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Summary

In this thesis, the matrix free Characteristic Based Split (CBS) scheme based 

on an artificial compressibility (AC) method and the semi-implicit CBS scheme are pre­

sented for laminar and turbulent incompressible flows. Numerical simulations of steady 

and unsteady state incompressible flow problems have been carried out on structured and 

unstructured meshes of linear triangular and tetrahedral elements. The standard Galerkin 

method was used for spatial discretization of the governing equations in their semi-discrete 

CBS form. Four different Reynolds average Navier-Stokes (RANS) turbulence models 

have been studied in detail. They are the one-equation linear k — I model of Wolfshtein, 

the one-equation Spalart-Allmaras model, the two-equation linear k — e model with two 

different low Reynolds number treatments (Lam-Bremhorst damping functions and Fan- 

Lakshminarayana-Barnett damping functions), and the two-equation nonlinear near-wall 

k — e model with Kimura-Hosoda’s parameters. The results of standard steady flow in a 

channel, inside a lid-driven cavity, over a backward facing step, around a stationary sphere 

and through an upper human airway are adequately predicted. In addition to steady state 

flow problems, unsteady Reynolds-averaged Navier-Stokes (U RA N S) model was employed 

to solve vortex shedding behind a circular cylinder using a dual-time stepping technique. 

The two- and three-dimensional results presented show that both the CBS-AC matrix free 

procedure and semi-implicit CBS formulation are accurate and efficient.
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Chapter 1 

Introduction

1.1 G eneral remarks on the CBS schem e

It is well known that generally direct finite element formulations without any stabilization 

may result in violent oscillations if employed to solve incompressible flow equations. The 

instability due to the non-linear convective acceleration terms, which make the fluid me­

chanics equations non-self-adjoint, leads to a system of non-symmetric equations. Unless 

the velocity is very small, for instance creeping flows, spatial oscillations due to central-type 

spatial discretization of convective acceleration will occur. Thus the spatial discretization 

derived by the standard Galerkin method (or Bubnov-Galerkin method) [1, 2]—the shape 

functions are used as weighting—is not valid here though this gives minimum error in the 

energy and the L 2 norms for self-adjoint problems. On the other hand, the incompressible 

limit, Ladyshenskaya-Babuska-Brezzi (LBB) conditions [3, 4, 5], introduces instability if 

equal order interpolations for velocity and pressure are used. Therefore, use of simple linear 

triangular elements result in highly oscillatory solutions when the viscous flows of incom­

pressible fluids is solved using equal order interpolations [6]. The violation of this condition 

often results in numerically unphysical oscillations in the pressure field. However, second 

order terms introduced into the discrete governing equations ensures that stable solution is 

obtained in this study.

There are several stable approximations available to deal with the steady-state
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situations which reduce/eliminate oscillations resulted from standard discretization of con­

vective acceleration terms. For the steady-state convection-diffusion equation with a scalar 

variable, generally treatments include the Streamline Upwind Petrov-Galerkin (SU PG ) 

method [7], the Galerkin Least Squares (GLS) method [8, 9], the Finite Increment Calcu­

lus (FIC) method [10] and the Subgrid Scale (SGS) method [11]. The methods available 

to stabilize oscillation via transient formulation include the Characteristic-Galerkin (CG) 

method [12, 13, 14, 15, 16] and the Taylor-Galerkin (TG) method [17, 18]. In this study, the 

CG procedure is employed to solve the Navier-Stokes equations and the Reynolds average 

Navier-Stokes (RA NS) equations.

The SUPG approximation can be employed by taking the weighting functions dif­

ferent from the interpolation (shape) functions. This non-standard weighting in the discrete 

form was to introduce consistent stabilization to solve convection dominated problems. The 

Galerkin process based on a least square residual minimization also permits non-self adjoint 

operators to be treated. The process of adding the higher order terms via the GLS for­

mulation can stabilize oscillations. Indeed the concept of the extra terms are often known 

as ’artificial or balancing diffusion’. The FIC procedure directly obtains the balancing dif­

fusion in the governing differential equations via higher-order approximations using Taylor 

series.

In this thesis a combination of time discretization in the characteristic direction 

along with standard Galerkin spatial approximation is used to deal with incompressible 

flow equations. Its derivation involves a Taylor series expansion in a semi-discrete system 

along the problem characteristics to obtain second order accuracy in time. The extra higher 

order terms can either be derived in conservation or non-conservation form for any scalar 

convected quantity. The TG scheme gives similar form of convection stabilization for scalar 

convection-diffusion problems. The TG method is the finite element counterpart of the 

Lax-Wendroff type [19] developed in the finite difference context.

In order to circumvent unphysical pressure oscillation, the development of stable 

procedures in which the LBB condition is stabilized have been proposed and being widely 

used [6]. The Characteristic Based Split (CBS) algorithm [13, 15, 16] based on firstly 

removing all the pressure gradient terms from the Navier-Stokes equations leads to a non­
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singular solution for any interpolating shape functions used for velocity and pressure. In 

the second step, the pressure is obtained from the continuity equation and finally the inter­

mediate velocity variables obtained from the first step are corrected to get the final velocity 

values.

For the solution of both compressible and incompressible flows, CBS scheme was 

initially presented by Zienkiewicz and Codina [13]. Also, CBS scheme has been extended to 

investigate other applications, for example solid dynamics [20], shallow water flows [16, 21], 

thermal and porous medium flows [16, 22, 23, 24, 25]. However, recently it has been com­

bined with the standard Artificial Compressibility (AC) method [26] to obtain an efficient 

and accurate explicit matrix free procedure [27, 28].

Such a matrix free CBS-AC scheme, via a dual time stepping technique [27, 29] 

gives a transient numerical solution for unsteady flow problems. This method has been 

implemented to solve turbulent incompressible flows using RANS and unsteady RANS 

(U RAN S) in this thesis. Several articles have been published on the artificial compress­

ibility formulation for turbulent flow calculations in the past [30]-[49]. It is noticed that all 

the referred papers use either finite difference or finite volume method for spatial discretiza­

tion and many of reported studies use additional dissipation model to get a stable pressure 

solution.

The semi-implicit CBS scheme, which requires a matrix solution procedure [6], [50]- 

[53] for the implicit solution of the pressure Poisson equation, has also been implemented 

along with one of the RANS models.

1.2 S trateg ies o f turbulence m odelling and sim ulations

In the study of turbulent flows, one of the first methods that was designed for directly 

solving the time-dependent Navier-Stokes equations is called Direct Numerical Simulation 

(DNS) by which all the relevant scales are resolved without any turbulence model equation 

or averaged variable. For the high-Reynolds-number flows, the DNS method is intractable 

to resolve all lengthscales and timescales between the largest and smallest range in the 

turbulent velocity field. Thus, the Large Eddy Simulation (LES) approach in which the fil­
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tering operation and the space-averaged equation of fluid flow is the alternative. The effect 

of the larger and easily-resolvable scales on the turbulent motions are computed by LES 

procedures using the Smagorinsky SGS stress model [54, 55], the dynamic SGS eddy viscos­

ity model [56, 57, 59], the least squares dynamic SGS closure model [58, 59], the monotone 

integrated large eddy simulation (M ILES) approach [60]-[63] and the variational multiscale 

model [64, 65, 66] etc. Thus the (filtered) Navier-Stokes equations which provide adequate 

dissipation of turbulent kinetic energy is responsible for the energy transfer between the 

large resolved scales and the SGS eddies.

In the Smagorinsky model, the eddy viscosity based on the application of the 

mixing length hypothesis is employed to be proportional to the SGS lengthscale, through 

the universal Smagorinsky constant, and the turbulent velocity scale imposed by the second- 

order symmetric tensor of the filtered strain-rate. To correct asymptotic behaviour in 

the near-wall region of a boundary layer in different flow regimes, the concept of the so- 

called ’double filter levels’ leads to SGS stress tensor in which Smagorinsky constant is 

replaced by an algebraic equation. It is known as the dynamic eddy viscosity model which 

can dynamically obtain the constant that is a function of space and time. A potentially 

important modification of the dynamic mode is made by a least squares approach to avoid 

the denominator become zero. Except for the above explicit SGS stress models, one of the 

implicit numerical filters is so-called the MILES approach, wherein the inherent numerical 

dissipation based on the flux corrected transport scheme [67] or the piecewise parabolic 

method [68] in the SGS model is used. In the multiscale formulation, the SGS stress 

is modelled by the fluctuating rate-of-strain rather than the filtering rate-of-strain which 

represents a missing effect based on unresolved subgrid scales on resolved scales (space- 

averaged) within the filtered Navier-Stokes equations. In brief, LES is used to simulate the 

large-scale motion on which the effect of small scales is modeled.

RANS models are developed using time-averaged quantities resulting from the 

decomposition of mean and fluctuating parts [69]. It extends the classical time-averaged 

approaches that involve the numerical solution of the Reynolds equations to determine the 

mean velocity field. The mixing-length hypothesis [70] in which velocity scale is defined 

based on the turbulent kinetic energy was suggested by Kolmogorov and Prandtl [71, 72]
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for solving the transport equation. Here the turbulent eddy viscosity formulation is replaced 

with the absolute values of the mean velocity gradient. It implicates that the turbulent eddy 

viscosity is a scalar in this turbulence-energy hypothesis. This RANS model is called the one- 

equation model because it has just one turbulence quantity—turbulent kinetic energy—for 

transport. The one-equation model of Wolfshtein [73] based on length scale of dissipation 

and viscosity is employed to account for the near wall effects in this work.

The two-equation model belongs to the RANS model as well. This model uses two 

turbulence quantities. The turbulent kinetic energy k  is taken as one of the variables. An­

other is determined by several quantities, for instance, turbulence dissipation rate e [74, 75], 

turbulence frequency u  = n/e  [76] and turbulence timescale r  =  e / k  [77]. However, several 

investigators have applied the linear k — e model to develop nonlinear eddy-viscosity models 

(N LEV M s) in the constitutive stress—strain/vorticity equation for practical engineering 

turbulent flows during the past two decade [78]-[84].

One of the hybrid techniques, detached eddy simulation (DES) approach, was 

suggested by Spalart et al. [85, 86, 87] in order to combine the most beneficial results of 

RANS and LES. The closure is based on a modification to the Spalart-Allmaras model 

such that the whole boundary layer uses the RANS model and separated regions away from 

boundary layers use LES at external flows.

In this thesis, the linear k, — e model is used to demonstrate the use of both the 

matrix free CBS-AC scheme and semi-implicit CBS scheme. The low-Reynolds-number 

approximations, the Lam-Bremhorst model [88] and Fan-Lakshminarayana-Barnett model 

[89], for predicting wall-bounded turbulence are also demonstrated in this thesis. Especially, 

the unsteady turbulent boundary layers with correct asymptotic behaviour in the near-wall 

region had been improved by Fan et al’s work. For the nonlinear k — e mode, the Kimura- 

Hosoda formulation [84] was presented in the Reynolds stress tensor. In majority of the 

turbulent cases studied in this thesis, the Spalart-Allmaras model [90] has been used as a 

one-equation turbulence model for transport of the turbulent eddy kinematic viscosity.

It is not very clear when computing power will be sufficient enough to carry out 

LES calculations on practical engineering problems. One prediction (Spalart) suggests that 

it will be in the year 2045 before a reasonable size engineering problem is solved using LES.
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It is also not clear how LES is going to develop itself as an unstructured mesh method. 

Thus this thesis is devoted to develop unstructured mesh based matrix free method for 

RANS calculations. Through examples it is proved that sufficiently accurate turbulent flow 

calculations can be carried out on fully unstructured meshes.

This thesis describes the RANS modelling using a matrix free scheme in detail. 

Various governing equations and their origins are summarized along with the finite element 

solution procedure. The accuracy and efficiency of the matrix free scheme is demonstrated 

through several laminar and turbulent incompressible flow problems. The semi-implicit 

form of the CBS scheme is also implemented for the sake of comparison. In the following 

section, the contents of the present work is described in same detail.

1.3 O rganisation  o f th e  thesis

This research aims at using the matrix free CBS-AC scheme and semi-implicit CBS scheme 

to solve both laminar and turbulent incompressible flow problems using the structured, 

unstructured and hybrid meshes.

Chapters 2 to 3 deal with the mathematical models and turbulence formulations 

for incompressible flows. Applying the Reynolds decomposition to split into mean and 

fluctuating values of Naiver-Stokes equations are explained in Chapter 2 followed by a 

discussion on the derivation of several turbulence transport equations. In Chapter 3, various 

turbulence RANS models are explained in detail.

Chapter 4 covers CBS algorithm in detail using an explicit discretization technique. 

A combination of the artificial compressibility method and the dual time stepping process 

are used here to solve unsteady problems with the matrix free form while the pressure 

Poisson equation of the semi-implicit scheme is solved using a conjugate gradient method. 

Two- and three-dimensional matrix coefficients resulting from the weak formulation has 

been obtained by the rules of linear algebra and shown in Appendices A and B. Chapter 4 

also presents how CBS scheme avoids LBB condition.

Chapters 5 to 6 present numerical experiments of steady and transient laminar 

flow calculations. Many two- and three-dimensional benchmark problems have been pre­
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sented in Chapter 5. The steady and unsteady incompressible flow calculation inside a 

two-dimensional non-rectangular double driven cavity at a Reynolds number range of 50 

and 10000 are described in Chapter 6.

In Chapters 7 to 8 numerical solutions of turbulent incompressible flow problems 

are evaluated by the one- and two-equation turbulence models. The first benchmark prob­

lem is the turbulent incompressible flow through a two-dimensional rectangular channel 

at R e=12300. The other steady state problems studied are the turbulent two- and three- 

dimensional flow past a backward facing step at Re=3025 and the model upper human 

airway at a moderate Reynolds number. The application of URANS is investigated by 

solving the vortex shedding behind a circular cylinder at R e=10000. All two dimensional 

turbulent flow problems are presented in Chapter 7. Three dimensional RANS and URANS 

turbulence calculations are shown in Chapter 8.

The conclusions derived from the present study are described in Chapter 9. This 

chapter also gives same ideas for future research.



Chapter 2

The turbulent mean-flow equations

2.1 T he N avier-Stokes equations

The mass conservation based on time rate of decrease of mass inside the control volume is 

equal to net mass flow out control surface. It leads to the conservation form of the continuity 

equation which can be expressed as

«  t2-1)Ot O Xi

where p is the density, Ui are the velocity components, Xi are Cartesian coordinates.

The constitutive relation for the deviatoric stress components for Newtonian 

fluids is given as

/  dui duj 2 duk \  . v
(2-2)

where p, is the dynamic viscosity, Sij is the Kroneker delta.

The general momentum equations based on the Newton’s second law (mai =  Fi)



where D u j/D t  are the acceleration of the moving fluid element, P  is the pressure, - d j P  + 

diTij are the net surface force per unit volume, f j  are the body force which is the gravity 

acting on the fluid element.

By substituting Equation (2.2) into the general momentum Equation (2.3), the 

momentum equation in differential form of Cartesian tensor notation can be given as

where v = fijp  is the kinematic viscosity, and the modified pressure p includes pressure and 

a constant gravitational field, that is p =  P  +  G.

2.2 T he R eynolds averaged N avier-Stokes equations

The Reynolds averaged Navier-Stokes equations can be derived by the Reynolds decompo­

sition. The decomposition of the instantaneous quantities ipi as a function of time at a fixed 

point in a turbulent flow into its time-averaging value ipi and the random quantities ^  (see 

Figure 2.1), i.e.

and definitions of the mean values for velocities and modified pressure in a turbulent flow 

[91] are

(2.4)

i ’i = 4>i -4>% (2.5)

and

(2.6)

where T  is time interval. Substituting Equation (2.5) with definitions of the mean velocity 

values we obtain the Reynolds stress



1 0

Figure 2.1: Description of the instantaneous quantities.

It is assumed that the turbulent velocity and modified pressure are differentiable. 

It also takes the mean commutative law of the derivative by integration during an interval 

of time T  and derivatives with respect to time or space can be interchanged.

duj duj / l  f T \  duj
~dt =  ~dt \ T  J0 )  =  ~dt
duj _  d ( 1  f T \  _  duj
dxk dxk \ T  J0 Uj )  dxk
duj _  d /  _ 1 f T \  _  duj
d^k ~  d^k { UjT j 0 ) ~ d ^ k

(2.7)

■T
(2 .8 )

and also
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du'j d / I  f T . \  du '
d ^ k = d ^k \ f j 0 Ujdt)  = fa~k = °  (2 '9)

The differential conservation form of the mean-continuity equation can be written

as

!  +  ^  = |  +  +  o (2.10)
dt oxi at oxi oxi

For incompressible flow, Equation (2.10) becomes

S = °  <2-u >

Equation (2.11) is the continuity equation for incompressible turbulent flow given in terms 

of time-averaging quantities.

The mean of substantial derivative in conservative form can be written as [92]

dujuk = dui  d  ,  ^ r \  (212)
Dt dt dxk dt dxk v 3 J k'dxk dt dxk 

Therefore, we obtain the mean-momentum equation

duj d (UjUk) 1 dp d
dt dxk p dxj dx{

du{ duj 
dxj dxi

2 duj,
3 dxk ij dxk

(2.13)

The above equation is well known as the Reynolds equation. Obviously, it differs from 

Equation (2.4). The extra last term is referred to as the Reynolds stresses. Both the 

mean flow quantities and the Reynolds stresses are unknown so some transport models are 

required in the turbulence regime.

2.3 T he turbulent k inetic energy equation

According to the turbulent eddy viscosity hypothesis of Boussinesq [93], the deviatoric 

Reynolds stress tensor — u^Uj -I- (2/3)k<5^ is proportional to the mean strain-rate tensor [92]



where a ^ i  =  dijdkifil +  ^ik^jl{^2 +  $3) +  ^ j k ( ^ 2  -  $3); #i, $2  and $3 are scalars [94], 

ut is the turbulent eddy kinematic viscosity that is the positive scalar coefficient and the 

turbulent kinetic energy (per unit mass) is k = ( l / 2 ) u ^ .

In the above equation, the isotropic part of the Reynolds stress tensor is (2/3)k<%. 

According to the Boussinesq’s turbulent eddy viscosity hypothesis, the relation between the 

stress and the mean rate of strain for the Newtonian fluid is determined by the turbulent 

kinetic energy k.

Because the turbulent kinetic energy k is a scalar quantity of considerable im­

portance, the transport equation of the turbulent kinetic energy is derived here. First, 

by subtracting Equation (2.13) from Equation (2.4), we have the fluctuating velocity u'j 

equation, i.e.

(2.15)

Then each term is multiplied by u'- and using the chain rule

dt
d

(2.16)

Continuing in this way, by taking mean values on both sides of Equation (2.16) and con­

sidering each of these terms independently one obtains for incompressible flow.



Since uk, d u j /d xk and u'ju'k are constants with respect to time, finally, the turbulent kinetic 

energy equation can be expressed as

uu<u.u k j j _d_
dx-.

u'nP' +

Convective acceleration D iffu sion

+
_d_
dxi

vu„
du'- du', 2 du'.

3 \ d x i  dx
 .
3 dxk + 1 -

Viscous d iffusion Generation

dx* dxi
2 du'. dv±

dxi
(2.18)

Dissipation rate

2.4 T he isotropic d issipation  rate equation

For the high Reynolds number flows, an exact equation for the isotropic dissipation rate 

of the turbulent kinetic energy is obtained by using the isotropic second-rank tensor in the 

viscous diffusion terms and by differentiating Equation (2.15) with respect to xm. The 

result may be written as

d du'j
dt V dx +

d du'ju'k
dxk V dx

d
dxk

+ v-

duju'k
dXm.

d2 (  du'.
+

du'jUk
dXm.

du'ju'k

1 d
p dxj

dp'
dXm

+

(2.19)
dx? \ d x m J ' dxk \ dxm 

Then it is assumed that the velocity gradients are continuous and multiplying through out 

by 2i/du'j/dxm and using the product rule of the derivative and the chain rule. We have for 

an incompressible fluid
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2_a t v  du'j du) 
dt V 2 dxm dxm - ^ i r  - - A J LUd̂ m UJbm dxk ) dXm dxr Uk

du)
dxk

dxm dxm dxk k dxk V dxm dx
du) du)

2v _ d _  ( jK  _<V_\ + 2i/2J L
p  d x j  \ d X m d X m )  d x i

d_
dxi

1 du) du)
2 dXm dXm

-  2*/ d_
dxi

du^
dXm.

+ 2 v
du) d ( du)u'k
dxm dx 7 dxk

(2 .20)

However, taking the time averaged values on both sides of the equation, the dissi­

pation rate equation of the turbulent kinetic energy becomes

du) du)
dxm. dx 7

du) du'
dxm dx

2v d f  du- dp 
p  d x j

d ‘

dxm dx
du'i du'

u,.u
dxm dx

-  2
d

d x i  V d x

du)

-  2v
du) du’k du)
dXm dxm dxk

-  2 u

2 vu’ 

d

du) du'k
dxm dxm

du) d
kdxm dxm \ d x kJ  

  d_
dxi dxi

du) du)
dXfn dxb

du) du)t •*— y _
dXrn dXm

(2 .21)

In the above equation, the isotropic dissipation rate itdmu'jdmu) is introduced by 

a second-order symmetric tensor. The result may be written as



Equation (2.22) is called as the isotropic dissipation rate equation of the turbulent 

kinetic energy and each term is identified as follows: (i) Time rate of increase of the dissipa­

tion rate of the turbulent kinetic energy, (ii) Convective acceleration of the dissipation rate 

of turbulent kinetic energy by mean flow, (iii — 1) Viscous diffusion of the dissipation rate of 

turbulent kinetic energy by pressure fluctuation. Following Hanjalic and Launder [95], this 

term contains higher order derivative of the mean or fluctuating velocity field (fourth-order 

tensor) which is neglected, (iii — 2) Viscous diffusion of the dissipation rate of turbulent 

kinetic energy by velocity fluctuations, (iv) Production of the dissipation rate of turbulent 

kinetic energy by time-averaged velocity gradients, (v) Destruction of the dissipation rate 

of turbulent kinetic energy, (vi) Viscous diffusion of the dissipation rate of turbulent kinetic 

energy for lower-Reynolds-number flows.

The moment approximation is to provide reasonable closing procedure in terms of 

multiple correlations of velocity fluctuations and the dissipation rate [95, 96]. These terms 

may be respectively written as



_ 2vu' ^ - ^ -  3 0  =  - . j -  *u 'k  (  d2Ui )  (  a2%- )
kdxm d x m \ d x k J e \  Wj \d x id x m J \ d x kdxm J

^  \  B xj d im  3 d x \  m 3 J  dxrn

(2.26)

where ce, c£i, c£2 and c£3 are constants.

Equation (2.26) may be replaced with suitable wall damping functions, so the 

final form of the simulated dissipation rate equation of turbulent kinetic energy can thus 

be expressed as



17

d <du'w du ' 2du[ \ du' d / du‘, 2 du[ ^ du'j
dt v \\ dxj

4- -
uu"m dxm + dxk

ukv\
\ dxj

4- - dx m " 3  d ^ mjJ dx m

+ dxk

Convection

dd
dxi 1 dxi

+  \  du'i
dxj dxm 3 dxi 771,7 /  dxm +

Viscous d iffu sion

u u 
Cp^-U'uU,£ 2 ulfcUm

dufj
dXm

d
dxT

du'm +  dv!j_ _  2 0 ^
dxi dxr 3 dxi m j

9uj
dXrr

c' l l \T E ^  +  Z x Z  35x7° m l )  8x m Uj Uk

Viscous d iffusion

Cs2

i>y.
JLJL

2

duj_
dxk

( du'm . du'- _  2 9u[ x \  du'.
+  fan 30x1°™]) 15xm

u- u-
2

Production Source

(2.27)

The above equation contains three different constants which are described in Chap­

ter 3.

2.5 The R eynolds stresses equation

For an incompressible turbulent flow, the exact transport equation for the Reynolds stresses 

u'jUi is obtained from the fluctuating velocity Equation (2.15) based on second-rank isotropic 

tensor in the viscous diffusion terms.

Each term in the fluctuating velocity u'- equation is multiplied by u[ that gives

, du', . d u j u . d U j U k  , du'iu'k u', dp' , d V  ,du'-u'k
* a f + + u ‘i ^ + u ‘i ^ = - i £ - j + m ‘i 4 + u ‘- t r  (2,28)

The same equation for the velocity component u[ is multiplied by u' can be written as

, du[ , duiu'k , du[uk , du'tu'k
dt 4- u dxk dx k 4- u A dxk

L'j <V ,4-viij 
p dxi J

d2u'i , du[u'k
dxj j dxk

(2.29)
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By adding Equations (2.28) and (2.29) and using the differential rule,

9u'A  . , /„ /  dui duku'ju't dvIjU1̂
dt 1 kdxk J k dxk dxh dxk

1 dp'ui p' du[ 1 dp'u'j p' dufj
p dxj p dxj p dxi p dxi

du', du', ,du' W du',u',
+ ^ - 2^ 9i + u ‘- t r + ^ i £ r  (2-30)

Taking mean values on both sides in the above equation, the transport equation of the 

Reynolds stresses may be written in the form [95, 97]

. 9  ( a T T ^ \  =  9 ui u <“ * 1 ( t y v ' l  , , 9 2 u ’lu ’i
dt dxk V J v  dxk p \  dxj dxi J  dxf

v     ^
Convection D iffu sion

■ . du —r dm
UlUklte~k ~ Ui Ukfc~k +
' --------------------------------V---------------------------------'

Generation

p' (du', du'j\ du'.du'j
+ ^ \ ^ j  + d ^ i j ~ 1/ d ^ i d^i ^

' -------------------v-------------------'  '-----------v-----------'
Redistribution Destruction

The above equation is referred to as second-order or second-moment closure for 

turbulence transport models since it is derived by taking a second moment of the fluctuating 

Navier-Stokes equations. It is solved for the individual Reynolds stresses. The right-hand 

side of Equation (2.31) contains several correlations between turbulence quantities and their 

fluctuating and time-averaged components. In this work, the Reynolds stress equation of 

the one-point velocity correlation is used to build up the foundation of the constitutive 

anisotropic Reynolds stress equation of the nonlinear k — e model [84, 98, 99]. However, it 

is noted that both ^-equation and e-equation may be written in the canonical form of the 

exact Reynolds-stress-transport, i.e.

Du^u'j
^  =  Diffusion + Production (Generation) +

Convection
+ D issipation /D estruction  (Source) (2.32)
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2.6 Sum m ary

In this chapter, various time-averaged equations for the turbulent incompressible flow are 

discussed. The turbulent kinetic energy, the energy dissipation rate and the Reynolds 

stresses equations are derived from the governing equations of fluid dynamics-the Navier- 

Stokes equations which represent the fundamental physical principle of fluid flow. Further 

details on the turbulence equations are given in the following chapter.
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Chapter 3

Turbulence m odels

3.1 In troduction

It is obvious from the previous chapter that the quantity to be modelled is the Reynolds 

stress tensor u 'w '. In this chapter, various available options are outlined. The Boussinesq 

hypothesis for Reynolds stresses will be assumed here. Both two- and one-equation models 

are explained in the following sections.

3.2 T he tw o-equation  model: linear k  — e  form ulation

From the Navier-Stokes equations and the Reynolds averaged Navier-Stokes equations in 

Chapter 2, we obtain the turbulent kinetic energy Equation (2.18) of which the energy flux 

may be written as

The energy flux E* is approximated by the generalized gradient diffusion hypothesis result­

ing from Daly and Harlow [100] and simplified by Pope [92] to give

Thus, the first transport equation for the turbulent kinetic energy k is of the form
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Ok dKUj _  d f  ut \  8k 1 R dui . .
dt dxi d x i \  <j k )  dxi p T̂  dxj

where the diffusion Prandtl number for the turbulent kinetic energy is oK =  1.0, the

dissipation rate is e = v{djU{ +  <%u'- -  (2/3)dkU,k5ij)diU,j and the Reynolds stresses are

Tij = -pu'iu'y

From Equation (2.27), the energy flux of the dissipation rate equation may be 

expressed as

E f =
d f du[ du'. 2 $v!k \ du'

is I....
(  du\ du' 2 du' r- \  du'-

"{IE -  +  s ii  ~  d i[_
dxi v \

% j J
 ̂$30 j  $30j/ ~  3 d ^ k 5ij) dxi

(3.4)

which is modelled with the generalized gradient diffusion hypothesis as

vtE f = - \ u  + - \  —
de
„ (3-5)

G e J  O X i

The transport equation for calculating the turbulence energy dissipation rate e 

can generally be written in the following form

de deui 
dt dxi

d_
dxi

i>t \  de e r, du
*' +  — ) ^ -  + Cei —  7 fae J dxi ftp %3 dx< Ce2 K

(3.6)

where the constants are ce\ =  1.44 and c£2 =  1.92 are proposed by Launder and Sharma 

[101]. The diffusion Prandtl number for the dissipation rate is oE =  1.3 and the turbulent 

eddy kinematic viscosity as [74]

vt — V (3.7)

where =  0.09.

The above linear k — e model belongs to the class of two-equation models, in which 

closure transport equations are solved for two turbulence quantities k and e. The Reynolds 

stresses t/} or — tdit'- are calculated by a linear strain relation from Boussinesq hypothesisIJ I J *
[93] which ignores anisotropic effects.
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For near-wall treatment, the coefficients cM, c£i and c£2 are multiplied by the 

turbulence damping functions / M, f £ 1 and / e2 respectively.

These functions, firstly, was used by Lam and Bremhorst [88]. The dissipation 

rate e employed by Gibson et al. [102] is given as

Comparison of the above equation with Equation (3.7) gives a simpler relationship for / M 

in terms of turbulent Reynolds numbers R K and R t

turbulent kinetic energy to yield reasonable prediction in the near wall region [74, 103], f e\ 

is increased to a larger value rather than constant or equal to unity. Thus f £\ is modelled 

with the following form

it makes sure that the dissipation rate e is not infinite even if the turbulent kinetic energy 

k is equal to zero on the solid walls.

Another wall function used in the present work as given by Fan et al. [89]. Here, 

the development of low Reynolds number functions to account for the near-wall damping 

effects, the function f w is introduced by Speziale et al. [77] and the experimental data 

resulting from Patel et al. [104] were used to formulate expression in terms of R K, i.e.

e =  0.2274 [1 -  exp (-0.011891?*)]2 (° '8548) (3.8)

/„  =  [ ! - exp (-0.01657?*)]

where both the turbulent Reynolds numbers are defined as Rt =  K2/ue  and R* = \fKyfv  

in which y is the distance from the nearest wall.

By avoiding the destruction term, 2v (dy/H/dx2 )2, in the transport equation of the

(3.10)

The damping function f £2 was suggested by Jones and Launder’s work [74, 103] 

modified and is written as

fe2 =  1 -  exp ( -R } ) (3.11)

The above equation tends to zero as the turbulent Reynolds number Rt tends to zero. Also,
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r  1 J y/ Rk f  y/Rk Rk
fw -  exp j  2 30 2 30 “  8^89 i i ^ K1 - e x P l ~ 2 o (3.12)

The turbulent eddy kinematic viscosity scale is n2/e  at locations far from the solid 

wall at high Reynolds number. However, it reduces to y jvk2 je  according to Myong and 

Kasagi’s model [105] due to the effect of turbulent Reynolds number Rt = K? jve  in the 

vicinity of solid walls. Therefore the correct near-wall asymptotic behaviour of turbulent 

eddy kinematic viscosity is needed by the function / M to connect between low-Reynolds- 

number flows in the vicinity of solid walls and high-Reynolds-number flows away from the 

wall. The empirical function / M is given as

fn = 0 .4 -4 =  +  ( l  ~  0.4- ^ 1 — exp ( — R k
42.63

(3.13)
y/Rt V y/Rt,

The /ei is equal to unity was suggested by Speziale et al. [77]. The function f £2

based on the variation of turbulent Reynolds number was demonstrated to have excellent

agreement with experimental data for turbulence energy decay by Hanjalic and Launder

[96]. Here f £2 is assumed to be a function of the near-wall damping function f w to ensure

reasonable prediction, i.e.

/£2 = 1 1 - u exp
Rt
6 rJv (3.14)

The Dirichlet condition used are k = 0 on solid walls. The constants used are given as 

c£ 1 =  1.4 and c£2 =  1.8.

3.3 T he one-equation  model: linear k  — I form ulation

The turbulent eddy kinematic viscosity can be expressed as the product of a lengthscale Is 

and a velocity scale us:

vt =  lsus (3.15)

By Prandtl’s mixing-length hypothesis [70], the lengthscale is replaced with the 

mixing length lm and it varies linearly with the distance to the closest wall, the constant
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of proportionality being the von Kdrmdn number avk = 0.41 in the log-law region of a 

wall-bounded flow, i.e.

Is = lm = VvkV (3.16)

Also, the velocity scale is based on the turbulent kinetic energy that was suggested by 

Kolmogorov [71] and Prandtl [72], that is

us = c1J ak1/2 (3.17)

where the turbulent kinetic energy k, is estimated by the transport equation of «, which is 

equation (3.3).

Then the turbulent eddy kinematic viscosity becomes

vt = cj/4K1/2lm (3.18)

The dissipation rate e scale may be written as U2/ tq = U^/lo, in which UQ, rQ 

and l0 are the characteristic velocity scale, timescale and lengthscale of the largest eddies 

respectively, at the high Reynolds number being considered, it is reasonable to model e as

c 3 /4 k 3/ 2
£ =  “ (3.19)

I'm
Equations (3.18) and (3.19) can, consequently, eliminate lm to yield

Vt =  cM-  (3.20)
£

Clearly, the above equation is same as Equation (3.7). On the other hand, the mixing length 

lm is often related to the lengthscale of the turbulence L as

L = l m %  (3.21)

where the constant Cd =  1 -0 .
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However, the dissipation rate e is taken to be a function of the lengthscale of the 

turbulence L  and hence

e = CD-
,3/2

(3.22)

For the wall damping treatments, Wolfshtein [73] suggested two length scales in 

the transition region between the laminar sublayer and fully turbulent layer to account for 

the wall proximity behaviour.

There are two damping functions to account for the wall effect. All in all, vt is multiplied 

by fn  =  1 — e-0160^  and e divided by =  1 — e -0-263#*.

3.4 T he one-equation  model: Spalart-A llm aras form ulation

Spalart and Allmaras [90] have developed a one-equation turbulence model for the aerody­

namic application. This model depends on Galilean invariance, empiricism and dimensional 

analysis to transport the turbulent eddy kinematic viscosity with modified procedure. The 

transport equation choose the scalar variable, which follows Baldwin and Barth [106] in 

choosing the transport quantity 0 and much easier to resolve than both turbulent kinetic 

energy and dissipation rate based on fluctuating velocity components.

In this study, the version of a wall-bounded flow at moderate Reynolds number 

is selected to model the turbulent eddy kinematic viscosity. The transport equation of the 

modified turbulent eddy kinematic viscosity 0 may be expressed in the form [90]

dO dOui 
dt dxi

' ----------------V-----------------

Convection

1_
<Ji>

a .  „ , d t >  f d v V

Viscous d iffusion

Cwl fw [
y

N ear—wall inviscid destruction

+ CblSÔ
Production

(3.23)

The turbulent eddy kinematic viscosity vt is effective in the log layer of which 

range is estimated by

+ _  x2 _  UTX2 Tw X*2 X*2 idu\
P V \ /0 \ j  dx 2 X 2 = 0

> 30 (3.24)
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where y+ is the non-dimensional distance from the wall normalized by the viscous length­

scale, 5U is the viscous lengthscale, uT is the friction velocity, tw is the wall shear stress. 

