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SUMMARY

The primary objective was to introduce novel or develop existing techniques for the 
identification of new biomarkers within a range of biological matrices by modem 
mass spectrometric methods. Samples interrogated were hemodialysis concentrate, 
whole tissue sections and whole blood, with each having inherent challenges for use 
with mass spectrometry. Hence, published research has focused on other biological 
matrices or modes of detection for achieving the relevant aim. This current work 
overcame these issues by improving sample preparation including, the use of existing 
protocols for completely novel applications.

Haemodialysate solution has proved most fruitful for identifying new 
candidate biomarkers. We have reproducibly detected 15 known and 6 novel uremic 

! solutes within hemodialysate, a biological matrix previously deemed unsuitable for
liquid chromatography/electrospray ionisation-mass spectrometry (LC/ESI-MS). This 

S work included a validation o f the novel methodology with stability and reproducibility
investigations to test robustness. This highlighted a previously unrecorded thermally 
labile nature of some uremic solutes within the dialysate solution. A putative 

I structural assignment has been made for 4 novel uremic solutes named, 5-(amino-l,2,-
| dihydroxy-ethyl)-3-nitrosooxy-[ 1,2,4]trioxine-3,6-diol, 2-(5,6-diamino-6-diazenyl-

cyclohex-l-enyl)-2-hydroxy-acetimidic acid, A-[2-(7-hydroxy-3-methyl-ocatahydro- 
imidazo[l,5-a]pyridine-6-yl)-2-oxo-acetyl]-guanidine, and 3-(6-hydroxy-cyclohexa- 

; l,3-dienyl)-2-imino-3-oxopropionaldehyde. We have also identified that the chemical
nature o f solutes will dictate their removal during dialysis treatment and highly polar 

i conventional biomarkers, urea and creatinine, are not representative o f non-polar
analyte excretion. This allows us to knowledgably suggest recommendations to 

I improve future treatment modalities.
' The mass spectrometric analysis o f whole tissue sections, in particular those
I that are paraffin embedded, pose a new range of challenges. Current MALDI
! matrices are unable to penetrate deep within tissue limiting their use to the tissue

surface only. We have evaluated a range of novel dansylated MALDI matrices for 
| this purpose that is detectable by fluorescence spectroscopy to aid in locating the
j matrix compound following application. Each dansylated MALDI matrix showed
I better penetration into the tissue sections, yet maintaining fluorescence detection,

when compared to standard matrices CHCA, sinapinic acid and DHB. O f these novel 
matrices dansylhydrazine proved most successful in ionising proteins and peptides by 
forming a protonated molecule and related adducts. These additional mass shifted 
peaks, when included in a tryptic peptide database search, can improve the probability 
o f the original protein/peptide identification. We now have the potential to obtain a 
total image of frozen tissue by using CHCA and dansylhydrazine in combination to 
ionise proteins/peptides at the surface or at depth, respectively. Further work is 
required for the preparation protocols with paraffin embedded sections for this total 
imaging principle to be applied.

Finally we have illustrated the advantages o f discovering novel haemoglobin 
| variants in blood with a new ion mobility time-of-flight mass spectrometer, the Synapt

HDMS system (Waters, MA, USA). We have identified a new variant that co-elutes 
with glycated haemoglobin peaks present in chromatograms used for conventional 
blood screening. Ion mobility technology and data extraction enhances the clarity o f 
the results regarding multiple charging and variant characteristics. This enabled the 
exact determination of the amino acid substitution or mutation for the variant, with its 
assignment to a haemoglobin chain and the specific location within the chain.
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L^napier 1 . naem oaiaiysis ana momarKer mvesnganons.

CHAPTER 1:
i

| Introduction to Haemodialvsis and Biomarker Investigations

The current obesity epidemic throughout the western world has resulted in a 

considerable increase in the condition of Type II diabetes mellitus. Recently, the 

World Health Organisation (WHO) has predicted that global prevalence of Type II 

will rise from 175 million patients in 2003 to over 350 million by 2030. One of the 

major consequences of this disorder is renal failure in the form of chronic kidney 

disease (CKD), which eventually progresses to end-stage renal disease (ESRD). The 

global population with ESRD has already surpassed one million and is expected, in 

the United States alone, to have an incidence rate of over 400,000 a year by 2030^1]. 

The clinical condition resulting from renal failure is known as ‘Uremia’ or the 

‘Uremic Syndrome’, and literally translates to ‘urine in the blood’[2]. It is 

characterised by a toxic state that is attributed to the retention and accumulation of 

solutes usually excreted by the healthy kidney and their affect on the normal 

biochemical pathways. Once diagnosed with renal insufficiency or uremia the patient 

has two options for survival, a continuous treatment o f dialysis, or a kidney 

replacement from a suitable donor. However, most patients are treated using dialysis
i)
i since there is currently a shortage of donor kidneys. The WHO predicts that there will 

be an increase in the requirement of dialysis treatment with which the economic 

impact will be staggering. In 2001 the United States spent over $22.83 billion on their 

ESRD program which only included immediate health care costs and excluded any 

long term expenditure^. This impending burden on the international economy has 

created a global interest in improving existing renal treatments, and to identify the 

underlying physiological mechanism specific to the type o f renal disease.
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| Dialysis is the artificial process by which bodily fluids, such as blood, are
!

filtered to remove toxic waste and excess volumes of water. A major disadvantage of
ik
j dialysis is that it is always unsuccessful in curing the patient of their renal dysfunction 

as it is not capable of reproducing normal renal function in its entirety. The 

glomerulus of a conventional healthy kidney is capable o f clearing solutes of up to 

approximately 58,000Da in molecular weight, while solutes o f a higher mass are 

metabolized by the tubular system of the kidney by secretory and reabsorptive 

processes^. At present neither forms of dialysis can accomplish this complete kidney 

function and hence, treatment of patients with compromised renal function, based 

solely on dialysis, will eventually result in a reduced life expectancy. Dialysis can be 

sectioned into two techniques, haemodialysis (HD), and peritoneal dialysis (PD). The 

primary characteristic that differentiates between these two forms of dialysis is that 

HD utilises an externally situated membrane for filtration, whilst PD uses an existing 

membrane present within the body.

1.1 Haemodialvsis

Haemodialysis involves the passage of the patient’s blood through a dialysis machine
i

in which it is filtered to remove any toxins or excess water. The ‘clean’ dialysed 

blood is then returned to the patient via the machine. The dialysis machine therefore, 

has three main functions:

1. to pump blood and monitor blood flow,

2. to remove toxic substances and waste from the blood, and

3. to monitor blood pressure and rate of fluid clearance via the body.

The actual haemodialysis unit or ‘dialyzer’ is a large rectangular apparatus that 

contains thousands of small fibres of dialysis membrane. Conventional membranes
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are cellulose based with a molecular weight cut-off point significantly lower than the 

capability of a healthy kidney. The development of high-flux membranes do offer a 

higher cut-off range but are only available at considerable cost. Both the dialysis fluid 

and the blood (via the patient) are directed into these fibres by separate inlets and 

filtration occurs. The waste fluid is then removed from the dialyzer and the freshly 

filtered blood passes back into the patient[4l  As with Peritoneal dialysis, the dialysis 

solution must be selected according to the patient’s requirements and can be altered 

depending on their state.

BLOOD INLET

DIALYSATE
SOLUTION
OUTLET

DIALYSATE
UNIT

DIALYSIS
MEMBRANE
FIBERS

> -  DIALYSATE 
SOLUTION 
INLET

BLOOD OUTLET

Figure 1.1: Schematic o f  the internal structure o f  a haemodialysis unit showing the 

extensive network o f  membrane fibers ensuring the ultrafiltration process.
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1.2 Peritoneal Dialysis (PD)

This involves the use of the semi-permeable Peritoneal membrane to filter waste 

products and excess volumes of fluid via the blood. For example, a PD catheter is 

inserted into the abdomen of the patient through which dialysis fluid can flow into the 

peritoneal cavity. A small length of this tube is exposed out of the abdominal wall to 

which bags o f dialysis fluid are attached. To optimise the PD technique for patient 

requirements, the constituents o f the initial dialysis fluid can be altered. For example, 

a ‘strong’ PD fluid will contain high levels of glucose and can thus, remove more 

water from the blood than a ‘weaker’ fluid[4l  PD initially appears advantageous as it
|

is a mobile technique with the apparatus carried by the patient. However, patients that
Ij
I have experienced major abdominal surgery may have some scarring of the peritoneal
I
|
I membrane, and can render it ineffective for dialysis. Other disadvantages include a
I

lesser capability to filter toxins than a healthy kidney, and considerable pressure and 

responsibility on the patient to ensure treatment is successful.

1.3 Haemodialvsis Biomarkers

The contents o f the dialysate solution (after dialysis) should be relatively similar 

regardless of which technique is used. According to Vanholder and Ringoir[5] the 

solution is expected to contain a wide range o f solutes that may or may not have 

potential toxicity. These dialysate substrates can be segregated according to size and 

if  they are protein bound or non-protein bound. During the period of 1968 to 2002 

; publications have unveiled over 90 possible toxins associated with renal insufficiency, 

o f which 68 are considered as low molecular weight toxins (<500Da), 12 have a 

molecular weight greater than 12,000Da, and 10 are middle molecular weight toxins
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of between 500 and 12,000Da. Approximately a quarter o f these are protein-bound 

and most of these particular toxins are low molecular weight solutes. Many of these 

solutes (shown in Appendix 1) may contribute to the elevated level of toxicity 

| associated with uremia, and a significant number of these and their potential toxicities

' have been investigated.
|

One major function of identifying a toxin that is consistently elevated during 

renal dysfunction is that it be used as an indicator of the effectiveness of the dialysis 

process. It is important to distinguish between what is characterised as uremic toxins 

and biomarkers. Essentially a biomarker is indicative o f the result o f the toxic effect 

and may not necessarily be a toxin. This study noted that there were several 

insufficiencies with dialysis, one of which was that the main molecular biomarker 

used to measure the efficiency of dialysis, urea (in addition to creatinine on 

occasions), was realised to be unsuitable. The authors therefore provided a list o f all 

known dialysate solutes (shown in Appendix 1) with potential toxicity and a 

comprehensive evaluation of a number o f possible replacements for urea. Biomarkers 

have been succinctly described as ‘a biologic characteristic that is measured and 

evaluated objectively as an indicator o f  normal biologic processes, pathogenic 

processes, or pharmacologic response to therapeutic intervention[6l ' The most 

successful biomarkers can achieve highly accurate results by performing a relatively 

non-invasive sampling and simple analysis procedures. The ‘ideal’ biomarker for
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assessing dialysis adequacy should therefore have the following characteristics^:

1. It should be retained in renal failure.

2. It should be eliminated by dialysis.

3. Have a proven toxicity.

4. Its generation and elimination should be representative for other (preferably toxic) 

solutes.

5. The concentration of the solute should be related to the clinical outcome.

6. It should be easily determined.

1.4. Stages of Biomarker Development

Throughout the process of biomarker development it is necessary that both the assay 

performance and diagnostic efficacy are validated, and should involve the following 

stages[6]:

1.4.1. Understanding the origin and process o f the disease

If  correct and reliable this information can save significant resources and time since it 

limits the probability of any mis-interpretation o f results. Related diseases can offer a 

great source o f additional information as they may share similar physiological 

pathways that can indicate a possible mechanism of the disease.

| 1.4.2. Biomarker brief: what information does it offer?
|
! It is vital that the significance and limitations of the data gained from measuring such 

a biomarker are understood as it may be used to represent several different facets o f 

clinical medicine. For example, biomarkers can aid in the characterisation o f initial
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1 detection or progression of the disease, and its severity after diagnosis before or after
[
i

\ the application of relevant treatment.

1.4.3. Biological matrices used for sampling

A  successful biomarker assay should, if possible, involve a relatively non-invasive 

sampling procedure. Common sampling matrices are urine, plasma, serum and blood, 

although the analysis of the latter three is susceptible to interferences due to the 

presence o f albumin. Since conventional haemodialysis membranes have a molecular 

weight cut-off point of approximately 10,000 Da, it is unlikely that it will be 

contaminated with albumin, making hemodialysate an advantageous sample to use. 

Generally the selection o f matrix type will be a compromise between ease of sample 

collection and analysis, clinical significance, and stability versus specificity to renal 

ailments.

1.4.4. Strategies for determining the target biomarker

This stage can be affected by several factors including, the type of disease to be 

monitored and its subclasses, the sample matrix, and the functions of the biomarker.

I The choice o f sample matrix in particular is vital to the success o f the eventual assay.
I
I It must be evaluated whether it is more beneficial for the performance o f the assay to 

screen a sample o f diseased tissue that is more likely to yield potential biomarkers, or 

to use a biological fluid that can be sampled more easily. A major disadvantage of 

using tissue samples is that some systematic responses to the disease may be missed, 

later resulting in an artificial negative result^7-1. Secondly, the origin o f these samples 

must be decided. Animal samples are generally easy to obtain while human samples 

offer greater accuracy o f the final outcome as they are more representative of the
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I

| required result. Consideration should also be given as to which type of samples
|
| should be used in the analysis comparison. For example, are the circumstances of the 

investigation suited to the comparison of several different groups o f samples or is it 

more appropriate to compare an individual diseased sample versus a normal ‘healthy’ 

sample. The latter tends to be the most common approach and can be very successful 

i f  the assay is to determine the presence or absence o f disease.

1.4.5. The patient population and sample groups

It is essential that the samples collected are obtained from meticulously considered 

sources so sample integrity and validity remains at a high standard. The selection of 

the sample population should involve phenotypic investigations o f each patient with 

specific notes made regarding patient age, sex, race and current prescribed medicines.

1.4.6. The analytical methodology

There are many analytical techniques suitable for both qualitative and quantitative 

studies o f biological matrices. The eventual technique should be chosen with 

consideration given to factors such as the type o f sample and any associated 

interferences, the number o f samples expected to be analysed, and the object o f the 

| investigation. Further information regarding this topic will be discussed later in this 

chapter.
■
I

1.4.7. Requirement and feasibility studies for biomarker screening

Prior to the commencement of the analysis a review must be completed to assess if the 

biomarker is still necessary and if the development plan is still feasible. In addition to 

these issues a statistical analysis should be performed to calculate the number of
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i . . . . .
| patients required for the study validation and the clinical trial, in order to provide 

sufficient clinical information to derive meaningful conclusions.

1.4.8. Qualitative investigations to identify candidate biomarkers

Following the initial screening experiments an ideal result would include a minimum 

of 50 candidate biomarkers, which must then be ordered according to their potential 

and importance. This would generally involve a ‘rational design approach,’ using the 

clinical characteristics of the investigated disease as a major factor in prioritising the 

candidate biomarker. An evaluation can then be performed to confirm the suitability 

o f the possible biomarker and its sampling matrix.

1.4.9. Development of clinical assay for initial diagnosis

The previously designed clinical assay must be optimised so that it is robust and can 

function with high reproducibility within different laboratories. Standard operating 

procedures (SOPs) must be devised and adhered to ensure the high standard of 

reproducible results that are rigorously evaluated by a set o f quality control 

procedures. In addition to method optimisation, parameters such as analyte thermal 

stability in the biological matrix, minimum analysis volume and the lowest limit of 

detection should be deduced. On completion the assay can be subjected to 

conventional clinical trials with sufficient sample size to identify any influential 

factors such as age, race or gender.

1.4.10. Identification of other possible applications o f the biomarker

Upon confirmation of the biomarker being truly representative o f the presence o f the 

disease, its suitability o f detecting it at the earliest stages must be investigated. This
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can be accomplished by comparing samples from patients with a positive diagnosis 

for the disease and healthy controls of the same age. This study is intended to give 

some indication of any change in biomarker characteristics over time and if  it follows 

the natural progression of the disease. Additional screening studies can determine 

important issues such as the stage in which the disease is detected, the incidence of 

the disease and the specificity o f the clinical assay.

1.4.11. Application o f the identified biomarker and in evaluating the clinical data. 

The intricate nature of pathophysiological mechanisms within the body has meant that 

it is unlikely that one biomarker alone will provide adequate specific and sensitive 

information regarding the target disease. Therefore the aim o f using a single 

biomarker should be to provide additional information to existing clinical data and 

result in a more accurate diagnosis than the biomarker data alone.

1.5. Conventional Analytical Techniques for Biomarker Investigations

There are many techniques employed for biomarker investigations, and each has 

advantages and disadvantages. Ultimately, those that are eventually employed should 

provide the most accurate result in the minimum analysis time for the type of 

biological matrices chosen.

1.5.1. Surface-enhanced laser desorption/ionisation (SELDD

This is a relatively new technique that has become one o f several frequently used 

analytical procedures for protein mapping or protein related biomarker experiments. 

It essentially utilises stainless steel or aluminium-based supports, or chips that have a

- 1 0 -
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I variety of chemical or biological surfaces. Chemically adhered surfaces include
i

j  hydrophilic, hydrophobic, pre-activated, normal-phase, immobilized metal affinity, 

and cationic or anionic groups, while biologically based surfaces can range from 

antibody, to antigen binding fragments, DNA, enzyme, or receptor type groups. A 

wide selection o f binding agents can enable the differential capture o f proteins based 

on the intrinsic properties of the proteins themselves. A series o f washes are applied 

to remove non-specifically or weakly bound proteins and is then followed by the 

ionisation of the bound proteins by a laser for analysis by mass spectrometry. The 

major advantage of this technique is the ability to detect low molecular weight 

peptides and proteins that can be missed by other techniques synonymous with protein 

analysis such as 2-D gel electrophoresis. Although, the reliability o f its peptide 

pattern results when comparing a ‘healthy’ to a diseased state is still surrounded by 

some controversy^8,9].

1.5.2. Microarray technology

This is generally a screening procedure used for detecting abundance changes o f 

mRNA within a large number o f samples. It essentially involves spotting a series o f 

DNA target sequences onto a ‘carrier’ in the form of a glass slide, silica chip or 

membrane. These sequences are used to hybridize a selection o f nucleic acid probes 

associated with the diseased tissue such as cancerous tumour. There are several 

disadvantages regarding the use o f microarray techniques although the following have 

a particular importance for biomarker investigations. Microarrays measure the 

mRNA and not actual protein abundance. Hence, the time point at which the analysis 

is carried out is critical to the result as changes in RNA transcription are both rapid 

and occur for only a brief period of time. Therefore, the most common issue

- 11  -
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encountered with this technique is the challenging acquisition of sufficient high 

quality samples at the early stages of the disease to develop a biomarker for 

diagnosing this stage[101.

1.5.3. Protein arrays

This is essentially a development o f the microarray technique where in place o f DNA 

target sequences it utilises proteins. Conventional protein arrays print antibodies onto 

the array to hybridize the target protein which are tagged with a fluorescent compound 

and detected by fluorescence spectrophotometry. However, problems are often 

encountered involving the degree o f antibody specificity and the high difficulty o f 

maintaining the assays within the dynamic range of the technique. These in addition 

to high cost o f equipment and the undefined stability o f the array often results in the 

protein array being overlooked in favour for other applicable techniques^101.

1.5.4. Tissue microarravs

This is generally used to confirm protein array and microarray results during 

biomarker development. It can be used for simple hybridisation experiments by 

placing between 50-1000 cores o f different tissues on a microscope slide or to gather 

additional immunohistochemical information. For biomarker studies this technique is 

often used to compare the tissue expression o f a particular biomolecule for a target 

illness between diseased and ‘healthy’ tissue1-111.

1.5.5. 2-D gel electrophoresis

This is a technique for the separation and identification of proteins by a process o f 

displacement in two dimensions. These are positioned at 90° to each other to allow

- 12-
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separation over a larger surface area and hence, the enhancement of the resolution of 

each component. It can function in two different modes, to identify the global protein 

expression (i.e. all the proteins in the sample), or to compare two or more protein 

samples for the identification of any variations (i.e. differential expression). The first 

stage, isoelectric focussing (IEF), separates proteins or peptides according to their pi 

values. The subsequent step however, involves use o f a surfactant, sodium dodecyl 

sulphate (SDS), to further separate the proteins according to molecular weight. This 

process is carried out within a polyacrylamide gel and occurs due to the application of 

an electric field. The migration distance o f the protein species, represented by Rf, can 

be used to estimate the mass of the protein as it is negatively proportional to the log 

function o f the molecular weight.

In order for the IEF stage to be successful a pH gradient must be initiated by 

use o f polyacrylamide gel additives such as ampholytes and immobilines. 

Ampholytes are a mixture of mobile amphoteric species that have a range o f p i values 

that must be calibrated prior to sample application. Immobilines however, are 

additives that are stationary within the acrylamide gel, and unlike ampholytes do not 

require pre-focussing or calibration. Gradients may also be set up through a mixture 

o f both of these additives in which an immobiline gel is used and ampholytes are 

included within the buffer.

These gels are synonymous with difficulties involving comparative studies and 

data processing, and are mainly employed for differential screening in biomarker 

investigations. These studies involve tagging specific protein samples with different 

fluorescent dyes which are run simultaneously on a particular gel1121. The capability 

o f identifying variations between samples has been enhanced through utilising two- 

colour imaging and the development of new software packages. These protein spots

- 13 -
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can also be analysed by mass spectrometry but additional sample preparation steps are 

required. The spots must first be removed from the polyacrylamide gel and then 

broken down into ‘bite-sized’ chunks using the enzyme trypsin to make the analysis 

less cumbersome. These peptide chunks are generally analysed using either a time-of- 

flight (ToF) or an ion trap mass analyzer using matrix-assisted laser 

desorption/ionisation (MALDI) or electrospray ionisation (ESI) techniques. The 

resulting masses are then subjected to a database search, containing all known peptide 

sequences and their corresponding proteins. Each of the unknown peptide sequences 

are given a list o f possible identities and ranked according to criteria including the 

protein size and the number of matching peptide sequences^131.

1.5.6. Isotope coded affinity tag (1CAT) techniques

This involves differential labelling o f the free cysteine residues of the protein using a 

‘heavy’ oxygen isotope. The protein sample is digested using trypsin with subsequent 

separation using liquid chromatography (LC), and analysis by tandem mass 

spectrometry (MS/MS). This technique has a greater detection range in terms of both 

molecular weight and isoelectric point (pi) o f the proteins when compared to 2-D gel 

techniques. Analyte separation is not carried out using a gel based media and is 

therefore not hindered by the same problems associated with the 2-D gels. However, 

it requires a relatively high degree of technical expertise to obtain a sensible result and 

it can be expensive to run routinely. In an attempt to improve its suitability for 

biomarker investigations developments have included improving separations based on 

' common groups associated with biomarkers, such as phosphorylated or glycosylated 

moieties[12l

- 1 4 -
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1.5.7. Single nucleotide polymorphism (SNP) techniques

This is a relatively recent technique that uses a genomic marker or SNP that is 

associated with a particular phenotype, such as a diseased state, as the target 

biomarker. The nature of the DNA used in this process has meant that it is unsuitable 

as a diagnostic test and can only determine the subjects’ predisposition for the 

disease^71. For this reason SNP-based techniques are commonly used to determine the 

genotypic or phenotypic characteristics o f certain cancer types. A disadvantage of 

this technique is the variation associated with the function o f different regions of a 

gene. This can greatly affect the reliability o f the SNP used and as a biomarker may 

lead to false positive results.

1.5.8. Liquid chromatographv/mass spectrometry (XC/MS)

The inability of mass spectrometry to decipher the compliment o f mixtures has 

limited its applications in the past to the analysis o f relatively pure compounds. Its 

combination with a separation technique such as liquid chromatography has now 

made it both a sensitive and reliable analysis o f biological samples. However, it is 

important to understand that it is vital to choose a suitable sample preparation or 

separation technique for a successful analysis o f the sample by mass spectrometry.

1.6 Biological Matrix Selection, Preparation and Analysis Techniques

The procedures used for the preparation of the sample should be selected according to 

the sample type with the endeavour o f obtaining optimum results at the analysis stage. 

In this investigation we have used the ultrafiltrate or ‘dialysate’ after exposure to the 

patients blood during haemodialysis. We deemed the following four sample

- 1 5 -
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preparation techniques to be most suitable for the dialysate solution due to the wide 

range o f analytes expected; size exclusion chromatography (SEC), affinity 

chromatography, precipitation, and ion exchange chromatography. The dialysate 

sample was initially chosen as it was expected to require less preparation than the 

more common biological matrices o f blood and serum. The premise for this is the 

limiting molecular weight cut-off point of the dialysis membrane thought to minimise 

the presence of interferences, such as albumin, that usually affect the analysis stage. 

In addition, the vast majority o f literature involving uremic toxins has used blood, 

serum or urine as the target biological matrix, rendering dialysate as relatively novel 

for this type o f analysis.

Mass spectrometry has had a relatively sporadic past for the analysis o f uremic 

toxins. A significant paper was released during 1998 and was a review o f all o f the 

articles prior to this period that have involved this type o f analysis^141. Gas 

chromatography/mass spectrometry (GC/MS) has been the most common mass 

spectrometry technique for low molecular weight solutes in the dialysate solution, 

such as organic acids and phenolic compounds. However, since GC/MS is not 

suitable for the non-volatile middle to high molecular weight solutes, analysis of these 

was achieved using fast-atom bombardment (FAB) mass spectrometry and in some 

cases liquid secondary ion mass spectrometry (LSEMS). These techniques enabled the 

analysis o f molecules such as peptides and nucleosides that were previously 

considered difficult to monitor by mass spectrometry. The development o f ionisation 

techniques, such as atmospheric pressure chemical ionisation (APCI), electrospray 

ionisation, and matrix-assisted laser desorption/ionisation has enabled the analysis o f 

a wide range of molecular weight species at high sensitivity. The increasing range of 

biomolecules amenable by these techniques, and their high levels o f sensitivity and

- 1 6 -
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reproducibility provide a strong case for using this type of analysis for identifying 

novel uremic toxins. Mass spectrometry for the analysis o f mixtures such as a 

biological matrix, requires some degree o f sample preparation. A large proportion of 

bioanalysis is carried out with mass spectrometry interfaced with the separation 

technique, liquid chromatography. Liquid chromatography/mass spectrometry can 

enable the identification and characterisation of biomolecules at trace levels within 

large complex mixtures. Results can be obtained with a high degree o f reproducibility 

and as part of a high throughput analytical protocol. These characteristics make 

LC/MS a vital component of bioanalysis laboratories of many pharmaceutical and 

research companies.

1.7 Separation Science

There are a vast number o f techniques employed for the separation o f biomolecules, 

each chosen to provide optimum isolation o f the chosen analyte o f interest. Method 

development of the following techniques was carried out for the investigation of 

haemodialysate to identify novel uremic solutes.

1.7.1. Solid phase extraction fSPE)

This preparative technique simply isolates a group o f analytes by passing the sample

\
{ through a solid phase material. It can be used for this purpose either by retaining 

interferences and collecting the analytes o f interest, or by retaining the analytes with 

subsequent elution followed by the removal o f any interferences. The latter method 

generally involves four main steps as shown in the diagram overleaf (figure 1.2).

- 17 -
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Figure 1.2: Illustration depicting four common steps o f  the SPE process.

Stage 1: Conditioning -  'activates' the sorbent bed to retain analytes and ensures 

reproducible retention o f the analyte o f  interest (the isolate).

Stage 2: Retention -  adsorption o f  isolate and some interferences but the remaining 

impurities freely pass through the sorbent.

Stage 3: Rinse/Wash -  intended to remove any undesired bio-matrix components that 

are retained on the sorbent.

Stage 4: Elution -  isolate is eluted by applying small volume o f  solvent that 

concentrates and purifies the sample; increases the detection limits and simplifies the 

analysis by removing the impurities.

The initial ‘conditioning* stage o f  the SPE process is aim ed at preparing or activating 

the solid phase packing for the retention o f  analytes o f  interest. This is followed by 

the application o f  the sample and retention o f  the analyte by adsorption to the colum n
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packing. The third step of the extraction is commonly known as the ‘rinse’ stage and 

any retained interfering impurities are washed off the sorbent bed. The final step 

\ involves the elution of the analytes of interest with a small volume of solvent which 

effectively ‘cleans-up and concentrates’ the sample. The SPE process is therefore 

intended to simplify the analysis o f the sample by simply removing any unwanted 

impurities that would normally interfere with this process and to provide lower 

detection limits for the analytes o f interest[15l

1.7.2. Size exclusion chromatography fSEC)

This separation technique is also known as desalting and is based on differences of 

hydrodynamic volume of analytes as they flow through a column containing a 

polystyrene resin stationary phase. The relationship o f hydrodynamic volume and 

molecular weight o f the polystyrene resin enables the determination of the molecular 

weight of an analyte. This calculated molecular weight will only be an approximation 

as this relationship does not provide a constant value for all polymer resins. The 

column resin is essentially a porous medium constructed from polymer beads, and can 

have a wide range of pore sizes which eventually determines the molecules that can 

be separated. This range is known as the fractionation or exclusion range o f the resin 

and analytes that are too large to enter the pores will flow around the resin beads to 

; elute first. The smaller low molecular weight analytes that are capable of entering the 

■ resin pores will have a longer path to travel within the column, and therefore, elute 

later.

If the sample is suspected to contain some form o f protein it is suggested that 

the column is pre-equilibrated with a suitable buffer. Tris-HCl buffer at pH 7 is 

commonly used as it is suitable to collect the sample analytes without altering the

- 1 9 -
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possible protein structures in the sample. Another important factor for a successful 

separation is to select an appropriate column size for the volume of the sample. For 

example, if  the column is too large, it can result in the dilution o f the sample and alter 

the analytical sensitivity for the target analytes. However, if  the column is too small 

the low molecular weight contaminants will not be separated to a sufficient degree 

from the analytes of interest. A general rule of thumb for a successful separation is 

that the column selected should be capable o f a volume that is 4-20 times greater than 

the sample volume[16l

1.7.3. Liquid-liquid chromatographv/extraction

This form of separation is based on the solubility o f an analyte for a particular solvent 

and can involve repeated partitioning steps between a liquid stationary and mobile 

phase. Two immiscible solvents are combined in a container and the analyte of 

interest passes from the solvent of origin into a polarity compatible solvent. For 

example, an analyte with a large non-polar section contained in an aqueous biological 

matrix such as plasma, will partition into an immiscible non-polar solvent. The 

degree o f separation is dictated by an expression known as the partition coefficient 

and is represented by the term log P. This is essentially the log ratio o f the 

concentration (C) o f a solute in one phase to another phase at equilibrium conditions:

C
logP = —— Equation 1.1

Cm\

where,

Cm2 = Molar concentration o f the solute in mobile phase 2 

Cmi = Molar concentration o f the solute in mobile phase 1

- 2 0 -
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The conventional conditions by which most partition coefficients are compared is the 

octanol:water system. This particular partition coefficient is used as a measure of the 

hydrophobicity or hydrophilicity of an analyte depending on the solubility in the 

octanol or water layers respectively1171.

1.7.4. Ion exchange chromatography (TEC)

Ion exchange chromatography involves passing a sample through a column containing 

a stationary phase with charged ionic groups that interact with oppositely charged 

functional groups o f the sample analytes. Protein and peptide biomolecules have 

terminal functional groups capable of opposite charges and are known as zwitterion 

structures. This effect can result it an overall molecular net charge of zero, and is 

known as the isoelectric point (pi). When a protein or peptide is placed in a buffer 

solution o f a pH greater than the p i value the carboxy terminus will deprotonate to 

give an overall negative charge. This will enable the protein to bind to any positively 

charged functional groups of the stationary phase within the column. Conversely, if 

the protein or peptide is in a buffer of pH lower than the pi value then the amino 

terminus will protonate providing it with an overall positive charge that can be 

retained by negatively charged groups of the column. Thus, varying the buffer pH 

following retention of the analyte of interest will cause its elution from the column1-161. 

This technique can also be used to desalt a sample which has proven to be a particular 

problem with hemodialysis concentrate.

1.7.5. Reverse phase-high performance liquid chromatography (RP-HPLC)

This was initially developed from an existing separation technique known as normal 

phase chromatography. The column packing designed for normal phase conditions
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consisted solely o f polar silanol groups and capable of retaining polar compounds. 

However, this was unable to provide sufficient separation of mixtures containing 

j relatively non-polar compounds, and hence, the polar packing material was modified 

to include non-polar groups such as C-8 or C-18 carbon chains. Thus, unlike normal 

phase conditions, reverse phase chromatography could separate mixtures of non-polar 

compounds using a non-polar stationary phase. Retention o f analytes during reverse 

phase chromatography is achieved using a polar aqueous mobile phase with the 

gradual increase in its non-polar compliment for analyte elution. This is one o f two 

common techniques utilised in HPLC, known as gradient elution, where mobile phase 

composition is altered to steadily remove the analytes from the stationary phase. The 

second is the isocratic elution method and involves maintaining a constant mobile 

phase composition throughout the separation^18,19l

There are several parameters used to assess the suitability of the 

chromatographic conditions and the overall performance o f the system[17]. The main 

objective o f a good chromatographic system is to achieve good separation with sharp 

well resolved peaks.

1.7.5.1. Partition coefficient (K)

This parameter indicates the degree of analyte distribution in the stationary and 

mobile phases. It is defined as the ratio of the concentration o f a solute in the 

stationary phase divided by its concentration in the mobile phase at equilibrium (see 

\ equation 1.2).
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c
K  = Equation 1.2

where,

Cs = Molar concentration of the solute in the stationary phase 

Cm = Molar concentration of the solute in the mobile phase

This measure is related to the rate at which the analyte migrates through the column or 

its retention time (tR); the higher affinity the analyte has for the stationary phase (the 

higher its concentration in the phase) the more time it will spend on the column, 

resulting in a longer retention time. Using the expression above, a high value for the 

partition coefficient (K) is indicative of a high concentration o f analyte in the 

stationary phase and a longer retention time. To summarise, the partition coefficient 

is directly proportional to the retention time o f the solute on the column.

1.7.5.2. Resolution (R)

This may be defined in terms o f chromatographic performance as a meaningful 

measure of separation. In its simplest guise the following expression can be used to 

quantify the resolution of components in a chromatogram, with the origin of the 

values shown by the illustration in figure 1.3.
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R = ^R 2  *R\ )
wx +w:2

Equation 1.3

t R l

tR Q

1 W2W 1

Figure 1.3: Hypothetical chromatogram showing two peaks with their associated 

retention times (tm and t^f) and peak widths (Wj and W2)  respectively. The value tRo 

represents the retention time o f  the mobile phase peak or solvent front. Resolution is 

a parameter dependent on the retention time separation o f  the components and peak  

width, and therefore considers the degree o f  peak overlap.

In addition to variations in solute polarity, the distance between two peaks (tR2 -  tRi) 

is dependent on the selectivity or the separating power of the column, and the term 

(Wi + W2) is affected by the column efficiency or the number of theoretical plates of 

the column (N). Therefore the value obtained for peak resolution can provide 

information regarding the suitability of the column for the analysis. Essentially the 

principal aim in chromatography is to obtain the highest possible peak resolution 

within the shortest possible elapsed time. There are a number o f conflicting 

parameters required for this and often a compromise between peak resolution and 

overall time o f the chromatographic run is necessary. A more accurate expression for 

calculating resolution can be used to achieve this compromise and considers other 

chromatographic parameters each including the dimension of time (see equation 1.4).
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R = ) x p j2 Equation 1.4
4(^X1 + *')

where,

k ’ = Capacity or Retention Factor

a = Relative Retention or Selectivity or Separation Factor 

N = Column Efficiency

1.7.5.2.1. Capacity factor fk’)

This is used to describe the rate of solute migration through the column and is related 

to the sorption or partition coefficient (K) of a sample component with the 

compatibility o f the stationary phase. It can be defined for a sample component as:

tn —to „  . t _
k  =   Equation 1.5

to

where,

tR = retention time o f the sample component 

to = retention time o f an un-retained component

The capacity factor of the chromatographic system may be improved by using a more 

suitable mobile phase composition or stationary phase packing.
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1.7.5.2.2. Relative retention fa)

The relative retention for two sample components, R\ and R2, on a column may be 

defined as the ratio of the affinity of each component for the stationary phase (the 

partition coefficients):

a  _ ^_ri_ Equation 1.6
K r\

where,

R2 = least strongly held component 

Ri = most strongly held component

This relationship between relative retention and partition coefficient can provide an 

indirect link to calculating the previously described resolution parameter, the capacity 

factor (k’).

I.7.5.2.3. Column efficiency (N)

This function o f resolution is defined in terms o f the number o f theoretical plates or 

the number of suitable retentive sites for a component to reside in a column. It can be 

determined using two different expressions depending on the information available to 

the chromatographer (see equation 1.7).
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iV = 16x( —  
\ W b .

Equation 1.7

where,

tR = retention time of the peak of the component R 

Wb = width at the base of peak R

or,

TV = 5.545
f  t '1 R

Wy rr 0.5A
Equation 1.8

where,

Wo.sh = peak width at half height o f peak R

Therefore it can be observed that the column efficiency is related to peak broadening 

and the time spent on the column for a particular component. Column efficiency can 

also be expressed in terms of the column height equivalent to one theoretical plate or 

HETP:

HETP = Column Length (L) Equation 1.9
Number theoretical plates (N)

\
; Hence, it can be proposed that the efficiency of the chromatographic column 

increases, as the number o f theoretical plates increase and the height equivalent to one 

plate decreases. Also, as resolution is proportional to the number o f theoretical plates
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to the power o f a half (N1/2), peak resolution can be enhanced by either maximising 

the length or the number of theoretical plates o f the column, and by minimising the 

height equivalent to one theoretical plate.
f
|

1.8. Mass Spectrom etric Analysis

1.8.1. Origins o f mass spectrometry

The pioneer o f mass spectrometry, Sir J. J. Thomson first discovered the electron in 

1897, and was followed by the invention o f the mass spectrometer, then known as the 

parabola spectrograph[20]. In 1906 his contributions were recognised with the 

presentation o f the Nobel Prize in Physics, and the next major advance in mass 

spectrometry was not until 13 years later in 1919. This was the development of a 

higher resolution mass spectrometer by Francis W. Aston for which he was awarded 

the Nobel Prize in Chemistry for isotope discovery[21]. The subsequent years entailed 

the introduction of the magnetic deflectron mass spectrometer[22] with direction 

focussing capabilities. This instrument also saw the first use o f the electron impact 

ionisation source and is still commonly used in modem mass spectrometry. This type 

o f mass spectrometer was continually developed and modified over the next twenty 

years and in the early 1940’s Nier and co-workers tailored it for isotopic analysis[23l  

Also, during this period the high-mass resolution double focussing mass spectrometer
I'
; was invented by Dempster and first unveiled by Mattauch and Herzog which enabled 

mass assignments to be made with greater confidence. The late 1940’s saw the 

invention o f the time-of-flight (ToF) mass spectrometer developed by Cameron and 

Eggers[24] from the initial ideas proposed by William E. Stephens in 1946[25l  The 

subsequent 40 years involved vast improvements in the mass resolution o f the ToF
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{i

analyser especially with the introduction of the reflectron lens, invented by 

Mamyrin126,27]. This degree o f mass resolution was later surpassed by the invention 

o f the Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) by 

Comisarow and Marshall in 1974[28], and is still the leader in obtaining high mass

resolution. Alongside the development of FT-ICR-MS was the invention of chemical

ionisation source and led to the design of a similar source capable o f operating at 

atmospheric pressure conditions, known as APCI, by Homing and co-workers[29l  

Successive developments involved the interfacing of liquid chromatography (LC)
1

| systems to mass spectrometers by Arpino, Baldwin, and McLafferty[30] which was

| previously considered impractical due to the vacuum conditions of the mass
f

spectrometer. This progress in mass spectrometry was accompanied by the
|
| introduction o f other new ionisation sources such as fast-atom bombardment (FAB) in

| 1981 and matrix-assisted laser desorption/ionisation (MALDI) in 1988. Current
i
! bioanalysis frequently employs these new ionisation techniques and in particular the
I1

use of APCI, electrospray ionisation (ESI), and MALDI are becoming standard
I
| practise.
j
[

1.8.2. An introduction to mass spectrometry

Mass spectrometry is a powerful analytical technique involving the separation of gas 

phase ionic species according to mass-to-charge and is considered to have three main 

functions:

1. molecular weight determination,

2. chemical structural characterisation, including isotope analysis and

3. qualitative and quantitative analysis o f analyte(s) in a mixture.
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The instruments capable of this technique are collectively known as mass 

spectrometers although, a wide variety o f types are available, some of which are 

; discussed later. A common feature o f all these forms is that the sample analytes must
i

first be ionised to enable their separation according to a property known as the mass- 

to-charge ratio (m/z). A mass spectrometer can be divided into four main sections:

1. The sample inlet: where samples are introduced

2. The ion source: where charged ions are formed from the analytes

3. The mass analyser: separates ions according to their m/z values after passing 

through electric and/or magnetic fields

4. An ion collection system: collects the separated ions to identify their abundance 

by m/z.

Modem designs, such as, the quadrupole, quadrupole ion trap, Fourier 

transform-ion cyclotron resonance (FT-ICR) trap, Orbitrap and time-of-flight (ToF) 

instruments require specialised extraction and acceleration ion optics to transfer ions 

from the source to the mass analyser and shall be discussed later. Early mass 

spectrometer designs used an ionisation method known as electron impact (El). Here 

the sample is vapourised and an electron is removed from the sample analyte, known 

as the secondary electron, by an energetic electron beam. This usually forms a radical 

cation referred to as the molecular ion M*+(equation 1.10), which has an excess
i,
j internal energy that maybe internally converted and cause the ion to either fragment 

further (equation 1.11) or to rearrange (equation 1.12).
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M " + e' (70eV)  ► M'+ + 2e

SAMPLE HIGH ENERGY MOLECULAR
MOLECULE ELECTRON ION Equation 1.10

M  ► F + RADICAL SPECIES

MOLECULAR FRAGMENT
ION ION Equation 1.11

M ’+  ► F+' + NEUTRAL MOLECULE

MOLECULAR FRAGMENT
ION RADICAL ION Equation 1.12

These ions are then accelerated under vacuum conditions within the mass

spectrometer to the mass analyser, with the aim o f separating and measuring the mass

(mass-to-charge) o f the resulting ions.

The mass measurement o f ions is achieved by monitoring different parameters

depending on the type o f mass analyser, such as time-of-flight or an appropriate

magnetic field to maintain stable ion trajectory. Separated ions hit the detector

producing a signal and can provide, not only, mass-to-charge ratio (m/z) information

o f the ion from the analyser but its relative abundance within the sample. This 

.
1 information is converted into a chart known as a mass spectrum comparing ion
{

intensity and m/z with the ion of highest abundance known as the base peak.

1.8.3. Sample ionisation and modem interfaces

The interface, in addition to ionisation, is required to efficiently transfer analytes from 

a solution phase to a gas. The connection o f a LC system to a mass spectrometer
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I incorporates both the powerful separation capabilities of chromatography with the

!
; sensitivity for detection of mass spectrometry. Initially the major hindrance of 

LC/MS was the incompatibility of the then LC flow rates (0.5-2mL/min of normal or 

reversed phase systems) and the vacuum requirements of the mass spectrom eter^. 

