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Abstract

Over the past few decades, dynamic solid mechanics has become a major field of in-
terest in industrial applications involving crash simulation, impact problems, forging
and many others to be named. These problems are typically nonlinear due to large
deformations (or geometrical nonlinearity) and nonlinear constitutive relations (or
material nonlinearity). For this reason, computer simulations for such problems are
of practical importance. In these simulations, the Lagrangian formulation is typi-
cally used as it automatically satisfies the mass conservation law. Explicit numerical
methods are considered to be efficient in these cases.

Most of the numerical methods employed for such simulations are developed
from the equation of motion (or momentum balance principle). The use of low-
order elements in these numerical methods often exhibits the detrimental locking
phenomena in the analysis of nearly incompressible applications, which produces an
undesirable effect leading to inaccurate results. Situations of this type are usual in
the solid dynamics analysis for rubber materials and metal forming processes. In
metal plasticity, the plastic deformation is isochoric (or volume-preserving) whereas,
the compressible part is due only to elastic deformation.

Recently, a new mixed formulation has been established for explicit Lagrangian
transient solid dynamics. This formulation, involving linear momentum, deforma-
tion gradient and total energy, results in first order hyperbolic system of equations.
Such conservation-law formulation enables stresses to converge at the same rate as
velocities and displacements. In addition, it ensures that low order elements can be
used without volumetric locking and/or bending difficulty for nearly incompressible
applications.

The new mixed formulation itself shows a clear advantage over the classical
displacement-based formulation, due to its simplicity in incorporating state-of-the-
art shock capturing techniques. In this research, a curl-preserving cell centred finite
volume computational methodology is presented for solving the first order hyperbolic
system of conservation laws on quadrilateral cartesian grids. First, by assuming that
the approximation to the unknown variables is constant within each cell. This will
lead to discontinuities at cell edges which will motivate the use of a Riemann solver
by introducing an upwind bias into the evaluation of the numerical flux function.
Unfortunately, the accuracy is severely undermined by an excess of numerical dis-
sipation. In order to alleviate this, it is vital to introduce a linear reconstruction
procedure for enhancing the accuracy of the scheme. However the second-order spa-
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tial method does not prohibit spurious oscillation in the vicinity of sharp gradients.
To circumvent this, a nonlinear slope limiter will then be introduced.

It is now possible to evolve the semi-discrete evolutionary system of ordinary
equations in time with the aid of the family of explicit Total Variation Diminishing
Runge Kutta (TVD-RK) time marching schemes. Moreover, a correction procedure
involving minimisation algorithm for conservation of the total angular momentum is
presented. To this end, a number of interesting examples will be examined in order
to demonstrate the robustness and general capabilities of the proposed approach.
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“You can know the name of a bird in all the languages of the world, but when
you’re finished, you’ll know absolutely nothing whatever about the bird. So let’s
look at the bird and see what it’s doing — that’s what counts. I learned very early
the difference between knowing the name of something and knowing something”.

Richard Feynman (1918 — 1988)
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Introduction

“There is one thing one has to have: either a soul that is cheerful by nature, or a
soul made cheerful by work, love, art and knowledge”.

Friedrich Nietzsche (1844 — 1900)
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1.1 Motivation

Solid mechanics is concerned with the behaviour of a general solid continuum prob-
lem subjected to external actions. Historically, solid mechanics was of primary
interest for the constructions of buildings and structures, starting with the pioneer-
ing works of Leonardo da Vinci (1452-1519), Galileo Galilei (1564-1642) and Isaac
Newton (1642-1727). Following the successful achievement by Isaac Newton in stat-
ing the laws of motion, great progress was made from the early seventeenth to the
late nineteenth century, notably by James Bernoulli (1654-1705), John Bernoulli
(1667-1748), Euler (1707-1783), Charles-Augustine Coulomb (1736-1806), Augustin
Louis Cauchy (1789-1857), Robert Hooke (1635-1703) and others. At present, there
exists a considerable number of principles in continuum mechanics [1].

An understanding of the fundamental laws of solid mechanics is of practical im-
portance in mechanical, aeronautical and civil engineering. Additionally, with the
advent of modern materials, it is necessary to develop more sophisticated constitu-
tive theories' in order to describe the phenomenological responses of materials [2-7].
In general, a solid typifies a body with a firm shape, as opposed to a fluid?, while a
structure refers to a solid which is comprised of cables®, beams* and plates [8-11].

In practice, structural analysis is an indispensable tool that can drive an en-
gineering design process without having to test it. Its objective is to analyse a
structural system so as to predict the behaviour (i.e. deformations and stresses) of
the structure due to external forces. The relation of the analysis process to other
processes is depicted in Figure 1.1. In this thesis, the structural modelling and
analysis will be considered, but more focus is placed on the latter.

There are two broad classes of external loads, namely static and dynamical load-
ing [12]. Static forces are those that are applied slowly to a structure and thus
of steady-state in character. In contrast, dynamic forces® are time-varying forces
which can cause the vibration of a structure. Many engineering problems in which
the dynamic effects are of particular importance are transportation, manufacturing
and civil engineering structures under environmental loadings (i.e. wind and snow
load). One of the most striking examples that has had a lasting effect on the field
of structural dynamics is due to the collapse of the Tacoma Narrows suspension
bridge that took place in Washington on November 7, 1940 (see Figure 1.2). The

Tn civil engineering structures, some modern design codes are based on Limit State Design
(LSD) where plastic analysis has been pointed out. This analysis reveals that the structure is
capable of resisting loads after the elastic limit and will only collapse under the extent of plasticity.

2A fluid is a substance that continuously deforms under an applied shear stress.

3Cables are flexible structural elements. The deformed shape depends on the nature and mag-
nitude of the applied load. When a cable is pulled at either end, a straight shape is achieved. This
is known as tie-rod.

‘Beams are the horizontal elements that carry loads by bending since the loads are applied
transversely to their longitudinal axis.

5In dynamic analysis, it is necessary to consider the inertial forces produced by the accelerating
masses.
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destruction is used as a lesson in the necessity to consider both aerodynamics and
resonance effects in civil and structural engineering.

From an analytical viewpoint, the conventional linear analysis is restricted to
infinitesimal strain deformation theory; for instance, concrete and steel civil struc-
tures.6 Unfortunately, many problems of practical interest, such as forging, machin-
ing, crash and collision tests (see Figure 1.3), typically involve a considerable change
of shape and are often accompanied by nonlinear material behaviour [3,4,6, 7]. In
order to simulate these convoluted nonlinear problems, the displacement-based for-
mulation is used [17].

The traditional solid dynamics formulation, where its primary variable is the
displacement field, is solved by standard finite element spatial discretisation to-
gether with a family of Newmark time integration schemes. However, the resulting
space-time discretised formulation presents a series of shortcomings. First, New-
rnark’s method has a tendency for high frequency noise to persist in the solution
and most importantly, its accuracy is remarkably degraded once artificial damp-
ing is employed. Some minor modifications were introduced to improve the accu-
racy of numerical dissipation without the inclusion of a discontinuity sensor, which
consequently made the Newmark scheme unsuitable for problems where shocks
are present [18-21]. Additionally, it is well known that using linear elements in
displacement-based FE leads to second order convergence for displacements but one

order less for strains and stresses.

Figure 1.2: Aeroelastic instabilities of the Tacoma Narrows suspension bridge.

It is also known that constant stress elements exhibit volumetric locking in in-
compressible or nearly incompressible applications; for instance, plastic flows involv-
ing large isochoric strains. In order to eliminate the locking phenomena, a variety
of different approaches have been developed. First, p-refinement can be introduced

where high order interpolating functions are adopted [22], Another general approach

“Infinitesimal strain theory deals with the small deformations in a continuum body [1,13-16].



8 Chapter 1. Introduction

(@) ()

Figure 1.3: (a) Crash test; and (b) Collision test

is to introduce a multi-field Veubeke-Hu-Washizu (VHW) type variational principle,
which enables the use of independent kinematic descriptions for the volumetric and
deviatoric deformations [7]. In particular, the mean dilatation technique, in which a
constant interpolation for volumetric variables over an element is involved, is widely
accepted. This specific technique can be identified as a particular case of Selective
Reduced Integration (SRI), where the volumetric stress components are suitably
underintegrated. Unfortunately, this scheme cannot be applied within the context
of low order elements (i.e. linear triangles and linear tetrahedrons) as these ele-
ments have already used the simplest Gaussian quadrature rule. In [23], Bonet and
Burton suggested that the volumetric strain energy is approximated by evaluating
averaged nodal pressures in terms of nodal volumes while the deviatoric component
is treated in a standard manner. However, the resulting solution behaved poorly
in bending dominated cases. To circumvent this difficulty, Dohrmann et al. [22]
proposed a new linear tetrahedron by applying nodal averaging process to the whole
small strain tensor. Furthermore, Bonet ef al. extended this application to large
strain regime with the idea of employing an averaged nodal deformation gradient

tensor as the main kinematic variable [24],

This thesis offers an alternative computational framework to prevent the detri-
mental locking effects by developing a mixed formulation that permits the use of any
low order elements. Insofar as the formulation is expressed as a system of conserva-
tion laws, where both the velocities and deformation gradient tensor are the primary
conserved variables, stresses converge at the same rate as velocities and displace-
ments. Moreover, this system of equations can be discretised using a cell centred
Finite Volume Method (FVM), typically based on the use of Riemann solvers and
shock capturing schemes. A wealth of research has been carried out for developing
the FVM in Computational Solid Dynamics (CSD). The literature on this topic has

mushroomed in recent years and will be briefly summarised in the next section.
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1.2 State of the Art

1.2.1 Finite Volume Method vs Finite Element Method

Traditionally, Finite Element Method (FEM) has been extensively used for problems
in Computational Solid Mechanics (CSM) [10]. As a contemporary, Finite Volume
Method (FVM) has established itself within the field of Computational Fluid Dy-
namics (CFD) [25,26]. Both schemes can be considered as methods of weighted
residuals where they differ in the choice of weighting functions [27]. The finite el-
ement Galerkin method treats the shape function as the weighting function and
can be easily extended to higher order by increasing the order of polynomial inter-
polation. In contrast, the finite volume method results by selecting the weighting
function as element piecewise unit constant. These two numerical techniques are
equivalent in many applications [28].

Over the past few decades a number of authors have used the FVM to dis-
cretise the traditional displacement-based equation in solid mechanics. It is now
possible to classify this method into two approaches: vertex-based [27,29-32| and
cell-centred [33-37]. The first approach is based upon standard FEM [38] and em-
ploys shape functions to describe the variation of the displacement field over an
element and is very well suited to complex geometries [29,32]. This approach can
be generally classified as cell-vertex FVM [25,27]. However, it should be noted that
there is a specific class of cell-vertex methods that employs non-overlapping control
volumes (28, 39,40], which will be referred to as a vertex-based FVM. The second
approach is based upon traditional FVM [41] that has been widely used in CFD [25].
This particular technique has been applied in CSM involving structured [33,34] and
unstructured meshes [35-37,42].

Unfortunately, both of the finite volume approaches discussed above are re-
stricted to the second order dynamic equilibrium equation for the displacement
field [43,44], which subsequently do not make use of any upwind-biased numerical
flux [45-57]. Recently, a new mixed-formulation based upon first order hyperbolic
system of conservation laws has been proposed for explicit solid dynamics [58, 59].
Numerical methods for solving nonlinear systems of hyperbolic conservation laws
require a monotone numerical flux [60]. The choice of the flux computation has
a profound influence on the properties of the resulting schemes [61,62]. A refined
approach in utilising wave propagation information contained in the new mixed
formulation to construct the numerical flux is introduced in [63,64].

1.2.2 Locking

The standard low order elements exhibit severe locking for incompressible or nearly
incompressible materials. Rubber or rubber-like materials experience nearly incom-
pressible material behaviour and are characterised by a large ratio of bulk modulus
to shear modulus [65-68] (see Figure 1.4). In metal plasticity, the plastic deforma-
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Figure 1.4: Rubber or rubber-like materials: (a) Bridge bearing pad; (b) Structural

bearings; (c) Engine mountings; and (d) Tyre.



1.3. Scope of the Thesis 11

tion is isochoric and the compressible part is due to elastic deformations that remain
small in many applications [7].

Problems can arise in the presence of incompressibility which lead to the so-called
volumetric locking phenomenon [22-24]. In this case, the standard linear elements
are not able to enforce a complete nullity of the volumetric strain. This leads to an
overestimation of the stiffness related to the volumetric part, which results in overly
stiff behaviour [38,69, 70].

To alleviate this, different approaches have been developed. Simo et al. [71]
proposed a three-field variational method with independent constant pressure and
constant dilatation. However, this proposed element is hampered by hourglassing’
under certain conditions [72]. In the so-called F-bar methodology, the standard de-
formation gradient F' is replaced by a modified deformation gradient F' = (J/J)/*F
with J = detF and J = const. Nagtegaal et al. [73] introduced the dilatation pa-
rameter J = [, JdV/ [,, dV, which coincides with the three-field variational method
discussed above. This method is widely known as mean dilatation approach. A
slightly different definition for J = J, = detF, at the centroid of the element is
also performed in [74,75]. First by noting that a family of geometrically linear En-
hanced Assumed Strain (EAS) elements has been developed by [76,77]. Simo and
Armero [78] extended the original idea to finite strain range, where the indepen-
dent displacement gradient field is redefined as H = Vou + H where H denotes
the enhanced displacement gradient tensor. Another attractive alternative in the
treatment of nearly incompressible models is Selective Reduced Integration (SRI)
method. The crucial idea underlying SRI is that a full numerical integration is em-
ployed for the isochoric terms while a selective reduced integration is imposed for
the volumetric stress component [69, 79, 80].

A clear advantage of using mixed variational, F-bar or EAS approaches is that
they are directly applicable to all constitutive models. In contrast, SRI method
is used for models with decoupled isochoric and volumetric behaviours. Insofar as
an isochoric-volumetric decoupled material behaviour is assumed for most practical
applications, the SRI method can be employed without any difficulties. All methods
described above are capable of producing locking-free results, but only restricted to
both four-node quadrilateral and eight-node hexahedron elements. Efforts to de-
velop linear triangular and linear tetrahedral elements that are effective in nearly
incompressible applications have only been partially successful, as the resulting for-
mulations suffer from artificial mechanisms similar to hourglassing [22-24].

1.3 Scope of the Thesis

This thesis deals with the numerical technique required to simulate the responses
of Lagrangian fast dynamic problems. The aim of this technique is to enable the

"Hourglassing is described as spurious zero-energy modes of deformation [6,38,69]. The exis-
tence of low-energy modes can only be detected via an eigenvalue analysis of the tangent matrix.
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development of a computer program that is capable of alleviating the problems
elucidated as follows:

e Non-physical oscillation in the vicinity of shock discontinuities.

e Volumetric or shear locking in nearly incompressible deformations or bending
dominated situations.

Furthermore, the proposed methodology should be able to predict the following
properties with respect to time:

e Deformed shape at particular time instant ¢.

e Other internal quantities such as pressure, internal and kinetic energy, linear
and angular momentum.

e Numerical dissipation.

The formulation of a Lagrangian fast dynamic analysis is based on a first order
hyperbolic system of conservation laws®, which is crucially governed by two phys-
ical laws, namely the momentum balance principle® and the deformation gradient
conservation principle. Both phycial laws are coupled with each other; typical of a
so-called mixed formulation!® [38]. In the case of reversible process, these balance
principles have to be supplemented by an isothermal elastic constitutive law in order
to describe the mechanical behaviour of a particular class of materials. Nonethe-
less, many problems of physics and engineering have implications for irreversible
processes (i.e. thermal effects and dissipative inelastic mechanisms). In order to
underline such phenomenon, it is essential to solve for an additional state variable,
namely the first law of thermodynamics (or energy balance principle), where the
constitutive models are more refined than those of isothermal elasticity. It is worth
noting that, during a reversible process, the energy balance principle can be obtained
by suitable integration of the momentum conservation principle [3,4].

Unfortunately, it is practically almost impossible to find analytical solutions that
satisfy the system of conservation laws for the majority of problems due to geomet-
ric and material nonlinearities'! [3,6,7]. In order to solve the system of equations
approximately, a cell centred FVM is used. The spatial semi-discretisation is per-
formed on a standard cell-centred cartesian grid, where the primary variables are

8The non-conservative form of governing equations is not suitable for numerical solutions with
strong discontinuities [26,60,81-84].

9The momentum balance principle is also known as the balance of momentum principle or the
momentum conservation principle.

10The mixed formulation is defined by the fact that the number of dependent unknowns can
be reduced in the governing equations by suitable algebraic operation. Otherwise, an irreducible
formulation is recovered.

1 The material nonlinearity is defined as the stress-strain behaviour which is given by an inelastic
constitutive relationship whereas, the geometric nonlinearity is important in large deformation
behaviour.
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defined at the centroid of the cells. Under this circumstance, any control volume
can be identified with the existing grid and typically, the field variables are approxi-
mated in every cell by means of piecewise constant shape functions, which yield first
order accuracy in space [85].

Higher order spatial accuracy can be achieved by introducing a suitable recon-
struction procedure for conservative variables within each cell, which then requires
the neighbouring or adjacent information relative to the particular cell under con-
sideration. A piecewise linear approximation to the solution variables is sufficient
to be considered. However, the linear approximation does not prohibit unphysi-
cal oscillations in shock dominated problems [26,60,84]. In order to rectify this,
a modern shock capturing technique which incorporates a nonlinear limiter is in-
troduced [84,86,87]. A general predictor-corrector reconstruction procedure will be
presented.

The discontinuity at every cell interface motivates the use of a Riemann solver
to evaluate the interface fluxes. Hence, a Lagrangian contact algorithm for the
computation of such fluxes will also be derived. Furthermore, the semidiscrete non-
linear evolution equations will be advanced forward in time by using a family of
Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping schemes [88].
For consistency, the order of accuracy in time should be matched with the order of
spatial accuracy.

In order to guarantee the existence of a single-valued continuous displacement
field, it is essential to obtain a zero-curl deformation gradient tensor to ensure
compatible deformations!?. Commonly available finite volume updated schemes
in [26, 60, 84] introduce disturbances in the solution as the treatment of this con-
straint is not handled properly. To alleviate this, it is necessary to control curl errors
in order to develop a robust and accurate scheme. A new conservative FVM that is
locally curl-preserving will be presented.

The proposed computational methodology mentioned above does not necessar-
ily preserve the total angular momentum of a system, which then induces energy
loss under long-term analysis. For this purpose, a correction procedure involving a
minimisation technique will be introduced.

To this end, a series of examples will be examined in order to demonstrate the
robustness and general capabilities of this numerical technique. Comparisons of the
proposed approach with the traditional displacement-based formulation will also be
performed.

1.4 Outline

In order to elaborate the objectives indicated in the previous section, this thesis is
organised as follows:

12In the classical infinitesimal strain deformation, these constraints are expressed by Saint-
Venant’s compatibility equations [89]; that is, V x (V x €) = 0.
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e Chapter II explores the fundamentals of reversible Lagrangian elastodynam-
ics [43,44,90]. The discussion starts with the derivations of the laws of physics
for Lagrangian fast dynamics. The physical laws are valid for any continuum
body, regardless of the material of which the body is made. A constitutive
model is introduced so as to distinguish between different types of material [6].
These physical laws can then be combined into a single system of conservative
equations [82,91].1% It becomes a basic ingredient for studying the eigenstruc-
ture, which in turn leads to the development of a linearised Riemann solver
that is required at interface fluxes [84].

e Chapter III discusses irreversible processes'* that are always encountered
in nature where constitutive relations are more complex than in isothermal
elasticity [3]. In such cases, thermal effects and other dissipative mechanisms
cannot be neglected. Laws of thermodynamics, hyperelastic-plastic materials
and the Rankine-Hugoniot relations will be introduced [2,7].

e Chapter IV presents the numerical techniques required to solve the system
of conservative equations. These include: cell-centred based discretisation
[25,60,92]; Monotone Upstream Scheme for Conservation Law reconstruction
procedure [93-95]; nonlinear slope limiter [86,87]; a family of TVD Runge-
Kutta time stepping schemes [88,96,97] and maximum time increment [98].

o Chapter V presents a general framework for describing the highly nonlinear
numerical interface flux function. This framework generalises the linearised
Riemann solver and is derived based upon the Rankine-Hugoniot jump condi-
tion of the linear momentum variable.

e Chapter VI examines the proposed computational methodology required to
conserve the total angular momentum of a system in order to ensure that
physically meaningful solutions are produced under long-time integration [99-
103].

e Chapter VII presents a new locally curl-preserving finite volume updated
scheme in a treatment for satisfying the compatibility condition of strains
[104,105].

e Chapter VIII deals with consistency and Von-Neumann stability analysis
of the one-dimensional linear convection equation [25,60]. Once the method
is proven to be consistent and stable, it shall automatically satisfy the conver-
gence requirement [106].

13Navier-Stokes equations is widely used in computational fluid dynamics. A particular case,
known as Euler equations, is recovered if the viscosity and heat conduction are neglected. Discus-
sions about these mathematical models can be found in any CFD textbooks.

141rreversible process is also regarded as natural process.
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e Chapter IX simplifies the general formulations derived previously for 1D
problems such as: governing equations; flux Jacobian matrix; eigenstructure;
linearised Riemann solver; predictor-corrector reconstruction procedure and
characteristic theory. Some 1D rod examples will be demonstrated.

e Chapter X is devoted to some practically interesting 2D examples: plate;
beam and column in bending application; a punch test; tensile case and impact
problems.

e Chapter XI concludes the thesis by summarising the main points and indi-
cating some suggestions for future research works.
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2.1 Introductory Remarks

This chapter is devoted to a general discussion on several formal aspects of explicit
Lagrangian fast dynamic analysis within the context of elastic wave propagation®.
There are many references available on the basic theory of elastodynamics (see
[32,37,90,107-112]). In spite of that, a great deal of literature is focussed on steady-
state (or elastostatic) problems [29,30,35,113], .

The classical displacement-based formulation is typically solved by standard fi-
nite element spatial discretisation together with a family of Newmark time inte-
grators. It is well known that constant stress elements exhibit volumetric locking
in incompressible or nearly incompressible dynamic applications and also perform
poorly in bending dominated situations [23,24,69,75,80,114]. One of the approaches
to surmount these difficulties is to treat deformation gradient tensor as an indepen-
dent variable [58].

This chapter begins with problem variables that constitute a new mixed for-
mulation for reversible elastodynamics. The conservative equations (also known as
balance principles) are then derived. Inasmuch as a rubber (or rubber-like) mate-
rial is considered, the most appropriate constitutive law for describing its behaviour
(such that the model can withstand very large strains without any permanent defor-
mation) will be the nearly incompressible Neo-Hookean (NH) hyperelastic material.
The conservation-law formulation is subsequently presented which motivates the
study of eigenstructure so that a linearised Riemann solver can be derived.

In order to achieve a better understanding of the sections that follow, it is nec-
essary to briefly discuss some mathematical preliminaries?. The flowchart in Figure
2.1 illustrates the structure of this chapter.

2.2 Problem Variables

Motion of a continuum body is defined by a deformation mapping from a reference
volume V to the corresponding current volume v(t) (see Figure 2.2). During motion
¢, the position x of a material particle X at any arbitrary time ¢ is of the form
x = ¢(X,t); material coordinate X is used to label any particle of a body at time
t = 0. The deformation gradient tensor, F'(X,t), is generally expressed as

0p(X,t) 0x(X,t)

X X
This tensor is said to be a two-point tensor due to its ability to transform a vector
from the undeformed configuration to the deformed configuration [7] and transpires

that a body will experience a homogeneous deformation if F' itself is independent of
X. In addition, the determinant of F' (denoted by Jacobian J) relates differential

F(X,t) =

(2.1)

Elastic wave propagation is alternatively known as elastodynamics.
2The basic knowledge of mathematical preliminaries (i.e. linear algebra, continuum mechanics
and hyperbolic equations) is summarised in Appendices (A - C).
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Appendix A Appendix B Appendix C
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Figure 2.1: Guide to this chapter.
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%3 'x3

v(t)

Time t

dx
dX
Time t= 0.
Figure 2.2: Motion of a body.
volumes in both material and spatial configurations dv = JdV. More precisely,

the condition, J € K+, has to be satisfied since a body is not allowed to penetrate
itself [115]. A situation in which J < 0 is physically unacceptable. The material
velocity v(X,7) and linear momentum per unit of undeformed volume, p(X,¢), are

given as
v(X,t) = P{X,t) = pOv(X,t). 2.2)

During isothermal process, it is sufficient to consider p and F as problem variables
for which the corresponding standard conservation laws can be derived. This pro-
cess allows the energy balance principle, ET, to be uncoupled from the rest of the
conservation laws [1,3]. A general energy principle will be presented in Section 3.2

with the aid of the laws of Thermodynamics.

2.3 Conservation Laws of Physics

This section presents the Total Lagrangian description3 for a new mixed formulation
of Lagrangian explicit dynamics solid mechanics. The formulation is crucially gov-
erned by two physical laws, namely the momentum balance principle [3,4,6,7,116]
and the deformation gradient conservation principle [58,59,63,64,117,118]. 1In
essence, these physical laws are collectively known as a general statement which

is not restricted in their application to any class of material.

3In Total Lagrangian Formulation (TLF), all variables are referred to undeformed configuration.
The decisive advantage is that all derivatives with respect to spatial co-ordinates are calculated
based upon an original undeformed configuration [115].
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2.3.1 Momentum Balance Principle

For a continuum, momentum balance principle states that the rate of change of linear
momentum of particles (which lie within a material volume V') is equal to resultant
forces applied to these particles. Mathematically, this principle is expressed as

4 / p(X,8)dV = / pob(X,£)dV + / tdA;  p(X,t) = pou(X,8), (2.3)
dt v v 2\

where p is the linear momentum per unit of material volume, py represents the

constant material density, v is the velocity field, b stands for the body force per

unit mass and t denotes the nominal traction vector. Since the material volume

integral does not evolve in time*, (2.3) then leads to a local differential momentum
conservation law

op(X, 1) OBy

ot oXy’

with the help of ¢ = PN together with the divergence theorem [3,7,115]. The
two-point tensor P describes the first Piola-Kirchhoff stress tensor, IN represents
the material outward unit normal vector and V, denotes the gradient operator in
undeformed space. It is worth noting that (2.4) is a standard Lagrangian equation of
motion for continuum mechanics and most importantly, it reduces to the equilibrium
equation if the inertial term is neglected [1,6]. Note that the partial derivative of
p(X,t) is taken at constant X, or in other words, (2.4) is derived by following the
material particle X.5

— Vo P(X,t) = pb(X,t); [Vo-P],=[DIVP], = (2.4)

2.3.2 Deformation Gradient Conservation Principle

Deformation gradient tensor, F', plays a key role in describing kinematics for large
deformation analysis® [3,6,7,115,116,123,124]. In order to alleviate shear locking

4If a control volume deforms with body motion, the volume will be transformed from a spatial
representation to a reference representation. This procedure is known as Reynolds Transport
Theorem (RTT). Literature such as [1,13,115,119-122] review this concept.

5In a purely mechanical reversible process, an energy equation can be derived as follows. Mul-
tiplying the momentum conservation law by a velocity vector v gives

0
BIt) v—(Vy-P) -v=pob-v.
Then, integrating over an arbitrary domain V with the aid of divergence theorem yields

;it/ ;pov 'vdV+/P —dV / t-vdA+/pob-vdV
av \4

By noting that P: Q’— = P: F, equation above can be re-written as

d/ 1pov 'vdV+/P Fav = / t-vdA+/p0b-vdV (2.5)
dt av v

This energy balance principle will be revisited in Section 3.2.
6In linear elasticity, deformation gradient tensor is approximated by F = I, which implies that
the magnitude of the engineering strain € is restricted to an infinitesimal value.
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as well as volumetric locking, one of the locking-free methods is to treat F' as an
independent variable with the aim of increasing the degrees of freedom (or flexibility)
of a problem [24]. For this purpose, conservation of deformation gradient tensor has
to be derived by noting that the time derivative of F'(X,t) is related to the velocity
vector v(X,t) as

E = VQ'U. (26)

With the help of the identity tensor I, (2.6) can be alternatively written as

%—f—vo-(mz):o. (2.7)

This can be considered as a generalisation of continuity equation in fluid dynamics.”
Nonetheless, it is essential to express (2.7) in a general integral form

i/pdv:/ v® N dA, v = p/po,
dt v ov

with the aid of the divergence theorem.

2.4 Constitutive Relationship: Perfectly Elastic
Material

In order to close the coupled system, viz. (2.4) and (2.7), both derived balance prin-
ciples have to be supplemented by a constitutive law satisfying two fundamental
requirements, namely frame invariance® (or objectivity) and the laws of Thermody-
namics [80].

Rubber® (or rubber-like) materials are used in various engineering applications,
like engine mounts, building and bridge bearings, tyres and vibration-isolation de-
vices (see Figure 1.4). In general, these materials are characterised by high de-
formability and reversibility of deformation. As a result, they exhibit a nonlinear
hyperelastic behaviour. Theoretical analysis of hyperelasticity has been performed
in [65-68]. From a phenomenological viewpoint, the strain energy function ¢ is

"Eulerian description of mass conservation law in fluid mechanics is

2 Ve () =0,
where V; = 0/0z.

8Constitutive equations must remain invariant when rigid body motion is superimposed on a
deformed configuration. A basic review of this concept can be found in [1,3,6].

9Rubber has flexible molecular structures which able to be stretched up to several times its
original length. This material can be treated as a linearly elastic model at small strains. However,
a nonlinear elasticity should be considered when analysing rubber behaviour in large deformations.
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postulated as a function which depends wholly on F', ¢ = ¢(F'). Additionally,
can also be represented in terms of invariants!® for isotropic behaviour!!.

2.4.1 Isotropic Finite Hyperelasticity Theory

For a hyperelastic (or Green-elastic) model, the existence of a Helmholtz free energy
functional, which is defined per unit of undeformed volume, is postulated [3]. Based
on the definition of Legendre transformation, a general free energy functional is
expressed as
Y(F,6) = e(F,n) - bn. (2.8)
Under isothermal process, thermodynamic variables (i.e. entropy 1 and temperature
6) are neglected. The above equation is thus reduced to ¥/(F') = e(F') where e is
the internal energy.
By using Clausius-Planck inequality, an internal dissipation rate is generally
denoted as
Dy = P: F —é 407> 0. (2.9)
Note that internal dissipation Dy, is zero in a reversible process. For the class of
isothermal perfectly elastic materials, (2.9) degenerates to the following equality

. BW(F)
Dyw=P:F—y= ——2 ] F=0. 2.1
=Pib-y= (P20 (2.10)
Since F' can assume arbitrary values, the First Piola-Kirchhoff stress tensor is de-

duced as

_ Oy(F)
P=— (2.11)

Laws of Thermodynamics within the context of irreversible processes will be dis-
cussed in the next chapter.

The strain (or stored) energy functional can be conveniently decomposed into
the summation of deviatoric!? ¢4.,(J~/3F) and volumetric components 0 (J) as

Y(F) = $aen(JF) + Yuor(J), (2.12)
which in turn, leads to

%; Py, = awvol. (213)
oF oF
101t is easy to dcmonstrate that invariants of C are identical to invariants of &: [7]
Ic = tr(C) = tr(FTF) = tr(FFT) = tr(b) = I;
Ilg = tr(CC) = tr(FTFFTF) = tr(FFTFFT) = tr(bb) = I1;
I1Ic = det(C) = det(FT F) = det(FFT) = det(b) = IIT.

P=Pdev+onl; Pdev=

Here, the right and left Cauchy-Green deformation tensors are defined by C = FTF and b= FFT,
respectively.

