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Summary

This thesis considers the analysis of reliability data subject to censoring, and, in particular,
the extent to which an interim analysis - here, using information based on Type II censoring
- provides a guide to the final analysis. Under a Type II censored sampling, a random sample
of n units is put on test simultaneously, and the test is terminated as soon as 7 (1 < r < n,
although we are usually interested in r < n) failures are observed. In the case where all test |
units were observed to fail (r = n), the sample is complete. From a statistical perspective,
the analysis of the complete sample is to be preferred, but, in practice, censoring is often
necessary; such sampling plan can save money and time, since it could take a very long
time for all units to fail in some instances. From a practical perspective, an experimenter
may be interested to know the smallest number of failures at which the experiment can be
reasonably or safely terminated with the interim analysis still providing a close and reliable
guide to the analysis of the final, complete data. In this thesis, we aim to gain more insight
into the roles of censoring number r and sample size n under this sampling plan.

Our approach requires a method to measure the precision of a Type II censored estimate,
calculated at censoring level r, in estimating the complete estimate, and hence the study
of the relationship between interim and final estimates. For simplicity, we assume that
the lifetimes follow the exponential distribution, and then adopt the methods to the two-
parameter Weibull and Burr Type XII distributions, both are widely used in reliability
modelling. We start by presenting some mathematical and computational methodology
for estimating model parameters and percentile functions, by the method of maximum
likelihood. Expressions for the asymptotic variances and covariances of the estimators are
given. In practice, some indication of the likely accuracy of these estimates is often desired;
the theory of asymptotic Normality of maximum likelihood estimator is convenient, however,
we consider the use of relative likelihood contour plots to obtain approximate confidence

regions of parameters in relatively small samples.

Finally, we provide formulae of the correlations between the interim and final maximum
likelihood estimators of model parameters and a particular percentile function, and discuss
some practical implications of our work, based on the results obtained from published data

and simulation experiments.



To my grandparents



Contents

1 Introduction 1

1.1 Some Examples of Reliability Data . . . . . . ... ... ............ 4

1.1.1 Epstein’s Failure Times Data . . . . . . .. .. ... ... ... ... 4

1.1.2 BallBearingsData . . .. ... .. ... .. ... ... ..., 4
'1.1.3 Arthritic Patients Data . . . . .. ... .......... ... B

1.1.4 Electronic Components Data, . . . . ... ... ............. 6

1.2 Mathematical Functions . . . .. ... ... ... ... ... ... ... ... 8

1.2.1 Glossary of Functions and Notations . . .. ... ............ 8

1.2.2 Useful Mathematical Properties . . . . . .. ... .. .......... 8

1.3 Basic Concepts and Reliability Models . . . . .. ... ... .......... 13

1.3.1 BasicConcepts . . . . . . . i v i i it e e e e e e 13

1.3.2 Lifetime Distributions . . . .. .. ... . ... ... ... ...... 14

1.4 Censoring Regimes . . . . . . . . ... e 20

1.4.1 Right and Left Censoring . . . . . ... ... .. ... .......... 20

142 TypeICensoring . . . . . ... .. . .. 21

143 TypelIlCensoring . ... ... ... . .. 21

1.5 Properties of Order Statistics . . . .. .. .. ... ... ... ... ..., 22

1.5.1 Notation and Basic Properties . ... ... ... ............ 22

1.5.2 Moments and Product Moments . . ... ... ............. 24

1.5.3 Recurrence Relations for Moments and Product Moments . . . . . . . 24

1.6 Numerical Considerations . . . . ... .. ... ... ... ... 25

1.6.1 Data Simulation . . ... ... .. .. .. ... . e 26

1.6.2 Computer Generation of Order Statistics . . . ... ... ... .... 26

1.6.3 Numerical Iterative Methods for Solving Equations . . . . . . ... .. 27

1.7 Outline of Future Chapters . . . ... .. ... ... .. ... 27

2 Maximum Likelihood Estimation Based on Type II Censored Samples 30

2.1 Introduction. .. ... ................ e e e e e e e e e 30

2.1.1 Statistical Background . . . . . .. .. ... ... L oo 31

2.2 ML Estimation in the Exponential Distribution . . . . . .. ... ... .. .. 33

2.2.1 Regularityand EFI. . .. ... ... ....... ... ... ... 33

2.2.2 Asymptotic Properties of the MLEs . . . . ... ... .. ....... 34

2.2.3 Complete Sample . . . . . . . . .. ... e e 35

2.2.4 Numerical Examples . . . . .. .. ... ... . 0o . 35

2.3 ML Estimation in the Weibull Distribution . ... .. ... ... .. ..... 43

2.3.1 Regularity and EFI Matrix .. ... ... ... .. ... ... 45

2.3.2 Asymptotic Propertiesofthe MLEs . . . ... ............. 47

233 Complete Sample . . . . . . ... .o e 48



2.34 Numerical Examples . . . . ... ... ... ... ... ... ... ... 49

2.4 ML Estimation in the Burr Distribution . . . . . .. .. ... ... ...... 54
2.4.1 Regularity and EFI Matrix . ... ... .. ... ............ 60
2.4.2 Asymptotic Properties of the MLEs . . .. ... ... ......... 66
24.3 Complete Sample . . . . . . . . .. ... 67
2.4.4 Numerical Examples . . . . . . ... .. ... ... ... .. .. ..., 68

2.5 Chapter Summary and Conclusions . . . . . .. .. .. ... ... ....... 77

Small Sample Properties of Maximum Likelihood Estimators for Type I1

Censored Data 79

3.1 Imtroduction . . . . . . . . . . . . i i e e e e e e e e e e e 79

3.2 Tests of Univariate Normality . . . . . .. . ... ... .. .. ......... 80
3.2.1 Simulation Study: the Exponential Distribution. . . . . .. ... ... 81
3.2.2 Simulation Study: the Weibull Distribution . . . ... ... ... ... 89
3.2.3 Simulation Study: the Burr Distribution . . . . . ... ... ... ... 90

3.3 Tests of Bivariate Normality ... . . .. . ..« .. .. O 1)
3.3.1 Simulation Study: the Weibull Dlstrlbutlon ............... 102
3.3.2 Simulation Study: the Burr Distribution . . . . ... ... ....... 106

3.4 Relative Likelihood Contour Plots . . . . . ... . ... ... ... ....... 107
3.4.1 Relative Likelihood Contour Plots in the Weibull Distribution . . . . . 107
3.4.2 Relative Likelihood Contour Plots in the Burr Distribution . .. . .. 117

3.5 Chapter Summary and Conclusions . . . . . ... .. ... ... .. ...... 133

Moments and Product Moments of Order Statistics 134

4.1 Introductionm . . . . . . . . v i i i i e e e e e e e e e e e e e e e e 134
4.1.1 The Derivatives Method . . . . . . . ... . ... ... ......... 135

4.2 Weibull and Standard Exponential Order Statistics . . . .. . .. ... .. .. 136
4.2.1 Link between the Weibull and Standard Exponentla.l Distributions . . 136
4.2.2 Standard Exponential Order Statistics . . . . .. ... ... ... ... 136
4.2.3 Expectationsof g(Zgn) . . . . . ..o o oo 138
4.2.4 Joint Expectations of g (Zin) and h (Zjm) . . . . . . o o oo 144

4.3 Burr Order Statistics . . . . . . . . . . o i i e e e e e e 156
4.3.1 Expectationsof ¢ (Xin) . - - o - o oo oo 161
4.3.2 Joint Expectations of g (Xs:n) and A (Xjm) .. .. . . .. .. 170

4.4 Chapter Summary and Conclusions . . . . . ... ... ... ... ....... 184

Correlations Between Final and Interim Estimates of Parameters and Per-

centiles 191

5.1 Introduction . . . . . . . . . . . i i i e e e e e e e e e e e e 191
5.1.1 Theoretical Considerations . . . .. ... ... ... ... ... 192

5.2 Correlation in the Exponential Distribution . . .. ... ... ......... 193
5.2.1 Link Between 8 and 5, ........................... 193
5.2.2 Link between §0_1 and §0.1,r ....................... 196
523 Numerical Results . . ... ... .. ... .. .. . e, 197
5.2.4 Confidence Limits Considerations . . . . . ... ... .. ........ 197

5.3 Correlation in the Weibull Distribution . . . . ... .. ... ... ....... 199 .
5.3.1 Link Between Fmal and Interim MLEs . . . ... ... ......... 199
5.3.2 Link between Bo 1 and Bo S 210
5.3.3 Numerical Results . . . . . ... ... .. . . ... 211



5.3.4 Confidence Limits Considerations . . . . . . ... ... .. .. ....

5.4 Correlation in the Burr Distribution . .. .. ... ... ... ... .....
5.4.1 Link Between Final and Interim MLEs . . . ... ...........
5.4.2 Link between Bpyand Bpgyr - v o v v v v v v i i
5.4.3 Numerical Results . . .. ... ... .. ...
5.4.4 Confidence Limits Considerations . . . . . . .. ... ... ... ...

5.5 Practical Implications . . ... . ... .. ... ... e
5.5.1 PublishedData . . ... . ... ... ... e
5.5.2 Simulation Experiments . . .. ... ... ... ... ... ..

5.6 Chapter Summary and Conclusions . . . . . ... ... ............

6 Summary and Conclusions

6.1 Summary ........... e e e e e e e e e e e e e e e e

6.2 Conclusions . . . . . . v v v i it e e e e e e e e e e

6.3 Areas for Future_Research L A A I
Bibliography

Appendix A : List of Specific Notations

Appendix B : SAS Code: Fitting Burr MLEs to Arthritic Patients Data

258

264

Appendix C : SAS Code: Drawing Relative Likelihood Contours for Arthritic

Patients Data

267

Appendix D : Expressions for Joint Expectations of Standard Exponential

Order Statistics

276

Appendix E : Mathematica Code: Computing Covariances of Final and In-

terimm Weibull Score Functions

279



List of Figures

1.1

1.2
1.3

1.4
15

1.6
1.7

2.1
2.2

2.3
24
2.5

2.6
2.7

2.8
2.9
2.10
211

2.12
2.13

2.14

2.15

P-P plot for Epstein’s failure times data based on exponential with 9 =
104.8898. . . . ... RERERE 5
P-P plot for ball bearings data based on Weibull with 8 = 81.8783, 8 = 2.1021. 6
P-P plot for arthritic patients data based on Burr Type XII with @ =

8.2681,7=5.0006. . .. .. ......... . B (I
Pdf of the exponentlal dlstrlbutlon for varymg 6 ................ 15
Pdf of the Weibull distribution for § = 10 and varying .. . . . . . . .. ... 17
Pdf of the Burr distribution for r=1and varyingee. . . . . . .. .. .. ... 19
Pdf of the Burr distribution for a =1 and varying 7. . . . . ... .. ..... 19
Pdf of the exponential distribution for §=100. . . .. ... ... .. ..... 37
Scatter plots of & versus 8, for n = 50 and various r, for exponential data
generated with 8 =100. . . ... ... .. ... ... . . o 38
Scatter plots of 8 versus 8, for n = 1000 and various r, for exponential data
generated with 6 =100. . ... ... ... .. ... . . ... ... 39
Scatter plots of Bo.1 versus Bo,l,r for n = 50 and various r, for exponential

data generated with 6 =100. . . .. ... ... .. ... ... ... . ..... 40
Scatter plots of 30_1 versus 30.1,r for n = 1000 and various r, for exponential

data generated with 6 =100. . . ... ... ... ... .. ... .. ... .. 41
Pdf of the Weibull distribution for # =100and 8 =2. . ... ... ... ... 51
Scatter plots of 6 versus 6, for n = 50 and various r, for Weibull data gener-

ated with =100,8=2. .. ... ... ... ... ... ... .. 55
Scatter plots of 0 versus ﬂ,. for n = 50 and various r, for Weibull data
generated with 6 =100,8=2. . . . . .. . . i 56
Scatter plots of 3 versus 8, for n = 50 and various r, for Weibull data
generated with 8 =100,8=2. . .. .. .. . . . .. . e 57
Scatter plots of B versus Br for n = 50 and various r, for Weibull data
generated with 6 =100,4=2. . ... ... ... .. .. ... 58
Scatter plots of Bo.1 versus BO.I,'r for n = 50 and various r, for Weibull data
generated with 8 =100,8=2. ... .. .. ... . ... . . ... 59
Pdf of the Burr distribution fora =4and7=3. . .. ............. 70
Scatter plots of & versus &, for n = 50 and various r, for Burr data generated
witha=4,7T=3.. . . . . .. e e 72
Scatter plots of & versus 7, for n = 50 and various r, for Burr data generated
witha=4,7T=3.. . . . . . . e 73
Scatter plots of 7 versus &, for n = 50 and various r, for Burr data generated
witha=4,7=3.. . . . . . . . e e 74



2.16

Scatter plots of 7 versus 7, for n = 50 and various r, for Burr data generated
witha=4,7=3.. .. . . . . . e e 75

2.17 Scatter plots of Bg 1 versus Bo 1, for n = 50 and various r, for Burr data

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15

3.16

3.17

3.18
3.19

3.20
3.21
3.22

3.23
3.24

3.25

3.26
3.27

generated witha=4,7=3.. . ... ... . ... ... ... L. .. .. 76

Histograms of 99_8n for various n, for exponential data generated with 6 = 100. 82
Histograms of 6y 4, for various n, for Weibull data generated with 8 =

100, B=2.. . . . ¢ o e e e 84
Histograms of By 4, for various m, for Weibull data generated with § =
100,83 =2.. .« ¢ o e e e e 85
Histograms of 30_1,0_4,, for various n, for Weibull data generated with 8 =
100, 3=2.. .« ¢ o i e e e 86
Histograms of B4, for various n, for Weibull data generated with § =
100, 3=10.5.. . . ¢ . o i e e e e 91

Histograms of 4, for various n, for Weibull data generated with 6 =

100,8=4. . .. e

Histograms of &gy, for various n, for Burr data generated with o =4,7=3. 94
Histograms of 796 for various n, for Burr data generated with o =4,7=3. 95
Histograms of 30.1,0.6,, for various n, for Burr data generated with o = 4,7 =3. 96
Histograms of &g ¢y, for various n, for Burr data generated with o = 0.9, 7= 3. 99
Histograms of 796, for various n, for Burr data generated with a = 4,7 = 0.9.100
Scatter plots of (éO.Gn, BO.Gn)’ superimposed with asymptotic 0.05-probability

ellipses, for various n, for Weibull data generated with § = 100,84 =2. . .. . 103
Scatter plots of (&.sn, 70.8n), superimposed with asymptotic 0.05-probability
ellipses, for various n, for Burr data generated with a =4,7=3. . ... ... 105

Four sets of relative likelihood contour plots using the ball bearings data. . . 109
Four sets of relative likelihood regions versus the asymptotic confidence re-

gions for r = 12 using the ball bearingsdata. . . ... . ... ... ...... 110 |
0.05-relative likelihood contour plot for r = 15, n = 25, for ideal Weibull data
generated with §=100,8=2. .. ... .. ... ... ... . ... ... 111

Plot of 00 6n versus n, for ideal Weibull data generated with 8 = 100,83 =2. . 112
Plot of ,Bo_ﬁn versus n, for ideal Weibull data generated with § = 100,58 =2. . 113
Four sets of 0.05-relative likelihood contour plots for ideal Weibull data gen-
erated with 0 =100,8=2. . . . . . . . . . i i 114
The MLEs (x) together with 0.05-relative likelihood contour and asymptotic
0.05-probability ellipse for (95, ,35), for n = 25, for Weibull data generated

with §=100,8=2. .. . . . . . e 115
Defining the drawing area in the a — 7 plane about (&, 7). . . . . .. .. .. 118
The six processes involved in constructing the 0.05-relative likelihood contour

plot for arthritic patients data whenr=mn. . ... ... ... .. ... .... 123

Four sets of relative likelihood contour plots using the arthritic patients data. 125
Four sets of relative likelihood regions versus the asymptotic confidence re-

gions for r = 30 using the arthritic patientsdata. . . . . ... ... ... ... 126
0.05-relative likelihood contour plot for r = 15,n = 25, for ideal Burr data

generated witha=4,7=3.. . ... ... ... ... ... . . . ... 127
Plot of &3 g,, versus n, for ideal Burr data generated with a=4,7=3. . . . . 128
Plot of 7§ 5,, versus n, for ideal Burr data generated witha=4,7=3. . . . . 129



3.28 Four sets of 0.05-relative likelihood contour plots for ideal Burr data generated
witha=4,7=3.. . . . . . e e 130
3.29 Four sets of MLEs (x) together with 0.05-relative likelihood contour and
asymptotic 0.05-probability ellipse for (&o.sn, 70.8n), for various n, for Burr
data generated witha=4,7=3. . . . .. ... ... ... .. . 131

4.1 Theoretical (—) and simulated (x) values of E [In Z;.,] versus i, for n = 1000. 141
4.2 Theoretical (—) and simulated (x) values of F [Z;., In Z;.,] versus i, for n =

1000. . . . e e e e e e e e e e e e e e e e e e e e e e 142
4.3 Theoretical (—) and simulated (x) values of E [(Zim)2 In Zi,n] versus 4, for
n=1000. . . . . . . e e e e e e e e e e e e e e e e e e 142

4.4 Theoretical (—) and simulated () values of E [(In Z;.)?] versus i, for n = 1000.143
4.5 Theoretical (—) and simulated (x) values of E [Zi:n(In Zi:n)?] versus i, for

n=1000. . . . . . e e e e e e e e e e e e e e e 143
4.6 Theoretical (—) and simulated (x) values of E [(Zi:s In Z;:n)?] versus i, for
O n=1000. L. L. 144
4.7 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [Z;., In Zj.,)
forall1<i<j<m,forn=10. ... ... .. ... ... .. .. ... 157
4.8 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [(In Z;.) Z;.)
forall1<i<j<n,forn=10. ... ... ... .. .. ..., 157
4.9 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [In Z;., In Zj.r,]
foralll1<i<j<mn,forn=10. ... ... ... ... ... 158
4.10 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of F [Z;:n Zj.n In Zj.)
foralll<i<j<mn,forn=10. .. ... ... .. ... 158
4.11 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [Z;.,(In Z;.p) Z;.]
foralll1<i<j<mn,forn=10. ... ... ... .. ... . .. 159
4.12 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [(In Z;.n) Zj:n In Z;.)
forall1<i<j<n,forn=10. ... ... ... ..., 159
4.13 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [Z;., In Z:p, In Z.,]
foralll<i<j<m,forn=10. .. ... ... .. . 160
4.14 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of F [Z;:n(In Zi:n) Zj:n(In Zji:p)]
foralll1<i<j<n,forn=10. .. ... ... . .. .. ... 160
4.15 Theoretical (—) and simulated (x) values of E [(In X;:n)?| versus i, for n =
1000, = 4, T = 3.+ o o oot e e e 167
4.16 Theoretical (—) and simulated (x) values of E [(ln 1+ X[m))z] versus 1, for
n=1000,a=4,T=3. . . . . . . e e e e e e e 168
4.17 Theoretical (—) and simulated (x) values of E [In X;.,, In (1 + X7,)] versus i,
forn=1000,a =4, T=3. . . . . . e e e e e e 168
4.18 Theoretical (—) and simulated (x) values of E [X’T'" In }ﬁ’}g?(l-"x{'")] versus i,
forn=1000,@=4,7=3. ... ...o..uvr.0... e 169
4.19 Theoretical (—) and simulated (x) values of E [X'T‘lgl_}f‘:") ] versus %, for
R=1000,0=4,T=3. . oo . 169
4.20 Theoretical (—) and simulated (x) values of E [(%)2] versus ¢, for
n=1000,a=4,7=3. . . . ... .. e 170
4.21 Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E [In X;.,, In Xj;.,]
foralll1<i<j<m,forn=10,a=4,7=3. . . . .. .. ... ... ..., 185



4.22
4.23

4.24
4.25

4.26
4.27
4.28

4.29

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

Theoretical (direct 4, derivatives ¢) and simulated (x) values of E |In(1 + XT,,) In(1 + X7}
forall1<i<j<m,forn=10,a=4,7=3. . .. ... ... ... 186 ]
Theoretical (direct ¢, derivatives {) and simulated (x) values of zl}i—l};% 51171;-3{—’3]
forall1<i<j<nforn=10,a=47=3. ... ........ 186
Theoretical (direct ¢, derivatives ) and simulated (x) values of F |In X1., In(1 + X;n)]
forall1<i<j<n,forn=10,a=4,7=3. . .. ........ . 187
Theoretical (direct ¢, derivatives {) and simulated (x) values of E [In(1 + X7.,,) In X};.,,]
foralll1<i<j<n,forn=10,a=4,7=3. ... ........ e 187
Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E |In X 1:nX1'f"_l;f jm]
forall1<i<j<nmforn=10,0=4,7=3. ... ........ e 188
Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E % In X jm]
foralll1<i<j<n,forn=10,a=4,7=3. . ... ... . ... .. ..., 188
Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E ln( 1+ X7, n)—-'l—:l;r—x’ﬁ]
'foralll<1,<j<n,forn—10a—41'—3 ........... e 189
Theoretical (direct ¢, derivatives ¢) and simulated (x) values of E 2(—1;11;—15(:—" In(1+ X;n)]
foralll<i<j<n,forn=10,a=4,7=3. ... ... ... ... .. ..., 189

6, and 95% confidence limits for § given 8, for the failure times data. . . .. 198
Bo.u and 95% confidence limits for 30.1 given Bo.m for the failure times data.199
6, and 95% confidence limits for 8 given 6, for the ball bearings data. . . .. 216
ﬂ, and 95% confidence limits for ﬂ given 6, for the ball bearings data. . . . . 217
By, 1,» and 95% confidence limits for Boa given By, 1, for the ball bearings data.217
&, and 95% confidence limits for & given &, for the arthritic patients data. . 233
7 and 95% confidence limits for # given 7, for the arthritic patients data. . . 234
Bo.l,r and 95% confidence limits for By 1 given Bo_l,,. for the arthritic patients

data. . . . .. e e e e e e e e e e e e e e e e e e e e e e 235
By, 1, and 95% confidence limits for Bo1 given Bo 1, for 2 <r <n =23, for
the ball bearingsdata. . . . . .. ... ... ... . . . oo 238




List of Tables

1.1
1.2

1.3
14

1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15

Failure times for 49 items placed on a life test; from Epstein (1960). . . . .. 4
Lifetimes (in millions of revolutions) for 23 deep-groove ball bearings; based

on Lieblein & Zelen (1956). . . . . . ... ... .. ... 5
Relief times (in hours) for 50 arthritic patients; from Wingo (1983). . .. .. 6
Failure times (in months) for 30 electronic components; from Wingo (1993);
censored values are denoted by f. . . . . ... ... 7
Notation and definitions of standard functions. . . ... .. ... ....... 9
Some special values for the gamma and related functions. . . ... ... ... 10
Summaries of the exponential MLEs calculated at various r for Epstein’s
failure times data. . . ... .. .. . .. . ... . e 36
Simulated means of 8, for various 7,7, for exponential data generated with
B=100. . . . . e e e e e e e e e e e e e 42
Theoretical (upper) and simulated (lower) standard deviations of 8, for var-

ious 7, n, for exponential data generated with 6 =100. . . ... ... ... .. 42
Simulated means of 30_1,,. for various r, n, for exponential data generated with

0 =100. . . . . . e e e e e e e e e e e e e e e 42
Theoretical (upper) and simulated (lower) standard deviations of BO.l,r for
various 7, n, for exponential data generated with 6 =100. ... ... ... .. 43
Summaries of the Weibull MLEs calculated at various r for the ball bearings

data. . . .. e e e e e e e e e 50
Simulated means of 8, for various r,n, for Weibull data generated with 6 =

100, 8 =2. . .« o o e e e e e e e e e e e 51
Simulated means of B,. for various r,n, for Weibull data generated with 6 =

100, 8 = 2. . . o o o e e e e e e e e e e e e e e e e 52
Theoretical (upper) and simulated (lower) standard deviations of 6, for var-

ious r,n, for Weibull data generated with 6 =100,86=2.. . .. ... ... .. 52
Theoretical (upper) and simulated (lower) standard deviations of 3, for var-

ious 7, n, for Weibull data generated with 6 =100,8=2.. . .. ... ... .. 52
Simulated means of 30,1,, for various 7, n, for Weibull data generated with
O=100,8=2. . . . 0 i i e e e e 53
Theoretical (upper) and simulated (lower) standard deviations of ng.l,r for
various r,n, for Weibull data generated with # =100,84=2. . . . . ... ... 53
Summaries of the Burr MLEs calculated at various r for the arthritic patients

data. . . . . e e e e e e e 69
Simulated means of &, for various r,n, for Burr data generated with a =

AT =3, . e e e e e e e e e 69
Simulated means of 7, for various r,n, for Burr data generated with o =

4T =3, e e e e e e e e e e e e 70



2.16 Theoretical (upper) and simulated (lower) standard deviations of & for var-
ious r,n, for Burr data generated witha=4,7=3. . ... ..........

2.17 Theoretical (upper) and simulated (lower) standard deviations of 7, for var-
ious 7, n, for Burr data generated witha=4,7=3. . ... ..........

2.18 Simulated means of 30,1,T for various r, n, for Burr data generated with o =
I T

2.19 Theoretical (upper) and simulated (lower) standard deviations of By, for
" various 7, n, for Burr data generated witha=4,7=3.. .. ....... ...

3.1 Summary statistics for f0.8n for various n, for exponential data generated
with 0 =100. . . . . . . e e e e e e e e e

83

3.2 K2 statistics for 8, for various r, n, for exponential data generated with 6 = 100. 83

3.3 Summary statistics for 00 dn, ﬁo 4n, and Boa ,0.4n for various n, for Weibull data
generated with § =100,4=2. .............. ... ... ......
3.4 K2 statistics for 6’,, ,8,, and Bo 1r for varlous r,n, for We1bull data genera.ted

with @ =100, 8=2. . . . . . e e e e e e e ’
3.5 Summary statistics for B4, for various n, for Weibull data generated with
0=100,8=0.5. . . . . e e
3.6 Summary statistics for /30.41: for various n, for Weibull data generated with
0=100,8=4. . . o o i e e e e e e e
3.7 K? statistics for B.r for various r,n, for Weibull data generated with 8 =
100,8=10.5. . . . . . o i e e e e e e e e e e
3.8 K2 statistics for 3, for various r,n, for Weibull data generated with 6 =
100,B=14.. . . . o o e e e e e e e e e e
3.9 Summary statistics for ég.6n, 70.6n and BO.I,O.Gn for various n, for Burr data
generated witha=4,7=3. . . . . . . ... ... ... o o oo
3.10 K? statistics for &, 7, and Bo,l,,. for various r,n, for Burr data generated
witha=4,7=3.. . .. . . e
3.11 Summary statistics for é&gg, for various n, for Burr data generated with
a=0.9,T=8. . . e e e e e e e e e e e e e e e e

3.12 K2 statistics for &, for various r, n, for Burr data generated with o = 0.9, 7 = 3.

3.13 Summary statistics for 7o, for various n, for Burr data generated with
a=4,7=09. ........ e e

3.14 K? statistics for 7 for various r,n, for Burr data generated with o = 4,7 = 0.9.

3.15 Summary statistics for (8o.6n, B ¢,) for various n, for Weibull data generated
with0=100,8=2. . . . . . . e e e e e e
3.16 SZ, statistics for the multivariate Normality of (Or, ,B ) for various r,n, for
Weibull data generated with 6 =100,8=2. . . . . ... ... ... ... ...
3.17 S"‘:V statistics for the multivariate Normality of (Or,ﬂ,,.) for various r,n, for
Weibull data generated with 6 =100,8=0.5. . . . . ... ... ... .....
3.18 S2, statistics for the multivariate Normality of (8r,8,) for various r,n, for
Weibull data generated with 6 =100,8=4. . . ... .. .. ... ... ....
3.19 Summary statistics for (&o.sn,70.8n) for various n, for Burr data generated

witha=4,7=3.. . . . . . e e e '

3.20 SZ, statistics for the multivariate Normality of (&, ) for various r,n, for
Burr data generated witha=4,7=3. . . . ... .. ... ... ... ...

3.21 S%, statistics for the multivariate Normality of (&, %,) for various r,n, for
Burr data generated witha=0.9,7=3. . . . . . ... ... ... .. ...

93

98
98

101
101

104



3.22
3.23

3.24

3.25

3.26

3.27
3.28

3.29

3.30

3.31

4.1
4.2
4.3
4.4

4.5
4.6
4.7
5.1
5.2
5.3
5.4

5.5

S%, statistics for the multivariate Normality of (&, #,) for various r,n, for
Burr data generated w1th a=4,7=09...... ... ... . ... 106
Idealised MLEs (0,, ,BT) for various r, n, for ideal Weibull data generated with
0=100,8=2. . . . o e e e 112

Number of replications of (8,, 3,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data
generated with 6 =100,8=2. ... ... ... .. . ... . .. ... 116
Number of replications of (8,, 3,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data
generated with 6 =100,8=0.5. . . ... ... .. .. .. ... . ... 116
Number of replications of (6,., B,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data
generated with 6 =100,8=4. . .. ... . . . . . . e 117
Number of iterations required to complete the A-relative likelihood contour

for various A, for arthritic patients data whenr=mn. . . .. .. ... ... .. 122

Idealised MLEs (&, 77) for various r,n, for ideal Burr data generated with
=4, T = 3. . e e e e e e e e e e e e e e 128
Number of replications of (&, 7,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data
generated witha=4,7=3. . . . . . . . . ... ... 132
Number of replications of (&, 7r) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data
generated witha=0.9,7=3. . . . . ... ... ... ... . oo, 132

Number of replications of (&, 7,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data
generated witha=4,7=09. . . . . . ... ... ... oo o 132
Numerical comparison of E[Z;., In Z;.,,] for variouséand n. . . ... ... .. 141
Derivatives method: expectations in (4.18) and the partial derivatives needed. 153
Numerical comparison of E[Z;.ni:nZj:n In Zj.] for various 4,5 and n. . . . . . 156
Derivatives method: expectations in (4.41) and the partial derivatives needed. 163
Numerical comparison of E [ a8 )1(;_'3(13(14')(’ ")] for various ¢ and n, for Burr
data generated witha=4,7=3. . . . . . ... ... .. ... ... ... 167
Derivatives method: expectations in (4 52) and the partial derivatives needed. 180
. . nInXjn . .
Numerical comparison of E [ln(l +X ) o X7, Tim I ] for various i, j and n, for
Burr data generated with a = 4,7 = 3 ....................... 185
Theoretical and simulated values of Corr(,8,) for various , n, for exponen-

tial data generated with 8 =100. . . . .. ... ... ... .. ... ... ... 197
Standard deviations of § — 8, and BO.I - Bo.l,,, for the failure times data. . . 198
Number of replications of # within the 95% confidence limits based on true
0 (upper, based on (5.11)) and 6, (lower, based on (5.12)), for exponential

data generated with 6 =100. . ... ... ... ... ... ... ... .. ... 200
Numerical checks of expectations H; to Hiyo calculated at » = 15,n = 25
using 10% replications. . . . . . . . ... ... 203
Theoretical and simulated values for Cov(f, 8,) calculated at various r, n using
Weibull data generated with § = 100, 3 = 2 and 10% replications. . . ... . . 208

10



5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

Theoretical and simulated values for Cov(8, Br) calculated at various r,n
using Weibull data generated with 6 = 100, 8 = 2 and 10* replications. . . . . 208
Theoretical and simulated values for Cov(B, ;) calculated at various r,n
using Weibull data generated with 8 = 100, 3 = 2 and 10* replications. . . . . 208
Theoretical and simulated values for Cov(B,$,) calculated at various r,n
using Weibull data generated with § = 100, 8 = 2 and 10 replications. . . . . 209
Theoretical and simulated values for Cov(éo.l, Bo,l,r) calculated at various

r,n using Weibull data generated with § = 100, 3 = 2 and 10? replications. . . 211
Theoretical (upper) and simulated (lower) values of Corr(f,8,) for various

r,n, for Weibull data generated with # =100,84=2. . ... ... ... .... 212
Theoretical (upper) and simulated (lower) values of Corr(8,3,) for various

r,n, for Weibull data generated with § =100,8=2. . ... ... ... .... 213
Theoretical (upper) and simulated (lower) values of Corr(8,8,) for various

r,n, for Weibull data generated with § =100,8=2. . ... ... ... .... 213
Theoretical (upper) and simulated (lower) values of Corr(B, 8,) for various =
r,n, for Weibull data generated with 6 =100,8=2. ... ... ... ..... 213
Theoretical (upper) and simulated (lower) values of C’orr(Bo_l,Bo_l,r) for
various r, n, for Weibull data generated with 6 =100,4=2. . . . . ... ... 214
Standard deviations of Ag, Ag and Ap, , for the ball bearings data. . .. .. 216
Number of replications of 6 within the 95% confidence limits based on true

0, B (upper) and 6., B, (lower), for Weibull data generated with 8 = 100, 8 = 2.218
Number of replications of B within the 95% confidence limits based on true

0,8 (upper) and 8, 3, (lower), for Weibull data generated with 8 = 100, 8 = 2.218
Number of replications of Bo.l within the 95% confidence limits based on true

8,8 (upper) and 8, B, (lower), for Weibull data generated with 8 = 100, 8 = 2.219
Numerical checks of expectations B; to Bjs calculated at r = 15,n = 25
using Burr data generated with @ = 4, 7 = 3 and 10 replications. . . . . . . . 222
Theoretical and simulated values for Couv(&, &) calculated at various r,n
using Burr data generated with oo = 4,7 = 3 and 10* replications. . . . . . .. 225
Theoretical and simulated values for Cov(&,7,) calculated at various r,n
using Burr data generated with o = 4, 7 = 3 and 10* replications. . . . . . . . 226
Theoretical and simulated values for Cov(#, &) calculated at various r,n
using Burr data generated with oo = 4,7 = 3 and 10* replications. . . . . . . . 226
Theoretical and simulated values for Cov(7,7,) calculated at various r,n
using Burr data generated with o = 4,7 = 3 and 10 replications. . . . . . . . 226
Theoretical and simulated values for COU(BM, BO.I,T) calculated at various

r,n using Burr data generated with o = 4,7 = 3 and 10* replications. . . . . 229
Theoretical (upper) and simulated (lower) values of Corr(&, é&,) for various

r,n, for Burr data generated witha=4,7=3. . . ... ... ... ...... 230
Theoretical (upper) and simulated (lower) values of Corr(é,7,) for various

r,n, for Burr data generated witha=4,7=3. .. ... ............230
Theoretical (upper) and simulated (lower) values of Corr(%,é&,) for various

r,n, for Burr data generated withao=4,7=3. . ... ... ... .. ..... 230
Theoretical (upper) and simulated (lower) values of Corr(7,7,) for various

r,n, for Burr data generated withao=4,7=3. .. ... ... ... ...... 231
Theoretical (upper) and simulated (lower) values of Cor'r(Bo,l,Eo.l,r) for
various 7, n, for Burr data generated witha=4,7=3.. ... ... ...... 231
Standard deviations of Ay, A; and Ap,, for the arthritic patients data. . . . 233

11



5.31 Number of replications of & within the 95% confidence limits based on true
o, T (upper) and &, 7, (lower), for Burr data generated with a =4,7=3. . . 233
5.32 Number of replications of 7 within the 95% confidence limits based on true

o, T (upper) and &, 7, (lower), for Burr data generated with a =4,7=3. . . 234
5.33 Number of replications of By1 within the 95% confidence limits based on true

o, T (upper) and &, 7, (lower), for Burr data generated with a =4,7=3.. . 235
5.34 Theoretical (upper) and simulated (lower) standard deviations of Ap,, for

various r,n, for exponential data generated with 6 =100. . ... ... .. .. 239
5.35 Theoretical (upper) and simulated (lower) standard deviations of Ap,, for

various r,n, for Weibull data generated with 6 =100,6=2. . . . .. ... .. 240
5.36 Theoretical (upper) and simulated (lower) standard deviations of Ap,, for

various 7, n, for Burr data generated witha=4,7=3.. .. .......... 240

12



Chapter 1
Introduction

The term reliability usually refers to the probability that a piece of equipment, or a compo-

" nent of a larger system, will operate satisfactorily either at any particular instant at which

it is required or for a certain length of time. Like survival analysis in medical studies, or
duration analysis in economics, the quantity of interest in reliability analysis is the lifetime
(also called the survival time, failure time, or time to failure) of a specimen; for instance, the
lifetime of an electrical component (Epstein, 1960; Wingo, 1993), or the time to failure of a
deep-groove ball bearing (Lieblein & Zelen, 1956), or the relief time of an arthritic patient

' after a fixed dosage of medication (Wingo, 1983). The methods for statistical analysis of

data on reliability are widely discussed, with many textbooks covering solely this area; see,
for instance, Mann et al. (1974), Lawless (1982), Nelson (1982), Bain & Engelhardt (1991)
and Crowder et al. (1991).

The only way to measure reliability is to test specimens, under conditions that simulate
real life, until failure occurs. Extensive testing, however, often results in undesirable expen-
ditures of time and money. An important concept that arises naturally in this area is that
of censored sampling plan; for example, not all electrical components may have failed at the
close of a life test, and some arthritic patients may have left the clinical trial for unrelated
reasons before completion. Such incomplete observation of the lifetime of a specimen is
called censoring. Furthermore, in reality, it is not always feasible to examine all system
requirements in reliability testing; some systems are prohibitively expensive to test, some
failure modes may take years to observe, and some experiments may be hazardous to run
over prolonged periods. In such cases, perhaps the most commonly used technique is to
terminate the test after a certain number of failures, r, has been observed out of a sample
of n test units; this gives rise to Type II censoring. The data observed thus consists of
order statistics, and, formally, is said to be right censored. Other censoring regimes are
possible (see Section 1.4) - for instance, Type I, left censoring, progressive censoring - but,
for convenience only right censoring is discussed in any detail here. A comprehensive text
on the subject is Cohen (1991).
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Other life test plans pose different problems. Sequential plans are “accept-reject” tests
under a given null hypothesis, H,, versus an alternative hypothesis, H;. The life test
is continuously monitored and a decision made as soon as there is sufficient supporting
evidence for one of the two hypotheses. These tests take less time than non-sequential plans
but estimation is complicated and not very robust. The history and statistical theory of
sequential test plans are illustrated well in Gosh & Sen (1991). Accelerated life testing
concerns the collection of lifetime data more quickly than would be the case in the normal
use of components. Often, in order to induce failure in a short time, it may be necessary
to increase the severity of a condition such as temperature, load or vibration. The results
of any of these tests have to be extrapolated back to the conditions of normal use, and
care is needed in choosing the model on which to base this. The execution and analysis

of accelerated life tests is in general a complex area. A comprehensive text on the subject

~ is Nelson (1990), while Nelson (2005a,b) publishes an extensive bibliography of statistical

plans on accelerated testing and test plans. In reality, various factors influence the choice of
test plans, usually in relation to resources. These may be physical, time-related of financial.

This thesis considers some particular aspects of Type II censored reliability analysis.
Suppose it is possible to conduct one or more interim analyses (r < n) in addition to a final
analysis (r = n). For example, it may be possible to make inferences on model parameters
at each of a sequence r = r1,79,... < n of failures, until all items have failed and the data
set is complete. In real life scenarios, we may also draw inferences about the percentile
of a lifetime distribution, as a practitioner will typically wish to know the time at which
a specified percentage of test units fails, either for monitoring purposes or to implement
changes to the test at that time. In this case, we may consider the extent to which the final
estimates of parameters are consistent with earlier estimates, or the rate at which interim
estimates converge on their final values; more generally, we can consider the precision with
which we can make statements on final estimates, based on interim estimates, as represented
by the confidence limits for the final estimates given the interim estimates. This approach,
of course, requires an evaluation of the relationship between final and interim results, and
hence the extent to which an interim analysis - here, using information based on Type II
censoring - provides a guide to the final analysis; this is the scenario outlined in Chua &
Watkins (2007) and Chua & Watkins (2008a,b), and explains the title of our thesis. Some
discussion on the corresponding analysis of reliability data under Type I censoring is given
by Finselbach & Watkins (2006), Peng & MacKenzie (2007) and Finselbach (2007).

Our approach implicitly introduces the following question: as r is to be specified before
testing commences, what is the smallest number of failures at which the experiment can be
reasonably or safely terminated with the interim estimates still yielding close and reliable
guides to the final estimates? This information is important for an experimenter, as he or
she can then choose an acceptable censoring number and sample size, with the (expected)
time required to complete a test generally directly linked to its cost. If the initial cost of

test units is cheap compared to experiment time, he or she can increase the initial sample
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size to obtain results economically.

To address this question, we proceed on the basis of a parametric modelling of data, and
assume that we have identified a distribution for the data, so that it remains to estimate
the parameters and related quantities of that distribution. Statistical inference has been
widely discussed from the classical, or frequentist, point of view. That is, estimators and
test statistics are assessed by criteria relating to their performance in repeated sampling;
see, for instance, Lawless (1982), Bain & Engelhardt (1991) and Cohen (1991), based on
both complete and censored samples. On the other hand, in the Bayesian approach, direct
probability statements are made about unknown quantities, conditional on the observed
data. This necessitates the introduction of prior beliefs into the inference process. At the
present time there is lively debate over the place of Bayesian statistics in reliability theory.
Whether Bayesian statistics will eventually supplant classical statistics, as its more vigorous

~ proponents have been proclaiming for the past fifty years, is something still to be seen, but

reliability engineers certainly should have an awareness of the Bayesian approach. Dey &
Rao (2005) provides a general overview of the area of Bayesian Thinking and describes what
the current state is in the context of Bayesian theory, methodology, modelling, computation
and applications.

In this thesis the classical approach to the statistical inference of reliability data is con-
sidered. Although there is much literature on the method of maximum likelihood estimation,
authors like Nelson (1982) and Wingo (1993) have mentioned that exact mathematical ex-
pressions for the asymptotic variances and covariances of the maximum likelihood estimates
are difficult to obtain. This may be regarded as a convenient starting point for our study,
in which we attempt to derive analytical formulae for these variances and covariances. In
addition, perhaps due to convenience, asymptotic theory of maximum likelihood is widely
used to obtain approximate confidence limits for the maximum likelihood estimates. Such
limits are essentially asymptotic ones, while real-life samples are, because of time or budget
constraints, often of small to moderate sizes. Thus, we need to be able to establish confi-
dence regions of estimates in relatively small samples subject to Type II censoring, using a
more suitable and reliable statistical method; some work on this topic is presented in Chua
et al. (2007).

In the framework outlined above, we obtain two sets of estimates, interim and final, of
model parameters and a particular percentile, but we are also interested at the distributions
of these quantities. We focus on conditional distributions of final estimators given interim
counterparts; if these are Normal - as is the case asymptotically - then, in turn, we require the
covariance between final and interim quantities. The classical asymptotic approach uses the
relationship between the maximum likelihood estimators, the expected Fisher information
matrix and the score vector.

For simplicity, we start by considering singly censored samples under Type II censoring.
We start from the assumption that the lifetimes follow the exponential distribution, chiefly

to exploit the familiar and extremely powerful lack-of-memory property of this distribution.
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1.2 2.2 4.9 5.0 6.8 70| 121 | 13.7| 15.1 | 15.2
239 | 243 25.1| 358 | 389 | 479 | 484 | 493 | 53.2| 55.6
62.7| 724 | 736 76.8| 83.8| 951 | 97.9| 99.6 | 102.8 | 108.5

128.7 | 133.6 | 144.1 | 147.6 | 150.6 | 151.6 | 152.6 | 164.2 | 166.8 | 178.6
185.2 | 187.1 | 203.0 | 204.3 | 229.5 | 253.1 | 304.1 | 341.7 | 354.4

Table 1.1: Failure times for 49 items placed on a life test; from Epstein (1960).

A natural extension of the exponential distribution is the Weibull distribution; the latter
can model lifetimes with increasing, constant, or decreasing failure rate. The more flexible
Burr Type XII distribution has in recent years assumed a position of some importance in
the field of reliability and life testing. Unfortunately, the estimation of its parameters is not
always straightforward.

Throughout, we illustrate the results using published data sets, and also validate as-
ymptotic results for various combinations of sample size, censoring number and values of
model parameters using extensive simulation experiments. We first outline some examples
of lifetime data, then give some mathematical background, and finally introduce some key
definitions occurring in the analysis of reliability data.

1.1 Some Examples of Reliability Data

We introduce some published data to illustrate various typical ways in which lifetime data

arise, and also use these as the basis of worked examples to illustrate ideas and concepts.

1.1.1 Epstein’s Failure Times Data

Manufactured items such as mechanical or electrical components are often placed on life
tests in order to obtain information on their endurance. Table 1.1 presents failure times
data on n = 49 items put on a life test, run until all items failed. This data set may
be modelled, as in Epstein (1960), by the exponential distribution. Figure 1.1 shows the
exponential P-P plot for these data, where a sample from an exponential distribution should
form approximately a straight line. Departures from this straight line indicate departures
from the exponential distribution. Hence, the linear plot in Figure 1.1 suggests that it is
appropriate to model the Epstein’s failure times data with the exponential distribution.

1.1.2 Ball Bearings Data

A second example is data arising in tests on the endurance for deep-groove ball bearings,
given in Table 1.2. They were originally discussed by Lieblein & Zelen (1956), who assumed
that the data follows a Weibull distribution. As shown in Figure 1.2, we see the Weibull
P-P plot for these data deviates from the straight line in the middle but fits the line well
at both ends. We also note that a review on this data set by Caroni (2002) points out
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Figure 1.1: P-P plot for Epstein’s failure times data based on exponential with 9 = 104.8898.

17.88 | 28.92 | 33.00 | 41.52 | 42.12 | 45.60 | 48.48 | 51.84 | 51.96 | 54.12
55.56 | 67.80 | 68.64 | 68.64 | 68.88 | 84.12 | 93.12 | 98.64 | 105.12 | 105.84
127.92 | 128.04 | 173.40

Table 1.2: Lifetimes (in millions of revolutions) for 23 deep-groove ball bearings; based on
Lieblein & Zelen (1956).

that they have been quoted incorrectly from Lieblein & Zelen (1956), firstly by Thoman
et al. (1969), and subsequently by numerous authors such as Kalbfleisch (1979) and Lawless
(1982). Nonetheless, like much of the later literature, we regard the version in Table 1.2
as a set of uncensored failure times, and assume that it can be modelled by the Weibull
distribution.

1.1.3 Arthritic Patients Data

The ball bearings example is not the only well known lifetime data set in which the original
data values have been changed. Table 1.3 shows data resulting from a clinical trial which
was undertaken to test the efficacy of an analgesic, taken from Wingo (1983). This data
represents relief times (in hours) of n = 50 arthritic patients receiving a fixed dosage of
this medication, and, as indicated by the linear pattern in the P-P plot at Figure 1.3, is
assumed to follow a Burr Type XII distribution. Watkins (1996) remarks that the last four
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Figure 1.2: P-P plot for ball bearings data based on Weibull with 9= 81.8783, B = 2.1021.

0.2910.29 1 0.34 | 0.35 | 0.36 | 0.36 | 0.44 | 0.46 | 0.49 | 0.49
0.50 { 0.50 | 0.52 | 0.53 | 0.54 | 0.55 | 0.55 | 0.55 | 0.56 | 0.57
0.58 [ 0.58 | 0.59 | 0.59 | 0.60 | 0.60 | 0.61 | 0.61 | 0.62 | 0.64
0.680.7010.70 | 0.70 [ 0.71 { 0.71 | 0.71 | 0.72 | 0.72 | 0.73
0.7510.75| 0.80 | 0.80 | 0.81 { 0.82 | 0.84 | 0.84 | 0.85 | 0.87

Table 1.3: Relief times (in hours) for 50 arthritic patients; from Wingo (1983).

places of the fourth column in Wingo (1983), namely 0.72,0.53,0.70, 0.58, have been given
as 0.36,0.46,0.34,0.44 in Wang et al. (1996).

