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A bstract

In the present thesis, a computational framework for the analysis of cou­
pled hydro-fracture flow in deformable porous media using a Finite/D iscrete 
Element Method is presented. In this context, a series of developments have 
been made in order to provide a more efficient and robust numerical model 
capable of dealing with oil production and slope stability problems.

The mechanical response of the skeleton is highly dependent on its seep­
age behaviour as pore pressure modifications affect the in situ stress field. 
The u-p formulation has been employed using an explicit time integration 
scheme where fully saturated and single-phase partially saturated analysis 
are incorporated for 2-D and 3-D cases.

Owing to their inherent simplicity, low order elements provide an excellent 
framework in which contact conditions coupled with crack propagation can 
be dealt with in an effective manner. For linear elements this implies single 
point integration which, however, can result in spurious zero-energy modes. 
Therefore, in order to obtain reliable results, a stabilization technique has 
been devised to eliminate hourglassing.

The success of the modelling strategy ultimately depends on the inter­
dependence of different phenomena. The linking between the displacement 
components, network and pore pressures represents an im portant role in the 
efficiency of the overall coupling procedure. Therefore, a master-slave tech­
nique is proposed to link seepage and network fields, proving to be particu­
larly attractive from a computational cost point of view. Another im portant 
development th a t has provided substantial savings in CPU times is the use 
of an explicit-explicit subcycling scheme.

Numerical examples have been used to  assess the accuracy and efficiency 
of the proposed framework. Special attention is focused on the investigation 
of hydraulic fracture propagation in oil production problems and plane failure 
analysis of the stability of slopes.



Chapter 1 

Introduction

D u e  to the computational advances achieved in the last decade, the use of 
numerical models for the solution of practical engineering problems has in­
creased significantly. Sophisticated models capable of solving coupled hydro­
mechanical processes in fractured geological media, such as soils and rock 
masses, have been developed. These numerical tools are assisting analysts 
in the design, performance and safety assessment of many civil and environ­
mental engineering works, such as dam foundations, slopes, extraction of oil, 
gas and water and leakage of hazardous materials (e.g. toxic and radioactive 
waste). These types of applications are characterized by the presence of soil 
or rock-like materials, in which the pores of the solid phase are filled with one 
or more fluids. An additional degree of complexity is introduced by the coa­
lescence and growth of voids, which results in the appearance of macro-cracks 
and subsequent fragmentation. Despite the wide variety of applications as 
described above, the main focus of this research is related with oil production 
and slope stability problems. In the following section, a brief description of 
the mechanisms involved and previous related research are highlighted.

1.1 M otivation
It is well known th a t rocks and soils are characterized by a higher compression 
strength compared to their tensile strength. This plays an im portant role in 
determining a failure limit for these materials. In cases where fluids are 
injected into hydro-fractures an extensional loading develops ahead of the 
crack tip, due to the high net pressures developed. This creates a tensile 
stress field directly ahead of the crack tip, but at some offset from it, the 
stress decreases strongly in the direction perpendicular to the fracture plane. 
This type of stress behavior will cause the rock to shear and, consequently,

1



CHAPTER 1. INTRO DU CTIO N  2

will induce the formation of a plastic zone, as shown in Figure 1.1.

Figure 1.1: Plastic zone caused by high net pressures. (Papanastasiou 
(1999a))

The Delft Fracturing Consortium (Papanastasiou (1999a)) has recently 
carried out a world-wide survey on net-pressures, which has indicated that 
net-pressures in the field are 50 to 100 percent higher than the net-pressures 
predicted by the conventional hydraulic fracturing simulators, van Dam et al. 
(1997) observed th a t in weak formations the difference is even higher. In 
order to understand the difference in the results several approaches have 
been proposed. Among them, the most consistent with observations are the 
dilation hypothesis, effective fracture toughness and leak-off effects.

The first assumption, proposed by Cleary et al. (1991), states th a t rock 
dilation behind the advancing fracture would constrain the opening which 
may lead to sharp pressure gradients. Papanastasiou and Thiercelin (1993) 
and Papanastasiou (1997b) have used a finite difference-finite element scheme 
fully coupled with a fluid flow model to simulate the process. The model 
allows the fluid to flow through the cracks without taking into account any 
leak-off to the material itself. These studies have shown tha t the aperture in 
propagating elastoplastic fractures are wider than in the elastic case, resulting 
in smaller fluid-lag regions. This result is in complete contradiction with the 
dilation hypothesis proposed.

The second assumption states tha t values of the fracture toughness mea­

ElasUc A rea
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sured in the laboratory underestimate in-situ values. Shlyapobersky (1985) 
showed th a t typical toughness values determined from conventional labo­
ratory tests are one to two times lower than estimates based on hydraulic 
fracturing fields. Papanastasiou (1999a) presented a fully hydro-mechanical 
coupled model which calculates the value of the effective fracture toughness 
using the path  independent J-integral. The results of the study showed an 
increase of the effective fracture toughness (EFT) by more than  one order of 
magnitude due to the fact th a t the plastic yielding near the tip  of a propagat­
ing fracture provides an effective shielding. Also, this author found th a t the 
size of the plastic zone and the resulting EFT increases when the difference 
between the horizontal and vertical in-situ stress are higher. The conclu­
sions agreed well with those stated by Shlyapobersky (1985). However, an 
accurate analysis of the in situ stress field can only be obtained if the soil or 
rock-like material is treated as a porous medium, since the effective stresses 
are significantly affected by changes in pore pressure, specially in pressure 
dependent materials, such as rock and soils.

Detournay et al. (1990) and Boone and Ingraffea (1990) have developed 
a hydraulic fracturing design model which incorporates poroelasticity effects 
and observed tha t net-pressures were higher than those predicted by con­
ventional models. The results have shown th a t an increase in the fluid flow 
into the hydraulic fracture is necessary to avoid a drop in net-pressure due 
to leak-off through the formation. Consequently, higher net-pressure has 
to be developed in order to maintain the same fracture opening as for non- 
permeable models. These results agree well with the third assumption. How­
ever, more realistic solutions of the net-pressures, apertures and flow rates 
are expected when an elasto-plastic analysis is performed to account for the 
factors described in the second assumption.

Another set of hydro-mechanical coupling problems in a discontinuous 
porous medium, a t which this work is particularly aimed, are slope stability 
problems. The causes of landslide in slopes are attributed to a number of 
factors such as geologic features, topography, vegetation, weather conditions 
or a combination of these factors.

In the analysis of rock slopes, the failure surface is often predefined as a 
continuous plane or a series of interconnected planes. In cases where the rock 
masses contain discontinuous joints varying in persistence, the shear strength 
becomes a combination of the friction strength component, the cohesion of 
the intact rock bridges between discontinuous joints and the magnitude of the 
effective normal stress. Bjerrum (1967) suggested th a t progressive slope fail­
ure is initiated when a reduction in the shear strength from peak to residual 
values occurs along the failure surface. This decrease causes the development 
of a continuous sliding surface through the progressive propagation of a shear
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surface. Figure 1.2 illustrates the process described above.

„  Tpcak Tpcak
Tpcak

Tresidual Trcsidual

progressive failure sequence

Figure 1.2: Development of a shear surface due to  progressive failure. (Bjer- 
rum (1967)).

In a recent survey of equilibrium methods of slope stability analysis, Dun­
can (1996) summarized the characteristics of a large number of methods, in­
cluding the ordinary method of slices (Fellenius (1936)), Bishop’s modified 
method (Bishop (1955)), force equilibrium methods (e.g. Lowe and Karafiath 
(I960)), Janbu’s generalized procedure of slices (Janbu (1968)), Morgenstern 
and Price’s method (Morgenstern and Price (1965)) and Spencer’s method 
(Spencer (1967)). A difficulty with all these equilibrium methods is that 
they are based on the assumption tha t the failing soil mass can be divided 
into slices. Therefore, the approach made about directions of the side forces 
between slices becomes one of the main characteristics th a t distinguishes one 
limit equilibrium from another, and yet is itself an entirely artificial distinc­
tion.

In the last few years, several slope stability analyses have been carried 
out using the finite element (FE) approach. Griffiths and Lane (1999) have 
shown th a t the FE method is reliable and robust for assessing the factor of 
safety of slopes. Ng and Shi (1998) and Cho and Lee (2001) have examined 
the process of infiltration into a slope due to rainfall and its effect on soil 
slope behavior using a FE flow-deformation coupled analysis. Eberhardt 
et al. (2004) have used a Finite/D iscrete Element method which combines 
continuum and discontinuum methodologies, to understand the progressive 
failure in massive natural rock slopes as a function of slide plane surface and 
internal strength degradation. These studies has revealed the advantages of 
the FE analysis over conventional limit equilibrium methods which can be 
summarized as follows:
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•  Failure occurs ’naturally’ in zones where the soil shear strength is un­
able to support the applied shear stresses, without it being necessary 
in advance to  postulate the shape or location of the failure surface.

•  Global equilibrium is preserved until failure is reached in the FE ap­
proach. In the FE method there is no concept of slices and conse­
quently, there is no need for any hypothesis about slice side forces.

•  The FE method, at working stresses levels, provides information about 
deformations when consistent soil properties data  are given.

In order to obtain a better understanding of the progressive failure mech­
anism and a more accurate assessment of the factor of safety in rock/soil 
slopes, the combination of a porous elasto-plastic analysis with hydraulic 
fractures becomes crucial. W ith this approach, a decrease in the frictional 
strength of the joints and changes in matric suction of rock mass caused 
by the fluid flow are expected. Consequently, the shear strength, which is 
primarily responsible for the stability of the slope, will be affected.

Therefore, the development of a complex computational model which 
allows the flow along fractures as well as the flow within the material itself 
and an elasto-plastic analysis becomes the main goal of this research.

1.2 O bjectives
Several theories and approaches have been used to improve the understand­
ing of the complex interplay between different phenomena related with oil 
extraction and slope stability analyses. The use of computational models 
have been shown to be particularly attractive in the solution of such prob­
lems, particularly the ones based on the Finite Element Method. However, 
some assumptions have been taken by current numerical models which have 
constrained their capabilities, as described in section 1.1.

In order to tackle some of the difficulties presented, several tasks have 
been pursued in this thesis as described below:

•  Implementation and validation of a 2D and 3D explicit Soil-Pore Fluid 
interaction analysis in the Elfen (2005) code.

•  A stabilization procedure to eliminate spurious singular modes in seep­
age analysis (quadrilateral and hexahedral elements). The verification 
of the reliability of the scheme has been carried out in detail.
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• Development of a computational model for 2D and 3D analysis of cou­
pled hydro-fracture flow in porous media using a Finite/D iscrete Ele­
ment Method and an explicit time integration scheme.

• Simulation of a hydraulic fracture propagation in a porous medium, 
with particular interest on oil extraction and slope stability problems;

• Analysis of the influence of the plastic zones on the extension, aper­
tures, pressures and flow rates in a fractured porous medium;

• Assessment of the factor of safety for slope stability problems subjected 
to flow along fractures and changes in effective normal stress.

1.3 Layout o f th e thesis
This document is organized in the following manner.

•  Chapter 2 - presents some basic concepts of porous media, such as, 
Darcy’s law, properties of a porous medium, effective stress principle 
and saturation. Also, it allows the understanding of the limits of va­
lidity of Darcy’s Law. Finally, it defines the governing equations and 
some of their limitations.

•  Chapter 3 - discretizes the governing equations in space and time using 
a finite element method and an explicit difference scheme. Also, it de­
fines the constitutive problem to be solved and failure criteria adopted. 
Finally, it explains im portant aspects related to the numerical stability 
and stabilization of singular spurious modes.

•  Chapter 4 - gives a detailed description of the overall coupling proce­
dure developed. An explicit subcycling scheme is proposed in order to 
reduce computational cost. Finally, a mass conservation balance is ver­
ified through a dynamic filtration test, in order to show the robustness 
of the numerical model.

•  Chapter 5 - shows some of the previous work developed to tackle the 
hydraulic fracture problem and their limitations. Also, it defines the hy­
draulic fracture problem and its particular features. Finally, it presents 
a series of numerical examples.

•  Chapter 6 - describes a plane failure analysis in slopes to verify the 
influence of water pressure effects on stability. A joint element is in­
troduced in the failure plane in order to model the water flow in these
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cracks. This is particularly interesting, since, the increase in water 
pressure is well known to affect the effective tangential stresses causing 
a reduction in the friction force. Consequently, a slope failure is ex­
pected. The factor of safety obtained through theory is tested against 
a numerical model.

•  Chapter 7 - gives a discussion of the overall objectives tackled, main 
conclusions and suggestions for future research.

•  Appendix A - presents the formulation used in the stabilization of sin­
gular spurious modes with 3D elements.



Chapter 2 

Basic concepts of porous media

Soils are three phase systems consisting of solid grains with fluids and gases 
filling the void spaces between the grains. The nature of the grains, current 
state, structure or fabric and formation are the primarily factors responsible 
for the mechanical properties of a soil.

In oil production and slope stability analysis, both seepage and network 
flows are estimated by Darcy’s law. In spite of this similarity, differences 
can be seen in the determination of some properties and formulation of the 
governing equations for each field. This plays an im portant role in the un­
derstanding of the assumptions th a t have been made and consequently, de­
termines the range of validity within which it is acceptable to use them.

In order to provide some background to the following chapters some of 
the basic concepts related to the theory of porous media will be given.

2.1 Soils particle sizes and shapes
In the description of the main features of a soil it is im portant to take into 
account size, grading, shape, surface texture and mineralogy of the grains, 
currents stress and moisture content, history of loading and unloading, type 
of fabric or structure (layering, bedding, fissure, jointing and cementing) and 
type of formation (naturally deposited, residual product of rock weathering 
or compacted by machines).

According to the predominant size of the particles, soils are classified as 
boulders, cobbles, gravel, sand, silt, or clay. In spite of several organizations 
having developed different soil description schemes, in the United Kingdom 
the British Standards for site investigations B. S. 5930 (1981) and for soil 
testing B. S. 1377 (1991) provides the characteristics of the most common 
soils in the region.

8
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The distribution of particle sizes in a soil is represented by a grading curve 
on a particle size chart, as shown in Figure 2.1. If the soil contains a wide 
variety of particle sizes, i.e., the grading curve is flat, the soil is known as 
well graded. On the other hand, if a particular size predominates the soil is 
poorly graded. Often, the analysis of the grading of a soil reflects its origin.
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Figure 2.1: Grading curves plotted on a particle size distribution chart. (B. 
S. 1377 (1991)).

Another feature tha t distinguish the soil particles are their shape. Usu­
ally, rotund shapes occur more predominantly in silt, sand and gravel, while, 
thin plates are more common in clay grains.

2.2 Basic relationships
Most of the basic relationships encountered in the Theory of Porous Media 
relates to the contents of fluid and grains through weight and volume ratios, 
since the compactation of the packing of the grains is responsible for modi­
fications in many mechanical properties; for example, loose soils are weaker 
and more compressible than dense soils. Therefore, the definition of some of 
the basic relationships are essential to obtain a better understanding of the 
concepts tha t will follow in the present work.

• Specific gravity (Gs)

In soil mechanics the calculation of the specific gravity is often needed. 
It defines the ratio between the mass densities of the dry solid grains, ps,
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and water, pw. It can be easily obtained from the laboratory through 
a water displacement test, giving

G .= Ws
Ww

Ps

Pw
( 2 .1)

where, W s is the weight of the dry solid grains and Ww is the weight of 
water displaced. Table 2.1 shows values of the specific gravity for some 
common minerals found in soils.

Table 2.1: Specific gravity of im portant minerals. (Das (1985))

Mineral Specific gravity

Quartz 2.65
Kaolinite 2.6
Illite 2.8
Halloysite 2.65 - 2.80
Potassium feldspar 2.57
Sodium and clacium feldspar 2.62 - 2.76
Chlorite 2.6 - 2.9
Biotite 2.8 - 3.2
Muscovite 2.76 - 3.1
Hornblende 3.0 - 3.47
Limonite 3.6 - 4.0
Olivine 3 .27 -3 .37

Specific volume (v)

The state of a soil can be described by the specific volume, which is 
defined as the ratio between the volume of a soil sample, V, and the 
volume of dry solid grains, Vs, i.e.

v
V_
Vs

(2 .2)

For coarse grained soils the maximum specific volume for a loose assem­
bly of uniform spheres is 1.92 and the minimum v  of a dense assembly 
is 1.35; common sands and gravels have specific volumes in the range
1.3 to 2.0.
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Void ratio evr and porosity n)

Experimental tests have shown th a t the permeability of a soil, which 
will be detailed in Section 2.4, is significantly affected by changes in 
the volume of voids. Owing to this, the permeability is often given as 
a function of the void ratio or the porosity. Void ratio is defined as the 
ratio between volume of voids, Vv> and the volume of dry solid grains, 
Va.

eVT =  ^  = v -  1 (2.3)

Porosity represents the ratio between the volume of voids and the total 
volume, i.e.

n = Y l  = (2.4)
V 1 +  evr 

Moisture content w and unit weight 7

The moisture content is defined as the ratio between the weight of water 
Ww and the weight of dry solid grains W s in a given volume of soil,

W* V -  1 
w  = W s = ~ g T  (2'5)

and the unit weight is the weight of soil, W ,  per unit volume, V.

W ( G,  + v - l \
7 =  V  =  {  S—  J  7-  (2-6)

where 7™ is the unit weight of water.

The weights can be measured by simple weighing and the volume of 
the cubic or cylindrical sample determined by direct measurement.
Since, the specific volume cannot be measured directly, its determi­
nation through a relation with the water content and the unit weight 
becomes convenient.

2.3 D arcy’s law
In 1856, Henry Darcy developed an experimental procedure to  investigate 
the flow of water in vertical homogeneous sand filters, as shown in Figure 
2.2. Darcy observed th a t the rate of flow , Q [L3/T], is proportional to
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the cross-sectional area A, proportional to the difference in piezometric head 
across the filter hi — h2 which is measured with respect to some arbitrary 
datum  level, and inversely proportional to the length L of the filter. Darcy’s 
law has been formulated based on these observations as

Q = K A
(hi -  h2) 

L
(2.7)

where K  is a coefficient of proportionality known as the hydraulic conduc­
tivity to be discussed in Section 2.4. Often, Darcy’s formula is rewritten
as

Q j Ah i - ha )
q = A = h ^ ^

( 2 .8)

where the specific discharge q [L/T] is defined as the quantity of fluid flowing 
in a unit time per unit of cross-sectional area of soil normal to the direction of 
flow. However, the actual velocity of the fluid (seepage velocity) through the 
void spaces is higher than q. A relationship between the specific discharge 
and the seepage velocity,vs, can be derived as follows.

Sand

'Screen

■ Screen

■ '//// ASA'

Figure 2.2: Darcy’s experiment.
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The rate of flow, Q through a horizontal soil column of length L with a 
cross sectional area A , as shown in Figure 2.3, can be defined as:

Q = qA = A vvs (2.9)

where, A v is the area of voids in the cross-section of the specimen.

- O

o

Area of void 
in the cross- 
section = -i

Figure 2.3: Derivation of seepage velocity (us).

Since the cross-sectional area is the sum of the area of voids and area of 
solids

A = A V + A S (2.10)

then,
Q = q(Av +  A s) = A vvs (2-11)

or
q(Av +  A s) q(Av + A s)L q(Vv + V8) q

V s  =  A ,  =  A L  =  =  ( 2 ' 1 2 )

The piezometric head at a point in the fluid under motion can be defined 
by Bernoulli’s equation as the sum of the kinetic and potential energies, 
which is written in the following manner:

2V V
h = ? -  + -  + z  2.13

P9 2 g
where, h is the total head, p is the pressure, v is the velocity, g is the gravity 
acceleration and p is the mass density.
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The terms in the formula represent the pressure, velocity and elevation 
heads respectively. In cases where the seepage velocities are small, the term 
containing the velocity head can be neglected due to the fact that changes 
in the kinetic energy are small when compared to changes in the piezometric 
head. This allows the piezometric head to be adequately represented by:

h = —— \- z (2-14)
P9

For a compressible fluid under isothermal conditions, p =  p{p). A more 
physical insight into fluid flow in porous media, especially as related to pe­
troleum engineering, was given by the introduction of a piezometric head by 
Hubbert (1940) in the following form:

h '  = z + f ” ~ r r  (2-15)Jpo P\P)9

h

Zl

Figure 2.4: Seepage flow through an inclined sand filter.

It is im portant to observe that Darcy’s law states tha t flow will take place 
from a higher piezometric head to a lower one. This can be verified in an 
inclined homogeneous sand filter, as shown in Figure 2.4. In this case, the 
pressure head at point 1 is smaller when compared to the one at point 2, 
but, the flow is in the direction of increasing pressure or decreasing head.
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Darcy’s law was experimentally derived for a one-dimensional flow of 
an isotropic homogeneous incompressible fluid. An extension to a three- 
dimensional form is obtained as

q =  - K V h =  —- ( V p -  pg) (2.16)

where, K  — pgk/ \ i , p  is the dynamic viscosity of the fluid and k is the 
intrinsic permeability [L 2] which will be seen in detail in Section 2.4. In the 
case of a compressible fluid, the motion equation (2.16) may be written as:

q =  —KNh*  (2.17)

2.3.1 R a n g e  of v a lid ity

As expressed by equation (2.16), the specific discharge, g, varies linearly 
with the piezometric head. However, this relationship is only acceptable for 
laminar flow occurring at low velocities, as illustrated by Figure 2.5.

H ydraulic  
grad ien t (V/7)

Darcy’s law

S p ec if ic  
d isc h a r g e  (q )

Figure 2.5: Schematic curve relating the hydraulic gradient to the specific 
discharge.

In fluid mechanics, the dimensionless Reynolds number, Re, identifies 
whether laminar (low velocities) or turbulent (high velocities) flows occur, 
through the evaluation of the ratio of inertial to viscous forces acting on the 
fluid. By analogy, a Reynolds number can be defined for flow through porous
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media as
R e = ^  (2.18)

A4
where, fi is the dynamic viscosity of the fluid and d is some representative 
length of the porous matrix. Often, this length dimension is defined by the 
mean grain diameter. Although, there is still some controversy regarding the 
length dimension d, Darcy’s law has been shown to be valid for values of the 
Reynolds number varying between 1 and 10 (Bear (1979)).

2.4 H ydraulic conductiv ity  K
In Darcy’s law, the specific discharge, is related to  the hydraulic gradient 
through a coefficient of proportionality, known as the hydraulic conductivity, 
as shown in Equation (2.8), which has dimensions of [L/T\.  It is a scalar 
value tha t expresses the ease with which a fluid is transported through a 
porous matrix.