Ufsotropy is defined by requiring the constitutive behaviour to be identical in any material
direction.

12Deviatoric is alternatively known as isochoric or volume-preserving.
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The volumetric stress term can also be further developed by introducing pressure p,

d'gl}vol oJ -7 d"pvol(‘] )
—_ — . = i = — = tF. 2.14
vol dJ aF pJF b p dJ ) J de ( )

The simplest model satisfying the conditions described above is the nearly incom-
pressible Neo-Hookean (NH) material. Its deviatoric and volumetric parts are de-
scribed as'3

Viev = %ﬂ[J_z/S(F cF) =3, Yy = %’“ﬁ(‘] - 1)2- (2.15)

Here, x is the bulk modulus which only appears in the volumetric term whereas
the shear modulus y, on the other hand, appears in the deviatoric counterpart. In
addition, the expressions for deviatoric component of stress tensor and pressure p
can be obtained as

Puy=pJ PP - S(FiP)F ), p=s(J-1), (216

respectively.14

2.4.2 Linear Elasticity

Engineering materials (i.e. concrete, steel and metal) usually undergo a very small
change in shape. Under this circumstance, there is no difference between deformed
and undeformed configurations.

To this effect, a linear elastic constitutive relationship is considered as an excel-
lent model to describe small deformation behaviour for these engineering materials.
The stored energy functional, v, is defined by!®

(€)= %)\ (tre) + (e e), (2.17)

where 1 and A are the so-called Lamé constants. It is worth mentioning that Saint-
Venant Kirchhoff material is recovered if € is replaced by the Green-Lagrange strain
tensor E, which is defined as E = (C — I) /2 where C = FTF.

In general, a deformation gradient tensor is conveniently split into a displacement,
gradient H = Ju/0X and a unit (or identity) matrix I; that is, F = I + H. In

13The strain energy functional of Neo-Hookean material can be alternatively denoted in an
invariant form:

1 _ 1 2
W, o, 11Ic) = 5 <IIIC1/ 3 — 3) +5n (mg 2_ 1) .

14Note that the deviatoric nature of Py, implies that Py, : F = 0, instead of tr(Pyey) = 0
(see [7]).

151n linear elasticity, material description of strain energy functional can be expressed in an
invariant form as

(e, 11, I11,) = % AI2 4 pIlL.
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the context of infinitesimal strain, an assumption is made such that only linear
contributions of H are considered. In what follows, the engineering (or true) strain
€ and its trace can be further developed as

e=-(H+H")=-(F+FT-2I); tr(e)=tr(H)=tr(F)—3. (2.18)

N =
N =

In the absence of deformation (F = I), the stored energy functional vanishes as
expected (¢(e) = 0). Based on (2.11), after some simple algebraic manipulations,
the stress tensor is easily obtained as

P(F)=o(F)=p |F + FT - %n«(p)z FR(e(F) =3I  (2.19)

The above stress tensor (widely known as engineering stress o) is clearly a symmetric
tensor field [1,6,7,13,115,120,121,125).

2.5 Conservation-Law Formulation

The physical laws for linear momentum and deformation gradient are summarised
here for convenience:!®

8—p — VO P = pob, (220&)

ot

where v = p/py. These laws of physics!” can then be combined into a single system
of first order hyperbolic equations as

oUu OFi
_ —_— = M 2.2
ot 3%, S, VI=1,23; (2.21)

16 An alternative notation, Vo - (-) = DIV(-), is also used in [7,92].
17Conservation law in differential form is characterised by all space derivative terms grouped as

a divergence operator.
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where their components are illustrated as
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/ Pobi \
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(2.22)

—012v3

\ —0133 )

o O O O O o O

\ 0/

Here, a homogeneous equation is simply recovered in the absence of body force b.
The conservation-law (2.21-2.22) is capable of yielding the physically correct values
in problems where discontinuities are present.

2.5.1 Interface Flux

At a given interface defined by the material outward unit normal vector N =
(Ny, Ng, N3)T, the interface flux will be denoted as

Fn = FiN; =

with the help of t = PIN.

2.6 Eigenstructure

2.6.1 Quasi-Linear Structure

The Flux Jacobian matrix is generally given as

. VI=1,23, (2.23)
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Ay =A/N; = %ZINI = 88.7;1\;, VI=1,2,3, (2.24)
where A = 0F;/0U and Fy = FNj.

In order to fully understand the eigenstructure of this matrix, it is useful to
separate the momentum and deformation gradient components of 4 and F as

D —t 1
U= , Fn = , t=PN, v=—p, 2.25
(£) #=(von) A
where the tensors in the above expression should be interpreted as column vectors
of 9 entries corresponding to each of the tensor components, as explained in Remark
2.1. Consequently, Ay can be written as

_9(PN) _9(PN) 0 c
_ op oF _ 3x3 LN
Av=| _ofzren) _alzren) (_LIN 0o ) (226)
op oF po
where
oF;
[Cnlijs = 22 Nr,  [Inlik = SNy, (2.27)
O0F;;

Note that Cn denotes a normal component of any constitutive material fourth-
order tensor C = OP/JF. For the case of nearly incompressible Neo-Hookean (NH)
material, recall first that the stress tensor is formulated as

P(F)=uJ™*?|F - %(F FF T 4 k(J-1)JFT, (2.28)

the nonlinear elasticity tensor C can then be derived as

oP 2 2

==y BFRQF T+ 2y (F . F)FTQFT

5F h ® +gnd ( F®
1

+ uJ 3T — E@J‘Q/?’(F : FYH — %uJ‘Z/“’F”T ® F

+rJ(2J - 1D)FT@FT+kJ(J-1)H.

C(F)
(2.29)

Here, H = OFT/0F = —F;"F;;", 8J/0F = JF" and T = 6;;6;;. More

specifically, some of the engineering problems exhibit relatively small deformation
behaviour. Hence, the linear elasticity tensor'® is usually simplified to

CF=I)=M®I+uZ+1I), (2.30)

with the equivalent indicial notations

18This is a standard linear isotropic elasticity tensor which can be found in references such
as [1,6,7,115,121,125,126).
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IR®I= i[(SjJ; I-= (51'](5[]'. (231)

It is worth mentioning that (2.30) is conspicuously a constant material elasticity
tensor. In addition, the Lamé constants u and A are expressed in terms of other
physical measurements as

E vE 2
- 2\ = =+ - 2.32
b= o0+ +n(i-2) "~ *3h (2.32)
where E is the Young’s modulus, v represents the Poisson’s ratio and « denotes the
bulk modulus.

Remark 2.1 Let S be a second order tensor and its components are shown as:

S11 Sz Sz ST
S=| Su S» Ss |={S; |, (2.33)
S31 Szp Ss3 ST
where
S So1 S31
Sl = 512 y Sz = 522 ; S3 - 832 . (234)
513 So3 S33

The tensor S is then reshaped into a column vector as

[ Su
S12
Sis
Sl 821
S=| 8 |=]| S |. (2.35)
S; Sas
Ss1
Sso

\ S5 )

This sort of convention is very useful in studying the eigenstructure of a matriz.

2.6.2 The Eigendecomposition

With the above definitions at hand, it is now possible to study the eigendecompo-
sition of a Flux Jacobian matrix in order to develop the linearised Riemann solver
that will be used to calculate the interface flux. It is well known that the right and
left eigenvectors of Ay, namely R, and L,, and their corresponding eigenvalues
U, are solutions of equations as follows:

ANR, = U, R, (2.36a)
LT Ay =U,LL. (2.36b)
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The orthogonality condition!® between the left and right eigenvectors allows the flux
Jacobian (or decoupling) matrix to be expressed as:

12 T
R.L
Ay =) Uyp—n2. 2.37
N Z aRTca ( )
a=1 e

In order to derive expressions for these eigenvectors, it is of paramount impor-

tance to separate their components into

R L
D D
R, = ], Ly= e . 2.38
(F) e-(&) (2:39)
Substituting the explicit expression for Ay, viz. (2.26b), into (2.36a), it becomes

—Cy: FRE=U,pt (2.39a)

1
—;ﬁ®N=mﬁ? (2.39b)

0

Eliminating FF by inserting (2.39b) into (2.39a) then yields a symmetric eigenvalue
problem for pf as

CnnPE = poUpE, (2.40)

where the symmetric 3 x 3 tensor Cyn (also known as acoustic tensor) is given as

3
[Cnwlis =Y _ CirjsNIN. (2.41)

1,J
In the present nonlinear elastic context, the eigenproblem discussed above leads to 3
pairs of wave speeds, which correspond to the volumetric (or P-wave) U, and shear
(or S-wave) Us:

Upo = U, (2.42a)

Uss = Usg = £Us,, (2.42b)
where
v =9
Upz \//B+(A2+ 7); U, = ﬁ’ (2'43)
Po Po
with further expansions of
a=kJ:+ gﬂJ_Z/g (F:F), (2.44a)
B=uJ 3, (2.44b)
= —%/J,J_z/3, (2.44c)
1
A= . (2.44d)
[FTN]

190rthogonality is discussed in Appendix C.
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Here, o denotes the shear modulus, x describes the bulk modulus and pg represents
the mass density. Expression (2.42) concludes that the remaining six eigenvalues of
matrix Ay are zero. The matrix Ay can thus be reconstructed in terms of non-zero
wave speeds as

RoLE
Ay = Z Us “RTL. (2.45)
Moreover, the eigenvalue structure, viz. (2.40), also leads to 3 pairs of orthogonal
eigenvectors, in which the first one n corresponds to the outward unit normal vector
in spatial configuration associated to material vector IN and the remaining two are
arbitrary tangential vectors ¢ o orthogonal to n. These orthogonal eigenvectors are
given by

n t
Rl’g = 1 ) ; T\’lgy4 ( ) (246&)
(ﬂ:poupnt@N Lt ®@N

and

12
Rse = ( Ll N ) (2.46Db)

PoU

On the other hand, the following set of left eigenvectors is obtained in an analogous
manner as

. n _ tl
Lz = ( +5-C: (n®N) ) Lae= ( +7-C: (1 ® N) ) (247)

and

t,
= . 2.4
Lss ( +2C: (t® N) ) (2.470)

In the case of infinitesimal elastic deformations where n =~ IN, the volumetric
and shear waves can be reduced to

2
_ A B (2.48)
Po Po

due to the fact that F' =~ I and J ~ 1. Both waves propagate at constant velocity
with their shape unchanged. See Appendix D for a detailed derivation of linear and
nonlinear elastic wave speeds.

Noting that ’R,z;ﬁa =2 for a = 1,2,...,6, the Flux Jacobian matrix Ay can
now be re-written as
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1 T
Ay = > ; UyRo LT (2.49a)
(Up 0 0 0 0 0 )
0 -U, 0 0 0 0 T
1 0 0 U 0 0 0 h
=—(R4,...,Rs) 0 0 0 -U, 0 o0 : (2.49b)
0 0 0 0 U 0 L
\o 0o 0 0 0 -U)

[Up(RAL] — R2LY) + Us(R3L] — R4LE + RsLy — ReLg)]. (2.49)

N —

This expression is very useful in deriving a linearised Riemann solver due to the
necessity of evaluating the matrix |Ay/|.

2.7 Linearised Riemann Solver

The use of Flux Jacobian matrix Ay (2.49) enables development of an accurate
Riemann solver. In general, the interface flux across a surface defined by the material
outward-pointing unit normal vector IN (where there is a physical or computational
discontinuity in the problem variables U~ # U™) is written as®

1 _ U B
P =g a0+ Fu] = [ 1Ay (2.50

~

-

—

unstable flux stabilising term

where the above integral is taken along an arbitrary path from ¢~ to U*. From
equation above, the first term denotes the unstable flux (simple arithmetic average
from the left and right states), implying no consideration for wave directional char-
acter. The second (stabilising) term can be interpreted as artificial diffusion that
damps the instabilities arising in the first term. It is worth pointing out that the
integration paths of Osher’s numerical flux are taken to be integral curves associ-
ated with a set of right eigenvectors [53-57]. Another conventional Roe’s approxi-
mate Riemann solver reveals that an averaged Jacobian matrix Ay is first sought,
which then leads to the calculations of averaged eigenvalues, eigenvectors and wave
strengths [45-52].

20The flux computation can be identified as a particular case of Jameson-Schmidt-Turkel (JST)
scheme.
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Firstly, the Jacobian matrix |Ay| reads as follows:

6
1 T
(Avl =5 az::l Ua| R oLl (2.51a)
(U,, 0 0 0 0 0\
0 U 0 0 0 0 T
1 0 0 U 0 0 0 '
=-(Ry,...,R ° : 2.
g R Rel | g g 0w, 0 0 . (251b)
0 0 0 0 U 0 L
\o 0 0 0 0 U
1

=3 [Up(RALT + RALY) + Uy (R3LS + RuL] + RsLy +ReLy)] . (2.51c)

Substituting (2.46) and (2.47) into (2.51), after some simple but lengthy algebra,
leads to the following expression:

|AN| _ USI3><3 O30 n (Up - Us)n ®Xn 0349
Ogxs  —pC” Ogxs3 otz ~ 2m) MO N)®[C: (n® N)]

where the tensor C* is shown as

[C* iI§J Zcza]JN NI

Since U, grows with /z and C grows with y, |Ay| will not become unbounded
in the absence of shear strength (terms appeared as divided or multiplied by Uj
will simply vanish). The integral of stabilising term across the discontinuity can be
reduced to

u+ u+
U, dp (Up — Us)n dpy,
Ay|dU = + 2.52
/_ | An| - (poU dt®N> (( 1 poUs)(n®N)dtn> (2.52)

poUp

where
dt = (C: dF)N = (dP)N;, dp, = dp - n; dt, = dt - n.

It is normally impossible to integrate (2.52) exactly in a nonlinear case. However,
the assumption of linearity in engineering analysis (for which the wave speeds are
independent of the state of deformation (2.48)) enables (2.52) to be evaluated exactly
as

u+ _ _ + -
Us(p* - (Up = Us)(py — pr)m
/ "“N'd“=< - t?a;zv)*( 1 (¢~ t)neN) )
- PoU poUp POUs nQ®
(2.53)
A generalisation of this linearised Riemann solver will be described in Chapter 5 (a

method for nonlinear cases).
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Chapter 3

Irreversible Processes and
Elements of Lagrangian Rapid
Dynamics

“Although mechanical energy is indestructible, there is a universal tendency to its
dissipation, which produces throughout the system a gradual augmentation and
diffusion of heat, cessation of motion and erhaustion of the potential energy of the
material Universe”.

Lord Kelvin (1824 — 1907)
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Figure 3.1: Content and guide to this chapter.

Many applications in engineering and physics deal with irreversible processes,
where the constitutive models are more sophisticated than those of isothermal elas-
ticity. Under such circumstances, thermal effects and inelastic dissipative mechanism
cannot be neglected.

Recently, problems concerned with non-isothermal elasticity are arising in con-
nection with materials and structures employed in aerospace, nuclear fields and other

specialised applications. These problems are generally known as thermoelasticity.
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In principle, thermoelasticity deals with the interaction between temperature, stress
and elastic deformation due to mechanical and thermal loadings. A wealth of lit-
erature has been devoted to the numerical solutions of dynamic thermoelasticity.
These numerical methods include Laplace-transform FEM and semi-discrete meth-
ods [127-129]. In recent years, Discontinuous Galerkin (DG) method has been used
by [130-132] for solving coupled thermoelastic problems. For simplicity, this the-
sis only deals with an isothermal process where the thermodynamic variables (i.e.
entropy 7 and temperature #) can be ignored. In order to achieve a complete un-
derstanding on non-isothermal process, it is necessary to include a chapter dealing
with entropy and Second Law of Thermodynamics (see Appendix E).

Many materials of practical importance do not behave in an elastic manner at
high level of stress. They exhibit plastic (or irrecoverable) behaviour by virtue of the
fact that these materials fail to return to their undeformed state when surface forces
are relaxed.! A conservative Eulerian formulation of plasticity was first proposed
by Plohr and Sharp [133]. Numerical solutions for elastoplastic flows based on this
formulation? have been discussed in [118,134-136].

This chapter is organised as follows. In order to describe an equation governs such
irreversible processes, it is essential to solve for an additional state variable, namely
the energy, by using the First Law of Thermodynamics (or energy balance princi-
ple3), which does not specify the direction of energy transfer. With the inclusion
of this principle a complete conservation-law formulation will be developed. More-
over, the Rankine-Hugoniot relations are introduced in dealing with the behaviour
of shocks waves. In particular, the jump condition of linear momentum variable will
be used to derive a general Riemann solver which is applicable to nonlinear cases.
Figure 3.1 shows the suggested roadmap to this chapter.

3.2 Energy Balance Principle: First Law of Ther-
modynamics

The rate of change of the total energy in a continuum is formulated mathematically
as
d
— | EpdV = t-vdA— Q- NdA, (3.1)
at Jy v av
where FEr is the total energy per unit of undeformed volume, ¢ describes the trac-
tion vector, v stands for the velocity vector, @ denotes the heat flow vector and N
represents the outward-pointing unit normal vector in reference configuration. For

1The irrecoverable behaviour depends on the deformation history of an inelastic material.

2The use of Eulerian coordinates avoids the problems of mesh tangling and remeshing. In
contrast, Lagrangian formulation is simpler and faster in computation, but it suffers from severe
mesh distortions especially in problems having large deformations.

3The famous quote made by Clausius in 1865: The energy of the universe is constant. This
statement is rather loose from rigorous theoretical standpoint.
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simplicity, the heat source term is neglected in the equation above. The correspond-
ing differential balance law of (3.1) is given by

OET
at
In order to derive a more physically meaningful equation, it is useful to combine
(2.4) and (2.7) into (3.2), which yields
Oe oF
—=P:——-V4-Q, e=FEr— Ygin— , 3.3
Bt Bt 0 Q T wkzn 77[)ea:t ( )
where ez = —pob - x is the potential energy due to body force, ¥y, = (P - D)/200
represents the kinetic energy and e denotes the internal energy per unit of unde-
formed volume. For the case of thermoelasticity, e contains both the elastic strain
energy and the heat component.

+ V- (Q—P™v)=0. (3.2)

3.3 Dissipative Model: Hyperelastic-plastic Ma-
terial

Many practical applications often exhibit some permanent inelastic deformations. In
order to describe this irrecoverable behaviour, the simplest case of rate-independent
Von-Mises plasticity with isotropic hardening will be considered [2,6,7].

First, it is essential to define a strain energy functional in terms of the elastic
principal stretches A o:*

YA ts Xezs Ae3) = Yoo (T V3 Ne1, T V¥ 2, T30 3) + Yua(J),  (3.4)

where 1
View = B [(InAe1)? + (InXe2)? + (InAe3)*] — gp,(ln J)? (3.5)
and s
1 : 2
Yool = En(ln J)% K=+ 3k InJ = ;ln Ae,a- (3.6)

The Kirchhoff stress tensor is conveniently decomposed into its principal components
as

Taa = JOaa = Toy +Jp, ¥ a=1,2,3. (3.7)
Here, the deviatoric stress component 7, is
! 8wdev _ 2
Tao = B ren 2uln N o — 3uln J (3.8)
and the pressure p is defined as
. d¢vol _ InJ
P=—7 Th (3.9)

4Formulations can be greatly simplified if the principal directions are used.
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3.3.1 Incremental Framework

The typical initial hypothesis in plasticity is postulated such that no further per-
manent deformation takes place during the motion from time n to » + 1. This
hypothesis then leads to a trial left Cauchy-Green tensor® which is established as

bowt = FonCppFry . (3.10)

The expression above represents an exact time integration of b, that results from
the overall change in deformation based on the assumption that there is no further
change in irrecoverable strain, that is, [db.(F, Cp)/dt] c,

Insofar as the principal direction is being used, a spectral decomposition can be
performed on b7 which yields

3
boaty =D (\a) ni™ @ng, (3.11)
a=1
where A% describes the trial elastic stretches and nirial denotes the principal di-
rections. With the help of A%, the trial deviatoric Kirchhoff stress tensor can be
subsequently computed:

/trzal Z "trial trml ® ntrzal - "trial __ 2 In Atmal : ,uln Jn+1- (312)

aQ

By virtue of the equation above, no plastic deformation involved during time incre-
ment At = t"t! — t". However, further permanent behaviour will generally occur
in order to accommodate the inelastic constitutive requirement. To this effect, the
so-called return mapping procedure should be carried out to ensure that the trial
deviatoric stress tensor returns to the yield surface. This represents the change of
be at constant F but varying C), (that is, [db.(F, C,)/dt] ) and the total evolution

of b, is
db, db,

dt — dt |

db,

e .13
i (3.13)

Since the Von Mises plasticity is considered, its plastic flows is restricted to
behave in a purely isochoric manner, det(F,) = 1. Under such circumstance, Jn41 =
Jent+1 = det(Fr4+1). This plasticity is defined by a yield criterion which depends on
deviatoric Kirchhoff stress tensor 7’ and the hardening variable &

f(r,5) = (r ) -7, <0, 7= f;’ + He,, (3.14)

where 7"3 is the initial yield stress and H denotes the constant hardening parameter.

The yield function, viz. (3.14), is basically determined by a generalised scalar Von

\/2(7' : 7’) and this inequality has to be satisfied. Otherwise,

Mises equivalent stress 4/ 5

5The left Cauchy-Green deformation tensor is often called the Finger deformation tensor.
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A~ and v need to be evaluated to ensure that 7' returns back to the yield surface
(which will be discussed in the following section).

Now assume that an updated elastic stretch AZ}! has been accomplished, it is
then easy to determine the resulting elastic left Cauchy-Green tensor b .1 (which
includes an additional change in regard to the permanent deformation) as

3
benir = D (A5 nitl @ nit, (3.15)
a=1

where nt! = n!ral [7]. Consequently, the updated inverse plastic right Cauchy-
Green strain tensor is obtained as

-1

p,n+1 = Fn—-l—llbe,nﬁ-an_f; (316)

3.3.2 Return Mapping Procedure

As discussed previously, some modifications are made to the elastic stretch A?%! and
the deviatoric Kirchhoff stress 7., under the condition of f(7't" &,,) > 0.

The updated deviatoric Kirchhoff stress in principal direction is corrected as
follows:

7

T T trial 2uA7V"+1 (3.17)

oo C!Ol

Equation above indicates that 7 is proportional to 7 "% with a corrected magnitude
of —2uA~. This is obviously known as radial return mapping [6,7] (see Figure 3.2).
The dimensionless direction vector v is represented as

t l
U;H— Tia HT’trial” — T'trial . T’t'rial’ (318)

{ || erial ||

and eventually, the only remaining unknown in (3.17) is Ay. With the aid of A&, =
A~ [7], the incremental plastic multiplier, Ay, can be derived as

Ary _ %}L) iff(.’.ltrial,é-p)n) > 0; (3 19)
0 if f('trial g, ,) < 0. '
n+1

Once A« and v2™" are known, the elastic stretch is readily computed
At =Exp (In AT — Ayt (3.20)

By substituting (3.18) into (3.17) for v, the corrected deviatoric stress yields

SO g — (3.21)
oo / /3|7 triad | ' '
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f("": gp,n+1) =0

Figure 3.2: Radial return mapping procedure: (a) Perfect plasticity; (b) Isotropic
linear hardening plasticity.
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Recall that within the elastic domain (Ay = 0), no further update for be,y1 is
required:

N =T = (3.22)
In order to move on to the next time step, it is necessary to record the current state
of inelastic deformations as

Epn+1 = Epn + A7, (3.23)

where &, ,+1 is the updated value of Von Mises equivalent plastic strain.
An algorithmic procedure for implementing the rate-independent Von Mises plas-
ticity with isotropic hardening is illustrated in Algorithm (3.3.1).

(Algorithm 3.3.1: EVALUATION OF P(F,.1,C,} &,5) )

p7n’

(1).Given Fp 4y, C,, and &pp .
(2). Initiate Ay = vt = 0.

(3). Evaluate J,,; = det F,,;.
(4). Solve pressure p = k
(5).
(6).
(7).
(8).

In Jn+1
Jng1 .
5). Compute trial left strain tensor b}, = n+1Cy, LFT .

6). Spectral decomposition: b7, = 373 _ (Afrial)2 plrial @ pirial,
7).Set nttl = pirial,
8). Trial Kirchhoff stress: 747 = 2uIn AT — 24 1n Jp s
if (f(,r/trial, Ep,n) > 0)
! trial

9). Direction vector: v*t! = —Jea
( ) «x \/—%_H.,.Itrml”

then

(10). Plastic Multiplier: Ay = I(—T’%;u‘—)

11). Elastic stretch: A4 = Exp (In A% — Aqp2t1).

12). Return map: 7., = | 1 — ——2£8T___ | f/trial,

(11).
( ) 2uAA
' V2/3lrmial ) o
(13). Update stress: Toq = Thg + J0; T =Y 0, Taan?t! @ n2HL.
(14). First Piola-Kirchhoff stress tensor: P = 7F~T.
(15). Update besi1 = Yoo (AZE)2 i+ @ notl.

(16). Update C,pyy = FyibeninFrlls Epni1 = Epn + A
return (P,;)

-

3.3.3 The Dissipation Inequality

The strain energy functional of Von Mises plasticity with isotropic hardening is
postulated as:

1
P = P(ee, &p); .=V, = -2—1n b., (3.24)

where &, denotes the elastic logarithmic stretch tensor and &, represents the accum-
mulated plastic strain. The time derivative of (3.24) gives
op . . oy

j = — e _ 7 —_ = H— s 2
Y Be. €+ (%_psp 7, &p (3.25)
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where the scalar-valued function, 9y /9g,, associated to isotropic hardening curve [2].
The evolution of the internal variable, &,, is described as &, = 4, which follows from
the hypothesis of associativity [6]. By employing chain rule to &, in (3.25a) yields

. 19¢ 8(lub,)

V=55 gy bt S (3.26a)

1 0¢ OJ(Inb,) R T

= — : ——b.: b.b H 3.
2 9e.  ob, bJ beb,” +YHE, (3.26b)

a¢7’a€e

L

= 2%e. b.b,” +vHg, (3.26¢)
oY e

= e, e +YHE, (3.26d)

=7:1, +yHs, (3.26e)

where I, = F,F; ! is the velocity gradient and b, = F,F = FFp‘le‘TFT. During
isothermal process, the Clausius-Planck inequality simplifies to

Dpy=P:F—4>0 (3.27a)
=7:1—14>0. (3.27b)

Substituting (3.26e) into above expression gives

Dipg=71:(1-1.)—4HE, >0 (3.28a)
=7:l,—-YH, >0 (3.28b)
- ( _ 57__5_1”) >0 (3.28¢)

where [, = I — l.. Here, w, = 7: I, = 47 describes the rate of plastic dissipation
and the Von Mises equivalent stress, 7, is defined as

For the case of perfectly plastic material, that is H = 0, (3.28) reduces further to

— 5l — .1
Dint_wp_T"'pZO'

3.4 Full Conservation-Law Formulation

More generally, the conservation-law formulation can be further developed by in-
cluding the energy balance principle Er (or First Law of Thermodynamics). For
the sake of convenience, the differential laws of these balance principles are presented
as follows:
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‘?9_1;’ V- P = pob, (3.292)
%% Vo (v I) =0, (3.29b)
9Er _ Vo (PTv—Q) =0, (3.29¢)

ot

where p = pov is the linear momentum per unit of material volume, py represents
the material density, v is the velocity field, b stands for the body force per unit
mass, F' indicates the deformation gradient tensor, P is the first Piola-Kirchhoff
stress tensor, Fr is the total energy per unit of undeformed volume, Q is the heat
flux vector and V| denotes the material gradient operator in undeformed space.
The above laws can be formulated in a first order system of conservative equations

as
ou OF;
T tan =S VI=123 (3.30)
where
( D1 \ — Py \ ( pob1 \
D2 — Py poba
s —PF3r pobs
F1, —0nun 0
Fio —dr20 0
Fi3 —03v1 0
U= F21 y T[ = —6[1’02 ’ S = 0 (331)
Fp —012v9 0
Fos ~0r3v3 0
F3 —0n1v3 0
F3o —0123 0
F33 —013v3 0
\ET) \QI—PuUz' \ 0 )

3.5 Rankine-Hugoniot Relations

One of the most striking features in computational problems is the presence of shock
waves in the solution. The conservation laws described above accept solutions with
discontinuity travelling at certain propagation speed through the medium. In order
to derive the jump conditions across such discontinuity surfaces, it is worth noting
that the discontinuity in the problem variables [U | (across a surface I" defined by the
material outward unit normal vector IN) travelling with speed U takes the following

d o
E/Vudv_/v—a?dV—/rU[[u]]dA.

form:
(3.32)
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Similarly, the flux term in the presence of discontinuity yields

OF1qv = [ Fyaa- /[[J?N]]dA. (3.33)
v 0Xr av r

Note that the notation
[A] = AT — A~

denotes jump in variable A when crossing the discontinuity. Combining (3.32) and
(3.33) into a general integral conservation law, that is

d
—/udV+ FndA =0,
dt Jy v

leads to a local differential law in V as

ou OF;
—+ =0, VI=1,23; .34
ot 0X; ’ T (3:34)

coupled with discontinuity (or jump) conditions
UlU]=[Fy] in T (3.35)

This is generally known as Rankine-Hugoniot relations, which in turn can be par-
ticularised for the cases of linear momentum p, deformation gradient tensor F' and
total energy Er:

Ulp] = -[P]N (3.362)

ULF]= —pi[[puc_z)N (3.36b)
0

UlEr] = —pi[[PTp]]-N (3.36¢)
0

where heat flux @ is neglected. The jump condition of linear momentum variable
will be used to derive a general Riemann solver for nonlinear cases (see Chapter 5).
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Chapter 4

Finite Volume Discretisation and
Time Integration Scheme

“Everything should be made as simple as possible, but not simpler”.

Albert Einstein (1879 — 1955)

ol
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4.1 Introductory Remarks

There are numerous numerical methods available for solving a first order hyperbolic
system of conservation laws. Finite Volume Method (FVM) is one of the most
widely used numerical techniques in the area of computational mechanics and will
be employed herein.

However, the computational tool based on Finite Element Method (FEM) has
evolved to become the most popular numerical method in modern Computational
Solid Mechanics (CSM). FEM has firmly established itself as a pioneering approach
for linear and nonlinear problems in CSM (see [10,137]). In [41,138], both standard
spatial semi-discretisations, namely FVM and FEM, are described by integrating
the governing equation over any predefined control volume where they only differ
with regard to the type of weighting functions used. As a matter of fact, a standard
FVM is a particular case of FEM where a non-Galerkin approach is employed.! A
comprehensive review of this subject is detailed in [27].

In recent years, a number of researchers have applied FVM to problems within
the context of Computational Structural Dynamics (CSD); for instance, plate bend-
ing analysis has been performed in [139-141]. Furthermore, dynamic analysis of solid
mechanics was also investigated in [32,37]. Surge of interest in further developing the
FVM is not surprising since it posesses some very interesting properties: 1) FVM, as
well as FEM, are formulated in an integral (or weak) form and are suitable to deal
with complex geometries in multi-dimensional problems, as the integral formulations
do not rely in any special mesh structure.? 2) FVM allows for the strict conservation
of physical properties in the control volume [27, 30, 31,35]. 3) FVM shows a clear
advantage in problems where shocks (or discontinuities) are present [142]. An ex-
cellent ability for capturing shock discontinuities is demonstrated by allowing great
flexibility in defining local interpolation functions, where problem variables vary dis-
continuously between elements. This procedure leads to a Riemann problem and
is very well explained in [60,84]. 4) FVM, like FEM, can also be applied in other
areas of physics and sciences (i.e. Maxwell’'s and Magnetohydrodynamic (MHD)
equations have been studied [104, 143]).

