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Abstract

One of the main concerns in designing the wireless communication sys­
tems is to provide sufficiently large data rates while considering the dif­
ferent aspects of the implementation complexity that is often constrained 
by limited battery power and signal processing capability of the devices. 
Thus, in this thesis, a low complexity encoding and decoding algorithms 
are investigated for systems with the transmission diversity, particularly 
the receiver diversity and the cooperative diversity. Design guidelines for 
such systems are provided to provide a good trade-off between the imple­
mentation complexity and the performance.
The order statistics based list decoding techniques for linear binary block 
codes of small to medium block length are investigated to reduce the com­
plexity of coded systems. The original order statistics decoding (OSD) 
is generalized by assuming segmentation of the most reliable independent 
positions of the received bits. The segmentation is shown to overcome 
several drawbacks of the original order statistics decoding. The complex­
ity of the OSD is further reduced by assuming a partial ordering of the re­
ceived bits in order to avoid the highly complex Gauss elimination. The bit 
error rate performance and the decoding complexity trade-off of the pro­
posed decoding algorithms are studied by computer simulations. Numer­
ical examples show that, in some cases, the proposed decoding schemes 
are superior to the original order statistics decoding in terms of both the bit 
error rate performance as well as the decoding complexity. The complex­
ity of the order statistics based list decoding algorithms for linear block 
codes and binary block turbo codes (BTC) is further reduced by employ­
ing highly reliable cyclic redundancy check (CRC) bits. The results show 
that sending CRC bits for many segments is the most effective tecnhique 
in reducing the complexity.
The coded cooperative diversity is compared with the conventional re­
ceiver coded diversity in terms of the pairwise error probability and the 
overall bit error rate (BER). The expressions for the pairwise error prob­
abilities are obtained analytically and verified by computer simulations. 
The performance of the cooperative diversity is found to be strongly relay 
location dependent. Using the analytical as well as extensive numerical 
results, the geographical areas of the relay locations are obtained for small 
to medium signal-to-noise ratio values, such that the cooperative coded di­
versity outperforms the receiver coded diversity. However, for sufficiently 
large signal-to-noise ratio (SNR) values, or if the path-loss attenuations are 
not considered, then the receiver coded diversity always outperforms the 
cooperative coded diversity. The obtained results have important implica­
tions on the deployment of the next generation cellular systems supporting 
the cooperative as well as the receiver diversity.



The coded cooperative diversity is then studied as the two problems of the 
distributed encoding and decoding. Specifically, in the first problem, the 
source and the relay employ the same channel encoding, and the objective 
is to find how to distribute the decoding complexity between the relay and 
the destination. The objective of the second problem is to distribute the en­
coding complexity between the source and the relay while using the same 
channel decoding at the relay and at the destination. Extensive simulation 
results are obtained assuming binary linear block codes and block turbo 
codes and the order statistics based decoding. It is found that the decoding 
complexity distribution is strongly relay location dependent, and, for the 
case without the path-loss, the distribution of the minimum Hamming dis­
tances of the channel sub-codes are more important than the distribution 
of the code rates. On the other hand, regardless of the relay location, the 
code rates of the sub-codes are more important than the minimum Ham­
ming distance of the sub-codes.
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1

Introduction

1.1 Motivations

The quality of service in wireless communication systems is affected by propogation 
channel impairments such as noise, interference, and fading. In addition, the wireless 
communications are currently experiencing a rapid deployment of embedded wireless 
devices. Since these devices are often limited to a single chip and are battery-powered, 
their signal processing capabilities (i.e., the processing speed and the available on­
board memory) can severely limit the use of many conventional physical layer sig­
naling techniques. The signal processing techniques are also significantly limited in 
wireless networks containing very high data rate links (of the order of Gigabits per 
second). In such cases, complexity reduction and diversity become important to rem­
edy such challenges. The main objective of diversity is to improve the reliability of the 
transmitted messages. The diversity can be realized as the time diversity, frequency di­
versity, polarization diversity, spatial diversity, cooperative diversity. Some of the well 
known techniques to exploit the diversity are channel coding and multi-input multi­
output (MIMO) communication systems.

One of the important diversity methods considered in this thesis is the forward error 
correction (FEC) coding that is often used as the channel coding. A major difficulty 
in employing the FEC is the implementation complexity especially for the decoding at 
the receiver and the associated decoding latency for long codewords. Correspondingly,
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1.1 Motivations

the FEC coding is often designed to trade-off the bit error rate (BER) with the decoding 
complexity and latency. Many universal decoding algorithms have been proposed for 
the decoding of linear binary block codes [1], The decoding algorithms in [2]—[3] 
are based on the testing and re-encoding of the information bits as initially considered 
by Dorsch in [4]. In particular, a list of the likely transmitted codewords is generated 
using the reliabilities of the received bits, and then, the most likely codeword is selected 
from this list. The list of the likely transmitted codewords can be constructed from a 
set of the test error patterns. The test error patterns can be predefined as in [2] and [5], 
predefined and optimized for the channel statistics as in [6], or defined adaptively for 
a particular received sequence as suggested in [7]. The complexity of the list decoding 
can be further reduced by the skipping and stopping rules as shown, for example, in[2] 
and [5]. Among numerous variants of the list decoding techniques, the order statistics 
decoding (OSD) is well-known [2], [5]. The structural properties of the FEC code 
are utilized to reduce the OSD complexity in [8]. The achievable coding gain of the 
OSD is improved by considering the multiple information sets in [9]. An alternative 
approach to the soft-decision decoding of linear binary block codes relies on the sphere 
decoding techniques [10, 11].

The problem of the decoding complexity has motivated the research community 
how to most efficiently apply the order statistics based list decoding techniques for 
linear binary block codes of small to medium block length. The original OSD is gen­
eralized in this thesis by assuming segmentation of the most reliable independent posi­
tions of the received bits. Such segmentation is shown to overcome several drawbacks 
of the original OSD decoding algorithm. The complexity of the order statistics based 
decoding is further reduced by assuming a partial ordering of the received bits in order 
to avoid the complexity of the Gaussian elimination. For comparison purposes, the 
input sphere decoder (ISD) is also considered in this thesis as a trivial sphere decod­
ing algorithm. Even further reduction in complexity of the OSD decoding algorithm 
and block turbo codes (BTCs) is achieved by employing highly reliable CRC bits (free 
error bits) and by using single generator matrix for the BTCs.

Another diversity method considered in this thesis is the cooperative communi­
cation diversity. In the cooperative diversity, signal processing is distributed among 
network nodes in order to exploit spatial diversity and combat the multipath fading
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1.1 Motivations

[12, 13]. Hence, communications between a source and a destination with the help of 
a single relay is a well-studied example of the distributed signal processing. Particu­
larly, from the source point of view, the relay and the destination cooperate to recover 
the transmitted information, and the relay represents the distributed receiver antenna. 
On the other hand, from the destination point of view, the source and the relay coop­
erate to deliver information to the destination, so that the relay acts as the distributed 
transmitter antenna. Different relaying strategies can be used to perform cooperative 
diversity such as amplify-and-forward (AF), decode-and-forward (DF), and compress- 
and-forward (CF)[14]. The cooperative communication diversity has many advantages 
such as the design flexibility, the number of nodes (relays) that can be utilized, im­
proved coverage, and the ability to be readily integrated with channel coding. Because 
of these advantages, the cooperative diversity is adopted and used in different areas 
of wireless communications, for example, in wireless networks (IEEE 802.15.4) and 
wireless LANs (80.2.11/a/b/g/n).

On the other hand, the cooperative diversity faces many challenges. The first and 
the main challenge is that the end-to-end performance is dominated by the detection 
reliability at the relay which may cause as an error propagation. The second challenge 
is that the network throughput is smaller than for MIMO diversity systems. However, 
the cooperative diversity has other advantages over the MIMO systems such as smaller 
channel correlation and the complexity reduction. The third challenge is to find an 
efficient way of cooperation among the different relays in the system. In this thesis our 
main aim is to investigate different solutions to reduce the complexity of the cooper­
ative system and to reduce the error propagation in such systems in order to improve 
the reliability of detecting the received signal in the destination node. The error prop­
agation and the complexity reduction in cooperative systems have been addressed in 
this thesis in a number of different ways: 1) Relay restrictions and positions, 2) Dis­
tributed decoding and distributed complexity requirements of BTCs, and 3) Distributed 
encoding of BTCs.

For the relay positions, identical block codes at the source node and at the relay 
node with AF and DF relaying schemes at the relay with different combining schemes 
at the destination are considered. The performances of the cooperative systems with 
different assumptions are investigated. Moreover, a comparison of the cooperative and

3



1.2 Contributions

receiver diversity with channel coding in terms of the BER performance and implemen­
tation complexity is obtained. We will show by mathematical analysis and numerical 
results, that the coded cooperative system is highly dependent on the relay positions, 
the relaying schemes and the combining schemes employed at the destination.

The distribution complexity of the decoding between the relay and the destination is 
investigated. The same block codes are used at both source and at the relay. However, 
the decoding process at the relay and at the destination either different or the same but 
with different decoding parameters. Moreover the cases where the relay is on the only 
link between the source and the destination link are investigated. The OSD decoding 
algorithms that are developed in this thesis are shown to achieve flexibility and good 
trade-off between the performance and the complexity.

In case of the distributed BTC, the channel code at the destination is a BTC having 
a repetition code as one of its component codes. For example, generalization of the 
distributed product code to the uplink and downlink scenarios to facilitate cooperation 
among a group of mobile terminals using single parity check codes is considered in [15, 
16, 17]. However, cooperative system design principles for such algorithms which are 
rarely considered motivate our investigatation of design principles in this thesis. Also, 
the relations between parameters in such systems are not considered in the literature, 
so more investigation in depth was carried out in this thesis.

1.2 Contributions

The OSD-based decoding strategies for linear binary block codes are investigated. Our 
aim is to obtain low-complexity decoding schemes that provide sufficiently large or 
valuable coding gains, and most importantly, that are well-suited for implementation 
in communication systems with limited hardware resources, e.g., at nodes of the wire­
less sensor network. We modify the original OSD by considering the disjoint segments 
of the most reliable independent positions (MRIPs). The segmentation of the MRIPs 
creates flexibility that can be exploited to fine tune a trade-off between the BER perfor­
mance and the decoding complexity. Thus, the original OSD can be considered to be a 
special case of the segmentation-based OSD having only one segment corresponding

4



1.2 Contributions

to the MRIPs. Since the complexity of obtaining a row echelon form of the generator 
matrix for every received codeword represents a significant part of the overall decod­
ing complexity, we examine a partial-order statistics decoding (POSD) when only the 
systematic part of the received codeword is ordered.

Further reduction in complexity for OSD decoding algorithm and block turbo code 
(BTC) is achieved by employing highly reliable CRC bits and a design of single gen­
erator matrix for BTC.

In order to reduce the error propagation at the relay in coded cooperative system, 
we investigated the suitable relay positions and restriction. We compare the BER 
versus signal-to-noise ratio (SNR) of two communication systems assuming uncoded 
transmissions as well as assuming encoding of the packets using a simple channel cod­
ing prior to their transmission. The first system represents a cooperative diversity con­
sisting of a single source S, a relay R and a destination D. The relay performs either AF 
or DF processing of the received packets. In case of the DF relaying we assume that the 
relay uses the same encoder as the source and the same decoder as the destination. The 
second system considered in Chapter 6 represents a simple receiver diversity with two 
receiver antennas. In both systems, the destination coherently combines the received 
signals using maximum ratio combining (MRC) or equal gain combining (EGC) which 
is followed by the demodulation and the channel decoding . Thus, in both systems, di­
versity order of at most two can be achieved at the combiner output. More importantly, 
we compare the BER performances of the two systems assuming the path-loss atten­
uation between the communicating nodes. Intuitively, assuming that all the channels 
between nodes are independent, one can expect that the receiver diversity outperforms 
the cooperative diversity. However, our mathematical and numerical results indicate 
that the BER performance of the system with cooperative diversity is strongly depen­
dent on the relay location. Assuming channel coding and non-binary modulations, to 
the best of the authors’ knowledge, such comparison has not been done previously.

The main two problems of the DF cooperation are investigated assuming simple- 
to-implement encoding and decoding techniques. The simplicity o f the encoding and 
decoding is important in applications where the cost of implementation cannot be ne­
glected (e.g., in large scale deployments), or where the implementation complexity is 
limited by other factors such as high data rate or small latency. On the other hand, the
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1.3 Organization of thesis

simple encoding and decoding techniques can rarely approach the channel capacity, 
and thus, the asymptotic mathematical theoretic analysis must be often replaced by 
computer simulations.

In the first problem, the source and the relay employ the same channel encoder, 
however, the type of the channel decoder used at the relay and at the destination is 
either different or the same but its parameters may be different. We consider the order 
statistics decoding (OSD) developed in [2] and refined in Chapter 4 in this thesis for 
its inherent flexibility to trade-off the decoding complexity and the bit error rate (BER) 
performance. The main objective of the first problem is to investigate how to distribute 
the (overall) decoding complexity of the OSD between the relay and the destination. 
The decoding complexity of the OSD can be measured as the total number of the test 
error patterns (TEPs) searched in the decoding process.

In the second problem, the relay and the destination use the OSD with the same 
parameters, however, the channel encodings at the source and at the relay are different. 
The main objective of this problem is to investigate how to distribute the channel code 
rates and the minimum Hamming distances of the codes between the source and the re­
lay since the code rate can be used as a measure of the encoding complexity. Note also 
that, in general, the modulation constellations used at the source and at the relay can 
be different, however, this case and the associated distribution of the implementation 
complexity are not considered in this thesis.

1.3 Organization of thesis

In Chapter 2 and Chapter 3, we represent an over view for some fundamentals and 
related literature for coded systems in general and coded cooperative systems in par­
ticular.

In Chapter 4, the order statistics based list decoding techniques for linear binary 
block codes of small to medium block length are investigated. System model is de­
scribed in Section 4.2. Construction of the list of test error patterns is investigated 
in Section 4.3. The list decoding algorithms are developed in Section 4.4. The per­
formance analysis is considered in Section Five. Numerical examples to compare the
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BER performance and the decoding complexity of the proposed decoding schemes are 
presented in Section 4.6. Finally, conclusions are given in Section 4.7.

In Chapter 5, two different techniques are proposed to reduce the complexity of 
the OSD and the POSD decoding algorithms for linear binary block codes and binary 
block turbo codes (BTC). System model is described in Section 5.2. In Section 5.3, the 
OSD decoding algorithm and CRC techniques are proposed with numerical examples. 
The design of a single genrator matrix of binary BTC is discussed in Section 5.4. 
Conclusions are given in Section 5.5.

In Chapter 6, a Comparison is carried between the transmission reliabilities of a 
cooperative diversity system employing a single relay and a system employing the 
conventional receiver diversity with the two receiver antennas. Section 6.2 describes 
the system models including the modulation and channel coding and decoding for two 
systems employing the receiver and the cooperative diversity, respectively. The PEP 
as a key measure of the transmission reliability for the two systems under considera­
tion is analyzed in Section 6.3. The performance of the two systems are compared in 
Section 6.4 the optimum relay locations for the system with the cooperative diversity 
are determined, so that it outperforms the system with the receiver diversity. Finally, 
conclusions are given in Section 6.5.

In Chapter 7, two problems of the DF cooperation assuming simple-to-implement 
encoding and decoding techniques are investigated. The system model is adopted from 
Chapter 6 and is briefly described in Section 7.2. The distributed decoding operations 
and its pefromance for the first problem considered is also described in Section 7.3. 
The distributed encoding operations and its pefromance for the second problem con­
sidered is also described in Section 7.4. Conclusions are given in Section 7.5.

Chapter 8 is the final chapter in this thesis, it summarises the conclusions of the 
thesis and highlights numerous areas for further research in future.

Parts of this work has been presented in the following journal papers and confer­
ence proceedings:

• S. E. A. Alnawayseh and P. Loskot, “Low-Complexity Soft-Decision Decoding 
Techniques For Linear Binary Block Codes,” in Proc.IEEE WCSP 2009, Nan­
jing, China, Nov. 13-15,2009.
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• S. E. A. Alnawayseh and P.Loskot, “Cooperative Versus Receiver Coded Diver­
sity With Low-Complexity Encoding and Decoding,” in Proc. IEEE VTC’10 
Spring, May 2010. pp. 1-5.

• S. E. A. Alnawayseh and R Loskot, “Decode-and-forward cooperation as the 
distributed encoding and decoding," in Proc.IEEE ISWCS’10, Sept. 2010. pp. 
656-660.

• S. E. A. Alnawayseh and P. Loskot, “Order Statistics Based List Decoding Tech­
niques for Linear Binary Block Codes, ”IEEE Trans. Inform. Theory, submitted, 
Jan. 2011.

• S. E. A. Alnawayseh and R Loskot, “Error Rate Performance of Cooperative 
Versus Receiver Coded Diversity,1"IEEE Trans. Vehicular. Technology, submit­
ted in March. 2011.

• S. E. A. Alnawayseh and P. Loskot, “Complexity Reduction of Order Statistics 
Decoding Based on High Reliable CRCs,” IEEE Comm. Letters , submitted, 
May. 2011.



2

Fundamentals of Coded Systems

2.1 Channel Coding

The main goal of channel coding is to protect transmitted information during trans­
mission over a communication channel against the channel impairments such as noise, 
fading, interference, and attenuation. Thus, the aim is to reduce the probability of re­
ceiving the information in error. However, the actual way how to protect information 
against impairments of the transmission medium is not obvious [18]. The presence 
of channel impairments limit information flow through the channel but not the quality 
with which the message can be reconstructed. This is the main idea of information 
theory which created channel coding concept. In channel coding, the error control 
codes techniques are utilized to enable reliable delivery of information from a source 
to a destination. In error control codes, additional information (parity) is added by the 
code so the receiver can use it to recover original data. These additional or redundant 
bits which are added to the original data by the encoder at the transmitter side limit the 
flow of information to a value that is smaller than channel capacity. Thus, the channel 
coding aims to deliver reliable information to a destination at information flow rates 
close to the channel capacity. Shannon described an important concept of channel cod­
ing and information theory [19], which states “ by proper encoding of the information, 
errors caused by noise channel and channel impairments can be reduced to any desired 
level without sacrificing the information flow rate ”. Since then, an extensive work has
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been carried out by research comity to design efficient encoding and decoding algo­
rithms to achieve reliable communications even for high speed transmissions of these 
days standars in 3G and 4G cellular systems [20]. There are two main functions of the 
error control coding.

1. Error detection: ability to detect errors caused by channel impairments.

2. Error correction: correction of errors to recover the original data . The error 
correction can be classified into two main categories:

A) Automatic repeat request (ARQ): which is an error control scheme that uses
acknowledgements to provide reliable data transmission in two way chan­
nels. The transmitter retransmits information until either it receives ac­
knowledgment from the destination that the information was received cor­
rectly or the number of allowable transmissions runs out.

B) Forward error correction (FEC): an error control scheme where the source
employs an encoder to encode the transmitted information by adding re­
dundant bits in a systematic way, so the decoder at the receiver side can 
detect and correct errors. In FEC, no feedback channel is used to request 
transmission of data as in the ARQ. According to a manner in which redun­
dancy is added to information error control coding, the FEC can be divided 
into two classes:

1) Block codes [18, 20, 21].

2) Convolutional codes [22].

In this thesis, we limit our focus to binary linear block codes.

2.1.1 Binary Linear Block Codes

Corresponding to 2K possible messages, there are 2K codewords where K is a number 
of information bits. The set of 2K codewords is called a block code. In binary linear 
block codes, all codewords form a K dimensional subspace of the vector space of all 
binary N  bits. Hence and importantly, a modulo 2 sum of any two codewords is another
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codeword. For binary linear block codes, any group of linear independent codewords 
can form generator matrix G of the code and any codeword is a linear combination of 
such codewords. Let Ui =  0 or 1, 1 < i < K ,  be infromation bits to be encoded and 
let (gi, g2..., gir) be K  linear independent codewords arranged in a matrix G,i.e.,

g(i,i) - • 8 (1, N)

G  =
8 (2,1) ' ■ 8 (2,TV)

. S(/r,i) • ■ &{K,N)

Then the encoded bits in a codeword c are calculated as

c =  uG

The matrix G is called the generator matrix of a linear block code C and is of size 
(K  x N) where N  is the number of codeword bits and K  is the number of information 
bits only. In many cases, it is desirable if the linear block code is systematic. For any G, 
there is (N — K )  x N  matrix called a parity check matrix H  with linearly independent 
rows in which any vector space in G is orthogonal to the rows of i f  .The information 
bits appear in the first K  positions, the remaining (N — K)  bits are redundant bits and 
they are a function of the information bits. For a given code C, the minimum Hamming 
distance dmin among all possible codewords in C is given as,

dmin =  min (d# (ci, c2)ci 7  ̂ ci, cT, c2 G C) (2.1)

where d# (ci, c2) is the Hamming distance between ci and c2. The most important 
property of C is the error correction Capability t, which is the largest Hamming sphere 
about all codewords c £ C. The value of t is defined in terms of dmin of C as,

\t =  (dmin -  1) /2~| (2.2)

where [•] is the floor function. The block code having the minimum Hamming distance 
dmin is capable of detecting all error patterns of (dm*n — 1) as this number of errors or 
fewer errors corresponds to the received message which is not a codeword. However, 
in case of the errors with Hamming weight of dmin or larger not all errors can be
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detected as there exist at least two pairs of codewords that differ in dmin positions, 
and there is an error pattern of Hamming weight of dmin that converts a codeword to 
another codeword. Thus, the error detection capability of C  is (dmin — 1). In general,

2n ~k , since there are 2K — 1 error patterns that are identical to the codewords. For 
large block code, there is a small fraction of errors that can pass through the decoder 
without detection. The probability of error detection can be calculated using a weight 
distribution of the code [21 ],i.e.,

where A* and P  is the number of codewords with weight (i) and the transition proba­
bility, respectively. The probability of decoding error for block code C  with the error 
correction cabability t is bounded as,

Block turbo code (BTC) are serially concatenated codes and such codes are suitable 
for efficient construction of long codes from two short codes. The BTC is one example 
for such codes. The BTC is formed by the product of two systematic codes C\ =  
(iVi, Ki, dmini) of code rate R\ and C2 =  {N2, K 2, dmin) of code rate R2. Thus, the 
product code P  =  C\ x C2 is constructed as follows [23] and shown in Fig. 2.1.

1. Placing K i, K 2 information bits in an array of K \  rows and K 2 columns.

2. Coding the Ki  rows using C2 and appending (N2 — K 2) parity bits to each row.

3. Coding the N2 columns using C\ and appending (N\ — K \)  parity bits to each

The parameters of BTC P  =  (N , K , dmin) are N  =  Ni x N2, K  =  K \  x K 2, 
dmin — dmini x dmin2 and the code rate is R =  Ri x R2. This procedure allow to

for any linear block code, the number of error patterns cabable of error detection is

N

(2.3)
i=l

(2.4)

2.1.2 Block Turbo Codes

column.
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Figure 2.1: Construction of BTC P = C l  <g> C2.

build long codes from short codes. Thus, all columns of matrix the P , where P is the 
block turbo code, are the codewords of C2 while all rows of P  are the codewords of 
Ci. The decoding process of the BTC can be done sequentially,i.e., first for the rows 
and then for columns or vise versa. However, inorder to obtain an optimum bit error 
rate performance, soft-input soft-output decoding algorithms have to be employed for 
decoding of each sub-code.

2.1.3 ML Decoding and Union Bound

In the soft decision decoding, the maximum liklihood (ML)principle is an important 
concept that should be explained as follows. The (ML) decoding finds the closest 
transmitted codeword to the received sequence. The brute force approach to the ML of 
linear (JV, K )  block code requires computation of the Euclidian distance between the 
codewords in a coding list and the received sequence. The codeword from the coding 
list with the minimum Euclidian distance to the received sequence is then chosen. The 
goal of the ML decoding is to achieve the inequality in (4.1),where c0 is the closest 
codeword from the coding list to the received sequence r  and c any other codeword in 
the coding list [20, 22, 24].

Pr(co|r) > Pr(c|r) (2.5)

If all code words in the code have equal probability of being transmitted, then maxi­
mization Pr(co|r) is equivalent to maximize Pr(r|c),where Pr(co|r) is the conditional 
probability of chosing cq as the best codeword when r is the received sequnce, and
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Pr(r|c) is the conditional probability that r is the received sequence when c is the 
transmitted codeword.