However, u is calculated as

n  = i>U i; fpi = X 3/ { X 3 + cl1)-, X  = P/v (3.25)

where the modified function f„ 1 is from Mellor and Herring [107]. The constant is equal 

to 7.1 from the log law calculation.

According to the free shear flow investigation in two-dimensional mixing layers 

and wake regimes by Spalart and Allmaras’s work, the diffusion Prandtl number of the 

modified turbulent eddy kinematic viscosity <j/> is 2/3, . The constant c\>2 =  0.622 is chosen 

in the viscous diffusion terms. The value of q,i lies between 0.13 and 0.14 which is taken 

from experiments of the free shear flow. A value of q,i =  0.1355 is used.

The turbulent flow exists only where vorticity is creating from the solid boundaries 

so the production term is employed by a scalar norm of the vorticity tensor based on the 

symmetric-deviatoric rate of strain tensor. Also, the magnitude of the vorticity S  is replaced 

with S, given by

S  =  s + (j>/fcV)/i>2; u  2 =  1 — x/(i + X fo i)

S  = Clij =  djU, -  diUj (3.26)

where S  is determined by the modified function fo2 to maintain its well behaviour of the 

log-law region all the way to the wall.

The inviscid destruction term is constructed by —Cwiiy/y)2 based on dimensional 

analysis and the near-wall damping function f w resulting from algebraic models, that is

fw = g[{ 1 +  c%3)/(g6 +  4 3)]1/6; g =  r +  cu,2(r6 -  r); r = v / S k 2y2 (3.27)

where the mixing length lm = (z//S)0-5 leads to a non-dimensional factor r. The constants 

are k = 0.41, cw 1 =  C{,i/ k 2 +  (1 +  c ^ ) / ^ ,  cw2 =  0.3, cw3 =  2.

i
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At the solid wall, the Dirichlet boundary condition is i> = 0. In other words, the 

transport equation yields equilibrium all the way to y = 0 in the law of the wall. However, 

this model must be supplied with appropriate initial and boundary conditions.

3.5 Sum m ary

The subject of this chapter is concerned with various turbulence RANS models. Different 

types of one- and two-equations have been discussed in detail. Near-wall damping treat­

ments are also included in this chapter. It should be noted that all the transport equations 

discussed in this chapter take a convection-diffusion equation form.
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Chapter 4

The Characteristic Based Split 

(CBS) schem e

In fluid mechanics several difficulties aries when the finite element method is employed. The 

first and well known difficulty is that no direct variational principle exists for the Navier- 

Stokes equations to express the extremum of a function, so a weak form of an integral 

formulation is used. Second, it is important to deal with non-self-adjoint problems of the 

convective acceleration term which requires specialized procedure. Third is that of dealing 

with incompressible situations in a manner which satisfies the Ladyshenskaya-Babuska- 

Brezzi (LBB) restrictions [3, 4, 5].

This chapter addresses the stabilized form of both the matrix free Characteristic 

Based Split (CBS) scheme based on the artificial compressibility (AC) method and semi- 

implicit CBS scheme. Also, the dual time-stepping procedure for solving unsteady transient 

flow is introduced in this chapter.

4.1 C haracteristic based schem es

In all areas of fluid dynamics the characteristic based methods are widely employed. A brief 

background on this method is presented in this section and in the following subsection.
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(])( X + S ,  t  n + l)<|)( X + 8 ,  t  n )

Characteristics
4>(X,tn)

tn tn+l t

Figure 4.1: A scalar-dependent variable 4> along characteristics.

4.1.1 Direct characteristic Galerkin procedure

A typical convection-diffusion equation with a scalar-dependent variable 4> in non-conservation 

form is [13]

d(f) d<t> d (  d(f) . _
a t +Uia^i ~ a ^ i { a d ^ ] + Q - 0

(4.1)

where Ui is the velocity field to transport quantity 0 in a convection-diffusion action, a  is 

the diffusion coefficient, Q is any external source or the reaction of 4>.

In the above equation if only a linear convection term is considered with a constant 

convection velocity u in one dimension, then the characteristics propagate in (j> — t plane as 

shown in Figure 4.1. We can thus write

(f>(x + 8,tn+i) -<i>(x,tn) = 0 (4.2)

where 5 is the distance travelled by a particle at the speed of the characteristics, which 

is identical to a constant convection velocity u for scalar problems, x = x  — udt is the 

characteristic direction in one dimension.

Also, it is possible to weight Equation (4.2) and integrate over the domain. The 

weighted residual form at x +  5 can be written as
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w(x +  <5) [(j) (x  +  <5, £n+i) -  (f) (x, tn)] dft = 0 (4.3)

By substituting interpolation functions, Equation (4.3) becomes

N*(x +  8) [#*(£ +  8)(j) {x +  8, tn+1) — N l(x)<p (x , tn)] dQ =  0 (4.4)

The exact integration of the above equation is not available due to different spatial 

positions of N l(x) and N^(x + 8). Thus an approximate integration procedure may be used. 

It is noted that back tracking the position x at each time step is not difficult using an 

approximate integration, apart from complex geometries in multi-dimensional flows [14].

However, in order to overcome the difficulties of the direct method, both the 

indirect characteristic Galerkin procedure [108, 109] and the explicit characteristic Galerkin 

procedure [12, 13, 14, 15, 16] have been addressed in the literature. The second one is in 

the author’s view more important to develop a stabilized form.

4.1.2 Explicit characteristic Galerkin procedure

We consider the convection diffusion scalar Equation (4.1) again. Let the trajectory of the 

reference particle is located at the spatial point Xi at time t =  tref ,  so that characteristic 

direction is given as Xi = Xi — Uidt and therefore

t=t ref

d(j> (xi(t), t) d(f) (xi(t),t) dx
dt dxi dt

where dxi/dt = Ui

Thus the scalar Equation (4.1) now becomes

(4.5)

d4> d (  9<t>
dt d x i \ d x i ^  Q

(4.6)

It is observed along the characteristics from Equation (4.6) that the convective acceleration 

term disappears, so the equation is self-adjoint. The temporal discretization is written as
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6A t  <Q(xi(tn+i) , tn+i) - _d_
dxi

a 9(f) (Xi (£71+ 1 ) 5  £ n + l)

d
+  (9 -  l )A t  j<2 (£*(£„), in) -  d x a

dxi
9(f) (Xi(tn), tn)

+

dxi
(4.7)

where 6 E [0,1]. Crank-Nicolson scheme [110] employs 6 = 0.5 to obtain a second order 

approximation.

Here, Xi is expanded by the Taylor series in time that can be approximated up to 

second order as [13]

X { { t n + 1) X i { t n )

A t =  Ui ( i i (t„), tn) + 0 ( A t2) (4.8)

Therefore, Ui is expanded by the Taylor series in characteristic direction at tref  =

tn+I5

Ui{xi{tn) , tn) =  Ui (xi -  AtUi (Xi,tn) +  0 ( A t 2) , tn)
( X i - 5 ) ( X i - S )

— Ui (Xj, tn) 6
dui (Xj, tn) 

dxj
+  0 ( A t 2) (4.9)

where d is the distance travelled by the reference particle in the characteristic direction 

which is [14, 16]

S = UiAt (4.10)

where

Ui  (£*(£71+ 1 ) 5  £71+ 1) Ui  (Xj(£n ), £n )
Ui =

( X i - 6 )

that is an average value of Ui along the characteristics. 

Substituting Equations (4.9), (4.10) and (4.11) into Equation (4.8)

(4.11)
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Xi — Xi{tn) 4" 2 (Xi)tn+ i ) U i  (Xi,tn))

-  ^ M * j , u ^ y n ) + o ( A t3)

=  i , ( t n ) +  A t U i  (x„ t n + 1/2) -  ( X j ,  t „ )  d u ’ ^ ’ tn  ̂ + 0(AS3) (4.12)

where Ui(x^tn+i /2) =  [uj(a;j, tn+i) +  Uf(xj, tn)]/2. From the Taylor series expansion and 

equation (4.12) we have

<f) (Xi(tn), tn)
CXi-S)

2

=  4> ( X i  -  A t U i ( X i , t n + i / 2) +  ^ Y ~ U j { X j ,  t n )  du%^ \ t n  ̂ +  0 ( A t 3 ) , t n
( X i - S )

d(f>(xk, tn) (At) dui (xutn)d(j)(xk,tn)
= <l>(xii tn) -  A tu k(xk, tn+l/2)— ^ —  +  —— uj (Xj,tn) ----  1 ~ r ^  +

+  ^ - U j ( x j , t n+1/2)uk(xk, tn+1/2) ^ -  ^  ^  +  fl(A t3) (4-13)

For the fully explicit version of the scheme, we write the following approximations

Ui(xi,tn+1/2) =  Ut(ar»,tn) +  O(At)
a

d x ^  (x*’ ^n+V2) ~

Q (x i,in+1/2) =  Q (^i,in ) + O(At) (4.14)

Thus we have

At 0 (^i(^n+l)> ^n+l) 0 (Xi(tn)>tn)
(x i-5)

— [ 0 ( 2'i»^n+l) 0 ( ^ i i^ n ) ]  "I- U j ( £ j ,  tn )  _

^  5 A.. , ^ ( Z j . t n ) ^  ( ^ //w3^
^ U i ( x i , t n ) ^  y U j ( x j , t n ) ^  J  +  0 ( A t  ) (4.15)
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The diffusion and the source terms are averaged quantities along the characteristics. They 

are given as

d (  d(j) {xj{tn+i ) , tn+i ) \  d (  
dxi \  dxi )  dxi \

d (  d(f>(xi,tn)
 ̂dxi dxi

d<f> {xi(tn), tn) 
dxi

a / \ dAtuj (Xj, tn)

( x - 6 )

d { d<P (xi,tn) 
dxi V dxi

+ 0(At2)
(4.16)

Q (&i(tn+1)» ^n+l) “i” Q (&i(tn)i tn) (Xi-S)

= 2Q (xi, tn) -  Atuj (Xj,tn) +  0 ( A t 2) (4.17)

where Q (a;*, tn) =  2Q (ari} tn+1/2) -  Q (£*, tn+1).

Substituting Equations (4.15), (4.16) and (4.17) into Equation (4.7) with 0 = 0.5 

we finally obtain

A<p — (f) (Xi, tn+l) 0(^z»^n)
=  AJ  ^d<i>(xj,tn) t d ( _d(f){xi,tn)

(At)
+

+

2  | « !  (X i,  t„) “  ( t i j  (X j ,  t n ) | +

Q (^it tn) +

(A ty d [ d (  d(j) (Xj,tn) 
dxi

+  U j  ( X j , tn)
dQ (X j , t n )

dxi
(4.18)

Moreover, if linear elements are used the third and higher order terms in the 

stabilized formulation may be neglected for the spatial discretization.

4.2 T em poral d iscretization  and sp littin g  procedure

The splitting method follows the process originally introduced by Chorin [111, 112] for in­

compressible flow in the finite difference analysis. Zienkiewicz and Codina [13] extended the
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split to solve the governing equations of fluid dynamics for both compressible and incom­

pressible formulations using the characteristic Galerkin procedure. Here, we present the 

semi-implicit CBS scheme and the matrix free CBS-AC scheme for the Reynolds averaged 

Navier-Stokes equations.

The non-dimensional form of the governing equations depend on the nature of the 

flow which can be obtained by employing the following scales

-  * _  y±_ . * P  . *
i 5 

U qo
p  =

Poo
p  =

_  K  . * eL ~ * V
2 ’ II

£ 
1 

8W
| V

Vqo

Moo’ L ’ L  Poo< 4 ’

T« =  r ^ T ; T«* =  - ^ r i  ft* =  —  (4-19)P oo^oo P ooUqo P oo

where an asterisk indicates a non-dimensional quantity and an over-bar indicates a mean 

value. A subscript oo represents a free stream quantity, L is a reference length.

The scheme contains three steps. In the first step, the intermediate momentum is 

established, in the second step, the pressure (gravitational action neglected) is obtained from 

a modified continuity equation and finally the intermediate velocity variables are corrected 

to get the final velocity values. Any turbulent transport equation can be added as a fourth 

step.

The three steps of time discretization of the scheme may be written in the semi — 

discrete fo rm  as (dropping the asterisks from the non-dimensional forms and defining the 

overline for time-averaged values are dropped as well for simplicity)

Stepl: Intermediate momentum

Following Equation (4.18) we get

At/; = uj-up

=  At 

+  (A t)2

d ( 1 dn
dxk ^Uk ^  Re dxi

1 d r-
Re dxi +

d o r , , i  (d r j j  , drtr
dxk Uk J Re \  dxi dxi

(4.20)
2 |  'ndxm

where U™ = Uj{tn) =  puj is the momentum of fluid particles per unit volume in which



At = tn + 1  — tn and * indicates an intermediate quantity. Re =  PooUooL /  Poo is the Reynolds 

number.

Step2: Pressure

1
AP = (

=  - A t
d m  dA  m

3 + e 1-— ^ - - A t 9 1
dxj dxi

d2pn d2Ap
+ v 2dxjdxj dxjdxj

(4.21)

where c is the speed of sound which assumes density changes are related to pressure changes 

for small compressibility or elastic deformability and approaches infinity for incompressible 

flows.

StepS: Momentum correction

fln n+e2
A U j =  U? +1 -  U J =  A U *  -  A t-= ? -

O X j
(4.22)

where 0.5 < 6 \ < 1 and 6 2  = 0 is in the explicit form. 0.5 < 6 \ < 1 and 0.5 < 6 2  < 1 is in 

the semi-implicit form.

Step4: Turbulence transport equations

Turbulent kinetic energy

A  K  = K n + 1  -  K n 

= A t  

(At)

d . 1 d (  p t \  9k
- ^ { U iK )+ t e d 7 i ( f t + ^ J & r j +T'

R dui
13 dxi

+
d

Uk dxk
9 ( K\ 1 d (  ut \  dn

dxj dxj

+

R ^ Uj
dxi13 + E (4.23)

where K n = K ( tn) =  pttn and E n = E(tn) = pen.

Dissipation rate o f turbulent kinetic energy
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Modified turbulent eddy kinematic viscosity (Spalart-Allmaras model) 

A  0 =  On+1 -  On

= A t d  , 1 d dO cb2 ( d v  \  cwi f u
[ Us j IS) 4* --------- -------  ( 4 -  ^ ) ------  —I— 1 ( ■ ■—- I — ■'

dxj opRedxj dxj opRe \ d x j  J Re +

dx oc, Re dxj
d . ^  dO

+
(Af);

Ui
d_

dxi
Q>2 dO , cw l  fw  ( 0  .

opRe \ d x j  J Re \ y  °bl
(4.25)

The extra second order terms in last part of RHS at stepl and step4 are consistent 

and reduce oscillations due to the standard Galerkin type discretization of convective terms. 

The third and higher order terms are generally neglected if linear elements are employed. 

The boundary conditions for the CBS scheme consist of both Dirichlet and Neumann con­

ditions. The Dirichlet conditions for velocity such as no slip conditions are prescribed at 

step3. The traction conditions are prescribed at stepl. No Dirichlet pressure conditions 

are essential for the explicit CBS scheme, but at least one pressure boundary condition is 

essential for the semi-implicit scheme.

4.3 M atrix  free C BS-A C  schem e

The CBS algorithm based on the artificial compressibility formulation belongs to the class 

of matrix free methods and this scheme is obtained by substituting B\ — 1 and 6 2  = 0. Also, 

the acoustic wave velocity c needs to be replaced by a finite speed (artificial compressibility) 

/3 in Equation (4.21). In general, the artificial compressibility parameter (3 is calculated from 

the local velocity scale and the mesh size, as discussed below.

4.3.1 The artificial compressibility (AC) m ethod

The principle of using artificial compressibility for solving incompressible flow equations 

was first introduced by Chorin [26]. Here, the time derivative of density equation is written 

as a function of a parameter (3 and time derivative of pressure. Thus, a matrix free method 

for solving incompressible viscous flow problems may be constructed using this principle.
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The appropriate local time steps to account for the local stability is based on a 

suitable artificial compressibility parameter (3, which is given as [27, 29, 113]

P = max{e,vconv,vdif f )  (4.26)

where e is small constant, VconV is the convective velocity and v^iff is the diffusive velocity, 

which can be calculated as

Vconv =  y / U i U i  (4.27)

Vdiff =  (* +  ■») (4.28)
dtff ovnhRe K }

where avn = 0.5 is the von Neumann number and h is the local element size. In addition,

the local time stepping A t  approach with different time steps at nodes are employed to

accelerate the solution to steady state. The local time step is calculated as

A t  =  min(Atconv, &tdif f )  (4.29)

where

A W ,  = ------------ (4.30)
Vconv i H

and

A t ii;,  = 5 = $ - *  (4.31)
(v + Vt)

Equation (4.29) is multiplied by a safety factor which is common to both time 

steps calculated using diffusion and convection velocities. The range of a safety factor 

varies between 0.1 and 0.8 depending on the problem and mesh used.

As mentioned before the time steps are calculated at nodes. Therefore the local 

element size, h, at a node ip connected to the number of element ie is defined as

3 Volume
Area o f  the opposite triangular elementhip = m in ( A .1 ^ 7  , ] (4-32)
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in three-dimensional flows using four noded tetrahedral elements. Similarly

htp min  ^ Qy 0ppOSn e side )   ̂ ^

in two-dimensional flows using three noded triangles.

4.3.2 The dual tim e stepping method

The dual time stepping technique of recovering numerical solutions to transient flow is 

standard and explained by authors [27, 29]. It requires the addition of a real time term to 

the correction stage to progress in real time.

This method implies the use of two time steps. The first is a ’’real” or outer 

or global or physical time step that corresponds to the temporal discretization of the real 

physical time variation. Another is an artificial or inner or ’’local” or pseudo time step 

which is used to iterate the solution within each real time step. For the inner iterating loop, 

the local time step is allowed to vary node to node. This means the local time step depends 

on local element size.

As mentioned before the real transient term is added to the momentum correction 

and the turbulent transport equations. Thus Equation (4.22) may be re-written as

U f+01 = 0i dp 71+02 A UT
+ (l -  6i)u?  -  & t - ^ r  (4-34)

where U™+01 = 0iC/Jl+1 +  (1 — 9\)U^ in which 0i is equal to unity for the matrix free 

scheme. The real time step is A t. In order to get a second order real time accuracy, AUj 

is approximated using

3£/"+l -  4U?  +  U™~1 ..
A UJ =  — 2------------/ -----3-----  (4-35)

' J 2

In the above equation £/"+1 is equal to the n th  inner iteration counter within each real 

time step A t. The other two values, UJ1 and UJ71-1, need to be appropriately stored at 

the start of each real time loop, m  indicates the real time step counter. The steady state 

convergence criterion is set within each real time step. The dual time stepping technique
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leads the transient numerical solution of matrix free CBS-AC algorithm and often referred 

to as implicit scheme [114].

In a similar fashion, a real time term is added to the turbulence transport equations 

to recover the real time variation of the turbulent kinetic energy, dissipation rate and 

turbulent eddy kinematic viscosity.

4.4 Sem i-im plicit CBS schem e

The only difference between the matrix free CBS-AC scheme and the semi-implicit CBS 

scheme is that here implicit solution of the pressure Poisson equation is sought. This scheme 

is obtained by substituting 9\ = 1 and 6 2  =  1 with the acoustic wave velocity c approaching 

infinite. Thus, Equation (4.21) can be rewritten as

d2pn + 1  _  1 dUj 
dxjXj A t  dxj

where a critical time step A t = h/(\\uj\\) is applicable here.

4.4.1 The preconditioned conjugate gradient m ethod

The large storage requirement is the major drawback of semi-implicit CBS scheme, espe­

cially in three-dimensional flows, with a sparse system of linear equations [6]. However, one 

of iterative method, preconditioned conjugate gradient [6], [50]-[53], can reduce the diffi­

culties associated with sparseness of the matrices. This method constructs the residual of 

conjugate vectors which are the gradient and minimizer of a quadratic functional. The pre­

conditioning matrix leads to rapid convergence depends on the limited condition number, 

i.e.

A =  (4.37)
Amin

where Amax and \ min are the largest and smallest eigenvalues from the solution.

In this study, conjugate gradient algorithm is used to solve the pressure Poisson 

equation at step2 on the structured and unstructured meshes.
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4.5 Spatial d iscretization  and m atrix form

The standard Galerkin method is employed for spatial discretization. The following spatial 

discretization of the variables are employed.

Uj = N uUj; A U j = N uAUj; A U *  = N UAUJ; Uj = N uuj; p = N pp;

Ap = N pAp; K  = N«K; n = N K«; E  = N eE; e =  N ei\ 0 = NpP (4.38)

In the above equation N  are the shape functions and~ indicates a nodal quantity, i.e.

Uj = V] Ui

N  =  N 1 N '

Uj

N

U‘j

N (4.39)

where k is the node identifing number and varies between 1 and I.

Applying the standard Galerkin approximation with the divergence theorem, we 

get the following weak forms, i.e.

S te p l  W eak fo rm  o f in te rm ed ia te  m om entum

j a N uTAU*<m =  +

A t 2 r  r

Jn

+

+ 2 

■T A t

dx...

J n j t d d r

(umN u )
d

dxk
(ukUj) ] dCt

(4.40)

In the above equation td  =  [(r^ +T^)/Re]n  indicates the part of the traction corresponding 

to the deviatoric and Reynolds stresses only and n are the components of the outward normal 

to the boundaries. As the pressure term is completely removed from the first step, we have 

only deviatoric and Reynolds stresses part of the traction left in the equation.

S tep2 W eak form  o f p ressu re  equation
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Matrix free scheme

L ^ T ( i T A p d n  = - A t L ^ T l i ^ d a - M L ^ T { A u i - M Z - ) n^ +
r  T  /  n \

T  i i / *  -  A t 9 p dfl (4.41)A f  9N p
+  Jn dxj dxj

In the above equation, pressure and A U* terras are integrated by parts and rij are the 

components of the outward normal to the boundaries.

Semi-implicit scheme

d p n+1
/r N

T ___
p dx,

rijdT
T

Here, pressure term is integrated by parts.

S tep3  W eak form  o f m om entum  correction

_  r  s n =  j _  r
Jn dxj dxj A t  Jn

T dU*
A , N pT— J-dQ 
A t Jn dxi

(4.42)

Matrix free scheme

J  N ur A UjdSl = J  N UTAUjdQ  +  At J  ^ ^ p ndn -  A t  J  N ur tpdr (4.43)

Semi-implicit scheme

J  N ut A U jdfl = J  N ur AU*dQ + At  j  p n+1d n  - A t j  N uTtpdr (4.44)

In the above two equations t p =  (pn +  02Ap)n only indicates the part of the traction 

corresponding to the pressure which was removed from stepl. It is simply ignored and 

assumed to be zero as the full traction is prescribed and employed in stepl [115].

Step4: W eak form  of tu rb u len ce  tra n s p o r t equations

Turbulent kinetic energy

[  N«
Jn

t A  KdQ = A t f T d , o  1 f 9k 1
Jn oxj Re Jn dxj \  oK dxj

+

+ At [ jf  N J r f i ^ d n  -  j r N j E d f l +

+
A t2 d d

2 \In  dxi

+ A t ] i l N ' { p + ^ ) ^ n3dr.

+

(4.45)
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Dissipation rate of turbulent kinetic energy

f  N eTA E d a  =  At [ -  [  N er -^-(uj£ ) d f i - 4 -  f
Jn I Jn d*j 3 Re i n

pt \  de

+  At \ J  N / c £l^ r ^ | |d f i  -  J  N eT Cs2^rdQ
K lJ dxi

_a_
<9x.

(Uj£ )  dfi

K
n

<7eJ dXj

+

+

-f" A t

Modified turbulent eddy kinematic viscosity (Spalart-Allmaras model)

[  NpTA  vdQ. =  A t \ — f  N  pT -^—{ujO)dD - [
Jn [ Jn dxj apRe Jn

d N 0T , -\ du(i/ + —— du
d x ,

+ At I / N*T ( cuS -  4 ^ 4  1 i>dn| +

-I- Ai

i?e j/2 

(  d v ' 2
C62 I I \dx-j

A t 2
~2 +

dx.

The final matrix form of the above weak forms are 

S tep l: Interm ediate m om entum

AU* =  —M u~l At (CUU  + Ktu +  C ukK -  f„) -  A t(K uU)

Step2: Pressure

(Mp +  At29i92H)Ap =  At[GUn +  ^G A U * -  AttfjHp -  fp]" 

Step3: M om entum  correction

+

(4.46)

+

(4.47)

(4.48)

(4.49)

A U  =  AU* -  M ~ 1At [GT (pn +  02Ap)] (4.50)
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Step4: Turbulence transport equations

Turbulent kinetic energy

AK =  —M *-1At (C*K + K kk -  f .n -  f„r ) -  A«(KukK)

Dissipation rate o f turbulent kinetic energy

(CeE +  K ei  -  fen -  fer) -  At(KU£E)

Modified turbulent eddy kinematic viscosity (Spalart-Allmaras model)

A v  =  — l At (Cpi> +  K — fj>n — fon* — fo r ) — A t ( K upu)

where

2 T 
i0 — -m m  B dfl\M u =  jT N ur N udQ; KT =  j f  Br  ^  ( i ,

H =  J  (VNp)r VNpdf!; Mp =  J  N PT f N pdfi; 

fp =  A t j  N pr  [NuU n + 0i (AU* -  AfVpn+02 j ]  n T d T ] 

K u =  - i  f  (VT(uN„))I'(VT(uNu))dfi; G = f  (V Np)TN udfi;
 ̂ ./ft

fu =  /  N uTtdd r; Cu =  f  N ut (Vt (uN u))dfi; C u» =  5 /  N „r VNKdn;
J r  ./ft d -/ft

rfjdjUi — N eE dft;C* =  f  N*r (Vr (uN,j))<ifi; f«n =  /  N*
./ft ./ft

f*r =  f  N«T(KdT; K uk = - i  /  (Vr (uN«))7’(VT'(uN^))dfi; 
»/r  »/ q

M t = (  N / N £dn; K£ =  /  (VN£)t V N edfi;

(4.51)

(4.52)

(4.53)
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C£ =  f  N / ( V t (uNe))dn; f£n = I  /  N /  k i r M u i  -  c£2N £e ]  dfi;
Jn & Jn 1 J

fer =  f  N £Tt£dT; K U£ =  - i  [  (VT(uN £))T(Vr (uN £))<K1;
./r * Jn

M i , =  f  N /N e d JJ ; K „ =  /  (VNC)T ( VN^dfi;
J n  Jn  \<7uR e J

Cp  =  l a  NeT-(v r (uN£>))dn; fi>n* = N|>:r N >*df2l

fi>n = Ja n ct  (aji>)2rfn; ^  N pTudr-,

K ap = - l  [  (Vr (uNc))T(VT(uN f))dn

In the above the strain shape function matrix B is given as

B =  SN U

where S is an strain matrix operator. For a two dimensional case

f -2-d x i 0
s  = < 0 d

dx2
d

k <9x2
d

d x i

m = [1)1) o]T

and

I n  =

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

For a three dimensional case
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and

£  0

s =

d
dX2

0

0
d

dxz
d d 

dX2 dxi

d
dx3

d d
8 x3 dx2

o £

m  = [1,1,1,0,0,0]"

Io =

4.6 T he restriction  o f m ixed form ulations

(4.59)

(4.60)

(4.61)

In many problems of interest the volume remains approximately constant. The behaviour 

is normally called incompressibility.

Incompressible behaviour is generally defined using both the velocity u  and pres­

sure p parameters. Here often mixed formulations are employed in the finite element litera­

ture. Most of such mixed form of the Galerkin method results in discrete equations, which 

can usually be written in the following standard global matrix form [116]

(4.62)

where u  is the discrete primary variable and p is the discrete constraint variable (equivalent 

to a lagrangian multiplier). The matrix G is the discrete gradient operator, K  and M  are

K G t ' u fi

G M P f2 _
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both n x n  squre symmetric matrices. K  is positive definite and M  is either negative definite 

or zero, which depends on the property of the type of discretization employed, fi and f2 

arise from the force terms.

In this section how to avoid the restriction of LBB stability condition which makes 

(M =  0) impossible to employ many useful elements is presented [117]. Thus instability 

generally lead to unphysical pressure oscillation and locking of the velocity field [116].

4.6 .1  T h e C B S  form

For Stokes flow, Equation (4.48) in stepl only keeps the viscous diffusion terms and the 

boundary traction terms [16], i.e.

AU* =  - M „ - 14«(emp[KTu” - f „ ] "  (4.63)

where a time step Aifemp provides the temporal stability [164].

In step2 the matrix M p disappers for incompressibility and Ap equals zero for

steady state, so Equation (4.49) can be written as

G U n + 0iGAU* -  AtspatdjH p n =  ip (4.64)

where the spatial stability in the discrete form indicates a time step A tspat = *-AUemp in

which 1 is a time step ratio [164].

Then we have AU =  0 in steady state that results in Equation (4.50) in step3

reduce to

AU* =  - M ; M i , emp[GTp n] (4-65)

Therefore, the discretization leads to the following matrix form

10A
1

u n

f 
■ 

■ 
ft*-?

1

_ G  AttempOl (G M ; 'G T -  tH ) _ pn 1 •"b 1

where the matrix K u =  K T/p  is the quadratic form. The discrete velocity vector is U 71 and 

p n is the discrete vector of nodal pressures.
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If the pressure approximation is assumed to be discontinuous, then

p" =  (G M -1G t  -  t H ) 1 fp -  (Att^mpB,)-1 (G M ;‘Gt  -  tH )_1 G U "

(4.67)

and the system for U n will be got by eliminating p n. We can write

[K„ +  4 'G t G] U" =  f„ + 4>GTfp (4.68)

where the penalty function points to =  — 1 / (A ttemvdjE) in which E =  G M “ !G T — tH  

is proportional to A ttemp-

Observe that the bilinear form Kj, is symmetric and positive definite from the 

energy expression of physical considerations. E is symmetric and negative definite from its 

quadratic form. The system is, however, always positive definite and leads to a non-singular 

solution for U n.

It is noted that the discrete steady state system above do not have a zero diagonal 

term, so the LBB resrtiction no longer influence the finite element spaces for velocity and 

pressure. Thus this system theoretically permit arbitrary and convenient interpolation 

functions to be employed for U n and p n. On the other hand, possibly avoiding difficulties 

encountered with explicit characteristic-Galerkin procedures, equal interpolation functions 

are chosen for any variable in this dissertation [13, 14, 118].

4.6 .2  T h e m ixed  form

If all the pressure gradient terms are retained in the governing equation, the three steps of 

a stokes flow can be written as

AU** =  - M [Ktu" +  G Tp" -  ?„]” (4.69)

where fu includes the pressure term which is integrated by parts.

Ap =  1 - .  H - ’ IGU" + tfiGAU** -  f„]" (4.70)
Atspatv 1 t/g
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AU = AU** -  Attempts A p (4.71)

At steady state Ap =  AU =  0 leads to AU** =  0. Finally, a typical algebraic equation set 

of the form can be obtained

(4.72)
G t ' u n fn

G 0 . p n . fp
Clearly, the coefficient matrix is not positive definite from its quadratic form, i.e.

=  0
0

T 10A

1

0

i G 0 1
(4.73)

due to the zero diagonal term results from the mixed formulation for any assembly of 

elements. Such a system is singular unless the number of degrees of freedom in the U n 

variables is larger than the number of degrees of freedom in the p n variables.

Proof: If discontinuous velocities are used and the matrix Kj, has unique inverse and is 

always non-singular and positive definite for standard stokes flows, then we can write from 

the first equation in Equation (4.72)

U n =  K ; ‘f„ -  K - 1G Tp n 

By substituting into the second equation we obtain

(4.74)

g k ^ g V  = - f p 4- g k : % (4.75)

which requires that the rank of ~KU be greater than or equal to number of pressure degrees 

of freedom to obtain a unique solution of p n. Because the rank of K " 1 cannot be greater 

than the number of velocity degrees of freedom, the number of velocity degrees of freedom 

over an element must be greater than number of pressure degrees of freedom.

Now let H  =  G K “ 1G t . And H  is an n x n square matrix that is non-singular if 

its rank is equal to n, that is the determinant of H  is not zero. However, the rank of the 

matrix H  cannot be greater than the rank of matrix K^.
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Although the above mentioned requirement is necessary, it is not a sufficient con­

dition to construct a non-singular matrix H. Thus an equivalent condition to the stability 

criteria of the LBB resrtiction is added, i.e. [16, 117]

G Tp n ^  0 for all p n ^  0 (4.76)

In addition, by multiplying (pn)T in the left hand side of equation (4.75), i.e.

(pn)TG K ;1G Tp n > 0 (4.77)

if the requirement of (4.76) is satisfied to yield a unique solution. It ,therefore, shows that 

K ; 1 is positive definite and the rank of matrix G equal n. However, we do not use this 

form to test any cases.

4.7  S teady  sta te  convergence

The root mean square (RMS) value of error for the steady state convergence criteria is 

based on the L2 norm of the velocity field. It gives the norm of different velocities between

time step n +  1 and n normalized by the Euclidean norm of the velocity at time step n + 1,

which is

Z ? = N1 (Mir1 -  Ml?v
1/2

e£L7 diuiir1)2
where NN are the number of nodes.

4.8 Fundam ental asp ects o f unstructured  m esh generation

Any given domain could be systematically decomposed into a set of convex polygons was 

firstly suggested by Dirichlet [146]. It is known as the Dirichlet tessellation for the geo­

metrical construction of the Voronoi regions [147, 148]. Firstly, let S  be a set of sites (i.e. 

points) in the Euclidean space E d. Secondly, let ds be a mapping of E d to the positive real 

number for each s £ S. Then the Euclidean distance between a site s and a point p is ds(p).



50

Thirdly, the Voronoi region V(s) can be defined as the set {p G E d\ds(p) < dt{p),t G S  — s} 

in the Voronoi cell of s. It is clearly to state a given Voronoi region/convex polygon closer 

to its central point than to any other. In general, the Voronoi regions which is also called 

the Voronoi diagrams in the computational geometry are based on a set of non-overlapping 

convex polygons covering the entire domain.

From this definition, the Voronoi polygon share an edge by connecting a segment 

of the perpendicular bisector of the line between each pair of sites/points of S  has been 

proved the straight-line dual of Voronoi diagrams is a triangulation by Delaunay [149]. The 

triangulation can be obtained from an equivalent convex hull for higher dimensions. It is 

also note that every circumcircle (circumsphere in three dimension) of a triangle contains 

no other points. Such triangulation is referred to as Delaunay triangulation. The algorithm 

to construct a Delaunay triangulation from a given set of points follows the early work of 

Weatherill [150, 151]. Such a method can connect an arbitrary set of points inside a convex 

hull. An efficient implementation of the Delaunay construction algorithm applies to both 

two and three dimensions.

In the Delaunay algorithm, automatic point creation can be generated in three 

ways which ensure a valid boundary conforming assembly of tetrahedra will be produced 

from an initial surface triangulation in a bounded domain. For each point r Q =  (x , y , z) on 

the boundary, the point creation distribution function is given as [152]

1 N
dp° = x '% 2  lr * ~~ r °i (4'79)

i= 1

where | | is the Euclidean distance whose point o is surrounded by N  points within which 

no interior point is placed.