1.1.4 Electronic Components Data

Wingo (1993) reports on a life test experiment conducted to assess the reliability of a certain
electrical component, where n = 30 components were involved. However, for reasons of cost,
the trial was terminated after the r = 20** component failed. Table 1.4 gives the failure
times for these 20 components and 10 censored values (hereafter denoted by t), which, again,
may be modelled by the Burr Type XII distribution.
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Figure 1.3: P-P plot for arthritic patients data based on Burr Type XII with @ = 8.2681,7 =

5.0006.
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Table 1.4: Failure times (in months) for 30 electronic components; from Wingo (1993);

censored values are denoted by f.
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1.2 Mathematical Functions

1.2.1 Glossary of Functions and Notations

Table 1.5 summarises some standard mathematical functions and notations required through-
out this thesis; we have adhered to the notation in Abramowitz & Stegun (1972). We list
conventions like In (z) here, where In (z) = log, (z) denotes the natural logarithm of the

positive quantity . Some specific notation is considered in more detail in Appendix A.

1.2.2 Useful Mathematical Properties

For later convenience, we denote the partial derivatives of an arbitrary function g with

respect to (from now on, abbreviated to wrt) a as

a0
ga—%g,

and, if g is univariate, the above reduces to

P 4
g - dakg’

fork=1,2,3---.

Gamma and Related Functions

The gamma function I'(a) satisfies the recurrence relation
I'(1+a) = al(a) =a! ' (1.1)

for integer a. Its first and second derivatives with respect to wrt a are given by

I (a) =T (a) ¥(a) (1.2)
and
I (a) =T (o) { [¥(@)]* + ¥/() } (1.3)
respectively. The psi or digamma function ¥(a) satisfies the recursive relation given by
1
Y(a+1) =9(a) + " (1.4)
and has special values of
¥(1) = -7, (1.5)
a—1

'(ﬁ(a) = _7+ E m_la

m=1



1.2. MATHEMATICAL FUNCTIONS

(@), Pochhammer’s symbol E(I¢3(+T;nl
arg argument
B(z,w) beta function fol 1 (1— t)w—l at
= [ 14 g
B (2, w) incomplete beta function f : t*=1(1 - t)w—l dt
cos, sin cosine, sine function
en(2) truncated exponential i %

exp (z) = €*

exponential function

E1(2) exponential integral [ dt
Ei(z) exponential integral I ‘?—:dt, .
[=°)
Fy1(a,b;c; 2) hypergeometric function > %&%
m=0 i )
[ee]
F39(a,b,c;e, f;2) | hypergeometric function > %’f@"—%
m=0 m m -
o0
Fp,B(aq; bs; 2) generalised hypergeometric function b %‘;—Z%ﬂ%, where
m=0 m
Ao = 01,02,...,04
bs = b1, by,... b
x m
Lip(2) polylogarithm function s
m=1
lim limit
In natural logarithm log,
max maximum
min minimum
Pr probability
R real part
~ Euler’s constant +0.5772156649 - - -
v(a, z) normalised incomplete gamma function | [ e~*t21dt
I'(a) gamma function [ e~ 't ldt
['(a,z) incomplete gamma function [ et ldt
o0
¢(p) Riemann zeta function Y e
m=0
o0
zm
®(z,p,9q) Lerch transcendent mX-—;O (T |
¥(a) psi (digamma) function £ nT(a) = Fﬁ%l
Y*(a) polygamma function :ﬂ—kkt/)(a) = ,;ikTTI InT(a)
- - , T(m+1
™) binomial coefficient n,(,:flny = p(nﬂ)({?(:,_)nm
2| absolute value or modulus of z

Table 1.5: Notation and definitions of standard functions.
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a|T(a) | (@) | ¥(a)

1 1 -y 1'6;

2| 1 |1-9 |Z -1
3 2 _5

A

4] 6 | §-71%—%

Table 1.6: Some special values for the gamma and related functions.

for integer a > 2, where v = 4+0.5772- - - is Euler’s constant. For the polygamma functions
¥*(a), the following recursive formulae hold; with k£ =1

Y(a+1) =¥(0) -, (16)

and, more generally, for k=1,2,3,---,
Y@ +1) = 9H(a) + (~1)Fkla T,

We also have
P*(1) = (1R (R + 1),

so that
2

™
Y =¢@ =% (17
Using (1.5) and (1.7), Table 1.6 gives the values of gamma and related functions evaluated
at some integers, found from (1.1), (1.4) and (1.6).
The normalised incomplete gamma function is linked to a series expansion via
(=z)™

’y(a, .'L') =z° ,,:.:0 m (18)

and to the incomplete gamma function I'(a, z) via
7(a,z) =T(a) — I'(a, z). (1.9)

Beta and Incomplete Beta Functions

With z, w positive and real, we can write the complete beta function in terms of the gamma

functions as
I'(z)T (w)

B(z,w) = B(w,z) = TGtw)

(1.10)

The incomplete beta function B;(z, w) is related to hypergeometric function (see below) via
the following (see (6.6.8) in Abramowitz & Stegun, 1972): -

Bi(z,w) = 272" Fy 1(2,1 — w; 2 + 1; z). (1.11)
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Hypergeometric Functions

The generalised hypergeometric function is defined as (a,b and z may be real or complex)

§ (a’l)m (a2)m e (G‘A)m £

F,q(a1,a2,...,a4;b1,bs,...,bg;2) =
PaQ( 1,62 Ay 71,92 B ) m=0 (b])m(b2)m"'(b3)m m!

where (z),, is Pochhammer’s symbol. Two specific cases frequently used in this thesis have
p=2,9=1and p=3,q =2, which then give, respectively,

Fi(a,byc;2) = Fyi(b,a;c;2)
I(c) § I'(a +m)I'(b+m) 2™
T@I0 2 Tletm)

(1.12)

~and

T(e)T(f) f I'(a+m)T(b+m)I(c+m) 2™
C@T®I(c) mo  Tle+mI(f+m) m!

where we now write terms in the summation explicitly in terms of the gamma functions. Note

F32(a,b,c;e, f;2) =

that, for convenience, we sometimes write Fy 1(a, b;c; z) = Fa1(2) and F32 (a,b,c;e, f;2) =
F32(2z). Abramowitz & Stegun (1972) provide numerous linear transformation formulae for

the Fj1(a, b; ¢; 2) function; two relevant ones are

Faa(abicz) = (1-2)"" Faa (a, c—bg z_il')

and

Foi(a,bic;z) =(1—2)""Fp <b, c—a;c z ) , (1.13)

z—1
given, respectively, by (15.3.4) and (15.3.5) therein.
In Sections 4.2.2 and 4.4.2, it will be necessary to check that the hypergeometric series
is convergent for a given set of arguments and variables. Slater (1966) considers various
convergence tests on Fy1(a,b;c; z). Briefly, a series (1.12) is convergent for all values of z,

real or complex, such that
2| < 1. (1.14)

When |z| = 1 and z = 1, the series is convergent if R(c—a—b) > 0, and divergent
if Rlc—a—b) < 0. When |2 = 1 but z # 1, the series is absolutely convergent if
R(c—a—-b) > 0, convergent but not absolutely so if —1 < R(c—a-b) <0, and di-
vergent if R(c—a —b) < —1. However, when R (c —a — b) = —1 the series is convergent
if R(a+ b) > R (ab), and divergent if R (a + b) < R(ab). While for any F32 (a,b,c;e, f; 2),

the function is convergent if |z| < 1, or, if z =1 then

R(e+f—a—-b—c) >0, (1.15)



1.2. MATHEMATICAL FUNCTIONS 12

or, if z = —1 then
Re+f—a—-b—-c)>-1.

In particular, when z = 1, we may also employ the generalised Dixon’s theorem (found at
(2.3.3.7) in Slater, 1966) to scale the arguments; this theorem states

PEOTATE)
T@T(s+b)(s+c) >*

Fiz(ab,cie, f51) = (e—a,f—a,558+bs+cl), (L16)

where s = e + f —a — b — ¢, where R(s) > 0 and R(a) > 0 ensure convergency in both
series.
Exponential Integral and Properties of Related Integrals

The exponential integrals have series representations given by .

0 —1)mym
By(z) = —y—lnz— Zl(m)W
m= .

for |arg(z)| < 7, and

Ei nz+ 5o 2
i(z) =v+ nz+mz=:1m g
for z > 0. It is important to observe here that
Ei(—z2) = —Ey(2),
and -
Ei(z) = / e tt71dt = T(0, 2). (1.17)
z

Geller & Ng (1969) provide an useful list of integrals of the exponential integral, fre-
quently used in Chapter 4, including (the parameters a, b and c are real and positive)

—az 1 a a :
[ ze By (bz)dx = o) {ln (1 + 3) ~ar b} , (1.18)

[Z e By (bm)i—x = [y+1Inac+ Ei(ac)] E1(bc) + -;— [§(2) +(y+In bc)z]

00
+e—bc

R ol (ot K CER g

b =1 mim2’

[ e (In3) By (ba)dz = —% {m (1 + %) [y +In(a + )] + i -0 (ﬁ‘b 2, 1) } ,
(1.20)
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and

N _ 1 [n(+%) - b +inE+) 1]
[o ze~**(Inz)E; (bz)dz = { N (ﬁb)z@ (GLH,,QJ) }, (1.21)

a2
defined, respectively, at (4.2.11), (4.2.29), (4.5.2) and (4.5.4) therein. Then, from Guillera
& Sondow (2005), the above two Lerch transcendent functions, ®(z,p,1) and ®(z,p,2), are
linked to the polylogarithm Liy(z) as follows:

Lip(z) = 28(2,p, 1), (1.22)

and
Lmafz;fﬂ%gm.v_"““_ - (1.23)

1.3 Basic Concepts and Reliability Models

1.3.1 Basic Concepts

Suppose X is a nonnegative random variable representing the lifetime of an individual from
a homogeneous population. The probability distribution of X can be specified in many ways,
but the probability density function (pdf) and the cumulative distribution function (cdf)
are particularly useful in reliability analysis. The pdf of X involving a vector of unknown
model parameters ™ = (71, 72,...,7s) defines the probability of a failure in a very small
interval; it is given by

v . Prz<X<z+4+Az) dF(x)
f(x’ﬂ)_Ail—»HtH Az T drx

)

at which f(z;7) >0 and [;° f(z)dz = 1, so that, conversely, the cdf of X is defined as

T
F(z;®)=Pr(X <z)= / f(t)dt.
. JO
The hazard function specifies the instantaneous rate of failure or death at time X = =z

(conditional upon survival to time z) and can be defined as

Prz<X<z+Az|X >2) f(z;7)
Az ~ S(z;w)’

haz(z;m) = Alirgo

where the survivor function S(z;m) = [° f(t;mw)dt = 1 — F(z; ) is the probability of
surviving until time z. These functions, unless stated otherwise, are defined over the interval
[0, 00).

Other aspects of lifetime distribution are useful in certain circumstances; for instance,
the 100¢** (0 < ¢ < 1) percentile function, also named as the g** quantile function, written
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as By (0 < ¢ < 1), is the value z4 such that
Pr(X <z;)=gq.

Thus, we may write By as
By=F1(9)=Q(), (1.24)

where the quantile function @(q) is the inverse of the cdf. The percentiles of a lifetime
distribution specify times at which specified proportions of items fail; for example, in reli-
ability analysis By is commonly employed to determine a warranty period for the items
under consideration, while Byg is of particular relevance in survival analysis, especially in
deciding the term of a life insurance contract.

The p** moment about the origin, Ky, of a pdf f (z) is merely the expected value of X' P;
that is,

pp = E[X7],

for p=1,2,3,---, while the p'» moment about the mean of X (or the p** central moment)
is defined as

pp = E[(X — p)’],

where p = p; = F'[X] is the mean; these moments can be used to find some characteristics
of the distribution of X. For example, the skewness and kurtosis of X are, respectively,

iy

n="5 (1.25)
and .
_ M4

’72 = ;Z (1.26)

where 2 = p§ = Var (X) is the variance.

1.3.2 Lifetime Distributions

We have already mentioned three particular distributions, although other parametric models -
have been used throughout the literature on lifetime data. For a survey of the properties and
theoretical bases of these distributions, see, for instance, Lawless (1982), Nelson (1982), and
Bain & Engelhardt (1991). Throughout this thesis, we will consider the following particular
distributions.

The Exponential Distribution

The exponential distribution, sometimes referred to as the negative exponential distribution,
was widely used in early work on the reliability of, for example, electronic components and,
to a more limited extent, in clinical studies. With only one parameter, it is rather sensitive

even when modelling data with modest departures to this distribution, especially when such
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15 20 25

Figure 1.4: Pdf of the exponential distribution for varying 6.

departures occur in the tail. The exponential distribution has a one-parameter pdf given by

f(z;0) = 9‘1exp{—%} , (1.27)

where 0 > 0 is the scale parameter, so that the cdf is

F(z;0) =1 —exp{—-%}. | (1.28)

Figure 1.4 shows the exponential pdf for several values of 8. The special case of 8 = 1 is
called the standard exponential distribution.
From (1.27) and (1.28), we see that the hazard function is

haz(z;6) = 671

Hence, this distribution is characterised by a constant hazard function over the range of X,
which implies that the instantaneous rate of failure or death is independent of z, so that
the conditional chance of failure in a time interval of specified length is the same regardless
of how long the individual has been on trial; this is referred to as the lack-of-memory (or
memoryless) property. Moreover, the 100¢** percentile function can be expressed as

B,=60{—-In(1-9q)}. (1.29)
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We also have
pp = 60PT' (1 +p),

so that the mean, variance, skewness, and kurtosis are, respectively, u = 6, 02 = 62, v =2,

and v, = 9.

The Weibull Distribution

The Weibull distribution, introduced by Weibull (1939, 1951), is the most widely used in
reliability modelling, due to its flexibility in fitting failure time data in many applications,
particularly when related to extreme-value characteristics. This distribution has pdf (with
origin at zero) defined as

. f(x;e,ﬁ)=ﬁ9—.ﬁxﬂ—.1exp.{— (%)3 } | . 30)

and cdf given by
B
F(z;0,8) =1—exp {—— (%) } , (1.31)

where § > 0 and 8 > 0 are the scale and shape parameters respectively. Hence, the elegance
and utility of this model are further enhanced by having a closed form cdf. The hazard
function is

haz (z;0, B) = BO—PP1,

and the 100¢** percentile function is readily found to be
By=6{-In(1-q)}?. (1.32)

Figure 1.5 illustrates how varying 8 affects the shape of the Weibull pdf for 8 = 10. When
B > 1, this distribution is bell-shaped, indicating increasing hazard over time. However, for
B < 1, it is reverse J-shaped, an indication of decreasing hazard over time. In particular,
the Weibull distribution reduces to negative exponential when 8 = 1; it is known as the
Rayleigh when 8 = 2, and for 8 = 3.6023- - -, it is approximately Normal with v; = 0 and
79 = 2.72 (as compared to 3 for the Normal distribution); see Cohen (1991).

In addition, the Weibull distribution has p** moment about zero given by

up=0pr<1+%);

p=or(1+3),
el () ()}

then its mean and variance are

and
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Figure 1.5: Pdf of the Weibull distribution for § = 10 and varying j.

The Burr Type XII Distribution

The Burr Type XII distribution (hereafter referred to simply as the Burr distribution),
introduced by Burr (1942), has been shown empirically to provide a good fit to data in
many different types of characteristics and applications. Examples include fitting a uranium
survey data set (Cook and Johnson, 1986), data arising in actuarial science (Klugman, 1986),
analysis of business failure data (Lomax, 1954), modelling the size distribution of incomes
(Sinha and Moddola, 1976), the efficacy of analgesics in clinical trials (Wingo, 1983), and the
time to failure of electronic components (Wingo, 1993; Wang et al., 1996). In their discussion
on the statistical and probabilistic properties of the Burr distribution, Zimmer et al. (1998)
emphasise the advantages of this distribution in modelling failures over the other commonly
used models, such as the log-normal and the log-logistic distributions. These advantages
include the fact that the Burr XII covers the curve shape characteristics for the Normal,
logistic and exponential (Pearson Type X) distributions, as well as a significant portion of
the curve shape characteristics for the Pearson Type I (beta), II, Il (gamma), V, VII, IX
and XII; for instance, see Burr & Cislak (1968), Rodriguez (1977), and Tadikamalla (1980).

For simplicity, we initially focus on the basic two-parameter Burr distribution. This has

positive shape parameters o and 7, with pdf

f@ar)=are™ (1 +7)7F) (1.33)
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a closed form cdf
F(z;a,7)=1—-(1+42")"%, (1.34)
hazard function
haz (z;0,7) = atz™ 1 (1 + 7)1,

and 100q*" percentile function given by

B, = {(1—q)-i' —1}%. (1.35)

Figure 1.6 shows the effect of changing a when 7 = 1; larger values of a correspond to
steeper density functions that tend to 1 more rapidly. In contrast, Figure 1.7 presents a
similar comparison for varying 7, with o = 1; we see that increasing 7 produces a steeper
density function that tends to 1 extremely quickly. . The moment pu, for this distribution-

exists provided that at > p; we have

pp=aB (§+1,a—§), (1.36)

so, with a7 > 2, the mean and variance are

1 1
=aB|-+1a-=
p=o (T+ a T),

02 =aB (-2—+1,a—2>—a2B2(l+1,a—l).
T T T T,

It is appropriate to mention here the connection between the Weibull and Burr distri-
butions, by which the lower bound for the Burr region forms part of the Weibull curve in
the (7v1,72) plane, the limiting distribution of (1.33) as o — oo is the Weibull distribution
(1.30). This is shown by Rodriguez (1977) as follows:

Pr <m<(§)%y> = 1—(1+%>—a from (1.34)
~ 1o { e (1)
= 1—exp{—al%—%<%)2+---]}

= l—exp{-y"} asa— .

Thus, in this limit, the Burr shape parameter 7 corresponds to the Weibull shape parameter

B.
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Figure 1.6: Pdf of the Burr distribution for 7 =1 and varying a.
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Figure 1.7: Pdf of the Burr distribution for & = 1 and varying 7.
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The Pareto Distribution

We briefly mention the Pareto distribution, noting its link to the negative exponential
distribution. The two-parameter Pareto pdf is given by

f(z; 0, k) = ak*g—(@+D) (1.37)
with corresponding cdf
s
F(z;o,k)=1— (g) , (1.38)

for x > k, where a > 0, k > 0 are, respectively, shape and location parameters. It is straight-
forward to show that In(X/k) has an exponential distribution with mean a~!. We shall

exploit this important relationship later in the derivation of the expected Fisher information

. matrix for the Burr distribution.

1.4 Censoring Regimes

We have already mentioned that, at the close of a life-testing experiment in reliability, not
all specimens may have failed. For example, suppose n light bulbs are selected at random
and placed on test. Many, perhaps nearly all, may fail in the first year, but a few bulbs may
last for several years. Similarly, some patients will survive to the end of a clinical trial. An
individual who is observed to be failure-free for 30 days and then withdrawn from the study
has a failure time which must exceed 30 days. Such incomplete observation of the failure
time is called censoring.

Censored sampling is a key feature of failure time data (indeed reliability and survival
analysis have been broadly defined as the analysis of censored data), and the mechanisms
which give rise to censoring play a crucial part in statistical inference. Some of the common-
est assumptions are right censoring, left censoring, Type I censoring and Type II censoring;
these are not all mutually exclusive. For later, and practical utility, we only consider Type
IT singly censored sampling on the right, though many of the ideas transfer in an obvious
way to the case of Type I and/or left censoring.

1.4.1 Right and Left Censoring

Formally, data are right censored if the censoring regime cuts short observations in progress.
An example is the ending of an investigation at a fixed time. In contrast, data are left
censored if the censoring mechanism prevents us from knowing when entry into the state
which we wish to observe took place. Both forms of censoring can occur in practice. For
instance, in medical studies in which patients are subject to regular examinations, discovery
of a condition indicates only that the onset fell in the period since the previous examination;
the time elapsed since onset is thus left censored. Right censoring is very common in life-

testing of electromechanical items, but left censoring is fairly rare. We ignore left censoring
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here, so that the term “censoring” in the remainder of this thesis will generally mean “right

censoring”.

1.4.2 Type I Censoring

Suppose that n items are independently tested and entered into a trial at the same time. If
the experiment is terminated after a pre-specified time ¢, this is referred to as Type I censored
sampling (on the right). As a result, the number of observed failures m (0 <m <n) is a
random variable, and the remaining n — m items are censored at the stopping time t. We
use the ball bearings data from Table 1.2 to illustrate this experimental set-up. Suppose
the trial is terminated at time ¢ = 60, instead of allowing all of the items to fail, then the
Type I censored sample would be as follows

117.88 1 28.92 | 33.00 | 41.52 | 42.12 | 45.60 | 48.48 | 51.84 | 51.96 | 54.12
55.56 | 60t | e60f] e60t| e60f| e60f| e60f| 60| 60| 60f
got | 60t | 60t '

This form of censoring has the practical advantages of known experimental duration, but the
statistical disadvantage of prior uncertainty over the exact number of failure times available

for analysis.

1.4.3 Type II Censoring

In contrast, Type II censored sampling (on the right) occurs when the experiment is dis-
continued after the first 7 (r < n) failure times are observed. The number of failures r is
fixed in advance, and the remaining n — r items will have a censored failure time equal to
the time of failure of the r** item. Using the ball bearings data again, suppose that the life
test is stopped after r = 12 failures are obtained. Thus, lifetimes after the 12t* item are

censored at the value of 67.80, and we would obtain the following Type II censored sample

17.88 | 28.92 | 33.00 | 4152 | 42.12| 45.60 | 48.48 | 51.84 | 51.96 | 54.12
55.56 | 67.80 | 67.80" | 67.80" | 67.801 | 67.80" | 67.80t | 67.801 | 67.80 | 67.801
67.80" | 67.80" | 67.801

Type II censoring has the significant advantage that an experimenter knows in advance how
many failure times the experiment will yield, which helps enormously when planning tests
with an adequate level of statistical precision. However, the experimental duration is not
known precisely in advance, and it is possible for an experiment to continue for long periods
until r failures are observed.

We aim to gain more insight into the roles of censoring number r and sample size n in
a Type II censoring setting. In this example, we may wish to assess the difference between
censoring at r = 8 and r = 16. For r = 8, testing stops after 51.84 million revolutions,
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while, with » = 16, we would need to wait roughly 30 million revolutions longer. We can
also assess the changes due to waiting for the final few failures, by taking r = 20, when
we intuitively expect estimates to be more consistent with final values than with » = 8 or
16. More generally, we can consider the precision in using a Type II censored estimate as
an estimate to its complete counterpart. This approach will require an assessment of the
relationship between interim and final estimates.

In our simulation experiments, we censor the data at various proportions of the sample
size, typically taking r = 0.2n,0.4n,0.6n,0.8n,1.0n, so that the last case corresponds to a
complete sample. In practice, however, factors such as the cost of testing units, the precision
required and the value of saving time would be important in deciding the best choice for
the sampling plan; this will be explored in further detail elsewhere.

The above outline indicates that, in Type II censored sampling, the data arrives al-
ready in a naturally ordered way due to the method of experimentation. Hence, it is now
appropriate to review briefly some properties of order statistics.

1.5 Properties of Order Statistics

The theory of order statistics is well-established, but known to be analytically complicated,
chiefly because the probability density functions of order statistics contain both the proba-
bility density and powers of cumulative distribution functions for the underlying population.
Thus, relatively basic theoretical properties of order statistics, such as their expectations
and joint expectations, can involve integrals of considerable complexity, even for well-known
and widely-used lifetime models such as the Weibull and Burr distributions. David & Na-
garaja (2003) is a standard reference for the theory of order statistics; we also note the
two volumes by Balakrishnan & Rao (1998a,b), the first of which focuses on theory and

methods, while the second one deals primarily with applications.

1.5.1 Notation and Basic Properties

Let X be a continuous random variable with probability distribution F' and probability
density function f. Suppose that a random sample X3, Xo, ..., X, from this distribution is
put in ascending order, and the re-ordered sample denoted (in a standard way) as

Xl:n S X2:n S o S Xn:n-

That is, X;., is the smallest sample value, X5, is the next smallest, and so on. The set of
these ordered quantities is referred to as the order statistics of this sample with size n. For
a single order statistic X;., (1 <1 < n), its cdf is given by

Fa(@) =Y (j) [F@F [1 - F@), (1.39)

Jj=t
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where the range of X;., is that of X. Then, differentiating (1.39) wrt z yields the pdf of
Xi:n as
f)(@) = cinf (@) [F(@)] 7 1 = F(@)]" ™, (1.40)

Cim = '(;l__‘{;%_‘ﬁ =“(T-_11> B z(?)

From (1.40), we see that the probability of event z < X;., < £+ Az can also be found from
the probability that, of the n values Xi, Xo,..., Xy, (1 — 1) of the X; are less than z, one
X, isin (z,x + Az) and (n — 1) of the X, are greater than = + Az.

The formulae are greatly simplified when we consider the cdf and pdf of X;.,; here, we

where we write

obtain, respectively,
Fo@=1-Q-F@I" 04
and
foy@) =n[l = F@)]"" f(x). (1.42)
It is also known that, if X7, Xo,..., X, be independent and identically distributed contin-
uous random variables from any member of the exponential family, then Xj., will follow
the distribution at which X; are taken. This is because both F’ and f have the exponential

function, and hence the algebra simplifies; see Patel et al. (1976). For instance, when X
follows the exponential, Weibull, Burr and Pareto distributions, (1.41) becomes

. n ([
Exponential : 1—exp {——0—} =1—exp {—?} , (1.43a)
. z\B z\B
Weibull : 1—exp {—n (5) } =1—exp {— (F) } , (1.43b)
Burr : 1—(1+2") ™ *"=1-(1+2")", (1.43¢)
k\on k a*
Pareto : 1-— (—) =1- (—) , (1.43d)
x x
in turn; that is, the same distribution, but with at least one different parameter, as follows:
X X l:in
Exponential | 8 g*=6/n
Weibull 9,8 | 0* =0/n%,3
Burr a,7|o*=an,T
Pareto a, k| o*=an,k

The joint distributions of order statistics can be similarly derived, although naturally

more complicated. For z < y, the joint cdf of X;., and X, (1 <0< j < m)is

Fon@) = X3 sy F@T [F@) — @I L= F@™. (144)

s=j r=1
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Also, for > y, the inequality X., <y implies Xj;., < z so that

Fiz(zy) = Fi;)(y)-

If we extend the definition of ¢;.,, to

: n!
G-DIG—i-Din— )V

then the joint pdf of X;., and Xj., may be written as

Cijin =

fan(@y) = cijm [F@)] T [F(y) = @V L= F@)"™ f(2)f (y) (1.45)
for < y, as obtained from (1.44) by differentiation.
1.5.2 Moments and Product Moments

In the general continuous case, the single moment of X;., (1 <7< n)is
BIXE] = [ f@)ds = cn [ 225(@) F@I 1= F@I"ds,  (140)
T z

while the product moment of X;., and X;., (1<i<j<n), E [XP X? ], is defined as

/ / 2Py f:,5) (%, y)dzdy
yJx<ly
- c?l,j:",/ / <y aPy? [F(z) L [F(y) — F(@) ™" [1 = F@)]" 7 f(z)f(y)dzdy(1.47)

As with the distribution of X, we can use moments and product moments to compute
summaries of the distribution and joint distribution of order statistics, as required. For

instance, the covariance of X;., and Xj.,, is simply
CO'U(Xi;n, Xj:n) =F [Xi:an:n] -FE [Xi:n] E [Xj:n] .

1.5.3 Recurrence Relations for Moments and Product Moments

Expectations and joint expectations of order statistics can be derived explicitly in some
distributions such as exponential and Pareto, but need to be computed by numerical meth-
ods in most other models. Otherwise, one may use the recurrence relations between the
moments of order statistics, chiefly to cut down the number of independent calculations
required when evaluating an expectation. David & Nagaraja (2003) and Balakrishnan &
Rao (1998a) provide several recursive relations and identities satisfied by the moments of
order statistics from some specific continuous distributions, wherein the interrelationships
between many of these results are presented. In general, for an arbitrary function g of a
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single order statistic, we have

(n - 'L)E [g (Xz n)] +1iE [9( i+1: n)] =nk [g tn—1 )] ) (1'48)

for 1 < i < n-—1, linking the expectations of order statistics from neighbouring sample sizes.
As we have seen in (1.41) and (1.42), computation can be greatly simplified if we could
express the moments of X;., in terms of the simpler moments of the smallest in samples of
1,2,...,7 for which the properties and results of X;., are a lot more straightforward than
the other order statistics. By repeated use of (1.48), Watkins & John (2006) obtained an
expression of the expectation of g (X;.,) in terms of the first order statistic in various sample

sizes; we have

E[g (Xin)] = E( 1)1_J (20 G2 E g (Xumt1-5)] (1.49)

As a result we can exp101t the connection between the dlstrlbutlon of X1 n a.nd the under—

lying distribution, as illustrated in (1.43).
Similarly, for joint order statistics we have

(¢ —1)E[g (Xi:n) h(Xj:n)] = nE[g(Xi—1:n-1) h(Xj—lzn—l)] - (j —9)Elg (Xi-1:n) h(Xj:n)]
_(n —-J+ I)E[g (X'—lzn) h'(Xj—l:n)] (1.50)
where 2 < i < 7 < n and g, h are arbitrary functions. Then, using this, we may state the

joint expectation of g (Xi.n) and h(Xj.,) in terms of the first order statistic with the gth
different sample sizes (see John, 2003)

i=s (=1)* Y (ntt—g)l(s+j—i—2)!

1 i o -
E[g ()(z n) h( i n)] ( n Z tl(n—j)1(i—t—s)!(s~1)!(n+t+s—1)! i (1'51)

T o
—i= 1)' s=1t=0 E[g (Xl:n—i+s+t) h(Xj—i+s:n—i+s+t)]

We note that this important result is independent of the underlying distribution.

It should be noted that results for higher order moments are possible; see, for example,
Chapter 2 in Balakrishnan & Rao (1998b), for recurrence relations satisfied by the triple
and quadruple moments of order statistics from the standard exponential distribution.

1.6 Numerical Considerations

In order to validate theoretical results developed, this thesis will rely heavily on computing
software. One particular instance is to obtain, by running simulations, a sampling distrib-
ution of maximum likelihood estimator to check that asymptotic Normality holds for large
sample sizes, but also to assess the extent to which asymptotic results apply in relatively
small samples. Therefore, it will be of particular interest to consider various computational
strategies for evaluating these results for specific values of sample size (choosing a range

of sample sizes likely to be encountered in practice, but also assessing agreement with as-
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ymptotic formulae), and of a wide range of censoring levels and representative distribution
parameter values.

Throughout this thesis, we will use Mathematica (Wolfram, 1999) for theoretical eval-
uations, and the standard statistical package SAS (SAS, 2004) for simulated counterparts.
We also use Microsoft Excel and SPSS for simpler calculations and graphs.

1.6.1 Data Simulation

We often require to simulate data in order to validate the theoretical expressions. In gen-
eral, if u represents an observation from a uniform distribution in (0, 1), then a simulated
observation x from a distribution with cdf F is given by

E=FTw);

this is known as the inverse transformation method. We remark that z is effectively the
ut? quantile function, and that the inverse transform method works best if the distribution
has a closed form cdf. Therefore, to simulate a set of data from an exponential distribution
with specified parameter 6, we use (1.28) and calculate

z=—0In(1 — u),
while, for the Weibull distribution, we employ (1.31) and compute
z=0{-In(1-u)}?,

and, for the Burr distribution, we have, from (1.34),

T = {(l—u)_é —1}1—1'.

In SAS, we generate independent and identically distributed uniform (0, 1) random vari-
ates using the function ranuni and then find the corresponding = values from the above
formulae, though one may also employ ranexp function to generate an exponential random
value. We also generally take the number of replications, N, to be 104, so that inferences on
the tails of a particular distribution are based on an acceptable number (> 100) of replicated
values. This value of N generally provides a reliable representation of the distribution under

consideration, and, perhaps importantly, is also feasible in term of computational times in
SAS.
1.6.2 Computer Generation of Order Statistics

When considering censored sampling, the ordered observations are needed. If Uy, Uy, ..., Uy,
denote a random sample from the uniform (0, 1) distribution and Uy., < Uiy < -+« < Upin
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are the matching order statistics, then, using the inverse transformation method, we obtain
(i=1,2,...,n)
X’i:n = F_l (U'zn) )

represent the order statistics from the distribution with cdf F. There is a direct correspon-
dence between the order statistics of X7, X3, ..., X, and the order statistics of the associated
uniform sample Uy, Uy, ...,U,. Again, in SAS, we use the sort procedure (proc sort), or
simply sort if within the IML procedure (proc IML) to obtain the desired ordered sample.

1.6.3 Numerical Iterative Methods for Solving Equations

When the maximum likelihood method is employed to estimate parameters, we will need to
find the roots of %, where [ is the Type II censored profile log-likelihood function; in most

- cases, only limited analytical progress is possible, so that a numerical procedure must be:

employed. We generally locate the roots of %} using the Newton-Raphson computational
procedure. This method is well-known for its quick convergence, and, again importantly, is
eminently suitable for implementation in SAS; see Nelson (1982) for more details. Given
an initial value 7%, a sequence of (generally) better approximations can be obtained by the
iterative process

ZUH1] _ 20) _ % lat n=il
- d2l* .
d7ri Iat w=7l]

We generally stop the iterative process when

%’}lat w=7ld] -9
= = <1077
- d7r£ Iat r=#U]

this criterion is deemed equivalent to regarding the maximum likelihood iterations as con-
verging.

1.7 Outline of Future Chapters

In this chapter, we have defined all relevant mathematical functions required in reliability
analysis, and presented fundamental results for specific reliability distributions that will be
the focus of our work, namely, the exponential, Weibull and Burr distributions. We have
also discussed some practical considerations of and various forms of censoring regimes used
to overcome difficulties in industrial life-testing. We then summarised the theory of order
statistics, and concluded by outlining some numerical considerations.

In particular, we have used the ball bearings data to distinguish between Type II and
Type I censoring, but also to illustrate various practically-based problems, which form the
motivation behind our work. As noted in Section 1.4.3, we are interested at the link between

a Type II censored estimate, obtained at the r** failure, and the corresponding complete
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estimate, obtained when all items have failed. We proceed on the basis of a parametric
modelling of data, and assume that we have identified a distribution for the data, so that
we estimate the parameters and related quantities of that distribution. For example, using
the ball bearings data again, we obtain the following maximum likelihood estimates of 6, 8
and By (see Section 2.3 for further details on maximum likelihood estimation with Type II
censored Weibull data) under Weibull analysis, when the data is subject to Type II censoring
at the r* failure.

r | 8 12 16 20 23
9, |67.6415 752168 76.6960 78.9674 818783
B, | 32280 2.6241 24605 2.3539 2.1021
Boyr | 33.6860 31.9063 30.8329 30.3563 28.0694

‘In this example, we may consider the extent to which the final estimates (of either para-

meters or percentile By 1) are consistent with earlier estimates, or the rate at which interim
estimates converge on their final values; more generally, we can determine the precision
with which we can make statements on final estimates, based on interim estimates. This
approach requires an assessment of the extent to which 5,,, B,,, and ﬁo_l, can, respectively,
be regarded as a reliable guide to 79\”,371 and §0,1,n, and hence we study the relationship
between final and interim estimates.

As already noted, Chapter 2 considers in further details the method of maximum like-
lihood to obtain estimates of the model parameters and the percentile function for the
aforementioned lifetime distributions under Type II censoring, and derives the expected
Fisher information matrix analytically. This, in turn, yields asymptotically valid variances
and covariances of the maximum likelihood estimators, and their large-sample properties.

In this thesis, we will consider three distinct problems regarding the maximum likelihood
estimation under a Type II censoring regime:

e Asymptotic Normality of maximum likelihood estimators is well known, for example,
see Cox & Hinkley (1974) and Bain & Engelhardt (1991). This large sample result is
often used in making inferences from small to moderate samples, despite the drawback
that it is not always accurate with such sample sizes. Chapter 3 assesses, by means
of a detailed simulation study, the extent to which the assumption of Normality for
parameters and By holds for finite Type II censored samples, and the role of censoring

in the convergence towards Normality.

e Although the large-sample result is, perhaps surprisingly, rather robust in some senses
- for instance, the distribution of the maximum likelihood estimator of By 1 converges
to Normality more rapidly than those of the model parameters - it is also the case that
the large-sample result can be shown to be unrealistic in samples of small to moderate
size, such as in the ball bearings data with n = 23 failure times. Hence, we also discuss

in Chapter 3 the use of relative likelihood function and related contour plots as an
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alternative for assessing the precision in estimates of parameters in relatively small or

highly censored samples.

We then move on to establish a method to measure the precision in using a Type II
censored analysis as a guide to the final analysis. Since the analysis of reliability of
Type II censored data typically requires single and joint expectations of order sta-
tistics, Chapter 4 computes all necessary moments and product moments for various
functions of order statistics; this involves a considerable amount of algebra. Chap-
ter 5 then considers the correlations between final and interim estimates of model
parameters and By 1; for large samples, this is then transformed into a study of the
correlations of score functions. These results, in turn, give asymptotic 95% confidence

limits for the final estimate given the interim estimate, which we will regard as a mea-

~ sure of precision. We illustrate these results using published data sets and simulation

experiments, from which some practical implications are drawn.

Lastly, Chapter 6 presents summaries and conclusions, together with a brief outline of

some possible future research.



Chapter 2

Maximum Likelihood Estimation
Based on Type 1I Censored

‘Samples

2.1 Introduction

As outlined above, we suppose we have identified a distribution for the lifetimes, so that it
remains to estimate the parameters of that distribution. The method of maximum likeli-
hood has theoretical support (see Crowder et al., 1991, for instance); moreover, computer
programmes for the appropriate calculations are widely available, for example, for imple-
menting a numerical search for the root of an equation, estimating the model parameters
by the method of maximum likelihood is also to be recommended on practical grounds.
Maximum likelihood estimation (hereafter abbreviated as ML estimation) for lifetime mod-
els considered in Chapter 1 is widely discussed throughout the reliability literature; for
instance, see Lawless (1982), Bain & Engelhardt (1991), and Cohen (1991), though dis-
cussion on the Burr distribution is relatively limited. However, these references focus on
the theoretical maximum likelihood equations, with few details on computation or further
interpretation. We provide formulae for the elements of the expected Fisher information
(hereafter abbreviated to EFI) matrix; in particular, analytical expressions for the elements
of this matrix for the Burr distribution with Type II censored data is obtained. This allows
us to write down the asymptotic covariance matrix of the maximum likelihood estimators
(from now on, abbreviated to MLEs), and hence, the confidence intervals for the MLEs
based on their asymptotic Normality. In addition to estimating the model parameters, it
is particularly relevant in practical applications to make inferences on either the running
time for the experiment or some percentile of lifetimes based on Type II censored samples;

0" percentile of failure times. Some discussion on percentile

for example, estimating the 1
estimation is given in Meeker & Nelson (1974, 1977), where the emphasis concentrated on

singly censored Weibull data. As in Chua & Watkins (2008a,b), we extend some recent
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work (Chua & Watkins, 2007) on the Weibull case to the Burr distribution, and consider
the asymptotic distribution of the estimator of By ;. Results under complete sampling are
also presented as a special case of Type II censoring.

We begin with a brief discussion on likelihood, and state the asymptotic properties
of both MLE and score function. In Section 2.2, we consider the exponential model, for
which most results can be expressed explicitly. Then, we extend the discussion to the
Weibull (Section 2.3) and Burr (Section 2.4) distributions, where the extra parameter makes
inference more involved. While there are no analytical expressions for MLEs of parameters,
we obtain profile likelihood functions and maximise these instead. We illustrate Type II
censoring using published data sets, and also present results from simulation experiments

to assess the extent to which asymptotic results apply in samples of finite size.

-2.1.1 - Statistical Background -

We now provide further details of the reliability setting: when n (> 0) independent items
are put on a life test at the same time, and the experiment is terminated after some (pre-
specified) number r (1 < r < n, although we are usually interested in r < n) of failures,
the data available for analysis is said to be Type II censored, and comprises the r order
statistics X1.n < Xop < -+ < Xpun, and n — r lifetimes censored at X,.,. The distinction
between Type II censoring and complete sampling decreases as r — n, and vanishes when
r = n. Ignoring the ordering constant, the likelihood of a Type II singly right censored

e {fm) L6 Fxm) @

i=r+1

and the corresponding log-likelihood is
L =Y Inf(Xin;®)+(n—7)In[l — F(Xppn;m)]. (2.2)
i=1

The principle of ML estimation, as suggested by its name, is to select as an estimate of 7
the value for which the observed sample would have been most likely to occur. Assuming
that the partial derivatives of [/, exist, then the maximising value is the solution of the

simultaneous equations (i =1,...,k)

ol,

Ur ) 07
where U, = (U,1,..., Ur,k)' is the score function. We denote the MLE by #,, in which r
represents the censoring number.

The asymptotic theory of maximum likelihood (see, for example, Cox & Hinkley, 1974)
implies that, in general, 7, is asymptotically Normally distributed with mean vector 7 and

covariance matrix equal to the inverse of the EFI matrix A,, which is symmetric, with
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(3,5)™ entry

2
g|-% ]
371’,'871'3'

for i,5 = 1,...,k, so that we need only give the lower triangle of elements. This, in turn,
yields the approximate confidence limits for the parameter #r; for instance, the 100 (1 — \) %

T & Zy 2/ Var (m;),

where Z) /3 is the upper 100 (1 — %) percentage point of the standard Normal distribution.

confidence intervals for ; is

Where the true parameters are unknown (as in practice, although not in simulation exper-
iments), we evaluate these limits by replacing 7 by &®,.. We have also implicitly introduced

the observed Fisher information matrix, J,, given by

. 3217,‘

_671',;871']"

In addition, the EFI matrix also appears in the asymptotic distribution of the score function;
since I, involves Y., In f(Xj:n; 7), Uy is a sum of independent and identically distributed
random variables, and, under mild conditions (for example, see Section 9.2 in Cox & Hinkley,
1974 and Bain & Engelhardt, 1991), is asymptotically Normally distributed with mean O
and covariance matrix A,.

For percentile estimation, we will consider ¢ = 0.1 throughout; the details and principles
for other values of q are similar. In general, By is a non-linear function of . Consequently,
we consider the Taylor series of By 1 about the true parameter 7 up to its first-order deriv-
ative to estimate By 1; this can be written as

EO.I,T ~ By1 + bl (Fr — =), (2.3)
with which (i =1,...,k)
b — 0By.1
T 67(,‘ ’

We see that EO.I,T is now a linear combination of (%, — 7), and hence is asymptotically
Normal with mean
E |Boss| = Boa

as, for large samples, F [, — ] = 0, and variance
Var (Eo'l,,) ~ bl Var (%, — )by = b’ A-lb,. (2.4)

Approximate 100 (1 — A) % confidence intervals for Bpj then follow immediately.

For complete samples, we can drop the subscript n; for instance, we write L = Ly,.
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2.2 ML Estimation in the Exponential Distribution

From (2.1), the likelihood function for Type II censored data drawn from the exponential
distribution is given by

o[ ol el ) et

in which

Sr = zr: Xin + (n - r)Xr:ny (2-5)
=1

so that the log-likelihood function can be expressed as

l,=—rinf - G_IST, (2.6)
with derivative di

b _ 91 -2

7 0™ +67°S,. (2.7)

Sy is sometimes referred to as “the total sample time on test”. Hence, on equating (2.6) to
zero, the MLE of 6 is

~ 5
0, = Tr (2.8)
2.2.1 Regularity and EFI
,
Following Bain & Engelhardt (1991), we can write S, = ) W;, where
=1
for i = 2,...,r. The lack-of-memory property, previously mentioned in Section 1.3.2.1, indi-

cates that the W; (i > 1) are independent variables following (1.27); we then have E [S,] = r6
and Var (S,) = r6%, and hence

E[@r] _ ElS_,

.
~\ _ Var(S;) 9_2
Var (8,) = 220 =— (2.10)

It follows that (2.8) is an unbiased estimator of §. Moreover, we see that

dlr| _ 1, g2 _
E[de]——re +02E[S,] =0,

as expected from the regularity consideration. The second derivative of (2.6) is

ZZ; =rf 2 —-20738,,
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so that the EFI is given by

d2l"‘ —2 -3 ~2

~

In particular, 8, = S,/r is the minimum variance unbiased estimator of 6, since

Var (@,) =F [_{;2;;]_1 .

Oth

As previously noted, we are interested at the estimation of the 10*® percentile function

with Type II censored data; since (1.29) indicates that By is linearly related 6, we obtain
its MLE as ,
Boir=6r(-m09),  (211)

with mean
E [Eo_l,] = 6(-1n0.9),

and variance equals to

_ (=1n0.9)*¢®

Var (EO.l,r) =(—In 0.9)2 Var (@) "

2.2.2 Asymptotic Properties of the MLEs

The asymptotic Normality of MLEs implies that 5, and Eo_l,r can, for large sample sizes,
be regarded as Normally distributed. We therefore have

2
0,.~N<0,9—),
-

from which the 95% confidence intervals for 8 is
9, & 1.966r /2, (2.12)

Similarly, we see that

. 62 (—1n0.9)?
BO.l,'r ~ N (BO.I, Q) ’

r

which, in turn, gives the 95% limits of By as

Bo1r £ 1.960 (—n0.9) r~1/2, (2.13)
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2.2.3 Complete Sample

For later convenience, we briefly present some results under complete sampling, obtained
simply by setting r = n. The likelihood here is

L=06"exp{-071S},

from which the log-likelihood is

l=—-nlnf—0718, (2.14)
with derivative dl
& -1 p2
p7] nd= +0°°8, (2.15)
‘so that the complete MLE of 8 is - o
~ S
0=—.
n

Since E [S] = nd, the second derivative of (2.14) yields the EFI as nf~2. From (2.11), the
complete MLE of By is
Bo1=0(~1n0.9),

with the following characteristics:
E [Eo_l] =6 (—1n0.9)

and . 2 52
Var (§0.1) _(=In0.9)"0 .
n
We note that Type II censored results are very similar to their complete counterparts; if
n items are placed on test and first r failures are observed, it is clear that the statistical
procedures based on this data are equivalent to those gained by placing n items on test and

obtaining all n failures.
2.2.4 Numerical Examples

Epstein’s Failure Times Data

We use the failure times data from Table 1.1, modelled, as in Epstein (1960) and as re-
enforced in Figure 1.1, by the exponential distribution, to illustrate this experimental set-
up. If we had stopped the experiment at r = 40, then failure times after the 40" item are
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r 10 20 30 40 49
X,.49 15.2 55.6 108.5 178.6 354.4
9, 67.6000 104.9000 114.0100 112.1150 104.8898
sd(6,) 21.3770 23.4564 20.8153 17.7269 14.9843
95% CIs | 25.701,109.499 | 58.926,150.874 | 73.212,154.808 | 77.370,146.860 | 75.521,134.259
Bo.r 7.1224 11.0523 12.0122 11.8125 11.0512
sd(Bo.1,) 2.2523 2.4714 2.1931 1.8677 1.5787
95% Cls 2.708,11.537 |  6.208,15.896 | 7.714,16.311 | 8.152,15.473 | 7.957,14.146

Table 2.1: Summaries of the exponential MLEs calculated at various r for Epstein’s failure
times data.

censored at the value of Xy40.49 = 178.6, and we would obtain the following data set

1.2 22| 49| 50| 68| 70| 121| 13.7] 151 15.2
239 243| 251| 358| 389 479| 484| 493| 532| 556
62.7| 724| 736| 768| 83.8| 951 97.9| 99.6| 102.8 | 108.5
128.7 | 133.6 | 144.1 | 1476 | 150.6 | 151.6 | 152.6 | 164.2 | 166.8 | 178.6
178.6t | 178.6t | 178.61 | 178.6t | 178.6t | 178.61 | 178.67 | 178.61 | 178.6t

with 540 found to be 112.1150 and §0.1,40 = 11.8125, and via (2.12) and (2.13), we obtain
the approximate 95% confidence intervals for § and By to be

112.1150 + 1.96 x 112.1150 x 40~%/2 = (77.370, 146.860)

and
11.8125 4+ 1.96 x 112.1150 x (—1n0.9) x 40~/2 = (8.152, 15.473) .

