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Synopsis

The present work is centred on two main research areas; the development o f finite 

element techniques for the modelling of transient Stokes flow and implementation o f 

an effective parallel system on distributed memory platforms for solving realistic 

large-scale Lagrangian flow problems.

The first part o f the dissertation presents the space-time Galerkin / least-square finite 

element implicit formulation for solving incompressible or slightly compressible 

transient Stokes flow with moving boundaries. The formulation involves a time 

discontinuous Galerkin method and includes least-square terms in the variational 

formulation. Since the additional terms involve the residual o f the Euler- Lagrangian 

equations evaluated over element interiors, it prevents numerical oscillation on the 

pressure field when equal lower order interpolation functions for velocity and 

pressure fields are used, without violating the Babuska-Brezzi stability condition. The 

space-time Galerkin / least-square formulation has been successfully extended into the 

finite element explicit analysis, in which the penalty based discrete element contact 

algorithm is adopted to simulate fluid-structure or fluid-fluid particle contact.

The second part o f the dissertation focuses on the development o f an effective parallel 

processing technique, using the natural algorithm concurrency o f finite element 

formulations. A hybrid iterative direct parallel solver is implemented into the 

ELFEN/implicit commercial code. The solver is based on a non-overlapping domain 

decomposition and sub-structure approach. The modified Cholesky factorisation is 

used to eliminate the unknown variables o f the internal nodes at each subdomain and 

the resulting interfacial equations are solved by a Krylov subspace iterative method. 

The parallelization of explicit fluid dynamics is based on overlapping domain 

decomposition and a Schwarz alternating procedure. Due to the dual nature of the 

overlapping domain decomposition a buffer zone between any two adjacent 

subdomains is introduced for handling the inter-processor communication. Both 

solvers are tested on a PC based interconnected network system and its performances 

are judged by the parallel speed-up and efficiency.
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Chapter 1

Introduction

1.1. Preliminary Remarks

The finite element method (FEM) is currently one o f the most important techniques 

used for numerical modelling; its application covers almost every aspect within 

engineering. Together with advances in supercomputer technology FEM has enabled 

engineers to solve many difficult or previously intractable problems. The popularity 

o f finite element simulation as a way of investigating physical phenomena has been 

growing steadily. Fluid dynamics research in particular is benefiting from this new 

methodology. However, the numerical approximation of a physical system, especially 

replacement of a continuum with a finite number o f variables, brings certain 

approximation errors. At the same time finite element modelling requires an extensive 

amount of computational time to tackle a realistic large-scale problem with sufficient 

accuracy. Therefore, a continual effort to develop new computing strategies and 

techniques for this kind o f modelling is still needed in order to achieve substantial 

speedup and accuracy.

Fluid flow problems that involve changing spatial domains appear in many industrial 

processes and applications; such as metal forming, glass and polymer forming, mould 

filling in casting process, liquid sloshing in transportation, food or shampoo container 

filling etc. Mathematically, it leads to solving an initial boundary value problem for 

the Navier-Stokes flow in Eulerian coordinates, or the Stokes flow in a Lagrangian 

frame. In finite element modelling both Eulerian and Lagrangian formulations have
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been developed over the years, each having certain limitations. The Eulerian 

formulation allows large distortion in the fluid motion. Since the Eulerian elements do 

not deform with the material, no matter how large the deformation is, the elements 

retain their original shape. This character is most appealing in modelling many 

manufacturing processes. However, it suffers from two important drawbacks; the 

convective term that arises due to relative movements between nodal points and 

material particles, and secondly complex mathematical mappings are required 

between stationary and moving boundaries. In the Lagrangian formulation the nodes 

and elements on the finite element mesh move with the material, boundaries and 

interfaces remain coincident with the element edges, which provides a precise 

definition of moving boundaries and is also devoid o f convective effects. Lagrangian 

meshes are widely used in solid mechanics, but it is difficult to handle large distortion 

o f a flow domain and a constant remeshing is often required.

A new computational strategy, called space-time Galerkin/least-squares finite element 

formulation, has emerged in the early nineties and is widely accepted by many 

researchers and engineers for solving a variety o f incompressible flow problems with 

moving boundaries and interfaces. With error estimator and adaptive remeshing 

techniques becoming more mature, the difficulties that arise in the Lagrangian 

formulation can be overcome. The first part o f the dissertation is to further improve 

the performance o f the space-time Galerkin/least-squares finite element Lagrangian 

formulation for a slightly compressible transient Stokes flow, and extend the 

developed formulation into finite element explicit analysis.

Owing to the extremely intensive computations involved, in the flow simulation o f 

realistic large-scale applications, chief among them is the need to solve a large system 

o f linear equations in the implicit analysis. For 3-D fluid flow problems, the number 

of equations can be easily over hundred o f thousands. On the other hand, in the 

explicit time-integration procedure a time step is much smaller and a very large 

number (usually over ten million) o f time increments have to be imposed for a few 

seconds of simulation, at a large computational cost. Consequently, the parallel 

implementation o f the solution procedure has become an attractive option for 

increasing computational capacities, which also becomes feasible due to significant 

advances in the development o f parallel computer hardware, particularly the

2
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emergence o f commodity PC clusters. The second part o f the dissertation attempts to 

develop an effective parallel processing technique on distributed memory parallel 

platforms, utilizing the natural algorithmic concurrency o f finite element 

formulations.

1.2 Scope and Aims

The principal aims o f the thesis are centred on three major research areas

1) To extend the space-time Galerkin/least-squares finite element formulation 

to incompressible or slightly compressible transient Stokes flows including 

Newtonian or non-Newtonian fluids. The formulation is applied in both 

implicit and explicit finite element analysis codes.

2) To apply the developed Lagrangian flow formulation and discrete element 

contact algorithm to simulate large-scale flow problems, which involve 

constant moving boundaries and contact interfaces, in particular, in fluid- 

structure and fluid-fluid particle interaction.

3) To develop parallel computational techniques for the solution o f large- 

scale Lagrangian flow problems on a distributed memory platform. The 

MPI is taken as the message-passing library between processors.

1.3 Thesis Layout

The dissertation consists o f six chapters. A brief synopsis of each chapter contained 

within this dissertation follows.

C hapter 1 outlines the background and the objective o f this research; a brief 

summary o f each chapter in the dissertation is included.

3
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Chapter 2 presents the space-time Galerkin/least-squares finite element implicit 

and explicit formulations for solving incompressible or slightly compressible transient 

Stokes flow. The basic aspect of the formulation involves a time discontinuous 

Galerkin method and includes least-squares terms in the variational formulation. The 

idea is a natural extension o f the streamline upwind / Petrov-Galerkin method 

(SUPG). Since the additional terms involve the residual o f the Euler-Lagrangian 

equations evaluated over element interiors, it prevents numerical oscillation on the 

pressure field when equal, lower order interpolation functions for velocity and 

pressure are used. The implicit formulation is highly non-linear due to the prior 

unknown boundary position, but it can be simplified into a linear, symmetric system 

of equations by exploiting the algorithmic properties without sacrificing solution 

accuracy. The extension o f the space-time Galerkin/least-squares method into the 

finite element explicit formulation is also introduced. It provides a powerful tool for 

simulation o f the fluid-structure coupling problems, at the same time avoiding the 

difficulties raised from contact interaction.

Chapter 3 presents the finite element algorithm of contact modelling for fluids on 

Lagrangian meshes in the first part. The key aspect in computational contact 

mechanics is to apply the impenetrability condition to the normal direction o f the 

contact interfaces. In the thesis, the contact modelling is limited to the explicit 

analysis o f the transient Stokes flow problems. The penalty method based discrete 

element contact algorithm, 2-D or 3-D node-to-facet algorithm, is adopted to simulate 

fluid-structure or fluid-fluid particle contact. Since the time step is sufficiently small 

in the explicit time integration procedure, the penalty method is well suited to enforce 

inequality constraints for the problems that involve large dynamic deformation.

In the second part o f the chapter, a continuum adaptive remeshing scheme is 

presented, which involves definition o f a geometry entity related model, error estimate 

and prediction o f mesh density, re-generation o f the new mesh by an automatic mesh 

generator and field values mapping between the old and new meshes. The focus o f 

this part o f the chapter is on the introduction o f a weighted least squares mapping 

method, which significantly improves the mapping quality, compared to the 

background element-mapping scheme.

4
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Chapter 4 describes parallel finite element computational methods for the implicit 

and explicit solution o f the transient Stokes flow problems. Domain decomposition 

techniques are reviewed. The implementation o f an implicit parallel solver, named the 

hybrid iterative direct parallel solver, is based on a non-overlapping domain 

decomposition and sub-structure approach; a large scale finite element domain is 

decomposed into a set o f subdomains, the solution o f the subdomain problem is 

naturally parallelized and a direct solver is used. The resulting Schur equations are 

solved by iterative methods. Several important iterative methods, which are called 

Krylov subspace projection methods including the Conjugate Gradient (CG), 

Generalized Minimal Residual (GMRES), Bi-conjugate Gradient (Bi-CG) and Bi­

conjugate Gradient Stabilized (Bi-CGSTAB), are introduced in detail.

The parallelization o f explicit finite element fluid dynamics with contact conditions is 

based on the overlapping domain decomposition and the Schwarz alternating 

procedure. Due to the dual nature o f the overlapping partitioning o f the domain, 

communication requirement and computational cost may be slightly more than that of 

the non-overlapping domain decomposition, but it offers a more efficient and flexible 

way o f dealing with contact problems that appear in fluid-structure and fluid-fluid 

particles interaction problems.

Chapter 5 illustrates the applicability o f the formulations and the algorithms 

developed with a set o f practical examples. The numerical results from finite element 

analysis are compared with experimental tests. These examples include; horizontal 

and vertical sloshing water waves in both 2-D and 3-D cases, collapse o f a liquid 

column, 2-D explicit simulation o f shampoo filling, etc. The parallel efficiency and 

scalability on the PC platform are also presented.

Chapter 6 provides an overview o f the numerical research performed within this 

thesis. Some conclusions and suggestions for future developments and improvements 

are also pointed out.

5



Chapter 2

Finite Element Formulation For Computational 

Fluid Dynamics

2.1 Introduction

In recent years, the space-time Galerkin /least-squares finite element formulation for 

the Navier-Stokes flow with moving boundary problems has been developed by 

Hughes et al [2.1]-[2.4] and Hansbo et al [2.5]-[2.6]. The formulation has also been 

extended for the incompressible Stoke flow by Feng and Peric [2.8], where the 

convective term is dropped. The formulation is considered as an effective approach to 

solve a wide class o f flow problems involving moving boundaries and interfaces, such 

as metal forming, glass forming, casting, fluid-structure interactions, fluid particle 

interaction, free-surfaces and multiple phases [2.9][2.10]. The basic aspects of the 

formulation uses a time discontinuous Galerkin method and includes least square 

terms in the variational formulation. Since the shape functions employed are 

continuous in space but discontinuous in time, the spatial discretization can be 

changed from one region to another. This feature provides a natural mechanism for 

incorporating adaptive re-meshing in the formulation. The idea of adding least square 

terms in the variational formulation is based on the streamline-upwind/Petrov- 

Galerkin method (SUPG), which was earlier developed by Hughes et al [2.11 ]-[2.13] 

and Zienkiewicz [2.14][2.15] for convective transport problems. Since the added 

terms involve residuals o f the Euler-Lagrangian equations evaluated over element 

interiors, it preserves the consistency o f the standard Galerkin method. It also prevents 

numerical oscillation on pressure fields when equal-order interpolation functions for
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velocity and pressure are used without enforcing the incompressibility constraints 

condition. The classical Galerkin variational formulation, which was first proposed by 

Herrmann[2.16] and may be viewed as a particular case of the Hellinger-Reissner 

principle [2.17], naturally produced a mixed u - p  form. It was recognized that

solution o f this type of formulation was strongly dependent on the particular pair o f 

velocity and pressure interpolation chosen. In many cases, using equal order 

interpolation functions for velocity and pressure violates the Babuska-Brezzi stability 

condition [2.18] [2.19]. In particular, this condition rules out the use of lower equal 

order interpolation, which would be attractive from a computational point of view. 

The space-time Galerkin /least-squares formulation successfully circumvents the 

stability conditions and a stable solution can be obtained regardless of the 

interpolation function employed.

In this chapter the space-time Galerkin /least-squares finite element formulation for a 

slightly compressible transient Stokes flow is presented. The approach is following 

the work developed by Feng and Peric [2.8]. The basic unknown variables in the 

transient Stokes flow are the velocity and pressure, both approximated by C° 

interpolation functions. The final implicit finite element formulation has the same 

form as described in reference [2.8] except for the addition of an extra pressure mass 

term, which tends to zero when complete incompressibility is assured. The implicit 

formulation is highly non-linear due to the prior unknown boundary position and non- 

Newtonian character of fluid viscosity, which will be discussed in detail in the 

chapter. The Newton-Raphson approach is adopted to solve the resulting non-linear 

implicit equations. By exploiting the algorithmic properties, the equations can be 

degenerated into a linear and symmetric system o f equations without sacrificing 

solution accuracy.

To extend the space-time Galerkin /least-squares method into a finite element explicit 

formulation is straightforward. In many fluid-structure coupling cases difficulty often 

arises from contact interaction. Usually, contact forces are calculated within the 

current spatial configuration. The velocities in the Lagrangian flow are calculated 

based on the previous configuration, and after solution convergence was reached the 

current configuration is updated using the obtained velocity vector. This inconsistency

7
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on the different configurations can cause difficulties in obtaining a stable solution in 

the implicit formulation, but it is not the case for explicit dynamic formulation. 

Because o f its easy treatment o f contact conditions, finite element programs based on 

the explicit dynamic formulation have proved to be a very attractive tool for 

simulation of fluid-structure interaction problems. The split, characteristic-based 

scheme for compressible and incompressible flow was proposed by Zienkiewicz et al 

[2.20]-[2.24], which allows use of a mixed u - p  form with lowest equal order

interpolations. The key idea of the split operator is to provide a stabilized pressure 

term for the continuity equation through splitting the momentum balance equations 

[2.22]. It almost shares the same approximation form with the space-time Galerkin 

/least-squares method. In this chapter the variational formulation for the space-time 

Galerkin/least squares method in a space-time domain can be slightly changed and 

rewritten with an Euler forward integration process. The explicit form of finite 

element discretization for transient Stokes flow is derived and it can be easily 

implemented in the finite element explicit code. The stability of the explicit 

formulation will be also discussed.

An outline of this chapter is arranged as follows; Section 2.2 briefly discusses a 

slightly compressible form of the Navier-Stokes equations, which represent a strong 

form of the initial/boundary value problem. Section 2.3 introduces a space-time 

technique for solving fluid dynamic equations. In section 2.4 the Galerkin/least- 

squares weighted residual method is employed to form the variational function, which 

will be later defined in a Lagrangian frame. In section 2.5 an implicit form of the 

discretized finite element formulation for transient Stoke flow is presented. Section

2.6 examines the kinematics of the moving space-time slabs and linear integration on 

time. The non-linearity arising from Non-Newtonian flow is discussed in section 2.7. 

The explicit form of finite element discretization is presented in section 2.8. Finally 

two and three dimensional equal order elements are presented in section 2.9.
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2.2 Fluid dynamics formulation

Consider a viscous, slightly compressible transient fluid with a time domain 

t e  [0, T] and a bounded region Q (f) e  Rnsd with boundary T (f), where nsd is the

number of spatial dimensions. The Navier- Stokes equations represent the momentum 

balance and a slightly compressible constraint with the velocity u(x , t) and pressure 

P(x, t) as the basic unknown variables, can be written as:

du
dt

+ u- Vw - / - V-<r = 0 on Q (/)  V /e  [0, T] 2.1

1 dP
 hV • w = 0 on f l ( / )  V /e  [0, T] 2.2

pC 2 dt

with u -  uiei \/i = \,nsd 2.3

where et denotes an unit vector in Cartesian coordinate direction i, i = 1, nsd. p  is the 

density of the fluid, a  is the Cauchy stress tensor, and / ( j c ,  f) is the body force

per unit mass, C = yjK /p  is the wave speed of the fluid and K  is the fluid bulk 

modulus.

The Dirichlet and Neumann type boundary conditions are defined as

u = g  on Tg(t) 2.4

tT-n = h on Ta(/) 2.5

where Tg (/) and T^ (?) are complementary subsets of the boundary T (/) as admitted

by the following decomposition

rgur,=r 2.6

and r g n r A = 0  2.7

9
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The unit outward normal vector to T (/) is denoted by n = {«, }; / = 1 ,nsd. The initial 

condition is a divergence-free velocity field specified over the domain at time 

t = 0.

« ( x, 0) = uQ 

P{x,  0) = P0
on Q(0) 2.8

The constitutive relations for fluid are defined by the stress and strain rate tensors as 

cr(u, P) = 2 f j£ ( u ) -P I  2.9

and <?(«) = V!« = i  v « + (v « )r 2.10

where n  is the viscosity which may be strain rate dependent, and /  is an identity 

tensor. The equations (2.1), (2.2), (2.4), (2.5), (2.8) - (2.10) compose a set o f unique 

and necessary conditions to solve the unknown variables of u and P  at time t . For a 

completely incompressible fluid field equation (2.2) can be simplified as

V  u = 0 on Q (/)  V /e [0 , T] 2.11

2.3 A space time description of the moving domain

To write the variational form of the space-time formulation for equations (2.1), (2.2) 

(2.4), (2.5), (2.8)-(2.10), let 7 = [0, T] be an open time interval partitioned into

subintervals I n \?n > K+\ ] > where tn and tn+l belong to an ordered series o f time

steps 0 = /0 < /j <"" <tN = T . Let Q (tn) and T (tn) be the approximations to the nsd

dimension spatial domain Q with boundary T at time tn. Similarly Q (/n+]) and

T (tn+l) are the approximations at time tn+x, respectively. A space-time slab Qn is

defined by the region enclosed between space domain Qn, Q w+1 and lateral

boundary Pn, which is the surface described by the boundary T (/) as t traverses In,

as shown in Figure 2.1

10
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t A Q n + 1

w+1

K
r
t

Q

Figure 2.1 A space-time slab Qn

The lateral boundary Pn is assumed to admit the following decomposition.

and

p . \ j p , = p .

ps riP „= o

Let us assume the trial functions uh and Ph in (x , t) space are given by,

(%*)„=(«* =(**;)!«; =&* °n ( p \  v /= i.. . .»

2.12

2.13

2.14

2.15

The weighting function wh and qh in (x , /) space are defined by

(*?). = jM,‘ =( )̂K e *"(& W =° V; = 2.16

2.17

where H lh ( Q ^  represents the admitted finite-dimensional function space over a 

space-time slab Qn. At the element domain this space is formed by using first-order

11



Chapter 2 Finite Element Formulation For Computational Fluid Dynamics

polynomials in space, both trial and weighting functions are continuous in space, but 

discontinuous in time.

2.4 Variational formulation in the Lagrangian frame

The variational formulation for the space-time Galerkin/least-squares can be written 

as follows: given (w)w, (P)n find uh and P h such that Vwh

and \/qh e {V hp )n,

l y  ■Ld(^-+"‘-V«‘)-/Me+ \Q s(why.<T(ul',Ph)dQ

- j py  hdp+ |y ( - L ^ + v
pC l dt

+
£ ? «  2H\ p C 2 dt 

1

1 8Ph

+I L  S i _ p ( ^ -  + wh y w h) - V  ■t7 ( w \ q h)] [p (^ r +uh - Vuh) - V f ] d Q
e —\  Ot Ut

' i

p C‘

 ̂p C2 dt 

dCl = 0

dQ + l ^ - p [ { u % - { u % dQ

2.18

where ne is the number o f elements in the domain. S} and S2 are non-dimensional 

stability constants, which will be defined later. The integration process of the equation 

(2.18) is applied sequentially to all space-time slabs Ql,Q2 'QN-1 with

( " ‘ ) ! = 1i 5 " ( /» ± e ) ( " T = " o  2 1 9

(F>t = ^ P ( ^ ± S ) (F^ = Po 2.20

The variational form of equation (2.18) can be explained as following,

12



Chapter 2 Finite Element Formulation For Computational Fluid Dynamics

(a) The first three terms constitute the Galerkin form of the momentum balance 

equations. The fourth term is the Galerkin form of the continuum equations for 

a slightly compressible fluid.

(b) The fifth term is the least-squares term of the momentum equations. This term 

provides stability for the convective dominated case. should be 0 { h e2̂  to

achieve the best rate o f convergence, where he is the element characteristic 

length.

(c) The sixth term is a least-squares term o f the continuum equations and it 

provides stability of the flow formulation with a high Reynolds number

[2.25][2.26]. The definition o f the stability parameter S2 should be a 0 ( h e).

(d) The last two terms weakly enforce the continuity of the velocity and pressure 

field across the space-time slabs.

In the chapter we mainly consider relative slow-speed of viscous fluid that involves 

moving and deforming spatial configuration with free boundary propagation. The 

Lagrangian description provides a precise definition of moving boundaries and is 

devoid of convective effects, due to the mesh moving with the fluid particles. 

Together with the use of lowest order elements, the variational formulation (2.18) can 

be simplified as

£ e ( w h) - . a ( u h, P k ) d Q + \ Q ■ u hd Q  +  ^  { S iy q h V ^ d Q  

+S V ( v 'H’4)(V• u h ) d Q - £ ( w h + S , V q h) -  f d Q -  £ w "  h d P  2.21

The derivation of equation (2.21) was based on the following assumptions;

(a) In the Lagrangian frame, the convective terms in equation (2.18) are dropped, 

leading to

uh -Vu4 = wh ■Vwh = 0

13
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(b) At each space-time slab, the trial and weighting functions are assumed to be

H 1 function and C° continuous within space but constant in time, so that their

time derivatives will disappear.

du" dP" 8wh dqh
dt dt dt dt

(c) Adoption of linear interpolation functions for 2D triangle and 3D tetrahedral 

element leads to

Ph) = -V P

2.5 Finite element approximation of the variational formulation

In this section, the finite element equations for transient Stokes flow are developed by 

means of derivation o f the variational function with respective to nodal velocity and 

pressure respectively. For this purpose the space-time domain is sub-divided into
N e

elements Qen , so that the union o f the elements comprise the total domain Qn = Z & '-
e=\

The velocity u and pressure field P  is expressed by nodal variables as

u = NbIu b K. = Nb8uub Vz, / = 1 — nsd 2.22

P = NbPb 2.23

where ub,P b are the nodal velocity vector and pressure at node b. Nb = N b(^)  is

assumed to be the global nodal shape function temporarily, as shown in Figure 2.2, in 

order to write the weak form of the variational formulation clearly. Subscripts of the 

global nodal shape function b range from 1 to nb, where nb is the total number of

nodes in the domain. Summation over repeated indices is implied. It is emphasized 

that the global nodal shape function is expressed in terms of reference coordinates in 

the space-time slab, but constant in time. I  is an unit matrix o f 2 x 2  for 2D element 

and 3x3 for 3D element. The equations (2.22) are given in both tensor notation and 

indicial notation for clarity. The weight function of virtual velocity and pressure can 

be also written as,
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w = NJw°w,. =A  Vi, & = 1 ■ • ■ 2.24

q = Naq° 2.25

where wa,q a are the virtual velocity vector and pressure at node a. Subscript o f the 

global nodal shape function a = \ . . .n a, na = nb.

Figure 2.2: Global shape function

The tensor and indicial form o f the strain rates and stresses are given by

s = { v ‘Nbi ) u b
r dN. b dN, bA 

— + — - u b 
dXi 'v dxj

G = 2ju{VsN bl ) u b - N bP bI  ^  = M
f  dN, b dN, ^

 —U: 4" ----
dX, 'V dXJ

2.26

2.27

Substituting (2.22) -(2 .27) into (2.21), the weak form of the variational formulation in 

Lagrangian description is represented by nodal variables ub ,P b ,w a ,q “ as
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a=1 b=1

SNa 5Nb 5Nb 5Na
°kJv dxt dx] dxk dxl

u\dQ

+ L p Z ^ N A ( u> - < - ' ) d n -  JL NJ>de - 1  NA d p
n l _ i  *W7 n

dN 8Nh a b_
v cbc, dxt+2 > “ JL Ifl=l [^"6=1^ Sr/ J ^  6=1

sd

2.28

The variational function is minimized with respect to the virtual velocity

wah, qa, leading to the expressions

dwk

nb
- i 'Z

6=1

' i ?6=1

v cbt. 5x.

dx. p v e + f  v i ; |
*Vn 6=1 '

W - W ' U d Q

+

dxfc dxl

JL, p L  NM  («,* -  < - 1 )  f  A U d e  -  JL IV ^ d P  = 0

V k = \ ,...nsd; a = \ ,2 . . .n a

2.29

dxt dxi j
P“dQ

+ JL, 2.30

V a = 1,2,... na

Equation (2.29) is a Galerkin/least-squares discretization o f the momentum balance 

equation in the £-th direction of node a. There are nsd x na equations of this form.

Equation (2.30) is a pressure equation for node a and there are na equations of this

form. The discretized implicit equations for transient Stokes flow will be defined as a 

mixed form

16
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~M + K Q ~u ' K
QT - ( M p+ M p)_ p J r .

2.31

where V  and P  are respectively the vector of unknown nodal values o f velocity u 

and pressure P ; M  is the well-known mass matrix. The stiffness matrix K  is 

composed o f a linear viscosity matrix and a velocity stabilization matrix, which is 

derived from the least-squares term of the continuity equation. For Non-Newtonian 

fluid, the stiffness matrix K  also includes a nonlinear viscosity matrix and will be 

discussed in section 2.7. Q is a coupling matrix relating nodal velocity with nodal

pressure. M p is a pressure stabilization matrix and M p is a similar mass matrix

corresponding to nodal pressure.( M p becomes zero when complete incompressibility

is assured. ) These terms can be assembled by elemental contribution to the 

appropriate location in the global matrices as

K * = K 5 + K ‘+

= f  ■VNb) l  + (VNb®'7Na)WQ+ ^  ®™ „)dQ

=  l p N aNbIdQ.

K m -

* .A = I  N.fdQ. + I  NaMP+  £  ^ p N ' N ^ d C l
"  n n

2.32a

2.32b

2.32c

2.32d

2.32e

2.32f

2.32g

where subscript ab stands for a cross term o f stiffness or mass matrix for nodes a and 

b. The subscript o f a represents the corresponding velocity and pressure force vector 

at node a. If  the pressure mass matrix M p ab and second term of the right hand side of

17
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equation (2.32g) are dropped, equations (2.31) are the same as the one given by 

reference [2.8]. Normally, those terms for the Stokes flow could be dropped in the 

implicit formulation, but it is essential for the explicit dynamic formulation. 

Following the works o f Hansbo [2.25], the parameters and S2 are set to be

6x=ah], 82 = he 2.33

where he is the characteristic length o f element, a  is a problem dependent constant.

2.6 Reference space-time domain and linear integration in time

In equation (2.31) and (2.32), all the integrations are conducted over an unknown 

evolving domain Qn, which is defined by the region enclosed by space domain Q n

and unknown domain Q n+1 as described in section 2.2. In order to solve this problem, 

several authors [2.1] [2.2] [2.8] introduce a reference space-time domain 

Qn e  Rnsd x [0, T] and a mapping function <f)n : Qn —» Qn from the reference space­

time element in the (;jf, /) coordinate system on to the deformed physical element in 

the (a t ,  r )  coordinate system, i.e. the motion of Qn is defined by

(*> t ) = h (z>  T) 2.34

where the mapping function <f>n (%, r )  is taken as

A(z> t) = (z  + t«„ t - ‘.) 2.35

where un is the velocity field to be determined in the current space-time slab n. % is 

the reference coordinates, normally it is taken as Z = x n> the initial spatial domain of 

the space-time slab Qn. Therefore Qn = x[0, Atn] , where Atn =tn+] - t n. For the

reference space-time domain, the time is an additional dimension, the deformation 

gradients is a (nsd + l )x (« srf + l)  matrix o f partial derivatives of the mapping function

<j)n . Assuming f n is a space-time deformation gradient matrix and Fn is a spatial

18
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deformation gradient matrix, the space-time deformation gradient matrix f n at time 

r  e [0, At] can be defined as

/ .=

dx dx 
d% dr  
dt dt
dx  d?

