

 Swansea University E-Theses ___

Unstructured parallel grid generation.

Said, Rajab

 How to cite: ___
Said, Rajab (2003) Unstructured parallel grid generation.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42637

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42637
http://www.swansea.ac.uk/library/researchsupport/ris-support/

University of Wales Swansea
School of Engineering,

Civil Sz Computational Engineering Centre

Unstructured Parallel Grid Generation

by

Rajab Said
B.Sc., M.Sc.

Thesis subm itted to the University of Wales in candidature for the degree of
Doctor of Philosophy

November 2003

ProQuest Number: 10805413

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10805413

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Dedicated to

Zeinab and Sami,
who deserve the ‘star’ more than me

Acknowledgment

I would like to thank my supervisor, Professor Nigel Weatherill, for his expert
advice and guidance throughout the course of this study; and ‘ex tra’ special
thanks for his patience during the writing-up period. Also, many thanks are
due to Dr. Richard Wood and Professor Javier Bonet for their great support
and understanding during my work with them subsequent to completing the
developmental work in this research. Help provided by support staff in the
Civil & Com putational Engineering Centre, Mrs A.E. Davies, Mrs. D. Cook
and Mrs L. Jenkins, is highly appreciated.

I would like to thank the European Union for providing the funding for this
research, through the JULIUS project (Esprit 25050). I also would like to
gratefully acknowledge the partial financial support provided by the K.R.S.
Foundation.

A special thanks is extended to all industrial partners who provided a number
of exciting and challenging problems during this study, notably BAe Systems
(UK), Dassault Aviation (France) and EADS (Germany). Also, I would like
to express my deep gratitude to my friend Dr. Kaare Sorensen for providing
the aerodynamic analysis results presented in this thesis.

I have a pleasure in thanking all those friends who have managed to ‘brighten’
Swansea up for us whenever it got ‘gloomy’. Also, I wish to thank my ‘old’
friends back home and all over the world; your ever lasting friendship means
a lot to me.

I would like to gratefully acknowledge the enormous support and love I have
received from every body in my family: mum, dad, brothers and sisters and
their families. I am equally grateful to my family-in-law for their love and
kindness.

Finally, my deepest gratitude goes to my love Zeinab and my ‘hero’ Sami;
though you have made things more difficult sometimes, this thesis could never
be completed without your encouragement, understanding and endless love. I
am, and will always be, indebted to you both.

Summary of the research

The ultim ate goal of this study is to develop a 1tool’ by which large-scale un­
structured grids for realistic engineering problems can be generated efficiently
on any parallel computer platform. The adopted strategy is based upon a geo­
metrical partitioning concept, where the com putational domain is sub-divided
into a number of sub-domains which are then gridded independently in parallel.
This study focuses on three-dimensional applications only, and it implements
a Delaunay triangulation based generator to generate the sub-domain grids.

Two different approaches have been investigated, where the variations between
them are limited to (i) the domain decomposition and (ii) the inter-domain
boundary gridding algorithms only. In order to carry out the domain de­
composition task, the first approach requires an initial tetrahedral grid to be
constructed, whilst the second approach operates directly on the boundary
triangular grid. Hence, this thesis will refer to the first approach as ‘indirect
decomposition m ethod’ and to the second as ‘direct decomposition m ethod’.

Work presented in this thesis also concerns the development of a framework
in which all different sub-algorithms are integrated in combination with a spe­
cially designed parallel processing technique, termed as Dynamic Parallel Pro­
cessing (DPP). The framework adopts the Message Passing Library (MPL)
programming model and implements a Single Program Multiple D ata (SPMD)
structure with a Manager/Workers mechanism. The D PP provides great flex­
ibility and efficiency in exploiting the available computing resources.

The framework has proved to be a very effective tool for generating large-scale
grids. Grids of realistic engineering problems and to the order of 115 million
elements, generated using one processor on an SGI Challenge machine with
512 MBytes of shared memory, will be presented.

I

Contents

1 Introduction 4

1.1 B a c k g ro u n d ... 4

1.2 Motivation Behind the R esearch .. 9

1.3 Aim and Overview of the R e s e a r c h ... 12

1.4 Layout of the T h e s i s .. 17

2 An Overview of Unstructured Grid Generation and Parallel
Processing 19
2.1 In tro d u c tio n ...19

2.2 U nstructured Grid G en era tio n ... 20

2.2.1 Delaunay Grid Generation A lg o rith m22

2.3 Parallel P ro c e s s in g ... 24

2.3.1 Parallel Programming M o d e ls .. 25

2.4 Parallel Processing and Unstructured Grid G e n e r a t io n 27

2.4.1 Using an Existing Algorithm A p p ro a c h28

2.4.2 Using a Geometrical Partitioning Approach 29

2.5 Concluding R e m a r k s ..35

3 A Geometrical Approach for Unstructured Parallel Grid Gen­
eration 36

3.1 In tro d u c tio n 36

3.2 The Indirect Decomposition Method ..37

3.2.1 An Overview of the General A lg o rith m37

3.2.2 Domain D ecom position..37

3.2.3 Discretizing the Internal B o u n d a r y .. 42

1

3.2.4 Gridding the Individual S u b -d o m ain s 51

3.3 The Direct Decomposition M e t h o d ... 57

3.3.1 An Overview of the General A lg o rith m 58

3.3.2 Domain D ecom position.. 61

3.3.3 Discretizing the Internal B o u n d a r y ...65

3.4 Concluding R e m a rk s 80

4 Parallel Implementation 81

4.1 In tro d u c tio n ... 81

4.2 The Design of a Parallel Processing T e m p la te82

4.2.1 Dynamic Parallel P ro cessin g .. 84

4.3 Parallel Implementation of the General A lg o rith m91

4.3.1 Parallel Framework with D P P ...95

4.3.2 Impact of D PP on the Parallel F ram e w o rk 96

4.4 Concluding R e m a rk s ...98

5 Issues Associated with the Geometrical Partitioning Approach 99

5.1 In tro d u c tio n ... 99

5.2 Inter-domain C o m m u n ic a tio n ..100

5.2.1 Global and Local Numbering S ystem s....................................100

5.2.2 Constructing Communication Tables for Local Systems . 101

5.3 Grid Q u a lity ... 107

5.3.1 Im pact of the Geometrical Partitioning Approach on the
Grid Quality ... 108

5.3.2 A Post-Processing Relaxation Algorithm on the Internal
Boundary P o i n t s ...110

5.4 Load B a la n c in g ...114

5.4.1 Hu & Blake A lg o rith m .. 116

5.4.2 Implementation of Elements Migration S ch ed u le 119

5.4.3 Load Balancing and Inter-domain Communication 125

5.5 Concluding R e m a rk s ...126

2

6 Results and Analysis 130
6.1 In tro d u c tio n ...130

6.2 The Developed Framework in P r a c t i c e .. 131

6.2.1 Local Partitioning of Large S u b -d o m ain s135

6.2.2 Examples of G r i d s .. 143

6.3 Performance and S c a la b ility ... 160

6.3.1 S p e e d u p .. 166

6.3.2 E ff ic ie n c y ...173

6.3.3 S c a lab ility ...178

6.3.4 A m dahl’s L a w .. 185

6.3.5 Inter-Processor C o m m u n ica tio n ...188

6.4 A Comprehensive Parallel Processing Environment 189

6.5 Concluding R e m a r k s .. 202

7 Conclusion and Recommendation for Further Research 205

A Unstructured Grid Generation Using Delaunay Triangulation210
A .l The Delaunay T rian g u la tio n ...211

A.2 Autom atic Point C r e a t io n .. 217

B Message Passing Library 224
B .l Main Features and Functions of M P I ..226

B.2 D ata Communication in MPI..229

B.3 Performance Analysis T o o l s ...232

3

Chapter 1

Introduction

1.1 Background

During the last two decades, computational engineering has proven to be a very
cost effective tool for industry. A significant speed up factor has been achieved
in the design-manufacturing cycle, and now cheap com putational tests can be
carried out instead of the traditional expensive prototype testing process. In­
tegrating computer simulation effectively into the design process has been suc­
cessfully achieved, particularly in industries such as automotive and aerospace.
In return, as more complex realistic problems are addressed, new issues in the
overall process can be identified. The challenge of maintaining com putational
procedures a t a high level of performance, reliability, robustness and efficiency
has been growing increasingly. Simulation of problems th a t involve large scale
calculations is still considered to be problematic, particularly when access to
advanced computing resources is limited. In short, the discipline of computa­
tional engineering in general is still an active area of research and development,
and research presented in this thesis is just another small contribution.

Broadly speaking, computer simulation of an engineering problem requires the
problem to be first defined in a form of m athem atical equations, namely the
governing equations. These equations are often expressed in the form of partial
differential equations (PDEs), where achieving an analytical solution over the
entire domain of interest is almost impossible. However, using a numerical ap­
proach these equations can be solved to produce an approximate solution and
hence a simulation of the problem. Typically, numerical algorithms represent
the continuous form of the governing equations in a simplified discretized form.
The discretized form can be based on a set of points (finite difference method
[39]) or cells (finite element and finite volume methods [153, 62]). These points
or cells (elements) form a grid (mesh) which covers the domain of interest in
the problem. In fact, the term grid signifies this form of domain representation,

4

thus, a grid is a set of points (elements) distributed over a calculation field for
a numerical solution of a set of equations [61]. A diagram th a t demonstrates
different aspects involved in the computer simulation of engineering problems
is presented in Figure 1.1.

A mathematical descriptior
of the investigated problem
geometry is to be provided
in form of curves, surfaces
or solid.
Using a CAD system, or
N.an advanced scanning
\ package._____________

No

Yes
/Calculation field, including
the'boundary, is discretized
by points and elementsGrid
Using a structured or
..unstructured grid
\ generator.__________

No

Yes 'Governing equations are
discretized and represented
over the grid points and/or
elements.

Numerical
solution

Employing a numerical
v method, e.g. Finite
\ Elements Method.

No

/Results of the analysis, e.g
stress/strain distribution,
deformations, ...etc. can be
investigated in comparison
with ’real life data’

Iraphical visualisation
\or statistical tools
\can be used._________

Yes

" Post '
^Processing

'Valid
approxi­
mation.^

/ValidN^
geometry,
stopologv^

/ u o o d \
element
sauality^,

Numerical simulation

A real world
engineering

problem
Problems in geometrical
or topological description
.m ust be fixed first. .

'Elem ent quality can be ^
enhanced using special
techniques; distorted

^elements can be deleted^

'An adaptation technique'
can be used. The grid is
refined / coarsened based

i.on an error estimator. >

Derive the
appropriate

mathematical
model

Figure 1.1: An overview of different aspects in computer simulation.

Grids of the order of few tens of elements, which can be constructed manually,
used to be more than adequate for the problems attem pted at the early days of
numerical simulations. However, industry requires solutions to more challeng­
ing problems. W ith the rapid growth in computer power and the availability
of computers, these challenging problems can now be addressed. A number
of CAD systems which employ well established m athem atical models th a t can

5

describe complex geometries [8, 19, 33, 64, 104, 34], have become widely avail­
able. Grid generation modules are central to such systems. Thus, generating
grids for realistic problems with a sufficient number of points and high quality
elements (i.e. not skewed) and within a reasonable tim e has become essential
for an effective use of numerical simulation. Obviously, with such requirements
manual grid generation is no longer feasible, and the search for a more efficient
and reliable way to generate grids has began.

Unfortunately, there has not been any pre-established equations for autom atic
grid generation, furthermore, the grid generation by its own nature has got
a significant element of an art. “The grid generation is not unique; rather it
must be designed. Mathematics provides the essential foundation for moving
the grid generation process from a user-intensive craft to an autom ated sys­
tem ” [124]. The roots of autom atic grid generation can be traced back to early
1970s with the developments in the finite element m ethod [152]. Interest in
numerical grid generation grew enormously in the early 1980s, and since then
it has become a worldwide active area of research. An extensive amount of
literature has been published and a number of specialised international confer­
ences are regularly organised. Probably the proceedings of the International
Conference on Numerical Grid G eneration[60, 111, 2, 138, 117, 23, 118], pro­
vide the best illustration of this. Nevertheless, although grid generation is still
under development, a number of algorithms have m atured and have already
been implemented into widely available commercial packages.

In fact, having the capability of numerical grid generation has contributed
significantly into the computational engineering discipline. A considerable
success in extending the numerical methods into a wider range of applications
has been achieved, and solving complex engineering problems by numerical
simulation has therefore become a reality.

The classification of grids, and subsequently techniques associated with the
generation procedure, is widely recognised as including structured or unstruc­
tured grids. The basic difference between the two types lies in the form of
the data structure th a t most appropriately describes the grid. If the points
are ordered as in a regular array, where a point in row i and column j is the
immediate physical neighbour of the point in row i - 1-1 and column j , the grid
is described as structured. If such a form is not applicable then the grid is
unstructured. Hence, the description of an unstructured grid must include an
explicit definition of the point connectivity to define the elements, see Figure
1 .2 .

Structured grids can be generated algebraically by employing some form of
interpolation from the boundary points (transfinite interpolation), or by solv­
ing some well-known partial differential equations (Laplacian operator). A
structured grid, in two dimensional space, consists of quadrilaterals which are
formed by a network of two intersecting sets of lines (not necessarily orthog-

6

x=

EU

x=

i m p
n i p

» Jj i

Figure 1.2: Illustration of a structured grid (left) and unstructured grid
(right).

onal nor regularly spaced) called a curvilinear coordinate system. The same
principle is extendible into three-dimensional space. Of course, for a realis­
tic engineering problem it can be extremely difficult to construct one global
curvilinear system which is able to represent all im portant features accurately.
Alternatively, a multi-block technique is often used, in which the domain is
subdivided into ‘blocks’ and a local curvilinear coordinate system is created
inside each block [123]. Although the grid is structured within each block,
the blocks fit together in an unstructured manner. Such subdivision provides a
greater flexibility to construct structured grids for complex geometrical shapes.
In fact, the main interest of this research is in unstructured grids. A good
source for details on structured grid generation can be found in [122], whilst
for more recent developments in this area, the reader is advised to consult
relevant chapters in [124].

W hilst creating the position of points is the only concern in structured grid
generation unstructured grid algorithms always have an additional task, which
is to provide a list th a t defines explicitly the connections between points (i.e.
the element connectivity). Although the construction of such a list may appear
as a straightforward task, in practice, implementing it in an efficient computer
program can be a real challenge. Unstructured grid generation algorithms
depend heavily on geometrical concepts th a t often involve an extensive search
for neighbouring points and elements. Hence, adopting an advanced data
structure with a sophisticated search procedure is the corner stone for any
successful unstructured grid generator. Since points and connectivities in the
unstructured grids embrace no global structure, it is possible to add or delete
points and elements locally any where in the domain. Such flexibility has made

7

unstructured grids an ideal approach for discretizing complicated geometrical
domains as well as for adaptive solution algorithms (where the grid is modified
continuously throughout the simulation with respect to an error estimator).

A number of unstructured generation techniques are already well established
and widely used, particularly in the of area CFD (Com putational Fluid Dy­
namic) applications. A broad discussion about unstructured grids, with a
detailed description of a Delaunay triangulation algorithm, is presented in the
next chapter, see section 2.2. An appendix which is devoted to a discussion
on various aspects related to the Delaunay triangulation technique is available
at the end of this thesis, see Appendix A. However, principles of different
unstructured grid generation techniques are presented in an early book by P.
George [48], whilst for a wider and more recent discussion the reader is advised
to consult relevant chapters in [124].

Hybrid and Chimera are another two different types of grid generation tech­
niques, but they both use concepts from structured and unstructured grid
methods. The former simply allows structured and unstructured grids to co­
exist in one global grid. In a typical hybrid grid, a structured grid is used to
discretize some regions, e.g. the regions near a boundary, whilst an unstruc­
tured grid connects them all and fills the rest of the domain. In the Chimera
grid approach, separate structured grids are generated around various compo­
nents in the com putational domain and then overlaid on a background grid or
may be on each other.

Grid generation algorithms, in general, have a common starting point and th a t
is preparing the geometrical description of the problem to be gridded. Unfor­
tunately, very often, such geometrical description (normally obtained from a
CAD system) is not ready to be used by grid generators directly. A number of
different issues can be encountered, such as: incompatibility with the m ath­
ematical model used in the parametric description of curves and surfaces *,
geometrical discontinuity represented by gaps between adjacent surfaces or
curves, poor accuracy in defining intersections between different entities, ...etc.
In fact, developing tools to detect and fix such problems is an active area of
research, known as ‘geometry repair’ [106]. Furthermore, even when the ‘valid
geometry’ is achieved some extra preliminary work is still needed such th a t a
topological description is constructed on the top of the geometrical entities. In
short, a considerable amount of human intervention time is required before
a valid geometrical and topological description of the problem domain is ob­
tained [113]. Thus, the ‘fully autom ated’ grid generation environment is still
a goal more than as a reality. “Grid generation remains one of the most time
consuming aspects of numerical simulation of complex configuration” [98].

1A number of different models have been proposed during the last few decades, [8, 19,
33, 64, 104], though more recently the NURBS (Non-Uniform Rational B-Splines) model
format has been adopted as a standard [28].

1.2 M otivation Behind the Research

Aerospace companies have employed unstructured tetrahedral grids in their
CFD simulations for more than a decade. Such simulations have demonstrated
th a t an acceptable level of accuracy for steady compressible inviscid flows over
a complex geometries can often be achieved by employing grids of the order
of few million elements [91, 93]. Generating a grid of this magnitude can
be accomplished nowadays, using a Delaunay based grid generator [136, 137,
139], on a regular workstation within 1-2 hours (i.e. including all aspects of
the generation procedure and some other post processing operations such as
enhancing the grid quality by collapsing severely distorted elements). Thus,
the obvious question one may ask is then; “is there a need for further research
and developments in the area of unstructured grid generation?!” .

Com putational fluid dynamic has, without doubt, been a m ajor driving force
behind significant developments in unstructured grid generation. W hilst the
inviscid flow can be accurately simulated on a ‘sm all’ size grid, simulation of
more complex types of flow such as viscous, turbulent, high Reynolds number
flows or even transient inviscid flows with moving boundaries has shown a
need for much larger size grids. “Due to the inherent complexities of high-
lift flows (both geometrical and flow physical), the accurate analysis of such
flows requires highly resolved grids. Current estimates place the requirements
for accurate Reynolds-averaged Navier-Stokes high-lift analysis of a complete
transport aircraft configuration in the range of 107 to 108 grid points” [89].

In the field of CEM (Computational Electro-Magnetics), in order to achieve
a good level of accuracy in simulating the electromagnetic wave propagation
around 15 nodes per wavelength can be required [94]. In other words, the
size of grid required would be a function of the wavelength, therefore, in the
2D and 3D applications it would be a function of the square and the cube
of the wavelength, respectively. Thus, if the wavelength is to be halved in
a typical CEM simulation in 3D, then to m aintain the same level of resolu­
tion the associated grid will require eight times the number of points th a t
were originally needed. Given this acknowledged requirement, the simulation
of high frequency electro-magnetic scattering around a complete aircraft will
necessitate grids of the order of 10’s of millions of elements [94, 145].

Present trends in com putational engineering point to a requirement for more
multi-disciplinary analysis. The coupling of fluids and structures, or ther­
mal with fluids and structures are good examples. Furthermore, the inter­
dependency of many engineering designs on such factors as fluids, structures
and possibly electro-magnetics also points to more challenging computation
simulations. We are possibly not far away from a requirement to generate a
grid outside, inside and through an aircraft for multi-disciplinary simulation.
Such requirements will place considerable demands on mesh generators and,

9

inevitably, very large grids will be required [108].

The above discussion shows th a t to solve realistic practical engineering prob­
lems there is already a requirement for generating grids of the order of 10
to 100 million elements and may be, very soon, for much more beyond that.
Obviously, this represents a significant challenge not only in the numerical so­
lution process, but also in the grid generation procedure. In fact, the extensive
research in the area of parallel processing of numerical algorithms, with the
rapid advances in computer technology, have reached the point were the calcu­
lations of such large scale problems can now be carried out in a practical sense
[90, 94, 59, 119, 146, 149]. For example, on a machine such as the CRAY T3D,
the implementation of an equation solver for CFD is such th a t approximately
400,000 elements can be accommodated on a single processor. This means
th a t grids of around 200 million elements can be handled if 512 processors
can be simultaneously accessed [91, 146, 148]. However, the size of such grid
is much larger than can be considered as practical for traditional sequential
unstructured grid methods, operating on current computing platforms. A typ­
ical sequential Delaunay generator would require 100 MBytes of memory to
generate a grid in the order of 1 million tetrahedra, thus to accomplish the
generation of a grid of the order of 200 million elements a platform with ap­
proximately 20 GBytes of main memory would be needed 2. Thus, the grid
generation procedure has become a bottle neck in the field of computational
engineering of large-scale problems.

Of course, the option of adopting a sequential grid generation approach and
just seeking access to more and more computing power to generate larger and
larger grids has got its own hardware lim itations issue. However, several a t­
tem pts of employing sequential generators to meet the challenge have been
reported [94, 90]. A standard h-refinement technique is exploited in order
to refine an existing grid. In such a technique, a generated grid can be re­
fined globally by introducing a new point on each edge, then new elements
created by appropriate reconnection of the nodes. Two different approaches
for implementing h-refinement are addressed here:

First approach. In this approach, after generating the largest grid
th a t can be accommodated on the available resources, a standard h-refinement
technique is applied on the entire grid. Then, in order to prepare the new
grid to be used by a parallel numerical algorithm, a typical grid partitioning
technique is implemented. Such techniques subdivide the grid (computational
domain) into a number of partitions (sub-domains) which are then distributed
as one sub-domain per processor such th a t the numerical simulation is carried
out in parallel. A large number of grid partitioning algorithms have been

2These approximate figures are based on the performance of a sequential Delaunay al­
gorithm adopted in this research work, and it has been developed originally by Weatherill
[136, 139].

10

developed over the last two decades [30, 112, 6, 73, 132]. Broadly speaking,
most of these algorithms have shown a considerable lim itation in handling
large size grids from the view point of memory requirements.

Table 1.1 illustrates a comparison of the memory requirements of a sequential
Delaunay grid generator [139], the Recursive Spectral Bisection (RSB) grid
partitioning algorithm [112] and an Euler flow solver [142]. It is clear th a t
the domain decomposition is the most expensive procedure. The situation is
not much better with other grid partitioning algorithms. For example, Metis
demands 240 MBytes for a tetrahedral grid with 1 million vertices [74]. Nev­
ertheless, this approach has been implemented in generating and partitioning
(using the RSB technique) a grid of the order of 8 million tetrahedra, and
another grid of 16 million tetrahedra (using the Recursive Bandwidth Minimi­
sation RBM instead of RSB). Both grids have been constructed on a CRAY
Y M P/EL machine, which has 256 MWords of main memory [95, 145]. Another
a ttem pt is reported in [89], where the issue of memory lim itations is clear as
well. “... the access to a large central memory provided by the cc-NUMA
shared memory architecture of the SGI ORIGIN 2000 is a key enabling feature
for the refinement of large unstructured grid ...” [89].

No. of Elements Memory Reqi
Grid Generator

lirements
RSB

(MWords)
CFD Solver

2.0E+6 38 52 34
4.0E+6 76 104 68
6.0E+6 114 156 102
8.0E+6 152 208 136

10.0E+6 190 260 170

Table 1.1: Memory requirements for a Delaunay grid generator, RSB domain decom­
position and Euler flow solver.

Second approach. There are clear limitations in handling refined grids in
the first approach. A second approach proposes implementing the h-refinement
procedure after the domain has been partitioned. F irst, an initial grid is gener­
ated and partitioned into the desired number of sub-domains (i.e. as required
by the solver, so no further partitioning is needed) within the limits imposed
by the available resources. Subsequently, the sub-domains are refined sepa­
rately until the desired grid size is achieved. Ideally, the refinement procedure
should be implemented in parallel on the same supercomputer where the solver
is to operate. Since the continuity of the grid across the sub-domains interface
must be reserved, developing a parallel version of the h-refinement procedure
is not a trivial task. However, although this approach may have the potential
for generating much larger grids than the first one, in fact, the h-refinement

11

procedure itself has got its own drawbacks. Also, the issue of memory require­
ments is still present in the partitioning of the initial grid, which in tu rn may
effect the size of the final grid th a t can be obtained.

The m ajor drawback of the h-refinement procedure is tha t, when boundary
edges are considered, the newly generated points have to lie exactly on the
boundary surface. This is usually an expensive task, and access to the original
geometrical description of the model is required. Also, the quality in some of
the resulting elements may become very poor, particularly if further refinement
was needed after the first cycle. An additional disadvantage is th a t, since the
refinement is applied globally, introducing some extra ‘redundant’ elements in
some parts of the domain is inevitable.

It is clear th a t in both these approaches access is required to ‘advanced’ com­
puting resources. In fact, the number of supercomputers available nationwide
is still very limited, and accessibility to them for most of universities, research
centres, small and medium size companies is restricted and it can be very
expensive [27]. Therefore, developing grid generation tools which can pro­
duce large size grids without the need for any highly sophisticated computing
resources must be a very cost effective strategy.

Obviously, relying on the traditional sequential grid generation methods only
to generate large scale grids can not provide a practical solution. “... Unstruc­
tured grid generation for complex high-lift geometries can be accomplished in
a m atter of days ...” [89]. So, alternative approaches had to be investigated,
aiming to make the time scale more practical and, if possible, to preclude the
bottle neck of memory requirements. A considerable number of algorithms
th a t implement parallel processing technology in various ways have been de­
veloped recently, some of them are reviewed in detail in the next chapter (see
section 2.4.2).

To conclude, the answer to the question “is there a need for further research
and developments in the area of unstructured grid generation?!” is: Yes, there
is still a demand for further developments in the unstructured grid generation
field. And the priority, from our point of view, is to find a solution to the
generation of large size grids. However, parallel grid generation is still very
young and certainly more research is justified. “... because the development of
efficient scalable parallel techniques takes much more tim e than their sequential
counterparts, it may take a while before parallel mesh generation comes to a
state of m aturity ...” [22].

1.3 Aim and Overview of the Research

The ultim ate aim of this project is to develop a ‘tool’ by which large-scale un­
structured grids for realistic engineering problems can be generated efficiently

12

on any parallel computer platform. The adopted strategy is based upon a geo­
metrical partitioning concept, where the com putational domain is subdivided
into a number of sub-domains which are then gridded independently in paral­
lel. The final grid of the entire domain can be constructed by merging grids in
the sub-domains or, based on the user choice, it may remain as a distributed
grid. In the later case, all the nodes th a t exist on more than one sub-domain
boundary must be clearly identified, so the inter-domain communication lists
needed in parallel simulations can be established. The approach is applicable
in both two and three dimensions and, in general, to different types of grid
generators. This study focuses on three-dimensional applications only, and it
implements a Delaunay triangulation based generator [136, 139] to generate
the sub-domain grids.

The entire procedure can be accomplished by employing four different algo­
rithm s as in the following order:

1. A d o m a in d e co m p o s itio n a lg o rith m , in which the volume enclosed
inside the computational domain boundary is partitioned into an arbi­
trary number (defined by the user) of sub-domains.

2. A n in te r-d o m a in b o u n d a ry g r id d in g a lg o r ith m , in which the ‘new’
internal boundaries created between adjacent sub-domains are extracted,
and a smooth triangular grid is generated on each one.

3. A su b -d o m a in g rid d in g a lg o rith m , in which a closed and properly
oriented triangular grid is constructed on each sub-domain boundary,
such th a t a grid can be generated using a sequential grid generator.

4. A p o s t p ro cess in g a lg o rith m , so th a t the user has the opportunity to
choose a procedure th a t most suits the future use of the generated grid,
e.g. constructing one global grid, ensuring a well-balanced distribution
of the elements, ...etc.

Two different approaches have been investigated, where the variations between
them are limited to the domain decomposition and inter-domain boundary
gridding algorithms only. Both approaches assume th a t a triangular grid has
already been generated on the domain boundary. However, in order to carry
out the domain decomposition task, the first approach requires an initial te tra ­
hedral grid to be constructed (using Delaunay triangulation of the boundary
points), whilst the second approach operates directly on the boundary tri­
angular grid. Hence, this thesis will refer to the first approach as ‘indirect
decomposition m ethod’ and to the second as ‘direct decomposition m ethod’.

Indirect decomposition method. In fact, this m ethod is an extension of
the 2D original algorithm developed by Weatherill and Verhoeven [128, 129]

13

into three dimensions. In this algorithm, following the triangulation of the
boundary points, the points are connected together by a set of tetrahedra us­
ing Delaunay and then a greedy-type algorithm is employed based upon an
equal volume (area) criterion [30]. The to ta l volume of the entire domain
is subdivided ‘equally’ into a number of sub-domains. This is a simple, fast
and memory efficient procedure for partitioning unstructured grids but, un­
fortunately, it may produce highly unbalanced workload in the sub-domains.
Enhancing this algorithm so th a t it accounts for the effects of grid control
parameters, which define the distribution of grid point density, has been in­
vestigated.

Having the sub-domains formed as a group of clustered tetrahedra in the initial
grid, the inter-domain boundaries are then formed by extracting all triangular
planar faces th a t are shared between adjacent sub-domains. Thus, each in­
ternal boundary is represented by a surface, which is already defined in a dis­
cretized form. A typical surface will have a set of triangles which are extremely
distorted and irregular. A topology correction and smoothing algorithm has
to be implemented before any of these surfaces can be gridded. Eventually, a
point insertion with edge swapping technique is employed to generate a smooth
triangular grid on each surface.

Despite achieving a considerable success in generating standard quality and
smooth triangular grids on the internal boundaries, the indirect decomposi­
tion method overall has failed to dem onstrate a steady robust performance
in gridding complex geometries. In addition, the demand for generating an
initial tetrahedral grid has proved to be difficult. Hence, an alternative ap­
proach to partitioning the computational domain had to be investigated, which
subsequently has led to the development of the direct decomposition method.

Direct decomposition method. In this method, the volume enclosed
inside the triangular grid on the boundary is subdivided directly by a number
of planar cuts. In general, these cuts can be imposed in various ways, such
as a set of parallel planes distributed along one axis, a Cartesian network of
planes which can be imposed in one step or in a recursive manner or even by
employing an octree decomposition procedure. However, the general shape of
the inter-domain boundary created by any of the proposed procedures must
be simple planar surface. Thus, the problematic irregular form of the internal
boundary surfaces in the previous m ethod has been excluded and, furthermore,
the decomposition technique allows for a better control over the workload
distribution.

The technique adopted in this study uses the unidirectional planar cut ap­
proach with various options for assigning a criterion for the planes location.
The available criteria are: equal spacing, equal number of boundary triangles
and interactively, where the exact location of each cut is defined explicitly
by the user. However, after the planes have been defined, every set of trian­

14

gles bounded by two plans is assigned to be in a sub-domain. Consequently,
internal boundaries are defined by extracting edges th a t are shared between
adjacent sub-domains a t the interface regions. In order to create a surface grid
on such a boundary, a closed contour of 2D edges is constructed by mapping
the extracted 3D edges onto the surface of the cut plane. A coarse triangular
grid is generated on this surface in the 2D space which is then mapped back
into the three dimensional space. The same point insertion and edge swapping
technique used in the indirect decomposition method can be employed to gen­
erate the final fine smooth grid. Alternatively, the fine grid can be generated
in the 2D space before it is mapped back, however, the former way has shown
a smoother final grid and a better consistency with the original boundary grid
point spacing. In general, high quality grids on the internal boundary are al­
ways obtained in the direct decomposition method, which in turn has made
the method very reliable.

Clearly, after applying the first two algorithms in the global procedure, w hat­
ever method from the above is used, the big task of generating one global grid
for the entire domain becomes a collection of smaller similar tasks. An inde­
pendent closed triangular grid is constructed for each sub-domain, by merging
the relevant parts of internal and original boundary grids. Thus, a typical
sequential grid generation algorithm can now be employed to generate a te tra ­
hedral grid inside each sub-domain independently. A Delaunay triangulation
based generator developed by Weatherill [136, 139] has been implemented in
this research. Such volume grid generators are sensitive to the orientation of
the boundary faces. Therefore, a technique to ensure all boundary faces are
correctly oriented before the generation procedure starts has been integrated.

In fact, a t least one post-processing operation has to be applied before the grid
obtained is ready to be used. Various options have been made available, so the
user can choose according to the application and the expected employment of
the grid. However, it is very likely for grids generated in such an approach to be
employed in distributed parallel simulations, therefore, having a balanced dis­
tribution of the to tal workload on the sub-domains is vital. A post-processing
procedure th a t shuffles elements between adjacent sub-domains, in order to
achieve a highly balanced workload, has been developed. O ther procedures
such as constructing one global grid by merging sub-domain grids, establish­
ing inter-domain communication tables, partitioning a sub-domain locally and
inter-domain relaxation are available as well (see chapters 5 and 6).

Work presented in this thesis also concerns the development of a framework
in which the four algorithms introduced above are integrated in combination
with a specially designed parallel processing technique. The Message Passing
Library (MPL) programming model has been adopted throughout the paral-
lelisation work in this research. The framework implements a Single Program
Multiple D ata (SPMD) structure with a Manager/W orkers mechanism. In

15

such mechanism, one of the processors is assigned to be a manager, which
‘adm inisters’ the processing only, while the rest are workers where the ‘real
Work’ is carried out in parallel. The designed technique, termed as Dynamic
Parallel Processing (DPP), uses this mechanism in a way where processing an
arbitrary number of tasks becomes always possible whatever the number of
processors is available.

The administrative role of the manager in the D PP technique involves: identi­
fying the jobs th a t are due to be processed in parallel, sorting them in descend­
ing order according to an estimated workload, preparing all da ta required to
process each job independently and finally synchronising the job processing on
the workers efficiently. On the other hand, when the workers receive these jobs,
the same list of instructions must be applied by all workers while each acts on
its own set of da ta (e.g. applying the volume Delaunay grid generator on the
sub-domains). Every worker must notify the manager on the completion of an
assigned task and go back into the ‘stand by’ mode. In the D PP technique,
there is no communication among the workers themselves, and the only type
of communication th a t takes place is when and only when the manager wants
to assign a job to a worker or receives a result. The MPICH, which is an
implementation of the Message Passing Interface (MPI) library specifications
[53], has been employed to carry out all the communication (message passing)
operations. Benefiting from the portability of a such library, in addition to the
careful design of the parallelisation work, the framework after all can operate
on a wide range of computing platforms: a single workstation, cluster of net­
worked workstations, shared memory multiprocessors machines and massively
parallel supercomputers.

The D PP technique has been implemented to process various tasks in the
algorithms above, including: generating the internal boundary surface grids,
generating the sub-domain tetrahedral grids and another two different tasks
involved in the element re-distribution procedure (i.e. an option in the post­
processing algorithm). Only a few simple tasks of the procedure overall, partic­
ularly in the direct decomposition method, remain to be processed sequentially.
However, the developed framework has proved to be a very effective tool for
generating large size grids, also the enhancement by the D PP technique has
provided a great flexibility and efficiency in exploiting the available computing
resources. Grids to the order of more than 100 million elements have been
generated using one processor on an SGI Challenge machine which has 512
MBytes of main memory. A number of realistic engineering problems with
complex configuration are presented in this thesis.

16

1.4 Layout of the Thesis

C h a p te r 2: Before discussing any technical details of the developed algo­
rithms, and in order to put this research in perspective, some essential topics
are introduced. The general algorithm of a Delaunay based tetrahedral grid
generator is discussed, and an overview of some relevant parallel processing
technology is presented. The chapter then presents a brief survey of previous
research in the parallel grid generation field, and highlights the advantages of
the geometrical partitioning approach in general.

C h a p te r 3: Both direct and indirect decomposition methods are discussed
in detail. The entire procedure for each method is introduced in a simple 2D
format first, and then followed by further discussions about the 3D implemen­
tation. Illustrated examples are presented, and issues associated with each
method are addressed.

Chapter 4'. This chapter is devoted to the discussion of the parallelisation
work in this research. The Dynamic Parallel Processing technique is presented
in great detail. The main steps in the general procedure are examined individ­
ually in order to estimate the benefit of, or the possibility for, implementing
the DPP technique on each step. An example to illustrate the D PP role in the
parallel frame work is presented as well.

C h a p te r 5: This chapter is divided into three main sections, each one is
devoted to a discussion on a post-processing algorithm. Every section starts
by addressing the main reasons behind developing the relevant algorithm, then
followed by further technical details and an illustrated example. The three
sections are: inter-domain communication, grid quality and load balancing.

C h a p te r 6: This chapter simply demonstrates the developments and how
they can be employed in the ‘real world’. Various options are demonstrated,
including the construction of one global grid and applying a local partitioning
procedure on individual sub-domains. Grids of realistic engineering problems
to the order of 100 million elements are presented, also results obtained from
typical parallel CFD simulations using some of generated grids are shown.
The chapter also demonstrates the high efficiency and scalability of the de­
veloped programs by examining thoroughly a number of well known parallel
performance measurements.

C h a p te r 7: A conclusion from the overall research is presented, and areas for
further investigation are indicated.

Two appendices are introduced in this thesis, the first one provides an insight
into the Delaunay triangulation technique, including a review of some point
creation procedures. The second appendix introduces some basic features in
the Message Passing Interface library, with emphasis on the data communica­
tion functions which are related to the parallelisation work. Also, a summary

17

of parallel performance tools, which is used during the performance analysis
study, is presented.

18

Chapter 2

An Overview of U nstructured
Grid Generation and Parallel
Processing

2.1 Introduction

In order to put the work carried out during this research into perspective, it is
appropriate to review some of the essential and relevant concepts. Therefore,
this chapter attem pts to review, very briefly, various topics in the unstructured
grid generation and the parallel processing fields. First, a description of the
most well known techniques in the unstructured grid generation area is intro­
duced. Then, an algorithm based on the Delaunay triangulation technique,
which has been adopted in this study, is outlined. Fundamental concepts and
other technical issues related to the Delaunay triangulation approach are dis­
cussed in Appendix A. Discussion then focuses upon parallel processing issues
as a very compact review of parallel machines and parallel programming mod­
els is presented. A wider discussion of the Message Passing Library model,
which is the adopted strategy in this study, is presented in Appendix B.

Having introduced the basic concepts of unstructured grid generation and par­
allel processing, the chapter then moves on to discuss how researchers have
used them in order to develop new techniques th a t can generate unstructured
grids in parallel. Different types of approaches are addressed, advantages and
disadvantages of each are discussed. A number of algorithms th a t have been
developed over the last decade are reviewed briefly.

19

2.2 Unstructured Grid Generation

Recalling the description of unstructured grids as in Section 1.1, particularly
their flexibility for complex geometries, grid adaptation and relative ease and
speed of use, it is clear why there is a great interest in using unstructured grids
in numerical simulation. In fact, since the introduction of unstructured grids
into the CFD world early 1980s, unstructured grid generation has proved to be
a very effective tool and a key component in simulating realistic engineering
problems. However, “.... disadvantages following from adopting the unstruc­
tured grid approach are th a t the number of alternative solution algorithms is
currently rather limited and th a t their com putational implementation places
large demands on both computer memory and CPU. Further, these algorithms
are rather sensitive to the quality of the grid being employed and so great care
has to be taken in the generation process. ...” [58].

The process for constructing an unstructured grid inside a closed domain (vol­
ume grid) requires the boundary of the domain to be represented in a dis­
cretized form. In other words, volume grid generation requires the generation
of grids on boundary curves and surfaces. The boundary surface grid has a
direct effect on the volume grid inside the domain, in particular on the quality
of volume elements near the boundary. Hence, surface grid generation is con­
sidered as a very im portant step in the unstructured grid generation process
[100],

In general, unstructured grid generation algorithms use geometrical search
operations extensively. The selection of optimal da ta structures and very so­
phisticated search algorithms, [9, 38, 77], is essential otherwise the efficiency
of the grid generator will drop dramatically. Elements in unstructured grids,
in principles, can have any geometrical shape, however, triangles on surfaces
and tetrahedra in volume are still the most widely used shapes. Quadrilaterals
and hexahedra are also used and favoured in some applications.

The last two decades have seen a wide and intense research activity in the
field of autom atic grid generation [60, 111, 2, 138, 117, 23, 118, 124], and a
large number of unstructured grid generation algorithms have been developed.
Obviously, it is beyond the main theme of this thesis to get involved in review­
ing such a long list of algorithms. However, the m ajority of these algorithms
depend on one of the two approaches, namely the Advancing Front and the
Delaunay Triangulation [86]. The Delaunay method is based on an elegant
and simple concept which can be traced back to the nineteenth century, with
a paper by Dirichlet appearing in 1850 [26]. Given a set of points, a diagram
known as the Voronoi diagram can be constructed. This diagram consists of a
set of polygons in which each is associated with a point, and defines the region
th a t is closer to this point than to any other point. Every segment of a poly­
gon in the Voronoi diagram is equidistant from the two adjacent points th a t it

20

separates. If points with a common boundary are connected, then a triangula­
tion of the points is formed. This type of triangulation is known as Delaunay
triangulation. The Delaunay-Voronoi construction can be constructed on a set
of points in n dimensional space, however, the resulting triangulation would
consist of a set of triangles in two dimensions and a set of tetrahedra in three di­
mensions. Nevertheless, since generating unstructured tetrahedral grids using
the Delaunay triangulation method is essential to this research, it is appro­
priate to have a wider discussion. An overview of the general procedure in a
typical Delaunay grid generator is presented in the next section, and details of
relevant technical aspects are introduced in Appendix A [5, 48, 136, 139]

The advancing front method [81, 84, 99,100,103], consists of marching into the
domain creating elements. The region separating the gridded portion of space
from the as yet ungridded one is called the front. Given an initial front, which
in two dimensions is the set of edges th a t represent the boundary curves and
in three dimensions is the set of triangular faces th a t represent the boundary
surfaces, a node is created and connected to the front so a new element is
formed. The process continues by advancing and updating the front until the
entire domain is filled with elements. Clearly, while a new element is being
formed, it is essential to ensure th a t no intersection with any existing elements
occur, as well as try to satisfy element quality criteria. Hence, performing a
considerable amount of local checks before a new element can be formed is
inevitable. Of course, this highlights the im portant role of the advanced data
structures and search techniques [9].

Another less known approach for unstructured grid generation is based on spa­
tial tree subdivision, which makes full use of tree d a ta structures to decompose
the domain into elements. It is often referred to as the Octree technique, or
Quad-tree in the two dimensions case. However, the basic concept consists of
placing the entire geometry, as represented by the boundary grid, in a cube.
Then to subdivide the cube into its eight octants which are then recursively
subdivided a number of times until the length scale in the term inal octants
become consistent with the length scale on the boundary grid. W hen no fur­
ther subdivision is needed, the final step requires the subdivided grid to be
connected to the boundary grid [114, 151].

A number of methods based on a ‘combination’ of two of the approaches men­
tioned above have emerged. Schroeder and Shephard have developed a method
th a t combines the Octree method with Delaunay. “The basic concept is to use
an Octree building procedure to generate octant geometries th a t can then
be tetrahedronized using W atson’s Delaunay algorithm ” [110]. Another al­
gorithm, which combines the advantages of efficiency and nice m athem atical
properties of the Delaunay approach with the Advancing Front high-quality
point-placement strategy, has been developed by Frey et al [42]. In this algo­
rithm , and after a boundary grid is generated, the internal points are created

21

using advancing-front point placement and then inserted using the Delaunay
triangulation method.

2.2.1 Delaunay Grid Generation Algorithm

In general, there are three different problems th a t a Delaunay based grid gen­
erator must be able to solve. Firstly, the problem of how to connect a set of
points already defined in k dimensional space (where k > 2), secondly, how to
generate the position of new points such th a t a desired density of grid points is
satisfied, and thirdly, how to ensure th a t the resulting triangulation is bound­
ary conforming. W hilst reliable and robust techniques are well established for
the first two problems, the last problem is still a subject of further research
[3, 4, 49, 143]. However, here we focus on illustrating the general procedure of
a Delaunay based generator developed by W eatherill [136, 137, 139], which has
been adopted in this research. This grid generator implements Bowyer’s algo­
rithm for constructing the Delaunay triangulation [12], in conjunction with an
advanced technique of point generation and point density control; details of
these technical aspects are available in Appendix A. The general procedure is
presented in association with an illustrated example of a simple 2D triangular
grid, see Figure 2.1 and reference [147].

Consider a circle with its boundary already discretized into a set of edges and
points. See (I) in Figure 2.1; notice the ‘point source’ located at the centre,
which is used by the mechanism th a t controls the grid point spacing *.

• The first step is to define a convex hull th a t encloses all the boundary
points. A simple construction can be imposed, which consists of four
points (two triangles) in the 2D applications case and eight points (five
tetrahedra) in the 3D case. See (I I) in Figure 2.1.

• Given the initial Delaunay construction of the four points in the convex
hull, points on the circle boundary can then be inserted one a t a time
and connected into an already existing Delaunay triangulation structure.
Figure 2.1 (I I I) shows the resulting grid after all the boundary points
have been inserted.

• To create the grid inside the circle, it is then necessary to systematically
refine the triangles inside the circle. There are several methods for per­
forming this task, however, the proposed algorithm implements a simple
interpolation to insert points a t the centroid of elements. The grid point
density is controlled by a background grid and any ‘sources’ have been
specified, see Appendix A. Points are created by looping over elements

1 Details about this mechanism and the ‘sources’ can be found in Appendix A.

22

(I) (I I) (I I I)

(IV) (V) (V I)

Figure 2.1: Illustration of the general procedure of a Delaunay based grid generator.
The boundary as discretized into a set of edges in (I), with a ‘point source' that controls
points density. Four points with their prescribed triangulation are imposed, i.e. convex
hull, such that all boundary points are enclosed (II). The triangulation of all boundary
points (III), performed using Delaunay. In (IV) and (F) two different grids during the
point insertion phase. The final grid after all ‘redundant’ elements been deleted (VI)',
notice the effect of the point spacing source at the centre.

within the domain and inserting a point when element refinement is, re­
quired, and subsequently connected into an existing triangulation using
the Delaunay based algorithm. (IV) and (F) in Figure 2.1 show the grid
a t two different stages during this process.

• Once the grid point density has been achieved, a post-processing step
deletes all triangles th a t are not inside the domain of interest. In fact,
although such a step looks rather easy in this example, it may involve
the use of a complex and expensive procedure for complex shape bound­
aries. The reason behind this step is th a t to ensure the initial boundary
edges are preserved in the final grid. This is the so-called boundary in­
tegrity requirement which can be a challenging problem, particularly in
the tetrahedral grids [143]. However, (VI) in Figure 2.1 shows the final

23

grid, where the effect of the point spacing source a t the centre is clear.

