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Sum m ary

This thesis considers the analysis of reliability data subject to censoring, and, in particular, 
the extent to which an interim analysis - here, using information based on Type II censoring 
- provides a guide to the final analysis. Under a Type II censored sampling, a random sample 
of n units is put on test simultaneously, and the test is terminated as soon as r (1 < r < n, 
although we are usually interested in r  < n) failures are observed. In the case where all test 
units were observed to fail (r = n), the sample is complete. From a statistical perspective, 
the analysis of the complete sample is to be preferred, but, in practice, censoring is often 
necessary; such sampling plan can save money and time, since it could take a very long 
time for all units to fail in some instances. From a practical perspective, an experimenter 
may be interested to know the smallest number of failures at which the experiment can be 
reasonably or safely terminated with the interim analysis still providing a close and reliable 
guide to the analysis of the final, complete data. In this thesis, we aim to gain more insight 
into the roles of censoring number r and sample size n under this sampling plan.

Our approach requires a method to measure the precision of a Type II censored estimate, 
calculated at censoring level r, in estimating the complete estimate, and hence the study 
of the relationship between interim and final estimates. For simplicity, we assume that 
the lifetimes follow the exponential distribution, and then adopt the methods to the two- 
parameter Weibull and Burr Type XII distributions, both are widely used in reliability 
modelling. We start by presenting some mathematical and computational methodology 
for estimating model parameters and percentile functions, by the method of maximum 
likelihood. Expressions for the asymptotic variances and covariances of the estimators are 
given. In practice, some indication of the likely accuracy of these estimates is often desired; 
the theory of asymptotic Normality of maximum likelihood estimator is convenient, however, 
we consider the use of relative likelihood contour plots to obtain approximate confidence 
regions of parameters in relatively small samples.

Finally, we provide formulae of the correlations between the interim and final maximum 
likelihood estimators of model parameters and a particular percentile function, and discuss 
some practical implications of our work, based on the results obtained from published data 
and simulation experiments.
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Chapter 1

Introduction

The term reliability usually refers to the probability that a piece of equipment, or a compo­
nent of a larger system, will operate satisfactorily either at any particular instant at which 
it is required or for a certain length of time. Like survival analysis in medical studies, or 
duration analysis in economics, the quantity of interest in reliability analysis is the lifetime 
(also called the survival time, failure time, or time to failure) of a specimen; for instance, the 
lifetime of an electrical component (Epstein, 1960; Wingo, 1993), or the time to failure of a 
deep-groove ball bearing (Lieblein & Zelen, 1956), or the relief time of an arthritic patient 
after a fixed dosage of medication (Wingo, 1983). The methods for statistical analysis of 
data on reliability are widely discussed, with many textbooks covering solely this area; see, 
for instance, Mann et al. (1974), Lawless (1982), Nelson (1982), Bain & Engelhardt (1991) 
and Crowder et al. (1991).

The only way to measure reliability is to test specimens, under conditions that simulate 
real life, until failure occurs. Extensive testing, however, often results in undesirable expen­
ditures of time and money. An important concept that arises naturally in this area is that 
of censored sampling plan; for example, not all electrical components may have failed at the 
close of a life test, and some arthritic patients may have left the clinical trial for unrelated 
reasons before completion. Such incomplete observation of the lifetime of a specimen is 
called censoring. Furthermore, in reality, it is not always feasible to examine all system 
requirements in reliability testing; some systems are prohibitively expensive to test, some 
failure modes may take years to observe, and some experiments may be hazardous to run 
over prolonged periods. In such cases, perhaps the most commonly used technique is to 
terminate the test after a certain number of failures, r, has been observed out of a sample 
of n test units; this gives rise to Type II censoring. The data observed thus consists of 
order statistics, and, formally, is said to be right censored. Other censoring regimes are 
possible (see Section 1.4) - for instance, Type I, left censoring, progressive censoring - but, 
for convenience only right censoring is discussed in any detail here. A comprehensive text 
on the subject is Cohen (1991).
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Other life test plans pose different problems. Sequential plans are “accept-reject” tests 
under a given null hypothesis, H0, versus an alternative hypothesis, H\. The life test 
is continuously monitored and a decision made as soon as there is sufficient supporting 
evidence for one of the two hypotheses. These tests take less time than non-sequential plans 
but estimation is complicated and not very robust. The history and statistical theory of 
sequential test plans are illustrated well in Gosh k, Sen (1991). Accelerated life testing 
concerns the collection of lifetime data more quickly than would be the case in the normal 
use of components. Often, in order to induce failure in a short time, it may be necessary 
to increase the severity of a condition such as temperature, load or vibration. The results 
of any of these tests have to be extrapolated back to the conditions of normal use, and 
care is needed in choosing the model on which to base this. The execution and analysis 
of accelerated life tests is in general a complex area. A comprehensive text on the subject 
is Nelson (1990), while Nelson (2005a,b) publishes an extensive bibliography of statistical 
plans on accelerated testing and test plans. In reality, various factors influence the choice of 
test plans, usually in relation to resources. These may be physical, time-related of financial.

This thesis considers some particular aspects of Type II censored reliability analysis. 
Suppose it is possible to conduct one or more interim analyses (r < n) in addition to a final 
analysis (r =  n). For example, it may be possible to make inferences on model parameters 
at each of a sequence r  =  ri, r2, . . .  < n of failures, until all items have failed and the data 
set is complete. In real life scenarios, we may also draw inferences about the percentile 
of a lifetime distribution, as a practitioner will typically wish to know the time at which 
a specified percentage of test units fails, either for monitoring purposes or to implement 
changes to the test at that time. In this case, we may consider the extent to which the final 
estimates of parameters are consistent with earlier estimates, or the rate at which interim 
estimates converge on their final values; more generally, we can consider the precision with 
which we can make statements on final estimates, based on interim estimates, as represented 
by the confidence limits for the final estimates given the interim estimates. This approach, 
of course, requires an evaluation of the relationship between final and interim results, and 
hence the extent to which an interim analysis - here, using information based on Type II 
censoring - provides a guide to the final analysis; this is the scenario outlined in Chua k  
Watkins (2007) and Chua k  Watkins (2008a,b), and explains the title of our thesis. Some 
discussion on the corresponding analysis of reliability data under Type I censoring is given 
by Finselbach k  Watkins (2006), Peng k  MacKenzie (2007) and Finselbach (2007).

Our approach implicitly introduces the following question: as r is to be specified before 
testing commences, what is the smallest number of failures at which the experiment can be 
reasonably or safely terminated with the interim estimates still yielding close and reliable 
guides to the final estimates? This information is important for an experimenter, as he or 
she can then choose an acceptable censoring number and sample size, with the (expected) 
time required to complete a test generally directly linked to its cost. If the initial cost of 
test units is cheap compared to experiment time, he or she can increase the initial sample
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size to obtain results economically.
To address this question, we proceed on the basis of a parametric modelling of data, and 

assume that we have identified a distribution for the data, so that it remains to estimate 
the parameters and related quantities of that distribution. Statistical inference has been 
widely discussed from the classical, or frequentist, point of view. That is, estimators and 
test statistics are assessed by criteria relating to their performance in repeated sampling; 
see, for instance, Lawless (1982), Bain & Engelhardt (1991) and Cohen (1991), based on 
both complete and censored samples. On the other hand, in the Bayesian approach, direct 
probability statements are made about unknown quantities, conditional on the observed 
data. This necessitates the introduction of prior beliefs into the inference process. At the 
present time there is lively debate over the place of Bayesian statistics in reliability theory. 
Whether Bayesian statistics will eventually supplant classical statistics, as its more vigorous 
proponents have been proclaiming for the past fifty years, is something still to be seen, but 
reliability engineers certainly should have an awareness of the Bayesian approach. Dey Sz, 
Rao (2005) provides a general overview of the area of Bayesian Thinking and describes what 
the current state is in the context of Bayesian theory, methodology, modelling, computation 
and applications.

In this thesis the classical approach to the statistical inference of reliability data is con­
sidered. Although there is much literature on the method of maximum likelihood estimation, 
authors like Nelson (1982) and Wingo (1993) have mentioned that exact mathematical ex­
pressions for the asymptotic variances and covariances of the maximum likelihood estimates 
are difficult to obtain. This may be regarded as a convenient starting point for our study, 
in which we attempt to derive analytical formulae for these variances and covariances. In 
addition, perhaps due to convenience, asymptotic theory of maximum likelihood is widely 
used to obtain approximate confidence limits for the maximum likelihood estimates. Such 
limits are essentially asymptotic ones, while real-life samples are, because of time or budget 
constraints, often of small to moderate sizes. Thus, we need to be able to establish confi­
dence regions of estimates in relatively small samples subject to Type II censoring, using a 
more suitable and reliable statistical method; some work on this topic is presented in Chua 
et al. (2007).

In the framework outlined above, we obtain two sets of estimates, interim and final, of 
model parameters and a particular percentile, but we are also interested at the distributions 
of these quantities. We focus on conditional distributions of final estimators given interim 
counterparts; if these are Normal - as is the case asymptotically - then, in turn, we require the 
covariance between final and interim quantities. The classical asymptotic approach uses the 
relationship between the maximum likelihood estimators, the expected Fisher information 
matrix and the score vector.

For simplicity, we start by considering singly censored samples under Type II censoring. 
We start from the assumption that the lifetimes follow the exponential distribution, chiefly 
to exploit the familiar and extremely powerful lack-of-memory property of this distribution.
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1.2 2.2 4.9 5.0 6.8 7.0 12.1 13.7 15.1 15.2
23.9 24.3 25.1 35.8 38.9 47.9 48.4 49.3 53.2 55.6
62.7 72.4 73.6 76.8 83.8 95.1 97.9 99.6 102.8 108.5

128.7 133.6 144.1 147.6 150.6 151.6 152.6 164.2 166.8 178.6
185.2 187.1 203.0 204.3 229.5 253.1 304.1 341.7 354.4

Table 1.1: Failure times for 49 items placed on a life test; from Epstein (1960).

A natural extension of the exponential distribution is the Weibull distribution; the latter 
can model lifetimes with increasing, constant, or decreasing failure rate. The more flexible 
Burr Type XII distribution has in recent years assumed a position of some importance in 
the field of reliability and life testing. Unfortunately, the estimation of its parameters is not 
always straightforward.

Throughout, we illustrate the results using published data sets, and also validate as­
ymptotic results for various combinations of sample size, censoring number and values of 
model parameters using extensive simulation experiments. We first outline some examples 
of lifetime data, then give some mathematical background, and finally introduce some key 
definitions occurring in the analysis of reliability data.

1.1 Som e Exam ples o f Reliability D ata

We introduce some published data to illustrate various typical ways in which lifetime data 
arise, and also use these as the basis of worked examples to illustrate ideas and concepts.

1.1.1 E p ste in ’s Failure T im es D a ta

Manufactured items such as mechanical or electrical components are often placed on life 
tests in order to obtain information on their endurance. Table 1.1 presents failure times 
data on n = 49 items put on a life test, run until all items failed. This data set may 
be modelled, as in Epstein (1960), by the exponential distribution. Figure 1.1 shows the 
exponential P-P plot for these data, where a sample from an exponential distribution should 
form approximately a straight line. Departures from this straight line indicate departures 
from the exponential distribution. Hence, the linear plot in Figure 1.1 suggests that it is 
appropriate to model the Epstein’s failure times data with the exponential distribution.

1 .1 .2  B a ll B earin gs D a ta

A second example is data arising in tests on the endurance for deep-groove ball bearings, 
given in Table 1.2. They were originally discussed by Lieblein & Zelen (1956), who assumed 
that the data follows a Weibull distribution. As shown in Figure 1.2, we see the Weibull 
P-P plot for these data deviates from the straight line in the middle but fits the line well 
at both ends. We also note that a review on this data set by Caroni (2002) points out
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Figure 1.1: P-P plot for Epstein’s failure times data based on exponential with 9 =  104.8898.

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12
55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

127.92 128.04 173.40

Table 1.2: Lifetimes (in millions of revolutions) for 23 deep-groove ball bearings; based on 
Lieblein & Zelen (1956).

that they have been quoted incorrectly from Lieblein k  Zelen (1956), firstly by Thoman 
et al. (1969), and subsequently by numerous authors such as Kalbfleisch (1979) and Lawless 
(1982). Nonetheless, like much of the later literature, we regard the version in Table 1.2 
as a set of uncensored failure times, and assume that it can be modelled by the Weibull 
distribution.

1.1 .3  A rth ritic  P a tien ts  D a ta

The ball bearings example is not the only well known lifetime data set in which the original 
data values have been changed. Table 1.3 shows data resulting from a clinical trial which 
was undertaken to test the efficacy of an analgesic, taken from Wingo (1983). This data 
represents relief times (in hours) of n =  50 arthritic patients receiving a fixed dosage of 
this medication, and, as indicated by the linear pattern in the P-P plot at Figure 1.3, is 
assumed to follow a Burr Type XII distribution. Watkins (1996) remarks that the last four
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Figure 1.2: P-P plot for ball bearings data based on Weibull with 6 =  81.8783,/? =  2.1021.

0.29 0.29 0.34 0.35 0.36 0.36 0.44 0.46 0.49 0.49
0.50 0.50 0.52 0.53 0.54 0.55 0.55 0.55 0.56 0.57
0.58 0.58 0.59 0.59 0.60 0.60 0.61 0.61 0.62 0.64
0.68 0.70 0.70 0.70 0.71 0.71 0.71 0.72 0.72 0.73
0.75 0.75 0.80 0.80 0.81 0.82 0.84 0.84 0.85 0.87

Table 1.3: Relief times (in hours) for 50 arthritic patients; from Wingo (1983).

places of the fourth column in Wingo (1983), namely 0.72,0.53,0.70,0.58, have been given 
as 0.36,0.46,0.34,0.44 in Wang et al. (1996).

1.1 .4  E lectron ic  C om p on en ts D a ta

Wingo (1993) reports on a life test experiment conducted to assess the reliability of a certain 
electrical component, where n =  30 components were involved. However, for reasons of cost, 
the trial was terminated after the r =  20th component failed. Table 1.4 gives the failure 
times for these 20 components and 10 censored values (hereafter denoted by f), which, again, 
may be modelled by the Burr Type XII distribution.
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Figure 1.3: P-P plot for arthritic patients data based on Burr Type XII with a  =  8.2681, r  =  
5.0006.

0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8
0.9 0.9 1.2 1.6 1.8 2.3 2.5 2.6 2.9 3.1
3.1+ 3.1+ 3.1+ 3.1+ 3. i t 3.it 3.i t 3.lt 3.lt 3.i t

Table 1.4: Failure times (in months) for 30 electronic components; from Wingo (1993); 
censored values are denoted by f.
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1.2 M athem atical Functions

1.2 .1  G lossary  o f F u nctions and  N o ta tio n s

Table 1.5 summarises some standard mathematical functions and notations required through­
out this thesis; we have adhered to the notation in Abramowitz & Stegun (1972). We list 
conventions like In (x ) here, where In (x ) =  loge (a;) denotes the natural logarithm of the 
positive quantity x. Some specific notation is considered in more detail in Appendix A.

1.2 .2  U sefu l M ath em atica l P ro p erties

For later convenience, we denote the partial derivatives of an arbitrary function g with 
respect to (from now on, abbreviated to wrt) a as

 k _ ........................................................
9a ~  dak 9’

and, if g is univariate, the above reduces to

k dk
9 = d ^ 9'

for k =  1, 2,3 • • •.

Gamma and R elated Functions

The gamma function T(a) satisfies the recurrence relation

T(1 +  a) =  aT(a) =  a\ (1.1)

for integer a. Its first and second derivatives with respect to wrt a are given by

r ' ( a )  =  T (a)^ (a )  (1.2)

and
r " ( a ) = r ( a ){[^(a)]2 +  V'(a)} (1.3)

respectively. The psi or digamma function satisfies the recursive relation given by

ip(a +  1) =  tp(a) +  -  (1.4)a

and has special values of

^(1) =  (1-5)
o—l

iP (a )  =  - 7 +  E  m _1>
m = 1
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Pochhammer’s symbol T(a+m)
r(a)

arg argument
B (z , w) beta function f 0 L  t*-1 (1  - 1 ) " " 1 dt 

=  I T *2 - 1 (1  + dt
Bx(z,w) incomplete beta function
cos, sin cosine, sine function

e n ( z ) truncated exponential
ny- z m

t — i  771!771=0
exp (z) =  ez exponential function
E1(z) exponential integral

EiW exponential integral - / “ + *
F2)i(a, 6 ; c; z) hypergeometric function y> (a ) m ( f y m  Zm

771=0 m!
^3,2 (a, 6 , c; e, / ;  2 ) hypergeometric function (a)m(̂ )m(c)m 2Tm 

(e)m(/)m 771 •771=0
generalised hypergeometric function E f e + f r r - where771=0 v P / m

d o t  = »&2 7 • • • 7

b p  =  &1 ,&2 , •••,&£

Lip(z) polylogarithm function
00y''

771?
771=1

lim limit
In natural logarithm loge
max maximum
min minimum
Pr probability
R real part
7 Euler’s constant +0.5772156649-••
7 (0 , x) normalised incomplete gamma function /nX e- l 7a_1d7
T(a) gamma function r e - H ^ d t
T(a, a:) incomplete gamma function JT°° e~tta~1dt

C(p) Riemann zeta function
0 0

(m+1)p771=0

$ (2 ,p , g) Lerch transcendent
OOy '  zm 

(™+<?)p
771=U

^(a) psi (digamma) function II

•4S

i>k{a) polygamma function £*(«) -  i»r(«)
O binomial coefficient 77l! __  r ( 7 7 1 + l )

n\(m—n)\ r ( 7 i + l ) r ( m —n + 1 )

\z \ absolute value or modulus of 2

Table 1.5: Notation and definitions of standard functions.
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a r(a) ip(a) (a)
1 1 - 7

7X2 
6,

2 1 1 - 7 7T
6 - 1

3 2 3 ~ 
2 7

n*
6

5
4

4 6 11fi 7
7T
fi

49
36

Table 1.6: Some special values for the gamma and related functions.

for integer a > 2, where 7 =  +0.5772 • • • is Euler’s constant. For the polygamma functions
■0 fc(a), the following recursive formulae hold; with k = 1

ip'(a +  1) =  ip’ip) — ~2 > (1-6)

and, more generally, for k =  1, 2,3, • ••,

ipk (a +  1) =  i>k(a) +  (—l ) kk\a~k~1.

We also have
i>k{ 1) =  ( - 1  )k+1kK(k + 1 ) ,

so that

y'( 1) =  C(2) =  y  • (l.T)

Using (1.5) and (1.7), Table 1.6 gives the values of gamma and related functions evaluated
at some integers, found from (1.1), (1.4) and (1.6).

The normalised incomplete gamma function is linked to a series expansion via

00

7 (a, x) = x a £  ), } , (1.8)
n  J ^ 0  m!(a +  m) v '

and to the incomplete gamma function T(a, x) via

7 (a, x) = T(a) — T(a, x). (1.9)

B eta  and Incom plete B eta Functions

With z, w positive and real, we can write the complete beta function in terms of the gamma 
functions as

B(z,w ) = B(w ,z) = rCz ) r (w)  (1.10)
v ; v ’ J r ( ^  +  ?n) v '

The incomplete beta function B x(z, w) is related to hypergeometric function (see below) via 
the following (see (6.6.8) in Abramowitz & Stegun, 1972):

B x(z, w) =  z~1xzF2,i (z , l - w ' , z  + l\ x). (1-11)
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Hypergeom etric Functions

The generalised hypergeometric function is defined as (a, b and z may be real or complex)

FP,q(ai,a2,. . .  ,a>A’,bi, 62, ,  65; 2) =  X)
771=1

OO
p  M m  M m  ' ' ' ( M m  Zm  

S >  (& l)m  M m  ’ ' ' ( M m  m !

where (x)m is Pochhammer’s symbol. Two specific cases frequently used in this thesis have 
p =  2, q = 1 and p = 3, q = 2, which then give, respectively,

F2,1 (a, 6; c; z) = F2> 1 (6, a; c; z)
_  r(c) ^  T(a +  m)T(6 +  m) zm 

T(a)T(b) T(c +  m) ml
(1.12)

and

r(o)r(6)r(c)

where we now write terms in the summation explicitly in terms of the gamma functions. Note 
that, for convenience, we sometimes write F2ji(a, b; c; z) = ^ 2,1(2) and 1^2 (a, b, c; e, / ;  z) =

given, respectively, by (15.3.4) and (15.3.5) therein.
In Sections 4.2.2 and 4.4.2, it will be necessary to check that the hypergeometric series 

is convergent for a given set of arguments and variables. Slater (1966) considers various 
convergence tests on F2ji(a,b]c; z). Briefly, a series (1.12) is convergent for all values of z, 
real or complex, such that

When |z| =  1 and z =  1, the series is convergent if R (c — a — b) > 0, and divergent
if R (c — a — b) < 0. When |z| =  1 but z /  1, the series is absolutely convergent if
R (c — a — b) > 0, convergent but not absolutely so if —1 < R (c  — a — b) < 0, and di­
vergent if R (c — a —b) < —1. However, when R (c — a — b) = —1 the series is convergent
if R (a + b) > R (ab), and divergent if R (a +  b) < R (ab). While for any F^2 (a> b, c; e, / ;  z), 
the function is convergent if |z| < 1, or, if z =  1 then

T3 2 (z). Abramowitz & Stegun (1972) provide numerous linear transformation formulae for 
the F2ti(a, 6; c; z) function; two relevant ones are

and
(1.13)

z I < 1. (1.14)

R (e + f  — a — b — c) > 0 , (1.15)
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or, if 2 =  — 1 then
R (e +  /  — a — b — c) > —1.

In particular, when 2 =  1, we may also employ the generalised Dixon’s theorem (found at
(2.3.3.7) in Slater, 1966) to scale the arguments; this theorem states

^3,2 (a, b, c; e, / ;  1) =  ^ 3,2 (e -  a, /  -  a, s; s +  b, s +  c; 1), (1.16)
T (a) T (s +  b) r  (s +  c)

where s =  e +  /  — a — 6 — c, where R (5) > 0 and R (a) > 0 ensure convergency in both 
series.

Exponential Integral and Properties o f R elated Integrals

The exponential integrals have series representations given by

00 ( _ l  \m ~ m
E 1(z) = - j - l n z -  £  -V L)- ,

m^i m  x ml

for |arg(^)| < 7r, and
00 z m

Ei(z) =  7 +  lnz +  £  — ——j
771=1 ^  ^

for 2 > 0. It is important to observe here that

E i(-z ) =  -Ehiz) ,

and poo
E\{z) = j  e - tt~1dt = T(0,z). (1.17)

Geller & Ng (1969) provide an useful list of integrals of the exponential integral, fre­
quently used in Chapter 4, including (the parameters a, b and c are real and positive)

x e - ^ E ^ d x  = j ln  ( l  +  , (1.18)

/ “  Ei(bx)^- =  [7 +  lnac +  £i(ac)] Ei(bc) +  1 k(2) +  (7 +  lnbc)2

. em(bc) /  a \  m+i (—bc)m , .
+ e 2  / 1 ,  \2 ( ~ r )  +  E  H r r -  L19^ 0  (m +  l )2 V b) ^ 1  m!m2

e-az(Ina:)Ei(6a:)dx = - i  j ln  ( l  +  | )  [7 +  ln(a +  6)] +  2’ *) } ’

(1.20)
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and

f ^ x e  ax(\nx)Ei(bx)dx = —^
l n (1 +  f ) - S + 5 ]  [7 +  ln(« +  *>)-!] '

+  ( A ) 2 $ ( ^ . 2. 2)
. (1-21)

defined, respectively, at (4.2.11), (4.2.29), (4.5.2) and (4.5.4) therein. Then, from Guillera
& Sondow (2005), the above two Lerch transcendent functions, 4>(z,p, 1) and 4>(z,p, 2), are
linked to the polylogarithm Lip(z) as follows:

Lip(z) = z®(z,p, 1), (1.22)

and
Lip(z) — z = z2$(z,p,  2). (1.23)

1.3 Basic Concepts and Reliability M odels

1.3.1 B asic  C on cep ts

Suppose X  is a nonnegative random variable representing the lifetime of an individual from 
a homogeneous population. The probability distribution of X  can be specified in many ways, 
but the probability density function (pdf) and the cumulative distribution function (cdf) 
are particularly useful in reliability analysis. The pdf of X  involving a vector of unknown 
model parameters n  = (7Ti,7T2, . . . ,  7rk)' defines the probability of a failure in a very small 
interval; it is given by

. .. Pr (x <  X  < x  +  Ax) dF (x)
f(x;  7r) =  lim —  --------  1 =  — ——-,

Ax->o+ A x  dx

at which f(x;  7r) > 0 and J0°° f{x)dx  = 1, so that, conversely, the cdf of X  is defined as

F ( x ; 7r) =  Pr(X  < x) =  f  f{t)dt.
Jo

The hazard function specifies the instantaneous rate of failure or death at time X  = x 
(conditional upon survival to time a:) and can be defined as

. . . . .  Ft (x < X  < x + A x \X  > x) f  (x\ 7r)
haz(x\ 7r) =  lim —  ------------   1   =  777-----

v J Ax—>o A x  S(x;7r)

where the survivor function S(x-,7r) = f£° f{t\Tz)dt = 1 — F{x\7r) is the probability of 
surviving until time x. These functions, unless stated otherwise, are defined over the interval 
[0, 00).

Other aspects of lifetime distribution are useful in certain circumstances; for instance, 
the 100qth (0 < q < 1) percentile function, also named as the qth quantile function, written
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as Bq (0 < q < 1), is the value x q such that

Pr(X  < x q) = q.

Thus, we may write Bq as
Bq = F - 1{q) = Q(q),  (1.24)

where the quantile function Q(q) is the inverse of the cdf. The percentiles of a lifetime 
distribution specify times at which specified proportions of items fail; for example, in reli­
ability analysis Bo.i is commonly employed to determine a warranty period for the items 
under consideration, while Bo.9 is of particular relevance in survival analysis, especially in 
deciding the term of a life insurance contract.

The pth moment about the origin, fip, of a pdf f{x)  is merely the expected value of X p: 
that is,

HP =  E{XP],

for p =  1,2,3, • • •, while the pth moment about the mean of X  (or the pth central moment) 
is defined as

pZ = e i (x - p Y],

where p = pi = E  [X] is the mean; these moments can be used to find some characteristics 
of the distribution of X .  For example, the skewness and kurtosis of X  are, respectively,

71 =  $  (1-25)

and

72 =  (1-26)

where cr2 =  ^  =  Var (X) is the variance.

1.3 .2  L ifetim e D istr ib u tion s

We have already mentioned three particular distributions, although other parametric models 
have been used throughout the literature on lifetime data. For a survey of the properties and 
theoretical bases of these distributions, see, for instance, Lawless (1982), Nelson (1982), and 
Bain & Engelhardt (1991). Throughout this thesis, we will consider the following particular 
distributions.

The Exponential D istribution

The exponential distribution, sometimes referred to as the negative exponential distribution, 
was widely used in early work on the reliability of, for example, electronic components and, 
to a more limited extent, in clinical studies. With only one parameter, it is rather sensitive 
even when modelling data with modest departures to this distribution, especially when such
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Figure 1.4: Pdf of the exponential distribution for varying 9. 

departures occur in the tail. The exponential distribution has a one-parameter pdf given by

f(x',9) =  0_1exp { —1}> (1-27)

where 6 > 0 is the scale parameter, so that the cdf is

F(x; 9) = 1 -  exp { ~ |}  • (1-28)

Figure 1.4 shows the exponential pdf for several values of 9. The special case of 9 = 1 is 
called the standard exponential distribution.

From (1.27) and (1.28), we see that the hazard function is

haz{x\ 9) =  9~l .

Hence, this distribution is characterised by a constant hazard function over the range of X , 
which implies that the instantaneous rate of failure or death is independent of x, so that 
the conditional chance of failure in a time interval of specified length is the same regardless
of how long the individual has been on trial; this is referred to as the lack-of-memory (or
memoryless) property. Moreover, the 100qth percentile function can be expressed as

Bg =  0 { - l n ( l  - g ) } . (1.29)
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We also have
l t v  =  P T { \ + p ) ,

so that the mean, variance, skewness, and kurtosis are, respectively, /x =  9, a1 =  02, = 2,
and 72 =  9.

The Weibull D istribution

The Weibull distribution, introduced by Weibull (1939, 1951), is the most widely used in 
reliability modelling, due to its flexibility in fitting failure time data in many applications, 
particularly when related to extreme-value characteristics. This distribution has pdf (with 
origin at zero) defined as

f(x]9,f3) = p0~(3xP~1 exp |  — ( | ) ^ | , (1.30)

and cdf given by

F {x\ 9,(3) = 1 - e x p  j -  ( I ) " } ,  (1.31)

where 9 > 0 and (3 > 0 are the scale and shape parameters respectively. Hence, the elegance 
and utility of this model are further enhanced by having a closed form cdf. The hazard 
function is

haz (x; 9, /?) =  ^9~^x^~1, 

and the lOOg^ percentile function is readily found to. be

Bg =  0 { - l n ( l - g ) } i . (1.32)

Figure 1.5 illustrates how varying (3 affects the shape of the Weibull pdf for 9 = 10. When 
f3 > 1, this distribution is bell-shaped, indicating increasing hazard over time. However, for 
(3 < 1, it is reverse J-shaped, an indication of decreasing hazard over time. In particular, 
the Weibull distribution reduces to negative exponential when (3 = 1; it is known as the 
Rayleigh when (3 =  2, and for f3 = 3.6023 • • •, it is approximately Normal with j 1 = 0 and 
72 =  2.72 (as compared to 3 for the Normal distribution); see Cohen (1991).

In addition, the Weibull distribution has pth moment about zero given by

/v  =  f l r ( i  +  | ) ;

then its mean and variance are
1
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Figure 1.5: Pdf of the Weibull distribution for 9 = 10 and varying /?.

The Burr Type XII Distribution

The Burr Type XII distribution (hereafter referred to simply as the Burr distribution), 
introduced by Burr (1942), has been shown empirically to provide a good fit to data in 
many different types of characteristics and applications. Examples include fitting a uranium 
survey data set (Cook and Johnson, 1986), data arising in actuarial science (Klugman, 1986), 
analysis of business failure data (Lomax, 1954), modelling the size distribution of incomes 
(Sinha and Moddola, 1976), the efficacy of analgesics in clinical trials (Wingo, 1983), and the 
time to failure of electronic components (Wingo, 1993; Wang et al., 1996). In their discussion 
on the statistical and probabilistic properties of the Burr distribution, Zimmer et al. (1998) 
emphasise the advantages of this distribution in modelling failures over the other commonly 
used models, such as the log-normal and the log-logistic distributions. These advantages 
include the fact that the Burr XII covers the curve shape characteristics for the Normal, 
logistic and exponential (Pearson Type X) distributions, as well as a significant portion of 
the curve shape characteristics for the Pearson Type I (beta), II, III (gamma), V, VII, IX 
and XII; for instance, see Burr & Cislak (1968), Rodriguez (1977), and Tadikamalla (1980).

For simplicity, we initially focus on the basic two-parameter Burr distribution. This has 
positive shape parameters a  and r , with pdf

/  (a:; a , r)  =  a r x T 1 (1 -I- xT) , (1.33)
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a closed form cdf
F  (x; a, t ) = 1 -  (1 +  x T)~a , (1.34)

hazard function
haz (a:; a , r) =  a r x T~1 (1 +  xT)~1 , 

and 100g^ percentile function given by

i
B ,  =  { ( l - g) - i - l } 7 . (1.35)

Figure 1.6 shows the effect of changing a  when r  =  1; larger values of a  correspond to 
steeper density functions that tend to 1 more rapidly. In contrast, Figure 1.7 presents a 
similar comparison for varying r , with a  =  1; we see that increasing r  produces a steeper 
density function that tends to 1 extremely quickly. The moment ixp for this distribution 
exists provided that ar  > p\ we have

= a B  ( “  +  1 >a  — “ ) > (1.36)

so, with a r  > 2, the mean and variance are

H = a B  ( I +  l , a - l ) ,

and
a2 =  a B  ( — +  1, a  — — j  — a 2B 2 ( — +  1 , a  — —

It is appropriate to mention here the connection between the Weibull and Burr distri­
butions, by which the lower bound for the Burr region forms part of the Weibull curve in
the (71, 72) plane, the limiting distribution of (1.33) as a —► 00 is the Weibull distribution
(1.30). This is shown by Rodriguez (1977) as follows:

Pr = 1 — ^1 +  from (1.34)

t , (  yr= 1 — exp < —a  log f 1 H-----

1 — exp{ —a  2 - - l ( ' H - )  +

1 — exp {—yr } as cn —> 00.

Thus, in this limit, the Burr shape parameter r  corresponds to the Weibull shape parameter 

0.
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Figure 1.6: Pdf of the Burr distribution for r  =  1 and varying a.
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Figure 1.7: Pdf of the Burr distribution for a = 1 and varying r.
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The Pareto Distribution

We briefly mention the Pareto distribution, noting its link to the negative exponential 
distribution. The two-parameter Pareto pdf is given by

f (x \  a , k) = ahax~(a+1\  (1-37)

with corresponding cdf

F(x; a,k) = 1 -  ( j )  , (1.38)

for x > k, where a > 0, k > 0 are, respectively, shape and location parameters. It is straight­
forward to show that In (X/k)  has an exponential distribution with mean a -1 . We shall 
exploit this important relationship later in the derivation of the expected Fisher information 
matrix for the Burr distribution.

1.4 Censoring Regim es

We have already mentioned that, at the close of a life-testing experiment in reliability, not 
all specimens may have failed. For example, suppose n light bulbs are selected at random 
and placed on test. Many, perhaps nearly all, may fail in the first year, but a few bulbs may 
last for several years. Similarly, some patients will survive to the end of a clinical trial. An 
individual who is observed to be failure-free for 30 days and then withdrawn from the study 
has a failure time which must exceed 30 days. Such incomplete observation of the failure 
time is called censoring.

Censored sampling is a key feature of failure time data (indeed reliability and survival 
analysis have been broadly defined as the analysis of censored data), and the mechanisms 
which give rise to censoring play a crucial part in statistical inference. Some of the common­
est assumptions are right censoring, left censoring, Type I censoring and Type II censoring; 
these are not all mutually exclusive. For later, and practical utility, we only consider Type 
II singly censored sampling on the right, though many of the ideas transfer in an obvious 
way to the case of Type I and/or left censoring.

1.4.1 R ight and  Left C ensoring

Formally, data are right censored if the censoring regime cuts short observations in progress. 
An example is the ending of an investigation at a fixed time. In contrast, data are left 
censored if the censoring mechanism prevents us from knowing when entry into the state 
which we wish to observe took place. Both forms of censoring can occur in practice. For 
instance, in medical studies in which patients are subject to regular examinations, discovery 
of a condition indicates only that the onset fell in the period since the previous examination; 
the time elapsed since onset is thus left censored. Right censoring is very common in life- 
testing of electromechanical items, but left censoring is fairly rare. We ignore left censoring
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here, so that the term “censoring” in the remainder of this thesis will generally mean “right 
censoring” .

1.4 .2  T yp e I C ensoring

Suppose that n items are independently tested and entered into a trial at the same time. If 
the experiment is terminated after a pre-specified time £, this is referred to as Type I censored 
sampling (on the right). As a result, the number of observed failures m (0 < m  < n) is a 
random variable, and the remaining n — m  items are censored at the stopping time t. We 
use the ball bearings data from Table 1.2 to illustrate this experimental set-up. Suppose 
the trial is terminated at time t = 60, instead of allowing all of the items to fail, then the 
Type I censored sample would be as follows

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12
55.56 60+ 60+ 60+ 60+ 60+ 60+ 60+ 60+ 60+

60+ 60+ 60+

This form of censoring has the practical advantages of known experimental duration, but the 
statistical disadvantage of prior uncertainty over the exact number of failure times available 
for analysis.

1.4 .3  T yp e II C ensoring

In contrast, Type II censored sampling (on the right) occurs when the experiment is dis­
continued after the first r (r < n )  failure times are observed. The number of failures r is 
fixed in advance, and the remaining n — r items will have a censored failure time equal to 
the time of failure of the rth item. Using the ball bearings data again, suppose that the life 
test is stopped after r = 12 failures are obtained. Thus, lifetimes after the 12th item are 
censored at the value of 67.80, and we would obtain the following Type II censored sample

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12
55.56 67.80 67.80+ 67.80+ 67.80+ 67.80+ 67.80+ 67.80+ 67.80+ 67.80+

67.80+ 67.80+ 67.80+

Type II censoring has the significant advantage that an experimenter knows in advance how 
many failure times the experiment will yield, which helps enormously when planning tests 
with an adequate level of statistical precision. However, the experimental duration is not 
known precisely in advance, and it is possible for an experiment to continue for long periods 
until r  failures are observed.

We aim to gain more insight into the roles of censoring number r and sample size n in 
a Type II censoring setting. In this example, we may wish to assess the difference between 
censoring at r =  8 and r = 16. For r = 8, testing stops after 51.84 million revolutions,
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while, with r =  16, we would need to wait roughly 30 million revolutions longer. We can 
also assess the changes due to waiting for the final few failures, by taking r =  20, when 
we intuitively expect estimates to be more consistent with final values than with r = 8 or 
16. More generally, we can consider the precision in using a Type II censored estimate as 
an estimate to its complete counterpart. This approach will require an assessment of the 
relationship between interim and final estimates.

In our simulation experiments, we censor the data at various proportions of the sample 
size, typically taking r =  0.2n, 0.4n, 0.6n, 0.8n, l.On, so that the last case corresponds to a 
complete sample. In practice, however, factors such as the cost of testing units, the precision 
required and the value of saving time would be important in deciding the best choice for 
the sampling plan; this will be explored in further detail elsewhere.

The above outline indicates that, in Type II censored sampling, the data arrives al­
ready in a naturally ordered way due to the method of experimentation. Hence, it is now 
appropriate to review briefly some properties of order statistics.

1.5 Properties o f Order Statistics

The theory of order statistics is well-established, but known to be analytically complicated, 
chiefly because the probability density functions of order statistics contain both the proba­
bility density and powers of cumulative distribution functions for the underlying population. 
Thus, relatively basic theoretical properties of order statistics, such as their expectations 
and joint expectations, can involve integrals of considerable complexity, even for well-known 
and widely-used lifetime models such as the Weibull and Burr distributions. David &; Na- 
garaja (2003) is a standard reference for the theory of order statistics; we also note the 
two volumes by Balakrishnan & Rao (1998a,b), the first of which focuses on theory and 
methods, while the second one deals primarily with applications.

1.5.1 N o ta tio n  and B asic  P ro p erties

Let X  be a continuous random variable with probability distribution F  and probability 
density function / .  Suppose that a random sample X\,  X 2 , . . . ,  X n from this distribution is 
put in ascending order, and the re-ordered sample denoted (in a standard way) as

A l :n ^  A 2:n ^  A n:n.

That is, X i :n is the smallest sample value, X 2 :n is the next smallest, and so on. The set of
these ordered quantities is referred to as the order statistics of this sample with size n. For
a single order statistic Xi:n (1 < i < n), its cdf is given by

*w (*) =  E  ( 1 )  M * )] ' I1 -  W " '  . (1-39)
j —i ' '
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where the range of Xi:n is that of X .  Then, differentiating (1.39) wrt x  yields the pdf of 
Xi:n as

/(<) W  =  Ci:nf(x) [ F ^ f - 1 [1 -  FC x)]"-', (1.40)

where we write
a . =  a- = „ ^ - l ' \ = / nY

" (n —«)!(» — 1)! \ i  —1/  \ i )

From (1.40), we see that the probability of event x < Xi:n < x  + A x  can also be found from 
the probability that, of the n values X\ ,  X 2 , . . . ,  X n, (i — 1) of the Xi  are less than x , one
Xi  is in (x, x  +  Ax)  and (n — i) of the Xi  are greater than x  +  Ax.

The formulae are greatly simplified when we consider the cdf and pdf of X\.n\ here, we 
obtain, respectively,

F(1)(*) =  l - [ 1 - F ( * ) ] " ,  (1.41)

and
/(I)0*0 = n[ 1 -  F(x)]n~1 f ix ) .  (1.42)

It is also known that, if X \ , X 2 , . . . , X n be independent and identically distributed contin­
uous random variables from any member of the exponential family, then X i :n will follow 
the distribution at which Xi  are taken. This is because both F  and /  have the exponential 
function, and hence the algebra simplifies; see Patel et al. (1976). For instance, when X  
follows the exponential, Weibull, Burr and Pareto distributions, (1.41) becomes

(1.43a)

# ) " } ,  (143b,

(1.43c) 

(1.43d)

in turn; that is, the same distribution, but with at least one different parameter, as follows:

X x1:n
Exponential 9 9* = 9/n
Weibull W 9* =  9/ri$ ,(3
Burr a , r a* = an, t
Pareto a, k a* = an, k

The joint distributions of order statistics can be similarly derived, although naturally 
more complicated. For x < y, the joint cdf of X i :n and X j :n (1 < i < j  < n) is

E  E  r!(s _  r)!(n — s)i [F (x )r "  F ( x ) r  ̂  I1 "  ' (L44)s=j r=i ' '

{ U X  'I f X  'I

— 9~ j  =  ^  ~  6X^  I  ~G*)  ’

Weibull : 1 — exp n ( ^ j  |  =  1 — exp (

Burr : 1 -  (1 +  x T)~an = 1 -  (1 +  x r ) - Q* ,

f k Y n 1 ( kPareto : 1 — [ — ) =  1 — I —
x J \ x
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Also, for x  > y, the inequality X j :n < y  implies X i :n < x  so that 

If we extend the definition of Cj:n to

n!
°i,r.n ^  _  1)|(n — j)V

then the joint pdf of X i:n and X j :n may be written as

f(ij) (*> y ) =  Cij,„ [^(x)] '-1 [F(y) -  [1 -  F(y)]n~1 }(x)J{y)  (1.45)

for x < y, as obtained from (1.44) by differentiation.

1.5.2 M om en ts and  P ro d u ct M om en ts

In the general continuous case, the single moment of Xi:n (1 < i < n) is

E [x ln\ = f  xpf(i)(x)dx = a,n f  xpf(x )  [F(^)]l_1 [1 -  F(x)]n~l dx, (1.46)
J  X J  X

while the product moment o i X i :n and X j :n (1 < i < j  < n), E  Xf.nXj.nj , is defined as 

[  [  xpyqf (iJ)(x,y)dxdy
Jy  Jx<y

=  a J:n f f  x'’y^[F(x)\i- l { F ( y ) - F ( x ) r i- 1[ l - F ( y ) ] n^  }{x)f{y)dxdy(lA7) 
Jy  Jx<y

As with the distribution of X ,  we can use moments and product moments to compute 
summaries of the distribution and joint distribution of order statistics, as required. For 
instance, the covariance of Xi:n and X j :n is simply

Cov(Xi:n, X j :n) =  E [Xi:nX j :n] — E  [Xj:n] E  .

1.5.3 R ecurrence R ela tio n s for M om en ts and  P ro d u ct M om ents

Expectations and joint expectations of order statistics can be derived explicitly in some 
distributions such as exponential and Pareto, but need to be computed by numerical meth­
ods in most other models. Otherwise, one may use the recurrence relations between the 
moments of order statistics, chiefly to cut down the number of independent calculations 
required when evaluating an expectation. David & Nagaraja (2003) and Balakrishnan & 
Rao (1998a) provide several recursive relations and identities satisfied by the moments of 
order statistics from some specific continuous distributions, wherein the interrelationships 
between many of these results are presented. In general, for an arbitrary function g of a



1.6. NUMERICAL CONSIDERATIONS 25

single order statistic, we have

(n -  i)E [g (X i:n)] +  iE  [g (X i+1:n)] =  n E  [g (Xi:n_ i)] , (1.48)

for 1 < i < n — 1, linking the expectations of order statistics from neighbouring sample sizes. 
As we have seen in (1.41) and (1.42), computation can be greatly simplified if we could 
express the moments of Xi-n in terms of the simpler moments of the smallest in samples of 
1,2, . . .  , i for which the properties and results of X \ :n are a lot more straightforward than 
the other order statistics. By repeated use of (1.48), Watkins &; John (2006) obtained an 
expression of the expectation of g ( X i :n) in terms of the first order statistic in various sample 
sizes; we have

E \g (At,)] =  E  ( - i r ^ A )  G 3 )E  [g (*!:„+!-;)] • (1.49)
■ 3=1

As a result, we can exploit the connection between the distribution of X \ :n and the under­
lying distribution, as illustrated in (1.43).

Similarly, for joint order statistics we have

(i -  1 )E[g (Xi:n) h(Xj:n)\ = nE[g (Ai_1:n_i) h ( X j - lvn- i)] -  (j -  i)E[g (*<_1:n) h(Xj:n)\

- ( n  -  j  +  1 )E[g (Xi_1:n) h ( X j - i :n)\ (1.50)

where 2 < i < j  < n and g, h are arbitrary functions. Then, using this, we may state the
joint expectation of g (Xi:n) and h(X j:n) in terms of the first order statistic with the j th in
different sample sizes (see John, 2003)

E[g ( X i :n) h ( X j :n)\ — ^2 ^2
U  - 1 -  L) 1 s=l t=0

( - l )*+t 1(n+t—j)l(s+j—i—2)\ 
f!(n— t—s)!(s—l)!(n+i+s—i)!

(A ^l:n—i + s + t )  ^ ( A j _ i - |- s : n _i-(-s + t ) ]
. (1.51)

We note that this important result is independent of the underlying distribution.
It should be noted that results for higher order moments are possible; see, for example, 

Chapter 2 in Balakrishnan Sz Rao (1998b), for recurrence relations satisfied by the triple 
and quadruple moments of order statistics from the standard exponential distribution.

1.6 Num erical Considerations

In order to validate theoretical results developed, this thesis will rely heavily on computing 
software. One particular instance is to obtain, by running simulations, a sampling distrib­
ution of maximum likelihood estimator to check that asymptotic Normality holds for large 
sample sizes, but also to assess the extent to which asymptotic results apply in relatively 
small samples. Therefore, it will be of particular interest to consider various computational 
strategies for evaluating these results for specific values of sample size (choosing a range 
of sample sizes likely to be encountered in practice, but also assessing agreement with as­
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ymptotic formulae), and of a wide range of censoring levels and representative distribution 
parameter values.

Throughout this thesis, we will use Mathematica (Wolfram, 1999) for theoretical eval­
uations, and the standard statistical package SAS (SAS, 2004) for simulated counterparts. 
We also use Microsoft Excel and SPSS for simpler calculations and graphs.

1.6.1 D a ta  S im u lation

We often require to simulate data in order to validate the theoretical expressions. In gen­
eral, if u represents an observation from a uniform distribution in (0, 1), then a simulated 
observation x  from a distribution with cdf F  is given by

x = F ~ l (u);

this is known as the inverse transformation method. We remark that x  is effectively the 
uth quantile function, and that the inverse transform method works best if the distribution 
has a closed form cdf. Therefore, to simulate a set of data from an exponential distribution 
with specified parameter 9, we use (1.28) and calculate

x = — 01n(l — u),

while, for the Weibull distribution, we employ (1.31) and compute

x  — ${— ln( l  — u)}0 ,

and, for the Burr distribution, we have, from (1.34),

x  = |( 1  — u)- « — 1 j T .

In SAS, we generate independent and identically distributed uniform (0 ,1) random vari- 
ates using the function ranuni and then find the corresponding x values from the above 
formulae, though one may also employ ranexp function to generate an exponential random 
value. We also generally take the number of replications, N,  to be 104, so that inferences on 
the tails of a particular distribution are based on an acceptable number (> 100) of replicated 
values. This value of N  generally provides a reliable representation of the distribution under 
consideration, and, perhaps importantly, is also feasible in term of computational times in 
SAS.

1.6.2 C om p u ter  G en era tion  o f  O rder S ta tis tic s

When considering censored sampling, the ordered observations are needed. If Ui, C/2, . . . ,  Un 
denote a random sample from the uniform (0, 1) distribution and U\:n < U<i-.n < Un:n
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are the matching order statistics, then, using the inverse transformation method, we obtain 
(i = l , 2, . . . , n )

=  F - 1 (Ui,n),

represent the order statistics from the distribution with cdf F. There is a direct correspon­
dence between the order statistics of Xi ,  X 2 , . . . ,  X n and the order statistics of the associated 
uniform sample t/i, C/2, . . . ,  Un. Again, in SAS, we use the sort procedure (proc so rt) , or 
simply s o r t  if within the IML procedure (proc IML) to obtain the desired ordered sample.

1.6 .3  N u m erica l Itera tive  M eth od s for S o lv in g  E quations

When the maximum likelihood method is employed to estimate parameters, we will need to 
find the roots of ^ , where I* is the Type II censored profile log-likelihood function; in most 
cases, only limited analytical progress is possible, so that a numerical procedure must be 
employed. We generally locate the roots of using the Newton-Raphson computational 
procedure. This method is well-known for its quick convergence, and, again importantly, is 
eminently suitable for implementation in SAS; see Nelson (1982) for more details. Given 
an initial value 7rf°l, a sequence of (generally) better approximations can be obtained by the 
iterative process

d£ I
.̂[i+l] _  ft\j] _  dir I at

d̂ l* . 
d/K I at 7T=7T̂

We generally stop the iterative process when

dl* |
dir lat 7r=7r̂

/  cpi* | 7
V dir* lat 7r=7r[J]

<  10'

this criterion is deemed equivalent to regarding the maximum likelihood iterations as con­
verging.

1.7 Outline o f Future Chapters

In this chapter, we have defined all relevant mathematical functions required in reliability 
analysis, and presented fundamental results for specific reliability distributions that will be 
the focus of our work, namely, the exponential, Weibull and Burr distributions. We have 
also discussed some practical considerations of and various forms of censoring regimes used 
to overcome difficulties in industrial life-testing. We then summarised the theory of order 
statistics, and concluded by outlining some numerical considerations.

In particular, we have used the ball bearings data to distinguish between Type II and 
Type I censoring, but also to illustrate various practically-based problems, which form the 
motivation behind our work. As noted in Section 1.4.3, we are interested at the link between 
a Type II censored estimate, obtained at the rth failure, and the corresponding complete
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estimate, obtained when all items have failed. We proceed on the basis of a parametric 
modelling of data, and assume that we have identified a distribution for the data, so that 
we estimate the parameters and related quantities of that distribution. For example, using 
the ball bearings data again, we obtain the following maximum likelihood estimates of 9, (3 
and Ro.i (see Section 2.3 for further details on maximum likelihood estimation with Type II 
censored Weibull data) under Weibull analysis, when the data is subject to Type II censoring 
at the rth failure.

r 8 12 16 20 23
9r

Pr
-^0.1 ,r

67.6415
3.2280

33.6860

75.2168
2.6241

31.9063

76.6960
2.4695

30.8329

78.9674
2.3539

30.3563

81.8783
2.1021

28.0694

In this example, we may consider the extent to which the final estimates (of either para­
meters or percentile Ro.i) are consistent with earlier estimates, or the rate at which interim 
estimates converge on their final values; more generally, we can determine the precision 
with which we can make statements on final estimates, based on interim estimates. This 
approach requires an assessment of the extent to which 9r, (3r and Ro.i.r can, respectively, 
be regarded as a reliable guide to 9n, (3n and .Bo.i.n, and hence we study the relationship 
between final and interim estimates.

As already noted, Chapter 2 considers in further details the method of maximum like­
lihood to obtain estimates of the model parameters and the percentile function for the 
aforementioned lifetime distributions under Type II censoring, and derives the expected 
Fisher information matrix analytically. This, in turn, yields asymptotically valid variances 
and covariances of the maximum likelihood estimators, and their large-sample properties.

In this thesis, we will consider three distinct problems regarding the maximum likelihood 
estimation under a Type II censoring regime:

• Asymptotic Normality of maximum likelihood estimators is well known, for example, 
see Cox & Hinkley (1974) and Bain & Engelhardt (1991). This large sample result is 
often used in making inferences from small to moderate samples, despite the drawback 
that it is not always accurate with such sample sizes. Chapter 3 assesses, by means 
of a detailed simulation study, the extent to which the assumption of Normality for 
parameters and Bo.i holds for finite Type II censored samples, and the role of censoring 
in the convergence towards Normality.

• Although the large-sample result is, perhaps surprisingly, rather robust in some senses 
- for instance, the distribution of the maximum likelihood estimator of Bo i converges 
to Normality more rapidly than those of the model parameters - it is also the case that 
the large-sample result can be shown to be unrealistic in samples of small to moderate 
size, such as in the ball bearings data with n = 23 failure times. Hence, we also discuss 
in Chapter 3 the use of relative likelihood function and related contour plots as an
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alternative for assessing the precision in estimates of parameters in relatively small or 
highly censored samples.

• We then move on to establish a method to measure the precision in using a Type II 
censored analysis as a guide to the final analysis. Since the analysis of reliability of 
Type II censored data typically requires single and joint expectations of order sta­
tistics, Chapter 4 computes all necessary moments and product moments for various 
functions of order statistics; this involves a considerable amount of algebra. Chap­
ter 5 then considers the correlations between final and interim estimates of model 
parameters and Ro.i; for large samples, this is then transformed into a study of the 
correlations of score functions. These results, in turn, give asymptotic 95% confidence 
limits for the final estimate given the interim estimate, which we will regard as a mea­
sure of precision. We illustrate these results using published data sets and simulation 
experiments, from which some practical implications are drawn.

Lastly, Chapter 6 presents summaries and conclusions, together with a brief outline of 
some possible future research.



Chapter 2

M axim um  Likelihood Estim ation  
B ased on Type II Censored  
Sam ples

2.1 Introduction

As outlined above, we suppose we have identified a distribution for the lifetimes, so that it 
remains to estimate the parameters of that distribution. The method of maximum likeli­
hood has theoretical support (see Crowder et al, 1991, for instance); moreover, computer 
programmes for the appropriate calculations are widely available, for example, for imple­
menting a numerical search for the root of an equation, estimating the model parameters 
by the method of maximum likelihood is also to be recommended on practical grounds. 
Maximum likelihood estimation (hereafter abbreviated as ML estimation) for lifetime mod­
els considered in Chapter 1 is widely discussed throughout the reliability literature; for 
instance, see Lawless (1982), Bain & Engelhardt (1991), and Cohen (1991), though dis­
cussion on the Burr distribution is relatively limited. However, these references focus on 
the theoretical maximum likelihood equations, with few details on computation or further 
interpretation. We provide formulae for the elements of the expected Fisher information 
(hereafter abbreviated to EFI) matrix; in particular, analytical expressions for the elements 
of this matrix for the Burr distribution with Type II censored data is obtained. This allows 
us to write down the asymptotic covariance matrix of the maximum likelihood estimators 
(from now on, abbreviated to MLEs), and hence, the confidence intervals for the MLEs 
based on their asymptotic Normality. In addition to estimating the model parameters, it 
is particularly relevant in practical applications to make inferences on either the running 
time for the experiment or some percentile of lifetimes based on Type II censored samples; 
for example, estimating the 10t/l percentile of failure times. Some discussion on percentile 
estimation is given in Meeker & Nelson (1974, 1977), where the emphasis concentrated on 
singly censored Weibull data. As in Chua & Watkins (2008a,b), we extend some recent
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work (Chua & Watkins, 2007) on the Weibull case to the Burr distribution, and consider 
the asymptotic distribution of the estimator of -Bo.i- Results under complete sampling are 
also presented as a special case of Type II censoring.

We begin with a brief discussion on likelihood, and state the asymptotic properties 
of both MLE and score function. In Section 2.2, we consider the exponential model, for 
which most results can be expressed explicitly. Then, we extend the discussion to the 
Weibull (Section 2.3) and Burr (Section 2.4) distributions, where the extra parameter makes 
inference more involved. While there are no analytical expressions for MLEs of parameters, 
we obtain profile likelihood functions and maximise these instead. We illustrate Type II 
censoring using published data sets, and also present results from simulation experiments 
to assess the extent to which asymptotic results apply in samples of finite size.

2.1.1 S ta tis tica l B ackground

We now provide further details of the reliability setting: when n (> 0) independent items 
are put on a life test at the same time, and the experiment is terminated after some (pre­
specified) number r (1 < r < n, although we are usually interested in r < n) of failures, 
the data available for analysis is said to be Type II censored, and comprises the r order 
statistics X \ :n < X̂ -.n <  * < X r:n, and n — r lifetimes censored at X r:n. The distinction 
between Type II censoring and complete sampling decreases as r —> n, and vanishes when 
r = n. Ignoring the ordering constant, the likelihood of a Type II singly right censored 
sample is

Lr =  (  f t  /(*«» ; *0 ) {  f t  [1 -  F(Xi:n, *)} )  , (2.1)
U=1 J u = r + l  J

and the corresponding log-likelihood is

lr = £  In ?r) +  (n -  r ) In [1 -  F ( X r:n; n )] . (2.2)
i=1

The principle of ML estimation, as suggested by its name, is to select as an estimate of 7T
the value for which the observed sample would have been most likely to occur. Assuming
that the partial derivatives of lr exist, then the maximising value is the solution of the 
simultaneous equations (i = 1, . . . ,  k)

u - = ^k = 0^r,z — c\ —U'Ki

where U r =  (C/r>i , . . . ,  Ur>k)f is the score function. We denote the MLE by n r, in which r 
represents the censoring number.