F n « „  

0r 1

where

K { x , t) = ^ l = i + x 8ĵ x i l l  
'  dX  a *

2.36

2.37

The Jacobian determinants of the deformation gradient f n and Fn are denoted by 

Jn (x ,  *) and J n (x , t) respectively, as

J*(z> T) = d e t f r ( z ,  r) = detFr ( z ,  r) = J n(x , t )  2.38

Then all the integrations in equation (2.32) can be conducted over the reference space­

time domain Qn instead o f the unknown evolving space-time domain Qn. Within an 

element space-time domain, the integration can be written as

2.39
4 . ( - y e = j ^ ( * k o r .  r)dQ

= L L S ’ ^ z ’ r )dndT

Since we chose a lower order interpolation function as the element nodal shape 

function, equation (2.39) can be further rewritten as

L  L, ( • K  ( * ’ r ) d Q d r = l j n( r ) l y y i Q d r  2.40a

- P .

where

P' = i , J ' ( * ) d * 2 -40b

This means that the element Jacobian determinant J n = J n ( r )  is no longer dependent 

on the spatial position x  and is only a linear function of time r  . It can be proved as
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follows. In the element spatial domain Q* the velocity vector ue is expressed by 

element nodal variables as

u‘ = N n Ii?‘ u‘ = N n 5i]Uy  ^ i , j  = \,nsd 2.41

where nd = 1,3 for a lower order triangle element. According to equation (2.37), the 

spatial deformation gradient is defined as

due SA.
F  = 8  + r — -  = 8U +t  - u n.d

lJ lJ dZ j " dXi J
2.42

Since N  is a linear function in terms o f r. and its derivative is constant, Fm isrij s*i 7 n

constant with respect to % and only linearly dependent o f the time r , so as is its

determinant J n ( r ) . The function p e for each element could be linearly integrated in

time.

t2 = At

1
> 

1 
 ̂

1 t— ---
At

At £ = -1  # = 0 f  = l

Figure 2.3 One dimensional time element

Considering a At interval, the time r  can be taken by a linear interpolation, as shown 

in Figure 2.3.

T = fa ( f y l + A  (€)*2 = A  (#)■At 2*43

and

A - | ( l  + £) 2.44

where ^.,/ = l,2  is a linear shape function related with local coordinate The

integration o f the element function p e is carried out on the local coordinate system as
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z z *=1

and

^ ( 4 ) = det

V i,y ' =  l , n rf

where is a weighting function and ^  is a local coordinate at Gauss point k. 

Remark:

(1) From Equation (2.42) it is clearly shown that the Jacobian determinant of 

J n ( r )  is dependent on unknown variables, i.e. nodal velocity u, therefore the

mixed u - p  form o f equations (2.31) is a non-linear system o f equations. The 

Newton-Raphson scheme is a natural choice for solving such non-linear 

implicit equations. In the reference [2.8], linearization of J n ( r )  leads to an

un-symmetric stiffness and an un-symmetric load stiffness matrix in the 

formulation, which should be solved by an un-symmetric equation solver 

within the space-time slab.

(2) The Jacobian determinant of J n ( r )  measures the ratio o f the spatial volume

V‘(j) 
K

For a completely incompressible fluid J ( t) must be equal to 1, or J„(t) 

would be very close to 1 for a slightly incompressible medium. From our 

experience we set J n ( r )  = 1 without severely sacrificing solution accuracy. If

the viscosity o f the fluid is constant, equation (2.31) will be linear and 

symmetric, which is equivalent to solving a linear Stokes flow problem. It can 

be solved using a symmetric equation solver within the space-time slab.

(3) In an explicit dynamic code, the critical time step At is normally controlled by 

the element characteristic length and the wave speed of the medium, it is

V e ( r )  at time t  with reference volume V0e ( t )  at r  = 0, i.e. J e (r )

2.46
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relatively smaller than the one used in the implicit code. The natural setting is 

J n ( r )  = 1 and = At for incompressible or slightly incompressible fluid in

the explicit dynamic code. Equation (2.31) would be simply transformed to a 

forward Euler integration procedure, which will be discussed in detail at 

section 2.8.

2.7 Non-Newtonian fluid

The viscosity for non-Newtonian fluids can be represented in the following general 

form as

// = / / ( r )  2.47

where the viscosity ji is generally dependent on the shear rate r , which is set by

H 2v < ,)* 2 -48

There are a large number of mathematical models that have been developed for 

modelling varies type of non-Newtonian fluid [2.26]. The Power law, Bingham fluid 

model and Herschel-Bulkley fluid models represent the most well known examples.

Power Law Fluid Model

The power law is one of the most widely used non-Newtonian fluid models. The

viscosity and the strain rate are fitted as a linear relationship on a logarithm scale. It

can be written as

/ / ( r )  = C r”_1 r> rc

/ / ( r )  = C[/:’- 7 ; ] ^ ( « - l ) r c(”_2)J/;"_1-t-Cr("_1) r< rc 2.49

where C represents the fluid consistency index and n is a power law index. (F or most 

shearing fluids n < 1.) rc is a critical shear rate. The equation (2.49) has a limitation, 

since it only fits the experimental data within a special region o f interest. The regions
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that will not be defined by the power law model are those at shear rate r  = 0and 

r -»  oo.

B ingham  F luid  M odel

The Bingham fluid model is one o f the visco-plastic type o f fluid models. The most 

widely used Bingham model is provided by Papanastasiou [2.27], it can be 

represented by the following equation

/ , ( r )  = M , + ^ (  l - < r " 0  2.50
r

where juQ is the initial viscosity, m is a stress growth exponent, while crY is the

yielding stress. These parameters can be fitted empirically. As the exponent m 

becomes larger, as shown in Figure 2.4, the viscosity ju expresses a visco-plastic type 

behaviour.

m = 1000

m = 100

oocn 
> m -  10

Shear Strain rate r

Figure 2.4 Bingham fluid model

H erschel-Bulkley F luid  M odel

The Herschel-Bulkley fluid model is one o f the shear thinning fluid models, which 

combines the power law and the Bingham model. Chhabra [2.28] describes it with the 

following form
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M(r) = ^ ( l - e - mf) + Cr’-' 2.51
r

where the parameters <rY, C , m and n have the same meaning as the Bingham and 

Power law models.

It has already been shown that there is a high non-linearity in the viscous part of 

governing equation (2.29), as a consequence o f the non-Newtonian character o f the 

viscosity p ( r ) .  The successful linearization of this term is essential to obtain

quadratic rate o f asymptotic convergence on the Newton-Raphson iterations. It is also 

important in accurately modelling non-Newtonian fluid behaviour. The deviatoric part 

o f the first term in equation (2.21) can be re-written as

£(wh)\2M £{u \P h) = Vwh \2jue(uh) 2.52

Differential o f both side o f equation (2.52) gives

<5[Vh>‘ : 2 /« (« * )]  = Vh>* :2Ju<5e+-^-[Vti>:* («* )][* : V<?«] 2.53

Substituting equations (2.22) and (2.24) into (2.53), the first term in the right hand 

side o f equation (2.53) is derived as

Vwh \2fiSs{uh) = n
8wt oSu! dw. dSiij ^

v dx j dxj dXj dxt

dN dN, a b
dXj dxj

S M + w ak
dNn dNh a £
dXj dxi

\
Sik8ji8ubi

= • VNb) l  + (VNa ® VNb)]5 u b

2.54

The second term in the right hand side o f equation (2.53) is derived as
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The stiffness matrix given by (2.54) is the viscous parts o f the stiffness matrix 

described in equation (2.32a), an additional part of the nonlinear viscosity stiffness 

matrix due to linearization of fluid viscosity is given by equation (2.55) as

K7  = \ J f ( e ^ K ) ® { e - V N b)iQ  2.56

where the derivative of the viscosity / / (  = —  with respective to the shear rate is
V d f j

dependent on the non-Newtonian fluid model. The following equations illustrate the 

value for with different type of non-Newtonian fluids

• Power Law Fluid

l i '( r )  = C ( n - \ ) r {n-2) r > r c

/ / '( r )  = C [ ( n - l ) r c(''-2>]);"-1+ C ( n - l ) r

• Bingham Fluid

(n -2)

r

2.57

2.58

Herschel-Bulkley Fluid

+ C(n — X)r^n ^ 2.59

The equation (2.56) will be added to (2.32a) to give a consistent stiffness matrix for 

the non-Newtonian fluids. The equations (2.31) can be solved using a Newton 

Raphson type iterative scheme. A typical algorithm for solving equations within a 

space-time slab Qn is summarized in Table 2.1.
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Loop over all slabs: For n = 1 , 2 , . . until tn+l = T  DO

i. Set iteration count i = 0

ii. Evaluate residual forces using equations

=FU- ( M  + K  + K m" ) V f  - QJP®

v f  = Fp - & v f + { M p + M l) r ®

when i = 0, 0 ® = U ^

iii. Using iterative solver to solve

~M + K  + K non Q

1i

QT - ( M p + M p)_ 1i

—
i

I
ii

iv. Update velocity and pressure vectors

u{i+1) = u{i)+sun n n

p(M) = p(‘) +Sp  
n n n

v. If  SU^l\ S P ^  or y / ^ \ y / f  do not satisfy the convergence

condition, then set i = i + 1 and go to step (ii), otherwise update 

coordinates.

Vi- X„+l=X»+ A t-Un+,)

EndDo

Table 2.1 Newton-Raphson iterative algorithm

If a constant viscosity is used for Newtonian fluids, i.e. ju' = 0, then K non will 

disappear in Table 2.1.

2.8 Explicit discretization of fluid dynamics formulation

The mixed u - P  form o f fluid dynamic formulation is presented in equation (2.31), 

which has almost the same form with the one defined in reference [2.8]. It is an 

implicit non-linear system o f equations and should be solved iteratively. When 

considering the case o f fluid contact with other bodies, such as fluid-structure 

interaction, fluid-particles interaction, the problems will be extremely difficult to 

solve implicitly due to contact forces. It is necessary to establish an explicit form of
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fluid dynamic formulation. The variational formulation (2.21) for the space-time 

Galerkin/least squares in slab Qn can be slightly changed and rewritten as

f JL qhV -u hdQ + Y  L A V  VPhdQ
" " e=l "

S2p ( 'V w h) ( V u i )dQ - £  (wk + S lVqh) - fd Q - $ p wh hdP 2.60

dQ = 0

where the Euler forward integration process is adopted for the last two terms in 

equation (2.60) compared with (2.21). It is satisfied sequentially to all space-time 

slabs Q19Q2-'-Qn with

2.61

2.62

The derivation is based on the assumption of the element Jacobian determinant 

J n ( r )  = 1 and the parameter p e = A t , therefore the equation (2.39) and (2.40a) can be 

further simplified as

&  ( •  = JL/* t o  L. (* = A tL S - y i n  2-63

Following the derivation described in section 2.4 the explicit discretization of the fluid 

dynamic formulation is given by



Chapter 2 Finite Element Formulation For Computational Fluid Dynamics

where Un+l is an unknown nodal velocity vector with dimension nsd x na , Pn+l is an 

unknown nodal pressure vector with dimension na at time n +1. Un and Pn are the 

nodal velocity vector and pressure vector, respectively, at time n. The mass matrices 

M  and M p are already defined by equation (2.32b) and (2.32e). The stiffness matrix

*K , pressure stabilized matrix *MP, velocity-pressure coupling matrix *Q and load 

vectors *FU and *FP, which are integrated over the reference spatial domain Q n only, 

are defined as follows,

K ab =
lin

^  * a b
2.66a

= J^«t(VJV„-WNb) l  + {WNb ® V N a)]d&+ ^  Sl P (yN a ® VNb)d£l

' Q ^ = ~ L VN«N»d n  2-66b

'M P/lb = l_ S tV N ^ V N bdQ  2.66c

‘p . ,  = f  + f  Nahdr  2.66d

"FPa = - £  SlVNa ■ fdCl 2.66e

where subscript ab represents a cross term of stiffness or mass matrix for nodes a and 

b. The subscript a represents the corresponding velocity and pressure force vector for 

node a. The differences between the equation (2.32) and (2.66) are that equations 

(2.32) are integrated over a space-time domain Qn and the equations (2.66) are

integrated over a reference spatial domain Qn. Two pivoting mass matrices in

equation (2.64) or (2.65) are generally diagonalized to permit a completely explicit 

solution.

Remark:

(1) With a fully incompressible fluid we note that pressure mass matrix M p in 

equation (2.64) tends zero, which is not allowed in the explicit time
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integration procedure, i.e. the pressure mass matrix M p is necessary for the 

explicit fluid dynamic analysis.

(2) If a standard Galerkin finite element approximation is applied to the Stokes 

flow, we have the well known mixed u - P  form [2.16][2.24] with M p = 0 in

equation (2.64) or (2.65). This restricts using mixed interpolation or requires 

special integration procedure in the case when the pressure variable is 

eliminated at the element level by a penalty method [2.29]. The difficulty will 

be removed by introducing a stabilized non-zero matrix M p .

(3) The formulation presented in the chapter generalized the Petrov-Galerkin 

method developed by Hughes et al [2.11]-[2.13], which circumvents the 

Babuska -Brezzi condition in the context o f Stoke flows and guarantees a 

stable solution for using simple equal order interpolation functions for both 

velocity and pressure variables [2.1]-[2.8].

The forward Euler integration in equation (2.65) can be easily implemented and is 

very robust, by which we mean that the explicit procedure seldom aborts due to 

failure of the numerical algorithm. The price you pay for this simplicity is the 

conditional stability of the explicit method. If the time step At exceeds a critical time 

step Atcrit, solution will quickly diverge.

A stable time step for a mesh with constant strain elements is given by

At = rj&t^ A = min('A?en„ 2 A*ml) 2.67

and

crit < min
max

2.68

2 Merit = m in- 3aK
2.69

29



Chapter 2 Finite Element Formulation For Computational Fluid Dynamics

where is the maximum frequency o f the linearized system, he is a characteristic 

length of the element, Ce is the current wave speed in the element and rj is a

reduction factor that accounts for the destabilizing effects o f nonlinearities, a good 

choice for rj is 0.7 < tj < 0.9 . a  is a problem dependent constant, which is defined in 

equation (2.33). Equation (2.68) means that the time necessary for the sound speed 

wave to traverse the element and equation (2.69) is derived from a transient diffusion 

problem. In the case o f slightly compressible fluids such as water for instance, over 

ten million time steps were needed to simulate a water tank sloshing over 8.0 second -  

at a large computational expense.

2.9 Two and three dimensional equal order u-P mixed elements

In section 2.5 and 2.8 the finite element formulation of transient Stokes flow for both 

implicit and explicit analysis were described. Now the details of how the problems 

(2.31) and (2.65) are solved will be illustrated with a two-dimensional C° triangle and 

three-dimensional C° tetrahedral iso-parametric elements.

2.9.1 3-nodal constant strain triangle element

The linear, constant strain triangular element is based on a standard linear polynomial 

for approximation of both velocity vector u -  {u , v} and pressure P  in the element. 

The element shape functions are defined by a set o f local coordinates system as;

N ^ )  = Nl {4,V) = \ - 4 - r t

t f2(# ) = W2( f ,7 )  = #  2.70

n , {4) = Ni {4,v) = n

The element geometry is defined by its nodal coordinates x a and its corresponding 

shape functions, as shown in Figure 2.5.
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a - 1

2.71

(o,o) ( 1.0 )

2

x ]

V 4 ,2

Figure 2.5 A 3-nodal, constant strain triangle element

In the elem ent the velocity and pressure fields are also expressed in terms o f local 

coordinate system g , not Cartesian coordinate system x . The derivatives o f the shape 

function with respect to x  in equations (2.32) and (2.66) can be defined by the chain 

rule as

VAC =

r a v . l dr] 8N„]
dx dx dx

dNa dr] 3N.

_  _
dy dy _

_  8 V

2.72

where the first term in the right side o f equation (2.72) is an inverse matrix o f the 

Jacobian matrix, which is calculated from the element Jacobian matrix as,

j {e)

dx dy
<5? d t
dx dy_
drj dr]

z t s z  t r  a ?

fl=! dr] S  dr/

k21 T21
T31

2.73

Then the inverse o f J (c) can be written as

A dr/

‘y W -1 dx dx 1 T31 - T 21"
dr] _ 2 ^ (e) _ _ -*31 2̂1

dy dy

2.74
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Since

2 A — -̂ 21̂ 31 _  -̂ 31̂ 21

where A(c) is the area o f the triangular element, now the derivatives o f the shape 

function with respect to Cartesian coordinates x  can be defined explicitly, as

VjVj =
2A(

y 23
X 32

where

xah= x  - x

ViV2 = — 7T 
2 2 A(e)

y ab= y a- y b

1

X 13

VN 3 =  i~r
3

y a
X2l

2.75

2.76

2.9.2 4-nodal constant strain te trahedral element

The 4-nodal tetrahedral element is a constant strain, 3D element, its shape functions 

are defined by a local coordinate system £  as

N2(<*) = N2( Z , v X ) = t  

N , ( t )  = N3(Z ,v X )  = 1
Nt (£) = Nt (e,j},C) = e

2.77

(o.o.o)

(o.O.f

x ]

,2X

Figure 2.6 A 4-nodal, constant strain tetrahedral element
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The element geometry is defined by its nodal coordinates x a same as the 2-D triangle 

element, Figure 2.6 shows element Cartesian coordinate mapping from the local 

coordinate system.

2.78
<7=1

The Jacobian matrix for the tetrahedral element can be written as

/ • >  =

dx dy dz

34 34
dx dy_ dz
drj drj drj
dx dy dz

3<Z 3 4

t — ya E—i i  54  j i  84  i i  84 

Y ^ - y °  Y — z °drj ^  drj ^  drj

^  dNa ~a
f t  d£ f t  K  f t  K

The inverse matrix J can be derived explicitly as

X2\ T21 Z21

•*31 T 31 Z 31

Ml T41 Z-41

[•
r ( e )

-1

8% drj dC,
dx dx dx
d%_ drj_ d £
dy dy dy
d£_ 577 d £
dz dz dz

6V(e)

Ai —Al A.
~ A2 A2 “A2
Dl3 “A3 A3

2.79

2.80

6V = x2ly3,ztI + y 21znxtl + x3Iy 4Iz2, ~{xHy3iz2l+y2lzHx3l+x2lyHz3l) 2.81

where V(e) is an element volume. Du are the minors of au in J (e), they are defined 

as follows;
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A i =

A . -
Ai=
Dn =

A 2 = 

A 2 ~ 

A s = 

A 3 = 

A 3 =

•>>31*41 '

y  21̂41
•>>31*21 ' 

■*31*41 ' 

■*21*41 

X 2 1 Z 31  ' 

*31->>41 '

X2iy41
■*21->>31

■->>41*31

" y41*21

" y  21*31
'■*41*31 

"■*41*21 

' X 3 1 Z 21 

■x4iy3i 
-x4iy2i 
" X3iy 21

2.82

Now the derivatives o f the shape function with respect to Cartesian coordinates x  can 

be defined explicitly, for the 4-noded tetrahedral element, as

VN2 =  r r
2 6V(e)

" A . '
VN, = X, , 

3 6V(e)

Ai
V/V = 1

4 6V(e)

Ai
—A2 D22 —A2
A3 111 _ A3

2.83

According to equation (2.77) the gradient of shape function JV, is given by 

VWj = - V N 2 -  VN 3 -  VN4 2.84

2.9.3 Mass matrix for velocity and pressure terms

The element mass matrix is evaluated in the configuration Q n at time tn for the 

element space-time slab Q{ne). The consistent mass matrices for velocity and pressure 

terms are given by equation (2.32b) and (2.32e), respectively, as,

2.85

2.86

and

M *= } = { L ; p N°N»l d n \ = L.  p n i  N «d a
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JV. =[jV ,7siV2/ s- ,A f „ / ]

AT, = [> , , 7 V  •>«„,] 2.87b

2.87a

where Na and Nb are the shape function at nodes a and b , they are already defined 

in the previous sections. N u and N  are the shape function matrices for the velocity 

and pressure term, respectively, I  is the unit matrix with dimension 2 x 2  for the 2D 

element and 3x3 for the 3D element. M eab is the nsd x nsd sub-matrix and M p ab is a

lx l  sub-matrix, subscript nsd denotes the number of degrees o f freedom per node for 

the velocity term and nd denotes the number o f nodes per element. In equation (2.85) 

the symbol { } represents assembling of sub-matrices, the operator will be applied to 

equations in later sub-sections. The component o f the consistent mass sub-matrices 

M eab and M ep ab can be calculated explicitly for a triangular or tetrahedral element by 

using the formulae given by references [2.15],

two dimensional case, it is equal to 1 for plane strain problem and to 2nxc or 2n y c 

for axisymmetric problems, which is dependent on axisymmetric about the x  or y  

axis. The centre point coordinates xc, yc in the triangular element are linearly 

interpolated by the element nodal coordinates. When the integration formulae (2.88) 

or (2.89) is applied to (2.85), the component o f M eab can be written as,

2d case 2.88

3d case 2.89

where L  is the nodal shape function at node i . Also d  denotes the thickness in the

r

2 AMp  21 = -  A<e)p d  a - b  
(2 + 2)! 6

2d case 2.90
= —  A(e) pd  a * b

35



Chapter 2 Finite Element Formulation For Computational Fluid Dynamics

3d case
6 VMp  21 = —  VMp  a = b

(2 + 3)! 10

6 V(e)p
1!1!

2.91

(1 + 1 + 3)! 20
= — Vie)p  a * b

The calculation of the component of M p ab follows the same procedure as M eab. The 

diagonal or lumped mass matrices for velocity and pressure terms M eab and M ep ab can 

be obtained by the row-sum technique [2.30], giving

2d case M ’m = X- A ^ p d M e = — -iy± p,aa  0  ^ 23 p C
A{e)d 2.92

3d case M l = ~ V ^ p M e =— —
P ' a a  4 p C 2

y(«) 2.93

The lumped mass matrices defined in equation (2.92) and (2.93) will be used in the 

explicit fluid formulation (2.65).

2.9.4 Velocity-pressure coupling matrix

In the discrete momentum and continuum equations, the element velocity-pressure 

coupling matrix Qe or (Qe)T is calculated within the element space-time slab Q(ne), it 

was given by (2.32c) as

e*-{ & } = -{  £ v a w b
■ z.y+

= - F  {JL, VAW n ) = F  L , B m N pdSl

where the element function (3e is already defined by equation (2.45). Qeab is the nsd x l 

sub-matrix. The element velocity-pressure coupling matrix Qe is a x nd matrix, 

where is equal to the product o f nsd and nd . The strain-velocity matrix B  and
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transformation vector m  for 2D plane strain, axisymmetric and 3D element can be 

defined as

2d plane strain and axisymmetric element

'dN,

m = [1, 1, 0, if

dx

0 dN,
dy

dN dNa a

dy dx

N  0
X„

a = 1,3 2.95a

2.95b

3d solid element

B  = [B1,B 2,B3,B J; Ba =

d K
dx

0

0

dy

0

m a
dz

m = [1, 1, 1, 0, 0, of

0

dNa_ 
dy

0

dN„ dN

dz

0

0

0

d K
dz

0
dx

dN„ dN„
dy 

dNa 
dx

a = l,4  2.96a

2.96b

2.9.5 Linear and non-linear stiffness matrix

In the discrete momentum equations, the element combined stiffness matrix K e is 

calculated within the element space-time slab Q(ne), it was given by (2.32a) and (2.56) 

as,
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J^a[(VAT„ -VNb) l+ ( V N b ® VNa)\dQ+ J[ ,S2p (V N a ®VN„)dQ + 

^ ( e - V N a)® (e -V N b)dQ\

= f i ’ l [ Ku[(VNa-VNb) l  + (yN b® VN a)]dQ+jced2p (V N l,® V N b) d a  +

k ^ ( * - v j v . ) ® ( * - v j v , ) i n }

= p  f B TDBdCl + f 82p (b tm )(m TB)dCl +

' a < ' 2.97
l - f ( B Ts ) ( ? B y a

where the viscosity matrix D  and strain rate vector s  o f 2D plane strain, 

axisymmetric and 3D solid elements are given by

2d plane strain and axisymmetric element

2 ju 0 0 0
0 2/i 0 0

0 0 0

0 0 0 2/i

€ — [fjp ^22’ ^i2’ ^33] 2.98b

3d solid element

2/i 0 0 0 0 0

0 2/i 0 0 0 0

0 0 2/i 0 0 0

0 0 0 M 0 0

0 0 0 0 V 0

0 0 0 0 0
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[^U, S22 5 £33 j > 2̂3 » 1̂3 2.99b

where , JTe,s and are the element linear viscosity, velocity stabilization

and non-linear viscosity stiffness matrices, respectively, with dimension x ,

they are also all symmetric matrices. K eJ m, K eab and K eabon are the element stiffness

sub-matrices with dimension nsd x nsd,

2.9.6 Pressure stabilization matrix

In the continuum equations, the element pressure stabilization matrix M p is evaluated 

within the element space-time slab Q{ne), it was given by (2.32d) as

2.100
P" {f  s tVNa • V i v n j  = <5, (yNp)T • m p) d a

where the size of the element pressure stabilization matrix M ep is nd xnd . M p ab is a 

lx l  sub-matrix. The spatial gradient operator for 2D and 3D cases are defined as,
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Chapter 3

Contact Modelling and Adaptive Remeshing

3.1 Introduction

In transit fluid-structure interaction problems, a Lagrangian mesh for the structure 

deforms with the structure and maintains a sharp definition of the moving boundary. 

The appropriate interface condition for the Lagrangian fluid mesh may be imposed by

( us = 0 on Tc 3.1

where n is the unit outward normal to the interface (from the structure into the fluid), 

Tc denotes the contact interface, us and uf  represent the displacement field of the 

solid and fluid mesh at Tc, respectively. With constraint (3.1), the fluid nodes remain

on the moving interface while permitting slip between the solid and the fluid meshes 

in the tangential direction. This condition is particularly useful in the analysis of free 

surface waves breaking against a solid wall or the transient response of water tank 

sloshing during transportation, where we need to let the fluid mesh slide along the 

structure. In liquid filling problems, fluid particles may contact each other. Newtonian 

fluids add the restriction that the fluid particles adhere, without slipping to the 

interface boundary, in such a situation we need to apply

( u { - u ( y t  = 0 on T^ 3.2
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where t is the unit tangent vector to the interface boundary r c and u{ and u[ denote

the displacement field o f interacting fluid particles. Both constraints (3.1) and (3.2) 

represent the kinetic and kinematics condition on the contact interface and require a 

subsequent treatment o f contact. In this chapter the finite element procedure of contact 

modelling for fluids on Lagrangian meshes is presented. The key aspect in 

computational contact mechanics is to apply the condition of impenetrability defined 

in equation (3.1). Many approaches have been proposed for imposing the constraints 

at the contact interface. There are three major methods, which are primarily 

considered and reviewed here.

• The penalty method.

• The Lagrange multiplier method

• The augmented Lagrangian method

The penalty method was developed in the early 1980’s. Numerous research papers can 

be found in the literature. Hallquist et al [3.1][3.2] developed 2-D and 3-D slide-line 

contact algorithms, which were based on the penalty method. The closed form o f the 

consistent linearization for the contact stiffness matrix of a 2-D deformed contact 

surface was derived by Wriggers et al [3.3] in 1985. Three dimensional frictional 

contact with a deformed body against a rigid surface was proposed by Peric and Owen

[3.4]. In the implementation o f the penalty method, a finite value of the penalty 

parameter is chosen to impose the contact constraint. The value of the penalty 

parameter has a significant effect on the solution accuracy and stability. If  the penalty 

parameter is too small, the condition o f impenetrability could be violated, on the other 

hand, a large penalty coefficient may deteriorate the condition number o f the global 

stiffness matrix resulting in convergence problems in the implicit formulation and 

stability problem in the explicit analysis.

In contrast to the penalty method the Lagrange multipler approach ensures exact 

satisfaction of the required constraints, typical applications of the Lagrange multipler 

method can be found in reference [3.5]. However, in practice there are a number of 

disadvantages. Firstly, the number of unknown variables increases via the Lagrangian 

multipiers. Secondly, special care must be taken with the ordering o f equations, since
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the number of extra equations is often continually changing and extra equations 

associated with the Lagrangian multipliers have zero diagonals on the stiffness matrix, 

as in the standard mixed u - p  Lagrangian flow formulation.

The objective of the augmented Lagrangian method, which was proposed by Simo 

and Laursen [3.6], is to minimize the disadvantage of the penalty method and 

Lagrangian multiplier method. It augments the Lagrangian with the penalty in the 

total potential energy of the system. By doing so, the difficulties associated with the 

‘solution ordering’ in the Lagrangian multiplier approach are effectively removed 

since the contact tangential stiffness matrix is only related to the displacement field 

and is non-singular. Also the adopted penalty parameters need not be very large 

because the contact constraints are effectively satisfied via the Lagrangian multipliers. 

Nevertheless, we still have the disadvantage of the extra Lagrangian multiplier 

variables in the solution o f the equations and two levels o f iterative solution is 

required to obtain both displacement field and the Lagrangian multipliers. In the 

context of the thesis, the contact modelling is limited to the explicit analysis o f the 

transient Stokes flow problem. The penalty method based discrete element contact 

algorithm is adopted to simulate fluid-structure or fluid-fluid particle contact. Since 

the time steps are small in the explicit time integration, the penalty method is well 

suited to enforcing inequality constraints for any class of problem, particularly for 

problems that involve large dynamic motion.

Transient Stokes flow problems involve a continually changing mesh configuration 

throughout the deformation process. The space-time finite element formulation 

introduced in the previous chapter has a built-in mechanism that can naturally 

accommodate an adaptive spatial mesh into the scheme, that consequently improves 

the accuracy of the finite element solution and enables it to carry on the simulation by 

overcoming excessive element distortions.

Over the years much progress has been achieved in the field o f the adaptive 

remeshing. The rapid development is a consequence o f the numerous researches on 

both accuracy error estimation [3.13][3.14][3.15][3.16] and transfer operators for 

evolving meshes [3.17][3.18]. At present, the formal structure and theoretical
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foundation o f adaptive remeshing for both fluid and solid structure problems are well 

understood.