2.3 Parallel Processing

“Parallelism has sometimes been viewed as a rare and exotic sub-area of com­
puting, interesting but of little relevance to the average programmer. A study
of trends in applications, computer architecture, and networking shows th a t
this view is no longer tenable. Parallelism is becoming ubiquitous, and parallel
programming is becoming central to the programming enterprise” , [40]. It is
impossible to cover such an active area of developments in an introductory
review. However, a brief description of some relevant aspects and clarification
of some special terms is still feasible and appropriate.

Parallel Machine Models
There are two different m ajor architectures of parallel machines, namely the
Single Instruction Multiple D ata (SIMD) machines and the Multiple Instruc­
tion Multiple D ata (MIMD) machines 2. In SIMD machines, processors execute
the same instruction stream simultaneously while each processor is acting on
a different piece of data. This type is also known as vector computers, the
Cray YMP machine series is a typical example of this type. In fact, the SIMD
type is irrelevant to the parallelisation work developed in this research, thus
no further reference to it is to be made; an interested reader can consult [126].

The MIMD machines are parallel computers which contain a number of inter­
connected processors, each of which is programmable and can execute its own
instructions. The instructions for each processor can be the same or different.
The processors can operate on a distributed memory or shared memory. In
the former, which is referred to sometimes as multicomputers, every proces­
sor has its own memory which no other processor has a direct access to. A
typical example of this type is massively parallel machines like the Cray T3D
and IBM-SP2. Clusters of networked workstations is another form of this ar­
chitecture as well. In the shared memory case all processors have read and
write access to any address of the available memory, the type is known also as
multiprocessors system. A typical example of this type is the SGI Challenge
and the Origin 3000.

Diversity in the literature and commercial articles th a t evaluate the technical
developments and features of high-performance computing hardware is very
wide. However, for a reader interested in finding out more about parallel ma­
chine models, we recommend the two following references: A.K. Noor in [96]
presents a wide review of miscellaneous types of high-performance computing

2The standard serial computers in this respect can be referred to as the SISD type. Also,
though there are few machines in the MISD architecture category, none that have been
commercially successful or had any impact on computational science [96].

24

technology, with a brief assessment of the current and projected advances in
distributed computing and networking technology. A. Trew and G. Wilson in
1991 reported extensively on parallel computers which were available commer­
cially at the time [126]. In fact, the survey can be considered as old and out
of date by now, but the book still provides a valuable comprehensive technical
insight of parallel machines. Also I. Foster in [40] devotes a section for Parallel
Machine Model.

Parallel Programs Structure
The two terms MPMD (Multiple Program Multiple Data) and SPMD (Single
Program Multiple Data), appear frequently in the parallel processing litera­
ture. Thus, we intend to clarify their meaning here since any inconsistent
interpretation may lead to some confusion in this thesis context. First of all,
not to over confuse them with the other two popular term s MIMD and SIMD
th a t introduced above. W hilst the MIMD and SIMD represent two categories
of computer architectures, the MPMD and SPMD describe two different types
of parallel program structure. “The MPMD programs are usually specified by
the parallel block construct or the multiple-code approach, while the SPMD
programs are usually specified by the parallel loop construct or the single-code
approach” , [68]. Although both structures adopt the concept of different data
domains per processor, in the SPMD programs the same code is executed by
all involved processors whilst in the MPMD programs processors may execute
different codes. The second point which, more im portantly, to be clarified in
here is th a t both of the SPMD and MPMD structures are associated with
the MIMD type machines. Thus, both SPMD and MPMD are MIMD, and in
this thesis they will be used in conjunction with the program structure only,
i.e. regardless if the used platform is a MIMD machine with shared memory
or distributed memory. It is interesting to mention th a t employing the two
structures (i.e. SPMD and MPMD) within one parallel program is totally
accepted.

2.3.1 Parallel Programming M odels

Traditional parallel software designs have attem pted to m atch the architecture
of the underlying hardware systems, so as a result application development
was problematic as hardware evolved [27]. However, broadly speaking two
types of parallel programming models are widely recognised nowadays, they
are the ‘explicit model’ and the ‘implicit model’. In the former model, the
parallelisation is explicitly specified by the programmer using special parallel
programming languages, or calling special library functions. W hilst in the
implicit model, the programmer lets the compiler and the run-tim e support
system autom atically exploit all the possibilities for parallelisation. This model
is irrelevant to the work done in this thesis and very little attention will be

25

given, however, an interested reader can consult [68].

Although several explicit models have been developed, the data-parallel model
and the message passing library, which are the most popular models, are to
be considered. The term data parallelism refers to the concurrency th a t is
obtained when the same operation is applied to some or all elements of a data
ensemble. A data-parallel program is a sequence of such operations. A ‘special’
programming language is needed to write such program, though the control
flow is ju st like any typical sequential program. Fortran 90 is a data-parallel
programming language in its own right, but the da ta distribution directives are
available within an extension known as High Performance Fortran (HPF). “...
F90 provides constructs for specifying concurrent execution but not domain
decomposition. H PF augments F90 with additional parallel constructs and
data placement directives, ...” , [40]. HPF is the most common data-parallel
programming language, and it will represent the data-parallel model from now
on in this thesis. The mechanism employed in H PF model for distributing
data is based on a systematic style of array decomposition, whereby series
of columns is directed to each processor. Compiling an HPF program on
a distributed memory machine produces an SPMD program, where da ta is
partitioned into sub-groups and each one is allocated to a processor. The
compiler will launch the communication operations when they are needed.

In the Message Passing Library (MPL) model, processors execute program(s)
written in standard sequential programming languages and utilise special li­
brary functions to interact by sending and receiving messages. Message passing
libraries provide a wide range of functions to m anipulate and transfer data.
Operations like, deriving new data structure, packing and unpacking data,
sending and receiving data between two known processors, broadcasting from
one processor, etc. are the basics which almost every message passing
library provides. Also, Message passing libraries usually provide various ver­
sions of its functions th a t cover all known stander sequential programming
languages, which is known as a language binding. In Appendix B, a typical
message passing library (i.e. an implementation of the MPI specification known
as MPICH) is reviewed, examples of some basic functions with illustration of
a standard ‘MPI program ’ are also discussed.

Unlike the HPF model, the MPL model does not provide an autom ated way to
decompose or distribute data. Instead the programmer has to take care of and
control all these activities. However, although th a t the mechanism used for
data decomposition and distribution in the H PF model may appear to be very
attractive, in practice, it has narrowed its applications area considerably. It is
a well known fact th a t the HPF model has not managed to become as popular
as the MPL model. “A problematic feature of H PF is the limited range of
parallel algorithms th a t can be expressed in H PF and compiled efficiently for
large parallel computers.” , [40].

26

Most unstructured grid generation techniques use a geometrically localised
data, e.g. inserting a point in a Delaunay based generator (see Appendix
A). Therefore, the way th a t da ta is distributed within the HPF model is not
very helpful, and a large amount of irregular communication among processors
would be inevitable. Although the programmer does not have to introduce the
communication tasks explicitly (since it is done in an autom ated and optimised
way by the compiler) it is very unlikely to achieve an acceptable performance
after all. K. Hwang and Z. Xu in [68] report “It is doubtful whether HPF can
efficiently support parallel algorithms with general da ta structures and irreg­
ular communication patterns” . I. Foster, in his famous book Designing and
Building Parallel Programs, [40] says: “The performance of an H PF program
depends not only on the skills of the programmer but also on the capabilities
of the compiler” . However, just to conclude, H PF might be an ideal paral­
lel programming model in some cases, but certainly it is not the appropriate
model to be used with the unstructured grid generation. To the best of our
knowledge th a t the work of Chen et al, presented in [16], is the only reported
attem pt for using HPF to develop a parallel Delaunay grid generator.

2.4 Parallel Processing and Unstructured Grid
Generation

In this section, we will address some of the research activities th a t have been
reported over the last decade in the field of parallel processing of unstructured
grid generation. The field is still very young, with the first relevant paper
published by Lohner in 1992 [82] 3. In fact, it is very likely th a t some of
the algorithms discussed in here are still a subject of further developments,
including the one developed in this research [149], and new versions might be
already emerging. Nevertheless, it is appropriate to emphasise th a t algorithms
related to parallel grid refinement are not considered, since they do not really
belong to the area of parallel grid generation 4.

In general, two options are available for developing a parallel grid generator,
one is to parallelise an existing algorithm and the other is to parallelise the
problem. The later option is widely known as the geometrical partitioning
approach, in which the domain is subdivided into a number of sub-domains
tha t are then gridded separately.

3 For information about the parallel processing in structured grids field see [61].
4In fact, a confusion between the two terms has been observed in some of the literature

27

2.4.1 Using an Existing Algorithm Approach

Reviewing the brief description of unstructured grid generation methods in
section 2.2 and the Delaunay based algorithm in Section 2.2.1; it is clear th a t
unstructured grid generation procedures are essentially scalar. Most of the
methods presented to date construct grids by introducing a new element, point,
a t a time. “Unstructured grid generators belong to a wide class of problems
th a t are characterised by: (i) being scalar; (ii) having a large variation in
the number of operations required during each step of the calculation; (iii)
achieving parallelism by some sort of distance” [115]. Thus, unsurprisingly
a very limited number of attem pts have been made to parallelise an existing
algorithm. However, a list of advantages and disadvantages of this approach is
presented in Table 2.1, followed by a brief discussion of a typical algorithm uses
this approach. O ther algorithms th a t are, in a way or another, related to this
approach can be found in [105, 80, 25, 76]. Also, an early a ttem pt to parallelise
the ‘searching’ task by developing a vectorised algorithm for determining the
nearest neighbours is presented in [10].

Disadvantages Size of generated grids is limited by the available memory.
There is a need to use a domain decomposition algorithm on.
the final grid before it can be used by a parallel simulator.
The performance depends on number of available processors.
Cost of inter-processor communication is very high.

Advantages No new algorithms are to be developed.
A possibility for improvements on the speedup factor.
Grid quality should not be effected a t all.

Table 2.1: Advantages and disadvantages of parallelising the grid generation task by
developing a parallel version of an existing algorithm.

A parallel implementation of the Bowyer-Watson (BW) algorithm, which is
the base for most of the available Delaunay grid generators, see Appendix A,
has been presented by Chrisochoids and Sukup in [18]. “The element creation
step of the BW algorithm takes place into two phases: (i) cavity computation,
for the newly inserted point, and (ii) reconnection of the new point with the
vertices of the cavity.” The paper is concerned about the efficient implementa­
tion of the element creation step On distributed memory computers. However,
obviously two new points can not be inserted concurrently if their correspond­
ing cavities overlap. In such a case synchronisation among involved processors
is essential in order to produce a unique and valid Delaunay triangulation.
The cost of this synchronisation can be very high, and it is indeed the main
source of the inefficiency in this type of approach. The paper demonstrates the
algorithm using a very simple and small size planar triangular grid. Very little

28

information about the parallel implementation and performance is given, how­
ever, the paper reports th a t indeed preliminary performance data indicate
linear speedups; ... The slow down occurs mainly due to 28.7 % in polling for
remote service requests and 39 % in testing for global pointers” . In fact, the
same algorithm has been enhanced later on by a form of manual domain par­
titioning procedure and presented in another paper [17], which makes the new
version falls under the second approach category. Nevertheless, the modified
algorithm is supposed to minimise the interprocess communication required,
though this has not been clearly demonstrated.

2.4.2 Using a Geometrical Partitioning Approach

As mentioned earlier, the main concept in this approach is to split one big grid
generation task into a set of smaller grid generation tasks by partitioning the
domain of interest into a number of sub-domains. Although details between
available algorithms may vary dram atically they all share the same starting
point, i.e. partitioning an empty space defined by a closed boundary which can
be described as a geometric model or as a discretized surface. In fact, such
a task can be rather difficult “... Partitioning in the context of parallel grid
generation is hard ... It means one is trying to partition 3D domain having
only the knowledge of its boundary ... Proper evaluation of the work load
is also a challenge ... It is problematic to accurately predict the number of
elements to be generated in a given sub-domain, or how much com putation
per element will be required . . . ” [22].

Grid partitioning algorithms available to date, [30,112, 6, 73,132], are designed
to partition an already existing grid and they can not be applied directly on
an empty space. Thus, researchers were left to choose between either develop­
ing their own new partitioning technique or to employ an existing partitioner
acting on a coarse grid or on a background grid. Algorithms th a t operate on
the geometrical definition of a domain have been reported as well. Lammer
and Burghaedt presented in [78] an algorithm which applies a partitioning
procedure based on calculating the centre of gravity and the principle axes of
the domain. Saxena and Perucchio in [109], employ a typical tree decomposi­
tion procedure to divide the domain into a number of octants which then are
distributed among available processors.

Shepherd and de Cougny in [22] categorise the parallel grid generators avail­
able to date using the order of gridding the internal boundary within the
overall procedure as main criteria. Thus, the following three categories can be
identified:

1. Algorithms th a t discretize the internal boundary while the sub-domains
grid are been processed.

29

2. Algorithms th a t carry out the gridding of the internal boundary as a
post processing procedure.

3. Algorithms th a t discretize the internal boundary first and then build a
set of sub-domains ready to be gridded independently.

A typical algorithm in each category will be discussed briefly, but first of all
an overview of advantages and disadvantages of the geometrical partitioning
approach in general is presented in Table 2.2, see Table 2.1 for comparison
with the ‘using an existing algorithm ’ approach.

Disadvantages Extra tasks are introduced to the general algorithm beside
the grid generation task.
Gridding the internal boundary can be a challenging task.
Load redistribution among the sub-domains may be required
during the gridding process or as a post-processing step.
Global grid quality may become effected by the quality of
the internal boundary grid.

Advantages The generated grid is already been partitioned, ready
to be used by parallel simulators.
Very large size grids can be generated.
A good speedup factor can still be achieved.
Inter-process communications can be negligible.
W ith a good quality grid on the internal boundary, the
global grid quality is likewise any grid generated sequentially.

Table 2.2: Advantages and disadvantages of parallelising the grid generation task using
the geometrical partitioning approach.

Gridding the sub-domains and internal boundaries simultaneously

Okusanya and Peraire present in [97] an algorithm for generating triangular
grids in parallel using the Delaunay triangulation technique. The process is
based on a cycle of point insertion and load balancing operations. Various
techniques of point insertion have been considered. The partitioning of the
domain is done using planes perpendicular to the Cartesian axes, operating
on a priori discretized boundary and a background grid. Each sub-domain is
assigned to a processor, and elements th a t are shared between adjacent sub-
domains are duplicated on relevant processors. Points are inserted within each
sub-domain until a prescribed number of elements have been generated. The
grid is then balanced to ensure a better distribution of the workload employing

30

an element migration procedure. The load balancing is achieved based on
solving a linear system of equations, derived from a spring analogy, in order
to determine the position of the partitioning planes.

The element migration procedure itself is carried out in three separate stages.
In the first stage, elements th a t are to be migrated are checked if they can
be transferred to their destination processor or not, which requires a lock to
be made on all processors, excluding the sender and receiver. The second
stage consists of the data transfer itself, which involves packing the relevant
information, sending and receiving operations between two processors. Up­
date procedure is carried out in the th ird stage, and then an ‘appropriate’
message is sent out to unlock processors th a t were prohibited from sending or
receiving. The paper presents one example of a triangular grid consists of 1
million element for the NACA-0012 airfoil. O perating on IBM SP2 system,
and using the Active Messages 5, the grid was generated on 8 processors within
10 minutes. The CPU time spent on the generation procedure itself is almost
one third of the to ta l time, while the rest is spent on the load balancing and
communications.

Apparently, algorithms such as the above would involve a considerable amount
of inter-processors communication and a high risk of having too many idle
processors. In fact, overlapping between com putation and communication is a
must for algorithms in this category. On the other hand, element quality can
be as good as in any other grid generated sequentially. The overall scalability
is very questionable, particularly in the three dimensional space applications.
The cost of the dynamic load balancing procedure, including the three stages
of the element migration scheme, is expected to grow substantially. However,
although the idea of extending the algorithm above into the 3D space was
proposed in [97], no further reporting could be found.

Post-gridding of the internal boundary

Clearly, algorithms under this category would split the com putational domain
into a number of sub-domains first, produce a grid inside each sub-domain and
then deal with the sub-domains interface region. Lohner et al in 1992 have pre­
sented an algorithm in which the com putational domain is subdivided using a
background grid, resulted sub-domains are then gridded using the Advancing
Front Method. Each sub-domain is gridded separately following the ‘In-O ut’
strategy, in which the ‘Front’ starts from the inside of a sub-domain and stops
just before reaching the adjacent sub-domains. Regions formed between ‘un­
completed’ sub-domains grid are called the interface regions, and they are

5 Active Message is a low-latency communication mechanism that minimises overheads
and allows communication and computation to overlap. It is used by MPI as its underlying
communications layer, [15].

31

gridded at the end as a post-processing step also using the Advancing Front
Method. The algorithm has been demonstrated originally for 2D applications
in [82] and then extended into the three dimensions in [115].

“W hen generating the inter-sub-domain regions, one cannot generate a t the
same time the interfaces of all neighbours for a certain sub-domain. There­
fore, a contingency list was implemented th a t avoids these conflicts....” , [82].
This necessary contingency test implies th a t if a sub-domain is used to grid
an interface, it cannot be used to grid another one. Therefore, the number of
interfaces tha t can be processed in parallel will always be very small, which
leads to having plenty of ‘idle processors’ and thus a significant impact on the
overall performance. In fact, although an improved way to grid the interfaces
has been developed and implemented later on in the 3D algorithm [115], the
effect of this problem remains very clear. Another disadvantage in this algo­
rithm is the need to generate and partition a background grid of a size th a t
depends upon the input surface mesh. In another words, the algorithm has a
serious issue in respect to the scalability with grid size. In addition, elements
quality in the interface regions may deteriorate, particularly when number of
sub-domains or the surface to volume ratio per sub-domain grows.

Another algorithm in this category is the one developed by de-Cougny and
Shephard and presented initially in 1994, [20] and later on in 1999 after intro­
ducing some further developments into the parallelisation of the partitioning
procedure, [21]. The algorithm, in general, represents a parallel implemen­
tation of a typical octree-based grid generator such as the ones presented in
[114, 151], see Section 2.2 for a brief description. In fact, this algorithm can
be seen as a modified version of the one discussed above, [82, 115], considering
th a t the octree in here represents the background grid in the other algorithm.
However, early version of this algorithm had a very serious problem in terms of
scalability, where a serial octree data structure (duplicated over all processors)
was used. The issue has been addressed in the later version where the tree
partitioning is performed by a parallel recursive inertial bisection procedure.

Clearly, the octree structure supports the concept of distributing the workload
onto a set of processors. In fact, the algorithm benefits substantially from the
concept of ‘processor sets’, which is a feature exist in M PI where a number
of processors can be grouped and defined as an independent set. Processor
sets are split into sub-sets and current term inal octants are assigned to sub­
sets based on the associated estimated workload. Once all processor sets are
reduced to single processors, each processor stores a ‘coarse’ tree. Although
this may sound as an ideal condition for achieving an optimum speed up factor
a rather disappointing performance was recorded in [21], e.g. a speedup factor
in the order of 1.6 using up to 32 processors.

In general, this algorithm suffers badly from the constant need for repartition­
ing due to the unknown workload associated with evolving octree. Impact of

32

the partitioning procedure on the element quality was not addressed, though
it is highly likely to be severely effected. The largest generated grid reported
in [21] is in the order of 2-3 million elements, generated on SGI Onyx machine
with 8 processors. No information about the memory available on the machine
was reported. A target for producing grids in the order of 10 million elements
on the same mentioned machine was reported.

Pre-gridding of the internal boundary

In this category, the internal boundaries are gridded first and a t least one closed
sub-domain is constructed before any discretization of the original domain
space can start. In fact, since the sub-domains are first prepared as a set of
standard independent grid generation tasks a number of advantages of this
strategy in particular can be identified:

• Since all the sub-domain grids are accomplished while operating on a
local scale per sub-domain, grids of much larger size can be generated.
T hat is unlike the previous categories where some procedures are carried
out acting either on the global grid or on a few sub-domains simultane­
ously, e.g. the gridding of the interface regions in [115].

• There is more flexibility in enhancing the grid quality on the internal
boundary prior to gridding the sub-domains themselves, therefore there
will be a better opportunity for improving the quality in the global grid.

• Cost of inter-processor communication can be negligible, particularly if
no load redistribution technique is integrated into the sub-domains grid­
ding procedure.

• Algorithms in such a category can accept any type of existing sequential
grid generators, e.g. Delaunay or Advancing Front based generators, to
be integrated for generating the sub-domains grid.

The earliest algorithm in this category was developed by W eatherill and Verho-
even [128, 129] 6, upon which one of the algorithms developed in this research
is built. The algorithm will be discussed thoroughly in the next chapter there­
fore there is no need to emphasise it here. However, it is still appropriate to
report th a t this algorithm carries out the domain decomposition by employ­
ing a greedy type grid partitioner [30], acting on a coarse grid constructed by
Delaunay triangulation of the boundary points. Having the internal bound­
ary discretized and the closed boundary for each sub-domain built, a standard

6 An early form of this algorithm is presented in another paper in the proceeding of the
5th international conference on numerical grid generation [43].

33

sequential Delaunay grid generator is then employed to grid individual sub-
domains independently. In fact, whilst the planar applications of this algorithm
showed a high level of grid quality and robustness, unfortunately, the exten­
sion into the three dimensional space has proved to be a rather problematic
approach. The original algorithm and the extension into the three dimensions
with the associated issues are to be discussed thoroughly next chapter.

Hodgson and Jimack have demonstrated in [63] an algorithm for producing
triangular planar grids using a Delaunay based technique. The domain parti­
tioning is carried out in terms of the ‘graph theory’ acting on a weighted dual
graph which is constructed from the background grid elements. In fact, every
internal boundary in this algorithm is gridded twice, independently with each
sub-domain. The algorithm incorrectly considers that: “There is no problem
with vertices generated by two different processors not coinciding along the
same background edge, since the method used to position the nodes creates
a unique discretization of th a t edge....” !, [63]. Of course, the implications of
such an assumption would become more problematic when the program porta­
bility is considered, particularly if the algorithm is extended to cover the three
dimensional applications. Nevertheless, triangular grids of size in the order of
less than 1 million elements, partitioned into up to 8 sub-domains, have been
presented.

Galtier and George subdivide the com putational domain by employing a set
of ‘separators’, i.e. “.... an imaginary surface th a t separates the set of points.
Such a surface can be a plane, a sphere or even something much more com­
plex ...” [44]. The technique used to discretize the separators is based on a
concept referred to as a projective Delaunay, in which the Voronoi diagram is
constructed on the separator surface in the 3D space. In fact, the paper iden­
tifies this procedure as a rather problematic one, mainly due to the difficulties
in reserving edges on the original boundary (i.e. boundary recovery problem).
“Another practical problem was encountered because of the non-conformity
of the original skin (i.e. the surface boundary) This proved to be a very
hard problem, therefore the corresponding difficulties in projective Delaunay
triangulation needs some attention ”

In fact, another practical problem has been identified in the paper, which is
also due to the way used in defining and gridding the separators. “Indeed,
since the generated separator is triangulated by Delaunay, it is not possible
th a t two faces of it intersect. But some faces of the separator may intersect
with faces th a t describe the boundary of the original domain.” [44].

Grids of size in the order of 3 million elements generated within two sub-
domains are presented. A detailed breakdown of time required in the partition
and gridding procedures is available in the paper, however, “.... some exam­
ples lead to disastrous CPU time when being pre-partitioned. This is due to
the fact th a t when a projective Delaunay triangulation th a t fits to the origi­

34

nal boundary cannot be found, the separator generation process is restarted
from zero.” O ther issues such as the element quality and load balancing are
mentioned very briefly in the paper, but without any solution been proposed.

2.5 Concluding Remarks

Essential concepts in the fields of unstructured grid generation and parallel
processing technology have been discussed very briefly in this chapter. An
algorithm for generating unstructured grids based on the Delaunay triangu­
lation technique has been illustrated, also different types of parallel machines
and parallel programming models have been introduced.

An overview of the literature th a t reported on the parallel unstructured grid
generation research activities over the last two decads has been presented. Two
different strategies are identified whilst only one of them, known as the geomet­
rical partitioning approach, has proved to be more effective and favourite. A
number of different algorithms th a t adopt this approach have been discussed
after been grouped in three different categories. The method used to carry
out the partitioning of the computational domain, particularly the order of
gridding the internal boundary within the overall procedure, was considered
as main criterion for the classifications. However, the chapter concludes: the
category defined as ‘pre-gridding of the internal boundary’ has some advan­
tages in comparison to the others (see the list presented in page 33). In fact,
both algorithms developed in this research, which are discussed in details next
chapter, fall under this category.

In general, the outcome from most of the algorithms reported in the literature
so far has not managed to m aintain a satisfactory level of performance. The
size of grids generated is still in the order of a few million elements only,
and speedup factor achieved is less than 2 in some cases. In fact, size of
grids generated in parallel and presented in some of the reviewed literature
has been less than what already could be generated sequentially on normal
computers!. Thus, apparently, the challenge for generating large size grids
efficiently remains to be solved, and further investigation is certainly needed.

35

Chapter 3

A Geom etrical Approach for
Unstructured Parallel Grid
Generation

3.1 Introduction

The geometrical partitioning approach has been adopted as our strategy to
address the issue of generating large size grids. Two methods fall under within
this category, but differ a t the domain decomposition and the internal bound­
ary discretization procedures, are presented in this chapter. Both methods
assume th a t a triangular grid has already been generated on the computa­
tional domain boundary. In order to carry out the domain decomposition task
in the first method an ‘initial’ tetrahedral grid is needed, which is constructed
using Delaunay technique to connect the boundary grid points. W hilst in the
second method the decomposition procedure operates directly on the bound­
ary triangular grid. Therefore, we will refer to the first method by lthe indirect
decomposition method ’ and to the second as ‘ direct decomposition method ’.

The chapter is divided into two m ajor sections, which are associated with the
two methods mentioned above. Each section starts by a brief review of the
algorithm using a simple triangular grid for illustration. Details about individ­
ual procedures are then presented in separate sub-sections. The construction
of a tetrahedral grid for a real-world engineering problem is dem onstrated af­
ter the method has been discussed. The implementation of these two methods
using the parallel processing technology is not covered in this chapter, since it
will be discussed in depth in the next chapter.

36

3.2 The Indirect Decom position M ethod

This m ethod had already been developed and implemented on triangular grids
by Weatherill and Verhoeven when this study began [43, 128, 129]. Most of
the work carried out on this method during this study consist of extending the
original algorithm such th a t it covers both triangular and tetrahedral grids.
However, a triangular grid generated by the original algorithm is presented
here for illustration purposes.

3.2.1 An Overview of the General Algorithm

The key concept of this method is to partition the com putational domain
by exploiting an ‘initial grid’, which is an unstructured grid built by using
the Delaunay triangulation technique on the boundary points. No points are
introduced inside the domain during the construction of this grid, see (c) in
Figure 3.1. The partitioning procedure is carried out using a greedy-type
algorithm [30], in which the to tal area/volum e of the com putational domain
is divided equally into a number of sub-domains. This procedure starts from
an element in the initial grid and then moves to its immediate neighbours
while accumulating the individual elements area/volum e, and so on until every
element in the grid is assigned to a sub-domain, see (d) in Figure 3.1.

A set of new ‘internal boundaries’ is formed by extracting all edges/triangles
th a t have two adjacent elements th a t belong to two different sub-domains. An
appropriate discretization algorithm has to be applied on these internal bound­
aries, which must consider the grid point spacing sources and their effects1,
see (e) in Figure 3.1. Thus, after having the internal boundary grids attached
back to the original boundary grid, every sub-domain becomes an indepen­
dent grid generation task, see (f) in Figure 3.1. Any normal sequential grid
generator can now be used in order to generate the sub-domain grids.

3.2.2 Domain Decom position

The domain decomposition procedure in the indirect decomposition method
comprises a straightforward implementation of a grid partitioning algorithm
operating on the initial volume grid. A considerable number of grid partition­
ing algorithms has been developed over the last two decades [6, 30, 73, 83,
112, 132]. Differences between these algorithms include various aspects such
as: the basic approach, requirements of computing resources, quality of the
partitioned grid, performance of the algorithm overall, ... etc. It is certainly

1For more information on the grid points spacing sources, the reader is advised to consult
Appendix A.

37

(f)

Figure 3.1: Illustration of the major steps in the indirect decomposition method with
multi-elements airfoil configuration: (a) Geometrical definition of the configuration, (
b) Discretized boundary as a set of points and edges, (c) Delaunay triangulation for
the boundary points and edges, (d) Result of domain decomposition, sub-domains with
ungridded internal boundary, (e) Closed boundary of individual sub-domains, internal
boundary gridded considering the effects of grid point density sources , (f) individual
sub-domains grid.

38

beyond our intention here to get involved in any form of comprehensive dis­
cussion or comparison of these algorithms; however, some brief comments are
still appropriate. A reader who is interested in such comparisons can consult
one of the references [65, 83, 134].

In general, a high quality partitioning of a grid is identified by: (a) well bal­
anced distribution of the to tal workload among the sub-domains and (b) min­
imization of the inter-domain communication cost. Grid partitioning algo­
rithm s based on the multilevel partitioning approach in general are considered
to be very good in producing well balanced load distributions with a minimized
inter-domain communication cost. In this approach, a hierarchy of coarse grids
is produced by merging together groups of neighboring vertices in the previous
grid. Thus, the partitioning procedure is applied on a rather coarse grid; the fi­
nal sub-domains are then obtained by mapping results of the partitioned coarse
grid back to the original fine grid. Metis [73, 74, 75] and Jostel [132, 133, 134]
are well known algorithms in this category. Graphical based algorithms are
also available such as the Recursive Spectral Bisection (RSB) algorithm [112],
and some of its derivatives as in [6]. Indeed, the grid partitioning discipline
can be considered as an independent active area of research.

In fact, most of the algorithms mentioned above are considered to be very
expensive in respect to their requirements of computing resources, see Table
1.1 in page 11 for typical figures of the Recursive Spectral Bisection (RSB)
algorithm [112]. The situation is far worse in the multilevel partitioning al­
gorithms case, for example Metis demands about 240 MBytes to partition a
tetrahedral grid with 1 million vertices [74]. Obviously, introducing a grid
partitioning procedure th a t turns the domain decomposition step into a bot­
tleneck of the parallel grid generator is not appreciated. W ith the interest of
minimizing the amount of computing memory needed a t every step through­
out the general algorithm, not surprisingly, none of the algorithms above was
viewed favorably. Furthermore, due to the nature of the initial tetrahedral
grid many of the advantages associated with these algorithms become not ap­
plicable. For example, advantages gained from the grid coarsening procedure
in the multilevel approach will not be very effective since there are no internal
points to gather inside the initial grid.

A rather simple, fast and very memory efficient algorithm, known as the Greedy
algorithm, has been adopted to carry out the partitioning of the initial tetrahe­
dral grid. “It is referred to as ‘Greedy’ algorithm because it essentially ‘bites’
into the mesh in order to construct the sub-domains” [32]. This algorithm ‘is
much less expensive computationally than any other algorithm. It only re­
quires an extended form of the grid connectivity data, which consists of a list
of all neighbouring elements in addition to the original elements connectivity
matrix, [30, 31, 32].

39

Pseudo code for the Greedy domain decomposition algorithm

(1) Construct the element-neighbours tre e of the i n i t i a l
volume g rid (N e .tre e);

(2) C alculate the to ta l volume of the computational domain
(V ol_ to t);

(3) C alculate volume per sub-domain
(Vol.sub = Vol_tot / Nsub_tot), where (Nsub.tot) is the
to ta l number of sub-domains

I n i t i a l i s e the ‘Front* by choosing an element and make
In_sub = 1;

while(In_sub < Nsub_tot){

Acc_vol = 0;
(4) Loop over elements in the ‘Front*;

and fo r every element:

(4-1) using the (Ne_tree) access each adjacent element (i e) ;
(4-2) i f (ie) has not been assigned to a sub-domain already

then a ttach i t to the current on;
(4-3) add the volume of (ie) to Acc_vol;
(4-4) update the ‘Front* by considering the (ie)

elements in (4-3) only;
(4-5) i f (Acc.vol >= Vol_sub) then break the loop,

otherwise back to (4);

(5) A new sub-domain has been estab lished ; ++In_sub;

(6) I f the ‘Front* is empty and the decomposition is not
complete yet then a ‘r e - s t a r t ’ procedure is ca lled .

}

The ‘r e - s t a r t ’ procedure mentioned in step (6) may have to compromise
on the equal volume criterion in order to ensure that no disjoint sub-domains
are created. Also, it must ensure that no element has been left out, and the
desired number of sub-domains has been achieved.

Whilst this algorithm always showed a very reasonable performance in the two
dimensional applications, it has been far from ideal in the three dimensional
case. An acceptable level of load balance could not be achieved very often,

40

i
!

despite several attem pts to enhance the overall performance by introducing a
load redistribution procedure. It has been noticed th a t the main reason behind
the poor performance of the Greedy algorithm in three dimensions is due to
the nature of the initial tetrahedral grid itself. The extreme irregularity in the
elements shape and volume plays a major role in this issue. A typical example
of the element volume distribution in an initial tetrahedral grid is presented
in Table 3.1. Clearly, more than 99% of the entire domain volume is filled
by a very small number of elements (i.e. less than 1.4% of to ta l number of
elements), see columns 2 and 3 in the first line in the Table 3.1.

Domain decomposition with ‘weighted’ elements

Unfortunately, the Greedy algorithm presented above may produce a highly
unbalanced distribution of the to tal workload among the sub-domains. It does
not take into consideration the impact of the background grid and point spac­
ing sources on the workload associated with each sub-domain. For example,
if two sub-domains with exactly the same volume have different grid point
spacing parameters they will certainly have different ‘workload’ from the grid
generation procedure view point. However, an a ttem pt to improve the above
algorithm performance has been made. Particularly, by replacing the element
volume by a ‘function’ such as v , which represents the real workload associated
with the to tal number of elements th a t is expected to be generated inside each
element.

where d f is the value of the grid points spacing function. In fact, several
other functions have also been investigated but, unfortunately, due to the
extreme heterogeneous distribution in the elemental volumes, the impact of
introducing a function instead of the volume has been very limited. Very little
improvements on the final workload distribution has been encountered. For
comparison and further illustration purposes details about the above function
are presented next to the statistics of the pure element volume case, see Table
3.1. Clearly, the impact on the overall balance is very limited, where it remains
th a t more than 99% of the to tal workload is still associated with less than 7%
of the to tal number of elements in the initial grid (see columns 5 and 6 in the
first row of Table 3.1. In other words, it is still a very high possibility to have
the work load of a sub-domain doubling up by just simply adding one single
element to the sub-domain during the partitioning.

41

vp < ve/V % ne/N e% vp < ve/V % n e/N e% E £ i «p,i
0.029 99.150 1.399 0.027 99.130 6.847
0.058 0.373 15.700 0.054 0.384 15.170
0.087 0.166 14.490 0.082 0.167 13.670
0.116 0.052 5.941 0.109 0.053 5.667
0.145 0.064 9.951 0.136 0.064 9.341
0.174 0.082 14.88 0.163 0.082 13.960
0.203 0.030 6.447 0.190 0.030 6.052
0.232 0.017 4.321 0.217 0.017 4.056
0.260 0.009 2.443 0.245 0.009 2.294
0.289 0.009 2.763 0.272 0.009 2.594
0.318 0.025 8.650 0.300 0.025 8.120
0.347 0.003 1.344 0.326 0.003 1.261
0.376 0.013 5.398 0.353 0.013 5.067
0.405 0.007 3.105 0.380 0.007 2.914
0.434 0.002 0.862 0.408 0.002 0.809
0.463 0.000 0.000 0.435 0.000 0.000
0.492 0.000 0.000 0.462 0.000 0.000
0.521 0.000 0.000 0.489 0.000 0.000
0.585 0.003 2.312 0.549 0.003 2.170
1.000 0.000 0.000 1.000 0.000 0.000

Table 3.1: Details about the volume distribution in the initial tetrahedral grid of a CFD
model (i.e. B60 inside a box) compared with 'weighted volume’ distribution. Notice
that: ve is an element volume, V is the total volume of the domain, ne number of
elements in the associated category, N e is the total number of elements. Same fields
are repeated for the weighted volume case in the columns on the right hand side.

3.2.3 Discretizing the Internal Boundary

Having the sub-domains formed as a group of clustered tetrahedra in the initial
grid, the inter-domain boundaries are then formed by extracting all triangular
planar faces th a t are shared between adjacent sub-domains. In sharp contrast
to the two dimensional applications, discretizing the new internal boundaries is
not an easy task. W hilst it is a simple problem of discretizing a straight line in
the 2D applications, in the 3D case, it involves generating a smooth triangular
grid on a surface which is already defined in a discretized form. Such a surface
is represented by a set of triangles which are extremely distorted as individuals
and, in addition, gathered in a very irregular manner; see Figure 3.2. “Per­
haps the most technically challenging aspect of the parallel mesh generation
for three- dimensional applications is in the construction of the inter-domain
boundary grid on these highly irregular surfaces” [148]. A typical example

42

of an internal boundary is presented in Figure 3.2, where a general view of
the initial grid and the final grid is presented in (a); a close up of each grid
is presented in (b) and (c) respectively. In order to generate such a smooth
triangular grid, a number of sub-tasks have to be carried out systematically;
a brief discussion about each sub-task is presented in this section:

Validation of the internal boundary topology

The initial set of triangular faces th a t forms the internal boundaries is, in
general, very irregular and has a high number of triangles with very small
angles. The main reason behind this is the nature of the tetrahedral grid itself,
as it is been constructed on the boundary points. Statistics of the dihedral
angle in the initial grid of three different examples are presented in Figure 3.3.
Two of these examples involve a complex configuration of a civilian aircraft
(i.e. Falcon and B60), whilst the third one consists of a simple configuration of
a box. Although, the complexity of the configuration plays a m ajor role in the
quality of the initial grid, clearly, the situation in a simple configuration is not
th a t much better2. A few attem pts have been made to improve the quality of
the initial grid, mainly by allowing for different levels of point insertion inside
the domain. It was observed tha t a relatively ‘fine’ grid is needed before any
noticeable improvements are achieved. Of course, such an option can not be
considered since it may cause a serious problem in respect to the scalability .
In short, having a poor quality tetrahedral grid as an ‘initial grid’ seems to be
inevitable.

In some cases, according to the results of the domain decomposition proce­
dure, the initial definition of the internal boundary surfaces may have edges
shared among more than two triangles and hence form so-called multi-shared
edges. The initial surfaces are considered as valid topology as long as they
do not have any intersected faces (i.e. a multi-shared edge). Therefore any
internal boundary th a t has a surface triangulation with a multi-shared edge is
considered as an invalid boundary.

A smoothing technique is applied on the interface tetrahedra. Any tetrahedron
which belongs to domain j and neighboured by three tetrahedra from domain
i is moved from j to i. Such a smoothing scheme improves the configuration of
the initial set of triangular faces and, in turn, helps to improve the quality of the
final grid. An example of the inter-domain boundary smoothing procedure on
the tetrahedra a t the interface regions on the final triangular grid is illustrated
in Figure 3.4. Such a smoothing procedure on the internal boundary cannot
always eliminate the multi-shared edges. Therefore, another scheme depends
on re-arranging the cluster of tetrahedra connected to these multi-shared edges

2 The reader can compare the statistics of the initial grid as presented in here with the
same statistics in a typical tetrahedral grid as presented in Figure 5.5 page 109.

43

(c)

Figure 3.2: An example of generating smooth triangular grids on the inter­
nal boundary, (a) The initial form of the discretized surface (left) and final
triangular grid (right), (b) and (c) are close-ups from the above respectively.

44

0.3
Box — i—

Falcon —
B60

0.25

0.2
o
o

S 0.15
Ea>

LU
O'

0.05

60 7030 40 500 10 20
Minimum Dihedral Angle Per Element

Figure 3.3: Statistics of the minimum dihedral angle per element in the
initial tetrahedra grid for three different configurations.

is introduced. Figure 3.5 and Figure 3.6 illustrate an example of the m ulti­
shared edge problem and how it can be solved.

An edge on the internal boundary surface between sub-domains i and j is
shared between three faces, see (II) in Figure 3.5. The target is to rebuild the
internal boundary such th a t the problematic edge is eliminated. The process
consists of reorganizing the cluster of tetrahedra around the edge in a certain
manner. Starting from a tetrahedron in the cluster which belongs to domain j
and interfaces with another tetrahedron belonging to domain i, then by looping
over the cluster of tetrahedra in a fixed direction (see (I) in Figure 3.5) any
tetrahedron th a t belongs to j and interfaces with i is defined as a new artificial
sub-domain. This is then given a new number M , where M = N + /; N is
the to ta l number of original sub-domains and I is the to tal number of artificial
sub-domains introduced so far, see (I) in Figure 3.6.

The new construction of tetrahedra gives new internal boundary surfaces. The
old internal boundary surface between domain i and j now has a different tri­
angulation where the previous multi-shared edge is shared between two faces
only, see (II) in Figure3.6. The internal boundary surfaces between domain j
and the new artificial sub-domain (i.e. M) is not gridded at all. The new arti­
ficial sub-domains are linked back to their mother sub-domain before the start
of the volume grid generation procedure. In other words, the to ta l number
sub-domains remains exactly the same at the end of the topology correction

45

(a)

(b)

Figure 3.4: Impact of the smoothing procedure applied on the tetrahedra
at the interface regions on the final triangular grid. Initial surface (left) and
final triangular grid(right), (a) without the smoothing procedure while in
(b) with.

procedure, and none of the ‘artificial’ sub-domains is recognized outside this
procedure.

Discretizing the ‘global edges’

Edges on internal boundaries might be shared among several sub-domains.
Such edges will be referred to as global edges. Since, by definition, more than
one surface meets along a global edge, it is necessary, so as to ensure coincident
points, to generate nodes on a global edge once and once only. The set of points
X*; along an edge are computed in a recursive manner. Starting from an edge
with two initial boundary points at the two ends, one new point is computed
using a linear interpolation scheme, see Figure 3.7. In turn, these edges are
then sub-divided such tha t

46

Start Three faces on the internal
boundary between i and j

share one edge

M ulti-share edge on the
initial internal boundaary

(I) (II)

Figure 3.5: Invalid topology of the internal boundary surface between sub-
domains i and j, an edge shared among three triangles on the same surface
(that is equivalent to the surface-surface intersection problem). Cluster of
tetrahedra in (I) and the internal boundary surface(s) in (II).

Only two faces share

New artificial
sub-domain

I t

Internal boundary
between M and its

original sub-domain j,
it is a false boundary y

(I)

the same edge now

Inetmal boundary
between i and M

Normal edge on the new
initial internal boundary

(I I)

Figure 3.6: A valid surface definition of the internal boundary between
sub-domains i and j is obtained by introducing an artificial sub-domain (i.e.
M). ‘New’ internal boundaries associated with the artificial sub-domain
are defined and gridded separately, except the boundary between shared
with the ‘mother’ sub-domain which should never be recognized as internal
boundary.

47

Xjfc = (1 — u) * Xj + u * X j (3.2)

u = d f j / (dfj + d f j) (3.3)

where d f i5 d f j are the point distribution functions a t the two end points which
define the edge. As already mentioned, initially both i and j will be points from
the initial surface grid. The point distribution function is computed at the new
point also using a linear interpolation scheme.

dffc = (1 — u) * d fi + u * d f j (3.4)

A new point along an edge is rejected when its distance from any of the two
end points D i j violates the local point distribution function. The value of the
point distribution function is controlled by the background grid and the grid
point spacing parameters and sources, see Appendix A.

< m in (d f«) (3-5)

The set of new points on every global edge is stored together with the inter­
nal boundary surfaces connected to the edge. W hen the grids on the internal
boundary surfaces are generated the computed points on the global edges en­
sure th a t the surface grids along the common edge are topologically consistent.

Rejected
Point

Iteration = 0 1 2 3
Initial edge Compute Compute Compute a
with two one new two new new point
original point and points and per edge, and
boundary define two define four so o n ...
points. edges. edges.

Figure 3.7: Computing new points on a global edge using linear interpo­
lation scheme. Notice that points which violate the local point distribution
function are rejected.

48

(I) (I I)

Figure 3.8: An illustration of the point insertion, i.e. (II), and edge
swapping,i.e. (I l l) , technique.

Grid generation on discretized surfaces
Unfortunately, all traditional surface grid generation techniques are designed
to operate on surfaces defined by advanced geometrical models which always
provide a high level of continuity and smoothness [100]. In general, generat­
ing a smooth triangular grid on a surface defined in a discretized form is a
rather difficult task, particularly in the three dimensions. This can get far
more complicated when the quality of the ‘original’ discretization is as bad as
shown above. The number of algorithms tha t address the issue of ‘re-gridding’
discretized surfaces is very limited; the author is aware of one algorithm only
which is developed by Lohner [85]. In fact, this algorithm has been found to be
computationally very expensive, its performance also was found to be heavily
dependent on the nature and quality of the original discretized surface. Thus,
this algorithm does not really address the main issue in our case, which is the
extreme irregularity and poor quality in the initial triangulation. On the other
hand a considerable number of efficient and simple grid refinement procedures
have been developed over the last two decades [140], upon which our approach
is built.

The process been adopted for generating a smooth surface grid on an internal
boundary combines three different techniques namely: point insertion, edge
swapping and points relaxation [107, 108]. The first technique, i.e. point
insertion, introduces new points into an existing triangulation, using linear in­
terpolation on edges wherever the grid point density distribution allows to do
so. In fact, this technique has already been discussed when the discretization of
the global edges procedure was reviewed, see page 46. The only difference here
is th a t the point interpolation scheme is integrated into the surface gridding
procedure itself. W hen a new point is introduced on an edge, the two neigh­
bouring elements are split into two triangles each by connecting the new point
to the th ird node (i.e. not on the same edge where the interpolated point is) in
each element, see (II) in Figure 3.8. It is appropriate to re-emphasis here the
importance of considering the effects of the background grid and point spacing

49

sources. Density and distribution of the grid points on the internal boundary
should be consistent with the rest of the original boundary and volume grids.