Since the 1970’s many interfaces were developed to overcome this problem, each of 

which were suitable for particular mass ranges and polarity as shown in figure 1.4.

IONIC

ANALYTE
POLARITY

NONPOLAR

Electro spray LC/MS

T l i e n n o s p r a y  a n d  APCI 
LC/MS

Particle Beam 
LC/MSGC/MS

101 102 103

MOLECULAR MASS

104 10s

Figure 1.4: Suitability ranges o f  LC/MS interfaces regarding polarity and molecular 

mass o f  an analyte

The balance that the interface must achieve is to accept as much LC eluent as possible 

to attain maximum sensitivity and yet minimise the liquid load into the mass
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spectrometer. In addition to solvent flow other incompatibilities can arise particularly 

during bioanalytical applications, for example non-volatile buffers used for some high 

quality separations were unsuitable for the past ionisation sources. Several different 

methods to overcome these interfacing difficulties have been attempted ranging from;

a) increasing the pumping capacity of the vacuum system of the mass 

spectrometer,

b) minimising or elimination of solvent prior to entering the vacuum system,

c) minimising solvent flow into the vacuum system by splitting the flow to 

waste, but at a loss of sensitivity,

d) use of micro-LC systems capable of efficient separation at lower flow rates 

compatible with the mass spectrometer,

e) additional pumps at ionisation source improving vacuum system and,

f) development o f an ionisation source capable o f operating at atmospheric 

conditions.

Many interfaces utilising these approaches were developed although only a select 

number are utilised for the analysis of biosamples. Two o f the most commonly used 

interfaces, electrospray ionisation (ESI) and atmospheric pressure chemical ionisation 

(APCI) function at atmospheric conditions thus avoiding many of the issues 

associated with LC/MS. Other ionisation sources used in the bioanalytical field such 

as matrix-assisted laser desorption/ionisation (MALDI), still remain separate from the 

LC system and therefore additional sample preparation is required.
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1.8.3.1. Electrosprav ionisation (ESP

This is one of the main atmospheric pressure ionisation (API) techniques and was first 

used commercially in 1985 by Whitehouse and co-workers[32]. The sample is sprayed 

into the source through a very fine needle with a potential difference o f approximately 

3kV. Upon exiting the needle the spray forms a Taylor cone followed by the 

formation o f droplets and are charged by an electric field of 106 Vm'1 that is applied to 

the tip of the capillary needle.

3-5kV

FLOW OF LC 
ELUENT AND 
N2 DRYING GAS

N2
DRYING
GAS

S /

HEATED
CAPILLARY

TO MASS 
ANALYSER

T "
SPRAY

Figure 1.5: Schematic diagram o f  an electrospray ionisation source indicating the 

flow  o f  liquid from  the LC system and the application o f  drying gas enabling the 

formation o f  ions.

These charged droplets are then desolvated by a flow o f hot nitrogen gas which results 

in charged or multiply charged analyte molecules[33]. There are a two main theories 

describing the ionisation process; one model proposed by Dole and colleagues[34] is 

that the charged droplet undergoes a Coulombic explosion during desolvation and 

results in the formation of smaller droplets, eventually leading to desolvated analyte 

ions[35’36].
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[++]

NEBULIZATION 
OFSOLVENT 
AND SAMPLE

LARGE
CHARGED
DROPLET

WARMN2 
GAS

BATH GAS 
INCREASING 
VACUUM

"Si
CONCENTRATED
CHARGED
DROPLET DRY GAS 

PHASE IONS

Figure 1.6: An illustration depicting the proposed Coulomhic desolvation process o f  

ESI. Charged sample droplets are evaporated causing an increase in the surface 

charge o f  the droplet promoting a Coulombic explosion to from  smaller charged 

droplets.

The second model devised by Iribame and Thomson^37, 38̂ is known as the ‘ion- 

evaporation’ model and is considered as the most likely as it provides the most 

adequate explanation for the ionisation process. The vast majority o f ions present in 

the charged droplet are thought to be pre-formed and originate from the acid-base 

chemistry o f the solution. Hence, pH manipulation to increase the abundance of 

charged basic analytes is of considerable importance in achieving good sensitivity 

when observing ions in positive mode.

ESI is considered a ‘soft’ ionisation technique as it involves minimal 

fragmentation of the sample analytes capable of providing molecular weight 

information. This method is suitable for the analysis of proteins due to the capability 

’ o f multi-charging, in which one charge typically associates per lOOODa of protein. A 

protein o f molecular mass 60,000Da will have a distribution o f 40-80 positive 

charges, depending on the number of ‘basic’ residues and it will therefore have a m/z 

value o f 1000-2000Da. This m/z value is easily attainable by most mass
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!t
i i

spectrometers, although the actual m/z may be slightly different from the ‘true’ value 

due to the multiple charging. However, if  a ‘contaminant’ is present it can suppress 

the ionisation of the target analyte, even if  it is at a lower abundance, and 

consequently ‘masks’ the analyte signal from detection^391. This should be considered 

when choosing ESI as an ionisation technique and the interpretation o f the resulting
[
| mass spectrum. Ionisation suppression can pose more problems when running online 

i LC/MS incorrectly as sample components from overloading the LC column may carry
i
[ over into subsequent separations and suppress components from other samples.
I
i!
|
I 1.8.3.2. Matrix-assisted laser desorption/ionisation fMALDD
i
i MALDI essentially employs a matrix to transfer energy to the analyte to facilitate

I ionisation. The energy is supplied by a pulsed laser at a wavelength that is absorbed
[
j by the matrix. Chromophore containing matrices commonly use N2 and Nd+/YAG 

f lasers emitting at wavelengths of 337nm and 1064nm, respectively, the Nd+/YAG is 

frequency tripled to a wavelength o f 354nm. The laser ablates the matrix and 

| ionisation occurs by a number o f processes1-40'1 with the resulting gas phase ions

i
; passing into the mass spectrometer. There is a wide selection o f possible matrices,
|

i each suitable for ionising different types o f synthetic and biological molecules. In 

addition to matrix choice other parameters such as solvent composition and the 

inclusion o f additives, such as trifluoroacetic acid (TFA), facilitate and improve 

ionisation o f the target molecule.

MALDI is usually coupled to a time-of-flight mass analyser and will be 

discussed later. MALDI mass spectra generally have poor resolution and mass 

accuracy with sensitivity primarily dependent on the analyte. They usually consist of 

radical molecular ions and protonated molecules of both sample components and
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matrix. Additional peaks may be observed as a consequence of sample degradation 

during laser application, and adduct formation, from the presence of sodium ions in 

i biosamples. These considerations must be taken into account during the interpretation
i

o f such mass spectra and have particular importance when applying a database search, 

such as those used in protein identification. The major upshot of MALDI-ToF is that 

it is easy to use and is capable of identifying very large molecular weights of up to 

approximately 500kDa. It is therefore used during the analysis o f very large 

biomolecules such as proteins or DNA fragments.

This ionisation technique has not been commonly associated with LC, however, 

current developments have been directed towards interfacing these systems. For 

example, a study published in 2004[41] involved adapting the outlet via the LC system 

with a programmed heated needle that placed droplets of the sample mixture onto a 

MALDI target plate. This is still deficient in some requirements for an ideal interface 

and currently remains as a separate off-line technique to LC.

1.8.4. Ion separation and analysis

Following ionisation, gas phase ions are guided into the mass analyser from the 

source. There are a number of types of mass analysers available each capable of 

determining the mass of an ion despite measuring different parameters. For example,

| both magnetic sector and quadrupole analysers rely on magnetic and electric fields 

and can undertake selected ion monitoring (SIM), collecting data from one or more 

target ions. SIM has the added advantage o f increasing the sensitivity of the 

experiment by increasing the signal-to-noise ratio by as much as 100:1. However, 

mass analysers, such as, time-of-flight (ToF) simply obtain a mass measurement from 

the flight time of the ion and are used for experiments that can search a high mass
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range for ions. Mass analysers capable of obtaining measurements with high peak 

resolution can obtain an ion accurate mass or the mass-to-charge o f an ion to within 

four decimal places. Once obtained elemental composition information is suggested 

as only specific combinations of elements will match the obtained formulae. The 

suggested elemental formulae are evaluated according to four main parameters each 

important in selecting the most likely identification:

a. Mass error -  this is the measure by which the accurate mass of the suggested 

elemental formula differs from the calculated accurate mass of the unknown ion. It is 

a value provided in mDa or ppm.

b. Isotope pattern -  this should be checked against the suggested elemental formulae 

matching that o f the unknown. Using Xcalibur software v.2.0 (Thermo Fisher 

Scientific) a theoretical isotope pattern can be generated and compared against that of 

the unknown to confirm if  the elemental formula is suitable for the unknown.

c. DBE -  the double bond rule. This is often determined by the following equation,

DBE = Cx -  l/2H y + Nz + 1

where,

x = number of carbon atoms 

y = number o f hydrogen atoms 

z = number o f nitrogen atoms
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The calculated value obtained is either a whole number or a half, signifying an odd 

electron species (M+‘) and an even electron species (M* or [M+H]+) respectively. 

Odd electron species are unlikely protonated parent molecules in electrospray 

ionization and so are excluded from the final selection o f elemental formulae.

d. Nitrogen rule -  this states that an even number o f nitrogen atoms suggested for the 

elemental formulae should have an odd mass for the even electron ion [M+H]+.

Analysers with poor mass separation or resolution often have other capabilities, 

such as MSn experiments, and can be included with high resolution analysers as a 

hybrid instrument to benefit from both characteristics.

1.8.4.1. Ouadrupole mass filter

This, as the name suggests, consists of four metal rods and are arranged as shown in 

figure 1.7.

PATH
o r  io n

QUADRUPOLE
RODS

DETECTOR

Figure 1.7: Schematic o f  a quadrupole mass analyser showing the passage o f  an ion 

with a stable trajectory o f  specific m/z into the detector. Opposing pairs ofpoles have 

dc and r f  fields applied.
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Opposing pairs o f rods are connected electrically and a voltage consisting of both 

; radiofrequency (rf) and direct-current (dc) field components are applied with the rf 

field present being 180° ‘out of phase’ with the dc field. The potential between each 

rod (<p) can be calculated using the by the equations below:

!
| <t>0 = +(U -  V cos cot) and ® 0 = -(V  cos cot) Equation 1.13

I

where,

U = direct potential (dc) field 

V = amplitude of the rf  field 

co = angular frequency = 2ttd 

v = frequency of the rf  field

s[i
I

At a specific voltage ions of the corresponding m/z follow a stable trajectory through

: the rods into the detector. Ion path stability is determined by two functions a and q,
!
• which are dependent on the dc and rf  values respectively. These are calculated using 

the expressions 1.14 and 1.15.
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%eU . , 1A
a = ------;—  Equation 1.14

2 2 mrn co

4 eVc
q =   —  Equation 1.15

mrn co2

where,

ro = radius o f the field within the circular 

arrangement of the rods 

m = mass of ion

| This relationship o f ion stability is often depicted as a graph indicating the boundaries

i
[ o f the stable oscillation o f an ion (see figure 1.8).
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Figure 1.8: Stability diagram o f  ion trajectories within a linear quadrupole and the 

area under the curve depicting the dc (a) and r f  (q) fields suitable fo r  a stable

oscillation o f an ion through the quadrupole where m l < m2 < m3.

\
\

A mass spectrum is produced by scanning U  and Vo, so that a/q remains constant, and 

the mass of the ion transmitted is directly proportional to the values of a and q. The 

quadrupole is considered to be the ideal analyser for interfacing with liquid 

chromatography. This mass analyser is capable o f fast mass scanning and uses a low 

accelerating voltage that increases its compatibility to high operating pressures, such 

as those encountered in LC/MS. In tandem mass spectrometry techniques (MS/MS),

i.e. those involving the coupling o f more than one mass analyser, the quadrupole mass 

analyser can be linked in succession to form a triple quadrupole analyser. This is the
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most common apparatus used in MS/MS and consists of three sets o f quadrupoles in a 

series;

• Q i  = A mass filter using both rf  and dc fields for first stage o f ion monitoring.

• Q2 = Collision cell containing inert gas and is enclosed to increase the localised

gas pressure for fragmentation of ions transmitted by Q l. Uses rf  only and 

focuses any product ions into Q3.

• Q3 = The second mass filter with both rf and dc fields for product ion monitoring.

The quadrupole may also be included in another type o f tandem instrument known as 

the hybrid mass spectrometer. In this instrument the final quadrupole o f a triple 

quadrupole system is replaced, for example, a ToF analyser. This Q-ToF mass 

spectrometer contains a quadrupole linked to a collision cell, and is linked to a ToF 

analyser capable o f detecting ions that enter at a specific time.

1.8.4.2. Quadrupole ion trap mass analyser

This mass analyser can be thought o f as a folded quadrupole in which a circular centre 

ring electrode has two end-cap electrodes, one above and one below. Essentially the 

ions are dynamically stored within this three-dimensional quadrupole by the 

application o f an r f  field. Following their introduction into the trap they move in a 

stable, but complex trajectory stabilised by the presence o f a buffer gas such as 

helium^2’43-1.
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Figure 1.9: Schematic o f  a cylindrical quadrupole ion trap indicating the ion path via 

the electron filam ent o f the ion source to the detector. The applied r f  fields are used 

to control which ions are present in the trap. They are capable o f  retaining both all 

ions in the mass range o f the analyser (a fu ll mass scan) and specific ions (a single 

ion monitoring scan).

These trapped ions can be manipulated by varying the voltages applied to the trap to 

perform ion ejection, ion excitation, and mass-selective ejection. If this voltage 

manipulation is carried out in a systematic fashion a complete mass spectrum can be 

obtained and mass-tandem experiments (i.e. MS/MS, MS/MS/MS, and MSnetc) to 

obtain fragmentation information of the analyte. A major drawback that must be 

considered with this analyser is the reaction o f ions with any neutral species present in 

the trap. This is known as ‘self-chemical ionisation’ and can affect the resulting mass 

spectrum[44l  A common technique to reduce this effect is to introduce the ions via an 

external source. This however, can lead to ion losses during transmission and 

trapping thus, resulting in a small reduction in the sensitivity o f the method. Modem



ion traps are highly refined instruments and use techniques such as automatic gain 

control (AGC) which restrict ion density within the trap, preventing the ‘self chemical 

ionisation’ process.

1.8.4.3. Time-of-flight (ToF) mass analyser

This is the simplest of all mass analysers and is based on the idea that all ions 

produced in the source have the same given kinetic energy. The velocity of each ion 

will therefore be inversely proportional to the square root o f its mass and the time the 

ion takes to travel down a field-free flight path will be related to the m/z o f the ion.

(2 zeV )
m

Equation 1.16

where,

t = time of flight

d = distance travelled

m = mass of ion

V = accelerating voltage and

z = number o f charges on the ion.
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Figure 1.10: Basic schematic o f  a time-of-flight mass analyser showing the three 

essential components o f  a mass spectrometer; the ion source, mass analyser (flight 

tube) and detector. The anode is used to propel the ions into the flight tube and the 

lens to focus their flight path.

In order for mass-to-charge to be determined accurately it is essential that all ions 

from the source are transferred into the mass analyser at a known time i.e. t = 0. The 

first generation of ToF analysers involved passing the ions directly into the detector, 

which resulted in mass spectra with poor resolution. Poor peak resolution is more 

pronounced with high molecular weight species due to longer flight times and is 

overcome by the use o f a reflectron lens as initially suggested by Mamyrin in 1966[26l  

The resolution within ToF instruments is dependent on the ability to measure small 

differences in the time-of-flight of ions o f similar mass-to-charge. Large ions of 

longer flight times will have an amplification o f any disparity in ion energies and 

flight time resulting in peaks o f poor resolution. The reflectron is an electrostatic lens 

which folds the ion beam and ‘corrects’ for any difference in the energy o f ions of the 

same mass-to-charge. The ion energy dictates its path length within the lens, where 

ions o f high energy will have a longer ion path than those o f low energy. This device
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causes ions o f the same mass-to-charge to arrive at the detector with the same time-of- 

flight, minimising any small variations in flight time and resulting in greater peak 

resolution. Some modem high resolution ToF analysers use the reflectron to analyse 

at improved resolution large molecular weight species in conjunction with MALDI[45], 

although this is often achieved with a loss in sensitivity.

1.8.4.4. LTO Orbitrap mass analyser

This has been developed as part o f a hybrid mass spectrometer consisting of an 

atmospheric pressure ionisation source, leading into a linear ion trap where ions can 

be stored and detected. A facility o f the Orbitrap design is the acquisition of 

reproducible accurate mass data. Following the linear ion trap ions can be axially 

ejected into a device known as the c-trap, where they are compressed into a small 

packet and injected into the Orbitrap mass analyser. In this mass analyser ions are 

electrostatically contained whilst rotating around a central electrode and causing them 

to oscillate in an axial dimension. This oscillation induces an image current in the 

two apexes o f the Orbitrap that is amplified and detected as a time carrying current (or 

voltage) signal. The mass-to-charge of an ion may be determined by the following 

formula:

k
co = ------  Equation 1.17

m /z

co = axial oscillation frequency 

k = instrumental constant 

m = mass o f ion 

z = number of charges on ion
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The time-domain signal o f the ions within the Orbitrap can be very complex and 

require additional elucidation. This is achieved by applying a Fourier transformation 

calculation which converts time domain to frequency domain from which the masses 

are deduced using equation 1.17 at high accuracy and peak resolution. The trap 

design o f this analyser with an automatic gain control function enables highly 

reproducible accurate mass measurements by ensuring a minimum quantity of ions 

required to generate the appropriate signal are present. In addition to elemental 

formula determination this instrument enables good separation and detection of low 

intensity isotopes and multiple stages of fragmentation to be carried out.

1.9 Project Brief and Hypothesis

Past literature has described identifying toxins that contribute to the uremic condition 

o f patients with renal insufficiency by using mass spectrometry^14]. However, these 

analyses involved biological matrices other than hemodialysate, which is essentially 

the ultrafiltrate o f the dialysis procedure after exposure to the patients’ blood. It was 

expected that this sample would require less preparation than the more common 

matrices o f blood and serum. The molecular weight cut-off point o f the dialysis 

membrane was thought to limit the presence of interferences that can affect analysis, 

such as albumin. In addition, dialysate is generally easy to obtain as it is available per 

patient in large volumes and has less stringent ethical considerations as it is 

considered as ‘waste’. The aim o f this project is to identify novel biomarker(s) that 

are uremic solutes suitable for assessing the efficacy o f the haemodialysate procedure 

within dialysate solution by mass spectrometry. This is to be achieved by comparing 

the patients’ dialysate throughout haemodialysis treatment, with the identification of 

novel analytes and an examination of their excretory behaviour.
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CHAPTER 2: 

Materials and Instrumentation

2.1. Chemicals

Solvents, standard reference materials and gases used are shown in table 2.1.

Chemical Grade Supplier

M ethanol

D eion ised  water (DI)

Formic acid  

Ethanol

Trifluoroacetic acid  

Phosphate buffered saline 

‘5 X ’ A ntigenPlus retrieval buffer 

X ylene

N itrogen (O FN )

H elium

Air

A denosine monophosphate

a-cyano-4-hydroxycinnam ic acid

A ngiotensin  I

Creatinine

Hypoxanthine

Indole-3-acetic acid

P-guanidinopropionic acid

N -a-acetylarginine

N-acetyltryptophan

U ric acid

A /yo-inositol

Xanthosine

Hydroquinone

2,5-dihydroxybenzoic acid

Sinapinic acid

HPLC

M ill-Q  water 

HPLC

O xygen free

99.99%

99.99%

Thermo Fisher Scientific

M illi-Q  purification system  
(M illipore, U SA )

B D H

Thermo Fisher Scientific  

Thermo Fisher Scientific  

Thermo Fisher Scientific  

N ovagen

Thermo Fisher Scientific

BO C

BO C

BO C

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Sigm a

Table 2.1: Table containing materials and associated suppliers used within this 

project.



2.2 . In stru m en ta tion

2.2.1 Chromatographic equipment

2.2.1.1 UV screening of crude pooled dialysate samples

Agilent (Santa Clara, CA, USA) 8453UV/Vis Spectrophotometer including; diode

array detector capable of fast scanning over an absorbance range o f 190-1 lOOnm.

2.2.1.2 Size exclusion

Applied Biosystems Ltd (Foster City, CA, USA) Vision multi-dimensional LC system

including; UV, conductivity and pH detectors and pump was used with Biobasic SEC-

60 (300 x 7.8mm i.d., 5pm, 60A) size exclusion column (Thermo Fisher Scientific,

Waltham, MA, USA).

2.2.1.3 Reverse phase HPLC

Dionex/LC Packings (Dionex, Sunnyvale, CA, USA) Ultimate HPLC system

including; Famos autosampler unit and Ultimate gradient pumping system was used

throughout this research. The column used was a C l8 PepMap™ reverse phase

HPLC column (25cm x 1000pm i.d., 5pm) Dionex and 5pL injection loop. This

system was run under micro-flow rate conditions using the MIC-1000 cartridge and

75 pm connective tubing.

[I[
! 2.2.2 Chromatographic conditions

2.2.2.1 Size exclusion

This LC system used a Biobasic SEC-60 (300 x 7.8mm i.d., 5pm, 60A) size exclusion

column (Thermo Fisher Scientific) at room temperature. A mobile phase consisting

o f deionised water only was run isocratically at a flow rate o f 0.5mL/min over a



period o f 1 hour. 20pL of sample was applied to the column using a full-loop 

injection method.

i 2.2.22  Reverse phase HPLC
i

| This involved a C l8 PepMap™ reverse phase HPLC column (25cm x 1000pm i.d.,
I
' 5 pm) Dionex at room temperature. A gradient elution system of mobile phase A:
ij
j 0.1% formic acid in water, and B: 100% methanol was used at a flow rate of
[

30pL/min. The gradient elution profile is shown below:

Time (min) %A %B

0 95 5
5 95 5
10 86 14
15 77 23
20 68 32
25 59 41
30 50 50
35 41 59
40 32 68
45 23 77
50 14 86
55 5 95
60 0 100
83 0 100
88 25 75
93 75 25
98 95 5
118 95 5

\
Table 2.2: Table containing the mobile phase composition fo r  the reverse phase 

| chromatographic system.

\\
I
! A  sample volume o f 5pL was injected onto the column using an injection programme 

to ensure accurate sample volumes per injection.
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2.2.2.2.I. Injection programme

This involved drawing up 9pL of sample at low syringe speed into the 5pL loop and 

at a height o f 3mm from the base o f the autosampler vial. This is left for 5 seconds to 

distribute homogenously within the loop and then injected onto the column. The 

sampler needle is subsequently washed with 10 times the needle volume (500pL) o f 

100% Milli-Q deionised water (Millipore, Billerica, MA, USA).

2.2.3 Mass spectrometers

2.2.3.1 Ion trap

LCQ ion trap (Thermo Fisher Scientific) equipped with an ESI source. Operated in 

positive mode over a mass-to-charge range of 50-2000 Th unless otherwise stated and 

the conditions were used as described in the analytical methodology sections. The 

software used was Xcalibur (v.1.3).

2.2.3.2 LTO Orbitrap

LTQ Orbitrap (Thermo Fisher Scientific) hybrid mass spectrometer equipped with an 

ESI source was used in positive mode over a mass-to-charge range o f 5-500 Th unless 

otherwise stated in the analytical methodology. This more contemporary mass 

spectrometer used Xcalibur (v. 2.0), capable of generating elemental formulae from 

the calculated accurate masses. Accurate mass and elemental formula assignments for 

masses below 400 Da were made from the search criteria in table 2.3. A parent ion 

elemental formula was chosen according to the lowest error from the measured 

accurate mass and its agreement with the elemental formula obtained for the fragment 

ions. Fragment ions of the unknowns were then searched again using narrowed 

element parameters according to the parent ion elemental formula to obtain the lowest



error for the measured accurate mass. All accurate masses were obtained within an 

error o f 5ppm unless stated otherwise in the relevant chapters and the neutral exact 

mass values are calculated in error by the mass o f an electron.

Element N um ber Included in Search
C 30
H 60
N 15
0 15
s 4
p 4

Na 2

Table 2.3: Elemental composition information used in assigning unknown ions.

22.3.3. Vovager DE-STR

All MALDI-ToF analyses were carried out on a Voyager DE-STR (Applied 

Biosystems, Foster City, CA, USA) mass spectrometer. Four instrument files for both 

positive and negative ionisation modes were created for mass ranges of 50-2kDa, 1- 

7kDa, 2k-20kDa, and 5-100kDa. Each mass range was calibrated using the same 

instrument files and appropriate Sequazyme calibration mix (Applied Biosystems). 

The low mass gate function was activated to minimize the amount o f data collected 

and set at a mass that defined the lowest limit of the mass spectra reported.



2.2.4 Mass snectrometric conditions

2.2.4.1. Ion trap methods

2.2.4.1.1. Full MS scan

Instrum ent Parameter R eading

M S R un T im e (m inutes) 118.00

Scan Events 1.00

Scan Event D etails Full M S Scan (m/z 50 -2000)

Capillary Temperature (°C) 200 .00

A G C  (A utom atic Gain Control) On

Sheath Gas F low 40 .00

A uxiliary/Sw eep Gas F low 10.00

Source V oltage (kV ) 3.50

Source Current (pA ) 80.00

Capillary V oltage (V ) 23 .00

Tube Lens O ffset (V ) 30 .00

M ultipole RF A m plifier (Vp-p) 400 .00

M ultipole 1 O ffset (V ) -7.75

M ultipole 2 O ffset (V ) -9 .50

Inter-M ultipole Lens V oltage (V ) -16 .00

Entrance Lens (V ) -40 .00

Trap D C  O ffset V oltage (V ) -10 .00

Full M icro Scans 3.00

Full M ax Ion T im e (m s) 50.00

Table 2.4: Table illustrating the instrument conditions used with the LCQ DECA ion 

trap mass spectrometer operated during fu ll mass scan positive mode.



2.2.4.1.2. Fragmentation (MS/MS) methods

Instrument Parameter Reading

M S Run T im e (minutes) 118.00

Scan Events 4 .0 0

Scan Event D etails 1. M S/M S Scan o f  chosen  ion
2. D D A  M S” Scan (m ost intense ion  chosen  from  

M S/M S scan
3. M S/M S Scan o f  next chosen ion
4. D D A  M S” Scan (m ost intense ion  from  M S/M S  

scan)

M S/M S Settings:
Isolation Width 1.00
N orm alized C ollision Energy 35 .00
A ctivation Q 0.25
A ctivation Tim e 30 .00

Data D ependent A nalysis (D D A ) Settings:
M ass E xclusion List N one
Isolation Width 2 .00
N orm alized C ollision Energy 35 .0
A ctivation Q 0.25
A ctivation Tim e 30 .00
M inim um  Signal Required 100000
M inim um  M Sn Signal Required 5000
D ynam ic E xclusion Repeat Count 2 .00
D ynam ic E xclusion Repeat Duration 1.00
D ynam ic E xclusion List Size 50
D ynam ic Exclusion M ass W idth L ow 0.50
D ynam ic E xclusion M ass W idth H igh 0 .50

Capillary Temperature (°C) 200 .00

A G C  (A utom atic Gain Control) On

Sheath Gas F low 4 0 .0 0

A uxiliary/Sw eep  Gas F low 10.00

Source V oltage (kV ) 3 .50

Source Current (pA ) 80 .00

Capillary V oltage (V ) 23 .00

Tube Lens O ffset (V ) 30 .00

M ultipole RF A m plifier (Vp-p) 400 .00

M ultipole 1 O ffset (V ) -7 .75

M ultipole 2 O ffset (V ) -9 .50

Inter-M ultipole Lens V oltage (V ) -16 .00

Entrance L ens (V ) -40 .00

Trap D C  O ffset V oltage (V ) -10 .00

F ull M icro Scans 3 .00

F ull M ax Ion T im e (m s) 50 .00

Table 2.5: Table displaying the instrument parameters o f  the LCQ DECA ion trap 

operated during MS/MS fragmentation experiments.



2.2.4.1.3. Data dependent fragmentation (MSn) methods

Instrum ent Parameter Reading

M S R un Tim e (m inutes) 118.00

Scan Events 3.00

Scan E vent D etails 1. Full M S Scan (m/z 50 -2000)
2. D D A  M S/M S Scan (m ost intense ion  from full

scan)
3. D D A  M Sn Scan (m ost intense ion  from  M S/M S

scan)

Data D ependent A nalysis (D D A ) Settings:
M ass E xclusion  List N one
D efault Isolation W idth 1.00
N orm alized C ollision  Energy 35.0
A ctivation  Q 0.25
A ctivation  Tim e 30.00
M inim um  Signal Required 100000
M inim um  M Sn Signal Required 5000
D ynam ic E xclusion  Repeat Count 2 .00
D ynam ic E xclusion  Repeat Duration 1.00
D ynam ic E xclusion  List S ize 50
D ynam ic E xclusion  M ass W idth L ow 1.50
D ynam ic E xclusion  M ass W idth H igh 1.50

Capillary Temperature (°C) 200 .00

A G C  (A utom atic Gain Control) On

Sheath Gas F low 40 .00

A uxiliary/Sw eep Gas F low 10.00

Source V oltage (kV ) 3 .50

Source Current (pA ) 80 .00

Capillary V oltage (V ) 23 .00

Tube Lens O ffset (V ) 30 .00

M ultipole RF A m plifier (Vp-p) 400 .00

M ultipole 1 O ffset (V ) -7 .75

M ultipole 2  O ffset (V ) -9 .50

Inter-M ultipole Lens V oltage (V ) -16 .00

Entrance Lens (V ) -40 .00

Trap D C  O ffset V oltage (V ) -10 .00

F ull M icro Scans 3 .00

F ull M ax Ion Tim e (m s) 50 .00

Table 2.6: Table containing the instrument parameters o f  the LCQ DECA ion trap 

operated during data dependent fragmentation experiments.



2.2.4.2. Orbitrap methods

2.2.4.2.I. Full mass and data dependent scan: uremic analytes 1. 2, 3 at m/z 214. 241, 

275.

Instrum ent Parameter Reading

M S Run T im e (m inutes) 85.00

Segm ents 2.00

Segm ent 1 0-10m in
Scan Events 2 .00
Scan Event D etails 1. Full M S Scan (m /z 150-300)

2. M S/M S D D A  parent ion  list o f 214 .1298  and 241 . I f  parent ion  not 
present fragment nth m ost intense ion  @  CE25% , Q =  0 .25 , IsoW  =

3.0

Segm ent 2 30-50m in
Scan Events 2
Scan E vent D etails 1. Full M S Scan (m /z 150-300)

2. M S/M S 275 .2  @  CE45% , Q =  0 .25 , IsoW  =  3 .0

Capillary Temperature (°C) 275 .00

A G C  (A utom atic Gain Control) On

Sheath Gas F low 10.00

A uxiliary/Sw eep Gas F low 5.00

Source V oltage (kV ) 5.00

Source Current (pA ) 100.00

Capillary V oltage (V ) 42 .00

Table 2.7: Table containing instrument parameters fo r  the LTQ Orbitrap mass 

spectrometer operated in positive mode. These were used when acquiring both fu ll 

mass scan data and data dependent fragmentation information fo r  the novel uremic 

analytes present in size exclusion 2.



2.2.4.2.2. Full mass and data dependent scan: uremic analytes 4, 5, 6 at m/z 270, 381

(359.180). 335.

Instrum ent Parameter Reading

M S Run T im e (m inutes) 

Segm ents

Segm ent 1
Scan Events 
Scan Event D etails

Segm ent 2
Scan Events 
Scan Event D etails

Segm ent 3
Scan Events 
Scan Event D etails .

Capillary Temperature (°C) 

A G C  (A utom atic Gain Control) 

Sheath Gas F low  

A uxiliary/Sw eep Gas F low  

Source V oltage (kV )

Source Current (pA )

Capillary V oltage (V )

85 .00

3 .00

0-10m in
3 .00

1. Full M S Scan (m/z 150-400)
2. M S/M S 270 .1563  (m /z55-300) @  CE35% , Q =  0.25, IsoW  =  3 .0  

3. M S2 270 .1563  -  253 .1296  (m /z65-300) @  CE35%, Q =0.25, 
IsoW =3.0  

M S3 @  CE30% , Q = 0.25 , IsoW =3.0

20-35m in
2

1. Full M S Scan (m /z 150-400)
2. M S/M S 335 (m /z l00 -400 ) @  CE28% , Q =0.25, IsoW =3.0

35-45m in
2

1. Full M S Scan (m /z 150-400)
2. M S/M S 380 .8  (m /z l00-400) @  CE28% , Q =0.25, IsoW =3.0
3. M S/M S 358 .8  (m /z l00 -400 ) @  CE28% , Q =0.25, IsoW =3.0
4. M S/M S 179.9 (m /z l00-400) @  CE28% , Q =0.25, IsoW =3.0

275 .00  

On

10.00

5 .00

5.00  

100.00

4 2 .0 0

Table 2.8: Table containing instrument parameters fo r  the LTQ Orbitrap mass 

spectrometer operated in positive mode. These were used when acquiring both fu ll 

mass scan data and data dependent fragmentation information fo r  the novel uremic 

analytes present in size exclusion 4.



2.2.4.2.3. Mass targeted fragmentation scan: uremic analytes 1, 2. 3. at m/z 214. 241.

275.

Instrument Param eter Reading

M S Run Tim e (m inutes) 85.00

Segm ents 2.00

Segm ent 1
Scan Events

0-10m in
4 .00

1. Full M S Scan (m/z 150-300)
2. M S/M S 214 .1298  (m /z55-300) @  CE25%, Q =  0 .25, IsoW  =  3 .0  

3. M S3 214.1298 -  197.1033 (m /z55-250) @  CE25%, Q =  0 .25 , IsoW  =  3.0  
4. M S/M S 240 .95  (m /z55-300) @  CE25% , Q =  0 .25 , IsoW  =  3 .0

Scan E vent D etails

Segm ent 2
Scan Events

30-50m in

Scan Event D etails
L

1. Full M S Scan (m /z 150-300)
2. M S/M S 275 .2  CE45%, Q =  0 .25, IsoW  =  3 .0

Capillary Temperature (°C) 275 .00

A G C On

Sheath Gas F low 10.00

A uxiliary/Sw eep Gas F low 5.00

Source V oltage (kV ) 5.00

Source Current (p A ) 100.00

Capillary V oltage (V ) 42 .00

Table 2.9: Table containing instrument parameters fo r  the LTQ Orbitrap mass 

spectrometer operated in positive mode. These were used when acquiring targeted 

mass-to-charge fragmentation information fo r  the novel uremic analytes present in 

size exclusion 2.



2.2.4.2.4. Mass targeted fragmentation scan: uremic analytes 4, 5, 6 at m/z 270. 381

(359. 180). 335.

Instrum ent Parameter Reading

M S R un T im e (m inutes) 85.00

Segm ents 3.00

Segm ent 1 0-10m in
Scan Events 5.00
Scan Event Details 1. Full M S Scan (m/z 150-400)

2. M S/M S 270 .1563  (m /z55-300) @  CE35% , Q =  0.25, IsoW  =  3 .0
3. M S2 270 .1563  -  253 .1296  (m /z65-300) @  CE35% , Q =0.25, IsoW =3.0

M S3 @  CE30% , Q =0.25, IsoW =3.0
4. M S2 270.1563 210 .1236  (m /z55-300) @  CE35% , Q =0.25, IsoW =3.0

M S3 @  CE30% , Q = 0.25, IsoW =3.0  
5. M S2 270.1563 -  253 .1296  -  225 .1345  (m /z55-300) @  

CE35% , Q =0.25, IsoW =3.0  
M S3 @  CE30% , Q = 0.25, IsoW =3.0  
M S4 @  CE30% , Q = 0.25, IsoW =3.0

Segm ent 2
Scan Events 
Scan Event Details

20-35m in
3

1. Full M S Scan (m /z 150-400)
2. M S/M S 335 (m /zl00 -400 ) @  CE28% , Q = 0.25, IsoW =3.0

Segm ent 3 35-45m in
Scan Events 3
Scan Event Details 1. Full M S Scan (m /z 150-400)

2. M S/M S 380 (m /z l00-400) @  CE28% , Q = 0.25, IsoW =3.0
3. M S/M S 358 .8  (m /z l00 -400 ) @  CE28% , Q = 0.25, IsoW =3.0
4. M S/M S 179.9 (m /zl00 -400 ) @  CE28% , Q = 0.25 , IsoW =3.0

Capillary Temperature (°C) 275 .00

A G C  (A utom atic Gain Control) On

Sheath Gas F low 10.00

A uxiliary/Sw eep  Gas Flow 5.00

Source V oltage (kV ) 5.00

Source Current (pA ) 100.00

Capillary V oltage (V ) 42 .00

Table 2.10: Table containing instrument parameters fo r  the LTQ Orbitrap mass 

spectrometer operated in positive mode. These were used when acquiring targeted 

mass-to-charge fragmentation information fo r  the novel uremic analytes present in 

size exclusion 4.



2.2.4.3. MALDI-ToF methods

2.2.4.3.I. Mass range 50-2000Da

Instrum ent Settings Positive M ode Negative M ode

Mode of operation Reflector Reflector

Extraction mode Delayed Delayed

Accelerating voltage (V) 20000 20000

Grid voltage 68% 68%

Mirror voltage ratio 1.12 1.12

Extraction delay time 200nsec 200nsec

No. laser shots/spectrum 50 50

Total no. laser shots 150 150

Laser repetition rate 20Hz 20Hz

Vertical scale 0 500mV 500mV

Vertical offset 0.35% 0.35%

Table 2.11: Instrument parameters specific fo r  measuring ions within the mass range 

of50-2000Da.

2.2.4.3.2. Mass range lk-7kDa

Instrum ent Settings Positive M ode Negative M ode

Mode of operation Reflector Reflector

Extraction mode Delayed Delayed

Accelerating voltage (V) 20000 20000

Grid voltage 68% 68%

Mirror voltage ratio 1.12 1.12

Extraction delay time 200nsec 200nsec

No. laser shots/spectrum 50 50

Total no. laser shots 150 150

Laser repetition rate 20Hz 20Hz

Vertical scale 0 500mV 500mV

Vertical offset 0.35% 0.35%

Table 2.12: Instrument parameters specific fo r  measuring ions within the mass range 

o f 1000-7OOODa.



2.2A3.3. Mass range 2k-20kDa

Instrum ent Settings Positive M ode Negative M ode

Mode of operation Linear Linear

Extraction mode Delayed Delayed

Accelerating voltage (V) 25000 25000

Grid voltage 90% 90%

Mirror voltage ratio - -

Extraction delay time 400nsec 400nsec

No. laser shots/spectrum 60 60

Total no. laser shots 180 180

Laser repetition rate 20Hz 20Hz

Vertical scale 0 50mV 50mV

Vertical offset 0.50% 0.50%

Table 2.13: Instrument parameters specific fo r  measuring ions within the mass range 

o f2000-20, OOODa.

t

2.2.4.3A Mass range 5k-100kDa

Instrument Settings Positive M ode Negative M ode

Mode of operation Linear Linear

Extraction mode Delayed Delayed

Accelerating voltage (V) 25000 25000

Grid voltage 90% 90%

Mirror voltage ratio - -

Extraction delay time 750nsec 750nsec

No. laser shots/spectrum 100 100

Total no. laser shots 300 300

Laser repetition rate 20Hz 20Hz

Vertical scale 0 50mV 50mV

Vertical offset 0.50% 0.50%

Table 2.14: Instrument parameters specific fo r  measuring ions within the mass range 

o f5000-100,OOODa.



2.2.5 Laboratory apparatus

• Scientific Industries (Bohemia, NY, USA) Vortex Genie 2 mixer
j
| • HTL (Warsaw, Poland) LabMate 1000, 100, lOpL air displacement pipettes

• Elkay UK (Basingstoke, UK)1000pL air displacement pipette tips

• Bio Medical Laboratory Supplies Ltd (Birmingham, UK) lOOpL air displacement
[

pipette tips

• StarLab GMBH (Ahrensburg, Germany) lOpL air displacement pipette tips

• Hamilton (Reno, NV, USA) lOOpL spiking syringe

• Hamilton (Reno, NV, USA) 250pL spiking syringe

• Edwards (Crawley, UK) Lyophilizer

• Terumo Medical Corporation (Somerset, NJ, USA)lmL plastic syringe

• Sartorius AG (Goettingen, Germany) Minisart High-flow single use syringe

i
0.2pm non-pyrogenic hydrophilic micro filters

• Eppendorf (Hamburg, Germany) 1.5mL vortex tubes

• Eppendorf (Hamburg, Germany) 0.5mL vortex tubes

• Thermo Fisher Scientific (Waltham, MA, USA) 20mL glass scintillation vials

• SunSri (Brockville, Ontario, Canada) 250pL polypropylene autosampler vial and 

snap caps
t
| • Hoover (Glenwillow, OH, USA) -20°C chest freezer
1i
i
I
! 2.3. S tandard Solutions

2.3.1. SEC test solutions

2.3.1.1. a-cvano-4-hvdroxycinnamic acid fCHCA)

A lOmg/mL solution was made in 50:50 acetonitrile:0.1% trifluoroacetic acid in 

dionised water.



2.3.1.2. Adenosine monophosphate TAMP)

A lmg/mL solution was made in 50:50 methanol:0.1% formic acid in deionised 

water.

2.3.1.3. Angiotensin I

A lmg/mL solution was made in 50:50 methanol:0.1% formic acid in deionised 

water.

2.3.2. Known uremic toxin standard solutions

All stock standard solutions were made at lmg/mL concentration in 0.1% formic acid 

in deionised water to enable maximum stability through freezing at -20°C. Dilutions 

were made of each stock solution in 50:50 methanol:0.1% formic acid in deionised 

water and infused at a flow rate o f 8 pL/minute into the LCQ DECA mass 

spectrometer and their respective MS/MS fragmentation mass spectra obtained.

Standard Stock Solution Diluted Concentration (pmole/pL)

Creatinine 10.0
Hypoxanthine 10.0
Indole-3-acetic acid 8.0
p-guanidinopropionic acid 10.0
N-a-acetylarginine 5.0
N-acetyltryptophan 5.0
Uric acid 5.0
A/yo-inositol 8.0
Xanthosine 5.0
Hydroquinone 10.0

Table 2.15: Table containing standard solutions used to obtain reference MS/MS 

mass spectra and the relevant concentrations.



