l)-(pqu)L> ', w = T7(g,pauv)T(pu, b)~!

=21 and g = (6, ® v') which satisfies (p<u) - b = g - (p<uv). Also
(0, ®u) = (6, ®u)

where v’ = w(pbu), s = ((s<r(p*,p)7?) - pF)w™, w = 7(h,pw)7(p,a)tand h =

(6, ®u') which satisfies p-a = h - (pau). Also we have
(55’ ® ul)az = 63'<’(h[>z) ® (h’bz)_lulz = 53" ® u” )
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with (§,» ® u”") = f = h<z. So we need to show that

_1 "t

5t,s<l'u. 58’” [ u“l = ((531/ X u”)(dtl ® ’Ul) = 6tl,sllqull 53"41’()’,9) X T(f,g) u v
= 0y au' 2 O a(hoz)r(hazng) © T(h<2, 9) Hho2) " 20

t,8 dqu

= 51’ ,s'du'z 5-‘3‘ ® 0.

Now we check the & function as follows 6y v, = 1 & ((sar(p%,p)7!) - p¥)<(ppu) =

(tar ((pew), (pw)) 77) - (paw)* & sar(p,p) 7 (pho(ppw)) = tar((pw)F, (pw)) ™ &
s<u = t, i.e. to have a non-zero answer wc must have s<u = t. This calculation was

done knowing that (p<u)’ = p*<(p>u). So we only need now to show that u" = i and

i

s" = 8. We start with v as follows
u” = (e, paun)r (p<r(a,8), 0 - ) " ((par(a, b) (e, b) Huv)
= 7(c, pauv) 7 (par(a,b),a - b) " (p>7(a, b)) (pouv)
= 7(c, pauv)7(p - a,b) "7 (p, a) " (pouv)
= 7(c,pauv)((p - a) - b)b~*(p- @)~ 7(p,a) " (pouv) .
On the other hand
@ = 7(h<z, g) " Hhoz) M 20
= 7(haz, g) 7} (hoz) " 'u (pau)ov)
= 7(haz, g) "} (hp2) " w(pou) ((p<u)pv)
= 7(hz, g) " (hoz) " 7 (h, pau) T (p, @)~ (pouv) .

So we need to show that

7(c,pauv) ((p - a) - b)b7H(p - a)™! = 7(haz, g) "} (h>2) 7 (h, pau) , (3.1)
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but

7(haz, g) " (hoz) " 7 (h, pau) = ((haz) - g) g~ (h<z) 7 (ho2) " h(p<w) (h - (p<u))

= ((h<z) - 9)g~ 2" (p<u)(p - @)~

So we need now to show that

(e, pawv)((p- a) - b)b™" = ((haz) - g)g~ 27 (pw), (32)
and to do so we do the following calculation

((haz) - g) - (pawv) = (h<r(pw, b)) - (g - (pauwv)) = (har(p<w, b)) - ((p<w) - b)
= (h-(pew)) -b=(p-a) - b=c- (pawv),
so ¢ = (h<z) - g. Now we recalculate the right hand side of (3.2) as follows

Yo7 27 (pw)

((he2) - g)g™ 2" (pau) = c(p<uv)(puv)”
— (¢, pawv) (¢ - (p<uw)) (p<uv) g™ 2™ (p<us)
= 7(c, pauwv) (e - (pauw)) (g - (peuw)) " 7(g, pauv) 1z} (pau)
= 7(¢,pau) (¢ (pauv)) ((pu) - b) "' r(pau, )~ (pu)

= 7(c, pawv) (c - (pauv))d~",

which is the same as the left hand side of (3.2) as required. The last thing is to show that

"

s = §,i.e. we want to show that

m—1

((s<rr(a, b)7((p<r(a, b))L, (pdT(a,b)))_l) - (par(a, b))L><1w = s'a(hpz)7(haz, g)

or, equivalently

(SQT(G, b)7((par(a, b))L, (p<17(a,b)))_1> - (par(a, b))L = §'a(h>z)7(haz, g)w”, (3-3)

74



but

s a(h>2)7(haz, g)w” = ((s<r(p®,p)7?) -pL)qw'l(hbz)T(hdz,g)wm : (3.4)

To simplify (3.4) we do the following calculations

-1

w(hoz)T(haz, g)w" = wl (ho2)(h<z)g((h<z) - g)~ w

1

= w ™ hzge ' 7(c, pawv) T (par(a,b),a - b) -

= w ™ hzg(pauv)(c - (pduv))_l'r(pq'r(a, b),a-b) -

1

= w ™ hr(p<u,b)(g - (pauv)) ((p<r(a,b)) - (a- b))—l’r(pm'(a, b),a-b)”

= w™hr (pay, b) ((pau) - b) (par(a, b)) - (a- b))_lr(pm'(a, b),a- b)—1

= w™ h(paw)b((par(a,b)) - (a- b))_lT(p«r(a, b),a-b)”

1

=71(p,a) (h . (pqu))b((p -a) - b))_l'r(p<17'(a, b),a-b)”

=7(p,a)(p-a)b((p-a)- b))_lT(qu(a’ b),a- b)_1

= 7(p,a)7(p- a, b)7(par(a,b),a-b) "

= p>7(a,b).
So if we substitute in (3.4) then in (3.3) we only need to show that
(sor(a, )7 ((pr(@,5)", (par(a,0))) ™) - (par(,8)” = ((sar(p", ) ™) -P¥)alpor(a, b)),
which is true since 7(a, b)7((p<r(a,b))", (par(a,))) ™" = 7(p*, p)* (p“>(p>7(a, b)) , and
(par(a,b))” = (pta(po7(a,b))). Therefore s” = 3 as required. O

It is now natural to ask if A is actually a braided Hopf algebra in C.

Proposition 3.2.8 There is an tdentity I for the multiplication u in the category D given
by

[:Zét®6.

teM
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Proof.  We already knew (from 1.3.8) that [ is a morphism : k£ — A in the category
C with grade (I) = e. So we only need to show that it preserves the M-action and the

G-grade. For some s,t € M, we check the M-action as
56 ®e) =6y ®u

where ' = w(spe) = we = w, w = 7(b, s<e)7(s, (§y ® e))~' = 7(b, s)7(s, e)~! and
t = (tar(s", )7 - s¥)<w™! where b satisfies s-e = b-(s<ae) & s=b-s & s-s =
(b-s) - s® & e=bar(s, sf) & ear(s,s®)™' =b & e =0b. Hence, w = e, which, by
then, implies that u’ = e. Thus ¢ = (tar(st, s)7! - sb)aw™! = ¢ = tar(st, s)71 - sL. If
we apply -s to both sides we get t - s = (tar(s”, s)71-s%) - s, which implies that ¢t -s = ¢,
which means that there is a 1 — 1 correspondence between t and ¢ which, by then, means

that there will be no repeating in the sum over ¢ . Therefore,

3>26t®e=26t1®e=l,

teM teM

which means that the M-action is preserved. Now note that |0; ® e| = |6y ® e] = ¢, i.e.

the morphism preserves the G-grade. 0O

Proposition 3.2.9 The multiplication u on A is braided commutative, i.e. for (6s ® u),
(6: ® v) € A the following equality is satisfied

(6s ®@u) (6 ®v) (6s ®u) (8 ®v)

/

figure 3.3
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Proof. Putting (6 ® u) = a and (d; ® v) = b, we start with the right hand side by

calculating the following
U ((6:s ®u) ® (6: ®v)) = (8 @ u)B(8: ® v) ® (Js ® u)d|6; ® v
= ab(6; ® v) ® (05 ® u)w
= (6 ® 9) ® (Gsaawv) ® (abv) "'uv)

where ¥ = w(abv), t = ((tQT(QL, a)™) -aL) aw™, w = 7(c,aw)7(a,b)L, c = (ab(6; Qv))

and satisfies a - b = ¢ - (apv). So the right hand side is given by

R.H.S = N(\I/(((Ss ® U) ® (5t by ’U))) = (5s<1(abv),t_<1'; 6f<17'(c,a.<1’u) ® T(C, aqv)_l ﬁ(abv)—luv

-1 -1
o qu(abv), ((th(aL,a)—l)ﬂ.L)q(aDv) 6((t<1'r(a,L,a,)“1) -aL)qf(a,b) @ T(a’ b) (CLD'I))(CLD'U) uv

= 0, (ertatr) ) O (srttar) ) arey © TG0

-1
68, ( (tQT(aL,a)—l) .aL) 6s<l‘r(a.,b) ® T(a’ b) uv
= Jsu,t 6S<T(a,b) b T(aa b)_l uv

= Osaut Osar(a) ® T(a,0)  uv.

On the other hand we have
LHS. = /1’((53 ® u) ® (5t ® U)) = 6s<1u,t 6s<l‘r(a,b) ® T(a, b)_l wo. O

Proposition 3.2.10 Let A be the algebra defined in 3.2.1, then for a = (d; @ u) € A,
the non-braided comultiplication A : A — A® A which is defined by A(a) = Ta(1) ® a(),

where (§ ® n)3a = X€3a ) @ N<ay), can be given by the following formula

Aa) = A6, ®u) = > 85, ® (5,0U) ® 6, ® u.

8,,85,€M and s, Sy =S$
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Proof. We know that

(€ @1)3A(ds @ ) = ds,(6)-(m (€ ® M)Iu = b5, g).m) EI((MPu) @ M.

On the other hand for ap)®agp) =) 531 ®u1®532 ®ug where s, s, € M and u1,uy € G,

we have

£ a1y @ Na) = Z 551,(5)521111 ® (552,(,7)7721u2 .

To have a non-zero answer we must have s, = (€), s, = (n) . Comparing with the first

equation, we obtain s, - s, = s, uz = u and s,>pu = u; and we get the following

a) ® ap) = Z 5s1 Ru & (532 R ug = Z 531 ® ($2l>u) ®(532 Qu. O

$,,8,€Mand s, -s,=s
Proposition 3.2.11 Let A be the algebra defined in 3.2.1 and let V and W be represen-
tations of A. Then for a = (6s @ u) € A, the braided coproduct A : A — A® A which is

defined by

figure 3.4

where § € V and n € W, can be given by the following formula, where I =3, 6, ®e :

Ala) =A(6s®@u) =(0;Qu)® .
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Proof. If we put A(a) = a; ® ay where a; = &, ® u; and ap = &, ® uy, then
E@ne@een) = (Eenir(a) @)’ ®au)sae
= ((a((mrw) ® (n3w)) ® a1) ® az
P (€a(mow) m((m)<w, (1)) ® ((nw) © 1)) ® az
R (ea((mpw) m((n)<w, (a1)) © (((n)aw)bar ® nw]ay])) © s
o8 ((ca({mpw) zz ® ({(n)aw)Ba;) @ NRw|ay|) ® ap
= ((&(mMpw) 22 @ 1) @) B,
where w = r({an), (a2))™, 2 = 7({maw, ),z = 7({at), (1)), = (nhew)pos and
n' = ndw|ai|. We first calculate (£3((n)>w) 2 z)3a; starting with calculating a; as follows
a, = ((n)w)sa; = (6, ®u)) =G ® i,
where @ = @(fbw), £ = ((tyar(F5,1)71) - )<w ™, @ = 7({ay), Tui)7(Z, (a1)) " =27 271,
t = (n)<w and t- {a1) = (a;) - (n'). So (£3((n)>w) z z)<a; can be calculated as
(£3((mpw) z z) da, = (&a((mpw) z2)3(6; ® )
= 07 (g)a((mpw) 2z EA(MPW) 2T
= 07, (ya((nypw) 22 EA((MPW) 2 TD(T>us)
= O(tyar(@,B-1)2L , (€)<((mpw) EI((MPW) (T>u1)
= O((tyar (@, 5)-1) L) 4, ((€)a((mpvw))-E EA((M)PW) (B>un)
= 0ty ((©)a((mpw))-(mw) EI((MPw) (((m)<w)ous)
= 0Oty , (&) (m)<w EA({M)PWU1)
We now calculate 7'3a, as follows
N Aag = N3wur (6, ® ug) = Oty , (my<wuy MRWULUz -
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On the other hand we know from proposition 3.2.10 that
1200y @ 0) = by (U and  E3(Se, ® (s5U)) = by, (g) EA(s20U)

so s = (£) and s = (1) and hence from both cases we get

to = Sodwuy and U = wujlsg, (3.5)

also we get

t1 = (81 - 82)w = s<w and Sobu = (N)>wu; Or U = W . (3.6)

Combining (3.5) and (3.6) gives that up = e. We know that ty<qus = te<e =ty = 3 - (as),

which implies that (as) = e which by then implies that w = e. Therefore

Alg) =A(6,@u) = Y (6,®1) ® (s ®e)

81°82=8
=06;@u)el. O
Definition 3.2.12 The map € : A — k is given by the action of A on the unit object

keC andis €(0s @ u) =0bs¢ , for (6sQu) €A, s€ M andu € G.

Proposition 3.2.13 The map ¢ : A — k is a morphism in C and an algebra map.

However it is not a morphism in D if A is considered in D according to 8.2.1.

Proof. This map is in the category C, i.e. it does preserve the M-grade and the

G-action which can be shown as
6((65 ® u)Zlv) = f(((ssd(abv) &® (abv)_luv)) = Os<(abv),e = Ys,eq(apv)—! = 65,6)
where v € G and a = (6, ® u). On the other hand

(6(53 ® u))<n) = (05,e)W = b5,
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which just means that € does preserve the G-action. Now if €(d;®u) # 0, then (6;®@u) = e,
which means that the map € preserves the M-grade. It is clear that it does not preserve
the G-grade as for all © € G we have €(d; ® u) = d5.. This map is multiplicative as for
(6s ®u) ® (6, ® V) = Ot,5au sar(ap) ® T(a,b)'uv, where a = (§; ® u) and b = (6, ® v) we

have €(6s ® u) €(6; ® v) = s 0te . On the other hand we also have
6t,s<1u 6(6547'(a,b) & T(a; b)—luv) = 5t,s<1u 5s<17'(a,b),e = (5t,s<1'u. 5s,e<17'(a,b)‘1 = Jt,sdu 55,5 = 5t,e ds,e .
Proposition 3.2.14 For (6s ® u), (6: ® v)€ A the following equality is satisfied:

(6s ®u)(6: ®v) Gs®u)  (6®v)

figure 3.5

Proof. We start with the right hand side following the diagram. Consider the following
Y (G0u)@@E.06)® (60v)® ([0a®e).
c,deM

Putting (s ® u) = a and (6 ® v) = b and applying the associator gives

> Eeurebe (G.eqe (o) e dse))

c,deEM

= Z(5s®u)®((5C®e)®((5t®v)®(5d®e))),

c,deM
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where (6. ® e) = e, (04 ® €) = e and T(e,b) = e. Now we apply id @ 7! to get

S (6eue (((& ®e) ® (0 @ v)ar(e,b)™) ® (64 ® e))

c,deM

(3.7)

c,deM

= Z(5S®U)®(((5c®€)®(6t®v))®(6d®e))’

where 7(e, b) = e. Now we calculate

V((6.®e)® (6 ®v)) =e5(6: Q) ® (6. ® €)v = (6; ® V) ® (Jeaw ® €) -

We now substitute in 3.7 to get

Z 0 ®u)® (((6t ® V) ® (deaw ® e)) ® (04 ® 6)) .

c,deM

Next we apply id @ ¢ to get

S 60w (((90) 6 (w8 (:00)).

c,deM

Applying ! gives

> (B @u)ar(be)™' ® (6 ® ) ® ((Jeaw @ €) ® (52 ® €))

c,deM

Y (60w ®[E:®) ® (fuw®e) @ (ds®¢)).

c,deM

Now applying the multiplication map gives

Z (6t,squ qur(a,b) ® T(a; b)_luv) ® (5d,c<w 5c<1v ® 6)

c,deM

Z (5t,s<m 6s<n'(a,b) ® 7(a, b)_luv) ® ((5d,c 0 ® 6)

c,deM

= Z (5t,s<1u 5s<17'(a,b) ® T(aa b)_luv) ® (60 ® 6)
cEM

= (5t,s<u Osar(ap) ® 7(a, b)_luv) ® Z (6c ® e)

ceM

- (5t,s<1u 5s<rr(a,,b) ® T(a, b)_luv) ®1.
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So the right hand side of the equality is given by

RHS = (Jt,squ dsar(ap) ® 7(a, b)_luv) Q1.
On the other hand the left hand side is given by
L.HS. = A(((ss Y ’LL) (6t ® 'U)) = A( dt,sdu 63<T(a,b) ® T(a’a b)_l’LL’U)

= (6@3% Osar(ab) ® T(a,b)‘luv) ®I. O
Remark 3.2.15 As the proposed counit € : A — k is not a morphism in D, the best
we can hope for is that A is a braided Hopf algebra in C. However we see that not all
the axioms are satisfied. If we apply this map to the coproduct defined in the previous

proposition we get the following
([d@e)A(bs®@u) = ([d®e) (@u)®I) = (6Qu)® ¢(I) = (1) ® 1 =4 ®u,
but on the other hand
(e®id) A(6;®u) = (e®id) (6, @u) ®I) = (S ®u) ® 1.
In general €(6s @ u) ® I # d; @u. This can be illustrated by the following diagrams:

(65 ® u) (6s ®u) (6s ® u) (6s ® u) (05 ® u)

figure 3.6

In [8] there is a definition of a left Hopf algebra. This is an ordinary bialgebra, with
a one sided antipode. In the case presented here, we do not get this far, as the counit is
already one sided. It remains to be seen if there is even a one-sided antipode for A.

83



3.3 The dual of the algebra A in C
Proposition 3.3.1 Define a basis 6, @ s of A* with evaluation map given by
ev((0u ® ) ® (6: ®V)) = 854 Ouw s

for s,t € M and u,v € G. Then the M-grade and the G-action on A* are defined as

follows: (6, ® s) = (6, ® u)L, and for any w € G
(6, ® 5)A({6, ® s)Fpw) = O ((su8) Row) ~tuw © SI((0u ® s)fow) .

Proof. Take the algebra A € C. For (0, @ u) € A, (6, ® s) € A*, then for (&; ®v) € A

the evaluation map is given by
ev((éu ® S) & (5t & U)) = 5s,t Ouw s

where s,t € M and u,v € G. The evaluation map will not be affected if for any w € G

we apply <w as follows
ev(((du ® $)3A({6; @ v)pw)) ® ((6: ® v)aw)) = 05,4 Oup -

Using the definition of the action of G on the elements of the algebra A, the last equation

can be rewritten as
ev(((éu ® 5)((6: ® v)l>w)) ® (th«gt@v)bw) ® ({6 ® v)bw)_lvw)) = 05,4 Oup -

If we take §; ® v = §; ® u then we get the following equation

(64 ® $)A((0s ® UPW) = G5, guppu)-tuw @ 5U({0s ® uYpw) . (3.8)
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As (6, ®@8) - (6, ®u) = e, s0 (6, ®s) = (§; @u)l or (6, ®u) = (6, ® s)®. Hence the
equation (3.8) can be rewritten as
(6. ® 8)3({6, ® s)ow) = O((5us) Fow) ~Luww ® S (0 ® s\fow). O
Proposition 3.3.2 There is a morphism T : A — A* in the category C defined by
T((Ss ® U) = 6u‘1‘r(b,bn) ® s<u,

where b = (05 ® u).

Proof. We have defined a linear map T : A — A*. If this map is to be a morphism in
the category it should preserve the grading and the action in C i.e. (T(6;®u)) = (6 @u)

and

(T(6s ® u))a(b>w) = T((8s ® u)(b >w)) . (3.9)
To prove this we start with

T((6, ® w)a(bPow)) = T(é ® (bo(bFow)) ™" u(bRDw)) .

sd(bb(babw))
If we put T(6; ® u) = 6, ® t for some v € G and t € M, then (3.3.1) implies
(T(6: ® )b ow) = (6, ® )AB W) = Gyrpy)14, ® ta(b W) .

Now we need to find ¢ and v. We know that (8, ® t) = (6, @ u) = b = (5, ® v)¥, so

b = (§; ® v), then we have
t-bt=tw and s-b=swu,
thus (¢ - b%) - bB% = (taw) - bR, or (t<r (bR, b8R)) - (b7 - bRR) = (taw) - b®* which implies

tar (b7, bRR) = (tav) - BRE. (3.10)
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Now as b - bf = ¢ and b - bR = ¢, then (b - b®) - bRE = bar (bR, bR . (% . bRE) implies
that %% = bar (bR, bRR) . Also we know that
(B b ) = br (b7, 67F) = (b7 (b7, b7F)) (bar (b7, 87F))
but on the other hand
B(bRBRR) = (BbR)BER = 7 (b, bR)HRR
so by the uniqueness of the factorization b7 (b7, b5 %) = 7(b,bf), hence (3.10) can be

rewritten as

tar (bR, b7R) = (tav) - (bar (b7, bREY)

which implies that

tav) - (bar (b7, bRR))><17(bR,bRR)‘1

= ((
(t<m ((bar (b7, bRR) o7 (b7, bRR)~ 1)) b
(taw(Bor(e®,67) ") - b

= (taur(b,b™)7) - b.

Let s = t<wr (b, b7)71, then u = 7(b,b%)v71, or v = u~17(b, b") and t = s<u. Therefore,
T(0s @ u) = Oy=170p7) ® 5. (3.11)
Now we want to show that (3.9) is satisfied. Start with the grade as
(8 ® w)a(bF>w)) = (6, ® u)a(bfow) = ba(bow) = ¢,
now to check the action staring with the right hand side of (3.9) as follows
T((0, ® W(b>w)) = T (Sratwprony ® ((6%w)) ™ u(t ow))
= O (pRow) " u=1 (b (bRow))r(c,cR) @ sau(bw)
= O(prow) =~ u-17(bpR)w @ sau(b®w),
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the last equality because
b (b7bw) = (b, b)wr (ba(bFow), (bF<aw)) ™ = 7(b, bR )wr(c, )"
Finally,

(T(6s ® u)) A" >w) = (By-17pp7) ® s)A(b W)

= 5(bR>w)‘1u—1T(b,ba)w ® SQU(bwa) ,

as required. [J

Proposition 3.3.3 Let the morphism T : A — A* be as defined in proposition (3.8.2).

Then there is an inverse morphism T~! : A* — A in the category C defined by
T7 (8, ® t) = Srapr(pory-1 @ T(b,6F) v,
for (6, ®t) € A*, where b= (6, @1).
Proof. From proposition (3.3.2) we know that
T(6s ® u) = by-17(p07) @ S,

where b = (0, ® u). Put T'(6; ® u) = 6, ® t, then also (§, ® t) = b as the morphism T

preserves the grade. Then also we can get
t=sau and v =u"t7(b,b"),
which imply that
u=T1(bb%)v7! and s =tau"! =tavr(b,bf)7.

Therefore
T, ®t) =0, Qu,
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with s and v as defined above. Note that it is automatic that if T is a morphism, with a

linear map inverse 7!, then 7! is also a morphism. (]

Proposition 3.3.4 Let A be the algebra in the category C, then for an element o =

(0, ® s) in A* the coproduct, or comultiplication, A on A* can be given by

A((gu ® S) = Z((SU ® 5) ® (6T(ab,a)v—1u(a)R—la.L—la’ ® SQUT(O’L’ a)—l),
veG
whereu € G, s€ M, a= (3, ®v) and a’ = ((() -a)qf(aL,a)_l)R.

Proof. From proposition (1.2.14), we know that

Ax A

A* A
figure 3.7

For a € A*, we follow the above figure from top to bottom and calculate the following:
Put coeva(l) = f®~v = B ®7 ( we suppress summations as usual ) which implies
(B) - {(y) = e and (#) - (y') = e. As all parts of the above diagram are morphisms in the

category and preserve the grads we should have (a) = (v) - (). We start with
a®coeva(l) =a® (8®7).
According to the diagram we include coeva (1) again to get
a® ((B®coeva(l)) @) =a® (B® (8 ©7)) ®7).
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After that we apply the associator inverse ®~! and then the multiplication to get
a® ((Bar((8), (N ®@B) @ 7) @) = a® (((Bar((8), (1) ™)8) ®7) 7).
Now applying the associator ® gives
a® ((Br((6), (V) ™8 (V). (M) @ (v © 7).

Applying the associator inverse ®~! again will give

(a@((B), (Y @) ®B) @ (v ®7) = (a3 ((B),(v) - (M) '@ B) ® (v ®)

(3.12)
= (azr((B), ()@ B) ® (v ®7)
where
B=((Br((8), () HB)ar((v), (), (3.13)
which implies that
(B) = (((BY<r ((B), (YD - (BN ((7), (). (3.14)

Now we want to show that (3) = (a)”, which can be proved as follows

=((8)-((8) - (¥ (M =((B)-e)- (n) = (B) - (m) =e.

So if we apply the evaluation map to (3.12), it can be rewritten as
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To make this equation simpler we need to do the following calculations
({ay ar((@)®, (@) - (@) - (@) = ({@)™* - (@)") - (@),

which implies that

Thus we can consider the following
(@) (@) (a) = (@) " 1((a)", (@) = ({@)">r((@)", (@)))(a),
which implies that
(@) ()" = 7((@)™", (@)") = (@ (@), (@),
Now substituting in (3.15) gives
Ag-(a) = a(Bar((a), (@)) (v ®7),

where

B=((Bar((8), (¥ )BT ), ().

From the definition of the coevaluation map we know

coeva(l) =y €ar((6)" () ®§

£€ basis of V

so we put 8 = £3r((E)F,(€))7! and v = £, and also in the same way we put § =

nar((n)",(n))! and 4" = 7. These imply that

(B) = (©<r((OF €)™ and (1) =) ="
(B)=(mar((m® )™ and ()= D) ="
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Now we substitute these in 3 and try to simplify it as follows

5= (ear((©" @) rlmar(m® m)™, m") " mar(m®, @) ™)ar (@ ©")
Pus 7 = (€37((), (&) r(mhar( ()", ()™, ") ™) (ar( ()", m))™), so

nar( )", () =

£3m((€)", () r((mhar((), (m)™, ) )™ ((md (), o)) e ()", () )
= (€am(©"©) T (mar(m )™, ")~ (e (@ @) ™) )

N

= (€ar(©" €)M

The last equivalence is because

r({mar(m", )™, ") = (mar(m*, m)™?) () =

((me (™, ) ™) ™ ™ )™ ()" = (e ()", ()
So

B = (rar((m)*, (n))3r((m*, () r((m)*,(©)")
= ((ear(@", ©) ™) n)ar(m" ) (" ©).

Now put £ = 6, ®v, a = (£) = (5, ®v), n =6, @v, a = (n) = (§y ® v')and
w = 7( ()", (€))~" then
£dw = (8 ® V)AW = Sraq(asw) ® (abw) vw.
Hence
(Sta(aw) ® (a>w) T 0w) 0y ® V') = 6y yavus Suatavuyr(oawa’ ) ® T(aw, @) 7 (apw) ~owy’.
Now put p = 7({(m)*, (n) )1 7((m)", (€)"), then we get
B=((ear(©"(€))n)ap =

(a<w) - a)op) “rlaw, @’ )" Havw) owy'p.

6t',t<1vw 6tq(a>w)T(a<w,a, )(((aqw)'a,)bp) ® ((
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If we put ¢ = 7({), (&)™), then we get

a(ﬁ&r((a), () R)) - ét”“ww @ (5t<1(al>w)'r(a<1w,a' )(((a<l’w)-al)l>p) ((((adw)-a’)Qp) Dq)
® ((((acw) - a)p)rq) ! (((a<w) - a')>p) “r(a<w,a )_l(abw)_lvwv'pq).
(3.16)

To make this simpler we do the following
(((a<w) - a')op) ((((a<w) - @' )<p)>q) = ((a<w) - a')>pq,

=1 -1, — =
and also we have pg = a ot aLaL(a) Ha) (o) = a tal (). If we put F =
(a>w)T(a<w,a’ ) (((a<w) - a')>pq), then F will be equal to the G-part of the following

unique factorization

1

(apw)(a<w)a pg = (adw)7(a<w, a’ )((a<w) - o' )pq
= (a>pw)7(a<w, a’ )(((a<1w) . a')[>pq) (((a<1w) . a')qpq),

but on the other hand we also have

-1 =1

(abw)(aaw)a'pg = awa'pg = aa *a* " d'd at(a)® = (a) .