The element creation procedure associated with the point insertion technique
is carried out with very little consideration of geometrical factors. Elements
of a rather poor quality can be generated; many triangles with an angle in the
order of 1 - 5 degrees may exist. Obviously, such poor quality triangulation
on the internal boundary will have a severe impact on the overall volume
grid. In order to improve the quality of individual triangles as well as the
global smoothness of the internal boundary, two different procedures have been
integrated. The first procedure is edge based, in which the quality of every two
adjacent elements is inspected and a decision about to swap or not to swap
the shared edge is made, see {I I I) in Figure 3.8. The second procedure is
point based, which is known as the Laplacian point relaxation technique as
presented in equation 3.6, [35, 41].

Where r j is the new position (re, y, z) of the point r 0 after p iterations, N 0 is
the number of neighbours points with coordinated r* and u is the relaxation
parameter. This technique has proved to be extremely effective in improving
element quality and the overall smoothness of internal boundary. For a typical
example of such a surface grid on an internal boundary see Figure 3.2 in
page 44. Also, another illustrated example is presented in Figure 3.9, where in
addition to the initial and final grids on the surface a couple of interim grids
are Displayed.

Figure 3.9: A typical example of internal boundary surface grid, snapshots
of different stages throughout the procedure.

50

General algorithm for generating triangular grids on the internal
boundary
A flowchart th a t summaries the general procedure followed in generating the
internal boundary surface grids is presented in Figure 3.10. Notice th a t the
grid point relaxation (smoothing) procedure is introduced once only, i.e. a t the
end when all points have been introduced. In practice the smoothing procedure
can be activated more regularly, but not before a considerable number of points
is introduced. It has been observed th a t early implementation of the smoothing
procedure may lead into intersection between different internal boundaries if
they were too close.

3.2.4 Gridding the Individual Sub-domains

The Delaunay volume grid generator is sensitive to the orientation of the
boundary faces, in order to determine the domain to be gridded. Therefore,
the boundary faces of all sub-domains have to be correctly oriented. A tech­
nique based on a very simple concept can be applied. Two adjacent triangles
are considered to have the same orientation if the shared edge exists in order
i j on the first triangle, and the same edge ordered j i on the other triangle (See
Figure 3.11).

Sub-domain boundaries consist, in general, of a set of original boundary faces
and another set of internal boundary faces. Original boundary faces always
point in the correct direction, because their orientation is preserved after gen­
erating the initial volume grid [107].

The orientation procedure starts from an internal boundary face adjacent to
an original boundary face. The internal boundary face is oriented based on the
order of the shared edge with the original boundary face. Having this first face
oriented correctly, a neighbouring internal boundary face can be then oriented
using the same technique (See Figure 3.11). The procedure cycles from one
internal boundary triangle to a neighbouring internal boundary face until all
internal boundary faces are correctly oriented. The technique is quite reliable
whatever the combination of internal boundary faces. The same technique can
be used for sub-domains bounded by internal boundary faces only, where any
triangle can be chosen as a start, and then a check can be performed to find if
the chosen direction is correct or not. Orientation of internal boundary faces
is carried out by workers.

Another point which a Delaunay volume grid generator would be very sensi­
tive to is the quality and smoothness of the boundary triangulation; since it
plays a m ajor role in the success rate and efficiency of maintaining the bound­
ary integrity a t the end of the volume grid generation procedure3. This task

3 For more details about the Delaunay grid generation the reader can consult Appendix A.

51

(start)
Input data: set of triangles and

information on global edges

New iteration, (iter + 1)

No. of new points = 0

Derive edges from tnangles

If(iter<m) then find the longest edge

For 1= 1 to Number of edges

global ed g e j
No

(iter<m & edge length
< L * longest edge) ?

introduce the
appropriate

already
computed

point

generate prospective point

ccepted po in tj

Yesapply edge swapping scheme
NoT new points + 1

connect new point and modify triangulation
------------------------------n --------------------------------

No o. new points=0

Yes
apply edge swapping scheme

apply smoothing scheme

Output data: final surface grid

C E n d)
Figure 3.10: Flow chart of the surface grid generation on the inter-domain
boundary.

52

i
Face 1 order: k j i
Face 2 order: / / j

(A)

i

Face 1 order: k j i
Face 2 order: / j {

(B)

Figure 3.11: Two adjacent faces oriented correctly in (A). Notice the order
of the shared edge in every face.

of recovering the boundary triangular grid has been the subject of active re­
search for a number of years [143]. Though a considerable improvement has
been achieved, in practice, some problems may still occur whenever a poor
quality grid or a complex surface exist on the com putational domain bound­
ary. Recalling the extreme irregularity in the shape of the internal boundary
obtained in the indirect decomposition method may explain why this method
has failed to become a reliable approach for generating tetrahedral grids in
parallel [107, 108].

A flowchart of the general algorithm with an illustration example
To conclude the discussions on the indirect decomposition method we present
a flowchart summarising all the steps involved in the general algorithm as
discussed above, see Figure 3.12. All tasks th a t need to be carried out af­
ter the completion of the sub-domain grid generation are considered as ‘post
processing’ activities, which will be discussed extensively in Chapter 5. In
addition, as a visual illustration of the algorithm developed, a small size grid
for a realistic engineering problem is presented. The configuration consists of
an experiment prepared by a research group in Loughborough University in
order to carry out some experimental investigation of the air flow around the
outlet-intake region of a Harrier Jet. Overview of the geometrical description,
the grid points spacing sources and the surface grid on the original boundary
are presented respectively in (a) and (b) in Figure 3.13; the four sub-domains
obtained by applying the Greedy algorithm on the initial volume grid are pre­
sented in (c). Also, a typical example of the initial and final triangulation on
an internal boundary is presented in (d) in the same Figure. The final surface
grids on the four sub-domain boundaries are presented in (a) in Figure 3.14,
whilst a planar cross section in each sub-domain volume grid is presented in
Figure 3.14, (6).

53

(Start)
J

Generate surface triangulation on the original
boundary of the computational domain

NoYes / Do any such surfaces have
\ a multi-shared edge?

(End)

Generate volume grid in every individual domain

Apply a Domain Decomposition
technique on the initial volume grid

Build closed boundary and orientate
its faces in every sub-domain

Introduce new artificial domains
to eliminate any edge shared
among more than two faces

Generate surface grids on these internal boundary surfaces

Derive initial surfaces as internal boundaries
between every two adjacent sub-domains

Generate initial volume grid by connecting
the boundary nodes with tetrahedra

Smooth internal boundary surfaces by moving
elements among neighbouring domains

Derive the global edges, which are shared
among different internal boundary

surfaces and introduce nodes on them

Carry out a post-processing procedure: establishing
inter-domain communication tables, boundary nodes

relaxation or sub-domains load redistribution

Figure 3.12: Overview of the general algorithm using the Indirect Decom­
position Method.

54

(a)

(d)

Figure 3.13: Par t i t ion ing t he co m p u ta t io n a l do m a in into su b- do ma in s : (a) Geomet r i ca l
defini t ion wi th th e po in t spac ing sources, (6) Tri angu la r grid on t h e original boundary,
(c) Four su b - d o m ai n s c re a ted by applying Greedy a lgor i thm on th e initial t e t r ah ed ra l
grid, (d) Initial form of an internal bo un dar y and th e final t r i angu la r grid.

55

Figure 3.14: S u r fa ce and v o lu m e grid s for th e in d e p e n d e n t su b -d o m a in s: (a) T h e

clo sed and orien ted surface grid o f th e su b -d o m a in s , (b) A p lanner c u t in th e vo lu m e

grids.

56

3.3 The Direct Decom position M ethod

Despite of the success in using the indirect decomposition method to generate a
considerable number of grids for complex configurations, the method in general
has got a number of problems:

• The overall shape of sub-domain boundaries is usually very complicated,
which makes maintaining the boundary integrity after Delaunay trian­
gulation rather difficult and time consuming.

• The demand for generating an initial tetrahedral grid can become a real
bottle neck in the process. Scalability and efficiency of the algorithm
overall can get badly effected by such an inevitable sequential step.

• Achieving an acceptable level of workload balance among sub-domains
a t the domain decomposition step has proved to be very difficult if not
impossible.

• The inter-domain communication cost is very likely to be high as a result
of the extreme shape of the sub-domain boundary.

In addition to the issues listed above it is appropriate to mention another
practical problem th a t has been encountered. Though it is not caused directly
by the indirect decomposition method itself, it can have a massive impact
on the efficiency of the entire procedure. It is related to the fact th a t some
Delaunay grid generators may allow the point insertion technique to refine
elements th a t lie completely outside the domain boundary4. An illustrated
sketch of such a case is presented in Figure 3.15, where the initial triangulation
constructed on a domain boundary and its convex hull points is shown (6);
elements th a t are referred to in the above are presented in dotted line format
in (c).

In general, the indirect decomposition m ethod has failed to demonstrate a
steady and robust performance in gridding complex geometries, as well as to be
a scalable and an efficient method for generating tetrahedral grids in parallel.
Thus, almost about the end of the second year of this study, it became clear
th a t more revolutionary changes are required, and it was the time to search for
an alternative method. A number of points were considered as the key issues
while investigating new method such as: improving the quality of the internal
boundary grid, maintaining the overall scalability by avoiding any unscalable
procedure and enhancing the efficiency in general by improving the workload
distribution among the sub-domains.

4This happens only during the gridding procedure itself, since all ‘external’ elements will
disappear after recovering the boundary grid.

57

(b)

Figure 3.15: An illustration sketch of a case where some ‘external’ elements
can be refined during the Delaunay grid generation procedure.

3.3.1 An Overview of the General Algorithm

The general algorithm in this method, as in the previous method, starts also
from the discretized boundary of the domain (see (b) in Figure 3.16), whilst the
enclosed a rea/ volume in here is subdivided by acting directly on the boundary
grid. It is carried out by a set of planar cuts th a t can be imposed in various
ways such as: a set of parallel planes distributed along one axis, a Cartesian
network of planes or by employing an octree decomposition procedure. An
example of a typical case based on an octree decomposition approach is pre­
sented in (c) in Figure 3.16. Clearly, the inter-domain boundary in the two
dimensional space would always consist of a set of straight lines. This simply
means th a t the same technique used in the indirect decomposition method for
discretizing the internal boundary can still be applied in this method, see (d)
in Figure 3.16. However, the story is totally different in the three dimensions,
despite of having some of the techniques used in both methods there are some
variations in the overall procedure; which will be discussed in details shortly
in Section 3.3.3.

Having completed the domain decomposition and the discretization of the
inter-domain boundaries, the closed boundary of each sub-domain can then be
constructed and the internal triangular (tetrahedral) grids generated exactly
the same way as in the previous method. See Figure 3.17 for an illustration
of a set of sub-domain boundary grids in (a), and the final grids in (6). In
general, this method produces a very different shape of sub-domains to the
ones produced in the previous method, particularly in three dimensions. The

58

overall shape is more regular and surface grids on the internal boundary are
much smoother and have far better quality elements. In fact, such differences
have introduced massive improvements into various aspects of the parallel grid
generation procedure.

(a)

X

(c) (d)

Figure 3.16: Illustration of the major steps in the direct decomposition
method with multi-elements airfoil configuration: (a) Geometrical defini­
tion of the configuration, (b) Discretized boundary as a set of points and
edges, (c) Domain decomposition Cartesian or Quad-tree, (d) Internal
boundary gridded with the sources effect.

59

msmzzlllifa

Figure 3.17: I l lustrat ion of th e ma jo r s t ep s in t h e di rec t d ec om po s i t io n
m e t h o d wi th mul t i - e l ement s airfoil conf igurat ion: (a) Closed b o un d ar y of
individual sub-d oma ins , (6) individual s u b - d o m a i n s grid.

60

3.3.2 Domain Decom position

As mentioned above, there are different ways for implementing the planar
cut technique in order to carry out the ‘direct partitioning’ of the compu­
tational domain. Our main interest a t this stage of the study was first to
prove the various concepts associated with the direct decomposition method
and demonstrate its advantages, then all the further tuning and refining of
the implementation procedure could follow in the due course. Therefore, it
was appropriate to adopt a very basic option in developing the partitioning
technique such as distributing the planar cuts along one of the main axis in the
domain. More advanced domain partitioning techniques, based on the concept
of multi-directional planar cuts or even more sophisticated algorithms such as
RSB [112] and MRSB [6], are also applicable and may produce better results.
However, broadly speaking, the best domain decomposition algorithm should
consider the influence of the background grid and other point spacing param ­
eters more effectively, such th a t a well balanced workload distribution can be
achieved.

Different criteria for choosing the cutting plane positions along one axis have
been made available in the program. Currently, there are three different op­
tions: equal distance for each interval, equal number of boundary elements
between every two planes and interactively (where the exact location of each
cut is defined explicitly by the user in advance). A validation procedure is
implemented in order to check if any cutting plane is too close to any parts
of original boundary. If the normal distance between a cutting plane and the
nearest point on the original boundary is less than the local minimum point
spacing, a location re-adjustment procedure is carried out. Such a procedure
would incrementally move the position of the cutting plane from its original
problematic position until a new valid location is found. However, after all the
cutting planes are finally located, every set of triangles th a t lie between two
planes are assigned to be a sub-domain, and numbered incrementally starting
from one end of the partitioning axis.

In order to improve the smoothness a t the interface region, every triangle th a t
is neighboured by two triangles from the adjacent domain is moved from its
original domain to the neighbouring one. An illustration of such a general
smoothing technique is presented in Figure 3.18. In fact, the same ‘concept’
has been employed at other places in this study, such as a t smoothing the
internal boundary in the indirect decomposition method, see Figure 3.4 in
page 46, and at the load redistribution procedure, presented in Chapter 5.
However, the real benefit from this procedure is in improving the smoothness
of the internal boundary, as well as reducing the inter-domain communication
cost.

61

Pseudo code for the Direct domain decomposition algorithm

(1) Construct the element-neighbours t re e of the o rig in a l
boundary surface g rid (N e_tree);

(2) For every boundary po in t, e s ta b lish a l i s t of a l l
connected tr ia n g le s (Np.conn);

(3) P ro ject the boundary nodes on the main axis of the
p lanar cuts and then so rt them accordingly (N p_sort);

(4) Based on the user choice of the decomposition c r i te r io n
and the to ta l number of sub-domains (N sub_tot),
e s ta b lish the p osition of (Nsub_tot - 1) planes;

(5) Check i f a l l plane positions are v a lid , then carry out
the loca tion adjustment procedure i f i t is needed;

(6) Using both l i s t s (Np_conn and N p_sort), and s ta r tin g
from one end of the axis give every tr ia n g le on the
o rig in a l boundary g rid the r ig h t sub-domain number;

(7) Carry out the smoothing procedure on tr ia n g le s a t the
in te rface regions;

Recall th a t one of the key advantages of the direct decomposition method is
the improvements in the scalability of the overall algorithm in general and
the domain partitioning procedure in particular. Thus, it is appropriate to
dem onstrate this by inspecting the behavior of the algorithm in respect to a
change in the boundary surface grid size, see Figures 3.19, and in the total
number of sub-domains, see Figure 3.20. It is clear from both figures tha t
the time needed to complete the partitioning procedure is a linear function of
the number of elements /sub-domains. In fact, the tim e presented includes,
in addition to the time spent on the decomposition procedure itself, the time
needed to derive the ‘rim ’ associated with every cutting plane 5. However,
such a linear relationship confirms th a t the direct decomposition method in
general should always be scalable, a t least a t the domain partitioning step.

5 More details about these rims and their role in discretizing the internal boundary are
to follow in the next section.

62

(I l l)

Figure 3.18: An illustration of a general smoothing procedure, which is
integrated into various sub-algorithms in this research. The original config­
uration of a set of triangles is presented in (I), which can similarly be a set
of tetrahedra. Elements considered to be the interface region between sub-
domain i and k are presented in bold. The internal boundary associated
with each configuration is presented in the dashed line on the right hand
side. Two different possibilities for employing the smoothing procedure are
presented in (II) and (III), where the difference is due only to the order
of adjacent sub-domains.

63

140
64 Sub-dorhains

120

100

80

60

40

20

0
500000 1e+06 1.5e+06 2e+06

Number of Triangles

Figure 3.19: Time required for the domain decomposition, 64 Sub-domains
where surface gird on the original boundary varies between 0.2 and 0.3
million triangles.

100
84.6E-I-4 Faces

90

80

70

60

50

40

8632 64 128 256 512
Number of Sub-domains

Figure 3.20: Time required for the domain decomposition, 845948 trian­
gles on the original boundary with the number of sub-domains varying in
the range [8 — 512].

64

3.3.3 Discretizing the Internal Boundary

Obviously, internal boundaries in the direct decomposition method are asso­
ciated with the planar cuts as they are used in partitioning the domain; the
question now is how to create a smooth high quality triangular grid on such
an ‘empty plane’. A multi-step procedure has been developed for this purpose,
which starts by deriving all edges shared between the two adjacent sub-domains
at every cutting plane. Such a set of edges forms a closed contour(s) of 3D
edges so called the ‘rim ’; which is then mapped into the cutting plane using
an enhanced form of orthogonal projection scheme. A coarse 2D triangular
grid is constructed on the cutting plane, which in tu rn is mapped back to
the three dimensional space where the final internal boundary surface grid is
constructed. The same point insertion and edge swapping technique employed
in the indirect decomposition method, see Figure 3.10, is used a t this last step.

The construction of ‘valid’ rims on the projection planes

W hilst extracting the rim edges from the original boundary surface grid is a
rather easy task, mapping them onto the cutting plane can be a bit more sub­
tle. It has been observed th a t a straightforward mapping using an orthogonal
projection of the rim edges directly onto the cutting plane may cause some
problems. An illustrated example is presented in Figure 3.21; where clearly
though the two edges (i.e. 1-3 and 2-4) do indeed appear in the projected
rim they simply do not exist in the 3D original rim!, Therefore, a ‘correction
procedure’ has been developed and integrated into the projection procedure
such th a t only valid rims are constructed on the projection planes.

The correction procedure is based on a few simple concepts. First of all, as the
rim edges are extracted from the surface grid in random order, a re-ordering
scheme is implemented such th a t every rim consists of continuous contour(s) of
edges 6. A point is chosen somewhere in the rim and projected onto the cutting
plane, then, moving in one direction, edges are m apped incrementally within
‘steps’. Every step may include a different number of edges but the procedure
is always the same. Such a procedure starts by evaluating the ‘weight’ of each
edge included in the step, which is based on the ratio of the individual edge
lengths to the to ta l accumulative length of all other edges in the step. Then,
ju st after the second point of the last edge in the step is projected directly onto
the cutting plane, all other points (edges) in the step are m apped into the same
plane using linear interpolation between the two projected points considering
the weight associated with each edge. Now, if we revisit the illustrated example
presented in Figure 3.21, and consider the edges 1-2, 2-3, and 3-4 as in one
step; according to the correction procedure presented above: point 1 will be

6In order to maintain an efficient search scheme at this procedure, the elements neigh­
bouring tree and the connectivity matrix of the surface grid are exploited.

65

projected first, followed by point 4, and then points 2 and 3 will be mapped
using a linear interpolation scheme based on the weight associated with each
edge.

Triangulation on
original boundary

Inter-domain boundary,
edges in the 3D space

Projeced edges on the
internal boundary rim.

2 431

Figure 3.21: The process of mapping the rim edges from the original
boundary surface grid into the cutting plane, in order to construct the
'basic’ triangulation of the internal boundary in the two dimensional space.

Clearly, some rims may have more than one closed contour of edges. Hence,
every time the mapping of a closed contour is complete, a checking proce­
dure must be carried out in order to determine if any edge is still left in the
three-dimensional space or not. In the case of finding such an edge, the same
procedure as described above will be repeated again and so on. A flowchart
summarising all steps involved in the procedure is presented in Figure 3.22.

The ‘accuracy’ in representing the rim on the projection plane using such a
procedure is indeed questionable. It seems th a t there is a great potential for
introducing dram atic changes into the shape of the rim or even loosing some
of its im portant features completely!. The consequences of such issues can also
be very serious and it may destroy the reliability of the direct decomposition
method. The key issue lies with the mechanism for deciding how many edges
are to be included in the step (i.e. when to stop collecting edges).

F irst of all, the maximum number of edges to be collected in one step is limited
up to 5, and it can be as small as 1. Secondly, other geometrical constraints
such as the angle between normals on the two boundary faces (i.e. the ones
th a t have the edge th a t shares the relevant point in the rim) are always consid­
ered. In other words, the mapping procedure would m aintain the ‘curvature’

66

^ IP = W start ^

No

Yes

No

Yes
Move into the
triangulation
procedure

Project point IP onto the cutting plane

Project point TPcurr onto the cutting plane

Have all edges in the 3D rim
been mapped into the 2D space ?v

Find a point that has not been
mapped, assign it to be TPstart

Extract all internal boundary edges
on the cutting plane (i.e. the rim)

Arrange all edges in the rim such that
they form a set of continuous contours

Map all edges in the TPbreak loop using a linear inter­
polation scheme between the two points IP and IPcurr

TPbreak = 0 to 5 (or less, based on other conditions)
Evaluate the ‘weight’ of each edge in this loop,

using the ratio of its individual length to the total

Figure 3.22: Overview of the procedure used in mapping the rim edges
from the 3D space onto the cutting plane.

67

of the rim such th a t every noticeable change in the surface grid normals is well
represented. A very good example th a t demonstrates the effectiveness of the
mapping procedure is presented in Figure 3.23. The result of direct orthogo­
nal projection is presented on the left hand side, whilst on the right hand side
is the result after introducing the correction procedure. Notice how all geo­
m etrical features are reserved and simultaneously all problematic edges have
been avoided (see where the two arrows are pointing in the last row images).

Figure 3.23: Two different cases for the projection of internal boundary
edges (i.e. rim): using a direct orthogonal projection (left), and after inte­
grating the ‘correction procedure’ (right). Notice the very limited impact
of such a procedure on the general shape whilst a problem (as indicated by
the arrows) is resolved.

68

The construction of a ‘basic’ grid on the planar cross section
It has been observed th a t completing the construction of the internal boundary
grid on the planar surface in the two-dimensional space and then mapping it
back into the three-dimensional space often produces a number of badly dis­
torted elements, particularly in the region close to the rim. Furthermore, inter­
sections between some elements on the internal boundary grid and the original
boundary also could be found. Alternatively, it has been found th a t generat­
ing a relatively coarse grid in the two-dimensional space and then using it as a
‘basic’ grid for generating the final fine grid in the three-dimensional space can
be more reliable. The same point insertion and edge swapping technique used
in the indirect decomposition method, see Section 3.2.3, can be applied to the
basic grid after it is been mapped back into the three-dimensional space.

In fact, the ‘basic’ grid could be built as just a Delaunay triangulation of the
rim points, i.e. without inserting any new point a t all as shown in Figure
3.24. However, introducing a limited number of points in the two-dimensional
space, see Figure 3.25 has proved to be very effective in m aintaining the plane­
like shape of the internal boundary and to improve the quality of the final
grid. This would subsequently increase the robustness and the reliability of
this method substantially.

A number of enhancement techniques have been introduced in order to elim­
inate the possibility of having intersections between the internal and original
boundaries; particularly a t the high risk areas such as displayed in the closeup
in the Figures 3.24 and 3.25. Clearly, an edge connecting two neighbouring
points on the rim in the planar cross section surface grid might be simply a
duplication of an already existing edge on the original boundary surface grid.
Hence, an extra point on such an edge is interpolated and two new triangles
replace the original one with the problematic edge (see the circulated elements
on the right hand side in Figure 3.25, and compare them with same on the
left hand side). Furthermore, an edge swapping technique is also implemented
with a swapping criterion th a t tries to reduce the number of edges near the rim
(in other words, maximizing the edge length by swapping); see Figure 3.26.

Generating the internal boundary surface grids using such a multi-step proce­
dure has proved to be very effective. High quality and smooth triangular grids
th a t have a good consistency with the original boundary grid point spacing
are always guaranteed. A typical example of a final grid is presented in Fig­
ure 3.28, where the ‘basic’ grid (i.e. after been m apped back into the 3D) is
also presented for comparison. Most importantly, the procedure is still very
efficient and it is indeed a scalable algorithm, see Figure 3.27.

69

Figure 3.24: Tr iang u la t ing th e bo un dar y (rim) po in t s w i t h o u t in t roduc ing
any new po in t on th e p lana r surface.

70

Figure 3.25: Triangulating the rim points in the planar surface with the option of
introducing some points. Notice that edges connect two points on the rim (see circles
in the LHS close-up) may also exist on the original boundary surface grid. Such a
problematic edge can be eliminated employing a procedure that uses point interpolation
(see circles in the RHS close-up) and edge swapping techniques (see Figure 3.26).

71

Figure 3.26: Apply the edge swapping technique in order to reduce the
possibility of intersection with the original boundary grid.

72

40

35

30

25

20

15

10

5

0
5000 10000

Number of Triangles
15000 200000

Figure 3.27: Total time required to generate a surface grid on an internal
boundary. Notice the linear relationship with the total number of elements.

A flowchart of the general algorithm with an illustrating example

As in the indirect decomposition method case, we close the discussion by pre­
senting a flowchart summarising all the steps involved in the general algorithm,
see Figure 3.29. The boundary of individual sub-domains are constructed and
then gridded exactly as in the indirect decomposition method, thus there is no
need to repeat the same discussion here. However, the direct decomposition
method is illustrated visually by presenting one complete example. A rela­
tively small size tetrahedral grid of a configuration of a civilian aircraft (i.e.
B60 model) inside a box, generated within 4 sub-domains using the algorithm
discussed above, is presented over three Figures. First of all, an overview of
the geometry is presented in (I) in Figure 3.30, whilst some snapshots of the
original boundary surface grid before and after the domain partitioning are
presented in (I I) and (I I I) respectively. The construction of the surface grid
on the three internal boundaries is then illustrated in Figure 3.31, where a
general view of one boundary is displayed (at the RHS) with a snapshot of a
close up from each internal boundary. Snapshots of the rim on the internal
boundaries, after they have been mapped into the two dimensional space, are
presented in (I) in Figure 3.31; notice th a t the first three images from the LHS
are closeups of the cutting planes 1,2 and 3 respectively and the fourth image
is an overview of the first plane. Following the same order as adopted in (I)
in Figure 3.31, snapshots of different steps involved in the gridding procedure

73

are presented in (I I) and (I I I) - Details from each sub-domain surface grid
are presented in column (I) in Figure 3.32, starting from sub-domain number
1 in the first row and so on. A planar cut in the volume grid inside each
sub-domain is presented in column (I I) of the same figure, whilst a close up
of the same cut is presented in the last column; see Figure 3.32 page 79.

74

Figure 3.28: Different s n a p s h o t s of an internal bo u n da r y grid: th e grid
a f t e r th e m a p p in g into t h e 3D sp ac e (left) , an d t h e final f ine s m o o t h grid
(r igh t) .

75

(Start)

Yes

No

(End)

Is the domain decomposition result valid?

Derive edges on the inter-domain boundary

Generate a volume grid in every sub-domain

Adjust the location of the problematic cut

Map the internal boundary edges to 2D space

Map the triangulation with the new
points back to the 3D space

Generate a surface grid on the
computational domain boundary

Generate Delaunay triangulation in the 2D
space, with option to introduce new points

Build closed individual sub-domain boundary,
apply orientation checking technique on faces

Post processing step, based on the user choice,
build global grid, load redistribution, smoothing

Generate smooth surface grid on the internal
boundary with consideration o f the sources effect

Apply a domain decomposition technique by
using planar cuts in the computational domain

Figure 3.29: Overview of the general algorithm using the Direct Decom­
position Method.

76

(I l l)

Figure 3.30: An exam ple of gen e ra t in g a vo lu me grid o f a civilian a i rc ra ft
conf igura t ion inside a box, using th e d i rec t d ec om po s i t io n M e th o d . (I)
G eo me t r y def ini t ion, (I I) T r i angula r grid on original boundary. (I l l) Four
sub - d o m ai n s ob ta in ed using uni-di rect ional p lanar cut s.

77

(Ill)
Figure 3.31: Generating high quality triangular grids on the internal bound­
ary in the direct decomposition method. (I) Edges on the ‘rim’ in 2D space.
(II) Delaunay triangulation of internal boundary in the 2D space, with the
option of introducing points. (I l l) A complete smooth 3D triangular grid
generated in the 3D space.

(/) (II) (III)

Figure 3.32: Volume grid in th e four su b- dom ai ns , ge n e r a te d using a
sequen t i a l D e launay algori thm. (I) Detai ls o f t h e closed su b - d o m a i n t r i a n ­
gu la r grids. (I I) P lan a r cu t s inside th e vo lume grid. (I l l) Z o o m in f rom
(I I) .

79

3.4 Concluding Remarks

Two different methods (namely the indirect decomposition method and the
direct decomposition method) based on the geometrical partitioning approach
and belonging to the ‘pre-gridding of the internal boundary’ category7 have
been discussed in depth in this Chapter. A layout of the general procedure in
each method has been presented using initially a simple 2D grid, followed by a
detailed description of every technique associated with individual steps in the
general algorithm. A flow-chart summarising each m ethod and an illustrated
example of a tetrahedral grid have been presented a t the end of each section.

Issues found to be associated with the first method (i.e. indirect decomposi­
tion) have been identified and discussed before introducing the second method
(i.e. direct decomposition) as an ‘alternative’; see the list presented in page
57. The chapter has concluded: “the indirect decomposition method has failed
to demonstrate a steady and robust performance in gridding complex geome­
tries, neither has it proved to be a scalable and efficient method for generating
tetrahedral grids in parallel” . The m ajor points considered while developing
the direct decomposition method have been identified: improving the quality
of the internal boundary grid, maintaining the overall scalability by avoiding
any unscalable procedure and enhancing the efficiency in general by improving
the workload distribution amongst the sub-domains.

W hilst, the quality of tetrahedral grids generated in parallel will be discussed in
detail in Section 5.3, the issue has been addressed briefly in this chapter. The
role of the sub-domain’s general shape and the surface grids, particularly on the
internal boundary, has been highlighted. The chapter has dem onstrated th a t
the direct decomposition method, unlike the indirect decomposition method,
will always produce sub-domains of ‘regular’ shapes. Internal boundaries are
always very similar, and generating a high quality smooth triangular grid on
every internal boundary is guaranteed. The chapter presented the direct de­
composition method as a reliable, scalable and efficient approach for generating
tetrahedral grids in parallel.

7 For more information about this category and its advantages see page 33.

80

Chapter 4

Parallel Im plem entation

4.1 Introduction

W hilst the previous chapter has focused on dem onstrating different techniques
involved in the partitioning and gridding operations, this chapter is devoted
to discuss the integration of these techniques under one com putational frame­
work. The framework adopts the Message Passing Library (MPL) as a parallel
programming model1, and uses a unique ‘tem plate’ for processing a ‘task’ in
parallel. The chapter begins by reviewing in great detail the construction of
the parallel processing tem plate leading into a summary of its main features.
A special technique termed as Dynamic Parallel Processing (D PP), which has
been integrated into the tem plate in order to enhance its flexibility, is discussed.
The enhanced tem plate, which will be referred to as a DPP loop throughout
the rest of this thesis, represents the kernel of the overall parallelisation work
in the developed framework.

This chapter demonstrates how the com putational framework has been con­
structed by utilising one global algorithm, which represents both of the indirect
and direct methods. Individual steps in this general algorithm are checked and
a decision about ‘to parallelise or not to parallelise’ is made for each step. A
generic form of the parallel framework is presented.

In order to illustrate the im portant role of the D PP loops in the computational
framework, an example of a small size grid generated for a number of times
using a different number of processors in each run will be discussed.

1For more information about programming models in general, see Section 2.3.1.

81

4.2 The Design of a Parallel Processing Tem­
plate

Recall the discussion of ‘why’ the Message Passing Library (MPL) model have
been adopted presented earlier in Sections 2.3.1 and 2.4. Issues associated
with the construction of the tem plate design such as the choice of the most ap­
propriate parallel structure and the portability between machines of different
architectures can be addressed. No previous knowledge of a message passing
library is required to follow most of the discussion, however, familiarity with
an MPI library2 may become more im portant in later sections. Nevertheless,
reviewing some of the m aterial presented in Appendix B can be very beneficial
for the interested reader.

Parallel structure
Recalling the algorithms presented in previous chapter shows th a t there is a
number of similar jobs to be carried out in most of the main steps in the general
algorithm (e.g. deriving and gridding M internal boundaries, constructing
a closed boundary for N sub-domains, ...etc.). Clearly, each one of these
steps can be accomplished by performing the same sub-algorithm on a set of
distinguished data. Hence, it should not be hard to find out why the Single
Program Multiple D ata (SPMD) structure is the most suitable structure for
the template.

The tem plate implements the SPMD structure with a M anager/W orkers mech­
anism. In such a structure, a processor acts as a manager and all other pro­
cessors are workers. The real work is usually carried out in parallel by the
Workers whilst the Manager carries out the synchronisation of job processing
only. Specifying which processor is to be the Manager can be done in advance
by the user, or a t the beginning of the run by the program. A unique, and
already known, ‘ID ’ number is assigned to the Manager, also each Worker will
have its own distinguished ID number. There must be a Manager and at least
one Worker before the mechanism is valid. One physical processing unit can
accommodate a number of Workers simultaneously, such a number depends
on the message passing library and the computing platform (i.e. including
the hardware and operating system). However, the terms Manager and Work­
ers will be always used independently from the underlying computing platform.

Portability
The MPL model is known to be a highly portable parallel programming model,
unfortunately th a t does not mean every parallel program th a t uses this model

2MPI in its own is just a library specification and the real library used in this research is
an implementation called (MPICH).

82

will autom atically be transferable among different types of parallel machines.
It is still the programmers responsibility to take into consideration a number
of factors such as the portability of the message passing library itself and,
more importantly, the architecture of the targeted platform s3. For example,
the construction of the tem plate as presented so far (i.e. based on the MPL
model and the SPMD structure) can still be developed in a way th a t the
tem plate operates on shared memory machines only. However, in short, our
main interest is to ensure th a t the developed design can produce a machine
independent parallel processing tem plate/program s.

The tem plate adopts a special procedure for processing a task (which consists
of a set of similar jobs th a t are referred to as sub-tasks) in parallel. In this
procedure, the Manager sorts the sub-tasks in descending order according to
their estim ated workload. And then, just before assigning each sub-task to a
Worker, it extracts all the data required and initiates a new local numbering
system. An appropriate link between such a system and the global d a ta num­
bering system is established in case the data stored in the local system was to
be integrated back into the global system. In fact, the two numbering systems
above (i.e. local and global) and their interactions are discussed in depth in
Section 5.2. However, it is enough here to report th a t the tem plate utilises a
‘data localisation’ scheme, th a t ensures th a t every sub-task is defined to be a
self contained and totally independent while it is been processed.

Clearly, the procedure above introduces some ‘extra work’ into the original
algorithm, unfortunately, it seems th a t this is a price which has to be paid for
having such a highly portable template. On the other hand, a parallel frame­
work/ program th a t uses such a tem plate would be able to operate on a sin­
gle processor workstation, clusters of networked workstations, shared memory
multiprocessor machines and massively parallel supercomputers. Furthermore,
on the portability issues, a widely available and highly portable message pass­
ing library has been adopted. The MPICH library, which is an implementation
of the MPI specifications, developed jointly by Argonne National Laboratory
and Mississippi S tate University [53] has been adopted. However, for more
information about the MPICH, and other topics related to message passing
model, the reader is advised to consult appendix B.

Main features in the tem plate design

As a summary of the various points discussed above, and before moving to
discuss the D PP technique, it is appropriate to present a list of main features
in the tem plate design and an illustration of its generic form as in Figure 4.1.

3MIMD machines with shared memory or distributed memory architectures are the only
types considered in here. See Section 2.3 for more information about types of parallel
machines.

83

• A SPMD parallel structure is adopted with M anager/W orkers mecha­
nism. The Manager derives a set of similar jobs and adm inistrates their
processing in parallel by the Workers.

• A message passing library is needed for transferring data between the
Manager and Workers. An MPI library has been used and it is strongly
recommended, though switching to any other library is straightforward,
see appendix B.

• There is no communication among the Workers themselves.

• Communication between the Manager and a Worker, whenever a task
is assigned, takes place a t the beginning and the end of the processing
only.

• The administrative role of the Manager includes: sorting the similar jobs
in descending order according to their estim ated workload, performing
the data localisation scheme on each job, assuring the independence of
each job and finally synchronising the processing on the Workers.

• Parallel programs implement such a tem plate would be able to operate
on parallel machines with distributed and shared memory architecture
and without any modifications whatsoever.

4.2.1 Dynamic Parallel Processing

In general, achieving a feasible level of speed up and efficiency in parallel
programs might be very difficult. This is due to the following reasons:

1. The workload of the sub-tasks processed in parallel may vary dram ati­
cally from one to another.

2. It is possible to have very different levels of performance among the
processors involved in one parallel run (for example, a network of het­
erogeneous workstations).

It is likely to have a set of processors waiting for the one with the largest work­
load, or for the slowest. To overcome this issue most of the parallel algorithms
insert a load balancing technique, which, in general, diagnoses where the bot­
tleneck is and subsequently redistributes the workload in order to achieve the
same performance on all processors. Integrating such a technique within a
parallel program to be used alongside the simulation makes it a dynamic load
balancing (DLB) technique.

84

Manager

kWorker Worker,Worker,

Process a
.sub-task ,

Process a
.sub-task ,

Process a
.sub-task ,

Convert data, global/local

Derive a set of similar sub-tasks,
identify data associated with each

Using the same program and operating, independently,
on different sets of data (with a local access)

Synchronise executing the sub-tasks on Workers.
Use message passing library functions for

communication and data transfer

Figure 4.1: Illustration of the main concepts in the parallel template
adopted in this research. (MPL) programming model, with (SPMD) struc­
ture and Manager/Workers mechanism.

D PP is not a DLB technique
Previous reports of this research has used the Dynamic Load Balancing (DLB)
term to express the technique described above as Dynamic Parallel Processing
(DPP) [128, 129, 145, 107]. In fact, after some more recent developments,
particularly the ‘post-processing’ load balancing algorithm (see Section 5.4,
maintaining the old DLB term was found to be slightly confusing. However,
examining the D PP technique in more depth should resolve the confusion
between the two terms, and demonstrates the different nature of the load
balancing in the D PP technique itself.

The D PP is a requirement as well as the ‘strategic choice’
The number of processors to be used by an MPI parallel program must be

85

known before the program can be executed4. On the other hand, it is im­
possible sometimes to predict the exact number of tasks th a t are due to be
processed in parallel, (e.g. to tal number of the internal boundary within the
indirect decomposition method). Obviously, reserving a set of processors in
every parallel run ju st in case they become needed is not a realistic option.
Therefore, the tem plate design needs to be enhanced such th a t it can accept
an unknown number of tasks whatever the number of processors, and hence
the D PP is a ‘requirement’!.

In fact, the (DPP) technique exploits some of the main features mentioned
earlier, such as the SPMD structure, the M anager/W orkers communication
policy and the data localisation scheme. The D PP enables the Manager to
adm inistrate the processing of N task tasks on N proc processors. Where both
Ntask and Nproc can be any arbitrary number, including the cases: N task >
Nproc» ^task < N proc and Ntask = N proc. The latest case is the most common
one in traditional parallel programs, and it is considered as Static Parallel
Processing (SPP) in this research.

W ithin the D PP technique, every Worker initiates an infinite loop, which can
be exit by an ‘order’ from the Manager only. Whenever a Worker finishes
processing a task, it notifies the Manager and goes back to ‘stand by’ again.
On the other hand, the Manager starts the D PP technique by sending one task
to each Worker, and then whenever a request is made by a Worker a new task
is sent back to it. As soon as all tasks are sent out, the Manager starts sending
exit messages instead of the new task. A flowchart th a t illustrates the Worker
and the Manager actions in the D PP technique is presented in Figures 4.2 and
4.3.

Recalling the two conditions presented a t the beginning of this Section, and
the fact th a t the workload may vary dram atically among the sub-tasks indi­
cates th a t using the traditional (SPP) will result in having a number of ‘idle
processors’. W hilst employing less processors and exploiting the (DPP) tech­
nique, a more efficient use of the resources is expected. The efficiency issue
will be discussed in depth in Section 6.3.2, however, it is clear th a t the D PP
can be adopted as a strategic choice. In fact, the D PP technique forms the
m ajor key behind having the developed programs capable of generating large
size grids on regular computing resources.

W hat is the D PP loop?
The implementation of the D PP technique by both of the Manager and the
Workers together is considered as one loop, which is referred to as D PP loop.
The D PP loop is summarised below using MPI functions with the C language
binding. Clearly, actions of the Manager are completed within four different

4Implementations of the recent MPI-2 may have a different policy in this regard

86

Start an infinite loop)

^Receive a message from the Manager J

YesM— ■■ ■ <Exit message*

Unpack the received data in the buffer

Prepare the data to be processed locally

Apply the desired algorithm,
acting on the local data only

Store the result or any other data required
by the Manager in a buffer

Send the buffer to the Manager

Write out the results, if there is any

Exit the infinite loop)

F igure 4.2: Dynamic Parallel Processing loop from the Worker point of view.

87

t

No

Yes

No YesN rm > 0

No

Yes

I = 0; N_rm = N_task

N_rm - N rm - 1

N_rm = N_rm - 1

N rm = N rm - 1

Send the buffer to worker No. 7

Process data received from (J)

Process data received from (J)

Send exit message to worker (J)

Receive a request from worker (J)

Receive a request from worker (J)

Pickup a task using the sorting pointer

7 = 7 + 1
If (I < NJProc and N_rm > 0)

N_Proc = Number of processors, N_rm = N_task

7 = 7 + 1
If (7 < N_Proc and N_rm > 0)

Pack all data needed for the task in a buffer

For K = N_rm + 1 to K = N_Proc
Send exit message to worker number K

Sort the N_ta.sk tasks, which are to be processed in Parallel
using DPP technique, according to the estimated workload

Pickup a task using the sorting pointer
pack all data associated with it in a
buffer, send the buffer to worker (J)

▼

F igure 4.3: Dynamic Parallel Processing loop from the Manager point of view.

88

loops: 1st loop is to send the first task to each Worker, 2nd loop is to receive
results/requests and then send a new task, 3rd loop is similar but an exit
message is sent back to the Worker and the 4th loop is for sending exit messages
only. Notice that every loop has its own control condition, therefore some of
them might be inactive in some cases. For example, the second loop (i.e.while
N_rm > 0) is not active when N task < N p roc.

Notice the use of the s ta tu s data structure in the argument list of the
MPI_Recv function in order to find out the information about the message
tag and the rank of the sender. Also, notice that the Manager always has the
processor with ID number as 0 (Proc.ID = 0), whilst any other processor is
considered to be a Worker.
A pseudo code of the general D PP loop.

i f (!Proc_ID) { /* (THE MANAGER ROLE IN DPP LOOP) */

N_rm = N_task;
fo r (i= l; (i<N_Proc && N_rm>0); ++i){

/* Use the so rtin g po in te r to pick the next task from the
remaining. Pack a l l required data associated with the (A)
chosen ta sk , and apply a data lo c a lis a tio n scheme. */

/* Send the buffer to Worker No. (i) */

—N_rm;
>

while(N_rm>0)

MPI_Recv(........) ; /* Receive a message with MPI_ANY_S0URCE */
ID_sourc = status.MPI_S0URCE;

/* Unpack data and carry out some jo b s . . . */

/* Repeat what is in (A) above */

/* Send the bu ffer to Worker No. (ID.sourc) */

—N_rm;
}

89

N_rm = N_task;
fo r (i= l; (i<N_Proc && N_rm>0); ++i){

MPI_Recv(........) ; /* Receive a message with MPI_ANY_SOURCE */
ID_sourc = status.MPI_SOURCE;

/* Unpack data and carry out some jo b s . .. */ *

/* Send an e x it message to Worker No. (ID_sourc) */

—N_rm;
>

fo r (i = N_Proc -1; i >N_task; —i){

/* This loop w ill be active when the number of Workers is bigger
than the to ta l number of ta sk s . The only job here is to send
an ex it message to break the in f in i te loop on Worker No. (i) */

>

> e lse { /* (THE WORKERS ROLE IN DPP LOOP) */

fo r(; ;){

MPI_Recv(..........) ; /* Receive from the Manager with MPI_ANY_TAG */
tag = MPI.Status.MPI.TAG

/* Check, using the value of tag , i f th is is an e x it message
then free a l l the memory and break the loop */

MPI .Unpack (........);

/* Carry out a job c a llin g a se t of d if fe re n t subroutines */

MPI_Pack(.........) ; /* pack data to be sent back to the Manager */

MPI_Send(.........) ; /* Send back the re s u l ts and a new request */

}
>

90

4.3 Parallel Implementation of the General A l­
gorithm

During the course of this research, the indirect decomposition method was the
first proposed approach. A parallel program was w ritten, implemented and
analysed before having the direct decomposition method investigated as an
alternative. Thus, another new parallel program for the direct decomposition
method was due to be written. Fortunately, the two methods are very simi­
lar particularly from the parallel processing view point, and by exploiting the
developed D PP loop extensively, things became much easier. In fact, the new
parallel program was built by inserting minor changes to the old one. There­
fore, we discuss the parallelisation of the two methods using a generic form of
the general algorithm which represents the two algorithms presented in Figures
3.12(page54) and 3.29 (page76). The parallelisation of individual steps in this
general algorithm is then discussed.

Layout of major steps in the ‘general algorithm’:

1. Read the input data: surface grid on the original boundary and the
background grid with the point spacing sources.

2. Apply a domain decomposition algorithm to partition the volume inside
the computational domain into N sub-domains.

3. Derive M new boundary surfaces, which are created between the adjacent
sub-domains (i.e. internal boundary).

4. Generate a smooth grid on the M internal boundary surfaces.

5. Construct the boundary (original and internal) surface grid for N closed
sub-domains.

6. Adjust the boundary faces orientation and generate a volume grid inside
each of the N sub-domains.

7. Apply a post-processing procedure.

A set of major subroutines has been created by encapsulating all techniques
th a t are related to individual steps in the general algorithm above. Message
passing operations associated with each ‘task’ have also been grouped in in­
dividual subroutines. On the top of all these subroutines a main program is
constructed, which starts the overall procedure by initialising the parallel pro­
cessing environment. The initialisation procedure includes: finding the to tal
number of involved processors, assigning a processor to be the Manager and

91

the rest as Workers, establishing connections and synchronising all processors.
Having done tha t, every major subroutine is called and executed by the Man­
ager (when it consists of sequential procedures only) or by the Manager and
the Workers (whenever it involves parallel processing of a task).

Step 1
No attem pt has been made to parallelise this step, though there would have
been a possibility if a more recent version of MPI was adopted. To the best
of our knowledge MPI-2, which became available around the mid of 1999,
was the first version of MPI provided parallel I/O facility. Nevertheless, the
time needed to read the input da ta (surface grid on the original boundary and
background grid with sources) has always been very small in comparison to
the time needed in other parts of the program overall, see Section 6.3.4.