The error estimation based adaptive remeshing was firstly proposed by Babuska and 

Rheinboldt [3.13] and later was further contributed by Zienkiewicz and Zhu

[3.15][3.16], Oden et al [3.19] and Bank and Weiser [3.14]. The a posteriori error 

estimator was introduced by Zienkiewicz and Zhu [3.15] in 1987 to estimate the error 

in the energy norm. It provides the information required to generate or refine a mesh, 

which keeps the error within prescribed bounds. Several other error estimate criteria 

were proposed later. An error estimate based on plastic dissipation and the rate of 

plastic work has been developed by Peric et al [3.20], that is the most suitable error 

indicator for elasto-plastic or elasto-viscoplastic problems. The error estimate based 

on velocity gradients [3.21] [3.22] was introduced for Navier-Stokes incompressible 

flow problems. It is important to remark that a criterion based on error in the velocity 

gradients concerns only the spatial discretization. Clearly such a criterion is well 

suited for space-time elements introduced in Chapter 2.

As the mesh is adaptive, with respect to an appropriate error estimator, the solution 

procedure cannot be re-computed from the initial state, but has to be continued from 

the previously computed state. The transformation o f the state variables between two 

successive meshes needs to be properly carried out. Several important aspects 

involving the field values mapping were discussed in reference [3.17], The focus of 

this chapter is on the weighted least squares mapping method, which significantly 

improves the mapping quality, compared to the background element mapping scheme.

The outline o f this chapter is as follows: In section 3.2 the finite element procedure of 

contact modelling is presented, the variational principle of the elastic contact problem 

is introduced in section 3.2.1. In section 3.2.2 and 3.2.3 the contact force algorithms 

for node-to-facets o f 2-D and 3-D contact elements are derived. The implementation 

o f 2-D and 3-D contact elements with Coulomb friction is presented in section 3.2.4 

and 3.2.5. In section 3.2.6 special contact cases; frictionless contact is introduced. The 

global and local contact search algorithm will be discussed in section 3.2.7. In section 

3.3 the continuum adaptive remeshing procedure is introduced, in which the geometry 

entity related models definition is briefly presented in section 3.3.1. The error
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estimation and mesh density prediction are described in section 3.3.2, with details o f 

the implementation procedure. Section 3.3.3 reviews the mesh generator for 

unstructured meshes. Field values mapping operators, specially, the weighted least 

squares mapping, are discussed in section 3.3.4.

3.2 Contact modelling

The key issues related with enforcement o f contact constraint in the finite element 

explicit formulation are listed and discussed in detail in the section.

• Description o f contact phenomenon and the variational principle o f the elastic 

contact problem.

• Derivation o f contact force algorithm for 2-D and 3-D contact object with 

corresponding constitutive laws and in particular the Coulomb friction model.

• Selection o f an effective, faster global and local contact search algorithm.

3.2.1 Com putational contact mechanics

Figure 3.1 Contact between two bodies
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Let us consider two bodies, one named the target body Q, and the other the impact 

body Qs, which may contact with each other during their deformation and movement. 

The boundaries of the target and the impact body will be denoted T, and Ts 

respectively. The boundary o f the target body T, is characterized by an outward unit 

normal n . At any stage o f the deformation process corresponding to the configuration 

mapping of %t and %s ° f  the target and impact bodies, the gap gn is defined to 

separate the two bodies

g „ = { z , ( x ) - X , ( x ) ) n 3.3

The kinematical constraint of the impenetrability between the two bodies can be 

written in the standard Kuhn-Tucker form as

/ » ^ °  f . g . = °  3A

where f n is the contact normal force acting on the impact body. By choosing the

penalty method, the constraint condition (1) in equation (3.4) is relaxed, i.e. the 

penetration between the two bodies is assumed to be admissible. A linear relationship 

between the normal contact force and the normal gap is postulated as

f r = £ngn lf  g* < 0

/„ = 0 3.5

where sn is called the normal stiffness or penalty value. In the context of the principle

of virtual work, the virtual work of the contact forces imposed on the set of 

kinematically admissible gap rate can be added to the variational formulation (2.60) as

y (w ,q )  = (p(w,q) + g ( w ) s g  3.6

The variational function q>(w,q) is minimized with respect to the virtual velocity w, 

which leads to the expression



C hap ter 3 C ontact M odelling  and A daptive R em eshing

The second term in the right side o f equation (3.7) denotes the internal contact forces

and the internal contact force vector for a single contact element can be defined as

•̂int   ✓■int . /*int   c  cr 3 g " c- „  d g < -X 8
J c  =  Jn,c  +  J , , c  =  S n S n - ^ ~  +  £ , S , —  -TSOU OU

where sn, s t are the normal and tangential penalty values, and subscripts n and t are

referred to the normal and tangential directions. The calculation o f the normal and 

tangential force vector for 2-D and 3-D problems will be introduced in sections 3.2.2 

and 3.2.3.

3.2.2 Contact forces for 2-D node-to-facet

k
K

Figure 3.2 Node to facet contact

In Figure 3.2 it is assumed that an impact node from previous position s' moved to s 

at the current time step, where n and t denote the normal and tangential vectors o f the 

target facet 1-2. /0 and ln are the previous and current lengths o f the target facet. The

normal gap g n and tangential gap g t are given by

g , = (x s - x , ) n  = ( x s - x c) n  3.9

g ,= 4Jn~ 4oh  3.10
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where x s , x 1 and x 2 are the spatial position of the impact node and the target nodes 

at the current time step, the three nodes form a contact element. x c denotes the 

position of node s projected onto the target facet 1-2. The local coordinates of the

contact location is defined as

and

Zc=-r(*s - x l) - ‘ 

t = (* 2 - X }) y  n = e3x t

3.11

3.12

The directional variation o f t and n are defined as

St = —( / - *  <8> t) (Su2 - S u x)
K

Sn  = ~ ~ i <t® ti ) (Su2 - Sux)

3.13

3.14

The variation of the normal gap gn in equation (3.9) can be derived with the aid of 

equations (3.11)-(3.14)

dg„ = «• (Sus - Sux) + S n ■ (x s - x x)

= n-(Sus - S u l) - y ( x s - x l) - ( t® n ) (S u 2- S u l) 3.15
n̂

=  n  ■ [ S u s -  (1 -  £  ) <Sh, -  #c<?«2 ]

Now the element internal normal contact forces can be written as

n

- ( ! - & ) ■
~ t n

= £ g  Nnc>n s

and

n n
N s = -N ,(£c)n = - ( I - # , ) *

- jv 2r#c> _

3.16

3.17
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The variation of the tangential gap gt is derived using equation (3.10), where is

the local coordinates at the previous time step. One might think o f defining gt

differently with current length ln in (3.10). However it turns out that the resulting

tangent stiffness matrix is then non-symmetric. With the aid o f equation (3.13) and

(3.14)

S g ,= h % c

and

(Sus - 5 u , ) - t  + ( x s - x l) - 5 t - j 8 l n(x s - x x)-t
3.18

8 K  = j { x 1 - x 1) \ 8 u 2 - 8 u , ) 3.19

Substitute 81 n and 8t  into equation (3.18) then the equation (3.18) can be re-arranged 

as

(Sus - S u ]) - t - —(xs - x l) - ( t® t ) (S u 2- S u l)
''n

+ j ( x s - x 1) ( S u 1- S u , ) - ^ - ( x 1- x l) ( S u 2- S u i)
n n

= j- |[< 5«s - ( 1- # c ) ‘?" i - # c ‘5" 2 ] ^ + y L(<?"2-<?“i ) - » |

3.20

The element internal tangential contact forces can be finally defined as

**

1 i
o

i

_l_ &n

K
- n  > 

n

where

t t ~ o "

- m c ) ‘ = 1 T N m =m -F t

r N2(tc)t_ . . Ft
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The second term on the right side of equation (3.21) is caused by change o f the length 

of the target facet. If  the target facet is a rigid one, then ln = l0 and equation (3.21) can 

be simply replaced by

f% =s,g ,T ,  3.23

Remark:

(1) Equation (3.16) illustrates that the contact normal forces sngn on nodes s 

along the local normal direction is simply balanced by the reaction forces 

- N x{^c)sngn and ~N2{^c)sngn on nodes 1, 2 of the target facet using the

corresponding nodal shape functions. Then those local nodal forces are projected onto 

the global system using a transformation vector n. The same rule is applied to the 

definition of the contact tangential nodal forces, if  a rigid target segment is assumed, 

shown in equation (3.23). The techniques o f computing contact forces can be 

extended to any shape o f the target facet of 2d and 3d cases, once the local 

coordinates of the contact point on the target facet are defined, the global nodal 

contact forces can be easily defined.

(2) The tangential contact force is called the ‘sticking friction’ force in some 

references [3.7], which is proportional to the tangential gap. If is set to zero, it is

a frictionless contact case. From frictionless to complete ‘sticking friction’, there is a 

type o f sliding friction, which is usually defined by the Coulomb friction law. 

Numerical models of linear and non-linear friction will be discussed in detail in 

sections 3.2.4 and 3.2.5.

3.2.3 Contact forces for 3-D node-to-facet
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x

Figure 3.3 Node-to-facet contact with three noded-facet

For a general three-dimensional analysis, the contact surface is two-dimensional. In 

Figure 3.3 this surface is assumed to be a three noded surface, which may be 

associated with an underlying tetrahedral element or 3-noded rigid facet. The 

geometry o f the target facet can be defined by a set o f unit vector base {#i, t2} as

C’ =
x , - x , \x? - X,

n = / ,x  e2 t2 = n x t { .24

where n is a normal vector to the target facet at contact point x c. Assuming the 

impact node moved from the previous contact position s' to 5 at the current time step. 

The normal penetration gap g n and the tangential gap vector g t are given by

S „  = ( x , - x , ) n  = ( x s - x c) f t  3.25

l& il _
~ 8« 3.26
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where gt0 is the previous tangential contact gap vector in the target facet. According

to the remark made in 3.2.2, the contact normal and tangential forces for a 3-noded 

facet can be simply defined as

1

= £ g  n NJ n.c n & n 3 c

= (e,g,tl +slgllt2) N u

3.27

3.28

where the local coordinates related to the nodal shape functions in equation (3.27) and

(3.28) are defined using area coordinates

c23JV,(£,i7e) = & = 

V2 (£ ,% )  = % =
At 31 3.29

where A is the target facet area, Ac23 is the area defined by contact point x c and nodal 

position a : ,  and x 3. Ac31 is the area defined by contact point and nodal position 

jc3 and j t j . The position o f contact point x c is set by equation (3.25) as

X c =  X s + Snn 3.30

X

Figure 3.4 Node-to-facet contact with four noded-facet
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If the target facet is a 4-noded facet, which may be associated with a hexahedral solid 

element or 4-noded rigid facet, the definition of local coordinate (^C,7JC) is not a

trivial matter. Assuming a contact point c is located on the target facet, which is 

closest to node s, as shown in Figure 3.4, and defined by a bilinear interpolation 

function as

Xc = H NM c ^ c ) Xl 3.31

3.32

where g. and 77, take on their nodal values at (± l,± l)  and x t is the nodal coordinate 

of the ith node on the target segment. The terms (£cirjc) are assumed to be the contact 

point local coordinates which need to be defined. The tangential direction at position 

x c must be orthogonal to the normal vector (jcs - * c) ,  i.e. the local coordinates

(£ ,% )  must satisfy

3<f

*»-o
3.33

Equation (3.33) was given by Hallquist et al [3.2] and can be readily solved using the 

Newton-Raphson iteration method, with initial estimates for (^C,/7C) . Once (£ ,% )

are defined by equation (3.33), the tangential and normal directions at contact point 

a: can be set as

dxr dxc dx /+ _ c dxe
3# 2 3 * ? / drj

n = /j x t2 3.34

The contact normal and tangential forces for the 4-noded facet can be defined as
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4 c N< =4 c - n 2(1 ,V c)

- M l * . )

3.35

3.36

3.2.4 Coulomb friction forces for 2-D contact element

The tangential forces defined in equation (3.21) or (3.23) are the linear elastic type 

forces, or adherence forces. When sliding friction is considered, the Coulomb friction 

law is introduced by several authors [3.8][3.9]. A typical Amontons and Coulomb law 

of friction is summarized by K. Hashimoto et al [3.10] as follows:

(1) The friction is independent o f the apparent area of the two contact 

bodies.

(2) The friction force is proportional to the normal contact force between

them.

(3) The kinetic friction is almost independent o f the speed o f sliding.

In the Coulomb friction model, the tangential friction force is governed by the 

Coulomb friction law, or called the yielding function as

*(/)= |/H /.l=° 3-37

where c is the friction coefficient, which is dependent on the material medium and 

roughness o f the contact surface. Here a framework for the plasticity theory of friction 

is reviewed for the 2-D case. The incremental tangential gap Agt defined by equation

(3.10) may be decomposed into an elastic component and plastic or sliding component 

as

Ag, =A g; + Ag/’ 3.38

Following the elastic constitutive law the total tangential force is defined by
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f r  = f;  + t,A g ; =/ • + * , (a&  -  ) = - * , a 3.39

where ftn is the previous tangential force, is the trial tangential force in the

current step. The evolution law for the sliding component is set by a non-associated

flow rule as

Ag?= A 3.40

dT1
where T1 is the sliding potential and its d e riv a tiv e  defines the direction o f sliding,

df,
they are set by

and

f: •—  = -  slS n ( f )
df, f  * yJ<)

3.41

3.42

The direction o f friction sliding is the same as the direction o f the tangential force. If 

an associated flow rule was adopted, the plastic sliding would occur in the normal 

direction o f the target facet, as shown in Figure 3.5, this would be physically 

unrealistic [3.7]

Figure 3.5 Coulomb friction model

The plastic multiplier X  satisfies the complementary conditions
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<f>{ft)~° U ( f t) = °  3.43

Substituting equation (3.39) and (3.40) into the yielding function (3.37) the plastic 

multiplier X is given by

„• \ f S L \ - c \ f . \A = 3.44

The tangential friction force f tn+l and incremental sliding gap Agf  along the 

tangential direction t can be written as

f r ' = c \ f n\ s i g n { f ^ , )  3.45

Ag? = X s ign ( f ,% )  3.46

Substituting equation (3.45) into (3.21) the element internal tangential contact forces 

f tm* for the sliding friction are determined. The implementation o f the tangential

friction force algorithm for the 2-D contact element is summarised in Figure 3.6.

(1) Update configuration

(2) Evaluate trial tangential forces

(3) Check plastic sliding condition

j 'n+ 1   f n + 1
J  t J  t, trial

Else

HI-c »'I-cW)A
(4) Update local friction forces

f ,  =c\f„ | sign (/ ,%,)

g t"  = 8? +
Endif

(5) Update global friction forces

/ ■int   r
t,c ~  J t  j

i f  ^
0 t + J L l j v ., .  (3-21)

Ln y

° r f £ = f j .  (3-23)

Figure 3.6 2-D Contact tangential force update procedure
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3.2.5 Coulomb friction forces for 3-D contact element

In 3-D the incremental tangential gap vector Agt given by equation (3.26) is 

decomposed into elastic and plastic components as

AS ,= ^ g t +  3.47

The tangential force vector f t is now given by

= = 3.48

The yielding function defined in equation (3.37) is altered to give

3.49

The incremental plastic sliding Ag f  is defined normal to the cylinder | | / | |  = constant 

by a non-associative flow rule as

Agtp = 3.50
#  ll/ll

where the sliding potential T7 = | | / | | . Substituting equation (3.50) into equation (3.48) 

gives

f , = f ; ; L - e A  A
W l 3.51

= (l - s ,  i/ll/1) f , %  = a f p,trial

Equation (3.51) is based on the plastic radial return assumption [3.4] i.e. plastic flow 

directions at a trial stress point f tnt+Jal and at yielding surface f t are the same. The

plastic multiplier X can be obtained via the satisfaction of the complementary 

condition (3.43) and the yielding criteria <j) ( /  ) = 0 , from which

3-52
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The implementation o f the tangential friction force algorithm for the 3-D contact 

element is presented in Figure 3.7.

(1) Update configuration

X, n = Xn+" ' Ai
(2) Evaluate trial tangential forces

(3) Check plastic sliding condition

i f # {/ ,% ,)  = then

/ •«+1  J ft\ I   j? n + 1
t \ -f [ t,trial

Uti J
Else

Hk&H/.i)/*,
(4) Update local friction forces

/,"+1 = { ^ } = c | / „ | r

# P,”+1 = g?’n + AT Update sliding distance
Endif

(6) Update global friction forces
= i f ,A  + f* t2) X H „ tc) (3.28) o r (3.36)

r p   f t, tr ia l

trial

Figure 3.7 3-D Contact tangential force update procedure

It has to be mentioned that a friction hardening model was developed by E.A. de 

Souza Neto et al [3.9] in 1993, to simulate the frictional behaviour o f coated steel, 

where the evolution of surface wear become particularly important in the definition of 

the frictional behaviour. The friction coefficient c is no longer a constant value, and is 

dependent on the density of frictional work expended on the contact surface 

considered. Analogous to the classical work hardening elasto-plasticity theory, the 

yielding function is defined as

# ( / . w )  = | | / | | - c ( w ) |/ „ |  = 0 3.53

where w is the density of frictional work expended on the contact point considered, its 

evolution equation is given by
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A w = f ,A g f  = \ f t \X = c(w) \ fn\X 3.54

Instead of solving equations (3.44) or (3.52) to obtain the plastic multiplier A, we 

must solve the following coupled residual equations to obtain plastic multiplier X and 

incremental frictional work density Aw as

n = l-C-L | - s , X - c  (w„+1) |/„ |= o 

ri = w„+i - k - c K +i ) | / „ | ' i = 0
3.55

The resulting system of non-linear algebraic equation (3.55) can be solved by the 

standard Newton-Raphson iteration method as

*  I
Awl (+i

*  I
Aw

-s.

—c

and

1 -

dc 
dw 
dc | 
dw

u

-1

'Srx
Sn

3.56

3.57

where the derivative of the friction coefficient with respective to the friction work is 

given by the frictional hardening curve c = c (w ). For electrogalvanised steel sheet 

(EG) it is defined by a polynomial function with w measured in kN/cm

c(w) = -0.4096 x 10"* w5 + 0.2890 x 10-4 w4 -  0.8212 x 10-3 w3 

+ 0.1035xl0_1w2 -0 .3 1 4 8 x l0 _1w+0.1568
3.58

3.2.6 Frictionless contact

The frictionless contact is a special contact case. In the frictionless contact, the contact 

forces along the tangential sliding directions o f a facet are kept to zero and 

impenetrability constraint is applied on the normal direction o f the facet. On the 

numerical modelling of steep forced water waves against a rigid tank wall, a special 

contact treatment is set for the impact node. The global velocities on the impact and
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contact nodes are projected onto a local coordinate system, which is defined by the 

facet geometry as:

3.59a

n
tT

x
U,c 3.59b

and - g J * 1 i f  S»<0  

/ : : = o

3.60

3.61

where u[ and us are the local and global velocities on the impact node, ulc and iic 

are the local and global velocities on the contact node of the facet, as seen in 

Figure 3.2. uns and unc are the normal velocity components, uns is adjusted

according to the impenetrability constraints in the normal direction o f the facet. Once 

contact is established, the normal velocity uns is maintained equal to the normal

velocity of the contact node, unc. Obviously, the impact nodes applied with

frictionless contact are only assigned to the deformed mesh domain.

3.2.7 Contact detection

One of the most important aspects of contact modelling is the development of an 

effective detection procedure for monitoring contact between large numbers of 

discrete objects. The alternating digital tree (ADT) algorithm [3.11] is a spatial global 

search algorithm based on space-cell subdivision and incorporating a tree data storage 

structure and possesses significant computational advantage. The algorithm was later 

further developed by Feng and Owen [3.12] as an augmented spatial digital tree 

(ASDT) for problems involving simple geometric rectangular objects, which is 

generally achieved by representing any arbitrarily shaped object with an axis aligned 

bounding box. The ASDT algorithm uses only the lower comer vertex to represent a 

rectangular object with the upper comer vertex serving as the augmented information. 

Consequently it gives a better-balanced tree and reduces the CPU time of contact
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detection significantly. The contact detection procedure with ADT or ASDT 

algorithm can be divided into four stages.

1. Body location mapping.

2. Space bisection.

3. Bounding box intersection.

4. Local contact resolution.

The procedure o f stages 1-3 comprises the global spatial search algorithm, in which 

all the objects are approximated by rectangles and each rectangle is reduced to a point 

in a higher (2n)-dimensional space. Based on this simplification a potential list o f 

contact target facets for each contactor node is identified. In stage four, the local 

contact search algorithm is employed to identify the closest target facet to the 

contactor node under consideration.

3.2.7.1 Body location m apping

Each body, which can be a contactor node or a target facet, is circumscribed with an 

axis aligned bounding box, whose edges are parallel to the axis o f the global 

coordinate system and is possibly further extended by a buffer zone, as shown in 

Figure 3.8

b u ff

-►

*

Figure 3.8 Bounding box definition for 2d, a contactor node and a target facet.
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The body z, which denotes the contactor node or the target facet, is defined by two

comer points x t ̂  and x t ^  of its rectangular bounding box in an n-dimensional

Euclidean space R n and reduced as a single point in 2n-dimensional space R 2n via 

spatial mapping L : R" —> R ln. This point is termed the representative point of the 

rectangular bounding box and is defined by two characteristic comer points as

p =[ x 1 • ,...,x "  jX1 ,...,jc" 1 3.62J  i |_ i .m in ’ ’ i ,  n u n 5 i ,  m a x ’ ’ i, max J

For example, a segment in R l space is represented as a single point in R 2 space as 

illustrated in Figure 3.9.

'max

7 ,max

Figure 3.9 A segment in R 1 space represented as a point in R 2 space

Consequently a set of N  geometric bodies in the n-dimensional Euclidean space R n 

can be represented by a set o f N points P .,i = i , N  in 2n-dimesional space R ln .

3.2.7.2 Space bisection

Once the unique locations o f bodies in 2n-dimensional space R 2" are defined, it is 

possible to create a data structure to store the information on the bodies with respect 

to their relative position in R 2n space. A spatial binary tree structure was developed 

by Bonet and Peraire [3.11], it is based on the principle of recursive bisection of the 

embedding space. Each node in the tree can have two children, left child and right 

child, and apart from the root node, also has a parent, i.e. there is one and only one
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node pointing at it. A node without any child is defined as a leaf. Each node has a key 

field that decides which o f its children will be accessed during the tree traversal for 

insertion o f a node. For the spatial binary tree, each node is associated with a spatial 

sub-region in addition to the original data stored. A typical binary tree data structure is 

shown in Figure 3.10, and its corresponding storage allocation within computer 

memory is defined in Table 3.1.

1

N , N2

2

N4 n 5

3

n 6

Figure 3.10 Representation o f the binary tree data structure

L eft child 
number

Node
number

R ight child  
number

Parent
Num ber

J th

2 1 3 0 1

4 2 5 1 2

0 3 6 1 2

0 4 0 2 1

0 5 0 2 1

0 6 0 3 1

Table 3.1 Binary tree data storage allocation
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Table 3.1 denotes four integer arrays to be opened in data structure to store the lists o f 

left and right child numbers, parent numbers, j th direction, except for a list of node 

number, which are always listed sequentially by order.

A spatial binary tree represents the collection of N  points, {P]9P29---tPN}, in a 2n-

dimensinal space R ln . The generation o f a spatial binary tree can start from the first 

point Px as the root node, which represents the whole region D0 = (c0,rf0) . DQ is the

minimum bounding region o f N  points in R ln space and is assigned to the root node 

in level 0. Through bisecting across the x1 direction, z\ =(c\+ d ^ j l  is taken as a 

key for the root node. Second point P2 is inserted according to. its lower comer 

coordinate x\ ^ , if x\ ^  < zj then P2 is taken as a left child o f the root and the left 

half region o f D0, cj < x 1 < z j , is assigned to node 2. If  x\ ^  > zj then point P2 is 

inserted as a right child and the right half region zj < x1 < d\ is assigned to the node 2. 

The sub-region Dx=(cv d^) is further bisected across the direction of x 2 and 

z 2 =[c2+ d f)/2  is taken as the key for nodes in level 1. The insertion of the third

point is started from the root node and the direction x1, locating its position in the two 

sub-region depending on the condition of xj ̂  < z j , then checks if the corresponding

left or right child node is occupied. If it is free the third node is inserted into the tree, 

otherwise treat child node in level 1 as the root node and compare the lower comer 

coordinate x ] ^  with z 2 and then repeat the same procedure described above. The

tree is completed when N  points in the R 2n space are inserted.

Generally if a node m is at the hierarchy level k  o f the binary tree, the sub-region of 

the node m is defined as Dk =(ck,dk). The half sub-regions associated with its left

and right child are Du = (cu ,du ) and = ( ^ , ^ )  respectively, resulting from the

bisection o f Dk by a plane normal to the j th coordinate axis, where j  is chosen 

cyclically from the n-dimensional space as
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j  = 1 + mod (k, n) 3.63

Equation (3.63) is not explicitly calculated and j  is updated during insertion o f the 

nodes. The list o f j th direction of the nodes is stored in an integer array, shown in 

Table 3.1, for later contactor detection search. The key for the node m is set to be 

z{ = {c{ + d Jk ^j2 , and the sub-regions (cu , du ) ,  ( c ^ , ^ )  are defined by

4 = 4  4 = 4  M  i * j  4 = 4 >  d Ju =z{ 

4 = 4 ’ dl = d[ for i * j  cl = 4 > dL = di

Remark:

(1) The shape of the tree obtained in above procedure depends on the spatial 

distribution of the N  points and somewhat the order in which the points were 

inserted. For a well balanced tree, the cost of generating a binary tree is 

proportional to N  \og(N) .

(2) The region associated with a given node m in the tree contains all the sub- 

regions associated with nodes descended from m and all points stored in 

these nodes lie inside the region. This is the most important feature of the 

spatial binary tree.

(3) In the ADT structure a node k  represents a region (ck,dk) and contains a

point Pk = max)j which represents a rectangular target facet; the

following condition must be satisfied.

c, < x, x, < d,k  A:,nun A, max — k

3.2.7.3 Bounding box intersection search

A contactor detection search can be considered as a geometrical intersection problem. 

Assuming a contactor node, which is circumscribed with an axis aligned bounding 

box, and represented by a point P  = (a,b) in R 2n space. The bounding box of the

3.64

3.65
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contactor node is extended by a buffer zone lbuff o f contact detection; the larger the

zone, the more expensive the contact interaction computations. Normally the buffer 

zone is taken as the maximum length o f target facets. The intersection between the 

contactor node and the region represented by the node k , namely (ck,dk), is checked 

by the following condition.

a <dk b> ck

or a1 < dlk bl >c'k i = l,n 3.66

If condition (3.66) is not satisfied, then the complete set of point stored in the sub-tree 

rooted at k  can be disregarded from the search, thus avoiding the need to examine the 

coordinate o f every single point. If the region associated with node k  in the tree 

intersects with the contactor range then a geometric searching algorithm

emerges in a recursive form as

(1) Check if the coordinates of the node k in the sub-tree root, 

pk = ( ^ >nnn5̂ Jmax) intersect (a ,b ) , i.e. check whether a! <x[ ^  

xkwia <bl for i = 1,«. If  the condition is satisfied, update number and list 

o f possible contacted target facets for the contactor node.

(2) If  the left child of the sub-root is non-zero and the region

intersects with (« ,£) , i.e. if a1 < dlM, clH<bl , i = l,n  search the left sub­

tree.

(3) If  the right child of the sub-root is non-zero and the region 

overlaps with (a,b ) ,  i.e. if a‘ < d i ,  c l< b ‘, i = \,n  search the right sub­

tree.

From the geometric searching procedure, a list of points, which represent target facets 

that intersect the contactor range (a ,b ) , can be found for a contactor node. The 

searching procedure is carried out for all contactor nodes under consideration.
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3.2.7.4 Local contact resolution

After global spatial search a short list of potential contact target facets are identified 

for each contactor node. The local contact resolution phase requires a detailed 

geometric description of the target facets in order to find out the actual intersected 

target facets. A simple criterion to detail possible intersected target facets in 2D and 

3D contact cases is given by Hallquist et al [3.2].

3.3 Continuum adaptive remeshing

The key steps associated with a continuum adaptive remeshing algorithm are listed as 

follows, which we will discuss later in detail.