More generally, Table 2.1 presents summaries of the ML estimates of # and By ; when the
data is subject to Type II censoring at the rt* failure; we see that the interim estimates 9,
and §0.1,r increase sharply when r doubles from 10 to 20, and then gradually converge to
their complete counterparts. There are also some increases in estimated standard deviations
at r = 20 (from r = 10), reflecting the consequence of swapping @ by a large estimate 520
in (2.10). Otherwise, the standard deviation is generally decreasing with r, as expected. It
should be noted that 520 is the closest to 5, but also has the largest standard deviation.
One obvious point to consider is can we safely regard G20 as a reliable guide to 97 If S0,
this indicates that the experiment time would be cut from 354.4 to 55.6, an approximate
84% reduction in time. This gives us some motivation to investigate the extent to which 9,
provides a guide to 9. We have used asymptotic Normality of MLE to compute the approx-
imate 95% confidence intervals for 8, but we will also need to consider if such calculations

are appropriate in a sample as small as n = 49; this will be further considered in Chapter 3.
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Figure 2.1: Pdf of the exponential distribution for § = 100.

Simulations

We now illustrate some results obtained from simulation experiments; this involves speci-
fying the parameter value, sample size and censoring level, and then calculating the MLE
for each sample. Here, we assume 6§ = 100, and, for each combination of r and n, replicate
104 sets of data; this yields 10% estimates from the sampling distribution of 57. Figure 2.1
shows the exponential pdf for such simulation with 8 = 100, while Table 2.2 summarises
the observed means for ’ér, where we see good agreement between 5, and its true value,
even for small n and r. In Table 2.3, we also noted good agreement between theoretical and
observed standard deviations, with decreasing values when r and n increase. This is due to
the fact high censoring levels imply relatively more complete failure times being observed,
which provide more information about the lifetime distribution and hence a more precise
estimation of §. Moreover, it is of interest to look at the scatter plots of final estimates
against interim estimates. Figure 2.2 (when n = 50) has wider scales than Figure 2.3 (when
n = 1000), and both seem to suggest a link between 9 and 6,. The evidence becomes clearer
as r tends to n, and we will quantify the correlation between 9 and 5,, and hence determine
the extent to which 8, can be regarded as a reliable guide to 9.

Since By is a linear function of # in the exponential distribution, the study of the



38

00T = § U3 pojeloted eyep [eljUSUOdXa IOJ ‘4 SNOLIRA PUR ()G = U IO} *g SNSIdA g Jo sjo[d 1933edg :g'g oS

ML ESTIMATION IN THE EXPONENTIAL DISTRIBUTION

6 30 3TN wuau| 0 40 SITTW wudu|
00e 052 002 051 00l 0S 0 00€ 0se 002 1412 00t 0S 0
A N — . A o . : . . . or
- 09 - 09
r08 m F08 m
= =
8 8
- 004 = - 00l =
[ [
-ozL & - 0zL &
o o
- -~
FovL @ - oyl @
- 091 - 091
08l 08l
ug'g=1'5=U ug'po=19s=u
0 30 STTN wuvu| 0 JO ST wudju|
00€e 0se 002 oSt . 004 0S 0 00e 0se 002 051 00l 0S 0
. . . . . or . : . : . o
- 09 - 09
I 08 - 08 L
= =
B B
m m
02l o 02} »
% S
-ovL @ FovL @
X« x . I 091 - 091
08l 08l
up'p=1'06=U uz'g=106=Uu

2.2,




39

ML ESTIMATION IN THE EXPONENTIAL DISTRIBUTION

2.2,

‘00T = @ Y¥m pajelouss ejep [elUsUOdXe 10] ‘4 snollea pue (00T = U I0] “g snsiaa g Jo syo[d 199180Q :¢'g InJig

6 10 STTW Wy

gL ozl oLl 0L 06 08 oL
_ . _ A _ 08
L 06
m
3
H
L oot m
(]
8
(-]
L out
0zl
ug'0 =100} =u
040 SIW wWey|
0El ozL oLt 00 06 08 oL
. _ _ . _ 08
06
) |
5
H
L ool B
o
-3
[--]
o
ozL

up'g =1‘0004 =U

040 ST Wy
0L 0ZL Ol 00k 06 08 oL
_ _ . . , o8
06
n
=
H
L oo1 =
m
)
o
)
(-]
o
0zl
ug'0 = ‘0004 = u
0 40 ST WAy
0L 0zL Ol 00 06 08 oL
_ _ , _ _ o8
06
n
=
H
Loor &
m
®
(-]
9
D
m
0zt

uz'0=1‘000} =y




40

ML ESTIMATION IN THE EXPONENTIAL DISTRIBUTION

2.2.

‘00T = § UMM pojeloual ejep Terjueuodxs I0] ‘4 snolrea pue (¢ = u 10§ “1'0g sns1oa 1'0g jo sjofd 1933e0g :§°g 2InS1,]

up'g=195=u

1°09 40 S3TW Wueju
og 14 oz st o 0
. _ . _ v
-9
g T
B
roL =
m
®
FZt 9
o
Fvl
- 9l
8l
ug'o=4'gs6=u
1°09 J0 83T Welu|
0 sz 0z st . 0 0
_ _ , _ b
-9
g T
B
roL 2
@
el Q
[}
FvL 2
- 9l
8l

1'08 Jo STTN wueju}
sz 0z St oL S ]
. _ _ _ _ b
)
g T
&
-0 B
m
[ ]
-2l o
e
o
-y S
- 91
8l
ugg=4‘06=u
1°06 30 ST T wus|
sz 0z Gl ol ] 0
_ _ . . _ v
&)
-n
"3
oL B
m
(]
el =
w
Lyl S
- 91
8L

uzo=J‘0s=u




41

ML ESTIMATION IN THE EXPONENTIAL DISTRIBUTION

2.2.

‘00T = § Y3m pojelausa3 ejep [eryusuodxs I0j ‘4 snolrea pue (00T = u I0j *10g snsioa 1'0g jo sjo[d 1993e0Q :Q'g 9INJL]

1709 Jo 83T wue|

1°08 Jo S3TN wueu|

vi £l 4} L (]! 6 8 L
A \ . " X X g
- 6
-n
5
B
0l =
3
m
[ ]
LS
w
S
X -
XA
€l
ugg =000, =u
109 JO ST wujuj
14 €l zl 1L oL 6 8 L
: : . . X , 8
L6
-
g
x oL =
z
m
[ ]
L S
1]
°
-
A
€l

U0 =4 ‘000L = U

4! €l 48 L oL 6 8 L
, ; , . _ X g
-6
-
R
B
FOlL =
&
m
®
LS
11
oS
x4
€1
ug'0 =4°000L =U
109 §0 S3TW wudu|
14! €l 4" L ] 6 8 L
: : _ ) X _ g
-6
-n
I
B
ol =2
g
m
)
1L S
w
o
-
x4
€1

uz'0=100L=Uu




2.2. ML ESTIMATION IN THE EXPONENTIAL DISTRIBUTION

42

r n
25 50 100 1000 2500 5000
0.2n | 100.0000 | 100.1681 | 99.6900 | 100.0394 | 99.9731 | 99.9901
0.4n | 99.7516 | 100.0787 | 99.9979 | 100.0798 | 99.9657 | 99.9561
0.6n | 99.8007 | 99.9753 | 100.1715 | 100.0674 | 99.9816 | 99.9742
0.8n | 99.8502 | 100.0242 | 100.2244 | 100.0558 | 99.9769 | 99.9704
1.0n | 99.9283 | 100.1135 | 100.2409 | 100.0557 | 99.9924 | 99.9737
Table 2.2: Simulated means of , for various r,n, for exponential data generated with
6 = 100.
T n
25 50 100 1000 | 2500 | 5000
0.2n | 44.7214 | 31.6228 | 22.3607 | 7.0711 | 4.4721 | 3.1623
45.5428 | 31.7004 | 22.2567 | 7.0799 | 4.4733 | 3.2014
0.4n | 31.6228 | 22.3607 | 15.8114 | 5.0000 | 3.1623 | 2.2361
32.0108 | 22.4806 | 15.8449 | 5.0272 | 3.1772 | 2.2415
0.6n | 25.8199 | 18.2574 | 12.9099 | 4.0825 | 2.5820 | 1.8257
25.9997 | 18.4661 | 12.9659 | 4.1167 | 2.5642 | 1.8266
0.8n | 22.3607 | 15.8114 | 11.1803 | 3.5355 | 2.2361 | 1.5811
22.3636 | 16.1072 | 11.2422 | 3.5559 | 2.2304 | 1.5835
1.0n | 20.0000 | 14.1421 | 10.0000 | 3.1623 | 2.0000 | 1.4142
20.0695 | 14.4386 | 10.0839 | 3.1786 | 1.9880 | 1.4244

Table 2.3: Theoretical (upper) and simulated (lower) standard deviations of 8, for various
r,n, for exponential data generated with 8 = 100.

properties of By 1, whose true value is given by

100 (— 1n 0.9) = 10.5361,

is essentié.lly covered by the above study on §. We display equivalent statistics for §0,1,,~

in Tables 2.4 and 2.5, together with scatter plots given in Figures 2.4 (n = 50) and 2.5

(n = 1000).

r

25

50

100

1000

2500

5000

0.2n

10.5361

10.5538

10.5034

10.5402

10.5332

10.5350

0.4n

10.5099

10.5443

10.5358

10.5445

10.5324

10.5314

0.6n

10.5150

10.5335

10.5541

10.5432

10.5341

10.5333

0.8n

10.5203

10.5386

10.5597

10.5419

10.5336

10.5329

1.0n

10.5285

10.5480

10.5614

10.5419

10.5352

10.5333

Table 2.4: Simulated means of Bo.u for various r,n, for exponential data generated with

6 = 100.
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r n
25 50 100 1000 | 2500 | 5000
0.2n | 4.7119 | 3.3318 | 2.3559 | 0.7450 | 0.4712 | 0.3332
4.7984 | 3.3400 | 2.3450 | 0.7459 | 0.4713 | 0.3373
0.4n | 3.3318 [ 2.3559 | 1.6659 | 0.5268 | 0.3332 | 0.2356
3.3727 | 2.3686 | 1.6694 | 0.5297 } 0.3347 | 0.2362
0.6n | 2.7204 | 1.9236 | 1.3602 | 0.4301 | 0.2720 | 0.1924
2.7393 | 1.9456 | 1.3661 | 0.4337 | 0.2702 { 0.1925
0.8n | 2.3559 | 1.6659 | 1.1780 | 0.3725 | 0.2356 | 0.1666
2.3562 | 1.6971 | 1.1845 | 0.3746 | 0.2350 | 0.1668
1.0n | 2.1072 | 1.4900 | 1.0536 | 0.3332 | 0.2107 | 0.1490
2.1145 | 1.5213 | 1.0624 | 0.3349 | 0.2095 | 0.1501

Table 2.5: Theoretical (upper) and simulated (lower) standard deviations of By 1 - for various

‘7, n, for exponential data generated with § = 100.

2.3 ML Estimation in the Weibull Distribution

From a computational point of view, the Weibull distribution is particularly appealing, since
its cdf can be expressed explicitly as a simple function of the random variable. For accounts
on the ML estimation for the Weibull parameters, see, for instance, Lawless (1982) and
Cohen (1991), for both complete and censored samples. Using (2.1), the likelihood function
for data drawn from a Weibull distribution is

L = [131 BO° XL exp {_ (Xg")ﬁ}] |:exp {_ (XT)ﬁ}] o

If we use subscripts f and ¢ to indicate failed and censored items, and let, respectively,

' Sf,](k) = ;szn (lnXi:n)j 3

Sej(k) = (n— "')lef:n (In Xr:n)j )

for real £ > 0 and integer j > 0, then we have

08, (k)

on = oni+1 (k)

for * = f or ¢, and the log-likelihood function may be expressed as

l,=rlnB—-rBnf+ (B —1)Ss1(0) - 6P {S50(B) + Sc0(B)}. (2.16)

The MLEs can be obtained by maximising I, or equivalently, by finding the roots of the

score functions, based on the two partial derivatives given by

ol

25 = —rB071 + B97P71 {810 (B) + Se0 (B)}, (2.17)
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and

‘Z—Z =787 —rInf+ 851 (0)—6P {S;1(B) + Se1 (B) — (108) [Sso (B) + Seo (B)]}- (2.18)

Unlike exponential model, there are no analytical expressions for these roots. However, we
note that if we equate (2.17) to zero, then 6, can be expressed in terms of the data and the

shape parameter (3; we have

1
6, = [S20B) - S0 (B)| 7 (2.19)
Inserting this into (2.16) yields a profile log-likelihood given by
I'=rlnB+(8—-1)S;1(0) —rIn[Sto (B) + Sco (B)] + 7 (Inr—1), - (2.20)
and a profile score function
dly -1 {Sfl 8) +5c1(ﬁ)}
— =rBf"+871(0)—r : . . 2.21
7 A S RS R() 221

Since no closed form expression for B,. exists, a numerical procedure must be used to locate
the root of (2.21). As noted in Section 1.6.3, we use the Newton-Raphson approach, which

requires the second-order derivative

Pl e, { ()t SalF)_ (51014 S (ﬂ))z} ,

S50 (B) + Sco (B) St0(B) + S0 (B)

and an initial value. This starting value should be close to ﬁr, otherwise the Newton-

Raphson process may fail to converge. Farnum & Booth (1997) suggest
1= [- 5"
B 1 2n v
as a quick initial approximation to 3, where
V=InX,, —r 181 (0)

may be interpreted as a measure of variation in data. With Br thus determined, 6, is
estimated from (2.19) with 8 = B,. We will also require the EFI matrix of the Weibull
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MLEs, which is based on second-order partial derivatives of (2.16), as listed below:

2
gelzr = 1072 =B(B+1)07P2{S50(B) + Sc0(B)}, (2.22)
Pl _ Pl _ o s [ (1—BW6)[S10(B)+ Seo (B)]
oo~ ogos 0 T’ { 81811 (B) + o1 (8) }’ (229)
Pl a2 g8 (In6)?[S1,0 (B) + Sco (B)]
0p? e { —2(In0) [S11(B) + Se1 (B)] + 5,2 (B) + Se,2 (B) }'(2'24)

2.3.1 Regularity and EFI Matrix

To consider the regularity of the log-likelihood function, we take expectations of the first-
and second-order partial derivatives of (2.16). The form of these derivatives implies that

~we will need results on the expectation of various functions g (Xj.,), on the sum of these

expectations, and, in particular, on expectations of the following expression:
{Sota}+ =g, (2.25)
where g (X;.,) can be any of
Xiny In Xin, Xinln Xin, and Xin(In Xin)?.
Watkins & John (2006) outline a framework for deriving these expected values; the trans-

Z= (%)ﬂ (2.26)

links' the Weibull pdf (1.30) to the standard negative exponential pdf, given by setting

formation

6 =1 in (1.27). Then, using the fact that nZ;., follows the standard negative exponential
distribution, Watkins & John (2006) obtain, based on Watkins (1998), the following results:

S E[Zim] + (n = 1)E [Zym] = 1,

=1
i:lE [ln Zi:'n.] =-T (7 + ¢1) ’
i FE [Zi:n In Z,;:n] + (n - 'f')E [Zr:n In Zr:n] =T (1 -7 ¢1) )
=1

ii:l E [Zi:n (In Zi:n)z] +(n—r)E [Z-r:n (In Zr:n)2] =r {%2 +7% — 2y — 2(1.— )by + ¢2} :

where
(=12 (5N It + 1 - 9,

-

$p=r""1

=1
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for k = 1,2, with the convention 0° = 1; see also Watkins (1998). It is then straightforward
to see that ’

E[S;1(0)] = Zjl {060+ EIn Zin)} = rinf— r (y + ¢y),

B (550 (8) + 520 (6)) = 0 { & Blfinl + (= 1)E 2] | =107,

and
E[S;1(B)+Sc1(B)] = 68 1n 6 {Z::l E[Zin)+(n—1)E [Zrm]}
+ﬁ_19ﬁ {i E [Zi:n In Zi:n] + (n - "')E [Zr:n In Zr:n]}
i=1
= P rml+rB -y — )],
so that
E [%] =—rB0 1+ 1=0

80| -

and

E[g—lﬁr] = Bl —rinf+rnf—rBt(y+¢)
—g~F {03 [rin6+r8~1 (1—7y—¢,)] —ro? 1n9}

also simplifies to 0, which confirms the known regularity of (2.16). For the expectations of
the second-order partial derivatives in (2.22) to (2.24), Watkins & John (2006) obtain

p[25] = -,
2,7 _

E[a‘i)aﬁ = 0 {1—y—¢y},

E 32lr: _ _p [ 1 2_9201 ;
[5? = —rB {€+( -7 = —7)¢1+¢2},

these results yield the Type II censored EFI matrix as

A, = ( Argo Arep
Ar,0ﬂ Ar,ﬂﬂ
- rpe (2.27)
—r6 {1y —¢1} rB2{F+A-1? -2 -Ner+} )
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so that inverting this gives the asymptotic covariance matrix of (@, Er) as

: AP AP
A = ( AP AP )
_ 6 B2 {%2 + (1 =72 =201 - )¢y + ¢2} (2.28)
(72 — 642 + 6¢5) 0{1—~—¢} B2

Oth

We can now compute the asymptotic properties of the 10** percentile function, defined

at (1.32) as
1
Bo1=6(~1n0.9)7 .

In contrast to the exponential distribution, consideration of By ; and its estimator here are
more complicated, as we need. to linearise the above expression. From (2.3), we can obtain-

the linear approximation

§0.1,r"—'Bo.1+(bo bs ) ( %:Z),

b\ _ (2 ) (~1n0.9)#
( b ) - ( %,L ) - ( -6872 (—lno.g)%ln(—lno.g) ) ‘ (2:29)

Thus, on taking expectation, we have, for large samples,

where

E [EO.I,T] o~ B+ bE [gr - 9] +bgE [Er - ﬂ] = Bo.,

and variance, from (2.4), given by

. b
Var (Bo.l,r) ~ (b b5 )AS ( b; ) = B2AP 4 2y A% + b2 APP.

2.3.2 Asymptotic Properties of the MLEs

Here we are interested in the asymptotic properties of 5,, Er and ﬁo.u- From the asymptotic

'~ o~ li
Normality of MLE, (97, ,B,.) is bivariate Normal with mean (6,8)’ and covariance matrix

Al from (2.28). Consequently, individual approximate 95% confidence intervals for § and

B are, respectively,
0, 4+ 1.964/ A%,

and
B, +1.961/ APP.
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9-3, \ )
J ) A, S ~d,
(ﬂ—ﬂ,) (ﬁ—&) =

where the chi-square variate with 2 degrees of freedom, x%, is equivalent to an exponential

Since, asymptotically,

variate with mean 2, Watkins (2004) illustrates that due to the convergence of observed and
expected Fisher information matrices, an approximate 100 (1 — A) % confidence region for
(8, B) can be obtained by calculating the ellipse

9‘?" 3. 0‘?’ = —2ln A\
:B—ﬂ'r ﬁ—IBr ’

where J, is the observed Fisher information matrix. This result depends on unknown 6 and

B, hence in practice we use the estimates 9, and ,BT, and the notation J,.

2.3.3 Complete Sample

For later convenience, it is suitable to summarise here some results for the complete case;
when all n items are observed to fail, we have r = n so that all the terms associated with
subscript ¢ will disappear from the above consideration. The complete likelihood function

n n . 6
L =567 [] X0 exp {— 5 (%) }
=1

i=1

is given by

from which its log-likelihood function is
l=nlnB—nBlnb+ (8 —1)85(0) — 6728, (8), (2.30)

where .
S; (k) = Y. XF (In X;Y’
=1

and, similarly,
aS; (k
J,g ) =841 (k).

As per previously, the relevant components of the score functions are

O gt 4 485150 (6) (231)

and
ol

% nB~! —nlnd+ S; (0) — 0P {S1(B) — (In6)Sp (B)}. (2.32)
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Watkins (1998) computes expectations of second derivatives of (2.30) given by

0%l —2
7 = "B - BB+1)5(8),
82l FoRd) -1, g-p-1
5608 = 2506 = "0 TOTHL-BmOS (8)+ 51 (A)},
2
gﬁé = —nB2—07P{(In6)%So (B) —2In6S1 (B) + 52 (B)},

to give the complete EFI matrix as

[ Ass Aep \ _ nB20~2
e ( Aop App ) - ( —ng {1-7} nB=2{% +(1-7)?} ) (239

We invert A to obtain the completé covariance matrix:

B A% A% 6 [ B262{% +(1-+)?
A1=(Aoﬂ Aﬂﬁ>:W( gfl_’y} } o ) (2.34)

and use this result to compute the variance of §0‘1 from (2.4).

2.3.4 Numerical Examples
Ball Bearings Data

We can illustrate ML estimation of Weibull parameters using the classic ball bearings data
from Table 1.2. Table 2.6 summarises the estimates calculated for various censoring num-
bers, and we note that @, BT and ﬁO.l,r = 5,. (=In 0.9)317 converge on their complete values
in upwards, downwards, and downwards directions respectively, as r approaches n = 23.
Note also that Er > 1 for all r considered; this indicates that the failure rate is increasing
over time. For the estimated standard deviations, g\d(@r) decreases as r rises but shows a
steep increase from r = 20 to 23, in part due to the increase in 9 over 520. g&(ﬁ,) decreases
consistently. In contrast, &i(ﬁo_l,r) increases from r = 8 to 12 and then reduces slightly.
Overall, in 6, 8, By 1, the percentages of change in the values of interim estimates for r = 8
to 12 seem to be more significant than any other jump in r, although the jump sizes are
not the same throughout. We recall from Figure 1.2 that the P-P plot for the uncensored
ball bearings data based on Weibull with § = 81.8783 and 8 = 2.1021 deviates from the
straight line for data values around Xg.o3 to Xig.03, but fits the line well at both ends. This
might have some influence on the values of interim estimates we thus obtained, especially
those calculated at » = 12 and 16. In addition, all interim 95% confidence limits appear to
enclose their final estimates, showing consistency between interim and final results, but it
remains to check if such calculations are appropriate for a sample of size n = 23; this will

be discussed in more details in next chapter.
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r 8 12 16 20 23
X3 51.84 67.80 84.12 105.84 173.40

A 67.6415 75.2168 76.6960 78.9674 81.8783
sd(8,) 9.6143 8.9694 7.8079 7.5906 8.5521
95% CIs | 48.797,86.485 | 57.637,92.797 | 61.393,91.999 | 64.090,93.845 | 65.116,98.640
B, 3.2280 2.6241 2.4695 2.3539 2.1021
sd(B,) 1.0378 0.6797 0.5382 0.4381 0.3417
95% Cls 1.194,5.262 | 1.202.3.956 | 1.4153.524 | 1.4953.213 | 1.432,2.772
Bor 33.6860 31.9063 30.8329 30.3563 28.0694
sd(Bo.1,r) 5.8179 6.6261 6.5860 6.5203 6.4367
95% Cls | 22.283,45.089 | 18.919,44.893 | 17.924,43.741 | 17.576,43.136 | 15.454,40.685

Table 2.6: Summaries of the Weibull MLEs calculated at various r for the ball bearings
data.

Simulations

The theoretical standard deviations obtained from the EFI matrix, see (2.28), need to
checked against finite simulated samples to assure the suitability of the asymptotic approx-
imations. These checks should also be extended to the asymptotic Normal distribution of
the MLEs, which we will study in the next chapter.

We assume an increasing hazard function (so 8 > 1) since, as mostly encountered in
practice, the electromechanical items are more likely to fail as time goes on. We gener-
ate Weibull data with § = 100, 8 = 2, and then compute the MLEs using the procedures
described above. This is repeated 10 times to give 10* estimates from the sampling dis-
tribution of (@,,ﬁ,). Figure 2.6 illustrates the Weibull pdf when # = 100 and 8 = 2;
this distribution is bell-shaped, indicating increasing hazard over time. We note that other
shape parameter values are possible; for example, as illustrated in Figure 1.5, increasing g

“wear out” sooner.

gives a narrower pdf, implying that the items

First, we assess the agreement between the simulated means of (@T, B,.) and their true
values. As shown in Tables 2.7 and 2.8, we see some discrepancies between the true and
observed values for small » and n, which improve as r and n increase. In addition, Tables
2.9 and 2.10 summarise the theoretical and simulated standard deviations for 8, and B,,
respectively. As expected, the standard deviations reduce as r increases. We see, particularly
for Br, at early censoring levels there are large discrepancies between the theoretical and
simulated values, but agreement improves as more items are left to fail. On the other hand,
when we keep the censoring level fixed and vary the sample size, we see that the simulated
standard deviations are closer to their theoretical counterparts as n increases. We also
provide scatter plots of final estimates against interim estimates when n = 50 (Figures 2.7,
2.8, 2.9 and 2.10), where, in general, there are some connections among the four MLEs as
r increases. The linear correlation is particularly evident between 9 and @r, and B and Br,
but is less obvious between § and Br, and B and @r. Again, it would be useful to know,

numerically, how much information about 5,3 we could gain from the interim estimates
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Figure 2.6: Pdf of the Weibull distribution for # = 100 and g8 = 2.
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As for the estimators 5, and Er, Tables 2.11 and 2.12 provide the corresponding statistics

for §0,1,. Since we have used simulated data, we can compare these estimates with the true

value given by

Bo.1 = 100 (—1n0.9)% = 32.4593.

We see that, for all n and r, the similarity between the simulated sample mean of §0,1,r

and its true value is generally good; the highest relative margin of error between theory

and simulation is 7% (when r = 10,n = 25), but is generally less than 2% in most cases.

We note that the standard deviations decrease as r increases. We also see excellent agree-

ment between simnulated and theoretical standard deviations of 30,1,, even with very early

T n
25 50 100 1000 2500 5000
0.2n | 88.1007 | 93.7863 | 97.2542 | 99.5719 | 99.9308 | 99.9617
0.4n | 95.6636 | 97.5939 | 98.9468 | 99.8468 | 99.9850 | 99.9879
0.6n | 98.0182 | 98.8529 | 99.5528 | 99.9658 | 99.9780 | 99.9831
0.8n | 99.1820 | 99.4875 | 99.8805 | 99.9732 | 99.9844 | 99.9904
1.0n | 99.8106 | 99.8111 | 100.0393 | 99.9995 | 99.9913 | 99.9934

Table 2.7: Simulated means of &, for various r,n, for Weibull data generated with 6 =

100,8 = 2.
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r

n

25

50

100

1000

2500

5000

0.2n

3.2060

2.4784

2.2102

2.0218

2.0060

2.0032

0.4n

2.4367

2.2038

2.0964

2.0100

2.0022

2.0012

0.6n

2.2505

2.1236

2.0611

2.0051

2.0017

2.0010

0.8n

2.1663

2.0824

2.0413

2.0042

2.0012

2.0007

1.0n

2.1137

2.0567

2.0296

2.0024

2.0006

2.0004

Table 2.8: Simulated means of ,3, for various r,n, for Weibull data generated with 8 =

100,8 = 2.

25 50 100 1000 2500 5000
0.2n | 37.1703 | 27.3761 | 19.8032 | 6.4021 | 4.0552 | 2.8690
38.4271 | 27.9356 | 20.2001 | 6.4176 | 4.0930 | 2.9025
0.4n | 19.2607 | 13.8102 | 9.8385 | 3.1332 | 1.9825 | 1.4021
19.2340 | 13.7300 | 9.7953 | 3.1222 | 2.0001 | 1.4162
0.6n | 13.3729 | 9.4857 | 6.7187 | 2.1280 | 1.3460 | 0.9518
13.2336 | 9.4461 | 6.7349 | 2.1111 | 1.3430 | 0.9585
0.8n | 11.1975 | 7.9158 | 5.5967 | 1.7696 | 1.1192 | 0.7914
11.1167 | 7.9040 | 5.5842 | 1.7659 | 1.1289 | 0.7950
1.0n | 10.5293 | 7.4454 | 5.2647 | 1.6648 | 1.0529 | 0.7445
10.5112 | 7.4529 | 5.2606 | 1.6629 | 1.0653 | 0.7461

Table 2.9: Theoretical (upper) and simulated (lower) standard deviations of 8, for various
r,n, for Weibull data generated with § = 100,58 = 2.

r

n

25

50

100

1000

2500

5000

0.2n

0.8079
2.0788

0.5911
0.9105

0.4262
0.5148

0.1374
0.1399

0.0870
0.0884

0.0615
0.0625

0.4n

0.5756
0.8652

0.4140
0.5044

0.2955
0.3227

0.0942
0.0941

0.0596
0.0603

0.0422
0.0426

0.6n

0.4590
0.5888

0.3278
0.3727

0.2331
0.2463

0.0741
0.0737

0.0469
0.0472

0.0331
0.0336

0.8n

0.3807
0.4558

0.2708
0.2947

0.1921
0.1990

0.0609
0.0613

0.0385
0.0388

0.0272
0.0273

1.0n

0.3119
0.3547

0.2205
0.2334

0.1559
0.1599

0.0493
0.0497

0.0312
0.0312

0.0221
0.0221

Table 2.10: Theoretical (upper) and simulated (lower) standard deviations of 3, for various
r,n, for Weibull data generated with 8 = 100, 8 = 2. ‘
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r

25

50

100

1000

2500

5000

0.2n

33.9274

33.2509

32.9350

32.5044

32.4602

32.4616

0.4n

34.7536

33.6599

33.1188

32.5241

32.4672

32.4641

0.6n

34.6446

33.5890

33.0936

32.5117

32.4703

32.4666

0.8n

34.4116

33.4514

33.0200

32.5137

32.4714

32.4656

1.0n

34.1427

33.2987

32.9536

32.4975

32.4661

32.4634

Table 2.11: Simulated means of Bo,l,, for various r,n, for Weibull data generated with

6=100,8=2.

T

n

25

50

100

1000

2500

5000

0.2n | 8.8795

8.9479

6.2345
6.2477

4.3937
4.3708

1.3854
1.3824

0.8760
0.8852

0.6194
0.6243

0.4n | 8.6325

8.8804

6.1211
6.1997

4.3355
4.3314

1.3733
1.3732

0.8687
0.8780

0.6143
0.6196

0.6n | 8.3738

8.6531

5.9417
6.0280

4.2094
4.2180

1.3335
1.3380

0.8435
0.8541

0.5965
0.6021

0.8n | 8.0205

8.3324

5.6867
5.7571

4.0269
4.0370

1.2751
1.2852

0.8065
0.8150

0.5703
0.5733

1.0n | 7.5037

7.7938

5.3059
5.3526

3.7519
3.7564

1.1864
1.1983

0.7504
0.7566

0.5306
0.5337

Table 2.12: Theoretical (upper) and simulated (lower) standard deviations of BO.I,r for
various r, n, for Weibull data generated with 6 = 100, 8 = 2.
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censoring and regardless of the discrepancies we have observed in B,. Figure 2.11 shows
the scatter plots of EO.I against §0,1,, for various r when n = 50. Strikingly, the linear
behaviour here is quite strong even for low censoring levels, and is also more evident than
the plots for the MLEs of § and 8. We will investigate this behaviour in more details in
Chapter 5.

2.4 ML Estimation in the Burr Distribution

The applicability of the Burr distribution in simulation modelling is enhanced by the fact
that its cdf (and hence its quantile function) exists in simple closed form, from which
random samples can be generated by the inverse transformation method. Some of the major
contributors to the development of the theory underlying ML estimation for this distribution
have been; for two-parameter case, Wingo (1983) and Watkins (1997) with complete data,
Wingo (1993) and Wang et al. (1996) with Type II censored data; for three-parameter case,
Watkins (1997) with complete data, Watkins (1999) with both complete data and censored
data. Specifically, as far as our case of interest - two-parameter Burr subject to Type II
censoring - is concerned, Wingo (1993) and Wang et al. (1996) have provided only the
observed Fisher information; here, we will derive the EFI matrix explicitly. Without loss
of generality, the likelihood function of a Type II censored sample drawn from the Burr
distribution is

r
L = | [T arXf! (4 X5 ™| 1 X712,
i=1
and the log-likelihood is
lr=rlna+rlnt+ (1 -1)571(0) — (o + 1) Ty — oT, (2.35)
where we now define
T
Ty = Y In(1+X7,),
i=1
T. = (n—r)In(1+X7,).
The remaining notations are concerned with the derivatives of T and T¢:

r (X7)% (In X;.0)®
T a = I P
sabe = BT XT)e
(X;r:n)a (In Xr:n)b

A+ Xr,)e

Tc,abc = (n_"')

so that (for * = f or ¢)
T,
———37_,: =Ty 11k
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when k = 1,2. The conditions necessary for the existence of a stationary point of (2.35)

require the score functions

. 4 B

. = Ty —T. =0, : (2.36)
ol, _

5 = 17 14+841(0) — (@+ 1)Tf111 — oTe111 =0, (2.37)

hold simultaneously. We see that the solution of (2.36) provides

Pr

ar = m, (2.38)
so that inserting this into (2.35) yields the profile log-likelihood
=rlnT+(1=1)8£10) - Ty —rln(Ts+ Ty +r{lnr -1}, (2.39)
with first and second derivatives
% =r7 4+ .871(0) = Tran — 7 {—Tf 111,; j: %1“ } (2.40)
and 27x 2
‘fhl; R {Tmzzi 1%122 B (Tf,;; ::'_ f;z,m> } ‘

We can now find the roots of (2.40) using the Newton-Raphson approach. With 7, thus
calculated, MLE of o, can be determined from (2.38) with 7 = 7. As previously noted,
Wingo (1993) computes the second-order partial derivatives of (2.35), which are given by

2
gal; = -ra”, (2.41)
0?1, o2,
dadr . drda (T + Tean) (2.42)
8%l, _
5.2 . T 2 — (@4 )Tf 122 — aTe122, (2.43)

and states that the exact mathematical expressions for the expected values of (2.42) and
(2.43) are very difficult to obtain.

2.4.1 Regularity and EFI Matrix

We develop the discussion in Wingo (1993), adapting the work of Watkins (1997) and
Watkins & John (2006). As with the Weibull distribution in Section 2.3.1 above, in order

to write down the expected values of all derivatives we will require expectations of the form
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given at (2.25), where the g (X.,) now are

X:n ln Xi:n and X;’m(ln Xi:n)2

) T
In Xz:n, In (1 + X”'m’) 1 + X,;rn ’ (1 + X;'r'”')z .

We can use (1.49) to state expectations of (2.25) in terms of E [g (X1.;)], for which they are
usually the most direct to compute. Then, expectation of the first part in (2.25) may be
written as

X Blo (i) = £ (-1 (") (757 g (Krmaa-)], (2.44)

1=

and expectation of the second part in (2.25) becomes
(=Bl (Xra)] = (n=1) (1) (2D Els (Kimsa)
e R B,
so that combining these results gives expectation of (2.25) as
(0= i+ 1) £ (75 Elg (Kronir—)]
= n ) R Bl (Knacd)] (2.45)
see Watkins & John (2006).

Expectations in Derivatives

We can now exploit the link between the distribution of the first order statistic and the
underlying distribution to proceed. We first show that Y;., = 1+ X7, follows a Pareto
distribution with pdf ay—(e+1), (y > 1): we have

Pr{Yin Sy} =Pr{Xin S (y— )7} =1-[1+ @ -1 " =1-y"

from (1.43c), which gives (1.43d) on rearranging. Then, from Section 1.3.2.4, In Y., has an

exponential distribution with mean (an)~!. We thus obtain
Elln(1+X],)] = —. (2.46)
L:in an

For E[ln X3.,], we have, based on (1.36),

(an—2)T(1+2)
I (an)

T
E(XT,)=
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so that, using (1.2), differentiating this wrt p yields

I(n=2)I'(1+2) - (n- BT (1+2)

P —
E[X}, InX1.,] = T (am) , (2.47)
and evaluating this expectation at p = 0 gives (from Table 1.6)
Eln Xyon] = — {ﬁ—fﬂ} . (2.48)

Next, as in Watkins (1997), we write expectations as E,, to emphasise the role of an
in the pdf of the first Burr order statistic:

f(l) (z;an,T) = antz™ 1 1+ zf)-(an+1)
.so th‘a,t. -
= a:i 7 /:o 2" (Inz) (an + )77 (1 + :r'r)_(a"+2) e
- a:i 1 /ooo 7" (lnz) f(1)(f'3§an+1,7')da:
= %LEMH [XTn In X1.0] .

Consequently, using (2.47) with p = 7 and an replaced by an + 1, we arrive at

Bt (X7 In Xyp] = LM =T(an)'(2)

l(an + 1)
_ D(en) (1 —9) —¢(an) [(an)
TanI'(an)
_ 1-y-y(em)
anT

and the expression for the third expectation is given by

(2.49)

B [X{mlnle] _ 1—7—1/1(0172)-

1+ X7, T(an +1)
A similar approach is employed to obtain the final expectation; we have

E,. {Xi’m(ln le)z]

(1+X7.,)?
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given by
©a"(lnx)? . m\—(an+1
A manm; (1 +z ) (an )d.T
— an * T 2 7—1 y—(an+3)
an+2/0 z"(Inz)*(an +2)7z" " (1 +z") dx
= an T 2 .
. /0 27 (Inz)f (a5 0m + 2, 7)dz
an .
= on + 2Ean+2 [le(lnle)z]
an T4 y? -2y —2(1—y)y (an +1)
3 N , , (2.50)
72 (an+1) (an + 2) + [ (an+1))° + 9 (an + 1)

at which, based on (1.3) and Table 1.6,

IF'an+1)T"(2) = 2I" (an+ 1) IV (2) + IV (an + 1) T (2)

Ean+2 [X{;n(ln Xl:n)2] =

72T (an + 2)
_ M@ -H(en+ Y @)+ on+ VP +¢/ (an+ 1)
72 (an + 1)
_ B+ -2y —20 -y (en+1)+ [ (on+ P+ (an+1)
72 (an + 1)

obtained upon replacing p by 7 and an by an + 2 in (2.47).

Expectations of the Score

Having found the expressions for F[g(Xi.,)], we now check that the expectations of the
score functions are in fact zero. For (2.36), we have

E[T;+T)] = ; Eln(l + XL)] + (n — ) E [In(l + X7,,)]

11— r—t

- nzlzl(—-l)'“i('?"ll)("”i_.l)E[ln(1+X{m+1_,—)] from (2.45)

= o SNy om 249

= ra’!
because the sum of indices is
- r—i(m—1\ (n—i— n L r—i —i—
z'=21(_1) (2) (%) (n+il—i) YD) (S = (2.51)

i=1

see Watkins & John (2006). Thus, taking expectation in (2.36), we obtain

o] _ -1 -1_
E[a—a]—-ra ETf+T])=ra " —ra" =0,
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as required.
For (2.37), we first write

ol _
5 =17 +8,1(0) — @ (Tram + Toun) = Tram,

and see that, from (2.44),

r

ElSO] = R(07(0) (5 En Xingad]
= SN B I X

and

(T & rmig e\ iy o | Xl X1 |
E[Tn] = '21(—1) (™) (i E[ Tt + ]
1=

I+ X{nt1
— i (_l)r—i (1'.1.—-1) (n~i—'—1 n E X{;n+1_i In Xl:n+1—'i
=1 AT In 1 14+ X ’

while, from (2.45),

T i ey i\ o | X Tnp1—i 10 X1t 1
E [Ty + Teau] = n 3 (-1 (3 (”r:,-l)E[ e et B
=1

1+ X1

In particular, we express, using (2.48) and (2.49),

—n_-'E (I X1mp1s] — anE XlT:n+1—@-1nX1;n+1—i} _ n . [X{:,H_l__i In X1:n41—5
n+1—1 1+ X701 n+1-—1 1+ X701

- "

T r(n+1-4)

Thus, taking expectation in (2.37) yields

ol
E [6_;] = rr 1+ E[S;1(0)] — oF [Tf111 + Te11] — E [T111]

o=l N~y qyr—i(n—1} (n—i-1 n
=T i;( ) (30) ("5 )—T(n—i-l—i)

-1 1

= r7 " —-7rT

from (2.51), so that this expectation is 0, as expected from the regularity consideration.
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Expectations of Second Derivatives

In addition to E [Tf111 + Te111] in (2.42), we will need, for (2.43), aE [Tf122 + Tc122] +
E [T},122], which is given by

T i 1 (i XTp1—i(n X1np1-4)2
an (_1)1' % 7.1,_‘1 n iil E|: lin+41—3 .
.Z: G550 1+ XTp1-4)

B n X7, _-(lnXl:n+l—i)2
+ (-1 g E[ .
El( i Gy e )n+1—z A+ XTpyy4)?

-2 Z r—i(m—1\ /m—i—1 1
= -1 ! X
noT El( (S )a(n-l—l i)+ 2

{ T2y 201 —-y¢(a(n+1-i)+1) }
+[w(a(n+1—z>+1)]2+¢’(a(n+1—z)+1)

Then, the expectatlons of (2.41) to (2.43) can now be expressed - using (2 49) and (2. 50)
as

97
E [% = —ra’?
92, ] )
E ar| = TV {Q =) poo—ror}s
&L, ] -2 o f(7® 2
E 2| = "7 —net 3 +9° =27 ) p1o—2(1 = V)p11 + P12+ P11 s

where we find it convenient to define

& pignty iy [ (@ (1= ) £ )"
Prm = L (1) (o) (7 1)a(n+1—i)+k+1’
e P Vi [y [ (a(n+1-i)+ k)"

=/ a(n+l1-i)+k+1 "’

for k =0,1 and m = 0,1, 2. Furthermore, writing

72
Q, = (? +~% - 27) P10 — 21 =Y)p11+ P12+ P11

we immediately obtain the Type II censored EFI matrix as
A _ Ar,aa Ar,a‘r
, =
A’r,a‘r AT‘ YT T

ror2
_ , 2.52
( nt {1 - %) poo — Lo} r72 + nat2Q, ) (2:52)
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and inverting the above yields the corresponding covariance matrix as

A_]_ _ Aga AgT
-
Ag‘l’ A;’T
1
12 1 rnaf, —n2a? {(1— ) pog — P01}

2 3
( ra” + nopl, ) . (2.53)

—nra? {(1—7)poo—po1} 772

Using these results, we also can obtain the moments of the asymptotic distribution for
the estimator of the 10" percentile, based on a first order Taylor series expansion of (1.35);
we have, from (2.3),

EOELT ~ (0.9-% - 1)

A=
+

/N
o

R

s
N— -
N
X Q.
373
I
N Q
N——

with which
1_
( Za ) _ ( jgj ) _ [ a2 (0. —lé — 1)l ! (0. -1% 1n0.9) 254
r or 72 (0.9-: - 1) "In (0.9-3 - 1)

Therefore, on taking expected values, we have
E [§0.1,T] ~ Bo1+ baE [ar - a] +bE [?r - T] = Bo.,

and variance given by

Var (Eo.m) ~ ( ba br )A;l ( Za ) = b AP + 2bab ATT + B2ATT,

r

obtained from appropriate application of (2.4).

2.4.2 Asymptotic Properties of the MLEs

We are now in the position to write down the asymptotic distribution of the Burr parameters;
(a,,?,)' follows the bivariate Normal distribution with mean (c, 7')' and covariance matrix

given at (2.53). Thus, we may obtain an approximate 95% confidence region for (a,7) by

!
( @ ) 3, ( aTor ) = —2In0.05.
T_Trr T_Tlr

calculating the ellipse
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2.4.3 Complete Sample

For later convenience, we briefly present here some results for the complete sampling. Here,
the likelihood is "
L= ] arX] (1 +X])" D),

i=1
and the log-likelihood is

I=nlna+nlnt+(r-1)51(0) — (e + 1) T, (2.55)

with two partial derivatives given by

ol

—— = -1 —_ =
£ na"—T=0, (2.56)
5 = nt1 +81(0) — (@ + 1) Ti1 =0, (2.57)

where

T = Y In(1+X]),
=1

n (X7)* (In X;)°
T = AP/ Ao
abe 2=21 (1 ¥ X;,-)c

We also list below the second-order partial derivatives of (2.55):

8%l _ —
g = T
8%l _ %l __T
dadr 010 1P
0% 9
52 = —n7"* — (a4 1)T122.

Watkins (1997) computes the following results:

EhX] = - {L’/’(Q)}

Eln(1+X7)] = a7},
E[XTlnX] _ 1—y—9¢ ()

1+ X7 T(a+1) ~’
E X"(nx)?*] _ a T2 =2y —2(1— 7)Y (a+1) '
(1+X7)? m2(a+1)(a+2) + [ (a+ D>+ ¢ (a+1)

Using these, we have, with

2

Q=6

+92 =2y =21 = Y)p(a+ 1) + [ (e + 1)]* + ¢/ (e + 1),
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the uncensored EFI matrix given by

A= ( Aaa AaT ) = ( n lﬁ,ya::a -2 a ) ) (2-58)
Aa‘r A‘r‘r _{—‘rm§_ll nt {1+a_+29}

and the associated covariance matrix given by

Al (Aaa Aa'r)
AGT A‘TT ‘
(a+1)(a+2)
n{@+17(@+2) +al@+1’Q-a?(@+2) 1 -y -y}

X(a2(a+1){1+a%9} )
=t {l—y=(@)} T*(a+1) )

(2:59)

2.4.4 Numerical Examples
Arthritic Patients Data

We first use the arthritic patients data given in Table 1.3, and note that the Burr P-P plot
for these data fits well to a straight line (see Figure 1.3); see Appendix B for details of
the SAS IML algorithm used to locate the MLEs of the Burr parameters and By ;. Table

1
2.13 gives a summary of &,, 7, and §O.1,r = (0.9_’0“17 - 1) r calculated at several censoring
values for these n = 50 relief times. It is observed that the interim estimates converge to
their final values as r tends to 50, in which the convergence in « is the most volatile, followed
by 7 and then Bp;. In fact, a plot of EO.I,r against r would be close to a flat line. The
volatility is particularly high when r increases from 10 to 20, and then reduces gradually
for each subsequent rise (of size 10) in r. Consequently, we see large 521(&) relative to
Q, at the 10" and 20* failure, which, in turn, leads to a negative 95% confidence limit
for a obtained by assuming that asymptotic Normality holds here. However, we will later
investigate the suitability of Normality assumption for parameters and By, for sample sizes
as small as the arthritic patients data. In contrast, we note steadily decreasing estimated

standard deviations for 7, and EO.M.

Simulations

As previously mentioned at (1.36), the moment Yy for the Burr distribution exists provided
that at > p, and, since we are often interested at the first two moments we will require
at > 2. Next, we take o = 4,7 = 3 and run some simulations to validate the theoretical
expressions for means and standard deviations of the estimators @&, and 7., based on 104
replications. Figure 2.12 shows the shape of the Burr pdf for such simulation. We note that
other values of o and 7 are possible; see, for instance, Figures 1.6 and 1.7 for the effect of
varying o and 7 on the shape of the Burr pdf. However, with ar = 12 > 2, simulations
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r 10 20 30 40 50

Xre50 0.49 0.57 0.64 0.73 0.87

ar 4.5450 7.9878 8.9031 7.7911 8.2681
sd(@y) 4.0266 4.6839 3.6191 2.1342 1.6837
95% CIs | -3.347,12.437 | -1.193,17.168 | 1.810,15.997 | 3.608,11.974 | 4.968,11.568
™ 4.1860 4.8626 4.9997 4.8490 5.0006
Sd(7y) 1.1833 0.9587 0.7707 0.6053 0.5045
95% CIs | 1.867,6.505 | 2.984,6.742 | 3.489,6.510 | 3.663,6.035 | 4.012,5.990
Bois 0.4080 0.4112 0.4112 0.4113 0.4185
sd(Bo1,r) 0.0380 0.0321 0.0303 0.0297 0.0272
95% CIs | 0.333,0.483 | 0.348,0.474 | 0.353,0.472 | 0.354,0.471 | 0.365,0.472

Table 2.13: Summaries of the Burr MLEs calculated at various r for the arthritic patients
data.