A finite volume method for the numerical solution of a new mixed formulation
based upon a first order hyperbolic system of conservation laws is presented. First, a
general monotone upstream scheme for conservation law (MUSCL) technique associ-
ated with a first order cell-centred? finite volume spatial discretisation is briefly intro-
duced in Section 4.2. A more detailed discussion can be found in [33-36,42,139,140].
In Section 4.3, the extension to second order spatial approximation using a monos-
lope MUSCL method is then derived. The main idea is to construct (or predict)

IFVM is alternatively known as subdomain collocation FEM.

%Finite Difference Method (FDM) is the oldest method (which based upon the application of
a local Taylor series expansion) to approximate a system of differential equations. It encounters
difficulties when dealings with complex geometry in multiple dimensions.

3General discussion on vertex-centred finite volume scheme can be found in 27,29, 30,32, 33].
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a local piecewise linear reconstruction of the solution by a minimisation procedure.
The predicted slope is then corrected by employing a slope limiter so as to respect
the stability condition [93-95,144]. Subsequently, the resulting semi-discrete non-
linear evolution equation will be advanced forward in time by adopting a Total
Variation Diminishing (TVD) Runge-Kutta time stepping scheme (see Section 4.5).
The roadmap for this chapter is summarised in Figure 4.1.

4.2 Cell-Centred Based Discretisation

A system of nonlinear conservative equations takes a general form of

U  OF;

M 9T1_s  yi=12 4.1
T ax, O 23, (4.1)

where U denotes the vector of conserved variables, {F;, Fa, F3} is a set of con-
servative flux vectors and & describes the source term. These variables are defined
explicitly for a new mixed formulation in Section 2.5.
Integrating (4.1) over any arbitrary material control volume V, and applying the
divergence theorem to the flux integral results in*
d .
— [ UdV = - F-NdA=-— FndA, (4.2)
dt Jy, aV. Ve
where the source term S is neglected for simplicity. IN = (N1, Ny, N3)T represents
the outward pointing unit vector normal to the material boundary 8V, and the no-
tation F = (F1,Fq, F3) is used for the sake of a compact presentation. By defining
U, to be an average value of U over a control volume V, and also approximating the
boundary integral with the aid of quadrature rule®, equation above thus leads to a
general spatial discretisation

Ny Ngp
au 1 .
S =— ) [ 2 Fe NgW, | (4.3)
€ k=1 \ g=1
kece gek

where F ; represents the numerical flux functions at g** Gauss point, V, indicates
the volume of grid cell e, Ny denotes the number of surfaces of the control volume
Ve, Ngp is the number of Gauss quadrature points of kth surface, N, denotes the
outward pointing unit vector normal to k™ surface at ¢g** flux integration point, and
W, represents the g** quadrature weight. In equation (4.3), it is evident that a
lumped mass is implied due to the presence of V, [27,32].

4The main idea of using FVM is to discretise a computational domain into a set of non-
overlapping cells in which the conservative equations are enforced locally.

SGaussian quadrature rule is a numerical integration technique which evaluates an integral
as the weighted sum of function values at selected locations. Further explanation can be found
in [38,69,114,145].
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4.2 Cell-Centred
Based Discretisation

4.3 Monotone
Upstream Scheme for
Conservation Law
Technique (MUSCL)

4.4.1 Predictor Step:
Minimisation Method

4.4 Gradient Operator
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4.5 Time Marching
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Schemes: Runge-Kutta Scheme the Maximum Time
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Figure 4.1: Structure of this chapter.
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In particular, a general semi-discrete formulation, viz. (4.3), can be reduced to
a two-dimensional finite volume discretisation:®

dLle 1 Ned R
dt = —A— (.7:}4 . Nk) lk (44&)

-1 > [Flek (4.4b)
= —R.. (4.4c)

Here, A, is the area of cell e, Ny denotes the number of edges belongs to cell e
and I, indicates k** edge length. It is worth noting that a single Gauss quadrature
point (that is Ny, = 1), which is located at the mid-edge, is sufficient for obtaining
the spatial accuracy up to second order. Perhaps more importantly, its quadrature
weight W, at k** mid-edge is equal to the edge length l;. Insofar as the control
volumes coincide with the grid cells, the numerical contact flux function [F%]x is
an approximation to the flux at k% mid-edge (or contact point).

First it is assumed that the approximation to U is constant within each cell. This
will lead to discontinuities at cell edges which motivate the use of a Riemann solver
by introducing an upwind bias into the evaluation of the numerical flux function
F$. In the case of linear elasticity (or nonlinear elasticity at the origin), that is
n = N, the upwinding flux evaluation is given by’

(FSlk = FGUe, Uk = =(Fe + Fo) - Ni — %M. NelUs - U,), a=1,...,m,

(4.5)
where the Flux Jacobian matrix in two dimensions is denoted as A = (A, Az) and
U, describes the vector of conserved variables in the adjacent grid cell « (see Figure
4.2a). m represents the number of adjacent cells (for structured grids); m = 3 and
m = 4 for triangular and quadrilateral cells, respectively. In addition, the nonlinear
upwinding flux evaluation will be fully discussed in Chapter 5. A first order scheme
will be introduced so long as U, and U, are treated as cell averaged values to the left
and right states of k%" edge. Unfortunately, the accuracy is severely undermined by
an excess of numerical dissipation. In order to alleviate this, it is vital to introduce

a reconstruction procedure for choosing better values to the left and right states.

N =

6In two dimensions, the flux F and the material unit normal vector N can be simplified to
F =(F1,F2) and N = (N1, N,)T.

TA general nonlinear contact flux will be fully explored in Section 5.2. Nevertheless, this non-
linear flux can be linearised as the one shown in Section 2.7, which is only applicable to linear
elasticity.
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Figure 4.2: Reconstruction of the solution for quadrilateral control volumes: (a)

Piecewise constant reconstruction; and (b) Piecewise linear reconstruction.
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4.3 Monotone Upstream Scheme for Conserva-
tion Law Technique (MUSCL)

Higher order spatial accuracy is achieved by introducing a suitable reconstruction
procedure for variables within each cell [60, 84,93-95]. In particular, a piecewise
linear approximation to the solution leads to a method which is of second order
accuracy in space due to the fact that this approximation is exact for linear initial
data (see Figure 4.2b).

First note that an initial averaged solution value U, is given within an arbitrary
cell e. In order to achieve second order spatial accuracy, a local linear reconstruction
procedure is then carried out, which can be expressed mathematically as

U(X)=U+ G, (X — X.), (4.6)

where X € cell e. X — X, denotes a position vector relative to the centroid of cell
e, G, represents a gradient operator at cell e and yet to be defined. It is easy to
show that such a reconstruction is conservative [60] since

1

= u(x)da=u,.
x ) wlX)da=u

The numerical flux function, viz. (4.5), at k** mid-edge is now written in terms of
the reconstructed solution values on either side of the edge, that is

[flc\‘l]k = :Flc\jl(uea,uae)ka (47)

where
Uew = U + G - (Xeo — Xe)- (4.8)

Here, X., — X, is the position vector from the centroid of cell e to the mid-edge
between cells e and a. An appropriate gradient operator G, will be presented in
the following section.

4.4 Gradient Operator

In general, the MUSCL technique consists of two steps. First, a local vectorial
slope is predicted based upon the neighbouring values and information from the
current, cell itself. The predicted slope is then corrected in order to respect the
maximum principle (or total variation diminishing constraints) [146, 147]. This
predictor-corrector technique is collectively known as monoslope method since the
reconstructed values are obtained using the same vectorial slope on each grid cell.®

8Recently, a new class of MUSCL method (namely multislope method) has been proposed but
will not be considered herein. Its general discussion is detailed in [94, 95].
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4.4.1 Predictor Step: Minimisation Method

Given a set of m + 1 cell averaged values (i.e. {Ue,Us,Us,...,Un}) the slope within
a cell e, G, can be approximated in a coherent way such that

AU=Uy— U+ Ge- AX) =0 AX = X, — X, (4.9)

where X, and X, denote the centroids of the cells @ and e, respectively. The
expression AU represents the difference between the centroid value U, and the value
obtained by extrapolating the function U, from cell e to a.

Firstly, the functional D is defined by

= 1
D(G.) =35> Weuldy — (U + Gz - AX)),  Wea= R (4.10)
a=1 ex

N —

A scalar value, d.,, is a material distance from the centroid of cell e to «. In order
to determine a local vectorial slope G, at cell e, the above functional has to be
minimised with respect to G. which, after some simple algebraic manipulations,
yields

£(49),  an

GZ = [Z Veo Q Veq
a=1

where the unit vector v is expressed as

Vg = 2 22€ (4.12)

In two dimensions, G? = 0 if and only if a single neighbouring information (m = 1)
is available. Substituting G, from (4.11) into (4.8) leads to second order accuracy in
space but does not prohibit overshoots and undershoots at flux integration points.®
In order to rectify this, the predicted gradient operator G, has to be corrected by
employing a slope limiter [26,60, 86].

4.4.2 Corrector Step: Slope Limiter

By including a slope limiter during reconstruction, no new local extrema can be
formed. Barth and Jespersen [86] introduced the very first limiter for unstructured
grids. In essence, the proposed scheme is to find a limiter value ¢, of the form

Ueo = U + G - (Xea - Xe); Pe = [0, 1]~ (4'13)

By virtue of the equation above, it is essential to obtain the largest ¢, which still
prevents the formation of local extrema at flux integration point. In order to achieve
this, the following standard procedure is used:

90r equivalently, the spatial semi-discretisation scheme does not satisfy the local maximum
principle [147].
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1. Find the smallest and largest averaged values among adjacent cells « and the
current cell e:

U™ = min(U,,U,) and U™ = max (U, U,)
Va=1,...,m.

2. Compute an unlimited reconstructed value at each flux integration point; for
instance, Ue, with ¢ = 1.

3. Obtain a maximum allowable value of ¢, for each cell edge k.

min (1,47 ) | if Upe — U, >0
Pea = min (1,%-Fe), if Ua—U <0
1, if Uy —Ue =0

4. Select ¢ = mingey, (Peqa)-

5. Evaluate the correct reconstructed value U, at each flux integration point;
using (4.13) together with ¢, obtained from step 4.

In practice, the non-differentiability of step 3 causes the greatest degradation in
convergence performance [148]. For this reason, Venkatakrishnan (1993) [87] intro-
duced an alternative smooth function by replacing the min(1,y) with min(1, P(y))

where 2, o
Yy~ +2y
Pl) = L2
yv+y+2
Note that Venkatakrishnan limiter is slightly more dissipative than the standard
Barth-Jespersen limiter [149].

4.5 Time Marching Scheme

The application of the method of lines!® leads to a system of ordinary coupled
differential equations:

dau.

dt

This approach offers a great deal of flexibility since different levels of approximation

can be easily selected for the fluxes, as well as the temporal scheme. A system of

equations (4.14) has to be integrated in time so as to obtain either a steady-state

solution (R, = 0) or a time history of an unsteady flow. The most popular and

widespread explicit time integrator, namely Runge-Kutta time stepping scheme, will
be adopted.

-~ —R,. (4.14)

10The method of lines is a technique to semi-discretise first the spatial term of a governing
equation into a system of Ordinary Differential Equations (ODEs), which in turn can be integrated
using any temporal scheme that exists in literature.
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4.5.1 Multistage Schemes: Runge-Kutta Methods

In numerical analysis, a family of Runge-Kutta methods is one of the most impor-
tant explicit time integration techniques. Jameson et al.(1981) [150] have reported
that the advantage of using Runge-Kutta schemes is such that no any special start-
ing procedure is required, in contrast to LeapFrog and Adams-Bashforth methods.
Crucially, they have been successfully applied in the numerical solutions for Euler
equations [151-153].

The multistage schemes advance the solution in a number of steps, which is called
Runge-Kutta stages. In order to achieve a sequence of updates from U? to UH?,
it is essential to re-evaluate the residual R, at points intermediate between U and
U™, A basic general form of j**-stage Runge-Kutta method is denoted as follows:

UL =u;
U? =uU" — a,AtRY
Llff) = UZ — OtlgAtRS) - Otg3AtR£2)

i1 (4.15)
Ud =uUr — Aty oy, R
k=1
J
Uyt =uy - Aty RY
k=1
The notation ng) implies that
RY =R (u®). (4.16)

Note that the order of temporal accuracy is defined by the values of o and 5. These
coefficients are shown as follows [154]:

e Euler Method (First Order Accuracy). Defined by j = 5 = 1.

e The Improved Euler Method (Second Order Accuracy). Suppose that
j = 2 and their coefficients are a5 = 1, f; = B2 = 1/2.

Low-storage Explicit Runge-Kutta Schemes

Unfortunately, the family of classical Runge-Kutta schemes described above requires
a large memory storage; at stage j, all intermediate residuals of previous j%* stage,
RPVE = 1,...,7 — 1, need to be stored. In order to rectify this, a family of
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low-storage Runge-Kutta schemes, which is demonstrated as
up —u;
U =uUr — o, AtRY
U® =uU" — ,AtR?

: (4.17)
Uy =u; - a1 AtRI™Y
J
Ut =U7 — Aty BRY,
k=1
is usually applied. For consistency,
J
Y B=1 (4.18)
k=1
A particular choice of
Be=0, V k=1,...,5—1, B; =1, (4.19)
is adopted which eventually yields
Ut =U? — AtRY). (4.20)

Table (4.1) shows a list of coefficients for a low-storage ji* stage first order

Table 4.1: Multistage schemes: optimised stage coefficients ()

Stages Three Four  Five

o 0.1481 0.0833 0.0533
Qg 0.4 0.2069 0.1263

Qs 1 0.4265 0.2375
Qy 1 0.4414
(673 1

scheme [98]. These selected coefficients are chosen to extend the stability of a
scheme. A larger stability region can be achieved if higher Runge-Kutta stages
is used.!! Furthermore, a family of second order schemes will be introduced if and
only if aj_; = 1/2. See [146] for detailed discussion. Shu and Osher(1988) [88]
proved that non-TVD stable Runge-Kutta time stepping schemes can produce un-
physical oscillations even for spatial discretisation satisfying maximum principle (or
total variation diminishing constraints). Therefore, a family of TVD Runge-Kutta
methods (TVD-RK) is crucial in practical applications and will be explored in the
next section.

1 The stage coefficients can be tuned to extend the stability region, which in turn increase the
maximum time increment (see references [155,156]).
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4.5.2 Total Variation Diminishing Runge-Kutta Scheme

Time integration schemes pose a threat in respect to the monotonic solution. Al-
though any slope limiter ensures that no new local extrema can be created during
spatial reconstruction process, however, it does not automatically guarantee that
monotonicity will still be satisfied when evolves to the next time step. In order
to achieve this, [88] proposed the second order TVD Runge-Kutta time integration
scheme'? satisfying the monotonicity criteria. This integrator has been successfully
used in [96,97]. At the outset, the conserved variables U are given at time step n,
the time scheme then proceeds in two stages in order to obtain the updated field
variables Ut as

ugl) =ur (4.21a)

UD =ur - At RUD, 1) (4.21b)
11 1

U = JUe + U — SAERUD, ¢+ M), (421c)

where R, represents the residual of a conservative formula (see Section 4.2). In
[88], Shu and Osher also identified that the first order Euler’s method fulfills TVD
constraint. For any given computational examples, the order of time accuracy should
be matched if possible with the spatial accuracy. A clear disadvantage of using any
explicit scheme is such that the time increment, At, is severely restricted by the grid
geometry as well as the characteristics of a governing equation.

4.5.3 Determination of the Maximum Time increment

Evaluation of the time increment At is of particular importance since it is closely re-
lated to the stability of any explicit time marching scheme. The maximum allowable
time increment is defined by making use of the Courant-Friedrichs-Lewy number!3,
XCFL [157]:

hos
At = OCFL UT:WL N (422)

max

where Ay, is the minimum grid size and U”

. describes the maximum wave speed

presents at time level n. The maximum wave speed can then be found as
Upow = max Uy, (4.23)

where {e} includes a set of data arising from the physical domain and U} is the

local volumetric speed at time step n. Note that inappropriate choice of U}, in

12The second order TVD-RK method coincides with the Improved Euler method discussed in
the previous section.

131t is a necessary stability condition that required by any type of explicit time integration
schemes. This condition states that the domain of dependence of the numerical method should
include the domain of dependence of the PDE. An excellent discussion can be found in [81].
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(4.22) might lead to an unstable scheme. In the context of homogeneous linear
elasticity, the time increment becomes constant (At = const) due to the fact that
the volumetric speed U, solely depends on material properties (see equation (2.48a)).
The CFL number acpy is yet to be specified and will be investigated in Chapter 8.



Chapter 5

Lagrangian Contact Algorithm

“If people do not believe that mathematics is simple, it is only because they do not
realize how complicated life is”.

John Louis Von Neumann (1903 — 1957)
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5.1 Introductory Remarks

A new computational methodology comprising of a MUSCL cell-centred finite vol-
ume method and a TVD Runge-Kutta time integrator was presented in the previous
chapter. However, the highly nonlinear numerical interface flux function F g is yet
to be defined (see Section 4.2). In order to achieve this, a generalised Riemann
solver (also known as contact flux) will be introduced.

Interface fluxes including contact fluxes can be generally treated as a Riemann
problem. Section 5.2 presents an overview of a generalised Riemann solver. This
Riemann solver will be used to derive the specific boundary flux by specifying the
boundary conditions without resorting to ghost method!. Section 5.3 provides de-
tailed descriptions for various boundary fluxes. An improper implementation of
these fluxes yields inaccurate result, therefore the numerical treatment at the bound-
ary requires particular care. Otherwise, the stability and convergence rate of a
numerical scheme can be adversely affected [98].

Figure 5.1 summarises the guide through this chapter.

5.2 Generalised Riemann Solver: Contact Flux

In Lagrangian dynamic problems, it is often the case that two surfaces, which lie on
the reference configuration with the unique outward normal vector IN at initial time
t = 0, become in contact with each other after some time ¢ in current configuration
(see Figure 5.2). Physically, this is the result of an impact between two bodies
or two parts of the same body. Numerically, contacts may arise from the use of
discontinuous interpolations for problem variables at a given point. For instance,
the interface flux FS (U™, UT), which depends on the left and right states, will
emerge in the numerical solutions of a Godunov-type finite volume scheme.

In order to derive a contact flux, it is necessary to evaluate the linear momentum
and traction vectors at contact point immediately following the impact. Note first
that the impact will generate two types of shock waves travelling from the contact
point into each of the two bodies. In the case of frictionless contact, the generated
shock waves will travel with volumetric speed U,. Perhaps most importantly, the
normal components of the momentum and traction vectors after contact must be
identical for both surfaces. From (3.36a), equation for the linear momentum jump
across the left and right shock waves can be deduced:

—(p— _ . C - _4C
UP (pn - pn) = tn - tn7 (51&)

C C
! Another approach is to extend the computational domain to include a few dummy (or ghost)

cells, whose values depend on the the boundary conditions and interior solutions. For this purpose,
a general ghost method will be discussed in Appendix F.
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5.2 Generalised

) 5.2.1 Compact Version of
Riemann Solver:

Contact Conditions
Contact Flux

5.3.1 Sticking
Surface Case

5.3 Boundary 5.3.2 Sliding
Conditions Surface Case
5.3.3 Free

Surface Case

Appendix F

Ghost or Dummy Cells

Figure 5.1: Content and guide of this chapter.
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Figure 5.2: Contact generated shock waves.
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where p, and p;} denote the left and right normal components of the momentum
vector before contact, that is p,"* = p~*-n. Analogously, ¢+ describe the normal
components of the traction vector before contact such as ¢;'* = n - (P™*N). Note
that the surface normal is defined outwards for the left body and inwards, on the
contrary, for the right body so as to define a unique traction vector after contact t¢
(ie. N=N~"=—-N7%and n =n~ = —n™). Furthermore, (5.1) can be expanded
which leads to the expressions of the momentum and traction vectors following the
contact:

c U +Ujpy |t —t,

oS = n d (5.2a)
Up +UF Uy +Uf
uyUur [t ot U, Uy
o= Yl (L 4 L) L (5.2b)
Uy +U; \U; " Uf) U +UF "

An additional pair of shock waves will propagate with shear speed U; under the
infinite friction contact. The derivation performed above can now be followed for
the tangential components of the momentum and traction vectors such as

c_Uipy +Ufpl | 7 —t7

Py U-+UF U +Uf (5.32)
u-ur [ty ot U;U;f
C _ s Vs t t E + _

With the help of above expressions, the complete contact momentum and trac-
tion vectors are defined by

p’=p +pin; 9=t +iin. (5.4)
This enables the contact flux to be evaluated as

—1¢
1,C

F = —p—(ipc® 1;7 (5.5)
where the heat flux term @ has been ignored for simplicity. The above expression
generalises the linearised Riemann solver (derived from the eigenstructure of a flux
Jacobian matrix) to the case where the energy balance principle is considered and
also the wave speeds are different across the contact surface (see Section 2.7). It is
easy to show that the solution obtained from the contact flux is identical to that of
linearised Riemann solver if U, = U and U; = U;.

5.2.1 Compact Version of Contact Conditions

An alternative form of contact fluxes, in principle, is conveniently decomposed into
[13]
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p° = (n®@n)p°+ I -ngn)p° (56
tC=nen)it’+ (I -nen)t’.

—
o
> &
N’ N

Note here that m ® n is the projection of p¢ and ¢t in the direction of n, whereas
I — n ® n projects them onto the plane perpendicular to n. With the aid of (5.2),
(5.3) and (5.4), the above expressions are expanded to become

U p +Upt Up  +Uip*
c _ p p I-— s s
p° =(n®n) U Uy +(I-n®n) U+ U
(Pt — P) (Pt — P7)
~ N I — — N
+ (n®mn) U0y + ( nen) U+ U7 ,
tC__( ® ) P_U; (+ —)_I_(I ® ) Us_Us+ -+ - (5.7)
TnenT Ly TP nen =P P
(U} P~ + Uy PY) (U# P~ + Uy PY)
N I_ S S
+(n®n) U, + Uy + ( nen) U5 Ur

As discussed in Section D.2, n is simply a push forward mapping for IN to spatial
configuration, that is

Additionally, (5.7) can be further reduced to

1 11 1
P’ =5 +p")+3 |- @n)(P* ~ PN + -(I-n@n)(P* — PN/,
p s

1 1
tC = E(P_ + PY)N + 3 [Up(n@n)(p™ —p7 )+ Us(I-non)(p"—p7)],
(5.8)
within the context of homogeneous linear elasticity (i.e. U, = U, = U, and Us =
U =U}).

5.3 Boundary Conditions

Making use of contact flux derived above, it is now convenient to develop special
formulas for use near the boundaries. In general, there are three types of boundary
conditions that commonly encountered:
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5.3.1 Sticking Surface Case

Under this circumstance, it imposes a no-slip condition2 where the velocity vector

v+ at outer domain (+) becomes

v+ =p+ 0.

(5.9)

Due to the fact that no deformation is allowed in this particular case, the wave

speeds are then denoted by

£7/ — oo.

By substituting the conditions described above into (5.2)
and (5.3), the velocity and traction vectors at contact

point are easily derived:

pc =20
(5.11)
tn =tn ~ UpPn’ =K “
Or alternatively, the above expression can be represented
as
o =
p 0 G 12)
t =t —Up(n*n)p -Us(I-n®n)p

Here, n = N denotes the outward unit normal vector to

the boundary face.

5.3.2 Sliding Surface Case

For sliding surface boundary condition, the velocity only
slips over the tangent plane. It is equivalent to the con-

dition such that there is no flow normal to the surface:
vV+E n =y+
With the help of the above equation together with
p -> > us =o and tt = tf,
the contact fluxes are obtained as
Pn = 0, pf =rr1 + é\{ngtf—

and

tn™~C-UpPn, tt = tf-

(5.10)

figure 5.3: Sticking Case

Figure 5.4: Sliding Case

*D (5-13)

(5-14)

2In fluid dynamics, velocity at the surface vanishes when viscous fluid passes a solid wall [25,

81,83].
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These fluxes can also be written in an alternative form:

p =@ —m0 nm)p~+ —(T-n0n)(tB—1¢ )
U7 (5.15)
F =m0 n)f~+ (/ —n 0 ro)C —U~(no0 n)p~.

The definition of n is identical to the sticking surface casejthat is, n = N defined

at the boundary face.

5.3.3 Free Surface Case

This type of boundary condition concludes that
CH=1/+ = and t+=1t8B.

The normal and tangential components of contact veloc-

ity are thus

t B
Pn =Pn+J .tn-t d Pt = Pt
n n {}5( n-tn) an uS
(5.16)
respectively. The traction vector at contact point, on the
other hand, is described as
tc =1tB. (5.17)
For the sake of a compact representation, equations
above can be conveniently re-expressed as Figure 5.5: Free Case
t° =1tB
p =p”°+77"(n ®n)("S“ + —n On)(tB- t~).
P N

In contrast to the previous boundary cases, n is defined by the spatial outward unit

normal vector to the interface of v~(7).
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Chapter 6

Discrete Angular Momentum
Conserving Algorithm

“No knowledge can be certain, if it is not based upon mathematics or upon some
other knowledge which is itself based upon the mathematical sciences”.

Leondardo da Vinci (1452 — 1519)
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6.1 Introductory Remarks

The numerical technique that has been developed so far does not ensure the con-
servation of angular momentum of a system, which then induces energy loss under
long-term analysis. In order to rectify this, an exact angular momentum conserving
time stepping algorithm for Lagrangian rapid dynamic analysis will be introduced.

Energy-momentum conserving schemes for integration of the momentum balance
principle in nonlinear elastodynamics were a matter of intense research over the past
few decades. In the early 1990s, an exact energy-momentum conserving algorithm
for nonlinear dynamics was first proposed by Simo et al.(1992) [99]. This class
of schemes was successfully further extended to nonlinear shells in [101], as well
as to nonlinear rods [100]. Unfortunately, the proposed conserving algorithm can
only be applied in hyperelastic material with quadratic potentials, namely Saint-
Venant, Kirchhoff material, as pointed out by Laursen and Meng (2001) [103]. Some
modifications were made to allow for any hyperelastic materials [102,103] .

This chapter begins by establishing the condition that has to be satisfied for
preserving angular momentum of a system. Section 6.2 presents a generic constraint
derived from the above condition where the conservation property is inherent in the
time integrator. In Section 6.3, a correction procedure based on a minimisation
method will then be presented. This procedure does not involve any extra variables
(or equations).

Figure 6.1 summarises the roadmap of this chapter.

6.2 A Generic Constraint

In general, the total angular momentum of a system is given as

A= / x x pdV; P = pov. (6.1)
1%
Alternatively, the equation above can also be represented in a discrete form:
Netem
A= Z Te X Mee. (6.2)

e=1
Note here that x, denotes the centroid coordinate of cell e, Nger, indicates the total
number of elements in the computational domain, m. and v, describe the mass
and velocity vector at cell e. In essence, the total angular momentum of a system of
particles should stay conserved unless an external torque acts on it. Mathematically,
this principle is given by
A™t A" =0, (6.3)

By inserting (6.2) into the above expression gives

Netem Netem

n+1 n+1 n n _
E T X mevl T — E x; X mevy =0 (6.4)
e=1

e=1
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with the aid of mass conservation law, that is m?*' = m? = m,. Making use of

the second order TVD Runge-Kutta time integrator for da/dt = v, the trapezoidal

numerical approximation rule of ?*! is given as

At
it =z + 7(1}2 + o2t (6.5)
Expression (6.4) then yields
Netem At
S At xmy(optt =) =0, apt =an+ Sler, (66)

e=1

by using v2*! x v2*! = o7 x v = 0. The updated coordinate of ! at time step

n + 1 is expressed as
At
Tt = @t ol (6.7)
By virtue of (6.6b) and (6.7), (6.5) is simply recovered.
Alternatively, the derivation performed above can now be followed for the first
order TVD Runge-Kutta time stepping scheme:

Netem
E ™ X mo (vt — ) =0; Pt =T + Atol. (6.8)

e=1

Noting that the only unknown left in (6.6a) or (6.8a) is v7*1, it is essential to
relate this term to the time integration for the momentum balance principle [88]:

1. First order Euler temporal scheme: This is usually expressed as

Av, = ——~AtRT,, (6.9)
Po '
where N
n 1 ed n
Ry, = Rp(t" I, Ae) = = D 1"k (6.10)
€ k=1
kee

Inserting above equation into (6.8a) yields

Nelem NEd
S larttxaty " | =o. (6.11)
e=1 k=1

kece

At = const is neglected for simplicity. Furthermore, the above expression is
rearranged to be a summation over all the interior edges Ng,,,:

Nedny
D (&rtt — 2t x " = 0. (6.12)

o
k=1
e, o€k
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This implies that the total moment of the traction vectors at the interior
edges of the cells vanishes. By virtue of (6.12), the boundary edges are not
considered as they will contribute towards an external torque. Note that «
is the neighbouring cell which shares a particular interior k**-edge with cell e
and wgﬂ denotes the centroid coordinate of cell 8 at time step n + 1, where

B = {e,a} (see Figure 6.2).

2. Second order Improved Euler temporal scheme: The general framework
is shown as

1
vf) = v — —eAth,g
Po
1 1

,Un+1 = _p" + _,vé2) _

At 1
e 9 e 2 5 —R(2)

205 ™

More specifically, the above expression reduces to

At 1

1 2
A% =" % (Rpe + Ry2), (6.13)
where
1 Ned
R = R0 = - L Shago,
€ k=1
kee
| e .(6.14)
(2 c,(2
RY) = Ry(t7? Ui, A.) = A, > ot @y
iz
By substituting (6.13) into (6.6a) for Av, = v?*! — o7 yields
Nelem At
2 = [_TAe (RS +R§f,l)] =o0. (6.15)
e=1

By virtue of the equation above, it is easy to demonstrate that these conditions

Nelem Ned Nelem Ned
Yozt x > W =0, Y a2 x> 7@ [ =0, (6.16)
e=1 k=1 e=1 k=1

kee kee

have to be strongly satisfied. Nevertheless, (6.16) are equivalently restructured into

a summation over all interior edges, Nyeq,,,, as
e First stage:
Nedint
3 (@t - 2pt?) x 20 = 0. (6.17)
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6.2.1 First Order Time

Integration Scheme

6.2 A Generic

Constraint

6.2.2 Second Order

Temporal Scheme

6.3 Minimisation Method:
Proper Traction Vector at
Contact Point

Figure 6.1: Roadmap of this chapter.

m  Flux Integration Point

o Centroid

Figure 6.2: Constraint for preserving the total angular momentum of a system.
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e Second stage:

Nedint
37 (@it — a2 x 7P = 0. (6.18)
k=1
e,a€k
Here, Av, = v?*! — v*. A, represents the area of cell e, I, describes the length

of contact k*-edge, t{ indicates the traction vector at a contact k*"-point which is
computed based upon Riemann solver, At is the time increment, p§ stands for the
local material density and N.q describes the number of edges belong to cell e. These
constraints, viz. (6.12), (6.17) and (6.18), will be used to correct the traction vector
at contact point through minimisation procedure, which shall be discussed in the
next section.

