

 Swansea University E-Theses ___

Structural usability techniques for dependable HCI.

Gimblett, Andy

 How to cite: ___
Gimblett, Andy (2014) Structural usability techniques for dependable HCI.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42714

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42714
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Structural Usability Techniques
for Dependable HCI

Andy Gimblett

Submitted to the University o f W ales in fulfillment

of the requirements for the degree of

Doctor o f Philosophy

May 2014

. E SI iVjg/
Swansea University
Prifysgol Abertawe

Department o f Computer Science

Swansea University

ProQuest Number: 10807483

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807483

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Summary

Since their invention in the middle of the twentieth century, interactive computerised systems have be­

come more and more common to the point of ubiquity. While formal techniques have developed as tools

for understanding and proving things about the behaviour of computerised systems, those that involve

interaction with human users present some particular challenges which are less well addressed by tra­

ditional formal methods. There is an under-explored space where interaction and the high assurances

provided by formal approaches meet.

This thesis presents two techniques which fit into this space, and which can be used to automatically

build and analyse formal models of the interaction behaviour of existing systems.

Model discovery is a technique for building a state space-based formal model of the interaction beha­

viour of a running system. The approach systematically and exhaustively simulates the actions of a user

of the system; this is a dynamic analysis technique which requires tight integration with the running

system and (in practice) its codebase but which, when set up, can proceed entirely automatically.

Theorem discovery is a technique for analysing a state space-based formal model of the interaction

behaviour of a system, looking for strings of user actions that have equivalent effects across all states

of the system. The approach systematically computes and compares the effects of ever-longer strings of

actions, though insights can also arise from strings that are almost equivalent, and also from considering

the meaning of sets of such equivalences.

The thesis introduces and exemplifies each technique, considers how they may be used together, and

demonstrates their utility and novelty, with case studies.

Declaration

This work has not been previously accepted in substance for any degree and is not being concurrently

submitted in candidature for any degree.

Signed <........... y ... (candidate)

Date

Statement 1

This thesis is the result of my own investigations, except where otherwise stated. Other sources are

acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed ^ (candidate)

Date]<L 2PiJ£

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photocopying and for inter-library

loan, and for the title and summary to be made available to outside organisations.

Signed (candidate)

........

To my parents

Acknowledgements

First and foremost, I owe a huge debt of gratitude to my supervisor, Harold Thimbleby, for his guidance,

insight, engagement, unfailing encouragement, apparently inexhaustible patience, and deep compassion

and kindness, without which this thesis would surely not have been realised.

I am deeply indebted to Paul Curzon and Jos6 Creissac Campos for acting as examiners of this work, and

for the great feedback they gave me during and after my viva', and also to Michael Harrison and Anke

Dittmar for their encouragement, interest, and kindess throughout this process, and for reading and very

helpfully commenting on drafts of large parts of this work as it took shape.

I have been very lucky to work with many excellent colleagues in my time at Swansea, and I would

particularly like to thank Abigail Cauchi, Patrick Oladimeji and Paolo Masci for all the fun times we’ve

had together while working on this stuff, and Karen Li, Dan Craggs, Ben Spencer, Parisa Eslambolchilar,

Matt Gwynne, Philip James, Tom Owen, Jen Pearson, Simon Robinson, Matt Edmunds and, I am sure,

many others I have forgotten to mention, for their friendship and encouragement over the last few years.

This work has been funded by EPSRC grants EP/F020031/1 (“Formally Based Tools for user interface

analysis and design”) and EP/G003971/1 (“Healthy interactive systems : Resilient, Usable and Appro­

priate Systems in Healthcare”), for which I am deeply grateful.

Above all, I am thankful for the love and support of my family and other loved ones: again, there are too

many to mention, but I must particularly thank my parents; my brothers and their families; Basheera,

Carys, and Marketa. Your constant encouragement and belief in me have carried me this far.

Table of Contents

1 Introduction 1

2 Background and Related Work 7
2.1 Formal m ethods.. 8
2.2 Formal methods in H C I .. 10

2.3 Model checking in H C I .. 14

2.4 State based approaches... 18

2.5 Reverse engineering of interactive system s... 20

2.6 Lightweight formal methods for dependable H C I .. 23

2.7 Human factors and HCI in medical s y s te m s ...26

3 Model Discovery 29
3.1 In troduction... 29

3.1.1 S c o p e .. 31

3.1.2 Illustrative E x a m p le .. 32

3.2 Requirements for User Interface Model D iscovery.. 36

3.2.1 Identifying and modelling SUD state 38

3.2.2 Identifying and performing actions... 40

3.2.3 B acktracking ... 41

3.3 Model Discovery A P I ... 42

3.3.1 Use of H a s k e l l .. 42

3.3.2 Discovery and Manipulation of GUI C o n tro ls ..43

3.3.3 The Pool: Discovered But Unexplored S t a te s ..44

3.3.4 Model D iscovery .. 45

3.3.5 Model Discovery API S u m m ary ...46

3.4 Model Discovery A lg o rith m .. 48

3.4.1 Worked e x a m p le ... 48

3.4.2 N ondeterm inism ... 50

3.4.3 Variations and E x te n s io n s ...51

iii

4 Model Discovery Case Studies 55
4.1 In troduction .. 55

4.2 Case study 1: Air Conditioning Control P a n e l ... 56

4.2.1 O v erv iew ...56

4.2.2 Im plem entation...57

4.2.3 Example m o d e l s ... 63

4.3 Case study 2: Independent Digit / ‘5-key’ Number E n t r y ..67

4.3.1 O v erv iew 67

4.3.2 Im plem entation...71

4.3.3 Example m o d e l s ... 76

4.4 Case study 3: Alaris GP infusion pump 92

4.5 Case study 4: Casio H S -8V ... 94

5 Theorem Discovery 99
5.1 In troduction ..99
5.2 Informal d iscussion ...102

5.2.1 Effects ... 102
5.2.2 N ondeterm in ism ... 104

5.2.3 Strings of actions, and their e ffects.. 104
5.2.4 Total and partial equivalence..106

5.3 Form alisation ...109
5.3.1 Definition: finite state m achine...109

5.3.2 Definition: transition s e t1 0 9

5.3.3 Definition: nondeterm in ism 109
5.3.4 Definition: s t r in g ... 110

5.3.5 Definition: string transition function ...110

5.3.6 Definition: destination s e t ... I l l
5.3.7 Definition: destination equivalence ...112

5.3.8 Definition: effects ..112

5.3.9 Definition: total equ ivalence..113

5.3.10 Definition: s im ila rity ...115

5.3.11 Definition: partial equivalence... :115

5.4 Theorem Discovery A lg o rith m ...117

5.4.1 Equivalence c lasses..119

5.4.2 The bases sets .. 119

5.4.3 S u ffix -p run ing ...120
5.4.4 Approximate worst-case peformance an a ly sis ...121

5.5 Meta-theorems: patterns and families 123

5.5.1 Idempotent action ... 123

5.5.2 Action g roups..124
5.5.3 Inverse a c t io n s .. 124
5.5.4 U n d o ...125
5.5.5 Safe a c t i o n ... 126
5.5.6 Families of th eo re m s...127

6 Theorem Discovery Implementation and Case Studies 129
6.1 In troduction.. 129
6.2 Im plem entation..130

6.2.1 The fsm A ctions p a c k a g e ...130
6.2.2 The fsm K it t o o l ... 133
6.2.3 The fsm K it user experience ..136

6.3 Case study 1: Air Conditioning Control P a n e l ... 138
6.3.1 Total equivalence theorem s... 139
6.3.2 Partial equivalence theo rem s..143

6.4 Case study 2: Independent Digit / ‘5-key’ Number E n t r y ... 145
6.4.1 Tenths, hundredths only; digits 0 -2 o n ly .. 146
6.4.2 Tenths, hundredths only; digits 0-2 and 9 only ... 148
6.4.3 Hundredths, full ... 149

6.5 Case study 3: Casio H S -8V ... 151
6.5.1 Theorem discovery on the HS-8V user m o d e l .. 152
6.5.2 Theorem discovery on the HS-8V device m o d e l... 155

7 Conclusions 157
7.1 Contributions of the thesis .. 157
7.2 Future w o r k 159

Bibliography 162

4.20 Results of model discovery around the region 80000-99999 (0, 8, 9 only)................................90
4.21 Model discovery around the region 80000-99999, with memory projection............................. 91
4.22 Casio HS-8V: actual device and simulation ..95
4.23 Two models of number entry on the Casio HS-8V desktop calculator...................................... 96

5.1 A simple model, with four states and two actions, x and y ... 103
5.2 The effect of the action string x y ... 105
5.3 A simple nondeterministic model, based on the model shown in figure 5.1............................ 107

6.1 An example of the f smEdges format: the FSM shown in figure 5.1.. 132
6.2 Example fsm K it input, for the air conditioning control system (section 6.3).........................133
6.3 Part of the output produced by feeding the contents of figure 6.2 to fsm K it........................133
6.4 Thirty commutative theorems on strings of length 2 (air conditioning control panel). . . . 140
6.5 Two versions of a model of a 3-state slider.. 143

Chapter 1

Introduction

Since their invention in the middle of the twentieth century, interactive1 computerised systems have be­

come more and more common to the point of ubiquity. Desktop calculators, automated teller machines,

video games, personal computers, aircraft control systems, nuclear power station control systems, medi­

cine infusion pumps, . . . Each of these systems has a computerised information-processing part, and

an interactive part through which humans control the system and receive feedback as to its status and

behaviour; in the case of ATMs, aircraft, nuclear power and medical systems, there is also a physical

counterpart under control — the plant — and the systems are critical: their correct behaviour is of vital

importance.

Traditional formal approaches for producing assurance that systems behave as intended are expens­

ive, both in terms of computation and the human expertise required to implement them. Techniques

such as formal specification, theorem proving and model checking are very powerful and have proved

transformative where used, but due to their expense they remain in niches combining high criticality

with deep pockets — such as defence, aerospace, and microprocessor design. Extending their use into

the mainstream of system development remains an area of research. [CW96; Sch96; Rus07; Woo+09;

ParlO]

In the mainstream there are of course other tools and techniques for increasing our confidence in system

1 Throughout this thesis, by interactive system we mean one that has some component with which human users interact —
as opposed to the more general class of reactive system, i.e. those that consist o f interacting subsystems (e.g. a handshaking
protocol, any system specified using the process algebra CSP, etc.).

1

2 Chapter 1 Introduction

correctness — but they tend to be ones that are easily automated and subsumed into existing toolchains

and languages. To pick three examples:

• The use of type systems and strong typing (e.g. as described in [Mil78]) in programming

languages, which enable the compiler to automatically rule out the existence of whole classes of

bug; a form of static analysis, this requires careful design up-front of the language and its toolset.

• Model based approaches, where formal models of some aspect of a system are transformed

automatically to code. Key examples here include the UML family of languages [RJB99] and

associated tools such as Rational Rose2; and frameworks such as Ruby on Rails [BK07], which

can be used to rapidly produce interactive web-based systems based on a simple data-model

description language.

• Test-driven development [Bec03], where automated (but hand-written) tests of software

behaviour (at multiple levels of granularity) are placed at the heart of the software engineering

process. This has become particularly widespread in industry within the last decade, in tandem

with the growing popularity of dynamic programming languages (and, arguably, as a response to

the inherent limitations of static analysis in such languages).

Interaction poses many challenges of its own. The ergonomics, human factors, usability and user ex­

perience (UX) movements have all emerged as responses to these challenges, placing humans firmly at

the centre of the design process in order to produce interactive systems that work fo r people rather than

against them — as computerised systems so frequently seem to do. These approaches also require prac-

ticioners with a high degree of skill and are difficult (if not inherently impossible) to automate. W hat’s

more, they tend to be oriented towards ‘soft’ questions of ease of use, ease of learning, pleasure, and

so on — with ‘harder’ issues such as safety and dependability unattended to. This is partially because

the techniques advocated in these movements are in general non-exhaustive: recording a sample user’s

actions and analysing their mistakes and hesitations can help identify issues and areas for potential im­

provement but (unlike type checking in programming languages, say) can not provide certainty that

certain problems are completely absent throughout the system. Exhaustivity is simply impractical when

humans are involved [Dwy+04], Yet, serious flaws may exist in the unexplored parts of the system, only

2http://www.ibm.com/developerworks/rational/products/rose/

3

to manifest when it is put into use — potentially with life-threatening or mission-critical consequences

[Thi07b].

There is, then, an under-explored space where these concerns meet: a space where the systems are in­

teractive, and we wish to learn or prove things about the systems’ interaction behaviour with certainty

and exhaustivity. We might, for example, specify a system’s interaction behaviour using a modal lo­

gic of some sort, and then prove properties of that specification using a model checker (see section 2.3

for some examples of this kind of work). Again, though, such techniques require great expertise on

the part of the investigator — in particular facility with the formal languages used (very different from

programming languages: indeed, at an entirely different conceptual level) and their associated tools. A

further problem is that specification up-front sits uneasily with the highly flexible, iterative nature of

modem software development, where requirements emerge and change as the system takes shape over

time [SB82]: formal methods techniques typically require the investment of much effort before imple­

mentation, and as such tend either to discourage iterative development, or to be bypassed where it takes

place, which can lead to the situation where a model is formalised and verified prior to implementation,

but the implementation itself may have unknown bugs independent of the model.

In practice, user interfaces are rarely formalised, and are generally implemented in an imperative style,

based on side-effects, with complex timing/queueing issues, and low level error management — all of

which are difficult to formalise. Furthermore, they are implemented in terms of APIs and frameworks

that, even for routine tasks such as number entry, are unformalised and usually harbour bugs of their own

[TC10]. Many UIs also have a significant hardware component, particularly in safety critical settings,

and are subject to unspecified hardware-oriented interactions (e.g. key bounce and display size limita­

tions). Hence even if traditional formal methods are used for interactive systems, ‘full stack’ assurance

of the final system’s quality is rarely achieved.

An alternative approach is to use processes that can reliably and automatically analyse actual system

implementations, even as developed using mainstream methods. Such processes aim to provide some of

the benefits of using formally-based tools without the high cost and inflexibility of conventional formal

methods — and to integrate well with existing tools and techniques. These efforts should be seen in the

context of Reason’s “swiss cheese model” [ReaOO]: adding new layers of defence against error to those

4 Chapter 1 Introduction

already routinely used by developers.

The core of this thesis presents two techniques which, we argue, fit this bill, and which can be used to

automatically build and analyse models of the interaction behaviour of existing system implementations.

They are:

1. Model discovery — a technique for building a state space-based formal model of the interaction

behaviour of a running system. The approach systematically and exhaustively simulates the

actions of a user of the system; this is a dynamic analysis technique which requires tight

integration with the running system and (in practice) its codebase but which, when set up, can

proceed entirely automatically.

2. Theorem discovery — a technique for analysing a state space-based formal model of the

interaction behaviour of a system, looking for strings of user actions that have equivalent effects

across all states of the system. The approach systematically computes and compares the effects

of ever-longer strings of actions for equivalence, though insights can also arise from strings that

are almost equivalent, and also from considering the meaning of sets of such equivalences.

While they could be used separately, clearly these two techniques are synergistic, with model discovery

providing input for theorem discovery, and theorem discovery raising properties and questions which can

lead to further model discovery tasks. Each of the techniques is conceptually quite simple, and within

the capabilities of any competent programmer, but nonetheless powerful, automated, embeddable in

existing toolchains, and open to numerous extensions and specialisations — some of which we propose

and discuss.

There do exist approaches (e.g. Petri nets, CSP, statecharts, etc. — see chapter 2) that can formalise

UI features, and that are able (to varying degrees) to address usability and safety issues, but usually as

part of an approach in the style criticised above; the techniques described in this thesis are distinctive in

two key ways. First, although we can check user interfates implement required properties, a distinctive

benefit is that we can discover unforeseen emergement properties of the system that may be salient from

a usability or dependability point of view, but which had not been previously considered. Second, the

techniques are simple and based in practical programming rather than in advanced mathematics; as such,

they are eminently accessible to any competent programmer.

5

We envisage their integration into the software development toolchain as a mechanism for discovering,

specifying, and performing regression tests on a system’s interaction behaviour — where a property is

identified as being desirable (or not) and the techniques provide a means for automatically checking

for that property’s presence (or absence) — indeed, in the case of theorem discovery, unthought-of

properties may be learnt of. Automated testing of interaction behaviour is still less widely supported

and performed than unit testing of a system’s internal behaviour, though functional testing tools such as

Selenium [HK06; Sir 10] are helping to close this gap. It is our hope that the techniques described in this

thesis can also make a contribution in this area.

Thesis overview

The rest of this thesis is structured as follows. Chapter 2 presents a survey of relevant background

material in order to contextualise our contribution; this includes formal methods and their application to

HCI, with a particular focus on model checking and on state space-based techniques; material related

to reverse engineering; HCI as applied in the medical context; and lightweight formal methods in the

tradition from which our techniques have emerged. Chapters 3 to 6 form the core of the thesis, and

our original contribution. Chapter 3 describes model discovery in detail, including a formalisation of the

necessary API in order to implement it, the basic algorithm, and some extensions and variations. Chapter

4 presents four case studies of model discovery in action. Then, chapter 5 describes theorem discovery

in detail, including a mathematical formalisation, the algorithm, a performance analysis, and discussion

of extensions to the basic setting. Chapter 6 describes our implementation of theorem discovery in

a Haskell library and command-line tool, and presents three case studies of the use of that software,

analysing models produced by model discovery as described in chapter 4. Finally, in chapter 7 we

conclude, reflect, and propose future work.

The case studies in chapters 4 and 6 are based on simulations of actual devices. This simulation-based

approach has both limitations and advantages. It would, obviously, be ideal in practice (though not

necessarily for a research programme) to apply our techniques directly onto actual devices or at least

their underlying software, but as this was not feasible, as the software was not available for the devices

we were interested in, we took the simulation approach. The systems in question are small enough that

6 Chapter 1 Introduction

we can be confident that our simulations are accurate to a point where they potentially provide useful

insights into actual device behaviour, and indeed this has been the case: for example, for the HS-8V

calculator we found some surprising results that are valid for the actual device. More usefully, we

have shown our techniques scale to a real level of complexity, and therefore are likely to have wider

applications in user interface software development.

Much of the work in chapter 3 and section 4.2 was presented in [GT10], co-authored with Harold

Thimbleby; similarly, parts of chapter 5, and sections 4.5 and 6.5 were presented in [GT13], also co­

authored with Harold Thimbleby. In both cases, I have presented only those aspects of the work that are

directly attributable to me. The models discussed in case-study sections 4.4 and 4.5/6.5 were produced

by Patrick Oladimeji and Harold Thimbleby, respectively, but the commentary and analysis given here

is my own work — and I thank them for enabling this by sharing those models with me.

Chapter 2

Background and Related Work

Contents

2.1 Formal m ethods.. 8

2.2 Formal methods in H C I.. 10

2.3 Model checking in H C I .. 14

2.4 State based approaches.. 18

2.5 Reverse engineering of interactive sy s te m s ... 20

2.6 Lightweight formal methods for dependable HCI.. 23

2.7 Human factors and HCI in medical systems... 26

In this chapter we present some background and related work in order to set the scene for the techniques

which form the body of this thesis. We provide a (largely historically-oriented/chronological) overview

of a number of relevant themes. The central theme is the application of formal and semi-formal ap­

proaches to questions of human-computer interaction and the design of interactive systems. As such,

we begin with a discussion of formal methods in general, and then consider some major (and relevant)

aspects of their application to HCI, leading to a discussion of the family of semi-formal techniques tar-

getting dependable HCI of which our techniques are a member. In the final section we consider some

examples of the application of human factors/HCI to the medical domain, as this is a key motivating

domain for dependable HCI, and relevant to some of our case studies.

7

8 Chapter 2 Background and Related Work

2.1 Formal methods

Formal methods is the field of computer science in which mathematical models are used — at various

stages of the development life-cycle — in order to develop systems, typically with the intention of

providing high levels of certainty as to their reliability, safety, efficiency, etc. In [CW96] and [Woo+09],

Clarke and Wing, and Woodcock et al., respectively survey the state of the art as of 1996 and 2009, and

outline future directions envisaged at those times.

Clarke and Wing note that at that time techniques were beginning to scale, and tools to mature, to the

point that real world examples could be dealt with more commonly, though there were still difficulties to

be overcome. They note that the process of formal specification is not only useful as an input to a later

verification stage, but also in its own right, as it frequently reveals design flaws and ambiguities, and

produces an artifact which can not only be analysed and transformed but also used as a communication

tool between stakeholders. Thus, the process of formalisation is useful not only in and of itself, but also

because it forces practitioners to be more rigorous than they might otherwise be, and to consider details

which might otherwise go overlooked — and tool support is particularly useful in this regard. This is a

recurrent theme, echoed for example by Ambramson and Pike [AP11] and others. That paper focuses

on the requirements engineering stage of development, but the point is applicable outside that context,

and later in this thesis we make a similar argument, in the implementation stage, regarding our use of

the programming language Haskell.

Clarke and Wing describe two major approaches, still pre-eminent today, to the task of verifying system

specifications (i.e. checking that they meet certain properties, which can include being a faithful refine­

ment of some other specification, for example): model checking (considered in more detail in section

2.3) and theorem proving, where systems and properties are encoded in formal logics, and deductive

techniques are applied (typically semi-automatically) in order to prove or falsify properties of the sys­

tems. Looking ahead, they emphasise the importance of integration of formal methods techniques and

tools into traditional software development workflow, and that it is critical that they be easy to learn.

Wookcock et al. note that by 2009 the use of formal methods had become more common, to the point that

they are able to describe several major industrial examples. They note that formal methods are proving

2.1 Formal methods 9

successful but still lack widespread adoption except for the niche of critical systems in certain domains.

Their expectation is that diffusion into the mainstream will continue to take place gradually, with formal

methods not explicitly adopted as a distinct technology, in general. They also consider ‘lightweight’ and

‘semi-’ formal methods, the increased application of formal methods in a focused manner to particular

system aspects, and the importance of toolchain integration and automation.

Rushby [Rus07] echoes a number of those points, commenting on some particular recent developments

of note which have been instrumental in enabling greater uptake of formal methods in the mainsteam of

software engineering. In particular, he notes: that tools are finally delivering practical benefits for modest

investment (both in terms of time and required expertise); that practitioners are realising that outcomes

other than full formal correctness proofs of entire systems can still be valuable (e.g. static checks, test

case generation); and that model-based development (see discussion of [UIM92] in section 2.2, for

example) is bringing formally analysable artifacts into the development lifecycle early and throughout,

thus encouraging the use of automated (i.e. formal) processing techniques on those models. The first

two points are particularly germane to this thesis: we describe techniques which are implementable by

any competent programmer, and envisage those techniques as forming just one part — but a useful part

— of the toolkit employed in order to develop dependable interactive systems.

An interesting insight into the historical perception of formal methods is provided by Hall’s “Seven

Myths of Formal Methods” [Hal90], and Bowen and Hinchey’s “Seven More M yths.. . ” [BH95]. The

seven myths, seen as unhelpfully holding back the field, are: perfection is possible; program verification

is the only thing you can do; they’re only useful for safety critical systems; they require highly trained

mathematicians; they increase the cost of development; they’re unacceptable to users; they’re not used on

real, large-scale software. The ‘seven more’ myths, similarly, are: they delay the development process;

they lack tools; they replace traditional engineering design methods; they only apply to software; they

are unnecessary; they are not supported; they are always used by formal methods people. While some

of these ‘myths’ probably remain more true today than one might hope, they act as an important point

of focus and reflection for the field.

Finally we note that it has long been recognised that it is impossible to complete specification before

implementation, but rather that implementation inevitably feeds back into specification. Swartout and

10 Chapter 2 Background and Related Work

Balzer [SB82] argue that this occurs for two reasons: first, because of physical limitations in implement­

ations (e.g. choosing to use an array instead of a linked list means adding a bound to the specification);

and second because of imperfect foresight (in the natural manner). This emphasises the need for iter­

ative development, even (indeed, especially) when applying formal methods, and thus flexible (and, as

much as possible, automated) tools to support that process. We argue that the techniques described in

this thesis fit that bill.

2.2 Formal methods in HCI .

Attempts to apply formal notations and reasoning methods to interactive systems have a long history.

For example, in 1969, Pamas [Par69] considered problems related to designing the user interface of

a program in a top-down manner, at a time when ‘user interface’ really meant ‘command language’;

that paper highlights the previously unrecognised importance of interaction as a concern in designing

such languages, and proposes a form of state transition diagram as a mechanism for reasoning about

this problem. Using this approach, Pamas uncovers several design problems in a real-world example.

Jacob [Jac83] also uses transition diagrams to represent interaction behaviour in the specification of

a command language, by augmenting transitions in the diagrams with responses to be performed by

the system when the transition takes place — somewhat analogously to the treatment of non-terminals

in [Shn82]. In that paper, Shneiderman proposes an extension to BNF called multi-party grammars

“to describe the actions of several parties, people or machines, using the same notation”, where non­

terminal symbols in the grammar are associated with actions of either the user or the computer. He then

looks at their application to particular problems in the specification of human-computer interactions,

including considering how to deal with I/O using modalities other than just hard copy, including and in

particular a character-oriented screen divided into windows. Similarly, Wasserman [Was85] presents a

formal executable description of user interaction with a (text-based, command-langauge) system, based

on augmented state transition diagrams (and a textual representation of same); he discusses perceived

shortcomings of pure state transition diagrams for this purpose (diagrammatic complexity; inability to

specify output; difficulties specifying choice in logical flow; lack of encoding timing), and describes the

use of automated tools to support this (e.g. an interpreter for prototyping).

2.2 Formal methods in HCI 11

Those four papers are notable in that they apply and extend ‘classic computer science’ formalisms (i.e.

BNF and transition systems) into the interaction domain, an approach which remains important today

and which this thesis essentially represents another example of. However, significant work has also been

done in inventing entirely new formalisms specifically targetting aspects of user interaction — and much

work has been done in the space between these two extremes.

A key example of a formalism invented specifically for reasoning about interactive systems is Dix’s PIE

model (and its extensions such as red-PIE) [Dix91] — these are extremely abstract models of interactive

systems, indeed it is hard to imagine a model which could be more abstract and still worth thinking about.

The basic PIE model relates a set of possible programs P to a set of possible effects E (which can be

anything, e.g. an image on a screen, a print-out, or the movement of a robotic arm) via an interpretation

function I : P —>E. This simple model provides an abstract framework for reasoning about concerns

such as observability of effects, and reachability of program states. For example, the strong reachability

property, that “you can get from anywhere in the system to anywhere else” may be written succinctly

as:

V p , q G P • 3 r £ P • I(pr) = I(q)

The PIE model can be extended to the red-PIE model, adding spaces for display D and result R, both of

which E map on to, recognising that what is seen by the user on a display and the final result (e.g. a print­

out) may differ, and specifically allowing reasoning about the behaviour of WYSIWYG (“What You See

Is What You Get”) systems. PIEs are very high-level ‘black box’ models of systems, in complete contrast

to the very concrete state space models which are the subject of the techniques described in this thesis,

but they are significant as such, and historically, and are also relevant as the context of Dix’s formal

reasoning concerning the behaviour of undo, which we utilise in section 5.5.4.

There are a number of significant threads in the field of formal methods in HCI after this point, some of

which we expand on in their own sections below. A full survey is beyond the scope of this chapter, but

here we pick out some interesting examples.

In [H W 91] de Haan et al. survey techniques for modelling users’ required knowledge and expected

performance, in order to evaluate and predict a system’s usability. Examples of such techniques include

ETAG (Extended Task Action Grammar) [Tau90] and GOMS (Goals, Operators, Methods and Selection

12 Chapter 2 Background and Related Work

Rules) [CNM83]. They note that such modelling techniques do not aim to replace empirical user testing,

but can allow certain questions to be answered earlier in the design process and with less effort and cost

than testing. We make a similar argument regarding the techniques in this thesis: they augment rather

than replace user tests, and can indeed raise questions which provide a focus for such testing.

The 1992 UIMS tool developers workshop [UIM92] introduced the Arch model and Slinky metamodel,

frameworks for designing interactive systems based on modelling the nature of the data passing between

the UI and non-UI parts of such systems, based on five layers: interaction toolkit components, presenta­

tion components, dialogue components, domain adaptor components, and domain-specific components.

This way of thinking about interactive systems has proved very influential subsequently, particularly

with regards to model-based development, which aims to use formal models throughout the development

life-cycle, replacing the informal models historically used for, e.g., requirements analysis. For example,

in [Lim+05] Limbourg et al. describe UsiXML, a UIDL (User Interface Description Language) allowing

UIs to be specified and developed at multiple related levels of abstraction, supporting automated model-

to-model transformation (via standard graph transformation techniques) at each stage in order to provide

a full model-based development ‘stack’, with four levels of abstraction: tasks and concepts; abstract UI;

concrete UI; final UI, with different kinds of entities in the models at each layer.

In [Bum+95], Bumbulis et al. use formal methods to prototype a system and reason about it using

theorem proving (in higher-order logic, HOL [GM93], and PVS [ORS92]); however they note that while

they are able to prove standard properties of safety and liveness, “formalizing exactly what constitutes a

good interface is an open problem” at that time.

In [HC96], Hussey and Carrington use Object-Z (an object-oriented extension to the Z specification

language) to compare the MVC [Ree79] and PAC [Cou87b] architectures; and in [Doh98], Doherty

introduces a specification approach for interactive systems based on Object-Z.

In [DH97], Dearden and Harrison argue for the development of a generic model of a class of interact­

ive systems at an intermediate level of abstraction, in order to obtain “wider reusability than detailed

specifications of a single system, but greater expressiveness and support for software development than

fully general abstract models” — looking to hit a spot between the extreme abstraction of models such

as PIEs (which “lack expressiveness and operationality”) , and the specifications of individual systems

2.2 Formal methods in HCI 13

otherwise popular in the literature at that time (which “offer limited re-usability”).

In [BF99], Bowman and Faconti apply formal methods to questions of cognitive modelling, by spe­

cifying a particular ‘information processing’-baski model of human cognition (Interacting Cognitive

Subsystems) formally in LOTOS [IS089] (a process algebra with a rich data language) and then verify­

ing certain properties against it, by hand and with the aid of a simulation tool.

In [CB02], Curzon and Blandford describe a generic formal model of principles of cognition expressed in

higher order logic, specify cognitively plausible behaviour, and semi-formally derive design rules from

that model that, if followed, prevent certain kinds of erroneous actions. Building on this, in [CRB07],

Curzon et al. describe the use of HOL in a generic approach to formally model both devices and cog­

nitively plausible human behaviour, producing specific user models which are then verified for certain

properties such as absence of post-completion errors.

In [Bla+08], Blandford et al. compare eight usability evaluation methods of various kinds, ranging in

formality from highly formal approaches such as state-transition networks (STN) and Z, to very informal

methods such as cognitive walkthrough and heuristic evaluation; their aim is to catalogue the different

kinds of insights the various methods can provide. They note, for example, that “Z and STN, although

not designed to identify usability problems, were reasonably effective at supporting the identification

of system-related problems such as the lack of an ‘undo’ facility, redundant operators, and long action

sequences.”

In [DHF08], Dittmar et al. propose the use of higher order processes for formally modelling interactive

systems in a process-algebraic style, emphasise the recursive nature of interactive systems, and introduce

a tool (HOPS) for prototyping systems in such a way. This is followed up in [DF09] which draws out

how to do task-based design in this framework, by sketching and refining ConcurTaskTree-like (CTT,

[Pat99]) models in HOPS. In [CP09], Combefis and Pecheur analyse mode confusion via a bisimulation

analysis between a given system model and a CTT model of the user’s mental model of the system.

In [BB10], Bolton and Bass describe the use of SAL1 to model a patient-controlled analgesia pump, and

particular scaling problems encountered therein. Their response is to use slicing and data abstraction

in order to make the models tractable (e.g. only allowing the millilitres unit, excluding milligrams and

Jhttp://sal.csl.sri.com/

14 Chapter 2 Background and Related Work

micrograms). They produce independent models of the human mission, human task behavior, human-

device interface, device automation, and operational environment.

In [Mas+11; Mas+13], Masci et al. look at formalising the notion of predictability of a user interface

using higher order logic; they specify two real number entry interfaces from infusion pumps (including

the BBraun example from sections 4.3 and 6.4), and attempt to verify the predictability property in each

with SAL. With the BBraun they find the same issues we do, namely that the memory facility makes

its behaviour unpredictable (at least in the formalisation of predictability used), though their technique

does not reveal anything about inconsistent behaviour around minimum values.

2.3 Model checking in HCI

As noted above, there are two key strands in classical formal methods, namely model checking and

theorem proving. In the previous section we met some examples of the latter technique, but in this

section we concentrate in particular on model checking, which shares a number of features with the

techniques described in this thesis: state space-orientation, full automation, and a strong concern with

sequences of actions — indeed we note that theorem discovery can be seen as somewhat dual to model

checking, in that the latter involves proving the truth or falsehood of given statements within some

model, whereas the former involves producing statements that are true within some model.

Model checking [CES86; CGP99] is a technique for automatically verifying properties of finite-state

systems. In brief: given a system and some desired behavioural property of that system, the property is

verified by exhaustively enumerating and exploring all reachable states of the system, looking for states

in which the property does not hold; if no such states are found, the property is verified; otherwise, the

property is falsified.

Model checking is probably the key example of a formal method which has successfully moved from

academic research into industrial use [Rus07]. The following attributes are particularly of note and are

widely seen as critical for its success:

1. It is exhaustive — model checking verifies properties over entire systems; this is a great

advantage over techniques such as simulation and testing, particularly in settings where

2.3 Model checking in HCI 15

unnoticed errors are costly and humans are unable, realistically, to consider all possibile errors.

2. It is highly automated — once the system and properties have been specified, the model

checking algorithm proceeds fully automatically. (Having said that, applying the algorithm is

nonetheless really an iterative technique — writing and debugging specifications, determining

the right abstractions, etc. is a process akin to programming. Theorem proving has historically

tended to be seen as a more involved process, but in context, and particularly with the advent of

powerful automated proof tactics (e.g. ‘grind’), the distinction is not strong.)

3. It provides counterexamples — when a property is falsified, model checking finishes with a

counterexample, i.e. the state at which the property is found to be false, and the path (history of

actions) that led to that state; by examining the state and path, the investigator can attempt to

discern why the property is false, and thus effectively ‘debug’ the system or — it often turns out

— the specification. This is 3 great advantage over theorem-proving techniques, which are often

far more inscrutable when properties are found to be false.

Two key issues with model checking are that it suffers from ‘state space explosion’ (ameliorated some­

what by the use of symbolic model checking, rather than explicitly representing all states), and that it is

(usually) restricted to finite-state systems.

Model checking operates on two entities — the system and the specification — both of which must be

represented in some suitable formalism. Typically the system is represented using a modal logic (e.g.

MAL, Modal Action Logic) or as a state transition system, and the specification of properties is usually

written in a temporal logic (e.g. CTL [CES86], LTL [Pnu77]) — though there are variations on these

themes, e.g. the process algebra CSP [Ros98].

Having introduced model checking in general, we now consider some particular examples of its applic­

ation in our domain.

In [JH92], Johnson and Harrison use temporal logic to express dynamic requirements within a formal

model of interaction. They introduce a tool, Prelog, to support specification and prototyping of interact­

ive control systems, and focus on questions of decomposition and device abstraction.

In [DCH97], Dwyer et al. describe model checking specifications of GUI implementations, using CTL,

16 Chapter 2 Background and Related Work

SMV [McM92], and abstract transition systems, which are abstractions over (complete) concrete trans­

ition systems; the main focus of the paper is on identifying exactly which abstractions are suitable for

working with GUIs.

In [LC99], Luttgen and Carreno describe the use of model checking (using and comparing Mur0 [Dil96],

SMV and Spin [Hol91]) in order to analyse mode confusion in an avionics setting.

In [PS01], Patemo and Santoro describe a prototype environment that integrates a tool for task model­

ling with a tool for model checking, in order to support modelling and analysing multi-user interactive

applications in a safety-critical setting. Here task models are represented as ConcurTaskTrees and com­

piled to LOTOS, and the approach is exemplified with an air traffic control case study.

In [Rus02], Rushby describes the use of the Mur0 tool to encode a system specification and a corres­

ponding user mental model, and to check for inconsistency between them leading to automation surprises

(in particular mode confusion). The case study is a real observed problem in a flight simulation involving

an autopilot, though the models are quite simple (with less than 15 states each). The same situation had

been analysed using a different (manual) technique by other authors, but Rushby’s analysis found further

problems with the fix suggested there (and is automated). He argues for the importance and utility of

abstraction, and suggests that refinement-based analysis (as used by CSP) may be necessary in order for

the technique to scale up.

In [KSH08], Kamel et al. describe a technique for model checking certain classes of usability properties

of multimodal user interfaces (MUIs). The properties, collectively called CARE, concern the com­

plementarity, assignation, redundancy and equivalence of the various modalities available for a given

interface. An earlier paper (in French) describes how to encode MUIs and their CARE properties as

transition systems and CTL formulae respectively, ready for model checking using (in their case) SMV.

The later paper builds on that by showing how to decompose such systems and properties according to

subsets of the full set of modalities on offer, in order to make the model checking task more tractable.

A small example of a mobile phone’s menu structure (with two modalities — push button and voice) is

given.

In [Bas+11] Bass et al. model and look for mode confusion in hybrid systems (i.e. ones with continuous

dynamical components) using infinite bounded model checking (SMT [Bar+09]), using the SAL and

2.3 Model checking in HCI 17

Yices2 tools, with an Airbus A320 Speed Protection System example.