CHAPTER 3:

Validation and Stability Investigations of Novel

Methodology for Screening Haemodialvsate Using LC/MS

and LC/MS-MS

3.1. Introduction

Spent dialysate fluid from 8 renal patients was taken at 5 minutes post-connection 

(sample 2) and 5 minutes pre-disconnection (sample 3) to the dialysate unit to 

characterise diseased and healthy states respectively. The collections o f 5 minutes 

post-connection for different patients were pooled into one volume and named sample

2. The same procedure was applied to the 5 minutes pre-disconnection fluid and 

named sample 3. These were intended to represent the total complement o f uremic 

toxins associated with renal failure before and after treatment, and were lyophilised 

once frozen. For separation 1/10th o f the solid samples were reconstituted in the 

minimum volume o f deionised water and filtered using a Millipore (Billerica, MA, 

USA) 5pm mini-filter. Sample quantities and their subsequent volumes are shown in 

table 3.1.

Sam ple Number W eight of Fraction o f Total 
Sample (g)

Volum e o f Reconstituted  
Sample (mL)

2

3

0.4910

0.4606

3.0

4.0

Table 3.1: Table containing information regarding sample composition fo r  the pooled 

samples obtained 5 minutes post-connection (sample 2) and 5 minutes pre­

disconnection (sample 3) from  the dialysis unit.
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The filtered samples were then aliquoted into 50pL volumes to limit sample used and 

the number of ffeeze-thaw cycles.

3.2. Method Validation 1: Validation of Analytical Protocols for Crude Pooled 

Samples

3.2.1. UV analysis of crude sample

In order to obtain an accurate UV representation o f the crude samples their maximum 

and minimum absorbencies were determined with a UV spectrophotometer (Agilent, 

Santa Clara, CA, USA). The sample chromatograms had a maximum absorbance at a 

wavelength of 242nm. This wavelength was used for subsequent UV analyses and is 

characteristic o f several different chromophoric functional groups from a diazoacetic 

ester, ds-crotonic acid, an unsaturated ketone or a ketone monosubstituted benzene 

ring[1].

B

O

FT R

Figure 3.1: Chemical structure o f  the chromphoric groups that absorb at the UV 

wavelength o f 242 nm; A = diazoacetic ester, B  = cis-crotonic acid, C  = unsaturated 

ketone, where R contains unsaturated functional groups.
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3.2.2. Size exclusion chromatography

3.2.2.1. UV absorbance

Approximate retention times for specific molecular masses were determined using 

several standard solutions. A volume of 20pL o f a-cyano-4-hydroxycinnamic acid 

(CHCA), adenosine monophosphate (AMP), and angiotensin I standards were injected 

for two successive runs onto the size exclusion column as described in Chapter 2 with

I their UV absorbance’s measured at 254 and 242nm. The observed approximate
I
j retention times can be used to predict molecular mass ranges o f any subsequent

| fractions collected of the haemodialysate sample.

|

Standard Solution M olecular W eight (Da) Retention Time (min)

CHCA 189.17 30.5

AM P 347.22 8.5

A ngiotensin  I 1296.48 5.0

Table 3.2: Standard reference materials (Sigma Aldrich, MO, USA) used to predict 

retention time bands within the size exclusion column.



Chapter 3: Validation and Stability

75

A U ar
254mn

AU at 
254nm

0.0
250.0

2.5

0.00.0
10.0 15.05.00.0 rtun

Figure 3.2: Overlaid UV chromatograms o f the size exclusion standard AMP o f  

molecular weight 347.22Da. The UV peak o f absorbance 1.9units at 254nm , fo r  this 

molecular weight is at a retention time o f  8.5 minutes.

Initially the standards were run at the colum n m anufacturers recom m ended flow rate 

o f  lm L /m in  and under these conditions the low m olecular w eight standards were 

poorly separated. The reduction o f  eluent flow rate to 0.5m L/m in greatly im proved 

the separation and was used for fractionating the dialysate samples.

O f the crude pooled sam ple aliquots a volume o f  20pL  was injected onto a 

Biobasic SEC-60 (300 x 7.8m m  i.d., 5pm , 60A) size exclusion colum n (Therm o 

Fisher Scientific, W altham , M A, USA) as part o f the A pplied B iosystem s Ltd (Foster 

City, CA, USA) Vision m ulti-dim ensional LC system. The separation o f  sample 

com ponents using the colum n showed two main UV active sections in both 

chrom atogram s (see figure 3.3).
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O v e r la id  U V  
C h r o m a to g r a m  a t  2 4 2 n m  
o f  3  c o n s e c u t iv e  S E C  
s e p a r a t io n s  o f  s a m p le  2

2.0

ATJar
242mn

1.0

0.0
0.0 25.0 50.0nun

2.5

2.0

1.5

A U a t  
242 tun

1.0

0.5

0.0

O v e r la id  U V
C h r o m a to g r a m  a t 2 4 2 n m
o f  3  c o n s e c u t iv e  S E C
s e p a r a t io n s  o f  s a m p le  3

I

1 W.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . . . . . . . . . . . . . . ,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2.5

2.0

1.5

AU at 
242mn

1.0

0.5

0.0 25.0 50.0
0.0

Figure 3.3: Overlaid UV chromatograms o f  three consecutive SEC separations o f  

sample 2 and 3 at 242nm. Both chromatograms show comparative areas o f  UV 

activity supporting the use o f  the same fractionation procedure.



Chapter 3: Validation and Stability

Fractions o f  different volum es were collected with the em phasis on obtaining a 

greater num ber in the UV active areas and followed the pattern shown in figure 3.4.

2.5

2.02.0

F 2 F 3 F 4 F 5 F 6  F^ F 8  F 9F I F 1 0 F l l  F 1 2 F 1 3

1.0 1.0

0.0 0.0
0.0 25.0 50.0

Figure 3.4 : UV chromatogram o f  sample 2 (S2 — 5 minutes post-connection) 

indicating the areas o fU V  activity; FI  =  0-1 Ominutes, F2 = 10-13minutes, F3 = 13- 

16minutes, F4 =  16-19minutes, F5 = 19-22minutes, F6 = 22-25minutes, F7 = 25- 

28minutes, F8 =  28-31 minutes, F9 =  31-34minutes, F10 = 34-45minutes, F l l  =  45- 

48minutes, F I2 =  48-50minutes, and F I3 =  50-60minutes.

The fractions were collected over specified time periods and the volum e o f  each is 

shown in table 3.3.
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Fraction Retention Time Range (min) Fraction Volum e (mL)

FI 0-10 5.0
F2 10-13 1.5
F3 13-16 1.5
F4 16-19 1.5
F5 19-22 1.5
F6 22-25 1.5
F7 25-28 1.5
F8 28-31 1.5
F9 31-34 1.5

F10 34-45 5.5
F ll 45-48 1.5
F12 48-50 1.0
F13 50-60 5.0

f
I
j Table 3.3: Fraction sizes collected with regards to time elapsed with the

e corresponding volume during the size exclusion chromatographic run.

! This fraction collection regime was also applied to sample 3 (5 minutes pre­

disconnection to the dialysis unit) since it showed a similar separation regarding UV 

absorbance to sample 2. The fractionation o f each sample showed good inter- and 

intra-reproducibility indicated quite clearly by the following overlaid chromatograms 

and tabulated data (see figure 3.5 and tables 3.4-3.6). Intra-reproducibility of 

maximum absorbance retention time for each fraction is represented by a confidence 

interval value shown in the furthermost right hand column o f tables 3.4 and 3.5. This 

| statistical test has been carried out with P = 0.05, and hence we can be 95% confident
i[
I that the values in the table for each run will not deviate by more than ± 0.634 minutes 

from the mean standard deviation for sample 2 separations. This statistical test has 

also been carried out for sample 3 and show that each run will not deviate more than ± 

0.794 minutes from the mean standard deviation. These results indicate that the
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retention times of the fraction maximum absorbance will not differ significantly 

between separations carried out the same day for both samples.

15 15

0.0
15

0.0
15

AU at 
242nm

0.0
15

0.0
25.0 50.00.0 mm

15

0.0
15

0.0
15

AU at 
242nm

AU at 
242mm

0.0
15

0.00.0 25.0 50.0mm

Figure 3.5: A -  UV chromatogram at 242nm o f  multiple runs o f  sample 2 (Sminutes 

post-connection) using the size exclusion LC system, indicating good 

reproducibility o f  the separation with the consistent UV active 

regions o f  the chromatogram.

B -  UV chromatogram o f  multiple runs o f  sample 3 (Sminutes pre­

disconnection) using size exclusion, illustrating good reproducibility



and significant difference in the observed absorbance when 

compared to sample 2.

SEC
Fraction

Retention Time Reproducibility (in minutes) of M aximum UV Absorbance Associated 
with a Size Exclusion Fraction for Sample 2 Day 1

Probability 
Result is 

Within 5% of 
MeanIntra 

run 1
Intra 
run 2

Intra 
run 3

Intra 
run 4

Intra 
run 5

Mean
Std

Dev.
Mean Std 

Dev
Variance

FI 9.9 9.9 9.9 9.9 9.9 9.9 0 .0 0 0 0 .000 0 .000 0.000

F2 12.0 12.0 12.0 12.0 12.1 12.0 0 .0 4 0 0.032 0.002 0.035

F3 13.0 13.0 13.0 13.0 13.0 13.0 0 .0 0 0 0 .000 0 .000 0 .000

F4 17.6 17.6 17.6 17.5 17.5 17.6 0 .049 0.048 0.003 0.043

F5 19.0 19.7 19.0 19.0 19.0 19.1 0 .2 8 0 0.224 0.098 0.245

F6 24.9 24.9 24 .9 24.9 24.9 24.9 0 .000 0.000 0 .000 0 .000

F7 25.0 25.0 25 .0 25 .0 25.0 25 .0 0 .000 0 .000 0 .000 0.000

F8 28 .0 28.4 28 .3 28.1 28.0 28.2 0 .162 0.152 0.033 0.142

F9 31.0 31.0 31 .0 31 .0 31.0 31.0 0 .0 0 0 0 .000 0 .000 0 .000

F10 34 .0 34.0 34 .0 34.0 34.0 34.0 0 .0 0 0 0 .000 0 .000 0 .000

F l l 47.3 46.8 4 6 .2 45 .7 45.3 46.3 0 .723 0 .632 0.653 0 .634

F12 48 .0 48 .0 4 8 .0 48 .0 48.0 48 .0 0 .0 0 0 0 .000 0 .000 0 .000

F13 50 .0 50.2 50.1 50.0 50.1 50.1 0 .075 0 .064 0.007 0.066

SEC
Fraction

Retention Time Reproducibility (in minutes) of Maximum UV Absorbance Associated with 
a Size Exclusion Fraction for Sample 2 Day 2

Probability 
Result is 

Within 5% 
of MeanIntra 

run 1
Intra 
run 2

Intra 
run 3

Intra 
run 4

Intra 
run 5

Mean
Std

Dev.
Mean Std 

Dev
Variance

F I 9 .9 9.9 9.9 9.9 9.9 9.9 0 .0 0 0 0 .000 0 .000 0 .000

F2 11.9 11.9 11.8 12.0 11.7 11.9 0 .102 0 .088 0.013 0.089

F3 13.0 13.0 13.0 13.0 13.0 13.0 0 .000 0 .000 0 .000 0 .000

F4 17.4 17.5 17.6 17.4 17.4 17.5 0 .0 8 0 0 .072 0 .008 0 .070

F5 19.1 19.1 19.2 19.0 19.0 19.1 0 .075 0 .064 0 .007 0 .066

F6 24.3 24.4 2 4 .6 24 .9 24.7 24 .6 0 .2 1 4 0 .184 0 .057 0.187

F7 25.5 25.0 25 .0 25 .0 25.0 25.1 0 .2 0 0 0 .160 0 .050 0.175

F8 28.2 28 .0 28.1 28 .0 28.0 28.1 0 .0 8 0 0.072 0.008 0 .070

F9 31.0 31.0 31 .0 31 .0 32.1 31.2 0 .4 4 0 0.352 0.242 0 .386

F10 34 .9 34.0 34 .0 34 .0 34.5 34.3 0 .3 6 6 0.336 0.167 0 .320

F l l 47 .8 47 .4 4 7 .0 46 .6 45.8 46.9 0 .6 8 8 0.576 0 .592 0.603

F12 48 .0 48 .0 48 .0 48 .0 48.0 48 .0 0 .0 0 0 0.000 0 .000 0 .000

F13 50 .0 50.0 50 .0 50 .0 50.1 50.0 0 .0 4 0 0 .032 0 .002 0.035

Table 3.4: Intra-reproducibility data o f  retention time o f  the maximum UV 

absorbance associated with each size exclusion fraction obtained fo r  sample 2 (5 

minutes post-connection) during two alternate days. Intra-reproducibility,



represented by a confidence interval value, has been carried out with P  = 0.05, and 

hence we can be 95% confident that the values in the table fo r  each run will not 

deviate more than ±0.634 minutes from the mean standard deviation.

The inter-reproducibility o f maximum UV absorbance o f the relevant size exclusion 

fraction has been determined by an F-test calculation (see table 3.6). This indicates 

that there is no significant difference between the retention times o f separations
|

| carried out for both samples on the same and alternate days.



SEC
Fraction

Retention Time Reproducibility (in minutes) of Maximum UV Absorbance Associated with 
a Size Exclusion Fraction for Sample 3 Day 1 Probability 

Result is 
Within 5% 

of Mean
Intra 
run 1

Intra 
run 2

Intra 
run 3

Intra 
run 4

Intra 
run 5 Mean Std

Dev.
Mean 

Std Dev. Variance

FI 9.9 9.9 9.9 9.9 9.9 9.9 0 .000 0.000 0.000 0 .000

F2 11.7 11.7 11.7 11.7 11.6 11.7 0 .040 0.032 0.002 0.035

F3 13.0 13.0 13.0 13.0 13.0 13.0 0 .000 0 .000 0.000 0 .000

F4 17.0 17.1 17.1 16.9 16.9 17.0 0 .089 0.080 0.010 0 .078

F5 19.6 19.5 19.4 19.2 19.0 19.3 0.215 0.192 0.058 0 .189

F6 24.6 24.5 24.3 24 .2 24.2 24 .4 0 .162 0.152 0.033 0 .142

F7 25.0 25 .0 25 .0 25 .0 25.0 25 .0 0 .000 0 .000 0.000 0 .000

F8 28.0 28.0 28 .0 28 .0 28 .0 28 .0 0 .000 0.000 0.000 0 .000

F9 31.7 31.6 31.5 31 .6 31.3 32.8 0.532 0.112 0.023 0 .466

F10 44 .6 44 .0 43 .4 42 .9 42 .6 43.5 0 .727 0.640 0.660 0 .637

F l l 45 .0 45 .0 45 .0 45 .0 45 .0 45 .0 0 .000 0 .000 0.000 0 .000

F12 48 .0 48.5 4 8 .0 48 .0 48 .6 48.2 0.271 0.264 0.092 0 .238

F13 52.1 51.4 50.5 50 .2 50.0 50.8 0.791 0.728 0.783 0 .694

SEC
Fraction

Retention Time Reproducibility (in minutes) of Maximum UV Absorbance Associated with 
a Size Exclusion Fraction for Sample 3 Day 2 Probability 

Result is 
Within 5% 

of MeanIntra 
run 1

Intra 
run 2

Intra 
run 3

Intra 
run 4

Intra 
run 5 Mean Std

Dev.
Mean 

Std Dev Variance

FI 9.9 9.9 9.9 9 .9 9.9 9.9 0 .000 0 .000 0.000 0 .000

F2 11.7 11.7 11.7 11.7 11.7 11.7 0 .000 0 .000 0.000 0 .000

F3 13.0 13.0 13.0 13.0 13.0 13.0 0 .000 0 .000 0.000 0 .000

F4 17.0 17.0 16.9 17.0 17.0 17.0 0 .040 0.032 0.002 0.035

F5 19.1 19.0 19.0 19.0 19.0 19.0 0 .040 0.032 0.002 0.035

F6 24 .4 24.4 24.3 24 .2 24.3 24.3 0.075 0 .064 0.007 0 .066

F7 25.0 25.0 25 .0 25 .0 25 .0 25 .0 0 .000 0.000 0.000 0 .000

F8 28 .0 28 .0 28 .0 28 .0 28 .0 28 .0 0 .000 0 .000 0 .000 0 .000

F9 32.1 33.4 33 .2 33.1 31 .0 32.8 0 .906 0.808 1.013 0 .794

F 10 43 .7 43.5 43 .2 43 .0 42 .7 43 .2 0 .354 0.304 0.157 0.311

F l l 45 .0 45 .0 4 5 .0 4 5 .0 45 .0 45 .0 0 .000 0 .000 0.000 0 .000

F 12 48 .0 48.1 48 .0 4 8 .0 48 .0 48 .0 0 .040 0.032 0.002 0 .035

F13 51.5 51.1 50 .8 50 .4 50.1 50.8 0 .496 0.424 0.307 0 .434

!

Table 3.5: Intra-reproducibility data o f  the retention time o f  the maximum UV 

absorbance associated with each size exclusion fraction obtained fo r  sample 3 (5 

minutes pre-disconnection) during two alternate days. Intra-reproducibility is 

represented by a confidence interval value shown in the furthermost right hand 

column. This statistical test has been carried out with P  = 0.05, and hence we can be 

95% confident that the values in the table fo r  each run will not deviate more than ± 

0.794 minutes from the mean standard deviation.



Inter Reproducibility of Maximum UV Absorbance Inter Reproducibility of Maximum UV Absorbance
Associated with a SEC Fraction Associated with a SEC Fraction

Variance Variance Inter 
Reproducibility 

by F-Test

Variance Variance Inter 
Reproducibility 

by F-Test

SEC
Fraction

of S2 
Fraction 

Day 1

of S2 
Fraction 

Day 2

SEC
Fraction

of S3 
Fraction 

Day 1

of S3 
Fraction 

Day 2

FI 0.000 0.000 FI 0.000 0 .000

F2 0.002 0.013 F2 0.002 0 .000

F3 0.000 0.000 F3 0 .000 0 .000

F4 0.003 0.008 F4 0 .010 0 .002

F5 0.098 0.007 F5 0.058 0 .002

F6 0.000 0.057 F6 0.033 0 .007

F7 0.000 0.050 0.8291 F7 0.000 0 .000 0.8169

F8 0.033 0.008 F8 0 .000 0 .000

F9 0.000 0.242 F9 0.023 1.013

F10 0.000 0.167 F10 0.660 0 .157

F l l 0.653 0 .592 F l l 0 .000 0 .000

F12 0.000 0.000 F12 0.092 0 .002

F13 0.007 0.002 F13 0.783 0 .307

Table 3.6: Reproducibility data o f  the size exclusion separation carried out over 

different days and is represented by an F-test calculation.

32.2.2. pH and conductivity data

In addition to obtaining a UV profile o f the separation, both pH and conductivity data 

was acquired for samples 2 and 3. The pH profile o f both samples also showed good 

inter and intra-reproducibility indicating a drop in pH to 4.21 (± 0.295). This data 

implies that the eluted component at this time point is acidic in nature and 

I corresponds to the largest peak in the chromatogram present in the 16-19 minute size
i

exclusion fraction (F4). This effect is also present in the chromatograms obtained for 

sample 3 and can provide further evidence in supporting the reproducibility of the 

separation method. In addition, it may also indicate that the same or similar acidic 

component is present in both samples, although, as indicated by the UV 

chromatogram, at different concentrations.
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R ep rod u cib ility  o f  L C  D ata: S am p le  3

P eak
V aria tion  in  p H

In ter  M ean In tra  M ean

FI 0.25 0.30

F2 0.30 0.21

F3 0.07 0.18

F4 0.10 0.24

F5 0.14 0.19

F6 0.16 0.16

F7 0.02 0.14

F8 0.05 0.16

F9 0.11 0.16

F10 0.16 0.16

F l l 0.16 0.14

F12 0.16 0.14

F13 0.17 0 .14

R ep rod u cib ility  o f  L C  D ata: Sam p le  2

V a ria tion  in  p H
P eak

In ter  M ean In tra  M ean

FI 0.87 0.30

F2 0.92 0.29

F3 0.35 0.34

F4 0.42 0.35

F5 0.60 0.30

F6 0.67 0.23

F7 0.33 0.26

F8 0.32 0.25

F9 0.48 0.23

F10 0.58 0.20

F l l 0.59 0.18

F12 0.60 0.18

F13 0.65 0.19

Table 3.7: Inter- and intra-reproducibility data o f  p H  measurements fo r  each size 

exclusion fraction throughout the chromatographic run fo r  both sample 2 (5 minutes 

post-connection) and sample 3 (5 minutes pre-disconnection).
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Figure 3.6: Overlaid pH  pro files o f  three repeated SEC separations for sample 2 and 

3 illustrating the drop in pH  within the 16-19minute fraction.



Overall the pH results displayed good reproducibility as shown by the data present in 

table 3.7 and the profiles for both samples. The conductivity data also correlates with 

this change in pH, with a singular peak present in the 16-19 minute fraction. This 

again shows good reproducibility between separations and displays a variation in 

conductivity between the two samples. The results illustrate that sample 2 has a 

greater degree o f conductivity at 16-19 minutes than the corresponding fraction of 

sample 3. A possible explanation for this is that there is an increased level of protons 

(H+) present in solution as represented by the decrease in pH.

R ep rod u cib ility  o f  L C  D ata: Sam ple 3

P eak
C o n d u ctiv ity

In ter  M ea n In tra  M ean

FI 0.00 0.00

F2 0.00 0.00

F3 0.02 0.02

F4 0.05 0.06

F5 0.00 0.00

F6 0 .00 0.00

F7 0.00 0.00

F8 0.00 0.00

F9 0.00 0.00

F10 0 .00 0.00

F l l 0 .00 0.00

F12 0.00 0.00

F13 0.00 0.00

R ep rod u cib ility  o f  LC  D ata: Sam ple 2

P ea k
C onductiv ity

In ter  M ean Intra  M ean

FI 0 .00 0 .00

F2 0 .00 0.00

F3 0.09 0.02

F4 0.08 0.18

F5 0.00 0 .00

F6 0 .00 0.00

F7 0 .00 0 .00

F8 0.00 0 .00

F9 0 .00 0 .00

F 10 0 .00 0 .00

F l l 0 .00 0.00

F12 0 .00 0 .00

F13 0.00 0 .00

Table 3.8: Inter- and intra-reproducibility data o f  conductivity measurements fo r  each 

size exclusion fraction throughout the chromatographic run fo r  both sample 2 (5 

minutes post-connection) and sample 3 (5 minutes pre-disconnection).
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Figure 3.7: Overlaid conductivity profiles o f  three repeated SEC separations fo r  

samples 2 and 3 showing a peak within the 16-19 minute fraction at a maximum value 

o f  15.7mS and 10.6mS respectively.
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The size exclusion separation is essentially a fractionation procedure aiming to 

minimize the complexity of samples 2 and 3, making them more manageable. This 

degree o f separation is still insufficient for the samples to be analysed by mass 

spectrometry, and hence an additional preparative step is required.

3.2.3. Reverse phase chromatography

The details of this separation is described in Chapter 2 section 2.2.2.2, and was setup 

as an online procedure, with the column effluent passing directly into the ionisation 

source of the mass spectrometer. Prior to injection, the size exclusion fractions were 

lyophilised to concentrate any analytes present. Each fraction was reconstituted in 

150pL of deionised water, vortexed for 20 seconds and then transferred into a 200pL 

autosampler vial. Initial reverse phase separations o f the SEC fractions appeared to 

have average reproducibility and only a few observed differences o f the UV and mass 

spectrometric data o f sample 2 and 3 were apparent. However, upon re-injection o f a 

fraction after a few days at room temperature a large proportion o f the UV activity o f 

the chromatogram was absent (see figure 3.7). This prompted stability tests to be 

carried out in order to obtain a valid candidate ion or biomarker with confidence by 

mass spectrometry.
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Figure 3.8: Illustration o f overlaid UV chromatograms o f  fraction 4 o f  the size 

exclusion separation o f  samples 1 (blank dialysate solution prior to contact with the 

patient -  S1/F4), 2 (S2/F4), and 3 (S3/F4). Fraction 4 o f  sample 2 was re-injected 

after 2 days (S2/F4R) and shows the absence o f a cluster o f  peaks within the 10-50 

minute region o f  the chromatogram o f the original injection.

3.2.3.1. Stability investigations o f  each size exclusion fraction 

In order for the online reverse phase method to be reproducible and valid for 

overnight analyses sample therm al lability was determ ined over a 16 hour period. 

This consisted o f  repeat injections o f  each size exclusion fraction at 0, 8 , and 16 hour 

tim e points at 10°C into the LCQ DECA ion trap m ass spectrom eter (Therm o Fisher 

Scientific). Stability m ass spectrom etric profiles were obtained for each fraction and 

intensity values for observed peaks at the relevant tim e points recorded. From  

com paring the total ion chrom atogram s o f the fractions there were observed 

differences in the results over the 16 hour period.

SEC SI E4 = 
SEC S2 F4 = 
SECS2F4R: 
SEC S3 F4 =

L_k
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Figure 3.9: Total ion chromatograms o f  fraction 10 o f  the size exclusion separation o f  

sample 2 fo r  0 hour (top) and 16 hour (bottom). Circled are some o f  the differences 

revealed by the stability investigations indicating the appearance o f  new analytes (at 

retention time o f 49.86 minutes) or the accumulation o f  existing analytes (at retention 

times o f  5.89, 7.91 and 17.87 minutes) over 16 hours.

A thorough analysis o f  the num erical data obtained for these investigations showed 

that for both sam ple 2 and sam ple 3 there was a large num ber o f  analytes present that 

had very poor stability during the 16 hour period. This indicates that som e o f  the 

analytes present are therm ally labile when existing as a m ixture in the dialysate 

solution. Furtherm ore, these sam ple com ponents m ay also be labile w hen exposed to 

UV light and thus any subsequent sample collection will involve appropriate UV 

protective containers.
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In order to have a reliable final biomarker, those chosen from the comparative 

investigations of sample 2 and 3 should display considerable stability over the 

analysis time.

3.2.3.2. Reproducibility study o f the reverse phase chromatography

Retention time is of considerable importance in confirming the presence o f a sample
[
| component and reproducible chromatography is essential in obtaining valid analyte
I

identification. In order for chromatographic runs to be compared the inter- and intra­

reproducibility of retention time must be determined to identify any variations in 

I analyte separation. Lyophilised size exclusion fractions were reconstituted in 150pL 

o f deionised water prior to injection using the chromatographic conditions as 

described in Chapter 2, section 2.22.2. Retention time reproducibility was monitored 

using both UV and mass spectrometric detection as an on-line separation method. 

Each size exclusion fraction showed good intra-reproducibility with little variation 

observed between each run, deviating no more than +/- 0.124 minutes from the mean 

retention time (see table 3.9). However, the subsequent injections to test inter­

reproducibility did show some variations when compared to the data obtained the 

previous day but very little when compared to that on the same day. A likely 

explanation is the poor stability observed for some of the size exclusion fraction 

components. This was confirmed with separations carried out at a reduced 

i temperature o f 10°C. At these optimum conditions each size exclusion fraction was 

separated with a high degree o f reproducibility for alternate days determined by an F- 

test statistical calculation (see table 3.10). Thus, this again highlights the importance 

o f  choosing a final biomarker that has good degree of stability over a sufficient period 

o f time, i.e. the duration o f the analysis.



Intra-reproducibility o f the Relative Retention Times w ithin  Typical Reverse Phase
Chromatographic (RP-HPLC) Runs

SEC Fraction
Standard Deviation of 

RRT Variance o f RRT
Probability Result is 
within 5% o f M ean

F I (0-10  m in) 0.061 0.0037 0.069

F 2 (10-13  m in) 0.055 0.0030 0.062

F 3 (13 -16  m in) 0.110 0.0121 0.124

F 4 (16 -19  m in) 0.080 0.0064 0.091

F 5 (19-22  m in) 0.020 0.0004 0.023

F 6 (22 -25  m in) 0.041 0.0017 0.046

F 7 (25-28  m in) 0.150 0.0225 0.170

F 8 (28-31  m in) 0.130 0.0169 0.147

F 9  (31-34  m in) 0.097 0.0094 0.110

F 10 (34-45  m in) 0.078 0.0061 0.088

F l l  (45 -48  m in) 0.046 0.0021 0.052

F 12 (48-50  m in) 0.080 0.0064 0.091

F I 3 (50-60  m in) 0.067 0.0045 0.076

Table 3.9: Intra-reproducibility data fo r  the reverse-phase chromatographic runs at 

l ( fC  fo r  the peak at m/z 803 which is present in all size exclusion fractions o f  sample 

2. Intra-reproducibility is represented by a confidence interval value shown in the 

furthermost right hand column. This statistical test has been carried out with P  = 

0.05, and hence we can be 95% confident that the values in the table fo r  each run will 

not deviate more than ± 0.124 minutes from  the mean standard deviation.
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Inter-reproducibility o f the Relative Retention Times within Typical Reverse Phase
Chromatographic (RP-HPLC) Runs

SEC Fraction
Standard Deviation  

of RRT Day 1
Standard Deviation  

of RRT Day 2
Inter-reproducibility 

by F-test

FI (0-10 min) 0.087 0.091

F2 (10-13 min) 0.100 0.105

F3 (13-16 min) 0.157 0.162

F4 (16-19 min) 0.146 0.140

F5 (19-22 min) 0.080 0.070

F6 (22-25 min) 0.094 0.091

F7 (25-28 min) 0.194 0.193 0.939

F8 (28-31 min) 0.182 0.182

F9 (31-34 min) 0.140 0.134

F10 (34-45 min) 0.127 0.121

F l l  (45-48 min) 0.099 0.095

F12 (48r50 min) 0.133 0.125

F13 (50-60 min) 0.099 0.098

Table 3.10: Reproducibility data o f  reverse phase chromatographic separation carried 

out over different days. This inter-reproducibility is represented by an F-test 

calculation.
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Figure 3.10: UV chromatogram o f repeated reverse phase separations o f  fraction 4 

from  the size exclusion separation o f  sample 2. Good inter and intra reproducibility 

was observed although slight variations in the chromatograms may be attributed to the 

poor stability o f  some o f  the sample components.

3.3. Method Validation 2: Identification of Known Uremic Toxins

Extraction and detection o f  known urem ic toxins can provide additional evidence that 

this m ethodology for dialysate preparation has the potential to identify new  uremic 

analytes. M ass spectrom etric detection was carried out using both the LCQ DECA 

ion trap and the LTQ Orbitrap (Therm o Fisher Scientific, CA, U SA ) and highlighted 

the presence o f  a range o f  ions suspected to be know n urem ic toxins. The 

assignm ents o f  identities were confirm ed by considering chrom atographic elution 

conditions, elem ental form ula and fragm entation data for each suspected ion. All ion 

accurate m asses were obtained w ithin an error o f 5ppm unless stated otherw ise in the 

relevant chapters.
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3.3.1. Creatinine
i

Creatinine is one of the conventional markers used for the assessment of dialysis 

adequacy. The serum level can vary between patients as it is dependent on several 

factors other than accumulation, such as muscle mass and protein intake. Creatinine 

clearance is not affected to this degree and is used with other solutes including urea as 

a predictive parameter o f dialysis adequacy. This uremic solute is usually measured 

using an enzymatic test as the conventional Jaffe reaction can be affected by glucose, 

ketoacids and particular classes of drugs, such as antibiotics^.

Molecular Formula -  C4H7N3O 
O Protonated Molecule [M+H]+ Formula -  C4H8N3O

Figure 3.11: Chemical structure and related molecular information o f  the uremic 

toxin creatinine.

In solution creatinine is present as an ion of m/z 114. A peak of corresponding 

mass was observed in size exclusion fractions 6 and 7, consistent with the expected 

greater retention time associated with smaller molecular mass. Again, both the 

standard reference material and the unknown were fragmented by MS/MS and the 

mass spectra compared (see figure 3.12). The fragmentation of the standard shows a 

loss o f 28Th associated with the transition m/z 114 —► 86, due to the ejection of carbon 

monoxide from the protonated molecule (see figure 3.12). Creatinine is also capable 

o f losing a highly stable structure of CH2N2 consistent with the transition of m/z 114 

-► 72 and both losses are present not only in the MS/MS mass spectrum of the

H N
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standard but also in the unknown. It is therefore clear from the sim ilarities o f  the ions 

present and their relative intensities that the unknow n at m/z 114 is creatinine.

100

M S/M S o f creatin in e 90 M S/M S o f  unknow n
i  stan d ard  at m/z 114 SO at m/z 114

.  70

c  60

i
|  50-
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Figure 3.12: Fragmentation patterns o f  creatinine reference standard and an 

unknown o f  corresponding mass and retention time within the haemodialysate 

solution.

3.3.2. H ypoxanthine

This purine w hen retained in renal patients is known to affect several im portant 

physiological m echanism s such as vasoconstriction, platelet-induced vasorelaxtion [31 

and the repair o f  the endothelial barrier w ithin the k id n ey ^ . This urem ic toxin has 

only previously been detected in serum  and blood sam ples with detection by UV 

spectrophotom etry^’ which is prone to interferences from  other chrom ophores with 

sim ilar reverse phase retention times. Hence, the ability to detect and m onitor the 

levels o f  this urem ic toxin within haem odialysate by m ass spectrom etry w ith greater 

specificity has the potential to lim it such m alfunctions o f  these physiological systems.
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Figure 3.13: Chemical structure o f hypoxanthine with its expected molecular formula 

and mass for the neutral and positively charged moiety.

An unknow n ion o f  corresponding m ass-to-charge (m/z 137) w as observed 

w ithin the haem odialysate solution at an appropriate m obile phase com position for 

hypoxanthine. A  com m ercial standard o f  hypoxanthine was fragm ented by collision 

induced dissociation (CID) and com pared to the unknow n fragm entation pattern (see 

figure 3.14). The m ass spectrum  o f  the latter showed all associated ion transitions o f 

hypoxanthine from  the initial loss o f  w ater (m/z 137 119) to those involving ring

opening (see figure 3.14).
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Figure 3.14: MS/MS fragmentation spectra o f the unknown ion at m/z 137 and the 

standard reference material o f a known uremic toxin hypoxanthine. Assignment o f 

identity is made on the similarities o f the ions present in both mass spectra.
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The accurate mass and fragmentation MS/MS studies of both the standard 

reference material and the unknown enabled a partial fragmentation reaction scheme 

to be created as shown figure 3.15. The elemental formula of the fragments and the 

neutral losses are consistent with hypoxanthine and with the remaining fragmentation 

data indicates that this is the identity of the unknown ion.

A
137.0458 
Cs Hs N4 O

B C
119.0352 110.0349
c5h3n4 c4h4 n3o

Figure 3.15: Fragmentation reaction scheme generated from  the accurate masses o f  

ions generated in the MS/MS mass spectrum o f  the unknown ion at m/z 137.

3.3.3. Pseudouridine

This nucleoside is an isomer o f uridine and both are common components o f RNA 

nucleic acid. When charged they are both observed at m/z 245 and differ only by the 

position o f a nitrogen atom within the 6-membered ring changing the bond to the 

sugar moiety from a carbon-nitrogen bond to a carbon-carbon bond as shown in figure 

3.16. This structural variation results in very different mass spectral fragmentation 

patterns and can enable the identification o f the isomer without other analytical 

techniques such as NMR (see figure 3.18). Past studies on modified nucleosides have 

included their potential use as cancer markers^7’ 8] and as analogues for developing 

antiviral treatments19, 10l  Pseudouridine that originates from tRNA is normally



excreted in urine as an intact molecule and has been reported to accumulate in the 

serum of renal patients^11,12,13’14,15,16].

'NH

N ^ O

OH

OH

OH

U rid in e

HN NH

OH

OH

OH

P seu d ou rid in e

Figure 3.16: Chemical structures o f  the nucleosides uridine and pseudouridine. 

These are isomers and contain a structural difference involving an amino group 

within the 6-membered ring resulting in change from  a carbon-carbon bond to a 

carbon-nitrogen bond to the sugar moiety.

An unknown parent ion was observed at m/z 245 within the dialysate solution. 

The reverse phase chromatographic retention time, corresponding to approximately 

15% organic solvent, indicated that this ion could be either of these nucleosides from 

the list o f published uremic toxins. This was supported further by the calculated 

accurate mass which generated a correct elemental formula for the ions o f these 

isomers of C9H13N2O6 at an error of 1.3ppm. An accurate mass was also obtained for 

each of the fragment ions present in the unknown MS/MS mass spectrum and a 

product ion reaction scheme generated (see figure 3.16). This shows several possible



losses of water consistent with both isomers and is more likely with pseudouridine as 

shown in the MS/MS mass spectrum.

-2xH20-h2o

-3xH20,

179.0451

227.0662 
C 9 H t1 N2 0 ,

191.0451

Figure 3.17: Product ion reaction scheme generated from  the calculated accurate 

mass o f  ions present in the MS/MS mass spectrum o f  the unknown ion at m/z 245.

A comparison of the standard1171 MS/MS fragmentation pattern with the 

accurate mass fragmentation reaction scheme and MS/MS mass spectrum of the 

unknown reveals that it this ion is protonated pseudouridine.
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Figure 3.18: MS/MS fragmentation pattern o f uridine and pseudouridine[I7] standard 

reference materials and an unknown parent ion o f corresponding mass-to-charge 

present within the haemodialysate sample. All MS/MS mass spectra were obtained on 

an LCQ DECA ion trap mass spectrometer.
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3.3.4. Advanced glvcation end products

These are formed as an eventual product of the Maillard reaction; a series of complex 

non-enzymatic reactions between a reducing sugar such as glucose and the amino 

groups o f biomolecules in the form of proteins, peptides and amino acids^18]. These 

AGE compounds are known to exist at elevated levels in uremic patients and can be 

found as much as 10 times the levels associated with a healthy person1-19’20]. This is 

thought to be due to a combination o f both an increase in AGE synthesis by oxidative 

or carbonyl stress and a decrease in AGE excretion by the kidney after digestion to 

form AGE-peptides[19]. Accumulation of modified peptides can result in further 

production o f AGE-related toxins and biochemical interactions with molecules such 

as lipoproteins and collagen[21]. In addition to AGE-peptides, smaller moieties 

resulting from reactions with amino acids can be formed, such as Ne- 

(carboxymethyl)lysine (CML), N£-(carboxyethyl)lysine (CEL) and pentosidine.

An ion o f corresponding mass-to-charge to a common AGE, Ne- 

(carboxyethyl)lysine or CEL, was discovered within the haemodialysate. The 

calculated accurate mass suggested that this ion had an elemental formula 

(C9H 19N 2O4), obtained with an error o f 2.4ppm and a relevant fragmentation pattern 

was generated for additional information (see figure 3.19). This included a partial 

product ion reaction scheme o f ions with their calculated accurate mass and associated 

elemental formula as shown in figure 3.20. All data matched published work 

indicating that this unknown at m/z 219 is the protonated molecule, [M+H]+, o f the 

AGE N£-(carboxyethyl)lysine[22,23> 241.
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Figure 3.19: MS/MS fragmentation pattern o f an unknown at m/z 219 within the 

haemodialysate solution.

A
219.1339

c9h19n2o4

c3h7no2

B C
201.1234 130.0863

C9 H17N2o 3 c6h12n o 2

Figure 3.20: Fragmentation reaction scheme o f the unknown ion at m/z 219 present in 

the haemodialysate and suspected to be the uremic toxin CEL.

+ H

- 9 9 -



In addition to this AGE moiety, an ion present at m/z 254 generated a 

calculated accurate mass and subsequent elemental formula at an error of -1.7ppm that 

corresponded to the molecule Argpyrimidine (2,5-Diamino-pentanoic acid (5- 

hydroxy-4,6-dimethyl-pyrimidin-2-yl)-amide). This was selected for further structural 

elucidation by fragmentation and generated the MS/MS mass spectrum shown in 

figure 3.22. Unfortunately all past research regarding detection and quantitation o f 

this AGE compound by mass spectrometry has involved synthesis in-house with 

multiple reaction monitoring (MRM) analyses^221. Thus, due to time constraints with 

this project structural elucidation and assignments for this ion were made from the 

proposed fragment matches from predicted degradative pathways and published

Molecular Formula - C11H19N5O2 
Molecular Mass - 253.1533

Protonated Molecule [M+H]+ Formula - C11H20N5O2 
Protonated Molecule [M+H]+ Mass - 254.1612 
Protonated Molecule Measured Mass Error of 1.7ppm

Figure 3.21: Chemical structure o f  the AGE compound Argpyrimidine or 2,5- 

Diamino-pentanoic acid (5-hydroxy-4,6-dimethyl-pyrimidin-2-yl)-amide, and the 

molecular mass and protonated molecule mass information.

The fragmentation pattern of the ion suspected to be Argpyrimidine contained 

the expected m/z 140 (see figure 3.22) as stated by MRM experiments in published 

literature^221, however there are several other ions also present.

information available.

N:

HN ^  ^ --------OH
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Figure 3.22: MS/MS fragmentation mass spectrum o f the unknown ion at m/z 254 

within the haemodialysate suspected to be the AGE compound Argpyrimidine.

From  the chem ical structure and M S/M S m ass spectrum obtained at high accuracy we 

can predict that the ions at m/z 237 and 220 are as a result o f  successive losses o f  the 

prim ary amino groups in the form o f  am m onia. The transition o f  m/z 254 to m/z 236 

o f  18Th is com m only associated w ith hydroxyl groups w here they are lost as a w ater 

m olecule, and the next fragm ent at m/z 219 m ay form due to the ejection o f  a prim ary 

am ino group again as am m onia. The M S/M S m ass spectrum  also show s another 

decrease o f  18Th from m/z 220 to m/z 202, and could be due to a loss o f  water 

follow ing the subtraction o f  two am m onia m olecules. This inform ation enables a 

product ion reaction schem e to be generated as shown in figure 3.23.

LIBRARY
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E
219.1240 

C„ H15N40

Figure 3.23: Product ion fragmentation reaction scheme o f  the unknown ion at m/z 

254 suspected to be the uremic toxin and AGE compound Argpyrimidine.

A comparison of elemental and fragmentation information with the suggested 

chemical structure and published literature indicate that this unknown ion at m/z 254 

is Argpyrimidine. However, in order to confirm this suspicion the results shown here 

would require comparison against a standard reference material.

3.3.5. Dimethyl glycine

This is a by-product o f the betaine-homocysteine methyltransferase (BHMT)- 

mediated biochemical pathway involved in synthesis and reuse o f the amino acid 

methionine 2̂5,26\  This physiological mechanism is essential for the correct formation 

of phospholipids and eventual cell membrane construction. The starting material is a 

homologue of the amino acid cysteine, homocysteine. This uremic toxin is frequently 

used as a risk factor for atherosclerosis[25\  a clinical condition common in dialysis 

patients. Past research indicates that both dimethyl glycine and homocysteine

D
220.1081 

c„ hu n3o2
F

140.0818
Cs H10N,O
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accum ulate in renal patients. D uring chronic renal failure (CRF) dim ethylglycine is 

used as an independent predictor o f  hom ocysteine levels and an indirect m arker for 

the developm ent o f  atherosclerosis[26].