Step 2
Workload involved in this step varies dram atically between the two methods.
The need for generating an ‘initial’ volume grid sequentially has made the
indirect decomposition method a rather inefficient procedure. However, de­
spite having this step as a bottleneck, in the indirect decomposition method
case, no a ttem pt a t all has been made to parallelise it!. In fact, no suitable
parallel processing solution was possible, and this indeed has been one of the
motivations behind developing the direct decomposition method.

In short, it is extremely difficult to parallelise Step 2 in the indirect decom­
position method, and there is no need in the direct decomposition method
case. In fact, partition of the computational domain of a grid in the order of
100 million tetrahedra can be accomplished within less than a few minutes,
see Section 6.3. However, with the possibility of employing a more advanced
partitioning procedure, such as an octree based technique with a sophisticated
workload balancing, in the future parallel processing of this step may become
essential.

Step 3
If predicting which sub-domains are adjacent to each other is straightforward
in the direct decomposition method, unfortunately it is almost impossible in
the indirect decomposition case5. Deriving an internal boundary in the di­
rect decomposition method can be accomplished by accessing the triangles on
two sub-domains boundaries only, whilst in the indirect m ethod access to all
tetrahedra in the initial volume grid is a must. In other words, it is clear in
both methods tha t, if the internal boundaries were to be derived in parallel, a
large amount of data has to be made available to all Workers first. Bearing in
mind the high cost of data communication in contrast to da ta processing, it is
very unlikely to benefit from processing Step 3 in parallel. Thus, deriving the
internal boundary has been carried out sequentially in both programs.

5See both algorithms presented in Sections 3.2.3 and 3.3.3.

92

Step 4
Probably, the most challenging task introduced by a geometrical partitioning
based parallel grid generator is the gridding of the internal boundary, see Table
2.2. It is very likely th a t this issue will be a subject of further research in the
next few years [22], and new approaches may emerge. Nevertheless, we strongly
believe tha t, however the gridding technique develops, the parallel processing
of it will remain a vital point for the overall efficiency of the program. Thus,
to parallelise Step 4 or not is out of question, and it is left to verify how the
developed tem plate has been used.

A typical implementation of the adapted tem plate requires the Manager to fil­
ter both of the internal boundary data and the background grid, with the grid
point spacing control parameters, by a data localisation scheme. In fact, this
has been implemented on the internal boundary data only; apparently, extract­
ing the grid point spacing data for each internal boundary is more expensive
computationally than sending a fu ll copy to each Worker. The Manager packs
the internal boundary data (after been numbered locally) with the background
grid and sources data and sends them to a Worker. The Worker in turn, after
receiving and unpacking the data, generates a smooth surface grid, then packs
the result and sends it back to the Manager. The operations (pack, send,
receive, unpack) are carried out using standard message passing functions.

The algorithms th a t carry out the gridding of the internal boundary vary be­
tween the two methods, for example, an extra 2D triangulation algorithm is
needed within the direct decomposition method. Subsequently, some differ­
ences in the communicated data itself are expected (e.g. a set of triangles in
indirect decomposition m ethod against a set of edges in direct method). In
fact, this is one of the places where some modifications had to be introduced
into the old parallel framework while the new one was under development.

Each of the surface grids on the internal boundary is sent back to the Manager
in its own local numbering, whilst some nodes and edges may co-exist on other
boundary grids. Thus, a linking and renumbering operation must take place
by the Manager in order to construct a one global ‘valid’ grid. In fact, this
procedure is examined thoroughly in Section 5.2.1, however, it is appropriate
to mention th a t by the end of Step 4 one global surface grid covers both original
and all internal boundaries and that this grid is available on the Manager.

Step 5
In Step 5 a number of sub-domain closed boundaries have to be derived from
the global surface grid, and once again the question is ‘to parallelise or not to
parallelise?!’. In fact, the discussion presented in Step 3 (about the communi­
cation cost if the adopted tem plate was to be employed) is applicable on this
Step as well. Thus, Step 5 is carried out sequentially by the Manager, and a
da ta localisation scheme is applied on each sub-domain boundary grid before
it is packed and sent to a Worker.

93

^Derive a set of internal boundaries}

Convert data, global/local

Manager

Use MPI functions for communication/synchronisation

(Workers \Worker>

Using the algorithm in section (3.3.2) or (3.5.2)I I
Generate 3D
surface gri^

Generate 3D
surface gric^

Generate 3D
surface griĉ

^Build closed boundary for a set of sub-domains^

Convert data, global/local

Use MPI functions for communication/synchronisation

Worker Worker Worker

Using a sequential grid generator, orientation scheme
r ir

Generate a grid
in a sub-domain Generate a gria) (Generate a grid

in a sub-domainj î in a sub-domaina

Figure 4.4: Enforcement of the adopted parallel template on the general
algorithm. Two sub-tasks only are carried out in parallel, i.e. generating
surface grids on the internal boundary and generating volume grids in the
sub-domains.

94

Step 6
The background grid and sources data, which are to be utilised by the se­
quential grid generator, have already been made available to the Workers at
Step 4. Accordingly, data to be communicated in this step consists of the
sub-domain boundary surface grid. Thus, having the boundary grid of a sub-
domain received and unpacked on a Worker, the two m ajor subroutines (i.e.
faces orientation and volume grid generation) can be executed immediately.
Obviously, the two subroutines are carried out on the same Worker and there
is no need for any ‘message passing’ within the procedure for one sub-domain.

Step 7
Actions to be carried out by a Worker a t the end of Step 6 may vary dra­
matically, based on the user choice (e.g. a copy of each grid is sent back to
the Manager, or written out to disc, or written out with some of its da ta only
sent back to the Manager, ...etc.). However, from the grid generation point of
view the algorithm term inates here, and any other procedure evolves after this
point is ranked as a post processing activity, see chapter 5.

4.3.1 Parallel Framework with D P P

It is recognisable th a t the parallelisation of the general algorithm is completed
by enforcing the adopted parallel tem plate twice: first to generate the in­
ternal boundary grids, and secondly to generate the sub-domain grids. The
enforcement has shown th a t the adopted tem plate is very flexible, and a quick
comparison between Figures 4.1 and 4.4 clearly shows this.

Recall the discussion on the parallelisation of individual steps in the general
algorithm presented above, and the flowchart in Figure 4.4. It is straight­
forward to conclude th a t constructing a general parallel framework using the
D PP technique can be complete by employing two D PP loops only. The first
one is associated with the generation of surface grids on the internal boundary
and the second with the volume grids in the sub-domains. Now th a t all aspects
of the parallel implementation are elucidated, a parallel version of the general
algorithm presented in page 91 can be presented in a similar manner:

Parallel version of the ‘general algorithm’

1. (Manager), read the surface grid on the original boundary

2. (Manager), partition the domain into N sub-domains.

3. (Manager), derive and sort M internal boundary gridding sub-tasks.

95

I Start D P P Loop

4-1. (Manager), adm inistrate the processing of M sub-tasks in parallel.

4-2. (Worker), generate a smooth surface grid on an internal boundary.

t End D P P Loop

5. (Manager), derive and sort N sub-domain gridding sub-tasks.

I Start D P P Loop

6-1 (Manager), adm inistrate the processing of N sub-tasks in parallel.

6-2 (Worker), generate a volume grid inside a sub-domain.

t End D P P Loop

7. Apply a post-processing procedure (which may in v o lv e s e v e ra l

DPP loops in some c a se s) .

4.3.2 Impact of D P P on the Parallel Framework

In order to demonstrate some features of the developed framework, particu­
larly the role of the D PP technique, we present a rather simple example of
a small size grid generated a few times using different number of processors.
The grid is of a configuration of a civilian aircraft inside a hemisphere. The
com putational domain has been partitioned into four sub-domains using the
direct decomposition method, details about the generated grid and the time
needed in each run are presented in Table 4.1. References will be made to
Figure 4.5, which contains screen dumps of the UPSHOT tools6 [72].

It is recognisable in Table 4.1(1) th a t the workload is badly distributed among
the sub-domains. Utilising the SPP technique, i.e. using four Workers, it is
clear in Figure 4.5 (IV) th a t some Workers do not contribute for most of the
run tim e and just wait for Worker No. 1 to complete. W hilst Figure 4.5(11),
where the D PP technique is active and two Workers only are employed, shows
more efficient use of the available resources. Of course, as a to ta l time SPP

6UPSHOT is a very useful tool for understanding parallel programs behaviour. It offers a
graphical display of parallel time-lines. Each line is associated with a processor, and coloured
bars reflect the state of the processor at any time can be utilised, see appendix B, chapter 6.

96

Domain No. Tetra. No. Points No. Trian.
2 306618 56729 35620
1 111642 21643 16422
3 120178 22924 16318
4 73422 13697 8846

Total: 611860 114993 77206

No. Proc. Tim e (Sec.)
1 963
2 517
3 394
4 385

(I) (II)

Table 4.1: Deta i ls o f su b -d o m ai n gr ids (I) and t im ing using D P P on 1-4 processors (II).
T h e sur face grid on th e original bo u n da ry consi s t s of 63362 Tr iangles and 31683 Points .
T i m e needed for g en e r a t in g th e s a m e grid sequen t i a l ly = 965 Sec.

will always be better, see (II) in Table 4.1, bu t on the o ther hand it is always
more expensive and less efficient.

r "nManagerj !----l(Wort(ar| HBB|Part Ingj HMi)Surf Grid} HM|Vol Qrld|
i>o«t_Pr»«.|

=..I:::::::::::............. . ' '...:::... i

| 100 200 300 400 900 600 700 800 8001

(i)

EPS Manager] FTTVl[Worker) ^ H ijP a r t lng| ■■ ■[Surf Grid] ■ ■ ■ [VoJ Grid]

mm Po*t_Proc.|

50 100 150 200 250 300 350

(h i)

Figure 4.5: Using Dy nam ic Parallel P roc ess ing t e ch n iq u e t o p rocess seven
sub- t a sks , gen e ra t in g vo lum e grid in four s u b - d o m a i n s and su r face grid on
th r ee internal boundar i es , in parallel. (I) using one processor , (II) using
two processors , and so on.

(------ Manager) (Worker) ■ ■ ■ (P a n lng| ■ m |S u r1 Grid) ■ m a jv o l Grid)
Poat_Proc.|

50 100 150 200 250 300 350 400 450 500

(i i)

I—~ Manager) (worker) ■ ■ |PartJng| BHHj)Sur1.Gild| B S9(V ol Grid)
| Poat_Proc.|

°l
11

i:

i 50 100 150 200 250 300 350

(I V)

O bserving the four cases presented in Figure 4.5 reveals th a t, in (I) and (II)
(Ntask > N p roc) for bo th D PP loops, while (N task — N p roc) in the first D PP
loop in (III) and (N task < N p roc) in the same loop in (IV). Various num ber of
processors are used, including one single processor see (I) in the figure. So, it
is visible how the enhancem ent of the adopted tem plate by the D PP technique
has produced an adequate parallel processing framework. Such th a t unknown
num ber of tasks now is always acceptable, and reserving a set of processors for
‘ju s t in case’ is not required any more.

97

4.4 Concluding Remarks

This chapter has dem onstrated in general the parallel implementation of the
two methods developed for generating large size unstructured grids very effi­
ciently in parallel. A parallel processing tem plate which implements the MPL
model with SPMD structure and M anager/W orkers mechanism, in addition to
a special technique called the Dynamic Parallel Processing (D PP), has been
discussed thoroughly. Constructing a com putational framework based on this
tem plate has been examined, and a generic form of the general ‘parallel algo­
rithm ’ has been presented. Benefiting from the D PP technique in general has
been highlighted, and further discussion of its impact on the framework and
the overall performance will appear in the next two chapters.

98

Chapter 5

Issues A ssociated w ith the
Geom etrical Partitioning
Approach

5.1 Introduction

This Chapter presents three different issues th a t are naturally associated with
the geometrical partitioning approach. The first one is the demand for estab­
lishing a link (namely inter-domain communication tables) between the inde­
pendent local numbering systems used in the sub-domains grid. The second
issue to be addressed is the quality of generated grids in comparison with the
traditional sequential ones. And the last issue is the need to shuffle elements
among the sub-domains in order to ensure highly balanced distribution of the
to ta l workload.

Not surprisingly, the Chapter is divided into three main sections, where each
one is devoted to discuss all the aspects th a t are related to one of the issues.
Broadly speaking, every section starts by addressing the main cause and in­
troducing all relevent topics. Following tha t, an algorithm developed in order
to solve the associated problems is presented. An example is then given to
dem onstrate the approach.

All algorithms presented operate independently from the method used in gen­
erating the grids. In general, grids generated using the direct decomposition
m ethod have shown some advances to the ones generated using the indirect
decomposition.

99

5.2 Inter-domain Communication

It has been mentioned in Section 4.2 th a t a ‘data localisation’ scheme is in­
troduced into the general parallel tem plate in order to minimise the memory
usage on Workers. It is shown th a t the Manager performs this scheme on
each task before it is assigned to a Worker. This results in having entities
of the sub-domain grids (i.e. points, edges, boundary faces and volume ele­
ments) numbered locally per sub-domain and independently from the original
boundary grid as well. On the other hand, parallel algorithms require some
da ta to be transfered among the sub-domains themselves and from the original
boundary to the sub-domains throughout the simulation. To ensure the conti­
nuity in the solution such data must be transfered via ‘communication tables’,
which always secure the matching between the sending and the receiving grid
entities. Demonstrating how such communication tables are established is the
main objective of this Section, so first of all we review the two numbering sys­
tems which have been alluded to several times so far. Following this we discuss
different types of communication tables, and then dem onstrate the algorithm
developed to construct point to point type tables.

5.2.1 Global and Local Numbering System s

It is well known by now why there are two different numbering systems, but
probably more details about their features and interlinks are necessary before
exploring some of their use throughout the program. The global system is
established as early as the first step in the general algorithm and remains until
the very last step of it. Broadly speaking, the global system is used for the
‘public’ objects, i.e. objects required by more than one sub-algorithm, like the
surface grid on the original and internal boundaries or the background grid and
sources. W hilst a local numbering system is a ‘tem porary’ one, and usually
associated with individual tasks processed on the Workers. Such tha t, a local
numbering system is created whenever a task is to be sent to a Worker and
it is destroyed as soon as the task is done. Apparently there might be more
than one local system, but only one global system, a t any time. The global
system may interact with the local systems, whilst local systems are always
independent from each others.

Whenever a local system is created and, if and only if, there is a need for
further communication with the global system, a list of pointers is established,
which is referred to as the local-global pointers list. Such a list gives every
item copied across from the global to the new local system a unique entry
number, which points to the origin of the item. Objects in the global system
maintain the same numbers for their entities throughout the program, though
the contents may go through some modifications. Also, any da ta manipulation

100

th a t takes place in a local system is recognised within th a t system only, unless
the contents are transfered to other systems explicitly.

Linking a local system back to the global system
Some of the local systems may produce ‘new objects’ which are needed to be
used later in the program *, or may introduce some modifications to an ‘old
object’ (i.e. any item was copied across from the global system). In either of
the two cases, entities required from the local system must be linked back to
the global system through a ‘filtration’ procedure. A simple flowchart which
illustrates the linking of a local system back to the global system is presented
in Figure 5.1.

Creating the local systems and linking them back are, more or less, embedded
within the communication operations which take place between the Manager
and Workers. In addition, it is the Manager’s responsibility to ensure when
the local systems are linked back such th a t no overlapping or gaps occur in
the global numbering system.

over entities required from the local system^

YesDoes this item exist
in the global system?No

f Any modifications took '
a place on the item

.within this local system1’,
No.

Yes

Find out about the number
of the latest entry in

the global system

Store contents of the
item under the new entry
in the global system

Using the pointers list,
update contents of the
item in the global system

Figure 5.1: The procedure for linking a local numbering system back to
the global numbering system.

5.2.2 Constructing Communication Tables for Local Sys­
tem s

Different types of communication tables

Numerical algorithms across the computational engineering field may differ in
the way of utilising the available grid. Some algorithms may carry out the

1See Section 4.3 for the discussion of enforcing the parallel processing template on Step 4
in particular. Also, another example of such local systems will appear next Section in 5.3.2.

simulation on element based calculations whilst others may depend on edge or
point based ones. Also, some may define the boundary conditions on surfaces,
while others may do th a t explicitly on the grid faces/points, and similarly
in applying the external loads. Hence, parallel versions of these algorithms
would require information to be transfered among sub-domains in many dif­
ferent ways. Apparently, when an algorithm uses element based calculations
then, ideally, the information must be transfered through element to element
communication tables, and edge based calculations through edge to edge ta ­
bles, and so on.

Although, only one type of communication table is produced by the programs
(i.e. point to point) some other useful information is provided in case building
a different type of communication tables is sought:

• Volume elements within the sub-domain grids which have at least one
boundary (internal or original) face are identified. This set of elements
forms a ‘shell’ for every sub-domain which contains all the volume ele­
ments th a t may communicate with other sub-domains. Obviously, having
these ‘shells’ defined in all sub-domain grids must help in constructing
element to element communication tables.

• Each original boundary face on a sub-domain grid has its surface num­
ber from the global system reserved. This can be exploited to transfer
boundary conditions and loading applied on original boundary directly
from the global system to the local systems.

• Faces of every internal boundary will have the same order whenever
they appear in the closed boundary faces list of the two adjacent sub-
domains. Also, every internal boundary face, within each sub-domain,
has the number of the other adjacent sub-domain available. These two
features should make the constructing of face to face or edge to edge
communication tables a straightforward procedure.

Constructing Point to Point Communication Tables

Constructing communication tables th a t can fulfil all the conflicting demands
mentioned above might be very expensive, and therefore a choice has to be
made. An algorithm which produces point to point communication tables
has been developed. In fact, this type is the only one th a t can cover all the
possible configurations which may exist for the contacts between any two sub-
domains. For example, if an algorithm with face to face tables is adopted
then no communication will be established between two sub-domains which
share edge(s) or point(s) only. However, though the algorithm is developed
and used to generate point to point tables only it can be easily extended to

102

produce other types as well. On the other hand, having the point to point
tables available, in addition to some of the extra information listed above, it
is also possible to construct any other type of communication tables in a ‘post
processing’ step.

The developed algorithm relies heavily on the outcome of a previous step in
the general algorithm, i.e. linking the internal boundary grids back to the
global numbering system. So before any sub-domain closed boundary is built,
the surface grid on all boundaries (internal and original) are stored according
to the global numbering system. Any grid entity (point, face or edge) tha t
exists on more than one sub-domain boundary will have more than one entry
from the local-global pointer lists. Thus, by examining all entries in these lists,
using the global numbering index, the inter-domain communication points are
identified.

Having all communication points been identified within the global system, a
d a ta structure of information th a t correspond to these points in every local
system is built. Obviously, such a data structure should take into consideration
the efficiency in searching through massive amounts of data, bearing in mind
the scalability with problem size and the to tal number of sub-domains. A naive
approach would lead to an expensive procedure. For an intensive discussion
of constructing advanced data structures and search algorithms the reader is
advised to consult [9, 77, 38]. However, a flowchart which summarises m ajor
steps in the algorithm is presented in Figure 5.2, and an illustrative example is
dem onstrated between Figure 5.3 and Table 5.1. The efficiency of the algorithm
is discussed shortly.

Two ‘point to point’ communication tables for every sub-domain

As presented in the flowchart, the developed algorithm creates two separate
communication tables for each sub-domain. The first communication table
consists of one binary list only, which interprets the local-global pointers di­
rectly. This list has in its first column the local numbers of all original bound­
ary points exist on this sub-domain, whilst the second column has the global
numbers of the same points. See Figure 5.3 and Table 5.1. The second commu­
nication table must have n binary lists, where n represents the to tal number
of sub-domains th a t share one point or more with this sub-domain, every list
corresponds to one sub-domain. The first column in each list has the local
numbers of the boundary points (original and internal) shared with the rele­
vant sub-domain, while the second column has the local numbers of the same
points in the other local system.

103

f

Loop over all sub-domains

YesIs it a point on the original
boundary surface grid as well?

No

Is it an inter-domain
communication point?No

Yes

Using the pointers list, add it
to the first communication table

Loop over all points on this
sub-domain boundary grid

Write out on two separate files the two
communication tables for this sub-domain

Construct a data structure for all the inter-domain
communication points within their own local systems

Using an advanced searching algorithm,
find the local numbers of this point
in all other sub-domains and add them

to the second communication table

Assemble the pointer lists which link all
sub-domain boundary points from their local
systems to the global numbering system

Extract the inter-domain communication points by
finding all the global points with more than one

entry in the local-global pointers list

f

Figure 5.2: Algorithm for extracting the Inter-domain communication
data, including the communication between the sub-domains boundary and
the original boundary as well.

104

11Sub2
Subl,

10 12Sub3

I II III

5

11
11

1210 1
12

V

Figure 5.3: Illustration of the point to point communication algorithm, (I) Origi­
nal boundary with global numbering system, (II) Three sub-domains and two internal
boundary at the end of the domain decomposition procedure, (III) Grids on the internal
boundary are linked back to the global system, (IV) pointer lists are established while

| the local systems of sub-domains being created, (V) local systems only exist in the fi-
| nal grids and inter-domain communication tables have to be constructed. See the two
I communication tables for Subl in table 5.1.
f
i

First Commun. Table Second Commun. Table
W ith original boundary W ith Sub-domain No.2 W ith Sub-domain No.3

Total = 4 Total = 1 Total = 3
2 4 5 2 1 2
4 9 3 4
5 8 5 7
3 7

Table 5.1: An example of point to point Inter-domain communication tables, see Sub-
domain No. 1 in Figure 5.3. The first columns contain local numbers in the considered
sub-domain (No. 1), and the second columns contain the same point local number in
the other sub-domains(Second Table), or the global number in the surface grid on the
original boundary(First Table). Notice that sub-domains 1 and 2 share one single point
only.

It is appropriate to mention th a t the same algorithm discussed above can
still be applicable to construct other types of communication table. The only

105

required modification would be to have the local-global pointers established
based on the boundary grid faces (or edges) instead of the boundary grid
points.

Cost of constructing the inter-domain communication tables

So, is the developed algorithm capable of providing the required information
within reasonable time?. Figure 5.4 presents the to tal tim e needed to construct
and write out all the related files on the disc for a grid of size in the order of 20
million tetrahedra. The grid has been generated several times within a different
number of sub-domains, where the number of boundary faces changes as shown
in Tables 5.2. Obviously, the time required for constructing the communication
tables is effected only by the to tal number of boundary points and the number
of sub-domains. In another words, it is independent of the complexity of the
gridded configuration. However, it has been observed th a t this time is always
very small in comparison to the to tal run time. This is discussed thoroughly
in Section 6.3 .4 in respect to the scalability of the program overall.

20.E+06 Tetra.
250

200

o
<D

CO 150
©
E
I-

100

8632 64 128 256 512
Number of Sub-domains

Figure 5.4: Time required to establish the communication binary lists, the
volume grid consists of 20 million tetrahedra. Number of sub-domains in
the range [8 — 512] associated with number of boundary faces in the range
[0.9E + 6 — S.78E + 6].

106

No. of Sub-domains No. of Boundary Faces
8 953732
16 1076412
32 1323276
64 1815832
128 2808748
256 4796372
512 8764620

Table 5.2: Number of faces on the sub-domains boundary, including both internal and
original one. Time needed is presented in Figure 5.4.

!

5.3 Grid Quality
I
! In general, the quality of a solution obtained by a numerical algorithm depends

on the quality of the grid used to discretize the com putational domain. It is
a well recognized issue: employing a poor quality grid has a direct impact on
the quality and efficiency of the solution overall. For example, in the time-
dependent solvers the simulation advances based on a time step, which may
have to become very small if there were some badly distorted elements in the
grid. Consequently, an excessive number of tim e steps would be required to

| complete the simulation2. “.... these algorithms are rather sensitive to the
| quality of the grid being employed, and so great care has to be taken in the
! generation process. The improvement of grid quality is problem of major
i importance.... ” [58].

Examining and improving the quality of unstructured grids

If displaying a small size surface grid on a computer screen can be a feasible
way to check the quality of its elements, then for a grid size in the order of
several million elements the approach is not practical. Therefore, some com­
putable measurements have been introduced and adopted as a common way
to inspect grid quality. Some of the well known measurements for tetrahe­
dral grids are: minimum dihedral angle per element, ratio of volumes of two
adjacent elements, ratio of maximum to minimum edge length per element
(point), number of elements surrounding a point and alpha = average edge
length **3/volume [147].

Further consideration has been given to the grid quality issue, so quality en­
hancement techniques have been developed. Operations such as diagonal swap-

2 Some algorithms may introduce a smaller time step locally at these bad elements only,
however, in general this can effect the quality of the solution overall.

107

ping, element reconnection, element removal and grid point relaxation are in­
tegrated as a default post processing step within some grid generation proce­
dures nowadays [58], However, by applying such operations, with a predefined
criterion considering optimal values of the measurements mentioned above,
improvements in the quality of the grid overall must be noticeable. Also, the
number of severely distorted element must be kept to the very minimum.

5.3.1 Impact of the Geometrical Partitioning Approach
on the Grid Quality

Having the same traditional sequential grid generators employed in generating
the sub-domains grid, one may expect the same level of element quality in
both sequential and parallel grids. In fact, although this has been achieved
often some differences are always expected. In general, the level of element
quality obtained in unstructured volume grids is strongly connected to the
complexity of the gridded geometry as well as the quality of the boundary
surface grid. Recall th a t the geometrical partitioning approach leads to the
gridding of a set of new configurations (i.e. the sub-domains) which may have
substantially more complex boundaries than the original configuration, see
Sections 3.2.3 and 3.3.3. Encountering some differences in the element quality
between grids generated sequentially and grids generated in parallel is totally
understandable. However, obviously what is im portant a t the end is to find
out if the quality of grids generated in parallel is still satisfactory or not.

A volume grid of a configuration of a civilian aircraft inside an hemisphere
has been generated three times: sequentially, in parallel using the indirect
decomposition method and in parallel using the direct decomposition method.
The same surface grid on the original boundary and the background grid with
resources have been used in the three different runs. Minimum dihedral angle
per element and ratio of the sides length (maximum to minimum) per point
are inspected, and the results are presented in (I) and (II) Figure 5.5. It
is noticeable, th a t although there are some differences the quality of grids
generated in parallel is still very similar to the one generated sequentially.
Furthermore, a more im portant and realiable validation of parallel grids is
dem onstrated in the next Chapter, see Section 6.4, where some grids generated
by the developed programs are employed in realistic problems.

It has been noticed th a t sometimes, despite of the high quality surface grid
on the boundary, some distorted elements may still exist locally in the volume
grid. Two cases have been identified: the first case, which may appear very
frequently in the indirect decomposition method, is when two boundary sur­
faces meet forming a very sharp corner. The second case is when a small gap,
i.e. less than the minimum local point spacing, separates an internal boundary

108

0.09
Sequential — ■-

Direct Decom. —
Indirect Decom. —0.08

0.07

0.06
oo
w 0.05
c<D
| 0.04
LU55

0.03

0.02

0.01

0 *•*
0 70 80 9020 30 40 50 6010

Minimum Dihedral Angle Per Element

(i)

0.35
Sequential — >-

Direct Decom.
Indirect Decom. —0.3

0.25

0.2

0.15

0.1

0.05

0
5 6 7 80 1 2 3 4

Side Length Ratio (max/min) Per Point
(in

Figure 5.5: Statistics of quality measurements in a grid generated se­
quentially and in parallel, minimum dihedral angle per element in (I) and
sides length ratio (maximum to minimum) per point in (II).

109

from the original boundary. Generating a limited number of distorted tetrahe­
dra might be inevitable in such cases. However, a special procedure has been
introduced in the direct decomposition method case, by which the locations
of the internal boundary are adjusted in attem pt to avoid ‘roblomatic regions’
in domain, see Section 3.3.2. W hilst, the issue in the indirect decomposition
methods case could not be recovered effectively.

5.3.2 A Post-Processing Relaxation Algorithm on the
Internal Boundary Points

The quality of the sub-domain grids can always be improved by applying some
of the enhancement operations mentioned earlier in this Section. It must be
straightforward to integrate an element quality enhancement procedure within
the parallel framework. Such a procedure can be introduced as a post process­
ing operation applied on every sub-domain volume grid after been generated
on a Worker. However, quality enhacement procedures normally operate under
the condition by which the boundary surface grid can not be m anipulated at
all [58]. In the case of grids generated in parallel, all the internal boundary in
the sub-domains are ‘artificial’ and there is very little restriction on manipu­
lating them. In fact, this extra option of moving points on the boundary grid
has allowed for another grid quality enhacement procedure to be introduced:

A relaxation algorithm operating on the internal boundary points as a post­
processing procedure has been investigated. The m ajor steps of the proposed
algorithm are summarised in the flowchart in Figure 5.6. The main concept is
to assemble all edges in the sub-domain volume grids connected to the internal
boundary and simultaneously construct one local system on the Manager3. A
Laplacian relaxation technique is then applied on the new local system, see
equation 3.6 in page 50, where only the internal boundary points are ‘free’ to
move.

An illustrative diagram is presented in Figure 5.7, which demonstrates the
algorithm using a simple 2D example. The local effect, which involves only the
elements th a t have an internal boundary point, of the algorithm is noticeable.
A 3D example is presented in Figure 5.8, where the boundary surface grid of a
sub-domain is shown before and after applying the relaxation algorithm. The
impact on grid quality is demonstrated in Figure 5.9 by comparing statistics
of two different quality measurements within a sub-domain volume grid.

The algorithm has been recognised to be a very expensive procedure compu­
tationally, and in the light of the ‘little’ improvements obtained, it has been
om itted in more recent versions of the program. Also, no attem pt a t all was

3 Choosing the Manager in here was to exploit the other communication operations which
take place between the Manager and the Workers in transferring the relevant data.

110

t

Update the sub-domains volume grid on
the Workers and write out the new files

On the Manager, collect the sent data for all
sub-domains and, using the local-global pointer
lists, link them all within one local system.

Apply Laplacian smoothing technique on the new
system, taking into consideration that only the
internal boundary points are free to move.

Send back to the Workers, using the local-global
pointer lists in here again, the new coordinates
of the internal boundary points only.

After generating the volume grid of a sub-domain
on a Worker, derive all element/edges connected
to the internal boundary points.

t

Figure 5.6: Major steps in the relaxation algorithm applied on the internal
boundary points as a post-processing procedure.

I l l

Internal boundary
between (I) & (J)Internal boundary

between (J) & (K)

Internal boundary
between (I) & (L)

Global internal
boundary (node,
or edge)--------

Internal boundary
between (K) & (L)

(I)

New Internal
boundary J-K

New Internal
boundary I-J

New Internal
boundary I-L

(I I)

New Internal
boundary

(i n)

F igure 5.7: Illustration of the post-processing relaxation algorithm on the
internal boundary points: (I) a typical configuration of few neighbouring
sub-domains, (II) elem ents/edges connected to internal boundary in ev­
ery sub-domain are derived in parallel and assembled within one system by
the Manager (edges on the internal boundary itself are sent to the Man­
ager from the sub-domain with the higher order only), (III) the new
inter-domain boundary (i.e. after applying the relaxation algorithm on the
internal boundary nodes).

112

(I I)

F igure 5.8: T h e im p a c t o f th e internal bo u n da ry rel axat ion a lgor i thm on
two di f ferent sub- do mai ns , (I) ge ne ra t ed using th e ind irect de c om pos i t ion
m e t h o d and (II) using th e d irec t decomp os i t io n m e t h o d . See Figure 5.7 for
an i l lustrat ion o f th e ‘r elaxat ion a l g o r i th m ’

113

made to parallelise it, since a massive number of communication operations
would have been unavoidable, particularly if D PP loop was to be used.

5.4 Load Balancing

Previous chapters have shown th a t achieving a well balanced distribution for
the grid elements among the sub-domains could not be secured, neither at the
domain decomposition step nor during the volume grid generation. On the
other hand, achieving an acceptable performance by a parallel solver requires
a well balanced distribution of the to tal workload among the sub-domains.
Therefore, and in order to ensure the effectiveness of the developed frame­
work overall, introducing a post-processing workload redistribution technique
becomes essential.

Several distinguished algorithms th a t address the problems of partitioning un­
structured grids and distributing the workload evenly have evolved in recent
years [30, 112, 31, 6, 83, 74, 75, 133, 134]. These algorithms may vary dram at­
ically in their performance, complexity of the general procedure and quality of
the final results. It is beyond our intention to get involved in any sort of com­
parison or evaluation herein. An interested reader can consult [65, 125, 150],
also see Section 3.2.2. Nevertheless, it still ought to be mentioned th a t most
of these advanced algorithms are very expensive in respect to their require­
ments of computing resources. Therefore, and in order to m aintain our global
objective of generating large size grids on regular computing resources, seek­
ing a purpose-built load balancing technique is justified. However, the option
for using any other partitioning and load balancing algorithm is still available
since one global grid of the entire domain can be built, see Section 6.2.2.

The proposed technique consists of two main stages. F irst, the number of
elements th a t due to be moved out, or attached to, each sub-domain is iden­
tified using an elegant algorithm developed by Hu and Blake [66]. Secondly,
the element migration is carried out in parallel employing the same developed
tem plate as presented in Section 4.2. More details about the two stages are
discussed throughout the rest of this Chapter, but before going any further it
might be essential to emphasise th a t the proposed technique was mainly inte­
grated into the framework just as an a ttem pt to have a ‘self-contained’ parallel
grid generation tool. So, we are not in any way proposing the technique as
an alternative complete load balancing algorithm, since apparently such work
can be a subject for a full PhD research program [73, 132]. However, having
the developed framework enhanced by this technique means th a t if a grid is
generated on a certain platform then a balanced distribution of its elements
will be achievable without the need of any extra resources. Furthermore, we
strongly believe th a t this technique can be more than adequate particularly

114

0.09
With Relax. -

Without Relax. -
0.08

0.07

0.06oo
« 0.05
c<D
| 0.04
LU

0.03

0.02

0.01

0 50 60 7010 20 30 40 80 90
Minimum Dihedral Angle Per Element

(i)

With Relax. -
Without Relax. -0.3

0.25

0.2oo
w
I 0.15QL
O'

0.05

0 2 3 5 6 7 81 4
Side Length Ratio (max/min) Per Point

(i i)

Figure 5.9: Statistics of quality measurements in the same grid, generated
twice with and without the post-processing relaxation algorithm. In (I)
the minimum dihedral angle per element, (II) the side length maximum to
minimum ratio per point.

115

after improving the initial work load distribution in the direct decomposition
method.

5.4.1 Hu &; Blake Algorithm

This algorithm works out a schedule for the number of elements th a t must be
moved between any two sub-domains, such th a t each sub-domain will have the
same number of elements on completion. This schedule (termed as elements
migration schedule) provides an optimal solution by: (a) keeping the element
movement to a minimum and (b) restricting the migration among adjacent
sub-domains only. Obviously, these two features should help in reducing the
com putational cost of the load balancing algorithm itself, also to m aintain the
inter-domain communication cost as low as possible [66, 67].

The algorithm defines a graph (V, E) to represent the sub-domains configura­
tion, where V = (1,2,P) is the set of vertices th a t represents a sub-domain,
and E is the set of edges. There is an edge between two vertices (sub-domains)
if and only if they share an internal boundary. Associated with each vertex
i there is a scalar representing the load (number of elements) in the sub-
domain. Also, with each edge (i , j) there is another scalar 8ij representing the
number of elements due to migrate between i and j in order to achieve the
average load I in every sub-domain.

h
7 = (5.1)

The algorithm converts the problem of finding an optim al element migration
schedule into solving the linear equation (5.2).

LX = b (5.2)

where L is the Laplacian m atrix of the graph defined as

(L)ij — <
- 1 , if i ^ e E ,

deg(i), if i = j , (5.3)
0, otherwise

and where b is

bi = k - l (5.4)

For a typical example, consider the 6 sub-domains configuration as shown in
Figure 5.10, where the symmetric m atrix L will be

116

3 0 - 1 0 - 1 - 1
0 2 - 1 - 1 0 0

- 1 - 1 3 0 0 - 1
0 - 1 0 2 - 1 0

- 1 0 0 - 1 3 - 1
- 1 0 - 1 0 - 1 3

and having I = 58.83 the right hand side vector b will be:

4.17
-29.83
-16 .83

-0 .83
13.17
30.17

It is proved in [66], th a t using the conjugate gradient algorithm in solving the
main equation should give a very fast convergence. An algorithm presented
in [37] was coded and integrated. The solution of the presented example is
achieved in 4 iterations only:

7.58
-20.40

-5 .19
-5 .7 7

9.69
14.08

Having the main equation (5.2) solved for A, then the number of elements due
to move from sub-domain i to sub-domain j is simply:

6ij = A t - A j (5 .5)

Obviously $ij — fijii which represents the fact th a t if a sub-domain i is to
send t v elements to j , then sub-domain j is to receive the same amount (to
send Sji). Since the result from solving the main equation are real numbers,
it is necessary to round every Sij into the nearest integer. By doing so the final
load in any sub-domain i will be no more than deg(i)/2 away from the average
load 7, see Graphs (III) and (IV) in Figure 5.10.

117

(I) (I I)

(III) (IV)

Figure 5.10: An exa mple to d e m o n s t r a t e Hu & Blake a lgor i thm, (I) T h e
su b - d o m ai n s g raph , (II) T h e initial u nb a l anc ed load in th e sub- do mai ns ,
(III) E lement t o be moved a m o n g s u b- do m ai ns based on th e Hu & Blake
resul t , (IV) T h e final ba lanced load in th e sub- do mai ns .

118

5.4.2 Implementation of Elements M igration Schedule

We enforce the obtained schedule in two distinct steps: First, a number of
independent volume grids are constructed, where each one of them represents
a ‘sub-sub-domain’ extracted from sub-domain i and to be attached to sub-
domains j . Obviously, each sub-sub-domain should consist of the Sij elements
recommended by the schedule. The second step is ju st simply to attach every
sub-sub-domain to its destination (i.e. sub-domain j) . The two steps together
are described as an ‘element migration cycle’. Procedures involved in com­
pleting one cycle are presented shortly, but first let us emphasise the overall
strategy for enforcing the element migration schedule.

Representing the to tal number of elements in all sub-sub-domains th a t are to
be extracted from a sub-domain i as:

deg(i)

f t = £ iPik (5.6)
k = l

Where as stated above ipik is defined as:

« • - { £ s t s <«>
then a case where (ft > li) can be identified.

To be able to proceed in implementing the recommended schedule, whenever
such a case occurs, another extra cycle has to be initiated. So, if the total
number of elements in a sub-domain becomes less than what is needed to create
another sub-sub-domain it is logged for the next cycle, while the current cycle
carries on progressing. A flowchart th a t summaries the layout of the load
balancing technique is presented in Figure 5.11, where the implementation
strategy of the schedule is clear. Also, a case where two cycles were needed to
achieve the balanced distribution is illustrated in Figure 5.12.

Although there is no clear restriction on the to ta l number of cycles, apparently,
all grids generated using the indirect decomposition method needed a single
cycle only. W hilst cases with two cycles were observed among grids generated
using the direct decomposition method.

Procedures within an elem ents migration cycle
Whenever a sub-sub-domain is to be extracted from sub-domain I, in order
to be attached to J, a Greedy type algorithm is exploited twice. First, on the
surface grid on the internal boundary shared between I and J, and secondly
within the volume grid in I. A pseudo code which summarises the layout of
the procedure used in extracting (Nr_sub) sub-sub-domains from sub-domain

119

f

If a sub-domain has less elements
than what needed, then T = 1

Yes

No

Update the local-global pointers list

Update the local-global pointers list

Build the inter-domain communication tables

Apply Hu & Blake algorithm to find
out the elements migration schedule

Link the T| sub-sub-domain grids into their
target sub-domains, another DPP loop here

Construct a set of T| sub-sub-domain grids
in parallel employing a complete DPP loop

Work-out the total number of elements which
are to be moved out of each sub-domain

On the Manager, assemble a list of the final
number of elements in each sub-domain

■

f
F igu re 5.11: A flowchart for the strategy adopted to implement the ele­
ments migration schedule, notice the need for two DPP loops in each cycle.

120

(i) © — 0 — 0 — 0 — 0 — 0

(I I) 0 — 0 — 0 — 0 — 0 — 0

f

I

<■» O ^ C H ^ O H K)I|
iI

< » > O — 0 ^ 0 — o — o — o

Figure 5.12: An example where more than one element migration cycle is
needed, (I) sub-domains graph, (II) unbalanced element distribution, (III)
first element migration cycle, (IV) second cycle and (V) the final ‘balanced’
element distribution.

121

I is presented here, whilst details about the Greedy type algorithm itself can
be found in Section 3.2 (see page 40).

Ne(I) = Total number of te trah ed ra in Sub-domain (I) ;
F o r(ir = 0 ; i r < Nr_sub; ++ir){

(1) Find out about the required number of te trah ed ra fo r the (ir)
sub-sub-domain N e(ir), and the d e s tin a tio n sub-domain (J) ;

(2) I f Ne(ir) > N e(I), then (I) is logged in to the next cycle;
(2-1) Break the loop;

Ne_acc = 0;
(3) S ta rtin g from a face on the (I-J) in te rn a l boundary:

(3-1) Assign (ir) to the tetrahedron associated with th is
boundary face; ++Ne_acc;

(3-2) Repeat (3-1) on the immediate adjacent te trah ed ra only;
(3-3) I f Ne_acc >= Ne(ir) then do (5)
(3-4) Using Greedy approach, progress over the surface g rid on

the (I-J) in te rn a l boundary; back to (3-1) fo r every face;

(4) Considering the te trah ed ra co llec ted recen tly as a ‘Fron t’ ,
then progress in the volume g rid of (I) using Greedy approach;
assign (i r) to te trah ed ra th a t are s t i l l in (I) ; ++Ne_acc;

(4-1) I f Ne_acc >= Ne(ir) then do (5); otherwise update the
1 F ron t’ and carry on as in (4);

(5) Update the -current to ta l number of elements Ne(I);
>

I f (! i r){
(6) Convert every se t of te trah ed ra associated with an (i r) in to a

stand alone volume g rid (a g rid with i t s own lo ca l numbering);
Update the remaining te trah ed ra in sub-domain (I) ;

(7) Derive the new boundary fo r (I) and a l l i t s sub-sub-domains;

(8) Update the loca l-g loba l po in ters l i s t ;
}

To be able to proceed in the migration cycle, the above procedure has to be

122

performed on all relavent sub-domains before the second step (attachm ent) is
initiated. All new sub-sub-domains, and the original sub-domains, are con­
sidered as independent (i.e. local numbering systems) grids now. Having
the local-global pointers list updated, the task of attaching Nt_sub sub-sub­
domains to a sub-domain J can be defined as “building one new local system
by merging N t.sub + 1 different local systems” . However, the layout of such
straightforward procedure can be summerised as:

F o r (i t = 0 ; i t < Nt_sub; + + it){

(1) E s ta b l is h an access to th e g lo b a l numbering f o r a l l ,
and only a l l , th e boundary p o in ts on (J) and (i t) ;

(2) F ind out bo th N e (it) and th e source sub-dom ain (I) ;

(3) Loop over th e N e (it) t e t r a h e d r a ;
A ttach every te tra h e d ro n to (J) by:
(3-1) ++Ne(J);
(3-2) a d ju s t c o n n e c tiv ity of th e new elem ent e x p lo i t in g th e

acce sses to th e g lo b a l numbering system in (1) ;

(4) Update th e boundary g r id f o r (J) ;

(5) Update th e lo c a l -g lo b a l p o in te r s l i s t ;
>

Parallel processing of the elements migration cycles
Two complete D PP loops are implemented within every element migration
cycle, first loop is associated with the derivation of sub-sub-domains and the
second loop with attaching them. D PP loop has been discussed in detail and
presented in Section 4.2.1, however, information related to the implementation
of D PP loop in the load balancing algorithm is presented herein.

Index in each D PP loop is controlled by the to ta l number of sub-domains
involved in the derivation (or attaching) procedure. The order of tasks pro­
cessing in each D PP loop is selected based on the to tal number of elements
due to be extracted from (or attached to) every sub-domain. The number of
sub-sub-domains, as the to tal in the grid overall or per sub-domain, is not
recognised at all in any of the loops. Because, if the index was to be controlled
by the to ta l number of sub-sub-domains in the grid instead, a Worker-Worker
type of communication would have been required 4. However, a typical paral­
lel processing of a migration cycle (i.e. two D PP loops) is illustrated in both

4This is because a sub-domain may exist on two different Workers at the same time, and
two different sub-sub-domains may have to be extracted/attached simultaneously.

123

Figure 5.13 and Table 5.3. Four Workers are employed to process 7 tasks in
each D PP loop, and 19 sub-sub-dom ains are ex tracted and attached. More
inform ation about this grid can be seen in in Table 5.4, option (3).

Manager] ^ 1 Worker 1 C H 3 |lni_Grids [: p Partjngl! 1 1Surf_Grid
Vol_Grid | | Post_Pro<F

 .----------

T50.0 75.0
i---------1---------1---------1---------q

100.0 125.0 150.0 175.0 200.0 225.125.0
Figure 5.13: D y n am ic Parallel P rocess ing for th e load balanc ing algori thm.
T w o D P P loops, wi th 7 t a sk s in each processed on 4 Workers , n u m b e r of
su b - su b - d o m ai n s wi thin each t a sk is p resen ted in Tab le 5.3.

Very little inform ation is transferred via the M anager-W orker com m unication
operations. The sub-sub-dom ains grid d a ta are stored on the disc instead of
the M anger’s (or any other W orker’s) memory. Of course, exchanging d a ta
through reading and w riting to the disc is a very slow procedure in com pari­
son to the direct use of M PI functions. B ut, on the other hand, overloading the
M anager’s m em ory would have introduced some lim itations into the framework
overall. May be, quoting from [40] is an appropria te conclusion: ” In parallel
program m ing, as in other engineering disciplines, the goal of the design process
is not to optim ise a single m etric such as speed. R ather, a good design m ust
optim ise a problem-specific function of execution tim e, mem ory requirem ents,
im plem entation costs, m aintenance costs, and so on. Such design optim isa­
tion involves tradeoffs between simplicity, perform ance, portability , and other
factors.”