In [CH97], Campos and Harrison review the state of formal verification of interactive systems at that time

and propose an agenda for further work, based on York Interactors [DH93] — objects capable of making

their state perceivable to users, with specifications built compositionally. They differentiate explicitly

between program verification and specification verification, and aim to address problems of reachability

and reliability. Building on this, in [CH98] they argue for verification as an aid to decision making, and

not just a tool for exhaustively proving properties, and introduce a tool for compiling interactors written

in MAL to SMV. Going on, in [CHOI], they describe the use of interactor specifications to analyse mode

consequences (and look for possible mode confusions) early in the design process, using that same tool,

now called i2smv.

In related work, in [Loe03; LH04; LH06] Loer and Harrison introduce the IFADIS (Integrated Frame­

work for the Analysis of Dependable Interactive Systems) framework and associated tool, also compiling

to SMV, but from Statemate statecharts [Har87; HN96] rather than MAL interactors. The tool includes

a logic property editor, emitting LTL or CTL properties, and produces visualisations of outputs (such as

model-checking traces) aimed at the designers/engineers, e.g. UML sequence diagrams, and animations.

In [CH08; CH09], Campos and Harrison introduce IVY, the successor to the i2smv tool, describing in

detail its purpose, components, and usage, and the results of a formative user evaluation experiment,

complementing [TG08] (see section 2.6) by showing how some of the analyses performed there may be

encoded in the model-checking setting of IVY. IVY features property patterns, as introduced by Dwyer

et al. in [DAC98], to aid the authoring of CTL properties, incorporating patterns from that work as well

as introducing new ones.

In [Har+08], Harrison et al. consider how to extend this work into the area of user experience require­

ments, and the ambient/mobile context, and in [CH11], Campos and Harrison apply the IVY approach

to the analysis of medical devices with a focus on comparing different devices for particular usability

properties as an aid to making procurement decisions. The case study is a model of an Alaris GP infu­

sion pump, based on its manual and on the simulation produced by Oladimeji and discussed briefly in

section 4.4.

2http://yices.csl.sri.com/

18 Chapter 2 Background and Related Work

2.4 State based approaches

In this section we consider, as a special case, some particularly state-based approaches, i.e. formalisms

based on the classic notions of state transition diagrams/finite state machines and variants/extensions

thereof, including some with extensive structuring mechanisms. Of course, many of the other works

discussed in this chapter utilise state-based notations, and in particular the formalisms related to model

checking conceptually unfold to state spaces, but here we focus on cases where they are the primary

artifact. We do so particularly because our basic formalism is of this kind: flat graph models whose

nodes represent system states and whose edges represent user or system actions.

In [AWM95], Abowd et al. consider the representation of dialogue models, which capture constraints

concerning what actions are available to users at particular times in an interactive system, as finite state

machines, and demonstrate the use of a model checker (SMV) to verify properties such as deadlock

freedom and state inevitability.

In [DH02; HD02; DH03] Degani and Heymann describe an approach for verification of human-automation

interfaces which is also outlined and exemplified in chapter 16 of [Deg04]. The approach uses state ma­

chine models, though the authors argue that the techniques are generic and could be applied to other

models such as Petri-nets, temporal logics, etc. In particular, models of the task requirements, the sys­

tem, and the user’s mental model of it, are compared in order to verify that their combination is adequate.

The verification approach is described using two examples (one abstract, one from an automatic flight

control system) in [DH02]; then in [HD02] they repeat this description with a different example (a

semi-automatic transmission control system for a car), and build on it with a process for producing user

models that, by construction, pass the given verification checks.

In [RW06], Roscoe and Wu present a framework for the verification of statecharts based on a translation

from Statemate semantics to CSP, and for subsequent analysis using the FDR tool [Sca98], with a burglar

alarm example.

In [LH01], Loer and Harrison consider the problem of combining formal analysis and ‘discount usability

inspection’, in particular the question of how to formally support heuristic evaluation [Nie93] and how

to analyse for specific usability properties via exhaustive analysis, using Statecharts and the SMV model

2.4 State based approaches 19

checker. The combination of formal methods with the very ‘soft’ and informal approach of heuristic

analysis is novel and, we argue, an interesting and largely unexplored space; in section 6.4 we show how

theorem discovery can automatically provide insight into particular cases where heuristics are violated.

Somewhat relatedly, Bowen and Reeves [BRIO] investigate the use of formal models of user interfaces

as the basis for designing software evaluation studies. Their approach was to manually reverse engineer

some software into UI models in the j i -charts language [Ree05] (though they would normally advocate

producing such models via user-centred design), and to write a system specification in Z, and then to

automatically transform the models into tests describing the conditions necessary to satisfy the behaviour

given in the Z specification.

Models based on Petri-nets [Pet62], extended to deal with the particular requirements of modelling

interactive systems, have been extensively explored by a team centred at Toulouse; as these models have

an executable semantics, they can be used for a wide range of activities in the development life cycle,

including specification, prototyping, and even final systems.

[Nav+09] is the key paper describing this formalism, which is called ICOs {Interactive Communicating

Objects). The formalism consists of a user interface description language, a notation and a formal

description techique, based on Petri-nets extended with features capturing object-structuring aspects

[Bas+99] and interaction. “A cooperative object (CO) states how the object reacts to external stimuli

(method calls or event notifications) according to its inner state.” ICOs extend COs with a presentation

part, and functions (‘activation’ and ‘rendering’) linking the two. The formalism has a well-defined

semantics and extensive tool support; furthermore, the presentation part is abstracted and can, if desired,

be connected to a dedicated UI description technique such as UsiXML [Lim+05]. The PetShop CASE

tool provides modelling, prototyping and testing capabilities (as ICOs are fully executable), and ICOs

may also be validated and analysed using other proof tools. There are several case studies in the paper

from avionics and aerospace.

See also [Nav+01] for a description of structuring mechanisms used by the formalism, and [BNP03]

which focuses on the PetShop tool, and notes that highly interactive (or ‘post-WIMP’) UIs are appearing

in safety critical systems and that formal methods should thus be used to enhance their safety. More

recent examples of work in this area include, for example, [Cho+11] in which Choi tat et al. introduce

20 Chapter 2 Background and Related Work

mechanisms for fault tolerance and self-checking components in ICOs, and [Pal+11], in which Palanque

et al. describe usability evaluation in the ICO context.

2.5 Reverse engineering of interactive systems

Reverse engineering refers to a broad collection of techniques and tools related to the process of ana­

lysing an existing subject system in order to create representations of the system at a higher level of

abstraction, in order to support activities such as maintenance, testing, quality assurance, reuse and in­

tegration. It is generally seen as a two-step process: information extraction and abstraction, with two

broad objectives: redocumentation (producing artifacts at the same level of abstraction as the system, e.g.

pretty-printing source code) and design recovery (producing more abstract representations). The field is

a major area of software engineering, with many successes over the past several decades. [CD07]

In this section, we review some key examples of the application of reverse engineering techniques to

interactive systems, where the abstract representations produced will thus typically include aspects re­

lating to user interaction, presentation, etc. Model discovery, one of the two techniques described in

this thesis, is in fact a reverse engineering technique whereby a running system is dynamically analysed

in order to produce a model of its interaction behaviour — in the terminology just introduced, it is an

information extraction technique for design recovery. As such we consider some related examples of

such an approach. We also examine some examples of static analysis, where rather than running the

system in order to analyse its behaviour, its source code (possibly accompanied with other artifacts) is

examined in order to produce some more abstract model.

Dynamic analysis techniques

In [ABL02], Ammons et al. describe a “specification miner” which turns a set of traces of program API

calls into a probabilistic regular grammar or state machine modelling the observed system. The spe­

cifications thus produced cover temporal and data-dependence properties, and can be used to find ‘rare

bugs’ using a tool which examines all program paths such as a model checker or a program analysis tool

2.5 Reverse engineering o f interactive systems 21

such as xgcc3. While GUIs are not considered specifically, the probabilistic aspect is interesting: in this

thesis we suggest conditional exploration as a strategy for dealing with cases where complete explora­

tion of a state space is not possible — but an approach modelling expected or observed user behaviour

probabilistically might be fruitful. The approach described in this paper may also be seen as somewhat

dual to theorem discovery as described in this thesis: they take program traces and (probabilistically)

infer models, whereas theorem discovery takes a model and analyses the effects of action sequences, i.e.

traces.

In [CLM03], Chan et al. describe a dynamic analysis technique for event-driven interactive systems,

based on identifying distinct execution bursts corresponding to actions performed by the user, in which

they then describe those actions visually using a relevant fragment of the application’s display at the time

the action is performed; the aim is design recovery, though the focus of the paper is on the information

extraction stage. They present a case study on the LyX4 WYSIWYG editor for UT^X, under the X

Window System, and show how (thousands of) actions are collected automatically in the background as

a user interacts with the system.

In [MBN03], Memon et al. describe GUI Ripping, a technique which dynamically constructs a model of

a running GUI (particularly hierarchical GUIs of desktop programs) in order to aid test case creation. A

GUI’s state is modelled as sets of widgets, properties and values (a structured specialisation of the very

generic notion of state employed by model discovery — see section 3.2.1); event flow graphs model

event paths (but with events on nodes, not edges as in the state spaces produced by model discovery

and analysed by theorem discovery). The motivation is model-based GUI testing, and there is no con­

sideration of the underlying/inner state of the system and its relation with the GUI. A depth-first search

algorithm is used, with Windows/C++ and Swing implementations.

In [MBD08], Mesbah et al. describe a tool which crawls rich AJAX web applications; the end product

is a state space similar to that produced by model discovery, and the algorithm in fact can be seen as a

special case of model discovery, with domain-specific aspects (such as handling of the browser’s “back”

button) tightly integrated.

In [PFM08; Pai+05], Paiva et al. describe the automatic generation, by dynamic analysis, of a “skeleton”

3http://www.cs.stevens.edu/~wbackes/xGCC/
4http://www.lyx.org

22 Chapter 2 Background and Related Work

formal model of a GUI, which is then completed manually to produce a test oracle. The formalism used

for the models is a rich pre/post specification language, Spec#. The GUI is explored via the operating

system’s window manager, so the anaysis tool and system being analysed need not be written in the same

language or run together — as the motivation is reverse engineering existing systems whose source code

may not be available and thus impossible to integrate with (see section 3.2 for further discussion of this

issue).

In [Giv+13] Givens et al. combine computer vision techniques (to identify key graphical elements in a

GUI, and implemented in a tool called Sikuli script) with grammatical inference (on the output resulting

from a simulated user’s input, implemented via an SMT solver) in order to build a finite state machine

model of a system’s behaviour. The focus of the paper is on producing the model, but they also discuss

visualisation and analysis for potential mode confusion patterns. They provide two case studies: a sci­

entific calculator running under Microsoft Windows, and a simulation of a commercial insulin infusion

pump.

Static analysis techniques

In [SCS06] and [SCS07], Silva et al. describe static analysis of Java/Swing code based on the use of

program slicing [Tip95] to isolate the user interface parts of a program from its functional core via

AST (abstract syntax tree) traversal, in order to produce abstract user interface models. The approach,

intended as an adjunct to the IVY tool described in section 2.3, targets single-window hierarchical WIMP

user interfaces, and in particular cannot handle UIs with synchronisation, timing or continuous aspects.

The AST traversal looks for GUI-related code such as window and widget definitions, and in particular

for four key abstractions related to the user: user input, user selection, user action and output to user.

From this, several kinds of model are produced: MAL interactors; event-flow graphs describing the

construction of the GUI (in terms of widget parent/child relationships, for example); and finite state

machine models describing the dynamic behaviour of the GUI, in terms of the state chaging effect of

user actions on the system.

In [SSC09], they build on this work, describing the ongoing development of the framework — now called

GUISurfer — and its application to software testing. Here the framework is able to handle multi-window

2.6 Lightweight formal methods fo r dependable HCI 23

systems, and has been extended/genericised to also deal with wxHaskell5 GUIs (see also [CH07], which

applies program slicing to wxHaskell). With regard to testing, the models produced by the framework

are used to produce and run large numbers of automatically generated test case instances (i.e. strings of

user input) using the QuickCheck testing tool [CHOO], and this feature is demonstrated with a test case

checking that only certain windows can be opened. In [SCS10], [SillO] and [Sil+10] they continue the

description of the development of the framework, including the application of graph-based analytical

techniques such as shortest distance, pagerank, etc. as in [TG08] (see section 2.6).

In [Sta07a] and [Sta07b], Staiger describes a similar approach to static analysis of GUIs, with a focus on

generic detection of GUI elements and their relationships, whose output is a directed graph of windows,

where edges represent actions in the source node window that cause the destination node window to

be created or shown. The context is C/C++ GUIs implemented in the GTK and Qt frameworks, which

raises some particular challenges such as pointer analysis; the work is an extension to a tool suite called

Bauhaus, which already contains a number of features useful in solving this problem.

In [LW08], Li and Wohlstadter consider GUI modelling combining both static and dynamic analysis,

using the aspect-oriented Java programming extension AspectJ and thus targetting Java interfaces only.

Their focus is on clean software engineering rather than HCI/usability concerns, however, and the mod­

els extracted focus on static structure rather than system behaviour.

2.6 Lightweight formal methods for dependable HCI

The two techniques presented in this thesis are examples of ‘lightweight’ formal methods targetting

HCI and usability concerns, i.e. they are formally-based approaches to interaction programming, with a

lower barrier to entry than traditional formal methods such as model checking and theorem proving, and

they can conceivably (and indeed by design) be implemented and used by any competent programmer

without any specialist training. In this section we consider some earlier examples of such approaches to

HCI and in particular to making interactive systems more dependable.

In [Thi97], Harold Thimbleby points out various problems with popular desktop calculators and recom­

5http://www.haskell.org/haskellwiki/WxHaskell

24 Chapter 2 Background and Related Work

mends a declarative approach to the operation of a calculator; in [ThiOO] he continues this argument that

calculators are needlessly bad, and identifies particular problems of inadequate documentation, bad im­

plementation, feature interaction, and feature incoherence; then, in [Thi04b] Will Thimbleby describes a

novel ‘interactive whiteboard’ style calculator with a highly responsive design and declarative operation,

and gesture recognition. In sections 4.5 and 6.5 we apply our techniques to a typical desktop calculator,

and describe a previously unnoticed problem there.

In [Mar+02], Marsden et al. advocate the application of what might be termed ‘basic Computer Science’

principles to the design and analysis of interfaces, an approach exemplified in two proposed redesigns of

a mobile phone’s menu system, using a balanced binary tree and a hash table respectively. They argue

that such an approach leads to more consistent behaviour, greater efficiency, and an overall improved

experience for the user.

In [Thi07b], Thimbleby argues that while traditional methods of HCI and user-centred design are essen­

tial, they are insufficient to meet the needs of safety critical interactive system development, in particular

for medical devices; the paper outlines a method based on simulation (with the example of a Fluke 114

multi-meter) using the Mathematica6 language/tool, and the computation of the simulation’s state space

in an early example of model discovery. The approach includes visualisation and formal evaluation of

the design, including an analysis which can be seen as a prototype form of theorem discovery. The paper

advocates interactive exploration of this kind as part of the process of device development.

In [TG08], Thimbleby and Gow show how to apply graph theoretical methods to the analysis of mod­

els of interactive devices (the case study is a syringe pump, the Graseby 9500), giving a number of

quantitative and qualitative usability measures. The approach is motivated by the desire to have “a very

clear notion of what the device model is”, as opposed to an abstract one or an incomplete one, as many

formal approaches to HCI provide. The analysis includes standard graph-theoretical properties such as

reachability, diameter and radius, and completeness, as well as showing how to relate usability-specific

notions such as undo cost and observability to such models.

In [Thi09], Thimbleby advocates the use of formal approaches to UI design in safety critical interactive

systems, and in particular introduces some early examples of the use of the technique of model discovery

6http://www.wolfram.com/mathematica/

2.6 Lightweight form al methods fo r dependable HCI 25

which is a major topic of this thesis — including the Casio HS-8V calculator considered in more detail

in section 4.5 and a prototype of a new design for a drug dosage calculator — and describes the use of

(custom) model checking in such cases. [ThilO] is similar, with more of an emphasis on the identification

of latent error conditions. In [TO09], Thimbleby and Oladimeji consider the application of Social

Network Analsysis (SNA) techniques to these kinds of models. SNA is a group of graph-theoretical

analytical techniques, such as the Sabadussi, Jordan and betweenness measures of state centrality. While

all three of these papers discuss models that have been produced using early ad hoc implementations of

model discovery, they do not explain the technique. In [GT10], Gimblett and Thimbleby describe model

discovery in detail (and formally) for the first time; that paper forms the basis of chapter 3 and section

4.2 of this thesis.

In [TC10], Thimbleby and Cairns consider a particular class of error, namely number entry errors, and

argue that while typing numbers is such a mundane task that it seems not to merit ‘a second glance’, this

is in fact a large unsolved problem area, affecting a range of types of system including safety critical

systems and medical systems in particular, and that some ‘simple’ solutions could have a large and

beneficial impact. The paper includes a quantitative (Monte Carlo) analysis on the impact of a design

change on ‘out by 10’ errors in an example system, and presents a number of problematic real world

examples.

In [OTC11] and [Ola 12], Oladimeji et al. continue this work on number entry; they introduce a taxonomy

of number entry systems commonly found on interactive systems and in particular on medical devices

such as infusion pumps, and describe some user experiments comparing such systems in terms of users’

abilities to recognise and recover from error when it occurs, leading to concrete recommendations for

manufacturers in terms of interface style (from a safety point of view).

Similarly, in [Thi+12], Thimbleby et al. look closely at one particular style of number entry system,

referred to as the ‘5-key’ style, and describe automatic experiments that explore the space of possible

behaviours of such systems, again leading to concrete recommendations as to their design for error

recoverability. This class of systems is the subject of one of the case studies of model discovery and

theorem discovery in this thesis (sections 4.3 and 6.4).

One of the recurrent themes of the four papers just described is that ignoring errors (i.e. not forcing users

26 Chapter 2 Background and Related Work

to note and respond to them) is a problematic design choice. In [Thi 12], Thimbleby argues this point in

particular and in detail: the essential argument is that user errors are impossible to eliminate completely

[ReaOO] and as such it is critical to respond to them properly, by noticing when they happen and allowing

(indeed supporting) recovery from them.

2.7 Human factors and HCI in medical systems

We conclude our survey of background and related work by considering some applications of HCI

principles and human factors engineering to a particular kind of safety-critical system: medical devices.

One of the case studies in this thesis concerns number entry on medical devices, and another concerns

desktop calculators which, given their widespread use in hospitals for drug dosage calculations, may

also be seen as safety-critical medical devices. The idea that HCI and human factors have an important

contribution to make to the design of medical devices is gaining acceptance, but uptake remains slow.

Here we consider some examples of interesting work in this area.

In [Cha+92], Charante et al. provide an early example of work noting ‘classic’ HCI flaws such as lack of

feedback in a device used in heart surgery, with clear evidence that the flaws do “increase the potential

for erroneous actions”, with a clear contribution to potential for ‘actual incidents’.

In [Lin+98; LVD01] Lin et al. look at the application of human factors research to the design of a

medical device for patient-controlled analgesia. They evaluate the user interface of an existing pump,

using cognitive task analysis and field observations, and redesign the device interface (in a computer

prototype) for greater efficiency, better feedback, better recovery from error, etc.; a small experiment

validated their improved design.

In [Dea+02], Dean et al. describe a single study in the UK focussing on prescribing errors. To pick

out some key figures: 36,200 medication orders over 4 weeks were examined; a prescribing error was

identified in 1.5% of cases, potentially serious in 0.4%; 54% of errors were associated with choice of

dose. The reasons behind the errors are not unpacked; it would be interesting to know how much of a

contribution number entry errors made.

In [Vic+03], Vicente et al. describe a single case where a patient died from an overdose of morphine,

2.7 Human factors and HCI in medical systems 27

apparently as a result of the use of a higher concentration ‘cassette’ than prescribed, without a corres­

ponding modification of how the PC A (patient-controlled analgesia) device (an Abbott Lifecare 4100)

was programmed; the case is related to others, and the paper makes a number of recommendations in­

cluding greater use of human factors. Interestingly, it is an example where a number being entered too

low (the drug concentration) resulted in death — because the actual concentration used was higher. The

authors note that “all reported user error deaths with this device were explicitly attributed to program­

ming of drug concentration.” The paper also makes an interesting point about data logging: the device

logs 200 ‘events’, but the device was kept in use after the death and so the data was lost.

In [KNP03], Kaye et al. describe a tool & structured repository for dealing with and cataloguing medical

device use problems, based on a model of medical device usability properties called UPCARE (not to be

confused with the CARE properties of multimodal user interfaces used by [KSH08], section 2.3). The

domains of the model, arising from a programme of interviewing medical professionals (mainly nurses)

about device issues, are: unmet user needs; perception; cognition; actions; results (allowing adverse

events to be recorded via the model); and evaluation (allowing for various evaluation strategies when

applying the model). Each area is further divided into components highlighting particular commonly

occurring issues. The model is posited as an aid to communication among professionals analysing and

comparing devices, with the intention of creating a shared repository of device analyses for that purpose.

In [Zha+03], Zhang et al. apply the heuristic evaluation technique [Nie93] to medical devices, with

the aims of discovering usability problems that could lead to medical errors, and supporting purchasers

in the comparison of patient safety features across different devices, and supporting manufacturers to

improve patient safety features in their design process. They use 14 heuristics, taken from [Nie93] and

[SP04], and also add a ‘severity rating’ dimension to their analysis. Four analysts applied the technique

to two similar devices (infusion pumps), and found 192 hueristic violations for the first pump, and 121

for the second; as the first pump also had more violations of high severity, the authors conclude that

overall it has worse usability.

In [RJJ09], Ray et al. discuss two ‘complementary’ techniques for developing dependable medical sys­

tems: model based development and static analysis. The introduction gives a good motivation for formal

methods over traditional software development techniques in this context. Model-based development

28 Chapter 2 Background and Related Work

is described from the points of view of model-checking and IBV (instrumentation-based verification).

Static analysis is proposed for checking architectural properties and detecting low-level runtime errors

such as buffer overruns and memory leaks. The paper then discusses how regulatory frameworks (such

as those for which the FDA, which employs two of the authors, is responsible) might incorporate aware­

ness of these methods.

That paper cites the related 4-page note [JJ07], in which Jetley and Jones present an overview of a hazard

analysis of a generic infusion pump (GIP), and discuss its application to one particular model of infusion

pump’s GUI code (the pump is unnamed, but the code is 20,000 lines of C++), testing assertions with

the Verisoft model checking and state space exploration tool produced by Bell Labs.

In [ATO10], Acharya et al. make the case that HCI is under-applied to healthcare, and look at a compu­

terised hospital bed as a case study, modelling its interaction behaviour as a state transition diagram.

In [WCB13], Wiseman et al. describe and discuss the results of analysing 58 log files from 32 infusion

pumps, in order to determine the digit distributions in numbers entered for variables such as VTBI

(Volume To Be Infused), rate, etc. The main points are that the distribution is roughly according to

Benford’s Law [Ben38] but 0 ,5 , and 9 are all more common than predicted by that law. The explanations

are that 0 is used for large round numbers, 5 is used for “in between” values (this follows known bias in

how doctors record blood pressure readings), and 9 is used in surgery where an indeterminate amount

of infusion is required and the device is constantly monitored, so the maximal value (typically all 9s) is

chosen. There is also some discussion of number length distribution, implications for design, etc., and a

study of three common number entry interfaces (including the 5-key style examined in sections 4.3 and

6.4) in the light of that information, in particular noting that designs are not optimised for the kinds of

numbers most frequently entered.

Chapter 3

Model Discovery

Contents

3.1 Introduction... 29

3.2 Requirements for User Interface Model Discovery........................ 36

3.3 Model Discovery A P I 42

3.4 Model Discovery Algorithm... 48

3.1 Introduction

In this chapter we present the first of the two techniques at the core of this thesis: Model Discovery.

Using this technique, a model of a user interface can be automatically discovered by a tool simulating

the actions of a user. Here we provide a detailed, formal and generic description of the technique, which

should be sufficient to allow any competent programmer to implement model discovery for themselves,

provided their UI framework meets the requirements we set out. In particular:

• We informally describe the requirements that must be met by the implementation context in order

to allow model discovery to even be possible (section 3.2).

• We formalise those requirements in an API for UI model discovery; the implementation of this

API is a prerequisite for performing model discovery in a given setting (section 3.3).

29

30 Chapter 3 Model Discovery

• We describe a generic model discovery algorithm in terms of that API (section 3.4).

• We consider variants and extensions to the API, with which the algorithm can perform a variety

of sophisticated UI exploration tasks (section 3.4.3).

• In chapter 4, we consider four examples of model discovery in use: two detailed examples by the

author, and two examples from other sources, where we briefly draw out some interesting aspects

of the application of the model discovery technique.

The description given here is language-neutral, and suitable for retrospective integration with existing UI

applications and development tools; as such, we hope and believe that this will facilitate the application

of model discovery in diverse settings. In particular, integration into IDEs and development workflows

seems a promising area, and one where the requirements of the API (discussed below) are easily met;

reverse engineering existing systems could also be valuable, but harder to achieve in general because of

the deep level of integration required.

In model discovery we systematically explore the state space of an interactive system by simulating the

actions of a user, using standard search techniques [Win92] augmented with domain-specific aspects

such as discovery/actuation of UI widgets. Model discovery produces a finite directed graph whose

nodes represent (sets of) states of the target system, and whose edges represent user actions or events

that change the system state. A path through the graph is thus a path through possible system states,

following a sequence of possible user (and possibly internal) actions.

While such flat models can become very large, experience has shown that by choosing the right level

of abstraction, tractable models yielding useful results are obtainable; Jackson’s small model hypothesis

[Jac06; ADK03] suggests that bugs can be found in small models, and if a large model is required, a user

would plausibly be unable to understand the operation of that system in any case. Various analyses of

such a model are possible, using standard graph-theoretical techniques or model checking tools [Thi07a;

Thi09; TO09], not to mention the other major topic of this thesis, Theorem Discovery (chapter 5).

Model discovery complements purely analytical techniques such as abstract interpretation [CC77]; in

the presence of running code it is much simpler to apply, and does not rely on detailed knowledge

of the code’s running environment. For example, consider an interface running in a web browser: its

3.1 Introduction 31

event-handling/buffering behaviour, and their interaction with the code in question, will tend to be non­

trivial to interpret abstractly; by using model discovery we can automatically produce a model that really

represents some aspect of the behaviour of the actual running system.

3.1.1 Scope

Our current scope is reactive devices with discrete interfaces and finite state spaces, subject to a number

of assumptions. In particular:

1. That the system responds (almost) immediately to user actions. This is primarily a matter of

practicality rather than absolute necessity: if the system responds slowly or needs time to reach a

steady state, model discovery might still be possible, but would require the introduction of forced

delays to allow the system to settle, which would slow the process down considerably. Typically,

a large number of states and actions need to be explored, so such delays would tend to be tedious

in practice.

2. That the system’s responses to user actions are manifested in the system’s state (possibly, but not

necessarily only, including in the state of its UI). What exactly we mean by the system’s state,

and how it is to be dealt with meaningfully by the model discovery process, is considered in

section 3.2.1.

3. That any silent or external (non-user) actions that modify the state may be modelled by (perhaps

explicitly) adding them to the set of explored actions — see section 3.2.2. For example, in the

model of the Alaris GP infusion pump discussed in section 4.4, tick actions were used in certain

modes to represent the passage of time.

There are clearly many non-trivial and interesting devices that satisfy these assumptions, including and

in particular those considered in chapter 4.

We take the view that such an interactive system consists of an interface with which the user interacts,

and (usually) an underlying system implementing domain-specific logic. This separation of concerns

may be designed into the architecture (e.g., using the MVC [Ree79] or PAC [Cou87a; Cou87b] design

patterns), or it may be less well-defined. We call the state of the interactive part the GUI state — in

32 Chapter 3 Model Discovery

principle visible to the user — and we call the state of the underlying system the inner state. Model

discovery may involve probing and even modifying (while backtracking) both kinds of state; doing so

for a system whose state is a complex object graph is conceptually no different from doing so for a

system whose state is a simple bundle of values (such as the example in the next section): it might be a

bit more complicated, but it’s essentially the same task, provided the requirements set out in section 3.2

are met.

3.1.2 Illustrative Example

In order to further motivate and concretise our discussion, let us briefly consider an example of model

discovery in action; we return to this example in more detail in section 4.2. The example involves model

discovery on the control panel for an air conditioning unit — see the screenshot in figure 3.1. Here we

see a number of features typical of our discovery approach.

The interface of the system being discovered, or System Under Discovery (SUD), can be seen in the

top-left portion of the window. The rest of the window contains controls and feedback for the model

discovery process itself (below the SUD section) and a graphical preview of the discovered model (on

the right). The SUD was originally developed as a standalone application, the body of which we have

embedded directly into the model discovery tool for the sake of simplicity and ease of exposition. While

convenient, in general such a direct embedding is not necessary (indeed it may not even be practical,

e.g. if the SUD has more than window); whether the SUD is embedded or ‘free floating’ is unimportant,

provided the model discovery code can in some sense access the SUD’s code and state: see section 3.2

for further discussion of this point.

The SUD is a simulation of the control panel of an air conditioning control unit, with the following

controls:

• on/off;

• heat/cool;

• fan speed (low, medium, high);

• target temperature (5-30°C, i.e. 26 settings).

3.1 Introduction 33

O O O UI Model Discovery: air conditioner example

System Under Discovery

Air Conditioner Control Panel

On/Off '---- — ■ l on

Heat

Low

= 18

State space

Fans

Mode

Fans @ Low 0 Med 0 H'9 h

Temp '

Control

sl_On/Off
sl_Mode
sl_Temp
rd_Fans

O " ►

State: Aircon [On, Heat, Low, 18]

Unique actions 9
FSM Weakly conn.

Seen Pool Done
States 184 14 170
Actions 1092 80 1012

A

V .W .

*
*% *

0 •*

* i i t * ' * »
fc- * *

^ Start Discovery) (Step Discovery ' r Reset f' Redraw r View PDF) (View GML ̂ ̂ Save

Figure 3.1: UI model discovery for a simple air conditioning control unit

34 Chapter 3 Model Discovery

The Control section is used to control and monitor the model discovery process. First, the SUD’s

controls are listed: three sliders s l_ 0 n /0 f f , sl_Mode, sl.Temp, and one radio control rdJFans. These

controls and their associated, actions (which are not displayed in this example) have been discovered

automatically by the model discovery tool — and may in general vary between states of the SUD. In this

case, the set of available controls never changes, but the available actions for each control do change:

e.g. if a slider is in its minimum position, the ‘slider down’ action is unavailable. We consider the task

of computing available controls and actions in section 3.2.2.

The State part shows a term representation of the SUD’s state: a 4-tuple projection of the current values

of the four controls. In the case of this SUD, the state we are interested in, and which we project, is

exactly the GUI’s visible state — though this need not always be the case: we describe this important

aspect of model discovery in section 3.2.1.

Beneath the State part are a number of counters indicating the progress so far of the discovery process,

and a “health check” of the discovered model. The basic task of model discovery is to identify states

and the possible user actions performable in those states, and then execute each of those actions in each

of those states, and see where that takes you. In this screenshot, model discovery has found 184 states

so far, 14 of which still have unexplored actions (and so remain in the pool of unexplored state/action

pairs), and 170 of which have been fully explored; similarly, model discovery has found 1092 actions

(properly, 1092 state/action pairs), of which 1012 have been explored and 80 remain in the pool, waiting

to be explored. Thus we may infer that the graphical view of the model on the right of the screenshot

contains 170 green (i.e. fully explored) states, and 14 red ones, and 1012 edges. (Given the possible

values of each control in the SUD, and the fact that they are entirely orthogonal, the total state space to

be discovered consists o f 2 x 2 x 3 x 2 6 = 312 states.)

To be completely clear: each node in that graph, i.e. each of those 180 states which have so far been

discovered, represents a unique state of the SUD, i.e. a unique combination of the values of the four

SUD controls listed above; furthermore, each edge represents a user action that changes the state. For

example, consider figure 3.2. Here we see a much ‘younger’ model of the aircon control panel. The

starting point for this exploration was the state represented by the green node:

(Off, Heat, High, 5)

3.1 Introduction 35

sI_On/Off_lJp / sl_M ode_Down /sl_Tem p_U p rd_Fans_Low rd_Fans_Med \rd_Fans_H igh

(Off. Float. Low ,5)

(On,Heat,Med ,5)

Figure 3.2: A model o f the air conditioning control panel, very early in the discovery process: only the
first state has been fully explored.

and we have five edges leading from that node, representing the five actions possible in the SUD when

it is in that state. In particular, we have an an edge labelled s l_ 0 n /0 f f _Up (representing moving the

on/off slider up), leading to the state:

[On, Heat. High. 5)

In this exam ple, all 5 actions possible in that initial state have been explored (which is why it has been

coloured green), leading to 5 new states, one o f which, (Off, Heat, Med, 5), is in mid-exploration, with

two o f its five actions explored (one o f which happens to lead back to the initial state).

A graph o f this nature is the basic product o f model discovery — the model it produces.

Returning to the screenshot in figure 3.1, we also have a counter o f actions found so far, o f which there

are nine in this example: ‘up’ and ‘down’ for each o f the three sliders, plus three possible radio button

states; and a health check, telling us that the graph is currently weakly connected — upon completion of

this particular discovery task, the graph will be strongly connected (though that need not be the case in

general).

Finally, there are buttons to start discovery (which becom es “Pause Discovery” if it is running), to

execute just a single cycle o f the discovery algorithm, and to reset to an initial state.

The State space panel to the right previews the model as discovered so far, as rendered using the

36 Chapter 3 Model Discovery

GraphViz tool [Ell+02]. Below this are buttons to redraw the preview (if the window is resized), to

view the state space in full using an external application (rendering to PDF via GraphViz, or to GML,

another graph language), or to save it in various formats suitable for further processing.

We return to this example in section 4.2, where we describe its implementation in more depth, and show

more screenshots of the discovery process in action; in section 6.3 we apply theorem discovery to the

model thus produced.

3.2 Requirements for User Interface Model Discovery

The UI model discovery algorithm simulates the actions of a user systematically performing all possible

actions in all possible states. The API is the formal interface between the UI application and the discov­

ery tool — a bridge that must be implemented before discovery can take place on a given platform. The

API provides four key capabilities:

• the ability to compute, store and compare SUD states;

• the ability to identify, for a given SUD state, the actions that may be performed in that state;

• the ability to perform such actions;

• the ability to restore SUD state, i.e. to backtrack, so that all of a state’s actions can be explored.

Before considering these requirements in more detail, a few high level remarks are in order about the

question of process separation as regards model discovery. In general, we would expect the SUD to be

capable of running as a standalone system — and indeed, in each of our case studies, that is the case. The

model discovery API, however, requires a certain degree of automated access to the SUD — including,

in general, to aspects of its internal state. There are two ways this can be achieved.

The simplest and most powerful approach is to embed the SUD within the model discovery tool in some

way. This doesn’t necessary imply the GUI-level embedding seen in figure 3.1: just that the SUD and

the model discovery tool are running in the same process (or collection of processes, or sandbox.. .) —

for example they have been compiled and linked together into a unified executable. The key is that, from

3.2 Requirements fo r User Interface Model Discovery 37

the model discovery code’s point of view, the requisite parts of the SUD are in scope at compile-time (if

that exists) and available for access at run-time.

This is exactly the approach taken in all four of our case studies; for example:

1. The air conditioner control panel (section 4.2) is a compiled Haskell executable; here the SUD

can be compiled as a standalone application, but for model discovery it has been embedded

within the model discovery tool, and they are compiled/linked together.

2. The ‘5-key’ number entry system (section 4.3) is an HTML/JavaScript client-side web

application; again, the SUD can be run on its own, but for model discovery it has been embedded

within the greater context of the model discovery tool, and interpreted within the process space

of a single page in a web browser.

Sometimes, however, such a close relationship might not be possible — for example, consider a reverse

engineering task where we wish to perform model discovery on an existing tool for which the source

code is unavailable. In such a case, it might still be possible to perform model discovery, but there will

need to be some way of remotely (i.e. from another process, at least — and conceivably from another

computer) interacting with and probing the SUD from the model discovery tool. For example, both

[MBN03] and [PFM08] describe approaches where the GUI structure of a running Windows application

is dynamically learnt at runtime from a separate process, via the intermediation of the Windows API.

Even if such an approach is feasible for the task of identifying and interacting with the SUD’s GUI

components, there will still in general be limits to what state can be projected — and in practice, probably

only those parts explicitly exposed via the GUI will be accessible in such cases. For this reason, the more

tightly-coupled approach described above is recommended where possible; in our experience, the SUD

usually needs little or no modification in order to expose whatever aspect of its state is of interest.

We envisage model discovery primarily as a component in the software development process, where its

integration into IDEs (for example) would tend to make these issues if not trivial, then certainly tractable.

38 Chapter 3 Model Discovery

3.2.1 Identifying and modelling SUD state

A node in the graph of the discovered model represents some projection of the state of the SUD, and by

definition, each node represents a different value for this projected state. This notion of projected state

is deliberately left abstract and generic in order to support a wide range of possible implementations: it

is the task of the interaction programmer modelling the SUD to choose and implement an appropriate

projection. However, this task is critically important (e.g., see [Dix91] for an in-depth examination of

questions surrounding such projections) and so we consider some key factors here. The basic points are:

1. The SUD has state, which conceptually consists of a collection of key/value pairs (i.e. names of

state items, and their corresponding values), though in practice such state may be highly

structured, e.g. a collection of objects.