In the derivation of a relationship for the hydraulic conductivity several 
factors must be considered, such as: pore and grain size distribution, rough­
ness of the mineral particles, void ratio, fluid viscosity, tem perature and 
degree of saturation. It is therefore a coefficient which depends on both ma­
trix and fluid properties. N utting (1930) has proposed a relationship which 
expresses the hydraulic conductivity as:

K  =  ^  (2.19)
A4

where, the mass density, p, and the dynamic viscosity, p, are related to fluid
properties, while, the intrinsic permeability, k , is associated solely with the
solid matrix. Table 2.2 presents some values of intrinsic permeability for 
rocks and soils.

The randomness of particle size distribution, void ratio and pore struc­
tures contribute to the hetereogenety of natural soils. Owing to this, several 
empirical equations and theories proposed have related the intrinsic perme­
ability with microscale properties of porous media.

Hazen (1930), based on observations from experiments on loose, clean 
sand filters, has proposed an empirical relation in the form:

k = cd2 (2.20)

where c is a coefficient in the range between 45 for clayey sand, and 140 for 
pure sand, and d is the effective grain diameter. Often, d10, the diameter
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Table 2.2: Typical values of intrinsic permeability. [Bear (1979)]

Rocks Intrinsic permeability
k[m2}

1.0 x 10~n  - 1.0 x 10-14
1.0 x 10~14 - 1.0 x 10-16
1.0 x 10"16 - 1.0 x 10-18
1.0 x 10-18 - 1.0 x 10-20

Oil Rocks 
Sandstone
Good limestone, dolomite 
Breccia, granite

Soils Intrinsic permeability 
k[m2]

Clean gravel
Clean sand or sand and gravel
Very fine sand, silt, loess, loam, solonetz
Peat
Stratified clay 
Unweathered clay

1.0 X i o - 07 - 1.0 X IO"09
1.0 X IO"09 - 1.0 X 10“ 12
1.0 X 10-12 - 1.0 X 10-16
1.0 X 10-11 - 1.0 X 10-13
1.0 X K

-1 0 CO 1 1.0 X
10-16

1.0 X 10-16 - 1.0 X I O - 20

such tha t 10 percent by weight of the grains are smaller than tha t diameter, 
is used as the effective grain diameter.

Modifications occurring in the structure and texture of the solid matrix 
caused by consolidation, subsidence, swelling or other factors, may cause the 
permeability to vary with time. For this reason, it is common to express 
the intrinsic permeability as a function of the void ratio. A purely theo­
retical formula obtained from derivations of the Hagen-Poiseuille equation 
combined with Darcy’s law to model the flow in a horizontal capillary is the 
Kozeny-Carman equation. The model defines the intrinsic permeability as a 
function of the specific area of the porous matrix, Ms, the void ratio, e, and 
a coefficient, Co, for which Carman (1937) suggested the value of 0.2. The 
Kozeny-Carman equation is expressed as:

‘ - v A ?  ( 2 2 i )
More recent studies have been developed to estimate the permeability of 

porous media through the use of stochastic methods assuming a permeability 
probability density function. The construction of the probability density 
function for permeability can be based on experiments or analytical reliability
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approximation methods, details can be seen in the work of Turcke and Kueper 
(1996) and Li et al. (2005) respectively.

Several units are used in practice for the intrinsic permeability. In the 
International System of Units, SI, m 2 is frequently used as an unit, while, 
in the Imperial - United Kingdom Units it is common to see f t 2. Reservoir 
engineers use the unit darcy (d ) defined as:

1 darcy = 9.8697 x 10-13 m 2 =  1.0624 x 10-11 f t 2

2.5 Saturation
Depending on the amount of water and gas th a t soils contain, they are defined 
as dry (no fluids), saturated (no gases) or partially saturated (fluid and 
gases). In the m ajority of the problems involving slope stability and oil 
extraction, the soil is usually a multiphase system where the voids in the 
skeleton are partly  filled with fluid and partly filled with gases. Therefore, a 
straightforward relationship arises as:

S f  +  Sg = 1 (2.22)

where, Sf  and S g are the degree of fluid and gas saturation respectively.
The development of negative pore pressures are direct related with soil 

dilation phenomena. During the process of soil dilation, separation surfaces 
in the fluid contained in the pores are formed and voids are opened up, since 
they are incapable of sustaining tension forces, leading to  the well known 
capillary effects. The voids are normally opened when the fluid pressure value 
reaches zero, causing the air to ingress from the free water surface if this is 
open to atmosphere. This allows a simplified approach of the unsatured case 
to be easily obtained if the atmospheric pressure is neglected, p atm =  0. From 
computational point of view this is particularly attractive since the number 
of variables to be solved are reduced. However, it is im portant to emphasize 
tha t mainly for oil extraction problems this assumption will introduce some 
restrictions in the overall analysis.

It is noted th a t the degree of saturation, Sf ,  is dependent on the pore 
fluid pressure in a complex manner. The relationship is, therefore, simplified 
by defining absorption, 5 /a, and exsorption curves, 5 /e, together with a 
” scanning” curve th a t defines the transition between the two curves (Figure 
2.6). Using this definition saturation is defined as

Sf (p f ) with S fa(pf) < Sf{pf ) < S fe{pf) (2.23)
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where, S f a is the limit where absorption will occur, i.e., saturation increases 
(Sf  > 0) and S / e(pf) is the limit where exsorption will occur, i.e., saturation 
decreases (Sf  <  0). The scanning curve, which defines the transition from 
the absorption to the exsorption curve, is approximated as a straight line.

Pore pressure 
(-Pf)

Exsorption

Absorption

0.0 1.0
Saturation (Sr)

Figure 2.6: Typical absorption and exsorption behavior.

As the soil becomes increasingly partially saturated the volumetric con­
tent of the soil decreases. This reduces the permeability or hydraulic coeffi­
cient of the soil as the transport of fluid is impeded by the reduction in the 
number of fluid filled spaces. The relationship between permeability and soil 
saturation is normally given as a saturation-permeability curve as shown in 
Figure 2.7. The permeability is then defined as a function of the saturation 
as

k f (S j )  = kt (S , ) k f*  (2.24)

where, nr(Sf)  is a relative permeability factor and kjat is the permeability 
when the soil is fully saturated. The saturation-permeability curve may be 
specified for both isotropic and anisotropic materials.

2.5.1 N u m e r ic a l  e x a m p le

In the following example, an idealized undrained embankment with 12 m 
height is subm itted to a gravitational force, following the model proposed 
in Slide (2002). A constant water table of 10 m is considered to act on the 
left side of the slope and a drain with 12 m length is positioned on the right 
bottom as detailed in the layout in Figure 2.8. The material properties are
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Relative f  
permeability

1.0

0.0 1.0Saturation (Sr)

Figure 2.7: Relative permeability-saturation curve for partially saturated 
soils.

given by Table 2.3, while the absorption curve and the relative permeability 
as a function of the saturation curve are given by Figure 2.9 items (a) and 
(b) respectively.

The main goal is to determine the free surface location in isotropic and 
anisotropic cases and compare the pressure head along the vertical line AA 
against the ones provided by Slide (2002), consequently verifying the consis­
tency of the numerical implementation presented here.

The free surface displays a different location in isotropic and anisotropic 
cases as shown in Figures 2.10 and 2.11. A higher pressure head gradient 
is verified in the isotropic case due to higher vertical permeability which 
facilitates the flow throughout the drain.

The pressure head results are shown to be slightly lower than the ones 
provided by Slide (2002) as shown in Figures 2.12 (a) and (b). These are 
expected to be a consequence of a two phase analysis where the assumption 
of negligible pressure of the gases have been adopted in the present work, 
while, a three phase analysis have been used by Slide (2002). Apart from 
that, the qualitative behavior has been shown to be in good agreement and, 
quantitatively, the differences are acceptable.
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Figure 2.8: Layout of the problem.

Input parameters
Young Modulus 1.3 MPa
Poisson ratio 0.4
Grain mass density 2000 kg/m 3
Fluid mass density 1000 kg/m 3
Permeability in x 1.0e-07 m2
Permeability in y l.lle -0 8  m2
Grain bulk modulus 2.167 MPa
Fluid bulk modulus 2.0 GPa
Viscosity 0.001 Pa.s
Porosity 0.2975

Table 2.3: Material properties of the embankment.
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Figure 2.9: (a) Pore pressure vs. saturation curve, (b) Relative permeability 
vs. saturation curve.
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Figure 2.10: Hydraulic head column of an unsaturated isotropic embank­
ment.
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Figure 2.11: Hydraulic head column of an unsaturated anisotropic embank­
ment.
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Figure 2.12: Comparison of the head pressures predicted by the current 
model in the isotropic and anisotropic cases against the ones presented by 
Slide (2002).
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2.6 Effective stress principle
The principle of effective stress, a ' , is absolutely fundamental to understand­
ing the modifications occurring in the in situ stresses in soils and rocks. Their 
magnitudes can be modified either by changes occurring in the total stresses, 
a , while pore fluid pressures are constant, or, by alterations in pore fluid 
pressure, p, while the total stresses are kept constant. Its concept was first 
introduced by von Terzaghi and Redulic (1934) and von Terzaghi (1936) as:

o'  =  o  +  Ip (2.25)

This is accepted for soils, where, the deformation of the grains is signifi­
cantly small with respect to the overall skeleton. However, in rock mechanics 
and in concrete, where the compressibility of the grain is not negligible, it 
is necessary to extend this concept to  take the compressibility into account. 
It was the works of Biot (1941), (1955), (1956a), (1956b) and (1962), which 
extended the effective stress principle to consider the grain deformation. The 
new effective stress was defined as:

a"  =  a  +  alp  (2.26)
where, a  is the Biot number. This is related to the bulk modulus of the 
skeleton, K t , and the bulk modulus of the grain, K s , through the equation:

K r
a = l ~ i r s  (2-27)

The relationship between effective stress and total stress, in the general 
case of partially saturated behavior with air pressure neglected is different 
from tha t defined in equation (2.26), since the pore pressure is now dependent 
on a saturation parameter, Sf .  The usual form of the effective stress in soil 
mechanics can be given as:

a ” — a  +  a S f  Ip, (2.28)
It can be seen th a t the relation between effective stress (a") and total 

stress (a) in a multiphase medium is not independent of the soil because of 
the saturation; whereas in fully saturated soils, where Sf  = 1, the effective 
stress principle is unique for all soil types.

2.7 G overning E quations
Continuum mechanics has been extensively used to model the behavior of 
solids subject to mechanical loads resulting in a set of differential equations 
whose solution is usually obtained numerically.
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In the modeling of a hydraulic fracture in a porous medium, the mechan­
ical behavior and the fluid flow into the fracture is well represented by a set 
of four governing equations, stated as:

•  Momentum balance equation for the partially saturated soil-fluid mix­
ture;

•  Momentum balance equation for the fluid alone;

• Mass conservation equation for the fluid flow in the seepage;

• Mass conservation equation for the fluid flow in an individual fracture.

The use of appropriate assumptions, as will be discussed in detail in 
Sections 2.7.1, 2.7.2 and 2.7.3, allows the elimination of the momentum equi­
librium equation for the fluid alone, reducing the number of variables to be 
solved.

2.7.1 M omentum balance equations
In the present work, particular attention has been given to problems involv­
ing phenomena of medium speed and dynamics of lower frequencies. For 
these kinds of situations as discussed previously by Zienkiewicz et al. (1980), 
the fluid acceleration relative to the solid and the convection terms can be 
neglected in the total momentum equilibrium equation for the partially sat­
urated soil-fluid mixture, as shown in the following equation.

(Tijj +  pv,i -  S fp f [wj +  WjWjj] -  pbi = 0 (2.29)

where cr̂ - is the total stress, Hi is the solid acceleration, bi is the body force 
and Wi is the fluid velocity.

Also, air pressure has been neglected. Assuming tha t the mass density of 
the gas phase is negligible, we can write the mass density of the mixture (p) 
as:

p = nSf Pf  +  (1 -  n)ps (2.30)

where n  is the porosity, pf  and ps are the fluid and soil mass density respec­
tively.

The second equation is defining the momentum equilibrium for the fluid 
alone. Using the same assumptions described for the above equation, we 
have:
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Ri
psf,i ~  —  +  SfPfUj -  SfPf[wj  +  WjWij]/n -  SfPfbj = 0 (2.31)

where Ri  represents the viscous drag force which, assuming the validity of 
Darcy’s seepage law, is given by:

= w . (2.32)
p n

In the above, defines the permeability coefficients and p  is the dynamic 
viscosity.

2.7.2 Mass conservation equations
The third equation is supplied by the mass conservation equation for the 
seepage flow, described as:

y y -  +  SfOiEa +  Wi î +  SfU—  = 0 (2.33)
Qsf Pf

where p is the rate of change of pressure in time. The term  Qsf  represents the 
combined compressibilities of the fluid and solid phase which can be related 
to the bulk modulus of each component and with the saturation of the soil 
as:

1 = c s +  ^  ~  n)s f(s f +  c »v!n) {2U)
Qsf K f  K s

In the final equation, an individual fracture is treated as a single confined 
aquifer, in which the mass conservation is based on the cubic law of flow in 
fracture (Snow (1968), W itherspoon (1980)) described as:

2

yz 1“ £i i  +  -I r) {P n f ' j  ~  P f b j  +  P f U j ) ' i  = 0 (2.35)
Wnf

where, e is the aperture of the fracture (with unit of m) and p  is the vis­
cosity (with unit of Pa.s).The term  Qnf  represents the storativity of a single 
fracture, and like a porous medium, reflects the compressibilities of the fluid 
and rock. However, the rock compressibility term does not reflect the inter- 
granular skeleton, but rather the pressure dependence of the fracture volume, 
which is simply the normal stiffness of the fracture K f rac (with unit of Pa/m ). 
The storativity, Qnf,  of the single fracture is obtained as:

1 1
Qnf &

—  + eCf
frac

(2.36)
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and the intrinsic permeability of the fracture (k f rac) is given by:

e2
kfrac ~  ^  (2.37)

Remarks:

The cubic law was first derived for solid interfaces with smooth walls (parallel 
fractures), which are only crude approximations of reality. Iwai (1976a) and 
(1976b) has derived flow equations for non-parallel wedge shaped fractures 
based on the same ideas adopted in the derivation of the cubic law. In his 
work the hydraulic aperture of a wedge-shaped non-parallel aperture has 
been taken as an equivalent aperture, e, with a modification factor, F,  to the 
mean hydraulic aperture, em. The final form of the equivalent aperture can 
be calculated by:

e = - y  =  e,
16r

(2.38)
(1 T  ^e) J

where, re is the ratio between the apertures at the two ends, ea and eb, of 
the wedge-shaped fracture. Prom a mathematical point of view, the ratio, 
r e, and mean hydraulic aperture, em, are given by:

e 1
re = — and em = ~(ea +  eb) (2.39)

eb 2

A number of models have been formulated in order to consider the surface 
roughness but for simplicity the model described above has been used in the 
present work.

2.7.3 The u-p formulation
The omission of the underlined terms in equations 2.29, 2.31 and 2.33, allows 
Wi to be eliminated from the equation system retaining only Ui and p as 
primary variables. This simplification allows the final forms of the governing 
equations, which is known as the u  —p formulation, to  be written as:

aijtj +  phi -  pbi =  0 (2.40)

+  a i a  +  —  {Psfj ~  PfS/bj  +  pfSfilj)>i — 0 (2-41)
O s f  P

The system given by the three governing equations (2.40), (2.41) and 
(2.35) and the boundary conditions presents a well-defined problem which 
can be discretized and solved numerically.



Chapter 3

Coupled finite elem ent 
procedure

The numerical simulation of a hydraulic fracture in a porous medium de­
mands a minimum knowledge of the mathematical and numerical models 
involved in the process. Among the existing numerical techniques, the Finite 
Element Method (FEM) is the most commonly used to provide numerical 
solutions to coupled problems of the type discussed in this thesis. Since the 
general procedures are described in detail in many texts such as Zienkiewicz 
and Taylor (2000) and Belytschko et al. (2000), the present work will focus 
on the concepts and definitions related to the specific subject.

Firstly, a Galerkin (or weighted residual) statem ent is used to obtain a 
weak form of the equation system discussed in the previous section. Then, 
a discretization in space is made by a standard finite element procedure. 
Finally, a Central Difference method is applied for discretization in time. The 
general notation of Zienkiewicz and Taylor (2000) are used in the following 
together with vector notation.

3.1 Principle o f v irtual work. W eak form.
The momentum and mass conservation equations (2.40), (2.41) and (2.35) 
described in previous sections cannot be discretized directly by FEM. Firstly, 
they must be rewritten in another format, called the weak or variational form. 
Through the weighted residual technique applied to the governing equations, 
it is possible to obtain after integration an equivalent statem ent called the 
principle of virtual work.

The weighted residual technique consists of the product of the governing 
equations with the test functions, u, psf  and pny, respectively and their

28
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integration over the domain, where, the test functions are obtained from the 
difference between two trial functions.

It is essential th a t the trial functions must satisfy all the boundary con­
ditions in dTu, dPsf and dTnf,  and are sufficiently regular to allow the op­
erations of differentiation and integration. The set K u, K sf  and K nf  of 
trial functions th a t satisfy all the above conditions are known as displace­
ment kinematically admissible and pressure admissible. From a m athem ati­
cal point of view,

K u = {u ( X , t ) | is sufficiently regular, u = u in cT^}

K sf  = {Psf{X, t) I is sufficiently regular,psf = psJ in d r s /} (3.1)

K nf  = {Pn f ( X , t) | is sufficiently regular,pnf = pnf in dTnf }

Therefore, the virtual displacements and pressures fields can be defined as: 

$ii — {u(X,  t ) | is sufficiently regular, u = 0 in d r u}

tigf = {psf ( X , t )  | is sufficiently regular, psf  = 0 in d r 5/}  (3.2)

$nf  — {Pnf(X, t )  | is sufficiently re g u la r ,^ /  =  0 in dTnf }

Considering the inertia forces , the weak form of the momentum equation 
states that: “A body is in equilibrium if and only if the effective stress field, 
a", satisfy the equation” :

[(</' — apsf l )  : V xu — pbu] dDu +  puudDu — ^udTu  — 0 (3.3)

While, the weak form of the mass conservation equations states that: “If no 
mass is created or destroyed inside a defined volume, the inflow rate must be 
in balance with the outflow rate

>u

[w s/ ■ ( ^ ^ x P s / ) ]  d U l s f  Q t S f £ v p s f d Q g f  - I -

I P f ^ P s f d O s f  
&sf sf I

f 2paf dTsf  = 0 (3.4)

n

P f - p ? ~ P n f d D nf Lr"nf
f lPnjdTnf  =  0" (3.5)
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W hen the effective stress and flux terms are modified by the constitutive, 
kinematic, Darcy’s law and cubic law the equilibrium problem become a 
boundary value problem, where the aim is to  find the displacement and 
pressures fields th a t satisfy the effective stress and flux fields th a t are in 
balance with the external forces. So, for a given constitutive equation,

<7"=*V(u)) (3.6)

the boundary value problem is defined as: “Determine the displacement field 
u G K u and pressures field psf  G K Psf and pnf  G K Pnf, such th a t”

/Jn

[  [(£"(y  (u)) -  apsfI) : V xu -  pbu] dPlu +

/ p\iudPtu — / f i udTu =  0 Vw G du
J  O-u J  r  u

x P s f ^  ' V x P s f  V x  • f ^ ^ p f S f P s f  d O , s f  -( -

f  V x  ' f  P f ^ f ^ \  p s f d D s f  -t- f  o c S f E v p s f d P l s f  -I- 
Jn3f \ P  J Jnaf

[  Pf t^-PsfdLlsf  ~  [  f2VsfdVsf = 0 Vps/ G $Psf 
'nsf Osf J rsf

sf

(3.7)

(3.8)

n f y  12/i
^  xPnf  ) ' V xPnf  ^  a 12/i P f h  P n f dPtnf  “I-

[  ^ x  f i r )  P n f d L l n f  “1“ f  &v P n f d L l n f  ( '^ •^)
Jnnf /  Jnnf

[  P f t ^ P n f d D n f  ~  [  hPnfdTnf =  0 \/pnf  G tipnf 
JQnf ^Jnf  J  rnf

The next step consists in finding a solution for the fields u( x ), psf{x)  and 
pnf{x)  using the finite element method.

3.2 Increm ental fin ite elem ent procedures
The finite element method is applied to obtain numerical solution of problems 
such as described in equations (3.3)-(3.5). The method consists in replac­
ing the trial functions sets K U) K sf , K nf , du, d sf  and dnf  by the discrete
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subsets hK u, hK sf , hK nf , hdU) hrdsf  and h^ nf  generated by a finite element 
discretization h of the domains Llu, Dsf  and Qnf.

hK u = {hu ( x , t) = N u(x)XJ (t)\hu ( x , t) = u(x, t) i f  x G <9ru} , 

hK sf = { hps f (x, t ) = N p{x)PSf(t ) \hp8f ( x t t) = p sf (x, t)  i f  X e  dTs /} , 

hK nf = { hpn f (x, t )  = N p(x)Pn f {t)\hpn f (x, t )  = pn f (x, t)  i f  x e  dYn f} ,

hflu =  ^ hu(x, t )  = N u(x)\J(t)\hu(x , t )  = 0 i f  X  G 5 r u| , (3.10)

H s f  =  { hPaf{x, t) = N p(x )Psf{t)\kps f (x, t) =  0 i f  X e  a r s /} , 

ktinf =  = N p(x)Pn f (t)\hpn f ( x , t ) =  0 i f  x G dFn /j

In the above, N u(:r) and N p(x) are the matrix and vector of the inter­
polation functions respectively. U , P s/  and P n/  are vectors of nodal values 
of displacement, seepage pressure and network pressure respectively. U , P s/  
and P nf  are vectors of nodal virtual displacement, seepage pressure and net­
work pressure respectively. For example, in two-dimensional problems the 
matrix N u(x) and the vector N p(x) have the form:

N u(x) =
Ni(x)  0 N 2 { x )  0 ••• N nnode(x) 0

0 Ni(x)  0 N 2 { x )  ••• 0 N nnode(x)
(3.11)

N p(x) = [ Nj(x)  N 2 ( x )  ••• N nnode{x) ]

Often, Lagragian finite elements are used. For this particular type of ele­
ment, the interpolation functions are such th a t their value is one at the node 
and zero in the remain nodes. In this case, the value of the parameters U , 
P sf  and P nf  are equal to nodal values of the displacement, seepage pressure 
and network pressure in each degree of freedom.

The approximation by the finite element method of the continuum vari­
ational equations (3.7)-(3.9) is then obtained by the substitution of the trial 
functions sets K u, K sf,  K nf , $ s/  and $n/  by the subsets of finite dimen­
sions defined above.