• Geometry entity related model definition

• Error estimation and prediction of mesh density

• Re-generation o f the new mesh by an automatic mesh generator

• Field values mapping between the two meshes

3.3.1 Geometry entity related model definition

In adaptive analysis the configuration of a solid body is defined by a set of 

hierarchical database using geometry entities and operation assignments. For example 

in 3D case, a solid body may be composed o f a geometry volume, which contains 

several geometry surfaces, lines and geometry vertices, these geometry entities are set 

by a graphical pre-processor. All geometry entities are related with mesh data, i.e. 

nodes, elements and element faces. A typical geometry data are shown in Table 3.2.
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Volumes
geometry_volume { volume number

nodes { number o f mesh nodes 
node number list

}
elements { number o f elements 

element number list
__________________ i_____________________
Surfaces
geometry_surface { surface number

nodes { number o f mesh nodes 
node number list

>
elements { number o f elements 

element number list
}

faces { number o f element faces 
element face number list

}
Lines
geometry_line { line number

nodes { number o f mesh nodes 
node number list

}
elements { number of elements 

element number list
}

faces { number of element faces 
element face number list

}
Points
geometry_vertex { vertex number

nodes { number of mesh nodes 
node number list

>

Table 3.2 Geometry entities related nodes, elements and element faces

All the operating assignment data such as element topology, element geometry 

properties, global and element load, support data, element initial data, etc. are defined 

by geometry entities and its geometry number. Generally geometry entities are not 

changed throughout the simulation, only geometry related nodes, elements and 

element faces are changed after each mesh adaptation. But in some cases, the 

geometry entity may be deactivated and be removed due to their related element
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erosion or boundary element surfaces sticking together. A new geometry entity may 

be created if the original geometry is split into two or more pieces, which often 

happens in fracture or rock blasting simulations. Therefore, the analysis program 

should be capable of handling the relevant geometry database intelligently.

3.3.2 Error estimation and prediction of mesh density

Error estimations based on the energy norm, velocity gradients and the plastic work 

rate are three most efficient and adequate error indicators for fluid and solid structure 

problems, the detailed description o f the three error estimations are introduced as 

following:

Error estimate based on the energy norm

The energy norm in the linear model of the Eulerian and Lagrangian flow [3.14] [3.22] 

can be defined as

H 2 = ^ 5 r (2 /i)_1sJQ +  ^P (A  + l f i ) - lPdCl 3.67

and the error in the energy norm therefore is
M 'yINI2 = IK  = £(s-s)r(2//)"‘(s-s)̂ + £(P-P)(A+-J«r1(i>-Pyn 3.68

k= 1 -2

where llell is the k th element error norm, and M  is the number o f elements in the
II ll/C

A

domain. The elements and P  are finite element solutions for the deviatoric stress 

tensor and pressure respectively, s and P  are the corresponding exact solutions, n  is 

the viscosity and X is a volumetric viscosity coefficient analogous to the bulk 

modulus in linear elasticity.

Remark: Although the error estimate in the energy norm is not strictly applicable in 

the nonlinear problem, it is still a useful error indicator.

Error estimate based on the velocity gradients
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The L2 -norm of the velocity gradient is defined as 

U 2 = f (V u f (vuVinl(vuf(vu)dn 3.69

and the Z2 -norm o f the error in their representation is set by

Hf = IK  = L (v « -v « ) r ( v « - v « ) ^ n 3.70

where Vu  is the discontinuous, approximated element velocity gradient, obtained 

from a finite element solution. Vu  is the corresponding exact solution.

Error estimate based on the plastic work rate

The plastic work rate can be expressed as

rate tensor respectively, cr and s  are the corresponding exact Cauchy stress and 

plastic strain rate tensor.

As the exact solutions of s, P, <7, ep and Vu in equations (3.67)-(3.72) are unknown, 

we can use some higher order approximations *s, *P, V ,  *sp and *Vu instead of 

the exact solutions. *s, *P, V , *e and * Vu are obtained by least square smoothing

[3.23] or some other projection method, e.g. nodal averaging method [3.24]. These 

procedures lead to higher order approximations, which tends to the exact solution. 

Therefore, the norm ||w|| and error ||e|| in equation (3.67)-(3.72) are replaced by ||z2||

and llell.

3.71

The error associated with the plastic dissipation is defined by

3.72

where & and s  are finite element solutions for the Cauchy stress and plastic strain
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A global relative error rj for the three types o f error estimate can be written as

?7 = M < 7 3.73
w

where rj is a target allowable error value. The global relative error is used as a check 

for remeshing; if equation (3.73) is violated then the remeshing procedure is required. 

For transient fluid problems, this criterion should be satisfied at all times. When 

remeshing is required, the corresponding target error for a quality element needs to be 

defined as

■I ah — ImII
ML =77~M" 3.74II \\k,target

Then the ratio o f the element estimate error and element target error, %k, can be set for 

each element as

& =  F T   k = X'M  3/75MlII II kytarget

<̂k is also called the element error indicator or refinement indicator. When %k > 1, a 

finer element mesh size is required, whereas the mesh size may be coarsened if 

< 1. The required element size or new element mesh density can be predicted by

-  hold k = l,M  3.76
&

where hk d and hk are the current and predicted element sizes respectively. Equation

(3.76) gives a discontinuous distribution of element sizes throughout the domain. 

However commercially used mesh generators normally require a continuous 

distribution of prescribed element sizes as input data to generate a new mesh. 

Therefore a smoothing procedure, either using least squares fitting or nodal averaging, 

projects the discontinuous element size distribution onto a continuous basis.

The implementation of the error estimate and mesh density prediction using a nodal 

averaging method is summarized in Figure 3.11
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(1) Do k = \,M
A A

Project s ,  P or & ,sp onto element nodes

Enddo
Averaging s , P  or & ,e  get *s, *P or V , *sp

(2) Set |« | = 0 , p|| = 0 

Do k = 1 ,M
Interpolate *s, *P or * a , *s at Gauss point 

Calculate ^ , p ||4 using (3.67)(3.68) or (3.71)(3.72) 

Update ||w|| = ||m|| + ||m||

||e|| =  ||e|| +  ||e||A

Enddo
(3) Calculate rj using (3.73) 

if 77 < 77 then
Exit

Elseif

w  Set 1 4 ^ ,  usin§ (3-74>
Do k = \,M

Define error indicator^  using (3.75)

Mesh density hk using (3.76)

Project hk on element nodes
Enddo
Average hk to obtain *hk

Endif

Figure 3.11 Error estimate and mesh density prediction

From Figure 3.11 it is seen that the whole procedure of error estimation and mesh 

density prediction may involve loop over elements in the domain three times. It has to 

be mentioned that there are another two different error indicators to trigger the 

remeshing; one is the element Jacobian or volume based distortion error indicator, the 

other is an element nodal angle change based error indicator. The distortion error 

indicator based on the element Jacobian change can be defined as

77 = max ) = max
(  Tk — Tk \

J  c

J k J
k = 1,2,...Af 3.77
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where J kc and J \  are the k th element deformed and initial Jacobian respectively. The 

element nodal angle change based distortion error indicator is defined as

?7 = m ax(£4) = max k  = 1 ,2,...M  i = hna 3.78

where a kc and a k0 are the k th element ith comer nodal deformed and initial angles 

respectively. Equation (3.78) is only applicable for 2d cases.

3.3.3 Re-generation of the new mesh by automatic mesh generator

Automatic mesh generation has been the subject of much research in many 

applications of finite element analysis [3.24] [3.25]. The advancing front technique 

developed by Peraire et al [3.21] is a most efficient and popular method used to 

generate 2-D triangle or 3-D tetrahedral linear elements. The advancing front method, 

along with the later developed Delaunay method, belongs to the so-called ‘/z’ 

refinement process in which increased accuracy is achieved by variation of the 

element size, i.e. mesh density. In contrast to the ih’> refinement process, ‘p ’ 

refinement changes the order of the element polynomial interpolation function, but it 

has a limited general applicability in practicable cases.

The basic idea behind the advancing front technique is that it first sets a background 

grid for the new mesh with its nodal mesh density predicted by the error estimator and 

defines a set of initial front facets on the boundary surface. Then it chooses a front 

facet as a base to generate a new node and a new element inside of the domain, 

according to the mesh density provided by the background grid. After new elements 

are generated on the boundaries, the front is advanced by shifting to appropriate new 

facets. By repeatedly generating new nodes, new elements and advancing to the new 

front, until a set of front facets is not found, the whole process is completed.

3.3.4 Field values mapping between the two meshes
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When a new mesh is produced, mapping o f nodal displacements, velocities, 

temperature and history-dependent variables at element Gauss points from the old 

mesh to the newly generated mesh is required. There are several important aspects 

that have to be met for a good mapping scheme, as addressed by Peric [3.17] and Lee 

et al [3.18] and listed as follows

1) Consistency with the constitutive equations

2) Requirement of equilibrium and minimisation of the numerical diffusion of 

the transferred state fields

3) Compatibility o f the history-dependent internal variables transferred

4) Compatibility with evolving boundary conditions

In order to satisfy the above four requirements there are two kinds of mapping scheme 

used in commercial finite element analysis codes. One is the background element 

mapping and other is the weighted least squares mapping method. The background 

element mapping is a popular early method [3.15][3.16][3.17], which consists in 

extrapolating the history-dependent variables at element Gauss points to the element 

nodes o f the old mesh, mapping nodal variables from old to new mesh and then 

performing element interpolation at the Gauss points o f the new mesh. For any new 

point it is necessary to find a background element in the old mesh, which includes the 

point. Then it requires calculation of the local coordinates of this point in the 

background element and interpolation of the old nodal variables to the new point. A 

schematic o f the mapping technique is given by [3.17], which will not be discussed 

here in detail. Since the background element mapping scheme involves Gauss point to 

nodes and nodes to Gauss point repeated interpolations it costs more computation 

time and smoothes the numerical solution, which may cause unnecessary numerical 

diffusion. Experience has found that simulations, which involve significant changes in 

geometry and sharp gradients of field values, can inherently suffer from excessive 

amounts o f diffusion of field variables. Consequently, the weighted least squares 

mapping operator has received much research attention [3.27].
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,new

,new

Figure 3.12 Least square mapping scheme Figure 3.13 Singularity of matrix Cjk,  jk = o,

Considering a newly generated point at x new surrounded by (N  + l) neighbouring 

points = + on the old mesh, as shown in Figure 3.12 and y n i = \,n represent

the variables at on the old mesh. The estimated values (pm{x)  at any po in t*  can

be simply defined by a polynomial function

9m (x )  = a0P0 (* )  + a j \  ( x )  + .. .  amPm (x )
« 3.79

= aKPK {X)
K =  0

where PK (* )  is the k lh polynomial base for a weighted least square mapping. 

a0,a {, .. .a m are the parameters to be determined. A weighted least square function 

y/ (a0 , ax,.. .  am) can be defined by

N  2
¥  («o .  « ! > • • • « » , )= S M'. [ p »  ( * < ) - > 0

i=i
N

7 = 0

3.80

where w. is a weighting function, which is set by a cosine function,

w. = cos
7T X.. — X

2r{XN+1)
3.81
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where N  stands for the number o f closest neighbouring points, which are used to map 

a new variables at x new. x t,i = are the spatial positions o f N  closer

neighbouring points. x N+l is the spatial position o f the (N +  l)‘h closest neighbouring

point and is the distance from x new to x N+l. Minimizing the function (3.80)

leads to solution o f the following equivalent system with unknown parameters 

ak,k  = 0,1, ...m

dif/
da,

=  0

1=1 j =0

k = 0,1, m 3.82

3.83

Here we introduce the following notations

C J * = ' Z w :Pj ( x i ) P>c(x <)/=1
3.84

3.85
/=i

Then equation (3.83) could be rewritten as
m

S  C]ka j= C K
j=0

k  = 0,1,... m 3.86

By solving (m + l) equations of (3.86), the newly interpolated value at x new can be 

calculated by equation (3.79) as
m

y ’m =<pm(x "m ) = Z a^ ( xnm) 3-87
K = Q

If  a general interpolation function is defined by a linear polynomial set, then m = 3 

and the dimension of Cjk, j ,k = 0,3 is 4 x 4  for the 3-D case, and m = 2 with

dimension of Cjk, j ,k = 0,2 is 3x3 for 2-D case. Since the least squares mapping

scheme does not need extrapolation of the history dependent variables from element 

Gauss points to the element nodes, it is more accurate than the background element
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mapping. It has to be mentioned that a special case would occur when (N +  \)

neighbouring points x t , which are closer to the new point x new cluster on a line, as

shown in Figure 3.13, or on a plane for the 3-D case. From our experience it is often 

occurred in 3-D membrane and shell adaptive remeshing analysis. In this case the 

matrix Cjk is near singularity and the determinant o f matrix Cjk tends to zero. In

order to avoid those situations, a mapping tolerance value r]tol is introduced. When the

determinant o f matrix Cjk is less than r)tol, it transfers the global coordinates o f

x n i = 1,tV +1 and x ne* into a local coordinate system, which is parallel to the line or 

the plane. The weighted least squares mapping is now carried out on the local 

coordinate system. The singularity o f matrix Cjk is avoided by reducing its dimension

by 1.

The following example defined in reference [3.28] illustrates the use o f different 

mapping methods to transfer nodal variables and history-dependent state variables at 

the Gauss point. The problem undertaken is an elasto-plastic stress analysis o f a billet 

which is being extruded through a tapered die with a wall angle o f 20 degrees by a 

piston pushed at a velocity o f 6000mm/s, as shown in Figure 3.14. The objective is to 

define the effective plastic strain distribution on the deformed billet.

DIE
/ / / / / / / / / / / / / / / / / / / / / / / / / /

.1mm

12mm - -

6000mm/s s

RIO \R IOPISTON B IL L E T

xXWwwwwwwwWVWWx
DIE

10mm
55mm

Figure 3.14 Billet extruded through a tapered die
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The problem is axisymmetric about the horizontal axis and so only one-half o f the 

billet/tool configurations will be modelled, with suitable constraints placed along the 

symmetric boundary. The tools are set to be rigid with the velocity prescribed on the 

piston as a whole and the die fully restrained, so plastic deformation can only occur in 

the billet. Unstructured linear quadrilateral 4 noded elements are used. Contact 

between the billet and tools is modelled using a slideline contact algorithm, taking 

into account the effects o f friction. A friction coefficient o f 0.2 is used in the analysis.

The billet is expected to undergo large deformation around the curved sections o f the 

die and the finite element mesh will become excessively distorted if the same mesh is 

used continuously throughout the analysis. Extra mesh refinement is specified in these 

regions, and the billet is remeshed several times, transferring the displacement and 

state variables from the old to the new mesh. The mesh adaptation is checked every 

500 iterations for an allowable distortion error o f 5% and at each adaptation an error 

estimator based on the plastic work rate is used to control the size o f the elements. 

The explicit formulation is used to perform this adaptive analysis.

The material for the billet is modelled using the Von-Mises isotropic plasticity model. 

The definition o f the uniaxial yield stress, together with the hardening curve values 

are defined in Table 3.3 and Table 3.4.

Property Value

Y oung’s Modulus 6.896 x 104 N/mm2
Poisson’s Ratio 0.32
Density 2.8 x 10‘8 Ns2/mm4
Uniaxial Yield Stress 31 N/m m 2

Table 3.3 Material Properties for Billet

Effective Plastic Strain Effective Stress 
(N/mm2)

0 31
10 2643

Table 3.4 Material Hardening Curve for Billet
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The piston and die materials are modelled as elastic solids with the properties listed in 

Table 3.5.

Property Value

Young’s Modulus 2.1 x 105 N/m m 2
Poisson’s Ratio 0.3
Density 7.8 x 10'6 Ns2/mm4

Table 3.5 Material Properties for Tools (Die and Piston)

_  i

4 .5 65281  
4 .1 84841  
3.8044 D1 
3 .4 23961  
3 .0 43521  
2 .66 3 08 0  
2 .28264 0 
1.90220  0 
1 .521760 
1 .141320 
0 .760880 
0 .380440 
0. 0 0 0 0 0 0

7 T. I T..JS

Figure 3.15 Sequence o f effective plastic strains using 

Background mapping scheme

6 .73 6 87 6  
6 .1 75470  
5.614  063 
5 .05 2 65 7  
4 .491251  
3 .929844  
3 .3 6 8 4 3 6  
2 .8 0 7 0 3 2

 f  2 . 2 4 5 6 2 5
1 .6 84219  
1 .1 22813  
J . 561436  
Q . 0 0 0 0 0 0

Figure 3.16 Sequence o f effective plastic strains using 

Weighted least-square mapping scheme
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Both the background element mapping and the weighted least square mapping are 

used to transfer the nodal displacement and stresses, strains, plastic strains and 

effective plastic strains at Gauss points. Figure 3.15 and Figure 3.16 shows the 

sequence o f fixed contour of effective plastic strain at time 0.00179, 0.00239 and 

0.00298 second. It is obvious that the weighted least square method gives a more 

realistic effective plastic strain distribution than the one obtained from the background 

element mapping. The layered plastic strain from the tapered die maintains a layered 

contour profile by the weighted least mapping, but for the background element 

mapping the pattern o f layered plastic strain contour is gradually smoothed out.

83



Chapter 3 Contact Modelling and Adaptive Remeshing

3.4 References

[3.1] J.O. Hallquist, NIKE2D, An implicit, finite deformation, finite element code for 

analysing the static and dynamic response o f two-dimensional solids, Rept. UCRL- 

52678, University of California, Lawrence Livermore National Laboratory, 1979.

[3.2] J.O. Hallquist, G.L. Goudreau and D.J. Benson, Sliding interfaces with contact- 

impact in large-scale Lagrangian computations, Comp. Meth. Appl. Mech. Engng. 51 

(1985) 107-137.

[3.3] P. Wriggers and J.C. Simo, A note on the tangent stiffness for fully nonlinear 

contact problems, Commun. Appl. Numer. Meth. 1 (1985) 199-203.

[3.4] D. Peric and D.R.J. Owen, Computational model for 3-D contact problems with 

friction based on the penalty method, Int. J. Num. Meth. Engng. Vol.35 (1992) 1289- 

1309.

[3.5] T. Belytschko and M.O. Neal, Contact-impact by the pinball algorithm with 

penalty and Lagrangian methods, Int. J. fo r  Num. Engng., Vol.31 (1991) 547-572.

[3.6] J.C. Simo and T.A. Laursen, An augmented Lagrangian treatment of contact 

problems involving friction, Comp. Struct. 42 (1992) 97-116.

[3.7] M.A. Crisfield, Non-linear finite element analysis of solids and structures: 

Volume 2 advanced topics. (Wiley, 1997) 411-446.

[3.8] T.A. Laursen and J.C. Simo, A continuum-based finite element formulation for 

the implicit solution of multi-body, large deformation frictional contact problems, Int. 

J. Num. Meth. Eng. 36 (1993) 3451-3485.

[3.9] E.A. de Souza, K. Hashimoto, D. Peric and D.R.J. Owen, A phenomenological 

model for frictional contact of coated steel sheets, In Proceedings, NUMISHEET, 

Tokyo, Japan, 1993.

84



Chapter 3 Contact Modelling and Adaptive Remeshing

[3.10] K. Hashimoto, E.A. de Souza Neto, D. Peric and D .RJ. Owen, A study on 

dynamic frictional behaviour of coated steel sheets: experiment, formulation and finite 

element simulations, Report o f 1NME, University College o f Swansea.

[3.11] J. Bonet and J. Peraire, An alternating digital tree (ADT) algorithm for 3D 

geometric searching and intersection problems, Int. J. Numer. Meth. Engng. 31 (1991) 

1-17.

[3.12] Y.T. Feng and D .R J. Owen, An augmented spatial digital tree algorithm for 

contact detection in computational mechanics, Int. J. Numer. Meth. Engng. 55 (2002) 

159-176.

[3.13] I. Babuska and W.C. Rheinboldt, A-posteriori error estimates for finite element 

method. Int. J. Numer. Meth. Engng. 12 (1978) 1597-1615.

[3.14] R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial 

differential equations, Math. Comput. 44 (1985) 283-301.

[3.15] O.C. Zienkiewicz and J.Z.Zhu, A simple error estimator and adaptive 

procedure for practical engineering analysis, Int. J. Num. Meth. Engng. 24, (1987) 

337-357.

[3.16] O.C. Zienkiewicz and J.Z.Zhu, Superconvergent derivative techniques and a 

posteriori error estimation in the finite element method, Part 1: A general 

superconvergent recovery technique; Part 2 The Zienkiewicz-Zhu error estimator 

Report oflNM E , University College o f Swansea, CR/671/91 and CR/672/91, 1991

[3.17] D. Peric, Ch. Hochard, M. Dutko and D .R J Owen, Transfer operators for 

evolving meshes in small strain elasto-plasticity. Comp. Meth. Appl. Mech. Engng. 

137(1996) 331-344.

[3.18] N.S. Lee and K.J. Bathe, Error indicators and adaptive remeshing in large 

deformation finite element analysis, Fin. Elem. Anal. Des. 16 (1994) 99-139.

85



' Chapter 3 Contact Modelling and Adaptive Remeshing

[3.19] J.T Oden, L. Demkowicz, W. Rachowicz and T.A. Westermann, Toward a 

universal h-p adaptive finite element strategy. Part 2: A posteriori error estimation, 

Comp. Meth. Appl. Mech. Engng. 77 (1989) 113-180.

[3.20] D. Peric, J. Yu and D .R J. Owen, On error estimates and adaptivity in elasto- 

plastic solids: applications to the numerical simulation of strain localisation in 

classical and Cosserat continua, Int. J. Num. Meth. Engng. 37 (1994) 1351-1379.

[3.21] J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, Adaptive remeshing 

for compressible flow computations, J. Comp. Phys. Vol 72 (1987) 449-466.

[3.22] J. Wu, J.Z. Zhu, J. Szmelter and O.C. Zienkiewicz, Error estimation and 

adaptivity in Navier-Stokes incompressible flow, Report o f INME, University College 

of Swansea, CR/647/90, 1990.

[3.23] E. Hinton and J. Campbell, Local and global smoothing of discontinuous finite 

element functions using least square methods, Int. J. Num. Meth. Engrg. 8 (1974) 461- 

480.

[3.24] M. Ainsworth, J.Z. Zhu, A.W. Craig and O.C. Zienkiewicz, Analysis of the 

Zienkiewicz-Zhu a posteriori error estimator in the finite element method, Int. J. Num. 

Meth. Engrg. 28 (1989) 2161-2174.

[3.25] S.H. Lo, A new mesh generation scheme for arbitrary planar domains, Int. J. 

Num. Meth. Engrg. 21. (1985) 1403-1426.

[3.26] W.J. Schroeder and M.S. Shepherd, A Combined Octree/Delaunay method for 

fully automatic 3-D mesh generation, Int. J. Num. Meth. Engrg. 29 (1990) 37-56.

[3.27] F. Olmi, E. Bittencourt and G.J. Creus, An interactive remeshing technique 

applied to two dimensional problems involving large ealsto-plastic deformations, 

CIMNE, Barcelona, 1997.

86



Chapter 3 Contact Modelling and Adaptive Remeshing

[3.28] O.C. Zienkiewicz, G.C. Huang and Y.C. Liu, Adaptive FEM computations of 

forming processes-application to porous and non-porous materials, Int. J. Num. Meth. 

Engrg. 30 (1990) 1527-1553.

87



Chapter 4

Implicit and explicit parallel solver

4.1 Introduction

Parallel computational strategies to perform numerical simulations have been 

extensively studied in the last two decades. A number o f methods based on domain 

decomposition procedures have been proposed in recent years for parallel solution o f 

both static and dynamic finite element equations o f equilibrium. Among them the 

most popular methods are derived from sub-structuring techniques [4.1][4.2][4.3]. 

Typically, a large-scale finite element domain is decomposed into a set o f subdomains 

and each o f them is assigned to an individual processor. The solution o f the local 

problem is naturally parallelized and a direct solution method is preferred for solving 

the sub-structure problem. With a little modification a sequential code can be directly 

used for this purpose. The resulting interface equations can be solved by both direct 

and iterative methods. The parallel implementations o f direct or iterative solution o f 

the resulting interface equations, that introduces a second level concurrency, have also 

been reported in the literature [4.4][4.5]. In section 4.2.1 we will introduce this 

technique in detail. The implementation o f an implicit parallel solver, which is named 

the hybrid iterative direct parallel solver, is based on the non-overlapping domain 

decomposition and sub-structuring approach. It has to be mentioned that a method 

called finite element tearing and interconnecting parallel solution algorithm (FETI)

[4.6][4.7] departs from classical substructure methods and offers an alternative way 

for the parallel finite element solution o f equations, where a spatial domain is 

partitioned into a set o f totally disconnected subdomains and Lagrange multipliers are 

introduced to enforce compatibility at interface nodes. In the static case, each floating
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subdomain may induce a local singularity, which is overcome by eliminating the rigid 

body modes in each subdomain in parallel and these modes are related to the 

Lagrange multipliers through an orthogonal condition. Finally it solves the coupled 

equation system o f local rigid modes and Lagrange multipliers by using a parallel 

conjugate projected gradient algorithm. This algorithm requires less inter-processor 

communications than substructure methods.

As we remark in section 4.2.2 the non-overlapping domain decomposition method 

may not be efficient for the problem that involves contact elements, either in the slide- 

line contact or discrete element contact approach. In such cases an overlapping 

domain decomposition method may be necessary. The parallelization o f explicit finite 

element fluid dynamics with contact conditions is based on overlapping domain 

decomposition and the Schwarz alternating procedure. The implementation is 

relatively straightforward and a lot o f research work [4.8] [4.9] [4.10] has been 

reported in this field. Because o f the dual nature o f the overlapping partitioning it 

means that communication requirements and cost may be slightly more than for the 

non-overlapping domain decomposition. But it offers a more efficient and flexible 

way to deal with contact interfaces, especially in combined finite-discrete element 

simulations [4.11].

The proposed implicit and explicit parallel solvers are implemented on a distributed 

memory computing system, which allows a large number o f processors to be 

connected together with a high-bandwidth communication network. Distributed 

memory parallel environments, such IBM SP2, Intel Paragon, and the rapidly 

developed PC clusters in recent years, have the potential to provide the high capacity 

and computational speed necessary to make numerical simulation o f large finite 

element analysis systems practical. The distributed memory environments follow a 

multiple-instruction/multiple-data (MIMD) paradigm, which allows for more 

flexibility in algorithm and program design. In this research work, parallelization is 

based on a commercial sequential code ELFEN, which is developed by Rockfield 

Software Ltd, with necessary modification. The message-passing between processors 

for data communications relies on the MPI library [4.12] [4.13].
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The outline o f this chapter is as follows. Firstly domain decomposition methods are 

reviewed in section 4.2. Section 4.3 discusses the direct solution of linear systems, in 

which the modified Cholesky factorization is chosen for substructure condensation in 

the parallel implicit solver. Section 4.4 introduces iterative solution o f linear systems 

and highlights a number o f the iterative methods built on the Krylov subspace in 

detail. Implementation o f the implicit parallel solver is described in section 4.5. In 

section 4.6 the parallelization o f explicit finite element fluid dynamics is presented. 

Numerical examples to illustrate the parallel performance achieved will be presented 

in chapter 5.

4.2 Domain decomposition

The efficient use of a parallel computer requires two objectives to be achieved. First 

each processor must be kept busy doing useful work. Secondly, the amount o f inter­

processor communication must be kept small. The domain decomposition approach, 

which attempts to distribute computational work by breaking a large problem into a 

number of smaller subproblems, is undoubtedly the best known and perhaps the most 

promising technique to achieve these objectives. For many finite element 

computational problems, parallel processing can be achieved by dividing the whole 

problem domain into several subdomains according to the available processors. It 

involves distributing the subdomain data to each processor initially. A well-balanced 

situation can be achieved if  each processor is assigned an equal number o f elements. 

Each processor performs the same basic algorithm in concurrency on the subdomain 

and only communicates interface terms. If the interfacial nodes or elements that are 

shared by more than one subdomain are kept small, the inter-processor 

communications can be reduced to a minimum.

There are numerous techniques for domain decomposition, however they can be 

basically catalogued into two types:

Non-overlapping Domain Decomposition -  It is also known as sub-structuring or 

Schur complement method; the finite element mesh is divided through the element
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edges or faces for the 3-D case. Elements are assigned uniquely to subdomains, as 

shown in Figure 4.1. The nodes through which the cut is made are shared by adjacent 

subdomains and called ‘interfaciaT nodes, which are on the boundary T^ and

T = T for the non-overlapping decomposition. The other nodes are ‘internal’ to

the subdomain, so the equations are solved at those internal nodes without change. 

However at interfacial nodes it is necessary to assemble contributions from two or 

more subdomains. The non-overlapping domain decomposition method is adopted for 

implementation o f an implicit parallel solver in this work.

Overlapping Domain Decomposition -  It is often known as Schwarz alternating 

procedure, originally developed by Schwarz (1869) to solve classical boundary value 

problems for linear elliptic equations. The partitioning cut is made across element 

edges, or faces for the 3-D case, as shown in Figure 4.2. The elements, which have 

been cut, are duplicated for both subdomain and Q (/ adjacent to the cut. The area

of cut elements below the cut is called the ‘interfacial’ boundary T and the area o f

cut elements above the cut is called the ‘external’ boundary T for subdomain .