2. The model discovery algorithm repeatedly projects a ‘snapshot’ of the current SUD state,

tracking how it changes in response to the UI actions performed.

3. These projections/snapshots need not (and in general will not) be complete copies of the SUD’s

entire state, but will usually consist only of particular interesting or necessary aspects of the state.

4. The model discovery algorithm uses the projected state in order to backtrack, so that the effect, at

a given state, of more than one action may be explored. As such, the projected state must be

chosen carefully, and must include enough state to allow backtracking to be sound (see section

3.2.3).

To expand on the third point, there are two reasons why the projection need not be complete. First and

foremost, the purpose of model discovery is to generate a model of the interaction behaviour of the

system, i.e. in order to understand something about how it behaves in reaction to user input. As such it

is necessary to operate at an appropriate level of abstraction. For example, consider once again the air

conditioning control system discussed previously. An actual instance of such a system would probably

track the actual temperature in the room (or maybe across several rooms), and perhaps also humidity,

and the time, say; to project all of these aspects during model discovery would be to attempt to create

a model of all possible states of the system, not only in terms of its responses to user actions, but also

its responses to changes in the environment. This removes the focus of the model from the system’s

3.2 Requirements fo r User Interface Model Discovery 39

interaction behaviour, and also makes the model considerably (perhaps infinitely!) larger.

Second, even while focused on the interaction behaviour of the system, there can be good reasons to

focus on particular aspects of its state, at the expense of others. For example, in section 4.5 we con­

sider model discovery applied to a desktop calculator, but focused on one particular aspect of interest,

namely number entry; as such, in that example we ignore (i.e. do not project) those aspects of its state re­

lated to memory or arithmetic operations. In general, tracking ‘uninteresting’ state will introduce many

‘garbage’ states to the model, and should be avoided if possible — but note that that may not be possible,

at least at the discovery stage: see section 3.4.2. Even ephemeral parts of the state structure (i.e. ones

which only arise/have content at certain times) may be projected: two states are clearly non-equivalent

if they contain differently-named elements — though care might be required for backtracking, to ensure

that an ephemeral piece of state has a home to be projected back onto. (Again, the techniques described

in section 3.4.2 can help here.)

We noted earlier that the system’s state may be divided into GUI state (in principle visible to the user) and

inner state (everything else). In practice, this distinction is not of great importance, for several reasons.

First, there will tend to be overlap, e.g. if the system has been developed following an MVC design,

its model (inner state) will be reflected in its view (GUI state) at least to some extent. Furthermore, it

is sometimes simply necessary to project some aspects of inner state in order to get the desired model

(see section 4.3.3.4, for example). Thus, while a valid ontological distinction, in practice for model

discovery, we are potentially interested in both kinds of state, and so distinguishing strictly between

them is unnecessary. As noted above, there may be cases where model discovery can only probe GUI

state, but we consider these to be a special case.

Another important question is: which values are to be projected for each projected variable? Projection

of all possible values may not be tenable; e.g. if we project a numerical variable directly, the state space

can rapidly explode. It may be sufficient in such cases to use a small subset of possible values (as in

section 4.3), or a set of named equivalence classes (e.g. the classic “zero, one or many”). Conversely,

too much restriction here can result in an insufficiently detailed model — though in our experience a

surprising amount can be learnt from very restricted models [Thi09].

40 Chapter 3 Model Discovery

These two questions — what variables to project, and what values to project of those variables — interact

to define an equivalence relation on SUD states. Again, it is a question of choosing an appropriate

abstraction for the modelling/analysis task at hand, and we suggest that this is one of the key activities

of the investigating programmer when performing model discovery.

A final question regarding state projection is: how is the state to be represented? Like an object’s state

in a traditional OO language, a state can be viewed as a mapping from names to values of various types;

because we need to compare states for equality, we must be able to compare their values. As a general

approach, we have found data types with trivial semantics similar to that of JSON [Cro06] (i.e. trees of

key/value pairs with basic data types such as numbers, bools, strings, lists) to be adequate. As noted

above, richer models might be used, but our experience so far has been that the state structuring and

abstraction mechanisms which aid implementation of UIs are not relevant or required in the setting of

discovery.

3.2.2 Identifying and performing actions

Edges in the model represent discrete user actions that, assuming an event-driven GUI framework is

used, generally correspond to events in that framework, such as button clicks, slider moves, text entry,

menu selections, etc. Clearly we require a way to identify the actions that may be performed in a given

state; the most general solution is to automatically inspect the SUD’s GUI and discover the possible

actions automatically — with integration implications as above. How this is implemented will depend

on the implementation platform and the capabilities it offers.

Restricted cases, such as learning the actions only once at the start of discovery, or hand-coding them

into the discovery implementation if automatic learning is not possible, are then special cases of this

approach — see section 3.4.3.4.

Having discovered possible actions, it is necessary to perform them and see where they lead; thus,

we require an automatic way to trigger discovered actions which, again, in detail will vary between

implementation platforms. Fortunately, every framework for which we have implemented discovery has

supported this quite directly; in HTML/JavaScript, for example, a button click may be enacted simply

by calling the button object’s c l i c k 0 method. Obviously, to do so generally requires maintaining a

3.2 Requirements fo r User Interface Model Discovery 41

reference to the widget being interacted with.

There may be more than one way to handle a given widget’s actions. For example, for a slider, the

actions might be to move the slider up or down incrementally, or they might be to set the slider to

particular values; which is used will depend on the capabilities offered by the GUI framework, and by

the modelling task. Some kinds of widget, such as text entry, cannot be automatically fully explored,

and will require some sort of scripting (see section 3.4.3.7).

After the action has been triggered, an SUD state is projected and inspected. If it is unchanged, the

action had no effect — it is a self-loop. (Self-loops need not be explicitly represented, though they may

be semantically important during subsequent analysis, particularly in cases involving nondeterminism;

see [Thi09] and section 6.3.2.) Otherwise, we have discovered a new edge in the state space, and possibly

a new state. If we have discovered a new state, we must discover its possible actions as described above,

and explore them later.

3.2.3 Backtracking

To explore all actions performable in a given SUD state, it is in general necessary to be able to backtrack

to that state — otherwise only one action per state may be explored. Conceivable approaches include:

1. Reset to an arbitrary saved state.

2. Reset to an initial state, then follow a saved path to the desired state.

3. Undoable actions (if they exist).

4. Using only actual user actions to restore an arbitrary state.

In our experiments so far we have exclusively used strategy 1, and the algorithm (and our discussion)

assumes this to be the case.

After backtracking, the restored SUD state must be equivalent to the one seen earlier. This does not

imply that the actual underlying state must be identical — only that the projected state is and that the

effects of possible actions are identical; if they’re not, then our model will be unsound — discovering it

again in a different order could lead to a different model — see section 3.4.2.

42 Chapter 3 Model Discovery

3.3 Model Discovery API

We now describe, using Haskell data types and type signatures, the API elements that must be imple­

mented in order to use the model discovery algorithm on a given UI development platform; familiarity

with Haskell is not necessary to understand this section: we shall explain the few required concepts.

3.3.1 Use of Haskell

We specify our API using Haskell [Pey03; Hud+07] for the following reasons: it is high-level, rich but

compact; it is independent of a particular SUD or GUI framework; it is easily translated to other form­

alisms and programming languages; finally, our specification is derived from actual running/working UI

model discovery code. We would like to stress however that our goal here is a general description of

model discovery, not just a particular implementation; we believe the formal description here enables

its implementation in any adequate language, and in particular we have done so in several other settings

including Java, JavaScript and ActionScript [Thi09; TO09],

Haskell is a pure functional language with a number of features, including the strongest and most thor­

oughgoing type system of any reasonably mainstream programming language. Collections of Haskell

type signatures are comparable in appearance and expressiveness to signatures as found in the univeral

algebra/algebraic specification tradition [BM04]. Haskell is both strongly and statically typed: every

value in a Haskell program has a particular type, and that type is fixed at compile-time. Furthermore,

functions in Haskell are first class (they may be passed to and from functions), and subject to the same

type system as atomic values. Type names start with an upper-case letter, as in Int or Set x. Here Set is

polymorphic: it is a parametric type, representing a set of something; it may be instantiated by provid­

ing a concrete parameter type, as in Set Int (a set of integers). Function types are written using arrows,

where multiple arguments are written using multiple arrows: for example, Int —> Int —> Int is the type

of a function (indeed of all functions) taking two Ints and returning one of them. Names of values and

functions start with a lower-case letter, and are assigned types using as in double v .ln t-* Int, which

declares a function from Int to Int.

3.3 Model Discovery API 43

3.3.2 Discovery and Manipulation of GUI Controls

We start with data types representing GUI controls (widgets), their values, and the actions we can per­

form on them. The details will vary from framework to framework, so we leave these types loosely

specified here, simply noting that they must exist and be adequate for their intended purpose.

data GuiControl = ...

d a ta GuiValue = ...

da ta GuiAction = ...

Note that in our conception, a GuiAction encapsulates not just the action to perform (say, “move slider

up”) but also a reference to the control (a GuiControl value) on which the action is performed. This is not

shown above, but is implicit in some of the type signatures given below, i.e. those containing GuiAction:

where this is seen, it should be remembered that there is also an implicit associated GuiControl available

to that function.

Now we consider some functions on these data types.

setControlValue:: GuiControl —> GuiValue —>• 10 ()

Given a reference to some GUI control, and a value for that control, setControlValue sets that controller

to that value (it is called when resetting/backtracking to some state). Note the presence of IO here

(and in the next two type signatures). This indicates that the function may have side-effects — in this

case interacting with the SUD’s GUI, by modifying a control. If IO is absent from a function’s type

signature, we know that that function is referentially transparent: it can perform no side-effects — see,

e.g., addToPool, below, which does not modify the pool, but rather returns a new pool. (Of course, a

Java addToPool implementation would modify a pool rather than constructing a new one: the point is

that the type signatures given here distinguish clearly between functions that interact with the SUD, and

those that do not.)

getGuiActions::Parentw => w —̂ 70 [GuiAction\

Given some container widget w, getGuiActions discovers a GUI’s controls, and the currently available

actions on those controls, returning a list of GuiActions (see section 3.2.2). Here w is another parametric

44 Chapter 3 Model Discovery

type, and Parent w => is a context requiring that whatever w is, it is an instance of the typeclass Parent.

Haskell typeclasses are analogous to Java interfaces: here, Parent w => indicates that whatever w is

(panel, window, set of windows) it must have children — and in particular, a children function for

listing them; then, getGuiActions uses that function to recursively inspect a widget and its children for

manipulable controls and their actions.

doGuiAction:: GuiAction —* IO ()

Given some GuiAction, the function doGuiAction performs that action (pressing a button, moving a

slider, etc.)

3.3.3 The Pool: Discovered But Unexplored States

Some mechanism is required to track those parts of the state space that have been discovered but not

yet fully explored: we call this the “pool” of states and actions yet to explore. Note that there are many

possible ways to explore the state space, with depth-first and breadth-first as extreme choices. We aim

to be as generic as possible in our description; in particular, we wish to accommodate strategies — such

as depth-first — that do not fully explore a given state’s actions before moving on to another state, as

well as those — like breadth-first —1 that do.

A pool or priority queue of (state, action) pairs is sufficient; it contains one element for every unexplored

action from every discovered state. Discovery implementations may then pick pairs from that pool using

whatever strategy they see fit. There are many ways to implement such a pool (see section 4.2.2.4 for

examples), so again we leave it specified loosely here — though we note that it depends on the type of

the SUD state, which we write as st.

data Pool s t = ...

So a value of type Pool st is a collection of (st, GuiAction) pairs. However it is implemented, we need to

add/remove items:

addToPool \:Pool s t-± st —¥ [GuiAction] —>• Pool st

pickFromPool:: Pool st —> (Maybe (st, GuiAction), Pool st)

3.3 Model Discovery API 45

addToPool takes a pool, an SUD state, and a list of actions (performable in that state) and returns a new

pool with the state’s actions added — one pair per action. pickFromPool chooses one element from the

pool, returning that element and a new pool, with that element removed. Maybe is another parametric

type, used for computations that may in some sense “fail” — in this case, “failure” occurs if the pool is

empty: then, instead of a (st, GuiAction) pair, it returns the value Nothing. See section 3.4.3 for more

discussion of exploration strategies and the critical role of the pool.

3.3.4 Model Discovery

The model discovery algorithm repeatedly picks (state, action) pairs from a pool and explores them,

building a state space on the fly (and sometimes extending the pool). It stops when the pool is empty.

Further, it needs to be able to query and reset the SUD, and to compare SUD states. All this can

be packaged in a data type, a value of which encapsulates current discovery status, and some related

functions:

data Discovery st = Discovery {

state space y.G rst GuiAction,

pool :: Pool st,

project v.IOst,

reset : : s t - y IO () ,

eq :: st —» st Bool,

getGuiActions:: Parent w => w —>• IO [GuiAction]

}

This type is polymorphic over the SUD state type st. Here, statespace is a graph (Gr) whose nodes are

labelled with SUD states (st) and whose edges are labelled with GUI actions (GuiAction) ; pool is as

described above, statespace and pool are initialised empty and are modified as discovery progresses.

The remaining four members of Discovery are callback functions, specified as parameters when Discovery

is initialised (see below), project computes the SUD’s current SUD state, as discussed in section 3.2.1.

Dually, reset takes an SUD state and imposes it onto the GUI using setControlValue for backtracking —

see section 3.2.3. eq compares two SUD states for equivalence, and should create equivalence classes

46 Chapter 3 Model Discovery

of SUD states as appropriate — see section 3.2.1. Finally, getGuiActions, which learns the currently

available actions, is as described in section section 3.3.2.

To initialise such a value, we provide the callback functions just mentioned, and construct a Discovery st

with empty statespace and pool’, then initDiscovery should immediately call project and getGuiActions

to compute seeds for the state space and pool.

initDiscovery:: IO st —> (st —> IO ()) —> (st —> st —» Bool) —> (w —» IO [GuiAction]) —>

Discovery st

Given a state, we need to know if it has been seen before, i.e. is it in the state space (using eq to compare

states):

isStateNew:: Discovery st —»■ s t —> Bool

When we find new states and new edges, we add them to the state space, returning new Discovery values.

(We do not have to check for new edges because we only add a state’s actions to the pool once, when

we first meet the state; see details below.)

addState '.’.Discovery st —» st —»• Discovery st

addEdge:: Discovery st —> (st, GuiAction, st) —> Discovery st

Finally, an auxiliary function checks if the pool is empty:

finished ’.’.Discovery st —> Bool

3.3.5 Model Discovery API Summary

Figure 3.3 summarises the API, pointing out (in the third column) which parts may be re-used for

multiple SUDs written in the same GUI toolkit, and which parts need to be defined once per SUD.

Most of the work can be done just once per toolkit: only the data type st and the parameters passed to

initDiscovery ever need to be tuned for a specific SUD (but see section 3.4.3).

Notes:

1. As described in section 3.4.3, several pickFromPool implementations may be desirable to

3.3 Model Discovery API 47

Item Purpose Re-use
d a ta GuiControl Data type for GUI controls toolkit
d a ta GuiValue Data type for GUI values toolkit
d a ta GuiAction Data type for GUI actions toolkit
setControlValue Set a GUI control to a given value toolkit
getGuiActions Leam available actions in SUD’s current state toolkit
doGuiAction Perform some GUI action on some GUI control toolkit
da ta Pool st Data type for pool of (state, action) pairs to explore toolkit
addToPool Add a discovered state and its actions to a pool toolkit
pickFromPool Pick the next item to explore from a pool see note 1
da ta st Data type for SUD states see note 2
project Project SUD state from SUD SUD
reset Given an SUD state, reset SUD to that state SUD
eq Compare two SUD states for equality SUD
data Discovery st Data type encapsulating state space and pool toolkit
initDiscovery Initialise model discovery algorithm toolkit
isStateNew Check if a state is new or has been seen before toolkit
addState Add a newly-discovered state to the state space toolkit
addEdge Add a newly-discovered edge to the state space toolkit
finished Check if the pool is empty or not toolkit

Figure 3.3: API summary

implement various exploration strategies; however, in each case, the strategy need only be

implemented once per toolkit.

2. As described in section 3.2.1, the data type st used to represent SUD states may be definable just

once in a generic way, which can then be re-used for many SUDs implemented using the same

GUI toolkit; if it is not possible or desirable to do so, then a per-SUD representation can be used.

For example, in section 4.2 we consider the previously-introduced air conditioning control

system example in more depth; that system is implemented using the wxHaskell1 GUI toolkit,

and in section 4.2.2.3 we describe a GuiControl type for tracking the state of radio buttons and

sliders in that toolkit; this data type could be re-used for any wxHaskell SUD consisting of just

those controls, though it would need extension to handle other widget kinds.

^ t t p ://www.haskell.org/haskellwiki/WxHaskell

48 Chapter 3 Model Discovery

3.4 Model Discovery Algorithm

Given the API, algorithm 1 shows pseudocode for the UI model discovery algorithm.

Algorithm 1 The UI model discovery algorithm.

initDiscovery
while -i finished do

s .a f - pickFromPool
reset SUD to SUD state s
doGuiAction a
s' <— project new SUD state
if -i [s eq s'] then

if isStateNew s' then
addState s' to statespace
a' <r- getGuiActions for state s'
addToPool s', a'

end if
addEdge (s ,a ,s ') to statespace

end if
end while

In practice the algorithm need not be implemented exactly as shown here. Thus, for the air conditioning

control described in section 3.1.2, a single cycle o f the while loop is enacted by clicking “Step D is­

covery,” while “Start Discovery” starts it cycling to completion (though it may be paused). There is no

while loop directly visible in its code — but the overall strategy above is encoded faithfully.

3.4.1 W orked exam ple

We now illustrate the algorithm by stepping through its operation on a trivial (two state) example. Con­

sider a picture viewer program, with [next] and (prev| buttons to show the next and previous pictures;

suppose that it does not loop, so [prevj and (next) are disabled on the first and last pictures respectively.

Thus this UI has one piece o f state, which we will call picture, and two possible actions, not both

necessarily available at all times.

Suppose that the program has been loaded with just two pictures, which we call 1 and 2. The model

discovery algorithm proceeds as follows:

1. initDiscovery — initialise the discovery algorithm, which includes the following steps:

3.4 Model Discovery Algorithm 49

(a) Call project to project the initial state, { picture (->• 1 }.

(b) Call getGuiActions to discover the possible actions in that state, which is just: { [next] }.

(c) Initialise the state space with the initial state (figure 3.4(a)).

(d) Initialise the pool with that state/action pair: pool = (({ picture >-H } , | next |))

2. The pool is not empty, so finished is false, so enter the while loop.

3. pickFromPool picks the first elem ent2 from the pool, yielding s = { picture h-» 1 } and a = [next |

(and emptying the pool).

4. Reset the SU D 's state to { picture 1 }, i.e. display the first picture (no change).

5. Call doGuiAction [next] — i.e. simulate pressing the [next] button, moving to picture 2.

6. project the system ’s state again, yielding s' = { picture i—>• 2 }.

7. s ^ s' and state is new (i.e. not in state space already), so add s' to the state space.

8. Call getGuiActions to discover the possible actions in the current state, yielding: a' = { [prev| }.

9. Add newly discovered state/actions to pool: pool = (({ picture 2 } , [prey]))

10. Add [next {-labelled edge from s to s' in state space (figure 3.4(b)).

(End o f first iteration through algorithm.)

1 1. The pool is not empty, so finished is false, so stay in the while loop.

12. pickFromPool picks 5 = { picture 2 } and a = [prev] (em ptying the pool again).

13. Reset the S U D ’s state to { picture 2 }, i.e. display the second picture (no change).

14. Call doGuiAction (prev] — i.e. simulate pressing the (prev) button, moving to picture 1.

15. project the system ’s state again, yielding s' = { picture 1 }.

16. s ^ s', but s' is not new (i.e. it’s already in the state space), so don ’t add it again or discover its

actions.

2 For the sake of this example we will suppose it has been implemented as a queue.

50 Chapter 3 Model Discovery

(next)

(a) After initialisation (b) After first iteration

(c) After second iteration

Figure 3.4: State space growth in the model discovery algorithm for a 2-state example.

17. A d d [prev)- labe lled edge from 5 to s' in state space (figure 3.4(c)).

(End o f second iteration through algorithm.)

18. Pool is now empty, so algorithm has finished.

Note that this example doesn’t really demonstrate backtracking, as there is only one action to explore in

each state.

3.4.2 N on d e te rm in ism

The above algorithm always produces a deterministic model: in a given state, a given action is only

ever explored once, so the model cannot contain states with multiple identically-labelled actions leading

to different destinations. (In section 4.5 we describe an extension to the algorithm that can produce

nondeterministic models, under certain circumstances.)

However, the use o f a state projection may cause the algorithm to operate nondeterministically: if some

aspect o f state is not projected (and thus not reset upon backtracking), but influences the effect o f an

action, then multiple runs o f the algorithm with different exploration orders might produce differing

models. We argue that this would be a sign of an ill-formed/unsound projection, that fails to capture

some essential element o f state, and propose stochastic checking o f models to detect such cases. An

obvious approach here is to perform a full stochastic exploration (see section 3.4.3.1) after discovery is

complete, and check that the two models thus produced are isomorphic; a more practical approach is to

interleave stochastic checks with model discovery by revisiting discovered state/action pairs at random,

allowing early detection o f ill-formed projections.

‘Uninteresting’ (but necessary, in the above sense) aspects o f state may, o f course, be filtered from

3.4 Model Discovery Algorithm 51

the complete discovered model, and this can lead to a nondeterministic model. Such models may be

meaningful and provide valuable insight [Dix91].

3.4.3 Variations and Extensions

The API and algorithm are deliberately generic. We now describe some useful extensions and variations

to the basic picture. Note that with the possible exception of directed exploration (section 3.4.3.7), each

of these extensions requires modification only of API elements: the structure of the algorithm remains

identical. The basic theme of these extensions is to increase the flexibility of the algorithm, and in

particular to allow more focused model discovery in order to explore more tightly specified parts of a

system than is possible given the basic algorithm.

3.4.3.1 Exploration order

The order in which the state space is explored is determined by the implementation of the Pool data type

and its associated functions. It is possible to implement almost any desired strategy without modify­

ing the rest of the algorithm. In particular, using a stack for the pool will yield depth-first exploration

whereas a FIFO queue yields breadth-first. Stochastic exploration can be implemented using any col­

lection data type supporting random access, and this may be useful for checking for hidden modes or

for inadequate state abstractions. If the state space is fully explored, each of these strategies eventually

produces the same result, albeit in different orders; however, some of the extensions described below

can break that assumption.

3.4.3.2 Conditional exploration

In conditional exploration we ignore particular states or actions; we need only modify addToPool or

pickFromPool. For example, we might introduce a predicate on (st, GuiAction) pairs to addToPool, so it

only explores pairs for which the predicate is true (compare this with the version in section 3.3.3):

addToPool:: ((st, GuiAction) —> Boot) —> Pool st —¥ st —> [GuiAction] —> Pool st

52 Chapter 3 Model Discovery

By modifying pickFromPool similarly, we can achieve the same effect at a later stage. If the filtering

condition is fixed for the entire exploration, there is no difference between these two approaches; if it

can vary (depending on state space size, say) then there is a real difference, and one approach might be

preferable to the other.

See section 4.3 for several examples of this approach.

3.4.3.3 Filtering SUD state items

As described in section 3.2.1, project dictates which aspects of SUD states are projected into the model

and, as such, it strongly influences the contents and size of the discovered model. Thus in the air

conditioning control example, ignoring the temperature slider reduces the discovered model to just 12

states. An obvious way to increase the flexibility of model discovery, then, is to allow some run-time

control over this. A simple way to do this is to add a parameter to project, listing the model state

members to be retained — and to expose that list to user control via the discovery control interface

itself.

How SUD state members are identified for such filtering depends on the representation used: if the

SUD state is flat, simple names suffice; if it is a JSON-like tree, a path language such as XPath3 is

required. Assuming the existence of a Stateltem type fulfilling this role, the type signature of project

then becomes:

project:: [Stateltem] —»IO st

3.4.3.4 Controlling action discovery frequency

The algorithm calls getGuiActions in every state; for full generality this is required, in order to deal with

dynamic interfaces in which elements come and go (i.e. most non-trivial GUIs). However, in particular

cases it might be unnecessary or undesirable.

If the GUI is static, or if all actions can be discovered up-front, a single call on initialisation will suffice,

and this can be implemented without altering the algorithm by memoising getGuiActions, i.e. having it

3http://www.w 3 .org/TR/xpath

3.4 Model Discovery Algorithm 53

cache the results of its first call and return them immediately for all subsequent calls.

Where automatic discovery of actions is not possible, or as a performance optimisation measure, a last

resort is to hard-code the control actions into the discovery tool, i.e. in getGuiActions — assuming there

is a way to relate these hard-coded references to the actual widgets and actions.

In any case, if the SUD has a dynamic interface, it is necessary to ensure that doGuiAction has no effect

(and in particular keeps the SUD in the same state) for unavailable actions.

3.4.3.5 Context-sensitive exploration

Suppose there is some target state we are trying to work towards, because we are interested in how the

user gets from A to B, say. We might wish to implement a hill-climbing strategy or similar, in which

case we need to know the current state and the global context, so we can try to pick an appropriate action

leading in the right direction.

In context-sensitive exploration, then, exploration may be influenced by both the current state and the

current picture of the state space; thus, it is necessary to add these as parameters to pickFromPool:

pickFromPool ::st —» Gr st GuiAction —¥ Pool st —> {Maybe (st, GuiAction) ,Pool st)

3.4.3.6 Initialisation

As described above, model discovery starts with a single state in the state space, and that state’s actions

in the pool — where that state is just whatever state the SUD is in when discovery is begun. There are

two possible variants here. One is simply to allow some control over exactly what that initial state is (as

opposed to just whatever state the SUD happens to be in when discovery starts); see section 4.3.3.1 for

an example of this approach. Another possible extension, if there is a programmatic way to specify SUD

states, is to seed discovery with more than one. Such an approach could be useful for the kind of search

mentioned in section 3.4.3.5: concurrent searches starting from several points may lead to a desired

result state faster (with appropriately implemented communication between the concurrent searches).

In order to be effective, some sort of scripted control over exploration would be desirable, for example

allowing seed collections to be defined easily — see section 3.4.3.7.

54 Chapter 3 Model Discovery

3.4.3.7 Directed exploration and scripting

An interesting avenue of future work is directed exploration, in which, rather than proceeding entirely

automatically, discovery is consciously directed, either interactively or programmatically, by the analyst.

That is, a finer level of control is offered to the interaction programmer, allowing the focused and flexible

application of the ideas already presented in this section.

For example, while the case studies described in sections 4.3 and 4.5 involve the use of conditional

exploration implemented by allowing the programmer to filter explored actions before discovery begins,

the set of actions explored is fixed while it is running. Instead, we might offer the ability to interrupt

discovery and modify that set, so that different parts of the model involve different actions (this could

be one way to tackle modes).

The following aspects are involved:

• ability to interrupt automated discovery, either manually or using a breakpoint-like approach

(defined conditionally, rather than locationally);

• ability, when paused, to modify discovery criteria such as exploration order, action/state filtering

conditions, and SUD state projection;

• ability to perform discovery step-by-step, possibly with fine control over pickFromPooVs

behaviour, to allow choice of state and/or action explored — perhaps graphically, via the state

space preview;

• support for all of these tasks via the discovery control GUI and/or programatically, for instance

via a domain specific language (DSL) [MS05].

As discussed in section 3.1, we see model discovery as suitable for integration into existing development

workflows, and it is clear that a DSL for discovery control is an essential .component of such efforts. For

without such a capability, manual intervention would be required for all but the simplest of cases, and

smooth integration into iterative development workflows based on automated regression testing would

be (nearly) impossible. Thus, we consider directed exploration, and particularly language support for

same, to be an important area of future research.

Chapter 4

Model Discovery Case Studies

Contents

4.1 In tro d u c tio n ... 55

4.2 Case study 1: Air Conditioning Control Panel 56

4.3 Case study 2: Independent Digit / ‘5-key’ Number E n t r y 67

4.4 Case study 3: Alaris GP infusion p u m p .. 92

4.5 Case study 4: Casio H S -8V ... 94

4.1 Introduction

In this chapter we present four case studies of model discovery in use. The first two, Considered in

some detail, represent the author’s own work; the third and fourth represent the author’s commentary on

existing work by others. In each case we consider interesting or particular aspects of the implementation

of the model discovery API/algorithm, and describe the discovered models.

55

56 Chapter 4 Model Discovery Case Studies

4.2 Case study 1: Air Conditioning Control Panel

4.2.1 Overview

First, we return to the example briefly introduced in section 3.1.2/figure 3.1: the air conditioning control

panel. The tool, its source code, and a screencast showing its operation, may be found online.1

As noted in section 3.1.2, the SUD is a simulation of the control panel of an air conditioning control

unit, with the following controls:

• on/off;

• heat/cool;

• fan speed (low, medium, and high);

• target temperature (5-30°C, i.e. 26 settings).

These four controls are entirely orthogonal, in that they may be manipulated entirely independently:

interacting with any given control never has any effect on any of the other controls. (This will not be

the case in general of course, and it is easy to conceive of a variant of this example where, say, only the

on/off switch is accessible when the system is switched off.) The UI’s state is thus entirely encapsulated

in a collection of four values, with a total state space o f 2 x 2 x 3 x 2 6 = 312 states. This example

is deliberately trivial, and was crafted specifically to facilitate investigation and implementation of the

model discovery algorithm in a rigorous manner: there is essentially nothing interesting to say about the

control panel itself. Thus, we may concentrate on the specifics of model discovery.

(Of course, an actual air conditioning system’s state may be considerably more complex. At the very

least, we imagine, it will contain one more input (i.e. the current ambient temperature), and also prob­

ably the state of some outputs (e.g. compressor and fan activation states). We have simply modelled

(and, indeed, only simulated) the possibilities of the interface, but the whole system will clearly be con­

siderably more complex, and probably quite interesting, including from a UI point of view. For example,

suppose the system is in ‘cool’ mode with a target temperate of 5 degrees, and an ambient temperature

of 10 degrees; if the mode is changed from ‘cool’ to ‘heat’, what happens? This might be an interesting

!http: //www. cs. swan. ac.uk/~cs21ndy/phd

4.2 Case study 1: A ir Conditioning Control Panel 57

question for model discovery to consider — and could lead to a redesign of the system’s UI, e.g. in a

non-orthogonal manner. Modelling such interactions involving a plant and time-varying quantities such

as ambient temperature is, however, beyond the scope of the technique as described here.)

4.2.2 Implementation

Here we attempt to explain the key aspects of the implementation in some depth, in particular concen­

trating on exposing how the API and algorithm have been realised in this example.

The SUD and the model discovery tool were both written in Haskell [Pey03] using the wxWidgets

[SHC05] GUI toolkit. Haskell was chosen precisely for its high degree of formality and robustness: as

described in section 3.3.1, Haskell is a rich language with a very strong and thoroughgoing type system,

which had two major effects here:

1. It gave us high confidence in the correctness and robustness of the implementation (both of the

GUI and the model discovery algorithm). Haskell is an unforgiving language to program in, and

its type checker immediately identifies many bugs that would go undetected (perhaps causing a

crash, which at least has the benefit of being obvious) in a more forgiving language. Of course,

run-time problems are still possible (particularly when dealing with imperative third party code

as sophisticated as wxWidgets), but overall levels of confidence tend to be higher — once the

code compiles.

2. The implementation is, to some extent, self-documented by the type signatures of the functions

and data structures involved. It has been said of Haskell that once you work out what your type

signatures should be, the implementation is frequently ‘obvious’; while this is somewhat

frivolous and not, in this author’s experience, as true as one might hope, it again illustrates the

central nature of the type system to the Haskell worldview. Having implemented model

discovery in Haskell, we understood the details of algorithm, and how the various elements fit

together, much more clearly than after previous implementations in (say) JavaScript. That deeper

understanding led directly to the formal description of model discovery presented in the previous

chapter (and also, as it happens, to a clearer and less buggy JavaScript implementation, as

described in the next case study).

58 Chapter 4 Model Discovery Case Studies

4.2.2.1 Overview

The SUD and model discovery tool were compiled together (indeed, we embedded the SUD UI in the

tool UI, though this is not required — see discussion in section 3.1.2), so the tool’s access to the SUD’s

internals is fixed at compile-time; once the SUD is in the model discovery code’s scope, its state can

be probed and updated by functions it exposes. Similarly, the wx toolkit provides good runtime access

to the UI components, so given a handle on the SUD’s panel widget, it is straightforward for the model

discovery code to query the available controls and their actions, and to perform those actions.

Let us consider the overall code structure before looking at particular areas of interest in depth. The key

modules are as follows:

• M ain. h s — main GUI/controller, integrating model discovery tool and SUD.

• G ra p h ic s /U I/A irc o n .h s — wxHaskell panel of aircon controls (SUD).

• G raph ics/U I/A ircon /M odel .h s — underlying model/state for aircon control panel (SUD).

• G ra p h ic s /U I/D isc o v e ry . hs — model discovery data types and algorithm.

• G ra p h ic s /U I/D isc o v e ry /P o o l .h s — model discovery pool data structure (with stack, queue,

and map versions).

• G ra p h ic s /U I/D isco v e ry /W x C o n tro ls . hs — facilities to probe and enact wxHaskell GUI

components.

The codebase also includes the following modules, covering non-core aspects; unless the reader intends

to investigate the codebase deeply, they may safely be ignored, and will not be discussed any further

here:

• AirconG UI. hs — ‘main’ wrapper for running the aircon control panel as a standalone app.

• G raph ics/U I/D iscovery /F S M .hs — FSM health checks: is it weakly connected, etc..

• G raphics/U I/D iscovery /G M L . h s — graph output in Graph Modelling Language.

• G ra p h ic s /U I/D isc o v e ry /S t An. hs — state annotations for state spaces (used to produce

animations of model growth).

4.2 Case study 1: Air Conditioning Control Panel 59

• G raphics/U I/W X /Im gview . hs — custom wx widget for drawing an image to a

scrolledWindow, used for graph view.

• C o n tro l/C oncu rren t/C H P /W orker. hs — asynchronous worker threads; used to render the

graph preview in a child thread, in order to not block model discovery while it renders.

• Conf i g .h s — configuration file handling, allowing override of Graph Viz binaries.

Of these, M ain. hs is certainly the most complex, containing as it does all of the top-level code for laying

out the GUI, dealing with interactions with the user, rendering the graph preview in another thread, and

saving the model in various formats. Behind this somewhat intimidating front-end, the actual code

doing the work of model discovery is quite clean and well-encapsulated in the modules D isc o v e ry . hs,

P o o l . hs and W xC ontrols. hs.

4.2.2.2 SUD code

The SUD’s code, in A irc o n . hs and A ircon /M odel. hs, is fairly straightfoward. Its state is represented

using a simple record type with four components:

data Aircon = Aircon {

onO ffv.O nO ff,

mode'.'.Mode,

fans ’.".Fans,

te m p ’.'.Temperature

}

where OnOff, Mode and Fans are enumerated types, and Temperature is a simple type wrapper around

Integer.

This inner state is bound to the GUI state using the Observer design pattern [Gam+95] (via the s im p le -e b s e rv e r2

Haskell package), applied bidirectionally — in the SUD code, not the model discovery tool, of course.

The main interface between the SUD and the model discovery code is the function defaultAirconControlPanel,

which returns a triple containing:

2http://hackage.haskell.org/package/simple-observer

60 Chapter 4 Model Discovery Case Studies

• The panel widget containing the four controller widgets (for probing by getGuiActions, etc.).

• A ‘subject’ in the sense of the Observer design pattern, i.e. a data structure that allows observers

to be informed immediately of changes to the aircon panel’s inner state; the model discovery

part’s project function is then a simple wrapper around this component.

• A reset function allowing the inner state to be updated from outside, for backtracking. (Since the

aircon’s widgets are bound to the inner state by the Observer pattern, a call to reset will also

result in them automatically updating their state.)

This is called once when the model discovery tool initialises, and the three return values are used by the

various model discovery components as described below.

4.2.2.3 Probing/enacting widgets

The module G ra p h ic s /U I/D isco v e ry /W x C o n tro ls .h s contains the code for dealing with the GUI

widgets of interest. First, we have two data types and one function for referring to/setting GUI widgets:

• Data type GuiControl, with two cases: WxRadio and WxSlider, each of which carries a string for

the widget name and a reference to the actual widget.

• Data type GuiValue, with two cases: WxRadioValue and WxSliderValue, each of which carries an

integer value.

• Function setControlValue, which takes a GuiControl and a GuiValue and sets the given widget to

the given value as a side effect; this is called by doGuiAction, below.

Then, we have two data types and one function related to simulating user actions:

• Data type UpDown representing slider actions, with the two cases Up and Down.

• Data type GuiAction representing a user action, with two cases: WxRadioAction, carrying a

WxRadio GuiControl value and an integer; and WxSlider Action, carrying a WxSlider GuiControl

value an a UpDown value.

• Function doGuiAction, which takes a GuiAction value and enacts it as a side effect.

4.2 Case study 1: Air Conditioning Control Panel 61

Finally, three functions related to learning the SUD’s available widgets and actions at any given moment:

• learnGuiControls — given the wx panel widget returned by defaultAirconControlPanel (see

above), returns a list of GuiControl values corresponding to the widgets in that panel. It actually

walks the panel recursively (i.e. if it contains subpanels), though the returned list is always flat.

Of course, it happens that in the aircon example, this need only be called once, because the set of

widgets never changes — though this optimisation is not in fact implemented.