3.3 C onstitu tive problem
To define the constitutive equations, it is necessary to admit th a t the ther­
modynamic state of a point can be completely characterized by knowing a 
set of state variables,
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{ F ,0 ,&,<**} (3.12)
where, F  is the deformation gradient, 9 is the tem perature, gt is the tem­
perature gradient and otk are internal variables, normally used to describe 
dissipative phenomena. For example, in the following models, the internal 
variables are typically plastic deformation and hardening. Therefore, based 
on this assumption the Helmholtz free energy is assumed to  have the form:

^  = iP(F,9 ,ak) (3.13)

The substitution of equation (3.13) into the well known Clausius-Duhem 
inequality, produces an inequality which must be satisfied for any process 
subject to a change from one state to another:

" ,,„_T dxp' dxp'
a ¥  ~ p dF_

: F - p
dxp 1

0 ~  Px—  -  -  q h g* >  0 (3.14)
dock 9

where, 5 is the entropy per unit of deformed volume and is the heat flux. 
In particular, if thermal effects are neglected, we have:

xp =  x p ( F , a k) ,
dxp

>-----
d a k

dtk >  0 (3.15)

This inequality defines the limits of the thermodynamic process and there­
fore, defines rules tha t the constitutive equations to be developed must sat­
isfy. Analyzing the inequality (3.15) considering dissipative or non-dissipative 
processes, it is possible to  find a set of general expressions to the constitutive 
equations, such that, these satisfy the thermodynamical principles. These 
are:

*  = (3.16)

ip =  ip(  F , a k ) ,  

d'lp
' w

a k =  f ( F , a k )

In the infinitesimal case, as occurs in the problems tha t the present work 
is particularly interested in, the deformation gradient, F , can be replaced 
by the infinitesimal strain tensor, e, and the effective stress tensor o"  of 
the infinitesimal theory replaces the effective first Piola-Kirchhoff stress. We 
then can rewrite the general constitutive law as:

xp =  7 p ( e , a k ) ,  
dxp

= P d e ’
(3.17)

dtk
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The first equation denotes tha t the effective stress state can be defined 
as the derivative of a potential (Helmholz free energy) with respect to the 
strain tensor. The second equation defines the evolution law for the internal 
variables. This set of equations defines the “constitutive problem” , and it is 
given in terms of rates, i.e., temporal derivatives of the variables.

The constitutive problem is described as: “Given the history of the de­
formation gradient, find the free-energy and effective stress according to the 
constitutive law conceptually expressed by (3.16) or (3.17)” .

Assuming th a t the constitutive equations of the material model are path  
dependent, i.e., the effective stress tensor depends on the history of the de­
formations to  which the material has been subjected, and not only on its 
instantaneous values, it can be concluded th a t the effective stress tensor is 
then obtained through the solution of the constitutive problem (3.17), and 
a solution can be found, using the integration algorithms of the constitutive 
equations, given in temporal rate forms of the variables required.

The choice of a particular technique for integration of a constitutive law 
will be dependent on the considered model. In general, algorithms to inte­
grate the rate constitutive equations are obtained by the adoption of some 
kind of time discretization, along with some assumption on the deforma­
tion path  between adjacent time stations [de Souza Neto et al. (2002)]. In 
formulations involving small strains, the algorithm defines an incremental 
constitutive function in the following format:

<t"„+1)= < t " (a (n)>e (n+i)) (3.18)

i.e., given the set of internal variables, Qf(n), the infinitesimal strain tensor, 
£(n+1), will determine the effective stress tensor, a",  uniquely through an 
incremental constitutive function, a",  defined by some kind of numerical 
integration algorithm of the constitutive equations of the model.

The incremental constitutive law is, in general, non-linear and path  inde­
pendent in an increment, i.e., in each increment o^+ i) depends only on £(n+i) 
(note th a t a^n) is constant in each load increment). Also, the algorithm must 
define an incremental constitutive function for the internal variables of the 
model:

^(n+l) j £(n+l)) (3.19)

3.4 H ypoelastic-p lastic  m odels
These models precede historically the hyperelastic-plastic models and are 
still frequently used in the majority of commercial codes. For this type of 
models there is in general no energy conservation in a closed elastic strain
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cycle. However, for the case of small elastic strains, the energy error is 
insignificant, so tha t it makes their use possible, for example, in hydraulic 
fracture problems in porous media.

For these constitutive models, the deformation rate, D , is decomposed 
into an elastic part D e and a plastic part, D p [Belytschko et al. (2000)]:

D  =  D e +  D p (3.20)

Following this decomposition, an equation for the effective stress in terms 
of rates is defined, i.e., the variation in time of effective stress measure, £  , 
depends on the elastic strain rate:

t ” = C e : D e (3.21)

where, £  denotes some kind of objective rate of some effective stress measure 
£  and C e is the elastic tangential modulus.

On the other hand, the plastic strain rate is calculated by the derivative 
of the plastic flow potential, 'F (£ /\  A):

DP =  (3 -22)

The above equation defines tha t the direction of yielding is given by the 
derivative of a function of the plastic flow potential in relation to the effective 
stress measure chosen, while the magnitude of the plastic strain rate is defined 
by the plastic multiplier 7.

Finally, an evolution law for the internal variables, otk is obtained by
the derivative of the plastic flow potential, \k, with respect to the set of
thermodynamic forces, A, frequently represented by hardening parameters, 
shown as:

The plastic loading/unloading condition is defined by the following crite­
rion, known as the complementarity condition:

$(</', A ) < 0, 7 > 0, 7 $  =  0 (3.24)

The function ^((T^A ) is the yield function. Condition (3.24) has the 
following meaning: If the state of a material point is such th a t <f> <  0, then 
the point is in the elastic region and plasticity can not occur, i.e., 7  =  0. 
If, on the other hand, plasticity occurs, 7  > 0, the state of a material point 
must lie on the yield surface, i.e., 4>(<7", A) =  0.
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In the present case, the yield functions, <£, will be chosen as the Mohr- 
Coulomb function which will be detailed in Subsection 3.5.1. Also, if it is 
assumed th a t the plastic flow potential, \k, coincides with the yield function, 
$ , i.e.,

=  $  (3.25)
then the model is said to be associative. For non-associative models, the flow 
potential is generally different from the yield function.

The integration of equations (3.21) to (3.23) using appropriate techniques 
during a load increment, allows us to find an expression for the incremental 
constitutive equation in which the general symbolic format is given by ex­
pression (3.17). Finally, it is im portant to remark th a t the effective stress 
rate, E  , has to satisfy the principle of material objectivity, i.e., “ the m ate­
rial response is independent of the observer” . This property is not satisfied, 
for example, by the rate of effective Cauchy stress tensor, i.e., a"  is not an 
objective stress rate.

Many objective effective stress rates are defined in the literature, as Jaum- 
mann, Truesdell and Green-Naghdi rates. This last one is particularly a t­
tractive because the incrementally objective integration algorithm is simple 
when compared to others. The Green-Naghdi rate of the effective Cauchy 
stress tensor, cr", is obtained by rotating the effective Cauchy stress tensor to 
the reference configuration, taking the time material derivative of the rotated 
quantity and then rotating the resulting derivative back to the deformed con­
figuration [de Souza Neto et al. (2002)], i.e.,

e e R | ( R V ' R ) R t  =  a" -  Cla" + o"Cl (3.26)

where, the skew-symmetric tensor is the spin of the Eulerian triad relative 
to the Lagragian triad, defined as:

Q. = R R r  (3.27)

and the proper orthogonal tensor R  is the local rotation tensor.
In soils and rocks, the incremental effective stress (d&L) is responsible 

for all major deformations in the skeleton and is related to the incremental 
strain (dsij) and rotation (dDki) by means of an incremental constitutive 
relationship, of the form,

d&ij Dijki(deki d£fci) T daikdCtkj T  dcrjkdLlki (3.28)

where, the last two terms account for the rotational stress changes, the term  
Dijki is a fourth order tensor and is defined by state variables and the di­
rection of the increment. Finally, cte°- represents the increment initial strain 
tensor due to therm al or autogeneous strain of the grain compression.
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3.5 Classic yield  criteria
Given the effective stress state in a body, when this achieves a critical value 
established by a yield criterion, plastic flow may occur. This principle can be 
understood as: given a yield function, if this is negative, only elastic strain 
will occur. However, if the functions achieve a value equal to zero, plastic 
flow may occur.

The yield function ^  is defined as a function of the effective stress state 
(given by a"),  and a set of thermodynamic forces of hardening, A. The 
condition is:

A state (<t", A) is said to be in the elastic domain whilst the potential 
< 0. If, on the other hand, it is in a state such th a t ^(cr", A) =  0, it is 

said to be on the yield surface, where plastic straining may take place.
Often, the behavior of rocks and soils are described by pressure-sensitive 

yield criteria such as the Mohr-Coulomb model. In this, the effective hy­
drostatic pressure state to which the material is subjected, defines a specific 
yield limit where plasticity may initiate. A more detailed description of the 
above yield criterion will follow.

3.5.1 Mohr-Coulomb yield criterion
The criterion was developed with the intent of predicting the macroscopic 
plastic yielding resulting from the frictional sliding between material parti­
cles. This states th a t “plastic yielding begins when, on a plane in the body, 
the effective shear stress, r' f, is higher than the yield limit for a given effective 
normal stress, a".

It is im portant to emphasize that, there are basically two mechanisms 
tha t could trigger the plastic yielding in a Mohr-Coulomb model. The first 
can be a consequence of volumetric changes occurring in the body which 
could cause modifications in the effective hydrostatic pressure, initiating the 
plastic yielding. The second can be due to the shearing of the material which 
affects the effective deviatoric stresses of the material. Therefore, assuming 
tha t the material behavior in the elastic zone is linear, the elastic strain- 
energy, f je, defined by a stress tensor, <7, can be decomposed as a sum of two 
parts:

(3.29)

r = rd+rv (3.30)
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The first part is the contribution of the distortion or shearing energy,

(41  =  : S .„ =  i  J 2(S„») (3.31)

where, G is the shear modulus, SCT// is the component of the effective devia-
toric stress, defined as:

So" = <*" ~ \ t r ( p " ) l  (3.32)
o

and 1/2(^cr") is the second invariant, defined as:

— 2 ^ cr'/ : (3.33)

The second part is the density of the volumetric strain energy,

p r v = -^ - (p " )2 (3.34)l i y

where, K y  is the bulk modulus and p" is the effective hydrostatic stress 
component defined as:

P" = \ ( a i +  °2 +  as) (3-35)

with, cr", <72 and (jg, being the effective principal stresses.
The invariant representation of the Mohr-Coulomb yield function can be 

expressed as [see Owen and Hinton (1980)]:

<f> =  ( cos;(8) — -^= sin0 smcj^j \ J J 2(Sa») Pp"  [a") sincj) — c cos</> — cr" (3.36)

where, c, (f) and cr" are the cohesion coefficient, friction angle and the effective 
yield limit stress respectively. The Lode angle, 8, is a function of the effective 
deviatoric stress (through its second J 2(Sff//) and third (J3(SCT//)) invariants) 
defined as,

9 = 9{S„„) =  i  sin” 1 (  ~ 3^ J3(Sf ) N) (3.37)
3 ^  2 p a(S ^)]§  }

where the third invariant reads:

J3(Sa„) = d e t[S ff«] (3.38)

Although the invariant representation of the Mohr-Coulomb yield func­
tion is often used in computational plasticity, its computational costs are 
higher and its numerical algorithm is more complex when compared to the
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multi-surface representation. The multi-surface representation is expressed 
by means of six functions:

$ 1 (0 ", c) = o'[ — <73 +  (cq +  crj) sin0  — 2 c cos0

T 2 (u‘//, c )  =  <79 — cr" +  (cq +  (J3 ) sin0  — 2 c cos<j)
(f>3 (<7 //, c) =  do — cq +  (cr.2 -f cq) sin(f> — 2 c  cos(f) (3.39)
T4 (ct//, c )  =  crj — ctj +  (cq +  cq) sin0  — 2 c coscf)
T ,5 (<j/; , c) =  (J3 — cr2 +  (cq +  (Jo) sin0  — 2 c cos<̂
Tefcr77, c) =  cq — do +  (cq -P cro) sin</> — 2 c cos0

each defining a plane in the stress space, which corresponds to a face in the 
Mohr-Coulomb pyramid represented in Figure 3.1.

7t - P lane

= O;
O-

a.

Ci

a a-

(a)

Figure 3.1: The Mohr-Coulomb yield criteria in principal stress space, (a) 
3D yield surface, (b) Pi-plane cross section. [Klerck (2000)]

3.6 S o lid -S eep ag e-H y d ro -F rac tu re  b o u n d a ry  
value p ro b le m

The initial boundary value problem states that the momentum equilibrium 
equation (2.40) and the mass conservation equations (2.41) and (2.35) must 
be satisfied in all the domains Du, Qs/  and Qn/  respectively. While the pre­
scribed boundary conditions must be satisfied on the boundaries Tu, Fsf  and 
Tn /. Depending on the kind of boundary condition, the boundaries Tu, Ts/  
and Tn/ are separated by different regions. The part of the boundary where
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prescribed displacement (u) and prescribed pressures (psf and pnf) exist are 
known as Dirichlet boundaries and denoted by d T u , d T sf  and d T n f  respec­
tively. On the other hand, the parts of <9TU, d T sf  and d T nf , where traction 
(ft) and flow (Qa/  and Q nf) are prescribed, are called natural boundaries 
and denoted by d V t , dTQsf and dTQnf respectively. These conditions are 
written as:

u =  u in d T u 

a n  = ft in d T t 

Ps f  =  Ps f  in d T s f
(3.40)

w s/n =  Q sf  in d T Qsf 

P n f  Pnf  in  d T nf

wn/n =  Q nf  in d T Qnf

In the solid deformation problem, traction and displacements can not be 
prescribed in the same region while, in fluid flow problems, pressures and 
flows can not be prescribed in the same region. On the other hand, the 
union of these regions defines the boundary of the problem:

d T u n dTt = 0

d T u u dTt = Tu

d T sf n d r QSf = 0

d T sf u W Qsf — r . /

dTnf n — 0

dTnf u ^ Qnf = Tn/

The initial boundary value problem in a coupled solid-seepage-hydro- 
fracture problem is obtained through the introduction of the constitutive 
law discretized in time into the weak form of the momentum equilibrium 
equation. So, for a given set of internal variables, afc(n), in time, £(n), and the 
external forces in time, t(n+ i) ,  i.e., / i ( n+ i) ,  /2(n+i)> fz{n+i)  and 6(n+ i) ,  find the 
kinematically admissible displacement and admissible pressures, such that,
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I [(^" (^fc(n)) ^ (^ (n + l) ) )  Q psy(n_|-i)I) . d d u +  (3 .4 2 )
t)

I  P^-(n)'U'dQu I  f  1 (ri+1 ) ^ — 0 \ / u  G d u
J n„ u r ,,

*sf
dLlsf  +xPsf (n+ l )^ j  ’ ^ x P s f  ^ x  ’ ^ ^ P /*~V ^ (n 4-i)^  p sf

P f $ f ^ - ( n )  ) P s f d O g f  +  f  OiSf&v (n-\-\ /2)'PsfdPlsf  “1“ (3 .4 3 )  
/1 J Jnsf

n  — P s f d D s f  -  [  } 2{ n + \ ) P s f d P s f  =  0 V ps /  G d Psf
w  Jrsf

P s f ( n + 1/2)

^ x P n f ( n + 1) j ^ x P n f

/ MJ ®"nf \
I  P n f ( n + 1/2)

I Qnf Q n f

> + 1) 
1 2 /i

f  ( e (n+l)

k  L v 12/x

/«/ nn

P /W n ) I P n f d L l nf  4“ I £ v ( n + l / 2 ) P n f d L l n f  
/

> + i)
1 2 /i

P f o { n + 1) ) P n / dQ,nf  +  (3 .4 4 )

P n f d L l nf  j  f z ( n + l ) P n f d L nf  0  Vp nf  G $ p nf
J Tnf

3.7 D iscretization  o f th e governing equations
We shall introduce a spatial approximation of the primary variables u, p s/ 
and p nf  in the form

u «  u ( t )  =  N uii(£)

P s f  ~  P Sf { t )  =  NPs/p s f { t ) (3 .4 5 )

P n f  ~  P n f { t )  ~  N p n f p nf ( t )

where, N w, NPs/ and NPn/ are ’basis’ or ’shape’ functions, which have to 
possess Co continuity, and u, p sf  and p nf  the nodal values of the interpolated 
variables.
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The replacement of the primary variables with their spatial approxima­
tions transforms the initial boundary value problem defined in equations
(3.42), (3.43) and (3.44) into a set of discrete equations in space with only 
time derivatives remaining. The resulting approximation is, for equation
(3.42),

/<J
(VN u)T(r d D u -  Q p s f  +  Mii =  fi,

for equation (3.43),

H s/ps/ + Q ja  + S s f p sf  =  f2, 

and for equation (3.44),

Hn/Pn/ + Q n f i  +  Sn/Pn/ =  *3-

with the constitutive equation supplying the increments of a ”j. 
In a linearized form the system reads

0

Qn/

" M 0 0 ' u
0 0 0 P sf +
0 0 0 .  Pnf  _ -

' K —Q sf 0
0 H 9f 0
0 0 Hn/

0 0 u
S,/ 0 Ps f +
0 Sn/ . . P n f  .

u ' h "

Ps = f*2
.  Pf . . f3 .

with matrices and vectors defined below:

M =  [  ( N u)T p N ud a u
" £lu

K =  [  (VN„)TD V N A
J Clu

Qsf  = [  {'V'Nu)Ta S f m N PsfdDsf 
J  Qsf

S ./ =  /  ( N ^ f d - N ^ d O , ,
Jnsf Osf

H s/ =  f (VNPi/f - V N

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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S n f  =  /
Jnnf Qnf

Qnf =  I ( V N / m N  PnfdDnf 
•I Qnf

H„/ = /  (VNPn/)T-^ -V N Pn/dnn/ 

fi =  f  (NufpbdQu +  [  (Nu)TtdTu
J Qu r  u

& = - /  (NpJ r Vr ( - S W b)<K)s/ + j  (NPtf)TV T(ySfpfH)dQs, +
JQsf v  JQsf v

[  (NPsf)Tqdrs}
Jr,j

u = - f  (NPn/)r Vr (-^-p / b)df2/ + [  {NPnf)TV T( ^ - p f ii)dQnf+  
Jsini l zLl Jsini l zLl

(^Pnf) QdTnf
L :

From the above system, it is not too clear tha t the mass conservation 
equation for the fluid in the fracture in the discretized form is coupled with 
the other two. However, it can be observed that:

1. The displacements provided by the equation (3.46) are affected by an 
external force caused by the fluid pressure in the fracture, which is 
applied as a traction boundary condition in the solid/fracture interface. 
On the other hand, the calculated displacements define the apertures 
in the existing fractures and the opening of new ones.

2. The coupling between the fluid flow in the seepage/fracture interface is 
made using a master/slave procedure. In this procedure the nodes in 
the hydraulic fractures are considered as master and the nodes of the 
seepage problem which are on the seepage/fracture interface are slaves. 
The mass matrices and the internal and external force vectors of the 
slaves are added into the master. Then, the equations of the slave 
nodes are modified by the ones related with the specific master nodes. 
Finally, the equations are solved and mass conservation is enforced on 
the interface. A more detailed description will be given in Chapter 4.
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3.8 T im e discretization
To complete the numerical solution it is necessary to integrate the ordinary 
differential equations (3.28), (3.46), (3.47) and (3.48), in time.

In the present work, a Central Difference method has been used due to 
its robustness and simplicity. In spite of its conditional stability, its use has 
been preferable compared to implicit schemes, mainly in problems involving 
contact and remeshing due to the need to include new fractures. This class 
of problems tend to  exhibit difficult convergence characteristics for implicit 
methods, increasing the overall computational costs making it an unafford­
able solution.

In the scheme we shall use the following notation. Let the time of the 
simulation 0 < t  <  tE be subdivided into time steps A tn, n = 1 to tits 
where tits ls the number of time steps and tE is the end of the simulation. 
The superscript indicates th a t the time step: tn, un and pn are the time, 
displacement and pressure, respectively, a t time step n.

We consider here an algorithm with a variable time step, which is neces­
sary in most practical calculations since the stable time step is modified by 
mesh deformations and the wave speed changes caused by the effective stress 
[Belytschko et al. (2000)]. For this purpose, we define time increments by:

Using the central difference formula to integrate equations (3.28), (3.46), 
(3.47) and (3.48) in time leads to

A t n +l /2  =  1 ( A t n + (3.51)

U
M n

(3.52)

a n+l =  Qn +  A t„+ lftn+l/2

j . n + 1

p s/ (3.53)

(3.54)
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The overall implementation to solve the coupled problem is presented in 
the flowchart given in Box 3.1.

initial values of the constitutive model of the solid skeleton state 
variables;

u° =  0, n = 0, t = 0; compute M °, S ^ ,

2. Calculate internal force vector f ^ ( 2) and f7nt(3)) and
lumped mass matrices M 71, and S^

Box 3.1 - Flowchart for explicit tim e integration

1. Initial conditions and initialization: set h°, <r°, and p°^, and

% (!) =  (V N u) V d a „ y  -  Q s/p"/

cn    t t  - n
int( 2) s f P s f

^int(3) =  H n f P nf
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3. Compute A i f  A t%.it < A t ^  then

A tern = A

4. Calculate external force vector (f^ t(1), f ^ (2) and SLt(3))-

& (!)=  /  (Nu)rpMfiu + [  (N„)rtdru + /  (N„)TfcdTc
J  Ytu 3  Y  xi. J  Y  c

Cxt(2) = -  [  (N ,J Tv r + /  (Npj Tqdrs/
•/fi,/ /  ^ rs/

Cxtp, = -  /  (NPn/)TVT f^ A p /b )  + /  (Np/f  q<ffn/
•/n,, V1^  /  Jrn/

5. Time update.
t n+l = t n +  A t n+l 

4n+i/2 l ( tn + t n+l)

A jn+1/2 A t"+1 +  A t"
2

6. Compute skeleton accelerations.

f n    f n
n n  exti 1) inti l)
U  =  ------— ----------- —

Mn

7. Compute skeleton velocities.

^.n+l/2 ± n —1/2 , A .n-Li/o ~n
U  =  U  +  A £ n +  '  U

8. U pdate nodal displacements.

Qn+1 =  Q„ +  A in+lg«+V2

9. Transfer coordinates from the structure to other fields. Update 
aperture (e) and volumetric strain rate (ev) in the fracture and 
seepage fields respectively.
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10. Add to  the internal force vector the contribution from
the volumetric strain rate. Also, add to the external force vector 
(Cct( 2)) the contribution from the structure acceleration.

r n    f \ T
int{  2) ^6s/

fext(2) =  [  ( N ^ /) r v T( k s s /r ) d n s/
J £lsf

11. Add contribution from slaves internal and external forces and 
s p e c i f i c  s t o r a t i v i t y  ( f ^ t p s j .  f"n t(2 s ) .  s " f ( S ) ) t o  m a s t e r  i n t e r n a l  a n d  

e x t e r n a l  f o r c e s  a n d  s p e c i f i c  s t o r a t i v i t y  ( f ^ t ( 3 M ) , f ? n t ( 3 M ) >  S n / ( M ) )  

nodes.
r n _______ __ r n  _i_ f n

e x t ( 3 M )  ex t (3M)  ' ex t ( 2S )

r n___________ __ r n  . r n
in t (3M)  i nt (3M)  in i(2S )

qti   o n  i o n
— S n /(M )  +  S s / ( 5 )

12. Compute pressure rate to seepage and fracture fields.

f n    rn
_^n   ext(  2 )  int (  2 )

P s /  o n
s f

f n    rn
^.n ext  (3) i n t i  3)
P n/ =  ------------------

n f

13. Update nodal pressures to seepage and fracture fields.

p: ; 1 =  p :f + At"+i#c; l/2

p: ; 1 = p j , + At»+ip; ; 1/2

14. Repeat items (3) and (4) to calculate internal and external force 
vectors a t n + 1.
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3.8.1 Numerical stability
Explicit time integration schemes are well known to be conditionally stable,
i.e., the time increment must not exceed a critical time step.