Another method to create automatically points is to use a background mesh [153]. 

It is overlaid over the computational domain with a specified point spacing. However, point 

creation is controlled by the use of sources, especially point and line sources, to provide grid 

for unstructured meshes. At position r, local point spacing can be given as [152]

(4.80)
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where the user specified amplification is A j , the decay parameters of the sources is B j , and 

the position of each sources is R j.

In our work, all meshes are generated using the Parallel simulation user environ­

ment II (PSUE-II) code [154]. The boundary of the geometry definition is described in the 

PSUE-II system in the curve and surface components. The background mesh information 

includes point, line and planar sources placed in the appropriate area of the computational 

domain. Once all of the sources have been defined, the simulation process is to generate 

the surface mesh. Then the eventual aim of the process is to produce a single or a set 

of several partitions by the parallel volume mesh generator. It should be noted that the 

FLITE parallel flow solver directly provides all of the necessary information. Also, the mesh 

refinement is available used by PSUE-II if an initial mesh does not satisfy the need.

4.9 Sum m ary

In this chapter, major part is concerned with explicit characteristic Galerkin procedure to 

obtain stabilizing terms. Both the matrix free CBS scheme and semi-implicit CBS scheme 

with various turbulence transport equations are presented. Also, how to circumvent the 

LBB stability condition is discussed.
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Chapter 5

The steady and unsteady laminar 

flows

5.1 In troduction

The numerical solutions of laminar, incompressible, viscous flow problems, namely flow 

inside a channel, in a lid-driven cavity, flow over a backward facing step, flow around a 

circular cylinder and flow past a stationary sphere, are presented in this chapter. The goal 

is to compare several meshes. The matrix free CBS-AC scheme and the semi-implicit CBS 

scheme are employed in this chapter.

5.2 T w o-dim ensional lam inar P oiseu ille flow inside a channel

A 1 x 1 square computational domain with no slip condition on top and bottom walls at a 

Reynolds number of 100 is assumed to test mesh convergence using the CBS-AC scheme. 

The exact, non-dimensional velocity from inlet is given as [114, 165]

u\ =  4z2(1 -  x 2)

U2 =  0 (5.1)
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Figure 5.1: Poiseuille flow, (a) Meshl (10 xlO); (b) Mesh2 (20 x 20); (c) Mesh3 (30 x 30); 
(d) Mesh4 (40 x 40); (e) Mesh5 (50 x 50); (f) MeshG (60 x 60); (g) Mesh7 (80 x 80); (h) 
Mesh8 (100 x 100); (i) Mesh9 (200 x 200).

A pressure variation solution is p = (8 /R e)(l  — x \)  for this problem. Nine dif­

ferent uniform structured meshes were used as shown in Figure 5.1. Figure 5.2 shows the 

convergence history to steady state (see Equation (4.78)). It appears certain that the CPU 

time calculated depends on the element size and total nodes.

The error magnitude of velocity and pressure are expressed as
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Figure 5.2: Convergence to the steady state for Poiseuille flow using the m atrix free CBS-AC 
scheme.

(b)

Figure 5.3: Poiseuille flow using the matrix free CBS-AC scheme at Re—100. (a) Velocity 
error; (b) Pressure error.

.EC =

E n =

elm
^   ̂{Ui Uexact) “X- 
i — 1 
elm
'y  ̂(p ~ Pexact)

I i= l

A i

3

(5.2)

(5.3)

where elm  is the number of elements.

The errors of horizontal velocity and pressure with mesh convergence using CBS- 

AC scheme are shown as Figure 5.3(a)-(b). As seen the spatial accuracy of both velocity 

and pressure are second order.

In Figure 5.4 and Figure 5.5 horizontal velocity component and pressure contours
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(a) (c)

Figure 5.4: Poiseuille flow. Velocity contours for Re=100 (a) Meshl (10 xlO); (b) Mesh7 
(80 x80); (c) Mesh9 (200 x200).

(a) (b) (c)

Figure 5.5: Poiseuille flow. Pressure contours for Re=100 (a) Meshl (10 xlO); (b) Mesh7 
(80 x80); (c) Mesh9 (200 x200).

are ploted for three different meshes. The first mesh consists of 11 nodes on the sides. The 

second and third meshes consist of 81 and 201 nodes on the sides. As seen even the coarsest 

mesh used gives an excellent accuracy.

5.3 T w o-dim ensional lam inar flow in a lid-driven cavity

This benchmark problem consists of a square geometry along with a moving lid. A non- 

dimensional horizontal velocity of unity was prescribed on the top-lid. A zero-velocity 

condition was prescribed on the bottom and side walls. Three different Reynolds numbers, 

400, 1000 and 5000, have been investigated. Figure 5.6 shows the three meshes used to 

solve this problem. The structured meshl and unstructured mesh2 are refined close to solid 

wall. However, the unstructured mesh3 is uniform everywhere.
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(c)

Figure 5.6: Flow inside a lid driven cavity, (a) Structured meshl (2888 elements; 1521 
nodes); (b) Unstructured mesh2 (10596 elements; 5515 nodes); (c) Unstructured mesh3 
(5656 elements; 2929 nodes).
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Figure 5.7: Convergence to the steady state for the flow inside a lid driven cavity using the 
m atrix free CBS-AC scheme and the semi-implicit CBS scheme on the structured meshl.

As shown in Figure 5.7, the semi-implicit CBS scheme took less number of time 

steps to reach steady state than the matrix free CBS-AC scheme at a low Reynolds number, 

but the difference between the two schemes at a high Reynolds number is very small.

Figure 5.8 provides the comparison of steady state of convergence histories be­

tween three different meshes at various Reynolds numbers. All meshes resulted in similar 

convergence rates except the coarse unstructured mesh (rnesh3), which fails to meet the 

prescribed steady state convergence tolerance at Re =  5000. The steady state tolerance 

prescribed in these problems is ||e||z,2 < 10 ”6 (see Equation (4.78)).
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Figure 5.8: Convergence to the steady state for the flow inside a lid driven cavity using the 
matrix free CBS-AC scheme on the three different meshes, (a) Re =  400; (b) Re =  1000;
(c) Re — 5000.

The horizontal velocity component and pressure pattern  for Reynolds number 5000 

obtained with the unstructured mesh2 is shown in Figure 5.9. For the contour plots, 24 

contour lines are used.

In order to determine the accuracy of the numerical experiment, the velocity distri­

butions at various Reynolds numbers are compared with the benchmark solution by Ghia et 

al. [119], which were obtained using a very fine grid, and numerical results of Codina et al.

[120]. The comparison of the horizontal and vertical velocity profiles along the mid-sections 

of the cavity are shown in Figures 5.10, 5.11 and 5.12. It is observed that all meshes lead to 

good results at Re =  400 in Figure 5.10. Some small deviations near to peaks are noticed 

while the Reynolds number is increased. Major differences are noticed for the case when 

Re =  5000. Figure 5.12 shows that the structured mesh perform better than the others.
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(a)

Figure 5.9: Flow inside a lid driven cavity at Re =  5000 using the matrix free CBS-AC 
scheme on the structured m eshl. (a) Horizontal velocity u\ contours; (b) Pressure contours.
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Godina cl al. (OSS) 

CBS-AC. Meshl 
CBS-AC . Mesh2 
CBS-AC; Mesh]

Ghia ct al 
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Figure 5.10: Flow inside a lid driven cavity at Re =  400 using the matrix free CBS-AC 
scheme, (a) u\ along vertical centre line; (b) U2 along horizontal centre line.
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Figure 5.11: Flow inside a lid driven cavity at Re =  1000 using the matrix free CBS-AC 
scheme, (a) u\ along vertical centre line; (b) U2 along horizontal centre line.

5.4 T w o-dim ensional lam inar flow past a backward facing 

step

For this classical benchmark problem, experimental data are provided by Denham et al.

[121]. The entry to the channel is situated at a distance of 4 step lengths upstream. The
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Figure 5.12: Flow inside a lid driven cavity at Re =  5000 using the matrix free CBS-AC 
scheme, (a) u\ along vertical centre line; (b) U2 along horizontal centre line.

(b)

Figure 5.13: laminar flow past a backward facing step at Re =  229. (a) Unstructured meshl 
(8662 elements; 4656 nodes); (b) Unstructured mesh2 (22257 elements; 11659 nodes).

total length of domain is 40 step heights and the width is three times step height. The ex­

perimental velocity profile [121] is used on the inlet flow. The no-slip condition is prescribed 

on all solid walls. At the outlet, no Dirichlet boundary condition is employed. Figure 5.13 

shows two different unstructured meshes used in the calculations. Both have high resolution 

near the solid walls. The Reynolds number is 229 which is based on the average velocity of 

the inflow and the height of the step.

Figure 5.14 shows the steady state convergence histories of the two meshes toward 

the steady state. As seen, meshl is quite fast to reach steady state compared to mesh2 that 

is more refined near the boundaries.
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Figure 5.14: Convergence histories for the laminar flow past a backward facing step at 
Re=2‘29 using the matrix free CBS-AC scheme on the two different unstructured meshes.

Figure 5.15: Horizontal velocity contours for the laminar flow past a backward facing step at 
He =  ‘229 using the m atrix free CBS-AC scheme on the unstructured rnesh‘2. {u\min — —0.14, 

=  1-84)

Figure 5.16: Pressure contours for the laminar flow past a backward facing step at Re =  
229 using the m atrix free CBS-AC scheme on the unstructured mesh2. (pmin — -0 .19,

Pmax = 0.03)

Figures 5.15 and 5.16 show horizontal velocity and pressure contours using mesh2. 

No appreciable non-physical oscillations obtained in the distribution of the variables. Al­

though Dirichlet boundary conditions are not prescribed at the exit, the pressure contours 

are still smooth.

The comparison of horizontal velocity profiles at several vertical sections on both 

meshes with experimental values [121] are shown in Figure 5.17. The numerical solutions 

resulted from using mesh2 are very similar to those obtained by meshl except for small
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Figure 5.17: Comparison of horizontal velocity profiles different sections with experimental 
results for the laminar flow past a backward facing step at Re =  229 using the m atrix free 
CBS-AC scheme.

deviations far downstream.

5.5 Tw o-dim ensional lam inar flow around a circular cylinder

The domain consists of a circular cylinder placed at a distance of 4D from the inlet, where 

D is the diameter of the cylinder. The distance from the centre of the cylinder to the top 

and bottom  sides is also equal to 4D. The exit of the domain is placed at a distance of 12D
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(d)

Figure 5.18: Unsteady laminar flow around a circular cylinder at Re =  100 using the 
m atrix free CBS-AC scheme, (a) Unstructured mesh. (Nodes: 9988, Elements: 19650); (b) 
Horizontal velocity contours. wimin =  —0.26, u \max =  1.84; (c) Vertical velocity contours. 
u 2m i n  =  -0 .68 , u2rnax =  0.78; (d) Pressure contours. pmin =  -0 .66 , pmax =  0.73.
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Figure 5.19: Unsteady laminar flow around a circular cylinder at Re =  100 using the 
matrix free CBS-AC scheme, (a) Drag coefficient variation with respect to real time; (b) 
Lift coefficient variation with respect to real time.

from the centre of the cylinder. A constant inflow velocity is prescribed. The Reynolds 

number 100 for the two-dimensional unsteady flow problem is based on the diameter of the 

cylinder and inlet velocity. The initial conditions are horizontal velocity of unity, vertical 

velocity of zero and zero pressure.

For each physical real-time step the Euclidean norm of the interface residual of 

velocity is reduced to 10-6 (see Equation (4.78)). It requires from 200 to 300 pseudo-time
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Figure 5.20: Unsteady laminar flow around a circular cylinder a t Re =  100 using the matrix 
free CBS-AC scheme, (a) Drag coefficient; (b) Lift coefficient; (c) Vertical velocity at the 
central exit point.

Figure 5.21: Three-dimensional laminar flow around a circular cylinder, (a) Unstructured 
meshl (Elements: 69948, Nodes: 17382); (b) Unstructured mesh2 (Elements: 606769, 
Nodes: 115035).
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(a) u i velocity contours (b) 113 velocity contours
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Figure 5.22: Steady laminar flow around a circular cylinder at Re—20 on unstructured 
meshl using the m atrix free CBS-AC scheme, (a) u\ velocity contours. wimin(red) =  - 
0.022, u imax (blue) =  1.336; (b) u3 velocity contours. w3min(red) =  -0.535, u3ma2(blue) =  
0.626; (c) Convergence to the steady state.

iterations to reach the prescribed tolerance with real-time step size of 0.05.

Figure 5.18 shows the computational mesh used for the simulation and all qualita­

tive results. The contours of the horizontal and vertical velocity components and pressure 

contours at the non-dimensional real time of 200 are shown in Figure 5.18(b) —(d).

Figure 5.19 shows the drag Cd and lift C/ coefficient histories from 0 to 200 real 

times. The Strouhal number is around 0.121. The time variation of the drag Cd and 

lift Ci coefficients as well as the vertical velocity at the middle point of the exit section
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(a) U\ velocity contours (b) u\ velocity contours

(c) us velocity contours (d) us velocity contours

Figure 5.23: Unsteady laminar flow around a circular cylinder at Re—100 on unstructured 
meshl using the matrix free CBS-AC scheme (left) and the semi-implicit CBS scheme 
(right), (a) u\ velocity contours. ^ imin(red) =  -0.186, wimax(blue) =  1.510; (b) u\  velocity 
contours. u im.n(red) =  -0.159, wimoi(blue) =  1.428; (c) u3 velocity contours. u3mirt(red) =  
-0.696, usmax(blue) =  0.814; (d) u3 velocity contours. u3min(red) =  -0.863, W3ma*(blue) =  
0.974.

as compared with the results of Codina et al. [120] are shown in Figure 5.20. As seen, 

the difference is quite small. The reason for the small difference could be due to the first 

order splitting error in pressure introduced by CBS algorithm. It leads to more dissipative 

influence encountered with smaller amplitude and frequency [114, 120, 122]. Note that
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Figure 5.24: Three-dimensional laminar flow around a circular cylinder at Re=100 on un­
structured mesh2 using the m atrix free CBS-AC scheme, (a) Drag coefficient; (b) Lift 
coefficient.

both results of CBS-AC scheme and Codina et al. are produced on the same mesh shown 

in Figure 5.18(a). The averaged drag coefficient is around 1.528 using the second order 

accurate Orthogonal Subgrid Scale (OSS) method and 1.521 using the Algebraic Subgrid 

Scale (ASGS) method while the matrix free CBS-AC scheme gives 1.512 [114].

5.6 T hree-dim ensional lam inar flow around a circular cylin­

der

The primary objective of the low-Reynolds-number (LRN) flow past a stationary circu­

lar cylinder studied here is to compare prediction of quantitative and qualitative results 

from numerical solutions of the matrix free CBS-AC scheme and the semi-implicit CBS 

scheme. A constant horizontal-velocity was specified at the inflow and a no-slip condition 

was prescribed on the cylinder surface. All sides treated as slip walls.

In Figure 5.21 shows two different unstructured finite element meshes used in the 

flow past a circular cylinder problem.

The convergence history to steady state of the CBS-AC scheme is shown in Fig­

ure 5.22(c). The patterns of the horizontal and vertical velocity components based on 20
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(c)

Figure 5.25: Steady laminar flow over a stationary sphere, (a) Concave surface of the sphere 
mesh; (b) Convex surface of the sphere mesh; (c) Mesh of the central section; (d) Sphere 
inside a rectangular channel.

contours using the m atrix free CBS-AC scheme at Re =  20 are shown in Figure 5.22(a)-(b).

To evaluate the three-dimensional transient capabilities of the matrix free CBS-AC 

scheme using the dual time stepping procedure and semi-implicit CBS scheme the vortex 

shedding behind a stationary circular cylinder in cross-flow is studied. The flow has a 

stagnation point at the front of the cylinder, a unsteady separation region adjacent to the 

cylinder and periodic vortex shedding in the wake. Figure 5.23 shows the alternating vortex 

shedding from the upper and lower surface of the cylinder on unstructured meshl using both



(a) Re=100 (b) Re=200

Figure 5.26: Steady laminar flow over a stationary sphere using the marix free CBS-AC 
scheme. Contours of u\ horizontal velocity component, (a) Re=100. u imin(red) =  -0.138, 
wimax(blue) =  1.183; (b) Re=200. u imiri(red) -  -0.321, wimax(blue) =  1.213.
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Figure 5.27: Steady laminar flow over a stationary sphere using the marix free CBS-AC 
scheme, (a) Pressure coefficient at Re =  100; (b) Pressure coefficient at Re =  200.

CBS schemes at Re =  100.

The drag and lift coefficient variations with respect to time using mesh2 are shown 

in Figure 5.24. As seen, the drag coefficient and lift coefficient from three-dimensional 

matrix free CBS-AC scheme are almost identical with two-dimensional results (see Figure 

5.20). The averaged drag coefficient is around 1.537. The Strouhal number is 0.115.

5.7 Three-dim ensional lam inar flow past a stationary sphere

The sphere of diameter D is considered inside a rectangular channel of length 25D  with the 

inlet boundary located at 5D  from the centre of the sphere. No slip condition was applied
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on the surface of the sphere. Inflow velocity was assumed unity. Steady flow around a 

sphere was introduced into the laminar simulation at the Reynolds numbers of 100 and 200.

The three-dimensional unstructured mesh shown in Figure 5.25 consists of 987958 

elements and 164139 nodes. Figure 5.26(a) shows the horizontal velocity component with 

20 contours using 0.066 interval at Re =  100 whilst 0.077 interval is used at Re =  200 (see 

Figure 5.26(b)).

The distribution of pressure on the surface of sphere is compared with two different 

numerical results [123, 124] in Figure 5.27. The pressure coefficient were calculated by using 

102 interpolation points. The averaged pressure quantities at a free stream are 0.0056 and 

0.0047 for Re =  100 and 200 respectively. As seen the present predictions agrees well with 

numerical data of Giilcat et al. [124], There is a small discrepancy with Rimon et al. [123] 

results at the back of the sphere surface at Re =  100 and top surface at Re =  200.

5.8 Sum m ary

In this chapter, the matrix free CBS scheme based on the artificial compressibility method 

has been used to test four classical laminar incompressible flow problems. The problems 

considered are Poiseuille flow, lid-driven cavity flow, flow over a backward facing step, 

vertex shedding behind a circular cylinder and steady flow past a stationary sphere. For 

unsteady, incompressible, circular cylinder flow calculations, a dual-time stepping approach 

is employed. In general the results presented are accurate and the CBS-AC scheme is proved 

to be robust in dealing with laminar incompressible flows.
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Chapter 6

T he double  driven  cavity  flows

6.1 Introduction

The numerical solutions to the incompressible Navier-Stokes equations for steady and un­

steady driven cavity problems have been the subject of research for the last four decades 

[119],[125]-[131]. The cavity flows cover several flow regimes we normally encounter in 

incompressible fluid dynamics including recirculation, singularity and transient behavior. 

Flow instability in cavities has been one of the favourite topics of theoretical and numerical 

fluid dynamics researchers [132]-[134]. However, many of the reported cavity problems are 

either rectangular shaped or single driven cavities.

u, = /, u} = 0

u, = ij, = n

Ui — —1, Ui — O
L 0.4L

Figure 6.1: A double driven cavity. Problem definition and boundary conditions.
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Figure 6.2: Finite element meshes, (a) Unstructured meshl. (Nodes: 1414, Elements: 
2670); (b) Unstructured mesh2. (Nodes: 2106, Elements: 4018); (c) Unstructured mesh.3. 
(Nodes: 4727, Elements: 9164); (d) Unstructured mesh4. (Nodes: 18717, Elements: 36864); 
(e) Structured rrieshS. (Nodes: 5057, Elements:9928).

Mesh convergence for horizontal velocity component at Re = 1000
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Figure 6.3: Flow inside a double driven cavity using the matrix free CBS-AC scheme, (a) 
u\ velocity distribution along x \  =  0.7; (b) U2 velocity distribution along X2 =  0.7.

It appears that only recently non-rectangular double driven cavities are x'eceiving 

attention among the researchers and one such problem was discussed by Zhou et al. [135]
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Figure 6.4: Streamlines patterns at steady state for Re =  (a) 50; (b) 100; (c) 400; (d) 1000.

Figure 6.5: u\ velocity contours at steady state for Re =  (a) 50; (b) 100; (c) 400; (d) 1000.

Figure 6.6: ui  velocity contours at steady state for Re =  (a) 50; (b) 100; (c) 400; (d) 1000.

Figure 6.7: Pressure contours at steady state for Re =  (a) 50; (b) 100; (c) 400; (d) 1000.

as a potential benchmark problem for testing numerical schemes. They have presented the 

numerical results for a Reynolds number range of 50-3200. However, the detailed analysis
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Table 6.1: Locations and values of the primary vortex.
Zhou et al. CBS-AC

Re f a y ) co(x,y) (s .y ) u (x ,y )
50 (0.9781, 1.1600) 

(0.4219, 0.2518)
-3.05843
-3.05670

(0.9776, 1.1478) 
(0.4263, 0.2473)

-3.07633
-3.10055

100 (1.0172, 1.1091) 
(0.3828, 0.2889)

-2.72390
-2.72310

(1.0114, 1.1035) 
(0.3865, 0.2894)

-2.69993
-2.73231

400 (0.7000, 0.7000) -1.54842 (0.6995, 0.6966) -1.60552

1000 (0.7000, 0.7000) -1.41562 (0.6895, 0.6969) -1.52363

Table 6.2: Locations and values of the first secondary vortex.
Zhou et al. CBS-AC

Re u ( x , y ) (x ,y) u){x,y)
50 (1.3556, 0.4405) 

(0.0444, 0.9595)
0.02395
0.02394

(1.3566, 0.4446) 
(0.0424, 0.9569)

0.02786
0.02587

100 (1.3556, 0.4486) 
(0.0444, 0.9514)

0.04399
0.04401

(1.3566, 0.4446) 
(0.0424, 0.9569)

0.03975
0.03695

400 (1.3500, 0.4656) 
(0.0500, 0.9344)

0.15569
0.15777

(1.3483, 0.4688) 
(0.0569, 0.9400)

0.19767
0.19385

1000 (1.3250, 0.4844) 
(0.0750, 0.9063)

0.53846
0.53813

(1.3221, 0.4836) 
(0.0753, 0.9142)

0.65005
0.63326

was presented by Zhou et al. only for a steady state Reynolds number range between 50 

and 1000.

A double driven cavity is different from the single lid-driven cavity, discussed in 

many previous papers due to the way the double lids are used as the name suggests. In 

a double driven cavity the lids are moved on both the top and bottom  sides of the cavity. 

In this study, the flow in a non-rectangular cavity as shown in Figure 6.1 is examined. As 

mentioned before, this problem was suggested as a benchmark by Zhou et al. [135], and is
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Table 6.3: Locations and values of the second secondary vortex.
Zhou et al. CBS-AC

Re (x,y) u{x ,y ) u ( x , y )
50

100

400 (0.4703, 1.1625) 
(0.9219, 0.2375)

1.38495
1.38140

(0.4772, 1.1610) 
(0.9232, 0.2385)

1.70971
1.69442

1000 (0.5484, 1.2000) 
(0.7256, 0.2000)

2.38557
2.38559

(0.5505, 1.2071) 
(0.8523, 0.2015)

2.73409
2.60588
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Figure 6.8: The u\ and U2 velocity distribution along the middle line of the domain using 
the m atrix free CBS-AC scheme on the unstructured mesh4 at different Reynolds number
(a) 50; (b) 100; (c) 400; (d) 1000.

a diagonally symmetrical enclosure with a longer side of size L and a smaller side of size 

0.4L. The top lid is assumed to move at a prescribed positive horizontal velocity value and
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Figure 6.9: Convergence to the steady state for the flow inside a double driven cavity using 
the matrix free CBS-AC scheme on the several meshes at different Reynolds numbers (a) 
50; (b) 100; (c) 400; (d) 1000.

the bottom  lid moves with a negative velocity with a magnitude equal to the velocity of the 

top lid. The Reynolds number is defined based on the magnitude of the prescribed velocity 

value of the lids and the length L. The velocity components on all other sides are assumed 

to be equal to zero.

Several meshes have been used in the analysis to assess the convergence properties 

of the matrix free CBS-AC scheme and also to minimize the error due to the coarseness of the 

mesh. Five different meshes were employed in the study are shown in Figure 6.2. Although, 

the fifth mesh used contains structured layers close to the cavity walls, the emphasize of 

the present work is to use unstructured meshes. All the first four meshes are unstructured 

meshes starting with a reasonably fine uniform mesh 1 as shown in Figure 6.2(a). Second, 

third and fourth meshes are generated by consistently refining the mesh by increasing the 

number of nodes. The fourth mesh includes finer grid close to the walls.



Figure 8.10: The instantaneous transient state for streamlines at Re =  3200 using the 
matrix free CBS-AC scheme on the unstructured mesh4. (a) Real time =  150; (b) Real 
time =  200; (c) Real time =  250; (d) Real time =  300; (e) Real time =  350; (f) Real time 
=  400.

(a) (b)

(e)

O

(d) (b

Figure 6.11: The instantaneous transient state contours for pressure distribution at Re =  
3200 using the m atrix free CBS-AC scheme on the unstructured mesh4. (a) Real time = 
150; (b) Real time =  200; (c) Real time =  250; (d) Real time =  300; (e) Real time =  350; 
(f) Real time =  400.

6.2 T w o-dim ensional steady flow in a double driven cavity

From Figure 6.3(a), it is easily seen that the differences between the meshes 3, 4 and 5 

are negligibly small. However, Figure 6.3(b) shows a small difference in the peak values



Figure 6.1‘2: The instantaneous transient state for streamlines at Re =  5000 using the 
matrix free CBS-AC scheme on the unstructured mesh4. (a) Real time =  150; (b) Real 
time =  160; (c) Real time =  170; (d) Real time =  180; (e) Real time =  190; (f) Real time 
=  200.

(a)

O )

(c)

(f)

Figure 6.13: The instantaneous transient state contours for pressure distribution at Re =  
5000 using the m atrix free CBS-AC scheme on the unstructured mesh4. (a) Real time =  
150; (b) Real time =  160; (c) Real time =  170; (d) Real time =  180; (e) Real time =  190; 
(f) Real time =  200.

between the meshes. It is seen that the solution is converging and the difference between 

the meshes 4 and 5 are less than 2%. It is therefore obvious to use either mesh 4 or 5. In
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Figure 6.14: u\ velocity component variation with respect to real time using the matrix 
free CBS-AC scheme on the unstructured mesh4 at various Reynolds numbers (a) 2000; (b) 
3000; (c) 3200; (d) 4000.

the present work mesh 4 is selected in order to show that the present scheme is flexible to 

use on unstructured meshes at all Reynolds numbers. Whenever if it was found necessary, 

the solution obtained has been double checked using at least two meshes and the accuracy 

was verified.

The stream traces in Figure 6.4 show two primary vortices at Re =  50 and 100 

and one primary vortex at Re = 400 and 1000. Also, it is observed that there are four 

secondary vortices at Re =  400 and 1000 and only two vortices at smaller Reynolds number.

Figures 6.5, 6.6 and 6.7 show the contours of all the three variables, u\, U2 and p, 

for different Reynolds numbers. From these contours it is clear that the solution obtained 

is symmetric with respect to the shorter and longer diagonals of the cavity.

The u\ velocity contours in Figure 6.5 show the existence of strong u\ gradients 

close to the top and bottom lids. As the Reynolds number increases this gradient increases 

in strength as indicated by the closely packed contours near the top and bottom  lids at Re 

=  400 and 1000. Also at higher Reynolds numbers, stronger u\ gradients develop close to
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Figure 6.15: u\ velocity component variation with respect to a longer non-dimensional real 
time of 1000 using the m atrix free CBS-AC scheme on the unstructured mesh4 at two 
Reynolds numbers, (a) Re =  2000; (b) Re = 3200.

the inward corners of the enclosure.

The u -2 velocity contours in Figure 6.6 show steeper gradients close to the corners 

along the vertical walls. The pressure contours shown in Figure 6.7 are marked with very 

high gradients close to the top and bottom  corners of the cavity. This was expected due 

to the singularity introduced by the sudden change in the velocity at the top and bottom 

corners.

A comparison of the present unstructured mesh solution with the structured fine 

mesh solution [135] is shown in Figure 6.8. It is clear that both the finite element solution 

on unstructured meshes and the fine structured mesh solution are identical.

The vorticity values and locations of the centres of primary, first secondary and 

second secondary vorticities are listed for different Reynolds numbers along with numerical 

results of Zhou et al. in Tables 6.1, 6.2 and 6.3. As seen the predictions agree well and 

differ less than 4% from the reference values.

Figure 6.9 shows the temporal history of convergence for different Reynolds num­

bers and meshes. To ensure a steady state solution, the convergence criterion is fixed at 

10” 7 for all the variables involved and satisfied in all simulations. Clearly, all the conver­

gence histories of the solution discussed here in general show that the convergence curve is 

a function of element size.
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Figure 6.16: Unsteady cavity flow at Re = 5000 using the m atrix free CBS-AC scheme on 
the unstructured mesh4. (a) u\ and 112 velocities as a function of real time from 300 to 400;
(b) Phase-space trajectories of u\ vs. U2 \ (c) Power spectral density of the u\ velocity; (d) 
Power spectral density of the U2 velocity.

6.3 T w o-dim ensional unsteady flow in a double driven cavity

The steady state  solutions were obtained up to a Reynolds number of 1000. Beyond Re =  

1000, the steady sta te  criterion discussed in the previous section was not met. It is therefore 

essential to continue the study to search for transient solution patterns. The unsteady state, 

beyond Re =  1000, was also observed by Zhou et al. [135] at Re =  3200. They concluded 

that a multiple steady state exists at Re= 3200 and speculated that this may be caused 

by the elliptic instability. It was also observed by Zhou et al. th a t the symmetry of the 

patterns with respect to the diagonals is lost at Re =  3200.

In order to further enhance the understanding of the transient state, which exists 

beyond certain Reynolds number, we monitor the velocity distribution at certain points 

within the domain with respect to the real time. As mentioned before we use the dual 

time stepping approach and a second order discretization of the real time term. In order
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Figure 6.17: Unsteady cavity flow at Re =  6000 using the m atrix free CBS-AC scheme on 
the unstructured mesh4. (a) u\ and U2 velocities as a function of real time from 250 to 350; 
(b) Phase-space trajectories of iq vs. 112; (c) Power spectral density of the u\ velocity; (d) 
Power spectral density of the 112 velocity.

to obtain an accurate time description of the variable, we set an instantaneous steady state 

convergence criterion of 10-7 for all the variables within every real time step.

In addition to monitoring velocity distribution at certain points we also observe 

the overall pattern  of the variable distributions within the geometry for different real time 

steps.

Figures 6.10 to 6.19 show various transient solutions for the Reynolds number 

range between 2000 and 10000. In general the overall conclusion is tha t transient state 

exists from Re =  2000 onwards. Between Re =  2000 and Re =  4000, the flow is unstable 

but no familiar pattern exists. The flow is chaotic and increases in complexity as the 

Reynolds number is increased. From Re =  4000 until Re =  5000, the flow enters into a 

quasi-periodic flow pattern and finally at Re =  10000, no solid conclusion on the type of 

flow pattern  was reached.
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Figure 6.18: Unsteady cavity flow at Re = 10000 using the matrix free CBS-AC scheme 
on the unstructured mesh4. (a) u\ velocity as a function of real time from 100 to 170; (b) 
U2 velocity as a function of real time; (c) Phase-space trajectories of u\ vs. U2 \ (d) Power 
spectral density of the ui velocity.

Sample solutions of contours at various real times for Re =  3200 and Re =  5000 

are shown in Figures 6.10 to 6.13. In Figure 6.10, stream traces with respect to real non- 

dimensional time is plotted and in Figure 6.11, the corresponding pressure contours are 

plotted. Figure 6.14(c) shows the corresponding observation of u\ velocity values at seven 

different points within the domain. Although the pattern  shows some periodic nature of 

the flow at certain time levels, overall the pattern  obtained is non-periodic but transient.

It is observed from Figure 6.10 that the flow is dominated by three major vortices. 

In addition, there are several secondary vortices developed within the cavity. The major 

vortices are placed along the longer diagonal of the cavity. The vortices close to the top 

right corner and bottom  left corner grows in strength and reduces in strength with respect 

to time. When the bottom  one grows, top one shrinks and vice versa. When the top 

main vortex grows to its maximum strength, it creates two eyes in the vortex which lies
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(a) Streamlines (b) Pressure distribution

Figure 6.19: The instantaneous transient state at Re =  10000 for a real time of 200 using 
the m atrix free CBS-AC scheme on the unstructured inesh4.

between the top and bottom  vortices. The intermediate vortex generated between the top 

and bottom  vortices is always created at the top portion of the cavity. This vortex is 

created by a split in the top vortex as it grows in strength. When the bottom one grows in 

strength, the intermediate one disappear from the bottom  portion of the cavity and a new 

intermediate one is created at the top portion.

Although the pattern  of stream traces and pressure contours follow a qualitative 

cyclic pattern , the quantities in Figure 6.14(c) follow no regular periodic pattern. In order 

to further confirm the existence of the non-periodic pattern  at moderate Reynolds numbers, 

observation of u\ is continued for a longer non-dimensional time of 1000 as shown in Figure 

6.15. It is evident tha t no periodic flow state exists at moderate Reynolds numbers.

Figures 6.12 and 6.13 show stream traces and pressure contours at various non- 

dimensional real times for Re =  5000. These contours are plotted between the non- 

dimensional time of 150 and 200. The striking difference between the patterns of Re =  

3200 and Re =  5000 is that at Re =  5000, the eyes of the vortices are predominantly 

aligned along the vertical line. However, at Re =  3200, the eyes of the vortices were aligned 

along the m ajor diagonal of the cavity. Although the quasi-periodic pattern is not very 

clear from the contours, it is clear from Figure 6.16.
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Figure 6.16 depicts the velocity distribution at a fixed point {x\,X 2 ) — (0.7,0.7) 

of the cavity with respect to real time, phase-space trajectories of u\ vs. U2 and the power 

spectra of velocity at a Reynolds number of 5000. The time evolution of velocity from real 

time 300 to 400 is shown in Figures 6.16(a). The appearance of a quasi-periodic behaviour 

at Re=5000 is illustrated. As seen one fundamental frequency around 0.0415 is obtained 

from the analysis of Fourier power spectral density shown in Figures 6.16(c) and 6.16(d).

For clear visualization of the quasi-periodic flow the Reynolds number is increased 

to 6000. The time evolution of horizontal/vertical component of velocity, the phase trajec­

tory on ui — U2 plane and the power spectra to identify the fundamental frequency are all 

given in Figure 6.17. As we further increase Reynolds number to 10000, the chaotic pattern 

is established as demonstrated in Figure 6.18.

Figures 6.18 and 6.19 show the pattern developed at a Reynolds number of 10000. 

The pattern obtained was not periodic but transient. The turbulent nature of flow is 

reasonably clear from the arbitrary variation of u\ and U2 component of velocity, the phase 

trajectory on u\ — U2 plane and Fourier power spectra of velocity observed as shown in 

Figure 6.18. Figure 6.19 shows the complex nature of flow pattern at a real time of 200. 

We suspect that the mesh resolution is not good enough to resolve this Reynolds number 

flow correctly. Therefore the results at Re =  10000 may not be completely independent of 

the mesh size.