So F = e, which means that equation (3.16) can be rewritten as
~_ R ¢ =1 L R
a(ﬁm’((a), (o) )) =0 tavw a((St Quuwva a {(a) )

If we put a =4, ® s the R.H.S. of the above equation becomes

Oy yavw ev(((Su ®s)® (6, ® vwv'a lal (a)R)) = 0y tayw 05,6 0

u,vwv'a’ "l al ()R

which implies that t = s, £ = sqvr(af,a)! and u = vr(al,a) Wa " ot (®F, or

v = 17( aL,a)v‘lu(a)R_laL_la/. We know that (o) = (§, ® ), or (a)® = (6, ® u), so
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we get the following:

s- (=5 (6,@u) =squ, t-a=t-(,@v)=tav and t-.a =t (6, QV)=tav.

To confirm our calculations we prove the last equation substituting by its values as follows

tav = sdu(a)R_laL—lal = (s (a)f)« (a)R_laL_lal = (sa({@)>2)) - ({a)az), (317)

-1 ;-1
where z = (a)® ot 'a’. But we know that

@)z = ((0)52)((@)"<2) = () (a)* ¥ = ¥ = 7(a" T, d) (@ - a).

So by the uniqueness of the factorization we get ((0)p2) = 7(aX™",a') and ((a)f«z) =
(aL_1 -a'), then substituting in (3.17) gives
tav = (sm'(aL_l,al)) @ ad)=(sat) a
= (s-ar(a’ a)?) - a = (savr(a*,0)™) - a' =t -a.

Finally, we calculate a which we do as the following:

(@ -a=@" ab)-a=(a"ar(a®, a))- (a’a) = a’“<r(al,a),

so o = ((a) - a)ar(a,a)7?, or a' = (((a) 'a)qT(aL;a)_l)R' Therefore,

A(Ju ® 5) = Z(Jv ® 8) ® (61-(0.1',0,)1)‘11;(a)R_laL_la/ ® S<1’U7’(a,L’ a)"‘l), [l

v

3.4 Expanding the collection of morphisms in C

Here we consider adding new morphisms to the category C, to make a new category C .
Consider the linear map ¢ : V — W. We call it a type A morphism if it satisfies the

following conditions:

(@(6)) = (&) and  @(§3u) = ¢(§)u,
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for £ € V and u € G ( these are just the usual morphism conditions in C ). It it is said

to be a type B morphism if it satisfies the following conditions:

() =()" and  ¢(&3u) = G(€)A((E)pu).

We will assume for this section, except for proposition 3.4.6, that s“* = s and st>(spu) =
u for s € M and u € G. Some more work could be done on the category C, which will
be mentioned in the last chapter as an idea for more research.

Type B morphisms obey a rather cdd order reversing tensor product rule, as we now

see.

Proposition 3.4.1 If¢:V — V and : W — W are type B morphisms, then the map

dRY:VOW — W QV which is defined by
(@R Y)(E®n) = (¥(n)3r(a,a) ® ¢(€))3r(a,b),
where £ €V, ne W, a={(£) and b = (n), is a type B morphism.

Proof. First we need to show that ((¢ R #)(€ ® 1)) = (€ ® n)* = (a - b)* which we do

as the following, taking into account that ¢ and v are type B morphisms:

((®(m3r(a®,a) ® ¢(€))3r(a, b)) = ((¥(n)3r(a*, a) ® $(¢)) ) (a, b)
= ((¢(m3ar(a®,a)) - (6(€)))<r(a,b)
= (((¥())<r(a”, a)) - ($(€)))<r(a,b)
= (((m*<r(a®,a)) - (€)F)ar(a,b)

= ((b*<r(a*,a)) - a*)<r(a,b).
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To show that this is equal to (a - b)X we dot it by (a - b) to get the identity. So we get
(((var(at, ) - a*)ar(@,)) - (a-b) = (((F<r(at,a)) -aF) -a) -b
= ((thar(a" a)r(at, @) - (aF - a)) -b
=t b=e.
Next we need to show that (¢ ®v) ((¢ ® n)3u) = ((¢R¥)(€ ®n))A((€ ® n)vu) . We start

with the left hand side as the following:

L.HS. = (¢ B) (£3({n)pu) ® ndu) = (¢ K ¢) (£3(bou) ® nlu)
= ((w(n))a(bpu) 7((a<(b>u)), ag(bpu)) ® ¢(€)a (ab(bbu)))ar(ad(bbu), bau) .
On the other hand

= (¥ (nau)3r ((aa(bou))*, a<(bou)) @ ¢(§Zl(bl>u)))21¢ (a<(bou), bu)

Y(n)3((m>u))3r ((aa(bou)), aa(bow)) ®¢(§)a((§)>(bt>u)))ar(a<1(bl>u),bqu)

RH.S. = ((6BU)E @M)€ ® o) = ((H03r(a,0) ®4(6))ar(0,5)) (€ @n)ow)
= (¥(n)3r(a*,a) ® ¢(€))3r(a,b) (({€) - (n))puw)
= (¥(n)zr(at,a) ® ¢(€))ar(a,b) ((a- b)>u)
= (Y(n)ar(at, a) ® (&) a(ax(bou)) T (a(bow), bau)

= ((¥)a7(a", a)(bou) ® B(€)3(aw (b)) ) 3 (as(tow), baw)

which is the same as the left hand side as 7(a’, a) (bou) = (bou) T(ala(a>(bbu)), a<(bou)) =
(bou) 7((a<(bpu))?, a<(bbu)) . Note that we have used al>(ap(bou)) = bou by an assump-

tion for this section. 0O

Proposition 3.4.2 The composition of two type B morphisms is a type A morphism.
Proof. Let ¢ : U — V and ¢ : V — W be two type B morphisms and for £ € U let
(€) = s. We first check the grade as the following: As ¢ is a type B morphism then
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(6(8)) = (6)L. So as ¢ is also a type B morphism then (p(¢(£))) = () = L = s

which is the same as type A morphism.
Now to check the G-action, we do the following: As ¢ and ¢ are type B morphisms

then we have the following:

for n € V. So their composition can be given as the following:

p(d(6u)) = p(e(€)A((E)pu)) = w(4(£))3((¢(&))((§)ou))
= 0(8()3((&) "> ((€)pu)) = 9((€))3 u,

which is also the same as type A morphism. [

It is obvious that the composition of a type A morphism and a type B morphism is a
type B morphism.

Now we should ask what the effect of a type B morphism is on the action of the algebra

A. The answer is given in the following proposition.

Proposition 3.4.3 If ¢ : V — W is a type B morphism, then

AV A \Y% A

] ©) O

(%) N —
figre 3.8

where the map M : A — A is defined by M (6s @ u) = d;o ® sdu.
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Proof. We start with the left hand side as the following: Let £ € V and (6; ® u) € A4,

then as £3(6s ® u) = 6, () EQu we get

L.HS. = ¢(§Z1(6S ® u)) = ¢(6s,(5) §Zm) = (53’(5)4)( &du) .

To have a non-zero answer we should have (§) = s. As ¢ is a type B morphism then

L.H.S. = 65,59(£)3((€)pu) = ¢(£)A(spu) .
Now we calculate the right hand side as the following:

R.H.S. = ¢(£)IM (0 ® u) = ¢p(£)A(d5 & spu)

= Osz (g(6)) P(E)A(PU) = 6,1 (12 B(€)A(spu) = (§)(spu). O
From [6], in the case where M is a subgroup of X, there is a x operation defined on
A by (6s ® u)* = 05 ® u™!. In our case we have a similar operation, P : A — A, given
as follows. We have not yet shown that this really is any sort of adjoint operation ( see

section 7.3).

Proposition 3.4.4 The map P: A — A which is defined by
P(ds ® u) = Usqur(al,a)-? ® T(a‘La (1) u’_l )
where a = (0s @ u), is a type B morphism.

Proof. First we check the grade, i.e. (P(d, ® u)) = aX. It is known that s - a = s<u.

Now let (P(ds ® u)) = b and 7(a’, a) = w, then

(squw™ewu™! = scuwtwu! = s = (squw™!) - b,
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which implies that
s-a=((squw™)-b) a= (squw'r(ba))-(b-a).

But s - a = s<u, which implies that b = a as required.
Now we check the G-action, i.e. P((6, ® u)dv) = P(8; ® u)3({ds ® u)>v). We start

with the left hand side as the following:

P((8s ® u)@v) = P (8sa(arn) ® (a>v) 'uv) (3.18)

= 6s<lu'u’r((a<m)L ,adv) 1 ® T((aqv)L ’ G,<IU) ,U_lu_l(abv) .

To simplify the last equation we need to do the following calculation: Note that a”.a = e,
so (a* - a)w = ew = e or (a’<(apv)) - (aw) = e, which means that (al<(abv)) =
(a<w)t. Thus 7((aw)®, adv)_1 = 7((ata(a>v)), a<1v)—1, which, from the identities be-
tween (M, ) and 7, implies that

v7((aw)t, aw) ™ = v7((ata(asv)), a<1v)~1 = 7(a”, a) 7' (a’>(apv)) .

So equation (3.18) can be rewritten as

P((8; ® )av) = bsaur(al ,a)-1(alo(asv)) @ (aLD(abv))_lr(aL , a)ut(abv) .
On the other hand if we put apv = 7, then the right hand side is given as the following:
P(6s® u)Zl(((Ss ® u)D’u) = P(6; ® u)a(abv) = P(6s ® u)dv
= (6SQUT(GL’G)_1 ® 7(a, a) u‘l)Zn‘)
= (squr(al @)~ 1)a(ator) ® (a">0) ' (a, a) u'D
= Gyur(at ) o) © (a550) (0, @) w1

-1 _
= Ogqur(ak,a)-1 (abo(avv)) ® (aLD(abv)) 7(a*, a) u ™ (a>v) ,

which is the same as the left hand side as required. O
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Proposition 3.4.5 For the algebra A the map P : A — A defined in 3.4.4 satisfies
P(P(6, ® u)ar(a,a")) =ida,
where (§s ® u) € A and a = (6; @ u).

Proof. First note that st = s implies si<r(s,s?) = s and st = sf. Now if we put

v = 7(a,al) then

P(6s ® W) = Sgqur(al a)-1(atow) @ (a">v) "'7(a, @) u™ 0.

But (alpv)™! = (aL1>T(a,a,L))-1 = 7(af<r(a,ab), a - a¥)7(a® - a,a) 7 r(al,a)7! =
7(at,a)™!, so
P(6; ® u)ar(a, o) = ds ® u™17(a,a”).
Applying P to this again gives
P(P(6,®u)zr(a,a")) = P(8seu ® u'7(a,a"))
= 5(3@)%_%(%&)7((anv)L‘aLW) -+ © 7((ak<w)E, alaw)7(a,at) u

= Osar(aal)r(all o)1 ® (e, a")7(a,a") " tu
= bsar(aatyr(@at)-1 ® T(a,a")7(a,a*) " u
=0, ®u. O
We can also consider the following map, which looks like the formula for the antipode
S(0s ® u) = O(sauy-1 ® (spu)™! given in [6], in the case where M is a subgroup of X.

Unfortunately, it is not a type A or a type B morphism. However the following result is

true even without our simplifying assumptions that s*2 = s and s‘>(spu) = u.
p
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Proposition 3.4.6 For the algebra A there is a map F : A — A defined by
F(és ® u) = 5(s<1u)L ® (SDU)_lT(S, SR) )
for (6s ® u) € A, satisfying F? =1id, .

Proof. First we need to do the following calculation: We know that su = (spu)(s<u),

SO

utsTh = (squ) " (spu) ! = 7((s<qu)t, (squ))_l(sdu)L(sbu)_l,

which can be rewritten as
T((squ), (squ))u~tr(st, s) 7t = (squ)E(spu) 7,
but (squ)X(spu) ™ = ((s<eu)i>(spu)™?) ((s<u)r<a(s>u)~t) which implies that

(squ)lo(spu) ™t = 7((s<qu), (squ))u=tr(sh,s)™ and  (s<au)Pa(spu)~t = s, (3.19)

Now we apply F' twice to d; ® u to get

F2(53 ®u) = 5( )L ® ((SQU)LD(SDU)—lr(S,sR)) _17-((54u)L, ((squ)L)R) .

(s<u)La(squ)—17(s,sR)
Using (3.19) we get

F*(6,@u) =94 )L ® (7((s<u)*, squ)u~tr(s*, )7 (st (s, sR)))_lT((sdu)L, s<u)

(qu'r(s,sR)

= 5( L R))L ® (SLDT(S,SR))_lT(SL,S)u
sLar(s,s

=9 t®u,
)

(star(s,sR)
as (stor(s, sR))_1 = 7(skar(s,s®), s sB) (sl - 5, %) 1r(st, )71 = 7(s*,s)7!. Now we
know that

(star(s,s)) - (s %) = star(s, s7),
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but on the other hand
(shar(s,s™)) - (s- %) = (s¥ - 5) - s =P
Thus s® = sFar(s, s™), or equivalently s = (st<r(s, sR))L. Therefore,

F?(6,@u)=6,@u. O




Chapter 4

Representations

We begin the chapter by describing the indecomposable objects in C, in a similar manner
to that used in [6]. A detailed example is given using the group Dg. Then we show how to
find the dual objects in the category, and again illustrate this with the example. Next we
explicitly evaluate in D the standard diagram for trace in a ribbon category [19]. Then
we define the character of an object in D as an element of the dual of the braided Hopf
algebra D. This element is shown to be right adjoint invariant. Additionally, we show
that the character is multiplicative for the tensor product of objects. A formula is found
for the character in D in terms of characters of group representations. Finally we use
integrals to construct abstract projection operators to show that general objects in D can
be split into a sum of simple objects. This chapter, with the exception of the last section,
has already been sent for publication as a part of a paper by myself and my supervisor

E. J. Beggs [2].
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4.1 Indecomposable objects in C

The objects of C are the right representations of the algebra A described in [4]. We now
look at the indecomposable objects in C, or the irreducible representations of A, in a

manner similar to that used in [6].

Theorem 4.1.1  The indecomposable objects in C are of the form

V=PV

se0

where O s an orbit in M under the G action q, and each V, is an irreducible right
representation of the stabilizer of s, stab(s). FEwvery object T in C can be written as a

direct sum of indecomposable objects in C.

Proof.  For an object T in C we can use the M-grading to write

T=PT., (4.1)

seM

but as M is a disjoint union of orbits Os = {s<u:u € G } for s € M, T can be rewritten

as a disjoint sum over orbits,

T=P7To, (4.2)
(@)

where

To=PT.. (4.3)

seO

Now we will define the stabilizer of s € O, which is a subgroup of G, as
stab(s) = {u € G : squ = s}.

As (ndu) = (n)<u for all n € T, Ty is a representation of the group stab(s). Now fix a
base point t € O. Because stab(t) is a finite group, T; is a direct sum of irreducible group
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representations W; for i = 1,..,m, i.e.,

7, - W (4.0
=1

Suppose that O = {t,1s,....,t,} where t; = ¢, and take u; € G so that t; = t<u;. Define

U; = éWiauj cpr.. (4.5)
J=1

S€0

We claim that each U; is an indecomposable object in C. For any v € G and é<ux € W,;<uy,
(§Z1uk)2w = (§a(ukvuj"1))21u,-,

where u,vu;~! € stab(t) for some u; € G. This shows that U; is a representation of G.
By the definition of U;, any subrepresentation of U; which contains W; must be all of U;.

Thus U; is an indecomposable object in C, and
To=@U;. O (4.6)
i=1

Theorem 4.1.2 {Schur’s lemma} LetV and W be two indecomposable objects in C,

and let oo :' V — W be a morphism. Then a is zero or a scalar multiple of the identity.

Proof. V and W are associated to orbits O and O’ so that V = @, ., Vs and W =
D.cor Ws. As morphisms preserve grade, if a # 0, then O = O'. Now if we take s € O,
we find that a : V; — W; is a map of irreducible representations of stab(s), so by
Schur’s lemma for groups, any non-zero map is a scalar multiple of the identity, and we
have V; = W, as representations of stab(s). Now we need to check that the multiple of
the identity is the same for each s € O. Suppose a is a multiplication by A on V,. Given

t € O, there is a u € G so that tqu = s. Then for n € V;,

a(n) = a(nu)u™ = Anu)u" =i O
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Lemma 4.1.3 Let V be an indecomposable object in C associated to the orbit O. Choose
s,t € O and u € G so that squ = t. Then V, and V; are irreducible representations of

stab(s) and stab(t) respectively, and the group characters obey x,, (v) = x,, (uvu™).

Proof. Note that <u is an invertible map from V; to V;. Then we have the commuting

diagram Juvu~!
& VoV,

Vt______i‘i______,vt

which implies that trace(Quvu=! : V, — V;) = trace(v : V; — ;). a

4.2 An example of indecomposable objects

We give an example of indecomposable objects in the categories discussed in the last
section. As we will later want to have a category with braiding, we use the double
construction in [4]. We also use lemma 4.1.3 to list the group characters [9] for every
point in the orbit in terms of the given base points.

Take X to be the dihedral group Dg = (a,b: a® = b? = ¢, ab = ba®), whose elements
we list as {e, a,a?, a3, a%,a®, b, ba,ba?,ba3, ba*, ba’}, and G to be the non-abelian normal
subgroup of order 6 generated by a? and b, i.e. G = {e,a?, a? b, ba? ba'}. We choose
M = {e,a}. The center of Dg is the subgroup {e,a®}, and it has the following conjugacy
classes: {e}, {a%}, {a?,a*}, {a,a}, {b,ba? ba'} and {ba,ba?, ba’}.

The category D consists of right representations of the group X = Dg which are graded

by Y = Dg (as a set), using the actions 4: Y x X — Y and 5: Y x X — X which are
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defined as follows:

~ _ - _ ’ =1
ydr =z 'yzr, and vtbzr =vlzv =txt

for z€ X,y€eY,v,v € Gand t,t € M where vtdz =v't.

Now let V' be an indecomposable object in D. We get the following cases:
Case (1): Take the orbit {e} with base point e, whose stabilizer is the whole of Dg. There
are six possible irreducible group representations of the stabilizer, with their characters

given by table(1) [28]:

irreps |{e}[{a®} {b, ba?, ba*}|{ba, ba?, ba®}|{a?, a*}|{a,a®}
1, |2, 1] 1 1 1 1 1
1o [20]1 |-1 -1 1 1 -1
13 |25 1 |-1 1 -1 1 -1
1y (241 ] 1 -1 -1 1 1
15 {25 ] 2 |-2 0 0 -1 1
T 126 | 2 | 2 0 0 S S
table (1)

Case (2): Take the orbit {a®} with base point a®, whose stabilizer is the whole of Ds.
There are six possible irreducible representations {2, 25, 23, 24, 25, 26}, with characters
given by table(1).

Case (3): Take the orbit {a?, a?} with base point a2, whose stabilizer is {e, a, a?, a®, a4, a®}.
There are six irreducible representations {3g, 31, 32, 33, 34, 35}, with characters given by

table(2), where w = ¢"™/3. Applying lemma 4.1.3 gives x,, , (W) =x, , (bvb).

irreps e a a? a® a’ a’
3 (4| 1 1 1 1 1 1

31 {4 1 wl w? w3 wt w®
32 42 1 (4)2 w4 1 w2 w4
33 43 1 w3 1 w3 1 w3
3y |44 1 w? w? 1 w? w?
3 |45 1 w® w? w3 w? Wl

table (2)
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Case (4): Take the orbit {a,a’} with base point a, whose stabilizer is {e, a, a?, a3, a*, a°}.
There are six irreducible representations {4o, 41, 42, 43, 44, 45 } with characters given in
table(2). Applying lemma 4.1.3 gives Xy, (v) = xy, (ba*vba?).

Case (5): Take the orbit {b, ba?, ba*} with base point b, whose stabilizer is {e, a3, b, ba’}.
There are four irreducible representations with characters given by table(3). Applying

lemma 4.1.3 gives X, , (v) = X,, (a*va?) and Xy, (V) =Xy, (a%va?).

e al b bal
5.0 1 1 1 1
5, | 1 1 B
5.1 1 | -1 1 | 1
5__ 1 -1 -1 1
table (3)

Case (6): Take the orbit {ba, ba3, ba®} with base point ba, whose stabilizer is {e, a®, ba, ba'}.

There are four irreducible representations with character given by table(4). Applying

4

lemma 4.1.3 gives x,,  (v) =X, (a va?) and Xv, s (V) =Xy, (a®va?).

e al ba ba*
62| 1 1 1 1
6., 1 | -1 1T | 1
6, | 1 1 T | -1
6__ 1 -1 -1 1
table (4)

4.3 Duals of indecomposable objects in C

Given an irreducible object V' with associated orbit O in C, how do we find its dual V*?
The dual would be described as in section 4.1, by an orbit, a base point in the orbit
and a right group representation of the stabilizer of the base point. Using the formula
(s¥ - s)au = (sta(spu)) - (squ) = e, we see that the left inverse of a point in the orbit
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containing s is in the orbit containing s”. By using the evaluation map from V* ® V to
the field we can take (V*),. = (V;)* as vector spaces. We use < as the action of stab(s)
on (V,)*, ie. (adz)(€3z) = a(é) for a € (V;)* and £ € V,. The action < of stab(s”) on

(V*),e is given by ad(s>z) = adz for z € stab(s). In terms of group characters this gives

X, (s2) = X, (2), 2 € stab(s) .

If we take OF = {s* : s € O} to have base point p, and choose u € G so that p<u = s&,

then using lemma 4.1.3 gives
Xvey,, (822) = X, (2) = X(V,)p(u(sw)u'l), z € stab(s) . (4.7)

This formula allows us to find the character of V* at its base point p as a representation

of stab(p) in terms of the character of the dual of V; as a representation of stab(s).
Lemma 4.3.1 In C we can regard the dual (V @ W)* as W* @ V* with the evaluation

(@®B)(E®@n) = (ar((B), (€) - (m))(n) (Bar((€), (m)™")(€)-

Given a basis {€} of V and a basis {n} of W, the dual basis {@} of W*® V* can be

written in terms of the dual basis of V* and W* as
Eon = 43r((&) <r((€), (), (€) - ()™ ® €ar((€), (n) .
Proof. Applying the associator to (a ® 8) ® (£ ® n) gives
adr((B),(6) - (m) ® (B@ (E®m) ,
and then applying the inverse associator gives

oar((B), (€) - () ® ((B3r((©), ()" @ €) @n) .
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Applying the evaluation map first to 33 ((£), (n)) "1 ®¢&, then to a7 ((8), (£)-(n))®n gives
the first equation. For the evaluation to be non-zero, we need ((8)<r({(£), (n))™!)-(€) =e

which implies (8)<r((€), (7))~ = (£), or equivalently (8) = (€)“ar((€), (n)). This gives

the second equation. [

Example 4.3.2 Using (4.7) we calculate the duals of the objects given in the last section.
Case (1): The orbit {e} has left inverse {e}, so xw+). = Xxw.)»- By a calculation
with group characters, all the listed irreducible representations of stab(e) are self-dual, so
1*=1, forre{l,...,6}.

Case (2): The orbit {a®} has left inverse {a®}, s0 x(v+) 5 = X(v,3)»- As in the last case
the group representations are self-dual, so 2% = 2, forr € {1,...,6}.

Case (3): The left inverse of the base point a? is a*, which is still in the orbit. As group
representations, the dual of 3, is 3. (mod 6). Applying lemma 4.1.3 to move the base
point, we see that the dual of 3, in the category is 3.

Case (4): The left inverse of the base point a is a®, which is still in the orbit. As in the
last case, the dual of 4, in the category is 4.

Case (5): The left inverse of the base point is itself, and as group representations, all
case 5 irreducible representations are self dual. We deduce that in the category the objects
are self dual.

Case (6): Self dual, as in case (5).
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4.4 'Traces in the category D

Definition 4.4.1 [19] The trace of a morphism T : V. — V for any object V in D is

defined by

figure 4.1

Theorem 4.4.2  If we evaluate the diagram of definition 4.4.1 in D, we find
trace(T) = Z é(T({))
&€ basis of V
Proof. Begin with
coevy(1) = D &ar(eln NN @ = D €O ©) @,
£€ basis of V £€ basis of V
and applying 7' ® id to this gives
Y. TEar(@nE) T eé= Y T(E)Ar(On )T el
£€ basis of V £€ basis of V
Next apply the braiding map to the last equation to get

Yoo w(T(E)ar(© ) TTel) = Y £3(E) )T @ £3l€] (4.8)

&€ basis of V £€ basis of V

where ¢ =T(£)3r({&)%, (€))7, s0
(€) =(T(&)AT({E), (€)™Y =(T(&)ar((&)", (€)™ )
= (T(&))ar({6)", (€)™ = (&) ar((&)", (&)™
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To calculate | €| we start with

€L = 1€1" = (leI7 €))" = el ()", €)™ @),
which implies that |€] = 7( (€)X, (€))|€|~*. Then
£a((€)<l€])™ =a({&)ar((©" @) ({5 @) 1E™)
=£a((&)<le™) ™
€ alél = (TOA7(()" () ™) A" (NIEI™) = T(€) alel ™,

which gives

Yo )T @€alé = D &a(E)lE™) T @ T(9)3le ™ (4.10)

£€ basis of V £€ basis of V

Next

(T(€)ale)™)al|T(e)ale™ |~
(T(€)alel™)a(IT(e) I1ale™) ™
T(€)alel™ (lelale)™ (4.11)

0 (T()lel™)

)alel™ (lel el ) e )™
= T(&)AlEI 11O~ = T(€)a) ™,

and finally we need to calculate

eval (§3((&)<l€™) T ® T(6)2(€)™) = (§a((€)<lel™) ™) (T(©)x(e)™) . (412)
We know, from the definition of the action on V*, that
(&a(IT(©)152) ) (T(©)32) = E(T(€)- (413)
If we put & = (€)1, we want to show that | T(€)[[5z = ((€)<l¢[™") ™, so

I€]1%e = [€17H€)(E) " = (€)™ = (EIEIT)(E)<lE|™) = 't
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which implies that ¢ = (£)<|¢|™!, and hence

r—1

IT(€)|Bz = ||€lIbz = |€]7HE)BE) ™ = (€)'t
O (4.14)

= (ENO) T (&)<lglT) ™ = ((E)<leIT)
4.5 Characters in the category D

The braided Hopf algebra D acts on the objects of D. We define characters for these
actions, and show that they have similar properties to the characters given by represen-

tations of a group.

Definition 4.5.1 [19] The right adjoint action in D of the algebra D on itself is defined

by D D

figure 4.2

Proposition 4.5.2 [19] The right adjoint action given in 4.5.1 really is a right action,

i.€e.

figure 4.3
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Definition 4.5.3 The character xv of an object V in D is defined by
D

figure 4.4

To prove some properties of the character we will find it convenient to use the following

result:

Lemma 4.5.4 For an object V' in D we have

v VvV D vV D

figure 4.5
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Proposition 4.5.5 The character is right adjoint invariant, i.e. for an object V' in D

é;éi

figure 4.6
Proof.
S (S)
pd
[
LHS. = S _ [ ]
G G
e
d L
[
@
= [ = é
@ L J
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Proposition 4.5.6 The character of a tensor product of representations is the product

of the characters, i.e. for two objects V and W in D

D D
6
figure 4.7

Proof.

coev(V)

coev(W)

/

/
L
LHS. = =
()

coev(V)

/ /

//4 &/u
&S 5
:
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coev(W)
/
coev(V)
I 4 (

] - —
G

coev(V)

coev(W)

= RH.S. O

Theorem 4.5.7 In terms of the standard basis of D, we have the following formula for

the character;

Xy (6, ® z) = > E(£a(e) z(€)),

€€ basis of V withy=(€)|¢|~*

for zy = yz, otherwise x,, (0, ® ) = 0.

Proof. Set a = 0, ® z. To have x,(a) # 0 we must have ||a|] = e, ie. y = ydz
which implies that  and y commute. Assuming this, we continue with the diagrammatic

definition of the character, starting with

Y et e f)ea= Y (st @) e f)ea.