Pr(c|r) =  P r(r |c ) /P r(r) . (2.6)

The Pr(c|r)is called the maximum a posteriori (MAP), and the conditional probability 
P r(r |c) is the ML function. To minimize the error probability, the ML decoder decodes 
a received sequence to a codeword such that Pr(r|co) > Pr(r|c) for all codewords in 
the coding list. Thus, the ML decoding is concerned in finding the suitable codeword 
cq from the coding list that can satisfies the inequalities

N  N

n p r( ̂ z|Q)z) — J[ Pr(^i|Cj) (2*7)
i = l  z = l

N

5^/n(Pr(ri|cbi)/Pr(ri|ci)) >  0. (2.8)
*=i

One of the important parameters in the soft decision decoding is the reliability of the 
received bit or a bit log-likli hood ratio fc that can be written for AWGN as,

_Pr(rj|0)
*  Pr(r»|l)

= 4 (v /^ /JV 0) . n

where Eb and N0 are the energy per bit and nosie spectral density respectively. The 
objective function of the ML can be expressed as,

£ >  -  ( - l r o 2 > E ( *  -  (2-9>
i =1 i

where — (—l )C0i)2 represent the Euclidian distance between the received se­
quence r and the optimum codeword cq. Since the ML represents the best performance 
of the soft decision decoding, it is the reference for any decoding algorithm, but this 
operation becomes too complex for long codes. In order to have a reference for newly 
developed decoding algorithms, the upper bounds are usually derived for long block 
codes such as the soft union (SU) bound. In the SU bound, an all zero codeword is
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transmitted and let F be the event that the distance between received vector and any 
codeword of non-zero Hamming weight is smaller than the distance between the re­
ceived vector and the all zero codeword.

Pr(r|A)) = Pr{dE(<f>,c) < dE(<f>,0 ) \A0) (2.10)

where Pr(r|,4o) is the conditional probability of event F when A0 is the transmitted 
codeword and dE((j), c) is the Euclidian distance between the received sequence and 
any codeword c in the code. The union bound states that the sum of probabilities of 
individual events is greater or equal than the probability of union of the events,i.e.,

P r(E,) +  P r(£ 2) +  . . .  +  Ft{En ) >  P r(£ i U E2 U . . . EN) (2.11)

where Ei is an event.The word error probability P e of the ML decoder when all zeros 
code A0 is selected for transmission is (??):

w
Pe< Y , ^ Pr(r l4)) (2-12)

'W=dmin
where Aw is the number of codewords with Hamming weight w and the probability,

w
Pr(r|A0) = y 'P r(j-i < 0|j4o)

U  (2-13)
=Q { \ f2 w E s/N 0)

Then, the bit error probability P(i) as

W £
p ( i ) <  J 2  j f A v Q i ^ w R E t / N o )  (2.14)

W=dmin

where 6W is the number of information words associated with the codeword of the 
Hamming weight w. For moderate and high SNR the first term in (2.14) is the most 
significant. The number of codewords of the minimum Hamming weight is the main 
factor which determine the BER. However, computing (2.2) can be very demanding 
task because it requires the Hamming weight distribution of all codewords. For long 
codes, creating a list of 2K information words is impractical. In this case, a truncated
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union bound is used. Thus, the all information words up to a certain Hamming weight 
are considered. Then the corresponding coding list is created and the weight distri­
bution is computed from the list. The upper limit of the Hamming weight is chosen 
empirically until the union bound converges. In this thesis, we have used this truncated 
union bound to calculate the soft union bound for the BCH codes in Chapter 4.

2.1.4 Soft-Decision-Decoding

There are two methods of decoding error correcting codes based on the real values of 
the received sequences [18, 20 , 21]:

1. Hard decision decoding (HDD): the main idea of the HDD is to correct errors 
produced during the hard quantization process. The detector produces binary 
values after quantization of the received real values r* into two levels,i.e., ones 
and zeros.

_  1 -  sign(fj) 
z i ~  g (2*15)

Then, the hard decision values are processed using some decoding algorithm. 
Where Zi is the H D  value, and sign(-) denotes the sign function.

2. Soft Decision Decoding (SDD): the real values received from the channel are 
processed directly un-quantized or quantized in more than two levels to find the 
most likely transmitted codeword. The important parameters are considered in 
SDD such as : the Ecludian Distance, and the correlation. The SDD can be 
classified into two main categories.

A) A code structure based decoding such as the Viterbi algorithm, which is
based on a trellis representation of the code and can achieve the ML decod­
ing performance.

B) A reliabilities based decoding: utilizes reliability measures of the received
sequence in the decoding process. In such decoding algorithms, symbols 
of the received sequence are categorized into two groups:

1) Least reliable positions (LRPs).
2) Most reliable positions (MRPs).
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Based on this classification, the decoding is implemented for processing either on the 
LRPs or the MRPs of the received sequence after ordering as

r ' =  A'[r] =  ( f i ,- - .  y N). (2.16)

General minimum distance (GMD)decoding [25, 26] : The GMD is a decoding 
algorithm that utilizes reliability of information for the LRPs of the received sequence 
to improve the algabric decoding.

Chase decoder [27]: is a generalizing of GMD algorithm that utilize reliability 
information for for LRP’s of received sequence to improve algabric decoding. Chase 
is divides into three types.

Order Statistics Decoding Algorithm (OSD) [2, 5]: OSD is a decoding algorithm 
that utilize reliability information for MRP’s of received sequence in order to reduce 
the complexity of the ML decoding, order statistics decoding (OSD) has been proposed 
in [2].

The operation of these algorithms is summarized as follows.

1. Generate HDs z of received sequence r  as using (4.10).

2. Construct a list of error patterns e based either on LRPs in case of GMD and 
Chase algorithms or based on MRPs in case of the OSD algorithm.

3. Generate a list of sequences by modifying the z sequence assuming with list of 
error patterns e as z +  e.

4. Decode z 4 - e list using algabric decoder in case of GMD and Chase or encode 
the z 4 - e list in case of OSD and then the codeword with minimum Euclidean 
distance to the received sequence.

The detailed describtion of these decoding algorithms are represented in the fol­
lowing chapters.
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2.2 Diversity in Wireless Communications

Diversity is a method to improve reliability of transmitted messages by exploiting the 
random nature of radio propagation. The main idea behind the diversity is to obtain 
independent signal paths that experience different levels of fading and interference 
so that multiple versions of the signal can be transmitted or received. Moreover, the 
channel coding techniques can be added to the transmitted message to improve its 
immunity against the channel impairments.

2.2.1 Types of Diversity

The diversity schemes can be classified as [24, 28]:

• The time diversity: this type of diversity can be achieved in two ways, i.e., either 
by transmitting multiple versions of the message at different time slots or by 
using FEC techniques and spread the message in time by interleaving techniques.

•  The frequency diversity: the diversity is achieved either by transmitting multiple 
versions of the message over different frequency channels or by spreading the 
message over wide spectrum of frequencies.

•  The space diversity: the message is transmitted over different propagation paths. 
The diversity in these schemes for wireless systems can be also achieved by 
antenna diversity, where multiple antennas are utilised at the receiver side to 
receive multiple versions of the transmitted message which is known as the re­
ceiver diversity. Multiple antennas can be also used at the transmitter side to 
send multiple versions of the message through different propagation paths.

•  The polarization diversity: multiple versions of the messages are transmitted and 
received with different polarization.

•  The cooperative diversity [24,29,30,31 ]: this diversity utilises relays to improve 
the reliability of the transmitted message. Such systems consist of a source, a 
relay, and a destination. The source broadcasts the signal to both the relay and
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the destination, and then the relay forward the signal to the destination. These 
diversity schemes rely on two principles:

• Due to a broadcast nature of the wireless communication medium, most of trans­
missions can be heard by multiple nodes in the network with no additional trans­
mission power and bandwidth (BW).

• Different nodes in the network have independent channel fading statistics to­
wards given destination nodes and the destinations can listen, store, and then 
combine signals received from the different nodes.

At the relay, different protocols of cooperative diversity can be used to achieve full 
diversity such as the amplify-and=forward (AF) , the decode- and-forward (DF), the 
compress-and-forward (CF), and the select-and-forward (SF) protocols. These proto­
cols are explained next.

• The amplify-and-forward (AF) relaying is a diversity scheme that allows the 
relay to amplify the received signal from source and then forward it to the desti­
nation. The amplifying corresponds to a linear transformation at the relay.

• The compress-and-forward (CF): diversity scheme allows the relay station to 
compress the received signal from the source node and forward it to the destina­
tion without decoding the signal.

• The decode-and-forward(DF): diversity scheme allows the relay station to de­
code the received signal from the source node, re-encode it and forward it to the 
destination station.

2.2.2 Diversity Combining Schemes

The diversity combining schemes allow the destination to combine multiple received 
signals.

19



2.2 Diversity in Wireless Communications

• The maximal-ratio-combining (MRC):is often used in large phased array sys­
tems. Thus, the received signals from all paths are weighted according to their 
SNR and then summed up.

• The equal-gain-combining: The received signals are summed up coherently. In 
such case, the weight of signals from all paths are set to unity.

• The selection combining: The strongest signal among all the received signals 
from all paths is selected.

2.2.3 Summary

The previous sections gave a brief of general concepts the will be investigated later in 
thesis in depth. The two main functions of the error control coding were proposed. 
Shannon theorem was proposed and the idea behind channel coding was discussed. A 
brief of main concepts about linear block codes were proposed such as generator ma­
trix, dmin, error correction and detection of block codes, and some general expressions 
for error decoding probability of block codes. Moreover, a general idea about BTC 
was presented and how to do the encoding process for such codes. Also general de­
scription of error performance bounds were explained such as Union bounds. Finally, 
basic principles about diversity in wireless communication system were summarized 
such as diversity types, diversity combining schemes.
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Overview of Relevant Literature

3.1 Reliability Based Decoding Algorithms

One of the most important features of digital communication systems is reliability of 
digital data transmission. A major concern of communication system designers is the 
error control techniques to reduce the effects of noise over the communication channel 
in order to recover the transmitted data correctly. Shannon has showen in his theory 
using the noisy channel coding theorem that coding of information using codes of rate 
R less than the channel capacity C  and utilizing suitable decoding techniques can re­
duce the effects of noise over information during transmission [19]. Based on Shannon 
theory, designing optimal coded systems became essential to achieve a low error prob­
ability and better performance of communication systems. Two major problems are 
encountered for designing coded systems and to achieve good performance [20]. Par­
ticularly, the first problem is to construct good codes that satisfy Shannon theorem. 
The second problem is to find optimum decoding techniques that can achieve perfor­
mance close to the maximum likelihood (ML) decoding which is the best performance 
that can be theoretically achieved assuming word-errors and equally likely codewords.

The decoding algorithms are often based on the channel noise characteristics and 
the type of code which is used in channel coding. Generally, decoding techniques can 
be classified into two main categories [24]: the hard decision decoding and the soft 
decision decoding. In the hard decision decoding, the output of the modulator in the
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receiver is quantized into two levels, 0 ’s and 1 ’s, which represent the hard decisions. 
The hard decision decoder executes a certain decoding method to decode the received 
sequence to the closest codeword in the sense of the Hamming distance. It should be 
noted that the hard decisions cause loose of information which increases the probability 
of incorrect decisions.

In the soft decision decoding, the demodulator outputs are un-quantized or quan­
tized to more than two levels. The soft decisions are processed by suitable decoding 
techniques to find the closest codeword to the received sequence. The soft decision 
decoding offers better performance than the hard decision decoding, by typically 2 — 3 
dB. On the other hand, the soft decision decoder is much more complex to implement 
than the hard decision decoder.

Because of a good performance of the soft decision decoding techniques, many 
methods and algorithms were developed to obtain the optimum decoding performance 
and provide a desirable trade-off between the complexity and performance. The soft 
decision decoding can be classified into the following two main catagories [20 ].

1. The reliability based decoding algorithms

A) Algebraic decoding

i) Generalized minimum distance decoding (GMD) [25]

ii) Chase algorithm [27]

B) Reliability based reordering algorithms

i) Dorsh decoding [4]

ii) Order statistics decoding [2]

2. The algorithms based on code structure such as Vetirbi algorithm

In the reliability based decoding algorithms, the hard decisions of the received 
sequence are ordered in decreasing order according to the reliability of the received 
sequence. This way, fewer errors in the most reliable positions (MRP) are much more 
likely than among the least reliable positions (LRP). Thus, the decoding based on 
reliabilities can be classified into two groups. The first group processes the LRPs, and
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the second processes the MRPs. The GMD algorithm in [25] utilizes the LRPs after 
re-ordering to improve the algebraic decoding. In this algorithm, after re-ordering 
the hard decisions of the received sequence according to the reliabilities, the list of 
(dmin +  1/ 2 ) candidates codeword is generated by modifying the hard decisions of 
the received sequence using an error and erasure algebraic decoding; e.g. by erasing 
the least reliable bit, three least reliable bits, • • • ,((dmin — 1) /2). Then, the candidate 
codeword from the list is chosen. One of the main disadvantages o f this algorithm is 
that algebraic decoder is too complex to implement and moreover may not succeed in 
generating candidate codeword for some error patterns.

The GMD was generalized and developed by Chase in [27, 33]. Chase proposed 
three algorithms for decoding linear binary block codes. The Chase algorithm is sim­
ilar to the GMD except that the operation of modifying the hard decisions after re­
ordering to create the coding list is developed by complementing. In addition the error 
correction only algebraic decoder is used instead of the error and erasure algebraic de­
coder. The Chase algorithm 3 achieves the trade-off between the complexity and the 
error performance of the GMD , but it suffers from the same drawbacks regarding the 
probability that the algebraic decoder may fail to produce a candidate codeword.

The Chase algorithm 2 is an improvement of Chase algorithm 3. This improvement 
is the size of the candidate codewords list that can be generated by taking all possible 
combinations of 0’s and l ’s of error patterns for the (dmin/ 2) LRPs. The number of 
error patterns 2drnin/ 2 exponentially increases with dmin of the code, and thus the list 
of candidate codewords increases dramatically. As a result, the Chase algorithm 2 
achieves better performance than the Chase algorithm 3, but with greater complexity.

The Chase algorithm 1 uses a list of candidate codewords of size ( . U /0  ] gener-

ated by complementing all possible combinations of (dmin/ 2) LRPs. Thus, compared 
with the other two Chase algorithms, the Chase algorithm 3 is considered to be too 
complex.

Another types of the soft decoding algorithms for binary linear block codes based 
on processing the MRPs were developed. One of these algorithms is the Dorsh al­
gorithm [4]. Dorsh used the reliability values of the received sequence to rework the 
generator matrix or the parity check matrix, so that the less reliable bits are treated as

23



3.1 Reliability Based Decoding Algorithms

a parity check set and the most reliable bits are treated as an information set which de­
termines the values of the parity set. After re-ordering columns of the generator matrix 
or the parity check matrix according to reliability of the received sequence, the new 
generator or parity check matrix is reduced to echelon canonical form by a Gaussian 
elimination [34]. Then a list of error patterns of increasing Hamming weight is gen­
erated, and the most reliable independent K  information bits of the received sequence 
are modified by error patterns. Finally, re-encoding process is done to generate list 
of candidate codewords and the best codeword with the minimum Euclidian distance 
from the received sequence is chosen as a transmitted word.

The main advantage of the Dorsh algorithm over the Chase and the GMD algo­
rithms is that the Dorsh agorithm is less complex to implement. The Chase and the 
GMD algorithms require an algebraic decoder whereas the Dorsh algorithm only needs 
to re-order received sequence according to reliabilities values, and re-encode the MRIP 
K  information bits after some modifications. One more advantage of the Dorsh algo­
rithm is that each new re-encoded word yields a new codeword while the Chase and 
GMD algebraic decoders may fail to produce a new codeword. In addition, the Dorsh 
algorithm provides a long coding list with more many candidates than the Chase al­
gorithm. Another advantage of the Dorsh algorithm over the Chase is that the Dorsh 
algorithm is applicable to any linear block code while the Chase algorithms can be 
applied only to codes for which the algebraic decoder is available. Generally, exact 
comparison between the Chase algorithms and the Dorsh algorithm is quite difficult 
because the differences in operations. However, the complexity of the Chase algo­
rithms is proportional to the number of decoding attempts while the Dorsh algorithm 
only requires sorting a low growth in sorting complexity for each decoding attempt 
[35], Another algorithm for MRIP soft decoding were developed in [2, 5]. These 
algorithms process MRIPs of the received sequence in stages based on the joint statis­
tics the noise after ordering of the received bits. Following the same basic idea of the 
Dorsh algorithm, in the OSD algorithm, the soft decision information is used to rank 
reliability of the received symbols, and then hard decisions are derived using bit by 
bit detection. Lower reliability bits are then erased and the generator matrix is sorted 
according to reliabilities and reduced to a echelon canonical form. The main differ­
ence between the Dorsh algorithm and the OSD algoritthm is the generation of error
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patterns. The generated error patterns in the Dorsh algorithm are listed according to 
the increasing Hamming weights, while in the OSD algorithm, the error patterns are 
generated in stages. For instance, for stage (7) all possible changes from zero to 7 
of K  MRIPs are made to generate stage or order(/) error patterns. Finally, the cor­
responding candidate codewords list is created after re-encoding. The OSD of order

(7) requires Ylj=o (  )  error Pattems w^ere K  *s the number of information bits to

make the decoding decision.

It should be emphasized that the OSD algorithm processes the MRIP information 
bits which contain small number of errors, and makes all possible changes of small 
number of positions to produce the most likely ML codeword. For short codes of 
length less than 32 bits, or medium codes of length between 32 and 64 bits with code 
rate R >  0.6, near optimum performance is achieved within the first two stages of 
processing. However, longer codes, three or more stages are required to achieve near 
optimum performance. Eventhough most of the coding gain is achieved in the first two 
stages of processing.

One of the most important drawbacks of the OSD algorithm is that most of the 
candidate codewords are processed at phase j of order I reprocessing. To overcome 
this problem and to reduce the length of coding list, a solution was proposed in [8,46]. 
The main idea of this technique in [8] is to reduce the coding list of the OSD order (7) 
re-processing by discarding the less likely error pattems. This is done by discarding a 
set of positions with the largest cardinality from the reprocessing algorithm. Further­
more, in [8 , 36, 37], the structural properties of the code and the optimal cost decoding 
were utilized to reduce computation complexity and to speed up the decoding process. 
To achieve the same previous goal, a new technique was developed in [38] to accel­
erate the search for the most likely error pattems in the OSD algorithm. Test vectors 
are sorted in an increasing order of their weight which corresponds to the Hamming 
weight.

One more drawback of the OSD algorithm is that LRPs are not used, [9, 39, 40]. 
However, it is possible to obtain the performance of several information sets using the 
reliabilities by replacing positions in the MRPs by positions outside the MRP. As a 
result, smaller order of reprocessing of the MRPs can be considered. Thus the number
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of candidate codewords is reduced with near ML performance especially for codes with 
R < 0.5. However, since less reliable information bits are considered a large number 
of computations is needed by this technique as the sufficient condition of optimality 
which is derived in OSD is effective for the first set of information decoding. One more 
disadvantage of this technique in [9, 39, 40] is that only one change between two sets 
of positions is possible and the decoding is successful only if  the new information sets 
are within the error correcting capability of the MRP reprocessing type algorithms.

A new approach was demonstrated in [41] to generate multiple information sets in 
more simple and efficient way than those in [9, 39, 40]. This approach allows multiple 
combinations when exchanging positions between two sets. It repeatedly uses new soft 
decision decodings by adding randomly generated biases to the received sequence. 
One of the most important advantage of [41] is that it can be applied to any MRP 
reprocessing type such as OSD or Box -Millar algorithm (BMA). Another technique 
is presented as a sort and match aglorithm in [43] to provide efficient decoding that 
reduces complexity of the ML decoding for general linear block code over memoryless 
channels. The sort and match algorithm reduces complexity of searching through the 
codebook or its trellis without degradation in the error performance. The algorithm 
splits the received sequence into two halves in number of different ways. Number of 
error pattems are generated for each half, and then, the two generated lists for each half 
are sorted and matched to form the coding list, and the best codeword can be chosen.

Another drawback of the OSD algorithm is that no intermediary error performance 
can be achieved between order (7 — 1) and (7) reprocessing . The work in [9] demon­
strated a new approach in trying to achieve intermediary error performance and utilize 
reliability values outside the MRIP. This approach reprocess (K  +  P)  MRP for some 
0 < P  < min  (K , N  — K),  where K  and N  are the number of information bits and 
the length of the codeword respectively. The error pattems are divided into two classes: 
class 1, which contains all error pattems with at most (7 — 1) errors in the K  MRIPs, 
and class 2, which contains all error pattems with exactly (7) errors in the K  +  P  
MRIP and error-free outside the MRPs. Class 1 error pattems are corrected by the 
conventional OSD (7 — 1) reprocessing.

Another algorithm was developed in [3] which is known as box and match tech­
nique. The aim of this algorithm is to improve the error performance of the OSD
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algorithm and to achieve practically optimum decoding of long codes of rate R =  1/2. 
This approach utilizes conventional OSD algorithm to reprocess the MRIPs until the 
order (7) reprocessing to create the first part of the coding list. Then the matching 
process is completed for this coding list. The matching process is done by choosing 
several bits after the Tf-MRP called the control band (CB) in each codeword in the 
coding list. Sorting process is carried for the codeword in the coding list according to 
the values of the CB to divide codewords into groups or boxes. The codewords in each 
box are added to give new codewords added to original OSD algorithm coding list. As 
a result, the error performance is improved by increasing the number of error pattems 
which is about (27),where (7) is the order of convention OSD.

It should be stated that the BMA in [3], generally acheives lower time complexity 
compared with the sort and match technique in [43] due to the savings of exponential 
size sorting. On the other hand in [3], time complexity reduction is achieved at the cost 
of space complexity.

To achieve better performance than the BMA, the larger orders of 7 of OSD are 
required but the number of candidates in the coding list and memory size are increased 
simultaneously. Thus, it is desired to increase the decoding capability by increasing 
additional sets of candidates in the coding list without the (i 4- 1) processing as inves­
tigated [44, 45]. The received blocks in [44] after re-ordering MRIPs are divided into 
K  parts and the LRPs are divided into N  — K  parts. The parity check matrix after 
re-ordering according to the reliability and reduced to echelon form is divided into the 
MRPs and the LRPs. The error pattems list is generated for each part and the syn­
drome list is calculated for each list. New syndrome lists are sorted and symmetrical 
syndromes are matched to form a list corresponding to valid codewords, and finally 
the most probable word is chosen.

The exponentially increasing of decoding complexity of the OSD with order (7) 
is still a weak point. An improved technique for the BMA was proposed in [33] by 
constmcting a CB which is error-free with high probability. The matching capability 
of BMA is improved and the performance of BMA of order (7 +  1) is achieved without 
increase in memory but at the cost of linear increase in complexity. Some methods of 
reduction computations were proposed in [8, 36, 37], and the stopping criteria and 
conditions of optimality are utilized in [50].
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The error pattems in the OSD algorithm may be tested so that probable error pat­
tern are proposed before the less probable error pattems. This observation is used by 
many studies on error performance analysis for reliability based decoding such as in 
[48] and motivated the decoding algorithm in [6] named ALMT. The main idea of [6] 
is to generate a list of most priory likely tests with weigh function defined as in [38]. 
The test list is generated once based on the order statistics distribution of long block 
codes at given SNR, since for long codes the arranged vector of bit reliabilities can be 
approximated by mean values of the sorted reliabilities. Then, the received sequence 
is decoded using the arranged list of tests vectors. As a result, the ALMT algorithm 
achieves better performance than the OSD order (2) with lower number of error pat­
tems.

The dorsch decoder was extended in [52] to produce a decoder that is capable of 
maximum-likelihood decoding. This technique ensures that for any linear code, that 
the (N  — K)  LRPs soft decisions of the received sequence can be treated as erasures 
to determine candidate codewords. These codewords are derived from low informa­
tion weight codewords and it is shown that an upper bound of the information weight 
may be calculated from each received vector in order to guarantee that the decoder 
will achieve the ML decoding performance. Using the cross-correlation function, it is 
shown that the most likely codeword may be derived from a partial correlation function 
of these low information weight codewords, which leads to an efficient fast decoder.

3.2 Coded Cooperative Diversity

In wireless communications, the signal is transmitted over detrimental channel con­
ditions such as noise, fading, and interference. To reduce the effects of such condi­
tions, different kinds of diversity can be employed. Antenna diversity is one of the 
traditional approaches to achieve diversity [53]. Antenna diversity offers effective re­
sistance against multiple path fading effects and noise. Also, it offers better coverage 
for high data rate services due to feasibility of utilizing multiple antennas [12]. How­
ever, such approach of diversity is not very desirable in wireless systems due to the 
additional hardware and the integration that is required compared to a single antenna 
system. A more practical diversity scheme is the cooperative diversity using relays.
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Such system consists of a source, a relay, and a destination. The source broadcasts 
the signal to both the relay and the destination, and then the relay forwards the signal 
to the destination. At the relay, different protocols of cooperative diversity achieving 
full diversity can be applied such as amplify-and-forward (AF) , decode-and-forward 
(DF), compress-and-forward (CF), and select-and-forward (SF) [14]. The destination 
combines both signals by one of the combining schemes such as equal gain combining 
(EGC), maximum ratio combining (MRC), and selection diversity [54].