The nodes on the boundary Y q p are called ‘interfacial’ nodes and on T are called

‘external’ nodes. It should be noted that a partition gets to work not only with its 

interfacial nodes, but also with external nodes incident to the shared elements, which 

are ‘ow ned’ by other subdomains. Obviously, the number o f boundary nodes that

interfacial nodes

cutting line

internal nodes

Figure 4.1 Non-overlapping Domain Decomposition
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include interfacial and external nodes is about twice that o f non-overlapping 

partitioning.

overlapping 
elements \

external nodes

cutting line

internal nodes

interfacial
nodes

Figure 4.2 Overlapping Domain Decomposition 

4.2.1 Non-overlapping Domain Decomposition

In the non-overlapping domain decomposition, the whole domain consists o f mutually 

non-overlapping subdomains as

Q(/)= U n p(t) £2 (0fl£2 (0 = 0 4.1
p= l,s

where 5 denotes the number o f subdomains according to the available processors on a 

parallel computing system. A subdomain Q (/) may change with time t for transient

Stokes flow problems, which were already discussed in Chapter 2. In general, the 

resulting system o f un-symmetric equations can be represented in block matrix 

notation as

1

__
1

A

* 2 2 * 2 4 x2 A
■< > —  < : >

* » * , 4 Xs A

1 >* * 4 2  ' -  * a . , * 4 4  _ * b . pb.
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where each x : represents an unknown variable vector defined at internal nodes o f the

subdomain Qp . The vector x b represents an unknown variable vector defined at the

interfacial nodes which are assembled by all subdomains and labelled last. The term 

K u represents a stiffness matrix corresponding to the unknown variables at internal

nodes o f the subdomain Qp . K bi and K lb correspond to the coupling terms between

interfacial nodes and the internal nodes of subdomain Qp , for a symmetric system

K ,b=K l,- The term Kbb is a stiffness matrix related with all unknown variables at

interfacial nodes. It should be mentioned that each o f these matrices has been 

assembled from element stiffness matrices. Assuming that the assembly is considered 

only with respect to the subdomain Qp , an assembled local system o f equations can

be written as

kfi i i
jn

i i 1

i

k

r n. i V

where K£b contains only contribution from local elements that are in the subdomain 

Qp . The stiffness matrix K bb and load vector bb are the sum of K^b and bb

p = \ P = i

By derivation from equation (4.2)-(4.4), a global Schur complement matrix, which is 

related with interfacial unknown variables, is defined as

S  = ± [ K [ i - K iiK :'K li] = ± S p 4.5
p =1 p =1

where S  denotes the local Schur complement matrix. Equation (4.5) indicates that

the global Schur complement can be easily obtained from local Schur complement

matrices, and similarly for the load vector y

y  = i [ K - K b,K :'bi] = ± y p 4.6
p =1 p =1
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The forming o f the local Schur complement S  and local effective load vector y  

involves elimination o f the internal unknown variables x t and factorisation o f matrix 

K u . These procedures can be naturally operated on each processor in parallel, then 

S  and y p will be passed to the master processor. Assembly of the global Schur 

complement and load vector is carried out on the master processor.

The final condensed equations for solving the unknown variables at interfacial nodes 

are set as

Sxb = y  4.7

In general, the global Schur complement tends to be smaller than the original K  

matrix, but also denser. The Schur complement matrix has an important property that 

if  the original K  is symmetric positive definite, then the S  matrix is also symmetric 

positive definite. The direct solution o f the reduced system (4.7) is the dominant part 

o f the total computational time, and therefore an attractive alternative is to use an 

iterative solver, which will be discussed in detail in section 4.4. The implementation 

o f an implicit parallel solver using hybrid iterative direct technique is introduced in 

section 4.5.

4.2.2 O verlapping Domain Decomposition

In the overlapping domain decomposition, subdomains are allowed to overlap each 

other such that

q(o = u np(o n (t) n a  (o * o 4.8
p=l,s

The resulting system o f un-symmetric equations for the overlapping domain 

decomposition can be written in block matrix notation, using a reordering in which 

interfacial unknown variables are listed last in each subdomain
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X x  • • X '
r  a  ^

X x  • X
<

*2
> = < 4 -

fcefI x  •• X . A. A.

In the V th subdomain Q „, the unknown variable vector*: and load vector b n haveir  D ? D D

the forms

V
Cp b v

4.10

where x pl denotes an unknown variable sub-vector at internal nodes and x pb

represents an unknown variable sub-vector defined at the interfacial nodes o f the 

subdomain p, as shown in Figure 4.2. The stiffness matrix K pp can be split into four

divisions, which are written in block matrix notation as

K nn =
p p CDp  p

4.11

In which Bp represents the stiffness sub-matrix associated with the internal variables 

and C„ is associated with the interfacial variables o f subdomain p. E n and F„p  r  P  P

represent the coupling terms related with internal and interfacial nodes within the 

subdomain. The off-diagonal matrices K pq and K  in equation (4.9) have the

following forms

(  0 'I
JT „ = (0 , E „ ) K , ~ F

\  I P  J
V p * q , p ,q  = l,s  4.12

where E  and E ^  represent the coupling terms o f the interfacial and external nodes 

shared by subdomain p  and q, the majority o f the elements o f E pq and Eqp are zero. 

A local system o f equations for the subdomain p  can be given by
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B x ,  + E n x .  = b ,p pi p pb pi

Fnx ,  +Cnx  , + V  E x ,  -  bp  pi p pb pq qb
q̂ N.

pb

4.13a

4.13b

where E pqx qb represent the forces contributed by the external nodes o f the 

neighbouring subdomain q, the term N  denotes a set o f subdomains which are 

adjacent to subdomain p. I f  Bp is a non-singular matrix, and the unknown variable 

vector x pI can be eliminated from equation (4.13), then

p  = \,2 ,...s  4.14a

and

s px p>. + 'LqzN.

S  = C  - F  B~ Ep p p p p

bpb ~ bph EpBp bpI

pb

4.14b

4.14c

Finally, the system o f equations (4.14) is to be solved for unknown variables x pb at

the interfacial nodes for each subdomain p, which involves unknown variables 

x qb,qeN at external nodes o f the adjacent subdomains. Equations (4.14) are fully

coupled. The global Schur complement matrix S, which can be assembled from the 

local Schur complement matrices S p and coupling terms E  , is associated with the

interfacial nodes o f all subdomains and is given by

S t En ■•• E ls

s = ^2] s 2 - 4.15

E ,2 •-  S - .

Obviously, the dimension o f Schur matrix S  in equation (4.15) is much larger than the 

one produced by the non-overlapping domain decomposition method. There are two 

ways for solving equations (4.14). One is using the same method as for non­

overlapping domain decomposition, forming the local Schur matrices S  , coupling

terms E qp̂ N and load bph and passing them to the master processor, assembling the
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global Schur matrix and load vector and solving the unknown variables o f the 

interfacial nodes at the master processor. The other way is to solve equations (4.13) 

instead o f (4.14) using the Schwarz alternating procedure, which includes the 

Multiplicative Schwarz procedure and Additive Schwarz procedure [4.21]. The basic 

steps o f the Schwarz alternating procedure can be described as follow;

Step (1) Choose initial guess values for the interfacial unknown variables x pb ,p  = l,s  

of all subdomains.

Step (2) Until convergence is reached, loop over each subdomain.

Step (3) Solving equations (4.13) using the external variables x qb,q e N p, with initial

guess values at first looping or updated new values at later looping, means that the 

external variables on the boundaries Tpq,q e N p o f the adjacent subdomains are

treaded as prescribed boundary conditions.

Step (4) Update interfacial variables xpb on the boundaries Tqp,p e  Nq,q = l,s ,

which will be used as prescribed boundary conditions for the adjacent subdomains, 

and go back to step (2).

Remark;

(1) Since the dimension o f the Schur matrix S  in equation (4.15) is much larger 

than the one produced by the non-overlapping domain decomposition method, 

it is not necessary using the overlapping domain decomposition method to 

parallelize the implicit solver, if  no contact situation is involved.

(2) If  a numerical simulation involves contact problems, either by using slide-line 

contact or discrete element contact formulations, the non-overlapping domain 

decomposition method may not be efficient, since contact elements, which are 

generated internally and associated with the interfacial nodes, cannot be 

uniquely assigned to the subdomain. In this case the overlapping domain 

decomposition method may have to be used.

(3) In theory, the Schwarz alternating procedure is an iterative method, the 

Multiplicative Schwarz procedure is very reminiscent o f block Gauss-Seidel 

iteration and the Additive Schwarz procedure is analogous to block Jacobi 

iteration. Obviously, the convergence problem will arise for solving equation 

(4.13), but the Schwarz alternating procedure opens a new way to parallelize
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the explicit dynamic solver. Currently, parallelisation of explicit dynamic 

finite element analysis codes [4.8] [4.9] is based on the Schwarz alternating 

procedure. The implementation o f an explicit dynamic parallel solver is given 

in section 4.6.

4.3 Direct solution of linear systems

A system o f linear equations is represented in the form

Kx -  b 4.16

where K  is a non-singular coefficient matrix K  e R nyn, b is the known right-hand 

side load vector b e R n, find solution vector x e R n to satisfy equation (4.16). Many 

scientific problems lead to the requirement to solve linear systems o f equations as part 

o f the computations. The direct method theoretically gives the exact solution o f a 

linear system within a predictable finite number o f operations. The most obvious way 

o f solving (4.16) is to find an inverse matrix o f K  and to apply the trivial 

multiplication with the load vector b as x  = K~xb . However, this is an inefficient 

way o f solving the equations since matrix inversion requires far too much 

computational resources. In addition, the K  matrix is often well banded, while its 

inverse matrix is fully populated and demands much larger storage than that required 

for K. Most direct methods optimise the process by transforming the coefficient 

matrix K  into triangular or diagonal form in order to decrease the coupling between 

the equations. The commonly used direct methods are Gauss elimination, standard 

and modified Cholesky decomposition methods, specially the modified Cholesky 

factorisation with a banded, skyline profile scheme.

4.3.1 Gaussian elimination

Gauss elimination method is one o f the most popular and numerically efficient 

approaches. The process can be carried out in 0 (« 3) basic floating-point operations
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with additions and multiplications. Many applications lead to linear systems with 

large n and it became soon evident that one has to exploit specific properties o f K  in 

order to make solution o f the system feasible. This has led to variants o f Gauss 

elimination in which the nonzero structure o f K  is exploited, so that multiplications 

with zero coefficients are avoided and that saving in computer storage could be 

realized. Consider the following system o f equations in matrix notation

'*1 . r a • a
I

V V
Klt k 22 ■-  K2n *2 — *2

1 •"  K~ . _Xn_ 1 1
The Gaussian procedure solves one o f the set o f n equations (in this case xl ) in terms 

o f all the other remaining unknowns x2---xn, then substituting this pivotal equation 

into the remaining n - 1 equations. Thus xl has been eliminated from the last n - 1

equations by KtJ =Kij- ( ——)KXj, j  = \,n  for I = 2, n equations. Then it is repeated

and x2 is eliminated from each o f the remaining n - 2  equations. This procedure is 

duplicated for the all unresolved equations and leads to reduced Gauss equations as

1
J*

! Kl2 ■-  Kln'

1
__

1 V
0 K* ■■■ k 2„ *2 = b2

1 o 
•

0 •- *n_ i
■

i

The set o f operations which reduce the original coefficients matrix K  to the above 

triangular matrix form is referred to as forward reduction. Then the xn value can be

obtained from the n,h equation, the remaining components o f the x  vector can be 

solved by working backward. A complete solution process o f the Gaussian 

elimination can be summarized as

Forward reduction

For i = \ ,n - l  loop through rows / = / + !,«
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4.19a

4.19b

Back Substitution

For i = n, 1

n

b ~  Z V ;
b,=

j= i+ \ i<n
X , -  = b, 4.20

For a symmetric matrix K , the solution for forward reduction can be further 

modified and only the upper triangle coefficients o f the K  matrix are stored and 

operated on during forward reduction.

Forward reduction

For / = 1, w -1  loop through rows / = / + !,«

The standard Cholesky factorisation is only used, when the coefficient matrix K  is a 

symmetric, positive definite matrix. In the standard Cholesky factorisation the 

coefficient matrix is decomposed as

4.21a

4.21b

4.3.2 Standard Cholesky factorization

K  = LLt = U t U 4.22a

or
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■4 o •■■ 0 ' ’4 4„ -  4 r
I'll

•. 0
0 i n -  42

.4, k i •• 4,. _  0 . . . 0 4,_

where L  is a lower triangular matrix and U is an upper triangular matrix. When the 

matrix K  can be expressed in the factorized form o f (4.22), the solution process can be 

derived as

Kx = LiylIx) = Lb = b

b = L-'b = (U 7) '1 b

Lrx  = b

and

x  = [ ll)~ l b 4.23d

4.23a

4.23b

4.23c

For a general n xn  matrix K , the Cholesky factorization (4.22a) process can be 

carried out with column-by-column method as

Step 1

For columns j  = 2,n set 

Step 2 **=■
4 “24,4,

L /=i J />i

K„
/ = 1 ,7 -1

4.24a

4.24b

Step 3
id  A 

24>-l4ifi=\ y
l = J 4.24c

For equation (4.23b), usingforward substitution, the process can be set as 

For j  = 1, n

bj -

* ,=
. /=i 
~K~,

j>  i 4.25
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The equivalent algorithm for backward substitution o f (4.23d) could be written as 

For columns j  = n, 1

bj=  —J K . . .

I = j - 1,1 and j  > 1

4.26a

4.26b

For the standard Cholesky factorisation, it can be shown that the coefficients o f K  

must be positive definite, otherwise it is impossible to take the square roots in 

equation (4.24a) and (4.24c).

4.3.3 Modified Cholesky factorization

For some nonlinear solution procedures, the coefficient matrix K  may be not positive 

definite. Therefore, the modified Cholesky factorisation method is considered as a 

preferred option. The coefficient matrix K  can be decomposed as

K  = L D lI

or

K  =

" 1 0 ... 0“ "A. 0 ... o " "l Zj 2

1
c

A l 1 0 Dn • 0 1
\  0 • 0 : ' '  hr>~ 1)»

I 0 0 D nn _ _0 0 1

4.27a

4.27b

where D  is a non-singular diagonal matrix and L  is an unit lower triangular matrix. 

For a non-symmetric matrix K, L D lI  factorisation is replaced by L D U , where U is 

an unit upper triangular matrix. The solution procedure (4.16) can be expressed as

Kx = L(D LTx )  = Lb = b 4.28a

where

b = r xb 4.28b
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Equation (4.28b) involves forward substitution and it is the same as for equation 

(4.23b). Equation (4.28a) can be further decomposed as

DLTx  = D b = b

So that

b = D lb

4.28c

4.28d

Following back substitution the solution vector x  can be obtained as

x  = (LT)~lb 4.28 e

The complete procedure o f L D lI  factorisation in equation (4.28) can be implemented 

using column-by-column methods as 

For columns j=2,n

" j-i
K« = K«~

Ku
K a =  —J K„

/=i
/ = 1 ,7-1

/>]

j-1
*=J

4.29a

4.29b

4.29c
i=i

Forward substitution o f equation (4.28b) can be written explicitly as, 

For columns j=2,n

b j= b j- i x * ,
/=i j> i

4.29d

Back substitution o f equation (4.28d) and (4.28e) can be expressed as, 

For z = 1, n set

For each columns j=n,2

bi= bi ~ K ijbj / = 1

4.29e

4.29f
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By using the modified Cholesky factorization, the amount o f data required for storage 

is dramatically reduced, for example, for a symmetric stiffness matrix K  only one half 

o f the K  matrix needs to be stored, thus halving the arithmetic operations and memory 

requirements. As demonstrated in Chapter 2, the stiffness matrix K  for the discretized 

finite element equations o f Lagrangian flow is well banded, therefore we can reduce 

the required storage by using a skyline storage scheme, which avoids unnecessary 

operation on zero elements above the skyline. A detailed pictorial representation o f 

the main step for the modified Cholesky factorization is given by Crisfield [4.14], and 

is shown in Figure 4.3.

b b
Col i Col j Col j

Row m 
Row i

Row j

Figure 4.3(a) Figure 4.3(b)

Banded modified Cholesky factorization Coefficient area for reduction o f column j

In Figure 4.3(a)(b), the coefficients o f the upper triangle o f K  are in a perfectly banded 

form between the diagonal line and dash line, where term b stands for the half 

bandwidth o f matrix K .  The term v( is a truncated column vector through element Kn

starting at row m and ending at row z '- l  (included) and v is an equivalent vector 

through K tj. The starting row m for a perfectly banded matrix K  can be defined by

m = m ax(l, j  + \ — b) 4.30

Now the forward factorization in equations (4.29a)-(4.29c) are modified by changing 

the start o f  the summations from / = 1 to I = m as
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/ - i

i>m

K, - ^ L
‘J v 4.31b

Kji = Kji- ' L K1Ku * = J 4.31c

where an inner product o f v] v / in equation (4.31a) is carried out on the upper part o f

the truncated column vectors, that avoids unnecessary zero product operations above 

the skyline. The complete reduction o f a column j  will be only limited at the shaded 

triangular area, as shown in Figure 4.3(b). However for some finite element meshes, 

the resulting coefficient o f K  will be less perfectly banded; even for a regular mesh the 

stiffness coefficients are not in a perfectly banded form. Therefore, the starting row m 

defined in equation (4.30) is usually replaced by

m = max 4.32

where m (i) and m (j)  are the starting row for vectors i and j  respectively, as shown 

in Figure 4.4

Row j

Row m(j) 
Row m(i)

Row i

Figure 4.4 Active column heights
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Since the procedure is calculated column by column, the upper triangular coefficients 

matrix K  can be stored as a one—dimensionial array, with two different active column 

storage schemes as illustrated in Figure 4.5.

1 2 3 4 5 6 7 8 9  10 1 2 3 4 5 6 7 8 9  10

" 1 2  4 7 "1 12 13 15

3 5 8 17 2 14 16 22
6 9 11 18 3 17 18 23

10 12 14 19 4 19 20 24

13 15 20 5 21
K=

16 21 23 26 30 6 25 26 28 31
22 24 27 31 7 27 29 32

25 28 32 8 30 33
29 33 9 34

34 10

diag=[ 1, 3, 6, 10, 13 16 , 22 ,25, 29 ,34] index=[ 12, 12, 13, 15, 18, 20, 22, 26, 28, 31, 35,

1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 2,

3, 4, 6, 6, 7, 6, 7, 8, 6, 7, 8,

9 ]

(a) Active column storage scheme type 1 (b) Active column storage scheme type 2

Figure 4.5 Example K  matrix with one-dimensional storage.

The active column storage scheme type 1 as shown in Figure 4.5(a) is used for a direct 

profile solver. The numbering o f the stiffness coefficients relates to all the elements 

below the ‘skyline’ including those with stiffness coefficients that are zero. For 

example, in column 7 the coefficient in position 20 is zero, but it must be included. In 

general, the space will be filled during the factorisation. The location o f the diagonal 

element is recorded in an integer vector diag{ri), where n is the dimension o f solution. 

In addition, an integer array Ih (n )  is opened to record each column height, i.e. the

number o f elements under the ‘sky-line’ in each active column, which includes the 

diagonal element.

The storage scheme type 2 in Figure 4.5(b) is more suitable for an iterative solver. 

The numbering o f the stiffness coefficients relates to all the element below the ‘sky­

line’, but excluding those with zero coefficients. An integer array index(nstif), where 

the term nstif is the size o f the one-dimensional stiffness array, is created in Figure
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4.5(b), the first 10 elements o f index record the position o f the first non-zero 

coefficient of each active column in the stiffness array, the eleventh element is 

assigned with number (nstif+l), the remaining terms record the location of 

corresponding unknown variables in the active global solution, which excludes the 

diagonal position o f the corresponding unknown variables.

Both schemes shown in Figure 4.5(a)(b) are only set for a symmetric system. With an 

un-symmetric one, the lower triangular part will be also recorded in the same manner, 

but it adopts an active row storage scheme.

4.4 Iterative solution of linear systems

Originally, the usage o f iterative methods was restricted to systems related to elliptic 

partial differential equations, discretized by finite difference techniques. For the 

problems related to various finite element modelling, practitioners preferred the usage 

o f direction solution techniques, mainly efficient variants o f the Gaussian elimination, 

because o f the lack of robustness o f iterative methods for large classes o f matrices. 

Until the end o f 1980s, almost none o f the big commercial finite element analysis 

packages included iterative solution techniques. The Krylov subspace methods, which 

appeared in the early 1950s and rapidly developed during the recent two decades, 

have changed the landscape of iterative methods dramatically. Some o f the Krylov 

subspace methods have been widely accepted as powerful tools for the iterative 

solution o f very large sparse linear systems. In this section, we will highlight a 

number o f iterative methods built on the Krylov subspace in detail.

4.4.1 Krylov subspace methods

Krylov subspace methods started in the early 1950s with the introduction o f the 

conjugate gradients methods by Hestnes and Stiefel [4.15] and the Lanczos algorithm 

for linear equations [4.16]. These methods are designed to construct an approximate 

solution in the so-called Krylov subspace. For the linear system given by equation
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(4.16), with a large, sparse, non-singular n by n stiffness matrix K , then the standard 

Richardson iteration produces the ith iteration solution as

4.33

Which generates the approximate solution in the shifted Krylov subspace

x t * x 0+/ci (K ,r0) = x 0+span{r0,Kr0,K 2r0...,K '-lr0} 4.34

where r0 = b -K x 0, with an arbitiary initial guess vector jc0. With relativly little

additional work, more efficient approximation solutions can be constructed from the 

Krylov subspace, which leads to Krylov subspace projection methods. This type o f 

iteration methods includes the Conjugate Gradient (CG), Generalized Minimal 

Residual (GMRES) BiConjugate Gradient (BiCG), BiConjugate Gradient Stabilized 

(Bi-CGSTAB).

4.4.2 Conjugate Gradient Method (CG)

The Conjugate Gradient method was presented by Hestenes and Stiefel [4.15] in 

1952. It was initially used as a direct solver and later considered as a truly iterative 

method for solving sparse, symmetric, positive definite linear systems [4.17]-[4.20], 

which are too large to be handled by direct methods such as the Cholesky 

decomposition. For a symmetric, positive definite K, the CG method minimizes the

so-called ^T-norm, | | j c . -  x f  = ( * , x ,K ^ x t, -  * ) ) ,  for x t that are in the Krylov 

subspace K i . For some PDE problems this norm is also called an energy norm,

which has a physical meaning. Another feature of the CG is that the residual 

calculated in the current iteration is orthogonal to the space of previously generated 

residuals. It is therefore mathematically equivalent to the Full Orthogonalization 

Method (FOM) [4.21]. The essence o f the CG method is outlined as follow.

To solve equation (4.16), we start with the initial estimate jc0, then the residual o f the 

first approximate solution r0 can be set by

108



Chapter 4 Implicit and explicit parallel solver

r0 = b -K x 0 4.35

The first direction of minimization, P0 =r0, is a steepest descent direction o f the 

quadratic function ^ (jc ), which is defined as

^(jc) = ^ x tKx -  x Tb 4.36

A sequence of approximate solutions x i+l can be obtained from x t along a search 

direction Pt with a step length as

x l+i= * ,+ a ,/>  4.37

where the step length parameter a t is determined by minimization o f the quadratic 

function (f>(x,ax) with respect to a x

3 ^ ( jc, + « ,/•)
da,

and

= 0 4.38

= i.P! ’'0  4 39

where ( , ) denotes a vector inner product. The term rt -  b - K x t is the residual of

the ith approximate solution jc( . The residual o f the (Z + l)^ approximate solution rM 

can be calculated by

ri+\ = b -K x i+l = rt - a iKPi 4.40

Now a new search direction PM at the (/ + \)th iteration is constructed by

Pw = rw +/?#/5 4.41

Thus the consequences o f above relation is that

{p, >r,) = ({r, + )>rl) = (ri>r,) 4-42
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where it uses the property = 0 for i < j , then substituting (4.42) into equation

(4.39) a t becomes

, = M  4.43

The parameter fdl in equation (4.41) is determined by imposing the conjugate 

condition (PM, KPt j = 0 and the property (a; , av j = 0 for i * j .

(ri+vK P \ (ri+l,rM)
«=-131]-----4 = K " V - 4.44

(i> ,K P )  (r, ,/•)

The details o f the above conjugate gradient algorithm can be summarized in Figure

4.6

Compute r0 =b — Kx0 from initial guess x 0 and set P0 = r0 
Do / = 0,1,2,.... miter

(a) Update solution 

w,=KP,

('■<
a t = T  T

( p< * )
X M = X , + & X l = X , + a , P l

r M = r , - a , W ,

(b) Check convergence
v Vm Ii < £ iIHL or |Ajc(.|2 < s2 l^+y ||2 then stop; 

else continue

(c) Set new search direction

( w « )

. r , )

P M = r M + P t P <

EndDo;

Figure 4.6 Conjugate Gradient algorithm
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From Figure 4.6 it is seen that in addition to the matrix K, four vectors (x ,P ,w ,r )  

must be opened and stored in database for the CG algorithm, where sx and s2 are the 

residual force and incremental displacement tolerances, respectively, normally set as 

fj=1.0e-5 and £2=1.0e-8.

For a symmetric, positive definite matrix K, the error at the i‘h iteration, in the CG 

algorithm, is limited by the well-known upper bound [4.22],

where k = A ^  (K ) / A ^  (K) is the condition number of if, and x t denotes the ith

approximate solution. The upper bound defines the convergence behaviour for 

matrices K  o f which the eigenvalues are distributed rather homogeneously.

4.4.3 Preconditioned Conjugate Gradient Method (PCG)

The convergence rate o f the Conjugate Gradient method depends on the eigenvalue 

distribution of the stiffness matrix i f ,  as described in equation (4.45). The 

convergence is faster, when the condition number o f K  is smaller or K  has clustered 

eigenvalues. For ill-conditioned problems the convergence of the CG method might 

be slow, mainly due to round-off errors. For such problems, the conjugate directions 

are no longer exactly conjugate after some iteration. It is possible to accelerate the rate 

o f convergence by the transformation o f equation (4.16) such that the eigenvalue 

distribution o f K  is improved. This process is called preconditioning and changes 

solution x  into x  by a full rank pre-conditioner matrix C .

Substituting equation (4.46) into (4.16) and pre-multiplying equation (4.16) by CT, 

gives then a transformed equation system,

4.45

x  = Cx 4.46

Kx = b 4.47

111



Chapter 4 Implicit and explicit parallel solver

where

k  = c tk c

b = CTb

The convergence rate o f the CG method applied to equation (4.47) is now dependent 

on the eigenvalue distribution o f the preconditioned matrix K  rather than those o f 

K . The objective o f the pre-conditioning is to choose a proper pre-conditioner matrix 

C such that the condition number o f K  is much smaller than that o f the original 

matrix K .  Alternatively, C can be chosen such that the eigenvalues o f K  are 

clustered. Detailed discussion o f preconditioning techniques will be set in section

4.4.6

The Preconditioned Conjugate Gradient algorithm can be simply derived following 

the previous steps. The CG method is applied to the preconditioned system (4.47) 

with the quadratic function defined by

0 (x )  = ^ x tKx -  x Tb 4.48

The ith solution x t and search direction Pt can be set by

jc,. = Cxi

P = C R  4.49

Then the relation between the ith residual #■ and /* is given by

rt = b -K x t - C T(b -K C C  x ,) = CTrt 

r  = C Tr 4.50

By minimization of quadratic function <f> (* ,a , ) with respect to a f, we obtain,

M )  (r, .CCTr,) (r, ,Zl)

' (/> ,JD >) (P..KP,) (/>,**>)
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where we introduce an auxiliary vector zt = CCTri . For no preconditioning CCT - 1

and zt = rt . The parameter and the new search direction Pi+1 can be derived as,

= v ’ 4.52
V  ' z<)

r M = zM +P,f, 4.53

The preconditioned conjugate gradient algorithm is summarized in Figure 4.7

Compute r0 = b -  Kx0 from initial guess x Q, 

set z0 = CCTr0, P0 =z0 
Do i = 0,1,2,.... miter

(a) Update solution 

w,=KP,

a .  -

*M =x, + Axl = x i + a iPl 
i'm = r ,- a w :

(b) Check convergence
or |Ax;.||2 < l^+ylL ^ en  stop;

else continue

(c) Set new search direction 
zM =CCTrm

Pi I \
V‘

P m = Z m  + P , p ,
EndDo;

Figure 4.7 Pre-conditioned Conjugate Gradient algorithm

Comparing Figure 4.7 and Figure 4.6 it is seen that five vectors (x , P ,w ,r ,z)  and

pre-conditioner matrix CCr must be opened and stored in database for the PCG 

algorithm, with the exception o f the matrix K. Here, we compare the conjugate
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gradients preconditioned with incomplete Cholesky factorisation to the standard CG 

methods. The num ber o f iterations for solving a symmetric linear system with solution 

dimension n = 1137 is shown in Table 4.1, where a residual tolerance sx - 1.0 e-5 and

displacement tolerance s 2 =1.0 e~h is employed. It shows that with preconditioning 

the convergence rate is dramatically improved.

M ethod Num ber o f  iteration

CG 1293
ICCG 284

Table 4.1 CG/ICCG comparison

4.4.4 G eneralized M inimal Residual method (GMRES)

The Generalized M inimal Residual Method (GMRES) was proposed by Saad and 

Schultz[4.23] in 1986, and soon came to be preferred because o f  better numerical 

behaviour and lower cost, in terms o f memory and arithmetic. The reason to develop 

GMRES was in order to solve the systems where the coefficient matrix K  may not be 

positive real. In general GMRES is utilised to solve large un-symmetric semi-positive 

definite systems. The term semi-positive definite denotes that the majority o f  the 

eigenvalues are known to have real positive parts with some o f the eigenvalues real 

part being equal to zero. The algorithm guarantees convergence when the eigenvalues 

o f the coefficient m atrix are all positive, therefore it is rationalized that GMRES can 

converge when most o f the eigenvalues are positive.

