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Abstract
The thesis shows that, under suitable conditions, a pseudo-differential oper­
ator, defined on some “nice” set of functions on Rn x Zm, with continuous 
negative definite symbol <?(:£,£, co) extends to a generator of a Feller semi­
group. Sections 1-5 are the preliminary sections, these sections discuss some 
harmonic analysis concerning locally compact Abelian groups. The essence 
of this thesis are Sections 6-13, which deals with obtaining the estimates 
required for the fulfilment of the conditions of the Hille-Yosida-Ray theorem.
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N otation
In the following H  denotes a locally compact Abelian group and G  C 
denotes an open set.

N natural numbers 
N0 =  N U {0}
NJ set of all multiindices 
Q rational numbers 
M real numbers

euclidean vector space 
Z integers 
Zm lattice points in 
Z /A Z  integers of modulo N  
Z(TV) N th roots of unity 
C complex numbers 
C m unitary vector space 
S 1 circle group
Tm ra-dimensional torus group 
[0, 27r)m =  [0,2?r) x . . .  x [0, 2tt)

m times
a A b =  min(a, b)
A \ B  set theoretical difference of two sets

closure of the set A  with respect to the norm ll-IU 
\a\ =  a i  +  . . . +  a n for a  G NJJ 
x a =  X i1 • . . .  • , a  G NJ and x G Mn

d ^ u
d x * 1. ..dx%n

D®u =  (—idx)au 
r  topology

(# ,• )  group
(A, r) topological space
(H, •, r) topological group

Re /  real part of a function
(■un)nen sequence in C
(uk)keA sequence in C with index A
f v —̂ f  sequence of functions converging weakly to /
u • v  product of functions
u o v  composition of functions
u ® v tensor product of functions
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u © v  direct sum of functions 
u * v  convolution of functions
u *iRn v convolution of functions w, v  : Mn x Zm —»■ C with respect to the 

variable i G l "
X '■ H  ^  S 1 character on H  

: H  —> S 1 character on H  
j £, Je(u) Friedrichs modifier 
ra(x) =  x  +  a translation mapping on H  
rau(x) =  u(x — a)
Sx  =  —x  reflection at the origin 
H \ x  =  Xx homothetic map 
u(x)  =  u (—x)
1p(x)  =  l/)( — x)
u , F(u)  Fourier transform of a function 
Fx^ ( u )  Fourier transform of a function u : Rn —» C
Fk^u (u) Fourier transform of a function u : Zm —>■ C 
Fu^k{u)  Fourier transform of a function u : Tm —>■ C 
u(£, fc) Fourier transform of a function u(*, fc) : Mn —> C, A: G Zm fixed
u{rfj^,Lj) Fourier transform of a function : Mn —> C, f  G Mn and

u  G Tm both fixed 
u(£, cu) Fourier transform of a function u : M71 x Z m —> C 
F _ 1(u) inverse Fourier transform of a function 
F(TJ>x(u ) inverse Fourier transform of a function u : Mn —)• C 
F~J+k(u) inverse Fourier transform of a function u : Tm —> C 
supp u support of a function 
ess sup u essential supremum of a function

A  a -algebra
B(H)  Borel a-algebra of H  
/i measure
(H , A)  measurable space 
(H, A , fi) measure space 
lih  Haar measure on H  
A L e b e s g u e  measure on Mn 
ea Dirac measure at a G H  
H\Rn — A(n)
Hzm =  £k Haar measure on Z m
Hz/nz =  J2k=o Haar measure on Z / N Z  
fijm -  (2??)̂  Haar measure on Tm 
Hi 0  H2 product of the measures fii and fi2
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Hi * h2 convolution of the measures Hi and H2

Hfi dual Haar measure
H Fourier transform of a measure
||/i|| total mass of a measure h

Ih (u) =  JH u(x) h h {dx) Haar integral on H
convolution semigroup of subprobabilities

H* =  Horn (FT, S'1) group-homomorphisms on H  
V (H )  functions on H
spanjefc | e^ x )  — e lk'x, k G Zm}, x G Tm =  [0,27r)m, trigonometric polynomi­

als on Tm
V  ® W  — { 2 ? = i v i ® w i  \ v t e V  and wi G W, k G N}
C (H )  continuous functions on H
Cq(H)  continuous functions on H  with compact support
Co(Zm) =  ^finite(^m) finite sequences on Zm
C'oo(H) continuous functions on H  vanishing at infinity
Cb(H) bounded continuous functions on H
C m(G) m -times continuously differentiable functions on G
Cgl(G) =  C rn{ G ) n C 0{G)
C°°{G) =  n meNC -(G )
cs°(G) = n m6 nCT(G)
I P { H , h h ) =  {« G  V (H )  measurable | \\u \\lp(h ,hh) <  00} 
l2{Zm) =  L 2(Zm)
L£er(M”\  =  IS(I T ) , 1 <  p <  00

=  [u  e  I u >  0}
L°°(H ,h h ) — {u  G V (H )  measurable | Halloo,# <  00 }
H ^ s(Rn) =  {« G  L 2(Rn) | H uH n^ n) <  00} ’

x Zm) =  { u e  L2{Rn x  Zm) | Hull^-diinxzm) <  00}
S (R n) =  {uG  Cfoo(Mn) | P m i , m 2 ( u ) <  cofor a llm i, m 2 G No} Schwartz space of 

functions
S (R n x Z m) =  { u : R n x Zm C, < ,  k) G C 00^ )  | \d%u{x, k)\ <  

cr,s,a,u{ 1 +  M 2)~^( 1 +  l l̂2)-  ̂for a lia  G Ng,r, s G N0}
A4+ (H)  Borel measures on H
M £  (H)  bounded Borel measures on H
M.{H)  signed Borel measures on H
A4b(H)  bounded signed Borel measures on H
A4^(H)  complex-valued Borel measures on H
A4frC(H)  bounded complex-valued Borel measures on H
A4c(H)  complex-valued signed Borel measures on H
Mb,c(H)  bounded complex-valued signed Borel measures on H
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H  dual group of H

H  double dual group of H  
H  =  H  U { 00} one-point compactification of H  
C N ( H )  continuous negative definite functions on H  
C P ( H )  continuous positive definite functions on H  
N ( H )  negative definite functions on H  
P ( H ) positive definite functions on H

\x\ euclidean distance in Rn
\k\ =  (k\ +  . . .  +  k2m)-^ k e Z m 
l^li — |^ iI +  . . .  +  |km|, k E Z m
|fc|oc =  m axi<j<m|A;j|, k E Z m
\z\ euclidean distance in Cm
||u ||x  norm of u in the space X
INIlp(h ,hh) norm in the space /i# )
\ \u\ \LPeARm t_ l _ X{m)) =  | M | Lp(Tm),  1 <  p  <  OO

IMIo — | | ^ | U 2(R"xZm)
IMIoo,/r — IMloo =  max|n(a;)|, sup|u(x)| or esssup |u(x)|
| | u | | / f 1/',s(]Rn) norm in the space H^'s(Rn)
||u||H^’s(Rnxzm) norm in the space H^'a{Rn x Zm)
( u , v ) l 2 (H,hh) inner product on L 2( H , h h )
(u, u)L2er(Mmj__^_A(m)) =  (w, u)L2(Xm)

( u , v )0 =  (u, v)L2(RnxZm)
P m ltm 2 ( u )  =  SUPxG En ( ( l  +  \ x \ 2) ^  E | a | < m 2 \d X X )\)

PaAU) =  SUpxGMn|xaa fu (x ) |

( A ,D (A ) )  linear operator with domain D (A)
D (A)  domain of an operator
R(A)  range of an operator
[A, B\ =  A B  — B A  commutator of operators
B ( u , v) =  (q(x , D x, D k)u, w)L2(r x Z m) sesquilinear form associated with  

q (x ,D x, D k)
B M (u ,v )  =  (q i(Dx, Dk)u,  u)L2(RnxZm) sesquilinear form associated with  

Ql(Pxi Pk)
B ^ ( u :v) =  (q2 {x, D x, D k)u, v)L2(Rnxzm) sesquilinear form associated with 

q2( x , D x, D k)
B \ ( u , v )  =  B ( u }v)  +  A(w,u)L2(RnxZm) for a sesquilinear form B  
q ( x ,D x) pseudo-differential operator with symbol q(x,£)
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q(x, D x, D k) pseudo-differential operator with symbol q(x ,£ ,u )  
q(Dx, D k) pseudo-differential operator with symbol q(£,cj) 
ip(Dx) pseudo-differential operator with symbol ?/>(£)
{Tt)t>o one parameter semigroup of operators



Introduction
The famous H ille -Y o s id a  th e o r e m  (in a variant due to Lumer and Phillips) 
states that a densely defined linear operator (A, D(A))  in a Banach space 
X  is closable and its closure generates a strongly continuous contraction 
semigroup on X  if and only if (A , D ( A )) is d iss ip a tiv e , i.e.

|A |||it||x <  || (A — i4)it||x  for all A >  0 and u G D ( A ),

and if for one, and hence for all, A >  0 the range of A — A  is dense in X , i.e. 
(A — A)(D (A))  =  X .  Note that the second condition is a statement about the 
solvability of the equation Au —Au =  / ,  /  in a dense set of X .  In the case that 
X  is a Banach space of real-valued functions defined on some Hausdorff space 
Y, say X  =  Coo(Y) := {u  : Y  —»• R | u is continuous and limy-**, u(y)  =  0}, 
or L2(Y, v),  where v  is a suitable measure on the Borel sets of Y, it makes 
sense to consider semigroups of operators which preserve positivity, i.e. u >  0 
(or u >  0 I'-a.e.) implies Ttu >  0 (or Ttu >  0 v -a.e.). Positivity preserv­
ing strongly continuous contraction semigroups on Coo(Y) are called F eller  
sem igrou p s. Recall a one-parameter semigroup (Tt)t>0 of bounded linear 
operators Tt : X  X ,  t  >  0, on a Banach space X  is called a strongly con­
tinuous contraction semigroup if Tt o T s =  Tt+S for all s , t  >  0 and To =  id, 
lim ^o||T tu — u\\x — 0 for all u G X  and ||Tt || <  1 for all t >  0. It is well 
known that their generator must satisfy the p o s it iv e  m a x im u m  p rin ci­
p le, i.e. if u €  D (A )  and yo G Y  such that u(yo) =  supyey u(y) >  0, then 
(Au)(yo) <  0, and in the Hille-Yosida theorem the dissipativity can be re­
placed by the positive maximum principle. For details on this paragraph we 
refer to [19].

If Y  =  Rn, and the domain D (A)  of a generator A  of a Feller semigroup 
contains the test functions Co°(Rn) and A  maps Co°(Mn) into bounded con­
tinuous functions, then on (and larger sets such as the Schwartz
space *S'(Mn)) the operator A  is a p seu d o -d iffer en tia l o p era to r

Au(x)  := - q ( x , D x)u(x)  := - ( 2tt)_ ? f  etx<q(x,£)u{£)  d£
JRn

where u denotes the Fourier transform of u and the symbol q : Mn x Mn —>■ C 
is a continuous function such that for every x  G Mn fixed f  q{x,£) is 
continuous negative definite, i.e. q(x, 0) >  0 and  ̂ e~tq(x'® is for all t >  0 
a continuous positive definite in the sense of Bochner. We call q(x,£)  the 
sy m b o l of q ( x ,D x). Such an operator we call a pseudo-differential opera­
tor with negative definite symbol. Note that we always assume functions in 
Coo(Mn) (or Coo(M.n x Zm)) to be real-valued when dealing with the positive 
maximum principle or Feller semigroups. In [18] and further papers Jacob
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started to approach the converse problem: given a pseudo-differential oper­
ator with a symbol as above, when does it have an extension generating a 
Feller semigroup. Meanwhile, a lot of such results are known, many due to  
W. Hoh, e.g. [14]-[16].

Recently Evans and Jacob [12] made the observation that the Q-matrices, 
i.e. generators of Markov chains with state space Zm, have (under certain 
conditions) a representation of a pseudo-differential operator, the symbol of 
which is now defined on Zm x Tm.

The natural question is, given a pseudo-differential operator acting on 
“nice” functions defined on Rn x Zm, when does such an operator extend to 
a generator of a strongly continuous contraction semigroup on C^R™ x Zm) 
and when is this semigroup even positivity preserving.

In this thesis we investigate pseudo-differential operators, with symbols 
q(x, £, u) (where x  G Rn, £ G Rn and u  €  Tm), defined by

- q ( x ,  D x, D k)u(x, k) := -(27r)_ ^_m f  f  elx<e%k'uq(x^,(d)u{^,u)dujd^,
J]Rn JTrn

where u(£, lj) denotes the Fourier transform of the function u : Rn x Zm —» C. 
Further we take q(x,£,uj)  to have the decomposition

q (x ,^ id )  =  qi(^uj) +  q2(x,€, i j ) .

Note that the corresponding operators are translation-invariant with respect 
to the ^-dependence.

We want to be able to apply the Hille-Yosida theorem (or its variant) to 
—q ( x ,D x,Dk). Out of the two conditions the first condition is the easiest 
to obtain, the dissipativity is added as a condition, for example in the form 
of the positive maximum principle on some nice set of functions defined 
on Rn x Zm. However, extensive work is required to arrive at the second 
condition, i.e. the solvability of the equation Xu — (—q(x, D x, Dk))u  — / .  
The purpose of this thesis is to get the estim ates for q(x, D x, Dk) which 
will guarantee this equation to be solvable. This involves having to make a 
smallness condition on g2 with respect to qi, similar to the ideas in [20].

Many of our ideas extend to more general locally compact Abelian groups. 
For this reason we develop in Sections 1-5 more background material than 
actually needed for our concrete case. The contents of the sections are the 
following:

In Section 1 we discuss some concepts of topology and give the notion of 
a locally compact Abelian group H  along with four important examples, re­
ferred to as the elementary locally compact Abelian groups, that will be con­
sidered throughout this thesis. The dual group of a locally compact Abelian
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group is defined and we identify the dual group of each of our examples of 
elementary locally compact Abelian groups. It turns out that these dual 
groups are again in the class of these examples. We further discuss spaces 
of continuous functions defined on a locally compact Abelian group. We end 
this section with the definition and some properties of a Haar measure.

In Section 2 some spaces of integrable functions (with respect to the Haar 
measure fin) are introduced. In particular, we discuss the spaces L ^ i/ , / i# ) ,
1 <  p  <  oo, as Banach spaces and in the case p =  2 as Hilbert spaces. We 
investigate their properties in some detail for each of the elementary locally 
compact Abelian groups. Examples of dense subsets of //# ) are then
provided.

Section 3 concerns the Fourier transform over locally compact Abelian 
groups H.  The definition of the Fourier transform on L l {H, pin) is given and 
some of its properties are established including a few properties that hold 
for the case H  =  Mn. The Fourier inversion theorem is stated which leads 
to the concept of a dual Haar measure ^  on the dual group H.  The notion 
of the Fourier transform on L 2(H,fiff)  is also considered. A few mapping 
properties of the Fourier transform are then given including Plancherel’s 
theorem which claims the equality \\u \\l ^(h ,hh ) — \ \^\ \l 2(h  n - ) -  Plancherel’s 
theorem is a crucial application in this thesis that will be applied many times. 
This section finishes with a discussion of the inverse Fourier transform.

Section 4 introduces the extension of the Fourier transform from L \ ( H ,  pin) 
to the set (H ) of bounded Borel measures on if ,  i.e. the Fourier (Fourier-
Stieltjes) transform on It is mentioned that many of its properties
carries over from the Fourier transform on T + (if, These properties are 
also listed. The notions of a positive definite and a negative definite function 
are introduced. Convolution semigroups on H  are defined and their associa­
tion with continuous negative definite functions on H  is illustrated. Finally, 
some important properties of negative definite functions are given which are 
then followed by the Levy-Khinchin formula.

Section 5 deals with some spaces of functions of u : Mn x Zm —>• C. In 
particular, the Sobolev space H^,s(Mn x Z m), where t/j : Rn —> M is a fixed con­
tinuous negative definite function, is defined and its Sobolev norm is investi­
gated. There are, furthermore, some examples of dense sets of H^,s(M.n x Z m). 
Finally, the Friedrichs mollifier is studied.

Section 6 to Section 12 prepares our main result, namely that a certain 
class of pseudo-differential operators acting initially on H ^,2(M.n x Zm) give 
rise to generators of strongly continuous contraction one parameter operator 
semigroups, on Coo(M.n x Zm) or L2(Mn x Zm), and under additional condi­
tions these semigroups are even Feller semigroups, i.e. positivity preserving
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strongly continuous contraction semigroups on C00(Mn x Zm). Hence the 
induced stochastic processes are with respect to x  £  Mn typical Levy-type 
processes with state space Mn, while with respect to k £ Zm they are Markov 
chains. However, we do not discuss the probabilistic aspects in this thesis.

Section 6 introduces the symbol classes needed to handle operators of 
type

q(x, D x, D k) =  qi(Dx, D k) +  q2(x, D x, D k)

with q2(x, D x, D k) being a perturbation of the translation-invariant operator 
qi(Dx, D k). In Section 7 we collect all estimates needed for qi(Dx, D k) and 
Section 8 prepares with some auxiliary results of technical nature the more 
involved estimates for <72(2 , D x, D k) which are given in Section 9. In Sec­
tion 10 we combine these estim ates for qi(D x, D k) and q2(x, D x, D k) to get 
estimates for q(x, D x, D k).