£€ basis of V §€ basis of V
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Next we calculate

T (ar((OF (€))7 eé) =Ea(€) <) ® £3]¢] (4.15)

where ¢ = £ar((6)", (€))7, so

(€)= (€ar((©)F, (€)™ = (ar((©)"(©)™) = ©ar(©" €. 416)
From a previous calculation we know that | €| = 7( (€Y, (€))]€]7, so

EA((EYal€)™ = Ea((&)ar(() ) () @) 1el™) ™
=éa((e)yalg™)™
£ alé] = (€ar((6) (&)™) (r((©F (©)) IeI™) = €alg™,

which gives the next stage in the evaluation of the diagram:

S r(@ar(©h©) " ®f) ®a
£€ basis of V (417)

= ¥ (B@eda) e el ) ea

£€ basis of V

Now we apply the associator to the last equation to get

>, ¢ ( (Ga(erale ™ @ galel™) @a)

£€ basis of V
= > LTI EIE I llalh) © (63lEIT ®@a)
€€ basis of V
= > £A(O <l T((€AIT ), e) ® (€3I @a)
£€ basis of V
= > L3(©alE)T @ (€3l e (6, 1))
£€ basis of V

as 7((£)€|71), e) = e. Now apply the action < to £2[¢|™! ® (6, ® z) to get

(€31E17)a(6y ® 7) = by eate-y (§31E177 )3T =6y jepapg €317z, (4.18)
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and to get a non-zero answer we must have

y=ll€alel™ = €] €)alel™ = lel €1 (&) 1€ = (e) eI (4.19)

Thus the character of V' is given by

X, (6, ® ) = > eval (€a((€) <l€] ™)™ @67 (€3l ).

£€ basis of V withy=(¢)|¢]~?

Next
67 (¢alel ) = (¢ale™z) A €alel 2|
= (ealela)a(l Nzl =)
= (€3¢ z) & (a7 el e e) el =)
= £alg M zaT (O T = €3 ()
Now we need to calculate eval( £3((€)<|€]™!)~! ® £a(€)~'xz). Start with ||£[|3(¢) 'z =

(©))€]" 4z = (€)[€]™, as we only have nonzero summands for y = (£)|¢|~!. Then
eval(£2((€)<l€]™Y) ! ® £4() 1)
— eval((£a((€)ale]™) ™! ® £a(E) 1e) A(8))
= eval (£3((E)<IEI™) (&) 1€]7'5(6)) ® £3(¢) 1 (g)) -

To find (£)[£]7'5(€), first find (£)[£]713(¢) = [¢]71(€), so

(E)EITIB(6) = ((E)mlEI™)((E)IEI™)E(E) = (()<lel™)(ENE) ™ = (€)<leI™ . O

Lemma 4.5.8 Let V' be an object in D. For 6, ® x € D the character of V' is given by

the following formula, where y = su™! with s € M and u € G:

Xy, (6, ® ) = Z é(g&s“lxs)zxvu_ls(s_lxs)

£€ basis of V1,

121



where zy = yx, otherwise x, (6, ® ) = 0. Here x, _, is the group representation

character of the representation V-1, of the group stab(u™'s).
Proof. From theorem 4.5.7, we know that

Xy (6 ® ) = > £(£3(O) 2 (9)),

£€ basis of V withy=(¢)]¢]|~!

for with zy = yz. Set s = (£) and u = ¢, so y = su™!. We note that s7'zs is in

stab(u~!s), because

1

1 1,.-1 1 1 1 lxsu—ls:u— s.

utsdsTlzs = sl lsuT s ies = s

It just remains to note that ||£[| = |£]7}(¢) = uv™ls. O

4.6 Projections on representations in D using integrals

Before going further, we recall some concepts and results from ordinary group repre-
sentations to make things more comprehensible. We use [23] as a reference for group
representations.

Let V be a vector space, and let W and W, be two subspaces of V. Then for the
direct sum V = W W,, W, is called a complement of W in V. The map p which sends
each z € V to its component w € W is called the projection of V onto W associated
with the decomposition V =W @& W,,. The image of pis W, and p(z) = z forall z € W.
Conversely, if p is a linear map of V into itself satisfying the above two properties, then

we can show that V is the direct sum of W and the kernel W, of p.
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Theorem 4.6.1 [23] Let p be a linear representation of G in V and let W be a vector
subspace of V' stable under G. Then there ezists a complement W, of W in V which is

stable under G.

Proof. Let W, be an arbitrary complement of W in V', and let p be the corresponding
projection of V onto W. We know that from the definition of the average p, of the

conjugates of p by the elements of G:

1 _
po== oo
teG

where 7 is the order of G. Since p maps V into W and p; preserves W we sce that p,

maps V into W. We have p;™}(z) € W, If z € W hence
p-p Nz)=p " z), pop-pi()=z, and p(z)==c.

Thus p, is a projection of V onto W, corresponding to some complement W, of W.
Moreover, we have

LD, =D, Pt for alls € G.

And if we compute p, - p, - ps~*, we find:

1 oo 1 _
Ps Py P == P pip o pT ==Y puppa =0,
n n
teG teG

Now for z € W, and s € G, we have p,(z) = 0, hence
P, - ps(x) = ps - p,(z) = 0,

that is (ps(z)) € W, which shows that W, is stable under G. O
We return now to the right representation of the Hopf algebra D in the braided
category D supposing that A € D is a right integral, i.e.
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Lemma 4.6.2

i

D figure4.8 D

&( .
figure 4.9

Proof. Using Lemma 2.5.4:

L.H.S.

/
/

= = =R H.S.

Definition 4.6.3 For the right representations V and U of D, and a linear map (not

necessarly a morphism) t:V — U, we definet, : V — U by

124



figure 4.10

Proposition 4.6.4 The map t, is a morphism in the category D, i.e.

vV D vV D
0 ]
—/ ®

8] U
figure 4.11

Proof.

L.HS. = = <S> =

U 125 U

D

/

—




vV D
= = R.H.S.
U

Proposition 4.6.5 Suppose €(A) = 1. Let V be a right representation of D, and W C
V' be a subrepresentation. Then there is a complement W, of W which is also a right

representation of D.
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Proof. Take any projection p : V — V with image W. By 4.6.3 we also get a
morphism p, : V — V. Then the proof is given as follows:

a) Show that p |, is the identity.
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b) Show that the image of p, : V' — V is contained in W.

A% A%

As p(V) € W, the elements in the diagram at position * is in W. But as W is a
subrepresentation of V', the output at *x is also in W.

Combining a) and b) shows that p, is a projection.

c) Show that W, =ker p, is a subrepresentation.

i.e. W, is a right representation of D.
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Proposition 4.6.6 Suppose €(A) = 1. Let V and W be two right irreducible representa-

tions of D. For a linear map t : V — W, by Schur’s Lemma we have t, = 0 if V is not

trace(t)

isomorphic to W, and if V =W thent, = cidy . The value of ¢ is given by c= T -

g

5

Proof.

@D\
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= trace(t) .

trace(t) e(A)
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Chapter 5

D as a modular category

In this chapter we show that the category D of the representations of the non-trivially
associated algebra D has a modular structure in the same way that the category of
representations of the double of a group has a modular structure. This chapter has
already been sent for publication as a part of a paper by myself and my supervisor E. J.
Beggs [2].

We begin the chapter by giving the definition of modular categories and some other
important definitions and results. The ribbon maps are calculated for the indecomposable
objects in our example category of section 4.2. The last ingredient needed for a modular
category is the trace of the double braiding, and this is calculated in D in terms of group
characters. Then the matrices S, 7' and C implementing the modular representation are

calculated explicitly for our example.
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5.1 General theory of modular categories

Let M be a semisimple ribbon category. For objects V and W in M define Syw € 1 by

coev(V) coev(W)
/YE
Syw = yd
@) @)

figure 5.1

There are standard results [3, 29]:
Svw = Swv = Syew+ = Swev-, Svy =dim(V) .

Here dim(V') is the trace in M of the identity map on V, which can be illustrated by the

following diagram:
coev(V)

dim(V) =

figure 5.2

Definition 5.1.1 [8] We call an object U in an abelian category M simple if, for any V
in M, any injection V — U 1is either 0 or an isomorphism.
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Definition 5.1.2 [29] A semisimple category is an abelian category whose objects split

as a direct sums of simple objects.

Definition 5.1.3 [3/ A modular category is a semisimple ribbon category M satisfying
the following properties:

1- There are only a finite number of isomorphism classes of simple objects in M.

2- Schur’s lemma holds, i.e. the morphisms between simple objects are zero unless they
are isomorphic, in which case the morphisms are a multiple of the identity.

8- The matriz Syw with indices in isomorphism classes of simple objects is invertible.

Remark 5.1.4 If M is symmetric (i.e. ¥ = U1 ) then overcrossing and undercrossing

can be interchanged. Hence Syw = dim(V)dim(W). Therefore M is not modular [3].

Definition 5.1.5 [8] For a simple object V, the ribbon map on V is a multiple of the
identity, and we use ©y for the scalar multiple. The numbers P* are defined as the

following sums over simple isomorphism classes:
P* =3 "0y*(dim(V))?,
%
and the matrices T and C are defined using the Kronecker delta function by
Tyw =ovwOv , Cyw =odvw-,

where the indices V and W are representatives of the isomorphism classes of simple ob-

Jects.

Theorem 5.1.6 [3/ In a modular category, if we define the matriz S by
S
VP+P-"’
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then we have the following matrix equations:
P+
(ST)? = FSQ, S*=C, CT=TC, C*=1.
5.2 Calculating the ribbon map - an example

The ribbon map 6y : V — V', for a simple object V, must be a multiple of the identity

by Schur’s Lemma. Here we calculate the multiple, ©y, for the example of section 4.2.

Example 5.2.1 First we calculate the value of the ribborn map on the indecomposable
objects. For an irreducible representation V', we have 6y : V — V defined by Oy (€) =
€ Q|€|l foré € V. At the base point s € O, we have Oy (§) = £ s foré € V and 0 :
Vs — Vi is a multiple, ©y, of the identity or, more explicitly, trace (8 : V, — V;) =

Oy dimc (V5), ie., __ group character (s)

O = fme (V) (51

And then, for the different cases we will get the following table :

irreps| Oy |irreps Oy
11 1 34 w2
12 1 35 w4
1s 1 4, 1
14 1 41 wl
15 1 42 w2
16 1 45 -1
21 1 44 w4
22 -1 45 w5
% | -1 5r| 1
% 1 5._| -1
% 1 3
26 1 S__ -1
3 1 60| 1
31 w2 6_+ 1
32 UJ4 6+_ -1
33 1 6__ -1




5.3 The double braiding

We now give some results which allow us to calculate the matrix SinD.

coev(V)

Lemma 5.3.1 coev(V*)
m % Where g}

Proof.
figure 5.3

R H. S= _ gj _ <—\/j
AN AN
V* V**

Lemma 5.3.2
vV %
14 V* /
J ;E figure 5.4

where u= and Gyt = @
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Proof.

LHS. =

G

@

Lemma 5.3.3 For V,W indecomposable objects in D, trace(Vy-w o Uyy+) = S’VW.

coev(W) coev(W)

Proof.

coev(V™) coev(V*)

X
LHS. = < -
() &
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Lemma 5.3.4  For two objects V and W in D,

trace(Uwegy o Uyew) = Z A(n3ln| =€) élnl) £(€lnl¢my™)

E@nE basis of VW and
€]~ (€) commutes with |n|(n)~*

Proof. From theorem 4.4.2 , we know that

trace(\IlW®v ) \IIV®W) = Z (@) (\112(5 ® n)) . (5.2)
(¢®n)€ basis of VW

From the definition of the ribbon map, we know that ¥ (¥(£ ® 7))4ll€ ® 7]| = £3)¢]| ®
||, so
V(V(E®@n)) = (€3Il ® nallnll)2lle ® nll ™
= (EI€171(&) ® ndlnl~H{m)a(m) 7€) €] In]
[nallnll]|s(m) (€)Ml Inl) @ ndlnl = {m)m) =€) €] In]

= (£3€171EN)3(
= &E17HE) (Inlls(m) =€) Elnl) © naln| =€)~ el In]-

Put ¥(¥((®n)) =€ @7 and @ = a ® [, and then from lemma 4.3.1, we get

E@n)E 1) = (aar((B), (€) - (M) ) (Bar(E), () ™) (€).

As @7 is part of a dual basis, the last expression can only be non-zero if ||¢’|| = ||¢|| and
17|l = |Inll. A simple calculation shows that ||7|| = ||7|| if and only if |£|71(£) commutes
with |n|(n)~!. We use this to find
111y =€)~ Elnl = Inl~I€17 () m) Il = {m) () =€)~ € Im]
= Inl= M nI=*1€17(€)4E) Ml Inl = Inl~*(m)

and then

15y =HEY IElIml = (m){m) = (E) 7 [&lIml{m) ™ = (&) [élInl(m) .

Now using the formula for @ = a ® [ from lemma 4.3.1 gives the result. O
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Lemma 5.3.5 Let V and W be objects in D. Then in terms of group characters:

trace(U2ygw) = > X, (87707 0s) x,, (wThsTY)

u,vEG, s,teEM and
su commutes with vt

Proof. This is more or less immediate from lemma 5.3.4. Put ||n|| = u™!s and
€l = v™'t, and sum over basis elements of constant degree first. We then use the
summation condition that su commutes with vt to say ut™'v=lu~! = s7t~lv7ls. O

5.4 Calculating the trace of the double braiding - an

example

To find S, we calculate the trace of the double braiding trace(¥yw o Wy ). We do this
using the result from 5.3.5, and split into different cases for the object V:
case (1) Theorbitis {e}, then for vt = e, su € {e, a,a?, a3, a*,a’,b, ba, ba?, ba?, ba*, ba’}.
So
trace(¥?) = Xy, (€)Xv, (€) + Xu , (€)X, (@*) + X, (€)X, (@%) + Xy, (€)Xy, (B)
X3 (€)%, (66) + xXu_, (€)X, 80%) + X, (€)1, (0°) + X, (D, (")

+ X, (€)Xv, (@) + Xu,, (€)Xy, (00°) + Xy, , (€)Xy, (ba) + Xy, , (€)X, (ba®)

case (2) The orbit is {a3}, then for vt = a3, su € {e, a, a?,a®, a*, a5, b, ba, ba?, ba®, ba*, ba’}.
So
brace(02) = Xy, (6%, (€) + Xou (@), (09) F o, (6, (@)
+ X, (@)xy , (6) + (@®)xy , (ba®) + (@®)x, , (ba*)
Xy (€, (0) + Xu,_, (€*)xy,, Xw, o (@)X, (ba
+Xw, (@)X, (@%) + X, (6))xy, (%) + Xy, (a%)xy, (a)
* Xw,, (aB)Xvaa (bas) + Xw, s (a3)Xva3 (ba) + Xw, (a3)Xvaa (baS)
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case (3) The orbit is {a?,a*}, then for vt = a? and vt = a4, su € {e, a,a?, a3,a* a’}. So
trace(¥?) = x,,, (a*)xy , () + X, (@*)xy , (a°) + X, (a*)x, , (a*)
X2 (%, (8%) X (@5, (02) + X (0, (@)
+ Xw, (6*)xy, (€) + Xw, (6*)xy, (a°) + Xy, (6))xy,, (a*)

+ X, (@)xy, (00%) + Xy, (@*)xy, (@) + Xy , (07X, , ()

case (4) The orbit is {a,a’}, then for vt = a and vt = a®, su € {e, a,a?,a® a%,a%}. So
trace(¥?) = Xy, (a°)xy, (€) + X, (0°)x, (a°) + X, (°)xy, (a)
5 3 5 2 5
X (000 (8) X (00 (0%) + X, (€9, (0
+ Xw. (@)X, (€) + X, (@)xy, (0°) + X, (@)X, , (a*)

+Xw_, @)Xy, (00°) + X, , (@)X, , (6) + X, ()X, (a)

case (5) The orbit is {b,ba? ba*}. Then for vt = b, su € {e,a?,b,ba%}, for vt = ba?,

su € {e,a® ba? ba%} and for vt = ba*, su € {e, a®, ba*,ba}. So
trace(¥%) = Xy, (0)xy, (€) + X, (b0*)xy, (a°) + X, (B)xy, (B)
+ Xw, , (0a*)xy, (ba®) + Xy, (ba®)x,, , (€) + Xy, (ba")x,, , (a®)
+Xw, , (06%)xy, , (ba%) + Xy, (ba®)xy, , (ba°) + Xy, (ba®)x,, , (€)

+Xw , Oy, , (@%) + X, , (ba*)x,, , (ba®) + X, (B)xy, , (ba)

case (6) The orbit is {ba,ba®,ba®}. Then for vt = ba, su € {e,a®, ba*, ba}, for vt = ba?,
su € {e,a3,b,ba’} and for vt = ba®, su € {e, a®, ba?, ba®}. So
trace(¥?) = Xy, (ba)xy,, (€) + xu , (ba)xy,, (@°) + Xy, , (ba)xy,, (ba?)
+ Xu, , (06%)xy,, (ba) + Xy, (ba®)xy, , (€) + Xy, (ba®)x,, (a®)
X (0811, B) 3, (0051, (50°) + X, (06 s, (6
+ X, (ba)xy, , (0°) + Xy, , (ba®)x,,_, (ba) + Xu,, (ba)x,, , (ba®).
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Now split each of these cases into the six orbit cases for W, and move the points the
characters are evaluated at to the base points for each orbit using 4.1.3. We use 4.1.3 in
the case of the category D, using the actions 5 and <.

Case (1) @ Case (1): (i.e. the orbit of W is {e} and the orbit of V is {e})
trace(¥2) = xy, (), ().

Case (1) ® Case (2): (i.e. the orbit of W is {e} and the orbit of V is {a’})
trace(¥?) = xy, (a7)x,,, (0)

Case (1) ® Case (3): (i.e. the orbit of W is {e} and the orbit of V is {a?, a%})

trace(2) = (X, (%) + X, (%)) Xy, (€).

Case (1) ® Case (4): (i.e. the orbit of W is {e¢} and the orbit of V is {a,a%})

trace(?) = (1, (6°) + X, (0) ) x4, (€):

Case (1) ® Case (5): (i.e. the orbit of W is {e} and the orbit of V is {b, ba?, ba*})

trace(¥?) = (X, (0) + Xu, (907) + Xu, (b*) ) X3, (©)

Case (1) ® Case (6): (i.e. the orbit of W is {e} and the orbit of V is {ba, ba3, ba’})
trace(¥?) = (Xwe (ba) + X, (00°) + Xy, (baf’))xv,,a (e).
Case (2) @ Case (1): (i.e. the orbit of W is {a®} and the orbit of V is {e})

trace(¥?) = X, , (€)s, (@°).
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Case (2) ® Case (2): (i.e. the orbit of W is {a®} and the orbit of V is {a®})
trace(¥?) = Xw 4 (a3)xva3 (a®).
Case (2) ® Case (3):(i.e. the orbit of W is {a®} and the orbit of V is {a?, a*})

trace(?) = (X, (a*) + Xu, (4) X, (0°):

Case (2) ® Case (4): (i.e. the orbit of W is {a*} and the orbit of V' is {a,a®})

trace(¥%) = (xw,, (@°) + X, (@) ) s, (@).

Case (2) ® Case (5): (i.e. the orbit of W is {a®} and the orbit of V is {b, ba?, ba})

trace(¥%) = (xu,, (50%) + Xuy, (50%) + oy, (8)) Xy, (6°).

Case (2) ® Case (6): (i.e. the orbit of W is {a®} and the orbit of V' is {ba, ba®, ba®})

trace(02) = (X, (b6°) + X, (60°) + oy, (60) ) X, (07):

Case (3) ® Case (1): (i.e. the orbit of W is {a?, a*} and the orbit of V is {e})

trace(¥?) = X, (€) (v, (a*) + Xy, (a9))-

Case (3) ® Case (2): (i.e. the orbit of W is {a?,a*} and the orbit of V is {a3})

trace(¥?) = Xy, (&%) (xu,, (a%) + Xy, (@) ).

Case (3) ® Case (3): (i.e. the orbit of W is {a?,a*} and the orbit of V is {a?,a*})

trace(¥?) = Z(Xwaz (a,‘i)x‘,a2 (a*) + Xw , (az)XVa2 (a2)>.
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Case (3) ® Case (4): (i.e. the orbit of W is {a?, a?} and the orbit of V is {a,a’})

trace(?) = 2(xu,, (6%)xy, (a%) + X, @)y, (%))

Case (3) ® Case (5): (i.e. the orbit of W is {a?, a*} and the orbit of V is {b, ba?, ba'})

trace(¥?) = 0.

Case (3) @ Case (6): (i.e. the orbit of W is {a?,a*} and the orbit of V is {ba, ba®, ba’})

trace(¥?) = 0.

Case (4) ® Case (1): (i.e. the orbit of W is {a,a®} and the orbit of V is {e})

trace(¥?) = x,,, (¢) (v, (6°) + X, (@)

Case (4) ® Case (2): (i.e. the orbit of W is {a,a%} and the orbit of V is {a3})

trace(¥?) = Xy, (a*) (xy,, (&%) + Xy, (@)).

Case (4) ® Case (3): (i.e. the orbit of W is {a,a%} and the orbit of V is {a?,a*})

trace(¥?) = 2(xu, (4, (2°) + X, (0%)xs,, (@) ).

Case (4) ® Case (4): (i.e. the orbit of W is {a,a’} and the orbit of V is {a,a’})

trace(¥?) = Q(XWa (@®)xy, (@°) + Xy, (@)xy, (‘1))-

Case (4) ® Case (5): (i.e. the orbit of W is {a,a%} and the orbit of V is {b, ba?, ba*})

trace(¥?) = 0.
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Case (4) ® Case (6): (i.e. the orbit of W is {a,a%} and the orbit of V is {ba, ba3, ba®})

trace(¥?) = 0.

Case (5) ® Case (1): (i.e. the orbit of W is {b,ba? ba*} and the orbit of V is {e})

trace(¥?) = Xw, (€) (Xve (b) + Xy, (ba®) + X, (ba4)).

Case (5) ® Case (2): (i.c. the orbit of W is {b,ba?,ba*} and the orbit of V is {a%})

trace(¥%) = X,y (a°) (X, (0) + X, (b0%) + X, (ba) ).

Case (5) ® Case (3): (i.e. the orbit of W is {b,ba?, ba*} and the orbit of V is {a?,a*})

trace(¥?) = 0.

Case (5) ® Case (4): (i.e. the orbit of W is {b,ba?, ba*} and the orbit of V is {a,a’})

trace(¥?) = 0.

Case (5) ® Case (5): (i.e. the orbit of W is {b, ba?, ba*} and the orbit of V is {b, ba?, ba*})

trace(¥?) =3 (wa (0)xy, (b)) .

Case (5) ® Case (6): (i.e. the orbit of W is {b,ba?, ba*} and the orbit of V' is {ba, ba?, ba’})

trace(¥?) =3 (wa (ba,g)va‘z (ba4)) :

Case (6) ® Case (1): (i.e. the orbit of W is {ba,ba®,ba®} and the orbit of V is {e})

trace(2%) = X, (¢) (xy, (be°) + Xy, (b0) + X, (b0%)).
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Case (6) ® Case (2): (i.e. the orbit of W is {ba,ba3,ba’} and the orbit of V is {a®})

trace(¥?) = xy,, (@%) (xy,, (90°) + Xy, (Ba) + X , (ba%)).

Case (6) ® Case (3): (i.e. the orbit of W is {ba, ba3,ba®} and the orbit of V is {a?,a*})

trace(¥?) = 0.

Case (6) ® Case (4): (i.e. the orbit of W is {ba,ba3,ba®} and the orbit of V is {a, a®})

trace(¥?) = 0.

Case (6) ® Case (5): (i.e. the orbit of W is {ba, ba®, ba%} and the orbit of V is {b, ba?, ba*})

trace(¥?) = 3 (waa (ba4)va (baa)) .

Case (6) ® Case (6): (i.e. the orbit of W is {ba, ba®, ba®} and the orbit of V is {ba, ba®, ba®})

trace(¥?) = 3 (waa (ba)xy,, (ba)) .
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From the cases of section 5.4 we get S to be the following 32 x 32 symmetric matrix:

5.5 The matrices

2

2

-4 -4 -2 -2 -2 -2

-2

-2

-2

-2

-2

2

2

-2

-2

-2

~2

-2

1
1%

-2 - -~

-2

-3 -3 -3 -3 -3 -3 -3

-2

-2 =2 -2

-2

-2 -

-2

-3

-2
-2

-3

-2

-2
-2

-2

-2 -2

-4 -

-2

-2
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Now to find S we need to calculate P*¥ = 3", ©y*'(dim(V))? , which we do as the

following noting that the dimension of V' in D is just its usual dimension:

P =>" 0y (dim(V))® = 1(1)* + 1(1)* + 1(1)* + 1(1)* + 1(2)* + 1(2)* + 1(1)* — 1(1)?

= 1(1)% + 1(1)* = 1(2)* + 1(2)* + 1(1)" + w?(1)* + w(1)? + 1(1)% + ?(1)* + w¥(1)?
+1(1)2 + W' (1)® + w?(1)2 = 1(1)2 + w*(1)* + w®(1)% + 1(1)? = 1(1)* + 1(1)? — 1(1)?
+1(1)2 4+ 1(1)% = 1(1)? = 1(1)?
=14+1+4+1414444+1-1-141-4+4+14+ P+ +14+?+w*+1+u?
w140+ +1-141-1414+1-1-1

=144 3(w* + w*) + W +u°

1 V3 1 V3 . 1 V3
= 14+3((—§ +17) (—5 —z—2-)) +(§+17)+(§—17) =14-3+1=12.
In the same way we can calculate P~ = Y, ©y'(dim(V))? to get the following

oo ; B¢ dim{V)) = ; él:(dim(v))z =l4+3w?+w ) +w +w™®

=14+ 3((—% —i——)+(-z +i7)) + (% - i-‘g—g) + (% +z‘-\g—§)

=14-3+1=12
If we substitute these values in theorem 5.1.6 we get

S

S: =
N

ol v
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Using the order of the indecomposable objects in table (5), we get T' to be a diagonal

32 x 32 matrix whose diagonal entries are taken from the table as follows

(=]
-
(=]
o
(=]
1= (=]
o
o
(=4
[=]
(=]
o
(=]
(=]
(=
(=}
o
o
o

0o o 0 0O 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0
0o 0 0 0 0 © 0 -1 0 0 o 0 Y] 0 0 0 0 [ 0 0 0 0 ] 0 0 0 0
0 0 0 0 0 O 0 0 1 0 0o o 0 0 0 0 0 0 0 0 o 0 0 0 ) 0 0 0
0O 0 0 0 0 O 0 0 o -1 0 O 0 0 0 0 0 0 © 0 0 0 0 0 0 0 0 0
0 o 0 0 o0 o 0 0 0 0 1 0 0 0 0 ] 0 0o 0 0 0 0 0 0 0 0 0 0
0 0 0 0 o0 O 0 0 0 0 0o 1 [} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0o 0 0 o0 0O 0 0 0 0 0 0 w? 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0

o 0o 0 0 0 O 0 0 0 0 0 0 0 0 0 w? 0 o 0 0 0 0 0 0 0 0 0 0
0O 0o o 0 o0 O 0 0 0 0 0o o 0 0 0 0 wd 0 o0 0 0 0 [} 0 0 0 o] 0
0 0o 0 0 0 ©O 0 0 0 0 0 © 0 0 0 0 0 1 0 0 0 0 0 0 0 ] o 0
0 0 0 0O 0 0 0 V] 0 0 0o 0 0 0 0 0 0 0 w 0 0 0 0 0 0 0 0 0
0O o 0o 0 0 o 0 0 0 0 0o 0 0 0 0 0 0 0 0 w? 0 0 0 0 0 0 0 0
0O 0o 0 0 0 0 0 [} 0 0 0o 0 0 ] 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
¢ 0 0 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 wd 0 0 0 0 0 0

0 0 0 0O 0 0 0 0 0 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0o -1 0 0 0
¢ 0o 0 0 o0 O 0 0 0 0 0 0 0 0 0 o] ] 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 c 0 0 [} 0 0 0 0 0o -1 o
0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0 0 0 0 0 V] 0 0 0 0 0 0 0 1
0 0 0O 0O o0 o 0 0 o] 0o o 0 0 0 0 0 0 0 0 0 o] 0 0 0 0 0 0 0
0O 0 0 0 0 O 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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As every indecomposable object in our example is self-dual, the matrix C is the

32 x 32 identity matrix :

o o 0 0 0 OO O OO 11 0 0OO0OOOW OUWOUOOU OOOTU OO OOO0OO O O 0 0 O
o o 0 0O 0O O O O O O O 1 0 0 0O 0O OOU OOW OO OOOOO O O 0 0 O
O o 0o 0 0 0O 0O OO O O 0O 1 0 0 00O OO OO OO0 O0O OO0 0 0 0 o0 o0 0 O

o 0o o 0 0 0 OO O 0 0O O 01 0 0 00 0 0O 0000 o0 o0 0 0 0 0 O

O 0 0 0 0O OO O O 0 O O OO0 110 00O O0OO0OWOWOTUW OO OOOO O OO0 0 O

C _ o 0 0 0 0 O O O O O O O O 0 0 1 0 00O OOUOOU OTUOOW®OOOTOOTOO O
- 0O 0 0 0 O O OO O O O O O 0 o0 0 1 0 0 0 0 00 0 00 0 0 0 o0 0 O

o 0o 0 0O 0 0O O O OO O O O 0O 00010 0O OO0 0 OO0 o0 0 0 0 0 O

o 0 0 0O O OO O O 0 0 0O O OO O0OWOOUW O 11 0 0 00 0000 0O O0O0DO

o 0 0 0 0 0O O O OO 0O 0O O O0OO0OWO OO OO 1 0 00 00 00 0 0 0 0O

o 0 0 0 0 0 0O 0O 0O O O 0 0 0o 0 0 0 0 o0 ¢ 1 0 0 000 o0 0 0 0 0O

o ©

Now it is possible to check that the matrices S, T and C satisfy the following relations:
P+
(ST)® = FSQ, St=C, CT=TC, C*=1.