6.3 Minimisation Method: Proper Traction Vec-
tor at Contact Point

In order that the total angular momentum of a system stays constant under long-
term response analysis, it is essential to satisfy the constraint of the form

edint
S (@ — ) x 109, = 0. (6.19)

k=1
e,a€k

Here, B describes Runge-Kutta stages, n = 1 and n = 1/2 for first and second
order overall numerical accuracy, respectively. For the sake of convenience, the
time argument will be ignored in the development below. The constraint (6.19) is
therefore re-expressed as

Nedint
Z tkclk X A.’L’k = 0; Amkle,aek =Ty — T¢. (620)
k=1

It is now convenient to introduce a functional IT defined by

Neg. Nea,
N 1 int . R int .
HE, ) = | 5 SORES—t0) B —t) | + X D Wi x Az, (6.21)
. k=1 k=1

where £{ indicates the corrected traction vector at contact point and A describes the
Lagrange multiplier vector perpendicular to the plane in which ¢ and Ax lie (see
Figure 6.2). The stationary condition of the above functional (6.21) with respect to
A and £ will be considered separately.

To this effect, note firstly that the derivative of II with respect to A is

Ne‘iint
= > Ut x Az =0. (6.22)
k=1

on
oA
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Equation above implies that the total angular momentum of a system remains con-
stant if and only if the corrected traction vector £ satisfies above condition. Addi-
tionally, the derivative of (6.21) with respect to £{ is given as

edznt Nedint
atC Z RES—t)+ D Az x A=0. (6.23)
k=1
By using Axy x A = —A x Axy, the corrected traction vector f,f is eventually
obtained as |
tC =t + A X Az (6.24)
NI

correction term

Once A is determined, the traction vector t{ can now be corrected by substituting
A into (6.24). In order to achieve this, it is vital to insert (6.24) into (6.22) for £&
which then yields

Nedznt
Z lk tC l——A X Amk) X A:Bk = (625)
k=1
To this end, A is derived as follows:
Ned, Ned;n,
Z Amk X (A X ACB]C) = Z lktkc X Aﬂ!k
k=1 k=1
Nedmt N‘Edmt
XD (Am- Axy) = Y Utg x Az
k=1 k=1
Ned'mt C
A = lkt X Awk (626)

N
Zkzedmt Axy - A:I:k

Note that (Axg - A) vanishes due to the fact that their directions are orthogonal to
each other, that is Az, L A.
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Involution: Compatibility
Condition

“Numerical precision is the very soul of science”.

Sir D’Arcy Wentworth Thompson (1860 — 1948)
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7.1 Introductory Remarks

Many evolution equations in engineering and science come with intrinsic constraints.
The evolution of F' considered in this work is
%:Vo?J:VO'(U@I).
It is clear that the components of F must satisfy some compatibility conditions
(i.e. curl F = 0) in order to guarantee the existence of a single-valued continuous
displacement field. These conditions (also known as involutions!) are such that
they are satisfied under exact integration provided they are satisfied by the initial
condition, which implies that the curl preservation is an inherent analytical property
of the evolution operator. The most challenging aspect of designing a reliable and
robust numerical method is the ability to control curl errors (modes) under long-
term response analysis. These errors usually accummulate and lead to a breakdown
of classical numerical schemes. Two approaches have been used for constructing a
curl-free method. The first one is based upon the local projection, at every step
of the time integration process, of the deformation gradient tensor onto the space
of curl free tensors [59,64]. The second approach, introduced by Miller and Colella
(2001) [118], is to formulate a modified system of equations based on the assumption
that curl F' # 0. This new system contains additional terms which advect the errors
out of the computational domain. More recently, a general framework for a locally
curl-preserving finite volume method on two-dimensional structured quadrilateral
grids has been proposed in [104]. This latter approach, based on the introduction
of a set of special curl-preserving flux distributions, will be explored and expanded
in this chapter for the curl preservation of the deformation gradient tensor F' for
two-dimensional structured (i.e. quadrilateral and triangular) grids.
The roadmap of this chapter is depicted in Figure 7.1.

7.2 Curl-preserving Updated Scheme

A locally constraint-preserving finite volume method has been successfully employed
in shallow water equations [105]. This section will extend its use by exploring a more
physically meaningful alternative framework. In Jeltsch and Torrilhon (2006) [105],
the evolution equation is given by

om
W"’V:z:'(p-[)

I

0. (7.1)

This is equivalent to
m - _Vm p, (7.2)

Involution (as opposed to a classical constraint) is not necessary to close the system of conser-
vation laws, but must be an inherent property of the evolution operator.
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where m describes the momentum variable, p represents the pressure and V, de-
notes the gradient operator in deformed configuration. The evolution equation (7.2)
reveals the constraint curlm = const and notably, the expression above shows an
interesting structural similarity with F', given as

OF"

ot = Vo'l)i, Vi= ]., 2, 3. (73)

Note that F" is the i**-row of deformation gradient tensor and v; denotes the velocity
in respective i*® direction of cartesian axes. Consequently, curl F* = const at all
times.

In order to preserve this constraint in a discrete formulation, 7n can be expressed
as a linear combination of curl-preserving functions ®®cuee [105]. In the case of
quadrilateral grid cells, the adjacent elements of a given node a are demonstrated
o q){lVE,curl-free — (Ay, AIE)T, q)‘IIVI/V,curl-free — (—Ay, A.’L‘)T,

7.4
‘I)fE,curl-free — (Ay, —A:II)T, @f‘/l/,curl-free — (—A’y, —AQZ)T, ( )

(see Figure 7.2a). These curl-preserving functions enable the evolution of m to be
expressed as

Nn
e — Z f(p)q)z,curl-free' (7.5)
a=1

eEa

f(p) denotes an arbitrary function of element pressures and Nn describes the number
of nodes. It is useful to notice that the functions ®&°*-fr¢ gre proportional to the
gradients of standard bilinear shape function N,, that is

pocutfee — _94 VW N¢; A, = AzAy, (7.6)

where the gradient is evaluated at the centroid of the cell e. Expression (7.5) is thus
equivalent to

me = — Zpavzc]v;a Do = 2Aef(p)' (7'7)

a=1

Here, p, are some nodal values of p obtained from element pressures that are yet
to be defined. Expression (7.7) is obviously curl-preserving as the evelution of m is
formulated by the gradient of an artificially constructed pressure field. In addition,
equation above can be further extended to triangular mesh by simply changing the
shape function N, to that of linear triangle. The real challenging questions are
two-fold:

e How to relate (7.7) to a finite volume formulation and,

e how to obtain the nodal pressure p,.
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7.2 Curl-preserving
Updated Scheme
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Figure 7.1: Structure of this chapter.
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NW NE

Sw SE

(@) (b)

Figure 7.3: Flux distributions of a given kth-edge: (a) A classical finite volume

method; and (b) Curl-free updated scheme.

The standard finite volume spatial discretisation for (7.1) is denoted as

Nted

m. ! A NPK'HKC (7.82)
k=1
efk
Ned
=|X >*rks (7.8b)
k=1

eek

Note that is evaluated at contact point, stands for the spatial unit outward
normal vector, Ae denotes the area of cell e, 4 represents the length of boundary
face and Nted describes the total number of edges in the physical domain including
boundary edges. The classical edge distribution functions for an arbitrary kth-edge

are defined as follows (see Figure 7.3a),

ATelass _ 0, AX)T, $2'class = (0, —A.r)' (7.9)

In order to make this update compatible with (7.5), <F/dit® is replaced by a linear
combination of curl-preserving <e<url-free defined as

/te,class curl-free . e,curl-free\

& = o (@1

where a is a coefficient that ensures the consistency of this new approach and

L,Re k (7.10)

L, R are the two nodes connected to edge k (see Figure 7.3b). In this approach,
an arbitrary kth-edge contributes to a set of the surrounding elements e, namely
{NW, SW, N, S, NE, SE}! (see Figure 7.3b) whereas, only two adjacent elements
{N, S'} are updated in the classical finite volume scheme (see Figure 7.3a). It is
now possible to evaluate the coefficient a by inserting (7.10) into (7.8b) for rh, and
relate it back to (7.5). By rearranging the sum, it gives

Ned N, / 4 \

e e I ® /jte,curl-free . e,curl-free\ A Qe,curl-free (7 n)
25  J~Pk( * )= Z" E
k=1 zéa \ k=1
e,L,Rek | kfa /
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Substituting (7.6) into above one yields

Np 4 N,

he=-> |20 pp| Vol == pVaN;. (7.12)
a=1 k=1 a=1
eca k€a eca

The expression in square bracket denotes an averaged evaluation of nodal pressure
obtained from Riemann values at contact points. For consistency, the coefficient «
has to be a = 1/8.

An extension to F' is trivial such that?

Nn,
Fe=> v,® VoN;. (7.13)
tea

Note that change in sign convention is required (see equation (7.2)). More gener-
ally, the nodal velocity v, can be computed based upon area-weighted averaging
technique:

4
1
v, = Z Ve Ak, (7.14)

For a regular quadrilateral mesh, a simple averaging process will be recovered, that

18
4
1
Vo = Z E Uk,
k=1
k€a

where A and v, denote the area and contact velocity at k"-edge.

7.2.1 Correction to Boundary Nodes

The area-weighted averaging procedure described above, viz. (7.14), produces good
results at interior nodes but leave something to be desired at boundary nodes. In
order to improve this, it is essential to introduce a correction at each boundary
node [69]. Two types of boundary node corrections, specifically for quadrilateral
grid cells (see Figure 7.4a), are carried out in the following two steps:

Step 1: Non-corner boundary nodes. A typical situation is depicted in Figure
7.4b. For a uniform mesh, the weighted averaged nodal velocity at non-corner
boundary node a, v,, has to be corrected by a linear extrapolation from interior
node b and velocity at contact point k, that is

1
VU, — 5(% + 2v — V). (7.15)

2The gradient of a shape function will be discussed in Appendix J.
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m  Internal Nodes
* Noncorner Boundary Nodes

¢ Comer Nodes

(b) (c)

Figure 7.4: Four-noded quadrilateral cell: (a) Mesh; (b) Non-corner boundary node;

and (c¢) Corner node.
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Step 2: Corner nodes. A linear extrapolation is employed through corrected non-
corner boundary nodes b, d and interior node ¢ (see Figure 7.4c):

ibvb + icvc + fldvd

Vg — T (7.16)

where

L="Ly+ L+ Lyg
Ly = XcYq — XaYe
Le = XaYy — XpYq
Li=XpYe — XY
Ly=Ly+ (Y, = Y)) X, + (X4 — X,)Y,
L= Lot (Ya— %)X + (X, — Xa)Ya
Li=La+ (Y= Y)Xa + (X, — Xp)Ye.
Here, X and Y are cartesian coordinates. Expression (7.16) can be further

reduced to
Vg — Vp +Vg — V. (717)

for a uniform mesh.
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Chapter 8

Analysis of Numerical Scheme

“This definitive source on the accuracy and stability of numerical algorithms is
quite a bargain and a worthwhile addition to the library of any statistician heavily
involved in computing”.

Robert L. Strawderman, Journal of the American Statistical Association 1999
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8.1 Introductory Remarks

The overall numerical strategy has now to be analysed for its validity and accuracy.
In order to investigate this, it is essential to introduce a certain number of concepts
such as consistency, stability and convergence. These fundamental concepts are of
paramount importance in ensuring that the result obtained from computer simula-
tion represents a valid approximation of reality. More detailed numerical analysis of
any numerical method can be found in [25,60,92,98,158].

The chapter is organised as follows. Firstly, the numerical scheme has to be con-
sistent with the mathematical model by introducing a small error in a single time
step (see Section 8.2). This truncation error leads to an important source of infor-
mation on the expected accuracy of the particular scheme. Section 8.3 is focusing
on the Von Neumann stability analysisl so as to avoid errors grow catastrophically.
Once the method is proven to be consistent and stable, it shall automatically satisfy
the convergence requirement [106]. This fundamental theorem will be discussed in
Section 8.4.

Interrelations between consistency, stability and convergence are illustrated in
Figure 8.1. The consistency establishes a relation between the differential equation
and its discrete formulation counterpart; stability condition defines a relation be-
tween the computed solution and exact solution of discrete formulation; convergence
rela.tes the computed solution to the exact solution of differential equation.

Figure 8/2 illustrates the structure of this chapter.

Consistency
Differential ___ ~ Discretised
equation equation
Convergence
Exact solution of Computed
differential A4  * solution
equation
Stability
Exact solution of Computed

discretised * * solution

equation

Figure 8.1: Relations between consistency, stability and convergence.

Tn numerical analysis, Von Neumann stability analysis is also known as Fourier stability anal-
ysis.
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8.2.1 Godunov-Type
Method: First Order

Accuracy
8.2 Consistency

8.2.2 Second Order
Numerical Scheme

8.3.1 Methodology

83 The Von Neumann 8.3.2 First Order Finite
Stability Analysis Volume Scheme:
Diffusive Nature

8.3.3  Second Order
Finite Volume Scheme:
Dispersive Nature

8.4 Convergence 8.4.1 Accuracy

Figure 8.2: Structure of this chapter.
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8.2 Consistency

Consistency implies that the numerical scheme tends to the original differential
equation (or mathematical model) when the mesh size Az is refined. This condition
leads to a very important property of numerical discretisation, namely truncation
error, which expresses a new vision of the relationship between the numerical scheme
and the original differential equation. The major conclusion of this study is that
the numerical solution does not satisfy a given differential equation but instead,
a solution to an equivalent differential equation (or modified equation). See [25,
60] for some further discussions. For simplicity, a one dimensional linear constant
convection equation, that is

gt + agy = Oa (81)

will be considered. Here, a = const describes the constant wave speed flows in a
positive direction, g represents an unknown variable and (), = 9(-)/0k.
In general, an explicit numerical method can be written in the form

uftt = N(ul). (8.2)

(3

Note that N (-) is a numerical operator for mapping the approximate solution, u, at
time step n to the following time step n + 1. Perhaps most importantly, the local
truncation error, 7", is defined by comparing the solution obtained from applying
the numerical operator to the analytical solution ¢ at time step n with the analytical
solution at time step n + 1 and then dividing this by At, from which gives

"= V@) - ¢ (83)

The method is said to be consistent with the original differential equation if the local
truncation error vanishes as Az (or At) — 0. To this end, a numerical analysis of
(8.1) will be carried out.

Firstly, it merits noting that (8.1) is integrated over the length Az = X,/ —
Xi_1/2- By employing the divergence theorem?, the integral equation then yields

d [Xi+172
dt Jx

i-1/2

gdX = —a/ gNx dA, (8.4)
0A

where N is the material outward unit normal vector in X direction. Subsequently,
(8.4) can be approximated as

du; a

a _A_x(ug-lm - uic—1/2) (8.52)
a
= - —uly). (8.5b)

2Divergence theorem is alternatively known as Gauss’ theorem. This fundamental theorem is
discussed in any Calculus textbook.
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Due to the fact that only a single wave is travelling towards the right at speed a,

unknowns at contact points are easily reduced to uf+1/2 — u/ an<* u?-i/2 = ut-\
[25,26,60-62,84], The expression above leaves a wide range of choices for time
integration schemes. The definitions of ¥/ and u/ [ will be clearly presented as

follows (see Figure 8.3).

o Cell-Centred a Cell-Centred
m  Contact Point u m  Contact Point
az bon
Wl =« =
(a) (b)

Figure 8.3: Definitions of #/' I and u/: (a) Piecewise constant reconstruction; and

(b) Piecewise linear reconstruction.

8.2.1 Godunov-Type Method: First Order Accuracy

In the Godunov-type method, the problem (or unknown) variable, u, is reconstructed
as a piecewise constant over the grid cells at each time step. This constant recon-

struction process is mathematically expressed by

u™i =u’ x="r_i, ux=ul = u~ (3.6)

With the aid of above conditions, an upwind method based on (8.5) is reduced to

$ =-* F-£(«— > ()

Furthermore, the first-order explicit Euler time scheme is chosen to advance forward

in time
u nak™—uA a .
{ =-Rn-  Rn=-T-(u?-< i. (8.8)
At Axyl 1
Equation above can be rearranged to
< +1 =«" - a CF<-i)> (8.9)

where olcfi — dAt/Ax. This expression represents a two-point stencil method by
means of only two grid points are needed for updating it”+1, which can be generally

expressed as

(8.10)
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With the numerical operator N defined above, it is possible to determine the
local truncation error 7™ . By substituting the analytical solution into (8.9), the
truncation error (8.3) yields

1 n
T" = Kt [% - g Ty OfC’FL(Q?—l - q;n)] . (8-11)

Here, (-)2 = (-)(a,b). Using Taylor series expansion techniques, the above terms

involving (-) (where a # iand b # n) are expanded about (z;, t"):

mr+a%]+- [aAzg — Atgy + O(Az)?]T (8.12)
lto O
equal to

Note here that the terms in [| are computed at (z;,t"). The first term in the
expression above vanishes due to the fact that analytical solution satisfies the cor-
responding differential equation; that is, ¢; + ag, = 0. Based upon the definition of
Q1 = aqyq, (8.12) reduces to

e “ix(l—am)[qm] +O(AD) (8.13)

It is obvious that the local truncation error, 7", is dominated by O(Az), which
clearly depends upon diffusive term g,,. Therefore, the numerical scheme is of first
order accuracy in space and time.

8.2.2 Second Order Numerical Scheme

This section demonstrates the local truncation error, 7, of a second-order finite
volume spatial discretisation together with an Improved Euler time integrator. The
gradient operators (as discussed in Section 4.4) are represented as

U; — Uj—2 Uit1 — Ui—1
Gii=——=;  Gi= : 8.14
i 20z ' 2Az (8.14)

Thus, the reconstructed values at contact points are shown as
1
ul =uiq + Z(UZ — ui_g), (8.15a)
n 1

U, = U + Z(ui+1 — ui_l). (815b)

By substituting them into (8.5b), after some simple algebraic manipulations, it gives

du;
d_tz = —R; R= 4A (uz+l + 3’!1,1, 5’U,1;_1 + Ui_g). (816)
It is now convenient to evolve the ordinary differential equation (8.16) by the second

order Improved Euler time integrator [88]:

ugl) uy (8.17a)

u® = u? — At R(u®) (8.17D)
1 1

uPtl =yl 4 u2)——AtR( ), (8.17¢)

‘ 2 2
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where the residual terms are

Ru®) = 4%(@“ 43Ul — 5ul 4 ul ), (8.18a)
Ru®) = 2= (u 2 4+ 36 — 5ul) +u®,). (8.18b)

By simple inspection, it transpires that the varlables to be determined are
u®) where o = {s —2,i — 1,4,i+ 1}. Based on (8.17b), u\® is stated as

1 alt
ugz) =u — ZOICFL(U?H + 3up — Suiy +up,); QcrL = Az (8.19)

Furthermore, the rest of the unknowns can be evaluated in a similar manner as

2 1 n n
£+)5 = “z+ﬁ 4aCFL(U?+1+/3 + 3u?+ﬁ — U148 +Ui—2+,3); VB ={-2,-1,1}

(8.20)
Substituting (8.20) into (8.18b), the residual term yields
R(u®) = (s + 30 = Sy + )
4Az (8.21)
a2At n n n n n n n ’
- m(uﬂa + 6ui+1 - u,i - 28ui_1 + 31ui_2 - 10’U;i_3 + Ui_4),
and in turn the updated ul*! is obtained as
n+1 n 1 n
A (8.22)
+ 3_20%'FL(U'?+2 + 6uyy — uf — 28ul ) + 31w — 10w 5 +ul ).
Alternatively, (8.22) is explicitly stated as
u"t = N@l); VYa=i—4,i—3,...,i+2. (8.23)

Here, a larger stencil is needed for updating the unknown u"*! than was the case in
(8.10).

In order to achieve the local truncation error, 7™, a Taylor series expansion about
(z;,t") will be performed which eventually gives

2
T" = e <a2CFL + %) [Gezz)i + O(Al')3' (8.24)

6

The error 7" is dominated by O(Az)?, where its leading error term depends on the
dispersive nature of g, [25, 60,81, 83]. The expression above confirms that the
overall numerical method is of second order accuracy.
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8.3 The Von Neumann Stability Analysis

Once consistency has been verified, it is necessary to establish the stability behaviour
of a numerical scheme. The Von Neumann method?® offers an easy and simple way of
assessing the stability properties of linear schemes with constant coefficients, where
the boundary conditions are assummed periodic. The key innovation of this analysis
is to introduce an arbitrary harmonic function into the numerical scheme such that

its amplitude, V, should not grow indefinitely in time. Excellent discussion can be
found in [25,60].

8.3.1 Methodology

In order to study the Von Neumann stability analysis, the following procedure will
be used [25]:

1. Replace the unknown variable u?:pq by

uprd = yrtel@ne = /1 (8.25)

2. Since all the terms of the subsequent expansion contain e’*®, the resulting
equation can be simplified by this factor.

3. Derive an explicit form for the amplification factor G = V™! /V™,

4. Ensure that the Von Neumann stability condition is satisfied as follows:

IG| <1 V¢e[—m,mn]. (8.26)

Apply this methodology to the numerical schemes derived previously, viz. (8.9) and
(8.22), for the linear constant convection equation g; + ag; = 0.

8.3.2 First Order Finite Volume Scheme: Diffusive Nature

The stability analysis of the first order numerical scheme, which depends upon
piecewise constant reconstruction together with an explicit Euler time integrator
(see equation (8.9)), will be studied. For clarity, the discretised equation* is shown
again below:

alt
utt = u? — acpp(uf — uly); QOFL = A - (8.27)

3Von Neumann technique, developed by John Von Neumann, has emerged as the most widely
applied method in stability analysis.

“In the usual terminology of finite differences, the discretised equation (8.9) is widely regarded
as first order upwind scheme (FOU) in which the first order backward discretisation in space with
an explicit first order difference in time have been adopted.
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Firstly, replace the above terms using (8.25) to give:

yrtlelid — ynelid (1 — Qcrr + ache_I"’) . (8.28)
Next, cancel the common factor e/* and the amplitude G is then obtained in terms
of any arbitrary harmonic function as®

1
Vn+ Ié

G = vn = 1—acrr +acrre”

=} — Q¢cFL + cFr, COS @"“(:aCFL sin (é)] (830)

Re(G) Im(G)

In order to satisfy the Von Neumann stability condition (8.26), a certain range of

CFL number, acry,
0<acrr <1, Voe [—7(,71'] (831)

has to be fulfilled.

8.3.3 Second Order Finite Volume Scheme: Dispersive Na-
ture
In order to obtain a higher order finite volume scheme, it is essential to introduce

an appropriate reconstruction procedure for choosing better values for the left and
the right states. By applying a piecewise linear reconstruction, the updated variable

ultt, viz. (8.22), is shown as:
o
Au; = — % Uty + 3ug — Suil g +uit,)
o2 (8.32)
+ g;L (ufypg +6ui —ul — 28u? | + 31ul 5, — 10u] 5 +ul ),

where Au; = ul*t! — uP. With the aid of (8.25), the amplification factor is reduced

i

to

Vn+1 1 1 0
G = V" =1-—- ZQ’CFLT] + :—ﬁaCFL,B, (833)
where
n=e?+3—5e1¢ 428 (8.34a)
B=e?+6e" —1—2871¢ 317 H? — 1073  e~4?. (8.34b)

By substituting the exponential property (e® = cosf + I'sin#) into the equation
above, after some simple but tedious algebra, yields

G = Re(G) + Im(G)I, (8.35)

5The modulus of G can be achieved by

|G| = VRe(G)? + Im(G)2. (8.29)
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where
3 1, 1
Re(G) =1 — 10CFL ~ 550CFL + 10CFL (4 cos ¢ — cos 2¢)
1 (8.36)
+ géa%m (—22cos ¢ + 32cos 2¢p — 10 cos 3¢ + cos4¢),
and

Im(G) = iaCFL (sin2¢ — 6sin ¢)+%aém (34 sin ¢ — 30sin 2¢ + 10sin 3¢ — sin4¢) .

(8.37)
By virtue of (8.35), (8.36) and (8.37), |G| seems to be very complex but doable®.
Its modulus |G| < 1 if and only if

0<acrr <1, Voe [-—71’,7'(] (8.38)

is satisfied.

8.4 Convergence

Convergence is defined by the numerical solution should approach the exact solution
of the original differential equation when Az (or At) tends to zero. The fundamental
Equivalence Theorem of Lax states that for a well-posed linear initial value problem,
stability is the only necessary condition for convergence provided that the numerical
method is consistent [106] (see Figure 8.1).

8.4.1 Accuracy

The quality of a numerical scheme is often summarised by a single parameter s,
namely order of accuracy. Firstly by noting that the error is expected to behave
like”

E} =C(Az)°+ HO.T (8.39)

as the grid is refined (or Az — 0). Here, C is the constant that depends upon the
particular solution being computed and also time t. Mesh refinement analysis will
be performed in the forthcoming chapters by means of the analytic and computed
pointwise solutions will be compared on a sequence of grids at a certain time instant.
The error is plotted as a function of grid size (Az) in a log-log scale. From (8.39),
a linear behavior is anticipated in the plot as

6Commerical programming software (such as Matlab) can be used to obtain the result efficiently.
TE™ describes the pointwise error at time step n. This error can be denoted by

En — |q:1 _u’m
lg7"|

i3 )

where u7* denotes the computed solution and ¢} represents an analytical pointwise value.
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log E' =~ log C + slog Az (8.40)

with a slope given by the order of accuracy s. Note that a higher order method is
not inevitably more accurate on a certain grid size [60] (depend upon constant C in
the above equation).
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Chapter 9

One Dimensional Problems

“The essence of mathematics is not to make simple things complicated, but to make
complicated things simple”.

Stanley Gudder, mathematician
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9.1 Governing Equations

Under a reversible process, the one dimensional mixed formulation easily reduces
tol

ou OoF,
E'F X =0, (9.1)

where their components are illustrated as

() () e

Note that the unknowns are linear momentum p;(X,t) and deformation gradient
F11(X,t), po denotes a constant material density. These conservation laws (viz.
(9.1) and (9.2)) have to be supplemented by a constitutive law so as to close the
coupled system; that is, P;; = 0v¢/0F);. In the small strain linear regime, the
(engineering) stress is expressed by (see equation 2.19)

Pii=on=A+2u)(F1 —1). (9:3)

With the aid of above relationship, (9.1) and (9.2) can be further expanded as

op1 O0F,

o~ At =0, 0.4
OFu _10p _ '

When written in a matrix form, this system reads?

Ut + Alux = 0 (95)
with
D1 0 —(A+2p) )
U= , A = ( . 9.6
(Fn) o\l 0 00
More specifically, the imposition of a null Poisson’s ratio (v = 0) leads to®
E
A= v =0 and E=2u(l+v)=2pu

(1+v)(1 - 2v)

Consequently, the Jacobian matrix, .A;, can be alternatively denoted as

A = ( B 10/p0 _OE ) (9.7)

!General discussion on the conservation-law formulation has been presented in Section 2.5.
%Notation -], = 8[] /8a.
3In general, a non-zero value of v could have been chosen.
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9.2 Eigenstructure

The eigenvalues of a system are defined by zeros of the characteristic polynomial:

Uy —(A+2u)
—U,I| = det “ =0. 9.8
By virtue of the equation above, the system has two real and distinct solutions,
namely
Uy=U, U=-U, (9.9)
where
A+2
U, = |2 (9.10)
Po

It is now possible to find the eigenvectors R, R, corresponding to their eigen-
values U; and U, counterparts. The eigenvector R, for U; = U, is found as follows
such that R is a right eigenvector of A;; that is, A; R, = U;R,. Writing this in

full gives
0 —(A+2p) R R
_ 1
(—1/,00 0 ) (R?) U AN (9.11)

which produces two linear algebraic equations for the unknowns ’Rgl) and R(12). Due
to the fact that these two equations are equivalent, only a single linear algebraic
equation has to be considered and then yields a one-parameter family of solutions.
By selecting an arbitrary non-zero scaling factor 8; and set ’R,gl) = [, the first right
eigenvector becomes

1
R, = . 12
1=051 ( 1/ pol, ) (9.12)
On the other hand, the eigenvector R, of U, = —U,, is derived in a similar manner:
Ro=6( 0 (9.13)

where (3, is a scaling factor. The complete right eigenvector matrix is presented as
follows:

_ _ B Ba
R =(R1|R2) = ( /ol Ba ool ) . (9.14)

By noting that £ A, = U,LZ, the left eigenvectors of matrix .A; can be obtained

as
T _ el _ z:f)_ 1(1//31 —poUp/ﬂa)
£=R ‘(cg T2\ /B polUp/Be ) (9-15)

Set the scaling factors to unity (i.e. 51 = B2 = 1), the right eigenvectors
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1 1
R, = , R, = , 9.16
' ( —1/poUp ) ’ ( 1/poUp ) (5:16)
and the left eigenvectors
1 1 1 1
L, =— Lo=— 9.17
1 9 ( _pOUp ) ) 2 92 ( poUp ) ) ( )

can be easily achieved. These eigenvectors satisfy the well-known orthogonality
condition.

The linearised solid dynamics system of equations (viz. (9.5) and (9.6)) is strictly
hyperbolic since U; and U, are real and distinct. This ensures the existence of a set
of linearly independent eigenvectors (see Appendix C).

9.3 Linearised Riemann Solver

A variety of different approaches have been used to derive the linearised Riemann
solver for a one-dimensional rapid dynamics system of equations:

1. Expanding the initial data &4~ and U™ in terms of eigenvectors.
2. Expanding the total jump [U ] in terms of waves.
3. Using the Rankine-Hugoniot conditions across each wave.

4. Applying the Generalised Riemann Invariants (GRI).
A complete and thorough description of this subject is provided in [60,62, 82, 84).

9.3.1 Expanding the Initial Data in terms of Eigenvectors

Firstly, the left state U~ is decomposed into a summation of their linearly indepen-
dent eigenvectors, namely

- _{( m _ 1 1
u — = R R = .
( Fy ) N1 +rRe=m ( ~1/poU, ) + 72 ( 1/p0U, )

From expression above, the coefficients v; and -y, are solved as

= (pl_ - pOUPFl_l) , T2 = (pl_ + POUpFﬁ) ) (9.18)

N =
N =

respectively. Analogously, the unknowns ¢; and (, of the right state A can also be
achieved:

(pT + poUp F) - (9.19)

N |

(pif- - pOUpFH) ) Ce =

N =

G =
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By noting that the unknown variable at contact point is

¢ 1 1
L{CE(p1>= Ry + Ry = ( )+ ( ) 9.20
F¢ NMR1+GRr=m 1/l Ca 1/ pol, (9.20)

the above equation can be further extended to

1 poUp _
pC 2(p1 + p7) 9 P(FY - Fp), (9.21a)
1 _ 1,
F§ = ool (! — 1) + 5 (Fi + Ff), (9.21b)

with the aid of v; and (5.

9.3.2 Expanding the Total Jump in terms of Waves

The total jump [U] * consists of a series of waves, that is

1 1
[U]=mR1+m2Re=m ( ~1/pol, ) 2 ( 1/ poU, ) (9.22)

It is trivial to evaluate the coefficients of 1; and 7,:

1 1
=35 (Ip1] = poUpl F111), M= 5([[171]] + poUpl F11])- (9:23)

Insofar as the unknown variable at contact point is represented as

() ()
FS l/pOUp

1
wwnh,)
N ~1/poU,

the expression above can then be concluded, after some simple algebraic manipula-

(9.24)

tions, as

OU

1, _
pf = 5(1’1 +pi) + E(F — Fr), (9.25a)

1 1
FS:M( —p1) §(F11+Fﬁ) (9.25b)

9.3.3 Rankine-Hugoniot Relations

Applying the Rankine-Hugoniot conditions® across the U;-wave gives

+
p e 1 . .
Fy— F — (P — )
4Discontinuity of a variable is denoted as [-] = (-)* — (-)~.
SFor a linear system with constant coefficients, the Rankine-Hugoniot relations across the wave

speed U, read

Uaﬂu]] = [[}-1]]
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Expanding and solving for p{ yields

p1 _pl +POU (F FS)

Likewise, for the Us-wave, the contact linear momentum is derived as

p¥ = p1 + poUp(F — F7).