The asymptotic theory of maximum likelihood (see, for example, Cox & Hinkley, 1974) 
implies that, in general, 7rr is asymptotically Normally distributed with mean vector 7T and 
covariance matrix equal to the inverse of the EFI matrix A r , which is symmetric, with
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(i, j ) th entry
E  \ & lr

[ d'Kid'K j j
for i , j  = 1 , . . . ,  k, so that we need only give the lower triangle of elements. This, in turn, 
yields the approximate confidence limits for the parameter 7r; for instance, the 100 (1 — A) % 
confidence intervals for 7r* is

7Ti±ZX/2y /Var  (7Ti),

where Zx/ 2  is the upper 100 (l — percentage point of the standard Normal distribution. 
Where the true parameters are unknown (as in practice, although not in simulation exper­
iments), we evaluate these limits by replacing 7T by n r. We have also implicitly introduced 
the observed Fisher information matrix, J r , given by

d2L
d'Kid'Kj

In addition, the EFI matrix also appears in the asymptotic distribution of the score function; 
since lr involves Ya =:1 In f{Xi-n\k ) ,  U r is a sum of independent and identically distributed 
random variables, and, under mild conditions (for example, see Section 9.2 in Cox & Hinkley, 
1974 and Bain k, Engelhardt, 1991), is asymptotically Normally distributed with mean 0 
and covariance matrix A r .

For percentile estimation, we will consider q =  0.1 throughout; the details and principles 
for other values of q are similar. In general, Bo.i is a non-linear function of 7T. Consequently, 
we consider the Taylor series of I?o.i about the true parameter 7T up to its first-order deriv­
ative to estimate Ro.ii this can be written as

with which (i = 1, . . . ,  k)

§o.i,r ^  B 0.i +  b'n (trr -  7r ) , (2.3)

dBo.i
bir —

d K i

We see that Bo.i.r is now a linear combination of (7Tr — 7r), and hence is asymptotically 
Normal with mean

E -  B q,

as, for large samples, E  [irr — 7r] =  0, and variance

Var  ^Ro.i.r) -  b^Var  ( k t  -  n)  b*. =  b^A"1̂ .  (2.4)

Approximate 100 (1 — A) % confidence intervals for Bo.i then follow immediately.
For complete samples, we can drop the subscript n; for instance, we write L =  Ln.
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2.2 ML Estim ation in the Exponential D istribution

From (2.1), the likelihood function for Type II censored data drawn from the exponential 
distribution is given by

-- n* lexp{_̂ p} exp{~̂ ir} = e  r e x p { - 0

in which
Sr — Xim “h (jl ’̂)Xr;n,

i= 1

so that the log-likelihood function can be expressed as

lr = —r In 6 — 6~lSr,

with derivative

(2.5)

(2 .6)

(2.7)

Sr is sometimes referred to as “the total sample time on test” . Hence, on equating (2.6) to 
zero, the MLE of 9 is

2.2.1 R egu larity  an d  E F I
r

Following Bain & Engelhardt (1991), we can write Sr = Y  Wi, where
7=1

(2 .8)

W\  =  n X i :n, and Wi = (n -  i +  1 )(Xi:n -  X { - i :n), (2.9)

for i = 2 , . . . ,  r. The lack-of-memory property, previously mentioned in Section 1.3.2.1, indi­
cates that the Wi (i > 1) are independent variables following (1.27); we then have E  [5r] =  rO 
and Var  (Sr) = rO2, and hence

Var

'[«r] -

(?r) =

E [Sr
= 0,

Var (Sr) 9:

It follows that (2.8) is an unbiased estimator of 9. Moreover, we see that

dh

(2.10)

E dO = - r e - 1 + e~l E  [sr] =  o,

as expected from the regularity consideration. The second derivative of (2.6) is

(Pi,
dff

j  = r9~2 -  29~3Sr,
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so that the EFI is given by

E d2l
d94

= —r9~2 +  29~3E  [Sr] =  rQ-

ln particular, 9r = Sr/ r  is the minimum variance unbiased estimator of 9, since

Var (?P) -= E ( f l
d94

- l

As previously noted, we are interested at the estimation of the 10th percentile function 
with Type II censored data; since (1.29) indicates that Bo.i is linearly related 9, we obtain 
its MLE as

^O.i.r =  0 r  ( - I n 0.9), (2 .11)

with mean

and variance equals to

E 5o.i,r = 9  In 0.9),

Var  (i?o.i,r) =  ( - In 0.9)2 Var  =
2 n2( - i n  0.9 y e

2.2 .2  A sy m p to tic  P ro p erties  o f  th e  M LEs

The asymptotic Normality of MLEs implies that 9 r  and B o .i ,r  can, for large sample sizes, 
be regarded as Normally distributed. We therefore have

9r ~  N  0, 91  
r

from which the 95% confidence intervals for 9 is

6r ±  1.969r_1/2. (2 .12)

Similarly, we see that

B o .i ,r  ~  N

which, in turn, gives the 95% limits of Bo.i as

9 2 (—In0.9)'

B 0.i ,r ±  1.960 ( - I n  0.9) r " 1/2. (2.13)
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2 .2 .3  C om p lete  S am p le

For later convenience, we briefly present some results under complete sampling, obtained 
simply by setting r  =  n. The likelihood here is

L = 9~n exp {— ,

from which the log-likelihood is

l = - n \ n 9 - 9 ~ 1S, (2.14)

with derivative
=  _„<?-!+  0 -2,S, (2.15)

so that the complete MLE of 9 is

? = * .n

Since E[S] = n9, the second derivative of (2.14) yields the EFI as n9~2. From (2.11), the 
complete MLE of Bo.i is

-§o.i =  0 (—ln0.9),

with the following characteristics:

E  [§0.i =0 ( - l nO . 9 )

and

Var  ( § 0.i) =
(—In 0.9) V

n
We note that Type II censored results are very similar to their complete counterparts; if 
n items are placed on test and first r failures are observed, it is clear that the statistical 
procedures based on this data are equivalent to those gained by placing n items on test and 
obtaining all n failures.

2 .2 .4  N u m erica l E xam p les  

E pstein’s Failure Tim es D ata

We use the failure times data from Table 1.1, modelled, as in Epstein (1960) and as re­
enforced in Figure 1.1, by the exponential distribution, to illustrate this experimental set­
up. If we had stopped the experiment at r = 40, then failure times after the 4:0th item are
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r 10 20 30 40 49
Xr;49 15.2 55.6 108.5 178.6 354.4
9r
sd(9r ) 
95% CIs

67.6000
21.3770

25.701,109.499

104.9000
23.4564

58.926,150.874

114.0100
20.8153

73.212,154.808

112.1150
17.7269

77.370,146.860

104.8898
14.9843

75.521,134.259
■®0.1,r
8d(Bo.ltr) 
95% CIs

7.1224
2.2523

2.708,11.537

11.0523
2.4714

6.208,15.896

12.0122
2.1931

7.714,16.311

11.8125
1.8677

8.152,15.473

11.0512
1.5787

7.957,14.146

Table 2.1: Summaries of the exponential MLEs calculated at various r for Epstein’s failure 
times data.

censored at the value of X^q.^q =  178.6, and we would obtain the following data set

1.2 2.2 4.9 5.0 6.8 7.0 12.1 13.7 15.1 15.2
23.9 24.3 25.1 35.8 38.9 47.9 48.4 49.3 53.2 55.6
62.7 72.4 73.6 76.8 83.8 95.1 97.9 99.6 102.8 108.5

128.7 133.6 144.1 147.6 150.6 151.6 152.6 164.2 166.8 178.6
178.6+ 178.6+ 178.6+ 178.6+ 178.6+ 178.6+ 178.6+ 178.6+ 178.6+

with #40 found to be 112.1150 and 7?o.i,40 =  11.8125, and via (2.12) and (2.13), we obtain 
the approximate 95% confidence intervals for 9 and Ro.i to be

112.1150 ±  1.96 x 112.1150 x 40“ 1/2 =  (77.370,146.860)

and
11.8125±1.96 x 112.1150 x ( - I n 0.9) x 40“ 1/2 =  (8.152,15.473).

More generally, Table 2.1 presents summaries of the ML estimates of 9 and Bo.i when the 
data is subject to Type II censoring at the rth failure; we see that the interim estimates 9r 
and i?o.i,r increase sharply when r doubles from 10 to 20, and then gradually converge to 
their complete counterparts. There are also some increases in estimated standard deviations 
at r = 20 (from r =  10), reflecting the consequence of swapping 9 by a large estimate #20 
in (2.10). Otherwise, the standard deviation is generally decreasing with r, as expected. It 
should be noted that #20 is the closest to 0, but also has the largest standard deviation. 
One obvious point to consider is can we safely regard #20 as a reliable guide to 91 If so, 
this indicates that the experiment time would be cut from 354.4 to 55.6, an approximate 
84% reduction in time. This gives us some motivation to investigate the extent to which 9r 
provides a guide to 9. We have used asymptotic Normality of MLE to compute the approx­
imate 95% confidence intervals for 9, but we will also need to consider if such calculations 
are appropriate in a sample as small as n =  49; this will be further considered in Chapter 3.
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Figure 2.1: Pdf of the exponential distribution for 9 = 100.

Simulations

We now illustrate some results obtained from simulation experiments; this involves speci­
fying the parameter value, sample size and censoring level, and then calculating the MLE 
for each sample. Here, we assume 9 =  100, and, for each combination of r  and n, replicate 
104 sets of data; this yields 104 estimates from the sampling distribution of 9r. Figure 2.1 
shows the exponential pdf for such simulation with 9 — 100, while Table 2.2 summarises 
the observed means for 9r , where we see good agreement between 9r and its true value, 
even for small n and r. In Table 2.3, we also noted good agreement between theoretical and 
observed standard deviations, with decreasing values when r  and n increase. This is due to 
the fact high censoring levels imply relatively more complete failure times being observed, 
which provide more information about the lifetime distribution and hence a more precise 
estimation of 9. Moreover, it is of interest to look at the scatter plots of final estimates 
against interim estimates. Figure 2.2 (when n  =  50) has wider scales than Figure 2.3 (when 
n =  1000), and both seem to suggest a link between 9 and 9r. The evidence becomes clearer 
as r tends to n, and we will quantify the correlation between 9 and 9r, and hence determine 
the extent to which 9r can be regarded as a reliable guide to 9.

Since J5q.i is a linear function of 9 in the exponential distribution, the study of the
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r n
25 50 100 1000 2500 5000

0.2 n 100.0000 100.1681 99.6900 100.0394 99.9731 99.9901
0.4n 99.7516 100.0787 99.9979 100.0798 99.9657 99.9561
0.6n 99.8007 99.9753 100.1715 100.0674 99.9816 99.9742
0.8n 99.8502 100.0242 100.2244 100.0558 99.9769 99.9704
l.On 99.9283 100.1135 100.2409 100.0557 99.9924 99.9737

Table 2.2: Simulated means of 9 r  for various r, n, for exponential data generated with 
9 =  100.

r n
25 50 100 1000 2500 5000

0.2 n 44.7214
45.5428

31.6228
31.7004

22.3607
22.2567

7.0711
7.0799

4.4721
4.4733

3.1623
3.2014

0.4n 31.6228
32.0108

22.3607
22.4806

15.8114
15.8449

5.0000
5.0272

3.1623
3.1772

2.2361
2.2415

0.6n 25.8199
25.9997

18.2574
18.4661

12.9099
12.9659

4.0825
4.1167

2.5820
2.5642

1.8257
1.8266

0.8n 22.3607
22.3636

15.8114
16.1072

11.1803
11.2422

3.5355
3.5559

2.2361
2.2304

1.5811
1.5835

l.On 20.0000
20.0695

14.1421
14.4386

10.0000
10.0839

3.1623
3.1786

2.0000
1.9880

1.4142
1.4244

Table 2.3: Theoretical (upper) and simulated (lower) standard deviations of 9 r for various 
r, n, for exponential data generated with 9  = 100.

properties of Bo.i,r, whose true value is given by

100 ( - I n  0.9) =  10.5361,

is essentially covered by the above study on 9 . We display equivalent statistics for B o .i ,r

in Tables 2.4 and 2.5, together with scatter plots given in Figures 2.4 (n =  50) and 2.5
(n =  1000).

r n
25 50 100 1000 2500 5000

0.2 n 10.5361 10.5538 10.5034 10.5402 10.5332 10.5350
0.4n 10.5099 10.5443 10.5358 10.5445 10.5324 10.5314
0.6n 10.5150 10.5335 10.5541 10.5432 10.5341 10.5333
0.8n 10.5203 10.5386 10.5597 10.5419 10.5336 10.5329
l.On 10.5285 10.5480 10.5614 10.5419 10.5352 10.5333

Table 2.4: Simulated means of Bo.i,r for various r, n, for exponential data generated with 
9  =  100.
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r n
25 50 100 1000 2500 5000

0.2 n 4.7119
4.7984

3.3318
3.3400

2.3559
2.3450

0.7450
0.7459

0.4712
0.4713

0.3332
0.3373

0.4n 3.3318
3.3727

2.3559
2.3686

1.6659
1.6694

0.5268
0.5297

0.3332
0.3347

0.2356
0.2362

0.6n 2.7204
2.7393

1.9236
1.9456

1.3602
1.3661

0.4301
0.4337

0.2720
0.2702

0.1924
0.1925

0.8n 2.3559
2.3562

1.6659
1.6971

1.1780
1.1845

0.3725
0.3746

0.2356
0.2350

0.1666
0.1668

l.On 2.1072
2.1145

1.4900
1.5213

1.0536
1.0624

0.3332
0.3349

0.2107
0.2095

0.1490
0.1501

Table 2.5: Theoretical (upper) and simulated (lower) standard deviations of Bo.i,r for various 
r, n, for exponential data generated with 9 =  100.

2.3 ML Estim ation in the W eibull D istribution

From a computational point of view, the Weibull distribution is particularly appealing, since 
its cdf can be expressed explicitly as a simple function of the random variable. For accounts 
on the ML estimation for the Weibull parameters, see, for instance, Lawless (1982) and 
Cohen (1991), for both complete and censored samples. Using (2.1), the likelihood function 
for data drawn from a Weibull distribution is

ni=1

If we use subscripts /  and c to indicate failed and censored items, and let, respectively,

S fj( k )  = £ X £ „ ( ln * i  :n)J ,
i=1

ScJ(k) = ( n - r ) X ^ :n(lnX r..ny ,

for real k > 0 and integer j  > 0, then we have

dS*j (k )
dk — S*,j +1 (^) }

for * =  /  or c, and the log-likelihood function may be expressed as

lr = r  In 0  -  r/3 In 6 +  (/J -  1) SfA (0) -  (T*5 {Sfi0 {0) + Scfi 03)}. (2.16)

The MLEs can be obtained by maximising lr , or equivalently, by finding the roots of the 
score functions, based on the two partial derivatives given by

^  =  - r p e - 1 +  p o - e - 1 {% , 08) +  &,o (8)}, (2.17)
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and

=  r / r 1 -  r  In 9 + S ,,x (0) -  tr+ {S ,A (P) +  5*1 (P) -  (In 9) [5/j0 (p) + Sc>0 (« ]} . (2.18)

Unlike exponential model, there are no analytical expressions for these roots. However, we 
note that if we equate (2.17) to zero, then 6r can be expressed in terms of the data and the 
shape parameter /3; we have

Sf,0 {p) + scfi(pyl
(2.19)

Inserting this into (2.16) yields a profile log-likelihood given by

I* = r In/? +  (ft — 1) S f}i (0) — r  In [Sf}o (/3) +  Sc,o (/?)] +  r (ln r — 1), (2.20)

and a profile score function

dl* o -l  , o /n\ r f ^ /,i (P) +  Sc,i (P) \  ,001v
~dp ~  + S f A 0 ) - r \ s M P )  + S c A P ) ) -  (2'21)

Since no closed form expression for /3r exists, a numerical procedure must be used to locate 
the root of (2.21). As noted in Section 1.6.3, we use the Newton-Raphson approach, which 
requires the second-order derivative

d?l*r _  r/?-2 r \ Sf,2 (P )+ S c,2(P) l 'S f,1 (P )+ S c,1 (P)
dp2 ' \S f,o(P) + Sc,o(P) \ S , f i (P) + Sc,o(P)

and an initial value. This starting value should be close to (3r , otherwise the Newton- 
Raphson process may fail to converge. Farnum &; Booth (1997) suggest

as a quick initial approximation to /?, where

V = In X r:n -  r~ lSn  (0)

may be interpreted as a measure of variation in data. With /3r thus determined, 6r is 
estimated from (2.19) with f3 = fir . We will also require the EFI matrix of the Weibull
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MLEs, which is based on second-order partial derivatives of (2.16), as listed below: 

d2L
302

d2L

=  r/30-2 -  /3(/3 +  l ) ^ -2 {S/,0  (0) +  Sc,o (/?)}, 

d2lr

(2.22)

303/3 3/300

d2l

=  —r8~l +  0- '3"1 I  ^  ^ ln ['S'/,o (^) +  -S'c.o (/3)] \   ̂ j
1 +/3[S7>i(/3) +  Sc,1 (/3)] / ’

=  —r/3-2 — 0 (ln0)2 [5/iO(/3) +  5c,o(S)]
S/32 ’" ' (_ - 2  (ln 0) [SA1 (/?) +  5C,! OS)] +  S f ,2 (/3) +  Sc,2 (/3)

2.3.1 R egu larity  and E FI M atrix

.(2.24)

To consider the regularity of the log-likelihood function, we take expectations of the first- 
and second-order partial derivatives of (2.16). The form of these derivatives implies that 
we will need results on the expectation of various functions g {X i :n), on the sum of these 
expectations, and, in particular, on expectations of the following expression:

 ̂ 9 (X i :n) ̂ (2.25)y: 9 (X i :n)  ̂+  (n r)g (X r:n),
.*=1

where g (Xi:n) can be any of

X%',ii) \nXiin) Xim InXiiji) and Xim(\nXiuij .

Watkins & John (2006) outline a framework for deriving these expected values; the trans­
formation

Z = e (2.26)

links the Weibull pdf (1.30) to the standard negative exponential pdf, given by setting 
6 = 1 in (1.27). Then, using the fact that n Z \ :n follows the standard negative exponential 
distribution, Watkins k  John (2006) obtain, based on Watkins (1998), the following results:

E  [Zi:n] + { n - r ) E  [Zr:n] = r,
i=1

J2 E  [ln Zi:n] = - r {7  +  <f>̂) ,
4=1

E  [Zi,n In Z i:n] + (n -  r )E  [Zr:n ln Z r:n] = r (1  -  7  - f a ) ,
i=i

£  E  Zi,n (In Zi:n)*J +  (n -  r )E  Z r:n (ln Zr:nY \  = r j y  +  7  ̂ -  27 -  2(1 -  7) ^  +  <f)2 

where

* 1.  =  r -1 E ( - ir v , )  (";7 X) + 1 -  01*.4=1

7r

}•
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for k = 1,2, with the convention 0° =  1; see also Watkins (1998). It is then straightforward 
to see that

E is f ,i (0)] =  E  {hi0 +  /?_1£ [ln Z i:n]} =  r l n 0 - r /?_1 (7 +  0i) ,  
i=1

E  [Sf,o (P) + S c ,0 0?)] = ^ { E B  [Zi:n] + { n - r ) E  [ZT:n\ }  =  rt f’,

and

B [5/ ,i08) + 5c,108)] =  e ^ ] n 9 i £ E [ Z i m] +  ( n - r ) E[ Zr :n] \

-\-/3 ^9^ /  ^  E  [Ziin ln Zi:n] +  (71 — r)E [Zr:n ln r̂:n] 
lt=l

=  0^ [ r ln 0 +  r /?-1 (1 — 7 —0i)] ,

so that

and

E 01
09

= -r /39 -1 +  r/39~L = 0,-1

E
Olr
d(3

= r(3 1 — r ln 0  +  r ln 0  — r/3 1 (7 +  0i)

—9~P 19^ [r ln 9 +  r(3~l (1 — 7 — 0X)] — r9@ ln 9 j

also simplifies to 0, which confirms the known regularity of (2.16). For the expectations of 
the second-order partial derivatives in (2.22) to (2.24), Watkins h  John (2006) obtain

E
d2lr

E

_092
d2lr

E

090(3
02L

= —r(329~2,

=  r 0-1 {1 — 7 — 4>i\ ,

dP4
= —r(3-2 j y  +  (1 -  7 )2 -  2(1 -  7 )0 i +  021 5

these results yield the Type II censored EFI matrix as
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so that inverting this gives the asymptotic covariance matrix of ^9r , {3r ĵ as

A ” 1 =
Aed M  

AW A&/ l r *  / I f

6
r (n2 — 60i +  602)

/3 292 +  (1 -  7)2 -  2(1 -  7)0! +  02}

9{1 -  7 - 0 ! }
(2.28)

We can now compute the asymptotic properties of the 10th percentile function, defined 
at (1.32) as

Bo.! = 9 (— ln0.9)^ .

In contrast to the exponential distribution, consideration of Bo.i and its estimator here are 
more complicated, as we need to linearise the above expression. From (2.3), we can obtain 
the linear approximation

9r - 9  \

% - p  r

where
be
bp

aso-ide
dBp.i

_ / ( - I n 0.9)?
y — 9p~2 (— ln 0 .9 p  ln (— ln0.9)

Thus, on taking expectation, we have, for large samples,

E Bo.! +  bgE 9r — +  bpE — /?j — Bq.i,

and variance, from (2.4), given by

Var  (Bo.i>r)  ^  ( be bp ) A ^ 1 ( be ) =  f  +  2bpbpA$? + b ^ .

(2.29)

2.3 .2  A sy m p to tic  P rop erties  o f  th e  M LEs

Here we are interested in the asymptotic properties of 9r , (3r and From the asymptotic

Normality of MLE, (9r,Pr ĵ is bivariate Normal with mean (9, /3)1 and covariance matrix 
A " 1 from (2.28). Consequently, individual approximate 95% confidence intervals for 6 and 
P are, respectively,

?r ±  1 .9 6 0 4 “*,

and
3 r ±  1 .9 6 0 4 ^ .
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Since, asymptotically,

where the chi-square variate with 2 degrees of freedom, x h  equivalent to an exponential
variate with mean 2, Watkins (2004) illustrates that due to the convergence of observed and 
expected Fisher information matrices, an approximate 100 (1 — A) % confidence region for 
(9, fi) can be obtained by calculating the ellipse

/?,. hence in practice we use the estimates 9r and /3r , and the notation J r .

2 .3 .3  C om p lete  Sam ple

For later convenience, it is suitable to summarise here some results for the complete case; 
when all n items are observed to fail, we have r = n so that all the terms associated with 
subscript c will disappear from the above consideration. The complete likelihood function 
is given by

where J r is the observed Fisher information matrix. This result depends on unknown 9 and

from which its log-likelihood function is

I =  n ln (3 — n(3 ln 9 +  (f3 — 1) Si (0) — 9 13So (/?), (2.30)

where
Sj ( k ) = £ x ? ( l n X iy

and, similarly,

Sj+i(k)

As per previously, the relevant components of the score functions are

•jjj =  - n p d -1 +  /39~P~1So (0) (2.31)

and
At

^ 5  =  n/3-1 -  n in e  +  Sj (0) -  {Si (/?) -  (lnfl)S0 (/?)}. (2.32)
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Watkins (1998) computes expectations of second derivatives of (2.30) given by

=  n/3<r2 -/?(/3 +  l)S 0 (/?)>

- n e - 1 +  e -P -1 {(1 -  p  ln e)So 08) +  0Si  08)},

a2i 
as2

a2i a2i
aeap apae 

°  =  - n (8 - 2 -8 - ^ { ( ln 8 )25 o (8 )-2 1 n 8 5 1( «  +  52 (/3)},

to give the complete EFI matrix as

A =  (  A "  \  =  (  n^ 9 2 ^  (9
^ A ep App )  y  —n 9~ l {1  — 7 }  n / T 2 { ^  +  (1 -  7 ) 2}  J  '

We invert A to obtain the complete covariance matrix:

( A *  _ 6_ / r v { $  +  ( i - 7 )2}  \
\ A »  AM )  w r * ^  f l { 1 _ 7} 02 J (2-34)

and use this result to compute the variance of B0.1 from (2.4).

2 .3 .4  N u m erica l E xam p les  

Ball Bearings D ata

We can illustrate ML estimation of Weibull parameters using the classic ball bearings data 
from Table 1.2. Table 2.6 summarises the estimates calculated for various censoring num-

^  ^  1
bers, and we note that 6r, (3r and Bo.i.r =  @r (—In 0.9) ̂  converge on their complete values 
in upwards, downwards, and downwards directions respectively, as r approaches n =  23. 
Note also that (3r > 1 for all r considered; this indicates that the failure rate is increasing 
over time. For the estimated standard deviations, sd(6r) decreases as r rises but shows a 
steep increase from r = 20 to 23, in part due to the increase in 9 over #20- sd(f3r) decreases
consistently. In contrast, sd(Bo.i,r) increases from r = 8 to 12 and then reduces slightly.
Overall, in 0 ,/3, jBo.i, the percentages of change in the values of interim estimates for r == 8 
to 12 seem to be more significant than any other jump in r, although the jump sizes are 
not the same throughout. We recall from Figure 1.2 that the P-P plot for the uncensored 
ball bearings data based on Weibull with 9 = 81.8783 and /? =  2.1021 deviates from the 
straight line for data values around Xs:23 to -X"i6:23? but fits the line well at both ends. This 
might have some influence on the values of interim estimates we thus obtained, especially 
those calculated at r = 12 and 16. In addition, all interim 95% confidence limits appear to 
enclose their final estimates, showing consistency between interim and final results, but it 
remains to check if such calculations are appropriate for a sample of size n = 23; this will 
be discussed in more details in next chapter.
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r 8 12 16 20 23
X r : 2 3 51.84 67.80 84.12 105.84 173.40
9r
sd(9r) 
95% CIs

67.6415
9.6143

48.797,86.485

75.2168
8.9694

57.637,92.797

76.6960
7.8079

61.393,91.999

78.9674
7.5906

64.090,93.845

81.8783
8.5521

65.116,98.640
P r
s d $ r) 
95% CIs

3.2280
1.0378

1.194,5.262

2.6241
0.6797

1.292,3.956

2.4695
0.5382

1.415,3.524

2.3539
0.4381

1.495,3.213

2.1021
0.3417

1.432,2.772

sd(Bo.i,r) 
95% CIs

33.6860
5.8179

22.283,45.089

31.9063
6.6261

18.919,44.893

30.8329
6.5860

17.924,43.741

30.3563
6.5203

17.576,43.136

28.0694
6.4367

15.454,40.685

Table 2.6: Summaries of the Weibull MLEs calculated at various r  for the ball bearings 
data.

Sim ulations

The theoretical standard deviations obtained from the EFI matrix, see (2.28), need to 
checked against finite simulated samples to assure the suitability of the asymptotic approx­
imations. These checks should also be extended to the asymptotic Normal distribution of 
the MLEs, which we will study in the next chapter.

We assume an increasing hazard function (so > 1) since, as mostly encountered in 
practice, the electromechanical items are more likely to fail as time goes on. We gener­
ate Weibull data with 9 =  100, (3 =  2, and then compute the MLEs using the procedures 
described above. This is repeated 104 times to give 104 estimates from the sampling dis­
tribution of (or, Pr^ . Figure 2.6 illustrates the Weibull pdf when 9 =  100 and f3 = 2; 
this distribution is bell-shaped, indicating increasing hazard over time. We note that other 
shape parameter values are possible; for example, as illustrated in Figure 1.5, increasing (3 
gives a narrower pdf, implying that the items “wear out” sooner.

First, we assess the agreement between the simulated means of ^9r ,/3r ĵ and their true 
values. As shown in Tables 2.7 and 2.8, we see some discrepancies between the true and 
observed values for small r and n, which improve as r and n increase. In addition, Tables 
2.9 and 2.10 summarise the theoretical and simulated standard deviations for 9r and (3r 
respectively. As expected, the standard deviations reduce as r increases. We see, particularly 
for /?r , at early censoring levels there are large discrepancies between the theoretical and 
simulated values, but agreement improves as more items are left to fail. On the other hand, 
when we keep the censoring level fixed and vary the sample size, we see that the simulated 
standard deviations are closer to their theoretical counterparts as n  increases. We also 
provide scatter plots of final estimates against interim estimates when n = 50 (Figures 2.7, 
2.8, 2.9 and 2.10), where, in general, there are some connections among the four MLEs as 
r increases. The linear correlation is particularly evident between 9 and 9r, and (3 and /3r , 
but is less obvious between 9 and /3r, and (3 and 9r. Again, it would be useful to know, 
numerically, how much information about 9, (3 we could gain from the interim estimates
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Figure 2.6: Pdf of the Weibull distribution for 0 =  100 and /3 = 2.

0r,Pr'
As for the estimators 0r and (3r, Tables 2.11 and 2.12 provide the corresponding statistics 

for -£?o.i,r* Since we have used simulated data, we can compare these estimates with the true 
value given by

B qi = 100 ( - I n  0.9)2 =  32.4593.

We see that, for all n  and r, the similarity between the simulated sample mean of i? o .i ,r  

and its true value is generally good; the highest relative margin of error between theory 
and simulation is 7% (when r = 10, n =  25), but is generally less than 2% in most cases. 
We note that the standard deviations decrease as r increases. We also see excellent agree­
ment between simulated and theoretical standard deviations of Bo.i>r> even with very early

r n
25 50 100 1000 2500 5000

0.2 n 88.1007 93.7863 97.2542 99.5719 99.9308 99.9617
0.4n 95.6636 97.5939 98.9468 99.8468 99.9850 99.9879
0.6n 98.0182 98.8529 99.5528 99.9658 99.9780 99.9831
0.8 n 99.1820 99.4875 99.8805 99.9732 99.9844 99.9904
1.0 n 99.8106 99.8111 100.0393 99.9995 99.9913 99.9934

Table 2.7: Simulated means of 9r for various r, n, for Weibull data generated with 9 =  
100,/? =  2.
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r n
25 50 100 1000 2500 5000

0.2 n 3.2060 2.4784 2.2102 2.0218 2.0060 2.0032
0.4n 2.4367 2.2038 2.0964 2.0100 2.0022 2.0012
0.6n 2.2505 2.1236 2.0611 2.0051 2.0017 2.0010
0.8n 2.1663 2.0824 2.0413 2.0042 2.0012 2.0007
l.On 2.1137 2.0567 2.0296 2.0024 2.0006 2.0004

Table 2.8: Simulated means of 0r for various r, n, for Weibull data generated with 9 =  
100,0 =  2.

r ............................................ n ..........................................
25 50 100 1000 2500 5000

0.2 n 37.1703
38.4271

27.3761
27.9356

19.8032
20.2001

6.4021
6.4176

4.0552
4.0930

2.8690
2.9025

0.4n 19.2607
19.2340

13.8102
13.7300

9.8385
9.7953

3.1332
3.1222

1.9825
2.0001

1.4021
1.4162

0.6n 13.3729
13.2336

9.4857
9.4461

6.7187
6.7349

2.1280
2.1111

1.3460
1.3430

0.9518
0.9585

0.8 n 11.1975
11.1167

7.9158
7.9040

5.5967
5.5842

1.7696
1.7659

1.1192
1.1289

0.7914
0.7950

l.On 10.5293
10.5112

7.4454
7.4529

5.2647
5.2606

1.6648
1.6629

1.0529
1.0653

0.7445
0.7461

Table 2.9: Theoretical (upper) and simulated (lower) standard deviations of 9r for various 
r, n , for Weibull data generated with 6 — 100,0 =  2.

r n
25 50 100 1000 2500 5000

0.2 n 0.8079
2.0788

0.5911
0.9105

0.4262
0.5148

0.1374
0.1399

0.0870
0.0884

0.0615
0.0625

0.4n 0.5756
0.8652

0.4140
0.5044

0.2955
0.3227

0.0942
0.0941

0.0596
0.0603

0.0422
0.0426

0.6n 0.4590
0.5888

0.3278
0.3727

0.2331
0.2463

0.0741
0.0737

0.0469
0.0472

0.0331
0.0336

0.8n 0.3807
0.4558

0.2708
0.2947

0.1921
0.1990

0.0609
0.0613

0.0385
0.0388

0.0272
0.0273

l.On 0.3119
0.3547

0.2205
0.2334

0.1559
0.1599

0.0493
0.0497

0.0312
0.0312

0.0221
0.0221

Table 2.10: Theoretical (upper) and simulated (lower) standard deviations of 0r for various 
r, n, for Weibull data generated with 9 =  100,0 =  2.
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r n
25 50 100 1000 2500 5000

0.2 n 33.9274 33.2509 32.9350 32.5044 32.4602 32.4616
0.4n 34.7536 33.6599 33.1188 32.5241 32.4672 32.4641
0.6n 34.6446 33.5890 33.0936 32.5117 32.4703 32.4666
0.8n 34.4116 33.4514 33.0200 32.5137 32.4714 32.4656
l.On 34.1427 33.2987 32.9536 32.4975 32.4661 32.4634

Table 2.11: Simulated means of Bo.i.r for various r, n, for Weibull data generated with 
0 = 100, £  =  2.

r n
25 50 100 1000 2500 5000

0.2n 8.8795
8.9479

6.2345
6.2477

4.3937
4.3708

1.3854
1.3824

0.8760
0.8852

0.6194
0.6243

0.4n 8.6325
8.8804

6.1211
6.1997

4.3355
4.3314

1.3733
1.3732

0.8687
0.8780

0.6143
0.6196

0.6n 8.3738
8.6531

5.9417
6.0280

4.2094
4.2180

1.3335
1.3380

0.8435
0.8541

0.5965
0.6021

0.8n 8.0205
8.3324

5.6867
5.7571

4.0269
4.0370

1.2751
1.2852

0.8065
0.8150

0.5703
0.5733

l.On 7.5037
7.7938

5.3059
5.3526

3.7519
3.7564

1.1864
1.1983

0.7504
0.7566

0.5306
0.5337

Table 2.12: Theoretical (upper) and simulated (lower) standard deviations of Bo.i,r for 
various r, n, for Weibull data generated with 0 =  100, (5 = 2.
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censoring and regardless of the discrepancies we have observed in /3r . Figure 2.11 shows 
the scatter plots of Bo.i against Bo.i.r f°r various r when n =  50. Strikingly, the linear 
behaviour here is quite strong even for low censoring levels, and is also more evident than 
the plots for the MLEs of 9 and (3. We will investigate this behaviour in more details in 
Chapter 5.

2.4 ML Estim ation in the Burr D istribution

The applicability of the Burr distribution in simulation modelling is enhanced by the fact 
that its cdf (and hence its quantile function) exists in simple closed form, from which 
random samples can be generated by the inverse transformation method. Some of the major 
contributors to the development of the theory underlying ML estimation for this distribution 
have been, for two-parameter case, Wingo (1983) and Watkins (1997) with complete data, 
Wingo (1993) and Wang et al. (1996) with Type II censored data; for three-parameter case, 
Watkins (1997) with complete data, Watkins (1999) with both complete data and censored 
data. Specifically, as far as our case of interest - two-parameter Burr subject to Type II 
censoring - is concerned, Wingo (1993) and Wang et al. (1996) have provided only the 
observed Fisher information; here, we will derive the EFI matrix explicitly. Without loss 
of generality, the likelihood function of a Type II censored sample drawn from the Burr 
distribution is

n cctxt-i (i+xl)-(q+1) [i+x;..nrai-n-T),
,i=1

Tjy  —

and the log-likelihood is

lr = rlno: +  r l n r  +  (r  — 1) 5/,i(0) — (a  +  1) T f — a T c, (2.35)

where we now define

Tf  =  £ > ( 1 +  *&,),
i=1

Tc =  (n — r) ln(l +  X^.n).

The remaining notations are concerned with the derivatives of T f  and Tc:

_  ^  (ln X j :n)b

, 'aic h  (1 + X I J C ’

T* *  =  { n ~ r) a + x £ F " ’

so that (for * =  /  or c)
dhT, _  
g T k  ~  1  »>11*
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when k = 1,2. The conditions necessary for the existence of a stationary point of (2.35) 
require the score functions

d l ra - lda  • -  T / - r «  =  0, (2.36)
r\j

=  rT- 1 +  S/ ,l ( 0 ) - ( a  +  l)T / ,m - a r c,111 =  0, (2.37)

hold simultaneously. We see that the solution of (2.36) provides

ar = (2.38)
I f  +  ±c

so that inserting this into (2.35) yields the profile log-likelihood

/* — r In r  +  (r  — 1) S f ti (0) — T/ — r ln(T/ +  Tc) +  r  {In r  — 1}, (2.39)

with first and second derivatives

f  = + - - { ^ t r : 111} (2-40>

and 2'
d 2 K  -2 rr, I T f 1 2 2 + Tc,122 { T f  l i i + T c i n

T r « = ~ rT - T^ - T \ ^ T t c (  Tf  +  Tc

We can now find the roots of (2.40) using the Newton-Raphson approach. With r r thus
calculated, MLE of a r can be determined from (2.38) with r  =  r r . As previously noted,
Wingo (1993) computes the second-order partial derivatives of (2.35), which are given by

g  =  - ™ - 2> (2-4D
d2lr d2lr , ,=  - ( T / , i i i + r c,m ), (2.42)dadr  drda  
d2l =  _ r.T- 2 _ ( a  +  i  )Tf ,m -a T c ,122, (2.43)

and states that the exact mathematical expressions for the expected values of (2.42) and 
(2.43) are very difficult to obtain.

2.4.1 R egu larity  and  E F I M atrix

We develop the discussion in Wingo (1993), adapting the work of Watkins (1997) and 
Watkins &; John (2006). As with the Weibull distribution in Section 2.3.1 above, in order 
to write down the expected values of all derivatives we will require expectations of the form
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given at (2.25), where the g ( X i :n) now are

lnXi:n, ln ( l  +  J*T„), Xl nl ^ ' n, and ^

We can use (1.49) to state expectations of (2.25) in terms of E  [g (X i:J)], for which they are 
usually the most direct to compute. Then, expectation of the first part in (2.25) may be 
written as

£  E  [g (Xi:„)] =  £  ( - l ) r-< ( A )  ( V 7 1) E  [s (X1;„+1- i ) ] , (2.44)
i=1 i=1

and expectation of the second part in (2.25) becomes

{ n - r ) E \ g ( X r.n)\ =  (n -  r) E ( - l ) r- i (i- i )  ( £ ) E  [g (*,:„+!-<)]
4=1

4=1

so that combining these results gives expectation of (2.25) as

(n -  i + 1) x x - i r H i - i )  la ( j w -01
4 = 1

=  n C Z ^ E  la (Xi:„+1- i )] ; (2.45)
4 = 1

see Watkins &; John (2006).

Expectations in Derivatives

We can now exploit the link between the distribution of the first order statistic and the 
underlying distribution to proceed. We first show that Yi:n =  1 +  X [:n follows a Pareto 
distribution with pdf ay~(a+1\  (y > 1): we have

Pr{Fi:n < y }  = P r{ X 1:n < (y -  1)*} =  1 -  [1 +  (y -  l)]"Qn =  1 -  y~Qn

from (1.43c), which gives (1.43d) on rearranging. Then, from Section 1.3.2.4, In Yi:n has an 
exponential distribution with mean (an )-1 . We thus obtain

E  [In (1 +  XJ.n)] — (2-46)

For E [lnX i:n], we have, based on (1.36),

r ( a n - g ) r ( i  +  ; )
E [ X 1:nl -  r (a n )
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so that, using (1.2), differentiating this wrt p yields

. r  (an -  £) r  (1 +  f ) -  r  (cm -  f ) T (1 +  ?)
E \X{M In X 1;„] =  - 1 ------- d - 1 ------------------------ i L A ---- rZ, (2.47)

and evaluating this expectation at p = 0 gives (from Table 1.6)

£ [ ln * 1;„] =  - { r t ^ } .  (2.48)

Next, as in Watkins (1997), we write expectations as Ean to emphasise the role of an
in the pdf of the first Burr order statistic:

f (1) (x\ an, t)  = anrxT~1 (1 +  ^r )_(an+1)

so that

En
X{:n\n X 1:

1 +  x i .
r f ± Z anTXr - l ( l  + x r ) - l - + » dx 

Jo 1 + *T
poo

-  x T (Ina:) (an  +  l)ra ;r “ 1 (1 +  xT)~^
1 Jo

—(cm +2)
an  +  1 J o dx

an
an  +  

an

poo
- j  xT (In x) / (1) (x\ an  +  1, r)dx

an  _j_  ̂Ean+l [X i :n In X 1:n] •

Consequently, using (2.47) with p =  r  and an  replaced by an  +  1, we arrive at

r(cm )r (2) — r'(cm)r (2)
Ean+1 [Xi:n In X i :n] — rT(an  +  1)

T(an) (1 — 7) — 0  (an) T(an) 
ranT(an)

1 — 7 — -0 (an) 
a n r  ’

and the expression for the third expectation is given by

Ea
X {:nln X 1:1 1 — 7 — 0  (an) 

t (an  + 1)

A similar approach is employed to obtain the final expectation; we have

■*£„(lnX1:„)2l

(2.49)
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given by

r  1 (1 +  x rr («n+l) dx
Jo (l +  O 2 k

poo
/  xT(\nx)2(ctn +  2)rxT~1 (1 +  £r)- (an+3) dx 

Jo
pooJ xT(\nx)2f il)(x’,cm + 2,T)dx

Ean+ 2  [X ln( \n X 1:n)2]

^  +  72 -  27 -  2(1 -  7 )ip (an  +  1)

cm +  2
an

a n + 2 
an

an  +  2

t 2 (an +  1) (an  +  2) j  +  [^ (an +  l)]2 +  ip' (an  +  1) 

at which, based on (1.3) and Table 1.6,

Ean+2 [Xr;„(lnX 1:n)2] =

(2.50)

21 _  r  (an +  1) T" (2) -  2r' (an  +  1) T  (2) +  T" (an  +  1) T (2)
r 2T (an  +  2)

T" (2) — 2ip (an  +  1) V  (2) +  [ip (an  +  l )]2 +  ip' (an +  1) 
t 2 (an +  1)

_  IT +  72 “  27 -  2(1 -  7 )ip (an  +  1) +  [ip (an +  l )]2 +  ip' (an  +  1)
t2 (cm +  1)

obtained upon replacing p by r  and an  by an  +  2 in (2.47).

Expectations of the Score

Having found the expressions for E [g (X i :n)], we now check that the expectations of the 
score functions are in fact zero. For (2.36), we have

E[Tf + Tc] =  E S [ ln ( l  +  X£J] +  ( n - r ) £ [ l n ( l +  *;;„)]
i=1

= » E ( - i r * ( r i ) ( n; i 7 ) E N i + ^ r : n +i-i)] fr°m(2.45)i=1

=  a - 1 E ( - i r i ( r i1) ( 7 7 1) ( „ + " z i) from (2.46)

=  ra - l

because the sum of indices is

n
i=1

(2-51)

see Watkins &; John (2006). Thus, taking expectation in (2.36), we obtain

d lE
da

= ra — E  [Tf +  Tc] = ra  — ra  — 0,
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as required.
For (2.37), we first write

—r- = rr~ l +  S/,i(0) -  a  (Tftm  +  Tc,m ) -  Tfj l l l ,

and see that, from (2.44),

i=1

E ( - i r ‘CTi1)

and

i= 1

E ( _ i r i (n -1)(n -! - 1) ^ _
£=i n - 1- i  -

:E X l:n+ l—i X h n + l—i

while, from (2.45),

E  PV.XU +  Tc,m ] =  n E M r ^ I i 1) (V - i ) E
i= 1 1 + ^ W

In particular, we express, using (2.48) and (2.49),

X l:n + l- i  X i :n+ i- in
n  +  1 — i

E  [In X i :n+i-i] -  anE
1 +  X l:n + l- i

n
n  +  1 — i

E X l:n + l- i X l'.n+l—i

1 +  X l:n + l-i
n  7 +  ^  (a (n +  1 — i))

Xn +  1 — i 
n

n  1 — 7 — (a (n +  1 — i))

n  +  1 — i

t  (n +  1 — i)  ’

Thus, taking expectation in (2.37) yields 

dlE
dr

= rr  +  E  [*S'/ji (0)] — a E  [T^m +  TC)m ] — E  [Tftm]  

= r r - 1 -  £  5-------
i= l

=  r r - 1 — r r -1
r  (n +  1 — i)

from (2.51), so that this expectation is 0, as expected from the regularity consideration.
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Expectations of Second Derivatives

In addition to E[Tftm  + T Cjm ] in (2.42), we will need, for (2.43), a E  P /^22 +  TC)i22] +  
E [Tft 122]) which is given by

i= 1
r

r—i / to—1\ /to—i—1>

^ L n + 1—i(^n ^ ”l:n + l- i)
2l

(1 +  ^ n+1J 2
n

i= i  n + l - i
E

2i

i= l a  (n +  1 — z) +  2

|  x + y 2- 2 7 - 2 ( l - 7 ) < / , (a(rc +  l - 0  +  1) 1
|  +  [z/> (a  (n +  1 -  z) +  l )]2 +  ip' (a (n +  1 -  z) +  1) J

Then, the expectations of (2.41) to (2.43) can now be expressed - using (2.49) and (2.50) - 
as

E
d2L

E

da2 
d2lr

= —ra - 2

E

dadr
d2L

= - n r  {(1 ~  7)Po,o ~ Po,i} »

d r2
—2 —2 =  —r r  — nar {  ( y  +  72 “  27 j Pi,o ~  2(1 -  7)Pi,i +  Pi,2 +  ^1,1 1 ,

where we find it convenient to define

_ _  / -I \r —i /to—1\ /to—i—1\ [*0 ( o  (^  +  1 ~  z) +  fc)]
h  V i - lA  r - i  ) a (n +  l - i ) + k  +  l

-  , 'r-» M-1N M -i-U  [V1' (<* (T» +  1 ~  Q +  <0] ’

for =  0,1 and m =  0,1,2. Furthermore, writing

=  ( y  +  72 -  27^ Pi,o ~  2(1 -  7)Pi,i +  Pi,2 +  ¥>1,1, 

we immediately obtain the Type II censored EFI matrix as

A r =
A An r,ar

A As \ r , a r  ■**-r,TT

ra - 2

n r  1 {(1 -7 )P o ,o -P o .i}  r r  2 +  n a r
(2.52)
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and inverting the above yields the corresponding covariance matrix as

( A a a  A a rA r A r

A a r a t t ̂ i
r2 +  rnaQr -  n2a 2 {(1 -  7) p00 -  p01} ‘

( ra2 +  na^Qr ^
- n r a 2 {(1 -  7) p0j0 -  p0>1} r r 2 I '

(2.53)

Using these results, we also can obtain the moments of the asymptotic distribution for 
the estimator of the \§th percentile, based on a first order Taylor series expansion of (1.35); 
we have, from (2.3),

B 0.l,r ^  (0 .9-4 -  l )  T +  (  ba bT )  ( " r _  “

with which

(2.54)= = ( a_2r_1 (a9' “ -  X)T (a9_i 111 °'9)
\  bT J  (  J  _ t -2  (0 .9- i  _  T In (o.9“4 -  l)

Therefore, on taking expected values, we have

E  R0.1 ,r — B 0.1 +  baE  [ar -  a] +  bTE  [rr — t ] =  £ 0.1, 

and variance given by

Var  (B0.i,r ) (  ba bT )  A ” 1 ( J  =  +  26<AA?T + b2TA^r ,

obtained from appropriate application of (2.4).

2.4 .2  A sy m p to tic  P ro p erties  o f th e  M LEs

We are now in the position to write down the asymptotic distribution of the Burr parameters; 
(ar , r r )/ follows the bivariate Normal distribution with mean (a, r)' and covariance matrix 
given at (2.53). Thus, we may obtain an approximate 95% confidence region for (a ,r)  by 
calculating the ellipse
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2.4 .3  C om p lete  Sam ple

For later convenience, we briefly present here some results for the complete sampling. Here, 
the likelihood is

L =  n a r x r 1 (l  +  * 7n (“+1)>
i= 1

and the log-likelihood is

I = n In a  +  n ln r  +  (r  — 1) S i(0) — (a: +  1)T, (2.55)

with two partial derivatives given by

where

91 -1 ™ n—  =  na —T  = 0, 
da

r\j

=  n r -1 +  S,i ( 0 ) - ( a  +  l ) r n 1 =0,'

T  =  £ l n ( l  +  X?-), 
1 = 1

_  " (XT)“ {\aXi)b
1 abc — 2-/f i i  (i +  x r y  ■

We also list below the second-order partial derivatives of (2.55):

d2l
da2 
02l 

dadr  
d2l 
d r2

= —na  

d2i

- 2

drda = —T ui,

=  - n r  2 -  (a +  l)T i22-

Watkins (1997) computes the following results:

£ p n x ]  =

E  [In (1 +  X T)] = a ~ \

E
X Tln X

E

1 +  X T 

X T (lnX )2
(l + x ^ y

1 — 7 — ip (a) 
r ( a  + 1) ’

a

(2.56)

(2.57)

\  +  72 -  27 -  2(1 -  7 )^  (a +  1)
t 2 (a +  1) (a +  2) 1 +  (a  +  l )]2 +  ip' (a +  1)

Using these, we have, with

71
f2 =  — + 7  — 27 — 2(1 — 7)^(0: +  1) +  (a +  1)] +  ^/(a +  l),
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the uncensored EFI matrix given by

a = { a Z  Z ) = ( n{% t \ a)) -̂2{1+̂ fi} )’ (2'58)
and the associated covariance matrix given by

A _ !  =  /  A aa A  

\  A aT A

_  ______________________ (a +  1) {a. +  2)_________

n j ( q  +  l )2 (q +  2) +  a  (q +  l )2 — q 2 (q +  2) [1

/ a 2 (a +  l ) { l  +  ^ f i }  y

\  —rq 2 {1 — 7 — ^(q)} r2 (q +  l)  /

2 .4 .4  N u m erica l E xam ples

Arthritic Patients Data

We first use the arthritic patients data given in Table 1.3, and note that the Burr P-P plot 
for these data fits well to a straight line (see Figure 1.3); see Appendix B for details of 
the SAS IML algorithm used to locate the MLEs of the Burr parameters and Bo.i- Table

2.13 gives a summary of ar, r r and Bo.i.r =  ^0.9- s7 — 1  ̂Tr calculated at several censoring 
values for these n = 50 relief times. It is observed that the interim estimates converge to 
their final values as r tends to 50, in which the convergence in a  is the most volatile, followed 
by r  and then Bo.i* In fact, a plot of Bo.i.r against r  would be close to a flat line. The 
volatility is particularly high when r increases from 10 to 20, and then reduces gradually 
for each subsequent rise (of size 10) in r. Consequently, we see large sd(ar) relative to 
q r at the 10th and 20th failure, which, in turn, leads to a negative 95% confidence limit 
for q  obtained by assuming that asymptotic Normality holds here. However, we will later 
investigate the suitability of Normality assumption for parameters and Bo.i for sample sizes 
as small as the arthritic patients data. In contrast, we note steadily decreasing estimated 
standard deviations for ry and Ro.i,r-

Simulations

As previously mentioned at (1.36), the moment fip for the Burr distribution exists provided 
that q r  > p, and, since we are often interested at the first two moments we will require 
a r  > 2. Next, we take a = 4, r  =  3 and run some simulations to validate the theoretical 
expressions for means and standard deviations of the estimators a r and r r , based on 104 
replications. Figure 2.12 shows the shape of the Burr pdf for such simulation. We note that 
other values of a  and r  are possible; see, for instance, Figures 1.6 and 1.7 for the effect of 
varying a  and r  on the shape of the Burr pdf. However, with q r  =  12 > 2, simulations

- 7 -V>(a)]2}

(2.59)



2.4. ML ESTIMATION IN THE BURR DISTRIBUTION 69

r 10 20 30 40 50
X r: 50 0.49 0.57 0.64 0.73 0.87
Ot>p
sd{oc>p j
95% CIs

4.5450
4.0266

-3.347,12.437

7.9878
4.6839

-1.193,17.168

8.9031
3.6191

1.810,15.997

7.7911
2.1342

3.608,11.974

8.2681
1.6837

4.968,11.568

g 
§.>

•?>

1—1
 

W

4.1860
1.1833

1.867,6.505

4.8626
0.9587

2.984,6.742

4.9997
0.7707

3.489,6.510

4.8490
0.6053

3.663,6.035

5.0006
0.5045

4.012,5.990
-®0.1,r

sd(Bo.i,r)
95% CIs

0.4080
0.0380

0.333,0.483

0.4112
0.0321

0.348,0.474

0.4112
0.0303

0.353,0.472

0.4113
0.0297

0.354,0.471

0.4185
0.0272

0.365,0.472

Table 2.13: Summaries of the Burr MLEs calculated at various r for the arthritic patients 
data.

r n
25 50 100 1000 2500 5000

0.2 n 134.7855 36.5905 8.6449 4.2097 4.0759 4.0405
0.4n 13.5455 5.9973 4.7773 4.0613 4.0227 4.0125
0.6n 6.1467 4.7217 4.3112 4.0291 4.0113 4.0064
0.8n 4.8061 4.3339 4.1539 4.0133 4.0069 4.0041
l.On 4.3969 4.1808 4.0800 4.0082 4.0039 4.0025

Table 2.14: Simulated means of ar for various r, n, for Burr data generated with a  =  4, r  =  3.

are much more controlled than, say, with a  and r  close to 0, and hence we stand at a good 
chance of getting asymptotically valid agreement between theory and simulation.

Results for simulated means are shown in Table 2.14 for ar and Table 2.15 for r r ; and for 
theoretical and simulated standard deviations are shown in Table 2.16 for ar and Table 2.17 
for Tr . In general, for small samples with low censoring levels, a r and r r do not agree with 
their true values very well at all, although the disagreement is less severe for r r . In fact, for 
a r , it is only really for a sample size of 1000 that we begin to observe agreement between 
simulated and theoretical means, for any value of r we have considered. We also note in 
Figure 2.13 certain replications with large estimates of a\ such values will clearly affect 
the sample mean and standard deviation. The effect is stronger when r is low, generally 
< 0.4n, because the lower the censoring level, the less information we have, thus increasing 
the chance of obtaining an unusually large a r. As shown in Table 2.16, there are quite 
large discrepancies between the simulated and theoretical standard deviation values at early 
censoring levels, but discrepancy reduces as r increases. Figures 2.13, 2.14, 2.15 and 2.16 
show scatter plots for four combinations of final estimates against interim estimates when 
n = 50. In general, there is some link of varied strength between the two sets of estimates, 
although this is partly distorted by large standard deviations of ar when r < 0.4n. As 
before, we wish to determine if we can make inferences on final estimates, a  and r , given 
interim estimates, ar and r r .
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x

Figure 2.12: Pdf of the Burr distribution for a = 4 and r  =  3.

r n
25 50 100 1000 2500 5000

0.2 n 4.7524 3.6854 3.3058 3.0275 3.0103 3.0058
0.4n 3.6317 3.2695 3.1372 3.0121 3.0047 3.0027
0.6n 3.3519 3.1592 3.0806 3.0076 3.0032 3.0019
0.8n 3.2252 3.1004 3.0529 3.0042 3.0025 3.0015
l.On 3.1473 3.0653 3.0352 3.0031 3.0016 3.0010

Table 2.15: Simulated means of f r for various r, n, for Burr data generated with a = 4, r  = 3.

r n
25 50 100 1000 2500 5000

0.2 n 4.5732
453.4663

3.3881
206.5771

2.4590
21.4551

0.7976
0.9054

0.5053
0.5242

0.3575
0.3654

0.4n 2.4557
73.8326

1.7754
5.9415

1.2704
2.0405

0.4062
0.4219

0.2571
0.2586

0.1819
0.1832

0.6n 1.5981
10.3940

1.1426
1.9311

0.8126
1.0123

0.2584
0.2584

0.1635
0.1640

0.1156
0.1152

0.8n 1.1473
2.2064

0.8148
1.0342

0.5775
0.6598

0.1830
0.1816

0.1158
0.1158

0.0819
0.0819

l.On 0.8880
1.2002

0.6279
0.7293

0.4440
0.4744

0.1404
0.1387

0.0888
0.0888

0.0628
0.0623

Table 2.16: Theoretical (upper) and simulated (lower) standard deviations of dr for various 
r, n, for Burr data generated with a = 4, r  = 3.