In order to satisfy the range condition for q(x, D x, D k) +  A as required by 
the Hille-Yosida theorem we introduce a sesquilinear form B  associated with 
q(x , D x, D k) and the notion of a variational solution to q(x , D x, D k)u +  \ u  =  
f .  We establish first estim ates for B  and derive the existence of variational 
solutions. In Section 12 we prove that these solutions, of course under some 
conditions, are solutions of q(x , D x, D k) u + \ u  =  /  in a classical sense, i.e. for 
/  e  H^,s+2(M.n x Zm) the solution belongs to x Zm), hence we have
solvability in Coo(Mn x Zm) for a dense set of right-hand sides /  provided 
if^ ’s(Rn x Zm) is continuously embedded into C ^ M 71 x Zm). Eventually we 
add and discuss the dissipativity condition and prove our main result.

The basic structure is close to the approach in [18], where the case of Mn 
only was handled. The extension to Mn x Zm with all its required additional 
changes is new.
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1 Introductory M aterial

1.1 Some Basic M aterial on Locally Com pact Abelian  
Groups

In this section we collect some auxiliary results on locally compact Abelian 
groups. We begin with the definition of a (Abelian) group:

D e fin it io n  1 .1 . Let H  be a non-empty set and • be a binary operation on 
H. We call (H, •) a g r o u p  if the binary operation • : H  x H  —» H  satisfies 
the following group axioms:

•  H  is associative, i.e. ( /  • g) • h =  /  • (g • h) for  all f , g , h €  H.

•  H  contains an identity element e, i.e. there exists e E H  such that 
h • e =  e • h =  h for all h E H.

•  Every element in H  has an inverse element also in H,  i.e. for every 
h E LI there exists h~l E H  such that h • h~x =  h~l • h =  e.

If in addition f  • g =  g • f  for all f , g  E H, then we call (H, •) an A b e l i a n  
group.

It is customary to denote the binary operation of a group by the multi­
plicative notation •. We sometimes, under this binary operation, label the 
identity element as 1 . At times the additive notation +  is used to denote the 
binary operation of a group in which case we write, in Definition 1.1, /  +  g 
instead of f  • g, 0 instead of 1 for the identity element, and —h instead of h~l 
for the inverse element.

References Page 226 in [29].

R em a rk  1 .2 . (H , •) is written to emphasize the binary operation used. When 
no confusion can arise one may write H  instead of  (R , •)

An example of an Abelian group is (Z/7VZ, + ) which is defined to be the 
set of integers modulo N ,  N  E N, with the binary operation being addition 
modulo N.  More important examples include (Zm, + ) , (Rn, + ) both with the 
usual addition, and (Tm,-), m, n E N , with coordinatewise multiplication. 
Tm is given by S 1 x S 1 x . . .  x S 1 with each (5 1, •) := { { z  E C | \z\ =  1}, •)

m times
representing, under standard multiplication, the circle group. (Tm, •) is called 
the m-dimensional torus group. Further, consider the set of roots of 
unity Z (N)  := { 1, e2m/N, e2 lN, . . . ,  e2m(N- 1)/Ny  This set is, with respect
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to the standard multiplication, a group and it can be shown that (Z/iVZ, + )  
is isomorphic as a group to (Z(7V),-) meaning we may view (Z/./VZ, + ) as 
(Z(7V), •). This will be clarified when isomorphisms are discussed later on in 
this section. However, from this point on we shall refer to Z/7VZ as the group 
of integers modulo N  as it is the simplest group to work with. Of course we 
assume the reader to be familiar with basic concepts from group theory such 
as subgroups, quotient groups and product groups.

References Pages 219, 221 and 227 in [29]; Page 96 in [23].

R em a rk  1 .3 . (Z /iV Z ,+ ), (Zm,+ )  and (Mn,+ )  are called additive groups 
whereas (Tm, •) is a multiplicative group. Moreover, all these groups are 
Abelian. From now on we write these Abelian groups respectively as Z/./VZ, 
Zm, Mn and T m . Note that T 1 =  S 1.

Let (Hi,  -i) and (H2, -2) be two groups. A mapping h : Hi  —» H 2 is said 
to be a g ro u p -h o m o m o r p h ism  if for all x, y  G Hi  it holds

h(x -i y) =  h(x) -2 h(y).  (1 .1)

Direct consequences of (1.1) and the group axioms are

h(e i) =  e2 (1 .2 )

and

h(x~l ) =  (h ( x ) ) ~ \  (1.3)

where e\ and e2 are the identity elements of the groups Hi  and H 2 respec­
tively, and x £ Hi.  If in addition the groups Hi  and H 2 are Abelian, then it 
also follows

h(x) -2 h(y) =  h(y)  -2 h(x)  (1.4)

for all x , y  G Hi.

References Pages 21-23 in [24].

Suppose (H , + ) is an Abelian group. Let us focus on group-homomorphisms 
7  : H  ^  S 1. Denote by H* := Horn(H^S1) the set of all such group- 
homomorphisms on H.  Following equations (1.1)-(1.4) one immediately finds 
that a group-homomorphism h G H* satisfies for all x , y  G H  the properties 
below:

•  7 (x +  y) = i ( x )  - 7 (y)\

•  7(0) =  i;
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•  j { - x )  =  (7 ( x ) )  x;

•  7 (a) - l ( y )  = 7 (y)

W ith multiplication defined pointwisely by

(71 ' l 2j{x)  :=  71(2;) • 72(3?)

for all x G i / ,  it turns out (i/* , •) is an Abelian group with respect to point- 
wise multiplication. Indeed, the associativity of complex numbers under 
standard multiplication yields for all x  G H

((71 • 72)) • 73) ( z )  =  (71 • 7 2 ) (z )  • lz {x )
=  (71 (x) • 7 2 (a ))  - 73(x)

=  7i ( a ) - (7 2 (a ) -7 2 (a ) )  

=  7i (a )  • (72 -73) (a) 

=  (7i • (72 '7 s ) ) (a ) ,

implying the associativity of H *.
Define the mapping e : H  —> S 1 by e(x) := 1 for all x  G H.  Obviously 

e G H*. Moreover, given x  G H,  it holds

(7  • e){x)  =  y(x) • e(x) = 'y(x) • 1 =  y(x)

and

(e • 7 )(x) =  e(x) ■ j ( x )  =  1 • j ( x )  =  7 (2 ),

which shows e is the identity element in H*.
For any 7  G H* define a mapping 7 _1 : H  —»• 5 1 by 7 -1 (a) := (7 (x ))_1.

Again, like for the identity element e, it is trivial to observe that 7 -1  G FP.
Moreover,

(7 • 7_1)(a) =  7 (a) • 7_1(a) =  1 =  e{x)

and

(7_1 • 7) (a) =  7_1(a) • 7 (a )  =  1 =  e(x)

for all x G H,  implying 7 -1  G H* is the inverse of 7  G H*.
Finally, for any 71,72 G H* and x  G H,  observe

(7i • 72) (a) =  71(a) • 72(s) =  72(x) • 71(a) =  (72 • 7i)(a).

15



Hence (H*, •) is an Abelian group.
Our aim now is to introduce the notion of a topological group and then  

introduce locally compact (Abelian) groups, we are primarily interested in 
locally compact Abelian groups. We shall collect some facts from topology.

D e fin it io n  1 .4 . Let X  be a set. A topology r  on X  is a collection of subsets 
(called open sets) of X  such that

•  0 G t  and X  G r ;

•  any arbitrary union of open sets is itself open, i.e. given 
{Uj  | j  G T} C r ,  where T is any set, it follows U jer Uj ^ T>

•  any finite intersection of open sets is itself open, i.e. given { U \ , . . .  Un}  
C t ,  n G N, it follows f"jj=i Uj G r .

The set X  equipped with the topology t ,  i.e. ( X , r ) ,  is called a topological 
space.

References Page 19 in [5].

R em a rk  1 .5 . We may write H  instead of ( H , t ) i f  it is clear what topology 
is equipped to H  or if the knowledge of  the topology is not necessary.

We assume the reader to have some understanding of the basic concepts 
of topology such as closed and compact sets, neighbourhoods and a basis of 
a topology. Given a topological space (X,  r ), X  is said to be locally compact 
if every point in X  possesses a compact neighbourhood. We refer to the 
topology t that makes (X , r) into a locally compact topological space as the 
lo c a lly  c o m p a ct to p o lo g y  on X .  For our purposes any topological space 
we work with will assumed to be Hausdorff. A topological space X  is Haus- 
dorff if for any two distinct points x and y  in X  there exists a neighbourhood 
Ux of x  and a neighbourhood Uy of y  such that they are disjoint, that is, 
Ux D U y =  0.

Let (Xi , Ti )  and (X 2,T2) be topological spaces. A mapping u : X \  —> X 2 
is continuous if the preimage of every open set is itself open, i.e. u_ 1(Vr) G T\ 
whenever V  G r2. We assume the reader to be familiar with basic properties 
of continuous mappings.

References Pages 20-21 and page 91 in [5].

D e fin it io n  1 .6 . A group (H , •) is said to be a topological group if it is
endowed with a topology r  such that ( H , t ) is a topological space where, with 
respect to r ,  the group operations (x, y )  i—>• x  • y from H  x H  into H  and
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x  i—>• x  1 from H  into H  are continuous. We label the topological group by

Further, i f  (H, -)  is Abelian and ( H, r )  is locally compact, then ( i f , - , t )  
becomes a locally compact Abelian group.

References Pages 57-58 in [27]; Page 186 in [22].

R em a rk  1 .7 . In Definiton 1.6 we assume H  x H  is endowed with the prod­
uct topology and take for granted that the reader is used to the concept of  
product topologies. In fact, in this thesis every product group is assumed to 
be equipped with the product topology. We write to emphasize the
binary operation and topology endowed to make H  into a locally compact 
Abelian group, but we may write H  instead of if it is clear what
binary operation and topology are endowed to H, or if the knowledge of the 
binary operation and topology is not required. For two distinct topologies, 
say T\ andr^, the topological groups (H,  -,Ti) and ( i7 ,- ,72) are different. For 
example, when taking Q with the usual addition as binary operation, the two 
topological groups obtained by taking on the one hand side the topology in­
duced by the Euclidean distance and on the other hand the discrete topology 
are different. From now on H  will only denote a locally compact Abelian 
group.

Consider any discrete Abelian group (G i,-) equipped with the discrete 
topology 7i, namely (G i ,- ,7i). Further, suppose ( £ 2, 72) is an arbitrary 
topological space. As the topology T\ is discrete it turns out that any map­
ping u : Gi  —»■ H  is continuous. This result guarantees, for any group 
(G i,-) equipped with the discrete topology 71, the continuity of the map­
pings (x, y) i-)- x  • y  from G 1 x G\  into G\  and x  x _1 from G\  into G\.  
Consequently (Gi, •, T\) is a topological group. Note that the (product) topol­
ogy on G1 x Gi is also the discrete topology, thus confirming the continuity 
of • : Gi x Gi —» G\.  Moreover, by definition of the discrete topology one im­
mediately observes T\ is also a locally compact topology, implying (G i, - ,Ti) 
as a topological space (Gi, rf) is locally compact. In other words the discrete 
topology T\ is a locally compact topology and hence (G i,- ,t i )  is a locally 
compact Abelian group.

References Proposition 3.9 in [8]; Remark 3.14 on page 59 in [27]; Example 
(a) on page 186 in [22].

Let us turn our attention back to the four Abelian groups that we men­
tioned earlier. We now transform each of these Abelian groups into a locally 
compact Abelian group and list them in the example below along with their 
appropriate topologies. The first two examples follow from the paragraph
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above.

E x a m p le  1 .8 .

•  The additive Abelian group (Z /A Z , + )  endowed with the discrete topol­
ogy-

•  The additive Abelian group (Zm, + ) endowed with the discrete topology.

•  The additive Abelian group (Rn,+ )  endowed with the usual topology, 
i.e. the topology whose basis consists of the open balls in (Rn,+ ) .

•  The multiplicative Abelian group (Tm, •) C (Cm, •) endowed with the 
usual topology, i.e. the topology being the subspace topology.

•  For finitely many arbitrary locally compact Abelian groups (Hi ,  *i ) , . . . ,  
(Hn, -n), the product group (Hi  x . . .  x Hn, o) endowed with the product 
topology is a locally compact Abelian group.

References Pages 6-7 in [1]; Examples (v) on page 16 in [13]; Page 31 in 
[8],

R em a rk  1 .9 . In Example 1.8 we could choose the topology on Tm to be the 
natural topology induced by R 2m since C m is homeomorphic to R2m. On the 
groups Zm, Z/7VZ and their subsets we always take the discrete topology and 
therefore refer to these sets, endowed with this topology, as discrete sets.

JjIN I j and all its subsets are finite (and hence discrete) and all such 
spaces can easily be seen to be compact, therefore Z/7VZ is in fact  a compact 
Abelian group. Any finite subset ofTF1 is of course compact but not Zm itself. 
From the Heine-Borel theorem, a set in Rn or T m is compact i f and only if  
the set is bounded and closed.

The locally compact Abelian groups Z/7VZ, Zm, Rn and Tm together will 
be known as the e l e m e n t a r y  loca l ly  c o m p a c t  A b e l i a n  groups .

References P. 18 (a) on page 7 in [1]; Theorem 4.29 on page 48 in [8].

Let H  be a locally compact Abelian group. In our thesis we are in­
terested in a particular subset of H *, namely the space of all continuous 
group-homomorphisms x  H  —> S 1 which shall be designated by H.  In fact, 
it turns out this subset is a subgroup of H* under pointwise multiplication  
inherited from (H*,-),  and is therefore a group itself. The group (H, - )  is 
called the dual group of H.
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D e fin it io n  1 .1 0 . Let  (17, •) be a locally compact Abelian group. We call a 
complex-valued function x  & c h a r a c t e r  on H  if  x -  H  —» S'1 is a continuous 
group-homomorphism. We denote the set of  all such characters by H  and 
call it the d u a l  g r o u p  of H.

References Page 230 in [29]; Pages 188-189 in [22].

R em a rk  1 .1 1 . Every locally compact Abelian group has a dual group.

It is easy to see that H  is a subgroup of H* and as a result the mapping 
e : H  -»  S'1 defined by e(x) := 1 for all x  G H  is the identity element in
H.  We refer to e as the u n it  ch aracter . Observe also that H  becomes a 
locally compact Abelian group when endowed with the compact convergence 
topology (the topology of uniform convergence on compact sets). One can 
prove that the collection of all sets of the form

U( K, e )  := { x  G H  \ \x(x ) ~  1| <  £ for all x £ K } ,

where e >  0 and K  C H  is compact, produces a neighbourhood basis of the 
unit character and hence generates the locally compact topology (compact 
convergence topology) which turns H  into a locally compact Abelian group.

References Page 230 in [29]; Page 8 in [1]; Page 8 in [3].

E x a m p le  1 .12.

•  (Z/7VZ, •) =  {ew | u  =  0 , 1 , . . . ,  N  — 1},  where

eu (k) := e2*ikw/N for  all uj =  0 , 1 , . . . ,  N  -  1.

•  (Zm, •) =  {eu | u j  G [0, 27r)m} ; where

Cuj{k) := elh'u for all u j  G [0, 27r)m.

•  (Mn, •) =  {e^ | £ G Mn} ; where

ef (x) :=  for  all £ e Mn.

•  (Tm, •) =  {ejt | k G Z m}; where e* is taken to be a function on [0,27r)m
given by

efc(cj) :=  elk'u for  all k G Z m.
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References Page 231 in [29]; Pages 12-13 in [28].

Below we identify each of these dual groups as a locally compact Abelian 
group that will be easier to deal with. We will discuss in detail the dual
group Rn.__________ __

The dual group Rn is isomorphic as a group and homeomorphic as a 
topological space to Rn, in other words, Rn is topologically isomorphic to 
Rn, or Rn =  Rn for short with =  signifying the topological isomorphism. 
Indeed, recall from Example 1.12 that Rn =  (e^ | £ G Rn}, where e^(x) =  
eix £ for ap £ ^ jĵ ry jea(j ug consi(je]: the mapping i : Rn —>• Rn
defined by i(e^) £ which we now aim to prove is a group-isomorphism.
Suppose i (e^)  — i(e^2), then £i =  £2, implying el x =  elx'& for all x  G Rn, 
i.e. =  ê 2. This shows i is injective. Now, given £ G Rn, we find naturally 

is an element in Rn such that i(e^) =  £. Finally, let e ^ ,e 2̂ G Rn, then a 
simple computation yields

z(e^ • e$2) ^(^Ci+^2) £1 T  £2 ^(^1) T  (̂^£2)1

i.e. i is a^roup-homomorphism. Thus i is a group-isomorphism, which 
concludes Rn is isomorphic as a group to Rn. It also turns out that i is a 
homeomorphism, but we will not prove this.

References P. 2 on page 1 in [1].

Analogue arguments yields

Z/7VZ is topologically isomorphic to Z/7VZ,

Zm is topologically isomorphic to Tm, (1-5)

Tm is topologically isomorphic to Zm, (1.6)

and of course we have just shown

Rn is topologically isomorphic to Rn. (1.7)

As the above examples show, each of these dual groups can be identified as 
either one of the elementary locally compact Abelian groups we are already 
familiar with. More importantly, given any finite number of locally compact 
Abelian groups H i , . . . ,  Hn having respectively the dual groups H i , . . . ,  Hn, 
it holds

Hi  x . . .  x is topologically isomorphic to x . . .  x Hn. (1.8)
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References P. 19 (b) on page 8 and P.20 (a)-(c) on page 9 in [1].

E x a m p le  1 .13 . Applying (1.8) with (1.5) and (1.7) yields 
R ^ x Z m =  W 1 x T m.

Notice that the dual group of the finite Abelian group Z /A Z  is isomorphic 
to the same finite Abelian group that we took the dual group of, namely 
Z/iVZ. This follows from the fact that the dual group of any finite Abelian 
group H  is topologically isomorphic to the same finite Abelian group H.  
Furthermore, the dual group of a compact group is discrete while the dual 
group of a discrete group is compact. Examples (1.6) and (1.5) respectively 
gives examples of these two group properties.

References P. 19 on page 8 and P.20 (a) on page 9 in [1].