The solutions to the simultaneous linear algebraic equations are

C _
p1_2

1 1
Fﬁ: ( —Pl) §(F11+ ﬁ),

2p0Up

L _ poU _
_(Pl +p1) : p( F11),

113

(9.27)

(9.28)

(9.29a)

(9.29b)

respectively. A basic introduction to this underlying technique was presented in

Section 5.2.

9.3.4 Generalised Riemann Invariants (GRI)

A linearised Riemann solver based upon Generalised Riemann Invariants technique®

is demonstrated in this section. Across the U;-right wave, dp; is defined as

df1y

dp, = ———,
P1 —l/poUp

which, after some simple rearrangements, gives

dFy; +

d 0.
oU p1 =

By integrating the equation above, this produces

Ig=F, + p1 = const.
o0Yp
Similarly, the Us,-left wave leads to
Ip = Fj; — p; = const.
PolYp

Applying I, across the left wave connecting U~ and U yields

e 1 o 1

F =F; -
11 U, P1 11 poUp

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

6For a certain a-wave, the Generalised Riemann Invariants are relations that hold true across

the wave structure:

dh _dvy (U o
RY  RY Uy

Further discussion can be found in [91].
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On the other hand, the application of I across the right wave gives

I (9.35)

1
Fﬁ+—pC=Fﬂ+p0—Up1
y4

pOUp '

The simultaneous equations for unknowns p{ and F can then be computed as’

1 _ pol _
Py =51 +p7) + SR~ F), (9.368)
1 R
= oot PP+ 5 (P + A (9.36b)
Y4

Note that the above solutions are identical to those obtained from other techniques
(see (9.21), (9.25) and (9.29)).

9.4 Notation of Cell-Centred Scheme

The spatial semi-discretisation is performed on a cell-centred cartesian grid, where
the primary variables are defined at the centroids of the cells. Under this circum-
stance, any control volume can be identified with the existing grid; for instance,
i = (Xi—1/2, Xit1/2) (see Figure 9.1). In order to be compatible with the definitions
discussed in Section 9.3, for any arbitrary contact point (such as (-)¢ = (-)i—12),
(1)* and ()~ represent (-); and (-);—; in the case of first-order Godunov scheme.

—o —0—f—0—F—x

i-3/2 i-1 i-1/2 i i+1/2 i+l i+3/2 i+2 i+5/2

Figure 9.1: The position of a control volume with respect to the grid cell. Integer in-
dexes, ...,i—1,%,2+1,.. ., are the centroids of grid cells whereas non-integer indexes,
oo, 8—3/2,4—1/2,i+1/2,..., are the grid (or contact) points correspondingly.

-_—
oy

9.5 Godunov’s and Explicit Euler Time Scheme

As discussed previously, the differential law of a system of conservation equations is

ouU oF,
E + —a')? =0, (937)

"The contact variables (i.e. p{ and PS) can be alternatively stated as

1 1

c - -

P =§(P1 +Pf)+ﬁ(P1+1—P11),
U, _ 1,

PSZ7P(PT—P1)+§(P11+Pﬁ),

with the aid of linear constitutive relation; that is, F1; = Pi1/(A + 2u) + 1.
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and their components are illustrated in (9.2). In order to yield a physically consistent
solution where discontinuities are present, it is essential to introduce the weak form
of its corresponding differential law:

%/ U(X, 1) dX = F1U(Xim1y2,t)) — F1Uh(Xigay2, 1)) (9.38)

Note that the volume of i-th grid cell is described as V; = Az = X;11/2 — Xi_1/0.
The above equation is then divided by Az which gives

d (1 1
@t (ZE /V U(X,t)dX ) = = (Fricz = Frinp), (9.39)

where
Fricip = FilU(XiZ1)2,1)); Frive = F1lU( X2, 1))

By giving an approximation of the averaged value over i-th cell
1
U, ~ — [ UX,t)dX, 94
Az [ ueen (9.40)

and the use of explicit Euler time integration scheme, (9.39) yields

U?H =U; - ZA% (j:?,¢+1/2 - 7:?,1—1/2) : (9.41)
The expression above (widely known as flux differencing formula) offers a great
variety of different possibilities to update the cell averaged U; at one time step,
which clearly depends on the flux computation. The simplest form of interface flux
evaluation, F7; 15, can be obtained by choosing the cell averaged values as the left
and right states, that is

-7:?,1—1/2 = fl(u?—pu?)- (9~42)

Any method of this type is an explicit numerical scheme with three-point spatial
stencil, where its resulting solution is of first order accuracy in both space and time.
In short, Godunov’s method is implemented in two-folds:

e Solve the Riemann problem at cell interface (refer to contact algorithm intro-
duced in Chapter 5).

e Apply the flux differencing formula (9.41).

An alternative wave propagation framework allowing for application on more gen-
eral hyperbolic systems is described in [60]. It is worth noting that the first-
order accurate numerical schemes are becoming less acceptable to the CFD com-
munity due to their poor performance in predicting advection-dominated flows
(see [25, 26, 60,81-84]). In order to rectify this, it is vital to introduce a linear
reconstruction procedure for selecting better values for the left and the right states
(which will be presented in Section 9.6).
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9.6 Linear Reconstruction Procedure

It is well known that Godunov’s method achieves only first order accuracy in space,
which therefore introduces a great deal of numerical diffusion into the solution
(see [25, 26,6062, 81-84,98]). A second-order spatial accuracy can be obtained
by introducing a suitably linear reconstruction procedure, as already generally dis-
cussed in Section 4.4. Nevertheless, a simplified one-dimensional reconstruction
framework is provided in this section.

A local piecewise linear reconstruction® at cell i is represented as:

U =t + 24

where U(X)|; varies linearly within cell ¢ and the slope 0U /0X |; is yet to be specified.
Here, U; describes an averaged value over cell i and X € [X;_1/9, Xi11/2] (see Figure
9.1). There are various techniques available to solve for the slope [60,84]. The
standard second-order centred finite difference approximation, that is

ou| 1

X i ~ E(Uﬁl —Ui—y), (9.44)

is employed. Note that the slope at cell 7 is approximated by adjacent information
(t—1,4+1) relative to the particular cell under consideration. By substituting (9.44)
into (9.43), the explicit formulas for cell interfaces at cell ¢ can be obtained as

1 1
U1 =U; + Z(Ui+1 —Ui—1); Ui =Ui— Z(ui+1 — Ui_1). (9.45)
The relation of U; ;1 = U; ;41 = U; is recovered in Godunov’s method (see Section

9.5).

Since at least two neighbouring information are required, (9.45) is not applicable
to cells near the physical boundary points.® However, slopes near both ends can be
reconstructed based upon a single neighbouring information and the end cell itself:

ou 1 ou 1

—| o —Up—Uy) ;=] & —(Uy —Uips 9.46

0X |, Ax( ' ”‘Z ’ 0X |, Ax( ' ‘R z , (9.46)
central difference approximation central difference approximation

With the aid of equations above, the reconstructed unknown variables at two bound-
ary points can be represented by

1 1
Urp = Ui, — ‘2"(U1L+1 —U;,); Upp =Ug+ 5(

where LB and RB describe left and right boundary points, respectively. Graphical
representation is depicted in Figure 9.2.

Ll,- - uiR—l), (947)

8Consistency is satisfied since the origin is located at the centroid of cell 3.

90therwise, it is essential to extend the computational domain to include a few additional
dummy cells, whose values depend on the boundary conditions and interior solutions. A general
framework for assigning ghost values is developed in Appendix F.
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LB
RB

Figure 9.2: Depiction of piecewise linear reconstruction.

9.7 Slope Limiter

Godunov (1969) [85] concluded that only first-order linear schemes are monotonicity-
preserving. High order spatial discretisation schemes exhibit unphysical oscillatory
behaviour in the vicinity of discontinuities. For this reason, a nonlinear slope limiter
will be introduced so as to control the spurious oscillations, where the limiting func-
tion depends upon the solution values (see [60,84,86,87,93]). The use of slope limiter
fa (aims at correcting the solution gradient) enables the polynomial reconstruction

over cell i to be expressed as
. . dU
u(x)\i=ui+ dgl— (9.48)

Note that fa = 0 corresponds to piecewise constant representation, whereas fa =
i represents unlimited piecewise linear reconstruction (see equation (9.43)). The

evaluation of fa has been fully discussed in Section 4.4.2.

9.8 Initial Value Problem: Characteristic Theory

The general Initial Value Problem (IVP) of the new conservation law formulation is
presented where its system of equations are shown in (9.5) and (9.6). Note that the

initial conditions and characteristic variable are defined as
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respectively.’® In order to gain a better understanding of an initial value part of the
Cauchy problem, it is advisable to review Appendix C.4 in advance.

Since U; = U, and U; = —Up, the characteristic variables can be written as
(o) (7 5 () = (9.50)
Wso : 0 _Up Wo x
or in full 5 5 9 5
w1 W1 Wso Wo
- = —2 U —= = 01
g TUgx =0 G ~Upx =0 (9:51)
where their initial conditions satisfy
1[" (X) — poUpErn (X ]
61(X) | _ gt [ 5:X) ) _ [ 2P0 Al FulX)
in(X) ) = R max) ) =0 . : (9.52)
? H 3 [ﬁl(X) + poUpFn(X)]

Expressions in (9.51) are typically known as linear advection equations. The solu-
tions for characteristic variables (i.e. w; and w,) are displayed as

wi (X, ) =5 (X — Upt),  wa(X,t) = (X + Upt), (9.53)

with

(X = Upt) = 5 (51X = Upt) = poUpFs (X = Upt))

’lj)g(X + Upt) = 5 (DI(X + Upt) + pOUp-ﬁll(X + Upt)) .
Transformation (such as U = RW) is then performed, which in turn yields the

final solutions as

el I

(9.54)

1, ,, U, /. .
P(X,t) = 5 (B1(X — Upt) + Bu(X + Uyt)) + ”02 ? (FH(X +Upt) — By (X — Upt)) ,

(B (X + Uyt) = Ba(X = Upt) + 5 (B (X + Upt) + B (X ~ Uy)
(9.55)

An analytical example (extracted from [60]) is demonstrated with an initial data
such as v; = 0 and F}; = 1 everywhere except v; in some small region near the

Fll(X, t) ==

origin:

1
vi(X,0) = sexp(=80X*) +G(Z);  Fu(X,0)=1, VX e€[-15,15]

4

where
1 if —03<Z<-0.1,

9(2) = { 0 Otherwise.

Figure 9.3 and Figure 9.4 illustrate the time evolution of unknown variables (i.e.
v; and Fy;) with the initial conditions desribed above. In this example, Young’s
modulus E and density pg are treated as unity, Poisson’s ratio v = 0. For small

10The right eigenvector matrix R and its inverse R ™' have been introduced in Section 9.2.
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Figure 9.3: Characteristic Theory: Evolution of v; waves travel with two different
propagation speeds —U, and U, with their shapes unchanged. Poisson’s ratio v = 0,

Young’s modulus E and density pg are unity.
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Figure 9.4: Characteristic Theory: Evolution of F1; waves travel with two different
propagation speeds —U, and U, with their shapes unchanged. Poisson’s ratio v = 0,
Young’s modulus £ and density pg are unity.
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time the solutions change in a seemingly haphazard way as the left-going and right-
going waves superpose. Nevertheless, it is essential to observe that two separate
waves, as time advances, travel at constant propagation speeds with their shapes
unchanged. In the next section, numerical example will be presented to examine

both the accuracy and computational capabilities of the proposed algorithm.

9.9 Shock Dominated Case: Pile Driving Exam-
ple

P(LJ)

7/77/

Figure 9.5: Pile driving example: configuration.

The first example which will be considered is that of the wave propagation on
a one-dimensional linear elastic steel pile. This example is taken from Clough and
Penzien (1993) [44]. The bottom end of the pile is fixed and a forcing function
is applied at its free top end. The configuration (see Figure 9.5) consists of a
structural element of length L = 1o m and unit cross sectional area; the material
properties are Young’s modulus £ = 200 GPa, density p0 = s Mg/m: and Poisson’s
ratio v — 0. This implies that the wave speed of this elastic material is given by
Up= yjE/'po = 5 x 10: m/s. The example is first discretised with 100 cells (or grid
size h = 0.1 m) and the time step has been chosen as 4 ¢ = | x 10-5 s, which results
in a Courant-Friedrichs-Lewy number [157] o icsi11 = UpAt/h = 0.5. The applied

step function force is described as (see Figure 9.6a)

P(L,t)= { (9.56)

1 The effect of various CFL number on the accuracy of the numerical solutions will be assessed
in the following chapter (see Section 10.3.2).
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P(L,1)

(a) (b)

Figure 9.6: Forcing function: (a) Step function loading; and (b) Sinusoidal loading.

A stress shock of —5 x 107Pa propagates down the pile due to a suddenly applied
load P0. This shock wave reflects at the fixed end (or x = 0) and the amplitude of
the stress shock is then doubled at # = 2 X 10-3:s. Both the classical FEM . and
the new proposed methodology predict the correct arrival time of the stress shock.
However, the first order FVM introduces considerable numerical diffusion and then
leads to inaccurate solution in the long term, as depicted in Figure 9.7a. To enhance
the accuracy, it is essential to introduce a piecewise linear reconstruction within each
cell. The second order FVM (see Figure 9.7b) gives much better accuracy but fails
near discontinuities, where oscillations are generated due to its dispersive nature.
In order to control these spurious oscillations, slope limiter is implemented. A great
improvement is observed in Figure 9.7c. As it is well known, the standard displace-
ment based FEM formulation produces non-physical oscillations in the vicinity of
sharp solution gradients, as observed in Figure 9.7d.

In addition, a convergence analysis by means of the L1-norm and L:-norm has
been carried out on a sequence of grids. To achieve a smooth solution, a sinusoidal

forcing function is employed by
P(L,t) = (®in ( ~ * - +1); <> 0,(9.57)

where the constant K = 1X 10.; (see Figure 9.6b). In this particular case, Young’s
modulus £ and density po are taken to be unity and the Poisson’s ratio is chosen
as v = 0.3. Figure 9.8 demonstrates the expected accuracy of the scheme (with
and without slope limiters) for different variables. As can be observed, the inclusion
of slope limiters is expected to be less accurate (than those without it) as limiters
generate diffusion into the solution. It can be concluded that FVM-limiter scheme

achieves second order of accuracy in stress (only first order precision for displacement

12See Appendix G for detailed explanation of standard finite element computational methodol-

ogy-
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Figure 9.7: Pile Driving Example (Step Function Loading): Stress history at fixed

end, x = 0, in the elastic case: (a) Piecewise constant reconstruction; (b) Piecewise

linear reconstruction; (¢) With limiters; and (d) Standard finite element method-

ology (Newmark trapezoidal rule).

This test case is

run with the linear elastic

model and material properties are such that Poisson’s ratio # = 0, Young’s modulus

E =

200GPa, density po =

Time step A7 = 1 x 10_ss.

s Mg/m: and OLCFL — 0.5. Discretisation of 100 cells.
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based formulation) and performs well in the vicinity of sharp gradients.
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Figure 9.8: Pile Driving Example (Sinusoidal Loading): Results obtained with
P(L,t) = K (sin (st /120 —vr/2) + 1). First column shows the Ll-norm convergence
and second column shows the L2-norm convergence. First and second rows show the
velocity and displacement errors. Last row illustrates the stress error. The linear
elastic model is used and material properties are Poisson’s ratio v = 0.3, Young’s

modulus E = IPa, density po = lkg/ms and o/cs1 — 0-5.
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10.1 The Plane Strain Equations for 2D Elasticity

The generic form of the new mixed system of equations, viz. (2.21) and (2.22),
reduces to two space dimensions by assuming that there is no variation in X 3 direc-
tion. Under this circumstance, the small strain ¢33 must vanishl, which thus implies
that deformation gradient in X 3 direction has to be F33 = . The stress Pi:; (or
widely known as oW2), however, will not generally be zero and can be determined
in terms of Fn and F22:

P3 —F3s —A (Fn —1) + (F22 —1) (10.1)
£11 £22

Dropping all the components involved in X3 space dimension of (2.21-2.22), the

remaining six equations are

dU dTx 8T2

= 0. 10.2
~dt +  ~dx[ ( )
where
( Pi " [ ~Pn -PI2
P2 —F21 —F22
- 0
U = Fn : _ PIl/Po T o= 103)
F\2 0 Pi/Po
f2 i 0
\ Far ) Vo0 V _p2/po )

The expression above is often called the two-dimensional plane strain equations.
The system (10.2) models P-wave and S-wave for which the motion is confined in
X 1-X2 plane. The S-wave modeled by this system has material motion orthogonal
to the direction of wave propagation, but still remained in the Xi~X2 plane. This is
a reasonable model for plane waves propagating through a three-dimensional elastic
body in the case where there is no variation in X 3 direction. For instance, the body
will try to expand in X3 direction if it is compressed in the X| or X2 direction.
However, this will be prevented by the adjacent material, which is trying equally
hard to expand in other direction. It is important to note that (io..) will not be

able to model the elastic waves in thin plate [38].

10.2 Eigenstructure

Eigenstructure of the system above is discussed as follows. Rather than displaying

the matrices A and A4 2 separately, it is essential to perform the linear combination

Alane strain is defined to be a state of strain where the strain normal to X\-X2 plane, £,
and the shear strains, ¢15 and £.s, are assumed to be zero [8,114,159].
2The difference between P and a disappears in small strain theory.
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of A N such that AN = A\Ni +*,.">>where N — (Ah, N2)T describes the material

outward unit normal vector to the interface. Consequently, the matrix 4 ~ is given

by
/ 0 ! -(A+ 2p)NY -pN2 -pN2 -IN I \
0 0 —N2 -iiN, -pNi —A+ 2p)N2
-Ah/pO 0 0 0 0 0
AN
-NZ/po 0 0 0 0 0
0 —N\/po 0 0 0 0
AV 0 —N2/po 0 0 0 0 /
(10.4)

By setting iV = (1,0)ror (o,1)T, the matrices A| and A4 2 are easily recovered. The

eigenvalues of A n are

Ciz2 — Ci3s —xC§; —0. (10.5)

Their corresponding P-wave and S-wave eigenvectors are

N1 N1
N2 N2
_ ' "NPP o TL, NppoUp (106)
—NiNi/poUp N N 2/p 0Up
-NN/poUp NN/poUp
-Ni/poUp j V NppoUp )
and
N2 N2
- N —N1
-NM/poU, ivVi N2/p, Us
TO (10.7)
-N p Poty NppOUa
N p PoUs -NppOls
v NiN2p0Us V' —~Niv2pous j

respectively. Observe that P-wave has velocity components directed in direction.
The S-wave, on the contrary, has motion in the orthogonal direction —AH)

where ®r T aN = 0).

10.3 Numerical Examples

A series of examples will be examined in order to illustrate the performance of the
proposed method. In all instances, numerical results will be compared with either
the analytical solution or finite element simulations to assess the validity and quality

of this new computational methodology.
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X

Figure 10.1: Plane strain test case.

10.3.1 A Plane Strain Case: Low Dispersion Wave Propa-

gation

This first example has been extracted from Peraire ez al. (2006) [58]. A square flat
plate of unit side length under plane strain is considered. The west and south bound-
aries are allowed to move only tangentially, whereas the north and east boundaries
are restricted to move normally (see Figure 10.1). In the small deformation case,

this problem has an analytical solution (displacement) of the form

Ui{t)] fedirtl sin cos E
= 7 =L e ix\| e (ix:\ .5  °d= | ~
Uz;lt) 0% Vv2/ LNCCSf”zC \)Smﬂ)zcﬁJ ] )VPo

(10.8)

With the aid of equation above, the deformation gradient can also be expressed as
(by using the definition of F = I + du/dX)

. N 4+ Oim . . )
F=a f cos (4yi) cos (AHi) + Oi~ —sin (Ay1) sin (Ap-) (10.9)
sin (Ap ) sin (4p ) —cos (![yI) cos -) + a-
where
Uoll { Cdxt
——cos —-=m
2 vV_C2

For values of U@ below 0.001, the solution can be considered to be linear. This
plate is initially loaded with deformation gradient at time ¢ = o (by substituting
t — 0 into (10.9)) without any initial velocity. The purpose of this example is to
show conservation property (dominated by low dispersion wave propagation) and
pointwise convergence order of the proposed methodology.

The square domain is discretised into 20 x 20 equal quadrilateral cells per edge
and run for a large number of cycles with Ug = 5 x 10~4, where the small de-
formation behaviour is observed. The simulation is performed by assuming near

incompressibility for a value of n/p = 2(1 + t/)/3(1—2v) —9.67, which corresponds
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to a Poisson’s ratio of v = (1 — u/k)/2 = 0.45, Young’s modulus E = 1.7 x 107Pa
and density pp = 1.1 x 10%kg/m3. The velocity and displacement in X; direction
at point (1,0) are monitored and compared in Figure 10.2. The time histories of
stress at point (0,0), linear momentum L, angular momentum A, kinetic energy
K, elastic potential energy ¥ and total energy (K + ) are also illustrated. It can
be observed that first order FVM (piecewise constant representation) produces un-
reliable solutions over long-term responses due to diffusion. To eliminate this, a
second order FVM (piecewise linear reconstruction) has to be employed and the
agreement with the analytical solutions (i.e. displacement, velocity and stresses) is
excellent. For completeness, the incorporation of slope limiters (i.e. Barth-Jespersen
and Venkatakrishnan) into second order FVM is also illustrated (there is no advan-
tage of introducing slope limiters since shocks do not form in this particular case). It
is clear that the total energy should stay conserved since no forces applied externally
to the system. As expected, higher order FVM (with and without slope limiters)
improve significantly the energy conservation. Figure 10.3 shows the numerical dis-
sipations for various mesh sizes. Here, less dissipative results (regardless of the order
of FVM) can be obtained as the discretisation is refined. Grid convergence error
analysis is also performed in Figure 10.4. Note that the numerical solution converges
to the analytical solution by increasing the mesh resolution. The inclusion of slope
limiter produces less accurate results (translational difference) than those without
it whilst maintaing the expected order of convergence.

10.3.2 Spinning Plate

This example was considered in Laursen and Meng (2001) [103]. A unit thickness
square plate (without any constraints) is released without any initial deformation
but with an initial angular velocity of Q@ = 105rad/s (see Figure 10.5). In this
case, the initial velocity field (classical rigid-body dynamics) relative to the origin
is denoted as

v(X)=wxX;  w=(0,000)T;, X =(X1,X50)" (10.10)

The angular momentum dominated example is chosen to illustrate the conservation
properties of Total Variation Diminishing Runge-Kutta (TVD-RK) time stepping
algorithm. Since TVD-RK is not a time-reversible integrator® (unlike Leapfrog time
scheme) the conservation of angular momentum has to be incorporated as part of
the space-time integrator, in the form of a geometric marching scheme (see Chapter
6). Moreover, the effect of different Courant-Friedrichs-Lewy (CFL) number on the
accuracy of the numerical solutions is also examined. The plate is made of a nearly
incompressible rubber material with Young’s modulus E = 1.7 x 10”Pa, density
po = 1.1 x 10 kg/m3 and Poisson’s ratio v = (1 — u/k)/2 = 0.45. Note that the

3Time reversibility is important because it guaranteess conservation properties (i.e. angular
momentum and energy).
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Figure 10.2: Plane Strain Test Case: Results obtained with Ug = 5 x 10.. where

analytical solution is available. First column shows the results based upon piecewise
constant reconstruction, second column for piecewise linear reconstruction, third
for Barth-Jespersen limiter and last for Venkatakrishnan limiter. First and second
rows show the time history of horizontal velocity and horizontal displacement at
point (1,0) compared to analytical solution. Third and fourth rows demonstrate
the Pn and P22 at point (0,0). Fifth row shows linear and angular momentum.
Last row illustrates the kinetic, potential and total energy. The linear elastic consti-
0.45,
1.7 x 10;Pa, density po = 1.1 x 10:kg/ms and cics1 — 0.5.

1x 10 .s.

tutive model is used and material properties are such that Poisson’s ratio u

Young’s modulus E

Discretisation of 20 x 20 cells per edge. Time step A¢ «
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Figure 10.3: Plane Strain Test Case: Results obtained with Ug = 5x 1 0~4. Numerical
dissipations of various mesh sizes are illustrated: (a) FVM First order; (b) FVM
second order; (c) Barth-Jespersen limiter; and (d) Venkatakrishnan limiter. This
example is run with the linear elastic constitutive model and material properties
are such that Poisson’s ratio v — 0.45, Young’s modulus £ = 1.7 x 10'Pa, density
po = 1.1 X 1o3kg/ms and olcfl = 0.5. Time steps for three different mesh sizes:

Atisxs ~ 4 X 10~s, A£‘iOXiO~ > x 10-4s and Atp2ox2 ~ Ix 10 _ss.
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Figure 10.4: Plane Strain Test Case: Mesh convergence errors of (a) Velocity; (b)
Displacement; (¢) Pn; and (d) stresses. Results obtained with U0 = 5 X 10-4
where analytical solution is available. The linear elastic model is used and material
properties are such that Poisson’s ratio v = 0.45, Young’s modulus £ = 1.7x 10;Pa,
density po = 1.1 x UPkg/ms and oics1 —0.5.

Figure 10.5: Spinning plate.
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initial conditions used here are such that there is no steady-state solution, even in
a rotating reference frame. Figure 10.6 presents the results using a discretisation of
20 x 20 equal quadrilateral cells per edge. First by noting that the linear momentum,
L= fv pdV, is very small (nearly zero) at all times as no movement of the centre
of mass is appreciated. Both the angular momentum (A = [, ||z x p||dV) and
total energy (K + v) are expected to be conserved at its initial value during time
integration (see Figure 10.6). The numerical dissipation for different mesh sizes
is also studied in Figure 10.7. Note that the second order FVM (piecewise linear
reconstruction) with a discretisation of 20 x 20 cells is low-dissipative and therefore
very well suited for long-term responses. Figure 10.8 shows the pressure distribution
of the deformed shape at various time instants. It is seen that the plate experiences
deformations due to centrifugal (radially outward) force tending to stretch the plate.

A comparison of different Courant-Friedrichs-Lewy (CFL) number for a fixed
number of mesh elements (10 x 10 quadrilateral cells per edge) is also performed
in this particular case (see Figure 10.9). It can be shown that small CFL number
implies relatively large numerical dissipation (compared to large CFL number), as
a large number of time steps are required (which in turn introduces undesirable
dissipation through evaluation of contact flux).

10.3.3 Uniform Cantilever Thick Beam in Bending Appli-
- cation

This example (extracted from Izian et al. 2011 [64]) represents the large deformation
(dynamic) response of an end-loaded cantilever thick beam of length L = 10m with
a unit section (H = 1m). The forcing function is prescribed as P,,,(t) = 5 x 103N
where ¢t > 0 (see Figure 10.10). A nearly incompressible rubber beam is chosen
with material properties stated as belows: Young’s modulus £ = 1.7 x 107Pa,
density pp = 1.1 x 10%kg/m3 and Poisson’s ratio v = 0.45. The purpose of this
example is to illustrate the performance of the proposed methodology in bending
application. For validation purposes, the standard FEM simulations will be used
to assess the quality of the proposed methodology. A qualitative comparison of
the difference between various numerical techniques is illustrated in Figure 10.11
(where the deformation patterns at four identical times are shown). It is clear that
the finite element solution with standard four-noded quadrilateral elements is far
stiffer than proposed formulation. The deformed shapes (locking free) obtained with
proposed algorithm compare extremely well with those of mean dilatation technique
(a particular case of Selective Reduced Integration (SRI)).

10.3.4 Large Deformation of a Short Column: Highly Non-
linear Behaviour

The same problem was originally analysed by Bonet et al. (2001) [24]. A large strain
vibration of a short column, which is given by a uniform initial velocity V5 = 10m/s
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Figure 1. : Spinning Plate: Results obtained with angular velocity Q = 105 rad/s.
First row shows the results based upon piecewise constant reconstruction, second
row for piecewise linear reconstruction, third for Barth-Jespersen limiter and last for
Venkatakrishnan limiter. First column shows linear and angular momentum. Second
column illustrates the kinetic, potential and total energy. The nearly incompressible
Neo-Hookean (NH) constitutive model is used and material properties are such that
Poisson’s ratio v — 0.45, Young’s modulus £ = 1.7 x 10;Pa, density po = 1.1 x
10:kg/ms and acFL — 0.5. Discretisation of 20 x 20 cells per edge. Time step

At « 1 X 10~48.
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Figure 10.7: Spinning Plate: Results obtained with angular velocity D — 105 rad/s.
Numerical dissipations of various mesh sizes are illustrated: (a) FVM First order; (b)
FVM second order; (c) Barth-Jespersen limiter; and (d) Venkatakrishnan limiter.
This example is run with the nearly incompressible Neo-Hookean (NH) constitutive
model and material properties are such that Poisson’s ratio v — 0.45, Young’s
modulus £ = 1.7 X 10;Pa, density po — 1-1 x 10:kg/m:s and olcfl — 0-5. Time
steps for three different mesh sizes: A:isxs « 4 X 10~s5, Af|10xio ~ > X 10-4s and

AM20x20 ~ 1 X 10 4S.
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Figure 10.8: Spinning Plate: Evolution of pressure distribution at different time
instants. Results obtained imposing a piecewise linear reconstruction and Q =
105rad/s. This test case is run with the nearly incompressible Neo-Hookean (NH)
constitutive model such that Poisson’s ratio v = 0.45, Young’s modulus £ — 1.7 x
10'Pa, density po = 1.1 x 10:kg/m: and acFL = 0-5. Discretisation of 20 x 20 cells
per edge. Time step A7 « 1 x 10-4s.



138 Chapter 10. Multi-Dimensional Problems

0
V CFL 0.3
CFL 0.4
CFL 0.5
CFL 0.6
g
CFL 0.7
Z -6
-1
0 0.05 0.1 0.15 0.2 0.25

Time

Figure 10.9: Spinning Plate: Results obtained with angular velocity QO = 105 rad/s.
Numerical dissipation (second order FVM) of various CFL numbers with a fixed
number of elements is illustrated. This example is run with the nearly incom-
pressible Neo-Hookean (NH) constitutive model and material properties are such
that Poisson’s ratio u = 0.45, Young’s modulus £ = 1.7 x 107Pa and density
Po = 1.1 x 103kg/m3. Discretisation of 10 X 10 cells per edge.
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Figure 10.10: Cantilever beam configuration.
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Figure 10.11: Cantilever Thick Beam: Sequence of deformed shapes for the can-
tilever beam using: (a) Mean dilatation approach; (b) Standard FEM procedure; and
(c) Proposed methodology imposing a piecewise linear reconstruction. The nearly
incompressible Neo-Hookean (NH) constitutive model is used such that Poisson’s
ratio v —0.45, Young’s modulus £ = 1.7 x 107Pa and density p0= 1.1 x 103kg/m3.
Discretisation of 40 x 4 cells per edge. Time step At = 5 x 10“4s.
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Figure 10.12: Short column definition.
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whilst the unit width base is kept fixed, is considered (see Figure 10.12). This
problem is highly nonlinear and involves large deformations. The main objective
is to illustrate the performance of the proposed algorithm in bending dominated
scenario. The properties of the material being used are described as belows: Young’s
modulus E = 1.7 x 107Pa, density po = 1.1 x 103kg/m3 and Poisson’s ratio v = 0.45.
Length L of the column is taken to be 6m. For comparison purposes, the same
problem is also discretised using a standard FEM procedure and mean dilatation
technique. Figure 10.13 depicts the positions of the column at various times for
three cases: mean dilatation approach, standard FEM and proposed methodology.
It is clear that the proposed formulation can be used without bending difficulty. The
deformed shapes obtained from new methodology are found to be in good agreement
with the conventional mean dilatation approach, whereas the standard formulation
experiences the well-known locking phenomena. By making use of the proposed
method, a series of deformed states are shown in Figure 10.14, where the colour
contour plot indicates the pressure distribution.