GMRES is a projection method, which projects the solution jc onto the m!h Krylov 

subspace Km with v] = r0 /\\r0\\2» where r0 is the initial residual vector. The base o f the 

Krylov subspace Km is generated by the Am oldi process [4.24], which is an 

orthogonormalizing algorithm using the Modified Gram-Schmidt procedure, (see 

Appendix 4.7.2). The dimension m o f  Krylov subspace Km is far less than the

dimension o f solution space R  , i.e. m<^.n. After the j lh iteration when the residual
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is less than a tolerance value, the solution Xj is approximated by a linear combination 

o f the base vectors o f the mth Krylov subspace as

x J = x0+VJy J 4.54

where V] = {v15v2,...v ; } represents a set of orthogonal base vectors and 1< j  <m, 

m < zn, where n is the dimension o f the solution. y T} = , y 2,... y .} is a vector with j

unknown components to be determined. By minimizing the Euclidean residual norm 

||/»-Ajc; ||2 over the Krylov subspace, the components o f the vector y . can be

identified. An advantage o f the GMRES is its guarantee to compute the approximate 

solution with a minimum residual norm, but the price to be paid is that additional base 

vectors must be stored for each iteration, which means that more iterations are 

performed, more base vectors have to be stored, and also the overhead cost per 

iteration increases linearly. A partial solution to the problem is to restart the solution 

procedure after m iterations, to keep the memory requirements and the work per 

iteration limited. The difficulty is to choose an appropriate value for m, too small a 

value may cause slow convergence, a larger value may require unnecessary storage 

space. The popular choices o f the m value tend to be in the range o f 5 to 30 [4.26].

The basic GMRES algorithm is described in detail in Reference [4.25]. Figure 4.8 

shows the pseudocode o f the algorithm.

(1) Compute initial residual rQ = b - K x 0 for some initial guess x 0

/ H M 2; Vl = / ? ; *i = ^

(2) Define the (m + l)xm  matrix H m = \h ,) . Set H m = 0
V 7 J V '  m 1 'J n<iZm+U<j<,m m

Construct orthogonal base vectors
(3) Do y = l,...,iw
(4) Solve Wj = KVj
(5) D o / = l,...,y

(6) K j = ( w r v t )

(7) Wj ~ Wj hi j vi

(8) EndDo
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9) V u  = K | | 2 hj+hj =°>set m=J go*0 21

10)

11)
12)

13)
14)

15)

16)

17)

18)

19)

20) 
(21)

(22)

v;+i = h.7 +1J
Do / = i , . . . , / - i

a  = h.i>j
K i = c : a  +  s i h M . j

EndDo

S=  lh2 +h2 • c = ^ ~ -  s = fy+1,;°  V n J J  ^ n j + h j  ’ C j  x  ’ J j;

hu =S-, * w = °

b ^ = - sj rj> bj =cjrj
Check i f  p =  bj+1 <^i||^ ||2 then m = j  goto (21) 

EndDo
Compute the minimizer of bm -  Rmy m and 

x m- x ()+ Axm = x n + F v/w u w u /?? J m
Check displacement norm
I f  ||AxJ|2 < s2 ||^OT||2 then stop; else x Q <= x mgoto step (1)

Figure 4.8 GMRES algorithm

The solution steps in Figure 4.8 can be explained as follows;

Step (1) With initial guess value jc0, the initial residual r0 is computed, where /? is 

the norm o f the residual vector and Vj is the normalized residual vector, from which 

we start to build the Krylov subspace.

Step (2) Initialise the Hessenberg matrix H m with dimension (m + l jx m . The matrix 

H m after Amoldi process has a direct relation with coefficient matrix K. By removing 

the last row o f H m, H m preserves the major eigenvalues o f K.

Step (3-20) The procedure in steps (3)-(10) is the Amoldi process, which uses the 

modified Gram- Schmidt orthogonormalizing method (see Appendix 4.7.1) applied to 

the Krylov subspace. The vectors v^v^.-.v^  generated in Amoldi’s process form the

orthonormal basis o f the m,h Krylov subspace. At the same time the Hessenberg
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matrix H m is defined. Set F  = with dimension n xm  and asm m I, tn) m m

minus the last row, then the relation between the coefficient matrix K  and Hessenberg 

matrix H m is given by

This is why H m preserves the major eigenvalues o f the coefficient matrix. A

breakdown can occur in the Amoldi loop when hJ+l J = 0 at step (9), in this situation,

the next Amoldi vector cannot be generated. However in this situation, the residual 

vector is zero, i.e. the algorithm will deliver the exact solution at this step. Such a 

breakdown is called “lucky breakdown”, but it rarely occurs in real situations due to 

machine round off errors.

The procedure in step (11)-(19) is the QR decomposition algorithm, which transforms 

the Hessenberg matrix into an upper triangular form by using plane rotations. (See 

Appendix 4.7.3 for more details.)

Step (19) Check the residual of the j ,h iteration, as we know from Appendix 4.7.3, 

the residual norm o f the j th iteration is defined by the ( j  +1 )‘h component o f the bj 

vector. If  its norm is less than the force tolerance then set m — j  and go to step (21).

Step (21) After a set o f orthogonal basis vectors Vm is obtained, the solutions o f the 

system x  is approximated by

where y m is an m-dimension unknown vector, which can be defined through 

minimizing the residual norm function / (y )

4.55

4.56

4.57

/  (y m) = I *- ■ =  p  -  K  (* 0+ K  )||2 4.58

Using the relation stated in equation (4.55)
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b - K x m= b - K ( x 0 + Vmy m)

= r<,~K K y„

= Pvi-K+i B mym
= vm«{Pei~ H my m)

Since the column vectors o f Vm+i are orthogonal then

/  (y . ) = |*  -  IL = \P ^  -  S my m ||2

bm -  R y
171 771S  71

4.59

4.60

By minimizing o f the function /  (yOT) the following (m + 1) equations are obtained

Rmy m =bm 4.61771 771 771

Since Rm is an upper triangular matrix, y m can be solved readily by using back 

substitution.

Step (22) Check the convergence. If  the incremental displacement norm is not less 

than the tolerance, set jc0 = x m and start back at the beginning, clearing all storage

when restarting. A common problem with restarting is the possibility o f stagnation 

when the matrix is not positive definite. Stagnation is where the residual does not tend 

to zero, virtually staying the same. One solution is to apply a pre-conditioner matrix to 

the system.

4.4.5 Bi-conjugate Gradient Stabilized method (Bi-CGSTAB)

Faber and Manteuffel [4.32] in 1984 discovered that it is in general not possible to 

construct an optimal solution in the Krylov subspace for an un-symmetric K, since the 

residual vectors cannot be made orthogonal with short recurrences. One alternative to 

solve this problem is to generate two mutually orthogonal sequences o f residual 

vectors, which replace the original orthogonal sequences of residuals as
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Km(K ,vx) = span[vl,Kvx,...,K m 4.62a

and

4.62b

Equation (4.62a) retains the original coefficient matrix K, while equation (4.62b) uses 

the K  transpose matrix. Both Bi-CG and Bi-CGSTAB methods are developed based 

on the biorthogonal bases o f the two subspaces.

usual v, = *̂o / ||ro ||2 • ^ ie vector vi is arbitrary, provided (vls v,) ^  0 , and is often set as 

vj = Vj. If  there is a dual system K Tx  = b to be solved with K T, then v, is the unit

residual vector for the dual system. This dual system is often ignored in the 

formulation o f the algorithm.

In the Bi-CG method, the approximations are constructed in such a way that the 

residual rt is orthogonal with respect to another row o f vector , and vice

versa Tt is orthogonal with respect to r0,r,,...rM . The algorithm comprises two 3-

terms recurrence relations in the same manner as for the derivation o f the Conjugate 

Gradient method. In the Bi-CG algorithm the corresponding residuals are updated as

where two new search directions are updated using the resulting residual vectors

Bi-CG algorithm is a projection on Km (K , v1) orthogonal to £m(K T ,v i ) ,  where as

4.63a

4.63b

4.64b

4.64a

The coefficients a i and J3i in equation (4.64) are defined as

a 4.65
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(n )
4.66

The whole procedure o f the preconditioned Bi-CG algorithm is described in Figure 
4 .9 .

Compute r0 =b — Kx0 from initial guess x Q, 70 =r0 

set z0 = M~'r0, PQ=z0
Z0 = M~Tr0, P0 =zQ

Do / = 0,1,2,.... miter

(a) Update solution

w,=KP,

w ,= K TP,

f r . * . )

XM = xl + A x ,= x l +atPi

rM = r, - a ,w,

(b) Check convergence
VVi+ili <fiiW 2 or then stop;
else continue

(c) Set new search direction 

— M~t 7*•>+1 i r l  r i+1 

.«/)

PM =ZM +fiP,

PM =ZM +fiPi
EndDo;

Figure 4.9 Preconditioned Bi-CG algorithm

Bi-CG requires operations with the coefficient matrix and its transpose matrix per 

iteration step and terminates with n steps at most, where n is the dimension o f
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solution. In the case o f convergence, both the residual vector ri+1 and ri+l converge 

toward zero, but only the convergence o f ri+l is exploited. For an un-symmetric 

system the method displays often a quite irregular convergence behaviour. Comparing 

Figure 4.9 and Figure 4.7 it is seen that nine vectors (x, P, w, r, z, P, w, 7, z ) and a pre­

conditioner matrix M  must be opened and stored in database for the Preconditioned 

Bi-CG algorithm, with the exception o f the matrix K.

In the mid-1980’s Sonneveld recognized that the operations with transpose matrix 

K t could be eliminated by a minor modification to the Bi-CG algorithm, without 

additional computational cost, which leads to the Conjugate Gradient Squared (Bi- 

CGS) algorithm [4.27]. In the algorithm the residual vectors rj = Pj (K)r0 are

constructed, where Pj stands for the j th polynomial function. By doing so, it avoided

generating the vectors 7v and doing any multiplication with the matrix K T . The Bi-

CGS algorithm works quite well in many cases. However, since the polynomials are 

squared, rounding errors tend to be more damaging than in the Bi-CG algorithm. The 

Bi-Conjugate Gradient Stabilized Method (Bi-CGSTAB) evolved from Bi-CGS 

algorithm and it was proposed by van der Vorst in 1992 [4.29] for the solution of 

certain classes of non-symmetric linear systems.

In Bi-CGSTAB, instead o f defining residual sequence r. = Pj (A ')r0, the residual 

vectors are constructed at the j  iteration step as

rj = Qj (K)Pj (K)r0 4.67

In which, P (K) is a residual polynomial associated with the Bi-CG algorithm and

Q j(K ) is a new polynomial which is defined recursively at each iteration step with

the goal o f ‘stabilizing’ or ‘smoothing’ the convergence behaviour o f the Bi-CG 

algorithm. Specifically, it can be defined by the simple recurrence

e / (Z )  = ( l - n y. I)2 /. , ( i - )  4.68
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where the scalar Qy-1 is to be determined. The detailed derivation for the Bi-

CGSTAB algorithm can be found in Reference [4.21] and the final Bi-CGSTAB 

algorithm for solving the linear system is presented in Figure 4.10.

(1) Compute r0 = b -  Kx0 fo r some initial guess x 0
r0 =r0 P0 = 0 v0 = 0
Pq — 1 C(q — I Q 0 = 1

(2) Do j  = 1,2,... .miter

(3) Pj-i = { rj-u Fo)

= then

(4) P j= r„
elseif

(5) /?,_,=
Pj-1 «/-■ 

Pj-i  P h

(6 ) p j  = rj- i  +  P - 1 { p j-1 -  ̂  J - X V J - X  )

endif
(7) Wj = M~lPj
(8) v j = KWj

(9) a , =
(vy»ro)

(10) S j =r M - a jVj

(11) Z j = M ~ ' S j

(12)

(13) o , = t^ 4

(14) Xj = x,_, + aj w] + a jzJ = xM + Axt

(15) Tj ^ S j - Q jZj

(16) Check i f  1#^ < s j ||Z>||7 or JajcJL < s2 JjcJL then stop;j \ \ 2  1 I' 112 II J Ih 2 II J 112

(17) A -2 =P,_
Enddo

Figure 4.10 Preconditioned Bi-CGSTAB algorithms
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From Figure 4.10 it is seen that nine vectors (x ,P ,r ,r0,s ,t,v ,w ,z)  and pre­

conditioner matrix M  are created and stored in database for the Preconditioned Bi- 

CGSTAB algorithm, with the exception of the matrix K. Compared with Bi-CG 

methods, Bi-CGSTAB is less expensive, more stable and converges faster. Normally 

we choose BiCGSTAB to solve nonlinear equations in fluid dynamics.

4.4.6 Preconditioning

As we discussed in section 4.4.3, the rate o f convergence o f the Krylov subspace 

iterative methods largely depends on the properties o f the coefficients matrix in the 

linear system, i.e. the condition number o f K. In order to improve the properties o f K  

one often transforms the linear system by a suitable linear transformation, which is 

termed preconditioning. Recent research is more oriented in that direction than in 

trying to further accelerate the Krylov subspace method. To construct an effective and 

efficient pre-conditioner is quite problem dependent. A pre-conditioner is considered 

as effective if  the number o f iterations o f the preconditioned Krylov subspace method 

is reduced by the order o f 100 or more. There are many different pre-conditioners 

proposed over the years [4.21] [4.30] and among them the incomplete Cholesky 

factorisation (IC) and the incomplete LU  factorisation (ILU) are the most popular.

Consider a matrix K  that is symmetric or un-symmetric, positive definite. Assume that 

the pre-conditioner matrix M  is available and approximates K  in some yet-undefined 

sense. Then the following preconditioned systems are required to be solved

M K x  = M '!b 4.69

or

K M 'u  = b, x  = M ‘u 4.70

Note that the above two systems are no longer symmetric in general, where the upper 

case letter M  denotes a pre-conditioner. Equation (4.69) is called left preconditioning 

and equation (4.70) is right preconditioning. If the coefficient matrix J5T is a 

symmetric, positive definite matrix, in order to preserve the symmetry o f the linear
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system after transformation, the pre-conditioner M  can be defined by an incomplete 

Cholesky factorisation (IC)

M  = Ut U 4.71

For example, in section 4.4.3 for preconditioned CG methods, the best choice o f pre­

conditioner C, in order to distinguish from the general definition of M, could be the 

inverse matrix C = U~], where U is an upper triangular matrix given by the Cholesky

factorisation K  = UTU . With this choice, the preconditioned coefficient matrix in 

equation (4.47) can be expressed as

k  =  c tk c  = u tk u ] = u~Tu Tuu~l = i  4.72

The preconditioned coefficient matrix becomes equal to the identity matrix and the 

condition number k = Amax(K )/A rniD(K ) = l. This is an extreme case o f a well-

conditioned matrix whose eigenvalues are all 1. In practical cases, we can only 

construct an approximate matrix o f K  that can be used as a pre-conditioner. Meijerink

and van der Vorst introduced a more general incomplete LU  factorisation [4.31] for a

symmetric or un-symmetric matrix K, i.e. M  = L U . The idea behind the ILU pre­

conditioner is to modify Gaussian elimination to allow fill-in at only a restricted set o f 

positions in the LU factors. Let the allowable fill-in positions be given by index set S 

where

S = { ( U ) K * 0 }  4.73

The entries of the factorised lower and upper triangular matrices are constrained by 

the conditions set as

Ltj= 0 i f  j  > i or ( h j ) ^ S

Uv = 0 i f  i > j  or ( i , j ) e S

That is, the only non-zeros allowed in the LU factors are those for which the

corresponding entries in K  are non-zero. With constraints defined in equation (4.73)

and (4.74) the nonzero entries o f L  and U can be obtained by a simple modification o f 

the Cholesky factorisation algorithm, which is previously defined in section 4.3.2.
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These incomplete LU  factors are stored in the corresponding lower and upper parts of 

the one-dimensional array with the same dimension as K, which can be used in 

subsequent application o f the pre-conditioner. In all works of this thesis the 

incomplete LU  factorisation (ILU) is adopted in the Krylov subspace iterative 

methods.

4.5 Hybrid iterative direct parallel solver

As we discussed in section 4.2.1, the implementation o f the implicit parallel solver is 

based on the non-overlapping domain decomposition scheme; here contact problems 

are excluded in the implicit parallelization. The local Schur complement S p and the

condensed load vector y  are assembled within each subdomain p, p  = \ , s , where s

stands for the number o f subdomains or number o f corresponding slave processors. 

They are passed to the master processor, in which global Schur complement S  and 

global condensed load vector y  are assembled according to the numbering of

interfacial nodes. The reduced system o f equations, Sxb = y , are solved by using the

Krylov space iterative method, leading to a so-called hybrid iterative direct parallel 

solver [4.25]. The implementation o f the implicit parallel solver is described in the 

following three parts;

(1) Master/Slave approach

(2) Blocked modified Cholesky factorisation

(3) Implicit parallel computational procedure

4.5.1 Master/Slave approach

The master/slave approach is often used in parallelization o f a sequential finite 

element analysis code. It is a simple and effective parallel computing strategy and is

adopted in this work, where the master processor serves both as a controller and

worker for initiating parallel computation through notation o f the slave processors and 

conducting the necessary sequential calculations. Such as, reading the input data from 

data file, performing static domain decomposition, distributing relevant loading and
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supporting data, element connectivity and geometry data, material data, nodal 

coordinates and num ber list etc. into the slave processors. In the solver phase, as 

mentioned before, assembly o f global Schur m atrix and solving o f the reduced system 

o f  equations are conducted by the master processor. The m aster processor does not 

perform  any finite element computations. Each slave processor receives all data 

records from the m aster processor and conducts all finite element computational tasks 

concurrently, such as computing the global and element loading at pre-solution phase; 

forming the element stiffness, assembling the local Schur complement matrix and the 

local load vector, performing Cholesky factorisation at the solver phase; computing 

the element internal forces, updating nodal coordinates and outputting results on the 

plot files at the post-solution phase. Since each slave processor performs the same 

tasks, a sequential implicit code can be used with minimal modification.

4.5.2 Blocked modified Cholesky factorisation

In section 4.2.1, we already discussed the assembled local system o f equations for the 

subdomain Q p , a simple procedure o f static condensation, which eliminates unknown

variables at internal nodes and gives the local Schur complement S p and the effective

local load vector y  is described in equations (4.5) and (4.6). In this section, the

desired matrices S  and y p can be found by making a slight modification to a two-

blocked Cholesky factorisation, as shown in Figure 4.11.

N.i

Figure 4.11 Two Blocked modified Cholesky factorization
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It is assumed that the N  degrees o f freedom in subdomain p  is divided into N i internal 

d.o.f. and Nb interfacial d.o.f. The stiffness matrix in equation (4.3) can be factorised 

into

where

X X' X 0 " D u 0 "

1 14̂

X X. 1 C
r 1 0

1

0

i__
__

_

K  = L D Ln n u n

K  h = L D  Liib u u bi

K h = L, D Lbi bi n n

K = L bA A , + L bbDbbLTbb

4.75

4.76a

4.76b

4.76c

4.76e

For an un-symmetric system, llu, A  and llbb in equations (4.75)-(4.76) are replaced 

by Uu , Uib and Ubb, respectively. With blocked modified Cholesky factorisation o f 

equation (4.76), the local Schur complement matrix S p and the effective local vector 

y  for a symmetric system are obtained as

4.77S  = KL —LhD L ,p bb bi n bi

y = b ' - L blL-!b, 4.78

And for an un-symmetric system the local Schur complement matrix S  is defined by

S p =K[b- L blDllUli 4.79

The blocked modified Cholesky factorisation algorithms involve the following two 

steps;

Step 7: Factorizing block (1) and block (2a), it uses the modified Cholesky 

factorisation algorithm, which was described in section 4.3.3 as

For column j  = 2,N

1 ]K ,K ,
l=m Ol

i = m j - 1 i f  j  < Nj 

i = m ,Ni i f  j  > N t

4.80
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4.81

4.82

where the term m in equation (4.80) is the starting row pointer, which is defined by 

equation (4.30) for a perfectly banded matrix K, or equation (4.32) for a not well- 

banded matrix K.

Step 2\ The operation in this step is non-standard and it modifies block (2b) to 

obtain the local Schur complement matrix defined in equation (4.79)

For column j  = Nt +1, N

k ,j = k u- ' L k i:k ijk « i = N, + l J  m = m ax(m (y),m (/)) 4.83

The S p matrix, which is stored in block (2b), will be copied into a one-dimensional

array and sent to the master processor. In order to eliminate the internal unknown 

variables and obtain the effective load vector y  y equation (4.78) can be further split

into two steps as

Equation (4.85) is a standard forward substitution for the internal variables and uses 

factors o f block (1)

Equation (4.84) is a modified substitution process, which eliminates the internal 

variables using factors o f block (2a)

For j  = N i + \,N

y P = K - h i , 4.84

and

4.85

For j  = 2,N j

4.86
l=m(j)
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b j - b j -  £  K,p, 4.87

After substitution o f (4.86) and (4.87) the load vector o f the subdomain p  contains

where z, = Ljfy  and y p is the effective local load vector corresponding to interfacial 

unknown variables and will be sent to the master processor.

By receiving S p and y p from all subdomains, the final condensed equations Sxb -  y  

can be solved in the master processor, then y p in the load vector o f the subdomain p  

is replaced by x pb

Substituting equation (4.76) into the first equation o f (4.3), the solution o f internal 

unknown variables x t o f subdomain p  is obtained by

4.88

b = z, 4.89

4.90

where

4.91

Equation (4.91) is implemented in two separate loops as 

For j  = \,N i set

4.92

For j  = Nt +1, N  set

bi= bi ~ Kjibj l = m (j),N i 4.93

The backward substitution o f equation (4.90) can be implemented as 

For each column j  = Nn 2

bi= bi ~ Kijbj / = 7 - 1, ^ 0 ') 4.94
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4.5.3 Implicit parallel computational procedure

Following non-overlapping domain decomposition and blocked modified Cholesky 

factorisation, which are discussed in sections 4.2.1 and 4.5.2 respectively, the hybrid 

iterative direct parallel solution for a symmetric linear system can be summarized in 

Figure 4.12

(1) Parallel fo r  p  = l,2 , ...s

(2) Decompose K„; Ku =

(3) lltl = D~'L~'Klb

(4) z,=L-;b,

(5) 5 p = J T ^ -4 ,2 )„ 4 ,

(6)

(7) end

(8) Assemble global Schur complement and effective load vector

p=\

y = i , y P
p=i

(9) Solve Sxb = y  using Krylov subspace iteration

(10) Parallel fo r  p  = 1, 2, ...s

(11) calculate internal variables 

x < = Lt ( DJ'z1- l I ilx pb)

(12) end

Figure 4.12 A hybrid iterative direct parallel solution for a linear system

In Figure 4.12 steps (2)-(7) involve Cholesky factorisation and eliminate the unknown 

variables o f internal nodes at each subdomain. Data sent back to the master processor 

are S p and y p . Assembly o f the global Schur matrix and the effective load vector is
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undertaken in step(8). In step (9) the reduced system o f equations is solved for the 

interfacial variables x b. Direct solution o f the reduced system involves the

dominating part o f the total computational costs, and this is where we employ the 

Krylov subspace iterative algorithm, ICCG, GMRES, and Bi-CGSTAB. After solving 

x b the data sent to each slave processor is x b , the variables at interfacial nodes 

related with subdomain p. The calculation o f unknown variables at internal nodes x t 

is done in parallel by steps (10)-(12).

For a nonlinear system, steps (1)-(12) in Figure 4.12 are nested in the iteration, as 

shown in Figure 4.13.

(1) Do itera=l,mtera

(2) Parallel fo r  p=l,2...,s

end

Solve a reduce system

(3) Parallel fo r  p=l,2...,s

(4) * ,= L - r ( Z > - V 4 X )

(5) calculate internal forcess

(6) e n d

(?) /=Z7„
p = i

(8) if(itera=l) b = £ . bp = £  C '  ]
p = 1 p = 1 [ob J

(9) check convergence

| | /  -b\\2 < sx ||/>|2 and ||A*:||2 < s2 ||* |2*sfop

(10) enddo

Figure 4.13 A hybrid iterative direct parallel solution for a nonlinear system
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In Figure 4.13 the calculation o f internal forces /  at each slave processor is defined 

by step (5) in parallel, where f t and / /  are the internal forces related with internal

nodes and interfacial nodes o f subdomain p, respectively. The convergence check has 

to be made within the whole domain in the master processor at step (9); the 

sudomain’s incremental displacement, internal force and external loading vectors 

Avp , /  and bp are sent back to the master processor. If  the residual norm and

displacement norm are less than defined tolerances, it assumes that convergence is 

reached and the non-linear system is solved completely. It is noted that the global 

external force vector is only assembled at the first iteration o f each increment in step 

(8).

4.6 Explicit parallel solver for fluid dynamics

The parallelization of explicit finite element fluid dynamics is based on the Schwarz 

alternating procedure. Since the main computational steps o f the explicit fluid 

dynamics solution involve internal force calculation o f the Lagrangian fluid elements, 

the contact detection and contact force calculation at the fluid-structure boundary or 

interaction forces between fluid particles, it is necessary to use an overlapping domain 

decomposition scheme, as described in section 4.2.2. The literature dealing specially 

with overlapping partitioning is not extensive; we are aware o f publications dealing 

with a similar subject in fluid dynamics by Farhat and Lanteri [4.33][4.34] and in 

solid dynamics by Krysl and Bittnar [4.8]. Other examples o f using an overlapping 

domain decomposition method for explicit finite/discrete element dynamic analysis is 

by Owen and Feng et al [4.11][4.35]. The implementation o f the explicit parallel 

solver is described in detail by the following three parts:

(1) Classification o f element and nodes

(2) Time integration o f governing equations

(3) Explicit parallel computation procedure
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4.6.1 Classification of element and nodes

The overlapping domain decomposition scheme shown in Figure 4.2 can be slightly 

modified and changed to a simple axis-aligned automatic partitioning algorithm, in 

which each subdomain is confined to a rectangular box in 2-D problem or a 

parallelepiped box in 3-D problem [4.11 ][4.35]. A buffer zone between the adjacent 

subdomains is introduced, half o f the zone which is located inside o f the subdomain 

boundary is called an interfacial zone, the other half outside o f the boundary is 

defined as an external zone. The buffer size should be larger than the maximum size 

o f elements located in the buffer zone. Therefore, each subdomain is divided into 

three zones; internal, interfacial and external zone, as shown in Figure 4.14

buffer zone
internal zone

interfacial zone external zone
buffer size

Figure 4.14 Classification o f elements and nodes

In Figure 4.14, the classification o f continuum or discrete elements is made according 

to the location o f the centre point o f the element. The centre point o f  any element 

inside o f the internal zone is defined as an internal element, such as element A and B 

in subdomain . If  the centre point o f  an element is inside the interfacial zone, it is

defined as an interfacial element, such as element E. Other elements with their centre 

on the external zone are defined as an external element, such as element C in 

subdomain Q p . In this work element migration across subdomain boundary is not
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considered, the purpose o f classification o f elements is to set nodal definition. The 

classification o f element nodes is the same as element definition according to their 

spatial position, but there are two special situations, which must be treated carefully. 

If  a node o f an external element o f subdomain Qp is located inside the internal zone

of the adjacent subdomain Qq, it is still called an external node. A node o f an

interfacial element located inside o f the internal zone is defined as an interfacial node. 

Two nodal list arrays, which store interfacial and external nodal pointers in the global 

nodal list, are created for each subdomain’s boundary for handling the inter-processor 

communication and updating unknown variables at external nodes during the Schwarz 

alternating procedure.

4.6.2 Time integration of the governing equations

The explicit Euler formulations o f the finite element discretization for transient Stokes 

flow are assumed balanced at time step n and given by equation (2.65), which can be 

rewritten as

In other words the velocity «n+1 and pressure Pn+1 at time step n + 1 are given 

explicitly in terms o f the velocity un and pressure Pn at time step n. The definition of 

other terms can be referred to in section 2.8. Since the mass matrix M  and M p are 

diagonal, then the solution o f (4.95) and (4.96) becomes trivial and can be given by

«„+1 = «„ + M M '' [ '-Fu -  ( 'Ku„ + -QP„ )]  = «„ + MM~' ( ‘F„ -  F? ) 4.95

p„+1 = pn+ m m ;' [ - f p - ( - Q TU„ + M Pp„)] = pn+ m m ;' (~ 'f p - r ? ) 4.96

4.97

4.98

134



Chapter 4 Implicit and explicit parallel solver

In which, the right subscript i denotes the ith degree o f freedom. ( are

the i,h d.o.f. o f the applied nodal force and internal force at time step n corresponding 

to the momentum equations. (*^,,-) are the ith d.o.f. o f the applied nodal

force and internal force at time step n related with the continuum equations. The 

displacement (^, )n+1 and the coordinates o f the Lagragian mesh ) can be simply 

updated by

4"

( * / L =(*<)„+ M “< L  4 1 0 0

4.6.3 Explicit parallel computational procedure

The explicit parallel computational procedure for a fluid dynamics system can be 

summarized and illustrated in the program flow chart of Figure 4.15. It can be seen 

that the inter-processor communication is reduced to a minimum, only the nodal 

velocity and pressure at external nodes for each subdomain need to be replaced by 

those at interfacial nodes o f the adjacent subdomains at each time step. The inter­

processor communication is limited to the adjacent subdomains, which share the same 

boundary. After receiving the data from the master processor, the work carried out by 

the slave processors is explained as follows:

Step (1) Initialise data; in which a solution order for the global equations is 

established. A global table record is created; it includes lists of global nodal pointers, 

equation numbers and number of degrees o f freedom for each active nodes. A solution 

record is created to store the nodal variables results, nodal mass, nodal loads caused 

by element and global loading. In each element group, element processing and results 

records are opened in the database. A list o f the element nodal pointers, which point to 

the positions o f the global nodal pointers, is created in the element processing record. 