For more details about the matrices see the appendix.
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Chapter 6

An equivalence of tensor categories

In this chapter we generalize some results of [5] which considered group doublecross prod-
ucts, i.e. a group X factoring into two subgroups G and M, to the case where M is not
a subgroup and the algebra D here is that defined in 1.3. In fact, we show an equiva-
lence of categories between the double D of the non-trivially associated tensor category,
constructed from left coset representatives of a subgroup of a finite group X, and the
category of representations of the Drinfeld double of the group, D(X).

This chapter has also already been sent for publication as a part of a paper by myself

and my supervisor E. J. Beggs [2].

6.1 The definition of D(X)

The double of a group is well known. We give a definition of D(X) and its representations

from [5]. The case we are interested in is where X = GM as previously discussed in 1.3.
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Definition 6.1.1 [5] For the doublecross product group X = GM there is a quantum
double D(X) = k(X) >kX, with basis 6, ® z for z,y € X and which has the following

operations

(6, ®2)(0,; @) =0,y (06, ®22), A, @)= 6, 07R5® 1

ab=y

1= Z 6y ®e, €(6,Rz) =704y, S(0,®T) =011,z
v

(0, ® )" =51-1yz®z‘1, R=Z§z®e®6z®x.

The representations of D(X) are given by X -graded left kX -modules. The kX action will

be denoted by > and the grading by ||.||. The grading and X action are related by
lzsell = ziéfz™ z€ X, eV, (6.1)
and the action of (6, ® ) € D(X) is given by

(6y ® T)BE = Oy JasegTtE. (6.2)

6.2 The algebra structure

Proposition 6.2.1 There is a functor x from D to the category of representations of
D(X) given by the following: As vector spaces, x(V) is the same as V, and x is the

identity map. The X -grading ||.|| on x(V) and the action of us € kX are defined by
Ixtml = ()7l for neV,
ustx(n) = x(((MInI“)Bn)ZM‘l), seM  uwed.

A morphism ¢ : V — W in D is sent to the morphism x(¢) : x(V) — x(W) defined by

x(#)(x(€)) = x(&(£))-
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Proof. First we show that & is an action, i.e. vtl&(usl&x(n)) = vtusty(n) for all s,t € M

and u,v € G. Note that
vtli(uslix(n)) = vtl&x(((sqml_l)ﬁn)au'l)
= x(((tall ™" )pm)207Y),
where 7 = ((s<1|77|_1)51;) Ju~!. On the other hand we have

vtus = v(tou)(tw, s) ((t<w) - s),

where v(t>u)T(t<u, s) € G and (t<u) - s € M, so
vtusdx(n) = X(((((tqu) . s)<1|77|_1)5n)217'(t<1u,s) Ytpu)™? '1)
) X((((((t<‘u) . s)<1|17|-1)§n)217'(t<1u, s)‘l(tbu)‘l)av‘l) .
We need to show that
(t<7| ™" ( ((t<u) - s)<|n|™ )Dn) Ir(t<u, )" (tou)~t
(6.3)
( ((t<u(sm|n) ™ (sq[nl‘l))sn)af(tqu, s) 7 (tou) 7!
Put 5 = sqn| ™" and " = 557 which give 77 = 7'3u~!. Then using the connections between

the gradings and actions,
17 = In' 2| = (7 ypu™) ' Ju?
Putting ¢ = tduln/l_l, the left hand side of (6.3) will become
—1\— — 7, =1 ’ —1 _, -
(talal ™57 = (t<uln'|” (' )ou) )5(n 2 )
= (Fa((mou™))s0r'2™)

= (£50)a( (el ou) .
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Note that we have used the cross relation between the actions in the last equivalence.

Now, from (6.3) and the fact that (t>u)~* = (£<|n|)>u"!, we only need to show that

51 = (((tau(selnl ™) - (salnl™)5n )3 (tau,5) ™. (6.4)

From the formula for the composition of the M ‘action’ the right hand side of (6.4)

becomes §5(55n) = §5n, where = tau(s>n|™") and 5 = p a7 (5, (n))7((55n),54|n|)~L.
We have used the fact that 7(t<u, s) = 7(g'<(3>|n|), 54|n|). Now we just have to prove that
P = t. Because 7(5, (n))"}(s>[n|]) = 7((85n),5<|n|)"!|55n| and knowing that (5>|n|) =

(so|n| 1)1, we can write 5 as follows

p=pa(s>|n])|son| ™
= tau(spln| ) (solnl ™) |
=tauln’| " =1%.
Next we show that [Jussx(n)|| = us [|x(n)]| (us)~! where u € G and s € M.

lussx(m = b (((s<lnl™)5m)™) |

=1 s _
o= uln) Inlu

= (nau™) ™" |n'qu”
e\ =llme =1 (= —1.1(= -1, -1
= u(35n) 7 [senlu™ = u(E<n|){(n)~ Inl(5<lnl) " u
=us(n) " HnlsTlwt . O

Theorem 6.2.2 The functor x is invertible.

Proof. We have already proved in the previous proposition that the X-grading |.||
and the action > give a representation of D(X), so we only need to show that x is
an isomorphism, which we do by giving its inverse x~! as the following: Let W be a
representation of D(X), with kX action & and X-grading ||.||. Define a D representation
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as follows: x~}(W) will be the same as W as a vector space. There will be G and M

gradings given by the factorization

Il = IxHOITH X)), EeW, (X)) e M, Ix ()] €G.

The action of s € M and u € G are given by
sBxTHE) = x T ((salxTHENBE) , xTH(E)Iu = x T (uTIBE) (6.5)

We now check that this preserves the X-grading and action. We first check the X-grading

as follows

(N = O N X (x(€)] = (€)7'[€l, and
IO @ = G HEN ()1 = lell
Next we check it for the M-action
X (x(©) = X7 (<l x(©sx(E))
= x7}(sx(9))
= xx((s<lg™)p¢)
= sb€,
where § = s<|¢|. For the M-action, we have
5x0CH(©) = x((s<lxHE)I7Bx(€))
= x(55x71(9)
=" (G D)
- 8¢,

where § = s<|x (&)L
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Finally, for the G-action we have

and

Note that we have used 6.2.1 and (6.5). O

Proposition 6.2.3 For an element (6, ® ) of the algebra D in the category D,
X(63(0y ® 7)) = by, =~ "X (&).

Proof. Starting with the left hand side,

X (63(6, ® z)) = x(Oy ) £32) = by ey x(€32).

Putting z = us for u € G and s € M, then using proposition 1.3.12 we get

£z = Edus = (£Qu)3s = £as = ((sP<|€]™H)s€)ar (s, s).

where £ = £3u. But from the connection between the gradings and the actions we know

that [€2u|™! = u= |71 ((€)pu). So if we put § = sP<u~!|€]7! and substitute in the above

equation we get

€2z = (€3u)ds = ((s"au €7 ((E)pu))B(€3u))ar(sh, 5) = (5a((€)pu)5(€3u))3r(

155



Now using the cross relation and knowing that (sf<u=!)pu = (sfou=!)~! we get

€ = ((35€)3((3<l¢|)pu)) (s, s) = ((35¢)((s" ™" )ou))ar (s, 5)
= (((s*au™t|e]sE)A(sou™) )7 (s, 5) = ((s"<u €[ )BE)A(s pu™") T 7 (s, ).
Now put @ = 7(s%, s)"}(s’>u~!) and 5 = sf<u™!. Then
X (63(8y ® 7)) = dy, ¢ X(((§<'|€|"1)5£)21ﬂ‘1)
= 0y, gy B5Ex(€)
= Sy (s, 8) T (sPouT) (sPaw)Ex(€)
= by e 571" sPuBx(€)
= Sy el (us) ™ Bx(§) = by =~ Bx(6). O
Proposition 6.2.4 Define a map ¢ : D — D(X) by ¥(8, @ ) = 0;-1,, @ 1 . Then

Y satisfies the equation x(£3(0, @ x)) = (6, @ z)Bx(§) .

Proof. Let §, ® z be an element of the algebra D in the category D. As t(a) is in

D(X), we put ¥(d, ® z) = §; ® Z. Then by definition 6.1.1
(65 ® Z)Bx(€) = O, pasxieyn Zox(€)- (6.6)
As flzex (Ol = zlx(ONlz~" = z(¢) €|z, we get the following
Oghzsx©)l = Oz-1gz,(6)- el = Oz—1g=1zle1-1(6) = Oz—1g-1z el -

But, from the previous proposition, we know that

X(&(‘Sy ® :v)) = Oy, il z1Bx(é).

1 -1,-1

1 =z ly 1z,

So we conclude that 6.6 is true if and only if Z = 27! and § = Ty 'z~
Hence, if we define
’l/)((Sy ® CE) = (5Z—1y1 ® z! ,
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then we obtain

x(§3(6, ® z)) = Y(6y ® z)ex(§) . U

The reader will recall that D is in general a non-trivially associated algebra (i.e. it is
only associative in the category D with its non-trivial associator). Thus, in general, it
can not be isomorphic to D(X), which really is associative. In general, 4 can not be an

algebra map.

Proposition 6.2.5 For a and b elements of the algebra D in the category D,

p()(a) = v(at) (D8, @ 7((a), (B)).

yeyY

Proof. by 6.2.4 we have
X ((§3a)ab) = (b)Sx(£2a)
= ()5 (¥ (a)5x(6))
= p(b)¥(a)sx(£)-

But also
x((62a)28) = x((ea7(llall 1)) 2a0)
= labsx (67 (lall, [61)) = w(ab)sx(§3r((a), ()

= P(ab)y(f)Px(£),
where f =3 6, ®7((a),(0)). O

6.3 The coalgebra structure

For the coalgebra to be examined, we turn to tensor products of representations. It
is known that for a general Hopf algebra H with representations V' and W, the tensor
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product representation V' ® W is defined by the action
ho(n®E) = hapn ® heypt,

forneVand e W.
In the case of representations V' and W' of D(X), according to this formula, we get
the following equations:
26 (n @&)=zbn ®@THE
forn eV’ , ¢ €W andz € X.
For the representations V and W of D, we get the following actions and gradings on

the tensor product V@ W:

l€ @0l = 7((€), (m) €l ,
(s<ar({€), (m))B(€ @) = (s5€)7(s<le], (m))T ({(s<l€)Bn), s<alé]In]) " @ (s<l€])5n,
(€®@n) =) (n) and (£®n)3u=E3((nMru) @ ndu,

whereneV, €W, se Mand u € G.
It is found that x does not preserve the tensor product of representations. For this to

be corrected we introduce the map given in the following definition :

Definition 6.3.1 Let V and W be objects of the category D. The map ¢ : x(V) ®

x(W) — x(V@W) is defined by:

e(xtm) @ x(©) = x((((©)<ln™)5n) @) ,

wheren €V and { € W.
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Proposition 6.3.2 The map c, defined above, is a D(X) module map, i.e.

lle(Cx(n) ® x() I = lx(m) ® x (N,
se(x(n) ®x(6) = c(w(x(m ®x())  VeeX.

Proof. We will begin with the grading first. It is known that

Ix(m) ® X = IxMIXEON = ()~ ml(€) 7 1€l
But on the other hand we know, from the definition of ¢, that

lle(x(m) © X)) = Ix(((€)<lnlEn @ &)
= ((()<lnl™)n @ &) " ((€)aln|™)en @ ¢
= (&)~ M lle]
= (&)~ (sn) sBnlle]
= (&)™ (3<Inl) (m) | (5<lml) ¢l
= () nl(€) (el
where § = (£)<|n|™! and 7 = ((£)<|n|~1)5n = &5n, which gives the result.

For the G action, we need to show that

e((us () @ x(6)) ) = wsel(x(n) ® X(6)) .

We know from the definitions that

x(nw™) ® x(£au™),

us(x(n) ® x(€))

e (s (x(n) © x(€)))

x( (g™ ainau™ [)s(nau™)) @ (63u™)).
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By using the properties of the G and M gradings,
(3™ alnzu | = ((©)au™)auln] ™ (n)pu™)
= (€)<lnl™ (mpu™)
(62u™) sl ") (n2u) = ((€)<lnl~)a((mpu))5(n7u™)
= ((@<Inl™sn)a( (((E)alnl)slnl)ou)
= (((€)<Iml™En)a((gou™).
Now we can write
e(us(x(m @ x(©)) = x(((©<nIBma(@eu ) © (™). (67)
On the other hand,
wse(x(n) @ x(€) = wsx ()il )om) ®€)
= x((((©<inl™)5m) @ €)2u™)
= x(((©<nI™Bn)a(epu) @ (™)),

which is the same as (6.7).
Now we show that ¢ preserves the A action, i.e. for s € M,
e (x(m) ® x(8)) ) = sse(x(m) ® x(©)).
We know from the definitions that
s&(x(n) ® x(€)) = x((saln|™")5n) ® x((s<l¢|")5¢)

C(sﬁ(x(n) ® x(f)))

x ((((s<lel)5€)a] (seln)on] )5 ((s<in)om)
® ((s<l¢[™)5¢) ).
Using the ‘action’ property for &, we get
({(saléel™)s€)<| (salnl~)5n| )5 ((salnl~)5n) = (0 - BE) 2 (p'a(Eoln]), Falnl) ",
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where £ = s<|n|~! and

2 1N — ~1 - _ _ -1
p = ((s<l¢|™)Be)<|ten| ™ ((En), talnl) 7(% (m) -
But using the connections between the grading and the actions, we know that |ﬁ$n|_1 =

@)~ 7 (E, (n)) 7 ((Fn), Ealnl) ™", so

P = ((s<l€]™)5)a(inl) ™
= {(s<lgl )6} (slnl)oin]) ™
= ((s<lél™)5€)a(svlnl ).
Substituting in the equation above gives
({(selel=5€)<|(s<lml=)5n] ™ )5 ((sln|~)5)
= ((({(salel™)5e)s(oplni™)) - (salnl ) )5n) 3 (((s<le])5€), ) ™
= (((((seler)5€) - s)<lnl™)5n) ar ({(s<le])5€), ) "
= ((((saler™) - (@)l ) ar ((selel™)58),5) ™
On the other hand, we know that
sse(x(n) © x(6)) = ssx((((€)<lnl™)5n) @ €)
=X (71®€) = x((s7 @ ¢ e(7®¢)),
where 7 = ({£)<|n|~)5n. Next we calculate
n @€l = (A, ) llel

sal @ 71 = sal¢]Hal~ (), (€)) -
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If we put &= s<|¢|7}7|7?, then
(s9l7 ® €5 ® €) = (5a7((7), (£)))5(7 ® €)
= (ssn)ar(sdlal, (€) 7({(3<l)5e), s<llle)
® (s<l)se
= (n)ar(sdlé]™, (€) 7({(s<l€])5), 5)
® (s<lel)5¢
Using the ‘action’ property again,
557 = (s<l¢] 15 (€<l ™)s)
= (- (@<inI™))sn)3r (g a(()<lnl™plnl), ) ™
= ((¢- (©yaml™)5n)ar (g€l ™)™ €)™

where

¢ = (sale[H 7™ )ar ((({€)<Inl = )on), (€)) T((€)<lnl™, () ™
= (salgI™) (el ™)

-1

17171 = ((€)<lnl=")elml) " (€)<lnl™ (m) 7({((&)<inl~)57), (€))

Hence substituting with the value of ¢’ we get
557 = ((((salel™)a(EInl™) - (€)<lml™))5n)ar((sale™), (€)™
= (((s<lel™) - (€)alnl™)5m)ar (salel ™, (€)™

giving the required result

(5037 (sale] ™, () 7((s<lel ™)5), )
= ((((s<leI™) - (©)alnl™ )om)ar ({(s<le]™)5€),) ™" . O
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Chapter 7

Ideas for further research

In this chapter we introduce some ideas for further research. We will not discuss them in
much detail, although some detail will be introduced in the second section.

In the first section we show that for different algebras A and A associated with different
coset, representatives M and M there is a morphism 6 : A — A in the category C which
is proved to be an algebra map.

In the second section we try to study the algebraic structure described in section 1.3
in the case where our group X is an infinite topological group. We give a case where we
can not give a single choice of coset representatives on G \ X which is continuous. We are
then forced to pick several choices, and these are related on the overlaps by the material
discussed in section 7.1. This is not yet understood.

In the third section, some more ideas are included for those who are interested in this

kind of research.
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7.1 Different choices of coset representatives

In [4] it was stated that for a given subgroup G of a group X, different sets of represen-
tatives M and M for the left cosets can be chosen and these are related by an arbitrary
function v : G\ X — G, so that if s € M then 7([s])s € M. Also the binary operations
GG\ X xG\X->G\X, 7:G\X xG\X—>Gandp:G\X xXG—G for M
were shown to be the following:

st = (s1(0) 1), 2(5,8) = YA (s(®) Oy ((s7(8) - )7,

tou = y(t) (tou)y(tau) ™!,

Proposition 7.1.1 For the algebras A and A, the map 60 : A — A defined by
04 (65 ® u) = Ssar(a) ®Y(2) ',
where (§s @ u) € A and a = (6s @ u), is a morphism in the category C .

Proof. We should first show that 64 preserves the grades. Let ¢ = (J; ® u), then a is
defined by

S:0 = $du = s,

but also we have

(sav(a)) - (Ba(6s ® w)) = (sov(a))<wyv(a) 'u = sey(a)y(a) 'u = s,

so it preserves the grades. Now we need to check that it also preserves the actions, i.e.
04((6; ® u)v) = 04(8; ® u)v. To calculate the left hand side we need to calculate the

following:

1

(65 ® U)V = bsq(apw) ®@ (apv) tuy = sar(a) (av)r(asw) -t ® Y(aw)(abv)”™ v(a) tuv,
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SO
L.H.S. =04((6, ® w)3)

= Gsar(a) (@v)r(asw)-1v(aw) ® 7(aw) Hy(aw)(a>v) " y(a) " uv

1

(@) Muv.

= Osay(a) (avv) ® (aPV)

Now we calculate the right hand side
RH.S. =048 ®u) A = (Jsar(a) ® (@) )0
= Gsary(a) (av) ® (@>0)1y(a) uw,
which shows that € preserves the actions. [
In [4], the morphism Fyw : VW — V@ W for VW € C and ® is the tensor
structure given by M, was defined by F(£®n) = £3y((n)) ® n. This morphism will be

used in the next proposition.

Proposition 7.1.2 For the algebras A and A, the morphism 6 : A — A is an algebra
map. Note that we have to be careful about just what this means, as there are two different

tensor products. We mean that the following diagram commutes:

ARA —F—— A
la_@o

A®A J"
lFAA "

Proof. For the elements (J; ® u) and (J; ® v) in the algebra A we have
H((ds Qu)®4® 'U)) = 0t 5qu Osar(ab) ® (g, Q)—IU'U )
where a = (6s ® u) and b = (6; ® v). So

9(_/{(((55 ®u)®6® U))) = 0t,squ Osar(ab) v(a:b) ® v(a:b)'1(a, b)luv.
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But we know that

7(a,b) = y(a) (@ (b)) T(ay(8), ) Y((e<v(®)) - ) and a:b= (a%y(b)) - b,

So

7(a, b)y(a:b) = v(a)(@>v(b)) T(a<y(b),b) .

Thus, one direction of the diagram is given by the folowing equation:

0(1((0: ®u) ® 6; ®v))) = 61,50u Fsary(a) (@ (®) r(aer®)p) ® T(a<y(b), b))~ (@>(B)) (@) uw.

Now to calculate the other direction of the diagram we do the following calculation:
0(6s ® W)@I(5: ® V) = (dsar(a) ® V(@)™ U)@(dtar(p) @ Y(2) 7'0).

Applying the map F44 to the above equation gives

Fan (66, ® 02005, ©v)) = (rorta) ®7(2) " 0)27(B) ® (Buorte) ® 7(0) ')
= (bsav(a)@@) ® (@7(8) (@) uy(h)) ® (Star(n) ®Y(0)'0) .
Therefore, the other direction of the diagram is given by the following equation:
7 (FAA (9(63 ® u)®6(4; ® v))) = Otay(t),scur(8) Osav(a) (@(8)) r(aer(®).b)
® 7(a<y(b),0) " (@>v (b)) "y (@) Ttuy(D)v(b) MY
= St,squ Osr(@) (@ (®) mlar(®),)

® T(a<y(b), b))~ (a>v (b))t y(a) tuv,

which is the same as the first direction which by then completes the proof. O
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7.2 The Hopf fibration and local choice of coset rep-

resentatives

In the case where X is a topological group, we would like to include continuity in the

algebraic structure we have described. Unfortunately there can be problems. Take

a b

X:SU2={ =A:abcdeC, ad—bc=1 and AAT=id}.

c d

SU, acts on PC? by

(e )| " =1 (satve mbrua)]

c d

We want to write SU; = GM. Let G = stab([( 1 ¢ )]) which can be calculated as the

(o) 7= (e) (o)

c d

following:

so b = 0 and then ad = 1 which implies that d = % . We also need

a 0 a ¢ la]? ac 10
= = 3
c 1 0 i ca |’ + pp 01

which implies ¢ = 0 and |a| = 1. So

G=stan((1 oM ={ | ’ bl =1},

0

8=

Note that cosets of G in SU, are in 1 — 1 correspondence with PC? = C U {oo} by

[(1,z)] « 2. There is no continuous choice of coset representative for G, as the map
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m € SU; — [(1 0)]m from SU, to CU {oo} is the Hopf fibration. It is however possible

to continuously choose coset representatives over two open sets C and C*U{oo} of CU{o0}.

Case(1): To find coset representatives, M;, over C we need to do the following calcu-

lation. We take z = £ where z,y,z € C, and find a representatives for z € C:

(o) 2] (en)=(e0)

c d
a za
S0 2 = g or b= za. For to be in SU; we need the following:
c d
a za a ¢ la? + |2*]a]® ac+ zad 10
= = , (7.1)
c d za d ca+daz |c|? + |d|? 01
which implies |a[*(1+[2]*) = 1 or |a|* = 175;7 and €= —zd. Also we get |c|> + [d|* =
|2|%|d|?> + |d|? = 1 which implies that |d|> = |a|? = ﬁf In addition we require
ad + |z)%ad = (1 + |2[*)ad = 1,
which implies ad = aa, so d = a. Thus
a b a za
= : (7.2)
c d —Za a
Putting a = —= the first choice of coset representatives can be given as the following:

1422’

1 1 z
M1={C(Z)=\/T'_W L , ZEC}.
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Note that if we put 2 = Re® in M;, where R € [0,00), then we get

( .9) 1 1 Re?
c(Re¥) = ———
/ 52
L+ R —Re™® 1
If R is large then
. 0 ei0
c(Re¥) ~ ,
—e % 0

which is not well-defined at oo € C
. : * _ z
Case(2): To find coset representatives, My, over C*U {oo} we put a = BT and
substitute in (7.2). Thus the second choice of coset representatives can be given as the

following:

1
MF{Q(Z):W e , G(Cu{oo})\{O}}.

or equivalently

S
i
——
10
—~
N
pa—
i
—
+{>
x
[
™=
—
G —

€ (CU{oo}) \{0}}.

L CU{oo})\{O}}.

I
——
10
~~
N
p—_
|
—_—
+ —
E'o—l
o
I I
—
= —

Note that we identify G with the group of the unit circle, via the identification a € S* =

(e

a
{a € C:a| =1} corresponding to the matrix € G.

0

For our case, v can be defined as the following

Q=

Proposition 7.2.1 The function v : C — S? is defined by

o

1
v(z)=lz| | © for zeC.
0

=
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Proof.  From [4] we know that v(2) ¢(z) = c(z) which implies that
7(2) = e(2) ()7 - (7.3)
. 1 z " % 1
If C(Z) = m‘ . and Q( ) = m . y then
-z - 2
1 1 —Z2

1(z) = A i 1 - L
V14|22 L1 V14|22 o
E ( vz -2+ )
T 14 2)? 5 )
\ -1+ 3 z2+3
/ 1+ 141 \ 1 0
|| 2 :
=T3P = -
i \ —1+1 P41 1
Proposition 7.2.2 For case(1) where t,s € C, we have
t s+t 1-—1t8
tba=a tqazg , brs= g and T(t’s):ll—tél'
. 1 t a 0
Proof. For case(1) we have c(t) = Wy 1 and u(a) = )

a

where t,a € C and |a| = 1, then we need to find a’ and ¢, with |a’| = 1, that satisfy

c(t) u(a) = u(a’) c(t'). We start with the left hand side as the following:

o
-

Q|
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On the other hand

/ 1

u(a)c(t)=W

a O 1 t 1 a at
1 o _v1+|tllz -{ 1
0 -t 1 T 7

Soa’ =aand £ =a't', which implies that t' = & . These can be rewritten as

t
tba=a =a and tda=t = —

a2
1 t” y 1 t/ll
Now if c(t") = 1 o(t) = 1,,, and
1+|t -, 1+([t")2 .
-1 1 -t 1
b 0
u(b) = where t",t" b € C and |b| = 1, then we need to find ¢ and b that
0 3
satisfying c(t) c(t") . We start with the left hand side as the following:

p 1 1t 1 1t
o) elt’) = s L
1 1—tt" t' +t
B 2 "2 7 =
VIHIEVIHIEE | 0 g
On the other hand
) oft”) 1 b 0 1t 1 b bt”
u(b)ce(t ) = ——m—m——= -
\/1+|t |2 0 1 _tT,/ 1 \/1+It ]2 i/_” l
b b
Sot"” t . If we put s = ¢, then t" can be rewritten as
fg— s+ t_ ,
1-1ts
which is not in C if 5 =t7!. Also we get
’1 + tl/l 7,
| | — (1—1tt").
T VIR P
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To calculate bput t' =s,a =s+tand c=1—t5, then 1 + |t"|> = %‘; = J%
But |a|? = |s|2+ [t|* + st + 5 and |c|? = 1+ [s]?|t|>? —t5 —&s. So |a|]? + |c|* =

1+ |s2+ |82 + [s|?[t]> = (1 + |s]?)(1 + [¢|?), which implies that

lal? + |c|? (1—1t3) = 1-ts
c|2(1 + [¢]2)(1 + |s]?) o 1—tg]”

We can also rewrite b as

1-—1ts5

T(t,8) = TSk

Proposition 7.2.3 For case(2) where s,t € C* U {o0}, we have

t ? + st tls| s+t
tba=- , ta=ta=— , t;S=|_S| s and 1(t,s) = 1||s| S-i:
a a? 5 — t[s|? E+t ts
It] % 1 a O
Proof.  For case(2) we have ¢(t) = JIHT o and u(a) = - where
— 1 1

t,a € C and |a] = 1, then we need to find a' and t, with |a'| = 1, that satisfying

c(t)u(a) = u(a’) c(t'). We start with the left hand side as the following:
1t ;1 a 0 It : e
oft) u(a) = —— o g
Y2 S I P 0 1 V1t 1
at
On the other hand
, , t a 0 & 1 t & a
u(a) ct) = |—|, t = __L ¢
V14|t 1 1 V1t [E]? -1 1
0z -1z Falers
Soa =1and %= %r which implies that t' = “T = % . These can be rewritten as

! ]. ’
tba=a = - and ta=t = —
a
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" % ]. ua l t_’]:’T 1

. " _ !t | t " — It
Now if ¢(t") o ve(t) o 1 and
-1z -1 7
b O " " n
u(b) = where t',¢t ,b € C and |b| = 1, then we need to find ¢t and b that
0 3

satisfying c(t) c(t') = u(b) c(t"). We start with the left hand side as the following:

o1 4 k 1
c(t) c(t”) _ |t| i |t l ?T
T VIHRE L o | VIHRP L 1
t ¢
" 1 1 1
_ [¢]]¢”] A Tt
V3114t 11 1
-1 Tl
On the other hand
mn 1nt b
u(b) c(t'") = 't—l o0 ?177 ! = L & b
b t/" b btlll

So
1 4+t ", g
ty o _ @+
| e (1 - 1)

If we put s =1t , then t" can be rewritten as

s(5+t) |s|>+ st
t;s = = = - .
5(1—ts) 35—t|s?