In general, the determination of a critical time step, A t^a ,  is based on 
the analysis of a linear system, and then, extrapolated to nonlinear cases by 
examining linearized models of nonlinear systems. A stable time step, A t,  is 
defined by Courant’s condition for a mesh with constant strain element and 
rate-independent material as:

2
A t  — ot^Atcrn, AtcfH — =  min ('l(ê Jc(ê  (3.55)

^max

where ott is a reduction factor tha t accounts for the destabilizing effects of 
non-linearities, u)max is the maximum eigenvalue of the system, Z(e) and C(e) 
are the characteristic length and the current wave speed in element (e) re­
spectively.

The problems treated in this work are rate-dependent phenomena and 
contain a series of non-linearities which could lead to the solution error to 
growing unboundedly. A practical measure to reduce the instabilities caused 
by these factors is to introduce an extra reduction factor, Qt , related to the 
artificial viscosity by,

Qt =  Qi C(e) -  Qq 1(e) min(£r[e],0) (3.56)

where, Qi and Qq are the linear and quadratic bulk viscosity and tr[e] is the 
volumetric strain rate. So, the final form for the critical tim e step can be 
written as:

Atcru = --------- ) e) (3.57)
Qt + Y Qt + c(e)

The coupling between three different fields (mechanical, seepage and net­
work flow) requires tha t the choice of the critical time step must be based 
on the minimum critical time step from all fields,

Atcru = min

where, A t ^ ,  A t sJ.itandAt^!it are the critical time step for the mechanical, 
seepage and network flow respectively.

The main difference in the calculation of the critical time for the three 
main fields is the definition of the wave speed, C(e), for each. Also, in the 
seepage and network fields it is necessary to take into account the influence 
of the volumetric load term  as will be seen.
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For the mechanical field, the critical time step is obtained from equation 
(3.57), where, the wave speed is defined for the plane stress case as:

CW - l / p ( l _ 2l/2) ’ (3'59)

and for the plane strain, axisymmetric and 3D cases as:

where, E  is the Young’s Modulus, v is the Poisson’s ratio.
In seepage and network fields, the critical time step is influenced by an 

extra stiffness introduced in the system as a result of the volumetric load 
term. Therefore, the critical time step for the seepage and network flow 
respectively is obtained from:

A = min A t s*.cri t  c r i t ( K ) i  cri t {V) and
(3.61)

A C t  =  m in Jc r i t ( K ) 5 c r i t i V )

where, A tsJ .it^  and are the critical time steps associated with the
uncoupled stiffness of the fields, and, A t sJ.it^  and A t ^ it^  are the critical 
time steps associated with the volumetric load term. These are defined as:

A Sf  _  %) V
c r i t (K)  9  ,  ( e )

^  m i n

f 6 1}H Qnf a
A & <*> =  (y  (3-62)

a c V >  =  — —
Qt +  -y<3? +  ^ i/(e)

A _   He)
c n t ( V )  /  2  o

Qt + y Q t  + c(n/(e)

In which k ^ in is the lowest component of the element permeability. Finally, 
the wavespeed terms cVsy e) and cVny e) are given by:
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CV n f ( e )

c vs/ (e)  ~

(E ~h EVnf(e'))( 1 v) 
p(l  +  z/)(l -  2v)

(E +  EVaf(e))( 1 -  v) 
p( 1 +  i/)( l -  2v)

(3.63)

The terms E Vaf^  and E Vnf^  are related to the extra stiffness added to the 
seepage and network flow fields respectively, and are defined as:

The efficiency and simplicity of the explicit time integration scheme are di­
rectly related with the use of one point quadrature elements. Although, 
it reduces substantially the computational costs when compared to a 2x2 
quadrature in quadrilateral and 2x2x2 quadrature in hexahedral elements, 
undesirable mesh instabilities can occur due to spurious zero-energy modes. 
These modes lead to oscillatory solutions in which nodal pressures alternate 
in sign spatially, and the growth of these modes can cause disastrous results.

Several procedures have been developed in order to overcome this phe­
nomenon in the last few decades. In particular, the work developed by Liu 
and Belytschko (1984) and Belytschko et al. (1984) have proven to be very 
attractive and has been used to solve problems with therm al applications. 
In this type of problem the governing equation is of a Laplacian form, which 
makes such a technique applicable to the problems treated in the present 
work. The method is shown to be very efficient and simple to  implement. 
This has been the major reason for its adoption here.

In the procedure, the element conductivity m atrix using a one-point 
quadrature, is augmented by a stabilization matrix, K ^ b, which is or­
thogonal to all linear fields and its magnitude is determined by a stabilization 
parameter. In fact, the accuracy has been shown to be almost independent 
of the value of the stabilization param eter and a value equal to 1 is enforced 
in the present work, leading to the fully integrated finite element operator. 
A description of the implementation in quadrilateral elements is given below, 
while, in Appendix A the implementation procedure for hexahedral elements 
is provided.

Ev'jft) =  3 ^  (1 -  2v) and 

=  3 Qnf (1 -  2v)

(3.64)

3.9 H ourglass control
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The form of the augmented element conductivity matrix, K ^ , can be 
written as:

K «  =  K<e) +  K &  (3.65)

Expanding the pressure gradient ,Vp, by a Taylor series:

Vp(£, rj) =  B a(0)pa +  B a>f(0)pa £ +  B a>v(0)pa Tj , a — 1, . . . ,  4 (3.66)

where, £ and rj are the natural coordinates of the bi-unit square and 0 denotes 
‘evaluated at (£, rj) =  (0 ,0 )’; B a are the generalized gradient operators of 
the shape functions N a given by:

B 0 = N a,x
N a,y

and

1
N a ~  j ( l  +  £a)(l +  Va)

then the general form of and can be written as(e)

(3.67)

K<‘> =  A  B j(0 )  -  B„(0)
T

K &  =  I  A  B ^ (0 )  £  B W(0) +  |  A  B£„(0) J  B M (0)

(3.68)

where, A  is the area of the element. The computation of requires the 
evaluation of B a(0) gradient submatrices, which can be written explicitly as:

where,

B o(0) =

1
bi

-  =  24
1

b 2
=  =  2A

ab

&la 
2̂ a

Uab — Va Vb

(3.69)

(3.70)

and

A  — ^42 ^ 24 ^31̂ ' (3.71)

Finally, it is necessary to compute the K.^ab submatrices, which requires 
the evaluation of B a^ and B a^  at the same quadrature point, namely ‘O'.
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Denoting,

X  = [x u x 2 ) x ^ x a ]t \

y = [yi, 2/2, ys, 2/4]̂;
t  =

Y] = [ - 1 , - 1 , 1 , i f ;

h  = [1 , - 1, 1, - i f ;

(3.72)

where, h is known as the hourglass vector. After some algebra, the explicit 
expressions of the B ^ ( 0) and (0) submatrices can be shown to be:

Ba,c(0) = bl£a
^2 ,£a

B Oir?(0) = *1,r)a
2,»ja

(3.73)

where,

b i , £ ^ 1  ,£a

b 2 )£ =  b 2 =

h i ; 7? b l,r ja

b 2 ,r? ^ 2 ,770,

e y
[7 i , 72 , 73 , 74]T ,

£Tx
4 A

Ty y
4 A

4 A

[7 i>72 , 7 s , 74]T , 

n, lT

(3.74)

7JT X

1 A [7 1 , 7 2 , 7 3 , 74]
T

The 7 -vector is obtained simply by partial differentiation and is related 
to bi and b2 by:

7  =  h -  (hTx)bi -  (hr y)b2 (3.75)

Finally, with the above definitions the augmented element matrix can 
be assembled by the summation of K f  and K ^ ab, which guarantees a rank 
sufficient matrix.

In order to check the accuracy and efficiency of the overall implemen­
tation, a similar patch test to tha t used by Liu and Belytschko (1984) is 
evaluated.

3.9.1 Patch test problem
Patch-test problems have been used by several authors to evaluate the con­
sistency of proposed procedures to eliminate hourglass modes.

In the present work, the example consists of a circular plate with fluid 
injected in the center at a constant pressure equal to 20 Pa and a no flow
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boundary condition enforced on the outer radius. Due to its symmetry only 
a quarter of the problem needs to be solved. The radius of the plate is 5 
metres and the thickness is 1 metre. Firstly, a plane strain analysis is carried 
out and then a fully 3D model is tested. The layout of the problem and input 
parameters are shown in Figure 3.2 and Table 3.1 respectively.

,u = v  =  0.

—  =0;

p  = 20.0 Pa

v = 0 .u

Input parameters

Young’s m odulus 1.3 M Pa
Poisson 0.4

Fluid mass density 1000 K g /m 3

Solid mass density 2000 K g /m 3
Fluid bulk m odulus 1.0 GPa
Grain bulk m odulus 1.0 GPa
Fluid viscosity 0.001 Pa.s
Porosity 0.2975
Perm eability 1.0e-10 m2

Figure 3.2: Layout of the problem. Table 3.1: Input parameters.

The rank insufficiency of the conductivity matrix caused by one point 
quadrature in quadrilateral (2D) and hexahedral (3D) elements is responsible 
for spurious zero-energy modes, as can be seen in Figures 3.3(a) and 3.3(c). 
It can be noted th a t the nodal pressures are oscillating in different nodal 
positions on the plate between values of 0 and 20 Pa.

On the other hand, the use of a hourglass control procedure as described 
above to augment the conductivity matrix, overcomes this problem as shown 
in Figures 3.3(b) and 3.3(d). W hen a steady state is achieved, the nodal 
pressures in the whole plate are 20 Pa as expected.

The results have shown th a t the stabilization method used in the present 
work provides an efficient and accurate solution eliminating the hourglass 
modes in underintegrated elements.
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Figure 3.3: Nodal pressure plots in a ‘2D and 3D circular plate, (a) Hourglass 
modes in a 2D plate, (b) Hourglass modes have been eliminated in a 2D 
plate, (c) Hourglass modes in a 3D plate, (d) Hourglass modes have been 
eliminated in a 3D plate.



Chapter 4 

Overall coupling procedure

A variety of computational models have been proposed in recent years to 
simulate hydraulic fracture flow in porous media. From a computational 
point of view, these are particularly very complex problems, since a strong 
coupling between the rock deformation, seepage flow and network flow ex­
ists. In order to tackle the problem, a finite element method is employed to 
discretize the governing equations which involve these three main fields and 
a central difference method is used for time integration.

The aim of the present chapter is to present a detailed description of the 
overall coupling procedure adopted, as a series of parallel developments have 
been made in order to optimize the solution procedure. Also, the advantages 
and disadvantages of a master-slave coupling procedure to link fluid flow 
between porous rock and hydraulic fracture is investigated.

In the following sections, some of the existing models are described to­
gether with some of their particular features. Then, a detailed description 
of the coupling procedure adopted in the present work is given. Finally, a 
numerical example to show the robustness of the model is presented.

4.1 Background
Hydraulic fracture flow in a porous medium involves the coupling of three 
main fields: structural, seepage and network. The inter-dependence of differ­
ent phenomena are shown in Figure 4.1. In order to understand the complex 
interplay between the different phenomena, several approaches and theories 
have been proposed in the literature.

One strategy aims to model the flow through cracks without taking into 
account the flow within the material itself. This simplification is reasonable 
for soils or rock-like materials with low permeabilities, since the flow through

54
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pressure

Structure

Field

Seepage

Field
Network

Field

Figure 4.1: Coupling procedure.

the fractures is dominant. There are many models in the literature which 
have been developed to  study fluid flow in a fractured network following this 
approach. In the simplest models, there is no interaction between structural 
and network fields. The fractures are considered to have constant aper­
ture and length, as described in detail in Endo et al. (1984) and Smith and 
Schwartz (1984). Recent models, such as Papanastasiou (1997b) and Jing 
et al. (2001), are more realistic due to the fact tha t the hydro-mechanical 
coupling is considered.

However, an accurate analysis of the in situ stress field can only be ob­
tained if the soil or rock-like material is treated as a porous medium. This 
is particularly noticeable for materials with high permeabilities where the 
seepage behaviour becomes prominent. In this case, the fluid flow through 
the fractured media is responsible for changes in the pore pressure and con­
sequently modifies the in situ stress field.

The numerical models developed to date where leak-off effects have been 
considered can be classified into three main groups: effective continuum ap­
proximation, double porosity models and discrete fracture flow models.

The effective continuum approximation has been adopted in the work de­
veloped by Pruess et al. (1990). In this approach equivalent porous medium 
properties are based on intuitive notions for the behaviour of such systems 
and an insight gained from previous numerical simulations. They are accept­
able for applications of large space and time scales where the rock matrix is 
highly permeable. However, a break down of this approach can be seen in 
processes involving rapidly transient conditions, very low permeability of the 
blocks and large fracture spacing.

Moench (1984) has adopted a double porosity concept to model the 
groundwater flow in a fractured porous medium. In these models, a fractured 
rock mass consists of primary porosity blocks (continuum of low permeabil­
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ity) and secondary porosity fissures (continuum of high permeability). Each 
of these are characterized by their own porous medium properties, such as, 
porosity, compressibility and permeability. Also, it assumes th a t the flow 
in each continuum is governed by Darcy’s law. The main shortcoming of 
this approach is th a t the porous m atrix blocks are assumed to be of simple 
geometry with uniform size and shape.

The use of discrete fracture flow models seems particularly attractive. In 
this case, the flow through discontinuities is modelled using interface elements 
of zero-thickness. A number of works have been based on this approach, 
where the differences are related to the treatm ent of the transversal flow. 
Based on tha t, the models can be classified as: single, double and triple 
noded.

Single noded models are the most commonly used due to  their simplicity, 
(see Figure 4.2 (a)). An existing continuum element mesh tha t accounts for 
the flow in the porous rock is superimposed by ’pipe’ elements which represent 
the discretized fracture system. Consequently, specific storativities, internal 
and external forces a t superimposed nodes are added, so th a t leak-off flux 
terms are balanced off and their explicit calculation is no longer required. 
The procedures developed by Sudicky and McLaren (1992) and Woodbury 
and Zhang (2001) have adopted this approach. Their results have yielded an 
accurate numerical solution to  the problem of groundwater flow and solute 
transport. One of the limitations of using this model to link seepage and 
network flow fields is the fact tha t apertures are restricted to an initial fixed 
value due to a continuum mesh.

To circumvent problems where variations in apertures and potential drop 
between seepage and network flows play a crucial role in the analysis, double 
noded models have been developed by Ng and Small (1997), Segura and Carol 
(2004) and (2005) (Figure 4.2 (b)). In the most recent double-noded model 
proposed, longitudinal and transversal flows are obtained from the use of an 
auxiliary element on the interface mid-plane. First, the head jum p between 
the two adjacent sides of the continuity is averaged. Then, longitudinal and 
transversal flows are calculated based on given longitudinal and transversal 
conductivities. Shortcomings of this approach are related to problems where 
potential drops are related with particle deposition, and a more sophisticated 
approach has to be adopted.

A more advanced approach has been proposed by Guiducci et al. (2002) 
(Figure 4.2(c)). In their triple noded model, a pipe element is used on the 
interface mid-plane to calculate longitudinal flow, and two transversal con­
ductivities are defined in between the pipe and top and bottom  continuum 
interfaces, so tha t transversal flows can be obtained through their head drops 
independently, w ithout any assumptions. One of the major advantages of
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this formulation in comparison with the others is that in complex problems 
where, for example, a filter cake is built-up in between the rock and contin­
uum interface, a more realistic and accurate analysis can be performed with 
the use of this model, since the increase of the filter cake thickness will lead 
to a decrease in the aperture, consequently affecting the longitudinal flow 
along the fracture. An inconvenience is related to the computational cost 
due to an increase in the number of variables of the problem.

Coobouum

3 4 3 4O-------------O Q------------ C
O- O

M  (b) (c)

Figure 4.2: Zero thickness interface elements in a 2D continuum mesh, (a) 
Single-noded. (b) Double-noded. (c) Triple-noded.

4.2 C ou p lin g  b e tw een  fields
One of the major difficulties with coupled problems is related to the man­
agement of the large amount of data  transferred between fields and with the 
link between seepage and network flows.

In order to provide a better overview of the interaction between the fields, 
Subsections 4.2.1 and 4.2.2 will give a detailed description of the overall 
procedure. Special attention will be given to the link between seepage and 
network flows (Subsection 4.2.2), where an alternative approach is presented.

4.2.1 L inks b e tw e e n  s t r u c tu r a l ,  seep ag e  a n d  n e tw o rk  
flows

The links between structural, seepage and network flows are explicitly de­
scribed by Equations (3.46), (3.47) and (3.48) respectively. These are well 
defined and the difficulties relate to the management of the data transfer.

From the numerical point of view, the updated coordinates given by the 
displacements, which were calculated from the previous pore pressure in the
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rock, fluid pressure in the fracture, mass, internal and external forces, are 
passed to the seepage field and network fields. W ith the new coordinates, 
volumetric strain rates are obtained for seepage and network fields using a 
midpoint rule. Together with the specific storativities, internal and external 
forces, a new pore pressure in the rock and fluid pressure in the fracture are 
calculated. A detailed description is given in Box 4.1.

B ox  4.1 - L in k  b e tw ee n  s tru c tu ra l ,  seepage  a n d  n e tw o rk
flows.

1. Given the previous pore pressure in the rock (p"a/))> fluid pres­
sure in the fracture (p”n^ ) , mass (M n), internal and 
external forces ( f^ u ))-  Compute accelerations (iin) to the struc­
tural field.

„n %*(») +  ~  %t(u) +  Q»/P(W)
U M"

where, n  is the n th increment, N u are the shape functions, M n 
and Q sy are defined in Eq. 3.50.

2. Compute new velocities (un+1//2) to the structure field.

j.n+l/2 i n —1/2 A ,n+ i/2  — nu  ' =  u  ' +  A tn+1//u

3. U pdate nodal displacements (un+1) and coordinates (xn+1).

u"+1 =  u n +  &tn+1U +l/2 

x" +1 =  x n +  u"+1

4. Given new coordinates, calculate volumetric strain rates of seep­
age (ev(sf )) and network ( iv(nf)) fields as:

,„+V2 = _j_  (Ymiz3E\
■<•/> At»+‘ [ v ^  + V ^ J

+1/2 =  _ 2_  ( y $ - v f a \

»(»/) A 1 ^ A V M + V W ) J
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5. Compute pressure rate for seepage and network fields.

P sf

P n f

6. U pdate nodal pressures to seepage and network fields.

4.2.2 Seepage-Network flows
The use of zero-thickness interface elements to model the longitudinal flow 
in the fracture has lead to the development of double noded and triple noded 
formulations th a t includes transversal flow effects. These models are particu­
larly attractive in simulations of more complex problems where, for instance, 
a potential drop between seepage and network flow exists. However, the 
computational costs in these models are higher, due to an increase in the 
number of unknowns to  be determined.

As a first approach to the problems th a t the present work is aimed at, the 
potential drop between the fields will be neglected. So that, in the interface 
between porous rock and a fracture, the fluid pressure is unique, i.e., it must 
satisfy the pressure fields in both seepage and network fields. Therefore, 
the use of a triple-noded formulation mixed with the superimposed nodal 
assumption from the single-noded scheme seems to be particularly attractive 
from a computational cost point of view, since the number of variables to 
be solved will be reduced from six or four from standard triple-noded and 
double-noded 2D formulations respectively to just two; this difference is even 
larger in 3D formulations.

The new method proposed in the present work to satisfy the above con­
ditions is to  use a master-slave procedure to link seepage and network flows. 
This method is particularly attractive due to its simplicity, efficiency and 
robustness, as will be demonstrated by the numerical examples. In the pro­
posed method, a discontinuity is discretized using ’pipe’ elements to calculate 
longitudinal flows. The nodes in these elements, as a m atter of choice, will
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be considered master (M ), but equally it could be either the nodes belonging 
to bottom  (6) or top (t) interfaces of the porous rock. Consequently, nodes 
located in the porous rock interface are assumed as slaves (5), as show in 
Figure 4.3.

Continuum
mesh

Discontinuity

Continuum
mesh

MIC

S4

I
S2

)M2

Figure 4.3: Master-slave procedure to link seepage and network flows in a 
2D continuum mesh.

In a similar form to the single noded approach, specific storativities (S), 
leak-off flux (Q/c), internal (f*nt) and external (fext) forces from slaves nodes 
are added into master nodes. From a mathematical point of view, it can be 
expressed as:

q M    n M  , 0 ^ ( 6  i Q ^ ( k )
° ( n / )  _  a ("/) +  ° ( s f )  +  S (s/)

f  M _______ __ c M  i cS{ t )  cS(b)  ( a i \
i n t ( n f )  int(nf)  ' intfyaf) int(sf) v^-1/

c M _______ __ r M  , f’S'(i) cS(b)
e x t ( n f )  ~  e x t ( n f )  ' Le x t ( s f )  e x t ( s f )

r \ M ________  I r \ + S ( t )  _i_ r \ + S ( P )  __ ^
^ l o ( n f )  -  ^ l o ( n f )  +  +  ^ l o ( s f )  ~  U

As can be seen from the equations described above, leak-off flux terms
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are balanced off and their explicit calculation is no longer required. Also, 
it can be noted that, a reduction in the number of equations occurs, since 
equations related to slaves nodes do not need to be solved. The pressures 
are calculated only for master nodes and then prescribed to slaves nodes, 
respecting an unique pressure condition in the interface between seepage and 
network fields.