In [14], a low complexity diversity protocols are developed to reduce the chan­
nel impairments due to fading and multipath propagation by employing cooperative 
terminals with single antenna in each terminal. This protocol achieves full diversity, 
however, it requires half duplex cooperation and thus, twice the bandwidth of direct 
transmission for a given rate. Moreover, extra hardware is needed to relay signal 
from the source to the relay . Such relaying is useful for cellular systems that uti­
lize frequency division multiplexing which is not the case in ad-hoc and multiple hop 
networks. Another type of diversity is the transmitter diversity. In the transmitter diver­
sity, two or more independent separated sources transmit copies of the signal through 
independent fading paths to a base station. This kind of diversity improves the perfor­
mance of systems by overcoming the channel impairments. The user cooperation is 
considered as a transmitter diversity in [30, 31]. In there, traditional user cooperation 
is presented in which partners re-transmit received bits from each other by forward­
ing. The user cooperation was modified and further developed as coded cooperation in 
[17, 55, 56, 57, 58]. In the coded cooperation, codewords of the users are partitioned 
into two parts. One part is transmitted by the user and the other one by his partner. 
The main idea of the coded cooperation is to achieve coding gain and to keep the same 
overall rate for coding and transmission. In other words, no more system resources 
are used. The performance analysis of coded diversity is derived in [55]. Thus, the 
two users cooperate by dividing the transmitted codeword into two segments. Both 
users exchange segments by sending one and receiving the other. Each user decodes 
the received segment, then, if the decoding process succeeds by checking the CRC, 
the user computes additional parity bits for the partner’s received data segment, and 
relays it to the destination. In case of the decoding failure, the user sends its own par­
ity bits in the second segment. For such cooperative protocol, the error performance
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is analysed. However, such analysis is based on certain assumptions that the errors 
occurring in codewords are uniformly distributed among the segments, which is not 
always the case. A more complicated analysis of this system, which complexity grows 
significantly with the number of errors, is presented in [55].

The coded cooperation based on splitting a mother codeword is proposed in [17]. 
The puncture pattern of the codeword is fixed regardless of the channel realisations. 
Equal puncturing of a rate compatible punctured convolution code (RCPC) is applied. 
The performance analysis in [17] shows that this scheme achieves impressive gain in 
slow Rayleigh fading channels despite bad conditions of the inter- user channels. Some 
extensions to [17] are proposed in [56] where coded cooperation is implemented using 
turbo codes. In [56], space time coding principles are used to improve the performance 
in fast fading channels. In this scheme, both users send their own parity bits as well as 
their partner’s parity bits in the second frame. However, using partner’s channel as in 
[17] is not practical for this scheme assuming fast fading, as the user uplink channels 
see independent fading between the first frame and the second frame. Moreover, the 
second frame in space-time cooperation is taking advantage of a path diversity as each 
user transmits both user’s parities.

The coded cooperation is implemented using turbo codes as space-time turbo coded 
cooperation. The available power in the second frame is distributed over each user’s 
own transmitted bits and his partner’s parity bits. In the case the first frame is not 
decoded successfully, the user will transmit his own second set of parity bits. As 
mentioned before, equal puncturing is considered in [17] and the code is split equally. 
In [59], different puncturing pattems are investigated for the RCPC to test the effect 
on the performance over different channel realizations. The main idea in [59] is to 
calculate the BER for all puncture pattems based on the knowledge of instantaneous 
SNR of cooperative system channels by the source, so the source chooses a puncture 
pattern corresponding to the minimum BER. Then, the conventional coded cooperation 
can be used.

Many publications analysed cooperative communications and applied channel cod­
ing such as LDPC [60, 61]. Utilizing LDPC in cooperative relay systems has a good 
coding gain and acheives good performance but with the large encoder and decoder 
complexity. Different network architectures have been studied recently to support high
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requirements of next generation wireless systems. Future wireless networks are ex­
pected to provide high data rates necessary to apply new applications and high quality 
of service for these applications. The required data rates will be much higher than what 
is provided by the 3G systems and beyond. Hence, it is obvious that recent cellular 
system architectures are not suitable for new standards. The concept of multiple relays 
is very attractive for many reasons. In such scenarios, many relays are placed in the 
same cell and each relay in the cell will serve a small area with a small amount of the 
transmit power. Hence, the signal transmission distance is reduced resulting in lower 
channel impairments as well as the interference and propagation loss are lowered and 
the SNR for users are increased. Therefore, the system performance can be improved. 
The user cooperation can be considered as an example of network coding where mod­
ulo 2 addition of the user’s transmission is used [62]. The main idea of network coding 
in a two user relay system is that the relay encodes the received bits from both users, 
and then the relay sends the modulo 2 addition of the users packets to both users. The 
user 1 can decode the user 2 data by performing modulo 2 addition of the received 
packet and its own bits. In [62], the network coding and channel coding are performed 
jointly. The redundancy of the channel code protects the transmitted signal against the 
channel impairments, and the network redundancy support the channel code for a bet­
ter protection. The turbo code is used as a channel code of one user and the network 
code forms distributed turbo code that can be decoded iteratively by the other user.

A new coded cooperation is proposed in [63]. Thus, the source broadcasts a code­
word to the relay and the destination. The relay decodes and interleaves the received 
codeword, and then encodes the message again before retransmitting it to the destina­
tion. The two received signals are combined at the destination by one of the combining 
schemes such as MRC or EGC, and then a standard turbo decoder performs the decod­
ing process. The extra coding gain over the diversity gain is achieved in [63] due to 
interleaving gain of the turbo code construction and the turbo decoder gain. In [64], 
algorithms proposed in [14] are extended and developed to provide immunity against 
fading in large networks. As mentioned before cooperative algorithms presented in 
[14] show inefficient utilization of the bandwidth, as each relay needs its own sub­
channel to retransmit information received from the source. Alternative approach to 
what is presented in [14] is suggested in [54]. Thus, the space-time coding is utilized
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jointly with cooperative protocols to allow relays to transmit in the same sub-channel. 
Furthermore, space-time cooperative protocols in [65] offer a full spatial diversity for 
a number of cooperating terminals and not just for the relays.

One important comment should be made, i.e., coded schemes and networks should 
generally be investigated and designed for cooperative protocols. Design of a channel 
code for cooperation use over slow fading channels is presented in [64]. Where the 
same cooperation schemes as in [14] are adopted. The main idea in [64] is to design a 
good channel code for the inter-user channel and add parity bits to obtain a good coop­
erative code for block fading cooperative system. Block fading model of [85] is used 
to find channel codes that are suitable for cooperation. However, certain design cri­
teria are considered for cooperative communications which do not exist in traditional 
block fading. The usefullness of cooperative block fading is dependent on successful 
decoding in the partner’s side. Thus, the channel code used by the inter-user should 
provide enough immunity against the channel impairments to increase the probability 
of successful decoding at the partner’s side. The two levels of diversity is a result of ex­
ploiting a large channel code gain in the inter-user channel. In case of a partner decoder 
failure, the user continues its transmission. The channel codes for inter-user channels 
are suggested in [85] and it is shown that the cooperative coding can affect the packet 
routing in wireless networks. The soft decision distributed decoding is presented in 
[12]. The main idea in [12] is to utilize a SISO decoder at the relay to combat the main 
disadvantage of the DF in which hard decisions are applied to the received codeword 
in the source. The relay generates the LLRs using a SISO decoder, and then the LLR 
values are scaled, compressed, and quantized to 3 bits symbols for each source bit. In 
this distributed decoding scheme, the source is using soft information received from 
the relay as an extrinsic information for the turbo decoder. In some cases, this scheme 
performs better than the conventional DF scheme; however, more network resources 
are used such as the bandwidth because of quantization process for representing the 
soft values. However, most of the previous distributed turbo coded schemes are based 
on certain assumptions that the relay can perform error free decoding. This assumption 
is not practical unless automatic repeat request (ARQ) scenario is used in the link be­
tween the source and the relay which reduces the system transmission throughput. A 
distributed turbo code (DTC) with the soft information relaying schemes is proposed
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in [67]. The main benefit of this scheme is its ability to achieve error-free decoding at 
the relay without utilizing ARQ, thus, improving the system transmission throughput. 
The DTC in [67] uses soft information relaying when imperfect decisions occur rather 
than making decisions at the relay. This scheme can be summarized into two steps. 
First, the decoder at the relay employs maximum a posteriori (MAP) to calculate the 
aposteroiri probabilities (APPs) of information symbols received at the relay. Second, 
the APPs derived in the first step are used to calculate the soft estimation of parity bits 
of the information symbols.

The DTC was improved in [65] reducing the effects of the error free decoding 
assumption of the DTC in [12, 67]. The main idea of [14] is to calculate the LLR 
values of the received bits at the relay, and then transmit only highly reliable hard- 
decided bits to the destination while discard less reliable bits. The issue of reliability is 
decided by a threshold at the relay chosen to reduce the end-to-end BER of the system. 
The destination combines both signals received form the relay and the source and the 
decoding is performed. Unlike the conventional DF cooperation systems using the 
cyclic redundancy check (CRC), the threshold is set after the CRC to prevent correct 
bits from being blocked or wasted in the case of the CRC failure.

A multiple source cooperation diversity is suggested in [6 8 ]. This solution has 
the advantage when slow fading event damages small portion of the codeword unlike 
[12, 31, 58]. The users in [68] transmit their data to the destination and the other users. 
The other users receive this data and encode it by certain error correction codes and 
transmit the generated parity bits to the destination. The CRC that is used at the relay 
reduces the effects of errors over inter-user channels, and non-reliable data bits are 
discarded from this process of parity bits calculations at the relay. The performance of 
[68] can be improved if each user creates its bits so that the iterative decoding can be 
used at the destination. The distributed product code is proposed in [69] over AWGN. 
The coding is achieved jointly between the source and the relay in cooperative manner. 
The source uses sub-row code to encode information and sends it to the relay. The 
relay adds redundancy using systematic column code. The destination combines the 
received codewords from the source and relay to construct a product code. However, 
in [69], neither the criteria of choosing the sub-codes between the source and the re­
lay are discussed nor the effects upon the desirable diversity level and the end-to-end
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performance of the system are investigated.

3.3 Summary

The signal processing techniques are significantly limited in wireless networks con­
taining very high data rate links (of the order of Gigabits per second). In such cases, 
complexity reduction and diversity become important to remedy such challenge The 
problem of the decoding complexity has motivated the research community how to 
most efficiently apply the order statistics based list decoding techniques for linear bi­
nary block codes of small to medium block length. The original OSD, Chase, and 
GMD algorithms and all modifications that have been achieved on them are still suf­
fering from several drawbacks. The complexity of original OSD decoding algorithm 
grows exponentially as shown in the literature. Thus no clear algorithm or solution 
has been proposed yet to reduce complexity significantly and keep the same perfor­
mance. One of the main draw backs of the classical OSD algorithms is that the MRIP 
is considered as one segment assuming that all error are equally distributed along this 
segment, which is not correct .Moreover, the complexity of obtaining a row echelon 
form of the generator matrix for every received codeword represents a significant part 
of the overall decoding complexity, however, the solution of such problem has not been 
investigated in the literature. Also a deep analysis for the optimum list construction and 
the probability of selection most likely errors patterns in the coding list has not been 
carried out clearly in the literature.

Regarding coded diversity, all user cooperation schemes proposed in [17, 55, 56, 
57], the diversity is achieved by dividing the transmitted codeword into segments, and 
then exchange the segments and forward it to destination. A comprehensive design 
guide lines for such process are not considered or clarified clearly. Also for the dis­
tributed decoding process in [12, 14, 67, 69], neither the criteria of choosing the sub­
codes between the source and the relay such as the code rate and Hamming distance 
, nor the relay positions and the decoding complexity distribution and their effects 
upon the desirable diversity level and the end-to-end performance of the system are 
investigated.
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4

List Decoding Techniques for Linear 
Binary Block Codes

4.1 Introduction

In this Chapter, the OSD-based decoding strategies are investigated for linear binary 
block codes. The main aim is to obtain low-complexity decoding schemes that provide 
sufficiently large or valuable coding gains, and most importantly, that are well-suited 
for implementation in communication systems with limited hardware resources, e.g., at 
nodes of the wireless sensor network. The original OSD was modified by considering 
the disjoint segments of the most reliable independent positions (MRIPs). The seg­
mentation of the MRIPs creates flexibility that can be exploited to fine tune a trade-off 
between the BER performance and the decoding complexity. Thus, the original OSD 
can be considered to be a special case of the segmentation-based OSD having only one 
segment corresponding to the MRIPs. Since the complexity of obtaining a row eche­
lon form of the generator matrix for every received codeword represents a significant 
part of the overall decoding complexity, we examine a partial-order statistics decoding 
(POSD) when only the systematic part of the received codeword is ordered.

This Chapter is organized as follows. System model is described in Section 4.2. 
Construction of the list of test error patterns is investigated in Section 4.3. The list 
decoding algorithms are developed in Section 4.4. The performance analysis is con­
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sidered in Section 4.5. Numerical examples to compare the BER performance and the 
decoding complexity of the proposed decoding schemes are presented in Section 4.6. 
Finally, conclusions are given in Section 4.7.

4.2 System Model

Consider transmission of codewords of a linear binary block code C over an additive 
white Gaussian noise (AWGN) channel with Rayleigh fading. The code C, denoted as 
(AT, K , dmin), has block length N , dimension K,  and the minimum Hamming distance 
between any two codewords dm\n. Binary codewords c E TL̂  where Z2 =  {0,1} 
are generated from a vector of information bits u  E Z f’ using the generator matrix 
G E Z2 *N> he., c =  uG , and all binary operations are considered over a Galois field 
GF(2). If the code C is systematic, the generator matrix has the form, G =  [I P], 
where I is the K  x K  identity matrix, and P  E z f  is the matrix of parity
checks. The codeword c is mapped to a binary phase shift keying (BPSK) sequence 
x  E { + 1 ,-1 } ^  before transmission using a mapping, rq =  M (q ) =  (—l)Ci, for 
i =  1,2, • • • , N. Assuming bits ui and Uj, the mapping M has the property,

M (ui © Uj) =  M (ui) 3Vt (uj) (4.1)

where © denotes the modulo 2 addition. The encoded bit q  can be recovered from the 
symbol Xi using the inverse mapping, q  =  M -1 (Xi) =  (1 — Xi)/2. For brevity, we also 
use the notation, x  =  M (c) and c =  M _1 (x), to denote the component-wise modu­
lation mapping and de-mapping, respectively. The code C is assumed to have equally 
probable values of the encoded bits, i.e., the probability, P r{q  =  0} =  P r{q  =  1} =  
1/2, for i =  1,2,**- , N.  Consequently, all the codewords are transmitted with the 
equal probability, i.e., Pr{c} =  2~K for Vc E C.

The signal at the output of the matched filter at the receiver can be written as,

yi — h{Xi © Wi

where the frequency non-selective channel fading coefficients hi as well as the AWGN 
samples Wi are mutually uncorrelated zero-mean circularly symmetric complex Gaus­
sian random variables. The variance of hi is unity, i.e., E[|/ii|2] =  1 where E[ ]
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is expectation, and | • | denotes the absolute value. The samples Wi have the vari­
ance, E[|u^|2] =  (i?7 c)_1, where R =  K / N  is the coding rate of C, and 7C is the 
signal-to-noise ratio (SNR) per transmitted encoded binary symbol. The covariance, 
E[hih*] =  0 for i ^  j ,  where (•)* denotes the complex conjugate, corresponds to the 
case of a fast fading channel with ideal interleaving and deinterleaving. For a slowly 
block-fading channel, the covariance, E [hih*] =  1 for Vi, j  =  1,2, ** , N,  and the 
fading coefficients are uncorrelated between transmissions of adjacent codewords.

In general, denote as /(•) the probability density function (PDF) of a random vari­
able. The reliability r* of the received signal y{ corresponds to a ratio of the conditional 
PDFs of y{ [70], i.e.,

f(Vi\xi =  +1 ,hi)
f{Vi\xi -  - 1  ,hi)

oc Re{h*yi} =  r{

since the PDF f(yi\xi, hi) is conditionally Gaussian. Thus, the reliability 77 can be 
written as,

77 =  Re{hi}Re{yi}  +  Im{/ii}Im{^} =  | h^Xi  +  \hi\wi.

The bit-by-bit quantized (i.e., hard) decisions are then defined as,

Ci =  M -1 (sign(rj))

where sign(-) denotes the sign of a real number.

More importantly, even though the primary metric of our interest is the BER per­
formance of the code 6 , it is mathematically more convenient to obtain and analyze the 
list decoding algorithms assuming the probability of codeword error. Thus, we assume 
that the list decoding with a given decoding complexity obtained for the probability 
of codeword error will also have a good BER performance. The maximum likelihood 
(ML) decoder minimizing the probability of codeword error provides the decision Cml 
on the most likely transmitted codeword, i.e.,

c Ml  =  argmin ||y — h  © x ||2
cEG: x=M(c)

N

=  a r g m a x R e{yjh*x*} B?IK argmax r - x  (4.2)
cee c€C: x=M(c)
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4.2 System Model

where y, h, x, and r  denote the TV-dimensional row vectors of the received signals yi9 
the channel coefficients hi, the transmitted symbols xit and the reliabilities r* within 
one codeword, respectively, || • || is the Euclidean norm of a vector, 0 is the component­
wise (Hadamard) product of vectors, and the binary operator • is used to denote the 
dot-product of vectors. The codewords c G C used in (4.2) to find the maximum or the 
minimum value of the ML metric are often referred to as the test codewords. In the 
following subsection, the soft-decision decoding algorithms are investigated with low 
implementation complexity to replace the computationally demanding ML decoding

For the case of 16 QAM modulation the codewords are interleaved and mapped to 
either binary to 16 quadrature amplitude modulation (QAM) symbols. We assume nat­
ural mapping of the consecutive sequences of 4 encoded bits (ci, 02, 03, 04) to 16QAM 
modulation symbols x =  xi +  jxq such that the encoded bits (ci, c3) are mapped to 
xi G (± 1 , ±3}, and the encoded bits (02, C 4 )  are mapped to x q  G {±1, ±3}, [71].

In general,at the receiver, the soft-decision value for each encoded bit c is obtained 
from the received symbol y using the log-likelihood ratio (LLR) [70],

where Pr( ) denotes the probability. The LLR values are deinterleaved before the 
channel decoding is performed. Denote the received symbol y =  yi  +  ]Vq = , and let 
y =  gy/E~sx +  w. Assuming natural mapping of the encoded bits to 16QAM symbols, 
we have modified the LLR expressions in [72] to include the channel fading and path- 
loss attenuation. Thus, the approximate LLR values are computed as [72],

Similar expressions are obtained for the LLRs A(c2|?/q ) and A (c4|?/q ). The LLR values 
are used by the soft-decision decoders that are described before in this chapter. In

(4.2).

Zgyi'/El i 8g2E. 
N0 "T" N0 

Igyiy/El 
No

SgyiVEs _  8g2E. 
No No

A (c i |j/7) =  <

Agyjy/El , 8 g2E s 
No ^  No 

- 4 gyiy/El , 8g2E,
No f  No

A(c3|2//) y i <  0 
yi  >  0.
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4.3 List Decoding

particular, the received bits are first ordered according to their reliabilities given as 
the absolute value of their LLRs. The decoder then searches a list of very likely error 
patterns in order to find the codeword having the minimum Euclidean distance.

4.3 List Decoding

The list-based decoding algorithms are investigated. For simplicity, we assume binary 
block codes that are linear and systematic [20]. It is noticed that whereas the extension 
of the list-based decoding algorithms to non-systematic codes is straightforward, the 
list based decoding of non-linear codes is complicated by the fact that the list of the 
test codewords is, in general, dependent on the received sequence. The decoding (time) 
complexity O of the list decoding algorithms can be measured as the list size given by 
the number of the test codewords that are examined in the decoding process. Thus, 
the ML decoding (4.2) has the complexity, Oml =  2^, which is prohibitive for larger 
values of K.  Among the practical list-based decoding algorithms with the acceptable 
decoding complexity, we investigate the order statistics decoding (OSD) [2] based list 
decoding algorithms for soft-decision decoding of linear binary block codes.

The OSD decoding resumes by reordering the received sequence of reliabilities as,

\f[| >  \r'21 > (4.3)

where the tilde is used to denote the ordering. This ordering of the reliabilities defines 
a permutation, A', i.e.,

f ' =  A'[r] =  (ri, • - - ,f'N).

The permutation A' corresponds to the generator matrix G ' =  A'[G] having the re­
ordered columns. In order to obtain the most reliable independent positions (MRIPs) 
for the first K  bits in the codeword, additional swapping of the columns of G ' may 
have to be used which corresponds to the permutation A", and the generator matrix
G" =  A" G ' The matrix G" can be manipulated into a row (or a reduced row) 
echelon form using the Gauss (or the Gauss-Jordan) elimination. To simplify the nota­
tion, let r  and G  denote the reordered sequence of the reliabilities r  and the reordered
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4.3 List Decoding

generator matrix G in a row (or a reduced row) echelon form, respectively, after em­
ploying the permutations A' and A", to decode the received sequence y. Thus, for 
i > j ,  the reordered sequence r  has elements, |fj| > |fj|, for i , j  =  1, • • • , K,  and for

=  K  +  ,N.

The complexity of the ML decoding (4.2) of the received sequence y  can be re­
duced by assuming a list of the L test codewords, so that L <  2K. Denote such 
a list of the test codewords of cardinality L generated by the matrix G as, 8,l =  
{e0,e 2, • • • ,e //_i}, and let e0 =  0 be the all-zero codeword. Then, the list decod­
ing of y  is defined as,

c =  argmax r  • x  (4.4)
ee£ z ,:  x = M (co ® e)

where the systematic part of the codeword c0 is given by the hard-decision decoded 
bits at the MRIPs. The decoding step to obtain the decision Co is referred to as the 
0-th order OSD reprocessing in [2]. In addition, due to linearity of C, we have that 
(co ® e) 6 6, and thus, the test codewords e € £ l can be also referred to as the 
test error patterns in the decoding (4.4). Using the property (4.1), we can rewrite the 
decoding (4.4) as,

c =  argmax r  • xo • M (e) =  argmax ro • M (e) 
e6£  ̂ e(E&L

(4.5)

where we denoted x 0 =  M (c0) and r 0 =  r  © x 0. The system model employing the list 
decoding (4.5) is illustrated in Fig. 4.1. More importantly, as indicated in Fig. 4.1, the 
system model can be represented as an equivalent channel with the binary vector input 
c and the vector soft-output r 0.

^ ( • ) R e f ] O-OSD

w Xo

ro
argmax

qe.S'l

J

Figure 4.1: The system model and an equivalent vector channel with the binary vector 
input c and the vector soft-output ro.
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4.4 List Selection

4.4 List Selection

The selection of the test error patterns e to the list £L as well as the list size L have a 
dominant effect upon the probability of incorrect codeword decision by the list decod­
ing. Denote such probability of codeword error as Pe, and let c tx be the transmitted 
codeword. In [10], the probability Pe is expanded as,

P e =  Pr{c ^  c Tx | c m l  ±  cTx} Pr{cML ^  cTx}

+Pr{c ^  c Tx | c m l  =  Ct x }  Pr{cML =  cTx}

where the decision c is obtained by the decoding (4.5), and the condition, cml ^  cTx, 
is true provided that the vectors cml and c tx differ in at least one component, i.e., 
cml =  ctx if and only if all the components of the vectors are equal. Since, for any 
list £ l , the probability, Pr{c /  c Tx | c Ml  ^  cTx} =  1, and usually, the probability, 
Pr {cML =  ctx} is close to 1, Pe can be tightly upper-bounded as,

P e <  Pr{cML ±  cTx} +  Pr{c ±  c Tx | c m l  =  cTx} • (4.6)

The first term on the right hand side of (4.6) is the codeword error probability of the ML 
decoding, and the second term is the conditional codeword error probability of the list 
decoding. The probability, Pr{c ^  c tx|cml =  Ctx}, is decreasing with the list size. In 
the limit of the maximum list size when the list decoding becomes the ML decoding, 
the bound (4.6) becomes, Pe =  Pr{cML 7̂  Ctx}- The bound (4.6) is particularly useful 
to analyze the performance of the list decoding (4.5). However, in order to construct 
the list of the test error patterns, we consider the following expansion of the probability 

Pe, i.e.,

Pe =  Pr{c 7̂  cTx|(cTx ©Co) G £L}Pr{(cTx ©Co) G £ l}

+P r{c 7̂  c tx |(ctx  © c0) i  £l}Pi-{(cTx © c0) i  £ l }

=  1 -  Pr{c =  ctx|(ctx © c0) G £z,}Pr{(cTx © c0) G £ l} .
Pi P ii

Using (4.4) and (4.5), the probability Pi that the list decoding (4.5) selects the trans­
mitted codeword provided that such codeword is in the list (more precisely, provided 
that the error pattern ctx © Co is in the list) can be expressed as,

P! =  Pr{r • M (cTx © c0) > r 0 • 3VC (e ) , Ve G £ l}  • (4.7)
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4.4 List Selection

The probability (4.7) decreases with the list size, and, in the limit of the maximum list 
size L =  2K, Pi =  1 -  Pe. On the other hand, the probability Pn that the transmitted 
codeword is in the decoding list increases with the list size, and Pn =  1, for L =  2K.