6.4 Sum m ary

In this chapter, the matrix free CBS-AC scheme was employed to study both steady and 

transient double driven cavity flow. The steady flow regime was observed between the 

Reynolds numbers of 50 and 1000. Beyond this range the flow is marked with non-periodic 

and quasi-periodic transient states. At Re =  10000, the flow already started showing the 

signs of highly arbitrary state indicating a transition to turbulent flow. The objective of 

this chapter was to give a general and accurate picture of steady and unsteady flows at 

different Reynolds numbers.
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Chapter 7

T he steady and unsteady  

two-dim ensional turbulent flows

7.1 In troduction

In this chapter, the matrix free CBS-AC method is used to obtain a stable solution for 

turbulent incompressible flows. Both explicit solution procedure for steady state problems 

and the dual time stepping technique for transient problems are discussed. The presented 

matrix solution free method is efficient compared to other standard explicit schemes, due to 

the inherent stabilization properties and local time stepping employed. A recent study con­

cluded that for steady state laminar incompressible flow problems, the fully explicit method 

consumes less CPU time than a semi-implicit scheme with conjugate gradient solution to 

the pressure equation [136]. Another study indicates that for a time step based on the 

stability limit of an explicit scheme, the CBS-AC scheme is faster than standard implicit 

schemes for steady state problems [137]. For unsteady problems, the study is inconclusive. 

It is therefore sensible to extend the matrix free CBS-AC scheme to solve turbulent incom­

pressible flows and exploit the advantages of such a scheme. For the comparison sake, the 

semi-implicit CBS scheme is also implemented to solve turbulent flows.

Three different RANS models have been implemented in the matrix free CBS-AC 

scheme in this study to model turbulence. The first one is the one-equation model with low
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(a)

(b)

Figure 7.1: Turbulent incompressible flow in a rectangular channel using the matrix free 
CBS-AC scheme at Re=12300. (a) Structured mesh (7546 elements; 3900 nodes); (b)
Unstructured mesh (160756 elements; 83762 nodes).

Reynolds number param eters proposed by Wolfshtein [73]. This model needs discretization 

and solution of one transport equation for turbulent kinetic energy k . The second model 

employed is tha t of Spalart-Allmaras [90], which again a one equation model and widely 

employed in aerodynamic flow calculations. The third and fourth models employed are 

respectively the k — £ (two-equation) model of Lam et al. [88] and Fan et al. [89] which 

impose the wall damping procedures on the dissipation rate equation. Full details of the 

turbulence models and their discretization are discussed in Chapter 3 and 4.

Three different numerical examples are studied using the presented approach. The 

first benchmark problem is the incompressible turbulent flow through a rectangular channel 

at a Reynolds number of 12300. The second benchmark problem studied is the turbulent 

flow past a backward facing step at a Reynolds number of 3025. Finally, the application of 

unsteady RANS is investigated by solving the vortex shedding behind a circular cylinder 

at a Reynolds number of 10000. The present numerical results are compared against the 

experimental and numerical data wherever possible.
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Figure 7.2: Turbulent incompressible flow in a rectangular channel using the matrix free 
CBS-AC scheme at Re= 12300 on the structured mesh, (a) Comparison of fully developed 
velocity profiles; (b) Convergence to the steady state

7.2 Tw o-dim ensional turbulent flow in a rectangular channel

The channel is assumed to be two units wide and forty units long. The Reynolds number 

is defined based on the half width of the channel. A non-dimensional horizontal velocity 

of unity is assumed at the inlet and the vertical component of velocity is zero. No slip 

conditions are applied on both walls of the channel. Both structured and unstructured 

meshes were refined close to the solid wall (see Figure 7.1). The first node from the wall is 

placed at a non-dimensional distance of 0.005.

For the one equation turbulence model a fixed value of k= 0.05 is assumed at the 

inlet. On the walls zero value is given for the turbulent kinetic energy.

For the Spalart-Allmaras model the scalar variable u is prescribed equal to 0.05 

at the inlet and zero on the solid walls.

The boundary conditions for the two equation turbulence model are: inlet values 

of both k  and e are prescribed (k—0.05 and s —0.05) based on the idea proposed in [138]. 

On the walls «=0 and e = [2/Re){dn1' 2 /  dx2 )2 is prescribed as proposed in [139].

The comparison of fully developed profile obtained from all the three turbulence 

models with the experimental data of Laufer [140] using the structured mesh is shown in
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Figure 7.3: Turbulent incompressible flow in a rectangular channel using the matrix free 
CBS-AC scheme at Re=12300 on the structured mesh. Logarithmic representation of tiine- 
averaged velocity profile at several RANS turbulence models.

Figure 7.2(a). Figure 7.2(b) shows the steady state convergence to a tolerance value below 

10-10. As seen, the convergence to steady state was rapid when the linear k, — e model of 

the Fan-Lakshminarayana-Barnett wall functions [89] were employed. The Spalart-Allmaras 

model gives results closer to the experimental data than other models as shown in Figure 

7.2(a).

Figure 7.3 shows variation of u+ = u \ /u T = y /pu if  y /r^  with respect to y + = 

uTx 2 /V =  y/r^X2 ly /pv  in fully developed turbulent channel flow using the structured mesh. 

The distribution from the n — e model of Fan-Lakshminarayana-Barnett damping functions 

closely follow the von Karm an’s logarithmic law, except near the solid wall and at the 

center of the channel. The best fit of the experimental data of Laufer [140] is given by the 

Spalart-Allmaras model. The one-equation k  — / model of Wolfshtein [73] gives a very small 

logarithmic region. Clearly, the overshoot in the law of the wall in the k — e model of the 

Lam-Bremhorst low Reynolds number formulation [88] results in the over-prediction of the 

velocity profile in the fully developed flow (see Figure 7.2(a)).

Re=12300

p,4
D

i«'  u =y'$m u —(1/0.418)ln y +5.5 - ................  1
Exp. (Laufer) D  

Spalart-Allmaras
K - e  (Lain et al.) *  

k-8 (Fan et al.) ♦

One-eq. (Wolfshtein)
............................ ...  . .  i .......................................
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Figure 7.4: Turbulent incompressible flow in a rectangular channel using the matrix free 
CBS-AC scheme with the Spalart-Allmaras model at Re= 12300. (a) Comparison of fully 
developed velocity profiles; (b) Convergence to the steady state.

In Figure 7.4(a) the fully developed velocity profile resulted from using the Spalart- 

Allmaras model on the structured and unstructured meshes is shown. Both numerical results 

agree with the experimental data. The convergence criterion to steady state used was below 

10-7 for both meshes (see Figure 7.4(b)). Figure 7.5 shows non-dimensional time-averaged 

velocity with respect to non-dimensional distance from the solid wall. By comparison with 

experimental data, the Spalart-Allmaras model using the structured mesh is closer than 

using the unstructured mesh.

7.3 Tw o-dim ensional turbulent flow past a backward facing 

step

Another standard test case commonly employed for testing turbulent incompressible flow 

models at a moderate Reynolds number is the recirculating flow over a backward facing 

step. Unlike the channel flow, the model has to handle the recirculation region immediately 

downstream of the step. The definition of the problem is shown in Figure 7.6. The charac­

teristic dimension of the problem is the step height. All other dimensions are defined with
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Figure 7.5: Turbulent incompressible flow in a rectangular channel using the matrix free 
CBS-AC scheme with the Spalart-Allmaras model at Re= 12300. Logarithmic representation 
of time-averaged velocity profile.

respect to the characteristic dimension. The inlet is located at a distance of 4 times the 

step height from it. The inlet channel height is two times the step height. The total length 

of the channel is 40 times the step height.

The inlet velocity profile is obtained from the experimental data reported by Den­

ham et al. [141]. No slip conditions apply on the solid walls. For the one-equation and 

the standard k — e model (two-equation) models, the inlet k and e profiles are obtained by 

solving a channel flow problem. For the Spalart-Allmaras model, a fixed value of 0.05 for 

the modified turbulent eddy viscosity (scalar variable) at the inlet is prescribed. On the 

walls k is assumed to be equal to zero. No flux conditions are assumed for e on the walls. 

The scalar variable of the Spalart-Allmaras model is also assumed to be zero on the walls.

Figure 7.7 shows the convergence histories to steady state for all the three turbulent 

models using the m atrix free CBS-AC scheme. As seen in Figure 7.7(a) both the two- 

equation k — e model of Fan et al. and the Spalart-Allmaras model reach prescribed residual 

tolerance 10~10 faster than both the one-equation k — I model and the k — e of Lam et al.
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Figure 7.6: Turbulent incompressible flow past a backward facing step. Geometry and 
boundary conditions.
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Figure 7.7: Turbulent incompressible flow past a backward facing step. Steady state con­
vergence histories at Re=3025.

It is expected that the convergence to steady state will not be always monotonic for an 

explicit time discretization.

Both structured and unstructured meshes are employed in the calculation. Figure 

7.8 and 7.9 show the Spalart-Allmaras model solutions on structured and unstructured 

meshes respectively. The qualitative difference between the two results is almost nil. The 

quantitative difference between the two solutions are also found to be negligibly small.

The comparison of velocity profiles against the experimental data of Denham et al.

[141] is shown in Figure 7.10. It is obvious that the one-equation model failed to predict the 

recirculation region accurately. The Spalart-Allmaras model and the two-equation models



(a) Mesh

(b) u\ contours

(c) 0 contours

(d) Pressure contours

Figure 7.8: Turbulent incompressible flow past a backward facing step. Structured mesh 
(Elements: 8092, Nodes: 4183), velocity contours, v  contours and pressure contours at 
Re=3025 using the m atrix free CBS-AC scheme with the Spalart-Allmaras model.

on the other hand predict the recirculation better than the one-equation model. Among 

the latter models, the Spalart-Allmaras model seems to predict the recirculation more ac­

curately. However, some differences between the experiment and the present predictions of
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Figure 7.9: Turbulent incompressible flow past a backward facing step. Unstructured mesh 
(Elements: 47359, Nodes: 24336), velocity contours, z> contours and pressure contours at 
Re=3025 using the m atrix free CBS-AC scheme with the Spalart-Allmaras model.

the Spalart-Allmaras model are noticed along the top wall.
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Figure 7.10: Turbulent incompressible flow past a backward facing step. Velocity profiles 
at various downstream sections at Re=3025 using the matrix free CBS-AC scheme with 
several RANS turbulence models.
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Figure 7.11: Turbulent incompressible flow over a circular cylinder, (a) Unstructured mesh 
(Elements: 46433, Nodes: 23452); (b) Unstructured mesh of close to solid wall (0.0097 
distance); (c) Hybrid meshl (Elements: 30299, Nodes: 15277); (d) Hybrid meshl of close to 
solid wall (0.005 distance); (e) Hybrid mesh2 (Elements: 37571, Nodes: 18913); (f) Hybrid 
mesh2 of close to solid wall (0.001 distance).

7.4 T w o-dim ensional turbulent flow over a circular cylinder

The dual time stepping technique is used to predict time dependent turbulent flows here. 

The example considered is the standard test case of transient turbulent incompressible flow
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(a) t  =  10 (b) r  =  20
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(c) r  =  30 (d) r  =  40

Figure 7.12: Turbulent incompressible flow over a circular cylinder. u\ velocity contours at 
different real time at Re= 10000 using the m atrix free CBS-AC scheme with the Spalart- 
Allmaras model.

past a circular cylinder.

Three different finite element meshes used are shown in Figure 7.11. The unstruc­

tured mesh was tested by all presented RANS turbulence models. The hybrid mesh was only 

investigated with circular cylinder wall-bounded flows based on mixing-length hypothesis 

inside the log-law region while the k — I model of Wolfshtein was employed. However, all 

the meshes in the vicinity of the cylinder and along the wake region are refined to capture 

the transient feature of the problem.

Uniform velocity conditions are assumed at the inlet. The Reynolds number is 

10000, based on the cylinder diameter and the uniform inflow in the X\ direction. The real 

time step size is taken equal to 0.05. The turbulent scalar variable is assumed to be 0.05 at
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Figure 7.13: Turbulent incompressible flow over a circular cylinder at Re=10000 using 
the m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Drag coefficient 
distribution with respect to real time; (b) Lift coefficient distribution with respect to real 
time; (c) U2 distribution at the central exit point with respect to real time; (d) Pressure 
distribution at the central exit point with respect to real time.

the inlet for the Spalart-Allmaras model. On the top and bottom  sides slip conditions are 

assumed and no turbulence quantity is prescribed. On the cylinder walls no slip conditions 

are assumed and the turbulent scalar variable of the Spalart-Allmaras model is assumed 

to be zero. For the two-equation model, At and e values at the inlet are assumed to be 

0.0025 and on the solid walls At is assumed to be zero and e condition is the same one used 

for the steady state problems. The Wolfshtein model based on mixing-length hypothesis is 

modified to give a constant lengthscale if the nearest wall distance is more than 0.05.
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Figure 7.14: Turbulent incompressible flow over a circular cylinder at Re—10000 using the 
m atrix free CBS-AC scheme with the linear k — e (two-equation) model, (a) Drag coefficient 
distribution with respect to real time; (b) Lift coefficient distribution with respect to real 
time; (c) U2 distribution at the central exit point with respect to real time; (d) Pressure 
distribution at the central exit point with respect to real time.

In the matrix free CBS-AC scheme, the pseudo time step used within each real 

time step is local and varies between the nodes depending on the local flow field and mesh 

size. As mentioned before, the L 2 norm of velocity residual is reduced to 10-6 within every 

real time step in order to make sure that local steady state is achieved within each real time 

step.

The time dependent patterns of horizontal velocity component are shown in Figure 

7.12 for different real times to show that the vortex shedding is present. At r  =  10, the
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Figure 7.15: Turbulent incompressible flow over a circular cylinder at Re=10000 using 
the m atrix free CBS-AC scheme with the k  — I one-equation (Wolfshtein) model, (a) Drag 
coefficient distribution with respect to real time; (b) Lift coefficient distribution with respect 
to real time; (c) U2 distribution at the central exit point with respect to real time; (d) 
Pressure distribution at the central exit point with respect to real time.

initial velocity field immediately behind the cylinder looks symmetric but the velocity field 

at r  =  20 and beyond shows un-syrnmetric shedding behaviour. From Figure 7.12(b), (c) 

and (d) it is obvious that the origin of the vortex street shifts between the areas above and 

below the central axis. The behaviour qualitatively confirms the periodic vortex shedding 

phenomenon.

Figures 7.13(a) and (b) show respectively the drag and lift coefficients with respect 

to real time using the m atrix free CBS-AC scheme and the Spalart-Allmaras model. As seen

"i 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1-------- 1—
U nstructured mesh ---------

Hybrid mesh I ----------
Hybnd mesh2
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Figure 7.16: Turbulent incompressible flow over a circular cylinder at Re=10000 using 
the m atrix free CBS-AC scheme with the k — I one-equation (Wolfshtein) model on the 
unstructured mesh (left) and hybrid mesh2 (right), (a) Turbulent kinetic energy k  contours. 
^mm(red) =  0.0, «:max(blue) =  0.219; (b) Turbulent kinetic energy k  contours. «min (red) 
=  0.0, Kmox(blue) =  0.119; (c) Horizontal velocity component u\ contours. fHmiri(red) =  
-0.517, h imax(blue) =  1.789; (d) Horizontal velocity component u\ contours. h imin(red) 
=  -0.498, wimax(blue) =  1.861; (e) Vertical velocity component U2 contours. U2min(red) =  
-1.0, h 2max(blue) =  1.023; (f) Vertical velocity component U2 contours. U2min(red) =  -0.992, 
^max (blue) =  1.037; (g) Pressure contours. pm;n (red) =  -1.118, pmaa;(blue) =  0.714; (h) 
Pressure contours. pmin {red) =  -1.163, pmax(blue) =  0.691.

the periodic flow and vortex shedding are clearly evident from the graphs. The averaged 

experimental value of drag coefficient is around 1.12 and the Strouhal number is around 0.2

[142]. Present prediction shows that the averaged value of drag coefficient is around 1.34 

and the Strouhal number is 0.154. The large difference in predicted drag coefficient is not
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Figure 7.17: Turbulent incompressible flow over a circular cylinder at R e= 10000 using 
the m atrix free CBS-AC scheme (left) and the semi-implicit CBS scheme (right) with 
the Spalart-Allmaras model, (a) Modified turbulent eddy kinematic viscosity 0 contours. 
O-mini red) =  0.0, umax (blue) =  460.887; (b) Modified turbulent eddy kinematic viscosity 
z> contours, r'mm(red) =  0.0, i>max(blue) — 409.792; (c) Horizontal velocity component u\ 
contours. u irn.ji(red) =  -0.533, wimax(blue) =  2.112; (d) Horizontal velocity component u\ 
contours. wimin(red) =  -0.483, wimax(blue) =  2.123; (e) Pressure contours. pmin (red) =  
-1.276, Pmax(blue) =  0.699; (f) Pressure contours. pm;n (red) =  -1.417, pmax(blue) =  0.717.

surprising as all the URANS models have accuracy limitations. The two-dimensional LES 

model reported in reference [143] significantly over predicts the averaged drag coefficient. It 

appears that some of the non-linear URANS models give results better than the standard 

URANS models [144]. However, investing in the Spalart-Allmaras model leads to further 

development towards Detached Eddy Simulation (DES) [86].

The lift coefficient distribution with respect to real time using the Spalart-Allmaras 

model is shown in Figure 7.13(b). The pattern  is periodic and the magnitude of the lift 

coefficient produced by the Spalart-Allmaras model is in qualitative agreement with other 

reported results [143]. However, it should be noted that the turbulent flow over a circular 

cylinder at a Reynolds number of 10000 is essentially three dimensional as shown in reference
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Figure 7.18: Turbulent incompressible flow over a circular cylinder at Re= 10000 using 
both the matrix free CBS-AC scheme and the semi-implicit CBS scheme with the Spalart- 
Allmaras model, (a) Drag coefficient distribution with respect to real time; (b) Lift coef­
ficient distribution with respect to real time; (c) u -2 distribution at the central exit point 
with respect to real time; (d) Pressure distribution at the central exit point with respect to 
real time.

[145]. Figure 7.13(c) and (d) show the variation of vertical velocity component and pressure 

at an exit point at the horizontal centreline of the domain. This is consistent with the drag 

and lift data.

Figure 7.14 show the drag coefficient, lift coefficient, vertical velocity and pressure 

variation at an exit point using the matrix free CBS-AC scheme with the two-equation 

model. Although the velocity distribution at an exit point is similar between the two- 

equation and the Spalart-Allmaras models, the drag and lift coefficient distribution are 

quite different. Figure 7.14(a) shows the averaged drag coefficient value obtained is around 

0.843 by Fan et al. and 0.811 by Lam et al., which are much smaller than that of the one
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predicted by the Spalart-Allmaras model. The two-equation models results, however, are 

very similar to the one reported by [144] for a higher Reynolds number. The averaged lift 

coefficient obtained by different wall damping functions of the two-equation models are zero 

(Figure 7.14(b)), which are consistent with reference [144], For the two-equation models, 

the Strouhal number based on the lift coefficient was predicted by Fan-Lakshminarayana- 

Barnett wall functions and Lam-Bremhorst wall functions axe 0.155 and 0.127 respectively.

Several numerical solutions using the Wolfshtein k — I model by limiting the mixing 

length were obtained and shown in Figure 7.15 and 7.16. Three different meshes, one 

unstructured mesh and two hybrid meshes, were used in the calculation. Figure 7.15 shows 

the variation of quantitative results with respect to real time. The average drag coefficient 

obtained are 0.905, 0.728 and 0.765, respectively on unstructured mesh, first and second 

hybrid meshes. By using the hybrid mesh2, the Strouhal number of 0.185 was obtained 

which is quite close to experimental solution. Figure 7.16 shows the qualitative results that 

are almost identical between the meshes used.

In Figure 7.17 there are 20 contours on time dependent patterns at real time 

r  =  100 using both the matrix free CBS-AC scheme and semi-implicit CBS scheme and the 

Spalart-Allmaras model. The turbulent eddy kinematic viscosity has influence only along 

the central region as shown in Figure 7.17(a) and (b). The horizontal velocity component 

u\ contours resulted from the matrix free scheme has less spatial oscillations than using the 

semi-implicit scheme, (see Figure 7.17(c) and (d)). From Figure 7.17(e) and (f), the Dirich- 

let condition at the outflow boundary is taken as pressure equal to zero for the semi-implicit 

scheme, but in the matrix free scheme no pressure at the exit was prescribed. However, 

both schemes show vertex shedding and periodic turbulent flow behind the cylinder.

Figures 7.18(a) shows the drag coefficient with respect to real time from both the 

matrix free CBS-AC scheme and semi-implicit CBS scheme and the Spalart-Allmaras model. 

The semi-implicit CBS scheme gives an averaged drag coefficient of around 1.117 which is 

quite close to the averaged drag coefficient 1.12 from Schlichting’s experiment [142]. The 

Strouhal number is 0.158. The semi-implicit scheme, however, gives un-symmetric, periodic 

lift coefficient.

Last but not least, the most important point here is that the explicit scheme along
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with an implicit dual time stepping approach can satisfactorily model unsteady turbulent 

incompressible flows.

7.5 Sum m ary

In this chapter, three benchmark problems, a rectangular channel, a backward facing step 

and a stationary circular cylinder, have been tested using the matrix free CBS-AC scheme. 

Numerical solutions presented have demonstrated the robustness of using the CBS-AC 

method to both steady and unsteady two-dimensional incompressible turbulent flows. It 

appears that the matrix free CBS-AC scheme is well suited for turbulent flow calculations 

as it was for laminar flow. The semi-implicit CBS scheme was also implemented with the 

Spalart-Allmaras model to test unsteady turbulent flow around a circular cylinder.
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Chapter 8

The steady and unsteady  

three-dim ensional turbulent flows

8.1 Three-dim ensional turbulent flow past a backward facing  

step

The three-dimensional backward facing step flow has been the subject of detailed experi­

mental study by Denham et al. [141]. The geometry and boundary conditions axe same as 

the two-dimensional backward facing step flow except that the pressure at the outflow cross- 

section was assumed to be zero for using the semi-implicit CBS scheme. The matrix free 

CBS-AC scheme and the semi-implicit CBS scheme were tested using the Spalart-Allmaras 

turbulence model.

The unstructured mesh used is shown in Figure 8.1. The mesh is refined in the 

recirculation zone to capture vortical flows and the reattachment point. Figure 8.2 shows 

modified turbulent eddy kinematic viscosity contours and velocity component contours from 

the matrix free CBS-AC scheme and semi-implicit CBS scheme respectively. As seen, the 

qualitative difference between the two results is almost nil.

Figure 8.3 shows profiles of the comparison of horizontal velocity component at six 

vertical sections with the experimental data of Denham et al. [141]. The Spalart-Allmaras 

model predicts the recirculation satisfactorily. The quantitative difference between the
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Figure 8.1: Turbulent incompressible flow past a backward facing step at Re=3025. Un­
structured mesh of 4 nodes tetrahedral elements (Elements: 297054, Nodes: 65372).

numerical RANS solutions of two schemes are found to be negligibly small. Some differences 

between the experiment and the present predictions of the Spalart-Allmaras model are 

noticed along the top wall. However, comparison between two- and three-dimensional flow 

solutions shows tha t the results are identical.

The steady state convergence criteria is based on the L 2 norm of the velocity field. 

It is reduced to a value below 10~4. Figure 8.4 shows the convergence histories to steady 

state.

8.2 Three-dim ensional turbulent flow over a circular cylinder

The Spalart-Allmaras model with the m atrix free CBS-AC scheme is tested 011 three- 

dimensional turbulent flow past a stationary circular cylinder problem at Re= 10000. Uni­

form velocity conditions in the x \  direction are assumed at the inlet. The size of real time 

step was set at 0.05. The turbulent scalar variable (modified turbulent eddy kinematic 

viscosity) is assumed to be 10-8 at the inlet for the Spalart-Allmaras model. On the top 

and bottom  sides slip conditions are assumed and no turbulence quantity is prescribed. On 

the cylinder walls no slip conditions are assumed and the turbulent scalar variable of the 

Spalart-Allmaras model is assumed to be zero.
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(c) (d)

(e) (f)

Figure 8.2: Turbulent incompressible flow past a backward facing step at Re=3025 using 
both the m atrix free CBS-AC scheme (left) and the semi-implicit CBS scheme (right) with 
the Spalart-Allmaras model, (a) Modified turbulent eddy kinematic viscosity contours. 
L'min(red) =  0.0, i>max(blue) =  54.354; (b) Modified turbulent eddy kinematic viscosity 
contours. z>m*n (red) =  0.0, C'max(blue) =  51.873; (c) u\ velocity contours. h imin(red) =  
-0.345, u imaa.(blue) =  1.213; (d) hi velocity contours. h imin(red) =  -0.338, h imax(blue) =  
1.213; (e) u3 velocity contours. h3min(red) =  -0.098, h,3max(blue) =  0.150; (f) us velocity 
contours. h3min(red) =  -0.097, h3max(blue) =  0.148.
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Figure 8.3: Turbulent incompressible flow past a backward facing step. Velocity profiles 
at various downstream sections at Re=3025 using two different CBS schemes with the 
Spalart-Allmaras model.
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Figure 8.4: Turbulent incompressible flow past a backward facing step. Steady state con­
vergence histories at Re=3025.

The dual time-stepping method was employed with the matrix free CBS-AC scheme. 

The local time step depends on each element size within every real time step. The con­

vergence criterion of both velocity and pressure residuals is reduced to 10-4 per real time 

step.

Two different meshes used to test the flow past a three-dimensional circular cylin-
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(c) (d)

Figure 8.5: Turbulent incompressible flow over a circular cylinder at R e= 10000 using the 
m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Unstructured meshl 
(Elements: 606769, Nodes: 115035); (b) Unstructured meshl of close to solid wall (0.038 
distance); (c) Hybrid mesh2 (Elements: 489463, Nodes: 88964); (d) Hybrid mesh2 of close 
to solid wall (0.01 distance).

der problem in this study are shown in Figure 8.5. The fully unstructured mesh (meshl) 

used comprises of 606769 tetrahedral elements and 115035 nodes. The hybrid mesh (mesh2)
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Figure 8.6: Turbulent incompressible flow over a circular cylinder at Re=10000 using the 
matrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Drag coefficient variation 
with respect to real time; (b) Lift coefficient variation with respect to real time; (c) Pressure 
coefficient distribution along the cylinder surface at real time = 100 .

consists of three structured layers close to the cylinder surface and unstructured grid away 

from the wall. Figure 8.5(d) shows the mesh in the vicinity of the cylinder. Both meshes 

are refined close to the wall and in the wake region to predict the vortex shedding.

Figure 8.6 shows the time variation of drag coefficient, lift coefficient and pressure 

coefficient using the unstructured and hybrid meshes. The average drag coefficient obtained 

1.311 from the unstructured meshl. The strouhal number is 0.152. The amplitude of lift 

coefficient is between 1 and -1. The averaged drag coefficient obtained by the hybrid mesh2 

is 1.239, which is more accurate than the result of meshl in comparison with experimental
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(a) u\ contours (b) U3  contours (c) Pressure contours

(d) u\ contours (e) U3  contours (f) Pressure contours

Figure 8.7: Turbulent incompressible flow over a circular cylinder at Re—10000 using the 
m atrix free CBS-AC scheme with the Spalart-Allmaras model 011 unstructured m eshl (up) 
and hybrid mesh2 (down), (a) fiimin(red) =  -0.526, wimai(blue) =  1.928; (b) u3mm(red) =  
-1.223, U3mai(blue) =  !-437; (c) P m i n (red) =  -1.090, pmax(blue) =  0.743; (d) u imm(red) =  
-1.135, wimax(blue) =  1.973; (e) U3min(red) =  -1.074, u3mai(blue) =  1.136; (f) pmin(red) =  
-0.967, Pmax(blue) =  0.704.

data. The strouhal number here is around 0.144.

In Figure 8.6(c) the pressure coefficient values at Re—10000 are compared with two 

different turbulence procedures, one is available LES modelling [166] and another numerical 

data is from non-linear eddy viscosity modelling [167]. As seen the time-averaged pressure 

distribution on the hybrid mesh2 is in good agreement with LES and non-linear model, 

except close to stagnation. This may be attributed to turbulence modelling accuracy [144].
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(a) z> contours (b) u contours

Figure 8.8: Turbulent incompressible flow over a circular cylinder at Re= 10000 using the 
matrix free CBS-AC scheme with the Spalart-Allmaras model on unstructured meshl (left) 
and hybrid mesh2 (right), (a) z>mfn(red) — 0.0, z>max(blue) =  368.329; (b) z>min(red) — 0.0, 
"max (blue) =  349.945.

In Figure 8.7 and Figure 8.8 the contours of horizontal velocity component, vertical 

velocity component, pressure and modified turbulent eddy kinematic viscosity obtained from 

meshl and mesh2 respectively. Both results are almost identical. As seen the origin of the 

vortex street shifts between the areas above and below the central axis. The behaviour 

qualitatively confirms the periodic vortex shedding phenomenon.

8.3 Three-dim ensional turbulent flow around a stationary  

sphere

In this section, numerical solutions of turbulent flow over a sphere placed inside a channel 

at a Reynolds number of 10000 are presented. The computational geometry domain is same 

as the laminar flow problem in Chapter 5. A uniform flow at the inlet is prescribed and 

no slip conditions are assumed on the sphere surface. The turbulent scalar variable of the 

Spalart-Allmaras model at inlet is 10~6. The pressure residual was reduced to 10-4 within 

each real time step.

All sides of the channel are assumed to have slip conditions. Three structured



113

(a) (b) (c)

Figure 8.9: Turbulent incompressible flow over a stationary sphere at Re= 10000 using 
the m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Sphere inside a 
rectangular channel; (b) Unstructured mesh on the surface of sphere; (c) Hybrid mesh close 
to sphere surface.

mesh layers at distances of 0.01, 0.021 and 0.035 close to sphere surface as shown in Figure 

8.9.

Figure 8.10(a)-(b) depict drag and lift coefficient variation with respect to real 

time. As seen the averaged drag coefficient gives 0.31. The experimental measurements for 

the subcritical flow at Re= 10000 [142] gives the averaged drag coefficient was around 0.4. 

The large difference is due to URANS modelling of the transition. The comparison of the 

pressure coefficient around the sphere surface is shown in Figure 8.10(c) at real time =  100.
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Figure 8.10: Turbulent incompressible flow over a stationary sphere at Re= 10000 using the 
m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Time variation of Drag 
coefficient; (b) Time variation of Lift coefficient; (c) Pressure coefficient distribution on the 
sphere surface at real time = 100 .
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Figure 8.11: Turbulent incompressible flow over a stationary sphere at 
the m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) 
^max(blue) -  116.176; (c) h imin(red) =  -0.413, h imax(blue) =  1.425.

R e= 10000 using 
L'min (red) 0.0,

a
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Figure 8.12: Turbulent incompressible flow over a stationary sphere at Re=10000 using 
the m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Unstructured finite 
element mesh (Elements: 185692, Nodes: 35931); (b) Convergence to steady state.

The results presented are almost identical Constantinescu et al.’s work [87].

Figure 8.11 shows modified turbulent eddy kinematic viscosity and horizontal ve­

locity patterns at real time =  100. Each figure contains 20 contour increments.
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(a) (b)

(c) (d)

Figure 8.13: Turbulent incompressible flow through a upper human airway at Re=1000 
using the matrix free CBS-AC scheme with the Spalart-Allmaras model, (a) Vmin{red) =  
0.0, z>max(blue) =  72.113; (b) h imtn(red) =  -1.775, h imax(blue) =  0.706; (c) u3rnin(red) =  
-1.665, u3max(blue) =  1.439; (d) pmin(red) =  0.0, pmax(blue) =  2.302.

8.4 Three-dim ensional turbulent flow through a upper hu­

man airway

One of the spray dynamics problems, steady flow inside a upper human airway, have been 

performed with the matrix free CBS-AC scheme and Spalart-Allmaras model. The geometry 

defined are same as a human throat studied by Gemci et al. [155]. Apparently, most of the 

literatures on the particle movement in the upper human airway related to sleep apnoea 

and vocal cord problems [156]-[158]. It is of interest to understand and investigate the 

respiratory mechanism through fluid dynamics. In the present research the unstructured
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(a) (b)

Figure 8.14: Turbulent incompressible flow through a upper human airway at Re—1000 
using the m atrix free CBS-AC scheme with the Spalart-Allmaras model, (a) vector pattern 
of iii; (b) vector pattern of ui near to the epiglottis.

Spalart-Allmaras model Spalart-Allmaras model

10 15 20 25
Horizontal velocity

15 20
Horizontal velocity
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Figure 8.15: Turbulent incompressible flow through a upper human airway at Re=1000. 
Distribution of the near-wall shear stress (a) All surfaces; (b) On the superior surfaces.

mesh was employed and shown in Figure 8.12(a). It is generated using PSUE-II code [154]. 

The computational domain includes 29.68 length, 23.05 height and the diameter of 4.91 at 

the inlet boundary. The moderate Reynolds number is 1000 based upon the diameter of
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the narrow profile near to the epiglottis.

Uniform velocity perpendicular to the inlet surface in the downward direction is 

assumed at the top boundary. No slip conditions are used on the solid walls. At the walls, 

the modified turbulent eddy kinematic viscosity is equal to zero. Figure 8.12(b) shows the 

tolerance value was reduced to 10-5 to reach steady state.

The contours of modified turbulent eddy kinematic viscosity, u\ velocity compo­

nent, us velocity component and pressure along the longitudinal central section are shown 

in Figure 8.13. As seen the narrow portion near to the epiglottis triggers recirculation zone 

downstream. A very high gradient area is noticed at the narrow portion.

Figure 8.14 shows horizontal velocity vector plots. It is apparent that the recircu­

lation zone is located close to the epiglottis.

Figure 8.15 shows the distribution of near-wall shear stresses around the surface 

of upper human airway. It is apparent that the maximum near-wall shear stress occurs in 

the distance 18.082 length of x\ direction.

8.5 Sum m ary

We have presented numerical solutions of turbulent incompressible flow past a backward 

facing step using the matrix free CBS-AC scheme and semi-implicit CBS scheme with 

the Spalart-Allmaras turbulence model. Both schemes give excellent accuracy. For the un­

steady flow problem, the averaged drag coefficient and lift coefficient from three-dimensional 

turbulent incompressible flow over a circular cylinder that agrees with the result of two- 

dimensional flows. A model of upper human airway flow has also been demonstrated to 

show that CBS scheme is able to handle more complex geometry.
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Chapter 9

Conclusions and future work

9.1 C onclusions

A robust matrix free procedure based on the Characteristic Based Split (CBS) algorithm 

as well as the artificial compressibility (AC) method has been presented in this thesis. 

Several numerical problems of laminar and turbulent incompressible flows at a wide range 

of Reynolds numbers were simulated by the CBS-AC scheme. A dual time stepping approach 

has been implemented in this scheme, which enabled it to deal with unsteady flows with 

transient features. The advantages of the proposed scheme include excellent computational 

efficiency and better accuracy.