T n

25 50 100 1000 2500 | 5000
0.2n | 134.7855 | 36.5905 | 8.6449 | 4.2097 | 4.0759 | 4.0405
0.4n | 13.5455 | 5.9973 | 4.7773 | 4.0613 | 4.0227 | 4.0125
0.6n 6.1467 | 4.7217 | 4.3112 | 4.0291 | 4.0113 | 4.0064
0.8n 4.8061 | 4.3339 | 4.1539 | 4.0133 | 4.0069 | 4.0041
1.0n 4.3969 | 4.1808 | 4.0800 | 4.0082 { 4.0039 | 4.0025

Table 2.14: Simulated means of &, for various r, n, for Burr data generated with o = 4,7 = 3.

are much more controlled than, say, with a and 7 close to 0, and hence we stand at a good
chance of getting asymptotically valid agreement between theory and simulation.

Results for simulated means are shown in Table 2.14 for &, and Table 2.15 for Tr; and for
theoretical and simulated standard deviations are shown in Table 2.16 for &, and Table 2.17
for 7,. In general, for small samples with low censoring levels, &, and 7, do not agree with
their true values very well at all, although the disagreement is less severe for 7. In fact, for
Gy, it is only really for a sample size of 1000 that we begin to observe agreement between
simulated and theoretical means, for any value of r we have considered. We also note in
Figure 2.13 certain replications with large estimates of c; such values will clearly affect
the sample mean and standard deviation. The effect is stronger when r is low, generally
< 0.4n, because the lower the censoring level, the less information we have, thus increasing
the chance of obtaining an unusually large @,. As shown in Table 2.16, there are quite
large discrepancies between the simulated and theoretical standard deviation values at early
censoring levels, but discrepancy reduces as r increases. Figures 2.13, 2.14, 2.15 and 2.16
show scatter plots for four combinations of final estimates against interim estimates when
n = 50. In general, there is some link of varied strength between the two sets of estimates,
although this is partly distorted by large standard deviations of &, when r < 0.4n. As
before, we wish to determine if we can make inferences on final estimates, & and 7, given

interim estimates, @, and 7.
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Figure 2.12: Pdf of the Burr distribution for &« = 4 and 7 = 3.

r

n

25

50

100

1000

2500

5000

0.2n

4.7524

3.6854

3.3058

3.0275

3.0103

3.0058

0.4n

3.6317

3.2695

3.1372

3.0121

3.0047

3.0027

0.6n

3.3519

3.1592

3.0806

3.0076

3.0032

3.0019

0.8n

3.2252

3.1004

3.0529

3.0042

3.0025

3.0015

1.0n

3.1473

3.0653

3.0352

3.0031

3.0016

3.0010

Table 2.15: Simulated means of 7, for various 7, n, for Burr data generated with o = 4,7 = 3.

T n
25 50 100 1000 | 2500 | 5000

0.2n 4.5732 3.3881 | 2.4590 | 0.7976 | 0.5053 | 0.3575

453.4663 | 206.5771 | 21.4551 | 0.9054 | 0.5242 | 0.3654

0.4n 2.4557 1.7754 | 1.2704 | 0.4062 | 0.2571 | 0.1819

73.8326 5.9415 | 2.0405 | 0.4219 | 0.2586 | 0.1832

0.6n 1.5981 1.1426 | 0.8126 | 0.2584 | 0.1635 | 0.1156

10.3940 1.9311 | 1.0123 | 0.2584 | 0.1640 | 0.1152

0.8n 1.1473 0.8148 | 0.5775 | 0.1830 | 0.1158 | 0.0819

2.2064 1.0342 | 0.6598 | 0.1816 | 0.1158 | 0.0819

1.0n 0.8880 0.6279 | 0.4440 | 0.1404 | 0.0888 | 0.0628

1.2002 0.7293 | 0.4744 | 0.1387 | 0.0888 | 0.0623

Table 2.16: Theoretical (upper) and simulated (lower) standard deviations of &, for various
r,n, for Burr data generated with o = 4,7 = 3.
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r n
25 50 100 1000 | 2500 | 5000
0.2n | 1.1508 | 0.8448 | 0.6103 | 0.1971 | 0.1249 | 0.0883
2.8447 | 1.3481 | 0.7538 | 0.2016 | 0.1252 | 0.0890
0.4n | 0.8013 | 0.5775 | 0.4125 | 0.1317 | 0.0834 | 0.0590
1.2326 | 0.6970 | 0.4543 | 0.1327 | 0.0830 | 0.0591
0.6n | 0.6291 | 0.4496 | 0.3197 | 0.1016 | 0.0643 | 0.0455
0.8130 | 0.5068 | 0.3376 | 0.1012 | 0.0643 | 0.0453
0.8n | 0.5181 | 0.3683 | 0.2612 | 0.0828 | 0.0524 | 0.0370
0.6160 | 0.3946 | 0.2714 | 0.0825 | 0.0527 | 0.0369
1.0n | 0.4335 | 0.3065 | 0.2168 | 0.0685 | 0.0434 | 0.0307
0.4914 | 0.3237 | 0.2214 | 0.0681 | 0.0435 | 0.0303

Table 2.17: Theoretical (upper) and simulated (lower) standard deviations of #, for various
r,n, for Burr data generated with a= 4,‘7' =3

T n
' 25 50 100 1000 { 2500 | 5000

0.2n | 0.3064 | 0.3020 | 0.3011 | 0.2990 | 0.2989 | 0.2989
0.4n | 0.3115 | 0.3046 | 0.3024 | 0.2991 | 0.2990 | 0.2989
0.6n | 0.3108 | 0.3043 | 0.3021 | 0.2991 | 0.2990 | 0.2989
0.8n | 0.3092 | 0.3034 | 0.3017 { 0.2990 | 0.2990 | 0.2989
1.0n | 0.3071 | 0.3023 | 0.3011 | 0.2990 | 0.2989 | 0.2989

Table 2.18: Simulated means of Bo,u for various r,n, for Burr data generated with a =
4,7 =3.

When we examine results for §0,1,., in Tables 2.18 and 2.19, we observe simulated means

converge to the true value of
. 1
Boy = (097 —1)" = 02988,

as n and r increase, together with decreasing standard deviations. It is somewhat surprising
to note that large estimates of a do not seem to affect the estimates of By 1, and the largest
relative margin of error between theoretical and simulated mean is just 4%, and 2.62% for -
standard deviation. As before, Figure 2.17 displays the relationship between Bo1 and §0.l,r

when n is 50, in which we see clear linear pattern even for low censoring levels.
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r n
25 50 100 1000 | 2500 | 5000
0.2n | 0.0555 | 0.0390 | 0.0275 | 0.0087 | 0.0055 | 0.0039
0.0557 | 0.0386 | 0.0274 | 0.0087 | 0.0055 | 0.0039
0.4n | 0.0538 | 0.0382 | 0.0270 | 0.0086 | 0.0054 | 0.0038
0.0548 | 0.0382 | 0.0271 | 0.0086 | 0.0054 | 0.0038
0.6n | 0.0519 | 0.0369 | 0.0261 | 0.0083 | 0.0052 | 0.0037
0.0531 | 0.0370 | 0.0262 | 0.0083 | 0.0052 | 0.0037
0.8n | 0.0496 | 0.0352 | 0.0249 | 0.0079 | 0.0050 | 0.0035
0.0509 { 0.0353 | 0.0251 | 0.0079 | 0.0050 | 0.0035
1.0n | 0.0470 | 0.0332 | 0.0235 | 0.0074 | 0.0047 | 0.0033
0.0481 | 0.0333 | 0.0237 | 0.0074 | 0.0047 | 0.0033

Table 2.19: Theoretical (upper) and simulated (lower) standard deviations of By, for
various r,n, for Burr data generated with o = 4,7 = 3.

2.5 Chapter Summary and Conclusions

In this chapter, we outlined the theory necessary to fit exponential, Weibull and Burr
distributions to Type II censored data using maximum likelihood techniques. In each case,
we confirmed the regularity conditions and obtained suitable formulae for the elements of
the EFI matrix analytically; the inverses of the matrices providing us with asymptotically
valid variances and covariances of the MLEs of the model parameters, as well as variances
of functions of the parameters, such as Bpi. In particular, we have made progress from
Wingo (1993) to derive analytical expressions for the elements of the EFI matrix for Type
IT censored Burr data. Naturally, it would be of interest to extend the two-parameter Burr
to a three-parameter model by introducing a (natural) scale parameter ¢ in many different
ways. In Tadikamalla (1980), one of these is to consider Y = ¢X for ¢ > 0, where X is a
random variable following (1.34). Then, the random variable Y > 0 will have pdf and cdf
defined, respectively, by

or s\
fwand) =S 1+ (4)] (2.60)
and
Fy;0,7,4)=1— [1 + (%)T] - (2.61)

Inevitably, here the statistical analysis, like the derivation of the Type II censored EFI
matrix, will be much more involved, and hence is considered elsewhere.

We have constructed a set of simulations to check such approximations to the moments of
the MLEs and -§0.1,'r for various sample sizes and censoring levels, and noted good agreement
between the theoretical approximations and simulated values, which improves as n and r
increase. We have also shown that, perhaps surprisingly, the agreement for the moments of
§0_1,,. is generally better than those of the MLEs.
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We have computed the approximate 95% confidence intervals for parameters and By
for published data mentioned in Chapter 1, assuming that asymptotic Normality of MLEs
holds for small samples. But are these large sample theory approximations suitable in the
inference of small to moderate samples, such as the ball bearings data? In the following
chapter, we consider the implications of asymptotic Normality, and more importantly, the
extent to which this large sample result holds for samples of small size, subject to Type
IT censoring. Where the sample size is too small for Normality to be assumed, we also
discuss the use of relative likelihood function as an alternative to measure the precision of
the MLEs. As well as being asymptotically equivalent to the Normal confidence regions,
studies by Watkins (2004) and Chua et al. (2007), for example, have shown that relative
likelihood contours reflect more accurately the behaviour of the distributions of MLEs for
relatively small samples.

Following the observation in Tables 2.1, 2.6 and 2.13, and, as discussed for all scatter
plots of final estimates of parameters and By ; against interim estimates, we wish to find the
extent to which a censored estimate, obtained in an interim ahalysis, can be regarded as a
reliable guide to complete estimate, obtained when the last item fails. In Chapter 5 we will
be investigating the relationship between the two sets of estimates of parameters and By,

using results on expectations of various functions of order statistics found from Chapter 4.



Chapter 3

Small Sample Properties of

Maximum Likelihood Estlmators
for Type II Censored Data

3.1 Introduction

We have already mentioned asymptotic properties of the MLEs (for instance, see Cox &
Hinkley, 1974), and like many other authors (see Meeker & Nelson, 1977 for example)
we used these properties to obtain approximate confidence intervals for parameters and
for By 1. In particular, this asymptotic theory implies symmetric confidence intervals for a
single parameter or quantity, and elliptical confidence regions for two. Billmann et al. (1972)
give confidence limits for the Weibull parameters from Type II censored samples, for sample
sizes n = 40, 60, 80,100,120 with r = 0.5n,0.75n,1.0n, based on N = 4000 replications.
They note that their sampling distributions of @ and Br are not close to Normal for small
samples, say, where n is less than 100, but there is no mention on how large a sample needs
to be for this large-sample approximation to hold. Hence, it is now appropriate to assess
the progress of the MLEs of parameters to Normality. The relevance and importance of the
percentile Bp 1 has been introduced in chapter one and two. Naturally, it is also of interest
to extend the Normality checks to the sampling distribution of §0,1_T.

Chua et al. (2007) consider two issues emerging from the above, with the first part
focusing on the progress towards Normality (the problem), and the second part dealing
primarily with the use of relative likelihood contour as an approximate confidence region
(a possible solution). As outlined in Lawless (1982), likelihood function is usually used to
examine the whole range of possible parameter values, and to investigate which values are
plausible and which are implausible in the light of the data. In particular, relative likelihood
function ranks possible parameter values according to their consistency with the observed
data, and, as Kalbfleisch (1979) has discussed, contour plots of relative likelihood function

may be used to obtain confidence regions for a sample, including the possibility of censoring.



3.2. TESTS OF UNIVARIATE NORMALITY 80

In this chapter, we will not necessarily be looking to test Normality at any given sample
size, but instead to show, by means of a detailed simulation study with N = 10%, that
at small sample sizes the MLEs of parameters and By, are non-Normal, and eventually
when the sample size increases, the MLEs become Normally distributed. We also aim to
illustrate the effects of varying r on the convergence to asymptotic Normality, and, on the
shape and size of the relative likelihood contours. Section 3.2 investigates the extent to
which univariate Normality of the MLE applies in finite samples based on Type II censored
exponential, Weibull and Burr data. In Section 3.3, we extend the study to testing for
bivariate Normality in Weibull and Burr MLEs. Then, in Section 3.4, we consider the use
of relative likelihood function as a method for obtaining confidence regions of the sampling
distribution of MLEs in small samples of varying sizes. For consistency, we use the six

sample sizes and censoring proportions given in Chapter 2.

3.2 Tests of Univariate Normality

Numerous tests for assessing Normality, including both univariate and multivariate Nor-
mality, exist in the literature; each has its relative strengths and weaknesses. In summary,
numerical analyses include moment-type tests, general goodness of fit tests (tests based on
empirical distribution function, the Kolmogorov-Smirnov test, and so forth), and other tests
specifically derived to detect outliers; see, for example, D’Agostino & Stephens (1986).

Recent reviews on testing for Normality (Thode, 2002 and Srivastava & Mudholkar,
2003, for example) tend to focus on procedures based on the sample moments, we will
consider the skewness (y;) and kurtosis (vyy) statistics of the distribution of MLE in this
thesis. In particular, for a sample of N values 7y, ..., 7y the sample estimates of skewness
and kurtosis are, respectively, from (1.25) and (1.26),

m
91=S—§
and .
_my
92‘—§4-7

where my is the pth sample moment about the mean given by

N P
> (ﬁ, —ﬁ)
* __ 1,=1

my, = — N
so that

M

M=

-

N

is the sample mean, and §? = m} is the sample variance. Hence, values of g; and go close
p ) 2 P g g

©
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to 0 and 3, respectively, are consistent with Normality. We further refer to D’Agostino
& Pearson (1973) for the K? statistic, originally discussed in D’Agostino (1971), which
combines g; and g2 as an omnibus test for univariate Normality. By omnibus, we mean it

is able to detect deviations from Normality due to either skewness or kurtosis; we have

K2={Z(g)Y +{Z ()}, (3.1)

where Z (g1) and Z (g2) are suitably standardised and Normalised measures of skewness and
kurtosis. Hence, under the hypothesis that the marginal distribution of a MLE is Normal,
we have K2 ~ x%, so that we can assess the marginal Normality of 7, via the critical value

—2In A

for an upper tail probability of . Since X395 = 5.9915, K? < 5.9915 indicates the

possibility of univariate Normality. This procedure has the computational advantages that
skewness and kurtosis measures are readily supplied by many standard statistical packages
(SAS and SPSS) as well as by Excel, and D’Agostino et al. (1990) also provide a simple
SAS macro programme to implement the K2 test.

It is always useful to include a graphical inspection of the data in conjunction with
a formal test. Classic methods include probability plots, and regression and correlation
tests. Since we are mainly concerned with progress towards Normality and symmetrical
confidence limits in the context of single MLE, we use histogram overlaid with the best-
fit Normal curve as a display of the distribution of the sample. This shows clearly the
frequency of observations within bins, and also allows us to observe easily features like
skewness, spread, outliers and multimodality in the sampling distribution. Thus, for each
MLE, we will investigate the symmetry around the probability intervals, calculated from
asymptotic Normality theory, with the focus on the effects of varying r on the rate at which
the MLE approaches Normality. In our simulation experiments with N = 10%, and suppose
this large-sample result holds, we would expect to find 95% x 10% of the estimates within
the 95% limits, 2.5% x 10% to lie below and 2.5% x 10* to lie above the limits.

3.2.1 Simulation Study: the Exponential Distribution

As shown in Table 2.1 for the failure times data with n = 49, the approximate 95% confidence
intervals for 8 and By are, respectively, (77.370, 146.860) and (8.152,15.473) when r = 40,
assuming that the asymptotic theory of MLE held for a sample of this size. However, the
quest‘ion is can we safely exploit Normality in inference of small to moderate samples, such
as the failure times data.

For our investigation the parameter value was chosen to be 8 = 100, and we take
r = 0.8n so that the experiments were terminated after 80% of the items fails; we may

again omit the analysis of By 1 since this percentile is linearly related to 6 via (1.29). Figure
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Figure 3.1: Histograms of #0.8n for various n, for exponential data generated with 0 = 100.



3.2. TESTS OF UNIVARIATE NORMALITY 83

95% prob. intervals
Below | Within | Above
4.4995 | 291.4154 130 9518 352
3.5058 | 203.0899 168 9474 358

n 91 Z (g91) 92 Z (g2) K*

25 0.4196 | 16.4672 | 3.2445
50 0.3478 | 13.8130 | 3.1852

100 | 0.2235 | 9.0210 | 3.0147 | 0.3343 | 81.4904 188 9474 338
1000 | 0.0711 | 2.8997 | 3.0740 | 1.4947 | 10.6421 240 9473 287
2500 | 0.0507 | 2.0709 [ 3.0032 | 0.1022 4.2991 244 9505 251
5000 | 0.0472 | 1.9280 | 2.9677 | -0.6340 4.1191 230 9524 246

Table 3.1: Summary statistics for Bo.8r for various n, for exponential data generated with

6 = 100.

n r=02n | r=04n | r=06n | r=08n | r=1.0n
25 1409.3486 | 788.5079 | 484.5088 | 291.4154 | 269.7868
50 807.6852 | 406.5420 | 276.7434 | 203.0899 | 143.3069
100 | 298.0283 | 160.4063 | 118.8980 | 81:4904 | - 59.7064 |
1000 15.9070 6.3177 | 14.2387 | 10.6421 | 10.8260
2500 33.3457 8.5319 | 10.6261 | 4.2991 | 4.3223
5000 18.0613 | 13.9747 | 3.8181 | 4.1191 ( 4.2676

Table 3.2: K? statistics for 8, for various r,n, for exponential data generated with 8 = 100.

3.1 together with summaries in Table 3.1 seem to suggest that as the sample size increases,
the distributions of @0,8,, become more and more Normal, as indicated by the K? values.
At the same time, we see the distributions are less skewed and more centred around the
expected value of 100. As a supplementary check of the distribution, we further examine
how the MLEs spread about 100; this uses the 95% probability limits for 8 given by

100 = 1.96 x 100 x (0.8n)~/2,

obtained from (2.12), which generates symmetric confidence intervals for 6. We then plot
the 10* simulated observations of 5,, and, if the large-sample result holds, we expect to find
9500 of §, within the corresponding limits, with 250 of 9, below (above) the lower (upper)
limit. Table 3.1 shows that, although approximately 95% of the 5, are enclosed in the
intervals, the remaining 5% are divided unequally between the two tails, with more in the
upper tail. This implies right skewness in both sampling distributions of 50.87; and Eo,l,o_gn.

In addition, Table 3.2 tabulates the K2 statistics for assessment of Normality in ?,, for
varying 7 and n; we have highlighted any entry less than 5.9915. We see that we need large
samples and almost complete data sets before we could formally accept the hypothesis of
Normality. Therefore, with respect to the failure times data with n = 50, it is not really

sensible to employ Normality in the calculation of confidence limits.



3.2. TESTS OF UNIVARIATE NORMALITY 84

Z
2
5
5
=
2
[
Meer-95 6636 Mean -975539
Std Dey -1523397 SW Dev 13 77997
N-10X% N-10.000
theta2$
r*0.4n, n-100 r*0.4n, n-1000
=
g
2
5
]
S
2
3

K Mean -98 9468
IHi- SW Dev -9 7952 A
irWB — | i N-10,000
70 80 90 100 110 120 130 85 90 95 100 105 110 115
th«tal00 th*ta1000
1=0.4n, n-2500 r-0.4n, n-5000
»

Frequency

— il -

90 95 100 105
th«ta2500

Figure 3.2: Histograms of #0.4n for various n, for Weibull data generated with 0 = 100, 3 = 2.



85

3.2. TESTS OF UNIVARIATE NORMALITY

rM).4ntn-25 r-0.4n, n-50
.
1.
>
2 c
5
B S
: u
Mean -2.4367 Mean -2.2038
Sid. Dev -0 865:4 Sid. Dev -0.50443
N-10,000 H-10.000
r-0.4n, n-100 r-0.4n, n-1000
=
3
g
2
g
r-0.4n, n-2500 r-0.4n, n=5000
1 A
. J
2
5
z
2
P
Meai -2-0022 Mean -20012
RiBog? *2

Sid. Dev -0 0603
N-10.000

Figure 3.3: Histograms of/?0.4n f°r various n, for Weibull data generated with 6 = 100, 3 = 2.



3.2. TESTS OF UNIVARIATE NORMALITY

Frequency

Frequency

Frequancy

Figure 3.4:
100, /3 = 2.

347536

Sid. Dev. -8 90037
N-10.000
r-0.4n, n-100
Mean -33.1188
Sid Dev -4 33144
N-10,000
r-0.4n, n-2500

Mean -32 4672
9W. Dev.-0.87802
N-10000

Histograms of Ro.i,0.4n for various n, for Weibull data generated

10

20

30

r=0.4n, n=50
40 50
r-0.4n, n-1000

r-0.4n, n-5000

60

86

Mean -33 6599
9td. Dev -619968
N-10 000

Mean -32 4641
3d. Dev -00619G
N-10,000

with 6



3.2. TESTS OF UNIVARIATE NORMALITY

87

n 00.4n 95% prob. intervals
9 Z(q1) g2 Z (g2) K* Below | Within | Above
25 0.5541 | 21.1884 | 3.6228 | 9.8450 | 545.8730 225 9514 261
50 0.3911 | 15.4245 | 3.2575 | 4.7101 | 260.1012 231 9523 246
-100 - | 0.2495 | 10.0407 | 3:1888 | - 3.5677 | ~113.5438 | ~ 239 9522 239
1000 | 0.0920 | 3.7497 | 3.0434 | 0.9050 14.8791 267 9495 238
2500 | 0.0632 | 2.5796 | 3.1016 | 2.0126 10.7047 256 9486 258
5000 | 0.0017 | 0.0714 | 3.0111 | 0.2618 0.0736 266 9480 254

n E0.4n 95% prob. intervals
9 Z(q1) 92 Z (g2) K* Below | Within | Above
25 1.6682 | 48.8155 | 8.7945 | 35.0824 | 3613.7228 0 8291 1709
50 0.9562 | 33.2790 | 4.7187 | 19.7727 | 1498.4534 14 8854 1132
100 | 0.6578 | 24.5917 | 3.8467 | 12.4005 | 758.5249 43 9174 783
1000 | 0.1959 | 7.9283 | 3.0797 | 1.6039 65.4299 142 9476 382
2500 | 0.1565 | 6.3554 | 3.1164 | 2.2852 45.6132 214 9461 325
5000 | 0.1110 | 4.5192 | 3.1446 | 2.7947 28.2331 234 9458 308

n Bo.1,0.4n 95% prob. intervals
91 Z(q1) 92 Z (g2) K* Below | Within | Above
25 0.3535 | 14.0254 | 3.0843 | 1.6899 | 199.5689 60 9333 607
50 0.2481 | 9.9873 | 3.0312 [ 0.6648 | 100.1875 92 9435 473
100 | 0.2183 | 8.8152 | 3.0285 | 0.6107 78.0799 119 9473 408
1000 | 0.0527 | 2.1529 | 3.0191 | 0.4233 4.8143 221 9511 268
2500 | 0.0265 | 1.0827 | 3.0116 | 0.2716 1.2460 250 9449 301
5000 | 0.0608 | 2.4829 | 3.0627 | 1.2785 7.7991 245 9471 284

Table 3.3: Summary statistics for @0,4,1, ﬁ0.4n and 13’0,1,0_4” for various n, for Weibull data

generated with 8 = 100, 8 = 2.
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n 0,
r=02n | r=04n | r=06n | r=08n [ r=1.0n
25 4910.1470 | 545.8730 64.2378 18.3207 | 19.6841
50 3199.5568 | 260.1012 28.9901 26.1206 | 30.5296
1100 | 1460.4282 [ 113.5438 | 25.4638 | 15.0040 | " 19.6485
1000 94.0605 14.8791 15.4257 9.0157 9.8398
2500 48.9845 10.7047 1.6297 0.0149 | 0.6302
5000 34.8682 0.0736 0.2704 1.3046 | 2.0840
n B,
r=02n | r=04n | r=06n | r=08n | r=1.0n
25 8509.0987 | 3613.7228 { 2655.9902 | 1696.8138 | 931.6946
50 3604.3806 | 1498.4534 | 975.7929 | 652.6939 | 470.9069
100 | 1263.8783 | 758.5249 | 345.4412 | 283.6994 | 301.5820
1000 | 137.5339 65.4299 26.9748 17.8407 6.4525
2500 40.0567 45.6132 10.7781 5.5650 | 1.4498
5000 21.1457 28.2331 13.6265 4.6236 | 5.5368
n By.1,r
r=02n | r=04n | r=06n | r=08n | r=1.0n
25 195.7168 | 199.5689 | 224.2453 | 253.0174 | 252.8119
50 92.8809 | 100.1875 | 113.7228 | 115.5903 | 128.4058
100 70.1326 78.0799 83.6202 | 103.4977 | 107.0821
1000 5.0896 4.8143 5.0348 8.6360 8.7274
2500 1.8647 1.2460 0.1048 0.2265 | 0.1188
5000 9.1868 7.7991 5.7883 4.1265 | 4.0784

Table 3.4: K? statistics for @,, ﬁ,, and BO.I,r for various r, n, for Weibull data generated with

6 =100, 8 = 2.
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3.2.2 Simulation Study: the Weibull Distribution

Table 2.6, based on the ball bearings data where n = 23, shows the approximate 95%
confidence intervals for the Weibull parameters and By ; assuming asymptotic theory for
the MLEs. Now we consider the sampling distributions of 5,, ET and §0.1,r, bearing in mind
that the theory means symmetrical confidence intervals.

We begin with parameter values § = 100,38 = 2 and set, say, 7 = 0.4n. The resultant
summary statistics are given in Table 3.3, while the histograms are presented in Figures
3.2, 3.3 and 3.4 for 0,3 and By respectively. As in previous studies, we see the marginal
distributions of MLEs become more Normal (but rarely to the extent that they would
be regarded as acceptably so) as the sample size increases. The coverage of the probability
intervals are good (close to 9500) for 50‘4,; and §O.1,0.4n for all n we have considered, but this
is far from the case for 30'4,‘, most clearly when n < 100. Moreover, there is a much larger
number of the MLEs of B falling above the upper limit than below the lower limit, implying
right skewness of the distributions of E,.. As a result, the distributions of §0‘1,0,4n also seem
to skew to the right, and we only approach symmetry when n = 5000. Besides these outputs,
Table 3.4 furnishes the assessment of Normality when data is from a Weibull distribution.
In general, and entirely as expected, we obtain smaller K? values with increasing r and n.
More bold values are found in the distribution of §0_1,r; however, these always correspond
to large sample sizes.

Since 3 controls the shape of a Weibull distribution, it is often the quantity of interest
in real-life situations, and we next consider the rate at which its distribution converges to

Normality, for different shape parameter values and censoring levels.

Focus on Er

We have already seen that, with § = 2, the non-Normality in the distribution of BT was
partially attributable to the problem of right skewness, particularly in small samples (n <
100). But, because 8 = 2 > 1 implies an increasing failure rate, it might be the case that
the line # =1 acts as a lower limit to the simulated values of 8, and consequently, we were
more likely to observe large estimates of 3, leading to a right skewed sample. This gives
rise to the following question: would changing the nature of the data, as determined by the
shape parameter (3, reduce the (right) skewness of the distribution of Br?

We now consider some alternative shape parameter values, keeping the scale parameter
constant (at 100), to assess the extent to which these conclusions can be regarded as typical.
We take 8 = 0.5 (negative aging/improvement over time) and 4 (positive aging/deterioration
over time), and r = 0.4n (as before); see Figure 1.5 for the effect of varying § on the shape of
the Weibull pdf. The summary statistics for properties of BOAn are listed in Tables 3.5 and
3.6 respectively. We observe values in striking resemblance between these tables and Table
3.3, and that the distributions remain right skewed; this is then confirmed by the associated
histograms (see Figures 3.5 and 3.6). There is generally reasonable percentage of the 104
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n 9 Z (91) 92 Z (g2) K* 95% prob. intervals
Below | Within | Above
25 1.8038 | 51.1765 | 9.9896 | 37.4427 | 4020.9896 0 8257 | 1743

50 0.9506 | 33.1301 | 4.7138 | 19.7399 | 1487.2668 10 8908 | 1082
100 | 0.6346 | 23.8463 | 3.7010 | 10.7796 | 684.8439 45 9146 809
1000 | 0.1996 | 8.0768 | 3.0535 | 1.1009 66.4463 151 9487 362
2500 [ 0.1005 | 4.0957 | 3.0038 | 0.1143 16.7879 202 9483 315
5000 | 0.0632 | 2.5795 | 2.9834 | -0.3049 6.7467 205 9484 311

Table 3.5: Summary statistics for B4, for various n, for Weibull data generated with
6 =100, 8 = 0.5.

n g1 Z(g1) g2 Z (go) K* 95% prob. intervals
Below | Within | Above
25 1.6642 | 48.7442 | 8.4814 | 34.3752 | 3557.6553 O 8315 1685 |

50 | 0.9134 | 32.1286 | 4.5802 | 18.8038 | 1385.8331 13 8832 | 1155
100 | 0.6012 | 22.7578 | 3.5640 | 9.1094 | 600.8985 46 9201 753
1000 | 0.1811 | 7.3386 | 3.0843 | 1.6897 56.7108 158 9485 357
2500 | 0.1091 | 4.4440 | 3.0943 | 1.8776 23.2744 214 9465 321
5000 | 0.0621 [ 2.5352 | 3.0133 | 0.3062 6.5209 190 9511 299

Table 3.6: Summary statistics for B 4, for various n, for Weibull data generated with
6 =100, = 4.

replications of Eo.4n within the 95% probability limits, derived from the known parameter
values. However, for n < 100, nearly all of the excluded estimates are greater than the
upper limit, revealing a severe non-symmetry in small samples. Indeed, when n = 25, we
notice that for both 8 values considered, the remaining 5% all are above the upper limit. A
reduction in skewness can be observed as n increases. Also tabulated in Tables 3.7 and 3.8
are the K2 values for various r and n, gradually falling below 5.9915 as r and n approach
infinity. We see that we might be prepared to accept that the sample distribution does, in
fact, follow a Normal distribution at n > 2500 for 8 > 1, and at n > 5000 for 8 < 1.

Therefore, the sampling distributions of the MLEs become more Normally distributed
when the shape parameter value increases. In general, these distributions seem to be (right)
skewed, and the convergence to Normality is slow, and we can only sensibly assume Nor-
mality when n > 2500.

3.2.3 Simulation Study: the Burr Distribution

Table 2.13 shows the approximate 95% confidence intervals for o, 7 and By for the arthritic
patients data where n = 50, assuming asymptotic theory for the MLEs. Nevertheless,
are these asymptotic assumptions suitable in the inference of a sample as small as the
arthritic patients data? To assess such assumptions when data is from a Burr distribution,
we choose the values @« = 4 and 7 = 3. Table 3.9 presents, for r = 0.6n, the relevant
summary statistics for @ gn,70.6n and Bo‘l’o'ﬁn based on 10% replications. The coverage
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n r=02n | r=04n | r=06n | r=08n | r=10n
25 8450.8815 | 4020.9896 | 1998.0479 | 1466.5978 | 1140.0336
50 3234.4068 | 1487.2668 | 865.5300 [ 667.0570 | 484.0441
100 | 1730.1939 | 684.8439 | 406.0410 | 271.7092 | 263.7248
1000 | 119.3940 66.4463 43.1624 26.8985 29.5334
2500 | 50.2340 16.7879 8.5018 8.5729 6.3537
5000 19.1902 6.7467 4.4144 0.9676 2.1967
Table 3.7: K? statistics for Br for various r, n, for Weibull data generated with § = 100, 8 =
0.5.
n r=02n | r=04n | r=06n [ r=08n | r=1.0n
25 6664.5081 | 3557.6553 | 1737.1188 | 1177.1974 | 1111.8832
50 3610.2131 | 1385.8331 | 947.6087 | 586.4931 | 571.7761
100 | 1436.0637 | 600.8985 | 433.5450 | 284.8207 | 234.3522
1000 |- 157.7135 | © 56.7108 | ~ 29.1919 | ~ 27.4829 | 25.4924 |
2500 61.2223 23.2744 9.1173 3.4602 5.7275
5000 20.5511 6.5209 7.7274 11.9036 7.3604
Table 3.8: K? statistics for BT for various r, n, for Weibull data generated with 8 = 100,83 =
4.
n 00.6n 95% prob. intervals
0 Z(q1) g2 Z (g2) K* Below | Within | Above
25 39.3826 | 152.5583 | 2203.9356 | 75.0381 | 28904.7597 0 7916 | 2084
50 4.9860 | 83.7584 94.9171 | 62.0716 | 10868.3500 0 8558 | 1442
100 1.3586 | 42.7943 6.4711 | 28.4966 | 2643.4130 1 8944 | 1055
1000 [ 0.3838 | 15.1543 3.3711 | 6.4622 271.4116 114 9489 397
2500 | 0.2498 | 10.0547 3.0741 | 1.4964 103.3366 143 9494 363
5000 [ 0.1373 5.5848 2.9990 | 0.0162 31.1901 195 9485 320
n T0.6n 95% prob. intervals
g1 Z(q) g2 Z (g2) K* Below | Within | Above
25 1.1069 | 37.1036 5.4731 | 24.1841 | 1961.5480 14 8680 | 1306
50 0.7171 | 26.4441 3.9511 | 13.4749 880.8608 35 9112 853
100 0.4502 | 17.5727 3.2013 | 3.7796 323.0863 59 9260 681
1000 [ 0.1753 7.1087 3.1021 | 2.0228 54.6247 165 9512 323
2500 | 0.1165 4.7421 2.9595 | -0.8088 23.1418 190 9486 324
5000 [ 0.0414 1.6924 3.0010 | 0.0577 2.8676 207 9507 286
n Bo.1,0.6n 95% prob. intervals
9 Z(q1) 92 Z (g2) K* Below | Within | Above
25 0.1538 6.2490 3.0050 | 0.1391 39.0696 134 9375 491
| 50 0.1166 4.7476 2.9348 | -1.3404 24.3365 142 9487 371
100 0.0668 2.7274 2.8715 | -2.7720 15.1225 157 9480 363
1000 [ 0.0751 3.0633 3.0256 | 0.5522 9.6889 203 9496 301
2500 | 0.0156 0.6370 2.9835 | -0.3040 0.4982 242 9489 269
5000 | -0.0182 | -0.7434 2.9884 | -0.2028 0.5937 227 9512 261

Table 3.9: Summary statistics for &o.gn,70.6n and B0.1,0.6n for various n, for Burr data
generated with a = 4,7 = 3.
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of the probability intervals for &g, and T, improve as n increases, but more estimates
outside the limits are above the upper limit, again suggesting right skewness of the MLEs.
In contrast, the coverage and spread of the estimates of By, are much better than either
parameters. Clearly, we are led to the same conclusions as for the previous two lifetime
models, where the distributions of the MLEs becoming more Normal as the sample size
increases. This is apparent from the histograms (Figures 3.7 to 3.9), and re-enforced by the
K? statistics. Note also for graphical convenience, we truncate, in Figure 3.7, the a-axis at
50 when n = 25; this excludes the following 29 estimates

50.5658 | 53.2722 | 53.2722 | 55.1004 | 55.3440 | 57.3566 | 58.5072 | 59.8007
63.5590 | 64.4777 | 64.7645 | 64.7666 | 64.7967 | 64.7967 | 65.5133 | 66.8281
67.7875 | 71.6625 | 72.7258 | 73.9242 | 74.4186 | 77.0094 | 87.8581 | 91.6693
197.3220 | 209.7272 | 238.0291 | 478.6130 [ 6756811 | | - |

and at 20 when n = 50; excluding the following 6 estimates

[20.6613 | 20.8016 | 215761 | 22.6671 | 40.8366 | 61.3055 | .

As a result, the Normal curves are omitted in the first two plots, but would clearly not be
a good fit in either case. Table 3.10 continues this study for various censoring levels using,
as before, 10* estimates of a, 7 and Bp;. We note that for no sample size considered is the
Normal distribution regarded as a suitable model for the distribution of &;, as indicated by
K? statistics well above 5.9915 in Table 3.10, whereas the analysis of 7, reports a few bold
entries. More such entries are observed in the consideration of §0,1,,., but all are associated
with large r and n.

As with the Weibull distribution, it seems that right skewness is typical in the distrib-
utions of the MLEs for Burr shape parameters for small samples, typically, less than 1000.
Tables 3.11 and 3.12 are based on a = 0.9, 7 = 3, whilst Tables 3.13 and 3.14 are based on
a = 4,7 = 0.9; we see that, regardless of the shape parameter values chosen, the progress
towards Normality is quite slow, especially in the case of @,, as indicated by Figures 3.10
and 3.11. In fact, we should not formally accept the hypothesis of Normality even when
n = 5000 for o, and when n = 2500 for 7.
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n a,
r=0.2n r=0.4n r=0.6n r=0.8n r=10n
25 39737.9208 | 27080.4244 | 28904.7597 | 13652.1224 | 3849.8656
50 39780.0164 | 18911.5790 | 10868.3500 | 3347.9557 | 1686.0013
100 | 23125.6237 | 6267.3671 | 2643.4130 | 1703.6368 | 873.1987
1000 | 1734.0031 562.9673 271.4116 128.7738 53.2084
2500 599.1690 222.5042 103.3366 30.0695 22.1464
5000 268.9492 86.5960 31.1901 14.7940 13.4892
n Tr
r=0.2n r=0.4n r = 0.6n r=0.8n r=1.0n
25 5593.8574 | 3582.4246 | 1961.5480 | 1284.3626 | 765.3068
50 6746.5910 | 1520.3691 880.8608 491.2848 | 340.5830
100 1785.8462 670.2142 323.0863 214.1388 | 134.5801
1000 158.5951 57.0847 54.6247 27.0103 15.1617
-2500 47.0871 | 26.3294 23.1418 '10.7947 1.7895
5000 20.1953 6.7533 2.8676 6.0837 5.0929
n BO.I,r
r=0.2n r=0.4n r=0.6n r=0.8n r=1.0n
25 25.0947 26.3841 39.0696 56.7920 64.8937
50 15.8024 17.8928 24.3365 24.9160 27.2481
100 11.6343 13.7021 15.1225 8.1730 7.6625
1000 4.1282 4.4379 9.6889 6.2888 11.2315
2500 0.6176 0.6931 0.4982 0.3401 1.2610
5000 2.1233 2.4685 0.5937 1.1200 1.1565
Table 3.10: K2 statistics for &, 7, and BO.l,r for various r, n, for Burr data generated with
a=4,17=3.
n a1 Z (1) g2 Z (g2) K? 95% prob. intervals
Below | Within | Above
25 1.7930 | 50.9939 | 11.1209 | 39.2944 | 4144.4312 74 8938 988
50 0.9319 | 32.6276 | 5.2261 | 22.8785 | 1587.9825 98 9200 702
100 | 0.5151 | 19.8528 | 3.6995 | 10.7627 | 509.9690 122 9373 505
1000 | 0.1178 | 4.7960 | 3.0142 | 0.3247 23.1074 208 9433 359
2500 | 0.1050 | 4.2772 | 2.9894 | -0.1812 18.3272 208 9520 272
5000 | 0.0862 | 3.5149 | 3.0606 | 1.2394 13.8904 213 9515 272
Table 3.11: Summary statistics for &6, for various n, for Burr data generated with o =
0.9, 7=3.
n r=0.2n r=0.4n r=06n [ r=08n | r=1.0n
25 39744.9162 | 15684.7942 | 4144.4312 | 1527.0629 | 612.6169
50 35684.9476 | 5450.1748 | 1587.9825 | 474.4686 | 303.1235
100 | 10009.8376 | 2561.5849 [ 509.9690 | 167.7750 | 103.6142
1000 863.5744 138.5899 23.1074 18.3585 | 17.8973
2500 248.6987 79.2532 18.3272 14.6199 | 13.0677
5000 72.7707 24.0838 13.8904 7.9560 8.3689
Table 3.12: K? statistics for &, for various r, n, for Burr data generated with o = 0.9, 7 = 3.
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n ) Z(g1) g2 Z (g2) K* 95% prob. intervals
Below | Within | Above
25 1.3026 | 41.5977 | 6.7776 | 29.5870 | 2605.7590 5 8639 | 1356
50 0.7431 | 27.2386 | 4.0680 | 14.6034 | 955.1998 26 9098 876
100 | 0.4486 | 17.5128 | 3.3262 | 5.7894 | 340.2138 74 9274 652
1000 | 0.1663 | 6.7479 | 3.1102 | 2.1712 50.2485 178 9473 349
2500 | 0.1264 | 5.1427 | 2.9948 | -0.0707 26.4528 191 9485 324
5000 | 0.0560 | 2.2851 | 3.0158 | 0.3567 5.3488 206 9512 282
Table 3.13: Summary statistics for 7g¢g, for various n, for Burr data generated with a =
4,7=0.9.
n r=02n | r=04n | r=06n | r=08n [ r=10n
25 5570.1977 | 3502.3529 | 2605.7590 | 1383.7825 | 895.7894
50 4281.4335 | 1350.6207 | 955.1998 | 579.8398 | 491.7778
100 | 1667.1451 | 703.7234 | 340.2138 | 206.5481 | 99.0376
1000 [ 152.0832 74.7403 50.2485 14.5300 | 17.5078
2500 59.7999 43.9957 26.4528 7.0937 | 3.2418
5000 29.5796 13.3561 5.3488 5.4923 7.8803

Table 3.14: K? statistics for #, for various r,n, for Burr data generated with o = 4,7 = 0.9.

3.3 Tests of Bivariate Normality

A necessary, but not sufficient, condition for multivariate Normality is that each marginal
distribution is univariate Normal. Hence, as we have proceeded here, it is usual to start
with univariate tests for marginal Normality, at which detection of one non-Normal marginal
implies that the joint distribution is non-Normal. A fair amount of work is available on tests
of multivariate Normality, many of which are generalisation of univariate procedures. On the
basis of power studies and the ease of implementation, perhaps the most widely referenced
multivariate Normality test is due to Mardia; see Gnanadesikan (1977) and Thode (2002)
for excellent summaries of the merits of this test. The sample estimates of multivariate
skewness, denoted by (g1x) and kurtosis (gox) (for k variates), were first presented by
Mardia (1970), defined, respectively, at (2.23) and (3.12) therein; Mardia & Foster (1983)
then proposed several omnibus tests based on these two measures, including the S‘%V statistic,
which, for k=2, is
Sty ={W (91.2)}* + {W (922)}°,

in which W (g1,2) , W (g2,2) are standardised bivariate measures of skewness and kurtosis us-
ing the Wilson-Hilferty approximation, as given, respectively, by (3.7) and (3.10) in Mardia
& Foster (1983). The case k = 2 will apply to both the Weibull and Burr cases here; again,
under the hypothesis that the joint distribution of the estimators is multivariate Normal, we
have S2, ~ x2, with a corresponding assessment of joint Normality of (5,, E,) in the case of
Weibull, and, of (&,,7,) for Burr distribution, using the critical value —21n X for an upper
tail probability of A. Hence, SI%V < 5.9915 indicates that we can accept the hypothesis o

égk
= LBRARY

Sanse
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n 912 | W(gi,2) g2,2 W (g2,2) S%, Within 95% prob. ellipse
25 1.7758 | 21.5755 | 12.2541 | 29.5184 | 1336.8399 _ 8842
50 0.6014 | 13.8252 | 9.0716 | 11.0504 | 313.2491 : 9170
100 | 0.2410 0.1394 | 8.3841 4.4854 | 103.6476 9328
1000 | 0.0248 2.1522 | 8.1365 1.6955 7.5068 9495
2500 | 0.0060 | -0.1593 | 7.9853 | -0.1481 0.0473 9478
5000 | 0.0086 0.3270 | 8.0455 0.5996 0.4664 9464

Table 3.15: Summary statistics for (8g.6n, Bo6y,) for various n, for Weibull data generated
with 8 = 100, 8 = 2.

bivariate Normality at the 5% significance level. As before, by simply counting how many
of the estimates of (#,3) and (¢, 7) within the corresponding probability ellipse derived

from the true parameter values, we can judge the extent to which the Normal assumption .

is appropriate or justifiable.

3.3.1 Simulation Study: the Weibull Distribution

For our first example, we take parameter values to be § = 100 and 8 = 2. Knowing these
true values, the scatter plots of ’9\0'6,, against Eo_ﬁn, superimposed with the large-sample 95%
probability ellipses, are presented in Figure 3.12 for varying n. These seem to suggest that
as the sample size increases, the joint distributions of (50.67;, ,EO‘G") become more and more
Normal - as indicated by the S%V values in Table 3.15 - and are more uniformly spread
around (100, 2) - as shown by the number of replications enclosed in the probability regions.
We also notice that, as a result of the right skewness in the distribution of Er, as observed in
the histograms, the sampling distribution of the Weibull MLEs is distinctly non-elliptical at
n = 25 and 50. Moreover, from Table 3.16, which gives the S%V values for various r and n,
it can be deduced that the assumption of the x2 distribution as the null distributions of the
S&, statistics is inappropriate for small samples. In particular, the pattern observed here
is entirely consistent with the findings in the.corresponding univariate analyses, in which
increasing censoring number and sample size leads to a lower S%V value. In fact, we are in
a position to accept formally the hypothesis of joint Normality only when n > 1000.