An ion at m/z 104 was observed w ithin the haem odialysate at low organic 

solvent com position ( - 10% m ethanol) consistent with the elution o f 

dim ethylglycine^27̂ . The accurate m ass o f  this ion obtained at an error o f  3.7ppm  

suggests it has an elem ental form ula o f  C4H 10N O 2 and is equivalent to that o f  ionized 

dim ethylglycine ([M +H ]+).

100 q

OH

-o 60 ■
« 50 ̂
a: 40

104.1
0- 90 100m/z

Figure 3.24: Fragmentation mass spectrum o f  unknown at m/z 104 present in the 

haemodialysate sample. Both elemental formula and MS/MS data correspond to 

dimethylglycine standard reference material and related workf27̂ .

W hen fragm ented, the unknow n form ed an alm ost identical pattern to that o f  the 

dim ethylglycine standard[27] in respect o f  the ions present and their relative 

abundances (see figure 3.24). C haracteristically this unknown ion had ju st one 

product ion at m/z 58, corresponding to the loss o f  carbon m onoxide and water or
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formic acid from the protonated molecule of dimethylglycine and is formed due to its 

high stability.

A
104.0706
C<H10 n o 2

-ch2o2

B

58.0651 
C3 H8N

Figure 3.25: Product ion reaction scheme o f  an unknown ion at m/z 104 detected 

within the haemodialysate solution and suspected to be the uremic solute 

dimethylglycine.

This ion within the unknown MS/MS mass spectrum has an accurate mass with an 

elemental formula indicative o f this dimethylglycine fragment (see figure 3.25) and 

when included with the other information described previously confirms the presence 

of this uremic toxin in haemodialysate.

3.3.6. Indole-3-acetic acid

This uremic toxin is classed as ‘protein-bound’ exerting a larger effective molecular 

weight than expected and results in a limited haemodialytic removal. Its propensity to 

bind to proteins can affect the toxicity o f administered drugs as it can compete for 

protein receptors or binding sites. Studies have also shown that this indole disrupts 

ion transport within the kidney tubules and interferes with the reabsorption of 

necessary solutes[28]. This work was carried out mainly with UV detection following
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reverse phase HPLC separation and states that this solute will elute from the column 

with 40% organic mobile phase[6l  The reverse phase separation of prepared 

haemodialysate shows a peak present at m/z 176 corresponding to elution conditions 

o f 40-45% organic mobile phase and was suspected of being indole-3-acetic acid. 

Further evidence for this was obtained by calculating the accurate mass of the 

unknown ion at an error o f -1.4ppm and generated an exact elemental formula.

Molecular Formula - C10H9NO2 
Molecular Mass - 175.0628

Protonated Molecule [M+H]+ Formula - C10H10NO2 
Protonated Molecule [M+H]+ Mass - 176.0706 
Protonated Molecule Measured Mass Error of -1.4DDm

Figure 3.26: Chemical structure o f  unbound indole-3-acetic acid and its molecular 

formula and mass fo r  both the neutral and positively charged species.

Fragmentation of indole-3-acetic acid generates a distinctive MS/MS mass spectrum. 

One product ion is formed, clearly observed at m/z 130, and is as a result of the loss of 

the carboxylic acid group. The unknown ion at m/z 176 fragments to an almost 

identical pattern to indole-3-acetic acid with regards to the ions present and their 

relative intensities.

OH
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Figure 3.27: Fragmentation patterns o f  indole-3-acetic acid at m/z 176 and an ion 

within the haemodialysate solution o f  corresponding mass.

This suggestion is supported further by the calculated accurate m ass o f  the fragm ent 

ion, m/z 130, producing an elem ental form ula indicative o f  the loss associated with the 

protonated indole-3-acetic acid (see figure 3.28).

A

176.0706
c 10 h 10n o 2

-c h 2o 2

B

130.0287
c9 h8n

Figure 3.28: Fragmentation pattern o f  the unknown ion at m/z 176 suspected to be the 

uremic solute indole-3-acetic acid.
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3.3.7. B-guanidinopropionic acid

This is an analogue of another uremic toxin, creatine, and has an inhibitory affect on 

creatine uptake into the cell. The reduction of intracellular creatine disrupts the 

enzyme, creatine kinase, and can lead to an eventual interference in bone formation 

and re p a ir^  It is also thought to have an additional role in the ‘metabolic syndrome’ 

and research has shown that it can cause an elevated level of protein modification^30-*. 

Previous work comparing the removal of this analyte using different dialysis 

techniques has shown that despite having similar excretion kinetics to the current 

biomarkers, urea and creatinine, levels remain higher following treatment than in 

healthy patients.

Molecular Formula - C4H9N3O2 
Molecular Mass - 131.0689

0H Protonated Molecule [M+H]+ Formula - C4H10N3O2 
Protonated Molecule [M+H]+ Mass - 132.0768 
Protonated Molecule Measured Mass Error of -2.3ppm

Figure S. 29: Chemical structure o f  the uremic toxin f-guanidinopropionic acid and 

associated molecular information.

In solution this analyte is observed at m/z 132 and forms ions of m/z 115, 114, 

90, 8 6 , 72 and 60 when fragmented using collision induced dissociation as shown in 

figure 3.31. The first two fragments correspond to the loss of ammonia and water 

directly from the protonated molecule and the peak at m/z 8 6  is generated following 

the loss of carbon monoxide from the ion at m/z 114.
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Figure 3.30: Fragmentation MS/MS spectra o f the uremic toxin j3-guanidinopropionic 

acid with a parent ion at m/z 132 and an unknown ion present in the haemodialysate 

solution o f corresponding mass-to-charge. The standard o f j.3-guanidinopropionic 

acid shows characteristic fragments at m/z 115, 114, and 90 which are also present in 

the unknown mass spectrum.
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It is these three ions that are present in the fragmentation MS/MS mass spectrum of an 

unknown at m/z 132 in the haemodialysate solution and has an accurate mass 

suggesting an elemental formula of C4H 10N 3O2 at an error of -2.3ppm. The accurate 

mass o f the product ions in the MS/MS mass spectrum are also indicative of those 

associated with P-guanidinopropionic acid (see figure 3.31). Therefore, this 

information in combination with the similarities of the fragmentation patterns suggest 

that the unknown ion at m/z 132 is the uremic toxin P-guanidinopropionic acid.

-h2o

-ch.n. -CH.O.

86.0713 
c3h8 N,

115.0502

132.0768
c4h10n, o2

Figure 3.31: Product ion reaction scheme o f  the unknown ion at m/z 132 proposed to 

be the uremic toxin /3-guandinopropionic acid.

3.3.8. N-a-acetvlarginine

N-a-acetylarginine is one of several guanidino compounds known to accumulate 

within renal patients to toxic levels 3̂1,32,33’24\  They are all essentially metabolites of 

proteins and peptides and contain the guanidino functional group. The vast majority 

of published research regarding the physiological role of these compounds has 

involved two of the most established guanidines, creatine and arginine, and work
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carried out with N- a-acetylarginine has primarily involved toxicity studies. This was 

to assess the extent it contributes to symptoms associated with renal failure^35,36].

H,N

Molecular Formula - C8H]6N40 3 
Molecular Mass - 216.1217

Protonated Molecule [M+H]+ Formula - C8H]7N40 3  
Protonated Molecule [M+H]+ Mass - 217.1295 
Protonated Molecule Measured Mass Error of -0.1 ppm

Figure 3.32: Chemical structure o f  the uremic toxin N-a-acetylarginine and its 

associated mass information.

From the chemical structure it is likely to encounter a loss of either ammonia or water 

due to the presence of a primary amino and hydroxyl group, respectively during CID 

fragmentation. This is illustrated by the MS/MS mass spectrum of the commercial N- 

a-acetylarginine standard by the first two fragment peaks at m/z 200 and 199, 

associated with the subtraction of 17 and 18Th from the parent ion. The remaining 

product ions are formed as a result o f hydrogen rearrangements priming the structure 

for further fragmentation involving the heteroatoms present. Analysis of the 

haemodialysate sample revealed an ion of m/z 217 that had an accurate mass and a 

proposed elemental formula of C8H 17N4O3 to within -O.lppm. This, and the reverse 

phase retention time corresponded to the known uremic toxin o f N-a-acetylarginine, 

which was fragmented for a comparison with the unknown (see figure 3.33). Visually 

it appears as though the fragmentation patterns were obtained from the same 

compound due to the similarities of the masses of ions present. This is also supported 

by the accurate masses obtained for the ions at m/z 200, 199, 158 and 157 which 

correspond to the losses ammonia, water, a guanidine-type fragment o f CH5N3, and



the term inal carboxylic acid group from N -a-acetylarginine, respectively (see figure 

3.34).
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Figure 3.33: MS/MS fragmentation mass spectra o f the commercially available 

standard N-a-acetylarginine with a parent ion o f m/z 217 and an ion o f corresponding 

mass-to-charge within the haemodialysate concentrate.
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Hence, with the other mass spectrometric and chromatographic information 

obtained, it appears that N-a-acetylarginine is present in the haemodialysate solution 

at m/z 217.

-h2o-n h 3

199.119020Q.1030

Figure 3.34: Product ion reaction scheme o f  the unknown ion at m/z 217.

3.3.9. Hippuric acid fbenzovlglvcine)

This is an aromatic acid formed as a result o f glycine metabolism involving the 

conjugation of this amino acid with a benzene ring. Research has indicated that this 

has the potential to be used as a biomarker for a dysfunction in the glucuronidation 

stage of metabolism. It highlighted that levels of hippuric acid can more than double 

from metabolism malfunction as a result of over stimulation of the nuclear receptor 

peroxisome proliferator-activated receptor alpha (PPARa). Therefore the potential of 

this analyte as a biomarker has been investigated as part o f a range of candidates in 

monitoring disturbances of intermediary metabolism^37-1.

This analyte has also been found to accumulate within renal patients receiving 

dialysis treatment and is hence classed as a uremic toxin. Previous studies involving
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this patient cohort have involved monitoring this toxin within blood, plasma and urine 

but not haemodialysate. This analyte has proved detectable by mass spectrometry and 

has been quantified in urine samples by monitoring a particular reaction path of its 

fragmentation by tandem mass spectrometry or MS/MS.

Molecular Formula - C9H9NO 3 

Molecular Mass - 179.0577

Protonated Molecule [M+H]+ Formula - C9H10NO 3  

Protonated Molecule [M+H]+ Mass - 180.0655 
Protonated Molecule Measured Mass Error -3.3ppm

Figure 3.35: Chemical structure o f  hippuric acid showing the main fragmentation 

sites o f  the uremic toxin.

It is known that hippuric acid will fragment by collision induced dissociation into 

three specific regions, illustrated by figure 3.35 and generate ions of m/z 121, 105, and 

77. An ion o f comparative mass and fragmentation was discovered at an appropriate 

retention time for hippuric acid within the haemodialysate solution (see figure 3.36).

h o .

m/z 121 m/z 105 m/z 77
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Figure 3.36: Fragmentation mass spectrum o f the unknown ion at m/z 180.0649 

obtained using the LTQ Orbitrap mass spectrometer.

This had a calculated accurate m ass at an error o f  -3.3ppm  and subsequent elemental 

form ula that supported this suspicion. A dditional evidence w as provided by the 

accurate m ass o f  some o f  the fragm ent ions associated with the unknow n (see figure 

3.37), providing com parative elem ental form ulae for the hippuric acid product ions at 

m/z 105 and 77. This inform ation indicates that hippuric acid can be detected and 

identified w ithin haem odialysate by this m ass spectrom etry m ethodology.

-c2h5n o 2

A

180.0655
c s h10n o 3

c3h4no 3

B c
105.0335 77.0386

c 7 h5 o c6h5

Figure 3.37: Product ion accurate mass reaction scheme o f the unknown at m/z 180.
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3.3.10. N-acetvltryptophan

This is formed as a consequence of tryptophan metabolism and is one of a number of 

amino acid metabolites that are used to monitor disease progression with patients 

suffering from chronic renal failure. Past research with this patient population has 

shown that it exists as both a free molecule and as a protein-bound moiety but will 

accumulate primarily in the free form during renal impairment*^. In addition to this 

ailment, abnormal levels and malfunctions of the biochemical pathways of tryptophan 

and its analogues have been implicated in several forms of mental illness*-391.

When ionised by protonation this analyte is observed at m/z 247 and fragments 

in a specific pattern forming ions at m/z 229, 211, 205, 201, 188, 187, 159, and 130 

(see figure 3.39). The first two transitions involve successive losses of water, initially 

as the hydroxyl group of the carboxylic acid and then through a rearrangement of the 

opposing ketone group. The remaining ions will be generated by fragmenting the 

aliphatic section of the molecule with losses involving the carboxylic acid group as a 

whole, the ketone section and the amine group.

HO
Molecular Formula - C13H14N2O3 
Molecular Mass - 246.0999

P Protonated Molecule [M+H]+ Formula - C13H15N2O3 
Protonated Molecule [M+H]+ Mass - 247.1077 
Protonated Molecule Measured Mass Error of -0.8ppm

Figure 3.38: Chemical structure o f  the uremic toxin N-acetyltryptophan and its

molecular information.

An ion was detected within the haemodialysate with a calculated accurate 

mass of 247.1075 obtained at an error of -0.8ppm, indicative of the elemental formula
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C 13H 15N 2O3. This w ith com parative reverse phase elution conditions, suggest that this 

unknow n ion could be iV-acetyltryptophan. Fragm entation studies generated a sim ilar 

m ass spectrum  regarding higher m ass ions, although some were o f  low er intensities 

than the standard and could possibly be due to an inherent effect w ithin the 

haem odialysate solution (see figure 3.39).
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Figure 3.39: MS/MS fragmentation mass spectra o f the standard reference material o f 

N- acetyltryptophan with parent ion at m/z 247 and an ion o f corresponding mass-to- 

charge within the haemodialysate solution.
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A calculated accurate mass was obtained for some of these fragments with 

comparative elemental formula for the losses described for protonated N- 

acetyltryptophan (see figure 3.41). These when included with the other information 

o f the unknown ion it indicates that it is the uremic toxin JV-acetyltryptophan.

-h2o

-c h ,o .

201.1022

229.0972

247.1077
c „ h16n2 o 3

Figure 3.40: Fragmentation reaction scheme o f  the unknown ion at m/z 247.

3.3.11. Uric acid

Uric acid is formed as a consequence of metabolising adenine- and guanine-based 

purines. At non-toxic levels, this analyte is a potent antioxidant important for 

maintaining intracellular biochemical in terations^. However, if  allowed to 

accumulate to toxic levels within the blood it primarily leads to the development of a 

form of arthritis commonly known as gout. Other affects are often observed in renal 

or uremic patients and past research has highlighted a link of uric acid accumulation 

to the more severe illness of stroke in non-insulin dependent diabetes mellitus 

patients[41].



Molecular Formula -  C 5 H 4 N 4 O 3  

Molecular Mass - 168.0278

Protonated Molecule [M+H]+ Formula - C 5 H 5 N 4 O 3  

Protonated Molecule [M+H]+ Mass - 169.0356 
Protonated Molecule Measured Mass Error of -2.5ppm

Figure 3.41: Chemical structure o f  the uremic analyte uric acid.

The fragmentation pattern of this uremic toxin involves losses of carbon monoxide 

and ammonia which generate the fragments at m/z 141 and m/z 152 respectively (see 

figure 3.43). These transitions cause the ring systems to open and subsequent 

fragmentations to occur that will involve cleavages associated with the heteroatoms. 

An ion of the same mass-to-charge generated a calculated accurate mass that 

indicated, at an error of -2.5ppm, that the ion has the elemental formula of C5H5N4O3. 

This is consistent with uric acid and the fragmentation pattern o f the standard 

reference material was compared to that of the unknown (see figure 3.42). The mass 

spectra are highly similar regarding both masses present and the ratio o f product ions 

formed.
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Figure 3.42: MS/MS spectra o f uric acid standard reference material with the 

protonated molecule o f m/z 169 and an ion o f corresponding mass-to-charge within 

the haemodialysate.

A ccurate m ass inform ation was obtained for som e o f  the product ions observed in the 

unknow n M S/M S m ass spectrum  and their associated elem ental form ulae are shown 

in figure 3.43. These product ions have a corresponding elem ental com position to 

those fragm ents generated from uric acid o f  the sam e m ass-to-charge. This, w ith a
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low reverse phase retention time of 4.1 minutes and the elemental composition 

information imply that the unknown present at m/z 169 is the uremic toxin uric acid.

A
169.0356
C5H5N40 3

B c
152.0091 141.0407
c 6 h2 n3o3 c4h5 n4o2

Figure 3.43: Product ion reaction scheme o f  the unknown ion at m/z 169 suspected to 

he uric acid.

3.3.12. A/vo-inositol

This biomolecule is of great importance in maintaining signals within neurones and 

sodium-potassium ATPase activity through protein kinase C stimulation. This has 

lead to a large proportion o f research investigating the role o f myo-ionositol in 

neurological malfunctions within the brain such as bipolar disorder[42]. This 

biomolecule is also important with diabetic patients, particularly those receiving renal 

treatment. High levels o f glucose, associated with this cohort, can compete with myo­

inositol to overstimulate the protein kinase C pathway and with long reaching affects. 

O f particular importance for renal patients is the rapid increase in prostaglandin 

synthesis as the accumulation of these biomolecules has previously been linked to 

initial problems o f glomerular filtration in early renal patients^43,44,45,46].
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Molecular Formula - C6Hi206 
Molecular Mass - 180.0628

Protonated Molecule [M+H]+ Formula - C6H13O6 
Protonated Molecule [M+H]+ Mass - 181.0707 
Protonated Molecule Measured Mass Error of 0.4ppm

Figure 3.44: Chemical structure o f  the uremic toxin myo-inositol o f  mass 180Da, and 

is observed as a protonated ionic species at m/z 181.

The protonated species of myo-inositol is observed at m/z 181 and fragments 

by using collision induced dissociation into several ions as shown in figure 3.46. 

From the structure it is clear that it is likely to lose water, shown by a difference of 

18Th between peaks in the mass spectrum, such as the transitions of m/z 181 -► 163 

and m/z 153 -► 135. An ion observed within the haemodialysate solution at m/z 181 

and eluting at appropriate reverse phase solvent composition was suspected of being 

myo-inositol. Additional evidence supporting this is the calculated accurate mass 

which was obtained within an error o f 0.4ppm and indicated that this ion had the 

elemental formula of C6H 13O6. This ion was fragmented and compared to the 

commercial standard of the uremic toxin. Figure 3.45 illustrates the similarities of the 

mass-to-charge o f ions generated by the fragmentation of both the unknown and 

standard.

HQ. OH

HOI

HO OH
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Figure 3.45: MS/MS mass spectra o f myo-inositol standard reference material with 

parent ion at m/z 181 and an unknown ion o f the same mass-to-charge present in the 

haemodialysate solution.

The calculated accurate m ass o f  som e o f  the ions generated in the unknow n M S/M S 

m ass spectrum  have an elem ental form ula suitable for the fragm ents o f  sam e m ass-to-
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charge present in the MS/MS mass spectrum of wyo-inositol (see figure 3.46). All the 

mass spectrometric and chromatographic data characterising the unknown ion at m/z 

181 indicate that it is the uremic toxin myo-inositol.

A
181.0707
c6 h13o6

B c
163.0601 135.0652

C s H ^ O ,

Figure 3.46: Fragment ion reaction scheme o f  the unknown ion present in the 

haemodialysate solution o f  m/z 181.

3.3.13. N6-methvladenosine
t

This is one o f three isomers of methyladenosine that have similar fragmentation 

patterns and therefore require separation by chromatography for iso la tion^ . The 

levels o f these modified nucleosides have been monitored in urine with the potential 

to predict cancer progression. They are released into the blood from tRNA and are 

excreted in urine by a healthy kidney prior to becoming toxic to the body due to a lack 

o f degradative or conversion biochemical pathways. In patients with renal 

insufficiency, this affect is more profound as excretion is limited and levels can 

accumulate to those associated with uremic toxicity.

An ion of the same mass-to-charge, calculated with an error of 1.9ppm, was 

discovered within the haemodialysate at a retention time o f 43 minutes corresponding 

to approximately 70% organic elution solvent. The fragmentation data obtained for 

this ion is indicative of all three isomers showing the protonated molecule at m/z 282
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w ith characteristic fragm ent ions as a result o f  losing the sugar m oiety and the nucleo 

base at m/z 150 and 133 respectively. A lso present are fragm ent ions at m/z 106 and 

92, and could correspond to a successive loss o f neutral am m onia and a secondary 

am ine o f  form ula C H 2N C H  from  the purine base[48̂ .

Molecular Formula - C11H 15N5O4 
Molecular Mass -281.1119

Protonated Molecule [M+H]+ Formula - ChH i6N504 
Protonated Molecule [M+H]+ Mass - 282.1197 
Protonated Molecule Measured Mass Error o f 1.9ppm

Figure 3.47: Chemical structures o f three methyladenosine isomers that are 

candidates for the ion at m/z 282 within the haemodialysate. Each has a similar 

fragmentation pattern and require separation according to polarity.
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Figure 3.48: Fragmentation MS/MS spectrum o f a protonated molecule present in the 

haemodialysate solution that has a calculated accurate mass corresponding to the
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elemental formula o f  methyladenosine at 282.1213 and a matching fragmentation 

pattern.

The calculated accurate mass o f some MS/MS product ions of the unknown show 

appropriate elemental formulae for those fragment ions o f N6-methyladenosine 

described above (see figure 3.49).

A
282.1197 

Cn H16N5 0 4

B C
150.0774 133.0495

c6h, n5 c5h9o4

Figure 3.49: Product ion reaction scheme o f  the protonated unknown ion at m/z 282 

present in the haemodialysate.

The similarities o f the fragmentation and elemental composition information suggest 

this ion could be one o f three isomers of methyladenosine. However, published 

literature regarding the chromatographic behaviour of these isomers indicates that this 

analyte is modified nucleoside N 6-methyladenosine.

3.3.14. Xanthosine

This is another modified purine nucleoside that is known to accumulate within uremic 

patients. Previous investigations regarding xanthosine accumulation in uremic 

patients have involved detection by mass spectrometry but only in serum and urine.
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These highlighted that increased levels of this modified nucleoside are observed in the 

urine and blood of uremic patients whether receiving renal treatment or not^49l

Molecular Formula - C10H12N4O6 
Molecular Mass - 284.0751

Protonated Molecule [M+H]+ Formula - Ci0Hi3N4O6 
Protonated Molecule [M+H]+ Mass - 285.0830 
Protonated Molecule Measured Mass of Error -l.Oppm

Figure 3.50: Chemical structure o f  the modified purine nucleoside xanthosine. When 

fragmented by collision induced dissociation it forms ions at m/z 153 (the protonated 

purine base), 136 and 110.

Following electrospray ionisation xanthosine is observed as a protonated 

molecule at m/z 285 and fragments primarily into ions at m/z 153, 136 and 110. The 

first transition from m/z 285 —► 153 accounts for the loss of the ribose sugar from the 

protonated purine base, and the second from m/z 153 -► 136 involves a loss of 

ammonia from this base. The full fragmentation mechanism has been elucidated and 

indicates that the MS/MS mass spectrum should contain the protonated molecule at 

m/z 285 and the three fragment ions stated above147,48̂ .

OH

HO'
rOH
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Figure 3.51: Fragmentation mass spectra o f xanthosine standard reference material 

and an unknown ion o f corresponding mass-to-charge present in the dialysate. 

Unfortunately, due to the low abundance o f this analyte within the full mass scan 

mass spectrum only one stage o f fragmentation was achieved.

A n ion o f  corresponding accurate m ass-to-charge and elem ental form ula o f  

C 10H 13N 4O6 w as observed within the haem odialysate solution at an error o f-l.O ppm .
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The unknown ion was fragmented and the calculated accurate masses determined for 

two o f the fragment ions at m/z 153 and 137. These had comparative elemental 

formulae for those product ions o f xanthosine (see figure 3.52). From a comparison 

with previously published fragmentation information, and the commercial standard 

the similarities of MS/MS spectra indicate that this ion at m/z 285 is xanthosine.

A
285.0830 

C10 H13N40 6

B C

153.0407 137.0346
c5 h5n4o2 c6hs n2 o2

Figure 3.52: Fragment ion reaction scheme o f  the unknown ion at m/z 285 observed 

in the haemodialysate solution and suspected to be the uremic toxin xanthosine.

3.3.15. Hvdroquinone

This uremic analyte is part of a large class of toxins based on their common phenolic 

functionalities. Past research has indicated that an accumulation of hydroquinone can 

affect consciousness resulting in lethargy, in extreme cases leading to coma, and 

cause gastrointestinal bleeding^50-*. This research has involved the quantitation of 

these phenolic compounds in serum by gas chromatography-mass spectrometry (GC- 

MS), but no previously published research has discovered it in the haemodialysis 

concentrate. This uremic analyte is essentially a double phenolic compound of mass 

11 ODa as shown in figure 3.53.
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O H

Molecular formula - C6H60 2 
Molecular mass - 110.0362

Protonated Molecule [M+H]T Formula - C6H70 2 
Protonated Molecule [M+H]+ Mass - 111.0441 

93 Protonated Molecule Measured Mass of Error -3.5ppm

Figure 3.53: Chemical structure o f the uremic toxin hydroquinone. This is a member 

o f the phenolic class o f  uremic toxins and has a protonated molecule o f m/z 111. 

Using collision induced dissociation it will fragment into two ions at m/z 93 and 77 

(see figure 3.54) accounting for successive losses o f hydroxyl groups.

A n ion observed in the m ass spectrum  o f  haem odialysate o f  corresponding m ass-to- 

charge was fragm ented and com pared to the fragm entation pattern o f  hydroquinone 

standard reference m aterial.
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Figure 3.54: MS/MS fragmentation mass spectrum o f hydroquinone standard 

reference material with a protonated molecule o f m/z 111 and that o f a corresponding 

ion within the haemodialysate.
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Hydroquinone shows very little fragmentation with the loss of the two hydroxyl 

groups and forming phenoxy and phenyl ring ions at m/z 93 and 77 respectively (see 

figure 3.54). A visual comparison of the standard and unknown MS/MS spectra with 

the elemental formula generated from the calculated accurate mass, at an error of - 

3.5ppm, indicate that this ion is hydroquinone. This proposed identity is further 

supported by the accurate mass o f the unknown fragment ion observed at m/z 93 and 

has a suggested formula of C6H 5O (see figure 3.55). A combination of the mass 

spectrometric and chromatographic reverse phase retention time, of 5 minutes 

corresponding to elution conditions of 95% aqueous:5% organic solvent, implies that 

hydroquinone is present in the haemodialysate solution.

111.0441
c6 hy 0 2

-h2o

B

93.0335  
C6 Hs O

Figure 3.55: Fragment ion reaction scheme o f  the unknown ion at m/z 111 thought to 

be the uremic analyte hydroquinone.

3.4. M ethod V alidation Sum m ary

Haemodialysate has previously been examined for uremic toxins^51,52]. O f the few 

discovered the research involved detection by UV chromatography with identification 

according to wavelength and retention time. This analytical technique has much 

poorer sensitivity and specificity for analyte identification warranting a method that is
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superior and applicable to a wider range o f compounds. Modem ionisation modes 

used in liquid chromatography-mass spectrometry (LC-MS) techniques, such as 

electrospray (ESI) and atmospheric pressure chemical ionisation (APCI) are 

considered unsuitable for examining haemodialysate primarily due to the inherent 

high levels o f salt and buffer. A consequence is that research using this technique for 

detecting uremic toxins has involved other biomatrices such as whole blood, serum, 

plasma and urine[49]. Therefore, the first section of this project was to develop a 

preparative protocol capable o f improving haemodialysate compatibility for modem 

mass spectrometric analysis as a general screen. This novel methodology has been 

evaluated according to:

i. the reproducibility o f the chromatographic separations and,

ii. the capability o f the protocol to extract and detect known uremic toxins.

The first chromatographic dimension involved separation by size exclusion and 

detection by UV spectrophotometry, whilst monitoring both the pH and conductivity 

o f the sample. Each mode o f detection showed excellent inter- and intra­

reproducibility both in terms o f the signals obtained and their associated retention 

time. Following this assurance, samples were fractionated according to the UV 

activity o f the chromatogram and each fraction subjected to additional separation by 

reverse phase chromatography as an online procedure into the mass spectrometers. 

Initial results had a high degree o f variability shown by the UV chromatograms and 

mass spectra generated regarding peak intensity and retention times, and ions 

observed respectively. This prompted experiments to test sample stability on the 

autosampler while awaiting overnight analysis over a 16 hour period. These tests 

illustrated the poor sample stability at benchtop temperatures and the improved
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stability o f each fraction at a reduced temperature of 10°C during overnight 

experiments. At these conditions both the reverse phase and mass spectrometric data 

showed excellent inter- and intra-reproducibility within different aliquots o f the same 

sample.

The second stage of the method validation involved assessing the capability of 

extracting and identifying known uremic toxins previously characterised in 

biomatrices other than haemodialysate. Possible identities were obtained by first 

calculating the accurate mass o f an ion o f corresponding mass-to-charge to known 

toxins and generating an elemental formula. This formula was compared to the 

relevant known toxins and the commercial standards obtained. Each standard was 

infused into the mass spectrometer and their MS/MS fragmentation patterns generated 

by collision induced dissociation (CID). The ions suspected to be known toxins were 

also fragmented and their product ion patterns compared to the standards. Toxin 

identities were assigned according to a combination o f this data and chromatographic 

relative retention time. This enabled the detection and identification of 15 out o f 90 

known uremic toxins o f varying chemical characteristics (protein bound/non-protein 

bound) with greater specificity and potential sensitivity than UV spectrophotometry in 

a sample previously considered unsuitable for modem mass spectrometry techniques. 

Unfortunately due to time constraints within the project we were unable to carry out 

any quantitation o f these known toxins in order to accurately assess the sensitivity of 

the technique and the degree o f removal by the dialysis procedure. However, the 

discovery o f protein-bound uremic toxins thought unlikely to be present at sufficiently 

high levels for detection can be used as an approximate measure of sensitivity until 

the quantitative work is carried out.
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The work in this chapter indicates that known toxins can be isolated and 

detected within haemodialysate by mass spectrometry as an online procedure with 

reverse phase chromatography, following a simple preparative step using size 

exclusion chromatography. This novel protocol for haemodialysate can also be 

applied to identity and characterise new uremic analytes.
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CHAPTER 4: 

Identification and Evaluation of Novel Uremic Analytes for 

Assessing Haemodialvsis Adequacy in Patient Specific 

Samples

4.1. Introduction

Six haemodialysate samples o f lOOmL were collected in previously weighed glass 

amber jars from 8 patients in total. Two patient sets were compared; those who 

exercised for an hour before dialysis commenced and those who dialysed without 

prior exercise. This comparison was intended as a pilot study to compare the effect of 

exercise on the excretion of uremic analytes. It is hypothesised that exercise will 

increase blood flow, encouraging analytes predominantly present in tissue to pass into 

blood, thus increasing the speed and quantity o f solutes removed during the dialysis 

session. Samples were obtained at the following time points throughout the 

haemodialysis session; start (to), 30 minutes (to.shr), 1 hour (tihr), 1.5 hours (ti.5hr), 2.5 

hours (t2.5hr) and at session end (t4hr). After collection samples were frozen, 

lyophilized (Edwards, Crawley, UK) and the resulting solid weighed. A tenth of the 

each solid was then removed and reconstituted in the minimum amount o f deionised 

water, where lm g requires approximately lm L o f water. These aqueous samples 

were then filtered and separated by size exclusion chromatography as in section 3.2.2 

in Chapter 3.
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4.2. Com parative LC-MS and LC-MS/MS Investigations of Pooled and Patient
Specific Haemodialysate

4.2.1. Selecting candidate biomarkers

The validation of the developed analytical methodology (see Chapter 3) has indicated 

that the interrogation o f these samples must involve fresh size exclusion fractions of 

all samples. The analyses consisted of an online separation, as described in Chapter 2, 

section 2.2.2, into an LCQ DECA ion trap or LTQ Orbitrap mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA, USA). A full mass scan from a mass-to- 

charge o f 50-2000 was obtained for each fraction. An in-depth examination of the 

data showed many ions present at exact or similar relative retention times in both 

samples with different signal intensities. Blank dialysate was also examined and 

indicated that these analytes were removed from the patients’ bloodstream by dialysis 

and may exist at elevated levels. These characteristics are considered as two of the 

six prerequisites for the ideal biomarker in assessing dialysis adequacy. A criterion 

was applied to these data, due to the large number o f candidates generated and 

excluded ions o f poor stability. Therefore candidates chosen had less than a 10% 

change in peak area for the duration o f 16 hours stability test. The resulting ions were 

selected for additional mass spectrometry experiments. There were 12 ions in total 

that satisfied these requirements mainly distributed within 2  size exclusion fractions, 

at retention times o f 10-13 minutes and 16-19 minutes. This data, when compared to 

the retention times obtained for the standards indicate that the candidate ions have 

molecular weights less than 350Da. However, closer inspection o f the mass spectral 

data shows that some of the candidate ions do have a molecular weight greater than 

this o f up to 875.0Da possibly as a result o f aggregate formation.
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Fraction Retention Relative 
Retention  

Tim e (min)

m/z of % Difference
Time (min) [M+H]+ Change 0-16hr

4.34 0.52 241.0 3.52
5.93 2.43 214.2 9.39

26.99 23.18 851.1 7.73
F2 (10-13min) 27.32 23.52 576.0 -9.14

29.91 26.11 875.0 6.57
34.73 30.93 764.7 -3.65
39.37 35.57 275.1 9.40

7.17 2.58 270.2 6.72
14.91 10.32 504.7 -9.46

F4 (16-19min) 28.87 24.28 380.1 8.99

34.86 30.27
646.7
335.0

-7.74
1.31

Table 4.1: Possible candidate biomarkers that are thermally stable at l ( f C  and 

removed by the dialysis procedure.

The ions below mass o f 400Da were selected for additional mass spectrometric 

investigations where both their fragmentation patterns and accurate mass, to provide a 

possible elemental composition, were obtained. This cut-off was applied in order to 

simplify the number of elemental formulae generated and to maximise the chance o f 

assigning identities within the time allocated for this project.

4.2.2. UV characterisation o f novel biomarkers

The online analyses involved analyte detection by both mass spectrometry and the

less specific UV spectrophotometry. UV detection is a more amenable technique for 

use as a general screen within a hospital laboratory, and therefore the capability of 

novel uremic analytes to produce a discemable UV signal is advantageous. At the

maximum absorbance wavelength (242nm) for the dialysate sample two of the six
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analytes o f  m asses below  400D a (m/z 270 and 275), displayed a discem able UV 

signal indicating the presence o f  a chrom ophore assignable to a diazoacetic ester, cis- 

crotonic acid, an unsaturated ketone or a ketone m onosubstituted benzene ring[1].

100

P01 RPH OF SEC FRACTION F2
END80-

?.5HR60-

1.SHR

20 -

-20

-80
0 20 40 50 60 70 80 90 100 110 12010 30

R e te n tio n  tim e (min)

Figure 4.1: UV chromatogram o f uremic analyte at m/z 275 within patient P01 

showing its removal into the dialysate solution throughout treatment at 0, 0.5, I, 1.5, 

2 .5 hours and end o f  session.

4.2.3. M ass spectrom etric structural elucidation

4.2.3.1. A ccurate m ass

This is essentially the m ass o f  an ion to w ithin four decim al places. Once obtained 

elem ental com position inform ation is suggested as only specific com binations o f  

elem ents will m atch the obtained form ulae. The suggested elem ental form ulae are 

evaluated according to four m ain param eters as described in Chapter 1. The search 

and assignm ent criteria for these analyses are included in Chapter 2, section 2.2.3.2.,

-  1 4 1  -
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and all ion accurate masses were obtained within an error of 5ppm unless stated 

otherwise.

4.2.3.2. Structure Investigations Using MS/MS

This was carried out initially using the LCQ DECA ion trap mass spectrometer and 

then confirmed with the LTQ Orbitrap mass spectrometer. It is required to illustrate 

that fragmentation variability is not significant between instruments o f similar design 

operated under analogous conditions. The fragmentation patterns were obtained at 

collision energies necessary for obtaining signals o f the product ions using both a 

target ion search followed by a data dependent analysis approach. Therefore the 

eventual total ion chromatograms consisted o f peaks at the relative retention times for 

the chosen ions contained in table 4.2 followed by its fragmentation, and further 

fragmentation of the resulting ions. Comparative fragmentation patterns, obtained 

with the LTQ Orbitrap were also acquired at low collision energies to obtain 

information of the product ions while maintaining a signal o f the parent ion to monitor 

any mass drift. By applying the same accurate mass data analysis procedure to the 

fragment ion, elemental composition information for this ionic species was also 

obtained. This can aid in the organisation and translation o f accurate mass and 

fragmentation data to obtain the most likely chemical structure for the unknown. 

Therefore, a parent ion elemental formula was chosen according to the lowest error 

from the accurate mass and its agreement with the elemental formula obtained for the 

fragment ions.
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SEC
Fraction

Parent 
Ion (m/z) M S 2 Ions (m/z) M S 3  Ions (m/z)

F2
(10-13 min)

241.0 222.9, 194.8, 177.8, 153.8, 151.8, 121.8 153.8 —> 136.8, 89.9 
194.8 —► 121.9

214.2 196.9, 157.8,155.0, 154.1 196.9->• 179.8, 154.9, 154, 
137.9, 125.9

275.1 263.2, 210.8

F4
(16-19min)

270.2 270.0, 253.0, 236.1,211.0,210.1 253.0 -► 234.0,224.9, 210.0

180.1
(359.1,
381.1)

180.1, 162.1, 134.1, 105.0, 95.1, 77.1
162.1 134.1, 105.0 

105.0 —► 77.0

335.1 316.8, 292.9, 275.8, 246.9, 223.4, 205.8, 
204.0, 151.8

317 —► 299,257 

223 206, 147

Table 4.2: Fragment ions obtained fo r  the candidate biomarker ions using the LCQ 

DECA ion trap mass spectrometer. Results were acquired at collision energy o f  35eV  

to maximise the fragmentation o f  the parent ions.

Following the empirical assignment o f an elemental formula, chemical structures may 

be suggested. Fragmentation patterns can be highly specific to a chemical structure 

due to the spatial differences o f the elements and functional groups. Thus, product 

ions involving several stages o f fragmentation may be used as evidence for analyte 

identification^. To minimise man hours deciphering fragmentation patterns o f these 

parent ions a data analysis package, Mass Frontier 3.0 (Thermo Fisher Scientific), was 

used to generate product ions o f all o f chemical structures. This software considers 

numerous likely reactions (shown in the figure 4.2) that can occur after protonation, 

such as hydrogen rearrangements, charge induction, charge rearrangements 

(localisation), and loss o f neutral moieties like water or carbon monoxide. These
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predicted product ions w ere com pared to those obtained using both the ion trap and 

LTQ O rbitrap m ass spectrom eters and used to m atch the appropriate chem ical 

structure to the unknow n. Other reactions not included in the software operating 

param eters, such as hom olytic cleavages were considered and m anually elucidated for 

the relevant ions.
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Figure 4.2: Summary table o f  ion reactions considered fo r  the predicted 

fragmentation patterns reproduced by Mass Frontier 3.0 software.
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4.2.4. Discussion o f results

4.2.4.1. Candidate biomarker 1: m/z 241.0296

Using several different search parameters the most probable elemental composition is 

shown in the table below.

E lem ental Form ula 
o f Ion

Accurate M ass 
o f Form ula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

M easured  
Accurate Mass 

o f Unknown

c 5 h 9 n 2 o 9 241.0303 -2.5 ✓ 2.5 241.0296

Table 4.3: Accurate mass summary table showing the parameters determining the 

likelihood o f  the elemental formula matching the unknown uremic analyte.

The calculated accurate mass for this ion suggests that it has an elemental formula of 

C5H9N2O9. Using the nitrogen and double bond rules this formula appears to be a 

protonated even electron ion and will contain either one aliphatic ring and one double 

bond or two double bonds. The fragmentation o f this ion using the LCQ DECA and 

LTQ Orbitrap mass spectrometers indicate that the chemical structure is capable o f 

successive losses o f water, illustrated clearly by the several losses o f 18Th between 

fragments m/z 241 to 223, 223 to 205, and 205 to 187 (see figure 4.3 and 4.7). This is 

supported by the elemental formula suggested for each fragment ion from their 

calculated accurate mass (see table 4.4).
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100m
95-E
90-;

05-;

65̂

145.0

K 40-; 205.0
35-E

1o3.0 187.0152.010-;
178.0

o4
BO 100 120 140 160 100 200 220 240

m/z

Figure 4.3: Fragmentation MS/MS mass spectrum o f novel uremic analyte at m/z 241 

obtained using the LCQ DECA at a collision energy o f 30eV. Comparative patterns 

were obtained using the LTQ Orbitrap generating elemental formula from the 

calculated accurate mass o f each fragment ion measured at an error o f less than 

5ppm unlike m/z 163, 157, 145 and were acquired within lOppm.

F ragm ent Ion (m/z) E lem ental F orm ula D B E  V alue

223 c 5h 7n 2o 8 3.5

205 c 5h 5n 2o 7 4.5

187 c 5h 3n 2o 6 5.5

178 c 4h 4n o 7 3.5

163 c 3h n o 7 4.0

157 c 4h n 2o 5 5.5

152 c 2h 2n o 7 2.5

145 c 3h n 2o 5 4.5

Table 4.4: Elemental formula obtained from the calculated accurate mass o f the 

fragments produced from the precursor ion at m/z 241.

- 146-
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The data from these mass spectrometers enables a fragmentation reaction scheme to 

be generated as shown in figure 4.4.

A

241.0296
C5 H9 n2 o9

-h 2o

-3xH20
223.0192

186.9978

F
162.9732
C. HNO,

H
151.9827

205.0083
C5 h5 n2 o7

177.9983

G
156.9870

I
144.9869

Figure 4.4: Fragmentation map o f  the novel uremic analyte at m/z 241 showing the 

elemental formula o f  each fragment and the resulting loss.

This combined information is specific to a certain chemical structure named 5- 

(amino-l,2,-dihydroxy-ethyl)-3-nitrosooxy-[l,2,4]trioxine-3,6-diol (Beilstein,

CrossFire, MIMAS, Manchester, UK)[3], and is shown in figure 4.5 with all 

fragmentation mechanisms in Appendix 4.1. According to the calculated accurate 

mass and elemental formula of the ion, the double bond equivalence value suggests 

that this structure should contain a total o f two double bonds and/or cyclic 

functionalities.
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OH
OH

OH

OH

N x
x O

Figure 4.5: Proposed structure o f  the neutral analyte at with calculated ion accurate 

mass o f  m/z 241.0296 and corresponding to the elemental formula o f  C5H 9N2O9.