An explicit characteristic based procedure with optimal Galerkin spatial approxi­

mation plays an essential role in the stability and convergence of the matrix free CBS-AC 

scheme. The higher order time terms of the discrete form arises due to the Characteristic 

Galerkin (CG) approximation which leads to a stabilized form and reduce spatial oscillations 

due to the discretization of the convective acceleration term. Such scheme also circumvents 

Ladyshenskaya-Babuska-Brezzi (LBB) restriction. The removal of the pressure gradients 

from the momentum or Reynolds equations allows any order of shape functions used for 

velocity and pressure. In other words, the temporal discretization were divided into three 

steps to construct non-singular matrices which guarantee a consistent system. The concept 

of the employed fractional step method lead to the first order splitting error in pressure.
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This can be eliminated by introducing a pressure stabilizing scheme.

Consideration of the standard AC method selected in this thesis without the pre­

conditioning matrix. The reason is to simplify the method which gives an accuracy as 

good as a pre-conditioned scheme. Thus an appropriate AC parameter selection is quite 

important to calculate local time steps based on the convective and diffusive velocities in 

conjunction with the element size. The presented results clearly show that the standard 

method gives results as good as pre-conditioned methods. Further, there are reasons to 

believe that an explicit and matrix free fractional step method combined with a standard 

AC method through characteristic time-stepping can give robust and accurate results. Due 

to these merits, CBS-AC is suitable for solving complex 3D incompressible flow problems.

In order to handle turbulent features, various Reynolds averaged Navier-Stokes 

(RANS) models were implemented with CBS-AC code. Four turbulence models for near-wall 

treatments, one equation k — I model of Wolfshtein, one equation Spalart-Allmaras model, 

two equation linear k — e models of Lam-Bremhorst and Fan-Lakshminarayana-Barnett, 

have been chosen for evaluating moderate Reynolds numbers to compare with available ex­

perimental data. The Wolfshtein’s model fails to provide the effect of turbulent recirculation 

and periodic shedding in the wake. On the other hand, the choice of Lam-Bremhorst’s wall 

damping functions was good for the reasonable prediction of turbulent kinetic energy. It 

should be noted that the damping functions suggested by Fan-Lakshminarayana-Barnett’s 

model might be inappropriate for complex three-dimensional turbulent flows even though 

the wall-bounded behaviour has been resolved and validated for two-dimensional unsteady 

turbulent boundary layers. Indeed, the two scalar variables, k and e, by which the transport 

equations have been established are more expensive with CPU time than a one-equation 

model. A modified turbulent eddy kinematic viscosity was therefore derived by Spalart and 

Allmaras which was used to solve both 2D and 3D problems in this thesis. It yields bet­

ter agreement with experimental results and gives rapid convergence to steady state using 

unstructured or hybrid meshes.

The main objective of this thesis was to develop a matrix free CBS-AC scheme for 

laminar and turbulent incompressible flows. The major conclusions derived from this study 

are listed below:
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• The explicit characteristic Galerkin procedure is a stabilized form of the matrix free 

CBS scheme based on the artificial compressibility (AC) method. This method is 

suitable to carry out both laminar and turbulent incompressible flows on unstructured 

meshes.

• The Ladyshenskaya-Babuska-Brezzi (LBB) conditions has been satisfied and violent 

oscillations of pressure from the discretization of governing equations have been elim­

inated when equal order interpolations for velocity and pressure are used.

• The matrix free CBS-AC scheme via a dual time stepping technique is efficient in 

saving memory and easy to implement in parallel environment.

• Various RANS models can be employed along with the CBS scheme to accurately 

predict turbulent incompressible flows.

9.2 Future research

In order to improve the computing costs as well as accuracy of the CBS scheme in the 

incompressible turbulent regimes, further research can be carried out in the following areas

• To further reduce the computational time, a single-step, explicit multistage Runge- 

K utta scheme could be employed to resolve the discrete equations in time-stepping 

calculations.

•  Extension of the proposed scheme to build appropriate preconditioning matrix to 

compare with the present standard AC method.

•  The detached eddy simulation (DES) approach could be implemented and tested on 

unstructured meshes.

•  A better approach for anisotropic and inhomogeneous turbulent characteristics may 

be employed with the monotone integrated large eddy simulation (MILES). It would 

be interesting to test CBS-AC scheme to deal with such high-resolution computational 

fluid dynamics.
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• Alternative acceleration techniques such as the multigrid procedure to enhance the 

rate of convergence is possible.

• An edge-based data structure would be useful in reducing memory and increasing the 

speed of calculation.

• The better matrix free schemes such as Generalized Minimal Residual (GMRES) 

method could be employed to accelerate solution procedure.
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Appendix A

Two-dim ensional m atrix  

coefficients of the CBS algorithm  

w ith R A N S turbulence m odels

The two-dimensional matrix coefficients of a linear triangular element based on the Galerkin 

spatial approximation indicate nodal values and all the discretized matrices and vectors. 

The standard finite element shape functions N^, depended on any variable <p, i.e.

V?N =  W -N^ Nip2 ... N<pk ... Nip11 (A.l)

where k is the node identifying number and / =  3 for a 3-nodes triangular element.

The 6 x 6 symmetric, lumped mass matrix for the intermediate momentum is given

as

M u =  f  [M^j ] d n =  [  N uTN udQ (A.2)
J Cl J Q,

are (z row; j  column)where the matrix coefficients M,h3

M l'2 =  M l*  =  M l'4 =  M l'1 =  M l'6 -- M l'1 =  M l'3 =  M™ = M l'5 

=  M l'2 =  M l'4 =  M l'3 =  M l'6 =  M l'3 = M l'5 = M l'4 = M l'6
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=  Af6’3 =  0 

Af4'1 = M™  =  J V ^  

Af3'3 =  M i’* =  N lN l  

M l*  =  M l’6 =  JV31V3 

Af4’3 =  Af3’4 =  Af2’4 =  1W4’2 =  N ^N l 

M l*  =  M l’1 =  Af2'6 =  Af6’2 =  jV4lV3 

Af3’5 =  Af.3'3 =  Af.4’6 =  Af.6’4 =  N lN l (A.3)

The 6 x 6  convection matrix of the velocities for the intermediate momentum is

given as

c„ =  J  [CjJ] <m =  J  N ur (Vr (uN u))c!n

where the divergence operator of discretized velocities is

(A.4)

[ d d 
Vt (uN u) =  { ^

\  8 x 2 dx\

and the matrix coefficients CuJ are

1

CM
3

1 1
j* C- 

♦“*

0 N 2u 0 N 311u

r "O

U 2  U i 0 iV 1 0 iV2u 0 N 3J U

(A.5)

/o l,2    y^f2,l   /^1,4   /^4,1   1,6   ^ 6 ,1   /^2,3   /^3,2   /^2,5   /^5,2 __
u u u u u

=  c l *  =  c l *  =  c l *  =  c l *  =  a l ’5 =  c . 3 ’4 =  a 3-6 =  c 6 ’3 =  o

C l’1 = C l’2 =  Atf 

G3’3 =  C l*  =  at.2

f dmAT4 d u 2N l \  
\  d x \  d x 2 J  
^ duiN* t du2N l

+
dx  i &C2

G3’3 = G3'6 =  N l  (
\  o x i ax2 J

C l.'1 = Gt’2 =  AT,
2 /" S u iN i +  du2N l

V 5a ; i 5a;2



1 4 1

rA i _  n e,2 _ N 3 ( d ^ N l  du2Nt) \

r7i.3 _  C2f4 _  V 1 f  d u iN l du2N?L
U  2 y u  I q------------ 1------~ --------\  d x1 5x2

rrs.3 _  r*A  _  /U3 / " du2N?, \U — iVu I Q 1  ----- I\  dx\ dx2 J
n 1’* -  n W  _  Ari ( duxN l  du2N?L\

U  1 vu  I Q------------ 1------r -------- IV dx\ dx2 )
r'3.5 _  ^ 4,6 _  N 2  (  duiN* du2 N't \

“ u _  “ \ _ & r + _ ^ r j  (A.#)

The 6 x 6 symmetric diffusion matrix for the intermediate momentum is given as

K  ̂=  T  / n ^  dn =  Ja b T T  (* •  - 1

where the matrix coefficients are

m m (A.7)

K }’1

k y

K 5,5 :

x y

d N i
dx^ ■f- d K \ 2 

5 x 2 J

4 ( d N j \ 2 ( d N 2\ 2
3 \  dxi J  V dx2 J

4 f d N f \ 2 f d N j ) 2 
3 \  5xi J  \  5x2 J
„ 2 ,1 _ _ 2  dN ldN }.

T  —  o

K i'2 =  -  I
( d N i

3 1\  dx2

x y  =  - 1
( d N i

3 1K dx2

x y  =  -  <
fd N i

3 'K dx  2

x y

x y  

x y  

k y  

x y  

K 2y

= K 3y  =  -

3 5xi 5x2 
4 dN? dN?

» 9Nj dNi
5x2 dx\

r2 
nu a/Vi 5iV„2 

u +
3 5xi 5xi 5x2 5x2

„  cw*1 ajv24il =  _ 2 d N ld N l  
T 3 5xi dx2 ' 5x2 &Ei 
5,! 4 ajv*aA/g a jv jo jvg
T 3 5xi 5xi 5x2 dx2

u d N l M l  
5x2 ^ 1  
d N i d N i

K 6-1 =  2 dN« dN Z 
T 3 5xi 5x2 

2 5 M  dN?
=  ^r3,2 =  “ +

3 5x2 <9xi 5x2
r 4 2 4 5Atf dN?
K y  = o

u +  cw„l <w2
3  d x 2 5 x 2  & c i  5 x ]

+

+

+

V dxi J

( 9 N l \
\ d x j
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jy -2 ,5  =  ^ 5 , 2  =  _ 2 d N i 6 N l  dNj dN*
T T 3 dx2 5xi 5xi dx2

iv-2,6 =  7̂ 6,2 =  4 9 ^ a i v |  w *
T T 3 5 x2 5 x2 5xi 5xi

r-3,4 =  ^ 4,3 =  _ z d K w l  , aiv„2 a ^
T T 3 5xi 5x2 dx2 5xi

1̂ 3,5 =  7x5,3 =  i a ^ a j v |  w „ 2 ajvg
T T 3 5xi 5xi 5x2 5x2

1x3,6 =  7x6,3 =  _ 2 d N l d N l  d N i d N i 
T T 3 5xi 5x2 5x2 5xi

A*.* = iv-5,4 =  _ 2 d N l d N l  dNi dNi  
3 5x2 5xi 5xi 5x2

^4,6 = Ty-6,4 =  ^ O N l d N l  d N l d N l  
3 5x2 5x2 5xi 5xi

r _5 e r,6 5 2 d N ld N l  d N ld N l
+  (A'8)

The 6 x 6  matrix of the isotropic turbulence for the intermediate momentum is

given  as

Cu* = 5 /  [C&] dfi = |  f  N„r VNWn

where the matrix coefficients are

(A.9)

/^rl,2   /^ 2 ,1    /^1>4   /^ 4 ,1    / ' f l >6   /^ 6 ,1    /'"’>2,3   —̂13,2 _  / ^ 2 , 5  _  /^<5,2 __
'“' t iK  '- 'u /C  U K  ^ « K  U K  ^ U K  ^ U K  ^ U K

  /^»3,4   /^ 4 ,3    /^»3,6   /^ 6 ,3    /^ 4 ,5    s i 5 ,4    S~*5,6 —  /^<6,5 _  n
U K  ^ U K  U K  ^ U K  '“'t i/C  ^ U K  ^ U K  U

r l , l  _  A T  I  . r l , 3  _  7V7* 1 . 4^1,5 _  y l  ~ 2 ,2 y ^

u 5 x i  ’ “* u 5 x i  ’ u 5 x i  ’ UK u 5 x 2 ’

4^2,4 _  a t  1 _ ^ 2 ,6  _  AT-l^ w  . ^ .3 ,1  _  y 2 ^ / c  . r 3 ’3  =  AJ 2  ■

UK u 5 x 2 ’ UK “ 5 x 2 ’ u 5 x i  ’ UK u 5 x i  ’

r * 3 ’5 =  V 2 ■ 4^4,2 _  » r 2 ^ i j  . ^ r4 ,4  _  y 2  ^ N k  . ^ 4 , 6  _  a t 2 ^ 1

u* 5 x i  ’ u* u 5 x 2 ’ UK 5 x 2 ’ UK u 5 x 2 ’

f5 ,l _  | u 3 ^  . 4̂ 5,3 =  y 3 . 4̂ 5,5 y  3 . 4̂ 6,2 _  y 3  .

UK u 5 x i  ’ UK u 5 x i  ’ UK u 5 x i  ’ UK u 5 x 2 ’

45,4 =  y 3 ^ K  . 4̂ 6,6 _  y 3

UK u 5 x 2 ’ UK u 5 x 2

The 6 x 1  traction vector for the intermediate momentum is given as
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fu = (/* +  ih)
Re J  [/?]<0' = j  N uTtddr

In the above equation of the vector coefficients [/u-7] are

(A.11)

f 1'1 =J u

f3’1 =Ju

f4,l _
J u

* 5 ,1  N cJu

+

+

* 6,1 =  
J u

TV11 U

+ TV,

f2’1 =  jV1Ju 1

+ JV,!

AT2

+  n :,

Nu

N*

Nu

TV*

r d N i 257V2 
u l ~ ^ T + ul

u2

dxi

i M i

3d N * \  2 (  xd N \
d ^  + u°lTxf j - s f e

+  k2
,3W.? ,9AT.?

“ l

5xi

i9JVu
“ 2 a ^

w „ 2  , 3  M l  , , 3 ^

dx\ +  W2 5x 1̂ +  Ul 0X2
2

+ «i dx2
+  U

dX2 
3M *

+ U2 1 )
dx2 J

1 dx2 
ON?.

nX2

2dN* 3d N l \  2 (  t d N l  ,
+  “ 2^  +  “ 2 3^ ) - 3 r i f e T  +  “ 1 9^

I  I u i

dX2

1 M i

+  «f
dN? 3dN ? ,d N i  2dN? 3d N l \
-5- 2- +  i/ i- s -2- + +  ui-Q-*- +  U2-5 - 23x2

, 2 M l  , 3
3 iT  '3 i T  ' d x ! /

3x2 3xi 
3Wf \  _ 2

nXl

,d N i  2dlV2 ,3JV2 ,9iVi ajV2 aiV3x
U2~ -------------  *"u2“5----- ^ u l~E----- ^ Ul “a----- -----------  Idxi

3 \  2 dx2

i M i

+  u2

5xi 
2

dx\ dX2 dx2 0X2 / .
nX 2

Ox 2 + U2
0X2 J Ul Ox 1 Ox i

1 5X2
^ 2 3 57V3 xONi 2 57V2 3 57V3\— « _ l  o < 3 — « j .  +  w2 +  ul

O x i  5 x i  5 x i  /5X2 5X2
+ u2 nX \

u 2
i d N '  2dN* adN°l , d N i  2d N l  , « d N * \

+  u2 ----1" u2 ~EZ----' ul ~nZ----*■ ul ~oZ----r- Ul —---  I5xi 
i M i

“ 2 3 ^
dN}

5xi 5x2 +  Ul Ox2 ai Ox2 )  _
nX2

+  «2
,57V2 -i 57V3
5X2

+  U 2
Ox 2 J

+  Ui
ON? 3  3 AT2 ,d N }  odN? 3d N 2\  
— -  +  u f-x -^  +  u2 ——— + U2— -  -L- — -  '

3 x 2 ’ " ‘ 3X2 ' " ‘ 3X2 ' "2 3X ! 1 3 x i  + “ 2 3 x i /  

where both nXl and nX2 are normal vectors.

The 6 x 6  symmetric convection matrix of the stabilization for the intermediate 

momentum is given as

fcXl

nXl +

, , 3 ^
3 x 7 / J n x2 +

dx  i y_
,d N i  , 2d N i , 3d N i \  

U2d ^  + U2d ^  + U2d ^ ) j
nXl +

5xi )  _ Tlx2 “I"

1 ( , A ^ i  _ I  7„1 9Ni  , „2W U | „ 3 ^ 3V
3 V 1 3xi 1 3xi 1 3xi /  3 \  2 3x2 2 3x2 2 9x2 /_

hXl +

,d N i  2d N i 3d N i \
U i& r + U i 3 ^ + U i3 i r 7 j

(A.12)

K u  =  - 1  [ [ ify ]  dS2 =  - 1  [ (VT(uN u))7’(Vr (uN „ ) ) d n  
^ an ^ 7^

where the matrix coefficients \Kh3 are

(A.13)
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K 1,2 =  K 2 ,1  =  K l,A =  i f 4,1 —  K 1'6 — K 6'1 — K 2'3 — K 3,2 — K 2 )5  —  K b'2 — 

_  1 ^ 3 ,4  _  Z f  4 ,3  _  7 ^ 3 ,6  _  i> -6 ,3  _  rv-4 ,5  _  7 ^ 5 ,4  _  js5 ,6  _  t> -6 ,5  _  r»JVu JYu i l u -tvu Xiu XYit -*vtt — -fvtx — u

^ 5 , 5  _  ^ 6 , 6  _  9 u \N 3 ^  du2N3 \
U “ V 9X2 )

k 'S  =  i f j i  =  ^ 2 , 4  =  K t 2  =  ^  +  a g * ^  ^ a g g  +  

K l*  =  j r ® - 1 =  ^ 2 , 6  =  ^ 6 , 2  =  I ' c +  a g ^  ^ a g g  +  a g g j

^  3 = *“6 = 4 = (is? + ¥ )  f t ?  + ̂ ?) (A14)
The 3 x 3  symmetric, lumped mass matrix for the pressure is given as

M p = ( w T  L [Mpj] d n = L Np ft)"Np<m (Ai5)
where the matrix coefficients are

M ^ 1 —  y v ^ T V 1 -1 P 1 P * M l ' 2

M 1/ ii 3̂ 
tO *►—

i

ll' J v X :

M 2'3 = M f 2  = n 2n 3i i p i V p

3N 33iTp
r3

(A.16)

The 3 x 3  symmetric, second lumped mass matrix for the pressure is given as

, f  [H{'j ] dQ= f  (VNp)r V N pdf2 (A.17)
Jn Jn

where the matrix coefficients [Hh:>] are

H =
in

2
dx\  I ' \ 8x 2 J

*u=(^ y +M
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M S ) ( S H § ) ( S )

-“-■“ - ( £ ) ( £ ) ♦ ( £ ) ( £ )
^ — ( S ) ( S ) +(S ) (S )

The 3 x 6  gradient (operator) matrix is given as

G =  [  [GiJ] dSl= [  (VNp)TN udft 
Jn Jn

where the matrix coefficients [G1̂ ] are

G1*1 =  N '
' dN.p1uJ h . . g 1'2

d x i ) '

o f  &NiG1'4 = N  — -u I 8xo
G2,l

G2'4 = N:

 ̂dxi 

f d N 2

G 3,i ' d m

N,
d N l \  iq o f  dNi
- d i ) ; G l’3 = iV “2 ( ^

d N l \  . .  o f d N l
l^ r ) 5 G  ’ ~ Nu (  ^ 7

dx\

d N l \  lfi o f d N l '

* fj; g'6=jvH <
g2,2=jv“( S ) ; g2,3=;v2(S

G 2 ’6  =  3̂(S )  

g 3’4 = w 2 ( S ) ; g 3 , 5 = jv3 ( S ) ; g 3 , 6 = j v “ ( S )

^ P  i . ^<3,2
^ r i ’ G

' d N f  
dx2 '

The 3 x 1  forcing vector for the pressure is given as

fp = Ai J  [tf]dr = At J  n N uU n +  6i (AU* -  AiVpn+fc) nTdr

(A.18)

(A.19)

(A.20)

(A.21)
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where the vector coefficients are

fl'1 =  Nl [ ( J V ^ 1 +  NlVl + Nluf) nxi + +  AT2£/2 + iV3i/23) ft,

ft'1 = JVp [(Nlul + Nlul + NlVl) ft*, + (jV,^1 + AT2t /2 + JV3̂ 3) hXi 
f f 1 =  1V3 [ ( a ^ 1 +  AT2(72 + N l u l )  ft*, +  ( a ^ 1 +  Ar2t/22 +  JV3[7|) n*2] (A.22)

The 3 x 3  symmetric, lumped mass matrix for the turbulent kinetic energy is given

as

M*= [  [M'S]d,n= (  n*t n k Jn Jq
where the matrix coefficients

dQ

are

(A.23)

M ^1 = N l N l M 2’2

M 1’2 II £ ?? 
to 'h-* II

M 2,31VJ-K = M 3,2 =

r3,3 _  t\7-3 at-3

(A.24)

The 3 x 3  convection matrix for the turbulent kinetic energy is given as

c * = f  [C l̂ d(i = (  NK7'(Vr(uNK))dfiJn Jn
where the matrix coefficients j c ^ l  are

(A.25)

i,i _ M\ (  duiN i  +  9u2N ^ \
H  dXl dX2

r 3.3 V3 ( S u iN l  du2N%\

r ,2 ,l  N 2 ( d u iN l  du2N \ \
c *

r>s.i =  /V3 ^ 4 .  9 m 2 J V ^  . 
* K \  ax , ax2 )  ’

r 3.2 h, 3 ( 9 u i N l  . 0 « 2 j V 2 \

-2.2 V2 (d u iN l  du2N l
c *

r i.3 »,i ( 9 u iN l du2N%
c * +  ~ & T
c 2,3 =  Af2 f ^ V |  +  ^ V |  

<7X1 C/̂ 2

(A.26)
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The 3 x 3  symmetric diffusion matrix for the turbulent kinetic energy is given as

K * = h  ( > + £ )  i  W d a ( A -27)
where the matrix coefficients K are 

„ 3,3 K l ^ = K 2,l =

K \  d x \ )  \  0 x2 )  K K dxi  dxi  5x2 6 x2

i »  O N l d N l  dN i  d N l  r  .9  3 r , 3  2 d N l d N l  dNldN% ..  O D ,
H*-3 -  j f 3-1 =  ■ ■ -■-g +  „ a " +  s - ^ - s -* -  (A.28)dx\ dx\ dx2 dx 2 9x\ dx\  dx2 dx2

The 3 x 1  vector based on both the generation and source terms of the turbulent

kinetic energy equation is given as

f*n = /  f/^1 dn= f  N j r ’JdQ = f  N j  IrgdjUi -  Nce] dfi (A.29)
Jn J Jn Jn

where T 7/ =  n «  +  r2fi +  r 3« +  r4« +  7-5* +  r 6« may be respectively expressed

^ ( ^ M + u f ^ + u f S \ 2 -

lK SRe dx\  Ul dx\  ' M’i dx\ )

3i?e V 9x2 9x2 2 ^ 2  /  \  1 9x\  1 9x\  1 9x\ J

T2k

IH I i d N i . * B N i +u» ? * 1 \  +
T3« =  He I 1*1 S i2 812  dxt )

+ „ i M + u* ™ l + u 3 ™ l )
Re \  9x i 5xi /  \  5 x2 1 5 x2 1 5x2 /
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T A k  =
m  (  1 d N l  , 2d N l  , 3d N l \ 2 , 

w  A.!9Jv„1 , . , 2 d N l  , _3djV,?I r ' i  I 'u  , 2 it , a 'u
Re \  1 8 x2 1 dx2 1 5^2

r 5* =  - \ { K 1N 1k + K 2N 2k + K zN I)

xd N l  , 2d N 2 , 3d N 3
1 5xi +  Ul 5xi ~r ai 5xi ^  U2 5x2 

-  (E l Ng +  E 2N 2 +  E 3N 3)

+ W? -7T"31 + *4

U2

5JV.1

5xi

+  ui

5xi 5xi /

•PNI
1 5x2 + w2

d N 3\  
5x2 /

Thus the vector coefficients [ « ] are

(A.30)

f in =  Nl r 'J’ f in =  NKr "-, f in  =  Nl r "*  /V a L n ;  f t/  '  » /v S  b »v /v  *  K u  v fw iv

The 3 x 1 forcing vector for the turbulent kinetic energy is given as 

where the vector coefficients [/*r]

(A.31)

are

(A.32)

f i,iJkT

,.2,1 
JK r

z-3,1
JkT

N 2K

\ f  x d N \  o d N 2 35A ^\ (  l O N l  2d N 2 3d N 3\  „k1̂  +  k2j-± +  k ~n )nXl +  ft +  k2-^  +  ft3- ^  nX2\  5xi 5xi 5xi J \  OX 2 OX 2 ox 2 J

h M  + + K* ™ 1 )  Axi +  ( Ki W i  +  K +  Ks ™ t )
\  OX 1 5xi 5xi J \  OX2 OX2 ox2 J

Y  , d N \  2d N l  39 N l \  . (  i d N l  2d N l  3d N l \  „
K f l-2- +  K a +  K a ) " «  +  ( K + K 1r 2- +  K -5-^ »*2\  5xi 5xi 5xi J \  Ox 2 Ox 2 OX 2 J

fix 2

(A.33)

The 3 x 3 symmetric convection matrix of the stabilization for the turbulent kinetic 

energy is given as

K 11k ==  [  [ K i ] < M  = - \  [  (VT(u N .))r (Vr (uNK))dQ (A.34)
* Jn 1 Jn

where the matrix coefficients are
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K. 1 ' 1 =
( d u i N l  du 2N j  V
\  dx\ d x 2 )

2.2 _ ( du1N j du2N l  V
U* V 5*1 5X2 /

Kz * _ ( du1N l du2N l V  
™ \  5*i +  <9*2 /

A'1’2 =  A"2)1 =  ( du' N l  , ^ 2 ^  
™ V 5*1 5*2

tv-1,3 =  ^ 3,1 =  ( diiiN^ du2N lK
U* ^ K  ^ Qxi +  dx2

7̂ 2,3 =  ^3,2 =  f  du2N l
UK \  a * i  +  dx2

d u iN l du2N% \
5*1 5*2 /

5m  5u2A ^\  
5* i 5*2 /

auijyg | a u z Jv ^
5*i 5*2 /

(A.35)

The 3 x 3  symmetric, lumped mass matrix for the dissipation rate is given as

where the matrix coefficients

m £ = f  [Mle'j ] d n =  [  n / n £dn 
Jn Jn

MeJ j are

(A.36)

Meu  = N \N l\  Me2’2 =  N*N*\ M l'3 =

M l'2 = M l'1 = N l N l ; M l'3 = M l'1 = N%Nl 

M l'3 = M l'2 = N lN l

The 3 x 3  convection matrix for the dissipation rate is given as

c £ =  f  [ci'j ] d n =  [  NeT(v r (uN£))dn
J  Cl J  Cl

where the matrix coefficients \ c le3j are

(A.37)

(A.38)

r i , i - A T i  ( d u i N l  d u 2N l \  22 2 f d u i N l  d u 2N l \
c * -  Ng \ T d Z r  + - f o T ) '  c£ ~ d ^ ~ )

* • - « ( * & * * £ ) <

r2 .l =  N* ( 9u' N * 4. ■ r i.3  _  Ml f d n N l  , du2N j \
e e \  dxi  dx2 ) ’ ‘ '  V dXi d x 2 )
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r 3.i N3 f S u i N i  . r 2 .3 " 2 (9 * 1  N l  du2N i \
c ‘ - N* \ ~ ~ ^ r + - N c { ~ d ^ ~ + ~ d ^ - )

C3,2 =  N a (  9uiNl  +  du iN T\
\  d x \  d x 2 J

The 3 x 3  symmetric diffusion matrix for the dissipation rate is given as

(A.39)

K* = We v )  L  [ m  dSl = ™ ‘d il (A'40)

where the matrix coefficients are

*1.1 -  ( d N ‘ V  +  ( d N * \ 2 . *2,2 _  ( 9 N i \ 2 ( B N i \ 2
K ‘ -  [ w ; ) + { ^ )  ■ K ‘ -  v air;+ { i w )

* 3 ,3  =  * 1 ,2  _  * 2 ,1  =  O N ldN }  M l M i
V a x  1 ;  v  dxi j  ' £ £ dxi dxi dxi  dxi

* l l 3 = * 3,i =  d N l d N [ , d N l d N l .  * 2 ,3  =  * 3 ,2  =  d N [ d N [  d N [ d N [  
£ £ d x \  d x \  d x 2 d x 2 ’ e £ d x \  d x \  d x 2 d x 2

(A.41)

The 3 x 1  vector based on both the generation and source terms of the dissipation 

rate equation is given as

ten N eJ
E ceiT-jdjUi -  ce2N eE dfi (A.42)

'n K

where T 77 =  r\£ +  r2e +  r3e +  r4e +  r5e +  r 6e may be respectively expressed

Tie  =

T2e =

4cei fit 
3 Re 

ZceilH 
3 Re

4cei [it 
3 Re 

2cei/it 
3 Re

u ]d N l + u f ^ l  + uf ^

39Nl
1 dxi T U 1&n 
xdN i  , i d N l

U2
dX2
dN l

+  ^2 dX2
-J- u

dX2
, d N l  i d N l  , d N l

U X

dX2

id N l
dx\

+
d N l , * d N l \
dx2 + u 2 d x 2 J
dNl . i d N l
dx\ dxi

id N l  , ^ N l  , . 3

 ^2~q-----  ̂ 2dX2 0X2
d N 3u
dX2
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-  - ^ (-> 5
R e  \  d x i  d x i  d x i )  \  1 5x2 1 0x2  1 0x2 J

rd =  c^ ‘ L l 9N i  , 3 d N 3 \ 2

s R e  \  2 5xi 2 Ox\ 2 5xi J

C em  (  } d N l  u* d N j  u3d N j \  /  1 d N l  .O N I  , »O N j \
R e  \  5x2 9x2 9x2 )  \  2 9 x i 2 5xi 2 5xi J

r5e =  - ^ - ( K l N^ + K 2N 2 + K 3N 3) 
o
i5Atf , 25AT2 3d N 3 , d N i  29 N l  3 9 N 3 \

U^  + UlT x 7 + “ 1 5 ^  +  “ 2 & 7  + “ 2 5 ^ + t l2 & r J
»-6e =  - ^ ( S ' J V j + E ^  +  B3^ 3) (A.43)

Thus the vector coefficients j/efi] are

fen =  N i l 1' 1-, / %  = N f r l 1; =  ^ 3T £̂, (A.44)

The 3 x 1  forcing vector for the dissipation rate is given as

fer =  i t e lM +
d r  =  I N £Tt£dr

where the vector coefficients [#] are

(A.45)

h  r

p2,1
JeT

j.3,1
h r

N i

n 2e

e. p .  +  t? ™ l + e
O X  I

.1 dN l

i - t  , , ( A aN l  , . 2 ^ 1
<9xi dzi / W*1 +  | £ + £*    +  £"----  I

dx 2 dx 2 )
3 9 N 3\

n X 2

= m

dx \  

.19N}

+  £
2 5JV2 , , 3 9 N 3\

I Tlxi +  I £dxi + £
d x \  )

3 9 N [ \

dx 2

i5A ^  2 5JV| 3 5 A ? \
8 x 2 dx 2 8 x 2 J  12

5X1 + £ 2 S  +  £° & r J flll +  l £ , 5x2
.19N] +  £2 9 N [

dX2
+ £'

d x 2 J x\
(A.46)

The 3 x 3 symmetric convection matrix of the stabilization for the dissipation rate 

is given as

K U£ = f  [K'J] dn  =  /  (VT(uN £))r (Vr (uN e))dfi (A.47)
1  Jn 1  Jn
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where the matrix coefficients are

K 1’1 =■* *  4 IC

duiN } du2K
5 x i

+
d x 2

2,2 _  ( duiN? du2N j
V d x i

+ dx 2

^ 3 , 3  ( d m t f !  | aujjAfiy  
\  5X2 /

z s  1 , 2    t v - 2 , 1   
■* *  * i f f

/  5ti!iVg 5u2ATi
V 5xi +

5 x 2

jy-1,3 =  ^3,1 _  f  ̂ l ^ e 1 ,
U£ ^  V 5 x i  +  5 x 2

du\N^ du 2 N ^ \  
5 x i  5x2  /

du\Ne du2N j \  
5xi 5x2 /

^ 2,3 = ^ 3,2 _  ( d v ^ N l  du2 N ?\  f d u i N l  du2 N *\  
“  V 5*1 5x2 A  5x2 7

(A.48)

The 3 x 3  symmetric, lumped mass matrix for the modified turbulent eddy kine­

matic viscosity is given as

Mp = f  \Mi'j ] d n =  f  NpTNpdQ 
J n L J Jn

where the matrix coefficients Mt are

(A.49)

M.1.1 _  AT I  AT 1.J V iJ V i;  A f? '2 =  N?N?-, = N IW3.3 _  â 3 jvr3

M T 2 =  M ?’1 =  ATJJV?; =  A/ ? ' 1 =  jVJJV?"I’3 _  A/f3 '!  — A/-!  A/-3

M ?’3 =  Af?1* =  TV* A-?Vr3,2 _  jvj-2 at-3 (A.50)

The 3 x 3  convection matrix for the modified turbulent eddy kinematic viscosity 

is given as

o =  f  fcjJ'l<KJ= f  N tr (Vr (uNj>))<ifl (A.51)

where the matrix coefficients C 'f are

c , , - „ , ( ^ s + 2 g 2 ) ; C, , = N , ^ ^



c 1.2 = N 1 ( 9«1 N l  +  ^ 2iV ^
J U l  3*2 /

r 2,3  =  jw-2 , ^ 2 ^ A

*  *  V  dxi dx2 J

(A.52)

The 3 x 3  symmetric matrix resulted from first diffusion term in the modified 

turbulent eddy kinematic viscosity equation is given as

K c  =  f  f  (VNc)t  ( — 5 - )  VNcdfl (A.53)
fffrRe Jq L " J yn' \ o 0 Re)

where the matrix coefficients are

ATf3=  ( d N T ] 2 + , . 1.2 ff2.i d N l d N l  ,
" \  ctei /  \  5^2 /  v v dxi dx\ dx2 dx2
1,3 _  ^3,1 _  d N l  d N l  ^  d N l  m l ,  2,3 Jf3.2 d N l  d N l  , ON* d N l

I S 1 ’0  —  X  '  =   —_________ —  _ |_

* * dxi dxi dx2 dx2 ’ d x !  9 x i  +  9 X 2  9 X 2  ^A '5 4 ^

The 3 x 1  vector resulted from second diffusion term in the modified turbulent 

eddy kinematic viscosity equation is given as

'» - S a  L  ['“! " - /„N'r t e )
where the vector coefficients

(A.55)

are
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The 3 x 1  vector based on both the production and destruction terms of the 

modified turbulent eddy kinematic viscosity equation is given as

Re V2/  Jn 

where the vector coefficients j / ^ . j

cM 5  -  ) N >0<m (A.57)

are

,1,1 
J on*
,2,1 

J on*
/•3.1
J on*

N l  (v lN l  + i? N l  + 03 N?) 

N l  {v 'N l  + i? N l  + 03 N?) 

N l  (uxN l  +  02N l  + u3 N l) (A.58)

The 3 x 1  forcing vector for the modified turbulent eddy kinematic viscosity is

given as

"r  go Re JT

where the vector coefficients [/^r] are

fl'- J 0 \ dr  == J  NoTtodr (A.59)

,  id 
Jor

,2,1
Jor

f s,i
Jor

N-

N?