4.3 E xplicit-exp licit subcycling schem e
Explicit methods are attractive due to their simplicity in advancing the so­
lution without solving a system of equations. However, their time increment 
are restricted to small values, i.e., they are conditionally stable.

On the other hand, with implicit methods large time steps can be achieved 
due to their unconditionally stable condition, but a large memory is required, 
since, a m atrix system must be solved every time step causing a significant 
computational cost per step. Also, in problems where fracture initiation and 
propagation, contact, adaptivity and remeshing are present, convergence may 
become effectively impossible making the procedure inadequate for this class 
of problems.

In order to tackle these difficulties two major solutions have been pro­
posed. The first one is the so-called “implicit-explicit” methods proposed by 
Belytschko and Mullen (1978), Hughes and Liu (1978b) and Hughes and Liu 
(1978a), in which the computational domain is partitioned into two parts and 
implicit or explicit methods are applied to each part according to  its “stiff­
ness” . The second alternative approach is an explicit-explicit subcycling 
proposed by Mizukami (1986) and Neal and Belytschko (1989), in which the 
elements or nodes are separated into groups with different time step limit in 
each group. The group associated with the stiffer part is integrated with a 
time increment A t, while the other part with a greater time increment m  A t 
( m  >  1).

Therefore, the use of an explicit-explicit subcycling scheme seems partic­
ularly attractive. Since problems involving contact, fracture initiation and 
propagation are of interest here.

In the calculation of a critical time step using equations (3.57) and (3.62), 
it can be noted tha t mass density and Young’s Modulus of the skeleton, 
permeability, storativity and viscosity of seepage and network fields, element 
size and volumetric strains are the parameters which determine the size of 
the time increment.

In the problems investigated so far, it has been noted tha t only small 
changes in the critical time step of the structural fields have occurred. On
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the other hand, in problems where large increases in apertures takes place or 
the rock is highly permeable, the critical time steps have been controlled by 
the time increment related to the network and seepage fields respectively. In 
the fracture, the permeability and storativity are functions of the aperture as 
described in Eqs. (2.36) and (2.37). As can be seen in Figure 4.4, an increase 
in aperture means a quadratic increase in the permeability of the fracture 
and an asymptotic reduction in its storativity. Consequently, a dram atic 
decrease in the critical time step occurs as shown in Figure 4.5. In the 
seepage field, not many changes are seen during the advance of the analysis, 
but the permeability and storativity of the rock are crucial in defining the 
size of the time increment.

In the explicit-explicit subcycling procedure proposed, the overall analy­
sis has been divided into two main parts. The first part is associated with the 
structural analysis which normally exhibits a large time increment (A£(u)). 
The other part relates to seepage and network fields with a small time incre­
ment (m in (A t(sf), A t(n/))). In seepage and network analysis the only term 
which is directly related with the change of the structure time increment is 
the volumetric strain rate. Therefore, the following procedure described in 
Box 4.2 can easily be adopted.

8.00E-07 Perm eability

Storativity

6.00E-07

4.00E-07

2.00E-07

0.00E+00
0.000 0.001 0.002 0.003

Aperture

Figure 4.4: Intrinsic permeability and storativity of the fracture as a function 
of the aperture.
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Figure 4.5: Critical time step as a function of the aperture.

V

Box 4.2 - Flowchart for explicit-explicit subcycling scheme.

1. Given the new displacements obtained at t"jJ1, calculate the vol­
umetric strain rate of seepage ( i v (sf ) )  and network (ew(n/)) fields 
during a time increment (A t(u)) as:

e
o /  Vn+1 — Vn.n + l/2  _  2  [ V(sf) V(sf)

v(s,) W  + W

■ n+l/2 =
v (nf)  A t /  \ \  V n+1  4- V n /

^ l (u) \  (nf)  +  (n/ ) )

where, n  is the n th increment, V(a/) and V(n/) are the volumes of 
seepage and network fields respectively.

2. Obtain the minimum time increment between seepage (A£(s/)) 
and network (At(n/)) fields,
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3. Check if subcycling is necessary,

IF ((A t (u} -  A t {snf)) > TOL) SUBCYCLING is TRUE

4. Initialize subcycling loop;
a) Calculate the volumetric strain for seepage ( s v (s f ) )  and net­
work (£ v ( nf)) fields, as:

b) Given internal forces ( /£ ((s/), / £ t(n/)), external forces ( / " t(s/), 
fext{nf)) and storativities (£("/) > S(nf)) f°r seepage and network

d) Update time (t(sn/)) and check if this is the last subcycling 
increment ( A t ^ ) .

n + A t{
v(nf )

fields, calculate the pore pressure in the rock {snf) and fluid 

pressure in the fracture •

c) Calculate for the next increment internal forces ( ,J v"/  m t \ s j )  >
, n + A t ( s n f )

77,-1— A I i

t (s

IF  A (££> GOTO (e)

ro+At, 
'(s n f ) <  TOL) A e{:n)} is TRUE

^ ( s n / )  =  H*)  ~  t ( snf )

e) End of subcycling loop.
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4.4 N um erical results
In order to shown the robustness and efficiency of the overall coupling pro­
cedure a dynamic filtration test will be solved. This problem is particularly 
appropriate to check whether mass conservation of the system is satisfied. 
Also, it will dem onstrate the advantages of the proposed subcycling scheme.

4.4.1 Dynam ic Filtration
The following example consists of pumping fluid through a pre-existing frac­
ture and allowing the fluid to drain through the top and bottom  surface 
of the two rock masses, as shown in Figure 4.6. Vertical displacements are 
prescribed on the top and bottom  surfaces of the blocks and horizontal dis­
placements are neglected at the lateral faces.

A 2D plane strain analysis is investigated. A linear elastic model is 
adopted and blocks have dimension of 5 x 20 metres and thickness of 1 
metre. Also, top and bottom  blocks exhibit different intrinsic permeabilities 
of 50 and 500 Darcys respectively. These values are artificially chosen for 
very highly permeable soils, but it makes steady state conditions achievable 
in a very short time. The fluid injected is water at a flow rate of 0.005 m3/s  
and a viscosity of 0.001 Pa.s. The initial aperture is 0.2 millimetres along 
the whole fracture length. A detailed description of the parameters used in 
the example is given in Table 4.1.

Injected flow is compared against outflow to check mass balance. Also, 
apertures and pressures are recorded during the process. Finally, a compar­
ison of CPU times with and without subcycling is made.

Input data Value
Young’s modulus 0.2 GPa

Poisson ratio 0.25
Bulk modulus of the grain 31.0 GPa
Bulk modulus of the fluid 2.0 GPa

Normal stiffness of the fracture 20.0 G Pa/m
Dynamic viscosity of the fluid 0.001 Pa.s

Residual aperture 0.2 mm
Initial fluid pressure 0.0 Pa
Grain mass density 2500 kg/m 3
Fluid mass density 1000 kg/m 3

Table 4.1: Input data  for dynamic filtration test.
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Figure 4.6: Layout of the dynamic filtration test.

In Figure 4.7(a), the flux in is compared with the flux out. As the analysis 
reaches a steady state it is possible to verify a match between the fluxes. Also, 
the ratio between flux coming out at the top and bottom faces are exactly 
as expected, since they have the same magnitude as the ratio between top 
and bottom permeability.

A good agreement has been observed in the volume check shown in Figure 
4.7(b). The volume of injected fluid is in balance with the volume leaving 
the system, confirming tha t mass conservation is satisfied.

The aperture profile of the fracture at the injection point (5 metres) is 
given in Figure 4.7(c). An increase in the aperture is noticed until a steady 
state condition is reached, then no further major changes are seen.

Figure 4.7(d) presents pressure profiles from different points in the frac­
ture. The fracture points are located at distances along the fracture length



C H APTER 4. O VERALL COUPLING PROCEDURE 67

from left (0 m) to right (5 m). High pressures have been observed closest to 
the injected point (5 m). Further from this point, they start to decrease due 
to leak-off effects.

Finally, a significant reduction in the computational cost can be seen 
through the use of the subcycling coupling scheme proposed. CPU times 
have been reduced from 394 minutes to 63 minutes.
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Figure 4.7: Dynamic filtration results for 2D plane strain analysis: (a) Flux 
balance, (b) Volume check, (c) Aperture profile in the fracture, (d) Fluid 
pressure profile in the fracture.



Chapter 5 

Oil production

In recent years, massive investments have been made by oil producers in 
order to optimise the cost of oil extraction. Part of the efforts has been used 
in the development of numerical simulation schemes, as these have shown to 
be a powerful tool to assist analysts to have a better understanding of the 
mechanisms involved in such processes.

Although there is a wide range of applications in oil production where 
computational models could be used, the present work is particularly directed 
at hydraulic fractures in porous rock. Firstly, a brief description of the recent 
studies th a t are related to  the topic will be given. Then, an explanation 
of the overall procedure and mechanisms involved in the propagation of a 
hydraulic fracture will follow. Finally, numerical examples will be presented 
and compared against experimental and field data.

5.1 Background
The decreasing rate in the production of oil from a well or a field in time 
is caused by the reduction of the natural energy th a t forces the oil through 
the subsurface reservoir and into the well. According to Hyne (2001), the 
ultim ate recovery of oil from reservoirs varies from 5% to 80% but average 
only 30%. This means th a t 70% of the oil still remains in the pressure 
depleted reservoir.

In order to reduce the losses and extract some of the remaining oil from the 
oilfields there are a large variety of methods normally used in these situations 
such as, waterflood, enhanced oil recovery and others. The waterflood process 
consists of pumping water under pressure down the injection wells to force 
some of the remaining oil through the reservoir toward the producing wells, 
as show in Figure 5.1. Enhanced oil recovery works in a similar form, but
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instead of using water, a non-natural fluid, such as carbon dioxide or steam, 
is used in order to increase the production.

INJECTION
WELL

PRODUCTION
WELL

INJECTION
WELL

Figure 5.1: Waterflood (Hyne (2001)).

Hydraulic fracturing has been first applied in the oil industry in 1948 
to increase the productivity of oil-bearing formations with low permeability, 
Atkinson (1987). Since then, it has been used in water well and gas stim­
ulation, geothermal energy extraction to induce heat exchange surfaces, in 
coal gasification pilot projects, and for in situ  stress measurements. It con­
sists of pumping water or some other non-viscous fluid with some additives 
in sealed-off boreholes to generate new fractures and to open existing ones. 
These kinds of applications are the ones at which the present work is par­
ticularly aimed at, using the numerical tools which have been developed as 
explained in detail in Chapter 4.

There are a large number of approximations which have been proposed 
in the last few decades to estimate the pressure values necessary to induce 
and propagate tensile fractures, and to predict the final length and width of 
the fractures. These can be divided into two main groups: analytical and 
numerical models. A literature review of some of the main models existing 
in each area will follow summarising their limitations and assumptions.

Most analytical solutions have been based on simplified geometrical con­
ditions, since a closed three-dimensional solution for the general complex 
problem is not yet available. The three main approaches using simplified 
approximations which yield two-dimensional models are:

• Plane strain or KGD model - has been introduced by Khristianovic 
and Zheltov (1955) and Geerstma and de Klerk (1969). In this model
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the fracture propagation and deformation are assumed to evolve in a 
plane strain situation where the fracture geometry is shown in Figure
5.2. Also, the fluid flow and fracture propagation are one-dimensional.

• PK N  model - is very similar to the above model. The main difference 
is associated with the fracture geometry. It assumes that the fracture 
has constant height and elliptic cross-section, as can be seen in Figure
5.3. Also, each vertical cross-section is deforming under plane strain 
conditions which implies that the lateral stiffness in the fracture length 
direction is ignored. This model has been developed by Perkins and 
Kern (1961) and Nordgren (1972).

• Penny-shape or radial model - has been firstly solved by Sneddon (1946) 
considering a constant fluid pressure. It is applicable to a homogeneous 
reservoir where the injection region is practically a point source, i.e., 
the wellbore radius is negligible compared to the fracture radius, as 
shown in Figure 5.4.

Fluid

Fracture tip

Figure 5.2: Plane strain model.
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Figure 5.3: PKN model.
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Figure 5.4: Penny-shaped or radial model.
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Based on these simplified geometrical conditions, several analytical mod­
els have been formulated. Detournay et al. (1990) have derived a m athe­
matical formulation based on the PKN model considering poroelastic effects 
induced by leak-off of the fracturing fluid. Then, an explicit finite difference 
scheme has been used to solve the system of equations containing six un­
known variables: pressure, width, leak-off velocity, length, flow rate  per unit 
of length and fracture arrival time at a point. Comparison of a permeable 
and impermeable rock has been investigated and the results have suggested 
tha t a poroelastic process could be responsible for a significant increase of 
the fracture pressure, but has little influence on the geometry of the fracture 
(width and length) as a consequence of assuming a leak-off formula which is 
pressure independent.

In a parallel development with the previous work, Detournay and Cheng 
(1991) presented a plane strain analysis of a constant length hydraulic frac­
ture embedded in an infinite poroelastic domain. The uniform load in the 
crack walls caused by the injection of fluid is decomposed into two modes, 
consisting of a unit step for the normal stress and a unit step for the pore 
pressure along the fracture. The results also have pointed out th a t a higher 
hydraulic fracturing pressure is predicted when poroelasticity effects are in­
corporated. In addition to  that, the leak-off volume calculated via poroelas­
ticity theory has been shown to be nearly identical to th a t computed by the 
diffusion equation, as the fracturing fluid is assumed to be identical to th a t 
of the reservoir.

A more recent analysis of the propagation regimes of a penny-shaped 
hydraulic fracture in an impermeable elastic rock has been carried out by 
Savitski and Detournay (2002). They have developed an analytical solution 
based on a dimensionless crack opening, net pressure and fracture propa­
gation radius obtained through a scaling procedure. The final form of the 
scaled equations has indicated tha t the regimes of fracture propagation are 
controlled by only one parameter, a dimensionless toughness. The results 
have shown th a t fracture propagation can be dominated by three different 
regimes. The two extremes regimes, i.e. dimensionless toughness equal to 
zero and equal to infinity, are defined by the viscosity-dominated regime and 
toughness-dominated regime, and the third is obtained during the transition 
between the previous two, as defined by a mixed-regime.

Although a large number of contributions have been made by analytical 
methods to the treatm ent of hydraulic fracture problems, there is still a large 
gap between the formulations developed to solve some particular hydraulic 
fracture problem and a realistic closed-form solution to deal with problems, 
where for example, multi-fractures are present in the rock. Therefore, it is 
reasonable to accept tha t more insight into the nature of the pore pressure
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field in the vicinity of a hydraulic fracture can only be provided by the 
advance of numerical models.

Boone et al. (1991) have developed a poroelastic numerical model which 
provides a full coupling between rock deformation, fluid flow in the fracture 
and in the rock mass. Also, it includes a nonlinear, Dugdale-Barenblatt frac­
ture model. In this work, the influence of poroelastic effects in the stress 
measurement have been investigated as well as the kinematics of fracture 
closure and reopening. They have noted th a t poroelastic mechanisms have 
caused a significant increase in the breakdown pressure for a borehole when 
compared to the value provided by the strength of materials approach, Equa­
tion (5.1). This effect has been attributed to higher rates of pressurization 
and to the diffusion of pore pressure from the borehole. The first is related to 
the rate dependent effect caused by the fluid’s viscous flow resistance. The 
second is due to the fact th a t at loading rates which are fast relative to the 
diffusion of the pore pressure, the vertical stress varies from tension at the 
borehole wall to compression in a short distance away from it, decreasing the 
rate of fracture propagation.

A series of works developed by Papanastasiou (1997b), (1999a), (1999b) 
and (2000) have investigated the influence of plasticity in the opening and 
closure of a hydraulically driven fracture. A strongly coupled numerical sim­
ulator based on a finite element method to model the rock deformation and 
a finite difference scheme to solve the fluid flow in the hydraulic fracture 
has been used. The constitutive behaviour of the rock was represented by 
the well known Mohr-Coulomb surface and a cohesive crack model was em­
ployed as a propagation criterion. The effective fracture toughness has been 
obtained by the path  independent J-integral. The major contributions pro­
vided are related to the mechanisms involved in the plastic yielding near 
the tip of a propagating fracture, and with the closure pattern  of an elasto- 
plastic fracture. The analysis has shown tha t an increase by more than one 
order of magnitude in the rock effective fracture toughness is attributed to 
an effective shielding caused by the plastic yielding near the tip of a prop­
agating fracture. This is influenced by the rock strength, elastic modulus, 
deviator of the in situ-stresses and pumping parameters. It has also been 
shown tha t a pressurized stationary elasto-plastic fracture closes uniformly 
with decreasing pressure, whereas the closure pattern  of a propagated elastic 
fracture makes surface contact first at the tip and subsequently towards the 
wellbore.
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5.2 H ydraulic fracture

5.2.1 Introduction
The use of hydraulic fracture to stimulate oil production in reservoirs is a 
very complex problem. The process starts with the injection of fluid into 
an existing pre-fractured sedimentary rock in order to open it in the first 
instance. At this stage, the pressure in the fracture is increased until it 
overcomes the minimum compressive stress acting in the formation. A fur­
ther increase in pressure leads to the development of a tensile stress directly 
ahead of the crack tip, but at some offset from it, in a plane perpendicular 
to the direction of fracture propagation, strongly compression stresses still 
acts. This kind of stress condition causes the shearing of the rock mass, and 
consequently, leads to  the development of a plastic zone. The representation 
of a hydraulic fracture growth in a plexiglas cube loaded biaxially in a triaxial 
press is shown in Figure 5.5.

The solution for the stress distribution around a circular hole in a homo­
geneous, isotropic, elastic material subject to  a compression load proposed 
by Kirsch (1898) has been used by Hubbert and Willis (1957) to define a 
breakdown pressure, pb, in hydraulic fracture applications. They stated tha t 
a fracture will initiate in a borehole wall if the minimum tangential stress 
and tensile strength of the material are lower than the fluid pressure acting 
in the hole. In vertical boreholes drilled from the surface, pb is frequently 
obtained by the relation

Pb =  3 crhrnin -  (Thmax + a f - p s (5.1)

where, crhmin and (7hmax are minimum and maximum horizontal compressive 
stresses, a f  is the tensile strength of the material and p s is the pore pressure. 
Also, it is assumed th a t fracture propagates in the direction of the minimum 
compressive stress, i.e, least resistance.

5.2.2 Hydraulic fracture analysis
Rocks and soils found in nature contain a large number of pre-existing frac­
tures which are subject to the penetration of pressurized fluid. This effect 
is neglected by the classical approach described above and it is extremely 
im portant to the determination of a failure limit to the material, since it 
contributes to  an increase in the stress intensity at the crack tip prior to 
fracturing. Therefore, it is reasonable to assume tha t the hydraulic fracture 
problem is more related to the definition of a critical condition for the growth
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Figure 5.5: Hydraulic fracture growth in a biaxially loaded cube (Atkinson 
(1987)).

of existing fractures, rather than predicting crack initiation within idealized 
materials.

One analytical solution from extremes of very slow to very fast fracture 
propagation for the pore pressure fields has been derived from the well known 
potential theory and the work developed by Ruina (1978) respectively. The 
dimensions and boundary conditions employed in the solution of the pore 
pressure field can be seen in Figure 5.6 (a) and (b).

The potential theory assumes tha t the crack walls are permeable and 
steady state conditions have been reached. The solution for the pore pressure 
held is given by (Boone et al. (1991)):

F  _ (2  r i/2 (
T = tan 1 ) ^TTY cos ( 2 ) | ’ ° - (̂ - 7r’ (5-2)

where, F  is the pressure applied at the crack face, r  is the radial distance 
from the crack tip, normalized with respect to the crack length and 9 is the
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Figure 5.6: Boundary conditions applied to  analytical solutions, (a) R uina’s 
model, (b) Classical potential flow theory.

angle measured with respect to the crack path. Under these conditions, the 
pore pressure field is positive everywhere.

On the other hand, the work developed by Ruina (1978) assumed th a t 
the crack faces are impermeable and the solution for the pore pressure field 
in the near tip region of a semi-infinite fracture moving at a constant rate is 
obtained as:

- K q

P =  {1 -  e"r(1+cosS)/(2c)} cos ( ,  (5.3)
V27T7’ V2/

where, K q  is the apparent fracture toughness of the rock and v  is the velocity 
of the fracture. The diffusivity coefficient c is a poroelastic constant and 
appears commonly in both analytical solution and numerical approximations 
and is expressed as:

. 2G B2K ( l  — !/)(l +  vu)2
c =  9(„u <5‘4>

where, G is the shear modulus, v  is the drained Poisson’s ratio, i/u is the 
undrained Poisson’s ratio, B  is the Skempton pore pressure coefficient and 
K  is the hydraulic conductivity.

From a computational point of view, the hydraulic fracture problem in­
volves the coupling of five different fields as described below:

• Structural - is responsible for the displacements occurring in the rock 
and in the fracture. Together with the use of the well known kinematic 
and constitutive relations this phenomenon determines the deforma­
tions and stresses acting in the reservoir.
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• Seepage - The fluid flow in porous rock is primarily responsible for 
changes occurring with pore pressure and saturation in the rock mass. 
These variables are crucial in the determination of the stress state in 
the rock mass. Consequently, seepage plays an im portant role in the 
determination of a failure limit.

• Network flow  - the amount of fluid pumped into the fracture is a major 
factor responsible for its opening, closure or extension. The pressure 
in the fracture acts as a traction boundary condition affecting the de­
formations and stresses in the rock mass. Also, it affects the fluid flow 
in the rock mass.

• Thermal - the heat exchange between fluid injected, gases, oil and 
porous rock causes a variation in the material properties of the flu­
ids and rock, such as mass density, viscosity, strength among others, 
influencing the overall analysis.

• Mass transport - non-natural fluids injected into fractures have present 
in their composition solid particles which are deposited along the crack 
walls to avoid closure. These creates a  “shield” around the fracture 
reducing the flow into the rock mass and increasing the pressure in the 
fracture.

As a first approach, the analysis has been restricted to the coupling of 
structural, seepage and network flow fields, which will provide a good insight 
into the overall problem. The two remaining fields will be left for a future 
extension of the presented research.

5.3 N um erical results
Two numerical examples have been used to validate the numerical model 
proposed. First the numerical predictions are compared to experimental 
results in a small scale problem as published by van Dam et al. (1997). 
Secondly, comparison is made against a more realistic field scale problem as 
proposed by Papanastasiou (1999a).