However, this is not apparent for the neutral structure, unless the double bond is 

present within the aliphatic ring. In solution this analyte will have the structure as 

shown in figure 4.6 and provides additional evidence regarding the fundamental 

structure o f the ion.

O H
O H

O H

O H

I
N  v.

" O

Figure 4.6: Proposed structure o f  the ion at m/z 241. The protonation o f  the cyclic 

ring forms an even electron ion generating the correct DBE value o f  2.5 as suggested 

by the calculated accurate mass and elemental formula.

This structure has several hydroxyl groups capable of losing water as a neutral 

moiety as successive fragments and accounting for the product ions at m/z 223, 205 

and 187 (see figure 4.7).

- 1 4 8 -
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\

| m/z 241 m/z 223  m/z 205 « i / z l8 7

ti
| Figure 4.7: Reaction mechanism o f  transitions involving fragment ions at m/z 223,

205 and 187.

The fragment at m/z 178 is also formed through a number of common neutral 

losses from the aliphatic section in the upper region of the protonated molecule. For 

example, an initial ejection of ammonia forming an ion at m/z 224 is followed by a 

hydrogen rearrangement with a loss of carbon monoxide to m/z 196 and then water to 

generate the ion m/z 178.
I

| The next product ion at m/z 163 has an elemental formula of C3HNO7 which
t

| according to the nitrogen rule is an odd electron ion or radical cation. Hence, this

| may form as a result of a homolytic cleavage at the upper aliphatic section initially

| generating a loss o f CH3OH and produces the radical cation by a cleavage between

| the aliphatic section and the cyclic 6 -membered ring (see figure 4.8).

m/z 241 m/z 209  m/z 163

Figure 4.8: Suggested fragmentation mechanism involving an initial heterolytic 

cleavage to form  an ion at m/z 209. The position o f  the double bond and positive

- 149-
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charge on the saturated ketone group enables this ion to lose the upper hydroxyl 

amine structure by a homolytic cleavage generating the radical cation at m/z 163.

The next ion present in the MS/MS mass spectrum is at m/z 157 and has the elemental 

formula o f C4HN2O5. According to the nitrogen rule this is an even electron ion and 

can be produced as a result o f several heterolytic cleavages including ring opening 

causing losses o f water and a loss again involving the upper aliphatic section. This 

pattern o f fragmentation involving this upper section is followed for the remaining 

product ions primarily due to the high stability associated with the nitroxide-section o f 

the protonated molecule. This functional group enables the formation o f the ion at 

m/z 152. It is generated following the complete loss of the aliphatic section and part 

o f  the cyclic ring, unsaturating the ortho situated hydroxyl group into a carbonyl 

group and the observed product ion. The structure of each fragment described above 

was also confirmed by the DBE value calculated from the accurate mass and 

elemental formulae (see table 4.4).

An extensive examination of the calculated accurate mass, elemental formula 

and fragmentation data has shown, with the application o f established interpretative 

rules, that the ion at m/z 241 has the chemical structure shown in figure 4.4. Using the 

Beilstein database we can assign the name o f 5-(amino-l,2,-dihydroxy-ethyl)-3- 

nitrosooxy-[l,2,4]trioxine-3,6-diol to the novel uremic analyte of mass 240Da.
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4.2.4.2. Candidate biomarker 2: m/z 214.1298

The calculated accurate mass obtained for this ion indicates that it has the elemental 

formula C8H 16N5O2.

Elemental 
Form ula o f Ion

Accurate Mass 
of Formula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

M easured  
Accurate Mass o f 

Unknown

c 8 h 1 6 n 5 o 2 214.1299 -0 . 0 ✓ 3.5 214.1298

Table 4.5: Elemental composition and structural information suggested from the 

calculated accurate mass fo r  the novel uremic toxin at m/z 214.1298.

According to the nitrogen rule and a double bond value o f 3.5 this molecular ion is a 

singularly protonated species containing a total o f 3 double bonds and/or aromatic 

rings. This in addition to the fragmentation data can be used to identify the relevant 

chemical structure for the ion. This structural information was obtained with both the 

LCQ DECA and LTQ Orbitrap mass spectrometers, with the latter allowing the 

assignment o f fragment elemental formula and subsequent neutral losses (see table 

4.6).
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Figure 4.9: MS/MS mass spectrum o f novel uremic analyte m/z 214.1298 showing its 

fragments at a collision energy o f 28eV.

The fragm entation data can be arranged to form a degradation reaction schem e o f  this 

ion (figure 4.10) and aid in assigning a chem ical structure to this unknown.

F ragm ent Ion (m/z) Suggested E lem ental F orm ula D BE V alue

197 c 8h 13n 4o 2 4.5

180 c8HloN3o 2 5.5

172 c 7h 14n 30 2 2.5

169 c 8h 13n 2o 2 3.5

155 c 7h „n 2o 2 3.5

154 c 7h 10n 2o 2 4.0

126 c 6h 12n 3 2.5

99 c 4h 9n 3 2.0

77 C6Hs 4.5

Table 4.6: Elemental formula information obtained from the calculated accurate mass 

o f fragment ions generated by collision induced dissociation o f the precursor ion at 

m/z 214. All were measured within an error o f 5ppm apart from m/z 77 (~20ppm).

- 152-
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214.1298

197.1033180.0766 -N3H3

169.0966172.1078

154.0972155.0813

99.0796126.1023 77.0370

Figure 4.10: Fragmentation reaction scheme o f  the unknown novel uremic analyte at 

m/z 214.1298. The initial loss o f  neutral ammonia and the presence o f  a phenyl ion at 

m/z 197 and 77 respectively, are consistent with a primary amine group and an 

aromatic phenyl ring being present in the structure. The interpretation o f  this 

fragmentation information can aid in assigning a chemical structure and therefore an 

identity to this unknown.

O f the many structures with this elemental formula only a certain configuration 

will form the relevant fragmentation pattern exactly. An analyte capable of this 

fragmentation is 2-(5,6-diamino-6-diazenyl-cyclohex-1 -enyl)-2-hydroxy-acetimidic 

acid and has the structure as shown in figure 4.11 with the relevant mechanisms in 

Appendix 4.2.
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l N H

* 0 H
H s N

HD

Figure 4.11: Proposed chemical structure o f  unknown uremic analyte at m/z 214. 

This is 2-(5,6-diamino-6-diazenyl-cyclohex-l-enyl)-2-hydroxy-acetimidic acid and is 

novel to all biological systems with no published data regarding its existence.

From the elements present we calculate that this has a total o f 4 double bonds and ring 

structure as a neutral molecule and does not correspond to that obtained for the 

unknown ion at m/z 214. However, when this structure is charged as [M+H]+ the 

additional proton can rearrange within the aliphatic ring and situate itself at the double 

bond. This reduces the double bond equivalence (DBE) value to that o f the ion at m/z 

214 of three and we can therefore propose that in solution this analyte actually has the 

structure shown in figure 4.12.

NH-

-NH
^QH

NH
HO

Figure 4.12: Proposed chemical structure o f  2-(5,6-diamino-6-diazenyl-cyclohex-l- 

enyl)-2-hydroxy-acetimidic acid in solution with a DBE value o f  3.

The two primary amino groups of this structure account for the initial losses o f 

ammonia forming ions at m/z 197 and 180, and could be successive. Unfortunately,
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these fragments could not withstand further fragmentation (MS ) and this proposition 

will remain a hypothesis until confirmed. The next fragment at m/z 172 is believed to 

form following the loss o f CH2N 2 involving the rearrangement of the positive charge 

around the aliphatic ring. This will initially involve the loss of the amino groups as 

shown in figure 4.13.

nh2

NH
H2N

.OH

+  NH

H,N

HO

m/z2\A m/z 199 m/z 172

Figure 4.13: Reaction mechanism fo r  the fragmentation o f  m/z 214 to 172.

The fragment of m/z 169 offers specific information regarding chemical 

structure as it is formed as a result o f losing N 3H3. This is indicative of double 

bonded nitrogen atoms that can be lost in two parts, firstly by releasing ammonia and 

secondly by the expulsion o f a neutral diatomic nitrogen molecule (see figure 4.14).

NH-

.OH

HO-

NH2

NH

.OH

HO- NH

NH-

NH
H2N

.OH

HO-

m/z 214 m/z 199 m/z 169

Figure 4.14: Reaction mechanism fo r  the fragmentation o f  m/z 214 to 169.



Unlike these last two transitions, the formation of the ion at m/z 155 is much 

more favourable primarily due to the stability of the neutral product formed. This 

CH5N3 fragment incorporates or can form due to the double bonded azide structure 

including the linking carbon and primary amine groups following a number of 

hydrogen rearrangements and abstractions (see figure 4.15).

NH-

NH
HO

Figure 4.15: Proposed structure o f  the novel uremic analyte ion at m/z 214 

highlighting the group lost to form  the fragment observed at m/z 155.

Also present within the MS/MS mass spectrum is a peak at m/z 154. Initially we 

suspected the loss o f a singular proton as this has been observed in structures 

containing carbonyl groups. However, according to the nitrogen rule this is an odd 

electron ion indicating the loss of a functional group by a homolytic cleavage. 

According to the elemental formula suggested this is the radical cation of the azide 

ion suggested for m/z 155.

The initial loss of ammonia from the protonated molecule producing the ion at 

m/z 197 can prime the structure to break and form another fragment ion at m/z 126. 

This is generated through a number of hydrogen rearrangements as shown in 

Appendix 4.2, losing first the section involving the hydroxyl and amino group, and 

then a neutral molecule o f carbon monoxide. The two fragments below lOOTh are



generated as a result of the breaking the aliphatic ring structure. According to the 

nitrogen rule the ion at m/z 99 is a radical cation formed by a homolytic cleavage 

involving the amino section o f the ring. The final ion present in the MS/MS mass 

spectrum at m/z 11 is characteristic of a phenyl ring and is confirmed by the elemental 

formula o f C6H6. Additional evidence regarding the suggested chemical structures o f 

the fragment ions was provided by the DBE values obtained for each ion as shown in 

table 4.6.

An extensive examination o f the MS/MS fragmentation pattern and elemental 

formula has enabled the assignment o f a chemical structure to a novel uremic analyte 

at m/z 214. Using Beilstein[3] this compound is named 2-(5,6-diamino-6-diazenyl- 

cyclohex- 1 -enyl)-2 -hydroxy-acetimidic acid.

4.2.4.3. Candidate biomarker 3: m/z 275.0478

The accurate mass generated for this novel uremic analyte suggested that it is a 

sulphur containing moiety o f formula C13H11N2O3S. This was later confirmed by the 

presence o f the sulphur isotope (34S) within the full scan mass spectrum resulting in a 

peak at 2Th above the molecular ion (see figure 4.16). The information regarding the 

double bond rule indicates that this is a singly protonated even electron species, 

containing a total o f nine double bonds and aromatic rings.

Elem ental 
Form ulae o f Ion

Accurate Mass 
o f Form ula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

M easured  
Accurate M ass o f  

Unknown

C13 Hn N2 0 3 S 275.0485 -2.2 s 9.5 275.0478

Table 4.7: Table containing the calculated accurate mass and corresponding 

chemical information o f  the unknown uremic analyte at m/z 275.0478.
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Figure 4.16: Mass spectra o f the isotopic pattern o f the protonated molecule o f the 

unknown and that expected for the elemental formula C13H 11N2 O3S.
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Figure 4.17: MS/MS fragmentation mass spectrum o f the unknown ion at m/z 

275.0478 obtained at a collision energy o f 45eV.



The MS/MS fragmentation data shown in figures 4.17 and 4.19 indicate that the 

relevant structure must be capable of losing several distinctive functional groups. The 

first fragment observed at m/z 215 corresponds to a loss o f N 2O2 and is indicative of 

nitrogen oxide groups within the analyte. Another characteristic loss is associated 

with the ion at m/z 211 and appears to be due to a loss o f sulphur dioxide. The 

ejection o f this as a neutral moiety is specific to a certain structure; the inclusion of 

sulphur dioxide situated next to an amino group as part o f an aliphatic ring, commonly 

6  or 7 membered, and can reform to 5 or 6  membered ring following the loss (see 

figure 4.18).

O

/ n \
HN || CH2

! 0  !I tI I

Figure 4.18: Chemical structure o f  the functionality capable o f  losing a neutral 

molecule o f  sulphur dioxide.

It appears as though this structure is also capable o f losing a sulphonic acid group or 

SO3H and according to the nitrogen rule occurs as a result o f a homolytic cleavage. 

This with the other structural information deduced indicates that nearly all the 

heteroatoms other than one nitrogen and oxygen atom are located within close 

proximity o f each other. However, the smaller mass-to-charge fragments (m/z 158 

and 141) also indicate that this structure has the capability o f losing the nitrogen atom 

present within the ring either as ammonia from the ion at m/z 158 or as part of larger 

fragment eventually leading to a loss of ammonia.
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Figure 4.19: Fragmentation map o f  the unknown ion at m/z 275.0478 showing the 

initial losses o f  nitrogen oxide and sulphur dioxide by a subtraction o f  61 and 64Th 

respectively.

Unfortunately, under collision induced dissociation conditions the fragment ions 

formed have poor gas phase stability in spite of the highly stable protonated molecule, 

as shown by the high 45eV collision energy required. This results in limited 

fragmentation information being obtained and insufficient evidence for a complete 

structural elucidation and assignment. This is planned for future experiments and may 

be achieved by using other modes of fragmentation or mass analysers capable of 

fragmentation other than an ion trap. This instrument is associated with unexpected 

‘in-trap’ reactions that could initiate further unwanted fragmentation of highly 

reactive product ions.



4.2.4.4. Candidate biomarker 4: m/z 270.1566

The calculated accurate mass indicates that the most probable elemental formula for 

the ion is C 11H20N 5O3.

Elem ental 
Form ula o f  Ion

Accurate Mass 
o f Formula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

M easured  
Accurate M ass of 

Unknown

C„ H2o N5 0 3 270.1566 -0 . 1 s 4.5 270.1566

Table 4.8: Elemental formula obtained fo r  the novel uremic analyte at m/z 270.

There are a number o f structures that can be represented by this elemental formula; 

however, when compared to the predicted fragmentation pattern, the most probable is 

Ar-[2-(7-hydroxy-3-methyl-ocatahydro-imidazo[l,5-a]pyridine-6-yl)-2-oxo-acetyl]- 

guanidine[3]. From a thorough literature search this appears to be a novel uremic toxin 

which contains chemical groups (amino and carboxylic acid) common to protein or 

purine/pyridine metabolism. These functional groups may also result in the short 

retention time observed during the reverse phase HPLC run and the high UV 

absorbance at 242 nm associated with its native size exclusion fraction.

HO
NH

NH

Figure 4.20: Putative neutral structure o f  the candidate ion m/z 270.1566, named N- 

[2-(7-hydroxy-3-methyl-ocatahydro-imidazo[l,5-a]pyridine-6-yl)-2-oxo-acetyl]- 

guanidinef3̂ .

- 161  -



This chem ical structure was derived from the fragm entation o f  this analyte w ith the 

suggested elem ental form ula for each fragment. The m ultiple stages o f  fragm entation 

enable an extensive reaction schem e to be generated and can lim it tim e in elucidating 

the chem ical structure (see figure 4.20). Although, m ore im portantly the small m ass 

fragm ents, such as those at m/z 97 and 120 can often be vital in ensuring a relatively 

quick identification. These two particular fragm ents are know n to be characteristic o f  

a 5-m em bered im adazole ring and so can be included into the eventual structure.
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Figure 4.21: MS/MS spectra o f candidate biomarker m/z 270 obtained using the LCQ 

DECA ion trap mass spectrometer at collision energy o f 35eV.



In addition to the structure of individual fragment ions, the order o f fragmentation and 

the subsequent neutral group lost is important. This information for the protonated 

molecule at m/z 270 indicates that the chemical structure must have a primary amine 

bonded to a carbon atom located next to a carbonyl group with a hydroxyl group in 

close proximity. This is required in order for the successive losses o f ammonia, 

carbon monoxide, and water to occur as illustrated by the transitions o f m/z 228 to m/z 

211 to m/z 183 to m/z 165. This pathway is associated with only a few structures and 

is minimised further by considering the double bond rule. According to the suggested 

elemental formula from the calculated accurate mass there should be in total four 

double bonds plus aromatic rings in total. At least one aromatic ring must be present 

to generate the imadazole ring ion at m/z 97 and two aliphatic double bonds for the 

carbonyl groups to provide losses of carbon monoxide. This information results in 

one permutation o f these functional groups that correspond to the obtained 

fragmentation pattern. Elucidated reaction mechanisms of this fragmentation pathway 

are shown in Appendix 4.
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Figure 4.22: Mass fragmentation map o f  the novel uremic analyte N-[2-(7-hydroxy-3- 

methyl-ocatahydro-imidazo[l, 5-a]pyridine-6 -yl)-2 -oxo-acetyl]-guanidine at m/z

270.1566.
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The majority o f fragments shown in the map are formed by relatively 

straightforward rearrangements, however the formation o f two fragments at m/z 225 

and 2 1 0  are quite unconventional and can also provide additional evidence that the 

assigned structure is correct. The first fragment is produced as a result o f a loss of 

carbon monoxide from the ion at m/z 253 which is the protonated molecule minus a 

molecule o f ammonia from its aliphatic section. Carbon monoxide would not be lost 

easily from this structure as both carbonyl groups are embedded within the aliphatic 

chain. The free rotation o f the carbon-nitrogen bond at positions 2 and 3 along the 

aliphatic chain is required to enable the carbon to swing around to form a bond and a 

5-membered ring intermediate with the second carbonyl group. Subsequent 

rearrangement o f both the proton and double bonds places the charge onto the first 

carbonyl and is then ejected as a neutral molecule o f carbon monoxide (see figure 

4.23).

NH

HN.

HO

Figure 4.23: Proposed structure o f  the 5-membered intermediate form ed from  the ion 

at m/z 253 that is prim ed to eject neutral carbon monoxide resulting in the ion m/z 

225.

The second unconventional ion at m/z 210 is formed as a consequence of 

losing a highly stable fragment as shown in figure 4.25. This fragment of formula
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CH6N3 is common to purine bases and is very stable due to the resonance of a double 

bond between the three amino groups.

Figure 4.24: Proposed structure o f  the ion at m/z 210 form ed as a result o f  rotation 

within the aliphatic section o f  the molecular ion, with the formation o f  a 5-membered 

ring intermediate and the loss o f  CH6N3 due to its high stability through resonance o f  

double bonds.

HO.

NH

HO,

NH

HO.

NH

NH2

-pcq
m/z 210

Figure 4.25: Suggested mechanism offorming the ion m/z 210 through the loss o f  the 

highly stable neutral CH6N3.

The structures of the fragments as described above are also supported by the DBE 

values obtained for each ion from the calculated accurate mass (see table 4.9).



Fragm ent Ion (m/z) Suggested Elemental Form ula DBE Value

253 C11H17N4O3 5.5

236 CuHwNsQa 6.5
228 C10H18N3 O3 3.5
225 c 10h 17n 4o 2 4.5
2 1 1 C10H15N2 O3 4.5

2 1 0 C10H14N2O3 5.0
192 C10H14N3O 5.5
183 C9H15N202 3.5
165 c 9h ]3n 2o 4.5
141 C6H9N2 0 2 3.5
140 C8H,oN30 5.5
1 2 0 C8H,oN 4.5
97 c 5h 9n 2 2.5

Table 4.9: Elemental formula information regarding the fragment ions produced from  

the precursor at m/z 270. All accurate masses were measured to within 5ppm apart 

from  m/z 120 and 97 (-8.1 and -7.5ppm respectively).

An extensive literature search has indicated that this is a completely novel analyte to 

exist in nature and as the name suggests, it is a likely product o f guanidine 

metabolism. Its presence within uremic patients provides this novel analyte with the 

potential to be used as a novel marker for assessing dialysis adequacy and the results 

o f its suitability are included in the latter section o f this chapter.

4.2.4.5. Candidate biomarker 5: m/z 180.0650 (m/z 359.1232 and m/z 381.10511 

This ion was observed to co-elute with two other analytes at m/z 359 and 180. It was 

suggested that the ion at m/z 381 was a monosodiated dimer o f the monomer at m/z 

180, and the ion at m/z 359 was the singly protonated dimer. This ion at m/z 180 

could not be as a result o f multiple charging as the mass o f the proposed singly 

charged ion was unsuitable and there was no indication o f any half mass isotopes.



This information and the calculated accurate masses suggest that the elemental 

formula for each moiety is Q gH ig^C ^N a (m/z 381), CigHi9N2 0 6  (m/z 359), and 

C9H 10NO3 (m/z 180) as shown in table 4.10.

Elemental 
Formulae of Ion

Accurate Mass 
of Formula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

Measured 
Accurate Mass of 

Unknown

C 18 Hjg N 2 0 6  N a 3 8 1 .1 0 5 7 -1 .7 ✓ 10.5 3 8 1 .1 0 5 1

Cig h 19n 2 0 6 3 5 9 .1 2 3 8 -1 .5 s 10.5 3 5 9 .1 2 3 2

C 9 H 10 N  0 3 1 8 0 .0 6 5 5 -3 .0 s 5 .5 1 8 0 .0 6 5 0

Table 4.10: Accurate mass information and associated elemental formula fo r  the 

monosodiated dimer, singly protonated dimer, and singly protonated monomer.

The known uremic toxin Pentosidine ([M+H]+ of C17H29N6O4) also has this mass-to- 

charge as a protonated molecule however the dimer affect and the elemental formula 

suggest that this is a novel uremic analyte. From these elemental formulae it appears 

that both dimers are symmetrical species with either a proton or a sodium ion present 

in the middle as linking group. This is represented by the very little fragmentation o f 

these dimers and the resulting ions as shown in figure 4.27. For example, the 

monosodiated dimer fragments to form an ion at m/z 2 0 2  only and corresponds to the 

monosodiated monomer. This is consistent with the protonated dimer which 

fragments to the protonated monomer only. Hence, any in-depth structural 

information regarding the position o f functional groups must be deduced from the 

fragmentation o f the monomer. Again, most information regarding structure can be 

obtained from the small mass fragments and those at m/z 77, 95 and 105 indicate that



this analyte contains a hom ocyclic 6-m em bered arom atic ring with both  hydroxyl and 

carbonyl groups directly attached. These relatively polar groups w ith a non po lar 

arom atic functionality are further supported by  the elution tim e o f  the reverse phase 

chrom atographic separation corresponding to m obile phase conditions o f  50:50 

aqueous: organic.

10C H
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g 60t

162.1

3IH

134.177.1 95.1 180.1

50 60 70 90 90 100 110 120 130 140 15 0 1 6 0 1 7 0 1 B0
m/z

Figure 4.26: Fragmentation MS/MS mass spectrum at collision energy o f 35eV o f the 

singly protonated monomer at m/z 180 showing the characteristic fragments o f an 

aromatic ring and in particular a phenoxy ring at m/z 77 and 95 respectively. The 

base peak o f the spectrum at m/z 105 is also typical o f an aromatic ring with a 

carbonyl group attached and is a highly stable ion accounting for its relative 

abundance.

The fragm entation m ap also shows a double loss o f  carbon m onoxide suggesting the 

presence o f  two carbonyl groups that can be rem oved along with the hydroxyl and 

am ino groups to leave the single phenyl ring. This inform ation and the order o f
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fragmentation implies that this structure is an aromatic ring with hydroxyl group and 

an aliphatic chain containing two carbonyl and an amino group attached.

381.1051

202.0474

A
359.1232

c 18h19n2 o6

-c9h9no3

180.0650

■C3 H.NO.-H -0

95.0487162.0544

105.0326

-CO
-CO

134.0594
77.0378

Figure 4.27: Fragmentation map o f  the monoprotonated dimer; initially showing the 

formation o f  the monomer and subsequent monomer fragments.



One permutation o f these functional groups that matches the fragmentation pattern 

completely has the name 3-(6-hydroxy-cyclohexa-l,3-dienyl)-2-imino-3- 

oxopropionaldehyde[3]. This structure is consistent with the chromophoric groups 

required to generate a high absorbance signal at 242 nm associated with the size 

exclusion fraction analysed.

OH

NH

Figure 4.28: Proposed neutral structure o f  m/z 180 and corresponds to the name 3- 

(6-hydroxy-cyclohexa-l,3-dienyl)-2-imino-3-oxopropionaldehyde.

The mechanisms involved in the fragmentation o f the monomer consist of several 

common rearrangement reactions all reliant on the resonance o f charge within the 

structure as shown in Appendix 4 section 4.5. The DBE value implies that the 

structure o f the ion should have a total o f five double bonds plus ring structures. If 

the DBE number is determined from the neutral proposed structure, then it should 

have a value o f six. However, when charged in solution this DBE value can provide 

some evidence o f the native structure. For example, the structure must lose a double 

bond through the resonance effect, and the charge to residing on the aliphatic ring as 

shown in the proposed solution structure (see figure 4.29).



OH

-T NH

Figure 4.29: Structure o f  3-(6-hydroxy-cyclohexa-l,3-dienyl)-2-imino-3- 

oxopropionaldehyde when charged in solution.

The application of the DBE calculation to the individual fragments obtained for this 

monomer analyte, as shown in Appendix 4.5, provides additional evidence to support 

these structures and the overall structure o f the monomer (see table 4.11).

Fragm ent Ion {m/z) Suggested Elemental Form ula DBE Value

162 c 9h 8n o 2 6.5

134 CgHgNO 5.5
105 c 7h 5o 5.5
95 QHyO 3.5
77 C6H5 4.5

Table 4.11: Elemental form ula information obtained from  the calculated accurate 

mass o f  each fragment. A ll accurate masses were measured within an error o f  5ppm 

apart from  m/z 105 and 77 which were acquired within lOppm.

A thorough literature search has shown that this is not only a novel uremic 

analyte but also novel regarding its existence in biological systems. However, it does 

have structural similarities to an intermediary metabolite o f benzoylglycine. Hence, it 

is possible that this structure is formed as a result o f incubation o f benzoylglycine 

with other uremic analytes at relatively high levels. The suitability o f this analyte in 

monitoring dialysis adequacy in comparison to the current markers, urea and
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creatinine, has been assessed in patient specific samples and the results are discussed 

in the latter part o f this chapter.

4.2A.6. Candidate biomarker 6 : m/z 335.0545

This ion was observed in size exclusion fraction 4 (as expected for this mass-to- 

charge) with a calculated accurate mass of 335.0545 (see table 4.12). This accurate 

mass indicates that this analyte has the elemental formula of C 11H 15N2O8S and is 

supported further by a corresponding isotopic pattern as shown by figure 4.30.

Elemental 
Formula o f Ion

Accurate M ass 
o f Form ula

Error
(ppm)

Suitable
Isotope

Pattern?
DBE

M easured  
Accurate Mass o f  

Unknown

CiiH15N208S 335.0544 -0.3 5.5 335.0545

Table 4.12: Accurate mass data and suggested elemental composition o f  the 

candidate ion m/z 335.0545.

There are no published uremic analytes that would be observed at m/z 335 and 

indicates that this is a novel uremic analyte. This putative elemental formula 

information was searched in published literature for a corresponding chemical 

structure, although, this proved unsuccessful. This does not render the ion unsuitable 

in assessing dialysis adequacy as it may function as a diagnostic marker regarding 

patient health.
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Figure 4.30: Mass spectra o f the isotopic patterns o f the unknown ion at m/z 335 

observed within the haemodialysate solution and the molecular ion o f  formula 

Cj3H i5N20 8S.

The fragm entation M S/M S m ass spectrum  shows a characteristic double w ater loss 

from  the protonated parent m olecule. This is indicative o f  the presence o f  two 

hyrdroxyl groups attached to carbon atom s and is supported by the calculated accurate 

m ass and associated elem ental form ula o f  the relevant fragm ent ions (see figure 4.32). 

U nfortunately, lim ited elem ental form ula inform ation w as acquired for the product 

ions show n in the M S/M S m ass spectrum  and results in an increased difficulty in 

assigning a chem ical structure to the analyte. However, the product ion data can be 

exam ined for any com m on neutral losses and relevant functional groups proposed for 

the chem ical structure. For exam ple, the ionic species at m/z 299 o f  form ula
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Figure 4.31: MS/MS fragmentation mass spectrum o f the candidate ion at m/z 335 

using collision energy o f 35eV and showing comparable product ions o f m/z 317, 299, 

247, 227, 203, 177, 159 and 147.

C 11H 11N 2O6S is capable o f  form ing two ions at m/z 219 and 201 corresponding to 

losses o f  80 and 98 Da respectively. From  the starting elem ental form ula these ions 

could be generated due to the neutral loss o f  SO3 (-80 Da) and sulphuric acid, H 2SO4 

(-98 Da). The fragm entation schem e (see figure 4.32) also shows losses o f  42 and 72 

D a from  the ion at m/z 299. These could be as a result o f  losing groups such as 

C 2H 2O and C3H 8O4 respectively, which are com m on to precursor ions containing a 

sugar residue. This is further supported by the presence o f  the ion at m/z 203 in the 

M S/M S m ass spectrum  w hich could correspond to a loss o f  C5H 8O4 or a ribose sugar 

m oiety. I f  this prem ise and an SO 3 or sulphuric acid loss is correct then the rem aining 

product ion w ill have a form ula o f  C 6H 6N O 2 w hich is indicative o f  the biom olecule 

nicotinam ide.
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Figure 4.32: Product ion reaction scheme o f  the novel uremic analyte at m/z 335.

This has an important biochemical role within the body as part of a larger molecule of 

nicotinamide adenine dinucleotide phosphate or NADP. Therefore, a possible 

structure of this unknown analyte could be the ribonicotinamide moiety bonded to a 

sulphate rather than the conventional phosphate group. However, unlike structure of 

NADP, the nicotinamide and ribose units for the unknown must be joined differently. 

This is required for the loss of the ribose sugar to occur and the nicotinamide and 

sulphate sections to be retained. The losses of sulphuric acid and possible ammonia 

(shown by the transition o f m/z 223 to m/z 206) can also provide information about the 

chemical structure. For example, the SO3 group must be bonded to the oxygen atom 

o f the nicotinamide structure and the nitrogen atoms are not included in linking the 

individual molecular moieties. Hence, these inferences suggest that a possible



structure o f the unknown ion at m/z 335 is as shown in figure 4.33 and the reaction 

mechanisms for the relevant transitions are shown in Appendix 4.5.

OH-
HO

Figure 4.33: Possible structure o f  the unknown ion at m/z 335.

However, for this unconventional biomolecular structure to be confirmed further 

fragmentation studies with product ion accurate mass and elemental formula are 

required.

4.3. Excretion Kinetics of Urea and Creatinine with Novel Uremic Analytes in 

Patient Specific Samples

Haemodialysate samples were obtained from two patient cohorts at time points 0, 0.5, 

1, 1.5, 2.5 hours and at end o f session to provide sufficient coverage o f analyte 

excretion in the minimum number o f samples. The samples collected were intended 

as a pilot study to monitor analyte excretion in patients receiving the conventional 

dialysis treatment and those who exercised for an hour in addition to this treatment. 

Past research has shown that exercise can increase the efficiency o f dialytic removal
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for urea and creatinine and is equivalent to extending the treatment time by 15-20 

minutes^4, 5]. We hypothesise that exercise will improve the initial rate o f analyte 

excretion and the total amount during the session. Hence, any compartment excretory 

behaviour, such as drop in the amount excreted from emptying the blood (first 

compartment) would be observed at an earlier stage o f the dialysis treatment. In 

addition to the conventional biomarkers of urea and creatinine, the novel uremic 

analytes identified were monitored within the haemodialysate solution. Therefore, we 

characterised the excretory behaviour of these novel analytes within both patient sets 

and evaluated their performance against urea and creatinine as indicators o f dialysis 

adequacy and solute removal. Urea and creatinine levels were determined using 

enzymatic tests (F. Hoffmann-La Roche, Switzerland) by Morriston Hospital Swansea 

NHS Trust Pathology department. In order for these results to be comparative we 

have normalised the data acquired for each patient and expressed it as a percentage o f 

the maximum excretion point within the dialysis session. Each o f the time point 

results were averaged separately creating two patient groups (control who received 

dialysis only and exercise, those who exercised prior to treatment) to compare. These 

mean time point results were then normalised to the maximum point o f excretion 

observed within this data set and again expressed as a percentage. These data can 

now be represented as an excretory profile comparing the mean results for each 

patient cohort (see figure 4.34). The standard error of the mean patient data sets were 

obtained from repeated time point measurements and then multiplied by a scaling 

factor to account for the last stage of data normalisation. These are included on each 

excretory profile to illustrate the range o f results acquired for each time point. Further 

information regarding this statistical process is shown in Appendix 4 for urea.
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4.3.1. Excretion during haemodialvsis

4.3.1.1. Urea

Urea measurements were obtained within the range of 0.5-62.9mmol/L with the 

highest concentration present in the 0  hour time point sample regardless of the patient 

cohort. Generally for both control and exercise patients’ urea is excreted to the 

highest degree during the initial stages o f haemodialysis. However, for control 

patients urea excretion is sudden at the 0 hour time point which then plateaus from 0.5 

hour to 1 hour and is then repeated for the remainder o f the session (see figure 4.34). 

This is indicative o f compartment excretion kinetics in which the circulatory system 

(first compartment) is emptied of analytes that are replaced from the tissues (second 

compartment) and then removed again. This effect is not as pronounced for those 

patients who have exercised prior to starting dialysis treatment. Figure 4.34 shows 

that this patient cohort has a lower starting urea concentration which decreases 

relatively rapidly until 1 hour and then gradually removed until the end of the session.

Urea is a common degradative product often formed at the end o f metabolism. 

This information could indicate that exercise causes a decrease in the activity of 

metabolic pathways forming this uremic analyte due to the recycling o f the starting 

material into a beneficial biological moiety. In addition, exercise seems to be 

associated with a greater level o f variation in data obtained at each time point, when 

compared to control patients. This may be related to patient exertion during the 

exercise regimen and could suggest that more stringent requirements such as target 

heart rate should be included in future clinical trials.
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Figure 4.34: Excretory profile o f the uremic toxin urea for patients receiving 

haemodialysis treatment only (control, n =  5 patients x 2 measurements) and 

haemodialysis patients who exercised prior to initiating treatment (n = 3 patients x 2 

measurements).

In sum m ary it appears that the highly polar urea analyte is sufficiently rem oved 

during the haem odialysis treatm ent for both control and exercise patients. This is 

shown by the difference in percentage excretion at the start o f  dialysis to the end o f  

the session which, correspond to concentrations considered to be within a ‘norm al’ 

range.
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4.3.1.2. Creatinine

Creatinine, like urea, is excreted to the greatest extent during the initial stages of 

haemodialysis treatment. Throughout the dialysis session creatinine is excreted at 

levels o f 18-39jimol/L and the highest concentration is detected at 0 hour and the 

lowest 5 minutes prior to disconnection. Again, like urea, creatinine has slightly 

different excretory profiles for the control patients and those who have exercised 

before commencing haemodialysis treatment. Excretion in control patients shows 

subtle compartment kinetics; rapid initial removal ( 0  hour), reaching equilibrium or 

constant removal (0.5 to 1 hour), followed by a decrease in excretion (1 to 1.5 hours). 

This constant removal and subsequent decrease is then repeated until the end of the 

dialysis session (see figure 4.35). Patients who exercise prior to treatment have an 

altered excretory profile for creatinine. Initial losses of creatinine appear to be lower 

than control patients and overall show a more gradual removal throughout the dialysis 

session. A significant difference between both patient sets is that a lower level of 

creatinine is present in the control samples at the end o f dialysis than those who have 

exercised. Creatinine serum levels can be affected by several factors, ranging from 

muscle mass to quantity of protein consumed in the patients’ diet. However, 

creatinine clearance is understood not to suffer from these effects. Therefore it is 

unlikely that this elevated concentration at the end point is caused by the addition of 

muscle from the exercise regime as this would cause a decrease in creatinine 

clearance. A possible explanation for this rise in creatinine excretion could be an 

increase in protein metabolism, generating greater quantities o f creatinine within the 

blood for removal.

- 181 -



Chapter 4: Investigating Patient Specific Samples
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Figure 4.35: Excretory profile o f  the uremic toxin creatinine for patients receiving 

haemodialysis treatment only (control, n = 10)) and haemodialysis patients who 

exercised prior to initiating treatment (n = 6).

To sum m arise, both excretory profiles for creatinine are highly sim ilar, each 

illustrating a good level o f  rem oval for this polar analyte represented by the low  end 

points observed. A ccording to  these data points creatinine w ill be rem oved to the 

extent o f  9% or 24%  o f  the m axim um  excreted in control and exercise patients by the 

end o f  the treatm ent session, all o f  w hich correspond to concentrations considered 

within ‘norm al’ range.
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4.3.1.3. Candidate biomarker 1: 5-famino-1,2,-dihvdroxv-ethvlV3-nitrosooxv-

n.2.41trioxine-3,6-diol (m/z 241.02961 

This polar analyte (RP-HPLC relative retention time o f 0.52 minutes) unlike urea and 

creatinine has the highest point o f excretion at 0.5 hours in control patients. There are 

subtle differences observed for the excretion of this analyte between these and 

exercise patients and all profiles were obtained with good observed reproducibility 

(see figure 4.36). The excretory profile of control patients shows a gradual decrease 

in percentage excretion following the profile maxima and an end point value that is 

comparable to the start o f treatment. This could indicate that some o f the analyte is 

removed by dialysis but not with great efficiency. The incorporation o f exercise into 

the treatment regime appears to improve the effectiveness of dialysis in extracting this 

solute from the patient. Following the maxima at 0 hours this profile rapidly 

decreases from 0.5 to 1.5 hours at which it peaks again at 2.5 hours and decreases 

until the end o f session. However, unlike control patients, the end o f session 

percentage excretion is considerably lower and observed at no greater than 50% o f the 

profile maximum. This could suggest that exercise increases the rate at Which this 

solute is removed during dialysis or perhaps the passage o f analyte from the tissues to 

the circulatory system ready for removal.
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Figure 4.36: Excretory profiles o f  the novel uremic analyte observed at m/z 241 

obtained fo r control and exercise patients (n — 10 and 6 respectively) including 

repeat analysis profile o f  the same sample.
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Also, if  this analyte has a role in metabolism, exercise could alter the amount formed 

through the degree o f exertion by the patient. This latter suggestion is supported by 

the larger degree o f variation observed in the data for exercise patients and could be 

related to differences in patient exertion during the regimen. As stated previously, 

this would be confirmed or refuted by imposing more stringent guidelines to the 

exercise regime for future studies. However, in order to confirm the exact cause of 

variation in excretion absolute levels need to be quantitated and would require the 

synthesis of the reference material for an internal standard.

4.3.1.4. Candidate biomarker 2: 2 -(5,6 -diamino-6 -diazenvl-cvclohex- 1 -envD-2 - 

hvdroxv-acetimidic acid (m/z 214.1298)

This polar analyte shows a good level o f removal during the haemodialysis procedure 

regardless o f patient set, illustrated by the difference in percentage excretion observed 

when treatment commenced and finished. The profiles were obtained with good 

reproducibility for both control and exercise patients and show elements o f 

compartment excretion achieving an apparent high degree o f removal, although there 

are some slight variations. The profile for control patients could suggest that a large 

amount of analyte is removed from the circulatory system but gradually replenished 

by the tissues at a relatively slower rate than which it is removed by the dialysis 

treatment (see figure 4.37). In order for this to be confirmed a standard reference 

material would need to be synthesised to quantitate the levels removed during the 

session. Exercising before receiving the same treatment causes the initial excretion 

level to increase and drop to 70% excretion at 1.5 hours. This is followed by a subtle 

rise in excretion possibly due to the replacement o f analyte from the tissue
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Figure 4.37: Excretory profiles o f the novel uremic analyte observed at m/z 214 for 

control patients and those who have exercised prior to commencing treatment (n = 10 

and 6 respectively), including profiles obtained from repeat analysis.
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compartment into the blood stream, and then decreases until the end o f the session 

(see figure 4.37). Another difference with respect to the two patient cohorts is the 

excretion level at the end of dialysis. Exercise patients appear to have a slightly 

higher degree of removal and could indicate that this has increased metabolism and 

the level present in the blood, creating a larger concentration gradient. The effects of 

exercise are also apparent by the degree o f variation within the results. Again, a 

greater level o f variation is observed when the patient exercises and may be related to 

the amount o f effort exerted by the patient prior to commencing treatment.

The profiles o f both patient sets show good removal o f analyte indicated by the 

relatively large differences observed between the time o f maximum excretion and the 

end point o f treatment. Therefore, we can suggest that overall the conventional 

markers, urea and creatinine, would be representative o f the excretion o f this polar 

solute.

4.3.1.5. Candidate biomarker 3: m/z 275.0478

This relatively non-polar analyte with a RP-HPLC relative retention time o f 35.6 

minutes has a very different excretory profile obtained with a good degree o f 

reproducibility when compared to urea and creatinine, regardless o f the patient cohort 

(see figure 4.38). The profiles for both control and exercise patients show a poor level 

o f removal clearly illustrated by the high degree o f excretion associated with the end 

o f session samples. These could indicate that for similar non-polar analytes dialysis 

needs to be carried out for much greater lengths of time for sufficient removal. 

Exercise appears to have a considerable impact on the excretion o f this solute shown 

by a large peak at 1 hour. Levels of excretion seem to remain relatively constant until 

2.5 hours from which it increases gradually until the end o f the session.
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Figure 4.38: Excretory profiles o f the non-polar novel uremic analyte observed within 

the haemodialysate at a relative RP-HPLC retention time o f 35.6 minutes and at m/z 

275. This figure includes both first pass and repeat analysis data showing 

comparable profiles (n = 10 and 6 for control and exercise patients respectively).



This could indicate the level o f analyte within the circulatory system was increased by 

exercise and removed from 0.5-1.5 hours, with a slow rate of transport into the blood 

from the tissues. The high degree of variation in excretion for this data set could also 

suggest that patient exertion during the exercise regime should be monitored and 

maintained more closely.