Also we get

_ t]|s]+/1 + [t"]? (1 1
[ VIF P EP T

).

To calculate b put t° = s, a = 5+t and ¢ = 1 — ts, then |t”]? = ||?1|:||1§_—+tté||2_2 = J|z_[|: and

L+ [t"2 = 14 2 = AL But [af? = (5+¢)(s+7) = [sI> + [t + st + 5 and

lef
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le|2 = (1 —ts)(1 —£58) = 1+ |t|?]s|® — ts — £5. So |a|> + [c|2 = 1 + |s]|® + |t|* + |s|?|t]* =
1+ (s @+ 12,

), which implies that

|tHs| la|? + |c|? 1 1 [t]|s]|1 —ts| 5+t [t]|s|] 5+t
7 (_ + _) = = )
IR AERCEITRIEED) §

5 |5+t|l—ts| ts |5+t t3

We can also rewrite b as

VAl
+

rt.5) = i

|5+ ¢|

‘oo

o~
V)]

Note for 7.2.2 (t,s € C) that t - s and 7(¢, s) are not defined if ¢t5 = 1. Also for 7.2.3

(s,t € C* U {oo}) we see that t:s and 7(t,s) are not defined if ; + : = 0. If s = +¢

and t = % then none of the above formulae work. Probably this means that we need to

introduce more open sets.

We can construct an "algebra” A with generators 6. @ u for s € C and v € S* in

the same manner as before.

Proposition 7.2.4

For an element 0.5y ® u € A, the M-grade can be given by the
following formula:

s 1
(o) @ u) = 1—|s|? (u2 - 1)'

Proof. Put ¢(s) = s for short and put (ds) ® u) = (6; ® u) = a, then from 7.2.2 we have

s+a
1-—sa

S
—-s'a=s<1u=—2.
U

If we put s-a =t = %, then s + a = (1 — sa) or, equivalently,
a+tsa=t—s.
If we put ts = z and t — s = w, then the equation a + tsa =t — s can be rewritten as

a+za=w (7.4)
174



As a, z and w are complex numbers they can be written as z = p + iq, w = n + ¢m and
a = ¢ + iy where p, ¢, n, m, z, and y are real numbers. Substituting these in equation

(7.4) gives the following:
T +iy + (p+1iq)(x — iy) = z + iy + pr + qy + iqx — iyp = n +im,

so we get the following equations for the real part and the imaginary part : z+pr+qy =n
and y + gz — yp = m or equivalently, (1 + p)z + qy = n and ¢z + y(1 — p) = m which can

be solved as a system of equations in z and y as the following:

1+p q T n
qg 1-p Y m
Now we find
1+p q
det( )=1-p" =g =1—|z
g Ll-p
So
z 1 1-p —gq n 1 (1—p)n—qm
1 z? 1z ’
Y —q 1+p m —gn+ (1+p)m

which implies
(z+14y)(1 — |2]%) = n — pn — gm + im + ipm — ign = w — (p + iq)n + gi>m + ipm
=w-—(p+ign+im(p+ig) =w— (p+ig)(n —im) = w — 2w,

so substituting the values of w, t and z gives

w—20 t—s—ts(t—3) t—s—sltP+tls]®  t(1+]s]*) —s(1+]t])

a

CI-PTI-[PsPE T 1= 1 — [¢[?]s]?
_ @A +IsP) s +sl®) _ F-s)A+Isl®) _s(z—-1) _ s L
1— s A+ [sPA—1s?)  A—lsl?)  (A—]s?) w>
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Note that |u|? and |u|* did not appear since |u| =1. O

We do not understand what the following proposition means

Proposition 7.2.5 There is no % € C so that a = (d.(s) @ u) unless £ is pure imaginary .

Proof. Put ¢(s) = s for short, then from proposition 7.2.3 we have

1,1
s 'a _ _ _ 5
_l__l—s;g—sgu—squ——uz.
sa
If we put p = %,qz %, s:a =1t = 73, then the above equation can be rewritten as
p+q _
pg—1

which implies that p + ¢ = tpg — ¢ or, equivalently,
q—tpg=—-p—t.
If we put tp = z and —p — t = w, then the equation § — tpg = —p —t can be rewritten as
g—2g=w. (7.5)

As ¢, z and w are complex numbers they can be written as z = ¢+ id, w = n + ¢m and
q = x + iy where ¢, d, n, m, z, and y are real numbers. Substituting these in equation

(7.5) gives the following:
z—1iy —(c+id)(z+iy) =z — iy —cx +dy —idx — icy = n +im,
so we get the following equations for the real part and the imaginary part : z—cx+dy =n
and —y — dz — cy = m or equivalently, (1 —c¢)z +dy = n and —dz 4+ y(—1 — ¢) = m which
can be solved as a system of equations in x and y as the following:
l-c¢ d x n
—d —1—-c¢ Y m
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Now we find
1-c d

det( J=(1—-c¢)(-1=-c)+d*=-1—-cH+c++d*=-1+]z°.
—-d -l-c

So

z 1 -l—-c¢c —d n 1 (-1—c)n—dm
RSP ST
12 d 1-c m 2 dn+ (1 —c)m

which implies

(z +iy)(=1+ |2|*) = —n — cn — dm + im — icm + idn .
If we multiply both sides of the above equation by —1 we get
(x +1y)(1 — |2*) =n+cn+dm —im +icm — idn = @ + (n + im)c — i°dm — idn
=w+ (n+im)c—id(n+1im) =0+ (n+ im)(c — id) = w + wZ,
so we get ¢ = ;“j—,;“]% which implies that

1— |22
a=——_.
T wHw?

Substituting the value of z in the above equation gives a =0 as z = tp = u—% . There is no

chance of the bottom line having a factor cancelling with the top line as

W4wz=—p—t+ip(—p—t)=—p—t—tlp|* — plt|* = —p(1 + [t|*) — (1 + |p]?)

= p(1 4 [sf?) — B+ ) = (1 sP)(+ o) = —(1 + s + 2
|s]? |s[2 5 s§
1 u? 1w
=—(1+[sP)(z+—=)=-1+|sP)u(=+-). O
(+1sP) +5) = =1+ sPru(= + 2)
Proposition 7.2.6 The product u on the algebra Ais given by
(Oe(s) ® u)(bery ® V) = 5t,f,5m ® 7(a,b) tuv,
where o = (B ®u) = =y (Fr—1) , b= (bery®v) = (=fmy (55 —1) and 7(a,0) = =5
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Proof. If we put ¢(s) = s and c(t) = t for short, then we have
(65 ® u) (8 ® v) = bt saudsar(apy ® T(a,b) uv.

But we know from the previous propositions that squ = %, s<ar(a,b) = ﬁ and 7(a,b) =

I}:—Zglwherea=(6c(s)®u)=m($—l) andb=(5c(t)®v)=m(v—%—l). ]

7.3 Further research

1— What about factorizing a group into two sets ?

For the group Qs = {1, 2,3,4,5,6,7,8,9,10, 11, 12} defined by the following table [28] :

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 1 8 9 10 11 12 7
3 4 5 6 1 2 910 11 12 7 8
4 5 6 1 2 31011 12 7 8 9
5 6 1 2 3 4 11 12 7 8 9 10
6 1 2 3 4 512 7 8 9 10 11
712 11 10 9 8 4 3 2 1 6 5
8 712 11 10 9 5 4 3 2 1 6
9 8 712 11 10 6 5 4 3 2 1
0 9 8 7121 1 6 5 4 3 2
1 10 9 8 712 2 1 6 & 4 3
12 11 10 9 8 7 3 2 1 6 5 4

we can have the following factorizations into two sets, none of which are subgroups and
both contain the identity:

a) If G; ={1,3,5,7,9,11} and M; = {1,2} then Q¢ = G, M;.

b) If G, = {1,3,5,8,10,12} and M, = {1,2} then Qs = G2 Mo.

c) If G3 ={1,3,5,7,9,11} and M3 = {1,6} then Qs = G35 M3.

d) If G4, ={1,3,5,8,10,12} and My = {1,6} then Qs = G4 My.

What sort of algebraic structures can be made from this data?
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2—Consider the differential structures on the braided Hopf algebras given by the coset
representatives. It is likely that this could be done using similar methods to [6].
3—What is the meaning of having different tensor products over different open subsets of
Cu? This is the case in section 7.2, but many other examples could be constructed.

4— Complete the work on type A and type B morphisms in the category C. This should
include a study of inner products : V®V — k. Possibly this would allow the construction
of some sort of "antipode” ( may be one sided ) for the algebra A in C. Also to be

investigated is whether 3.4.4 or similar definition gives an ’adjoint’ operation on A.
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Appek'ndix (‘»The Mathematica files)

CERe Ty Eigee o s

e Lo s

In this appendix we include the main part of
the Mathematica files that show the modularity of the

category D for the example discussed in chapter five.

m | The Matrix S

Here we simplify the matrix S
and show that it is symmetric and invertible.

In[1]:= w=Exp[IPi/3]

Out(1l]= e'131

11 1 1 2 1 1 1 1 1 2 2 2 2 2 2

11 1 1 2 2 -1 -1 -1 -1 -2 -2 2 2 2 2

11 1 1 2 2 -1 -1 -1 -1 -2 -2 2 2 2 2

11 1 1 2 2 1 1 1 1 2 2 2 2 2 2

2 2 2 2 4 4 -2 -2 -2 -2 -4 -4 -2 -2 -2 -2

2 2 2 2 4 4 2 2 2 2 4 4 -2 -2 -2 -2

1 -1 -1 1 -2 2 1 -1 -1 1 -2 2 2 2w"3 2w"6 2w™y

1 -1 -1 1 -2 2 -1 1 1 -1 2 -2 2 2w*3 2w*6 2w*9

1 -1 -1 1 -2 2 -1 1 1 -1 2 -2 2 2wl 2w"6 2w*y

1 -1 -1 1 -2 2 1 -1 -1 1 -2 2 2 2w*3 2w”6 2w*y

2 -2 -2 2 -4 4 -2 2 2 -2 4 -4 -2 -2w*3 -2w"6 -2w*9

2 -2 -2 2 -4 4 2 -2 -2 2 -4 4 -2 -2w*3 -2w"6 -2w*y

2 2 2 2 -2 -2 2 2 2 2 -2 -2 4 2 (w 4+w"2) 2 (w*B+w"4) 2 (w*12+w"6)

2 2 2 2 -2 -2 2w"3 2w"3 2w"3 2w*3  -2w®3 -2w*3 2 (w4 +w"2) 2 (w"B+w"4) 2 (w 12 +¢w”*6) 2 (w16+w"3)

2 2 3 2 -2 -2 2w'6 2w"6 2w*6 2w 6 -2w"6 -2w"6 2 (w'B+w'4) 2(w"12+w™6) 2 (w"16+w"B) 2 (w 20+w"10)
B 2 2 2 2 -2 -2 2w*9 2w"9 2w*9  2w*9 -2w"9 -2w"9 2 (w 12+w"E) 2 (w l6+w"8) 2 (w" 20+w 10) 2 (w 24+w"12)
3202 2 2 2 -2 -2 2w"12 2w 12 2w 12 2w 12 -2w 12 -2wt12 2 (W 16+w"8) 2 (w"20+w"10) 2 (w 244w 12) 2 (W 2B+w"14)

2 2 2 2 -2 -2 2w"15 2w"15 2w"1l5 2w™1l5 -2w"15 -2w 15 2 (w*20+w"10) 2 (w 24 +w 12) 2 (w 28+w"14) 2 (w 324w 16)

2 -2 -2 2 2 -2 2 -2 -2 2 2 -2 4 2 (w'5+w*1) 2 (w*10+w"2) 2 (w"15+w"3)

2 -2 -2 2 2 -2 2w"3 -2w’3 -2w®3 2w*3 2w"3  -2w"*3 2 (widew’2) 2 (w'3+w"3) 2 (w ld +w™4) 2 (W 19+w"5)

2 -2 -2 2 2 -2 2w'6 -2w*6 -2w 6 2w 6 2w'6 -2w 6 2 (w'B+w'd) 2 (w 13+w’5) 2 (w 1B+w"6) 2 (w'23+w"7)

2 -2 -2 2 2 -2 2w*9 -2w*3 -2w’9 2w"9 2w"9 -2wr9 2(w 12+w"6) 2 (w'17+w’7) 2 (w 22+4w"B) 2 (w 274+w"9)

2 -2 -2 2 2 -2 2wt12 -2w®12 -2w*12 2w*12 2w 12 -2w"12 2 (w"1l6+w B) 2 (w'2l+w” 9) 2 (w 26+w 10) 2 (w 3l+w 1l)

2 -2 -2 2 2 -2 2w*15 -2w"15 -2w*15 2w®15 2w*15 -2w*15 2 (w 20+w"10) 2 (w"25+w"11) 2 (w*30+w 12) 2 (w 35+w"13)

3 -3 3 -3 0 0 3 -3 3 -3 [ [ 0 0 [ 0

3 -3 3 -3 0 0 3 -3 3 -3 0 0 [ 0 [ °

3 -3 3 -3 0 0 -3 3 -3 3 [ [ 0 ° 0 0

3 -3 3 -3 0 0 -3 3 -3 3 0 [ ° [ o [

33 -3 -3 0 0 3 3 -3 -3 0 0 [ 0 0 [

33 -3 -3 0 0 -3 -3 3 3 0 [ 0 0 o ]

3 3 -3 -3 0 0 3 3 -3 -3 [ 0 0 0 [ 0

3 3 -3 -3 0 0 -3 -3 3 3 [ [ 0 0 [ 0



2 3 3 2 3 2 3 3 303 3 3 3 3 3 3

2 2 -3 -2 -2 -3 -2 -3 -3 -3 -3 -3 3 3 3 3

2 2 -2 -3 -2 -2 -3 -3 303 3 3 -3 -3 -3 -3

3 3 2 2 3 2 3 2 -3 -3 -3 -3 -3 -3 -3 -3

-2 -2 3 2 3 2 2 3 6 0 0o 0 0 0 0 0

-3 -3 -2 -2 -2 -2 -3 -2 6 0 0 0 0 0o 0 o
Iwt12 aw1s 2 2w*3 Iwte 1wt 1wt12 iw1s 3 03 -3 -3 3 -3 3 -3
2w*13 2w1s -2 -3w*3 -3w’6 3w’y -3w12 -1w’1s -3 -3 3 3 3 -3 3 -3
2wt12 2w*1s -2 -2w*3 -3w"6 2w’y -3w*13 -3w"1s 3 3 -3 -3 -3 3 -3 3
awt12 2w"1s 3 2w"3 Iw'E vty Iw*12 2w"1§ -3 -3 3 3 -3 3 -3 3
-3w"12 ~aw"15 2 Iw"3 iw'6 2wty 2w 12 3w*18 © 0o 0o o 0 © 0 0
-~iw"12 -2w*1s -2 -2w*3 -2w"E -3w"s -3w*13 ~3w"1s o 0o 0o 0o 0 0 0 0
(w16 ew"8) 2 (w"20+w"120) 4 (W dew"3) 2(w Bew 4) 2(w"12+w 6) 3 (w '16ew"B) 2(w 20ew"20) 0 O 0 O O O O O
3 (w 20ew 20} 2 (w 24ew"13) 2(w Sew’l) (¥ 3ew'3) 2(v 13.w 5) 2 (¥"17.w"7) 2(w'2lew"y) 2(w*35.w"11) 0 0 © O O ¢ O O
(w24 ew®12) 2(w 200w 14} F(w 10ew"2) 2 (w ldew 4) 2(w 18+w"6) 2 (w'22ew B) 2 (w'26+w"10) 2(w"30ew"12) 0 O 0 O O 0 0 O
2(w 28 ew 14) 2(w 32ew 16) 2 (w 1l5ew"3) 2 (w 19ew 5) 2(w 23+w"7) 2 (w 27+w"9) 2(w 3lew"l1ll) 2(w 35ew"13) 0 O 0 0 O ¢ 0 O
2 (w 324w 16) 2 (W 36+w 18) 3 (w 20+w"4) 2 (w 4w 6) 3 (w 38w 8) 2 (w 33+w 10) 2 (w 36ew 12) 2 (v 40ew'14) 0 O O O O O O O
2(w 364w 18) 2 (w 40+w30) 3 (w 2Sew"S5) 3 (w 234w 7) 2(w 33ew ) 3 (w 37.w 1l) 2 (w'4lew 13) 2 (w 45ew"15) 0 O 0 0 O 0 0 0
2(w"20+w"4) 2 (w 25ew"5) [} 3(w'Sew 1) 3 (w'10+w®2) 3 (v 15ew"3) 2 (w'30ew"d) 2 (w'35.w"5) O 0 ©0 0 0 0 O O
F(w 24ew ) 2 (w 29ew 7) 2 (w'Sew"l) 2(w il0Dew®2) 2 (w 1Sew’3) 2 (w'20+w"4¢) 2 (v 35+w"S) 2(w 04w 6) 0 0 0 0 0 O O O
3(w 20+w™8) 2 (w'33ew"9) 2(w l0ew’2) 2(w 15+w"3) 2(w 20+w'4) 32 (v 35+w"S) 2 (w I0ew ) I(w'35ew"7) 0 0 0 O O O O O
I(w 32ew"10) 3 (w 37+w"1l) 3 (w 1Sew"3) 2 (w 20ew d) 3 (w 3Sew"S) 3 (w 30ew"6) 3 (w'35+w'7) 2(w'40+w"9) 0 O 6 O O 0 O O
2(w 36ew"12) 2 (w 4lew'13) 3 (v 20w’ 4) 3 (W 3I5ew"5) 3 (w'30ew'6) 3 (w'3S+w"7) 2 (w'40+w"8) I (w'4Sew"3) O O 0 O 0 0 O O
2w 40 ew"14) 2 (w 454w 15) 2 (w 25+w"5) I (w'30ew €) 2(w 3ISew"T) 2 (v 40+w 8) I(w dS5ew ) 2I(w S04w"10) 0 O 0 O O 0 O O
° [ ° ° ) o 0 0 3 -3 3 -303 -3 -3 3

0 0 o ° ] ] 0 -3 03 -3 03 233 3

[ 0 [ ° ° ] [] 4 3 -3 03 -3 -3 3 3 -3

0 ] o ° ° ] ° 0 -3 03 -3 3 3 -3 -3 3

° ° ° 0 ° ° ° ] 3 -3 -3 3 3 3 -3 -3

° ° ° [} ° 0 0 ° -3 03 3 -3 03 3 -3 -3

° ° ° [} [ ° 0 ° .33 3 -3 -3 -3 3 3

° ° ° ° ° ° [ ° 3 -3 -3 3 -3 -3 3 3]

= {(1, 1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3),
{1,1,1%,1,2,2,-1, -1, -1, -1,-2,-2,2,2,2,2,2,2,-2,-2, -2,
-2, -2, -2, -3, -3,-3,-3,3,3,3,3},{1,1,1,1,2,2, -1, -1, -1, -1,
-2,-2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,3,3,3,3, -3, -3, -3, -3},
{1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3,-3,-3,-3,-3,-3,-3,-3),
{2,2,2,2,4,4,-2,-2,-2,-2,-4,-4,-2,-2,-2,-2,-2,-2,2,2,2,2,2,2,0,
0,0,0,0,0,0,0}, {2,2,2,2,4,4,2,2,2,2,4,4,-2,-2,-2,-2,-2,-2,-2,-2,
-2, -2, -2, -2, 0, 0, 0, 0, O, O, O, O}, {2, -2,-21,1, -2,2,1, -1, -1,1, -2,2,2, -2,
2,-2,2,-2,2,-2,2,-2,2,-2,3,3,-3,-3,3,-3,3,-3},1{1, -1, -1,1, -2,2, -1,
1,1, -1,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-3,-3,3,3,3,-3,3, -3},
{1, -1, -1,1,-2,2,-1,1,1-1,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,3,
3, -3, -3,-3,3,-3,3},(,-1,-1,1,-2,2,1,-1,-1,1, -2,2,2, -2, 2, -2,
2, -2,2,-2,2,-2,2,-2,-3,-3,3,3,-3,3, -3, 3}, {2, -2, -2, 2, -4, 4, -2,
2,2,-2,4,-4,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0},
{2, -2, -2,2,-4,4,2,-2,-2,2,-4,4,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,0,

24w 24w
0,0,0,0,0,0,0}, {2, 2,2,2,-2,-2,2,2,2,2,-2,-2,4,2 (e' T +e 3 ),

_2in 24 24 24 _24w 2in _24x 2in
2(e I +e 3 ),4,2(e 3 +e@ 3 ),Z(e 3 +e 3 ),4,2(e 3 +e 3 ],

_2dn 24 L2 2im i 24X
z[e—: s ),4,2(eT+eT],2(e' T e ),o, 0,0,0,0,0,0, 0},

_2inw 24 _3irn 24x
{2,2,2, 2, -2, -2, -2, -2, -2, -2, 2, Z,Z[e 3 +e 3 ),Z(G T +e 3 ],4,
_2dxn 24 _2in 24 JArw inx _in irn A ir
Z[e 3+e5),2[e 3+e3),4,2(e3+e3],-4,2(e3¢e3],2(eT+eT),

_irm irn
3

-4, 2 (e +eT), 0,0,0,0,0,0,0,0}, {2, 2, 2,2, -2,-2,2, 2,2, 2, -2, -2,

2w 2 24 2N _2in 24 _24n 24 _2inm 2im
2(e 3 +e 3 ,4,2(e 3 +e@ 3 ),2(e 3 +e 3 ),4,2(e I +e 3 ),2(e 3 +e 3_),

_Zin 24 _2ir 24w _3inr 2im
2(e 3 +e 3 ),4,2(e I +e 3 ),Z[e I +e 3 ],4,0,0,0,0,0,0,0,0},

_24m 2iw _2ix 2dw

{2.2,2,2, -2, -2, -2, -2, -2, -2, 2, 2, 4, 2 [e T e 3 ) 2 (e T aes ) 4,
ian
3

_2in 2in _2in 2im
e 3 +e 3 ),Z(C

2ix 2iw - Ax Jix L. _inm Ax

3 +e3),-4,2[e »ez],z(el+e3),-4,2(e3+e!),
_in ir 247 24r
e 3 +eT),0, 0,0,0,0,0,0,0}, {2, 2, 2,2, -2,-2,2,2,2,2, -2, —2,2(e' T o+e 3 ]

_217{ 24 _21" 217 2in 2inw 24 247
2(2 3 +e 3 ),4,2(e 3 +e 3 ),Z(e_ 3 +e 3 ],4,2[e' 3 +e 3 J,4,

_2an 2iw _2inm 2iw 2in 2irm
e 3 +e 3 ], Z[G 3 +e 3 ), 4, 2[0-_?_ +e 3 ), 0,0,0,0,0,0, 0,0},

234w 2ix 24 24r
{2, 2, 2, 2, -2, -2, -2, -2, -2, -2, 2,2, 2 (e'—: +e 3 ) 4, 2 (e'_i re 3 )

_zin 2in _zln 24 i i ar i i i
R R ),4,2[e_3 ve 3 ),Z(G'T+eT],2(e'T+eT),—4,2(@'T+eT],

_ir ir _2dnw 2iw 24 2in ix iw Ax in
e 3 +e3 ),2(e I +e 3 ],-4,2(0_ I +e 3 ),Z(e'T+eT),4,2(e'T+eT],

i i
2 (e"r +eT], -4,0,0,0,0,0,0,0,0}, {2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2, 4,
24w 24 _2an 2in ir i

(e 3 +e 3 ),-4,2(e 3 +e 3 ],Z(eToeT),O, 0, 0,0,0,0,0, 0},



_3inrw 24w _34dn 24w

{2, -2, -2, 2,2, -2, -2, 2,2, -2, -2, 2,2 (e 3 ose 3 ] -4, 2 (. BT N ]

i im ior i i ior 247w 24w _zin 24x
2 e'T+eT), 4,2 (e'T +eT), 2 [e‘TuT), 2 (e' T e T ) -4, 2 (e T ies )

NET Y T4
2 (e T +e3 |,4,0,0,0,0,0,0,0, 0}, {2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2,

24w 24n b .4 ix i i _2dnrn 2dr _24dnrn 24w
2[e' I +e@ 3 ),Z[e'T+eT ,4,2(e'T+eT),2(e 3 +e 3 ],-4,2(e T +e 3 ),

24in 24am in i i ir
-4, 2[eTT seTT ] 2 (e"z_+e'3_), 4,2 (e'T+e 3 |,0,0,0,0,0,0, 0,0},
i H_‘ 247 2inw

{2, -2, -2,2,2,-2,-2,2,2,-2,-2,2,4, 2 (e'T ves ] 2 (e'—r ce ) -a,

_zix 24 _in kT _zin 21w -ﬂ i _ln ‘_’1
2(e 3 +e 3 ],Z(eT+eT ,-4,2(e 3 +e 3 ),Z(C I +e 3 ,4,2[eT+e3 ),

24im 24irw
2 (e‘ Tore 3 ) 0,0,0,0,0,0, 0,0}, {2, -2, -2, 2, 2, -2, 2, -2, -2, 2, 2, -2,

_2in 2ar _2in 24w _in irn _in in _2idr 240w
z(e 3 +e 3 ],—4,2(e 3 +e 3 ],Z(e 3 +e3),4,2[e 3 ¢e3],2(e I +e 3 ],

Aw Ax Az ix J2iw LTS
2(e ; +e3],4,2(e 3 +e3),2(e T e 3 J,-4,o,o,o,o,o.o,o.0},

_24irn 24k _in irn

{2, -2,-2,2,2,-2,-2,2,2,-2,-2,2,2 (e T +e 3 ), 2 (e 3 +e 3 |, 4,

1.4 ir iYL 24m Am - Ax Ax Ax
2(e 3 +e3],2(e 3 +e 3 ],-4,2(43 3 +e3],4,2[e 3 +e3),

_2ir 247w _2in 2irw
2 (e T o+e 3 ) -4, 2 [e T3 ose 3 ) 0,0,0,0,0,0, 0,0},
(3, -3,3,-3,0,0,3, -3,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3, -3, 3, -3, 3, -3, -3, 3},
{3, -3,3, -3,0,0,3, -3,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3, 3, -3, 3, -3, 3, 3, -3},
{3, -3,3,-3,0,0, -3,3, -3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3, -3,3, -3, -3, 3, 3, -3},
{3, -3,3, -3,0,0, -3,3, -3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3, 3, -3, 3, 3, -3, -3, 3},
3,3, -3, -3,0,0,3,3,-3,-3,00000000000000,3, -3 -3,3,3,3, -3, -3},
{3,3,-3,-3,0,0, -3, -3,3,3,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -3,3,3, -3, 3,3, -3, -3},
{3,3,-3,-3,0,0,3,3, -3, -3,0,0,0,0, 00,000,000 00~3,3,3, -3, -3, -3, 3, 3},
{3,3, -3, -3,0,0, -3, -3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3, -3, -3,3, -3, -3, 3, 3}}

: : in

If we substitute in the value of e73 we get




In(18]:=

In[3]:=

Out (3]

In[4]:

out (4] =

{,1,1,1,2,2,-1,-1, -1, -1, -2, -2, 2,2,2,2,2,2, -2, -2, -2, -2,
-2, -2, -3, -3,-3,-3,3,3,3,3},{1,1,1,1, 2,2, -1, -1, -1, -1, -2,
-2,2,2,2,2,2,2,-2,-2,-2,-2,-2,-2,3,3,3,3, -3, -3, -3, -3},

§={(1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3},

{,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,-3,-3,-3,-3,-3,-3,-3,-3},

{2,2,2,2,4,4, -2,-2,-2, -2, -4, -4, -2, -2, -2, -2,-2,-2,2,2,2,2,2,
2,0,0,0,0,0,0,0,0}, {(2,2,2,2,4,4,2,2,2,2,4,4,-2,-2,-2,-2,-2,