With the aid o f those nodal pointers it can retrieve nodal velocities at the element 

level and assemble element internal forces into the global force vector.
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Master processor (0) Slave processor (1,2,3,...)

communication

Inter-processor

If contact case

Need global 
search?

communication

4. Load assemble

5. Compute element internal 
forces

2. Perform time integration

3. Exchange boundary 
velocities and pressure

Synchronized next time step 
and update time

6. Compute contact force

1. Synchronized next time 
step and update time

Domain decomposition and 
send subdomain data

Perform global search

Receive data in subdomain

1. Initialise data

Read input data

Stan

7. Output results

Start

Figure 4.15 Program flow chart o f the explicit parallel computational procedure
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Step (2) Perform time integration; the nodal velocities and pressure are integrated 

according to equation (4.97) and (4.98), nodal displacements and coordinates are 

updated at the same time.

Step (3) Exchange boundary velocities and pressure; the nodal velocities and pressure 

at external nodes for each subdomain are replaced by those at interfacial nodes o f the 

adjacent subdomains.

Step (4) Assemble external forces; the external forces consist o f the global nodal 

loading and element loading, which includes element face loading and gravity 

loading.

Step (5) Calculate element internal forces; the element internal forces are evaluated 

according to equations (4.95) and (4.96) for transient Stokes flow. At the same time 

the lumped element nodal mass defined in equations (2.92) and (2.93) is assembled 

into the global mass vector.

Step (6) Calculate nodal contact forces; calculation o f discrete element contact forces 

comprises two major parts, contact detection and computation o f the contact forces 

using node-to-facet 2D or 3D formulations as defined in section 3.1. Generally, 

contact force calculation consumes over 40% of the execution time in sequential 

analysis. Since the number of contact points is dramatically reduced in each 

subdomain, it effectively reduces the cost o f generating the binary tree. In addition, 

the global search is only carried out when the maximum nodal displacement in a 

subdomain is larger than a pre-defined value.

Step (7) Output results; each processor generates its own results and plotting files.

Step (8) Synchronize the next time step and update time; each processor defines a 

critical time Atcr within its own internal and interfacial elements only, then the

analysis system synchronizes to obtain a minimum time step as the next time step for 

all processors.
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4 .7  A p p e n d ix

4.7.1 Modified G ram -Schm idt orthonorm alizing process

A set o f  vectors G = {a,, a2,... ak} is said to be orthonormal if

[an aj )  = 0 i f i * j

(«,»«>) = 1 i f i = J A4.1

where ( , ) denotes vector inner products. Given a set o f linearly independent 

vectors X  = {x l tx 2i. . . x r} and X  is a n x r  dimensional matrix. There are several

methods to orthonormalize the vectors in X.  The Gram-Schmidt algorithm and 

Householder algorithm are two important orthonormalizing processes. The standard 

Gram-Schmidt process can be described as follows.

(1) Firstly normalise x ]

(2) Assume new direction x 2 _L g,

X2 X2 )»l
X

*2-(*2>gl)&  

= (^22«2)i?2

A4.3

(3) The J 'h step o f the Gram-Schmidt process consists o f orthogonalizing the 

vector x  against all previous vectors g  x
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-  J~l y_1 
X ,  = X ,  “ 2. ( X J  ’ g , ) g , = X J - L  r : j g t

7=1 7=1

X
S , = p i r  and r, , j = ( x j ’ g , )  A4-4

IML

If and only if  a set o f vectors {xv x 2, . . .x r} is linearly independent, then a set of 

orthonormalized vectors wiU be completed at r steps without breaking

down. The modified Gram-Schmidt algorithm (MGS) has better numerical properties 

than the standard Gram-Schmidt procedure, and is given in Figure 4.16

1) Define gx = 77-̂ 7
F 1 II2 

Do j  =  2,...r
2) Set g = Xj

Do / = 1,... j  —  1

3) '■IJ = (g ,g i)

4) g = g - r , . ,g,  

EndDo
5) Compute rjtJ = |g ||2

6) If ( rUj = 0 ) then
Stop

Else
8

Sj =

Endlf
rj,j

EndDo

Figure 4.16 Modified Gram-Schmidt algorithm

4.7.2 Arnoldi’s process

Am oldi’s process is an algorithm that is very similar to the Modified Gram-Schmidt 

method but used for building an orthogonal basis o f the Krylov subspace Km. Given a

set o f vectors {vj,v2,...v m} in subspace rcm, each vector v. is o f the form qj_x(K )vx
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where q}_x is a polynomial o f degree j  — 1. With the modified Gram-Schmidt process, 

the Amoldi algorithm takes the following form, as shown in Figure 4.17

1) Define vx = .. VlN
INL

Do j  = \,2,...m
2) Compute Wj = KVj 

Do / = l,...y

3 )  K )  =  ( w i ’ V i )

4) W j = W j - h t j vt 

EndDo
5) Compute hj+Xj = ||w j

6) If  ( hj+l j  = 0 ) then

Stop
Else

E n d lf
EndDo

Figure 4.17 Amoldi - Modified Gram-Schmidt algorithm

An important proposition is given without proof, detailed proof can be found in 

Reference [4.21].

Proposition

Assuming that Amoldi’s process does not stop before /w-step, then the vectors 

{Vj, v2,... vm} form an orthonormal basis o f the Krylov space

Km = span\vx,Kvl, . . .K m- \ ^  A4.5

4.7.3 Q R  algorithm
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In order to solve the least-square problem m i n l ^  it is natural to transform

the Hessenberg matrix into an upper triangular form by using plane rotations. The 

rotation matrices Q ,, / = 1, m can be defined as

1

a  =
C,

—s.
<r~ row I 
<— row i +1

A4.6

where c) + s] =1. If m iterations o f the GMRES steps (3)-(20) in Figure 4.8 are 

performed, then Q  has a dimension o f (m + 1) x [m + 1 ).

Left-multiply the Hessenberg matrix H m and the corresponding right-hand b0 = p e x 

by a sequence o f rotation matrices, then the coefficients o f st, ct can be selected to 

eliminate hi+l. at each time. For example, if  m = 5 , the Hessenberg H s and b0 are 

given by

h12 K Ks~ X p
K h.2 h.3 2̂4 hs 0 0

h>2 K K hs h —0 0
hi K hs °0 0 0

K h55 0 0
hs_ 0 _ 0 _

Then left-multiply matrix H s and b0 by , which is set as

- 5,

A4.7

A4.8
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with

A2,+4.
c, = K

A 2, + 4 .
A4.9

It results in the matrix and right-hand side vector being

H ?  =

$ h(f "4" CxP

$ 4 - s xp

3̂2 hs k  = 0 = 0

4̂3 h44 hA5
l

0 0

5̂4 5̂5 0 0

Os 1 0_ 0

A4.10

The above matrix and right-hand side vector are again left multiplied by a rotation 

matrix Q2 to eliminate ĥ 2 with

s ,=  , b* e, = , ^  A 4 .ll

This elimination process is continued until the m,h rotation is applied, which 

transforms the problem into an upper triangular matrix and right-hand side vector as

S<Ni—*

i

' 4 '
4 5) 4 5> 4

4 ? 4 5)
4  =

€
A (s)55

0 _ A .

where the elements ci and st o f the ith rotation Q  are defined a s .

hMI A('_1)
s,= r  c, = , A4.13

Define Qm as the product o f
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and

A4.14

A4.15

A4.16

Since Qm is unitary, the above least-square problem minl/fej - / T my OT||2 is equivalent 

to

minll/fe, - H myJ\  =m in bm- R y m A4.17| |/  I m s  m \\2 m  m s  m

and

K y m= k  A4.18m s  m  m

The solution to the above least-square problem is simply obtained by solving the 

triangular system (A4.18) resulting from deleting the last row o f the matrix Rm and

bm. In addition the residual norm o f |/fe, -  / / my m||2 is equal to 

(A4.16).

m+1 in bm o f equation
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Chapter 5

Numerical Examples

In order to validate and assess the performance and implementation o f the finite 

element formulations discussed in the previous chapters, a number o f numerical 

simulations are presented and compared with relevant experimental test cases in the 

following sections.

5.1 Sloshing water waves

The importance of the stability of a vehicle or vessel transporting liquids in a tank has 

led to a need for understanding the strong and violent liquid motion inside containers. 

The violent impacts induce very large peak pressure on the tank wall, which may 

cause instability of the vehicle during the transportation. The sloshing effect in the 

ballast tank of a ship may experience large rotation motion affecting stability o f the 

ship. Therefore, the numerical simulation o f wave sloshing, which can accurately 

predict the free surface motion o f the waves, is highly useful. The developments o f 

numerical methods modelling steep or overturning waves are reported by several 

authors [5.1][5.2]. Turnbull et al. [5.1] simulated 2-D forced sloshing in a horizontally 

accelerated tank filled with inviscid liquids with a finite element analysis scheme. 

More recently, Bredmose et al. [5.2] reported experimental observations o f ffee- 

surface waves caused by harmonic forced accelerations and used an extended set o f 

Boussinesq equations [5.3] to model standing waves. In the test, the space-time 

Galerkin/least-squares finite element formulation for a slightly compressible transient
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Stokes flow, which was developed in Chapter 2, are adopted to simulate the sloshing 

water waves. The experimental data and results are obtained from Bredmose’s works.

5.1.1 Experim ental set up

The experiments o f water sloshing in a glass tank were conducted at the Civil 

Engineering Department o f Bristol University. A rectangular, narrow glass water tank 

with dimension L1480x W 400xH 750 mm was fixed on a shaking table and subjected 

to a horizontal excitation in a direction parallel to the long side o f the glass tank, 

shown in Figure 5.1. The whole experiments were recorded by two stationary video 

cameras: one regular-speed camera (25 frames per second) and one high-speed 

camera (200 frames per second). All measurements and comparisons are taken on the 

front face o f the tank. The experimental results (high-speed photography) are o f 

sufficient quality and quantity to allow comparison and verification o f the 

simulations. The numerical results are compared to snapshots taken by those cameras 

at successive times.

The object o f the validation is to demonstrate that the finite element fluid analysis can 

correctly and accurately depict wave propagation within the tank that is excited by a 

prescribed motion. Therefore, the horizontal acceleration o f the tank is carefully 

recorded in Figure 5.2, which illustrates the build up o f possible wave sloshing at time 

t = 5.9 second, starting from a sinusoidal oscillation. Then the tank is pushed 

forcefully toward the left, which produces the strong negative peak, followed by a 

positive acceleration.

1480mm

750m m

400m m

Figure 5.1. Sketch o f the experimental setup
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Figure 5.2. A horizontal tank acceleration record

5.1.2 2-D implicit finite element modelling of horizontal w ater sloshing

The 2-D implicit simulation o f water sloshing is set as a plane strain problem. The 

water depth in the tank is 155 mm high, which is corresponding to the experiment test 

case labelled H10 [5.2], The properties o f the water are listed in Table 5.1.

Property Value

Bulk modulus 7f = 2 .1 5 x l0 3 N /m m 2
Density p  — 1.0 x 1CT9 N  sec ,2/ mm4
Viscosity p  = l.Ox 1CT9 V s e c . /mm2

Table 5.1 Material properties

The liquid is initially under gravity loading, the gravitation g  is set to be 

9800m w /sec". The initial finite element mesh contains 1997 linear triangular
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elements and 1107 nodes, as shown in Figure 5.3a. The corresponding boundary 

conditions are set in Figure 5.3b, where the prescribed x-direction velocity u is given 

through the integration o f the acceleration record and zero pressure is defined on top 

o f free surface. The stabilisation constant, which is defined in equation 2.33, is set as 

a  = 0.2 xlO 3. In order to compare with the snapshot o f experimental results, the time 

step is chosen as At = 0.01 second and the plotting files are output at every 0.02 sec. 

o f the time interval. The total simulation time is 8.0 second. The mesh is checked in 

every 5 steps with an allowable distortion angle o f  5 degrees, the maximum and 

minimum allowable angles are 165 and 15 degrees, respectively. At each mesh 

adaptive stage the error estimator based on the velocity gradients is used to predict the 

size o f elements in a new mesh. The maximum and minimum size o f elements on the 

adaptive new mesh are set as /inax = 3 0 mm and lmn = 15mm . Figure 5,3c gives the 

initial pressure contour under gravity loading, the pressure contour scale is illustrated 

in the top left com er with units N / mm2.

Figure 5.3a. Initial mesh

P = 0

u = u

A u = u J
-X v = 0

---- 2-------- ---------
t

u = u

Figure 5.3b. Boundary conditions
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O.QC 153303
0. DO 14 10 75

- 0 1 2  c  2  4

0. DO 115418
0. 00 1 02590
0.000897620
0.00 0769338

0.0 0 05 12774
0.00 0384 492
0.0 0 025620 9
0.00 0127927
-3.5e-7

Figure 5.3c. Initial fluid pressure

The numerical results are compared directly with a selection o f photographic 

snapshots at equivalent times during the tank excitation, at t = 6.52, 6 .88, 7.24, 7.36, 

7.44, 7.48, 7.52, 7.64 and 7.76 seconds. The location and amplitude o f the principal 

wave at these instants encompass the full range o f the wave excitation as it builds to 

the end o f the loading period. The wave propagation profiles and pressure contours at 

successive times from the numerical simulation are compared against the 

experimental camera snapshots in Figure 5.4, where the vertical coordinate is ratio o f 

standing wave height to initial height rj! A , 77 = z - h ,  and the longitudinal coordinate 

is ratio o f the distance to initial height x / h . It is noted that the dashed lines on the 

camera snapshots were from a numerical simulation conducted in reference [5.2]. It is 

seen that the agreement between the experimental and numerical results is very good. 

At time t = 6.88 and 7.24 seconds, the wave loses height while travelling across the 

tank. On the following images, the wave is seen to be steeper as it approaches the 

wall. A careful analysis comparison reveals that at time t = 7.64 seconds the 

experimental run-up on the left wall is about 77/A = 1.8 compared with FE results o f 

77/A = 1.95 , and Bredmose’s [5.2] results 77/A = 2.5 .
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0 2 4 6 &

0 2 4 6  8

x / h

Figure 5.4 Comparison o f experimental and numerical results. (On the left hand side 

the experimental results are shown with the numerical ffee-surface elevation plotted 

as a dashed line, which were conducted in reference [5.2].)

5.1.3 3-D implicit finite element modelling of horizontal w ater sloshing

The 2-D finite element modelling in section 5.1.2 can be extended to the 3-D case 

with a 200 mm width simulating the half width o f the water tank. The initial finite 

element mesh consists o f 25240 four-noded tetrahedral elements and 5673 nodes as 

shown in Figure 5.5a. The fluid geometry, initial boundary conditions, prescribed 

velocity and gravity loading are shown in Figure 5.5b. Only the fluid is simulated in 

the finite element model, the water tank itself is not modelled. The liquid is initially at 

rest and sloshing movement o f  the liquid is excited by the horizontal oscillation plus a 

push as in the same manner as the 2-D case. In the example, the properties o f liquid 

are given in Table 5.1 and the stabilisation constant a  = l.Ox 103. A constant time step 

size o f At = 0.01 is applied with error estimate check in every 5 steps intervals. The

155



C hap ter 5 N um erical E xam ples

element Jacobian based distortion error indicator is used to trigger the adaptive 

remeshing. An allowable Jacobian distortion error o f  10% is specified in the test. The 

weighted least-square mapping scheme is introduced to transfer the nodal velocity and 

pressure to a new mesh and the closest neighbouring points A  is chosen as 20.

The wave profiles and pressure contours at successive times from the numerical 

simulation are compared with the experimental camera snapshots in Figure 5.6, at 

time instants t = 6.52, 6.88, 7.24, 7.48, and 7.88 seconds. Generally, the agreement 

between the experimental and numerical results is very good. The 3-D simulation has 

accurately predicted the motion o f the principal wave, in amplitude and period.

m ■ M R mmmmmmmmWmmJ
Figure 5.5a A 3-D initial mesh

P = 0

u -  u

u = u

u =u

Figure 5.5b. Boundary conditions and loading

156



C hap ter 5 N um erical E xam ples

x / h

Figure 5.6 Comparison o f experimental and numerical results 

(Right hand side shows the fluid pressure at various time intervals)

= 6.52

=  6.88

= 7.24

= 7.48

= 7.88
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5.1.4 2-D explicit finite element modelling of horizontal water sloshing

In the 2-D explicit finite element modeling of the water sloshing in a tank, the model 

is also specified as a plane strain problem and the tank is assumed to be a rigid solid. 

The fluid geometry is discretized into 1423 triangular linear elements, as shown in 

Figure 5.7. Smaller elements are generated at the top free surface in order to 

accurately capture the distortion o f the wave generated. The mesh o f the tank remains 

unchanged throughout the analysis. The prescribed velocity is applied on the rigid 

tank wall and gravity force is only applied to the fluid. The discrete elements contact 

is applied between the fluid and the rigid tank wall using a 2-D node-to-facet contact 

algorithm. A frictionless contact force is applied in the tangential direction of the facet 

and no penetration o f the nodes is allowed in the normal direction. The critical time 

step Atcri{ is automatically adjusted according to the wave speed and a minimum

length o f the deformed fluid element. Its value is about 0.29 ~ 0.6 x 10-6 seconds 

throughout the whole analysis and the time step reduction factor rj = 0.7. The total 

number o f time steps are around 11.5 million steps over 7.6 seconds o f analysis. The 

fluid properties are kept the same and the stabilization constant «r = 0 .5 x l0 4. The 

error estimate is checked at every 4000 times steps with an allowable distortion angle 

o f 5 degrees.

To validate the 2-D explicit modeling o f the wave sloshing within the tank, the 

numerical results are compared directly with photographic snapshots at time instants 

t = 6.52, 6.88, 7.24, 7.48, 7.52, 7.64 seconds as shown in Figure 5.8. At time t = 7.64 

seconds, the ratio o f the standing wave height to initial height on the left side wall 

77//1 = 2.5, compared with experimental results ij/h = 1.8 . Since the explicit analysis 

uses a very small time step and induces higher frequency responses, these are 

normally filtered in the implicit dynamic analysis.
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Figure 5.7. Initial mesh
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Figure 5.8 Comparison o f experimental and numerical results 

(Right hand side shows the fluid pressure contours at various time instants)

5.1.5 2-D implicit finite element modelling of vertical w ater shaking

In this section the numerical modelling for a vertically forced experiment test case is 

presented. The numerical model corresponds to the experiment case labelled V21 

[5.2], for which the water depth was set H = 302 mm. A driving signal for experiment 

V21 consists o f a small horizontal shaking o f the tank, followed by a vertical 

oscillating motion. The acceleration signal used for modelling is based on the 

analytical expression adjusted to match the measured acceleration; it is expressed as

Horizontal acceleration

IOtT

(0.406)^
•sin

f  m  '  
v 0.406 j

0 < / < 2.4 5.1a

Vertical acceleration

u„ = —
10 n 2 

(0.203):
■sin

;r( /  —2.44) 

0.203
2.44 < / < 10.0 5.1b

Figure 5.9a shows that a small peak followed by a decaying acceleration is seen in the 

horizontal signal around t = 2.3 seconds, it is due to the sudden stop o f the horizontal
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motion before the vertical motion begins. After the horizontal motion is stopped, the 

vertical movement o f the tank is prescribed as in Figure 5.9b.

0.08

0.06

0.04

0.02

0
-0.02

-0.04

-0.06

-0.08 J

Figure 5.9a Horizontal acceleration/g0 against time

0.3

0.2

0 1
0

-0.1

-0.2

-0.3 J

Figure 5.9b Vertical acceleration/g0 against time

When simulating experiment V21, an initial finite element mesh o f 1965 linear 

triangle elements and 1094 nodes is employed and the material properties o f the water 

is given in Table 5.1. The whole analysis is divided into two stages; at the first stage, 

a prescribed velocity curve ux (?) is applied on the lateral side o f the domain until

t = 2.4 seconds, at the second stage the vertical prescribed velocity curve z7v (/) is

applied on the base o f the mesh. A constant time step o f 0.01 second is used and the 

error estimate is checked at every 10 steps.
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t=4.64 s

1=4 .68 S

1=4.76 s

1=4.84 s

t = 4.96
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/ = 5 .0 4

1*5.36 s

1=504 s
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/ = 7.44

x / h

Figure 5.10 Comparison o f  experimental and numerical results 

(Right hand side shows the fluid pressure at various time intervals)

t-7,04 6

I I t-7.44 6
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Max Vector: 560.1 0 1

Figure 5.11 Velocity vector plot uxy = ||wj| (mm/s), at time t = 6.60s

In Figure 5.10, eighteen images o f the wave propagation are presented with the 

corresponding finite element solution plotted on the right hand side. The time values 

are given in the upper right com er o f each image. The numerical deformed profiles 

with pressure contours compare very well with the experimental snapshots. The wave 

motions are much steeper and more violent than that under horizontal oscillation only. 

At time t =  5.76 seconds the height o f the standing wave o f the free surface is slightly 

over-predicted by both the FE analysis and the Boussinesq model, which is plotted as 

a dashed line on the image pictures. At time t = 6.60 second the maximum crest 

elevation is reached, and Figure 5.11 shows a velocity vector plot at this stage. After 

that, the downward motion o f  the following crest is depicted in the last three frames, 

and the wave heights are predicted well. The finite element analysis is stopped at time 

t = 8.0 seconds. The total CPU time o f the whole simulation was 18 minutes and 12 

seconds.
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5.1.6 Simulation of liquid sloshing within a fragrance bottle

The finite element modelling o f a liquid sloshing within a ‘Rom a’ perfume bottle, 

which is being transported along a filling line, is analysed based on the explicit 

Lagrangian fluid formulation; Figure 5.12 displays the external profile o f a ‘Rom a’ 

perfume bottle.

Figure 5.12 External container profile o f 'R o m a ’ perfume bottle

On the filling line, the container wall is subjected to a horizontal velocity loading, 

corresponding to the velocity-time loading curve given in Figure 5.13. The fluid 

within the bottle is also subjected to a gravity force. Figure 5.14 illustrates an initial 

numerical geometry o f the perfume liquid in the container, which is produced by 

using CAD drawing due to its complicated geometrical shape. The properties o f the 

perfume liquid are identical to water, and are given in Table 5.1. The discrete element 

contact algorithm defined in chapter 3 is adopted to simulate a frictionless contact 

interaction between the liquid and the container wall. The aim o f modelling is to 

assess the possibility o f liquid splashing out o f the container on a filling line.
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Figure 5.13 Applied velocity versus time

K ,

Figure 5.14 Initial numerical geometry
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Figure 5.15 Fluid pressure at various time instants
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The critical time step Atcril is defined by the wave speed o f the liquid and a minimum

length o f the deformed fluid element; its value is about 0.2 xlO -*5 seconds throughout 

the analysis. The perfume bottle wall is defined as solid elements, the properties o f the 

solid are adjusted, so that the critical time step is not governed by the solid elements. 

The time step reduction factor 77 is 0.7. The total number o f time steps is around 4.22 

million steps for over 1.0 seconds o f analysis, with a total CPU time o f 13 hours and 

19 minutes. The stabilization constant is a  = 0 .1 x l0 J . The error estimate is checked 

at every 2000 times steps with an allowable distortion angle o f 5 degrees.

The wave profiles with pressure contours at successive times from numerical 

simulation are presented in Figure 5.15. The maximum standing wave, which reaches 

the container neck, occurs at time 0.1 seconds, corresponding to the highest velocity 

wv=130 mm/sec at that time. At the constant velocity stage the standing wave begins 

to gradually recede.

Figure 5.16 Velocity vector plot uxv =|w || (mm/s), at time / = 0.10s

Figure 5.16 illustrates the velocity vectors at 0.10 seconds, indicating a high 

probability o f fluid splashing out o f the container neck. This splashing is a result o f 

the acceleration o f the container from the stationary state and subjected to a maximum 

velocity within 0.1 seconds.

169



Chapter 5 Numerical Examples

5.2 Collapse of a liquid column

The analyses o f collapse o f a viscous liquid column have been reported by several 

authors[5.4][5.5]. In this section, two numerical examples o f collapse o f a liquid 

column are considered; collapse o f a 2-D axisymmetric liquid column and collapse o f 

a 3-D liquid column, are presented to provide an assessment o f the performance o f the 

schemes proposed in chapter 2.

5.2.1 Collapse of a 2-D axisymmetric liquid column

An axisymmetric 2-D liquid column with dimension R350x H700 mm is under 

gravity loading, with the gravitation g  = 9800/wm/sec2. The boundary conditions are 

defined in Figure 5.17b, with ux = 0 at the axisymmetric line and uy = 0 at the base

line o f the liquid column. Zero pressure is set at both top and lateral surfaces. The 

liquid domain is initially divided into 888 axisymmetric triangular elements with a 

total number o f 487 nodes, as shown in Figure 5.17a. The liquid material properties 

are given in Table 5.1. The stabilisation constant is set as a  = 0 .2x 102. The time step 

is chosen as Af = 0.01 second and the plotting files are output at 0.1 second time 

intervals. The total simulation time is 0.5 second.

The element distortion error check is set in every 5 steps with an allowable distortion 

angle o f 5 degrees and the maximum and minimum allowable angles are 165 and 15 

degrees, respectively. The error estimator is based on the energy norm, which is given 

by equation (3.64). The maximum and minimum mesh density o f prediction is set as 

/ v = 35mm and I - = 20mm .m a x  m m
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Figure 5.17a Initial mesh Figure 5.17b Boundary Conditions

Figure 5.18 shows the deformed profiles and pressure contours at time instants t = 0.1, 

0.2, 0.3, 0.4, 0.5, seconds respectively. The ratio o f height to base radius ( / / /  R ) at

each time instant is also presented. From the results, it is evident that the stabilization 

constant a in the space-time Galerkin / least-squares formulation is not a sensitive 

value. The pressure results are almost the same when a is taken between 

0 .2 x l0 2 ~ 0 . 2 x l 0 4. However, it is seen in Figure 5.19 that when «  = 0 . 2 x l 0 2, the 

volume conservation is better, with only 1.9% volume change.

0 . 0 0 2 7 4 7 8 6
0 . 0 0 2 5 1 8 8 7
0 . 0 0 2 2 8 9 8 9
0 . 0 0 2 0 6 0 9 0
0 .00  1 8 3 1 9 1
0 .00  1 6 0 2 9 2
0 .00  1 3 7 3 9 3

.00  1 1 4 4 9 4
J.  0 0 09 15 951
0 . 00 0 6 6 6 9 6 6
0 .00  0 4 5 7 9 7 7
0 . 0 0 0 2 2 8 9 8 90. 0 0 0 0 0 0

Figure 5.18a Pressure contour at t = 0.1 Figure 5.18b Pressure contour at t = 0.2 

( H/ R)  = 1.4715 ( H/ R)  = 0.8081
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Figure 5.18c Pressure contour at t = 0.3, ( H/ R)  = 0.4060

Figure 5.18d Pressure contour at t = 0.4, (H / R) = 0.1884

Figure 5.18e Pressure contour at t = 0.5, ( H/ R)  = 0.0858
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Figure 5.19 Rate o f volume change versus a
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5.2.2 Collapse of a 3-D liquid column

The collapse o f a 2-D axisymmetric liquid column is extended to a 3-D case. Only a 

quarter o f  the cylinder is simulated with R350xH 700 mm. Symmetric boundary 

conditions are set in the x-y and y-z  plane o f  the cylinder. A liquid initial mesh 

consists o f  23273 four-noded tetrahedral elements and 4860 nodes, as shown in 

Figure 5.20a. The liquid column is initially at rest and gradually spreads out under 

gravitational force. The 3-D problem is solved using the preconditioned Bi-CGSTAB 

iterative method, since a large system o f equations is involved. In this example, the 

stabilization constant a  = 0.2 x  103 is used.