Recall from Remark 1.11 that every locally compact Abelian group has 
a dual group. We have already looked at the dual group of each of the 
elementary locally compact Abelian groups, and with a dual group H  of a 
locally compact Abelian group being a locally compact Abelian group itself 
it makes sense to investigate the dual group of a dual group, that is, the dual

group of H.  We denote this dual group by H  and refer to it as the d ou b le  
d u a l grou p  of H.

Let the dual group of H  be given by H  := { x  : H  —»• S l \ x  is a character}. 
Then, for each x £  H,  Jx : H  —> S 1 defined by Xx(x) x(x) 1S a charac­

ter on H  and moreover the theorem below confirms that H  consists only of 
characters of that form.

T h eo rem  1 .1 4  (Pontryagin Duality Theorem). Let H  be a locally compact 

Abelian group and let H  be its double dual group. Then H  is topologically 

isomorphic to H  where the topological isomorphism a  is given by a(x)  : = X x .

Hence H  may be regarded as H.

References P. 19 (d) on page 8 in [1]; Theorem 4.2.11 (last sentence) on 
page 134 in [27].

Operators of particular interest to us are those whose domain consists 
of functions defined on a locally compact Abelian group. A few exam­
ples of such domains will now be discussed, and in what follows H  is a 
locally compact Abelian group. We denote by C( H)  the vector space of all 
complex-valued continuous functions on H.  Cq{H)  shall denote the vector 
space of all complex-valued continuous functions on H  with compact sup­
port, that is, C q(H)  := {u  £  C( H)  \ supp u is com pact}, where supp u \—
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{ x  e  H  \ u(x)  ±  0}- Let oo be an ideal point not belonging to H , then  
H  :=  U { 00} is defined to be the one-point compactification of H  en­
dowed with the topology consisting of all open sets in the topology of H , 
and sets of the form H \ K , K  C H  compact. In the case when H  is compact 
the point oo is an isolated point in H.  We say u : H  —> C is a function 
vanishing at oo (infinity) if for every e >  0 there exists K  C H,  K  compact, 
such that |it(x)| <  e for all x  G H \ K .  The vector space of all complex­
valued continuous functions on H  vanishing at infinity is given by C ^ H ) ,
1.e. Coo(H) := {u  G C( H)  \ u vanishes at infinity}.

It holds in general

C0(H)  c  C ^ H )  c  C( H)

and immediately we observe C q(H)  and C ^ H )  are subspaces of C( H) .  How­
ever, in the case when H  is compact the subspaces coincide with C( H) ,  
namely

C0(H)  =  C ^ H )  =  C ( H ),

and hence C0( Z / N Z )  =  C ^ Z / N Z )  =  C ( Z / N Z )  as well as C0(Tm) =  
Coo(Tm) =  C ( Tm). As already stated, if H  is equipped with the discrete 
topology, then any function defined on H  is continuous and so V( H)  =  C( H)  
with V( H)  signifying the vector space of all complex-valued functions on H.  
In particular, V ( Z / N Z )  =  C ( Z / N Z )  and V ( Z m) =  C ( Z m). Most of these 
spaces along with Co(Zm) and Coo(Zm) will be examined further in Section
2 .

References Page 16 in [19]; Pages 166-167 in [2]; Page 92 in [5].

In Section 3 functions whose domain is the dual group of a locally compact 
Abelian group will be considered, namely the Fourier transform of a func­
tion. Recall that we were able to identify each dual group in Example 1.12 
as one of the more well-known elementary locally compact Abelian groups. 
In addition, each of these identifications carries over to their corresponding 
vector spaces of functions as illustrated in the theorem below.

T h eo rem  1 .15 . Let Hi and H 2 be two locally compact Abelian groups such 
that Hi and H 2 are isomorphic as groups. Moreover, let V{ Hi )  and V { H 2) 
be their corresponding vector spaces of complex-valued functions on Hi and 
H 2 respectively. Then V( Hi )  and V ( H 2) are isomorphic as vector spaces.

References Page 221 in [29].

Proof. Since Hi  and H 2 are isomorphic as groups, there exists a group- 
isomorphism from Hi  to H2 which we denote by J  : Hi H2. Our aim
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is to deduce that the mapping T  : V( H\ )  —» V ( H 2) defined by v >-»• v  o J -1 
is a vector space isomorphism.

Let vi , V2 G V( Hi )  and A1?A2 G C. Then

T( X1Vi +  A2^2) — (Ai^i +  A2U2) o J
=  A1U1 o J -1  +  A2U2 o J ~ l

=  Ai(ui O J ~ l ) +  A2(u2 O J ~l )

— A iT(vi) +  \ 2T { v 2),

implying T  is linear.
Suppose V\ , V2 €  V( Hi )  such that T(ui) =  T(u2), i.e. T(vi ) ( y)  =  T ( v 2){y) 

for all y  G H 2- J  being a group-isomorphism gives the existence, for each 
y  G H 2, of a unique element x  G Hi  such that J(x)  =  y  and therefore 
J ~ 1{y) =  x.  Now, for all y  G H 2

{vi o J ~ l )(y) =  {v2 o J ~ 1)(y) 

vi (x)  =  v2(x),

i.e. vi  =  v2, proving T  is injective. Finally, given w  G V ( H 2), it is obvious 
v  := w  o J  e  V(Hi ) .  Further it holds

T{v)  =  v o J -1  =  (w o J) o J ~ l =  ic,

giving the surjectivity of T.
□

R em a rk  1 .16 . An important aspect of this proof was obtaining the defini­
tion of the vector space isomorphism T  which we claimed to be T  : V( H\ )  —>• 
V ( H 2) defined by T(v)  := v  o J -1  with J  : Hi —> H2 being the group- 
isomorphism with inverse J -1 : H 2 —> Hi.

E x a m p le  1 .17 . Als Mn is isomorphic as a group to Mn we can deduce via 
Theorem 1.15 and Remark 1.16 (where Hi =  Rn and H2 =  M.n) that F(Mn) 
and V  (Rn) are isomorphic as vector spaces with the vector space isomorphism 
T  defined by T( v )  := v o  J - 1 . Thus any function v G F (M n ), can be identified 
as v  o J -1  g  Further, by defining v  o J -1 := v we may identify any
function v : Rn -> C as v : Rn —> C.

Using the same argument, any functions v\  : Z/iVZ —>■ C, v2 : Zm —>■ C 
and U3 : Tm —>• C can be identified as V\ : Jj/N T i —> C, v2 : Tm —>■ C and 
Vs : Z m —>• C respectively.
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The corollary below follows directly from Theorem 1.15.

C oro lla ry  1 .18 . Let Hi and H 2 be two locally compact Abelian groups such 
that Hi and H 2 are topologically isomorphic. Then C( Hi )  and C ( H 2 ) are 
isomorphic as vector spaces.

Therefore, one may choose to work with C ( Z / N Z )  instead of C ( Z / N Z ) ,  or 
C ( Tm) instead of C ( Z m), or C ( Z m) instead of C (Tm), or C(Mn) instead of

We are familiar with integration on Mn. However, integration can be gen­
eralized to locally compact Abelian groups and therefore one can define the 
integral of a function on a locally compact Abelian group (H , + )  (where the 
additive notation is used for the binary operation in H ) . To do so a measure 
space (H , A , p)  needs to be constructed. We shall take the cr-algebra A  of H  
to be the cr-algebra of H  generated by the open sets of the topology of H,  
namely the Borel cr-algebra, labeled 13(H). Thus (H, 13(H)),  which we may 
simply write as H,  is our measurable space and will always be throughout 
this thesis. We assume the reader to be familiar with concepts of measure 
and integration theory.

Fix a G H  and let ra : H  —> H  be the translation mapping on H  given by 
ra(x) := x + a .  ra is in fact a homeomorphism and consequently ra(A) G 13(H) 
whenever A  G 13(H). We know the Lebesgue measure on R n (unique up 
to a positive normalization factor) is translation-invariant which poses the 
question whether or not there exist a measure p  on an arbitrary H  (by a 
measure on H  we mean a measure on 13(H)) that is translation-invariant, 
i.e. p(r a(A)) =  p(A)  for all A  G 13(H) and a G H.  Fortunately, the answer 
to this question is yes and the theorem stated below confirms this.

References Example 3 on page 36, Examples 2 on page 34 and 8.2 Corollary 
on page 39 in [2]; Page 58 (18 lines up) in [27].

T h eo rem  1 .19 . Let H  be a locally compact Abelian group. There exists 
a positive regular Borel measure p  on H,  which is unique up to a positive 
normalization factor, that is translation-invariant and finite on compact sets. 
We call this measure (once a suitable normalization is chosen) the H aar 
m easure on H  and we denote it by pn-

Theorem 1.19 claims that such a measure exists for any locally compact 
Abelian group. Hence for every locally compact Abelian group H  we can 
construct the measure space (H , 13(H), pn)-  All measure spaces in this thesis 
will be of this form and when dealing with measure spaces we write H  instead
of (H,B(H), t iH).
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References Page 187 in [22].

We now discuss some sets of measures on a locally compact Abelian group 
H  that we will be working with throughout this thesis. Let M. + (H)  and 
A4£( H)  stand respectively for the set of all Borel measures on H  and the 
set of all bounded Borel measures on H.  Denote by M. ( H)  and Mb { H)  
the set of all signed Borel measures on H  (Borel measures on H  that can 
have negative values) and the set of all bounded signed Borel measures on H  
respectively. In cases where measures are complex-valued we replace A4+ ( H ) 
with A4q (H),  the set of all complex-valued Borel measures on H.  The sets 

and Mb, c{ H)  are defined analogously. For any Borel 
measure ji on H  we define the to ta l m a ss  o f  /x, denoted ||/x||, to be the 
measure of H , that is, ||/x|| := By definition we have ||/x|| <  oo for
/x G M b(H)  (or M b,c(H)).

Before listing examples of Haar measures for some locally compact Abelian 
groups it is convenient to have a look at a few properties of a Haar measure 
on particular types of locally compact Abelian groups. If H i , . . . ,  Hn are lo­
cally compact Abelian groups with corresponding Haar measures /x#1?. . .  nun 
respectively, then the locally compact Abelian group Hi  x . . .  x Hn has the 
product measure h h 1 0  . . .  0  HHn as its Haar measure. The Haar measure 
HHd on a discrete (topological) group Hd is usually normalized in such a way 
that the measure of each element x  in Hd is 1 , that is, fJ>Hd(x) 1 for all 
x  G Hd. A measure with this property is called a counting measure. For 
a compact group H c the Haar measure h hc is usually normalized in a way 
that it has total mass 1, i.e. hhc(Hc) := 1. However if Hf d is a finite (and 
hence compact) and discrete (topological) group, then its Haar measure 
cannot be a counting measure of total mass one. Instead we take to be 
the non-counting Haar measure of total mass one.

References Pages 24-25 in [19]; 2.12 on page 11 in [3]; 1.1.3 on page 2 in 
[28]; Remark 4.4.7 on page 144 in [27].

E x a m p le  1 .20 .

•  On Rn; with the exception of Section 3 we choose the Haar measure to be 
the Lebesgue measure fi^n := with the normalization A ^ ([0 , l]n) =  
I, where [0, l]n := [0 ,1] x . . .  x [0 ,1]. In Section 3 will be taken

n times
as (27r)- 2A(n) as this normalization will be of an advantage to us when 
dealing with the Fourier transform.

•  We choose the Haar measure on Zm to be the counting measure given 
by /xz™ := Sfcez™ £k> where is the Dirac measure at k G Zm.
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•  We know TL/NT, is a finite and discrete group and therefore the as­
sociated Haar measure is taken to be the countable additive measure 
l̂ Z/NZ Jj E l  £k because only then do we obtain the normalization 
P‘Z/n z ( ^ / N 'L )  =  1.

•  By referring to Tm as [0, 27r)m we identify the Haar measure fijm on 
Tm to be the restriction of to [0, 27r)m c  Mm. That way the
normalization p jm (Tm) — 1 is obtained.

References 1.5.3 on pages 24-26 in [28]; (3) in 2.3 on page 232 in [29]; Page 
1 in [22].
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2 Some Function Spaces on Locally Compact 
Abelian Groups

Before we make a start with this section it is worth considering the notion of a 
sequence. A sequence in C, denoted by (un)neN, is a function u : N -*  C, with 
un := u (n ) .  Therefore the space of all functions u : N —>■ C may be viewed as 
the space of all sequences (wn)neN in C. One may however replace the index 
set N by a finite or discrete set A  and instead speak of a sequence in C, with 
index A, denoted by (Uk)keA, which is identified as a function u : A  —>■ C, 
with Uk := u(k).  For the case A =  it follows that C N (or equivalently
the space of all sequences (uk)keo,...,N-h indexed by Z /A Z , in C) is the space 
of all functions u : Z /A Z  —» C. Here, u : Z /A Z  -»  C corresponds to 
(w(0), • • • , u ( N  — 1)) G C^. Analogously, the space of all sequences (Uk)kezm 
in C, indexed by Zm, is the space of all functions u : Zm —>• C. Here, we 
associate u : Zm —» C with the sequence (Uk)kezm, where it(/c) := w* for all 
fc G Zm. From now on a sequence (Uk)k&A will be said to be ‘a sequence on 
A  rather than ‘a, sequence in C with index A .

Earlier we came across the function spaces C (H ) ,C q (H )  and Coo(H), H  
being a locally compact Abelian group. We wish to discuss further these 
spaces for the cases Z/A^Z and Zm. As already mentioned, C ( Z / N Z )  is 
exactly the space of all functions u : Z /A Z  —> C, or the space C^. The 
space C ( Zm) consists of all functions u : Zm —>> C, or using the sequence 
notation, consists of all sequences (uk)kezm on Zm. A sequence in C (Zm) is 
called finitely non-zero (or just finite) if there exists N  G N such that Uk =  0 
for all \k\ >  A , or to put it another way, there exists only a finite number of 
non-zero elements in the sequence. We designate by Co(Zm) or /qnite (^ m) 
the space consisting of all finite sequences on Zm. Finally, the space C ^Z™ ) 
consists of all sequences with the property that limifci^ooUfc =  0 , or using the 
function notation, limifci^oo f ( k )  =  0. A function satisfying this property is 
said to be a function vanishing at infinity.

References Page xii in [2]; Problems 5F on page 76 in [26].

In the previous section we found for every locally compact Abelian group 
H  the existence of a unique (up to a positive normalization factor) Haar 
measure jin- Remember that for the cases H  =  Z /A Z , Zm, Mn or Tm, fin 
is taken to be the normalized Haar measure given in Example 1.20. For a 
moment let us assume hh to be arbitrary, then for every such Haar measure 
/jlh we may associate a non-zero positive linear functional Ih on Co(H)  given 
by
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I h ( u ) : =  [  u ( x ) f j , H ( d x )  ( 2 . 1 )
J H

that is /itf-translation invariant. That is, a linear functional 7# on Co (77) 
not identically equal to zero with the following properties: u >  0 implies 
Ih(u) >  0, and for all u E Co (77) we have 7//(rau) =  Ih(u)  for a E 77 
fixed, where rau(x ) := u(x — a) for all x E (77, + ). This linear functional 
Ih  on Co (77) is regarded as the H aar in teg ra l on 77. Such an integral 
exists for every locally compact Abelian group and is unique up to a positive 
normalization factor. In the situation when 77 is discrete the integral in (2.1) 
possesses the form of a sum, this notion will be illustrated when the Haar 
integrals on Z/AfZ and Zm are introduced in just a moment.

References Definitions on pages 63-64. Page 65 (first sentence), Theorem  
6 on page 77 and Notation on page 78 in [13].

Given any Haar integral Ih on a locally compact Abelian group 77, one 
may introduce the 7 / ( 77, f in )-norm ||-||LP(jf>Ai/f)> 1 <  p <  oo, and the inner 
product (•, -)l2{h ,iih) which, respectively, are defined formally by

J  \ u ( x ) \ p /j,H ( d x ) ^ j

and

(u , v)L2{h,vlh) ’=  /  u(x)v(x)f iH(dx).
JH

References 5.1 on page 66, and Examples 5 and 6 on page 164 in [26].

Consequently we can introduce the 7/(77, (JLh ) space, this space is de­
scribed to be the closure of Co(77) with respect to the 7/(77, ^ h )-norm,

i.e. 7/(77, fj,H) := Co(77)^ Thjg definition immediately tells us that
Co(77) C 7/(77, nH) as a dense subspace. Equivalently 7 /(7 7 ,/i# ) is the 
space of all (equivalence classes of) measurable functions u : 77 —»■ C for 
which \ \u\ \ l p { h ^ h)  <  oo. It is easy to verify \ \u \ \ l p { h ,hh ) and { u , v ) L2 [ h ^ h)  

are well defined for all u , v  E Co(77). The notation 7 /(7 7 ,////)  is used to  
emphasize the Haar measure being applied. Moreover, one may speak of the 
space L°°(77,////), which by definition is the space of all measurable func­
tions u : 77 —> C with finite essential supremum norm, designated HitHoo,// 
(or 11w||oo if it is clear what 77 is). The essential supremum norm is defined 
as

IMloo,// := ess sup |u(x)| := inf{a >  0 | / / //{x  : |u(x)| >  a}  =  0}. (2.2)

M lL v(H,h h ) : =
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In the situation when u is continuous on H  or when /x# (A) =  0, A C 77, 
implies A  =  0, (2 .2 ) can be reformulated as

IMloo,# := sup|ix(x)|. (2.3)
x E H

This norm is called the supremum norm. If in addition 77 is finite, we arrive 
at

IMloo,# max|w(x)|.
x E H

References Page 188 (18 lines up) in [22]; 5.1 on page 66 , page 74 (para­
graph before 5.15 Theorem) in [26]; Examples (xi) and (xii) on page 25 in 
[5]; Page 86 (top of page) in [27].