More numerical illustrations are shown in Table 3.17 (based on simulations with § =
100, 8 = 0.5) and Table 3.18 (based on simulations with 8 = 100, 3 = 4); a similar pattern is
observed whether we have negative or positive aging over time, suggesting lack of Normality
in small samples across the board. Furthermore, the rate at which the sampling distribution
of (5,4,3, approaches a Normal distribution increases when the shape parameter value
increases. Specifically, we might be prepared to accept the hypothesis of joint Normality at
n > 1000 for B > 1, but at n > 2500 for B < 1.
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m MLEs — 0.05-prob. ellipse MLEs 0.05-prcb. ellpse
MLEs » — 0.05-prob. elipse MLEs » —0.05-prob. ellpse
m MLEs — 0.05-prob. elipse e+ MLEs — O.OSprob. ellpse

Figure 3.12: Scatter plots of (#0.6n,/?0.6n), superimposed with asymptotic 0.05-probability
ellipses, for various n, for Weibull data generated with 9 = 100, 3 = 2.
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n r=02n | r=04n | r=06n | r=08n | r=1.0n
25 9509.1576 | 2551.6537 | 1336.8399 | 682.6428 | 343.1559
50 4897.6596 | T794.8631 | 313.2491 | 182.7758 | 148.8660
100 | 2030.4556 | 346.9915 ;| 103.6476 | 69.6449 | 101.4419
1000 | 140.3048 20.1564 7.5068 | 5.0256 | 1.1946
2500 61.0323 15.3622 0.0473 | 0.6115| 0.1085
5000 32.8853 4.8511 0.4664 | 0.6943 | 1.5280

Table 3.16: S%V statistics for the multivariate Normality of (@,,B,) for various r,n, for

Weibull data generated with 8 = 100, 8 = 2.

n r=0.2n r=04n | r=06n | r=08n | r=1.0n
25 | 18850.5749 | 5898.3124 | 1900.7956 | 1251.4989 [ 1129.9458 |
50 12977.7339 | 2691.4239 | 774.7061 | 517.5551 | 505.2621
100 | 11739.0954 | 1554.1767 | 541.5757 | 259.7114 { 245.0951
1000 787.6916 81.0223 31.4821 20.0178 15.5689
2500 341.7878 28.1952 9.0086 3.9388 4.0507
5000 156.6740 11.0087 0.8059 2.9406 6.9522

Table 3.17: S% statistics for the multivariate Normality of (6,,B,) for various r,n, for
Weibull data generated with 8 = 100, 8 = 0.5.

n r=02n | r=04n | r=06n | r=08n | r=1.0n
25 6466.0566 | 2230.1012 | 651.0079 | 361.8537 | 389.5068
50 4190.9002 | 693.4733 | 307.1663 | 171.9068 | 225.7919
100 1} 1522.3346 | 220.8830 | 129.3909 | 75.8062 | 66.8740
1000 | 133.5082 14.1478 | 5.7476 | 4.6976 | 4.0813
2500 49.7458 7.9932 (| 0.2038 | 2.1638 | 1.0029
5000 16.9615 3.0223 | 0.3063 | 1.0016 | 0.2981

Table 3.18: S%V statistics for the multivariate Normality of (9T,BT) for various r,n, for
Weibull data generated with 8 = 100, 8 = 4.

n g2 | W(g1,2) 92,2 W (g2,2) S%, Within 95% prob. ellipse
25 90.8954 | 90.9781 | 297.3183 | 93.4697 | 17013.5927 8371
50 2.8237 | 25.8525 | 14.7995 | 37.9687 | 2109.9701 8937
100 1.1620 | 18.2027 | 10.3626 | 20.2367 740.8614 9137
1000 | 0.0902 5.4676 8.2545 3.0581 39.2468 9465
2500 | 0.0214 1.8572 7.9807 | -0.2055 3.4913 9517
5000 | 0.0102 0.5813 8.0945 1.1952 1.7664 9493

Table 3.19: Summary statistics for (&o.sn, 70.8n) for various n, for Burr data generated with
a=4,7=3
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Figure 3.13: Scatter plots of (do.SmR).8n)j superimposed with asymptotic 0.05-probability
ellipses, for various n, for Burr data generated with a = 4,r = 3.
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n r=0.2n r=0.4n r=0.6n r=0.8n r=1.0n
25 215030.0009 | 59433.7760 | 85568.0385 | 17013.5927 | 2317.8424
50 215892.2746 | 36880.0460 | 15186.6148 | 2109.9701 { 761.1056
100 47954.9946 | 6781.8154 | 1548.0777 740.8614 | 312.7829
1000 1622.8513 268.1502 98.1737 39.2468 14.0501
2500 469.7332 100.6247 24.2774 3.4913 1.1563
5000 166.7399 26.5937 3.4072 1.7664 2.0133

Table 3.20: S, statistics for the multivariate Normality of (&, 7,-) for various r, n, for Burr
data generated with a = 4,7 =3.

n r=0.2n r=04n r=06n | r=08n | r=1.0n
25 215318.4273 | 17339.7582 | 3802.4482 | 2998.9998 | 2908.3681
50 151323.6236 | 3856.9657 | 1233.2114 | 601.9089 | 500.2051
100 10661.6125 | 1400.7537 | 375.8319 | 179.3075 | 143.6304 .
1000 357.7632 56.6306 15.7042 13.5700 10.0471
2500 84.0961 29.4680 7.9595 7.5043 9.6201
5000 21.5596 5.5473 4.8758 1.3485 2.5061

Table 3.21: S%V statistics for the multivariate Normality of (&, 7,) for various r,n, for Burr
data generated with a = 0.9, 7 = 3.

3.3.2 Simulation Study: the Burr Distribution

We now perform a similar series of investigations with data generated from the Burr distrib-

ution. Figure 3.13 together with summaries in Table 3.19 show the simulation results based

on 10* repetitions assuming o = 4 and 7 = 3; this is consistent with conclusions drawn in

the univariate tests, at which we require a very large sample size in order for the distribution

of (Gio.8n, T0.8n) to be Normal. Even when 80% of the failures are observed, the scatter plots

are not entirely consistent with elliptical probability regions for small samples; rather, they

extend across to large values of « in a systematic fashion. In Table 3.20, we see smaller SZ,

values with increasing r and n, but only a few are lower than 5.9915. Furthermore, Table
3.21 tabulates S‘z,v statistics for data generated with a = 0.9, 7 = 3, while Table 3.22 is for
data generated with a = 4, 7 = 0.9; these results, once more, confirm the lack of Normality

in small data sets, seemingly independent of the choice of parameter values.

n r=0.2n r=0.4n r=0.6n r=08n | r=10n
25 164369.6145 | 170832.8569 | 147506.2618 | 5589.2740 | 4630.4679
50 195577.2053 | 24340.0167 8657.3802 | 3087.4125 | 949.4046
100 62413.5502 | 10765.1581 1599.4672 | 641.2627 | 230.0604
1000 1978.5703 224.9025 77.3924 19.3295 6.4604
2500 386.3123 93.0322 23.7892 5.0736 0.5012
5000 203.7194 36.3863 6.3676 1.4882 2.5661

Table 3.22: S%V statistics for the multivariate Normality of (&, 7,) for various r, n, for Burr
data generated with a = 4,7 =0.9.
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3.4 Relative Likelihood Contour Plots

We have observed that Normality was not reached until samples were very large; this covers
both the univariate distributions of MLEs of parameters and functions of these MLEs, such
as §0_1,, as well as the joint distributions of MLEs of parameters. Moreover, the Normal
approximation is suitable only if the number of failures is large. Consequently, it does not
seem appropriate to use the usual Normal critical values to establish confidence intervals
from MLE in samples of small to moderate size.

As previously indicated at Section 3.1, we will use the relative likelihood function of =,
defined as

R(m) = -’_}j—((;'—)) (3.2)

so that 0 < R(w) < 1 for all m, as an alternative for assessing the precision of MLEs in

relatively small samples. Therefore, if R(7) > A, then the vector valued = is said to have at
least 100 (1 — A) % of the maximum consistency possible under the model. For now, in a two-
parameter case, a contour map of R(7r1,7r2) portrays this consistency over the parameter
space; for instance, points inside the 0.5-contour constitute fairly plausible parameter pairs,
whereas values outside the 0.01-contour are very implausible. Kalbfleisch (1979) discusses
the use of contour plots of R (7) to obtain confidence limits for a single set of data. We adapt
this approach to provide confidence regions for the sampling distribution of (71, 72); this
involves specifying - for any pé,rameter values, sample size and censoring regime - an idealised
sample, and then calculating and plotting the contours for that idealised sample. One
intuitive instance of an ideal sample can be obtained by taking the corresponding expected
order statistics as data values, but we note that other methods may be possible; thus the
ML estimates found from this sample will, naturally, possess maximum plausibility, and
hence can be employed to produce the idealised or expected relative likelihood contour, as
a counterpart for the large-sample probability ellipse. The contour plots are then validated

for various r and n using simulation experiments.

3.4.1 Relative Likelihood Contour Plots in the Weibull Distribution

Suppose A1, A2,..., with 0 < A; < Ay < --- < 1, is a set of values for which contours
on the relative likelihood surface are to be plotted. Watkins & Leech (1989) outline an
algorithm for drawing relative likelihood contours for data from the Weibull distribution;

we summarise the main stages as follows:

Stage 1 Location of the MLEs, in which we find (@T, Br), the centre of all contours.

Stage 2 Defining the drawing area — by evaluating the relative likelihood at a series of
fractions and multiples of @,. and B,., we search the 8 — 3 plane for a rectangular within
which the largest contour corresponding to A; will lie. In practice, the transformations
6 = af, and B = bﬁ, introduce some numerical stability and flexibility over the range
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of possible parameter values.

Stage 3 Drawing contours — first find, and then join together a large number of points
found from numerically solving the equation ! (8, 5) — (5,, Br) =In A\; and its partial
derivatives wrt a and b. We again benefit from the numerical stability introduced by

these transformations. This process is repeated for each contour.

Illustration: Ball bearings data

We show here contour maps for the ball bearings data with censoring as in Table 2.6, with
A =0.01,0.05,0.1 and 0.5. Thus, the first case yields approximate 99% confidence regions
for (6,8). AFigure 3.14 shows the effect of r on the contours. In general, for given )\, we
see that the contours get smaller as r increase; this is obvious because more failures would

- provide more information in estimating the parameters. We also note that contours extend

over larger values in the S-axis, but over smaller values in the #-axis. It is also clear that, as
A increases, contour areas drop dramatically and the contour shapes become more elliptical.
Further, the shift in location, in line with the values in Table 2.6, is now more apparent.
It is interesting to compare and contrast the relative likelihood regions with the con-
fidence regions based on asymptotic Normality. Watkins (2004) considers this issue for a
sample of size 100 subject to Type I censoring. Figure 3.15 is an example using the ball
bearings data at the 12t* failure. With r fixed, the two regions seem largely to coincide,
and approach to complete overlap as ) increases. Moreover, the relative likelihood contours
consistently appear tangential to the ellipses close to their minor axes. Intuitively, this may
provide an alternative approach to locate the initial point in drawing a contour, by locating
the first point on the minor axis of the ellipse, and then calculating the relative likelihood
there. If this relative likelihood value is close to A, then it could serve, possibly with further
searching, as an initial point on the contour. The effectiveness of this procedure, in com-
parison with performing a numerical search as in Watkins & Leech (1989), will be explored

elsewhere.

Expected Relative Likelihood Contours

Although the above discussion is based on a single set of data, we may adapt the approach
to provide probability regions for the sampling distribution of (@,, ﬁ,); as previously noted,
this requires the expectations of order statistics for lifetimes drawn from the Weibull distri-
bution, given by

i . T (3+1
E [Xin] = cim8 kz=:: (—1) 1k (’ B 1) % (3.3)

Example: r = 15,n = 25 We assume n = 25 and 6 = 100,8 = 2 to illustrate this
experimental set-up; the corresponding (uncensored) idealised sample, calculated from (3.3),
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X Idealised MLEs — 0.05-relative likelihood contour]

"160 -

Figure 3.16: 0.05-relative likelihood contour plot for 7 = 15,n = 25, for ideal Weibull data
generated with 6 = 100,58 = 2.
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so that censoring at, say, r = 15 gives the following failure times

17.7245

26.8619

33.9372

40.0338

45.5588

50.7180

55.6346

60.3916

-65.0497

- 69.6576

74.2572

78.8869

83.5849

88.3912

93.3502

93.3502f

93.3502t

93.3502t

93.35021

93.35021

93.3502f

93.3502f

93.35021

93.35021

93.3502t

at which 5;5 = 97.2027 and st = 2.2306 (we use * to indicate ML estimates obtained from
the idealised sample). Hence, the point (97.2027, 2.2306) will act as the centre of the relative
likelihood contour, as the most likely point to occur due to the method of experimentation.
Figure 3.16 illustrates the 0.05-expected relative likelihood contour around (5’;5, /315) , which
clearly is not elliptical.
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r
25 50 100 1000
0.2n:6, | 78.3288 | 87.3439 | 92.8523 | 99.0496
: By 2.7710 2.3700 2.1892 2.0230
04n:6, | 926713 | 95.9604 | 97.8055 | 99.7268
: ﬁ: 2.3566 2.1824 2.0958 2.0118
0.6n:06, | 97.2027 | 98.5117 | 99.2135 | 99.9081
:B.| 22306| 21200| 20634| 20078
0.8n:6, | 99.2023 | 99.6069 | 99.8067 | 99.9820
,B: 2.1685 2.0883 2.0466 2.0056
1.0n 5: 100.2647 | 100.1811 | 100.1147 | 100.0196
B | 21377| 20741| 2.0400| 2.0051
Table 3.23: Idealised MLEs (@:, B:) for various r,n, for ideal Weibull data generated with
6 =100,8 = 2.
101
100 4 - e e et I RREEETEE
0] *
0 X
98
97 - X
96 T T T T T
0 200 400 600 800 1000
n
X Idealised MLE ------ true value

Figure 3.17: Plot of %.6,1 versus n, for ideal Weibull data generated with § = 100, 8 = 2.
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Figure 3.18: Plot of ﬁ;.sn versus n, for ideal Weibull data generated with § = 100,58 = 2.

General: varying r and n  Further illustrations are given in Table 3.23, which shows the
idealised estimates of (6, B) for various n when the ideal data, calculated with 8 = 100, 8 = 2,
are subject to Type II censoring at the r** failure. Note that these values can be compared
with their average counterparts in Tables 2.7 and 2.8, where we notice a generally good
match in the results. The agreement is better shown in Figures 3.17 and 3.18 for » = 0.6n,
where we see both 5: and E: gradually converge to their true values as n increases.

We assume A = 0.05, and show in Figure 3.19, the contour maps for some ideal samples
for various r and n; this yields the approximate 95% confidence regions for (6, 5), with
centres (?0\:, E:) as given in Table 3.23. When comparison is made with Figure 3.12 where
r = 0.6n, the relative likelihood contours seem to move towards the probability ellipses in
terms of both size and shape as n increases; we can expect similar convergence, perhaps at
different rates, for other values of . '

A more detailed illustration is given assuming, say, r = 5 failures observed in a sample
with n = 25; Figure 3.20 shows the joint distribution of (55, E5) is certainly not elliptical -
stretching rightwards in the 6-direction and upwards in the 3-direction - and hence it is non-
Normal. On the other hand, the relative likelihood contour plot appears to capture more
accurately than asymptotic probability ellipse the behaviour of the sampling distribution of
(55, Bs), especially the right skewed pattern observed in the distributions of 55 and Bs-
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45
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35

30

MLEs ~ “ 0.05-prob. ellipse 0.05-likelihood region

Figure 3.20: The MLEs (x) together with 0.05-relative likelihood contour and asymptotic
0.05-probability ellipse for (#5,/?5), for n = 25, for Weibull data generated with 0 = 100, (3 =
2.

Relative Likelihood Contour Validation and Comparison with Normal Theory

Probability Region

This illustration suggests a method to validate the use of relative likelihood contours to
obtain confidence regions of the sampling distribution of MLEs in small samples; this in-
volves computing the relative likelihood for each simulated observations of ~0r,/?r”, and
then counting the number of replications whose relative likelihood is > 0.05. Note that, in
conjunction with idealised samples, (3.2) is now defined as a ratio of'the likelihood calculated

using the ML estimates to the likelihood calculated using "Or,(3r It is straightforward to

show that an observed point (0r,(3r) is enclosed by the 0.05-relative likelihood contour if

Ir (?r,31) -1r { K X) > In0.05,

where Ir "Or,/3r%j and Ir (6r,/3rj are obtained from (2.16) upon appropriate substitutions.

Accordingly, we expect to find 95% x 104 of within the 0.05-expected contour area.
As discussed in Section 3.3, this procedure can be repeated for the large-sample probability
ellipse derived from Normal theory, to find the number of replications of ("Or,/3r’ enclosed

in the probability region.
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r n
25 50 | 100 | 1000
0.2n | 7949 | 8826 | 9168 | 9450
6834 | 7921 | 8600 | 9371
'0.4n | 8798 | 9138 | 9344 | 9466
8403 | 8919 | 9197 | 9443
0.6n | 9063 | 9267 | 9411 | 9492
8842 | 9170 | 9328 | 9495
0.8n | 9193 | 9352 | 9444 | 9491
9022 | 9280 | 9369 | 9484
1.0n | 9257 | 9415 | 9434 | 9508
9091 | 9295 | 9392 | 9517

Table 3.24: Number of replications of (6,,/,) within the 0.05-relative likelihood contour
_(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data generated with -
9 =100,8 = 2.

r n

25 50 | 100 | 1000
0.2n [ 7709 | 8581 | 9004 | 9406
5948 | 7036 | 7811 | 9185
0.4n | 8666 | 9069 | 9259 | 9470
7958 | 8679 | 9003 | 9434
0.6n | 8958 | 9185 | 9282 | 9464
8632 | 9069 | 9265 | 9458
0.8n | 8992 | 9221 | 9325 | 9495
8864 | 9199 | 9312 | 9502
1.0n | 9047 | 9249 | 9336 | 9516
8870 | 9208 | 9332 | 9514

Table 3.25: Number of replications of (f,,4,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data generated with
6 =100,8 =0.5.

Results for each combination of r,n and 6, 8 replicated are shown in Tables 3.24, 3.25
and 3.26. We see at early censoring levels there are quite large disagreements between
observed and expected values, but agreement improves as more items are allowed to fail,
to increase the precision of the estimates yielded. We also see that the results approach
9500 as n increase, and are reasonably consistent across the various values of thershape
parameter considered here. Most importantly, for n < 100, the expected relative likelihood
contours (upper entries) consistently contain more replications of (@r, E,,) than the elliptical
probability regions (lower entries), indicating that the non-elliptical nature of the relative
likelihood contours reflects more accurately the sampling distribution of (@r, B,,) for samples

of small size.
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r n
25 50 | 100 | 1000
0.2n | 7979 | 8797 | 9139 | 9447
6947 | 8037 | 8706 | 9393
0.4n | 8812 | 9199 | 9346 | 9493
8397 [ 8938 | 9219 | 9469
0.6n | 9078 | 9280 { 9369 | 9524
8839 [ 9132 | 9299 | 9507
0.8n | 9238 | 9337 | 9425 | 9516
9069 | 9242 | 9356 | 9504
1.0n | 9309 | 9413 | 9453 | 9510
9108 | 9280 | 9404 | 9503

Table 3.26: Number of replications of (8,,,) within the 0.05-relative likelihood contour

(upper) and the asymptotic 0.05-probability ellipse (lower) for Weibull data generated with

6 =100, = 4.

3.4.2 Relative Likelihood Contour Plots in the Burr Distribution

Here, we will adapt the contour drawing procedure proposed by Watkins & Leech (1989),
giving the necessary formulae at each stage.

Stage 1

Location of the Burr MLEs has been covered in Section 2.4, where the classical Newton-
Raphson iterative method is used to maximise the profile log-likelihood function at (2.39)
wrt 7. With 7, thus found, @, is computed at (2.38).

Stage 2

We note that the transformations for Weibull parameters accommodate differing scales
in 6 and . The corresponding transformations are thus less essential in the Burr case (since
both shape parameters are, génerally, of the same order), but are nevertheless retained here.
We thus define two working variables a and b such that

o = ady, (3.4)
and
T = b7y. (3.5)

Thus, a = b =1 implies @ = &, and 7 = 7,.. For 7-direction, we start with b = 1 so that the
value of a which maximises the relative likelihood is just r/(Ts + T¢). In order to locate
Tmin, We take a series of values for b decreasing from 1 in steps of 0.1. Hence, we move down
from 7, until the relative likelihood is less than A\;. We then take a series of values for b

increasing from 1 in steps of 0.1 when searching for Tpnay. In this case, we again stop when
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TT‘
Use multiples
of 7,

Use ! . Use
0 ¥ fractions ™ (&,7) = multiples ~>q,,,
of &, | of @,

Use fractions
of T,

|

T

v
Q

Figure 3.21: Defining the drawing area in the @ — 7 plane about (&, 7).

the relative likelihood is less than A;. In Figure 3.21, this is illustrated by the two vertical
arrows moving away from (Qy,7,). _

Likewise, for a-direction, we consider a series of fractions and multiples of @, and, for
each value of o, find the 7 which maximises the relative likelihood for that value of c.. The
Burr log-likelihood function is given by (2.35), which is to be maximised wrt 7, assuming «
as fixed; the first- and second-order derivatives of (2.35) wrt 7 are

rrl 4 S1(0) — (o + 1)Tf111 — ol (3.6)

and
—rr2 _ (a4 1)Ty 1220 — aT 122

respectively. Again, the Newton-Raphson method is used, with which the initial estimate
of the root of (3.6) is 7,. This maximum value of the relative likelihood is computed, and
hence one can search for the minimum and maximum values of o that need to be considered.
This is illustrated by the two horizontal arrows moving away from (&, 7,) in Figure 3.21.

Stage 3

We use (3.2) to write _
N = L, (a,7)
'L @G
or equivalently,

lr (a, T) - lrr (ar,?'r) == ].n Al.
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Thus, if we define
f (a,b) =l (aq,, b7y) — Ir (Cr, Tr) (3.7)

then the first point on this contour can be obtained by solving the equation
f(a,b) —In(A) =0 (3.8)

for b with a = 1. While there is no analytical expression for the root, we may employ the
Newton-Raphson approach which we require the partial derivative of f (a,b) wrt b:

fé = Tb_l + ?rSf,l (O) — (aar + 1) ?rTf,lll (b?r) - aar?rTc,lll (b"f‘r) ’ (39)

together with Tmax/7r as the initial estimate.
- To move around the contour, we compute the gradient of the tangent to the contour at -

this initial point, once more, with a = 1. This gradient is given by

fl
_fa (3.10)
b
where

The second point on this contour is therefore achieved by moving a distance § in the a — b
plane along this tangent

!/
4 — Gpew = 0 + ——df"— (3.12)
\VIE+ 17
and Y
b— bpew =b— ——fa—— (3.13)

VIE+ 12

When finding the subsequent contour points with these apney and bpew, a is fixed at the value
of previous ane, and an attempt is made to get a corresponding value of b solving (3.8).
This is as discussed above, except that now by, is taken to be the initial estimate of the
solution of (3.8), and, more importantly, a = 1 in (3.8) and (3.9) no longer apply. Equation
(3.11) can now be recomputed and a and b updated again.

It should also be noted, however, that when the values of f; and fi/1/f2 + f{? are near
to zero, the iterating process (for estimating b) may produce a value of a for which no
corresponding value of b solving (3.8) can be found; this indicates the contour is close to
its extreme left or right edge. In such cases, we fix the value of b instead and try to find
a corresponding value of a which solves (3.8). As before, all searches must be numerical;
Gnew 18 treated as the initial estimate of the solution in (3.8) and the derivative f. is used
to improve this estimate. In other words, we are performing a change of direction (or a
change in slope) to the ellipse. By repeating this process it should be possible to complete
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the Aj-contour, after joining together numerous pairs of (a, 7) obtained.

We remark that the choice of § used in (3.12) and (3.13) will reflect the smoothness
and accuracy of a contour plot, and is directly linked to computational cost incurred; a
small § value will produce a large number of points used to draw a contour, but will, on the
other hand, increase the computing time. Throughout this thesis, we have used § = 0.01;
this seems to be sufficiently small in relation to the drawing area to allow us to regard the

resulting contour plot as a smooth and accurate one.

Illustration: Arthritic patients data

The above stages are illustrated in a simple numerical example using the arthritic patients
data. Here, we suppose that 7 = n and A = 0.05; this yields the approximate 95% confidence
regions for (c,7) under complete sampling. Appendix C presents the corresponding SAS
code in .m<.)re‘ détaﬂs.

Stage 1 From Table 2.13, the parameter estimates are

a = 650 = 8.2681 and T= ’7:50 = 5.0006.

Stage 2 Starting with b =1 & 7 = 7, rescaling is repeated until the relative likelihood is
less than 0.05 at each end in the vertical direction to give

Tmin = 3.5004 = 0.77 and Tmax = 7.0009 = 1.47,
while for the horizontal direction, we have
Omin = 4.1340 = 0.5a and ayax = 15.7094 = 1.9a,

found iteratively from an initial value of @ = @ (a = 1).

Stage 3 As outlined in Appendix C, the drawing stage consists of six separate iterative

processes:

Process 1 Starting with a = 1 in (3.8), the Newton-Raphson approach yields b = 1.1842 on

using Tmax/7 as an initial estimate. Hence, the first point on this contour is
(8.2681,5.9219) with the corresponding updated a, b values of 0.9906, 1.1807
respectively (see below).

a b a T Onew brew

1] 1.1842 | 8.2681 | 5.9219 | 0.9906 | 1.1807

Process 2 The drawing is continued leftward and downward using the same algorithm. However,

the initial value of b here for the second point is 1.1807, that is, the final value

of b obtained in the previous process. This process terminates when for a =
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0.5960, there is no corresponding value of b solving (3.8) can be found; thus,
as indicated below, the contour has reached its extreme left at (4.9343,4.1973)
after 54 iterations. For convenience, we have omitted the details for intermediate

iterations.

a

b

«

T

Anew

bnew

0.9906

1.1806

8.1907

5.9040

0.9813

1.1770

0.9813

1.1770

8.1136

5.8857

0.9720

1.1733

53

0.5988

0.8530

4.9508

4.2658

0.5968

0.8432

54

0.5968

0.8393

4.9343

4.1973

0.5960

0.8294

Process 3 We now find a for b fixed at 0.8294, using the last value of a computed in Process 2

- 0.5960 - as initial estimate. Only 12 iterations were observed below, 1mply1ng

that the contour has a sharp left edge.

a

b

«

T

Qnew

bnew

0.5965

0.8294

4.9316

4.1474

0.5967

0.8194

0.5973

0.8194

4.9383

4.0975

0.5987

0.8095

11

0.6713

0.7627

5.5502

3.8141

0.6812

0.7617

12

0.6889

0.7617

5.6958

3.8090

0.6989

0.7615

Process 4 The procedure is continued in the rightward and upward direction, by solving (3.8)
for b using a fixed at 0.6989. Note that here the starting value of b is 0.7615; we

obtained 108 iterations as the follows.

a.

b

«

T

Qnew

bnew

0.6989

0.7617

5.7785

3.8091

0.7089

0.7619

0.7089

0.7621

5.8611

3.8109

0.7189

0.7626

107

1.6583

1.1854

13.7107

5.9276

1.6629

1.1943

108

1.6629

1.1965

13.7487

5.9834

1.6657

1.2061

Process 5 At the extreme right edge we search for a instead with b fixed at 1.2061, and 1.6657
acts as the initial value of a. There were 20 iterations observed at this stage:

a

b

a

T

anew

bne'w

1.6647

1.2061

13.7640

6.0313

1.6655

1.2161

1.6642

1.2161

13.7597

6.0811

1.6623

1.2259

19

1.4957

1.2747

12.3668

6.3741

1.4857

1.2749

20

1.4801

1.2749

12.2379

6.3755

1.4701

1.2750




3.4. RELATIVE LIKELIHOOD CONTOUR PLOTS

122

A | Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Total number
of iterations

0.99 1 3 1 6 1 6 18
0.95 1 7 2 13 2 14 39
0.90 1 11 1 20 2 21 56
0.75 1 18 3 32 4 32 90
0.50 1 27 6 51 7 48 140
0.25 1 38 8 72 12 69 200
0.10 1 48 10 95 16 90 260
0.05 1 54 12 108 20 103 208
0.01 1 65 15 137 27 129 374

Table 3.27: Number of iterations required to complete the A-relative likelihood contour for
various A, for arthritic patients data when r = n.

Process 6 To accomplish the 0.05-contour, we once more solve (3.8) for b using fixed a, and

take the initial guess of b to be 1.2750; the 103 iterations are summarised in the

following table.

) a b a T Anew brew
1 1.4701 | 1.2750 | 12.1552 | 6.3756 | 1.4601 | 1.2749
2 1.4601 | 1.2749 | 12.0726 | 6.3751 | 1.4501 | 1.2747
102 | 0.5990 | 0.8540 | 4.9525 | 4.2706 | 0.5969 | 0.8442
103 | 0.5969 | 0.8408 | 4.9354 | 4.2043 | 0.5960 | 0.8308

Based on § = 0.01, 298 iterations were needed to draw the 0.05-relative likelihood
contour for the arthritic patients data under complete censoring. This is displayed in Figure
3.22, where different symbols have been used to differentiate each drawing process. Slight
overlapping is observed at the beginning and the ending. Furthermore, with censored data,
we can expect the number of iterations to increase in line with the severity of censoring, as

summarised below

r 10 20 30 | 40 | 50
Number of iterations | 3616 | 1188 | 646 | 398 | 298

In addition, Table 3.27 summarises the total number of iterations required to complete the
A-relative likelihood contour for various levels of A for the arthritic patients data when r = n;
we notice that the number of points increases as A decreases, as we expected.

Figure 3.23 illustrates the effect of the amount of censoring on the contours using the
arthritic patients data for censoring as in Table 2.13, and again, for A = 0.01,0.05,0.1 and
0.5. In general, and entirely as expected, for given A, we observe smaller surfaces with
increasing ». We also note that contours stretch over larger values in the a-direction, but

over smaller values in the 7-direction. It is also clear that, as A increases, contour areas
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Process 1 Process 2
7 7
6 ° 6
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4 4
3 3
4 6 8 10 12 14 16 4 6 8 10 12 14 16
a . a
Procees 3 Process 4
7 7
6 6
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4 4
3 3
4 6 8 10 12 14 16 4 6 8 10 12 14 16
a a
Process 5 Process 6
7 7
6 6
t5 + ts
41 4
3 T 3
4 6 8 10 12 14 16 4 6 8 10 12 14 16
a a

Figure 3.22: The six processes involved in constructing the 0.05-relative likelihood contour
plot for arthritic patients data when r = n.
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drop dramatically and the contour shapes become more elliptical.

Next, we take 7 = 30 and superimpose the relative likelihood regions with the confidence
regions based on asymptotic theory of maximum likelihood. In Figure 3.24, the likelihood
region shrinks, especially at the right edge, towards the ellipse as A increases; the overlapping
is almost perfect about the minor axis of the ellipse so that (as in the Weibull case) it may
be possible to find the initial contour point by solving the two points on the minor axis;
however, the non-symmetry in likelihood regions remains striking.

Expected Relative Likelihood Contours

To obtain confidence regions for the sampling distribution of (&, 7,) based on (3.2), we will
require an idealised sample, again using the expected order statistics as data values. This
is given by

_1)1*[%+1]1“[a(n—k)‘%] (3.14)

ElX s im1—k [0
[ i:n] = CinQ¥ 1?:20 (_1) ( k T [a (’I’L _ k) + 1]
for lifetimes drawn from the Burr distribution.

Example: r = 20,n = 25 For example, the complete ideal sample, when n = 25 and
a =4, T = 3, comprises

0.3195 | 0.4323 | 0.5122 | 0.5784 | 0.6374
0.6921 | 0.7444 | 0.7955 | 0.8464 | 0.8976
0.9501 | 1.0044 | 1.0614 | 1.1220 | 1.1873
1.2588 | 1.3384 | 1.4289 | 1.5343 | 1.6613
1.8209 | 2.0346 | 2.3513 | 2.9202 | 4.6881

so that, if the data is subject to Type II censoring at the r = 20 failure, then the resultant
censored ideal sample is given by

0.3195 | 0.4323 | 0.5122 | 0.5784 | 0.6374
0.6921 | 0.7444 | 0.7955 | 0.8464 | 0.8976
0.9501 | 1.0044 | 1.0614 | 1.1220 | 1.1873
1.2588 | 1.3384 | 1.4289 | 1.5343 | 1.6613
1.6613" | 1.6613t | 1.6613" | 1.6613" | 1.6613"

from which a3y = 4.3696 and 735, = 3.1889, and the corresponding 0.05-expected relative
likelihood contour is shown in Figure 3.25.

General: varying r and n In addition, Table 3.28 presents the idealised ML estimates
(@r,7r) computed from ideal samples of small to moderate size at a range of r, generated

with a = 4,7 = 3; these values lie at the middle of all contours, and, as shown in Figures
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t3-

X Idealised MLEs —— 0.05-relative likelihood contour

Figure 3.25: 0.05-relative likelihood contour plot for r = 15,n = 25, for ideal Burr data
generated with o = 4,7 = 3.

3.26 and 3.27, as n increases, they generally converge to their respective true values quicker
than the means of sampling distributions of @, and 7,, which are given in Tables 2.14 and
2.15.

We continue to use the values @ = 4,7 = 3 with A = 0.05 in the following examples
based on simulated data. Figure 3.28 shows the contour maps for some ideal samples for
various r and n. As found for a single set of data, for given n, we see that the contours get
smaller as r increase. It is also clear that, as the sample size increases, the contour shapes
become more elliptical. It is useful to combine Figures 3.28 and 3.13; the resultant plots
are displayed in Figure 3.29. For r = 0.8n, we see the relative likelihood contours tend to
appear to the right of the large-sample probability ellipses, and capture the behaviour of the
Type II censored MLEs more a.ccurafely. We will next compare the two confidence regions

of (e, 7) for various censoring levels.

Relative Likelihood Contour Validation and Comparison with Normal Theory
Probability Region A

The method used to validate these contours is as before; we plot the 10* simulated observa-
tions of (@, 7r), and expect to find 95% x 10% of (@,,7,) for which the following criterion
holds:

Iy (@, 7r) ~ I (@F,7%) > 1n0.05
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T n
25 50 100 1000

0.2n : a; | 11.2485 | 6.4607 | 5.0755 | 4.1092

: Ty | 3.9829 | 3.4611 | 3.2309 | 3.0266
0.4n:a; | 5.5851 | 4.7184 | 4.3517 | 4.0387

:7r | 3.4305 | 3.2156 | 3.1110 | 3.0129
0.6n:a; | 4.6986 | 4.3378 | 4.1700 | 4.0189

1Ty | 3.2676 | 3.1366 | 3.0708 | 3.0082
0.8n:a, | 4.3696 | 4.1833 | 4.0931 | 4.0103

17, | 3.1889 | 3.0972 | 3.0506 | 3.0059
1.0n:a; | 4.1969 | 4.0978 | 4.0490 | 4.0050

: 7y | 3.1387 | 3.0715 | 3.0370 | 3.0041 |

Table 3.28: Idealised MLEs (&;,7y) for various r,n, for ideal Burr data generated with

a=4,17=3.

4.4

X
4.3
4.2 X

a
414" x
. D, P

3.9 . T T T T

0 200 400 600 800 1000

n
X lIdealised MLE ------ true value

1200

Figure 3.26: Plot of &y g,, versus n, for ideal Burr data generated with o = 4,7 = 3.
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3.3
3.2 1x
t314 X
X

T . G
2.9 r T T T T

0 200 400 600 . 80 1000 1200

n
X Idealised MLE ------ true value

Figure 3.27: Plot of 7 g,, versus n, for ideal Burr data generated with a = 4,7 = 3.

where l,. (@, 7,) and {, (&, Tr) can be obtained from (2.35). We know that relative likelihood
confidence regions are asymptotically equivalent to the Normal confidence regions (see, Cox
& Hinkley, 1974, for example), but would like to investigate the extent to which relative
likelihood approach outperforms the asymptotic Normality approach as a method to obtain
the approximate 95% confidence regions for relatively small or highly censored samples.
Tables 3.29, 3.30 and 3.31, each assumes (o, 7) = (4,3),(0.9,3) and (4,0.9) in the
simulations, show some discrepancies between expected and observed values for small n and
r, in part due to lack of information for estimating & and 7 when the censoring level is low.
We see the agreement improves, approaching 9500 as n and r increase, and is reasonably
consistent across the various values of the parameters considered here. In particular, we
also note the expected relative likelihood regions (upper entries) consistently record more
replications of (@, 7,) than the elliptical probability regions (lower entries), and the upper
entries converge to 9500 quicker than their lower counterparts, even at early censoring.
Therefore, it transpires that relative likelihood approach provides a better measurement of
precision in MLEs compared to probability regions obtained from asymptotic Normality.

- We remark that it is possible to repeat the process of finding and validating expected
Burr relative likelihood contours for various A\ discussed earlier, such as 90%, or 99% con-
fidence regions. As shown in Figure 3.29, the MLEs lying outside the expected relative
likelihood contour are fairly informally spread around the contour. Hence, there is also
scope to investigate the spread of the remaining A% of simulated observations of (&, 7r)

around the contour.
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r

n

25

50

100

1000

0.2n

7956
6199

8722
6338

9116
7312

9497
9065

'(L4n

8733
7018

9183
7850

9333
8480

9488
9376

0.6n

9025
7910

9257
8497

9409
8877

9517
9443

0.8n

9149
8371

9378
8937

9389
9137

9499
9465

1.0n

9217
8736

9376
9095

9427
9288

9518
9502

Table 3.29: Number of replications of (&, 7,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with

a=4,7=3.

r

n

25

50

100

1000

0.2n

7957
5820

8685
7130

9108
8114

9464
9305

0.4n

8700
7673

9125
8488

9293
8926

9462
9404

0.6n

8991
8384

9239
8925

9391
9230

9445
9432

0.8n

9179
8736

9334
9101

9425
9298

9457
9437

1.0n

9244
8904

9355
9183

9422
9349

9468
9468

Table 3.30: Number of replications of (&, 7,) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with

a=09,7=3.

r

n

25

50

100

1000

0.2n

7882
5995

8816
6301

9090
7245

9461
9031

0.4n

8728
6772

9139
7820

9350
8561

9459
9321

0.6n

8975
7700

9237
8490

9376
8959

9490
9440

0.8n

9079
8300

9303
8839

9377
9155

9472
9455

1.0n

9099
8669

9291
9050

9382
9296

9476
9470

Table 3.31: Number of replications of (&, ) within the 0.05-relative likelihood contour
(upper) and the asymptotic 0.05-probability ellipse (lower) for Burr data generated with

a=4,17=0.09.
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3.5 Chapter Summary and Conclusions

Asymptotic Normality of MLE leads to symmetric confidence intervals for a single para-
meter, and elliptical confidence regions for two. This large sample result is often used in
inference from small to moderate samples, despite the drawback that it is not always ac-
curate with such sample sizes. Moreover, there appears to be no referenced information to
which how large a sample should be before this large-sample assumption may hold.

The work reported in this chapter shows that, unless sample size is very large (generally
larger than n = 1000), the hypothesis that the marginal distribution of a MLE is Normal
should be regarded as implausible; clearly, we then reach the same conclusion about the
hypothesis that the joint distribution of the MLEs is multivariate Normal. In general,
the progress towards Normality is slow, but increasing the censoring number will expedite
this progress. For a small sample size, typically less than n = 100, the distributions of
MLEs tend to skew to the right, leading to a non-elliptical joint distribution; Billmann
et al. (1972) argue that the slow convergence to Normality is due to the lack of symmetry
when the samples are censored on one side (from the right). Then, it would be of interest
to investigate whether the distribution of MLE would be left skewed if the data are left
censored; this, however, is not our main focus, but is noted as a topic for further research.
We have also shown that the sample distributions of EO.I,r approach symmetry and converge
to Normality at earlier censoring and smaller sample size than the MLEs of parameters.

Despite these poor approximations to the Normal distribution, the corresponding prob-
ability intervals and ellipses still provided good coverage of the MLEs, but the shape of the
distribution was not so well represented. We then considered, via an intuitive interpretation
of (3.2), relative likelihood as an alternative method to asymptotic Normal theory to mea-
sure the precision of the MLEs, for Type II censored samples of small to moderate size. By
extending the work by Watkins & Leech (1989) and Watkins (2004) for the Weibull case, we
have derived an algorithm for drawing relative likelihood contours for Type II censored Burr
data, and illustrated this procedure in detail for the arthritic patients data. We have also
shown that the non-elliptical nature of the (expected) relative likelihood contours reflects
more accurately than the large-sample probability ellipses the behaviour of the sampling
distributions of the Type II censored MLEs for relatively small and/or highly censored sam-
ples. There is obvious scope to investigate the relative size of the two confidence regions, as
well as the extent of the overlap in general; this will, nonetheless, be studied elsewhere.

We can now use these asymptotic theoretical results and move on to consider the link
between the interim and final MLEs of parameters and By ; this will involve taking joint
expectations on the components of the Type II censored and complete score functions,
which in turn requires various forms of moments and product moments of order statistics.
Therefore, Chapter 4 aims to solve these moments, introducing the derivatives method,
before moving on to Chapter 5 to look at the correlation between the two sets of MLEs.



Chapter 4

Moments and Product Moments of
Order Statistics

4.1 Introduction

We have already seen that order statistics arise naturally in the analysis of reliability data
subject to Type II censoring due to the method of experimentation. In considering the
extent to which an interim analysis - here, using information based on Type II censored
samples - provides a guide to the final analysis, we will require the study of the correlations
between the complete and the Type II censored MLEs; for large samples, it can be shown
that this is equivalent to a study of the correlations of score functions, which thus involves
various forms of expectations and joint expectations of order statistics. We now outline here
some useful preliminary work.

The moments of order statistics have generated considerable interest in statistical infer-
ence and, in fact, have been studied, and, where appropriate, tabulated quite extensively for
many distributions; for instance, Joshi (1978, 1982) in the exponential distribution; Lieblein
(1955) in the Weibull distribution; Malik (1966) in the Pareto distribution; Khan & Khan
(1987) and Pawles & Szynal (2001) in the Burr distribution.

From (2.2), taking expected values on the products of the complete and Type II censored

score functions means that we will require expectations of the form

E[g (Xi:n)]a (4-1)

and joint expectations of the form
Elg (Xin) h(Xjn)], (4.2)

in which the arbitrary functions g and h usually involve logarithms and/or powers of X;.,.
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For instance, as seen at Section 2.3.1 for the Weibull distribution, (4.1) is typically of
E[X? {InX;n}"]
for some positive integers a and p; more specifically, these are
Xim, InXin, XimIn Xin, and Xin(In Xin)?. (4.3)

We consider two methods to solve (4.1) and (4.2). The first employs the conventional

definition of expectation; as an illustration,

E[XE {InX;n}®) = [ 2P (Inz)? fi;)(2)dz,

- which we will refer to as the direct method: Therefore, depending on the form of g (Xi.,)

and f;)(z), this approach may involve integrations of some complex functions. The second
introduces an alternative based on repetitive partial differentiations of the moments and

product moments of order statistics, as discussed below.

4.1.1 The Derivatives Method

In the exponential, Weibull and Burr distributions, u, is well defined so that expressions
for E[X? ] can be written down without too much difficulty. In particular, we have seen
E[X;.n] at (3.3) and (3.14) for the Weibull and Burr distributions. Hence, differentiating
E[X? ] wrt p a times will yield E[X? {ln X;.,}?]; this effectively introduces the term In X;.,,
whose power depends on the order of differentiation, in addition to keeping the term X7, in
place. As a result, we can easily obtain expressions for the functions at (4.3) by replacing
aand pby Oand 1,1 and 0, 1 and 1, 2 and 1, in turn. Similarly, for the joint expectations
of X¥ and X;’m, we can obtain a general expression for E [Xf:n {ln X;.n }* X;’m {ln ij}b]

by applying the operator
6a+b

Op*og®
to E[Xf:nX;’m], and the formulae for specific expectations can be obtained on appropriate
substitutions of a,b,p and ¢ by positive integers. We note that such technique has been
employed by Watkins (1997) and Watkins & Johnson (2002) to obtain results for the ex-
pectations of the first and second derivatives of the log-likelihood function for the Burr
distribution under complete and Type I censoring regime respectively.

In Section 4.2 we begin with the assumption that the lifetimes follow the Weibull distrib-
ution, and, as mentioned in Section 2.3.1, we exploit the link between Weibull and standard
exponential distributions to reduce the expectations to the standard exponential case. We
will solve for (4.1) and (4.2) using the direct and derivatives methods. Results obtained
from both methods are then validated for various combinations of ¢ and j using simulation

experiments. Then, in Section 4.3, we repeat the analysis for the Burr distribution, in which
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we benefit from the recurrence relationship given at (1.51).

4.2 Weibull and Std Exponential Order Statistics

Let X1.p < Xoup < -¢» < Xy be the order statistics obtained from a random sample of size
n drawn from the Weibull distribution. When considering the correlation of the complete
and the Type II censored Weibull score functions, the form of the partial derivatives at
(2.17), (2.18), (2.31) and (2.32) suggests that (4.1) will generally be of the form

EEE]

for a=0,1,2 and p =0, 1, while (4.2) will generally be of the form

(SN RG]

for a,b,p,q = 0,1. In some, but not all, cases, a = b and p = q We can, of course, obtain
these expectations from Weibull pdf and cdf, but we can also exploit the connection between
Weibull and standard exponential distributions.

4.2.1 Link between the Weibull and Standard Exponential Distributions

We have previously noted that a natural extension of the exponential distribution is the
Weibull distribution; hence, it is often convenient to derive results for one case and then
transfer to the other. In fact, we have already employed in Section 2.3.1 the transformation
of Weibull random variable X into standard exponential random variable Z, given at (2.26),
to obtain the elements of the Weibull EFI matrix. Therefore, using (2.26), we see (4.4) and
(4.5) reduce, respectively, to

E[ZF (InZ;.n)% (4.6)

fora=0,1,2 and p=0,1, and
E [Zgjn(ln Zin)* 2L, (In ij)”] (4.7)

for a,b,p,q = 0,1. As before, in some, but not all, instances, a = b and p = q. Next, we

briefly present some results for the standard exponential order statistics.

4.2.2 Standard Exponential Order Statistics

For later convenience, it is suitable to summarise here some basic results on the moments
of standard exponential order statistics. Suppose Z.,, < Zs., < - -+ < Zp.n, denote the order
statistics in a random sample of size n from a standard (so § = 1 in (1.27) and (1.28))
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exponential population, with pdf
f(z)=e7%, (4.8)

and cdf
F(z)=1-¢77%, (4.9)

for z > 0. By writing
7
Zi:n = (Zi:n - Zi—l:n) + (Z'—lm - Zi—-2:n) +-- 4+ (Z2:n - Zl:'n,) + Zl:n = kX: Zk:n - Zk—l:n
=1

with the convention Zy., = 0, we see that we can exploit the lack-of-memory property to

obtain . W
1
Zoo o= S 7k
; o En—k+1
so that Wy, defined above at (2.9), are now independent and identically distributed variables
with pdf (4.8). Using this result, it is straightforward to write down the mean and variance
of Z;.,; we have
L 1

E [Zi:n] = Z

> (4.10)

and

i 1
Var(Z) = 5 —— .
ar(Zin) kgl(n—k+1)2

Moreover, writing Z;., = (Zj.n — Zi:n) + Zi:n, the covariance of Z;., and Z;., (1 <7 < j < m)
is
CO’U(Zim, Zj:n) = CO'U(Zi:na Zj:n - Zi:n) + COU(Zi:n, Zi:'n) = Va'r(Z'i:n)
since Z;., and the increment Z;., — Z;., are independent due to the lack-of-memory property.
We further obtain the joint expectation of Z;., and Z;., (1 <i<j<n) as
E [Zi:an:n] = Va’I’(Zi:n) +FE [Zi:n] E [Zj:n]
S (L 1 (411
—_— ——}x _— .

We can now move on to derive formulae for special cases of (4.6) and (4.7) using, first, the
direct method, followed by the derivatives method.
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4.2.3 Expectations of g(Z;.,)

It will be shown in next chapter (see Section 5.3.1.1) that we will require the following
special cases of (4.6):

E(ln Z;.,)], (4.12a)
E(ZinIn Z;i), (4.12b)
E[(Zin)*In Zin] (4.12c)
E [(In Zin)Y, (4.12d)
E[Zin(In Z;:n)?], (4.12¢)
E [(Zinln Zi:n)?) . (4.12f)

Direct Method
From (1.40), the marginal pdf of Z;., is

and we can use the Binomial Theorem to expand the square bracket as

. i—1 , ) — ,
[1 _ e_z]z—l — Z (_1)5—1—k (7’ 1) e—(z—l—k)z
k=0 k

to give
fio(e) = can 5 (-1 ’°( e

Then, using (1.46), we have

E(Z8,(InZip)?% = [§ 2P (Inz)® fz)(2)dz
= Cinm 'iz_:l (=1)i1-F (i n 1) Jo 2P (Inz)* e~ (nklzg,
k=0 k

-1 i—1— 1—1
= ci:nkgo(_l) ! k( k )Azak) (413)

where
AP = [°2P (Inz)" e **dz

is related to gamma and polygamma functions defined in Section 1.2.2.1. As a result, for

E[ln Z;.,], we require
1
Al = [P (lnz) e *dz = 'y+sns’
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so that, from (4.13), we obtain (4.12a) as

) i=1 i—1— i—1
EllnZin] = cn Y, (-1 ’“( L )A?J_k
k=0

N . i—1 (_l)i—l—k (i;l)
= T R

{—y—In(n—k)}. (4.14)

Likewise, in E [Z;n In Z;.n] and E [(Zin)?In Zisn ], the relevant integrals are, respectively,

l1-y—1Ins

11 0o - _

Ayl = [ z(lnz)e ”dz-—s—z,

and 3—-2vy-21
A2 = [° 22 (Inz)e %*dz = — L ———— 733_ 2

Next, E [(In Z;:,)?] needs
AP = [ (Inz)? e **dz = 1 12— + (—y —Ins)?
s 0 s| 6 ’
and for F [Z,'m(ln Z,-m)2], we want

o 1 (m?
12 2 - 2
Al = [ z(n2z)%e “dz—sz{ﬁ —1+(1—y—1Ins) }

The final expectation is E [(Zim In Zim)2], for which we require

2. 2 5 3 2
22 __ [0 2 207824, < ) _° Z o~
AZ = [§2°(In2)" e **dz 53{6 1 (2 ~ lns) }

Derivatives Method

Basic expectation It will prove useful to begin with the following preliminary:

i-1 , .
E[an] = GCin ];0 (—1)1'_1—k <Z 5 1) fg" zPe—(n—k)zdz

= e S (—pyiik (FT 1) L+ D) |
= c,mkz:jo(_n ! k( B >(n_k)m, (4.15)

which reduces to (4.10) when p = 1, as required. In particular, its first and second partial
derivatives wrt p will introduce the term In Z;.,, and, in turn, yield the expectations in

(4.12), in terms of the digamma and polygamma functions.