-2, -2, -2, -2, -2, -2, -2, 0,0, 0,0,0,0,0,0}, (1, -1, -2, 1, -2, 2,1, -1,
-1,1,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,3,3,-3,-3,3,-3,3, -3},
1, -1,-1,1,-2,2,-1,1,1,-1,2,-2,2,-2,2,-2,2,-2,-2,2,-2,2,-2,2,-3,
-3,3,3,3,-3,3,-3},{,-2,-1,1,-2,2,-1,1,1,-1,2, -2,2, -2, 2, -2, 2,
-2,-2,2,-2,2,-2,2,3,3,-3,-3,-3,3,-3,3),{(1,-1,-1,1,-2,2,1, -1,
-1,1,-2,2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,-3,-3,3,3,-3,3, -3, 3},
{2, -2,-2,2,-4,4,-2,2,2,-2,4,-4,-2,2,-2,2,-2,2,2,-2,2,-2,2,-2,0,
o,0,0,0,0,0, 0}, (2, -2, -2,2, -4,4,2, -2,-2,2, -4,4, -2,2,-2,2,-2,2,
-2,2,-2,2,-2,2,0,0,0,0,0,0,0,0)}, {2,2,2,2,-2,-2,2,2,2,2,-2,-2,4,
-2, -2,4,-2,-2,4,-2,-2,4,-2,-2,0,0,0,0,0,0,0,0}, {2,2,2,2, -2, -2,
-2,-2,-2,-2,2,2,-2,-2,4,-2,-2,4,2,-4,2,2,-4,2,0,0,0,0,0,0,0,0},
{2,2,2,2,-2,-2,2,2,2,2,-2,-2,-2,4,-2,-2,4,-2,-2,-2,4,-2,-2,4,0,
0,0,0,0,0,0, 0}, (2,2,2,2, -2,-2,-2,-2,-2,-2,2,2,4,-2,-2,4, -2, -2,
-4,2,2, -4,2,2,0,0,0,0,0,0,0,0}, {(2,2,2,2, -2,-2,2,2,2,2, -2, -2, -2,
-2,4,-2,-2,4,-2,4,-2,-2,4,-2,0,0,0,0,0,0,0,0}, {2, 2, 2,2, -2, -2,
-2,-2,-2,-2,2,2,-2,4,-2,-2,4,-2,2,2,-4,2,2,-4,0,0,0,0,0,0,0,0},
{2, -2, -2,2,2,-2,2,-2,-2,2,2,-2,4,2,-2,-4,-2,2,4,2,-2, -4, -2,2,
0,0,0,0,0,0,0, 0}, {2, -2, -2,2,2,-2,-2,2,2,-2,-2,2,-2, -4, -2, 2,
4,2,2,-2,-4,-2,2,4,0,0,0,0,0,0,0,0}, {2, -2, -2,2, 2, -2, 2, -2,
-2,2,2,-2,-2,2,4,2,-2, -4, -2, -4,-2,2,4,2,0,0,0,0,0, 0,0, 0},

{2, -2,-2,2,2,-2,-2,2,2,-2,-2,2,4,2,-2, -4,-2,2,-4,-2,2,4,2,-2,

¢, 90,0,0,0,0,0,0}, (2, -2,-2,2,2,-2,2,-2,-2,2,2,-2,-2, -4, -2, 2,
4,2,-2,2,4,2,-2,-4,0,0,0,0,0,0,0,0}, {2, -2, -2,2,2, -2, -2, 2,
2,-2,-2,2,-2,2,4,2,-2,-4,2,4,2,-2,-4,-2,0,0,0,0,0,0,0,0},

{3, -3,3, -3,0,0,3, -3,3, -3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3, -3, 3, -3,
{3, -3,3, -3,0,0,3, -3,3, -3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3,3, -3, 3,
{3, -3,3, -3,0,0, -3,3, -3,3,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,3, -3, 3, -3,
{3, -3,3,-3,0,0,-3,3, -3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3, 3, -3, 3,
{3,3, -3, -3,0,0,3,3, -3, -3,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 3, -3, -3, 3,
3,3, -3, -3,00,-3,-3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3, 3,3, -3,
{3,3,-3,-3,0,0,3,3,-3, -3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,3, -3,
{3,3, -3, -3,0,0, -3, ~-3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3, -3, -3, 3,

j1 = Det[§]

34182189187166852111368841966125056

FactorInteger[jl]

{{2, 64}, {3, 32}}
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-3, -3, 3, 3},
-3, -3, 3, 3}}
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In([7]:

{{o, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},

out[7]

{0, 0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
(0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,00,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,00,0,0,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0, 0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
(0, 0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
(0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},
{0, 0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}

Now we show that

which shows that the matrix S is symmetric.

S is invertible by calculating

the matrix

determinant.

its

j2 = Det[s]
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The relations between the matrices S,T and C

Here we just want to show that S2= (ST)3

and &2

cC

as

the

other relations mentioned in the last section of chapter five

come directly as C is the identity matrix.
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In[10]:= t={{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

o, o, o, o, 0, 0, 0, 0, 0, O, O}, {O,1,0,0,0,0,0,0,0,0,0,0,0,0,

o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O}, {O, 0,1,0,0,0,0,

o, o, 0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,000,0,0,0,0,0,0},

{0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
o, o, o, o, 0}, {0, 0,0,0,1,0,0,0,0,0 00,0000, 0,0,0,0,

¢, 0, 0, 0, 0, 0, 0, 0, 0O, O, O, O}, {O,0,0,0,0,1,0,0,0,0,0,0,0,

o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O}, {O, 0, O, 0, 0,0,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, 0}, {0O,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0}, {O,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},

{0, 0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, 0}, {0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

o, 0, 0, 0, 0, 0, 0, 0, O, 0, 0,0,0,0,0,0)}, {0,0,0,0,0,0,0, 0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0, el%l, o, 0, 0,0,0,0,0,0,0,0,

2drx

o, 0,0,0,0, 0, 0,0}, {0,0,0,00,0,0,0,0,0,0,00,0, e 3,
o, 0,0, 00,0000 0, 0,0,0,0,0, 0, 0}, {0, 0,0,0,0,0,0,

0,0,0,0,0,00,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, e+*,0,0,0,0,0,0,0,

0, 0,090,000, 0,0}, {0,000, 0,0,00,0,0,0,0,0,0,0,0,

_2ix

0,e 3 ,0,0,0,0,0,0,0,0,0,0,0, 0,0, o}, {0, 0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0, 0},

b Y
{0, 0,0,0,0,0,0,000,0,0,0,00,0,0,0,0 e5,0,0,0,0,0,

0,0,0,0,0,0, 0}, {0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,

24
0,0,0, 3 ,0,0,0,0,0,0,0,0,0,0, 0}, {0, 0, 0, 0, 0, 0, 0, 0,

0, 0,0, 0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 0, 0},
24
{0, 0,0,0,0,0,0,0,0,00,00,000,00,0,0,0,0, e 35,0,

o, 0, 0,0,0,0,0, 0}, {0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

i

0,0,0,0,0,0,0,e73,0,0,0,0,0,0,0, 0}, {0, 0,0,0,0,0,0,

o, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0,0, 0, 0, 0, 0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,
0, 0,0,0,0, 0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0, 0}, {0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0, 0, 0, 0}, {0, 0,0, 0, 0,0,
0,0,0,0000,000,00,0,0,0,0,0,0,0,0,0,0,1, 0, 0, 0},

{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0, 0,0,1, 0, 0}, {0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0}, {0, 0,0,0,0,0,0,0,

o, 0,0, 0,000,000 000,000,000, 00,0, 0, -1}}

I3

’ ’



82 = MatrixPower[s, 2]

In[11]:

{{1, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

out[11)

OI ol OI ol 0I ol OI OI OI OI oI o}l {ol ll 0/ Ol 0/ OI OI oI 0I OI
o, o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},

{¢,0,11,¢0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

o, 0o, 0,0,0,0,0,0,0,0}, {(0,0,0,1,0,0,0,0,0,0,0,
0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

{0,o0,90,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

OI ol ol ol 0! ol 0! Ol Ol o}l {OI oI OI 0I OI ll Ol OI 0I OI Ol
o, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},

{0, 0,0,0,0,0,1,0,0,0,0,0,0,0,90,0,0,0,0,0, 0,0,

o, 0, 0,0,0,0,0,0,0,0}, {O,0,0,0,0,0,0,1,0,0,0,
0o, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

o, o0,0,0,0,0,0,0,0,0}, {O,0,0,0,0,0,0,0,0,1,0,
o, o, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0},

{o, ¢,0,90,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,0,0,

o, o, 0, 0, 0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,
l, 0, 0, 0, O, 0, O, 0, 0, 01 0, 0/ o/ 01 0: ol 0, Ol Ol OI O}I
{o, o, 0, 0, 0, 0, 0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,

6,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,
o,0,10,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0, 0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,

o, 0,0,0,0,0,0,0,0,0}, {O,0,0,0,0,0,0,0,0,0,0,
o,0,0,0,1,0,0,0,0,000,000,0,0,0,0,0, 0},
{0,090,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0I OI OI 0l OI oI OI ol ol 0}/ {Ol 0I OI Ol OI ol ol Ol 0l 0! ol
o, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,

0, o, 0,0,0,0,0,0,0,0}, {0,0,0,0,00,0,0,0,0,0,
0,0,0,0,0,0,0,0,1%0,0,0,0,0,0,0,0,0,0, 0,0},
{o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

o, o,0,0,0,0,0,0,0, 0}, {0,0,0,0,0,0,0,0,0,0,0,
0l OI OI OI OI OI 0/ OI OI ol ll Ol ol 0I 0I 0! 0I 0’ ol Ol o}l
{¢, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

i, 0,0,0,0,0,0,0,0, 0}, {O,0,0,0,0,0,0,0,0,0,0,
ol 0I Ol Ol Ol ol 0[ ol ol Ol 0I ol 1/ OI 0I OI OI OI Ol Ol O}l
{o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,

6, 0,1,0,0,0,0,0,0,0}, {O,0,0,0,0,0,0,0,0,0,0,
o, 0,0,0,00,0,0,0000001,0 00,0, 0,0},
{0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,

6,o0,0,0,1,0,0,0,0, 0}, {0,0,00,0,0,0,0,0,0,0,
Ol Ol OI oI 0I ol Ol Ol Ol Ol ol oI 0I Ol Ol OI 1l o' 0l Ol o}l
{OI Ol 0/ OI OI OI OI OI 0l OI 0l 0I ol 0/ OI Ol OI OI OI OI 0I Ol

0I OI OI OI OI OI 1[ 0I 0l O}I {0, ol ol 0I ol ol OI 0I Ol OI OI
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0},
(¢, 0,0,0,0,0,0,09,0,0,00000,00,0,0,0,0,0,

0,0,0,0,0,0,0,0,1, 0}, {0,0,0,0,0,0,0,0,0,0, 0,
0,0,00,000,0,000000000,00,0,1}}

l=s.t

In[12]:

Out(12]
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Inf13]:

In[15]:

Out[15]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 2inx 1 _2inx 1
[z -5 -2. 2 5/ -5 = = =1 5 ~Fi-F. 7, 7€ ,-Ze P -3
6' 6' 6€°'6'6' 6'6'6"'"6'6’ 6’ 6’3" 6 3
1 2in 1 21irn 1 1 irx 1 2inr 1 1 2in 1 in
-—e 3, —€e 37, —, —e3,-—e T, =, ——e 3T, —e
e, Ze 3 g€, -ge€3 . 3.-ge T, £e73,0,000,00,0,0},
EE S S O U W S S G O S D G (T S S
6' 6’ 6’66’ 6’ &' 6' &' 666" &' 3 6 6
1 2in 1 2in 1 1 i 1 2ix 1 1 2in 1 in
— e 3 — 3 —_, -~ — e 3 , -—— e 3 — — e T3 — e 3
ye3  ze 3, 7, -ge3, -Te3 , ¢, Fe’T, 2e3,00,00 0,00 0},
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2ix 1 _2inx 1 1 zix
(. -2/ -5/ =/ 5 -5 . 5 F1 5 Fr-c"F1-g €3, 5e i
6' 6' 6'6'6' 6'6'6'6"'6' €' &' &' 3 6' 6
1 21w 1 1 in 1 2in 1 1 2in 1 in
ey, -Z,-Ze3,-Z—e3 ,-=, e T, Ze3,0,0,0,0,0,0,0, 0},
3¢ 7T T3 e T3 6 )
{i o110 10101
sl 6/ 6! 6I 6[ 6/ 6/ 6! 6! ’ 6! 6! 31
1 2irn 1 _2in 1 1 2in 1 2inrn 1 1 131
— 3 -= 3 -, -= 3 i 3 -, ==
€€’ "¢® T3 Tg® g ® P T3 T
1 2irn 1 1 _2in 1 _An
e T, -3, ze’ T, -ze7T,0,00,00,0 0, 0},
(3, -2, -2, 2, 2,2, 2, 2 2 2 2 2 3 1, e 2
6’ 6’ 6'6'6' 6'6'6'6'6' &' €6’ &3 6 6
1 2irn 1 2in 1 1 in 1 2ix 1 1 2ir 1 in
S €3 —e 3 ,-—, -€e3, -e3 ,-—,-—€e" 3 ,-—-e7,0,0,0,0,0,0,0, .
3e R Ge Pt 6e , 3e 3 g © 3 € 0 0 0,0 0}
(3, -2,-2, 2, %2 2, 2 -1 2 2 2 % % 1M, Tt 2
6’ 6’ 6'6'6'" 6" €' 6" 6" 6'6"6" €6'6 3 6
1 2ir 1 2in 1 1 1n 1 2in 1 1 2ir 1 in
ey, - e, =, ZeT, —e 7, =, -—e "7, ~-—€e 3
ges ., -yeT, o geT, e, o, -2e’T, -2e7,0,0,00,00 0,0},
1 1 1 1 11 1 1
(' - #7717 %% 3 7 -7 "1+00000000000,00,
o, r 11 1 1 _i} {l I T P S
Tt L S U e e e A A S L
i1 1 1 1 1 1 1 1
0,0,0,0,0,0,0,0,0,0,0,0,0,0, -3, -3, ~F.~F:"7: 7' 771}
101 1 1 1 01 1 1
-5 3 -3 9% -3.-7.77:0,0,00,0,0,0,0,0,0,0,0,0,
b1 11 1 1 1 1 1} {1 11 1 1 11 1
’ El 'Z'r I/ ZI__4_I 41 41 a ’ 41 41 41 41 ’ ’ 41 4! 41 41
1 1 1 1 1 1 1 1
0,0,0,0,0,0,0,0,0,0,0,0,0,0, -5, -5, -F.~F5-575 "5}
1 1 1 1 1 01 1 1
(+.7.-7-5-%0 F7.-F. 7+,-3-0.0,0,0,0,0,0,0,0,0,0,0,0,
1
o2, 1 01 1 1 11 3yl 3 11, 1.1 1
O N S 4’ 3’ a1 2’ 3’ "3
1 1 1 1 1 1 1 1 1
4+0,0,0,0,0,0,0,0,0,0,0,0,0,0, -5, -5, 5.7/ 775" 7' 1}
i1 1 1 101 1 1
T ~,-=~,>,-%+,0,0,0,0,0,0,0,0,0,0,0,0,0,
{727 "7 %% 3.~ 7.5 1%
i 1 1 1 1 1 1 1 1 1 1 1 11
0'—1/—71 z I/~Z,—z,—11—z‘}, {z, Z,-ZI-Z,O, 0, - —. e
1 11 1 1 1 1 1 1
2+0,0,0,0,0,0,0,0,0,0,0,0,0,0, 7, 7,7 ~7 "7 "7 "7 7}J

f = MatrixPower[1l, 3]

rf=f//N

({1.+0.1, -2.77556x10"*" +0.1i, -2.77556x107*7 + 0.1, -6.93889x10" 8+ 0.1, 2.77556x107%7 +0. 1,
4.16334x107*7 + 0.1, -2.77556x10"7 + 0.1, 3.46945x107*® + 0.1, 3.46945x10°*% + 0.1,
-2.77556x107*7 + 0.1, 6.93889x107% + 0.1, 2.77556x107*7 + 0.1, 4.16334x10"* +0. 1,
2.42861x10717 +4.51867x10°27 i, -3.46945x10717 - 6.03774x107" i, 2.77556x10717 + 0. 1,
-4.51028x1077 +5.73721x10°%7 1, 3.46945x10717 -3.98701x1077 i, 2.77556x107 + 0. 1,
4.16334%x10717 +3.38604x1077 i, 2.42861x107*7 +4.51867x107'7 i, 6.93889x107'% + 0. i,
3.46945x10717 -3.98701%x10°7 i, 2.77556%10°*" -3.0856x10"*"i, 0., 0.,0.,0.,0.,0.,0.,0.},
(-3.46945x107*7 +0.1, 1.+0.1i, -5.55212x10°*" +0. i, -3.46945%x107%7 + 0.1, 4.85723x10"*7 +0. 1,
2.77556x1077 + 0.4, 2.77556x107*7 + 0.1, 2.08167x107Y7 +0. 1, 2.08167x107°* +0. i,
2.77556x107*7 + 0.1, -2.08167x10"*7 + 0.1, -1.38778x107*7 +0. 1, 2.77556x107*" +0. 1,
-4.51028x10717 +5.73721x10717 1, -6.93889x107 7% - 3.98701x107*" i, 4.85723x1077 +0. i,
2.42861x107%7 +4.51867x10717 1, -2.08167x107*7 - 6.03774x107%7 i, -1.38778x1077 +0. 1,
-1.38778x10717 -3.38604x107*7 i, -3.46945x107'7 -4.51867x107*7 i, -2.08167x107'7 + 0. i,
-2.77556x1077 +3.98701x10717 1, -1.04083x107'7 +3.0856x10°*" i, 0.,0.,0.,0.,0.,0.,0.,0.},
(-3.46945x107'7 +0. i, -5.55112x10"*7 + 0.4, 1.+0.1, -3.46945x107*7 +0. 1, 4.85723x10°7+0. 1,



2.77556x10717 + 0.1, 2.77556x10717 + 0. i, 2.08167x107Y7 + 0. i, 2.08167x107*7 +0. 1,
2.77556x10717 + 0.1, -2.08167x10°*7 +0.i, -1.38778x10°*7 +0. 1, 2.77556x107*" + 0. i,
-4.51028x107'7 +5.73721x107*" i, -6.93889x107'% - 3.98701x10"%7 i, 4.85723x107 +0. i,
2.42861%x1077 +4.51867x1077 i, -2.08167x10"}7 - 6.03774x10°*7 1, -1.38778x10° 17 +0. 1,
-1.38778x107'7 -3.38604x10°1" i, -3.46945x107!7 -4.51867x10"%7 i, -2.08167x10"*" +0. i,
-2.77556%x107Y7 +3.98701x10"*" i, -1.04083x107'7 +3.0856%x107*" i, 0.,0.,0.,0.,0.,0.,0., 0.},
{(-6.93889%x107% + 0.1, -2.77556x10"*7 +0.1, -2.77556x10"17 + 0.1, 1. +0.1i, 2.77556x107%7 +0. 1,
4.16334x107Y7 +0.1i, -2.77556x10°*7 + 0. i, 3.46945x107*% + 0.1, 3.46945x107 % + 0.1,
-2.77556x107*7 + 0.1, 6.93889x107'® +0.1i, 2.77556x10°7 + 0.1, 4.16334x10"7 +0. i,
2.42861x10717 +4.51867x107*7 i, -3.46945x10717 -6.03774x10717 i, 2.77556x107'7 + 0. i,
-4.51028x107Y7 +5.73721%x10°*7 i, 3.46945x107%7 -3.98701x10"%7 i, 2.77556x 107 +0. i,
4.16334x10717 +3.38604x10°7 1, 2.42861x107!7 +4.51867x107*7 i, 6.93889x107% +0.1i,
3.46945x107%7 -3.98701x10°*" i, 2.77556x10"7 -3.0856x10"*"i, 0., 0., 0., 0., 0., 0., 0., 0.},
{2.08167x107*" + 0.1, 6.245x10°Y7 +0.i, 6.245x10°27 +0. i, 2.08167x10°*7 +0. i,

1.+0.1, -5.55112x107*7 +0. 1, 3.1225x10°*7+0.4i, 0.+0.1, 0. +0.1,

3.1225%10°*7 4+ 0. i, 1.73472x1077 +0. i, 4.16334x107*7 +0. i, -2.77556x10"*7 +0. 1,
4.51028x107Y7 - 5.73721x107*7 i, 1.04083x10727 +3.98701x10"*7 1, -3.46945x1077 +0. 1,
-1.04083x107'7 -4.51867x107*7 i, 3.46945x10°}7 +6.03774x10°*7 i, 2.77556x10°}7 +0. i,
-3.46945x107*% +3.38604x10"1" i, 6.93889x107%% +4.51867x107%7 1, 1.38778x107*7 +0. 1,
-2.08167x107'7 -3.98701x107'" i, -6.93889x107*® - 3.0856x10'"i, 0., 0., 0.,0.,0.,0.,0.,0.},
{1.04083x107'7 + 0.1, 2.08167x10°*7 + 0.1, 2.08167x10°*7 +0. i, 1.04083x107*7 +0.1i,
-5.55112x10°17 + 0.4, 1. +0. 1, 2.08167x10°7 +0.1i, -2.42861x1077 +0. i, -2.42861x10717+0. 1,
2.08167x107'7 +0. 14, -4.51028%x10"*7 +0. i, -5.55112x10°*7 +0. i, -3.46945%x10"*" + 0. i,
-1.04083x10717 - 4.51867x10"17 i, 2.77556x107!7 + 6.03774x1077 i, -2.08167x10717 +0. i,
4.51028x107'7 -5.73721x107*7 i, 6.93889x107*% +3.98701x10°*7 i, -2.08167x107*7 +0. i,
-1.38778x10717 -3.38604x107%7 1, -1.04083x10717 -4.51867x10"7 i, -1.73472x107*7 +0. 1,
6.93889x107'® +3.98701x107'" 1, 0. +3.0856x10"" i, 0.,0.,0.,0.,0.,0.,0.,0.},
(-3.46945x107'7 + 0.1, 2.77556x1077 + 0.1, 2.77556x10727 +0. i, -3.46945x1077 +0. 1,
-1.38778x10°Y + 0.1, 2.77556x10°*7 +0.i, 1.+0.1, 2.08167x107*7 +0.1i, 2.08167x107%7 +0. 1,
-5.55112x1077 +0. i, -2.08167x107*7 + 0.1, 4.85723x107*7 +0.1i, 2.77556x107 +0. i,
-3.46945x10°7 -4.51867x1077 i, -6.93889x107'% -3.98701x107'7 1, -1.38778x10°7 +0. 1,
2.42861x107'7 +4.51867x107%7 i, -2.77556x10717 +3.98701x10°*7 i, 4.85723x107*7 +0. 1,
-1.38778x107*7 -3.38604x10°*" i, -4.51028x107'7 +5,73721x107'7 i, -2.08167x10"7 +0.1i,
-2.08167x1077 -6.03774x10°17 1, -1.04083x10"'7 +3.0856x10°*" i, 0., 0., 0.,0.,0.,0.,0.,0.},
{(-1.38778x107'7 +0. i, 2.77556x107*7 + 0.1, 2.77556x107!7 +0.1i, -1.38778x107*7 +0. 1,
-6.93889%x107% + 0.1, 1.38778x10°17 +0.i, 2.77556x1077 +0.1i, 1.+0.1i, -1.04083x107%7+0. 1,
2.77556%x107'7 + 0.1, 4.85723x107*7 + 0.4, -6.93889x107*% + 0.1, 1.38778x107*7+0. 1,
-3.46945x107*7 +1.21354x107%7 1, 2.08167x10"17 +1.74537x107'7 i, -6.93889x107% 4+ 0. i,
2.42861x107*7 -1.21354x107*7 i, -2.77556x10717 -1.74537x10"17 1, -6.93889x107 %+ 0. i,
-1.38778x10717 -4.62802x107%7 i, -3.46945x107'7 +1.21354x107'7 i, 4.85723x107%7 +0. i,
-2.77556x10717 - 1.74537x10°'7 i, -1.38778x107'7 +4.92846x10°*" i, 0., 0., 0., 0., 0., 0., 0., 0.},
(-1.38778x10°'7 +0.1, 2.77556x10°7 +0.1, 2.77556x10"*7 + 0.1, -1.38778x1077 +0.1,
-6.93889x107® + 0.1, 1.38778x10°*7 + 0.1, 2.77556x10°7 + 0. i, -1.04083x10"%7 +0. i,

1.+0.1, 2.77556%x107*7 +0.1, 4.85723x107Y7 +0.1, -6.93889x10°*® +0.1i, 1.38778x10°7 +0. 1,
-3.46945x107°17 +1.21354x107%7 1, 2.08167x10717 +1.74537x1077 i, -6.93889x107 % +0. 1,
2.42861x107'7 -1.21354x107*7 i, -2.77556x107*7 - 1.74537x10"*7 i, -6.93889x10718 +0. 1,
-1.38778x107'7 -4.62802x107*7 1, -3.46945%x107*7 +1.21354x10°*7 i, 4.85723x10°17 + 0. 1,
-2.77556x107*7 -1.74537x10°17 i, -1.38778x107}7 + 4.92846x107'71, 0., 0., 0., 0., 0., 0., 0., 0.},
{-3.46945x10717 + 0. i, 2.77556x1077 + 0.1, 2.77556x10°27 + 0.1, -3.46945x107*7 +0. 1,
-1.38778x107*7 +0.1i, 2.77556x10°*7 + 0.1, -5.55112x10"%7 + 0.1, 2.08167x10°*7 +0. i,
2.08167x107Y7 +0.4, 1.+0.i, -2.08167x10"7 +0. i, 4.85723x10"*7 +0.1i, 2.77556x107*7 +0. i,
-3.46945x107%7 - 4.51867x107%7 1, -6.93889x107'% -3.98701x107*7 i, -1.38778x107%7 +0. i,
2.42861x10717 +4.51867x10°7 4, -2.77556x107*7 +3.98701x1072" 1, 4.85723x107*7 +0. i,
-1.38778x1077 -3.38604x1077 1, -4.51028x107%7 +5.73721x107*7 i, -2.08167x1077 +0. i,
-2.08167x10717 -6.03774x10°7 i, ~1.04083x107'" +3.0856x10°*" i, 0., 0., 0., 0., 0., 0., 0., 0.},
(-1.38778x107Y7 +0. i, 2.42861x10°37 + 0.1, 2.42861x1077 +0.1i, -1.38778x10°*7 +0. i,
1.38778x107Y7 + 0.1, 5.55112x10°%7 + 0.1, 2.42861x1077 +0. i, 7.28584x10"7 +0. i,
7.28584x1077 +0.1i, 2.42861x107*7+0.4, 1.+0.1, 1.38778x10°*7 +0. i, -1.38778x1077 +0. 1,
6.93889x107*% - 1.21354x107%7 1, -1.38778x10°%7 -1.74537x107%7 i, 2.77556x 107 + 0. i,
-1.04083x10717 +1.21354x107*" i, -6.93889x107%% +1.74537x107*" i, 2.77556x107%7 + 0. i,
1.38778x107!7 +4.62802x1077 i, 6.93889x107'% -1.21354x10°2" 1, -4.16334x107%7 +0. 1,
-6.93889x107*% +1.74537x107*7 1, 2.77556x10"*" - 4.92846x10°*"1, 0., 0., 0., 0., 0., 0., 0., 0.},
{2.08167x10°'7 +0. 1, 3.1225x10°*7 +0. i, 3.1225x1077 +0. i, 2.08167x1077 + 0. i,