In the following two examples poroelastic and poroelasto-plastic effects 
have been investigated.
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5.3.1 Hydraulic fracture propagation in a small scale 
problem

The numerical results based on experiments published by van Dam et al. 
(1997) have been used to  validate the numerical model. The experiment 
consists of cubic blocks 0.30 m in size which are loaded in a true triaxial 
machine to  simulate in-situ stress states. After reaching the desired stress 
field (Table 5.3), a high pressure pump injects fluid to propagate the crack. 
Artificial rock samples made of cement, plaster and diatomite have been used. 
The fracturing fluid employed was silicon oil which behaves approximately 
as a Newtonian fluid.

The simulations presented here were carried out using a commercial Fi­
nite/D iscrete Element code (Elfen (2005)) with custom routines th a t couple 
the rock deformation with fluid flow through both the rock and the fracture 
and the material properties (Table 5.1) correspond to a soft plaster. An ax- 
isymetric model was used and the boundary conditions adopted are shown 
in Figure 5.7. Due to symmetry, one half of the problem was modeled.

Four different cases have been considered: elastic, elastoplastic, poroelas­
tic and poroelasto-plastic analysis. In the elastic and elastoplastic cases the 
vertical stress (ayy) and the width (e) profiles have been compared with the 
ones provided by van Dam et al. (1997). In the poroelatic and poroelasto- 
plastic cases, different permeabilities for the rock were evaluated in order to 
assess the influence of the leak-off upon parameters such as length, aperture 
and vertical stress of the fracture. The permeability varies from 0 to  1000 
miliDarcy (mD).

The mechanical behavior of the rock is described through the Mohr- 
Coulomb model which employs the well known Newton-Raphson method in 
the return mapping scheme. The cohesion coefficient (c), friction angle (<p) 
and dilation angle (ip) are given as a function of the effective plastic strain 
(£ps), as shown in Table 5.2.

An interface law based on a cohesive-zone model has been used to describe 
the rupture process at the fracture tip. In this model, the softening curve is 
obtained through the energy release rate (G f). W ithin this framework, the 
fracture is opened when the tensile strength (07) and opening displacement 
(<5) reach a critical value.

Fluid has been injected into the fracture in the elastic and elasto-plastic 
cases in impermeable rocks for 101.1 and 107.1 seconds respectively. These 
were the times necessary for the fracture to propagate and the crack tip 
reaches a distance of 0.075 metres. The poroelastic and poroelasto-plastic 
analysis have been based on the same analysis time of the elastic and elasto­
plastic cases described above.
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Input parameters

Young’s m odulus 5.6 GPa

Poisson 0.2

Fluid mass density 1000 K g /m 3

Solid mass density 2500 K g /m 3

Fluid bulk modulus 2.0 GPa

Grain bulk m odulus 3.11 G Pa

Fluid viscosity 100 Pa.s

Tensile strength 1.0 M Pa

Energy release rate 100.0 Pa.m

Porosity 0.2

Permeability 4.935e-14 m2

Flow rate 2.5 cm 3/ s

Initial aperture 62 jum

Figure 5.7: Schematic diagram Table 5.1: Input parameters

e ps c (Pa) ip
0.0 2600

o00 28°
0.001 2.6 28° 14°
0.01 2.6 28° 0°

Effective in situ stresses Value (MPa)
Minimum horizontal 2.5
Maximum horizontal 4.0

Vertical 4.0

Table 5.2: Hardening properties. Table 5.3: In situ stresses.

Figures 5.8 and 5.9 show th a t the aperture profiles of the current model 
(ayy) agrees well with van Dam et al. (1997) for an elastic and elasto-plastic 
analysis respectively in an impermeable rock (k =  0 md). However, the verti­
cal stresses exhibit some differences mainly close to the crack tip. These are 
a consequence of the model used by van Dam et al. (1997) which assumes the 
existence of a dry zone ahead of the crack tip obtained through a prescribed 
pressure equal to zero a t this point. This approach is responsible for the 
development of a higher vertical stress gradient in this zone when compared 
to the current model as can be seen in Figures 5.10 and 5.11.

The aperture in the elasto-plastic case in an impermeable rock is larger 
than in the elastic case due to  the development of inelastic deformations. 
Consequently, it requires a higher pressure for the propagation of the fracture. 
These plastic deformations are responsible for the softening of the material 
which affects the size of the aperture and in situ stresses. The vertical stresses 
in the elasto-plastic case are higher near the fracture tip and lower close to 
the crack mouth when compared to  the elastic case. This can be seen in
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the vertical stress profile, where an increase in oyy is experienced near the 
fracture tip in the elasto-plastic analysis and a lower value is found in the 
crack mouth.

Figures 5.8 and 5.10 show the aperture and vertical stress profiles in the 
poroelastic analysis for rocks with different permeabilities. It can be seen 
th a t in rocks with higher permeabilities, the length and width of the fracture 
reduces as expected, as a consequence of an increase in the leak-off from the 
fracture to the porous rock. Also, vertical stresses in highly permeable rocks 
exhibit a more linear distribution along the fracture with high net pressures 
located at the wellbore. As a consequence, net pressures need to  be higher to 
propagate fracture in rocks with higher permeabilities, as noticed previously 
by Boone et al. (1991).

In contrast with the geometry presented by the poroelastic case, the aper­
tures in the poroelasto-plastic case have shown a different behaviour. The 
length reached by the crack tip of rocks with higher permeabilities are shorter 
than the previous one, but the apertures have increased, as shown in Fig­
ure 5.9. In highly permeable rocks the diffusion of the fluid into the rock is 
higher, consequently, it affects the effective stresses in far field regions caus­
ing a more widespread development of the inelastic deformations. The oyy 
in rocks with high permeabilities is more likely to present a steep gradient 
near the crack tip and a more uniform distribution near the wellbore region, 
as can be seen in Figure 5.11.
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Figure 5.8: Influence of the leak-off in the size of the fracture in a poroelastic 
medium.
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Figure 5.9: Influence of the leak-off in the size of the fracture in a poroelasto- 
plastic medium.
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Figure 5.10: Influence of the leak-off in the vertical stresses in the plane of 
the fracture in a poroelastic medium.
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Figure 5.11: Influence of the leak-off in the vertical stresses in the plane of 
the fracture in a poroelasto-plastic medium.
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5.3.2 Hydraulic fracture propagation in a field scale 
problem

The following example has been taken from Papanastasiou (1999b), and used 
as a reference to validate and calibrate the proposed numerical model for 
further 2D and 3D analysis which will take into account leak-off effects.

The problem consists of a vertical hydraulic fracture which propagates 
horizontally in a deep rock formation where the maximum in situ stress acts 
in the vertical direction. The hydraulic fracture zone is located at 1500 
metres deep in a poorly consolidated sandstone. Some of the parameters, 
such as in situ stresses, Young’s Modulus, Poisson ratio, tensile strength, 
fluid viscosity and flow rate, were taken from real field data  extracted from 
specialized coring, logging and stress measurements, while, others have been 
“best estim ated” (Tables 5.4 and 5.6). The hardening curve adopted is shown 
in Table 5.5 and is calibrated in a way such th a t the rock is initially elastic 
but very close to a yielding state.

Firstly, a 2D plane strain analysis in an impermeable elastic and elasto­
plastic rock is carried out. Then, an extra degree of complexity is added 
through the inclusion of poroelastic and poroelasto-plastic effects. Finally, 
a full 3D model is verified against results obtained in the 2D plane strain 
analysis. In order to obtain a similar geometry to tha t provided by the 2D 
plane strain model, the thickness value adopted in the 3D case is 1 metre.

The constitutive behaviour of the rock is modeled by the well known 
pressure-sensitive Mohr-Coulomb surface. A cohesive crack zone model based 
on the energy release which takes into account the softening behaviour of 
rocks is employed as a propagation criterion.

The analysis consists of pumping fluid into the fracture until the crack 
tip reaches a distance of 8 metres. Then, an aperture profile is obtained and 
compared against the results published by Papanastasiou (1999b). Once, the 
model is calibrated, the influence of leak-off effects are investigated. O ther 
im portant aspects verified are the pore pressure distribution and the devel­
opment of the effective plastic strain, since, these are expected to strongly 
influence the fluid pressures.

The analysis time for the crack tip to reach the 8 metres distance required 
in the elastic and elasto-plastic analysis was 37.8 seconds and 49.5 seconds 
respectively. The permeability of the rock formation in the poroelastic analy­
sis has been considered to be 50 miliDarcy (mD) and analysis time was 45 
s. In the poroelasto-plastic case, two different permeabilities (50 mD and 
200 mD) have been considered with analysis time of 61.9 seconds and 118 
seconds respectively. The initial pore pressure was assumed to be equal to 2 
MPa in both cases.
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Input parameters

Young’s modulus 16.2 GPa

Poisson 0.3

Fluid mass density 1000 K g /m 3

Solid mass density 2500 K g /m 3

Fluid bulk modulus 2.0 GPa

Grain bulk modulus 31.1 GPa

Fluid viscosity 0.1 Pa.s

Tensile strength 0.5 M Pa

Energy release rate 112 Pa.m

Porosity 0.2
Perm eability 4.935e-14 m2

Flow rate 0.0005 m 3/s

Initial aperture 62 ym

Figure 5.12: Schematic diagram Table 5.4: Input parameters

Eps c (Pa) xjj
0 .0 2 0 0 0 0 0 0 2 8 ° to 00 o

0 .0 0 1 2 2 0 0 0 to 00 o 1 4 °

0 .0 0 1 2 0 0 to 00 o 0 °

Effective in situ stresses Value (MPa)
Minimum horizontal 3.7
Maximum horizontal 9.0

Vertical 14.0

Table 5.5: Hardening properties. Table 5.6: In situ stresses.

A good agreement between the aperture in an elastic impermeable rock 
and the results presented by Papanastasiou (1999c) has been obtained, as 
shown in Figure 5.13. Also, in the poroelastic case the aperture has been 
shown to be slightly smaller near the wellbore and about the same size near 
the crack tip. These are attributed to a higher leak-off in the region near the 
wellbore which causes an increase in the stiffness of the rock as a consequence 
of the higher pore pressures located in that zone.

In the elasto-plastic case of an impermeable rock the aperture has been 
shown to be smaller than those produced by Papanastasiou (1999c), mainly 
near to the wellbore region as shown in Figure 5.14. This is attributed 
to the initial conditions applied by the reference, in which an analytical 
solution proposed by Desroches et al. (1994) was employed to set initial 
values of aperture and pressure for an initial fracture length. In a previous 
work Papanastasiou (1997a.) has shown tha t in his proposed numerical model 
“the initial fracture length had an effect on the fracture profiles in the initial 
fracture length interval but, the fracture profiles were correctly calculated in 
the regions where the fractures were propagated7'. Even though the present
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work has tried the same approach for the initial fracture length, no significant 
differences have been observed against the parameters used by the present 
analysis. Another possible reason is the choice of hardening properties, since 
in Papanastasiou (1997b) the linear hardening plasticity modulus has been 
derived from the loading and unloading Young’s modulus.

In a poroelasto-plastic analysis, Figure 5.14, the apertures have shown 
two distinctive behaviours. For k = 50 mD, the aperture was smaller than 
th a t obtained for k = 0 mD near the wellbore and slightly wider near the 
crack tip. However, for k = 200 mD, the aperture was shown to be wider 
throughout the entirely fracture length.

The explanation arises from the fact th a t near the wellbore the increase in 
the effective plastic strains generated by the increase of the effective normal 
stresses and consequently reduction of the yield stresses are not sufficient 
to overcome the extra stiffness induced by the increase of pore pressure in 
the rock with k = 50 mD. On the other hand, in the rock with k = 200 
mD, the pore pressure effects are not predominant compared to the inelastic 
deformations, causing an increase in the width of the fracture.

Near the crack tip, the formation of a fluid lag region is noticed in per­
meable rocks as shown in Figures 5.22 and 5.23, but not in the impermeable 
case, Figure 5.21. These are responsible for a higher pressure gradient in 
tha t region, mainly for the rock with k =  200 mD. Consequently, higher 
fluid pressure is required in order to open the fracture, leading to a higher 
shearing of the rock. This causes the permeable rocks to present a wider 
opening in tha t zone.

Figures 5.15, 5.16 and 5.17 show the development of the effective plastic 
strains. For k = 0 mD, the effective plastic strains are mostly generated by 
the shear stresses in the rock near the crack tip region, as a result of the 
characteristic loading developed by the pressurized fluid in the fracture as 
explained previously. In the permeable cases, as the material model has been 
calibrated so as to be very close to a yielding state, as soon as the fluid starts 
to leak-off from the fracture to the rock, a yielding state is achieved as a 
result of the increase of the effective normal stress. This is responsible for 
the development of the effective plastic strain in almost the full extension of 
the fracture. However, at the crack tip, where shear loads are also present, 
the rock with k = 50 mD seems to be less affected by the shearing of the 
rock when compared to the rock with k = 200 mD.

Finally, in Figure 5.24 the fluid pressure distributions along the fracture 
are presented. As can be seen, the poroelasto-plastic rocks have exhibited 
higher fluid pressures when compared to the others cases, showing tha t not 
only plasticity plays an im portant role, but also tha t leak-off effects cannot 
be neglected.
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Figure 5.13: Influence of the leak-off in the width of the fracture in a poroelas- 
tic medium.
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Figure 5.14: Influence of the leak-off in the width of the fracture in a 
poroelasto-plastic medium.



CHAPTER 5. OIL PRODUCTION 87

3 jjriecr  
3 3 3 3 0 0 0 0 0  
3 3 0 3 5 6 0 3 0 3  
3 3 3 3 4 9 3 3 3 3  
3 3 3 3 4 2 3 3 3 3  
3 333  3 5 3 3 3 3  
3 3 3 3 2 5 3 3 3 3  
3 3 3 3 2 : 3 3 0 3  
3 3 3 3 1 4 3 3 3 3  
7 33c  5 
3 3 33 33 3

Figure 5.15: Effective plastic strains in an impermeable rock (k = 0 mD).
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Figure 5.16: Effective plastic strains in a permeable rock (k =  50 mD).
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Figure 5.17: Effective plastic strains in a permeable rock (k = 200 mD).
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Figure 5.18: Volumetric strains in an impermeable rock (k — 0 mD).
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Figure 5.19: Volumetric strains in a permeable rock (k = 50 mD).
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Figure 5.20: Volumetric strains in a permeable rock (k =  200 mD).
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Figure 5.21: Fluid pressures in an impermeable rock (k = 0 mD).
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Figure 5.22: Pore pressures in a permeable rock (k =  50 mD).
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Figure 5.23: Pore pressures in a permeable rock (k = 200 mD).
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Figure 5.24: Fluid pressures along the fracture (2D case).
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Figures 5.25 and 5.26 show a comparison between the aperture profiles 
obtained through 2-D and 3-D analysis in impermeable and permeable rocks. 
The results show very small differences which are associated with the corner 
contact in discrete elements. It seems tha t the tensile strength in the 3-D 
case has been slightly reduced in comparison with the 2-D case, causing a 
further increase in the length of the fracture.

The fluid pressures in the fracture are represented in Figure 5.27 for an 
impermeable rock and in Figure 5.28 for the permeable case (k — 50 mD). 
They show a good agreement with the ones presented by the 2D analysis.

Finally, the fluid pressure distributions along the fracture has been com­
pared against the 2-D case. As expected, the fluid pressure for the 3-D 
analysis has shown to be slightly lower than the 2-D case, as a consequence 
of the reduction in tensile strength caused by the corner contact in discrete 
elements.

The results obtained have shown a good agreement with the ones pre­
sented by Papanastasiou (1999c), proving the robustness of the numerical 
procedure adopted.
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Figure 5.25: 2D versus 3D aperture profiles in impermeable and permeable 
elastic rocks.
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Figure 5.26: 2D versus 3D aperture profiles in impermeable and permeable 
elasto-plastic rocks.
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Figure 5.27: Fluid pressures in an impermeable rock (k — 0 mD).
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Figure 5.28: Pore pressures in a permeable rock (k  =  50 mD).
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Figure 5.29: Fluid pressures along the fracture (3D case).
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In summary, the proposed computational tool has been shown to be a 
powerful tool in the analysis of hydraulic fracture problems in oil production, 
providing a detailed knowledge of crucial variables involved in the process, 
such as: fluid pressure, apertures, pore pressures and in situ stresses, among 
others.

In the following chapter, another application where the proposed numer­
ical procedure has proved to be particularly useful is investigated.



Chapter 6 

Slope stability

The study of previous works related with rock mass stability has stimulated 
the present author to verify the influence of water pressure in slope stability 
problems. The focus has been directed at plane slope failures, due to the 
simplicity of obtaining a solution through a limit equilibrium method. The 
analytical results will be compared against numerical examples, in order, to 
validate the proposed model, as well as, to indicate some of the limitations 
of the analytical approach.

6.1 Background
Stability of slopes has been extensively studied over recent decades. Some of 
the first studies developed by authors such as Blake (1967), Yu et al. (1968), 
Blake (1969), Wang and Sun (1970), Stacey (1971), have assumed th a t the 
rock mass behaves as an elastic continuum. This has stimulated the use of 
numerical tools, such as the finite element method, and photoelastic stress 
analysis. The results obtained have shown to be very interesting and assisted 
analysts in understanding some of the mechanisms involved in slope failure.

Recently, more complex studies incorporating elasto-plastic continuum 
analysis with solid-fluid interaction have been carried out by a number of re­
searchers. Griffiths and Lane (1999) have compared a series of slope stability 
results obtained by the FE methods against values predicted by equilibrium 
methods. A wide range of numerical examples involving no pore pressures, 
undrained clays slopes, and submerged and partially submerged approaches 
has been evaluated. The results have shown to be in good agreement with 
theory.

Ng and Shi (1998) and Cho and Lee (2001) have investigated the stability 
of an unsaturated slope due to intensive rainfall and its effect on soil slope

96
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behavior using a FE flow-deformation coupled analysis. They have observed 
th a t the stress field is modified by water pressure distribution controlled 
by the spatial variation of hydraulic conductivity during rainfall infiltration, 
which affects the shear strength on the potential failure surface.

Ehlers et al. (2004) has used FE procedures with a space-adaptive method 
and a triphasic formulation, which couples the solid deformation with the 
water and gas flow, to investigate the deformation and localization behavior 
of unsaturated soil. The results have shown a significant influence of the fluid 
saturation on the solid deformation up to the onset and the development of 
localization phenomena prior to a possible failure of embankments and slopes.

Although, a good insight has been brought by previous studies based on 
continuum approaches, a comparison against practical rock slope behavior is 
still limited, since in most practical slope problems, it is possible to  verify 
tha t the rock mass is not a continuum and its behavior is dominated by 
discontinuities such as bedding planes, faults and joints, as described by 
Muller (1959) and others.

The use of realistic numerical methods in modelling practical rock slope 
behaviour are in constant development, since, this type of problem involves a 
series of non-linearities imposed by contact, friction, development and prop­
agation of fracture, network and seepage flow, large rotation and translation, 
data acquisition, among others. These difficulties make the role of ana­
lysts more crucial in the verification of the results and in the knowledge of 
the assumptions involved. However, the use of equilibrium methods, de­
pending on the complexity of the problem investigated, can be considered 
almost unfeasible. Some of the studies developed using the discontinuum 
approach have been based on numerical methods such as the finite element 
method (FEM), discrete element method (DEM) and discontinuous defor­
mation analysis (DDA).

In the work developed by Kim et al. (1999), one of the tasks has been 
to incorporate in the DDA method, the hydro-mechanical coupling between 
rock blocks and steady water flow in fractures. The aim is to evaluate the 
influence of fracture flow on the stability. In the evaluation of a tunnel 
example, it has been observed th a t water pressure caused by gravitational 
forces are essential factors to be taken into account in the tunnel stability 
analysis.

Eberhardt et al. (2004) has used a Finite/D iscrete Element method which 
combines continuum and discontinuum methodologies, to understand the 
progressive failure in massive natural rock slopes as a function of slide plane 
surface and internal strength degradation. The failure process is triggered 
by the initial formation of brittle tensile fractures, which leads to the devel­
opment of shear degradation and mobilization.
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In a more recent work, Zhao et al. (2007) have simulated the spontaneous 
crack generation in brittle crustal rocks using particle simulation method. 
The deformation pattern  in a basement controlled reverse faulting, result­
ing in crustal fault propagation folding above rigid basement blocks have 
shown to be very similar with field observations, demonstrating th a t their 
newly-proposed discontinuous type of loading does not exaggerate the duc­
tile behavior of brittle rocks, being more suitable for dealing with this kind 
of problem, in comparison with the conventional continuous type of loading 
procedure.

From the wide variety of problems involving rock mass stability, the 
present work will focus on problems involving plane slope failures with water 
pressure effects. A comparison of the results against limiting equilibrium 
methods can be used to validate the numerical model. A description of the 
assumptions and limitations of the limit equilibrium method and the com­
putational tool developed will follow.

6.2 P lane failure

6.2.1 Introduction
Slope failure processes can be classified as plane, wedge, circular, toppling 
and ravelling. The first three slope failures allow the use of limit equilibrium 
methods to calculate a factor of safety (FOS ), since failure is related to 
simple sliding. Among them, plane failure is the simplest one and rarely can 
be found in practical rock slopes because of the difficulties in satisfying all 
the geometrical conditions required for such a failure to occur, (Figure 6.1). 
On the other hand, from the computational point of view it is particularly 
interesting, since in some cases a simple 2-D plane strain analysis can be used 
to address the problem.

According to Hoek and Bray (1977), the conditions necessary for sliding 
to occur on a single plane are:

(a) The slope face should be parallel or nearly parallel (within approximately 
±  20°) to the failure plane on which sliding takes place.

(b) The dip of the failure plane must be smaller than the dip of the slope 
face, i.e. tjjf > 'ipp.

(c) The angle of friction of a failure plane must be smaller than the dip of 
this plane, i.e. (f) < 7pp.
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Figure 6.1: Geometry of a plane slope failure with fissure filled with water.

(d) The resistance force provided by release surfaces must be negligible. Also, 
the rock mass must contain the release surfaces in order to define lateral 
boundaries of the slide. Alternatively, a failure plane passing through 
the convex “nose” of a slope is enough for failure to occur.

6.2 .2  P la n e  fa ilu re  an a ly s is

The stability of slopes with geological discontinuities are significantly affected 
by the orientation and inclination of these imperfections. Depending on a 
combination of these parameters a simple sliding of blocks, wedges or slabs 
can be avoided. Failure mechanisms in these slope are related to the coales­
cence and growth of the voids of the intact rock material and shear strength 
failure. In cases where angles between failure surfaces and slope face are 
around 30° to 70°, pure shear strength failure can occur. Also, slopes with 
this type of discontinuity surfaces present a more unstable condition than 
the ones with vertical and horizontal discontinuity surfaces.