The same example is now solved with the introduction of Von-Mises plasticity
model (isochoric plastic flow) where yield stress is given by 7 = 1.5MPa and the
hardening modulus H = 0.25MPa. Linear variation of velocity distribution is given
in this case; that is, Vinear = V X2/L where X, € [0, L] and V = 15m/s. This prob-
lem is first analysed using two-tep Taylor-Galerkin approach? (curl-projection and
@ = 0.2) and then with the new proposed methodology. See [64] for detailed discus-
sion on choosing the value @ (problem-dependent parameter). Deformed shapes for
both cases are shown in Figure 10.15. It can be clearly seen that the new proposed
approach performs well in the case of near incompressibility.

10.3.5 A Punch Test

A punching test case is considered [160]. A flat square rubber plate of unit side length
is constrained with rollers at the bottom and on the left and right hand sides. The
right half of the domain experiences a prescribed punch velocity, vpyncn = 100m/s
(see Figure 10.16). The nearly incompressible rubber material is chosen where the
Young’s modulus £ = 1.7 x 107Pa, Poisson’s ratio v = 0.45 and material density
po = 1.1 x 10%kg/m3. The objective of this example is to show that the proposed
algorithm eliminates both the locking effect and the appearance of spurious (checker-
board) pressure modes in the case of near incompressibility. It is well-known that
volumetric locking is commonly encountered in standard FEM analysis for nearly
incompressible rubber material. To alleviate this, the mean dilatation approach is
usually employed but unfortunately, the results obtained containing spurious pres-
sure modes caused of the resolution of stress. This can be corrected by the use of new
proposed methodology (see Figure 10.17). Figure 10.18 shows the numerical result
obtained by proposed method compares well with the two-step Taylor-Galerkin solu-
tion of & = 0.1. It is observed that the existence of curl errors (@ = 0) in the solution

4Two-step Taylor-Galerkin computational methodology is briefly discussed in Appendix I.
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Figure 10.13: Short Column: Sequence of deformed shapes for the short column us-
ing: (a) Mean dilatation approach; (b) Standard FEM procedure; and (c) Proposed
methodology imposing a piecewise linear reconstruction. The nearly incompressible
Neo-Hookean (NH) constitutive model is used such that Poisson’s ratio v = 0.45,
Young’s modulus £ = 1.7 x 107Pa and density p0 = 1.1 x 103kg/m3. Discretisation
of 4 x 24 cells per edge. Time step At = 5 x 10 4s.
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Figure 10.15: Short Column: Sequence of deformed shapes for short column with
plasticity: (a) Two step Taylor-Galerkin technique (curl-projection and a = 0.2)
of 8 x 48 x 2; and (b-d) Proposed methodology imposing a piecewise linear re-
construction with discretisation of 4 x 24, 8 x 48 and 12 x 72, respectively. The
Von-Mises plasticity model is used such that Poisson’s ratio v = 0.45, Young’s mod-
ulus £ = 1.7 x 107Pa, density p0 = 1.1 x 103kg/m3, yield stress r° = 1.5MPa
and hardening modulus A = 0.25MPa. Time steps for four different meshes:
AMxA = 4 X 10 48, At|gx480r8x48x2 = 2 X 10 4s and At[i2x72 = 1x 10 4s.
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Figure 10.16: A punch test case.

leads to a breakdown of the numerical scheme. Numerical dissipation and pressure
distribution are depicted in Figure 10.19 and Figure 10.20, respectively. Reliable
solution over long time integration can be obtained by refining the mesh elements.
This problem is also analysed by making use of Von-Mises plasticity model with
yield stress f° = 10MPa and hardening parameter H = 2.5MPa. A comparison
between the proposed methodology and two-step Taylor-Galerkin method is pre-
sented in Figure 10.21. It shows that both algorithms produce similar deformation

behaviours.

10.3.6 Tensile Case

Similar to the punching problem, a tensile test case is considered [160]. A square steel
plate, with material properties defined as Young’s modulus £ = 2.1 x 10loPa, density
po =T x 103kg/m3 and Poisson’s ratio v — 0.3, is pulled rapidly by upun = 500m/s,
as shown in Figure 10.22. In this particular example, the incompressibility limit,
given by n/p = 2.1667, is used. In these circumstances, the standard FEM proce-
dure should be able to produce convincing results, which can be treated as reference
solutions for comparison purposes (see Figure 10.23). The numerical predictions
obtained by the new methodology and a two-step Taylor-Galerkin approach quali-
tatively agree quite well with those of convectional standard FEM analysis. Pressure
evolution is also depicted in Figure 10.24. Moreover, the same problem is further
analysed by employing Von-Mises plasticity model with yield stress = 5GPa and
hardening modulus H = IGPa. In Figure 10.25, the deformed shapes of proposed
methodology are found to be in good agreement with the existing two-step Taylor-
Galerkin solutions. Figure 10.27 illustrates the evolution of pressure distribution
for the tensile test case with plasticity model implemented. Irrecoverable (perma-
nent) behaviour has taken place near the bottom fixed end, as the plate is stretched

vertically.
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Figure 10.17: Punch Test Case: Sequence of pressure distribution of deformed shapes
using: (a) Mean dilatation technique; (b) Standard FEM procedure; and (¢) Pro-
posed methodology imposing a piecewise linear reconstruction. Initial compressive
velocity upunch = 100m/s is applied. A rubber plate is used and its material proper-
ties are such that Poisson’s ratio v = 0.45, Young’s modulus £ = 1.7 x 107Pa and
density p0 — 1-1 x 103kg/m3. Discretisation of 10 x 10 cells per edge. Time step
At =2 x 10 4s.



146 Chapter 10. Multi-Dimensional Problems

t=0.095s t=0.095 LT t=0.095
s 510 is s

VO By

0 0.5 0 0.5 1 0 0.5
X-Coordinate X-Coordinate X-Coordinate
(@ (b) ©

Figure 10.18: Punch Test Case: Deformed shapes at a particular time instant with
“punch = 100m/s. (a-b) Two step Taylor-Galerkin technique (curl-projection and
discretisation of 20 x 20 x 2) with ¢ = 0 and a = 0.1, respectively, (c¢) Proposed
methodology imposing a piecewise linear reconstruction with discretisation of 28 x
28. The nearly incompressible Neo-Hookean (NH) model is used and its material
properties are such that Poisson’s ratio v = 0.45, Young’s modulus £ = 1.7 x 10'Pa,
density po — 1-1 x 103kg/m3. Time step At = 5 x 10~5s.
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Figure 10.19: Punch Test Case: Results obtained imposing a piecewise linear re-
construction with an initial compressive velocity upunch = 100m/s. Numerical
dissipation of various mesh sizes are illustrated. The nearly incompressible Neo-
Hookean (NH) constitutive model is used where properties are such that Poisson’s
ratio v — 0.45, Young’s modulus £ = 1.7 x 10'Pa, density p0 = 1.1 x 103kg/m3
and occfl — 0.5. Time steps for three different mesh sizes: A t|10xio ~ 2 x 10~4s,

box20 ~ 1 x 10~4s and At|4oXo0~ 5 x 10 S5s.
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Figure 10.20: Punch Test Case: Evolution of pressure distribution at different time

instants. Results obtained imposing a piecewise linear reconstruction and upunch =
100m/s. The nearly incompressible Neo-Hookean (NH) constitutive model is used
and its material properties are such that Poisson’s ratio v — 0.45, Young’s modulus

E =
per edge. Time step At = 2 x 10_5s.

1.7 x 10'Pa and density po =

1.1 x 103kg/m3. Discretisation of 40 x 40 cells
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Figure 10.21: Punch Test Case: Deformed shapes for punch case with plasticity
and npunch = 100m/s. (a) Two-step Taylor-Galerkin technique (curl-projection and
a = 0.2) of 20 x 20 x 2; and (b) Proposed methodology imposing a piecewise linear
reconstruction with discretisation of 28 x 28. The Von-Ivlises plasticity model is
used and its material properties are such that Poisson’s ratio v — 0.45, Young’s
modulus £ = 1.7 x 107Pa, density po = 1.1 x 103kg/m3, yield stress f° = 10MPa
and hardening modulus H = 2.5MPa. Time step At = 5 x 10~5s.
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Figure 10.22: Tensile test case.

10.3.7 Beam Bending Case: Buckling

Another bending-dominated example is demonstrated [161]. A vertical cantilever
beam of length L — 10m with a unit width base is considered (see Figure 10.26).
The beam is fixed at the bottom and a vertical velocity, o= 5m/s, is prescribed at
right half of the beam. The material properties of the beam are Young’s modulus
E = 1.17 x 107Pa, Poisson’s ratio v — 0.35 and density p0 — 1-1 x 103kg/m3. As
discussed previously, the standard FEM procedure encountered problems near in-
compressibility where it exhibits volumetric locking and bending difficulty. This can
be resolved by using the averaged nodal finite element [23,24]. However, the nodal
averaging process develops artificial mechanisms similar to hourglassing in some 2D
plane strain cases [22]. To remedy this problem, Lahiri (2006) [161] proposed a sta-
bilised internal potential energy comprising of linear combinations of standard and
averaged nodal element. With the new conservation-law formulation, the proposed
methodology can be simulated without encountering any non-physical behaviours
(or spurious energy modes); see Figure 10.28.
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Figure 10.23: Tensile Test Case: Sequence of pressure distribution of deformed
shapes using: (a) Standard FEM procedure (15 x 15); (b-c) Proposed methodology
imposing a piecewise linear reconstruction with meshes of 15 x 15 and 30 x 30;
and (d) Two-step Taylor-Galerkin technique (curl-projection and b: = 0.2) with
20 x 20 x 2. Initial tensile velocity upun = 500m/s is applied. A steel plate is used
and its material properties are such that Poisson’s ratio v — 0.3, Young’s modulus
E = 2.1 x 1010Pa and density p0 = 7 x 103kg/m3. Time steps for various mesh sizes:

Aglisxis = 1 x 10-5s and A t|s0x300r20x20x2 = 5 x 10~6s.
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Figure 10.24: Tensile Test Case: Evolution of pressure distribution at different time
instants. Results obtained based upon proposed methodology imposing a piecewise
linear reconstruction with an initial vertical tensile velocity npun = 500 m/s. A
nearly incompressible Neo-Hookean (NH) constitutive model is used and its material
properties are such that Poisson’s ratio v = 0.3, Young’s modulus £ = 2.1 x 1010Pa
and density po = 7 x 103kg/m3. Discretisation of 40 x 40 cells per edge. Time step
At =5 x 10_6s.
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Figure 10.25: Tensile Test Case: Sequence of pressure distribution of deformed
shapes with plasticity implemented using: (a) Two step Taylor-Galerkin technique
(curl-projection, ¢ — 0.2 and 20 x 20 x 2); (b) Proposed methodology imposing
a piecewise linear reconstruction with meshes of 30 x 30. Initial tensile velocity
“puii —500m/s is applied. The Von-Mises j)lasticity model is used such that Poisscn’s
ratio v = 0.3, Young’s modulus £ = 2.1 x 101(JPa, density p0 = 7 x 103kg/m3, yield
stress fy = 5GPa and hardening modulus M = iGPa. Same time step is used for
two different approaches: At —b x 10 6s.

Figure 10.26: Beam buckling test case.
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Figure 10.27: Tensile Test Case: Evolution of pressure distribution at different time
instants. Results obtained based upon proposed methodology imposing a piecewise
linear reconstruction with an initial vertical tensile velocity npun = 500 m/s. The
Von-Mises plasticity constitutive model is used and its material properties are such
that Poisson’s ratio v = 0.3, Young’s modulus £ — 2.1 x 10loPa, density po = 7 x
103k g/m 3, yield stress = 5GPa and hardening modulus H = IGPa. Discretisation
of 40 x 40 cells per edge. Time step At = 5 x 10 _6s.



154 Chapter 10. Multi-Dimensional Problems

5 0

X-Coordinate A-Coordmate X-Coordinate X-Coordinate

t=I 5s t=1 8s =2 4s
-5 0

X-Coordinate X-C oordmate X-Coordinate
t-27s =3 3s t=3 6s

X-Coordinate X-Coordinate X-Coordmate X-Coordmate
=3 9s =4 2s t=4.5s =4

X-Coordinale X-Coordinate X-C oordmate X-Coordinate
=5 1Is t=54s t=57s t~6s

0
X-Coordinate

Figure 10.28: Beam Buckling: Evolution of pressure distribution at different time
instants. Results obtained imposing a piecewise linear reconstruction with an initial
vertical velocity, u0, applied at right half of the beam. The nearly incompressible
Neo-Hookean (NH) constitutive model is used and its material properties are such
that Poisson’s ratio v — 0.35, Young’s modulus £ = 1.17 x 107Pa, density po =
1.1 x 103kg/m3 and orcrr ~ 0.5. Discretisation of 6 x 60 cells per edge. Time step

At = 6x 10~4s.
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Concluding Remarks

“The engineer has been, and is, a maker of history”.

James Kip Finch (1883 — 1967)
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11.1 Conclusions

This thesis deals with the physical responses of structures with small and/or large
deformations for nearly incompressible applications without bending and locking dif-
ficulties. For this purpose, a new mixed formulation based on a first order hyperbolic
system of conservation laws has been developed and implemented in the context of
cell centred finite volume method. The guideline to the overall organisation of this
thesis is summarised on the following chart (See Figure 11.1).

11.1.1 The New Mixed Formulation

Solid dynamics explicit finite element codes are oftenly used for the simulation of
finite (large) deformation dynamics problems by aerospace, automotive and mili-
tary industries [162]. In these codes, the traditional solid dynamics formulation for
displacement field is employed. This second-order dynamics equilibrium equation
is discretised by standard Galerkin finite element procedure in conjunction with a
family of classical Newmark time integration schemes.

Many practical applications of engineering interest involve the analysis of rubber
hyperelastic behaviour, as well as elastoplastic simulations under the assumption of
isochoric plastic flow (such as metal plasticity model [2,6]). In such situations,
spurious volumetric locking and overly stiff solutions are frequently encountered in
standard Galerkin FEM with low-order elements, due to the fact that the low-order
interpolation polynomials are unable to adequately represent the volume-preserving
displacement field [80]. For this reason, a rich variety of different approaches have
been proposed for low-order finite elements based on four-noded quadrilaterals (or
eight-noded hexahedra). Among others, mixed u/p formulation, F-bar, B-bar, En-
hanced Assummed Strain method (EAS) and Selective Reduced Integration scheme
(SRI) are possible alternatives that allow the use of these elements near the incom-
pressibility limit [6,69-74, 76-79)].

Unfortunately, some applications involving complex geometries are sometimes
preferred to be meshed using triangles (or tetrahedra) [161]. The presence of large
strains may lead to poorly shaped elements even for simple initial geometry. Mesh
adaptation is then required but can only be achieved at a reasonable cost with sim-
ple triangular (or tetrahedra) element [160]. Efforts to develop locking-free tetra-
hedral elements based on simple averaging process that are effective in nearly in-
compressible and bending-dominated situations have only been partially successful.
The resulting formulation suffers from artificial mechanisms similar to hourglass-
ing [6,22-24].

Another limitation of using linear elements in traditional displacement-based
formulation is that it leads to second-order convergence for displacement field but
one order less for strains and stresses [58,59,63,64]. This is not sufficiently accurate
for problems where stress analysis is of primary interest [163].

With the purpose of targeting these shortcomings, a new mixed solid dynam-
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ics formulation as a first-order system of hyperbolic Partial Differential Equations
(PDE) was proposed (a modification of that used in [117,118]). The new formula-
tion is derived from balance laws describing the conservation of linear momentum,
deformation gradient and total energy, which consists of a set of thirteen conserva-
tion equations in three dimensions [58]. There are three equations for conservation
of linear momentum, nine equations for deformation gradient and one equation for
conservation of total energy. However, these equations involve twenty-three un-
knowns: linear momentum p, deformation gradient F', First Piola-Kirchhoff stress
tensor P, total energy F and temperature . In order to close the system, ten addi-
tional relationships among these unknowns must be specified. Two different types
of constitutive equations are required to complete the system. The first type con-
sists of constitutive laws that characterise the material [7]; for instance, the stress
tensor is related to the deformation gradient by a kinetic equation of state for elas-
tic material. Another type of constitutive equation (known as thermo-mechanical
constitutive law) allows the stress to be dependent upon temperature with the aid
of Laws of Thermodynamics [3].

More crucially, the curl-free constraint has to be fully satisfied by the evolution
of deformation gradient [117]. If the constraint is satisfied initially, it will then be
satisfied for all later times [104, 105]. An unphysical wave propagation property
(spurious curl modes) arises without imposing this constraint properly, as it plays
an essential role in analysis of the characteristic structure of the system [58].

The proposed formulation (a mixed linear momentum-deformation gradient-total
energy) enables stresses to converge at the same rate as velocities and displacements
[63,64]. With this sort of framework, it is convenient to apply a state-of-the-art
shock capturing technique for problems where discontinuities are present [26,60,84,
86,87]. Such conservation-law formulation also permits the use of low-order elements
without volumetric locking and bending difficulty [59,63]. This will lead to a cheap
and easy-to-implement code [69].

11.1.2 Computational Methodology

Some key conclusions can be summarised as follows:

e The proposed computational methodology is developed based on the philos-
ophy of the Method of Lines (MOL). In the method of lines, the space and
time discretisations of a Partial Differential Equations (PDE) are decoupled
and analysed independently [98]. First, a spatial method is selected to discre-
tise the differential equation in space and incorporates the suitable boundary
conditions. An arbitrary time integrator is then used for integrating the semi-
discrete equations in time.

e The dissipative effects of a numerical method are crucial for constructing reli-
able schemes of conservation laws [82,83]. This is particularly important when
the solution is discontinuous in the vicinity of sharp gradients. Making use of
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a numerical scheme with appropriate dissipation helps building up the success
of the numerical calculation.

The projection-evolution approach for space discretisation is employed and
consists of two key steps [84]: (1) a reconstruction (or projection) step where
the data are approximated by polynomials within each cell; (2) upwind (or
contact flux) step where the fluxes at each interface are evaluated by a proce-
dure that takes into account the wave directions. In particular, the classical
Godunov scheme (1959) [85] employs the simplest reconstruction; that is, the
piecewise constant reconstruction. This classical scheme is only first-order ac-
curate in space which then introduces a great deal of numerical diffusion into
the solution [25]. Consequently, it is essential to enhance accuracy by using
higher-order polynomials in the reconstruction step [26]. Accurate interpola-
tions (i.e. linear and higher orders) are derived by assuming that the data
are smooth [93]. These interpolations create unwanted oscillatory behaviours
in the vicinity of shocks. To prevent such oscillations, it is vital to intro-
duce a monotonicity constraint (also known as nonlinear slope limiter) into
the scheme [86, 87].

A family of Total Variation Diminishing (TVD) Runge-Kutta time integration
explicit schemes is used to integrate the evolutionary system of equations.
This type of temporal schemes shows a clear advantage over a family of non-
TVD Runge-Kutta time integration schemes, where the latter can generate
oscillations even for TVD spatial discretisation [88].

The standard finite volume algorithm loses the desirable angular momentum
conservation property (especially in the angular momentum dominated sce-
nario) and thus induces energy dissipation under long-term response analy-
sis [99-103]. One purpose of this thesis is to propose an algorithm that con-
serves the total angular momentum of a system, which requires a predictor-
corrector strategy (incorporates the conservation of angular momentum as part
of the space-time integrator).

The new mixed hyperbolic system of equations has added complexity of pos-
sessing involutions, where the components of deformation gradient F' must
satisfy some compatibility conditions [117]. An involution is an additional
equation that has to be satisfied for all time, provided that this equation is sat-
isfied at some initial time [118] (inherent property of the evolution operator).
Such involutions introduce difficulties into the development of any numerical
scheme since discrete preservation properties are not easily established [104].
The numerical method that obeys involutions on a discrete level is designed
so as to avoid spurious modes (curl errors) for long-term analysis [63].

Mesh convergence analysis [60] has been performed on a sequence of mesh
sizes for various numerical examples. This analysis measures the numerical
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(i.e. pointwise and global) errors at a particular time and an optimal conver-
gence O(hP™!) can be obtained where p denotes the polynomial orders. Finite
volume schemes equipped with piecewise linear reconstruction (with and with-
out limiters), in conjunction with TVD Runge-Kutta time stepping scheme,
achieved second order accuracy in overall numerical scheme. Of course those
schemes with limiters are expected to be less accurate since they introduce
numerical dissipation into the solution.

e A series of numerical examples involving the analysis of infinitesimal (small)
and/or finite (large) deformations for nearly incompressible rubber material
and/or plastic-dominant deformations (isochoric plastic flow) were demon-
strated. As expected, the locking behaviour was clearly observed in the
standard FEM procedure. The locking-free responses obtained by proposed
methodology compared extremely well with those of mean dilatation tech-
nique.

e Both the standard FEM procedure and mean dilatation technique produced
spurious pressure modes (checkerboard) in the case of near incompressibil-
ity [114]. However, this can be eliminated by introducing of the new mixed
conservation law formulation (high order of precision for stress variable).

e The proposed numerical algorithm provides a good balance between accuracy
and speed of computation.

11.2 Recommendations for Further Research

Future research lines have been open-up after the developments presented in this
thesis. A few directions are pointed out:

e Non-Cartesian Geometries. All physical domains presented are Cartesian
by means of their boundaries been perfectly aligned with the Cartesian coor-
dinate directions. Unfortunately, most domains are not Cartesian in practice.
The well known approach for dealing with general domain is that of mapping
the irregular domain in physical space to a regular domain in computational
space [84,145].

e Extension to Triangular Mesh. Some operations like curl-preserving up-
dated scheme and discrete angular momentum conserving algorithm are gen-
erally applicable to any arbitrary (i.e. structured and unstructured) meshes
in 2D problems. High order spatial discretisation (i.e. gradient operator and
slope limiter) has to be modified for computational efficiency in 2D unstruc-
tured mesh, preferably Jameson-Schmidt-Turkel (JST) scheme.
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Thermo-Mechanical Process. Many applications in engineering and sci-
ence have to consider irreversible process where thermal effects are of prac-
tical importance (see Appendix E). Realistic problems involving thermo-
elastodynamic analysis are of great interest.

Complex Constitutive Models. The consideration of viscoelastic model
[4], as well as some other basic plasticity models® [6], could be implemented
in source code library.

Vertex-Based Finite Volume Method [27]. It should be noted that when
a solid body undergoes deformation, the application of mechanical boundary
conditions is best modelled if they can be assigned at physical boundary. For
a cell centred approach, the displacements at boundary have to be projected
from the nearest node of discretisation.

Mesh Adaptation Algorithm. Lagrangian mesh often suffers from issues
related to mesh tangling in cases of large deformations for dynamic simula-
tions. Several types of mesh adaptive updates can be used to reduce mesh
distortions: (a) h-adaptation which reduces the element size in a specified re-
gion to improve the solution accuracy [164]; (b) r-adaptation in which an initial
mesh is modified by changing the position of nodes [165]; and (c) p-adaptation
which increases the polynomial order of the shape function without changing
the initial mesh configuration [166]. Special care has to be exercised since such
updates introduce advection error to the solution [160].

Parallelisation. The use of parallel algorithm is becoming increasingly vi-
tal for large-scale analysis due to the requirement of large memory size and
computational time.

1Other plasticity models: (1) Tresca model; (2) Mohr-Coulomb model; and (3) Drucker-Prager

model.
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A.1 Introductory Remarks

This appendix reviews some fundamentals of linear algebra which are extensively
employed in this thesis. The use of a Cartesian coordinate system is sufficient for

applications considered. A more in-depth explanation can be found in [6,7,13,119,
121,167-169].

A.2 Vectors

Let & be an n-dimensional Euclidean space and % be the space of n-dimensional
vectors associated with &. A set of vectors {u,v,w} € % will be used in the
following section.

A.2.1 Inner Product, Norm and Orthogonality

Inner product of two arbitrary vectors is defined by
u-v. (A1)

Let

[ul = vu-u. (A.2)

describes the Euclidean norm of a vector u and w is said to be a unit vector if
lul| = 1. (A.3)
A vector wu is said to be orthogonal with respect to a vector v if

u-v=_0. (A.4)

A.3 Second Order Tensors

Any second order tensor is a linear transformation from % into %; that is, L :
U — % . It maps a vector u into another vector v such as

v = Lu. (A.5)

In particular,
Ou = 0; Iu = u, (A.6)

where O represents the zero tensor and I denotes the identity tensor.
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A.3.1 Symmetric and Skew Tensors

An arbitrary second order tensor L can be conveniently decomposed into
L = sym(L) + skew(L). (A.7)
Their symmetric and skew parts are denoted as

sym(L) = %(L +IT);  skew(L) = %(L _ 7). (A.8)

A.3.2 Tensor Product

The tensor product of two vectors u and v is dictated by u ® v. Such resulting
product maps an arbitrary vector w into the vector (w - v)u:

(u®v)w = (w - v)u. (A.9)

This is also known as a dyadic process.

A.3.3 Trace, Inner Product and Euclidean Norm
The trace of the tensor (u ® v) is a linear map defined by
tr(lu®v) =u-wv. (A.10)

For a generic tensor L, its trace is the summation of the diagonal terms of its matrix
representation, that is

3
trh =Y Ly. (A.11)
i=1

The inner product of two tensors, T': L, is described as

3
T: L =tr(T"L) =tx(TL") = Y TyLs. (A.12)

1,5=1

Euclidean norm of a tensor L is then dictated by

3 1/2
\L| =VL: L= (Z ng) . (A.13)

i,j=1

A.3.4 Invariants

In general, the Cartesian components of vectors and second order tensors will vary
when the axes are rotated. However, certain intrinsic magnitudes associated with
them will remain invariant under such transformations. The first of these magni-

tudes, I, is given by
3

I =tr(L) =Y Li. (A.14)

=1
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Analogous to the scalar product of vectors, the second independent invariant for
any second-order tensor L can be defined as

3
II,=L:L=Y L (A.15)
ij=1
The last invariant is provided by its determinant represented by

111, = det(L). (A.16)

A.3.5 Spectral Decomposition

Given a tensor L, a non-zero vector n is said to be an eigenvector of L associated
with the eigenvalue w if
Ln = wn. (A.17)

The expression above represents the characteristic space of L corresponding to w
and the following properties hold:

1. The eigenvalues of a positive definite tensor are strictly positive.
2. The characteristic spaces of a symmetric tensor are mutually orthogonal.
Let L be a symmetric tensor, then admits the representation of
3
L=Zwana®na. (A.18)
a=1

Here, {n,,n2,n3} are eigenvectors of L, which can also be used as an alternative
Cartesian base. {w;,ws,ws} denote the set of corresponding eigenvalues. The above
expression is called the spectral decomposition of L.

A.4 Isotropic Tensors

A tensor is said to be isotropic if its components are invariant under an orthogonal
change of basis (or rotation).

A.4.1 Isotropic Second Order Tensors

A second order tensor L is isotropic if
L= RTLR; L,'j = RmianLmn (A].g)

for any rotation tensor R. Spherical tensors, af, with any scalar o are the only
second order isotropic tensors.
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A.4.2 Isotropic Fourth Order Tensors

A fourth-order tensor, £, is isotropic if
Eijkl = RmianRokRplEmnop (AZO)

for any rotation R. Any isotropic fourth-order tensor, C, can be represented as a
linear combination of three basic isotropic tensors:

C=aZ+BLT+~v(II), (A.21)

where a, 8 and -y are scalars. These three isotropic tensors are described as follows.
The fourth-order identity tensor, Z, is given by

Lijir = 0ixdj1. (A.22)
For any second-order tensor L, the fourth-order identity tensor satisfies
Z:L=L:ZIT=1L. (A.23)
Furthermore, this tensor gives
I:L=L:T=CL, (A.24)

for any fourth-order tensor £. The tensor Z is the transposition tensor which maps
any second-order tensor L onto its transpose:

~

i: L=1L: i = LT; Iz’jkl = 5i15jk- (A.25)
Multiplying any tensor L with (I ® I) yields
(I®I): L= (tzL)I. (A.26)

Another important isotropic tensor (symmetric projection or symmetric identity)
that frequently used in continuum mechanics is defined by

S:L=L:S=sym(L), (A.27)

where S = (Z + I)/2.
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B.1 Introductory Remarks

This appendix summarises some kinematic aspects regarding the deformation for a
continuous medium without considering the applied loads and the constitutive be-
haviour of the material. See [1,3,6,7,13,15,89,115,121,170] for detailed explanation
on this subject.

B.2 Motion

Let % be a body which occupies an open region V of the three-dimensional Euclidean
space & with a boundary OV in its reference configuration. The motion (or time-
dependent deformation) of a continuum body £ is defined by a mapping from a
reference or material volume V' to a current or spatial volume v(t) as

¢: VxRt —t) in & (B.1)

For each time ¢, the mapping function, ¢(:,t), is a deformation of 4. Material
domain, V' C R™¢, consists of material particles X, whereas the spatial domain is
made up of spatial points x, v(t) C R™. Here, ns denotes spatial dimensions.

B.3 The Deformation Gradient

The deformation gradient tensor is defined by

op(X,t) Oz
F(X,t) = = . B.2
This can be conveniently decomposed into a purely volumetric deformation followed

by a deviatoric (or isochoric) deformation or vice-versa:

F = FdevFvol = F’uoleev, (B3)
where the deviatoric and volumetric components are, respectively, described as

Fio = (detF) 3 F;  F,y = (detF)3l. (B.4)

B.3.1 Volume Changes

The Jacobian J relates the volume element in both reference and current configura-
tions. For this reason, consider an infinitesimal volume element in material configu-
ration with all edges parallel to Cartesian axes such as dX; = d X, E;, d X, = d X, E,
and dX3 = dX3Ej3, where { Ey, E,, E3} is a set of orthonormal vectors. The elemen-
tal material volume dV is clearly given as dV = (dX; X dX3) - dX3.! To obtain the

In mathematics, the scalar triple product of three vectors represents the volume of the paral-
lelepiped defined by these three vectors.
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corresponding deformed volume, dv, material vectors have to undergo push forward
operation such as dv = (FdX; x FdX,) - FdX3, which concludes that

dv=JdV;  J=detF. (B.5)

B.3.2 Polar Decomposition

Polar decomposition of the deformation gradient is of the form
F=RU=VR,? (B.6)

where U and V' denote the right and left stretch tensors. R describes the local
rotation tensor®. From equation above, the right and left stretch tensors are related

as
V = RUR". (B.7)

Alternatively, U and V' can also be expressed as
U=vC, V=1b (B.8)

where C and b are the right and left Cauchy-Green strain tensors.

Spectral Decomposition of the Stretch Tensors

Since U and V are symmetric tensors, they follow from the spectral theorem that

3 3
U=) ANa®N,, V=) Ana®na. (B.9)
a=1 a=1
Note that {A1, g, Az} and {X1, Az, A3} are the principal stretches of U and V. N,
and n, are represented as the Lagrangian and Eulerian principal directions. By
substituting (B.9) into (B.7), some interesting relationships can be derived:

Xa =Xa; To=RN, Va=1,23. (B.10)

This expression implies that the two point tensor, R, rotates the material vector
triad {IN1, N3, N3} into the corresponding set of spatial vector triad {ni, ns, ns}.