• getControlActions — given a GuiControl value, return a list of available GuiAction values for

that widget; the possibilities are hard-coded here, but not including actions that we would expect

to lead to a self-loop — e.g. attempting Up on a slider in its maximum position.

• getGuiActions — combines learnGuiControls and getControlActions to compute a list of

GuiActions for the panel widget returned by defaultAirconControlPanel.

4.2.2.4 The pool

The module G ra p h ic s /U I /D is c o v e ry /P o o l.h s contains data structures for the pool of unexplored

state/action pairs. There are actually three pool implementations here, unified by a typeclass. A Haskell

typeclass is analogous to a Java interface, in that it encapsulates a contract regarding the capabilities

of some datatype — in particular, a list of functions that a data type implementing that typeclass must

implement. In this case, the typeclass Pool contains seven functions:

• emptyPool — create an empty pool.

• poolNull — check if the pool is empty.

• poolStates — count the states in the pool.

• poolActions — count the actions (actually state/action pairs) in the pool.

• addToPool — add a state and all its actions to the pool.

• pickFromPool — pick/remove the next state/action pair from the pool.

• isStatelnPool — check if a given state is anywhere in the pool.

62 Chapter 4 Model Discovery Case Studies

There are then three implementation of this typeclass:

• PoolStack — a stack of (state, action) pairs, implemented using the BankersDequeue

(double-ended queue) datatype from the dequeue package3. This results in a depth-first

exploration strategy.

• PoolQueue — a queue of (state, action) pairs, again implemented as a BankersDequeue. This

results in a breadth-first exploration strategy.

• PoolMap — a mapping from states to lists of actions, implemented using the Data.Map datatype

from the standard Haskell library4 (an obvious first choice for a straightforward and reasonably

fast implementation). Picking from the pool involves picking the first state in the map, and then

picking its first action (and if that state now has no actions remaining, removing it from the map’s

index). As the order of items in a Data.Map is undefined, this results in an unpredictable

exploration order.

The choice of which of these is used is hard-coded in the model discovery tool, rather than being exposed

via the GUI — so to change it requires recompiling the tool. A video showing the different exploration

orders in action can be found online.5

4.2.2.5 Core discovery algorithm and data structures

Finally, the module G ra p h ic s /U I /D isc o v e ry . h s contains the core model discovery data structure and

algorithm implementation. The Discovery data structure is essentially as described in section 3.3.4, and

as noted there, is polymorphic over the type of the state being projected from the SUD. This is why the

initDiscovery function, which sets up a Discovery value ready to start model discovery, takes most of

the value’s elements as parameters:

• A Pool value, as described above.

• The project function; in our implementation this is a simple wrapper, constructed in M ain. hs

around the aircon observer subject returned by defaultAirconControlPanel. As has already been

3http://hackage.haskell.org/package/dequeue
4http://hackage.haskell.org/package/containers
5http://www.cs.swan.ac.uk/~csandy/phd

4.2 Case study 1: Air Conditioning Control Panel 63

noted several times, in this example we have simply projected the entire inner state of the SUD

— a simple bundle of 4 values. If we had wished to restrict this in some way (e.g. ignoring the

temperature value), we could simply have plugged in an alternative project implementation

between the SUD and the Discovery value.

• The reset function, exactly as returned by defaultAirconControlPanel.

• An eq comparator for project states; like project, this is simple in this example, but any

modification to project would necessitate a corresponding modification here.

• The getGuiActions function from G rap h ics/U I/D isco v ery /W x C o n tro ls .h s , as described

above.

The Discovery value’s stateSpace is a graph mapping projected states to GuiAction values, implemented

using the f g l 6 (‘functional graph library’) package’s Inductive .Tree data type.

The model discovery algorithm itself is implemented in a collection of functions over this Discovery

value, essentially following the descriptions given in section 3.3.4, along with a few helper functions

and some extras for housekeeping tasks such as reporting the number of states in the state space so far.

4.2.3 Example models

At initialisation, the Discovery value projects the SUD’s current state as the start state of model discov­

ery; the situation is shown in figure 4.1: there is one state in the state space, with 5 actions to be explored

(in this case they are on, cool, fans-medium, fans-high, and temperature jup). After a single step of the

model discovery algorithm the situation is as shown in figure 4.2: one action has been explored, leading

to a new state, whose 5 actions have also been added into the pool. (From the displayed projected state,

we can infer that the action explored was fans-high.) After a few more steps, all five actions available

in the initial state have been explored (figure 4.3), and a few steps later, another state has been fully

explored, including some edges back to the initial state (figure 4.4). Finally, after 1848 actions have

been explored, the complete state space of 312 states has been discovered (figure 4.5).

6http://hackage.haskell.org/package/fgl

64 Chapter 4 Model Discovery Case Studies

Ul Model Discovery, air conditioner example

System Under Discovery State space

Air Conditioner Control Panel

On/Off

Mode

Pans
Fans_______

0 Low Q Med Q High

Temp — 1 n ^ ,OT”

State Aircon [Off, Heat, Low, 5]

Seen Pool
States 1 1
Actions S 5

Unique actions 0
FSM Disconnected

“ Off
f Heat

Low

" S

sl_On/Off
sl_Mode
sl_Temp
rd_Fans

© 5 ►

Done
0
0

Sian Discovery Step Discovery (Redraw) D C View CML D C Save

Figure 4.1: Initial state o f model discovery on the aircon example

w o o Ul Model Discovery air conditioner example

System Under Discovery

Air Conditioner Control Panel

O n / O f f ^ 1 ■

Mode

Fans

Temp

Control

Fans

Q Low Q Med 0 High

State Aircon [Off, Heat, High, 5]

™ Off

Heat

High

S

sl_On/Off
si Mode
sl_Temp
rd_Fans

1
L ©

Seen Pool Done
States 2 2 0
Actions 10 9 1

Unique actions 1
FSM Weakly conn.1

■ Start Discovery N Step Dii^ovary Reset

State space

Redraw DC D C View CML D C Save

ore

Figure 4.2: Aircon discovery after a single step: discovery o f a new state

4.2 Case study 1: Air Conditioning Control Panel 65

________ Ul Model Discovery, air conditioner example

System Under Discovery

Air Conditioner Control Panel

State space

On/Off

Mode

Fans 0 L o w q M e t j q

Temp V ** ------------ --------

- O 0 n

) Heat

Low

™~ S

sl.On/Off
sl_Mode
sl_Temp
rd_Fans

e * ►

State Aircon (On, Heat, Low, S]

Seen Pool Done
States 6 5 1
Actions 31 26 S

Unique actions S
FSM Weakly conn.l

6 Start Discovery Step Ddjjcvory 0-0 c Redraw f View PDF) View CML 3 C Sav*

Figure 4.3: Aircon discovery after all actions o f first state have been explored

Ul Model Discovery: air conditioner example

System Under Discovery

Air Conditioner Control Panel

On/Off &

Mode ~ --------------- ------------
Fans

Fans O Low © M ed O High

Temp i$ ~ ' " J ■ -1JJ= =

State Aircon [Off, Cool, Med, S]

Seen Pool
States 11 9
Actions SB 44

Unique actions 6
FSM Weakly connJ

i t*
(Start Discovery) (Step D i^otyfy

Off

Cool

Med

S

sl_0 n /0 ff
si Mode
sl.Temp
rd.Fans

I O 5- ►

Done
2
14

State space

Ijafy ' Reset Redraw View CML Save

Figure 4.4: Aircon discovery a little later: backlinks appearing

66 Chapter 4 Model Discovery Case Studies

Ul Model Discovery, air conditioner example

System Under Discovery State space _ _ _ _ _ _ _ _ _ _ _ _ _

Air Conditioner Control Panel

On/Off

Mode ^

Fans

Temp

Fans

Q Low 0 Med Q High

“ — Off

Cool

Med

”̂ 30

sl_On/Off
sl_Mode
sl_Temp
rd_Fans

1 9 . . < ►

State Aircon [Off, Cool, Med. 30J

Seen Pool Done
States 312 0 312
Actions 1848 0 1848

Unique actions 9
FSM OK

Start Discovery 1 Step Discovery (Reset)

v i u n

• v i A

V * * r .

#

c Redraw D C View PDF D C View CML Save i

Figure 4.5: Aircon discovery upon completion: 312 states

The SU D ’s interface is simple and orthogonal enough that components may be dropped from the pro­

jection freely without incurring any hazards mentioned in section 3.4.2, so w hile this example helped

us clearly understand the mechanisms o f model discovery, it does not provide insight into the task o f

choosing an appropriate projection function. The algorithm as described in section 3.4 was encoded

essentially directly, except that it does not cycle freely, but under user control.

The main value o f this implementation was in providing a clear, rigorous and quite formal picture o f

the requirements for model discovery, and of how the basic algorithm ought to be implemented. Before

this implementation, model discovery had been implemented ad hoc as an interesting and fruitful idea,

without being studied in and o f itself. The aircon example provided a context for performing exactly

that kind o f study.

For this purpose, Haskell’s rigour was highly valuable; conversely, however, that rigour perhaps makes

experimentation with new ideas, variations and extensions more difficult than in a more forgiving lan­

guage. As a small example, to introduce conditional exploration would (at the least) require modifying

the addToPool function (and each o f its implementations, and calls) as described in section 3.4.3.2. This

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 67

would then raise the question of how the control predicate is to be implemented, leading in turn to

questions of scope, and probably necessitating rewriting a large number of functions and their types in

order make new data available to that function. This process can be managed; for example, rather than

explicitly passing around ever-growing lists of variables they may be explicitly collected together in a

data structure, allowing elements to be added or removed over time more easily (the Discovery structure

in section 3.3.4 is one example of this strategy). This can make code more opaque, however.

By contrast, in our next case study (implemented in JavaScript), it was very easy to introduce condi­

tional exploration, as we shall see — just a small modification to one function, accessing some globally

accessible data. Of course, it’s possible to make data globally visible in Haskell too, but doing so is far

less natural there: Haskell promotes the kind of side-effect free programming which led to our fairly

rigid implementation — but again, for the purpose of this example, that was exactly what was required.

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry

4.3.1 Overview

This case study concerns interactive number entry, focussing on an interaction style characterised in

[Ola 12] as independent digit entry, where the user controls the value of each digit separately and (con­

ceptually at least) in any order, navigating around the space of possibilities using up, down, left and right

buttons (which we write as | a |, | ▼ [< |, [►] respectively): the [a] / 1 ▼ | buttons modify the value

of the digit currently being edited, and the | < \ / [► | buttons move a cursor around, thereby selecting

the digit for modification.

Figure 4.6 shows a few steps in this process, starting from an initial zero state, and entering the key

sequence 1 a] | * \ [a 11 < \ [▼ In this example, the number entry system is of a type we call Simple

Spinner, which may be characterised by these two facts:

• Each digit in the number is completely independent of the others, so that pressing [a | or

only ever affects the value of the current digit.

• The digits ‘wrap around’, so that pressing [▼ 1 on a value of 0 changes it to 9 (as seen in figure

68 Chapter 4 Model Discovery Case Studies

00 000. 00 <0 ><>
(a) Initial state

m u i WS.-UI
(b) |~a~| pressed: current digit incremented. (c) p«~) pressed: cursor moves one space to left.

(d) [a | pressed: current digit incremented. (e) C] pressed: digit wraparound from 0 to 9.

Figure 4.6: 5-key/independent digit number entry in action, using the ‘Simple Spinner’ entry routine.

4.6(e)), and pressing f A) on a value of 9 changes it to 0.

A Simple Spinner system is, thus, highly regular and predictable — but it is not the only possibility. In

this case study we compare and contrast the behaviour o f a Simple Spinner system with two other modes

of operation: one where an action on some digit can sometimes affect other digits according to the rules

of arithmetic, and a real-world example which extends this arithmetic behaviour with som e interesting

irregularities.

5-key number entry systems are found on a range o f hardware devices, but in particular are becom ing

popular on medical devices such as infusion pumps, with several manufacturers releasing devices util­

ising this technique. A key point here is that (as alluded to in the previous paragraph), there is a wide

variety in how 5-key number entry systems behave in practice, and a given input sequence may lead to

wildly varying results on two apparently similar systems — even on two identical pieces o f hardware, if

they happen to be running different firmware. In [Thi+12] we explored this space systematically, invest­

igating a range o f possible implementations and measuring their resilience to unnoticed keying errors

(e.g. key bounces, missed keys and transposition); while that work did not involve model discovery, here

we describe the result o f extending one of the implementations with model discovery capabilities. A

running version o f the code used in this case study, and its source code, may be found online.7

7http://www.c s .swan.a c .uk/~csandy/phd

4.3 Case study 2: Independent D ig it/ ‘5-key’ Number Entry 69

The three number entry routines examined in this case study are as follows:

4.3.1.1 Simple Spinner

This is the routine pictured in figure 4.6 and described above. The f A 1 / P * ! buttons increment/decre­

ment the current digit’s value, wrapping around between 0 and 9 (hence ‘spinner’), and the (<) / f ►)

buttons move the cursor left and right. Note that in this example, the [<) / ["►"] buttons do not cause

horizontal wrap around — and this is the case for all three routines described here. A lso note that in

order to keep this routine as simple as possible, every digit position always displays a value, even if it is

just 0.

4.3.1.2 Simple Arithm etic

Here, a change to a digit does not always only change that digit; rather, it results in an arithmetical

change to the number displayed, according to the position o f the cursor. For example, if the display is

currently nSBKtBl (with the cursor on the ‘tens’ column), then [~a~] increases the overall displayed value

by 10, yielding and ["▼") decreases it by 10, yielding IE51ER1.

This leads to the question o f how to handle operations that would take the value beyond its maximum

and minimum bounds, to which there are two possible responses: reject the operation, or clamp the

value. For example, suppose the display is an<3 the user hits [▼ |; since that would ‘ideally’

subtract 100 yielding a value o f —55, and assuming the system cannot display negative numbers, either

the operation would be rejected leaving the display unchanged (or perhaps displaying an error and/or

beeping — see [Thi+12] for a discussion o f why this is valuable), or the value would be clamped at its

minimum, say zero: This is how it is implemented in our case study.

4.3.1.3 BBraun v686E VTBI

This is a simulation o f a number entry routine found on a real-world medical device; the device in

question is the BBraun Infusomat Space, an infusion pump, and the routine in question is for entering

the Volume To Be Infused or VTBI — specifically, the VTBI routine found on devices running firmware

70 Chapter 4 Model Discovery Case Studies

version 686E. This routine is generally interesting as a real-world example, but also in particular because

it exhibits some structural irregularities not found in the other two routines, and reflects the truth that

real-world systems are indeed often less ‘clean’ and easy to specify or analyse than ‘ideal cases’ —

either because they have grown organically, or because particular domain-specific requirements have

been identified and targetted.

Note well that our analysis here is not intended in any way as a judgement o f the value o f the BBraun

VTBI routine as compared to the other routines (or to any other example); we recognise that industrial

software engineering must necessarily take into account unpredictable (and from our point o f view,

unknowable) requirements and constraints, and in particular we remark that the irregularities seen in the

BBraun example may well be of great benefit to the users o f that system. Our intention here is simply

to demonstrate that model discovery can produce models that can provide insight into the existence and

extent of such irregularities, in an example o f real-world complexity.

The basic behaviour o f the routine is arithmetical, as described above, without horizontal/cursor wrap­

around. There are three areas in which this basic behaviour is extended.

First, it admits entry o f numbers over a range o f magnitudes. Its display can show up to five digits,

but the range displayed is a sliding window between hundredths and ten-thousands (i.e. seven orders

of magnitude). However, the sliding window does not move uniformly and in fact has three possible

positions: hundredths to tens, e.g. tenths to hundreds, e.g. and units to ten-thousands,

e.g. Note that the first two ranges are four digits wide, whereas the third is five wide; it is not,

for example, possible to enter

Second, it has range-dependent non-zero minimum values, which can prevent the entry o f certain syn­

tactically valid values. For example and in particular, in the hundredths to tens range, the lowest non-zero

value the device allows to be displayed is Q Q , which is not the lowest value in that range, i.e. To

be clear: the hundredths column is accessible, and (say) (* 2 il is allowed — but no value smaller than

0.1 can be accessed. This means that, for example, from the initial display o f the key sequence

| T] [T 1 yields the display E z n — a case where an [~a~) action has no effect on the current digit!

Third and finally, it has a simple memory facility around its maximum values, apparently intended to

allow users to easily undo accidentally hitting the maximum value under some circumstances. For

9 9 9 9 .9

4.3 Case study 2: Independent D ig it/ ‘5-key' Number Entry 71

example, if the display is and the user presses the display is then clamped at the maximum

value o f E S If the user’s next action is to press [▼), the previous display is recalled from memory,

i.e. it returns to ETtTTfiTil However, the memory is short: the key sequence [a | f»~) p^~) pr~ | would yield

the display in this case, the [►] action having cleared the memory.

We wrote a set o f 138 unit tests in order to document the behaviour o f this routine and to test our

simulation against that behaviour; the tests probe both the ‘normal’ arithmetic behaviour o f the routine,

and the various corner cases mentioned above, and in combination provide high assurance that our

simulation is indeed a faithful reproduction o f the actual device’s behaviour. The unit tests may be

found (and run) with the online version o f this example — see above.

4.3.2 Im p le m e n ta tio n

4.3.2.1 Overview

In this section we describe the implementation o f the number entry system and its three routines in

more detail, concentrating on the aspects o f interest from the point o f view o f model discovery, and then

we describe our model discovery implementation. This case study was implemented as a JavaScript

client-side system, i.e. the whole thing runs inside a web page and there is no server-side component.

4.3.2.2 SUD: D ig i t s . j s and v t b i / * . j s

A detailed description o f the SU D ’s architecture and internals is beyond the scope o f this thesis, but

from the point o f view o f model discovery, there are five modules o f interest:

• D i g i t s . j s — defines a Digits object encapsulating the digits display. Its public interface

includes functions such as getCursor and setCursor to query/move the cursor; getDigit and

setDigit to get/set particular digits; getDigits and setDigits to get/set all digits at once; getContent

and setContent to get/set all as a string, and several functions related to getting/setting the

minimum/maximum accessible and visible powers o f ten.

• v tb i/V T B I E n tr y . j s — multiplexing interface/facade for the three VTBI number entry

72 Chapter 4 Model Discovery Case Studies

routines; the top-level Ul responds to button-clicks by calling functions here, that in turn call the

requisite functions in whichever routine is actually selected. From our point of view, the key ones

are left, right, up, down and clear (hooked up to the UI’s buttons), and set (to set to a particular

value).

• v tb i/S im p le S p in n e r . j s — simple spinner implementation. Here left and right move the

cursor using the functions Digits.getCursor and Digits.setCursor, whereas up and down

increment/decrement the selected digit (with wraparound) using the functions Digits.getCursor,

Digits.getDigit, and Digits.setDigit — and that’s basically it: about 35 lines of code.

• v tb i /S im p le A r i th m e tic . j s — simple arithmetic implementation. Here up and down take

into account the value of the whole display, and so use Digits.getContent and Digits.setContent;

this is another very simple module: about 50 lines of code.

• v tb i/B B raun_686E . j s — BBraun implementation. At about 165 lines of code, this is

considerably more complex than either of the other routines, in order to accommodate the

routine’s irregularities. In particular, up and down contain special logic for dealing with upper

and lower bounds respectively, all the public functions have some awareness of the memory

behaviour, and after any update an updateDisplay function is called which takes care of the

display range comer cases.

4.3.2.3 Model discovery: Discovery, js and VTBIDiscovery. js

The extension of the Ul for model discovery is shown in figure 4.7, with the SUD embedded at the top.

Other than the number entry routine selector at the top (which is not strictly part of model discovery but is

placed here for convenience while experimenting), it is very similar to the control interface for the aircon

Ul in the previous case study: in particular there are start/stop, step, and reset buttons, rendering facilities

(to be discussed in section 4.3.3), and readouts of the current pool and state space sizes, and the current

projected state (with a bit more detail than in the aircon example). The details of the UI’s implementation

(in d isc o v e ry /D isc o v e ry U I. j s and the front-end HTML) are beyond the scope of this thesis. There

are two modules of interest to us: d isc o v e ry /D is c o v e ry . j s and d iscovery /V T B ID iscovery . j s

4.3 Case study 2: Independent D ig it/ ‘5 -key’ Number Entry 73

123.E <$><»
Model discovery VTBI unit tests Error simulation

VTBI Number Entry Routine BSraunv€86£ ; |

I Start] Step j Reset

Results Render

Seen Pool Done

States 1 1 0
Actions 3 3 0

State item Value

cursor -1

value 123.4

display _I23.4

low Power -1

highPower 3

digits , ,1,2.3.4.

Figure 4.7: The 5-key number entry interface and associated model discovery tool

74 Chapter 4 Model Discovery Case Studies

project : functionO {
return {
 keys : ["cursor", "value", "display", "lowPower", "highPower", "digits"],
cursor : Digits.getCursor(),
value : Digits .getValue0/100,
display : Digits.getContentO.replace(/ /g,
lowPower : Digits .getPowVisLoO ,
highPower : Digits.getPowVisHi(),
digits : Digits.getDigitsO

>;
>,

Figure 4.8: The VTBIDiscovery.project function from VTBIDiscovery . j s — a fixed projection of the
full visible state of the number entry system.

The module d is c o v e ry /D is c o v e ry . j s contains the generic model discovery code, with no number

entry/VTBI-specific parts. It is a straightforward implementation of the generic algorithm from section

3.4, based around three objects:

• DiscoveryPool implements the pool as a queue of state/action pairs using JavaScript’s built in

A rray type.

• DiscoveryStatespace implements the state space as a JavaScript object mapping source states to

maps from action names to destination states, along with some supporting data.

• Discovery is the module’s top-level interface; d isc o v e ry /D isc o v e ry U I. j s uses this to

initialise and run model discovery, to query its current status, and to make the results available

for further processing. Its main function of interest is step which performs a single step of the

basic model discovery algorithm. The details of state projection and widget query/enaction are

generic: initialisation of the Discovery object includes a target parameter, which in our case will

be the VTBIDiscovery object discussed below.

The module d isco v ery /V T B ID isco v ery . j s is more interesting, as it is parameterised in order to

allow conditional exploration.

Its main member is a VTBIDiscovery object encapsulating the parameterisation of model discovery

for the number entry context, in particular functions project, compare, and reset for state projection,

comparison and backtracking, and getGuiActions to probe the currently available actions.

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 75

var fullExploration = {
name : "Whole state space",
comments : "No restrictions",
prefix :
getGuiActions : functionO {

return [
["up" , VTBIEntry.up],
["down" , VTBIEntry.down],
["left" , VTBIEntry.left] ,
["right", VTBIEntry.right]

];
>,
validState : function(state) {
return true;

>
>;

Figure 4.9: A VTBIDiscovery configuration object from VTBIDiscovery. j s — full exploration of all
actions.

Here project, compare and reset are fixed for all discovery tasks, i.e. we simply project all aspects of

system state in this case study — see figure 4.8 for project, for example; this choice was made on the

basis that the state space is regular in terms of what state variables are available — there are no variables

that become live only in particular states.

However, getGuiActions is itself parameterised, and comes from a configuration object passed to VTBIDiscovery

upon initialisation, in order to allow the investigating programmer to restrict exploration to some subset

of the full (and very large) state space of the system. Figure 4.9 shows an example of such a configur­

ation object, in particular the configuration for full exploration of the entire state space. It contains the

following items:

• name — a name by which to refer to this configuration.

• comments — on the details of the configuration, as a reminder to a human reader.

• prefix — a string of actions to perform before model discovery begins, as a restricted case of

directed exploration (see section 3.4.3.7). In figure 4.9, this is empty.

• getGuiActions — the function called every time a new state is discovered in order to learn its

possible actions; it returns a list of JavaScript Array objects, each of which has two elements: a

readable name (used to label the induced edge in the graph) and the function to call in order to

76 Chapter 4 Model Discovery Case Studies

perform the action (here, this is always one of the VTBIEntry facade methods wrapping whatever

number entry routine has been chosen). In figure 4.9, the set of actions is fixed to ‘all actions’,

whatever the state.

• validState — a boolean function called when a new state is discovered, guarding addition of that

state to the state space, and of its actions to the pool. Thus, if this function returns false for some

discovered state, it will be ignored by model discovery. This provides a further level of control

over conditional exploration, beyond what can be easily achieved with getGuiActions. In figure

4.9, all states are allowed; see section 4.3.3.2 for an example where this is not the case.

Realistically, running this full exploration would not be advisable: the state space produced is huge (107

states and 4 x 107 edges for the Simple Spinner) and takes hours to compute. As such, the module

d iscovery /V T B ID iscovery . j s contains a number of these configuration objects, covering a number

of restricted exploration tasks. The choice of which configuration object is used is hard-coded into the

module’s code; thus, to switch model discovery strategy, the code needs to be altered and the model

discovery tool reloaded. The choice could of course be exposed via the model discovery Ul, e.g. as a

drop-down list of available strategies.

In the next section we look at some of these model discovery configurations, and their results.

4.3.3 Example models

4.3.3.1 Tenths, hundredths only; digits 0-2 only

Figure 4.10 shows a configuration that uses getGuiActions in order to explore only the tenths/hundredths

range of the state space, restricting the digits explored to just the set {0,1,2}. In any given state:

• up is to be explored only if the current digit is 0 or 1;

• down is to be explored only if the current digit is not 0 (avoiding vertical wraparound in the

Simple Spinner, and arithmetic subtraction in the other routines);

• left is to be explored only if the cursor is in position —2 (cursor values correspond to powers of

ten, and —2 is the lowest possible, i.e. hundredths);

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 77

var vtbidcMinimalHundredths = {
name : "minimal hundredths",
comments : "Tenths, hundredths only; digits 0-2 only",
prefix : "R",
getGuiActions : functionO {

var cursor = Digits.getCursor();
var digit = parselnt(Digits.getDigit(cursor));
var guiActions = [] ;
if (digit < 2) {
guiActions.push(["up" , VTBIEntry.up]);

>
if (digit > 0) {
guiActions.push(["down" , VTBIEntry.down]);

>
if (cursor < -1) {
guiActions.push(["left" , VTBIEntry.left]);

>
if (cursor > -2) {
guiActions.push(["right", VTBIEntry.right]);

>
return guiActions;

>
>

Figure 4.10: Model discovery configuration object: exploring only the digits {0,1,2} in the tenths/hun­
dredths range.

78 Chapter 4 Model Discovery Case Studies

• right is to be explored only if the cursor is in a position left of —2 (as none of our routines

implement horizontal wraparound, a right action when the cursor is in position —2 would only

result in a self-loop anyway).

Note the absence of validState in this example: this implicitly accepts all discovered states, i.e. this

configuration’s only conditional exploration aspects are those arising from getGuiActions.

Also note the prefix value: upon initialisation, all three number entry routines put the cursor in position

0 (units); according to this configuration’s rules, we would then never explore left or right actions, and

not get the state space we’re interested in: following the approach suggested in section 3.4.3.6, a single

right action before starting exploration takes us into the desired area, however.

The results of performing this model discovery task on the three number systems are shown in figures

4.11 and 4.12. In each of these figures, nodes are labelled with the projected state’s numerical value

(i.e. state.value, programmaticaly); cursor position is not explicitly given but can usually be inferred

by looking at adjacent states and the edges between them. (For example, at the top of figure 4.11 a 0

state leads to a 0.01 state with an up action; clearly in both states the cursor is in position —2, i.e. the

hundredths column.)

Figure 4.11 shows the discovered state space for both Simple Spinner and Simple Arithmetic — a highly

regular space in both cases; clearly in this comer of the total state space, arithmetical behaviour adds

nothing new. Probably the most interesting thing to note is that (as you would expect) for each value

there is an adjacent pair of states, linked by left / right edges.

Figure 4.12 shows the BBraun state space; there are two things to note here:

1. It has less states. As described in section 4.3.1.3, this routine has range-dependent minima,

excluding the entry of certain values. For example and in particular, as noted there, 0.01 is not

accessible in this routine, and we see its absence here.

2. It has some one-way edges. Again, this reflects the behaviour around the minimum allowed value

in the display range being explored, i.e. 0.1 — so for example a down operation on 0.12 with the

cursor in the tenths column clamps the value at 0.1 rather than leading to 0.02 — but then an

immediate up operation leads to 0.20, not back to 0.12 (understandably, though this is not how

4.3 Case study 2: Independent Digit / ‘5 -key ’ Number Entry 79

down
down

down
down

Figure 4 .1 1: Tenths & hundredths, digits 0-2 only, Simple Spinner and Simple Arithmetic

80 Chapter 4 Model Discovery Case Studies

down

down

down

down
down

down

Figure 4.12: Tenths & hundredths, digits 0-2 only, BBraun v686E

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 81

var vtbidcHundredthsWith9 = {
name : "hundredths with 9",
comments : "Tenths, hundredths only; digits 0-2 and 9 only",
prefix : "R",
getGuiActions : functionO {

var cursor = Digits.getCursor();
var digit = parselnt(Digits.getDigit(cursor));
var guiActions = [] ;
if ([0,1,9].indexOf(digit) > -1) {
guiActions.push(["up" , VTBIEntry.up]);

>
if ([0,1,2].indexOf(digit) > -1) {
guiActions.push(["down" , VTBIEntry.down]);

>
if (cursor < -1) {
guiActions.push(["left" , VTBIEntry.left]);

>
if (cursor > -2) {
guiActions.push(["right", VTBIEntry.right]);

>
return guiActions;

>,
validState : function(state) {
return Array.checkAHDigits(state.digits, [0, 1, 2, 9]);

>

>;

Figure 4.13: A VTBIDiscovery configuration object from VTBIDiscovery. j s — exploring only the
digits {0,1,2,9} in the tenths/hundredths range.

the BBraun operates around maximum values).

This example illustrates immediately that not only can model discovery automatically probe the details

of comer cases, but that often visual inspection of the models can yield immediate insights. The models

in this case are small enough that we can readily take in their entirety, but as we will see, even with

larger models it is possible to get a ‘big picture’ sense of the difference between the routines. Of course,

more detailed analysis such as theorem discovery or model checking can then provide deeper and more

certain insights than this initial impression allows.

4.33.2 Tenths, hundredths only; digits 0-2 and 9 only

Figure 4.13 shows a configuration aimed at extending the previous example to include exploration of the

9 digit. There are two key differences from figure 4.10:

82 Chapter 4 Model Discovery Case Studies

.down

right

left

right

let!

left

jfightright

downright
right

downleft

left
fight

left

right'
right

leip

left
rightrtflW

left

left

right,

left

right

.down

left

Figure 4.14: Tenths & hundredths only, digits 0-2 and 9 only, Simple Spinner

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 83

right

left

down

right left
down

right left

dowr
right

left
right

left

downJ'ght

down.
right'

down

left
.downleft

rightdown

dowrleft

downleft

left

dowi

Figure 4.15: Tenths & hundredths only, digits 0-2 and 9 only, Simple Arithmetic

84 Chapter 4 Model Discovery Case Studies

• The guards on addition of up and down have been modified so that up can also be pressed if the

digit under the cursor is 9, and down can also be pressed if the digit under the cursor is 0; this

allows vertical wraparound in the Simple Spinner routine, and arithmetic operations in the

Simple Arithmetic and BBraun routines.

• It includes a validState implementation, filtering out states whose digits are not in the set

{0,1,2,9} (using a purpose-built utility function, Array.checkAllDigits). Without this,

getGuiActions on its own is not in fact strong enough to limit our state space to the area we’re

interested in — see below.

The results of performing this model discovery task on the three number systems are shown in figures

4.14, 4.15 and 4.16, respectively.

Figure 4.14 once again clearly displays the regularity of the Simple Spinner implementation: a highly

symmetrical, regular structure; the structure is very similar to the one seen in figure 4.11, but with the

addition of 14 new states for the values 0.09, 0.19, 0.29, 0.90, 0.91, 0.92, and 0.99.

Figure 4.15 shows that in this configuration, the Simple Arithmetic routine behaves differently from the

Simple Spinner — as we would expect; its behaviour is still fairly regular, except for the existence of

two isolated states that deal with exceptional cases, i.e. for the value 0.29 in the top-right of the model.

The ‘innermost’ of these states represents the display H K 3 . and the other is for H K 5I. Looking at these

states, there are two obvious questions:

1. Why is there no up action edge from the innermost 0.29 state? The answer is simple: the display

here is B1CB1. i.e. the cursor is on 2, and getGuiActions blocks up in that case.

2. Why is there no up or down edge leading from the outermost 0.29 state? Here the display is

so getGuiActions rightly blocks down, but it should allow up. The answer is that an up

action is indeed performed in that state, but it leads to a display of Q ^ |, which is blocked by

the validState guard: that state is not added to the state space, so there is no edge leading to it.

This will be further discussed below.

Finally, figure 4.16 shows the model for the BBraun under this configuration; as it happens, visual

comparison with figure 4.12 is enough to see that this is a simple extension of that state space, with just

4.3 Case study 2: Independent D ig it/ ‘5-key’ Number Entry 85

down

Figure 4.16: Tenths & hundredths only, digits 0-2 and 9 only, BBraun v686E

right

right

right,

Figure 4.17: Erroneous parts o f ‘broken’ version o f previous example (seen in both Simple Arithmetic
and BBraun routines).

86 Chapter 4 Model Discovery Case Studies

four more states, for the values 0.19 and 0.29. (In contrast, while figure 4.15 is, similarly, an extension

of figure 4.11, that is much harder to see in that case because o f the greater number o f states.) And, like

with the Simple Arithmetic example, we have the irregular protrusion o f two states for 0.29, with the

same explanation.

To conclude this example, we illustrate the importance of the validState mechanism for conditional

exploration by considering what happens if it is omitted in this case. It happens that the Simple Spinner

case remains unchanged, i.e. getGuiActions is a sufficient restriction, but the Simple Arithmetic and

BBraun cases both get (the same set of) new states, as shown in figure 4.17. This shows just one part o f

the model, starting with the innermost 0 .29 state, and includes states for the values 0.3, 0.31, and 0.32.

As has already been explained, if the display is an up action leads to C K !S|: here the current

digit is 0, so we explore up and left leading to states for displays and E E F ! etc. This example

illustrates that conditional exploration can be a subtle matter, and requires careful consideration o f the

behaviour o f the system being explored — and that model discovery is thus necessarily something o f an

iterative, and interactive, process, much like programming itself.

4.3.3.3 Hundredths, full

Figure 4.18 shows the models produced by exploring the full state space o f tenths and hundreths, allow ­

ing all digits (but only including values less than 1.00, via validState). Clearly at this level o f complexity,

visual inspection o f these models can only provide indicative insight, but three things stand out:

1. The Simple Spinner retains something o f its regularity at this scale; it’s not as obvious as on the

smaller models, but it’s certainly clear in comparison to the other two models; this is underlined

by noticing that it has the full set o f 200 states (100 possible values, 2 cursor positions each), and

4 actions per state.

2. The Simple Arithmetic model is clearly less regular, particular around the ‘top’ o f the model

(closer visual inspections shows that this is the area around 0); furthermore, it has thirteen less

edges than the Simple Spinner.

3. The BBraun model is similar in overall impression to the Simple Arithmetic M odel, but it has

4.3 Case study 2: Independent D ig it/ ‘5-key’ Number Entry 87

•*£& '

m ' © m -
_ .r

m (- tfjf 3
-

) Simple Spinner (200 states, 600 edges)(a)!

- J - © * . - 2 !

rffji t, .,

- ■- t * ^ 7

.V

U W ~ 0% ■ Hj
• t - ©

J* .
:

J l -. " - • ''• * * • © j
- - © * . * • „ -^» 1 2 #m i3 . 3S sr © 3
itg i c s- ^ ^ # «S-3#

«*„ "-4* .

yr^soi •
- uiSLirP ©!►

F 23§£r
*

- ^ '© •©
© t

m

’© .::- / -. _ . JJ~ / -j~

) Simple Arithmetic (200 states, 587 edges)

Figure 4 .18: Tenths and hundredths only:

* £ _ © j -

js to
•* '• .* . ; " . v -

. % T. * i i i f
- 1: ** 25£gg|

® .© ©
'©T o

; ^ T ©"
©

(c) BBraun (l 82 states, 533 edges)

: full state spaces (i.e. all digits).

7T

88 Chapter 4 Model Discovery Case Studies

less states and edges (due to unreachable states around minima).

At this scale there is little more to say, but these models are ripe for further analysis using, say, social

network analysis [TO09], a model checker or our theorem discovery tool — and we shall return to this

example later.

4.33.4 Ceiling

We conclude this case study with a brief examination of its behaviour around the maximum attainable

value, i.e. 99999, partially in order to draw out a limitation to our basic form of model discovery which

will be addressed in the case study in section 4.5. The configuration is shown in figure 4.19. Its prefix

value means model discovery starts at the value 80000; only the digits 0, 8 and 9 are explored, and

only cursor values 3 and 4 (thousands and tens-of-thousands respectively); a validState guard is used to

remove any ‘stray’ states with any other digits that might be discovered.

The results of this exploration are shown in figure 4.20.

Figure 4.20(a) shows the discovered model for the Simple Spinner number entry routine; it has exactly

the same structure as figure 4.11 — only the node labels have changed. On reflection, this is unsurpris­

ing: in both cases we are exploring a subspace two digits wide and 3 digits ‘deep’, in a highly regular

overall state space; it is, at least, reassursing that the subspaces have the same shape.

Figure 4.20(b) shows the discovered state space for both the Simple Arithmetic and BBraun routines.

One is immediately struck by the symmetry of the model, but on closer inspection, it is not, in fact, quite

symmetrical. In particular, none of the nodes in the bottom half of the model that have edges leading

to 99999 also have edges leading from there, whereas in the top half this is not the case (in particular,

nodes for 89999 and 98999 have edges in both directions).