Since the coding C and the communication channel are linear, then, without loss 
of generality, it can be assumed that the all-zero codeword, c t x  =  0 , is transmitted. 
Consequently, given the list decoding complexity L, the optimum list ££ minimizing 
the probability P e is constructed as,

££ =  argm axPr{c =  0 |co € £}Pr{co 6  £} (4.8)
£: |£ |= L

where |£| is the cardinality of the test list £, and the hard-decision codeword c0 £ C 
represents the error pattern observed at the receiver after transmission of the codeword 
ctx =  0. For a given list of the error patterns £ in (4.8), and for the system model 
in Section 4.2 with asymptotically large SNR, the probability Pi =  Pr{c =  0 |c0 € £} 
is dominated by the error events corresponding to the error patterns with the small­
est Hamming distances. Since the error patterns are also codewords of 6 , the small­
est Hamming distance between any two error patterns in the list £ is at least dmin. 
Assuming that the search in (4.8) is constrained to the lists £ having the minimum 
Hamming distance between any two error patterns given by dmm, the probability Pi 
is approximately constant for all the lists £, and we can consider the suboptimum list 
construction,

£l =  argmaxPr{co € £} . (4.9)
£: |£ |= L

The list construction (4.9) is recursive in its nature, since the list £ maximizing (4.9) 
consists of the L most probable error patterns. However, in order to achieve a small 
probability of decoding error Pe and approach the probability of decoding error, 
Pr{cML 7̂  ctx}, of the ML decoding, the list size L must be large. We can obtain a 
practical list construction by assuming the L sufficiently probable error patterns rather 
than assuming the L most likely error patterns. Theorem 1 and Theorem 2 are re­
stated in [2] to obtain the likely error patterns and to define the practical list decoding
algorithms.

Denote as P(z1} i2i ■ • • , in) the n-th order joint probability of bit errors at bit po­
sitions 1 <  i\ < ? 2  < • • • < in < N  in the received codeword after the ordering

42



4.4 List Selection

A' and X" and before the decoding. Since the test error pattern e is a codeword of C, 
the probability P(zi, z2, • • • , zn), for in < K,  is equal to the probability Pr{e =  c0} 
assuming that the n bit errors occurred during the transmission corresponding to the 
positions (after the ordering) Zi, z2, • • • , zn. We have the following lemma.

Lemma 1 For any bit positions 3\ C 3 C {1,2, • ■ • , Nj,

P P ) < P p i) .

The lemma is proved by noting that

P(J) =  P(31,3\31) =  P p W O P p i )  < m in iP p O ^ p ^ ia x ) }  <  P (3,)

where J \J i denotes the difference of the two sets. Using Lemma 1, it can be
shown, for example, that, P(z, j)  < P(z) and P(z, j )  <  P (j). We can now restate
Theorem 1 and Theorem 2 in [2] as follows. Assume bit positions 1 < i < j  < k <  
N , and let the corresponding reliabilities be |f^| > \fj\ >  |ffc|. Then, the bit error 
probabilities,

PW  < PO)

P(*>j) <  P

Without loss of generality, it is assumed that the symbols Xi =  — 1, Xj =  —1 and 
Xk =  — 1 have been transmitted. Then, before the decoding, the received bits would be 
decided erroneously if the reliabilities f  i > 0, fj  > 0, and fk >  0. Conditioned on the 
transmitted symbols, let /(•) denote the conditional PDF of the ordered reliabilities r<, 
fj and f k.

Consider first the inequality P(z) <  P (j). Since, for n  > o, f(fi )  <  / ( - n ) ,  
using f ( f i , f j )  =  f(f i \ f j )f(f j ) ,  it can shown that, for fi >  0 and any f j , f{f i , f j )  < 
/ ( —fj, fj). Similarly, using / ( —r*, fj) =  f(fj \  — r* )/(—f%), it can be shown that, for 
fj > 0 and any fi, f ( —fi , fj )  < f ( —f i , —fj). Then, the probability of error for bits z
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4.5 List Decoding Algorithms

and j , respectively, is,

oo nf i

/  f(ri,
J - f i

oo nf i  p o o  pO

/ f{ri , f j )df jdfi  +  / / /(fijfj-Jdfjdfi
Jo JO J - f i

OO

/  /(f i> o )d rjd fi
-oo J 0
oo /«fi /*oo /»0

/  / ( n , r j )dfj dfi +  / /  / ( - f i , - f j ) d f j d f i
Jo Jo  J - f i

and thus, P(z) <  P (j).

The second inequality, P(i, j)  < P(z, k), can be proved by assuming conditioning, 
P (i , j)  =  P(j|i)P (z), P (i,k) =  P(fc|i)P(z), and / f t ,  f fc) =  / f t ,  fjfcft)/ft) , and 
by using inequality P f t  < P (j), and following the steps in the first part of the theorem 
proof.

p (i) = [
Jo

- L

m  -  /

- I

4.5 List Decoding Algorithms

Using Theorem 1 and Theorem 2 in [2], the original OSD assumes the following list 
of error patterns,

£L =  {eG : 0 <  u>H[e] < I, e e  Z f } (4.10)

where I  is the so-called reprocessing order of the OSD, and u)H[e] is the Hamming 
weight of the vector e. The list (4.10) uses a if-dimensional sphere of radius I  de­
fined about the origin 0 =  (0, • • • , 0) in Z f . The decoding complexity for the list 
(4.10) is L =  Z L o  (T) w^ere  ̂ is referred to as the phase of the order I  repro­
cessing in [2]. Assuming an AWGN channel, the recommended reprocessing order is 
I  =  K m /4 1  <C K  where [•] is the ceiling function. Since the OSD algorithm may 
become too complex for larger values of I  and if , a stopping criterion for searching 
the list £ z, was developed in [8].

The following inefficiencies of the original OSD algorithm are indentified. First, 
provided that no stopping nor skipping rules for searching the list of the test error 
patterns are used, once the MRIPs are found, the ordering of bits within the MRIPs
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4.5 List Decoding Algorithms

according to their reliabilities becomes irrelevant. Second, whereas the BER perfor­
mance of the OSD is modestly improving with the reprocessing order I, the complexity 
of the OSD increases rapidly with I  [8], Thus, for given K,  the maximum value of I  is 
limited by the allowable OSD complexity to achieve a certain target BER performance. 
It can be addressed that the inefficiencies of the original OSD by more carefully ex­
ploiting the properties of the probability of bit errors given by Lemma 1 and Theorem
4.1. Hence, the aim is to construct a well-defined list of the test error patterns without 
considering the stopping and the skipping criteria to search this list.

Recall that the error patterns can be uniquely specified by bits in the MRIPs whereas 
the bits of the error patterns outside the MRIPs are obtained using the parity check ma­
trix. In order to design a list of the test error patterns independently of the particular 
generator matrix of the code as well as independently of the particular received se­
quence, only the bit errors within the MRIPs are considered. Thus, it can be assumed 
that, for all error patterns, the bit errors outside the MRIPs affect the value of the metric 
in (4.5) equally. More importantly, in order to improve the list decoding complexity 
and the BER performance trade-off, the partitioning of the MRIPs is considered into 
disjoint segments. This decoding strategy employing the segments of the MRIPs is 
investigated next.

4.5.1 Segmentation-Based OSD

Assuming Q disjoint segments of the MRIPs, the error pattern e corresponding to the 
K  MRIPs can be expressed as a concatenation of the Q error patterns of length K q 
bits, q =  1, • • • ,Q , i.e.,

e = (eM •■•,e<«)€Zf

so that Ylq=i Kq =  K> and wh[c] =  WH[e^] +  • • • +  u jh [g ^ ] . A s indicated by 
Lemma 1 and Theorem 4.1, more likely error patterns have smaller Hamming weights 
and they correct the bit positions with smaller reliabilities. In addition, the decoding 
complexity given by the total number of error patterns in the list should grow linearly 
with the number of segments Q. Consequently, for a small number of segments Q, 
it is expected that a good decoding strategy is to decode each segment independently, 
and then, the final decision is obtained by selecting the best error (correcting) pattern
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from each of the segments decodings. In this thesis, we refine this strategy for Q =  2 
segments as a generalization of the conventional OSD having only Q =  1 segment.

Assuming that the two segments of the MRIPs are decoded independently, the list 
of error patterns can be written as,

the first segment and of the second segment, respectively, and L =  L \+ L 2. Obviously, 
fewer errors, and thus, fewer error patterns can be assumed in the shorter segments with 
larger reliabilities of the received bits. Similarly to the conventional OSD having one 
segment, for both MRIPs segments, assuming all the error patterns up to the maximum 
Hamming weight Ig,q =  1,2. Then, the lists of error patterns in (4.11) can be defined 
as,

The decoding complexity of the segmentation-based OSD with the lists of error pat­
terns defined in (4.12) is,

where K  — Ki  +  K 2, and we assume 7i <C K\  and 72 K 2.

Recall that the original OSD, denoted as OSD (/), has one segment of length K  
bits, and that the maximum number of bit errors assumed in this segment is 7. The 
segmentation-based OSD is denoted as OSD(/i, 72), and it is parameterized by the 
segment length K \ , and K 2, and the maximum number of errors I\ and 72, respectively. 
The segment sizes Ki  and K 2 are chosen empirically to minimize the BER for a given 
decoding complexity and for a class of codes under consideration. In particular, for 
systematic block codes of block length N  < 128 and of rate R  > 1/2, it is found that 
the recommended length of the first segment is,

so that the second segment length is K 2 =  K  — K\.  The maximum number of bit 
errors 7i and I2 in the two segments are selected to fine-tune the BER performance

where £ ^ ' and are the lists of error patterns corresponding to the list decoding of

£ l? =  {(e ,0)G  : 0 < u;H[e] < 7 h eG Z f1} 
£ g  =  { (0 , e )G:  0 < u/H[e] < 72, e G Z f2}.

(4.12)

Ki as 0.35K
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and the decoding complexity trade-off. For instance, the list decoding schemes can 
be obtained having the BER performance as well as the decoding complexity between 
those corresponding to the original decoding schemes OSD (I) and OSD(7 +  1).

Finally, it can be noticed that it is straightforward to develop the skipping criteria 
for efficient searching of the list of error patterns in the OSD-based decoding schemes. 
In particular, one can consider the Flamming distances for one or more segments of 
the MRIPs between the received hard decisions (before the decoding) and the tempo­
rary decisions obtained using the test error patterns from the list. If  any or all of the 
Hamming distances are above given thresholds, the test error pattern can be discarded 
without re-encoding and calculating the corresponding Euclidean distance. For the 
Q =  2 segments OSD, our empirical results indicate that the thresholds for the first 
and the second segments should be 0.35 dmin and dmin, respectively.

4.5.2 Partial-Order Statistics Decoding

The Gauss (or the Gauss-Jordan) elimination employed in the OSD-based decoding 
algorithms represents a significant portion of the overall implementation complexity. 
A new row (or a reduced row) echelon form of the generator matrix must be obtained 
after every permutation A" until the MRIPs are found. Hence, a partial-order statistics 
decoding (POSD)is advised that completely avoids the Gauss elimination, and thus, it 
further reduces the decoding complexity of the OSD-based decoding. The main idea 
of the POSD is to order only the first K  received bits according to their reliabilities, so 
that the generator matrix remains in its systematic form. The ordering of the first K  
received bits in the descending order can improve the coding gain of the segmentation- 
based OSD. Assuming Q =  2 segments, we use the notation PO SD (/1; I2). The pa­
rameters Ki,  K 2, I\ and I2 of POSD(/i, I2) can be optimized similarly as in the case 
of OSD(/i, I2) to fine-tune the BER performance versus the implementation complex­
ity. On the other hand, it will be shown in Section 4.6 that the partial ordering (i.e., 
the ordering of the first K  out of N  received bits) is irrelevant for the OSD decoding 
having one segment of the MRIPs and using the list of error patterns (4.10). In this 
case, the POSD (I) decoding can be referred to as the input-sphere decoding ISD(7).
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Table 4.1: Implementation Complexity of the OSD and the POSD

OSD(/i) and OSD(/1} / 2)
operation complexity

r 2N FLOPS
r' N\og2{N) FLOPS

Gauss el. G ' N mm( K,  N  — K ) 2 BOPS
f" K  +  K { N  -  K)  BOPS

PO SD (/0 =  ISD(/x)
operation complexity

r 2N FLOPS
f' OBOPS

P O S D (/!,/2)
operation complexity

r 2N  FLOPS
f' K\ og2(K)  FLOPS

4.5.3 Implementation Complexity

A comparison is shown for the number of binary operations (BOPS) and the number 
of floating point operations (FLOPS) required to execute the decoding algorithms pro­
posed in this paper. Assuming a (N, K,  dmin) code, the complexity of the OSD and the 
POSD are given in Table 4.1 and Table 4.2. The implementation complexity expres­
sions in Table 4.1 for OSD(7) are from the reference [2]. For example, the OSD de­
coding of the BCH code (128,64,22) requires at least 1152 FLOPS and 528448 BOPS 
to find the MRIPs and to obtain the corresponding equivalent generator matrix in a row 
echelon form. All this complexity can be completely avoided by assuming the partial 
ordering in the POSD decoding. The number of the test error patterns is L =  2080 for 
OSD(2), and L =  1177 for OSD(2 , 2) with K \ =  21 and K 2 =  43 whereas the coding 
gain of OSD(2) can be only slightly better than the coding gain of OSD(2,2); see, for 
example, Fig. ??. Hence, the overall complexity of the OSD-based schemes can be 
substantially reduced by avoiding the Gauss (Gauss-Jordan) elimination.
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Table 4.2: Decoding List Sizes for the OSD and the POSD

OSD(/) Eto  (?)
OSD(/i , / 2) Eto  (?) + Eto  (?)

POSD(J) =  ISD (/) E L  (?)
POSD { h , I 2) Eto  (?) + Eto  (?)

4.5.4 Skipping Criteria and Threshold Test

By simulation we find a skipping criteria and threshold that reduce and improve the 
speed of decoding for OSD and POSD. This skipping criteria works as follows: Af­
ter re-encoding, check Hamming distances in all segments against the initial hard- 
decisions (including parity bits). If the Hamming distance in all or any of the segments 
is above threshold, do not compute Euclidean distance and move on to another test 
codeword.The skipping threshold is determined as the following:

For the fist segment threshold for K 1 is: dmax =  C  * dmin +  dmin where dmin is 
the Hamming distance of the code. C is the same the suitable segmentation parameter 
which was derived in section 4.5 K I  =  0.35 * K.

For the second segment: (K2) dmax =  dmin.

This skipping criteria is very significant espically for the second coding list,it gives 
a significant reduction in the coding list length.

Another threshold test as in [8] is applicable for full order segmenatation and POSD 
to reduce compuations according to the fact that code whose weight distribution ap­
proaches a binomial distribution,on average (N — K ) / 2  least reliable parity check bits 
are in error when ever MRIP bit is wrong. In genral, NQ(2y /2 /N0) «  (N — K / 2), 
which suggest threshold T to distinguish between two cases,where NQ(2y/2/No)  is 
the average number of erros per received block in BSC associated with AWGN. If 
D represents number of positions for which hard decsisons of the ordered received 
sequence differ from order(O) reprocessing codeword .The threshold test becomes :

• if D < T  ,accept the ordered(O) codeword as the decoded codeword.
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• Else,carry on decoding algorithm.

4.6 Performance Analysis

Recall that assuming a memoryless communication channel as described in Section
4.2. The probability Pr{co G El} is derived in (4.9) that the error pattern Co observed 
at the receiver after transmission of the codeword c tx =  0  is an element of the chosen 
decoding list El - The derivation relies on the following generalization of Lemma 3 in

Lemma 2 For any ordering of the N  received bits, consider the I bit positions J C 
{1,2, • • • , N ], and the ( ^ ) subsets Ji C 3 o f f  < I < N  bit positions. Then, the total 
probability o f the I\ bit errors within the I bits can be calculated as,

of 11 errors within the I  bits J are considered. Consequently, the bit errors in the 
set 0 can be considered to be independent having the equal probability denoted as po­
llsing Lemma 2, it can be obsereved that the lists of error patterns (4.10) and (4.12) 
are constructed, so that the ordering of bits within the segments is irrelevant. Then, the 
bit errors in a given segment can be considered to be conditionally independent. This 
observation is formulated as the following corollary of Lemma 2.

Corollary 1 For the OSD(7) and the list o f error patterns (4.10), the bit errors in the 
MRIPs can be considered as conditionally independent. Similarly, for the POSD(/i, If) 
and the list o f error patterns (4.12), the bit errors in the two segments can be consid­
ered as conditionally independent.

Thus, the bit errors in Corollary 1 are independent conditioned on the particular seg­
ment being considered as shown next(see appendix 4.9).

[2].

where po is the probability of bit error corresponding to the bit positions J.

The ordering of the chosen I bits given by the set J is irrelevant since all subsets 01
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4.6 Performance Analysis

Let Po be the bit error probability of the MRIPs for the OSD(7) decoding. Simi­
larly, let P i and P 2 be the bit error probabilities in the first and the second segments 
of the OSD(/i, / 2) decoding, respectively. Denote the auxiliary variables, v\ — \tki\, 
V2 =  |r ^ 1+i|, and vs =  \tk+i\ of the order statistics (4.3), and let u =  |rj|, i =
1,2, -- , K . Hence, always, v\ > V2, and, for simplicity, ignoring the second permu­
tation A", also, v2 > vs. The probability of bit error P0 for the MRIPs is calculated 
as,

fv3(v)Po —

ru

J o  T
■dv

-  Fu(v)
where Eu[-] denotes the expectation w.r.t. (with respect to) u, f V3{v) is the PDF of 
the (K  +  l)-th order statistic in (4.3), and Fu(v) is the cumulative distribution func­
tion (CDF) of the magnitude (the absolute value) of the reliability of the received bits 
(before ordering). Similarly, the probability of bit error Pi for the first segment is 
calculated as,

p  =  f  I r
1 “  [ J o  1 -  Fu(v)

where f V2(v) is the PDF of the (K\  +  l)-th order statistic in (4.3). The probability of 
bit error P 2 for the second segment is calculated as,

dv

P 2 — Eu
ru  rc.

.JO J u

f v M f v s W ) ■dvdv'
(Fu( v ) - F u( v ' ) ) ( l - F Vl(v'))

where f Vl (v ) and FVl (v ') is the PDF and the CDF of the Ki-th  order statistic in (4.3), 
respectively. The values of the probabilities Po, Pi and P2 have to be evaluated by 
numerical integration. Finally, we use Lemma 2 and substitute the probabilities Po, Pi 
and P 2 for po to calculate the probability Pr{c0 £ £ l}  of the error patterns in the list 

£ l.
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4.7 Numerical Examples

We use computer simulations to compare the BER performances of the proposed soft- 
decision decoding schemes. All the block codes considered are linear and systematic.

4.7.1 Bit Error Performance Of Decoding Algorithms For BPSK 
and 16QAM over AWGN

The BER of the (31,16,7) BCH code over an AWGN channel is shown in Fig. 4.2 
assuming ISD(2) and ISD(3) with K  =  16 having 137 and 697 test error patterns, 
respectively, and assuming PO SD (l,3) and POSD(2,3) with K \ =  6 and K 2 =  10 
having 183 and 198 test error patterns, respectively. We observe that PO SD(l,3) 
achieves the same BER as ISD(3) while using much less error patterns which repre­
sents the gain of the ordering of the received information bits into two segments. At the 
BER of 10-4, POSD(l, 3) outperforms ISD(2) by 1.1 dB using approximately 50% 
more test error patterns. Thus, the POSD(l, 3) decoding provides 2.3 dB coding gain 
in performance with the small implementation complexity at the expense of 2 dB loss 
compared to the ML decoding.

Fig. 4.3 shows the BER of the (63,45,7) BCH code over an AWGN channel. The 
number of test error patterns for the ISD(2), ISD(3), PO SD (l,3) and OSD(2) de- 
codings are 1036, 15226, 5503 and 1036, respectively. We observe from Fig. 4.3 that 
ISD(3) has the same BER as POSD(l, 3) with two segments of K i =  13 and K 2 =  32 
bits. However, especially for the high rate codes (i.e. of rates greater than 1/2), one 
has to also consider the complexity of the Gauss elimination to obtain the row echelon 
form of the generator matrix for the OSD. For example, the Gauss elimination for the 
(63,45,7) code requires approximately 20,400 BOPS; cf. Table 4.1.

The BER of the (128,64,22) BCH code over an AWGN channel is shown in 
Fig. 4.4 assuming OSD(l) and OSD(2) with K  =  64, and assuming OSD(2,2) with 
K i =  21 and K 2 =  43. The number of test error patterns for the OSD(l), OSD(2) 
and OSD(2,2) decodings are 64, 2081 and 1179. A truncated union bound of the 
BER in Fig. 4.2 is used to indicate the ML performance [70, Ch. 10]. We observe
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-  © -  BPSK 
—©—  ISD(3)
—V— POSD(1\6,3\16) 
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SNR[dB]

Figure 4.2: The BER of the (31,16,7) BCH code over an AWGN channel.

-  © -  BPSK 
— *—  ISD(2)
— ©—  ISD(3)
—V—  POSD(1|13,3|32) 
— 0—  OSD(2)________

ui 10
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Figure 4.3: The BER of the (63,45,7) BCH code over an AWGN channel.
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4.7 Numerical Examples

that both 0SD(2) and 0S D (2 ,2) have the same BER performance for the BER val­
ues larger than 10-3, and OSD( 2) outperforms OSD(2,2 ) by at most 0.5 dB for the 
small values of the SNR. Our numerical results indicate that, in general, OSD(2,2) 
decoding can achieve approximately the same BER as OSD(2) for small to medium 
SNR while using about 50% less error patterns. Thus, a slightly smaller coding gain 
(less than 0.5dB) of OSD(2,2) in comparison with OSD(2) at larger values of the 
SNR is well-compensated for by the reduced decoding complexity. More importantly, 
OSD (2, 2) can trade-off the BER performance and the decoding complexity between 
those provided by OSD(l) and OSD(2), especially at larger values of SNR.The BER 
performance of OSD and POSD employing 16QAM over AWGN is shown in Fig. 4.5. 
It is observed from Fig. 4.5 that for non-binary modulation the ISD(3) also has the 
same BER as POSD(l, 3) with two segments of K x =  6 and K 2 =  10 bits.Last obser­
vation shows that POSD algoithm is also effecient for non-binary modulation schemes 
over AWGN.

-  © -  BPSK 
— *— OSD(1)
— ©—  OSD(2)
—V—  OSD(2|21,2|43) 
— *—  soft union bound 6-

cn
UJm

10'4

10"7

SNR[dB]

Figure 4.4: The BER of the (128,64,22) BCH code over an AWGN channel.
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10‘4

10'5

SNR[dB]

Figure 4.5: The BER of the (31,16,7) Golay coded 16QAM over an AWGN channel.

4.7.2 Bit Error Performance Of Decoding Algorithms For BPSK 
and 16QAM Over Rayleigh Fading Channel.

The BER of the (31,16,7) BCH code over a fast Rayleigh fading channel is shown 
in Fig. 4.6. We assume the same decoding schemes as in Fig. 4.3. The POSD(l, 3) 
decoding with 183 error patterns achieves the coding gain of 17 dB over an uncoded 
system, the coding gain of 4 dB over ISD(2) with 137 error patterns, and it has the 
same BER as OSD(3) with 697 error patterns.