N l

- i d N l  , . 2dN 3 , . 3d N ? \
v ~d^; +  v + v  ' V  dx2 ' -  0 * 2

nx, +  v
i 9 N l

+  p
2 9N? + V

,9 N 3\  
0*2  /

nX2

( - \ 9 N l  . 2 9 N l  . 3 9 N l \  . A , d N l
0  -a-2 - +  0 +  " a n*i +  " a +\  oxi ox i ox i /  \  ax2

, i  9N l

2d N l  „3 o n I \  „ 
'J a +  " nOX2  C7X2 /

£2

v  , j  ftxi +  , +  +  ^  fl+  ^ - 3 - ^  +  yarri 5a;2 5*2 7
(A.60)

The 3 x 3  symmetric convection matrix of the stabilization for the modified tur­

bulent eddy kinematic viscosity is given as

K, = 4  f  \K<d \ d ^  =  A  f  (VT(uNs))T(Vr (uNp))dfi (A.61)
* Jn 1 J 1  Jn

where the matrix coefficients K l'luu are
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u  _  f d m N j
V dxi +

dujNi V 
9x2 J

K 2 ,2 _ ( dulN l  du2 N l \
Ui> V d Xl *  dx 2 J

k 3,3 =  ( d u iN l  du2 N? \
dx 2 J

V

+

\  dxi 
1̂ 1)2 _  jy-2,1 __ ( d u \N 0  

u 0  u 0  V dxi

k };3 = K 3i  =  ( ®UlNl  +  
dx\

duiN?■̂2,3 _  j -̂3,2 __
dxi +

du2N l
dx 2

dx 2

du2N l
dx 2

d u iN l  d u 2N ? \  
dx\ dx 2 )

d u iN l  du2 N? \
dxi dx 2 J

d u iN l  du2 N $ \  
dxi dx 2 J (A.62)
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Appendix B

Three-dim ensional m atrix  

coefficients o f the CBS algorithm  

w ith  R A N S turbulence m odels

Here we display the 3D matrix coefficients of a 4-nodes tetrahedral element.

The 12 x 12 symmetric, lumped mass matrix for the intermediate momentum is

given as

M u = [  [MZj ] d n =  [  N ut N udQ (B.l)
Jn Jn

are (z row; j  column)where the matrix coefficients

M l-2 =  M l '1 = M l-3 = M l-1 = M l-3 = M l-1 =  M l-6 =  M l ’1 =  M l ’6 =

=  M l-1 =  M l-9 = M l ’1 -  M l 1-1 = M l-11 =  M l 2-1 =  M l-12 = M 2/  =

= M l-2 =  M l -4 =  M l-2 =  M l-6 =  M l-2 =  M l-7 =  M l-2 =  M 2/  =

=  M l ’2 =  M l '10 =  M l 0-2 =  M l '12 =  M l 2-2 =  M l'*  =  M l'3 =  M l'5 =

=  M l '3 =  M l '7 = M l ’3 = M l ’6 = M l ’3 =  M l '10 =  M l 0-3 =  M l '11 =  

=  M l 1’3 =  M4'5 =  M8-4 =  M j6 =  M l-11 = M4,8 =  M8'4 =  M4'9 =
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=  M l ’4 =  M 4’11 =  M l 1'4 =  M 4'12 =  M l 2'4 =  M u’6 =  Af8'5 =  Af8,7 =  

=  Af7'8 =  Af8-9 =  Af9'8 =  M 6’10 = M 40’5 =  M 6’12 = M l 2’6 = M 6’7 =

=  M l ’6 = M l ’6 -  M l ’6 =  M l ’10 =  Af™’6 =  M l ’11 =  M l 1’6 =  M l ’8 =

=  A*8'7 =  M l ’9 = M l ’7 =  A/7’11 =  M l 1’7 = M l ’12 =  M l 2’7 =  Af8,9 =

=  Af9’8 =  M l ’10 =  M l0’8 =  M l ’12 =  Af™’8 =  A/9’10 =  M l° '9 =

=  Af9'11 =  Af” ’9 =  A/™'11 =  Af“ ’10 =  Af™’12 =  M l2’10 = M l 1’12 =  

=  M l 2’11 =  0

Af ’̂1 =  M l ’2 = M l ’3 =  N l N l  

M l ’4 =  A/8,5 =  A/8,6 =  N l N l  

M l ’7 =  Af8’8 =  M l ’9 =  N l N l  

M l 0’10 -- M l 1’11 =  M l 2’12 = N l N l  

M l ’4 =  A f«  =  Af2'5 =  A/8'2 =  A/8,6 =  M l’3 =  jV>JV2 

Af1’7 =  M l '4 = M l ’8 =  M l ’6 =  Af8'9 =  M9’8 =  N l N l  

M l ’10 =  Af™’7 =  M l ’n  =  A/™'8 =  M l ’12 = M l 2’9 =  JV81V* 

M l ’7 =  A # 1 =  Af2’8 =  M l ’2 =  A/8'9 =  M l ’3 = N l N l  

M l ’10 =  M l0’4 =  Af8'11 =  A*11’8 =  M l '12 = Af12’8 =  N l N l

M l ’10 =  Af™’1 =  M l ’11 = M l 1’2 =  Af8’12 = M l2’3 =  JV>* (B.2)

The 12 x 12 convection matrix of the velocities for the intermediate momentum is

given as

Cu = f  [Ci7] d.n = f  N aT(VT(ufrla))dSl
J si J si

where the matrix coefficients C lJ are

( B . 3 )

/nr 1,2   /° r 2 ,l   /~ t l,3    /°r 3 ,l   /^rl,5    /"r5,l   /—r l ,6   /—r6 ,1   /—»1,8 __
' -y>U  U  U  U  U  U  U  U

_  n 8.1  _  r * 1 .9  _  /^ 9 ,1  _  / o l , l l  _  / o l l , l  _  ^ 1,12 _  n  12,1 _  / o 2 ,3  _'-'u u ^u  u '-yu '-'•u '-'tz ^iz
  —̂*3,2   /- t2 ,4    /-r4,2   /^r2,6   /^ 6 ,2    /~ * 2 ,7    y—*7,2   ^ 2 , 9  __

v « i  v « i
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  ^9,2   ^ 2,10   ^ 10,2   /~t2,12   ^ 12,2   /^3,4   /^4,3   /^3,5  
u u u

  /^5,3   /^3,7  /^7,3   /^3,8   /^8,3  /^3,10   /^10,3  ^3,11 __
^ u  ^ u  ^ u u ^ u ^ u

  /oll,3   /^4,5   /^5,4   /^4,6   6,4   ^4,8   /^8,4   /^4,9  
u u u

=  c £ 4 =  c 4'11 =  c “ -4 =  e f t12 =  c “ -4 =  c £ 6 =  c £ 5 =  c j 7 =

=  c 7'5 =  c ®'9 =  c 9'5 =  CZ’W =  c “ '5 =  C j 12 =  C i2'5 =  c 9'7 =

  o7,6   06 ,8    08 ,6    0 6 ,10   ol0,6   o 6,ll   o i l ,6   o7,8__
'-'u ^ it '-/u '-''it u

_  /o8,7 _  o7,9 _  o9,7 _  o7,ll _  o il ,7 _  o7,12 _  ol2,7 _  o8,9 _
u '-̂ u '-'u '■'it u '•'u

  £*9)8 =  ^8,10   £<10,8   £<8,12   £12,8   £9,10   £10,9   £9,11 _
U U U X l U U t L V ,

_  /oil,9 _  olO.ll _  o i l ,10 _  o l0,12 _  o  12,10 _  o i l ,12 _  o l 2,ll _  n 
U it '-'it '-'it '-'it '■'it ^

r *1*1 — r 2-2 — r *3-3 — n 1
( d u iN l du2N l  du3 N l \

c u - c „  - c .  +  +

c 4' 1 =  C 5'2 =  C 6'3 =  N 2 (a “ lAr“ + ail2iV“ +  ^ N i \
u u u u \  dx\ dx 2 dx 3 J

C l ' 1 =  CS'2 =  C£ 3 =  N l  ^

/oio.i _  ^ 11.2 _  ^-12,3 _  »r4 ( du \N l  t du2N l  i du3N l
_ c “ _ G “ - " “ V ^ r

01.4   o2,5   o3,6   j\t1 (d u iN *  du2N l  du3 N l \
c u - c „  - c „  +  +

^4.4 _  ^5.5 _  /-i6,6 _  »r2 Idul Nl  , **2^  , du3 N ^ \
c “ “ c “ “ c “ “ f e T y

£.7,4 _  ^8,5 _  ^9,6 _  pj3 / d u i N l  + du2N l  + du3 N l \  
u u u u \  dx\ dx 2 6 x 3 J

010.4 _  o l l ,5 _  o l 2,6 _  ^7-4 ( du lN% du2 N% du3N%\
c „  - 0 „  - G „  _  7 V „  - j

c y . c j  . , c 4 . . , „ ; ( « i  +  « 2  +  » g ; )

/-t4.7 _  rSi.S _  / i6,9 _  \r2 ( &u lN l  du2 N 3 0 u3 N^ \Cu - C u - C u _  JV„ J

r 7 .7 _ r 8.8 r 9,9_ Ni ( dul N l  , 9 “2^u . **3^2 \
_ c “ - G“ _JVH “ ^ r  “ ^ r  ~ ^ r y

/-fl0,7 _  /-<11.8 _  >̂12,9 _  rt4 ( 3 u lN l  du2 iV3 du^N^ \
0 „  - G u  - G „  +  +

-̂-1,10 _  ^.2,11 _  ^3,12 _  ftrl ( 3 u lN l  du2N l  du3N l  \
Cu - c u - C u - N» y - a ^ -  + - Q ^ -  + - d ^ - )
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r * 4 ,io
u

_  r 5 , l l  
^ u

_  r^6 , i 2 
^ I t

V
II

r » 7 ,io
u

—  / ^ 8 ,H _  r» 9 ,1 2  
'-'u

II 'U .  U . w '
5 x i  5x2  5^3

<,10,10 =  <,11,11 =  <,12,12 =  N 4 ^ f l g £  +  +  (B 4)

The 12 x 12 symmetric diffusion matrix for the intermediate momentum is given

as

K r = \ { v  +  v t ) p ] 

Re

where the matrix coefficients

[  [K '/]d tt  =
J

K lT'j

[ ( u  +  v T  ) p ]  

Re JJ n
B t ( I0 — ^m m T 1 BdQ (B.5)

* ;•!  =

K 2 '2 =

K ^  = 

K .r5-5 =  

K™  =

k y  = 

K 8,8 =

K™  =  

^ 10,10

4 f d N l ' 2

K u ,n

3 V 5xi

i f d N l V
3 \  5x2 /

4 z a ^ N 2 

3 V 5 x3 y 

i ( d N l \ 2

3 \  5xi )

4 ( d N l \ 2

3 \  & x 2 )
4 Zd N l \ 2

3 \  5 x3 y
4 zsu ^ y
3 \  5xi y
4 z a j v | y
3  (, ax 2 y

4 Z d jy iy  
3 V 5x3 y 

=  4 ZdJV^X
3 \  5xi /

4 ZaiV*
3 V 9x2

^ \ d x 2 )  \ d x 3 J

( d N i y  z a ^ y  
+ Vs*i /  v&^y 

zajvay z a ^ y
+  ^ x 2 ;

^ \ d x 2 )  ^ \ d x 3 J 

, ( d N l \ 2 . ZfiAgy
+  V a*i /  V & ^ y

zaw^y zajvgy
+  \,9 x 2 y

zaivgy zaiv^y 
+ \ d x 2 J \ 9 x 3 J

zajvgy z a ^ y  
iA a*3/  

zajvgy zajvgy 
\a ® 2 /  \ a c i y

2 z^y z^y
+  U ^ y  U W

! .  3 v 9 , ___ v

+ v 5xi y V 9X3 )
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^ 1 2 ,1 2

K l '2 ■- 

K ^ ' 3

K y

K ^ 5 

K I '6 : 

K y  ■- 

K y  : 

K y .  

K y °  

K y 1

V d x 2 J
4 ( d N j \ 2  

~ 3 \ d x 3 )
2,i =  2  d N l  d N l
T 3 dx\ dx2 

2 dNl dN}.
= K 3y  = --~

+

+

d N l dN l
dx 2 dxi 
dNl dNl

= K i-1 =  -

3 dx\ 5 x3 0 x3 dx\
4 dN l  dN l

+
d N l d N l

= K J ’1 =

3 dx i dx i 
2 dN l  dN l

+dx2 dx2 

d N l  d N l

d N l  d N l
dx3 dx3

3 dx\ dx2 dx2 dx\
6il =  _ 2  dN l  d N l

+
d N l d N l

3 dx\ dx3 dx3 dx\
7A A dN l  dN l  .

3 dx i dxi 
g,! 2 dNl dN l
T 3 5xi 5x2

jy-9,1 _  _ ^ d N l d N l  
T 3 5xi 5 x3

49A^9JV£ 
3 5xi 5xi

57V* aiV3
+

5tv;  aiv3

= K l 0 ’1 =

dx2 dx2 dx3 0 X3 
dNl dN l  
dx2 dx i 
9JV,j 9JV;?
5x3 5xi 
dNl dN l  dN,

+

+

+

=  K l l ' 1 =  ~
2 57V,1 57V4

dx2 dx2 

dNl dNl

+
l d N i

dx 3 dx 3

+

i^ 12 =  K y i =

3 5xi 5 x2 dx2 dx\
2 57V4 dN l

+
57V; 57V4

=  K b 2 = —

3 5xi dx3 dx3 5xi
2 57V* 57V4

3 5x2 dx3
+ aw ; aw ;

K 2y  

K y  =  

K y  

K 2y

K y  =  

K 2y  =

7V-2,10 
Jxr

=  w i>2 =
2 57V4 57V2

+

5 X 3  5 X 2

57V,1 57V̂
3 5 x2 5xi 5xi 5 x2

5t2 =  i  d N l  d N l
T 3 dx 2 dx 2 +

d N l d N l
+

=  K fl '2 =  —2 d N l  d N l
d x i 5xi 

d N l  d N l  
9x3 9x2 
d N l d N l  

3 d x 2 d x i ' 5xi 5x2 
8,2 4 d N l d N l  | 9 ^ 9 J V u3

3 9x2 9x2 " "

3A^9JVU2 

5x3 dx3

=  w j*2 =  - r

3 5x2 5x3 
2  d N l  d N l

+

iv-9,2 _  2 57V;57V3 
T 3 5x2 5x3

2 d N l d N l

d x i 5xi 
dN,

d N j d N l  
9 x3 9 x3

^TV 3

5X3 5X2
=  X 10,2 =  _ f  

-‘‘■r o +
dTV; 57VU4

3 d x 2 d x i 5xi 5x2
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iV2’44

i f 2’12

k Y

K 3)5 

X 3,e :

i f 3’7 : 

^3,s :

K ?>9 :

R 3, 10

^ 3 ,n

R 3 , 1 2

:

XT4-6 : 

/fT4’7 : 

iC4’8

t f 4’9

*4,10

X 4’11

X f ’12

*5,6

=  TV44’2 

=  X 42’2 = 

= K 4)3 = 

= K 3 ’3 = 

= K ^ 3 = 

= K 1/  = 

= X 8’3 =  

= K ? ’3 =  

=  iv 40’3 s 

=  /v44’3 =

=  K \ 2)3 : 

= K 3’4 =  

= X ?>4 =

K 7t ’4 =

4 5 tv 4 5tv^
3 5x2 5x2 

2 57V4 57V,?

+
57V,4 d N l

+
dN l d N l

d x i 5xi 5x3 d x 3

+
aw i 9jv4

3 9x2 9x3 9x3 9x2
2  d N l  d N l  + d N l d N l
3 d x 3 5xi
2  d N l  d N l
3 9x3 9x2

4 57Vi57V2
+

5xi d x 3 
< ^ 4 diV2 
5x2 5x3 

57V,4 57V,?
+

+

d N l d N l
3 5 x3 d x 3 5x2 5x2 5xi 5xi

2 d N l  d N l  d N j
3 d x 3 5xi 
2 57V4 57V,?

+

5xi 5x3 
<97V4 57V3

3 5x3 5x2 d x 2 5x3
4 57V£57V£ 57V,4 57V3
3 d x 3 5x3 +

5 X2 5 x2 
1

+ SJVi d N l
9xi 9xi

2 d N l  dN *  + d N l  dN *
3 9x3 9xi 
2 d N jd N *
3 5x3 d x 2 

4 57V,4 57V,?

+

3 5x3 5x3 
2 57V,? 57V,2

+

+

5xi d x 3 
d N jd N *  
9 x2 9 X3

5x2 5x2 
57V,? 57V,2

+ 9 ^  W 4
5xi 5xi

3 5xi 5x2 d x 2 5xi
2 d N l  d N l

+
9JV2 9iV2

3 d x i 9x3 9x3 9xi
4 d N l  d N l

+
d N l d N l

=  i f ®’4 =  - z

3 5xi 5xi d x 2 5x2
2  d N l  d N l  d N l  d N l
3 d x i 5x2 5x2 $xi

+
d N l d N l  
d x 3 5x3

7Vr9’4 =

iV40,4

TV41,4

iV i2-4

iV8)5 =

2 d N j d N 3
3 5xi 5x3
4 57V,? 57V,?

+

3 5xi 5xi
2 d N l  d N l
3 d x  i d x  2 
2 57V,? 57V4

+

9Af2 d N l  
d x 3 5xi 
57V,? 57V4

+

+

5 x2 5 x2 
57V,? 57V4

+
dA^dTV4 

5X3 d x 3

5x2 5xi 
57V,? 57V,?

3 5xi 5x3 5x3 5xi
2  d N l  d N l  d N l  dN l
3 9x2 9x3 9x3 9x2
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K*>7 =  K 7’5 =  
r T 3 9x2 9x i 9xi 9x2

*5,8 =  ^8,5 =  t d N l d N l  d N l M l  d N l  d N l
T r 3 9x2 9x2 9xi 9xj 9x3 9x3

*5,9 =  t^9,5 =  _ 2 M l M l  d N l  d N l
T T 3 9x2 9x3 9x3 9x2

ry-5,10 =  K W,5 = _ _ 2 d N l d K  , d N l  d N l
3 d x 2 &n 0zi &c2

k-MI =  * 11,5 =  i d N l d N l  d N l d N l  d N j d N j
T T 3 9x2 9x2 9xi 9xi 9x3 9x3

*5,12 =  iv-12,5 =  _ 2 _ d N ld N l  d N l d N j
T r 3 9X2 9x3 9x3 9x2

* 5 .7  =  * 7 ,6  =  _ _ 2 d N l d N l  d N l  d N l
T 3 9x3 9xi 9xi 9X3

*6,8 =  iv-8,6 =  _ _ 2 d N ld N l  d N l  d N l
T T 3 9X3 9X2 9X2 9X3

*6,9 =  *9,6 =  4 d N l  d N l  d N ^ d N l  d N l  d N l
T r 3 9x3 9x3 9x2 9x2 9xi 9xi

* 6,10 =  * 10,6 =  _ 2  W l d K  d N l  d N l
T T 3 9x3 9xi 9xi 9x3

* 6,11 =  tv-11,6 =  J _ d N l d N l  d N l  d N l
T T 3 9x3 9x2 9x2 9x3

* 6,12 =  tv-12,6 =  4 9 * ^ 9 * ^  d N l  d N l  d N j d N j
r T 3 9x3 9x3 9x2 9x2 9xi 9xi

*7,8 =  *8,7 =  J - d N l d N l  d N l d N l  
T T 3 dx\ 9x2 9x2 9xi

*7,9 =  *9,7 =  _ _ 2 d N ld N l  d N l d N l
T T 3 9xi 9x3 9x3 9xi

*7,10 =  * 10,7 =  ^ d N l d N l  d N l d N l  d N l d N l
T T 3 9xi 9xi 9x2 9x2 9x3 9x3

*7,ii =  tv11,7 =  _ 2 d N l d N l  d N l d N l
T T 3 9xi 9x2 9x2 9xi

*7,12 =  * 12,7 =  _ 2  d N l ^ l  d N l d N l  
T T 3 9xi 9x3 9x3 9xi

*8,9 =  *9,8 =  _ 2 d N l d N l  d N l d N l
T T 3 9x2 9x3 9x3 9x2

* 8,10 =  * 10,8 =  _ 2  d N l d N l  d N l d N l
T T 3 9x2 9xi 9xi 9x2

* 8,11 =  * 11,8 = i d N l d N l  d N l d N l  d N l d N l
T T 3 9x2 9x2 9xi 9xi 9x3 9x3
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* 8,12 =  tv-12,8 =  _ 2 d N l d N i  d N * d N j  
3 dx 2 dx 3 dx 3 dx 2

* 9 , 1 0  =  * 1 0 , 9  =  _ 2  d N l d N i  ON* ON*
T T 3 dx 3 dx\ dx\ dx 3

K %n =  iv-ii,9 =  _ l d N l d N t  , 9iVu3 9JV*
T T 3 5 ^ 3  dx 2 dx 2 dx 3

K 9,12 =  K xifi =  i d N l d N t  d N l d N i  d N j d N t
T T 3 5 x3 5 x3 5 x2 5 x2 5xi 5xi

Jfio.11 =  if li.io =  _ 2  97V£9A£ d N j d N j  
3 9xi 9x2 9x2 9xi

Jf 1 0 .1 2  _  If 1 2 .1 0  ... 2 9iV* 9JV« dN* d N j
T T 3 5xi 5 x3 5 x3 5xi

if u ,i2 _  ,f 12,11 2 9Af„ d N i  dN* dN*
Kr - K * =  _ 3  9 x 7  9 x 7  9 x 7  9 x 7  ( }

The 12 x 12 matrix of the isotropic turbulence for the intermediate momentum is

given as

Cu* =  l  [  [CU] dfi =  |  f  N ur VN«dQ (B.7)

where the matrix coefficients are

o l , 2    / o 2 , l    / o l , 3    / o 3 , l    / o l , 5    / o 5 , l    y^»l,6   / o 6 , l    / o l >8 __
^ U K  ^ U K  ^ U K  ^ U K  U K  ^ U K

  o 8 , l    / o l , 9    / o 9 , l    o l , l l    o l l , l    0 (1,12   12,1   o 2 , 3    /o 3 ,2  __
^ U K  ^ U K  ^ U K  ^ U K  ^ U K  ^  U K  ^ U K  ^ U K  ^ U K

  o 2 , 4    /o 4 ,2    /o 2 ,6    io 6 ,2    /o 2 ,7    /o 7 ,2    /o 2 ,9    /o 9 ,2    o 2 , 1 0  __
U K  * ^ U /t  '- 'u /C  ^ t l / C  ^ U K  ^ U K

  o l 0 , 2    r ' (2,12   o l 2 , 2   /o 3 ,4   /o 4 ,3    /o 3 ,5    /o 5 ,3    o 3 ,7    /o 7 ,3   
^ U K  ^ U K  U K  U K  ^ U K  ^ U K  '-''U K

  /o 3 ,8    /o 8 ,3    o 3 , 1 0   o l 0 , 3    o 3 , l l    / o l l , 3    /o 4 ,5    /o 5 ,4    /o 4 ,6  __
'-y U K  U K  ^ U K  ^ U K  ^ U K  ^ U K  ^ U K

_  /o 6 ,4  o 4 , 8  o 8 , 4  /o 4 ,9  o 9 , 4  /o 4 ,1 1  <011,4  < o4,12  _  < o l2 ,4  _
U K  U K  ^ U K  ' - ' l l / t  '-y U/C ^ U K  ^ U K  '“'t t /C  '“'U K

  <o5,6    < o6,5    <o5,7    /o 7 ,5    < o5,9    <o9,5    o 5 , 1 0    < o l0 ,5    < o5,12 __
^ U K  U K  ^ t l K  U K  ' - ' t i K

-  r> 12 ,5
— ° U K

II

V
n = C 7’6 =U K

II
00 

£ c 8,6 =* ^ U K
0 6 ,1 0  _  
^ U I C

o l 0,6 _  
U K

0 6 ,1 1  _  
^ U K

o i l ,6 _  
^ U K

= C7'8U K
_  r*8’7 -

U K
.  /o 7 ,9  _ r 9>7 -

V U K
n  7,11 _
^ U K

o i l , 7 _
U K

< o7 ,12  _ r 12>7  _
U K

0 8 ,9  _
^ U K

— /o 9 ,8
U K

/O 8.10 
—  U K  ■

o l 0,8 
~  ° u «

0 8 ,1 2  
— ° U K

—  / o l 2,8
U K

__ o 9 , 1 0
U K

_  / o l 0 , 9
^ U K

__ o 9 , l l
U K

_  / o i l , 9  _
' - 'U K

_  o l O . l l  _  o i l , 10 _  < o l0 ,1 2  _  o l 2 , 1 0  _  / o i l , 12 _  o l 2 , l l  _  q
* ^ U K  U K  U K  U K  U K  ^ U K
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C 2,2
v U(t

=  N i dNk  
dx\ 

N i9 N i  
" 9 x 2

c 3,3 =  N' S v i . i e  *  *1

r»4,l _
'“' t i K

^5,2
'■'uk

i ^ .
9x3 ’

N A
“ 9xi ’

C 6,3 =  ATU11K ly'

6 X2

2 ° K

C 7'1 =  N 3V  -7/ l£* ■**«»*

^ 8.2 _

^9,3 _

5xi

JV3^
“ 9 x 2

jv3ajv-

C ^ = . /V .

r*i.4 _
—

c 2>5 =U K

c 3'6 =  N1 /iC  1  *1

tt ’ 

i M .
“ 5 x 2 ’ 

1^ 2 .

JV.

“ 5x3 ’

u 5x3 ’ 
dN 3

C^ ’2 =  AT,4

 « .
u 5x3 ’

4 ^ 2  
“ 5 x i  

5AL1

“ 5 x 2

^ 1 2 , 3  _  a t 4 ^ k

u 5 x 3

r 4,4

^5,5 _
'-'UK

p 6,6 _  
'-'UK

<^7,4 _
U K

f<8,5 _
°MK —

/o9,6 _
UK —

/nrl0 ,4
U U K

r » n , 5
U K

/ - r l2,6

AT,2 ^ 2 .
“ 5 x i  ’

iV2 ^ -  
tt 5X2 ’

^ 2 * 2 .
u 5X3 ’

* 3 * * 2 .
u 5 x i  ’

N
s d N l
u 5 x 2 ’

3 ^ 2 ,
u 5 x 3 ’ 

4 ^ 2=  AT'
“ 5 x i

= N * ™ 1  
u 5 x 2

4  d N l= N
u 5 x 3

cl'Z

r 2,8  
^ U K

f<3,9
U K

C 4>7U K

fib ,8 
U K

f t  6 ,9

r 7-7
U K

f>8,8
U K

r  9 ,9
U K

•) '-'u

• r 11» w

• r 15 '-y U

J , *
tt 5 x i  ’ 

i d N l .
u 5 x 2 ’ 

i d N l

= N

5 x 3 

2 d N l
u 5 x i

= N 2 d N 3

u 5 x 2 ’

iV2^
u 5x3

N *™ 1 , 
u 5 x i  :

* 3 ^ 2 .
“ 5 x 2 !

u 5x3

r * M o  _  aj-i ^ k 

Cws — ~dx\

« ' - « S

/-»3,12 _  atI

G“« ~ iV“ 5 5 '

r *4-10 —  a/-2 ^ «
C“" “ ^ “ 5^7

r*5-11 =  a t2^ A  
u 5 x 2

p 6 , 1 2  A t-2

u 5 x 3

^*9,12 _  A j s d N *

° UK - N u~ d ^
d N 37 =  /V 4 «  ■ r /lO .lO  _  at-4

u 5 x i  ’ ™
d N j  
dx i

» =  Jf4 ^ .  c u .n  =  JV4 « !2
“ 9 x 2 ’ “  " 9 X 2

9 =  /V4^ -  ^ 12,12 A
u ^  U (B .8 )

The 12 x 1 traction vector for the intermediate momentum is given as 

[(i/ +  vt)p\
fu  = i?e

J  [ f f ] d , T  =  J  N nTt ddT

In the above equation a matrix of shape functions defined as

(B.9)

N u =

N 1l y U 0 0 N 2U 0 0 N 3U 0 0 N 4U 0 0

0 AT1U 0 0 N 2l y U 0 0 N 3u 0 0 N 4u 0

0 0 AT1iyu 0 0 N 2u 0 0 N 3u 0 0 N 4u

(B.10)

and the traction is
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{y +  vT) p 
=  Re

where

tt, =

t 2l d

4

+

4

4

4

4

4

4

- l u l ^  +  u2 ^ + u 3 ^
3 l  1 dxi  1 dx\ 1 dx\

ON? 4 d N * \ „+  Ui ——  I nr. -dx\ J VX \

. 1  M i 2 9N l~ | U<2 ~x  “I- U2 ”7C—  “H

I l K3

0 X2

i ? N i
dx 3

,9N l
Ox 2 ' “ 2 Ox 2 

,dN? ?dN 3

+ Û ) n* '~

, 2 u i y u  , 3 u i y u  , 4  ^  ^  ,
u3  ̂ 'I- U 3~ a Z ~  U 3~ Q x ^  J  71x10 X3 Ox 3

Wl

2 5xi 
1 ^ 1

2 ON? 
2 Ox 1 
2 ^ 2

:5 Atf aiV4
5xi 4  ^2

)8Jl3

5 x i

4 ^ ,

1631 M i
dx\

xd N i
U' l £  + U'

u\

1 a iT  +  “ 1 a57  +  “ 1 9x2_;  ' ‘I2

+ 3 d x j  'x*
2d N l , d N 3

+ uh d L + v' l  ”5xi

2 w i

Ox 1
3 ON? 

+ u\ u

TLx2 4

™X2 +

w*, 4

Ox 3
4 /■ xajv^ , 2aw? aw?

, 4 9 N * \  .
0 X3

2 Vi,u , „.3^Jvu , .A^^u A
0 * 2 +  “2 a ^  +  “ 2_^ 7  +  “ 2 ^ 7  J  “

3 V 1 d x i
id N ^  , o d N I
1 “ +U

1 5xi 5xi

3 V̂ 3 Ox3

i M l  , ..24  U3
5JV2
5X3

4  u\
Ox 3

4  u3 5A^>i 
5x3 y nXl 4

■ flW* + j M
1 Ox 2 1 Ox 2 1 Ox 2 1 Ox 2 J Tix2 4

u2

Ox 1 

i d K  
dX2  

1 m l  
dx3

+ u2̂  
+  “ 2 a*i

2 ON?
Ox i

4  u
3 Ox 2

9 N i
dx3

dx2
2V„„ 3d N 3 t d N i \  „

+ Û  + U* d £ + t 4 d £ ) n*°

d x ! y ,i12 

5x2 y3 - 5 I 2 - + U 3 -5 Z 2- )" * »  +

(B .ll)
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3 4 /  xd N i  2 d N l  3 d N l  4 d N * \  „
td =  + ^  + ^  +

2 (  ^ d N \  2d N l  s d N l  4d N * \  „
-  3 \  9 x f ~dx\ "*" ~ d xf "*" ~ d x f)  71x1 ~

2 I  1dN i 2dN l 3d N l . d N * \  „
, (  t d N l  , 2d N l  , 3 0 jV u3 , t 9 N i \ 4  ,

+ r i_a ^  ^  ^/  ,a jv *  2 a?v2 , a j v 3 4d N * \ .
, (  xd N l  , 2 3 i V 2 , 3 d N l  , 4 f l J V < V ^  ,+  r 2^  +  “ 2^  +  U2^  +  “ 2 a ^ r J " I3 +

(  xd N l 2 dN? odN l 4 d N i \  „
+    +  w3 ^ ---  +  w3 ^ ---  + U3-H~^ nZ3 (B-12)dx 2 3 9 X2 3 dx 2 3 y

where both hXl, nX2 and nX3 are normal vectors.

The 12 x 12 symmetric convection matrix of the stabilization for the intermediate 

momentum is given as

K u = - \  f  [KV]  £ l  =  - \ [  (Vt (uN„))t (Vt (uN u))dfi (B.13)
* Jo. * Jn

where
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(Vr (uN u))r  =

du iN *  , du 2N}L , du3 N*
“i e r  +  ~ i& r +  ~1& r6 x2

0

0

0
du iN ,\ du 2 N}L . du^ N l

a -  +  +  ~ ^ r

du j.N l , 6 u2N l  du3N I
fi*n. I "T” 6 x 3~Bx1 9x2

0

0

duiN% , du2N^ , du3N^
t e t  +  " i s r  +  " ^ r

9uiAfl 1 9l*2W,1 ,
9xi 9x2 9x3

9 x i 9x2

0

0

d u jN *  , d u jN l  . d u jN l  
9 x i 9x2 9x3

dujN^ , dujN* , dujN^
9 x i 9x2 9x?

9m TV* , 9 u2 ^ 1  , 9u3 Nt1
9 x i 9x2 9x3

9m7V/t 9u2̂  , duaVV̂
9 x i 9x2 9x3

QuiN* . dv.2  N* . du3 N% 
9 x i *• 9x2 9x3

0

0
duiN% , du2 N?L . 6 1 1 3 N^ 

9 x i 9x2 9x3

0

0

9m  JV* 9 u2 ^  , 9 u3^,1
9 xi 9x2 9x3

(B.14)

The 4 x 4  symmetric, lumped mass matrix for the pressure is given as

Mp=GW7„ [M̂'] = ( )̂"NpdQ (Bl5)
where

N p = Np N$ Np Np (B.16)

The 4 x 4 symmetric, second lumped mass matrix for the pressure is given as

H  =  [  [W'i] d n =  [  (V N p)t V N pdn 
Jo Jo

and the 4 x 12 gradient (operator) matrix is given as

(B.17)

G =  f  [Gi j ] <m =  [  (VNp)r N„dn 
Jo Jo

(B.18)

where
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V N P =

d
d x \

d
8 X2

d
N l  N l  N l  N l (B.19)

The 4 x 1 forcing vector for the pressure is given as

fp =  A t j  [/*J] dT =  At j  N j  [NuU n +  01 (AU* -  A«Vp"+%)]  nTdT (B.20)

where the vector coefficients f p 3 are

f 1’1J p = N 1p [ N lU l  + N l u l  +  N*Ul + N*U}) h x i  +

+ N 1 ( N l y l  + N lU l  +  N l u l  + N lU l)  n X2 +

+ N 11 p ( N lU l  +  N lO i  +  N lO l +  N iU i )  n X3

f2,l
J p = n I ( .N l u }  +  N lU l +  N l u f  +  N i u l )  nxi +

+ JVp (N l& l + N iU l  +  N iU l + N iU l)  h X2 +

+ n p 'f o u l  + N lU l  +  N lU l + N iU l)  n X3

f 3, l
J p = Np<( N lu }  + N lU l  +  N lU l + N i u f )  nXi +

+ N i l ( N lu }  + N lU l  + N lU l + N iU l)  nX2 +

+ N i l (N lU l  + N lU l  +  N lU l +  N iU l)  nx3

*4,1
J p = N i l [ N lu }  +  N lU f  + N lU l  +  N iU })  nxi +

+ N i l [ N lu }  +  N lU l  +  N lU l +  N iU })  h X2 +

+ N i l [NiU}  +  N lU l  +  N lU l + N iU })  h X3

The 4 x 4  symmetric, lumped mass matrix for the turbulent kinetic energy is given

as

M K = J  [Mp] df2 =  N ^ N W fi (B.22)

where the matrix coefficients ;j are
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A # 1 VVII II

<N 
£

 

*

- n 2 n 2-i V / C i V K > Ml'3 =  ^ X 3; M l’4 II N l

Ml'2 =  K 2’1 = Ml'3 = Ml'1 = M l’4 = M l'1 = N lN l

M i 3 =  M i 2 = N lN l; Ml'4 = Ml'2 = Ml'4 = Ml'3 = N l N l (B.23)

The 4 x 4  convection matrix for the turbulent kinetic energy is given as

c „  =  f  [ c - j ]  d n =  f  N Kr ( v T ( u N « ) ) d n
«/f2 J O

where the matrix coefficients j are

(B.24)

Cl'1 

C3A 

Cl'2 

Cl'3 

C lA 

CI '3 

C2A 

c 3A

N l

N l

N l

N l

N l

N l

N l

N l

d u iN l  
dx\ 

d u \N l  
dx\ 

dui N* 
dx\ 

d u iN l  
dx\ 

duxN * 
dxi 

duiNjt 
dx\ 

duiN*  
dxi 

d u iN j  
dxi

du2N l  du3 N lK \  2)2

dx 2 dx 3 ) '  K
du2N l  du3 N 3\  44

dx 2 dx 3 )  K
du2 N% du3 N l \  2,i

dx 2 dx 3 ) '  K

= N,
/ d u iN l  ( du2N l

du2N l  du3 N l \  31 =
dx 2 dx 3 ) '  K

du2 N j  du3 N j \  41

dx 2 + dx 3 ) '  K
du2N l  du3 N l \  3)2

dx 2 dx 3 ) '  K
du2N l  du3N j  V  4t2

dx 2 dx 3 ) '  K
du2N j  du3 N j \  4)3 4 ( d u i N l

dx 2 dx 3 J  ’ K * V 5xx

K V 5*1
Ar ^ f d u i N l  

K \  dxi

N 2 ( ^ l
K \  d x ! 