This is the case precisely because 99999 is the maximum value, and up operations leading to that value

are clamped there: so many states have up edges leading to a 99999 state — but each of the 99999 states

(for two different cursor values) only has one down edge leading from it.

In the case of the Simple Arithmetic routine, this is perfectly correct, and exactly what we would expect;

however, in the case of the BBraun routine, a down operation on a value of 99999 can in fact lead to one

4.3 Case study 2: Independent Digit / ‘5-key’ Number Entry 89

var vtbidcCeiling = {
name : "ceiling",
comments : "thousands, tens of thousands; 0, 8, 9 only",
prefix : "LLLLLUUUUUUUU",
getGui Act ions : functionO {

var cursor = Digits .getCursorO ;
var digit = parselnt(Digits.getDigit(cursor));
var guiActions = [] ;
if ([8,9].indexOf(digit) > -1) {
guiActions.push(["up" , VTBIEntry.up]);

>
if ([0,9].indexOf(digit) > -1) {
guiActions.push(["down" , VTBIEntry.down]);

>
if ([3] .indexOf(cursor) > -1) {
guiActions.push(["left" , VTBIEntry.left]);

>
if ([4] .indexOf(cursor) > -1) {
guiActions.push(["right", VTBIEntry.right]);

>
return guiActions;

>,
validState : function(state) {
return Array.checkAHDigits(state.digits, [0, 8, 9]);

>

>;

Figure 4.19: Model discovery configuration object: exploring the region around 99999.

90 Chapter 4 Model Discovery Case Studies

down

(a) Simple Spinner: compare with figure 4 .1 1

(b) BBraun and Simple Arithmetic: note vertical near-symmetry and lack of
memory behaviour.

Figure 4.20: Results o f model discovery around the region 80000-99999 (0, 8, 9 only).

4.3 Case study 2: Independent D ig it/ '5-key’ Number Entry 91

right

left left

left

right
right left

right

right

Figure 4.21: Model discovery around the region 80000-99999, with memory projection.

o f several different values, depending on the recent history o f the device and in particular the status of

its memory feature (see section 4.3.1.3). The problem is, our model com pletely fails to take account of

this.

There are (at least) two possible responses to this problem:

1. Add the m em ory’s status to the projected state. That is, we can interpret this ‘failure’ o f model

discovery as a sign that our chosen projection (figure 4.8) is inadequate. This means rewriting

project and reset in VTBIDiscovery and, in fact, also requires that we modify our actual BBraun

number entry code, in order to expose the memory status which has been heretofore encapsulated

and inaccessible.

The results o f doing so can be seen in figure 4.21, which shows an excerpt o f the model thus

discovered. Here nodes are labelled not only with the displayed value but also the memory

contents in parentheses (if and only if there is anything in memory). Thus we have ‘exploded’ the

two 99999 states from figure 4.20(b) into eight states in this model, six o f which have something

92 Chapter 4 Model Discovery Case Studies

in memory — and each of those memory-bearing states has a down action leading back against

its incoming up action.

2. Alternatively, it is in fact possible to extend model discovery in a manner that (unlike the basic

algorithm) allows for the possibility of multiple identically-labelled edges leading from a

particular node; this approach could, if applied here, result in a version of figure 4.20(b) in which

each of the two 99999 nodes has several down edges leading from it, modelling the system’s

memory behaviour. We describe this approach, and see it in action, in our final model discovery

case study — see section 4.5.

4.4 Case study 3: Alaris GP infusion pump

Thimbleby & Oladimeji [TO09] discuss model discovery and analysis of a simulation they wrote of the

Alaris GP infusion pump, a device for controlling drug delivery to hospital patients. The simulation and

model discovery tool were written in ActionScript on the Flex platform8. Here we briefly comment on

their implementation and its relation to our formalisation of model discovery. The model discovery al­

gorithm is not encoded directly (their work predates the formulation given in this thesis) but its essential

strategy is followed. There are two main differences.

First, the Pool is a queue of unexplored states, with all of a state’s actions explored in sequence, per state

— a quite natural way to implement breadth-first discovery.

Second, the tool will actually explore some of the actions in each state twice, redundantly. In a given

state, the tool first makes a pass where it explores every one of a set of hard-coded actions in order to

see which ones actually change the state. Then it makes a second pass, in which only those actions that

lead to a new state are explored, and it is this exploration that is used to build the model. Thus, each

‘useful’ button is pressed twice per state. It is easy to see how such an inefficiency could arise in an

ad hoc implementation of model discovery; of course, it would be avoided by following our algorithm

more directly.

The result of getGuiActions, i.e. the list of all possible button presses, is hard-coded; we suggest that in

8http://www.adobe.com/products/flex

4.4 Case study 3: Alaris GP infusion pump 93

many cases — particularly for research purposes — this is a reasonable approach, but that for full ap­

plicability and integration into software development workflow, the more general approach advocated in

this thesis is clearly beneficial. Then doGuiAction is simply implemented via Flex’s Button.performClick

method.

An SUD-specific inner state representation was used: a flat bundle of some 20 strings and booleans

(e.g. volumeUnit, pressureLevel, infusionMethod), with eq defined naturally and no restriction (in any

of the experiments they performed) on which variables were projected.

The SUD and the models produced in this example are structurally more complex than in the other

three case studies considered in this chapter. In particular, in this example model discovery experiments

targetted not only number entry (as in case study 2), but also the device’s menu structure and usage

workflow. This example thus demonstrates that model discovery is applicable to structurally complex

systems; one of the figures in [TO09] shows how the device’s mode structure may be exposed in a post­

processing step by taking a discovered model and removing the Off state from it, leading to a fairly

hierarchical view of the device’s overall operation.

One consequence of the SUD’s complexity, with many dependent variables, more untracked aspects of

state, and a bigger state space, is that model discovery is quite slow — a situation compounded by Flash’s

slower running speed than natively compiled Haskell, and the implementation inefficiency mentioned

above.

The SUD involves number entry, so for some analyses, an ad-hoc version of conditional exploration

(section 3.4.3.2) was used, with some numerical variables (e.g. ‘flow rate’) restricted to subsets of their

possible values using simple bounds. This helped keep the state space (and model discovery) tractable,

which was important not only for the model discovery process itself, but also for the subsequent analyses

performed on the models; different restrictions were used at different times, depending on what was

being investigated, by modifying model the discovery code directly.

94 Chapter 4 Model Discovery Case Studies

4.5 Case study 4: Casio HS-8V

The Casio HS-8V (figure 4.22) is a popular desktop calculator of a very familiar kind: it has a keypad

for entry of decimal digits, a screen with space for numbers up to eight digits long, basic arithmetic

operations such as addition and multiplication, and a simple memory facility. Devices like this are

common in healthcare where they are routinely used for drug dosage calculations, and so their correct

use and operation is clearly critical; as such they are potentially interesting examples for researchers

concerned with general methods of improving the safe use of interactive devices. Note that there is

nothing particularly special about the HS-8V per se, and we do not seek to single it out for attention in

and of itself: we could just as easily be talking about any one of a wide range of desktop and scientific

calculators, from many different manufacturers including Canon, Citizen, HP, and Sharp, and generic

brands; the HS-8V is simply the instance we happened to study in detail first.

Harold Thimbleby wrote an HS-8V simulation using Mathematica, and implemented model discovery

against that simulation. This particular instance of model discovery is interesting for two reasons, both

of which we will consider further in this section:

1. It is an example of very focused conditional exploration aimed at keeping the discovered model

at a tractable size while still providing valid and interesting insights into the device’s operation.

(In this regard, it is similar to our second case study, in section 4.3.)

2. More uniquely, it uses a very interesting extension of the basic model discovery algorithm that

has the effect in one case of producing a nondeterministic model. (In section 6.5 we revisit this

example, and describe a particularly interesting and novel insight into the device’s operation

arising from that nondeterministic model.)

The full state space for the calculator is about 1017 states, as there is a display of 8 decimal digits, a

memory of 8 decimal digits, and a few modes. This is too large to generate an explicit model for, and

such a model would anyway be computationally expensive to analyse — certainly beyond our current

theorem discovery implementation, and also probably beyond any of the techniques described in [TO09],

though a model checker might be able to handle it. Instead, model discovery was focused on a particular

aspect of interest, i.e. number entry, by ignoring the arithmetical/operational keys (1 + 1, I = |, |M +|,

4.5 Case study 4: Casio HS-8V 95

Figure 4.22: Casio HS-8V: actual device and simulation

etc.). Going further, there is good reason to believe that every non-zero digit behaves the same way,

and therefore the key (j~) is used as a proxy for all non-zero digits (displayed in figure 4.23 as d). The

final alphabet o f user actions for model discovery in this example thus consisted o f only f l] and

(Thimbleby also produced and analysed some models where QT) and [ac] were included, but we do not

discuss them here.)

Thimbleby produced two models, distinguished by the state projection used, and pictured in figure 4.23.

In the first, which we call the device model, the full internal state o f the simulation is projected, including

not only the display but also a value indicating whether the [j J key has been pressed recently; in the

second, which we call the user model, only the display contents are projected — what the user can see.

(In contrast with the more common use o f this term, we do not present this as a model o f the user’s

behaviour; we have simply chosen this term to denote that this is what the user can know about simply

by inspecting the device.)

The device model (figure 4.23(a)) is a fairly standard product o f model discovery as described in this

chapter — and in particular it is deterministic; probably the most interesting thing to note about it

(without doing further analysis — see section 6.5.2) is that it contains self-loops: after the key

has been pressed once, subsequent presses o f that key have no effect (see each left-hand branch in the

figure).

96 Chapter 4 Model Discovery Case Studies

do do do do do do do do do do do do do do do do 06 cP1
(a) ‘Device’ model: display/decimal projected. (b) ‘User’ model: only display is projected.

Figure 4.23: Two models o f number entry on the Casio HS-8V desktop calculator.

The user model (figure 4.23(b)) is more immediately interesting, however, as it is nondeterministic. For

as described in section 3.4.2, the basic model discovery algorithm cannot produce a nondeterministic

model — so what’s going on here?

The basic model discovery algorithm is unable to produce nondeterministic models for the following

1. Each state is only discovered once: if any subsequent actions lead to that same state, it will be

recognised as such (using the equivalence check, eq), and a new edge will be added to the model,

but not a new state. The only way this can ‘fail’ is if eq is too weak, and fails to distinguish two

states that really should be distinguished, in which case the projection used should be

reconsidered — but even if that is the case, you don’t get the same state added to the model

twice: you get two different states added that ought to be unified. In any case, the upshot is that

each state in the model is only discovered once, and (critically for our current discussion) that

means the set o f each state’s actions are only added to the pool once.

2. When the set o f a state’s actions are added to the pool, they’re each only added once. This is an

example, consider the root state, at the top o f the figure: we have a [• | labelled self-loop (i.e. the

decimal point doesn’t change the display), and two edges labelled d (represented a p T] keypress). Now,

two reasons:

4.5 Case study 4: Casio HS-8V 97

obvious design choice: you discover a state, you list its actions, and you add each action to the

pool — obviously only once, because unless our projection is broken, multiple explorations of

the same edge are redundant. (A s such, it might in fact be worth adding multiple copies of the

same action to the pool, as a sanity check: if multiple explorations o f the same action do lead to

different states, that would tend to indicate that the state projection used is insufficiently rich to

allow proper backtracking, and some aspect o f the system ’s inner state is causing problems.

However, that’s not what’s happening here.)

In the case o f Thinibleby’s HS-8V model discovery, this last design choice has been subverted. The novel

extension is to add to the pool some (state, action) pairs whose actions are compound, i.e. sequences of

atomic user actions, where previously only atomic actions have been used.

In particular, it is hard-coded into the model discovery implementation that at every state, four actions

are to be explored:

• CD
•a

• CDCD

• GDQD
The first two are the simple atomic actions we would expect to explore anyway; the last two are the new

compound actions. So from each state, model discovery investigates the effect not only o f hitting [T J ,

but also the effect o f hitting [•) followed immediately by [l). The effects o f these compound actions

appear in the model in ‘small step’/unfolded form, where every intermediate state/edge visited during

the compound action is added to the model (if not already present) — so there are no edges labelled f~*~l

[T j for example.

Now we can understand the nondeterminism visible in figure 4.23(b). Consider again the root state, at

the top o f the figure:

• The edge labelled d going to the left represents the (second step o f the) [• |[l | compound

action: the f*~1 keypress induces the self-loop on the root state (as does exploration o f the f~*~l

98 Chapter 4 Model Discovery Case Studies

atomic action), and then the d edge leads to a branch in which [• | never has any further effect.

(Note that there is no visual distinction, in the figure, between edges induced by atomic actions,

and edges induced by compound ones.)

• The edge labelled d going to the right represents the [1 \ case: here, 1 • 1 is yet to be pressed. (It

also, thus, represents the first step o f Q I Z) action.)

This pattern is repeated to the right: each left-hand branch is a world where [• | has just been pressed,

and only [l 1 has any effect on the model; and each right-hand branch is a world where | * 1 is yet to be

pressed.

Without compound actions, model discovery as described in [GT10] and chapter 3 could not possibly

produce such a model, as it only allows one outgoing edge per action per state.

That a compound action (such as, in this case, n r r p adds a new state or edge to the model during the

model discovery process should, arguably, raise a warning: it indicates either that the projection being

used is not rich enough (as described above), or that an observer (e.g. the end user) cannot predictably

differentiate between states that should rightfully be distinct as is the case here. In either case, it would

be worth making the investigator aware of this as soon as it is noticed.

In the case of the HS-8V user model, this non-determinism is bound up in the fact that [* 1 never changes

the display, as exposed to us via theorem discovery and considered further in section 6.5 — but an earlier

warning, raised during model discovery, could have been useful.

Chapter 5

Theorem Discovery

Contents

5.1 Introduction.. 99

5.2 Informal discussion.. 102

5.3 Formalisation .. 109

5.4 Theorem Discovery Algorithm .. 117

5.5 Meta-theorems: patterns and fam ilies.. 123

5.1 Introduction

In this chapter we present the second of the two techniques at the core of this thesis: Theorem Dis­

covery. Whereas the first technique, Model Discovery, targets the problem of producing a model of

an interactive system, Theorem Discovery targets the problem of analysing such models. In particular,

theorem discovery automatically and systematically seeks sequences of user (or system) actions that are

in some sense — that we define precisely — equivalent in their effects on the system, or nearly so. The

core operations, which we describe in detail, are:

1. To compute sequences of actions.

2. To compute the effects of each sequence of actions.

99

100 Chapter 5 Theorem Discovery

3. To compare those effects with each other.

By doing so, theorem discovery produces two primary output kinds:

1. Total equivalence theorems — where two or more action strings are found to have identical

effects on the system, throughout its entirety.

2. Partial equivalence theorems — where two or more action strings are found to have very similar

effects on the system, i.e. identical up to some threshold.

Such theorems are, we argue, interesting because they can embody salient usability properties arising

from the system’s logical structure. For example, total theorems can embody redundancy, shortcuts, and

undo-like behaviour (we consider examples in the next chapter). Conversely, partial theorems represent

sequences of actions that are nearly equivalent — which can be potential sources of confusion for the

user, who may believe they are exactly equivalent, unaware of the divergence.

These ‘atomic’ theorem outputs are often individually interesting, but may also lead to the discovery of

‘metatheorems’, arising from the interpretation of the combination of a set or family of atomic theorems

together. The systematic production and interpretation of metatheorems is beyond the scope of this

thesis and a matter for future work; here we lay the ground work upon which metatheorems may be

built, as well as considering some small examples and proposing some avenues for specific future work

in this direction.

The approach to theorem discovery presented in this thesis was first described in [GTC06], within the

context of a formal model of inconsistency-related mode confusion; there, the emphasis was on identi­

fying modes and ensuring consistent behaviour within them, and what we refer to here as Theorem

Discovery was one component of that approach. The contributions in relation to theorem discovery in

this thesis are:

• To generalise the equivalence-finding algorithm beyond the context of that paper to a more

general standalone technique, to formalise that in detail, and to implement it (the implementation

is described in section 6.2).

• To extend that formalisation, algorithm, and implementation to include partial equivalence (also

implemented).

5.1 Introduction 101

• To begin exploring meta-theorems and the interpretation of families of theorems (section 5.5).

• To provide case studies (in chapter 6) of theorem discovery in action on a range of systems,

including ones of real-world complexity.

Thus, we make the technique described in [GTC06] more rigorous and more general, we show it working

in realistically complex analyses, and we pave the way for a systematic approach to the application and

exploration of the technique.

The scope of our current approach is as described in section 3.1.1: reactive systems with discrete in­

terfaces and finite state spaces, subject to some assumptions (described in that section). The key idea

is that a user performs actions and thereby changes the state of the system they are using; we assume

the user’s actions are discrete, for example pressing buttons. Variations such as holding a button down

for 2 seconds, say, may be modelled as different discrete actions and many continuous actions can be

approximated as a sequence of discrete actions (e.g. turning a knob could be represented by the two

actions “turn right 1 degree” and “turn left 1 degree”); similarly, internal (i.e. non-user) actions such as

clock ticks may be modelled and treated identically with user actions, without loss of generality.

Our models, as described in chapter 3, are directed graphs whose nodes represent (sets of) system states,

and whose edges represent user actions. This class of model is easily comprehended, and is not partic­

ularly specialised or esoteric. Such models may be readily used to gain real insights into UI behaviour

that might otherwise go unnoticed, as we shall show. (We believe, however, that the core idea of theorem

discovery could be fruitfully applied to other classes of model, including ones with richer structure such

as statecharts; doing so is beyond the scope of this thesis.)

A note on terminology: the discussion in this chapter concerns related entities in three separate domains,

namely the interactive system whose model is being investigated, the model of that system (i.e. a graph

as just described), and the formalism found in section 5.3. The following table relates the terms used in

each of these domains to discuss related concepts:

102 Chapter 5 Theorem Discovery

System/UI G raph model Form alism

Interactive system Graph Finite state machine

User action (or just ‘action’) Edge Action / symbol

System state / set of states Node State

Sequence of user actions Path String

5.2 Informal discussion

As noted above, the core concept of theorem discovery is as follows: given a directed graph that no-

tionally represents a model of some user interface (i.e. its nodes are system states and its edges are user

actions), we systematically compute strings of actions, and the effects of those strings over the whole

model, and look for equivalences between the effects (and thus the action strings). The key question is:

what exactly do we mean by the ‘effect’ of a string of actions ‘over the whole model’? That is, how

are such effects to be represented, computed and compared? In this section we provide an informal

overview of our solution to this problem; in section 5.3, we present a formal treatment.

5.2.1 Effects

The effect of an action is considered to be where it leads to in the model, i.e. in the graph. In any

particular given state, the effect of an action is easily conceived: if a user performs that action while the

system is in that state, what state does the system end up in? In terms of the graph, we can state that

as follows: in a given node, if we follow the edge(s) labelled with a given action, what node(s) do we

end up in? The effect across the whole system, then, is simply the aggregation of those per-state effects,

indexed somehow by state (node). (For the rest of this discussion, we generally prefer the terms ‘state’

and ‘action’ to ‘node’ and ‘edge’.)

For example, consider the simple model in figure 5.1; we have four states labelled, {0,1,2,3} and an

alphabet of two actions {jc,y}. Writing [jc] and JyJ for the effects of the actions x and y, we can represent

5.2 Informal discussion 103

y

x

Figure 5.1: A sim ple model, with four states and two actions, x and y

each effect at each state as a function from source state to destination state:

M (0) = i , M (0) = 3

M O) = 2 > M 0) = |
M (2) = 0 , M (2) = o

M (3) = 3 , M (3) = 2

Then (as our states are numbered incrementally from 0) an effect over the whole model can be simply

written as an ordered list o f destination states, where source state is encoded as list position:

M = <1,2,0,3) , M = (30,0,2)

Other representations are possible, o f course — and below we extend this notation for the nondetermin­

istic case. [Thi04a] explores the use o f another representation, namely adjacency matrices:

t 0 1 0 0 ^

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

W hile these have som e appealing properties, as explored in that paper, in this thesis we favour the list

104 Chapter 5 Theorem Discovery

based representation, as it is more compact and arises naturally out of the formalisation given in section

5.3.

5.2.2 Nondeterminism

The list-of-destination-states representation given above is only viable in this example because the model

happens to be deterministic, so there is only one destination state for each action in each source state. In

general we need to allow for the possibility of nondeterministic models, with multiple destination states j
for each action in each source state. (Graph-theoretically, we need to allow for multiple identically- j

labelled edges leading from the same node.)

I
Thus, in general, we write an effect as a list of sets of destination states: '

.W = ({1},{2},{0},{3}> , W = «3},{1},{0},{2}>

Where it is clear that we are dealing with a deterministic model, the non-set version is preferred for

reasons of clarity.

5.2.3 Strings of actions, and their effects

All of these representations may be used not only to represent the effects of atomic actions, but also to

represent the effects of strings of actions. In each case, the representation of a string’s effect is easily

computed, given the representations of its component actions. For example, given the list representations

of the effects W and W above, it is easy to compute the effect [xy] by composing W and W at each

state:

M (o) = i a M (i) = i => M (°) = 1

W O) = 2 a M (2) = ° =* M O) = o

W (2) = ° A M(°) = 3 =* M (2) = 3

W (3) = 3 A W (3) = 2 =* M (3) = 2

5.2 Informal discussion 105

Figure 5.2: The effect o f the action string xy

So xy takes you from 0 to 1, from 1 to 0, etc., as is easily checked by inspection. Then, in the concise

list notation:

M = <M >.3,2)

Another view o f this computation is to take the list representations o f [[x]] and [|y]], i.e. (1 ,2 ,0 ,3) and

(3 ,1 .0 ,2) , and to use the components of [[jcJ] as indices into [[yj]:

M = (M(°) , M 0) , M(2) , M(3))
= (- W(M0)) - ivkmp)) , w(M(3)) >
= < W0) > M(2) i W(°) . M(3))
= (1 , 0 , 3 , 2)

This is, in fact, how our implementation computes such com positions (generalised to the nondetermin­

istic set-of-destinations representation described above.)

This effect, [[xy]], is illustrated in figure 5.2. By inspection o f that diagram, it is easy to see that xy is

its own inverse: two applications o f xy in a row have no effect, whatever state you start in — it is the

identity action, which we write as I (see section 5.3.9.1):

JxyxyJ = (0 ,1 ,2 ,3) = I

This is exactly the kind o f thing that theorem discovery can discover automatically.

^

106 Chapter 5 Theorem Discovery

5.2.4 Total and partial equivalence

Two actions are totally equivalent if their effects are identical; obviously checking for such identity is

computationally trivial: in the list representation, we simply check the destination (in general, destina­

tion set) for each state, and require that they are all the same.

For example, we find that:

[yyxxfl = (1,0,3,2) = |ry]

and thus xy and yyxx are totally equivalent: whatever state the system is in, performing either of those

actions takes the system to the same new state.

Partial equivalence generalises this notion further, by introducing an effect similarity metric that gives

some measure of how similar two actions are to each other, in terms of their effect; then it is possible to

set a threshold — 95%, say — and report all actions whose effect similarity is above that threshold.

How, then, should effect similarity be measured? There are a number of possible ways to compare two

effects structurally (e.g. by looking at the symmetric difference of their sets of induced edges), but the

notion we are specifically trying to capture here is about what happens when the action is performed.

As such, we aim to compute the following:

The probability that, given some (e.g. uniformly) randomly chosen state in the system, per­

forming both actions in that state leads to the same destination state.

In the deterministic case, this is very simple: count the number of states where the two actions’ des­

tinations are identical, and divide it by the total number of states. This clearly gives us the desired

probability. For example, consider jc and y again:

M = (1,2,0,3) , M = (3> 1,0,2)

Here there is only one state where x and y have the same effect: state 2, where both actions lead to state

0. Thus, picking a state at random, the probability that these two actions lead to the same state is \ .

The nondeterministic case is slightly more complicated: here we can’t just count identical destination

sets, because by doing so we may be discarding some similarity from our measure. For example, con-

5.2 Informal discussion 107

y

x ,y

Figure 5.3: A simple nondeterministic model, based on the model shown in figure 5.1.

sider figure 5.3, a slightly modified version o f our familiar example from figure 5.1. Now we have:

W = ({1},{2},{0},{3}> , M = <{1.3},{1},{0},{2,3})

. . .w ith two additional y-labelled edges, from states 0 and 3. The simple state similarity measure de­

scribed above still gives us | here: only at state 2 are the destination sets identical. However, if we pick

a random state, we might in fact now pick one where x and y could have the same effect, namely states

0 and 3, with a 50/50 chance in each case. So if we consider the four states in turn, we get the following

probabilities (see section 5.3.11.1 for workings):

Their total is 2, so dividing by the number o f states, we get an overall probability, and thus similarity, o f

1
2*

Generalising from this example, we see that the probability at each state is computed by taking the

destination sets for each o f the two actions, and dividing the size o f their intersection by the size o f their

union. In the above example this indeed gives us the probabilities (j . 0 , 1, 5), and it is easy to see that

this continues to give the right solution as more destinations are added to any o f those sets; furthermore,

108 Chapter 5 Theorem Discovery

the deterministic case is just the limit of this, where the union is either the empty set or the intersection.

It is worth noting that this interpretation of effect similarity for nondeterministic actions hinges on the

exact semantics we choose for nondeterminism in our models. If we are in state 0 in figure 5.3, and

perform action y, where does that take us? There are two possible ways to interpret this:

• To either state 1 or state 3.

• To both state 1 and state 3.

When computing the effects of action strings, the second interpretation is the proper one, in order to

include all possible effects and not throw information away. (This is captured in our formalisation

of the string transition function in section 5.3.5.) However, when computing effect similarity, the first

interpretation is the correct one: ultimately our models are intended to provide insight into the behaviour

of a reactive system as it responds to user interaction; in that context, the first interpretation is clearly

the right one because when a user presses a button that may have one of two effects on the system, only

one effect actually takes place. Thus, at each state, we need to compute the probability that randomly

choosing a destination state for each of the actions yields the same state — and that probability is as

described above.

This measure of effect similarity assumes that states are visited with equal probability, which may not, in

practice, be the case. A more sophisticated treatment might weight the probabilities at the various states,

informed (say) by the use of a Markov model (e.g. following [TCJ01]) and/or empirically collected

usage data. Exploration of such weighting is beyond the scope of this thesis.

We conclude this section with a few words on the algorithm to find total and partial equivalences, which

is explained in detail in section 5.4. It simply computes ever-longer action strings and their effects, and

compares those effects with the ones previously computed; where total and partial equivalences (modulo

some threshold) are discovered, they are reported. The algorithm reduces redundant computation and

reporting by grouping totally equivalent actions into equivalence classes by effect, and by not checking

strings that have a prefix that has already been the subject of a total equivalence.

5.3 Formalisation 109

5.3 Formalisation

5.3.1 Definition: finite state machine

We model a discrete user interface as a finite state machine (FSM): a tuple (S ,L,rx) where:

• S is a finite set (of states);

• £ is a finite set (of symbols) called the system’s alphabet; and

• rx : S x £ —>■ £P(S) is a total function, called the machine’s transition function.

States correspond to projections of the modelled device’s internal state; symbols consist of possible user

(or internal) actions; the transition function encodes the behaviour of the modelled device in terms of

how actions move about the state set. Defining rx as a total function to the powerset of states unifies the

treatment of deterministic and nondeterministic machines.

5.3.2 Definition: transition set

Given a state p G S and a symbol a G £, we call the set of states in rx (p, a) the transition set for a at p,

written [a] (/?). We introduce an infix shorthand for single transitions:

V p ,q G S • V a G l • p r x q q G [a]](p)

Here, p and q are called the source and destination states of the transition, respectively.

5.3.3 Definition: nondeterminism

An FSM (S', £ , rx) is nondeterministic (an NFSM) if the transition set for some symbol at some state

has more than one member; otherwise the machine is deterministic (a DFSM). Equivalently, an FSM is

nondeterministic if and only if:

3 p ,q , r G S A 3 a G £ • p r x q A p r x r A q ^ r

110 Chapter 5 Theorem Discovery

5.3.3.1 Example: finite state machine

Consider the model shown in figure 5.1. As an FSM (S,Z, rv) we have:

5 = { 0 ,1 ,2 ,3 }

Z = { x , y }

rx = { 0 A l , 0 A 3 , l A 2 , l A l , 2 ^ 0 , 2 ^ 0 , 3 ^ 3 , 3 ^ 2 }

Note the slight abuse of notation in enumerating rx here; properly it would written as:

= { (0,x) ^ {1} , (0,y) {3} , (l,x) {2} , (l,y) {1} , ••• }

5.3.4 Definition: string

We adopt the standard definition of strings over an alphabet. Specifically, if £ is an alphabet then Z*,

the set of strings over Z is the smallest set such that:

1. Z* contains the empty string: A EZ*

2. w G Z* A a € Z = * wa G Z*

5.3.5 Definition: string transition function

The transition function rx : (S x Z) —> £P(S) may be lifted to the string transition function (to a des­

tination set), -*►: (S x Z*) —» £?(S) as follows:

1. V p G S » -» (p ,A) = { p }

2. Vp G S, w G L*,a G Z • -»(/?, vra) = U { W W <7 € -» (p ,w) }

Note that this definition takes the view of nondeterministic actions as being ‘all taken together’ rather

than ‘just one chosen and taken’, as discussed in section 5.2.4.

5.3 Formalisation 111

5.3.5.1 Example: string transition function

Consider the nondeterministic model shown in figure 5.3. To compute - » (3,yry):

(3,yxy) = U

= u
= u
= u
= u
= u
= u
= u
= u

W(4

M (?

M(4

M («

M(<?

W (?

b V i

q € - » (3,yx)

4 e U

4 6 | J

4 6 | J

4 6 U

4 6 U

w w

mw

MW

MW

MW

<■€ U { M (p) | p 6 - » (3 ,A) } |

r e U { M (p) | p 6 { 3 } }

r 6 H(3) | I

r e { 2 , 3 }

4 6 |[*](2) U H (3)

q £ { 1 } U { 3}

WO) u W
{ 1 } U { 2 , 3 }

{ 1 , 2 , 3 }

q e {1 , 3}

(3)

5.3.6 Definition: destination set

Given a state p G S and a string w G I* , we call the set of states in - » (p, w) the destination set for w at

p, and we write it as M (p). Note the overloading of notation here: we write [a] (p) for the transition

set induced by an atomic action at a state p, and [wj (p) for the destination set induced by a string w at

that state.

112 Chapter 5 Theorem Discovery

As with single symbols, we introduce an infix shorthand for single string transitions:

W
V p , q £ S • V w G £* • p ^ » q ==>• q £ [wj(p)

5.3.7 Definition: destination equivalence

Given a state p £ S , two strings are said to be destination equivalent at p, written ~ p, if their destination

sets at p are identical:

V/7 g s • vw,xe r* • w~pX <=* H(p) = H(p)

5.3.7.1 Examples: destination sets and destination equivalence

As shown in the example in section 5.3.5.1, in the model shown in figure 5.3 we have that:

Iyxy]](3) = {1,2,3}

so we can also write:
-jay,3 -»1 , 3 -» 2, and 3 -» 3

We can also see that [jxry]] (0) = [[xyxx]] (0) = { 0 } and thus we have that:

xxy ~o xyxx

5.3.8 Defmition: effects

Given an FSM (S ,L ,rv), for every string w £ L*, w’s effect, written [wj C S x &{S) captures its

behaviour across every state p in 5, as a set of destination sets for w, indexed by source state:

5.3 Formalisation 113

An effect is deterministic if, for every one of its pairs, the destination set found in the pair’s second

element has only a single member; otherwise it is nondeterministic. We state without proof that an

FSM is deterministic if and only if all of its effects are deterministic.

In the common case where S is a contiguous range of integers 0 . . . n for some n, we consider explicitly

indexing by state to be redundant, and prefer to write effects using the list shorthand described in section

5.2 (see below for example).

5.3.8.1 Example: effects

Consider again the FSM in figure 5.1. Here are some effects over this machine:

M = { (0 ,{ 1 }) ,(1 ,{ 2 }) ,(2 ,{ 0 }) ,(3 ,{ 3 })}

M = { (0 ,{3}), (1 ,{ 1 }), (2 ,{0}), (3,{2}) }

W = { (0, {2}) , (1, {0}) , (2, {1}), (3, {3}) }

M = { (0 ,{1}), (1>{0}), (2 ,{3}), (3,{2}) }

As the set of the states is the contiguous range of integers 0 . . . 3, we may omit the explicit state indexing,

and instead write (as before):

M = (1,2,0,3)

M = (3,1,0,2)

Ml = (2,0,1,3)

M = (1,0,3,2)

5.3.9 Definition: total equivalence

Two strings are said to be totally equivalent, written ~ , if their effects are identical:

Vw,x € l * • w ~ x Jw] = JxJ

114 Chapter 5 Theorem Discovery

5.3.9.1 Definition: identity effect

An action or sequence of actions may in fact do nothing, i.e. (from an operational point of view) it may

simply take the system back to whatever state it was in before the action occurred. In such cases, the

action has the same effect as the empty string X, and we write its effect as H.

V w G E* • w ~ X <(=>- [[wj = I <̂ =>- Vp G S • [[vcj (p) = { p }

5.3.9.2 Examples: total equivalence

The full set of total equivalences for the deterministic model in figure 5.1, as computed by our algorithm

(see section 5.4) is as follows:

X X X rsj X

xyx rsj yy
yxy X X

yyy X

xxyy yx

yxxy rsj xyyx

yyxx rsj xy

We have already seen the last of these, yyxx ~ xy, in section 5.2.4. In section 5.2.3 we also saw that

xyxy ~ X — why isn’t that reported here? The answer is that before considering strings of length 4, the

algorithm found that xyx ~ yy; as such, it doesn’t check any strings whose prefix is xyx, as they will

trivially induce total equivalences with the corresponding strings whose prefix is yy. In this case, then,

‘obviously’ xyxy ~ yyy — but the algorithm will never report this. See section 5.4 for more information

on how the algorithm prunes its search space.

5.3 Formalisation 115

5.3.10 Definition: similarity

vp g s • v w,x g r* • c p(w,x) =

Given two strings w,x G £*, their similarity at state p, written ap(w,x) G [0,1] c R , is defined as

follows:
H W n H W

H W U H W

That is: we compute each string’s destination set at that state, M (p) and M (p) , and we divide the size

of intersection of those two sets by the size of their union, yielding the probability at that state that the

two actions have the same effect. In the case of deterministic effects, where both destination sets have a

single member, this value will always be either 0 or 1.

Then, the similarity of the two strings across the whole model, written a(w,x) G [0 , l] c R , is simply

the mean of the similarities at all of the states of the model:

£ Gp(w,x)

V w,x G £* • g(w,x) =
p e s

5.3.11 Definition: partial equivalence

Two strings w,x G L* are said to be partially equivalent with threshold t, written w pat x if and only if

their similarity is greater than or equal to t:

V w,x G £* • W G [0,1] c R • w ~ t x <=> a(w,;c) > t

5.3.11.1 Examples: similarity and partial equivalence

Here we revisit the example in section 5.2.4: a nondeterministic model (shown in figure 5.3) with four

states and two actions:

M = <{!}, {2},{0},{3}> , W = <{1.3},{1},{0},{2,3}>

116 Chapter 5 Theorem Discovery

To compute <j(x,y)t the similarity of x and y, we first need to compute their similarities at each state.

0o(*,y) =
1*1(0) n M (°)

W(o)uW(o)
° i (*>>’) =

W(i)nW(i)

H (i) u P)

{ i } n { i , 3 } { 2 } n {1}

{ 1 } U { 1 , 3 } { 2 } U {1}

{1} 0

{1.3}

1

{1 ,2}

2
n z 0

0 2 (x,y) =
W (2) n W (2)

'■*K2) u W (2)

{0}n {0}

{ 0 } U { 0 }

03(*,y) =
W(3)nH(3)
*1(3) U H (3)

{ 3 } n { 2 , 3 }

{ 3 } U (2 ,3}

{0} {3}

{0} {2,3}

Then to compute their overall similarity over the whole model:

5.4 Theorem Discovery Algorithm 117

5.4 Theorem Discovery Algorithm

Given the ability to represent and compute effects as described so far in this chapter, it is then straightfor­

ward to construct an algorithm that computes equivalence theorems. In essence, the algorithm systemat­

ically computes ever-longer action strings and their effects, grouping the strings into equivalence classes

by effect. When a string is added to an existing class (rather than forming a new one), the algorithm

reports a total equivalence theorem between that string and the canonical/first member of the class it has

been added to.

The algorithm is essentially similar to that given in [GTC06], but generalised beyond the matrix repres­

entation of effects, and extended to include partial equivalence checking. In particular, the algorithm is

parameterised by a similarity threshold t; if t = 1, the algorithm only looks for/reports total equivalence,

but for 0 < t < 1, each computed string is compared against every equivalence class’ canonical member

in search of partial equivalence theorems.

We have split the algorithm into two parts for ease of presentation and discussion:

• Algorithm 2 shows the top level structure. It repeatedly iterates over a set of bases (section 5.4.2),

extending each of them with every atomic action a in the alphabet L in turn to produce a new

string w. If that string is not suffix-pruned (section 5.4.3), it is checked against the equivalence

classes, as described in algorithm 3. The nth iteration of the algorithm checks strings of length n.

The algorithm stops at the end of an iteration where no new bases have been discovered, which is

the same as saying that no new equivalence classes were discovered on that iteration.