2.4. ML ESTIMATION IN THE BURR DISTRIBUTION 71

r n
25 50 100 1000 2500 5000

0.2 n 1.1508
2.8447

0.8448
1.3481

0.6103
0.7538

0.1971
0.2016

0.1249
0.1252

0.0883
0.0890

0.4n 0.8013
1.2326

0.5775
0.6970

0.4125
0.4543

0.1317
0.1327

0.0834
0.0830

0.0590
0.0591

0.6n 0.6291
0.8130

0.4496
0.5068

0.3197
0.3376

0.1016
0.1012

0.0643
0.0643

0.0455
0.0453

0.8n 0.5181
0.6160

0.3683
0.3946

0.2612
0.2714

0.0828
0.0825

0.0524
0.0527

0.0370
0.0369

l.On 0.4335
0.4914

0.3065
0.3237

0.2168
0.2214

0.0685
0.0681

0.0434
0.0435

0.0307
0.0303

Table 2.17: Theoretical (upper) and simulated (lower) standard deviations of t r for various 
r, n, for Burr data generated with a = 4, r  =  3.

r n
25 50 100 1000 2500 5000

0.2 n 0.3064 0.3020 0.3011 0.2990 0.2989 0.2989
0.4n 0.3115 0.3046 0.3024 0.2991 0.2990 0.2989
0.6n 0.3108 0.3043 0.3021 0.2991 0.2990 0.2989
0.8 n 0.3092 0.3034 0.3017 0.2990 0.2990 0.2989
l.On 0.3071 0.3023 0.3011 0.2990 0.2989 0.2989

Table 2.18: Simulated means of Bo.i,r for various r, n, for Burr data generated with a = 
4, r  =  3.

When we examine results for I?o.i,r in Tables 2.18 and 2.19, we observe simulated means 
converge to the true value of

B0.i =  (0.9-4 -  l )  '  =  0.2988.

as n and r increase, together with decreasing standard deviations. It is somewhat surprising 
to note that large estimates of a  do not seem to affect the estimates of Ro.i? and the largest 
relative margin of error between theoretical and simulated mean is just 4%, and 2.62% for 
standard deviation. As before, Figure 2.17 displays the relationship between £?o.i and Bo.i,r  

when n is 50, in which we see clear linear pattern even for low censoring levels.
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r n
25 50 100 1000 2500 5000

0.2 n 0.0555
0.0557

0.0390
0.0386

0.0275
0.0274

0.0087
0.0087

0.0055
0.0055

0.0039
0.0039

0.4n 0.0538
0.0548

0.0382
0.0382

0.0270
0.0271

0.0086
0.0086

0.0054
0.0054

0.0038
0.0038

0.6n 0.0519
0.0531

0.0369
0.0370

0.0261
0.0262

0.0083
0.0083

0.0052
0.0052

0.0037
0.0037

0.8n 0.0496
0.0509

0.0352
0.0353

0.0249
0.0251

0.0079
0.0079

0.0050
0.0050

0.0035
0.0035

l.On 0.0470
0.0481

0.0332
0.0333

0.0235
0.0237

0.0074
0.0074

0.0047
0.0047

0.0033
0.0033

Table 2.19: Theoretical (upper) and simulated (lower) standard deviations of Bo.i,r for 
various r, n, for Burr data generated with a  =  4, r  =  3.

2.5 Chapter Summary and Conclusions

In this chapter, we outlined the theory necessary to fit exponential, Weibull and Burr 
distributions to Type II censored data using maximum likelihood techniques. In each case, 
we confirmed the regularity conditions and obtained suitable formulae for the elements of 
the EFI matrix analytically; the inverses of the matrices providing us with asymptotically 
valid variances and covariances of the MLEs of the model parameters, as well as variances 
of functions of the parameters, such as Bo.i- In particular, we have made progress from 
Wingo (1993) to derive analytical expressions for the elements of the EFI matrix for Type 
II censored Burr data. Naturally, it would be of interest to extend the two-parameter Burr 
to a three-parameter model by introducing a (natural) scale parameter (f> in many different 
ways. In Tadikamalla (1980), one of these is to consider Y  = (f)X for <f> > 0, where X  is a 
random variable following (1.34). Then, the random variable Y  > 0 will have pdf and cdf 
defined, respectively, by

1 + l^
r- —(a+1)y ' 1 v ' (2.60)

(2.61)

/  (y; a, t ,  <j>) =  -0 Fyr

and

F{y;ot,T,(f>) =  l  -  , i
A

Inevitably, here the statistical analysis, like the derivation of the Type II censored EFI 
matrix, will be much more involved, and hence is considered elsewhere.

We have constructed a set of simulations to check such approximations to the moments of 
the MLEs and Bo.i.r for various sample sizes and censoring levels, and noted good agreement 
between the theoretical approximations and simulated values, which improves as n and r 
increase. We have also shown that, perhaps surprisingly, the agreement for the moments of 
Bo.i,r is generally better than those of the MLEs.
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We have computed the approximate 95% confidence intervals for parameters and Ro.i 
for published data mentioned in Chapter 1, assuming that asymptotic Normality of MLEs 
holds for small samples. But are these large sample theory approximations suitable in the 
inference of small to moderate samples, such as the ball bearings data? In the following 
chapter, we consider the implications of asymptotic Normality, and more importantly, the 
extent to which this large sample result holds for samples of small size, subject to Type 
II censoring. Where the sample size is too small for Normality to be assumed, we also 
discuss the use of relative likelihood function as an alternative to measure the precision of 
the MLEs. As well as being asymptotically equivalent to the Normal confidence regions, 
studies by Watkins (2004) and Chua et al. (2007), for example, have shown that relative 
likelihood contours reflect more accurately the behaviour of the distributions of MLEs for 
relatively small samples.

Following the observation in Tables 2.1, 2.6 and 2.13, and, as discussed for all scatter 
plots of final estimates of parameters and Bo.i against interim estimates, we wish to find the 
extent to which a censored estimate, obtained in an interim analysis, can be regarded as a 
reliable guide to complete estimate, obtained when the last item fails. In Chapter 5 we will 
be investigating the relationship between the two sets of estimates of parameters and Bo.i? 
using results on expectations of various functions of order statistics found from Chapter 4.



Chapter 3

Sm all Sam ple P roperties o f 
M axim um  Likelihood E stim ators 
for T ype II Censored D ata

3.1 Introduction

We have already mentioned asymptotic properties of the MLEs (for instance, see Cox & 
Hinkley, 1974), and like many other authors (see Meeker h  Nelson, 1977 for example) 
we used these properties to obtain approximate confidence intervals for parameters and 
for -Bo.i* In particular, this asymptotic theory implies symmetric confidence intervals for a 
single parameter or quantity, and elliptical confidence regions for two. Billmann et al. (1972) 
give confidence limits for the Weibull parameters from Type II censored samples, for sample 
sizes n =  40,60,80,100,120 with r = 0.5n, 0.75n, l.On, based on N  = 4000 replications. 
They note that their sampling distributions of 6r and (3r are not close to Normal for small 
samples, say, where n is less than 100, but there is no mention on how large a sample needs 
to be for this large-sample approximation to hold. Hence, it is now appropriate to assess 
the progress of the MLEs of parameters to Normality. The relevance and importance of the 
percentile Bo.i has been introduced in chapter one and two. Naturally, it is also of interest 
to extend the Normality checks to the sampling distribution of Bo.i.r-

Chua et al (2007) consider two issues emerging from the above, with the first part 
focusing on the progress towards Normality (the problem), and the second part dealing 
primarily with the use of relative likelihood contour as an approximate confidence region 
(a possible solution). As outlined in Lawless (1982), likelihood function is usually used to 
examine the whole range of possible parameter values, and to investigate which values are 
plausible and which are implausible in the light of the data. In particular, relative likelihood 
function ranks possible parameter values according to their consistency with the observed 
data, and, as Kalbfleisch (1979) has discussed, contour plots of relative likelihood function 
may be used to obtain confidence regions for a sample, including the possibility of censoring.
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In this chapter, we will not necessarily be looking to test Normality at any given sample 
size, but instead to show, by means of a detailed simulation study with N  = 104, that 
at small sample sizes the MLEs of parameters and Ro.i are non-Normal, and eventually 
when the sample size increases, the MLEs become Normally distributed. We also aim to
illustrate the effects of varying r on the convergence to asymptotic Normality, and, on the

exponential, Weibull and Burr data. In Section 3.3, we extend the study to testing for 
bivariate Normality in Weibull and Burr MLEs. Then, in Section 3.4, we consider the use

distribution of MLEs in small samples of varying sizes. For consistency, we use the six 
sample sizes and censoring proportions given in Chapter 2.

3.2 Tests o f Univariate N orm ality

Numerous tests for assessing Normality, including both univariate and multivariate Nor­
mality, exist in the literature; each has its relative strengths and weaknesses. In summary, 
numerical analyses include moment-type tests, general goodness of fit tests (tests based on 
empirical distribution function, the Kolmogorov-Smirnov test, and so forth), and other tests 
specifically derived to detect outliers; see, for example, D’Agostino k  Stephens (1986).

Recent reviews on testing for Normality (Thode, 2002 and Srivastava & Mudholkar, 
2003, for example) tend to focus on procedures based on the sample moments, we will 
consider the skewness (7^  and kurtosis (72) statistics of the distribution of MLE in this 
thesis. In particular, for a sample of N  values 7Ti,. . . ,  7rjv the sample estimates of skewness 
and kurtosis are, respectively, from (1.25) and (1.26),

m l

shape and size of the relative likelihood contours. Section 3.2 investigates the extent to 
which univariate Normality of the MLE applies in finite samples based on Type II censored

of relative likelihood function as a method for obtaining confidence regions of the sampling

where m* is the pth sample moment about the mean given by

N

is the sample mean, and S 2 = rri  ̂ is the sample variance. Hence, values of gi and <72 close
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to 0 and 3, respectively, are consistent with Normality. We further refer to D’Agostino 
& Pearson (1973) for the K 2 statistic, originally discussed in D’Agostino (1971), which 
combines g\ and <72 as an omnibus test for univariate Normality. By omnibus, we mean it 
is able to detect deviations from Normality due to either skewness or kurtosis; we have

K 2 = { Z ( g i) f  + {Z (g2)}2 , (3.1)

where Z  (gi) and Z  (<72) are suitably standardised and Normalised measures of skewness and 
kurtosis. Hence, under the hypothesis that the marginal distribution of a MLE is Normal, 
we have K 2 ~  X21 so that we can assess the marginal Normality of tty via the critical value

—2 In A

for an upper tail probability of A. Since X2 0 .9 5  =  5.9915, K 2 < 5.9915 indicates the 
possibility of univariate Normality. This procedure has the computational advantages that 
skewness and kurtosis measures are readily supplied by many standard statistical packages 
(SAS and SPSS) as well as by Excel, and D’Agostino et al. (1990) also provide a simple 
SAS macro programme to implement the K 2 test.

It is always useful to include a graphical inspection of the data in conjunction with 
a formal test. Classic methods include probability plots, and regression and correlation 
tests. Since we are mainly concerned with progress towards Normality and symmetrical 
confidence limits in the context of single MLE, we use histogram overlaid with the best- 
fit Normal curve as a display of the distribution of the sample. This shows clearly the 
frequency of observations within bins, and also allows us to observe easily features like 
skewness, spread, outliers and multimodality in the sampling distribution. Thus, for each 
MLE, we will investigate the symmetry around the probability intervals, calculated from 
asymptotic Normality theory, with the focus on the effects of varying r on the rate at which 
the MLE approaches Normality. In our simulation experiments with N  = 104, and suppose 
this large-sample result holds, we would expect to find 95% x 104 of the estimates within 
the 95% limits, 2.5% x 104 to lie below and 2.5% x 104 to lie above the limits.

3.2 .1  S im u lation  Study: th e  E xp on en tia l D istr ib u tio n

As shown in Table 2.1 for the failure times data with n = 49, the approximate 95% confidence 
intervals for 9 and B0.1 are> respectively, (77.370,146.860) and (8.152,15.473) when r =  40, 
assuming that the asymptotic theory of MLE held for a sample of this size. However, the 
question is can we safely exploit Normality in inference of small to moderate samples, such 
as the failure times data.

For our investigation the parameter value was chosen to be 9 =  100, and we take 
r = 0.8n so that the experiments were terminated after 80% of the items fails; we may 
again omit the analysis of Rq.i since this percentile is linearly related to 9 via (1.29). Figure
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Figure 3.1: Histograms of #o.8n for various n, for exponential d a ta  generated w ith 0 =  100.
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n 9i Z ( 9i) 92 Z ( 92) K 2 95% prob. intervals
Below Within Above

25 0.4196 16.4672 3.2445 4.4995 291.4154 130 9518 352
50 0.3478 13.8130 3.1852 3.5058 203.0899 168 9474 358
100 0.2235 9.0210 3.0147 0.3343 81.4904 188 9474 338
1000 0.0711 2.8997 3.0740 1.4947 10.6421 240 9473 287
2500 0.0507 2.0709 3.0032 0.1022 4.2991 244 9505 251
5000 0.0472 1.9280 2.9677 -0.6340 4.1191 230 9524 246

Table 3.1: Summary statistics for #o.8n for various n, for exponential data generated with 
9 = 100.

n r =  0.2n r = 0.4n r =  0.6n r =  0.8n r  =  l.On
25 1409.3486 788.5079 484.5088 291.4154 269.7868
50 807.6852 406.5420 276.7434 203.0899 143.3069
100 298.0283 160.4063 118.8980 81.4904 59.7064
1000 15.9070 6.3177 14.2387 10.6421 10.8260
2500 33.3457 8.5319 10.6261 4.2991 4.3223
5000 18.0613 13.9747 3.8181 4.1191 4.2676

Table 3.2: K 2 statistics for 9r for various r, n, for exponential data generated with 9 =  100.

3.1 together with summaries in Table 3.1 seem to suggest that as the sample size increases, 
the distributions of 0o.8n become more and more Normal, as indicated by the K 2 values. 
At the same time, we see the distributions are less skewed and more centred around the 
expected value of 100. As a supplementary check of the distribution, we further examine 
how the MLEs spread about 100; this uses the 95% probability limits for 9 given by

100 ±1.96 x 100 x (0.8n)-1 /2 ,

obtained from (2.12), which generates symmetric confidence intervals for 9. We then plot 
the 104 simulated observations of 9r, and, if the large-sample result holds, we expect to find 
9500 of 9r within the corresponding limits, with 250 of 9r below (above) the lower (upper) 
limit. Table 3.1 shows that, although approximately 95% of the 9r are enclosed in the 
intervals, the remaining 5% are divided unequally between the two tails, with more in the 
upper tail. This implies right skewness in both sampling distributions of #o.8n and Ro.i.o.Sn- 

In addition, Table 3.2 tabulates the K 2 statistics for assessment of Normality in 9r for 
varying r and n; we have highlighted any entry less than 5.9915. We see that we need large 
samples and almost complete data sets before we could formally accept the hypothesis of 
Normality. Therefore, with respect to the failure times data with n =  50, it is not really 
sensible to employ Normality in the calculation of confidence limits.
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Figure 3.2: Histograms of #o.4n for various n, for W eibull d a ta  generated with 0 = 100, (3 = 2.
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3cr
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Figure 3.3: Histograms of /?o.4n f°r various n, for Weibull d a ta  generated w ith 6 = 100, (3 = 2.
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Figure 3.4: Histograms of Ro.i,o.4n for various n, for Weibull d a ta  generated w ith 6 =
100, f3 = 2.
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n @0An 95% prob. intervals
91 Z(9i) 92 Z { 92) K 2 Below Within Above

25 0.5541 21.1884 3.6228 9.8450 545.8730 225 9514 261
50 0.3911 15.4245 3.2575 4.7101 260.1012 231 9523 246
100 0.2495 10.0407 3.1888 3.5677 113.5438 239 9522 239
1000 0.0920 3.7497 3.0434 0.9050 14.8791 267 9495 238
2500 0.0632 2.5796 3.1016 2.0126 10.7047 256 9486 258
5000 0.0017 0.0714 3.0111 0.2618 0.0736 266 9480 254
n

1 1 ~ 1 ■ 1 
fioAn 95% prob. intervals

91 Z(9i) 92 Z(92) K 2 Below Within Above
25 1.6682 48.8155 8.7945 35.0824 3613.7228 0 8291 1709
50 0.9562 33.2790 4.7187 19.7727 1498.4534 14 8854 1132
100 0.6578 24.5917 3.8467 12.4005 758.5249 43 9174 783
1000 0.1959 7.9283 3.0797 1.6039 65.4299 142 9476 382
2500 0.1565 6.3554 3.1164 2.2852 45.6132 214 9461 325
5000 0.1110 4.5192 3.1446 2.7947 28.2331 234 9458 308
n ■®0.1,0.4n 95% prob. intervals

91 Z(9i) 92 Z { 92) K 2 Below Within Above
25 0.3535 14.0254 3.0843 1.6899 199.5689 60 9333 607
50 0.2481 9.9873 3.0312 0.6648 100.1875 92 9435 473
100 0.2183 8.8152 3.0285 0.6107 78.0799 119 9473 408
1000 0.0527 2.1529 3.0191 0.4233 4.8143 221 9511 268
2500 0.0265 1.0827 3.0116 0.2716 1.2460 250 9449 301
5000 0.0608 2.4829 3.0627 1.2785 7.7991 245 9471 284

Table 3.3: Summary statistics for #o.4nj ho An and #o.i,o.4™ for various n, for Weibull data 
generated with 9 = 100, /3 =  2.
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n 9r
r =  0.2n r = 0.4n r =  0.6n r =  0.8n r =  l.On

25 4910.1470 545.8730 64.2378 18.3207 19.6841
50 3199.5568 260.1012 28.9901 26.1206 30.5296
100 1460.4282 113.5438 25.4638 15.0040 19.6485
1000 94.0605 14.8791 15.4257 9.0157 9.8398
2500 48.9845 10.7047 1.6297 0.0149 0.6302
5000 34.8682 0.0736 0.2704 1.3046 2.0840
n P r

r =  0.2n r  =  0.4n r =  0.6n r =  0.8n r =  l.On
25 8509.0987 3613.7228 2655.9902 1696.8138 931.6946
50 3604.3806 1498.4534 975.7929 652.6939 470.9069
100 1263.8783 758.5249 345.4412 283.6994 301.5820
1000 137.5339 65.4299 26.9748 17.8407 6.4525
2500 40.0567 45.6132 10.7781 5.5650 1.4498
5000 21.1457 28.2331 13.6265 4.6236 5.5368
n £ 0.l,r

r  =  0.2n r =  0.4n r = 0.6n r = 0.8 n r =  l.On
25 195.7168 199.5689 224.2453 253.0174 252.8119
50 92.8809 100.1875 113.7228 115.5903 128.4058
100 70.1326 78.0799 83.6202 103.4977 107.0821
1000 5.0896 4.8143 5.0348 8.6360 8.7274
2500 1.8647 1.2460 0.1048 0.2265 0.1188
5000 9.1868 7.7991 5.7883 4.1265 4.0784

Table 3.4: K 2 statistics for 0r, (3r and Ro.i.r for various r, n, for Weibull data generated with 
0 = 100,0  =  2.
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3.2 .2  S im ulation  Study: th e  W eibull D istr ib u tio n

Table 2.6, based on the ball bearings data where n =  23, shows the approximate 95% 
confidence intervals for the Weibull parameters and Ro.i assuming asymptotic theory for 
the MLEs. Now we consider the sampling distributions of 9r,(3r and Bo.i,r , bearing in mind 
that the theory means symmetrical confidence intervals.

We begin with parameter values 9 = 100, (3 = 2 and set, say, r =  0.4n. The resultant 
summary statistics are given in Table 3.3, while the histograms are presented in Figures
3.2, 3.3 and 3.4 for 9,(3 and £?o.i respectively. As in previous studies, we see the marginal 
distributions of MLEs become more Normal (but rarely to the extent that they would 
be regarded as acceptably so) as the sample size increases. The coverage of the probability 
intervals are good (close to 9500) for #o.4n and Bo.i,o.4n for all n we have considered, but this 
is far from the case for (3q±u, most clearly when n < 100. Moreover, there is a much larger 
number of the MLEs of (3 falling above the upper limit than below the lower limit, implying 
right skewness of the distributions of (3r . As a result, the distributions of I?o.i,o.4n also seem 
to skew to the right, and we only approach symmetry when n  =  5000. Besides these outputs, 
Table 3.4 furnishes the assessment of Normality when data is from a Weibull distribution. 
In general, and entirely as expected, we obtain smaller K 2 values with increasing r and n. 
More bold values are found in the distribution of Ro.i.ri however, these always correspond 
to large sample sizes.

Since (3 controls the shape of a Weibull distribution, it is often the quantity of interest 
in real-life situations, and we next consider the rate at which its distribution converges to 
Normality, for different shape parameter values and censoring levels.

Focus on j3r

We have already seen that, with (3 = 2, the non-Normality in the distribution of /?r was 
partially attributable to the problem of right skewness, particularly in small samples (n < 
100). But, because (3 = 2 > 1 implies an increasing failure rate, it might be the case that 
the line /3 =  1 acts as a lower limit to the simulated values of (3, and consequently, we were 
more likely to observe large estimates of (3, leading to a right skewed sample. This gives 
rise to the following question: would changing the nature of the data, as determined by the 
shape parameter (3, reduce the (right) skewness of the distribution of (3r?

We now consider some alternative shape parameter values, keeping the scale parameter 
constant (at 100), to assess the extent to which these conclusions can be regarded as typical. 
We take (3 = 0.5 (negative aging/improvement over time) and 4 (positive aging/deterioration 
over time), and r = 0.4n (as before); see Figure 1.5 for the effect of varying (3 on the shape of 
the Weibull pdf. The summary statistics for properties of /?o.4n are listed in Tables 3.5 and 
3.6 respectively. We observe values in striking resemblance between these tables and Table
3.3, and that the distributions remain right skewed; this is then confirmed by the associated 
histograms (see Figures 3.5 and 3.6). There is generally reasonable percentage of the 104
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n 9i z{g i) 92 Z ( 9 2 ) K 2 95% prob. intervals
Below Within Above

25 1.8038 51.1765 9.9896 37.4427 4020.9896 0 8257 1743
50 0.9506 33.1301 4.7138 19.7399 1487.2668 10 8908 1082
100 0.6346 23.8463 3.7010 10.7796 684.8439 45 9146 809
1000 0.1996 8.0768 3.0535 1.1009 66.4463 151 9487 362
2500 0.1005 4.0957 3.0038 0.1143 16.7879 202 9483 315
5000 0.0632 2.5795 2.9834 -0.3049 6.7467 205 9484 311

Table 3.5: Summary statistics for /§o.4n f°r various n, for Weibull data generated with 
6 = 100,(3 =  0.5.

n 9i Z ( 9 i ) 92 Z { 9 2 ) K 2 95% prob. intervals
Below Within Above

25 1.6642 48.7442 8.4814 34.3752 3557.6553 0 8315 1685
50 0.9134 32.1286 4.5802 18.8038 1385.8331 13 8832 1155
100 0.6012 22.7578 3.5640 9.1094 600.8985 46 9201 753
1000 0.1811 7.3386 3.0843 1.6897 56.7108 158 9485 357
2500 0.1091 4.4440 3.0943 1.8776 23.2744 214 9465 321
5000 0.0621 2.5352 3.0133 0.3062 6.5209 190 9511 299

Table 3.6: Summary statistics for /?o.4n f°r various n, for Weibull data generated with 
6 =  100, j3 = A.

replications of f30An within the 95% probability limits, derived from the known parameter 
values. However, for n < 100, nearly all of the excluded estimates are greater than the 
upper limit, revealing a severe non-symmetry in small samples. Indeed, when n =  25, we 
notice that for both f3 values considered, the remaining 5% all are above the upper limit. A 
reduction in skewness can be observed as n increases. Also tabulated in Tables 3.7 and 3.8 
are the K 2 values for various r and n, gradually falling below 5.9915 as r and n approach 
infinity. We see that we might be prepared to accept that the sample distribution does, in 
fact, follow a Normal distribution at n > 2500 for /3 > 1, and at n > 5000 for /3 < 1.

Therefore, the sampling distributions of the MLEs become more Normally distributed 
when the shape parameter value increases. In general, these distributions seem to be (right) 
skewed, and the convergence to Normality is slow, and we can only sensibly assume Nor­
mality when n > 2500.

3 .2 .3  S im u lation  Study: th e  B urr D istr ib u tio n

Table 2.13 shows the approximate 95% confidence intervals for a, t and Bo.i for the arthritic 
patients data where n = 50, assuming asymptotic theory for the MLEs. Nevertheless, 
are these asymptotic assumptions suitable in the inference of a sample as small as the 
arthritic patients data? To assess such assumptions when data is from a Burr distribution, 
we choose the values a  =  4 and r  =  3. Table 3.9 presents, for r = 0.6n, the relevant 
summary statistics for So.6n> ^o.6n and Ro.i,o.6n based on 104 replications. The coverage
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Figure 3.5: Histograms of /30.4n for various n, for Weibull d a ta  generated w ith 6 =  100, /3 =
0.5.
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Figure 3.6: Histograms of f30An for various n, for Weibull d a ta  generated with 6 = 100, =  4.
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n r =  0.2n r =  0.4n r =  0.6n r =  0.8n r =  l.On
25 8450.8815 4020.9896 1998.0479 1466.5978 1140.0336
50 3234.4068 1487.2668 865.5300 667.0570 484.0441
100 1730.1939 684.8439 406.0410 271.7092 263.7248
1000 119.3940 66.4463 43.1624 26.8985 29.5334
2500 50.2340 16.7879 8.5018 8.5729 6.3537
5000 19.1902 6.7467 4.4144 0.9676 2.1967

Table 3.7: K 2 statistics for (3r for various r, n, for Weibull data generated with 9 =  100, (3 = 
0.5.

n r = 0.2 n r = 0.4n r =  0.6n r = 0.8n r = l.On
25 6664.5081 3557.6553 1737.1188 1177.1974 1111.8832
50 3610.2131 1385.8331 947.6087 586.4931 571.7761
100 1436.0637 600.8985 433.5450 284.8207 234.3522
1000 157.7135 56.7108 29.1919 27.4829 25.4924
2500 61.2223 23.2744 9.1173 3.4602 5.7275
5000 20.5511 6.5209 7.7274 11.9036 7.3604

Table 3.8: K 2 statistics for (3r for various r, n, for Weibull data generated with 9 = 100, /3 =  
4.

n ^0.6n 95% prob. intervals
91 Z ( 9 i ) 92 Z { 9 2 ) K 2 Below Within Above

25 39.3826 152.5583 2203.9356 75.0381 28904.7597 0 7916 2084
50 4.9860 83.7584 94.9171 62.0716 10868.3500 0 8558 1442
100 1.3586 42.7943 6.4711 28.4966 2643.4130 1 8944 1055
1000 0.3838 15.1543 3.3711 6.4622 271.4116 114 9489 397
2500 0.2498 10.0547 3.0741 1.4964 103.3366 143 9494 363
5000 0.1373 5.5848 2.9990 0.0162 31.1901 195 9485 320
n ”̂0.6 n 95% prob. intervals

9i Z ( 9 i ) 92 Z ( 9 2 ) K 2 Below Within Above
25 1.1069 37.1036 5.4731 24.1841 1961.5480 14 8680 1306
50 0.7171 26.4441 3.9511 13.4749 880.8608 35 9112 853
100 0.4502 17.5727 3.2013 3.7796 323.0863 59 9260 681
1000 0.1753 7.1087 3.1021 2.0228 54.6247 165 9512 323
2500 0.1165 4.7421 2.9595 -0.8088 23.1418 190 9486 324
5000 0.0414 1.6924 3.0010 0.0577 2.8676 207 9507 286
n -̂ 0.1,0.6n 95% prob. intervals

91 Z { 9 i ) 92 Z ( 9 2 ) K 2 Below Within Above
25 0.1538 6.2490 3.0050 0.1391 39.0696 134 9375 491
50 0.1166 4.7476 2.9348 -1.3404 24.3365 142 9487 371
100 0.0668 2.7274 2.8715 -2.7720 15.1225 157 9480 363
1000 0.0751 3.0633 3.0256 0.5522 9.6889 203 9496 301
2500 0.0156 0.6370 2.9835 -0.3040 0.4982 242 9489 269
5000 -0.0182 -0.7434 2.9884 -0.2028 0.5937 227 9512 261

Table 3.9: Summary statistics for do.6n, ^o.6n and Bo.i,o.6n for various n, for Burr data 
generated with a = 4, r  =  3.
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Std Dev -10 39396 
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Figure 3.7: Histograms of d:o.6n for various n, for B urr d a ta  generated with a  = 4, r  =  3.
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r-0.6n, n-25

r-0.6n, n-100 r-0.6n, n-1000

r-0.6n, n-6000

1,000-

r*0.6n, n-50

Mean-3.1592 
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N-10.000
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Figure 3.8: Histograms of fo.6n for various n, for B urr d a ta  generated with a =  4, r  =  3.
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Figure 3.9: Histograms of Ro.i,0.6n for various n , for B urr d a ta  generated w ith a  =  4, r  =  3.

25



3.2. TESTS OF UNIVARIATE NORMALITY 97

of the probability intervals for CMo.6n and ro.6n improve as n increases, but more estimates 
outside the limits are above the upper limit, again suggesting right skewness of the MLEs. 
In contrast, the coverage and spread of the estimates of L?o.i are much better than either 
parameters. Clearly, we are led to the same conclusions as for the previous two lifetime 
models, where the distributions of the MLEs becoming more Normal as the sample size 
increases. This is apparent from the histograms (Figures 3.7 to 3.9), and re-enforced by the 
K 2 statistics. Note also for graphical convenience, we truncate, in Figure 3.7, the cm-axis at 
50 when n = 25; this excludes the following 29 estimates

50.5658 53.2722 53.2722 55.1094 55.3440 57.3566 58.5072 59.8007
63.5590 64.4777 64.7645 64.7666 64.7967 64.7967 65.5133 66.8281
67.7875 71.6625 72.7258 73.9242 74.4186 77.0094 87.8581 91.6693

197.3220 209.7272 238.0291 478.6130 675.6811

and at 20 when n = 50; excluding the following 6 estimates

20.6613 20.8016 21.5761 22.6671 40.8366 61.3055

As a result, the Normal curves are omitted in the first two plots, but would clearly not be 
a good fit in either case. Table 3.10 continues this study for various censoring levels using, 
as before, 104 estimates of a , r  and Ro.i- We note that for no sample size considered is the 
Normal distribution regarded as a suitable model for the distribution of a r, as indicated by 
K 2 statistics well above 5.9915 in Table 3.10, whereas the analysis of r r reports a few bold 
entries. More such entries are observed in the consideration of -Bo.i,r, but all are associated 
with large r and n.

As with the Weibull distribution, it seems that right skewness is typical in the distrib­
utions of the MLEs for Burr shape parameters for small samples, typically, less than 1000. 
Tables 3.11 and 3.12 are based on a  = 0.9, r  =  3, whilst Tables 3.13 and 3.14 are based on 
a = 4, t  = 0.9; we see that, regardless of the shape parameter values chosen, the progress 
towards Normality is quite slow, especially in the case of CMr, as indicated by Figures 3.10 
and 3.11. In fact, we should not formally accept the hypothesis of Normality even when 
n =  5000 for cm, and when n  =  2500 for r.
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n GL 7*
r =  0.2n r  =  0.4n r =  0.6n r =  0.8n r = 1.0 n

25 39737.9208 27080.4244 28904.7597 13652.1224 3849.8656
50 39780.0164 18911.5790 10868.3500 3347.9557 1686.0013
100 23125.6237 6267.3671 2643.4130 1703.6368 873.1987
1000 1734.0031 562.9673 271.4116 128.7738 53.2084
2500 599.1690 222.5042 103.3366 30.0695 22.1464
5000 268.9492 86.5960 31.1901 14.7940 13.4892
n Tr

r =  0.2n v =  0.4n r =  0.6n r =  0.8n r = l.On
25 5593.8574 3582.4246 1961.5480 1284.3626 765.3068
50 6746.5910 1520.3691 880.8608 491.2848 340.5830
100 1785.8462 670.2142 323.0863 214.1388 134.5801
1000 158.5951 57.0847 54.6247 27.0103 15.1617
2500 47.0871 26.3294 23.1418 10.7947 1.7895
5000 20.1953 6.7533 2.8676 6.0837 5.0929
n B q.1 ,r

v =  0.2n r  =  0.4n r =  0.6n r =  0.8n r =  l.On
25 25.0947 26.3841 39.0696 56.7920 64.8937
50 15.8024 17.8928 24.3365 24.9160 27.2481
100 11.6343 13.7021 15.1225 8.1730 7.6625
1000 4.1282 4.4379 9.6889 6.2888 11.2315
2500 0.6176 0.6931 0.4982 0.3401 1.2610
5000 2.1233 2.4685 0.5937 1.1200 1.1565

Table 3.10: K 2 statistics for &r , f r and Bo.i,r for various r, n, for Burr data generated with 
a  = 4, r  =  3.

n 9i z{gi) 92 Z { 9 2 ) K 2 95% prob. intervals
Below Within Above

25 1.7930 50.9939 11.1209 39.2944 4144.4312 74 8938 988
50 0.9319 32.6276 5.2261 22.8785 1587.9825 98 9200 702
100 0.5151 19.8528 3.6995 10.7627 509.9690 122 9373 505
1000 0.1178 4.7960 3.0142 0.3247 23.1074 208 9433 359
2500 0.1050 4.2772 2.9894 -0.1812 18.3272 208 9520 272
5000 0.0862 3.5149 3.0606 1.2394 13.8904 213 9515 272

Table 3.11: Summary statistics for do.6n for various n, for Burr data generated with a = 
0.9, r  =  3.

n r =  0.2n r — 0.4n r = 0.6 n r =  0.8n r =  l.On
25 39744.9162 15684.7942 4144.4312 1527.0629 612.6169
50 35684.9476 5450.1748 1587.9825 474.4686 303.1235
100 10009.8376 2561.5849 509.9690 167.7750 103.6142
1000 863.5744 138.5899 23.1074 18.3585 17.8973
2500 248.6987 79.2532 18.3272 14.6199 13.0677
5000 72.7707 24.0838 13.8904 7.9560 8.3689

Table 3.12: K 2 statistics for a r for various r, n, for Burr data generated with a = 0.9, r  = 3.
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r*0.6n, n*26 r-0.6n, n-60
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Figure 3.10: Histograms of cio.6n for various n, for B urr d a ta  generated with a  = 0.9, r  = 3.
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Figure 3.11: Histograms of fo.6n for various n, for Burr d a ta  generated w ith a  =  4, r  =  0.9.
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n 9i z{g i) 92 Z { 92) K 2 95% prob. intervals
Below Within Above

25 1.3026 41.5977 6.7776 29.5870 2605.7590 5 8639 1356
50 0.7431 27.2386 4.0680 14.6034 955.1998 26 9098 876
100 0.4486 17.5128 3.3262 5.7894 340.2138 74 9274 652
1000 0.1663 6.7479 3.1102 2.1712 50.2485 178 9473 349
2500 0.1264 5.1427 2.9948 -0.0707 26.4528 191 9485 324
5000 0.0560 2.2851 3.0158 0.3567 5.3488 206 9512 282

Table 3.13: Summary statistics for fo.6n f°r various n, for Burr data generated with a = 
4, r  =  0.9.

n r = 0.2 n r = 0.4n r = 0.6n r = 0.8n v =  l.On
25 5570.1977 3502.3529 2605.7590 1383.7825 895.7894
50 4281.4335 1350.6207 955.1998 579.8398 491.7778
100 1667.1451 703.7234 340.2138 206.5481 99.0376
1000 152.0832 74.7403 50.2485 14.5300 17.5078
2500 59.7999 43.9957 26.4528 7.0937 3.2418
5000 29.5796 13.3561 5.3488 5.4923 7.8803

Table 3.14: K 2 statistics for f r for various r, n, for Burr data generated with a = 4, r  =  0.9.

3.3 Tests o f Bivariate Norm ality

A necessary, but not sufficient, condition for multivariate Normality is that each marginal 
distribution is univariate Normal. Hence, as we have proceeded here, it is usual to start 
with univariate tests for marginal Normality, at which detection of one non-Normal marginal 
implies that the joint distribution is non-Normal. A fair amount of work is available on tests 
of multivariate Normality, many of which are generalisation of univariate procedures. On the 
basis of power studies and the ease of implementation, perhaps the most widely referenced 
multivariate Normality test is due to Mardia; see Gnanadesikan (1977) and Thode (2002) 
for excellent summaries of the merits of this test. The sample estimates of multivariate 
skewness, denoted by (gi,k) and kurtosis (p2,fc) (f°r & variates), were first presented by 
Mardia (1970), defined, respectively, at (2.23) and (3.12) therein; Mardia h  Foster (1983) 
then proposed several omnibus tests based on these two measures, including the statistic, 
which, for A: =  2, is

•S^ =  {^(5 l,2 )}2 +  {^(S2,2)}2 ,

in which W  (<71,2), W  {9 2 ,2 ) are standardised bivariate measures of skewness and kurtosis us­
ing the Wilson-Hilferty approximation, as given, respectively, by (3.7) and (3.10) in Mardia 
& Foster (1983). The case k = 2 will apply to both the Weibull and Burr cases here; again, 
under the hypothesis that the joint distribution of the estimators is multivariate Normal, we 
have Syy ~  x h  with a corresponding assessment of joint Normality of (9r,Pr 'j in the case of 
Weibull, and, of (ar, r r) for Burr distribution, using the critical value —2 In A for an upper 
tail probability of A. Hence, S%y < 5.9915 indicates that we can accept the hypothesis or
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n Pi,2 W (g  i,2) 92,2 W (g2,2 ) s w Within 95% prob. ellipse
25 1.7758 21.5755 12.2541 29.5184 1336.8399 8842
50 0.6014 13.8252 9.0716 11.0504 313.2491 9170
100 0.2410 9.1394 8.3841 4.4854 103.6476 9328
1000 0.0248 2.1522 8.1365 1.6955 7.5068 9495
2500 0.0060 -0.1593 7.9853 -0.1481 0.0473 9478
5000 0.0086 0.3270 8.0455 0.5996 0.4664 9464

Table 3.15: Summary statistics for (0 o .6 n , P o . 6 n )  f ° r various n ,  for Weibull data generated 
with 9 =  100, p  =  2.

bivariate Normality at the 5% significance level. As before, by simply counting how many 
of the estimates of (0, (3) and (a, r) within the corresponding probability ellipse derived 
from the true parameter values, we can judge the extent to which the Normal assumption 
is appropriate or justifiable.

3.3.1 S im ulation  Study: th e  W eibull D istr ib u tio n

For our first example, we take parameter values to be 9 = 100 and (3 — 2. Knowing these 
true values, the scatter plots of #o.6n against /30 6n, superimposed with the large-sample 95% 
probability ellipses, are presented in Figure 3.12 for varying n. These seem to suggest that 
as the sample size increases, the joint distributions of ^#o.6n> Po.er ĵ become more and more 
Normal - as indicated by the S%y values in Table 3.15 - and axe more uniformly spread 
around (100, 2) - as shown by the number of replications enclosed in the probability regions. 
We also notice that, as a result of the right skewness in the distribution of (3r, as observed in 
the histograms, the sampling distribution of the Weibull MLEs is distinctly non-elliptical at 
n = 25 and 50. Moreover, from Table 3.16, which gives the Syy values for various r and n, 
it can be deduced that the assumption of the x! distribution as the null distributions of the 
Syy statistics is inappropriate for small samples. In particular, the pattern observed here 
is entirely consistent with the findings in the corresponding univariate analyses, in which 
increasing censoring number and sample size leads to a lower value. In fact, we are in 
a position to accept formally the hypothesis of joint Normality only when n > 1000.

More numerical illustrations are shown in Table 3.17 (based on simulations with 9 = 
100, (3 = 0.5) and Table 3.18 (based on simulations with 9 = 100, (3 = 4); a similar pattern is 
observed whether we have negative or positive aging over time, suggesting lack of Normality 
in small samples across the board. Furthermore, the rate at which the sampling distribution 
of ^9r,(3r  ̂ approaches a Normal distribution increases when the shape parameter value 
increases. Specifically, we might be prepared to accept the hypothesis of joint Normality at 
n > 1000 for (3 > 1, but at n > 2500 for (3 < 1.
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■ MLEs —  0.05-prob. ellipse MLEs 0.05-prcb. ellpse

MLEs ^ — 0.05-prob. elipse MLEs ^ — 0.05-prob. ellpse

■ MLEs — 0.05-prob. elipse [~ • MLEs — O.OSprob. ellpse

Figure 3.12: Scatter plots of (#o.6n,/?o.6n), superimposed with asym ptotic 0.05-probability
ellipses, for various n, for Weibull d a ta  generated w ith 9 = 100, (3 = 2.
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n r =  0.2n r =  0.4n r =  0.6n r =  0.8n r = l.On
25 9509.1576 2551.6537 1336.8399 682.6428 343.1559
50 4897.6596 794.8631 313.2491 182.7758 148.8660
100 2030.4556 346.9915 103.6476 69.6449 101.4419
1000 140.3048 20.1564 7.5068 5.0256 1.1946
2500 61.0323 15.3622 0.0473 0.6115 0.1085
5000 32.8853 4.8511 0.4664 0.6943 1.5280

Table 3.16: Syy statistics for the multivariate Normality of (9r ,j3r) for various r, n, for 
Weibull data generated with 9 =  100, (3 = 2.

n r — 0.2 n r =  0.4n r =  0.6n r = 0.8n r = l.On
25 18850.5749 5898.3124 1900.7956 1251.4989 1129.9458
50 12977.7339 2691.4239 774.7061 517.5551 505.2621
100 11739.0954 1554.1767 541.5757 259.7114 245.0951
1000 787.6916 81.0223 31.4821 20.0178 15.5689
2500 341.7878 28.1952 9.0086 3.9388 4.0507
5000 156.6740 11.0087 0.8059 2.9406 6.9522

Table 3.17: statistics for the multivariate Normality of (9r,(3r) for various r, n, for
Weibull data generated with 9 = 100, /? =  0.5.

n r =  0.2n r =  0.4n r = 0.6n r =  0.8n r =  l.On
25 6466.0566 2230.1012 651.0079 361.8537 389.5068
50 4190.9002 693.4733 307.1663 171.9068 225.7919
100 1522.3346 220.8830 129.3909 75.8062 66.8740
1000 133.5082 14.1478 5.7476 4.6976 4.0813
2500 49.7458 7.9932 0.2038 2.1638 1.0029
5000 16.9615 3.0223 0.3063 1.0016 0.2981

Table 3.18: Syy statistics for the multivariate Normality of (9r, j3r) for various r, n, for 
Weibull data generated with 9 = 100, P = 4.

n Pi,2 W (g 1>2) 92,2 W {g2,2 ) 02DW Within 95% prob. ellipse
25 90.8954 90.9781 297.3183 93.4697 17013.5927 8371
50 2.8237 25.8525 14.7995 37.9687 2109.9701 8937
100 1.1620 18.2027 10.3626 20.2367 740.8614 9137
1000 0.0902 5.4676 8.2545 3.0581 39.2468 9465
2500 0.0214 1.8572 7.9807 -0.2055 3.4913 9517
5000 0.0102 0.5813 8.0945 1.1952 1.7664 9493

Table 3.19: Summary statistics for (do.sn, ^o.8n) for various n, for Burr data generated with
a  =  4, r  =  3.
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■ MLEs — 0.05-prob. ellipse ■ MLEs 0.05prob. ellpse

■ MLEs ^ - 0 .0 6 - prob. ellipse

r = 0.8n, n = 1000

3.4

2.6  T T 1--------------1-------------- ,------------- ,--------------,------------- ,-------------

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

a

| » MLEs~^~0.05-prob. elipse

MLEs ^ ” 0.05-prob. ellipse MLEs — 0.05-prob. elipse

Figure 3.13: Scatter plots of (do.SmR).8n)j superimposed w ith asym ptotic 0.05-probability
ellipses, for various n, for Burr d a ta  generated with a  =  4, r  = 3.
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n r =  0.2n r  =  0.4n r  =  0.6n r =  0.8n r  =  l.On
25 215030.0009 59433.7760 85568.0385 17013.5927 2317.8424
50 215892.2746 36880.0460 15186.6148 2109.9701 761.1056
100 47954.9946 6781.8154 1548.0777 740.8614 312.7829
1000 1622.8513 268.1502 98.1737 39.2468 14.0501
2500 469.7332 100.6247 24.2774 3.4913 1.1563
5000 166.7399 26.5937 3.4072 1.7664 2.0133

Table 3.20: S^  statistics for the multivariate Normality of (ar, f r ) for various r, n, for Burr 
data generated with a  = 4, t = 3.

n r =  0.2n r =  0.4n r =  0.6n r  =  0.8n r =  l.On
25 215318.4273 17339.7582 3802.4482 2998.9998 2908.3681
50 151323.6236 3856.9657 1233.2114 601.9089 500.2051
100 10661.6125 1400.7537 375.8319 179.3075 143.6304
1000 357.7632 56.6306 15.7042 13.5700 10.0471
2500 84.0961 29.4680 7.9595 7.5043 9.6201
5000 21.5596 5.5473 4.8758 1.3485 2.5061

Table 3.21: Syy statistics for the multivariate Normality of (ar, f r) for various r, n, for Burr 
data generated with a  =  0.9, t — 3.

3.3 .2  S im ulation  Study: th e  B urr D istr ib u tion

We now perform a similar series of investigations with data generated from the Burr distrib­
ution. Figure 3.13 together with summaries in Table 3.19 show the simulation results based 
on 104 repetitions assuming a  = 4 and t  =  3; this is consistent with conclusions drawn in 
the univariate tests, at which we require a very large sample size in order for the distribution 
of (<$0,871, ̂ o.8n) to be Normal. Even when 80% of the failures are observed, the scatter plots 
are not entirely consistent with elliptical probability regions for small samples; rather, they 
extend across to large values of a  in a systematic fashion. In Table 3.20, we see smaller 
values with increasing r and n, but only a few are lower than 5.9915. Furthermore, Table 
3.21 tabulates S^r statistics for data generated with a = 0.9, r  =  3, while Table 3.22 is for 
data generated with a  =  4, r  =  0.9; these results, once more, confirm the lack of Normality 
in small data sets, seemingly independent of the choice of parameter values.

n r =  0.2n r = 0.4n r =  0.6n r =  0.8n r =  l.On
25 164369.6145 170832.8569 147506.2618 5589.2740 4630.4679
50 195577.2053 24340.0167 8657.3802 3087.4125 949.4046
100 62413.5502 10765.1581 1599.4672 641.2627 230.0604
1000 1978.5703 224.9025 77.3924 19.3295 6.4604
2500 386.3123 93.0322 23.7892 5.0736 0.5012
5000 203.7194 36.3863 6.3676 1.4882 2.5661

Table 3.22: S y y  statistics for the multivariate Normality of (a r, f r) for various r, n, for Burr
data generated with a  =  4, r =  0.9.
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3.4 Relative Likelihood Contour P lots

We have observed that Normality was not reached until samples were very large; this covers 
both the univariate distributions of MLEs of parameters and functions of these MLEs, such 
as I?o.i;r, as well as the joint distributions of MLEs of parameters. Moreover, the Normal 
approximation is suitable only if the number of failures is large. Consequently, it does not 
seem appropriate to use the usual Normal critical values to establish confidence intervals 
from MLE in samples of small to moderate size.

As previously indicated at Section 3.1, we will use the relative likelihood function of 7r, 
defined as

RW = T§ry w
so that 0 < R  (7r) < 1 for all 7r, as an alternative for assessing the precision of MLEs in 
relatively small samples. Therefore, if R  (7r) > A, then the vector valued 7r is said to have at 
least 100 (1 — A) % of the maximum consistency possible under the model. For now, in a two- 
parameter case, a contour map of R ( 7Ti,7T2) portrays this consistency over the parameter 
space; for instance, points inside the 0.5-contour constitute fairly plausible parameter pairs, 
whereas values outside the 0.01-contour are very implausible. Kalbfleisch (1979) discusses 
the use of contour plots of R  (n) to obtain confidence limits for a single set of data. We adapt 
this approach to provide confidence regions for the sampling distribution of (7Ti,^ 2); this 
involves specifying - for any parameter values, sample size and censoring regime - an idealised 
sample, and then calculating and plotting the contours for that idealised sample. One 
intuitive instance of an ideal sample can be obtained by taking the corresponding expected 
order statistics as data values, but we note that other methods may be possible; thus the 
ML estimates found from this sample will, naturally, possess maximum plausibility, and 
hence can be employed to produce the idealised or expected relative likelihood contour, as 
a counterpart for the large-sample probability ellipse. The contour plots are then validated 
for various r and n  using simulation experiments.

3.4 .1  R ela tive  L ikelihood C ontour P lo ts  in  th e  W eibull D istr ib u tion

Suppose Ai, A2, • • •, with 0 < Ai < A2 < ••• < 1, is a set of values for which contours 
on the relative likelihood surface are to be plotted. Watkins & Leech (1989) outline an 
algorithm for drawing relative likelihood contours for data from the Weibull distribution; 
we summarise the main stages as follows:

S tage 1 Location of the MLEs, in which we find A-), the centre of all contours.

S tage 2 Defining the drawing area — by evaluating the relative likelihood at a series of 
fractions and multiples of 9r and /?r , we search the 0 -/3  plane for a rectangular within 
which the largest contour corresponding to Ai will lie. In practice, the transformations 
6 = a9r and (3 = b(3r introduce some numerical stability and flexibility over the range
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of possible parameter values.

S tage 3 Drawing contours — first find, and then join together a large number of points 
found from numerically solving the equation I (9, j3) — I (or, =  In Ai and its partial 
derivatives wrt a and b. We again benefit from the numerical stability introduced by 
these transformations. This process is repeated for each contour.

Illu stra tio n : B all bearings d a ta

We show here contour maps for the ball bearings data with censoring as in Table 2.6, with 
A =  0.01,0.05,0.1 and 0.5. Thus, the first case yields approximate 99% confidence regions 
for (9, ft). Figure 3.14 shows the effect of r on the contours. In general, for given A, we 
see that the contours get smaller as r increase; this is obvious because more failures would 
provide more information in estimating the parameters. We also note that contours extend 
over larger values in the /9-axis, but over smaller values in the 0-axis. It is also clear that, as 
A increases, contour areas drop dramatically and the contour shapes become more elliptical. 
Further, the shift in location, in line with the values in Table 2.6, is now more apparent.

It is interesting to compare and contrast the relative likelihood regions with the con­
fidence regions based on asymptotic Normality. Watkins (2004) considers this issue for a 
sample of size 100 subject to Type I censoring. Figure 3.15 is an example using the ball 
bearings data at the 12th failure. With r fixed, the two regions seem largely to coincide, 
and approach to complete overlap as A increases. Moreover, the relative likelihood contours 
consistently appear tangential to the ellipses close to their minor axes. Intuitively, this may 
provide an alternative approach to locate the initial point in drawing a contour, by locating 
the first point on the minor axis of the ellipse, and then calculating the relative likelihood 
there. If this relative likelihood value is close to A, then it could serve, possibly with further 
searching, as an initial point on the contour. The effectiveness of this procedure, in com­
parison with performing a numerical search as in Watkins & Leech (1989), will be explored 
elsewhere.

E xpec ted  R elative  Likelihood C ontours

Although the above discussion is based on a single set of data, we may adapt the approach 
to provide probability regions for the sampling distribution of (6r , /3r^j; as previously noted, 
this requires the expectations of order statistics for lifetimes drawn from the Weibull distri­
bution, given by

i - i  . , f { _ i \  r (jj +
E  [Xi;n] =  c ^ e  E (—i) V  1+V (3.3)

k=o V k J (n — k)~P

Exam ple: r = 15, n = 25 We assume n =  25 and 9 = 100,/9 =  2 to illustrate this 
experimental set-up; the corresponding (uncensored) idealised sample, calculated from (3.3),
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X Idealised MLEs 0.05-relative likelihood contour

Figure 3.16: 0.05-relative likelihood contour plot for r = 15, n =  25, for ideal Weibull data 
generated with 9 = 100, ft = 2.

is ________________________________________________
17.7245 26.8619 33.9372 40.0338 45.5588
50.7180 55.6346 60.3916 65.0497 69.6576
74.2572 78.8869 83.5849 88.3912 93.3502
98.5144 103.9482 109.7355 115.9900 122.8762

130.6478 139.7332 150.9559 166.2711 192.8568

so that censoring at, say, r = 15 gives the following failure times

17.7245 26.8619 33.9372 40.0338 45.5588
50.7180 55.6346 60.3916 65.0497 69.6576
74.2572 78.8869 83.5849 88.3912 93.3502

93.3502+ 93.3502+ 93.3502+ 93.3502+ 93.3502+
93.3502+ 93.3502+ 93.3502+ 93.3502+ 93.3502+

at which 015 =  97.2027 and ft15 = 2.2306 (we use * to indicate ML estimates obtained from 
the idealised sample). Hence, the point (97.2027,2.2306) will act as the centre of the relative 
likelihood contour, as the most likely point to occur due to the method of experimentation. 
Figure 3.16 illustrates the 0.05-expected relative likelihood contour around f t \^ j , which 
clearly is not elliptical.
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r n
25 50 100 1000

0.2n 9rV
K

78.3288
2.7710

87.3439
2.3700

92.8523
2.1892

99.0496
2.0230

0.4n %
K

92.6713
2.3566

95.9604
2.1824

97.8055
2.0958

99.7268
2.0118

0.6n t
K

97.2027
2.2306

98.5117
2.1200

99.2135
2.0634

99.9081
2.0078

0.8n 9*r

K
99.2023

2.1685
99.6069
2.0883

99.8067
2.0466

99.9820
2.0056

l.On

K
100.2647

2.1377
100.1811

2.0741
100.1147

2.0400
100.0196

2.0051
A ^

Table 3.23: Idealised MLEs (9 r , (3 r) for various r, n, for ideal Weibull data generated with 
0 =  100,0  =  2.
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  ,   -
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Figure 3.17: Plot of 90 6n versus n, for ideal Weibull data generated with 9  = 100,/? =  2.
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1.8
0 200 400 600 800 1000 1200

n
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Figure 3.18: Plot of (306n versus n, for ideal Weibull data generated with 0 = 100, /3 =  2.

G eneral: varying r and  n Further illustrations are given in Table 3.23, which shows the 
idealised estimates of (9, (3) for various n when the ideal data, calculated with 9 = 100, (3 = 2, 
are subject to Type II censoring at the rth failure. Note that these values can be compared 
with their average counterparts in Tables 2.7 and 2.8, where we notice a generally good 
match in the results. The agreement is better shown in Figures 3.17 and 3.18 for r =  0.6n, 
where we see both 9r and (3r gradually converge to their true values as n increases.

We assume A =  0.05, and show in Figure 3.19, the contour maps for some ideal samples 
for various r and n; this yields the approximate 95% confidence regions for (9, (3), with 
centres I9r ,(3r ) as given in Table 3.23. When comparison is made with Figure 3.12 where 
r = 0.6n, the relative likelihood contours seem to move towards the probability ellipses in 
terms of both size and shape as n increases; we can expect similar convergence, perhaps at 
different rates, for other values of r.

A more detailed illustration is given assuming, say, r = 5 failures observed in a sample 
with n = 25; Figure 3.20 shows the joint distribution of ^9^,(3^ is certainly not elliptical - 
stretching rightwards in the ^-direction and upwards in the /3-direction - and hence it is non- 
Normal. On the other hand, the relative likelihood contour plot appears to capture more 
accurately than asymptotic probability ellipse the behaviour of the sampling distribution of 
^05, /35^, especially the right skewed pattern observed in the distributions of 05 and /35.

X

X

X

......................................X ...............
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45

40

35

»»
30

MLEs ^ “ 0.05-prob. e l l ip s e  0.05-likelihood region

Figure 3.20: The MLEs (x) together with 0.05-relative likelihood contour and asymptotic 
0.05-probability ellipse for (#5, /?5), for n  = 25, for Weibull data generated with 0 =  100, (3 = 
2 .