When no confusion can arise we may adopt, for 1 <  p  <  oo, the nota­
tions 7 /(77), \\u\\LP{H) and (u ,v )L2 ^  instead of 7 /(7 7 ,/x#), \ \ u \ \ L v { H ^ h ) and 
('u, v ) l 2(h,ij,h) respectively only when fin is normalized as in Example 1.20. 
The notations 7 /(7 7 ,/x^), \ \ u \ \ l p ( h , ij,h ) and (w, on the other hand
will only be used when fin is taken to be arbitrary. From this point onwards 
we shall always assume any Haar measure on H  to be normalized unless 
otherwise specified. It should also be noted that every continuous function 
is Borel measurable, hence all functions u : Z/7VZ —» C and u : Zm —> C are 
by definition Borel measurable.

References Examples 2 on page 34 in [2].

The Haar integral of a function u : Z/7VZ —» C (with respect to the Haar 
measure /xz/ivz =  ^  Y!u=q £k) is given bY

Immediately we find for 1 <  p <  00



Of course, every function u : Z/7VZ —> C has a finite L^Z/TVZJ-norm, i.e. 
IMIlp(z/nz) < meaning LP(Z/NZ)  coincides with C N. In other words, 
LP(Z/NZ) =  C ( Z / N Z ) .

Consider now an arbitrary Haar measure 77 on Z j N Z .  By definition of 77, 
one finds that for A  c  Z/7VZ satisfying 77(̂ 4 ) =  0 it follows A =  $. This says 
that a property of u £ L^Z/TVZ, 77) that holds almost everywhere actually 
turns out to hold everywhere. Hence, with Z / N Z  being finite, we find

IM|oo,z/ra =

which is obviously well defined for all u : Z/7VZ —> C. Thus, like L^Z/TVZ), 
L °° (Z /N Z )  coincides with C N.

References Example 4 on page 85 in [13]; Examples 1 on page 66 in [2]; 
Page 222 in [29].

Next we turn to the case H  =  Zm. The Haar integral of u : Z m —> C 
(with respect to the Haar measure fiym =  Yhkezm £k) is of the form

/  u(x) fjLym(dx) =  /  u(x) £k{dx) =  u(k).
Jz™ keZ™ kEZm

Let us look a bit more closely at the series J2kezm UW  for a moment. No­
tice that the definition of this series is a bit obscure in the sense that we 
have no knowledge of the order of its terms. Let us assume the series 
Efcez m ls absolutely convergent. Then the series Ylkez™ u ( a "̂
ways have the same sum no matter what the order of the terms are. For 
this reason Jzm u{x) jiym (dx) may be obtained as the limit of any sequence of 
partial sums. It is customary to choose ( Sn)nen> Sn  := Yl\k\<N u (k), as the 
sequence of (symmetric) partial sums to represent f zm u{x) fiy™ (dx) , that is, 
we set

/  u(x) uym(dx) =  lim u(k),
Jym N̂ OO ^

where |fc| (k\  +  . . .  +  However, we may replace \k\ with |fc|i :=
l^i I T  • • • |km| or |/c[oo . maxi<j<j7j| kj |.

References Examples 5 on pages 86-87 in [13]; 1.4.6 Lemma on page 20 in 
[17]; Page 36 in [5].

Suppose J2kEZ™\u (k)\P converges. Then using the argument above one 
may set
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ke zm |fc|<JV

In parallel with the case H  =  'L/N’L, we find for 1 <  p  <  oo

,kezm
E k *)^

p

and

{u ,v )L2 {zm) =  ^ 2  u{k)v(k).
ke zm

Thus the space LP{Zm) consists off all functions u : Zm —> C with the prop­
erty that Ylkez™\u (k)\P =  oo Yl\k\<N\u (^)\P 1S convergent. This conver­
gence yields limifci^oo Uk =  0 and therefore U >{Zm) C Coo(Zm) for 1 <  p <  oo. 
Moreover, one can show this inclusion is strict. Under this observation we 
understand there exist functions u : Zm —> C for which Ylkezm\UW \ P di- 
verges and as a result obtain the strict inclusion i / ( Z m) C C ( Zm). Now 
let r) be an arbitrary measure on Zm. As in the case of Z/JVZ, a property 
that holds //-almost everywhere actually turns out to hold everywhere, i.e. 
77(A) — 0, A  C Zm, implies A =  0. This implies the essential supremum 
norm on Zm is exactly the supremum norm

The space of all functions u : Zm —> C for which ||it||oo,zm is finite is designated

References Example 4 on page 67 and Example 5 on page 164 in [26]; Page 
48 (first paragraph after (ii)) in [6].

For l < p < ( / < o o i t  can be shown that

w||oo,Z™ =  SUp |lt(fc)|.
kezm

L°°(Zm).

which then implies

Lp{Z m) C L q{Z m),

and this inclusion is strict.

References Lemma 3.1 and Corollary 3.2 on page 17 in [21]. 

Collecting all the inclusions together we arrive at
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C0(Zm) C Lp(Zm) C Lq{Zm) C Coo(Zm) C C ( Z m).

Next we discuss the cases Mn and Tm. Given a measurable function 
u : Rn —> C, its Haar integral (with respect to the Haar measure /i^n =  A ^ )  
is written as

By Z/(Mn), 1 <  p <  q <  oo, we denote the space consisting of all measurable 
functions u : Mn —» C for which |u|p is integrable, the Lp(Mn)-norm and inner 
product respectively possess the forms

Meanwhile, in contrast with the cases Z / N Z  and Zm, the property =
0 (for an arbitrary Haar measure /i^n on Mn) does not necessarily imply 
A =  0. For instance, A  may be any countable set in Rn, and for this reason 
the essential supremum norm of a function u : Mn —> C  in L°°(Rn) is in 
general only of the form

Only when u is continuous does its essential supremum norm adopt the same 
form as (2.3), that is, we get the supremum norm

References Example 1 on page 84 in [13]; Examples 2 on page 29 in [2].

Eventually we turn to the case Tm. For the Haar integral of a measurable 
function u : Tm —> C (with respect to the Haar measure fijm =  r ^ m )̂
we write

and

|̂|oo,Rn — inf{a >  0 | A ^ { x  : \u(x)\ >  a}  =  0}.

w||oo,M" =  SUp \u(x)\.
xEM.71

pZir P 2/K -1
I  .. I  „(.«)
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Here an abuse of notation has been used, by u(elt) we mean u(eltl, . . . ,  eUm), 
where tk G [0, 27r), 1 <  k <  m.  On the other hand however, each function 
u : Tm —>■ C can be identified as a 27r-periodic function on Rm which shall 
also be denoted by u , and moreover

-I p2ir p2n -i p2tt p2ir

W r l  - I  u {e i t ) d t  =  w r l  - I  u { x ) d x -

Immediately we find for 1 <  p  <  oo

/  i /*27r r27r \  I

i/  i  r2?r r27r \  p
=  • • • y  l“ W r d x j  := IIu ILp̂ ^ w ),

as well as

2 /*27T /*27T
(u ,u )L2(Tm) =  — /  . . . I  u(e“ )w(ei‘) d<

 ̂ /*27T /*27T ____

=  ( 2 ^  /o  ■' ■ /o  “ (x)^ dx :=

References Examples 2 on page 84 in [13]; Basic Examples (3) on pages 
96-97 in [23]; Page 128 (last sentence before Remark 4.1.1) in [27]; Pages 1-2 
and 27 in [22].

Of course, we define Lp(Tm) (respectively Z/£er(Rm, A^ ) )  
space of all measurable functions u : Tm —>■ C (respectively 27r-periodic func­
tions u : Rm —>■ C) such that ||w||lp(t»") <  oo (respectively 1 y™')
<  oo). It follows from what we have just discussed above that Lp(Tm) is iso- 
metrically isomorphic to L£er(Rm, ), or roughly speaking LPfF") is

the space L£er(Rm, X ^ ) .  Meanwhile, the space L°°(Tm) consists of all 
measurable functions u : Tm —> C satisfying | | w | | oo,t ™ < oo, where

IMIoo/rn =  inf {a  >  0 | p ^ A(m)( eZt : H elt)\ >  a } =  °}- 

Like in the case Rn, if u is in addition continuous, then

IM|oo,T"» =  SUp \u(u)\.
weTm
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Since any continuous function on a compact set is bounded, we have 
C ( Tm) c  L ^ T 771), hence Co(Tm) =  Cr00(Tm) =  C (T m) is a subspace of 

Tm).

References 4.16 on pages 55-56 in [26].

To comprehend inclusion relations for the spaces Lp(Tm,/x-rm), 1 <  p <  
oo, the following observation is required: Let (H, A , fin) be a measure space 
where H  is a locally compact Abelian group and \lh is an arbitrary Haar 
measure on H  with finite total mass, i.e. p>h (H)  <  oo. Then for u E 
Lq(H , /i/f), 1 <  p <  q <  oo, we get the estimate

and therefore L q(H,fiH) C I P ( H , hh ). However, if is not of finite total 
mass, then it is obvious from estimate (2.4) that in general there will be 
no inclusion relation between ^ ( H ,  fin) and Lq{H ^ in )  for p  ^  q. W ithout 
identifying Tm as [0,27r)m and p,jm with (27qm wc have in the case H  =  Tm

and since Tm is compact, we know from Theorem 1.19 that Tm) <  oo 
and hence Lq(Tm) C i / ( T m) (or L qer(Rm, c  T£er(Mm, p^m)).
Notice that this inclusion relation is the reverse of the inclusion relation 
Lp (Z771) C L9(Zm) established earlier.

By contrast, given any Haar measure /i^n on Rn, there is in general no 
inclusion relation between Z/(Mn,/iKn) and Lq(M.n,fi^n) for p ^  q. This is 
because, analogously to estimate (2.5), we find

which is of no sense as =  oo.

References Page 30 in [19].

For each of these spaces of integrable functions we now give examples of 
dense subsets which will prove useful for proving estimates later on. A dense 
subspace of Lp(Zm), 1 <  p  <  oo, is given by the space of all finite sequences 
on Zm, designated C0(Zm) or ^finite (^ m)> in we can restrict ourselves 
to finite sequences with rational value. Recall that a sequence is said to be 
finite if only a finite number of the terms in the sequence are non-zero. Since 
in addition this space is countable, it follows Z /fZ 771) is separable.

A common example of a dense subset of Lp(Mn), 1 <  p <  oo, is the 
Schwartz space. The Schwartz space, denoted by -S(Mn), consists of all func­
tions u E C 00^ 77) for which the semi-norm

u \\Lp(H,hh) (2.4)

u\\i,P(TTn) <  / iT 7n( T m ) p q | | l t | |L 9 (T m)) (2.5)
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o 1̂ V
Pmltm2{u) ■= +  lXl ) 2 2 ^  \dxU(X)\)

or equivalently

xeMn , , .\a\<m2

Pa,p{u) '=  SUp\xad^u(x)\ 
xeKn

are for all m i, m 2 £  No and a,  (3 £  Ng finite. Other examples of dense 
subsets of L^M71) include Co(Mn) and the test functions Co°(Mn), but S(M.n) 
is preferable when dealing with the Fourier transform later on. Note that 
CoofM71) is neither a subspace of Lp(M71) nor is Lp(M71) a subspace of (^ (M 71).

Finally, consider the set of all trigonometric polynomials on Tm =  [0,27r)m, 
defined by spanje/j | ek(x) =  elkx, k £  Z771}. It turns out span{e^ | 6k(x) =  
elk'x , A; £ Zm} is a dense subset of /^ (T 771) for 1 <  p  <  00 . The space C ( Tm) 
provides a further example of a dense subset of Lp(T771).

References Problems 5G on page 76 in [26]; Pages 31 and 43, and Corollary 
2.6.1 on page 44 in [19]; Page 24 and E8 on page 268 in [28].
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3 The Fourier Transform of Functions
Recollecting what we have discussed about dual groups and LP(H, fj,H) spaces, 
we can now combine these ideas together to introduce the notion of the 
Fourier transform over a locally compact Abelian group. In this section we 
take (27r)_ 2 A(n) instead of as the normalized Haar measure on Mn. Given 
a locally compact Abelian group H  endowed with the Haar measure Hn, we 
define the Fourier transform  of a function u G L l (H, by

u (x ) - = F { u )(x ) - = { V ’, x )l*{h ,vlh) =  /  u { x ) x { x ) n H(dx),  (3-1)
JH

Definition (3.1) clearly illustrates the Fourier transform F  assigns a function 
on H  to a function on H.  Compare page 107 in [23]. Examples of the Fourier 
transforms over each of the elementary locally compact Abelian groups are 
given below.

Exam ple 3.1.

•  Let Z /A Z  =  {eu \ uj =  0 , 1 , . . . ,  A  — 1} be the dual group of  Z /A Z  as 
defined in Example 1.12. Then the Fourier transform of a function 
u G C (Z /A Z ) =  L1(Z /A Z ) is given by

i   .

u(eu) =  (u, eu)L2 {ZiNZ) =  — ^ 2  u(k)e~2mku/N, ew G Z /A Z ,
k=0

or due to the correspondence u  <— > eu we may, by applying Theorem 
1.15, restate (3.1) as

N - 1

u(u) =  u(k)e~2” kL,/N. <*> e  Z / N Z .  (3.2)
k=0

It is more convenient to choose (3.2) as the representation of  the Fourier 
transform of u, in other words, we will view u of having domain ’L/N'L
instead of  Z /A Z . We will apply the same argument to define the 
Fourier transforms over Zm, Tm and Mn.

•  The Fourier transform of a function u G L 1(7jm) is given by

Ffĉ (u ) (c j )  := u(u) =  u{k)e~lk'u , u  G [0,27r)m. (3.3)
fee z m
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•  The Fourier transform of a function u G L l (Tm) is given by

1 p2ir p2ir
F ^ k(u)(k) := u(k) =  — —  /  . . .  u(uj)e-ik-“ du, k 6  Z™

[Z7rJ Jo Jo

•  The Fourier transform of a function u G L 1(Wn) is given by

Fx^ ( u ) ( £ )  :=& (£) =  (27r)_ 2 f  u(x)e~tx* dx, £ G Mn. (3.4)
JKn

References Pages 223 and 235 in [29]; Page 13 in [28].

W ithout proof we now state some important properties of all members of 
the Fourier transform family. Some properties hold for all Fourier transforms 
while there are properties that are not valid for all of these Fourier transforms.

L em m a 3 .2 . 1. Let u, v  G L 1( H , h h ), where (H, + , t )  is a locally com­
pact Abelian group equipped with the Haar measure fin- Further let 
Tau(x) =  u{x — a) and u(x)  := u {—x) for a l lx  G H . Then for  A, (i G C, 
a G H  and Xi G H  it follows

(a) (Xu +  /av)A(x) =  Xu(x) +  p>v(x) (linearity);

(b) (rau)A(x) =  x ( a ) H x )  (shifting);

(c) (x i -w)A(x) =  u ( x - x l 1);

(d) (u)A(x)  =  w(x_1);

(e) (ti)A(x) =  u(x) (conjugate);

(f) (u * u)A(x) =  u(x)  • f)(x) (convolution theorem).

2. Let H \ (x )  Xx. Then for u G S (R n) we have

('u o H \ ) A(l;) =  X~nu , A >  0 (scaling).

3. Let a ,/3  G Nq and set D f  := (—id^)a , D() := (—idxY .  For u G 5(K n) 
we have

(xau(-))A( 0  =
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and

(D0u m = e m -

References 2.3 Proposition on page 9 in [3]; Theorem 4.11.5 on page 197 
in [9]; Corollary 3.1.3 on page 77, Lemma 3.1.9.B on page 80 and Theorem  
3.2.4 on page 84 in [19].

For the rest of this section H  will still represent a locally compact Abelian 
group.

The theorem below claims that we can recover any function u E L X{H, /x#) 
for which u E L1(JT,/x^) from its Fourier transform.

T h eo rem  3 .3  (Fourier Inversion Theorem). Suppose u E L1{H,hh)-  Then 
there exists a unique Haar measure on H,  denoted fig, such that if u E 
L l (H, flfj), the formula

u ( x ) =  /  u ( x ) x W f e ( d x )  (3.5)
JH

holds almost everywhere in H. If  in addition u is continuous, then (3.5) 
holds pointwisely.

The unique Haar measure /x^ satisfying (3.5) is known as the d u a l 
H aar m ea su re  (with respect to /x.h-). From now on we write L l (H)  and 
L2(H)  instead of L^iL ,/x^) and L2(i7,/x^) while the notations L l (H,pifj)  
and L 2(H,i if i )  will be used only when /x^ is an arbitrary Haar measure on 
H.

E x a m p le  3 .4 . For any u E 5 (R n)

u(x)  =  (2tr)"t [  u(£)eix S d£, x E Rn,
J]Rn

holds pointwisely. Of course, u E S (Rn) C L1(Rn) and by definition u is 
continuous. This example shows the dual Haar measure /x^ (with respect to 
/xKn =  (27r)_ tA (n)j  is (27r)~?A(n), implying /xMn =

References Theorem 4.4.5, Definition 4.4.6 and Remark 4.4.8 on page 144 
in [27]; Corollary 3.2.12 on page 88 in [19].

We now go on to define the Fourier transform on L 2{ H , plh)- In general 
it does not hold that L 2(H,  /x#) C L 1(H,/jlh). Earlier we found L1(ZTn) C
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L 2(Zm) and that in general there is no inclusion relation between L 1(Mn: fi^n) 
and L2(Mn, //««). Thus L2(Zm) and L2(Rn) are examples for which L2(H , /i# )  
C L 1( H , h h ) is not valid as oppose to L 2( Z / N Z )  and L 2(Tm) in which the 
inclusion relation does hold. Consequently we cannot respectively take def­
initions (3.3) and (3.4) to represent the Fourier transforms on L 2(Zm) and 
L2(Mn). That being the case, a different notion of a Fourier transform is 
required on these spaces. But before this notion of the Fourier transform on 
L 2(H,(j,h) can be introduced we require a theorem.