K V dX! 

K \  dx  1

* V  5*1
4 f d u i N l  
K \  dx  i

+

+

+

+

+

+

+

+

dx  2

dx 2 

du2N l  
dx  2 

du2N l  
dx  2 

du2N l  
dx  2 

du2N l  
dx  2 

du2N l  
dx  2

5 u2^
dxn

du3_N l \
dx 3 y

■ du3N l  \5 x 3 y
5 x3 y

du3 N lK 
dx 3

5u3iVi 
5 x 3 

, 5usA g\
5 x 3 y 

5u3Ag\
5 x 3 y  

, 5u3Ag\
5 x3 y

(B.25)

The 4 x 4  symmetric diffusion matrix for the turbulent kinetic energy, is given as

where the matrix coefficients K l 3 are
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V5-
II

V ,
3_  (dNl

\ 9 x i  ,
Kl2= kV  =

= kV  =

K 4= K l =

& CO = Kl2 =

kV = < 2 =

kV IICOVII

M i
9 x 3

+ +r«5SV
\ d x 3 J

K t 2

KtA
d N l  d N l  d N l  d N l  d N l  d N lf t  ft; n  rv  ft; (V

9xi d x 1 9^2 9x2 9x3 9x3
9iV* 9Â 3 9AT1 9iV  ̂ d N i d N 3

rv  rv  |  rv  rV |  rv  rv

9xi 9xi d x 2 9x2 9x3 9x3
9JV* 9#*  9JV* d N 4

rv  ft; | f t; ft;

9xi /  \  9x2 /  \  9 x3 /

dx  i y \  9x2 /  \  9 x3 y

d N j d N l  [
9xi 9xi 9x2 9x2 
97V? 9AT3

9 x 3 9 x 3
9 iV2 aiV3 5A r2 5iV3

j f t; j f t  rV

9 x i  9 x i  9x 2  dx 2 9 x 3  9x3
9iV2 aiV4 a iV 2 aiV4 d N l  d N l

rv  ft; j rV ft; rv  rV

9 x i  9 x i  9x 2  9x2  9 x 3  9x3
9 iV j 9 A ^  91V3 d N l d N l  d N l

rv  rv  |  rv  rV j rv  rV

9 x i  9 x i  9x 2  9 x 2  9 x 3  9x3

(B.27)

The 4 x 1  vector based on both the generation and source terms of the turbulent 

kinetic energy equation is given as

f*n = f  f/£nl dn= f  = f  N«JnL J Jn Jn TijdjUi -  N eE dNl (B.28)

where T 777 =  r iK+ r 2 K+r3K+r 4K+r5K+r6K + r7K+ r 8 K+rgK+rioK+ r n K may be respectively 

expressed

r iK
=  * t i ( u l d K  2d N l

3Re \  1 9 x i  1 9 x i

2 fit
3 Re u21dNi + u l dNn *6N «

dx  2

+  Ui

“I" It'

sflJV* , „ 4 ^ u4\ 2
"  +  Ul^ 7 j

i 9 ^  2 d N l
u } ^ -  +Ui~prJL +  w

1 9xi 9 x i

9 x i

M  ____
9X2 '  ~2 9X2 T  U2 9X2 y  

3 9JV| , v 4 ? N i \  _
1 9xi 1 9xi )

3^  + uf _ N i \

^  ( u f M + u l ™ l + u
3 Re dx  3 9 x 3

s ON* 
3 9x3 d x  3 y
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T2k

—

+

^6/c —

Ul

4 lit 
3 Re
2 /̂ t
3 Re

^ + u f _ N l + u f _ N i + u i 9 N t ' \
dx\ ' ~ 1 dx\ dx\ Ul dx\ )

xdN i x odN l x 3 ^ 3  4 e N 4
0 X2

i d K
5 x 3

+ u$— ^ + u $
&X2 dX2

+ w2

+  u3
,dN2  „5M?
dx 3

+  u3 5 x 3
+ u%

6 X2

d N i
0 X3

u2

2 fit
3 Re

u\

9x2 ■ 9X2 1 9X2 ' 9X2 )
+ u2-

ux
i9JV>[ , ,9iV2

5xi +  111 dx\ 5 x i
d N i

1 9xi
i d N i  , . . 2 d N i  , . . 3 d N i  , . A d N i \

9X2 +  “2 9 l7  +  “ 2 5x2

4M( , . . 2 ^  , ..39iV3 ,U3 —----- “f- W3 —---  “f" H3  ---  “f- U3
3i?e
2 Ht
3 Re

8 x 2 )  
a d N i

u x

Us dx 3

dX3 

1 d N i  
dx\

+  U3

8 x 3

■dNi
d xx 

-  + ul

5 x 3 dX3

, 2^ > u , 3 d N i  , 4
+  ul ~ ^  +  +  U 1dx\

xdN i , , 3 d N l  3d N l  < d N l \  
9 i 7 + “ 3 9 ^  +  “3 9 ^ ; _

d xx

2M* (  xdN i  , ,cW „2 9AT3
«2

9JV.1
3/?e V. ■“ 9x2 9x2 9x2 9x2

♦<S)'i?e 1 1 5 x2 1 5 x2
2W,i  + u i ^ 3

ifL
.Re

dN i
' dx\

5X2
,5iV,2 d N 3

+

+ “ 2 9 i7  +  “ 2 5xi 5xi )
j d N l . j d N l  j d N l  id N i 'x  

1 9x2 9x2 1 9x2 9x2 /
iH (  xdNi  , 2 9 i V 2 ,

rs" =  f e r 2 & T +U2 9 ^  +  U
3^ »
2 9xi

+  U2
t d N j X

.1^ i9 iV 2 ,9JVi?

t e { U' l £ +U' l £ +U' l £  + U'
x d N i  , 29JV2 , 3d N i  , 49JV<\

“2 977 + “2 977 + “2 977 + “2 977 J

5 xi y

9Ag
5X2

+

.5A£
Re I " 1 5x3 Ul

2- s+# +tll̂ y
5 X 3

Re \  5xi 5xi
u  , „ . 2 u i y u  , , . 3 ^ u  , „ ,4   r w3

5 x i
+ W3

5A^' 
5 x3 y 
5 A ^ \
5x1 y

+
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} d N i  2m l  3m l  4m i \
9x3 dx 3  1 9x3 1 9x3 )

(  1 dN i  29N l  39N.? . 9 N i \ 2
^  =  W e { u ^ x : + u ^ + u ^ + u ^ )  +

+  ! * ( u \ dJ ±  + uf 2 % + u s d2 ! i + u *d2 I t \
Re \  9x3 9x3 9x3 9x 3 )

, 9 N i  _29 N l  , 39 N l  , t 9 N i \
“3 feT  +  “3 & T  +  +  “3 ^ r j

rs =  b .  ( u\ ^ + u ^ + u *d2 t i  + u*9J! i \ 2 +
* Re V, 9 x 3 9x3 2 9 x3 2 9x  3 )

Re V 3 9x2 3 9x2 3 9x2 3 dx2 )

V 9 x 3  9 X3 2 9 x 3 2 9 X3 )

r9“ “  Re V 3 9 X2 + 3  9 X2 +U39x2 +U 39x2 )  +

Re \  9 x 3  9x3 9x3 2 9x3 /

V, 9x2 9x2 9x2 9x2 )

n o «  =  - ^ ( K ' N k  +  lPNZ +  KtNZ +  K ' N i )

( u l 9 N l  u2 9 N l  ,9_Nl , 9 N t \  _
\  1 9xi  1 9x\ 1 9x  1 1 9x  1 )

2 / r , 1 R r l  t s 2  7 v r 2  r v 3  tM  k t 4 \  f  l ^ i  2 ^ ^ u  3  4  \- - (K'Ni + K2N2 + K N2 +  K*Ni) +  u\-  ̂ +  ^  +  «3 J  “

^  /  r y - 1  j v r l  ts-2 t\ t2  t s 3  a t 3  ts- 4 \ t4 \  (  2 ^ ^ u  3  4 ^ ^ u \-  -  ( K ' N i  + K 2N l  + tf »JV* + ^  ̂  ^  j

niie = ~ { E 1N } + E 2N  ̂+ E3N  ̂+ E4N )̂ (B.29)

Thus the vector coefficients /*’̂ J are

/in = ^ T«7/; fib = ^ T«7/; /Si = ^ T«77; / S  = ^ (B.30)

The 4 x 1 forcing vector for the turbulent kinetic energy is given as

flcr =  ± ( m + £ ‘
kT Re V( * + | ) / r [ ^  =  / r N "r W r

(B.31)
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where the vector coefficients | I are

JkT

+

*2,1 
Jk r

,3 ,1
J k T

f4'1J k T

\  o x i  o x i o x i  5 x i  )

^  V ax 2 +K  0* 2  +K  0* 2  +  0 * 2  /

n xi +

n l2 +

»ri i  i u 1 ' k  *dN l+ N} \ +  K3
.1 dNi

dxa 5x3 dx 3

,r2l i 9 N i  2dN l  odNl  4N t  I /C1 - — 5- + K 2 ^ - ^  + K 3 *  ' “ 4
dx 1 5xi

+  0*3 /

, 0 ^ * ',  -
+  ^  ~ ----  ) Tlx! +

5 x i

5 x 2  5 x 2  5 x 2  5 x 2  J
+ m U i O N i  ^ O N l  ^ ON* , . d N * \ A

5 X 3

J V S U ^ + K 2

5 x 3 5X3 +  K
5 x 3 7 13

dN i  odNl
5xi 5xi +  «“

5 x i
+  K 5xi /

+ M *  0*2 +K 0*2 + 0*2 0*2 /  2

5 x 3 5 x 3

5A^3 4 5JV4 \

5 x 3 +  *  5 x 3 j 71x3
-  N * \ k 0 *: +re 0 *, +K  0 *! +K  0 * J na:,+

+  N l  [ k' ^ + K4 I , .^9Nl  + K3dNi
5X2 5x2 5x2

5iVK4
5x2

fix 2 +

+ iV4 + ^  3 ^ V | 4 W Vi\M *  0*3 +  9*3 + K  0*3 +  0*3  / nS3 (B .32)

The 4 x 4  symmetric convection matrix of the stabilization for the turbulent kinetic 

energy is given as

K uk = - i  f  [K i i ]  dSl =  ~  f  (VT(uNK))r (Vr (uNK))dn (B.33)
* Jn z Jti

where the matrix coefficients jKill are
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K 1'1 =

K 3 '3 =

f d u i N l
V dxi
/  d u iN 3

V 9xi

+

K 1 '2U K

K 1 '3U K

K 1 '4

=  K 2 ,1  =

=  K 3 ’1 =

K 4 ' 1U K

rx2,3 __ 7̂ 3,2 _

t s - 2 , 4

I V U K K 4,2U K

K 3 ’4 = K 4 '3 =■**<»» î * ■* *  h i i"

5 ^  , 5 l l3iV,J 

dX2 

9u2 N 3 

d x 2 

d u iN '

+

+ +

5 x i

guiJV^
5a; i

5 m  W *

5xi
a u i ^

5xi 
d u iN 2 

dx  i

5a: i

+

+

+

+

+

+

dxs 
du3N l

9X3
9u2 N lK 

9x2 
9u2N 4 

9x2 
9u2N \  

9x2 
9u2N 2 

9x2 
9u2N 2 

9X2 
du2 N l  

9X2

2,2 =  ( 9 u i N i  9 u2N 2 9u3N*  V
V 5 x i 5 x2 5 x3 y

4(4 Z 5 u iA ^  9 u2N 4 9 u3N 4\
UK V 5 x i  5 x 2 5 x 3 /

+

+

+

+

+

+

9u3 N^
9X3

9u3 N^
9X3

9u3N j
9X3

9u3 N 2

9X3
9u3N 2

9X3
9u3 N 3

9 X 3

9u \ N 2 9u2N 2 9u3N 2\
9 x i 5x2 5x3 /

5m  N 3 5m-W3 5n3iV3 \
5xi 5 x2 5 x3 y

5 m ^  5 m i^  5ua^ \
5 x i 5x2 5x3 y

du2N l  d m N j \  
9 x l 5X2 5X3 y

atxijvg auajv^ a ^ \
5xi 5 x2 5 x3 /

d«3< x
5 x i  5x2  5x 3  /

(B.34)

The 4 x 4  symmetric, lumped mass matrix for the dissipation rate is given as

where the matrix coefficients

Me= f  [MiJ]dn= f  N£rN€dSl 
Jn Jn

Mi'j ]

(B.35)

are

M}'1 = N}N]- M2'2 — N2N2\ m 3 '3 = n 3 n 3- m 4A = n 4 n 4

M]'2 = M2,1 = N2; 3 = M3’1 = N̂ N3\ Me1)4 = M4'1 = N*N4
M2'3 = M3'2 = N2N3\ M2'4 = M4'2 = N2N4] M3'4 = M4'3 = N3N4 (B.36)

The 4 x 4  convection matrix for the dissipation rate is given as

c£ = f  [C*J'l dQ = f  Ner(VI'(uN£))cin (B.37)
Jn Jn

where the matrix coefficients jc l ’Jj are



n (o

grl.4 — JV1 f  dUxNf
‘ £ V flu

f-;2,3 -  m 2 (  d u x N 2 

Cc - N ' \  dxx

C?'4 =  JV? '  9 u iN ‘

duzNl du^Nl 
dx 2 +  5^3 

5 u 2 iV £3  a u 3 ^ V  r 4 ,4  

5 x 2 5 x 3 e
5 n 2 7V | 0 u 3 j V * \

5 x 2 5 x 3 7 ’ e

2 ( 9uUV2
5xi

^  ( f t * * ?
£ V 5xi 

( d u r N l
£ V  d x i

+  dU2Nz +  du3Ne }  . C3,l = N s ( dulNe
5x2 5x3 /

5 u 2jV£4 , duzN*  \  4>1

5 x 2 5 x 3 7 ’
5 t i2AT£3 5 n 3 iV3 \  3j2

5 x 2 5 x 3 7 ’
du2 N* du3 N ? \  4i2

5 x 2 5 x 3 7 ’

, 4 = a , 3 / ^ ^ V £  , d U 2 N l  d v * N [ \ '  s ~ i4 ,3

5X2 5X3 7V dxi

\  5xi

£  V  dxx

JV3 
4  V  dxx

N 4 l d u i N l1 ’ c> 1 A5xi 
^ 4  , ’duiN*

dx\

+

+

+

+

+

+

+

+

du2 N^ 
5X2 

du2N j  
5x2 

du2 N \  
5x2  

du2N l  
5x2  

5 ^ 2 ^  

5X2

5n2iV£2
5x2

5 U 2 ^

5X2

5u2iV£3
5x2

+

+

+

+

+

+

d u z N j \  
5x3 7 

, du-jN* \  
5x3 7 

duzN l  
5x3 

du$Nl 
5x3 

du^N} 
5x3 

d u s N l \
5x3 7

du^Ng
5x3 

5u3N3 
5x3

(B.38)

The 4 x 4  symmetric diffusion matrix for the dissipation rate is given as

where the matrix coefficients Kl'J are
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K 1)4 =  K 4 ' 1 =
dxi dxi
dN} d N j  dN} d N i

+ +
dN} d N i

dx2 dx2 dx3 dx3

*>"2,3   t s 3 ,2   

^  - K '  ~  d x , 5*1
57V2 5iV3 a iV 2 aiV3

+ +
d N i d N i

dx2 <9x2 5x3 5x3

X 2>4 =  K 4 '2 =
<9xi 5 x i

57V2 d N 4 d N 2 d N i
+ +

d N i d N i
dx2 5x2 5x3 5 x3

iV3>4 =  K 4 '3 =
5xi 5xi
57V3 d N 4 d N i  d N i

+ +
d N i d N i

5x2 5x2 5x3 5x3
(B.40)

The 4 x 1  vector based on both the generation and source terms of the dissipation 

rate equation is given as

<in =  f  [  f/^1  d ,n =  f  N / f  T " 'd J) =  /  N / §  fcEiT^ajUi -  c£2N £e1 dfl (B.41) 
^  1 J Jn K Jn & 1 J

where T 7/7 =  r i e +  r2e +  r 3e +  r 4e +  r5e +  r 6e +  r 7e +  r&£ +  rg£ +  ri0e +  r n £ may be respectively

expressed

T i e  =

T2e

*ccm fui9Nj + jdNl A d̂Nl ^ d̂N$_\2 _
3Re \  1 5xi
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+ u l

5X 2

57V4'
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1— « _u1,2 — +  -

5X 2 5 X 2  5 X 2 /dx  2 + ^2
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3Re \  5xi 5xi 1 5xi 1 5xi /
i51Vi , 251V3 , 351V3 , t d N i \

“ 2 577 +  “ 2 577 +  “ 2 577 +  “ 2 577 J
_ _  4c£i Mt (  jSJV; , 251V2 351V3 431V4Y
r3£ _  TDfe” \  5x7 5x7 5x7 5x7 /

2c£i M, /  ,5Afj 2 5Af„2 351V„3 451V4V
3fie \  1 5xi 1 5xi 1 5xi 1 5xi J

i5JV„l , 2d N l  , 351V3 , Ad N * \
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^ U ^  + ^ + u f N i  + u t 9 N i \
Re \  dx\ dx\ dx\ dx\ J  
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+  ^ m L f J i + u l ^ l + u f ^ l + u f Niu
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2^  +  tl351V| +  u4 51V ^
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ca w  (  151V4 , 251V2 , 351V3 , 45JV4'\2 ,
=  “ r T  \  '5 7 7  '  577  1 57 7  '  5 7 7 J  +

c a w  /  1 a fl^  25 ^  .  OV* *8N*\
+  + u 3 o  +  o  +  3Re \  dx\  dx\  dx\  dx\  J

4 . , , ! <  4 . 4 . „ «
V 1 5 x3 1 5 x3 1 5 x3 1 5 x3 /

r 7  =  CJ ± ? l( u l ^ + u 2 ^ l + u ^ + u i 9 K \ \  
£ Re \  3 5xi 3 5xi 3 5xi 5xi /

CjUh  )  xd N l  + 1 2 d N l + u , 9 N i + u i 9 K \
Re V 1 5 x3 1 5 x3 1 5 x3 1 5 x3 )

( j ™ k  + # M l + us 9 N l  *8 N * \
\  3 5xi 3 5xi 5xi 5xi /
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rs =  S M f i d K  *dN> u3d N l  4 dN } \ 2 

£ Re V 5x3 5x3 2 8 x 3 2 d x 3 )
, c£lfi t f  , d N i  , 2 dN* , 3 ^ 3 , * 5 ^

+  ^ { u3^  + u^  + u* - d ^  + u* - d ^ )

( „ 4 . ,#2^  , 3^  4 . , , 4 ^
V 2 5x3 2 ^ 3  2 dX3 2 5 ^ 3  J

rq =  £ £ ^ L l ^ + u 2 ^ + w 3 ^ + u 4^ 2 +
e .Re \  5 x2 d x 2 3 5 x2 3 5 x2 /

+  ^ ( u ^  + u f ^  + u f - ^  + u f N^
Re V 9x 3 '  d x 3 * 5x3 z 5x3 /

u 1^ + w 2M  +  u3 M + w 4 ^ > |
5x2 5x2 3 5x2 3 5x2 /

rioe =  - ^ ( K 1^ e1 + ^ 2iV2 +  ii:3iVe3 +  ii:4iVe4) 

u id N l  2 d_Ni u3 d N i , d _ K \  _
1 5xi 1 5xi 1 5xi 1 dx  1 /

2cei
3

2cei

+ K*JV* + ) ( ^ g  +  u l g  +  u l g  + ^ g )

{ K ' N l  +  K>N? +  *»W» + i f ^ 4) ( « i g  +  « § g  +  « l g  + 4 g )3
n u  =  —ce2 +  E 2 N 2 +  E^Ng +  E^Ng') (B.42)

Thus the vector coefficients are

  y y l 'v ' / / / .  ^2,1 __  t\j 2'Y'III .  />3,1 __  /r4,l ______
Jefl ~  iV e •L e > -/eft — i Ve 1 e > / ef2 — ■/ ve i e > / ef i  — i Ve x

I I I
e (B.43)

The 4 x 1  forcing vector for the dissipation rate is given as

e 1 / . ^ffrr =  -5 -  I M +  -  Re \  a£
d r  =  1 N eTt£dr

where the vector coefficients [#] are

(B.44)

, y  =  +  ^  +  +
er 6 \  5xi 5xi 5xi 5xi J Xl



The 4 x 4  symmetric convection matrix of the stabilization for the dissipation rate 

is given as

K ue = - i  j f  [K%] da = - i  ^ (V r (uN£))r (Vr (uNs))dn 

where the matrix coefficients jKl£ are

i,i ( d u iN l  du2 N le duzN l \ 2 2>2 ( d u i N [  du2 N 2 du3 N 2\
“  V  dxi dx 2 dx 3 J  ’ U£ V  5xX 5*2 5 X3 J

K 3,3 = ( d u i N [  du2N j  dusN[ \ 2 4)4 / d u iN j  du2 N* du3 N * \
U£ V  5xi dx 2 dx 3 )  1 “  V  5xi dx2 5x3 7

tv-1,2 = tv-2,1 =  7 5ui-/Vg1 51X2^ 5 U3A ^\ / d u \N 2 du 2 N 2 du3 N 2 \
“  V  5xi 5 X 2  5x3 7 V  5xi 5 X 2  <9x3 7

(B.46)

2

2
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K 1,3 =  K 3,1J ue “  ue

K 1 '4 = K 4 ’1“ U6 “ ue

1̂ 2,3 _  tv-3,2

K 2 ,4  = K 4,2*■ ite ± 1 ue

i f 3-4 =  #  4>3 -“ ue “ ue

dwiA^1 du2 N} du^N}
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dx\ 
d u iN 2 

dx\ 
du\N ^  

dx\

dx 2

du2 N}
dx 2

du2 N 2

dx 2

du2 N 2

dx 2

du2 N !
dx 2

0 X3

du^Nl 
6 x 3 

du3 N 2 

dx 3 

du3 N 2 

dx 3 

du3 N £3 

dx 3

d u \N f  du2N f  du3N f
dx\

d u iN 4

dx\
d u iN j

dx\
d u iN 4

dx\
d u iN 4

dx\

dx 2

du2 N 4

dx 2

du2N j
dx 2

du2 N 4

dx 2

du2 N 4

dx 2

dx 3

du3 N 4

dx 3

du3 Nj*
dx 3

du3 N 4

dx 3

du3 N 4

dx 3

(B.47)

The 4 x 4  symmetric, lumped mass matrix for the modified turbulent eddy kine­

matic viscosity is given as

M 0 =  f  [AfMj d n =  [  N / N odQ
J  Cl ** Cl

where the matrix coefficients M lhj are

(B.48)

M -1’1 =  N'N4-i y U 1 U ^ Ml'2 -

■s?
s?II M3'ZII M^ II N4■* V

M1/ = M2/  =N~N?‘V  V  * Ml'3 = m I ’1 =N~N?- Ml'4 = M4'1= NlNt
Mf =  Ml'2 = n ?n ~-V  V  > m 2/  = m 4/  = n 2 n 4-V  V  ’ Ml'4 = Ml'3= NlN$ (B.49)

The 4 x 4  convection matrix for the modified turbulent eddy kinematic viscosity 

is given as

c p =  [  [ c : J' |d S } =  f  N j>r (VT(uN p ))d n
J  Cl J  Cl

where the matrix coefficients C li,3 are

(B.50)

C]A =  N i ( duiN i  +  du2N l  +  du3N i \  ^ ,2  =  N i ( du' Nl  +  duzNZ +  9u*Nl  ̂
" ’’ " " dx 3  Jdx\ dx 2 dx 3 u \  dxi dx 2

r ,3,3 3 ( d u i N l  du2N I  du3 N ? \  4,4 4 f  dUlN* du2 N* du3 N$
c > + ~ d ^ ~ + ~ d i r ) '  > ~  > \ d i r + ~ ^ r +
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c x,2 =  iv , ( a g |  

c l , = N l ( ^ i

C 2 ,3  _  N 2 (dUi.Nl
Ci> ~ N p \  dXl 
r 2,4 _  ,,2 ( d u iN i
c » ~ Ni>\ ~ d ^ r
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dx2

du2N j
dx2

du2N$
dxo

+ * & ) ■ ■  « ■
dU3N[\ 

dx3 ) ' C.v
3,1 _

d u s N [ \  
dx3 ) '

C ^  =

dusN } \  3)2
dx3 ) '  C> 

du3N £ \  
dx3 ) '  

du3N * \  4)3
dx3 ) '  *

CtV
4,2 _

N l f d u i N }  
" K  9xi

N :» 
v \  dxi

N i ( ^ ± N l  
H  9X!

N ? (du> N l  
9Xl 

4 (d U iN l
"V 9X!

=  N?.
duiN?

dx\

+

+

+

+

+

+

du2N l du3N l
dx2 

du2N l  
dx2 

d u 2N l  
9X2 

d u 2N ?
9x2

9u2N?
dx2

du2N l
dx2

+

+

+

dx3 
du3 N l  

9x3 
du3N l

9x3 
du3N l \

9 x 3 J 
. du3N ? \

9 x 3 )  
du3N f \

9 x 3 J
(B.51)

The 4 x 4 symmetric matrix resulted from first diffusion term in the modified 

turbulent eddy kinematic viscosity equation is given as

K p = ~  f  I k ?  1 dn = f  (VNp)T ( ^ ) v N p d t t  (B.52)
VfiRe Jn L " Jn \aoR eJ

where the matrix coefficients K hj are

‘ M S H S H S ) ' '  * - ■ - = ( S ) ’ * ( S ) X S ) ’

M S ) ' + ( S ) ' + ( S ) ’

*1,2 =  *2,1 =  M M  M M  9A£9JVf
v v dx \ dx\ dx2 dx2 dx3 dx3

k p  = j f F  = M M  + M M  + M M
"  ̂ ctai &ri &C2 dx2 dx3 dx3

K b 4 = t f f 1 = M M  + M M  + M  M
" v dxi dxi dx2 dx2 dx3 dx3

K 2 , 3  = * ?,2 = M M  + M M  + M 9 j v |
v v dx\ dx\ dx2 dx2 dx3 dx3

j a a  = *-4,2 = M M  + M M  + 9 N l d N t
v u dx i dxi dx2 dx2 dx3 dx3

*.3,4 = *4,3 = M M  + M M  + M M
" " dx\ dx\ dx2 dx2 dx3 dx3

(B.53)
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The 4 x 1  vector resulted from second diffusion term in the modified turbulent 

eddy kinematic viscosity equation is given as

f-  = L  \ M d a =XNfT t e )  2dn (R54)
where the vector coefficients | / ^ j  are

, 1 1  -3 dNl  - 4 dNt \ 2

" ^ dx2 dx2 dx2 dx2 )

„ l ( - l 9 N l  ~29 N l  ~39 N l_L f t}  VL V- +  l/Z-V. _1_  IL +  j,4 \L
v \  0X3 +  0X3 dx3 +  0X3 J

* , l (~ l9Nl  -29N0 - i 9Nl  . i 9N> \ 2+ N n 0 1l r Z- + O2- ^  + P3l r !L + v4- ^ )  +
\  o x 2 0 X 2  0 X 2  0 x 2 J

>,2 /'-10N J . , a i v ?  „4 a / v A 2_i_ N - [ u l  -  + v* -  + f>d -  + £  - I
+  V V  d x 3 +  0 X 3  5 X 3  0 X 3  7

/«> -  ^  dxi + v 9xi + "  dx i  + "  9 x i )  +

, / . , W i  . ,  3/V? .,cW? . i d N f X 1
+ N ? [ P 1^  + P2^  + P3l r ^  + P4^ - !L) +

\  O X 2 0X 2 0X 2 0X 2 /

» r i f . l 9Nl  ~29 N l  - 3 9 N l  , . i 9Ni \ 2
+ ^  U  +  a +I< a +1/ A ̂ \  0X 3 0 X 3 0X 3 0X 3 J

n t  -
d / . l ^ 1 - 2 < ^ l  ^ 3  0iV? . 0 M \ 2+  JVM i)1 -  +  £  -̂ +  />3  +  v ~7r-^ I +
** \  0X 2 0X 2 0X 2  0X 2 /

+ (BJB)
 ̂ V 0 X 3 0X 3 0X 3  0X 3  )

The 4 x 1  vector based on both the production and destruction terms of the 

modified turbulent eddy kinematic viscosity equation is given as
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Un* =  [cbiS - Cwlfw V 
R e  y 2 f l•hj OiY dQ —= J  N PT (c blS  -  ) N ^ d J l  (B.56)

R e  y l

where the vector coefficients [/&] are

f1-1 J £>Q*
f 2 , l
Jon*
<•3,1J on*
f4’1 J on*

N l  (0l N} + 02N j  + 03N I  +  i>4JV|) 

N l  ( v 'N l  + P2N? + v3N l  + v*N}) 

N l  (i'AN} +  i>2N? + u3N l  + u4N l)  

N i  {Ol N l  + i? N l  + 03N l  + vl N l) (B.57)

The 4 x 1  forcing vector for the modified turbulent eddy kinematic viscosity is

given as

Ur = ^  /  
d o  R e  J T

where the vector coefficients [ $ ]  are

f i j
Jor dT = j  N o TU d r (B.58)

n  . A  f ^ N j  -2 M l  , 30iVf .4d N } \  . ,1)1 —  AT r I i / _____ \L _l_ i V _____ \L _L O '5--------TL j _  n * -------- i i  1 n  _J_---------------  V ------------------------- L_ V ----------------------- j -  If   1
dx\ dx\ dx\ dx\ J

»,i f . i d N l  „2aiV? „3d N f  , . t d N l \  . ,
+  M "  ^ r + i / ^ r + l / a i r r i 2 +

„ i  f - i d N l  . o d N l  , s d N l  , , t d N l  
4- N£ ( v +  v ' +  V -zr~  +  V I n

O X  3  O X  3  O X  3  d x  3

+  N i [ p
xdN l  , „2d N l  , . d N i  dNp

+ V
0X2 dx2 dx2 dx2

+

& 1 = N ^ ^ + i / ‘ ẑ + 0 ^ + i ' ^ ) ^  

d N i  , , d N l  . d N l  , Ad N i \  .

X3

2 1 9 / 1  dN i odN l  o d N i  ̂a ONq \  A

nX2 +

„ i ( . \ d N l  . 2  d N l  , 3d N l  ^ d N i \ .
N l [ °  - fT -  + P -iT * - + *  +  v IT * - nv \  o x 3 0x3 dxz  d x 3 / X3

fix, +



The 4 x 4  symmetric convection matrix of the stabilization for the modified tur­

bulent eddy kinematic viscosity is given as

K us =  - \ f  \ K i \  X l  =  - \ f  (VT( uNi>))T’(Vr ( u N ( B . 6 0 )  
* Jn L J z Jn

where the matrix coefficients K l'i are

^ r + ^ r + ^ r ; ; ^  =  i ^ r + - & r + - ^

^ r + ^ r + ^ r ; ; ^  =  i ^ r + ^ r + - ^
.2,1 _  / d u iN l  du2N l  du3N l \  / duiTV? <9^3^ \
w  \  dx\ dx2 dx3 J V dx\ dx2 dx3 )
,3il =  ( d u i N l  du2Ni d m N [ \  f d u i N l  du2N? d m N j \
uv \  dx\ dx2 dx3 )  \  dxi dx2 dx3 J

-4,1  =  ( d u i N l  du2Nl d m N l \  ( d m N [  du2N j  du3N£\
uu \  dxi dx2 dx3 J \  dx\ dx2 dx3 )
.3,2 =  f d u i N l  du2N? d m N ? \  ( d u i N l  du2N? d m N j \
uu \  dx\ dx2 dx3 )  \  dx\ dx2 dx3 )
.4,2 =  ( dmN? du2N? d m N ? \  ( d m N [  du2N j  d m N p .
uu \  dxi dx2 dx3 )  \  dx\ dx2 dx3 J
.4,3 =  (d u iN }  du2N? d m N ? \  ( du iN i du2N? du3N j \
uv \  dx2 dx3 J \  dx  1 dx2 dx3 )



185

Appendix C

Jacobian m atrix o f the  

transform ations

The transformation of a triangular or tetrahedral element of a finite element mesh to a 

regularly shaped element is solely for the purpose of numerically evaluating the integrals. 

Thus when a typical element of a finite element mesh is transformed from the global coor­

dinates to the local coordinates of the elements, the weak form of the integral equations for 

applying the standard Galerkin approximation must also be expressed in terms of the local 

coordinates.

C .l A rea coordinates

Cartesian directions are not convenient in the triangule while these are not parallel to the 

side of a triangular element. However, it is easy to construct that an definition of three 

non-dimensionalized coordinates Lz, which relate respectively to the sides opposite nodes, 

such that

Li = T  A = Y , Ai (a i )
i=l

where A 1 is the triangle formed by the other nodes (except node i) and an arbitrary point in 

the element. A is the total area of the local element. It is obvious that each individually gives
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u n ity  a t  o n e  n o d e , z e r o  a t  o th e r s  a n d  var ies  lin e a r ly  in  th e  e le m e n t  su c h  th a t  Ll + L 2+ L 3 =  1. 

T h e  s h a p e  fu n c t io n s  axe s im p ly  th e  a rea  c o o r d in a te , i.e .