R elative Likelihood C ontour V alidation and  C om parison w ith  N orm al T heory  
P robab ility  Region

This illustration suggests a method to validate the use of relative likelihood contours to 
obtain confidence regions of the sampling distribution of MLEs in small samples; this in­
volves computing the relative likelihood for each simulated observations of ^0r ,/?r ^, and 
then counting the number of replications whose relative likelihood is >  0.05. Note that, in 
conjunction with idealised samples, (3.2) is now defined as a ratio of the likelihood calculated 
using the ML estimates to the likelihood calculated using ^0r ,(3r It is straightforward to

show tha t an observed point (0r,(3r ) is enclosed by the 0.05-relative likelihood contour if

lr (?r ,3 r ) - l r  { K X )  >  In 0.05,

where lr ^0r,/3r ĵ and lr (6r , /3r ĵ are obtained from (2.16) upon appropriate substitutions.

Accordingly, we expect to find 95% x 104 of within the 0.05-expected contour area.
As discussed in Section 3.3, this procedure can be repeated for the large-sample probability 
ellipse derived from Normal theory, to find the number of replications of (̂ 0r ,/3r ĵ enclosed 
in the probability region.
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r n
25 50 100 1000

0.2n 7949
6834

8826
7921

9168
8600

9450
9371

0.4n 8798
8403

9138
8919

9344
9197

9466
9443

0.6n 9063
8842

9267
9170

9411
9328

9492
9495

0.8n 9193
9022

9352
9280

9444
9369

9491
9484

l.On 9257
9091

9415
9295

9434
9392

9508
9517

Table 3.24: Number of replications of (0r,j3r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data generated with 
0 =  100,0  =  2 .

r n
25 50 100 1000

0.2 n 7709
5948

8581
7036

9004
7811

9406
9185

0.4n 8666
7958

9069
8679

9259
9003

9470
9434

0.6n 8958
8632

9185
9069

9282
9265

9464
9458

0.8n 8992
8864

9221
9199

9325
9312

9495
9502

l.On 9047
8870

9249
9208

9336
9332

9516
9514

Table 3.25: Number of replications of (6r,j3r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data generated with 
9 = 100,/? =  0.5.

Results for each combination of r, n and 6, f3 replicated are shown in Tables 3.24, 3.25 
and 3.26. We see at early censoring levels there are quite large disagreements between 
observed and expected values, but agreement improves as more items are allowed to fail, 
to increase the precision of the estimates yielded. We also see that the results approach 
9500 as n  increase, and are reasonably consistent across the various values of the shape 
parameter considered here. Most importantly, for n  < 100, the expected relative likelihood 
contours (upper entries) consistently contain more replications of ( Br , /3r ĵ than the elliptical 
probability regions (lower entries), indicating that the non-elliptical nature of the relative 
likelihood contours reflects more accurately the sampling distribution of (or, (3r ĵ for samples 
of small size.
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r n
25 50 100 1000

0.2 n 7979
6947

8797
8037

9139
8706

9447
9393

0.4n 8812
8397

9199
8938

9346
9219

9493
9469

0.6n 9078
8839

9280
9132

9369
9299

9524
9507

0.8n 9238
9069

9337
9242

9425
9356

9516
9504

l.On 9309
9108

9413
9280

9453
9404

9510
9503

Table 3.26: Number of replications of (0r,j3r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-prpbability ellipse (lower) for Weibull data generated with 
0 =100,(3 =  4.

3.4 .2  R e la tiv e  L ikelihood C ontou r P lo ts  in  th e  B urr D istr ib u tio n

Here, we will adapt the contour drawing procedure proposed by Watkins & Leech (1989), 
giving the necessary formulae at each stage.

Stage 1

Location of the Burr MLEs has been covered in Section 2.4, where the classical Newton- 
Raphson iterative method is used to maximise the profile log-likelihood function at (2.39) 
wrt r . With r r thus found, ar is computed at (2.38).

Stage 2

We note that the transformations for Weibull parameters accommodate differing scales 
in 6 and fi. The corresponding transformations are thus less essential in the Burr case (since 
both shape parameters are, generally, of the same order), but are nevertheless retained here. 
We thus define two working variables a and b such that

a  =  aa r (3-4)

and
t  = brr . (3.5)

Thus, a = b = 1 implies a  = a r and r  =  ry. For r-direction, we start with b = 1 so that the 
value of a  which maximises the relative likelihood is just r /  (T f +  jTc). In order to locate 
Tmin, we take a series of values for b decreasing from 1 in steps of 0.1. Hence, we move down 
from Tr until the relative likelihood is less than Ai. We then take a series of values for b 

increasing from 1 in steps of 0.1 when searching for Tmax- In this case, we again stop when
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Use multiples 
of Tr

Use  ̂ Use
fractions ( « . f )  multiples >’a n 

of a r | of a r

Use fractions 
of f r

Figure 3.21: Defining the drawing area in the a — r  plane about (ar, fy).

the relative likelihood is less than Ai. In Figure 3.21, this is illustrated by the two vertical 
arrows moving away from (ay,ry).

Likewise, for a-direction, we consider a series of fractions and multiples of ay, and, for 
each value of a, find the r  which maximises the relative likelihood for that value of a. The 
Burr log-likelihood function is given by (2.35), which is to be maximised wrt r ,  assuming a  
as fixed; the first- and second-order derivatives of (2.35) wrt r  are

r r  1 +  S f fi(  0) — (a +  l)T /}m  — aTc> m  (3.6)

and
- r r ~ 2 — (a +  1)^122 — otTc> 122

respectively. Again, the Newton-Raphson method is used, with which the initial estimate 
of the root of (3.6) is ry. This maximum value of the relative likelihood is computed, and 
hence one can search for the minimum and maximum values of a  that need to be considered. 
This is illustrated by the two horizontal arrows moving away from (a r , T r ) in Figure 3.21.

Stage 3

We use (3.2) to write
=  Lr (a, t )

1 Lr ( a r , T r ) ’

or equivalently,
tip Tj tp (̂ Qip̂ Tf j — In Aj.
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Thus, if we define
J~ (u, — Ip (jclolj*, &Tr ) Ip [otp, *rp̂  (3.7)

then the first point on this contour can be obtained by solving the equation

/ M ) - l n ( A i )  =  0 (3.8)

for b with a = 1. While there is no analytical expression for the root, we may employ the
Newton-Raphson approach which we require the partial derivative of /  (a, b) wrt b:

/ '  =  r b '1 +  TpSfti (0) -  (aar +  1) TrTfAU (brT) -  aSrr rTc,m  (6rr ) , (3.9)

together with Tmax/ r r  as the initial estimate.
To move around the contour, we compute the gradient of the tangent to the contour at 

this initial point, once more, with a =  1. This gradient is given by

.&
fi

(3.10)

where
/ '  =  ra -1 -  apTf (bTr) -  a rTc (ihrr ). (3.11)

The second point on this contour is therefore achieved by moving a distance 5 in the a — b 
plane along this tangent

5 f'a —► anew = a H---- b (3.12)
Jf? + f?

and
b ^ b new = b -  , 5Sa . (3.13)

y j! 2  +  f i2
When finding the subsequent contour points with these anew and bnew, a is fixed at the value 
of previous anew and an attempt is made to get a corresponding value of b solving (3.8). 
This is as discussed above, except that now bnew is taken to be the initial estimate of the 
solution of (3.8), and, more importantly, a = 1 in (3.8) and (3.9) no longer apply. Equation
(3.11) can now be recomputed and a and b updated again. _______

It should also be noted, however, that when the values of and f b/ y  / '2 +  f b2 are near 
to zero, the iterating process (for estimating b) may produce a value of a for which' no 
corresponding value of b solving (3.8) can be found; this indicates the contour is close to 
its extreme left or right edge. In such cases, we fix the value of b instead and try  to find 
a corresponding value of a which solves (3.8). As before, all searches must be numerical;
anew is treated as the initial estimate of the solution in (3.8) and the derivative f'a is used
to improve this estimate. In other words, we are performing a change of direction (or a 
change in slope) to the ellipse. By repeating this process it should be possible to complete
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the Ai-contour, after joining together numerous pairs of (a , r)  obtained.
We remark that the choice of 6 used in (3.12) and (3.13) will reflect the smoothness 

and accuracy of a contour plot, and is directly linked to computational cost incurred; a 
small 5 value will produce a large number of points used to draw a contour, but will, on the 
other hand, increase the computing time. Throughout this thesis, we have used 5 = 0.01; 
this seems to be sufficiently small in relation to the drawing area to allow us to regard the 
resulting contour plot as a smooth and accurate one.

Illustration: Arthritic patients data

The above stages are illustrated in a simple numerical example using the arthritic patients 
data. Here, we suppose that r = n  and A =  0.05; this yields the approximate 95% confidence 
regions for (a, r) under complete sampling. Appendix C presents the corresponding SAS 
code in more details.

Stage 1 Prom Table 2.13, the parameter estimates are

a  =  S5o =  8.2681 and ?  =  T50 =  5.0006.

Stage 2 Starting with b =  1 o  r  = ?, rescaling is repeated until the relative likelihood is
less than 0.05 at each end in the vertical direction to give

'Train =  3.5004 =  0.7r and Tmax =  7.0009 =  1.4?,

while for the horizontal direction, we have

Q?min =  4.1340 =  0.53 and a max =  15.7094 =  1.93,

found iteratively from an initial value of a  = a  (a =  1).

Stage 3 As outlined in Appendix C, the drawing stage consists of six separate iterative 
processes:

Process 1 Starting with a =  1 in (3.8), the Newton-Raphson approach yields b = 1.1842 on 
using r max/?  as an initial estimate. Hence, the first point on this contour is
(8.2681,5.9219) with the corresponding updated a, b values of 0.9906, 1.1807
respectively (see below).

a b a T ®new bnew
1 1.1842 8.2681 5.9219 0.9906 1.1807

Process 2 The drawing is continued leftward and downward using the same algorithm. However, 
the initial value of b here for the second point is 1.1807, that is, the final value 
of b obtained in the previous process. This process terminates when for a =
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0.5960, there is no corresponding value of b solving (3.8) can be found; thus, 
as indicated below, the contour has reached its extreme left at (4.9343,4.1973) 
after 54 iterations. For convenience, we have omitted the details for intermediate 
iterations.

i a b a r Q"new bnew
1 0.9906 1.1806 8.1907 5.9040 0.9813 1.1770
2 0.9813 1.1770 8.1136 5.8857 0.9720 1.1733

53 0.5988 0.8530 4.9508 4.2658 0.5968 0.8432
54 0.5968 0.8393 4.9343 4.1973 0.5960 0.8294

Process 3 We now find a for b fixed at 0.8294, using the last value of a computed in Process 2 
- 0.5960 - as initial estimate. Only 12 iterations were observed below, implying 
that the contour has a sharp left edge.

i a b a T Q>new bnew
1 0.5965 0.8294 4.9316 4.1474 0.5967 0.8194
2 0.5973 0.8194 4.9383 4.0975 0.5987 0.8095

11 0.6713 0.7627 5.5502 3.8141 0.6812 0.7617
12 0.6889 0.7617 5.6958 3.8090 0.6989 0.7615

Process 4 The procedure is continued in the rightward and upward direction, by solving (3.8) 
for 6 using a fixed at 0.6989. Note that here the starting value of b is 0.7615; we 
obtained 108 iterations as the follows.

i a b a r new bnew
1 0.6989 0.7617 5.7785 3.8091 0.7089 0.7619
2 0.7089 0.7621 5.8611 3.8109 0.7189 0.7626

107 1.6583 1.1854 13.7107 5.9276 1.6629 1.1943
108 1.6629 1.1965 13.7487 5.9834 1.6657 1.2061

Process 5 At the extreme right edge we search for a instead with b fixed at 1.2061, and 1.6657 
acts as the initial value of a. There were 20 iterations observed at this stage:

i a b a T &new bnew
1 1.6647 1.2061 13.7640 6.0313 1.6655 1.2161
2 1.6642 1.2161 13.7597 6.0811 1.6623 1.2259

•

19 1.4957 1.2747 12.3668 6.3741 1.4857 1.2749
20 1.4801 1.2749 12.2379 6.3755 1.4701 1.2750
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A Process 1 Process 2 Process 3 Process 4 Process 5 Process 6 Total number 
of iterations

0.99 1 3 1 6 1 6 18
0.95 1 7 2 13 2 14 39
0.90 1 11 1 20 2 21 56
0.75 1 18 3 32 4 32 90
0.50 1 27 6 51 7 48 140
0.25 1 38 8 72 12 69 200
0.10 1 48 10 95 16 90 260
0.05 1 54 12 108 20 103 298
0.01 1 65 15 137 27 129 374

Table 3.27: Number of iterations required to complete the A-relative likelihood contour for 
various A, for arthritic patients data when r = n.

Process 6 To accomplish the 0.05-contour, we once more solve (3.8) for b using fixed a, and 
take the initial guess of b to be 1.2750; the 103 iterations are summarised in the 
following table.

i a b a T Ĉne w bnew
1 1.4701 1.2750 12.1552 6.3756 1.4601 1.2749
2 1.4601 1.2749 12.0726 6.3751 1.4501 1.2747
;

102 0.5990 0.8540 4.9525 4.2706 0.5969 0.8442
103 0.5969 0.8408 4.9354 4.2043 0.5960 0.8308

Based on 5 = 0.01, 298 iterations were needed to draw the 0.05-relative likelihood 
contour for the arthritic patients data under complete censoring. This is displayed in Figure 
3.22, where different symbols have been used to differentiate each drawing process. Slight 
overlapping is observed at the beginning and the ending. Furthermore, with censored data, 
we can expect the number of iterations to increase in line with the severity of censoring, as 
summarised below

r 10 20 30 40 50
Number of iterations 3616 1188 646 398 298

In addition, Table 3.27 summarises the total number of iterations required to complete the 
A-relative likelihood contour for various levels of A for the arthritic patients data when r = n; 
we notice that the number of points increases as A decreases, as we expected.

Figure 3.23 illustrates the effect of the amount of censoring on the contours using the 
arthritic patients data for censoring as in Table 2.13, and again, for A =  0.01,0.05,0.1 and 
0.5. In general, and entirely as expected, for given A, we observe smaller surfaces with 
increasing r. We also note that contours stretch over larger values in the a-direction, but 
over smaller values in the r-direction. It is also clear that, as A increases, contour areas
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Figure 3.22: The six processes involved in constructing the 0.05-relative likelihood contour 
plot for arthritic patients data when r = n.
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drop dramatically and the contour shapes become more elliptical.
Next, we take r = 30 and superimpose the relative likelihood regions with the confidence 

regions based on asymptotic theory of maximum likelihood. In Figure 3.24, the likelihood 
region shrinks, especially at the right edge, towards the ellipse as A increases; the overlapping 
is almost perfect about the minor axis of the ellipse so that (as in the Weibull case) it may 
be possible to find the initial contour point by solving the two points on the minor axis; 
however, the non-symmetry in likelihood regions remains striking.

E xpected  R elative L ikelihood C ontours

To obtain confidence regions for the sampling distribution of (a r , r r ) based on (3.2), we will 
require an idealised sample, again using the expected order statistics as data values. This 
is given by

p ,,y  n y  f 1 V -1-* ( '  ~  lN\ F [t +  !] F H re ~  fc) ~  r] /q , .\E[Xi;n] - c i:na ' E {  1) k j  r[a(n — k) + 1] (3-14)

for lifetimes drawn from the Burr distribution.

Exam ple: r = 20, n  =  25 For example, the complete ideal sample, when n =  25 and 
a = 4, t  = 3, comprises

0.3195 0.4323 0.5122 0.5784 0.6374
0.6921 0.7444 0.7955 0.8464 0.8976
0.9501 1.0044 1.0614 1.1220 1.1873
1.2588 1.3384 1.4289 1.5343 1.6613
1.8209 2.0346 2.3513 2.9202 4.6881

so that, if the data is subject to Type II censoring at the r =  20th failure, then the resultant 
censored ideal sample is given by

0.3195 0.4323 0.5122 0.5784 0.6374
0.6921 0.7444 0.7955 0.8464 0.8976
0.9501 1.0044 1.0614 1.1220 1.1873
1.2588 1.3384 1.4289 1.5343 1.6613

1.6613+ 1.6613+ 1.6613+ 1.6613+ 1.6613+

from which <$20 =  4.3696 and t^q = 3.1889, and the corresponding 0.05-expected relative 
likelihood contour is shown in Figure 3.25. 

G eneral: vary ing  r an d  n  In addition, Table 3.28 presents the idealised ML estimates 
(a*,r*) computed from ideal samples of small to moderate size at a range of r, generated 
with a  = 4, t  = 3; these values lie at the middle of all contours, and, as shown in Figures
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X Idealised MLEs 0.05-relative likelihood contour

Figure 3.25: 0.05-relative likelihood contour plot for r = 15, n =  25, for ideal Burr data 
generated with a  =  4, r  =  3.

3.26 and 3.27, as n increases, they generally converge to their respective true values quicker 
than the means of sampling distributions of ar and r r , which are given in Tables 2.14 and 
2.15.

We continue to use the values a  =  4, r  =  3 with A =  0.05 in the following examples 
based on simulated data. Figure 3.28 shows the contour maps for some ideal samples for 
various r and n. As found for a single set of data, for given n, we see that the contours get 
smaller as r increase. It is also clear that, as the sample size increases, the contour shapes 
become more elliptical. It is useful to combine Figures 3.28 and 3.13; the resultant plots 
are displayed in Figure 3.29. For r = 0.8n, we see the relative likelihood contours tend to 
appear to the right of the large-sample probability ellipses, and capture the behaviour of the 
Type II censored MLEs more accurately. We will next compare the two confidence regions 
of (a, r)  for various censoring levels.

Relative Likelihood Contour Validation and Comparison w ith Norm al Theory  
Probability Region

The method used to validate these contours is as before; we plot the 104 simulated observa­
tions of (av ,rr ), and expect to find 95% x 104 of (ar, r r) for which the following criterion 
holds:

lr (a r,Tr ) — lr (a$,T*) > In0.05
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r n

25 50 100 1000
0.2n  : a *  

: t *• ' r
11.2485
3.9829

6.4607
3.4611

5.0755
3.2309

4.1092
3.0266

0.4n : a *

: T*. i r
5.5851
3.4305

4.7184
3.2156

4.3517
3.1110

4.0387
3.0129

0.6n : a *

: t *  • / r

4.6986
3.2676

4.3378
3.1366

4.1700
3.0708

4.0189
3.0082

0.8n : S* 
: t *• ' r

4.3696
3.1889

4.1833
3.0972

4.0931
3.0506

4.0103
3.0059

l.On : a *  

: t *• ‘ r
4.1969
3.1387

4.0978
3-0715

4.0490
3.0370

4.0050
3.0041

Table 3.28: Idealised MLEs (a * , f *) for various r, n, for ideal Burr data generated with 
a = 4, t  =  3.

4.4 
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4 

3.9
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X

__________________X _______

i-------------1 i-------------1-------------r

Figure 3.26: Plot of SJ 8n versus n, for ideal Burr data generated with a  =  4, r  =  3.
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3.3 

3.2 

t  3.1 

3 

2.9
0 200 400 600 800 1000 1200

n

X Idealised MLE true value

Figure 3.27: Plot of Tq 8u versus n, for ideal Burr data generated with a  =  4, t =  3.

where lr (ar, r r) and lr (a *, r*) can be obtained from (2.35). We know that relative likelihood 
confidence regions are asymptotically equivalent to the Normal confidence regions (see, Cox 
k, Hinkley, 1974, for example), but would like to investigate the extent to which relative 
likelihood approach outperforms the asymptotic Normality approach as a method to obtain 
the approximate 95% confidence regions for relatively small or highly censored samples.

Tables 3.29, 3.30 and 3.31, each assumes (a, r) =  (4,3), (0.9,3) and (4,0.9) in the 
simulations, show some discrepancies between expected and observed values for small n  and 
r, in part due to lack of information for estimating a  and r  when the censoring level is low. 
We see the agreement improves, approaching 9500 as n  and r increase, and is reasonably 
consistent across the various values of the parameters considered here. In particular, we 
also note the expected relative likelihood regions (upper entries) consistently record more 
replications of (a r , T r ) than the elliptical probability regions (lower entries), and the upper 
entries converge to 9500 quicker than their lower counterparts, even at early censoring. 
Therefore, it transpires that relative likelihood approach provides a better measurement of 
precision in MLEs compared to probability regions obtained from asymptotic Normality.

We remark that it is possible to repeat the process of finding and validating expected 
Burr relative likelihood contours for various A discussed earlier, such as 90%, or 99% con­
fidence regions. As shown in Figure 3.29, the MLEs lying outside the expected relative 
likelihood contour are fairly informally spread around the contour. Hence, there is also 
scope to investigate the spread of the remaining A% of simulated observations of (ar,Tr) 
around the contour.

X

X

X
................................... x ...............

---1-------------1 1 1
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V n
25 50 100 1000

0.2n 7956
6199

8722
6338

9116
7312

9497
9065

0.4n 8733
7018

9183
7850

9333
8480

9488
9376

0.6n 9025
7910

9257
8497

9409
8877

9517
9443

0.8n 9149
8371

9378
8937

9389
9137

9499
9465

l.On 9217
8736

9376
9095

9427
9288

9518
9502

Table 3.29: Number of replications of (dr , f r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with 
a =  4, r  = 3.

r n
25 50 100 1000

0.2n 7957
5820

8685
7130

9108
8114

9464
9305

0.4n 8700
7673

9125
8488

9293
8926

9462
9404

0.6n 8991
8384

9239
8925

9391
9230

9445
9432

0.8n 9179
8736

9334
9101

9425
9298

9457
9437

l.On 9244
8904

9355
9183

9422
9349

9468
9468

Table 3.30: Number of replications of (dr , f r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with 
a = 0.9, t  — 3.

r n
25 50 100 1000

0.2 n 7882
5995

8816
6301

9090
7245

9461
9031

0.4n 8728
6772

9139
7820

9350
8561

9459
9321

0.6n 8975
7700

9237
8490

9376
8959

9490
9440

0.8n 9079
8300

9303
8839

9377
9155

9472
9455

l.On 9099
8669

9291
9050

9382
9296

9476
9470

Table 3.31: Number of replications of (a r , f r) within the 0.05-relative likelihood contour 
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with 
a  =  4, r  =  0.9.
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3.5 Chapter Summary and Conclusions

Asymptotic Normality of MLE leads to symmetric confidence intervals for a single para­
meter, and elliptical confidence regions for two. This large sample result is often used in 
inference from small to moderate samples, despite the drawback that it is not always ac­
curate with such sample sizes. Moreover, there appears to be no referenced information to 
which how large a sample should be before this large-sample assumption may hold.

The work reported in this chapter shows that, unless sample size is very large (generally 
larger than n =  1000), the hypothesis that the marginal distribution of a MLE is Normal 
should be regarded as implausible; clearly, we then reach the same conclusion about the 
hypothesis that the joint distribution of the MLEs is multivariate Normal. In general, 
the progress towards Normality is slow, but increasing the censoring number will expedite 
this progress^ For a small sample size, typically less than n =  100, the distributions of 
MLEs tend to skew to the right, leading to a non-elliptical joint distribution; Billmann 
et al. (1972) argue that the slow convergence to Normality is due to the lack of symmetry 
when the samples are censored on one side (from the right). Then, it would be of interest 
to investigate whether the distribution of MLE would be left skewed if the data are left 
censored; this, however, is not our main focus, but is noted as a topic for further research. 
We have also shown that the sample distributions of I?o.i,r approach symmetry and converge 
to Normality at earlier censoring and smaller sample size than the MLEs of parameters.

Despite these poor approximations to the Normal distribution, the corresponding prob­
ability intervals and ellipses still provided good coverage of the MLEs, but the shape of the 
distribution was not so well represented. We then considered, via an intuitive interpretation 
of (3.2), relative likelihood as an alternative method to asymptotic Normal theory to mea­
sure the precision of the MLEs, for Type II censored samples of small to moderate size. By 
extending the work by Watkins & Leech (1989) and Watkins (2004) for the Weibull case, we 
have derived an algorithm for drawing relative likelihood contours for Type II censored Burr 
data, and illustrated this procedure in detail for the arthritic patients data. We have also 
shown that the non-elliptical nature of the (expected) relative likelihood contours reflects 
more accurately than the large-sample probability ellipses the behaviour of the sampling 
distributions of the Type II censored MLEs for relatively small and/or highly censored sam­
ples. There is obvious scope to investigate the relative size of the two confidence regions, as 
well as the extent of the overlap in general; this will, nonetheless, be studied elsewhere.

We can now use these asymptotic theoretical results and move on to consider the link 
between the interim and final MLEs of parameters and Bo.i; this will involve taking joint 
expectations on the components of the Type II censored and complete score functions, 
which in turn requires various forms of moments and product moments of order statistics. 
Therefore, Chapter 4 aims to solve these moments, introducing the derivatives method, 
before moving on to Chapter 5 to look at the correlation between the two sets of MLEs.



Chapter 4

M oments and Product M oments of  
Order Statistics

4.1 Introduction

We have already seen that order statistics arise naturally in the analysis of reliability data 
subject to Type II censoring due to the method of experimentation. In considering the 
extent to which an interim analysis - here, using information based on Type II censored 
samples - provides a guide to the final analysis, we will require the study of the correlations 
between the complete and the Type II censored MLEs; for large samples, it can be shown 
that this is equivalent to a study of the correlations of score functions, which thus involves 
various forms of expectations and joint expectations of order statistics. We now outline here 
some useful preliminary work.

The moments of order statistics have generated considerable interest in statistical infer­
ence and, in fact, have been studied, and, where appropriate, tabulated quite extensively for
many distributions; for instance, Joshi (1978, 1982) in the exponential distribution; Lieblein 
(1955) in the Weibull distribution; Malik (1966) in the Pareto distribution; Khan Sz Khan 
(1987) and Pawles Sz Szynal (2001) in the Burr distribution.

From (2.2), taking expected values on the products of the complete and Type II censored 
score functions means that we will require expectations of the form

E[g(Xi, „)], (4.1)

and joint expectations of the form

E\g(Xi:n)h(Xj;n)], (4.2)

in which the arbitrary functions g and h usually involve logarithms and/or powers of Xi:n.
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For instance, as seen at Section 2.3.1 for the Weibull distribution, (4.1) is typically of

for some positive integers a and p; more specifically, these are

Xi:n, InXj,ui) Xi-nhi Xim^ and Xiin(\n Xinri) . (4.3)

We consider two methods to solve (4.1) and (4.2). The first employs the conventional 
definition of expectation; as an illustration,

E[Xf:n{lnXi:ny}  =  / “ *? (In *)“ /«(*)<&,

which we will refer to as the direct method. Therefore, depending on the form of g (X i :n) 

and /(j)(x), this approach may involve integrations of some complex functions. The second 
introduces an alternative based on repetitive partial differentiations of the moments and 
product moments of order statistics, as discussed below.

4.1.1 The D erivatives M ethod

In the exponential, Weibull and Burr distributions, fip is well defined so that expressions 
for E[Xf.n] can be written down without too much difficulty. In particular, we have seen 
E[Xi:n] at (3.3) and (3.14) for the Weibull and Burr distributions. Hence, differentiating 
E[Xf.n] wrt p a times will yield E[Xf.n {InXi:n}a]-, this effectively introduces the term InXi:n 
whose power depends on the order of differentiation, in addition to keeping the term Xf:n in 
place. As a result, we can easily obtain expressions for the functions at (4.3) by replacing 
a and p by 0 and 1, 1 and 0, 1 and 1, 2 and 1, in turn. Similarly, for the joint expectations 
of Xf.n and Xj.n, we can obtain a general expression for E  | Xf.n {In Xi:n}a Xj.n {In X j :n} b 

by applying the operator
Qa+b

dpadqb

to E[Xf.nXj.n], and the formulae for specific expectations can be obtained on appropriate 
substitutions of a, b,p and q by positive integers. We note that such technique has been 
employed by Watkins (1997) and Watkins & Johnson (2002) to obtain results for the ex­
pectations of the first and second derivatives of the log-likelihood function for the Burr 
distribution under complete and Type I censoring regime respectively.

In Section 4.2 we begin with the assumption that the lifetimes follow the Weibull distrib­
ution, and, as mentioned in Section 2.3.1, we exploit the link between Weibull and standard 
exponential distributions to reduce the expectations to the standard exponential case. We 
will solve for (4.1) and (4.2) using the direct and derivatives methods. Results obtained 
from both methods are then validated for various combinations of i and j  using simulation 
experiments. Then, in Section 4.3, we repeat the analysis for the Burr distribution, in which
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we benefit from the recurrence relationship given at (1.51).

4.2 W eibull and Std Exponential Order Statistics

Let X \ :n < X 2:n X n:n be the order statistics obtained from a random sample of size
n drawn from the Weibull distribution. When considering the correlation of the complete 
and the Type II censored Weibull score functions, the form of the partial derivatives at 
(2.17), (2.18), (2.31) and (2.32) suggests that (4.1) will generally be of the form

E
X

' > ( !J I \  ^  J  j
for a = 0,1,2 and p — 0,1, while (4.2) will generally be of the form

(4.4)

E
X J'.n (4.5)

for a,b,p,q = 0,1. In some, but not all, cases, a = b and p = q. We can, of course, obtain 
these expectations from Weibull pdf and cdf, but we can also exploit the connection between 
Weibull and standard exponential distributions.

4.2.1 Link betw een the W eibull and Standard E xponential D istributions

We have previously noted that a natural extension of the exponential distribution is the 
Weibull distribution; hence, it is often convenient to derive results for one case and then 
transfer to the other. In fact, we have already employed in Section 2.3.1 the transformation 
of Weibull random variable X  into standard exponential random variable Z, given at (2.26), 
to obtain the elements of the Weibull EFI matrix. Therefore, using (2.26), we see (4.4) and 
(4.5) reduce, respectively, to

E [ Z U ^ Z i , ny \  (4.6)

for a = 0,1,2 and p = 0,1, and

E Zfm(lnZi:nrZ'?m (\nZj;n)b (4.7)

for a, b,p,q = 0,1. As before, in some, but not all, instances, a = b and p = q. Next, we 
briefly present some results for the standard exponential order statistics.

4.2.2 Standard Exponential Order Statistics

For later convenience, it is suitable to summarise here some basic results on the moments
of standard exponential order statistics. Suppose Z\:n < Ẑ -.n <•• •  < Zn:n denote the order
statistics in a random sample of size n from a standard (so 9 = 1 in (1.27) and (1.28))
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exponential population, with pdf
f {z)  = e~z, (4.8)

and cdf
F{z) =  1 -  e"*, (4.9)

for z > 0. By writing

i
Zi:n — (Z im  l:n) “1“ ( ^ i —l:n ^ i —2:n) “t- * ' * "I" (^ 2 :n :n) "t" :n =  ^k :n  E k—l:n

k=1

with the convention Zo:n =  0, we see that we can exploit the lack-of-memory property to 
obtain

z . f
. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . I:n h n - k  +  l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
so that Wk, defined above at (2.9), are now independent and identically distributed variables
with pdf (4.8). Using this result, it is straightforward to write down the mean and variance
of Zj:n; we have

( 4 - 1 0 )

and

Moreover, writing Zj.n =  (Z j:n — Zi:n) + Zi:n, the covariance of Zi:n and Zj:n (1 < i < j  < n) 
is

Covi^Zi'Ti) Zj-jj,) =  Cov{Zi:n, Z j:n Ziinj ~jr Cov{^Zi-n  ̂Zi-ji) =  V(2v(Zj:n)

since Zi:n and the increment Z j:n — Zi:n are independent due to the lack-of-memory property. 
We further obtain the joint expectation of Zi:n and Z j:n (1 < i < j  < n) as

E  [Zi:nZ j:n] =  V ar(Z i:n) +  E  [Zi:n] E  [Zj:n\

£ ( n - k  +  l ) 2 +  ( j r 1 n - *  +  0  X ( £ n - f c  +  l )  (411)

We can now move on to derive formulae for special cases of (4.6) and (4.7) using, first, the 
direct method, followed by the derivatives method.
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4.2.3 E xpectations of g(Z i:n)

It will be shown in next chapter (see Section 5.3.1.1) that we will require the following 
special cases of (4.6):

E  [In Zi:n] , (4.12a)

E  [Zi:n In Zi:n] , (4.12b)

E  [(Zj:n) in Zi:n\ 5 (4.12c)

E [(lnZ i:n)2], (4.12d)

E  [Zj:n(ln Zi;n)2] , (4.12e)

E  [(Zi:nlnZi:n)2] . (4.12f)

Direct Method

From (1.40), the marginal pdf of Z i:n is

/«>(*) =  Ci:ne-<n- i+1^ l l  -  e- 0 ] '-1  

and we can use the Binomial Theorem to expand the square bracket as

[1 -  e-0]’-1 =  £  ( - l ) i_1“* (* T 1')
k=0 V k J

to give

/ w (*) =  Cta. E h - l ) '" 1" 4 (* 7

Then, using (1.46), we have

(Inz)af (i)(z)dz

=  E  ( - 1 ) <_1-* ( ‘ 7  * )  Jo *p ( ln 2)°  e - (n~k)zdz

=  ^  £ ,  C  7  X)  A n - »  (4 -13)

where
Apsa = f™ zp (In z)a e~szdz

is related to gamma and polygamma functions defined in Section 1.2.2.1. As a result, for 
E  [In Zi:n], we require

o
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so that, from (4.13), we obtain (4.12a) as

E  [In Zi:n] =

i-1  ( i - 1)
=  Cfe» E  1 ; { - 7  -  ln (n  -  fc)} • (4.14)

k=o (« -  k )

Likewise, in E  [Zi:n In Z*:n] and E  [(Zi:n)2 In Z i:n\ , the relevant integrals are, respectively,

= I V  z  (ln20 e~SZdz =  “— 3 ' " ^O

and
A21 =  / ~  , 2 (In,) e - d z  =  3 ~ 2 7 ~ 21na.

Next, E  [(In Z;:n)2] needs

4 “ =  / ”  (ln ,)2e -“ d , =  i  +  ( - 7  -  Ins)2)  ,

and for E  [Zi:n(ln Zi:n)2] , we want

Al2 =  J 7 21 (ln z )2 e_“ dz =  ^ ( ^ ' _ 1  +  (1 _ i ' _ ln s )2}-

The final expectation is E  [(Zi:n In Zi:n)2] , for which we require

A22 =  / ~  , 2 (In, ) 2 e - d z  =  |  j £  -  J  +  ( |  -  7 -  I n s ) '} .

Derivatives Method

Basic expectation It will prove useful to begin with the following preliminary:

e k  j  =  ^ ^ ( - i r 1^ ^ 1) / ^ ^ " - ^

„ yJ / -vt-i-fcA  —i 'N r(p  +  i)
=  «■■»& (- x) ( ( 415)

which reduces to (4.10) when p = 1, as required. In particular, its first and second partial 
derivatives wrt p will introduce the term In Z i:n, and, in turn, yield the expectations in 
(4.12), in terms of the digamma and polygamma functions.

Expectations in (4.12) The first partial derivative of (4.15) wrt p gives

t-1 (-D *-1-* (v 4-1')
E[Zf:n In Zi:n] =  Ci:n £  („  -  1 W  (P +  1) "  !» (»  -  * ) }  • (4.16)
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Hence, using the gamma and digamma values in Table 1.6 and setting p = 0,1,2 in (4.16) 
will yield, respectively, the following expectations:

i - i  ( _ i V - 1- *  ( i - i )
E  [In Zi,n] = Ci:n £ -----     ̂ k { -7  -  ln(n -  k)} ,

k—0 \n  ~  K)
i—1

E  [Zi:n In Zi:n] — Q: n
fc=0 (n  -  *0 2

{1 -  7 - ln (n - /c )} ,

(4.17)

(4.18)

E[(Zi:n)2 lnZi:n] =   7T ^ { 3 - 27 - 21n(n -fc)}.
fc=0 vn  "v

Furthermore, the second partial derivative of (4.15) wrt p gives

E[Zf:n(In Zi:nf \  =  cb, £  (~ 1}‘ (n _(,^ ri (P+1) {^ ' (P +  1) +  (P +  1) -  -  01*}.

so that, likewise, setting p =  0 ,1 ,2  in this result will yield, in turn,

£ [(ln Z i;„)2] =  eh, E  +  [ -7  ~  ln(n -  0 ]2} ,

t - i  r - i v - 1 - * C’-1"! r-n-2 „ i
E [Z i:n(lnZi:n)2] = 4 „ g  L fc)2 j-g —  1 +  t1 — 7 — ln(n -  fc)]2 j  ,

E  [{Zi,n In Zi:n)2] =  2Ci;„ X)
‘- 1 ( —I)* -1"* C l 1) f  7T2 5
=0 (n -  k )3 T _ 4 +

-  -  7 -  ln(n -  k)

We note that these results are identical to those computed from direct integration; see, for in­
stance, (4.14) and (4.17), and also can be compared with their counterparts for E  [Zp(ln Z ) a] 

given at Table 1 in Watkins (1998).

Some Numerical Details and Discussion

Being new results, it is important to check these expressions against simulation experiments. 
For illustration, we plot each expectation in (4.12) as a function of i for n = 1000, in Figures
4.1 to 4.6; for graphical convenience, simulated values are shown in steps of 50. These show 
that there is very little difference between theoretical (calculated from the direct method) 
and simulated results, based on 104 replications. Take, for instance, E  [Zi:n In Zi:n\ , Table 4.1 
summarises the agreement between theoretical values, obtained from both direct (upmost 
entries) and derivatives (middle entries) methods, and their simulated counterparts (lowest 
entries) for varying i and n; this confirms that the theoretical and simulated data are indeed 
consistently the same up to 2 decimal places, and investigations for other expectations 
in (4.12) provide similar observations. We also note, from Figures 4.2, 4.3, 4.5 and 4.6, 
that E  \Zi,n In Z i:n], E  [(Zi:n)2 In Z i:n] , E  [Zi:n(ln Z i:n)2] and E  [(Zi:n In Z i:n)2] are relatively 
constant for i < 800.
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i n
25 50 100 1000 2500 5000

0.2n : direct 
: deriv. 
: simul.

-0.3110
-0.3110
-0.3109

-0.3226
-0.3226
-0.3224

-0.3286
-0.3286
-0.3287

-0.3341
-0.3341
-0.3341

-0.3345
-0.3345
-0.3345

-0.3346
-0.3346
-0.3346

0.4n : direct 
: deriv. 
: simul.

-0.3223
-0.3223
-0.3219

-0.3325
-0.3325
-0.3320

-0.3378
-0.3378
-0.3381

-0.3426
-0.3426
-0.3425

-0.3429
-0.3429
-0.3429

-0.3430
-0.3430
-0.3431

0.6n : direct 
: deriv. 
: simul.

-0.0753
-0.0753
-0.0728

-0.0776
-0.0776
-0.0789

-0.0788
-0.0788
-0.0784

-0.0800
-0.0800
-0.0798

-0.0801
-0.0801
-0.0801

-0.0801
-0.0801
-0.0802

0.8n : direct 
: deriv. 
: simul.

0.7000
0.7000
0.7030

0.7323
0.7323
0.7315

0.7490
0.7490
0.7492

0.7642
0.7642
0.7646

0.7652
0.7652
0.7646

0.7656
0.7656
0.7655

l.On : direct 
: deriv. 
: simul.

5.3073
5.3073 
5.2958

6.9363
6.9363 
6.9279

8.6885
8.6885 
8.7466

15.1729
15.1729 
15.1135

17.9755
17.9755 
17.9826

20.1646
20.1646 
20.1639

Table 4.1: Numerical comparison of E [Z i:n In Zi:n] for various i and n.
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Figure 4.1: Theoretical (—) and simulated (x) values of E  [In Zj:n] versus i, for n =  1000.
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: Theoretical (—) and simulated (x) values of E  [Z<:n In Zj:n] versus i, for n = 1000.
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Figure 4.3: Theoretical (—) and simulated (x) values of E  [(Zi:n)2In Z i:n] versus i, for 
n = 1000.
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Theoretical (—) and simulated (x) values of E  [(InZi:n)2] versus i, for n =  1000.
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Figure 4.5: Theoretical (—) and simulated (x) values of E [Zi:n(\n Zi:n)2] versus i, for 
n = 1000.
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Figure 4.6: Theoretical (—) and simulated (x) values of E  \(Z i:n\n Z i:n)2] versus i, for 
n = 1000.

4.2.4 Joint E xpectations o f g (Z i:n) and h (Z j :n)

Similarly, we will consider the following special cases of (4.7):

E  [Zi:n In Z j :n] , (4.19a)

E  [(In Z i:n) Z j :n\ , (4.19b)

E  [In Zi:n In Zjifi  ̂ , (4.19c)

E [Zi:nZj:n In Z j :n\ , (4.19d)

E  [Zi:n(\n Zi:n) Z j :n] , (4.19e)

E  [(In Zi:n)Z j :n In Z j :n] , (4.19f)

E  [Zi:n In Zj,:n In Z j :n\ , (4.19g)

E  [Zj:n(ln Zi:n) Z j :n(In Z j :n) ] . (4.19h)

As with single expectations, we consider two ways - direct and derivatives - to compute 
these expectations.

Direct Method

From (1.45), the joint pdf of Zi:n and Z j :n (1 < i < j  <n)  can be defined as 

/« ) (* .* )  =  *,r.n [1 -  e- ] 4-1 [e- 1 -
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for 0 < x < y < oo. We now expand both square brackets inside the integrals, writing

[1 -  e"*]*-1  =  E  ( - 1)<-1_* ( l 7
fc=o V k J

and
j —i—l

[c-*  _  =  3 £  * lN\ e-/xe- ( j- i- i - z )2/5
z=o \  1 J

so that

/« ) ( * .» )  =  c u »  E  '’ J T 1 ( - ly - * - *

Using (1.47), the joint expectation, E Z(:n(ln Zi:n)aZ^n(ln Zj:n)b̂ , is given by

f ~ 0 Sx=oxP (ln x )a yq (ln y)b f (*>i) (*> y)dxdv

- s ’s 1 < C x ‘) C ~ i ~ -
/ ~  o / " =0 xp (ln s )a y* (ln y)h e ~ ^ l~k> dxdy

= Cij-.n E  '  E 1 ( - 1  r k- ‘ (* ^  * ) ( J  ~  \ ~  *) (4-20)

at which we define

AZ ,qb = 17=0 11=oxP (ln x )a e~sxyq (ln y)b e~tydxdy

where the parameters a, 6, p , g, s and t are real and positive. Hence, we can anticipate some 
lengthy algebra here, involving functions like gamma and polygamma, exponential integrals 
and Lerch transcendent function, as well as the connections between these functions, as 
presented in Chapter 1. Next, we derive the different combinations of A^t'qb required when 
evaluating each function in (4.19) in turn:

4io,oi mi,io mi,oi jio.ii >*11,10 ,*01,11 ,*11,01 *11,11
A a,t > A a,t > A a,t > A a,t > A a,t > A a,t > A a,t »A a,t '
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1. E  [Zi:n In Z j:n] We need

< t 01 =  J Z « J l * * e - m Qnv)e-+<hidv

= / “ o(lnV)e~tV LfiUox e ^ d x ]  dy

= J ~ o Q * y )e
- t y

= i { ~

( i  _  c- v  _  s y e - v ) dy

7 +  ln t 7 +  ln(s +  t) s [1 — 7 — ln(s +  £)] ^
s + 1 (s + ty 7

= sH(s + t)2 7̂S +  *) “  (s +  ^)2ln* +  *(2s +  *) ln(s + *)}

for which the individual integrations wrt y are

i r U ( ^ y ) e~tVdy  = (4.21)

(4.22)

(4.23)

2. E  [(In Zj:n)Zj;n] The relevant integral is

< * 10 =  / ^ o i ^ = o ( ln x )e“ SIS'e_<I' dxdl'

=  f Z o  ye_ty [/*=o(ln *)e“sx<fa] dy

/ OO

y=0Ve,-ty —  (7 +  ln s +  E i(sy) + e sy lny) dy

1 f  7 +  ln s 1
7 \  t2 +  *2

ln (l +  - )  -  - i -
s s +  t

| 1 — 7 — ln(s + 1) j
(s +  t )2

t 2(s +  £)2
{(s + 2£) [7 +  ln(s +£)] -  t} ,

obtained via

S7=0ye tydy =  tj,

/ “ 0ye tyEi(sy)dy =  ^ ln (l +  - )  -  —K s '  s +  t from (1.18),

(4.24)

(4.25)

and (4.23).

3. E  [ln Zi:n ln Z j:n] The internal integration of A^*’01 is the same as that in A ^’10; then,
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on dropping the constants, outer integration wrt y yields

f ^ =0{\ny)e-tyE1{sy)dy 
_ 1

ln (l +  J) (7 +  ln(* + 1)) +  2,1) from (1.20) 

from (1.22), (4.26)

/ “ 0(ln!/)2e (’+t'>*dy = 7T—  +  (7 +  ln (s  + 1) ) ‘ (4.27)

and (4.21), for which 

1A'" '01 =s,t s
\ - (T+hl8)t(7+ln‘) -  \  [ M + )  (7 +  +  *)) +  L h ( A )

+J+i [ t  +  (7  +  ln(s +  *))2

1 j  — (s + 1) |̂ 7 Ini +  Ins Ini — lnsln(s + 1) +  1^2(7^ )  
st(s + 1) |  _ s ^2  + +  ^ 2j _)_ ( _ s  _|_ £),y in(s _j_ ^  J

4. E  [Zi:nZj:nlnZj:n] This expectation is associated with A^ ’11 whose inner integral is 
identical to that in AJ0/01; hence the outer integrals (omitting the constants wrt y) are

I^= 0y(ln y)e ty<lv = 1 7t 2 l n t -

S~=oy2( l n y ) e - ^ d y  =  3 ~  +  0

and (4.23), which lead to

(4.28)

(4.29)

- i f — 7 — ln £ 1 — 7 — ln(s + t) 5 [3 — 27 — 2 ln(s +  £)]
(s + 1)2 (s + 1)3s2 \  t2 (s + 1)2 (s + 1)

1 ( - s  [s(s +  3t)(7 -  1) + 12] 1
s2£2(s +  £)3 { — (s +  £)3ln£ +  £2(3s + £) ln(s +  £) J

5. E [Zi:n(]n Zi:n)Zj:n] The interior integral in A**’10 is

f yx=0 x(lnx)e~sxdx

= —\  { - I  +  7 + e~sy - ln ? / +  lns2/ +  r(0, sy) +  T(2, sy) \ny} s
=  — \  {-1  +  7 +  lns +  e_sy -\-Ei(sy) + e~sy\ny + sye~sy\ny)

since, from (1.17),
T(0, sy) = Ei(sy)
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and /*oo
T(2, sy) =  / e^ td t  =  e-sy(l +  s?/).

J t= s y

Then, integrating wrt y requires (neglect the constants) 

(4.23), (4.24), (4.25) and (4.29) so that

An,io
s 2

, —l+7+ln a , 1 , 1 T i^ i i t \  t
1 I -----3-----  +  (TM)3 +  ^

1 —7—ln(s+t) . s[3 —27—2 ln(s+t)]
<>+t)2 +  (5+tF

= "2t 2(g +"t )3 { s2 Is (! -  7 ) +   ̂(4 -  37)] +  ln(s +  t) [£2(3s + 1) -  (s +  t )3] } .

6. E[(\nZi:n)Zj:nlnZj:n\ The appropriate integral is A^1/ 11 which has same inner part to 
that in A^*’10; we thus have

4 01>nA a,t S

(1 —7—ln <) (7+ln a) 
£2

[(^C 1 +  i )  “  S+7 )  (7 + ln(s +  t) ~  1) +  L i2(i+ t) _
, 67 ( —2 + 7 )+ 7 r2+ 6  l n ( s + i ) ( —2+ 27+ ln ( s + t ) )

+  6 ( s + t)*

~(s + t )2 [(Int)(7 +  In8) +  Li2( ^ )
+ 7s(s +  3£) -  s(s + 2t) [72 +  (ln(s + t))2]

+ ln(s + 1) (s +  t)2(l -  7 +  ^  +  ln s) +  2£2(7 -  1)
st2(s +  £)2

+ tiv2

by using the following results (ignoring the constants wrt y): 

fy-.L0 y(lny)e~tyE1(sy)dy

_1
t2

t2

^  + ; )  ■- T T t )  ("  +  ln(s +  ^  +  t e )  0 (7 T ?  2’2)

(•“ (! +  7) -  i s )  (7 +  M® + 0  -  !)
+ ^ 2(7 7̂ ) _

from (1.23),

from (1.21) 

(4.30)

r  0y { \ n y ? e - ^ y d y  =  6t (~2  +  7 ) +  *2 +  6 ln(8 + 1)i ( - 2  +  27  +  ln(« + 1))
j y = o y \  yj y 6(s +  £)2

(4.31)
and (4.28).

7. E  [Z i:n ln Zi:n In Z j :n] The internal integral of A**’01 is studied before in A* ’̂10; by drop­
ping the constants, the elements of external integration have already been given in
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(4.21), (4.22), (4.26), (4.27) and (4.31) respectively. On rearranging, A*1/ 01 is

s2

(7+lnt)(—l+7+ln a) _  7+ln(s+t) 
t s+t

1+ s+t~ t  [M 5? )  (7 +  ln (s +  *)) +  £+2( ^ 7 )
s[67(—2+7)+7r2+6 ln(s+t)(—2+27+ln(s+t))l

+ --------------------- 6 (i+ ip --------------------

-(s + t)2 (lnt)(7-l + lns) + L*2(^)
_____  -7s [—s +1] - s2 [72 + (ln(s +1))2]
s2t(s +1)2 _j_ _(_ ̂ 2 jn s _ 3̂  _ ̂ 2j

k +7ln(s + t)(-s2 + 2st +12) + ̂ -t(2s +1) ,

T  + (7 +  M 5 +  t)Y

8 . E [ Z i:n(\nZi:n)Z j :n( \n Z j:n)\ A*1/ 11 has an identical interior part as A*̂ ’10 but exterior 
part similar to A*Jn  and A ^ 11. Accordingly, integration and simplification give

11,11
A *,t as

(1—7 —In t)(—1+7+In s) . 1—7 —ln(s+t) 
t? (s+t)2

[ ( ln ( l  +  7) “  i+ t )  (7 +  ln (s +  * ) - ! )  +  ^*2(7^ )  “  7^7
6 7 (—2+ 7) + 7r2+ 61n ( s + t ) ( —2 + 2 7 + ln (s + t) )

6 ( s + t)2
s [6 + 6 7 ( -3 + 7 )+ 7 r2+ 6  ln ( s + t) (—3 + 2 7 + ln (s+ t) ) ]  

3( s + t ) 3

s2t2(s + t)3

-(s +1)3 [(lnt)(7 - 1 + Ins) + £+2(777)] 
—7s (—2s2 — 7st +12) — s2(s + 3t) [l + 72 + (ln(s +1))2]

+ ln(s +1) -6st2 - 3t2(s + t) + (s +1)3 + + ln s) (s + t)3
+7ln(s +1) [—(s - t)(s2 + 4st +12)] + ̂ t2 (3s +1)

based on (ignore the constants wrt y) 

ro c  2/1 \ 2 e-(s+ t)y  j y  _  6  + 67(-3 +  7) +  7r 2 + 6 ln(s + 1) ( -3  +  27 +  ln(s + 1))
jy=oy \ y) y 3(s +  t )3

and results in (4.23), (4.28), (4.30) and (4.31).

Therefore, we can now use the above results to write down the expectations in (4.19); 
for instance, using (4.20), (4.19a) is given by

E  [Zi:n ln Zj:n] = Cij..* £  '  E 1 ( l 7
k=0 1=0

=  r . . .  . .

J’n k=0 1=0 (i +  I -  k )2 (n — i -  I) ( n -  k )2
— (i + I — k) [7 (i + I — k) +  n  — i — I]

— (n — k )2 ln (n — i — l)
+ (n — i — I) {n + i — 2k + I) ln(n — k)

(4.32)
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Expressions for other expectations can similarly be written down from (4.20); we have 
included these expressions in Appendix D for ease of reading.

Basic Expectation

Before we move on to consider the derivatives method, it will prove useful to here consider
, which may be regarded as the preliminary result to achieve later

Zf.n(\n Z i:n)aZj.n (ln Z j:n)b̂ , using repetitive differentiations on

ZP 7 ?  
i:n j:nin some detail E  

expectations of the form E  

E Z? Z?v.n j:n

An approach due to  John  & W atkins (2006) Similarly, E yP
i:n j:n is given by

% n E  E  (" I)' ' W
k= 0 1=0

AP0,q0
i+ l —k,n—i —l'

We refer to John & Watkins (2006) to proceed; in general, the inner integration in 
wrt x is given by

/*=0 xpe~‘*dx = fZ =0 V?e-Udu = +  1 ,sy),

obtained by letting u =  sx, so 0 < x < y 0 < u < sy, and x = u/s  so dx =  du/s. Using 
(1.8), the normalised incomplete gamma function may be expressed as

u u

7 ( P + M y )  =  (s2/)p+1 E
( - s y )1

so that

m\{jp+ 1 + m)

£p0,<fl _  roo q - t y  p+1 y  ( ~ Sy )
}y=aye y n̂ om!(p +  i  +  m)dy

'  OO ( _ o \ ,m„lp + q + l + m f3- t y m r oo y  \ y c i
Jy=0lJko m\(p +  1 +  to) J V
oo r ( — a'\rn„lp+q+l+mp-tyy  r oo \_*) y________ c 1

m=0 L y=0 m!(p +  1 +  m)

on reversing the order of integration and summation. We thus have

j^p0,q0 _  yv
m = 0 
oo

=  E
m=0

00 n,P+q+t+rnp —
m!(p +  1 + m) Jy

/ oo
7 i

y=o y
tydy

m!(p + 1  +  m)
x r(p  +  q +  2 +  m)

fP+q+2+m
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from the definition of gamma function. Hence,

A pO,gO =  1 ^  (~ f)”T(p +  g  + 2 +  m )

(P+g+2 m!(p +  l  +  m)

We also introduce a hypergeometric function, writing the summation as

oo

E
7 7 1 = 0

T(p +  1 +  ra)r(p +  g +  2 + m) (-■f )1
mlT(p + 2 + m)

r(p  + i)r(p  +  g +  2) „  / s \
"  r ^  +  2) ^ 2,1 (p +  i ,p  +  g H- 2;p +  2; - - )

=  r k f f i 2) M r +  l , P +  g +  2;P +  2; - f ) .

As a result, we have

A’°t’9° =  ( p + + « + 2 ; p + 2; - | )  •

Finally, we obtain an expression for E  Z?nZj:nJ in terms of hypergeometric functions as 
follows:

c » j^ r (p  +  g +  2)
( p + 1) z=o

/ i - l \  / j —i—1\ (~1)J * *
V k A  I J (n-i-/)P+9+2

x F2,i (p + l,p  + 9 +  2;p + 2 ; - j ± f c § )
(4.33)

for instance, when p = q =  1, this equation reduces to (4.11) as shown in John & Watkins 
(2006).

Convergence considerations Here, we consider the conditions under which the func­
tions J^ i (p +  1,P +  q +  2;p +  2; in (4.33) are convergent for 1 < i  <  j  <  n. To
illustrate this, we take n = 6, i  = 2, j  = 4, where (4.33) contains

F2, i ( p + l , p  + q + 2;p + 2 ; - ^  , F2)1 (p +  l,p  +  q + 2;p + 2; -1 ) ,

^ 2,1 N? +  l ,p  + g +  2;p +  2; - i  j  , F2,i (p  +  l ,p  +  q +  2;p +  2; - |  j  .

From (1.14), the condition for convergence requires

i + l — k
n — i — I < 1,

meaning the second F2)i function in the above example is divergent. In general case, we 
thus need i + l — k < n — i — I =$• 2i + 2l — k < n. In particular, the term 2i +  21 — k is at
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its maximum when

2i +  2 max {/} — min {&} = 2i + 2 (j — i — 1) — 0 =  2j  — 2

so the condition reduces to

2 j — 2 < n
n

3 < 2 + 1'

Therefore, F2,i fp +  l,p  +  q + 2;p +  2; — j  is only convergent when l < t < j < ? j  +  l;
more precisely, this is when

1 < i < j <

and

n
12

n

if n is odd,

1 < i < j < — if n is even. 
2

An alternative form To overcome the problem, we exploit (1.13) to express

i +  I — k

as

* 2,1 ^ p + l , p  +  « +  2;p +  2; -

n — k
n — i — I

n — i — I

i +  I — k

It is easy to see that i+l—k 
n—k

-̂ 2,1 +  Q +  2, 1; p + 2;

is strictly less than 1: we write 

—n + k < i + I — k =>2k — I — i < n

n — k

where max {2k — I — i} =  i is indeed < n, and,

i + l — k < n — k => i + I < n

where max {i + l} = j  — 1 is also < n. Hence, the i ^ i  (p + q +  2, l;p + 2; l„l_k ) series is 
now absolutely convergent for the whole range of 1 < i < j  < n, and we have successfully
rewritten E r/P  r?q

i:n j:n in terms of the simpler hypergeometric functions;

d+nT (p + q + 2) 1 - 1 3 i 1 
(p +  1 )  k= 0 1=0

(-irM fflp'T1)
(n — /c)P+9+2 ^ 2,1 p +  g +  2, l ; p  +  2;

i + 1 — k 
n — k

(4.34)
Moreover, we will see that, in the derivatives method, the partial derivatives of i ^ i  ^^ - k  ) 
can be greatly simplified when p,q take values of 0 and 1, to give the specific expectations 
in (4.19).
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Specific expectation Partial derivative needed V q
E [Zi:n In Zj:n] K l Z l n Z U 1 0
E [(In Zi:n)Zj:n] E ' M n Z U 0 1
E [ln Zi:n ln Zj:n] E ^ Z L Z U 0 0
E [ZiinZjm In Zj:n\ K [ z l nz% j 1 1
E [Zi:n(ln Zi:n)Zj:n] K l z L z l J 1 1
E [(In Zi:n)Zj:n ln Zj:n] E U zf :nz u 0 1
E [Zi-n ln Zi-n ln Zjm\ W J 1 0
E [Zj:n(ln Zi:n)Zj:n{\li Zj:n)\ E l [Z pi:nZ U 1 1

Table 4.2: Derivatives method: expectations in (4.18) and the partial derivatives needed.