The BER of the high rate BCH code (64,57,4) over a fast Rayleigh channel is 
shown in Fig. 4.7. In this case, the number of test error patterns for the ISD(2), ISD(3), 
POSD(2,3) and OSD(2) decoding is 1654, 30914, 8685 and 1654, respectively. We 
observe that, for small to medium SNR, POSD(2,3) which does not require the Gauss 
elimination (corresponding to approximately 3,000 BOPS) outperforms OSD(2) by 
ldB whereas, for large SNR values, these two decoding schemes achieve approxi­
mately the same BER performance.The BER performance of OSD and POSD employ­
ing 16QAM over a fast Rayleigh fading channel is shown in Fig. 4.8. It is observed 
from Fig. 4.8 that for non-binary modulation the ISD(3) also has the same BER as
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-  © -BPSK-1RX  
ISD(2)
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Figure 4.6: The BER of the (31,16,7) BCH code over a Rayleigh fading channel.

POSD(l, 3) with two segments of K\  =  4 and K 2 =  8 bits.Last observation shows 
that POSD algoithm is also effecient for non-binary modulation schemes over rayleigh 
fading channel.
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-  9  -BPSK-1RX  
— ISD(2)
—V—  ISD(3)
— a—  POSD(2/20,3/37) 

* OSD(2)________

10 200 5 15
snr[dB]

Figure 4.7: The BER of the (64,57,4) BCH coded over a Rayleigh fading channel.

4.8 Conclusions

Low-complexity soft-decision decoding techniques employing a list of the test error 
patterns for linear binary block codes of small to medium block length were inves­
tigated. The optimum and suboptimum construction of the list of error patterns was 
developed. Some properties of the joint probability of error of the received bits after 
ordering were derived. The original OSD algorithm was generalized by assuming a 
segmentation of the MRIPs. The segmentation of the MRIPs was shown to overcome 
several drawbacks of the original OSD and to enable flexibility for devising new de­
coding strategies. The decoding complexity of the OSD-based decoding algorithms 
was reduced further by avoiding the Gauss (or the Gauss Jordan) elimination using the 
partial ordering of the received bits in the POSD decoding. The performance analysis 
was concerned with the problem of finding the probability of the test error patterns con­
tained in the decoding list. The BER performance and the decoding complexity of the 
proposed decoding techniques were compared by extensive computer simulations. Nu­
merical examples demonstrated excellent flexibility of the proposed decoding schemes 
to trade-off the BER performance and the decoding complexity. In some cases, both
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Figure 4.8: The BER of the (24,12,8) Golay coded 16QAM over fading channel.

the BER performance as well as the decoding complexity of the segmentation-based 
OSD were found to be improved compared to the original OSD.
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4.9 Appendix

4.9 Appendix

The probabilities Po, P i and P2 are derived in Section 4.6. Without loss of generality, 
we assume that the all-ones codeword was transmitted, i.e., Xi =  — 1 for Vi Then, 
after ordering, the z-th received bit, i =  1,2, • • ■ , N,  is in error, provided that n  > 0 . 
The probability of bit error P 0 for the MRIPs is obtained as,

and f u(u) and Fu(vs) are the PDF and the CDF of the reliability of the received bits, 
respectively, so that,

Similarly, the probability of bit error Pi for the first segment is calculated as,

/* 00 /* 00
/ / f n ( u \ u > v 3) fV3(v3)dv3du

Jo Jo
where the conditional PDF [86],

Pi /„ (« |u >  v2)}V2(v2)dw2d«

The probability of bit error P 2 for the second segment is calculated as,

where the conditional PDF,

f u { u \ v i > u >  v3) f vuV3(vi ,v3)dvidv3du

Vi > u > Vz 
otherwise

and the joint PDF of the order statistics v\ >  v3 is,

and thus,

p 2 =  /  / .(» )  /  /
0 J o  J u

00 nu poo
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5

Complexity Reduction of BTC and 
OSD Decoding Using Highly Reliable 
CRC Bits

5.1 Introduction

In this chapter, two different techniques are proposed to reduce the complexity of the 
OSD and the POSD decoding algorithms for linear binary block codes and binary 
block turbo codes (BTC).

In the first technique, the aim is to reduce the complexity of the OSD decoding 
algorithm by reducing the size of the coding list by using highly reliable CRC bits 
within the transmitted codeword. The size of the coding list is considered to be the 
main measure of the complexity for such decoding techniques. Many schemes were 
developed based on the OSD decoding techniques to acheive a good trade-off between 
the bit-error rate (BER) performance and the implementation complexity [3, 9,41,43]. 
The CRC bits are used as data verification and add no information to the message. They 
are used because of the implementation simplicity since most of the CRC bits assume 
the field GF(2). Also, the CRC bits may give some indication about the Hamming 
weight of the transmitted codeword [21, 73]. The CRC bits were used in the litreature 
either to reduce the complexity or improve the performance [74, 75]. In [74], the CRC
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5.1 Introduction

bits are used jointly with the turbo decoder, where iterations of the turbo decoding are 
stopped when the CRC determines that there are no errors in the decoded codeword. 
The technique in [74], shows that the decoding complexity is reduced by decreasing the 
number of iterations in the trubo decoder. For performnace improvement purposes, the 
CRC bits are utilized in [75] jointly with the single parity check (SPC) product code 
to detect unrecoverable errors. In general, three different types of the CRC bits can 
be applied depending on the segmentation considered for the transmitted codeword. 
The first CRC type, sends highly reliable CRC bits for different segments along the 
whole codeword. The second type, sends the CRC bits for different segments over 
the information bits only. The third type, sends highly reliable CRC bits for segments 
along the parity bits only.

In the second technique, a design of single generator matrix for the BTCs is con­
sidered in order to enable the OSD based decoding of segments as well as to apply 
the POSD algorithm directly for the whole codeword without the need of utlizing the 
SISO decoding based on the OSD for BTCs. The BTC achieves high performance 
with a simple block structure. Different decoding algorithms were proposed in the 
literature [76]. Most of these decoding algorithms are based on iterative principles. 
Such schemes improve the performance and with a decreased complexity. In [76], the 
iterative decoding of any product code using linear block code is proposed. The main 
idea is to use the SISO decoder to decode components of the product codes. The Chase 
decoder is used as a SISO decoder for high rate block codes after certain modifications. 
The Chase decoder in [27] delivers binary decisions as its outputs which are modified 
inoredr to produce the soft outputs corresponding to the log likelihood ratios (LLRs) of 
binary decisions. The soft outputs of the horizontal decoding process are delivered to 
the vertical decoding and vice versa. However, due to the use of the Chase algorithm, 
the method used in [76] can not be extended to other classes of codes. The SISO de­
coding of the product code based on the OSD is proposed in [45]. The OSD is modified 
to convert binary decisions of the classical OSD to soft output values. The main idea 
of algorithms in [45, 76] is to produce a list of codewords. Based on the fact that, for 
each symbol in the received sequence there should be at least one codeword with the 
value ’ 1’ in that position and at least another codeword with the value ’O’ value in the 
same position. In some cases and due to a limited size of the coding list, the Chase de­

61



5.2 System Model

coder extrinsic information is estimated for positions where the codewords with 0 and 
1 in those positions are not available. However, this is not the case for the decoding in 
[45] where the list is designed to contain a sufficient number of codewords. The SISO 
decoding algorithm proposed in [45] is further developed in [77] to produce the soft 
outputs for the OSD with much less complexity than an order I  processing and it is 
performed once rather than (K  +  1) times as in [45].

This chapter is organized as follows. System model is described in Section 5.2. 
The OSD decoding algorithm and CRC techniques are proposed in Section 5.3. The 
performance is illustrated by numerical examples in Section 5.4. The design of a single 
genrator matrix of binary BTC is discussed in Section 5.4. Conclusions are given in 
Section 5.5.

5.2 System Model

The transmission of codewords is considered for a linear binary block code C over a 
AWGN. The code 6 , denoted as ( TV, K , dmin), has dimension K , block length TV, and 
the minimum Hamming distance between any two codewords dmin. Binary codewords 
c G Z f  where Z 2 =  {0 ,1} are generated from a vector of information bits u  E Z ^  

using the generator matrix G  E Z f xN, i.e., c =  u G ,  and all binary operations are 
considered over a Galois field GF(2). If the code 6  is systematic, the generator matrix 
has the form, G  =  [IP ], where I is the TV x K  identity matrix, and P  E is
the matrix of parity checks. The codewords are interleaved and mapped to binary phase 
shift keying (BPSK) sequences x  E {+1, — 1}N before transmission, i.e., x* =  (—l).Ci 
where x* denotes the z-th component of the vector x, and i =  1 , TV. Assuming 
ideal coherent detection (i.e., channel phases are perfectly known at the receiver), the 
received signals are written as,

ri =  Xi +  Wi (5.1)

where Wi are uncorrelated and identically distributed samples of a zero-mean additive 
white Gaussian noise (AWGN) with variance a  ̂ per dimension. The noise variance 
is computed as, cr  ̂ =  where R — K /N  is coding rate of the channel code
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5.3 OSD Based Decoding With High Reliable CRC Bits

C, and the SNR per transmitted binary symbol is 75 =  Eb/N0 where N0 denotes the 
double-sided power spectral density of AWGN.

5.3 OSD Based Decoding With High Reliable CRC Bits

The OSD and the POSD decoding algorithms have been discussed in Chapter 4. The 
OSD decoding has complexity 0 ( |£ |) . The original OSD suggests the list of error 
patterns,

£ =  {e e  Z f  : 0 < wu[e] < 1} (5.2)

where I  «  \dm in/4] K  is the reprocessing order of the OSD, W}i[e] is the Hamming 
weight of the vector e, and [•] is the ceiling function. The list £ in (5.2) has cardinality 
|£| =  ^2j= 1 (^) where J  is the phase of order I  reprocessing, and ( ^) is a binomial 
coefficient. Hence, the OSD algorithm may become excessively complex for larger 
values of I  and K.

Three different types of CRC bits can be applied depending on the segmentation of 
the transmitted codeword. The first type sends highly reliable CRC bits for different 
segments along the whole codeword. In this case, we assume a single parity,i.e., highly 
reliable CRC bit is sent for the whole codeword to indicate about the Hamming weight 
whether it is even or odd. Another possibility is to divide the codeword into many 
segments and then send highly reliable CRC bits for each segment. The OSD decoder 
will perfrom ordinary decoding process to obtain the £ as in (5.2). However, in this 
case, the list £ must be reversed as:

£ne„ =  A"A'[£]

Where A' and A" are the permutation for MRIP ordering and MRP ordering repspec- 
tively. Then, the Hamming weight is calculated for each codeword in 8,new and tested 
against to the received CRC bits. The failed codewords that do not satisfy the CRC 
test are discarded from £new. In the second method, the CRC bits are sent for different 
segments along the information bits only. In the third method, highly reliable CRC bits 
are sent for different segments along the parity bits only.
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5.3.1 Numerical Examples and Discussion

We pefrom soft-decision decoding based on the OSD decoding algorithm for some 
BCH codes. Fig. 5.1-Fig. 5.3 compare the complexity reduction ratios of the coding 
list size £ for different CRC methods using computer simulations.

The ratios of the coding list complexity reduction for the whole codeword for dif­
ferent BCH codes with different R over an AWGN channel are shown in Fig. 5.1 
assuming OSD(2) decoding. We observe that as the number of highly reliable CRC 
bits for segments along the whole codeword increases, the coding list size decreases 
sharply. For example, for BCH (128,64,22) and 3 CRC bits, the codeword is pardoned 
into three segments. For each segment, 1 CRC bit is sent as the indication whether each 
segment contains even or odd number of ones. The codewords that do not satisfy the 
CRC constraints are discareded from the coding list, so the size decreases to about 28% 
of the orginal size (i.e., about 582 codewords out of 2081). When the number of seg­
ments increases up to 6 , and 1 CRC bit is sent for each segment, the list size reaches 
about 0.06 of original size which is about 41 codewords. Moreover, it is shown in 
Fig. 5.1 that sending information about the exact number of ones in the whole code­
word reduces the coding list size but less effectively than when sending CRC bits for 
each segment. For example, for BCH (128,64,22), 7 CRC bits are required to repre­
sent the exact number of ones in the whole codeword and to reduce the complexity to 
about 0.28 of the orginal coding list. However, the 6 CRC bits for 6 segments reduce 
the size of the coding list to about 0.06 of the original size. The ratio of the coding 
list complexity reduction over information part for BCH codes with different R  over 
an AWGN channel is shown in Fig. 5.2 assuming OSD(2) decoding. It is shown that 
sending the CRC bits for a number of segments along information part is very effective 
for different code rates R. For BCH (64,36,12) using 3 CRC bits reduces the coding 
list size to about 0.12 of the orginal size. In Fig. 5.3, the same assumptions of Fig. 5.2 
are used except that CRC bits are over parity bits only. The main observation we have 
from Fig. 7.3 is that using CRC bits over the parity bits only is not effective for high 
code rates. Moreover, comparing Fig. 5.1,Fig. 5.2, and Fig. 5.3, we can conclude that 
using CRC bits among the information bits only or the parity bits only is more effective 
in the complexity reduction than using CRC bits along the whole codeword.
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Figure 5.1: The complexity versus the number of CRC bits used for all bits in a codeword 
for some BCH codes over an AWGN channel.
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Figure 5.2: The complexity versus the number of CRC bits used for the information bits 
for some BCH codes over an AWGN channel.

65



5.4 OSD Based Decoding of BTC Codes

-*— BCH (64,10,22)
■B—  BC H (64,36,12)
-V—  BCH(64,57,24)
-A—  BC H (64,10,22)-TO T  
H—  BCH (64,36,12)-TO T  
<i BC H (64,10,4)-TQ T

0 .9

0.8

0.7

Q>

|  0 .5
g
o  0.4'

0.6

2
0 .3

0.2

0.1

CRC-(K+1:N)

Figure 5.3: The complexity versus the number of CRC bits used for parity bits for some 
BCH codes over an AWGN channel.

5.4 OSD Based Decoding of BTC Codes

As mentioned in Chapter 2, the product codes are serially concatenated codes and this 
kind of codes are simple for constructing long codes by using two short codes. A bi­
nary block product code (BPC) is a good example of such codes. The BPC is formed 
by the product of two systematic codes C\ with (A/i, dmini) and code rate Ri and 
C2 with (JV2, dmin) and the code rate R2. The product code P  =  C \X  C2. In this 
section, a single generator matrix is derived for the BPC rather than using two genera­
tor matrices. Designing a single generator matrix enables to get the same properties of 
the BPC and represents the parity bits separately. Based on this idea, there is no need 
to decode sequentially first the rows and then the columns or vice versa. Moreover, 
there is no need to obtain optimum performance soft-input soft-output (SISO) decod­
ing algorithms since the soft-input and hard-output decoding algorithms are enough. 
However, the SISO decoding algorithm can be modified and integrated to work with a 
single generator matrix. In this way, the iterative decoding can be applied with a single 
generator matrix.

Hence, a single generator matrix of a systematic binary linear product code is de-
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5.4 OSD Based Decoding of BTC Codes

rived. Assume the set Z2 =  {0,1}. Denote the all-zero matrix as 0, the binary identity 
matrix as !(#) G Z ^ xK, and define the (K  x K ) permutation matrix as,

J (K)  =

0 0 
1 0

0 0

1
0

10
( K x K )

Let the systematic binary linear block codes (Ni, Ki , b i) and (N2, K 2, b2) be generated 
by the matrices G i =  [ I^ ^ P x ]  G an d G 2 =  [I(/c2) |P 2] £ ^ 2X̂ 2+M2\
respectively, where the number of parity bits M\ =  N\ — K\  and M2 =  N2 — K 2. Then, 
the codewords of the systematic product code (N \ , K \ , bi) x (N2, K 2, b2) can be written 
as,

uG  =  u [ I ( ^ ^ ) |Q i |Q2|Q 3] 

where u  G Z ^ lK2 is a row vector of information bits, and the matrices,

Q i =

P i o 
o P i

Q 2 =
J ^ ) A 2

0  0

[i(KiYT° A , T1 A-.° { K  i ) A l  J rAMA l

(K1K2xK2Mi)

3 Kl- 1A^

J (ATi)

J (/Ci) AK2 .
(KiK2xKiM2)

Ai = rowi(P2)
0

Q 3 =  Qi
J  ?M0B 2

-rMi-l-p
J (Mi) 
t M i - 1 - d  

(M i) 2

J (Mi) B ^2 (Mi K2xMxM2)

B t =
roWi(P2)

0
(M x x M 2 )
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Figure 5.4: The BER of BPC code using log-map decoder and OSD using a single gener­
ator matrix.

5.4.1 Complexity and Performance Evaluation

It is shown in Table 5.1 that complexity of the decoding when presenting a product code 
as a single gnerator matrix is much less than the decoding complexity for classical BPC 
using SISO based on the OSD in [45]. For example consider a (7,4,3) x (7,4,3) BPC. 
The number of real operations using SISO based on the the OSD(I) is equal to about 
(17 x 33 x 16 =  8976) operations where using OSD(I) for a single generator matrix 
(49,16,9) requires (33 x 137 =  4521) operations which is about 50% reduction. Using 
OSD(2/5,2/l 1), the number of real operations will be (33 x (11 +  79) =  2970) which 
is further reduction compared to a SISO based on the OSD.

Moreover, it is shown in Fig. 5.4 that the performnace of OSD based on segmenta­
tion is the same for log-map decoder and even SISO based on OSD decoder.
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Table 5.1: Comparison of the number of real operations for SISO based on OSD and a 
single generator matrix using OSD to decode BTC.

OSD(/) - 1 G (N -  K ) E L  (? )

OSD(/1, / 2) -  1G (iV -  K ) E t o  ( ? )  +  E l o  ( ? )

SISO -  OSD(/) { K +  1 ) ( N - K ) E U ( , D

5.5 Conclusions

The size of coding list for the OSD decoding algorithm is reduced by sending high 
reliable CRC bits. Three different types of CRC bits can be applied: the first type is to 
send high reliable CRC bits for different segments along the whole codeword(l : N),  
the second type is to send of CRC bits for different segments along the information bits 
only (1 : K),  and the third type is to send high reliable CRC bits for segments along 
the parity bits only ( K + 1 : N).  The comparison between these different types of CRC 
bits shows that sending high reliable CRC bits for many segments over the information 
bits only is the most effective way to reduce the complexity of the coding list. Also 
sending CRC bits for many segements is more effective in complexity reduction than 
sending the exact information about the number of ones even for the whole codeword 
or the information bits and the parity bits only. A design of single generator matrix for 
binary BTC is also represented to apply the OSD based on segmentation and the POSD 
algorithms directly to the codeword, without the need of utlizing the SISO based on 
OSD decoding algorithm for BPC.
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6

Error Rate Performance of 
Cooperative Versus Receiver Coded 
Diversity

6.1 Introduction

The roll-out of the 4G cellular systems is expected to commence in the near future. 
Various forms of the transmission diversity are one of the key technical enablers of the 
4G systems. The relays deployed about the 4G base stations will provide the improved 
coverage and enable higher data rates services by realizing the distributed transmission 
diversity. The existence of relays, however, also significantly complicates the deploy­
ment of the 4G networks, for example, due to the increased capital and operational 
expenditures, and the need to allocate additional communication channels within the 
cell. It is therefore vital to investigate the conditions when the cooperative diversity 
realized by the relays can bring the antennas closer to the user terminals, and thus, 
outperform the conventional receiver diversity realized by the multiple antennas at the 
receiver. Such comparison can be done in terms of the transmission reliabilities repre­
sented by the pairwise error probabilities (PEPs) and the bit error rates (BERs).

The uncoded cooperative diversity techniques were studied in [14] and in [78]. The 
multiuser cooperative protocols are proposed in [79, 80]. An overview of the coded
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cooperation schemes is given in [16]. The performance of conventional coded antenna 
diversity techniques is investigated in [81]. The performance of coded systems over 
block fading channels is analyzed in [85]. An upper-bound of the transmission er­
ror probability for binary block codes over slow and fast fading channels is obtained in 
[82]. A specific two-user coded cooperative scheme is proposed and analyzed [17, 55]. 
General analytical expressions for the error performance of the amplify-and-forward 
(AF) and the decode-and-forward (DF) relaying employing the turbo codes are ob­
tained in [13]. The coded cooperation is also studies in [92].

In this chapter, a comparison is carried out between the transmission reliabilities 
of a cooperative diversity system employing a single relay and a system employing the 
conventional receiver diversity with the two receiver antennas. Thus, both systems can 
achieve the diversity order of at most two. We formulate the research problem such that 
the source and the destination are stationary, and the task is to find the relay locations, 
so that the cooperative diversity can outperform the receiver diversity. This is a dual 
problem to the scenario where the destination (source) and the relay are stationary, and 
the task is to find the source (destination) locations, so that the cooperative diversity 
can outperform the receiver diversity. The locations of network nodes are taken into 
account through the path-loss attenuations. The results indicate that, if the path-loss 
attenuations, and thus, the mutual nodes locations are not considered, then the con­
ventional receiver diversity always outperforms the cooperative diversity. On the other 
hand, the path-loss attenuations may cause the system with the cooperative diversity to 
outperform the system with the receiver diversity, particularly at smaller values of the 
signal-to-noise ratio (SNR). All the channels between network nodes are assumed to 
be independent. In both systems, the destination coherently combines the received sig­
nals using the maximum ratio combining (MRC) or the equal gain combining (EGC) 
[24].

More importantly, we assume encoding of the packets using a simple binary lin­
ear block coding and mapping to non-binary linear modulation constellations prior to 
their transmission. For the cooperative diversity, assuming that time division channel 
orthogonalization and a usual two time-slot relaying protocol are used in order to avoid 
the interference of the transmitted packets. In case of the DF relaying, assuming that 
the relay uses the same encoder as the source and the same decoder as the destination.
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For the decoding of short length binary linear block codes, we employ the soft-decision 
decoding techniques developed in Chapter 4 that are referred to as the partial-order 
statistics decoding (POSD). These techniques achieve a good BER performance ver­
sus the implementation complexity trade-off, and, in some cases, the POSD techniques 
can even closely approach the performance of the maximum-likelihood (ML) decoder 
[8, 84].

The rest of this chapter is organized as follows. Section 6.2 describes the system 
models including the modulation and channel coding and decoding for two systems 
employing the receiver and the cooperative diversity, respectively. The PEP as a key 
measure of the transmission reliability for the two systems under consideration is an­
alyzed in Section 6.3. The performance of the two systems are compared in Section 
6.4 the optimum relay locations for the system with the cooperative diversity are de­
termined, so that it outperforms the system with the receiver diversity. Finally, conclu­
sions are given in Section 6.5.

6 . 2  System Model

We compare the BER performance of two communication systems. System I uses a 
single relay ‘R’ to realize a distributed diversity in order to improve the transmission 
reliability from a source ‘S’ to a destination ‘D’. All nodes in System I are equipped 
with a single transmitting and a single receiving antenna. On the other hand, System 
II achieves the transmission reliability by exploiting the receiver diversity. In System 
II, a source ‘S’ with one transmitting antenna transmits information to a destination 
‘D’ having two receiving antennas. Hence, both systems can achieve the transmission 
diversity of order at most two. We assume a flat fading channel model with an additive 
white Gaussian noise (AWGN) between any pair of network nodes, and also, that all 
channels are mutually independent. Without any loss of generality, we omit symbol­
time indices in the expressions.

For System I using the cooperative diversity, we use the following notation to de­
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scribe the transmission from a node X E {S, R} to a node Y E {R, D}, i.e.,

dxv >  0 distance between X and Y
Qxy > 0 path-loss coefficient
hxY £ 6 channel fading coefficient
7 x y  > 0 instantaneous SNR at node Y
WXY e  e AWGN
yxY G C received signal at node Y

where 6 denotes the set of complex numbers. For System II using the receiver diversity
with the receiver antenna i =  1,2, we use the notation,

Furthermore, we make the following assumptions common to both systems. The chan­
nel fading coefficients h are complex-valued wide-sense stationary jointly Gaussian 
random processes having zero-mean and unit-variance. Thus, the channel fading am­
plitudes \h\ are Rayleigh distributed, and E[/i] =  0 and E[|/i|2] =  1, where E[ ] is 
expectation, and | • | is the absolute value. The channel fading coefficients are either 
assumed to be constant and then change independently during the transmission of one 
codeword (corresponding to a slow block fading channel model), or they change in­
dependently for every transmitted symbol (i.e., a fast fading channel model with ideal 
interleaving and deinterleaving of symbols). All coefficients of AWGNs w are un­
correlated zero-mean complex-valued jointly Gaussian random processes having the 
equal variance cr2 =  E[|u>|2] =  N0 where N0 is a constant one-sided power spectral 
density of the AWGNs.