T h eo rem  3 .5 . Let u G T1(Ff, pin) FI L2(H, /i# ) C L2(H,hh)-  Then u G 
L2(H,fif i)  and

\ \ u \ \ l 2{ H , h h )  — C/x^INI f i - f y

where ~ is a constant depending on the normalization of the Haar measure 
lift. Moreover, =  1 only in the case =  Th  am  ̂hence the Fourier
transform is an isometry from L 1( H , iih) f l i ; 2( f f , ^ )  into L 2(H).

References Theorem 4.4.13 and Remark 4.4.14 on page 147 in [27]; 2.5 
Theorem on page 9 in [3].

The fact that L 1(H, i ih )  H L2(H,/j,h) is dense in L 2(H,/j,h) and F  : 
L 1(H ,h h )  FI L 2(H,ij,h) T 2(H)  is an isometry immediately implies that 
the isometry extends uniquely by continuity to an isometry, denoted again 
by F,  with domain L2(H,/j,h)- We call F  : L 2(H ,h h )  —> T2(H)  also the 
Fourier transform. We now give the definition of the Fourier transform of a 
function u G L 2(H,hh)-

D efinition 3.6. Letu  G L 2(H,plh) and (un)nĜ , un G (ah)F\L2(H, fan),
be a sequence such that \imn .̂00un =  u in the sense of the space L 2(H, pin),
i.e. \ittLn-Kx>\\u — Un\\L2 (H =  0. We define the Fourier transform of u G 
L 2{ H ^ h ) by

u := lim un,
n—> oo

where the limit is understood in the L 2(H)-sense.

References (1.6.6) on page 33 in [4]; Definition 4.11.2 on pages 199-200 in 
[9],

Furthermore, equality (3.6) also holds for u G L 2{H ,h h )  giving rise to the 
P la n c h e r e l’s th e o r e m  established in Theorem 3.9.

Let us summarize some mapping properties of the Fourier transform 
which we will need later.
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T h eo rem  3 .7 . 1. The Fourier transform is a continuous linear operator
from 5(Mn) onto itself.

2. The Fourier transform is a continuous linear operator from  L^M71) into 
Coo(Kn) satisfying

Halloo ^  11̂ 11Z/1 (M71) (' •̂ )̂

for all u E L l (Rn). Hence u vanishes at infinity.

3. Let u E L 2(Wl). Then

IMU2(Rn) ~  11̂ 11Z/2(Mn)•

Furthermore the Fourier transform is an isometric isomorphism (and 
hence continuous) from L 2(Wl) onto L 2(Rn).

References Theorem 3.1.7 on page 78 and Theorem 3.2.1 on page 83 in 
[19]; (1.6.7) Theorem on page 33 in [4]; 2.5 Theorem on page 9 in [3].

2. and 3. can be generalized to any locally compact Abelian group, i.e.

L em m a 3 .8 . The Fourier transform is a continuous linear operator from 
L 1( H , h h ) into Coo(H) satisfying

ll^lloo ^  | |u | | z 1(i/,M//)

for  all u E L1(i7, pin)- Hence u vanishes at infinity. 

and

T h eo rem  3 .9 . Let u E L 2{H, //# ). Then u E L 2(H ,f ig )  and

\ \ u \ \ l 2( H , h h )  — CMhII^IIz2(^,m^)’

where is a constant depending on the normalization of the Haar measure 
fipj. Furthermore, in the case pbpj =  fipj the Fourier transform is an isometric  
isomorphism from L2(7 f,/i# ) onto L 2(H).

Note that 2. is the Riemann-Lebesgue lemma while 3. is Plancherel’s theorem.

References Theorem 3.2.1 on page 83 in [19]; (1.6.7) Theorem on page 33 
in [4]; 2.5 Theorem on page 9 in [3]; 1.2.4 Theorem (d) on page 9 in [28].
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We cannot use (3.5) for the inverse Fourier transform say in L 2(H,(1h) .  
However, using (3.5) and the fact that elements u G L 2( H , h h )  may be 
approximated by functions un G L l (H, /x#) fl L 2(H,fXn) for which un G 
L \ H )  D L 2{H)  we find

u ( x ) =  lim /  u „ (x )x W ? ff (dx), (3.8)
n-*°° J h

where the limit is understood in the L 2(H, /i#)-sense. Remember that 
l im ^ o o f^  =  u in the L2(H)~sense. By an abuse of notation one may inter­
pret (3.8) as (3.9) stated in Theorem 3.10.

T h e o r e m  3 .1 0  (Fourier Inversion Theorem on L2(H , /i# )) . Let u G 
Then

u { x ) =  [  u{x)x(x)'f ir i(dx)  (3.9)
J H

in the sense of  the space L 2(H,/j ,h).

This claims any function u G L2( F , //# ) can be recovered from its Fourier 
transform.

References 10.4.9 and 10.4.10 Remarks on pages 729-730 in [10].

We now turn our attention for a moment to examining the Fourier trans­
form of a function on H  rather than the Fourier transform of a function on
H. By definition the Fourier transform maps a function on H  into a function

on H , but in view of the Pontryagin Duality theorem the Fourier transform  
may be regarded as an operator, denote it by F,  mapping a function on H  
into a function on H  which, for a function U G T1(i7, fig),  takes the form

U(x) := F(U)(x)  := [  U ( x ) x & )  HS (dX), (3.10)
J h

By comparison of (3.5) in Theorem 3.3 with (3.10) we define the in ­
v erse  F ourier tra n sfo rm  of a function U  G L l (H,pLfi) by F ~ 1(U)(x)  :=  
F ( U ) ( —x), that is,

F - \ U ) ( x )  :=  [  U {x)x(x)  Hfiidx),  x e  H.
J h

From this definition it follows F -1 has the same mapping properties as F  
and consequently F -1 is an isometry from T1(F )  fl L 2{H)  into L 2(F[ ,hh)  
that extends uniquely by continuity to an isometric isomorphism, denoted as 
well by F -1 , with domain L 2(H).  We call F -1 : L2(H) —> L 2(F[,iih) also
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the inverse Fourier transform. It also turns out F  1 : L2(H)  —>■ L2(F[,h h ) is 
the inverse of F  : L2(H,/j,h ) —> L 2(H).

Exam ple 3.11. The inverse Fourier transform of a function U G L1(Rn) is 
defined by

F ^ x(U){x) ■.= F ~ \ U ) { x )  ■.= [  U { i ) e ^  d£, x e  Rn. (3.11)
J]Rn

Moreover, F ~ l : 5 (R n) -»  S ( W l) is the inverse of F  : S(Mn) —> 5(Mn).

References 10.4.9 on pages 729-730 in [10]; (1.6.8) on page 34 in [4]; Defi­
nition 3.1.5 and Theorem 3.1.7 on page 78 in [19].

For the rest of this thesis the Haar measure on Mn will be taken to be 
but we will still use (3.4) and (3.11) for the definitions of the Fourier 

transform and inverse Fourier transform respectively. Accordingly there 
will be changes regarding constants to Lemma 3 .2 .( /)  and (3.7) in The­
orem 3.7, i.e. Lemma 3 .2 .( /)  becomes (u * u)A(£) =  (27r) 2 w(£) • ?)(£) as 
oppose to (u * u)A(£) =  w(f) • 0(£), and (3.7) in Theorem 3.7 becomes
M l o o  <  (27r )_ i | | u | | Li ( IRn ) .

References Theorem 3.2.1 on page 83 and Theorem 3.2.4 on page 84 in 
[19].
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4 The Fourier Transform of Measures
We now want to extend the Fourier transform to measures. In this section 
H  represents a locally compact Abelian group.

D efinition 4.1. Let /x £ The Fourier (Fourier-S tieltjes)
transform  of p  is given by

K x )  := [  x(x)fJ>(dx), X ^ H .  (4.1)
JH

It can easily be shown that L \ ( H ,  p n )  '■= {n  £  L l (H,  //# ) | u >  0} is 
injectively embedded into (H ) with u being associated with the measure, 
labeled xx/x#, having density u with respect to p n  (see 17.1 Theorem on page 
96 in [2] for the definition of this measure). Hence (4.1) may be interpreted 
as an extension of the Fourier transform from L+(H, p n )  to A4^(H)  with 
the Fourier transform on AA^(H)  coinciding with the Fourier transform on 
L+(H, fxjj) in the case p  =  u p h • Moreover, switching from positive measures 
to bounded signed or even bounded complex-valued measures p  £  M.b,c(H) 
we see that the Fourier transform extends from L 1( H , iih) to Aib,c(H).

References 2.2 on page 8 in [3]; Page 191 in [22]; 17.2 Definition on page 
96 in [2].

Theorem  4.2. Let fi £  (H).  Then its Fourier transform fi is a uniformly
continuous and bounded function on H . In addition we have the estimate

HAIL < INI-
References 2.3 Proposition on page 9 in [3].

It should be noted that there is in general no analogue to Lemma 3.8
(Riemann-Lebesgue lemma), namely /x in general does not vanish at infin­
ity. Nevertheless there are properties of the Fourier transform on L 1( H , h h ) 
which do carry over to the Fourier transform on In particular, the
analogues of (a)-(f) in Lemma 3.2 hold for /x which we now exhibit in the
following lemma:

Lemma 4.3. Let  /x, v  £  [H), where (i7, + , r) is a locally compact Abelian
group with Haar measure \±n. Further let S x  := —x for all x £ H . Then for  
a , P >  0; a £  H  and x i  £  H  it follows

1. (ap, +  (3v)A(x) =  ®Mx)  +  P K x )  (linearity);

2. (ra(/x))A(x) =  x(a)/x(x) (shifting the argument);
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3- (xim )a (x) =  f r i x - X i 1);

4 • [S(v)]A{x) =  £ ( x _1);

5- (m)a (x) =  A (x_1) (conjugate);

6. {fi * ^)A(x) — A(x) ' *Hx) (convolution theorem).

References Page 146 in [27]; 2.3 Proposition on page 9 in [3].

We want to characterize the Fourier transform of fi E but first
a definition of a positive definite function is required.

D efinition 4.4. Let (H , - , t )  a locally compact Abelian group. A function
u : H  —> C is sazd to be positive definite i f  for  all k E N and elements 
£i , . . . , Xfc E H  the matrix z«s positive Hermitian, i.e. for
all Ai , . . . ,  Afc E C zee /lave

k
Y 2  u i x j X ^ X j X i  >  0. 
j ,(= i

We denote by P (H )  the set of all positive definite functions on H  while 
C P { H )  denotes the set of all continuous positive definite functions on 
H.  Obviously C P { H ) C P{H ) .

References Definition 3.5.3 on page 106 in [19]; 3.3 Definition on page 12 
in [3],

Lem m a 4.5. ft is a positive definite function on H  whenever /j €  A d f  (H).  

References Lemma 3.5.4 on page 106 in [19].

Lemma 4.5 together with Theorem 4.2 immediately gives us that ji is a
continuous and positive definite function on H.  One can easily show that
any character on H  is also a continuous and positive definite function.

References 3.5 on page 13 in [3].

We can now introduce a version of Bochner’s theorem  which charac­
terizes the Fourier transform of a measure fi E A4(j{H).

Theorem  4.6. A function u : H  —»■ C is the Fourier transform of a measure 
fi E A4(j(H) if and only if u is continuous and positive definite.

References Page 191 (last sentence before Section 5) in [22].
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Theorem  4.7. The Fourier transform is a homeomorphism from A4^(H)  
endowed with the Bernoulli topology onto C P ( H )  endowed with the topology 
of uniform convergence on compact sets.

References 3.13 Theorem on page 15 in [3].

Following the definition of a positive definite function on H  we are now 
in a position to introduce a notion of a negative definite function on a locally 
compact Abelian group. In view of Theorem 4.10 it is convenient to define a 
negative definite function on the dual group H  rather than H , remember that 
H  itself is a locally compact Abelian group. In what follows, e represents the 
unit character in H.

D efinition 4.8. We refer to a function : H  —» C as negative definite if

'ip(e) >  0

and

X  e i s  positive definite for t  >  0.

In the case when x  ^  e {s aiso continuous, 'if : H  —>■ C becomes a 
continuous negative definite function.

The sets of negative definite functions and continuous negative definite func­
tions on a locally compact Abelian group H  are labeled respectively by N (H )  
and C N ( H ) .

References Definition 3.6.5 on page 122 in [19]; 8.4 Corollary on page 50 
and 7.1 Definition on page 39 in [3].

Next we go on to define a family of measures on a locally compact Abelian 
group H  which will be of significant importance to us in the sense that such 
a family associates with a continuous negative definite function on the dual 
group H.

References 8.3 Theorem on page 49 in [3].

D efinition 4.9. A family {Tt)t>o> Tt C of bounded Borel measures
on H  which satisfies the following properties

•  WfJ'tW <  1 for  all t >  0;

•  p s * Hi =  p s+t for  all s, t >  0;

•  lim ^ o  Tt — To vaguely where po =  £$;
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constitutes a convolution sem igroup on H.

References 8.1 Definition on page 48 in [3]; Definition 3.6.1 on page 121 in 
[19].

T h eo rem  4 .1 0 . For every convolution semigroup (pt)t>o on H  there exists 
if G C N ( H ) ,  unique to (//*)*>o> such that

M x )  =  e ~ ^ x  ̂ for all t >  0 and x  G H.  (4.2)

The converse also holds: For every if G C N ( H )  there exists a convolution 
semigroup (p>t)t>o ° n H, unique to ip, such that (4.2) holds.

Hence there is a one-to-one correspondence between the family of all con­
volution semigroups on H  and C N ( H ) .

References 8.3 Theorem on page 49 in [3]; Theorem 3.6.16 on pages 127-128 
in [19].

This next lemma states some important properties of negative definite 
functions which are required later on.

L em m a 4 .1 1 . Let Xi>X2 G H  and let ip be a function defined by ip(x) •= 
ip{x~l ) f or x e H .  For any ip G N (H )  we have

ip(e) >  0 and ip =  ip-

V W i X i  x i )| <  y/\ i f{xi ) \  +  V W X 2 )\
and

V W x i ) \ - ' J W x F \  <  p H i x i  -X 21)!;

r r j i a  s 2(1 +
Furthermore, i f  ip G CN(M.n), then there exists a constant c ^ >  0 such that

1*0(01 <  +  ICI2) for all € G Mn.

Note that a similar result holds for H  =  Zm.

References 7.5 Proposition (i) and (ii) on page 40, and 7.15 Proposition on 
page 45 in [3]; Lemma 3.6.21 on page 133, Lemma 3.6.22 and Lemma 3.6.23 
on page 134 in [19].

Finally, the formula below establishes the representation that every con­
tinuous negative definite function on Rn possesses.
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L em m a  4 .1 2 . Given if G CN(M.n), we can find c >  0, d G Mn and a 
symmetric positive semidefinite continuous quadratic form q on W 1 such that

ip (0  =  c +  i(d  • f )  +  q(£) +  [  ( l - e  iy< -  f i  O  i/(dj/), (4.3)
yK»\{o> V 1 + \y\ J

where v is a Borel measure on Rn\{ 0 }  that integrates y  i-A- ( \y \2 A 1).

(4.3) is known as the L ev y -K h in ch in  form ula.

References Pages 138 and 153 in [19].
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5 Some more Function Spaces
In this section we introduce and study some spaces of functions u : Rn x Zm —» 
C. On Rn we consider the standard Euclidean topology while Zm is equipped 
with the discrete topology.

By C {Rn x Zm) we denote all continuous functions defined on Rn x Zm, 
Cb{Rn x Zm) consists of all bounded continuous functions, and Coo(Rn x Zm) is 
the space of all continuous functions vanishing at infinity. For u G C (Rn x Zm) 
we write tt(-,fc) G C m(Rn) if for k G Zm fixed the function x »-> u(x ,k )  is 
m-times continuously differentiable, similar notations are u(-,k)  G C™(Rn) 
or u(-,k)  G Coo(Rn). The norm on C&(Rn x Zm) and Coo(Rn x Zm) is the 
supremum norm, i.e.

Both C&(Rn x Zm) and C00(Rn x Zm) are with respect to the supremum norm 
Banach spaces.

The space L2(Rn x Zm) consists of all (equivalence classes of) measurable 
functions u : Rn x Zm —> C with the finite norm

W ith this norm the space L2(Rn x Zm) is a Hilbert space. Using Plancherel’s 
theorem we find

Rn —>• C and u(^cu) denotes the Fourier transform of u : Rn x Zm —> C, i.e.

u\\cb(RnxZm) — \M\coo{RnxZm) sup \u(x, k)\.
(;x , k ) e R n x Z m

where u(£,k) ,  for each k fixed, denotes the Fourier transform of u(-,k) :

u{$,u) = (2n)-* [  J 2 u (x ’k)e~iX(e~ikWdx’ ( ? -“ ) 6  E " x  [0,27r)m ,
^ Rn keZm
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for u G L 1(Mn x Zm).
Let ip \ M.n ^  R  be a fixed continuous negative definite function. By 

we denote the smallest constant such that

<  <^(i + |£|2).

Later on we will use P eetre’s inequality, compare Lemma 3.6.23 in [19], 
stating

r r f f H  2( 1 + ^ - > / ) ) .