• Algorithm 3 focuses on the operation of checking a single string w against the set of equivalence

classes. It iterates once over the set of canonical members (section 5.4.1) of the equivalence

classes, looking for any whose effect is the same as the effect of w; if one is found, that is a total

equivalence theorem; otherwise, and if the threshold t is less than 1, it checks the two effects for

similarity, possibly reporting a partial equivalence theorem. When w has been checked against all

of the canonicals, if no total equivalences have been found (i.e. the flag found is false), a new

equivalence class containing just w is created, and w is added to the set of bases for the next

iteration.

118 Chapter 5 Theorem Discovery

Algorithm 2 Algorithm to discover total and partial equivalence theorems
1 E «— initialise()
2 addNewClass(£', A)
3 bases 4— { A }
4 while bases ^ {} do
5 bases'<— {}
6 for all b G bases do
7 for all a G £ do
8 w i— ba II concatenate atomic action onto base
9 if w is not suffix-pruned then

10 check w against E — see algorithm 3
11 end if
12 end for
13 end for
14 bases <— bases'
15 end while

Algorithm 3 Inner part of algorithm: check a string w against existing equivalence classes

1 found 4— false
2 for all c G canons(£) do
3 if not found and [w] = [cfl then
4 Report total theorem: w ~ t c
5 addToClassCE, w, c)
6 found 4— true
7 else if t < 1 and g(w, c) > t then
8 Report partial theorem: w &t c
9 end if

10 end for
11 if not found then
12 addNewClassCE, w)
13 bases’ 4- bases’ U { w }
14 end if

5.4 Theorem Discovery Algorithm 119

Three aspects of the algorithm warrant further explanation: the equivalence classes (and their associated

operations), the sets bases and bases ’, and suffix-pruning.

5.4.1 Equivalence classes

The collection of equivalence classes, written E, is the central data structure of this algorithm. Each

equivalence class contains strings whose effects are identical, i.e. every time a total equivalence theorem

is found, a string is added to some already existing equivalence class. Conceputally, E is just a set of

sets of strings, though in section 6.2 we discuss optimisations. Critically, each equivalence class has a

canonical member, against whose effect each new string’s effect is compared: obviously it would be

pointless to compare against every member of the class; the choice is free, but as the algorithm checks

ever-longer strings, an obvious strategy is to pick the first string entered into the equivalence class, as

it will be shortest. The algorithm uses the following operations involving the collection of equivalence

classes:

• initialise() — create a new empty collection of equivalence classes.

• addNewClass(Zi, w) — add a new equivalence class to E, with one member, w.

• addToClassfE, w, c) — add string w to the existing class in E that has c as its canonical member.

• canons^) — get the set of canonical members of the equivalence classes in E (so if E contains n

equivalence classes, this will return a set of n strings).

5.4.2 The bases sets

The set bases is the set of strings to be extended by the letters in £ on every iteration through the

algorithm. A naive version of the algorithm would simply check every string in £*, but this is highly

redundant (and indeed produces many redundant theorems). For example, suppose we find that xyx ~ yy

(in which case we add xyx to the equivalence class containing yy). Now, if we subsequently check

the string xyxy, we would find xyx-prefixed theorems corresponding to every yy-prefixed theorem we

discover. So, if we had also found that xxxx ~ yy (say), then we would also find that xxxx ~ xyx,

120 Chapter 5 Theorem Discovery

which is (we argue) totally redundant because we already know that xyx ~ yy, and total equivalence is

(obviously) transitive.

The sets bases and bases’ are used to avoid these redundant theorems (and computations) arising from

the transitivity of total equivalence. In particular, on each iteration we build a set bases ’, that at the

end of the iteration contains exactly those strings that were checked in that iteration and found not to

be members of any existing equivalence class (alternatively, we can say that it contains exactly those

strings for which new equivalence classes were produced). This is then used as the set bases on the next

iteration, each member being extended in turn with every letter in E to produce a new set of strings to

check. On the nth iteration of the algorithm,' bases contains strings of length n — 1, and bases’ contains

strings of length n. When an iteration of the algorithm produces no new equivalence classes, i.e. an

empty bases’ (which becomes an empty bases for the next iteration), the algorithm has found every total

equivalence theorem it is going to find, and can stop.

5.4.3 Suffix-pruning

Beyond the redundancy-reduction encapsulated in the bases mechanism just described, the algorithm

also skips checking a newly-computed string if any of its suffices have already been added to an existing

equivalence class. For example, if we consider once again the model in figure 5.1, one of the total

equivalence theorems that the algorithm finds for that model is:

yyy ~ A

So, yyy is added to the equivalence class whose canonical member is A. Now consider the string xyyy.

First, we remark that its prefix xyy is not found to be totally equivalent to any other string, and so is

added to the set of bases to be extended on the 4th iteration of the algorithm; thus, the string xyyy is not

pruned by the bases mechanism described above. However, it is still worth pruning, for without pruning,

the algorithm will produce the theorem:

xyyy ^ x

5.4 Theorem Discovery Algorithm 121

which is redundant because we already know:

yyy ~ A

Without such pruning, the algorithm produces many such suffix-similar theorems which can be con­

sidered simply as redundant.

The exact mechanism of suffix-pruning is:

1. Compute all suffices of the input string w.

2. Compute the union of all of the equivalence classes, minus their canonical members.

3. If the intersection of the set of suffices and the set of non-canonical members of equivalence

classes is non-empty, prune the string.

Note that we exclude canonical members from the set of strings to check the suffices against; without

doing so, we would automatically prune all strings of length > 1 and never find any theorems.

5.4.4 Approximate worst-case peformance analysis

On the /2th iteration of the algorithm:

• There will be W < |£|" strings (of length n) to check (algorithm 2, lines 6-8).

• There will be at most |r |° + p i 1 + 1£|2 H 1£|" strings in E\ in general this will be dominated

by the term |L|", i.e. |£ | e 0 (p |")

• Those strings will be in C < \E\ equivalence classes, with that many canonicals.

• Each of the W strings being checked will have Z = n — 1 suffices to examine during suffix

pruning; each 6f those suffices will need to be checked against the < \E\ non-canonical strings.

• If it is not pruned, checking a given string for total and partial theorems will require C effect

comparisons.

• Comparing two effects (naively) will require X < |S|2 operations.

122 Chapter 5 Theorem Discovery

Putting all of this together, the /2th iteration of the algorithm will involve at most:

W x Z x | £ | x C x X

< |L|" x (n — 1) x |E|" x |£ |” x |5 |2

< |L|3" x |5|2 x (n — 1)

operations, i.e. the algorithm is cubic in the size of the alphabet.

This is a worst-case analysis; in practice:

• Many strings will be pruned.

• C will be considerably smaller than |£ |, |£ | will be considerably smaller than the subset of E* up

to length n, etc.

• Actual implementations will be able to apply their own optimisations, e.g. to improve the speed

of the frequently used effect computation and comparison operations; in the next section we

describe one such optimisation.

In practice, we have found that there are diminishing returns (in terms of insight) as n grows, due to two

factors:

1. As n grows, the strings in the theorems get longer, and more effort is required to understand the

implications of the theorem; put another way: shorter theorems are easier to interpret.

2. As n grows, the number of theorems discovered can in some cases grow rapidly, making it harder

to pick out interesting and salient ones from what might be considered ‘noise’.

Neither of these factors is definitive, and in the next chapter we will see counterexamples; even so, we

have (so far, at least) not found any interesting theorems outside the range n < 8, say, and we believe

that in practice theorem discovery will prove most useful within this space: behaviour expressed in a

theorem involving strings of 20 actions, say, will never be noticed by actual users [ADK03].

5.5 Meta-theorems: patterns and families 123

5.5 Meta-theorems: patterns and families

Theorem discovery as described so far in this chapter is a technique for finding total and partial equi­

valences between the effects of individual pairs of action strings. The question of how to interpret those

theorems in order to obtain insight into a system’s interaction behaviour is of course a general one,

and the details will vary between systems, and will depend on the semantics of the actions concerned.

However, it is also possible to look at theorems and sets of theorems structurally — that is, it is some­

times possible to say something about what a theorem means simply by looking at its syntactic structure,

without reference to the meanings of the actions involved.

In this section we begin to explore this notion by giving a few simple examples, and we also consider the

more general question of dealing with families of theorems, where in order to make an interpretation it

is necessary to consider more than one theorem together — again, often structurally. These approaches

extend theorem discovery beyond the setting described so far in this chapter, into a realm of ‘meta­

theorems’.

Our implementation (described in section 6.2) does not deal with any of the concepts discussed in this

section — rather, it simply produces lists of individual theorems involving pairs of strings. The case

studies in chapter 6 do include some examples of the concepts from this section, but their identification

and analysis there is done entirely by hand, by visual inspection of the lists of basic theorems produced

by the tool. While it is quite straightforward to see how some of the patterns in this section could be

automatically identified by the tool, the question of how to automatically interpret families of theorems

in general remains future work.

5.5.1 Idempotent action

A very simple theorem pattern is the idem potent action, where we have a theorem of the form

124 Chapter 5 Theorem Discovery

for some a G l . Here we have an action that sets some aspect(s) of the system’s state to some particular

value, so that subsequent applications of that action have no further effect.

For example, in section 6.3.1 we have the theorems

offlfoffl

0on I on I

indicating that once the system in question has been switched off (or on), it remains off (or on).

5.5.2 Action groups

The ‘idempotent action’ pattern can be generalised into families of theorems, to identify groups of

related actions which set some variable. Here we have a set of actions, each of which affects the same

aspect(s) of system state, so that later actions override earlier ones. Such families may be recognised via

the following formalism, in which the set A is the group of actions:

3 A C L • \/ (a,b) € A x A • ab ~ b

For example, in section 6.3.1 we have, with A

[on][off) ~ | off]

indicating (along with the two theorems above) that the actions foff| and | on | both affect the same aspect

of system state — in this case simply a flag indicating if the system is on or off.

5.53 Inverse actions

Another very simple theorem pattern, but a profound one where it occurs, is that of inverse actions, i.e.

actions that undo each other:

3 a,b € L • ab ~ ba ~ X

5.5 Meta-theorems: patterns and families 125

Now, where such theorems exist, it is not guaranteed that theorem discovery will find them: the only

strings that the theorem discovery algorithm is guaranteed to check are the atomic actions in E; ordinarily

we’d expect those to all have different effects, in which case all length-2 strings will also be checked,

but this need not be the case. As such, and given the obvious importance to users of inverse actions, it

might be worth adding explicit checks against this pattern when implementing theorem discovery, and

in particular looking for partial equivalences of this form with high similarity, as those will represent

cases where two actions are nearly but not quite inverses, representing a potentially important area of

surprise for the user.

Similarly, there are some cases where a given action string is its own inverse — as with xyxy in section

5.2.3. As seen in section 5.3.9.2, these can also be missed due to pruning in the algorithm, so again, it

might be worth adding this pattern as a special case to check for, perhaps optionally.

5.5.4 Undo

Generalising the idea of inverse actions further, we might find that a given action is, in fact, an undo,

always undoing the previous action (but not, in all cases, vice versa):

£ \{ m} • b u ~ X

Note the exclusion of u from £ on the right hand side of this definition. Undo is a subtle concept, the

subject of much research in the 1980s but these days generally rather taken for granted — and still

often implemented inconsistently. In this definition we aim for a universal undo (i.e. one that undoes all

actions in the system), but follow Dix’s observation [Dix91; Dix95; D ixl3], formally grounded in PIE

theory, that a completely universal undo, that operates even on itself, is not in fact possible.

To briefly recap the argument: Suppose a system is in some state so in which two actions are possible:

a leading to sa and b leading to Sb- Now, in either of those states, undo must clearly lead back to so,

but what then happens if there is another undo immediately, i.e. to undo the first undo? The system

must return to either sa or Sb — but which? The only way in which this can be properly handled is if

the system’s state includes some extra history information enabling the undo (perhaps there are actually

126 Chapter 5 Theorem Discovery

two copies of the state, allowing flip-flopping between two states, or perhaps there is a stack of such

information), but if that is the case then undo after sa and after st actually lead to two different states,

and not in fact so (since in so the undo information component of the state would be different).

Thus we must acknowledge that a fully universal undo is not possible: there will always be some actions

in the system (at the very least undo itself) on which undo cannot act in this manner. Of course, there

may be other actions that we don’t expect undo to work on (cursor movements, say, which have inverses

but are perhaps best excluded from undo), in which case they would also need to be removed from L

before looking for undo in this way.

Undo is clearly an important kind of metatheorem to know about, and so once again we suggest that it

might be worth making it a special case and explicitly checking for it (as it only involves looking for

equivalences on length-2 strings). (Special-casing is necessary because of the exclusion of u from L

noted above: normal theorem discovery does not produce theorems that follow this pattern.)

Finally we note that it is also possible to conceive, similarly, of multi-step undo strings, though it is

unclear at this time the degree to which this makes sense or is useful:

L*\{w} • xw ~ A

5.5.5 Safe action

Some action or action string might always take us to the same state, in which case the user might consider

it ‘safe’ in that it gives them reliable behaviour without their having to pay attention. An [off 1 button is

an obvious example — or pressing the | AC | key on a desktop calculator repeatedly.

V w G l * • safe(w) 3 q G.S • V p G S • M G ?) — {#}

Unlike the other meta-theorem concepts discussed in this section, this cannot be learnt only by looking at

the simple theorems produced by theorem discovery: checking for safe action means looking explicitly

at the effect of an action string in each state, i.e. at the structure of the effect itself. As such, we propose

it as a potentially useful extension to the normal theorem discovery process, or a possible task to perform

5.5 Meta-theorems: patterns and families 127

using the theorem discovery infrastructure on which the algorithm is built.

We also note that this is another case where partiality is particularly interesting: if a user believes that

some action sequence always takes them to a safe state, but actually in a few states that’s not true, that

represents a potential surprise and possibly even a hazard.

5.5.6 Families of theorems

There will frequently be cases where some aspect of a system’s interactive behaviour is expressed as a

set of theorems rather than just one. Action groups and undo, as described above, are two examples of

this phenomenon; in order to recognise their presence automatically, some post-processing is required

beyond the basic theorem discovery algorithm described in section 5.4. In the cases of action groups

and undo, we have identified particular patterns of theorems to look for; in general, however, families

can arise with unpredictable structure, as emergent properties of the particular system being analysed.

We see an example in section 6.5.2, with theorems on the ‘device’ model of the Casio HS-8V simulation

considered in section 4.5. There are two families of nine theorems each, where each family corresponds

to some (different) aspect of the system’s behaviour. To produce that analysis it was necessary to visually

examine the eighteen theorems that theorem discovery found on that model, and look for patterns — by

applying human intelligence it was then quite straightforward then to group the theorems together and

interpret them as described later. It is unclear at this time to what degree it ought to be possible to

automate or support this process; the question of how to do this in general is beyond the scope of this

thesis, and is proposed as future work; see also section 6.2.3.

128 Chapter 5 Theorem Discovery

Chapter 6

Theorem Discovery Implementation and

Case Studies

Contents

6.1 Introduction.. . 129

6.2 Implementation.. 130

6.3 Case study 1: Air Conditioning Control P a n e l ... 138

6.4 Case study 2: Independent Digit / ‘5-key’ Number E n tr y 145

6.5 Case study 3: Casio H S-8V .. 151

6.1 Introduction

In this chapter we consider theorem discovery in action. We describe our theorem discovery implement­

ation in the form of the f sm A ctions library and f smKit tool, and follow this with three case studies

where we apply that tool to models of actual interactive systems. The case studies in question corres­

pond to three of the case studies in chapter 4, i.e. we describe the application of theorem discovery to

the models produced in those examples. We survey the theorems discovered, discuss the implications or

reasons behind particular ones, and pay particular attention to theorems that are surprising or that, we

argue, represent a potential to surprise the user.

129

130 Chapter 6 Theorem Discovery Implementation and Case Studies

6.2 Implementation

In this section we describe our implementation of theorem discovery, which has been used to produce

the theorems discussed in the case studies in the rest of this chapter. A detailed examination of the imple­

mentation is beyond the scope of this thesis; rather we provide an overview of its general structure and

components, and look more closely at certain specific aspects, and consider how it might be improved

and extended.

This software has been implemented in the programming language Haskell. Our reasons for using

Haskell are much as described in section 4.2.2; to recap and summarise, using Haskell gives us (mainly

thanks to its strong and thoroughgoing type system, and brevity of code):

• Deeper understanding of the exact requirements and details of the algorithm and required data

structures, including in comer cases.

• High confidence in the correctness and robustness of the implementation.

The source code1 is divided between two major components:

1. The f sm A ctions package (section 6.2.1) — a library of basic facilities for representing and

manipulating finite state machines and effects as formalised in section 5.3.

2. The f smKit tool (section 6.2.2) — a command-line tool built on f sm A ctions, implementing the

theorem discovery algorithm described in section 5.4.

6.2.1 The f smActions package

f sm A ctions is a Haskell package (publically available on the hackage database2) for representing and

manipulating finite state machines, action strings, and effects as formalised in section 5.3 of this thesis.

Its key contents are described in the following sections.

*http://www.cs.swan.ac.uk/-csandy/phd/
2http://hackage.haskell.org/package/fsmActions

6.2 Implementation 131

6.2.1.1 The Data.FsmActions module

This is the top-level module of the package, in which its primary data structures and operations are

defined. The key data types are:

• State — simply a synonym for Int. In f sm A ctions an FSM’s states are assumed to form a

contiguous range starting at 0.

• DestinationSet — a list of States. This is the implementation of destination set as defined in

section 5.3.5.

• Action — a list of DestinationSets. This is the implementation of effect3 as defined in section

5.3.8, specifically the ‘common case’ described there where the set of states is simply numbered

0 ...n .

• FSM sy — a finite state machine, parameterised over alphabet/symbols type sy. In practice we

have exclusively used FSMs over textual types, i.e. FSM Char and FSM String, but the library is

generic in this regard. It is implemented as a Map4 from sy to Action, allowing fast lookup by

symbol.

• Word sy — a string of symbols, simply implemented as a list of sy.

There are various operations for constructing, deconstructing, querying and combining values of these

data types; in particular:

• append ’.'.Action —»Action —> Action — to compose two effects as described in sections 5.2.3 and

5.3.5.

• action :: FSM sy —> Word sy —► Maybe Action — to compute the effect (the Maybe Action) of

some string (the Word sy) in some FSM; the return value is encased in a Maybe to catch the case

where the word contains symbols outside the FSM’s alphabet.

• actionEquiv:: Action Action —> Bool — to test if two effects are totally equivalent.

3The choice o f name is somewhat confusing: it would (now) be better if this data type was called Effect, but at the time of
implementation Action was chosen and as the software is now publically available it has not been changed.

4From the standard Data. Map module, http: //hackage. haskell. org/package/containers.

132 Chapter 6 Theorem Discovery Implementation and Case Studies

•C0->3,y>,
{ l-> 2 ,x } ,
{ l - > l ,y } ,
{ 2 -> 0 ,x } ,
{ 2 -> 0 ,y > ,
{ 3 -> 2 ,x } ,
{ 3 - > 3 ,y »

Figure 6.1: An example of the f smEdges format: the FSM shown in figure 5.1.

6.2.1.2 I/O and serialialised representations

The package is capable of reading and writing FSMs serialised in a variety of formats. The modules

involved are:

• D a ta . F sm A ctions. 10 — ‘top level’ module for performing I/O in any of the three formats

described below. Provides functions loadFsm which takes a path to a file on disk and a list of

formats to try, and returns the corresponding FSM , and saveFsm which saves an FSM in a

specified format to a file on disk.

• D a ta . Fsm A ctions. FsmEdges — to load and save FSMs represented as lists of labelled edges.

For example, see figure 6.1.

• D a ta . Fsm A ctions. A c tio n M atrix — to load and save FSMs represented as collections of

binary adjacency matrices (as exemplified briefly in section 5.2.1).

• D a ta . Fsm A ctions. Fsm M atrix — to load and save FSMs represented in another matrix

representation, where the whole FSM is represented in a single matrix, and each row contains

space-separated destination sets (as lists of comma-separated destination states) for one state.

• D a ta . F sm A ctions. Graph — to render and save FSMs in the DOT format of the Graph Viz

tool5, for offline rendering to graphical formats.

5http://graphviz.org

6.2 Implementation 133

loadFsm a "exam p les/a ircon /a ircon .fsm E d ges"
isDFSM a
stateC ount a
edgeCount a
actionCount a
actionNames a
p a r t ia ls a 1 3 95/100
dotGraph a " a ircon .d ot"

Figure 6.2: Example f smKit input, for the air conditioning control system (section 6.3).

Loaded a from examples/aircon/aircon.fsmEdges
a i s determ inistic
a has 312 sta tes
a has 2808 edges
a has 9 actions
a actions are: ["cool", "down", "heat", "high", "low", "med", "off", "on", "up"]
Theorems (0):
Theorems (49):

["cool","cool"] = ["cool"]
["cool", "down"] = ["down", "cool"]
["cool", "heat"] = ["heat"]
["cool", "high"] = ["high", "cool"]

96.157, (25/26) : ["down", "up"] ~= []
96.157, (25/26) : ["up", "down"] ~= []

Figure 6.3: Part of the output produced by feeding the contents of figure 6.2 to f smKit.

6.2.2 The f smKit tool

6.2.2.1 Overview / example

The actual theorem discovery algorithm is implemented in f smKit, a command-line tool built upon the

f sm A ctions package just described. The tool reads (from standard input) a list of commands in a small

language it defines, and then executes those commands. An example input file is shown in figure 6.2:

the input file a irco n .fsm E d g es is read and its content stored in a variable a; a few simple measures

are taken of a (is it deterministic, how many states does it have, etc.), and then the theorem discovery

algorithm is executed, looking for theorems on strings of length 1 to 3, and including partial theorems

with a threshold of 95% (to only look for total theorems, the command would read “theorem s a 1

3”). Finally, a DOT graph of the model is written to the file a i r c o n . d o t.

Part of the output produced by running f smKit against that input is shown in figure 6.3. The algorithm

134 Chapter 6 Theorem Discovery Implementation and Case Studies

found no theorems on strings of length 1, but 49 theorems on strings of length 2, of which we show the

first four and the last two (which happen to be partial); for example:

• The first theorem indicates that multiple instances of the coo l action have the same effect as a

single instance (i.e. it is idempotent — see section 5.5.1).

• The last two theorems shown indicate that the sequences “down then up”, and “up then down”

are 96.15% similar to the identity effect (i.e. ‘do nothing’). This example is discussed further in

section 6.3.2.

6.2.2.2 The module Data.FsmActions .Theorems

The core of f smKit is the module D a ta .F sm A ctio n s . Theorems, which implements the theorem dis­

covery algorithm. The implementation is a fairly straightforward transliteration of the algorithm de­

scribed in section 5.4 into Haskell, with some aspects of note.

While the algorithm is described in this thesis in imperative style, the implementation is in more idio­

matic (i.e. functional) Haskell: maps and folds over collections rather than while and for loops, etc.

There are five key data structures involved. They are all parameterised over sy, the type of the FSM’s

alphabet of symbols (see description of the FSM type in section 6.2.1.1). They are:

• EventString sy — strings of ‘events’, i.e. user actions. This is actually just implemented using

Haskell’s built-in list type.

• EventAction sy — an {EventString sy, Action) pair, containing an event string and its

corresponding effect (the Action value).

• Theorem sy — theorems involving strings of type sy, an algebraic data type with two cases:

Equivalence (for total equivalence, carrying the two equivalent EventString sy values) and Partial

(for partial equivalence, which additionally carries the EventString^ similarity as a Rational

value).

• Equivs sy — the collection of equivalence classes, implemented as a map from Action to

EventString. That is, it is a map from effects to lists of strings having that effect; the first member

6.2 Implementation 135

of each list is taken as the canonical member of the class. The choice to implement Equiv as a

map has performance implications which are discussed below.

• Workings sy — a data structure containing the algorithm’s ‘workings’, i.e. its current state (as

embodied in the algorithm in section 5.4 as the variables bases, bases', E, etc). A value of this

type is passed among the various functions involved in the implementation; it is an

implementation detail whose exact structure is not important to the current discussion.

The algorithm is run via one of the following functions:

• fsmTheorems:: Rational —> FSM sy —»• [[Theorem yy]] — takes a similarity threshold and a finite

state machine, and returns all of the theorems discovered by running the algorithm until it can

find no more theorems. The returned value is a list of lists of theorems: they are partitioned

according to the length of the string that was being checked when the theorem was discovered,

(equivalently, according to the iteration of the algorithm).

• someTheorems v.Int —>• Int —>• Rational —> FSM sy —>■ [[Theorem yy]] — like fsmTheorems but

also takes two integers x and y, and only returns theorems on strings of length between x and y

(though to build the equivalence classes it will still also need to check strings of length < x).

• fsmTheoremsFull::Rational —> FSM sy —> [Workings yy] — like fsmTheorems but returns the full

set of Workings (for debugging and introspection purposes).

The implementation prunes redundant strings according to the two techniques described in section 5.4,

i.e. uses of bases, and suffix-pruning. Beyond this (and following Knuth’s well-known remarks on pre­

mature optimisation [Knu74]) it includes only one aspect aimed at improving its performance, namely

the use of the Data M ap type in the implementation of Equiv. In order to check for total equivalence, the

algorithm takes the effect of the string currently being checked, and determines whether it is identical

to the effect of any of the canonical members of the equivalence classes already computed; as Equiv is

implemented as a map from Action (i.e. effect) to a list of strings having that effect, checking if an effect

is already known is simply a matter of performing a lookup in the map, and the Map type is implemen­

ted such that this is an 0(log n) operation (where n is the number of keys in the map, i.e. the number

of equivalence classes). Checking explicitly against every class’ canonical member’s effect is an O (n)

136 Chapter 6 Theorem Discovery Implementation and Case Studies

operation, so this represents a saving. The saving is modest, but as we get it ‘for free’ and Map is a very

natural data structure to use for this purpose anyway, it is worth having.

Note also that this saving only applies for total theorem checking: if the threshold is < 1, the algorithm

will look for partial equivalence theorems, which does necessitate explicitly checking against the effect

of every equivalence class (after all, a string can be partially equivalent to multiple other strings). As

such, the implementation explicitly distinguishes between the cases t = 1 and t < 1. In the first case it

uses the lookup optimisation described above; otherwise it iterates over all of the equivalence classes

(even while looking for total equivalences).

There are, of course, numerous possible optimisations imaginable. For example, using locality-sensitive

hashing [GIM99] in the structure of the equivalence classes could improve the performance not only of

total equivalence checking, but even partial equivalence checking. The algorithm is also a good candid­

ate for concurrent processing: in models with many states, it could be worth dividing the computation

involved in composing and comparing effects across many processors; and (particularly for partial equi­

valence checking), the task of comparing an effect with the effects corresponding to each equivalence

class is ripe for parallelisation. Such optimisations are beyond the scope of this thesis, however.

6.2.3 The f smKit user experience

We conclude this section with some thoughts on the experience of using the f smKit tool in order to do

theorem discovery. The tool is, clearly, a prototype, and the primary drive behind its creation has been

exploration and comprehension of what is actually involved in implementing the theorem discovery

algorithm at all. Its interface is purely textual and batch-oriented: the user feeds it a ‘program’ of

commands in its input language, and gets (say) a few screenfuls of text in response, in the style seen in

figure 6.3. The user must then (typically) closely examine that output in order to interpret the theorems

presented, and to work out what is interesting and what is ‘noise’, which theorems are related to which

others, etc.

(Should the user wish to dig deeper, they can construct their own Haskell programs against the f sm A ctions

package and the D ata.Fsm A ctions.T heorem s module, bypassing the fsm K it and its input language ‘

altogether. D a ta . F sm A ctions. Theorems makes this easier by providing several pretty printer routines

6.2 Implementation 137

for nicely formatting Theorem and Workings values, for example, but obviously such an undertaking still

requires good facility with Haskell.)

Overall, using f smKit is quite a ‘low level’ process requiring a lot of thought and close inspection of

fairly ugly plain text output. How might this be improved?

• An obvious improvement would be to simply format the output more sensitively. A GUI of some

sort could cut down on visual ‘noise’ such as the abundance of square brackets, distinguish

actions by colour, etc. — and just generally be “easier on the eye”.

• Similarly, filtering theorems on particular symbols or substrings is an obvious and fairly simple

thing to do.

• To cut down on noise, it could be useful to have an ‘ignore’ list, containing theorems or parts of

theorems that have been considered but discarded as uninteresting, and the tool could simply

ignore them.

• Identification of meta-theorems and possible families of theorems, as described in section 5.5

could be of great value. There are still unaddressed computational questions there, but once they

are answered, grouping related theorems together is a very natural enhancement to theorem

discovery.

• The current implementation is oriented entirely towards actions and has essentially no concept of

system state — that is, FSMs have states, but those states are only labelled with numbers, and

there is no way to relate them back to the state of the interactive system being investigated (as

produced by model discovery, say). For total equivalence theorems, this is perfectly fine: all that

matters is whether the equivalence holds across all states.

For partial equivalence theorems, on the other hand, it is very natural to want to know in which

states the two actions diverge — and where those divergenes lead. Now, it would be simple to

extend the current tool to report that in terms o f state numbers, but there is currently no

mechanism for ‘closing the loop’ back to a richer model that can tell you something about what’s

actually going on in the interactive system under investigation in those states — and none of the

f sm A ctions serialisation formats described in section 6.2.1.2 contain rich state information. In

138 Chapter 6 Theorem Discovery Implementation and Case Studies

order to make the most of partial equivalence theorems, this loop needs closing.

All of these enhancements are beyond the scope of this thesis. Our contribution has been to provide a

cleanly-defined and rigorously-implemented theorem discovery tool; it could conceivably be wrapped

in a more usable interface with relatively little work and little to no modification of the actual tool itself.

We suggest that when designing tools for dependable HCI, a good approach is to start by constructing a

well-defined and rigorously-implemented ‘engine’ (as we have done here), and then to work to improve

its usability — preferably in a cleanly separated layer of software. Naturally, usability concerns will

feed back into the design of the underlying ‘engine’, but by keeping good separation between these two

concerns, confidence in the correctness and thus usefulness of the tool can be maintained.

6.3 Case study 1: Air Conditioning Control Panel

The air conditioning control system was introduced in section 3.1.2, and the application of model dis­

covery to this system was described in section 4.2. As noted in those sections, this is a quite simple

system, with a very orthogonal structure; as such, we might expect to see a high degree of regularity in

the findings produced by theorem discovery. The model discovery performed on the system was a single

application of the basic model discovery algorithm, without any conditional exploration or variation in

terms of the aspects of system state that were projected; as such, in this case study we apply theorem

discovery to just one model, which is of the entire state space of the system.

As shown in figures 6.2 and 6.3, the model has 312 states, 2808 edges, and 9 actions. Throughout the

rest of this chapter, we adopt the convention of writing actions in a ‘push button’ style, so (for example)

we write these 9 actions not as "on", " o f f " , "up", "down", etc. but:

and we write sequence of actions as (say):

on | heat}[A \ ~A~|

6.3 Case study 1: A ir Conditioning Control Panel 139

6.3.1 Total equivalence theorems

The theorem discovery tool found no theorems of length 1, i.e. every atomic action has a different effect,

and they all have some effect (i.e. are not the identity).

Conversely, there are 47 total equivalence theorems of length 2. Seven of these that immediately stand

out (because their right-hand sides are atomic actions) are:

h ea t| heat)

cool| cool]

flow] flow)

m ed| med]

high) high |

That is, each of the 7 atomic actions listed on the right is idempotent: multiple applications of those

actions have the same effect as just one. This reflects the fact that these actions all set some particular

system state variable to some particular value, with no side-effects. Note the absence of [a] and [▼ 1

here, because those actions modify the value of some part of the system’s state, but do not set it to a

particular value, so multiple applications do ‘stack up’ their effects.

On closer inspection, we also find these 10 theorems, involving those same 7 actions:

[on][off] ~ [off)

cool || heat | [heat

high) low) [low

high | [med j [med]

low | high] rsj [high]

[off][on) ~ [on]

heat) cool] ~ [cool)

med low] ~ [low]

low) m ed) ~ [med]

med] high] ~ [high]

These reflect the fact that those 7 actions may be divided into three groups (i.e. [off | / [on |, [h ea t| / [cool|

and [low| / [m ed | / |h ig h |), according to the system state variable that they affect, i.e. according to the

component on the (highly orthogonal) UI that they are associated with. Thus, an alternative and more

140 Chapter 6 Theorem Discovery Implementation and Case Studies

| cool I[o f f] - off)[cool)

cool] on) ~ [on) cool)

[cool] low) ~ |low)[cool)

cool) med) ~ med cool)

cool) nigh) ~ high cool)

heat] off) ~ off) heat)

h ea t][on] ~ on) heat)

heat] low) ~ low] heat)

heat) med) ~ med heat)

heat) nigh) ~ high heat)

low] o f f] ~ off] low)

low] on) ~ [on) low]

med] off) ~ off) med]

med] on J ~ on) med)

high] o f f) ~ off) high]

high] on) ~ on)|high)

o ?) 0

a s
0 0 '

H H '

a a
a aa a

|cool)[A)

cool T l
T 1 heat)

h e a tJ fT ^

low)

low] (D
med)

heat) ▼)

A | heat)

[low) ▼)

~ A)[low)

med)f~A~|

[r](h teh)
(hi^h)(T]

n*j [~A~|[med]

~ jhigh][~T~~)

~ [A |[high)

Figure 6.4: Thirty commutative theorems on strings of length 2 (air conditioning control panel).

general reading of both these 10 theorems and the 7 discussed above is: “within a given action group,

the most recent action always over-rides any earlier actions in the same group” (see section 5.5.2).

There are 30 remaining total equivalence theorems of length 2, and they are all commutative, of form

[Y][X). They are shown in figure 6.4 in two columns: the 16 on the left involve actions

from the groups just described, and in each case | X | and [V) are in different groups; the 14 on the right

are similar, but in each of these, exactly one of | X | or a is C D or C D These theorems represent

the orthogonality of the interface’s components: between groups (and of course | a | and [▼) form their

own group), the order of operations never matters, exactly because each group modifies an entirely

independent aspect of the system’s state.

There are 9 theorems of length 3; the first two, which we return to in section 6.3.2, are:

Q C D D - C l)
C D I D I D ~ (D

6.3 Case study 1: A ir Conditioning Control Panel 141

The other 7 theorems on strings of length 3 are:

heat] ▼ | coo l| rsj | | ▼][cool]

s c e iq ~

000 ~ 000
~ r r i r r i f t o t]

[low)[T]| A] ~ | T)[A][low)

S 0 0 ~ 0 0 0
[h .g h in n m ~ r ^ ~ ir ^ i ihighi

There are two things say about these theorems. The first is that they are all quite comprehensible

— if you understand the semantics of the device, there are no surprises here. The second is that

given that comprehension, we might expect to see many more, similar, theorems here. For example,

cool][▼][h e a t] ~ [▼ |[heat] is a ‘reflected’ form of the first theorem which we would probably expect to

be true; indeed, it is true — so why isn’t it shown?

The answer is that the string [cool |[▼ ||h e a t | has been pruned. On its second iteration the algorithm found

a total equivalence for the string [cool |[t] (see right-hand column above). As such, that string was added

to an existing equivalence class, and thus not to the sets bases'. Thus, it was not in the set bases on the

third iteration, so that iteration did not check (indeed, did not compute) any strings beginning with

@ 0 .

The algorithm prunes strings to reduce redundant computation, and redundant output. What this example

shows is that the algorithm’s design implicitly makes a decision about how to do this, and (inevitably)

there are then theorems that it does not find. It happens that in this case we can deduce this ‘missing’

theorem from two theorems already found:

coolDQ ~][cool]

[cool][heat] [heat

cool] ▼] heat]

cool] ▼) heat]

t | [cool] [heat] (append)

(reduce)▼~] heat]

However, in general this is not the case. Consider [off |[a |[▼] ~ [a](▼][off |. This is also a true

theorem, but there is no way to deduce it from the theorems already discovered. Thus, in general, the

deductive system over strings of length n that arises from the theorems discovered over strings of length

142 Chapter 6 Theorem Discovery Implementation and Case Studies

< n is incomplete.

This raises an important, if somewhat subtle, point about the envisaged context of use of the theorem

discovery algorithm. We see the algorithm as primarily useful (and certainly novel) as a technique for

finding unforeseen truths about a system. That is, the theorem discovery algorithm is intended to surprise

its users (programmers), that they may act to reduce the amount of surprise remaining in the system for

its users (end users). The algorithm is not primarily intended as a tool for checking the truth of things

we expect to be true, i.e. for testing; as such, it is not necessary that it finds every theorem that is true. If

the programmer wishes to introduce a regression test th a t[off|[a II ▼ 1 ~ | a || t Hoff), say, a bad way

to go about it would be to run the theorem discovery algorithm and check if that theorem is found: as

we have shown, it is not found (but it is true).

Having said that, the theorem discovery infrastructure can be used to check such a theorem’s truth, how­

ever: the programmer could explicitly write a test that, given the FSM model of the system, computed

the actions for the two strings and checked their equality — and indeed we suggest that this is a per­

fectly sensible thing to do, and a good response to the natural desire to test these kinds of theorems; this

suggests that integration of theorem discovery into development environments should be fairly ‘open’,

rather than just a ‘black box’ implementation of the algorithm.

So far in this case study, theorem discovery hasn't shown anything surprising. That is itself not surpris­

ing, given the simplicity and orthogonality of the system being analysed. (Actually there is a surprising

absence of a theorem: we haven’t seen that [▼ |[a \ CUD A, which we might expect; we return

to this point in section 6.3.2 when we consider partial equivalence theorems.)