Derivatives Method

As we have previously noted at Section 4.2.4.2, we are now in the position to differentiate 
the basic expectation, E[Zf:nZ?.n] given at (4.34), partially wrt p and/or q, and then suitably 
replace p, q for 0,1 to obtain expectations of the form E Zf:n(ln Zi:n)aZj.n(ln Zj.n)b ; Table
4.2 lists the partial derivatives needed for each of the expectations in (4.19). In summary, 
we require Ep[Zf:nZ?:n], E'q[Zf:nZ?:n] and Eqp[Zf:nZ?:n], which contain the partial derivatives 
of T(p +  tf + 2) and F2,i (p +  q +  2, l;p  +  2; 2± zp ).

The partial derivatives of T (jp + q + 2) are straightforward to obtain; we have, from 
(1-2),

r ;(p  +  9 +  2) =  r^(p +  9 +  2) =  r (p  +  9 +  2)V>(p +  9 +  2), 

and, from (1.3),

Tqp(p + q + 2) = T (p + q + 2) ^  {p + q + 2) + {p + q + 2)}2

Furthermore, when p and q are replaced by 0 or 1, these derivatives simplify to the values 
in Table 1.6. As a result, it is sensible to express F2,\ (p + q +  2, l;p  + 2; in terms of
gamma functions for which partial derivatives are easy to obtain; we refer to (1.12) to write

F2,i(p +  g +  2 ,l;p  +  2;z) = (p +  9 +  2)m(l)m x 2™
{p +  2)m ml

T(p +  2 )r(p  +  g +  2 + m) 
T{p + q + 2)T{p + 2 + m)

m= 0 
oo

in which 2 =  , and it follows that (4.34) becomes

E yP  y<l
i:n j:n

y  k ' ) x) ^  r ( p + i ) r ( p  +  9 +  2 +  m)
— Q,j:n E  E

k= 0 1=0 (n — k)P+^+2 

comprising of only gamma functions.

E
7 7 1 = 0 T (p +  2 +  ra)

x z \  

(4.35)
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F irst partia l derivatives of E[Zf.nZj.n] Consequently, the first derivative of (4.35) wrt 
p is

e 'p 2? Zqi:n j:n = E[Z?mQnZi:n)Z ln]

^  r ( p  +  l ) r ( p  +  g +  2 +  m)
Ci'3''n S o  £  (™ -  k)P+i+2

X 2 :r  (p +  2 +  m)
x {— ln(n — k ) +i p ( p+l )  +ip{p + q + 2 + m) — (p +  2 +  m)} (4.36)

and wrt q is

E ’ y P  yQ
i:n j:n = E[ZlnZ]:nlnZj:n]

= r- . v ^ y 1 (i^ 1)(i T 1) v  r ( p + l ) r ( p  +  9 +  2 +  m)
'3'n k=0 l=o ( n - ‘ fc)P+9+2 m=o r ( p  +  2 +  ro)

x {— In(n — k) + tp(p + q + 2 +  m)} . (4.37)

Second partial derivatives of E[Zf.nZj.n] Then, second differentiation of (4.37) wrt p 
yields

= E[Z fJ lnZ im)Z]m(lnZj:n)]

as

k ‘ (VX* i *) °° r ( p + l ) r ( p + g  +  2 +  m)
J:n fc=o i=0 (n -  fc)P+9+2 m=o r  (p +  2 +  m)

— ln(n — k)
(P + q + 2 + m)

-  ln(n - fc )+V, ( p + l )  +  V, (p +  tf +  2 +  m)

+  -  ln(n-2) + ^ ^ 2+m) ~  (? +  2 +  m )

Expectations in (4.19) Now we can obtain specific expressions for (4.19) by suitably 
replacing p and q, as summarised in Table 4.2. Firstly, setting p =  0, q = 1 and p = q = 1 
in (4.36) give

i-1  j - i - i  ( i - 1)
E[(\nZi..n)Zj:n) = c u :„ £  E  —   k>K ‘ ’

k=0 1=0 (n — k)3

x { E  z™ (2 + m) ~  ln(n — fc) — 7 +  (2 +  m)
i=0

- l

and

E[Zi..n{ ^ Z im)Zj:n] =  ^ E  E  V ’ (re_fc)4 ‘
k=0 1=0

x {  E  z™ +  m ) ~ ln(n — ty +  1 — 7 +  (3 +  m)
1 771=0

-1
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respectively. Similarly, setting p = 1, q =  0 and p = q = 1 in (4.37) give

i - l  j - i - l  ( i - l \ ( 3 - i - l \  f  o o  >|

E  [ Z i :n  In Z j , n ]  =  C i , j :n £  £  ---------7--- ^3  * 1 E  [~ ln(n ~ k) +  ^ (3 + ™)] \
k=o z=o \n —K) L m=o J

(4.39)
and

E [Zj:nZj:nln Zj:n] — a J:„ E  E  _  ^ 4
j + 1  ( - i y - ^ ■(*-!) ( i - j - 1)

Jfc=0 i=o
x {  E  (3 + ra) [ -  ln(n -  k) + ip (4 +  m)\ 1 

1 7 7 1 = 0  J

respectively, while the remaining expectations can be obtained by setting p = q = 0, p = 
0, q = 1, p = 1, q = 0, and p =  q = 1 in (4.38) in each case, as given below:

fc=o i=0 (n-fc)2 „“0
x | _ l n(n _  fc) _  7  +  )  ,

E  [ln Z i:n ln Z j : n ] =  C i , j :n £  E   (n _  fc)2 E  [ -  ln(n -  k) +  ^  (2 +  m)]

*-1 j - i - l
E  [(In Z i : n ) Z j :n ln Z j :n \ = a tj:n £  £  ^  VfeA * ;

k=o z=o (n “  *03

x E  (2 + ra) [— ln(n — k) + ip (3 + m)]
oo

7 7 1 = 0

x ; _ l n ( n _ fc)_ 7 + ( 2 + m )- i + — ± £ ± ™ L — . } ,\  v J r \  J _  ln(n _ fc)+^ (3 + m)J>

i_i j - i - i  / _ jy'-fc-i oo
E [Zi,n ln Zi,n ln Zj:n] = Cij:n £  E  --------7—  1 E  b  ln(n -  fc) +  (3 +  rfc=o z=o (n - fc )3

X { - ln(w- fc) +  l - 7 + - l n (n - f c ) t ” (3 +  m ) } ,

and the final expectation E [Zi:n(\n Zi:n)Zj:n(ln Zj:n)\ is given by

i -l  j - i - l  / i \ j-k-i  /*-i\ ( j - i - i\ oo
E  E  ----------/_ m  * E  ^  (3 +  m) [~ ln(n ~  k) +  ^ (3 +  ™,)]

k = 0  1=0 \ n  ~  K )  7 7 1 = 0

x |  _  ln(w _  fc) +  1 _  7  +  (3 +  ro)- i  +  - _ n-g  g . +  m |4 +  _ _  |

Unlike for single expectations, the expressions obtained here are not directly comparable 
to those found from the direct method, (see, for instance, (4.32) and (4.39)), so we will check 
this via numerical studies.
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h j n
25 50 100 1000

O.ln, 0.2n : direct 
: deriv. 
: simul.

0.0599
0.0599
0.0598

0.0741
0.0741
0.0740

0.0766
0.0766
0.0769

0.0791
0.0791
0.0791

0.3n, 0.4n : direct 
: deriv. 
: simul.

0.1106
0.1106
0.1102

0.1185
0.1185
0.1183

0.1222
0.1222
0.1221

0.1258
0.1258
0.1258

0.5n, 0.6n : direct 
: deriv. 
: simul.

0.0394
0.0394
0.0401

0.0307
0.0307
0.0311

0.0255
0.0255
0.0254

0.0209
0.0209
0.0209

0.7n, 0.8n : direct 
: deriv. 
: simul.

0.2266
0.2266
0.2232

0.2357
0.2357
0.2348

0.2042
0.2042
0.2058

0.1745
0.1745
0.1742

0.9n, l.On : direct 
: deriv. 
: simul.

8.5146
8.5146 
8.4176

13.2134
13.2134 
13.2729

16.5583
16.5583 
16.5480

29.0923
29.0923 
29.0053

Table 4.3: Numerical comparison of E [Zi:ni:nZ j:n ln Z j:n] for various i , j  and n.

Some Numerical Details and Discussion

In this section, we validate the theoretical expressions using simulation experiments with 
104 replications. We take n =  10, which yields (1 0 +  11) /2  =  55 distinct combinations 
of ( i , j )  with 1 <  i <  j  < n, and follow the graphical display at John h  Watkins (2006); 
Figures 4.7 to 4.14 summarise the agreement between theoretical, obtained from both direct 
and derivatives methods, and simulated values for each expectation in (4.19) in turn, where 
we see excellent agreement between the three sets of values. Table 4.3 further presents 
such agreement for E  [Zi:n (ln Z i:n) Z j:n (ln Z j:n)\ for various i , j  and n, in which the two 
theoretical evaluations (upmost and middle entries) are exactly equal and are often con­
sistent with their simulated counterparts (lowest entries) to 3 decimal places. There is 
scope to check the theoretical results for larger sample sizes, in which case the computa­
tion time can increase considerably; for instance, Mathematica took over 7 days to evalu­
ate E  [Zi.n (ln Z i:n) Z j:n (ln Z j:n)] from the derivatives method when i = 250, j  =  500 and 
n  = 2500. It is obvious that the sample size reflects the number of calculations required, 
and hence the computational burden even for simple expectations is at best proportional 
to n. We have obtained accurate results for n  <  1000, and noted that the direct method is 
more time-efficient than the derivatives approach, but we can expect the computation time 
to reduce given the advancement in computational capabilities available today.

4.3 B u r r  O r d e r  Statistics

In this section X \ :n < X 2:n < • • • < X n:n represent the order statistics from a random 
sample of size n  drawn from the Burr distribution. In order to determine the correlations
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Figure 4.7: Theoretical (direct ♦, derivatives 0) and simulated (x) values of E  [Zi:n In Z j:n] 
for all 1 < i < j  < n, for n = 10.
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Figure 4.8: Theoretical (direct ♦, derivatives 0) and simulated (x) values of E  [(InZi:n)Z j:n\
for all 1 < i < j  < n, for n = 10.
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Figure 4.9: Theoretical (direct ♦, derivatives 0 ) and simulated (x) values of E  [In Z{:n In Z j :n] 
for all 1 < i < j  < n, for n =  10.

14.0

12.0  -

10.0

8.0  -

6.0
&
a

4.0 -

2.0  -

0.0  -

-2.0
6 8 9 10 110 1 2 3 4 75

Figure 4.10: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E  [Zi:nZ j:n In Z j:n] for all 1 < i < j  < n, for n = 10.
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Figure 4.11: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E [Zi:n(ln Z i:n)Z j:n] .ioT all 1 < i <  j  < n, for n =  10.
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Figure 4.12: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E  [(In Zi:n)Z j:n In Z j:n\ for all 1 < i < j  < n, for n = 10.
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Figure 4.13: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E [Zi:n In Zi-n In Zj:n] for all 1 < i < j  < n, for n = 10.
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Figure 4.14: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E [Zi:n(\nZi:n)Zj:n(lnZj:n)\ for all 1 < i < j  < n, for n =  10.
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between the final and interim Burr score functions, we will require, based on the form of 
(2.36), (2.37), (2.56) and (2.57), to take (4.1) as

* L ( ln * i:n)“ (ln (l+  *&,))'’E (4.40)

and (4.2) as

E
X f m  (InX i:nf  (ln(l +  XTn) f  X ]:n  Q n X y .n ) d (ln (l +  X j J )

(1 + X T J C '■ -  ^
{1 + X J:r,y

(4.41)

for a, 6, c, d, e, f ,p,  q = 0,1,2. Watkins (1997) considers some, but not all, expectations of 
these forms for the Burr distribution for the case of complete samples, while Watkins & 
Johnson (2002) give some corresponding discussion for samples obtained under a Type I 
censoring regime, and Pawles & Szynal (2001) provide recurrence relations for single and 
product moments of generalised order statistics from Pareto, generalised Pareto and Burr 
distributions. However, as for the Burr EFI matrix with Type II censored data, there 
appears to be no previous work about solving for expressions of the form given at (4.40) 
and (4.41) in terms of the Burr order statistics.

As with the Weibull case, we will look at direct and derivatives methods. We will also 
see that the latter is preferred to the former when deriving results for (4.41).

4.3.1 E xpectations of g ( X i :n)

More specifically, we will need, for (4.40), the following expectations:

(In X i:nfE

E (ln(l + XTn))‘

E [  lnXi:nln (l +  X J J ] ,

E

E

E

XTn \nX i:n\n(l + XTn)
1 + XT„ 

XZn (\nXi:n)‘‘
1 + XTn

X l n ln X i:r 
1 + XT

(4.42a)

(4.42b)

(4.42c)

(4.42d)

(4.42e)

(4.42f)

In fact, these quantities are not entirely new to us; in Section 2.4.1 we have found explicitly 
expressions for

X{:nln X ln
1 +  XI,

and E X lJh i x 1:nf
(1 +  *1T: J 2
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benefiting from the fact that the properties and results of X \ in are a lot more straightforward 
than the other order statistics; then, expectations in terms of Xi:n can be obtained from 
(1.49). However, in this section, we will be solving (4.40) in terms of X i:n.

D irect M ethod

Using (1.40), the marginal pdf of Xi:n is given by

= Ci:naTXT 1

Cj;7j,OtTX

(i + xr r (o+i) [i -  ( i + xT) - “]i 1 [ ( i+ xT) - “]n j
(1 +  xr y ^ n - i+ \) - l  [1 _  (1 +  ,

and we can use the Binomial expansion to write

[ i - ( i + x Tr a ]i_1 =  E ( - i )
k=0

so that

( i + [i -  ( i + xT) ' “]i 1 =  x ; (— (* M
fc=o V k J

which leads to

f {i){x) = Ci:nOLT £  ( - 1)1 1 k 
k=0

From this, we have

E
x!,n (\a x i..n)a ( H i  + xT n) f

(i +  ^ J c 1
(4.43)

at which we define
poo

I*ab=  xP+T-1 (lnx)“ (ln(l +  xT))b (1 +  x r y o .{n -k ) -c - i  ^
JO
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Specific expectations Partial derivatives needed V c
E (lnXi;„)2 171 //

i,pp 0 0

E (ln (l +  x r„ ) )2
T p ll

i,cc 0 0
E  [In X i:n In (1 +  X l n)} j p / i

i.pc 0 0
E XT„ l n X i : n l n ( l + X £ J

1+*£„
T p ll

i,pc r 1

E ' X7nQ nXi-.n f
1+xin

T p ll

i,PP r 1

E ( X T n l n Xi;n\ 2
V )

T p ll

i,PP 2 T 2

Table 4.4: Derivatives method: expectations in (4.41) and the partial derivatives needed.

Hence, here writing s = a(n — k), the expectations in (4.42) need, in turn, the following 
integrals:

t-020
■In

t-002 _-in —

773 { i f  +  h  +  ^ M l2 + («)}.

7-011 _in —

r r ll _[1 —

rr20

S°T

S2T2 { - 7  - ip{s)  +  stp' ( s )} ,  

1
{(1 +  2s) [1 -  7 -  -0 W] + s (1 +  s) ip’ (s)} ,

s2 (1 +  s) 2 T2 

^ ( 1 ^ 3  { 5  - 1 +  [! -  7 -  M ]2 +  W } ,

and
2 5y(2r)20 _  __________£________

2 S (1 + s) (2 +  s) T3 1 6 4 + -  -  7 -  ip (s) + $  M

For example, using (4.43), we obtain (4.42a) as 

E (lnXi;„)2] =  C f c n C t t - E V i r W ’ k 1) l$ 20
k=0

=  Ci:na  (-1 )*  ( \  ) f 7
r 2 fc=o 5 162 E  v ~y „ u M 7  + l7 + ^ M ] 2 + y w

again, similarly for (4.426) to (4.42/).

Derivatives M ethod

(4.44)

Basic expectation It is appropriate to here define, based on the form of (4.40), the basic 
expectation required in the derivatives method, given by

Ei = E X L
l ( i  +  x r n y \

(4.45)
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for which the partial derivatives of (4.45) wrt p  and c  will respectively yield the terms In X i - n  

and ln(l +  X l n), leading to the expectations in (4.42); Table 4.4 summarises these partial 
derivatives in more details, in which we need E "^ , E”pc and E"^.

As with (4.43), we can express Ei as

Ci:n&T ( 1) ( ,

fc=0 \  K /  JO

= Ci:„a £  (—I)*-1 -* ( l ~  X)  B  ( £  + 1, a  (n -  k) + c -  £ )  ,

x P + r ~ l  ( !  +  j . r j - a M l - c - l  ^

-1-*
k=0

obtained from the definition of beta function given in Table 1.5. Using (1.10) we can also 
express Ei in terms of the gamma functions; we have (as before s = a (n  — k))

E ,  jy - i- fc /*■ -i \ r ( f  + 1) r ( s  +  c - f )
E' ~ < w * & (_1) U  )  r  (s+  C + 1)

so that this introduces various digamma and polygamma functions.

F irst partia l derivatives of E i  The first partial derivative of (4.46) wrt p  gives

E

(4.46)

X f : n  I n * ™

L ( l + ^ n ) CJ
d : n a  ’f j  , y - l - k ( i  -  1 \  r ( £  +  l ) r ( »  + C - g )

t i hi> V k J T (s  +  c +  l)
x { * ( £  +  1) _ * ( .  +  e _ £ ) } (4.47)

and wrt c gives

K c =  E X[,n In (1 +  X[.„)
( 1  +  X [ J C

X | Ip^S +  C - ^ j  -  if) (s +  c +  1) |  . (4.48)

Second partia l derivatives of Ei It follows that the second differentiation of (4.47) wrt 
p  yields

~Xf:n(\nXi:nfT p H  ___  TPEi,pp — E

as

Ci:n& i— 1

E  ( - 1)

(l +  ^ n ) C

w . , / i - i \ r ( £  +  i ) r ( s + c - £ )
r ( s  +  c +  i)

* { [ . ( £  + i ) - . ( . + t - £ ) ] , + * ( £  +  , ) + . ' ( . + , , - £ (4.49)
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while wrt c yields
JT tff  771■*̂i,pc

X L l n X , ;„ l n ( l  +  X T J

(! +  X L ) C
as

cfaja *-1 / i  -  1 \  r ( f +  l ) r ( s  +  e - f )  [v > ( |+  1) -V<(s +  c - f ) l
T  t o K ’  \  k  J  I >  + c + l )

X
{ ^  ( ■ + c -  f ) -  ^  (g + 1 ) - V  (s ; }c -  f ) - 1/1 ( s + c + 1 } } ■ (450)

Similarly, the second differentiation of (4.48) wrt c gives

X L ( l n ( l  +  Xr„)):
( H  A'r r

as

c ‘̂ r  , y - i - fc - 1 \  r  (g  + 1) r  (g +  C-  a)  fy. (a +  C -  £ )  - y. (  ̂+  C + 1)1 
lj  U  )  r («  +  c + i )

4 ( - ~ - , 4 - 5 i )

It should be noted that, despite of being lengthy, these results simplify greatly when p and 
c take the values of 0 and 1, as shown below.

Expectations in (4.42) We can now suitably replace p and c (see Table 4.4) in the second 
derivatives of Ei to obtain expressions for the expectations in (4.42). For example, letting 
p =  c =  0, p = r, c =  1, and p = 2r, c =  2 in (4.49) yields, respectively,

£ [ ( l nXi;„)2] = ^ E  ( 1}’ ~ (’* ]
T  k = 0

{ y  +  [7 +  (*)]2 +  $  (*)}, (4.52)

E

and

E

XTn (\nXi:n)‘
1 +  X i:n

X l» ln X i:n

i—1

r2 k = o  s (1 + s)
- 1  +  [ 1 - 7 - ^ ( s )]2 +  ^'  (s H ,

1 + XT
_ 2*m«  *-i ( - I ) * " ( V ) 7T

T2 s (1 +  s) (2 + s) \  6 4 + -  -  7 -  if) (s) +V>'W .

Likewise, setting p = c = 0 and p = r, c = 1 in (4.50) gives, respectively,

i-1 (_!)*-!-* f-1 )
£[lnXi:„ln(l + XL)] = —  ET fc=0

{ - 7 - ^ W  + s ^  («)}
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and

i—l —k /%—1

E
XTn \nX i:nln(l +  X f J

=  £  ( T n  ^  } {(1 +  2*) [1 -  7 -  Ml +  * (1 +  «) /  W}T k=0 S2 (1 +  S)Zi + * L

While setting p =  c =  0 in (4.51) gives

;- i  ( - i ) ' - 1- 4 C*1)E (In (1 +  XJ.n))2 =2aci ;„ E
k=0

We see that all expectations derived here are identical to those found from direct integration 
approach, as we expected; see, for instance, (4.44) and (4.52).

Some Num erical Details and Discussion

It is now appropriate to check the theoretical results above with some simulations based on 
104 replications. Figures 4.15 to 4.20 show, for each expectation in (4.42), the agreement 
between theory and simulation for 1 < i < n =  1000 when a = 4 and r  =  3; in all cases, the 
simulated values (shown in steps of 50 for graphical convenience) are close to the theoretical 
values obtained from the direct method. Again, we report in further details results only
for E XTn \ nXi:nl n( l +XTn) 

1+XT , although results for the remaining expectations at (4.42) show 
similar observations. Table 4.5 shows that the direct method (upmost entries) gives identical 
results to the derivatives method (middle entries) across all i and n. These values may be 
compared with the lowest entries obtained from 104 replications of samples of size n; we see 
almost perfect agreement between theory and simulation. We note that, as anticipated, the 
computational burden increases considerably with sample size; for example, Mathematica 
took up to 4 hours to evaluate E  l n j when n =  5000. We now move on
to solve the joint expectations of Burr order statistics, in which case the algebra becomes 
much more involved than that discussed in this section.
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i n
25 50 100 1000 2500 5000

0.2n : direct 
: deriv. 
: simul.

-0.0030
-0.0030
-0.0030

-0.0029
-0.0029
-0.0029

-0.0029
-0.0029
-0.0029

-0.0029
-0.0029
-0.0029

-0.0029
-0.0029
-0.0029

-0.0029
-0.0029
-0.0029

0.4n : direct 
: deriv. 
: simul.

-0.0099
-0.0099
-0.0099

-0.0100
-0.0100
-0.0100

-0.0101
-0.0101
-0.0101

-0.0102
-0.0102
-0.0102

-0.0102
-0.0102
-0.0102

-0.0102
-0.0102
-0.0102

0.6n : direct 
: deriv. 
: simul.

-0.0199
-0.0199
-0.0200

-0.0206
-0.0206
-0.0206

-0.0209
-0.0209
-0.0209

-0.0212
-0.0212
-0.0212

-0.0212
-0.0212
-0.0212

-0.0212
-0.0212
-0.0212

0.8n : direct 
: deriv. 
: simul.

-0.0280
-0.0280
-0.0281

-0.0295
-0.0295
-0.0295

-0.0303
-0.0303
-0.0303

-0.0311
-0.0311
-0.0311

-0.0312
-0.0312
-0.0312

-0.0312
-0.0312
-0.0312

l.On : direct 
: deriv. 
: simul.

0.1369
0.1369
0.1407

0.2307
0.2307
0.2311

0.3514
0.3514
0.3543

0.9393
0.9393
0.9422

1.2485
1.2485 
1.2517

1.5091
1.5091 
1.5034

Table 4.5: Numerical comparison of E  
data generated with a = 4, r  =  3.

XZ^lnXanMl+XTj for various i and n, for Burr

e
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■1

900 1000400 500 600 700 800100 200 300

Figure 4.15: Theoretical (—) and simulated (x ) values of E  [(lnXj;n)2] versus i ,  for n  =

1000, a  =  4, r =  3.
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co

0.5

500 600 700 800 000 10000 100 200 300 400

Figure 4.16: Theoretical (—) and simulated (x) values of E  (ln(l +  X£n))2 versus i, for 
n =  1000, a =  4, r  =  3.
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-02
0 100 200 300 400 500 800 700 800 000 1000

Figure 4.17: Theoretical (—) and simulated (x ) values of E  [lnXj:n In (1 +  X J .^ ) ]  versus i ,

for n  =  1000, a  =  4, r =  3.
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s

I

-0 .2 0 100 200 300 400 500 600 700 800 600 1000

Figure 4.18: Theoretical (—) and simulated (x) values of E  
for n =  1000, a = 4, r  =  3.

XTTil n Xi:nl n( l +XTT,) versus z,

0.3

0.25

0 .2

0.05

100 300 500 600

-0.05

Figure 4.19: Theoretical (—) and simulated (x ) values of E

n  =  1000, a  =  4, r =  3.

xi„{\nXi;nf
i+xr versus i ,  for
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100 200 300 400 500 800 700 800 000 1000

Figure 4.20: Theoretical (—) and simulated (x) values of E 

n =  1000, a = 4, r  =  3.

4.3.2 Joint E xpectations o f g (X i :n) and h (X j :n)

In particular, we will require (4.41) to be

E  [In Xi'n In ,

E [ln ( l  +  X£„)ln(l +  j g ;„)] ,  

XTn lnX imXj.n lnXj .,

'( J&JnAjij.y
I i+xl~ ) versus i, for

E
1 +  * } : n1 +  * Z n

E [in Xi :n ln(l +  -XJ;n) ] , 

E [ln(l +  XJ:n) In X j m] ,

* J :  n ^ X f - nE

E

E

E

l  +  XTn 

X l J n X i;n
1 +  XT j:n

ln(l +  Xj.n) X :̂n ln X j™

Xrn \nXi:n
1 + X7 ln(l +  XJ:n)

(4.53a)

(4.53b)

(4.53c)

(4.53d)

(4.53e)

(4.53f)

(4.53g)

(4.53h)

(4.53i)

which can be deemed as some extended functions of (4.42).
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Expectations in Terms of X i:n and X j:n

For simplicity, we start from the expectations of X i:n and X j:n so that our problem reduces 
to a single summation, and then exploit the recurrence relationship given in (1.51) to give
results in terms of Xi:n and X j:n. The joint pdf of X i:n and X j:n (2 < j  < n) is

X, V) = C1J..n(aT)2(xVy - 1 (1 +  X ")-"-1 (1 +  [(1 +  xr y c  _  (1 +  ^ - ^ - 2

and from the Binomial expansion we see that

[(1  +  x Tr a  -  (1 +  y T) - ° l - ,_ 2  =  £ ?  (_1 y - k  -  2)  (1 +  x T y < *  (1 +  y r y c . U - 2- k )
k=0 V K J

so that becomes

Cl , y . n { 0 i Tf  ( - 1  y ~ k ( J ”  2)  ( x y f - 1 ( 1  +  x T) - a ^ ~ l  ( 1  +  j ,r ) - a ( n - * - l ) - l  ( 4  5 4 )

Direct M ethod

In general, (4.41) may be stated, for X \m and X j:n, as

tV x* (In x f  (ln(l + ,*))» y«(In y f  (1,(1 +  ( }
(1 + xTY (1 + yT)f (1J)V y>

=  c1J;n( a r f  g  ( - 1)^-* ( j  1 2)

where we have introduced the notation

jpab,qd£ _  [°° [" f  (In x f  (ln(l +  X*))b (1 + a^-afl+HO-c-i
c’f  Jy=0 Jx=a \  y,+T_1 (In y f  (ln(l +  yT) f  (1 +  yr)-a(™ -*-D -/-i

Then, the expectations in (4.53) require, in turn, integrals of the form

7-010,010 r001,001 7-rl0,rl0 r010,001 t-001,010 r010,rl0 7*rl0,010 r001,rl0 rrl0,001 
-*0,0 >-*0,0 >1,1 >-*0,0 >-*0,0 >-*0,1 >-*1,0 >-*0,1 >J1,0

Consequently, here the algebra becomes much more complicated than that discussed in 
previous sections, and, in some cases, involves integration of the series. We now consider 
each case in detail and, for convenience, let a  (1 +  k) = s and a (n — k — 1) =  t.

1. E  [In X i :n In X j:n] The relevant integral is

C 010 =  1 7 =  0 I L  0 *T_1 (1 +  VT~ l  toy (1 +  y T ' - 1 d x d y

1 dxdy.
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at which solving the interior part gives rise to the F3>2 (—yT) series:

fx=o xT In a; (1 -f- xT) 3 dx 

=  { T i n y - r \ n y ( l  +  y T)~ 3 -  s y TF3,2 (1,1,1 +  s; 2,2; - y T) }  .
T S

Hence, ignoring the constants wrt y , the exterior parts are

I7=o yT~1(lnyf(1+yTr t_1 dv = -6t  +  b  +  'P Wl2 +  $  Wy=o» v- ' v i "it Tst

/ “ o ^ - w a + ^ r - * - 1^  =  v  +  l7 +v,r(: (t + t)+ v , , ( s + t) -

but
/ J l 0 2/2r_1 lny (1 +  2/T)“t’"1 F3>2 (1,1,1 +'s; 2,2; -?/r ) dy (4.55)

is insolvable, primarily because there are too many functions of y (power, logarithm 
and algebraic) appearing simultaneously with the F3f2 (~yT) series of a power y ar­
gument. Alternatively, we write the hypergeometric function in terms of the gamma 
functions:

F  ................ ........ -rx ”  r ( l  +  S +  m ) ( - y n m-̂ 3,2 (t, 1,1 -|- s, 2,2, y ) 2_j / . . . 2 1 ’
m=o r  (s) (m +  1Y  ml

so that the problem turns into

e  r f.1f+w  + r ! f r T  c  0 yT(2+m)" 1 ^  c1 + *m=o T (s) (m +  1) m! y
r ( l  +  s + m) (—l)m r  (2 +  m) r  (t — 1 — m) [ip (2 + m) — ip (t — 1 — m)]

771=0 T (5) (m +  l)2 m! T2r  (£ -I-1)

Nevertheless, since

n — j  + 1 < n — & — 1 < n — 1 {as 0 < k < j  — 2)

=> l < n  — /c — l < n  — 1 (as 2 < j  <n)

=> a < a {n — k — 1) < a {n — 1)

=>■ a  — 1 < a  (n — A: — 1) — 1 < a: (n — 1) — 1 

=$> a — 1 < t  — 1 < a  (n — 1) — 1,

the functions T (t — 1 — m) and ip(t — 1 — m) will soon become invalid (negative) in
00
^2 7 indicating that (4.55) remains insolvable.

7 7 1 = 0
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2. E  |hi(l + X[:n) ln(l +  X j:n) We need /o,o1001 an inner integral of

f vx=o xT_1 ln(l +  xT) (1 + xT)~9~1 dx

= X  {1 -  (1 +  yTr  -  (1 +  yrr  • In (1 +  yT)}I &

so that integration wrt y (dropping the constants) consists of

0 yT~l ln(l +  yT)(  1 + yTY t~1 dy = i  f ™=1 (In u) u ' ^ d u  =  (4.56)

f™=0yT 1 ln(l +  yT) (1 +  yT) 8 1 l dy = s * 1du

2> (4-57)r  (s + 1) 

and

/ “  o yT_1 (ln( ! + yr ))2 0 - + yT)~s~t~1 dv = \  I7=i (lnn)2 = r /a ^.rt3’

obtained on letting u =  l +  yr (0 < 2/ < o o - 4= > l < u < o o  and y = (u — 1)^ so 
dy = ^ (u — l )^ -1 du). We thus have

t-001,001 1 f 1 1 2
i n  n — S "7T ' ”77 o"
0)0 TS2 \  Tt2 T {S +  t)2 T{S + t )3

3. E r Xf.„ In X\:r XJ:n In
[ l+ ^ lT:n

The inner integral in /^°>rl° is 

fx=o x2r_1 In x  (1 +  xT)~s~2 dx
l  f  l  — (l +  yT)~s ~ syTEs,2 (1 ,1? 1 +  s; 2 , 2 ; —yT) 1

r 2s (s +  1) |  + rs  (s +  1) In y B - yr (2, - 1  -  s) J

which solution involves the hypergeometric and incomplete beta functions. Then, 
neglecting the constants, integrate wrt y yields

J7=0y2T- l ln y ( l  + yT) - t~2 dy = y  (4-58)

/ “  o y * - 1 In v (l +  yT)_s_l_2 dy = (459)

/r=o !/3T_1 ln V (! +  yTr {~2 *3,2 (1,1,1 +  «; 2,2; - y T) dy (4.60)
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which, similar to (4.55), is insolvable, and

/ “  o 2/2t_1 (In y ) 2 (1 + y T r l ~ 2 B-y* (2, -1  -  s) dy

T\ - t - 2 y2t
■F2,1 (2,2 +  s; 3; - yT) dy from (1.11)

6T3 (s +  s2)

—127+672+7r2+6V>2 (a + t+ l)  . (a + l ) ( l2 —367+1272+27r2+12V»2(g+t)) 
(s+ t+ 1) (s+ t+ 2 ) (s+ t)(s+ t+ l)(s+ £ + 2 )

(s+ t) (s + i+ l) ( s + i+ 2 )
12—127—12+367—1272—27r̂ +6V’(t)(47+2t7—6—2t)—12V’2(t) i 6

t(2+ 3t+ ta) t2(2+ 3t+ t2)
I —12+127+12V)(s+f) [—3—4 s—t+ 7(2+ 3s+ t)]+ 6 ,0 / (s+ t)(2+ 3s+ t) (t)
' (s+ t) (2 + 3 s+ 3 f+ 2 si+ s2 +t2) _  (t+t )

■ 1 2 7 —6 7 2 —7t2+6V>2 (<+1) 
"l 2+ 3t+ t2

4. E In X i:n ln(l +  X j:n) Solving the interior integration in /o,o°’°01 giyes rise to the Fsy2 (~yT) 
series (see Iq q0,010) at  which on omitting the constants, its exterior integrals become

and

S™=oVT 1 Inj/ln(l +  yT) (1 +  yT) 1 1 dy = 7 +J ^ '

/J=o J,T_1 InyIn (1 +  yT) (1 +  yT)~‘~t~1 dy =  ~7 +  (  ̂+  * ) / ( «  +  *), (461)
y Tz (S +  t)

f™=0y2T 1 In (1 +  yT) (1 +  yT) * 1 F3)2 (1, 1,1 +  s ;2, 2; - y T) dy

 ̂ r —ip (1 — t) +  ip (1 — s — t) — tip1 (1 — t) +  tip’ (1 — s — t) 
+ 7r csc [nt] csc [7r (s +  £)] sin [7rs] +

(cot [7rt] +  cot [7r (s +  £)]) 7r2t csc [irt] csc [n (s +  t)] sin [7rs]
TSt2 .(4.62)

5. E  [ln(l +  X l n) In X j :n ] The internal integral of /^o1’010 has been studied before in iJJ1,001; 
by dropping the constants, the external parts are

f^/Lo yT In y (1 +  yT) dy = - 7 + tp(s + t) 
T2 (s +  t)

and (4.61). We thus obtain

r o o i ,o io  _  1  f  _
o,o r3s2 \

7 + ip(t) 7 +  ip (s +  t) - j  +  ( s+  t)ipf ( s +  t)
+ — s-

(s + ty

(4.63)

(4.64)

6 . E  InX l:nX*'" y ”* IqLl°’t10 has same inner part to that in /qq0,010; we thus have outer
J:n J 9 9
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integrals (ignore the constants wrt y) as

/Jlo y2r_1 (*n y)1' (i + vT)~t~* dy =- t - 2 T  +  [7 +  ^  W]2 -  2 (7 +  (0) +  (t)
t H  (1 +  £)

r°° !/2T- 1 a n ^ 2 fl  +  i/Tr s_‘“2 du =  T  +  [7 +  V’(  ̂+  t)]2 - 2 (7 +  V>(j +  t)) +  ^'(a +  t)
Jj,=0y l“ W (1 +  s  1 ay T3(s +  t) ( s +  t + i)

and (4.60).

7. £ - 14 -y f— 1 n X j :„
rlOWe need 7[q0,010 whose inner integral is identical to that in 7^\0, 

whereas its outer integral is similar to /q q1,010; we see that integration wrt y gives 
(neglect the constants)

f™=0yT (lnv) (! +  2/r ) B-vr (2> - 1 -«)<*!/
,2r

= f™=0yT 1 (Iny)2 (l + yT) * 1 ^ - ^ 2,1 (2,2 +  s; 3; - y T) dy from (1.11)
r . —6 7 2 —7T2—6V»2 ( i + l )  i —6 7 2—7r2 —12 -0 (i)(—l + 7 + 7 t ) —6V>2 (i)  i

i ■*" t+ 1  “l t ( t+ l)  t
66 1 672+7r2+V)2(s+t+l)_____

i 2 ( t + l )  a + t+ 1  ( s + t ) 2 ( s + t + l )  1
( s + l ) ( 6 7 2 +7r2+6V>2 ( 8 + t ) ) —1273+ 12V > (s+ t)(—1—g + 7 ( l+ 2 3 + Q )+ 6 ( l+ 2 3 + t )V > / ( s + t )

( a + t ) ( s + i + l )

8 . E

6r3 (s +  s2) 

as well as (4.63), (4.64) and (4.55).

ln(l + XJ.n) X^+x? 3n] 0̂ il r l° ^as same inner part to that in /q q1,001 but a similar 
outer part with 7  ̂i°’r10; its outer integrals (omit the constants wrt y) are

f ° 1 0 y2r~l Iny ln(l +  yT) (1 +  yT)~8~t~2 dy
  (1 +  2s +  2£) [1 — 7 — ip (s +£)] +  (s +  t) (s + 1 +  1) if)' (s +  t)

t 2 (s +  t)2 (s +  t +  l ) 2

(4.58) and (4.59). Consequently, we have

7-001,-7-10 _  1

r 3s2

1—7 —y>(t) _  1—y—j>(s+t) 
t ( t+ l)  (s + t)( s+ t+ l)  

( l + 2 s-f2t ) [ l - 7 -V>(jg+t)1+ (s+ t)(s+ t+ l)V ;/(s-|-*) 
(a+t)2 (« + t+ l) 4

> .

9. E  ln(l +  XJ:n) 10,001 an identical interior part as 7^\0,rl° but exterior
’ i:n  J * *

part similar to 7gQ1,001; we see that integration wrt y gives (ignore the constants)



4.3. BURR ORDER STATISTICS 176

(4.56), (4.57), (4.62) and

J7=o yT~l ln2/ln(! +  VT) (! +  VT)~t~l B - yr (2, -1  -  s) dy

= 17=0 yT 1 ln 2/ ln(l +  yT) (1 +  yT) * 1 ^ “ -̂ 2,1 (2,2 +  s; 3; —yT) dy

= \  e  (2)m (I t  * h (~ 1)m S U  vT(3+’n)' 1 ln y ̂ + yT) ( ! + yT) ' ‘_1 dy1 m=0 V'JJm m!
1 -  (2)m (2 +  s)m ( - l ) m ■ 7 r r ( - 2 - m  +  t)
2 m=o (3)m m! r 2r  ( -2  -  m) T (1 + 1)

—7T2 cot [7T (m — £)] CSC [7T (m — £)] CSC [7Tt] +  77 cot [rat] CSC [m7r] ip (—t)
+ip (—2 — m) (7r csc [7r (m — £)] csc [7rt] +  csc [rrar] "0 (3 +  m — t) — csc [rrwr] ip (—i))

—77 CSC [7T (m — £)] CSC [7Tt] Ip ( — 2 — 777 +  t)  +  CSC [?7l7r] Ip ( ~ t )  Ip (—2 — 171 +  t)

— csc [77777] ip (3 +  m — t) (7r cot [77177] +. ip.(—2 — m  4-1)) +  csc [77777] ipf (3 +  777 — t)

However, owing to negative arguments in the gamma and polygamma functions the 
last integral has no solution.

In summary, using the direct integration approach, we are only able to find expressions 
for the second, fourth, fifth and eighth expectation in (4.53); others are insolvable here due 
to the inability to solve the integration of the following form:

2 r

17=0 y9 (ln2/) (! + 2/t ) -̂ 3,2 (1, 1,1 + s; 2, 2; —yT) dy.

We can, however, employ the derivatives method to obtain the expressions for (4.53) where 
we require a basic result under which differentiations could be applied to, as discussed in 
the following section.

Basic Expectation

As with (4.45) for single expectations, the preliminary for joint expectations here is

E u  = E H n
(l +  *iTJ c ( l  +  AT,) '

so that its partial derivatives wrt p ,q ,c , f  will introduce ln X i:n, ln X j :n, ln(l +  X[.n) and 
ln(l +  X j:n) in turn, to give the functions in (4.53). Accordingly, E\j may be expressed as

J7=o/x=o x

= c i j:n(aT)2 g  ( - i r * ( j  ~k 2)  ̂ °/0',0°-
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It will prove more convenient to consider a reduced version of / ^ 0,9°°, as follow, and then 
give result for /P®°>900>

A result on integration Suppose here

S  = — a  (1 +  k )  —  c

and
T  = —a (n — k — l) — f.

Due to the format of (4.54), the following integral

roo py
i|'«  =  /  / x”+T-'l (l + xr)s - 1y'>+T-'l (l + yr )T- 1dxdy

’ J y = 0  J x = 0

often appears in the joint expectation of X i :n and X j : n . Suppose further

u = xT

then 0 < x < y ^ 0 < u < y T, and x = ur so dx = ^ u r^ d u .  The inner integral wrt x 
takes the form

f  xp+T~l (1 +  xT)S~l dx =  — f  ur (1 +  u)s~x du,
J x =0 T J u =0

but also can be written as

^  I T  (1 -  ^  ( r  ■+ l ' ' ~  S )  ’

obtained by setting
uv = 1 +  u

where 0 < u < y T ^ - 0 < v <  and u =  so du =  dv. Hence, is now 

I r  y q + r - l  {1 +  y T ) T - l  B ^ _  ( I  +  ! , _ £ _  S ) dy,
T J y —o l+yT \ T  T  /

and if we let w = yT, we have

r  wr (1  +  w f - 1 B_sl_ ( -  + 1 , - - ~ s ) d w  r2 J w = o i+» Vr ’ r /

because 0 < y < o o ^ 0 < u ; < o o ,  and y = wr so dy = \w r ~ ldw.
We use two results from Chapter 1 to proceed; first, we use the relationship between the
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incomplete beta and hypergeometric functions, see (1.11), to write 

B_a_ ( -  +  1 , - - - S )  =  +  ( _ 2 L _ ,) f + 1 ^ 1 ( £  +  l 1£  +  S  +  l ; E + 2;r ! 2 - )1+tu Vr T J \ T  )  \ l  +  w j  \ T r  T 1 + w J

and then use (1.12) to write the above as

( p i T Y  w V +1 v  r (? +  1 + TO) r ( ? + s ,+ 1 + m ) r ( ? + 2) f  w
V r+ ) ^1 +  iuJ m=o r ( f +  2 +  m ) r ( f  +  l ) r ( f +  5  +  l)m ! U  + «V
°° r ( f  +  g  +  l +  m) /  W N?+1+m

m=o (£ + 1  +  t o ) r ( £  +  5  +  l)to! \ 1  +  w )

It follows that

W r  =  A  £  , P  .T ( f ^ g + 1 + 'w )  ̂ r  «,*■+?■+1+™(1 +  wf - ? - « - * d w
’ t m—o (^ + 1  + m) r ( f  +  S +  l)m ! Jw—o

£+l+m

in which

/
O O ^5+1+1+™ (1 +  w)T~-~m~2 dw = B ( — + — + 2 + m, —— — t )

w = 0  T  T  T  J
r(£ + 2 + 2 + m)r(-?-T)

r ( £ - T  +  2 +  m)

so that we obtain

= 1  x r ( - f ~ r ) a  r ( £  +  s  +  i  + t o ) r ( £  +  f  +  2 +to)  
s,r t 2 r (£ +  5 + 1 ) (£ +  1 +  m) r ( £ _ r  +  2 +  ra) ra! •  ̂ • >

Moreover, we can quote the above infinite summation in term of a hypergeometric function, 
as follows:

“  r  (£ +  £  +  1 + m) T (£ +  j  +  2 +  to) 
m=o ( f  +  1 +  to) r  (£ — T + 2 +  to) to!
~ r ( £  +  l  +  TO)r(£ +  S +  l +  m ) r ( £  +  £ +  2 +  m) 1™

Jko r ( f +  2 +  t o ) T ( £ - T  +  2 +  to) X m!
r ( £  +  5  +  i ) r ( £  +  f +  2)

( f  +  i ) r ( £ - t  + 2)
F„ ( £  +  1,£  +  s  +  l i £ +  i  +  2;E +  2i£ _ r  +  2;1) .

\ T  T  T  T  T  T J
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Therefore, substituting this in (4.65) yields

tp« =  i  r ( - f - r )  r ( ;  +  g  +  i ) r ( ;  +  ;  +  2)
S, T t 2 r ( £ + 5 + 1 ) ( £  +  l ) r ( £ _ T  +  2)

■̂ 3,2 ( — +  1, — +  S +  1, — +  — +  2; — +  2, — — T +  2; l )
\ T  T  T T T T J

r ( - a - r ) r ( E  + g +  2) 
r 2 (f  + 1) r  (e -  t  +  2) x 

^3,2 ( — + 1, — +  5  +  1, — + — +  2; — +  2, — — T +  2; lV  (4.66)
\ T  T  T  T  T  T J

An expression for E\j Using (4.66), we now obtain an expression for E\j in term of 
hypergeometric function:

2 '£>v . ^ ^ / j - 2 ^ ^ ( /  +  a ( n - A ; - l ) - 4 ) ^ ( £  + 2-^2)
^ + ! ) ; ■(£ ; a  (; y_  1)T+ 2) x 

/  E +  l i f _ a(1 +  t ) _ c+ 1> f  +  f + 2 ; \
’ V f  +  2 ,f  +  a (n _ * - l )  +  /  +  2; l  J

Nevertheless, a scrutiny on (4.67) unveils that the second argument in the (1) series 
therein would become negative under certain circumstances, leading to invalid gamma func­
tions; take, for instance, a  =  4, r  =  3, c = 1, k =  0,p = 1, we see

£ - a ( l  +  f c ) - c  +  l  =  i - 4 ( l  +  0 ) - l  +  l  =  ~ .
T O  O

Hence, we must rescale the arguments in that F^2  (1) series. Using (1.16), we can obtain 
an alternative formula to (4.67), given by

C1. f ( i - r ( a » +  c + / - f - j ) r ( E  +  E +  2)
lj:n t o  } V k )  ( a ( n - k - l )  + f - l ) T ( a n  + c + f  + 2)

(  l , a ( n - k - l )  + f  + l ,a n  + c + f - * - * - , \
3,2 (  a (n -  k -  1) +  /  -  S +  1, an + c + f  + 2; 1 J

Convergence considerations In addition, as noted in Section 1.2.4.2, it is necessary to 
check for convergence in the (1) series at (4.68); from (1.15), this series is convergent 
provided that

l  +  ^ > 0 ,
T

which, as far as our range of interest (r > 0 and p = 0,1) is concerned, this is always the 
case. Next, we look at the derivatives method in detail.
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Specific expectations Partial derivatives needed P c q /
E ln X \  m  ln 77.//

1.7. m 0 0 0 0

E ln (l +  ln (l +  XJ:n) 771//
lj,c/ 0 0 0 0

E X l „ l n X I:„ x ; :ni n x J:n 
1+Xl„ 1+XT„

771// r 1 T 1

E ln X lMln(l +  X J J T p l l
13,Pf 0 0 0 0

E ln(l +  X{.n) ln X j :n] T p l l
1.7,cq 0 0 0 0

E 1„ V  XJ.n In X j :n
11 XT

' i : n

T p l l
1 j ,m 0 0 T 1

E X l M ] n X i :n 1 Y 
1+X f .n

T p l l
1 T 1 0 0

E lnfr +  X T J
i : n

T p l l
lj,cq 0 0 T 1

E XhxiT ln(l + ̂ J:J
j p l l

lj ,P f T 1 0 0

Table 4.6: Derivatives method: expectations in (4.52) and the partial derivatives needed. 

Derivatives M ethod

As previously mentioned, unlike for the Weibull case, the expectations in (4.53) cannot all be 
derived directly when the underlying distribution is Burr. Hence, we focus on the derivatives 
approach, where we have already obtained an expression for Eij, given at (4.68), in terms of 
the gamma and hypergeometric functions. Table 4.6 summarises the corresponding partial 
derivatives of E\j and the values of p ,c ,q , f  needed; the relevant derivatives are E ' ^ ^  
Ek r f ’ E" w  E 'kcr  However, it will prove more appropriate to express E\j in terms of 
just gamma functions so that we need only the digamma and polygamma functions, which 
have been shown to be more manageable than the derivatives of F^2\ therefore, we write 
(4.68) as

£  r ( 63 +  m ) r ( 64 +  m)
I] lj:" jS , V k )  V(b3) rn=0 r  (65 +  TO) r  (61 + 1 +  m)

where we have introduced the following notations for convenience:

b\ = £ + /  —

62 =  —+ —+2,
T T

bs = t +  /  4-1,
1 P 0.04 =  cm +  c +  / ---------- ,

r  r
65 =  an  +  c +  /  +  2,

and, as before, t =  a (n — k — 1).
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F irst partia l derivatives of E\j The two relevant first derivatives of (4.69) are

c i j ;na 2 fc? •_* ( j  -  2 \  r  (6,) r  (62)..
(  fc J  r (6s) x

^  r (£>3 +  m )r (£>4 + m)
{ etm=0=0 r  (65 + 771) T (61 +  1 +  771) [V> (62) -  ^  (&4 +  Wl)] S (4.70)

and

XV  -  r f e )

r (&3 +  7n)r (64 + m) 1
U ? 0 r(6 5 +  m ) r ( 6 1 +  l +  m ) [V' (64 +  m ) - ^ (65 + ro)1j -  (471)

Second partia l derivatives of E\j It follows that the second differentiation of (4.70) 
wrt q is

„ w-jfc ( j -2\T{bi)r(b2)
{ k )  m )  x

00 r (&3 +  m)r (6 4  + m) [ip (b2) -  Ip (6 4  + m)] 
i i o  rffcs +  mjrffci +  l +  m) x

( -ip{bi) + Ip(b2) -  ip(b4 + m)

1 + ^ } ^ 0 ) + » ( > l +  ! +  "»)
(4.72)

and wrt /  is

w, ciJ;„Q!2 * 2 ■_* / j  -  2 \ r  (61) r  (b2)
Z i lr ,  =  - ^ S C - 1) (  fc J  Tfe) X

^  r (&3 +  m)r (6 4  + m) [ip ( 6 2 )  -  Ip (6 4  + m)] 
m=o r  (65 +  ?7i) r  (61 + 1 +  m) x

f  ip ( b i )  -  ip (6 3 )  +  ip (6 3  +  m )  +  ip (6 4  +  m )

\  ~  f e  +  m) - 1/> (fr +  1 +  m)

Whereas the second differentiation of (4.71) wrt q is

p„ cij:„a2 ^  •_* -  2^ r  ( 6 i )  r  (6 2 )
^lj.w =  ----   E  ( - ! )

(4.73)

-  r  &  \  k J r(6s)
^  r(fe3 +  m)r (64 +  m) [ip (64 +  m) -  ip (fr5 +  m)] 

tt^o r  (&5 +  rn) T (61 +  1 +  ra)

f (61) +  ip (b2) -  ip (64 +  m) 1

I  _ V’(fe4+m)-V-765+m) +  ^  (&1 + 1 +  m) J
(4.74)
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and wrt /  is

j - k  f j -  2 \ r ( b 1) r ( b i )= w 2E(-i r k ( j  k 2)
T ( b 3 )

X

y  r(63 + m )r (64 +  m) [ip (64 +  m) -  ip (65 +  m)]  ̂
m=o r  (65 +  m) r  (61 +  1 +  m)

f ip (61) -  ip (63) +  ip (63 +  m) +  ip (64 +  wi)

i  + ^ > : : : i = t e ) -  m + ™) -  ^ + 1 + ro)
(4.75)

Expectations in (4.53) We can now replace p, c, g and /  according to Table 4.6, and 
will see the above derivatives simplify greatly to give us expressions for the functions in 
(4.53). Replacing (p,c,q, f ) = (0,0,0,0), (r, l , r , l ) ,  (0,0, r, 1), and (r, 1,0,0) in (4.72) 
gives, respectively,

£ [ ln * 1;„ ln * j;„] =  ^  (j t l  §  & P ) -  *  (” » +  ”»)! x
t fc=o t 771=0 (aw + m) (an + 1  +  m)

(t) +  Ip (2) -  ip (an +  m)

+ * ( «  +  ! +  "») J ’

E
X l:n

1 + ^ n
fc? (-I)*-* {>!?) . .

T2 f c = 0  *(* +  1)
(£ +  1 + m) r  (on +  m) [ip (4) — ip (an +  m)] 

r^o  r  (an +  4 +  m)

{ —ip (t) +  ip (4) — ip (an +  m) 1

+ » ( « + ! + " » )  r

X

' i n X ^ Y *l.n 1 +  X T j:n

2ciJ;„a2 Jz? ( -1 ) ' ^ ( V )
T2 *=0 *(* +  !)

°° (t + 1  +  m) r  (an +  m) (f  +  f  +  2) — ip (cm + rn)]
E

771=0

{«

T (an +  3 +  m) 

—-0 (£) +  ip (3) — ip (an +  m) 1
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and

E
X I J n X , ,

l +  XEr
lnXj:n

_ 2cUi. w ^ ( - i r k t , 2)
n-2 k̂=Q t

^  T (an +  m) [ip (3) — ip (cm +  m )] 
m=o r  (an +  3 +  m) X
j  -ip (t) +  ip (3) -  ip (an +  m) 1

1 + $ S f e £ f f + * ( «  +  l  + m) } '

in which the exact values for ip (a) and ip' (a), for a = 2,3,4, can be found at Table 1.6.
The expressions for other expectations can be similarly obtained. Setting (p, c, q, / )  = 

(0,0,0,0) and (r, 1,0,0) in (4.73) gives

E  [lnX i;n ln(l +  AJ.n)] =_  cU:nq ^ ( - l  r k t k2)
Efc=0

f ^  ip (2 ) — ip (an +  m) / I  ip' (an +  m) \  1 
(an +  m) (an +  1 +  m) \  t ip (2 ) — ip (an +  m) J J

and

E
X{:nln X 1:n

1 +  X{, ln (l +  XT )
=  2c1J:na>&  ( - i r *  f t 8) ..