No Sub-domain: 1 2 3 4 5 6 7 8 T otal-D PP
F irst step: 5 2 4 2 3 2 1 0 7

W1 W4 W2 W2 W3 W3 W3 -
Second step: 0 3 1 2 2 3 3 5 7

- W4 W2 W4 W1 W2 W1 W3

Table 5.3: Tota l n u m b e r o f s u b- su b - d om ai n s d ue to be ex t ra c t e d (Fi r s t s t e p) or linked
(Second s t e p) in every sub-d oma in , Worker a s soc ia t ed wi th each S ub -d o m a in is p resen ted
as W (?) . T h e last co lu mn (T o t a l - D P P) co n t a in s the to t a l n u m b e r o f t a sk s (i.e. sub-
do m a in s) have been identified in each D P P loop.

124

5.4.3 Load Balancing and Inter-domain Communication

Usually, high quality partitioning of a grid is identified by: (a) well balance
distribution of to tal workload among the sub-domains and (b) minimum inter­
domain communication cost. Although the developed algorithm has demon­
strated th a t condition (a) can be satisfied always, unfortunately, the situation
for condition (b) is often far from optimal. Obviously, the poor performance in
minimising the inter-domain communication cost is not due to the load balanc­
ing algorithm itself, the initial interface created at the domain decomposition
step has a significant impact. Also, the use of uni-directional planar cuts is
not the ideal approach in this respect, and it is highly likely th a t implement­
ing a more advanced domain decomposition algorithm will change the final
communication cost dramatically. In addition, a better balanced workload
distribution at the domain decomposition stage means less elements migra­
tion will be needed, subsequently a better reservation of the initial interface is
expected.

In order to improve the performance in respect to the inter-domain communi­
cation cost, a smoothing algorithm is applied on the ‘new’ sub-domain internal
boundaries. The core idea of this algorithm has been illustrated earlier in a
simple form of 2D triangular grid, see Figure 3.18 in page 63. Obviously, it
is more complex in the 3D tetrahedral grids case, but we believe the concept
is clear and there is no need for further discussion. However, the extended
form of element connectivity (i.e. when the neighbouring elements are known)
is the only data required. The procedure is carried out in parallel while the
sub-sub-domains are created on the Workers. In order to dem onstrate the
impact of such smoothing technique on the inter-domain communication cost,
a grid of an airfoil (M6, Dassault) is presented. The grid has been generated
in 8 sub-domains using both indirect decomposition m ethod (Figure 5.14 and
5.15) and direct decomposition method (Figure 5.16 and 5.17). Three differ­
ent runs have been carried out where every run is associated with a different
option, see Tables 5.4 and 5.5 for more details.

We recall the procedure adopted in extracting the sub-sub-domains to em­
phasise some points related to inter-domain communication cost. First of all,
applying Greedy on the internal boundary faces to collect all adjacent tetrahe­
dra before marching towards the interior ones is a vital point in this respect.
Because otherwise there will be a risk of maintaining the old internal bound­
ary and exposing new tetrahedra faces as an additional interface. Secondly,
a Greedy type algorithm has been embraced mainly because of the interest
in keeping the memory usage to a minimum. So, if this is not a concern a t
all, a more sophisticated grid partitioning technique can be integrated instead
[6, 133, 75]. In fact, Greedy algorithm is well recognised to produce parti­
tioned grids with expensive inter-domain communication cost [150]. Disjoint

125

Option No.l Option No.2 Option No.3
No_Sub. No_Tetr. No_Com. No_Tetr. No.Com. No_Tetr. No.Com.

1 159523 5111 59755 4341 59697 3467
2 63092 4838 59757 8051 59847 7195
3 76208 5603 59757 8550 59697 7647
4 38898 3370 59757 5379 59766 4649
5 70874 6601 59755 7910 59854 6756
6 25378 1659 59757 5176 59769 4536
7 21117 1188 59756 5573 59754 4933
8 22959 1444 59755 4516 59665 4141

Total 478049 29814 478049 49496 478049 43324

Table 5.4: Number of tetrahedra (No.Tetr.) and inter-domain communication points
(No.Com.) per sub-domain (No_Sub.) for a grid of the M6 (Dassault) airfoil geometry,
using the indirect decomposition method: -Option N o.l, without implementing the
workload distribution developed algorithm. -Option No.2, implementing the developed
algorithm without the smoothing technique applied on the new internal boundary. -
Option No.3, the default option for using the workload distribution algorithm with the
smoothing technique.

sub-domains are very likely to exist [31], though a comparison between infor­
mation in Table 5.4 and Figure 5.15 shows th a t a disjoint sub-domain may still
have a to ta l number of communication points less than other continues ones.
However, it has been observed throughout this research, th a t while disjoint
sub-domains are very likely to appear in the indirect decomposition grids only
few cases were reported among the direct decomposition grids. Nevertheless,
the presented algorithm after all can be considered as a very reasonable load
balancing solution since no extra computing resources is needed.

The local-global pointers list has been updated throughout the load balancing
algorithm, and therefore, inter-domain communication tables for the ‘new sub-
domains’ can be constructed by implementing the same technique presented
in Section 5.2.2. In addition, all information required for building different
types of communication tables, as discussed in the same Section, are extracted
and available for each sub-domain.

5.5 Concluding Remarks

Three different issues th a t may appear in most of the geometrical partition­
ing algorithms have been identified, a post processing solution for each issue
has been demonstrated. The first algorithm, which is the only ‘compulsory’
one, deals with the task of constructing inter-domain communication tables.

126

Option No.l Option No.2 Option No.3
NoJSub. No.Tetr. No.Com. No.Tetr. No_Com. No.Tetr. No_Com.

1 9895 761 57093 1527 57036 1235
2 24655 1999 57092 6472 56583 4848
3 34849 2869 57093 8087 57526 6938
4 135486 4764 57093 12141 57455 10155
5 183349 4712 57092 3673 56951 2581
6 35407 2760 57093 7444 57229 6288
7 23722 1875 57092 5861 56892 4989
8 9378 694 57093 1597 57069 1292

Total 456741 20434 456741 46802 456741 38326

Table 5.5: The same information as in Table 5.4, while the direct decomposition method
is used. Notice that total number of tetrahedra is different, though the same surface
grid on the original boundary is used.

These tables identify all boundary points th a t coexist on more than one sub-
domain and provide a direct link between their independent local numbering
systems. The developed algorithm is a straightforward implementation of a
typical search procedure on an advanced data structure of the sub-domains
boundary points.

The other two algorithms, unlike the first one, are heavily effected by the
complexity of the gridded geometry, and they involve more expensive compu­
tational work. However, it has been dem onstrated th a t the second algorithm,
which tries to improve the grid quality a t the sub-domains interface, can be
ignored completely in the light of the little improvements obtained. Never­
theless, inspecting the quality of generated grids showed th a t a satisfactory
level has always been achieved. The last algorithm presented has been de­
veloped in order to ensure th a t a grid generated by the parallel framework
can have its to tal number of elements redistributed evenly on sub-domains
within the same environments. The algorithm demonstrates an excellent per­
formance in regards to the elements distribution balance but, unfortunately,
it can not secure the associated inter-domain communication cost. Obviously,
implementing a more advanced technique for the initial domain decomposition
in the future will have a significant impact on this issue. Meanwhile, if a user
is keen to implement an ‘off the shelf’ grid partitioning software, he/she can
take advantage of the available option for constructing one global grid, which
is discussed next the Chapter. However, generating a well balanced grid with
optim al communication cost without the need of any ‘post processing’ must
be the ultim ate target in the future.

127

Figure 5.14: Sub-domains before applying the load redistribution algorithm.

(5) (6) (7) (8)

Figure 5.15: T h e su b - d o m ai n s grid af te r app ly ing t h e load red is t r ibu t ion a lgor i thm.

Figure 5.16: Sub-domains before applying the load redistribution algorithm.

Figure 5.17: T h e s u b - d o m a i n s grid a f t e r app lying th e load red is t r ibu t ion algori thm.

129

Chapter 6

R esults and Analysis

6.1 Introduction

This chapter focuses on the algorithms (programs) developed during this study
as they are used in the Teal world’. The chapter starts by dem onstrating
the final shape of the computational framework with three different options
available to serve various demands from the view point of the end user. Most
of the algorithms have already been discussed with the exception of a rather
simple, bu t very effective, procedure. It is the construction of one global
volume grid by assembling all individual sub-domains grid. The utilisation of
this procedure in carrying out local repartitioning of some sub- domains is then
illustrated. Some examples of large size grids of realistic engineering problems,
which have been generated on a medium size computer, are presented. In fact,
the presented examples provide a complete coverage of all the various options
available in the domain decomposition and the post-processing procedures.

A comprehensive study of the program performance and scalability is pre­
sented. In order to meet the dynamic nature of the framework, a specially
designed policy has been developed. The number of processors, number of
sub-domains and size of the grid are considered to be the param eters th a t
can effect both performance and scalability. A unique performance visualisa­
tion tool is used1, and all well known measurements (e.g. speedup factor and
efficiency) are investigated. The scalability of the framework is inspected in
respect to the problem size and the available computing resources. The im­
pact of the sequential parts in the general algorithm and the inter-processor
communications on the performance overall is inspected as well.

Integrating the framework into an in-house parallel com putation engineering
environment is highlighted. This environment contains parallel CFD and CEM

1For information about these tools and their implementation in the developed programs
the reader is advised to consult Appendix B.

130

algorithms, together with some basic CAD functionalities and an advanced
parallel visualisation tool. Employing some of the generated grids within this
environment in order to carry out typical large scale CFD simulations is also
demonstrated.

6.2 The Developed Framework in Practice

Having discussed all the algorithms thoroughly throughout the previous chap­
ters, it is time to explore how they have been effectively integrated into one
general program. The main interest behind this integration is to fulfill var­
ious requests th a t may emerge from using the program in different type of
applications. As well as, to increase the program flexibility, such th a t the
available computing resources are always exploited in an optimum manner.
For instance, if a user has got a computer with sufficient memory storage, and
he /she is interested in assembling the sub-domains grid in one global volume
grid, then the program will provide an option to do so. In contrast, if a user
has a very restricted access to computing memory, such th a t some of the ob­
tained sub-domains are still bigger than what can be gridded by the sequential
generator, the program will provide an option by which a local re-partitioning
procedure is used. Furthermore, the framework has been constructed taking
into consideration future developments, such th a t individual sub-algorithms
can be enhanced or replaced with minimum efforts and modifications in the
rest of framework. For example, If a different gridding technique was to be
implemented on the internal boundary or (and) in the sub-domains, the cur­
rent form of the framework including all the other sub-algorithms would be
applicable almost without any modifications a t all.

The three main options th a t have been made available in the program are
briefly highlighted in the following, whilst a flowchart of the overall framework
is presented in Figure 6.1.

• Option 1 (basic grid): In fact, this option represents the ‘basic’ grid th a t
is always generated whatever option is chosen, though it may appear
in a very different form in the final output. However, the option still
stands as an independent option. Such an option can be used in the
following two cases: (a) The workload is already well balanced, or it
is not a m ajor concern of the user, (b) The user is planning to use the
generated grid in conjunction with another re-partitioning algorithm, e.g.
algorithm presented in [134]. The internal boundary point relaxation
algorithm is optional in here, while the establishment of the inter-domain
communication tables obviously is a must.

131

• Option 2 (load redistribution): Although the developed algorithm may
suffer sometimes from high cost in the inter-domain communication, it
can still provide more than a ‘reasonable’ solution in too many cases.
However, this option is recommended whenever there is a demand for a
highly balanced distribution of the number of elements into sub-domains,
and with less concern about achieving an optim al communication cost.
In fact, this option may simply become the only available load balancing
procedure, particularly when access to advanced computing resources
is limited. Clearly, this option would be more effective if the initial
workload distribution was relatively more acceptable such th a t number
of elements to be shuffled is small, and thus impact on inter-domain
communication is minimum.

In the case where achieving a perfect load balancing is considered, regard­
less of the inter-domain communication cost, this option can be invoked
while the smoothing procedure on the sub-sub-domains internal bound­
ary is deactivated, see section 5.3.2. Similarly as in option 1, establishing
the inter-domain communication is a must. Obviously, the communica­
tion tables are indeed constructed for the ‘new’ boundary, i.e. after the
load redistribution algorithm is complete.

• Option 3 (one global grid): Clearly, it is extremely unlikely to have such
large size grids assembled in one global volume grid in order to use it
with a traditional sequential program. However, this option was intro­
duced mainly to give the user an opportunity to use h is/her own way in
partitioning the global grid if they wanted to. Thus, if the number of
sub-domains or communication cost obtained from using the previous op­
tions were not satisfactory, or if there was an issue with the compatibility
in da ta formats, the user can simply convert the ‘partitioned grid’ into
one global grid. Then, a typical grid partitioning algorithm, e.g. Metis
[75], can be implemented directly. Neither of the internal boundary point
relaxation or the inter-domain communication tables algorithms are used
in this option.

The construction of global volume grid

The developed technique is outlined briefly below, while an illustrated example
is presented in Figures 6.2 and 6.3. The former figure shows the geometry in
(I) (i.e. a CFD model of the Super Sonic Car Thrust inside a box) with the
position of the planar cuts in (II). The original boundary surface grid on the
resulted sub-domains are also presented in (III), whilst the later figure shows
the surface grid on the internal boundary (I) with some details from the global

132

(Start)

Read in the surface grid of the compuational
domain boundary and all other input parametersI

Apply a domain decomposition technique

1
Derive and discretize the internal boundary (In p a ra lle l)

Build individual sub-domain boundary grids,
and create the local / global pointers list

(1) 'hat option?. (2)

Generate sub-domains
grid (In para lle l) (3)

r

Generate sub-domains
grid (In para lle l)

Derive edges needed for the
internal boundary relaxation

(In para lle l)

Generate sub-domains
grid (In para lle l)

Apply relaxation thechique on

Based on the local /global
pointers list build one

global grid

Derive data needed in the
internal boundary smooth­
ing procedure (In para lle l)

Apply relaxation thechique

Based on the local / global
pointers list establish the
inter-domain communication
tables

 1 -------

Based on the new internal
boundary and the local /
global pointers list establish
die inter-domain
communication tables

C End)

r

■J 1
Apply smooth
on the global

eleme

r l.
ing thechique
volume grid’s
;nts r

Apply a load redistribution
technique, move elements
among sub-domains, then
extract the new internal
boundary and update the
local / global pointers list

(In p a r a l le l)

Figure 6.1: The general framework in practice, three different choices
are available for the user: (1) generate the sub-domains grid and establish
the inter-domain communication tables, (2) apply load redistribution on
the sub-domains grid and (3) assemble the sub-domains grid in one global
volume grid.

133

volume grid (II). Impact of the smoothing technique 2 can be seen as well, see
(II) in both Figures 6.2 and 6.3 and notice the locations of internal boundary
with the effect of the smoothing particularly in the coarse part of the grid.

Typical grid quality enhancements can still be implemented on the global grid
elements [58], bearing in mind th a t an extensive demand of memory storage
will be inevitable. In fact, although a point smoothing algorithm is available,
as a post processing step in the assembly procedure, it is strongly recom­
mended not to use it with large size grids. Very little improvement has been
reported on the overall quality in global grids. Also it is to be noticed, th a t
the original boundary grid is always reserved, though the order of the faces
may change dram atically after the new global numbering system is established.

Layout of the procedure for constructing the global grid

1- I n i t i a l i s e the global volume g rid with number o f :

Faces (NF_global) = 0
Tetrahedra (NT_global) = 0
Points (NP.global) = Total number of po in ts on

in te rn a l and o rig in a l boundary.

2- Loop over the sub-domains:

2-1 Read a sub-domain volume g rid with number of:
Points (NP_Sub), Faces (NF_Sub), Tetrahedra(NT_Sub).

2-2 E stab lish an access to the lo ca l-g lo b a l po in te rs
l i s t with respect to the current sub-domain only.

2-3 I n i t i a l i s e a temporary numbering l i s t fo r (NP_Sub).

2-4 Loop over the sub-domain poin ts (NP_Sub)

- I f i t is a boundary po in t, then access the po in te rs
l i s t using 2-2, e lse add i t to (NP.global) as a new
point and e s ta b lish a lin k with the l i s t in 2-3;
(NP_global++;) .

2 Please note that the smoothing does not mean the relaxation of internal boundary points
as presented in section 5.3.2, however, the same Laplacian equation, see 3.6 in page 50, is
employed but operating on the entire volume grid points simultaneously.

134

2-5 Loop over the sub-domain faces (NF_Sub)

- I f i t is an o rig in a l boundary face , then update the
number of associated tetrahedron by adding the
current value of (NT_global); otherwise ignore i t .
(NF_global++;) .

2-6 Loop over the sub-domain te trah ed ra (NT_Sub)

- Add a new tetrahedron to the global volume g rid .
All nodes are renumbered based on the lo ca l-g lo b a l
po in te rs l i s t fo r the boundary po in ts or on the
numbering l i s t e stab lished in (2-3) otherw ise.
(NT_global++);

3- Apply a smoothing technique on the global volume g rid (o p tio n a l) .

4- Write out the f in a l g rid in one s e r ia l f i l e .

It is been stated earlier th a t constructing the global volume grid option was
introduced to be used only when a sufficient amount of memory is available.
In fact, the assembly technique itself requires a very limited amount of extra
memory, i.e. an integer vector of a length equals to the to tal number of points
in the sub-domain only. W hilst, the ‘real dem and’ of memory is associated
with the storage of the global grid data itself. However, the same procedure as
outlined above could still carry out the same task without the need for more
memory by introducing a little modification. Simply, the updated version
of every sub-domain grid (i.e. after all the sub-tasks in step 2 have been
performed) can be written back on the disc instead of being accumulated to
the global grid. Thus, having all sub-domains grid numbered according to the
global volume grid numbering system and stored in individual files, the global
grid can be created by simply reading individual sub-domain files and then
appending them into one sequential file.

6.2.1 Local Partitioning of Large Sub-domains

Having the direct decomposition method implemented using planar cuts in
one direction only, some limitations on the to tal number of sub-domains th a t
can be created is expected. Also, recalling all the difficulties in controlling
the load distribution between the sub-domains a t the partitioning procedure
in the indirect decomposition method. It is clear then, th a t there is a possi­
bility to have a sub-domain assigned to a Worker to be gridded whilst it still

135

(I l l)

Figure 6.2: Super - son ic ca r example , a vo lum e grid is g en e r a t e d in parallel
wi thin e igh t su b - d o m ai n s th e n one global grid is c o ns t r uc te d by merg ing th e
su b - d o m a i n s grid. (I) Ge o m e t r y def ini t ion, (I I) T ri angu la r grid on original
b o u nd ar y and pos i t ions o f th e p lanner cu t s in th e do ma in d ec om po s i t io n
p rocedure. (I l l) Original bo un d ary on t h e sub- dom ai ns .

136

§ii:€11
;n<.r

pilljBfllLjj

. . 7
?>!"■" ‘

fSSs.vSWia
i f p J I

(i n

(h i)

Figure 6.3: Super - son ic car exa mple (con t .) . (I) Detai ls f rom t h e sur face
gr ids on t h e internal boundar i es , (I I) Cross sect ion in th e global vo lume
grid wher e th e locat ion o f internal boundary, and t h e effect o f global grid
s m o o t h i n g on it, is not iceable . (I l l) Cross sect ion a round an inter face
region as an individual su b- do m ai n and in t h e global grid.

137

requires computing memory larger than what is available. However, it has
been observed th a t the algorithm presented above (i.e. the construction of
the global grid) can be utilised effectively to overcome the problem of ‘large’
sub-domains. The overall algorithm can be enhanced by a local partitioning
technique, which is an identical copy of the procedure in the global algorithm
but employed on one sub-domain locally. The large sub-domain is divided into
a number of smaller sub-sub-domains, which are then gridded independently
on the same worker and assembled to form the sub- domain grid. The sub-sub­
domains are recognised locally only and they simply do not exist a t all from
the point of view of the overall framework. Although, such local partitioning
can be implemented in a recursive manner, ideally, the issue should be treated
earlier a t the initial domain decomposition step.

The local partitioning technique has been implemented in both indirect and
direct decomposition methods. Table 6.1 illustrates the details of a grid gen­
erated using the former method [107]. The grid is for a configuration of two
centralised hemispheres with different radii. The surface grid on the original
boundary consists of 560,578 faces and 280,291 points. The domain is parti­
tioned into 64 sub-domains initially and a number of sub-domains has been
repartitioned locally, e.g. 55-57 in the Table.

W hilst employing the local partitioning in the indirect decomposition method
can be very expensive and unreliable procedure, it has proved to be highly
effective in the direct decomposition method case. Obviously, the main reason
behind this is the fundamental difference in the domain decomposition tech­
nique itself. The complexity and irregularity of the sub-domain boundaries in
the former method may increase the cost of the partitioning procedure dra­
matically. In fact, the boundary shape in the sub-sub-domains is expected
to be even worse than the m other sub-domain, this will certainly amplify the
risk of recovering the boundary faces after the Delaunay triangulation. How­
ever, with a better surface grid quality and more regular shape of the internal
boundary in the direct decomposition case, the procedure has proved to be
truly beneficial. A number of real world examples have been gridded utilising
this procedure, an illustration example is presented.

A configuration of two military aircraft inside a wind-tunnel has been divided
into 8 sub-domains along the major axis of the tunnel, using the option of
equal number of faces per sub-domain (see Figure 6.4). Subsequently, six
sub-domains out of the original eight have been partitioned locally, each into
two sub-sub-domains (see Table 6.2). Demonstration of the local partitioning
applied on two sub-domains (i.e. 3 and 4) can be seen in Figures 6.5 and 6.6.

138

Domain Elements. Points Faces
1 1,016,219 166,341 37,004
2 964,506 161,074 47,454
3 951,884 158,456 44,820
4 470,788 80,174 28,818
5 501,641 85,334 30,524
6 606,094 101,107 29,336
7 492,939 83,149 27,144
8 503,835 85,374 29,166
9 742,530 123,670 35,064
10 927,866 153,403 39,584
11 938,348 157,143 47,850
12 922,991 153,679 43,582
13 515,704 90,063 40,402
14 1,000,152 165,478 43,302
15 554,383 96,396 41,770
16 522,476 88,880 31,476
17 505,184 85,239 28,038
18 466,260 78,850 26,748
19 994,438 162,298 34,520
20 870,901 149,595 58,798
21 866,503 144,856 43,078
22 856,781 143,863 45,204
23 867,437 144,830 42,506
24 840,716 140,483 41,438
25 795,498 133,333 40,810
26 809,576 135,834 42,206
27 754,146 129,180 49,324
28 1,092,478 182,233 53,150
29 924,931 153,792 42,930

30-1 921,695 154,475 47,296
30-2 263,612 45,473 18,254
31 910,392 152,191 45,350
32 684,541 116,329 41,000
33 528,928 90,391 33,852
34 964,140 162,495 53,144
35 839,830 140,438 41,948

Domain Elements. Points Faces
36 861,786 144,422 44,412
37 870,543 146,309 46,410
38 841,194 140,940 43,098
39 860,053 148,858 62,590
40 848,093 142,021 43,124
41 798,008 136,032 50,030
42 573,256 101,313 48,882
43 546,969 92,577 31,398
44 587,680 102,745 45,864
45 653,728 109,737 34,244
46 477,376 80,609 26,818
47 513,302 87,262 30,862
48 561,333 95,197 32,988
49 466,043 79,084 27,622
50 586,159 100,132 37,236
51 547,594 94,662 39,170
52 1,146,291 189,306 48,040
53 960,420 159,131 42,210
54 1,000,691 166,145 45,108

55-1 1,051,133 174,994 49,474
55-2 270,816 46,683 18,796
56-1 1,036,076 173,845 53,588
56-2 201,575 34,590 13,088
56-3 231,795 40,449 17,934
57-1 939,339 157,283 47,566
57-2 140,110 24,871 12,236
57-3 10,113 2,149 2,152
57-4 452,932 82,200 47,364
58 840,521 142,130 48,258
59 536,844 92,764 38,200
60 459,583 77,131 23,714
61 525,858 91,070 37,948
62 606,006 102,623 35,074
63 586,693 99,081 32,688
64 188,625 33,824 18,102

Total: Elements Points Faces
49,168,881 8,288,068 2,703,17

Table 6.1: Details of a grid of two hemispheres of different radii, generated using the
indirect decomposition method. Notice that the local repartitioning used in a few of the
sub-domains. The original boundary surface grid consists of 560,578 faces and 280,291.

139

(/)

a D Q _ _ _ Z a

a d a * T)

a u

{II)
Figure 6.4: T w o a i rc ra ft in a wind- tunne l example . O n e global grid is
co ns t ru c te d by spl i t t ing th e d o m a in s into e ight s u b - d o m a i n s a long X axis
followed by ‘local pa r t i t i on in g’ for each do m a in using p lana r c u t s a long a
di f ferent axis. (/) Different views o f th e geomet ry. (I I) T h e b o u nd ar y gr ids
on t h e initial e ight sub-d oma ins .

140

(I l l)

Figure 6.5: T w o ai rcraf t in a wind- tunne l ex a m pl e (con t .) . (I) Surface
grid on th e closed bo u n da ry o f S ub -d om a in 3, an d th e new local internal
b o u n d a r y wi th a close-up. (I I) T h e closed b o u nd ar y sur face grid on th e
‘new local s u b - d om ai ns ' . (I l l) Deta i ls f rom th e vo lum e and sur face grids.

141

(II)

(I I I)

Figure 6.6: T w o a ircraf t in a wind- tunne l exa m p le (c on t 2.). Similarly to
previous Figure, detai l s for S u b- d om a in 4 while t h e local r epa r t i t ioning axis
in here is Y (it is Z in th e previous Figure and X t h e initial pa r t i t i oning) .

142

Domain Elements. Points Faces
1-1 1436393 234718 69498
1-2 1403451 221597 68578
2 1500853 263163 120090

3-1 2134879 360099 117930
3-2 648709 110935 41954
4-1 1215588 205272 68200
4-2 1472833 248288 81356
5-1 1487321 260933 76668
5-2 1419587 258081 69876
6 1479156 259329 118636

7-1 598747 105080 33016
7-2 2200145 372906 106278
8-1 1989245 337388 65614
8-2 1884852 319683 64852

Total: Elements Points Faces
20,871,759 3,557,472 1,102,546

Table 6.2: Details of the two aircraft in a wind tunnel grid. The original boundary
surface grid consists of 658,198 faces and 329,105.

6.2.2 Examples of Grids

Three grids of different realistic engineering problems have been selected in
a manner th a t demonstrates the various options available in the framework.
This involves, in addition to the post processing options th a t were highlighted
earlier in this Chapter, the three different possibilities for implementing the
domain decomposition procedure mentioned in Section 3.3.2 (i.e. equal number
of faces per sub-domain, even intervals between the planar cuts and prescribed
position for the planar cuts). The direct decomposition m ethod is the only
approach considered in here. Employing some of these grids by some parallel
simulators is presented later on, see Section 6.4.

All grids have been generated on an SGI Challenge shared memory machine
which has 8 (150 MHZ IP19, MIPS R4000) processors and 512 MBytes of
memory. One processor only has been used in all the examples presented.

Duct of an aircraft engine (The basic grid option)

The aerospace industry over the last two decades has shown a great interest
in the simulation of electro-magnetic wave propagation and scattering. Ma­
jor modifications in the design of aircraft external shape, particularly in the
m ilitary sector, have been introduced based on such simulations. However,
investigating the propagation of single electro-magnetic wave through a par-

143

ticular part of the aircraft can be of interest. The configuration presented
in Figure 6.7 is for an aircraft engine duct, which has been a subject of an
extensive CEM study.

In a typical CEM simulation, unlike CFD, grids are normally very regular
and may have fixed element size over the entire domain, including the scatter
surface. The point distribution (element size) is determined based on the
length of the wave (frequency), it is agreed th a t to achieve a good level of
accuracy ten nodes at least are needed per wavelength. Nevertheless, having
this uniform grid point density, and after inspecting the general shape of the
geometry as presented in (I) in Figure 6.7, it has been decided to use the ‘even
intervals’ option for partitioning the domain. Apparently, this option can still
produce a very reasonable workload distribution in special circumstances such
as the ones in this example.

A surface grid consists of 2,110,122 triangles and 1,055,065 points has been
generated using a typical Advancing Front algorithm [99, 100]. The dom ain,
then has been partitioned into 64 sub-domains using 63 planar cuts spaced
equally along the major axis of the duct. Typical examples of an internal
boundary grid can be seen in (II) in Figure 6.7.

Inspecting the details of the sub-domains grid presented in Table 6.3 shows
tha t a satisfactory level of load distribution is already available. In fact, though
employing the load redistribution algorithm on such a grid will improve the
load balancing more, it is recommended not to do so since very likely the cost
of the inter-domain communication will increase. Such th a t, after all, the total
time of idle processors might be very similar when the grid is been used by
a parallel solver. However, a list of number of inter-domain communication
points of this grid is presented in Table 6.4.

An example of a two adjacent sub-domains grid is presented in Figure 6.8, see
Figure 6.42 for a general view of the entire domain grid. The to ta l time required
to generate the grid has been around 18 hours, whilst 90 minutes of this was
spent on the partitioning procedure (including the surface grid generation on
the internal boundary). Establishing the inter-domain communication tables
and writing the relevant files was accomplished within less than 3 minutes.

Unfortunately, due to some out of hand administrative issues, it was not possi­
ble to access a parallel CEM solver th a t can operate on such grid size. However,
some smaller grids with a very similar load balancing have been employed in
conjunction with an in-house CEM program during the course of this research
[94, 95].

144

(II)

F i g u r e 6 .7 : D u c t example . (/) Geomet r i ca l def ini t ion. (I I) Detai ls o f two
se lec ted internal boundar i es .

SMSMEBmmMmm

145

Domain Elements. Points Faces Domain Elements. Points Faces
57 1928438 343554 174540 32 1742423 303501 132120
58 1950259 344974 168574 27 1735377 302306 131922
56 1982127 349026 165864 29 1760776 306157 131744
12 1972741 343571 149174 28 1727209 301023 131742
11 1956462 340950 149044 33 1730550 301590 131590
14 1974817 343627 148762 35 1743161 303395 131326
13 1967630 342608 148750 36 1732332 301661 131140
10 1943188 338825 148656 42 1749437 304242 131084
15 1952252 340108 148336 41 1750914 304486 130894
16 1937983 337838 147434 34 1733787 301880 130822
9 1936328 337301 147010 37 1738218 302506 130642
17 1949406 339338 146934 53 1750124 304297 130592
8 1918245 334132 145374 54 1753221 304805 130544
18 1925140 335027 144858 40 1749280 304126 130420
7 1884055 328376 143712 52 1749938 304227 130354
19 1880554 327590 142476 59 1762642 306166 130334
6 1861501 324300 141478 39 1740435 302622 130240
20 1862233 324266 141042 38 1732721 301487 130208
21 1848974 321941 139676 43 1724207 300045 130162
1 1905619 330510 139468 55 1937434 333007 129986
5 1836540 319949 139410 60 1753690 304696 129896
22 1832139 319058 138576 61 1758664 305275 129730
4 1793237 312664 137264 62 1745970 303343 129502
3 1779769 310359 136040 47 1734484 301528 129384
23 1810438 315090 136034 63 1704912 296943 129034
2 1766061 307911 134890 46 1729951 300708 128780
24 1784761 310721 134662 51 1705734 296785 128622
25 1766522 307656 133640 44 1711917 297795 128276
64 1849814 320157 132658 48 1707466 297007 128126
26 1753328 305373 132470 45 1703574 296471 127922
30 1753086 305214 132360 49 1692086 294411 127212
31 1764316 306836 132310 50 1692555 294421 127138

Total: Elements Points Faces
115,713,152 20,151,762 8,762,964

Table 6.3: Details of the Duct example. 64 Sub-domains using the Direct Decompo­
sition method along the longest axis of the Duct. The original boundary surface grid
consists of 2,110,122 faces and 1,055,065 points.

146

Sub-domains Comm. Points Sub-domains Comm. Points
1 <+ 2 25964 32 o 33 26258
2 o 3 26223 33 o 34 26038
3 ^ 4 26511 34 o 35 26011
4 ^ 5 26764 35 o 36 26194
5 6 27346 36 o 37 26042
6 f) 7 27800 37 o 38 25966
7 ^ 8 28203 38 o 39 25854
8 ^ 9 28514 39 o 40 25955

9 o 10 28973 40 o 41 26070
10 11 29227 41 o 42 26200
11 <-> 12 29296 42 o 43 26202
12 <-► 13 29293 43 o 44 25755
13 <-> 14 29176 44 o 45 25408
14 o 15 29384 45 o 46 25619
15 O 16 29065 46 o 47 25963
16 <-> 17 29104 47 o 48 25926
17 0 18 29006 48 o 49 25309
18 o 19 28280 49 o 50 25406
19 o 20 28128 50 o 51 25282
20 o 21 27819 51 o 52 26148
21 o 22 27576 52 o 53 26143
22 o 23 27316 53 o 54 26109
23 o 24 26801 54 o 55 26172
24 o 25 26720 55 o 56 25831
25 o 26 26410 56 o 57 24827
26 o 27 26211 57 o 58 25825
27 o 28 26188 58 o 59 25935
28 o 29 26110 59 o 60 26278
29 o 30 26321 60 61 25733
30 o 31 26310 61 62 26069
31 o 32 26270 62 63 25709

o 63 64 25812

Table 6.4: Duct example, a list of number of the inter-domain communication points.

147

. * A A % a » 4 " f i a S V i v ^ £ A i v ^ ^ .-•

Figure 6.8: D u c t exa mple (cont .) . Detai ls f rom a s u b- d o m ai n su r face and
vo lume grid.

148

A c o n fig u ra tio n o f fo u r m ili ta ry a irc ra f t (The load redistribution option)

A very familiar procedure in the CFD community is to simulate aerodynamic
problems considering half of the com putational domain only, th a t is by exploit­
ing the symmetry in the com putational domain. However, with the ongoing
developments in the CFD field and the computer technology, the interest in
simulating the flow around more complex and non-symmetrical configurations
will certainly grow more and more. Obviously, this is an area where paral­
lel grid generation algorithms are expected to meet the challenge and deliver
the inescapable complete large size grids. Such a configuration has been con­
structed in this example by arranging four military aircraft (i.e. B3 model)
inside wind tunnel in a manner th a t mimics a real life flying position. Different
views of the configuration are presented in Figure 6.9, point spacing sources
are also shown, notice the extra sources used in the region of interest around
the aircraft. An inviscid compressible flow simulation has been carried out on
this configuration, employing a grid in the order of 62 million tetrahedra, is
presented in Section 6.4.

A surface grid consists of 1,458,040 triangles and 729,030 points has been
partitioned into 32 sub-domains, using the equal number of faces per sub-
domain option. A few examples selected from the internal boundary grids
are presented in Figure 6.10. Inspecting the details of the sub-domains grid
presented in Table 6.5 shows how badly the elements are distributed among the
sub-domains. In fact, the main goal of this example is to dem onstrate the load
redistribution option. However, it also ought to be mentioned, th a t number
of faces listed in the table represent the total, i.e. after the internal boundary
surface grids have been attached. Hence the original ‘balanced’ distribution of
original boundary faces among the 32 sub-domains does not show.

By applying Hu & Blake algorithm, see Section 5.4.1, on the unbalanced sub-
domains grid an element migration schedule is obtained. Details about this rec­
ommended schedule and the actual sub-sub-domains th a t have been extracted
and transfered among the sub-domains are presented in Table 6.6. Contin­
uing with the same parallel run, i.e. using one Worker only, two complete
D PP loops only (first to extract and second to link) are needed to achieve the
balanced elements distribution. A list of this sub-domains grid can be seen in
Table 6.5, right hand side. Total time required by the redistribution procedure
overall has been within 80 minutes, where only 5 percent of th a t is spent in
the second D PP loop.

An example of the load redistributing algorithm action is illustrated in Fig­
ures 6.11 and 6.12, where three selected sub-domains and all the sub-sub­
domains th a t are moved from or to them are presented. The impact of the
load redistribution on the inter-domain boundary communication can be in­
spected by comparing the two lists of number of communication points, before
and after in Table 6.7.

149

Domain Elements. Points Faces Domain Elements. Points Faces
1 2234111 360386 67204 1 1487531 242924 56818
2 1950837 325920 96354 2 1487181 255848 104746
3 1221384 215018 104620 3 1487290 263298 132636
4 1155149 204587 103856 4 1487504 271676 171010
5 1093928 195977 105888 5 1487613 268770 156614
6 1738618 296547 113496 6 1487304 262301 132050
7 1366560 242548 125134 7 1487174 265124 142586
8 1718028 298822 133892 8 1487726 272911 171466
9 1818344 302038 88718 9 1486913 262508 132800
10 1720581 290255 95670 10 1486996 261053 127166
11 1078770 193943 104966 11 1487106 267622 148626
12 1087452 194568 104498 12 1487876 271972 164956
13 1461216 254319 114272 13 1487792 265188 143514
14 1399020 243601 110390 14 1487468 258280 115386
15 1216491 220224 127142 15 1488825 265948 141978
16 1914533 323364 112692 16 1485912 259726 120724
17 2309059 408845 106794 17 1486075 271542 118324
18 1403071 243477 103622 18 1487392 274395 123522
19 1059377 190948 104970 19 1487246 271676 163690
20 1061731 190980 105448 20 1487751 270908 161482
21 1582718 272115 111060 21 1487403 262594 133480
22 1066432 196957 122214 22 1491043 266995 142274
23 2054366 352444 142208 23 1484825 263358 135324
24 1302827 220555 79342 24 1485755 254776 101318
25 1872219 312736 97940 25 1487353 253166 96042
26 1106005 197307 104630 26 1487275 260758 125328
27 1126610 200485 104340 27 1489100 263176 132098
28 768620 142401 91860 28 1484629 266320 142914
29 2162747 365825 123670 29 1490508 262236 124410
30 920030 174068 120688 30 1484059 266586 142602
31 1512739 262837 113000 31 1487648 261650 126592
32 2110253 341228 66704 32 1487553 242817 56608

Total (Before): Elements Points Faces
47,593,826 8,235,325 3,407,282

Total (After): 47,593,826 8,429,262 4,189,084

Table 6.5: Details of the B3 example. 32 Sub-domains using the Direct Decomposition
method with equal number of faces along the tunnel. Notice that total number of points
and faces include the internal boundary grids counted with every sub-domain.

150

From.To Recomm. Actual
1 To 2 746804 746580
2 To 3 1210334 1210236
3 To 4 944411 944330
4 To 5 612253 611975
5 To 6 218874 218290
6 To 7 470185 469604
7 To 8 349438 348990
8 To 9 580159 579292

9 To 10 911195 910723
10 To 11 1144469 1144308
11 To 12 735932 735972
12 To 13 336077 335548
13 To 14 309986 308972
14 To 15 221699 220524
15 To 16 -49117 -51810
16 To 17 378109 376811
17 To 18 1199861 1199795
18 To 19 1115625 1115474
19 To 20 687695 687605
20 To 21 262119 261585
21 To 22 357530 356900
22 To 23 -63345 -67711
23 To 24 503714 501830
24 To 25 319234 318902
25 To 26 704145 703768
26 To 27 322843 322498
27 To 28 -37854 -39992
28 To 29 -756541 -756001
29 To 30 -81101 -83762
30 To 31 -648378 -647791
31 To 32 -622946 -622700

Table 6.6: A list of number of elements in the sub-sub-domains that are extracted and
moved among the initial sub-domains in order to achieve a balanced elements distri­
bution. The 'Recomm' column contains the numbers as recommended by Hu & Blake
algorithm, while the ‘Actual’ column has the em exact number of elements. The differ­
ence between the two columns is due to the smoothing technique which is applied on
the sub-sub-domains boundary while they are extracted.

151

(/)

(I I I)

(IV)

Figure 6.9: Four a i rc ra ft conf igura t ion example . Different views o f th e
geomet ry, general view of th e four a i rc ra ft inside th e wind tun ne l presented
in {I I) , and wi th th e grid po in t spac ing sources in { I V) .

152

stowm

g§
W?‘ , ■-.: , ■

Figure 6.10: Four a i rc ra ft conf igura t ion example (co n t .) . S ur face gr ids on
se lec ted inte rnal boundar i es .

153

16_To_17 13 To 14

Figure 6 . 1 1 : D e m o n s t r a t i o n o f th e load redi st r ibut ion a lgor i thm on th r ee
se lec ted su b- do ma in s . Sur face grid of S u b -d o m a in s before moving e l em en t s
(top) , an d t h e set of S u b -S u b -d o m a in s t h a t to be moved o u t or linked to
to each su b - do m ai n .

154

16

14

Figure 6.12: T h e s a m e th re e S ub -do ma ins , p resen ted in t h e previous Fig­
ure, a f t e r th e load redi st r ibut ion a lgor i thm has been imp le me nte d .

155

Between Before. Between After
1 2 10818 1 <-► 2 11802
2 <-> 3 14948 2 H 3 22238
3 f > 4 15107 3 ^ 4 26746
4 H 5 14978 4 H 5 29345
5 -H- 6 15998 5 H 6 21071
6 ^ 7 18857 6 h 7 24462
7 o 8 21524 7 ^ 8 24729
8 9 17718 8 ^ 9 31593

9 10 10254 9 ^ 10 21447
10 <-► 11 15201 10 <-> 11 25664
11 <-* 12 15278 11 <-> 12 27190
12 <-► 13 14993 12 <-> 13 24188
13 <-> 14 16480 13 «-► 14 19700
14 15 19877 14 <-► 15 19437
15 <-► 16 21692 15 «-» 16 22768

15 <+ 17 9148
16 «-► 17 14918 16 «-> 17 20213
17 «-► 18 14490 17 «-► 18 19316
18 <-> 19 15079 18 «-► 19 26627
19 <+ 20 15417 19 <-► 20 27929
20 «-> 21 15457 20 <-► 21 22284
21 ^ 22 18117 21 ^ 22 21931
22 «-► 23 20981 22 ++ 23 17369

22 <-► 24 9552
23 <-► 24 16943 23 <-► 24 20321
24 <-► 25 11465 24 <-> 25 12766
25 <-► 26 15054 25 <-► 26 17361
26 <+ 27 15243 26 ++ 27 20725
27 <-> 28 14828 27 28 18467
28 <-► 29 15489 28 <-> 29 29501

28 <-* 30 521
29 <-> 30 18366 29 <-► 30 11810
30 ++ 31 19898 30 «-> 31 30027
31 <-► 32 12841 31 ^ 32 12598

T able 6.7: A list of number of communication points between sub-domains before and
after applying the load redistribution algorithm.

156

V o rte x d y n a m ic b e h in d a c iv ilian a irc ra f t (The construction of one global
grid option)

Demonstrating the framework with the option of ‘constructing one global
volume grid’, and its implementation in the local partitioning of large sub-
domains, is the main goal of this example. Having the grid designed to serve
a certain task, i.e. investigating the vortex dynamic behind a civilian aircraft
(see Section 6.4), a careful control of the grid point density and distribution is
essential. Hence, a set of line sources th a t s tart from the wing tip and stretch
back to a distance equivalent to 20 lengths of the aircraft body itself have been
defined. See Figure 6.13 for the geometrical definition of the aircraft surface
(i.e. Gulf Stream, EADS) and the grid point spacing sources as well.

In fact, the proposed example represents a very rare case as a volumetric grid.
In particular, the relation between the size of the boundary surface grid and
the closed domain volume grid. Since the sources have very limited effect on
the original boundary so the size of the obtained surface grid has been, not
surprisingly, as small as 223,932 triangles and 111,970 points. Subsequently,
the number of sub-domains th a t can be created would be relatively small, or
otherwise an extreme case of ill load balancing will be inevitable. On the other
hand, dividing the domain using a small number of planar cuts along one axis
is very likely to produce some large size sub-domains grid. Thus, implementing
the local partitioning on such sub-domains had to be considered.

The computational domain has been divided initially into 8 sub-domains, using
a set of planar cuts with locations already described along the m ajor axis, see
Figure 6.14. After gridding the internal boundary, constructing the closed sub-
domains surface grid and establishing the inter-domain communication tables,
each sub-domain would become a complete independent grid generation task.
The to ta l time needed for this operation, including the read-write activities
on the hard disc, has been just about ten minutes employing one Worker only.
Various number of sub-sub-domains have been used in the sub-domain local
partitioning, which was obviously driven by the the size of the sub-domain vol­
ume grid. The ‘equal number of faces’ option has been adopted in the domain
decomposition algorithm. Details of the final sub-domain volume grids with
the number of sub-sub-domains used in the local partitioning are presented in
Table 6.8, where a detailed description of one sub-domain grid is listed as well.

All the sub-domain grids have been generated and assembled using one Worker
only using the same SGI Challenge machine used in previous examples. Al­
though it would have been possible to construct the global volume grid on the
same machine, the task was carried out on an SGI Onyx machine with 32(500
MHZ IP35, MIPS R14000) processors and 64 GBytes of shared memory. This
is mainly due to the demand of the CFD parallel solver itself, see Section 6.4
for the use of generated grid in further simulations. The construction of the
global grid has been completed within 8 minutes only, employing the same

157

program with the assembly algorithm is the only active procedure. Thus, the
to tal time required for accomplishing the entire gridding procedure approxi­
mately reaches ten hours. Of course, this is an ‘approxim ate’ figure since the
grid was not generated in one normal continuous run.

Two of the sub-domains (i.e. 1 and 2 as in the initial decomposition) have
been selected to dem onstrate this example. Where an illustration of the lo­
cal partitioning in the first sub-domain is summarised in Figure 6.15, whilst
various cuts in the volume grid are dem onstrated in Figure 6.16. Similarly,
Figures 6.17 and 6.18 present the second sub-domain. Also, see Figure 6.42
for a general view of a planar cut inside the global volume grid.

Domain Elements. Points Faces Local Part.
1 8778938 1560978 226510 2x2
2 18845430 3155838 139562 4x4
3 11725672 1961934 79764 4x4
4 6567154 1115057 110202 2x2
5 4406989 751929 88774 2x2
6 3865019 633373 73996 2
7 3482454 567059 62288 2
8 6399090 1067659 31838 2x2

Total: Elements Points Faces
64,070,746 10,666,263 223,932

Domain Elements. Points Faces
1-1-1 1837303 332815 113220
1-1-2 2535691 444781 98066
1-2-1 1871442 338687 113938
1-2-2 2534502 444532 97956

Total: Elements Points Faces
8,778,938 1,560,978 226,510

Table 6.8: Statistics of the Gulf-Stream sub-domains grid. Details of the first sub-
domain local repartitioning grids are presented. Notice the ‘Totals' in here represent the
grid after the assembly procedure, unlike the other examples where the internal boundary
grids are counted more than once.