In general, the signal amplitude attenuation due to a path-loss at distance d from 
the transmitter antenna is proportional to const x gTm/2 where the constant is a function 
of the carrier frequency, and fi > 0 is the path-loss exponent. Let d0 be the reference 
distance at which the path-loss is equal to unity. Then, the path-loss coefficient qxy 
and a  at the distance dxy and d, respectively, from the transmitter antenna can be 
expressed as,

d > 0 distance between S and D
a >  0 path-loss coefficient

h[i) E C channel fading coefficient 
7(») >  0 instantaneous SNR at node D 
w{{) E C AWGN 
y(i) E 6 received signal at node D.
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Since the nodes S and D are common to both systems under consideration, in the 
sequel, we assume that the path-loss between S and D in both systems is unity, i.e., 
do =  dSD =  d. Hence, the path-loss coefficients at distances greater (smaller) than 
the reference distance do are smaller (larger) than unity. Note that the choice of the 
reference distance shifts the SNR values of all links equally. Thus, one can choose an 
arbitrary common reference distance do without biasing the BER comparisons of the 
two systems.

Let x denote a modulation symbol in the transmitted codeword. The modulation 
symbols have zero-mean and are normalized, so that the average energy per symbol 
E[|x|2] is equal to a constant Es >  0. For the cooperative diversity system with the 
AF relaying, the received signals at two consecutive time slots corresponding to the 
transmitted symbol x can be written as,

2/sD =  ^SD̂ SD x +  Wsd 

VsR =  ^SR^SR X +  ^SR 

2/RD : =  / ^ A F ^ R D ^ R d J / s R  +  ^ R D

where /?AF is the amplification factor used at the relay. The amplification factor (3AF 
normalizes the average energy of the signal transmitted from the relay to be equal to 
Ea, i.e., [13, 29],

ft =  =  I E °
v / E [ j r f  y < i v i 2£ s + < 4

where expectation in the denominator is conditioned on the amplitude \hSR\. For the 
cooperative diversity system with the DF relaying, the received signal at the destination 
at the second time slot corresponding to the transmitted symbol x can be written as,

2/RD =  /̂ DF̂ RD̂ RD X T WRD

where the relay amplification factor /?DF =  1 and x is a re-encoded symbol at the relay. 
We assume that the symbol x is from the same modulation constellation as the symbol 
x; if x ^  x, then a decoding error occurred at the relay.
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For the receiver diversity system, the received signals at the two receiver antennas 
corresponding to the transmitted symbol x can be written as,

At the destination, the received signals are coherently combined using MRC or 
EGC. In particular, the MRC output signals are written as,

Note that, since the path-loss coefficients are time-invariant, they can be used as the 
weighting factors of the EGC; however, in this chapter, only the phase-compensating 
weighting factors are considered in the EGC combiner.

Recall that all the receivers in the network are assumed to have the identical time- 
invariant power spectral densities of the background AWGNs. The instantaneous SNR 
of the communication link between a pair of nodes for the system with the cooperative 
and the receiver diversity, respectively, is defined as,

where =  Es/  (N0 log2 M) is the SNR per transmitted bit assuming an M -ary mod­
ulation constellation. In this paper, we assume that all links are subject to independent 
and identically distributed Rayleigh fading, and thus, the SNR of each link is expo­
nentially distributed [24]. Provided that a channel coding of rate R <  1 is used at 
the source, the AWGNs at the relay and destination receivers have the equal variance

2/(i) =  a h w x +  W(i) 

2/(2) =  ah(2)x +  W( 2).

y

System II

System I ft

P20ilD\hRD\2 +  1
'RP'̂ SR

2/r d  "I" QIs D ^ 's d 2/s D

y

and for EGC, the output signals are written as,

y
■j(Z/lRD + ̂ /lSR)

V P 2*L\h™ \2 +  1
, - j^ S D

2/s d

V  =  e - ^ i . y (1) +

where j =  yf— \  is the imaginary unit, and Z ( )  denotes the phase of a complex number.

System II

7 x y  =  Ot\ Y  I h XY |2 lb  7(i) =  Oi2 I fy i) 12 lb
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a \  — E[|w|2] =  No =  Es/{R^ib log2 M). Then, the instantaneous SNR at the output 
of the MRC combiner at the destination for the system with the cooperative and the 
receiver diversity, respectively, can be expressed as,

System I 7 SR 7 r d
7  =  7 s d  + ---------   — t

7 s r  +  7 r d  +  1

System II 
7  =  7 d ) + 7 ( a ) .

In general, depending on the relay location, the average SNR at the combiner out­
put at the destination can be larger or smaller for the cooperative diversity than for the 
case of the receiver diversity. However and importantly, if the path-loss is not consid­
ered (i.e., the average SNR values are location-invariant), then the average SNR of the 
receiver diversity is always larger than the average SNR of the cooperative diversity. 
In addition, note that, for a fair comparison, we assume that both the source and the 
relay transmits with the average energy per symbol Es, so that the total average energy 
per transmitted symbol is 2Es over the two time-slots whereas the total average energy 
per transmitted symbol for the system with the receiver diversity is Es.

6.2.1 Modulation and Channel Coding and Decoding

We assume that the transmissions between nodes are realized using a linear memo- 
ryless modulation and using a linear binary block code of short block length. The 
encoding of information bits by a binary channel code is performed by multiplying 
the vector of K  information bits by a binary generator matrix in order to produce a 
binary codeword of N  encoded bits. The binary channel coding C  is denoted as a 
triplet (AT, K,  dmin) where dm is the minimum Hamming distance between any two 
codewords, and R =  K /N  is the code rate. The codewords are possibly interleaved 
and mapped to either binary phase shift keying (BPSK) symbols or to 16 quadrature 
amplitude modulation (QAM) symbols. For the 16QAM modulation, we assume a 
natural mapping of the consecutive sequences of 4 encoded bits (ci, c2, C3, c4) to the 
modulation symbols x =  xj +  jxq such that the encoded bits (ci, c3) are mapped to 
xj 6  {±1, ±3}, and the encoded bits (c2, c4) are mapped to xq € {±1, ±3}, as in 
Chapter 4 and [71].
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6.3 Analysis of Transmission Reliability

The theoretical analysis is mathematically tractable provided that we assume a block 
fading channel model, i.e., the channel fading coefficients are generated independently 
and held constant for the transmission of each codeword. Recall that the channel fad­
ing coefficients between the network nodes are assumed to be mutually independent, 
and they are perfectly known at the receivers. For notational simplicity, the path-loss 
coefficients a  are merged into the channel fading coefficients h, so that the variances 
E[|/i|2] are scaled by a 2. We denote as g =  \h\ the amplitudes of the channel fad­
ing coefficients h. In our analysis, we consider the performance of the EGC at the 
destination receiver for the case of BPSK modulation. For BPSK signaling, we de­
note the codewords 0  =  (0 , • • • , 0 ), a  =  (ai, • • • , a/v) and b  =  (6i, • • • , bjv) corre­
sponding to the transmitted sequences =  (1, ■ • • , 1), =  (x ^ \  • • • , x $ )  and
x^6) =  ( x f \  • ■ • , x $ ) ,  respectively. We assume that all codewords are equally likely 
to be transmitted and that an all-zero codeword has been transmitted. Note that the lat­
ter assumption may slightly bias the analysis for System II due to non-linearity of the 
DF relaying. The ML detector at the destination receiver selects the most likely code­
word corresponding to the transmitted sequence with the smallest Euclidean distance 
from the received sequence y.

In general, the probability of transmission error for coded systems can be upper- 
bounded using a union-bound [87]. Thus, the BER of coded systems can be upper- 
bounded as [88],

BER <  —̂ - ^ P r {0  -¥ a} (6.1)
a e c
a^O

where wu[u] is the Hamming weight of the information vector u  corresponding to the 
codeword a  of a binary linear block code C =  (iV, K, dmjn). The PEP Pr{0 —»■ a} is 
the probability that the all-zero codeword 0  was transmitted, and the receiver decides 
between the codewords 0 and a  that a  has been transmitted. Provided that the PEP 
Pr{0 —y a} can be expressed as a function of the Hamming weight t«H[a], the union 
bound (6 .1) can be evaluated more effectively using a weight enumerator of the code 
C  [70]. More importantly, note that the union bound (6 .1) is dominated by the largest 
PEP Pr{0 —y a}. Thus, in the sequel, we evaluate the PEP Pr{0 —> a} rather than the
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overall union bound (6 .1) as a key measure of the transmission reliability for the coded 
communication systems.

6.3.1 System I with the AF Diversity

Assuming System I with the AF relaying, the output signal of the EGC at the destina­
tion receiver can be written as,

=  9 afx\ +  wAFi

where i =  1,2, • • • , N  is the symbol index in the transmitted codeword, Re{-} is 
the real part of a complex number, wAFi is an equivalent zero-mean AWGN having 
the variance E[|wAFi|2] =  =  N0, and c\ =  N0/E s is the inverse of the SNR per
transmitted symbol. Note that the signal received from the relay is normalized by the 
factor x/^afSrd +  1 in order to make the AWGN variances of the two diversity signals 
before combining equal. Given the value of pAF, the conditional PEP of System II with 
the AF relaying is calculated as the probability that the Euclidean distance wEt0 from 
the received sequence y  for the codeword 0 is greater than the Euclidean distance from 
y for the codeword a, i.e.,

Vi =  R e
(0) . /^afS'rd'^srz +  U;Rm/ ^ a f <?r d P s r

9 r d 9 sr

,(0)

Pr{0 a|pAF} =  Pr{w 2 0 > w \ J
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(£ED±£|b2 z2 
^RD̂ SR —SgAP(*) =  (̂ p+"%)i ‘̂ S>+̂ R)e 2c|ct|r ct|dV/c3 ze

2 C3 2 2
1 -2  ^ R D + ^ S r ) -2

2 c l ^ a l D<7‘lRze2"s» -  2 2W s r  +
f j  +^l_+(7fip<7SR>\

V ^ rcrsD C T sR crR D e^ R D  ^sr  ‘"s d ^  /  2 x

K d^sr +  - L ( - s2d +  < 4 )  C3̂ 2) ( e r f ( ^ g ^ )  +  e r f ( " t | g : s1 ^ ) )

Since, for a zero mean unit variance Gaussian random variable W , the probability 
Pr{FF > w } =  Q(w) where Q(-) is the Q-fimction [24], we have that,

f  \ / v N (x̂ a) -  x^ ) 2 '
Pr{0 ^ a | g AF} =  Pr |  W > gAF V ‘

=  ^  =  Q ^A F ^H lalT fe)

where wE [x^°\ x ^ ]  is the Euclidean distance between the vectors x °̂̂  and x ^ .  Then, 
the PEP is evaluated as,

noo

P r{0  a} =  /  P r{0  -> a |z )  f 9AF{z)dz (6.2)
Jo

where f gAF(z) is the probability density function (PDF) of gAF. In general, a closed 
form expression for f 9AF{z) is difficult to obtain. However, since, always, gAF <  
gSD +  min(gRD, <7sr) =  gAF, and the channel fading amplitudes gSD, gSR and gRD are 
independent and have the variances c r |D, c r |R and <Tr D, respectively, we can lower-bound 
the PEP (6.2), i.e.,

r  oo
P r{0  a} >  /  Pr{0 ->• a |z )  f 9AF(z)d; 

Jo

where, after lengthy manipulations, the closed form expression of the PDF f 9AF{z) is 
shown at the top of this page, C2 =  cr|Dcr|R +  cr|D(cr|D +  cr|R), C3 =  log(e) and the 
function erf(z) =  1 — 2Q(y/2x).
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6.3.2 System I with the DF Diversity

In order to analyze the PEP of the DF relaying, we assume that the source transmits 
the all-zero codeword 0, however, the relay decodes and forwards a codeword b. In 
this case, the EGC output signal at the destination receiver is written as,

y{ =  R e |p SD̂ 0) +  wSDi +  gRDx\b) +  wRDi j
_  (0) , (b) ,
— 9 s D X i 9KDX i “I" ^DF i

where wVFi is an equivalent zero-mean AWGN with the variance E[|wDFi|2] =  cr  ̂ =  
No. The PEP of the destination receiver conditioned on the values of the channel fading 
amplitudes gsD, gSR and gRD is then calculated as,

P r{0 -> a|pSD, gSR, gRD} =  ^  P r{0  -> a|b, pSD, #RD} Pr{0 -> b |pSR} (6.3)
bee

where Pr{0 —» b |pSR} is the conditional PEP that the relay decodes the codeword b. 
The first conditional PEP in (6.3) is again equal to the probability that the Euclidean 
distance wjEi0 from the received sequence y  for the all-zero codeword is greater than 
the Euclidean distance wE>a corresponding to the codeword a, i.e.,

Pr{0 a |b , <7sd> <7rd} =  Pr{w 2 0 > w\ a}

= Pr(S  {Vi ~  ̂ SD + 9™)xi0)) (gsD + 9kd)x\o)) }I i = l  i = 1 J

= Pr -  9svSi)si + 2SiWDFi >  o j

_  q  | Yli=i (9sDSi — gRpti )s i  | ^

V
where we defined, s* =  and U =  2xf^ — x Assuming that
xf^ =  1 for Vz, we can show that, for any values of gSD and gRD, the argument of the 
Q-fimction in (6.4) is, in general, increasing with the Hamming distance between the 
codewords a  and b. The argument of the Q-fimction in (6.4) is minimized for a  =  b  
(i.e., the vectors are component-wise identical) while 0  ^  a  which corresponds to the 
worst case scenario when the value of the PEP defined in (6.4) is maximized. On the
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other hand, we can show that, for any values of gSD and <?RD, the value of the PEP 
(6.4) is minimized provided that b  =  0 (i.e., the relay correctly decodes the codeword 
transmitted from the source). This also indicate that the ability of the relay to correctly 
decode the transmitted codeword from the source has a major effect upon the overall 
probability of transmission error of the cooperative system.

Denote as wEtb the Euclidean distance from the received sequence y SR for the code­
word b  at the relay receiver. Then, the PEP Pr{0 —> b |pSR} for the link from the 
source to the relay can be expressed as [85],

Pr{0 b|psR> =  Pr{^E l0 > wl,b}

= Pr( £  (ySR,i -  pSR®i0)) > X ) (2/sR-i “  9sn4b)) \
I t = l  t= l )

where ysn>i is the received signal at the relay, wn[b] is the Hamming weight of the code­
word b, and wE [x^°), x ^ ]  is the Euclidean distance between the modulated sequences 
corresponding to the vectors 0  and b.

Using (6.3), the PEP averaged over the independent Rayleigh distributed channel 
fading amplitudes gSD, gSR and gRD is expressed as,

oo
P r{0  -» a} =  J J f  P r{0  -> a |u , t ; , r } /9SD(u)/9SIl(j;)/9RD(r)dudi)dr 

0
oo

-> a |b , u ,v }  / 9SD(u)fgsR(v)dudv Pr{0 -» b |r } / 9RD(r)dr
bee o 0

=  £ P r{° —» a|b} P r{0  —> b}
b e e

Let the argument of the Q-fimction in (6.4) be a random variable,

% =  CiQsd ~

where the constants,

Cl =  ^  and C2 =  ^ Siti
2VTf° ? ’
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Then, the average PEP Pr{0 —> a |b} can be evaluated as,

/oo
Pr{0 —> a |b , z) fz{z)dz .

•OO

The PDF of the random variable Z  can be obtained by conditioning and integration 
[86], i.e.,

fz{z)  =  < 2 ( it + i )  + 3 z -  0

+  (fci +  k*)~3 ( m ; )  M z ) z < 0

where ki =  C \o \ , k2 =  Cfal, k3 =  Cfcrf, k4 =  C|<72> &5 =  ClC^cr2 a2, and, 

fi(z)  =  e"(xr +I2)3 (2k3^j - -  / 1 1 ^  +  —e fc2 z +  2k5\ -— b —e fc2 2
k\ k2

(2fc3+2fc,t,A:4)z2
+v27r(A:i +  /C2)(/ci +  — z )e 2fc5(fc1+fc2)

- \ / ^ T  + ^  + l̂fc2(fcl + ” *2) erf( v /2 ^ 2 fc 5)  )

_^2 I XI" /  I 1 T~ (2fc-| +fcg)z2
/ 2(z) =  e“̂ ~ (fci +  fc2) y  ( -2 ^ 2 y  +  ^ -2  +  \/27r(fci +  k2 -  z )e 2fc5+2*4

m  ^ " / ,2  , , , 2\ {2fcl+A;2)*2 . /  \
+V ¥  + ¥ ( 1 + fclfc2 ■ klZ )e 2t5 erf( v2fc5 + 2fc4j

The average PEP Pr{0 —> b} can be obtained by using the ChemofF bound 
Q(x) < \e~x2/2, for example, as in [82], or by using the Prony approximation Q(x) =
0.208e_0971x2 +  0.147e_0-525x2 as in [88]. Assuming the latter expression, the average 
PEP is approximately equal to,

P /n  h \ -  0-208 0.147
” 1-942 i«H[b] cr2R7b +  1 +  1.050 wu[b] d ^ lb  + 1

where 7& is the SNR per encoded binary symbol.
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6.3.3 System II with the Rx Diversity

Assuming the receiver diversity without relay, the output signal of the EGC at the 
destination receiver can be written as,

yt =  R e |p (1)x f } + 2(2)x f ) +  <%)* +  w (2)i}

=  (0(1) +  0(2)K'O) +  W*xi =  9rM 0) +  WR xt

where wRxi is an equivalent zero-mean AWGN with the variance E[|u>Rxi|2] =  cr2 =  
N0. The PEP of System II is obtained similarly as for the source to relay link in System
I. Thus, conditioned on the channel fading amplitude gRx, and BPSK signaling, the PEP 
is evaluated as,

Pr{0 -> a|#Rx} =  Pr{u£ 0 > w \ta}

=  P r ( £ (w - g ^ r ) 2 > £ ( » - ftu* ^ ) 2
I »=1 i= l

=  Q { g ^ V wu[a]nfb)  •

Consequently, the average PEP is calculated using the integration,

poo
Pr{0 -> a} =  /  Pr{0 -4- a |z }  f gRx(z)dz.

J o

The integration to obtain the average PEP Pr{0 -* a} can be carried out using the 
Prony approximation method [88]. In particular, the conditional PEP is approximately 
equal to,

Q (s R x v W H 'f t)  =  0.208e“°'971sR*“’Hlal'rt +0.147e“°'525sR«“,Hlahl’ 

so that the average PEP is calculated as,

POO POO
Pr{0 —> a} =  0.208 I e~A2*2 f gRJ z )d z  +  0.147 /  e~A*z2 f gRll(z)dz (6.5) 

Jo Jo

where A\ =  0.971 ton [a] 7b and A2 =  0.525 wn[ai\ 7b•

The PDF f 9Rx(z) of the channel fading amplitude gRx is again obtained by condi­
tioning and integration. Thus, assuming the independent Rayleigh distributed channel
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fading amplitudes g(1) and g{2) of the variances a2x) and cr(22), respectively, we obtain the 
PDF,

z c rm  . R z 2 - V  _ £  A . J  <Jm Z
/* .(* ) = ^  + V l  ( l  + - f

where V =  cr21} +  cr22) is the variance of the EGC amplitude gRx. Finally, a closed 
form expression for the average PEP (6.5) based on the Prony approximation method 
is obtained using the following integration, i.e.,

poo

^ ( 1),*(2) (a) =  /  e““ 'VsR,(«)dz 
Jo
2cr(1)Vr3/ 2 4a<7(2)V 5/2 (  (  r  \

=  T + 2 a V  +  (1 +  2aV)V> +  2aV ^ J  ~  * )

where a >  0 is a real constant, and V  was defined previously. The PEP (6.5) is then 
computed as,

Pr{0 -> a} =  0.208 (0.971 ioH[a] 7b) +  0.147 /„(1),»!2)(0.525 toH[a] %).

6.4 Performance Comparison of System I and System 
II

We use the PEP expressions obtained in the previous section to compare the error 
rate performances of System I and System II with the cooperative and the receiver 
diversity is investigated, respectively. In particular, the effect of the relay location 
on the performance of the cooperative diversity, and determine geographical areas for 
positioning the relay in which the relaying can outperform the conventional receiver 
diversity. Recall that the upper-bound of the BER (6 .1) is dominated by the largest PEP 
Pr{0 —> a}, so that we can consider the PEP Pr{0 —> a} to be the key performance 
metric of the system. More importantly, assuming our analysis in Section 6.3, it can be 
shown that, for System I as well as System II, the largest PEP Pr{0 —> a} corresponds 
to the codeword a  of the minimum Hamming weight Wu[a\ =  dm-m.

Denote as P E PAF, PEPDF and PE PRx the PEPs Pr{0 -» a} of System I with the 
AF relaying, System I with the DF relaying and System II with the receiver diversity,

84



6.4 Performance Comparison of System I and System II

respectively. The PEPs PE PAF and PEPDF are the relay location dependent. The re­
lay location is denoted as a triplet (dSR/d 0, dRD/d 0, dSD/d 0) where d0 is the reference 
distance. Recall that, without loss of generality, we assume d0 =  dSD, i.e., the relay lo­
cation is given by the triplet (dSR/d SD, dRD/d SD, 1). For System I, the distance between 
the source and the destination is a scalar variable d\ we assume that d /dSD =  1. Thus, 
for System I as well as System II, the path-loss between the source and the destination 
is unity.

Fig. 6.1 shows an excellent agreement between the mathematical expressions ob­
tained in Section 6.3 and the computer simulations for the PEP Pr{0 -> a} of Sys­
tem I with the DF relaying assuming independent slow Rayleigh fading channels, 
BPSK modulation, and a codeword a  of the Hamming weight dmin for the BCH codes 
(31,16,7) and (32,26,4). Fig. 6.2. compares the PEPs Pr{0 —► a} of System II with 
the two receiver antennas and System I with the DF relaying assuming again inde­
pendent slow Rayleigh fading channels, BPSK modulation, and a codeword a  of the 
Hamming weight dmin for the BCH code (31,16, 7). Note that the distance between the 
source and the destination is normalized to 1. The relay location denoted as (1,1,1) 
corresponds to the case when the path-loss is not considered. Provided that the path- 
loss is not considered, the receiver diversity always outperforms the DF diversity as 
one may intuitively expect. Relaying outperforms the receiver diversity, particularly at 
smaller values of the SNR. This is further confirmed by the PEP values in Fig. 6.3 ver­
sus the relay location (dSR/d SD, 1 — dSR/d SD, 1) at a constant SNR =  9dB. More im­
portantly, we observe from Fig. 6.3 that the relay located closer to the source achieves a 
better PEP performance than the relay located at the center between the source and the 
destination (cf. Fig. 6.5). Thus, the optimum relay location has to trade-off the error 
propagation due to the DF relaying and the path-loss attenuations between the nodes, 
and it is also influenced by the particular channel code used. Assuming the same pa­
rameters and settings as in Fig. 6.2 and Fig. 6.3, the PEP performance of System I with 
the AF relaying is shown in Fig. 6.4.

Also a numerical examples are presented for the overall BER performances of Sys­
tem I and System II. We consider uncoded as well as coded transmissions from the 
source to the destination using the BCH systematic codes (31,16,7) and (32,16,8) 
and BPSK and 16QAM modulations. We employ the POSD decoder at the destination
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M-BCH(31,16,7) 
S-BCH(31,16,7) 
M-BCH(32,26,4) 
S~BCH(32,26,4)

8 10 
SNR [dB]

Figure 6.1: The PEP Pr{0 —> a} for System I with the DF relaying, the BCH (31,16,7) 
and (32,26,4) coded BPSK signaling over slowly Rayleigh fading channels, and the EGC 
at the destination (M-mathematical expression, S-simulation).

-  * -  2Rx
DF (0.5,0.5,1.0) 
DF (0.5,0.8,1.0) 
DF( 1.0,1.0,1.0) 
DF (0.8,0.8,1.0)

10~7
SNR [dB]

Figure 6.2: The PEP Pr{0 -» a} for System I with the DF relaying and the BCH
(31,16,7) coded BPSK signaling over slowly Rayleigh fading channels, and the EGC
at the destination.
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S N R = 9d B

10'! 0.2 0.4 0.5 0.6

^sr/^ sd
0.90.3 0.7

Figure 6.3: The PEP Pr{0 —> a} for System I with the DF relaying and the BCH 
(31,16,7) coded BPSK signaling over slowly Rayleigh fading channels, the EGC at the 
destination, the normalized distance dRD/dsD = 1 — dSK/dsD, and the SNR 75 = 9dB.

AF (0.4,0.8,1.0) 
AF (0.6,0.8,1.0) 
AF (0.8,0.8,1.0) 
AF (1.0,1.0,1.0)

.-2

10"5

SNR [dB]

Figure 6.4: The PEP Pr{0 —> a} for System I with the AF relaying and the BCH
(31,16,7) coded BPSK signaling over slowly Rayleigh fading channels, and the EGC
at the destination.