Going on and looking at theorems of length > 3, we find (as suggested in section 5.4.4) that the al­

gorithm does continue producing more and more total equivalence theorems, but they are (we argue)

not particularly interesting or insight-inspiring, and as they get longer they also become much harder to

interpret anyway. For example, on its tenth iteration, the algorithm finds 53 theorems, of which one is:

QQHQQQQHClICI] ~ QHQQQQClIQCIIIII

It is hard to see what useful insight this theorem can provide, however.

6.3 Case study 1: Air Conditioning Control Panel 143

CD CD

© O ©
Q Q

(a) No self-loops on end points. (b) Self-loops on end points.

Figure 6.5: Two versions o f a model o f a 3-state slider.

6.3.2 P a rtia l equ ivalence th eo rem s

As noted in section 6.2.2.1, performing theorem discovery with a threshold o f 95% yields two partial

theorems on strings o f length 2 :

m r n ~96.i5 k
r*nr*~i ~96.i5 ^

That is, both [▼][a | and [a][V) are 9 6 .15% similar in effect to the empty string: they nearly have no

effect. Put another way, [▼] is nearly the inverse o f [a). As noted in the previous section, we might

reasonably expect total equivalences here: why are (a | and [▼ | not inverses?

The reason is that the temperature control is a slider, so at the end points, ‘nothing happens’. Here it

is worth considering the details o f such models, and a subtle distinction between model discovery and

theorem discovery. Consider figure 6.5, which shows two possible discovered models for a slider with

just three values. Figure 6.5(a) shows an ‘intuitive’ model o f such a w idget’s behaviour: there are three

states, with [a] and [▼) actions moving between them, but when the slider is at its minimum value,

no [~v~| action is possible, and when it is at its maximum value, no [~a~| action is possible. 1 a j and

[▼) appear, intuitively, to be inverses o f each other. Unfortunately, theorem discovery as formalised in

this thesis is undefined on this model: in section 5.3.1 finite state machines are defined to have total

transition functions, and that is not the case here. Thus, the question “what is the effect o f the action

string 0 0 ?" has no answer, because that string’s destination set is undefined in states 0 and 1.

One way to deal with situations like this would be to redefine the semantics o f theorem discovery so

that effects are defined only for the subset o f states in which the action string is well-defined (with other

144 Chapter 6 Theorem Discovery Implementation and Case Studies

states leading to an error — or equivalently, null — value), and to redefine theorem discovery (both

total and partial) to compare effects only on the states for which both effects are defined. While this is

potentially interesting future work, it is beyond the scope of this thesis, where we explore the semantics

laid out in section 5.4, and so the implications of such an approach remain unexplored at this time. Our

implementation simply assumes totality, by filling in any ‘missing’ edges with self-loops — leading to

a model as in figure 6.5(b).

To be clear: totality is a requirement of theorem discovery, not model discovery, and the latter can

certainly (by design) produce models where different states have different sets of actions. It happens

that model discovery as implemented on the air conditioning control panel does not discover self-loops

on sliders’ end points. This is mentioned in section 4.2, and in particular in section 4.2.2.3, in the

description of how getControlActions is implemented:

. . . given a GuiControl value, return a list of available GuiAction values for that widget; the

possibilities are hard-coded here, with the proviso that we do not include actions that we

would expect to lead to a self-loop — attempting an Up action on a slider in its maximum

position, for example.

So the model produced by model discovery happens to be more like 6.5(a) in this respect — but when it

is loaded into f smKit for theorem discovery, self-loops are added leading to a model more like 6.5(b).

Now, in such a model, it is clear that | a | and [▼ | are not inverses. For consider the effect of the action

string | ▼ II a 1 in 6.5(b):

B 0 I = (M,2) / (O)1,2) = I = P I

Similarly:

BCD] = (0,1,1) ̂ (0,1,2) = i = p]
Neither effect is quite the identity — though they are close, and each only differ in one place. And

indeed, this is the case in the air conditioning control panel: the temperate slider has 26 possible values

(5°-30°), so in « 96.15% of the 312 states of the system, [▼ 11 a] takes you back to that state (i.e. the

string has the same effect as the empty string) — but in those 12 remaining states, this is not the case,

precisely because in those states, the temperate slider is in its minimum position. A similar analysis

6.4 Case study 2: Independent Digit / *5-key’ Number Entry 145

holds for the string [a |[▼ | .

To conclude this discussion, we return to the two,total equivalence theorems noted on page 140:

Q Q 0 - 0

Q Q Q - Q

These theorems are both true of the reduced model in figure 6.5(b):

B U D S ! = (o,o,i> = Q
B Q . a = (1.2.2) = 13

and it is easy to see how this extends onto the full air conditioning control panel’s model.

Going on to partial theorems on strings of length 3 with threshold 95%, we find numerous permutations

of [▼ 1| a f x] « 96.i5 1 X |, and [X || ▼ || a \ « 96.i5 | X |, and others arising from the similarity of [▼ 1

and | a this raises the question of how to prune partial equivalence theorems, which currently remains

future work.

6.4 Case study 2: Independent Digit / ‘5-key’ Number Entry

In this section we perform theorem discovery on some of the models, discussed in section 4.3, of a

‘5-key’ indepdendent digit number entry system. This case study has two distinguishing features:

• The model discovery process made extensive use of conditional exploration in order to produce

models of four different well-contained subspaces of the entire state space of the system, as the

entirety would be too large (given our current approaches) for model discovery and theorem

discovery. From the theorem discovery point of view, we are thus interested in commonalities

and differences of theorems discovered between the various subspaces.

• There are actually three similar but distinct number entry ‘routines’ being modelled and analysed

here, called Simple Spinner, Simple Arithmetic and BBraun v686E; see section 4.3.1 for an

overview of their similarities and differences. From the theorem discovery point of view, we are

146 Chapter 6 Theorem Discovery Implementation and Case Studies

thus interested in commonalities and differences of theorems discovered between these three

routines.

Theorem discovery produces few surprises in this case study; that’s quite reasonable: the systems are

fairly regular, and section 4.3 notes where they vary from this — our expectations arising from that are,

on the whole, met here. In particular the Simple Spinner routine is highly regular and has (for example)

no significant partial theorems and lots of symmetry; the Simple Arithmetic routine tends to be a bit less

regular, with more partial theorems; and the BBraun routine is even less regular, with some odd comers.

We do not propose to provide an exhaustive list of theorems in each example, but rather to pick up on

particular aspects of interest. In the examples given we mn theorem discovery looking for theorems on

strings up to length 3 or in some cases 4, with a similarity threshold of 90% or in some cases 95%.

6.4.1 Tenths, hundredths only; digits 0-2 only

These models are as described in section 4.3.3.1: exploring just the tenths and hundredths digits of the

display, and only the values 0-2 in those digits.

The Simple Spinner and Simple Arithmetic routines both have the same structure (figure 4.11, page 79),

which is quite simple and regular. On this model, theorem discovery finds four theorems of length 2:

Q C Z b Q
(Z H Z b Q

CEIED-Q

These theorems simply reflect the restriction of the model to the hundredths and thousandths digits: the

space is two digits ‘wide’, so multiple [< | and [► 1 actions have the same effect as single ones, because

there’s nowhere else to go. Theorem discovery actually finds these four theorems for every one of the

models considered in this section, precisely because in each case the space being explored is only two

digits ‘wide’. As such we will not repeat these theorems in the rest of this section: their presence may

be taken as read.

6.4 Case study 2: Independent Digit / ‘5-key’ Number Entry 147

On strings of length 3, theorem discovery finds eleven theorems. Four are also found in the BBraun

model (see below), and can be seen as variants of the four length-2 theorems just mentioned, with added

|~a~] andfr~ | actions:

Q C D Q - Q Q

Q Q Q - C E I Q

The remaining seven theorems reflect the vertical restriction of the model to the digits 0-2:

S Q C D - C D
0 0 0 ~ 0
Q Q Q - H I Q

Q Q Q - Q Q
Q Q I Z l - Q C *]
Q Q Q - Q Q

Q Q Q ~ G D G O C l)

Note that because of this restriction, the Simple Spinner is unable to ‘spin’ vertically, so we do not have

(as we might expect) that [a || ▼ | rsj Q Q X — but see section 6.4.3.

The BBraun model (figure 4.12, page 80) is slightly less regular, as noted in section 4.3.3.1 and indeed

throughout section 4.3; this is reflected in the results of theorem discovery. The model exhibits the first

four of the length-3 theorems found for the Simple Spinner, mentioned above. It does not have the seven

other length-3 theorems, but theorem discovery with a threshold of 80% finds five of those:

Q Q C l] “ 92.86 C D

0B 0 ” 92.86 0
0 Q Q “ 85.71 CD CD
0Q 0 “ 92.86 0 0
0 0 0 “ 85.71 0 0

148 Chapter 6 Theorem Discovery Implementation and Case Studies

(The ‘missing’ two are | a || t |[▼ | ~ | ▼ || ▼ | and | ▼ II ▼ |[a | ~ | a || a |[▼ | — they are true with

thresholds ~ 79% and | ~ 71% respectively, but if we reduce theorem discovery’s threshold far

enough to find them, we find many similar theorems and it becomes difficult to glean any insight.)

The BBraun number entry routine has non-regular behaviour near its minimum values, as described in

section 4.3.1.3 — in this example, the minimum value in question is 0.1, and looking at figure 4.12, we

see a number of one-way edges leading to states labelled with the value 0.1, and it is these edges that

lead to the partiality just described.

6.4.2 Tenths, hundredths only; digits 0-2 and 9 only

These models are as described in section 4.3.3.2: this sub-space is essentially the same as the previ­

ous example, but extended to include exploration of the 9 digit. The results of theorem discovery are

accordingly similar, with a few differences.

The Simple Spinner routine (figure 4.14, page 82) has the same four length-3 theorems described in the

previous section:

000 - □ □
000-00
000~ 00
000-00

but of the seven length-3 theorems that, in the previous example, reflected the model’s vertical restriction

to the digits 0-2, only two remain:

0 0 0 - 0

000-0

This is understandable, as the vertical restriction has been relaxed by adding another digit, i.e. 9, so the

state space is 3 digits ‘high’. If we were to consider theorems of length 4 we would find some theorems

of similar character (not shown).

6.4 Case study 2: Independent Digit / ‘5-key’ Number Entry 149

The Simple Arithmetic routine (figure 4.15, page 83) was identical to the Simple Spinner in the previous

example, but in this case it also has this partial theorem:

0 0 0 ~ 9 1 .67 0 0

This theorem is also due to the vertical extension of the model by allowing the digit 9, and can be intu­

itively understood by looking at the graph of the model. In about 8% of the model’s states (specifically,

those where the current digit is 9) [a][a | changes that digit to 1, and | a || a][a \ changes it to 2; in

all other states this is not the case, and [a][a | takes the system to a state where [a | is a self-loop.

In the Simple Spinner, this partial theorem is true with similarity exactly | — another reflection of the

regularity of that model: in exactly \ of the model’s states, the current digit is 9 (and in exactly \ it is

0, and so on.) Looking at consecutive [▼ 1 actions, we find that in the Simple Spinner I ▼ ^3

1 ▼ H ▼ 1, and for Simple Arithmetic, the similarity is ^ 79%.

Interestingly, in this example, the BBraun routine’s model (figure 4.16, page 85) has exactly the same

theorems as the Simple Spinner (up to length 3 with threshold 90%, at least).

6.4.3 Hundredths, full

These models are as described in section section 4.3.3.3: this sub-space contains only the tenths and

hundredths digits, but includes the full range 0-9 for each of those digits. In some sense this is the most

interesting example in this section, and certainly the most realistic: although the state space is still only

two digits ‘wide’, it is now at the full ‘depth’ of ten digits, and so provides a more genuine and reflective

‘slice’ of the whole state space of each system.

The first — and main — thing to note is that in the Simple Spinner model (figure 4.18(a), page 87) we

finally have that | ▼ | and [a | are inverses:

150 Chapter 6 Theorem Discovery Implementation and Case Studies

This makes perfect sense given our understanding of how the Simple Spinner works, and the presence

of these theorems is a reassuring confirmation that the implementation is correct. For the Simple Arith­

metic routine (figure 4.18(b), page 87) we find these equivalences only hold partially, with similarity

94.5%, and for the BBraun routine (figure 4.18(c), page 87), they hold with similarity 93.96%, provid­

ing concrete analytical evidence of these models’ non-regularity in this respect, and arising again from

behaviour around the minimum value.

From a designer’s point of view, this could be an important finding: users might well desire or expect

that | ▼ | and [a | are inverses, and in these models that is almost but not quite true. Whether this actually

leads to surprises and greater risk of error in practice is clearly a matter for empirical study, and beyond

the scope of this thesis, but we argue that this is a concrete and realistic example of theorem discovery

finding something that could be worthy of such study.

Going on to consider theorems of length 3, and raising the similarity threshold to 95% in recognition of

the larger state spaces of these models, we find the following for the Simple Spinner, none of which are

particularly interesting or surprising:

Q Q B ^ Q I I I
0 0 0 - Q Q

0 0 0 - 0 0
0 0 0 ~ 0 0

whereas for the other two routines we find those four theorems plus the following (Simple Arithmetic

on the left, BBraun on the right). Rather than laboriously detailing the implications of each of these,

we simply note that there is a great deal of commonality between the two sets of theorems, i.e. the

BBraun routine acts very similarly to a Simple Arithmetic implementation — indeed that is essentially

how it appears to operate to a user — but that there are clearly some differences ‘lurking’ in comer

cases (specifically around minimum values, as previously noted). Once again, we argue that theorem

discovery has raised an interesting question to consider for focused empirical study, and we suggest that

ordinary user testing would probably not notice this as a potential issue, given the size of the state space

to be explored: by exhaustively exploring the whole model, theorem discovery draws our attention onto

6.5 Case study 3: Casio HS-8V 151

the parts that deviate from regularity or expectation.

QtZIZl-GDlZ)
0 B H ~ m m

0Q0~CE)(Z)
QQ0~[Z)C±]
QQQ-CZ)
0 0 Q “ 95.00 0 Q B
0 0 B “ 95.00 Q Q C E)
q q c b “ 95.00 m m m
0 B Q “ 95.00 (ZKZDQ
0B 0 “ 98.00 Q 00
mmm ̂ 99.00 r*~1
mmm ̂ 99.00 r*i

□ 0 0 - 0

0 0 0 - 0 0

0 0 0 ~ 0 0

CZDQCE) ~ 0 0
000-00
000~0
0 0 0 “ 95.05 0 0 0
0 0 0 “ 95.05 0 0 0

0 0 0 “ 97.800 0 0
mmm rs9 890 i ► 1
mmm «98.9o n*~i

6.5 Case study 3: Casio HS-8V

Our final case study is the Casio HS-8V desktop calculator, a device that is sufficiently complex to

exhibit interesting properties, and of a class that has been very widely studied in the psychological, HCI

and programming literature (e.g. [MB81]); arguably, we should find nothing new of note. Section 4.5

describes the device (pictured in figure 4.22, page 95) and how model discovery was used to produce

two models of its number entry behaviour. To review, in each model there are the two actions [1 | and

CO and the two models are:

• The device model (figure 4.23(a), page 96), in which the full internal state of the simulation is

projected, including not only the display but also a value indicating whether the [• | key has

been pressed recently.

• The user model (figure 4.23(b), page 96), in which only the contents of the device’s display are

projected, so that this model represents the ‘user visible’ device behaviour.

(Note that in figure 4.23, [l 1 actions are shown as d, for ‘digit’.)

152 Chapter 6 Theorem Discovery Implementation and Case Studies

As noted in section 4.5, the device model is deterministic, but the user model is (unusually) nondetermin-

istic — and much of the discussion in that section is about how that nondeterminstic model was pro­

duced.

Here we introduce the notation [x fv for y presses of the key | x so CD rsJ •

6.5.1 Theorem discovery on the HS-8V user model

Running theorem discovery on the HS-8V user model, and allowing it to run to completion, i.e. to find

all theorems, yields two total equivalences:

[♦] ~ X

i z f - m 8

6.5.1.1 The theorem: [* | rsj

The first of these is extremely surprising, and was initially thought to have been caused by a bug in the

algorithm or implementation; it is, however, true. Put simply: in the user model, the decimal point key

does nothing. As states in the user model correspond to what is visible to the user, that suggests that in

the actual device, pressing the decimal point key never changes the display. This is indeed true, both of

the HS-8V simulation used to produce the model, and (as far as we can tell) of the actual device itself.

We argue that this is, probably, the most surprising statement in this thesis.

W hat’s going on here? First, we can verify that the theorem is true by visual inspection of the model;

looking at figure 4.23(b), it is easy to visually check that in every state, there is exactly one edge labelled

with a decimal point, and it is a self-loop: (• | actions really do never change the state, in this model.

Why, then in the device, does the |~*~| never change the display?

When the HS-8V is switched on, although the user has keyed nothing it displays Q , as noted in [TO09].

If the user subsequently keys | 0) or [• |, the display remains unchanged. Therefore with a display of

E B the user cannot tell if they (or somebody else) has previously keyed [0 1 or [• 1; if they then press

[5 | (say) the resultant number could be either 0.5 or 5.0.

6.5 Case study 3: Casio HS-8V 153

What our surprising total equivalence shows us is that whenever the user keys a decimal point, whatever

the input history and whatever the display currently shows, the display remains unchanged. This is

true precisely because the decimal point is already visible when the device is switched on: because it’s

visible, pressing the [• | key any time in the future doesn’t cause it to appear, and any subsequent [* 1

keypresses of course have no effect at all.

That the display remains unchanged is not only surprising, but also quite worrying. The feedback us­

ability heuristic [Nie93] is broken, and in general users cannot predict the effect of a keypress on the

device’s behaviour simply by looking at its display. [TC10] points out that multiple [• | presses leave

the display unchanged (after the first one, that is), and argues the dangers of this design defect. Theorem

discovery has found that the defect is more thoroughgoing — a problem that has gone unnoticed for

years, although it is easy to fix. (We find that more elaborate calculators, particularly ones with graphing

capability and more complex input modalities, do not exhibit this behaviour, but that the vast majority

of both basic desktop and scientific models we examined still do.) This lack of feedback is not trivial;

in [MB81], the authors note (in regard to a study of how users build mental models of the operation of a

desktop calculator):

. . . one student, fo r example, concluded that the plus (+) and equals (=) keys did nothing

since they caused no visible change in the display.

Our approach has automatically found a design defect which had been overlooked until now (and as

far as we can tell, most basic desktop calculators produced in the last 30-40 years have behaved like

this). As such, it is hard to imagine performing experiments that would have uncovered it. Having

discovered it, it is easy to propose solutions and, for example, plan A/B empirical studies: which designs

do users prefer, and which lead to fewer errors? The problem may appear small and trivial, but we

would disagree; while rare and unrecognised, it could have major consequences (as noted in section 4.5,

desktop calculators of this kind are routinely used in hospitals for drug dosage calculations, for example).

Although mode confusion (such as decimal point confusion) is a known design problem, there is no

empirical data available on whether adverse incidents are caused by confusion with displaying a decimal

point regardless of how many have been keyed by the user. It is easy to envisage usability experiments

to quantify the actual error rates, and a sufficiently long experiment would obviously establish p > 0.

154 Chapter 6 Theorem Discovery Implementation and Case Studies

One could then reflect on the cost/benefit ratios to decide whether to implement an improved design.

6.5.1.2 The theorem : | 1 f ~ [1 f

The second total equivalence found by theorem discovery is 1 1 f rsj CD . This is unsurprising from

our point of view as analysts, as it clearly reflects the display size of the calculator: once the user has

entered eight digits, further keypresses have no effect, simply because the display is full. Of course, such

behaviour might be surprising to an end user, whose actions are silently discarded: following [Thi 12]

we would recommend explicitly raising an error in such cases.

This theorem manifests in figure 4.23(b) as the ^/-labelled self-loop on the leaf state at the very bottom-

right. This observation raises an obvious question: why isn’t there a similar theorem corresponding to

each of the other leaf states, all of which have a d-labelled self-loop? For example, why do we not have:

Q 0 f ~ Q E l

(which manifests as the d-labelled self-loop on the leaf state at the very bottom-left), or:

c n n m ^ Q m m 7

(which manifests as the d-labelled self-loop on the next leaf state to the right)?

Those theorems are being pruned: when [• | ~ A is discovered on the first iteration of the theorem

discovery algorithm, [• | is added to the equivalence class of A and thus not to bases/, and thus does not

appear in bases on the next iteration — so no strings beginning with [* | get checked by the algorithm

beyond that point. This accounts for the absence of 1 • || 1 f ~ | *)[1 f . Similarly, because r*~l has

been added to an equivalence class, on the second iteration of the algorithm, the string [1 is not

checked because of suffix-pruning (i.e. on [• 1); thus, 1 1 11 • 1 has no chance to be added to bases', so

none of its suffices are checked, including | l | • |[l f . Similar arguments hold for [l |2 [l)6,

etc.

6.5 Case study 3: Casio HS-8V 155

6.5.2 Theorem discovery on the HS-8V device model

Running theorem discovery on the device model yields 18 theorems, which may be grouped into two

families. First, we have nine theorems:

V 0 < n < 8 : [H U Q ~ C H U

These theorems can be interpreted together as meaning after pressing the 1 • \ key once, subsequent

presses o f it have no effect. Of course, in the device model, [fr*~fll is not the identity: while it has

no user-visible effect, pressing | • | (for the first time) has an internal effect on the system. (In the

simulation whose models we are analysing, it sets a flag indicating that this was the most recent keypress:

presumably in the actual device the mechanism is similar.) So, these nine theorems are the device’s

model’s analogue of | • | ~ X in the user model.

Then, we have again:

CD9-C D 8
and these eight theorems:

V 1 < » < 8: C O E n f - ' 0 ~ ^ R T 1 1 M

These nine theorems can be interpreted together as meaning after eight digits have been entered, sub­

sequent keypresses have no effect. Thus, they are the device model’s analogue of the singular theorem

m 9 dT in the user model, and they represent the limited size of the device’s display. That truth

manifests here as these nine theorems rather than just one because the pruning discussed in section

6.5.1.2 doesn’t take place here, because [Q]] is not the identity.

Now, neither of these insights is particular deep or surprising, but they do accurately reflect two aspects

of the device that we would expect to be true. The main thing these theorems illustrate, we propose, is

that for some purposes, it is very useful to work on models that only project user-visible state. Theorem

discovery on the user model yields two theorems which may be very clearly interpreted, whereas in the

device model, interpreting the theorems (to reach essentially the same conclusions) takes more effort.

156 Chapter 6 Theorem Discovery Implementation and Case Studies

Chapter 7

Conclusions

Contents

7.1 Contributions of the t h e s i s ... 157

7.2 Future w o r k ... 159

In this chapter we present a summary and discussion of the contributions of the thesis, and note some

potential avenues for future work.

7.1 Contributions of the thesis

In this thesis we have described, formalised, and exemplified two techniques for modelling and analys­

ing interactive computerised systems in a manner which is rigorous, automated, and easily integrated

into existing software development workflows; the thesis builds in particular on [GT10], [GTC06] and

[GT13], extending and deepening that work as described below. These techniques are motivated by the

necessity, but difficulty, of bringing formalised approaches to bear on the problem of creating interact­

ive systems, and in particular by the desire to think about such systems in terms of issues related to

dependability, rather than more ‘traditional’ HCI concerns such as ease of use.

The presented techniques are not proposed as a replacement or alternative for traditional HCI methods

centred on actual users; rather, we suggest that they are valuable as an adjunct to such methods, in that

157

158 Chapter 7 Conclusions

they operate exhaustively, automatically, and inexpensively, and that they can in fact support such meth­

ods by raising unforeseen issues whose likelihood and severity may then be investigated further with

actual users and traditional techniques. Similarly, we do not propose to replace existing formal methods

as applied to interactive systems, but rather to complement them by providing formalised techniques

for analysing implementations rather than specifications — that is, our techniques provide insight into

the interaction behaviour of actual running systems. As such, we propose, they can be of particular

use as infrastructure for performing regression tests on interaction behaviour (say of properties arising

from formal specifications), as well as providing insight into unforeseen properties which ought to be

the subject of such tests. Overall, they add new layers of defence against error to those already routinely

used by developers, and those provided by formal methods.

The first technique, model discovery, automatically produces a state space model of the interaction

behaviour of a running system by means of a dynamic analysis simulating a user performing all possible

actions in all possible states of the system — or, in practice, some subset of actions in some subset of

states. Such models may be analysed in several ways, including by application of theorem discovery,

the other technique described in the thesis. We have explained model discovery in detail, described the

main tasks and concerns of a programmer aiming to implement it in some context, and formalised those

requirements in a specification of an API for model discovery, and an algorithm based on that API. We

have described a number of variants and extensions of that basic API and algorithm, some of which

we have implemented. We have demonstrated the use and utility of the model discovery technique by

describing in detail two case studies of its application to example systems of real world complexity, and

critiquing its application in two other cases. We have described implementation details where pertinent

or of particular interest, and have explored a number of the extensions suggested to the basic algorithm,

in particular conditional exploration.

The second technique, theorem discovery, analyses a state space model of the interaction behaviour of

a system in order to identify sequences of user actions which are equivalent — or nearly so — in their

effect on the system. This technique complements model discovery in that it is tailored for exactly

the kind of model produced by that technique, but it is also applicable to models produced by other

means, and could, we suggest, be modified to operate on other kinds of models, including ones with

more structure. We have informally and formally described the technique and the concepts upon which

7.2 Future work 159

it is based, and presented a formal description of an algorithm implementing it, including a discussion

of techniques for pruning its search space in order to reduce unwanted redundancy in its output, and an

informal worst-case performance analysis. Building on this, we have described a number of commonly

occurring syntactic patterns of theorems and their meaning, and considered the general problem of

analysis of families of theorems. We have described the implementation of a library and prototype

command-line tool for performing theorem discovery, and we have demonstrated the use and utility of

the theorem discovery technique by describing three case studies of the application of this tool to models

produced using model discovery and discussed earlier in the thesis.

It is our hope that the work presented in this thesis may form a basis for further investigation and

application of these techniques, both in terms of research aimed at answering questions raised herein,

and of application to real world examples in an industrial context.

7.2 Future work

We conclude by summarising future work which we have suggested in order to build on that presented

in this thesis.

Model discovery

In section 3.4.3 we described a number of variants and extensions to model discovery, some of which we

have begun to explore in this thesis, but much future work remains to be done in this area. In particular,

while we have demonstrated the use of conditional exploration (e.g. in section 4.3), the more general

technique of directed/scripted exploration (as described in section 3.4.3.7) seems an obvious area to

explore, and one which we believe would be very fruitful. We have, throughout, expressed our belief

that model discovery could be usefully integrated into existing development toolchains including IDEs

such as Eclipse1; providing a well-defined interface to model discovery via a DSL (essentially wrapping

the API) would be a useful step in such integration, and could then provide the basis for allowing

directed exploration in that context. More generally, the question of how best to expose advanced control

1 http://eclipse.org

160 Chapter 7 Conclusions

features such as directed and conditional exploration to the investigating programmer, is an interesting

an unanswered question.

One of the key tasks of the investigating programmer who wishes to apply model discovery in some

context is to choose an appropriate projection of SUD state for the model they are interested in; as de­

scribed in section 3.2.1 this projection needs to be sound to allow proper backtracking, and as suggested

in section 3.4.2, one possible way to check for unsound projections is to repeat a model discovery task

stochastically — either as a post-processing check or on-the-fly as the model is discovered. Similarly,

as suggested in section 4.5, adding actions to the pool more than once per state could serve as such

a soundness check. However, neither of these techniques have been investigated for their utility and

implications as yet.

Going on from this, we have noted that due to this soundness requirement, models can sometimes

unavoidably include aspects of state which the analyst is actually uninterested in, from the point of view

of the analysis task they wish to perform. As such, we propose that there exists an as-yet-uninvestigated

space of post-processing tasks which could be useful in order to transform the ‘bare product’ of model

discovery into more focused models. For example, by removing all trace of the temperature control from

the model produced of the air conditioning control system, and collapsing similar states, we can produce

a model identical to that which would have been produced by performing model discovery ignoring the

temperature control slider altogether.

Finally, model discovery as described in this thesis aims to produce models of the user-interaction be­

haviour of systems; however, as described in section 4.2.1, actual systems often (indeed usually) also

interact with their environment (as distinct from the user), and in many cases act to control a phys­

ical plant. We have suggested that while applying model discovery, tracking environment/plant state is

inadvisable, not least because it adds to the model and thus distracts from or obscures the interaction

behaviour which we are nominally interested in. However, there is no conceptual reason why the model

discovery technique could not be adapted to such a style, and investigation of its utility for building

models of the more general behaviour of systems, could be interesting future work.

7.2 Future work 161

Theorem discovery

The theorem discovery algorithm and implementation presented here are prototypical. In section 6.2.2.2

we suggested some performance optimisations which could be applied to the algorithm in particular

exploiting concurrency where appropriate, and using locality-sensitive hashing to improve the speed of

partial equivalence checking. In terms of the actual algorithm structure, as noted in section 6.3.2, the

current pruning techniques do not adequately reduce redundancy of reported partial theorems; how to

extend the current pruning mechanisms to do so is thus interesting and necessary future work.

In section 5.2.4 we describe the computation of similarity as the basis of partial equivalence theorems,

but our similarity metric weights all model states equally; as noted in that section, one possible extension

to this would be to weight states in this computation according to their frequency of visitation by users

— as informed either by empirical study, Markov methods, or a combination of both.

We have identified several areas where the theorem discovery infrastructure may be of use in and of

itself, separately from the theorem discovery algorithm. In section 6.3.1 we described issues around

testing for the existence of theorems, and described why simply running the algorithm and looking

for a theorem in its output is inadequate for this task. In section 5.5 we also identified several cases

where the algorithm itself does not quite provide a particular insight, but specialised application of the

infrastructure can do so — for example inverse actions (section 5.5.3) and undo (section 5.5.4). More

generally, the task of identifying and interpreting (or aiding the semi-automatic interpretation of) meta­

theorems and families of theorems remains future work.

In section 6.2.3 we suggested a number of avenues for improving the theorem discovery user experience.

In particular: visual improvements (e.g. re-implementation or wrapping in a GUI); filtering theorems on

symbols and substrings; ability to save/load an ‘ignore’ list, in order to support multiple runs of the

algorithm; and ‘closing the loop’ with respect to states, in order to fully support insights provided by

partial equivalence theorems.

Finally, as discussed in section 6.3.2, we might consider redefining the semantics of theorem discovery

to allow non-total models, which raises some interesting questions. For example, does this have any

major effects on the structure of the algorithm, or on the task of interpreting the theorems produced?

162 Chapter 7 Conclusions

Bibliography

[AWM95]

[AP11]

[ATOIO]

[ABL02]

[ADK03]

[BK07]

[Bar+09]

Gregory D. Abowd, Hung-Ming Wang and Andrew F. Monk. ‘A formal technique for auto­

mated dialogue development’. In: Proceedings o f the 1st conference on Designing interact­

ive systems: processes, practices, methods, & techniques. DIS ’95. Ann Arbor, Michigan,

USA: ACM, 1995, pp. 219-226 (cit. on p. 18).

Darren Abramson and Lee Pike. ‘When formal systems kill: computer ethics and formal

methods’. In: APA Newsletter on Philosophy and Computers. Vol. 11.1. American Philo­

sophy Association, 2011 (cit. on p. 8).

Chitra Acharya, Harold Thimbleby and Patrick Oladimeji. ‘Human computer interaction

and medical devices’. In: Proceedings o f the 24th BCS Interaction Specialist Group Con­

ference. BCS ’10. Dundee, United Kingdom: British Computer Society, 2010, pp. 168-176

(cit. on p. 28).

Glenn Ammons, Rastislav Bodfk and James R. Laras. ‘Mining specifications’. In: SIG-

PLAN Not. 37.1 (2002), pp. 4-16 (cit. on p. 20).

Alexandr Andoni, Dumitra Daniliuc and Sarfraz Khurshid. Evaluating the “Small Scope

Hypothesis”. Tech. rep. MIT Laboratory for Computer Science, 2003 (cit. on pp. 30, 122).

Michael Bachle and Paul Kirchberg. ‘Ruby on Rails’. In: IEEE Software 24.6 (2007),

pp. 105-108 (cit. on p. 2).

Clark Barrett, Roberto Sebastiani, Sanjit Seshia and Cesare Tinelli. ‘Satisfiability Modulo

Theories’. In: Handbook o f Satisfiability. Ed. by Armin Biere, Marijn J. H. Heule, Hans van

Maaren and Toby Walsh. Vol. 185. IOS Press, 2009. Chap. 26, pp. 825-885 (cit. on p. 16).

163

164 BIBLIOGRAPHY

[Bas+11]

[BNP03]

[Bas+99]

[Bec03]

[Ben38]

[BM04]

[Bla+08]

[BB10]

[BH95]

[BRIO]

[BF99]

Ellen J. Bass, Karen M. Feigh, Elsa L. Gunter and John M. Rushby. ‘Formal Modeling and

Analysis for Interactive Hybrid Systems’. In: ECEASST 45 (2011) (cit. on p. 16).

Remi Bastide, David Navarre and Philippe Palanque. ‘A Tool-Supported Design Frame­

work for Safety Critical Interactive Systems’. In: Interacting with computers 15.3 (2003),

pp. 309-328 (cit. on p. 19).

Remi Bastide, Philippe Palanque, Ousmane Sy, Duc-Hoa Le and David Navarre. ‘Petri Net

Based Behavioural Specification of CORBA Systems’. In: Application and Theory o f Petri

Nets 1999. Ed. by Susanna Donatelli and Jetty Kleijn. Vol. 1639. LNCS. Springer Berlin

Heidelberg, 1999, pp. 66-85 (cit. on p. 19).

Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003 (cit.

on p. 2).

Frank Benford. ‘The Law of Anomalous Numbers’. In: Proceedings o f the American Philo­

sophical Society 78.4 (1938), pp. 551-572 (cit. on p. 28).

Michel Bidoit and Peter D. Mosses. CASL User Manual. Vol. 2900. LNCS. Springer, 2004

(cit. on p. 42).

Ann E. Blandford, Joanne K. Hyde, Thomas R. G. Green and Iain Connell. ‘Scoping Ana­

lytical Usability Evaluation Methods: A Case Study’. In: Human-Computer Interaction

23.3 (2008), pp. 278-327 (cit. on p. 13).

Matthew L. Bolton and Ellen J. Bass. ‘Formally verifying human-automation interaction as

part of a system model: limitations and tradeoffs’. In: Innov. Syst. Softw. Eng. 6.3 (2010),

pp. 219-231 (cit. on p. 13).

J.P. Bowen and M.G. Hinchey. ‘Seven more myths of formal methods’. In: IEEE Software

12.4 (1995), pp. 34-41 (cit. on p. 9).

Judy Bowen and Steve Reeves. ‘Developing usability studies via formal models of UIs’.

In: Proceedings o f the 2nd ACM SIGCHI symposium on Engineering interactive computing

systems. EICS ’10. ACM, 2010, pp. 175-180 (cit. on p. 19).

Howard Bowman and Giorgio Faconti. ‘Analysing Cognitive Behaviour using LOTOS and

Mexitl’. In: Formal Aspects o f Computing 11.2 (1999), pp. 132-159 (cit. on p. 13).

BIBLIOGRAPHY 165

[Bum+95]

[CH97]

[CH98]

[CHOI]

[CH08]

[CH09]

[CHI 1]

[CD07]

Peter Bumbulis, P.S.C. Alencar, D.D. Cowan and C.J.P. Lucena. ‘Combining Formal Tech­

niques and Prototyping in User Interface Construction and Verification’. In: Design, Spe­

cification and Verification o f Interactive Systems ’95. Ed. by Philippe Palanque and Remi

Bastide. Eurographics. Springer Vienna, 1995, pp. 174-192 (cit. on p. 12).

Jose Creissac Campos and Michael D. Harrison. ‘Formally Verifying Interactive Systems:

A Review’. In: Design, Specification and Verification o f Interactive Systems ’97. Ed. by Mi­

chael D. Harrison and Juan Carlos Torres. Eurographics. Springer Vienna, 1997, pp. 109-

124 (cit. on p. 17).

Jose Creissac Campos and Michael D. Harrison. ‘The Role of Verification in Interactive

Systems Design’. In: Interactive Systems. Design, Specification, and Verification. Proceed­

ings o f the 5th International Workshop, DSV-IS1998. Ed. by Panos Markopoulos and Peter

Johnson. Springer, 1998, pp. 155-170 (cit. on p. 17).

Jose Creissac Campos and Michael D. Harrison. ‘Model Checking Interactor Specifica­

tions’. In: Automated Software Engineering (2001) (cit. on p. 17).

Josd Creissac Campos and Michael D. Harrison. ‘Systematic Analysis of Control Panel

Interfaces Using Formal Tools’. In: Interactive Systems. Design, Specification, and Verific­

ation. Proceedings o f the 15th International Workshop, DSV-IS 2008. Ed. by T.C. Nicholas

Graham and Philippe Palanque. Vol. 5136. LNCS. Springer, 2008, pp. 72-85 (cit. on p. 17).

Jose Creissac Campos and Michael D. Harrison. ‘Interaction engineering using the IVY

tool’. In: Proceedings o f the 1st ACM SIGCHI symposium on Engineering interactive com­

puting systems. EICS ’09. ACM, 2009, pp. 35-44 (cit. on p. 17).

Jose Creissac Campos and Michael D. Harrison. ‘Modelling and analysing the interactive

behaviour of an infusion pump’. In: Proceedings o f the 4th International Workshop on

Formal Methods fo r Interactive Systems. EASST, 2011 (cit. on p. 17).