158

Figure 6.13: G eo me t r y o f th e civilian a i r c ra f t (i.e. G u l f -S t r ea m) , an d th e
grid po in t spa c in g sources def ined in o rder to c a p t u r e th e vor t ices behind
th e wing tips.

159

Figure 6.14: Sur face grid on th e s u b - d o m a i n s boundary, before car rying
o u t th e local par t i t ioning.

6.3 Perform ance and Scalability

W henever a parallel algorithm is presented in the lite ra tu re an analysis of its
perform ance is often presented as well. It is very com mon to see a couple
of g raphs/tab les w ith some m easurem ents like: the program is im plem ented
on a parallel machine using P processors, and a speed up T is obtained for a
problem size Q. U nfortunately, such analysis does not always, a t least not in
our case, offer an adequate overview of the algorithm behavior. W hat happens
if there is a lim itation on the num ber of available processors while the size
of the problem grows?, how efficiently the available resources are used?, how
does the com m unication cost change in respect to the problem size or num ber
of processors?..etc. “a single perform ance m easurem ent (or even several m ea­
surem ents) serves only to determ ine perform ance in one narrow region of w hat
is a large m ultidim ensional space, and is often a poor indicator of perform ance
in other s itua tions” [40].

Im p a c t o f D P P te c h n iq u e on th e an a ly s is p o licy
In fact, even for a reader who is fam iliar w ith more com prehensive analysis of
parallel program s perform ance, some of the figures in th is chapter may look
ra ther ‘s tran g e’. For example, sometimes increasing the to ta l num ber of pro­
cessors N Proc from 2 to 4 does not have any im pact on the speed-up factor Sf

160

Figure 6.15: Il lustrat ion of th e local par t i t i oning o f s u b - d o m a i n (1) into
(2x2) sub -s ub -d o m ai n s . Sur face gr ids and som e c lose-up on th e internal
boundary.

161

'
f.*A wv*!v;

Figure 6.16: Deta i ls f rom su b -d om ai n (1) vo lu me grid.

162

Figure 6.17: I l lustrat ion o f th e local pa r t i t i on ing o f su b - d o m a i n (2) into
(4x4) sub -s u b -d om ain s . Detai ls of s u b - s u b - d o m a in s (2) only is p resented .

163

Figure 6.18: Deta i ls f rom sub -d om ai n (2) vo lu me grid.

164

whatsoever, whilst some other times adding one processor only gives a sub­
stantial increase. Furthermore, using a single processor a parallel run is still
achievable, and it may give a speed-up factor of order 3!. T hat is all due to a
simple fact: usually there are only two param eters th a t can effect the perfor­
mance overall (number of processors and size of the problem), while here an
additional param eter has to be considered (i.e. number of sub-domains). Ap­
parently, the D PP technique allows the three param eters to emerge arbitrarily
in any parallel run. Thus, an informative analysis must dem onstrate the im­
pact of changing each parameter, individually and combined, on the overall
performance. A pattern of several cases can be observed, see Table (6.9)for a
summary of these cases. References will be made to the relevant case number
whilst the different measurements are discussed throughout the rest of this
Chapter. In return, we believe this should help in forming a better under­
standing of the parallel framework performance and its dynamic nature.

Case No. No. Proc. No. Sub. Size
1 F F F
2 F F C
3 F C F
4 F C C
5 C F F
6 C C F
7 C F C
8 C C C

Table 6.9: Pattern of the different cases discussed throughout this analysis. F = Fixed
value for the parameter, C = Changing. Case No.l represents one parallel run only,
while any other case may have unlimited number of runs. Case No.8 will appear within
a special form only, e.g. No. Proc. = No. Sub. while they both change in every run
with the size!.

A few other factors can be brought into this study as well, such as the: varia­
tion in the involved processors performance, unbalanced workload distribution
among the sub-domains, variation in the complexity of gridded geometries (be­
tween different examples, or different sub-domains within the same problem),
... etc. Not to underestim ate any of these factors, but obviously any attem pt
to add one or two of them to the analysis param eters would have made the
pattern presented in Table 6.9 far more complex.

To eliminate any other influence but the three param eters declared above,
the same machine and geometry have been used throughout the analysis. The
machine is an SGI Challenge with 8 processors and 512 MBytes of memory, and
the geometry is a railway tunnel of length equals to 25*width. This example

165

provides: a well balanced workload distribution, same complexity of the sub-
domains geometry and the possibility to create large number of sub-domains
(See Table 6.10 and Figure 6.19). Certainly, the chosen geometry represents
an ‘ideal’ case for the direct decomposition method, and therefore it does not
reflect the status in the ‘real world’. In addition, no reference is made to the
indirect decomposition m ethod throughout this analysis. Thus, it ought to
be mentioned that: the main goal of this performance analysis is mainly to
inspect the effectiveness of the adopted parallelisation strategy and the way it
has been implemented.

Performance Analysis Tools

Unlike the traditional sequential programs, the performance analysis of paral­
lel programs is a complex task, and some special tools may have to be utilised.
UPSHOT is a very useful tool for understanding the behavior of parallel pro­
grams, it offers a graphical display of parallel time-lines. Each line is associated
with a processor where coloured bars reflect on the state of the processor at
any time. Zooming functionality is available and it can be utilised to find fine
details about the time needed in every sub-task.

UPSHOT works on logging files th a t are generated by the Multi-Processing
Environment (MPE) library [52]. Screen dumps of a typical output from UP­
SHOT can be seen in Figures: 4.5 and 6.21, whilst a description of the presented
‘states’ is available in Table 6.11. More information about UPSHOT and the
MPE library are available in Appendix B. However, in short, by exploiting
the MPE and UPSHOT a comprehensive performance analysis of the parallel
programs could be achieved.

6.3.1 Speedup

The exact tim e needed by the processor(s) to execute a parallel program car­
rying out a certain task is not the most adequate way for evaluating its per­
formance. Comparing this tim e to the tim e needed for a sequential program
to carry out the same task may sound more satisfactory. Such a comparison
has been adopted by the parallel processing community in a standard form,
which is a very convenient measurement called as the ‘Speedup factor’. The
Speedup factor 5 / , as defined in equation 6.1, represents the normalisation of
the sequential tim e Ts to the parallel tim e Tp 3. S f is more commonly inter­
preted as: how many times the parallel program is faster than the equivalent
sequential one.

3It can bee seen as the inverse of this in some publications.

166

I ll

Figure 6.19: Deta i ls o f th e railway tunne l example : (I) an d (II) Geometry,
(III) Initial internal boundary, (IV) S ur face grid o f an internal boundary,
(V) p lan ner c u t in a S ub -d o m a in grid wi th t h e b o u nd ar y o f a d j a c e n t Sub-
do ma in , (VI) Z o o m in of (V).

167

Domain Elements. Points Faces Domain Elements. Points Faces
64 1829418 300102 77384
1 1836366 303379 77314
3 1773821 294483 75818

60 1816536 301707 75806
4 1768546 293642 75790
50 1773814 294251 75762
5 1778260 295179 75756
27 1764884 291835 75756
18 1796701 297947 75754
31 1764290 292912 75754
37 1728684 287496 75754
51 1767397 293478 75748
63 1774606 294604 75736
40 1771716 294160 75710
30 1776533 294880 75710
57 1833528 303593 75692
12 1812614 300429 75690
62 1776321 294795 75686
7 1792454 297274 75682
21 1810653 300065 75680
56 1775575 294663 75674
38 1791530 297145 75674
43 1784728 296010 75658
6 1792276 297342 75656

41 1782546 295652 75654
58 1722605 286497 75650
59 1805064 299199 75648
22 1776574 294887 75644
10 1766003 293262 75644
55 1771500 294048 75642
61 1806495 299517 75638
25 1806572 299360 75638

Total: Elements
114,151,263

11 1807715 299667 75628
36 1737793 288887 75622
26 1735908 288559 75616
33 1805151 299202 75608
23 1821067 301066 75604
2 1740045 289258 75602

49 1733174 288021 75598
24 1802687 298767 75598
47 1717361 285579 75596
39 1788062 296702 75596
14 1774602 294550 75594
9 1806050 299467 75594

48 1802515 298790 75558
45 1813354 300523 75558
52 1785645 296210 75556
42 1812662 300380 75556
32 1780623 295418 75552
46 1752352 291104 75536
17 1778693 295225 75536
35 1787402 296455 75530
13 1784198 296008 75522
54 1738609 288956 75520
8 1789699 296816 75520
44 1819724 301465 75516
34 1794325 297546 75510
15 1835894 304064 75508
19 1749150 290552 75502
28 1767042 293304 75476
29 1797168 297999 75466
20 1770999 292812 75442
16 1805870 299322 75396
53 1787114 295251 75392

Points Faces
18,931,718 4,843,210

Table 6.10: Details of the Railway Tunnel example, partitioned into 64 Sub-domains.
Surface grid on the original boundary consists of 2,285,330 Triangles and 1,142,667
Points.

168

S f = Ts/T p (6 .1)

As stated earlier, speed wasn’t considered as the m ajor m otivation behind this
research, and a small value of S f is still expected from the developed programs
in some cases. T hat is very likely to be more frequent in the indirect decom­
position method than in the direct decomposition method; mainly due to the
time needed in generating the initial volume grid in the former method. Also,
a rather disappointing speed up will be inevitable in the direct decomposition
method whenever the to tal workload is poorly distributed on the sub-domains.
However, as it will be presented shortly, a very good speedup factor can be
achieved when an ‘acceptable’ workload distribution exists.

Since the evaluation of the speedup factor requires the sequential run time to
be known grids presented in here will be smaller than 2.6 million elements,
which is due to the lim itation of the sequential grid generator on the default
machine. Graph (I) in Figure 6.20 demonstrates a set of grids of size within
the range [0.38 million - 2.53 million]. Each grid is divided into 8 sub-domains
and generated 8 different times using [1 - 8] processors (i.e. Case No.7). It is
observable in Figure 6.20.(I) th a t the achieved S f varies irregularly in respect
to the grid size. In fact, this is because of the time needed to generate these
grids sequentially was not purely linear in the first place (see the sequential
time needed for each grid in Table 6.12, page 180). However, for each individual
grid, as expected, the speedup increases when more processors are added. But,
apparently, the same speedup is obtained from using 4, 5, 6 and 7 processors!,
thus an ‘explanation’ is needed.

Utilising the UPSHOT screen dumps, presented in Figure 6.21, details about
one of the curves in the graph (i.e. the 2.17 million grid in Figure 6.20. (I)) can
be examined. Image (IV) in Figure 6.21, presents the run when 4 processors
are used and (V) for 5 and so on. It is recognisable in the four different runs
mentioned above th a t the to tal time of each is heavily controlled by the time
required to finish generating two sub-domains grid by one processor. Thus
adding more processors (i.e. cases from 4 to 7 processors) cannot reduce the
to tal tim e of the run significantly and the speedup factor remains almost the

State name The associated procedure(s)
P a rtJn g
SurLGrid
Vol.Grid
Post _Pro c

Partitioning, and deriving the internal boundary
Generating a surface grid on an internal boundary
Generating a volume grid in a sub-domain
Post-processing operations,

Table 6.11: A list of ‘states’ defined in the framework, they are used by MPE functions
while creating the ‘logfile’.

169

same. W hilst adding one processor only (i.e. 8 processors in total) introduces
a big jum p in the curve. Graph (II) in Figure 6.20 dem onstrates the relation
between the speedup factor and number of utilised processors whilst the runs
5, 6 and 7 are omitted. However, the efficiency of parallel programs is a vital
point, and it will be discussed thoroughly in the next section.

Speedup achieved employing one processor!
One of the most attractive features of the program developed in this study is its
capability of generating large size grids using one single processor. Clearly, one
may have a number of justified questions such as: how effective is this feature,
is it possible to get a reasonable (if any a t all) speedup with one processor
only?, ... etc. However, an example of a grid generated several times on one
processor is presented. The grid has been divided into a different number of
sub-domains, which makes this example belong to the (Case No.3) category.
Total number of tetrahedra is 2,199,070 and to tal tim e of each runs is presented
in Figure 6.22.

It is recognisable in Figure 6.22 th a t a speedup factor greater than 1 was always
achieved!. Which means th a t the time required to carry out all extra tasks
introduced by the parallelisation procedure, e.g. partitioning and gridding
internal boundary, is much less than the time gained by splitting the ‘big’ grid
generation problem into a set of ‘smaller’ ones. In other words, generating
unstructured grids in parallel using the developed program on a single processor
can be faster than generating the same grid sequentially. Clearly, the obtained
speedup will vary with the number of sub-domains, as it is associated with the
ratio between time needed for the parallelisation work and the tim e saved in
the volume grid generation. However, generally speaking, generating relatively
small size grids in a very large number of sub-domains reduces the speedup
obtained dramatically. In the presented example, the run associated with 32
sub-domains stands as a ‘saddle point’. It is expected to have such a saddle
point associated with a higher number of sub-domains for larger grids.

Speedup and the SPP solvers demand
To the best of our knowledge, most of the present parallel solvers still use the

SPP (Static Parallel Processing) as their main parallelisation strategy. Hence,
in order to match the to tal number of processors available every time, it is very
likely to have the need for generating the same grid within a different number
of sub-domains. The investigation of the previous example above shows the
impact of changing the number of sub-domains on the speedup factor while
number of processors is fixed, i.e. behavior of the program with respect to
Case No.3 in Table 6.9. Here we will examine the program performance
with respect to Case No. 6, which adds to the previous example the option of
employing various numbers of processors. In fact, a careful reading of the two
cases, i.e. No.3 and No.6, gives a complete picture of the algorithm behavior
in respect to the SPP parallel solver demands in general.

170

20

15

10

5

31 2 4 5 7 86
Number of Processors

(i)

0.38E+6
0.67E+6
1 29E+6 —
1.73E+6 *
2.17E+6
2.53E+6

o.

a.
.10

81 2 4
Number of Processors

(i n

Figure 6.20: (I) The Speedup factor for a set of grids, each divided into
8 sub-domains and generated 8 different times on [1 - 8] processors (Case
No.7). In (II) values related to the runs where equation 6.3 is satisfied.

171

(-—ifrtuMflTl I iiWofkwl m pirTins] BBBfs'*r*..Grial HB |Vo)_Grid|
H P»»i_Proe-|

(I)

ânaqarl |] jWoriirl MBMpBrl fnoj Mi jSur!Grid] ■MlVol Grid]
warnPo»l_Pto«.|
°| 1

2JT
50 100 150 200 250 300 350 400450 500 550 6C|

(I I)

fWori(«r| — |P»rt _ln9| —]Surt_Grid| —]Vol_Grid|

(H I)

:E7”T1Manager] |" I [Worker] HOHjPart ingj ■■■ }Sur(Grid] BH|VoI Grid]
■■3oat_Proc.J
j Op■

: 3gE
I 4p

50 100 150 200 250 300

(I V)

(V)

I1' i ̂Hnigsr] |'"'~"'"l[Wort<«f|
Ugj po«t_Proc.|

||Part_lng| — |8url_Gfid] — |Vol_Grid|

dim:
ri

(V I)

Manager] { [Worker} part ing] JJJ|[Sur1_Gfid| [Vol Grid|
Post_Proĉ]

« fi* •v n6 ~~ II
7 .'5»>v .1 fl

(V I I)

| [Worker| m [Part ing) ■■■ [3urf_Qrid|

I..

(v i i i)

Figure 6.21: D y n am ic Parallel P rocess ing for a grid divided into 8 sub-
d om ai ns . T im i n g for 8 di f ferent runs as in: (I) using one processor , (II)
us ing two processors , and so on.

172

4
2.2E+6 Tetra.

3.5

3

2.5

2

1
816 32 64 128 256

Number of Sub-domains

Figure 6.22: The Speedup factor obtained in generating the same grid
several times within [8 - 256] sub-domains and on one processor only (Case
No.3).

A grid consists of 1,311,711 tetrahedra is divided into n sub-domains, where n
varies within the range [2-8]. Different runs for each n is carried out employing
a number of processors in the range [1 - n]. Graph (I) in Figure 6.23 illustrates
the speedup achieved for each run. Broadly speaking: a better speedup factor
can be obtained if a sensible choice of number of sub-domains and number
of processors is made. Observing Graph (I) shows th a t generating the same
grid within 6 sub-domains on 5 processors is slower than generating it within
4 sub-domains on 4 processors, but generating it within 8 sub-domains on 4
processors is faster than within 6 sub-domains on 6 processors!. Although,
this may sound rather confusing a t the moment, it ju st reflects the fact th a t a
good understanding of the dynamic nature of the program is essential in order
to benefit from all its potentials. However, in Graph (II) of the same Figure,
i.e. 6.23, only the runs th a t have number of sub-domains equals to number of
processors are presented, where the ‘linear’ growth in the speedup factor with
respect to the to tal number of sub-domains becomes more visible.

6.3.2 Efficiency

It is stated in Section 4.2.1 th a t the Dynamic Parallel Processing (DPP) tech­
nique provides a very efficient use of the computing resources available. In
order to dem onstrate this point, information is presented in graphs and tables
such as Figure 4.5 and Table 4.1 In addition, expressions such as “the reduc­
tion in the to tal tim e of idle processors” had to be used. Apparently, this is

173

2 Sub.
3 Sub.
4SLlb. -a-™
5SUb. x ...
6 Sub.
7 Sub.
8 SLib. --«-•••

2 !c

21 3 4 5 7 86
Number of Processors

(i)
14

1.3E+6 Tetra.

12

10

8

6

4

2
2 3 4 5

Number of Sub-domains, Processors
7 86

Processors

Figure 6.23: (I) The Speedup factor for one grid divided into a different
number of sub-domains [2 - 8] and each generated few times using the
range [1 - 8] processors, (Case No.6). In (II) values related to runs where
No. sub-domains = No. processors.

174

a rather complex and ‘inefficient’ way to examine efficiency of parallel pro­
grams. Alternatively, a very convenient measurement th a t characterises the
effectiveness of an algorithm in using the available resources can be adopted,
it is the Efficiency factor (E f), which is a well known measurement in the
parallel processing community. E f as defined in equation 6.2 shows: th a t
a parallel program maintains the same level of efficiency when the Speedup
factor S f improves as in the order of the utilised processors N p roc, (e.g. if J
more processors are used, then S f should increase in the order of J) .

E f = S f / N Proc (6.2)

Recalling Graph(I) in Figure 6.20, where the same speedup is achieved using [4
- 7] processors, may suggest th a t the program has a m ajor problem in respect
to its efficiency. The discussion about the obtained speedup in one of the runs,
as presented earlier utilising Figure 6.21, indicates th a t a ‘careful’ choice for
the number of processors can eliminate most of the inefficient cases. However,
it has been observed th a t equation 6.3 is a very effective criterion in choosing
number of processors Nproc to be employed for generating a grid within N sub
sub-domains. Graphs (II) in Figures 6.20 and 6.24 illustrate the speedup
and the efficiency, respectively, which were obtained from runs th a t satisfies
equation 6.3.

Nsub = N proc * K\ where K = an integer. (6.3)

Efficiency with well balanced workload distribution
It is also mentioned in Section(4.2.1), th a t the D PP technique is implemented,
more or less, to enhance the efficiency when a case of poor workload distribu­
tion occurs. Actually, a very well balanced workload distribution is reserved in
all grids used throughout this analysis, details of one typical grid is presented
in Table 6.10 4. However, the main interest is to show th a t even with such a
well balanced workload the D PP technique still utilises the available resources
more efficiently than the traditional SPP.

A grid consisting of 2,199,070 tetrahedra is divided into 8 sub-domains and
generated 8 times employing [1 - 8] processors (i.e.Case No.5). An E f in the
order of 3.13 is achieved when the D PP technique is exploited (1 processor),
while it drops to 1.98 if the SPP is used (8 processors), see (I) in Figure 6.24.
In fact, the screen dumps of UPSHOT presented in Figure 6.21 correspond
to this example. Thus, observing the to ta l tim e spent by idle processors in
(VII) in th a t Figure, i.e. Figure6.21 in page 172, explains the poor efficiency
obtained when 7 processors are employed.

4 Obviously presenting a similar table for each grid used in this analysis would have over
crowded this chapter.

175

Efficiency of the program in respect to the two D P P loops
To study the effect of having two D PP loops on the efficiency of the program
overall we reintroduce the same example of Case No.6, which has been in­
vestigated earlier (See Figure 6.23 on page 174 and the speedup and SPP
solvers demand in page 170). The E f obtained in this example is presented
in Figure 6.25, whilst Graph (I) includes all runs, Graph (II) demonstrates
the runs th a t satisfy equation 6.3 only. The extreme irregularity visible in
Graph (I) must be well know to the reader by now, particularly in the light of
the speedup result presented in Figure 6.23 and its discussion. However, what
may still need an explanation is the sudden ‘sharp’ change at some of the runs
presented in the Graph (II):
Apparently, equation 6.3 recommends th a t the number of processors is based
on the desired number of sub-domains only, regardless of the number of the
associated internal boundaries. All the runs presented in Figure 6.25 (II) sat­
isfy the equation in their second D PP loop (gridding the sub-domains), but
not necessarily in the first D PP loop (gridding the internal boundary). Con­
sequently, an inefficient use of the recourses may occur in the first D PP loop.

Focusing on two of the curves only (4 and 6 sub-domains in Figure 6.25. (II)),
it is noticeable th a t a lower level of efficiency is associated with the case where
two processors are employed!. In fact, in both cases there is an odd number of
internal boundary surfaces and one of the processor must have been ‘waiting’
while the other is dealing with the last internal boundary grid. However, it has
been observed th a t the efficiency in the overall program is not effected unless
number of employed processors and the achieved speedup are very small.

3.4
8 Sub., 2.2E+6 Tetra.

2.8

ui
2.4

Number of Processors

8 Sub., 2.2E+6 Tetra.

3.5

2.5

1.5

Number of Processors

(I) (II)

Figure 6.24: Changes of the Efficiency factor when various number of
processors is employed to generate the same grid within the same number of
sub-domains (Case No.5). All runs in (I), and only the ones satisfy equation
6.3 in (II).

A comparison between the efficiency achieved whilst employing the program
in the SPP mode and D PP mode is presented in Figure 6.26, in which a typ-

176

2.6
2 Sub.
3 Sbb.
4 Sub. ® - ■
5 Sub. x
6SUb.
7 Sub. - -
8 Sub.

2.4

2.2

1 2 3 5 7 84 6
Number of Processors

(i)
2.6 « ■

2 Sub. -
3 Sub. -
4 Sub. -
5 Sub.
6 Sub. -
7 SUb. -
8 Sub. •

2.4

2.2

75 6 81 2 3 4
Number of Processors

(i i)

Figure 6.25: A grid of 1.3 million Tetrahedra divided into [2 - 8] sub-
domains and generated on [1 - 8] processors, Case No.6. In (I) values of the
efficiency factor achieved in each run, while in (II) the runs satisfy equation
6.3 only.

177

ical example of (Case No.7) is demonstrated. Recalling th a t (Case No.7)
describes a case of fixed number of sub-domains and changing in number of
processors and grid size, see Table 6.9 page 165; the graph in Figure 6.26
presents runs of several grids of size in the range of [0.18 million - 2.53 mil­
lion], partitioned into 8 sub-domains and generated employing 1 (DPP) and 8
processors (SPP). In fact, observing this case as presented in Figure 6.26, in
addition to the other cases presented in this section (Figures:6.24, and 6.25)
a straightforward conclusion can be drawn: although employing the developed
program in the SPP mode may provide a faster option it is always recommended
to use the DPP technique whenever the efficient use o f available recourses is
considered.

-
1 Proc.,
8 Proc.,

DPP •
SPP +

♦

♦

♦

........♦..........

♦
+

+ +

, ,
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Figure 6.26: Comparison between the DPP and SPP efficiency using an
example of Case 7: No. Processors = 1 and 8, No. Sub-domains = 8, Size
of grid within the range [0.18 million - 2.53 million].

6.3.3 Scalability

A wide spectrum of computers are used in engineering industries. W hilst,
small companies rely on networked workstations and PCs, large firms intend
to rely more on powerful servers and different type of w orkstations/PCs for
the end users. On the other hand, it is easy to find a parallel algorithm th a t is
expected to be used by both parties with a significant difference in the type of
applications and size of computations. Recalling th a t a parallel algorithm is
described usually as scalable when it enables the solution of large problems on
large resources as well as it does for solving small problems on small resources.

178

Thus, the scalability of parallel algorithms designed to be used within the
com putational engineering discipline in general is a vital point.

In the early days of parallel computing, a t the vector supercomputers gener­
ation, scepticism about scalability of parallel algorithms with large-scale en­
gineering problems was widely spread. However, with the progression of the
distributed memory parallel systems, practical experience shows th a t solving
problems involving several million equations is a daily routine. Z. Johan et al.
in [70] demonstrates how the parallel processing for finite element applications
can be scalable on distributed memory machines. Performance analysis of two
applications (computational aerodynamics and solid mechanics), in addition
to a data decomposition algorithm, is presented. This analysis claims th a t a
high scalability in the finite element parallel applications can be achieved on
massive parallel computers. Apparently, most of the studies likewise [70] have
missed out a simple fact, th a t is ‘scalability must be available in all compo­
nents of the numerical simulation discipline before we can consider it as truly
scalable environment’. Thus, without a scalable grid generation algorithm the
numerical simulation of engineering problems in general will have a constant
bottle neck in handling large-scale problems.

Examining the scalability of the developed framework is carried out by inves­
tigating few cases in Table 6.9. In order to put the analysis of these cases in a
more informative format, they are grouped in two different categories: scala­
bility with the problem size and scalability with the computing resources. The
first one reflects on the framework capabilities in generating large size grids
even when the available resources are limited. W hilst the second demonstrates
its great potential in exploiting any growth in the computing resources. The
two following sections, 6.3.4 and 6.3.5, will reveal some relevant information
to the scalability of algorithm in general as well.

Scalability W ith Problem Size
A set of grids of size in the order of [0.38 million - 20.5 million] Tetrahedra,
each divided into 8 sub-domains and generated employing the same number
of processors (Case No.2), are presented in Table 6.12. The time needed for
two different parallel runs (1 and 8 processors), as well as the time needed
to generate some of them sequentially are listed. The same information is
represented in Figure 6.27(1), where the ‘linear’ growth in the time needed to
generate the various grids in parallel is visible. Such a linear relation between
the grid size and parallel run tim e is a clear dem onstration of a highly scalable
parallel algorithm.

To dem onstrate the capability of the developed algorithm in generating large
grids on the same platform we investigate Case No.4, where both the number
of sub-domains and grid size can vary. Graph (II) in Figure 6.27 illustrates
the tim e needed to generate several grids of size within the range [2.2 million

179

No. Tetrahedra Sequential 1 Processor 8 Processors
385132 465 197 57
670095 525 297 64

1293429 1588 612 124
1730186 1839 896 139
2174469 3749 1198 236
2534687 3971 1963 305
3764040 NA 2527 451
4771702 NA 2806 532
6091983 NA 3931 572
7762985 NA 4969 708

10491519 NA 7824 1156
14003731 NA 10888 1463
20479678 NA 16878 2645

Table 6.12: Time in seconds needed to generate each grid sequentially, in parallel on
one processor and on eight processors. Number of sub-domains in the parallel cases is
fixed to 8.

- 114.2 million] generated on a single processor, each grid is divided into var­
ious numbers of sub-domains. The first thing to be noticed in this graph is:
the difference in number of runs carried out among the grids. For instance,
there are only two runs (64 and 128 sub-domains) for the grid of 114.2 million
tetrahedra, and four runs (32 - 256) for the grid of 85.4 million tetrahedra. In
fact, one may wonder if it is ju st a ‘choice’ or there is more into it?. Actually,
the graph contains all the grids th a t could be generated on the platform 5.
A ttem pts made to generate any of the grids within smaller or larger number
of sub-domain were not successful. Partitioning into a smaller number may
produce a set of sub-domains where the grid size per sub-domain is bigger than
the limitations of the sequential generator 6. W hilst partitioning into a larger
number may demand more memory storage than what is available.

Most of the individual sub-algorithms used throughout the partitioning proce­
dure are not expensive, neither in memory requirement nor processing speed,
but the real bottle neck emerges when number of internal boundary grows.
The developed program, currently stores all the internal boundary informa­
tion in the Manager before constructing the sub-domains boundary. Storing
the internal boundary grids in the Workers memory where they are generated
may minimise the effect of such bottleneck, but unfortunately not when a sin­
gle processor machine or a shared memory machine is used. Obviously, this is

5 Number of sub-domains not listed in the set presented in the Graph are not considered
6 Obviously the local re-partitioning mechanism presented earlier in this chapter is not

considered as a standard option in this analysis at all.

180

because in both cases Manager and the Workers use the same physical memory.
However, modifying the developed program to implement this method for stor­
ing the internal boundary grid must be straightforward, though introducing
some extra inter-processors communications activities will be inevitable.

The reader can consult Figure 6.22 (page 173) and the discussion of Case
No.3 in Section 6.3.1 in order to understand the behavior of the individual
curves in Graph (II) in Figure 6.27.

Scalability W ith Computing Resources
An extensive study of the scalability, from the computing resources point of
view, should cover the influence of the three m ajor factors: processing speed,
available memory and number of processors. It must be straightforward to
understand the impact of the first factor, i.e. processing speed, on the pro­
gram developed in this study. Clearly, improving the processing speed of
all Workers homogeneously by s percentage will keep the same scenario of
Manager-Workers interactions and advances the overall run tim e by the same
s percentage. W hilst dram atic changes in such interactions are expected if
the performance of some of the Workers were improved. Thus, although some
workers may become much more effective the performance of the overall pro­
gram may remain the same as before.

The analysis of Case No.4 as presented above in Graph (II) in Figure 6.27,
reflects on the impact of the second factor, i.e. the memory storage. It is
recognisable th a t the ‘lim itations’ of sequential grid generator and partitioning
algorithm are strongly connected to the memory storage available on Workers
and Manager respectively. More memory on the Workers increases the size
of the grid per sub-domain, and more memory on the Manager increases the
possibility for partitioning the domain into larger number of sub-domains.

It is appropriate to emphasis th a t the program does not inspect the computing
resources available on each processor at all. The Manager synchronises the job
processing on the Workers regardless their capabilities. Currently the Manager
sorts the jobs based on their estimated workload and then sends the first job
in the queue to the first available processor. But, an enhancement can be
introduced by ‘ranking’ the Workers based on their capacities, and thereafter
the Manager matches the first job to the most appropriate available Worker.
However, the following discussion focuses on investigating the impact of the
third factor only, i.e. number of available processors. The main goal in here
is to find out if the algorithm can utilise effectively any increase in number of
processors or not.

Recalling all cases defined in Table 6.9, page 165, shows th a t number of proces­
sors may change within Cases number 5, 6, 7 and 8. To avoid being repetitive,
we recommend detecting the program scalability in respect to Case No. 7 and

181

20000
Parallel (8 Proc.)
Parallel (1 Proc.)

i Sequential
18000

16000

14000

12000o0)
CO 10000a>
E

8000

6000

4000

2000

5e+06 1e+07 1.5e+07 2e+07
Number of Tetrahedra

(i)

90000

80000

70000

60000
d
W 50000
©
j i 40000

30000

20000

10000

2.2E+6
4.8E+6
7.8E+6 -&•

14.0E+6
20.5E+6
3 9 .4 E + 6 -*■■■
61.1E+6
85.4E+6

114.2E+6 -B-

 *■—

3 6 3 2 64 1 28 256
Number of Sub-domains

(i i)

512

Figure 6.27: In (I), two sets of Case No.2 employing 1/8 processors,
also the time needed by the sequential generator. In (II) Several grids
generated on one processor within various number of sub-domains, Case
No.4

182

Case No. 6 by observing Graphs (II) in both Figures 6.20 and 6.23 respectively.
It is worth emphasising th a t a linear relation between speed-up S f and num­
ber of processors N p roc defines the ideal scalability status. Thus, the ‘linearity’
th a t is visible in Graph (II) in Figure 6.23 reflects a very healthy situation in
the program. Similarly, Case No.5 can be exposed by examining Figure 6.24.
Thus, Case No.8 is the only one left to be explored in here.

The following three different parameters: number of processors, number of
sub-domains and size of grid may vary in Case No.8. Apparently, this rep­
resents the ‘ultim ate’ condition for observing the program behavior, and it is
a rather complex case to be summarised in one graph. However, the reader
might be able to make his/her own judgm ent about this case by monitoring
the analysis of all other cases presented so far. Nevertheless, an example of
a ‘simplified’ form of case No.8 can be built utilising some already existing
results. A brief description of this is presented as:
Recalling th a t the set of parallel runs presented in (II) in Figure 6.27 cor­
responds to Case No. 4, in which number of sub-domains and grid size may
change. Reproducing the same set of runs on various number of processors
would then mimic the general form of Case No. 8. In fact, the ‘simplified’ form
mentioned above is constructed by ‘calculating’ the tim e needed in several runs
in which number of processors is equivalent to the number of sub-domains. De­
tails of the exact time needed in each individual sub-task were obtained from
the MPE log-files, which had been produced during previous parallel runs op­
erating on one processor. Utilising this break-down of the processing time on
one processor a new set of ‘projected tim e’ can be evaluated. Graph (I) in
Figure 6.28 represents the time of a set of runs for a set of different grids in
which number of sub-domains is always equal to the number of processors.

A quick comparison between Graph(I) in Figure 6.28 and Graph (II) in Fig­
ure 6.27, where only one processor is used, demonstrates how effective the
program would be in utilising any increase in number of processors. Of course,
achieving a better tim ing for each run is not a surprise a t all, however, what is
more interesting is the dram atic changes in the characteristics of each curve.
In fact, results presented in (I) in Figure 6.27 reconfirms what already has
been stated “generating a small size grid within large number of sub-domains
may not be effective a t all” . Graph (II) in Figure 6.28 represents the ‘best’
time achieved in every grid regardless the number of sub-domains used. One
way to read this graph is: the program developed in this study allows solving
large problems on large resources as well as it does fo r solving small problems
on small resources.

183

oa>
CO
<D
E
f-

oa>
CO
a)
E

2500

2000

1500

1000

500

i i 2.2E+6
4.8E+6
7.8E+6

14.0E+6 x
!! ! • C
i :1 : ‘ i: '•
* i
ii* \

i!20.5E+6...
39.4E+6
61.1E+6
85.4E+6

114.2E+6 -o --
f'. ii: \ • •* * : \

h i \)
M1... x."v

K \l
..........

8 6 3 2 64 128 256
Number of Sub-domains, Processors

(i)

512

1200
Best fime for each grid

1000

800

600

400

200

0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08
Number of Tetrahedra

(i i)

Figure 6.28: (I) Projected time for some parallel runs within Case No.
8, with the condition N sub = Nproc■ (II) Best time achieved for each grid
presented in (I)

184

6.3.4 Am dahl’s Law

It is very common to have in every parallel algorithm some components th a t
are not possible to parallelise. These sequential components will eventually
limit the speedup factor th a t can be achieved. Am dahl’s law is a well known
function th a t describes this issue [68]: Recalling the definition of the speedup
factor in equation 6.1, and rewriting the to tal parallel tim e as:

Tp = TPp + TPa

where TPp is the time needed for the parallel components of the program, and
TPa for the sequential components. The maximum speedup factor S fmax which
can never be exceeded defined in equation 6.4.

Sf™* = S f, where S f when TVp -» 0 (6.4)
1 Pa

In the early days of parallel computing, it was widely believed th a t this effect
would limit the utility of parallel computing to a small number of specialised
applications. Practical experience shows th a t this inherently sequential way
of thinking is of little relevance to real problems [40]. However, this all can’
conclude as: “a good design of parallel algorithm must keep the sequential
parts in it as minimum as possible” .

The parallelisation strategy adopted in this research has left out two parts of
the general algorithm, they are the partitioning of the domain and the con­
struction of the inter-domain communication tables. The latest is an identical
task in both direct and indirect decomposition methods but the former differs
dramatically. Obviously, it requires more time in the indirect decomposition
method, since it involves the generation of an initial volume grid. Nevertheless,
to estimate the impact of these two sequential parts on the parallel algorithm
overall, two examples of the direct decomposition are demonstrated.

Both examples illustrate the percentage of the tim e needed in the sequential
parts, to the to tal tim e of the run overall employing one processor only. The
first example reflects the case where the size of the grid changes with a fixed
number of sub-domains (see Graph (I) in Figure 6.29), and the second reflects
on the case where number of sub-domains in the same grid changes (see Graph
(I) in Figure 6.30). Graph(II) in each of these two figures demonstrates the
same result as in graphs (I) presented as a ‘projected tim e’, under the condition
of the number of employed processors is equal to number of sub-domains. In
each column of the histogram, to tal sequential time is presented a t the bottom
whilst the upper part represents the time needed to generate a volume grid in
one sub-domain and a surface grid on one internal boundary.

185

0.03
64 Sul?., 1 Proc.

g 0.025

CJoh-
0.02(/>■c(0

CL

15
c©3 0.015cr<D(0
o©E
i - 0.01

0.005

o©
CO
a>
E

2e+07 4e+07 6e+07 8e+07
Number of Tetrahedra

(i)

1e+08 1.2e+08

2000

1500

1000

500

i i
Sequential Parts
Total, (64 Rroc.)

2e+07 4e+07 6e+07 8e+07
Number of Tetrahedra

(i i)

1e+08 1.2e+08

Figure 6.29: Time required by the sequential parts in respect to the total
time of the parallel run. Grid size in the range [2E+6 - 114E+6] tetrahedra
and partitioned into 64 of sub-domains. (I) Exact timing using one proces­
sor, (II) projected timing by assuming number of sub-domains is equal to
number of processors.

186

20. E+6 Tetra., 1 Proc.
0.016

a>
E

0.014

oI-
t 0.012
&

0.01

o
| 0.008

0.006

oa>co
a>
E

2500

2000

1500

1000

500

8632 64 128 256
Number of Sub-domains

(i)

512

Sequential Parts
Total,(No. Proc.=No. Sub.)

86 3 2 64 128 256
Number of Sub-domains

(i i)

512

Figure 6.30: Time required by the sequential parts in respect to the total
time of the parallel run. Grid consists of 20.0E+6 tetrahedra and partitioned
into different number of sub-domains in the range [8 - 512]. (I) Exact
timing using one processor, (II) projected timing by assuming number of
sub-domains is equal to number of processors.

187

The cost of partitioning the domain, in the direct decomposition method, and
establishing the inter-domain communication data, in both methods, is prob­
lem independent. In other words, the very small percentage of the sequential
tim e presented must remain the same when more complex geometries are con­
sidered. However, it has been observed th a t the most expensive sequential
operation is writing the inter-domain communication output files on the disc
by the Manager. Actually, a minor modification to the program can transfer
this task to the Workers, but introducing some extra interprocessor communi­
cations will be inevitable.

6.3.5 Inter-Processor Communication

The speed of transferring data among processors, particularly when it is done
over a network, is still considered as a very slow procedure compared to the
speed of processing. In the ‘idealised network’ the communication cost is
independent of the processors location and other network traffic, but it does
depend on the message length [40]. Also, there is always an overhead cost
associated with every sending/receiving operation whatever the contents of
the message is. On the other hand, parallel algorithms designed to operate on
distributed memory model rely heavily on transferring da ta among processors.
Therefore, minimising the size and the frequency of the transfered data is a
very crucial point for such parallel algorithms performance.

The inter-processor communication operations are discussed extensively in Sec­
tion 4.2, but some of their features, from the performance point of view, are
highlighted herein.
The number of sending/receiving operations is always kept to a minimum as:
- Whenever there is a set of da ta to be transfered more than once, from the
Manager to the Workers or vice versa, it is then transfered once only and
stored in the local memory of each Worker (or the Manager).
- Whenever there is a noncontiguous set of data, a ‘grouping’ operation is car­
ried out before the sending.
Thus, in both cases, one sending/receiving operation is employed instead of
several one a t least. Also, the size of the transfered da ta is kept to a min­
imum as well, by always extracting the required data only and imposing a
new compact numbering scheme. Obviously, these features provide an opti­
mised communication strategy, which in tu rn gives a better performance of
the parallel programs.

The two examples presented in Figure 6.31 show th a t the time needed in the
inter-processor communication operations is extremely small comparing to the
to tal time in any run. So, even if the communication speed becomes much
slower than it is on the used platform, the performance of the program overall
m ustn’t be influenced badly. Graph(I) in Figure 6.31 illustrates how the time

188

spent on communication varies with the grid size, whilst Graph(II) illustrates
th a t with the number of sub-domains. Although the communication cost may
grow substantially when a high number of sub-domains is used, it is always
negligible in comparison to the cost of the entire procedure. Considering the
noticeable increase associated with the 512 sub-domains case in Graph (II), it
is appropriate to highlight th a t such a number of sub-domains is considered to
be rather high for grids with size as in the presented ones. It is also essential
to mention th a t the communication cost is independent from the complexity
of the gridded configuration.

6.4 A Comprehensive Parallel Processing En­
vironment

The continuous increase in the complexity of applications is already pressing
for a combined solution th a t promotes an extensive use of parallel processing
technology. An environment th a t provides a highly efficient and scalable par­
allel algorithm for every procedure involved in the design-analysis loop (i.e.
geometrical and topological definition, grid generation, numerical analysis and
post processing) is very likely to be the main stream demand in the very near
future [89, 95, 146, 144].

Although, developing such an environment may sound a straightforward task
of software integration, in practice, achieving advanced level of portability,
scalability and efficiency can be very challenging. Employing highly sophisti­
cated programming tools enhanced by object-oriented database may become
essential [116]. Nevertheless, a simplified form of integration can still be an ef­
fective alternative; particularly when the da ta th a t transfered among different
modules is well established and very unlikely to be changed.

In fact, such a comprehensive environment of parallel com putational engineer­
ing is already been under development in the Civil Engineering Departm ent
a t the University of Wales Swansea, into which the program developed in this
research has been integrated. It is called the PSUE (Parallel Simulation User
Environment), developed by a research group under the supervision of profes­
sors N.P. W eatherill, O. Hassan and K. Morgan. The PSUE contains some
basic CAD functionalities, parallel CFD and CEM algorithms, a limited par­
allel grid enrichment algorithm and an advanced parallel visualisation tools
[144, 149]. Obviously, discussing the PSUE, or the topic of parallel environ­
ment in general, is beyond the objective of this thesis. However, it is still
appropriate to dem onstrate the interaction between the parallel grid generator
and other various models inside the PSUE.

189

0.02

0.018

a>
1 0.016

JS
£ 0.014
a>
E
i- 0.012c0
c5
.a 0.01
3
E
1 0.008o

0.006

0.004
0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

Number of Tetrahera

(I)
0.04

0.035

a>
0.03

iS
K 0.025
<D
E
i- 0.02c0
co
| 0.015
3
E
1 0.01o

0.005

0
8632 64 128 256 512

Number of Sub-domains
(i i)

Figure 6.31: Time required by the communication operations in respect
to the total time of the parallel run using a single processor. (I) Grid size in
the range [2E+6 - 114E+6] tetrahedra and partitioned into 64 sub-domains,
(II) Grid consists of 20.0E+6 tetrahedra and partitioned into [8 - 512] sub-
domains.

20.E+6 Tetra., 1 Proc.

64 Sub., 1 froc.

190

Parallel simulation

Two different simulators are available in the PSUE; the first one is for fluid
dynamics (i.e. Euler and Navier-Stokes equations) and the second is for electro­
magnetics (i.e. Maxwell’s equations). Both solvers are based on the Finite El­
ement method with Galerkin approach. An explicit finite difference procedure
is used to discretize the time dimension [149]. The overall da ta structure is
edge-based, which requires the edges to be extracted from the ‘element based’
grid as it is generated and stored by the parallel grid generator.

Having the grid already been distributed onto sub-domains, and the inter­
domain communication established, the parallel simulators would require no
further preparations. In fact, whilst the CEM solver accepts the same data
format as produced by the parallel grid generator, there is still an incompat­
ibility issue with the CFD solver. Hence, the option of ‘building one global
volume grid’ is certainly needed such th a t a compatible grid partitioner can be
employed. Unfortunately, due to some out of hands circumstances no electro­
magnetic simulation could be presented in this thesis, however, some previous
work can be seen in [91, 94, 95]. Alternatively, we present the simulation of
two different fluid dynamic problems. The work has been carried out using a
CFD solver developed by Sorensen and uses an agglomerated multigrid method
[119].

Simulating aerodynamic in a configuration of four military aircraft:
Details of this configuration with a grid generated in 32 sub-domains have
been presented in section 6.2.2, see Figures 6.9 and 6.10. Another grid th a t
consists of 61,586,153 tetrahedra and 10,569,214 points has been generated in
16 sub-domains employing one Worker on the same SGI Challenge machine. A
cross section in the volume grid of one the sub-domains is presented in Figure
6.32, with two different close ups. In order to improve the performance of
the simulator, grid quality enhancement technique was applied on individual
sub-domains before constructing the global volume grid, [58]. Statistics of the
minimum dihedral angle per element, collected after the quality enhancement
procedure been implemented, show th a t only 14 elements have a dihedral angle
of less than 10 degrees.

The global volume grid has been re-partitioned into 16 sub-domains by Metis
[75, 74] whilst operating sequentially on an SGI Onyx shared memory machine,
which has 32 processors and 64 GBytes of memory. The simulation was car­
ried out in parallel employing 16 processors on the same machine. Considering
the airflow as inviscid and compressible, with the assumption of Mach number
as 1.8 and zero angle of attack, the to tal time needed by the simulator was
about 20 hours. Results are presented in a set of figures, each figure has a few
pictures of the pressure distribution contours. See Figure 6.33 for the contours
on the aircraft surface, whilst for a set of planar cuts inside the wind tunnel

191

and perpendicular on the main axis see Figures 6.34, 6.35 and 6.36.

■ IP

igfcti

Figure 6.32: Detai ls f rom a S u b -d om a in vo lu me grid, to t a l n u m b e r of
e l e m e n t s is 61 ,586,153.

192

{ II)

Figure 6.33: Four a i rc ra ft conf igura t ion exa m pl e (con t .) . A p ressu re co n ­
to u r on t h e a i r craf t surface , (I) t o p an d b o t t o m view of one ai rcraf t , (II)
t o p view of th e four ai rcraft .

193

Figure 6.34: Pressure co n t o u rs on a se t o f p lanar c u t s t h a t pe r pend icu la r
to t h e ma in axis of t h e tunne l .

Figure 6.35: Pressure co n to ur s two p lana r cu t s parallel t o t h e ma in axis
(s ide view) o f t h e tunnel .

194

F i g u r e 6 .3 6 : P re ssu re co n t o u rs two p lana r cu t s parallel t o t h e ma in axis
(t op view) o f th e tunne l .