Moreover, we will require that for some Vq >  0 and >  0 it holds

( l  +  ^ ^ M l  +  KI2) 1? .  (5-1)

Given ip as above we define for s >  0, s G R, the norm 

ll'ltII.H'V’>s(RnxZm) • f  ^   ̂ ~b ^ (O ) d£
Kn k€Zm

=  (2 7 r ) ~ m [  [  ( l  +  t / > ( 0 ) SK £ > ^ ) | 2 d w d £
J R n J T m

=  (27r)-"* /  f  (l + ^(Or\u(i ,uj)\2diduj.
J Tm J R n

The space of all u G L2(Rn x Z771) for which ||u|| '̂i/'>q]R™.xZTn) is finite is denoted 
by i f ^ s( I n x Z m), and equipped with ||*||fpM(R"xzm) the space f f ^ s (Rn x Z m) 
is a Hilbert space where the inner product is given by

/   ̂+ >*0d£
Kn fcezm

=  (27r)_m [  j  (1 +  ip(£)yu(€,  u)v(€,  u)  duj d f .
J K n J T m

Obviously we have the estimate

IMIifV’,t(Mnx Z’n) <  |M|ifV',s(MnXZm)

for s >  t, implying that H^'s{Rn x Zm) is continuously embedded into 
H ^ ^ W 1 x Zm). For s =  0 we have H ^ ° ( R n x Zm) =  L2(Mn x Zm).

An easy consequence of the definition is the following Ehrling-type or 
interpolation estimate.
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L em m a 5 .1 . Suppose that lim^-nx, ?/;(£) =  oo; then for every £ >  0 and 
for  every 0 <  t < s there exists a constant >  0 such that for all 
u G H ^ s{Rn x Zm) it holds

11 ̂  11 //V111 (Kn x Zm ) — H ^ ’s (Rn x Z m ) K's, t ,e\ \u \\ L 2(Rn x Z m ) '

Proof  Since lim^i^oo ?/;(£) =  oo, it follows that for e >  0 there exists Acs>tj£ >  
0 such that

(1  +  T p i Q Y  <  e ( l  +  ' t P i O Y  +  K s,t ,ei

implying that

IMIjU.*(H"xz-») =  (27r)“ m f  [  (1 +  ^ ( £ ) ) * |« ( £ ,w ) |2 d o ;d £
J R n J Tm

<£{27r) -m f  f  (1 +  ^ ( 0 ) s |w(£,w)|2 dcud£
J]Rn J Tm

+  «s,t,e(27r)_ m  /  f  | u ( £ , a ; ) | 2 da;d£
JR™ J T m

=  e ll'wll/rV'.s(RnX2m) +  Ks,t,e||w|lL2( lnxZTn)’

proving the lemma.
□

We may define the p seu d o -d ifferen tia l o p era to r

(1 +  t/;(Dx))%u(x, k) := (2tt)-  ̂ f  elx<(l  +  ^ (f))^ (£ >  *0
J  Rn

to find again by Plancherel’s theorem that

ll«ll/f*..(K-xz~) =  /  Z  K1 +'4’(Dx) ) iu ( x ,k ) \ 2dx
fcezm

=  (27r)_m f  f  \(l +  'ip(Dx))%Fk^ UJ(u)(x,uj)\2 dujdx
J R n J Tm 

=  ||(1 +  ^(Dx)) 2u\\\2<^nxImy

Using the standard theory of topological tensor products of Hilbert spaces, 
compare [31], we may deduce that each of the following sets are dense in 
H ^ s(Rn x Zm), s >  0,
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H ^ ’ iR ") ® l2(Zm), S ( IT )  ® l2(Zm),

H ^ 'S(R " ) ®  W t e ( Z m ) , 5 ( R " )  ®  /fin ite(Zm ),

where Sr(Mn) denotes the Schwartz space, /finite (^m) the space of all finite 
sequences on Zm, and H^,s(Wn) is the space of all u E L2(Rn) such that

IMI/tm(r«) ■= [  (! +  ^ ( 0 ) s l* (0 l2d? <  °°-JRn

Note that in order to prove that a linear operator A  maps i7^,s(Mn x Zm) 
continuously into ir ^ ( R n x Zm) it is sufficient to prove

IIAu||#<M(RnxZm) c \\u \\Ĥ ’s(RnxZm)

for a dense subset of H^,s(M.n x Zm). In most cases to follow we will work with  
the set of all u : Rn x Zm —» C with the property that u(x , •) E /2(Zm) and 
it(*, /c) E 5 (R n) and \\u\\H^,s^nxjrn̂  is finite. This set contains 5 (R n)<8)/2(Zm) 
and hence is dense in i /^ ,s(Rn x Zm) for every 5 >  0. We denote this 
set by V(Mn x Zm). Alternatively we may use S'fR71 x Zm), defined as 
S (R n x Zm) := {u : Rn x Zm C, u(.,fc) E C°°(Rn) | \d^u(x,k)\ <  
cr,s,a,u( 1 +  |x |2) " i ( l  +  \k\2)~z for alio; E N g,r, s E N0}.

Let ip satisfy (5.1) and take u E S(M.n x Zm) or P (R n x Zm). By the 
Fourier inversion theorem we find for s >  ^

\u(x,k)  | =  | F ^ xFy^ (u ) ( z ,£ : ) |

(27r)_ 2 I e,xliu ( £ , k ) d£  

1
<  (27T)"* /

. /r

<  (2t t ) “

Rn (1 +  ^ ( 0 )  2 

1
d£

' R n  ( 1  +  ^ ( 0 )

and  since by assum ption (1 +  >  cq (̂1 +  l^l2) ^ ,  r 0 >  0 , we have

<
r 0s( i  +  ^ K ))s (1 +  |£|2)’

and for r0s >  § it follows th a t E L 1(Rn). Thus we arrive a t
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This implies

Proposition 5.2. Under the assumption of  {5.1), i f  s >  then

\u(x,k)\  <  c\\u\\H4j,s(^nxZm)

and lim|;c|_|_|fc|_>00 u {x ,k )  =  0. In addition u has a modification which is con­
tinuous on Mn for  k G Zm fixed and on W 1 x Zm.

Later on we will need to work with the Friedrichs modifier for elements 
in x Zm) where the modifier acts only on the x-variable. Following
page 31 in [19] we set

a m  J  co e x p ( ( |z |2 -  I ) - 1 ), |x | <  1
1 ’ \  0, | i |  >  1 ’

where c j l =  exp((|:r|2 — l ) -1 ) da;. For e >  0 we set j £{x) := e~nj  ( f ) .
The operator Je is defined, say for u G L2(Mn), by

Je(u){x) := {je * u)(x)  =  /  j £{x -  y)u{y)  dy,  (5.2)
jR n

and the operator is called the Friedrichs modifier. Now we extend the 
definition to L2(Mn x Zm) by

J£{u){x,k)  := /  j £(x -  y )u {y ,k )d y .  (5.3)
jRn

By inspection of the classical proofs, compare Proposition 2.3.17 in [19], we 
get immediately for u, v  G L2(Mn x Zm)



These results imply now

I I ^ ( “ ) I I l 2 ( R » x Z " > )  =  T  /  \Je{u)(x,k)\2dx
k € Z m

=  [  y i  \Je(u)(x,k)\2dx  
^ R n  k e z m

— /  \u (x ’ k)\2 dz
«/Mn 7 . ^ ™

11U  11 r  2 1 iu>n x  Z m  ) 5

and

as well as

lim|| J£(u) -  u | | l 2(m-xz-) =  0, (5.4)
£—>0

( J £(u), u ) L2(Kn xZ m) — (u, J £(v))L2(RnXZm)-

In addition we can easily see that u G H^,s(Rn x Zm) implies Je(u) G 
jFf̂ ’s (Mn x Zm). Following Proposition 2.3.15 in [20] we can prove

L em m a 5 .3 . For any u G H^'s(Mn x Z771), s >  0, it follows that

Je(u) G p |  x Zm). (5.5)
t> o

Proof. Since j  G CJ°(Mn), hence j £ G S (Mn), we have the estimate 

which gives

l | J = (« ) l l j U t ( R » x Z ™ )  =  H  [  C1 + ^ ( 0 ) ‘ l0'e  * « ) A( S . fc) | 2 d f
fcezm Kn

=  (2jt) " ^  /  ( i + ^ ) ) U ( £ ) i 2K ^ ) i 2 d?

<  (27r)nct)S)£ [  (1 +  ^ ( f ) ) s K f , f c ) | 2 d f
fc6Zm JM.n

= (27r) Q,s,e ||w ||//'0,s(]KnX2m)) (^-6)
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which implies Je(u) G x Zm) for any t >  0.
□

Note that for t  =  0 (5.6) implies in particular

/  \J£(u)(x, k)\2 dx  <  (27r)nc0)S)e||w ||^ ,s(EnxZm).
j R n

It is easy to see that for k G Zm fixed the function x J£(u)(x , k) belongs to 
C°°(Mn). The next result extends (2.167) and (2.168) in Proposition 2.3.15 
in [20].

L em m a  5 .4 . For u G H^'s(Rn x Zm); s >  0, it holds

H ^ ’s (Rn xZm) <  I M I H ^ ’s (Rn xZ m ) (5.7)

and

l i m | |  J e ( u )  — u \ \ H i>,s(Rnx Jim) =  0.

Proof. For u G i /^ ,s(Mn x Zm) we find

||^ (« )||5 f*..(R. xz”>) =  (2,r)n F ,  [  ( ! +  ,/’(?))Sl3£(C)|2|« (? ,* ) |2d^
feez m ^Rn

<  F, f  ( 1 + , / ' ( ? ) ) s l * ( ? > A : ) l 2 d 5
feezm ^Rn

-  Ib/ll2— \\Uj\\H'l1's (Rn x'Lrn)i

which proves (5.7). Furthermore we have

| | ^ e ( w )  —  u \ \ H ' l ) ’s ( R n x Z Tn)

=  ^ 2  f  (1 +  '?/7K ))s|O e*w )AK ,A :) -u (^ /c ) |2d^
k e I rn d R n

=  V ( 2 t ) "  f  ( l + m r f m - w - t f m k t f d i i .
kezm ^Rn

Since j e($) =  i ( ^ 0  —>■ j ( 0) =  (27r)_ ? as e —» 0 and in addition |je(£)l <  
(27r)_ 2 as well as



the dominated convergence theorem implies

lim|| Je(u) — — 0.
£—>0 '

□
Most important is the following result extending the final assertion of 

Proposition 2.3.15 in [20].

P r o p o s it io n  5 .5 . Let s >  0, e E (0,p) and assume for u E L2(Mn x Zm) 
that

II J e { u ) | | i f ^ ' s (Rn XZm) — c u,s ( 5 - 8 )

for all e E (0, p) with cUtS independent of e. Then u E H^,s(M.n x Zm).

Proof  Since H^,s(]Rn x Zm) is weakly compact, from (5.8) it follows that 
there exists a subsequence (Ji_(u))ni>i converging weakly in iP ^s(Rn x Zm)

to some v  E Rn x Zm). The embedding of H^,s(Rn x Zm) into L2(Rn x 
Zm) is linear and continuous, hence (J_L(u))n > i converges also in L2(Rn x

TLl 1 p

Zm) weakly to v. However, in addition, by (5.4) we know that (Jj_(w))n
ni 1 p

converges in L 2 (Rn x Zm) to u , hence v =  u E i /^ ,s(Rn x Zm).
□
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6 Symbol Classes
We want to study pseudo-differential operators acting on functions defined 
on Rn x Zm. We want to extend these operators from some nice domain 
to a Banach space such that the extension generates a Feller semigroup, 
hence a Feller process. In case of functions defined on Rn only, the appro­
priate condition would be that the symbol of the generator is with respect 
to the co-variable on Rn a continuous negative definitive function, compare 
Courrege [7] or [19]. For functions defined on Zm alone we would expect 
the generator to be a Q-matrix, see [25] and [30]. In [12] it was pointed 
out that under certain general conditions Q-matrices are indeed also pseudo­
differential operators whose symbols with respect to the co-variable are con­
tinuous negative definite functions, of course now on the torus Tm. Here we 
want to look at symbols q : Rn x Rn x Tm —> R. While we assume that 
f  i->- q(x,  f , £j) is a continuous negative definite function, we are more flexible 
with respect to the function uj q(x,£,uj),  mainly due to a lack of a proper 
understanding of the general relations of Q-matrices and harmonic analysis. 
The ^-dependence of q is seen as a perturbation, i.e. we intend to look at the 
translation-invariant operator q(xo, D x, Dk) where the “coefficient” is frozen 
and the operator q(x, D x, Dk) — q{xo, D x, Dk) is supposed to be a (small) 
perturbation of q(xo, D x, Dk).  Having in mind the constructions of W. Hoh 
[14], [15] and [16] using the martingale problem and stopping time tech­
niques, this approach is more convenient than to look at operators of type 
ip(Dx, Dk) +  q{x, D x, Dk),  also in the basic estimates there is no difference.

In the following we fix a continuous negative definite function xp : Rn —> R 
satisfying

^ ( 0  <  c^( 1 +  |C|2), (6.1)

and with some po >  0 and >  0

( i + V ’K))* > c 0, ^ ( i + i ? r ) “ .

Given

q:  Rn x R n x T m - ) R ,  

we assume that we can decompose q according to

q (x ,£ ,u )  =  q1 (^uj) - \ -q 2 (x^ ,u j) .

Hence we have a decomposition into an operator qi (Dx,Dk)  which is trans­
lation invariant, i.e. has constant coefficients, and an operator q2 (x, D x, Dk)
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with variable coefficients. The latter will be considered as a perturbation of 
the first one. Note that such a decomposition is always possible by freezing 
a coefficient, i.e.

q (x ,£ ,u )  =  q{x0 , £ ,u )  +  {q{x ,£ ,u )  -  q(x0 ,£ ,u ) )  =  gi(£, u)  +  q2 (x, £, uj) .

We require q, qi and q2 to be continuous and that both £ i-» q(x, £, u j )  and 
£ <->• gi(£, cj) are continuous negative definite functions for all x  E Mn and 
uj  E Tm. Moreover, it is assumed

A .I.

k i(f ,w )l <  71(1 +  V>(0)

and

1  +  k i ( $ , ^ ) |  >  7 o ( l  +  ^ ( 0 ) »  

where 70 >  0 and 71 >  0 are independent of u j .  For the symbol q2 we assume

A .2 .M . x  1—y q2 (x,t;,Lj) belongs to C M(Mn), M  E N0, and for all a  E NJJ,
|a | <  M , it holds

\ ^ Q 2 ( x ,^UJ)\  < <Pa{x)(l + ^ ( 0 ) .  (6 -2 )

for some functions (pa E L 1 (Mn).

Condition (6 .2) has an important consequence.

P r o p o s it io n  6 .1 . Suppose that q2 satisfies A . 2 .M  and denote by <72(77, £ ,^ )  
the Fourier transform of q2 with respect to x, i.e.

£2(77, £,<*>) := (2tt)-  ̂ f  e~lx'vq2 (x, £, uj) dx.
JRn

There exists a constant 7 M,nJm such that

l&fa, ^ 2  ll^||Li(Mn)(l +  |7 |2)“ f ( l  +?/;(£)). (6.3)
\ a \ < M

Proof. We follow closely the considerations in [20], p.68-69, to find for \(3\ <  
M
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r f  e lx'vq2 ( x , ^ u ) d x e ZXT]dPq2 (x,£ ,u;)dx
Rn

<  ||^/3||L1(Mn)(l +  ^ (0)>

which implies (6.3).
□

Given q(x ,€ ,u )  — qi(£,(j)  +  q2 (x,£,uj),  we can define on V ( R n x Zm) or 
S ( Mn x Zm) the following pseudo-differential operators

q ( x ,D x, D k)u (x ,k ) := /c)
(6.4)

4i (A ,,  A > (:r,A ;) := F€h} xFuJ>k(q1 ( ( ,b j )u ( ( , v ) ) (x ,k )  

=  t t k F£lx(Q i (£ , v )u (£ ,u ) ) (x ,k )
(6.5)

and q2 (x, D x , Z}*) by replacing in (6.4) the symbol q by the symbol q2.
(For clarity we prefer here and there as in (6.4) and (6.5) some abuse of 

notation, i.e writing F ^ xF~^k(qi(£,w)u(£,u>))(x, k) for
F^ xF^Xk(<liu)(x,k) ).

Our aim is to establish for q(x, D x, D k) estimates which will allow an 
application of the Hille-Yosida theorem to prove that —q(x, D x, D k) generates 
a strongly continuous contraction semigroup on some suitable Banach spaces, 
for example L2(Mn x Zm). We adopt basic ideas from [18] where the case of 
operators acting on functions defined on Mn was discussed.
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7 Estim ates for q i ( D x , D k )

Estimates for qi(Dx, Dk) with respect to the norm in H^,s(M.n x Zm), 5 >  0, 
are straight forward once we observe that for u G D(Mn x Zm) or S(M.n x Zm) 
we have

(q i(Dx, D k) u y ( ^ u )  =  gi(C,w)w(f,w). (7.1)

Proposition 7.1. Assume A.I.  Then for  s >  0 it holds

\\qi(Dx, D k)u\\ H^’s(R n x Z m ) <  7 l | M I / f ^ > s+ 2 (RTlx Z m )

for all u G H ^ s+2 {Rn x Zm).

Proof. We need only to observe for u G D(Mn x Zm) or 5 (R n x Zm) that by 
A 1

\\Qi (Dx, Dk)u\\jj^tŜ nxjirn^

=  /  ^  1(1 + ^ ( £ x ) ) ^ g l ( A : ,  A ; M s ,  fe) l2 d x
*̂ Mn fc€Zm

=  ( 2 7 r ) “ m  [  f  | ( 1 +  ^ ( 0 ) ^ i K , ^ ) w ( $ , a ; ) | 2 d £ j d $

J R n J T m

< ( 2 7r)-m7 i2 /  [  ( l + V W l  +  V W m e .w ) ! 3^
7xm

=  (27r)-m7 ? /  /  |( l  +  ^ ) ) ^ ( ? , ^ ) | 2do;df
J t n «/Tm

— 2 II II2—  7 l  ll'Wll i /V>,s+2(Rnx Zm)-

□
Further we have some lower bounds for qi(D x,Dk),  namely a type of 

Garding inequality.