B.4 Strain Measures

As discussed previously, pure rotation within an infinitesimal neighbourhood of a
material particle X can be distinguished from pure stretching by means of polar
decomposition. Strain measures have to be performed under stretching. In general,
the Green-Lagrange strain tensor is defined by

2U and V are symmetric positive definite tensors.
3Determinant of the rotation tensor R must be equal to 1.
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1
2
Here, C is the right Cauchy-Green tensor and the meaning of the superscript on

E(2)=%(C—I)= (H+H" +HTH); F=I+H. (B.11)

E® will become clearer below. If no straining occurs, that is H = 0, the expression
above thus implies that E®®) =0 (or C = I).
With the aid of spectral decomposition theorem, E? can be re-expressed as
3

1
E@ =" -2 _-1)N,®N, B.12
QZ; 2( Q ) ® ) ( )
by using
3
C=U=) ANN,®N,. (B.13)
a=1

Note that if the set of principal stretches {1, Ag, A3} is of particular interest, it is
considerably easy to obtain by taking a square root of the eigenvalues of C.

B.4.1 Family of Strain Measures

An important family of material strain tensors is defined as

1rrm _
E(m)z{ e (B.14)

where m € R. Equivalently, the equation above can be re-expressed in terms of
principle values by

3
E™ =% "G(As)Na ® Na, (B.15)
a=1
where
Lm—1) m#0
=4 m B.1
Analogously, the family of Eulerian strain measures is represented as
1 —m
m _ [ mI =V m#£0 B.1
€ { In(V) m=20 (B.17)

or, alternatively

3 1 _
=(1-=A") m#0
(m) _ A . A,) = m o B.1
¢ ;H( a)fa®ma; H(Aa) { I\ m=0 (B.18)
Consequently, the Lagrangian and Eulerian strain tensors are related by
e™™ = REMRT. (B.19)

Commonly used strain measures are Green-Lagrange (m = 2), Biot (m = 1) and
Hencky (m = 0) tensors.
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B.5 Directional Derivative

To introduce the infinitesimal kinematic descriptions in small strain regime, it is
essential to linearise some of the nonlinear kinematic magnitudes described above.
The directional derivative concept is introduced for that purpose [6,7].

Consider a small displacement u(x,t) imposed in the spatial configuration & =
¢(X,t). With the the aid of DF [u] = Vou = (Vu) F *, the right and left
Cauchy-Green deformation tensors can then be linearised in the direction of u(x, t):

DC [u] = FTDF [u] + DFT [u] F (B.21a)

— FT [Vmu + (vmu)’-’“} F (B.21b)

= 2FT B (Vmu + (vmu)T)] F (B.21c)

= 2FTeF (B.21d)

and

Dbu] = FDFT [u] + DF [u] FT (B.22a)

= FFT (Vau)T + (Vou) FFT (B.22b)

=b(Vu)' + (V,u)b (B.22¢)

respectively. Note that the term inside [ |, viz. (B.21c), is known as small strain
tensor €. Making use of (B.21d), the Green-Lagrange strain tensor (B.11) can be
linearised as follows:

DE® [u] = %DC [u] (B.23a)
= FTeF. (B.23b)

Similarly , the linearised Eulerian-Almansi finite strain tensor e(? can be expressed

4Show that DF [u] = Vou = (Vzu) F:

d|  9(¢(X,t)+eu)

DF (¢ (X,t) [u(@)] = | _ 53X (B.20a)
_ Ou(x)
= 3x (B.20b)
= Vou (B.20c)
= (Vgu) F. (B.20d)

Note that Vy indicates the material gradient with respect to undeformed space whereas, V,
denotes spatial gradient in deformed space.
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De®? [u] = —%Db_l [u] (B.24a)
= % [b7'Db[u]b7'] (B.24b)
_ % (67 (Vau) + (Tow)b71] (B.24c)

In the case of linear elasticity, the linearisations of E? and e(® should be per-
formed at initial material configuration (F' = I) and hence

DEY [u] = Del? [u] =e. (B.25)

Indeed, the general expression for a family of linearised strain tensors is denoted as

DE{™ [u] = De{™ [u] = ¢. (B.26)
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C.1 Introductory Remarks

Some elementary properties of the class of one-dimensional hyperbolic Partial Dif-
ferential Equations (PDEs) are summarised in this section. The selected aspects
are those thought to be essential for the development of the numerical procedure
presented in the main body of the thesis. Section C.2 introduces a general represen-
tation of conservation laws. In order to study its eigenstructure, it is then necessary
to obtain the Jacobian matrix A; (see Section C.3). In addition, characteristic
theory is of paramount importance in hyperbolic system of equations. Section C.4
briefly explains the diagonalisation and characteristic variable in a general Initial
Value Problem (IVP). Riemann problem, which is simply a given equation together
with a special initial data, is further explored in Section C.5.

C.2 Conservation-Law

Conservation-law is a system of partial differential equations, which can be written
as

ou o0F,
—8_{ + X 0, (C.l)
where
U f1
U
u=| ' 1|, Fw-= f 1. (C.2)
Um fm

Here, U is defined as a vector of conserved (or problem) variable and F; = F;(U)
describes the vector of conservative flux, in which each of the component f, is a
function of the components of U.

C.3 Quasi-Linear Equation

This section studies a system of first order partial differential equations in the form
of

ou = Ou
Tatﬁ-’r-;aaﬁ()(,t,uh...,um)-éjg = So(X, t, Uty .-+ Um), YVa=1,...,m.

(C.3)
The expression above is a system of m equations in m unknowns which depend upon
space X and time variable t. X and ¢ are independent variables whereas, u, denotes
dependent variable. Here, u, = us(X,t), Ou,/0t describes the partial derivative of
uq(X,t) with respect to ¢t and Ou,/0X indicates the partial derivative of u,(X,?)
upon space X.
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For the sake of compact representation, subscript is introduced to denote partial
derivative; for instance, (-), = 0(-)/0n. System (C.3) can also be written in a matrix
form

U+ A Ux =S, (C.4)
with
Uy a1 A1m 51
U a . @ s
u=\| 2|, a=" "0 s=| 7] (C.5)
Um Aml1 .- Omm Sm

By virtue of the equation above, it is worth mentioning that the system is linear
with constant coefficients if the components of matrix \A; and vector S are constant.
If anp = anp(X,t) and s, = so(X,t), the system is called linear with variable
coefficients. Expression (C.4) is also known as homogeneous equation if the source
term S vanishes.

In general, a PDE alone (without any initial and auxiliary boundary conditions)
will either have no solution, or have an infinity of solutions. For this reason, one
needs to specify the range of variation for independent variables X and ¢. X usually
lies in a subinterval of the real line, X € [Xj, X,|. This subinterval is called the
spatial domain of the PDEs. At boundary points of X; and X,, the boundary con-
ditions (BCs) have to be imposed. As to variation of time ¢, some initial conditions
(ICs) have to be specified at the initial time, which is typically chosen to be ¢, = 0.

C.3.1 Jacobian Matrix

The Jacobian matrix of a flux function F; in (C.1) is

Bfl/aul Bfl/aum
. 8]-‘1 . Bfg/aul 8f2/6um

A (U) (C.6)

Ofm/O0ur ... Ofm/OUm
The component a,g (of A; (U)) is defined by the partial derivative of component f,
of the vector F; with respect to the component ug of problem variable U; that is,
aop = O0fy/Oug.

First by noting that the conservation law, viz. (C.1) and (C.2), can be expressed
in a quasi-linear form (C.4) with the aid of chain rule such as

0F (U) OoF, U

9X  oU oX (G1)
By assuming that, for simplicity, the source term vanishes, (C.1) then becomes
U+ AU Ux =0. (C.8)

This is a special case of (C.4), widely regarded as a homogeneous equation.
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C.3.2 Eigenvalues

The eigenvalues U, of a matrix .A; are solutions of the characteristic polynomial
equation
det(A1 - UQI) = |A1 - UaII = 0, (Cg)

where I is the identity matrix. Physically, eigenvalues represent the information
propagation speeds.

C.3.3 Eigenvectors

The right eigenvector of a matrix A;, which corresponds to its eigenvalue counter-

part U,, is denoted by R, = (R&I), 7282), ey ,(,m))T that satisfies A; R, = Uy R,.
Similarly, the left eigenvector of a matrix A4; is a vector L1 = (59), £, ... ,[l((,m))

such that £X.A; = U,LT.

C.3.4 Orthogonality Condition

Making use of R, and L,, it is now possible to define a condition, namely orthog-
onality, which defines

T _ 1 lf Q= ,6,
Raols = { 0 Otherwise. (C.10)

C.4 Characteristic Theory: Constant Coefficient
Linear System of Equations

A set of m hyperbolic PDEs is generally expressed as

U, + Ay =0, (C.11)

where the coefficient matrix A, is constant. If A; has real eigenvalues U, and
linearly independent eigenvectors R, the system is simply hyperbolic. If these
eigenvalues are real and distinct, the system is called strictly hyperbolic.

C.4.1 Diagonalisation and Characteristic Variable

It is useful to introduce a variable transformation technique to transform the depen-
dent variable U(X,t) to a new set of variable W(X,t). The definition is described
as follows.

Diagonalisable System

The Jacobian matrix A; is said to be diagonalisable if it can be decomposed into
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A =RAR™ or A=RIAR, (C.12)

where the diagonal matrix A and R are denoted as

Ui ... 0
A=|: . |, R=[Ry...,Rul (C.13)
0 ... Un,

respectively. The column vector R, of R is the right eigenvector of \A; corresponds
to its real eigenvalue U,; that is, AR, = U, R,.

Characteristic Variable

The existence of the inverse matrix R makes it possible to define a new set of
dependent variable W = (wy, ws, ..., wn,)T such that

W=RU o U=RW, (C.14)

where new variable W is regarded as characteristic variable. Since A; and R are
constant, the linear system (C.11) can be decoupled as

W:+ AWx =0. (C.15>

This is known as canonical (or characteristic) form of (C.11). When written in full,
(C.15) yields

(] U; 0 wy
Wa + O . 0 Uziz =0. (C.16)
Wm /, 0 | U:m w.m X |
The o-th PDE is 9w, ow,
5t +U°‘W =0, a=1,...,m. (C.17)

The above system is clearly decoupled, each of which can be treated as a linear
advection equation.

C.4.2 Initial Value Problem (IVP)

The general solution of IVP (viz. (C.11)) can be achieved by first solving the
corresponding canonical system (C.15). In order to achieve this, it is worth noting
that the initial condition of characteristic variable can be obtained as

W=RWU, U=, )" (C.18)
By considering each unknown w,(X,t) of (C.17), its solution is simply stated as

We (X, t) = We(X — Uyt), Va=1,...,m. (C.19)
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Consequently, the solution of original variable U is followed by variable transforma-
tion technique in accordance with (C.14b); that is, U = RW.

C.5 Riemann Problem for a Linear System

The Riemann problem consists of a hyperbolic system of equations together with
a set of special initial conditions, each of which is defined by a piecewise constant
with a single jump discontinuity at X:

o { U ifx<o, (C.20)

UK =UX) =+ itx >0

The discontinuity (Ut — U~) propagates only along the characteristic curve and
therefore can be decomposed into the linear combination of the eigenvectors of A;:

U+—u_=n1R1+...+nmRm:W1+...+Wm. (021)

Note that 7, is a scalar multiple (or a-th wave strength) and W, describes a-th
wave. Thus, the solution of U(X,t) is denoted as

UX,t)=U + i H(X ~ Upyt) W, (C.22)

a=1

where H(£) is the Heaviside function

_J 0 ife <0,
H(é“)—{ 1 ife >0 (C.23)
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D.1 Wave Speeds: Linear Case

The standard linear isotropic elasticity tensor is typically represented by
C=XMI+puZ+7I), (D.1)

where 1 and A are Lamé constants. It is now convenient to perform indicial tensor
manipulation for the derivation that will be demonstrated below. Firstly by noting
that the indicial notation of the expression above is written as

Cirjg = Noirdjy + pudii0ry + udssdr;, (D.2)

where
I®I= 61'16]'_]; = 5ij6[J; T= 6¢J51j, (D3)

Cnn can then be easily defined:

[Cnn]y; = CirjaNINy (D.4a)
= )\NiNj + ,uéz-j + /JNiNj. (D4b)

Or simply,
Cvww=ANQ®ON+ul + uNQ N (D.5a)
=A+2u)NON +uTh @ T + pT> @ T, (D.5b)

with the aid of I = NQ N +T1 @ T1 + T, ® Ty. Here, {N, T, T} is a set of
orthonormal vectors. Recall first that the eigenstructure is of the form

Cnnps = poUZDE, (D.6)
substituting (D.5b) into the above expression leads to

(A +2p)

NeN+L2T o + LT 0 Ty| pf = UpE. (D.7)
Po Po Po

By simple inspection, it transpires that 3 pairs of linear wave speeds can be obtained:

Ui = 2Up; Usy = Usg = £Us, (D.8)

/( )\+2u \/: (D.9)

Note that U, and U; travel in the direction of N and {T}, T»}, respectively.

where
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D.2 Wave Speeds: Nonlinear Case

In order to solve the eigenvalue problem (D.6) for nonlinear case, recall first that the
first Piola-Kirchhoff stress tensor of the nearly incompressible Neo-Hookean material
model, P, is given by

P(F)=uJ ¥ |F — 1(F FYF T +k(J-1)JF T (D.10)
3

By taking in account that 8J/8F = JF~T, the nonlinear elasticity tensor can then
be computed:

_3P__2 -2/3 e -T -T
C=p=—gn {F sF:F)FT|@F
1 OFT 2
23| _ Z(F - _ZpT D.11
+pud [I 3(F:F)—0 —oF ®F] (D.11)

OF-T
oF =

+6JRJ-VD)FTQF T +kJ(J-1)

With the aid of H;z;; := 0F T /8F = —Fi}TF}"IT, equation above can be written as

P 2 2
c=2P _ % mperTy G/ R (F F)F T @ F T

T OF 3
+ uJ 3T — %NJ‘W(F c F)YH — ;uJ—2/3F—T QF
+6J2J-1)FTQF T +xJ(J-1)H.

(D.12)

Multiplying the above expression by N;N; and defining F~TN = m and FN = m*
yields

2 2
[Cyn]y; = CigiNINy = — guJ_Q/:’m* ®m+ §uJ_2/3(F FY)m®m

1 2
+ pJ 3T + guJ‘2/3(F :Fm®m — guJ_z/‘Q’m ®m*
+xkJ(2J—1)m®m —kJ(J—1)m Q@ m.

(D.13)
The matrix Cyy is rearranged and gives
Cyv =a(m@m)+ BI +y(m* @ m+m ®m*), (D.14)
where
a=kJ+ guJ”z/?’(F : F) (D.15a)
B=pJ 3 (D.15b)
v = —ZuJ_2/3. (D.15¢c)

3
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Assuming for simplicity that IN is a principal direction of the deformation (which
thus implies that FN = An = m* and F"TN =n/A = m), (D.14) can be further
reduced to

Cyn = (@ +27A*)Ym ® m + BI. (D.16)

This expression is comprised of three eigenvectors: m = Am and two arbitrary unit
vectors orthogonal to i (where A = 1/||F~TN||). The associated longitudinal and
shear wave speeds are

Uz\/ﬁ+(%+27)- U =,2 (D.17)
P Po ’ ® po’ '

respectively.
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E.1 Entropy and Second Law of Thermodynam-
ics: The Clausius-Duhem Inequality

The First Law of Thermodynamics governs the energy transfer within a thermo-
dynamic process, but it places no restriction on the direction of the process. For
this purpose, it is necessary to introduce a fundamental state variable, namely en-
tropy, which satisfies an inequality known as the Second Law of Thermodynamics
(responsible for the direction of energy transfer).

It is important to firstly note that the total production of entropy per unit time?,
E(t), is postulated to be a non-negative scalar-valued function and described as

£(t) = f%/vn(X,t) v —\[— /av (%) -NdA} > 0, (E.1)

s/

Vv ~
rate of change of entropy rate of entropy input

where 7 denotes the entropy, Q indicates the heat flux vector and IV is the material
outward unit normal vector. By virtue of (E.1), negative sign is required in the
entropy flux due to the fact that the heat flows from hot to cold and the heat source
term is neglected for simplicity. This expression is widely known as the Lagrangian
Clausius-Duhem inequality and its local counterpart becomes

on Q
) A=) >o. :
5+ Y (9)-0 (E.2)
Equation above can then be expanded to
on 1 1
L Iv.0—-—-0- > 0. .
5tV Q- 5Q- V620 (E.3)

By substituting the First Law (3.3) into (E.3) for V - Q, an alternative expression
concludes as belows:

1
6
The last term in the above equation (—(Q-V#)/6?) determines the entropy produc-
tion due to heat conduction. This term must be a non-negative scalar value function
which implies that the condition?

i+ 5 (P F—e) - 2Q Vo>0 (E.4)

Q- Vo<0 (E.5)

has to be satisfied.
A stronger form of the Clausius-Duhem inequality (often referred to as Clausius-
Planck inequality) is established as

D =00+ P: F—é>0, (E.6)

1Total production of entropy is determined by the difference between the rate of change of
entropy and the rate of entropy input.

2This condition is widely known as heat conduction inequality. For instance, @ = 0 is implied
if and only if there is no temperature gradient exists.
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where D;y,; describes the internal dissipation (or local production of entropy). With
the help of the Legendre transformation, that is

»(F,0) = e(F,n) —6n, (E.7)
equation (E.6) can be expressed as
Dy =P: F —4—nf > 0. (E.8)

Here, D;,; = 0 holds for all admissible thermoelastic processes. In an isothermal
process (thermal effects such as 1 and 0 are neglected), inequality (E.8) reduces to

Dy = P: F -4 >0. (E.9)

By considering the isothermal perfectly elastic material, the above inequality can be

degenerated to
Dn=P:F—-19=0 (E.10)

This expression shows that the rate of change of internal mechanical work per unit
of undeformed volume (P: F or equivalently known as stress power) equals to the
rate of Helmholtz free energy functional, that is

Y(F)=P: F. (E.11)

E.1.1 Thermo-mechanical Constitutive Equations

Many important stress analysis problems of engineering interest involve structures
that are subjected to both mechanical and thermal loadings. Most solids exhibit
a volumetric change with temperature variation, which in turn generally induce
stresses. In the case where temperature variation is sufficiently high, these stresses
can reach an ultimate level that lead to structural failure. More detailed information
can be found in [171].

It is worth mentioning that the constitutive equations for irreversible thermo-
dynamics are more complex than those of reversible elastodynamics. First it is
necessary to provide a material relationship between the heat flux vector Q and the

temperature 63
Q= —hVo, (E.12)

where h denotes the material thermal conductivity tensor. Inserting (E.12) into
(E.5) leads to (RV @) - V@ > 0. This clearly implies that h is a positive semidefinite
matrix!. The conductivity tensor of a thermally isotropic material can be further
simplified to h = hI, which yields

Q=-hV0, VYh>0 (E.13)

3This is generally known as Duhamel’s law of heat conduction.
4A positive semidefinite matrix is defined for which all its eigenvalues are non-negative.
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and is typically known as Fourier’s law.
For all admissible thermoelastic processes, the expression for Clausius-Planck
inequality degenerates to

Dp=P:F—¢p—nf=0
and it can be further rearranged as

OY(F,0) _, OF _ 3

By applying the chain rule, the time differentiation of Helmholtz free energy func-
tional, 1), is obtained as

6
=, (E.15)
o Ot

OP(F,60) _ 39(F,0)

(OF _ 0y(F,0)
ot OF

, ot 56

The physical expressions can then be deduced by comparing terms in (E.14) and
(E.15):
p_ oY(F,0)| _ _az,b(F,H)
oF |,/ 00
for any given F' and 6. From equation above, it is necessary to define the free energy
function ¢ (F, 8) which expressed in terms of deformation gradient and temperature.
Note first that the relationship between the internal energy and temperature
is usually denoted in terms of the specific heat coefficient at constant deformation
Cr (defined by the amount of energy required to produce a unit increase in the
temperature of a unit mass). In order to achieve this, the specific heat capacity,
poCF, is generally defined to be a positive function of the form

)
__3‘9—) > 0.

(E.16)

0
ooCrl(F,0) = —0-2- (

o (E.17)

Using (E.16b) and 0e/dn = 0, the above expression can be derived as

poCe(F,0) = 1215-0)
Oe(F,n)

==
Oe(F,6)

T

F
on(F,0)
» 00

(E.18)

F

F

By integrating (E.18c¢) with respect to temperature, it then leads to

Ae=e(F,0) —eo(F) = /9 poCr(F,0)do; eo( F) = e(F, by), (E.19)

6o
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where 6, denotes a reference temperature. Hence, the change in the internal energy
Ae can be determined. Analogously, the entropy change simply results from (E.18a)

as
6
A =n(F,0) - m(F) = [ 2D g (.20)

0
where no(F) = n(F, 6p) denotes the entropy at a reference temperature.
With the aid of (E.19) and (E.20), a general Helmholtz free energy functional
(note that the internal energy e(F',n) # e(F,0)) can be easily obtained as

Y(F,0) = o(F) — no(F)A0 + poCr (AQ — 0111?) ; Ad=6—-6, (E.21)
0
provided that Cr does not change with temperature and deformation gradient
(Cr = const). Here, ¢o(F) = ¢(F,6) and no(F) = n(F,6). The stress ten-
sor is thus conveniently evaluated as

ono(F) , _ OY(F,b)
oF A0 Po=—p5p—

where 19(F') couples the thermal and mechanical effects. Most solids experience
volumetric change under temperature variation by means of ny(F') depends only
on Jacobian J; that is, no(F') = no(J). Under this circumstance, the deviatoric
component of the First Piola-Kirchhoff stress tensor is computed directly from 1o (F)
whereas, the pressure becomes

P=P, - (E.22)

, , Ono(J
p(7,0) = pol) — (D)0 () = 20 (5:23)
where (F)
€ — €
Al = ——= =0 — 6. E.24
poCF ° ( )

A particular form of function 7y(J) is shown in the next section.

E.1.2 Mie-Gruneisen Model

The Mie-Gruneisen equation of state is derived as

r(J) = 9| ow(d,0)| 88(e)| _ T Op(J6)| _ Jm(J)
de |, o0 |, 0de |, pCr 80 |;  poCr’
where 90/0e = 1/poCr from which
e —eo(J)
0(J,e) = 6, + S\
(7€) = o poCF

Assuming that Mie-Gruneisen coefficient I' remains constant with respect to J (that
is, ' = T'(J)), the entropy at reference temperature can be integrated as

no(J) = poCrT In(J)
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and hence the total entropy for Mie-Gruneisen equation of state is

6J*"
n(J,8) = poCrIn <9—> .
0

It is now possible to derive an explicit expression for pressure p as

Crl
p(J,6) = po(J) — B=E= 0. (E.25)
The change in temperature emerges as
AG = %&i‘]), (E.26)

where eo(J) = 1o(J) + poCrI'6 In(J).

E.2 Artificial Viscosity

In problems which are highly nonlinear, it is essential to introduce an artificial
viscosity term which is aimed at eliminating the high frequencies in the solution.
The amount of viscosity required for stability is determined by the resolution of
the approximating space and therefore varies proportionally to the order of the
approximating polynomial.

The artificial viscosity is initially applied in the whole computational domain,
where no discontinuity sensor is implemented. A simple dissipative formulation can
be derived based on

o,=C,:d, (E.27)

where o, describes the viscous component of symmetric Cauchy stress tensor and
d represents the rate of deformation tensor. In addition, C, is a fourth-order con-
stitutive tensor, which can be expressed in its simplest form, defined by

Co=MIRTI + (T +I), (E.28)
where 9
TLirj; = 6i5017; TLirjs = 0i501;; Ay = Ky — 3 (E.29)

Here, x, denotes the volumetric viscosity and u, indicates the shear viscosity. By
substituting (E.28) into (E.27), the viscous stress can be obtained as

oy = Ao(trd) T + 2u,d, (E.30)

with the aid of symmetric fourth-order tensor, that is S = 1/2(Z+Z). This symmet-
ric tensor projects the rate of deformation tensor d onto its symmetric component:

S:d=z(d+d"). (E.31)

1
2
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In order to develop a viscous formulation such that the volumetric component is
decoupled from shear one, it is necessary to decouple the rate of deformation tensor
into the deviatoric distortional dg., and volumetric parts dq:

d= ddev + dvol
1 (E.32)

= ddev + 3(trd)I

Consequently, the viscous stress can be easily reduced to
Oy = Kyp(trd) I + 2p,d ey - (E.33)

This expression clearly depends on the spatial configuration due to the fact that the
rate of deformation tensor d is fundamentally defined as the symmetric part of the
velocity gradient I [6,7,38,115,125,126]; that is d = (I +17)/2.

To describe the viscous stress within the Total Lagrangian framework, it is vital
to re-express the rate of deformation tensor in terms of Lagrangian velocity gradient

as
1
d= S [(Vop)F~' + F~T(Vop)T], (E.34)
0
where V| denotes the gradient operator in undeformed configuration. Recall first
that the stresses are related by P, = Jo,F~T, the viscous component of the stress

tensor can be eventually found as

JKy ;oo _ Jly _ J oy _ 2J ey ;o
P, =" (FT:Vop) FT 4+ L pT(Vop)TF T + "2 (Vop)Ct — =2 (FT: Np) ]
Po Po Po 300
_Jbv 1 1, It -7 T o-T a2 T, T
= (FT:Vop) F T+ o FT(Vop)"F~' + (Vop)C 3(F : Vop) FT),
~ volu;etric ah sh‘erar ’
(E.35)

where C = FTF.

Viscous Parameters

It is now necessary to compute the viscous material parameters (i.e. , and u,) by
first recalling that the maximum time increment of the convective nature, At,, is
defined by

Atc = QCFL Zf:zn y (E36)

max

. describes the maximum wave speed
presents at time level n and acp; denotes the Courant-Friedrichs-Lewy number.
See Section 4.5.3 for detailed explanation. However, this convective time increment
needs to be modified by taking account of the artificial viscosity that described
above. For this reason, the new time increment can be defined as

where h,,;, is the minimum grid size, U"

K2,
At CFLAImin . = Ay (E.37)

bl

" 2wacrr + ULy hmin po
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where o describes a set of constant parameters. In the absence of viscosity, v, the
convective time increment (E.36) is simply recovered. Consequently, the viscous
material parameters are evaluated as

Ay = aAAL; ty = aut; Ky = Ay + %,U/v; (E.38)

where o = [0, 1].

E.2.1 Internal Energy Dissipation Rate

In isothermal irreversible process, the Clausius-Planck inequality (E.9) is repeated
here for convenience:
Dy =P: F —4)>0. (E.39)

Recall first that the perfectly elastic strain energy functional can be described as
¥ = P(F), its time derivative then leads to

OW(F)  OyY(F) OF
ot OF ot (E.40)
=P,: F,

where P, := 0¢(F)/0F denotes the elastic contribution of First Piola-Kirchhoff
stress tensor. Substituting 1 from above equation into (E.39) yields

Dp=(P-P):F>0
=P, F>0
=P,: Vogv >0
=Jo,FT: V>0
= J(Cy: d): (VeuF™1) >0
= J(d: C,: d) > 0.

(E.41)

Note the dissipation rate will be positive provided that the viscosity tensor C, is
positive semidefinite.



204 Appendix E. Laws of Thermodynamics and Viscous Formulation




Appendix F

Ghost or Dummy Cells

205



206 Appendix F. Ghost or Dummy Cells




F.1. Introductory Remarks 207

F.1 Introductory Remarks

The concept of dummy cells is very popular on structured grids [60,98]. First by
noting that the dummy cells are additional layers of virtual cells outside the bounded
domain and clearly, their geometrical arrangements depend upon topological meshes
inside the physical domain. For this purpose, it is necessary to develop a general
framework for assigning the appropriate values of conservative variables at ghost
cells.

F.2 Velocity and Traction Vectors

It is convenient to establish the linear momentum vector p* and traction vector t*
at dummy cells. With the aid of these ghost values, the special formulas derived
for boundary fluxes (discussed in Section 5.3) will be recovered. Three types of
boundary conditions are presented as follows:

1. Sticking Surface Case: By assuming pt = —p~ and t* =t~ leads to

e p¢ =0.
et’=t"-U;(n@n)p”~U;I-n®n)p.

2. Sliding Surface Case: The normal component of the linear momentum
vector and the tangential component of the traction vector should vanish at
contact point, which are mathematically defined by (n®mn)p™ = —(n®n)p~
and (I —n®n)tt = —(I —n®n)t~. In contrast, the tangential linear
momentum vector and normal traction vector are (I —n®n)pt =(I —n®
n)p~ and (n @ n)tT = (n ® n)t™, respectively. Above conditions imply

e p=I-n@n)p + I -nen)t?-t).
e t=men)t"+(I-n@n)t? -U (n®n)p~.
3. Free Surface Case: The conditions of linear momentum and traction vectors
at ghost cells are described as p* = p~ and ¢+ = 2¢t® — t~, which then yield
° pC =p + U—}(n (24 n)(tB —t7)+ UIT(I -ne® n)(tB —t7).
o t¢ =15,
Here, tZ describes the applied traction vector. Note that the linear momentum (p™)
and traction vector (¢© = P*TN) at ghost cells are introduced. However, a more

general discussion on assigning the deformation gradient (which in turn leads to
stresses) will be presented.
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F.3 Deformation Gradient Tensor

This section demonstrates a general framework for which the deformation gradi-
ent tensor F' can be assigned into dummy (or ghost) cells. For this purpose, two
conditions have to be fulfilled:

1. Fify=F_,.

2. The traction vector tt = P(F*+)N, which is already known and discussed in
Section F.2.

Here, + and — represent ghost and interior domains, respectively. The tangential
component of deformation gradient, F', ;, plays a crucial role in the development
below. In general, the deformation gradient F' is conveniently decomposed into the
combination of tangential and normal components:

F=F n+a®N, (F.1)

where a is an arbitrary spatial vector. Note that F', y denotes the tangential part
and a ® IN describes the normal component of deformation gradient. The above
expression can be written as

Fin=F(I-NQ®N) (F.2)

with the aid of @ = FIN. Since there is no jump in the direction orthogonal to IN
across the boundary face, F', 5 must remain the same

Fiy=Fy=Fin. (F.3)
Therefore, the deformation gradient at ghost cell is defined by
Ft=F n+a®N (F.4)

where a is yet to be specified.

In order to achieve this, it is necessary to establish a Newton-Raphson algorithm
(7] to linearise the traction relationship ¢t = P(F)nx + a ® N)N, which is clearly
a nonlinear equation in a. First by noting that the solution of a set of nonlinear
algebraic equations is considered

R(a) = 0; R:P(FJ_N+G®N)N—t+. (F.5)

This type of nonlinear behaviour equations is generally solved based on Newton-
Raphson iterative process. By giving an estimate solution a, at iteration k, a
new value ay,; is obtained through the increment Aa by establishing the linear
approximation

R(ak+1) = R(ax) + DR(ax)[Aa] =0; DR(ay)[Aa] = K(ax)Aa, (F.6)
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where the tangent stiffness matrix is described by

K(a) = B

- (F.7)

ag

Substituting (F.7) for the directional derivative into (F.6a) leads to a linear set of
equations for Aa to be solved at each iterative process as

dR
Aa=—|—
a [da a

-1
j| R(ak); a1 = ai + Aa. (FS)
The residual vector at iteration & is denoted by

R(ak) = P(FLN+ak®N)N—t+. (Fg)

Note that K = dR/da = Cyp! is detailed in Appendix D. The resulting Newton-
Raphson algorithm is summarised in Algorithm F.3.1.