T fc=0 t
r  (an +  m) (3 ) — ip (an +  m)] 

m=0 r  (an +  3  +  m)

i  _  v,(an +  m) +  .̂ .̂ + £ )+ w ) + , H  +  3 +  . ) }

respectively. While setting (p ,c ,q ,f) =  (0,0,0,0) and (0,0, r, 1) in (4.74) gives, in turn,

ci • a 2 •?-2 f - i y _fc (^T2)
£ [ln ( l +  ^iT: J l n ^ ;„] =  ^ f ^ E  C ' . U ;  x

r  fc=0 1
E2, [-0 (an +  m) — ip (an +  2 +  m)]

(an +  m) (an +  1 +  m)

J ip (t) -  ip (2 ) +  ip (an +  m) 1 

I  + V.(an+m)(-^ + 2 + m ) ~ ^  (* +  1 +  m) J

and 

£
XT In X j . n

j:n

= 2C1, , w  j - n - i y - k W
T 1=0 t ( t + l )

^  (t +  1 + m) T (an +  m) [ip (an +  m) — ip (an +  3 +  m)] 
m=o r (an + 3 + m )

( ip (t) -  ip (3) +  ip (an +  m) 1 

I  + V .(^4 l)-^+ 3+ m ) ~ V1 (* +  1 +  m) J
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Lastly, setting (p, c, q, / )  =  (0,0,0,0) in (4.75) yields

a s

c l , j : n a  E  
k=0

(—1)J' k (J fc2) ^  ip (an +  m) — xp (an +  2 +  m)
£ E=0 (an + m) (an +  1 + m)

1 . z . ib (an +  m) -  xp (an +  2 + ra) . , .1— -  +  ip (an +  m) H— —--------- r-----—--------------— rb (an +  2 +  m) > .
£ -0 (an +  ra) — 0  (an +  2 +  m) J

Joint Expectations of g (Xi-n) and h (X j:n)

As indicated at Section 4.3.2.1, having found the expressions for (4.53) in terms of X\.n and 
X j:n for various combinations of a, b, c, d, e, f ,p,  q from the derivatives method, we are now 
in the position to exploit the recurrence relationship for order statistics, given at (1.51), 
to obtain the corresponding expressions in terms of Xi:n and X j:n (2 < i < j  < n). For 
instance,

E  [In X i m  In X j , n \ = n!
E E

(~l)a+ ( n + t - j ) \ ( s + j - i - 2)!
t!(n— t—3)!(s—l)!(n+t+3—i)!

E[ln X \ :n —i-\.s + t  In X j(j -  i -  1)\ s=lt=0 

in which E[ln X \ :n In X j :n] has been given at (4.76), and so forth.

Some Numerical Details and Discussion

The work above is from a theoretical viewpoint only, and we should seek some reassurance
that this theory is in agreement with practice, as represented by simulations. We continue
to use a = 4, r  =  3, and show in Figures 4.21 to 4.29 the theoretical, calculated from both
direct and derivatives methods, and simulated values for each specific expectation in (4.53),
for all combinations of i and j  such that 1 < i < j  < n = 10. We see there is very little
difference between the three sets of values, for all 55 pairs of (i , j ) considered here. A more
detailed comparison is given at Table 4.7 for E  ln(l +  X l n) evaluated at various

L ' j ’-n J
i , j  and n, which leads to the same conclusion. We remark that these checks should be
extended to cover other values of a, r  and sample sizes, although the computation time will
depend on the computer resources available.

4.4 Chapter Summary and Conclusions

In this chapter, we have obtained expressions for various expectations and joint expecta­
tions of order statistics, generally of the forms at (4.1) and (4.2). The derivation of these 
expectations is motivated by the study of the correlations between the complete and the 
Type II censored MLEs, which, as we will show in Chapter 5, involves the multiplication of
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h j n
25 50 100 1000

0.1 n, 0.2n : direct 
: deriv. 
: simul.

-0.0011
-0.0011
-0.0011

-0.0014
-0.0014
-0.0014

-0.0014
-0.0014
-0.0014

-0.0014
-0.0014
-0.0014

0.3n, 0.4n : direct 
: deriv. 
: simul.

-0.0064
-0.0064
-0.0063

-0.0070
-0.0070
-0.0070

-0.0071
-0.0071
-0.0071

-0.0071
-0.0071
-0.0071

0.5n, 0.6n : direct 
: deriv. 
: simul.

-0.0143
-0.0143
-0.0143

-0.0156
-0.0156
-0.0156

-0.0158
-0.0158
-0.0158

-0.0163
-0.0163
-0.0163

0.7n, 0.8n : direct 
: deriv. 
: simul.

-0.0197
-0.0197
-0.0203

-0.0223
-0.0223
-0.0223

-0.0228
-0.0228
-0.0228

-0.0233
-0.0233
-0.0233

0.9n, l.On : direct 
: deriv. 
: simul.

0.0565
0.0565
0.0573

0.0972
0.0972
0.0971

0.1367
0.1367
0.1388

0.2758
0.2758
0.2775

Table 4.7: Numerical comparison of E  |hi(l +  X[:n) Xl'n 111X3 n 
Burr data generated with a = 4, r  =  3.

l+AT 1 j  :n
for various i , j  and n, for

2.5

1.5

•  •  X

4  «  M

Figure 4.21: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E  [In X i:n In X j :n] for all 1 < i  <  j  <  n, for n  =  10, a  =  4, r  =  3.
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Figure 4.22: Theoretical (direct derivatives 0) and simulated (x) values of
E  [ln(l +  X U  ln(l +  X j.j l  for all 1 < i < j  < n, for n =  10, a =  4, r  =  3.
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(direct ♦, derivatives 0) and simulated (x ) values of
for all 1 <  i  <  j  <  n ,  for n =  10, a  =  4 ,  r  =  3.
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Figure 4.24: Theoretical (direct derivatives 0) and simulated (x) values of
E In Xi:n ln(l + XJ:n) for all 1 < i < j  < n, for n = 10, a = 4, r  =  3.
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Figure 4.25: Theoretical (direct ♦, derivatives 0) and simulated (x ) values of
E  [ln(l +  X {:n) In X j :n] for all 1 <  i  < j  <  n ,  for n =  10, a  =  4, r  =  3.
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(direct ♦, derivatives 0) and simulated (x) values of 
for all 1 < i < j  < n, for n =  10, a = 4, r  =  3.
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Figure 4.27: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E X l:n l n X l :n  1 y  .

i+xf:n ^ r-j : n for all 1 <  i  <  j  <  n ,  for n  =  10, a  =  4, r  =  3.
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Figure 4.28: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
S [ ln ( l  +  X f j
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for all 1 < i < j  < n, for n = 10, a = 4, r  =  3.
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Figure 4.29: Theoretical (direct ♦, derivatives 0) and simulated (x) values of
E X\ r+ x?l n +  X j:n) for all 1 < i < j  < n, for n =  10, a = 4, r  =  3.
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the two sets of score functions, and hence explaining the complexity in the formats of these 
expectations.

In summary, this chapter has involved a considerable amount of algebra. For each of 
the distributions considered, we first employed the direct method; this involved (double) 
integrations of some complex functions, including the exponential integrals and the hyper­
geometric series, and we noted that, however, certain integrals of the joint expectations 
from the Burr distribution could not be solved directly. We then considered the deriva­
tives method; the technique is relatively straightforward, and has shown more generalisable 
in dealing with the logarithms and/or powers of order statistics; more importantly, it has 
provided expressions for all the joint expectations needed for the Burr distribution. Never­
theless, despite there being more complicated functions involved in the direct method, we 
note that this approach has generally consumed less computation time than the derivatives 
method when implemented in Mathematica, and hence is more useful in practical terms.

We have shown that the theoretical results agree with the behaviour observed in simula­
tion experiments for various combinations of order statistics, parameter values and sample 
size; despite few computational problems for large sample sizes, we have covered most sam­
ple sizes and ranges of censoring encountered in practice, but we remark that results for 
larger sample sizes are possible with the computer resources available elsewhere. Most im­
portantly, the agreement between theory and simulations indicates that our formulae can 
be employed as a building block in future evaluations. Therefore, we are now in the position 
to consider the link between the final and interim estimators.



Chapter 5

Correlations B etw een Final and 
Interim  E stim ates o f Param eters 
and Percentiles

5.1 Introduction

As we have previously discussed, from a statistical perspective, the analysis of the complete 
data set is generally to be preferred (under complete sampling, the data available for analysis 
simply consisted of n independent failure times), but, in practice, some censoring - such as 
Type I or Type II - is often inevitable. The aim in this chapter is to establish a method 
to measure the precision of Type II censored MLEs, calculated at censoring level r, in 
estimating the complete MLEs.

Following the observations from Chapter 2, for example, as seen in Table 1.2 for the ball 
bearings data, we may wish to assess how useful are the MLEs calculated at r = 8

08 =  67.6415, 3s =  3.2280, £ 0.i ,8 =  33.6860

in predicting the complete estimates

?  =  81.8783, 0 =  2.1021, B0A =  28.0694

which are obtained if all the n = 23 items were left to fail. We may also wish to quantify 
the increase in precision obtained on taking r =  16, where we have seen that the resultant 
estimates

?ie =  76.6960, 3i6 =  2.4695, Bo.i.ie =  30.8329

are more consistent with final values than with r = 8. Because the percentiles feature 
times at which specified proportions of items fail, it is particularly relevant in practical 
applications to consider the agreement between i?o.i,r and and the extent to which
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B o .i ,r  can be regarded as a reliable guide to Ro.i-
Furthermore, the series of scatter plots of final estimates (of parameters or Bo.i) against 

interim estimates presented in Chapter 2 (see, for instance, Figures 2.7 to 2.11 under the 
Weibull analysis), seem to suggest a reasonably strong link between the two sets of estimates. 
Hence, it is of interest to consider the extent to which the final estimates are consistent with 
earlier estimates, and the rate at which interim estimates converge on their final values; more 
generally, we would like to determine the precision with which we can make statements on 
final estimates, based on interim estimates. We focus on the conditional distributions of 
final MLEs given interim counterparts; if these are Normal - as is the case asymptotically - 
then, in turn, we require the covariances of final and interim MLEs, equivalently, the study 
of the correlations between the two sets of MLEs. The classical asymptotic approach uses 
the relationship between the MLEs, the EFI matrix and the score vector. Chua k  Watkins 
(2007) derive general expressions for correlations of exponential MLEs, and state (but do 
not prove) similar results for Weibull MLEs. Chua k  Watkins (2008a,b) further extend 
this work to give a formula for correlation between interim and final estimates of Weibull 
percentiles. This chapter builds on these preliminaries, and presents the extension to the 
Burr distribution. Some discussion on the corresponding analysis of reliability data under 
Type I censoring are given by Finselbach k  Watkins (2006) and Finselbach (2007).

We begin by showing that, for large samples, the study of the correlations between 
final and interim MLEs of parameters can be transformed into a study of the correlations 
between final and interim score functions, and can be further extended to the analysis of 
the precision in a sequence of Type II censored estimates of Ro.i? as an estimate to Bo.i- In 
Section 5.2, we assume that the lifetimes follow the negative exponential distribution, and 
present asymptotic 95% confidence limits for the final estimate given the interim estimate. 
This analysis uses results from the theory of order statistics, and hence exploits the familiar 
and extremely powerful lack-of-memory property of this distribution. These asymptotic 
results are then validated for various sample sizes and censoring fractions using simulation 
experiments. We then give details of how this analysis generalises to the Weibull (Section 
5.3) and Burr (Section 5.4) distributions. In Section 5.5, we briefly consider some real life 
applications of this work.

5.1.1 T heoretical Considerations

The asymptotic theory of maximum likelihood, as outlined, for example, in Cox k  Hinkley 
(1974) and Bain k  Engelhardt (1991), implies that the asymptotic relationship between the 
MLE, the EFI matrix and the score vector is

(7rr — 7r) ~  Ar 1Ur, (5.1)
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which also covers the case r = n. Hence, the correlation between final (r =  n) and interim 
(r < n) estimators of model parameters, written as

Corr {7?, 7Tr } =  Corr {7T — 7T, 7Tr — 7r} ,

can be approximated by
Corr { A ^ U .A ^ U r }

(so that, where necessary, correlations can be found via the usual standardisations). With 
two or more parameters, it will prove more convenient to consider covariances; it follows 
that

Gov (7?, Sy) ~  Cov (A-1U, A ^ U r )  =  A ~ l Cov (U, U r) A ^1. (5.2)

We refer to Chapter 2 for the expressions of A -1 and A ” 1 for specific distributions, and
due to the regularity condition, we will only require to take expectation on the product of 
U and Ur ; this, of course, then ties in with the various forms of moments and product 
moments of order statistics we have already derived in Chapter 4.

We are also interested in the agreement between Ro.i.r and its counterpart for complete 
samples. Since we have a linear approximation to Bo.i in terms of (7Tr — 7r) in (2.3), the 
study of the correlation between the final and interim estimates of Bo.i wifi also depend on 
the asymptotic relationship in (5.1); we have, from (2.3) with, first, r (< n), and then with 
r = n,

Corr | r 0.i, 5 0.i,r } ^  Corr {R0.i +  *4 ( t ?  -  i r ) , R0.i +  * 4  ( t t y  -  O }

~  Corr {4.7T, ,

so that, by first principles, the required correlation may be approximated by

b ; c o t . ( ^ , 7fr ) b T =  b ; A - 1c o u ( u , u r ) A ; :1b ,r (g 3)

^ K V a r ( n ) W  x y /b '„ V a r(5fr)b„ ^ A - ' b ,  x -y/b'^Ar'b,

5.2 Correlation in the Exponential D istribution

5.2.1 Link B etw een 6 and 6r

From our discussion of the exponential distribution in Section 2.2, 9r, given in (2.8), is the 
minimum variance unbiased estimator of 9 so that factorisation of the score function gives
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this is one version of the standard relationship (5.1) between the MLE, the EFI and the 
score function. We have

Corr(6 ,0T) = Corr [ -  B), ^ { 9 r -  6 )

which also equal to

Cor r l x l 6- t J e- ^ ) = 4 = C o v ( ^
n dO V r dQ \prvr d6  ’ dO

(5.4)

Then, via the usual regularity conditions, this is

y/nr E dl/ dlf
dele E

nr
2

n S \  (  r ST
~'e + ¥ j  { ~~e + ¥

y/nr6

which involves the single and product moments of X i:n. It is straightforward to obtain 
E[5] =  ne and E[5r] =  re. In considering E[SSr], we may write

SSr = ( S - S r + Sr) Sr =  (S  -  Sr) Sr + S?

in which it is convenient to express S  — Sr in terms of differences of order statistics:

S - S r =  f : X i:n- { j : X i:n + ( n - r ) X r:n\  
i=i L i=i J

n
= Xi:n (n r}Xr:n

i= r + 1

= E  (xi:n -  x r:n) .
i—r + l

Since Sr depends only on the first r order statistics while S  — Sr features differences from 
the rth order statistic onwards, the lack-of-memory property implies that S  — Sr and Sr are 
independent. We thus obtain

E  [SSr] = E [S  — Sr]E  [Sr] +  E  [5?] =  r(n  +  1)02 

so that Corr(e, 0r) becomes

(5.5)

e2 (n r  n n r 1 . ^
  < —f t  5  x r e  7 x +  —r x r(n  +  l)ey/nr \  e2 e3 e3 eA v J } = &

Therefore, the positive correlation between the complete and censored MLEs depends di­
rectly on the number of failures; increasing r will give a higher correlation value, and when 
r = n  we see that Corr(e , er) =  1, as expected.
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A R em ark

It is appropriate to here remark an useful observation from the above analysis, namely that 
Cov (J |,  is, in fact, given by Var  from regularity conditions,

i dl dlj*
C o v [ d 6 'M

= E

= E

= E

dt
dele

dl dl/tp diI
+de do 

dl dlr \  dlr
d0 ~ ~d6 J He

dl* r \

He He

+ E
dlr
He

and we see
dl dlr
H e~ H e n r + h s - ^

is, again, via the lack-of-memory property, independent of We thus have

E
dl dly \  dlr
H e ~ H H lH e =  o

so that

From this, we see that (5.4) reduces to

62 . .  { dl*\ 92
Corr(0,&r) -  J  -  ^ r9 2 ~  \ j n <

(5.6)

exactly as found from first principles.

A Possible G eneralisation

In previous chapter, we have obtained the expressions required for the study of the correla­
tions between complete and censored score functions for the Weibull and Burr distributions, 
and have seen a considerable amount of algebra being involved, even in the case of the trans­
formed variable Z  which has a standard exponential distribution. From the above remark, 
a possible generalisation to (5.6) is

Cov (U, U r) =  A r , (5.7)

in which the covariance between final and interim scores is given by the censored EFI matrix. 
If this result holds, then the evaluation of the correlation between the two sets of MLEs 
would become much more straightforward; for now, the covariance at (5.2) would then 
simplify to

Cov (7?, n r) ~  A _1ArA~1 = A-1, (5.8)
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suggesting that the correlation between complete and censored MLEs follows immediately 
from the complete and censored EFI matrices, rather than from the expectations of the 
forms at (4.1) and (4.2). In practical terms, this would also imply a substantial reduction 
in computational time for Corr {7T,7Tr } in Mathematica.

Furthermore, another consequence of this result would be that we could write

b'^A-'Cov  (U, U r ) A ^ b *  =  b^.A-1b„,

indicating
Cov (§o .i, §o.i,r) =  Var  ( § 0.i) (5.9)

so that we would then be able to write

^  >, V ar(B o .i)  /b ' A_1b
Corr { B o.u B o. ^ }  =  , ^  ^  % (5-10)

^ j  Var  (-Bo.i) x J v a r  (§o.i,r)

Hence, as with Corr {7r, 7rr }, correlation of the two sets of percentiles would follow immedi­
ately from the two sets of EFI matrices. We will later check (5.8) and (5.9) for the Weibull 
and Burr distributions, and show that, however, only limited analytical progress is possible.

5.2.2 Link betw een Ro.i and - ô.i.r 

From (5.3), Corr ^ R o . i , i s  exactly

(- ln 0 .9 )2 Cov (d, 0r)  /___ » r r
, -   , V } =  Corr ( 9, 9r) =

J ( -  In 0.9)2 Var (?) x J ( -  In 0.9)2 Var (?,.) V

as we would have expected from the linear relation between Bo.i and 0 in (1.29). Otherwise, 
we can use (5.10) to obtain this result; we first need to confirm that (5.9) holds for this 
distribution:

Cov =  (— ln0.9)2 Cov ^0,0r^

which equal to

(—ln0.9)2Corr (? ,? r)  ĵvar (? ) Var (?,.) =  (- ln 0 .9 )2 = V ar ( # 0 .1)  •

Consequently, from (5.10),

„  f £  S  \  \&  (—In 0.9 )2 /n  prCorr (B 0.u B 0, , r)  =  = ]/ - ,
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r Theory
( = ^ )

n
25 50 100 1000 2500 5000

0.2 n .4472 .4582 .4412 .4435 .4402 .4486 .4556
0.4n .6325 .6414 .6401 .6256 .6291 .6336 .6352
0.6n .7746 .7820 .7795 .7746 .7740 .7746 .7767
0.8n .8944 .8959 .8985 .8973 .8945 .8934 .8950
l.On 1 1 1 1 1 1 1

Table 5.1: Theoretical and simulated values of Corr(9,9r) for various r, n, for exponential 
data generated with 9 = 100.

as we required. Therefore, (and as previously), a numerical study on the link between 9 and 
9r essentially covers all percentiles.

5.2.3 N um erical R esults

We next validate these theoretical results with simulations. We revisit the simulated ob­
servations of 9r obtained in Section 2.2.4, and summarise in Table 5.1 the theoretical and 
observed values of Corr{9, 9r) for these 104 estimates. We see good agreement between 
theory and practice for varying censoring proportions and sample sizes. More specifically, 
the theoretical correlation coefficients found here for n =  50 and 1000 axe consistent with 
the behaviour observed in the scatter plots at Figures 2.2 and 2.3.

5.2.4 Confidence Lim its Considerations

We can now consider the precision with which we can make statements on final estimates, 
given the interim estimates. In particular, we can compute the 95% confidence limits for 9 
based on 9r. The asymptotic Normality of MLE implies that, for large samples, 9 — 9r is 
also asymptotically Normal, with zero mean and variance, based on the above correlation, 
given by

92{n -  r) 
nr

As a result, the 95% confidence intervals for 9 given 9r is

9r ±  1.9604/^— ^ . (5.11)
V nr

Now, when running simulations, we know the true parameter values and can also obtain a set 
of ML estimates for each of, say, 104 replications. However, in most practical circumstances, 
we will not know the true parameter values, but estimate them from the data; thus, we 
substitute 9r for 9, giving
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r 10 20 30 40 49
er
sd(9 — 9r)

67.6000
19.0713

104.9000
18.0452

114.0100
12.9617

112.1150
7.5973

104.8898
0

Bo.i,r
8d(Bo.i — #0.1,7-)

7.1224
2.0094

11.0523
1.9013

12.0122
1.3656

11.8125
0.8005

11.0512
0

Table 5.2: Standard deviations of 9 — 6r and #o.i — #o.i,r for the failure times data.

160
139.4149

----
140.2686

140 - 127.0056

120 -
104.979fJ,

X  104.9000 +
114.0100 + 112.1150 +

100 - 104.8893

97.224480 - 88.6051
67.6000 +

60 - ✓ 69.5314

40 -

20 - 30.2202

40 500 10 20 30

r

+ ML estim ates — ■■ — Lower — -A — Upper

Figure 5.1: 6r and 95% confidence limits for 9 given 6r for the failure times data.

Similarly, #o.i — #o.i,r has a Normal distribution with zero mean and variance

92 (— ln0.9)2 ( n - r )  
nr  ’

so that a 95% confidence interval for #o.i given #o.i,r is

Bo 1 r ±  1-965 ( -  In0.9)
V nr

in which the usual substitution can be made in practice. Table 5.2, together with Figures
5.1 and 5.2 show these limits (based on (5.12)) for various r for the failure times data in 
Table 1.1. It is noted that the values of sd{6 — 9r) (and hence sd(Bo.i — -Bo.i.r)) are quite 
similar when r = 10 and 20.
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Figure 5.2: Ro.i.r and 95% confidence limits for Bo.i given Bo.i.r for the failure times data.

As above, we are also interested in the extent to which these limits apply in finite samples; 
we expect, in our simulations, to find 95% of the 104 simulated observations of 6 within these 
limits based on 6r. Again, Table 5.3 shows generally good agreement between theory and 
practice, across all r and n considered. We also notice that the upper entries, obtained from 
(5.11), converge somewhat more quickly to 9500 than their lower counterparts, obtained 
from (5.12), reflecting the effect of replacing 0 by 9r in the confidence limits.

5.3 Correlation in th e W eibull D istribution

5.3.1 Link B etw een Final and Interim  MLEs

We now indicate the extent to which above results generalise to the Weibull distribution. 
We recall from (2.16) that the log-likelihood lr is now a function of two parameters, and the 
main changes involve the introduction of matrix-vector versions of relationships, which are 
now approximate rather than exact; we have, from (5.1),
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r n
25 50 100 1000 2500 5000

0.2n 9498
8738

9507
9074

9481
9263

9500
9490

9523
9508

9470
9468

0.4n 9476
9095

9498
9318

9471
9383

9471
9485

9494
9503

9478
9480

0.6n 9520
9314

9469
9389

9456
9413

9485
9500

9519
9528

9506
9496

0.8n 9529
9374

9513
9464

9517
9518

9532
9528

9502
9495

9485
9489

Table 5.3: Number of replications of 9 within the 95% confidence limits based on true 9 
(upper, based on (5.11)) and 9r (lower, based on (5.12)), for exponential data generated 
with 9 =  100.

We refer to (2.28) for the elements of A"1, but can express the above in general as

( d r - 9  )  ( #  = (  \
I 8 — 3 I \ A 6̂  I \ ) \ AePdLL +  Appdlx. I •\  Pr P J \  -Hr Sir J \  g/3 J \  qq Sir dp /

We are again interested at the extent to which earlier estimates are consistent with final 
estimates; with two parameters, we have four combinations of correlation:

Corr (9 ,9r  ̂ , Corr ^9, /3r  ̂ , Corr (j3,9r ĵ , Corr /3r  ̂ .

Since (5.1) also covers the case r  =  n, we now have, for instance

Corr ( 9 , 9r  ̂ =  Corr j#  — 9 ,9r — 0 j

but, as mentioned in (5.2), it is more convenient to consider the corresponding covariance, 
in which case we require

o „ ( « )  „  +

(5 .B )

Similarly, we obtain

C„ ( S , «  =, | )  +
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=. * « ^ g , g ) + ^ ' c „ ( g , § )  +

(®-S)+ (!• | )  • <™>

( f .1 )+̂ " c” (®> I) ■• '='“1
We consider these covariances in two ways; first, we operate from basic principles, and we 
then consider the generalisation (5.8).

C ovariance from  Basic P rincip les

The approach requires, for large samples, the following terms:

dl dlr \  ( dl dlr \  „  ( dl dlr \  ^  ( dl dlr
CoV \ d d '  do )  ’CoV \ d 0 ’ d p ) ’ CoV (d/3’ de  )  ’ CoV (a /3’ a/3 J ’

and due to regularity conditions, these can be written in terms of joint expectations of 
complete and censored score functions. As discussed in Section 4.2.1, we proceed by writing 
the score functions in terms of the transformed variable Z, from (2.26), which follows the 
standard exponential distribution. It follows from (2.17), (2.18), (2.31) and (2.32) that

^  =  P9~l |  X) Zi,n + (n -  r)Z r:n -  r  j  , (5.17)

dl ( r r 1—  ̂ =  p - 1 J r +  x; In Zi,n -  X) Zi:n In Zi:n -  (n -  r)Z r:n In Zr,n \ , (5.18)
°P  I i=l i=1 J

% = ^ 1 { t z i - n } ,  (5.19)

and
dl ( n n 1^ = / 3 - M n + E l n ^ - E ^ l n 2 i L  (5.20)
°P L i=1 i=1 J

E x p ec ta tio n s  involved It is clear from the above that, when taking joint expectations 
of the two sets of score functions, we can anticipate the need for the sum of the expectations 
given at (4.12) and (4.19), and, in particular, on expectations of the following expression:
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Hence, it is appropriate to here introduce the following expectations: 

Hi = E  Zi = nE[Z] = n,

H2 =  E  Y  In Zi =  nE  [In Z ] =  —717,

=  nE  [Z In Z\ = n (1 — 7),

(5.21)

H3 = E  

H± = E  

H5 = E  

H6 = E  

H7 = E  

H8 = E  

Hq = E  

Hio = E  

Hn  = E  

H 12 = E

E Z i l n Z i  
.i=i

E  Zi-.n E  Zi-A
i=1 i=1

X >  Z i j r in Z i
i=l i= l

j r Z i  In Z ijr in Z i:
i=l i=1

E  ( E  Zi-.n +  (ti — r)Zr:n
Lt=l \i=l

Y  In Zi ( Y  Zi:n +  (n -  r)Zr:n
,i=1 \ i= l

Y Z i \ n Z i ( Y  Zi:n +  (71 -  r)Z,
,i=l \i= l

E  Z i [ 'Yd Zi-.n In %i:n “1“ (71 7*)Zr;n In Zr:
i= 1 \ i= l  
n /  r

y  ' In Z i ( 'y  ̂ Z i:n In Ziin “I- (7i v'jZfi72, In Z r-n
,i=i \t= i

X) Zi In Zi ( Y  Zi-.n In Zi:n +  (n -  r)Zr:n In ZT,n
Li=l \ i= l

=  r (n +  1) from (5.5), (5.22)

We note that H± to H\2 involve taking expected values on the products of summa­
tions with varied upper limits, and on expanding these products, the algebra can become 
considerably length; to illustrate this, we take, for example,

#4 =  Y E [ Z i:n\ n Z im] +  Y  E  E [ Z i:n\ n Z j:n] + Y  E  E [ ( \ n Z i:n) Zj:n]
i=l i=1 j=i+1 i=1 j=i+1

+  E  E  B[(lnZi:n)Zj;„]
i= l

(5.23)
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Expectation Theoretical Simulated
H i 25.0000 25.0913
h 2 -14.4304 -14.3205
H 3 10.5696 10.7148
# 4 -473.9927 -473.8339
h 5 314.166249 311.0715
h 6 -194.3861 -196.4959
h 7 390.0000 392.1974
h 8 -195.7974 -194.2607
H g 174.6429 177.0255
H io -103.5524 -103.2782
H u 77.4108 76.8722
H 1 2 -35.7704 -36.2064

Table 5.4: Numerical checks of expectations Hi to H 12 calculated at r =  15, n = 25 using 
104 replications.

while

r —1

Hio — r ,  E  [Zj.n In Zj:n] + Y) Yl E  [Zi:nZ j:n In Z j:n]
i= l i=1 j=i+1

r —1

+ ^ 2  H  [^*:n(ln Z i : n ) Z j :n ] +  X̂  X̂  E  [ ^ :n(ln ^i:n)^j:n]
i=l j=i+\ z=lj=r+l

+ (n  — r) <

1—1
E [Zi:nZr:n In ^r:n] "H [^r:n ^  ^r:n]

i= l

+  X̂  & [-^r:n(ln ^r:n)-Zj:n]
j=r+l

(5.24)

It follows that there are some structures embedded in these H  equations; for instance, 
the similarity between #4 and H&, H q  and H u ,  H g  and ffio; we will briefly discuss 
this later. We refer to Section 4.2.3 for expressions for the expectations of the form 
E  [Zf:n(\n Zi:n)a] for a = 0,1,2 and p = 0,1, and Section 4.2.4 for the expectations of 
the form E  Zf:n(lnZi:n)aZj.n(lnZj:n)b for a,b,p,q  =  0,1. We can use Mathematica to 
compute Hi to i f  12 (see Appendix E for more details on the Mathematica code), and com­
pare these to their corresponding simulated counterparts obtained from 104 replications. 
Table 5.4 shows this comparison for r = 15, n = 25. We see good agreement between the 
theoretical and simulated values.

Covariances of th e  score functions Using the above expectations, and from (5.17) to
(5.20), we can obtain the covariances of the score functions required in the covariances of 
the complete and censored MLEs, as shown below.
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1. From (5.17) and (5.19),

. dl dlr . _  
I 5 0 ’ <90 )

dl dlr
50 x 50

= E  

= pe~l E

p6 \ Y , z i - n
i = 1 J 50.

-  nP9_1E 5L
50

and since E  [%f] =  0, we have

cot|S’S) = 0 e ~l E  
>2/)—2

+  (n -  r)Zr:n -  r

= p l 9~l {H7 - r H x} (5.25)

2. Likewise, from (5.18) and (5.19), Cov is given by

E

= E

dl dlr 
ae x ~dp

/?0-

=

'‘ { I * - ” }

M S
i s 4 { r ’

dlr
dp

-  npe~lE d i
dp

= p9~l E  

= 0"1 {rHi +  HA -  tfm} .

t In Zj:Tl Zj:n In Zj:n (n r)Z r:nlnZr:n
i= l i= l

(5.26)

3. From (5.17) and (5.20), we have 

=  E. dl dlr
C o v [ W ’ de

dl dlr
5/? x 50

+  p~ E

= E  p- 

= nP~l E  

=  . P~XE  

- P ~ l E

=  ^ { H g - ^ - H g  +  r H s } .

dl,
d91 ( n + f ;  lnZi -  f;Z< In Z i)

I i = i  *=l J

i lH S ] - r ' E [ { E S ' . s } S

1 2  In Z i j  j/30_1 ^  Zi:n +  (n -  r)Zr:n ~  r j  j  

J2 Zi In Z iJ  | pe~x Zi,n +  (n -  r)Zr:n -  r ĵ |

(5.27)
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4. From (5.18) and (5.20), Cov is

E

= E

= nP~l E

= P~l E

~P~l E  

1 - 2

dl dlr
d p x W

i n n 1/9/
r 1 { n + ' E l n Z i - ' E , Z i lnZ i \ - ^ j

i=l i=1 J °P_
dl + r l E i g + t ] - + { £ , Zi In Zi dlr

dp
r r

T “I-  ̂  ̂In Zi:n } ] Zi-fi In Zi:n (ri T}Zr:n In Zr 
1 = 1  1 = 1

dp

{a -}  lr '
j  Y1 z i In Zi I { P~x ( r +  Y j ln z i:n -  Z) z i:n In Zi:n -  (n -  r)Z r:n In Zr

. U=1 J I V i=1 i=1
=  p-'z {rH2 + Hb - H u - r H 3 - H 6 + H12}.

We can now use Mathematica (see Appendix E for further details) to calculate the
covariances in (5.25) to (5.28) and set, as before, 9 =  100, p — 2, r =  15, n =  25; these are

C°v(qq,^ £ )  Cov(qL ^ § )dl diz ___
.d0'de> dp

C°v(-§jj, *§§■) Cov( ^ )
0.0060 0.0456 
0.0456 5.0928

and since
A 9B A 9P

A 9? AW
110.8665 1.0281 

1.0281 0.0973
(5.29)

A s

we obtain, from (5.13) to (5.16),

(  A ^  A \ l  \  _  /  178.8346 -1.6012
-1.6012 0.2107

Cov ~  110.8665 x 178.8346 x 0.0060 -  110.8665 x 1.6012 x 0.0456 

+1.0281 x 178.8346 x 0.0456 -  1.0281 x 1.6012 x 5.0928 

~  110.8665,

Cov(9, P15) ~  -110.8665 x 1.6012 x 0.0060 +  110.8665 x 0.2107 x 0.0456 

-1.0281 x 1.6012 x 0.0456 +  1.0281 x 0.2107 x 5.0928 

~  1.0281,

Cov(P, 0i5) ^  1.0281 x 178.8346 x 0.0060 -  1.0281 x 1.6012 x 0.0456 

+0.0973 x 178.8346 x 0.0456 -  0.0973 x 1.6012 x 5.0928 

~  1.0281,

•)}]
(5.28)
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Cov(/3, /315) ~  -1.0281 x 1.6012 x 0.0060 +  1.0281 x 0.2107 x 0.0456 

-0.0973 x 1.6012 x 0.0456 4- 0.0973 x 0.2107 x 5.0928 

~  0.0973,

which leads to

Corr \  110.8665
( $ 1 5  ) — i =  7 = = =  =  0.7874,
V > \ / l 10.8665 x V178.8346
. ^  V 1 OOQI

Corr[9,/315) ~   . ■ =  0.2127,
V 5/ \/110.8665 x VO2l07

Corr (ft, Bis) ~  1.0281 _  _  0,2465,
V J a/0.0973 x  a/178.8346-\/0^0973 x V178.8346 

0.0973
V o m f s  x V0.2107 

Covariance from  th e  G eneralisation  (5.8)

Corr (3 ,3 15)  0.0973^-------- =  0.6795.

It is striking to note that the numerical values for the covariances of complete and censored 
MLEs are identical to those found at (5.29). This observation is consistent with the con­
jecture at (5.8), a result generalised from the exponential distribution, suggesting that it 
might be possible to extend (5.8) to the Weibull case, from which

/  C o v 0 X )  C o v 0 X )  \  _  (  A "  a9/3 
\  C o v 0 X )  Cov 0 ,  j3r) ) ~ \ A W  AW

(5.30)

or equivalently (from (5.7))

00 > C°v(q1q, Qjfi) \  _  f  A-,00 Arfifi 
C°v('§ji, %o) %p) j  \  A rjp  Ar^p

(5.31)

written in terms of the score functions.

Sim plifications o f th e  covariances We would like to here show that (5.31) holds. Using
(5.21) and (5.22), and from (5.25), Cov ( J |,  simplifies to

i329~2 {r(n + 1) — rn — nr — nr} — r{329~2 = Atjq

as required by (5.31). This result is particularly relevant to (5.6); for (3 = 1 the Weibull 
distribution simplifies to an exponential model, and we see Cov ( J |,  reduces to r9~2. 

However, due to the forms of H4  to H 12 (but not H7 ), the consideration of Cov ,

Cov and Cov f J | ,  becomes much more involved than that of Cov ( J |,  %f)-
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For instance, using (5.23) and (5.24), and from (5.26), Cov ^ J |,  fyj) given by

r n  +  Y !  E  [Zi:n in  Zi:n] +  J2  Y 2  ^  [%v.n ln  Zj:n] +  52 52 ^  [(ln  Zi:n)Z j:n \
i=1 2=1  j= i+ 1 2= 1 ,7= 1+1

+ E  E  E  [(InZ ivn)Zj:n\ - Y , E  [Zln lnZ i:n] -  E  E  E [Z i:nZj .M\n Z j :n]
J_2 2=1 J = r + 1  2=1 2=1 J = 2 + l

- E  E  E{Zi..n{\aZi..n)Zj:n\ - E  E  E[Zi:n(lnZi:n)ZJ:n]
2=1 .7=2+1 2=1 j = r + l

—(n — r) | 52 ^  [Zi:nZr:n ln Zr:n] +  E  [Z^:n ln Zr:n\ +  52 E [Zr:n(ln Zr:n)Zj:n]
V 2=1 j —r +1

(5.32)
which should be shown equal to

+ 0/3 = -r 8 ~ 1 | l  -  7 -  r _1 £ ( - l ) r_ i(i"1) (”“’7 ) ln(n +  1 - 1) | .

Moreover, since the majority of the terms in (5.32) involves at least one level of summations 
of varied lower and upper limits; see, for examples, using (4.18),

r r f  2 -1  ( - l ) i - 1~ k ( i - 1)
52 E  [ Z i ,n  In Z i - n I =  52 < Ci-.n 51 ----7------ u \ 2  I1 “  7 “  ln(n ~ *0]
2=1 2=1 ( fc=0 \n — K)

in which we require two levels of single summation, and, using (4.32),

}

r —1 r  r —1 r
52 52 e  [Zi:n in Zj .n] =  52 52 i
2=1 j —i+1 2=1 .7=2+1

, J ’n fc= 0  Z=X> î + l ~ k ) (n - i - l ) ( n - k )2

— {i +  I — k) [7 (i +  I — k) +  n — i — I] 
— (n — k )2 ln {n — i — I)

+ (n — i — l){n + i — 2k + l) ln(n — k)

in which we require two levels of double summations, there is limited analytical progress 
we could make here, and hence a detailed proof for Cov ^ J |, | ^  =  Cov

and Cou =  Ar,pp will be given elsewhere. Instead, we use a detailed simulation

study to assess the extent to which (5.30) holds for the sampling distributions of ^0r ,/3r^, 
for various combinations of n, r and parameter values.

N um erical check o f (5.30) We use Mathematica to compute the elements of the com­
plete covariance matrix, and compare these to simulated values of Cov(9,9r), Cov(9,fir), 
Cov(P,0r) and Cov(j3, (3r), which (throughout) are based on 104 replications. Tables 5.5 
to 5.8 show this comparison for each covariance in turn with 9 = 100, /3 =  2, where we see 
generally good agreement between theory and practice for all r and n considered. We also 
observe similar agreement for different sets of integer values of 9, /?, but there is further 
scope to check (5.30) for non-integer values, where analytical progress may be even more
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n Theory 
(= A ee)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 110.8665 103.0207 107.4784 108.5282 109.6782 110.4749
50 55.4332 49.1945 54.1417 55.0621 55.3464 55.5401
100 27.7166 27.7198 27.4541 27.6753 27.6516 27.6713
1000 2.7717 2.8197 2.7730 2.7391 2.7588 2.7648
2500 1.1087 1.1173 1.1297 1.1181 1.1323 1.1347
5000 0.5543 0.5540 0.5599 0.5577 0.5589 0.5566

Table 5.5: Theoretical and simulated values for Cov(9, 9r) calculated at various r, n using 
Weibull data generated with 9 = 100, (3 = 2 and 104 replications.

n Theory
(=  A*?)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 1.0281 1.4808 1.2607 1.2009 1.1301 1.0734
50 0.5140 0.7391 0.5622 0.5239 0.5129 0.4991
100 0.2570 0.2515 0.2542 0.2509 0.2502 0.2491
1000 0.0257 0.0259 0.0272 0.0280 0.0273 0.0271
2500 0.0103 0.0113 0.0112 0.0114 0.0110 0.0108
5000 0.0051 0.0054 0.0053 0.0053 0.0053 0.0054

Table 5.6: Theoretical and simulated values for Cov{9, j3r) calculated at various r, n using 
Weibull data generated with 6 = 100, (3 = 2 and 104 replications.

limited.

Im plications of (5.30) on th e  H  equations As we have previously mentioned, there 
are some structures embedded in the H  equations, but we discuss this only briefly here. In 
particular, it follows from (5.31) that

rn +  #4 -  # io  =  - r { l - 7 -</>!},

rn + H8 - H g  = - r {  1 -  j  -  f a } ,

- r n  + H s - H e - H n  + H n  = r  +  (1 -  7)2 -  2(1 -  7 ) ^  +  <62

n Theory
(= A°P)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 1.0281 1.1986 1.1634 1.1674 1.0926 1.0734
50 0.5140 0.4412 0.5073 0.5075 0.5003 0.4991
100 0.2570 0.2195 0.2697 0.2510 0.2479 0.2491

1000 0.0257 0.0303 0.0335 0.0286 0.0274 0.0271
2500 0.0103 0.0099 0.0109 0.0106 0.0107 0.0108
5000 0.0051 0.0055 0.0054 0.0052 0.0053 0.0054

Table 5.7: Theoretical and simulated values for C o v 0 ,9 r) calculated at various r, n using
Weibull data generated with 9 =  100, (3 =  2 and 104 replications.
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n Theory
(= AW)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 0.0973 0.1815 0.1415 0.1306 0.1278 0.1258
50 0.0486 0.0677 0.0580 0.0560 0.0550 0.0545
100 0.0243 0.0275 0.0258 0.0257 0.0257 0.0256
1000 0.0024 0.0023 0.0024 0.0024 0.0025 0.0025
2500 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
5000 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Table 5.8: Theoretical and simulated values for Cov(j3, (3r) calculated at various r, n  using 
Weibull data generated with 9 =  100, f3 = 2 and 104 replications.

so that
Ha - H s = H 10 -  H9

and

Therefore, this serves as a convenient starting point to consider further the relationship 
between the H  equations; these will, nonetheless, be considered elsewhere.

Im plications o f (5.30) on  th e  corre la tions betw een  final and  in te rim  M LEs If
(5.30) holds, the correlations between final and interim MLEs would follow immediately 
from the complete and censored EFI matrices; we have

^  \ Cov (0 ,9 ^
C orr \9 ,0 r ) ~  v J

J V a r  (?) x J V a r  (?r )

A "

r (jr2 — 60 i + 602) £  +  (1 -  7 )2

7171-2 [t  +  (X “  7 )2 “ 2(1 -  7 )0 ! + 0 2
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Corr ( M r )  -

Cov
( I  A )

Var [0 I x * iVar

( 1 - 7 )
\

r (tt2 -  601 +  602)

n'K2 ®|
1o + 1 to

1 
>

Corr (3 a ) ^
Cov (3  a )

Var (fi'j x y  Var  (#r) 

A 6(3
J W  X y /A ™

-  ( 1 - 7 )
\

r (7r2 — 60i +  602)

rmi T  +  (1 “  7)2 ~ 2(1 -  7)0i +  02

Corr ( 3 ,3r) -
Cov (3 ,3 ,)

F a r  (/?) x ^I Var (/?r )

A #

y /A M x y fA W  

[a w

r (it2 — 60i +  602)
717T

5.3.2 Link betw een B0.1 and -̂ 0.1,,

We are again interested in the agreement between Ro.i.r an(l  # 0.1 f°r Weibull data. Corre­
lation from basic principles is possible, in which we will also require

C )
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n Theory 
(=  Var  (S o .l))

r
0.2 n 0.4n 0.6n 0.8n l.On

25 56.3056 60.2070 60.7714 60.6623 60.8367 60.7377
50 28.1528 28.7114 28.8534 28.7883 28.7353 28.6470
100 14.0764 14.0576 14.0841 14.1101 14.1354 14.1089
1000 1.4076 1.4209 1.4225 1.4280 1.4332 1.4359
2500 0.5631 0.5731 0.5738 0.5756 0.5740 0.5724
5000 0.2815 0.2851 0.2855 0.2859 0.2849 0.2848

Table 5.9: Theoretical and simulated values for Cov(Bo,i, I?o.i,r) calculated at various r, n 
using Weibull data generated with 9 = 100, /3 = 2 and 104 replications.

given at (2.29). For example, we take, as before, 9 =  100,/? =  2, r = 15 and n =  25, and
use Mathematica to compute

/  1>o\ = (  0-3246 \
{ bp J ^ 18.2613 )  ’

so that from (5.3)
Corr (Bo.IjBo.i.is) ^  0.8961.

Alternatively, if the conjecture at (5.9) holds here, then we could use (5.10) to obtain, 
for samples of large size,

Corr
b2eAee +  2 bebpA9? +  b2AW  

b2A%Q + 2bebpAd/  + b2 A?13'

Table 5.9 provides some summaries of simulation experiments to check (5.9), based on 104 
estimates of Ro.i.r-; this shows generally good agreement between theory and simulation, and, 
as with (5.30), Cov # 0.1,r)  is independent of r. Returning to the above example, the
correlation is

0.32462 x 110.8665 +  2 x 0.3146 x 18.2613 x 1.0281 +  18.26132 x 0.0973 
0.32462 x 178.8346 -  2 x 0.3146 x 18.2613 x 1.6012 + 18.26132 x 0.2107

and hence also yields 0.8961, but with considerably lesser amount of computation as com­
pared to using (5.3).

5.3.3 N um erical R esults

We now consider these results for finite samples. We revisit the sampling distributions of 
9r,(3r and Bo.i.r in Section 2.3.4 generated with 9 = 100 and (3 = 2. Tables 5.10 and 5.13 
summarise, for Corr ( 9 , 9r ĵ and Corr (̂3, (3^ respectively, the theoretical results for these 
104 estimates, together with an experimental counterpart shown underneath; we observe a
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r n
25 50 100 1000 2500 5000

0.2 n .2833 .2720 .2658 .2600 .2596 .2595
.2551 .2363 .2609 .2643 .2563 .2558

0.4n .5467 .5391 .5351 .5314 .5311 .5310
.5317 .5292 .5328 .5342 .5303 .5300

0.6n .7874 .7849 .7836 .7824 .7823 .7822
.7803 .7822 .7812 .7804 .7815 .7799

0.8n .9403 .9406 .9407 .9408 .9408 .9408
.9387 .9396 .9414 .9396 .9417 .9422

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.10: Theoretical (upper) and simulated (lower) values of Corr(9,9r) for various r, n, 
for Weibull data generated with 9 =  100, (3 = 2.

good agreement between theory and practice, with values approaching to 1 as r —► n, as we 
expected. Moreover, equivalent statistics for Corr ^9, (3r ĵ and Corr ^/3,9 ^  are tabulated

in Tables 5.11 and 5.12; in complete samples (so r = n), we note that Corr (9 ,(3^  =

Corr (j3,9n ĵ is given by

Corr (0 ,p ) = , 1 - 7  =  =  0.3131.
v '  V f  +  d - 7 ) 2

This cross-parameter correlation thus has an upper limit of 0.3131, and it is independent 
of n and the model parameters. Finally, Table 5.14 presents some summaries of simulation 
experiments for Bo.ij we notice excellent agreement between theoretical and observed values 
of Corr ^Bo.i, Bo.i.r^ > f°r all r and n we have considered.

As further reassurance that this theory is in agreement with practice, we may super­
impose the theoretical correlation values with the scatter plots of final estimates against 
interim estimates shown in Figures 2.7 to 2.11; it is clear that our formulae agree with the 
pattern observed in simulation experiments. We are now in the position to employ these 
formulae in future calculations like confidence limits.

5.3.4 Confidence L im its Considerations

We are interested at the precision with which we can make statements on final estimates, 
given earlier estimates of the parameters. However, evidence from the previous section 
suggests that the relationship between the MLEs of the shape and scale parameters is weak; 
as seen in Tables 5.11 and 5.12, the upper bound on the strength of correlation is 0.3131, 
so we will here only consider inference of 9 based on 9r, and of /? based on (3r . Let

A# = 9 — 9r
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r n
25 50 100 1000 2500 5000

0.2 n .1209
.0678

.1168

.1089
.1146
.0929

.1124

.1113
.1122
.1196

.1122

.1163
0.4n .1696

.1386
.1668
.1495

.1652

.1497
.1638
.1740

.1637

.1738
.1637
.1658

0.6n .2127
.1941

.2106

.1886
.2095
.1936

.2085

.2285
.2084
.2277

.2084

.2130
0.8n .2565

.2359
.2550
.2335

.2542

.2390
.2535
.2682

.2534

.2659
.2534
.2584

l.On .3131
.2879

.3131

.2869
.3131
.2962

.3131

.3282
.3131
.3257

.3131

.3259

Table 5.11: Theoretical (upper) and simulated (lower) values of Corr(9,j3r) for various r, n, 
for Weibull data generated with 9 = 100, (3 = 2.

r n
25 50 100 1000 2500 5000

0.2 n .0887
.0879

.0851

.0677
.0832
.0680

.0814

.1049
.0813
.0776

.0813

.0857
0.4n .1711

.1705
.1688
.1583

.1675

.1722
.1664
.1951

.1663

.1738
.1663
.1716

0.6n .2465
.2487

.2457

.2302
.2453
.2322

.2449

.2721
.2449
.2531

.2449

.2465
0.8n .2944

.2771
.2945
.2712

.2945

.2777
.2945
.3119

.2945

.3032
.2945
.3035

l.On .3131
.2879

.3131

.2869
.3131
.2962

.3131

.3282
.3131
.3257

.3131

.3259

Table 5.12: Theoretical (upper) and simulated (lower) values of Corr(f3, 9r) for various r, n, 
for Weibull data generated with 6 =  100, /? =  2.

r n
25 50 100 1000 2500 5000

0.2 n .3860 .3731 .3659 .3590 .3585 .3583
.2462 .3186 .3338 .3367 .3592 .3528

0.4n .5418 .5326 .5278 .5233 .5229 .5228
.4611 .4929 .4991 .5094 .5188 .5207

0.6n .6795 .6727 .6691 .6658 .6656 .6655
' .6254 .6438 .6527 .6592 .6667 .6669

0.8n .8193 .8145 .8119 .8096 .8094 .8093
.7904 .8000 .8079 .8071 .8093 .8118

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.13: Theoretical (upper) and simulated (lower) values of Corr(J3, j3r) for various r, n,
for Weibull data generated with 9 =  100, (3 =  2.
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r n
25 50 100 1000 2500 5000

0.2n .8451 .8511 .8539 .8564 .8565 .8566
.8634 .8587 .8563 .8578 .8557 .8558

0.4n .8692 .8668 .8654 .8639 .8638 .8638
.8781 .8696 .8657 .8645 .8638 .8634

0.6n .8961 .8930 .8913 .8897 .8896 .8896
.8996 .8923 .8906 .8907 .8908 .8899

0.8n .9356 .9330 .9317 .9304 .9304 .9303
.9369 .9326 .9322 .9307 .9309 .9314

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.14: Theoretical (upper) and simulated (lower) values of Corr (Ro.i, #o.i,r) for various 
r, n, for Weibull data generated with 0 =  100, (3 =  2.

so A# is asymptotically Normally distributed with zero mean and variance

Var(Ag) = Var ( ? - ? r )

=  F a r  (?) +  F a r  (?r ) -  2Cou (?, ? r )

and if (5.30) holds, this becomes

Var(A$) = Var(9) + Var(0r) -2 V a r (9 )

=  F ar(? r ) — Far(?)

~  6/3~2fl2 f V  +  ( l - 7 ) 2 - 2(! -  7 )^ 1  +  02 T  +  (1 ~ 7 ) 2 )
r (7r2 — +  6 0 2) 7171-2 J

This yields the 95% confidence limits for 6 given 9r:

0 = 0r ±  1.96y/Var(Ag). (5.33)

Analogously, if

A/3 = d ~ P r

then, for large samples,
Ap ~  N {0 ,V ar(A p)}  

in which (assuming that (5.30) holds)

Var(Ap) = Var(/3) +  Var(/3r) — 2 Var((3)

= Var((3r) — Var  (/?)
1 1 1 I

~  6(3'
r  (ir2 — 6(j)\ + 6^2) n7r2 j 5
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and the 95% confidence limits for f3 given (3r is

j? =  3r ±  lM J V a r (A f j ) .  (5.34)

In practice, we replace the unknown parameters 9 and /? by their respective MLEs.
Some indication of the precision with which we can make statements on J?o.i given Bo.i,r 

is also desired;
Abo.i =  BO'i — Ro.l.r 

has a Normal distribution with mean zero and variance

Var(A Boa) = Var  ( r 0.i -  B 0.i,r )

=  Var(BO'i) +  V ar(B0.i,r) -  2Cov -§0.1,r)

and provided that (5.9) holds, this could be approximated by

Var(Bo.i) +  Uar(B0.i,r) -  2Var(B0.i)

= V ar (S0.i,r) -  Var(BO'i)

= bjVar(Aff) +  bpVar(Ap) +  2bebpCov{Ae, Ap)

where

Cov(Ae,Ap) = Cov{9 -  0r,(3 -  f}r)

~  e e l  _________ 1 \ .
^  r  (7r2 — 64>\ +  6(f)2) titt2 J

We can now write down approximate 95% confidence intervals for B 0.1 given Bo.i.r-
We use the ball bearings data to illustrate these limits calculated for censoring as in 

Table 2.6. Table 5.15 shows that these limits converge to 0 as r  increases to n =  23, but 
convergence for A#0A is rather slow compared to that for and Ap. Figures 5.3 and
5.4 show that the upper (lower) 95% limit of 9 given 9r (fl given f3r) is rather flat, but its 
lower (upper) counterpart converges to 0 quite quickly. It is also clear that early censoring 
(r < 12) tend to give wider confidence limits, indicating a lower level of precision; this 
phenomenon is particularly apparent in the case of shape parameter. Furthermore, because 
Bo.1 is a function of 9 and yd, Figure 5.5 appears to combine the nature of Figures 5.3 and 
5.4, resulting in slow converging upper and lower limits.

In addition to a single set of data, we are also interested in the extent to which these 
limits apply in finite samples; again, based on 104 replications, we expect to find 95% of the 
104 final estimates within the corresponding confidence limits. Tables 5.16 to 5.18 provide, 
respectively, some summaries for Aq, Ap and A boa- The upper entries assume the true 
parameters are known, as in running simulation experiments, while the lower entries are
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r 8 12 16 20 23
er
sd(Ae)

67.6415
8.4421

75.2168
6.3909

76.6960
3.8013

78.9674
1.8366

81.8783
0

f ir
sd(Ap)

3.2280
0.8953

2.6241
0.5292

2.4695
0.3585

2.3539
0.2132

2.1021
0

- ^ 0 .1  ,r
sd(ABoA)

33.6860
2.9231

31.9063
3.0910

30.8329
2.6749

30.3563
1.9673

28.0694
0

Table 5.15: Standard deviations of A<9, Ap and Aboa for the ball bearings data.

100

87.742990 - 84.146584.1880 82.5672
-  * ------- >+ 81.8783

80 - 78.9674 +
76.6960 +75.2168 +

75.367670 -
67.6415 +

69.2454

60 - 62.6907

50 -
51.0950

0 4 20 24 288 12 16

r

+ ML estimates — — Lower —  - A  —  Upper

Figure 5.3: 9r and 95% confidence limits for 6 given 6r for the ball bearings data.
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6

4.9828
5

3.66144

3.1721
3.2280 + 2.77183

2.6241
2.4695 +  2.3539 +

'+  2.10212

1.93591.76691.58691.47321

0
0 4 8 12 16 20 24 28

r

+ ML estimates — — Lower — A — Upper

Figure 5.4: j3r and 95% confidence limits for (3 given (3r for the ball bearings data.

39.4154
40 - 37.9648 36.0756

34.2122

33.6860 +
31.9063 +

30.8329 +  30.3563 +10
E *  28.0694
tf>a> 27.9566

26.500325.8479 25.5902
20  -

0 4 8 20 2812 16 24

r

+ ML estim ates — ■■ — Lower — -A — Upper

Figure 5.5: Ro.i.r and 95% confidence limits for Rq.i given Ro.i.r for the ball bearings data.
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r n
25 50 100 1000 2500 5000

0.2 n 9616
9644

9610
9639

9578
9613

9465
9471

9480
9500

9491
9517

0.4n 9464
9461

9510
9494

9496
9489

9499
9488

9475
9495

9447
9486

0.6n 9462
9395

9478
9441

9450
9475

9502
9462

9485
9426

9471
9499

0.8n 9476
9350

9466
9426

9498
9468

9478
9449

9493
9457

9528
9570

Table 5.16: Number of replications of 9 within the 95% confidence limits based on true 9, (3 
(upper) and 9r,(3r (lower), for Weibull data generated with 9 = 100,/? =  2.

r n
25 50 100 1000 2500 5000

0.2n 7192
9340

8275
9258

8847
9312

9372
9408

9458
9487

9479
9515

0.4n 8352
9340

8898
9374

9218
9429

9464
9454

9448
9484

9461
9487

0.6n 8782
9408

9114
9451

9282
9451

9480
9448

9474
9508

9446
9479

0.8n 9047
9475

9289
9511

9402
9514

9471
9478

9468
9516

9509
9520

Table 5.17: Number of replications of /? within the 95% confidence limits based on true 0, /? 
(upper) and Qr,(3r (lower), for Weibull data generated with 9 = 100, /? =  2.

based on practical consideration, where we use the MLEs of 9 and /? instead. All tables 
show a generally good agreement with expectation, and the difference between the two 
entries can be explained by the deviation between 9 =  100, /? =  2 and their ML estimates. 
We recall from Table 2.10 that, in small samples, the estimates of standard deviation of 
Pr are usually larger than their true values, leading to a large estimate of Var(Ap) and a 
wider confidence limits. In contrast, we notice only a slight difference between the two sets 
of values of Ab oa in Table 5.18, consistent to the observation in Table 2.12.