V o rte x d y n a m ic b e h in d a c iv ilian a irc ra f t
Shortening the gap between airplanes queuing over an a irpo rt space for landing
has a massive com mercial interest, and it seems th a t aerospace industry has
already acknowledged the issue. Obviously, a comprehensive understanding
of the vortices dynam ic and how they are formed behind aircrafts is a very
essential p a rt in addressing the problem. However, our m ain interest is to
dem onstrate the im plem entation of grids generated by the parallel grid gen­
erato r developed in this research. The grid used in th is exam ple has been
presented earlier in Section 6.2.2, see the Figures from 6.13 to 6.18 and Ta­
ble 6.8. An interesting observation in this grid is th a t the to ta l num ber of
elem ents w ithout the ‘ex tra ’ sources (i.e. the ones stretched behind the wings
tip) would be abou t 6 million te trah ed ra only, which means th a t more than 57
million te trah ed ra are d istribu ted along the vertices pa th in order to capture
an accurate solution.

Grid quality enhancem ent algorithm has been applied on individual sub-dom ains
before they were merged together to form the global volume grid, which has
subsequently been partitioned into 16 sub-dom ains using M etis. The two op­
erations of constructing and partition ing the global volume grid have been
carried ou t sequentially on the SGI Onyx m achine m entioned before. The
same solver as in the exam ple above has been used to carry out the analysis,
w ith the angle of a ttack equals 5 and Mach num ber equals 0.85. Total run
tim e for the solver was abou t 18 hours using 16 processors on the Onyx m a­
chine. D istribu tion of pressure on the entire aircraft surface is presented in the
top images in Figure 6.37. W hilst, various images of the velocity d istribution
contours are presented in the Figures 6.38 and 6.39.

195

(/)

[II)

(III)

F i g u r e 6 .3 7 : C o n t ou rs of th e pressure d is t r ibu t ion on th e a i rplane surface ,
(I), an d line co n t o u rs of th e veloci ty (Y c o m p o n e n t) on a p lana r cross sect ion
parallel t o th e a i rc ra f t a t t h e edge of th e wing t ips in (II) wi th two different
c loseups in (III).

196

F i g u r e 6 . 38 : Line co n to u rs o f two veloci ty c o m p o n e n t s (Y di rect ion on
LHS and Z direct ion on RHS) on a se t o f p lana r cross sec t ions a long th e
ma in axis. All t h e cu t s are located beh ind th e a i rplane, t h e nea res t pl ane is
on th e top.

mm

(I)

^ 0
'tv/Ik

(II)

(H I)

F i g u r e 6 .3 9 : T h e veloci ty vec to r a t t h e s a m e cross sec t ions p resen ted in
Figure 6.38, (I) and (I I) present t h e first two sec t ions wi th a close up of
each on th e RHS, whi ls t (I I I) present th e thi rd (LHS) and fou r th (R H S)
cross sect ion.

198

Parallel simulation with grid adaptivity

In general, sequential simulators enhanced by grid adaptation techniques have
proved to be very useful as more accurate solutions can be achieved rather effi­
ciently [58,101, 140]. The same type of grid adaptation techniques can also be
used by parallel simulators, though some extra care is needed in the implemen­
tation procedure. Given a solution on an initial grid h-refinement technique
can be employed inside sub-domains independently, whilst, any modifications
of elements th a t associated with the inter-domain boundaries have to be car­
ried out in co-ordination between the adjacent sub-domains. Obviously, this
requires extra inter-process communication to be introduced during the sim­
ulation. Such th a t inter-domain communication tables 7 need to be updated
after every iteration of grid adaptivity.

Achieving a high level of accuracy and smoothness in interpolating new points
on the boundary elements requires access to the geometrical description of
boundary surfaces. Thus, an easy and efficient way to access the geometrical
description of surfaces under the sub-domains boundary grid should be pro­
vided. In fact, the parallel grid generator reads in such information at the same
time when the original boundary triangular grid is read. The surface number
associated with each triangle on the original boundary is m aintained, using
the global numbering system, throughout the entire partitioning and gridding
procedures.

An illustrated example for the grid refinement procedure impact is presented.
The problem involves aerodynamic analysis of a m ilitary aircraft configuration.
An initial grid is generated in 8 sub-domains operating on two processors in
the SGI Challenge machine; see Figure 6.40 for some details of a typical grid
in one of the sub-domains and its internal boundary. The to tal number of
elements in the initial grid is 6,345,709 tetrahedra, whilst it is 18,020,126 in
the final grid. Typical contours of the pressure distribution on the aircraft
surface are presented in Figure 6.41, differences between the two solutions (i.e.
associated with the initial grid or refined grid) can be seen. Typical examples
of the grid refinement procedure impact on the surface grid can be seen in
(I I I) in Figure 6.41.

7See section 5.2.2 for more information on these tables.

199

Figure 6.40: Detai ls o f th e F16 example , sur face grid on th e internal
b o u nd ar y wi th c u t s inside so m e o f t h e su b - d o m a i n s grid.

200

Sfai#1

(/ /)

Figure 6.41: Simula t ion of th e airflow a round a mil i tary a i r c ra f t ut i l ising
t h e grid adap t iv i ty technology. P ressu re d i s t r ibu t ion c o n t o u r in (/) , and
a compar i s ion be tween th e solut ion ob ta in ed on t h e initial grid (left) and
t h e refined grid (r ight) in {I I) . I mp ac t o f t h e r e f ine me nt p roce dure on th e
b o u n d a r y t r i angu la r grid can be seen in t h e second row in {I I) .

201

Parallel Visualisation

The interest in using parallel processing technology with volume rendering al­
gorithms has grown considerably during the last decade, [87, 88]. Advanced
parallel visualization tools known as ViPar have been designed and integrated
into the PSUE [71, 149]. The core idea of ViPar is th a t all of the searching
and computationally expensive tasks are performed on the server computer and
only the da ta required to be rendered sent back to the end user workstation.
V iPar can read grids directly as generated and stored by the parallel grid gen­
erator, i.e. the grid is already distributed on sub-domains and all inter-domain
communication d a ta been established. It also exploits other available informa­
tion th a t associated with the sub-domains boundary grid the in order to speed
up data search and inter-process communication operations. V iPar uses the
SPMD parallel programming model operating on distributed memory archi­
tecture with M anager/W orkers mechanism. The Manager is always associated
with the end user graphic workstation, whilst, all Workers are distributed on
the server processors.

Typical outputs of V iPar for a grid in the order of 115 million tetrahedra (i.e.
the grid of the aircraft engine duct, which is presented earlier this chapter see
Figure 6.7 and Table 6.3) is presented in Figure 6.42. A general overview of
the sub-domains surface grid is presented in (/) , a close up of a planar cut
in the volume grid of a few sub-domains around the fan is presented in (II)
and a planar cut in the global volume grid with the surface grid on the fan in
(i n) .

6.5 Concluding Remarks

A flowchart of the general parallel framework has been presented very early
in this chapter. Various options available in the framework (i.e. the basic
grid, load redistribution and the construction of one global grid) have been
addressed. The option of building one global grid has been discussed in detail.
A layout of the general procedure has been discussed, an example of a grid
generated in eight sub-domains and then assembled in one global grid has been
presented. Implementing this option in order to carry out local partitioning
of large sub-domains has also been illustrated in a greate detail. A number of
tetrahedral grids of realistic engineering problems have been presented. Some
of these grids are in the order of more than 100 million elements, furthermore,
all presented grids have been generated on a platform has only 512 MBytes of
available memory.

An extensive numerical analysis of the program performance and scalability
has been presented. Number of processors, number of sub-domains and prob-

202

v \ V

(/ /)

(III)

Figure 6 .4 2 : Different views o f th e D u c t grid, see Figure 6.7 and Table
6.3, ge n e ra te d by th e ViP ar tools . A general overview in (I), a close up of
a planar c u t in vo lume grid o f a few s u b - d o m a i n s a ro un d t h e f an in (I I)
and a planar c u t in th e global vo lume grid wi th t h e sur face grid on th e fan
in (I I I) .

203

lem size, have been considered as the main param eters th a t would influence
such analysis. A set of ‘Cases’, th a t defined by allowing these param eters to
change individually or combined, has been established and used systematically
during the inspection of various measurements. The inspected measurements
included: speedup, efficiency, scalability with problem size and scalability with
resources. Sequentially processed tasks have been identified and Am dahl’s law
has been examined. The impact of the time spent in the inter-processor com­
munications on the performance overall has also been explored.

The scalability of the indirect decomposition method is seen to be questionable,
mainly because of the lim itations introduced by the construction of the initial
volume grid. W hilst the direct decomposition method suffers from the lim ita­
tions on total number of sub-domains (i.e. planar cuts) th a t can be created
along one axis. The enhancement by the local repartitioning procedure has
proved to be effective, but an octree based decomposition with better initial
load distribution must be sought. In general, this chapter has dem onstrated
th a t the developed framework can provide an efficient scalable parallel algo­
rithm for unstructured grid generation. Also, most interestingly, generating
massive grids can be accomplished by employing a single processor machine
only.

A comprehensive com putational engineering environment th a t adopts the par­
allel processing technology for every algorithm involved in the design-analysis
cycle has been introduced very briefly. The integration of the programs de­
veloped in this research into such an environment has been highlighted. The
use of some of the generated grids by other algorithms has also been illus­
trated. Two different simulations of typical fluid dynamic problems have been
presented, and another simulation enhanced by grid adaptivity procedure has
been shown.

Chapter 7

Conclusion and
Recom m endation for Further
Research

Issues associated with using sequential grid generators for constructing large-
scale unstructured grids have been addressed very early in this thesis (see sec­
tion 1.2). It was stated: “relying on the traditional sequential grid generation
methods only to generate large scale grids can not provide a practical solution
.... alternative approaches had to be investigated, aiming to preclude the
bottle neck of memory requirements.” Subsequently, the ultim ate objective of
this research was identified as: to develop a ‘tool’ by which large-scale unstruc­
tured grids fo r realistic engineering problems can be generated efficiently on
any parallel computer platform.

This thesis has addressed two different approaches for generating grids by us­
ing the parallel processing technology. First approach depends on parallelising
an existing sequential algorithm directly, whilst the second approach is based
upon a geometrical partitioning concept, where the com putational domain is
subdivided into a number of sub-domains which are then gridded indepen­
dently in parallel.

Three different categories have been identified under the geometrical partition­
ing approach, see section 2.4.2 page 29. The strategy adopted in this thesis falls
under the ‘pre-gridding’ category in which all internal boundaries are gridded
prior to the construction of the closed boundary of individual sub-domains. It
has been proved th a t algorithms in this category have a number of advantages
to algorithms in the other two categories:

• Much larger grids can be generated, since algorithms under the other two
categories would have to deal with the volume grid of the entire domain
in one form or another during the generation procedure.

205

• There is more flexibility to enhance the quality of surface grids on the
internal boundaries, and subsequently the quality of the overall volume
grid.

• Cost of inter-processor communications in this category is almost negli­
gible.

• There is a great deal of flexibility to integrate different procedures at
certain steps of the overall algorithm

Two different methods (namely the indirect decomposition method and the
direct decomposition method) have been investigated in this research. The
key concept in the former method is to partition the com putational domain by
exploiting an ‘initial grid’, which is constructed using the original boundary
points only. The grid partitioning procedure is carried out using a greedy-type
algorithm, employing two different options as partitioning criterion (i.e. equal
volume per sub-domain and based on an estimate of to ta l number of elements
expected per sub-domain. Nevertheless, this m ethod in general has failed to
demonstrate a steady and robust performance in gridding complex geometries,
neither has it proved to be a scalable and efficient m ethod for generating grids
in parallel. The thesis has identified a number of problems with this method:

• The overall shape of sub-domain boundaries is usually very complicated,
which makes m aintaining the boundary integrity after Delaunay trian­
gulation rather difficult and time consuming.

• The demand for generating an initial tetrahedral grid can become a real
bottle neck in the process. Scalability and efficiency of the algorithm
overall can get badly effected by such an inevitable sequential step.

• Achieving an acceptable level of workload balance among sub-domains
at the domain decomposition step has proved to be very difficult if not
impossible.

• The inter-domain communication cost is very likely to be high as a result
of the extreme shape of the sub-domain boundary.

Therefore, a m ethod th a t can address such issues was sought leading to the de­
velopment of the direct decomposition method. In this method, the enclosed
volume is subdivided directly by applying a set of parallel planar cuts dis­
tributed along one axis. Locations of the cutting planes are determined based
on a criterion chosen by the user (i.e. equal spacing, equal number of trian­
gles and predefined explicitly). O ther ways for carrying out the decomposition

206

procedure using planar cuts in different forms such as a Cartesian network or
by employing an octree decomposition procedure were also highlighted.

This thesis has dem onstrated th a t the direct decomposition method, unlike
the indirect decomposition method, will always produce sub-domains of more
‘regular’ shapes th a t have smooth and high quality surface grids. It has been
illustrated th a t the direct decomposition method can be a reliable, scalable
and efficient technique for generating tetrahedral grids in parallel. In general,
a set of advantages associated with the direct decomposition method can be
identified:

• It is a much more reliable method, mainly due to the nature of the sub-
domain boundary and the high quality of its surface grids.

• It is a highly scalable method, since there is no sequential procedure such
as generating the initial grid in the indirect decomposition method.

• The element quality on the internal boundary surfaces, and subsequently
in the overall volume grid, has proved to be much better in comparison
to the indirect decomposition method.

• The initial distribution of the workload is much more balanced, and there
is a great potential for further improvements in the future.

• The inter-domain communication cost is low, and it can be reduced sig­
nificantly if more sophisticated domain decomposition techniques is used.

• There is a great chance to minimize, or eliminate, the cost associated
with the load redistribution step as a post-processing procedure.

The direct decomposition method, mainly when it is implemented with uni­
directional cuts, may show some limitations in term s of the to ta l number of
sub-domains th a t can be created. Obviously, such an issue can be addressed
by implementing a multi-directional cuts procedure or another more advanced
domain decomposition algorithm. However, the enhancement introduced in
this thesis by integrating a local re-partitioning procedure, which repartitions
individual sub-domains independently, has proved to be very effective.

The implementation of the parallelisation strategy has been presented using
one general algorithm th a t represents both of indirect and direct decomposition
methods. A unique com putational framework has been presented. This frame­
work adopts the Message Passing Library (MPL) model and uses the Single
Program Multiple D ata (SPMD) structure with a M anager/ Workers mech­
anism. A special technique termed the Dynamic Parallel Processing (DPP)
has been integrated into the tem plate in order to enhance its flexibility, such

207

th a t processing an arbitrary number of tasks on an arbitrary number of pro­
cessors became always possible. It has been dem onstrated th a t this framework
with the D PP technique can always provide an efficient and scalable algorithm
for generating unstructured grids in parallel. Also, most interestingly, it was
shown th a t generating massive grids can be accomplished by employing a single
processor machine only.

A number of ‘post-processing’ algorithms have been presented. W hilst some
of them were developed in respond to practical requirements, such as the con­
struction of one global volume grid by merging all sub-domains; others were
more essential, such as the construction of inter-domain communication ta ­
bles. The load balancing issue has been discussed thoroughly in this thesis.
The development of a new ‘purpose-built’ load redistribution algorithm was
justified based on the fact th a t using off-the-shelf algorithm might become very
problematic with such large-scale grids. Though the developed algorithm has
proved to be very effective in achieving highly balanced element distribution,
it is still considered as inefficient procedure. However, it has been shown th a t
this algorithm has a great potential for further improvements and a well ac­
ceptable performance is achievable. An attem pt to improve the element quality
has been made by developing a point relaxation algorithm th a t operates on the
internal boundary surface grids. The thesis has concluded not to recommend
using this algorithm due to the very little improvements it provides.

To sum up, apparently, the framework developed in this research has proved
to be a very effective tool for generating large-scale tetrahedral grids. Grids of
realistic engineering problems and to the order of 115 million elements (gen­
erated using one processor on an SGI Challenge machine with 512 MBytes of
shared memory) were presented.

Recom m endation for Further Research

Research presented in this thesis has already been subject to further devel­
opment, see the PhD thesis by Larwood in reference [154]. In fact, some of
the following recommendations have already been investigated, however, the
parallel grid generation field remains a young and active area of research and
there is still much scope of further developments. “Because the development
of efficient scalable parallel techniques takes much more than their sequential
counterparts, it may take a while before parallel grid generation comes to state
of m aturity.” [22].

• The issue of achieving highly balanced workload distribution at the do­
main decomposition step must be given a priority. Options such as using

208

algorithms based on Recursive Cartesian Bisection or Octree partition­
ing should be explored. Considering the effects of the grid point spacing
parameters is crucial.

• More sophisticated approach to the domain decomposition issue can be
investigated. In such an approach, the domain decomposition procedure
would consider the inter-domain communication cost as another major
criterion (i.e. in addition to the workload distribution).

• The task of surface grid generation on the internal boundary will always
form a significant part of the overall algorithm, therefore, it must always
be carried out in parallel. Sequential processing of such a task would
cause a serious problem to the algorithm overall scalability.

• The Dynamic Parallel Processing technique has proved to be extremely
effective, therefore, it is strongly recommend to be maintained in all
future development.

• W ith the growing increase in the size of surface grids associated with
large-scale volume grids, it is very likely th a t the parallelisation of the
surface grid generation procedure (i.e. operating on the original bound­
ary) will become essential.

• There is a great potential to modularise the general framework such th a t
it can accept various types of grid generators with very minimum, if any
at all, interaction with the original program

• W ith such large-scale grids, and in orderer to m aintain the high scala­
bility of the framework, it is strongly recommended to keep the ‘post­
processing’ type of algorithms in general to the very minimum.

209

A ppendix A

Unstructured Grid Generation
Using Delaunay Triangulation

“It is a remarkable fact th a t seemingly simple concepts can often lead to whole
new fields of research and find extensive applications in many diverse areas.
This phenomenon is well illustrated by the Voronoi diagram (1908, [130]) and
its dual the Delaunay triangulation (1934, [24]). Though formulated early in
the twentieth century long before the rise of scientific computing, these funda­
mental geometric ideas have recently found a wealth of applications ” , [5]. In
fact, this can be taken back even further to the nineteenth century. The basic
idea was proposed by Dirichlet in (1850, [26]), and subsequently rediscovered
by various workers in many fields and described under variety of names such
as Voronoi diagram in the computational geometry area. In 1981 Bowyer [12]
and W atson [135] have independently developed an algorithm for computing
the Delaunay triangulation. Most of the Delaunay based grid generators th a t
are available nowadays employ one of these algorithms. However, although
the Delaunay triangulation and associated Voronoi diagram had been used as
a natural setting for calculations involving irregular spaced points, the real im­
plementation of it as an explicit m ethod of generating grids for complex shapes
was not known until a bit later in the 1980s [3, 136, 141]. Since its early days
the method has proved to be very efficient and flexible, and it became very
popular, (see [86] for extended bibliography). However, although a number
of advanced algorithms for Delaunay grid generation have already been de­
veloped and m atured enough by now, the method still a ttracts a considrable
attention for further research [5, 11, 50, 143, 58].

Given a set of points in the plane, the Dirichlet tessellation is constructed
which assigns to each point a territory th a t is the area of the plane closer to
th a t point than to any other point in the set. This tessellation of a closed
domain results in a set of non-overlapping convex polygons, called a Voronoi
diagram. The boundaries of such polygons form the perpendicular bisectors

210

between each point and its immediate neighbours. If every two points with
a common boundary are connected by a straight line then a triangulation,
known as Delaunay triangulation, is obtained. This definition readily extends
into three dimensions where tetrahedra are formed.

Obviously, the Delaunay-Voronoi dual construction is applicable on a given
set of points only, thus, from the grid generation viewpoint there is still a
demand for another technique th a t produces the grid points. The other issue
needs to be addressed in conjunction with the Delaunay triangulation is how
to ensure th a t the resulting triangulation is boundary confirming, which means
th a t the initial boundary is preserved. Of course, it is beyond our intention
to discuss in great detail all these different concepts. However, in order to
provide the reader with some of the basic knowledge th a t directly related to
the work of this research, two of the topics mentioned above (i.e. the Delaunay
triangulation and point creation) are reviewed briefly while for the th ird issue
(i.e. boundary confirming) the reader is advised to consult [3, 56, 143] l .

A .l The Delaunay Triangulation

Delaunay-Voronoi Geometrical Structure

If a set of points is denoted by {Pi}, then the Voronoi regions {Vi} can be
defined as

{Vi} = { P : \ \ p - P i \ \ < \ \ p - P j \ \ ^ j ^ i }]

i.e., the Voronoi regions {V*} is the set of all points P th a t are closer to Pi to
any other point. The sum of all points p forms a Voronoi polygon, see (I) and
(II) in Figure A.I.

The definition above is valid for n dimensional space. Apparently, in the two
dimensional space a line segment of a Voronoi polygon must be equidistant
from the two points th a t it separates and is thus a segment of the perpendicular
bisector of the line joining these two points. If all point pairs which have a
segment of polygon in common are joined by straight lines, the result is a
triangulation of the convex hull of the data points. This triangulation is known
as the Delaunay triangulation of the set of points {Pi}, see (III) in Figure A.I.

It is apparent th a t for each triangle there is an associated vertex of the Voronoi
diagram which is a t the circumcentre of the three points which form the trian­
gle. In other words, each Delaunay triangle has a unique vertex of the Voronoi
diagram and no other vertex lies within the circle centred at this vertex, see

1 Discussion presented in this Appendix depends heavily on materials taken from refer­
ences [12, 56, 136, 139, 140, 147], in which the reader can find more details.

211

(Ill) (I V)

Figure A .l: Illustration of the Voronoi and Delaunay geometrical con­
structions. (I) set of points in 2D, (II) the Voronoi diagram, (III) Delaunay
triangulation obtained by connecting every pair of points with a common
segment, (IV) illustration of the in-circle criterion.

212

(IV) in Figure A .I. This is what is commonly known as the ‘in-circle criterion’.
In the three dimensional space, the territory of each da ta point is a convex
polyhedron and the Voronoi diagram faces are equidistant between point pairs.
If points with a common face are connected, then a set of te trahedra is formed
which covers the convex hull of points. Similarly in the two dimensions case,
each vertex is a t the circumcentre of a sphere defined by the four points th a t
describe the tetrahedron, and an 1 in-sphere criterion’ is applicable.

Construction of the Delaunay Triangulation

There are several algorithms used to construct the Delaunay triangulation.
The algorithm developed by Bowyer, [12], is the most widely used in grid gen­
eration, it is favoured because of its flexibility to be applied in the two and
three dimensions. Also, it is the approach adopted in the Delaunay grid gen­
erator used in this work [136, 139]. Thus, a brief description of its main steps
is presented with some illustration figures th a t dem onstrate the insertion of a
new point into an existing Delaunay structure.

Triangulation Algorithm
In Bowyer’s algorithm, each point is introduced into an existing Delaunay-
satisfying structure, which is locally broken and then reconstructed to form a
new Delaunay- satisfying construction. Hence, before any of the data points
can be inserted a form of Delaunay-Voronoi structure must exist first, in fact,
this is what S te p 1 in the following algorithm should provide.

S te p 1
Define a set of points which form a convex hull within which all points will
lie. It is appropriate to specify four (eight in 3D) points together with the
associated Voronoi diagram structure.

S te p 2
Introduce a new point anywhere within the convex hull, e.g. Q in (I) Figure
A.2.

S te p 3
Determine all vertices of the Voronoi diagram to be deleted. A point th a t lies
within a circle centred at a vertex of the Voronoi diagram and passes through
its three forming points results in the deletion of th a t vertex, e.g. vertices di
in (II) Figure A.2. This follows from the in-circle criterion.

S te p 4
Find the forming points of all the deleted Voronoi vertices, i.e. Ci in (II) Figure
A.2. These are the contiguous points to the new point Q.

S te p 5
Determine the neighbouring Voronoi vertices to the deleted vertices th a t have

213

?4

(I)

Cs114

C l

C 3

'm
m

C2

C 4

(i i)

****** **•V *•* .*••** V
! • V

V*

(i n) (I V)

Figure A.2: Illustration of the Voronoi and Delaunay geometrical con­
structions while a new point (Q) is introduced to an existed diagram, (I).
Vortices (di) are to be deleted and information related to their neighbouring
vortices (n^) and forming points (Ci), (II), are to be used in constructing
the new Voronoi diagram, (III), and Delaunay triangulation (IV).

214

not themselves been deleted, i.e. rij. These data provide the necessary infor­
mation to enable valid combination of the contiguous points to be constructed.

S te p 6
Determine the forming points of the new Voronoi vertices. The forming points
of the new vertices must include the new point together with the two points
th a t are contiguous to the new point and form an edge of a neighbour triangle,
see (III) in Figure A.2.

S te p 7
Determine the neighbouring Voronoi vertices to the new Voronoi vertices. Fol­
lowing Step 6, the forming points of all new vertices have been computed. For
each new vertex, perform a search through the forming points of the neigh­
bouring vertices, as found in Step 5, to identify the common pairs of forming
points. When a common combination occurs, then the two associated vertices
are neighbours of the Voronoi diagram.

S te p 8
Reorder the Voronoi diagram data structure, overwriting the entries of the
deleted vertices. See Figure A.3 and Table A.I.

S te p 9
Repeat Steps 2-8 for the next point.

Figure A.4 shows a comparison between the triangulation before and after
introducing a new point in (I), and an illustration of the in-circle criterion in
the obtained triangulation in (II).

Data Structure
The structure of the Voronoi diagram and Delaunay triangulation can be de­
scribed by constructing two lists for each Voronoi vertex. Each of the lists is
of length three in two dimensions and four in three dimensions. The first list
holds the points th a t define the forming points (i.e. Delaunay triangles in 2D
and tetrahedra in 3D) of each Voronoi vertex, the second list holds the adja­
cent neighbouring vertices. Such tree data structure is essential for achieving
an efficient implementation of the algorithm. Clearly, with the exception of
S te p 3, all the operations described are of a local nature and can be car­
ried out in an operation count independent of the to ta l number of points. A
naive search for vertices of the Voronoi diagram to be deleted would amount
to O(N) operations per point and the to 0 (N 2) operations for the to tal work­
load. An obvious improvement is to identify any one vertex th a t is to be
deleted and then perform a tree search through the neighbouring Voronoi dia­
gram data structure. However, Table A .l demonstrates the data structure of
Voronoi-Delaunay structure th a t is associated with the dem onstrate example
mentioned throughout the algorithm steps above. Lists presented in the Table
can be examined against the diagrams in Figure A.3. Notice th a t vertices

215

V5 V5
V6 ,V6

V I VI

V9 V9
V7V8 V2 V8 V2

V I O' rV10';Y11 [V I1V3

V4 ;v4
V 12

I II

Figure A.3: Numbering of the Delaunay-Voronoi construction, before (I)
and after (II) inserting a new point into an already existing structure. This
figure is associated with the data structure presented in Table A.I.

(i)

Figure A.4: (I) The new Delaunay triangulation (solid) obtained after
introducing a point in comparison to the old triangulation, in (II) illustration
of the in-circle criterion on the new triangulation.

216

which lie outside the convex hull, and therefore do not possess three forming
points nor three neighbouring vertices, have been identified as null vertices.

Before After
Vortex Forming points Neighbours Forming points Neighbours

1 3 4 6 2 0 5 3 4 6 2 0 5
2 3 1 4 7 10 1 3 1 4 13 10 1
3 2 9 1 7 11 12 2 9 12 7 11 12
4 5 1 7 10 12 0 5 1 7 10 14 0
5 6 8 ,3 1 0 6 6 8 3 1 0 6
6 3 8 11 5 0 9 3 8 '11 5 0 9
7 1 3 2 2 9 3 12 3 2 13 9 3
8 2 11 10 9 0 11 2 11 10 9 0 11
9 3 11 2 7 6 8 3 11 2 7 6 8
10 5 4 1 0 2 4 5 4 1 0 2 4
11 2 10 9 3 8 0 2 10 9 3 8 0
12 1 9 7 4 3 0 12 9 7 14 3 0
13 - - - - - - 1 3 12 2 7 14
14 - - - - - - 1 12 7 4 13 12

Table A .l: Data structure for the Voronoi diagram and Delaunay triangulation shown
in Figure A.3f before and after introducing a new point to an existing structure. Notice
the modifications in both lists, forming points and neighbouring vertices, e.g. vertices
2-4.

A .2 Autom atic Point Creation

A grid must have a sufficient number of points so all im portant geometrical
features of the domain are well presented, also the approximation in the nu­
merical solution is satisfactory. The point spacing should vary smoothly such
as the gradient of the solution can be captured too. On the other hand, com­
putational efficiency must be taken into consideration so the grid must not be
over dense. ,

Obviously, the triangulation algorithm presented above gives no indication as
to how grid points can be generated. Hence, an external procedure th a t derives
the points location must be introduced if a Delaunay based grid generator is
to be built. Two ways which have been used include grid superposition m eth­
ods and points generated from independent technique, e.g. structured grid
methods. The basic idea in the former approach is to superimpose a regular

217

grid over the domain, whilst in the later is to generate a set of points indepen­
dently and then connect them to form the grid. Although the superposition
methods can be very fast and produce good quality grids in the interior of
the domain, the quality near the boundary can be problematically poor. The
second approach is very restrictive, in particular, for general complex geome­
tries. However, in addition to the clear lim itations above, the requirement for
controlling the density of points within the domain in a more flexible manner,
has led into the development of more advanced procedures.

Autom atic point creation with ‘controlled’ spacing
A summary of a procedure th a t has proved to be flexible and efficient in cre­
ating points in association with the Delaunay triangulation technique is pre­
sented, for more details the reader can consult [56, 140, 147]. The proposed
procedure allows for different methods (e.g. boundary point distribution, back­
ground grid and sources) to be used in controlling the points density and dis­
tribution in the grid. Although, th a t the presented algorithm considers the
method adopted in this research only, the layout in general is applicable on all
other methods and for both of triangular and hexahedral grids. However, it
is appropriate to mention th a t the procedure overall requires minimal manual
user input and provides good grid quality.

Layout of point creation procedure

Step 1
Compute the point distribution function dpi for each boundary point r* as:

i M

dPi = T f T , llr j - r ‘ll
i=i

where j = 1 , M are the points surrounding point i\ M = 2 in the triangular
grids (2D) and M > 2 in the hexahedral grids (3D).

Step 2
Generate an initial grid th a t connects the boundary points by a set of triangles
(tetrahedra) using the Delaunay triangulation procedure.

Step 3
Initialise the number of interior field points created, N = 0.

Step 4
For each triangle (tetrahedron) within the domain perform the following:

218

a) Define a prospective point, c, to be at the centroid as:

1 K
r c = ^ z JA k= 1

where K is number of nodes per element, i.e. 3 in 2D and 4 in 3D.

b) Derive the point distribution function dpc by interpolating the

distribution function from the associated triangle (tetrahedron) nodes:

K

Kd p c = ± E d Pnk
k= 1

c) Update the dpc based on the effect of the point spacing sources available 2.

d) Compute the distances Ik from the prospective point c

to each node n/t, where k = 1 ,2 ,3 in 2D and k = 1 ,2 ,3 ,4 in 3D:

if Ik < ol dpc (for any k) th e n

reject the point and return to the beginning of Step 4

where a is a param eter th a t effects the grid point density globally,

else

accept the point for insertion by the Delaunay triangulation,

add the point into the new points list, N = N + 1; = r c

assign the value of dpc found in step c above to the new point,

e n d if

S te p 5
If N = 0 go to Step 7.

S te p 6
Perform the Delaunay triangulation of the N derived points, go to Step 3.

S te p 7
Apply a smoothing technique on the entire grid points.

2Further discussion of this step is presented immediately after the algorithm.

219

Point Spacing Sources

The concept of the use of ‘sources’ provides a mechanism by which an adequate
point spacing in particular regions of the domain can be defined and controlled
explicitly. An appropriate description of a source must include a clear defini­
tion of the region th a t is effected as well as the ‘function’ adopted to control
the point distribution. Figure A.5 shows three different types of sources used
in this research, presented in a simple 2D form. The ‘point source’ is the basic
type in which the fundamental features for a source i are defined by:

• The location within the domain, X*

• Two circles centred a t X* and have the radii rn and where > Tn.

• A param eter Si which can be used to define the point distribution func­
tion at a point c as:

dpc = Si if Hxall < Tii

Or,

dpc = <$iel|Xci,|ln(ri2_ril) if Hxcill > rn

where ||£ci|| denotes the distance between point c and the centre of the
point source i.

As S te p 4-c in the algorithm suggests th a t the value of point spacing at point c
is checked against available sources i = 1, ...M . The m inim um value obtained
from all sources, based on the point distribution function defined above, is
considered. However, in order to ensure an adequate and consistent point
distribution in the entire domain (i.e. including regions th a t are not influenced
by sources), it is appropriate to check the value obtained from sources with the
value obtained from interpolation in S te p 4-6. Thus, eventually, the smallest
value between 6 and c in S te p 4 is assigned to the prospective point c.

The extension to line and triangle sources is straightforward, see Figure A.5
where the regions considered as within ri are bounded by the dashed lines,
also see Figure A.6 for an illustration of such sources effect. In practice, the
features of each end point source can be defined independently. Figure A.7
shows a typical example of two line sources, where the effected area differs
between the two end point sources in one of the line sources (on the right) and
the point spacing param eter in the other line sources (on the left).

220

(I) (H) (III)

Figure A.5: Point (I), line (II) and triangle (III) sources. The inner circle,
r\, defines the region over which the point spacing is equal to a specified
value. Whilst r*2 —n defines the region over which the specified value decays
to the value imposed globally. The inner circle effect region in the line and
triangle sources is bounded by dashed lines.

All the concepts of point spacing sources presented above in the two dimen-
tional form can naturally be extended into the three dimensions by simply
considering the two circles r\ and 7*2 as two spheres. However, Figure A.8
shows a typical example of point, line and triangle sources in the 3D space dis­
tributed over an aircraft configuration in preparation to generate a tetrahedral
grid for a CFD simulation.

221

Figure A .6: I l lustrat ion o f th e effect of dif ferent typ e o f grid po i n t spa c ing
sources.

222

(I) (II)

Figure A .7: Varia t ions in th e p a r a m et e r s o f t h e line (t r i ang le) sources can
be used. (I) T w o line sources wi th di f ferent areas o f effect (r ight) and po in t
spac ing p a r a m e te r (left) . (II) T h e final grid.

Figure A .8: An exa mp le of po in t spa c ing sources in t h e th r ee d imens ions
d i s t r ibuted a round a militarily a i rc ra ft conf igura t ion .

223

A ppendix B

M essage Passing Library

Many message passing libraries have been developed in the last decade, only
some of them have become widely available and proved to be highly portable
[68]. Parallel V irtual Machine (PVM) was a very popular library. An early
version of PVM was w ritten at the University of Tennessee in 1991 based
on the concepts had been constructed in the Oak Ridge National Laboratory
[120]. Later in 1993 Version 3.3 was released and immediately embraced by
researchers in the parallel process community, and since then PVM has been
undergoing further developments. In 1997 Version 3.4.3 embarked on new fea­
tures like the interoperablity between Windows NT and Unix systems [47],
and currently the research team in ORNL is involved in the HARNESS (Het­
erogeneous A daptable Reconfigurable NEtworked SystemS) project1 [7].

Since the early days of PVM the MPL model for parallel programming has
emerged assertively, but the wide variation in the syntax and implementa­
tion among different libraries was growing to a problematic level. In Spring
1992, a general agreement among experts in the high performance computing
community had been reached, “an a ttem pt at standardisation might usefully
be undertaken” [126]. After a series of meetings in 1993 for a broadly based
committee of vendors, implementors, and users (the Message Passing Inter­
face Forum) a draft document was produced. In May 1994 Version 1.0 of
MPI (Message Passing Interface) standard was completed [51]. MPI is a li­
brary specification for message-passing, it was designed for high performance
on both massively parallel machines and on workstation clusters.

Programmers always wonder whether to write their parallel applications using
PVM or MPI. In fact, comparison between the two2 has been the subject for
several papers. It is beyond the intention of this thesis to get engaged on

1This project seeks to remove some of PVM limitations in order to create a Distributed
Virtual Machine (DVM)!.

2 Considering that PVM is a specification as presented in [45]

224

this debate, however, it is appropriate to mention th a t M PI has been chosen
based on the performance and the portability criteria. Nevertheless, switching
between MPI and PVM should be relatively straightforward for all the paral-
lelisation work done in this research. Table B .l compares a few of the most
common message passing functions between two typical libraries of MPI and
PVM. Readers interested in a thorough comparison between the two systems
are advised to consult [46, 55], where the differences between features are de­
scribed and under what circumstances one is favoured over the other.

PVM3.3 MPICH1.0.13 Main job of the subroutine
pvm_mytid
pvm_exit

pvm.parent
pvm.psend
pvm.precv
pvm.pack

pvm.unpack

M P IJn it
MPI_Finalize

MPLComm_rank
MPLSend
MPI_Recv
M PLPack

M PLUnpack

S tart a message passing session
Stop the message passing session
Determine the process identifier
Send a message
Receive a message
Incrementally add d a ta to a buffer
Receive da ta from a buffer

Table B .l: Basic message passing subroutines in PVM and MPI, C language binding.

Actually, few attem pts were made to merge the two systems or some of their
features under one combined new system. UNIFY, a message passing library
developed in the Mississippi S tate University, provides a subset of M PI within
the PVM environment, w ithout sacrificing the PVM calls already available
[127]. PVM PI, developed in University of Tennessee and ORNL, was an early
a ttem pt to integrate both Systems (PVM3.4 and MPI-1). The main goal
in this integration was to interface the flexible process management and the
V irtual Machine control from PVM, with the advanced point-to-point and
collective communication options from M PI [29]. Nevertheless, recently some
convergence between the functionality offered by the two systems has occurred.
MPI-23, the latest release of MPI became available in 1998, offers a wide range
of additional functions to the implementors. Features were in PVM and not
in MPI-1, (like dynamic process creation and management, external interface
and parallel I/O), now are available, also bindings for Fortran 90 and C + +
are standardised.

Multiple implementations of MPI have been developed, some of them are
highly specialised, known and used by a small number of people in the parallel

3Due to the nature of constant changes in Web resources, the intention throughout
this thesis was not to use it for citing at all. Unfortunately, the author couldn’t find
any other source to cite the official document of MPI-2 standard specification, ” w w w .m pi-
forum , org /in dex .h tm F .

225

processing field:
- MPI-FM (M PI-Fast Messages) [79].
- MPI-CCL (MPI-Collective Communication Library) [13].

Others are more popular and portable:
- CHIMP (Common High-level Interface to Message Passing) [1].
- LAM (Local Area M ulticomputer) [14].

MPICH is the most popular public-domain implementation of MPI, developed
jointly by Argonne National Laboratory and Mississippi S tate University [53].
“The ‘CH’ in MPICH stands for ‘Chameleon’, symbol of adaptability to one’s
environment and thus portability. Chameleons are fast, and from the begin­
ning a secondary goal was to give up as little efficiency as possible for the
portability” [54]. (MPICH Version 1.0.13/1996)4 is the library used in all pro­
grams developed during the course of this research, any further refer to MPI
in this Chapter conveys to it.

Although, MPI in its entirety is a complex system, it comprises more than 125
functions. Some of these functions may have numerous param eters or variants.
Fortunately, a small number of them, less than 20, can provide an adequate
data base for writing parallel programs for a wide range of applications. A
number of these functions and their use in the developed programs will be
illustrated shortly with example, but first a useful brief overview of the main
features in MPI is to be addressed.

B .l Main Features and Functions of M PI

MPI provides point-to-point communication operations, in which two already
named processors can send and receive messages between themselves only.
Also, it provides collective communication operations, in which one distin­
guished processor can broadcast messages to all other processors one-to-all,
or gather messages from them all-to-one. Various arithm etic operations can
be applied simultaneously while the da ta is collected on one processor using
the later type of communication. However, in the programs developed for this
study, the first type point-to-point is used in most of the communication oper­
ations (whenever the Manager communicates w ith individual Workers or vice
versa), whilst the one-to-all type is used in a few simple operations only.

MPI has a mechanism called Communicator which allows the programmer to
define subsets of processors to be in groups. MPI_COMM_WORLD is a prede­
fined communicator, which includes all processors th a t evolve a t the beginning
of the execution time. It is the only type of Communicator employed in this
research. Topology is another mechanism which allows associating different

4MPICH Version 1.2.0/December, 1999 implements most of the MPI-2 specifications

226

numbering schemes with the processors in Communicator(s). There are essen­
tially two types of topologies, a Cartesian (grid) topology and a graph topology,
they both have no relation with the actual physical structure of the proces­
sors. An adequate use of the Topology and the Communicator mechanisms
can cause substantial improvements on the performance of some parallel pro­
grams, in particular when the communication among certain processors takes
a form of repetitive pattern. However, none of the two mechanisms was ex­
ploited in this research. In fact, because of the relatively small number of
communication operations, introducing such mechanisms into the developed
parallel framework would have compounded its structure; in addition, achiev­
ing a noticeable improvement on the’ performance overall is very unlikely.

MPI has two types for sending and receiving da ta between two processors:
blocking and nonblocking. In the former, the program won’t continue run­
ning until the buffering operation (send (MPI_Send) or receive (MPLRecv)) is
complete, i.e. the memory equipped by the buffer is free and available to be
utilised again. In the nonblocking, the program may continue as soon as the
call for sending (M PIJsend) or receiving (M PIJrecv) is established. In other
words, the calls to send or receive may return before the buffering operation is
complete. Using nonblocking type for communicating d a ta between processors
improves the performance overall, but it may demand more memory since more
than one copy of the buffer can be filled simultaneously. However, having the
priority in the developed algorithms given to the optim al use of the available
computing memory the nonblocking type was totally ignored.

Also, MPI has four different modes for communications, standard, buffered,
synchronous and ready. In standard mode the operating system controls the
buffering, while in buffered mode it is done explicitly by the user. In syn­
chronous mode a send will not complete until a matching receive has occurred.
In the ready mode the programmer can notify, and hand in the operation to,
the underlying system as soon as the receive has been posted. Once again,
discussing such specialised technical issues is beyond the main interest of this
thesis, however, it may now make more sense if we report th a t standard blocking
is the communication mode th a t adopted throughout the developed programs.
More information about the communication modes can be found in [51, 131].

Basic functions of M PI in every parallel program
The number and type of MPI functions employed in parallel programs may
vary dramatically, bu t in general there must be m inim um functions in each.
M P IJn it and M PLFinalize are the s ta rt and end points for every parallel
session respectively. No MPI function can be called before M P IJn it or after
MPLFinalize, and they both are called once and only once. The former, sets up
the parallel environment such th a t other MPI functionalities can be used, while
M PLFinalize secures an appropriate exit by cleaning all ‘unfinished business’.

227

It is interesting to mention, th a t using any other MPI function apart from
these two functions is ‘optional’ but, obviously, using more of data communi­
cation functions is inevitable. However, an ordinary message passing parallel
program would have a t least one call to each one of the basic functions th a t
are presented within the following general layout.

Layout of a typical ‘M PI program’

#include "mpi.h"

in t main(int argc, char **argv){

/* No MPI function must be called before here */

MPI_Init(&argc, feargv);
MPI_Barrier (MPI_Comm MPI__C0MM_W0RLD);
MPI_Comm_rank(MPI_Comm MPI_C0MM_W0RLD, in t &my_id);

MPI_Comm_size(MPI_Comm MPI_C0MM_W0RLD, in t &num_procs);

/* S ta r t of the dominating p a ra l le l processing work */

Other MPI functions can be u t i l i s e d in here such as:

MPI_Pack() ; MPI_Send() ;
MPI_Recv (..........) ; MPI.Unpack (............) ;

/* End of the dominating p a ra l le l processing work */

MPI_Finalize();

/* No MPI function must be called a f te r here */

}

Including the header file ’’mpi.h” , which contains definitions of macros and
function prototypes necessary for compiling, is a compulsory point. Argu-

228

ments for the M P IJn it function must be very familiar to a C programmer,
and they can be ignored by any other reader. The M PLFinalize is an inte­
ger type function with a void argument list, it passes back to the system an
integer reporting on the exit mode (e.g. 0 the program has term inated nor­
mally). Recalling the definition of the ‘M PLCOM MJW ORLD’ in here would
make the understanding of functions MPI_Comm_rank, MPLComm^size and
MPI_Barrier straightforward. The first function returns, in its second argu­
ment (m yJd), a positive integer th a t is considered as the rank of the calling
processor within the associated communicator MPLCOMMJWORLD. In the
developed parallel framework, the MPI_Comm_rank is called a t the very be­
ginning of the run tim e and processor with rank (0) is assigned to be the
Manager. Subsequently, the Manager calls the MPLComnmsize function to
find out about the to ta l number of processors involved (i.e. num.procs), such
th a t the environment for the parallel framework is setup. The M PLBarrier
function blocks the flow of the program until all the communicator processors
reach the same point (synchronisation). O ther functions mentioned in the lay­
out above are classified as data communication functions, which are discussed
in detail next section.

B.2 Data Communication in M PI

In order for a message to be successfully communicated, in addition to the
data itself extra information must be available which form the envelope. MPI
specifies the following items:

1. The rank of the Sender

2. The rank of the Receiver

3. A communicator

4. A tag

To examine these items we detail the syntax of two functions, M PLSend and
MPI Jlecv . C language binding is used, however, the Fortran version is very
similar with one integer as an additional item in the argument list. This ‘extra’
integer replaces the return value facility th a t is available naturally in the C
language functions.

in t MPI_Send(void *buffer, in t count, MPI_Datatype datatype,
in t des t, in t tag , MPI_Comm comm)

229

in t MPI_Recv(void *buffer, in t count, MPI_Datatype datatype,
in t source, in t tag , MPI_Comm comm,
MPI_Status *sta tus)

The b u ffe r points to a contiguous block of memory where the contents of the
message are stored. The co u n t identifies the maximum number of elements,
which have the MPI datatype type, in the buffer. MPI has its own types of
da ta which match the types known in standard programming languages (e.g.
M P IJN T for integers) and exceeds by two extra. One of the extra da ta types
is known as (MPLPACKED) which is used in conjunction with ‘packed d a ta ’,
this will be discussed shortly. The argument d e s t represents the destination
(where the message is going to), and so u rce represents the origin (where the
message is coming from). The rank of the sending and receiving processors
must be declared in both cases, but the so u rce can be a predefined constant
sometimes. The MPI_ANY_SOURCE is a common and very useful predefined
constant which can be used when a processor is ready to receive from any
sending processor. This feature has been exploited frequently by the Manager
in the developed parallel framework, since the Manager receives data th a t can
be sent any Worker.