Figure 5.20b Boundary ConditionsFigure 5.20a Initial mesh

The 3-D deformed profile and pressure contour at time instant t = 0.1, 0.2, 0.3, 0.4, 

0.5 seconds are presented in Figure 5.21, with the 2-D deformed profile displayed at 

the right side o f images for comparison. The ratio o f height to base radius o f  the 

column is also given, it can be seen that both 2-D axisymmetric and 3-D simulations 

give identical results.
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0 . 0 0 2 2 0 5 1 3  
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0 .0 0  0 6 6 1 5 4  0 
0 .0 0  0 4 4 1  0 2 7  
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0.00 00 00

Figure 5.21a Pressure contour at t = 0.1, ( H / R ) = 1.4739

B 0 . 0 0 4 4 3 3 5 3  
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0 . 0 0 3 6 9 4 6 1  
0 . 0 0 3 3 2 5 1 5  
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0 .0 0  1 4 7 7 8 4  
0 . 00  11 0 8 3 8  
0 . 0 0 0 7 3 8 9 2 1  
0 . 0 0 0 3 6 9 4 6 1  
0.00 00 00

Figure 5.21b Pressure contour at t = 0.2, ( H/ R)  = 0.8128

0 . 0 0 5 3 6 2 8 5  
0 . 0 0 4 9 1 5 9 5  
0 .0 0 4 4 6 9 0 4  
0 .0 0 4 0 2 2 1 4  
0 . 0 0 3 5 7 5 2 3  
0 . 0 0 3 1 2 8 3 3  
0 . 0 0 2 6 6 1 4 3  
0 . 0 0 2 2 3 4 5 2  
0 .00  1 7 8 7 6 2  
0 .00  1 3 4 0 7 1  
0 .00  0 8 9 3 8 0 8  
0 .00  0 4 4 6 9 0 4  0.00 00 00

Figure 5.21c Pressure contour at t = 0.3, ( H / R ) = 0.4042
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0 .00  1 7 8 0 6 9
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Figure 5.21 d Pressure contour at t = 0.4, ( H/ R)  = 0.1955

0 .00  1 4 5 6 4 9  
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Figure 5.21e Pressure contour at t = 0.5, ( H/ R)  = 0.08994
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5.3 2-D explicit modeling of shampoo container filling

The objective o f numerical simulation o f a Dove shampoo container filling is to help 

the industry to understand possible liquid movement, whether air entrapment will 

occur or cause spillage o f the liquid during the filling process. Finite element 

modelling is based on the explicit fluid dynamic formulation, since simulation 

involves complicated contact interactions among fluid particles and between fluid 

particles and the rigid container walls.

Eulerian boundary u
y

Figure 5.22a Initial mesh Figure 5.22b Boundary Conditions

The geometry o f  a 200ml Dove container with outside size //0 .1613x  1T0.08 m is 

shown in Figure 5.22. The liquid is filled into the container via a nozzle, which is 

about 7 mm in diameter and positioned above the finish o f the container. The finite 

element analysis is set as a plane strain problem. A special Eulerian boundary is 

designed to simulate the liquid filling; as the fluid passes a predefined distance d f

from the top line o f the nozzle, extra fluid is added within the nozzle, i.e. the top line 

o f the nozzle is pulled back to its original position, and the fluid domain is re-meshed. 

A prescribed filling velocity u = -1 .4 5 8 w /sec . is applied on the nodes o f the top line

o f the nozzle. At the same time the fluid elements are subjected to gravity load with 

g  = 9 .8m /sec2. The viscosity o f  the fluid material is known to be shear rate 

dependent and the Herschel-Bulkley law is used to simulate a shearing thinning 

behaviour o f the shampoo liquid. The properties o f the Dove shampoo liquid are listed
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in Table 5.2 and the experimental and numerical fit o f  the viscosity versus strain rate 

o f the Dove DMM14 material is shown graphically in Figure 5.23.

Property Value

Bulk modulus K  = 1.075x 1010 Pa

Density p  = 1.0 x 1C)3 K g / m 3

Yield Stress cr = 0.5 Pa- sec

Fluid consistency index C = 21.0 Pa • sec

Power law index n = 0.25

Critical shear rate r — 0.002 1/sec

Table 5.2 Material properties

The discrete element contact o f the 2-D node-to-facet contact algorithm is applied 

among the fluid particles and between the fluid particles and the rigid container walls. 

The frictional coefficient c is set as 0.2 for the Coulomb friction law. The normal and 

tangential penalty value is 1.0x10s and l.O xlO 7, respectively. The critical time step 

Atcru is about 0.5 ~ l.O xlO -6 seconds throughout the analysis, the time step reduction 

factor rj = 0.7. The total number o f time steps is around 0.6 million steps for over

0.38 seconds o f analysis. The stabilization constant is set as a  = 0 .5 x l0 4. The error 

estimate is checked at every 500 times steps with an allowable distortion angle o f 5 

degrees. The maximum and minimum element size o f a new adaptive mesh is defined 

as L x  =0.0032 and /nlin = 0.002 m.

D ove DMM14 V iscosity Plot 
Yield = 0.5 K=21.0 n=0.25 G am m a_C=0.0015

Fit for D ove  DMM14.
Yield = 0.5 K=21.0 n=0.25 G am m a_C =0.004

100,000 —  E x p er im en ta l  D o v e  D M M 1 4  Fit

—  N u m er ic a l  Fit

—  N u m er ic a l  Fit  L o w  V i s c o s i t y

CL

>  o.oc 001 0.0o o i o.c 100 [000 >

—  E x p e n m e n t a l  D o v e  D M M 1 4  Fit

—  N um er i ca l  Fit

N um er i ca l  Fi t  L o w  V i s c o s i t y

Shear rate [1/s]Shear rate [1/s]

Figure 5.23 Dove DMM14 experimental and numerical material model fit
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Figure 5.24 2-D Shampoo filling; velocity vector plot at various time intervals
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Figure 5.24 shows a continual shampoo filling process and eight liquid profiles with 

velocity vector plots are given at successive times. The initial lateral side o f  the filling 

liquid column is parallel. As the filling process continues the lower part o f liquid 

column becomes thinner due to gravity force. This is a real phenomenon observed at 

the filling site. As the shampoo fluid gradually fills up the container, shear thinning o f 

the liquid column is reduced and internal folding o f the liquid appears at time 0.325 

seconds. At that time two trapped air pockets are formed. As we can see in Figure 

5.25, self-contact among the fluid particles is well simulated by the discrete element 

contact algorithm. Obviously, within a real fluid domain these folds do not exist, and 

can be removed by stitching element surface boundaries and redefining the nodes on 

the surface geometry entity during the adaptive remeshing procedure. The 2-D 

numerical simulation gives a good indication o f how the container filling can be 

achieved.

Ih.44fi I 
LUO- i f  
1.17667 
L2B'J«f 
136111 
L W f f l  
LM 360 
1.63 f 92 172819 
U l 7 « 6  
R0H7II
(MUM

Figure 5.25 Effective strain rate at time t = 0.325s and t = 0.38s
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5.4 Parallel performance on a distributed memory platform

To evaluate the parallel performance of the algorithm implemented in chapter 4, two 

of the most common measurements; parallel speed-up and efficiency are used and 

expressed as

single processor N: and multiple processors N  , respectively. Ideally, a parallel

algorithm running on N  processors may run N p time faster than on a single

processor. However this cannot be achieved in practice as various overheads can 

compromise the final performance. These are most commonly associated with the 

sequential tasks in a parallel algorithm, the unequal distribution of computational load 

among the processors and the communication cost between the processors, which is a 

main factor o f reducing parallel speedup on a distributed memory computer system.

Robust and efficient transmission of a database record between the master and slave 

processors is of paramount importance to the success of implementation o f a parallel 

program. ‘Remember it is much faster to communicate 1 data block o f 100 

components rather than communicating 100 data blocks each o f 1 component. ’ To 

fulfil the efficiency requirement ELFEN packaging C library [5.6] is used, which is 

developed based on the MPI library [5.7][5.8] and using 21 basic MPI functions to 

obtain essential communication functionality. The packaging routines include three 

critical steps:

• The packing of database records; it requires defining or creating of a package 

name and adding specific data records to the package.

• The communication of the package, sending and receiving o f a package.

5.2

5.3

Where denote the execution CPU time of the algorithm using a
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• The unpacking o f the transmitted data records on the required database.

To implement the above tasks six basic commands are introduced into the ELFEN 

packaging C library, they are

PCKNAM - creates a package name

PCKDEF - defines the package

PCKADD - adds specific data to the package

PCSEND - sends the defined package to identified processors

PCRECV - receive the defined package from an identified processor

PCSYNC - package synchronisation

The tests in this section have been run on a PC based interconnection network system, 

which consists of several Intel Pentium PC nodes (1.8 GHz), each with 1.04 GB of 

memory. Each computing node is locally interconnected by a high-performance 

switch communication hardware (DES 3225G), which has a speed of 100 Mb/second 

and less than 20 jus latency. The processing nodes have been reserved for ‘unique’ 

CPU usage, i.e., only the test program was running on each node.

5.4.1 Implicit analysis of a simply supported T beam

A simply supported steel T-beam of a length 4000 mm is subjected to a uniform 

pressure loading, P  = 0.2 N / mm2, on the top surface. Its cross section geometry and 

supporting boundary conditions are illustrated in Figure 5.26. A finite element mesh 

consists o f 8585 nodes and 6200 eight-noded hexahedral F-bar elements [5.9][5.10], 

with 2 x 2 x 2  Gauss integration points. A Von Mises elasto-perfectly plastic model 

with initial yield stress cr0 =100N / mm2 is used to simulate possible plastic yielding.

The material properties of the steel are defined in Table 5.3. Since the stiffness matrix 

produced in the F-bar formulation is a non-linear, unsymmetric one, the Bi-CGSTAB 

iterative solver is used in solving the resulting interfacial equations in the master 

processor. The test case is run on 1~4 processors, separately. The performance of 

parallel speed-up and efficiency is given in Table 5.4. Figure 5.27a shows the
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separated effective stress contour o f the T-beam with three subdomains from 4 

processors running (1 master and 3 slave processors), compared with the combined 

results from sequential analysis in Figure 5.27b. Maximum displacement d x and

effective plastic strain s  i s -3 .345 mm and 0.00765, respectively.

I l l
50 mm

250 mm

!k<  y  '
300 mm 100 mm

Figure 5.26a Cross section geometry o f T-beam

Figure 5.26b Boundary condition and pressure loading

Property Value

Young’s Modulus £  = 2.1x105 N / m m 2
Poisson’s Ratio v = 0.29
Density p  = 7 .86x 10~9 N sec.2/ mm4
Initial yield stress cr0 = 100N / mm1

Table 5.3 Properties o f steel material
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Figure 5.27a Effective stress contour o f T-beam (3 subdomains)
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Figure 5.27b Effective stress contour o f T-beam (combined)

Number o f Processors Time (s) Speed-up Efficiency

1
399.01 - -

159.01 2.509 0.83644

1
116.12 3.436 0.85905

T a b le  5 .4  P a ra lle l s p e e d -u p  a n d  e f f ic ie n c y
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Solver stages Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

P re-so lver 0.30 0.0 0.0 0.0 0.0 0.0

W aiting 11.06 11.25 11.20 11.22 11.22 11.22

R eceive Sp 2.64 2.62 2.69 2.64 2.67 2.62

A ssem ble S  = ^  S n 0.25 0.25 0.25 0.25 0.22 0.27

R eceive y p 0.0 0.0 0.0 0.0 0.0 0.0

A ssem ble y  = ^  y n 0.0 0.0 0.0 0.0 0.0 0.0

P recond itioner 0.83 0.83 0.83 0.83 0.83 0.83

Iterative so lver 0.02 0.00 0.02 0.02 0.02 0.02

Total so lver tim e 15.11 14.95 14.98 14.95 14.95 14.95

Table 5.5 CPU time distribution o f parallel solver in the master processor

Solver stages Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

P re-solver 0.02-0.06 0.0 0.0 0.0 0.0 0.0

A ssem ble K 0.94-1.09 1.05-1.17 1.05-1.09 1.03-1.20 1.03-1.19 1.05-1.24

F orm ing  Sp 8.67-12.56 8.59-12.55 8.56-12.59 8.53-12.55 8.53-12.56 8.67-12.56

Send Sp 0.42-1.77 0.42-1.75 0.41-1.73 0.42-1.75 0.42-1.75 0.41-1.75

F orm ing y p 0.02-0.03 0.01-0.02 0.01-0.03 0.0-0.03 0.02-0.03 0.02-0.03

Send y 0.0-0.03 0.0 0.0 0.0 0.0 0.0

R eceive x£ 0.86-4.25 0.86-3.56 0.86-3.62 0.86-3.64 0.86-3.64 0.86-3.47

Internal v a r ia b le ^ 0.02 0.02-0.03 0.02 0.02 0.0-0.03 0.02

R eaction  force 0.0-0.01 0.0 0.0 0.0 0.0 0.0

Total so lver tim e 15.03-15.71 14.98-14.99 14.99-15.02 14.96-14.99 14.96-15.00 14.96-14.99

Table 5.6 CPU time distribution o f parallel solver in slave processors

The solution o f this example reaches convergence after 6 iterations, the CPU time on 

the parallel solver stage is about 89.89 second and takes 77.41% o f the total analysis 

time, when 4 processors are used. The CPU time distributions at each iteration, for
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each sub-stage o f the parallel solver stage for the master and slave processors are 

given in Tables 5.5 and 5.6. It shows that the most time costs are spent on waiting, 

receive S p and preconditioning o f the global Schur matrix, which take 73%, 17.47%,

5.49% o f the total solver time for the first iteration in the parallel solver for the master 

processor; the time distributions for the remaining iterations are almost the same. 

Forming the S p matrix at the first iteration for each slave processor, as shown in

Table 5.6, takes from 8.67 to 12.56 seconds, this is due to a slightly unequal load 

balance among the slave processors. It can be seen that assembling the K  matrix,

forming and sending the S  matrix takes about 6.94%, 79.95% and 11.26% o f the

total solver time on a slave processor. This is the reason why it costs 11.06 seconds 

waiting time on the master processor. The most expensive operation in the parallel 

solver stage is at the blocked modified Cholesky factorisation phase on the slave 

processor, in order to obtain a local Schur complement matrix S  . The costs o f

assembling the global Schur matrix and the solution o f the resulting interfacial 

equations on the master processor are negligible.

Timelines

12.00 12.60 13.00 13.50 14.00 14 50 15.00 15 50 16.00 16 50 17.00 17 50 18 00 18.50

Figure 5.28 (a) Time results at first iteration (b) Time results at post-solution stage
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A timeline result generated by the visualization tool Jumpshot is shown in Figure 

5.28. Figure 5.28(a) illustrates the time spent on computation, sending and receiving 

records and synchronisation in the solver and post-solution stages o f the first iteration. 

The first line is for the master processor, while the next three lines show the timeline 

results for the three slave processors. It is obvious that most time is spent on forming 

and sending the S  matrix, as shown in Figure 5.28(a), Figure 5.28(b) shows the time

spent on the post-solution stage, which includes sending the internal displacement 

vector, calculating and sending the internal force vector to the master processor for 

convergence check.

5.4.2 Explicit analysis of a simply supported T beam

The test case set in section 5.4.1 is adopted to assess the performance o f explicit 

parallel analysis. The geometry, boundary conditions and finite element mesh o f the 

T-beam are illustrated in Figure 5.26 and the material properties are given in Table 

5.3. An eight-noded hexahedral element with reduced one Gauss integration point is 

used. The element formulation is based on the assumed strain stabilization method 

[5.11 ][5 .12], which provides a more robust hourglass control than other 3-D 

hexahedral elements in explicit codes. A ramped loading curve is defined with 

P = 0 ~ 0.2 N I mm2 within the time interval o f 0.001 seconds. The time step is chosen

as A t « 0.214x  10-5 seconds and the total simulation time is 0.0214 seconds with 

10000 time steps. A buffer size for the internal or external zone o f each subdomain is 

taken as 5% -10% o f the subdomain length in order to keep the number o f overlapped 

elements to a minimum.

Number o f Processors CPU Time (s) Speed-up Efficiency

1 1108.32 - -

3 327.03 3.389 1.1296

4 223.0 4.97 1.2425

5 200.39 5.53 1.106

Table 5.7 Parallel speed-up and efficiency
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Figure 5.29(a) CPU time versus number o f  processors
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Figure 5.29(b) Parallel speed-up

The explicit parallel test is run on 1~5 processors on a PC interconnection network 

system and the performance o f parallel speed-up and efficiency is given in Table 5.7.

It shows superlinear speedup, i.e. S ( N p} > N p , this is due to significant reduction in
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CPU time on the internal force calculation. Figure 5.29(a)(b) illustrate the CPU time 

taken against the number o f processors and parallel speed up. The CPU time 

distributions at each sub-stage o f the explicit parallel analysis are give at Table 5.8 

with one, four and five processors, respectively. It shows that the most time costs are 

spent on load assembly and internal force calculation for a sequential analysis, it takes 

103.31 and 928.31 seconds or about 9.32 % and 83.75% o f the total CPU time. For a 

parallel analysis with 5 processors the time spent on load assembly and internal force 

calculation is reduced to 13.65-22.55 and 87.83-104.81 seconds, taking about 

6.84-11.23%  and 44.0-52.19%  o f the total CPU time. Since the external variables on 

the boundaries are updated using neighbouring interfacial variables at each time step, 

the time spent on inter-processor communication is unavoidable. It is noted that the 

solution communication time on the parallel analysis with using 5 processors takes 

32.34-46.49 seconds and is slightly increased compared with using 4 processors. The 

experimental tests on the explicit parallel analysis illustrate that the communication 

time is linearly proportional to the number o f bytes to be sent; about 10 MB in 0.8 

seconds.

Solver stages Single processor 4 processors 5 processors

Time integration
61.3

(5.52%)

9.98-15.93

(4.48-7.14% )

7.98-13.24

(4.0-6.59% )

Solution communication 0.0
27.81-38.22

(12.48-17.13% )

32.34-46.49

(16.35-23.15% )

Load assemble
103.31

(9.32%)

17.19-27.35

(7.72-12.26% )

13.65-22.55

(6.84-11.23% )

Internal force calculation
928.31

(83.75%)

115.42-125.42

(51.82-56.24% )

87.83-104.81

(44.0-52.19% )

Output
11.91

(1.07%)

3.88-5.89

(1.74-2.64% )

3.38-4.84

(1.69-2.41% )

Total time 1108.32 222.7-223.0 199.59-200.81

Table 5.8 CPU time distribution o f  parallel solver with 4 and 5 processors
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TimeLines

Figure 5.30 Parallel operation o f a single time step

The timeline results for a typical time step o f the explicit parallel analysis with 5 

processors is shown in Figure 5.30, which illustrates the communication between 

neighbouring slave processors and synchronisation among the master and slave 

processors. The first line is for the master processor and the next four lines show the 

tim eline results for the four slave processors. It can be seen that the most 

communication time is spent on sending and receiving interfacial and external 

variables between the neighbouring slave processors.
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5.4.3 Explicit analysis of 3-D horizontal w ater sloshing

The 2-D explicit finite element modelling o f horizontal water sloshing in section 5.1.4 

is extended to the 3-D case with a 200 mm width simulating the half width o f the 

water tank. The fluid geometry and the tank wall are discretized into 25482 and 9797 

four-noded tetrahedral elements respectively. The tank is assumed to be rigid solid 

and is applied with the prescribed velocity, which is defined in Figure 5.2. A 3-D 

node-facet contact algorithm is used to simulate contact interaction between the fluid 

and the rigid wall, and a frictionless law is applied. The fluid properties are kept the 

same as the 2-D case and the stabilization constant a  = 0 .5 x l0 4. A critical time step 

Atcr is about 0 .1 3 5 x l0 ”6 seconds with total 2000 time steps being simulated. A

buffer size for the internal and external zone o f each subdomain is chosen at 5-8% of 

subdomain length according to the number o f processors used.

The explicit parallel test is run on 1-5 processors. Figure 5.31(a)(b) shows the global 

mesh and nodal status on the subdomain mesh o f each processor (using four slave 

processors and 8% buffer size ). In Figure 5.31(b) the nodes with red colour denote 

the external nodes, which are overlapping with the neighbouring subdomain. The 

nodes with green colour represent the interfacial nodes. Table 5.9 and Figure 5.32 

present the performance o f speed-up and efficiency o f the parallel analysis. It 

indicates that the explicit parallel analysis gives a high rate o f efficiency. Again, the 

superlinear speedup is obtained, since the CPU times on the internal and contact force 

calculation are reduced significantly.

Number o f Processors Time (s) Speed-up Efficiency

1 978.28 - -

3 290.73 3.354 1.118

4 219.53 4.442 1.111

5 168.67 5.781 1.156

T a b le  5 .9  P a ra lle l s p e e d -u p  an d  e f f ic ie n c y
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Figure 5.31(a) Global mesh

Figure 5.31(b) Partitioned parallel nodal status
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Figure 5.32(a) CPU time versus number o f processors
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Figure 5.32(b) Parallel speed-up

The CPU time distributions at each sub-stage o f the explicit 3-D water sloshing 

analysis are given in Table 5.10, with one, four and five processors used. It shows that 

the most time costs are spent on internal force and contact force calculation for a 

sequential analysis, which takes 536.73 and 406.73 seconds, i.e. up to 96.3% o f the 

total CPU time. For a parallel analysis with 5 processors the time spent on internal 

force and contact force calculation are reduced to 67.96-74.23 and 64.03-70.97 

seconds, respectively, consuming about 78.66-85.79%  o f the total CPU time. In this
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test case the time spent on the solution communication is very little, only taking 

4.29-5.2%  of the total CPU time.

Solver stages Single processor 4 processors 5 processors

Equation solver
13.56

(1.38%)

2.38-4.03

(1.09-1.83% )

1.88-3.36

(1.12-1.98% )

Solution communication 0.0
6.5-9.44 

(3.0-4.3% )

7.20-8.81

(4.29-5.2% )

Load assemble
9.94

(1.01%)

1.92-3.91

(0.88-1.78% )

1.87-3.36

(1.11-1.99% )

Internal force calculation
536.73

(54.86%)

88.52-101.02

(40.76-46.0% )

67.96-74.23

(40.5-43.86% )

Contact force calculation
406.73

(41.57%)

84.18-91.95

(38.76-41.87% )

64.03-70.97

(38.16-41.93% )

Output
8.97

(0.92%)

3.62-6.33

(1.67-2.88% )

2.71-3.96

(1.6-2.34% )

Total time 978.28 217.17-219.6 167.79-169.24

Table 5.10 CPU time distribution o f the parallel solver with 4 and 5 processors
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Chapter 6

Conclusions

6.1 Summary and conclusions

The main motivation o f the research herein is the development of rational parallel 

computational strategies for solving an incompressible or slightly compressible 

transient Stokes flow with moving boundaries and interfaces. A brief summary o f the 

principal field o f the research is presented together with a set o f open-ended 

conclusions in the following.

6.1.1 Lagrangian formulation for transient Stokes flow

A comprehensive strategy for the solution o f incompressible or slightly compressible 

transient Stokes flow problems with moving boundaries has been presented and 

implemented. It includes a novel space-time Galerkin/least-square finite element 

technique in the Lagrangian frame, which comprises the least square terms in the 

variational formulation and prevents numerical oscillation on the pressure field. It is 

evident that the stabilization constant a in the formulation can be chosen within a 

wide range of values. A stable solution can be obtained by using lower equal order 

interpolation functions for velocity and pressure fields without violating the Babuska- 

Brezzi stability condition.
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The space-time Galerkin/least-square finite element formulation has also been 

successfully extended to the explicit analysis. The forward Euler method is used in the 

time integration procedure and by controlling a critical time step the conditional 

stability o f the solution can be achieved. The formulation has been proved to be a very 

attractive tool for simulation o f fluid-structure or fluid-fluid particle interaction 

problems.

6.1.2 Contact modelling and adaptive remeshing

Three major contact algorithms for enforcing the contact constraints have been 

reviewed in the dissertation. The penalty method based discrete element contact 

algorithm, 2-D and 3-D node to facet algorithm, is adopted to simulate fluid-structure 

or fluid-fluid particle contact. In the explicit modelling o f liquid sloshing examples, 

the ffictionless contact simulation gives the best prediction o f the wave propagation, 

in terms of forced wave amplitude and period. The Coulomb friction law is more 

suitable for fluid-fluid particle contact for the viscous fluids, which was shown in the 

Shampoo filling example.

The adaptive remeshing technique has been used to deal with large deformation o f 

Lagrangian meshes. It improves the accuracy o f the finite element solution and 

enables it to carry on the simulation by overcoming excessive element distortions. 

New mesh density prediction is calculated according to a posteriori error estimator, 

which is based on the velocity gradient error norm for the transient Stokes flow. At 

the field values mapping stage, the weighted least-square mapping algorithm 

implemented significantly enhances the mapping quality, compared with the 

background element-mapping scheme.

6.1.3 Implementation of the implicit parallel solver

A hybrid iterative direct parallel solver is implemented in the ELFEN/implicit 

commercial code. The solver is based on a non-overlapping domain decomposition 

and sub-structure approach; the solution o f the subdomain problem is naturally
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parallelized and a modified Cholesky factorisation is used to eliminate the unknown 

variables o f internal nodes at each subdomain. The resulting interfacial equations, 

which are related with the unknown variables o f the interfacial nodes, are solved by a 

Krylov subspace iterative method. The hybrid iterative direct parallel solver is tested 

on a PC based interconnection network system and its performance is judged by two 

measurements, parallel speed-up and efficiency. The performance o f the parallel 

solver is governed by the blocked modified Cholesky factorisation phase in the slave 

processors and communication o f the local Schur matrices. All the results indicate that 

it does not suffer seriously from the serialization o f the backward solution phase in the 

slave processors and solution o f the resulting interfacial equations in the master 

processor.

6.1.4 Implementation of the explicit parallel solver

The parallelization o f explicit finite element fluid dynamics is based on the 

overlapping domain decomposition and the Schwarz alternating procedure. Due to the 

dual nature o f the overlapping partitioning o f the domain a buffer zone between any 

two adjacent subdomains is introduced for handling the inter-processor 

communication and updating unknown variables o f external nodes on the external 

zone. Communications for the nodal velocities and pressure are limited to take place 

only between any two adjacent subdomains, which significantly reduces 

communication cost. New classification of elements and nodes makes the contact 

treatment very simple and flexible.

6.1.5 Applications

A number o f numerical examples are presented and compared with relevant 

experimental test cases.

• 2-D and 3-D implicit finite element modelling o f horizontal and vertical water

sloshing -  which demonstrate that the finite element fluid implicit analysis can
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correctly and accurately depict wave propagations within the tank that is 

excited by a prescribed motion.

• 2-D explicit modelling o f liquid sloshing 'within a water tank and a fragrance 

bottle -  which validates the explicit fluid dynamics formulation developed in 

this work. The contact between fluid and the rigid tank wall is applied by 

using a 2-D node-to-facet discrete contact algorithm and a ffictionless contact 

model.

• Simulations o f collapse o f a 2-D axisymmetric liquid column and a 3-D liquid 

column -  which also provide an assessment o f the performance o f the schemes 

proposed in this work.

• 2-D explicit modelling o f shampoo container filling  -  which involves 

complicated contact interaction between fluid and the rigid container walls.

• A simply supported 3-D T-beam test -  which evaluates the parallel 

performance o f the implicit and explicit parallel solver implemented.

• Explicit analysis o f  3-D horizontal water sloshing test -  it evaluates the 

parallel performance o f the explicit parallel solver, which involves discrete 

element contact.

6.2 Recommendations for further work

A number o f fundamental issues, which require to be improved in future work, are 

addressed here. In the following, possible extensions to the main topics o f research of 

this thesis are presented.
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6.2.1 Domain partitioning

When implementing a domain decomposition strategy on a parallel computing 

system, efficient techniques must be available for partitioning an arbitrary graph. In 

the present research work, the partitioning method is based on a simple algorithm, in 

which a domain is split along its most elongated coordinate direction. Obviously this 

is a special situation. Most static and dynamic partitioners used for domain 

decomposition can be catalogued into two classes, geometric and topological

[6.1][6.2]. The geometric approach works on the physical mesh and requires the 

coordinates o f the mesh points to find adequate partitioning. The method is well 

suited to problems in which interactions are inherently geometric, such as particle 

simulation or contact detection. One example is the Recursive Coordinate Bisection 

(RCB) algorithm, which was proposed by Berger and Bokhari [6.3]. Recently, a 

modified RCB method was introduced by Wang et al [6.4]. It can be implemented in 

the explicit parallel solver, but the number o f subdomains can only be a power o f two,

i.e. 2, 4, 8, 16 and so on. Each subdomain is a simple rectangular parallelepiped, since 

the cutting planes are confined to be orthogonal to an axis.

The topological method works with the connectivity information o f the elements in a 

mesh, instead o f geometric coordinates. The connectivity is generally described as a 

graph. The methods are best suited to partitioning computational meshes, where the 

connectivity is implicit in the mesh. One of the most popular topological methods is 

known as Recursive Spectral Bisection (RSB) [6.5]. METIS[6.6] and its MPI 

implementation ParMETIS[6.7], both based on the topological method, are public 

domain software packages for partitioning general graphs. The interface to those 

partitioning packages may produce the required quality partitions for any complex 

graph.

6.2.2 Adaptive remeshing with parallelisation

The adaptive remeshing technique has been only applied in the sequential analysis in 

this work, since the reduction o f computational cost for adaptive remeshing on 

parallel analysis requires further work. This is due to: (a) an automatic mesh generator
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is normally a separate program and works sequentially; (b) Partitioning o f domains 

for a newly generated mesh is also a sequential process, which requires a significant 

computational time for a complex geometry.
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