Expectations in (4.12) The first partial derivative of (4.15) wrt p gives

» B i—1 (_l)i—-l—k ('i—l)P @ + 1)
E[ZP In Ziy) = cim kzzjo e I:)p — {¥(p+1)—In(n—k)}. (4.16)
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Hence, using the gamma and digamma values in Table 1.6 and setting p = 0,1, 2 in (4.16)

will yield, respectively, the following expectations:

i—1 (_1\i—1—F (i—1
EnZ.,]) = cin kzzj:) ( 1)(n — k)( ) {=v —In(n —k)}, (4.17)
_ i—1 (_1)1—-1—’6 (’i—l)
E [Zi:n In Zz’:n] = GCin = (n — k)2 . {1 -7 ln(n - k)} ’ (418)

Pzl - el SEDTTR
E[(Zun) anz:'n] = Gin kz=:0 (n_k)3

1) ‘
{3 -2y —-2In(n —k)}.

Furthermore, the second partial derivative of (4.15) wrt p gives

im1 (_1yi—1—k (i—1
B2, 0 2] = i 5 RO (1) 4 o4 1) - - )

so that, likewise, setting p = 0,1, 2 in this result will yield, in turn,

izl (_1)i-1-k (i-1) 2
i1 (<) (1) (g2
B (2 owe-nr),

E[Zi;n(lnzim)z] = GCin 6

i—1 (_l)i—l—k (i—l) 7T2 5 3 2
B((Znln 2] = 2e0n 5t (T - T4 [y -me-m] .

We note that these results are identical to those computed from direct integration; see, for in-
stance, (4.14) and (4.17), and also can be compared with their counterparts for E [Z?(In Z)?]
given at Table 1 in Watkins (1998).

Some Numerical Details and Discussion

Being new results, it is important to check these expressions against simulation experiments.
For illustration, we plot each expectation in (4.12) as a function of i for n = 1000, in Figures
4.1 to 4.6; for graphical convenience, simulated values are shown in steps of 50. These show
that there is very little difference between theoretical (calculated from the direct method)
and simulated results, based on 10* replications. Take, for instance, E [Z;., In Z;.,,], Table 4.1
summarises the agreement between theoretical values, obtained from both direct (upmost
entries) and derivatives (middle entries) methods, and their simulated counterparts (lowest
entries) for varying ¢ and n; this confirms that the theoretical and simulated data are indeed
consistently the same up to 2 decimal places, and investigations for other expectations
in (4.12) provide similar observations. We also note, from Figures 4.2, 4.3, 4.5 and 4.6,
that E[Z;.,In Z;.p), E [(Zim)2 In Zim], E [Z,-m(ln Zim)z] and [(Zim In Zim)z] are relatively
constant for 7 < 800.
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i n
25 50 100 1000 2500 5000
0.2n : direct | -0.3110 | -0.3226 | -0.3286 | -0.3341 | -0.3345 | -0.3346
: deriv. | -0.3110 | -0.3226 | -0.3286 | -0.3341 | -0.3345 | -0.3346
: simul. | -0.3109 | -0.3224 | -0.3287 | -0.3341 | -0.3345 | -0.3346
0.4n : direct | -0.3223 | -0.3325 | -0.3378 | -0.3426 | -0.3429 | -0.3430
: deriv. | -0.3223 | -0.3325 | -0.3378 | -0.3426 | -0.3429 | -0.3430
: simul. | -0.3219 | -0.3320 | -0.3381 | -0.3425 | -0.3429 | -0.3431
0.6n : direct | -0.0753 | -0.0776 | -0.0788 | -0.0800 | -0.0801 | -0.0801
: deriv. | -0.0753 | -0.0776 | -0.0788 | -0.0800 | -0.0801 | -0.0801
: simul. | -0.0728 | -0.0789 | -0.0784 | -0.0798 | -0.0801 | -0.0802
0.8n : direct | 0.7000 | 0.7323 | 0.7490 [ 0.7642 | 0.7652 [ 0.7656
|~ :deriv. [ 0.7000 |- 0.7323- | 0.7490 { 0.7642 | 0.7652 [ 0.7656 |
: simul. | 0.7030 | 0.7315 | 0.7492 | 0.7646 | 0.7646 | 0.7655
1.0n : direct | 5.3073 | 6.9363 | 8.6885 | 15.1729 | 17.9755 | 20.1646
: deriv. | 5.3073 | 6.9363 | 8.6885 | 15.1729 | 17.9755 | 20.1646
: simul. | 5.2958 | 6.9279 | 8.7466 | 15.1135 | 17.9826 | 20.1639

Table 4.1: Numerical comparison of E[Z;., In Z;.,] for various ¢ and n.

Expectation
[

200

500

800

Figure 4.1: Theoretical (—) and simulated (x) values of E [In Z;.,| versus 4, for n = 1000.
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Expectation

o 100 200 300 400 500 600 700 800 900 1000

Figure 4.2: Theoretical (—) and simulated (x) values of E [Z;.,, In Z;.,] versus i, for n = 1000.

20

0o 100 200 300 400 500 600 700 800 900 1000

Figure 4.3: Theoretical (—) and simulated (x) values of E [(Zin)?In Zin| versus i, for
n = 1000.
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50

Figure 4.4: Theoretical (—) and simulated (x) values of E [(In Z;:)?] versus 4, for n = 1000.

25

10

o 100 200 300 400 500 600 700 800 200 1000

Figure 4.5: Theoretical (—) and simulated (Xx) values of E [Z,-m(ln Zim)2] versus 1, for
n = 1000.
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250
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Figure 4.6: Theoretical (—) and simulated (x) values of E [(Zim In Zim)z] versus 4, for
n = 1000. '

4.2.4 Joint Expectations of g (Z;.,) and h(Z;.,)

Similarly, we will consider the following special cases of (4.7):

E[ZinInZjy), (4.19a)
E[(InZ;:n)Zjn], (4.19D)
ElnZ;nln Z;.], (4.19¢)
E[ZinZimn Zjm)], (4.194)
E(Zin(nZi:p)Zj.0) , (4.19)
E((InZ:n)Zjimnn Zj.y) (4.19f)
E|ZinInZipln Zj.y), (4.19¢g)
E (Zin(In Zin) Zjin(In Zjin)] . (4.19h)

As with single expectations, we consider two ways - direct and derivatives - to compute

these expectations.

Direct Method

From (1.45), the joint pdf of Z;., and Z;., (1 <i < j <n) can be defined as

f('i,j) (:B’ y) = GCi,j:n [1 - e_z] -1 [e_‘” — e—y]j—’i—-l e—ze—(n_j+1)y
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for 0 <z < y < 00o. We now expand both square brackets inside the integrals, writing

- e_z]i—l _ "zl (1)1 (2 - 1) o~ (i-1-k)a
k=0 k

and
[e_w—e_y]j_i_ —f (=11 l( ;_1> e~lwe—(i—i—1-ly_
so that
j—i—1 -1 -1 R —(rie
fop(@y) = ,JnkZ_DO ZJ; GV l( k )(‘7 . )e (iH—k)z g—(n—i-l)y

Using (1.47), the joint expectation, E [Zipm(ln Z,-m)“Z;?m(ln ij)b], is given by

Ci,jin f;io y—o zP (ln m)a yq (ln y)b f(z,J) (w y)dxdy
—1 j—i-1 — 7 —
ST C el (e I

Jy=o f z=0 x” (Inz)?y? (Iny)® e~ EH-Ree=(r=i-ly gy

—1 izl —1\ [j—i-
- amz o (P (T TR e

k=0 [=0

at which we define
AP = [* ) [Y_ 2P (Inz)® e~*%y? (Iny)’ e~ Wdzdy

where the parameters a, b, p, q, s and ¢ are real and positive. Hence, we can anticipate some
lengthy algebra here, involving functions like gamma and polygamma, exponential integrals
and Lerch transcendent function, as well as the connections between these functions, as
presented in Chapter 1. Next, we derive the different combinations of A”“’q required when

evaluating each function in (4.19) in turn:

AlOOl AOI 10 A0101 AlOll All 10 AOI 11 A11,01 All,ll.
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1. E{ZinIn Z;.,] We need
A% = [loJigme ™ (iny) e Vdody

= [i<o(lny)e W[V _ ze " dz] dy

= el | (- e - o) ay

1 y+Int g+In(s+t) s[1—v—In(s+1)]
= ={- + -
52 t s+t (s+1t)?

1
s%t(s +1)2 {

—s(ys+1t) — (s+¢t)?Int+¢(2s+¢t)In(s + 1)}

for which the individual integrations wrt y are

. .Y4+Int o 4
 [oeo(ny)e™dy = -1 P (4.21)
00 —(s +In(s+1t
fy=0(ln y)e~ vy _yr ey p _‘(_ n ), (4.22)
~ —(s l—-y—In(s+t
fy:() y(ln y)e ( +t)ydy = 7&8 + t§2 ) (4.23)

2. E[(In Z;n)Z;.n] The relevant integral is
Ag,lt’m = f y of z—o(lnT ye_tyd:cdy
) _ 1 B
= Jyzove v [_; (y+1ns+ Ei(sy) + e lny)] dy
= 1 {w+21§ [ln(1+§) ot ] N 1—’)’—ln(s+t)}

s t2 s+t (s+1)?

_m {(s+2t) [y +In(s + 1) — £},

obtained via

_ 1
Jozove™dy = =, (4.24)
Joeoye Y Er(sy)dy = 1 In(1+ - )—% from (1.18), (4.25)

and (4.23).

3. ElnZ;,1In Z;.,] The internal integration of AS};‘” is the same as that in A‘j};m; then,
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on dropping the constants, outer integration wrt y yields

/ Z° o(ln y)e‘tyEl(sy)dy

- [ln(l + ) (y+1n(s+1t) + —<I>(

,2, 1)] from (1.20)

s+t s+t
_ ! [ )] from (1.22), (4.26)
[i2o(Iny)?e™ (s+tly gy = -lm [ 62 +(y+1In(s + t))2] , (4.27)
and (4.21), for which
L0 _ _l Mﬂg - % [ln(i) (v +In(s + t)) + Lzz(s_H)]
s +s—+t[ +(y+i(s+)?]

il

1 { —(s+1) [fylnt+lnslnt—1nsln(s+t)+Li2(3i+t] }
st(s+1t) —s[¥*+ (In(s +1))?] + (=s + t)yIn(s +t) + % .

AlO,ll

4. E[ZinZjnIn Z;,] This expectation is associated with whose inner integral is

identical to that in A10 oL, ; hence the outer integrals (omlttlng the constants wrt y) are

_ 1—v—Int
[roy(ny)e™™dy = ———12 , (4.28)

2 (s+t)y -
fy:Oy (lny)e dy (S+t)3 ]

(4.29)

and (4.23), which lead to

41011 _ 1fl—y—-Int 1—v-In(s+¢t) s[3—2y—2In(s+1?)]
8.t 52 2 (s +1t)2 (s+1)3

1 —s [s(s +3t)(y — 1) +¢?]
s2t2(s+t)3 | —(s+t)Int+t2(3s+t)In(s+¢t) |

5. E(Zin(In Zi:n)Zj:n] The interior integral in A11 104
z Y _or(lnz)e™*%dx
= _—ﬁ {-1+7y+e*¥ —Iny+Insy+T(0,sy) + T'(2,sy) Iny}

1
= -3 {-14+~y+Ins+e ¥+ Ei(sy) + e ¥ Iny + sye ¥ Iny}

since, from (1.17),
I'(0, sy) = E1(sy)
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and

o0
I'(2,sy) = / e ttdt = e=*Y(1 + sy).
t=sy

Then, integrating wrt y requires (neglect the constants)

1
0 (st gy — — —
Jymove™ ™y = 5w
(4.23), (4.24), (4.25) and (4.29) so that
o _ 1 { R G AR [1n(1+ -t }
s,t ) 1—y—In(s+t) , s[3—=2y—2In(s+t)]
8 + (s+t)2 + (s+t)3

T (2= + £ =39 lnGo + ) [Fe 40— e+ 07}

6. E[(InZ;.n)Z;.nIn Z;.,] The appropriate integral is Af,?}t’“

that in A01 10,

which has same inner part to

; we thus have

(1—y—Int)(7+Ins)
T

1 .
Ag}t’u = — [(ln(l +&) - 3+t) (y+1In(s+¢t)—1)+ Lzz(sit — SL_H]
67( —249)+m2+6 In(s+t)(—2+2v+In(s+t))
6(s+t)2
. (s + )2 [(n)(y + Ins) + Lia(5%)]
. . 9 5
5t2(s + 1)2 +s(s +3t) —s(s + 2t) [v2 + (In(s +1))?]

t22

+1In(s +t) [(s +1)2(1 — v+ 345 +1Ins) + 2% (y — 1)]
by using the following results (ignoring the constants wrt y):
S0 y(ny)e™™ Ex(sy)dy

_ tl !<1n(1+ )_——) ('y+ln(s+t)—1)—+—( t )2@( ¢ ,z,z)‘ from (1.21)

s+t s+t

1 [ (ln(1+§)—s+rt) (y+1In(s+t)—1)

Y . :| from (1.23), (4.30)
+L22(s_+t =

6v(=2+7) + 7% +6ln(s +t) (— 2+2’y+ln(s+t))
6(s +t)?

[i2oy(iny)2e=(+vdy —
(4.31)
and (4.28).

7. E[ZinIn Zinln Z;.] The internal integral of Ai}t’m is studied before in A11 10. ; by drop-

ping the constants, the elements of external integration have already been given in
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(4.21), (4.22), (4.26), (4.27) and (4.31) respectively. On rearranging, Ai’lt’m is

_(y+Ilnt)(=14+v+Ilns)  y+In(s+t)
1 s+t

t
Ll [m(%f) (y+1n(s + 1)) + Lig(s%t)] +L [% +(y+In(s + t))2]
s s[6’y(—2+'y)+7r2 +6 In(s+t)(—2+42v+In(s+t) )1

+ 6(s+t)2
~(s+ )2 [(nt)(y — 1 +1ns) + Lin(57)]
1 —vs[—s+t] — s2 [y2 + (In(s + t))?]
s%t(s +t)? +In(s +1t) [(s +t)?Ins — 3st — t?]

+y1n(s + t)(—s2 + 25t + t2) + Tt (25 + ¢)

8. E(Zin(nZ;) Zjin(In Zj.p,)) A;,lt’u has an identical interior part as Ai,lt’lo but exterior

part similar to A:g’n and Ag’lt,ll. Accordingly, integration and simplification give
A},’lt’u as
(1—y=Int)(—=14+y+Ins) + 1—y—In(s+t)
2 (s+1)2
1| = [+ - 35) (v +In(s+6) - 1) + Lis(5h) - 3]
T2 + 6v(—2+7)+ 7246 In(s+t)(—2+2y+In(s+t))
6(s+t)2
8[6+67(—3+7)+72+6 In(s+t)(—3+27+In(s+t))]
+ 3(s+t)3
—(s+1)3 [(lnt)('y —1+1ns) + Lig(s4 ]
1 —vs (—2s% — Tst + t2) — s?(s + 3t) [1 + 7+ + (In(s + t))?]

CS22(s+1)% | 4ln(s+1¢) [—6st2 —3t2%(s+1t) + (s +1)3 + (;ﬁ +1n s) (s + t)3]
+yIn(s + ) [=(s — t) (8% + 4st + t2)] + 2242 (35 + 1)

based on (ignore the constants wrt y)

oo —(s 6+6y(—3+7)+72+6In(s+t —3+2’y+1n(s+t))
fy=0y2(lny)2e (+t)ydy= 7( ) 3(35—1;)3)( :

and results in (4.23), (4.28), (4.30) and (4.31).

Therefore, we can now use the above results to write down the expectations in (4.19);

for instance, using (4.20), (4.19a) is given by

it ik (1= 1\ (1 —i=1\ j100
E[ZinInZjn] = cijn kgo zgo (-1)7* ( k ) ( ! )A'H-l—k,n—i—l
i-1j—i—1 (_1)j—k—l (2;1) (.7'—‘;'—1)
"g::o iz G+1-k)’Mn—i—1I)(n—k)?
—(+l-k)[y@E+I-Fk)+n—i-1]
~(n—k)?ln(n—i-1) . (4.32)
+(n—i-0)(n+i—-2k+1)In(n —k)

Gij:
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Expressions for other expectations can similarly be written down from (4.20); we have
included these expressions in Appendix D for ease of reading.

Basic Expectation

Before we move on to consider the derivatives method, it will prove useful to here consider

in some detail E [zgnzgn] , which may be regarded as the preliminary result to achieve later

expectations of the form F [Zﬁn(ln Zin)*Z}., (In ij)b] , using repetitive differentiations on

B (2,28,

in“jmn

wn“jn

An approach due to John & Watkins (2006) Similarly, E [Z?’ VA ] is given by

.. 4=1j—-i—1 . . . i —1\i—i—1 o
—k—1 [ J—1 }
Ci,jn Z Z (_1)J ( k ) ( l )Az?-lq_ok,n—i—l'
k=0 =0
We refer to John & Watkins (2006) to proceed; in general, the inner integration in Aﬁg’qo
wrt z is given by

_ 1 _ 1
Jamg2Pe™dz = P+ JokoWPe ™ du = 8_p-T1"Y(P + 1, sy),

obtained by letting u = sz,s0 0 <z <y & 0 < u < sy, and z = u/s so dz = du/s. Using
(1.8), the normalised incomplete gamma function may be expressed as

¥(p+1,5y) = (sy)P** "Eom'_(:f;%

so that

_ x —sy)™
AP0 _ oo g.—ty, p+1 ( d
ot fy:oye y mzzjom!(p-i-1+m) y

0o (_s)myp-i-q+1+me—-ty
= f;io Z ] Y
m=0 m(p +1+ m)
(_s)myp+q+1+me—ty
m=0 m(p +1+ m)

on reversing the order of integration and summation. We thus have

o0 — m
APR0 (—s) % . ptgt+lim,—ty g
st mz=:0 [m!(p—l— 1+ m) y=0Y €

_ f[ (=)™ ><F(zo+q+2+m)]

ml(p+ 1+ m) tptat+2+m

m=0
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from the definition of gamma function. Hence,

qpoa0 _ 1 § (-3)"Tlp+q+2+m)
it trrate =, m!(p+ 1+ m)

We also introduce a hypergeometric function, writing the summation as

© [Tp+1+mTp+q+2+m) (=)™
E[ T(p+2+m) X ]

m=0

_ T(p+1T(p+q+2) o
= F(p+2) F2,1(P+1’P+Q+2,P+2a t)
F(p+qg+2)

p+1

F, (p+ 1,p+q+2;p,+2;—%)-

As a result, we have

r 2 s
a0 _LO+a+2) g (p+1p+a+2p+2-3).

T trtet2(p + 1)
Finally, we obtain an expression for £ [Zznz;?m] in terms of hypergeometric functions as
follows:
. . L. . f g -1 F—k—1
Cijjnl (p+g+2) o171 e _(_(n—i—z)v+q+i ,
apIEDY e\ | (4.33)
(r+1) k=0 =0 | xFy; (p+l,p+q+2;p+2;—%§;_z)

for instance, when p = q = 1, this equation reduces to (4.11) as shown in John & Watkins
(2006).

Convergence considerations Here, we consider the conditions under which the func-

tions Fy (p+ Lp+q+2;p+2; —%%) in (4.33) are convergent for 1 < i < j < n. To
illustrate this, we take n =6, i = 2, j = 4, where (4.33) contains

. 1
F5, (p+1,p+q+2;p+2;—§), Fz,l(p+1,p+q+2;p+2;—1),
1 2
F P+1,P+Q+2;p+2;—z , Faa P+1,P+(I+2;P+2;—§ .

From (1.14), the condition for convergence requires

_’i+l—k
n—1i—1

<1,

meaning the second F3; function in the above example is divergent. In general case, we
thusneedi+1 -k <n—1—1=2i+ 2] — k < n. In particular, the term 2¢ + 2] — k is at
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its maximum when
2i+2max{l} —min{k} =2i4+2(j—-i-1)—-0=25-2

so the condition reduces to

2j-2 < n
< 241
] 2 M

Therefore, F5; (p+ Lp+q+2;p+2; _kl'l;k.) is only convergent when 1 <i<j < Z+1;

n—i—l
more precisely, this is when

1Si<j<|2+1]ifnisodd,

and

132<9§§1fn1seven.

An alternative form To overcome the problem, we exploit (1.13) to express

i +1—k
Fo (P+ 1,P+Q+2;P+2;—h>

n—k \~Fretd) i+l—k
(n——le) Fy (P+(I+2,1,P+2, ﬁ) :

It is easy to see that

’—;E’ff-’ is strictly less than 1: we write
n+k<i+l-k=>2k-1l—-i<n

where max {2k — | — i} = 1 is indeed < n, and,

i+l—-k<n—-k=i+l<n

where max {¢ + !} = j — 1 is also < n. Hence, the Fy (p+ q+2,1;p+2; ’—;‘;l_;kk) series is
now absolutely convergent for the whole range of 1 < i < j < n, and we have successfully

rewritten E [ZﬁnZgzn] in terms of the simpler hypergeometric functions;

P+1) k=0 1=0 (n — k)ptat2 +q+2,1;p+2; m—
(4.34)

Moreover, we will see that, in the derivatives method, the partial derivatives of F5; (—ﬂ_'Tk)

cignl (b + 0 +2) (5351 [(—1)""“" e Py (p i41— k)

;

n
can be greatly simplified when p, ¢ take values of 0 and 1, to give the specific expectations
in (4.19).
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Specific expectation Partial derivative needed | p | ¢
E [Zi:'n, In Zj:‘n] E;[Zzpnz;ln] 110
E (0 Zim) Zjem] AN 01
E I Zin 10 Zjum) Ey 28 .23, 0/0
E [Zi:an:n In Zj:n] Etlz [Zznz;']:n] 1 1
E [Zi:n(]-n Zi:n)Zj:n] E;[anzgn] 111
E [(ln Zi:n)Zj:n In Zj:n] Egp[anZ’?n] 01
E [Z,;m In Zi:n In ij] Egp[Zzz:)nZ]?:n 110
E [Zi:n (ln Zi:n)Zj:n (ln Zj m)] E;'p [Zf:nZ ;'I:n 1)1

Table 4.2: Derivatives method: expectations in (4.18) and the partial derivatives needed.

Derivatives Method

- As we have previously noted at Section 4.2.4.2, we are now in the position to differentiate

the basic expectation, E[Z?, Z;-’m] given at (4.34), partially wrt p and/or ¢, and then suitably
replace p, q for 0,1 to obtain expectations of the form E [Zﬁn(ln Zin)*Z} ,(In ij)"] ; Table
4.2 lists the partial derivatives needed for each of the expectations in (4.19). In summary,
we require E;,[Zf:nZ;?m], E,’I[ZﬁnZ;{n] and Eg,[ZF, 71,
of T(p+q+2) and Fyx (p+q+2Lip+243k).

The partial derivatives of I' (p + g + 2) are straightforward to obtain; we have, from

(1.2),

ZP 71 ], which contain the partial derivatives

T,(p+q9+2)=T,(p+q¢+2)=T(@+q+2)v(p+q+2),

and, from (1.3),

T (p+9+2) =T(p+q+2) [ p+a+2) + {¥ p+a+2)}].

Furthermore, when p and q are replaced by 0 or 1, these derivatives simplify to the values
in Table 1.6. As a result, it is sensible to express Fy; (p +q+2,1;p+2; %‘;l_;kk) in terms of
gamma functions for which partial derivatives are easy to obtain; we refer to (1.12) to write

oo

Bi(p+q+2Lp+22) = Y

m=0

P+9+DmBm 2"

P+ 2)m m!
~T@+QT(p+g+2+m)
'p+qg+2)T(p+2+m)

m=0

in which z = 2=E | and it follows that (4.34) becomes
B[2,28,] = o SR YT G)CTT) R L+ DL etg+2+m) o
e " (n — k)ptat+2 m=0 LC(p+2+m) ( ;
4.35

=0 [=0

comprising of only gamma functions.
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First partial derivatives of E[Z} Z{ | Consequently, the first derivative of (4.35) wrt
pis
E, [Z” ze ] = E[Z,(InZin) 2]

unn
e z‘i:l j—zz'—l (—1)j—k—l (i;l) (j—;’—l) § F'p+1)T(p+qg+2+ m) <
== RO < T(p+2+m)

m

X{—Iln(n—k)+y(@+1)+¢¥(p+qg+2+m)—ty(p+2+m)} (4.36)

and wrt ¢ is

E, [ZP z1 ] = E[Z°,Z% 1nZ;]

n“jn wn“jn
= O VU e I = Z P@+ 1)I‘(p+q+2+m)
= Gjn = 5 (n—kpret? T(p+2+m)
x{-In(n—k)+y(@+g+2+m)}. (4.37)
Second partial derivatives of E[Z], Z7 ] Then, second differentiation of (4.37) wrt p
yields
as

Cizligtl ()R ) () = T(p+ )T (p+g+2+ m)
Cijm kz=:0 lg (n — k)p+a+2 l m,z—:O C(p+2+m)
—In(n — k) —In(n-k)+yv@P+1)+v@+qg+2+m) (4.38)
a2+ m) | | ooy Y@ +2+m) [

Expectations in (4.19) Now we can obtain specific expressions for (4.19) by suitably
replacing p and ¢, as summarised in Table 4.2. Firstly, settingp=0,g=1andp=¢q=1
in (4.36) give

(g (1 () ()

E((n Zin)Zjn] = cijm kz=:0 i=0 (n — k)3
* {néozm @+m) [’1“(” —k)—v+ (2+m)_1]}

and

i (1R () )
E [Zz:n(ln Z'l:’n)Z]:TL] = Gijmn kgo zgo (n _ ’{7)4

x{§ 2™ (3+m) [-—1n(n—k)+1_,7+(3+m)—1]}

m=0




4.2. WEIBULL AND STD EXPONENTIAL ORDER STATISTICS 155

respectively. Similarly, setting p=1,g=0and p=¢ =1 in (4.37) give

i—1 (_1\i—k=1 (i—-1\ (j—i—1 oo
E[ZinIn Zj:n] = cijin kZ_:] g ey (n _S Z)g(J L) {mzzozm [~In(n—k)+¢(3+ m)]}
(4.39)

and

i—1 j—z—l( l)g—k =1 (i—-1\ (j—i—1
E[Zi:an:nanj:n] = Ci,j;nz z I’:‘)( L )
k=0 i=0 (n—k)

o0
X { Y 2™ (3+m)[—In(n —k) +¢(4+m)]}
m=0
respectively, while the remaining expectations can be obtained by setting p =¢ =0, p =
0,g=1,p=1,9=0, and p=¢ =1 in (4.38) in each case, as given below:

im1 jmim1 (_1\i—k— (i=1) (i=i-1} o
EllnZnnZ;,) = ci,jmkgl 12)1( ) (n—(l,;))z( L )mgozm[—ln(n—k)+¢(2+m)]

¥ (2+m)
><{—1n(n—k)-’y+ _1n(n—k)+¢(2+m>}

i1 j—i-1 (_1\J—k—1 (i—1y/fi—i—1
El(nZin)Zjnn Zjy) = J"Ej)]lg)l( 1) (nEZ;)?i( L)
x";i;ozm (2+m)[-In(n — k) + 9 (3 + m)]
Y (3+m) }
In(n — k) + 9 (3 +m)

X {—ln(n—k)—'y+(2+'m)_1+

YOV R i e
g 3 2 = Inn = K) £ (3-+ m)]

P (3+m) }

E [Zi:n In Z;.p In Zj:n] = i Z

x{—ln(n—k)+1—"y+ By Y A Sy prageny

and the final expectation E [Z;.n(In Zin) Zjn(In Zj.n)] is given by

g S EVT G & 52 m (34 m) - ln(n— )+ 3+ m)
k=0 i=0 (n—k)* )

¥ (4+m) }
—In(n—k)+9y4+m) ]’

x{—ln(n—k)+1—'y+(3-l-m)_l+

Unlike for single expectations, the expressions obtained here are not directly comparable
to those found from the direct method, (see, for instance, (4.32) and (4.39)), so we will check

this via numerical studies.
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1,7 n
25 50 100 1000
0.1n,0.2n : direct | 0.0599 | 0.0741 [ 0.0766 | 0.0791
: deriv. | 0.0599 | 0.0741 [ 0.0766 | 0.0791
: simul. | 0.0598 | 0.0740 { 0.0769 | 0.0791
0.3n,0.4n : direct | 0.1106 | 0.1185 | 0.1222 | 0.1258
: deriv. | 0.1106 | 0.1185 [ 0.1222 | 0.1258
: simul. | 0.1102 | 0.1183 | 0.1221 | 0.1258
0.5n,0.6n : direct | 0.0394 { 0.0307 | 0.0255 | 0.0209
: deriv. | 0.0394 | 0.0307 [ 0.0255 | 0.0209
: simul. } 0.0401 | 0.0311 { 0.0254 | 0.0209
0.7n,0.8n : direct | 0.2266 | 0.2357 | 0.2042 | 0.1745
: deriv. | 0.2266 | 0.2357 | 0.2042 | 0.1745
: simul. | 0.2232 | 0.2348 | 0.2058 | 0.1742
0.9n,1.0n : direct | 8.5146 | 13.2134 | 16.5583 | 29.0923 |
: deriv. | 8.5146 | 13.2134 | 16.5583 | 29.0923
: simul. | 8.4176 | 13.2729 | 16.5480 | 29.0053

Table 4.3: Numerical comparison of E[Z;.ni:nZj:n In Zj.p] for various ¢, j and n.

Some Numerical Details and Discussion

In this section, we validate the theoretical expressions using simulation experiments with
10* replications. We take n = 10, which yields (10 + 11) /2 = 55 distinct combinations
of (¢,7) with 1 < ¢ < j < n, and follow the graphical display at John & Watkins (2006);
Figures 4.7 to 4.14 summarise the agreement between theoretical, obtained from both direct
and derivatives methods, and simulated values for each expectation in (4.19) in turn, where
we see excellent agreement between the three sets of values. Table 4.3 further presents
such agreement for E [Z;., (In Zi.n) Zjm (In Zj.p)] for various 4,5 and n, in which the two
theoretical evaluations (upmost and middle entries) are exactly equal and are often con-
sistent with their simulated counterparts (lowest entries) to 3 decimal places. There is
scope to check the theoretical results for larger sample sizes, in which case the computa-
tion time can increase considerably; for instance, Mathematica took over 7 days to evalu-
ate E(Zi.y (In Zi:n) Zjin (In Zj.)] from the derivatives method when i = 250,7 = 500 and
n = 2500. It is obvious that the sample size reflects the number of calculations required,
and hence the computational burden even for simple expectations is at best proportional
to n. We have obtained accurate results for n < 1000, and noted that the direct method is
more time-efficient than the derivatives approach, but we can expect the computation time
to reduce given the advancement in computational capabilities available today.

4.3 Burr Order Statistics

In this section Xi., < Xo.,, < --- < X,., represent the order statistics from a random
sample of size n drawn from the Burr distribution. In order to determine the correlations
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between the final and interim Burr score functions, we will require, based on the form of
(2.36), (2.37), (2.56) and (2.57), to take (4.1) as

XP_ (In Xin)® (In(1 + X7,))°
E :n : N 4.40
A+ X7 ’ (440
and (4.2) as
P 1y e rye X2 (nXjn)? (o1 + X7,))°
g | X (0 Xin)® (In(L + X7))° 5 J ( s ) , (4.41)

1+ X7.)° (1 + X}m)f
for a,b,c,d, e, f,p,q = 0,1,2. Watkins (1997) considers some, but not all, expectations of
these forms for the Burr distribution for the case of complete samples, while Watkins &
Johnson (2002) give some corresponding discussion for samples obtained under a Type I
censoring regime, and Pawles & Szynal (2001) provide recurrence relations for single and
product moments of generalised order statistics from Pareto, generalised Pareto and Burr
distributions. However, as for the Burr EFI matrix with Type II censored data, there
appears to be no previous work about solving for expressions of the form given at (4.40)
and (4.41) in terms of the Burr order statistics.

As with the Weibull case, we will look at direct and derivatives methods. We will also
see that the latter is preferred to the former when deriving results for (4.41).

4.3.1 Expectations of g (X;.,)

More specifically, we will need, for (4.40), the following expectations:

E|[(n Xim)z] , (4.42a)

E :(ln(l +X,-tn))2] : ' (4.42b)

E[ln Ximn (1 + X7,)], | (4.42¢)
r T . . T

p | Xinln XinIn(l + X)) ] (4.42d)
T 1+ X,
[ X7 (In Xim)?

E 1+ X, , (4.42¢)
[/ XI In Xim\?

E ( e ) . (4.42f)

In fact, these quantities are not entirely new to us; in Section 2.4.1 we have found explicitly

expressions for

T - 9
E[ln Xl:n], E [111 (1 -+ X]T'n,)] y E [‘_X_ln_lnX_ln] nd E I:Xl:'n,(ln Xl:n) :| ,

1+ X1 1+ X7.,)?
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benefiting from the fact that the properties and results of X;.,, are a lot more straightforward
than the other order statistics; then, expectations in terms of X;., can be obtained from
(1.49). However, in this section, we will be solving (4.40) in terms of X;.,,.

Direct Method

Using (1.40), the marginal pdf of Xj., is given by

fo@ = emora™™ (14277 [1- 14277 (@427

= cpnarr’ (1 4 g7) iDL [1-(1+4+2z")7% 1
and we can use the Binomial expansion to write
' | my—ali—l e i—1—k (12— 1Y) \—a(i—1-k)
l-QQ+27)™] =3 (-1) & 1+27)
k=0
so that
; -1 il : i—1
(1 +m‘r)—a(n—z+1)—1 [1 _ (1 +xr)—a]‘l — Z (_1)1,—1-k ( B ) (1 _'_xf)—a('n—k)—l’
k=0
which leads to
—1

i—1 ,
fo (@) = cimar 3. (1) * ( k >$T_1 (14 g7)~on—R)-1
k=0

From this, we have

fe (z)dzx

£ | Xbn (0 Xin)® (1 + X)) | _ / * 2 (inz)* (In(1 + 27))"
(1+X7,)° b (1+27)°

i—1 . —
— anor T ()7 ()

at which we define

o0
1P — / 2?71 (Inz)® (In(1 + z7))® (1 + z7) o)== g,
0
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Specific expectations Partial derivatives needed | p | ¢

E |(In Xi:n)2 EZPP 0 19

Elma+x5)?] | B 0 10

E [ln Xinln (1 + X;rn)] _E'L{:Pc 0 0
X;":n] Xi:nl (1+Xi1:n)

E - 1+XZ _Ez{fpc T !
X7 (l Xi:n)2

FE —“{_,_—I;(K— E{fpp T !

X7 1 Xi:n 2
? | (%) Bler il

Table 4.4: Derivatives method: expectations in (4.41) and the partial derivatives needed.

Hence, here writing s = a(n — k), the expectations in (4.42) need, in turn, the following

- integrals:
T N g VTN LI
2 = STt hrwEl v )},
2
e = s
B = o {-v-9)+s ()},
m o= m{(1+2s)[1—7—¢(s)]+s(1+s)w’(s)},
2
® = s(1+13)r3' {%_1+[1_7_¢(3)]2+¢,(8)}’
and

2 2
(2720 _ 2 ™ 5 (3 /
g ‘s(1+s)(2+s)r3{6 4+[2 7 1/)(3)] +’/’(s)}'
For example, using (4.43), we obtain (4.42a) as
2 = yimik 1= 1Y jo20
E [(m Xin) ] = cinat Y (1) 18
k=0 k

o i=1 (—1)i" 1k (i1 2 ,
C:_Za kgo( ) - (&) {%+[,y+¢(s)]2 + 1 (s)}, (4.44)

again, similarly for (4.42b) to (4.42f).

Derivatives Method
Basic expectation It is appropriate to here define, based on the form of (4.40), the basic

expectation required in the derivatives method, given by

X7
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for which the partial derivatives of (4.45) wrt p and ¢ will respectively yield the terms In X;.,,
and In(1 + X7,), leading to the expectations in (4.42); Table 4.4 summarises these partial

derivatives in more details, in which we need E} ,, E; . and E .
)

i,pp?
As with (4.43), we can express E; as

Py i-1-k (41— 1Y) % +7—1 —a(n—k)—c—1
cimar S (1) . / 2P+7=1 (1 4+ 27) do
k=0 0

i—1 1
—c _qyi-t-k (¢ 1 (2 - _P
—c,makgo( 1) ( K )B 7_—+-1,a(n k)+c 7_),
obtained from the definition of beta function given in Table 1.5. Using (1.10) we can also
express F; in terms of the gamma functions; we have (as before s = a (n — k))

A e (i-N\T (BT (s+e—8)
E,—q;nago(—l) ! ’“( B ) T er D) (4.46)

so that this introduces various digamma and polygamma functions.

First partial derivatives of E; The first partial derivative of (4.46) wrt p gives

/ —
% = ety

_ Ci:nai—l i—1— i—1 F(§+1)I‘(3+c_£)
B kgo(_l) 1 k( k ) I'(s+c+1)

x{¢(§+1)—¢(s+c—§)} (4.47)

and wrt ¢ gives

o g [_X£n1n<1+x,-tn>]

(1+X7,)°
OEELDTEre-)

i-1
o _qyi—l—k
- C””a,go( 1) ( k T'(s+c+1)

x{¢(s+c—§)—¢(s+c+1)}. (4.48)

Second partial derivatives of F; It follows that the second differentiation of (4.47) wrt
p yields

"o
Ez,PP =K (1 + Xg:-n)c

X?_(In X,-m)z]

ci:'n.ai_l i—1—k 1—1 F(£+1)I‘(8+C_£)
,;:':0(_1) 1 ( k ) F(s+c+1)

A (Er1)-v(ere-B)) 4w (Bar)+v (s4e-2)} e
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while wrt ¢ yields
B —F _Xf:n In XinIn (14 X7,)

e [y

cim@ =l ik (i-N\TER+D)T(s+c—2)[p(B+1) -9 (s+c—2)]
T ,;0(_1) 1 k( k ) I'(s+c+1)

p ¥ (s+c—2) |
x{¢(s+c—;) TR 9 D —¢(s+c+1)}. (4.50)

Similarly, the second differentiation of (4.48) wrt c gives

E{/ =F an(ln(1+X:n))2
e T A+ X))

LSyt (- T\ TEH DT (o ke B [6 (o b= 2) ~y oot 1)
Gner 2, (1) ( k ) T(s+c+1)

py Y (s+c—B)—¢/ (s+c+1)
x{z/;(s+c—;>+ Y (R pr ey —¢(s+c+1)}. (4.51)

It should be noted that, despite of being lengthy, these results simplify greatly when p and
¢ take the values of 0 and 1, as shown below.

Expectations in (4.42) We can now suitably replace p and c (see Table 4.4) in the second
derivatives of E; to obtain expressions for the expectations in (4.42). For example, letting
p=c=0,p=7,c=1,and p =27,c =2 in (4.49) yields, respectively,

i1 (=1} 1R (=1 o
E [(In Xim)?] = c‘;’;a > =07 () {g Fl+v e+ (s)}, (4.52)

k=0 s

XTn (0 Xin)* | _ cimarich ()75 () (a2 :
E 1+ X7, ]— T2 k§o 3(1+3),C {?_1+[1_7‘¢(8)]2+¢(s)},
and

X0 Xin \?| _ 26meict (ZD)TF () 22 5 [3 2
E[( 1+ X7, )]_ T2 :L;Os(1+s)(2+ks) F—Z+[§_’y_¢(s)] AQE

Likewise, setting p =c =0 and p = 7,c =1 in (4.50) gives, respectively,

T Cimer 11 (_1)1'_—1*19
ElnX;nln(1+X],)] = > 5
T k=0 S

i—1
G () + s (5))
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and

E

X‘Z-n In X ln(]- + X:n)] _ CipQ i—1 (_1)i—l—k (z;l)
1+ XzTn TooT =0 52 (1 + s)2

While setting p = ¢ = 0 in (4.51) gives

k=0 s '

E [(n (1 + X[,))*] = 2acin

We see that all expectations derived here are identical to those found from direct integration

approach, as we expected; see, for instance, (4.44) and (4.52).

Some Numerical Details and Discussion

It is now appropriate to check the theoretical results above with some simulations based on
10* replications. Figures 4.15 to 4.20 show, for each expectation in (4.42), the agreement
between theory and simulation for 1 < ¢ < n = 1000 when a = 4 and 7 = 3; in all cases, the

simulated values (shown in steps of 50 for graphical convenience) are close to the theoretical

values obtained from the direct method. Again, we report in further details results only

X7, In Xi.n In(14+X7,)
for E [ TTXT,

similar observations. Table 4.5 shows that the direct method (upmost entries) gives identical

, although results for the remaining expectations at (4.42) show

results to the derivatives method (middle entries) across all ¢ and n. These values may be
compared with the lowest entries obtained from 10* replications of samples of size n; we see
almost perfect agreement between theory and simulation. We note that, as anticipated, the
computational burden increases considerably with sample size; for example, Mathematica

took up to 4 hours to evaluate E [X'T‘" ln)ﬁ’_’};:(HX'Tml] when n = 5000. We now move on

to solve the joint expectations of Burr order statistics, in which case the algebra becomes

much more involved than that discussed in this section.

{A+28)[1—v—9 ()] +s1+3)¢ (s)}.
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1
25 50 100 1000 2500 5000
0.2n : direct | -0.0030 | -0.0029 | -0.0029 | -0.0029 | -0.0029 | -0.0029
: deriv. | -0.0030 | -0.0029 | -0.0029 | -0.0029 | -0.0029 | -0.0029
: simul. | -0.0030 | -0.0029 | -0.0029 | -0.0029 | -0.0029 | -0.0029
| 0.4n : direct | -0.0099 | -0.0100 | -0.0101 | -0.0102 | -0.0102 | -0.0102
i : deriv. | -0.0099 | -0.0100 | -0.0101 | -0.0102 | -0.0102 | -0.0102
| . simul. | -0.0099 | -0.0100 | -0.0101 | -0.0102 | -0.0102 | -0.0102
& 0.6n : direct | -0.0199 [ -0.0206 | -0.0209 | -0.0212 | -0.0212 | -0.0212
: deriv. | -0.0199 | -0.0206 | -0.0209 | -0.0212 | -0.0212 | -0.0212
: simul. | -0.0200 | -0.0206 | -0.0209 | -0.0212 | -0.0212 | -0.0212
0.8n : direct | -0.0280 | -0.0295 | -0.0303 | -0.0311 | -0.0312 | -0.0312
: deriv. | -0.0280 | -0.0295 | -0.0303 | -0.0311 | -0.0312 | -0.0312
: simul. | -0.0281 | -0.0295 | -0.0303 | -0.0311 | -0.0312 | -0.0312
1.0n : direct | 0.1369 | 0.2307 | 0.3514 | 0.9393 | 1.2485 | 1.5091
: deriv. | 0.1369 | 0.2307 | 0.3514 | 0.9393 | 1.2485 | 1.5091
: simul. | 0.1407 | 0.2311 | 0.3543 | 0.9422 | 1.2517 | 1.5034

Table 4.5: Numerical comparison of F [
, data generated with o = 4,7 = 3.

X7, In Xi.p In(14+X7,)

1+X7,

] for various ¢ and n, for Burr

.Expoctltlon
&

200

600 700

Figure 4.15: Theoretical (—) and simulated (x) values of E [(InX;n)?] versus i, for n =
1000, = 4, 7 = 3. |



4.3. BURR ORDER STATISTICS 168
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Figure 4.16: Theoretical (—) and simulated (x) values of F [(ln 1+ Xg’;n))2] versus i, for
n=1000,aa =4,7=3.
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Figure 4.17: Theoretical (—) and simulated (x) values of E [In X;., In (1 + X7,)] versus 3,
for n = 1000, = 4,7 = 3.
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Figure 4.18: Theoretical (—) and simulated (x) values of E [X‘T'" In )1(:’_’3{1?(1+X’?:")] versus ¢,

for n =1000,a =4,7=3.
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Figure 4.19: Theoretical (—) and simulated (x) values of E [M] versus 1, for

1+x7,
n=1000,a =4,7 = 3.
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Figure 4.20: Theoretical (—) and simulated (x) values of E [(

n =1000,a = 4,7 = 3.

4.3.2 Joint Expectations of g (X;,) and h (Xj.,)

In particular, we will require (4.41) to be

E [ln Xi;n In Xj:n] )
E [ln(1+ XZ,) In(1 + X7,)],

E

X:n In X,;m X;n In Xj:n
1+X, 1+X%, |’

E [In XinIn(1 + XL,)] ,
E [ln(]. -+ X,,:rn) In Xj:n] ’

E

E

E

E

[ X7 InX;

lnXi:n o i -
1+XJTm

[ X7, In X;.,

xR

XL . InX;n,
In(1 + X7, )L"_ ,
mn 1+X;-:n

T

which can be deemed as some extended functions of (4.42).