Gerardo Canfora and Massimiliano Di Penta. ‘New Frontiers of Reverse Engineering’. In:

2007 Future o f Software Engineering. FOSE ’07. Washington, DC, USA: IEEE Computer

Society, 2007, pp. 326-341 (cit. on p. 20).

166 BIBLIOGRAPHY

[CNM83]

[CLM03]

[Cha+92]

[Cho+11]

[CHOO]

[CGP99]

[CES86]

[CW96]

[CP09]

Stuart K. Card, Allen Newell and Thomas P. Moran. The Psychology o f Human-Computer

Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1983 (cit. on p. 12).

Keith Chan, Zhi Cong Leo Liang and Amir Michail. ‘Design recovery of interactive graph­

ical applications’. In: Proceedings o f the 25th International Conference on Software Engin­

eering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003, pp. 114-124 (cit. on

p. 21).

E. Moll van Charante, R.I. Cook, D.D. Woods, L. Yue and M.B. Howie. ‘Human-Computer

Interaction in context: Physician interaction with automated intravenous controllers in the

heart room’. In: Analysis, design, and evaluation o f man-machine systems 1992. Ed. by

H.G. Stassen. Pergamon Press, 1992, pp. 263-274 (cit. on p. 26).

A. Tankeu Choitat, J.-C. Fabre, P. Palanque, D. Navarre and Y. Deleris. ‘Self-checking

widgets for interactive cockpits’. In: Proceedings o f the 13th European Workshop on De­

pendable Computing. EWDC ’11. Pisa, Italy: ACM, 2011, pp. 43-48 (cit. on p. 19).

Koen Claessen and John Hughes. ‘QuickCheck: a lightweight tool for random testing of

Haskell programs’. In: Proceedings o f the 5th ACM SIGPLAN international conference on

Functional programming. ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268-279 (cit.

on p. 23).

E. M. Clark, O. Grumberg and D. Peled. Model Checking. MIT Press, 1999 (cit. on p. 14).

E. M. Clarke, E. A. Emerson and A. P. Sistla. ‘Automatic verification of finite-state con­

current systems using temporal logic specifications’. In: ACM Trans. Program. Lang. Syst.

8.2 (1986), pp. 244-263 (cit. on pp. 14, 15).

Edmund M. Clarke and Jeannette M. Wing. ‘Formal methods: state of the art and future

directions’. In: ACM Comput. Surv. 28.4 (1996), pp. 626-643 (cit. on pp. 1, 8).

Sebastien Combefis and Charles Pecheur. ‘A bisimulation-based approach to the analysis

of human-computer interaction’. In: Proceedings o f the 1st ACM SIGCHI symposium on

Engineering interactive computing systems. EICS ’09. ACM, 2009, pp. 101-110 (cit. on

p. 13).

BIBLIOGRAPHY 167

[CC77]

[Cou87a]

[Cou87b]

[Cro06]

[CH07]

[CB02]

[CRB07]

[Dea+02]

[DH97]

Patrick Cousot and Radhia Cousot. ‘Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints’. In: Proceedings o f the

4th ACM SIGACT-SIGPLAN symposium on Principles o f programming languages. POPL

’77. Los Angeles, California: ACM, 1977, pp. 238-252 (cit. on p. 30).

Joelle Coutaz. ‘PAC, an Object Oriented Model for Dialog Design’. In: Proceedings o f the

2nd IFIP International Conference on Human-Computer Interaction (INTERACT 87). Ed.

by Hans-Jorg Bullinger and Brian Shackel. 1987, pp. 431-436 (cit. on p. 31).

Joelle Coutaz. ‘PAC: An Object Oriented Model For Implementing User Interfaces’. In:

SIGCHI Bulletin 19.2 (1987) (cit. on pp. 12, 31).

Douglas Crockford. RFC 4627 - The application/j son media type fo r JavaScript Object

Notation. Tech. rep. 2006 (cit. on p. 40).

Daniela Da Cruz and Pedro Rangel Henriques. ‘Slicing wxHaskell modules to derive the

User Interface Abstract Model’. In: Proceedings o f the International Multiconference on

Computer Science and Information Technology. Ed. by M. Ganzha, M. Paprzycki and T.

Pelech-Pilichowski. 2007, pp. 1021-1024 (cit. on p. 23).

Paul Curzon and Ann Blandford. ‘From a Formal User Model to Design Rules’. In: Inter­

active Systems. Design, Specification, and Verification. Proceedings o f the 9th International

Workshop, DSV-IS 2002. Ed. by Bodo Urban, Jean Vanderdonckt and Quentin Limbourg.

Vol. 2545. LNCS. Springer, 2002, pp. 1-15 (cit. on p. 13).

Paul Curzon, Rimvydas RukSenas and Ann Blandford. ‘An approach to formal verification

of human-computer interaction’. In: Form. Asp. Comput. 19.4 (2007), pp. 513-550 (cit. on

p. 13).

B Dean, M Schachter, C Vincent and N Barber. ‘Prescribing errors in hospital inpatients:

their incidence and clinical significance’. In: Quality safety in health care 11.4 (2002),

pp. 340-344 (cit. on p. 26).

Andrew M. Dearden and Michael D. Harrison. ‘Abstract models for HCI’. In: Int J Hum-

Comput St 46.1 (1997), pp. 153-178 (cit. on p. 12).

168 BIBLIOGRAPHY

[Deg04]

[DH02]

[DH03]

[Dil96]

[DF09]

[DHF08]

[Dix91]

[Dix95]

[Dixl3]

[Doh98]

[DH93]

Asaf Degani. Taming HAL: Designing Interfaces Beyond 2001. Palgrave Macmillan, 2004

(cit. on p. 18).

Asaf Degani and Michael Heymann. ‘Formal Verification of Human-Automation Interac­

tion’. In: Human factors 44.1 (2002), pp. 28-43 (cit. on p. 18).

Asaf Degani and Michael Heymann. ‘Analysis and Verification of Human-Automation In­

terfaces’. In: Proceedings o f the 10th International Conference on Human-Computer Inter­

action. 2003, pp. 1-6 (cit. on p. 18).

David L. Dill. ‘The Murphi Verification System’. In: Proceedings o f the 8th International

Conference on Computer Aided Verification. CAV ’96. London, UK, UK: Springer-Verlag,

1996, pp. 390-393 (cit. on p. 16).

Anke Dittmar and Peter Forbrig. ‘Task-based design revisited’. In: Proceedings o f the 1st

ACM SIGCHI symposium on Engineering interactive computing systems. EICS ’09. ACM,

2009, pp. 111-116 (cit. on p. 13).

Anke Dittmar, Toralf Hiibner and Peter Forbrig. ‘Interactive Systems. Design, Specifica­

tion, and Verification’. In: ed. by T. C. Graham and Philippe Palanque. Berlin, Heidelberg:

Springer-Verlag, 2008. Chap. HOPS: A Prototypical Specification Tool for Interactive Sys­

tems, pp. 58-71 (cit. on p. 13).

AJ Dix. Formal methods fo r interactive systems. Academic Press, 1991 (cit. on pp. 11, 38,

51, 125).

Alan J Dix. ‘Formal methods: an introduction to and overview of the use of formal methods

within HCI’. In: Perspectives on HCI: Diverse Approaches (1995), pp. 9-43 (cit. on p. 125).

Alan J. Dix. ‘Formal Methods’. In: The Encyclopedia o f Human-Computer Interaction, 2nd

Ed. Ed. by Mads Soegaard and Rikke Friis Dam. Aarhus, Denmark: The Interaction Design

Foundation, 2013 (cit. on p. 125).

Gavin John Doherty. ‘A Pragmatic Approach to the Formal Specification of Interactive

Systems’. Doctoral dissertation. University of York, 1998 (cit. on p. 12).

David J. Duke and Michael D. Harrison. ‘Abstract Interaction Objects’. In: Computer

Graphics Forum 12.3 (1993), pp. 25-36 (cit. on p. 17).

BIBLIOGRAPHY 169

[DAC98]

[Dwy+04]

[DCH97]

[Ell+02]

[Gam+95]

[GT10]

[GT13]

[GIM99]

Matthew B. Dwyer, George S. Avrunin and James C. Corbett. ‘Property specification pat­

terns for finite-state verification’. In: Proceedings o f the second workshop on Formal meth­

ods in software practice. FMSP ’98. Clearwater Beach, Florida, United States: ACM, 1998,

pp. 7-15 (cit. on p. 17).

Matthew B. Dwyer, Robby Robby, Oksana Tkachuk and Willem Visser. ‘Analyzing inter­

action orderings with model checking’. In: ASE ’04: Proceedings o f the 19th IEEE inter­

national conference on Automated software engineering. IEEE Computer Society, 2004,

pp. 154-163 (cit. on p. 2).

Matthew Dwyer, Vicki Carr and Laura Hines. ‘Model checking graphical user interfaces

using abstractions’. In: ESEC ’97/FSE-5: Proceedings o f the 6th European conference held

jointly with the 5th ACM SIGSOFT international symposium on Foundations o f software

engineering (1997) (cit. on p. 15).

John Ellson, Emden Gansner, Lefteris Koutsofios, StephenC. North and Gordon Woodhull.

‘Graphviz — Open Source Graph Drawing Tools’. In: Graph Drawing. Ed. by Petra Mutzel,

Michael Junger and Sebastian Leipert. Vol. 2265. LNCS. Springer Berlin Heidelberg, 2002,

pp. 483^484 (cit. on p. 36).

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design patterns: ele­

ments o f reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1995 (cit. on p. 59).

Andy Gimblett and Harold Thimbleby. ‘User interface model discovery: towards a generic

approach’. In: Proceedings o f the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems. EICS ’10. ACM, 2010, pp. 145-154 (cit. on pp. 6, 25, 98, 157).

Andy Gimblett and Harold Thimbleby. ‘Applying theorem discovery to automatically find

and check usability heuristics’. In: Proceedings o f the 5th ACM SIGCHI symposium on

Engineering interactive computing systems. EICS ’13. ACM, 2013, pp. 101-106 (cit. on

pp. 6, 157).

Aristides Gionis, Piotr Indyk and Rajeev Motwani. ‘Similarity Search in High Dimensions

via Hashing’. In: Proceedings o f the 25th International Conference on Very Large Data

170 BIBLIOGRAPHY

[Giv+13]

[GM93]

[GTC06]

[HVV91]

[Hal90]

[Har87]

[HN96]

[Har+08]

[HD02]

Bases. VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,

pp. 518-529 (cit. on p. 136).

Paul Givens, Aleksandar Chakarov, Sriram Sankaranarayanan and Tom Yeh. ‘Exploring the

internal state of user interfaces by combining computer vision techniques with grammatical

inference’. In: Proceedings o f the 2013 International Conference on Software Engineering.

ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013, pp. 1165-1168 (cit. on p. 22).

M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A theorem proving environ­

ment fo r higher order logic. Cambridge University Press, 1993 (cit. on p. 12).

Jeremy Gow, Harold Thimbleby and Paul Cairns. ‘Automatic critiques of interface modes’.

In: Interactive Systems. Design, Specification, and Verification. Proceedings o f the 12th

International Workshop, DSV-IS 2005. Ed. by Michael D. Harrison and Stephen W. Gilroy.

Vol. 3941. LNCS. Newcastle upon Tyne, UK: Springer, 2006, pp. 201-212 (cit. on pp. 100,

101, 117, 157).

G. de Haan, G.C. van der Veer and J.C. van Vliet. ‘Formal modelling techniques in human-

computer interaction’. In: Acta Psychologica 78.1-3 (1991), pp. 27-67 (cit. on p. 11).

Anthony Hall. ‘Seven Myths of Formal Methods’. In: IEEE Softw. 7.5 (1990), pp. 11-19

(cit. on p. 9).

David Harel. ‘Statecharts: a visual formalism for complex systems’. In: Science o f Com­

puter Programming 8.3 (1987), pp. 231-274 (cit. on p. 17).

David Harel and Amnon Naamad. ‘The STATEMATE semantics of statecharts’. In: ACM

Trans. Softw. Eng. Methodol. 5.4 (1996), pp. 293-333 (cit. on p. 17).

Michael D. Harrison, Jose Creissac Campos, Gavin Doherty and Karsten Loer. ‘Connecting

Rigorous System Analysis to Experience-Centered Design’. In: Maturing Usability. Ed.

by EffieLai-Chong Law, EbbaThora Hvannberg and Gilbert Cockton. Human-Computer

Interaction Series. Springer London, 2008, pp. 56-74 (cit. on p. 17).

Michael Heymann and Asaf Degani. On Abstractions and Simplifications in the Design o f

Human-Automation Interfaces. Technical Report. NASA, 2002 (cit. on p. 18).

BIBLIOGRAPHY 171

[HK06]

[Hol91]

[Hud+07]

[HC96]

[IS089]

[Jac06]

[Jac83]

[JJ07]

[JH92]

Antawan Holmes and Marc Kellogg. ‘Automating Functional Tests Using Selenium’. In:

Proceedings o f the conference on AGILE 2006. AGILE ’06. Washington, DC, USA: IEEE

Computer Society, 2006, pp. 270-275 (cit. on p. 5).

Gerard J. Holzmann. Design and validation o f computer protocols. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1991 (cit. on p. 16).

Paul Hudak, John Hughes, Simon Peyton Jones and Philip Wadler. ‘A history of Haskell:

being lazy with class’. In: Proceedings o f the third ACM SIGPLAN conference on History

o f programming languages. HOPL III. San Diego, California: ACM, 2007, pp. 12/1-12/55

(cit. on p. 42).

Andrew Hussey and David Carrington. ‘Using Object-Z to compare the MVC and PAC

architectures’. In: Proceedings o f the 1996 BCS-FACS conference on Formal Aspects o f the

Human Computer Interface. FAC-FA’96. Sheffield, UK: British Computer Society, 1996,

pp. 6 -6 (cit. on p. 12).

ISO/IEC. Information Processing Systems - Open Systems Interconnection: LOTOS, A

Formal Description Technique Based on the Temporal Ordering o f Observational Beha­

vior. ISO 8807. 1989 (cit. on p. 13).

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,

2006 (cit. on p. 30).

Robert J. K. Jacob. ‘Using formal specifications in the design of a human-computer inter­

face’. In: Commun. ACM 26.4 (1983), pp. 259-264 (cit. on p. 10).

Raoul Praful Jetley and Paul L Jones. ‘Safety Requirements based Analysis of Infusion

Pump Software’. In: Proceedings o f the IEEE Real Time Systems Symposium (2007), pp. 1-

4 (cit. on p. 28).

Chris W. Johnson and Michael D. Harrison. ‘Using temporal logic to support the specific­

ation and prototyping of interactive control systems’. In: International journal o f man-

machine studies (1992) (cit. on p. 15).

172 BIBLIOGRAPHY

[KSH08]

[KNP03]

[Knu74]

[LW08]

[Lim+05]

[Lin+98]

[LVD01]

[Loe03]

Nadjet Kamel, Sid Ahmed Selouani and Habib Hamam. ‘A decomposed model-checking

approach for the verification of CARE usability properties for multimodal user interfaces’.

In: AVOCS ’08: Proceedings o f the 8th International Workshop on Automated Verification

o f Critical Systems (2008), pp. 99-112 (cit. on pp. 16, 27).

R Kaye, R North and M Peterson. ‘UPCARE: An analysis, description, and educational

tool for medical device use problems’. In: Proceedings o f the Eighth Annual International

Conference o f Industrial Engineering Theory, Applications and Practice (2003) (cit. on

p. 27).

Donald E. Knuth. ‘Structured Programming with go to Statements’. In: ACM Comput. Surv:

6.4 (December 1974), pp. 261-301 (cit. on p. 135).

Peng Li and Eric Wohlstadter. ‘View-based maintenance of graphical user interfaces’. In:

AOSD ’08: Proceedings o f the 7th international conference on Aspect-oriented software

development. Brussels, Belgium: ACM, 2008, pp. 156-167 (cit. on p. 23).

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon and Victor

Lopez-Jaquero. ‘USIXML: A Language Supporting Multi-path Development of User Inter­

faces’. In: Engineering Human Computer Interaction and Interactive Systems. Ed. by Remi

Bastide, Philippe Palanque and Jorg Roth. Vol. 3425. LNCS. Springer Berlin Heidelberg,

2005, pp. 200-220 (cit. on pp. 12, 19).

Laura Lin, Racquel Isla, Karine Doniz, Heather Harkness, KimJ. Vicente and D.John Doyle.

‘Applying Human Factors to the Design of Medical Equipment: Patient-Controlled Anal­

gesia’. In: Journal o f Clinical Monitoring and Computing 14.4 (1998), pp. 253-263 (cit. on

p. 26).

Laura Lin, Kim J Vicente and D.John Doyle. ‘Patient Safety, Potential Adverse Drug

Events, and Medical Device Design: A Human Factors Engineering Approach’. In: Journal

o f Biomedical Informatics 34.4 (2001), pp. 274—284 (cit. on p. 26).

Karsten Loer. ‘Model-based Automated Analysis for Dependable Interactive Systems’.

Doctoral dissertation. University of York, 2003 (cit. on p. 17).

BIBLIOGRAPHY 173

[LH01]

[LH04]

[LH06]

[LC99]

[Mar+02]

[Mas+11]

[Mas+13]

Karsten Loer and Michael D. Harrison. ‘Formal interactive systems analysis and usability

inspection methods: two incompatible worlds?’ In: Interactive Systems. Design, Specifica­

tion, and Verification. Proceedings o f the 7th International Workshop, DSV-IS 2000. Ed. by

Philippe Palanque and Fabio Patemo. Vol. 1946. LNCS. Springer, 2001, pp. 169-190 (cit.

on p. 18).

Karsten Loer and Michael D. Harrison. ‘Integrating model checking with the industrial

design of interactive systems’. In: 26th International Conference on Software Engineering

- W1L Workshop Bridging the Gaps II: Bridging the Gaps Between Software Engineering

and Human-Computer Interaction. 2004, 9-16(7) (cit. on p. 17).

Karsten Loer and Michael D. Harrison. ‘An integrated framework for the analysis of de­

pendable interactive systems (IFADIS): Its tool support and evaluation’. In: Automated Soft­

ware Engg. 13.4 (2006), pp. 469^196 (cit. on p. 17).

Gerald Liittgen and Victor Carreno. ‘Analyzing Mode Confusion via Model Checking’.

In: Theoretical and Practical Aspects o f SPIN Model Checking. Ed. by Dennis Dams, Rob

Gerth, Stefan Leue and Mieke Massink. Vol. 1680. LNCS. Springer Berlin Heidelberg,

1999, pp. 120-135 (cit. on p. 16).

Gary Marsden, Harold Thimbleby, Matt Jones and Paul Gillary. ‘Data Structures in the

Design of Interfaces’. In: Personal Ubiquitous Comput. 6.2 (2002), pp. 132-140 (cit. on

p. 24).

Paolo Masci, Rimvydas Ruksenas, Patrick Oladimeji, Abigail Cauchi, Andy Gimblett, Yun-

qiu Li, Paul Curzon and Harold Thimbleby. ‘On formalising interactive number entry on

infusion pumps.’ In: ECEASST 45 (2011) (cit. on p. 14).

Paolo Masci, Rimvydas Ruksenas, Patrick Oladimeji, Abigail Cauchi, Andy Gimblett, Yun-

qiu Li, Paul Curzon and Harold Thimbleby. ‘The benefits of formalising design guidelines:

a case study on the predictability of drug infusion pumps’. In: Innovations in Systems and

Software Engineering (2013), pp. 1-21 (cit. on p. 14).

174 BIBLIOGRAPHY

[MB81]

[McM92]

[MBN03]

[MS05]

[MBD08]

[Mil78]

[Nav+01]

[Nav+09]

[Nie93]

Richard E. Mayer and Piraye Bayman. ‘Psychology of calculator languages: a framework

for describing differences in users’ knowledge’. In: Commun. ACM 24 (8 1981), pp. 511-

520 (cit. on pp. 151,153).

Kenneth Lauchlin McMillan. ‘Symbolic model checking: an approach to the state explosion

problem’. UMI Order No. GAX92-24209. Doctoral dissertation. Pittsburgh, PA, USA, 1992

(cit. on p. 16).

Atif Memon, Ishan Banerjee and Adithya Nagarajan. ‘GUI ripping: reverse engineering

of graphical user interfaces for testing’. In: WCRE ’03: Proceedings o f the 10th Working

Conference on Reverse Engineering. IEEE Computer Society, 2003, p. 260 (cit. on pp. 21,

37).

M Memik and AM Sloane. ‘When and how to develop domain-specific languages’. In:

ACM Computing Surveys (CSUR) 37.4 (2005), pp. 316-344 (cit. on p. 54).

Ali Mesbah, Engin Bozdag and Arie van Deursen. ‘Crawling AJAX by inferring user inter­

face state changes’. In: ICWE ’08: Proceedings o f the 2008 Eighth International Confer­

ence on Web Engineering. IEEE Computer Society, 2008, pp. 122-134 (cit. on p. 21).

Robin Milner. ‘A theory of type polymorphism in programming’. In: Journal o f Computer

and System Sciences 17 (1978), pp. 348-375 (cit. on p. 2).

David Navarre, Philippe Palanque, Remi Bastide and Ousmane Sy. ‘Structuring Interact­

ive Systems Specifications for Executability and Prototypability’. In: Interactive Systems.

Design, Specification, and Verification. Proceedings o f the 7th International Workshop,

DSV-IS 2000. Ed. by Philippe Palanque and Fabio Patemo. Vol. 1946. LNCS. Springer,

2001, pp. 97-119 (cit. on p. 19).

David Navarre, Philippe Palanque, Jean-Francois Ladry and Eric Barboni. ‘ICOs: A model-

based user interface description technique dedicated to interactive systems addressing us­

ability, reliability and scalability’. In: ACM Trans. Comput.-Hum. Interact. 16.4 (2009),

18:1-18:56 (cit. on p. 19).

Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., 1993 (cit. on

pp. 18, 27, 153).

BIBLIOGRAPHY 175

[Ola 12]

[OTC11]

[ORS92]

[PFM08]

[Pai+05]

[Pal+11]

[Par69]

[Par 10]

Patrick Oladimeji. ‘Towards safer number entry in interactive medical systems’. In: Pro­

ceedings o f the 4th ACM SIGCHI symposium on Engineering interactive computing sys­

tems. EICS ’ 12. ACM, 2012, pp. 329-332 (cit. on pp. 25, 67).

Patrick Oladimeji, Harold Thimbleby and Anna Cox. ‘Number Entry Interfaces and their

Effects on Errors and Number Perception’. In: Proceedings IFIP Conference on Human-

Computer Interaction — Interact 2011. Vol. IV. Lisbon, Portugal: Springer-Verlag, 2011,

pp. 178-185 (cit. on p. 25).

Sam Owre, John M. Rushby and Natarajan Shankar. ‘PVS: A Prototype Verification Sys­

tem’. In: Proceedings o f the 11th International Conference on Automated Deduction: Auto­

mated Deduction. CADE-11. London, UK, UK: Springer-Verlag, 1992, pp. 748-752 (cit.

on p. 12).

Ana C. R. Paiva, Joao C. P. Faria and Pedro M. C. Mendes. ‘Reverse engineered formal

models for GUI testing’. In: FMICS ’07: International Workshop on Formal Methods fo r

Industrial Critical Systems. Vol. 4916. LNCS. Springer, 2008, pp. 218-233 (cit. on pp. 21,

37).

Ana C. R. Paiva, Joao C. P. Faria, Nikolai Tillmann and Raul A. M. Vidal. ‘A model-

to-implementation mapping tool for automated model-based GUI testing’. In: ICFEM ’05:

7th International Conference on Formal Engineering Methods. Vol. 3785. LNCS. Springer,

2005, pp. 450-464 (cit. on p. 21).

Philippe Palanque, Eric Barboni, Celia Martinie, David Navarre and Marco Winckler. ‘A

model-based approach for supporting engineering usability evaluation of interaction tech­

niques’. In: Proceedings o f the 3rd ACM SIGCHI symposium on Engineering interactive

computing systems. EICS ’11. ACM, 2011, pp. 21-30 (cit. on p. 20).

David L. Pamas. ‘On the use of transition diagrams in the design of a user interface for an

interactive computer system’. In: Proceedings o f the 1969 24th national conference o f the

ACM. ACM ’69. New York, NY, USA: ACM, 1969, pp. 379-385 (cit. on p. 10).

David Lorge Pamas. ‘Really Rethinking ‘Formal Methods” . In: Computer 43.1 (2010),

pp. 28-34 (cit. on p. 1).

176 BIBLIOGRAPHY

[Pat99]

[PS01]

[Pet62]

[Pey03]

[Pnu77]

[RJJ09]

[ReaOO]

[Ree79]

[Ree05]

[RW06]

[Ros98]

[RJB99]

Fabio Patemo. Model-Based Design and Evaluation o f Interactive Applications. 1st. Lon­

don, UK, UK: Springer-Verlag, 1999 (cit. on p. 13).

Fabio Patemo and Carmen Santoro. ‘Integrating model checking and HCI tools to help de­

signers verify user interface properties’. In: Interactive Systems. Design, Specification, and

Verification. Proceedings o f the 7th International Workshop, DSV-IS 2000. Ed. by Philippe

Palanque and Fabio Patemo. Vol. 1946. LNCS. Springer, 2001, pp. 135-150 (cit. on p. 16).

Carl Adam Petri. ‘Kommunikation mit Automaten’. Doctoral dissertation. Universitat Ham­

burg, 1962 (cit. on p. 19).

Simon Peyton Jones, ed. Haskell 98 Language and Libraries - The Revised Report. Cam­

bridge University Press, 2003 (cit. on pp. 42, 57).

Amir Pnueli. ‘The temporal logic of programs’. In: Proceedings o f the 18th Annual Sym­

posium on Foundations o f Computer Science. SFCS ’77. Washington, DC, USA: IEEE

Computer Society, 1977, pp. 46-57 (cit. on p. 15).

Amab Ray, Raoul Jetley and Paul Jones. ‘Engineering high confidence medical device

software’. In: ACM SIGBED Review 6.2 (2009), pp. 1-7 (cit. on p. 27).

James Reason. ‘Human error: models and management’. In: BMJ 320.7237 (18th2000),

pp. 768-770 (cit. on pp. 3, 26).

Trygve M. H. Reenskaug. Models - Views - Controllers. Technical Note. Xerox PARC,

1979 (cit. on pp. 12, 31).

Greg A. Reeve. ‘A Refinement Theory for jU-Charts’. Doctoral dissertation. University of

Waikato, 2005 (cit. on p. 19).

A. W. Roscoe and Zhenzhong Wu. ‘Verifying Statemate Statecharts Using CSP and FDR’.

In: Proceedings o f ICFEM 2006. 2006 (cit. on p. 18).

A.W. Roscoe. The Theory and Practice o f Concurrency. Prentice Hall, 1998 (cit. on p. 15).

James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language Ref­

erence Manual. Addison-Wesley Professional, 2nd1999 (cit. on p. 2).

BIBLIOGRAPHY 111

[Rus02]

[Rus07]

[Sca98]

[Sch96]

[Shn82]

[SP04]

[SillO]

[SCS06]

[SCS07]

John Rushby. ‘Using model checking to help discover mode confusions and other auto­

mation surprises’. In: Reliability Engineering and System Safety 75.2 (2002), pp. 167-177

(cit. on p. 16).

John Rushby. ‘Automated Formal Methods Enter the Mainstream’. In: Journal o f Universal

Computer Science 13.5 (2007), pp. 650-660 (cit. on pp. 1, 9, 14).

Bryan Scattergood. ‘The Semantics and Implementation of Machine-Readable CSP’. DPhil

thesis. The University of Oxford, 1998 (cit. on p. 18).

David A. Schmidt. ‘On the need for a popular formal semantics’. In: ACM Comput. Surv.

28.4es (1996) (cit. on p. 1).

B. Shneiderman. ‘Multiparty Grammars and Related Features for Defining Interactive Sys­

tems’. In: IEEE Transactions on Systems, Man and Cybernetics 12.2 (1982), pp. 148-154

(cit. on p. 10).

Ben Shneiderman and Catherine Plaisant. Designing the User Interface: Strategies fo r Ef­

fective Human-Computer Interaction (4th Edition). Pearson Addison Wesley, 2004 (cit. on

p. 27).

Joao Carlos Silva. ‘G U I s u r f e r : A Generic Framework for Reverse Engineering of Graph­

ical User Interfaces’. Doctoral dissertation. Universidade do Minho, 2010 (cit. on p. 23).

Joao Carlos Silva, Jose Creissac Campos and Joao Saraiva. ‘Models for the Reverse En­

gineering of Java/Swing Applications’. In: 3rd International Workshop on Metamodels,

Schemas, Grammars, and Ontologies (ateM 2006) fo r Reverse Engineering. Ed. by J. M.

Favre, D. Gasevic, R. Lammel and A. Winter. Informatik-Bericht series 1/2006. Johannes

Gutenberg-Universitat Mainz, Institut fur Informatik - FB 8,2006 (cit. on p. 22).

Joao Carlos Silva, Jose Creissac Campos and Joao Saraiva. ‘Combining Formal Methods

and Functional Strategies Regarding the Reverse Engineering of Interactive Applications’.

In: Interactive Systems: Design, Specification and Verification. Vol. 4323. LNCS. Springer-

Verlag, 2007, pp. 137-150 (cit. on p. 22).

178 BIBLIOGRAPHY

[SCS10]

[SSC09]

[Sil+10]

[Sir 10]

[SHC05]

[Sta07a]

[Sta07b]

[SB82]

[Tau90]

[Thi97]

Joao Carlos Silva, Jose Creissac Campos and Joao Saraiva. ‘GUI Inspection from Source

Code Analysis’. In: Electronic Communications o f the EASST (2010). to appear (cit. on

p. 23).

Joao Carlos Silva, Joao Saraiva and Jose Creissac Campos. ‘A generic library for GUI

reasoning and testing’. In: SAC ’09: Proceedings o f the 2009 ACM symposium on Applied

Computing. Honolulu, Hawaii: ACM, 2009, pp. 121-128 (cit. on p. 22).

Joao Carlos Silva, Carlos Silva, Rui D. Gon?alo, Joao Saraiva and Jose Creissac Campos.

‘The GUISurfer tool: towards a language independent approach to reverse engineering GUI

code’. In: Proceedings o f the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems. EICS ’10. ACM, 2010, pp. 181-186 (cit. on p. 23).

Alexander Sirotkin. ‘Web application testing with selenium’. In: Linux J. 2010.192 (2010)

(cit. on p. 5).

Julian Smart, Kevin Hock and Stefan Csomor. Cross-Platform GUI Programming with

wxWidgets. Prentice Hall, 2005 (cit. on p. 57).

Stefan Staiger. ‘Reverse Engineering of Graphical User Interfaces Using Static Analyses’.

In: WCRE ’07: Proceedings o f the 14th Working Conference on Reverse Engineering. IEEE

Computer Society, 2007, pp. 189-198 (cit. on p. 23).

Stefan Staiger. ‘Static Analysis of Programs with Graphical User Interface’. In: CSMR ’07:

Proceedings o f the 11th European Conference on Software Maintenance and Reengineer­

ing. IEEE Computer Society, 2007, pp. 252-264 (cit. on p. 23).

William Swartout and Robert Balzer. ‘On the inevitable intertwining of specification and

implementation’. In: Commun. ACM 25 (7 1982), pp. 438-440 (cit. on pp. 3, 10).

Michael J. Tauber. ‘ETAG: Extended task action grammar. A language for the description of

the user’s task language’. In: Proceedings o f the IF1P TCI 3 3rd Interational Conference on

Human-Computer Interaction. INTERACT ’90. Amsterdam, The Netherlands, The Neth­

erlands: North-Holland Publishing Co., 1990, pp. 163-168 (cit. on p. 11).

Harold Thimbleby. ‘A True Calculator’. In: Engineering Science and Education Journal

6.3 (1997), pp. 128-136 (cit. on p. 23).

BIBLIOGRAPHY 179

[ThiOO]

[Thi04a]

[Thi07a]

[Thi07b]

[Thi09]

[ThilO]

[Thil2]

[TC10]

[TCJOl]

[Thi+12]

Harold Thimbleby. ‘Calculators are Needlessly Bad’. In: International Journal ofHuman-

Computer Studies 52.6 (2000), pp. 1031-1069 (cit. on p. 24).

Harold Thimbleby. ‘User Interface Design with Matrix Algebra’. In: ACM Transactions on

Computer-Human Interaction 11.2 (2004), pp. 181-236 (cit. on p. 103).

Harold Thimbleby. Press On. Principles o f interaction programming. MIT Press, Boston,

USA., 2007 (cit. on p. 30).

Harold Thimbleby. ‘User-centered Methods are Insufficient for Safety Critical Systems’.

In: USAB’07 — Usability & HCI fo r Medicine and Health Care. Ed. by Andreas Holzinger.

Vol. 4799. LNCS. Graz, Austria: Springer Verlag, 2007, pp. 1-20 (cit. on pp. 3, 24).

Harold Thimbleby. ‘Contributing to safety and due diligence in safety-critical interactive

systems development by generating and analyzing finite state models’. In: Proceedings o f

the 1st ACM SIGCHI symposium on Engineering interactive computing systems. EICS ’09.

ACM, 2009, pp. 221-230 (cit. on pp. 24, 30, 39, 41,42).

Harold Thimbleby. ‘Avoiding latent design conditions using UI discovery tools’. In: Inter­

national Journal o f Human-Computer Interaction 26.2 (2010), pp. 1-12 (cit. on p. 25).

Harold Thimbleby. ‘Heedless Programming: Ignoring Detectable Error is a Widespread

Hazard’. In: Software — Practice & Experience 42.11 (2012), pp. 1393-1407 (cit. on

pp. 26, 154).

Harold Thimbleby and Paul Cairns. ‘Reducing Number Entry Errors: Solving a Wide­

spread, Serious Problem’. In: Journal Royal Society Interface 7.51 (2010), pp. 1429-1439

(cit. on pp. 3, 25,153).

Harold Thimbleby, Paul Cairns and Matt Jones. ‘Usability Analysis with Markov Models’.

In: ACM Transactions on Computer-Human Interaction 8.2 (2001), pp. 99-132 (cit. on

p. 108).

Harold Thimbleby, Abigail Cauchi, Andy Gimblett, Paul Curzon and Paolo Masci. ‘Safer

“5-key” Number Entry User Interfaces using Differential Formal Analysis’. In: Proceedings

BCS Conference on HCI. Vol. XXVI. Birmingham, UK, 2012, pp. 29-38 (cit. on pp. 25,

68, 69).

180 BIBLIOGRAPHY

[TG08]

[TO09]

[Thi04b]

[Tip95]

[UIM92]

[Vic+03]

[Was85]

[Win92]

[WCB13]

[Woo+09]

Harold Thimbleby and Jeremy Gow. ‘Engineering Interactive Systems’. In: ed. by Jan Gul-

liksen, Morton Borup Haming, Philippe Palanque, Gerrit C. Veer and Janet Wesson. Berlin,

Heidelberg: Springer-Verlag, 2008. Chap. Applying Graph Theory to Interaction Design,

pp. 501-519 (cit. on pp. 17, 23, 24).

Harold Thimbleby and Patrick Oladimeji. ‘Social network analysis and interactive device

design analysis’. In: Proceedings o f the 1st ACM SIGCHI symposium on Engineering in­

teractive computing systems. EICS ’09. ACM, 2009, pp. 91-100 (cit. on pp. 25, 30,42,88,

92-94, 152).

William Thimbleby. ‘A novel pen-based calculator and its evaluation’. In: Proceedings

o f the 3rd Nordic conference on Human-computer interaction. NordiCHI ’04. Tampere,

Finland: ACM, 2004, pp. 445^148 (cit. on p. 24).

F. Tip. ‘A Survey of Program Slicing Techniques’. In: Journal o f Programming Languages

3 (1995), pp. 121-189 (cit. on p. 22).

UIMS Workshop. ‘A metamodel for the runtime architecture of an interactive system: the

UIMS tool developers workshop’. In: SIGCHI Bull. 24.1 (1992), pp. 32-37 (cit. on pp. 9,

12).

Kim J. Vicente, Karima Kada-Bekhaled, Gillian Hillel, Andrea Cassano and Beverley A.

Orser. ‘Programming errors contribute to death from patient-controlled analgesia: case re­

port and estimate of probability’. In: Canadian Journal Ane the sia 50.4 (2003), pp. 328-332

(cit. on p. 26).

Anthony I. Wasserman. ‘Extending State Transition Diagrams for the Specification of Human-

ComputerInteraction’. In: IEEETrans. Softw. Eng. 11.8 (1985), pp. 699-713 (cit. on p. 10).

Patrick Henty Winston. Artificial Intelligence. Addison-Wesley, 1992 (cit. on p. 30).

Sarah Wiseman, Anna L. Cox and Duncan P. Brumby. ‘Designing Devices With the Task

in Mind: Which Numbers Are Really Used in Hospitals?’ In: Human Factors: The Journal

o f the Human Factors and Ergonomics Society 55.1 (2013), pp. 61-74 (cit. on p. 28).

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui and John Fitzgerald. ‘Formal methods:

Practice and experience’. In: ACM Comput. Surv. 41.4 (2009), 19:1-19:36 (cit. on pp. 1, 8).

BIBLIOGRAPHY 181

[Zha+03] Jiajie Zhang, Todd R Johnson, Vimla L Patel, Danielle L Paige and Tate Kubose. ‘Using

usability heuristics to evaluate patient safety of medical devices’. In: Journal o f Biomedical

Informatics 36.1-2 (2003), pp. 23-30 (cit. on p. 27).

182 BIBLIOGRAPHY