In summary, this non-polar analyte appears to have very poor removal in 

patients undergoing conventional dialysis treatment, and is illustrated by the 

maximum percentage excretion observed at the end o f the session. This alone 

provides sufficient evidence that the current biomarkers, urea and creatinine, are not 

representative o f all uremic solutes in assessing dialysis adequacy. The behaviour of 

this analyte may offer an insight o f how haemodialysis may be developed to increase 

efficiency o f removal. For example, exercise does appear to improve removal with 

the greatest level o f excretion at 1 hour into the session. This could be due to a 

number o f reasons including an increase in the level o f analyte in the circulatory or 

first excretory compartment, ready for removal. However, high levels o f excretion at 

the end o f session also imply that exercise alone can not result in sufficient removal o f 

this non-polar analyte. An extraction reliant on osmotic diffusion o f non-polar 

analytes into an immiscible aqueous solution o f dialysate is unfavourable due to its 

low solubility level. This could result in the poor degree o f removal displayed by 

these results and hence, improvements to the haemodialysate technique by enhancing 

this solubility should be investigated.
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4.3.1.6. Candidate biomarker 4: N-r2-(7-hvdroxv-3-methvl-ocatahvdro-imidazo|T,5-

a1pvridine-6-vl)-2-oxo-acetvn-guanidine (m/z 270.1566)

This polar analyte shows a good and reproducible profile o f removal in both control 

and exercise patients. Excretion in control patients shows the maximum at 0.5 hours 

which gradually decreases until the end of the treatment session. The profile indicates 

that a high proportion of this analyte has been removed by the procedure with the end 

o f session sample showing no more than 13% excretion o f the maximum value. The 

inclusion o f exercise prior to dialysis appears to cause a greater amount of initial 

excretion when compared to controls, and decreases rapidly at 1 hour. The 

subsequent time point is a near equivalent to the excretion maximum for the profile 

resulting in a sudden increase in removal followed by a gradual decrease until the end 

o f session. However, unlike the control patients the level o f excretion is much higher 

at the end point sample perhaps indicating that the level o f this analyte has been 

increased as a product o f metabolism.

This solute appears to have a relatively good removal by haemodialysis and 

exercise may cause an increase in the level excreted at the start o f treatment. 

However, the overall higher levels o f this analyte observed in this patient set could 

indicate that exercise actually increases the amount present in the blood, implying that 

it could be a product of a metabolic pathway that increases with oxygen intake. This 

is consistent with the identity assigned and implies that it is related to purine or 

pyrimidine metabolism. The good removal and its similarities to urea and creatinine 

excretion suggest that these biomarkers could be used to monitor the excretion of this 

novel polar analyte at m/z 270.
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Figure 4.39: Excretory profiles o f  the novel uremic analyte at m/z 270 obtained 

during an initial and repeated analytical runs for control and exercise patients (n = 

10 and 6 respectively).
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4.3.1.7. Candidate biomarker 5: 3-(6-hvdroxv-cvclohexa-13-dienvlV2-imino-3-

oxopropionaldehvde (m/z 180.0650 \m/z 359.1232 and m/z 381.10511)

This analyte ion can exist as its native protonated monomer, a protonated dimer or as 

a monosodiated dimer and the latter two may form as a result o f the electrospray 

ionisation process. The relatively non-polar monomer analyte is observed within the 

RP-HPLC run at a relative retention time of 24.3 minutes. The individual ions have 

almost identical excretory profiles that are highly reproducible and were combined for 

comparison to urea and creatinine as one uremic solute. In control patients they 

appear to be removed poorly until 1.5 hours into the dialysis session, and then 

decreases rapidly until the end o f treatment. This could imply that there is rate 

limiting step at the beginning o f dialysis for these analytes. A possible explanation 

could be due to compatibility or solubility issues o f the non-polar analytes passing 

into a primarily aqueous dialysate matrix or a slow rate o f diffusion o f the analytes 

from the tissue to circulatory compartments. Exercise appears to improve initial 

levels of excretion resulting in the maximum excretion at 0 hour. This declines quite 

rapidly, with a subtle increase at 1 to 1.5 hours and a gradual decrease in excretion 

until the end o f the session. Exercise also seems to increase the amount present at the 

end o f dialysis with a greater end point percentage excretion. A possible explanation 

for this is an increase in metabolic rate and production o f the solutes within the tissues 

which gradually pass into the circulatory system.



Chapter 4: Investigating Patient Specific Samples

Mean excretion of urem ic analyte at m/z 180 (incl. m /z 359 and 381) shown as a norm alised  
percentage of the largest peak area obtained at each tim epoint throughout the hem odialysis

session

160.00

140.00

120.00

S 100.00 
E
32
E 80.00

40.00  -■

20.00

0.00
0.5

Time point (hours)

1.5 2 2.5

Time point (hours)

160.00  -

Control patients

140.00
Exercise patients

120.00
■a
CD

O

c
o
CD 60.00 -<jx
CD

40.00 -.

20.00

0.00
0 0.5 1 1.5 2 2 5 3 3.5 4 4.5

•* - Control patients 
repeats

■- - Exercise
patients repeats

3.5 4.5

Figure 4.40: Excretory profiles for initial and repeat analysis o f the novel uremic 

analyte present in haemodialysate obtained from control patients and those who have 

exercised prior to dialysis treatment (n = 10 and 6 respectively).
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In summary, this relatively non-polar novel uremic analyte appears to have a 

delayed removal during dialysis, with maximum excretion observed at 1.5 hours. The 

addition o f exercise to treatment appears to improve the initial extraction of analytes 

perhaps by increasing the amount present in the blood stream through an increased 

metabolic rate or transport from the tissues. The first point is supported by the 

proposed monomer identity assigned, indicating that this analyte may be related to 

benzoylglycine and the glycine metabolic pathway. However, the disparities between 

this profile, urea and creatinine suggest that these conventional markers aren’t 

completely representative o f the excretion of these novel uremic analytes.

4.3.1.8. Candidate biomarker 6 : m/z 335.0545

This non-polar uremic solute generates highly reproducible excretory profiles and is 

insufficiently removed throughout haemodialysis regardless o f the patient cohort. 

Evidence for this is provided by the maximum point o f excretion present at the end o f 

dialysis treatment. Patients undergoing dialysis alone appear to have poor initial 

removal possibly due to incompatibilities of solute and dialysate polarity or solubility, 

and peaks at 1 hour showing maximum excretion. This decreases slightly, but 

continues to increase to the end of the dialysis session, indicating an insufficient 

duration o f dialysis treatment. Exercising prior to treatment seems to decrease the 

amount excreted at the start o f dialysis. The percentage excretion then rapidly 

decreases and follows a similar pattern to that exhibited by control patients. However, 

unlike the control patients, the maximum level of excretion is observed with the end 

o f session sample and a rapid increase in the level o f this analyte is present within the 

patients’ blood following 1.5 hours of dialysis treatment.
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M ean excretion of urem ic an alyte at m /z 335 shown as a norm alised percentage of the largest 
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Figure 4.41: Excretory profiles obtained over two analytical runs o f the novel non­

polar uremic analyte observed at a RP-HPLC retention time o f 30 minutes and at m/z 

335 (n = 10 and 6 for control and exercise patients respectively).
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The proposed identity o f  this analyte (shown in section 4.2.4.6) suggests that it is 

formed as a result o f malfunctioning metabolic processes. If this is correct exercise 

could be causing a decrease in this malfunction, activating the correct metabolic 

pathway and resulting in a decline o f the uremic solute in the blood for removal. 

After more than 1.5 hours o f inactivity, this faulty process may take precedence again 

causing the level o f the uremic solute to increase in the blood stream. This may also 

be an underlying mechanism within control patients and could account for the greater 

level of excretion observed at all time points when compared to the exercise group.

In summary this non-polar analyte has very poor removal from the patient 

regardless of treatment. Exercise does affect excretion but greater levels appear to be 

removed from the control patients possibly due to greater amounts originally present. 

In comparison to profiles obtained for urea and creatinine, the excretion o f these 

conventional markers does not appear to be representative o f the solute at m/z 335.

4.3.2. Suitability of use as a biomarker

It is quite clear from the excretory profiles shown that chemical property o f an analyte 

will dictate its removal during haemodialysis treatment. The clearance o f urea and 

creatinine are the benchmark measurements by which adequacy o f all haemodialytic 

treatment is monitored. However, these polar uremic solutes are thought not to be 

representative o f some toxins retained in the body following treatment. Evidence for 

this has been given by this current work indicating that despite ‘normal’ urea and 

creatinine levels, other non-polar analytes (at m/z 275, 180 and 335) are not removed 

sufficiently. This warrants the use o f a selection o f uremic analytes o f a range of 

polarities to be monitored and assess the efficacy of haemodialytic treatment.
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4.3.3. Effect o f exercise on haemodialysis excretion and its future in treatment

The inclusion o f exercise prior to commencing haemodialysis treatment unlike the 

literature14,5] appears to have little affect on conventional markers, urea and creatinine, 

generating similar excretion profiles to the control group. The primary effect on the 

excretion of the novel polar uremic analytes is an increase in initial removal followed 

by a more profound compartment profile. The greatest impact on excretion was 

observed with non-polar analytes. Exercise appears to lower the amount excreted 

throughout the whole o f the dialysis session and perhaps encouraging metabolism to 

function correctly decreasing the level o f these analytes in the blood. A common 

characteristic observed with all analytes monitored was a greater level o f variation in 

the data acquired for each time point. This may be due to disparities between patient 

exertion whilst exercising and highlights the requirement o f more stringent guidelines 

during the exercise regimen. These could include maintaining the patients’ heart rate 

at a specific level to ensure comparable results and minimising intra-time point or 

inter-patient variability.

4.4. Summary of Identifying New Uremic Analytes and Their Application to 

Haemodialysis Treatment

Previous work carried out in Chapter 3 has shown that this methodology is capable o f 

isolating and identifying analytes within the haemodialysate matrix. This has been 

applied with the aim o f discovering novel uremic analytes that are observed to have a 

high degree o f thermal stability at a reduced temperature o f 10°C. A range of mass



spectrometric experiments has enabled for the vast majority of novel analytes a near 

complete elucidation o f their chemical structure. These included extensive 

fragmentation investigations o f the analyte and the acquisition o f the elemental 

formulae for both the protonated molecule and the product ions. For the latter the 

LTQ Orbitrap proved vital particularly for the analyte at m/z 214. The high mass 

resolution capabilities of this instrument showed a peak within 0.8 Th that have could 

provided an incorrect elemental formula and identity assignment by causing the ion 

peak to shift in mass-to-charge. There are two analytes that have unconfirmed 

complete structures and would require additional work to be carried out using the 

LTQ Orbitrap mass spectrometer. Unfortunately this was no longer at our disposal 

and will have to remain as future work until the instrument is available.

Following analyte identification we have examined the excretion o f these 

novel uremic analytes within haemodialysate and evaluated their suitability as 

markers in assessing dialysis adequacy. Ultimately we have found that the chemical 

polarity o f uremic solutes has a significant impact on their extraction from the body. 

Non-polar analytes proved particularly difficult to remove possibly due to their 

insolubility with the aqueous sampling matrix, the dialysate concentrate. Therefore 

we have highlighted the limitations o f using urea and creatinine to monitor the 

excretion of this type o f solute and the need to develop haemodialysis to enhance non­

polar solute removal. Our suggestions regarding this may include using a non-polar 

additive within the dialysate concentrate, such as an inert surfactant or attaching a 

non-polar polymer to the external side o f a conventional dialysis membrane. Exercise 

has shown to have some beneficial effects on solute removal during dialysis although, 

it’s true affect is not completely understood and warrants further work. As a short 

term measure we believe that it is essential for future treatments to be monitored not
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only using polar analytes such as urea and creatinine, but to use a solutes of a range of 

polarities, ensuring an unbiased measurement of dialysis adequacy.
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CHAPTER 5: 

Characterisation of Novel MALDI 

Matrices for MALDI Tissue Imaging.

5.1. Matrix-assisted Laser Desorption/Ionisation (MALDD Imaging Mass 

Spectrometry (MIMS)

Imaging mass spectrometry is a developing technology at the forefront o f protein 

analysis, using MALDI time-of-flight-mass spectrometry (MALDI-ToF-MS) to both 

profile and map proteins, and their related biomolecules, primarily from thin 

previously frozen tissue sections. When tissues are removed from the body 

degradative enzymes initiate a process o f autolysis. Hence, to maintain integrity the 

tissues need to be processed immediately either by freezing or using a fixative. 

Current MIMS techniques use sections cut from frozen tissue rather than tissue that 

has been in contact with the fixative which has proven to be problematic. Common 

fixatives include paraffin wax which infiltrates the tissue at high temperatures after a 

process o f dehydration. A possible effect o f paraffin on tissue ionisation is the 

reduction o f the number o f potential ionic functional groups that can result in a mass- 

to-charge signal. Unlike the freezing process using liquid nitrogen, a fixative is 

employed for archiving tissue biopsies as it is carried out at lower cost than freezing 

and can still maintain the morphology o f the tissue for later microscopic analysis. 

Therefore, developments in imaging mass spectrometry for paraffin sections could 

enable this technique to become commonplace for detecting disease states, such as 

cancer progression, or the interface o f healthy and diseased regions in tissue biopsies.



We have investigated several different parameters of tissue preparation for MIMS 

applicable to:

1 . paraffin-embedded,

2 . deparaffinised and,

3. frozen sections.

These include investigating novel lipophilic fluorescent compounds for use as 

MALDI matrices, with the effects of solvent composition, and drying temperature. In 

order to improve the compatibility o f paraffin based sections for MIMS technology 

antigen retrieval buffers were also examined to enhance protein/peptide signals.

5.1.1. Tissue preparation

Current methodologies for protein and peptide analysis involve several forms of 

sample preparation^] and are outlined below:

5.1.1.1. Tissue blotting on polymer membranes

This involves transferring proteins and peptides from freshly microtomed tissue 

sections, by a blotting action, onto an organic polymer membrane previously mounted 

on a MALDI sample plate. Commonly used membranes consist o f carbon-filled 

polyethylene as it is capable o f maintaining a good electrical potential between the 

sample plate and the electrode within the MALDI ionisation source. Adsorption of 

proteins and peptides to the membrane occurs through electrostatic and hydrophobic 

interactions. The blotted areas are then washed with deionised water to remove 

residual tissue fragments, blood and most importantly salts. A matrix solution, such 

as sinapinic acid, is then applied to these washed regions whilst wet and air dried



i r ,x .  j .  isu v e i  ivi/ l l u i  1 is su e  im a g in g

ready for analysis. This protocol is generally used for the analysis o f proteins and is 

capable o f detecting masses of up to lOOkDa. Past studies have shown that it is also 

capable of achieving reproducible results between tissue sections and is applicable to 

different organs such as lung, heart, pancreas, epididymis, brain and kidney 2̂,3\

5.1.1.2. Tissue imaging using laser capture microdissection (LCM)

This preparative technique initially involves dissecting cells identified from a 

previously stained and fixed tissue section. Selected regions for dissection are 

irradiated with an infrared laser transferring the cells to an organic membrane or film, 

commonly consisting o f ethylene-vinyl acetate, and matrix solution is applied as a 

droplet using a narrow capillary. This membrane is then attached to the MALDI 

sample plate using double-sided carbon-filled polyethylene conductive tape ready for 

analysis. A suggested advantage of this protocol is the ability to obtain a good quality 

protein signal from small amounts of cellular m aterial^. Although, this method is not 

necessarily suitable in determining the spatial distribution of proteins in-situ and the 

non-conductive properties of the organic film can reduce the resolution o f signals 

obtained with the ToF mass analyser.

5.1.1.3. Direct MALDI imaging

Tissue sections are produced using a cryotome at -20°C and placed immediately onto 

a MALDI sample plate. Matrix solution is deposited over the whole slice o f tissue, 

dried in a desiccator and then mass analysed. There have been many protocols 

designed for direct matrix application with the intention o f achieving a homogenous 

coating o f matrix crystal yet maintaining the spatial arrangement o f the proteins and 

peptides. The first is the ‘sliding drop’ method and involves loading the tissue with a



large volume of matrix solution which is then spread over the whole section. It has 

the capability o f obtaining relatively good signals for proteins and peptides but is 

prone to disrupting the spatial arrangement of these biomolecules. The conventional 

MALDI dried-droplet spotting method was also developed for tissue imaging[2]. This 

used a narrow capillary to apply small volumes o f matrix solution, usually 1 0 0 -2 0 0 nl, 

at regular intervals across the tissue section. The solution is dried naturally or by a 

desiccator and then mass analysed in a raster pattern. Another popular approach 

involves loading approximately 0.5mL of matrix solution in a pneumatic airbrush and 

sprayed at pressures o f l-1.5bar onto a tissue section previously placed on a MALDI 

sample plate. This matrix coating must be applied within 10cm of the section and 

allowed to dry prior to the next matrix application, with successful imaging often 

achieved after 10 repeat applications. Following this, the crystallised matrix layer is 

resolubilised by spraying a solvent mixture to redistribute any heterogeneously 

arranged matrix crystals. This technique can prove problematic where poor crystal 

distribution and density on the tissue section can result in a reduction o f protein 

signals above masses o f 20kDa. Attempts to overcome this problem have involved an 

electrospray apparatus in which an electric current is placed on the needle o f a 

pneumatic sprayer. Again, this technique is also susceptible to problems in matrix 

distribution and to achieve a homogenous layer the sprayer must be placed at an 

optimum distance from the tissue section. This is to ensure the matrix does not arrive 

at the tissue either dehydrated, resulting in an amorphous matrix deposition, or, overly 

wet causing the resolubilisation o f the matrix solution.

The modified dried droplet methodology is advantageous when compared to 

the other preparative techniques as it is capable o f determining the spatial 

arrangement of biomolecules with minimal sample preparation steps. There is also



the possibility that the detected biomolecules are in fact subcellular since the initial 

sectioning step could expose those present in the cytoplasm of the cells^’2’3’4l

5.1.2. Tissue analysis by MALDI mass spectrometry

Following matrix application the sample plate is placed within the MALDI ionisation 

source and mass spectra acquired by a raster motion over the MALDI plate eventually 

obtaining data as x and y-coordinates o f  the plate. Ions obtained for a specific area o f 

tissue is known as a ‘pro file ', whilst a complete collection of ions can be plotted as a 

2D ion density map to give the mass image o f the tissue 2̂,5\  This MIMS technology 

is intended to provide information regarding spatial distribution o f biomolecules, such 

as peptides and proteins, and has the potential to show any variations that may 

correspond to disease states. Hence, there is a definite interest in identifying the 

protein and peptide complement o f these tissue profiles and images for use as a 

biomarker(s). These may then be used to outline the stage o f a particular disease, the 

boundary o f healthy and diseased tissue within a biopsy and to highlight the need to 

initiate or suspend a course of treatment.

Current methods o f protein and peptide identification by mass spectrometry rely 

on database searching o f  both the molecular species and fragment ions. Searching 

according to mass-to-charge of the molecular species can encounter problems since 

many o f the databases include the precursor molecule and do not account for post- 

translational modifications. Therefore, a more accurate identification process is 

required and is achieved by matching peptide fragments obtained after digestion with 

endoproteases, such as trypsin, with those expected in the database. However, for this 

to have sufficient accuracy the target protein must be isolated from the tissue section. 

An approach frequently employed is high-performance liquid chromatography
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(HPLC) and can separate proteins into fractions ready for analysis as an on-line 

process with electrospray ionisation (ESI) or off-line using MALDI mass 

spectrometry. In addition to tryptic digestion, isolated proteins can be fragmented and 

identified by mass spectrometry alone. MALDI time-of-flight (MALDI-ToF) 

instruments can only achieve some degree o f fragmentation through a process of post­

source decay (PSD) and sequentially stepping the voltage applied to the electrostatic 

reflectron lens. Hence, the most commonly used instruments for structure elucidation 

are interfaced with ESI using a quadrupole ion trap and quadrupole time-of-flight (Q- 

ToF) mass analyser. Although, unlike ESI, MALDI may be used for the direct 

analysis o f tissue and is not as susceptible to ionisation suppression, making it better 

suited to identifying biomolecules in situ. The use of a tandem time-of-flight (ToF- 

ToF) mass spectrometer is likely to become an important part o f MALDI imaging. 

This incorporates the benefits offered from both techniques described above[6] and 

acquires data without contamination from different proteins in close spatial proximity 

as observed with poorly separated tryptic peptide ions.

5.1.2.1. Matrix-assisted laser desorption/ionisation time-of-flight/mass spectrometry 

(MALDI ToF-MSJ

This analytical technique has revolutionised the analysis o f large biomolecules, such 

as proteins17,8’ 9]. A laser at a UV wavelength o f 337nm, is used to irradiate the 

sample mixed with UV absorbing additive, known as a matrix. The energy absorbed 

by the matrix doped sample causes ultra rapid heating and volatilization resulting in 

the ionisation o f sample analytes through several processes^10,11]. The resulting gas 

phase ions then pass into the mass analyzer for mass measurement by recording their 

time-of-flight using the relationship shown overleaf.



* = < //----------
V (2zeF)

where, t = time o f flight,

d = distance travelled, 

m = mass of ion,

V = accelerating voltage and 

z = number of charges on the ion.

Several types o f lasers are available for producing UV radiation, each with specific 

characteristics and are chosen for optimum performance for a particular application. 

For example, a Nitrogen laser can be obtained at relatively low cost but has a limited 

repetition rate o f 10Hz with a total number o f shots of approximately 107 before a new 

tube is required. However, for imaging a Nd+/YAG tripled laser is preferable which 

can work at 100Hz or more repetition rate with a total number o f shots of 

approximately 1 0 9.

The selection o f suitable matrices is important and needs to match the different 

type o f target molecule such as, synthetic polymers or biomolecules[9, n \  In addition 

to matrix choice other parameters such as, solvent composition and the inclusion of 

additives, such as trifluoroacetic acid (TFA), facilitate and improve ionisation of the 

target molecule. MALDI spectra generally consist of protonated molecular species of 

the sample components and matrix. However, additional peaks may be observed as a 

consequence o f sample degradation during laser application, and adduct formation, 

from the presence o f sodium and even potassium ions in biological samples. These 

considerations must be accounted for during spectral interpretation and have 

particular importance when applying a database search, such as those used in protein
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identification. A major upshot of this technique is the ability to identify very large 

molecular weights of up to 500kDa[8J and when used for bioanalysis traditionally 

involves an extracted sample. This extraction or preparative process however, can 

often result in a loss of information of the sample and therefore, a preferred method 

would be an analysis insitu. Prior to MIMS proteins were removed from their native 

tissue samples and either analysed as a whole molecule or as peptides through use of 

enzymes, for example, the endoprotease, trypsin. The peptide ion pattern found were 

then searched using a protein database such as SwissProt (UniProt Knowledgebase, 

Geneva, Switzerland) and likely protein identities ranked according to criteria such as 

the number o f matching peptide ions.

5.1.2.2. Fundamentals o f MALDI Matrices for identifying new matrices for imaging 

mass spectrometry

Laser desorption ionisation (LDI) included a material later known as a matrix after 

1985 when Karas and co-workers attempted to investigate the ionisation mechanisms 

involved in films o f UV absorbing amino acids[7l  Previous LDI methods were poor 

at ionising biomolecules and the inclusion o f a matrix enabled this application by 

performing the following functions^:

a. absorbs laser energy and then intermolecularly transfers energy to the analyte 

leading to thermal desorption (and excitation o f the matrix and analyte),

b. protects analyte from in-source decomposition,

c. enhances ion formation following matrix photoexcitation through a process of 

proton transfer to the analyte species and

d. prevents formation o f sample aggregates.
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Despite this knowledge the complete nature of ionisation processes in a matrix are not 

fully understood. One essential requirement for a good matrix is that it generates a 

high analyte ion yield. The choice of matrix is critical in achieving good ionisation as 

different matrices are suited to specific classes of molecules and mass ranges, and few 

so far have been found suitable for high molecular weight compounds (>25kDa). For 

example, a-cyano-4-hydroxycinnamic acid (CHCA) is suited to ionising proteins and 

peptides below lOkDa, while sinapinic acid (SA) is used for ionising proteins above 

lOkDa. Presently a large number o f matrices have been identified and cover a whole 

spectrum of biomolecules, making MALDI suitable for wide ranging analysis.

A large proportion of these matrices are derivatives of both benzoic acid and 

cinnamic acids. All these compounds have a common chromophore, essential for 

absorbing the 337nm UV radiation, and were recognized at the early stages of matrix 

development as being good for ionising proteins^131.

Figure 5.1: Chemical structures o f  two commonly used cinnamic acid derivatives, A = 

a-cyano-4-hydroxycinnamic acid (CHCA), B  = sinapinic acid (SA). Unlike CHCA, 

SA does have a phenolic hydroxy group in the ortho-position, therefore some other 

functionality o f  CHCA, such as the carboxylic acid group in conjunction with the 

alkyl double bond, must contribute to the ionisation o f  biomolecules. This disparity in 

chemical structure indicates that other groups may account fo r  the ionisation o f  

molecules o f  differing masses.
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In particular the most successful o f these matrices contain a phenolic hydroxy group 

in an ortho position to a carbonyl functional group. These functional groups when 

exposed to UV radiation undergo an intramolecular proton transfer from the 

carboxylic acid moiety. This movement is supported by the reduction in acidity and 

deficiency in proton affinity (PA) o f the carboxyl group in the subsequent metastable 

excited structure. Proton affinity o f the functional groups of both matrix and analyte 

is thought to be an important parameter in determining successful ionisation o f the 

analyte. For example, a matrix with a low PA when compared to the analyte will 

undergo a highly probable proton transfer and ionise the analyte since it will occur as 

an exothermic reaction. Unlike the corresponding meta and para  isomers, the ortho 

metastable excited structure has a relatively long lifetime (~3ns)fl2]. This, in addition 

to the acidic phenolic hydrogen atoms and disparity in proton affinities, could account 

for the protonation o f the analyte via the matrix and the better performance o f the 

ortho isomers in UV MALDI. Hence, in the search for a new improved MALDI 

matrix proton affinities and this ortho structure may prove to be a fundamental 

requirement.

Matrix Ortho (W) M eta  (X) Para (Y)

2,5  - D ihydroxybenzoic acid OH H H

Salicylic acid OH H H

Anthracilic acid n h 2 H H

p-A m inobenzoic acid H H n h 2

Figure 5.2: Hydroxycarbonyl structure consistent with some conventional matrices, W  

= ortho-position, X  = meta-position, Y  = para-position.



MALDI matrices may be classified according to their ground state 

configuration and whether they are solid, liquid, and liquid/solid two-phase matrices. 

Solid matrices are most commonly used in MALDI experimental protocols since they 

tend to be less expensive and can involve minimal sample preparation. A major 

problem encountered with solid matrices is the existence of ‘hotspots’ in the crystal 

lattice. These are areas o f crystallisation that are capable o f intense ionisation which 

are often unidentifiable by optical microscopic study and only become apparent from 

MALDI spectra o f that region. If this is an undesirable characteristic for the analysis 

liquid matrices are often chosen as a replacement since the surfaces can be 

continuously re-solubilised reducing the probability o f a ‘hotspot’[11]. Liquid/solid 

two-phase matrices consist o f an absorbing solid material mixed with a non-absorbing 

liquid. Since not all solid matrices are available in liquid form, this method was 

developed to maintain the performance o f the solid matrices with minimising the 

likelihood o f ‘hotspots’[111.

MALDI matrices also have an important role in subsequent fragmentation o f 

an ion. They can impart varying amounts o f internal energy into a neutral molecule 

and it is protonated following ion molecule collisions in the MALDI gas plume. 

Internal energy effects are evident by fragmentation including metastable decay, 

known as post-source decay (PSD). Matrices are considered ‘hot’ or ‘cold’ for high 

or low amounts o f fragmentation, respectively. For example, sinapinic acid is 

considered to be a ‘hotter’ matrix than 2,5-dihydroxybenzoic (DHB) particularly for 

glycoproteins114, 15, 16], and yet DHB causes more fragmentation than 3- 

hydroxypicolinic acid (3-HPA) when used for the analysis o f oligodeoxynucleotides. 

There are several theories proposed to explain this variation in post-source decay, 

ranging from differences in sublimation temperature of the matrices[17], the impact o f
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internal temperature on sublimation^181, and possible hydrodynamic affects during 

expansion o f the MALDI gas plume[191.

At present there are only empirical guidelines for what compounds will 

function as good matrices derived from experimental observations. However, matrix 

compounds in general have high absorption at the chosen laser wavelength, good 

solubility in the solvent preparation, the potential to form a lattice structure, can 

sublimate and ionise, and have good vacuum stability1201. Matrices are commonly 

identified as a consequence of screening a large variety o f compounds. 

Understanding the process of MALDI ionisation would allow greater specificity in 

selecting new matrices and despite many suggested mechanisms only those described 

previously have been confirmed. These known mechanisms can not fully explain the 

phenomena observed in MALDI and it is believed that many others, such as 

disproportionation reactions and multiphoton ionisation have a significant 

contribution to the total ionisation process1111.

5.2. Investigating Novel Matrices for Tissue Imaging

Existing MIMS protocols have several limitations and disadvantages; they are only 

applicable to frozen tissue sections that are rarely available and current matrices are 

inadequate in accessing certain biomolecules such as membrane bound proteins^211. 

Thus, there is a distinct need to develop the existing selection of matrices to include a 

matrix that has the capability to ionise protein from the more common paraffin 

embedded tissue sections and those proteins that are currently not amenable by 

MIMS.
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5.2.1. Discussion o f novel matrices

A total of five novel compounds were chosen as matrices with the following desirable 

characteristics:

a. absorbs UV energy at the laser wavelength of 337nm,

b. has a low molecular mass (<500Da),

c. fluoresces and,

d. has a hydrophobic/lipophilic nature.

These properties were chosen with the intention o f selecting a matrix that will ionise 

the biomolecular complement o f the tissue, producing a low background signal at 

higher mass, and be capable o f accessing membrane-bound proteins, located by both 

mass spectrometry and fluorescence microscopy. Four of the chosen novel matrices 

from commercially available materials were dansylated compounds, the first 

dansylhydrazine, has previously been used in improving the detection and quantitation 

o f glycoproteins 2̂21 and hormones[23, 24l  The three remaining dansyl compounds 

dansylcadaverine, dansyl-DL-a-aminocaprylic acid, and ll-(dansylamino)undecanoic 

acid (Sigma Aldrich, Poole, UK) are fatty acid analogues previously used to enhance 

detection o f non-polar polymers by fluorescence detection1251. The dansyl 

chromophore is capable o f absorbing energy at UV wavelengths and emitting at 

fluorescence wavelengths possibly sufficient for the MALDI ionisation o f 

biomolecules forming a molecular ion. This chemical moiety in the form present in 

these novel matrices is also known to covalently react with carbonyl groups resulting 

in an amide bond. Thus, these dansyl matrices may have the potential to ionise 

biomolecules such as peptides and proteins through a process o f adduct formation.
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Figure 5.3: Dansylated compound indicating by the section above the red line the 

dansyl functional group. It is this group that accounts fo r  both the UV absorbing and 

fluorescence properties o f  some o f  the novel matrices.

The fifth matrix, fluorescamine or Fluram (Sigma Aldrich) was chosen since it will 

only absorb at the laser wavelength, 337nm, when bound to a protein or peptide. This 

has the potential to limit the background signal from ionising the matrix when 

examining peptides at relatively low mass ranges. This compound contains a number 

o f regions o f />z-electrons required for the chromophore structure in the form aromatic 

rings and carbonyl groups as shown in figure 5.4.
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Figure 5.4: Chemical structures o f  the chosen novel MALDI matrices fo r  tissue 

imaging. A  = dansylhydrazine, B = dansylcadaverine, C = 11-

(dansylamino)undecanoic acid, D  = dansyl-DL-a-aminocaprylic acid and E  = 

fluorescamine.

5.2.1.1. Fluorescence microscopic study of novel matrices

The absorption o f energy, in the form of a photon, will elevate a molecule to an 

excited energy state. This energy can be lost by radiationless processes, collisions 

with surrounding molecules followed by radiation emission, called fluorescence, 

between the excited and ground electronic states. Fluorescence is a radiational 

emission or energy transition involving electrons of the same spin quantum numbers,
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such as an excited singlet to a ground singlet state (Si-♦So), and results in the 

emission o f light at a higher wavelength. Fluorescence emission has a relatively short 

lifetime of 10' 8 to KT4 seconds, is structurally dependent and not always observed 

with chromophores as an excited molecule is also likely to emit this energy through a 

radiationless process of internal conversion. Chemical groups capable o f absorbing 

this energy and emitting it as fluorescent light are known as fluorophores, and these 

are generally unsaturated aromatic or carbonyl groups. One advantage of measuring 

fluorescence emission is that it has high sensitivity as only a small proportion of 

chemical structures contain fluorophores, and improves the signal-to-noise ratio by 

limiting the background signal. Thus, even at relatively low concentrations of a novel 

matrix, its location on the tissue can be detected even if  it is not visually observed.

Si

Ti

ISC T.i k

>*o> ISC s.<Dcuj

Figure 5.5: Energy diagram o f  the ground and excited singlet states (So and Si, 

respectively) and a triplet excited state (Tj) o f  a molecule. Each arrow shows an 

energy transition within the excited molecules. A -  absorption, F  -  fluorescence, P  -  

phosphorescence, ISC -  intersystem crossing, and IC -  internal conversion. The
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curly arrows indicate a form  o f  radiationless energy transition or emission through 

relaxation. The dashed arrows illustrate luminescent transition where energy is 

emitted from an excited state as light either in the form  o f  fluorescence or 

phosphorescence.

5.2.1.2. Application of novel compounds as MALDI matrices 

From the chemical structures o f these novel matrices it is apparent that they do not 

contain the suspected ionising moiety o f a phenolic hydroxy group ortho to a carbonyl 

functional group. However, the dansyl matrices do have very basic amino groups, 

capable o f accepting a proton and carboxylic acid groups, with the potential to donate 

a proton. Thus, despite the absence of the ortho structure these matrices could still 

have the potential to ionise target analytes by proton transfer between the analyte and 

matrix and function in both positive and negative ionisation modes.

Novel M atrix Solvent max
Reaction

Characteristics X«x max êm
max

Dansylhydrazine

D ansylcadaverine

D ansyl-D L -a-am inocaprylic
acid

1 l-(dansylam ino)undecanoic  
acid

Fluram

M EO H

M EOH

M EO H

M EOH

E TO H /
A CETO N E

336

335

335

335

234

Saccharide adduct

R eaction product

Protein adduct 

Protein adduct

A m ine/protein adduct

336

338

334  (ETOH) 
/360  

(A CETO N E)

487

500

523

505

455

Table 5.1: Absorption data o f  the chosen novel matrices giving the excitation and 

emission wavelengths (1^ and Xem)  o f  both the molecular species and any adducts 

formed.
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The dansylation reaction is commonly employed in biochemistry to make a 

biomolecule, and in particular, proteins, peptides and amino acids, amenable by 

fluorescent detection 2̂6 ,21 ’28]. For proteins and peptides, this reaction occurs with the 

e-amino group of lysine, the hydroxyl group o f tyrosine and the N-terminal amino 

group. It has previously been used in conjunction with MALDI mass spectrometry to 

improve the sequence coverage o f tryptic peptides for protein identification. Park and 

co-workers found a 5-fold improvement in sensitivity of peptides containing a C- 

terminal arginine upon dansylation in spite o f a 2 -fold dilution, and the added 

advantage of detecting, by a mass shift o f 233.051, low molecular weight peptides 

often hidden by matrix peaks[29l  It was therefore thought that these compounds could 

have the potential to both ionise the target analytes o f proteins and peptides, and bind 

to them for use as a fluorescent tag.

5.2.2. Investigating sample preparation protocols for novel matrices

5.2.2.1. Practical considerations o f solvent composition

From previously published work it is apparent that sample preparation, in particular, 

solvent composition and hence matrix solubility is an important factor in matrix 

crystallisation and overall ionisation o f the target analytes^30, 31 The solvents 

selected for the novel matrices are those which enable absorption at the laser 

wavelength. Hence, for the dansylated derivatives methanol was preferred, and for 

Fluram, both ethanol and acetone were selected. The Fluram-acetone solution when 

mixed with proteins, peptides or amino acids absorbs UV radiation at a wavelength at 

approximately 360nm (as indicated by table 5.1). Despite the disparity between this 

and the laser wavelength, this solvent mix was still investigated as it has been used as 

the preferred option for using Fluram as a spray solutionf32l  Therefore it was
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believed that this solution utilized in conjunction with an electrospray-type 

application may warrant investigation.

In order to determine the suitability o f these solutions four different organic 

solvent compositions in aqueous were studied, 100%, 70%, 50%, and 30% as a 

lOmg/mL solution with each novel matrix. The latter two were selected as the 

conventional protocols for both CHCA and SA use 50% and 30% acetonitrile, 

respectively. All the 100 and 70% organic solutions (methanol, acetone and ethanol) 

were deemed unsuitable for MALDI since upon application to the sample plate the 

solution spread uncontrollably into other sample wells. Hence, 50 and 30% organic 

solutions were selected for further evaluation with biomolecular standard reference 

materials.

5.2.2.2. Testing novel matrices for protein and peptide analysis

5.2.2.2.I. Protein and peptide mixes

Sequazyme calibration protein and peptide mixes, and BSA solutions (Applied 

Biosystems, Foster City, CA, USA) were used to test the performance o f the novel 

matrices for MALDI analysis. These are originally freeze-dried mixes and required 

reconstitution using the supplied standard diluent in the Sequazyme kit (Applied 

Biosystems). These calibration solutions were diluted 1/25 (lp L  calibration standard 

in 24pL matrix) with each novel and conventional matrices (CHCA, DHB, SA). 

Conventional matrix solutions were made as follows:

•  a-cyano-4-hydroxycinnamic acid (CHCA) -  lOmgl/mL in 50:50 

acetonitrile:0.1 %TFA,

• 2,5-dihydroxybenzoic acid (DHB) - lOmg/mL in 50:50 acetonitrile:0.1%TFA,

• sinapinic acid (SA) -  lOmg/mL in 30:70 acetonitrile:0.3%TFA



The calibration standard-m atrix m ixes were spotted according to the dried droplet 

protocol by depositing 1 pL  o f  the m ix on a M ALDI plate in duplicate. In addition to 

these m ixes ‘b lank’ m atrix solution was also spotted to highlight com m on m atrix 

peaks and any interferences present.
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Figure 5.6: Mass spectra o f the novel matrices; A  = Dansylcadaverine (DC), 

molecular weight o f 335, and B  =  1 l-(dansylamino)-undecanoic acid (DUA), 

molecular weight o f435, displaying common ions (*) listed in table 5.2.
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Figure 5.7: Mass spectra o f the novel matrices; A =  Fluram, molecular weight o f278, 

and B =  Dansylhydrazine (DH), molecular weight o f265, indicating their associated 

ions (*) as illustrated in table 5.2.
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Matrix
Nominal

Molecular
Nominal 

Molecular Ion Matrix Ions 
(Da)Weight (Da) [M+H]+ (m/z)

1 7 2 ,1 9 0 ,2 1 2 ,
a-cyano-4-hydroxycinnam ic acid  (CHCA) 189 190 228, 2 3 4 ,2 5 0 ,  

294, 3 7 9 ,4 1 7

154, 1 7 8 ,1 9 2 ,
2,5-d ihydroxybenzoic acid (D H B ) 138 139 2 1 1 ,2 6 8 , 304, 

333, 367

Sinapinic acid (SA ) 224 225
207, 2 2 5 ,2 6 3 ,  

3 8 7 ,4 7 1

4 3 5 ,3 7 2 ,2 6 6 ,
Dansylhydrazine (DH) 265 266 265, 203 , 189, 

171, 157

D ansylcadaverine (D C) 335 336
3 3 6 ,3 3 5 , 271, 
2 0 3 ,1 7 1 ,1 5 7

1 l-(dansylam ino)-undecanoic acid (D U A ) 435 435
4 3 5 ,4 3 4 , 372, 

203 , 1 8 9 ,1 7 1 , 157

7 8 1 ,5 6 2 ,4 9 2 ,
D ansyl -D L -a-am inocaprylic acid (D C A ) 492 492 4 1 5 ,3 9 1 , 196, 

171, 100

Fluram 278 279
4 6 7 ,3 6 3 ,3 1 6 ,  
2 7 9 ,2 6 2 , 234

Table 5.2: Neutral and charged molecular species o f novel and conventional matrices 

and their commonly observed ions. These ions must be taken into consideration when 

inspecting mass spectra o f tissue at a lower mass range.

Some ions are observed specifically with the dansylated matrices, for example, the ion 

m/z 171 is consistent with the loss of the tertiary amino group plus the two phenyl 

rings from the typical dansyl functional group. The identity of these matrix peaks is 

essential for low mass (below m/z 500) analyses in order to avoid mis-identification of 

biomarkers during the eventual application.
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Final

Standard Components Charge
State

Average m /z 
of Ion

Monoisotopic 
m /z  of Ion

Concentration 
(with Matrix) 

/pmol/pL

Bradykinin +1 905.05 904.4681 1.0

CAL A ngiotensin 1 +1 1,297.51 1,296.6853 1.3

M IX  1 Glu-fibrinopeptide B +1 1,571.61 1,570.6774 1.3

Neurotensin +1 1,673.96 1,672.9175 0.05

A ngiotensin 1 +1 1,297.51 1,296.6853 2.0

A C T H  (CLIP 1-17) +1 2 ,094 .46 2 ,093 .0867 2 .0

CAL A C T H  (CLIP 18-39) +1 2 ,466 .72 2 ,465 .1989 1.5

M IX  2 A C T H  (CLIP 7-38) +1 3 ,660 .19 3 ,657 .9294 3.0

Insulin

Insulin

+2

+1

2 ,867 .80

5,734 .59

2,865 .8083

5 ,730 .6087
3.5

CAL  
M IX  3

Insulin

Insulin

+2

+1

2 ,867 .80

5 ,734 .59

-
0.5

Thioredoxin

A pom yoglobin

+2

+2

5 ,837 .74

8 ,476.78

- 2.75

4 .0

Thioredoxin +1 11,674.48 - 2 .75

A pom yoglobin +1 16,952.56 - 4 .0

B SA
B S A +2

+1

33,216

66,431 -

Table 5.3: Peptide and protein composition o f the Sequazyme calibration mixes and 

BSA solution (Applied Biosystems) used for evaluating the novel matrices. The singly 

and doubly charged ions o f those shown in the table may also be present in the 

experimental spectra.

5.2.2.22. Solvent composition

There was no significant trend regarding the preferred solvent mixtures of 30 and 50% 

organic (methanol for the dansylated derivatives, with ethanol and acetone for 

Fluram) for the analysis of proteins and peptides in both positive and negative modes. 

This characteristic appears to be matrix dependent and does not seem to have a major 

impact on ionisation at these organic solvent levels. Additives were also incorporated 

into solution to study the affect on protein and peptide ionisation in both positive and
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negative modes. Conventional MALDI matrix protocols for these biomolecules 

involve CHCA (lOmg/mL in 50:50 acetonitrile/0.1% TFA) for masses less than 

lOkDa, and sinapinic acid (lOmg/mL in 30:70 acetonitrile/0.3% TFA) for masses 

greater than lOkDa. These percentages of TFA are used for operating in both positive 

and negative mode and were tested with the solvent systems chosen for the novel 

matrices. An improvement in ionisation, measured by the number of calibration 

constituents detected, was observed in positive mode for larger proteins, such as those 

in calibration mix 3 and BSA. Generally, for these particular proteins ionisation in 

negative mode proved to be quite poor. Positive mode experiments also highlighted 

the presence of adducts between matrix and some of the calibration mix. For 

example, Fluram was observed to form adducts with Angiotensin I with the loss of 

radical hydroxyl group from the adduct when no TFA was present in a solution of 

50% acetone. However, upon addition of TFA the adduct formation was removed, 

suggesting that acidity has an impact on the positive mode ionisation processes 

involved in the MALDI plume for this particular novel matrix.