2
) ] versus 1, for

(4.53a)
(4.53b)

(4.53¢)

(4.53d)
(4.53¢)

(4.53f)
(4.53g)
(4.53h)

(4.531)
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Expectations in Terms of X;., and Xj.,

For simplicity, we start from the expectations of X;., and Xj., so that our problem reduces
to a single summation, and then exploit the recurrence relationship given in (1.51) to give
results in terms of X;., and Xj.,. The joint pdf of X;., and Xj., (2<j<n)is

and from the Binomial expansion we see that

[(1+27)7° = (L +y7) " —2( 1)~ ’°( )(1+w)-a’°<1+y)-°'<f ~2-H)

so that f( ;)(z,y) becomes

c1,jm(ar)? 2( 1)9*"( )(xy)f (1 4gm) o=t (4 yrymeln=k=D=1 (4 54)

Direct Method

In general, (4.41) may be stated, for Xi., and Xj.,, as

Y 2P (Inz)® (In(1 + 27))° 47 (Iny)? (In(1 + y7))°
/_0/ o (o) (nllt 7))o (ng)” (oL + 7)) fa5) (@, y)dzdy

@+ ()

' -2
= cnlan'E (17 (7 ) e
k=0 k
where we have introduced the notation

pab gde / / ptT—1 (ln w)a (ln(l + .’IIT))b (1 + xﬂr)—a(1+k)—6—1 dod
q+7—1 d TY\& my—a(n—k-1)—f-1 Tay.
=0Jz=0 | ¥ (Iny)*(n(1+y7))* (1 +y")

Then, the expectations in (4.53) require, in turn, integrals of the form

IOlO 010 I001 001 ITlO 710 I010 001 I001 010 I010 710 II'Z(I)O ,010 IOOl 710 ITlO 001

Consequently, here the algebra becomes much more complicated than that discussed in
previous sections, and, in some cases, involves integration of the F3 2 series. We now consider

each case in detail and, for convenience, let « (1+ k) =sand a(n—k—1) =t.
1. Eln Xy, In Xj.;] The relevant integral is

I = [0 [ o Inz (1+27) "y iny (1+¢7) " dady

f(l,j) (m,y) — cl,jm(ar)z(my)"_l (1 + xr)—a—l (1 + yq-)—a(n—j+1)—1 [(1 + mr)—a _ (1 + y-r)—a].'i—Z
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at which solving the interior part gives rise to the F3 o (—y") series:

Y o lnz(1+27) " ld

1 —_—
= g {rlhy—Thy(l+y") " sy Fao(1,1,1+ 2,2 -y)}.
Hence, ignoring the constants wrt y, the exterior parts are

Ty +yp P+ (2)

Jooy™ Hny)? (1+y") " dy =

T3¢ ’
2 2 /
_ et 4+ly+o(s+)) +¢ (s+1)
oo 7—1 2 T\—8—t—1 _ 6
fy:Oy (lny) (1+y) dy - T3(S+t) ’
but
.f;io-y2'r—1 ll’ly (1 + y‘r).—t.—l F3"2 (1, 1, 1 +'S;2, 2; _y-r) dy R (4.55) .

is insolvable, primarily because there are too many functions of y (power, logarithm
and algebraic) appearing simultaneously with the F39 (—y") series of a power y ar-
gument. Alternatively, we write the hypergeometric function in terms of the gamma
functions:

X I'l+s+m) (—y")™

F32(1,1,148;2,2;—y") =
52 V)= o T e’ m

k)

so that the problem turns into

3 F(1+3+m)(_1)m T(24+m)— T\—t—1
m=0 T'(s)(m+1)’m! Joo ¥ @™ Iy (L +97) " dy

R TA+s+m)(-)"T2+m)T(t-1-m) [ (2+m) -9t —1-—m)]
m=0 I (s)(m+1)?m! T2 (t+1) '

Nevertheless, since

n—j+1 < n—-k-1<n-1 (as0<k<j-—2)
= 1<n—-k-1<n-1 (as2<j<n)
= a<a(n—-k-1)<a(n-1)
= a—lga(n—k—i)¥1§a(n—1)—1
= a—-1<t-1<a(n-1)-1,

the functions I' (t — 1 — m) and ¢ (t — 1 — m) will soon become invalid (negative) in
oo

>, indicating that (4.55) remains insolvable.

m=0



4.3. BURR ORDER STATISTICS 173

2. E [ln(l + X{.,) In(1+ X;n)] We need Ig,%l’om with an inner integral of

Yy z'r—l ln(l + :L'T) (1 + w‘r)—s—l dr

z=0

1 - -
= S {1-0+y)7 -1 +y) 7 sn(1+y7)}
so that integration wrt y (dropping the constants) consists of

oo T— T T\—t— 1 oo —t— 1
fy:Oy n(14+¢") Q1 +y)" 1dy=;fu=1(lnu)u ¢ 1du=¥, (4.56)

o0 —_ —8s—1— 1 {o o] —8—1t—
Jioy Tl +y) (1+y) " dy = ;fu=1(lnu)u =lay

1
= (457)
T(s+t)2 (457)
and
T— T\\2 Ty—8—t—1 1 2, —s—t—1 2
Sy @4y (L) ™ dy = 2, () M =

obtained on letting u = 1+3y" 0 <y< oo & l1<u<owand y = (u—l)% so
dy=1(u— 1)%_1 du). We thus have

goon001 _ 1 {i N S }
0,0 82 |12 r(s+t)® T r(s+1t)°

3. E [X]f.n lnxl:n X;n lan”"

: . . 710,710
5D A £ e ] The inner integral in I7;7"" is

[¥ 2 llnz(1+2") " %da
_ 1 1—-(1+y") " —sy"F32(1,1,1+8;2,2; —y")
T25(s +1) +78(s+1)InyB_yr (2,-1 —s)

which solution involves the hypergeometric and incomplete beta functions. Then,
neglecting the constants, integrate wrt y yields

oo - —t— 1- _")b(t)
271 nN—t-2 5 _ 2”7
- Lot 1-y—¢(s+1)
oo 2r—1 TN—8s—t—2 7 Y
S0y Tiny (1 +y7) W= Dttt 1) (4.59)

Joeo P llny(14+y") 2 Ba(1,1,14 52,2 —y") dy (4.60)



4.3. BURR ORDER STATISTICS 174

which, similar to (4.55), is insolvable, and

Jioy®  H(ny)? (1 +y7) 2By (2, -1 - 9)dy

= f;ioyZT_I (Iny)? (1 +y7)~*2 y F21(2 2+5;3;—y")dy from (1.11)

—127+672+1r2+61b2(3+t+1) (s+1)(12-367+1272+2n2+12¢%(s+1))

(s+t+l)(s+t+2) (a+t)(§+t+1)(s+t+2)
1 + 12y—6y2 —m2+64% (t+1)
- - (s+t)2(s+t+1)$s+t+2) 24 3t+82
673 (s + 32) +12 12y —12+367—12v2—272 4+6)(t) (4y+2ty—6—2¢) 122 (t) +
t(2+3t+12) t2(2+3t+t2)
+—12+127+12¢(s+t)[ —3—4s—t+v(2+3s+t)]+6v' (s+)(2+3s+t) _ 69'(¢)
(s+t)(2+3s+3t+2st+s2+t2) T @)

4. E [ln X1 In(1 4+ X;n)] Solving the interior integration in Iy 010 001 gives rise to the F3 9 (—y")

- series (see Igbo,om) at which on-omitting the constants, 1ts exterior integrals become -

—v -+t (t)

Jioy tinyln(1+y7) (1+y") " dy = —2g
o ,7-1 T T\—8—t—1 _ + (3 + t) ¢’ (3 + t)
Jomo¥" 'Inyln(1+y7) (1+y") dy = =y P , (4.61)

and

vy T (L 4yT) (L+97) T B (L1, 14 52,2 —y) dy

) 1=+ (Q—s—t) -t/ (1 —-t)+ty' (1 —s—1)
= -5 +m csc [wt] csc [ (s + t)] sin [ws] + (4.62)
(cot [t] + cot [ (s + t)]) w2t csc [wt] csc [7 (s + t)] sin [ws]

5. E(ln(1+ X/,)In X;.,] The internal integral of I 01910 has been studied before in Iy, J0L.001,
by dropping the constants, the external parts are

7+ (t)

o0 7—1 \—t—1 —
fy:() Yy lny (1 + Yy ) dy - - T2t ) (463)
00 7—1 T\—s—t—-1 _7 + '(/J (3 + t)
y—0Y Iny(1+y") dy T G+0) (4.64)

and (4.61). We thus obtain

0ot _ 1 {_’7+T/J(t) +’Y+¢(3+t) _s—7+(3+t)¢'(3+t)}
7352 t s+t (s +1t)° '

X7, InX; . .
6. £ [ln Xz‘:n—"l"‘?ﬁ—”] I, 010 ™10 has same inner part to that in Ino 010,010, o thus have outer
Jn :
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integrals (ignore the constants wrt y) as

x2 2 _ ,
Jiov®HIny)* A +y") " Pdy = £ u h+¢(t)]73t(fiyt-)|_¢(t)) +¢ (t),

Zrly+y s+ —2(v+9(s+18) +9 (s +1)

o0 27—1 2 T\—8—1t—2 —
Jymoy™ ™ (ny)" (L 4y7) @y = T3 (s+t)(s+t+1)

and (4.60).

7'10 710

7. E [—11-11712—,)(’—” In X; n] We need I Tm 010 4 hose inner integral is identical to that in I

whereas its outer integral is 51m11ar to I 001, 010, we see that integration wrt y gives

(neglect the constants)

JoZoy™ Uny)* (L +y7) "7 By (2, -1 —s)dy

2T
= f;‘;o v L(ny)? (1 +y")t? y—Fz,l (2,2+s;3;,—y")dy from (1.11)

2
_8y/(t) + —672——1r2——6¢2(t+1) —672—w2 —12¢(t)(—1+y+7t) =62 (t) +
t t+1 t(t+1)
1 6 6~/2+1r2+¢2(a+t+1) 6 +
_m t2(t+1) s+i+1 T (s+t)¥(s+t+1)
(s4+1) (692 +72+69% (s+t) ) —12y5+129(s+t) (=1 —s+7(14+25+t)) +6(1+25+)9)’ (s+t)
(s+t)(s+t+1)

as well as (4.63), (4.64) and (4.55).

20X, : : .
8. E [ln(l + X7 n) T ;T B ] I, 001’710 has same inner part to that in Ig(())l,om but a similar

outer part with I 16, 710, its outer integrals (omit the constants wrt y) are

f:"_o y2‘1'—-1 lnyln(l + yT) (1 + y'r)—a—-t—Z d'y
(14+25+2t)[1 —v— ¢(s+t]+(3+t)(s+t+1)¢(3+t)
2 (s+1)? (s +t+1)°

(4.58) and (4.59). Consequently, we have

1 1—y—9y(t) _ 1—y—p(s+t)
I001 710 _ t(t+1)  (s+t)(s+t+1) .
’T382 (1+2s+2t)[1—7 1/)(s+t)]+(s+t)(s+t+1)'xl; (s+t)
(s+1)*(s+t+1)*

9. E [-&l-ﬂ:l}-f-(ﬂl 1+ 'rn)] & BO’OOI has an identical interior part as I7 10710 but exterior

part similar to I oot 001, we see that 1ntegrat10n wrt y gives (ignore the constants)

y
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(4.56), (4.57), (4.62) and

Jioy™ M nyln(l+3y7) (1+37) ™ Boyr (2,-1-5)dy

= f{?"—oyf_llnyln(l+yT)(l+yT)‘t 1y S5 Fan (2,24 53—y dy

= = mz_o ( ) (2(;; S)Trrr;!(_l)m f;io yT(3+m)—1 lnyln(l + y-r) (1 + y’r)—t—l dy

_ 1 2),,2+s),, (-D)™ 7wl (-2 —m +1t)
-2 ,,,Z__:O 3),, m! T (—2-m)T(1+9)

—m2 cot [ (m — t)] csc [w (m — t)] csc [t] + 7 cot [mt] csc [mn] 9 (—t)

+1p (=2 — m) (mesc [m (m — t)] esc [nt] + csc [m] ¢ (3 + m — t) — csc [mm] ¢ (—t))

—mesc[m(m —t)] csc[mt] ¥ (=2 — m +t) + csc[mm| Y (=) Y (-2 — m + 1)

~—csc[mn] Y (3+m —t) (wcot [mm] + (=2 —m+1t)) +csc[mna]y/ B+m —t) .

However, owing to negative arguments in the gamma and polygamma functions the

last integral has no solution.

In summary, using the direct integration approach, we are only able to find expressions
for the second, fourth, fifth and eighth expectation in (4.53); others are insolvable here due
to the inability to solve the integration of the following form:

f:°=0 ¥y (ny)t 1 +y") T 2 (1,1,14 52,2, —y7) dy.

We can, however, employ the derivatives method to obtain the expressions for (4.53) where
we require a basic result under which differentiations could be applied to, as discussed in
the following section.

Basic Expectation

As with (4.45) for single expectations, the preliminary for joint expectations here is

Xf:'n, X;{’n
T \C f
(1 + Xl:n) (1 + X;n)

E;=E

so that its partial derivatives wrt p,q,c, f will introduce In X1.p,, In Xj.n, In(1 + X7.,,) and
In(1+ X7,,) in turn, to give the functions in (4.53). Accordingly, E1; may be expressed as

q
fy_O f:z:_O (1 + .'L'T) (1 _f ‘r)f f(l,]) (.’L’, y)dxdy

— cugmlan)? T (177 (7 ) e
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It will prove more convenient to consider a reduced version of I ”00 900 , as follow, and then

give result for IZ?P"’OO.

A result on integration Suppose here
S=—-a(l+k)—c

and
T=-an-k—-1)—

Due to the format of (4.54), the following integral
%4, _/ / A 1(1+xT)S ly"” 1(1+y )T ldxdy
=0Jz=0 . ,

often appears in the joint expectation of Xj;., and Xj.,. Suppose further
u==z

then0<z<y&o0<Lu<Ly,and z = u¥ so dz = %u%"ldu. The inner integral wrt =
takes the form

T

] Y
/ Pt (14 27)5 1 de = %—/ ur (1+ u)5 1 du,
=0

u=0

but also can be written as

T

wr
1 /”” El-v) iS5 law=1p (g +1 —§ - S) ’

T v=0 T 1437

obtained by setting
U

=1+u

v

where0§u5y7®0§v§T_ﬂ—,,andu=%sodu—Fd‘u Hence, I% TISDOW

1/ q+1'1 T-1
= 1+ B +1———S dy,
LYy _LF( )y

T

and if we let w = y”, we have

oo
L[t +w)™ B (2 +1,-2 s) dw
T Jw=0 4w \T T

because 0 < y<oo & 0<w< oo, and y= 'w% SO dy = -‘ll:w%_ldw_
We use two results from Chapter 1 to proceed; first, we use the relationship between the
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incomplete beta and hypergeometric functions, see (1.11), to write

B (2e1-2-8) = (2e1) " (1) B (Zen s nleag)

and then use (1.12) to write the above as

= (2+1)_1(_'“’ )EH - 1“("$+1+m)1“($+S+1+m)r(g+z)( w >g-+1+m

1+w m=o T (2+2+m)T (B+1)T(2+S5+1)m! \1+w
S (K1 £ RO I T b
T a2 (E+1+mT(E+S+)m \1+w '

It follows that

T T
IP»Q__ ( =t+++1+m T = m—2
72 Z o(B+1+m)T (£+S+1)m!/_0w (1+w) dw

in which

o0
/ wrtTtm () ) T-Fm 2y = B (2 +3i94m-2- T)
w0 T T T

Fr(2+2+2+m)T(-2-T)
T(E-T+2+m)

so that we obtain

S - B 24 4
I§’£}=lx Ir(-2-7) § I‘(T+S+1+m)r(r+f+2+m). (465)
' 72 T(B+S+1)mzo (B4+1+m)T(E-T+2+m)m!

Moreover, we can quote the above infinite summation in term of a hypergeometric function,

as follows:
if‘(£+5+l+m)1"(§+§+2+m)
m= (B+1+m)T(2—-T+2+m)ml
B §F(£+1+m)r(§+S+1+m)1‘(£+$+2+m) 1m
=" T(Z+2+m)T(E—T+2+m) ml

r(2+5+1)T(2+2+2)
- X
(2+1)1"(2—T+2)
F32( +1, —+S+1 —+ 1,9 p+2 2—T+2 1)
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Therefore, substituting this in (4.65) yields

1 TI'(-2-T7) T(B+S+1)Ir(2+2+2)

pq _ L
Ist = EXreys+)* @+DT(@-T+2
T T T
F3,2(£+1,£+S+1,£+g+2;2+2,£—T+2;1)
T T T T T T
_ T(2-T)T(E+2+2)
2(24+1)T (B -T+2)
Ba(B+1,2+5+1, 2+ 242228 71910).  (ae)
T T T T ‘ T T

An expression for E;; Using (4.66), we now obtain an expression for E; in term of

hypergeometric function:.

'E.p;;y.gﬁfenfkG;Q)FV+am*k*U;5ﬂW9+f+@g"

15 Lin@" 24 k) B+)T(B+f+a(n—k-1)+2)
(g+1,g—a(1+k)—c+1,£+$+2;)

F3 ’

4.67
Er2,24amn—k—1)+f+21 (4.67)

Nevertheless, a scrutiny on (4.67) unveils that the second argument in the F32 (1) series
therein would become negative under certain circumstances, leading to invalid gamma func-
tions; take, for instance, a =4,7=3,c =1,k =0,p =1, we see

p 1 11

- -
Hence, we must rescale the arguments in that F3 (1) series. Using (1.16), we can obtain

an alternative formula to (4.67), given by

T s LG S LI 22 S

= k J(a(n—k-1)+f-2)T(an+c+f+2)
(1,a(n—k—1)+f+1,an+c+f_g_g;)

F3 .

, (4.68)
an—k-1)+f-2+l,an+c+f+21

Convergence considerations In addition, as noted in Section 1.2.4.2, it is necessary to
check for convergence in the F39 (1) series at (4.68); from (1.15), this series is convergent
provided that
1+250,
T

which, as far as our range of interest (7 > 0 and p = 0,1) is concerned, this is always the

case. Next, we look at the derivatives method in detail.
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Specific expectations Partial derivatives needed [ p [ c | q | f
E[In X1:n In X0 Yipa 0j0fofo0
E |In(1+ X{,)In(1+ XT)| | EYjcf 0j0(0foO0
E|lnX1.nIn(1+ X7,,) —EY; ¢ 0jofo0fo0
E[ln(1 + X7,,) In Xj.n] —E{; 0 0j0|0|O0
E |In Xy =g ™ 0o0fr|1
E |Haga2t In X ! o r{1]0]0
E In(l+ X[ x| | -EY, ofo|r|1
E —Ln—X}Jr‘;;ilm In(1 + XJ,) ~E o 7100

Table 4.6: Derivatives method: expectations in (4.52) and the partial derivatives needed.

Derivatives Method

As previously mentioned, unlike for the Weibull case, the expectations in (4.53) cannot all be
derived directly when the underlying distribution is Burr. Hence, we focus on the derivatives
approach, where we have already obtained an expression for Ey;, given at (4.68), in terms of
the gamma and hypergeometric functions. Table 4.6 summarises the corresponding partial
derivatives of Ej; and the values of p,c,q, f needed; the relevant derivatives are EY;

Vs EY; ., and Ef; .. However, it will prove more appropriate to express Ey; in terms of
just gamma functions so that we need only the digamma and polygamma functions, which
have been shown to be more manageable than the derivatives of F3»; therefore, we write

(4.68) as

_z)r(bl)r(bz) $3 __L(bs +m)L (by + m) (4.69)

j—2 . i
E .= .,na2 —'1 ]_k (J
1j = CL,j: k,go( ) k I(bz) meol(bs+m)T(by+1+4+m)

where we have introduced the following notations for convenience:

q
bh =t - =
1 +f T’
by = 2-|‘g-i-2,
T T
b3 = t+f+1,
by = an+c+f——£—g,
T T
bs = an+c+ f+2,

and, as before, t = a(n—k —1).
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First partial derivatives of E;; The two relevant first derivatives of (4.69) are

s T(hs+mT(btm)
{m=0 T(bs +m)T (b +1+m) [ (b2) — 9 (ba + m)]} (4.70)

and

b o3 ik (3= 2\T (b)) T (by)
{ i T'(bg + m)I' (by + m)
m=0 ' (b5 + m)T' (by + 1+ m)

[ (ba + m) — ¢<b5+m>]} (4.71)

Second partial derivatives of E;; It follows that the second differentiation of (4.70)
wrt q is

& r(ba+m)r(b4+m) [ (b2) =% (b +m)]
-0 I'(bs+m)T(by +1+m)
{ — (b1) + 9 (b2) — ¥ (bs +m) }

¢’§b2;+¢’gb +m)

(4.72)

and wrt f is
n  — 2\ T (b1) T (b2)
E. _ S a? _1)i~* (.7 ) %
foy = 28 o (1) PG

2 Lbs + )T (ba +m) [1p (be) — Y (ba+m)]

,,20 T(bs+m)T (by +1+m)

{ % (b1) = % (bs) + (b3 + m) + 9 (ba +m) }

_Wgﬁ%_w(b5+m)—¢(bl+l+m)

Whereas the second differentiation of (4.71) wrt ¢ is

Bliey = 2205yt (7 ) L)

I'(bs)
Z

(4.73)

F(bs + m)F (ba +m)[th (ba+m) ~ ¢ (bs + m)]
m=0 F(b5+m)F(b1+1+m)

{ ~p (b1) + 9 (b2) — ¥ (bg +m) }

P’ (ba+m
— T S + Y (b + 14+ m)

(4.74)




4.3. BURR ORDER STATISTICS 182

and wrt f is
=2 (i —2\T(b1)T (ba)
" — A2 _\i=k [J 1 2
EIJ,Cf cl’Jﬂa kz=:0( 1) ( k ) F(b3) X

5 (b3 +m)L (ba+m) [ (ba+m) =P (b5 +m)]

= Ts +m)T (b1 +1+m)
{+ 1 (b1) — 9 (b3) + ¢ (b3 + m) + 1) (ba + m) } (4.75)

%ﬁiﬁ%ﬁﬁéﬁé’? — ¢ (bs+m) — 9 (b +1+m)

Expectations in (4.53) We can now replace p,c,q and f according to Table 4.6, and
will see the above derivatives simplify greatly to give us expressions for the functions in
(4.53). Replacing (p,¢,q, f) = (0,0,0,0), (7,1,7,1), (0,0,7,1), and (7,1,0,0) in (4.72)
gives, respectively,
cl,j:na2 jz_:2 (—1)j_k (922) § [1/’ (2) _ 2/’ (an + m)]

t

2 5 m—o (an+m) (an + 1+ m)
{ — () + 9 (2) — % (an +m) }

1/)1 2 +,¢I +
+ ¢§2§-—¢Z$+7;n5 +y(E+1+m)

E [ln le In X]’m] =

(4.76)

£ | Xlnln X1 XJ In ij] _ egma? 322 (-1 F (779)
1+ X[, 1+X, 7 G D)
i (t+14+m)T (an+m) [¥ (4) — ¥ (an + m)] y
m=0 I'(an+4+m)
—% () + ¥ (4) — ¥ (an + m)
{ +opent) Ly (t+ 1+ m) } ’
E |In Xy, 22n 2 Xin Xj‘"] _ 21,3m0? 22 (1 ()
1+ X7, 2 = tit+1)

g (t+1+mTion+m)[y(2+1+2) —y(on+m)]
o I'(an+3+m)
{ —h (t) + 9 (3) — ¥ (an +m) }

| ¥/ @)+ (antm)
T —plantm) T Y E+1+m)

X
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and
r - j—k (j—2
1+ X7, L ) ¢
@ T (an+m)[(3) = ¥ (on + m)]
> X
m—0 T'(an+3+m)

—I¢ (t) ¥+ ¥ (3) — ¥ (an+m)
+EEen ) Lyt +1+m) [
in which the exact values for ¥ (a) and 9/ (a), for a = 2,3, 4, can be found at Table 1.6.

The expressions for other expectations can be similarly obtained. Setting (p,c¢,q, f) =
(0,0,0,0) and (7,1,0,0) in (4.73) gives

S o2 i 1)k (7-2) -
E[lnleln(l.{-X}m)] _ Gjnc iZ2(-1) (k)X

T k=0 t

(£ p@-venim (1, _vinim )]

olen+m)(an+1+m) \t ¥ (2) -9 (an+m)

and
X{nInX1:n T 21 jma? I=2 (_1)j—k (;,:2)
E I:W 111(1 + Xjn)] :77- kgo ; x
5 Tlan+m) @) —Y(an+m)]
m=0 T (Oln +3+ m)
¢ (an + m)

{‘%—w(an+m)+ +¢(an+3+m)}

Y (3) —¢ (an+m)
respectively. While setting (p, ¢, q, f) = (0,0,0,0) and (0,0,7,1) in (4.74) gives, in turn,

c1 jin0 122 (_1)j—k (1—2)
1 JT kX=:O - k
x [Y(an+m)—¢ (an+ 2+ m))

o (an+m)(an+1+m)
{ ¥ (t) — 9 (2) + ¢ (an +m) }

¥’ (ant
+ ST ey — W (t 4+ 1+ m)

Eln(1+ X{,)InX;, = X

and

X7 InX;. 022 (=1)F (-2
E 1n(1+Xir:n M:I _ 2¢1,j:n 0 (-1) (k)

1 +X;n T k=0 t(t+ 1) .
x (t+14+m)T (an+m) [ (an+m) -y (an+ 3+ m)] y

)

20 T (on +3+m)
{ $(t) =9 (3) + 9 (an+m) }

¥’ (an+m)
+¢(an+m)fz(an:z+3+m) - ({t+1+m)
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Lastly, setting (p, ¢, g, f) = (0,0,0,0) in (4.75) yields

E [In(1+ X7,.) In(1 + X7,)]

Ik (3 s an+m) — an m
eLine Ef( 1) ( i) R plon+m)—y(ant+2+m)

meo (an+m)(an+1+m)

Y (an+m) — ¢ (an+2+m)
Y(an+m) — 9 (an+2+m) —¢(an+2+m)}.

{—%+wmn+m%+

Joint Expectations of g (X;.,) and h (Xj.)

As indicated at Section 4.3.2.1, havmg found the expressmns for (4 53) in terms of X1 and
X, for various combinations of a, b, c, d e, f, D, q from the derivatives method, we are now
in the position to exploit the recurrence relationship for order statistics, given at (1.51),
to obtain the corresponding expressions in terms of X;., and X, (2<i<j<n). For
instance,

n! i ims (=1)* " (ntt—j)(s+j—i~2)!

3 W) G—t—8)(s—D){(ntt+s—i)1 <
—i= 1)‘ s=1t=0 E[ln Xl:n—i+s+t In Xj—i+s:n—i+s+t]

Eln Xipln Xjn] =

in which E[ln Xi., In Xj.n] has been given at (4.76), and so forth.

Some Numerical Details and Discussion

The work above is from a theoretical viewpoint only, and we should seek some reassurance
that this theory is in agreement with pfactice, as represented by simulations. We continue
to use a = 4,7 = 3, and show in Figures 4.21 to 4.29 the theoretical, calculated from both
direct and derivatives methods, and simulated values for each specific expectation in (4.53),
for all combinations of ¢ and j such that 1 < i < 7 < n = 10. We see there is very little
difference between the three sets of values, for all 55 pairs of (%, 5) considered here. A more

detailed comparison is given at Table 4.7 for E [ln(l + X7, )—J& evaluated at various

1+X7,,
i,j and m, which leads to the same conclusion. We remark that these checks should be
extended to cover other values of a, 7 and sample sizes, although the computation time will

depend on the computer resources available.

4.4 Chapter Summary and Conclusions

In this chapter, we have obtained expressions for various expectations and joint expecta-
tions of order statistics, generally of the forms at (4.1) and (4.2). The derivation of these
expectations is motivated by the study of the correlations between the complete and the
Type II censored MLEs, which, as we will show in Chapter 5, involves the multiplication of
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Table 4.7: Numerical comparison of E [ln(l +X7.)

Burr data generated with a = 4,7 = 3.

X7,

i J
25 50 100 1000
0.1n,0.2n : direct | -0.0011 | -0.0014 | -0.0014 | -0.0014
: deriv. | -0.0011 | -0.0014 | -0.0014 | -0.0014
: simul. | -0.0011 | -0.0014 | -0.0014 | -0.0014
0.3n,0.4n : direct | -0.0064 | -0.0070 | -0.0071 | -0.0071
: deriv. | -0.0064 | -0.0070 | -0.0071 | -0.0071
: simul. | -0.0063 | -0.0070 | -0.0071 | -0.0071
0.5n,0.6n : direct | -0.0143 | -0.0156 | -0.0158 | -0.0163
: deriv. | -0.0143 | -0.0156 | -0.0158 | -0.0163
: simul. | -0.0143 | -0.0156 | -0.0158 | -0.0163
0.7n,0.8n : direct | -0.0197 | -0.0223 | -0.0228 | -0.0233
: deriv. | -0.0197 | -0.0223 | -0.0228 | -0.0233
: simul. [ -0.0203 | -0.0223 | -0.0228 | -0.0233
0.9n,1.0n : direct | 0.0565 | 0.0972 [ 0.1367 | 0.2758
: deriv. | 0.0565 | 0.0972 [ 0.1367 | 0.2758
: simul. | 0.0573 | 0.0971 [ 0.1388 [ 0.2775
X7 InXjm

] for various i,j and n, for
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Figure 4.21:

ElnXinInX;y foralll1<i<j<n,forn=10,a=4,7=3.
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Figure 4.22: Theoretical (direct @, derivatives ¢) and simulated (x) values of
E [ln(l + X7,.)In(1 + X;n)] forall1<i<j<mn,forn=10,a=4,7=3.
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Figure 4.23: Theoretical (direct #, derivatives ¢) and simulated (x) values of

X7 In Xy, X7, In X .
E [—ll'ﬁ-X{ml ’lj_X;m’" foral1<i<j<m,forn=10,a0=4,7=3.
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Figure 4.24:
E [lnleln(l +X;m)] forall 1 <i<j<n,forn=10,a=4,7=3.
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Figure 4.25:
En(l+X{,)InX;y] foralll1<i<j<mn,forn=10,a=4,7=3.
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Figure 4.26: Theoretical (direct ¢, derivatives ¢{) and simulated (x) values of
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Figure 4.27: Theoretical (direct ¢, derivatives ¢) and simulated (x) values of

E[%ﬂ%{f::—"lanm] forall1<i<j<n,forn=10,a=4,7=3.
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Figure 4.28: Theoretical (direct ¢, derivatives {) and simulated (x) values of
E [ln(l-I-X{m)f-"l’:_lTnTX"ﬂ] foralll<i<j<n,forn=10,a=4,7=3.
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Figure 4.29: Theoretical (direct ¢, derivatives ¢) and simulated (x) values of

E[%ln(l-&-X;n)] foralll1<i<j<m,forn=10,a=4,7=3.
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the two sets of score functions, and hence explaining the complexity in the formats of these
expectations.

In summary, this chapter has involved a considerable amount of algebra. For each of
the distributions considered, we first employed the direct method; this involved (double)
integrations of some complex functions, including the exponential integrals and the hyper-
geometric series, and we noted that, however, certain integrals of the joint expectations
from the Burr distribution could not be solved directly. We then considered the deriva-
tives method; the technique is relatively straightforward, and has shown more generalisable
in dealing with the logarithms and/or powers of order statistics; more importantly, it has
provided expressions for all the joint expectations needed for the Burr distribution. Never-
theless, despite there being more complicated functions involved in the direct method, we
note that this approach has generally consumed less computation time than the derivatives

" method when implemented in Mathematica, and hence is more useful in practical terms.

We have shown that the theoretical results agree with the behaviour observed in simula-
tion experiments for various combinations of order statistics, parameter values and sample
size; despite few computational problems for large sample sizes, we have covered most sam-
ple sizes and ranges of censoring encountered in practice, but we remark that results for
larger sample sizes are possible with the computer resources available elsewhere. Most im-
portantly, the agreement between theory and simulations indicates that our formulae can
be employed as a building block in future evaluations. Therefore, we are now in the position

to consider the link between the final and interim estimators.



Chapter 5

Correlations Between Final and

Interim Estimates of Parameters

‘and Percentiles

5.1 Introduction

As we have previously discussed, from a statistical perspective, the analysis of the complete
data set is generally to be preferred (under complete sampling, the data available for analysis
simply consisted of n independent failure times), but, in practice, some censoring - such as
Type I or Type II - is often inevitable. The aim in this chapter is to establish a method
to measure the precision of Type II censored MLEs, calculated at censoring level r, in
estimating the complete MLEs.

Following the observations from Chapter 2, for example, as seen in Table 1.2 for the ball
bearings data, we may wish to assess how useful are the MLEs calculated at r = 8

O3 = 67.6415, fg = 3.2280, Bo.1g = 33.6860
in predicting the complete estimates
9 =281.8783, B=21021, Boi=28.0694

which are obtained if all the n = 23 items were left to fail. We may also wish to quantify
the increase in precision obtained on taking r = 16, where we have seen that the resultant
estimates

016 = 76.6960, S5 = 2.4695, Bo 116 = 30.8329

are more consistent with final values than with »r = 8. Because the percentiles feature
times at which specified proportions of items fail, it is particularly relevant in practical

applications to consider the agreement between §0'11r and §0.1, and the extent to which
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§o,1J can be regarded as a reliable guide to §0.1-

Furthermore, the series of scatter plots of final estimates (of parameters or By 1) against
interim estimates presented in Chapter 2 (see, for instance, Figures 2.7 to 2.11 under the
Weibull analysis), seem to suggest a reasonably strong link between the two sets of estimates.
Hence, it is of interest to consider the extent to which the final estimates are consistent with
earlier estimates, and the rate at which interim estimates converge on their final values; more
generally, we would like to determine the precision with which we can make statements on
final estimates, based on interim estimates. We focus on the conditional distributions of
final MLEs given interim counterparts; if these are Normal - as is the case asymptotically -
then, in turn, we require the covariances of final and interim MLEs, equivalently, the study
of the correlations between the two sets of MLEs. The classical asymptotic approach uses
the relationship between the MLEs, the EFI matrix and the score vector. Chua & Watkins

- (2007) derive general ‘expressions for correlations of exponential MLEs, and state (but do

not prove) similar results for Weibull MLEs. Chua & Watkins (2008a,b) further extend
this work to give a formula for correlation between interim and final estimates of Weibull
percentiles. This chapter builds on these preliminaries, and presents the extension to the
Burr distribution. Some discussion on the corresponding analysis of reliability data under
Type I censoring are given by Finselbach & Watkins (2006) and Finselbach (2007).

We begin by showing that, for large samples, the study of the correlations between
final and interim MLEs of parameters can be transformed into a study of the correlations
between final and interim score functions, and can be further extended to the analysis of
the precision in a sequence of Type II censored estimates of By i, as an estimate to §0.1o In
Section 5.2, we assume that the lifetimes follow the negative exponential distribution, and
present asymptotic 95% confidence limits for the final estimate given the interim estimate.
This analysis uses results from the theory of order statistics, and hence exploits the familiar
and extremely powerful lack-of-memory property of this distribution. These asymptotic
results are then validated for various sample sizes and censoring fractions using simulation
experiments. We then give details of how this analysis generalises to the Weibull (Section
5.3) and Burr (Section 5.4) distributions. In Section 5.5, we briefly consider some real life

applications of this work.

5.1.1 Theoretical Considerations

The asymptotic theory of maximum likelihood, as outlined, for example, in Cox & Hinkley
(1974) and Bain & Engelhardt (1991), implies that the asymptotic relationship between the
MLE, the EFI matrix and the score vector is

(7, — ) ~ AU, - (5.1)



5.2. CORRELATION IN THE EXPONENTIAL DISTRIBUTION 193

which also covers the case r = n. Hence, the correlation between final (r = n) and interim

(r < n) estimators of model parameters, written as
Corr {#,%®,} = Corr {R — =, %, — 7},

can be approximated by
Corr {A7'U, AU, }

(so that, where necessary, correlations can be found via the usual standardisations). With
two or more parameters, it will prove more convenient to consider covariances; it follows
that

Cov (%, %,) ~ Cov (A7'U,A;'U,) = A™'Cov (U, U,) AT L. (5.2)

- We refer to Chapter 2 for the expressions of A~! and A;! for specific distributions, and-

due to the regularity condition, we will only require to take expectation on the product of
U and U,; this, of course, then ties in with the various forms of moments and product
moments of order statistics we have already derived in Chapter 4.

We are also interested in the agreement between §0.1,r and its counterpart for complete
samples. Since we have a linear approximation to By in terms of (%, — 7) in (2.3), the
study of the correlation between the final and interim estimates of By ; will also depend on
the asymptotic relationship in (5.1); we have, from (2.3) with, first, 7 (< n), and then with

r=mn,

Corr {Eo.l, Eo,l,.,-} ~ Corr {BO.l + bf,r (1? - 71') ,B().l + bfn. (‘?r,r —_ 1\’)}
~ Corr {bR®, b7},

so that, by first principles, the required correlation may be approximated by

b, Cov (T, 7,) by ~ b A1Cov(U,U,) A7 b,

VbiVar (%) bx x /bVar (7,) bx B VPLATb, x /bf,.-A__—r_lb,,,.

5.2 Correlation in the Exponential Distribution

(5.3)

5.2.1 Link Between :9\ and §r

From our discussion of the exponential distribution in Section 2.2, 8,, given in (2.8), is the

minimum variance unbiased estimator of 6 so that factorisation of the score function gives

T o~ [62 dl,.
ﬁ(&—a): T@,
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this is one version of the standard relationship (5.1) between the MLE, the EFI and the

score function. We have

Corr(9,9,) = Corr (\/9272(5 -9), \/922 0, — e))
(20 5%) - dmem(B%)

Then, via the usual regularity conditions, this is

iE ﬂc_ﬂ_,- = 0_2E _2+£ _T...*_ﬂ

2 nr
=j_{92 2ES] - E[S]+ E[SSr]}

which involves the single and product moments of X;.,. It is straightforward to obtain
E[S] =n6 and E[S,] = r6. In considering E[SS,|, we may write

which also equal to

88, =(8~8+58)8 =(S~8)S, + 82

in which it is convenient to express S — S, in terms of differences of order statistics:

n

S — S'r = E Xin — {i X + (n - "')Xr:n}
= Z Xin — (n - "')Xr:n
t=r+1

= zn: (Xi:n_ r:n)-

1=r+1

Since S, depends only on the first r order statistics while S — S, features differences from
the rt* order statistic onwards, the lack-of-memory property implies that S — S, and S, are
independent. We thus obtain

E[8S,|=E[S— S/ E[S]+E[S?] =r(n+1)§? (5.5)
so that Corr(8, 6,) becomes

62 nrn
2 6 0

I

Therefore, the positive correlation between the complete and censored MLEs depends di-

xr9—%xn9+%xr(n+1)92}=

DR

rectly on the number of failures; increasing r will give a higher correlation value, and when
r = n we see that Corr(6,6,) = 1, as expected.
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A Remark

It is appropriate to here remark an useful observation from the above analysis, namely that
Cov (4, 4s) is, in fact, given by Var (9); from regularity conditions,

d d,\ _ _[dd,
CO’U (@, E) = F _E@]
_ E ((dl dl, + dlr> dlr]

4o do " do ) do
[/dl dl\ dl, di,\ 2
} E(@‘%)@]”[(%)]
and we see
dl  di, n—

r 1
@,—E,—.—T-kb-g(s—,sr),

is, again, via the lack-of-memory property, independent of %5—. We thus have
di  di,\d,]
=|(%-%) %) -

di dl,\ A\ L,
Cov (@’E) = Var <d9> =rf~°. (5.6)

From this, we see that (5.4) reduces to

so that

~ 62 dl, 0 o [r
Corr(6,0,) = \/—n_rVar (%) = \/ﬁre. =\

exactly as found from first principles.

A Possible Generalisation

In previous chapter, we have obtained the expressions required for the study of the correla-
tions between complete and censored score functions for the Weibull and Burr distributions,
and have seen a considerable amount of algebra being involved, even in the case of the trans-
formed variable Z which has a standard exponential distribution. From the above remark,

a possible generalisation to (5.6) is
Cov(U,U,) = A,, (5.7)

in which the covariance between final and interim scores is given by the censored EFI matrix.
If this result holds, then the evaluation of the correlation between the two sets of MLEs
would become much more straightforward; for now, the covariance at (5.2) would then
simplify to

Cov (%, 7,) ~ AT1A, AT = AL, (5.8)
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suggesting that the correlation between complete and censored MLEs follows immediately
from the complete and censored EFI matrices, rather than from the expectations of the
forms at (4.1) and (4.2). In practical terms, this would also imply a substantial reduction
in computational time for Corr {7, 7} in Mathematica.

Furthermore, another consequence of this result would be that we could write
' A”1Cov (U,U,) A b, = bl A7 1b,,

indicating
Cov (ﬁo,l, Eo.m) = Var (§0.1) (5.9)

so that we would then be able to write

. Var (}’390‘1) o \/m S
Corr { Boy, Boy, b = = === (5.10)
orr { Box, Boa, } = \/Var (5or) \/Var (Bonr) b, A-Tb,

Hence, as with Corr {7, 7, }, correlation of the two sets of percentiles would follow immedi-
ately from the two sets of EFI matrices. We will later check (5.8) and (5.9) for the Weibull
and Burr distributions, and show that, however, only limited analytical progress is possible.

5.2.2 Link between §0_1 and -§0.1,r
From (5.3), Corr (BO.I,EO.I,T) is exactly

(=In 0.9)2 Cov (@ [) )

\/( In0.9)2 Var \/( ln09)2Var( )

as we would have expected from the linear relation between By and 6 in (1.29). Otherwise,
we can use (5.10) to obtain this result; we first need to confirm that (5.9) holds for this

distribution:

= Corr (5, @) =

Sl

Cov (ﬁo‘l, B\o'l,-,-) = (—ln 0.9)2 Cov (5, 5,)

which equal to

(—1n0.9)2 Corr (5,5,) \/Var ( ) Var ( = (—1n0.9)° \/7 02 92 =Var B() 1

Consequently, from (5.10),

P 6% (—1n0.9)% /n \/?
Corr (Bo1, Boas) = = /L
orr( 0.1 01,) \/02 (—ln0.9)2 /r n
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r Theory n

(=vZ) [ 25 50 100 | 1000 | 2500 | 5000
0.2n 4472 | 4582 | 4412 | .4435 | .4402 | .4486 | .4556
0.4n 6325 | .6414 | .6401 | .6256 | .6291 | .6336 | .6352
0.6n 7746 | (7820 | L7795 | 7746 | 7740 | .7746 | .T767
0.8n .8944 | .8959 | .8985 | .8973 | .8945 | .8934 | .8950
1.0n 1 1 1 1 1 1 1

Table 5.1: Theoretical and simulated values of C’orr(@, 8,) for various ,n, for exponential
data generated with 8 = 100.

as we required. Therefore, (and as previously), a numerical study on the link between 9 and

5, essentially covers all percentiles.

5.2.3 Numerical Results

We next validate these theoretical results with simulations. We revisit the simulated ob-
servations of 6, obtained in Section 2.2.4, and summarise in Table 5.1 the theoretical and
observed values of Corr(@, /ér) for these 10? estimates. We see good agreement between
theory and practice for varying censoring proportions and sample sizes. More specifically,

the theoretical correlation coefficients found here for n = 50 and 1000 are consistent with
the behaviour observed in the scatter plots at Figures 2.2 and 2.3.

5.2.4 Confidence Limits Considerations

We can now consider the precision with which we can make statements on final estimates,
given the interim estimates. In particular, we can compute the 95% confidence limits for 9
based on §,. The asymptotic Normality of MLE implies that, for large samples, -9, is
also asymptotically Normal, with zero mean and variance, based on the above correlation,

given by
92(n —r)
nr

As a result, the 95% confidence intervals for [ given 9, is

n—r

0, +1.966 . (5.11)
nr

Now, when running simulations, we know the true parameter values and can also obtain a set
of ML estimates for each of, say, 10* replications. However, in most practical circumstances,
we will not know the true parameter values, but estimate them from the data; thus, we

substitute 6, for 0, giving
n—r

9, +1.960, (5.12)
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r 10 20 30 40 49
9, 67.6000 | 104.9000 | 114.0100 | 112.1150 | 104.8898
sd(9 -8, 19.0713 | 18.0452 | 12.9617 | 7.5973 0
Boi,r 7.1224 | 11.0523 | 12.0122 | 11.8125 | 11.0512
sd(Boi — Bo1,) | 2.0094 | 1.9013 | 1.3656 | 0.8005 0

Table 5.2: Standard deviations of 6 — 8, and By — 30.1,1» for the failure times data.

160
140 - el T T~ 127.0056
7 S~
'd L ~
120 4 e ~<
> 104.9798, 114.Q1OQ + 1215 + 0 O~
% 100 & 1049000 + ———
@ : . ———®"" 1048898
S g /’,—I' 97.2244
E - 88.6051
2 67.6000 + el
o 601 ~7 695314
= Pid
40 ] //
w
20 30.2202
o T T T T
0 10 20 . 30 40 50

r

+ ML estimates — ¥ — Lower — & — Upper

Figure 5.1: 8, and 95% confidence limits for § given 8, for the failure times data.

Similarly, §0,1 - §0'1,T has a Normal distribution with zero mean and variance

6% (—1n0.9)*> (n —r)
nr ’

so that a 95% confidence interval for EO.I given §0,1,r is

By £1.966 (~1n0.9) 4 /”T;T,

in which the usual substitution can be made in practice. Table 5.2, together with Figures

5.1 and 5.2 show these limits (based on (5.12)) for various r for the failure times data in
Table 1.1. It is noted that the values of 371(5 — 5,,) (and hence .s:;i(ﬁo.l — Eo_l,r)) are quite
similar when r = 10 and 20.
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16 147788 14.6888
o7 T T
14 - // ~~__13.3814
y - _
Pd \\

12 11.0607,7 12.0122+ 11.8125+ N
5 11.0523 -
° el 10.2436
g 4| -7 9.3355
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Figure 5.2: BO.I,r and 95% confidence limits for 30.1 given Bo.m for the failure times data.

As above, we are also interested in the extent to which these limits apply in finite samples;
we expect, in our simulations, to find 95% of the 10 simulated observations of 9 within these
limits based on 5,. Again, Table 5.3 shows generally good agreement between theory and
practice, across all r and n considered. We also notice that the upper entries, obtained from
(5.11), converge somewhat more quickly to 9500 than their lower counterparts, obtained
from (5.12), reflecting the effect of replacing 6 by 5, in the confidence limits.

5.3 Correlation in the Weibull Distribution

5.3.1 Link Between Final and Interim MLEs

We now indicate the extent to which above results generalise to the Weibull distribution.
We recall from (2.16) that the log-likelihood I, is now a function of two parameters, and the
main changes involve the introduction of matrix-vector versions of relationships, which are

now approximate rather than exact; we have, from (5.1),

QT—O ::A‘l %% .
:Br_ﬁ %é;
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r n
25 50 | 100 | 1000 { 2500 | 5000
0.2n | 9498 | 9507 | 9481 | 9500 | 9523 | 9470
8738 | 9074 | 9263 | 9490 | 9508 | 9468
0.4n | 9476 | 9498 | 9471 | 9471 | 9494 | 9478
9095 | 9318 | 9383 | 9485 | 9503 | 9480
0.6n | 9520 | 9469 | 9456 | 9485 | 9519 | 9506
9314 | 9389 | 9413 | 9500 | 9528 | 9496
0.8n | 9529 | 9513 | 9517 | 9532 | 9502 | 9485
9374 | 9464 | 9518 | 9528 | 9495 | 9489

Table 5.3: Number of replications of 6 within the 95% confidence limits based on true 6
(upper, based on (5.11)) and 6, (lower, based on (5.12)), for exponential data generated
with 6 = 100.

We refer to (2.28) for the elements of A1, but can express the above in general as

6, -0 A AP (5 A% | AP
B.—p ) \ A¥ e a |~ Agﬁ%lo,-__i_A,@ﬁg% :

We are again interested at the extent to which earlier estimates are consistent with final
estimates; with two parameters, we have four combinations of correlation:

Corr (5, 5,) ,Corr (5, B,.) ,Corr (B,@T) ,Corr (B, B,.) .
Since (5.1) also covers the case r = n, we now have, for instance
Corr (5, @) = Corr {@ —0,9, — 0}

but, as mentioned in (5.2), it is more convenient to consider the corresponding covariance,
in which case we require

~ ol ol ol, ol,
00 ~° 08 60~ 3=t
| Cov (9, OT) ~ Cov ({A 50 +A 3,3} {Ar 20 + A a8 })

~ A% AP Cov (ﬂ %) + A% 4% Coy (5l ol )+

86’ 50 36’ 9B
ol ol ol o, |
68 5006 688 408
A A,Cov(aﬂ ae>+A A% Cov (aﬁ 6,8) (5.13)

Similarly, we obtain

~ ol ol ol ol,
60 408 T 69 ABB
Cov(0,8,) ~ A"A] C’ov(aa,ae) + A% APP Cov (39 5ﬂ>+



5.3. CORRELATION IN THE WEIBULL DISTRIBUTION 201

Cov(B,0r) = A% AT Cou (ﬁ %) +A€’*A€”cov(al % )+

06’ o0 00’ o8
ol al, ol ol
BB 706 BB A08
A ATCOU(@,B 69>+A AP Cov (Bﬁ 6ﬁ> (5.15)

COU(B>B1') = AGBAg'BCo'U (ﬁ,%) AaﬂAﬂﬂC (al ol, ) N

06’ 96 00’ dp

ol ol ol ol,
BB 208 - =z=r BB 788 ,
APP AP Cov (3ﬁ’80>+A AFPCov <8ﬁ 6/8) (5:16)

We consider these covariances in two ways; first, we operate from basic principles, and we
then consider the generalisation (5.8).