In the analysis of simple sliding occurring in a plane failure where the 
crack is filled with water, several assumptions are made as described below:

(a) W ater enters through the tensile crack in the upper surface of the slope 
and seeps along the fissure until the sliding surface strikes the slope face 
where it escapes at atmospheric pressure. The water pressure gradient in 
the tension crack has been assumed to increase linearly from the upper 
surface of the slope until it strikes the sliding surface. Then, along the 
sliding surface a linear decrease is assumed until the failure surface day­
lights the slope face, as shown in Figure 6.1. For general slope designs, 
this pressure distribution is reasonable. Although, a more conservative
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assumption could be made assuming tha t the escape of the water is 
blocked, instead of the zero pressure condition.

(b) All the forces involved during the sliding process, such as the weight of 
the sliding block ( W) ,  the uplift force generated by the water pressure in 
the sliding surface ( U)  and the force caused by the water pressure in the 
tension crack (V ), are considered to act at the centroid of the rockfall. 
This implies th a t no moments tha t could cause rotation and lead to 
failure are being taking into account. Although in actual slopes this 
assumption is not particularly true, the errors introduced are sufficiently 
small to allow us to neglect them.

(c) Coulomb’s friction law is responsible for the shear strength of the sliding 
surface. It is im portant to notice tha t the effective normal stress (<j'n) 
is increased by the water pressure, leading to a decrease in the effective 
shear stress ( r ;). The cohesion (c), normal stress (<7n), friction angle (4>) 
and water pressure (p) are related by the equation given below:

t ' = c +  (an 4- p) tancf) (6-1)

(d) The slope is considered to have a unit thickness.

The cohesive and frictional properties of materials, such as many grav­
els and sandy soils and most hard rocks, are not significantly affected by 
the presence of water, i.e., they are considered to be constants even when 
changes in moisture content of the soils occurs. Therefore, modifications in 
the effective normal stress along the failure surfaces are entirely related to 
the changes in the water pressure distribution. On the other hand, in the 
case of clays and soft rocks changes in moisture content must be take into 
account as cohesion and friction angle are significantly affected.

6.2.3 Factor of safety in a slope
An interesting approach to verify the stability of the block is the use of a 
polygon of forces, as shown in Figure 6.2. It becomes clear th a t in the block 
a resisting force (R),  which is composed of friction force (/) and cohesion 
force (cl), acts against the forces tending to induce the sliding of the block 
(S ), which is formed by the weight of the block ( W) ,  the uplift force (U)  
and lateral force ( V)  due to water pressure. The sliding process in a slope is 
initiated when R  is insufficient to support S , i.e., the balance of forces acting 
in the block, which is known as a limit equilibrium condition, is exceeded by 
S. Therefore, it is reasonable to define a param eter which quantifies the ratio
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between the forces resisting/inducing sliding in a slope. This parameter is 
known as the factor of safety and for the problem presented in Figure 6.1 
can be derived as:

=  cA +  (Wcosjipp) -  U -  Vsin(ipp)) tan(<j>)
W  sin(ipp) +  Vcosfyp)

There are three different situations regarding the magnitude of the FOS. 
For FOS < 1, sliding of the block is expected, since S > R. On the other 
hand, for FOS > 1, the block should remain static, since R > S. The critical 
situation is the case for FOS = 1, because the block is in an imminent stable 
condition, and any disturbance could initiate the process of sliding of the 
slope.

Weight of the block ( W ).

-  Uplift force of the water (U). 

Lateral force of the water ( V). 

Effective normal force (TV’). 

Friction angle (cp).

Dip of failure plane angle (ipp). 

Friction force (/).

-  Cohesion force (cl).

F = R/S
Figure 6.2: Polygon of forces acting on a slope.

In practical slope design problems, a conservative increase in the FOS is 
commonly applied. For example, in mine slopes values for the factor of safety 
are around 1.3 since they are not required to remain stable for long period 
of time. For critical slopes such as haul roads and im portant installations, a 
factor of safety of 1.5 is necessary.

R= f + cl
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6.3 Numerical results
Three numerical examples will be used to validate and demonstrate the ac­
curacy and capabilities of the numerical model proposed. The degree of 
complexity of the examples will be increased as confidence is gained. Firstly, 
a shear box test will be used to check the accuracy and reliability, since its 
analytical solution is simple to be obtained. Then, the sliding of an active 
passive slope will be investigated and results will be compared with analyt­
ical values obtained by a limit equilibrium theory. Finally, the failure of a 
fractured slope subject to a excavation process will be analysed.

6.3.1 S h ea r  B ox T est

The shear box test solved below is very simple and used as a benchmark to 
verify the effects caused by the fluid pressurization in the fracture. The aim 
is to check tha t the resultant normal force acting in the bottom of the block 
is decreased by the fluid pressure of the pipe, causing the block to slide more 
easily as a result of the reduction in the friction force.

In the example, a block with dimensions of 0.1 x 0.02 metres is compressed 
against a rigid surface with dimensions of 0.2 x 0.02 metres. Both have been 
assumed to have a unit thickness. Firstly, a normal load of 100000 N acts on 
the block. Then, a tangential force of 420000 N is slowly applied on the left 
side of the block in order to initiate its sliding, as shown in Figure 6.3.

Sliding block

hxpimiU

F ; anpcrm al 4 0 4 1 4 ? 2 8

< 2 6 6 -_P*Pe
:> ■ o ----------------------o ----------------------o — ^

4 2 3 2 1 2 0 19 i s 17
2 4 3 9 3 S 3 6 3 5 i  I i i

J ______________ 2 ______________ _LQ____________ 1 1 ____________ 1 2 _____________ 1 3 _____________ 1A_____________ I f . ____________

Rigid surface

Figure 6.3: Layout of the shear box test.

Three different cases have been investigated. In the first case, the fluid is 
not pressurized. Block and rigid surface are impermeable materials. Then, 
in the second case, a constant pressure of 0.25 MPa prescribed for all pipe
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nodes. Block and rigid surface are still considered impermeable materials. 
Finally, in the last case a constant pressure of 0.25 M Pa is prescribed for all 
pipe. Block and rigid surface nodes are now considered permeable materials.

The contact is based on a penalty formulation and a Coulomb friction 
law is employed to model the frictional sliding. The material and contact 
properties used are shown in Table 6.1.

M aterial Properties Value
Young Modulus 6.5 GPa

Poisson 0.24
Mass density 1070 kg/m 3

Contact Properties Value
Normal stiffness 2.4 G Pa/m

Tangential stiffness 0.24 G Pa/m
Friction coefficient 0.78

Table 6.1: M aterial and contact data  for the shear box test.

A very simple analytical solution can be obtained as described below:

-  Calculate total (ctn) and effective (a'N) normal stress.

aN =  FN /  L T =  100000 /  0.1 1 =  1.0 M P a
=  <Jn — pnf =  1.0 — 0.25 =  0.75 M P a  (6.3)

where, is the normal force, L is the length of the block, T  is the 
thickness and pnf is the fluid pressure.

-  Calculate total (r) and effective ( r )  shear failure.

r  =  pi (Tm =  0.78 1.0 =  0.78 M P a
t  =  p <j'N =  0.78 0.75 =  0.586 M P a  (6.4)

-  Calculate maximum tangential displacements (u ) and (u) .

u — t  / K t  =  0.78/240 =  0.00325 m 
u = r / K t  =  0.586/240 -  0.00244 m (6.5)

In Figure 6.4 for case 1, a good agreement with the analytical solution 
has been obtained in the middle of the block (node 26) as expected. The 
shear stress value for 0.00326 m of tangential displacement is 0.782 MPa, 
getting very close to the analytical values obtained in Equations 6.5 and 6.4
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respectively. In the adjacent sides to the middle of the block, the deformation 
has been responsible for the differences in the shear stress and displacement 
seen.

The results for cases 2 and 3 shown in Figures 6.5 and 6.6 respectively, 
confirms tha t the pressure in the pipe is responsible for a decrease in the 
effective normal stress, consequently reducing the friction force acting in the 
interface between the block and the rigid surface. In the 2 cases the effective 
tangential stress for 0.00244 of tangential displacement is 0.586 MPa, showing 
a very close match to the analytical values obtained in Equations 6.5 and 6.4 
respectively.

Excellent accuracy has been achieved in this simple example.

1 4 0 0
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1200 N o d e  25

 N o d e  26
1000

 N o d e  27

8 0 0  N o d e  6</><1>
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^  6 0 0ro<un(/>
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Figure 6.4: Shear stress versus tangential displacement in case 1.
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Figure 6.5: Shear stress versus tangential displacement in case 2
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Figure 6.6: Shear stress versus tangential displacement in case 3
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6.3.2 Sliding of an active passive slope
In this example a solid-fluid interaction analysis is carried out in the assess­
ment of the stability of a loose rockfall in a slope where the fissure is filled 
with water to the top and allowed to drain to the end of the fracture. The 
free surface is considered to be at the top of the slope and a gravity load 
is applied. The to tal time of the evaluation is 70 s (seconds), where in the 
first 10 s the rock mass is not allowed to have any displacement in the hori­
zontal direction. Then, in the following twenty seconds the constraints have 
been progressively released. Finally, the block is free to slide. The boundary 
conditions applied and the layout of the problem are shown in Figure 6.7.

The numerical model consists of a 2-D plane strain analysis with linear 
triangular elements employed for the rockfall and main slope, and a 1-D 
linear element for the network flow. The constitutive model is a Rankine 
rotating crack formulation with softening. The contact is based on a penalty 
formulation and the frictional sliding is controlled by the Coulomb friction 
law.

Two different cases have been investigated where the rockfall and main 
slope are considered impermeable rock. First, the frictional sliding is con­
trolled by a Coulomb friction law where cohesion at the interface is not taken 
into account. Then, a degree of complexity is added when the cohesion be­
tween the rock and main slope is considered in the analysis of the slope 
stability.

Case 1 : Cohesion in the interface betw een the rockfall and main 
slope is neglected.

The aim is to check the influence of the water pressure in a discontinuity 
between the main slope and rockfall using a network flow analysis. The 
main aims are to calibrate the numerical model for different values of factor 
of safety (FOS),  and also, to obtain a better understanding of the water 
pressure’s effect in the sliding of a rockfall. The focus has been directed a t the 
initiation of sliding, due to a limitation in the analysis for large movements. 
The variation in the FOS  is obtained through a modification in the friction 
angle ((f)) in the interface of the fracture, see details in Table 6.2. The material 
properties and contact data  used are shown in Table 6.3. Finally, the input 
parameters necessary for the network flow analysis are given in Table 6.4.

Friction angle (°) FOS
63.0 1.00
65.2 1.10
68.7 1.30
71.3 1.50
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Figure 6.7: Layout of the problem.

Table 6.2: Factors of safety (FOS) evaluated for different friction angles.

Main slope Rockfall
Material Properties Value Material Properties Value

Young Modulus 50.0 GPa Young Modulus 20.0 GPa
Poisson 0.2 Poisson 0.25

Mass density 2600 kg/m 3 Mass density 2500 kg/m 3
Tensile strength 20 MPa Tensile strength 0.35 MPa
Energy release 6000 Pa.m Energy release 200 Pa.m

Contact Properties Value Contact Properties Value
Normal stiffness 3.0 G Pa/m Normal stiffness 3.0 G Pa/m

Tangential stiffness 0.3 G Pa/m Tangential stiffness 0.3 G Pa/m

Table 6.3: Material properties and contact data.
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Network flow data Value
Normal stiffness of the fracture 5.0 G Pa/m

Fluid compressibility 0.5 G Pa" 1
Dynamic viscosity of the fluid 0.001 Pa.s

Residual aperture 0.05 mm
Initial aperture tensile crack 3.0 mm

Initial aperture failure surface 0.3 mm
Initial fluid pressure 0.0 Pa
Fluid mass density 1000 kg/m 3

Gravitational acceleration 9.81 m /s2

Table 6.4: Input da ta  for the network flow problem in case 1.

Figures 6.8 to 6.16 show the results obtained from the network flow analy­
sis for the range of as given in Table 6.2. They provide a good insight into 
the discussion th a t will follow.

For cj) value of 63°, it can be seen tha t the friction force acting at the 
contact surface has been overcome by the tangential forces, Figure 6.13 (a). 
This limit condition implies th a t a failure point has been reached and the rock 
mass a t tha t particular state begins to slide. However, for <fi values of 65.2°, 
68.7° and 71.3° (Figures 6.14(a) to 6.16(a)), a limit equilibrium condition 
takes place, characterizing a stable condition. This behavior is emphasized 
through the verification of the vertical displacements in Figure 6.8.

Figures 6.9 and 6.10 show an evolution in time of the water pressure 
along the tensile crack and failure surface respectively. The corner between 
the tensile crack and the failure surface is chosen as the initial crack length 
(0 m). Consequently, the to tal length is based on the top of the slope (7.676 
m) in the case of the tensile crack and on the point where the drain is located 
(11.15 m) in the case of the failure surface. The pressure distribution along 
the tensile crack has a gradient increase toward the failure surface. Then 
a linear decrease occurs until the failure surface daylights the slope face. 
This is in agreement with the value estimated by the theory as described in 
Subsection 6.2.2.

Also, a decrease in the water pressure is shown (path A to B) for all (J> 
values, as illustrated in Figures 6.13 to 6.16, item (c). This drop in the fluid 
pressure is caused by the abrupt sliding of the block, which increases the 
aperture of the fissure in the tensile crack region. Due to the large volume of 
water in the tensile crack in comparison to th a t found in the failure surface, 
a more sensitive change in pressure is noticed in the failure surface, as shown 
in Figures 6.9 and 6.10. Then, the water pressure starts to increase (path 
B to C) for all </> values, as illustrated in Figures 6.13 to 6.16, item (c).
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The increase in pressure is given by a more uniform movement of the slope 
allowing the volume of water in the failure surface to be refilled.

In Figures 6.13 to 6.16, items (d) and (b), it can be observed tha t the 
effective normal stresses in the beginning of the failure surface is zero, conse­
quently, it affects the effective tangential stresses leading to a redistribution 
of the friction forces along the failure surface. This results from the fact tha t 
the contact between the main slope and failure surface has been lost, this is 
attributed to the lateral and uplift forces applied to the rockfall. For this 
particular friction model these effects have been compensated by the redistri­
bution of the forces. However, when a more complex contact model in which 
cohesion is taken into account is considered, it is believed th a t these effects 
will be more im portant in the evaluation of the slope stability. This will be 
checked in the following case.
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Case 2 : Cohesion in the interface between the rockfall and main 
slope are considered.

A similar investigation, as described in the previous case, is carried out 
in the following problem. The main goal is to  compare the results obtained 
in the previous analysis against the ones presented below. The difference 
arises from the fact tha t the cohesion between the main slope and rockfall 
are considered a t this time. This implies th a t in the interfaces between 
rockfall and main slope where the contact forces have been lost as shown in 
the previous case, the resisting forces will be more affected.

The FOS  will now be a function of the cohesion coefficients as described 
in Table 6.5 and the friction angle is assumed to be a constant value of 30°. 
The material, contact properties and input parameters used in the analysis 
are exactly the same as given by Tables 6.3 and 6.4 respectively.

Cohesion coefficient (kPa) FOS
85 1.00
97 1.10
121 1.30
145 1.50

Table 6.5: Factors of safety (FOS)  evaluated for different cohesion coeffi­
cients.

For c values of 85 kPa and 97 kPa the sliding process occurs more abruptly 
compared to c of 121 kPa and 145 kPa, which causes a higher drop in the 
water pressure. First, there is a decrease of the fluid pressure in the tensile 
crack which is followed by a drop in the water pressure in the failure surface. 
It is im portant to  notice th a t a small change in the water pressure in the 
tensile crack region causes a considerable drop in the fluid pressure in the 
failure surface, as the volume of water in the failure surface is smaller than in 
the tensile crack, which becomes more sensitive to variations. Following that, 
a more uniform sliding process occurs, causing the rate of volume change in 
the fissure to be very small, allowing a proportional refilling procedure to 
occur. For c values of 85 kPa and 97 kPa, the increase in water pressure is 
enough to generate an unstable condition, resulting in the sliding of the rock 
mass. On the other hand, even the addition of the uplift force generated by 
the water pressure has been shown to be insufficient to affect the stability of 
the block for c values of 121 and 145 kPa.

It is well known th a t the effective normal stress (a'n) is highly affected 
by changes in water pressure and consequently, the effective tangential stress 
( r  ) distribution. Items (b) and (d) from Figures 6.22 to 6.25 illustrate this
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phenomenon. For all c values, higher tensile forces act in the initial crack 
length, while, higher compression forces can be seen at the end of the crack 
length, as a result of the water pressure distribution. Consequently, lower 
friction forces are found in the initial crack length of the failure surface.

It is im portant to note tha t for c of 121 kPa, effective tangential stresses 
acting in the first 1.014 metres of the failure surface are non-existent, because 
the high uplift and lateral forces encountered in tha t region are enough to 
avoid any contact between the rockfall and main slope. The same behavior 
can be observed for a c value of 145 kPa.

The results have shown to be in agreement with what is expected. The 
increase in the value of the cohesion coefficients have led to an increase in the 
friction force and a consequent reduction in the sliding of the rockfall. Also, 
the effective normal stress has presented some variations in the behaviour 
according to  changes occurring in the water pressure distribution. Finally, 
it can be seen th a t some discrepancies occur in the expected behavior of the 
slope based on the factor of safety predicted by the limit equilibrium theory 
and the numerical results obtained, since, no sliding was expected for factors 
of safety higher or equal to 1.0. The numerical results indicate tha t failure 
have occurred for FOS of 1.0, 1.2 and 1.3. The main factors th a t can be 
attributed to  explain the differences are:

1. In the limit equilibrium theory, the water pressure distribution in the 
failure surface is not considered to suffer any modification during the 
sliding of the block. However, the numerical results in Figures 6.19, 
items (c) and (d), have shown th a t higher values can be found in the 
failure surface, which leads to a reduction in the resisting force. The 
explanation arises from the fact tha t the sliding of the block allows the 
formation of a higher hydraulic column in the tensile crack. Conse­
quently, a higher gradient of fluid pressure will take place in the failure 
surface.

2. Deformations occur in the rockfall along the failure surface during the 
sliding process which affects the effective normal stress distribution, 
and consequently, the resisting forces, as illustrated in Figures 6.22 
and 6.23, items (b) and (d).

3. Numerical instabilities caused by limitations in the formulation used. 
The velocity of the sliding process is crucial for the stability of the 
network flow analysis. The formulation used is acceptable for fluid 
flows occurring at low velocities.

Despite its limitations the proposed framework has been shown to be of 
particular interest from the practical point of view. The results have shown
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tha t a factor of safety of 1.3 should only be used in situations where the 
stability of the slopes are not required to remain for long period of time, 
while, FOS =  1.5 can be used for critical slopes. These values are normally 
applied in practical situations.
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Figure 6.23: Shear strength characteristics and water pressure distribution 
for c =  97 kPa: (a) Effective tangential stress vs effective normal stress 
at node 56 during 34.95 s of analysis time, (b) Effective tangential stress 
distribution along the failure surface, (c) Water pressure as a function of 
the effective normal stress at node 56 during 34.95 s of analysis time, (d) 
Effective normal stress distribution along the failure surface.
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Figure 6.24: Shear strength characteristics and water pressure distribution 
for c — 121 kPa: (a) Effective tangential stress vs effective normal stress 
at node 56 during 70 s of analysis time, (b) Effective tangential stress dis­
tribution along the failure surface, (c) Water pressure as a function of the 
effective normal stress at node 56 during 70 s of analysis time, (d) Effective 
normal stress distribution along the failure surface.
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Figure 6.25: Shear strength characteristics and water pressure distribution 
for c =  145 kPa: (a) Effective tangential stress vs effective normal stress 
at node 56 during 70 s of analysis time, (b) Effective tangential stress dis­
tribution along the failure surface, (c) Water pressure as a function of the 
effective normal stress at node 56 during 70 s of analysis time, (d) Effective 
normal stress distribution along the failure surface.



CHAPTER 6. SLOPE S T A B IL IT Y 130

6.3.3 S ta b i l i ty  o f  a  f r a c tu r e d  s lope  a f te r  e x c a v a tio n  
p rocess .

One of the major difficulties in excavation process is to predict the failure of 
the slope formed. From the computational point of view, the numerical model 
must be capable of dealing with a series of non-linearities and discontinuities 
as discussed previously in Section 6.1. Therefore, it provides a real challenge 
to the current model proposed.

The following example comprises an approximation to a real excavation 
problem, since the excavated part of the soil is neglected and substituted by 
displacement restrictions which will be slowly released after an initial stress 
state is reached, allowing the sliding of the rockfall. The soil is considered 
fully saturated and an undefined boundary condition is assumed on the ex­
cavated part of the soil, allowing the outflow in tha t region, but not the 
inflow. The geometry and boundary conditions of the problem are shown in 
Figure 6.26. Three initial fractures are assumed in the soil mass. These are 
indicated by the red lines in Figure 6.26.

Fixed horizontal 
displacem ents

Constrained displacem ents to be 
released  Undefined boundary

Fixed horizontal 
displacem ents

Fixed horizontal and 
vertical displacem ents

Atmospheric pressure

Figure 6.26: Layout of the problem.
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A fully couple 2D plane strain analysis is used to solve the problem. The 
constitutive behaviour of the soil is represented by a Mohr-Coulomb rotating 
crack model proposed by Klerck (2000). And seepage and network flows are 
based on Darcy’s and cubic laws respectively. The contact is based on a 
penalty formulation and friction sliding along joints is defined by the well 
known Coulomb’s friction law. The material properties and contact data are 
given in Tables 6.6, 6.7 and 6.8.

The main goal is to demonstrate th a t a more accurate assessment of the 
slope failure in excavation problems can be made using the proposed model. 
In order to evaluate the model proposed, results will be compared against a 
more simple analysis (standard model), where, seepage or network flow are 
not considered.

Skeleton data Value
Young’s Modulus 1.0 G Pa

Poisson ratio 0.24
Mass density of the skeleton 1700 K g/m 3

Cohesion 26400 Pa
Friction angle 49°
Dilation angle 5°

Tensile strength 13000 Pa
Energy release 100 Pa.m
Contact data Value

Normal penalty 1.0 G Pa/m
Tangential penalty 0.1 G Pa/m

Cohesion 10000 Pa
Friction angle 30°

Table 6.6: Skeleton properties and contact data.