87



6.4 Performance Comparison of System I and System II

and also at the relay provided that the DF relaying is used. The POSD is optimized to 
achieve the best possible BER performance for the given decoding complexity [84]. In 
particular, for both BCH codes considered, the POSD searches two disjoint segments 
of 6 and 10 ordered information bits assuming at most 1 and 3 errors in each segment, 
respectively. We use the notation ‘2Rx’ to denote the two antenna receiver diversity, 
and the notation £lR x’ to refer to the scenario where the destination is equipped with 
a single receiving antenna.

Fig. 6.5 compares the BER performances of System I with the AF relaying and the 
conventional receiver diversity assuming MRC at the destination. We observe that, for 
some relay locations, the AF relaying outperforms the conventional receiver diversity. 
The best BER performance of the AF relaying is achieved when the relay is located 
in the center between the source and the destination. On the other hand, as intuitively 
expected, the BER performance of the AF relaying deteriorates significantly when 
the relay is located at larger distances away from the source and the destination. In 
addition, we observe that the channel coding benefits significantly from the available 
diversity gain due to the relaying and all relay locations or due to the multiple receiver 
antennas.

The BER performance of the DF relaying is shown in Fig. 6.6  assuming the same 
parameters and relay locations as in Fig. 6.5. Unlike for the AF relaying in Fig. 6 .6 , 
we observe from Fig. 6.6  that the BER performance of the DF relaying is much more 
relay location dependent than the BER performance of the AF relaying, and such de­
pendence is even more pronounced for higher order modulations. In addition, as al­
ready indicated in Fig. 6.3, the optimum relay location for the DF relaying is found, in 
general, closer to the source than to the destination in order to suppress the detrimental 
effect of error propagation due to erroneous decoding at the relay. Further examples of 
the BER for the DF relaying over fast and slow Rayleigh fading channels are shown in 
Fig. 6.7 and Fig. 6 .8 . We can again observe that there exist geographical areas o f the 
relay locations where the conventional receiver diversity outperforms the DF relaying 
for all SNR values. On the other hand, also it is observed that, for sufficiently large 
SNR values, the conventional receiver diversity outperforms the DF relaying for all re­
lay locations considered. Furthermore, we observe from Fig. 6.2 and Fig. 6.5-Fig. 6.8
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that, particularly for higher order modulations and the DF relaying, System I does not 
achieve the diversity order of System II.

6.4.1 Optimum Relay Locations

The performance results in Fig. 6.1-Fig. 6.8 indicate that the relay location signifi­
cantly affects the BER performance of System I with the cooperative diversity. We
determine the optimum relay locations in the sense that System I with the cooperative 
diversity outperforms System II with the receiver diversity. In particular, we evaluate 
the PEP differences,

A PEPRx_af =  PE PRx — PEPaf (6 .6a)

A PEPRx_df =  PE PRx -  PEPdf. (6 .6b)

Hence, if A PE PRx_af > 0 or A PEPRx_DF > 0, then the cooperative diversity with 
the AF or the DF relaying, respectively, outperforms the second order receiver diver­
sity. The relay positions for which the PEP differences (6 .6a) and (6 .6b) are greater 
than zero are obtained numerically by sampling the two-dimensional space of all pos­
sible relay locations. Examples of the PEP differences (6 .6a) and (6 .6b) versus the 
relay locations (dSK/d SD, dRD/d SD, dSD) for the SNR % =  9dB are shown in Fig. 6.9 
and Fig. 6.10, respectively. More importantly, if the SNR exceeds a certain threshold 
value, then, for any relay location, the PEP differences (6 .6a) and (6 .6b) will always 
be negative, i.e., the receiver diversity will outperform the cooperative diversity.

In general, determination of the exact boundaries of the geographical areas of the 
relay locations where System I outperforms System II appears to be mathematically 
intractable, particularly, when the channel coding is employed. However, by evaluation 
of our extensive numerical results including those that are not presented in this chapter, 
we make the following proposition.

Proposition 1 Assuming path-loss attenuations of the transmitted signals and inde­
pendent channel fadings between the transmitter and the receiver antennas, the co­
operative diversity with a single relay outperforms the two antenna receiver diversity
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— coded, lRx 
— coded, 2Rx 
—s —coded, AF (0.5,0.5,1.0) 

coded, AF (0.7,0.7,1.0) 
coded, AF (0.5,0.9,1.0) 
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Figure 6.5: The BER of the BCH (31,16,7) coded BPSK and the AF relaying and 
the receiver diversity with the MRC at the destination for several relay locations for fast 
Rayleigh fading channels.
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coded, DF (0.5,0.5,1.0) 
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Figure 6.6 : The BER of the BCH (31,16,7) coded BPSK and the DF relaying and 
the receiver diversity with the MRC at the destination for several relay locations for fast 
Rayleigh fading channels.
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Figure 6.7: The BER of the BCH (32,16,8) coded 16QAM and the DF relaying and 
the receiver diversity with the EGC at the destination for several relay locations for fast 
Rayleigh fading channels.
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Figure 6.8: The BER of the BCH (31,16,7) coded BPSK and the DF relaying and the 
receiver diversity with the EGC at the destination for several relay locations for slow 
Rayleigh fading channels.
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Figure 6.9: The PEPs difference APEPRx_af of System II and System I with the AF re­
laying and the BCH (31,16,7) coded BPSK signaling over slowly Rayleigh fading chan­
nels, and the EGC at the destination for the SNR 7& = 9dB.

RD/ USD

^sr/

Figure 6.10: The PEPs difference APEPRx_af of System II and System I with the DF
relaying and the BCH (31,16,7) coded BPSK signaling over slowly Rayleigh fading chan­
nels, and the EGC at the destination for the SNR 7 5  =  9dB.
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provided that the relay location (dSK/d SD, dRD/d Sr>-, 1) is constrained as,

^sr/^sd < 1-0

^Rd/d§x> < 1-0 

dsn /dsD  “1“ ^ r d / d s n  <  *^7,C7

where the parameter A ltc  > 0 upper-bounding the path-length from the source to 
the destination via the relay is a decreasing function of the SNR and a function of the 
channel coding C. Specifically, for small to medium SNR values and the path-loss 
exponent p  =  2, and binary linear block codes of dmjn <10 ,  A lyc  ~  2.0 for the AF 
relaying, and A ltc  ~  1.5 for the DF relaying. In addition, for sufficiently large SNR 
or when the path-loss attenuations are not considered, the parameter A n^  < 1.0 and 
the receiver diversity always outperforms the cooperative diversity.

Note that Proposition 1 implicitly assumes the triangle inequality constraint, dSR/d SD +  
dKx>/dSD >  1-0. Thus, if the parameter A ltc  becomes smaller than 1, then, for no 
relay location can the cooperative diversity outperform the receiver diversity. A sub­
optimum decoding scheme that is used in our numerical examples, and subsequently, 
used to formulate Proposition 1 appears to influence the threshold SNR value when the 
parameter A ltc  becomes smaller than 1.0. Finally, it is straightforward to show that 
if the path-loss attenuations are not considered, then the receiver with K  independent 
receiver antennas will always outperform a cooperative system with (K  — 1) relays.

6.5 Conclusions

The transmission reliabilities of System I with the cooperative diversity and System II 
with the receiver diversity were investigated. Both systems can theoretically achieve 
the maximum diversity order of two. However, particularly the performance of System 
I suffers from the error propagation due to signal processing at the relay. Path-loss at­
tenuations of the transmitted signals, independence of the channel fading coefficients 
and the use of channel coding with non-binary linear modulations were the main as­
sumptions adopted in the system modeling. At the destination receiver, the diversity 
signals were combined using either MRC or EGC. A low-complexity soft-decision
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POSD was extended for the decoding of binary linear block codes used with non­
binary modulations.

The PEP was investigated as the key performance measure of the system trans­
mission reliability. In particular, assuming channel coding and BPSK signaling, the 
PEP expressions were derived analytically for System I as well as for System II. The 
obtained PEP expressions were verified by computer simulations. The performance 
of System I was found to be strongly dependent on the relay location as expected. 
More importantly, it was found that, for some relay locations and SNR values, System 
I with the cooperative diversity may outperform System II with the receiver diversity. 
The approximate boundaries of such geographical areas of relay locations when Sys­
tem I outperforms System II were formulated in Proposition 1 using both the obtained 
mathematical analysis of the PEPs as well as using extensive computer simulations. 
The DF relaying was found to be more sensitive to and more restrictive about the re­
lay location than the AF relaying. More importantly, if the path-loss attenuations are 
not considered, then the receiver diversity always outperform the cooperative diver­
sity. These results have significant implications for the deployment and design of the 
current cellular systems supporting both the receiver as well as cooperative diversity.



7

Decode-and-Forward Cooperation as 
the Distributed Encoding and 
Decoding

7.1 Introduction

In this chapter, the two problems of the DF cooperation are investigated assuming 
simple-to-implement encoding and decoding techniques. The simplicity of the encod­
ing and decoding is important in applications where the cost of implementation cannot 
be neglected (e.g., in large scale deployments), or where the implementation complex­
ity is limited by other factors such as high data rate or small latency. On the other hand, 
the simple encoding and decoding techniques can rarely approach the channel capac­
ity, and thus, the asymptotic mathematical theoretic analysis must be often replaced by 
computer simulations.

In the first problem, the main objective is to investigate how to distribute the (over­
all) decoding complexity of the OSD between the relay and the destination. The de­
coding complexity of the OSD can be measured as the total number of the test error 
patterns (TEPs) searched in the decoding process.

In the second problem, the relay and the destination use the OSD with the same 
parameters, however, the channel encodings at the source and at the relay are different.
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The main objective of this problem is to investigate how to distribute the channel code 
rates and the minimum Hamming distances of the codes between the source and the re­
lay since the code rate can be used as a measure of the encoding complexity. Note also 
that, in general, the modulation constellations used at the source and at the relay can 
be different, however, this case and the associated distribution of the implementation 
complexity are not considered in this chapter.

The rest of this chapter is organized as follows. The system model is adopted from 
Chapter 6 and is briefly described in Section 7.2. The distributed decoding opera­
tions and its pefromance for the first problem considered is also described in Section 
7.3. The distributed encoding operations and its pefromance for the second problem 
considered is also described in Section 7.4. Conclusions are given in Section 7.5.

We assume transmission from a source S to a destination D using a single relay R. 
All nodes have one transmitting and receiving antenna, and the transmissions assume 
simple-to-implement channel encoding and decoding techniques. The propagation 
channels between nodes are impaired by path-loss due to physical separation of the 
transmitter and receiver antennas, mutually independent flat fadings due to scattering 
of the radio waves and due to ideal interleaving and deinterleaving at the transmitter 
and at the receiver, respectively, and additive white Gaussian noises (AWGNs) due to 
the receiver front-end stages. The following notation is used to describe the propaga­
tion channels from the node X E {S, R} to the node Y E {R, D}, i.e.,

where /x > 0 is the path-loss exponent, and dref is the reference distance having the 
path-loss equal to unity. Note that the values dxy < dvef can cause the path-loss to 
become amplification rather than attenuation. However, a given choice of dTef shifts all 
the BER curves by the same signal-to-noise ratio (SNR) proportional to 10 log10 dref (in 
dB), so that the BER performance comparison of different systems remains unbiased. 
More importantly, as shown in Chapter 6 , the relay location as well as normalization of

7.2 System Model

dxy > 0 distance between X and Y

> 0 path-loss
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the transmitter powers, and thus, the SNRs of each link between a pair of nodes have 
significant impact on the BER performance of different relaying schemes. In addition, 
one should consider a rate loss due to a two-time slot relaying since the source remains 
silent every second time slot, and also, we have to consider the loss of average energy 
per bit due to the parity bits of the channel coding. More detailed description of the 
system model investigated in this chapter is given in Chapter 6 .

7.3 Distributed Decoding

The source and the relay employ the same channel encoder, however, the type of the 
channel decoder used at the relay and at the destination is either different or the same 
but its parameters may be different. We consider the order statistics decoding (OSD) 
developed in [2] and refined in [84] and in Chapter 4 for its inherent flexibility to trade­
off the decoding complexity and the bit error rate (BER) performance. In general, the 
OSD is a list based decoding denoted as OSD(/i, h ,  • • • , Iq) where Q is the number 
of non-overlapping segments of the most reliable information positions (MRIPs), and 
Ii are the maximum number of errors searched within the z-th segment. The efficient 
list generation for the case of Q =  2 segments is presented in [84].

The information bits at the source are encoded using a binary linear channel code 
(iVi, Ki, dmtni) where Ni is the block length, K\  is the code dimension (i.e., the num­
ber of information bits), and dmini denotes the minimum Hamming distance of this 
code. The encoded bits are interleaved and mapped to modulation symbols that are 
broadcasted to the relay and to the destination. In the next time slot, the source stops 
the transmission, and the relay attempts to correct the transmission errors in the re­
ceived codeword before forwarding this codeword to the destination. At the destina­
tion, the two copies of the codeword of the channel code (N\, K i, dmin i) received from 
the source and from the relay are coherently combined using the equal gain combin­
ing (EGC). For comparison, we also consider the case of direct transmission from the 
source to the destination without relaying, but employing the EGC of the uncorrelated 
dual branch receiver diversity. Note that, in both cases, the EGC corresponds to the 
sub-optimum decoding of the binary repetition code (2 , 1 , 2).
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7.3.1 Numerical Results

Extensive simulation results for decoding distribution are shown in the this section. 
Assuming binary linear block coding of short block length(N<32), binary modulation, 
fast Rayleigh fading, various relay locations modeled as the propagation path-loss, and 
the order statistics decoding is adopted due to its excellent flexibility to trade-off the 
decoding complexity and the bit error rate performance. The distances between nodes 
are described as triplets (dSR/d Tef, dRD/d Tef, dSD/d ref), i.e., the triplet (1 , 1 , 1) represents 
the channels without the path-loss. If the link between the two nodes is not considered, 
then the corresponding value in the triplet is replaced with a symbol x . The destination 
has one receiver antenna unless indicated otherwise. The OSDs considered have one 
or two segments. The BER values are denoted as Pe(76) where 7 & is the average SNR 
per transmitted bit. The coding and diversity gains given in the examples assume the 
target BER 10-3 .

Numerical examples in Fig. 7.1-Fig. 7.4 are provided for the case of the system­
atic BCH code (128,64,22) [70] in order to investigate the first problem formulated in 
Section 7.1. Fig. 7.1 compares the BER of the coded and uncoded BPSK over uncor­
related Rayleigh fading channels without the path-loss. Either OSD(l) or OSD(2) is 
used at the relay and at the destination. It is observed that the OSD(2) decoding at the 
destination with one receiver antenna outperforms the cooperative relaying employing 
OSD(l) at the relay and at the destination.

The BER curves in Fig. 7.2 indicate that, for the same path-loss factors, the OSD(l) 
decoding at the relay and the OSD(l) decoding at the destination outperforms the 
OSD(2) decoding at the destination with one receiving antenna by 2 dB, and provides 
the gain of 5.5 dB over an uncoded transmission without relaying and with two receiver 
antennas at the destination. Furthermore, the OSD(2) decoding at the destination with 
two receiver antennas and dsv>/d SR = 1 . 3  outperforms by 2 dB the cooperative relaying 
with OSD(l) at the relay and at the destination. For the same path-loss assumptions, 
when there is no direct link between the source and the destination, the OSD(l) de- 
codings at the relay and at the destination outperform by 2 dB the OSD (2) decoding at 
the destination with one receiving antenna without relay.
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Figure 7.1: Examples of the BER of coded and uncoded BPSK versus SNR over uncorre­
lated Rayleigh fadings with-out the path-loss.

- e - ( x,x,1.3), 2RX
(x,x,1.3), 2RX, OSD(2)

— (x,x,1.3), 1RX, OSD(2)
(1,0.6,1.3), OSD( 1 )-OSD( 1) 
(1,0.6,x), OSD( 1 )-QSD( 1)

^  •-

W10

SNR [dB]

Figure 7.2: Examples of the BER of coded and uncoded BPSK versus SNR over uncorre­
lated Rayleigh fadings.
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The BER results in Fig. 7.3 assume that the relay is closer to the destination than 
to the source whereas the simulation results in Fig. 7.1 and Fig. 7.2 assume that the 
relay is closer to the source. The OSD(l) decoding at the relay and OSD(l) at the 
destination outperforms the OSD(2) decoding at the destination with one receiving 
antenna by 2dB and achieve the gain of 8 dB over the uncoded transmission with the 
same path-loss values even when employing two receiver antennas at the destination. 
Furthermore, OSD(2) with two receiver antennas at the destination and dSD/d SK =  2.0 
outperforms by 2 dB the cooperative relaying with OSD(l) at the relay and at the 
destination. More generally, for the same path-loss assumptions, OSD(l) at the relay 
and at the destination, however, without the direct link between the source and the 
destination, outperforms OSD(2 ) at the destination with one receiving antenna by 2 

dB. Similarly, we observe from Fig. 7.4 that using OSD(2) at the relay and OSD(l) at 
the destination gives 2 dB gain over OSD(l) at the relay and OSD(2) at the destination.

Table 7.1 summarizes the achievable gains over the uncoded BPSK over an Rayleigh 
fading channel without diversity for different system scenarios at the target BER of 
10-3. For all scenarios in this table, the diversity combining scheme that used at the 
destination is EGC. From the results presented in this chapter as well as other sim­
ulation results obtained, we can draw the following conclusions. First, approaching 
the maximum likelihood (ML) performance at the relay is more important than ap­
proaching the ML performance at the destination provided that the relay is closer to 
the destination. Second, using OSD(2 ,2) at the relay and OSD(l) at the destination 
gives the same BER performance as the OSD(2) at the destination with two receiving 
antennas without relay. Third, using OSD (2,2) at the relay to decode the first segment 
only, and using OSD(2 , 2) at the destination to decode the second segment only gives 
the same BER performance as employing OSD(l) at the destination.
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Figure 7.3: Examples of the BER of coded and uncoded BPSK versus SNR over uncorre­
lated Rayleigh fadings.
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Figure 7.4: Examples of the BER of coded and uncoded BPSK versus SNR over uncorre­
lated Rayleigh fadings.
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Table 7.1: Distributed Decoding Gains for Different System Scenarios

decoding 
at relay

decoding 
at destination

dref path-loss direct
link

antennas 
at destination

complexity
(TEPs)

SNR
[dB]

X OSD(2 ) d sR (x, X, 1) yes 1 2081 5.5
OSD(l) OSD(l) d sR (1 , 1 , 1) yes 1 130 7.3
OSD(l) OSD(l) d sR (1,0.6,1.3) yes 1 130 7.3

X OSD(2) d sR (x, X , 1.3) yes 1 2081 10.0

OSD(l) OSD(l) d sR ( l , 0 .6 ,x) no 1 130 7.3
X OSD(2) d sR (x, x, 1.3) yes 2 2081 5.5
X X d sR (1,0.6,1.3) yes 2 1 13.0

OSD(l) OSD(l) (1.5,1,2) yes 1 130 13.0
X OSD(2) dRB (1.5,1,2) yes 1 2081 15.3

OSD(l) OSD(2 ) <̂ RD (1.5,1, x) no 1 2146 13.3
X X ^RD (1.5,1,2) yes 2 1 21.0

X OSD(2 ) ^RD (x, x, 2) yes 2 2081 11.0

OSD(l) OSD(l, 2 ) <̂ RD (1.5,1,2) yes 1 927 13.0
OSD(2 , 2) OSD(l) <̂ RD (1.5,1,2) yes 1 1158 11.0

OSD(l) OSD(2) ^RD (1.5,1,2) yes 1 2146 13.0
OSD(2) OSD(l) dRB (1.5,1,2) yes 1 2164 11.3
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7.4 Distributed Encoding

The objective in this section is to distribute the encoding complexity between the 
source and the relay while using the same channel decoding at the relay and at the 
destination. Thus, the binary product codes are well-suited for distributed implemen­
tation in relay networks where each node probably uses different channel encoding 
to generate the parity bits. For our case of a single relay, the source broadcasts sev­
eral codewords K 2 of a linear binary block code (N ^ K \,  dmmi) to the relay and to 
the destination. The relay attempts to correct the transmission errors in each of the 
received codewords. The decoding process in relay is a conventional OSD or OSD 
based on segmentation. The relay then generates the new parity bits by further encod­
ing these codewords using a linear binary block code (N2, K 2, dmin2) in order to create 
a codeword of a binary product code dmmi) x (-^2, K 2, dmin2). The parity
bits generated at the source (at the relay) correspond to the horizontal (vertical) encod­
ing of the binary product code. The relay sends the newly created parity bits towards 
the destination which performs the decoding of the received codewords of the binary 
product code. Hence, at the relay, the parity bits of the binary repetition code (2 , 1, 2) 
corresponding to the conventional DF relaying are now replaced by the parity bits of 
another channel code. The block diagram of such system is shown in Fig. 7.5

The decoding of the product code at the destination is obtained using the OSD, and, 
assuming binary phase shift keying (BPSK) modulation, the full decoding is carried out 
in one iteration only. In particular, the vertical codewords of the code (N2,K 2, dmin2) 
are decoded first using the OSD. The decoded information bits are re-modulated using 
the BPSK modulation. Since these modulated symbols are proportional to the a priori 
values of information bits, these modulated symbols are added to the received BPSK 
symbols from the source representing the received reliabilities and corresponding to 
the channel code (N i,K i,  dmini).

In the following sub-sections, we study different parameters that play importnat 
role in designing such systems. These parameters include dmini, dmin2 and R2, the 
relay position and the complexity of decoding at the relay. The results in the following 
subsection show the effects of such parameters where the path-loss is not considered.
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Figure 7.5: System model for distributed encoding.

7.4.1 Path-loss Not Considered

Examples of the simulation results to address the second problem formulated in In­
troduction are presented in Fig. 7.6 and Fig. 7.7. For simplicity, the path-loss is not 
considered, and the OSD(2) decoding is employed at the relay as well as at the destina­
tion. The distributed product code is denoted as (Ni, K \, dmini) x (N2: K 2, dmin2). We 
observe that, when the minimum Hamming distance of the constituent codes dmin\ =  
dmin2> the BER performance is almost independent whether the higher rate encoding 
is used at the relay or at the destination. However, it is preferable to use the encoding 
with the smaller code rate R2 =  K 2/N 2 at the relay and use the encoding with the 
larger code rate R\ =  K 1/N 1 at the source in order to reduce the number of parity 
bits transmitted from the relay to the destination, and thus, to improve the overall re­
laying efficiency. Furthermore, from Fig. 7.7, we can conclude that using the code 
(N i, K \, dmini) at the source with the minimum Hamming distance dmin\ that is larger 
than the minimum Hamming distance dmin2 of the code (N2, K 2, dmin2) used at the re­
lay is more efficient and also improves the BER performance. For example, the product 
code (15,5,7) x (31,26,3) outperforms the product code (31,26,3) x (15,5,7) by 4
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Figure 7.6: Examples of the BER of distributed product block coded and uncoded BPSK 
versus SNR over uncorrelated Rayleigh fadings without the path-loss.

dB at the BER of 10-4. In addition, we can again observe that the choice of the code 
rates at the source and at the relay is less important than the choice of the hamming 
distances for improving the BER performance, so it is preferable to choose R2 < R\ in 
order to improve the relaying efficiency. For example, when dmini =  dmin2, the SNR 
difference between Ri <C R 2 and Ri »  R2 to obtain the BER of 10-4 is less than 1 
dB.

For the case with the path-loss, the distributed encoding process is studied assum­
ing three scenarios according to the relay position. These scenarios and the corre­
sponding results are described in the following three sub-sections.

7.4.2 Relay in the Center

Recall that the distances between nodes are described as triplets (dSR/ dref, dRD/ dTef, dSD/ dTef). 
Thus, for this case the triplet (0.5,0.5,1) represents the channels path-loss where dTef 
corresponds to dSD. Numerical examples in Fig. 7.8 are provided for the case of the
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Figure 7.7: Examples of the BER of distributed product block coded and uncoded BPSK 
versus SNR over uncorrelated Rayleigh fadings without the path-loss.

systematic BPC of (63,45,7) x (15,5,7) and (15,5,7) x (63,45,7) in order to study 
the effect of Ri and R2 assuming dmini =  dmin2. We use the OSD(2) decoding at 
the relay with one antenna. The BER curves in Fig. 7.8 indicate that, for the same 
path-loss factors, utilizing C\ as the first sub-code of BPC at the source and C2 is the 
second sub-code at the relay with Ri > R2and the OSD(2) decoding at the destination 
provides the gain of 6dB over the case where Ri < R2 . Furthermore, in both sce­
narios, whether Ri < R2 or vice versa for the distributed encoding algorithm provides 
much larger coding gains over an uncoded transmission without relaying and with two 
receiver antennas at the destination. The explanation for such large difference of the 
performance for these two scenarios is that sending more reliable parity bits from the 
relay is more effective than sending more parity bits from the source.