004.7101ioo n [F luram  + A ngiotensin  I] - ♦  m/z 1575  

[F luram  + A n gioten sin  I -  O H  - ♦  m/z 15589 0 -

8 0 -

70 -

4 0 -

1575.2308

571.042820
87'

1570.1038
Li 581.1523 874.3288 170.

1 " 4 0 .6

10 - 1080.0080. 1328.01

9 5 9 .4 1 4 8 0 .21219.8 2001.06 9 9 .0

Figure 5.9: MALDI mass spectrum o f calibration standard mix 1 (see table 5.3 for 

contents) in 50% acetone Fluram solution. Observed within this mass spectrum are
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Fluram adducts with Angiotensin I  (m/z 1297 no adduct, 1575 with adduct), and a 

possible corresponding loss o f radical hydroxyl group (m/z 1558).

Conventional negative mode analyses of proteins and peptides were carried out in the 

same conditions as positive mode, using CHCA and sinapinic acid as described 

previously. Unlike, positive mode, no enhancement of ionisation was observed upon 

addition of TFA irrespective of concentration, and no adduct formation was observed. 

This supports the acid-base principle that for improving ionisation in positive mode a 

proton-donating acid is used as the additive. This would also suggest that for 

amplifying ionisation in negative mode, a proton-accepting base should be included in 

the matrix-sample mix.

5.2.2.2.3. Matrix concentration

This parameter was investigated by testing matrix solutions with varying matrix 

compositions of 10, 25, and 50mg/mL with the calibration standard mixes and BSA. 

Throughout these experiments no specific trend was observed regarding matrix 

performance and its abundance in the sample spot. However, it was apparent that the 

lOmg/mL concentration consistently performed the most poorly for all the matrices 

tested. There was also no clear trend regarding the mass range of protein and peptide 

analysed and the concentration of matrix solution. Thus, for these matrices, 

concentration appears to have little effect on the ionisation of particular size proteins 

and peptides both in positive and negative mode.
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5.2 2 .2 .4 . Ionisation mode for novel matrices

As stated earlier in this section, all of the diagnostic work, regarding optimization of 

the novel matrices for protein and peptide analysis was carried out in both positive 

and negative ionisation modes. Proteins and peptides were observed in both modes, 

although more of the calibration standards were detected in positive mode. This could 

be the result of two possibilities; the matrices may be more acidic (better suited to 

proton donating) and/or the proteins and peptides in the calibration mixes are 

relatively basic, more suited to accepting protons and therefore, function better in 

positive mode. However, results obtained for negative ionisation mode were acquired 

using a TFA additive frequently associated with positive mode ionisation.

5.2.2.2.5. Investigation of optimum sample preparation conditions for novel matrices

5.2.2.2.5.I. Fluorescent microscopic results

The fluorescent capability of these novel matrices on tissue was investigated and 

compared to the chosen matrices of a-cyano-4-hydroxycinnamic acid (CHCA), 2,5- 

dihydroxybenzoic acid (DHB) and sinapinic acid (SA). The chosen matrices showed 

a varied potential for use as a fluorescent ‘tag’ to highlight areas prepared with matrix. 

For example, CHCA showed a good fluorescent signal and good distribution for 

paraffinised tissue, but distribution is affected, becoming more isolated when 

deparaffinised. This distribution affect was also observed for DHB although this 

matrix generally showed a poor fluorescence signal. Sinapinic acid matrix generally 

performed poorly on both paraffin-embedded and deparaffinised tissue sections. For 

dansylated matrices, dansylhydrazine showed greater fluorescent signal and 

distribution over the whole spot for both paraffinised and deparaffinised tissue. These 

novel compounds, unlike the selected common matrices, have the potential of
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dispersing deeply into the tissue and is an encouraging result for achieving penetration 

and ionisation of membrane bound proteins within tissue sections.

Figure 5.10: Spot o f a-cyano-4-hydroxycinnamic acid (CHCA) on deparaffinised 

tissue observed at visible (left) and fluorescent wavelengths (right).

Figure 5.11: Spot o f a-cy ano-4-hydr oxy cinnamic acid (CHCA) on paraffin-embedded 

tissue at visible (left) and fluorescent wavelengths (right).
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Figure 5.12: Spot o f 2,5-dihydroxybenzoic acid (DHB) on deparaffinised tissue at 

visible (left) and fluorescent (right) wavelengths.

Figure 5.13: Spot o f  2,5-di hydroxy benzoic acid (DHB) on paraffin-embedded tissue at 

visible (left) and fluorescent (right) wavelengths.
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Figure 5.14: Spot o f  sinapinic acid matrix on deparaffinised tissue at visible (left) and 

fluorescent (right) wavelengths.

Figure 5.15: Spot o f sinapinic acid matrix on paraffin-embedded tissue observed at 

visible (left) and fluorescent (right) wavelengths.
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Figure 5.16: Spot o f novel matrix dansyl-DL-a-aminocaprylic acid on a 

deparaffinised tissue section at visible (left) and fluorescent (right) wavelengths.

Figure 3.17: Spot o f novel matrix dansyl-DL-a-aminocaprylic acid on paraffin- 

embedded tissue section at visible (left) and fluorescent (right) wavelengths.
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Figure 5.18: Spot o f dansylhydrazine novel matrix on deparaffinised tissue pictured at 

visible (left) and fluorescent (right) wavelengths.

Figure 5.19: Spot o f novel matrix dansylhydrazine on paraffin-embedded tissue at 

visible (left) and fluorescent (right) wavelengths.
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Figure 5.20: Spot o f novel matrix Fluram on deparaffinised tissue at visible (left) and 

fluorescent (right) wavelengths.

Figure 5.21: Spot o f novel matrix Fluram on paraffin-embedded tissue at visible (left) 

and fluorescent (right) wavelengths.
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52 .2 .2 .5.2 . Mass spectrometric suitability of novel matrices

The suitability of both matrix and their preparative conditions were measured 

according to:

a. the number of protein and peptide peaks successfully observed,

b. minimal laser intensity used (ideally 100 units from threshold i.e. the minimum 

laser intensity required in achieving a signal) and

c. the highest signal obtained for proteins and peptides.

Therefore the best performing matrices for specific mass ranges of protein and 

peptides in solution using positive mode are as shown in table 5.4. It is apparent that 

a relatively high concentration of acid is required to achieve good ionisation of 

proteins and peptides in positive mode. This is consistent with the effect observed 

with some of the conventional matrices such as CHCA and in particular, sinapinic 

acid. The data also suggests that a larger complement of organic solvent is required 

for a more effective crystallization and eventual ionisation process of these 

biomolecules. This is not however, consistent with the conventional matrices named 

above, as for larger proteins sinapinic acid is typically used with 30% organic solvent 

mix. Thus, it appears as though this effect may just apply to the novel matrices 

suggested in table 5.4. One relatively clear finding from these experiments is that 

dansylhydrazine has the potential to be used for the analysis of a wide range of 

proteins and peptides unlike the current matrices CHCA and sinapinic acid (molecular 

weights below and above lOkDa, respectively).
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Calibration
Mix

Mass Range 
(m/z)

Novel
M atrix

Concentration
(mg/mL) Solvent Composition

1 9 00 -2000 Fluram 50 3 0% A C E T O N E/0.1 %TFA

Fluram 25 30% ACETONE/0.1% TFA

D C A 25 30% M EOH/0.1% TFA

2 1200-6000 D H 25 30% M EOH

Fluram 50 30% A C E T O N E/0.1 %TFA

D H 50 50% M EOH/0.1% TFA

3 5000-20000 D H 50 30% M EOH/0.3% TFA

D H 50 50% M EOH/0.3% TFA

D H 25 50% M EOH

4 33000-66000 D H 50 50% M EOH/0.3% TFA

D C A 25 50% M EOH/0.3% TFA

D H 50 50% M EOH

Table 5.4: Optimum conditions found for analyzing the proteins and peptides in the 

Sequazyme calibration standards (Applied Biosystems), where DH = 

dansylhydrazine, DCA = dansyl-DL-a-aminocaprylic acid. Overall dansylhydrazine 

appears as a potential ‘universal ’ matrix that may be suitable for a wide mass range.

Current literature suggests that cation/proton adduct-forming matrices and 

alkaline protein or peptide signals will be prone to a peak broadening affect, thought 

to be due to the desorption of salt molecules in the MALDI plume[33l  Thus, the mass 

shift associated with the salt adduct appears as part of the signal of the parent ion of 

the peptide or protein, resulting in an apparent broadening of the peak. Dansyl-DL-a- 

aminocaprylic acid (DCA) is known to exist as a salt in solution and should therefore 

have poorer peak resolution than the remaining novel matrices. This mass resolution 

effect for DCA is particularly apparent when mixed with standard calibration mix 1, 

showing amass resolution for ions m/z 905, 1297, 1571 and 1674 of 4408, 4032, 5363 

and 4421, respectively. These values are considerably lower than the other dansylated 

matrices, and dansylhydrazine (DH) has approximately double the mass resolution for
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these peaks of 9508, 11622, 9599 and 14505, respectively. This effect is not however, 

found for the matrix Fluram and could suggest that the ionisation process for this 

matrix with proteins and peptides is quite different to that of the other novel and 

conventional matrices. Unfortunately, the ionisation behaviour of Fluram has not 

been previously been investigated and hence, this trend will remain a hypothesis until 

further work is completed.

5.3. Comparative Studies of Novel and Current Matrices for Protein and 

Peptide Analysis

One of the common strategies used in the identification of proteins by MALDI is a 

tryptic digestion followed by a database search of the peptidic fragments. CHCA, 

DHB and sinapinic acid are commonly used for these experiments, and the novel 

matrices that performed best for proteins and peptides less than 6kDa were run in a 

comparative study to assess their capability in identifying proteins. A range of 

proteins, a-casein, (3-casein, bovine serum albumin (BSA), cytochrome C, and 

carbonic anhydrase were digested overnight using the endoprotease trypsin in 

ammonium carbonate solution (50mM, pH8). The digestion was stopped by adding

0.1%TFA solution and lpL of each digested protein solution was individually mixed 

with 7pL of the chosen novel (see table 5.4) and conventional matrices. MALDI 

mass spectra were recorded and the resulting peptide ions imported into the MS-Fit 

database (UniProt Knowledgebase, ExPASy, Geneva, Switzerland) where they were 

searched against a wide range of proteins. The protein identities generated by this 

software were ranked according to the number of peptides matched for a particular
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protein. Of the conventional matrices chosen CHCA proved most successful in 

identifying the protein correctly. However, both sinapinic acid and DHB generated 

some false identities for the proteins and were not considered sufficiently reliable for 

this type of analysis[34]. The novel matrices in comparison to CHCA proved 

unsuccessful in identifying the chosen proteins and were unable to generate more than 

25% of the expected peptide ions. Some of the unidentified peaks within the peptide 

spectra obtained with the novel matrices can be accounted for by adduct formation 

with matrix. Peaks are observed with the appropriate mass shift making them 

undetectable by the database since this peptide mass is not present in the protein 

database. For example, dansylhydrazine can cause the 1695, 1823 and 2181 peaks of 

carbonic anhydrase to be mass shifted by +263 leading to observed peaks of 1958, 

2086 and 2444, respectively. This adduct-type reaction has been stated in the 

literature, indicating that dansylhydrazine reacts with ketone and aldehyde functional 

groups causing a mass of +263.07 for every ketone/aldehyde group[27,28]. There is no 

apparent trend in site specific adduct formation of these tryptic peptides, apart from 

the c-terminus lysine or arginine residues common to all peptides generated with this 

enzyme.
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Figure 5.22: Spectrum o f carbonic anhydrase digested using trypsin and ionised 

using the novel matrix dansylhydrazine. The peaks labelled by *  are those peptides 

that show a mass shift o f +263 due to the adduct formation with the matrix at m/z 

2231, 1973 and 1466. The original peptide peak o f these adducts were at m/z o f 1968 

(one missed cleavage), 1710 (one missed cleavage) and 1203 (one missed cleavage) 

respectively. Also shown in this spectrum are the expected tryptic peptide peaks at 

m/z 2355, 2199, 2100, 1347 and 1142 for amino acid positions 37-58 (one missed 

cleavage), 37-57 (no missed cleavages), 59-76 (no missed cleavages), 156-169 (no 

missed cleavages) and 10-18 (no missed cleavages), respectively.

A similar mass shift however, has previously been observed when using 

dansylchloride to derivatise tryptic peptides to improve sequence coverage[29l  

However, this mass shift was of a single dansyl group causing an increase in mass of 

+233. This disparity is due to the inclusion of two amino groups attached to the 

sulphur of the dansyl moiety and accounts for the remaining 30Da. If these mass 

shifts are included with the identified peaks, the novel matrices performed 

considerably better in identifying proteins. Dansylhydrazine proved most promising
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since it showed comparative performance to the conventional DHB matrix (see table 

5.5).

Matrix Number of 
Matching Peaks

Number of Mass 
Shifted Peaks

a-cyano-4-hydroxycinnam ic acid (C H C A) 11/20 -

2,5-dihydroxybenzoic acid (D H B ) 5/20 -

D ansylhydrazine (DH) 5/20 3

Table 5.5: Number o f matching peptide peaks for CHCA, DHB, and the novel matrix 

DH, o f ionised tryptic peptides for carbonic anhydrase II identification. From the 

data it is clear that dansylhydrazine has the potential to perform better than DHB for 

identification providing the mass shifted peaks are included in the mass peptide list o f 

the protein database.

5.4. Application of Novel Matrices onto Tissue Surfaces

The viability of tissue imaging using the three selected novel matrices (see table 5.4), 

CHCA, sinapinic acid and DHB were tested with paraffin-embedded, de-paraffinised, 

and frozen tissue sections. The paraffin and de-paraffinised sections originated from 

rat liver, and the frozen sections were obtained from porcine kidney. The sections 

were cut on a microtome and OTF-5000 cryostat (Bright Instrument Co. Ltd., 

Cambridge, UK) respectively and were 10pm in thickness.

5.4.1. Preparation Protocol for Tissue Sections

5.4.1.1. Paraffin sections

A minimum of nine 10pm sections were generated using a microtome and placed 

directly from the blade to the stainless steel MALDI target plate. Both novel (as
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shown in table 5.4) and conventional matrices were applied using the ‘dried droplet’ 

procedure ready for subsequent analyses.

5.4.1.2. De-paraffinised sections

The paraffin-embedded tissue sections were prepared using the following protocol[35]:

1. incubate sections for 5minutes in two washes of xylene solvent,

2. apply three ethanol washes of 100, 95, 80, 50% for three minutes each and

3. rinse twice with distilled water for three minutes.

After this is completed matrix is applied at a particular region of the tissue using the 

‘dried droplet’ method and each matrix having a separate but subsequent tissue 

section. Once the matrices have dried the plate is then submitted for analysis using 

the Voyager DE-STR MALDI-ToF (Applied Biosystems) mass spectrometer.

5.4.1.3. Frozen sections

Fresh porcine kidney was frozen using a 2-methylbutane dry ice mix and stored in a 

-80°C freezer. Sections were obtained using an OTF-5000 cryotome set at -27°C from 

tissue embedded in Shandon cryomatrix (Thermo Fisher Scientific, Waltham, MA, 

USA) and carefully placed onto a stainless steel MALDI target plate. Initially a 

matrix solution was applied using the ‘dried droplet’ method to a particular region of 

the tissue and each matrix spotted on separate but subsequent sections. Mass spectral 

data was obtained per sample spot of the target plate and, CHCA and sinapinic acid 

were capable of successfully ionizing, in positive mode, biomolecules believed to be 

protein or peptide, unlike the matrix DHB.
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5.4.2. Mass snectrometric results

5.4.2.1. Frozen tissue sections

5.4.2.1.1. Dried droplet method

CHCA and sinapinic acid were capable of successfully ionising, in positive mode, 

protein or peptide within this section, unlike the matrix DHB. CHCA was observed to 

ionise a greater number of biomolecules showing stronger MALDI spectra, although 

sinapinic acid could obtain ion signals with much improved observed peak resolution. 

This was later refuted on closer inspection, as the calculated resolution of peaks using 

the sinapinic acid matrix was poorer than CHCA due to a peak splitting effect. 

Sinapinic acid does have an added advantage of functioning well in negative mode 

with comparable results. Analyses of the section carried out in positive mode with 

CHCA and sinapinic acid matrices showed a number of ions and their corresponding 

mass-to-charge are displayed in table 5.6.

Several parameters were tested with the aim of improving ionisation of the 

frozen tissue peptides and proteins, including layering novel matrices with and 

without conventional matrices, varying drying temperature (hence crystallization 

time), and using antigen-retrieval buffers (Novagen, Merck KGaA, Darmstadt, 

Germany) for archived tissue sections.
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m/z of Matrix
Possible IdentityUnknown Ion CHCA Sinapinic Acid

3798 y U nknown

4160 V U nknown

4958 /4966 y U nknown

5463 y U nknown

5614/5622 y U nknown

6003/5988 y Tubulin-specific chaperone d (fragment)*

6291/6227 y U nknown

7519 /7522 y U nknown

8021 y Unknown

8300 y Ferritin light chain (fragment)

8447/8455 y U nknown

9048 y U nknown

9713 /9728 y U nknown

10068 y U nknow n

10087 y U nknow n

11702 y Unknown

12448 y U nknow n

13802 y U nknown

14270 y Fatty acid binding protein (liver)

15052 y y Cytochrom e b5,

15804/16044 y y Cellular retinol binding protein 1 /  Superoxide 
dismutase [Cu-Zn]

29801 y U nknow n

Table 5.6: List o f typical ions detected using the conventional matrices CHCA and 

sinapinic acid on frozen tissue section o f porcine kidney. Identities were assigned 

using the SwissProt protein database, with known proteins and peptides retrieved 

from characterization o f pig kidney tissud36K * peptides o f corresponding mass-to- 

charge and o f similar origin to those published3®'.

5.4.2.1.2. Matrix layering

This was initially investigated to improve matrix coverage and peptide/protein 

ionisation by applying multiple layers of novel matrix on the tissue surface after each



has dried. The results obtained using the ‘dried droplet’ method for just one layer of 

novel matrix were relatively poor in ionising tissue protein or peptides. Hence, it was 

considered that the matrix was becoming too dilute as a result of dispersion within the 

tissue section. It is believed that ionisation is best achieved in a molar excess of 

matrix, and this effective dilution would therefore hinder ionisation. If this dispersion 

does occur it is likely that the efficiency of the laser imparting energy to the matrix 

will be affected. The layering of several applications for the novel matrices was 

investigated using the ‘dried droplet’ method. The use of layers did improve the 

overall ionisation of the tissue and lowered the laser intensity required for analysis in 

positive mode. However, as the number of layers increases the number of peaks 

observed in negative mode surpasses those found in positive mode. Exact reasons for 

this remain unknown although, it is proposed that the density of matrix crystals, the 

functional groups of the matrices and the unknown aspects of the ionisation 

mechanisms involved in the MALDI process possibly all play a part.
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Figure 5.23: Effect o f layering novel matrix dansylhydrazine using the ‘dried droplet’ 

method on fresh porcine kidney tissue. A - positive mode mass spectrum using one 

layer o f  dansylhydrazine matrix, B - positive mode mass spectrum involving triple 

layers o f  dansylhydrazine matrix on fresh tissue section. Ionisation o f the tissue 

section seems to improve when using several (three) layers o f matrix deposited upon 

each other. This effect is also observed with the other chosen novel matrices when 

run in negative mode.
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Figure 5.24: Mass spectra o f “triple-layered” Dansylhydrazine on fresh tissue section 

o f  porcine kidney analysed in negative mode (A) and positive mode (B). It is apparent 

that more components o f the tissue can be analysed in negative mode. The 

mechanism responsible for this is likely to be related to the ionisation process o f the 

novel matrix, dansylhydrazine.

The conventional matrices, CHCA and sinapinic acid, appeared to ionise fresh tissue 

well, and more than 15 discemable peaks were observed at relatively low laser 

intensities. Applying several layers of matrix had the benefit of lowering the 

background signal observed with high laser intensities, thus improving the sensitivity. 

This did, however, reduce the peak resolution and would therefore result in an 

increase in the mass error of the measured ion. A single layer of these conventional
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matrices did show a higher number of peaks, although this may be due to the higher 

laser power required to obtain a spectrum of sufficient intensity.
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Figure 5.25: Mass spectra showing the effect o f multiple surface layers o f 

conventional matrix sinapinic acid on the ionisation o f fresh tissue. A - tissue with 

one layer o f matrix with many more peaks observed but with a higher background 

signal using a greater laser intensity. B - tissue with three layers o f sinapinic acid 

matrix showing less peaks but with a lower background signal.
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5.4.2.1.3. Drying temperature effects on fresh tissue sections

This was investigated as it is likely to contribute to the crystallization process of the 

MALDI matrices. The effect on crystallization was tested using room temperature 

(25°C), and heating the MALDI target plate (with spotted tissue section) to 50°C
l

using a heating mantle. When applied to one layer of matrix there was no 

improvement in ionisation observed for the novel matrices, for analysis in both 

positive and negative modes. An increase in temperature had an adverse effect on the 

conventional matrix sinapinic acid. At room temperature 14 peaks were present in the 

positive ionisation mode MALDI spectrum, and this decreased to 9 when heated to 

50°C. This indicates the importance of sample preparation on MIMS tissue imaging, 

and for future experiments all subsequent preparations were carried out at room 

temperature. Analyses in negative ionisation mode showed no improvement in 

ionisation, when compared to results in positive mode. We have shown previously 

that multiple layers of matrix increased the ionisation of tissue in positive mode and 

tested this in combination with heating for any further improvement. At 50°C 

ionisation in positive mode with the novel matrices was poor when compared to room 

temperature. This is comparative with the conventional matrices perhaps indicating 

that a slower rate of matrix crystallisation is more preferable for tissue ionisation.
[

5.4.2.1.4. ‘Sandwich* preparative method using conventional matrices
I|

This methodology was investigated as multiple layers of matrix were found to 

significantly improve ionisation and it could combine good ionisation and tissue 

penetration. It involved depositing matrix, either CHCA or sinapinic acid on the 

target MALDI plate prior to tissue application. Once the frozen tissue section is
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placed on the plate CHCA, sinapinic acid, DHB, or the chosen novel matrices were 

applied to the tissue using the ‘dried droplet’ protocol.

The combination of the conventional and novel matrices prepared according to 

the ‘sandwich’ protocol resulted in an improvement in the ionisation of the tissue and 

mass resolution when compared to using the ‘dried droplet’ protocol and the novel or 

chosen matrices alone. The mass spectra obtained with matrix dansylhydrazine and 

CHCA consisted of a greater number of peaks than using CHCA alone. This is 

possibly due to adduct formation of the tissue biomolecules with dansylhydrazine, as 

this effect has previously been observed during the tryptic peptide experiments 

(section 5.3). Adduct formation may also explain the disparity of peak masses 

observed with experiments carried out with sinapinic acid alone and with 

dansylhydrazine or Fluram. However, this apparent effect seems to occur with 

specific biomolecules as there are only a few additional peaks present in the mass 

spectra involving CHCA and sinapinic acid. For example, within the mass spectrum 

obtained using Fluram and sinapinic acid a peak is observed at m/z 10085 and is 

absent when using sinapinic acid only. Peaks of similar mass-to-charge are present in 

both mass spectra at an approximate m/z of 9600 and 15000. This could imply that 

this unique peak of m/z 10085 is an adduct of the ion at m/z 9600, possibly involving 

the addition of two Fluram moieties.

According to the literature the novel matrix DCA should result in ion peaks with 

a lower resolution value than the remaining matrices as it is a salt[33l  However, 

unlike the results described in section 5.2.2.2.5, preparations involving DCA actually 

showed better peak resolution than the other novel and conventional matrices (figures 

5.26-5.28). This was not the only resolution effect observed. Peaks obtained with 

sinapinic acid in both positive and negative mode appear to have significantly better
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resolution when compared to those obtained with CHCA (figures 5.29-5.30). 

However, when calculated at 50% peak height, resolution is actually very poor for the 

sinapinic acid preparations. This may be due to a peak splitting affect which is not 

observed with the other conventional matrices or with the novel matrices when used 

alone. This is apparent when comparing the peaks present with all matrix 

preparations, at approximately m/z 15000 and 16000. Poor peak resolution is a 

fundamental problem for determining the identity of biomolecules for use as 

biomarkers. In order for accurate mass or tryptic peptide database searching to be 

successful good resolution is required to obtain the true mass-to-charge of the ion. 

Therefore, if sinapinic acid results in poor peak resolution of the biomolecular ions, 

this matrix can not be used for either of the functions stated above for tissue analysis.
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Figure 5.26: Mass spectrum o f frozen tissue section using DCA in 30:70 

methanol/0.1% TFA and a layer o f CHCA showing a number o f peaks including those 

at m/z 15000 and 16000 (circled).
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Figure 5.27: Mass spectrum o f frozen tissue section using DCA in 30:70 

methanol/0.1% TFA and a layer o f sinapinic acid showing the peaks at m/z 15000 and 

16000 (circled).
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Figure 5.28: Mass spectrum o f frozen tissue section using DH in 30:70 

methanol/0. 1%oTFA and a layer o f CHCA. This matrix unexpectedly showed much 

poorer peak resolution illustrated by peaks at m/z 15000 and 16000 (circled) when 

compared to DCA.
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Figure 5.29: Mass spectrum o f a frozen tissue section prepared using the ‘sandwich '  

preparative method with sinapinic acid matrix. This has good observed resolution but 

the calculated resolution is in fact very poor (see circled peaks).
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Figure 5.30: Mass spectrum o f frozen tissue section prepared using the ‘sandwich’ 

method with the conventional matrix CHCA.

5.4.2.2. Paraffinised and de-paraffinised tissue sections

A rchived tissue sections that have been in contact w ith paraffin generally give poor 

M A LD I m ass spectra w hen prepared with the conventional m atrices. A lm ost all 

standard tissue biopsies are contained within paraffin due to their ease o f  storage and 

high degree o f  stability over long periods o f  time. Hence, a procedure capable o f  

screening and im aging these sections w ould be o f  great use in tracking disease states. 

A  possible effect o f  paraffin on tissue ionisation is the reduction o f  the num ber o f 

potential ionic groups that can result in a m ass-to-charge signal. B uffer solutions 

have been developed to ‘activate’ a greater num ber o f  reactive groups o f  proteins and 

peptides w ithin deparaffinised tissue during im m unohistochem ical staining to enhance 

their signal. The capabilities o f  this procedure were therefore investigated for 

im proving the ionisation o f  these tissue sections w ith M ALD I m ass spectrom etry.
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5.4.2.2.1. “5X” AntigenPlus retrieval buffers

A selection o f buffers, obtained from Novagen (Merck KGaA, Darmstadt, Germany), 

designed for antigen retrieval o f tissue for were chosen for investigating additional 

preparative methods for MIMS. These buffers are intended to improve the sensitivity 

o f histochemical staining and subsequent immunological analysis, by ‘activating’ 

functionalities of the in-situ proteins and peptides. The buffers are available at three 

different pH values o f 6 , 7.4 and 10. The neutral buffer is capable o f functioning at 

room temperature, and is designed for more fragile tissue sections. The preparation 

involving the remaining two buffers include a period o f heating to enhance the 

number of functionalities ‘activated’ and the intensity o f the staining process.

5.4.2.2.1.1. Preparation o f pH 6  and 10 antigen retrieval buffer

The archive tissue section is placed on the MALDI target plate and deparaffinised as 

in  section 5.4.1.2. The antigen retrieval buffer is diluted 1:5 with deionised water and 

heated until boiling. The MALDI plate and deparaffinised section is placed in this 

buffer and heated for 2 0  minutes to activate the functional groups o f tissue proteins 

amd peptides. Following this preparation the plate is removed from the buffer solution 

amd left to dry. The novel and conventional matrices are then applied to the tissue 

using the ‘dried droplet’ method ready for analysis.

5.4.2.2.1.2. Preparation o f pH 7.4 antigen retrieval buffer

A  deparaffinised tissue section (see 5.4.1.2.) is placed on a MALDI plate and soaked 

im the antigen retrieval buffer at room temperature for 10 minutes. The plate is 

retrieved, dried and matrix applied as in the ‘dried droplet’ method for subsequent 

analysis.



5.4.2.2.I.3. Results

The neutral pH 7.4 buffer offered little improvement in the ionisation o f the 

deparaffinised tissue regardless o f matrix used. It is understood that acid-base 

chemistry has a fundamental role in ionisation within the MALDI plume. The pH 6  

and 1 0  buffers should promote conditions favourable for ionisation through the 

dissociation o f ionic bonds. Therefore we can hypothesise that these buffers would 

produce a greater number o f peaks within the MALDI mass spectra when compared to 

those at neutral pH. If  this acid-base hypothesis is correct the pH 6  and 10 buffers 

could have the potential to specifically enhance the ionisation o f tissue in positive and 

negative modes respectively. An additional benefit is that the preparation for these 

buffers involves a considerable period o f heating prior to MALDI analysis. This can 

denature proteins or peptides present in the tissue section and prime or ‘activate’ them 

for ionisation as a greater number o f potential ionic sites will be exposed. However, 

in practice the inclusion o f the pH 10 buffer showed little improvement o f the 

ionisation o f tissue when analysed in both positive and negative modes. Hence, there 

must be an additional factor other than the acid-base chemistry within the MALDI 

plume that is essential for successful ionisation biomolecules within a deparaffinised 

tissue section.

5.4.2.2.2. Comparison o f immunohistochemical testing and mass spectrometric data 

Current techniques used in the screening of fresh or archived tissue for disease states 

and biologically relevant molecules, such as over/under-expressed proteins, involve 

immunohistochemical staining. This technique comprises o f testing for chosen 

‘antigens’ or proteins using appropriate antibodies and is followed by the application 

o f a staining solution which will preferentially bind to the antigen-antibody complex.



Deparaffinised tissue sections from various human organs were tested by 

immunohistochemical staining for particular protein(s) and then compared to a 

subsequently cut section analysed by MALDI mass spectrometry. Matrices used here 

included sinapinic acid, CHCA and dansylhydrazine in conditions shown for 

calibration mix 3 and BSA standard (see table 5.4). These are seen to perform better 

than other conventional matrices with proteins and peptides in solution and on tissue. 

Tissue sections analysed and the relevant ‘antigen’ protein are shown in the table 5.7.

Tissue Section Proteins Tested for with 
Immunohistochemistry

Molecular Weight 
(Da)

A ppendix C D -45 (precursor) 100k

T onsil C D -45 (precursor) 100k

Breast

Membrane associated  
Progesterone com ponent 1 

receptor
(precursor) M embrane associated  

com ponent 2

21.7k

23.8k

Thyroid Calcitonin (precursor) 15.4k

(3-chain 10.7k

M elanom a
y-chain

S I 00  (precursor)
p-chain

9k

10.4k

z-chain 11.5kD a

Table 5.7: Proteins that tested positive fo r  the tissue sections analysed using the 

chosen novel and current imaging matrices, and their approximate molecular weight.

5.4.2.2.2.I. Results: testing for CD-45 protein

The regions o f appendix and tonsil tissue that stained positive for the protein CD-45 

(precursor) did not present ions in the MALDI mass spectrum at the expected mass of 

lOOkDa whether run in positive or negative modes. It is widely accepted that there



are difficulties in obtaining mass spectra large biomolecules and in particular proteins. 

Exact reasons for this are unclear however a possibility could be the degradation of 

the protein into smaller subunits during the laser ablation or ionisation process. This 

is consistent with a greater number o f peaks observed at a mass range o f 2-20kDa in 

positive ionisation mode for the tissue that produced a positive immunohistochemical 

stain for CD-45. To test this hypothesis a predicted fragmentation pattern was 

generated using BioLynx software (Waters, Milford, MA, USA) and compared to the 

relevant mass spectra. Unfortunately, o f the peaks present none matched the expected 

fragment peptides perhaps indicating a rearrangement o f fragments or an unexpected 

fragmentation process. However, as expected, the use of the pH 6  buffer resulted in 

improved ionisation o f the tissue section in positive mode when compared to that in 

negative mode.

5.4.2.2.2.2. Results: Progesterone Receptor ('precursor)

This is actually present as two subunits of masses 21.7 and 23.8kDa. Unlike other 

regions o f tissue, areas that tested positive immunohistochemically for this protein 

showed a peak present at a mass of 28.7kDa and several other masses below 15kDa. 

These results were acquired using CHCA or sinapinic acid matrices in positive and 

negative ionisation modes whilst, no discemable peaks were observed with 

dansylhydrazine. A closer inspection o f some related proteins indicate the high mass 

peak at 28.7kDa could correspond to a 255 amino acid fragment o f the intact 

progesterone receptor protein and is believed to have a role in the regulation o f DNA 

transcription. It is possible that the smaller masses are degradative products o f the 

membrane associated components 1 and 2  or perhaps the total protein, progesterone 

receptor. Expected fragmentation patterns of these proteins were generated using



BioLynx software (Waters) and compared against the mass spectra o f the breast 

tissue. This indicated that the peaks previously unassigned could be fragments of 

membrane component 1 (m/z 6317, 11347, 14009) and the whole progesterone 

receptor protein (m/z 6980) as shown in table 5.8.

Ion (m/z) Possible Origin of Fragment Predicted 
Fragment (m/z)

Amino Acid 
Residue Fragment

6 3 2 0 ,6 3 1 6 M embrane com ponent 1 6317 1-69

6 9 8 1 ,6 9 7 8 Progesterone receptor 6980 1-64

11347, 11340 M embrane com ponent 1 11347 1-114

14012, 14003 M embrane com ponent 1 14009 1-138

Table 5.8: Putative origin o f  peaks present in spectra o f  breast tissue obtained using 

CHCA and sinapinic acid matrices.
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Figure 5.31: MALDI mass spectra o f a region o f human breast tissue that tested 

positive for the protein progesterone receptor (precursor) obtained using matrices 

CHCA (A) and sinapinic acid (B). An ion specific to these relevant regions o f tissue is 

at approximately 28.7kDa. This is not consistent with the values in table 5.7 but 

could be due to the presence o f intact progesterone receptor protein. Also observed 

are several peaks below the mass o f this protein and the membrane components that 

correspond to the fragmentation o f progesterone membrane component 1 and 

progesterone receptor (*) at m/z 6317, 11347, 14009 and m/z 6980, respectively.

5.4.2.2.2.3. Results: Calcitonin (precursor)

T his 15.4kDa protein w as identified in specific regions o f  thyroid tissue by 

im m unohistochem ical m eans. A subsequent tissue section w as prepared using the 

an tigen  retrieval buffers w ith CH CA , sinapinic acid and dansylhydrazine m atrices, 

th en  analysed using M ALD I m ass spectrom etry in both positive and negative modes.



i n i  j ,  i v u v c - i  i w j w c  i f n u g i n g

Unlike CHCA, sinapinic acid and dansylhydrazine were unsuccessful in generating a 

possible molecular ion o f this protein at m/z 15,400 in both positive and negative 

modes. In negative mode however, this ion was absent from the CHCA mass 

spectrum and replaced by a lower mass ion at m/z 15,100. This could imply that a 

loss o f an amino acid(s), possibly basic in nature, to expose a readily ionisable 

carboxyl group has occurred. Again, dansylhydrazine was unable to generate any 

peaks within the MALDI mass spectrum when operated in both positive and negative 

modes. However, a peak consistent with both CHCA and sinapinic acid matrices is at 

m/z 13,909 and is indicative o f Calcitonin gene-related peptide 1 (precursor). This is 

capable o f inducing vasodilation in several different vessels, contribute to 

neurosignalling within the central nervous system and elevate levels o f platelet

c A M p[37,38J

Sinapinic acid mass spectra were associated with a greater number o f ions in 

both positive and negative modes and some were consistent with CHCA prepared 

tissue. The remaining peaks could be due to the degradation o f this protein into 

fragment peptide ions when ionised with the ‘hotter’ sinapinic acid matrix. To test 

this theory the expected fragmentation pattern o f both Calcitonin proteins were 

generated using BioLynx software (Waters) and compared to the relevant MALDI 

mass spectrum for a corresponding peak. Using this method we can suggest several 

low intensity peaks that are present in both the CHCA and sinapinic acid mass spectra 

could be as a result o f Calcitonin (precursor) fragmentation.



m /z o f  Peak m /z o f  Predicted  F ragm ent A m ino Acid R esidue Fragm ent

9320 9319 1-88

7705 7702 1-71

5670 5666 1-54

4713 4715 1-45

3720 3718 1-35

Table 5.9: Masses present in the MALDI mass spectrum o f prepared thyroid tissue 

that correspond to specific fragmentation ions o f  the protein Calcitonin (precursor).
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Figure 5.32: Positive ion MALDI mass spectrum o f a region o f thyroid tissue 

prepared using pH  6 antigen retrieval buffer with CHCA and tested 

immunohistochemically positive for the 15.4kDa protein Calcitonin (precursor). Also 

present is a peak at m/z 13909 and could correspond to Calcitonin gene-related 

peptide 1 (precursor). Peaks labelled with * are those that could be generated by the 

fi-agmentation o f 15.4kDa Calcitonin (precursor).

5.4.2.2.2.4. Results: S I 00 (precursor)

T h is  protein can exist as four different chains, J3, y, p, and z o f  m asses 10.7, 9, 10.4 

and 11.5kDa, respectively. This protein is com m on to cancerous tissue and gave a 

positive result w ithin m elanom a using an im m unohistochem ical test. A subsequent



tissue section was prepared using pH 6 antigen retrieval buffer and analysed by 

MALDI mass spectrometry in both positive and negative modes using CHCA, 

sinapinic acid and dansylhydrazine. Both the conventional matrices appeared 

successful in ionising the z-chain in positive mode with a peak observed at m/z 11500, 

and displayed several other peaks not consistent with the molecular species of the 

S I00 proteins. However, in positive mode sinapinic acid was capable of ionising 

more S I00 proteins than CHCA, showing both the z- and y-chain and the latter 

present at m/z 9000.

in/z 8960

100-1

80-

70-

60-

50-
40-

m/z 11520

20
10-

ateafed at iMrhitft*!' &atz 
331605800 4000012640 19480

M/Z

Figure 5.33: Positive mode mass spectrum o f melanoma tissue section prepared using 

the pH6 antigen retrieval buffer and sinapinic acid containing two o f the relevant 

proteins for SI 00 family; y-chain at m/z 9000, z-chain at m/z 11500.

These peaks are absent in the negative ion mode mass spectrum, and peaks are 

observed at a reduced mass-to-charge of 11200 and 8700. This set of proteins may 

require the loss of a moiety prior to exposing a functional group capable of 

maintaining a negative charge. Dansylhydrazine however, proved unsuccessful in 

ionising the tissue section and no peaks were observed within the resulting mass 

spectrum.



5.4.2.2.2.5. Discussion: Immunohistochemical vs Mass Spectral Imaging 

This data has shown the capability o f an antigen retrieval buffer in priming paraffin 

embedded archived tissue sections for analysis by MALDI mass spectrometry. One 

major concern with this type o f antigen retrieval is the persistent heating o f tissue 

within the buffer solution. This has the potential to cause fragmentation and diffusion 

o f some protein or peptide material within the section, thus affecting the accuracy of 

its native location. However, in spite o f this we have demonstrated that CHCA and 

sinapinic acid with this procedure can generate comparative data regarding the 

presence o f known proteins in areas initially confirmed by immunohistochemical 

testing. In addition, several other peaks have been observed and are consistent with 

related proteins and peptides to those subject to the immunohistochemical protocol. 

Some o f these peaks could be indicative o f protein fragmentation and in particular the 

‘b-series’ o f fragment ions. A commonality with all these sites o f cleavage is that the 

c-terminal amino acids contain neutral or basic side chains. This is contrary to 

published literature regarding site specific fragmentation. In-source fragmentation 

has been associated with a greater number o f ‘a-‘ and ‘c-series’ ions rather than the 

‘b-series’, and fragmentation o f singly charged peptides ionised by MALDI will 

preferably cleave at the C-terminus o f acidic amino acid residues[39’40]. Hence, it is 

probable that the fragmentation observed within the MALDI mass spectra o f this 

tissue was generated prior to analyses and during the fixation process. This 

fragmentation may prove beneficial in assigning a particular disease state to tissue. 

Current immunohistochemical tests are reliant on antibodies generated in bulk that are 

specific to particular sites on the antigen protein. If this target are o f the protein is 

damaged or fragmented during the fixation process it may appear unrecognisable to 

the relevant antibody. MALDI mass spectrometry is not affected by this type of



discrimination, and therefore has a greater potential to be used as a general screen o f 

the tissue section. Currently, this interrogation o f the section is reliant on the 

laborious expert visual examination by a pathologist, and hence, this novel MALDI 

approach could also improve the efficiency o f analyses.

5.5. Conclusions

The aims of this body of work were to:

• identify a novel hydrophobic matrix capable o f penetrating internal proteins and 

peptides within a tissue section that allows analysis by both mass spectrometry 

and fluorescence detection;

• assess performance each matrix in ionising peptides and proteins and their 

application to frozen, deparaffinised, and paraffin-embedded tissue sections and,

•  improve the preparation o f archived paraffin-embedded tissue sections for 

MALDI mass spectrometry.

A selection o f fluorescent compounds known to interact with biomolecules as 

potential novel MALDI matrices have been tested. Each dansylated matrix showed 

better observed penetration into the tissue, yet maintaining fluorescence detection, 

than the standard matrices CHCA, sinapinic acid and DHB. O f these novel matrices 

dansylhydrazine proved most successful in ionising proteins and peptides by forming 

both a protonated molecule and reacting to form an adduct. These additional mass 

shifted peaks, when included in a tryptic peptide database search, can improve the 

probability o f the original protein/peptide identification. In comparison to CHCA,



dansylhydrazine did not perform as well for both intact proteins or peptides and those 

subject to tryptic digestion. Interestingly, CHCA did show a potential to be identified 

on tissue using fluorescence detection. This matrix does appear the most suitable for 

ionising these biomolecules regardless of tissue preparation, but is limited to 

analysing those that are associated with the surface o f the section. This work suggests 

that we have the potential to obtain a total image o f frozen tissue using CHCA and 

dansylhydrazine in combination to ionise proteins or peptides at the surface or at 

depth, respectively. Unfortunately, it appears that the antigen retrieval protocol is 

insufficient preparation for dansylhydrazine to ionise de-paraffinised tissue sections. 

Hence, future work will be required for this total imaging principle using CHCA and 

dansylhydrazine to be applied for archived sections.