5.4 Correlation in th e Burr D istribution

5.4.1 Link B etw een Final and Interim  MLEs

Following the same approach as in the Weibull case in Section 5.3.1, we can now measure 
the effectiveness of ar and r r as estimates of a  and r. The general asymptotic relationship
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r n
25 50 100 1000 2500 5000

0.2 n 9613
9440

9543
9512

9538
9479

9498
9416

9459
9492

9479
9514

0.4n 9483
9478

9476
9520

9505
9494

9475
9406

9456
9508

9463
9517

0.6n 9444
9471

9463
9548

9488
9496

9512
9449

9471
9538

9457
9522

0.8n 9442
9501

9510
9569

9524
9538

9487
9477

9492
9535

9488
9491

Table 5.18: Number of replications of Ro.i within the 95% confidence limits based on true 
6,(3 (upper) and 6r,(3r (lower), for Weibull data generated with 9 = 100,/? =  2.

in (5.1) here is

From this, we can obtain results for

Corr (a, a r) , Corr (a, r r ), Corr (r, a r ), Corr (r, r r )

from the corresponding covariances:
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Caoij,ar) * +

s  A ^ A ^ C o v  ( | ^  f1 ) +  AQT, 4 f  Cow da da
dir

\c ta ’ dr +

and

A - A r C o v [ f / J r . ) + A ^ C o v ( f T^ ) , (5.37)

dl dl,
da da~  A aTA«TCov ( J “I- AaTA TrTCov +

dl dl
da dr  
dl dlrA ^ C o v i ^ y + A - A V C o v ^ ) . (5.38)

Therefore, the study of the covariances of the Type II censored and complete MLEs has 
now been transformed into a study of the correlations of score functions. We first use basic 
principles to compute these covariances, and then compare the results to those obtained 
from a generalised version of (5.6).

C ovariance from  Basic P rincip les

It follows from the above that we require

C( W( «  « r y Coo  ( « « t  |
da da dr  da dr dr

we refer back to Section 2.4 for the expressions of these score functions, given at (2.36), 
(2.37), (2.56) and (2.57). We next consider the expectations emerging from the expansion 
of the these expressions.

E xpec ta tions involved Our calculations of the covariances of the complete and censored 
score functions in (5.35) to (5.38) will require the following expectations. By manipulating 
(2.46), (2.48) and (2.49), it is straightforward to compute

Bi = E  

B 2 =  E  

Bs = E

. 2 = 1

E l n ( l  +  X7„) 
.*=1

XJ.n In X j :n 
1 + x rn _

=  n E  [ln X] = —n
7 + ip(a)

n
= nE  [ln(l H- X T)\ =  —, a

=  nE

(5.39)

I" X T In X 1 1 — 7 — ip(a)

. 1 +  X T .
= n

r  (a +  1)
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In contrast, the remaining expectations, see below, involve products of summations of vary­
ing upper limits:

B A =  E  

B 5 =  E  

B q  — E  

B 7 =  E  

B% =  E  

B q  =  E  

B\o =  B  

B n  =  E

X > X i:n£ l n X i:n
.2=1 i = 1

"  X T n \ n X i:n r  X T J n X j ,

h  1 + -X L  h  1 + X T n 
r X l A n X i ^

T
.1 = 1  1 = 1  J- - r

n VT  In X  r
1 _i_ Y T ^  .2=1 t  ~r A j ;n i= 1

:n

E l n ( l  +  X D E l n X i;,
.2 = 1  2 = 1

' n r  X T  In X
E i n ( i  +  ^ J  E  ; :l  y7 :".2=1 2=1 i A i:n

5 2  lnXi:n (  £  ln(l +  X [ ;n) +  (n — r) ln(l +  X^:n)
.2=1 1 2=1

X) ln(l +  x l.n) 1 52 ln(l +  x l.n) +  (n -  r) ln(l +  X^:n) 
i = l  I 2=1

" n X T  In X -  (  r  }
B i2  =  E  5 2  ;:n 7 :w E  ln(l +  XJ.n) +  (n -  r) ln(l +  X ;:n)

.2 = 1  1 +  A i ;n  J

B 13 =  E  

B u  =  E  

B i s  =  E

±  In Xi;n ( 5 2  ^ ^ x S U  + (" ~ 0 *.2=1 U=1 1 +  Ai;n
y;w In Xr:n 1' 
l  +  ^rT:n J .

X > ( l  +  X, 
.2 = 1

(  r  X Tr \ I ^  ^i:n 
i'.n) i Z_/ -I ,

L z = l  1 -r
J  In  X i :n . . X r :n In  X r:n

+  {n — r)
+  X l n 1 +  X r:n }

- * X T J n X i:n ( r X T„lnXi:n . X l:nln X r-,
J k  i +  x r n  \,4i i  +  x r n  > i  +  x ; : n

We proceed to expand the terms in B± to Bi$; take, for example,

B n  =  E ^ [ ( ln ( l  +  ^ J ) 2] + 2 E  £  E  [ln(l +  X J . J  ln(l +  XJ;J ]
2=1 2=1 j= l+ l

+  E  E  E  [ln(l +  X T n ) ln(l +  XJ;J ]
2=1 j= r + 1

+ (n  — r) <

r —1
E  E M l  +  K J  ln(l +  x;..n)\ + E [(ln(l +  X-J)2]
2 = 1 , ( 5 .4 0 )

More generally,in which we require E  [(ln(l +  X£n))2] and E  |h i(l +  X T .n ) ln(l +  -XJ:n) 
we recall from Section 4.3 that the expectations required on expanding B \  to B \ s  are given in 
(4.42) and (4.53). As illustrated in Appendix E for the H  equations, we can use Mathematica 
to calculate B 4 to B15, and compare these to their corresponding simulated counterparts
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Expectation Theoretical Simulated
B i -15.2778 -15.2252
b 2 6.2500 6.2542
£3 -1.3889 -1.3922
B a 201.5476 203.9854
b 5 1.2870 1.2969
B q 13.8388 13.8722
b 7 17.1134 17.8016
b 8 -80.8945 -80.9954
B q -5.8850 -5.9878
B io -55.3803 -55.5203
B n 24.3747 24.5236
B \2 -5.1896 -5.2319
B\$ 27.4351 27.3313
B u -11.3942 -11.4994
B 15 2.4440 2.5439

Table 5.19: Numerical checks of expectations B\ to B \5 calculated at r  =  15, n =  25 using 
Burr data generated with a = 4, r  =  3 and 104 replications.

obtained from 104 replications. Table 5.19 shows this comparison for a  = 4,r  = 3, r  =  
15, n =  25. We see good agreement between the theoretical and simulated values.

C ovariances o f th e  score functions Using the above expectations, and from (2.36), 
(2.37), (2.56) and (2.57), we can obtain the covariances of the score functions for all combi­
nations of the final and interim MLEs, as shown below.

1. From (2.36) and (2.56), we have

~  ( d l  dlr 
Ccm W  9 ^

E

E

dl dlr 
da da

\na

=  not 1E dlr - E rr, dlr T  x ——
da da

- E  [T x (ra - 1 -  2> -  Tc)\ 

—ra B i + B n . (5.41)
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2. Similarly, from (2.37) and (2.56), we have

«-(£■!) - *

=  E

dl dlr 
da X dr

na

dlr - E _  dlrr  x —-dr
=  na  1E

= - E  [T x { r r -1 +  S fyi(0) -  (a  +  l)T ftm  -  aTC}m }]  

=  - r r _ 1R 2 -  Bs +  Bq +  a B u .

3. Prom (2.36) and (2.57) we may write

= ' E
. dl dlr

Cov[ Tt-as
dl dlr
—— X ——
dr da

= E  

= nr~ l E

{ n r-1 +  Si (0) — (a +  1) T in  } x 

dl

dlr
da

da + E dL{ S i( 0 ) - ( a  +  l)T m } x | £

=  E  [{Si (0) -  (a  +  1) Txll} X ( r a " 1 -  T , -  Tc)] 

=  r a -1 [Bi -  (a +  1) B3] -  Bio +  (a  +  1) B12.

4. Prom (2.37) and (2.57), we have 

dl dlCov
dr  ’ dr

= E  

= E  

=  n r~ l E

dl dlr 
dr  X dr

{n r  1 +  Si(0) -  {a +  1) Tm } x ^  

dl
dr

+ E {Si(0)-(a + l ) T m } x f p

=  E  [{Si(0) -  (a  +  1) Tm } x { r r ” 1 +  S/,i(0) -  (a  +  1 )Tm i  -  aTc,m }]

=  r r -1 [B\ — (a + 1 ) B 3 ] +  B \ — B q — aBis +  (a +  1) [ B q  — By +  a B \o \ .

For illustration, we continue to use a — 4, r  =  3, r = 15, n =  25, and compute

(< * » » (&  f e )  C ouC f, §?) \  =  /  0.9375 -1.8174 \
C™ ( § ’ t£ )  1 -1-8174 6.0499 /
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so that using

a a A ar
La r ATT
a a
15 ^?5r
a r
L15 A ft

0.7885 0.1671
0.1671 0.1879

2.5538 0.7672
0.7672 0.3957

w 0.7885
- 0.1671

and from (5.35) to (5.38) we see

( Cov (a, S i5) Cov (a, r 15)
C o v(r,a  i5) Cov(t , t 15)

which, in turn, gives the correlations for all combinations of the final and interim MLEs as

~ \ 0.7885Corr [a, ais) ~  —■ . ----- = = = = =  0.5557,
'  v/07885 x v^5538

A  <f

Corr (ai, ris ) ~  -----  =  0.2991,
'  V0.7885 x v/0^3957
x 0.1671Corr (r, 015) ~  .  . =  0.2411,

v '  \/(U879 x V^5538
0 1879

Corr (r, T15) ~    . =  0.6891.
V0.1879 x x/03957

As seen in the analysis for Weibull MLEs, we see here numerical values of the covariances 
of final and interim MLEs are identical to those found for the complete covariance matrix. 
Thus, it is suitable to next consider the extent to which the conjecture at (5.8) holds for 
the Burr MLEs.

C ovariance from  th e  G enera lisa tion  (5.8)

When extended to the Burr distribution, (5.8) would become

/  Cov (a, Or) C ov(a,Tr) \  = f  Aaa AaT \
I C o v ( j,a r) Cov ( t, tr) J I A aT ATT I

Sim plifications o f th e  covariances Alternatively, we can check that (from (5.7)) 

(  ^ ^ J a ’ f a )  \  _  (  Ar,aa A*-r,ar

C o v(£ , C o v{£ , J \  Ar,ar Ar,rrdl dir.\ n ^ j d i  dlr' I ~  1 '  I (5.43)
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n Theory 
(= A aa)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 0.7885 38.2848 5.5227 2.5260 1.5883 1.4211
50 0.3942 6.2904 0.8645 0.6358 0.5479 0.5306
100 0.1971 0.6786 0.2940 0.2490 0.2375 0.2250
1000 0.0197 0.0188 0.0184 0.0185 0.0189 0.0192
2500 0.0079 0.0071 0.0080 0.0080 0.0079 0.0079
5000 0.0039 0.0038 0.0038 0.0038 0.0039 0.0039

Table 5.20: Theoretical and simulated values for Cov(a, a r) calculated at various r, n using 
Burr data generated with a  = 4, r  = 3 and 104 replications.

holds for the Burr distribution. From (5.41), and using (5.39) and (5.40), we may write the 
first covariance as

<-(£■£)

which we want to show to equal
A j^qq. —  TOi

(r  i— 1 n  \  /  r —1 r  r  n
Y  i Y » Y  ) and double j ^ 2  J ]  and
i= 1 i= l j —r +1  J  V i—1 j= i+ \  i= lj= r + l

summations of expectations being involved, it is clear from the above that simplification 
of Cov (J^, ^ - )  to ra~2 is very tedious to obtain, and hence is considered elsewhere. 
Obviously, we then reach the same conclusion about the consideration of Cov (J^, |^ ) ,
Cov (J-p, and Cov (J-p, ^ ) . Instead, we check for (5.42) via extensive simulation ex­
periments.

N um erical check o f (5.42) Here, we assume a  = 4, r  =  3 and find the simulated values 
of C ov(a,ar), Cov(a,Tr), C ov(r,ar) and Co?;(r,rr ) based on 104 estimates of (or , r r ). 
Tables 5.20 to 5.23 compare these values to their theoretical counterparts, obtained from 
the complete covariance matrix given at (2.59). We observe generally good agreement 
between theory and practice across all combinations of r  and n considered. This agreement 
improves as r  and n  increase. We remark that other values of a  and r  were also considered; 
the results were not reported here because those cases exhibited similar conclusions.

=  - ^  +  E S [ ( l n ( l  +  Xr„))2] + 2 E  E  E [ ln ( l  +  X£„)ln(l +  XJ:„)]
a  i=  1 i = l  j= i+ 1

+  E  E  B [ ln ( l  +  XT„)ln(l +  XJ;J ]
i = l  j= r + l

i— 1 r

+ (n  — r) <

r —1
E  E  [ln(l +  X T J  In(l +  X ;:n)} + E  [(ln(l +  X?;„))2]
i = l

+  E  E  flii(l +  X^:n) ln(l +  XJ.n)
j= r + l  1-
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n Theory 
(= AQT)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 0.1671 0.3268 0.3131 0.3042 0.2946 0.2982
50 0.0835 0.1287 0.1133 0.1127 0.1099 0.1129
100 0.0418 0.0538 0.0496 0.0479 0.0480 0.0459
1000 0.0042 0.0035 0.0036 0.0037 0.0038 0.0040
2500 0.0017 0.0015 0.0017 0.0017 0.0017 0.0017
5000 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

Table 5.21: Theoretical and simulated values for C o v(a ,fr) calculated at various r ,n  using 
Burr data generated with a = 4, r  =  3 and 104 replications.

n Theory 
(= AaT)

r
0.2 n 0.4n 0.6n 0.8n l.On

25 0.1671 6.3057 1.2919 0.4785 0.3260 0.2938
50 0.0835 1.3047 0.1816 0.1318 0.1143 0.1129
100 0.0418 0.1206 0.0596 0.0484 0.0480 0.0459
1000 0.0042 0.0036 0.0038 0.0038 0.0039 0.0040
2500 0.0017 0.0016 0.0017 0.0017 0.0017 0.0017
5000 0.0008 0.0009 0.0008 0.0008 0.0008 0.0008

Table 5.22: Theoretical and simulated values for C o v(t,a r) calculated at various r, n using 
Burr data generated with a  =  4, r  =  3 and 104 replications.

n Theory
(= A TT)

r
0.2n 0.4n 0.6n 0.8n l.On

25 0.1879 0.3056 0.2657 0.2503 0.2424 0.2396
50 0.0940 0.1249 0.1097 0.1064 0.1044 0.1047
100 0.0470 0.0533 0.0505 0.0494 0.0496 0.0490
1000 0.0047 0.0045 0.0046 0.0046 0.0046 0.0046
2500 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
5000 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

Table 5.23: Theoretical and simulated values for C o v ( t , f r) calculated at various r, n using
Burr data generated with a  =  4, r = 3 and 104 replications.
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Im plica tions o f (5.42) on th e  B  equations We discuss this only in passing here; the 
consequences of (5.43) would be that

rn
-~ o  +  B n  = ra  2, or

7*Tb
 B 8 + B 9 +  a B u  = n r - 1 { ( 1 - 7 )  Po,o “  Po.i} >a r

-  B iq +  (a +  1) B u  = n r -1 {(1 -  7) p0,0 “  Po,i} »a r
rn

-^ 2  +  B 4 -  Bq -  a B i3 +  (a +  1) (B 5 -  B 7 + a B i5) = rr  1 +  n a r  2Qr, 

which lead to

B u  =  ra ~ 2 (n +  1),

- R 8 +  ^9 +  = - ^ 10+  (« + 1>5i2 =  n r -1 { ra -1 +  (1 -  7) p0)o -  Po,i} 5
B ^ -  B q -  aBis  +  (a +  1) {Bq -  B 7 +  0 R15) =  r ~ 2 (r +  rn  +  naQr ) .

As previously mentioned at Section 5.3.1 for the H  equations, a detailed proof to these 
results will be given elsewhere.

Im plications o f (5.42) on th e  co rre la tions betw een final and  in te rim  M LEs If
(5.42) holds, then we have, for large samples,

Corr (a, a r ) ~
y /A ™  X y /A <

is given by

\ n

a 2 (a +  l )2 (a  +  2) ( l  +  ^ 2^ )  {r 2 +  rna ttr -  n2a 2[( 1 -  7) p0fi -  p0jl]2} 

( ra 2 +  na£Or) | ( a  +  l )2 (a  +  2) +  a  (a  +  l )2 Q, — a 2 (a  +  2) [1 — 7 — ?/>(a)]2 j

AarCorr (a, r r ) ~
T T
r

is given by

_ { l _ 7 _ - 0 ( a ) }  x

\ rn

________ a 2 (a  +  2) {r2 +  rn a flr -  n2a 2[(l -  7) p0)0 -  poa]2}___________

( l  +  ^+2^ )  { (a  +  l )2 (a +  2) +  a  (a  +  l )2 SI — a 2 (a  +  2) [1 — 7 — V’M ]2}

Aar
Corr (r, ar) ~

y / A r x  y/A.a a
r
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is given by

\ n

_________ Q4 (a +  2) {r2 +  rnattr -  n2a 2[( 1 -  7 ) p0)0 -  p0)i]2}____________

(ra2 + na%Qr) | ( a  +  l ) 2 (a +  2) +  a  (a +  l ) 2 Q — a 2 (a +  2) [1 — 7  — ^(a)]2 J

and

Corr ( r , T r ) ~

A r

\
(a +  1) (a  +  2) ( r 2 +  rnaO r -  n2a 2[(l -  7) p0>0 — P0,i]2} 

rn  | ( a  +  l ) 2 (a +  2) +  ot (a  +  l )2 Q — a 2 (a  +  2) [1 — 7 — ?/>(a)]2 j

in which we refer to Section 2.4.1 for the expressions for pk m and Qr, and Section 2.4.3 for 
Q.

5.4.2 Link betw een B0.i and Ro.i.r

We move on to consider the extent to which Bo.i.r can be regarded as a reliable guide to 
Ro.i* ^  prove more illuminating to here start with a worked example, taking, as before, 
a  =  4, r  = 3, r  =  15, n =  25 so that, from (2.54),

(  b* \  _  (  -0.0252 \
\  &T /  \  0.1203 J  ’

and using (5.3), we can approximate Corr Ro.1,15) by

-.0252
.1203

.7885 .1671 

.1671 .1879
0.9375 -1.8174 

-1.8174 6.0499
2.5538 .7672 

.7672 .3957
-.0252

.1203

\
-.0252

.1203
.7885 .1671 
.1671 .1879

-.0252
.1203 \

-.0252
.1203

2.5538 .7672 
.7672 .3957

-.0252
.1203

which can be shown equal to 0.9049.
Otherwise, the agreement between the simulated values of Cov ^Bo.i,Bo.i,r) with their

theoretical counterparts Var as shown in Table 5.24 for various r  and n with 104
replications, suggests that it might be possible to extend (5.9) to the Burr case, so that we
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n Theory 
(=  Var (B q.i ) )

r
0.2 n 0.4n 0.6n 0.8n l.On

25 .002208 .002318 .002320 .002314 .002315 .002318
50 .001104 .001106 .001109 .001109 .001108 .001111
100 .000552 .000558 .000557 .000557 .000559 .000560
1000 .000055 .000055 .000055 .000055 .000055 .000055
2500 .000022 .000022 .000022 .000022 .000022 .000022
5000 .000011 .000011 .000011 .000011 .000011 .000011

Table 5.24: Theoretical and simulated values for Cov(Bo,i, Bo.i>r) calculated at various r, n 
using Burr data generated with a  = 4, r  =  3 and 104 replications.

could use (5.10) to obtain, for large n,

„  / s  s  \  16|ytaa +  2babrA“T +  b^ATT
orr  ̂ 0.1, 0.1,r j  -  y  h2 Aaa + 2babrA ^  + blATrT'

in the above example, this correlation is

I (-0.0252)2 x 0.7885 -  2 x 0.0252 x 0.1203 x 0.1671 +  0.12032 x 0.1879 _  gQ49 
V (-0.0252)2 x 2.5538 -  2 x 0.0252 x 0.1203 x 0.7672 +  0.12032 x 0.3957 ~~

exactly as before.

5.4.3 Num erical R esults

Next, we provide some validation for the above expressions through simulation experiments; 
we revisit Section 2.4.4 for the 104 replications of a r , r r and Bo.i,r» generated with a = 4 
and t  = 3. Tables 5.25 to 5.29 summarise the theoretical (upper) and practical (lower) 
values for Corr (a, a r) , Corr (a, r T) , Corr (r, ar) , Corr (r, r r ) and Corr Bo.i.r) re­
spectively, and consistently show a good agreement between theory and simulation, for all 
r  and n considered. We also noted that, when r =  n, Corr (a , r n) =  Corr (r, an) becomes

Corr ( a ,f )  =  a  {1 ~  ^  =  0.4340
(a + 1)^/1+ * 0

for all sample sizes. Therefore, this value acts as an upper bound on the strength of cross­
parameter correlation there; it depends on a , though is independent of n and r . In addition, 
the theoretical correlation values obtained here confirm the pattern observed in Figures 2.13 
to 2.17. In particular, agreement so far means that we can now employ these expressions to 
compute the confidence limits for final estimates, given earlier estimates.
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r n
25 50 100 1000 2500 5000

0.2n .1942 .1835 .1806 .1760 .1757 .1756
.0708 .0418 .0667 .1501 .1518 .1687

0.4n .3616 .3537 .3495 .3456 .3454 .3453
.0627 .1998 .3038 .3152 .3493 .3334

0.6n .5557 .5495 .5464 .5434 .5432 .5431
.2065 .4532 .5186 .5154 .5516 .5361

0.8n .7740 .7706 .7689 .7672 .7671 .7671
.6112 .7281 .7590 .7506 .7708 .7596

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.25: Theoretical (upper) and simulated (lower) values of Corr (a, otr ) for various r, n, 
for Burr data generated with a  =  4, r  =  3.

r n
25 50 100 1000 2500 5000

0.2 n .1635
.1343

, .1575 
.1420

.1541

.1505
.1509
.1240

.1507

.1331
.1506
.1382

0.4n .2348
.2185

.2304

.2243
.2280
.2299

.2258

.1960
.2257
.2310

.2256

.2076
0.6n .2991

.3175
.2959
.3055

.2942

.2992
.2927
.2611

.2926

.3021
.2925
.2757

0.8n .3631
.3953

.3612

.3824
.3602
.3726

.3592

.3354
.3592
.3623

.3591

.3431
l.On .4340

.5035
.4340
.4789

.4340

.4369
.4340
.4217

.4340

.4350
.4340
.4191

Table 5.26: Theoretical (upper) and simulated (lower) values of Corr(a, f r) for various r, n, 
for Burr data generated with a = 4, r  = 3.

r n
25 50 100 1000 2500 5000

0.2 n .0843
.0284

.0804

.0195
.0784
.0254

.0764

.0583
.0763
.0715

.0762

.0822
0.4n .1569

.0357
.1535
.0945

.1517

.1320
.1500
.1306

.1499

.1534
.1498
.1466

0.6n .2411
.0953

.2385

.2114
.2371
.2161

.2358

.2179
.2357
.2422

.2357

.2293
0.8n .3359

.3055
.3344
.3420

.3337

.3286
.3330
.3182

.3329

.3420
.3329
.3192

l.On .4340
.5035

.4340

.4789
.4340
.4369

.4340

.4217
.4340
.4350

.4340

.4191

Table 5.27: Theoretical (upper) and simulated (lower) values of C o r r ( f , a r) for various r, n,
for Burr data generated with a  =  4, r = 3.
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r n
25 50 100 1000 2500 5000

0.2n .3767 .3628 .3551 .3477 .3472 .3470
.3365 .3103 .3194 .3264 .3459 .3490

0.4n .5410 .5309 .5254 .5204 .5200 .5199
.4722 .4891 .5024 .5047 .5284 .5153

0.6n .6891 .6818 .6780 .6744 .6742 .6741
.6362 .6496 .6611 .6646 .6827 .6704

0.8n .8368 .8323 .8300 .8278 .8276 .8276
.8060 .8181 .8249 .8209 .8331 .8211

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.28: Theoretical (upper) and simulated (lower) values of C orr(f, t r) for various r, n, 
for Burr data generated with a  =  4, r  =  3.

r n
25 50 100 1000 2500 5000

0.2n .8470 .8530 .8558 .8582 .8583 .8584
.8647 .8604 .8612 .8572 .8635 .8561

0.4n .8736 .8706 .8688 .8670 .8669 .8668
.8791 .8721 .8700 .8648 .8716 .8657

0.6n .9049 .9015 .8997 .8979 .8978 .8977
.9043 .8993 .8995 .8970 .9009 .8971

0.8n .9469 .9446 .9433 .9422 .9421 .9421
.9446 .9433 .9438 .9410 .9438 .9404

l.On 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.29: Theoretical (upper) and simulated (lower) values of Corr (Bo. i, Bo.i,r) f°r various
r, n, for Burr data generated with a  =  4, r =  3.
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5.4.4 Confidence Lim its Considerations

We also wish to obtain confidence intervals for a , r, #o.i, given that we know the values of 
ar, r r ,Ro.i,r- We denote

—  Q ,

A T = T -  7>,

A j50.i =  # 0 .1  -  # 0 .1 ,r ,

and assume that each of these differences is Normally distributed with zero mean; provided 
that (5.42) holds, the variances for Aa and Ar are, respectively,

Var( Aq) =  Var(a r ) — V ar(a )

and
Var( Ar ) =  V a r(jr ) — Var(r), 

and if (5.9) holds, we could approximate the variance of A s0.i by

Var(ASo J  =  Var(B0A,r) ~  Var(B0.i)

which, in turn, depends on Var(AQ), Var{Ar ) and Cov{Aa , Ar ). These, in turn, yield the 
approximate 95% confidence intervals for final estimate, given interim estimate; we have

A =  Ar ±  1.96VVar(AA)

for A =  a, r , #o.i- In practice, we would then estimate the true value of a, r  with the MLEs 
a r , t t calculated at r.

As our first example, Table 5.30 presents these limits for various r for the arthritic 
patients data in Table 1.3. As r approaches n = 50, we notice fluctuating sd(Aa), as shown 
in Figure 5.6, but a smoothly decreasing sd(Ar ), as displayed in Figure 5.7. For Ab0-1, the 
interval size reduces steadily as r increases, as shown in Figure 5.8.

We have made checks throughout the theory developed so far, and now we need to 
validate the resulting confidence intervals using our simulation experiment set up. Again, 
we plot the 104 simulated observations of a , r , #o.i, and, in each case, record the number of 
a , r , #o.i within the 95% confidence limits evaluated, firstly, at true parameter values a  =  
4, r  =  3 (corresponding to upper entries), and secondly, at the MLEs ar,Tr (corresponding 
to lower entries); these results are summarised in Tables 5.31 to 5.33. The difference between 
entries is due to the penalty on replacing the true values by their MLEs in the calculation, 
and in particular, for small samples with low to mild censoring, the results are largely 
distorted by some large values of ar as shown in Table 2.16. In general, and entirely as 
expected, the results approach 9500 with increasing n and r.
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r 10 20 30 40 50
Qli*
sd(Aa)

4.5450
3.9577

7.9878
4.4005

8.9031
3.1000

7.7911
1.4676

8.2681
0

t r
sd( A r)

4.1860
1.1043

4.8626
0.8237

4.9997
0.5823

4.8490
0.3568

5.0006
0

B 0.l,r
fd( A bo.i )

0.4080
0.0201

0.4112
0.0167

0.4112
0.0141

0.4113
0.0109

0.4185
0

Table 5.30: Standard deviations of A Q, A r and Ajg01 for the arthritic patients data.

16.6128
14.9792

15 -
12.3022 ^

* -O
(0
S

10 -

8.9031 + 8.26817.9878 +(0
E 7.7911 +

<0a> 4.5450 +
_ l

s 4.9146

2.8271

-0.6372

-3.2122

0 10 20 30 40 50 60
r

+ ML estimates — — Lower — -A — Upper

Figure 5.6: ar and 95% confidence limits for a  given a r for the arthritic patients data.

r n
25 50 100 1000 2500 5000

0.2 n 6996
9682

7532
9616

8290
9543

9216
9416

9515
9482

9443
9509

0.4n 7443.
9662

8094
9583

8597
9415

9384
9463

9507
9494

9439
9456

0.6n 7907
9636

8563
9496

8962
9426

9459
9468

9487
9520

9487
9485

0.8n 8432
9596

8943
9489

9176
9548

9442
9437

9434
9517

9461
9493

Table 5.31: Number of replications of a  within the 95% confidence limits based on true a , r  
(upper) and a r , f r (lower), for Burr data generated with a  = 4, r  =  3.
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10

8

6.47716.3505 6.1409

5.54836

+  5.00064.8626 +  4.9997 +  4.8490 +

4.1860 +4
4.14973.8585

3.2481
2 wr

2.0215

0
0 10 6020 30 40 50

r

+ ML estimates — *  — Lower — -a — Upper

Figure 5.7: fy and 95% confidence limits for f  given fy for the arthritic patients data.

r n
25 50 100 1000 2500 5000

0.2 n 7796
9218

8182
9268

8849
9342

9424
9479

9491
9497

9487
9513

0.4n 8296
9316

8910
9365

9155
9416

9447
9748

9523
9507

9458
9468

0.6n 8724
9413

9058
9406

9287
9456

9492
9480

9519
9514

9490
9495

0.8n 9006
9458

9289
9479

9376
9526

9465
9467

9527
9560

9476
9503

Table 5.32: Number of replications of t  within the 95% confidence limits based on true a, r  
(upper) and ay, f r (lower), for Burr data generated with a = 4, r  =  3.
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0.46
0.4438 0.4399

0.43360.44 -

0.42 0.4185
04080 +  0.4112 +  0.4122 +  0.4123 +oCO

**-o 0.4 -
mrv>0)

w
E
(0
-I
2

0.38 - 0.39100.3845
0.3785

0.36 - 0.3686

0.34 -

0.32 -

0.3
0 10 20 30 40 50 60

r

+ ML estimates — — Lower — -A — Upper

A A /S

Figure 5.8: Bo.i.r and 95% confidence limits for Bo.i given Bo.i.r f°r the arthritic patients 
data.

r n
25 50 100 1000 2500 5000

0.2 n 9604
9512

9562
9468

9555
9494

9451
9466

9569
9550

9460
9497

0.4n 9485
9486

9487
9458

9512
9474

9473
9487

9535
9525

9495
9543

0.6n 9429
9472

9426
9440

9497
9465

9492
9499

9543
9542

9487
9522

0.8n 9426
9477

9508
9499

9497
9494

9468
9499

9531
9590

9475
9505

Table 5.33: Number of replications of J?o.i within the 95% confidence limits based on true 
a, t  (upper) and ar, f r  (lower), for Burr data generated with a = 4, r  =  3.
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5.5 Practical Im plications

Our work in the last two chapters so far has been primarily concerned with establishing and 
validating theoretical results. In this section, we briefly consider some practical implications 
of our work, based on published and simulated data. The relevance and importance of the 
percentile B q \ have been discussed in chapter one and two, and we have further shown in 
chapter three that the statistical properties of the sampling distributions of Ro.i.r are more 
desirable (in the sense that asymptotic results apply in samples of smaller size) than those 
of the MLEs of parameters. Therefore, our discussion here focus mainly on the reliability of 

calculated at censoring level r, can be regarded as a reliable guide to #o.i. We have 
already seen the agreement between I?o.i,r and its counterparts for complete samples, but 
in practical terms, we would like to know the smallest r  at which the experiment can be 
reasonably or safely terminated with the interim analysis still providing a close and reliable 
guide to the analysis of the final, complete data, as represented by the standard deviation 
of final estimate, given interim estimate.

5.5.1 Published D ata  

Epstein’s Failure Times Data

We recall from Table 2.1 that jBo.i,20 =  11.0523 is the closest to Ro.i =  11.0512, but also 
has the largest (estimated) standard deviation. In contrast, # 0.1,10 =  7.1224 is the farthest 
from #o.i, with sd(#o.i,io) =  2.2523, only slightly less than sd(Ro.i,2o) — 2.4714. Hence, 
intuitively, an experimenter may prefer # 0.1,20 to # 0.1,10 as a guide to Ro.ij in this case, the 
experiment time would be cut from X i9:49 =  354.4 to X20:49 =  55.6, with, approximately, a 
84% reduction in time. However, in the analysis of the reliability of a sequence of Type II 
censored estimates, we could also take into account the link between the interim and final 
estimates before a conclusion can be drawn. Table 5.2 shows that the variation between 
B0.i,r and #o.i gradually converges to 0 as r approaches n =  49. Strikingly, we see that the 
pattern on standard deviations when r = 10 and 20 has reversed; sd(Ho.i— # 0.1,10) =  2.0094 
is now slightly larger than sd(I?o.i ~  # 0.1,20) =  1.9013, but the two values remain similar. 
Thus, # 0.1,10 and # 0.1,20 seem to provide similar amount of information concerning .#0.1 • 
Statistically, this suggests that it may make no practical difference whether to terminate 
the experiment after r = 10 or r =  20, because the resultant censored estimates would 
be equally reliable in providing a guide to the final estimate. However, from a practical 
perspective, censoring at r =  10 is certainly not the same as r = 20, particularly in terms of 
the experiment time and costs; the former would give an extra saving in experiment time, 
which is cut from ^ 49,49 =  354.4 to Xio;49 =  15.2, an additional reduction of 40.4 units 
compared to r = 20. We remark that this information is obtained with hindsight, of course, 
but may be proven useful to an experimenter when planning a life test; if the precision 
level is set prior to an experiment, he or she could save the experiment time and costs by
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terminating the experiment at or around the smallest r for which the data is likely to yield 
the required level of precision.

Ball Bearings Data

Table 5.15 shows that the interim estimates slowly converge to #o.i; the last three failures 
have a significant effect on the value of #o.ij implying that the precise value relies heavily 
on the last few failures. More strikingly, we see that the precision levels associated with 
# 0.1,8 and #o.i,i6 are quite similar (sd(A#01) =  2.9231 for r = 8 and sd(A s01) =  2.6749 
for r = 12); this provides partial answers to some questions posed in Section 5.1, again, we 
emphasise with the benefit of hindsight. In real life scenarios, censoring often leads to earlier 
termination of a life test; if the tolerance level is set prior to an experiment, an experimenter 
could terminate the test sooner than might have been thought. In this example, censoring 
at r =  8 would save the experiment time by roughly 70%, an extra saving of 19% compared 
to r  =  16, but, notably, it would also yield interim estimates which are as consistent with 
the final values as those obtained by censoring at r = 16. Moreover, we could also plot the 
95% confidence limits for 2 < r < n  =  23 for the ball bearings data. Figure 5.9 shows that 
the limits are generally quite flat for censoring values around r =  5 to 8, indicating that 
the precision obtained on censoring about this range of r would be approximately similar, 
as shown below:

r 2 3 4 5 6 7 8

Xr:23 28.92 33.00 41.52 42.12 45.60 48.48 51.84

sd(&B0.i) 3.6921 2.8068 3.7321 2.8481 2.8824 2.8619 2.9232

r 9 10 11 12 13 14 15

X r:23 51.96 54.12 55.56 67.80 68.64 68.64 68.88
sd(Aso.i) 2.5951 2.5435 2.4218 3.0910 2.8689 2.6212 2.4016

r 16 17 18 19 20 21 22

Xr:23 84.12 93.12 98.64 105.12 105.84 127.92 128.04

sd(&B0.i) 2.6748 2.6174 2.4468 2.2492 1.9674 1.7195 1.2655

Arthritic Patients Data

Table 5.30 shows that .Bo.i.r converges to Bo.i in an almost horizontal line, and the limits 
decrease with r at a steady rate up to r = 40, after which we see a sharp convergence to 0, 
corresponding to the case r = n. In this example, the case for early censoring is less obvious; 
as in previous example, the last 10 relief times contain important information regarding the 
precise value of #o.i-
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Figure 5.9: Bo.i,r and 95% confidence limits for J?o.i given R o .i ,r ,  for 2 < r  < n =  23, for 
the ball bearings data.

5.5.2 Sim ulation Experim ents

The results from the analysis when all the failure times are observed seem to suggest that, 
for a specified level of precision, it may be possible to design experiments in which early 
stopping is a viable option. In contrast, as r is to be specified before testing commences, 
this general conclusion may be less useful in practical terms. However, the practitioner 
could follow this method to establish a confidence interval for the final estimates, based 
on the censored estimates calculated at that r; if the precision level meets the required 
level set prior to running the test, then further tests can be terminated with even smaller 
r. Otherwise, one could increase the sample size or the censoring number to meet the 
tolerance level. This information is important for an experimenter, as he or she can then 
choose an acceptable censoring number and sample size, with the (expected) time required 
to complete a test generally directly linked to its cost. If the initial cost of test units is 
cheap compared to experiment time, he or she can increase the initial sample size to obtain 
results economically.

We use simulations to assess how the increase in censoring level increases the precision 
of Ro.i.r- as a guide to Ro.i? when, as we have seen above, the final few failure times may 
have a considerable effect on the precise values of the final estimates, and the expected time 
required to complete the test may also increase considerably. Tables 5.34 to 5.36 give a
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r 71

25 50 100 1000 2500 5000
0.2 n 4.2144

4.2660
2.9800
2.9976

2.1072
2.1019

0.6664
0.6698

0.4214
0.4212

0.2980
0.3003

0.4n 2.5808
2.5881

1.8249
1.8198

1.2904
1.3025

0.4081
0.4117

0.2581
0.2590

0.1825
0.1824

0.6n 1.7205
1.7075

1.2166
1.2187

0.8603
0.8641

0.2720
0.2746

0.1721
0.1708

0.1217
0.1212

0.8n 1.0536
1.0468

0.7450
0.7449

0.5268
0.5230

0.1666
0.1675

0.1054
0.1056

0.0745
0.0744

Table 5.34: Theoretical (upper) and simulated (lower) standard deviations of A#01 for 
various r, n, for exponential data generated with 9 =  100.

summary of theoretical (upper) and simulated (lower) standard deviations of A s01 from 
the exponential, Weibull and Burr distributions respectively, based on 104 replications. 
We see good agreement between theory and simulation. The conclusions reached for a 
single data set are confirmed here: the standard deviations decrease as r increases, meaning 
the experimenter would need to compromise between saving time (or cost) and additional 
information obtained from extra failure times. We also note that the ratio of change in 
standard deviations to change in censoring proportions decreases with r, suggesting that, if 
the censoring level has to be small relative to n, say r < 0.4n, then the experimenter may 
not need to consider too closely the exact value of r to use.

We can try to place this in a more practical context: in Table 5.35, based on the Weibull 
distribution with 0 = 100, /? =  2, suppose there are n =  100 specimens put on a life test. 
If this experiment was to run to completion it' would take, on average, E  [Xloouoo] =  226 
units, (we may assume, somewhat arbitrary, that time units are hours - of course, they 
could be days or even months), obtained on setting i = n = 100,0 =  100,/? =  2 in (3.3). 
If, instead, we terminated the experiment after 40 failure times have been recorded, for 
which the expected experiment time is given by E  [Xio:ioo] =  71 units, there would be a 
reduction in duration of 69%, together with a standard deviation sd(I?o.i —-Bo.1,40) of 2.1726. 
Alternatively, we may consider to stop the experiment as soon as 20 failure times have been 
observed, for which E  [X20:ioo] =  4:7 units and sd(Bo,i — Bo.1,20) =  2.2865, to trade just 5% 
increase in the standard deviation value for a further 10% reduction in experiment time. 
In particular, in the case where the initial cost of test units is expensive, the penalty of 
replacing Bo.i,40 by J3o.i,20 95 a guide to Bo.i may be regarded as less important, compared 
to the value of test units and/or time saved.

In real life scenarios, censoring often leads to earlier termination of a life test; for a given 
tolerance level, an experimenter may repeat the analysis described in this chapter at each 
of a sequence r  =  rq, 7*2 , . . . < n, and examine the pattern of trade off between precision and 
censoring number, to give the smallest r needed to achieve that level of precision.
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r n
25 50 100 1000 2500 5000

0.2 n 4.7476
4.5148

3.2735
3.2023

2.2865
2.2575

0.7153
0.7106

0.4521
0.4580

0.3196
0.3230

0.4n 4.2678
4.2485

3.0520
3.0616

2.1726
2.1681

0.6917
0.6902

0.4377
0.4424

0.3095
0.3126

0.6n 3.2717
3.7794

2.6742
2.7211

1.9085
1.9180

0.6088
0.6082

0.3853
0.3881

0.2725
0.2747

0.8n 2.8326
2.9132

2.0459
2.0778

1.4627
1.4608

0.4673
0.4702

0.2957
0.2976

0.2092
0.2087

Table 5.35: Theoretical (upper) and simulated (lower) standard deviations of Ab0-1 for 
various r, n, for Weibull data generated with 6 = 100, (3 = 2.

r n
25 50 100 1000 2500 5000

0.2 n 0.0295
0.0280

0.0203
0.0197

0.0142
0.0139

0.0044
0.0045

0.0028
0.0028

0.0020
0.0020

0.4n 0.0262
0.0261

0.0188
0.0187

0.0134
0.0134

0.0043
0.0043

0.0027
0.0027

0.0019
0.0019

0.6n 0.0221
0.0227

0.0160
0.0162

0.0114
0.0114

0.0036
0.0037

0.0023
0.0023

0.0016
0.0016

0.8n 0.0160
0.0167

0.0116
0.0117

0.0083
0.0083

0.0026
0.0027

0.0017
0.0017

0.0012
0.0012

Table 5.36: Theoretical (upper) and simulated (lower) standard deviations of A b01 for
various r, n, for Burr data generated with a  =  4, r =  3.
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5.6 Chapter Summary and Conclusions

We initially examined the relationships between the final and interim estimates of model 
parameters and a specific percentile in Chapter 2. We have now further studied these 
relationships, and, in particular, we are able to quantify the correlations between the two sets 
of ML estimates of model parameters and Ro.i- Our formulae are relatively straightforward 
and computationally tractable; provided that the conjectures, obtained from the exponential 
distribution, at (5.8) and (5.9) hold, we see correlations would follow immediately from the 
complete and censored EFI matrices. The extension of (5.8) and (5.9) to the Weibull case 
could be regarded as natural, but it turns out that similar extension might also hold in 
the Burr distribution. There is obvious scope to assess the extent to which (5.8) and (5.9) 
hold in other lifetime distributions and censoring regimes; for instance, Finselbach (2007) 
proves these results for Weibull data obtained from a Type I censoring. This, in turn, yields 
approximate 95% confidence limits for the final estimate given earlier estimate. We have 
also shown that these asymptotic results agree with the behaviour observed in simulation 
experiments for various combinations of censoring number r and (finite) sample size n, 
and validated the asymptotic 95% confidence limits, from which some issues on practical 
applications have been discussed.

The main focus of this chapter has been on the effect of censoring has on the precision 
of a Type II censored estimate as an estimate to its complete counterpart, and to establish 
some guidelines on an optimal censoring number to stop an experiment, which maximises 
the practical benefits while minimising the loss of statistical information. The decision 
to concentrate on £?o.i was due to its widespread use in practice, and more favourable 
theoretical properties (in the sense that asymptotic results apply in samples of smaller size) 
against those of the MLEs of parameters. Based on published examples, and using hindsight, 
we see that if the tolerance level is set prior to an experiment, the practitioners could 
terminate the test sooner than might have been thought. While with simulated data, we 
noted the reduction in standard deviation of A jg0A changes with the reduction in censoring 
level at a varying rate, notably slow when r < 0.4n. Therefore, if r /n  is small, perhaps due 
to high initial costs of running the experiment, it transpires that, as r decreases, there may 
be little loss in information extractable from the observed failure times, in comparison with 
the benefits gained from the reduction in the test duration and the costs of running the test.

Overall, the results are encouraging, suggesting that for a given set of interim estimates 
and the precision required, it may be possible to design experiments in which early stopping 
was a viable option. However, further work is required before a firm conclusion can be 
reached, especially with different combinations of parameter values to cover, as wide as 
possible, the whole range of real life scenarios.



Chapter 6

Sum m ary and Conclusions

In this final chapter, we provide an overview of our work and present our conclusions. We 
begin by summarising our interests and aims, and discuss the extent to which each of these 
was achieved. We then present an overall conclusion, and finish by considering further areas 
of investigation.

6.1 Summary

Reliability Distributions

Our work has centred around three reliability models, namely, the exponential, Weibull and 
Burr distributions; some basic concepts for each of these models were given in Chapter 1, 
along with a list of relevant mathematical functions and properties of order statistics. We 
saw that, due to its lack-of-memory property, results for the exponential lifetime data are 
relatively straightforward to obtain. Then, by exploiting the relationship between Weibull 
and exponential random variables, these results transformed easily to the Weibull distrib­
ution. In contrast, despite of the limiting relationship between Burr and Weibull, it was 
not as simple to obtain results for the Burr distribution; throughout, we have seen that the 
analysis of Type II censored Burr data was considerably more complicated.

ML Estimation for Model Parameters and Percentiles

Although ML estimation for both complete and censored samples is widely discussed in the 
literature, discussion has focused in detail on both the theoretical and (to a somewhat lesser 
extent) the numerical aspects of this method. In Chapter 2, we considered the mathemati­
cal and computational methodology involved in ML estimation of parameters and percentile 
functions for some reliability models mentioned in Chapter 1, under a Type II censoring 
regime; some corresponding results under complete censoring were briefly presented, ob­
tained simply by setting r = n. We have concentrated on L?o.i throughout this thesis, but 
the details and principles can be easily adopted to other percentiles; depending on the form
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of the cdf, £?o.i is often a non-linear function of model parameters, and we can linearise this 
relationship by considering a first order Taylor series expansion of Bo.i- The theoretical EFI 
(matrix) for exponential and Weibull distributions was first considered, before moving on to 
the Burr distribution. Here, we have established closed-form expressions for the elements of 
the Type II censored EFI matrix for the Burr distribution, previously unobtained by Wingo 
(1993). This, in turn, yielded asymptotically valid variances and covariances of the MLEs 
of parameters and percentile function.

Numerical examples were presented using published data to illustrate the relevant cal­
culations involved. In addition, asymptotic results were validated through extensive sim­
ulations with 104 replications, for various combinations of sample of finite size, censoring 
number and parameter values. We found generally good agreement between theory and 
practice (simulations), and this improved as the n and r increased. We also observed 
smaller standard deviations by increasing n  and r, as expected.

Asymptotic Normality of MLEs

In many situations, it is not enough to have merely an estimate of the parameter or i?o.i> but 
some indication of the likely accuracy of these estimates is also desirable. The asymptotic 
Normality of MLEs is widely known, and is often used in practice to obtain approximate 
confidence regions around parameters; this leads to symmetrical confidence intervals for a 
single-parameter case, and elliptical confidence regions for two. However, there appears 
to be no detailed information on how large a sample needs to be for this large-sample 
approximation to hold. We investigated, by means of extensive simulation studies, the 
distributions of the MLEs of parameters and Bo.i? with particular emphasis on the rate at 
which the MLEs approach Normality, and the effect of Type II censoring has on the progress 
towards Normality; this extended the work introduced by Chua et al. (2007), where the 
emphasis focused only on Type II censored Weibull data.

The formal tests in Chapter 3 revealed that, unless the sample size is very large, the 
hypothesis that the distribution of the MLE is Normal is unlikely to be formally accepted; 
this covered both univariate distributions of parameters and percentiles, as well as the joint 
distributions of parameters. In general, the progress towards Normality was slow, and 
censoring further impairs this progress. Furthermore, univariate tests showed that the non- 
Normality in the distributions of the MLEs was partially attributable to the problem of 
right skewness, and hence the scatter plots for joint distributions did not become elliptical 
until samples were very large. On the other hand, the distribution of Ho.i,r exhibited milder 
right skewness, and converged to Normality at both earlier censoring (smaller r ) and smaller 
sample size than in the case of model parameters. Despite these poor approximations to the 
Normal distribution, the corresponding probability regions obtained were shown to provide 
a good coverage of the ML estimates of parameters, but the non-elliptical shape of the 
distribution was not well represented. This resulted in the investigation of an alternative 
method to assess the precision in estimates of parameters in relatively small and/or highly
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censored samples.

An Alternative Measure of Precision - Relative Likelihood Contour Plots

Where the asymptotic Normality assumption is implausible in samples of small to moderate 
sizes, we have proposed an alternative measure of precision using the relative likelihood 
function and its contour plots; this is essentially the second part of Chapter 3, in which 
we considered the effects of varying r on the shape and the size of the relative likelihood 
contours. As an extension to Watkins & Leech (1989), in which the algorithm concentrated 
on Weibull data, we have outlined an automatic algorithm for drawing relative likelihood 
contours using the IML procedure in SAS for Burr data subject to Type II censoring, and we 
saw smaller and more elliptical contours as r increases. In addition to applying this method 
to single sets of data, we have adapted the method to provide approximate confidence 
regions for the MLEs of parameters, by introducing what we term idealised samples; we 
computed the expected order statistics in Mathematica, subjected these to censoring as 
appropriate, and then used the resulting values as data for plotting the expected relative 
likelihood contours.

When comparing with Normal theory probability ellipses, we note that the two curves 
overlap, and as n and r increase, the overlap increases, with the relative likelihood contour 
moving towards the asymptotic Normal ellipse. We have also shown that in small or highly 
censored samples, the non-elliptical nature of the relative likelihood contours captured more 
accurately the behaviour of the Type II censored MLEs, where the asymptotic Normality 
assumption seems to be invalid. Despite the more complicated computations involved in 
the relative likelihood approach as a measure of precision, with the use of the algorithm 
described and the computational advances today, we can reasonably recommend the use 
of relative likelihood contour as an alternative to quantify the precision in estimates of 
parameters in small to moderate samples, where large-sample Normal theory fails.

Moments and Product Moments of Order Statistics

We have seen much of the theoretical development in this thesis involved taking expectations 
and joint expectations of order statistics, such as the derivation of the elements of the EFI 
matrix. Chapter 4 then outlined some useful preliminary work for studying the correlations 
between interim and final estimates of parameters and Bo.ij equivalently, the correlations 
of the two sets of score functions. Unlike the Weibull distribution, which is linked to the 
standard exponential distribution (with a relatively simple pdf and cdf), corresponding 
analysis for the Burr distribution proved to be considerably more involved.

We considered two approaches, via direct integration (direct method) and repetitive 
differentiations (derivatives method), to obtain the moments and product moments of order 
statistics required in Chapter 5. Despite the more complicated functions (integrations of 
exponential integrals and the hypergeometric series) being involved in the direct method,



6.1. SUMMARY 245

this approach generally consumed less computation time than the derivatives method when 
implemented in Mathematica, and hence is more feasible in practice. On the other hand, 
due to its flexibility in dealing with the logarithms and/or powers of order statistics, the 
derivatives method was shown more useful in establishing the joint expectations of Burr 
order statistics. We sought to validate these new results by means of simulation experiments. 
We observed generally excellent agreement between theoretical and simulated results for 
various combinations of order statistics, sample size and parameter values; despite some 
computational problems for large sample sizes, we have covered most sample sizes and 
ranges of censoring likely to be encountered in practice.

The Reliability of Type II Censored Reliability Analyses

We have observed in Chapter 2 some linear relationship between the interim and final 
estimates of parameters and Ro.ij increasingly evident as r converged to n. Chapter 5 
essentially carried on where Chapter 2 left off, by extending the work by Chua &; Watkins 
(2007) and Chua &; Watkins (2008a,b). We established a method to quantify the link 
between censored and complete estimates, and used this to measure the precision in using 
a Type II censored analysis as a guide to the final analysis.

We began with the exponential distribution, for which we benefited from its powerful 
lack-of-memory property, and employed the usual asymptotic relationship linking the MLE, 
the EFI and, the score function to calculate the correlation between the final and interim 
estimates of parameter and Bo.i- We saw that our problem could be transformed into a 
study of the correlations between final and interim score functions, in which the covariance 
of the two sets of score functions was shown to simplify to the censored EFI, see (5.6). This 
correlation, in turn, provided the approximate 95% confidence limits for the final estimate 
given earlier estimate, as a measure of precision of the censored estimate in estimating the 
complete estimate.

We then followed the same approach as in the exponential distribution in the considera­
tion of the Weibull and Burr distributions. With two parameters, the analysis proved to be 
more detailed, but the same concepts held, and the corresponding relationships between fi­
nal and interim estimates were found. We first considered correlations from basic principles, 
using various expectations and joint expectations of order statistics outlined in Chapter 4. 
We then considered a possible generalisation to (5.6), in which we saw correlations between 
censored and complete MLEs might follow immediately from the two sets of EFI matrices, 
with the theory presented in Chapter 2. Nonetheless, further work is needed to establish 
analytically the simplification in the correlations.

We sought to validate these new theoretical expressions with simulation experiments. We 
established that these asymptotic results agreed with the behaviour observed in simulations 
for various combinations of censoring number and sample size, providing confirmation to 
our results, but the agreement was generally good even for early censoring and samples 
of small to moderate sizes. Moreover, the confidence intervals for the final estimate given



6.1. SUMMARY 246

interim estimate have shown to provide a reasonable coverage of the final estimates. 

P rac tica l Im plica tions - P lan n in g  th e  E xperim en ts

Confidence limits for the final estimate given earlier estimate were presented for publishes 
examples, and some practical issues on experimental design were identified and discussed, 
with particular stress on providing a guide to experimenters wishing to know the smallest 
number of failures at which a trial can be reasonably or safely terminated, but where the 
censored analysis still provides a reliable guide to the analysis of the final, complete data.

The relevance and importance of the percentile Bq i have been discussed in Chapters 
1 and 2, and we have further shown that the statistical properties of I?o.i,r were more 
desirable than those of the MLEs of parameters; for instance, as seen in Chapter 3, the 
sampling distribution of I?o.i,r converged to Normality more rapidly, while in Chapter 5 
we found the values of Corr -#o.i,rj were notably greater than Corr (7r,7rr ), for each 
combination of r and n considered. Therefore, since we have established a link between 
censored and complete estimates of -Bo.i? this provided a suitable ground to identifying an 
optimum number of failures to censor.

In published data, we spotted, more than once, situations where two distinct censoring 
numbers produced roughly equal values of sd(A s01). Hence, if the tolerance level is set 
prior to an experiment, an experimenter could terminate the test sooner than might have 
been thought. This information may be viewed as a consequence of hindsight, but results 
obtained from simulation study were equally, if not more, encouraging. We saw a trade 
off between censoring level and sd(A#01), where the extent of trade-off varied with the 
ratio of censoring number to sample size. It suggested that, if the censoring number was 
expected to be small in relative to the sample size, say r /n  < 0.4, then it might be viable 
to forgo the precision obtained in using I?o.i,r as a guide to Ho.i? f°r a reduction in the 
test duration and the cost of running the test. The reason has been the rate of decrease 
in the (expected) experiment time was larger than that of the sd(A£01), when censoring 
number is relatively small. Therefore, our analysis indicated that the combination of r and 
n, specifically, the value of r /n , may have some role in the final decision-making process. 
Our results showed that, for low censoring values (relative to the sample size), the reduction 
in expected experiment time outweighs the loss in information. This transpires that it may 
be possible to design experiments in which early stopping is a viable option.

We remark that the scope of these practical investigations was rather narrow, but, real- 
life experiments are many and varied, and we can only partially cover the wide range of 
possible parameter combinations that are used in the real world. Nevertheless, our methods 
and results have provided practitioners with some insight into the roles of censoring number 
r and sample size n  in a Type II censoring setting.
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6.2 Conclusions

The principle aim of this thesis was to consider the relationship between final (r = n) and 
interim (r < n) results, and hence the extend to which an interim estimate - here, using 
information based on Type II censoring - can be regarded as a reliable guide to the final 
estimate. Our investigations, although based on limited parameter values, illustrated useful 
conclusions on the conduct of experiments under such censoring plan, and, consequently, 
are of potential value to a practitioner who, prior to carrying out an experiment, would 
like to know what combination of censoring level and sample size would return the most 
information about the final results.