N 1 =  Ll \ N 2 =  L2- N 3 =  L3 (C .2)

w h ere  th e  s h a p e  fu n c t io n s  IV1, N 2 a n d  N 3 axe n o n -d im e n s io n a l c o o r d in a te s  s y s te m  (£,77)

N 1 =  1 — £  — 77; AT2 =  £; N 3 =  n (C .3 )

T h e  tr a n s fo r m a t io n  b e tw e e n  (x , y) a n d  (£ , 77) is  a c c o m p lish e d  b y  a  c o o r d in a te  tr a n s ­

fo r m a tio n  o f  th e  fo rm  [161]

z i ( f  > V) = ^ 2 x \ N % = x \  + (x? -  x } )£  +  ( x f  -  x})77 
2 =  1 

3

X2(t ,v )  =  y ' . x 2N ' =  x2 + (x2 -  x l ) (  +  (x 2 -  x l ) rl (C .4 )
1 = 1

B e c a u se  th e  in te r p o la t io n  fu n c t io n s  ^ ( £ ,7 7 )  ca n  b e  e x p r e sse d  in  te r m s  o f  th e  lo c a l co o r d i­

n a te s  £ a n d  77, u s in g  th e  c h a in  ru le  o f  p a r tia l d if fe r e n tia t io n

dN^_dPP_dx_1 dN l dx2
<9£  dx\  <9£ 8x2 <9£

d N ^ _ d N ^ d x 1 d N { dx2
drj dx\ drj dx2 dr)

(C .5)

a n d  th e  m a tr ix  fo r m u la t io n  is

8N1 dNl dNl
~W dZ dt
d N 1 d N 2 d N 3
dr) dr\ dr)

dx  1 dx  2
W  dt
dx  1 dx  2
dr) dr)

d N 1 d N 2 d N l
dx  1 d x  1 dx  1
d N l d N 2 d N 3
dx 2 dx  2 d x 2

(C .6 )

w h ich  g iv e s  th e  r e la t io n  b e tw e e n  th e  d e r iv a t iv e s  o f  N l w ith  r e sp e c t  to  th e  g lo b a l a n d  lo c a l  

c o o r d in a te s . H o w ev er , th e  J a c o b ia n  m a tr ix  o f  th e  tr a n s fo r m a tio n  is

J =

—
1 1 1>-l<N1

<N<NSS1
CM.-H

1

dx  1 d x 2 
dr) dr)

3 1 3  1/ifiti _ rf* *■ /y*KJ _ 0™a/ J 1 2 2
(C.7)
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In order to compute the global derivatives of N 1 with respect to xi and X2, it have 

to invert the Jacobian matrix. The determinant J —the Jacobian—is non-negative at every 

point (£,77) in finite element domain for J -1 existence, i.e.

> 0  ( c - 8 )

where the functions £ =  £(x, y ) and 77 =  77(2;, y ) are continuous, differentiable and invertible. 

However, the Jacobian matrix J  must be nonsingular.

Hence, the global derivatives of N % can be easily evaluated

d N 1 x \  -  x \
dxi (xf -  x\){x\  -  x\) -  ( x f  -  x\){xl -  x\)
dN2 _ ______________x \ - x \ __________________

dxi (xf -  x\)(x\  -  x\) -  (xf -  x\)(x\ -  x\)
dN3 _  _  / ON1 d N 2\   _____________ - x \  +  x\_____________
dx\  \  dx\ dx\  )  (xf — x\)(x\  — x\) — (xf — xl)(xf — x2)
d N 1 x f  — x \
dx2 (xf -  x \)(x f  -  xl) -  (xf -  x \)(x \  -  x\)
ON2 _  - x f  +  x\
dx2 (xf -  x \)(x l  -  x\)  -  (xf -  x \)(x \  -  x\)

d N 3 ( d N l ( d N 2 \  _  x f - x \  ^
d* ) 7“9 1 \ / 3 T\ 1 \ / 9 1 \ I'“'•̂ 7dx2 \ d x 2 <9x2 /  (xf -  x\)(x% — xl) — (xf — x \)(x 2 — xty

C.2 V olum e coordinates

\ r i  ^

M l = — ; V = Y ^ V i (C.10)
i = 1

where V 1 is the tetrahedron formed by the other nodes (except node i) and an arbitrary 

point in the element. V  is the total volume of the local element. M 1 +  M 2 +  M 3 +  M 4 =  1. 

The shape functions are expressed as

N l =  M 1; N 2 = M 2; N 3 =  M 3; N 4 =  M 4 (C .ll)
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where the shape functions N 1, N 2, N 3 and N 4 identify non-dimensional coordinates system

JV'1 =  l -  e -  »7-C; JV2 =  £; ^3 =  77; JV4 = £

A coordinate transformation of the form can be written as

(C.12)

ZiW.'J.C) = a;12V* = arj + (xf -  x})£ + (xf -  x})^ + (xf -  xf)C
i = 1 

4

Z2(£> V i C )  =  ^ 2  X 1 N% =  x 2 +  i x 2 -  ^2)£ + ( x 2 -  x l ) v  + (x 2 -  x l ) C
i = 1 

4

x z ( € ,  V X )  =  ^ 2  X * N% =  X3 + (*3 “ x l ) t  + (x 3 ~  x l ) r) + {x 3 ~  ®5)C
i= l

(C.13)

The derivatives of interpolation functions N l relate to the local coordinates (£,77,£) and the 

global coordinates (£,?7,C), be.

d N ^ _ _ d N ^ d x 1 d l P d x 2 5N* 5x3
5£ 5xi 5£ 5x2 5£ 5x3 5£

d T T _ d N ^ d x j L 5AP5x2 5A* 5x3
drj d x \  dr] d x 2 577 ^ 3  dr]

5 A P _ 5 A P 5 x i d N ^ d x 2 d N l d x 3
5£ d x  1 5£ ^ 5x2 5C *** 5x3 5£

and the matrix formulation is

(C.14)

d N 1 d N 2 9w 3 d N 4
~ W d£ ~ a r “3T
d N 1 d N 2 d N 3 d N A
dr) dr) dr) dr)

d N 1 d N 2 d N 3 d N 4
.  ~ W "3T ~ w .

t dx2 9x3
W  d(

dxi 9x2 9x3
dr) dr) drj

d x \  dx  2 dx  3
l ac w  £><;

The Jacobian matrix of the transformation for the tetrahedral element 4 nodes is

81Vi d N 2 9N3 d N 4
9xi 9xi 9xi

d N 1 d N 2 d N 3 d N 4
dx 2 9X2 dx 2 dx 2
ayyi d N 2 d N 3 d N 4

.  9x3 9x3 dx  3 9x3

(C.15)

>
9x2

t  ■
t 2 _  „1 2 1 'T* _ ~2 „1 x3 x3

J = 9xi
dr)

9x2
dr)

9x3
dr)

= ~3 ™1 1 1 ™3 _1 x2 x2 ™3 _ ~,1x3 x3

dx  2
0C U/J ~.4 ™1x2 x2 /y.4 „1x3 x3

(C.16)
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As mentioned before, invert the Jacobian matrix have to non-negative at every 

point (£,?7,C) in finite element domain, i.e.

det{J) =  (xf -  x \)  (xf -  x\) (x\ -  x j) +  (x? -  x l) (x | -  x\) (x% -  x j) +

+  (x? -  x\)  (xl -  xl)  (xf -  x j) -  (x? -  xl) (xf -  xf) (xf -  xf) -  

-  { x i - x \ ) ( x l - x l ) ( x i - x l ) - ( x l - x \ ) ( x l - x l ) ( x l - x l ) > 0  (C.17)

However, the global derivatives of N l are

d N 1
dx\

d N 2 
dx\ 
d N 3 
dx\  
d N A 
dx\  
d N 1 
8 x 2

ON2
6X2
d N 3 
dx2 
d N A 
dX2 
d N 1 
dx3

= -  [{xl -  xf)(xf -  x\)  -  {x\ -  xf)(xf -  4 ) ]  / det{3)

~  [(^2  “  x l)(x 3 ~  ^3) -  (x \ ~ x l)(x3 -  ^ 3)] /det(J) -

~  [(^2  -  x l)(x 3 -  ^3) -  (x \ -  x l)(x3 -  ^ 3)] /det(J)

= [ ( x 2 -  x l)(x 3 -  *3) -  (x 2 -  x l ) (^3  -  ^ 3)] /det(J)

= [ix i  ~ x \) ix l ~  Z3) “  ( x 2 ~ x l ) ( x 3 ~ ^3)] /det(J)

= [(^2  -  x l)(x 3 “  xl) ~  (^2  -  x l)(x 3 ~  Z3)] /det(J)

= -  [(x? -  xj)(xf -  xf) -  (xf -  x \ ) ( x 3 ~ ^ 3)] /det{J)

-  [(xf -  x})(x? -  xf) -  (x? -  x})(xf -  4 ) ]  /det(J) -

~  [ > 1  -  x \)(x3 ~  £3) -  (x i ~  ^ 1 ) ^ 3  “  ^3)] /det(J)

= [(x? -  x})(xf -  zj) -  (xf -  x})(xf -  xf)] /det{J)

=  [(*1  -  x \ ) { x 3 -  4 )  -  (^l -  x \ ) ( x 3 -  ^ 3)] /det{J)

=  [(xf -  x})(xi -  xf) -  (xf -  xl)(xf -  xf)] /det{3)

= ~  [(^1 “  x \ ) ( x 2 -  x 2 ) -  (^1 “  x \) i x 2 -  ^ 2)] /det{J)

-  [(x? -  x})(x2 -  xl)  -  (a;? -  a?})(x2 -  x\)] /det{J) -

-  [(xf -  x \ ) { x 32 -  x\)  -  (xf -  x{)(xf -  xf)] /det(J)
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—  = [(re? -  x \ ) { x \  ~  xl) ~  (a?i -  x\){x l  -  x\)] /d e t { J)

19/V3
—  =  [ ( s ? - x i ) ( x |- z J ) - ( ® ? - x } ) ( s £ - : r J ) ] /d e * ( J )  

= [{x\ -  x \){x l -  xl) -  (x? -  x\)(x% -  x\)\ /det{J) (C.18)
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Appendix D

The nonlinear k  —  e  m odel

It is well known that the nonlinear k — e model can take into account the anisotropy of 

turbulence with less CPU time and computer memory than LES formulation [84]. Also, the 

linear k — e does not perform well for near-wall predictions of high Reynolds number flows 

and may not predict turbulent flow fields where the anisotropy plays an important part. 

The nonlinear k — e model, unlike the linear one, does not use Boussinesq assumption for 

Reynolds stresses. It was originally derived from a solution of the transport equation of the 

Reynolds stress tensor u^u'j. By making use of compactness in Cartesian tensor notation, 

Equation (2.31) may be written as

Gij +  4>ij — £ij +  d\j -f dij (D.l)
Dt

where

(D.2)

(D.3)

2
dxk dxk

(D.4)
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d« = ~ k u  ( “W * + +  ? * * )  (D'5)
  d^u'u'-

4  = „V*«{«4 =  (D.6)

are, respectively, the shear stress generation, the pressure-strain correlation, the dissipative

correlation of second-rank tensor, the turbulent stress diffusion, and the viscous diffusion.

For turbulent incompressible flows, the derivation of algebraic stress models are 

used by the basic equilibrium hypothesis which satisfies the following constrains [98]

£t  =  °  (D-7)
4  +  4  =  0 (D.8)

where is the normalized Reynolds stress anisotropy tensor, i.e.

u'-u'- -  huWJij
bij =  '  3 JL* * -  (D.9)

It'iU'i

It follows first equilibrium hypothesis from Equation (D.7) that

DuMj vf-u1-—,—t D 2— + - ^ u  y ,  — =  = o (d.io)
Dt 2 1 ’ D tu M

and, hence, by making use of the product rule of the derivative with the turbulent kinetic 

energy equation of isotropic tensors of rank 2 by the Equation (2.15), we obtain

D K uj _  2uiuj
Dt u-u-

U- U- U,  3 t * M
%dxj

- j - jd u i  du't du't 
UiUjdxj V dxj dxj

( D - l l )
The dissipation rate tensor can be split into isotropic part (1/3)eu5ij and deviatoric part 

eft. By substituting Equation (D .ll) and second equilibrium hypothesis Equation (D.8) into 

Equation (D.l) and neglecting diffusion process, it yields the equilibrium formulation of the 

Reynolds stress:
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2u i u j  2 \  _  u f r ' j  f  d u j  d u j  .
vlv! 3 %j)  3 Vdx.7 ^

i / dum , ^  ̂ t ^
~~3~” I 7 T -  +  7 7 “ / °mn q~°mn { 7 7 "  +  7 7 “ I °ij ~O  y  U J b f i  L /J U yjl J  1/ y  ( J J b f i  (JJU

_ 7 7 ~ a ^  7 7 " ^  ■ | $ i K  ^
* kdxk 3 k dxk 3 1 dxk 3 3 dxk

+ $ij — efj (D.12)

where Pij — —u^u'jdui/dxj is the production of turbulent kinetic energy and Eu is the scalar 

turbulent dissipation rate. Equation (D.12) reduces to the simpler form if Equation (D.9) 

is substituted

(^Pij 2 )  — 2 K'^ij ^bikSjk d~ bjkSik 2 bmnSmn&ij^ At "1” bjk^ik) d~

(D.13)

where Ilij =  — eP and k = u^u'J2 is the turbulent kinetic energy. The mean strain-rate

tensor is Sij and flij is the mean vorticity tensor, giving respectively

s » - ! ( g + S ‘ ” » - K S - S )  <°-M>

In all of the second-order closure models, n*j is modelled and the most general 

form which is tensorially linear in the normalized Reynolds stress anisotropy tensor bij is 

given by Speziale et al. [162] as

IIij — 7 lcb{j +  72^  ̂bikbkj g b-mnbmn^ij^ d- 73K^ij d"

d- 74« ^bik^jk d- bjfcSik — 2 bmnSmn&ij ̂  d- 75^ ^bikbkl^jl d" bjkbfciSn ^b[ mbmn

d- 76« ipik^ljk d- bjk^lik) d- 77^ (̂ i/ĉ fcẐ j'Z d- bj^bkl^u) (D.15)

where e = e u /2 and 7 1 , 72 , •••, 77 are constants.
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Continuing in this way, the anisotropy bij may be expressed as the tensor polynomial. It 

includes functions of a deviatoric symmetric and an antisymmetric tensor and the coeffi­

cients of the irreducible invariants to obtain a nonlinear turbulent eddy kinematic viscosity 

form by using the Cayley-Hamilton theorem [92, 98, 163].

The nonlinear form of a cubic relation between the mean strain-rate tensor and 

the mean vorticity tensor for the Reynolds stresses is normally used [99], i.e.

Thus the components of Reynolds stresses of three-dimensional turbulent flow are

given as

L i n e a r  t e r m

C u b ic  t e r m

where the constitutive time-averaging stress/vorticity terms axe

■Hi — QikSjk 4" QjkSik

“ 2 =  SikSjk g ̂ kl Ski ̂ ij

“ 3 =  ^ ik^ jk  Q^kfflklfiij

"4 ~  ^kiSklQlj “I" SkjSki^ln
_  2
^5 == ^ ‘il^’lm^mj "b ’̂ ^Im^mn^nl^ij

^6 ~  Sij Ski Ski

= Sij Clkl ̂ kl (D.17)



195

— pUiUi

- ( 2/ 3)pK +  m S n  -  (2a i ih k / e ) ( ^ 125x2 +  ^13^13) -

( c ^ t ^ A )  [(2/ 3) (5 i i 5 n  — S23S23) +  (1/ 3) (*S'i2*S'i2 +  S13S13 — S22S22 — 533533)] —

(a s f i tK /e )  [(2/ 3) ^ 23^32 +  (1/ 3) (^12^12 +  ^13^13)] —

(20:4fjLtK2/ £ 2) p 2 1  {S11S12 +  +  S31S32) +  ^31 (S11S13 +  521523 +  53i 533)] -

(4a5fit^2/Se2) (5nfii2^2i +  5nfii3fi3i +  523^ 12^ 13) —

(2a5^K2/3£2) (5 x2^ 23 3̂1 + 5 x3^ 32 2̂1 + 522^ 21̂ 2l )  ~

(2 a 5 jL tt« ;2 / 3 e 2 )  ( 5 2 2 ^ 2 3 ^ 2 3  +  5 3 3 ^ 3 1 1 2 3 1  - f  533^ 32^ 32)  —

(aQfjLtK2 / e 2) [5 xi (5 xi5 i i  +  S22S22 +  S33S33) +  25n  (5 i25i2 +  5 i35i3 +  523523)] -  

(2 a 7 fitK2 / e 2) 5 xi (^12^12 +  ^13^13 +  ^23^23) (D .18)

- p u ' 2 u '2

- ( 2/ 3)pK +  fItS22 -  (2 ai f HK/ e )  (Q21S2I +  ^23523) -

(a2Att« /e )  [(2/ 3) (S22S22 ~  531531) +  (1/ 3) (52i 52i +  S23S23 -  5 n 5 n  -  533533)] -

( a 3 fJLtK/e) [(2/ 3) ^ 13̂ 31 +  (1/ 3) (^21^21 +  ^23^23)] -

(2 a 4 ^ K 2/ e 2) [ft i2  ( 5 i2 5 h  4- 522521 +  5 3 2 5 3 1 ) +  ^ 3 2  (5x25x3 +  S22S23 +  5 3 2 5 3 3 )] -

(4a5/XtK2/3e:2) (522^21^12 +  522 ̂ 23^32 +  53iQ21^23) ~

(2a5^K2/3e:2) (521^13^32 +  523^31^12 +  5x10x2^12) —

(2Q!5/x<«;2/3e:2) (5 n f i i 3n i 3 + 533^31^31 +  533^32^32) -

(pLQlltK2/ £2) [522 (5 xi5 i i  +  S22S22 +  533533) +  2522 (52l 5 2l +  53x531 +  532532)] —

(2 a 7 fJ,tK2/£2 ) 522 (0 x2^12 +  ^ 13^13 +  ^ 23̂ 23) (D .19)
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r 33 =  ~ P U3U3

=  —(2/3)pK  4- fitS33 — (2ailiti^/e) (Q3 1 S31 +  ^ 32*532) -

— (o!2/it«/e:) [(2/3) (533533 -  52i52i) 4- (1/3) (53i53i +  S 2 3 S23 ~ S n S n  ~ S 2 2 S 2 2 )] -

— {oc3Pt^/^) [(2/3)^12^21 +  (1/3) (^31^31 +  ^32^32)] -

— ( 2a^/J, t K 2 / £ 2 )  [ f ii3  (5 i 35n  +  523521 +  533531) +  ^23 (5 i 35 i 2 +  S23S22  +  533532)] -

— (4«5^«;2/3e2) (5 3 3 ^ 3 1 0 1 3  4- 5 3 3 ^ 3 2 ^ 2 3  +  5 1 2 ^ 3 1 ^ 3 2 ) —

— (2asfj,tK2/3£2) (531Q12O23 +  532^ 21^13 +  511^ 12^ 12) —

— (2a:5/it/c2/ 3e:2) (511^13^13  4- 522^ 21^21 +  5 2 2^23^23) —

— (a.QHtK2/ £2) [533 (5 n 5 n  +  S22S22 +  S33S33) +  2533 (5 i 25 i 2 +  5 i 35 i 3 4- 523523)] —

— (2 a 7f itK2/ £ 2) 533 (^ 12^ 12  +  ^ 13^ 13  4- ^ 2 3 ^ 2 3 ) (D.20)

Tu = - P u lu2

— t R—  r 21

=  P tS \2  — ( « lM f^ /£ ) [^12 (522 — 5 n ) 4- ^13523 4- f i23*Sl3] “

— (a2fJ>tK/e) {S11S21 +  S12S22 4- 5 i 3523) — ( a 3/ / t « /e )  ^1 3 ^ 2 3  —

— ( q 4/lit K2/ e 2) Q12 (5 i i 5 h  +  53i 53i -  S22S22 — S32S32) —

— ( a 4 / i t K2/£:2) [Q31 (5 i25 i 3 4- S22S23  +  S32S33) 4- O32 (5 n 5 i3 4- 52i 523 4- 531533)] -

— (aslltK2/ z 2) [511^13^32 4- 5i2 (2012^21 +  ^13^31 +  ^23^32)] ~

— (a$H t K2/ £ 2) ( 5 1 3 ^ 3 1 ^ 1 2  +  5 2 2 ^ 1 3 ^ 3 2  +  5 3 2 ^ 1 2 ^ 2 3  ) ~

— (a?6n tK 2/ e 2) [5i2 (5 ii5 n  4- S22S22  +  S33S33 4- 25i25i2 +  25i35i3 +  2523523)] -

— (2a7^K2/£2) 5i2 (^ 12^ 12  4-f i l 3^13 + ^ 2 3 ^ 2 3 ) (D.21)
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r 13 =  ~ P U l u 3

—  t R  ~  r 31

=  P t S  13 — (c k l^ A c /e )  [Q13 (S33 — 5 i l )  +  01 2 5 3 2  +  032612 ] —

— (o;2/ i i « / e )  (6 i i 53i  +  5 i 2^32 4- 513533) — (asiitK/e) O12O32 —

— (0 4 u tK 2/ e 2) O13 (5 i i 5 n  +  5 2 i5 2 i -  S23S23 -  S33S33) —

— (ct t l l tK 2/ e2) [O21 (5 i 35 i 2 +  S23S22 4- S33S32) 4" O23 (5 n 5 i 2 +  S21S22  +  531532)] —

— { o t ^ f l t ^ 2 / E2) [511O 12O 23 +  5 i 3 (2O 13O 31 +  O 12O 21 +  O 23O 32)] —

— (a$fitK2 /  e2) (512O 21O 13 4- 523O13O32 +  533O 12O 23) —

— (aQUtK2/ £2) [5 i 3 (5 h 5 i i  4- S22S22  4- 533533 +  25 i 25 i 2 4- 25 i 35 i 3 4- 2523523)] —

— (2c*7n tK 2/ t 2) 5 i 3 (O12O12 4- O13O13 4- O23O23) ( D .22)

r 23 =  - P U2U3

=  r 32

=  P t S 23 ~  (c*ip t tn /e )  [O23 (533 -  S22) +  O21531 4- 0 3i 5 2i] -

— {0 i2P t^ /£ )  (S21S3I  4- 522532 4- S23S33) -  (oi3PtK/E)  O21O31 -

— ( a tH tK 2/ ^ 2) O23 ( S22S22  4- 5 i 25 i 2 — 5 i 35 i 3 -  S33S33 ) —

—  ( a ^ i i t K 2 / e 2 )  [O12 ( 5 i 3 5 n  4-  5 2 3 5 2 1  4- 5 3 3 5 3 1 )  4- O 1 3  ( 5 i 2 5 n  4- 5 2 2 5 2 1  4- 5 3 2 5 3 1 )]  —

— (0:5/14K2/ e 2) [522O 21O 13 4- 523 (2O 23O 32 4- O 21O 12 4- O 31O 13)] —

— ( 0 5 fitK2/ e 2) (521O 12O 23 4- 513O23O31 4- 533O 21O 13) -

— (oL6PtK2/ e 2) [523 (5 i i 5 n  4- S22S22  +  S33S33  4- 25 i 25 i 2 4- 25 i 35 i 3 4- 2523523)] —

— (2 0 7 f i t ^ 2/ e 2) S23 (O12O12 4- O13O13 4- O23O23) ( D .23)

w h ere  fit  is  th e  tu r b u le n t  e d d y  d y n a m ic  v isco s ity .

T h e  c o e ff ic ie n ts  u se d  in  E q u a tio n  ( D .16) are p r o p o se d  b y  K im u r a  a n d  H o s o d a  [84]

0 1  =  C 3  —  c i ;  0 2  =  c i  4-  C2 4-  C 3 ; 0 3  =  C 2  —  c i  —  C 3 ;

0 4  =  0 5  =  0 6  =  0 7  =  0 (D.24)
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The coefficients, ci, C2, C3 , and are evaluated as follows:

0.4 -0.13 (  0.3
ci =  V T lTniTT?? c2 =  0; c3 =  7— 7777777; Cu = m m  0.09,1 +  0.01M2’ ’ * 1 +  0.01 M 2’ M V ’ ’ 1 +  0.09M2

(D.25)

where M =m ax(5, Q) and

~   k /1 /  dui duj
e Y 2 \  dxj ^  ctoi

(D.26)

Both nondimensional functions of the strain invariant S  and the vorticity invariant fi were 

initially introduced by Pop [163].
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Appendix E

Comparison betw een the  

single-processor and the parallel 

com puting

E .l  Introduction

The multiprocessor and multicomputer based on multiple instruction stream, multiple data 

(MIMD) systems with both a shared-memory architecture and a distributed-memory ar­

chitecture have had an explosive expansion in many areas of computational engineering. 

One of the message-passing programming paradigm, the Message-Passing Interface (MPI), 

is a standard library of subprograms used a distributed-memory method to write parallel 

programs binding for either Fortran or C languages [159, 160]. In this study the matrix 

free CBS-AC scheme has been implemented into a parallel environment with MPI model to 

test three-dimensional, steady and unsteady laminar flow past a stationary circular cylin­

der. The present results are compared against the numerically qualitative solutions by the 

single-processor system.
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E.2 T he M essage-Passing Interface program m ing m odel 

E.2.1 Starting and terminating communication

First preprocessor assigns mpif .h to definite for compiling an MPI library at every program. 

Then MPI routines can be employed in the program. In order to initialize the MPI identifier 

to lead to an error code, MPI_INIT(ierror) function must be called before any other MPI 

functions. At the end of MPI environment, the program terminates the MPI identifier must 

contain an error code using MPI_FINALIZE(ierror).

For shutting down all the processes if any error occurs in the MPI environment, 

MPI function is written as

MPI_AB0RT (communicator, ie r ro r )  (E.l)

All the MPI functions require the communicator to send message to each other 

in the communication domain for all the running processes. For this reason, the function, 

MPI_C0MM_W0RLD communicator, is to be performed in the executing program.

The parallel process have to determine its rank in the MPI implementation. Thus 

MPI_C0MM_RANK function which ranges from zero to the size of MPI_C0MM_W0RLD minus one 

is asked to identify the rank of every process. For determining the number of processes to 

make executable MPI paradigm, MPI_C0MM_SIZE is to be used in the communication domain.

There are several datatypes to determine which predefined type is needed for 

the MPI identifier to send message. It includes MPI_D0UBLE_PRECISI0N, MPI_INTEGER, 

MPI_REAL8, MPI .CHARACTER, MPI.COMPLEX, MPI-LOGICAL etc. However, each MPI.datatype 

can easily to correspond with Fortran data type.

E.2.2 Sending function and collectors for communication

There are two different ways of sending and receiving messages by MPI functions. The first 

command is to use tags to check enclosed messages on the typical message passing system. 

The exact syntax for sending and receiving MPI identifiers are, respectively, given as
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MPI_SEND (buffer, reckoner, MPI.datatype, d e s tin a tio n , tag , communicator, 

ie r ro r )

MPI_RECV (buffer, reckoner, MPI_datatype, source, tag , communicator,

stand, ie r ro r )  (E.2)

The function MPI_SEND sends the message put in the buffer area by the parameter bu ffer. 

The message are stored in the buffer area which depends on giving reckoner variable and 

choosing MPI_datatype. The destination of sending message whose rank of the process is 

determined by d e s tin a tio n  parameter. The message type is referenced by the integers 

ta g  of which standard value ranges from 0 to 32767. The MPI.COMM.WORLD function can 

be only used as the communicator for the message passing system in the communication 

domain. However, it should be noted that MPI_SEND uses the communicator arguments 

have to consistent with receiving function MPI_RECV. The source parameter serves as its 

identifier MPIJtECV for a message process to determine how many rank is needed. Any 

message is received and located in the b u ffe r  area does not exact same the amount of a 

message from the sending process. The ta g  of a receiving process is also employed with 

MPIJtECV to handle the number of messages. Since three information, source, ta g  and 

ie r ro r ,  are necessary for return on the all processes, the stand  parameter carries out this 

computation. All in all, both commands include error code in the ie r r o r  argument to 

detect any error occur in the MPI process.

The alternative pattern, MPI_BCAST function, sends the identified message to all 

the processes in the domain of collective communication. Its formulation of MPI paradigm 

can be written as

MPI J3CAST (buffer, reckoner, MPI.datatype, source, communicator, ie rro r )

(E.3)

In the above MPI formulation the buffer area referenced by b u ffe r  allocates both sending 

and receiving messages based on available reckoner parameter and the data type is specified
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in the MPI environment. From the source process to any other process, the message is 

used to specify the only communicator MPI_C0MM_W0RLD with the rank of source. Since the 

collector MPIJ3CAST does not use ta g  on all processes to recognize source and d e s tin a tio n  

processes, every reckoner value and MPI-datatype must match on all the parallel process 

to return needed information, for instance source and ie r ro r .

There are several operations undertaken to optimize MPI implementation. In 

this study, three predefined values i.e. MPI-SUM, MPI-MIN and MPI-MAX are, respectively, 

identified sum, minimum and maximum for performing MPI_REDUCE and MPI-ALLREDUCE 

functions. One of syntax of MPI subprogram is

MPI-REDUCE (buf f er.send, buf f er_receve, reckoner, MPI_datatype,

MPI_operator, target, communicator, ierror) (E.4)

The reduction operation MPI-REDUCE provides the buffer memory to store sending mes­

sages in the bu ffe r.sen d  from each process and return the results via using MPI_operator 

computing in the buffer memory buffer_receve with the identified rank ta rg e t  on the 

process. The reckoner memory location and MPI-datatype are both used by buf f  er_send 

and buffer_receve parameters. However, MPI_C0MM_W0RLD communicator, MPI.operator 

reduction, MPI_datatype form with reckoner and ta rg e t  parameters have the same cal­

culation on each process to be called by MPI .REDUCE.

In order to return the results toward original process, MPI-ALLREDUCE in the MPI

library provides for its successive computation on the reduction operation. The function

contains

MPI_ALLREDUCE (buf f er.send, buf f er_receve, reckoner, MPI.datatype,

MPI.operator, communicator, ierror) (E.5)

In the above formulation since the reducing results return to all original processes, the 

rank referenced by ta rg e t  used for MPI .REDUCE is not needed any more with a call to 

MPI_ALLREDUCE.
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One of basic communication operatior is known as all-to-all total exchange for the 

use of the design of data parallel model. The MPI implementation supplies two different 

forms to satisfy the process. The first form is only to be used in the same amount of message 

which have to send every process, i.e.

MPI_ALLT0ALL (buf f  er_send, reckoner_send, M PI.datatype(send), buf f  er_receve,

reckoner_receve,M PI_datatype(receve), communicator, ie rro r )

(E.6)

MPI.ALLT0ALL determines how much large reckoner.send data stored in the buff er.send 

memory using the MPI data type send it to store in the buffer area buffer_receve by 

receving MPI.datatype in the communication domain MPI.COMM.WORLD via each parallel 

process. It is only to be called same amount of sequential data for every process.

If the MPI environment need to obtain different number of data from each cal­

culating, then MPI.ALLT0ALLV have to communicate this process. The function is given 

as

MPI _ALLT0ALLV (buf f  er_send, reckoner_send, s h if  t_send, MPI-datatype(send),

buf f  er_receve, reckoner_receve, s h if  t_receve,

MPI.datatype (receve), communicator, ie r ro r )  (E.7)

The positions of identified buffer area refer to s h if t.s e n d  as well as sh ift_ receve for the 

interaction between sending and receving data on each process. Thus each process can 

send every other process the different quantity of computing data by using MPI_ALLTOALLV. 

From every other process, each process also receves the different quantity of computing data. 

However, the same number of processes in the MPI_C0MM_W0RLD communicator must be used 

for the several arrays of reckoner.send, sh ift.sen d , reckoner_receve and sh ift_ receve 

parameters.
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M atrix free CBS-A C schem e
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Figure E .l: Laminar flow around a circular cylinder, (a) Unstructured finite element meshes 
(Elements: 69948, Nodes: 17382); (b) Steady state convergence obtained at Re=20 using 
the m atrix free CBS-AC scheme.

E .2 .3 D a ta  ty p e  co n s tru c to rs  for com m unication

The MPI implementation provides derived data type for every process to construct individ­

ual data. Before any mechanism of derived data is employed in the communication domain, 

MPI program have to be committed and include error code to detect every process. Its 

syntax is

MPI_TYPE_C0MMIT (datatype.vector, ierror) (E.8)

In the above form the derived data type datatype_vector is employed by all MPI.datatype 
for the MPI system.

There are three d a ta  type constructors for com m unication, MPI .TYPE-CONTIGUOUS, 

MPI.TYPE.VECTOR and MPI.TYPE.INDEXED. to build the derived d a ta  type. In the present 

study, MPI.TYPE.C0NTIGU0US is only for the use of the M PI program . The form ulation is 

given as

MPI.TYPE.C0NTIGU0US (reckoner, MPI.datatype, datatype.vector, ierror) (E.9)

The old data type MPI.datatype creates the vector to build the dervied type datatype.vector 
with a contiguous reckoner parameter in the function MPI.TYPE.C0NTIGU0US.
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(a) Ui velocity contours (b) u \  velocity contours

(c) U3 velocity contours (d) 113 velocity contours

Figure E.2: Steady laminar flow past a circular cylinder at Re—20 using the single-processor 
(left) and the 4 processors parallel computing (right) based on the m atrix free CBS-AC 
scheme, (a) u\ velocity contours. wimin(red) =  -0.022, u imaI(blue) =  1.336; (b) u\ velocity 
contours. u iTnm(red) =  -0.022, wima3.(blue) =  1.335; (c) u3 velocity contours. u3min(red) =  
-0.535, U3max (blue) =  0.626; (d) u3 velocity contours. u3min(red) =  -0.535, w3max(blue) =
0.627.

E.3 T h ree -d im en sio n a l lam in a r  flow a ro u n d  a s ta t io n a ry  cir­

cu la r  cy linder

The primary objective of studying the low-Reynolds-number flow past a stationary circular 

cylinder here is to compare prediction of qualitative results from the single-processor and the
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(a) Ui velocity contours (b) u i velocity contours

(c) u 3 velocity contours (d) U3 velocity contours

Figure E.3: Unsteady laminar flow past a circular cylinder at Re=100 using the single­
processor (left) and the 8 processors parallel computing based on the m atrix free CBS-AC 
scheme, (a) u\ velocity contours. wimin( r ed )  =  -0.186, wimaI(blue) =  1.510; (b) u\ velocity 
contours. u imm(red) =  -0.206, wima;E(blue) =  1.516; (c) u3 velocity contours. u,3min(red) =  
-0.696, u3rnax(blue) =  0.814; (d) u3 velocity contours. u3mm(red) =  -0.692, W3mai(blue) =
0.810.

parallel computing using the m atrix free CBS-AC scheme. A constant horizontal-velocity 

was specified at the inflow and a no-slip condition was prescribed on the circular cylinder 

surface. All sides except exit are treated as symmetric planes.

For the low-Reynolds-number flow, the coarse mesh used is shown in Figure E .l (a).
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This mesh was produced using the PSUE-II code.

Figure E.2 presents the qualitative solutions of the matrix free CBS-AC scheme 

using the single-processor and the parallel environment using 4 processors through the MPI 

library. These numerical results clearly show that all contours of the steady velocity field 

are identical.

The transient flow past a circular cylinder has been tested at the Reynolds number 

of 100. The matrix free CBS-AC scheme based on the dual time stepping procedure is 

employed with 8 processors on a parallel computing environment. Figure E.3 shows the 

qualitative comparison between the single-processor and parallel computing. As seen, the 

results are almost identical.

E.4 Sum m ary

Steady and unsteady three-dimensional laminar flow around a circular cylinder has been 

performed in the parallel computing environment with message-passing interface (MPI) at 

the Reynolds number of 20 and 100. These qualitative results obtained are in agreement 

with numerical solutions from the single-processor calculation. It is noted that the ma­

trix free CBS-AC scheme with the dual time stepping method is well suited for the MPI 

implementation.
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