5.5.1. Future Work

Developments in sample preparation regarding matrix deposition have recently shown 

that electrospray application is necessary in achieving sufficient signal intensity and 

reproducibility across the tissue section. Hence, this technique should be investigated 

using dansylhydrazine as an individual matrix and as a mix with CHCA, to assess its 

suitability as a fluorescent matrix capable o f analysing internal tissue proteins and 

peptides. This matrix then has the potential to be used in tandem with CHCA and 

current protocols to obtain a full ‘image’ o f the section. Additional work would 

include improving the compatibility o f dansylhydrazine with deparaffinised sections 

and assessing the degree to which the antigen retrieval buffer protocol would displace 

proteins or peptides from within the tissue. This may be carried out by spiking the 

tissue with a known protein not expected to be present, such as a bovine protein 

within a human section, and measuring the degree of movement. I f  this buffer



protocol is deemed unsuitable for detecting these biomolecules and their location, 

then perhaps other antigen retrieval methods could be investigated.
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CHAPTER 6:

Identification of a Novel Haemoglobin Variant by Ion 

Mobility Spectrometry Coupled to Time-Of-Flight Mass

Spectrometry

6.1. Introduction

Human haemoglobin (Hb) is an iron containing metalloprotein located within red 

blood cells and is necessary for oxygen transport within the blood. It exists naturally 

as a tetrameric aggregate consisting of two a  and two p peptide chains o f 141 and 146 

amino acids in length at masses (in adults) o f 15126.4 and 15867.2Da, respectively. 

Contained within this tetrameric structure are four heme groups o f mass 616.2Da and 

having an elemental formula o f C34H32N4C>4Fe. Variations or mutations within the 

amino acid sequence o f the haemoglobin protein can occur by a process o f 

substitution and there are more than a thousand known variants carried by 

approximately 1 in 800 people. Common variants consist o f a single amino acid 

substitution within a  or p peptide chains and are most frequently detected during 

antenatal or neonatal screening. Additional sources o f diagnosis have included 

preanaesthetic tests prior to an operation and indirectly through diabetic testing, by 

measuring the proportion o f glycated haemoglobin. These variants are linked to many 

clinical conditions ranging from Sickle cell anaemia, and haemolytic anaemia to 

haemoglobin thalassemia.
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Chapter 6: Identification o f  a Novel Haemoglobin Variant

4 x Hem e groups

Figure 6.1: 3-Dimensional structure o f  human haemoglobin showing two a and f  

peptide chains (in magenta and yellow) and the heme groups located within the each 

chain111.
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Figure 6.2: Cross-sectional view o f a heme moiety indicating the interaction o f the 

amino groups o f the four peptide chains with the iron element.
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6.1.1. Current preparative methods for identifying variants

Definitive characterisation of the haemoglobin mutation requires structural 

elucidation and is often carried out using mass spectrometry with sample preparation 

involving endoproteases such as trypsin and chemotrypsin. These techniques can be 

relatively costly and require a high degree of scientific expertise. Therefore, initial 

screening protocols can employ the following techniques;

6.1.1.1. Electrophoresis

This technique under basic pH conditions has been the conventional screening 

protocol applied to blood samples for variant detection since the 1960’s. It was 

developed over many years initially from a paper medium, to starch, and then 

cellulose acetate to optimise separation. These advances enabled the detection of all 

common clinically relevant variants, such as haemoglobin-S (Hb-S), Hb-C, Hb-D- 

Punjab, Hb-E, Hb-O-Arab, and Hb-Lepore by 1973[2]. This protocol was well suited 

for routine screening as it was capable o f separating Hb-A and Hb-F in less than 30 

minutes analysis time. However, more recently due to advanced techniques a greater 

number o f variants o f over 900 have been discovered and resulting in an increased 

requirement for a more accurate identification technique.

6.1.1.2. High-performance liquid chromatography

HPLC is now commonly used in clinical laboratories for this application as it is easily 

automated and requires a smaller blood sample volume (approximately 5pL) than the 

electrophoretic technique. Existing protocols are reliant on the separation o f the blood 

sample using a cation exchange column on which the retention time will differ if  a 

variant is present. Amino acids other than arginine, lysine, histamine, asparagine and
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glycine are neutral when placed in solution. Arginine, lysine and histamine can form 

positive charges while asparagine and glycine become negatively charged when in 

solution. Hence, if  an amino acid substitution o f a variant causes a deviation with the 

overall charge o f the protein then a retention time shift will be observed on the cation 

exchange column. These principles are used to estimate the amino acid change from 

the normal haemoglobin molecule, often designated Hb-AO. A decrease in retention 

time from Hb-AO is associated with an increase in the number o f negative charges (J- 

like = 1 charge, I-like = 2  charges) as the protein is less likely to interact with the 

negatively charged cation exchange resin. An increase in retention time therefore 

corresponds to an increase in the number of positive charges (D-like = 1 charge, C- 

like = 2  charges) as the protein is much more likely to bind to the oppositely charged 

column resin. However, i f  a variant co-elutes at the retention time o f Hb-AO it is 

assumed that the substitution involves no change in the overall charge state of the 

protein. It is this type o f mutation that is most problematic to identify and often 

require an additional technique such as DNA sequencing or the more rapid mass 

spectrometry as shown in latter section o f this chapter.

6.1.1.3. DNA sequencing

DNA sequencing is a definitive technique regarding the acquisition o f structural 

information and the eventual variant identification, but unfortunately, this technique is 

not readily available within the vast majority o f clinical laboratories due to a shortage 

o f technical expertise and resources. For example, the reagent solutions used for the 

protocols incur a greater cost than the HPLC or electrophoretic methods. This 

procedure does however, have excellent sensitivity and would be better suited to 

confirming the identity of the variant rather than a general screening procedure.
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6.1.1.4. Liquid chromatographv-mass spectrometry

Mass spectrometry has been used for analysing tryptic peptides of haemoglobin 

chains since the early 1980’s in the form of field desorption MS[31. Several different 

modes o f ionisation have been examined to improve the reproducibility and sensitivity 

for these biomolecules, although neither o f these techniques were particularly easy to 

use. The development o f electrospray ionisation (ESI) and high quality deconvolution 

software has enabled the molecular weights o f the intact haemoglobin chains, 

including the variants, to be determined^41. It has been suggested that most clinical 

laboratories looking for these variants have previously avoided mass spectrometry as 

a conventional screening tool due to lengthy sample preparation procedures formerly 

associated with this technique^51. A great advancement in minimising blood sample 

preparation for haemoglobin studies was achieved by Nakanishi and co-workers. This 

group removed the HPLC separation step and analysed complex mixtures o f tryptic 

peptides directly by infusion electrospray ionisation-mass spectrometry (ESI-MS). 

However, despite achieving relatively good sequence coverage along the whole of a  

and p-chains, the peptides containing cysteine residues were poorly observed. This, 

in addition to a high level of expertise required for data analysis and interpretation, 

has resulted in clinical laboratories persevering with HPLC for conventional 

screening.

6.2. The Analytical Problem

Current conventional screening protocols rely on either an electrophoretic or 

chromatographic separation. The specificity o f separation is not sufficient for 

categorically identifying a wide range o f haemoglobin variants that exist in the current 

patient population. A common scenario encountered is the presence of an additional
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peak co-eluting with the normal haemoglobin chains or their glycated moieties, giving 

the appearance of an abnormally shaped chromatographic peak. Glycated 

haemoglobin is often used as a biomarker for charting diabetes progression and 

interference with this peak can result in an incorrect glycation or blood glucose level. 

Using a modified methodology of that fashioned by Green and co-workers[6] blood 

samples with suspicious HPLC chromatograms were interrogated using ESI-MS with 

the added dimension of ion mobility separation. Unlike cation exchange HPLC, mass 

spectrometry enables a more accurate determination o f haemoglobin glycation as it 

involves the individual monomer chains and not their corresponding dimers. Hence, 

this procedure should provide both an accurate variant identification and glycation 

level[7]. To ensure sufficient reliability o f results this is usually carried out in 

conjunction with a phenotypic (DNA sequencing) technique to provide additional 

evidence regarding the ‘type’ o f variant present. There are four mass spectrometry 

experiments required to determine the identity o f the variant and to characterise the 

relevant mutation (see figure 6.3).
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Figure 6.3: Flow chart illustrating the stages o f  variant identification by mass 

spectrometry.

6.3. Application of Novel Analytical Mass Spectrometric Methodology for 

Identifying the Novel Variant

6.3.1. Sample preparation

6.3.1.1. Intact haemoglobin chains

For this experiment lOpL o f a whole blood sample was diluted with 490pL of 

deionised water. A 20pL aliquot of this stock sample solution was further diluted 

with 180pL of 50:50 acetonitrile:0.2% formic acid. This dilution was then desalted 

with prepared BIORAD (Hercules, CA, USA) AG50WX8 ion exchange beads (100- 

200 mesh hydrogen form), and infused into the Synapt HDMS (Waters, Milford, MA, 

USA) and the Quattro II (Waters) mass spectrometers at a flow rate of 5 pL/minute.



6.3.1.2. Tryptic digestion

Whole blood samples were diluted 1:50 with deionised water, and 20pL o f 50:50 

acetonitrile:0.5% formic acid was added to IOOjiL o f this stock solution. This 

solution was vortex mixed and left to stand for 5 minutes at room temperature. To 

this solution 5pL of 5mg/mL trypsin (TPCK treated solution, Sigma Aldrich, Munich, 

Germany) or a-chymotrypsin (TLCK treated, Sigma Aldrich) were added following 

6 pL o f 1M ammonium bicarbonate solution (pH 7.8). The resulting mixture was 

again vortexed, pulse centrifuged for approximately 1 0  seconds once the solution 

became clear, and then incubated for 30 minutes at 37°C. Prior to infusing into the 

mass spectrometers, this digested solution was diluted 1:4 by adding 40pL to 360pL 

o f 50:50 acetonitrile:0.2% formic acid.

6.3.2. Ion mobility mass spectrometry analysis

6.3.2.1. Ion mobility mass spectrometry

This type o f mass spectrometry has developed over the past 25 years from an existing 

technique known as plasma or ion chromatography18,9\  Prior to its current use with 

large biomolecules it was mainly used to analyse volatile organic com pounds^ and 

understand the electronic states o f ions[11]. Modem ion mobility techniques combine 

electrospray ionisation (ESI) or matrix-assisted laser/desorption ionisation (MALDI) 

mass spectrometry with an ion mobility cell to further characterise large biomolecules 

such as peptides and proteins. Its fundamental principle is the separation o f gas-phase 

ions based on their mobility and is dictated by their collision cross-section through a 

neutral target gas, such as helium. Ions enter the collision cell containing a buffer gas 

at a specific pressure (p) and migrate through the cell with the application o f a linear 

electric field (E). The frequency o f collision with the inert buffer gas determines the



ion separation observed and is related to the 3-dimensional physical volume o f each 

ion or collision cross-section. Hence, this technique is not only capable o f separating 

ions according to mass-to-charge but also conformation or shape. This offers the 

advantage, when compared to liquid chromatography-mass spectrometry (LC-MS), o f 

further isolating of large biomolecules, such as proteins and peptides, o f the same 

mass-to-charge and polarity but with a different overall conformation. This enables 

the detection o f components present at very low concentrations and isobaric species 

previously undiscovered by LC-MS alone. In addition, ion mobility has several added 

advantages; separation is carried out over a microsecond timescale unlike LC methods 

that often require hour(s) o f sample preparation, and unlike some gel methods, ion 

mobility separation is highly reproducible[12].

6 .3.2.1.1. Fundamentals o f ion mobility

Separation is based variations in the drift velocity (Ud) o f an ion through a buffer gas 

with an applied electric field (E). An ion’s drift time is defined by the mobility 

constant (K) and is related to drift velocity by the following equation^131:

(ud) = KE Equation 6.1

This relationship therefore contains information regarding the degree o f interaction of 

the ion and buffer gas. For atomic ions this expression implies that the mobility of 

these ions is primarily dependent on their electronic state[14]. However, polyatomic 

ions are more complex and require a more complex expression to describe their 

mobility. This is known as the average collision cross-section and as most 

biomolecules are polyatomic in nature we will use this term to characterise ion



mobility throughout this chapter. The mobility constant (K), shown in equation 6.1, is 

often given as a value at standard temperature and pressure known as the reduced 

mobility constant (Ko):

Equation 6.2

The interaction o f an ion with the buffer gas and hence its mobility constant is 

dependent on several parameters; the charge o f the ion (q), the density of the buffer 

gas (N), the gas temperature (T), the ion’s collision cross-section (Qo) and the ion- 

neutral (buffer gas) complex reduced mass (p). These factors form the fundamental 

equation used for determining ion mobility (shown below) and it is apparent that 

mobility is inversely proportional to the square root o f the reduced mass and the 

collision cross-section.

The ion-neutral complex mass (p) formed between the buffer gas (mi) and the analyte 

ion (m2) is considered a constant during protein and peptide analyses. This is because 

the value o f the ion-neutral complex approaches the mass o f the buffer gas when 

measuring ions o f mass greater than 500Da. Hence, a more concise expression can be

Equation 6.3

used to describe ion mobility under these conditions indicating that it is inversely 

dependent on the collision cross-section alone (see equation 6.4)[15-*.



K  oc —  Equation 6.4
Q o

where,

C2o =  JjbVrel

and,

mi x mi
M = ----------mi + mi

The collision cross-section itself is dependent on several parameters, and for ions 

above 500Da it will account for the scattering angle between the ion and buffer gas, 

with their relative velocities (urei) and mean geometry o f the analyte ion (b)[16]. From 

the latter part o f the expression shown in equation 6.4 the collision cross-section now 

has physical parameters which can be controlled or varied to achieve the appropriate 

separation. Experiments involving biological macromolecules the collision cross- 

section becomes o f fundamental importance for successful ion separation. For 

example, large peptide or protein ions o f similar mass-to-charge can be separated and 

distinguished as those with a more open conformation (a larger cross-sectional 

volume) will have a greater propensity to interact with the buffer gas and have a 

longer drift time. It is this principle that is so effective for the separation o f proteins 

and peptides and, providing sufficient resolution, enables the isolation and detection 

o f relatively large isomeric species.



6.3.2.1.2. Degree of ion mobility separation or resolution

Unlike most mass spectrometric techniques the parameter of peak resolution in ion 

mobility is more complex and is often considered to have greater similarities with 

chromatographic resolution. This concept, originated by Hill and co-workers[17’ ]*\ 

relates the drift time o f the ion and the width of the ion peak:

t tR = —  x —  Equation 6 .5
At W

where,

R = Resolution 

W = Width at peak base

= 4.7 x standard deviation(a) o f arrival time.

Peak width is dependent on four factors; initial pulse width, space-charge effects, 

diffusive behaviour o f ions through the buffer gas, and interaction o f the analyte ion 

with the buffer gas. As with chromatographic separations, a high level o f resolution 

observed as a narrow peak width is required to give an accurate drift time and hence, 

these four parameters should be minimised to obtain sufficient resolution. The 

diffusive behaviour o f the ion through the buffer gas can also be quantified using the 

expression shown in equation 6 .6 .



cr = (2 D td )\ Equation 6.6

where,

a  = spatial standard deviation o f the diffusion of the ion 

through the buffer gas,

D = diffusion coefficient o f the ion and 

t<3 = time of ion within drift cell.

Resolution can also be expressed as a function o f the applied electric field, drift time 

and temperature by substituting the Nemst-Einstein relationship into equation 6 .6 :

where,

D = K x kbT Equation 6 .7

Vd
K = ion mobility at temperature, T  = —

Ud = drift velocity

therefore,

Wd = 4 .1(7 =
^44.2 hTuO d' 

qE
Equation 6 .8

As the diffusion width greatly exceeds the remaining peak broadening factors the 

peak width (W) approximates to the diffusion width and peak resolution can be 

described by equation 6.9.



(  aEL \R = — ------ \  Equation 6.9
V44.2 h T ) 2

Using this expression, peak resolution can now be described in terms of drift time and 

electric field, with the ion mobility resolution inversely proportional to the 

temperature of the analyses.

Hill and co-workers also identified that different buffer gases interact 

differently with the analyte ions, and can affect analyte separation and elution 

order[19]. Using chromatographic principles, a term describing separation was 

developed by comparing the ratio of the mobility constants of two individual ions 

travelling through a drift tube. This ion mobility separation factor (a) is defined by 

the following expression:

a  = —-  Equation 6.10
K 2

where,

Ki = mobility constant of the ion with the faster drift time 

and,

K2 = mobility constant of the ion with the slower drift time.

This expression is particularly useful for describing the capability of an ion mobility 

cell in achieving adequate separation of ions. For example, a separation factor that is 

close to or is equal to 1 indicates that the cell does not have the sufficient selectivity to 

separate the sample, and hence other parameters known to affect separation must be 

employed. The main outcome of this previous research implied that smaller drift



y

gases such as helium and nitrogen are better suited to separating large polyatomic ions 

as they have shorter overall drift times within these gases.

improved both the resolution and overall separation of these ions. The chiral modifier 

can interact differently with each enantiomer and alters the mobility drift time enough 

to allow these individual ions to be distinguished. The exact mechanism of this 

interaction is not yet fully understood and further research is required prior to 

conventional use.

6.3.2.1.3. Sensitivity in ion mobility experiments

This is the major drawback encountered with ion mobility as significant quantities of 

ions can be lost due to diffusion within the ion mobility cell. This is apparent by the 

following equation describing the passage of ions through the cell:

Recent advances in ion mobility have involved the separation of enantiomers[20l

Additives have been included within the buffer gas such as a chiral vapour, and have

Equation 6.11

where,

A = attenuation of ions through cell, 

rc = radius of mobility cell exit,

D = degree of diffusion of ion perpendicular to the applied

electric field and

t = drift time through mobility cell
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To achieve sufficient sensitivity and levels of detection it is essential that the 

appropriate parameters are optimised for the analyses. Fortunately diffusive effects 

can be relatively easily controlled at low electric fields as the Nemst-Einstein 

expression can be applied. However, experiments at high applied electric fields, such 

as those requiring a high level of peak resolution, can encounter problems with ion 

transfer. For example, as the field increases the analyte ion transfers less translational 

energy into the buffer gas, resulting in a decrease in ion transmission and incorrect 

drift times[21l  To account for this field strength effect McDaniel and Moseley[21’22] 

applied the Wannier expression to determine the ion diffusion coefficient maximising 

sensitivity under these conditions (see equation 6.12).

kT  1 m + MD = K  x  \-—mx ( e 2k 3>
q 3 7/2 + 1.908M

Equation 6.12

This expression (equation 6.12) enables ion mobility analyses to be carried out with 

maximum peak resolution and therefore separation or selectivity, and yet maintain a 

good level of sensitivity for complex biological samples.

6.3.2.1.4. Instrumental developments in ion mobility mass spectrometry 

Historically ion mobility instruments contained a mobility cell that is essentially a 

drift tube filled with a low pressure gas such as helium. Recent developments in this 

technology have included the introduction of a stacked ring ion guide (SRIG) that 

employs a travelling radio frequency (rf) wave capable of transmitting ions 

orthogonally into a time of flight mass analyser^231. The major advantages of this



modified mobility cell are its capability of functioning as a fragmentation cell and an 

improved duty cycle.

Radio-frequency (rf) only ion guides are commonly used in most mass 

spectrometers in the form of the quadrupole, hexapole or octapole. A less familiar rf 

ion guide is the SRIG and was first invented by Bahr and co-workers in 1969[24], to be 

further developed by Gerlich’s research groupt25, 26] in the early 1990’s. It is 

essentially a stack of ring electrodes each with opposing rf potentials in sequence. 

Application of the rf  potential out-of-phase results in the SRIG becoming an effective 

radially restricting ion trap (see figure 6.4).

ION ENTRY

RF(+)

RF(-)RING
ELECTRODE

ION EXIT

Figure 6.4: Diagram o f stacked ring ion guide (SRIG) capable o f retaining ions by an 

applied RF voltage only. Ions enter the first ring electrode and oscillate by the 

application o f an RF voltage applied out-of-phase throughout the SRIG.
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This group later modified the SRIG by surrounding it with electrodes that have a 

potential difference designed to provide an axially directed field and limit specific ion 

losses along the cell. The effective potential within the SRIG provides it with an ‘ion 

trap or ion pipe’ characteristic and is described by the following expression:

V =max
I 2 (r / S)cos2 +102 (r / S)sin2 (z / S)

. h ' i p I S )  .

Equation 6.13

y  _ QVrf 
max 4 mco2S 2

where,

r = radial coordinate 

z = axial coordinate

8 =  d/n

d = centre-to-centre spacing of the electrodes

p = aperture radius

V r f = half of the applied peak-to-peak voltage with angular frequency 

co

q = ionic charge

m = mass of the ion

Io, Ii = zero and first-order modified Bessel functions, respectively 

and

Vmax = maximum effective potential at r = p, z = d(i + Vt).



The travelling wave ion guide (TWIG) was developed from this modified SRIG to 

project ions through the cell and achieve separation as a form of ion mobility. A 

SRIG, containing a low pressure (~0.2mbar) inert gas, such as argon, has a travelling 

voltage wave applied to the existing radial rf voltage in the form of a direct current 

(dc) potential on the first electrode. This propels ions to the second electrode and the 

dc potential is then switched to the second electrode. This process is repeated 

throughout the SRIG providing the travelling wave on which the ions flow and the 

basis of movement in ion mobility. Studies involving this technology has shown that 

at high SRIG gas pressures the drift velocity of the ion is representative of the 

expression given as equation 6.1. Under these practical considerations the ‘smaller’ 

ions will have low ion mobility as the ion will roll over the travelling wave more 

frequently than a ‘larger’ ion resulting in a longer drift time, as shown in figure 6.5.

Mass spectra based on ion mobility separation are acquired by trapping ions 

within the source ion guide and transferring them at set intervals into the TWIG using 

an ion gate. This ‘packet’ of ions enters the TWIG on the continuous travelling wave 

and results in ion separation as they approach the time-of-flight (ToF) mass analyser 

of the instrument subject to this investigation, the Synapt High Definition Mass 

Spectrometry (HDMS) hybrid mass spectrometer. Prior to entering the ToF analyser 

an electronic ‘pusher’ aligns the ions so they commence flight within the analyser at 

the same time. This signal is seen as a mass spectrum for a particular drift time and is 

repeated periodically to observe the whole mobility range of ions exiting the TWIG. 

The Synapt HDMS system is essentially a hybrid instrument based on the previous Q- 

ToF Ultima (Waters) design where the collision cell is replaced by a TWIG capable of 

ion mobility separations and fragmentation.
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Figure 6.5: Illustration o f mobility separation o f ions within the travelling wave ion 

guide (TWIG). Separation is achieved by the number o f times an ion moves over the 

travelling wave potential. Ions with high mobility experience a lower number o f 

interactions with the travelling wave, and large ions with low mobility have a greater 

interaction resulting in larger drift times.
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Chapter 6: Identification o f  a Novel Haemoglobin Variant

Synapt HDMS System 
Hybrid Quadrupole/ IMS / oa-ToF
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Figure 6.6: Schematic o f Synapt HDMS ion mobility mass spectrometry system, 

showing an indepth view o f an actual transmission wave ion guide (TWIG) device in 

place o f the conventional collision cell. The TWIG illustration clearly displays the 

numerous stacked ring electrodes used in the ion mobility separation1'^.

The inclusion of a TWIG is advantageous as a major limitation of using ToF 

analysers is the length of the duty cycle. This is essentially the percentage of ions not 

detected per spectral acquisition or the time taken for the detector to scan the mass 

range associated with the ToF analyser. The ‘pusher' time therefore can be optimised 

to improve the sensitivity of ions within a particular mass range. For example, if the 

mass window is narrowed, the detector requires less time to scan the given mass 

range, and allowing the accumulation of signal for these particular masses. The
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TWIG apparatus enables this synchronisation of the ToF ‘pusher’ with each ion 

packet of differing mobilities and yet maintaining the enhanced mass-specific 

sensitivity. Primarily the advantage of using a ToF mass analyser is the large mass 

range and can enable the analysis of intact proteins with the use of multiple charging 

and deconvolution algorithms.

An additional advantage of using a TWIG is its capability of fragmenting ions. 

The propulsion of ions using a travelling wave results in the continuous application of 

kinetic energy within the TWIG. This energy wave can result in precursor ion 

fragmentation and the mobility separation of fragment ions[23]. This is advantageous 

when compared to conventional collision cells, as it exhibits less interference between 

several multiple reaction monitoring (MRM) experiments, yet maintaining sensitivity 

and resolution of both the precursor and fragment ions. This fragmentation and ion 

mobility separation was utilised for the work in this chapter to identify the location of 

the amino acid substitution associated with a mutation of haemoglobin chains.

63.2.2. Instrument parameters

6.3.2.2.I. Synapt HDMS mass spectrometry system

Instrument Parameter Instrument Reading

Capillary V oltage (V ) 3.2
Cone V oltage (V ) 30
M obility  C ell Gas n 2
M obility  Gas Pressure 0.5mbar
Trap/Transfer L enses are Gas Pressurised w ith Argon 10'2mbar
V elocity  o f  Travelling W ave Constant (m /s) 300
Travelling W ave Pulse H eight (dc amplitude -  V ) 7 .0 -17 .0

Table 6.1: Ion mobility instrument parameters for the full mass scan and 

fragmentation experiments.
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All fragmentation (MS/MS) experiments were carried out pre-ion mobility within the 

trap (first quadrupole, see figure 6.6) and at collision energy of 20eV.

6.3.2.3. Identification of a novel haemoglobin variant

Routine post natal screening of newborns had generated a suspicious liquid 

chromatogram for a patient. The sample of this subject (figure 6.7) showed an 

unexpected shoulder (designated POO) to a peak commonly used for measuring the 

glycation level of haemoglobin (SA1C). These appeared as one abnormally-shaped 

peak with some LC conditions and could provide an incorrect haemoglobin glycation 

percentage if unresolved.

o-
\-

14-

0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.7 1.8 1.9 2.0
Minute$

Figure 6.7: Initial chromatogram o f blood sample subject to this investigation 

obtained during the routine haemoglobin screen. Highlighted in black background is 

the normal glycated haemoglobin peak labelled SA1C. Located to the right o f this is 

the suspected variant, previously unresolved by the first chromatographic analysis 

and incorrectly included within the glycation calculation.
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The glycation value is a fundamental indicator used in assessing the long-term 

development of diabetes and is frequently confirmed using mass spectrometry^. 

Hence, it is of great importance to identify any variant that co-elutes with glycated 

haemoglobin to ensure an accurate reading for diabetes diagnoses. These 

circumstances therefore, warranted further investigation to identify the exact 

composition and amino acid position of the mutation with the endeavour to improve 

speed of response for treatment of future sufferers.

6.3.2.3.1. Analysis of intact haemoglobin chains -  discovering a mutant 

Infusion of blood samples containing denatured intact chains initially appear as highly 

populated spectra consisting of multiply charged ions of both the a and P chains and 

their corresponding salts. Conventional deconvolution techniques, such as Maximum 

Entropy12̂  (Waters) could provide an erroneous total ion mass-to-charge value from 

this data as it is unable to discriminate between multiple charged ions of more than 

one precursor. Desalting the blood sample (see section 6.3.1.1) has proven vital as it 

ensures good sensitivity of the multiply charged parent ions and minimises spectral 

complications due to adduct formation. The ion mobility dimension of the Synapt 

HDMS system enables the isolation of a particular charge state of a specific chain. 

Both haemoglobin chains differ in mass affecting the mass of peaks of the charge 

states, resulting in different conformations and hence, different ion mobilities^23, 2S\  

This is shown quite clearly by the ion chromatograms shown overleaf and for tryptic 

peptide mixtures in figure 6.11 and 6.12.
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Figure 6.8: Ion chromatograms o f the ions associated with the 13+ and the 15+ 

charge state o f the a haemoglobin chain (A and B) and the 14+ and 16+ charge state 

o f the f  haemoglobin chain (C and D). Each ion mobility scan has duration o f 65/us, 

therefore the ions involved in the 13+ charge state envelope have an ion mobility time 

which is the product o f the scan duration and number, i.e. 5.07ms. This indicates the 

speed o f the experiment, and can be completed within 13ms. The relatively high 

resolution o f the ion mobility T-wave cell allows separation o f these charge states o f 

the respective chains, allowing deconvolution without interference.

-2 93  -



Following mobility separation and deconvolution using Maximum Entropy software 

the normal a and P haemoglobin chains were measured to have a mass of 15126.8 and 

15867.5Da, respectively. These values are consistent with the literature[26] and when 

used as a control can indicate the mass difference associated with the haemoglobin 

variant. The samples subject to this investigation showed a mass shift of +30Da 

specific to the p chain only. This was deduced as mutations involving the a 

haemoglobin chain did not correspond to the mass shift associated with variant peak. 

The +30Da mutation of the P chain shows a neutral change in the HPLC run and is 

consistent with several amino acid substitutions as indicated by table 6.2. However, 

the measured mass-to-charge of the variant parent ion can not confirm the actual 

substitution and is unable to identify relevant location. Hence, additional experiments 

involving endoproteases, such as trypsin, to obtain peptide ion information are 

required.

Possible Amino Acid Substitutions for Variant due to Single Base Change in the
Nucleotide Codon

Mass Change Amino Acid Change

+ 30

A lanine (A la) «-> Threonine (Thr) 
Arginine (Arg) «-* Tryptophan (Trp) 
G lycine (G ly) <-> Serine (Ser) 
Threonine (Thr) M ethionine (M et) 
V aline (V al) Glutam ine (G lu)

I Table 6.2: Illustrating the possible amino acid substitution associated with the variant

! is consistent with a single nucleotide base change of+30Da.
|
|

| This variant sample also exhibited a greater degree of glycation illustrated by

the clear presence of peaks +162Da above the normal haemoglobin chains. This 

glycation mass shift is consistent with the addition of a hexose based carbohydrate
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such as fructose, galactose, glucose or mannose. Past research indicates that this is in 

fact due to the addition of a glucose moiety^29,30] and this is a common biomarker in 

assessing the development of diabetes. The differences attributed to the variant chain 

are clearly visible in the spectra shown in figure 6.9.

100^
a A

15126.8

15165.0
  .

PA
15867.5

Hb Control 
No abnormality detected

100i

or
15127.0

a A + Glycation

15289.1
^  1.....

PA
15867.9

15741.2
h foryi .

Px
15897.9

Hb X

+ Glycation

+ Glycation 

16029.3
Li-

14800 15000 15200 15400 15600
M ASS

15800 16000 16200 16400

Figure 6.9: Deconvoluted mass spectra o f  the normal control blood sample (top) and 

that containing the haemoglobin variant, HbX (bottom). Normal a and p  

haemoglobin chains are present in both spectra at 15126.8Da(aA) and 

1 5867.5Da(pA), and their glycated moieties at 15289.1Da and 16029.3Da, 

respectively. The variant blood sample contains a peak displayed at 15897.9Da and 

indicates the presence o f a variant chain showing a +30Da shift from the normal p  

chain.
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Chapter 6: Identification o f  a Novel Haemoglobin Variant

6.3.2.3.2. Analysis of tryptic haemoglobin peptides

The yariant blood sample was digested with the endoprotease, trypsin, producing 

peptide fragments at known cleavage locations. This digested sample would normally 

appear as a complex mixture of relatively low mass ions, in addition to any multiple 

charged peptide ions present. The ion mobility capability of the Synapt HDMS 

system enables pre-analysis separation of multiply and singly charged ions, and ions 

of differing molecular weight.

|  jj&BHKalp
■1 ,I

H i

50 100 150 200

DRIFT TIME (Bins)

Figure 6.10: Mobility viewer chart illustrating the partition between multiply and 

singly charged ions, and the separation o f ions according to mass-to-charge. The 

multiply charged ions have a more compact chemical structure and therefore have a 

smaller collision cross section, accounting for the lower mobility drift time.

The data contained in the mobility viewer chart (see figure 6.10) can be individually 

selected to display the relevant mass spectrum. The extraction of the singly charged 

peptide ions considerably reduces the complexity of the sample spectrum allowing the
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variant peptide ion to be easily identified when compared to peptides of the control 

haemoglobin.
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Figure 6.11: Mass spectra illustrating the clarity achieved through isolating known 

peptide ions o f a particular charge state when ion mobility extraction is applied. This 

characteristic is o f particular importance in identifying the modified peptide ion 

common to the haemoglobin variant under investigation.

To easily identify the variant tryptic peptide a predicted tryptic digestion of the 

normal haemoglobin chains was generated using BioLynx software (Waters). This 

can generate a report containing masses of the expected tryptic peptides and their 

multiply charged moieties, providing the amino acid sequence of the parent protein is 

known. This in conjunction with ion mobility extraction can identify the peptide 

suspected to contain the mutation. The +30Da mutation or substitution was found to
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exist within the second tryptic peptide of the P-chain (pT2) at m/z 481.8 for the doubly 

charged ion (see figure 6.12).
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Figure 6.12: Mass spectra o f tryptic peptide ions common to the normal haemoglobin 

digest and the variant (X) digest. The variant contains a doubly charged peptide peak 

at 481.8 that is not present within the normal control sample. This peak is consistent 

with a +30Da shift o f the singly charged second tryptic peptide ion o f the 13- 

haemoglobin chain ((3T22+).

This tryptic peptide contains the following amino acids in sequence:

* * * * *  *  *

(Lysine)-Serine-Alanine-Valme-Threoniiie-Alanine-Lysine-Tryptophan-Glycine-Lysine-(Valine)

( K ) - S - A - V  -  T -  A -  L -  W -  G - K - ( V )

where,

* = possible site of mutation



There are a finite number of substitutions likely to cause the mutation, as shown in 

Table 6.2, and when compared to the above tryptic peptide sequence there are six 

possible locations for the mutation as indicated by the star symbol(*). Confirmation 

of the location and the identification of the amino acid substitution will require further 

fragmentation of the tryptic peptide, in addition to the specificity of the cleavage 

associated with trypsin.

6.3.2.3.3. Pre-mobility MS/MS investigations of tryptic peptides 

These fragmentation experiments were carried out on the lowest but most intense 

charge state observed that illustrates the presence of the variant. This is to ensure 

sufficient sensitivity of product ions is obtained and enable the identification of the 

variant fragment ion. Again, the ion mobility facet of the Synapt HDMS system 

enables the isolation of the fragment product ions for the p-T2 tryptic peptides of 

interest (m/z 466 and m/z 481) from the multiply charged precursor ions. This 

extraction of data generates MS/MS mass spectra that offer enhanced clarity and ease 

of interpretation. It is quite clear from comparing the fragmentation MS/MS mass 

spectrum of the normal P-T2 tryptic peptide to the variant that the yM8 series ion (m/z 

845.50) is present in both mass spectra and shows a mass shift of +30Da within that 

of the variant only at m/z 875.53. The y"g ion of the normal tryptic peptide sequence 

involves the loss of the N-terminus serine residue with an alanine residue present at 

position two (y”z).
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Figure 6.13: Fragmentation spectra o f the tryptic peptide ion J3-T2 within the normal 

control and the variant (HbX) haemoglobin chains. From the illustration it is clear 

that the ion at m/z 875.53 is specific to the variant only and is consistent with a 

+30Da mass shift o f the y"s ion and that observed with the intact J3 chain. A 

comparison o f the amino acid sequences for this tryptic peptide ion indicate that the 

substitution is a replacement o f the alanine residue at position two with a threonine 

residue.

According to the possible substitutions for this +30Da mass difference and a neutral 

charge change (table 6.2), this single base mutation must be the replacement of the 

alanine with a threonine residue. Further confirmation o f this amino acid change is 

provided by inspecting the b series of fragment ions. The b "2 ion of the normal 

control (3T2 tryptic peptide should be observed at m/z 159 accounting for serine and 

alanine, and the corresponding ion in the variant (serine and threonine) should be 

mass shifted by +30Da at m/z 189. This is clearly shown in the mass spectra shown in 

figure 6.14.
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Figure 6.14: Mass spectra o f the b-series o f fragment ions observed for the normal 

and variant f-T2  tryptic peptide ions. The substitution o f the alanine residue at 

position b2 (m/z 159.1) with a threonine amino acid (m/z 189.1) causing a +30Da 

mass shift is clearly shown.

6.4. Conclusion

The application o f the methodology developed by Green and co-workers[6] with ion 

mobility separation has enabled the rapid analysis and identification of a novel 

haemoglobin variant specific to the p-chain. Mass spectrometry has in this current 

study identified a new variant that co-elutes with glycated haemoglobin peaks present 

in chromatograms used for conventional post natal or general blood screening. In 

addition to difficult analyses such as these, mass spectrometry is capable of providing 

precise information regarding the characteristics of the variant unlike other
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conventional screening techniques. The original mass spectrometric method has 

proven to be quite complicated for the type of variant highlighted within this chapter, 

and identification is often dependent on expert interpretation. However, through this 

work we have shown that the inclusion of ion mobility technology and data extraction 

enhances the clarity of results regarding multiple charging and differences associated 

with the variant. This modified protocol combining novel ion mobility and time-of- 

flight mass spectrometry enables the exact determination of the amino acid 

substitution or mutation, with its assignment to a haemoglobin chain and the specific 

location within the chain. In spite of the many advantages of this mass spectrometric 

technique the liquid chromatography screen is a more cost effective method for 

conventional analyses. Hence, it is likely that liquid chromatography will remain as 

the first step of the analytical procedure with rapid further elucidation of the blood 

sample carried out by mass spectrometry if required.
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CHAPTER 7:

Conclusions

The primary objective of this work was to introduce and develop novel or existing 

techniques for the identification of new biomarkers within a range of biological 

matrices by mass spectrometry. Each biological sample was found to have inherent 

challenges for using modem mass spectrometric methods. These included accessing 

and ionising biomolecules within paraffin embedded tissue and identifying uremic 

analytes within a highly ‘buffer-containing’ dialysate sample. These difficulties were 

overcome by improvements in sample preparation and in some cases involved the use 

of existing protocols for completely novel applications.

The examination of haemodialysate solution has proved most fruitful in 

identifying new candidate biomarkers. Published research has included monitoring 

levels of known uremic solutes within other biological matrices such as blood, serum 

or urine and those involving dialysate have employed UV spectrophotometry with 

poor specificit^11. We have shown that it is possible to detect both known and novel 

uremic solutes reproducibly within haemodialysate, a biological matrix previously 

deemed unsuitable for liquid chromatography-mass spectrometry (LC-MS). This 

developed methodology has been validated, which included stability and 

reproducibility investigations of the sample to test robustness. This highlighted a 

previously unrecorded thermally labile nature of some uremic solutes present in the 

dialysate solution. A total of 15 known uremic toxins and 6 thermally stable novel 

analytes have been detected and putative structural assignments made for 4 of the 

novel solutes. These have been named 5-(amino-l,2,-dihydroxy-ethyl)-3-nitrosooxy- 

[ 1,2,4]trioxine-3,6-diol, 2-(5,6-diamino-6-diazenyl-cyclohex-1 -enyl)-2-hydroxy-



acetimidic acid, AL[2-(7-hydroxy-3-methyl-ocatahydro-imidazo[l,5-a]pyridine-6-yl)- 

2-oxo-acetyl]-guanidine, and 3-(6-hydroxy-cyclohexa-l ,3-dienyl)-2-imino-3- 

oxopropionaldehyde. Further confirmation of these identities should include the 

synthesis of standard reference materials of the novel solutes and extensive 

fragmentation studies. Once obtained these standards can be used to quantitate the 

amount excreted during haemodialysis and examine the true affect of exercise on 

haemodialysis adequacy. Overall, exercise appeared to alter the level of excretion and 

the chemical nature of individual uremic solutes dictated their removal during the 

dialysis treatment. We identified that the highly polar conventional biomarkers, urea 

and creatinine, are not representative of non-polar analyte excretion. Our suggestions 

to improve this technique include using a non-polar additive within the dialysate 

concentrate such as an inert surfactant, or attaching a non-polar polymer to the 

external side of a conventional dialysis membrane. However, this will require many 

years of clinical trials before it is considered as standard element of haemodialysis 

treatment. Hence, as a short term measure we believe that it is essential for adequacy 

to be monitored not only using polar analytes such as urea and creatinine, but solutes 

of a range of polarities, ensuring an unbiased measurement of dialysis performance.

The MALDI mass spectrometric analysis of whole tissue sections, in particular 

those that are paraffin embedded, posed a new range of challenges. Current MALDI 

matrices are unable to penetrate deep within the tissue limiting their use to imaging 

the surface only[2l  We have evaluated a range of novel dansylated MALDI matrices 

for this purpose which can be detected by both MALDI mass spectrometry and 

fluorescence spectroscopy. This was to aid in locating the MALDI matrix compound 

following application to the tissue section. Each dansylated MALDI matrix showed 

better penetration into the tissue sections, yet maintaining fluorescence detection, than



the standard MALDI matrices CHCA, sinapinic acid and DHB. Of these novel 

MALDI matrices dansylhydrazine proved most successful in ionising proteins and 

peptides by forming a protonated molecule and matrix-analyte adducts. These 

additional mass shifted peaks, when included in a tryptic peptide database search, can 

improve the probability of the original protein or peptide identification^. In 

comparison to CHCA, dansylhydrazine did not perform as well for both intact 

proteins or peptides and those subject to tryptic digestion. Interestingly, CHCA did 

show a potential to be identified on tissue using fluorescence detection. This work 

suggests that we have the potential to obtain a total image of frozen tissue by using 

CHCA and dansylhydrazine in combination, to ionise proteins or peptides at the tissue 

surface or at depth, respectively. Unfortunately, it appears that dansylhydrazine is 

unsuitable for the developed preparation protocols with paraffin embedded sections. 

Therefore further work is required for this total imaging principle to be applied to 

both frozen and archived paraffin embedded tissue.

Finally we have illustrated the compatibility of an existing protocol for 

identifying novel haemoglobin variants in blood samples1̂  with a new ion mobility 

time-of-flight mass spectrometer, the Synapt HDMS system (Waters, MA, USA). We 

have identified a new variant that co-elutes with glycated haemoglobin peaks present 

in chromatograms used for conventional post natal or general blood screening. The 

original mass spectrometric method has proven to be quite complicated for the type of 

variant discovered, and identification is often reliant on expert interpretation. 

However, the inclusion of ion mobility technology and data extraction enhances the 

clarity of the results regarding multiple charging and variant characteristics. This 

enabled the exact determination of the amino acid substitution or mutation, with its 

assignment to a haemoglobin chain and the specific location within the chain.



The premise of this whole body of work was to identify novel solutes with the 

potential to act as a biomarker within a range of biological matrices. Techniques for 

novel applications have been introduced resulting in the examination of samples 

previously considered inaccessible for modem mass spectrometric investigations. We 

have identified candidate novel biomarkers within 2 out of 3 biological samples 

tested. Protocols developed for tissue imaging have proved promising in achieving 

complete coverage of the biological matrix but require additional work for archived 

sections.
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