Therefore, throughout this thesis, our primary focus has been on the development of 
theoretical results, and the validation of these through extensive simulation experiments. 
Having laid down the necessary groundwork, we first considered the computational and 
numerical aspects of maximum likelihood estimation, which often overlooked in published 
discussions. On a whole, Type II censoring, in turn, induced the study on expectations and 
joint expectations of order statistics, has not caused any special difficulty in the derivation 
of EFI matrix, owing to the connection between the distribution of first order statistic and 
the underlying distribution. Besides MLEs of parameters, we also obtained an estimate for 
the 10th percentile of failure times, £?o.i> since practitioners would typically wish to make 
inferences on the running time of the experiment.

In order to assess our ability to make small sample theoretical inspections, we then 
proceeded to investigate, by means of a detailed simulation study, the extent to which 
asymptotic Normality of MLE applies in samples of finite size, subject to Type II censoring. 
We concluded that asymptotic Normality assumption is improbable in small samples, and 
recommended the use of relative likelihood contour plots to obtain approximate confidence 
regions of parameters in relatively small and/or highly censored samples (Chua et al, 2007).

We have obtained general expressions for the correlations between the interim and final 
MLEs of model parameters, and a particular percentile. We noted that the evaluation of 
these expressions via basic principles involved some lengthy algebra, chiefly due to various 
moments and product moments of order statistics required. But the derivatives method 
provided an alternative, and has shown to be useful particularly for the Burr distribution. 
Furthermore, a possible generalisation from the exponential distribution suggests that cor­
relations between the two sets of estimates might follow immediately from the EFI matrix. 
These, in turn, gave us approximate 95% confidence limits for the final estimate given in­
terim estimate, as an indication of the precision with which we can make statements on final 
estimates, based on interim estimates.

Overall, our results are reasonably encouraging. The standard deviation of final estimate 
given interim estimate decreases with censoring number at varying rates, depending on the 
ratio of censoring number to sample size, and, in particular, the final few failure times carry 
important information regarding the precise values of the final estimates. The practical
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consequences of our work are as follows: for any r specified before testing commences, an 
experimenter is now able to gain, from the resultant interim estimates, some information 
concerning the final failure time. If the precision level is also set prior to the experiment, 
as always in practice, he or she could save the experiment time and costs by terminating 
the experiment at or around the smallest r for which the data is likely to yield the required 
level of precision. The trade-off between early censoring and precision can be formalised by 
considering the relationship between r and the standard deviation of final estimate given 
interim estimate, which can then be used as the criterion for assessing competing experiment 
designs. Practitioners can use the measure of precision discussed in this thesis to decide 
whether an interim experiment results are sufficient to make inferences from, or whether 
the experiment should continue to allow more items to fail.

Finally, we remark that with only one parameter, consideration of negative exponentially 
distributed lifetimes is clearly of limited practical value; it does, however, provide an useful 
insight in extending the analysis to other more widely used two-parameter lifetime models. 
In addition, since our discussion is completely general, the principles followed in this thesis 
have provided not only some guidance to practitioners wishing to conduct experiments 
subject to their own circumstances, but also as a basis for further investigation.

6.3 Areas for Future Research

Throughout our work, we have concentrated on the exponential, Weibull and Burr distrib­
utions, but other lifetime distributions could well prove to be even more fruitful in terms of 
quality of fit to data sets, robustness and practical applicability. Depending on the forms 
of their pdfs and cdfs, we may find the corresponding analysis to be more complex, since, 
as we have seen in Chapter 4, relatively basic theoretical properties of order statistics, such 
as their expectations and joint expectations, will involve both the pdf and powers of cdf for 
the underlying population.

Although attention is restricted primarily to models with two parameters, much of our 
discussion also applies when there are three or more. Lemon (1975) considers ML estimation 
for the three-parameter Weibull distribution based on censored samples. As mentioned 
in Chapter 2, one could extend the two-parameter Burr to a three-parameter model by 
including a scale parameter <f) in many different ways. Naturally, its statistical analysis, like 
the derivation of the EFI matrix, will be more involved; we refer to Watkins (1999) for more 
details.

Analysis based on an accelerated framework could also be performed; see Nelson (1990) 
for details on accelerated life testing. Our interest would be extended to cover the effect 
of a certain combination of accelerated testing techniques, censoring number, sample size 
and parameter values on the final decision-making process, and, specifically, to determine 
an optimal censoring value, for a given set of values for the accelerated testing factors. This 
requires the accelerated version of EFI matrix for complete and censored data, and will,
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naturally, involve more formidable algebra. For example, Watkins & John (2008) consider 
constant stress accelerated life tests terminated by a Type II censoring regime at one of the 
stress levels for data assumed to follow the Weibull distribution.

The mechanism which gives rise to censoring also has much room for further investi­
gation. So far we have considered singly censored samples (on the right) under Type II 
censoring setting. But, in real life, some test units may have to be removed at different 
stages in the study for various reasons. Consequently, it is of interest to look at doubly 
censored samples, and even samples subject to progressive (or multiple) censoring. Some of 
the recent contributors to the development of the theory underlying ML estimation for this 
censoring regime have been Tse et al. (2000) and Wu (2002) for data assumed to follow a 
Weibull distribution; Soliman (2005) and Wu et al. (2007) for the Burr distribution. Under 
this extension, we may wish to investigate the extent to which 7fj, conditional on rrii (the 
number of observations censored at the ith failure), can be regarded as a reliable guide to 
7f. We can also assess the trade-off between shortening the test duration, by collecting more 
failure times in the early stage of the test, and the level of precision obtained.

Similarly, our approach can be carried on to the analysis of Type I singly and progres­
sively censored samples, where the length of the experiment £, rather than the number of 
failure r, is fixed. In contrast to Type II censoring, Type I likelihood consists of independent 
components with identical or non-identical distributions, based on whether the censoring 
times are equal or not. Some discussion on the corresponding analysis of reliability data 
are given by Finselbach & Watkins (2006) and Finselbach (2007) for lifetimes drawn from 
a Weibull distribution.

In Chapter 3, the problem of right skewness in the distribution of MLE of parameter 
appears to be consistent with the believe by Billmann et al. (1972), that slow convergence 
to Normality was a consequence of lack of symmetry when the samples were censored on 
one side (from the right). It follows that it would be of interest to investigate whether the 
distribution of MLE would be left skewed when the data are censored from the left. We 
have observed the overlap between relative likelihood contour and the large-sample Normal 
theory probability ellipse, but the relative size of the two regions, as well as the extent of 
the overlap in general, could be examined in much further detail.

In Chapter 4 the analysis of reliability of exponential data showed that the covariance 
of interim and final score functions simplified to the censored EFI. Hence, there is scope 
to assess the extent to which this simplification holds in other lifetime distributions and 
censoring regimes.

From a practical perspective, we may wish to quantify the relationship between the 
value r /n  and the standard deviation of final estimate given interim estimate. We also 
remark that our approach can be easily adopted in the analysis of claim time or survival 
time data. In this case, typically, life insurers would be interested at drawing inference of 
Bo.9) to determine the duration of, say, an endowment policy. Similar comments apply to 
duration analysis in economics.
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Lastly, from a programming perspective, we could use alternative computing packages, 
such as Matlab, to compute the expectations and joint expectations of order statistics 
required, to see how its computation time compared to Mathematica. We could also use 
statistical softwares other than SAS and SPSS; for instance, the R programming language, 
widely used by statisticians and other practitioners requiring an environment for statistical 
computing and graphics.
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A ppendix A  : List o f Specific 
N otations

As previously mentioned at Section 1.2.1, this appendix summarises some specific no­
tations used throughout this thesis; for convenience of the readers, these are listed in the 
order of the chapters, and, where relevant, some remarks have been inserted.

Chapter one:
r pre-specified number of failures in a Type II censoring regime 1 < r < n
n sample size > 0

t censored value

9 arbitrary function
d k

9a dak &
9k where g is univariate
wrt with respect to

f2,l(*) F2,i{a,b-c',z)
^3,2 0 ) F3 ,2 (a, b, c; e, / ;  z)
pdf probability density function
cdf cumulative distribution function
7r (bold) vector of 7r
7T/ transpose of 7r
7r unknown model parameter

/ probability density function
F cumulative distribution function
haz hazard function
S survivor function

B q 100qth percentile function 0 < q < 1

Q quantile function
pth moment about the origin P = 1,2,3,

E \ g ( x ) ] expected value operator for the function g (x )
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pth moment about the mean /  pth central moment p =  1,2,3.
mean = P i

7i skewness

72 kurtosis
a 1 variance
Var variance
9 Exponential and Weibull scale parameter > 0
(3 Weibull shape parameter > 0
Burr Burr Type XII distribution
a Burr Type XII and Pareto shape parameter > 0
T Burr Type XII shape parameter > 0
k Pareto location parameter > 0
t pre-specified stopping time in a Type I censoring regime > 0
m unknown number of failures obtained in a Type I 

censoring regime
0 < m  < r

Xi-,n ith order statistic of a random sample X i,  X 2 , . . . , X n 
of size n

1 <  i <  n

Fd) cumulative distribution function of X i:n 1 < i < n

f a probability density function of X i:n 1 <  i < n

Ci'.n
n! 1 <  i < n(n—i)!(z—1)!

joint cumulative distribution function of X i:n and X j :n 1 <  i < j  :
n\ 1 <  i < j  :

f (*>i) joint probability density function of X i:n and X j :n 1 <  i < j :
Cov covariance
h arbitrary function
N number of replications 104
7r[°] initial value used in the Newton-Raphson method

Chapter two:
ML estimation maximum likelihood estimation
EFI expected Fisher information matrix
MLE maximum likelihood estimator
Lr ( L  =  Ln) likelihood function
lr (Z =  Zn) log-likelihood function
U r (U =  U„) vector of score function
7Tr (7T =  7Tn ) maximum likelihood estimator of ir
A r (A  =  A t i) expected Fisher information matrix

Z \ / 2 upper 100 ( l  — - | )  percentage point of the 
standard Normal distribution

0 <  A <  1

VI 
VI 

VI
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J r (J =  J n) observed Fisher information matrix

D7r dir

Sr (S  = Sn) Xi,n +  (n -  r )X r:n
i=i

Wi (n i +  l)(X i:n
sd standard deviation
sd estimated standard deviation
ML estimate maximum likelihood estimate 
/  failed item
c censored item

S f A Q  E X £ n ( l n - W
i= 1

5cj(fc) (n — r)X*„ (In X r:„ y
I* (l* =  Z*) profile log-likelihood function
Z (t )^ w^ere follows the Weibull distribution with

parameters 0,/3

V lnX r;n — r -1 lnX i:n
2 = 1

*  r - 1 E ( - i ) r - i G!:1) ( V - i 1)  M »  + 1  -  01*
2 = 1

Xk chi-square variate with k degrees of freedom

S i(k )  E ^ ( l n  X iY
2=1

Tf E l n ( l  +  ^ „ )
2=1

Tc (n — r) ln(l +  X ^:n)
^  f e ) a(lnXi:n)b

/̂.afcc ^  (i+xj.jc

T c + c  ? - r ) Wc,otc i /
„ V~̂ ( 1 \ r - 2  /n —2—1\ [V>((n+l-2)a+fc)]m
"k,m  U - l A  r - i  ) ( n + l - 2)a+fc+l

2 = 1

V  ( IT " *  f71-1) A1" * " 1) bP'((n+l-{)a+k)]rn
rk,m  Z^i\ XJ \ i - l J \  r - i  J (n+ l-ila+ fc+ l2=1
Mr . ( j  +  7 2 -  2 7 )  Pl,0 -  2(1 -  7 )P l , l  +  Pi,2 +  <̂ 1,1

T  E l n ( l  +  X n

( ^ ) “(lnXi)b 
labc (1+XT)c

^  +  72 -  27 -  2(1 -  7 )^ (0; +  1) +  [ip (a +  l )]2 + ip'{a +  1) 
4> three-parameter Burr Type XII (natural) scale parameter

i  >  1

> 0

Chapter three:
pi sample estimate of skewness
p2 sample estimate of kurtosis
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ml pth sample moment about the mean p =  1,2,3,
sample mean 
sample variance
test statistic for univariate Normality 
standardised and Normalised skewness 
standardised and Normalised kurtosis 
100 (1 — A) percentage point of the chi-square 
distribution with k degrees of freedom 
sample estimates of multivariate skewness 
sample estimates of multivariate kurtosis 
test statistic for multivariate Normality 
standardised and Normalised multivariate skewness 
standardised and Normalised multivariate kurtosis 
relative likelihood function 
100 (1 — A) % relative likelihood contour 
MLE of 7r obtained from idealised sample 

S step size used to draw 100 (1 — A) % relative
likelihood contour 

A-probability ellipse 100 (1 — A) % probability ellipse

7r
S 2 

K 2 
Z{9i) 
Z(gi)  

X*,l-A

91,k

92,k
S\v
W(gltk)
W {g 2 ,k)
R
A-contour
7T„

0 < A < 1

0 < A < 1 

=  0.01 

0 <  A < 1

Chapter four: 
A T
Apa,qb 

A 8,t
jp a b

S

Ei

jpab,qde
c,f

Eij

I Ps$
fa

fa
fa
b4

fa

xp (In x)a e sxdx 

/ “ „ r u 0 *p (In *)“ ^~sxVq (In V? e-*»dxdy
f 0° °  x f + T ~ 1 (In x)“ (ln(l +  xT))b ( 1  +  z r ) - o ( n - t ) - c - i  d x

Oi(n — k)

E XVt:n
(i+ * L )‘

/oo r y  

y=0 J x=0

a  (n — k — 1) 

E

X p + T - 1 ( l n ( l  +  +  x r y a ( l + k ) - c - l  A

yi+T- 1 ( lny ) i (hi( l  +  y - ) ) e ( l  +  y Tr ain~k~ 1)~, ~ 1 J * V

X1 L x q.j  :n

(1 + X l n )  (1 + X T „ y

/ “  o I l = o  11+ xTY ~ l y q+r~1 i 1 + y ' Y ' 1 dxdv
t  +  f - i  

? +  f + 2  
t + f  + i
a n  +  c +  / -  £ -  2 
a n  +  c  +  /  +  2
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Chapter five:
Corr correlation

Hi

H 2

h 3

H5

Hq

h 7

h 8

h 9

Att

B i

B 2

B 3

B i

B 5

Be

B 7

b 8

Bg

E

E

E

E

E

E

E

E

E

H 10 E  

H n  E

H \ 2 E

n
Y , Z i

E l n Z i
,2 = 1

t , Z , i n Z ,
,i= 1

E  Z i:n  Y t  Z i ‘.i 
,2 = 1  i = 1

E l n Z i E l n Z i;n
,2 = 1  i = 1

E Z 4l n 2 i E l n Z 4
,2 = 1  2 = 1

Y  Zi ( E  Zi:n + ( n  -  r ) Z r :n
,i= 1 \2=1
Y  In Z i  ( Y  Z i , n  + (n -  r)Z,
2 = 1  \ 2 = 1

E  Z i  In Z i  ( Y  Zi:n + (n -  r)Z,
,2 = 1  \ 2 = 1

X) ( E  z i-n  In Z i , n  + (n -  r ) Z r :n  In Z r:
,2 = 1  \ 2 = 1

n  /  r
Y  In Z i  I Y  z i-n  In Z i - n  + (n -  r ) Z r :n  In Z r: 

,2 = 1  \ 2 = 1

Y  z i In Z i  f  Y  Z i:n  In Zi:n + (n -  r)Zr-.n In ZT,
.2 = 1  \ 2=  1

7T — 7r

E

E

E

E

E

E

E

E

E

B \q E

E ln X i ,
,2 = 1

E l n ( l  +  X r j
,2 = 1  .

A  i+xr ,i=i *•"
E l n X i:nE l n X i:7 
,2=1 2=1
A  A  XTnlnX<;r
A  1+X T  2^ 1+XT

,2=1 I:n 2 = 1  t:n 
n  r

t:n

i:nE  E

,2=1 t:n 2=1 

E l n ( l  +  X rn) E l n X j;.

,2=1 2=1 1:71 _
E  In X vn (  E  ln(l +  XTn) +  („ -  r) ln(l +  X;.n) \
i=1 2=1
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B u  E  

B 12 E  

Bis E  

B U E

Bl5 E

') ln(l +  X^:n)2  ln(l +  X l n) |  ^2 ln(l +  X l n) +  ( n - r j  mVx -i 
.i=i U=i

E  { £  ^  +  X£») +  (” -  r) +  X r - .n )

E  In X i:n |  £  Xk ^ r ^  +  (n -  r) J
E  ln (l +  XTn) { g  +  (« -  }

A  X l n In Xj.n f  A  -XTn ln A=n , /  _  \ X l ,n In Xr-.n 1 1
. f t  ! + * £ »  \ zt l  1 + X A  ^  l + ^ : n  J

Chapter six:
rrii number of observations censored at the ith failure in a progressive censoring 

regime



A ppendix B : SAS Code: F itting  
Burr MLEs to  A rthritic Patients  
D ata

In this appendix, we give details of the SAS IML algorithm used to locate the MLEs 
of the Burr parameters and the lQth percentile for the arthritic patients data (see Table 
1.3) where n =  50, when the data is subject to Type II censoring at the r = 30th failure. 
Throughout, comments will be inserted and italicised.

proc iml;

s ta r t  burrmle; 
n=nrow(bdata); 
r=30; 
c=n-r;
o n e = j ( r , l , l ) ; 
z e r o = j(c ,1 ,0 );  
in d = in se r t(o n e ,ze ro ,r + 1 ); 
cdata=(ind#bdata); 
t=m ax(cdata); 
ln t = lo g ( t ) ; 
ln tx 2 = lo g ( t )* lo g ( t ) ; 
ln x= log(b d ata); 
ln cx= (in d # ln x ); 
lncx2= lncx#lncx; 
se=sum (lncx);

is set as 1
tau=l;
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Stopping criterion is set as d7r at n-aW  <  1 0  9

do it e r = l  to  500 u n t i l  Cabs ( p i t / ( - p l t t ) * * 0 .5) <0.000000009) ; 
term =exp(tau*lncx); 
sfstar=sum (ind#log(term +l));  
sflll= su m (in d #term #ln cx/(term + l));  
sf122=sum( ind#term #lncx2/( (term+1 )# (term+1 )) ) ;  
term t= exp (tau *ln t); 
scstar=c*sum (log(term t+ l));  
sc lll= c* su m (ter m t# ln t/(ten n t+ l));  
sc l22= c* su m (term t# ln tx 2 /((term t+ l)# (ten n t+ l))); 
s s ta r = s fs ta r + sc s ta r ; 
s l l l= s f 1 1 1 + s c l l l ;  
sl22=sf122+scl22;
p l= r * lo g (ta u )+ (ta u - l)* s e -s fs ta r -r * lo g (s s ta r )+ r * ( lo g (r ) - l)  ; 
p lt= r /ta u + se -s f11l - r * s l 11 /s s t a r ;
p lt t = - r / ( t a u * * 2 ) - s f 1 2 2 - r * ( s l2 2 /s s t a r - ( s i l l / s s t a r ) **2); 
ta u = ta u -p lt /p lt t ;

We can now find a r, the maximised log-likelihood, Ro.i.r; the score functions and the 
elements of the EFI matrix

alpha=r/sstar;
loglike=r*log(tau*alpha)+(tau -1 )*se-(alpha+ 1 )* sfstar-a lp h a*scstar;
b l0 = (( ( 0 .9 )* * ( - 1 /a lp h a ) ) - l)* * ( l /ta u ) ;
da=r/alpha-s stair;
dt=r/tau+se-alpha*s1 1 1 - s f 1 1 1 ;
daa=-r/alpha**2 ;
d tt=-r/tau**2 -a lpha*sl2 2 - s f 1 2 2 ;
d a t = - s l l l ;
print alpha tau lo g lik e  blO da dt daa d tt dat; 
f in ish  burrmle;

end;

Main programme

do;
data= -CO.2 9 ,0 .2 9 ,0 .3 4 ,0 .3 5 ,0 .3 6 ,0 .3 6 ,0 .4 4 ,0 .4 6 ,0 .4 9 ,0 .4 9 , 

0 .5 0 ,0 .5 0 ,0 .5 2 ,0 .5 3 ,0 .5 4 ,0 .5 5 ,0 .5 5 ,0 .5 5 ,0 .5 6 ,0 .5 7 ,
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0 .5 8 ,0 .5 8 ,0 .5 9 ,0 .5 9 ,0 .6 0 ,0 .6 0 ,0 .6 1 ,0 .6 1 ,0 .6 2 ,0 .6 4 ,  
0 .6 8 ,0 .7 0 ,0 .7 0 ,0 .7 0 ,0 .7 1 ,0 .7 1 ,0 .7 1 ,0 .7 2 ,0 .7 2 ,0 .7 3 , 
0 .7 5 ,0 .7 5 ,0 .8 0 ,0 .8 0 ,0 .8 1 ,0 .8 2 ,0 .8 4 ,0 .8 4 ,0 .8 5 ,0 .8 7 } ;  

bdata=data; 
run burrmle;

end;

q u it ;



A ppendix C : SAS Code: 
Drawing R elative Likelihood  
Contours for A rthritic Patients  
D ata

In this appendix, we give details of the SAS IML algorithms used to draw the relative 
likelihood contour for data drawn from the Burr distribution. We continue to use the 
arthritic patients data, and assume r = n = 50 and A =  0.05; this yields the approximate 
95% confidence regions for (a, r) under complete sampling. Relative likelihood contours for 
other combinations of r, n and A values can be similarly obtained.

S tage 1 The location of (a r , r r ) has been given in Appendix B. 

a lp h a = r /s s ta r ;
loglike=r*log(tau*alpha) + (ta u -1 )*se-(alpha+ 1 )* sf star-a lph a*scstar; 
blO=(((0 .9 )* * (-1 /a lp h a))-1 )* * (1 /ta u );

Instead of the score functions and the EFI matrix, we require L (ar, r r) 
m axlike=exp(loglike); 
print alpha tau lo g lik e  maxlike blO; 
f in ish  burrmle;

Stage 2 Defining the drawing area.

Set contour level as A =  0.05
p=0.05;
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Locate Tmin

do i= l to  1 0 ; 
j= i* 0 . 1 ; 
m in t= tau *(l-j); 
termmint=exp(mint*lncx); 
s f  staunnint=sum(ind#log(termmint+l)); 
termtmint=exp(mint*lnt); 
scstairmint=c*log(termtmint+l); 
sstarm int=sf staunnint+scstaxmint; 
mintalpha=r/sstarm int;
loglikem int=r*1 og(mint*mintalpha) + (mint- 1 )*se- (mintalpha+1 )* s f s t  axmint 

-mintalpha*scstairmint;
This yields L (a , r) 

likem int=exp(loglikem int);
This defines R ( a , r )  = L( a , r ) / L( ar, f r) 

relm int=likem int/m axlike; 
print i  mint likem int relm int; 
i f  relmint < p then stop;

end;

Locate T"ixi&x

d o  i = l  t o  1 0 0 ;  

k = i * 0 .1 ;  

m a x t= t a u * ( 1 + k ) ; 

term m aL X t=exp(m cL xt*ln cx); 

s f s t a r m a x t = s u m ( in d # l o g ( t e r m m a x t + l ) ) ; 

t e r m t m a ix t = e x p ( m a x t * ln t ) ; 

s c s t a r m a x t = c * lo g ( t e r m t m c L x t + l ) ; 

s s t a r m a x t = s f  s t a r m a x t + s c s t a r m a x t ; 

m a x ta lp h a = m / s s t a r m a x t ;

loglikemaxt=r*log (maoct*mauct alpha) + (maoct-l)*se-(maoct alpha+1 ) *sf starmaxt 
-maixtalpha+scstairmaLXt; 

likemaixt=exp(loglikemaoct); 
relmaxt=likemaxt/maixlike; 
print i  maixt likemaxt relmaLXt; 
i f  relmaixt < p then stop;

end;
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Locate

do i= l to 1 0 ; 
j= i* 0 . 1 ;
mina=alpha*( 1 - j ); 
minatau=tau; 
do ite r = l to  15;

termmina=exp(minatau*lncx);
s f  starmina=sum(ind#log(termmina+l));
s f  1 1  lmina=sum ( ind#termmina#lncx/ (tennmina+1 ) ) ;
s f  1 2 2 mina=sm(ind#termmina#lncx2 /((term m ina+l)#(term m ina+l)));
termtmina=exp(minatau*lnt);
scstarmina=c*log (termtmina+1 ) ;
sclllmina=c*(termtmina#lnt/(termtmina+1 ) );
s c l 2 2 mina=c*(termtmina#lntx2 /((termtmina+1 )#(termtmina+1 ) ) ) ; 
sstarmina=sfstarmina+scstarmina; 
s 1 1 lmina=sf1 1 lmina+sc1 1 lmina; 
s l 2 2 m ina-sf1 2 2 mina+scl2 2 mina;
ltmina=r/minatau+s e-(mina+1 )* s f 1 1 lmina-mina* se lllm in a ;
1 ttmina=-r/ (minat au* *2 ) - (mina+1 )* s f 1 2 2 mina-mina*s c 1 2 2 mina; 
minatau=minatau-ltmina/lttmina;

end;
loglikemina=r*log(minatau*mina)+(minatau-l)*se-(mina+l)*sf starmina 

-mina*scstarmina; 
likem ina=exp(loglikem ina); 
relmina=likemina/maxlike; 
print i  mina likemina relmina; 
i f  relmina < p then stop;

end;

Locate
do i= l to  1 0 0 ; 

k=i*0 . 1 ;
maxa=alpha*( 1+k); 
maxatau=tau; 
do ite r = l to  15;

termmaxa=exp(maxatau*lncx);
sfstcirmaxa=sum(ind#log(tenrmiaxa+l));
s f  1 1  lmaxa=sum ( ind#termmaoca#lncx/ (termmaxa+1 ) ) ;
s f  1 2 2 maxa=sum ( ind#termmaxa#lncx2 /  ( (termmaxa+1 ) # (termmaxa+1 ) ) ) ;
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termtmaxa=exp(maxatau*lnt);
scstarmaxa=c*log(termtmaxa+l);
sclllmaxa=c*(termtniaxa#lnt/(termtmaxa+1 ) ) ;
s c l 2 2 maxa=c*(termtmaxa#lntx2 /  ( (termtmaxa+l)#(termtmaxa+l)) ) ;
sstannaxa=sfstarmaxa+scstarmaxa;
s 1 1  lmaxa=sf 1 1  lmaxa+sc1 1  lmaxa;
s l 2 2 maxa=sf 1 2 2 maxa+scl2 2 maxa;
ltmaxa=r/maxatau+se- (maxa+1 ) *sf 1 1  lmaxa-maxa*sc1 1  lmaxa; 
lttmaxa=-r/(maxat au* * 2  ) -  (maxa+1 ) * s f  1 2 2 maxa-maxa* s c 1 2 2 maxa; 
maxatau=maxat au-ltmaxa/lttmaxa;

end;
loglikemaxa=r*log(maxatau*maxa) + (maxatau-1 ) *se-(maxa+1 ) *sf starmaxa 

-maxa*scstarmaxa; 
likemaxa=exp(loglikemaxa); 
relmaxa=likemaxa/maxlike; 
print i  mcixa likemaxa relmaxa; 
i f  relmaxa < p then stop;

end;

Stage 3 Drawing the 0.05-relative likelihood contour.

Set S as 0.01
delta=0 . 0 1 ;

Process 1: Find initial point on contour

b=maxt/tau;
do u n t i l  ( a b s ( f / ( - f b ) **0.5)< 0.000000009); 

term 2=exp(b*tau*lncx); 
s f  star2=sum(in d # lo g (t erm2+1 ));  
sf1112=sum (ind#term 2#lncx/(term 2+l));  
term t2=exp(b*tau*lnt); 
scstar2 = c* lo g (term t2 + l); 
s c ll l2 = c * (te r m t2 # ln t/(te r m t2 + l));
f=r*log(b*tau*a*alpha)+ (b*tau-l)*se-(a*a lpha+ l)*sfstar2-a*alpha*scstcir2  

-r* log (tau *a lp h a )-(ta u -l)* se+ (a lp h a + 1 ) *sfstao:+alpha*scst2Lr-log(p) ; 
fb =r/b +tau *se-(a*alp h a+ l)*tau *sf1112-a*alpha*tau*scl112; 
b = b -f/fb ;

end;
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alphah=a*alpha; 
tauh=b*tau;
fa= r/a-alpha*sfstar2 -alpha*scstar2 ; 
grad ien t= -fa /fb ;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
a l= a l//a ; b l= b l//b ; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphahl//alphah; tauhl=tauhl//tauh;
anewll=anewl[1 rnrow(anewl)] ; bnewll=bnewl [ 1  :nrow(bnewl)] ;
alphahll=alphahl[1 :nrow(alphahl)]; tau h ll= tauh l[1 :nrow(tauhl)];
alphahll=alphahl[1 :nrow(alphahl)]; tauhll= tauh l[1 :nrow(tauhl)];
matr ix=al 1 j |bl 1 1 |anewl 1 1 |bnewl 1 1 |alphahl 1 1 |tauhl 1 ;
varnanies= ’ a ’/ / ’ b ’/ /*  anew ’//*  bnew’//*  alphah * / / ’ tauh ’ ;
create f i l e l  from matrix[colname=varnames];
append from matrix;
c lose f i l e l ;

Process 2: Continue drawing leftward and downward

do i= l to  1 0 0 0 0 ; 
a=anew; 
b=bnew;
do u n til (a b s ( f /( - fb )**0.5)<0.000000009) ; 

term2 =exp(b*tau*lncx); 
s fs ta r 2 =sum(ind#log(term2 + l) ); 
s f 1 1 1 2 =sum(ind#term2 # ln cx /(term2 + l)) ;  
termt2 =exp(b*tau*lnt); 
scstar 2 =c*log(termt2 + l ) ; 
s c l l l 2 =c*(termt2 # ln t/(term t2 + l ) ) ;
f=r*log(b*tau*a*alpha) + (b*tau-1 ) *se-(a*alpha+l) *sf stax2 -a*alpha*scst ar2  

-r*log(tau*alpha)-(tau-l)*se+(alpha+ 1 )*sfstar+alpha*scstar-log(p) ; 
fb=r/b+tau*se- ( a*alpha+1 )*tau *sf1 1 1 2 - a*alpha*tau*sc1 1 1 2 ; 
b=b-f/fb;

end;
alphah=a*alpha; 
tauh=b*tau;
fa=r/a-alpha*sfstar2 - alpha*scstar2 ; 
grad ien t= -fa /fb ;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
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a l= a l//a ;  b l= b l//b ; anewl=anewl//anew; bnewl=bnewl//bnew; 
alphahl=alphahl//alphah; tauhl=tauhl//tauh; 
a l l= a l[1 :nrow (al)]; b ll= b l[1 :nrow (bl)];
anewll=anewl[1 :nrow(anewl)]; bnewll=bnewl[1 :nrow(bnewl)];
alphsdill=alphahl[1 :nrow(alphahl)]; tau h ll= tauh l[1 :nrow(tauhl)];
matr ix=al 1 1 |bl 1 1 |anewl 1 1 |bnewl 1 1 |alphcihl 1 1 |tauhl 1 ;
vsirnames= ’ a } / /  * b ’ / /  ’ cinew ’ / /  ’ bnew} / /  * alphah1 / /  ’ tauh’ ;
create f i l e 2  from matrix[colname=vsu:names];
append from matrix;
close  f i l e 2 ;

end;

Process 3: Contour is around it's extreme left edge

do i= l to  1 0 0 0 0 ; 
b=bnew; 
a=anew;
do u n til ( a b s ( f / ( - f a )**0.5)<0.000000009) ; 

term2 =exp(b*tau*lncx); 
s fs ta r 2 =sum(ind#log(term2 + l ) ) ; 
s f 1 1 1 2 =sum(ind#term2 #lncx/(term 2 + l) ); 
termt2 =exp(b*tau*lnt); 
scstSLr2 =c*log(termt2 + l ) ; 
s c l l l 2 =c*(termt2 # ln t/(term t2 + l ) ) ;
f=r*log(b*tau*a*alpha)+(b*tau-l)*se-(a*alpha+l)*sfstsur2 -a*alpha*scstsa:2  

-r*log(tau*alpha)- (tau -1 )*se+(alpha+1 )*sfstax+alpha*scstar-log(p); 
f  a=r /  a- alpha* s f  s t  sir 2  -  alpha* s c s t  ax2 ; 
a= a-f/fa ;

end;
alphah=a*alpha; 
tauh=b*tau;
fb=r/b+tau*se-(a*alpha+l) *tau*sf1 1 1 2 -a*alpha*tau*scl1 1 2 ; 
gradient=-fa/fb;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
a l= a l//a ;  b l= b l//b ; sinewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphahl//alphsdi; tauhl=tauhl//tauh;
a l l= a l[1 :nrow (al)]; b ll= b l[1 :nrow (bl)];
anewll=«inewl [1 :nrow(anewl)]; bnewll=bnewl[ 1 :nrow(bnewl)];
alphahll=alphahl[1 :nrow(alphahl)]; tau h ll= tau h l[1 :nrow(tauhl)];
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matr ix=al 1 1 |bl 1 1 |anewl 1 1 |bnewl 1 1 |alphahl 1 1 |tauhl 1 ; 
varnames= * a ’ / /  ’ b ’ / /  ’ anew ’ / /  * bnew * / /  ’ alphah* / /  * tauh*; 
create f i l e 3  from matrix[colname=varnames]; 
append from matrix; 
close  f i le 3 ;

end;

Process 4" Continue drawing rightward and upward

do i= l  to  10000; 
a=anew; 
b=bnew;
do u n til  (abs (f /  (-fb ) **0.5) <0.000000009) ; 

term2 =exp(b*tau*lncx); 
s fs ta r 2 =sum(ind#log(term2 + l ) ) ; 
s f 1 1 1 2 =sum(ind#term2 #lncx/(term 2 + l)) ;  
termt2 =exp(b*tau*lnt); 
scsta r 2 =c*log(termt2 + l ) ; 
s c l l l 2 =c*(termt2 # ln t/(term t2 + l ) ) ;
f=r*log(b*tau*a*alpha)+(b*tau-l)*se-(a*alpha+l)*sfstar2 -a*alpha*scstar2  

-r*log(tau*alpha)-(tau-l)*se+(alpha+ 1 )*sfstar+alp h a*scstar-log(p ); 
fb=r/b+tau*se-(a*alpha+l)*tau*sf1 1 1 2 -a*alpha*tau*sclll2 ; 
b -b -f/fb ;

end;
alphah=a*alpha; 
tauh=b*tau;
f  a=r/ a-alpha*sf s t  ar2 - alpha*s c s t  ar2 ; 
grad ien t= -fa /fb ;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
a l= a l/ /a ;  b l= b l//b ;  cmewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphcihl//alphah; tauhl=tauhl//tauh;
a l l = a l [1 :n ro w (a l)]; b l l= b l[1 :n row (b l)];
anewll=anewl[1 :nrow (anewl)]; bnewll=bnewl[1 :nrow(bnewl)];
alphahll=alphahl[1 rnrow(alphahl)]; tau h ll= tauh l[1 :nrow (tauhl)];
m atrix=all | |bl 11 |anewl 11 |bnewl 11 [alphcihl 11 |tauhl 1;
varnames= * a ’ / /  ’ b ’ / /  * einew V /  ’ bnew1 / / } alphah * / / 71 auh1;
create f i l e 4  from matrix[colname=varnames];
append from matrix;
c lose  f i le 4 ;
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end;

Process 5: Contour is around its extreme right edge

do i= l to  1 0 0 0 0 ; 
b=bnew; 
a=anew;
do u n til (a b s ( f / ( - f a )**0.5)<0.000000009) ; 

term2 =exp(b*tau*lncx); 
s fs ta r 2 =sum(ind#log(term2 + l ) ) ; 
s f 1 1 1 2 =sum(ind#term2 #lncx/(term 2 + l ) ) ; 
termt2 =exp(b*tau*lnt); 
scsta r 2 =c*log(termt2 + l ) ; 
s c l l l 2 =c*(termt2 #ln t/(term t2 + l ) ) ;
f=r*log(b*tau*a*alpha)+(b*tau-l)*se-(a*alpha+l)*sfstar2 -a*alpha*scstar2  

-r*log(tau*alpha)-(tau-l)*se+(alpha+ 1 )*sfstar+ alp h a*scstar-log(p ); 
fa=r/a-a lpha*sfstar2 -alpha*scstar2 ; 
a= a-f/fa ;

end;
alphah=a*alpha; 
tauh=b*tau;
fb=r/b+tau*se-(a*alpha+l)*tau*sf1 1 1 2 -a*alpha*tau*sclll2 ; 
grad ien t= -fa /fb ;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
a l= a l//a ;  b l= b l//b ; anewl=anewl//anew; bnewl=bnewl//bnew;
alpheihl=alphahl//alphcih; tauhl=tauhl//tauh;
a l l= a l [ 1  :nrow(al)] ; b ll= b l [ 1  :nrow(bl)] ;
anewll=anewl [ 1  :nrow(anewl)] ; bnewll=bnewl[ 1  :nrow(bnewl)] ;
alphahll=alphahl[1 :nrow(alphcihl)]; tau h ll= tauh l[1 :nrow (tauhl)];
matr ix=al 1 1 |bl 1 1 |anewl 1 1 |bnewl 1 1 |alphahl 1 111 auhl 1 ;
Vclrnames=, a , / / , b , / / , anew, / / , bnew, / / , a l p h a h , / / , t a u h , ;

create f i l e 5  from matrix[colname=varnames];
append from matrix;
close f i le 5 ;

end;

Process 6 : Accomplish the contour

do i= l to  10000;
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a= anew ;

b=bnew;
do u n til (abs ( f /  (-fb ) **0.5) <0.000000009) ; 

term2 =exp(b*tau*lncx); 
s fs ta r 2 =sum(ind#log(tenn2 + l) ); 
s f 1 1 1 2 =sum(ind#term2 #lncx/(term 2 + l) ); 
termt2 =exp(b*tau*lnt); 
scstar 2 =c*log(termt2 + l ) ; 
s c l l l 2 =c*(termt2 # ln t/(term t2 + l) );
f=r*log(b*tau*a*alpha)+(b*tau-l)*se-(a*alpha+l)*sf star2 -a*alpha*scstar2  

-r*log(tau*alpha)-(tau-l)*se+(alpha+ 1 )*sfstar+ alp h a*scstar-log(p ); 
fb=rm/b+tau*se-(a*alpha+l)*tau*sf1 1 1 2 -a*alpha*tau*sclll2 ; 
b=b-f/fb;

end;
alphah=a*alpha; 
tauh=b*tau;
fa=r/a-alpha*sfstar2 -alpha*scstar2 ; 
grad ient= -fa /fb ;
anew=a+delta*fb/SQRT(fa**2+fb**2); 
bnew=b-delta*fa/SQRT(fa**2+fb**2);
a l = a l / / a ;  b l = b l / / b ;  a n e w l= a n e w l/ /a n e w ;  b n e w l= b n e w l//b n e w ;

a lp h c ih  1=a lp h a h  1 / /  a lp h a h ; t  au h  1=t  auh  1 /  / 1 a u h ;

a l l = a l  [ l : n r o w ( a l ) ]  ; b l l = b l  [1  : n r o w ( b l ) ]  ;

a n e w ll= a n e w l [1  : n r o w ( a n e w l) ]  ; b n e w ll= b n e w l [1  :n r o w ( b n e w l) ]  ;

alphahll=alphahl[1 :nrow(alphcihl)]; tau h ll= tauh l[1 :nrow (tauhl)];
m a tr  i x = a l  1 1 |b l  1 11 a n e w l 1 1 |b n ew l 1 11 a lp h a h l  1 1 | t  a u h l  1;

varnames=’a * / / ’b ’/ / ’ cuiew’/ / *bnew’/ / ’alphah */ / *tauh1;
create f i l e 6  from matrix[colname=varnames];
a p p en d  fro m  m a t r ix ;

close  f i l e 6 ;
end;



A ppendix D : Expressions for 
Joint E xpectations o f Standard  
Exponential Order Statistics

This appendix gives expressions of the expectations at (4.19), obtained from (4.20). 
E  [Zi:n In Z j:n] (4.19a) is given by
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E  [(In Zi:n)Z j:n] (4.19b) is given by
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E  [In Zi:n In Z j:n] (4.19c) is given by

«  J:» £ '  E  1 ( - i y  ( % 3 ! 1 ) A 01'01
k=0 1=0

k=0 1=0 (i + l - k ) ( n - i - l ) ( n - k )

7  In (n — i — I) +  In {i +  I — k) In (n — i — I)
- I n  (i + l - k )  In (n -  fc) +  Li2 

— (i +  I — k) [72 +  In2(n — A;)] +  7(72 — 2i +  /c — 21) ln(n — k) +  ^  (n — i — I)

—(n — /c)
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4. E  [Zi:nZ j:n In Zj.n] (4.19d) is given by

k = 0 Z=0 k I
i—1 j —i—1 

=  Cijin E  E
&to t o  (i + 1 — k ) 2 (n -  i -  I) 2 (n — k)z 

— (i + 1 — k) (7 — 1) (i + 1 — k) (3n — 2 i — k — 2 l) + (n — i — Z)21 

—(n — k )3 In (n — i — I) +  (n — i — I) 2 (n +  2z — 3k +  2Z) ln(n — k)

5. F [Z i:n(lnZi:n)Zj:n] (4.19e) is given by

i—1 j —i —1
°i&-n X] E  ( —1)

k=0 1=0

j - k - i  —

= a .' . .

J fc=o z=o (t +  i — k ) 2 (n — i — I) 2 (n — k )3 
f (i + l - k ) 2 [(* +  I -  k) (1 -  7) +  (n -  * -  I) (4 -  37)]
1 +  ln(n — k) (n — i — Z)2 (n +  2z — 3/c +  2Z) — (n — A;)3

•6 . F  [(In Zi:n)Z j:n In ZJ:n] (4.19/) is given by

° i j - n  E  E  ( 1)^
Jfc=0 Z=0

i+ l—k,n—i —l

=  - a .. r ' r 1 : :
J n jb=o z=o (z +  I — k) (n — i — I)2 (n — k ) 2

~(n -  k ) 2 [in (n -  i -  I) ( 7  +  In (i +  I -  k)) +  Li 2 ( i S r ) ]
+ 7  (i +  I — k) (3n — 2z — A; — 2/) — (i + I — k) (2n — z — — Z) ['y2 +  ln2(n — A;)]

+  In(n -  fc) (n -  /c)2(l -  7 +  +  In (i + 1 -  k)) +  2(7  -  1) (n -  i -  I) 2

+ ^ { n - i - l ) 2

r7. E  [Zi:n In Zi:n In Z j:n] (4.19p) is given by

^ n E ' E ^ - i r ^  f  ~ 1) ( j  ~ il ~ 1
k = 0 Z=0 \  K J  \  1

_  (—1 r ^ c ^ c r 1)
— 2L/

. 11,01
i + l—k,n—i—l

/ to  zto (z +  Z — A:)2 (n — i — I) (n — k ) 2 

- ( n  - k ) 2 In (n — i — Z) (7 — 1 +  In (i +  I — &)) +  Lz2 

—7 (z +  Z — k) (n — 2i +  k — 21) — (z +  I — k ) 2 [72 +  ln2(n — &)
+  ln(n — A:) (n — A:)2 In (i + 1 — k) — 3 (i + 1 — k) (n — i — I) — (n — i — I) 2 

+ 7  ln(n — k) — (i + 1 — k ) 2 + 2 (i + 1 — k) (n — i — I) +  (n — i — I) 2

(n — i — I) (n +  i — 2 k + 1)
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8. E  [Z^ /In  Zi:n)Z j:n(\n Z j:n)\ (4.19h) is given by

\7-fc-z f i ~  f 3 — 1Ci,j:nE E  (“ I Y 1 W
k=0 1=0 

i—1 j —i—1
'■ —Cij-.n E  E

k I

(-i y-k-‘

j i i .n
i+l—k,n—i—l

X

- 7  (i + l - k )  

- ( H

4- ln(n — k)

t o  t o  (z +  I -  k ) 2 (n -  i -  I) 2 (n -  k ) 3

( n - k ) 3 In (n -  z -  Z) (7 -  1 +  In (z +  I -  k)) +  Lz2

—2 (z +  Z — A;)2 — 7 (z +  Z — A;) (n — i — I) +  (n — z — I) 2 

— (i +  Z — A;)2 (3n — 2z — k — 21) [l +  72 +  ln2(n — &)]
—6 (z +  Z — A:) (n — z — Z)2 — 3(n — k) (n — i — I) 2 

+ (n  -  A:)3 +  (n -  A;)3 +  In (z +  Z -  A:))

+7 ln(n — k) (n — 2i +  k — 21) ((i +  Z — k)2 +  4 (i +  I — k) (n — i — I) +  (n — i -

+ 1T (^ +  2z — 3A; +  21) (n — i — I) 2



A ppendix E : M athem atica  
Code: C om puting Covariances of 
Final and Interim  W eibull Score 
Functions

This appendix gives details of the Mathematica code used to compute the expectations 
Hi  to H \ 2  (defined at Section 5.3.1.1) required in the covariances of final and interim Weibull 
tscore functions, given at (5.25) to (5.28). This requires the single and joint expectations of 
ithe forms at (4.12) and (4.19); here, we calculate these expectations using the direct method.

We first define some useful notations:
7  * EulerGamma; 

c i[n _ ,i_ ]  te.DTa-!)!
c i J  j J  : =  ( i - l )  ] ( j - i - 1) ! ( n - j ) !

We then define the single expectations at (4.12):

Elnzi [n_ ,  i_] := c i [ n , i ]  *  E ^  B i n o m i a l  [ n , i ]  ( _ 7  _  L0g[n -  k])
k = 0  V '

E ziln zi [n_, i_] := c i [ n , i ]  * E ^ ----  B i n o m i a l  [ n . i ]  ^ _  Log[n -  k])
k=o ^

E z2 iln z i[n _ ,i_ ] := c i [ n , i ]  * E  - B i n o m i a l  [ n , i ]  ^ - 2 ^  -  2Log[n -  k])
k=0 ^ j

E ln2zi[n_,i_] : =  c i [ n , i ]  * £  ^ ^ B i n o m a 1 [ n , i ]  _  L o g [n  _  k])2̂

E ziln 2zi[n _ ,i_ ] := c i [ n , i ]  * E  (~1)i~1~* B* T ial[n’i]
k=o ^ &)

( £ - l  +  ( l - 7 -L o g [n -k ])2)

E z2iln 2zi[n_ ,i_ ] := c i [ n , i ]  * E  - B i n o m i a l  [ n , i ]
k=o (n“k)
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For the joint expectations at (4.19), it will prove more convenient to first define the 
relevant functions A ^ t,qb:

A lst [s_ ,t_ ] := - s (7 s + * ) + ( B + t )  L o g [ t ] - t ( 2 s + t )  L o g [ s + t ]

=  ( s + 2 t ) ( 7 + L o g [ s + t ] ) —t

t 2 ( s + t )

A 3st[s_ ,t_] := —
- ( s  +  t)

7  Log[t] +  Log[s] Log[t] 
v —Log[s] Log[s +  t]+PolyLog[2,i ^  

- s ( 7 2+Log[s + 1 ]2)
+ (t  -  s ) 7  Log[s +  t j + ^ t  

- s ( ( s 2+ 3 s t ) ( 7  -  1) + 1 2) -  (s + 1 ) 3 Log[t] 
+ t 2 (3s + 1 ) Log[s + 1 ] }s2t2 (s+t ) 3

1 ^ { s 2(s -  7 s +  4t -  3 7 t)+Log[s +  t] (t2 (3s +  t) -  (s +  t ) 3)}
\2 ,

s 2t 2 ( s + t ) ,:

A6 s t [ s _ , t_] := - St2 (s+t)

A 7st[s_, t_] := -
s 2t ( s + t )

A8 s t [ s _ ,t_ ]  := -
s 2t 2 ( s + t )

- ( s  +  t) (Log[t] ( 7  +  Log[s]) +  PolyLog[2,i ^ ])
+ 7 s(s +  3t) -  s(s +  2 t) (7 2 +Log[s +  t]2)

+Log[s +  t] ((s +  t ) 2 ( l - 7  +  ^  +  Log[s])
+ 2 t 2 (7  -  l ) ) + £ t 2 

- ( s  +  t ) 2 (Log[t] ( 7  -  1 +  Log[s]) +  PolyLog[25i^ ] )
—7 s(t -  s) -  s 2 (7 2+Log[s +  t]2)

+Log[s +  t] (Log[s](s +  t ) 2 -  3st -  t 2)
+ 7  Log[s +  t] ( - s 2 +  2st +  t 2 )+ ^ t (2 s  + 1 )
- ( s  +  t ) 3 (Log[t] ( 7  -  1 +  Log[s]) +  P olyL og^ ,^ ])

—7 s (—2s2 —7st +  t 2) — s2(s +  3 t ) ( l+ 7 2 +Log[s +  t]2) 
 ̂ —6 s t 2 — 3 t2(s + 1) +  (s +  t ) 3 \+Log[s + 1 ]

-f (s +  t ) 3( ^  +  Logjs])
k + 7  Log[s +  t] ( - ( s  -  t ) ( s 2 +  4 st +  t 2 ) ) + ^ t 2 (3s + 1 )

Hence, we can now define the joint expectations at (4.19):
i —1 j - i - 1

E ziln z j[n _ ,i_ ,j_ ] := c i j [ n , i , j ]  * X) (~ l) i-1-k B in om ial[i-l,k ]
k=0 1=0

Binomial[j —i —1,1] * A ls t [ i+ l-k ,n - i- l ]
i - l j - i - 1

E ln z iz j[n _ ,i_ ,j_ ] := c i j [ n , i , j ]  * X) X] (“l ) i-1-k B inom ial[i-l,k ]
k = 0  1 = 0

B in o m ia l[j-i-1,1] * A 2 st[ i+ l-k ,n -i- l]
i - l j - i - 1

E lnzilnzj [n _ ,i_ , j_] := c i j [ n , i , j ]  * X) XI (“l ) 1_1-k B in om ial[i-l,k ]
k = 0  1 = 0

B in om ia l[j-i-1 ,1] * A 3 st[ i+ l-k ,n - i- l]
i - l j - i - 1

E zizjlnzj [n _ ,i_ , j_] := c i j [ n , i , j ]  * X) (“l ) 1-1-k B inom ial[i-l,k ]
k = 0  1 = 0

B in o m ia l[j-i-1,1] * A 4 st[ i+ l-k ,n - i- l]
i - l j - i - 1

E z iln z iz j[n _ ,i_ ,j_ ]  := c i j [ n , i , j ]  * X) XI (~ l) i-1_k B inom ial[i-l,k ]
k = 0  1 = 0

B in om ia l[j-i-1 ,1] * A 5 st[ i+ l-k ,n -i- l]
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i - l j - i - 1

E ln z iz jln z j[n _ ,i_ ,j_ ] := c i j [ n , i , j ]  * E  E  (“l ) i_1_k B in om ial[i-l,k ]
k=0 1=0

B in o m ia l[j- i- l ,1] * A6 s t [ i+ l - k ,n - i - l ]
i - l j - i - 1

E ziln z iln z j[n _ ,i_ ,j_ ]  := c i j [ n , i , j ]  * X) XI (“l ) i-1-k B inom ial[i-l,k ]
k=0 1=0

B in o m ia l[ j - i- l ,1] * A 7 st[ i+ l-k ,n -i- l]
i - l j - i - 1

E ziln z iz j ln z j[n _ ,i_ ,j_ ]  := c i j [ n , i , j ]  * XI XI (~ l) i-1-k B inom ial[i-l,k ]
k=0 1=0

B in om ia l[j-i-1,1] * A8 s t [ i+ l - k ,n - i - l ]

We then define the expectations H\ to H \2 '.
HI [n_] 
H2 [n_] 
H3[n_]

= n 
= -n7
= n d - 7 )

r  r —1 r  r —1 r

H4[n_,r_] := ^ E z iln z i  [n_,i_] + E  X] Ezilnzj [n ,i ,  j] + E  XI Elnzizj [ n , i , j ]
i = l  i = l j = i + l  i = l j = i + l
r  n

+ X) E  Elnzizj [ n , i , j ]
i = l j = r + l

r  r —1 r
H5[n_,r_] := £ ]E ln 2 z i[n _ ,i_ ]+ 2 ^  ^2 E lnzilnzj [n ,i ,  j]

i = l  i = l j = i + l
r  n

+ E  E  Elnzilnzj [ n , i , j ]
i = l  j = r + l

r  r —1 r
H6 [n_,r_] := ^ E z iln 2 z i[n _ ,i_ ]  + ]T ^  E lnzizjlnzj [ n , i , j ]

i = l  i = l  j = i + l
r —1 r  r  n

+ E  E  E ziln ziln zj [ n , i , j ]  + E  E  E lnzizjlnzj [ n , i , j ]
i = l j = i + l  1 = 1 j = r + l

H7[n_,r_] := r(n+l)
r  r —1 r

H8 [n_,r_] := ^ E z iln z i[n _ ,i_ ]  + ]T; E  Ezilnzj [ n , i , j ]
i = l  i = l j = i + l

r —1 r  r  n

+ E  E  Elnzizj [ n , i , j ]  + E  E  Ezilnzj [ n , i , j ]
1 = 1  j = i + l  i = l j = r + l

( r - 1  n  \
+(n-r)I E  E ln z iz j[n ,i,r ]+ E z iln z i[n ,r ]+  E  E z iln z j[n ,r ,j]  1

\ i = i  j —r + i  j
r  r —1 r

H9[n_,r_] := 5^ E z2iln zi[n_ ,i_] + E  E  E zizjlnzj [n ,i ,  j]
i = i  i = i j = i + i

r —1 r  r  n

+ E  E  E zilnzizj [n ,i ,  j]  + E  E  E zizjlnzj [ n , i , j ]
i = l j = i + l  i = l j = r + l

/ r —1 n  ^
+(n-r) I E  E z iln z iz j[n , i , r]+E z2ilnzi[n , r ]+ E  E z iz jln z j[n , r , j ]

\ i = l  j = r + l  J
r  r —1 r

H1 0 [n_,r_] := E E z 2 iln z i[n _ ,i_ ]  + E  E  E zizjlnzj [ n , i , j ]
i = l  i = l j = i + l

r —1 r  r  n

+ E  E  E ziln zizj [ n , i , j ]  + E  E  E ziln zizj [ n , i , j ]
i = l j = i + l  i = l j = r + l
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+ (n-r)

(
r —1 n
^2 E z iz jln z j[n ,i,r ]+ E z2 iln z i[n ,r ]+  ^  E z iln z iz j[n ,r  

i = l  j = r + l

r  r —1 r

H ll[n_,r_] := ^ E z iln 2 z i[n _ ,i_ ]  + ^  2  E zilnziln zj [ n , i , j ]
i = l  i = l j = i + l

r —1 r  r  n

+ S  E lnzizjlnzj [ n , i , j ]  + S  S  E ziln ziln zj [nti , j ]
i = l j = i + l  i = l j = r + l

/  r —1 \
2  E ln z iz jln z j[n , i , r]+ E ziln2zi[n , r]
i = l

n
+ ^2 E z iln z iln z j[n ,r ,j ]

V J=r+i /
r  r —1 r

H12[n_,r_] := ^ E z 2 iln 2 z i[n _ ,i_ ]+ 2 ^  X] E ziln z izjln zj [ n , i , j ]
i = l  i = l j = i + l

r  n

+ X) E ziln z iz jln zj [ n , i , j ]
i = l j = r + l

/  r - 1  \
Y2 E z iln z iz j ln z j[n , i , r]+E z2iln2zi[n , r]

i = l
n

+ ^2 E z iln z iz j ln z j[n ,r ,j ]
\  J=r+i /

+(n-r)

Finally, we are in the position to compute the covariances in (5.25) to (5.28): 
covdtdt [n_, r _ , 9 _ , /?_] : = /32 9~2 (H7 [n, r] -rH l [n] ) 
covdtdb[n_,r_ , #_,/?_] := 0- 1 (rH l[n]+H 4[n ,r]-H lO [n ,r]) 
covdbdt [n_ ,r_ ,0_ ,/3_] := 0_1(H 8[n,r]-rH 2[n]-H 9[n,r]+rH 3[n])

covdbdb r„ -  a a -t . .  0 - 2  (  rH 2[n]+H 5[n ,r]-H ll[n ,r] \  
_*P  • P ^  _ rH3[n] _ H6[n, r ] +  H12[n, r ] )

For example, we set 9 =  100, =  2, r =  15, n = 25; we have
I n [ l ] := N [covdtdt[25,15,100,2], 10]
Out[1]:=  0.006000000000
In [2] : = N [covdtdb [25,15,100,2], 10]
Out[2]:=  0.04559706435
In  [3]:=  N [covdbdt [25,15,100,2], 10]
Out[3]:=  0.04559706435
In [4]:=  N [covdbdb [25,15,100,2], 10]
Out[4]:=  5.092796735