4.16334x10°Y7 +0.1i, -5.55112x107'7 + 0. i, 6.245x10°*7 + 0.4, 0. +0. 1,

0.+0.1, 6.245%x10°17 +0.1, 1.73472x10°7 +0.1, 1.+0.1i, -2.77556x10"*7 +0. i,

6.93889x107'8 +4.51867x107'7 i, 1.04083x107'7 +3.98701x10°7 1, 2.77556x10717 + 0. i,
-1.04083x10717 -4.51867x10°17 1, -2.08167x10717 -3.98701x107*7 i, -3.46945x107%7 +0. i,
-3.46945x1071® + 3.38604x107%7 1, 4.51028x107%7 -5.73721x107*7 i, 1.38778x10"%7 + 0. i,
3.46945x107Y7 +6.03774%x10'7 i, -6.93889x107*®* -3.0856%x10"" i, 0., 0., 0., 0., 0., 0., 0., 0.},
{1.04083x107*7 +0.1, 2.08167x107*7 + 0.1, 2.08167x1077 +0.1i, 1.04083x10°*7+0. 1,
-2.08167x107'7 +0. i, -3.46945x1077 +0.1i, 2.08167x107'7 +0. 1, -2.42861x107*7 +0. i,
-2.42861x107*" + 0.1, 2.08167x10°17 +0.1i, -1.73472x10*7 + 0.1, -2.08167x10"27 +0. i, 1.+0. i,
-1.04083x107'7 -4.51867x107*" 1, 2.77556x107*" +6.03774x10"*7 i, -5.55112x 1077 +0. i,
4.51028x10717 -5.73721x107*7 i, 3.46945x107*7 +3.98701x107 i, -5.55112x107*7 + 0. 1,
-1.38778x10717 -3.38604x107%7 1, -1.04083x107'7 -4.51867x107*7 i, -4.51028x107%7+0. i,
3.46945x107'7 +3.98701x107'7 i, 0. +3.0856x10"*74i, 0.,0.,0.,0.,0.,0.,0.,0.},



{5.55112x10717 +1.51424x1077 1, 4.16334x107!7 +3.93438x107%7 i, 4.16334x107*7 +3.93438x10727 i,
5.55112x107}7 +1.51424x107*7 i, 2.08167x10°}" -3.93438x10"7 i, 6.93889x 10728 - 1.51424x107*" 1,
-4.16334x10717-1.51424x107%7 1, -5.20417x107%7 +4.21822x10"'7 i,

-5.20417x107*7 +4.21822x10°* i, -4.16334x107'7 -1.51424x107"7 i,

6.245x10717 - 4.21822x10717 i, 2.77556x10717 +1.51424x10"*" i, 6.93889x10718 -1.51424x10717 i,
1.-3.27641x10717 4, -2.77556x10717 +1.15479x10°*® i, 2.08167x107'7 - 3.93438x107*" i,
-5.20417x107%7 +3.91778x1077 i, 2.77556x107}7 - 8.57384x107'7 i, 2.77556x10717 +1.51424x10717 i,
1.38778x10717 -1.52607x10"*7 1, 6.93889x107!7 -3.91778x10717 i, 6.245x107}7 -4.21822x1071" i,
-6.93889x10°*% -1.15479x10°*% i, 3.46945x107'% +2.68083x10°*’4, 0., 0., 0.,0.,0.,0.,0.,0.},

{4.85723x10717 -3.93438x107'7 i, 4.16334x107*7 -1.51424x10"*" i, 4.16334x107*7 - 1.51424x107*" 1,
4.85723x10°%7 -3.93438x10"2" i, -5.55112x107%7 +1.51424x107%7 1, 1.38778x107'7 +3.93438x107'7 1,
4.16334x107'7 -1.51424x1077 i, 4.16334x10717 +4.21822x10°*" 1, 4.16334x10°*7 +4.21822x10°7 i,
4.16334x107Y7 -1.51424x107Y7 i, -6.59195x10717 -4.21822x10"*7 i, -5.55112x10717 +1.51424x10"%7 i,
1.38778x10717 +3.93438%x 10717 i, -3.46945x107'7 +6.00885x10°% i, 1. +4.09735x10°7 1,
-5.55112x107%7 +1.51424%x107'7 i, -6.93889x107%% + 9.01362x107%7 i,
6.93889x1071% - 4.62291x1077 i, -5.55112x10717 +1.51424x107%7 i, 0. +2.38039x107*7 i,
-3.46945x107%7 +6.00885x107% 1, -6.59195x107*7 - 4.21822x107'7 i,
6.93889x10°*% - 4.62291x10"*" i, -4.16334x10"%" -9.25186x107%*%*4, 0., 0., 0., 0., 0., 0., 0., 0.},

{2.08167x107Y7 +0.1i, 6.245x10°17 +0. i, 6.245x10°17 + 0.1, 2.08167x107*7 +0. 1,

-3.46945x107Y7 +0. i, -2.77556x107*7 + 0.1, 3.1225%10°*7+0.1, 0. +0.4i, 0.+0.1,
3.1225x10°*7 +0.1i, 1.38778x10°*7 + 0.1, 2.77556x10"*7 +0. i, -5.55112x10°*7 +0. i,
4.51028x10717 -5.73721x107*7 i, 1.38778x107*7 +3.98701x1077 i, 1.+0. i,

-1.04083x107%" -4.51867x10°*7 i, 3.46945%x10°7 +6.03774x1077 1, 4.16334x10°*" +0. 1,
-2.77556x 10717 +3.38604x10°17 1, -4.85723x10717 +4.51867x10717 i, 1.73472x10°7 +0. i,
-6.245x10717 ~3.98701x 1077 i, -3.1225x10°*7 -3.0856x107*"i, 0., 0., 0., 0., 0., 0., 0., 0.},

{5.55112x107*7 +3.93438x107'7 i, 5.551212x107%7 +1.51424x107*7 i, 5.55112x10°7 +1.51424%x107%" 1,
5.55112x107!7 +3.93438x10727 i, -2.77556x10717 -1.51424x10717 i, 4.16334x107'7 -3.93438x107"" i,

.55112x10717 +1.51424x107'7 i, 5.20417x10°17 - 4.21822x10"*" i, 5.20417x107'7 - 4.21822x10"'7 1,

.55112x107'7 +1.51424x10°27 i, -6.245x10°17 +4.21822%x107%7 i, -2.77556x107*7 -1.51424x10"*7 1,

.16334x107%7 - 3.93438x10°27 i, -1.04083x10°27 +3.91778%x107 i,

.08167x107*7 -8.57384x107*7 1, -2.77556x10727 -1.51424x10"*7 i, 1.-3.27641x10717 1,
-3.46945x10717 +1.15479x107% i, -2.77556x10717 - 1.51424x107'7 1,

-4.16334x107'7 +1.52607x10717 i, -1.04083x107%7 +3.91778x1077 i, -6.245x107*7 +4.21822x10"%7 i,
-3.46945x107'7 +1.15479x10'% i, 0. -2.68083x10°*"4i,0.,0.,0.,0.,0.,0.,0.,0.},

{4.16334x107*7 -1.51424x10"*7 i, 4.16334x10717-3.93438x10"*7 1, 4.16334x107%7 -3.93438x107'7 i,
4.16334x10717 -1.51424x10°*7i, 5.55112x107*7 +3.93438x10°7 i, -5.55112x10°*7 +1.51424x107'7 1,
-5.20417x107'7 +1.51424x1077 1, -6.245x10727 - 4.21822x107%7 i, -6.245x107*7 - 4.21822x10"%7 1,
-5.20417x107*7 +1.51424x1077 i, 4.51028x10"%7 +4.21822x10"%7 i,
4.16334x107*7 -1.51424x1077 i, -5.55112x107*7 +1.51424x10" " i,
2.08167x10717 +9.01362x10°2" 1, -6.93889x107%% - 4.62291x107!7 1, 5.55212x10"'7 +3.93438x107"7 i,
-5.55112x 10717 + 6.00885x107% i, 1. +4.09735x107'7 i, 4.16334x107*7 - 1.51424x10"7 i,
6.93889x107%% - 2.38039x107*" 1, -1.38778x10717 -6.00885x107*% 1, 4.51028x107'7 +4.21822x107*" i,
-4.85723x107!7 +4.62291x10°%7 i, 2.08167x107!7 +9.25186x107*%i, 0., 0., 0., 0., 0., 0., 0., 0.},

{2.08167x107*7 + 0.1, 3.1225x10°*7 +0. i, 3.1225x10°*7+0.1i, 2.08167x10"7 +0. i,
2.77556x107*7 + 0.1, -2.77556x107'7 + 0. i, 6.245x10°*7 +0.i, 0. +0.1, 0. +0. 1,
6.245x10°17 + 0.1, 1.38778x10°17+0. 1, -3.46945x1077 +0. i, -5.55112x10" + 0. 1,
-4.85723x10°7 +4.51867x10°17 1, 1.38778x 1077 +3.98701x107*7 i, 4.16334x1077 +0. i,
-1.04083x107%7 -4.51867x107*7 1, -6.245%x107%7 -3.98701x10"*7 i, 1. +0. 1,

-2.77556x 10717 +3.38604x10717 1, 4.51028x10°17 -5.73721x1077 i, 1.73472x10"Y7 +0. i,
3.46945x10717 +6.03774x10°'7 1, -3.1225%x107*7 - 3.0856x107*7 1, 0., 0., 0., 0., 0., 0., 0., 0.},

{4.16334%x107'7 +4.21848x107%7 i, -3.81639x107'7-4.21848x10"*" 1, -3.81639x107}7 - 4.21848x107'7 i,
4.16334x10717 +4.21848x10717 i, 6.93889x107'7 +4.21848x107'7 1, -4.16334x1077 - 4.21848x107'7 1,
-3.81639x10717 -4.21848x107'7 i, 5.89806x107*7 -3.93464x107}7 i,
5.89806x10717 - 3.93464x10°*" i, -3.81639x10"17 - 4.21848x10"7 i,
3.46945x107%% +3,93464x107*" i, 6.93889x10717 +4.21848x1077 1, -4.16334x10"7 -4.21848x10717 i,
6.93889x10717 - 6.00885x107*% i, 3.46945x10717 +1.10913x107%7 i, 6.93889x10°7 +4.21848x10717 1,
-6.245%x1077 + 6.00885x107*% i, -2.08167x10717 -1.10913x107*7 i, 6.93889x107*" +4.21848x10"%7 i,
1.-1.02095x107%% 1, 6.93889%207!7 -6.00885x107*% i, 3.46945x107'8 +3.93464x10717 1,
-2.08167x1077 -1.10913x107'7 i, 1.52656x10°*°* -3.4193x10"*" 1, 0., 0., 0., 0., 0., 0., 0., 0.},

(5.55112x 10717 +1.51424x10°*7 1, -4.16334x107%7 -1.51424x10717 4, -4.16334x10727 -1.51424x10727 i,
5.55112x10727 +1.51424x107*7 4, 2.77556x10717 +1.51424%x10°7 i, 6.93889x10°*% - 1.51424x10717 j,
4.16334%x10717 +3.93438x10717 i, -5.20417x10"%7 +4.21822x10717 1,

-5.20417x107%7 +4.21822x10°17 1, 4.16334%x10°7 +3.93438x10"'7 i, 6.245x107*7 - 4.21822x10"7 i,
2.08167x107*7 -3.93438x107*7 i, 6.93889x107*% - 1.51424x10"'7 i, 6.93889x10717 -3.91778x10"17 i,
-2.77556x10717 +1.15479x107® i, 2.77556x107!7 +1.51424x107*" i,

-5.20417x10717 +3.91778x 1077 1, -6.93889x107!8 - 1.15479x107 18 i, 2.08167x10717 -3.93438x10°}7 1,
1.38778x107'7 -1.52607x10717 i, 1.-3.27641x107*" i, 6.245x107}7 - 4.21822x10"%7 i,
2.77556x10717 - 8.57384x107*7 1, 3.46945x107*® + 2.68083x10°'? i, 0., 0., 0., 0., 0., 0., 0., 0.},

{-1.38778x107'7 + 0.1, 2.42861x10°'7 +0.1i, 2.42861x10"7 +0.1i, -1.38778x1077 + 0. i,
2.77556x10°17 + 0.1, -1.38778x107*7 + 0. i, 2.42861x10"7 +0. i, 7.28584x10°17 +0. i,

.28584x10717 + 0.1, 2.42861x107*7 + 0.1, -4.16334x10"'7 + 0.1, 2.77556x10°7 + 0. i,

.55112x1077 + 0.1, -6.93889x1071% - 1.21354x10717 i, 4.16334x10717 -1.74537x10°17 i,

.38778x1077 + 0.1, 3.46945x107%% +1.21354x107*7 i, -6.93889x1078 +1.74537x10"17 i,

.38778x10717 + 0.1, 1.38778x1077 +4.62802x10°17 i, -6.93889x10728 - 1.21354x10°%7 i, 1.+0. i,
-6.93889x107'% +1.74537x10717 i, 2.77556x 107" - 4.92846x10*74i, 0., 0., 0., 0., 0., 0., 0., 0.},

{4.16334x10717 - 1.51424x1077 4, -5.20417x10727 + 1.51424x10717 i, -5.20417x 10717 +1.51424x10"'7 i,
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4.16334x10717 -1.51424%x10°'" 3, 4.16334x107}7 -1.51424x107*" i, -5.55112x10717 +1.51424x107'7 i,
4.16334%107%7 -3.93438%x107%7 i, -6.245x1071" - 4.21822x10°*" 1, -6.245x107'7 - 4.21822x1077 i,
4.16334%x10717-3.93438x107%7 1, 4.51028x107*7 +4.21822x107*7 1, 5.55112x107%7 +3.93438x107'7 i,
-5.55112x10717 +1.51424x107%7 i, -1.38778x107!7 - 6.00885x 10728 i,

-6.93889x107% —4.62291x107'7 i, 4.16334x10°*7 -1.51424x10"*" i,

-5.55112x107*" +6.00885x 1078 i, -4.85723x10"*7 +4.62291%x10°*" i, 5.55112x107*7 +3.93438x10717 1,
6.93889x10°1% - 2.38039x1077 1, 2.08167x10717 +9.01362x10"*7 i, 4.51028x107'7 +4.21822x107'7 i,
1.+4.09735x1077 1, 2.08167x107*7 +9.25186x107**i, 0., 0., 0., 0., 0., 0., 0., 0.},
{5.55112x10*7 - 4.21848x10"*" 1, -1.38778x10717 +4.21848x1077 1, -1.38778x10"*7 +4.21848x107*7 i,
5.55112x10°17 - 4.21848x107%7 i, 5.55112x107}7 -4.21848x10"17 i, -4.85723x1077 +4.21848x10"%" g,
-1.38778x1077 +4.21848x107'7 i, 3.81639%x107%7 +3.93464x10"'7 i, 3.81639%x10°*7 +3.93464x10"" i,
-1.38778x107%7 +4.21848x1077 i, -6.93889x107%% - 3.93464x107%7 1,

.55112x10717 - 4.21848%x107*7 i, -4.85723x107'7 +4.21848x107'7 i,

.93889x107%% +1.81443x10717 i, -6.245x107!7 +1.15818x107%% i, 5.55112x10"%7 - 4.21848x107%7 1,
.73472x 10717 - 1.81443%x107%7 i, 8.32667x107*7 -1.15818x10°*% i, 5.55112x10727 - 4.21848x1077 i,
.66533x 107 +4.02019x10717 i, 6.93889x107*® +1.81443x10°*7 i, -6.93889x107%% - 3.93464x10%7 1,
8.32667x107'7 -1.15818%x107*% i, 1. +9.90901x10*"4i, 0., 0.,0.,0.,0.,0.,0.,0.},
(-3.46945x107'% + 0. i, -3.46945x10°® + 0. i, -3.46945x207*% 4+ 0.1, -3.46945x107*% +0. i,
6.93889x107'% + 0.1, 6.93889x107**+ 0.1, -3.46945x107*® + 0.1, -3.46945x10728+ 0. 1,
-3.46945x107% + 0.1, -3.46945x107*® + 0.1, 6.93889x10°% +0. 1, 6.93889x10°** +0. i,
6.93889x10°¥ + 0.1, 6.93889x107*%+0.1i, 0.+0.1, 6.93889x107%%+0. 1,

6.93889x107® + 0.1, 0.+0.1, 6.93889x10°*® + 0.4, 0.+0.1i, 6.93889x10°**+0.1,
6.93889x107*+0.4i,0.+0.4,0.+0.14,1.,0.,0.,0.,0.,0.,0.,0.},

{-3.46945x10"*® + 0.1, -3.46945x107*® + 0.1, -3.46945x107%% + 0.1, -3.46945x107*%+ 0. 1,
6.93889x107'% + 0.1, 6.93889x107!% + 0.1, -3.46945x107%% + 0.1, -3.46945x10"% +0. 1,
-3.46945x107% + 0. i, -3.46945x10°*%* +0.1i, 6.93889x10°*® + 0.1, 6.93889x10"¥ + 0. i,
6.93889x107% 4+ 0.3, 6.93889x107°*¥+ 0.1, 0.+0.1, 6.93889x107%+0. 1,

6.93889x10°*® + 0.1, 0.+0.1, 6.93889x10°*%+0.1, 0.+0.1i, 6.93889x107*8+ 0.1,
6.93889x10°*®*+0.4i,0.+0.1, 0.+0.4,0.,1.,0.,0.,0.,0.,0.,0.},

{-3.46945%x107*% + 0.1, -3.46945x107*% + 0.1, -3.46945x10"*% +0. i, -3.46945x10718+0. 1,
6.93889x107 % + 0.1, 6.93889x107'% +0. i, -3.46945x107'% + 0.1, ~3.46945x10° 1% + 0. i,
-3.46945x1072% + 0.1, -3.46945%x10°*® + 0.1, 6.93889%x10°*8 +0. i, 6.93889x10°% +0. i,
6.93889x107% + 0.1, 6.93889x10°*%+0.1i, 0.+0.1i, 6.93889x107%+0.1i,

6.93889x107% +0.4i,0.+0.1i, 6.93889x10°** +0.1i, 0.+0.1, 6.93889x10°¥ +0. i,
6.93889x107*+0.1,0.+0.4i,0.+0.4,0.,0.,1.,0.,0.,0.,0.,0.},

{-3.46945x107'® + 0.1, -3.46945x107'% + 0.1, -3.46945x107*% + 0. i, -3.46945x107*8 +0. i,
6.93889x10°*® 4+ 0.1, 6.93889x10°*% 4+ 0.1, -3.46945x107*% + 0.1, -3.46945x10" % + 0. i,
-3.46945x1071% + 0.1, -3.46945x107*% + 0.1, 6.93889x10°*® + 0.1, 6.93889x10°%+0.1i,
6.93889x107% + 0. i, 6.93889x107%+0.1i, 0.+0.1, 6.93889x10"¥+0. i,

6.93889x10°® +0.i, 0.+0.1, 6.93889x10°8+0.1, 0.+0.1, 6.93889x107 8+ 0.1,
6.93889x10°*®4+0.4i,0.+0.4i, 0.+0.3i,0.,0.,0.,1.,0.,0.,0.,0.},

{-3.46945%x1071% + 0.1, -3.46945x107*% + 0.1, -3.46945x107% +0.1i, -3.46945x107*%8 + 0. 1,
6.93889x107'% + 0.1, 6.93889x107*% 4+ 0.1, -3.46945x107*% +0.1i, -3.46945x107'%+ 0, 1,
-3.46945x107%8 + 0.1, -3.46945x10°% +0. i, 6.93889x107*8 + 0.1, 6.93889x10"% + 0.1,
6.93889x107%+ 0.1, 6.93889x10°*%+0.i, 0.+0.1, 6.93889x10°*%+0. i,

6.93889x107°% +0.1i, 0.+0.1, 6.93889x107*%+0.4i, 0.+0.1, 6.93889x10°*%+0. i,
6.93889x107*%+0.4i,0.+0.1, 0.+0.4, 0., 0.,0.,0.,1.,0.,0.,0.},

{-3.46945%x107*% + 0.1, -3.46945x107% + 0.1, -3.46945x107% + 0.1, -3.46945x107*8 +0. i,
6.93889x10°*® + 0.1, 6.93889x10°*% + 0.1, -3.46945x10° % + 0.1, -3.46945x107*% + 0. i,
-3.46945x107'8 + 0.1, -3.46945%x107% + 0.1, 6.93889%x10°% +0. i, 6.93889x107*8 4+ 0.1,
6.93889x107'% + 0.1, 6.93889x10°*® 4+ 0.1, 0.+0.1i, 6.93889x107 '8 +0. i,

6.93889x107% +0.1i, 0.+0.1i, 6.93889x10°*8+0.1, 0.+0.1, 6.93889x10"%+0.1,
6.93889x10°*+0.4, 0.+0.4, 0.+0.1,0.,0.,0.,0.,0.,1.,0.,0.},

(-3.46945%107*® + 0.1, -3.46945x107'% + 0.1, -3.46945x107% + 0.1, -3.46945x10" 8+ 0. i,
6.93889x107*% +0.i, 6.93889x1071%+ 0.1, -3.46945x107*%+ 0.1, -3.46945x107¥ + 0.1,
-3.46945x107% + 0.1, -3.46945x107'8+ 0.1, 6.93889x10°*® + 0.1, 6.93889x10°*¥ + 0.1,
6.93889x107*% + 0.1, 6.93889x10°*¥ 4+ 0.1, 0.+0.1, 6.93889x107%8 +0. i,
6.93889x10°®+0.1,0.+0.1, 6.93889x10°%+0.4, 0.+0.1, 6.93889x107*8 +0.1,
6.93889x10°®+0.4,0.+0.1,0.+0.4,0.,0.,0.,0.,0.,0.,1.,0.},

{-3.46945x107'8 + 0. i, -3.46945x107*® + 0. i, -3.46945x107*® +0. i, -3.46945x10728 +0. i,
6.93889x107*® + 0.1, 6.93889x10° ¥ + 0.1, -3.46945x107'%+ 0.1, -3.46945x10° % + 0.1,
~3.46945%x107% + 0.1, -3.46945%x107*® + 0.1, 6.93889x10°*% +0. i, 6.93889x10° % + 0.1,
6.93889x107*% + 0.1, 6.93889x107**+0.14, 0.+0.1, 6.93889x10° % +0. i,

6.93889x107°% +0.1i, 0.+0.1, 6.93889x107*8+0.3i, 0.+0.1, 6.93889x10"28+0. i,
6.93889x10°*+0.i,0.+0.4, 0.+40.13,0.,0.,0.,0.,0.,0.,0.,1.}}
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Here we give 8?- (ST)3 as a numerical approximation and include the
result directly as the detail needs a huge number of pages. One can
check one entry for the exact solution using hand calculation. Note
that all the entries are zero up to rounding errors, typically 10'7 .

In[16):= r=xf-82//N

Out(16]= {{0.+0.i, -2.77556x107*7 +0. 1, -2.77556x107Y7 +0.1i, -6.93889x107*% + 0.1, 2.77556x107*7 +0. 1,
4.16334x107*7 + 0.1, -2.77556x10°27 +0. 1, 3.46945x107%% + 0. i, 3.46945x10° ¥ +0. 1,
-2.77556x10°7 +0. i, 6.93889x10°*® + 0.1, 2.77556x10°'7 + 0.1, 4.16334x10°7 +0. i,
2.42861x10717 +4.51867x1077 i, -3.46945x107'7 - 6.03774x10717 i, 2.77556x1077 + 0. i,
-4.51028x107*7 +5.73721x107*7 i, 3.46945x10°*7 -3.98701x10"*7 1, 2.77556x107*7 + 0. 1,
4.16334x10717 +3.38604x107%7 1, 2.42861x1077 +4.51867x10717 1, 6.93889x107% +0. i,
3.46945x10°*7 -3.98701x107*7 i, 2.77556x10°*" -3.0856x107*" 1, 0., 0., 0., 0., 0.,0., 0., 0.},
(-3.46945x107'7 +0.1, 0.+0.1, -5.55112x10"7 +0. i, -3.46945x10717 +0.1i, 4.85723x10°Y7 +0. i,
2.77556x10°17 + 0.1, 2.77556x1077 + 0.1, 2.08167x10"*7 +0. 1, 2.08167x1077 +0. i,
2.77556x10°27 + 0.1, -2.08167x107*7 + 0.1, -1.38778x107°%7 +0. i, 2.77556x107'7 +0. i,
-4.51028x107%7 +5.73721x107°27 i, -6.93889x10°*% - 3.98701x10°*7 i, 4.85723x1077 +0. 1,
2.42861x107!7 +4.51867x10717 1, -2.08167x10717 - 6.03774x107'7 i, -1.38778x10°7 +0. i,
-1.38778x107}7 -3.38604%x10°*7 1, -3.46945x10717 -4.51867x107*7 i, -2.08167x10°*" +0. 1,
-2.77556x1077 +3.98701x107°*7 i, -1.04083x107%7 +3.0856x10"*"4i, 0., 0., 0., 0., 0., 0.,0.,0.},
{-3.46945x10°*7 +0.1i, -5.55112x10"*7 +0.i, 0. +0.1, -3.46945x10"*7 +0. i, 4.85723x107 +0. 1,
2.77556x10°17 +0. i, 2.77556x107'7 + 0.1, 2.08167x10"*7 +0. i, 2.08167x10°7 +0. i,
2.77556x1077 +0. i, -2.08167x107*7 +0.1, -1.38778x107%7 +0. i, 2.77556x107*7 +0. i,
-4.51028x107Y7 +5.73721x107*" i, -6.93889x10°*® -3.98701x10"1" i, 4.85723x107'7 +0. 1,
2.42861x107'7 +4.51867x20717 i, -2.08167x107'7 - 6.03774x10717 i, -1.38778x10°7 +0. i,
-1.38778x1077 -3.38604x107%7 i, -3.46945x107'7 -4.51867x10"*7 i, -2.08167x10717 +0. 1,
-2.77556x107*7 +3.98701x10°*" i, -1.04083x10%7 +3.0856%x10"*"i, 0., 0., 0.,0.,0.,0.,0., 0.},
{(-6.93889x10°® + 0.1, -2.77556x107'7 +0.1i, -2.77556x107'7+0.1i, 0. +0.1i, 2.77556x10"7 +0.1,
4.16334x10717 +0.1i, -2.77556x107'7 + 0.1, 3.46945x107® + 0. i, 3.46945x107*8+ 0.1,
~-2.77556x107*7 +0.1i, 6.93889x10°*® +0.i, 2.77556x107*7 + 0.1, 4.16334x10°17+0. 1,
2.42861x1077 +4.51867x10°2" i, -3.46945x107*7 - 6.03774x10"*7 i, 2.77556x1077 +0. 1,
-4.51028x10717 +5.73721x1077 i, 3.46945x107*7 -3.98701x10°*" i, 2.77556x107*7 +0. 1,
4.16334x10°%7 +3.38604x10°*7 i, 2.42861x107'7 +4.51867x107*" i, 6.93889x107'% + 0. i,
3.46945x107*7 -3.98701x10"*" i, 2.77556x107*7 -3.0856x10"*71i, 0., 0., 0., 0., 0.,0.,0., 0.},
(2.08167x10717 +0.1i, 6.245x10°'7+0. 1, 6.245x1077 + 0.1, 2.08167x107*7 +0. 1,
0.+0.1, -5.55112x10° 27 +0.1i, 3.1225x107 17 +0.4i, 0.+0.41, 0.+0.1,
3.1225x10°27 + 0.1, 1.73472x107'7 +0. i, 4.16334%x10°*" +0.1i, -2.77556x1077 +0. i,
4.51028x10717 -5,73721x107%7 i, 1.04083x107%7 +3.98701x107*7 i, -3.46945x10°Y7 +0. i,
-1.04083x10717 -4.51867x10"17 i, 3.46945x10717 +6.03774x107Y7 i, 2.77556x10717 + 0. i,
-3.46945x107% +3.38604x 107171, 6.93889x107%® +4.51867x107'7 i, 1.38778x1077 + 0. i,
-2.08167x107%7 -3.98701x10°'7 1, -6.93889x107*®* -3.0856x107*"i, 0., 0.,0.,0.,0.,0.,0.,0.},
{1.04083x1077 +0.i, 2.08167x10°17 +0.1, 2.08167x10°17 +0. i, 1.04083x107°Y7 +0. i,
-5.55112x107*7 +0.1, 0. +0. 1, 2.08167x10°*" +0.1, -2.42861x107'7 +0. 1, -2.42861x107*7 +0. i,
2.08167x107*7 +0.1i, -4.51028%x10°*7 + 0.1, -5.55112x107*7 +0. 1, -3.46945x107*7 +0. 1,
-1.04083x10717 - 4.51867x107*" i, 2.77556x10717 +6.03774x10°17 i, -2.08167x10}7 +0. i,
4.51028x10717 -5.73721x10°*" i, 6.93889x107*% +3.98701x10°%7 i, -2.08167x107*7 + 0. 1,
-1.38778x10717 - 3.38604x107*7 i, -1.04083x107*7 -4.51867%x10°7 i, -1.73472x10"*7 +0. i,
6.93889x107!% +3.98701x10"*" i, 0. +3.0856x10*71i,0.,0.,0.,0.,0.,0.,0.,0.},
{-3.46945%x1077 +0.1i, 2.77556x10°*7 +0. 1, 2.77556x1077 + 0.1, ~3.46945x10°* +0. i,
-1.38778x107'7 +0.1, 2.77556x10°*7 +0.i, 0.+0.1, 2.08167x10°*7 +0.1i, 2.08167x107'7 +0. i,
-5.55112x107'7 +0.1, -2.08167x107*7 +0. i, 4.85723x1077 +0. 1, 2.77556%x10°* +0. i,
-3.46945x10717 - 4.51867x1077 i, -6.93889x 10718 - 3.98701x107'7 i, -1.38778x107'7 +0. i,
2.42861x10717 +4.51867x10°17 1, -2.77556x 10727 +3.98701x10717 i, 4.85723x107'7 + 0. i,
-1.38778x1077 -3.38604x107°17 i, -4.51028x107%7 +5.73721x1077 1, -2.08167x10717 +0. i,
-2.08167x107Y7 -6.03774x10"17 i, -1.04083x107%7 +3.0856%x10"*"4i, 0., 0.,0.,0.,0.,0.,0.,0.},
{-1.38778x10°17 +0.1, 2.77556x107!7 + 0.1, 2.77556x10°*7 + 0.1, -1.38778x107%7 +0. i,
-6.93889x107%8 + 0.1, 1.38778x107!7 +0.1i, 2.77556x107*7 + 0.4, 0. +0.1i, -1.04083x107'7+0. 1,
2.77556x107'7 +0.1i, 4.85723x107*7 + 0.1, -6.93889x107% + 0.1, 1.38778x107*7 +0. 1,
-3.46945x10717 +1.21354x1077 1, 2.08167x10°17 +1.74537x107%7 1, -6.93889x10"*% + 0. i,
2.42861x107Y7 - 1.21354x107*7 i, -2.77556x10717 -1.74537x10"7 1, -6.93889x10°*% +0. 1,
-1.38778x10717 -4.62802x107%7 i, -3.46945x10*7 +1.21354x107%7 1, 4.85723x10"*7 +0. i,
-2.77556x107%7 - 1.74537x107*7 i, -1.38778x10"!7 +4.92846x10"'7 i, 0., 0., 0., 0., 0., 0., 0., 0.},
{-1.38778x10717 +0.1i, 2.77556x10°*7 + 0.4, 2.77556x1077 + 0.4, -1.38778x10°7 +0. i,
-6.93889x10°*® + 0.1, 1.38778x107%7 + 0.1, 2.77556x107*7 + 0.1, -1.04083x1077 +0. i,
0.+0.1, 2.77556x10° 27 +0. i, 4.85723x107*7 + 0.1, -6.93889x107% + 0.1, 1.38778x1077 +0. i,
-3.46945x10717 +1.21354x107!7 i, 2.08167x10°*7 +1.74537x10"%7 1, -6.93889x10"*8+0. 1,
2.42861x10717 -1.21354x107%7 i, -2.77556x107'7 - 1.74537x107*7 i, -6.93889x107*8 +0. i,
-1.38778x10717 -4.62802x10°27 1, -3.46945x10°7 +1.21354x10"'7 i, 4.85723x10°7 +0. i,
-2.77556x107*7 -1.74537x107*7 i, -1.38778x10°*" +4.92846x10"'7 i, 0., 0., 0., 0., 0., 0., 0., 0.},
{(-3.46945x10717 + 0.1, 2.77556x107*7 + 0.1, 2.77556x10°27 + 0. i, -3.46945x107Y7 + 0. i,