Network flow data Value
Normal stiffness of the fracture 5.0 G Pa/m

Fluid compressibility 0.5 G Pa” 1
Dynamic viscosity of the fluid 0.001 Pa.s

Residual aperture 0.03 mm
Initial aperture tensile crack 0.3 mm

Initial aperture failure surface 0.03 mm
Fluid mass density 1000 K g/m 3

Gravitational acceleration 9.81 m /s2

Table 6.7: Input data for the network flow problem.
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Seepage flow data Value
Intrinsic permeability 2.4670E-11 m2
Grain bulk modulus 3.11 GPa
Fluid bulk modulus 2 GPa
Fluid mass density 1000 K g/m 3
Grain mass density 1875 K g/m 3

Dynamic viscosity of the fluid 0.001 Pa.s
Porosity 0.2

Saturation 1.0
Biot’s number 1.0

Table 6.8: Input data for the seepage flow problem.

In the beginning (1 second), an initial geostatic condition is obtained, 
considering the soil mass intact. At this stage pore pressure distribution is 
represented in Figure 6.27.

Then, an excavation process occurs, causing the pore pressure in the 
daylight surface to drop to an atmospheric pressure value, as shown in Figure 
6.28. At this point the displacement are still being slowly released. When 
the elapsed time reaches 3 seconds, the slope is completely free to slide.

At 15 seconds, higher plastic deformations are noted in rock bridges zones 
as shown in Figure 6.32. The rock bridges seems to be very close to a failure 
point, since th a t failure factor value is almost 1.0. At this stage, pore pressure 
have decreased in the soil mass as seen in Figure 6.30.

Finally, after 20 seconds material failure near the rock bridges occurs and 
the slope starts to slide down, as can be seen in Figure 6.32.

A comparison of the vertical displacements in Figure 6.33 shows tha t in 
a standard dry analysis where seepage or network flow are not considered, 
failure does not occur. However, the analysis carried out using the numerical 
model proposed have demonstrated th a t failure is expected, since pressures in 
the joints and in the soil decreases effective normal stress, and consequently 
effective tangential stress, reducing friction forces, as shown in Figure 6.31. 
Therefore, facilitating the failure of the rock bridges and sliding of the rock 
mass.

The numerical model proposed has shown to be a powerful tool in the 
assessment of slope stability problems, often seen in excavation processes. It 
provides useful data th a t can help analyst to have a better understanding of 
the failure mechanism involved in the process, since a more complex analysis 
which accounts for the constitutive behaviour of the soil, seepage and network 
flows is taken into consideration.
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Figure 6.28: Initial pore pressure in the soil after excavation.



CHAPTER 6. SLOPE S T A B IL IT Y 134

J  6  3 J 6  ti

A)

Figure 6.29: Effective plastic deformations in the rock bridges at 15 seconds.
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Figure 6.30: Pore pressure distribution after 15 seconds of elapsed time.
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Chapter 7 

Conclusions and Final Remarks

In this thesis, a series of developments have been proposed in order to tackle 
some of the limitations presented by current numerical models for oil produc­
tion and slope stability analysis. The main tasks included the implementation 
and validation of soil-pore fluid interaction analysis, a procedure to stabilize 
spurious singular modes in seepage quadrilateral and hexahedral elements, 
development of a computational model for analysis of coupled hydro-fracture 
flow in porous media, verification of the influence of the plastic zones in a 
fractured porous medium and assessment of factor of safety for slope stability.

7.1 C onclusions
Significants progress has been made in the main topics addressed and an 
efficient numerical tool capable of dealing with the related problems has 
been developed. Special attention has been given to the development of 
new techniques to reduce the computational cost of coupled hydro-fracture 
flow in porous media based on explicit finite element procedures. Namely, 
a master-slave approach to link seepage and network flows and an explicit- 
explicit subcycling scheme have been introduced. Also, the application of 
the numerical model to  the investigation of the influence of the plastic zones 
in a fractured porous medium and assessment of factor of safety for slope 
stability problems has been undertaken.

A more detailed list of the achievements and conclusions of the thesis are 
described in the following.

137
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7.1.1 Soil-pore fluid interaction analysis
One of the first tasks necessary to achieve an efficient numerical model capa­
ble of dealing with problems tha t the present work is particularly directed at, 
has been to couple skeleton deformation and flow into the porous material. 
This is crucial to  provide a correct evaluation of in situ stress fields, since, 
pressure dependent yield criteria used to model the constitutive behaviour of 
soils and rocks are based on effective stresses, which are highly affected by 
alterations in pore pressure.

The implementation has been based on a set of equations proposed and 
discussed in details by several authors, such as, Zienkiewicz et al. (2001) and 
Lewis and Schrefler (1998). However, in the literature review undertaken 
by the author, the u-p formulation adopted in the present work has never 
been employed using an explicit time integration scheme as proposed here. 
The main reasons for rejecting this time integration scheme are related to 
its conditional stability and high computational cost. The main reason for 
the adoption of an explicit integration scheme has been the fact tha t in 
large industrial problems the computational effort necessitated by implicit 
methods are prohibitive. Furthermore, in problems involving crack initiation 
and propagation, and complex contact situations, the lack of convergence 
of implicit methods is a well known major shortcoming. In such cases, the 
choice of an explicit method has shown to be particularly attractive.

As shown throughout the examples provided in this thesis, a robust nu­
merical implementation has been achieved for 2-D and 3-D cases.

7.1.2 Stabilization of spurious singular modes
One of the main advantages of explicit methods is the use of one point quadra­
ture elements because substantial reductions are achieved in the number of 
evaluations of the semi-discretized gradient operator and constitutive equa­
tions. However, mesh instabilities are well known to occur due to this reduced 
integration scheme.

To overcome this problem in the present work a stabilization procedure 
proposed by Liu and Belytschko (1984) and Belytschko et al. (1984) has been 
adopted. The stabilization technique has been previously applied by the au­
thors cited above in the solution of thermal problems. Its use in seepage 
problems has been addressed by the present thesis for the first time. The 
patch test problem solved has shown that spurious zero-energy modes have 
been eliminated by a rank sufficient matrix formed by an element conductiv­
ity m atrix using a one-point quadrature and a stabilization matrix, proving 
to be an efficient and accurate solution procedure, as shown mainly in Section
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3.9.

7.1.3 Coupled hydro-fracture flow in porous media
The strategy used to simulate hydro-fracture flow in porous media is based on 
a staggered solution scheme employing a Finite/D iscrete Element Method. 
The major contributions presented here are the development and validation 
of a master-slave procedure to link seepage and network flows and an explicit- 
explicit subcycling scheme, both discussed in Chapter 4.

The use of the master-slave technique has been shown to be particularly 
attractive in large scale calculations where significant decrease in computa­
tional costs can be achieved. In 2-D cases, the number of variables to  be 
solved are reduced from four or six, necessary by double noded and triple 
noded formulations respectively, to only two. This reduction is even more 
significant in 3-D analysis, where only three or four variables, in tetrahedral 
and hexahedral elements respectively, are necessary to be solved by the pro­
posed method. On th  other hand six or nine in tetrahedral elements and nine 
or twelve in hexahedral elements are required to be solved by the other two 
formulations cited above. Also, it has been shown by means of a dynamic 
filtration example th a t mass conservation is preserved. The limitation is re­
lated to problems where a potential drop between network pressure and pore 
pressure occurs.

Large aperture increases have been shown to reduce significantly the time 
steps, as a result of the quadratic increase of the intrinsic permeability and 
a decrease in the fracture storativity. In order to overcome this problem an 
explicit-explicit subcycling scheme has been proposed. This has provided a 
84% savings in CPU times for the 2-D case evaluated in comparison with 
standard methods, showing the procedure to  be very efficient.

7.1.4 Plastic zones in a fractured porous medium
Plastic deformations and leak-off effects are the main factors responsible for 
the determintion of aperture, length and network pressure in the fractures, 
and pore pressure in the rock. The analyses carried out in this thesis have 
investigated these effects for different permeabilities of the rock, first, in a 
small scale problem and then, in a large scale case.

For the small scale problems, highly permeable poroelato-plastic rocks 
have resulted a shorter length and wider opening. Also, the vertical stresses 
show a more uniform distribution near the wellbore region and a steeper 
gradient near the crack tip. These are a consequence of its higher diffu­
sion, which affects the effective stresses in far field regions causing a more
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widespread development of inelastic deformations.
In the large scale case, two distinctive behaviours related to the aperture 

sizes have been noted. Impermeable rock have exhibited a wider opening 
near the wellbore and slightly smaller near the crack tip when compared 
against a permeable rock with intrinsic permeability of 50 mD. However, for 
k = 200 mD, the aperture has been wider throughout the entirely fracture 
length.

In the first case, the extra-stiffness induced by the increase in pore pres­
sure is predominant in comparison to the inelastic deformations in the region 
near the wellbore. On the other hand, in the second case, inelastic deforma­
tions have overcome pore pressure effects, causing an increase in the aperture 
along the fracture.

Rocks of higher permeability have presented a large fluid lag region ahead 
of the crack tip, which results in higher pressure gradients. Consequently, 
they require a higher fluid pressure to  open the fracture, leading to a higher 
shearing of the rock.

7.1.5 Factor of safety for slope stability
In the present work, the factor of safety obtained by limit equilibrium the­
ory in plane slope failures has been compared to results produced by the 
numerical model proposed in Chapter 6. Both the rockfall and main slope 
are considered as impermeable rocks, and frictional sliding is controlled by a 
Coulomb friction law. First, cohesion in the interface has not been consid­
ered. Then, in a second case, cohesion between the rock and main slope has 
been taken into account.

In the first case, the effective normal stresses have disappeared in the 
begining of the failure surface. Consequently, a redistribution of the friction 
forces along the failure surface is obtained. The main reason for this is the 
fact tha t contact between main slope and failure surface has been lost. This 
phenomenon is a ttributed  to lateral and uplift forces applied in the rockfall. 
A good agreement has been observed between the factor of safety (F O S ) 
obtained by limit equilibrium theory and results obtained by the numerical 
model. For F O S  >  1, no sliding of the rockfall have been seen. However, for 
F O S  = 1, which is an unstable condition failure has occurred.

In the second case, an increase in the friction force has been noted for 
higher cohesion coefficient, consequently, reducing the sliding of the rockfall 
as expected. Also, results have shown th a t water pressure distributions are 
affected during the sliding process, causing variations in the effective normal 
stresses, consequently altering the friction forces. Some differences have been 
observed between failures occurring in the examples and factor of safety
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predicted by limit equilibrium theory. Failures have occurred for FOS of 1.0,
1.2 and 1.3, which was not expected. The main reasons are attributed to:

1. W ater pressure distribution in the failure surface is not considered to 
suffer any disturbance during the sliding of the block in the limit equi­
librium theory. However, numerical results presented in Figures 6.19, 
items (c) and (d), have shown higher values at the failure surface, which 
leads to a reduction in the resisting force. A higher hydraulic column 
in the tensile crack is seen as a result of the sliding of the block. Con­
sequently, a higher gradient of the fluid pressure occurs at the failure 
surface.

2. Deformations occurring in the rockfall along the failure surface during 
the sliding process which affect the effective normal stress distribution, 
and consequently, the resisting forces, as illustrated in Figures 6.22 and 
6.23, items (b) and (d).

3. Numerical instabilities caused by limitations in the formulation used. 
The velocity of the sliding process has been shown to be crucial for 
the stability of the network flow analysis. The formulation used is 
acceptable to fluid flows occurring at low velocities only.

Despite its limitations the proposed framework was shown to be of par­
ticular interest from the practical point of view. The results have shown that 
a factor of safety of 1.3 should only be used in situations where the stability 
of the slopes are not required to be guaranteed for a long period of time, 
while, FOS =  1.5 can be used for critical slopes. These values are normally 
applied in practical situations.

7.2 Suggestion  for future research
Results presented in previous chapters have shown tha t considerable advances 
have been achieved in this thesis. The simulation of coupled hydro-fracture 
flow in porous media has proved to be a powerful tool to deal with oil produc­
tion and slope stability analysis. However, further developments are needed 
to improve the computational model. A list of possible aspects related to the 
topics presented in this thesis th a t could contribute to the continuity of this 
research are described below:

-  Seepage field - Oil extraction is a multi-phase system where a mixture 
of injected fluid, crude oil and gases are present. Therefore, the incor­
poration of a formulation th a t includes various fluid phases into the
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existing computational model will provide a better understanding of 
the overall process.

-  Network field - Development of formulations capable of dealing with 
flow at higher velocities and mixtures of fluid injected, crude oil and 
gases, will improve the numerical model. Also, modifications in the im­
plementation can be made in order to  allow large rotations and move­
ments as normally occur in slope stability problems. Finally, imple­
mentation of a triple-noded element should be interesting to account 
for problems where potential drops are important.

-  Mechanical field - Implementation of an effective adaptivity/rem eshing 
technique to provide a more accurate analysis of the crack initiation 
and propagation.

-  Thermal field - the heat exchange between fluid injected, gases, oil 
and porous rock causes a variation in the material properties of the 
fluids and rock, such as mass density, viscosity, strength among others, 
influencing the overall analysis.

-  Mass Transport field - Non-natural fluids injected into fractures in­
clude in their composition solid particles which are deposited along the 
crack walls in order to avoid closure. These creates a “shield” around 
the fracture reducing the flow into the rock mass and increasing the 
pressure in the fracture.
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Appendix A

Hourglass control in 3D 
seepage elem ents.

Hourglass modes are a result of reduced integration techniques used in fi­
nite differences schemes to increase their performance. A mesh stabilization 
technique for eliminating spurious singular modes proposed by Belytschko 
et al. (1984) is applied in this work for hexahedral seepage elements in three 
dimensions.

The particular method consists in deriving a rank-sufficient m atrix com­
posed of a one-point-quadrature stiffness and stabilization matrix. A detailed 
description of their formulations is given below.

A .l  G eneral form o f rank sufficient m atrix
In the present method the standard element, e, conductivity m atrix , K ^ ,  
is augmented by a stabilization m atrix , K ^ fe, to produce a rank sufficiency 
matrix:

K('» =  K<e)+K W  (A.l)
In this formulation the pressure gradient, Vp, is approximated by a Taylor 

series expansion by:

V p(£ ,77, c) =  B a(0)pa +  B a^ (0)pa £ +  B a,r,{0)pa V +  B aiC(0)pa C +  (A.2) 
2Ba^ (0 )p a £p +  2B aj7?c(0)po 77C +  2B a^ ( 0)pa ££ , a = 1, . . . ,  8

where, £, 77 and £ are the natural coordinates of the tri-unit cube and 0 
denotes ‘evaluated at (£, 77, £) =  (0, 0, 0) ’; comma denotes partial differen­
tiation in B a (.); and B a are the generalized gradient operators of the shape 
functions N a given by:
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Aa,
N.a,y
N n

Na — - (1  +  £a)(l +  7?a)(l +  Ca)

The general form of the and can be w ritten as:(e)

K 'e) =  1/  BftO) -  B„(0)

1 ___ rr, k 1
K &  =  5 V  B ^ (0 )  -  B W(0) +  5 V  B£„(0) =; B M (0) +fl 6 fl

1 V  B ^ (0 )  H B «(0) +  |  V  B ^ ,(0) jj B w „(0) +  

J V BLc(°) J  b Mc(0) + \ v  B ^ t (0) £  B « {(0)

where, V  is the volume of the element.

(A.3)

(A.4)

A .2 E xplicit form of standard elem ent con­
d u ctiv ity  m atrix

In 3D, the computations of requires the evaluation of the B a(0) gradient
submatrix. This can be obtained following the sequence described below. 

Let us denote:

£ =  [—1 ,1 ,1 ,—1, —1,1,1, —l]r ; 
t) =  [—1 ,—1 ,1 ,1 , - 1 ,—1,1, l]r ;
C =  [ - 1 , - l ,  - 1, - 1, l, l, i ,  i]r ,

(A.5)

where, £a , rja and £0 are the components of the ath node of the tri-unit cube. 
Also, the x, y, z coordinates of the 8 node brick element can be described as

X  =  [ x u x 2 i X 3 , X 4 , x 5 , x 6 , x 7y  x 8 ] t ;

y = bi>y2 ,P3 ,y4 ,y5 ,y6 ,P7 ,y8 ]T;
Z =  \ z 1 , Z 2 i Z 3 , Z 4 i Z 5 , Z 6 , Z 7 : Z 8 ] T .

(A.6)

Then, a 3x3 Jacobian matrix, Js(0), can be shown to be:
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M o )  = I

a  11 <2l2 <213 1 5Tx
T

SY
y

<<

TU21 <222 &23 O 77 X v y 77 z
_ <231 <232 <233

8 _Crx Cry CTZ_
(A.7)

The 8x1 form of the gradients vectors, bi, &2, 63 , which are evaluated at 
the centroid of the element in a reference configuration, are given by:

 ̂= {61.} = {jv.*} = - X  [c* £ + c; 3 n + c; 2 c]
b2 = { M  =  { N „ }  =  A -  [cl,  i  + 01,71 +  c ? 2  C] (A.8 )

b3 =  { 63a }  =  {N a,z} =  A  [ d ,  i  +  c l ,  n + Cl2 C]

The nine coefficients, are the determinants of the 2x2 partitioned sub- 
matrices of J&(0). They are explicitly derived as

r 1° 1 3 =  <232^13 — <2l2<233

C1°12 — <2l2<223 — <222<2l3

C2U 23 = <231023 “  <221 <233

r 2U 13 =  <2ll<233 — <231 <213

r 2°1 2 - <221<2l3 — Oi i <223

C323 — <221 <232 — a 31a 22

C313 = <23i<2i2 — O11O32

C3U 12 =  <2l l <222 — 021(212

Then, the gradient submatrix, B o(0), can be obtained using Equation 
A.3. Finally, the assembly of standard element conductivity m atrix can 
be made through Equation A.4.

The final task in the derivation of a rank sufficient matrix is to obtain 
the stabilization matrix. This will be show in the following Subsection.

A .3 E xplicit form o f stab ilization  m atrix
The assembly of the stabilization m atrix requires the evaluation of the deriv­
atives of the gradient submatrices, B ^ ,  B ^ ,  B £c, B ^ ,  B ^ c, B j a , with
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respect to the reference configuration £, 77, f , at the centroid of the element. 
Let us denote the hourglass vectors h; and 7 ;, as

and

71
72

73

74

hj =  [ 1 , - 1 , 1 , - 1 ,  i ,  - 1 , 1 , - i p  
h2 = [ 1 , - 1 , - 1 ,1 , - 1 ,1 ,1 , - i ] T 
h 3 =  [ i , i , - i , - i , - i , - i , i , i ] r  
h 4 =  [ - 1, 1, - 1, 1, 1, - 1, 1, - i ] T

hi — (h^x) b l  — (h fy )  b2 — (h^z) b3  

h 2 — (h 2 x) b l  — (h 2 y) b2 — (h 2 z) b3  

h 3 -  (h 3 x) b l  -  (h 3 y ) b2 -  (hjfz) b3  

h 4 -  (h 4 x) b l  -  (h jy )  b2 -  (h 4 z) b3,

(A.9)

(A. 10)

where, hi and 7 1  are the ^77-hourglass vectors; h 2 and 7 2 are the ^-hourg lass 
vectors; h 3 and 7 3  are the ?7C-hourglass vectors; h* and 7 4  are the £77̂ - 
hourglass vectors. Then after some algebra it can be shown tha t

b i*  =  

b 2,£ =  

b 3;£ =

bi,Tj

b 2,7? =

b 3,7? =

bi,C =  

b 2,c —

b 3,c =

{N a,x£,

{N a,y£

{N a,XT) 

{N a,yr) 

{Na>Z1

{N a,x(

{■̂ a,yC

: 64V7 [C'13 

64V7 '\C n  

64V

' 64V7 ^ '23 

; 64V  t0 *3 

6 ? ^  

6 ^  

6 ^ 2 

64V  ^

7 i +  C12 72] 1 

7 i +  Ci22 72] , 

7 i +  C?2 72] , 

7 i +  C12 7 3 ] , 

7 i +  Ci22 7 3 ] ,

71 +  C12 73] ,

72 +  C}3 73] , 

72 +  C13 73] , 

72 +  C13 73] , (A. l l )
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= [ c ; 2 7 4  -  (p [x i)  bj j -  (r fx i)  bj,,] ,

=  gJyT [C?2 74 -  (PsXi) b;,£ -  (r^Xj) b;,,] ,

=  g ^ 7  [C?2 74 -  (Pa* .) b i,e -  (r 3Xi) bj,,] ,

=  [C23 74 -  (qlx«) bj,, -  (pfxj) bj,{] ,

=  ^ 7  [C| 3 74 -  (qjxj) bj,, -  (pjXj) bj^] ,

=  ^ 7  [C |3 74 -  (q jx j)  bj,, -  (p£xj) bj,c] ,

=  gjj7  [Cjs 74 -  (r[xj) riiC -  (qfx;) q<4] ,

=  ^ 7  [Ci23 74 -  (rjTxj) riiC -  (qjxj) qj,{] ,

=  g^7 [C?3 74 -  (r3x i) rjiC -  (qjxj) qii?] ,

where summation over the repeated indices i (i = 1,2,3) is implied in the
above equations. The vectors r*, pi and are given by:

b 1,^17 {A"a, x£r]

b2)̂ = (Aa,y£77

>̂3,^17 {Aa,2:^77

b 1 ,77c — {Na,xr)C

b 2 ,* {Aa,x77C

bs^c =  {Na}xr)C

bi.CC = {Na}x££

b 2 ,cc ~  {Aa.yCC

b3,cc =  {-Aa,zCC

r i = +  C \2h 2, z =  1,2,3 (no sum)
Pi =  C l3h i + C[2h s} i = 1,2,3 (no sum) (A .12)
<li — ^ 23^2 +  C\3^3 i — 1, 2,3 (no sum)

W ith the above definitions, the derivatives of the gradient submatrices
required for the computations of K.estab are given by:

bl,Ca ^1,770 bl,Ca
b2,Ca ; B a>r?(o) = ^2 ,770 ; B aiC(o) = b2,Ca

.  b3,Ca . b3,77a _ b3iCa _
(A.13)

bl,C77a b l^a bi,CCa
B â 7?(0) — b2,£?7a ; B fli7?c(o) — b2,77Ca ; B a,cc(°) - b2,cca

bs.fr/a t>3,77Ca .  b3,0£a _

where, a = 1, ... ,8 represents the number of nodes in the cube.
Now tha t all submatrices have been defined, the use of Equation A.4 

provides the final form of K estab. Finally, a rank sufficient conductivity m atrix 
of an element, e, is obtained using Equation A .l.