(Algorithm F.3.1: ASSIGNING GHOST VALUES(F*, PT) A

(1). Given F~ and P~ of interior domain.

(2). Initialize @ = F~ N and set Aa = [1,0]T and tolerance.
(3). Find F|  from (F.2).

while (]|Aal| > tolerance)

((4).Find F*=F n+a® N.

(5).Solve P+ = P(F™). (Depends on constitutive model)
(6). Evaluate R = P*IN — t*. (See Section F.2 for t*)
(7). Find Cyn. (see Appendix D)
(8).Solve Aa = —[Cyn]'R.

L(9). Update a=a+ Aa.

return (F* P")

do [

- /
1The derivation for obtaining K = dR/da = Cyp is performed below:
dR; dF;
K, = = F.1

= o = dag Np (F.10a)
_dPy dFy,
= F,; dor (F.10Db)
_ d(a;Ns)
= C’LI]J dak NI (F.lOC)

= CirksNIN. (F.10d)
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G.1 Introductory Remarks

A variety of different classical time integration schemes have been proposed for
solving structural dynamic problems [69]. The general semi-discrete displacement-
based system of equations is given by [43,44]

~

Mg+ T(Uptr, Unt1) = F(Unia), (G.1)

where M denotes the mass matrix, T describes the internal force vector and F
indicates the external force vector!. To solve this algebraic system of equations, the
acceleration vector ,,1 has to be integrated in time for displacement field wy, 1.
The most widely used time integrator in structural dynamics is the method devel-
oped by Newmark (1959) [172]. A major drawback of this scheme is the tendency
for high frequency noise to persist in the solution. Some minor modifications have
been made in order to dissipate the high frequencies numerically for problems in-
volving short wavelength [18-21]. Rather than providing a general overview of a
large number of different approaches, detailed description of only Newmark method
will be presented.

G.2 Newmark Method

G.2.1 Methodology

Newmark developed a family of time-stepping methods based on the following equa-
tions [172]:

’l:l,n+1 = ’l'l,n + At [(1 - 'y)un + "Y'ij'n+1] (GZ&)

B (1= 2) ity +26ik0a]  (G2)

Upyl = Up + Atu, +

where At is the time increment. The parameters v and 3 determine the stability
and accuracy of the algorithm.? In general, the Newmark family of implicit methods
is unconditionally stable if v > 1/2 and 8 > (y + 1/2)?/4 whereas, these implicit
methods are conditionally stable provided that v > 1/2 and 8 < /2 with the
stability criterion wAt < Q.. Here, )y denotes the stability condition and w
describes the natural frequency. Typical selection for v = 1/2 and § = 1/4 yields
a second-order, implicit and unconditionally stable trapezoidal Newmark scheme.
Other Newmark family methods can be found in [69].

These two expressions (G.2a) and (G.2b), combining with second order dynamic
equation (G.1) at time step n + 1, provide the basis for computing wn1, @n41 and
Uy, at time n + 1 from the known u,, u, and i, at time n. In order to achieve

Do not confuse with deformation gradient tensor F'.
2Positive damping is introduced if v > 1/2, whereas negative damping for v < 1/2.
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this, first by noting that (G.2b) can be rewritten as

.. 1 1 . 1 ..
Up+1 = W(un.n - un) — (m> U, — (% - 1) Uy, (G3)

substitute the above expression into (G.2a) yields

ines = s =) = (3= 1) = [0 (1) [ (G0

With the aid of tn4; and @n41, the second order dynamic equation (G.1) gives

1

B(AD? T BAG

B(At)?

This nonlinear algebraic equations is solvable for u,,; by using the conventional
Newton-Raphson iterative method. With wu,,; at hand, the values for ,,; and
Un+1 are subsequently obtained (see (G.3) and (G.4)).

G.2.2 Alternative Implementation: Predictor-Corrector
Step
An alternative implementation for computing 4,41 is presented as follows [69]. By

defining predictors as

i ., (Ar)? " : . )
Upt1 = Up + Att, + 5 (1 —2B)y,; Upi1 = Un + (1 —y)Ati,, (G.6)

expressions (G.2a,b) can be consequently re-written as

~ 2 . . 7 .
U1 = Unyy + B(AL) Ugqq; Uny1 = Ungy + YALU, g (G.7)
N—— N——
corrector corrector

First by noting that the residual form is given by
Rn+1 = An+1 - Mﬁ'n—i—l - Tn+1- (G,8)

This expression can be approximated linearly by using Taylor series expansion about

the known solution %71 which then yields

. BR[|
R ~RF! 4 oa| Au=0, (G.9)
n+1

where k is the Newton-Raphson iterative process. By defining tangent stiffness

matrix as M = —0R/01, equation above can be rearranged as
~ k-1 N
Ad = [M—l] RiL M= M+9MC + B(AY°K. (G.10)
n+

Here, C is the damping matrix. For simplicity, Rayleigh damping (which is a linear
combination of stiffness and mass matrices) is used: C = €M + nK where £ and

. ~ 1 1 . 1
—Mun+1+T(un;un7un7 un+1)_F(un+l) = M l 2un + Unp + <_ - -
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n are the mass and stiffness constants, respectively. Consequently, a new updated
accelerating vector at iteration k is then obtained through the increment Au by

iy =arl + Adi. (G.11)

For k = 1 iteration, the predictor for uf;ll at time step n + 1 is estimated from the
converged solution at previous time step n; that is, ug +1 = Uy. Thisiterative process
continues until a certain convergence criterion is satisfied. Once the converged value

@k, is obtained, it is trivial to compute @,41 and w,y1 with the aid of (G.7).

In order to give an overview of the implementation described above, the com-
putational algorithm for standard finite element procedure in conjunction with a
family of Newmark time integration schemes is illustrated as follows:

SOLUTION ALGORITHM

e INPUT geometry, material properties and solution parameters.

e FIND mass matrix M (see BOX G.1).

A

e INITIALISE wuyg, g, itp, € = X (initial geometry), F =0, R = 0.
e LOOP over time

e SET F,i=0.
PREDICT solution variables: i, & (see (1.2)).
UPDATE geometry: x = X + u.
FIND T (see BOX G.3), K (see BOX G.4).
COMPUTE C = £éM +nK, M (viz. (G.10b)), R= F — M —T.
DO WHILE(||R||/||F|| > tolerance AND i < max. iter )
e SOLVE Aii = M~'R.
e UPDATE 4 =4+ Ad, i =1+ L.
e CORRECT solution variables: u, u (typically (G.7)).
e UPDATE geometry: € = X + u.
e FINDT, K, C, M, R.
e END DO
e OUTPUT increment results

e END LOOP
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G.2.3 Components Required
Elemental Mass Matrix

The elemental consistent mass matrix is given by [115]

MS© = ( /V ( )pONaN,, dV) I (G.12)

It clearly shows that the mass matrix does not change with time (since it depends
on material density po and elemental undeformed volume V(¢). This expression
does not have to be recomputed during the simulation. In many applications, it is
advantageous to use a diagonal (or lumped) mass matrix for computational cost.
Making use of the row-sum technique, the diagonal mass matrix is obtained by

- ([ o (25) )
b b

= ( / polN, dV) I
vie)

Note that the sum of the shape functions must equal to 1 [114].

(G.13)

BOX G.1: Elemental Mass Matrix M éz)

e Consistent Mass Matrix:
MS© = ( / poN. IV, dV) I
Ve

e Lumped Mass Matrix:

Constitutive Model

The boxes below summarise three different types of materials. These constitutive
equations are presented in an indicial form for simplicity.




G.2. Newmark Method

217

BOX G.2.1: 2D PLANE STRAIN COMPRESSIBLE
NEO-HOOKEAN

e Cauchy stress tensor:

7 A 1 A

e Spatially isotropic tensor:

C=NIRI+p(T+I);  Cjiu=N0i;ou+ 1 (it + 6abjx)

, _ p—AlnJ

A
N = j; u 7 ; bij = FirFj1

BOX G.2.2: 2D PLANE STRAIN NEARLY INCOMPRESSIBLE
NEO-HOOKEAN

J=—: u<e>=/ dv; V<e>=/ dv
Ve () Ve

p= kop(J — 1); Kop = A+ p
,U(e)
'€2D—V(e)

1
ol = w2 (bi; = 5Teby); Iy = tr(b) = b

=
Il

0ij = 03; + Py
o Nj_z
Cijil = 5 [T6(6ik0j1 + 0udji) — 2bi;0k — 20:5bx1 + Ipds0k1]

Cp.ijet = (0306 — Oikdj1 — 65djk)
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BOX G.2.3: 2D PLANE STRAIN HYPERELASTIC-PLASTIC IN
PRINCIPAL DIRECTIONS

L@
J= m; Kop = A+
In j _ Kop
P=kKep—5; R=——p Gp,ijki = D(0ij0k — Oikbji — 0ibjk)

3
2
bgizal = G)C ©F F* T (e) [bgiml] ij Z ()‘((f trml) TaiTaj

2
2@ —oum A~ ZunJ; J= detF((;iQ)

ao,trial a,trial 3

_ _ 3 ) _ _ _ _
f("t'r(fa)z, &) <0; f("[rgi)z»fp) \/2 (Tt'rs,z)l Tt'rii)z) — Ty, Ty = 7'19 + He,

Ttllg!e) - T(;E‘teznal; A7 = 0; Va = 0
IF f > 0 THEN

/ _

at(xegrml i A’)’ — f (Ttr(zz)ligp)

\/’ = /(e) 3u+ H
tmal
2uA
n(e) _ HATY ) 1,(e)

Tao = 1- e Taa,trial

( V2/3limal :
END

R 1

O'gz) = I(e —f—p(sw, I( ) = ZU,’(e 0(]7 ,(of) J aée)

zglcl Z CfﬁTmTa;TﬁkTﬁz Z2oaaTazTajTakTal

o,f= 1 a=1
)‘(e)na )2 -0 ()‘(e) ia, )2
+ z Taal (Be)t l2 ﬂi) a’t;  (TiTpi TorTpr + Toi T TorTeu)
o,8=1 /\a trzal) - (/\,B,trial)
a#fB
2uly 2 2u 2u/2/3Av
Cop = (1 ) (2/1,5(,5 — —,u) — 2uvavp ( —
V2RI 3 S [l

A0 = EXP(In A, — Ayrg); b9 = Z(A(e)) wi T
a=1
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Note that F(® and C, "(®) are described by

—1,(6)

(@)
. Foxy 0 p.(2x2) 0
F© = 0 C;1e = 0 , (G.14)
0 01 0 0 G54
where C =1/ detC-lz()f%)

Elemental Internal Nodal Forces

The calculation of the equivalent elemental internal nodal forces, Ta(e), depends
explicitly on the cauchy stress o (which is found from an appropriate constitutive
model). See [7] for futher details.

BOX G.3: EQUIVALENT ELEMENTAL NODAL FORCE T.°

T =

3 A
(e a]\/va,
Ta,i) = E /(e) Opij% dv
j=1v7

J

/ a'VmNa dv;
u(e)

Tangent Substiffness Matrix

The complete elemental tangent substiffness matrix is given by [7]

(
K(e) - K(e)ab + K(eab + Kne()zb) (G.15)
where ch » denotes the constitutive component of the tangent matrix, K o.ab €

scribes the 1n1t1a1 stress matrix and K ° (e) . Tepresents the dilatational tangent stiffness

component. K r.qp Vanishes if the standard finite element procedure is used.

BOX G.4: COMPLETE ELEMENT TANGENT MATRIX K

), =[], + [KE) + K9] vii-18
:Kzf;)ab: o /v(e) 5::1 g—ﬁjcﬁkﬂg—]x dv
rK‘(’CLb Gy /me) g: g];[: %%6“ d
Kf(ﬁeibj 5o Rv(e)%—%g—g where (37]% = % /v " g]:Z‘: dv
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H.1 Introductory Remarks

The evolution of deformation gradient, F', has to satisfy some compatibility condi-
tions (or the so-called involutions) in order to produce reliable solutions for long-term
analysis. A great variety of different techniques have been developed but require a
more in-depth study for future works.

H.2 New Governing Equations

This approach modifies the evolution equation (rate of deformation gradient) so that
the curl errors in the constraint is advected away. Such approach is used to correct
an existing error of the constraint.

The first order hyperbolic system of equations (see Chapter 2) is repeated for
the sake of convenience

%—f—vo-(vm):o, (H.1b)

where v = p/py. The Rankine-hugoniot jump conditions for the above expressions
are denoted by

Ulp]l=-[P]N, (H.2a)
UIF]=-—[p]® N, (H.2b)
Po

which in turn lead to six zero wave speeds. For instance, the jump of F' in the
direction of T, (such that T, - N = 0) is

U[F]T,=0;, VYa=1,2.

To correct this, it is essential to introduce an additional term into the fluxes of
OF /8t by first noting that Vo F"* should be symmetric, that is

VoF' = (VoF)';  Fj;=Fjp, (H.3)

where F" is the ith-row of deformation gradient tensor. To this end, a new evolu-
tionary equation for the deformation gradient (based on the assumption that curl
F* +£0) is expressed as

F
%_tzvo. v@I+FHRI-FQH|. (H.4)

additional term

Note that the additional term disappears if F' satisfies the compatibility constraint
(such as Vo x F' = 0). By virtue of (H.4), the jump relation becomes

1
U[[F]]=—E[[p]]®N—[[F]]H®N+(H-N)ﬂF]]. (H.5)
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Here, H denotes an arbitrary constant wave propagation directional vector and is
yet to be defined.

For this purpose, it is necessary to consider the jump of F' in the direction of IV,
[ F N, that has to be identical to (H.2b). This implies that the wave propagation
directional vector, H, is defined by

H=aUN; U-=,/% a=[1. (H.6)
Po
In contrast, the jump in [ F'] Ty is now convected with travelling speed (U = H-N),
that is
UlF|Ty=(H-N)[F|T,; Vo =1,2. (H.7)

H.2.1 Linearised Riemann Solver

The interface fluxes (i.e. t¢ and p®) at contact point have been derived using
exclusively the jump condition of linear momentum variable, that is

Ulp] = -[P]N, (H.8)

and therefore will not be affected (even with the new terms appeared in space-
time evolution of F'). However, the new additional term in the rate of deformation
gradient implies that the contact flux of F component, .'Ff,’ F» is no longer just
—p©/po ® N but will become

1
Fr= -p—pC ® N +Hy: FC, (H.9)
0

where
Hy:F¢=(H N)F°-F°HQ®N. (H.10)
Note that the additional term, Hy : FC, is linear in F.
The eigenstructure of Hy is

Hy:F=(H-N)F, F=a®T, (H.11)

for any arbitrary spatial vector a. T, denotes the vector orthogonal to N (T,-IN =0
where o = 1,2). It is worth noting that the wave speeds vanish if there is a jump
of F' in the direction of N. For instance, Hy : F =0 if FF = a ® N. The above
expression then leads to

—Hy:F if (H-N<O0) (H.12)

|%N|:F={

Making use of (H.12) and the linearised Riemann solver (as described in Chapter
2), that is

1 1
%NZFC=§HNZ(F—+F+)—-2-IHNI:(F+—F_), (H13)
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the additional contact flux can be derived as

Hy: F~ if (H-N >0)
c N
N = H.14
Hy: F {’HN:F+ if (H-N <0) (H.14)
The complete interface flux of F' component at contact point is denoted by

1

Fip=——P O N +Hy: F-
Po (H.15)

1
=_p_pC®N+(H-N)F‘—F‘H®N,
0

since H - N > 0 (see (H.6)).

H.3 Extended Approach for Curl-Preserving Up-
dated Scheme

The locally curl-preserving updated scheme discussed previously might lead to the
presence of non-physical 1ow-énergy modes. This can be explained by the nodal
collocation nature of the averaging algorithm employed. It is possible to remove
these unrealistic modes by defining a more refined approach for the computation of
the nodal velocity, v,, as

Vg = VoV, (H16)

where the magnitude and the direction of the velocity at node a are

A
o = N2 Arve] (H.17)
Zk Ay
and
Zl Ak’vk .
yo ) Topam] ¥ |55 Avoel| > tol , (H.18)
2 Otherwise
lvmazll
respectively. Here, ||[Umaz| = max||lvk||, tol denotes the tolerance and kth-edge

belongs to node a. Note that if ”Zk Akka > tol is satisfied, the area-weighted
averaging process will simply be recovered, that is

Ve = ;41— ZAkvk; Aa = ZAk (ng)
® k k

k€a k€a

In principle, the procedure described above eliminates the spurious modes of defor-
mation. However, none of the computational examples demonstrated in this thesis
has shown any evidence of spurious (or hourglassing) modes and the area-weighted
averaging process has been used throughout.
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H.4 Two-Dimensional Orthogonal Curl-Free Pro-
jection

Another alternative approach for eliminating curl errors in the context of finite ele-
ment method will also be introduced (see [173] for detailed explanations). The main
idea is to correct the nodal deformation gradient by making use of the orthogonal
derivative of the shape functions in an element-wise manner. First by noting that
the curl F can be expressed as

L Fn Fy [ %
Vo x F =FVy, F = ; Vo = 0% . (H.20)
Foy Fp X,
Discretise the above curl-free condition gives
Nne . . _8_1\71
Vox F=FV§=>» F'ViN,; VeN,=| 3% | (H.21)
azl ﬁ%

Note that V&N, denotes the orthogonal derivative of the shape functions (such as
V(J,'Na - VoN, = 0) and Nn, describes the total number of nodes that belong to the
element e.

It is now convenient to introduce a functional IT defined by

Nn Nn
A 1 S A N 2 A N
I(F% ) = 52 (F*—F%): (F*—F*) | +X- E;FavéNa ,  (H.22)
a=1 a=1
ace ace

where F® describes the corrected deformation gradient at node a and A denotes
the Lagrange multiplier vector. The stationary condition of the above functional
(H.22) with respect to A and F*® will be considered separately. Note firstly that the
derivative of IT with respect to A is

Nne
Y F°viN, | =0 (H.23)

a=1
a€e

om _
ox

This implies that the elemental curl-free condition will be achieved if and only if
the summation of all the corrected nodal deformation gradients multiply by their
corresponding orthogonal derivative shape functions vanishes. Additionally, the
derivative of (H.22) with respect to F'® is given as

aH Nne . Nne .
— =) (F*~F*)+Y AQ@VyN,=0. (H.24)
aFa azl azl
ace ace

Rearrange the above expression gives the corrected deformation gradient as

F'=F— AQV{N,. (H.25)
N ——

correction term
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Once A is determined, the corrected deformation gradient F? can be obtained by
substituting A into (H.25). For this reason, it is essential to insert (H.25) into (H.23)
for F'* which then yields

Nne Nne
> F°ViN,— A (VgN,- ViN,) =0. (H.26)
Gee fee

Consequently, A is derived as follows:

Yol FeV§N,
A= age —. H.27
Zévznf V(J)'Na ° V(J)_Na ( )

ace

This ensures that the orthogonal projection onto curl-free space is obtained in an
element-wise manner.

H.5 Curl Viscous Flux

To prevent spurious modes for long time integration, it is essential to introduce a
diffusive term into the evolution of deformation gradient as [118]

%Itj — Vo . (pip ® I> + CYm'chO X (VO X F) = 0) (H28)
0 N /)

—_—
diffusive term

where ;5. € [0,1]. With the aid of vector calculus identity, the diffusive term can
be expanded to

Substituting the above expression into (H.28) yields

oF 1
—8—t—V0' p—p®I+am-sc(V0F—(V0'F)®I) =0. (H30)
0

This approach has been implemented in two-step Taylor Galerkin framework with
only partially successful [64].
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I.1 Two Step Taylor-Galerkin Method

I.1.1 Computational Methodology

In this section, a two-step predictor-corrector scheme (or Runge-Kutta type) is in-
troduced [64]. Such procedure avoids the evaluation of the flux Jacobian matrix,
Ay, that appears in one-step Taylor-Galerkin approach [83]. First, it is necessary
to predict the unknown variables, I, at half time step t**/2 with the aid of Taylor
series expansion, that is

u oF U __OF

For simplicity, the source term & is neglected. We shall then discretise the kinematics

Ut =yt + At

in the above expression as

un+1/2 = U lAt & j:b,n 8Nb . \/ I
a - a_—2' Z 15}3: ace (2)
bze

or in complete form

N, -
1, <. 0N,
pi /2 = pl 4 At > P —ﬁb (1.3a)
bee
N ~
i oN,
FM2 — Froy %At Y v a—X” (1.3b)
bee
Nn A
< AN,
Em?2 = gry At Z[PT o} a_Xb (1.3c)
bee

where Fo™ = F(U}) and N,, denotes the total number of local nodes belongs to
element e. This implies that the evolution step is entirely contained in element e,
as the elemental increment is evaluated locally.

Unfortunately, the predicted deformation gradient obtained above (see equation
(I.3b)), develops some non-physical low-energy modes in the solution [59]. To al-
leviate this, Izian et al. [64] introduced a stiffness stabilisation with the aim at
eliminating these spurious modes, which can be written as

. ON, n At
FrHi? o (1—g)FM21g e 22| wb+1/2 zy+—-vy, (14)

b=1 2

stiffness stabilisation

where @ € [0,1]. By virtue of (I.4), the added stabilising term is introduced locally
using the standard finite element discretisation for F™*1/2 = Vox™*+1/2, The choice
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of & parameter allows removing of instabilities observed in bending-dominated situ-
ations [59]. Here, @ = 0 leads to the Taylor-Galerkin predictor step, whereas & = 1
recovers the standard finite element formulation for F™*'/2 which clearly exhibits
overly stiff behaviour [7]. The expression above can also be alternatively represented
as

0X

7

N .
ne At N
F£+1/2 =(1-a)F"+ E <dw§ + 71}{,‘) ® ?_b i (1.5)
bze

s
elemental contribution

In addition, the deformation gradient F;, has to be corrected by using curl-free
projection in order to satisfy the compatibility constraint:

N FrAVEN,
Frtb — prtb _ \ntB o Wi - A — ace B=0,1/2.
‘ ’ o S Vi o A /
ace

(1.6)
See Section H.4 for detailed development of this particular approach.
It is now convenient to evolve the unknown variable to full time step t*™! (or
corrector-step) by employing conventional Taylor expansion as
aun+1/2 Bfn+1/2
U At——— =U" - At — L7
where F}lﬂ/ ? = F(U"V?). Multiplying the above expression with shape function
N, and integrate over the elemental volume V,, with the aid of integration by parts,

gives
Nne Nne
ZM un+1 ZM ub 4 AtR"+1/2 Va € e, (1.8)
bze b€e
where
MC _ ( N N dV) I: l%n+l/2 . aNaj__n+1/2 av N j:'n+1/2 A
ab — aliVd 3 a = —F; _ N ’
Ve v, 0Xr oV,
(1.9)
and
ﬁ';f,ﬂ/z _ j:'n+1/2NI, g:n+1/2 _ f‘I(un+1/2); a — (p, ﬁ" E)T. (1_10)

Here, MS denotes the consistent mass matrix and the interface flux Fy will be
computed based upon nonlinear Riemann solver (see Chapter 5). For computational
efficiency, this matrix will be replaced by lumped mass matrix, that is

N,
/ 2 Y Npdv | I= (/ NadV) I, (1.11)
‘ bge ‘ '

with the aid of S o Ny = 1.

bee
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1.1.2 Solution Procedure

The solution procedure for two-step Taylor Galerkin method satisfying involution is
illustrated as follows [173]:

SOLUTION ALGORITHM
e GIVEN U” = (p?, F", EnYT.

e FIND lumped mass matrix ML (or consistent mass matrix M3); see
(I.11b)(or (1.9a)).

e EVALUATE fluxes F7™ = F(U2).
e LOOP over time

e UPDATE time increment At (see (E.2)).

OO0 PREDICTOR STEP: ELEMENT-BASED

e CORRECT F} by using elemental curl-free projection, 13‘;‘ (see
(L6)).

e PREDICT element nodal unknown variables U"+Y/2 (use (1.2)).

o INTRODUCE stiffness stabilisation for Fy+*/? (viz. (1.4)).

e CORRECT FJ+1/? by using elemental curl-free projection, Fi’ 172
(see (1.6)).

o INTERPOLATE corrected local unknown variables Z:lZH/2 at Gauss
~n+1/2
).
~n+1/2

point g (that is, U,
e COMPUTE fluxes at Gauss point, .’Fi’"H/Q =FU, ).
e FIND viscous first Piola-Kirchhoff stress tensor P, at Gauss point if

necessary (see (E.35)).
0 CORRECTOR STEP: NODE-BASED

e EVALUATE the residual vector Rr"/? (viz. (1.9b)), which consists
of the volumental contribution T0""*/? and boundary term BZ™/? at

Gauss point (that is, RpTY? = T2 4+ BRtY/2y,

e UPDATE global unknown nodal variables
UMt = (prtt, Ertl EMNT using (1.8).

e APPLY strong boundary conditions on p?*! and F**!, except for
the case where F*™! at free surface boundary (see Section 1.3).

e COMPUTE fluxes at node a, F3"*' = F (U™M?).

e APPLY strong boundary conditions on the first Piola-Kirchhoff
stress tensor P! at free boundary case (see Section 1.3).
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e UPDATE nodal velocity v™*! and mesh coordinates 71!

e QUTPUT increment results.

e END time loop

I.2 Curl-Free Cell Centred Upwind Finite Vol-
ume Scheme

1.2.1 Solution Procedure

The solution procedure for cell centred finite volume methodology is presented as
belows:

SOLUTION ALGORITHM (Global node a, Centroid of element e)

e GIVEN U? = (p?, F', EM)T.
e EVALUATE PP = P(F?) (depends on constitutive model).

e LOOP over time

e UPDATE time increment At (see (4.22)).

1

e EVOLVE centroid coordinates a:ZJr" =zp + %Atv;‘, where n
describes the Runge-Kutta stages (viz. (6.6b) and (6.8b)).
e LOOP over Runge-Kutta stages

e EXTRAPOLATE averaged component value U, € {p., Fe, P}
to contact point k; that is, U, where {e,a} € k (See Section
4.4).

e COMPUTE nonlinear flux, [F$]x, at contact point k by using
Lagrangian contact algorithm (as discussed in Chapter 5).

e CORRECT the contact traction vector at point k, [t¢], for
preserving the total angular momentum of a system (see Section
6.3).

e FIND nodal velocity v, by making use of the area-weighted
averaging technique. Boundary nodal velocities are then
corrected via linear extrapolation from interior known values
(see Chapter 7).

e APPLY strong boundary conditions on nodal velocity vy,.
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e COMPUTE averaged velocity v, by linearly interpolating nodal
velocities, v,, at centroid of the element. This will be used for
updating the centroid coordinates ..

e UPDATE centroid, x., and nodal coordinates x,, and also the
unknown variables U, (see (4.21)).

e EVALUATE P" = P(F?) (depends on constitutive model).
e END Runge-Kutta loop
e OUTPUT increment results.

e END time loop

1.3 2D Strong Boundary Conditions: Node-based

Variables (i.e. linear momentum, deformation gradient and first Piola-Kirchhoff
stress) have to be corrected at every time step to ensure that they satisfy the correct
physical behaviour at the boundary. This correction is of paramount importance
and will lead to spurious-free solutions [173]. As discussed previously, three types
of boundary conditions are considered:

I.3.1 Sticking Surface Case
The nodal linear momentum vanishes due to no-slip condition [26], which yields
Do =0, =0, (112)

(see Figure 5.3). The tangential material line vector, T, does not allow for rotation
and stretching. This gives the nodal deformation gradient, Fj, to be corrected as

F,+— F,—-(N-FT)NT+(1-T-F,T)T®T, (L13)

rotation stretching

where T is perpendicular to IN such that T'- N = 0. No modification is made to
the first Piola-Kirchhoff stress due to the fact that P, = P(F,).

I1.3.2 Sliding Surface Case

For sliding surface case (see Figure 5.4), it is essential to observe that the velocity
only slips over the tangent plane. Mathematically, this condition reveals that

P — (I — N ® N)p,. (I.14)
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Here, (I — N ® N) projects the nodal linear momentum, p,, onto the plane or-
thogonal to IN; that is, (I — N @ N) = (T ® T'). This boundary case restricts the
rotation of material line vector, T, and gives

F,« F,— (N-F,T)N®T. (1.15)

Consequently, the first Piola-Kirchhoff stress tensor can be computed by using an
appropriate constitutive relationship, P, = P(F,).

1.3.3 Free Surface Case

In this case, no correction is made to the linear momentum vector (see Figure 5.5).
However, the first Piola-Kirchhoff stress tensor has to be corrected such that the
traction vector at the boundary node is in equilibrium with the applied traction
vector t5:

P+ P+t -t -PN)t®N+(t —n-P,N)n®N, (1.16)

where tZ = t2 . n and t2 = tP - t. Note that (¢ - n) vanishes due to the fact that
their directions are perpendicular to each other; that is, n L ¢. For simplicity, the
correction on the nodal deformation gradient, F,, is not being carried out (since it
requires the Newton-Raphson iterative process) due to computational inefficiency
(see Appendix F).
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J.1 Gradient of a Shape Function

This appendix will derive the gradient of a shape function at centroid of cell e from
neighbouring node a, VoN¢ where e € a and Vy = 0/0X. For this purpose, it is
convenient to introduce the shape function stated in parent coordinates & as [7]

-7
voli(x) = (G5 ) Vemier  ece (1)

where V¢ = §/0¢.} The derivative of material coordinates with respect to parent
coordinates (also known as Jacobian matrix) is typically expressed by

0X X .

a—£=ZXa®V€N:, (JZ)
a=1
ace

where Nn, denotes the total number of nodes that belong to a given cell e.
n n
A 4

4(=11) ! 3(LD)

3(L,1)

Lo

1(-1,-1) 2(1,-1) 1(0,0) 2(1,0)
(a) (b)

Figure J.1: Two dimensional isoparametric linear shape functions: (a) Quadrilateral
mesh; and (b) Triangular mesh.

J.1.1 Quadrilateral Mesh

The shape function in parametric coordinates is written as

~ 1
Na = Z(l‘i‘éaé)(l—i_nan)a (J3)
and its derivatives are
R 1 A 1
VENa, = Zga(l + 77a77); vnNa = Zna(l + ga.g), (J4)

1Shape functions in parent coordinates are clearly discussed in [38,82,107,145,174].
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Va = 1,2,3,4 (see Figure J.1a). Note that the gradient of the shape function is
computed at the centroid of cell e, that is the origin of the parametric coordinates
(¢ = 0,n = 0), which can be concluded as

SNE ~1/(2Ax) . ONW 1/(2A$) .
Vol = ( Tioay ) VR =( Hiay ) 09
o /(202) 1/(2A2)
TSW_ 1 T . ~ _ — T
Vollu = ( 1/(209) ) V"N“SE‘( 1/(20y) ) (1-6)

J.1.2 Triangular Mesh

It is well known that shape functions of linear triangle are defined by (see Figure
J.1b)
Ny =1-¢, Ny=¢€&—m, N3 =1. (J.7)

Their derivatives can be easily obtained as

. ~1 - 1 A 0
V£N1=(O>, V5N2=<_1), V§N3=(1>. (J.8)

As usual, it is now necessary to evaluate the transformation (or Jacobian) matrix,
0X /0, in preparation for the development of the material gradient of an interpo-
lating function. To this end, V(N{ are summarised as follows:

VONNWZ( 1/Az ) VONNN=< 0 ) VONNEz(_l/Ax>.

—1/Ay -1/Ay 0
(J.9)
and
cow [ 1/Dz GSS 0 , csg [ —1/Az
VoIS _< o )i VeRE=( 1, )i V= (A )
(J.10)

Graphical representation is depicted in Figure 7.2b.
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