-1.38778x10717 +0.1i, 2.77556x107*7 + 0.1, -5.55112x10°7 +0. i, 2.08167x107*7 +0. i,
2.08167x107*7+0.1i, 0.+0.1, -2.08167x10°*7 +0.1i, 4.85723x10°*7 +0.1i, 2.77556x107*7 +0. i,
-3.46945x107'7 - 4.51867x 1077 i, -6.93889x107*% -3.98701x10"7 i, -1.38778x10"7 +0. i,
2.42861x107%7 +4.51867x10°*7 i, -2.77556x 10717 +3.98701x10°*7 i, 4.85723x107%7 +0. i,
-1.38778x107'7 -3.38604x10717 1, -4.51028x%x107'7 +5.73721x10"%7 i, -2.08167x10°7 +0. 1,
-2.08167x107*7 - 6.03774%x107*" i, -1.04083x10°'7 +3.0856%x10°*" i, 0., 0., 0., 0., 0., 0., 0., 0.},
{-1.38778x10°*7 +0.1, 2.42861x1077 +0.1, 2.42861x107Y7 +0. 1, -1.38778x207°7 +0. 1,
1.38778x10°Y7 + 0.1, 5.55112x10°27 +0. i, 2.42861x1077 +0. i, 7.28584%x10°*7 +0. i,
7.28584x1077 +0.1i, 2.42861x107*7 +0.1i, 0.+0.1, 1.38778x10°*"+0.1i, -1.38778x107'7 +0. 1,
6.93889x1071% - 1.21354%x107*7 i, -1.38778x1077 -1.74537x1077 1, 2.77556x10°}7 +0. i,
-1.04083x107Y7 +1.21354x107 17 i, -6.93889x107'% +1.74537x1077 i, 2.77556x10"7 + 0. i,
1.38778x10717 +4.62802x10727 i, 6.93889x10°%% -1.21354x107%7 i, -4.16334x107%7 +0. i,
-6.93889x1071% +1.74537x10"*" i, 2.77556x107%7" - 4.92846x10°* i, 0., 0., 0.,0.,0.,0.,0.,0.},
(2.08167x107*7 +0.1i, 3.1225x107*7 +0. 14, 3.1225x20°7+0. i, 2.08167x107°7 +0. i,

4.16334x10°Y7 +0.1i, -5.55112x107*7 +0. i, 6.245x10°*7 +0.1i, 0. +0. 1,

0.+0.1, 6.245x10727 +0.13, 1.73472x10°Y7+0.4, 0. +0.1i, -2.77556x107*7 +0. i,

6.93889x1071% +4.51867x10717 i, 1.04083x107*7 +3.98701x10"%7 i, 2.77556x10°17 + 0. 1,
-1.04083x107'" -4.51867x10"17 i, -2.08167x107%7 -3.98701x107*7 i, -3.46945x107%7 + 0. i,
-3.46945x107'% +3.38604x107*7 i, 4.51028%x10°%7 - 5.73721x10°*7 i, 1.38778x107%7 +0. i,
3.46945x107'7 +6.03774x107*7 i, -6.93889x10*%* -3.0856x107*" i, 0., 0., 0.,0.,0.,0.,0.,0.},
{1.04083x1077 +0.1, 2.08167x10"* +0.1, 2.08167x107*7 +0. i, 1.04083x10°Y7 +0.1,
-2.08167x107* +0.1i, -3.46945x107'7 + 0.1, 2.08167x10°Y7 +0. i, -2.42861x107%7 +0. i,
-2.42861x107Y7 +0.1i, 2.08167x10°17 +0. i, -1.73472x10"*7 + 0.1, -2.08167x10"17 +0.4i, 0.+0. 1,
-1.04083x10°17 -4.51867x10727 i, 2.77556%x107°%7 +6.03774x10°*7 i, -5.55112x10°%7 + 0. 1,
4.51028x107Y7 -5.73721x10° 17 i, 3.46945x107*7 +3.98701%x107°7 i, -5.55112x1077 +0. 1,
-1.38778x10717 -3.38604x107*7 i, -1.04083x10717 -4.51867x107%7 i, -4.51028x107%7 +0. i,
3.46945x107!7 +3.98701x10°7 i, 0. +3.0856x10°*"i,0.,0.,0.,0.,0.,0.,0.,0.},
{5.55112x107%7 +1.51424x107%7 i, 4.16334x10717 +3.93438%x10717 1, 4.16334x107'7 +3.93438x107*" i,
5.55112x 1077 +1.51424%x107%7 i, 2.08167x107'7 -3.93438x107*7 i, 6.93889x107*% - 1.51424x10"%7 1,
-4.16334x107%7 -1.51424%x107%7 i, -5.20417x107'7 + 4.21822x10717 1,

-5.20417x10717 +4.21822x10717 1, -4.16334x10°Y" -1.51424x107%7 i,

6.245x10717 - 4.21822x107*7 i, 2.77556x107*7 +1.51424x10°*" i, 6.93889x107*% - 1.51424x10"17 i,
-2.22045x107*% -3.27641x10717 i, -2.77556x 10717 +1.15479x107'% i, 2.08167x10"!7 - 3.93438x107'7 i,
-5.20417x107%7 +3.91778x107Y7 i, 2.77556x10°'7 - 8.57384x10°17 i, 2.77556x107Y7 +1.51424x10"*7 i,
1.38778%x10717 - 1.52607x10"*7 i, 6.93889x10°*7 -3.91778x107'7 i, 6.245x1077 - 4.21822x10"17 i,
-6.93889x10°*® -1.15479x107*% 1, 3.46945x107'% +2.68083x107'74i, 0., 0.,0.,0.,0.,0.,0.,0.},
{4.85723x10°*7 -3.93438x10°%7 1, 4.16334x107%7 -1.51424x107'7 i, 4.16334x107'" - 1.51424x10717 1,
4.85723x107'7 -3.93438x10°27 i, -5.55112x107%7 +1.51424x107%7 i, 1.38778x107%7 +3.93438x107*7 i,
4.16334x107%7-1.51424x107*7 i, 4.16334x107'7 +4.21822x10"*" i, 4.16334x107*7 +4.21822x10"%7 1,
4.16334x107*7 -1.51424x10"'7 i, -6.59195x10727 - 4.21822x10"*7 i, -5.55112x107%7 +1.51424x1077 i,
1.38778x10717 +3.93438x1077 1, -3.46945x107!7 +6.00885x1071% i, -1.11022x107%6 + 4.09735x10"%7 1,
-5.55112x10°%7 +1.51424x1077 1, -6.93889x107'8 + 9.01362x107%7 j,

6.93889x107%% - 4.62291x107'7 i, -5.55112x10°}7 +1.51424x10"7 i, 0. +2.38039x107% i,
-3.46945x107*7 +6.00885%x 107 i, -6.59195x107'7 - 4.21822x107'7 i,
6.93889x1071% - 4.62291%x10"*" i, -4.16334x10"7 -9.25186x107%*41, 0., 0., 0., 0., 0., 0.,0.,0.},
(2.08167x1077 +0.1i, 6.245x10°7 + 0.1, 6.245%x10°*7 + 0.1, 2.08167x1077 +0. i,

-3.46945%107Y7 + 0.1, -2.77556x107*7 + 0.1, 3.1225x10°17 +0.4, 0. +0.1, 0. +0. i,

3.1225x1077 +0.1i, 1.38778x10°17 + 0.1, 2.77556%x10°*7 +0.1i, -5.55112x107*7 +0. 1,

4.51028x107%7 - 5.73721%x107%7 i, 1.38778x107*7 +3.98701x10°*7 4, 0. +0. i,

-1.04083%x10717 -4.51867x107!7 i, 3.46945x10°17 +6.03774x10717 i, 4.16334x10717 +0. 1,
-2.77556x1077 +3.38604x1077 i, -4.85723x10°17 +4.51867x1077 i, 1.73472x10°*7 +0. 1,
-6.245x107'7 -3.98701x107*" i, -3.1225x10"'7 -3.0856x10°*"1, 0., 0., 0., 0., 0., 0., 0., 0.},
{5.55112x107%7 +3.93438x107'7 i, 5.55112x107!7 +1.51424x107*7 i, 5.55112x107*7 +1.51424x10" 7 i,
5.55112x10°*7 +3.93438x1077 i, -2.77556x107%7 - 1.51424x107'7 i, 4.16334x107%7 -3.93438x10717 i,
5.55112x10727 +1.51424x10717 1, 5.20417x107%7 - 4.21822x107'7 i, 5.20417x107'7 - 4.21822x107'7 i,
5.55112x107'7 +1.52424x10° Y7 i, -6.245x10"'7 +4.21822x10"*7 i, -2.77556x107*7 - 1.51424x10"7 i,
4.16334x10717 -3.93438x10°7 i, -1.04083x10717 +3.91778x107*7 i, 2.08167x107!7 - 8.57384x 1077 i,
-2.77556x107%7 -1.51424x10717 i, -1.11022x107%6 -3.27641x10"17 i,

-3.46945%x10717 +1.15479x107% 1, -2.77556x107%7 - 1.51424x107*" 1,

~4.16334%x1077 +1.52607x107%7 i, -1.04083x107%7 +3.91778x107%7 i, -6.245x10"Y7 +4.21822x107%7 i,
-3.46945%x107'7 +1.15479x107*% i, 0. -2.68083x10*" 1, 0., 0., 0., 0.,0.,0.,0., 0.},
{4.16334x10717 -1.51424x10°27 1, 4.16334x107*7 -3.93438x10"'7 i, 4.16334x107'7 - 3.93438x10717 1,
4.16334%x10717 - 1.51424%x10" 1, 5.55112x107%7 +3.93438x107*7 i, -5.55112x10"%7 +1.51424x1077 i,
-5.20417x107*7 +1.51424x107°7 i, -6.245x107*7 - 4.21822x10"%7 i, -6.245x10"*7 - 4.21822x10"%7 i,
-5.20417x107*7 +1.51424x107%7 i, 4.51028x10"'7 +4.21822x107*7 i,

4.16334x1077 -1.51424%x107" i, -5.55112x10°27 +1.51424x107%7 i,

2.08167x1077 +9.01362x10727 i, -6.93889x1071% - 4.62291x10717 i, 5.55112x10"*7 +3.93438x107%7 1,
-5.55112x107%7 + 6.00885x107% i, -2.22045x107%6 +4.09735x10™*" i, 4.16334x10717 -1.51424x10"27 1,
6.93889x 10718 - 2.38039x107'" i, -1.38778x107}7 - 6.00885x107*8 i, 4.51028x10"'7 +4.21822x10"17 i,
-4.85723x10717 +4.62291x107'7 1, 2.08167x107!7 +9.25186x107*%4i, 0., 0., 0., 0., 0., 0., 0., 0.},
{(2.08167x1077 +0.1, 3.1225x107*7 + 0.1, 3.1225%x107°*7 +0. i, 2.08167x107*7 +0. 1,
2.77556%x10°17 + 0.1, -2.77556x10°7 + 0.1, 6.245x107*7+ 0.4, 0. +0.1, 0. +0. i,

6.245x1077 + 0.1, 1.38778x107*7 + 0.1, -3.46945x107%7 +0. i, -5.55112x10"*" + 0. 1,
-4.85723x10717 +4.51867x1077 1, 1.38778x10°%7 +3.98701x107%7 i, 4.16334x10"7 + 0. i,
-1.04083x10717 -4.51867x10717 1, -6.245x10"17 -3.98701x10"7 i, 0. +0. i,

-2.77556x10717 +3.38604x10°7 1, 4.51028x10°17 -5.73721x1027 i, 1.73472x1017 4+ 0. i,



3.46945x10717 +6.03774x10°*7 i, -3.1225x107*7 -3.0856x10*" i, 0., 0., 0., 0., 0., 0., 0., 0.},
(4.16334x107!7 +4.21848x107*7 1, -3.81639x10717 - 4.21848x10"'7 i, -3.81639x10717 -4.21848x10717 1,
4.16334x10°17 +4.21848x1077 i, 6.93889x10717 +4.21848x107*7 i, -4.16334x107'7 -4.21848x107'" i,
~3.81639x10717 - 4.21848%x107'" i, 5.89806x107%7 -3.93464x10"" 1,

5.89806x107'7 -3.93464x10'7 i, -3.81639x107%7 -4.21848x10%7 1,
3.46945x107% +3.93464x1077 i, 6.93889x107'7 +4.21848x10717 i, ~4.16334x107*7 - 4.21848x10"7 i,
6.93889x10717 - 6.00885x107*% i, 3.46945x10°17 +1.10913x107°7 i, 6.93889x107!7 +4.21848x10°%7 1,
-6.245x107Y7 +6.00885x107 2% i, -2.08167x107'7 -1.10913%107%7 i, 6.93889x107%7 + 4.21848x107%7 1,
0.-1.02095x10"* i, 6.93889x107!7 -6.00885x107*® i, 3.46945x107 1% +3.93464x10717 1,
-2.08167x1077 -1.10913x10*7 i, 1.52656x10°*¢ - 3.4193x10°*"4i, 0., 0., 0., 0., 0., 0., 0.,0.},

{5.55112x10717 +1.51424x10727 1, -4.16334x10717 -1.51424x107*71i, -4.16334x10°*" -1.51424x10"%7 i,
5.55112x10717 +1.51424x10717 i, 2.77556x10°17 +1.51424x 107 i, 6.93889x1071% - 1.51424x10"%7 1,
4.16334%107%7 +3.93438x107%7 1, -5.20417x107'7 + 4.21822x107%7 i,

-5.20417x107'7 +4.21822x107'7 i, 4.16334x107?7 +3.93438x10°7 i, 6.245x10717 - 4.21822x107'" i,
2.08167x10717 -3.93438x107'7 1, 6.93889x10°*% -1.51424x10"*" i, 6.93889x107!7 -3.91778x10"" 1,
-2.77556x107Y7 +1.15479%x10° %% i, 2.77556x 10717 +1.51424x107%7 1,

-5.20417x107'7 +3,91778x10717 i, -6.93889x10718 ~1.15479x107'8 i, 2.08167x107!7 -3.93438x107*" i,
1.38778x10717 - 1.52607x10717 i, -2.22045%x 10716 -3.27641x10"7 1, 6.245x10°17 - 4.21822x10"*" 1,
2.77556x10717 - 8.57384x107*7 i, 3.46945x10°*® + 2.68083x10"*74i, 0., 0., 0., 0., 0., 0., 0., 0.},

{-1.38778x10°*7 +0. 1, 2.42861x1077 +0. 1, 2.42861x10""7 +0.1, -1.38778x10"*7 +0. i,
2.77556x107Y7 + 0.1, -1.38778x10°17 +0.1i, 2.42861x10°*" + 0.1, 7.28584x10°7 +0. 1,

.28584x10°17 + 0.1, 2.42861x1077 + 0.1, -4.16334x10717 + 0.1, 2.77556x107'7 + 0. i,

.55112x 1077 +0. i, -6.93889x107'% -1.21354%x107%7 i, 4.16334x10°%7 -1.74537x10"'7 i,

.38778x107°17 + 0.1, 3.46945x107*% +1.21354x1077 1, -6.93889x107%% +1.74537x10"%7 1,

.38778x1077 + 0.1, 1.38778x107'7 +4.62802x107'7 1, -6.93889x107%8 - 1.21354x107'7 i, 0. +0. i,
-6.93889x10718 +1.74537%x10°*" i, 2.77556x107}7 -4.92846x10°74i, 0., 0., 0., 0., 0., 0., 0., 0.},

{4.16334x107*7 -1.51424x1077 i, -5.20417x10""7 +1.51424x10"'7 i, -5.20417x107%7 +1.51424x107'7 i,
4.16334x107%7 -1.51424x107*7 1, 4.16334x107'7 -1.51424x10* i, -5.55112x107*7 +1.51424x10"%7 1,
4.16334x10717 -3.93438x107*7 i, -6.245x107*7 - 4.21822x10"*7 i, -6.245x107'7 - 4.21822x10"*" i,
4.16334x10717-3.93438x107%7 i, 4.51028%x10717 +4.21822x1071" i, 5.55112x10717 +3.93438x10"!" 1,
-5.55112x107*7 +1.51424x1077 i, -1.38778x107*7 - 6.00885x10718 1,

-6.93889x1071% - 4.62291x10717 1, 4.16334%x10717 -1.51424x107'7 1,

-5.55112x107%7 +6.00885x107% 1, -4.85723x10717 +4.62291x107'7 i, 5.55112x10"*7 +3.93438x 1077 1,
6.93889x107*% - 2,38039x10°*" i, 2.08167x107%7 +9.01362x107*7 i, 4.51028x10717 +4.21822x10717 i,
-2.22045x10716 +4.09735x107°7 1, 2.08167x107'7 + 9.25186x107*%i, 0., 0., 0., 0., 0., 0., 0., 0.},

{5.552112x207*7 -4.21848x1077 i, -1.38778x10717 +4.21848x107*7 i, -1.38778x107%7 +4.21848x107'7 i,
5.55112x107'7 - 4.21848x107*" i, 5.55112%x107*7 -4.21848x107%7 1, -4.85723x10"%7 +4.21848x10"'7 i,
-1.38778x1077 +4.21848x10727 i, 3.81639x107%7 +3.93464x107%7 i, 3.81639x107'7 +3.93464x10"7 i,
-1.38778x107'7 +4.21848x10717 1, -6.93889x107'8 - 3.93464x107'7 i,

.55112x10717 - 4.21848x10°17 i, -4.85723x10°*7 +4.21848x1077 i,

.93889%107%% +1.81443x10°17 1, -6.245x10717 +1.15818%x10° 2% 1, 5.55112x107*7 - 4.21848x10"%7 i,

.73472x10717 - 1.81443x10°*7 i, 8.32667x107*7 -1.15818x10"*% i, 5.55112x107*7 -4.21848%x10"%7 1,

.66533x107%% +4.02019x10°*7 1, 6.93889x107%% +1.81443x10'7 i, -6.93889x107*8 - 3.93464x10"%7 1,
8.32667x107%7 -1.15818x107® i, 0. +9.90901x10"*" i, 0., 0., 0., 0., 0., 0., 0., 0.},
(-3.46945x107® + 0.4, -3.46945%x10°*® + 0.1, -3.46945x107'% + 0.1, -3.46945x10"**+0. 1,
6.93889x107'% + 0.1, 6.93889%x107% +0.1i, -3.46945x10° %+ 0.1, -3.46945x107¥ + 0. i,
~3.46945%x107%® 4+ 0. i, -3.46945x107*% + 0.1, 6.93889x10°% +0. 1, 6.93889x10°% +0. i,
6.93889x10°*® +0.1, 6.93889x107% +0.1, 0.+0.1, 6.93889x107*%+0. 1,
6.93889x10°* +0.i, 0.+0.1, 6.93889x10°% +0.1i, 0.+0.1i, 6.93889x10° % +0.1,
6.93889x107*® +0.141, 0.+0.1i, 0.+0.1,0.,0.,0.,0.,0.,0.,0.,0.},

(-3.46945x10°*® 4 0.1, -3.46945x107*% + 0.1, -3.46945x10"*® + 0.1, -3.46945x107*% +0. 1,
6.93889x107% + 0.1, 6.93889x10° % +0.1i, -3.46945x107 8+ 0.1, -3.46945x107® + 0. 1,
-3.46945%x107'% 4+ 0. i, -3.46945x10°*® 4 0.1, 6.93889%x10°% +0. i, 6.93889x10° % +0. i,
6.93889x10°*% + 0.1, 6.93889x10°*% +0.1i, 0. +0.1i, 6.93889x107'8 +0. i,
6.93889x10°% +0.i, 0.+0.1, 6.93889x10°®+0.1i, 0.+0.i, 6.93889x10° ¥ +0. 1,
6.93889x10°*® +0.1, 0.+0.1, 0.+0.i,0.,0.,0.,0.,0.,0.,0.,0.},

{~3.46945x107*® + 0.1, -3.46945%x107 % + 0.1, -3.46945x107*® + 0.1, -3.46945x10°*¥ +0. i,
6.93889x107* + 0.1, 6.93889x107% + 0.1, -3.46945x10"*8+ 0.4, -3.46945x10% + 0. i,
-3.46945x107*% + 0.1, -3.46945x107% + 0.1, 6.93889x107% +0. i, 6.93889x107%% + 0. i,
6.93889x107%% + 0.1, 6.93889%x10°%+ 0.1, 0.+0.1, 6.93889x10728 +0. i,
6.93889x107® +0.1i, 0.+0.1, 6.93889x107*%+0.i, 0.+0.1i, 6.93889x10"8+0. 1,
6.93889x10%+0.4i,0.+0.1i, 0.+40.4,0.,0.,0.,0.,0.,0.,0.,0.},

{-3.46945x107*® + 0. i, -3.46945x107%® + 0. i, -3.46945x107*% + 0. i, -3.46945x1078 + 0. i,
6.93889x107% 4+ 0.1, 6.93889x107'8 + 0.1, -3.46945x107® + 0.1, -3.46945x10° % +0. i,
-3.46945x107*% + 0.1, -3.46945x107'% + 0.1, 6.93889x10°*® + 0.1, 6.93889x10"% + 0. i,
6.93889x107*% + 0.1, 6.93889x10°% +0.1i, 0.+0.1, 6.93889x10728 +0. i,
6.93889x107* +0.14, 0.+0.1i, 6.93889%x10°**+0.i, 0.+0.1i, 6.93889x10"%+0. i,
6.93889x10°®* +0.i,0.+0.4,0.+0.4,0.,0.,0.,0.,0.,0.,0.,0.},

(-3.46945x107'® + 0.1, -3.46945x10° 18 + 0. i, -3.46945x107*8 + 0.1, -3.46945x10"% +0. i,
6.93889x107%% + 0.1, 6.93889x1078 + 0.1, -3.46945x10""8+ 0.4, -3.46945x107 8 + 0. i,
-3.46945x1071% + 0. i, -3.46945x107*# + 0.1, 6.93889x107% + 0. i, 6.93889x10° % +0. i,
6.93889x107*8 + 0.1, 6.93889x10°%+0.1i, 0.+0.3, 6.93889x107%8 +0. i,
6.93889x10°*% + 0.1, 0.+0.1, 6.93889x10°*+0.4i, 0.+0.1, 6.93889x10° % +0.1,
6.93889x107'%*+0.i, 0.+0.i, 0.+40.4,0.,0.,0.,0.,0.,0.,0.,0.},

{-3.46945x1071® + 0. i, -3.46945x1072% + 0. i, -3.46945x107 1% + 0. i, -3.46945x10°18 + 0. i,
6.93889x107*® + 0. i, 6.93889x1071% + 0.4, -3.46945x10°8+0. 1, -3.46945x10"* +0. 1,
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-3.46945x107*% + 0.1, -3.46945x107*8 + 0.1, 6.93889x107*% + 0.1, 6.93889x10°*¥ + 0.1,
6.93889x10°*% + 0.1, 6.93889x107*% +0.4i, 0.+0.1, 6.93889x10°*%+0. 1,
6.93889x107% +0.i, 0.+0.1, 6.93889x10*%+0.1i, 0.+0.1i, 6.93889x107*%+0.1,
6.93889x10*®+0.4i,0.+0.4i,0.+0.1,0.,0.,0.,0.,0.,0.,0.,0.},
(-3.46945x107*% + 0.1, -3.46945x107% + 0.1, -3.46945x107® +0.1i, -3.46945%x107 %+ 0. 1,
6.93889x107'% 4+ 0.1, 6.93889x10° 8+ 0.3, -3.46945x107*% 4+ 0.1, -3.46945x10"*® 4+ 0. i,
-3.46945x107*8 + 0.1, -3.46945x10°*%+ 0.1, 6.93889x10°*® +0. i, 6.93889x107® + 0.1,
6.93889x1071% +0.1i, 6.93889x107*% +0.1i, 0.+0.1, 6.93889x107%+0.1i,
6.93889x10°® + 0.1, 0.+0.1i, 6.93889%x10°¥+0.i, 0.+0.1i, 6.93889x107'%+0.1,
6.93889x10°**+0.1,0.+0.i,0.+0.4,0.,0.,0.,0.,0.,0.,0.,0.},
{-3.46945x10°*® + 0.1, -3.46945x107% + 0. i, -3.46945x10"2® +0.1i, -3.46945x107*%+ 0. 1,
6.93889x107% + 0.1, 6.93889x107% + 0.1, -3.46945x107® + 0.1, -3.46945x10"** + 0. i,
-3.46945x107® + 0.1, -3.46945x107*% + 0.1, 6.93889x107%+ 0.1, 6.93889x107*¥+ 0.1,
6.93889x107*% 4+ 0.1, 6.93889x107*%+ 0.4, 0.+0.1, 6.93889x10"*%+0.1,
6.93889x107'% +0.i, 0.+0.1, 6.93889x10"*8+0.1, 0.+0.1, 6.93889x107*%+0.1,
6.93889x10°**4+0.1,0.+0.13,0.40.3i,0.,0.,0.,0.,0.,0.,0.,0.})