The BER curves in Fig. 7.9 are shown for the case of a systematic BPC of (32,16,8) x
(8,4,4) and (8,4,4) x (32,16,8) in order to study the effects of dmin 1 and dmin2 for 
Ri =  R2. The OSD(2) decoding is assumed at the relay with one antenna. The 
BER curves in Fig. 7.9 indicate that, for the same path-loss factors, utilizing C\ as a
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Figure 7.8: The BER of distributed product block coded and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.5,0.5,1).

sub-code at the source and C2 at the relay with dmin 1 > dmin2 and the OSD(2) de­
coding at the destination provides the gain of 3dB over the case when dmini < dmin2. 
Furthermore, in both scenarios, whether dmin 1 > dmin2 or vice versa for distributed 
encoding algorithm provides much larger coding gain over an uncoded transmission 
without relaying and with two receiver antennas at the destination. The explanation 
for this difference between the performances of these two scenarios for 1 > dmin2 
or the is that using stronger sub-code C\ with larger dmin 1 from the source is more 
efficient to reduce the errors and the erros propagation in the SR link and the SD direct 
link. Moreover, the number of the reliable parity bits that the relay sends is the same 
whether dmin 1 > d!min2 and vice versa.

The BER curves in Fig. 7.10 are provided for the case of the systematic BPC
(32,26,4) x (32,16,8) and (63,45,7) x (32,26,4) in order to investigate whether 1 

and dmin2 or Ri and R2 of C\ and C2 are more effective in distributed encoding pro­
cess. The (32,26,4) x (63,45,7) code performs better than the (63,45,7) x (32,26,4)
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Figure 7.9: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.5,0.5,1).

code even though dmini < dmin2\ this indicated that code rates of sub-codes are more 
important than minimum hamming distance of the sub-codes. Furthermore, comparing
(32,26,4) x (63,45,7) and (32,26,4) x (32,16,8) codes, it is shown that as the differ­
ence between the code rates of Ri and R2 increase, the difference of performances also 
increase. The main reason for this behaviour is that when R\ »  R2, the number of 
reliable parity bits that the relay sends is much larger than in the case when Ri «  R2.

7.4.3 Relay Closer to the Source

Recall again that the distances between the nodes are described as triplets 
(dSR/d ief, dRD/d Tef, dSD/d ref). In this subsection we assume the triplet (0.3,0.7,1) rep­
resenting the channels path-loss where dief is dsr>. Numerical examples in Fig. 7.11 
are provided for the case of the systematic BPC (63,45,7) x (15,5,7) and (15,5,7) x
(63,45,7) in order to study the effects of Ri and R2 when dmin 1 =  dmin2. We use the
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Figure 7.10: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.5,0.5,1).

OSD(2) decoding at the relay with one antenna. The BER curves in Fig. 7.11 indicate 
that, for the same path-loss factors, utilizing C\ as sub-code at the source and C2 at the 
relay with Ri > R2 and the OSD(2) decoding at the destination provides the gain of 
6dB over the case where Ri < R2. Furthermore, in both scenarios, whether Ri < R2 
or vice versa, the distributed encoding algorithm provides much larger coding gain 
over an uncoded transmission without relaying and with two receiver antennas at the 
destination. The explanation of such large difference of the performance of these two 
scenarios is that sending more reliable parity bits from the relay is more effective than 
sending more parity bits from the source.

The BER curves in Fig. 7.12 are provided for the case of the systematic BPC
(32,16,8) x (8,4,4) and (8,4,4) x (32,16,8) in order to study the effects of dmini and 
dmin2 for R\ =  R2. We employ the OSD(2) decoding at the relay with one antenna. 
The BER curves in Fig. 7.12 indicate that, for the same path-loss factors, utilizing C\ 
as sub-code at the source and C2 at the relay with dmini > dmin2 and the OSD(2)
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Figure 7.11: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.3,0.7,1).

decoding at the destination provides the gain of less than ldB over the case where 
dmini < dmin2. Furthermore, in both scenarios, whether dmini > dmin2 or vice versa, 
the distributed encoding algorithm provides much larger coding gain over an uncoded 
transmission without relaying and with two receiver antennas at the destination. The 
explanation of such slight difference between the performance of these two scenarios 
where Ri =  R2 and dmin 1 > dmin2 or the vice versa is that using stronger sub-code 
C\ with larger dmin from the source is not so essential in the SR link since the relay is 
very close to the desination. Moreover, the number of the reliable parity bits that relay 
sends is the same whether dmini > dmin2 or the vice versa. Thus the slight difference 
occurs because of using C\ with larger dmin in the SD direct link.

The BER curves in Fig. 7.13 are provided for the case of the systematic BPC
(32,26,4) x (32,16,8) and (63,45,7) x (32,26,4) in order to study whether dmin 1 
and dmin2 or R\ and R2 of C\ and C2 are more effective in the distributed encoding 
process. The (32,26,4) x (63,45,7) code outperforms the (63,45,7) x (32,26,4)
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Figure 7.12: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.3,0.7,1).

code by about 5dB even though dmini < dmin2. This indicates that the code rates of 
sub-codes are more important than minimum hamming distances of sub-codes even 
when the relay is closer to the source. Furthermore, comparing (32,26,4) x (63,45,7) 
and (32,26,4) x (32,16,8) codes, it is shown that as the difference between subcode 
rates R\ and R2 increase, the differences of performance increase and are almost the 
same when the code rates are equal. The main reason for this behaviour is that when 
Ri »  R2 the number of the reliable parity bits that the relay sends is much more than 
when Ri «  R2.

7.4.4 Relay Closer to the Destination

Again the distances between nodes are described as triplets (dSK/d vef, dRD/ dief, dsD/ dief) 
In this case the triplet (0.7,0.3,1) represents the channels path-loss where dvef corre­
sponds to dSD. Numerical examples in Fig. 7.14 are provided for the case of systematic
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Figure 7.13: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.3,0.7,1).

BPCs of (63,45,7) x (15,5,7) and (15,5,7) x (63,45,7) in order to study the effects 
of Ri and R2 when dmini =  dm;n2 . We use the OSD (2) decoding at the relay with one 
antenna. The BER curves in Fig. 7.14 indicate that, for the same path-loss factors, uti­
lizing Ci as sub-code at the source and C2 at the relay with R\ > R2 and the OSD(2) 
decoding at the destination provides the gain of 2dB over the case when R\ < R2 
. Furthermore, in both scenarios whether R\ < R2 or R\ > R2 for the distributed 
encoding algorithm provides much larger coding gain over an uncoded transmission 
without relaying and with two receiver antennas at the destination. We can conclude 
from these differences between the performance in these two scenarios is that sending 
more reliable parity bits from the relay is more effective than sending more parity bits 
from the source. Also it can be noticed that the differences in the performance because 
of the code rates are much smaller than in the case when relay is in the middle between 
the source and the destination. This can be explained that the reliability of parity bits 
that sent from the relay to the destination decreases because of the relay is closer to the
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Figure 7.14: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.7,0.3,1).

destination. Thus, in case of Ri > R2, increasing the number of parity bits that are sent 
from the relay has minor effect to the performance compared to the other scenarios.

The BER curves in Fig. 7.15 are provided for the case of the systematic BPCs 
(32,16,8) x (8,4,4) and (8,4,4) x (32,16,8) in order to investigate the effects of 
dmini and dmin2 where R\ =  R2. We employ the OSD(2) decoding at the relay with 
one antenna. The BER curves in Fig. 7.15 indicate that, for the same path-loss factors, 
utilizing C\ as a sub-code at the source and C2 at the relay with dmini > dmin2 and 
the OSD(2) decoding at the destination provides the gain of 5dB over the case when 
dmini < dmin2- Furthermore, both scenarios whether dmin 1 > dmin2 or vice versa for 
the distributed encoding algorithm provides much larger coding gain over an uncoded 
transmission without relaying and with two receiver antennas at the destination. The 
explanation of such difference between the performances of these two scenarios when 
Ri =  R2 and dmin 1 > dmin2 or vice versa that using stronger sub-code C\ with larger 
dmin from the source is more efficient to reduce errors and errors propogation in the
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Figure 7.15: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.7,0.3,1).

SR link and the SD direct link . Moreover, the number of the reliable parity bits that 
relay send is the same whether dmini > dmin2or vice versa.lt should be noticed here 
that dmini of Ci is more effective here than other scenarios when the relay is in the 
center or closer to the destination. Also it is obvious that in case of dmini < dmin2) the 
distributed encoding process is less efficient and the coding gain achieved over BPC
(32,16,8) x (8,4,4) with 1-RX non cooperative scenario is just 1 dB.

The BER curves in Fig. 7.16 are provided for the case of the systematic BPCs
(32.26.4) x (32,16,8) and (63,45,7) x (32,26,4) in order to study whether dmini 
and dmin2 or R\ and R2 are more effective in the distributed encoding process. The
(32.26.4) x (63,45,7) codes performs better than(63,45,7) x (32,26,4) even though 
dmini < dmin2, this indicates that code rates of sub-codes are more important than mini­
mum hamming distance of sub-codes. Furthermore, comparing (32,26,4) x (63,45,7) 
and (32,26,4) x (32,16,8), it is shown that as the difference between code rates of 
Ri and R2 increases the performance increases. The main reason for this is that when
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Figure 7.16: The BER of distributed product block codes and uncoded BPSK versus SNR 
over uncorrelated Rayleigh fadings with the path-loss (0.7,0.3,1).

Ri »  R2 the number of reliable parity bits that the relay sends is much more than 
the case when Ri «  R2.

Table 7.3 summarizes the achievable gains over the uncoded BPSK over an Rayleigh 
fading channel without diversity for different system scenarios at the target BER of 
10-6 . For all scenarios in this table, the diversity combining scheme that used at the 
destination is EGC. From the results presented in this chapter as well as other sim­
ulation results obtained, we can draw the following conclusions: When the relay is 
in the middle or closer to the source, the code rates of sub codes are more important 
than hamming distances of sub-codes and the main reason is that when Ri »  R2 
the number of reliable parity bits that relay sends is much more than the case when 
Ri «  R2. As sending more reliable parity bits from the relay is more effective than 
sending more parity bits from the source. However, this is not the case when the relay 
is closer to the destination as utilizing sub-code at the source with higher code rate 
than the sub-code in the relay or vice versa with the same dmin, since the performance
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Table 7.3: Distributed Ecoding Gains for Different System Scenarios

Position 
of relay

Ri Ri dmini d>min2 Decoding 
at relay

SNR[dB]

(z,x , 1) 0.7 0.3 7 7 X 10
(0.5,0.5,1) 0.7 0.3 7 7 OSD(2) 2
(0.5,0.5,1) 0.3 0.7 7 7 OSD(2) 8

(x,x,  1) 0.5 0.5 8 4 X 11
(0.5,0.5,1) 0.5 0.5 8 4 OSD(2) 3
(0.5,0.5,1) 0.5 0.5 4 8 OSD(2) 4.5
(0.5,0.5,1) 0.7 0.8 7 4 OSD(2) 9.7
(0.5,0.5,1) 0.8 0.7 4 7 OSD(2) 9.7
(0.5,0.5,1) 0.8 0.5 4 8 OSD(2) 6
(0.5,0.5,1) 0.5 0.8 8 4 OSD(2) 7
(0.3,0.7,1) 0.7 0.3 7 7 OSD(2) 2
(0.3,0.7,1) 0.3 0.7 7 7 OSD(2) 7.8
(0.3,0.7,1) 0.5 0.5 8 4 OSD(2) 4.2
(0.3,0.7,1) 0.5 0.5 4 8 OSD(2) 5
(0.3,0.7,1) 0.7 0.8 7 4 OSD(2) 9.5
(0.3,0.7,1) 0.8 0.7 4 7 OSD(2) 7
(0.3,0.7,1) 0.8 0.5 4 8 OSD(2) 4
(0.3,0.7,1) 0.5 0.8 8 4 OSD(2) 9.5
(0.7,0.3,1) 0.7 0.3 7 7 OSD(2) 6
(0.7,0.3,1) 0.3 0.7 7 7 OSD(2) 8
(0.7,0.3,1) 0.5 0.5 8 4 OSD(2) 5
(0.7,0.3,1) 0.5 0.5 4 8 OSD(2) 10
(0.7,0.3,1) 0.7 0.8 7 4 OSD(2) 9
(0.7,0.3,1) 0.8 0.7 4 7 OSD(2) 9
(0.7,0.3,1) 0.8 0.5 4 8 OSD(2) 13
(0.7,0.3,1) 0.5 0.8 8 4 OSD(2) 9.5

is almost the same. This difference in performance can be explained that the relaibility 
of parity bits decrease as the relay is closer to destination.
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7.5 Conclusions

The DF relaying employing the simple channel encoding and decoding techniques 
was investigated. The nodes locations were equivalently expressed as the propagation 
path-loss. In order to optimize the parameters of the DF relaying, two problems were 
formulated. In the first problem, the source and the relay employ the same channel 
code, however, the OSD used at the relay and at the destination can have different 
parameters. The simulation results confirmed that some of the decoding complexity 
at the destination can be moved to the relay provided that the sufficient cooperative 
diversity gain is available. Similarly, the decoding complexity at the destination can 
be reduced significantly if the diversity gain is available due to, e.g., multiple receiver 
antennas. In general, it was observed that achieving the ML decoding performance 
at the relay (at the destination) is more important than achieving the ML decoding 
performance at the destination (at the relay), provided that the relay is closer to the 
destination (to the source).

In the second problem, in case of no path-loss while the relay and the destination 
use the same decoding algorithm, however, the encodings at the source and at the relay 
can be different. For the case when the source generates the horizontal parity bits 
and the relay generates the vertical parity bits of the distributed product code, it was 
observed from the simulations that the minimum hamming distance of the constituent 
codes has much greater impact on the overall BER performance than the code rates.

In the case of path-loss when the relay is centred or closer to destination, utilizing 
sub-code at the source with higher code rate than the sub-code in the relay,i.e. Ri > R2 

and the same dmin for both sub-codes and the same decoding at the destination provides 
large values o f the coding gain over the case when Ri < R2. As sending more reliable 
parity bits from the relay is more effective than sending more parity bits from the 
source. However, this is not the case when the relay is closer to the destination as 
utilizing sub-code at the source with higher code rate than the sub-code in the relay 
or vice versa with the same dmin, since the performance is almost the same. The 
difference of the performance because of the code rate differences are much less than 
in the case when the relay is in the middle between the source and the destination. This 
can be explained that the reliability of parity bits sent from the relay to the destination
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decrease because of the relay is closer to the destination. Using stronger sub code C\ 
with larger dmin from source more efficient to reduce errors either in the SR link or 
the SD direct link. The importance of using stronger sub-code with higher dmin at the 
source increases in the case when the relay is closer to the destination. Thus, in case 
of using sub-codes with the same code rates while the relay is centred or closer to the 
destination,dmini > dmin2 performs better than the case when dmin 1 < dmin2. Finally, 
and regardless of the relay position, the code rates of the sub-codes are more important 
than minimum hamming distances and the main reason for this property is that when 
Ri »  R2 the number of reliable parity bits that the relay sends is much more than in 
the case when Ri «  R2.
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Conclusions and Future Work

This final chapter summarizes the conclusions of the thesis and highlights numerous 
areas for further research in future.

8.1 Conclusions

Achieving high data rate and reducing different aspects of the complexity are the main 
challenges for wireless communication systems that are investigated in this thesis. 
Thus, specific encoding and decoding algorithms are investigated for coded systems 
in general and coded cooperative systems in particular. The investigation concerns the 
implementation complexity reduction and characterization of system design guidelines 
under different scenarios.

In order to to achieve the main objectives in this thesis , the channel coding and 
the forward error corrections (FEC) coding are considered. In Chapter 4 and Chapter 
5, the construction of the soft-decision decoding techniques is investigated with low 
complexity employing a list of the test error patterns for linear binary block codes 
of small to medium block length were investigated. The optimum and suboptimum 
construction of the list of error patterns was developed. Some properties of the joint 
probability of error of the received bits after ordering were derived. The original OSD 
algorithm was generalized by assuming a segmentation of the MRIPs, since the origi­
nal OSD assumes only one segment and is a special case of the proposed segmentation
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decoding. The idea of segmentation is motivated by the fact that the distribution of 
errors in segments is non-uniform, and the segments of more reliable bits will contain 
less errors than the segments of less reliable bits. Hence, the distribution of errors in 
the segments can be better predicted, and the trial error patterns can be constructed 
more efficiently. The K  MRP bits in the OSD algorithm were partitioned into several 
disjoint sets. Fewer errors were assumed in segments with higher reliability of bits. 
The error patterns in different segments were then combined to create the overall error 
patterns. The segmentation of the MRIPs was shown to overcome several drawbacks 
of the original OSD and to enable flexibility for devising new decoding strategies. The 
decoding complexity of the OSD-based decoding algorithms was reduced further by 
avoiding the Gauss (or the Gauss Jordan) elimination using the partial ordering of the 
received bits in the POSD decoding. The performance analysis was concerned with the 
problem of finding the probability of the test error patterns contained in the decoding 
list. The BER performance and the decoding complexity of the proposed decoding 
techniques were compared by extensive computer simulations. Numerical examples 
demonstrated excellent flexibility of the proposed decoding schemes to trade-off the 
BER performance and the decoding complexity. In some cases, both the BER perfor­
mance as well as the decoding complexity of the segmentation-based OSD were found 
to be improved compared to the original OSD. The low-complexity soft-decision OSD 
and the POSD were extended for the decoding of binary linear block codes with non­
binary modulations transmitted over the flat fading channels. The main complexity 
for such decoding techniques was assumed to be the size of the coding list. The size 
of the coding list for the OSD decoding algorithm can be reduced by sending highly 
reliable CRC bits. Three different types of the CRC can be applied. The first type is 
to send highly reliable CRC bits for different segments over the whole codeword, the 
second type is to send the CRC bits for different segments over the information bits 
only , and the third type is to send highly reliable CRC bits for segments over parity 
bits only. The comparison between these different types of the CRC bits showed that 
sending highly reliable CRC bits for many segments over information bits only is the 
most effective way to reduce the complexity of coding list. Also, sending the CRC bits 
for many segments is more effective in the complexity reduction than in sending the 
information about the exact Hamming weight e.g. for the whole codeword, the infor­
mation bits or the parity bits only. The CRC bits can be used in distributed encoding
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and decoding schemes which were discussed in Chapter 5 and Chapter 7. The CRC 
bits are used in the litreature to prevent the relay from forwarding the codewords if 
the CRC fails. Such CRC scheme can be used also to reduce the complexity of the 
OSD and the POSD decoding algorithms at the relay to reduce the compexity of the 
decoding process as discussed in Chapter 5.

In Chapter 6, one of the main limitations of coded cooperative relay systems was 
investigated, which is the occurrence of detection errors at the relay. The relay po­
sitions and restrictions were investigated and proposed the system model for various 
cooperative diversity scenarios based upon different types of relay processing. The 
coded cooperative performance of the AF and the DF relaying and of the conventional 
receiver diversity were compared assuming the channel coding and non-binary linear 
modulations over the fast and slow fading channels with the path-loss attenuation. The 
low-complexity sofit-decision POSD was extended for the decoding of binary linear 
block codes with non-binary modulations transmitted over the flat fading channels. 
The POSD was optimized for the decoding at the destination, and, provided that the 
DF relaying was considered, also for the decoding at the relay, confirming a good flex­
ibility o f the POSD that enables to trade-off the decoding complexity and the BER 
performance. The constraints on the relay location for the AF and the DF relaying to 
outperform the conventional receiver diversity were obtained by mathematical analysis 
and extensive computer simulations. Considering larger sensitivity of the BER perfor­
mance of the DF relaying on the relay location different decoding algorithms were 
applied at the relay and at the destnation such as the OSD, POSD, and Log-Map de­
coding. The relay location conditions to provide the best performnace were obtained. 
These conditions can be satisfied more easily provided that there is more than one relay 
about the source, and for higher order modulations.

The examination of distributed BTC and the complexity requirements of decoding 
distribution between the relay and the destination are investigated in Chapter 7 and 
let to refined conclusions. The design guidelines for systems using coded cooperative 
diversity including design of distributed encoding and decoding techniques were in­
vestigated. The distribution of encoding and decoding complexity, the coding rates, 
the Hamming distance etc. were discussed. The nodes locations were equivalently 
expressed as the propagation path-loss. In order to optimize the parameters of the DF
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relaying, two problems were formulated. In the first problem, the source and the relay 
employ the same channel code, however, the OSD used at the relay and at the desti­
nation can have different parameters. The simulation results confirmed that some of 
the decoding complexity at the destination can be moved to the relay provided that the 
sufficient cooperative diversity gain is available. Similarly, the decoding complexity 
at the destination can be reduced significantly if the diversity gain is available due to, 
e.g., multiple receiver antennas. In general, it was observed that achieving the ML de­
coding performance at the relay (at the destination) is more important than achieving 
the ML decoding performance at the destination (at the relay), provided that the relay 
is closer to the destination (to the source).

In the second problem, in case of no path-loss, the relay and the destination use the 
same decoding algorithm, however, the encodings at the source and at the relay can 
be different. For the case when the source generates the horizontal parity bits and the 
relay generates the vertical parity bits of the distributed product code, it was observed 
from the simulations that the minimum Hamming distance of the constituent codes has 
much greater impact on the overall BER performance than the code rates in case of no 
path-loss. In the case when the path-loss was considered and when the relay is closer to 
the destination, utilizing a sub-code at the source with higher code rate Ri than the sub­
code in the relay of code rate R2 < R\, however with the same minimum Hamming 
distance of both sub-codes and the same decoding at the destination provides larger 
coding gains than the case where Ri < R2. This is due to the fact that parity bits 
from relay is more effective than sending more parity bits from the source. However, 
it is not the case when the relay is closer to the destination as utilizing sub-code at 
the source with higher code rate than the sub-code in the relay or vise versa assuming 
the same minimum Hamming distance of the sub-codes, the performance is almost the 
same. The difference in the performances of codes is due to the differences of the 
code rate and it is much less than the case when the relay is in the middle between 
the source and destination. This can be explained that the reliability of parity bits that 
are sent from the relay to the destination decrease because the relay is closer to the 
destination. For the case of equal code rates of sub-codes at the source and at the relay 
and the relay centered or closer to the destination with dmin 1 > dmin2 and the same 
decoding at the destination performs better than the case where dmin 1 < dmin2, since
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using stronger sub-code C\ with larger dmin at the source is more efficient for reducing 
errors in the SR link and in the SD direct link. The importance of using stronger sub­
code with higher dmin at the source increases in the case when the relay is closer to the 
destination. Finally, and regardless of the relay position, the code rates of sub-codes 
are more important than dmins of sub-codes and the main reason for this is that when 
Ri »  R2 the number of reliable parity bits that the relay sends is much more than in 
the case when R x «  R2.

In conclusion, coded systems in general and coded cooperative systems specifically 
were investigated deeply and different solutions and system design principles were 
presented to achieve better trade-off between the performance and the complexity for 
the proposed systems.

8.2 Future Work

The results obtained in this thesis indicate that the OSD based on segmentation and the 
POSD are a promising approach to design practical decoding algorithms for the soft de­
cision decoding of non-binary Galois fields in comparison with the algabric decoders. 
The OSD based on segmentation and the POSD algorithms can be modified to further 
improve their performance and to reduce their complexity by extending segmentation 
to the LRPs bits of the received sequence. In this scenario the POSD and the OSD 
based on segmentation can be integrated with the Chase decoding algorithm. After ex­
tensive computer simulations, it was noticed that the Monte Carlo simulations quickly 
become impractical due to excessive simulation run times, and thus future work may 
incorporate sample rejection with segmentation decoding to speed up the simulations 
and to improve the research work efficiently. The iterative soft decision decoding of 
the BTC based on the OSD can be further improved to reduce the complexity and to 
improve the performance especially for high rate BTCs.

Future work may consider comparison of the cooperative and the receiver diversity 
of orders more than two. In this case, the interference from other relays and cells have 
to be considered. For coded cooperative diversity, distributed decoding process can 
be investigated and utilized for multi-source multi-relay single-destination networks.
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Then, the decoding complexity will be spread over many relays and the outputs from 
different relays will be combined at the destination. Moreover, the idea of distributed 
encoding BPC over multi-relay single destination networks is appealing especially for 
high rate BPCs. The threshold test can be applied for reliabilities of parity bits received 
at the destination from different relays and then the most reliable bits are selected and 
others bits are discarded to form a codeword from the most reliable bits to be decoded.
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