Proposition 7.2. Suppose A . l  holds and \im\£\_+0 0 'ip(t;) — 00. Then there 
exists Rq >  0 and R\ >  0 such that

\ \ Q l ( D x , D k ) u \ \ Hi , , s ^ n x ’Zrn} >  Rq 11U \ \ H^,s+2^n  x gm) ~  R\  \ \ U \ \ J_2 (Rn XZm) (7 -2 )

holds for all u G 7/^,s+2(Rn x Zm). (Note that « i  depends on s).

Proof. We note for u G D (R n x Zm) or 5 (R n x Zm) that
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\U\\Hip,s+2 (Rri
' Rn J  Tm

=  (2tt)-™ [  [  ( i + m y +2 m ^ ) \ 2 ^ d t
JRn JTm

<  \ { 2 ir)-m [  [  (1 +  ^ ( 0 ) s (l +  9 i(£ ,^ ))2|w(£,w)|2du;d£
7o J]Rn */Tm

< ^ { 2 7 v ) ~ m [  [  ( ( l  +  ^ ( 0 ) ^ i ( f ^ ) |w K ,a ; ) |) 2 da;d$
7o JMn j Tm

+  1 (2 *)~™ f  [  ((1 +  ^ (0)S |« (C ,ca)|)2du;dC
7o 7 im

+  ^ ( 27r) 171 [  [  ((! +  tl>(€))*\u(€,w)\)2 d u d t  
7o «/Rn JTm

2
—  —2 ll l̂ (-^1) -^/s)lt||^1/,)S(]Rn><2m) 

7o

+  \ w m [  [  ( i + ^ ) r +2i« « ,^ ) i2d ^
 ̂ 7 i n 7xm

+  «:i(27t)~m f  f  |u(£,cu)|2 da;d£, (7.3)
JR™ JTm'M™ JTm

where we applied for the last estimate Lemma 5.1. Thus we arrive at

2 2 2
\ \u \ \ H ^ ’s + 2 ( R n x Z m ) —  7 2  l k l ( A r ,  7 ^ f c ) w | | / f V ’, s ( K n x Z m )

7o

+  2  Hl t l l / f ^ ’s+2(Rn xZm) ^ l l M l L 2(En xZ m)>

implying (7.2).

Rem ark 7.3. ./Vote that in (7.3) rye mar/ obtain for every e >  0

□
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2 2 2
MlĤ ’s+2(RnXZm) — ~2ll9l(^Xj ^k)U\\Ĥ ’s(RnxZTn) 

10

+  £- ( 2 n ) - m [  [  ( i + m ) s+2 m u ) \ 2 dujdz
^ J R n J T m

+  « i ( e ) ( 2 7 r)~m [  j  |w(£, uj)\2 do;d£,
J R n J TmrRn J  Tm

which allows us to replace (7.2) by

h l ( D X, Dk)u\ \ }{ip,s xZm.)

>  7 o ( l  — £ ) \ \ u \ \Hrl1’s+ 2(Rn x Z Tn) ~  11 ̂  11L2 (]Rn x Zm) *

Finally we would like to remark that since q i(D x,Dk)  is translation- 
invariant, it commutes with convolution. Especially we have for all e >  0

[Je,q i (D x, D k)\ =  0, (7.4)

where Je is defined as in (5.2).
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8 Some Auxiliary Results
In order to handle q2 (x, D x, D^) it is convenient to handle in advance some 
commutator estimates. First we want to estimate [Je, q2 {x, D x, Dk)] where 
J£ is the Friedrichs modifier acting only on x  E Mn. We follow closely the 
consideration made in [20], p 79-81.

For the Fourier transform of [J£, q2 (x, D x, Dk)]u we find

We use in addition, compare [20], (2.172), where the lengthy proof is given 
in detail, the estimate

where c* is independent of e E (0,1]. To proceed further we recall (6.1) and
(6.3). Now we find by arguments analogous to those in [20] that

|(1 +  ^ (0 )*  {[Je, Q2 {x, D x, D fc)]u)~(f,o;)|

< c' [  u + i c - 7?!2)
JRn

M + l + | s —1|
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Denoting by v  *Rn uj the convolution of v, w  : Rn x Zm —>■ C only with 
respect to the variable x , we can rewrite the above result as

|(1 +  QlU, Ac, -Dfc)]«r(£> “ )l
<  C" ( ( i  +  H2) - " * ? ' - 11 *R„ (1 +  ^ . ) ) ^ \ a ( . , u ) \ ) ( f , w), (8.1)

which implies now

P r o p o s it io n  8 .1 . For s >  0 let M  >  1 +  \s — 1| +  n be such that A .2 .M  is 
fulfilled. Then it holds

HMr> Q2 ( x ,  D x , D k ) \ u \ \ H^ , s ^ n x 1 m̂  <  c \ \u\ \HTP,s+l(ignx ’Zm') (8 -2 )

for all e E (0,1] and all u E H^,8+1 (M.n x Zm) with c independent of e E (0,1].

Proof  For u E iP ^s+1(Rn x Zm) we find using (8.1) and Young’s inequality 
that

II [Jet Q2 {x , D x, D]f)]u\\}ji>,s^nxjrn̂

=  11(1 +  q2 (x, D x , Dfc ) ] t i )~ ( - ,  - ) | | l 2(R"xT"*)

(27r) 2 ( [  11(1 +'ip(-))z([J£,q 2 ( x , D x, D k)]u)~(-,uj)\\ du  
\  J Tm L2('Mn'l

2 \  2

I
'Tm L2(Mn)

<  c"(2t t ) -^  x

X f  /  11(1 +  l-l2) ^ ^ ^ 1 (1 +  ^ ( - ) ) ^ l^ ( - ,^ ) l l l i2(M ^ )^ >)
\ J  Tm /



— c \\u \\H^’s+1(ErixZrn)̂

proving the proposition.
□

Using (7.4) we have

Corollary 8 .2 . With #2(2 , D X: Dk) as in Proposition 8.1 and q i (Dx, Dk),  
where the symbol q\ satisfies A . l ,  it holds for q(x, D x, Dk)  =  qi (Dx,Dk)  +  
^ (x , D x, Dk) and u G H^,s+1(W1 x Zm)

\ \ [ J ei  Q ( X l D x , D k ) ] u \ \ H ^ , s ( ^ n x I im^  <  c||'W||/^V>.a+l(R»xZTn) ( ^ - 3 )

with c independent of e G (0 ,1].

Next we want to study the commutator [(l +  i>{Dx))%, (?2(:r, D x , Dfc)]. For 
this we need a modification of Lemma 2.3.3 in [20].

L em m a 8 .3 . Let k G L 1(Mn). Then we have for all u, v  G L2(Mn x Tm)

(27r)_m f  f  f  k(£ - r i )u { ip u )v {^ u j )d r id £ d u j  
JTm «/Mn JlR"

<  ll^lll^R") ||^||.L2(IRnxTm) ||^||L2(]RnxTm)>

Proof. The proof of Lemma 2.3.3 in [20] yields

(2n)~m [ [ [  k(€-r))u{rpuj)v(€,uj)dr)d£duj  
JTm JRn J]Rn

<  (27r)_m [  (  [  \u{r),uj)\2dr)\ ( f  |u(^,du)|2 d ^  du;
JTm \ J  En J \JRn J

<  ||fc|Uhm-) f ( 27r)_m /  [  \u{r],Lj)\2 dr]duj) x
\  JTm JRn J

x f (2ir)~m [ f  lufow^dfduA .
\  J Tm JRn J

□
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To handle the commutator [(1 +  ^ (D I ) ) 2 ,g 2(a:, D x, D k)] we note first

([(1 +  D x ) ) 2  , q2 (x, D x, D k)]u)~(£, u)

=  ( 2 t t ) _ 2 j  q2 (,f _  77,77,o ; ) ( ( l  +  ^ ( 0 ) ^  -  ( 1  +  V ^ ) ) 2 <*>) dry.
JMn

As in the proof of Theorem 2.3.9 in [20] we have

1 ( 1  +  -  ( 1  + ^ ) ) ! l <  £ . , * ( 1  +  I? -  r?|2 ) i ( H - ^ ( r ?) ) ^ ,

and we will use also (6.3), i.e.

\Q2{$,-ri,ri,uj)\ <7M,n,m X] l l ^ l l i 1( ^ ) ( 1 +  | ^ - ? 7| 2) _ ^ ( l  +  ^ ( r / ) ) .

|a|<M

P r o p o s it io n  8 .4 . For s >  0 let M  >  n +  s be such that A .2 .M  is fulfilled. 
Then with some constant 7  =  7 M,n,m,s,xi> it holds for all u £  iF^’s+1 (Mn x Zm)

|| [(1 +  fi>(Dx ) ) 2 , (72(£, I + , A s)M U 2 (RnxZm)

— 7 E|a|<Af lly?alU 1 (Rn) IMIi^>s+1 (KnxZ™)- 

Proof. For u £  iẐ >s+1(Rn x Zm) and v  £  L2(Mn x Zm) we find

| ( [ ( 1  + i p ( D x ))%,q2( x , D x , D k) ]u , v ) L2 (p n xZm) \

f  (  f  q2 ( € - 'n , r ) 1 u})((l +  'ip(€))% -  (1 +  ^ (7?))*) x
OTm 2Mn 2]Rn

xfi(?7 , co)u(£, u j )  d r j d ^ d u j

7  CM,n,m,s,ip E  | | (Z a | |L 1(Mn)(27T) m X

|a|<M

X
JTm Jr"

C-M,n,m,s,ip ^  ^ | | (Z a | | L 1(]Rn ) II (1 T  | ' |  ) 2
|a|  < M

5 + 1
x | | ( l  +  ^(-)) 2 &(*> ')IU2(M n xT m ) | | ^ | | L 2(En xT rn)

X
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which implies

||[(1 +  ^ ( D x ) ) 2 ,q2(x, D x, Dk)]u\\L2̂ RnxZm̂

|([(1 +  'ip(Dx) ) 2 i q2(x1 D x, D k)]u} u)L2 (EnxZm)
sup II II

IMIL2(R nxZm^O  | M  | L* (IRn x  Zm)

< 7  ||^a||L1(Rn)||u ||i/^.s+1(]RTlxZm)?
|a|  < M

and the proposition is proved.

R em a rk  8 .5 . Note that for s =  0 the proposition is trivial.



9 Estim ates for <720^ D x , D k )

Assume that the symbol q2 satisfies A .2.M  with M  sufficiently large. We want 
to prove that q2 (x, D x, D .̂) maps the space H ^,8+2 (lSLn x Zm) continuously 
into x Zm) with a bound being controlled by E |a|<Af H^all^c^j-
Let u E V(M.n x Zm) or u E S(M.n x Zm) and take v  E L2(Mn x Zm). It 
follows that

(Q2(x , D x , -Dfc)w, u ) L2(Rn xZm)

=  (27r)~^~m f j  f q2(Z -  77, 7 , u)u(r /, w)u(£, w) dr/d?da;
JTm JRn «/Rn

and therefore by using arguments as before, especially (6.3) and Lemma 8.3, 
with 7 m  =  7M,n,m we find

I f e ^ ,  D x, Dk)u , u ) i 2 ( Mn xZm)|

— 7m ll<A*IU1(Rn)(27r) 2 m x
|a|<M

X f  f  f  (1 +  l^ _ 7 7|2)_ ^ ( 1 + ? /;(7?))l{i(^’CJ)ll{iK ’a;) l d7/d^da;JT171 JRn J]Rn

—  7 M ^ 2  H(̂ a | |L 1(Mn)||'W||JffV-.2(Knx Zm) | |u | | i2(Mn xZm),

|a|<M

which yields

\\Q2 (x, D x, L?fc)w||£,2(RnxZm) <  7 m /^•2(Rnxzm)- (9-1)
|a|<M

It is easy to see that for (9.1) to hold M  =  n +  1 is sufficient. Since

IMI i f lM(RnxZm) =  11(1 +  ^ ( A c ) )  2 u| | i ,2(]RrlxZ m),  

we find further for s >  0 that

||9 2 (^) D x, Afe)w||j/lM(RnXZm)

=  ||(1 d - ^ D * ) ) ^ ^ ,  A n  A feH U 2(R"xZ™)

< 1192(3?, D x, Afe)( 1 +  ?AAc))2 w||L2(RnxZm)

+  | | [(1 +  i/j(Dx))%1 q2 (x, D x, A 0 M I l 2(R n xZm)
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< 7 M E  I I ^ I | l i ( r - ) | | ( 1  +  ip(Dx))*u\\ Ĥ <2 (RnxZm)
\ a \ < M

+ 7  ||(̂ a||L1(Rn)||w||if1/'-s+2(ETlxZ7T1)?
\ a \ < M

where we used (9.1) and Proposition 8.4 and we have assumed that M  is 
large enough for both estimates to hold. Noting that

||(1 +  ^ { D x))iu\\ ^ .2 (r x Z m) — ||^ ||if1/'>s+2(IRn xZm)

we eventually arrive at

P r o p o s it io n  9 .1 . For s > 0  let M  be such that A .2 .M  holds for the symbol 
q2 as well as Proposition 8 . 4  and (9.1). Then there exists a constant 71 =  
7 SUCh that

\\q2(x, D x, <  71 H^alU^R") IMI JJ'4>,s+2(T̂ nxJrny
\ a \ < M
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10 Estim ates for q ( x ,  D x , D k )

Now we consider the operator q(x, D x, Dk) =  q i (Dx, Dk) +  q2 (x, D x, Dk).  For 
the symbol q\ we assume A .l and for 52 we assume A .2.M  where M  will in 
general depend on s >  0 and n E N as needed in the estimates.

T h e o r e m  10 .1 . For s > 0  the operator q(x , D x , Dk) maps the space 
H^'s+2 (Rn x Zm) continuously into x IP1) and it holds

T h eo rem  10 .2 . Suppose lim^i^oo-0 (0  =  0 0 . Given 71 and M  as in Propo­
sition 9.1 and R\ >  0 as in (7.2). If with Rq as in (7.2) it holds

Proof. This follows from Proposition 7.1, Proposition 9.1 and

\\q(x, D x, Dk)u\\H4>,s(Rnxzm) <  | | 9 l ( .D z ,  -Dfc)w||#V,a(R»xZm)

□

then there exists a constant <5q >  0 such that for s > 0  we have

(10.1)

\\q(x, D x-, .Dfc),u||ifV’,s(iRnxZm) >  ^o||wllnr̂>s+2(Mnxzm) — KulMlL2(Rnxzm)- (10.2)

(Note that £0 and R\ depends on s). 

Proof. We observe that

II q(x, D x, Dk)u\\H ,̂s(^nx1 m̂

— \\Qi {DX1 Dk)u +  <72(^5 D x, Dk)u\\Hi,,s(^nxJrn̂
>  \ \Ql  (Dx, Dk)u\\Hq>, s ( ]R nx Z m )  —  || (72(^5 D x, Dk)u\\Hij,s^nx1 m̂

>  Ro\\u \\H^’s+2(RnxZm) ~  ^ l | M | L 2(RnxZm)

\ a \ < M
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where we have used Proposition 7.2 and Proposition 9.1. Hence, under con­
dition (10.1) the result follows.

□

R em a rk  10 .3 . Note that under the assumption that (q(x, D x, D k)u, w)z,2(]Rnxz™) 
>  0, the above result implies also for  A >  0

\\q{ X 1 D x, D k )U +  Au||^2 (Rnx2m)

== D Xl D]  ̂) ̂  11 £,2 (][Jn x ) "h 2A(<3,(x, D x, Dk)U, 'W)_£,2QiJnx;gm)

+A2||u"2 ■xZm)

>  \\q{x, D x, Dk)u\\2L2(j&nx%m} +  A |M |L2(Rnxzm),

or

||5(x, D x, D k)u +  Aw||L2(]RnxZm)

~  ^/^IMlL2(MnxZm)>

which via (10.2) yields for  A >  h\

£
\\q(Xi D X: Dk)u  +  Aw||x,2(RnxZm) >  ~ ^ =  \ \ U  \ \ (Rn x Zm) .

The next theorem is a type of elliptic regularity result.

T h eo rem  10 .4 . Suppose that q(x, D x, D k) =  q i(Dx, D k) +  <72(2 , D x, D k) 
where the symbol qi satisfies A . l  and for M  suitable, i.e. depending on s 
and n £ N,  we assume that the symbol q<i satisfies A.2 .M .  If  for  some f  E 
H ^ ,s (Mn x Zm); 5 >  0, and A E Mn we have a solution u G i7^,s+1(Rn x Zm) 
to the equation

qx(x, D x, D k)u :=  q(x, D x, D k)u +  Au =  f ,  

then it follows that u G 17^’s+2(Rn x Zm) provided (10.1) holds.

Proof. Using (10.2) and (7.4) we find for e G (0,1] that

S o \ \ J e ( u )  || H ^ ' s+ 2(Rn xZm ) ~~ ^1  | | ^ e ( w ) | | L 2(Mn xZm) — \ \ ^ J e { u ) | | i f^>s (Rn x Z m )

— H^f(*̂ 5 D x, Dk)Je{u) | | i f ’/ ' .s(Knx Zm) l l ^ ^ e ^ )  II ̂ ’s (RBXZm)

<  \\q(x, D x, D k)Je(u) +  XJ£(u)\\Hlp,s^nx1 m)
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<  \\J£(q(x, D x, D k)u +  \u)\\ H^’s( Mn xZm)

+  ||[^ej 2̂(^5 D x , £)fc)]w||i/V',s(M7lxZm) 

— | | J e ( / ) | | i f i M ( R n xZ"*) +  ||[^e> ^ 2( ^ j A n  ^ f c ) ] w ||JH’V'.s(M^xZ^)-

Using Proposition 8.1 we get further

60 \\J£(u )\\h  ̂>s+2(Mn xZm)

<  | |« ^ e ( / ) | |H ^ * (R " x Z m) +  ^ l | |^ e ( ' u ) I U 2(]Rn xZTn)

+  | A | | | J e ( u ) | |  i / V J 13(Rn x Z m ) +  \ \ [ J e i  Q 2 ( x ,  D x , D k ) ] u \ \ ^ , 8 ( ^ x 1  x z m )

^  | | / | | / f ^ ' s(Mn xZm) +  ^ l | | W||ii'V’.3(]RnxZm) +  | A | | | ? i | | ^ , 3(MnxZm)

+c||u|| H^’s+i(Mn xZm)

=  II /  Hi/V'>s (IRn xZm) +  ( A  +  | ^ D I M | t f V ^ ( ] R n x 2 m )  +  c | |  w | |  +  l (R n x g r n )  .