Most likely the reader will be wondering, if there is a similar ‘wild-card’ form for
the d e s t or not?. No, MPI does not allow this at all, instead it provides another
function (MPI_Bcast) which enables one processor to broadcast a message to
all processors in a communicator. In other words, no message can be sent
out w ithout knowing where it is supposed to be delivered. Furthermore, MPI
insists on labelling every message with a distinguished positive integer, i.e. the
tag . Although this may look a very strict policy, it should lead to unmistakable
communication operations consider how it looks from the receiver view point.

First of all, it is im portant to report th a t MPI provides a predefined tag
(MPI_ANY_TAG) which can be applied by the receiver only. Then there is a
possibility to have a message received with unknown sender (MPI_ANY_SOURCE)
and unknown label (MPI_ANY_TAG)!. Certainly, with such situation the
‘strict policy’ will become very loose; In fact, the answer to this is hidden
within the last argument to be discussed here, which is the s ta tu s . It is a data
structure with three fields, two of them always holds information about the
so u rce and the ta g . Thus, any message received with (MPI_ANY_SOURCE)
the s ta tu s can provide the rank of the processor sent it, and similarly with
the (MPI_ANY_TAG) case the message tag is obtainable. Both cases of this
feature are exploited extensively by the Manager, an example can be found in
Section 4.2.1 where the Dynamic Parallel Processing is discussed.

230

P a c k in g a n d u n p a ck in g s c a t te re d d a ta .
As already stated, the communicated data must be always stored in contiguous
memory locations. In other words, whenever a disjoint da ta arises then a
separate communication operation has to be initiated. On the other hand,
there is an overhead cost associated with every call to M PLSend or MPI_Recv,
regardless the length of the message. Hence, assembling the individual data
items in a ‘buffer’ and subsequently initiating one communication operation
instead of several should improve the program overall performance.

MPI offers various mechanisms to group a set of d a ta in one message. The
mechanism used in this research uses the functions M PLPack and M PLUnpack
in an explicit form. In order to put a set of sparse da ta into one block of con­
tiguous memory, the program declares a memory address as a s tart of a buffer
and then calls the M PLPack function a number of times in sequence. The
MPI_Pack in every call incrementally adds the desired data to the associated
buffer. In a similar manner, the M PLUnpack can be employed to extract
the data stored in the buffer. However, it might be appropriate to review
the syntax of these two functions in a similar way as for the M PLSend and
MPLRecv functions earlier. Items in the argument lists of the M PLPack and
MPLUnpack functions th a t have been discussed with previous functions will
be ignored.

in t MPI_Pack(void *pack_data, in t count, MPI_Datatype datatype,
void *buffer, in t buf_size, in t ^position,
MPI_Comm comm)

in t MPI_Unpack(void *buffer, in t buf_size, in t *position,
void *unpack_data, in t count, MPI.Datatype datatype,
MPI.Comm comm)

The p ack _ d a ta and u n p a ck _ d a ta are pointers to the da ta th a t is packed
or unpacked in the functions M PLPack and M PLUnpack respectively. The
buf_size is an integer which represents the size (in bytes) of memory reserved
for the b u ffer 5. The p o s itio n pointer is utilised by both functions to keep
track of the current position within the buffer while the packing and unpacking
operation is going on. It is both input and output argument a t the same time.

5MPI provides a function (i.e. MPI_Pack_size) that can be employed to find the exact
value of memory needed to store various data. Since this value may vary from one platform
to another, such function becomes very essential to allocate the memory required by the
buffer on the fly.

231

Before calling one of the functions, p o s itio n points to the current location in
the buffer, whilst on the return of the call it points to a new location tha t
comes after (or before) a co u n t number of elements in the buffer.

Neither of the two functions above performs any checking on memory overlap­
ping nor da ta type mismatching. It is the programmer responsibility to make
sure th a t a sufficient memory is allocated for the buffer usage, also to match
the packing and unpacking operations. The ‘m atching’ here does not mean
the unpacking operation has to follow the same order used during the packing
operation. The programmer has unlimited choice in extracting the data from
the buffer. In fact, this property has been utilised extensively in the developed
programs. In particular, when the Manager receives the internal boundary
grids back from Workers. Some of the data in every internal boundary grid
belongs to the original boundary grid, which is already available on the Man­
ager and there is no need to unpack it. MPI allows mismatching d a ta types
to be assembled in one buffer, and consequently uses its own unique data type
(MPLPACKED) to define such combination. Thus, the ‘packed d a ta ’ can
be sent (received) in one call of M PLSend (MPLRecv) with the d a ta ty p e
argument defined as MPI.PACKED.

The intention behind reviewing the syntax of the M PLSend, M PLRecv, M PLPack
and M PLUnpack is mainly to enrich the understanding of the parallelisation
work presented in chapter 4 however, a comprehensive review can be found in
[51, 53]. A reader who has no knowledge of MPI, and interested in a wider in­
troduction to its use in computational mechanics particularly, can consult [69].
W here some of the functions discussed previously are reviewed and introduced
within simple examples of numerical algorithms.

B.3 Performance Analysis Tools

Unlike the traditional sequential programs, the analysis of parallel programs
performance is a complex task, and some special tools may have to be em­
ployed. UPSHOT is a very useful tool for understanding parallel programs
behaviour, it offers a graphical display of parallel time-lines. Each line is asso­
ciated with a processor, and coloured bars reflect on the state of the processor
a t any time can be utilised [72]. The exact time associated with each bar
is accessible through the graphical interface, a zooming functionality is also
available. UPSHOT works on ‘logging files’ generated by the M PE (Multi-
Processing Environment) library [52].

Both MPE and UPSHOT are distributed with the MPICH library, but they
are not supported by all MPI implementations. However, the integration of
these tools within the developed parallel framework does not have any effect
on the overall portability. The M PE functions inside the main program do not

232

interfere with the core work of the parallelisation, furthermore, they can be
om itted in an autom ated way during the compilation procedure. In short, by
exploiting the M PE and UPSHOT a detailed and comprehensive performance
analysis of an MPI programs can be achieved.

The logging file can be seen as tim e-stam ped event trace file. In such a file,
information about the s tart and end time (i.e. events) of certain parts of the
program (i.e. states) are collected in sequence. The M PE library provides a
set of functions which can be, explicitly, utilised by the programmer to define
the states and record (log) the events. However, implementing M PE library
functions inside an M PI program can be summarised briefly as follow:

Every processor must s tart by calling the (MPE J n i t Jog) function, and finish
by calling the (M P E JJn ishJog) function which will force the da ta collected
on it to merge with data from other processors into one logfile. No call to any
M PE function can be made before (MPE J n i t Jog) or after (M PE_FinishJog).
The logging can start, or resume, after calling (M PE_StartJog), and it can be
stopped, or suspend, by calling (MPE_StopJog). Between these two functions
events can be recorded by calling the (MPE JjOg.event) function, which marks
either the s tart or the end of a state. The state should be already defined
by the (MPE_Describe_state) function, which specifies the starting and ending
event type; assigns a unique colour and name for the state.

A general layout of employing MPE functions in an MPI program can be
demonstrated as:

#include "mpi.h"
#include "mpe.h"

in t main(int argc, char **argv){

MPI_Init(&argc, feargv);
MPI_Barrier(MPI_Comm MPI.COMM.WORLD);
MPI_Comm_rank(MPI_Comm MPI_C0MM_W0RLD, in t &my_id);

/* No MPE function must be ca lled before here */

MPE_Init_log();

/* Describe a l l s t a te s , including events (i . e .
s t a r t and end), name and a unique colour */

233

MPE_Describe_state(int s t a r t l , in t endl, char *namel, char * c o lo r l) ;
MPE_Describe_state(int s ta r t2 , in t end2, char *name2, char *color2);
MPE_Describe_state (..........);

MPE_Start_log(); /* S ta r t the logging session, to be called
by one processor only (e .g . the Manager)*/

/* Then inside the main body of the program
the MPE_Log_event function can be called
whenever an event needs to be recorded. */

MPE_Log_event(int event, in t in td a ta , char *chardata);

.................... /* The event could be the s t a r t

............................... (e .g . s t a r t l) or the end (e.g .
endl) of a s ta te (e .g . namel) */

MPE_Log_event () ;

/* Events can be reported by any processor. */

MPE_Stop_log(); /* End the logging session, to be called
by one processor only (e .g . the Manager)*/

MPE_Finish_log(*logfilename);
/* Merge the log data from a l l processors
and write out the lo g f i l e , by the Manager */

MPI_Finalize();

Clearly, states (and events) should be identified (and reported) in a sensible

234

manner, such th a t information collected a t the end of every run are just suffi­
cient enough to dem onstrate the program performance. Overloading a parallel
program by reporting large number of events can eventually effect the overall
performance, as well as make the UPSHOT’s output difficult to read. For
example, reporting only on the m ajor functions (subroutines) in the developed
framework would have required more than 40 states to be defined and hun­
dreds of events to be logged. W hilst by identifying only a few states which are
associated with well recognised procedures in the general algorithm can still
be informative, see Table 6.11, Figures: 4.5 and 6.21.

MPE provides another set of functions th a t can be used to enhance program
output with some simple graphics. These functions are not relevant to the
logfile activities nor to the UPSHOT tools, hence, they are totally ignored in
here. However, the syntax of these functions and simple examples are discussed
briefly in [52].

235

Bibliography

[1] R . A la sd a ir A . B ru c e , J a m e s G . M ills a n d A . G o rd o n S m ith
CHIMP User Guide, Technical Report EPCC-KTP-CHIM P-V2-USER,
Edinburgh Parallel Computing Centre, University of Edinburgh, 1994.

[2] S. A rc illa , J . H a u se r , P .R . E ise m a n a n d J .F T h o m p so n , Pro­
ceeding of the 3rd International Conference on Grid Generation, in Com­
putational Fluid Dynamics and Related Fields, Barcelona, Spain, Pub.
North-Holland, 1991.

[3] T .J B ak e r, Automatic Mesh Generation for Complex 3-Dimensional
Regions Using a Constrained Delaunay Triangulation, Engineering With
Computers, Vol. 5, 161-175, 1989.

[4] T .J B ak e r, Shape Reconstruction and Volume Meshing for Complex
Solids, International Journal for Numerical Methods in Engineering,
Vol. 32, No.4, 665-667, 1991.

[5] T .J B ak e r, Delaunay-Voronoi Methods, ln:Handbook of Grid Gen­
eration, J.F . Thompson, B.K. Soni and N.P. Weatherill, editors, (CRC
Press, 1999), 16-1-16-11.

[6] S .T . B a rn a rd a n d H .D . S im on , A Fast Multilevel Implementation
of Recursive Spectral Bisection for Partitioning U nstructured Problems,
Concurrency: Practice & Experience, Vol. 6, No.2, 101-117, 1994.

[7] M . B eck, J . D o n g a rra , G . Fagg, A . G e is t, P . G ray , J . K o h l, M .
M ig lia rd i, K . M o o re , T . M o o re , P . P a p a d o p o u lo u s , S. S c o tt,
a n d V . S u n d e ra m , HARNESS: A Next Generation D istributed Vir­
tual Machine, International Journal on Future Generation Computer
Systems, Elsevier Publ., Vol. 15, No. 5-6, 1999.

[8] P . B ez ie r, The mathematical basis o f the UNISURF CAD system, But-
terworths, London, 1986.

236

[9] J . B o n e t a n d J . P e ra ire , An A lternating Digital Tree (ADT) al­
gorithm for 3D geometric searching and intersection problems, Inter­
national Journal fo r Numerical Methods in Engineering, Vol. 31, 1-17,
1991.

[10] J . B o ris , A vectorised algorithm for determining the nearest neighbours,
Journal Of Computational Physics, Vol. 66, 1-20, 1986.

[11] H . B o ro u c h ak i a n d P .L . G eo rg e , Aspects of 2-d Delaunay mesh
generation, International Journal fo r Numerical Methods in Engineering,
Vol 40, No.11, 1957-1975, 1997.

[12] A. B ow yer, Computing Dirichlet tessellations, Computers Journal,
Vol. 24, No.2, 162-166, 1981.

[13] J . B ru ck , D . D olev , C .T . H o , M .C . R o su a n d R . S tro n g , Efficient
message passing interface (MPI) for parallel computing on clusters of
workstations Journal of Parallel and Distributed Computing, Vol. 40,
N o.l, 19-34 1997.

[14] G . B u rn s , R . D a o u d a n d J . V aig l, LAM: An Open Cluster Environ­
ment for MPI, In :Proc. Supercomputing Symposium 94, editor J. Ross,
University of Toronto, 379-386, 1994.

[15] C .C . C h an g , G . C za jkow sk i, a n d T .V . E ick en , Design and Perfor­
mance of Active Messages on the IBM SP2, Cornell CS Technical Report
96-1572, February 1996.

[16] M in -B in C h en , T y n g -R u e y C h u a n g a n d J a n - J a n W u , Experience
in Parallelizing Mesh Generation Code with High Performance Fortran,
In: Proc. 9th S IA M C onf on Parallel Processing fo r Scientific Computing,
San Antonio, Texas, March 1999.

[17] L .P . C hew , N . C h riso ch o id es a n d F . S u k u p , Parallel Constrained
Delaunay Meshing, Trends in unstructured Mesh Generation, ASM E ,
AMD-Vol 220, 89-96, July 1997.

[18] N . C h riso ch o id es a n d F . S u k u p , Task Parallel Implementation of the
Bowyer-Watosn Algorithm, In :Proc. 5th I n t C onf on Numerical Grid
Generation in Computational Field Simulation , Pub. NSF Engineering
Research Centre for Com putational Field Simulation, 773-782, 1996.

[19] S. C oons, Surface patches and B-Spline curves, In R. Barnhill and R.
Riesenfeld editors, Computer Aided Geometric Design, 1-16, Academic
Press, 1974.

237

[20] H .L . de C ougny , M .S . S h e p h a rd a n d C . O z tru ra , Parallel Three-
Dimensional Mesh Generation, Computing Systems in Engineering,
Vol. 5 No.4-6, 311-323,1994.

[21] H .L . de C o u g n y a n d M .S . S h e p h a rd , Parallel volume meshing us­
ing face removals and hierarchical repartitioning, Computer Methods in
Applied Mechanics and Engineering, Vol. 174, 275-298, 1999.

[22] H .L . de C o u g n y a n d M .S . S h e p h a rd , Parallel unstructured grid
generation, ln:Handbook of Grid Generation, J.F . Thompson, B.K. Soni
and N.P. Weatherill, editors, (CRC Press, 1999), 24-1-24-18.

[23] M . C ro ss, B .K . Soni, J .F . T h o m p so n , J . H a u se r a n d P .R . E ise-
m a n , Proceeding of the 6th International Conference on Numerical Grid
Generation in Computational Field Simulation, London, UK, Pub. Inter­
national Society of Grid Generation(ISGG), 1998, ISBN 0-9651627-2-9.

[24] B . D e lau n ay , Sur la Sphere Vide, Bulletin o f Academic Science, URSS
VII, Class. Science National, 793-800, 1934.

[25] Y .M . D in g a n d J .P . D e n sh a m , A Dynamic and Recursive Parallel
Algorithm for Constructing Delaunay Triangulations, Advances in GIS
Research, Vol. 1 & 2, Ch.71, 682-696, 1994.

[26] G .L . D ir ic h le t, Uber die Reduction der Positiven Quadratischen For-
men mit deri Unbestimmten Ganzen Zahlen, Z. Reine Angew. Mathe­
matics, Vol. 40, No.3, 209-227, 1850.

[27] M . E ld re d g e , T .J .R . H u g h es, R .M . F e ren cs , S .M . R ifa i,
A . R ae fsk y a n d B . H e rn d o n , High-Performance Parallel Computing
in Industry, Parallel Computing, Vol. 23, 1217-1233, 1997.

[28] A .L . E v an s a n d D .P . M ille r, NASA IGES and NASA-IGES NURBS-
Only Standard, ln:Handbook of Grid Generation, J.F . Thompson, B.K.
Soni and N.P. Weatherill, editors, (CRC Press, 1999), 31-1-31-20.

[29] G . Fagg a n d J . D o n g a rra , PVMPI: An Integration of PVM and MPI
Systems, Calculateurs Parallels, Vol. 8, No. 2, 151-166, 1996.

[30] C . F a rh a t , A simple and efficient autom atic F.E.M. domain decom­
poser, Computer and Structures, 28(2):579—602, 1988.

[31] C . F a rh a t a n d M . L eso inne , Autom atic Partitioning of Unstructured
Meshes for the Parallel Solution of Problems in Com putational Mechan­
ics, International Journal for Numerical Methods in Engineering, Vol. 36,
745-764, 1993.

238

[32] C . Farhat, S. Lanter and H.D. Simon, TO P/D O M D EC -A Software
Tool for Mesh Partitioning and Parallel Processing, Computing Systems
in Engineering, Vol. 6, No.l, 13-26, 1995.

[33] G. Farin, Curves and surfaces for Computer-Aided Geometric Design a
practical guide, Academic Press, 1993, Third Edition, ISBN 0-12-249052-
5.

[34] D.F. Ferguson, Spline Geometry: A Numerical Analysis View,
In '.Handbook o f Grid Generation, J.F . Thompson, B.K. Soni and N.P.
Weatherill, editors, (CRC Press, 1999), 27-1-27-24.

[35] D.A. Field, Laplacian Smoothing and Delaunay Triangulations, Com­
munications in Applied Numerical Methods, Vol. 4, 709-712, 1988.

[36] D.A. Field, The Legacy of Automatic Mesh Generation From Solid
Modelling, Computer Aided Geometric Design, Vol. 12, No.7, 651-673,
1995.

[37] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons,
Chichester 1987.

[38] L. Formaggia, D ata Structures For Unstructured Mesh Generation,
In '.Handbook of Grid Generation, J.F . Thompson, B.K. Soni and N.P.
Weatherill, editors, (CRC Press, 1999), 14-1-14-20.

[39] G.E. Forsythe and W .R. Wasow, Finite Difference Methods for
Partial Differential Equations, New York, Wiley, 1960.

[40] I. Foster, Designing and Building Parallel Programs, Pub. Addison-
Wesley, 1995, ISBN 0-201-57594-9.

[41] W .H. Frey and D.A. Field, Mesh Relaxation: A New Technique for
Improving Triangulations, International Journal fo r Numerical Methods
in Engineering, Vol. 31, 1121-1133, 1991.

[42] P.J. Frey, H. Borouchaki and P.L. George, 3D Delaunay Mesh Gen­
eration Coupled with an Advancing-Front Approach, Computer Methods
in Applied Mechanics and Engineering, Vol. 157, No.1-2, 115-131, 1998.

[43] A. Gaither, D. Marcum, D. Reese and N.P. Weatherill, A
Paradigm for Parallel Unstructured Grid Generation, In:Proc. 5th I n t
C onf on Numerical Grid Generation in Computational Field Simula­
tion , Pub. NSF Engineering Research Centre for Com putational Field
Simulation,731-740, 1996.

239

[44] J . G a ltie r a n d P .L . G eo rg e , Prepartitioning as a Way to Mesh Sub-
domains in Parallel, 5th International Meshing Roundtable, P ittsburgh,
PA, 107-121, 1996.

[45] A . G e is t, A . B eg u e lin , J . D o n g a ra , W . J ia n g , R . M an ch ek , a n d
V . S u n d e ra m , PVM: Parallel Virtual Machine - A User’s Guide and
Tutorial fo r Network Parallel Computing, MIT Press, Cambridge, MA,
1994.

[46] A . G e is t, J . K o h l a n d P . P a p a d o p o u lo s PVM and MPI: a Compar­
ison of Features, Calculateurs Parallels, Vol. 8, No. 2, 137-150, 1996.

[47] A . G e is t, Advanced Tutorial on PVM 3.4 New Features and Capabili­
ties, Proceedings of EuroPVM -M PI’97, Cracow Poland, Springer Verlag,
November 1997.

[48] P . L. G eo rg e , Automatic Mesh Generation, Application to Finite Ele­
ment Methods, John Wiley & Sons, Paris, 1991, ISBN 0-471-93097-0.

[49] P . L. G eo rg e , F . H e ch t a n d E . S a lte l, A utom atic Mesh Generator
with Specified Boundary, Computer Methods in Applied Mechanics and
Engineering, Vol. 92, 269-288, 1991.

[50] P . L. G eo rg e , Improvements on Delaunay-Based Three-Dimensional
Automatic Mesh Generator, Finite Elements In Analysis and Design,
Vol. 25, 297-317, 1997.

[51] W . G ro p p , E . L usk , a n d A . S k je llu m , Using MPI: Portable Par­
allel Programming with the Message Passing Interface, The MIT Press,
Cambridge, Massachusetts. London, England, 1994.

[52] W . G ro p p , E . K a rre ls a n d E . L usk , M PE graphics - Scalable
X I1 Graphics in MPI, Proc. Scalable Parallel Libraries C onf, Missis­
sippi S tate University (IEEE Computer Society Press, Silver Spring, MD,
1994) 49-54.

[53] W . G ro p p a n d E . L usk , User’s Guide for MPICH, a Portable Im­
plementation of MPI, Tech. R eport,Mathematics and Computer Science
Division, Argonne National Laboratory, ANL-96/6, 1996.

[54] W . G ro p p , W . L usk , N . D oss a n d A . S k je llu m , A High-
performance, Portable Implementation of the MPI Message Passing In­
terface Standard, Parallel Computing, Vol. 22, 789-828, 1996.

[55] W . G ro p p a n d E . L usk , Why are PVM and M PI so Different?,
In Recent Advances in Parallel Virtual Machine and MEssage Passing

240

Interface, Volume 1332 o f Lecture Notes in Computer Science 4th Euro­
pean PV M /M PI Users’s Group Meeting, Cracow, Poland, 3-10, Springer
Verlag, 1997.

[56] O. H a ssan , N . P . W e a th e rill, J . P e ra ire , J . P e iro , K . M o rg a n
a n d E . J . P r o b e r t , Generation and Adaption of Unstructured Meshes,
Dept. Report, University of Wales Swansea, Dept, of Civil Eng., UK,
CR/872/95, 1995.

[57] O. H a ssan , K . M o rg a n , E . J . P r o b e r t , a n d J . P e ra ire , Un­
structured Tetrahedral Mesh Generation for Three-Dimensional Viscous
Flows, International Journal for Numerical Methods in Engineering,
Vol. 39, 549-567, 1996.

[58] O . H a ssan a n d E .J . P r o b e r t , Grid Control and Adaptation,
ln:Handbook of Grid Generation, J.F . Thompson, B.K. Soni and N.P.
Weatherill, editors, (CRC Press, 1999), 35-1-35-29.

[59] O. H assan , E .J . P r o b e r t , K . M o rg a n a n d N . P . W e a th e r ill , Un­
steady flow simulation using unstructured meshes, Computer Methods
in Applied Mechanics and Engineering, Vol. 189, 1247-1275, 2000.

[60] J . H a u se r , a n d C . T ay lo r, Proceeding of the 1st International Con­
ference on Grid Generation, Landshut, Germany, Pub. Pineridge Press,
Uk, 1986.

[61] J . H a u se r , P .R . E ise m a n , Y . X ia a n d Z. C h en g , Parallel Multi­
block Structured Grids, ImHandbook of Grid Generation, J.F . Thom p­
son, B.K. Soni and N.P. Weatherill, editors, (CRC Press, 1999), 12-1-
12-26.

[62] C . H irsch , Numerical Computation of Internal and External Flows,
Vol. 1 Fundamentals of Numerical Discretization 1988, Vol. 2 Com puta­
tional Methods for Inviscid and Viscous Flows 1990 John Wiley& Sons.

[63] D .C . H o d g so n a n d P .K . J im a c k , Efficient Parallel Generation of
Partitioned Unstructured Meshes, Advances in Engineering Software,
Vol. 27, 59-70, 1996.

[64] J . H o sch ek a n d D . L asse r, translated by L. L. S ch u m ak er, Funda­
mentals of Computer Aided Geometric Design, A K Peters, 1993, ISBN
1-56881-007-5.

[65] S .H . H sieh , G .H . P a u lin o a n d J .F . A b e l, Evaluation of Automatic
Domain Partitioning Algorithms for Parallel Finite Element Analysis,
International Journal fo r Numerical Methods in Engineering, Vol. 40,
1025-1051, 1997.

241

[66] Y .F . H u , R .J . B lak e a n d D .R . E m e rso n , An Optim al Dynamic
Load Balancing Algorithm, Concurrency: Practice and Experience,
Vol. 10, 467-483, 1998.

[67] Y .F . H u a n d R ..J. B lak e , An Improved Diffusion Algorithm for Dy­
namic Load Balancing, Parallel Computing, Vol. 25, 417-444, 1999.

[68] K . H w an g a n d Z. X u , Scalable Parallel Computing: Technology, A r­
chitecture, Programming, WCBMcGraw-Hill, 1998. ISBN 0-07-031798-4

[69] P .K . J im a c k a n d N . T o u h eed , An Introduction to MPI for Com­
putational Mechanics, In:Parallel and Distributed Processing fo r Com­
putational Mechanics, Systems and Tools, editor, B.H.V. Topping, Pub.
Saxe-Coburg, 207-223, 1999.

[70] Z. J o h a n , K .K . M a th u r , S.L . Jo h n sso n a n d T .J . H u g h es , Scal­
ability of Finite Element Applications on D istributed Memory Parallel
Computers, Computer Methods in Applied Mechanics and Engineering,
Vol. 119, 61-72, 1994.

[71] J . Jo n e s a n d N .P .W e a th e r ill , The Visualisation of Large Unstruc­
tured Grid D ata Sets, In: Proc. 6th Int. Conf. Numerical Grid Gener­
ation in Computational Field Simulations, editors: M. Cross, P.R. Eise-
man, J. Hauser, B. K. Soni and J.F . Thompson, published by Interna­
tional Society of Grid Generation (ISGG), 899-909, 1998.

[72] E . K a rre ls a n d E . L usk , Performance Analysis of M PI Programs,
In:Environments and Tools for Parallel Scientific Computing, Editors,
J. Dongarra and B. Tourancheau, 195-200, SIAM, Philadelphia, PA,
1994.

[73] G . K a ry p is a n d V . K u m a r, A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs, Tech. Report University of
Minnesota, Department o f Computer Science, 95-035, 1995.

[74] G . K a ry p is a n d V . K u m a r , Analysis of Multilevel Graph Partition­
ing, Tech. Report University o f Minnesota, Department of Computer
Science, 95-037, 1995.

[75] G . K a ry p is a n d V . K u m a r, A Coarse-Grain Parallel Formulation of
Multilevel K-way G raph Partitioning Algorithm, In:Para//eZ Processing
for Scientific Computing SIAM, Philadelphia, M. Heath, editor, 1997.

[76] Y . K o n o , M . S e to , K . N ish im a tsu , H . F u k u m o ri a n d Y . M u-
rao k a , Parallel Mesh Generation of Finite Element M ethod - Parallel
Constructing of Voronoi Diagram, IPSJ, SIGNotes High Performance
Computing, No.060-008, 1995.

242

[77] D . K n u th , The A rt O f Computer Programming Sorting And Searching,
Vol. 3, Addison-Wesley, Reading, MA, 1973.

[78] L. L a m m e r a n d M . B u rg h a rd t , Parallel Generation of Triangular
and Quadrilateral Meshes, Advances in Engineering Software, Vol. 31,
No.12, 929-936, 2000.

[79] M . L a u r ia a n d A . C h ie n , M PI-FM : High Performance MPI on Work­
station Clusters, Journal of Parallel and Distributed Computinq, Vol. 40,
N o.l, 4-18 1997.

[80] S .Y . L ee, C .I. P a rk a n d C .M . P a rk , An Improved Parallel Algorithm
for Delaunay Triangulation on D istributed Memory Parallel Computers,
Advances in Parallel and Distributed Computing - Proceedings, Ch.58,
131-138, 1997.

[81] R . L o h n e r a n d P . P a r ik h , Three-Dimensional Grid Generation by
Advancing Front Method, International Journal For Numerical Methods
In Fluids, Vol. 8, 1135-1149, 1988.

[82] R . L o h n e r, J . C am b ero s a n d M . M e rr ia m , Parallel Unstructured
Grid Generation, Computer Methods in Applied Mechanics and Engi­
neering, Vol. 95, 343-357, 1992.

[83] R . L o h n e r a n d R . R a m a m u r ti , A Load Balancing Algorithm for
Unstructured Grids, International Journal of Computational Fluid Dy­
namics, Vol. 5, No.1-2, 39-58, 1995.

[84] R . L o h n e r, Extensions and Improvements of the Advancing Front Grid
Generation Technique, Communications in Numerical Methods in Engi­
neering, Vol. 12, No.10, 683-702, 1996,

[85] R . L o h n e r, Regridding Surface Triangulation, Journal of Computa­
tional Physics, Vol. 126, 1-10, 1996.

[86] R . L o h n e r, Autom atic Unstructured Grid Generators, Finite Elements
in Analysis and Design, Vol. 25, 111-134, 1997.

[87] K -L . M a a n d T .W . C ro c h e tt , A Scalable Parallel Cell-Projection
Volume Rendering Algorithm for Three-Dimensional Unstructured Data,
In -.Proceeding 1997 IE E E Symposium on Parallel Rendering, editors, K -
L. Ma, J. Painter and G. Stoll, 95-104, Pub. ACM SIGGRAPH, 1997.

[88] K -L . M a a n d T .W . C ro c h e tt , Parallel Visualisation of Large-scale
Aerodynamics Calculations: A Case Study on the Cray T3E, IC A SE
Report, No. 99-41, 1999.

243

[89] D .J . M a v rip lis a n d S. P irz a d e h , Large-scale Parallel Unstructured
Mesh Com putations for 3D High-lift Analysis, NASA/CR-1999-208999
IC A SE Report No. 99-9, Feb. 1999.

[90] D .J . M av rip lis Large-scale parallel viscous flow computations using
an unstructured multigrid algorithm, N A S A /C R -1 999-209724 IC A SE
Report No. 99-44> Nov. 1999.

[91] K . M o rg a n , N .P . W e a th e rill , O . H a ssan , P .J . B ro o k s ,
M .T . M a n z a r i a n d R . S aid , Aerospace Engineering Simulations on
Parallel Computers, In: Frontier of Computational Fluid Dynamics, edi­
tors, D.A. Caughy and M.M. Hafez, John Wiley & Sons, 1-15, 1997.

[92] K . M o rg a n , L .B . B ay n e , O . H a ssan , J .E . P r o b e r t a n d
N .P . W e a th e r ill , The Simulation of 3D Unsteady Inviscid Compress­
ible Flows W ith Moving Boundaries, In: Computational Science for the
21st Century, editor, M.O. Bristeau, John Wiley & Sons, Chichester,
347-356, 1997.

[93] K . M o rg a n a n d J . P e ra ire , U nstructured Grid Finite Element Meth­
ods for Fluid Mechanics, Reports on Progress in Physics, Vol.61, No.6,
569-638, 1998.

[94] K . M o rg a n , P .J . B ro o k s , O . H a ssa n a n d N .P . W e a th e r ill , Par­
allel Processing for the Simulation of Problems Involving Scattering of
Electromagnetics Waves, Computer Methods in Applied Mechanics and
Engineering, Vol. 152, 157-174, 1998.

[95] K . M o rg a n , N . P . W e a th e rill , O . H a ssan , P . J . B ro o k s , R . S a id
a n d J . Jo n e s , A Parallel Framework for Multidisciplinary Aerospace
Engineering Simulations Using Unstructured Meshes, International
Journal For Numerical Methods In Fluids, Vol. 31, 159-173, 1999.

[96] A . K . N o o r, New Computing and Future High-Performance Com put­
ing Environment and their Impact on Structural Analysis and Design,
Computers & Structures, Vol. 64, No. 1-4, 1-30, 1997.

[97] T . O k u san y a a n d J . P e ra ire , Parallel Unstructured Grid Generation,
In:Proc. 5th Int. Conf. on Numerical Grid Generation in Computational
Field Simulation , Pub. NSF Engineering Research Centre for Com puta­
tional Field Simulation, 719-729, 1996.

[98] P . P a p a d o p o u lo s , E . V en k a ta p a th y , D . P r a b h u , M .P . L oom is
a n d D . O ly n ick Current Grid Generation Strategies and Future Re­
quirements in Hypersonic Vehicle Design, Analysis and Testing, Applied
Mathematical Modelling, Vol. 23, No.9, 705-735, 1999.

244

[99] J . P e iro , J . P e ra ire a n d K . M o rg a n , FELISA System Reference
Manual, Dept. Report, University o f Wales Swansea, Dept, o f Civil Eng.,
UK, C R/821/94, 1994.

[100] J . P e iro , Surface Grid Generation, In ’.Handbook of Grid Generation,
J.F. Thompson, B.K. Soni and N .R Weatherill, editors, (CRC Press,
1999), 19-1-19-20.

[101] J . P e ra ire , M . V a h d a ti, K . M o rg a n a n d O .C . Z ienk iew icz, Adap­
tive Remeshing for Compressible Flow Computations, Journal of Com­
putational Physics, Vol. 72, 449-466, 1987

[102] J . P e ra ire , J . P e iro a n d K . M o rg a n , Adaptive Remeshing for Three-
Dimensional Compressible Flow Computations, Journal o f Computa­
tional Physics, Vol. 103, 269-285, 1992.

[103] J . P e ra ire , J . P e iro , a n d K . M o rg a n , Advancing Front Grid Gener­
ation, ln:Handbook of Grid Generation, J.F. Thompson, B.K. Soni and
N.P. Weatherill, editors, (CRC Press, 1999), 17-1-17-22.

[104] L. P ie g l a n d W . T ille r , The N U RBS Book, Springer, 1995. ISBN
3-540-55069-0.

[105] W . P re ilo w sk i, E . D a h lh a u s a n d G . W ech su n g , New Parallel
Algorithms fo r Convex Hull and Triangulation in 3-Dimensional Space,
Lecture Notes in Computer Science, Vol.629, 442-450, 1992.

[106] R . S a id , Geometry Repair in Two and Three Dimensions, MSc Thesis,
Univeristy of Wales Swansea, C /M /302/95, 1995.

[107] R . S a id , N .P . W e a th e rill , K . M o rg a n a n d N .A . V erh o ev en , Dis­
tributed Parallel Delaunay Mesh Generation, Computer Methods in A p­
plied Mechanics and Engineering, Vol. 177, 109-125, 1999.

[108] R . S a id , B . L arw o o d , N .P . W e a th e rill , O . H a ssa n a n d K . M o r­
g an , Parallel Delaunay Unstructured Grid Generation, In: Proc.
7th International Conference on Numerical Grid Generation in Com­
putational Field Simulation, W histler, Canada, B.K.Soni, J. Haeuser,
J.F.Thompson, P.R. Eiseman, editors ISGG, NSF ERC for CFS at Mis­
sissippi S tate University, 2000.

[109] M . S ax en a a n d R . P e rc c h io , Parallel FEM algorithms based on recur­
sive spatial decomposition. I. Autom atic mesh generation , Computers
and Structures, Vol. 45, No.5-6, 817-831, 1992.

245

[110] W .J . S c h ro e e d e r a n d M .S . S h e p h a rd , A Combined Octree-
Delaunay Method for Fully Autom atic 3-D Mesh Generation, Inter­
national Journal for Numerical Methods in Engineering, Vol. 29, 37-55,
1990.

[111] S. S e n g u p ta , J .F . T h o m p so n , P .R . E ise m a n a n d J . H a u se r ,
Proceeding o f the 2nd International Conference on Grid Generation, in
Computational Fluid Dynamics, Miami, USA, Pub. Pineridge Press, Uk,
1988.

[112] H . S im o n , Partitioning of Unstructured Problems for Parallel Process­
ing, Computing Systems in Engineering, Vol. 2, No. 2-3, 135-148, 1991.

[113] M .S . S h e p h a rd , M .K . G eo rg es , Reliability of Autom atic 3D Mesh
Generation, Computer Methods in Applied Mechanics and Engineer­
ing,Vol. 101, No.1-3, 443-462, 1992.

[114] M .S . S h e p h a rd , H .L . de C ougny , R .M . O ’B a ra a n d M .W . B ea ll,
Automatic Grid Generation Using Spatially Based Trees, In:Handbook
of Grid Generation, J.F . Thompson, B.K. Soni and N.P. Weatherill,
editors, (CRC Press, 1999), 15-1-15-21.

[115] A . S h o stk o a n d R . L o h n e r, Three-Dimensional Parallel Unstruc­
tured Grid Generation, International Journal fo r Numerical Methods in
Engineering, Vol. 38, 905-925, 1995.

[116] D . S lam a , J . G a rb is a n d P . R u sse ll, Enterprise Corba , Prentice
Hall, 1999. ISBN:0130839639.

[117] B .K . Soni, J .F . T h o m p so n , J . H a u se r a n d P .R . E ise m a n , Pro­
ceeding of the 5th International Conference on Numerical Grid Gener­
ation in Computational Field Simulation, Mississippi, USA, Pub. NSF
Engineering Research Centre for Com putational Field Simulation, 1996,
ISBN 0-9651627-0-2.

[118] B .K .S o n i, J . H a e u se r , J .F .T h o m p s o n , P .R . E ise m a n , Proceeding
of the 7th International Conference on Numerical Grid Generation in
Computational Field Simulation, W histler, Canada, September 25-28,
2000, Pub. ISGG, NSF ERC for CFS at Mississippi S tate University,
2000.

[119] K .A .S o re n sen , O . H a ssan , K . M o rg a n a n d N . P . W e a th e r ill , An
Agglomerated M ultigrid Hybrid Mesh Method for Compressible Flow,
In proc.the First M IT Conference on Computational Fluid and Solid
Mechanics, 2001, Boston.

246

[120] V. Sundreram, PVM: A framework for Parallel D istributed Comput­
ing, Computing Concurrency: Practice & Experience, Vol. 2., No. 4,
1990.

[121] W .C. Thacker, A Brief Review of Techniques for Generating Irregular
Com putational Grids, International Journal fo r Numerical Methods in
Engineering, Vol. 15, 1335-1341, 1980.

[122] J.F. Thompson, Z.U.A. Warsi and C.W. M astin, Numerical Grid
Generation, Foundations and Applications, North Holland pub. 1985.
ISBN

[123] J.F. Thompson, A General Three Dimensional Elliptic Grid Geeration
System on a Composite Block-Structur, Computer Methods in Applied
Mechanics and Engineering, Vol. 64, 1987.

[124] J.F. Thompson, B.K. Soni and N.P. W eatherill, Editors, Hand­
book of Grid Generation, CRC Press, 1999. ISBN 0-8493-2687-7.

[125] N. Touheed, P. Selwood, P.K. Jimak and M. Berzins, A Compari­
son of Some Dynamic Load-Balancing Algorithms fo r a Parallel Adaptive
Flow Solver, Subm itted to Parallel Computing, 1999.

[126] A. Trew and G . W ilson, Editors, Past, Present, Parallel, A Survey
of Available Parallel Computing Systems, Springer-Verlag, 1991. ISBN
0-387-19664-1.

[127] P.L. Vaughan, A. Skjellum, D.S. Reese and F.C. Cheng, Mi­
gration from PVM to MPI, P art I: The Unify System, Proc. 5th
Symp.. on the Frontiers of Massively Parallel Computation , McLean,
VA, IEEE Computer Society Technical Committee on Computer Archi­
tecture (IEEE Computer Society Press, Silver Spring, MD, 1995) 488-
495.

[128] N. A. Verhoeven, N. P. Weatherill, and K. Morgan, Dynamic
Load Balancing in a 2D Parallel Mesh Generator, In A. Ecer, J. Peri-
aux, N. Satofuko, and S. Taylor, editors, Parallel Computational Fluid
Mechanics: Implementation and Results Using Parallel Computers, 641-
648. Elsevier Science B.V., 1995.

[129] N.A . Verhoeven, R. Said, N.P. Weatherill, and K. Morgan, De­
launay Mesh Generation On D istributed Computer Platforms, Parallel
and Distributed Processing for Computational Mechanics: Systems and
Tools. B.H.V. Topping editor, 77-90, Saxe-Coburg Publications, 1997,
ISBN 1-874672-03-2.

247

I

[130] G . V o ro n o i, Nouvelles Applications des Param etres Continues a
la Theorie des Formes Quadratiques Dieuxieme Memoire: Researches
sur les Parallelloedres Primitif, Journal Reine Angew. Mathematics,
Vol. 134, 198-205, 1908.

[131] D .W . W alk e r a n d J . J . D o n g a ra , MPI - A Standard Message-Passing
Interface, Supercomputer, Vol. 12, No.l, 56-68, 1996.

[132] C . W alsh aw , M . C ro ss a n d M . E v e re t t , Parallel Dynamic Graph
Partitioning for Unstructured Meshes, Tech. Report University of Green­
wich, Centre fo r Numerical Modelling and Process Analysis, 97/IM /20,
1997.

[133] C . W alsh aw , M . C ro ss a n d M . E v e re t t , Parallel Dynamic Graph
Partitioning for Adaptive Unstructured Meshes, Journal of Parallel and
Distributed Computing, Vol. 47, No.2, 102-108, 1997.

[134] C . W alsh aw a n d M . C ro ss, Parallel Optim isation Algorithms for Mul­
tilevel Mesh Partitioning, Tech. Report University of Greenwich, Centre
fo r Numerical Modelling and Process Analysis, 99/IM /44, 1999.

[135] D . F . W a tso n , Computing the N-Dimensional Delaunay Tessellations
with Application to Voronoi Polytopes, Computers Journal, Vol. 24,
No.2, 167-172, 1981.

[136] N .P . W e a th e r ill , A Method For Generating Irregular Com putational
Grids In Multiply Connected Planar Domains, International Journal for
Numerical Methods in Fluids, Vol. 8, 181-197, 1988.

[137] N .P . W e a th e r ill , Delaunay Triangulation in Com putational Fluid Dy­
namics, Computers & Mathematics with Applications, Vol. 24, No. 5-6,
129-150, 1992.

[138] N .P . W e a th e r ill , P .R . E isem an , J . H a u se r a n d J .F T h o m p so n ,
Proceeding o f the I^th International Conference on Grid Generation, in
Computational Fluid Dynamics and Related Fields, Swansea, UK, Pub.
Pineridge Press, Uk, 1994.

[139] N .P . W e a th e r ill , O . H assan , Efficient three-dimensional Delaunay
triangulation with autom atic point creation and imposed boundary con­
straints, International Journal fo r Numerical Methods in Engineering,
Vol. 37, 2005-2039, 1994.

[140] N .P . W e a th e r ill , O . H assan , M .J . M a rc h a n t a n d D .L . M a rc u m ,
Grid A daptation Using a D istribution of Sources Applied to Inviscid
Compressible Flow Simulation, International Journal For Numerical
Methods In Fluids, Vol. 19, 739-764, 1994.

248

[141] N .P . W e a th e rill, The Delaunay Triangulation - From The Early Work
in Princeton, Frontiers o f Computational Fluid Dynamics, D.A. Caughy
and M.M. Hafez, editors, 83-100, John Wiley & Sons, 1994.

[142] N .P . W e a th e rill, O . H a ssan a n d D . L. M a rc u m , A Compressible
Flow-held Solutions with U nstructured Grids Generated by Delaunay
Triangulation, A IA A Journal, Vol. 33, No. 7, 1995.

[143] N .P . W e a th e rill, The Reconstruction of Boundary Contours and Sur­
faces in Arbitrary Unstructured triangular and Tetrahedral Grids, En­
gineering Computations, Vol. 13, No. 8, 64-79, 1996.

[144] N .P . W e a th e rill, M . J . M a rc h a n t, E . T u rn e r -S m ith , Y . Z heng ,
a n d M . S o tira k is , The Design of a Graphical User Environment for
M ulti-Disciplinary Computational Engineering, In Proceedings of the
EC C O M AS’96 Conference, Paris, France, September 1996.

[145] N .P . W e a th e rill, R . S a id a n d K . M o rg a n , The Construction of
Large Unstructured Grids by Parallel Delaunay Grid Generation, Invited
paper in Proc. 6th Int. Conf. Numerical Grid Generation in Com puta­
tional Field Simulations, editors: M. Cross, P.R. Eiseman, J. Hauser,
B. K. Soni and J.F . Thompson, published by International Society of
Grid Generation (ISGG), 53-73, 1998.

[146] N .P . W e a th e rill, K . M o rg a n , O . H a ssan , P .J . B ro o k s , R . S a id ,
J . Jo n es a n d M .T . M a n z a ri, A Parallel Framework For
Computational Fluid Dynamics and Com putational Electromagnetics,
In '.Proceeding of the International Workshop on New Models and Nu­
merical Codes for Shock Wave Processes in Condensed Media, (in press),
1999.

[147] N .P . W e a th e rill, Unstructured Grids: Procedures and Applications,
In -.Handbook of Grid Generation, J.F . Thompson, B.K. Soni and N.P.
Weatherill, editors, (CRC Press, 1999), 26-1-26-36.

[148] N .P . W e a th e rill, K . M o rg a n , O . H a ssan a n d R . S a id , The Con­
struction of Large Unstructured Grids by Parallel Delaunay Grid Gener­
ation, von Karman Institute for Fluid Dynamics, Lecture Series 2000-05,
Brussels, March, 2000.

[149] N .P . W e a th e rill, O . H assan , K M o rg an ; J .W . Jo n e s a n d B L a r­
w ood , Towards Fully Parallel Aerospace Simulations on Unstructured
Meshes, Engineering Computations, Vol. 18, No.3-4, 347-376, 2001.

[150] R .D . W illiam s, Performance of Dynamic Load Balancing Algorithms
for Unstructured Mesh Calculations, Concurrency: Practice and Expe­
rience, Vol. 3, 157-181, 1991.

249

[151] M .A . Y e rry a n d M .S . S h e p h a rd , A utom atic Mesh Generation for
3-Dimensional Solids, Computers & Structures, Vol.20, No. 1-3, 31-39,
1985.

[152] O .C . Z ienk iew icz a n d D .V . P h il lip s , An Autom atic Mesh Gener­
ation Scheme For Plane and Curved Surfaces by Isoparametric Coor­
dinates, International Journal fo r Numerical Methods in Engineering,
Vol. 3, 519-528, 1971.

[153] O .C . Z ienk iew icz a n d R .L .T ay lo r, The Finite Element Method, 4th
edition, Vol. 1 Basic Formulation and Linear Problems, Vol. 2 Solid and
Fluid Mechanics Dynamics and Non-Linearity, McGraw Hill, 1994.

[154] B .G . L a rw o o d , Mesh generation for large-scale and complex computa­
tional simulation PhD thesis, University of Wales Swansea, 2003.

250