Now an application of Proposition 5.5 yields the theorem.
□
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11 The Sesquilinear Form Associated  
w ith q ( x ,  D x , D k )

We assume that q(x 7 D x, Dk) = qi (Dx, Dk) +  q2 (x, D x, Z)*.) is given as before 
with symbols q\ and q2 satisfying A .l and A .2 .M  respectively. Again we 
assume M  to be sufficiently large so that the results, i.e. the estimates, 
for q2 (x, D x, Dk) hold, and whenever required for these estimates we assume

Z)|a|<MH^alU1̂ )  t0 be SmalL
On S ( Rn x Zm) or Z>(Rn x Zm) we introduce the sesquilinear form B  by

B (u ,v )  := {q{x, D x, D k)u}v ) L2{RnxZmy 

Clearly, B  splits according to

B (u ,v )  =  jB ^ (u ,v )  +  B^2 \ u :v),

where

B {1\ u , v )  : =  {q i (Dx , D k) u , v ) L2 {RnxZm)

and

B {2)(u , v ) : =  (q2 ( x , D x, u ) L2(Knxz™)- 

P r o p o s it io n  1 1 .1 . On S'(Mn x Zm) ('or £>(Rn x Zm)j it holds

<  7ilMlir^-qMnxZTO) IMI.m/’-1(iRnxzm) (H -l)

and

B  ̂ ^ ( n ,  u )  >  Toll '^l l / fV' .qiRnxgm) — | M | . L 2(Mn xZmp  ( H - 2 )

where 70 and 71 are as m A.I.

Proof. For n, u € 5 (R n x Zm) (or £>(Rn x Zm)) it follows that

| £ (1)(u ,o )| =  \(qi(Dx, Dk)u, v)L‘2 (Rnxzrn)\

= |(27r)“ m f  f  4i (£ ,o ; )w (£ ,c j ) f ; (£ ,c j )d a ;d £ |
JRn JTm

< 7 i(2 7 r)“m [  j  ( 1 +^(^))|nK ,u;)||r($ ,a;)|da;d^
J\Rn J Tm

<  T ill^ llfr^ .q^xzm )||^ | |ff^ .i(R "xzm),
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where in the last step we used the Cauchy-Schwarz inequality. Moreover we 
find

B {l\ u , u )  =  (2tt) m f  j  g !(£ ,o ;)|fi(f,w )|2 du;d£ 
J]Rn J Tm

=  (27r)“m [  [  ( l  +  g i(£ ,cj))|fi(£ ,w )|2 da;d£
J r™ J  Tm

— (27r)_m [  j  |fi(£,w )|2 du;d£
J T m

>  (27r)_m [  j  7 o ( l + ^ ( 0 ) l ^ ( f ^ ) |2d^  
JRn J Tm

-(27r)_m [  f  |u(£, w )|2 dcjd£
JRn J T mf I'm

=  'yo\\u \\H'P’1(RnxZm) ~  llWl//V'>l(KnxZm) Nu’|lL2(Rn xZm): 

proving the proposition.
□

C oro llary  11 .2 . The sesquilinear form has a continuous extension to 
x Zm) and (11.1), (11-2) holds for a l l u , v  e  ^ ^ ( W 1 x Zm).

In the following we will denote the extension of to H^'1 (Mn x Zm) 
again by B ^ \

P r o p o s it io n  11 .3 . On 5(Mn x Zm) ( o r V i W 1 x Zm)J we have the estimate

\ B ^ 2 \ U )  u ) |  <  7 m  | | (/ 7a | | L 1 (MTl) | |^ | | i f '> / ' , l ( ] R n x Z m ) | | ? ; | | ĵ V ' , l ( ]R nx Z m ) .  ( H - 3 )

\ a \ < M

Proof  We note that

\ B { 2 ) ( U , V ) \  =  | f e ( z ,  A c ,  A c ) ^ ) l 2(M-xZ™)|

f  f  f  q2{£-'n,ri1uj)u(‘n,u)v(€,u) dr/dcud^
,/Tm «/Rn

<  7M ,n,m  J ]  l l ^ a | |L 1(Mn ) ( 2 7 r )—m [  [  [  (1  +  |£  -  ^ | 2 ) _ ^  X
i «/Kn ./Tm </Mn|a |< M

x (1 +  i){n))\u{r], uj) I |u(£, a;)| d ^ d f
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<  1 m  IIV’a l l tH K ” ) ^ )  m  [  [  f  (1  +  |£  -  »?|2 ) ”  1 X
i JTn JRm JRn\ a \ < M

x (1 +  ip(ri))^\u(ri, w )|( l +  <K £))^(£> I dTyd^do;

<  7M 11 V-̂or 11Z/1 (M7̂) || |̂|./f'1/'>1(]RnxZTn) ||^||if1/’.i(MnxZm)?
|a |< M

where we used A .2.M  with M  >  n +  2, Peetre’s inequality, Proposition 6.1 
and Lemma 8.3.

□
Corollary 11.4. The sesquilinear form B ^  has a continuous extension to 

x Zm) which we denote again by . For this extension estimate
(11.3) holds.

Theorem  11.5. The sesquilinear form B  =  B ^ + B ^  is defined on 
Zm) and for  u , v  G x Zm) we have

\ B ( U , V ) \  <  T | | w | | t f <M (Rn x z™) | M l t f ^ ' 1(Mn x Z m)-

In addition, for  7 m Sia^M ll^alU 1̂ )  ^  ?  the following Garding inequality 
holds

\B{u,u)\  >  Re B ( u , u )  >  ||'u llifV’,i(MTixzm) IMlL2(Rnxzm) (11-4) 

with 7o >  0 as in A.I.

Proof. Prom Corollaries 11.2 and 11.4 we deduce that B  is defined on 
(Mn x Zm) and it holds

\B{u,v)\  <  |B ^ \ u , v ) \  +  | £ (2)(u,u)l

<  I 7 i + 7 m  l l ^ a l l L 1 ^ )  ]  I M | j y V ^ ( R » x Z m ) I M I . f f ^ R R Tl x Z m ) -

\ a \ < M

Moreover we find
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\B(u,u)\  >  Re B ( u :u)
> B ^ ( u , u )  — \B^2\ u , u )\

— 7o|M|tfV',i(M™xZm) — 11 ̂  11L2 (Kn xZ m) — 7 m  H^alU^M71) Il'̂ llifV',
|a|  < M

2 2 ^0 2 
— 7o|Mlif<M(irixZm) — Ill'll L2(Mn xZm) 2 ^ U ^ H 'p,1(R n x I ‘m )

=  \\U \\H'l}’1{RTlx Z rn) ~  I M l L 2(Mn xZ m )>

implying (11.4).
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12 Solving the Equation q ( x ,  D x , D p ) u  + Au  —  f

As in the first paragraph of Section 11 we assume that q(x, D x, D]f) — 
qi (D x , Dk) +  2̂(3̂ , D x , Dk) is given as before with symbols qi and q2 satisfy­
ing A .l and A .2.M  respectively. Again we assume M  to be sufficiently large 
so that the results, i.e. the estimates, for q2 (x, D x, D^) hold, and whenever 
required for these estimates we assume S ia^M ll^alU 1̂ 71) 1° small-

The aim of this section is to use the estimates established before to solve 
for A >  0 the equation

q(x, D x, D k)u +  Xu =  f .  (12.1)

If (12.1) holds pointwise, i.e for all x £  Mn and all k £  Zm, we call u a 
classical solution. If /  £  i /^ ’s(Rn x Zm) and u £  H^’s+2 (Rn x Zm) such 
that (12.1) holds for all k £  Zm and almost every x  £  Mn, then we call u an 
Absolution.

We need a further, weaker notion of a solution. Since we are eventually 
interested to generate Feller semigroups, we may restrict our considerations 
to real-valued functions avoiding some problems with anti-linear functionals.

D e fin it io n  12 .1 . Let A >  0. We call u £ H ^,1 (Rn x Zm) a variational
solution to the equation (12.1) if for all ip £  x Zm) it holds

B\(u ,  t )  B ( u , qL) +  A(u, (p)l2 (Rnxzm) — (/> (/?)n2(Mnxzm)- (12.2)

Using the Lax-Milgram theorem, compare [19], we can prove

T h eo rem  12 .2 . Suppose that q\ and q2 satisfy the conditions stated in the 
first paragraph of this section. Then for every A >  1 equation (12.1) has for  
every f  £  L2(Rn x Zm) a unique variational solution u £  iA ',1(Rn x Zm).

Proof. First we note that

K /j V^oI <  II/II0IMI0 <  ||/||o|M|fflM(R"xZw*),

where ||-||o denotes the norm on L2(Mn x Zm). Hence every /  £  L 2 {Rn x Zm) 
defines a continuous linear functional on iA ’,1(Mn x Z m). Further, by Theorem  
11.5 the sesquilinear form B \  is continuous on 7 A ’1(Mn x Zm) and for A >  1 
it also satisfies the estimate

"̂Yo\Bx(u,u)\ >  R e B x(u,u) >  — | |u | |^ ,1(MnxZm). (12.3)
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Thus, by the Lax-Milgram theorem exists a unique u G x Zm)
representing the continuous linear functional If : H^,1 (Wn x Zm) —» C, 
J/Orf :=  ( / ,  <̂ )o via B x, i.e.

*/(<P) =  ( / » o  =  
for all <p G IT^^R 71 x Zm), proving the theorem.

□
Next we want to prove that a variational solution to (12.1) is for /  G 

L2(Rn x Zm) already an L2-solution.

T h e o r e m  12 .3 . Let q\ and q2 be as in Theorem 12.2. In addition suppose 
that Proposition 8.1 and Theorem 10.2 hold for s =  0. Then a variational 
solution u G x Z m) to (12.1) with f  G L2(Rn x Z m) is an L 2 -solution,
in particular, u G FT^2(Rn x Zm).

Proof. Let u G H^,1(Rn x Zm) be a variational solution to (12.1) and {ui)ie^, 
ui G S(M.n x Zm) (or D(M.n x Zm)), a sequence converging in x Zm)
to u. Further let e G (0,1] and denote by J£ the Friedrichs modifier (with 
respect to the variable x) as in Section 5. Then

J£{u{) G p | H ^ s(Rn x Zm) C H ^ 2 {Rn x  Zm)
s > 0

and it holds

B x{Je(u{), ip) =  (q(x, D x, D k)J£(ui) +  AJ£{ut), <p) 0

=  {J£({q{x, D x, D k) +  X)ui), <p) 0 -  { [ J e , q(x, D x, D k)]uh ip) 0  

=  B x(ui , J E { < p ) )  -  { [ J e ,  q 2 { x ,  D x, D k)]m, < p ) 0 .

From Proposition 8.1 we deduce (for I large)

\ \ [ J e ,  I 2 { X ,  D x , D k ) ] U l \ \ L 2^ R n x Z m ^  <  c \ \ U l \ \ H ^ , l ^ n x I i m ^  <  c 'u ,

implying (for a subsequence of {[Je,q2 {x, D x, D k)}u{)ie^, which we denote 
again by ([J£, q2 (x, D x, D k)]ut)ieN) that [J£, g2(z, A :, A )W z cj£ in 
L2(Rn x Zm) and that ||w£||L2(Mnxz™) <  where c'u depends on u but is 
independent of e. For I —> oo we find now

B x(J£(u), <p) =  B x(u, J £ { p ) )  ~  {u£, T)o 

=  { f , J e ( < P ) ) 0 -  ( W e , ^ ) o  

=  { J e { f ) , T > ) 0  -  ( U e , T ) o -
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It follows that

\\Q\{x , D x , Dk)Je(u) \ \L2(RnxZm) <  | | ^ e ( / ) | | L 2(Mn x Z m ) +  | | ^ £ | | L 2(En x Z m ) 

<  | | / | | L 2 (En xZ™) +  c u5

or by Theorem 10.2 we find

\ \Q \ ( x , D x , D k ) J £ ( u ) \ \ L2(^nxZm̂

>  | | ^ ( x ,  D k ) J £ ( u ) \ \ L2 ^ n x I vn) — |A| | |  J e ( u ) | | L2(Mn xZm)

>  S o \ \ J e { u ) \ \ H iP,2(mn x Z m ) —  ^ 1 1| ^ e ( ^ )  ||.L2(En x Z m ) — I A| || J e (w)  ||L2 (Kn xZm ) ,

implying

So\\J£(u)\\H^^{M.nxZm) <  | | / | | L 2 (Rn x Z m ) +  ( ^ 1  +  +  c'u-

Now we may apply Proposition 5.5 to deduce that u belongs to i /^ ,2(Rn x Zm) 
which in turn implies

B x(u , cp) =  (q(x , £>x, D k)u +  Xu, <p)0, 

and the theorem is proved.
□

C oro llary  12 .4 . If in addition to the hypothesis of Theorem 12.3 those of 
Theorem 10.f  hold, then a variational solution to (12.1) with 
f  £ H ^ s(Rn x Zm) belongs to H ^ s+2 (Rn x Zm).
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13 The Operator — q ( x ,  D x , D &) as a Generator 
of a Semigroup

So far we have seen by combining the results of Sections 10-12 that under 
suitable assumptions we can consider the operator — q(x, D x, D *.) as well de­
fined on H^'s+2 (Mn x Zm) with image in x Zm). Moreover, for A large
enough q(x , +  A is bijective from iT^’s+2(Mn x Zm) to H^,s(M.n x Zm).

We change our point of view and assuming (5.1) and s >  ^  we can 
consider —q ( x ,D x,Dk)  as densely defined on

Coo(En X Zm) =  S(M" X Zm)IMI“  =  f l S ^ r x Z 5 )1'1” , (13.1)

where H-Hoo denotes the supremum norm

Halloo := sup \u(x,k)\.  (13.2)
(x,k)eRnxZm

Thus (—q(x, D x, Dk), H^'s+2 (Rn x Zm)) is a densely defined operator on 
C00(Mn x Zm) with image H^,s(Wn x Zm) C C ^IR ” x Zm), and for A large 
enough we find for every /  £  /T^s(Mn x Zm), a dense subset of Coo(Mn x Zm), 
there exists a unique solution to

(A — (~q{x,  D x, D k)))u =  f .  (13.3)

In view of the Hille-Yosida theorem, once we know that —q ( x ,D x,Dk)  is 
dissipative in C'00(Mn x Z m) we can conclude that the operator (—q(x, D x, Dk), 
H^,s+2 (Rn x Zm)) is closable and its closure generates a strongly continuous 
contraction semigroup on Coo(Mn x Zm).

It is well known, compare [11], that if —q ( x ,D x,Dk)  satisfies the posi­
tive maximum principle, then it is dissipative and moreover if — q(x, D x, Dk) 
satisfies the positive maximum principle and generates a strongly continuous 
contraction semigroup on x  Zm), then this semigroup is a Feller semi­
group. But thanks to the Levy-Khinchin formula, when (£,cu) q(x,%,Lj)
is for every x  £  Mn a continuous negative definite function, it follows that 
—q(Xj D x, satisfies the positive maximum principle. We refer to [19] 
where the case of operators acting on functions defined on Mn is discussed 
and to [12] where the case of operators acting on sequences is investigated. 
The general case follows from both results by superposition. Hence by the 
Hille-Yosida-Ray theorem, i.e. the Hille-Yosida theorem with the dissipativ- 
ity replaced by the positive maximum principle, we may state
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T h e o r e m  13 .1 . Under the assumptions of Corollary 12.4, i f the function 
(£,o;) i-» q(x,£,  cu) is for every x G Rn a continuous negative definite function, 
then (—q(x, D x, D}f), i /^ ,s+2(Rn x Zm)) ; s >  extends to a generator of a 
Feller semigroup (Tt)t>o on Coo(Rn x Zm).

Let <p : Rn —> R and a  : Tm —> R be two continuous negative definite 
functions. Then ip © a  : Rn x Tm —» R, (£,n/) <p(£) +  ct(cj) is a continuous
negative definite function on Rn x Tm. This allows us to construct exam­
ples q(x,£,uj) =  r (x ,£ )  +  s(x,uj) with (£, uj) i-> q(x,£,uj)  being continuous 
negative definite.

The function

is a continuous negative definite function on T1, see [12], p.639. Moreover, on 
Rn, for 0 <  a  <  2, the function qa (£) =  |£|a is a continuous negative definite 
function. For j  =  1,2 let aj : Rn —>• R, aj(x)  =  aoj +  <p(x), 0 <  ip G S(M.n), 
a0j >  0. Consider

q {x ,£ ,u )  =  ai{x)qa {£) +  a2 (x)p(u)

=  a o i|$ r  +  (a iW  -  a0i) |£ |Q +  amp{u)  +  (a2 (x) -  aQ2 )p(u)

=  aoi|C|a +  «02p M  +  ((ai(^) -  aoi)|^|Q +  (a2 (x) -  a0 2 )p(uj))
=  9i(C,w) +  g2(z ,f ,w ) .

W ith *0(£) =  (1 +  |£|2)^ it follows now that A. 1 and A . 2 .M  hold.
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