Covariance from Basi¢ Principles

The approach requires, for large samples, the following terms:

ol 0l, ol 0l, ol Jl, ol ol,
Cov (ae’ ae) , Cov (ae’ 8[3) , Cov (aﬁ’ ae) , Cov (aﬁ’ aﬁ) ’
and due to regularity conditions, these can be written in terms of joint expectations of
complete and censored score functions. As discussed in Section 4.2.1, we proceed by writing

the score functions in terms of the transformed variable Z, from (2.26), which follows the
standard exponential distribution. It follows from (2.17), (2.18), (2.31) and (2.32) that

% =po7! {i Zin + (n - T)Zr:n - 'f‘} ) (517)
=1
g_lﬁr =~ {'r + z In Z;., — i ZinnZy — (n—1)Zpp1n Zr:n} ) (5.18)
i=1 =1
6’ {z Zi— n} (5.19)
and a1
5 = {n+zlnz zzmz} (5.20)

Expectations involved It is clear from the above that, when taking joint expectations
of the two sets of score functions, we can anticipate the need for the sum of the expectations

given at (4.12) and (4.19), and, in particular, on expectations of the following expression:

{ é’;l 2P (In Z,-)“} x { ; 2P (In Zim)® + (n — 1) 22, (In z,m)a} .
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Hence, it is appropriate to here introduce the following expectations:

H = E i Z,] —nE[Z] =n, (5.21)
Hy = E -Z:L:lan] =nFE[lnZ] = —ny,
H = E -éZ,-ani] —nE[ZnZ]=n(l—-7),
H = E|3 Zimzrjan,;m],
_‘i=1 i=1
Hs = E i‘llnzzéanm] ,
Hy = E -éZ,ln' ~iln_Z,—_m]v, |
H = E ijl Z; (z Zm+(n—r)z,n)] —r(n+1) from (55),  (5.22)
Hy = E -il Z; (;Zi,n-f- (n—r)Zrm>] ,
H = E i)lz z (éZim-i—(n—r)Zrm)] ,
Hy = E i:l ,(é ZimIn Z;., + (n—r)Zrmanﬂn)] ,
H; = E é nz; (zr: ZinInZyp + (n— 1) Zpp In Z,m)] ,
Hy = E -zj;Zan (ElZmanm+(n—r)ZManM)].

We note that Hs to Hqo involve taking expected values on the products of summa-
tions with varied upper limits, and on expanding these products, the algebra can become
considerably length; to illustrate this, we take, for example,

r r—1 r

H4 = Z E [Zz n In Z;. n] + z E [Zi:n In Zj:n] + Z ) Z E [(ln Zi:n)Zj:n]
i=1 j=i+1 i=1 j=i+1

i=1j=r+1
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Expectation | Theoretical | Simulated
H, 25.0000 25.0913
H, -14.4304 | -14.3205
Hj 10.5696 10.7148
Hy -473.9927 | -473.8339
Hs 314.166249 | 311.0715
Hg -194.3861 | -196.4959
Hy 390.0000 | 392.1974
Hyg -195.7974 | -194.2607
Hy 174.6429 | 177.0255
Hy -103.5524 | -103.2782
Hyy 77.4108 76.8722
Hi, -35.7704 | -36.2064

Table 5.4: Numerical checks of expectations H; to Hys calculated at r = 15,n = 25 using

- 10* replications.

while

T r—1 r

i=1 i=1 j=i+1
r=1 r r n
+ Z Z E [Zz':n(ln Zi:n)ij} + Z Z E [Zim(ln Zi:n)Zj:n]
=1 j=1+1 i=1 j=r+1
r—1
Z E [Zi:an:n In Zr:n] +FE [ngm In Z,.m]
+n-r)q = n : (5.24)
+ Z E [Zr:n(ln Zr:n)Zj:n]
j=r+1

It follows that there are some structures embedded in these H equations; for instance,
the similarity between Hy and Hg, Hg and Hy, Hyg and Hip; we will briefly discuss
this later. We refer to Section 4.2.3 for expressions for the expectations of the form
E[Z? (InZ;y,)? for a = 0,1,2 and p = 0,1, and Section 4.2.4 for the expectations of
the form E [Zf:n(ln Zin)*Z} ,(In ij)b] for a,b,p,q = 0,1. We can use Mathematica to
compute H; to Hjz (see Appendix E for more details on the Mathematica code), and com-
pare these to their corresponding simulated counterparts obtained from 10% replications.
Table 5.4 shows this comparison for r = 15,n = 25. We see good agreement between the

theoretical and simulated values.

Covariances of the score functions Using the above expectations, and from (5.17) to
(5.20), we can obtain the covariances of the score functions required in the covariances of

the complete and censored MLEs, as shown below.
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1. From (5.17) and (5.19),

ol o, o ol
C"”(ae 39) = E[%XW]

- sl (a4
el (g )] a2

and since E [Z] = 0, we have

= A% %{H;-rH}. . - - (5.25)

2. Likewise, from (5.18) and (5.19), Cov (%, %ﬁ) is given by

ol ol
E [— x %]

- gl (a0}
- re[{E a} ] s 2
= s [{$} {57 (4 £y a5 Zrnln i = (1 i ) ]

=1
= 67 {rH; + Hy — Hyo}. (5.26)

3. From (5.17) and (5.20), we have

o oL\ _ _[ol_al
oo (55%) = |5 )

_ E[B 1 n+21nz, iZzan}al]
‘ a8

{ |
- liorel(gee)§]rel{gene) 5
= [{z";l In Z; } {ﬂo‘l (;1 Zin + (= 1)Zrn = T) H

= 07 {Hg—rHy— Hg+rHs}. (5.27)



5.3. CORRELATION IN THE WEIBULL DISTRIBUTION 205

4. From (5.18) and (5.20), Cov (%, %ﬁ) is
oL ol
£ |55 5]

= E[ﬁl n+zlnz zzmz}glﬂ]

|
:nﬂ-lﬂ_r]w-w[{zmz}gﬁ el{g s}

= [ Yln Z,-} { B (r + 3 InZip — z ZinIn Ziy — (N = 7)Zpp In Zm> }]

=1 1=1

-B7E [{Z Z;1n Z,} {,8_1 ('r‘ +YInZip— Y ZinlnZyy — (n—7)ZpnIn Z,.m) }]
=1 i=1 i=1
~2{rHy + Hs — Hy1 — rH3 — He + Hi2} . - (52

We can now use Mathematica (see Appendix E for further details) to calculate the
covariances in (5.25) to (5.28) and set, as before, § = 100, 8 = 2, = 15, n = 25; these are

( Cov(%,%) Cov($,%s) ) _ ( 0.0060 0.0456 )

Cov(gﬂ,%ﬂ) C’ov(—‘%,%ﬁ) 0.0456 5.0928

and since
(,A“ A%B ) _ ( 110.8665 1.0281 ) (5.29)
APB  ABB 1.0281 0.0973 )’
( A% A%E ) B ( 178.8346 —1.6012 )
A% A% )\ —16012 02107 )’
we obtain, from (5.13) to (5.16),

Cov (5,515) ~ 110.8665 x 178.8346 x 0.0060 — 110.8665 x 1.6012 x 0.0456
+1.0281 x 178.8346 x 0.0456 — 1.0281 x 1.6012 x 5.0928
110.8665,

1R

Cov(8,B,5) ~ —110.8665 x 1.6012 x 0.0060 + 110.8665 x 0.2107 x 0.0456
—1.0281 x 1.6012 x 0.0456 + 1.0281 x 0.2107 x 5.0928
1.0281,

R

Cov(B,015) ~ 1.0281 x 178.8346 x 0.0060 — 1.0281 x 1.6012 x 0.0456
+0.0973 x 178.8346 x 0.0456 — 0.0973 x 1.6012 x 5.0928
1.0281,

1R
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Cov(B,By5) =~ —1.0281 x 1.6012 x 0.0060 + 1.0281 x 0.2107 x 0.0456
—0.0973 x 1.6012 x 0.0456 + 0.0973 x 0.2107 x 5.0928
0.0973,

12

which leads to

Corr (5’515) = \/110.8616%022??78.8346 = 0.7874,
Corr (8,815) = \/110.866:52x Jozior A
Corr (B,%s) = \/0.09731; 3178.8346 = 0.2465,
Corr (_B B 15). = .\/0.09:3; :7\?;0..2107,=.0'6795'_

Covariance from the Generalisation (5.8)

It is striking to note that the numerical values for the covariances of complete and censored
MLEs are identical to those found at (5.29). This observation is consistent with the con-
jecture at (5.8), a result generalised from the exponential distribution, suggesting that it
might be possible to extend (5.8) to the Weibull case, from which

Cov (é, ’ér) Cov (57 B’r) — Aoo Aeﬁ (5 30)
CO'U(E> ’0\7') OO'U(B’ Br) B A0,3 Aﬂﬂ .

or equivalently (from (5.7))

(. Cov(%,%%) CO’U(%,%&) ) _ ( A'r,09 Ar,@ﬂ ) (53]_)
Cov(%,%&) Cov(gi,%g) Args  Arpg

written in terms of the score functions.

Simplifications of the covariances We would like to here show that (5.31) holds. Using
(5.21) and (5.22), and from (5.25), Cov (25, %5) simplifies to

B2 {r(n+1) —rn—nr —nr} =rB%072 = A,

as required by (5.31). This result is particularly relevant to (5.6); for 8 = 1 the Weibull

distribution simplifies to an exponential model, and we see Cov (5, %) reduces to r6~2.

However, due to the forms of Hys to Hy2 (but not H7), the consideration of Cov (%, %ﬁ),

Cov (%, %%) and Cov (5%’3, %ﬁ) becomes much more involved than that of Cov (-g—g, %5).
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For instance, using (5.23) and (5.24), and from (5.26), Cov (%, %ﬁ) is given by

( r=1 r r—1 r )

rn + Z E[ in In Zi:n] + Z \Z-H E [Zz';n In ij] + El . Z;H E [(ln Z,';n)Zj;n]
=1 =1 y—z i=1j=i

r—=1 r
+3 Y B0 Zin)Zjm] - Z E[ZZnZin) = Y, 3 ElZinZjnInZjmn]
9_1 ) =1 J—'r+1 1=1j=i+1 Y
- Z E E [Zi:n(ln Z‘i:'n)Zj:n] - Z Z E [Zi:n(ln Zi:n)Zj:n]
i=1 j=i+1 i=1j=r+1
r—1 n
—(n - 'r) Z E [Zi:an:n In Zr:n] +E [qu:n In Zr:n] + Z E [Z'r:n(ln Z’r:n)Zj:n]

=1 j=r+1 )
(5.32)

\

which should be shown equal to
Argp = =r87 {1=y=r S () (7 i+ 1.
i=1

Moreover, since the majority of the terms in (5.32) involves at least one level of summations

of varied lower and upper limits; see, for examples, using (4.18),

i=1 k=0

r r i-1 ( )z—l —k (1. 1)
'21 EZinnZip) = > < Cin D, n—R)? [1 -~ —In(n— k)]
1=
in which we require two levels of single summation, and, using (4.32),
4

i—1j—i—1 j—k—1(i—1\(j—i—1
(G ) S [ ()
Gigin 20 &, Gk (n— )

T— [d r— r k
S Y BlZiminZim =5 2 d [ —G+l-k)yG+i-k)+n—i=] ] |
=1 j=1+1 i=1 j=i+1 ‘(’n—k‘)2ln(n—i—l)

+(n—i—-D(n+i-2k+1)In(n—k)

\ J

in which we require two levels of double summations, there is limited analytical progress

we could make here, and hence a detailed proof for Cov (g},, gﬁa) = Cov (gé, %’0) = A, s

and Cov (gé, ‘Zf@) = A, g will be given elsewhere. Instead, we use a detailed simulation

study to assess the extent to which (5.30) holds for the sampling distributions of (5,, B,r),

for various combinations of n, 7 and parameter values.

Numerical check of (5.30) We use Mathematica to compute the elements of the com-
plete covariance matrix, and compare these to simulated values of Cov(b\, 5,), Cov(@, B,),
Cov(ﬁ, 5,) and Cou(B, 3,), which (throughout) are based on 10* replications. Tables 5.5
to 5.8 show this comparison for each covariance in turn with 8 = 100, 8 = 2, where we see
generally good agreement between theory and practice for all » and n considered. We also
observe similar agreement for different sets of integer values of 6, 3, but there is further

scope to check (5.30) for non-integer § values, where analytical progress may be even more
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n Theory T

(=A%) [ 0.2n 0.4n 0.6n 0.8n 1.0n
25 | 110.8665 | 103.0207 | 107.4784 | 108.5282 | 109.6782 | 110.4749
50 | 55.4332 | 49.1945 | 54.1417 | 55.0621 | 55.3464 | 55.5401
100 | 27.7166 | 27.7198 | 27.4541 | 27.6753 [ 27.6516 | 27.6713
1000 [ 2.7717| 2.8197| 2.7730 | 2.7391 [ 2.7588 | 2.7648
2500 | 1.1087 | 1.1173 [ 11297 1.1181] 1.1323| 1.1347
5000 | 0.5543 | 0.5540 | 0.5599 [ 0.5577 | 0.5589 [ 0.5566

Table 5.5: Theoretical and simulated values for Cou(f, 8,) calculated at various r,n using

Weibull data generated with 6 = 100, 8 = 2 and 10* replications.

n Theory r o

(=A%) 02n [ 04n [ 06n | 08n [ 1.0n
25 1.0281 [ 1.4808 | 1.2607 [ 1.2009 | 1.1301 [ 1.0734
50 | 0.5140 [ 0.7391 [ 0.5622 | 0.5239 | 0.5129 [ 0.4991
100 | 0.2570 [ 0.2515 [ 0.2542 | 0.2509 | 0.2502 | 0.2491
1000 [ 0.0257 | 0.0259 | 0.0272 | 0.0280 [ 0.0273 | 0.0271
2500 | 0.0103 | 0.0113 | 0.0112 | 0.0114 | 0.0110 | 0.0108
5000 | 0.0051 [ 0.0054 | 0.0053 | 0.0053 | 0.0053 | 0.0054

Table 5.6: Theoretical and simulated values for C’ov(@, B,,) calculated at various 7,n using

Weibull data generated with § = 100, 3 = 2 and 10* replications.

limited.

Implications of (5.30) on the H equations As we have previously mentioned, there
are some structures embedded in the H equations, but we discuss this only briefly here. In

particular, it follows from (5.31) that

rn+ Hy — Hyg

rn + Hg — Hy

—rn + Hs — Hg — Hy1 + Hi2

—T{1—7—¢1},

—T{1—7—¢1},
7‘.2

G- 2ot o}

n Theory r

(=A%) [ 02n ] 04n [ 06n | 0.8n | 1.0n
25 1.0281 [ 1.1986 | 1.1634 | 1.1674 | 1.0926 | 1.0734
50 | 0.5140 | 0.4412 ] 0.5073 | 0.5075 [ 0.5003 | 0.4991
100 | 0.2570 [ 0.2195 | 0.2697 | 0.2510 | 0.2479 | 0.2491
1000 [ 0.0257 | 0.0303 [ 0.0335 | 0.0286 [ 0.0274 | 0.0271
2500 |  0.0103 | 0.0099 | 0.0109 | 0.0106 | 0.0107 | 0.0108
5000 | 0.0051 [ 0.0055 | 0.0054 | 0.0052 | 0.0053 | 0.0054

Table 5.7: Theoretical and simulated values for C’ov(B , 97) calculated at various r,n using

Weibull data generated with 6 =100, 8 = 2 and 10 replications.
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n Theory r

(=AP) | 02n [ 04n | 06n [ 0.8n [ 1.0n
25 0.0973 | 0.1815 [ 0.1415 | 0.1306 | 0.1278 | 0.1258
50 0.0486 | 0.0677 | 0.0580 | 0.0560 | 0.0550 | 0.0545
100 | 0.0243 [ 0.0275 | 0.0258 | 0.0257 | 0.0257 | 0.0256
1000 [ 0.0024 | 0.0023 | 0.0024 | 0.0024 | 0.0025 | 0.0025
2500 |  0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0010
5000 |  0.0005 | 0.0005 | 0.0005 | 0.0005 [ 0.0005 | 0.0005

Table 5.8: Theoretical and simulated values for C’ov(,B, B,,) calculated at various r,n using
Weibull data generated with # = 100, 3 = 2 and 10* replications.

so that
Hy — Hg = Hyp — Hy
and )
T
Hs—Ha—Hu+H12=7‘{—6'+(1—7)2—2(1*’7)¢1+¢2+n}-

Therefore, this serves as a convenient starting point to consider further the relationship

between the H equations; these will, nonetheless, be considered elsewhere.

Implications of (5.30) on the correlations between final and interim MLEs If
(5.30) holds, the correlations between final and interim MLEs would follow immediately
from the complete and censored EFI matrices; we have

Corr (55) ~ Cov (@@»)
a9 <y fvar (@)
Af0
A96
~ |

r (2 — 662 + 64y) [ % +(1-7)?]
n? (2 4 (1= )2 = 2(1= 7)) + 6y
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Cov (5, B,,)
Jver () xJvar (3.)

498
VA x 1/A£ﬁ

~ (-7 r (72 — 647 + 66,) ’
na? (% + (1= )]

Corr (@, Er) o~

~

A Cov (E, ’9})
C 8,0, =~ — '
o ( ) \/ Var (B) X \/ Var (5,)
A%B
= VA < AP

r (w2 — 642 + 6¢5)
(1 - 7) 2 ’
na? |5+ (1= )2 = 21— 7)1 + 6]

R

Cov (E, BT)
Jver (B) x/var (8.)
ABB

VAPB x 1\ AP
APB
S \aF

; \/r (72 — 692 + 6¢5)

nm?

Corr (B, Br) ~

12

5.3.2 Link between Eg_l and §0_1,r

We are again interested in the agreement between BO.I,T and §0_1 for Weibull data. Corre-

lation from basic principles is possible, in which we will also require

()
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n Theory T

(= Var (Eo_l)) 02n | 04n | 06n | 08n | 1.0n
%5 56.3056 | 60.2070 | 60.7714 | 60.6623 | 60.8367 | 60.7377
50 98.1508 | 28.7114 | 28.8534 | 28.7883 | 28.7353 | 28.6470
100 14.0764 | 14.0576 | 14.0841 | 14.1101 | 14.1354 | 14.1089
1000 1.4076 | 1.4200 | 1.4225 | 1.4280 | 1.4332 | 1.4359
2500 0.5631 | 0.5731 | 05738 | 0.5756 | 0.5740 | 0.5724
5000 0.2815 | 0.2851 | 0.2855 | 0.2850 | 0.2840 | 0.2848

Table 5.9: Theoretical and simulated values for C’ov(Bgo.l, Bo.l,r) calculated at various 7,n
using Weibull data generated with 8 = 100, 3 = 2 and 10* replications.

given at (2.29). For example, we take, as before, § = 100,38 = 2,7 = 15 and n = 25, and

b \ [ 0.3246
bg ]\ 182613 )’

Corr (Eo,l, 30.1,15) ~ 0.8961.

use Mathematica to compute

so that from (5.3)

Alternatively, if the conjecture at (5.9) holds here, then we could use (5.10) to obtain,

for samples of large size,

L b3 A% + 2bgbg AP + b2 APE
Corr (Bo.l,Bo.l,r) = : o~ ] : BB*
bgAga + 2bgbg Ay + b,ngr

Table 5.9 provides some summaries of simulation experiments to check (5.9), based on 10*
estimates of 'B?o'l,r; this shows generally good agreement between theory and simulation, and,
as with (5.30), Cov (30.1, §0.1,r) is independent of r. Returning to the above example, the
correlation is

\/0.32462 x 110.8665 + 2 x 0.3146 x 18.2613 x 1.0281 + 18.26132 x 0.0973
0.32462 x 178.8346 — 2 x 0.3146 x 18.2613 x 1.6012 + 18.26132 x 0.2107

and hence also yields 0.8961, but with cbnsidera,bly lesser amount of computation as com-
pared to using (5.3).

5.3.3 Numerical Results

We now consider these results for finite samples. We revisit the sampling distributions of
9,,B, and By1, in Section 2.3.4 generated with 6 = 100 and 8 = 2. Tables 5.10 and 5.13
summarise, for Corr (5, 5,) and Corr (E, ﬁ,) respectively, the theoretical results for these
10* estimates, together with an experimental counterpart shown underneath; we observe a
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r n

25 50 100 | 1000 [ 2500 | 5000
0.2n | .2833 | .2720 | .2658 | .2600 | .2596 | .2595
.2551 | .2363 | .2609 | .2643 | .2563 | .2558
0.4n | .5467 | .5391 | .5351 | .5314 | .5311 | .5310
5317 | .5292 | .5328 | .5342 | .5303 | .5300
0.6n | .7874 | .7849 | .7836 | .7824 | .7823 | .7822
7803 | .7822 | .7812 | .7804 | .7815 | .7799
0.8n | .9403 | .9406 | .9407 | .9408 | .9408 | .9408
9387 | 9396 | .9414 | .9396 | .9417 | .9422
1.0n 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.10: Theoretical (upper) and simulated (lower) values of Corr(8,6,) for various r,n,
for Weibull data generated with 6 = 100, 8 = 2.

good agreement between theory and practice, with values approaching to 1 as r — n, as we
expected. Moreover, equivalent statistics for Corr (@, ,BT) and Corr (E,@,.) are tabulated

in Tables 5.11 and 5.12; in complete samples (so r = n), we note that Corr (@, Bn) =
Corr (B,@n) is given by

Corr (@, ﬁ) = 1= = 0.3131.

This cross-parameter correlation thus has an upper limit of 0.3131, and it is independent
of n and the model parameters. Finally, Table 5.14 presents some summaries of simulation
experiments for By 1; we notice excellent agreement between theoretical and observed values
of Corr ﬁo.l, §o,1,.,), for all » and n we have considered.

As further reassurance that this theory is in agreement with practice, we may super-
impose the theoretical correlation values with the scatter plots of final estimates against
interim estimates shown in Figures 2.7 to 2.11; it is clear that our formulae agree with the
pattern observed in simulation experiments. We are now in the position to employ these
formulae in future calculations like confidence limits.

5.3.4 Confidence Limits Considerations

We are interested at the precision with which we can make statements on final estimates,
given earlier estimates of the parameters. However, evidence from the previous section
suggests that the relationship between the MLEs of the shape and scale parameters is weak;
as seen in Tables 5.11 and 5.12, the upper bound on the strength of correlation is 0.3131,

so we will here only consider inference of 9 based on 5,, and of B based on E,,. Let

o~

Ag=0-0,
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r

n

25

50

100

1000

2500

5000

0.2n | .1209
.0678

1168
.1089

1146
.0929

1124
1113

1122
.1196

1122
1163

0.4n | .1696
.1386

.1668
.1495

.1652
1497

.1638
1740

1637
1738

.1637
.1658

0.6n | .2127
1941

.2106
.1886

.2095
.1936

.2085
.2285

.2084
2277

.2084
.2130

0.8n | .2565
.2359

.2550
2335

.2542
.2390

.2535
.2682

.2534
.2659

2534
.2584

1.0n | .3131
.2879

3131
.2869

3131
.2962

3131
.3282

3131
.3257

3131
.3259

Table 5.11: Theoretical (upper) and simulated (lower) values of Corr(@ B, ) for various r, n,

- for Weibull data generated with -8 = 100, 8 = 2.

r

n

25

50

100

1000

2500

5000

0.2n | .0887
.0879

.0851
0677

.0832
.0680

.0814
.1049

.0813
0776

.0813
.0857

0.4n | .1711
.1705

.1688
1583

1675
1722

.1664
.1951

.1663
1738

.1663
1716

0.6n | .2465
.2487

.2457
.2302

.2453
.2322

.2449
2721

.2449
.2531

.2449
.2465

0.8n | .2944
2771

.2945
2712

.2945
2777

.2945
3119

.2945
.3032

2945
.3035

1.0n | .3131
.2879

3131
.2869

3131
.2962

3131
.3282

3131
.3257

3131
.3259

Table 5.12: Theoretical (upper) and simulated (lower) values of Corr(3, 8,) for various r, n,
for Weibull data generated with 8 = 100, 8 = 2.

r

25

50

100

1000

2500

5000

0.2n | .3860
.2462

3731
.3186

.3659
3338

.3590
.3367

.3585
.3592

.3583
.3528

0.4n | .5418
4611

5326
.4929

5278
.4991

5233
.5094

.5229
.5188

5228
.5207

0.6n | .6795
‘| 6254

6727
.6438

.6691
.6527

.6658
.6592

.6656
6667

.6655
.6669

0.8n | .8193
7904

.8145
.8000

.8119
.8079

.8096
.8071

.8094
.8093

.8093
.8118

1.0n 1
1

1
1

1
1

1
1

1
1

1
1

Table 5.13: Theoretical (upper) and simulated (lower) values of Corr(8, 8,) for various r, 7,
for Weibull data generated with 6 = 100, 8 = 2.
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r n

25 50 100 | 1000 | 2500 | 5000

0.2n | .8451 | .8511 | .8539 | .8564 | .8565 | .8566
.8634 | .8587 | .8563 | .8578 | .8557 | .8558

0.4n | .8692 | .8668 | .8654 | .8639 | .8638 | .8638
8781 | .8696 | .8657 | .8645 | .8638 | .8634

0.6n | .8961 | .8930 | .8913 | .8897 | .8896 | .8896
.8996 | .8923 | .8906 | .8907 | .8908 | .8899

0.8n | .9356 | .9330 | .9317 | .9304 | .9304 | .9303
9369 | .9326 | .9322 | .9307 | .9309 | .9314

1.0n 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.14: Theoretical (upper) and simulated (lower) values of Corr(By,
‘7, n, for Weibull data generated with 6 = 100, 8 = 2.

1, Bo.1,r) for various

so Ay is asymptotically Normally distributed with zero mean and variance

Var(Ag) = Var (5 —?,)
= Var(b\) + Var(@r) —2Cov (@, @r)

and if (5.30) holds, this becomes

Var(8g) = Var(8) + Var(d,) — 2Var(d)
= Var(@r) - Var(@)

- 6ﬂ—292{z§+(1—7)2-2(1*7)¢1+¢2_%24‘(1—7)2}
N nm? '

r(n? - 642 + 6¢,)

This yields the 95% confidence limits for 9 given 9,

9 =10, +1.96/Var(Ay).

Analogously, if
Aﬂ = ﬁ - ﬂ’r
then, for large samples,
' Ag ~ N{0,Var(Ag)}

in which (assuming that (5.30) holds)

Var(Ag) = VaT‘(B) + VGT(BT) - QVGT(B)
= Var(,) - Var(B)

N 2 1 _ 1
~ 6f {r(ﬂ2—6¢%+6¢2) nﬂ'2}’

(5.33)
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and the 95% confidence limits for B given BT is

B =P, +1.96/Var(Ag). (5.34)

In practice, we replace the unknown parameters 8 and § by their respective MLEs.
Some indication of the precision with which we can make statements on §0.1 given EO.l,r

is also desired;
ABo,1 = BO.l - BO.l,r

has a Normal distribution with mean zero and variance
Var(Ap,,) = Var (EO.I - §O.1,r)
= Var(Boi) + Var‘(éo.;,r)v ~-2Cov (EO_.I,EO..I,T) ,
and provided that (5.9) holds, this could be approximated by

Var(éo_l) + Var(go,l,,) - 2Var(§0‘1)
Va'l‘(go_l,r) - VGT(EO.I)
= bgVa'r(Ag) + b%VaT’(Aﬂ) + 2bgbﬁCO'U(Ao, Aﬂ)

where

Cov(Ag,Ag) = Cov(d —6,,8—B,)
60 l-y—¢;,  1-—v
r (72 — 643 +6¢y) nw? [

We can now write down approximate 95% confidence intervals for By 1 given Bo1,r.

1R

We use the ball bearings data to illustrate these limits calculated for censoring as in
Table 2.6. Table 5.15 shows that these limits converge to 0 as r increases to n = 23, but
convergence for Ap,, is rather slow compared to that for Ag and Ag. Figures 5.3 and
5.4 show that the upper (lower) 95% limit of 9 given 0, (B given BT) is rather flat, but its
lower (upper) counterpart converges to 0 quite quickly. It is also clear that early censoring
(r < 12) tend to give wider confidence limits, indicating a lower level of precision; this
phenomenon is particularly apparent in the case of shape parameter. Furthermore, because
By.1 is a function of § and S, Figure 5.5 appears to combine the nature of Figures 5.3 and
5.4, resulting in slow converging upper and lower limits.

In addition to a single set of data, we are also interested in the extent to which these
limits apply in finite samples; again, based on 10* replications, we expect to find 95% of the
10* final estimates within the corresponding confidence limits. Tables 5.16 to 5.18 provide,
respectively, some summaries for Ag, Ag and Ap,,. The upper entries assume the true

parameters are known, as in running simulation experiments, while the lower entries are
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r 8 12 16 20 23

0, 67.6415 | 75.2168 | 76.6960 | 78.9674 | 81.8783
sd(Ay) 8.4421 | 6.3909 | 3.8013 | 1.8366 0
B, 3.2280 | 2.6241 | 2.4695 | 2.3539 | 2.1021
sd(Ag) | 0.8953 | 0.5292 | 0.3585 | 0.2132 0
Boar 33.6860 | 31.9063 | 30.8329 | 30.3563 | 28.0694
sd(Ap,,) | 2.9231| 3.0910 | 2.6749 | 1.9673 0

Table 5.15: Standard deviations of Ag, Ag and Ap,, for the ball bearings data.

100
90 | 87.7429 84,1465
sates)__ 4=~ 5 825672
& S S

® g A — — - 81.8783
5 L T80T + 2
3 75.2168 + '6-8960 -
© -~

70 75.3676
£° 67.6415 + _- ool
» -~ 69.2454
|
= 601 -~ 62.6007

Ve
7/
50 - w
51.0950
40 T T T T T
0 8 12 16 20 24
r

Figure 5.3: 8, and 95% confidence limits for f given 6, for the ball bearings data.
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Figure 5.4: BT and 95% confidence limits for 3 given Br for the ball bearings data.
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Figure 5.5: B().l,,- and 95% confidence limits for 30.1 given 30.1,r for the ball bearings data.
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r n
25 50 | 100 | 1000 | 2500 | 5000
0.2n | 9616 | 9610 [ 9578 | 9465 | 9480 | 9491
9644 | 9639 | 9613 | 9471 | 9500 | 9517
0.4n | 9464 | 9510 | 9496 | 9499 | 9475 | 9447
9461 | 9494 | 9489 | 9488 | 9495 | 9486
0.6n | 9462 | 9478 [ 9450 | 9502 | 9485 | 9471
9395 | 9441 | 9475 | 9462 | 9426 | 9499
0.8n [ 9476 | 9466 | 9498 | 9478 | 9493 | 9528
9350 | 9426 | 9468 | 9449 | 9457 | 9570

Table 5.16: Number of replications of 6 within the 95% confidence limits based on true 0,58
(upper) and 6, 3, (lower), for Weibull data generated with 8 = 100, 8 = 2.

T n
o 25 | 50 | 100 [ 1000 | 2500 | 5000
0.2n | 7192 | 8275 | 8847 | 9372 | 9458 | 9479
9340 | 9258 | 9312 | 9408 | 9487 | 9515
0.4n | 8352 | 8898 | 9218 | 9464 | 9448 | 9461
9340 | 9374 | 9429 | 9454 | 9484 | 9487
0.6n | 8782 | 9114 | 9282 | 9480 [ 9474 | 9446
9408 | 9451 | 9451 | 9448 | 9508 | 9479
0.8n | 9047 | 9289 [ 9402 | 9471 | 9468 | 9509
9475 | 9511 | 9514 | 9478 | 9516 | 9520

Table 5.17: Number of replications of B within the 95% confidence limits based on true 0, 8
(upper) and 0,, B, (lower), for Weibull data generated with 8 = 100, 8 = 2.

based on practical consideration, where we use the MLEs of 6 and § instead. All tables
show a generally good agreement with expectation, and the difference between the two
entries can be explained by the deviation between 6 = 100, 8 = 2 and their ML estimates.
We recall from Table 2.10 that, in small samples, the estimates of standard deviation of
B, are usually larger than their true values, leading to a large estimate of Var(Ag) and a
wider confidence limits. In contrast, we notice only a slight difference between the two sets
of values of Ap,, in Table 5.18, consistent to the observation in Table 2.12.

5.4 Correlation in the Burr Distribution

5.4.1 Link Between Final and Interim MLEs

Following the same approach as in the Weibull case in Section 5.3.1, we can now measure

the effectiveness of @, and 7, as estimates of @ and 7. The general asymptotic relationship
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T

n

25

50

100

1000

2500

5000

0.2n

9613
9440

9543
9512

9538
9479

9498
9416

9459
9492

9479
9514

0.4n

9483
9478

9476
9520

9505
9494

9475
9406

9456
9508

9463
9517

0.6n

9444
9471

9463
9548

9488
9496

9512
9449

9471
9538

9457
9522

0.8n

9442
9501

9510
9569

9524
9538

9487
9477

9492
9535

9488
9491

Table 5.18: Numlzer Aof replications of BO.I within the 95% confidence limits based on true
6,8 (upper) and 6., 3, (lower), for Weibull data generated with 8 = 100, 8 = 2.

)(%)-(

Corr (a,a,),Corr (a,7,), Corr (7,&,),Corr (7,7T,)

‘in (5.1) here is

ar_a
Tr—T
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(5.36)
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at 77 8l TT 6l aaa_l aT
Cov ({A %o +A 07’} {A +AT })
AaTAgaCO'U (aal gl ) + AQTAGTC (ﬁ, %) +

Cov(T, &)

1R

R

oa’ Ot
AT A% Co (%, %) + AT A5 Cov (%, %) . (537)

and

= F ar 7~ ol TTal ar 7T ‘rﬁ
Cov(7,7,) ~ Cov ({A %a +A } {A,, %o + AT 5y })

AeT Aa‘r l 6l + AeT ATTC ol al"‘ +
da’ BT

1R

Therefore, the study of the covariances of the Type II censored and complete MLEs has
now been transformed into a study of the correlations of score functions. We first use basic
principles to compute these covariances, and then compare the results to those obtained
from a generalised version of (5.6).

Covariance from Basic Principles

It follows from the above that we require

ol ol, ol ol, ol ol, ol ol,
Cov <a ' P ) Cov (a—a’a—f) , Cov (E’%) , Cov (aT aT)
we refer back to Section 2.4 for the expressions of these score functions, given at (2.36),

(2.37), (2.56) and (2.57). We next consider the expectations emerging from the expansion
of the these expressions.

Expectations involved Our calculations of the covariances of the complete and censored
score functions in (5.35) to (5.38) will require the following expectations. By manipulating
(2.46), (2.48) and (2.49), it is straightforward to compute

Bi = E ijl 1an-:,,] = nE[nX] = —n ['r + 7z’ﬁ(a)] ’
B2 = F (i lIl(]. + X n)] =nF [111(1 +X‘r)] —
Li=1

n
o’
n XszlnX,-m] B [XTlnX] [ —y— w(a)]'

By = E
s ,=21 1+ X7, 1+ X7 T(a+1)

(5.39)
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In contrast, the remaining expectations, see below, involve products of summations of vary-

ing upper limits:

By =
Bs =
Bs =
B =
By =
By =

By =

By =
Bz =
By =

Bis =

E

[ n T
E In Xi:n Z In Xi:n] )

Li=1 =1

[ X7 InXim & X7, lnXim]

Z v xg, &1+
[ n T X7 InX;

In X un SRR ,
zz:l & 1+ X7, ]
(2 X7 In X;., &

Zin B2in S 11 X
.i=21 1 + X;rn lé:l z'n:|

Y In(l+X7,)Y In Xim] ,
i=1 i=1

'(n ot XT InX..]
In(1 + X7 —n SR
301+ X7) 5 Tn

; In Xin { §=;1 In(1+ XL.) + (n — ) In(1 + X7,,) }] ,
3 In(1 + X7,,) {; In(1 + X7,,) + (n — ) In(1 + X,Tm)}] ,

Li=1

o XI In Xim [ &
‘21 W {'len(l + X7,) + (n—r)Iln(1+ X,Tn)}] )
Li= “n 1=
[ n r X7 InX,. X, InX,.
) iin in _ :n Tin
|2, 1o X {;1 1 xr, TSR }] ’

[ n T T XZ:-n ln Xz:n _ X;’:n lIl Xlr;'n
i1+ x5 { £ Ha T ¢ (u o Hnem ),

+(n—

=
14+ X7, '

-i=zl 1+X’Z;n igl 1+X[’n

We proceed to expand the terms in By to Bis; take, for example,

By = i E[(In(1+ X;Cn))2] + 2%1 zrj E [In(1+ X7,)In(1+ X7,.)]

@

i=1 j=i+1

+3 S E[ln(1+X7,) (1 + XZ,)]

+Hn—r){ =

i=1j=r+1

Y E[n(1 + XZ7) In(1+ X72,)] + E [(ln(1 + X7,.))?]

n
+ S E [1n(1+X;n)1n(1+X;n)]
j=r+1

,(5.40)

in which we require E [(In(1 + X7,,))?] and E [1n(1 + X7 ) In(1 + X;m)]. More generally,
we recall from Section 4.3 that the expectations required on expanding B; to Bj5 are given in
(4.42) and (4.53). As illustrated in Appendix E for the H equations, we can use Mathematica
to calculate B4 to Bjs, and compare these to their corresponding simulated counterparts
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Expectation | Theoretical | Simulated
B -15.2778 | -15.2252
Bs 6.2500 6.2542
B3 -1.3889 -1.3922
By 201.5476 | 203.9854
Bs 1.2870 1.2969
Bg 13.8388 13.8722
By 17.1134 17.8016
Bg -80.8945 | -80.9954
By -5.8850 -5.9878
Byo -55.3803 | -55.5203
B11 24.3747 24.5236
B2 -5.1896 -5.2319
B3 27.4351 27.3313
Biy -11.3942 | -11.4994
‘Bis 24440 |  2.5439

Table 5.19: Numerical checks of expectations B; to Bjs calculated at » = 15,n = 25 using
Burr data generated with o = 4,7 = 3 and 10* replications.

obtained from 10* replications. Table 5.19 shows this comparison for a = 4,7 = 3,r =

15,n = 25. We see good agreement between the theoretical and simulated values.

Covariances of the score functions Using the above expectations, and from (2.36),

(2.37), (2.56) and (2.57), we can obtain the covariances of the score functions for all combi-

nations of the final and interim MLEs, as shown below.

1. From (2.36) and (2.56), we have

al ol,
CO’U (%, %—)

E[az

'a—a X
E [(na_
na 'E [

—E ([T x (ra ' =Ty —T.)]
—ra_le + Bi1.

ol
oo
1_T) x

Oa

%
Oa

%] —E[Tx

|

al,
da

(5.41)
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2. Similarly, from (2.37) and (2.56), we have

ol al,\
Cov <'a—a, E) =

ol ol
o [a—a x E]
E [(nof1 —T) x %l;]

—1

~E[T x {rr™*

Ol, ol
B3| - |rx 5]

+Sf

—r77 1By — Bg + By + aBug.

3. From (2.36) and (2.57) we may write

Cov (%,

%
Oa

= E [E X 6_a]
E [{n’r—l +81(0) — (

g [az
E [{5:1(0) -

ro

4. From (2.37) and (2.57), we have

Cov (?l ol

67"-5?)

=E[

= rr1

al
or

[B1 —

ol ol |

0

l[Bl_

o
or
E [{nr—l +81(0) — (
= nrlE I:gl ] +E[

E [{31(0) - (a + 1) T111} X {‘T‘T

!

ol

o+ 1)T111} X -3?;-]

1(0) — (@ + 1)Tf111 — oTe 111}

{51(0 - (a + 1) T111} X a—l]

(Ot+ 1) T111} X (7'01 —Tf
(a+1) Bg)

ol,
o+ 1) Tlll} X E]

ol,

{51(0) — (a + 1) T111} X _T]
+S8¢1(0) —

- T.)]

— Bio+ (a+1) Bya.

(a+ 1)Tp111 — oTe 111}

(a+1) B3] + By — Bs — aBi3 + (@ + 1) [Bs — By + aBs).

For illustration, we continue to use a = 4,7 = 3,r = 15,n = 25, and compute

(

Cov(&
Cov(g:

ol ol
fa? Ba
oL ol
a1 Ba

) Cov(s=

95)

Cov(&=

oL 9l
Oa? 8T
oL ol
or? o1

)=

0.9375
—1.8174

—1.8174
6.0499

)
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so that using
Aex Aem\ (07885 0.1671
Aom  ATT ~ \ 01671 0.1879 /’
(Agg A‘{‘g) _ (2.5538 0.7672)
o AL 0.7672 0.3957
and from (5.35) to (5.38) we see
Cov(a,a15) Cov(a,715) |\ _ [ 0.7885 0.1671
Cov (7,815) Cov(7,715) / \ 0.1671 0.1879

which, in turn, gives the correlations for all combinations of the final and interim MLEs as

07885
Corr (3.5 = 0.5557,
orr (@81s) > e /355
0.1671
Corr (6. 71g) = = 0.2991,
(@,715) V/0.7885 x 1/0.3957
0.1671
Corr (7.15) = = 0.2411,
orr (7, G1s) v/0.1879 x /2.5538
Corr (720) = 0.1879 = 0.6891.

v/0.1879 x 1/0.3957

As seen in the analysis for Weibull MLEs, we see here numerical values of the covariances
of final and interim MLEs are identical to those found for the complete covariance matrix.
Thus, it is suitable to next consider the extent to which the conjecture at (5.8) holds for
the Burr MLEs.

Covariance from the Generalisation (5.8)

When extended to the Burr distribution, (5.8) would become
Cov @’?") Cov (?,fr) _ [ A AT ' (5.42)
Cov(T,0,) Cov(T,Tr) AT AT

Simplifications of the covariances Alternatively, we can check that (from (5.7))

Cov(fs, 88) Cou(#, %) | _ [ Arca Arar (5.43)
Cou($t,3z) Cou(Z:, 3 Arar A
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n Theory r

(=A%) | 0.2n 04n | 0.6n [ 0.8n | 1.0n
25 0.7885 | 38.2848 | 5.5227 | 2.5260 | 1.5883 | 1.4211
50 0.3942 [ 6.2904 | 0.8645 | 0.6358 | 0.5479 | 0.5306
100 0.1971 | 0.6786 | 0.2940 | 0.2490 | 0.2375 | 0.2250

1000 | 0.0197 | 0.0188 | 0.0184 | 0.0185 | 0.0189 | 0.0192

2500 [ 0.0079 { 0.0071 | 0.0080 | 0.0080 | 0.0079 [ 0.0079

5000 [ 0.0039 | 0.0038 | 0.0038 | 0.0038 | 0.0039 | 0.0039

Table 5.20: Theoretical and simulated values for Cov(é&, &,) calculated at various r, n using
Burr data generated with a = 4,7 =3 and 10* replications.

holds for the Burr distribution. From (5.41), and using (5.39) and (5.40), we may write the
first covariance as

SRR
0ov (gerge) = —mp+ S E[mA+ XL +2%
=1 ]

Y- T T
3’ 9o . E [In(1+ X7,) In(1 + X7..)]

.r
Py
=1 j=1+
r n
+> Y E [In(l + X.,)In(1+ X;n)]
i=1 j=r+1

f:; Eln(1 + XZ,))In(1 + X7,.)] + E [(n(1 + X7.))?]
+(n—r = n ,
=) + 3 E [1n(1 +X7,)In(1+ X;m)]
j=r+1

which we want to show to equal

Araa = ra—2.
r r=1 n r—=1 r T n
However, due to the various levels of single [ >, 3", > |]anddouble{ 3> 3 and ) >
=1 i=1 j=r+1 =1 j=i+1 i=1j=r+1

summations of expectations being involved, it is clear from the above that simplification
of Cov (%, %5) to ra—? is very tedious to obtain, and hence is considered elsewhere.
Obviously, we then reach the same conclusion about the consideration of Cov (g—i, %’Tﬂ),
Cov (%, %) and Cov (%, %1’_1). Instead, we check for (5.42) via extensive simulation ex-
periments.

Numerical check of (5.42) Here, we assume o = 4,7 = 3 and find the simulated values
of Cov(@,@,), Cov(@,7,), Cov(7,a,) and Cov(7,7,) based on 10 estimates of (Gr,7;).
Tables 5.20 to 5.23 compare these values to their theoretical counterparts, obtained from
the complete covariance matrix given at (2.59). We observe generally good agreement
between theory and practice across all combinations of  and n considered. This agreement
improves as r and n increase. We remark that other values of o and 7 were also considered;

the results were not reported here because those cases exhibited similar conclusions.
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n Theory T
(=A%) | 0.2n 0.4n | 0.6n | 0.8n 1.0n
25 0.1671 | 0.3268 | 0.3131 | 0.3042 | 0.2946 | 0.2982
50 0.0835 | 0.1287 | 0.1133 | 0.1127 | 0.1099 | 0.1129
100 0.0418 | 0.0538 | 0.0496 | 0.0479 | 0.0480 | 0.0459
1000 [ 0.0042 | 0.0035 | 0.0036 | 0.0037 | 0.0038 | 0.0040
2500 | 0.0017 | 0.0015 | 0.0017 | 0.0017 | 0.0017 | 0.0017
5000 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0008

Table 5.21: Theoretical and simulated values for Cov(&, 7,) calculated at various r,n using
Burr data generated with o = 4,7 = 3 and 10* replications.

n Theory T

(=A*")| 02n | 04n | 0.6n | 0.8n | 1.0n
25 0.1671 | 6.3057 | 1.2919 | 0.4785 | 0.3260 | 0.2938
50 0.0835 | 1.3047 | 0.1816 | 0.1318 | 0.1143 | 0.1129
100 0.0418 | 0.1206 | 0.0596 | 0.0484 | 0.0480 | 0.0459

1000 | 0.0042 | 0.0036 | 0.0038 | 0.0038 | 0.0039 | 0.0040

2500 [ 0.0017 | 0.0016 | 0.0017 | 0.0017 | 0.0017 | 0.0017

5000 | 0.0008 | 0.0009 | 0.0008 | 0.0008 | 0.0008 | 0.0008

Table 5.22: Theoretical and simulated values for Cov(7, &) calculated at various r,n using
Burr data generated with o = 4,7 = 3 and 10* replications.

n Theory T

(=A™) | 0.2n 0.4n 0.6n 0.8n 1.0n
25 0.1879 | 0.3056 | 0.2657 | 0.2503 | 0.2424 | 0.2396
50 0.0940 | 0.1249 | 0.1097 | 0.1064 | 0.1044 | 0.1047
100 0.0470 | 0.0533 | 0.0505 | 0.0494 | 0.0496 | 0.0490

1000 | 0.0047 | 0.0045 | 0.0046 | 0.0046 | 0.0046 | 0.0046

2500 [ 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019

5000 [ 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009

Table 5.23: Theoretical and simulated values for Cov(7, 7,) calculated at various r,n using
Burr data generated with o = 4,7 = 3 and 10* replications.
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Implications of (5.42) on the B equations We discuss this only in passing here; the
consequences of (5.43) would be that

™m _
—— + By =ra”?,
«

™ _
5 Bg+ By +aByy =nr! {@ =) poo—ror},

™ _
~or Buot (@+1)Biz=n7""{(1=7) P00 — P01},
_:_Z + By — Bs — Bz + (a + 1) (Bs — By + aBis) = 172 + nat™2Q,,

which lead to

Bu = roz_2 (n + 1) ,
—Bs+ By +aByy=—Byp+(a+1)Ba=nr" {ra '+ (1 =v)poo—poi}; =
By — Bg—aBi3+ (a+1)(Bs — By + aBgs) = T2 (r+rn+nof,).

As previously mentioned at Section 5.3.1 for the H equations, a detailed proof to these
results will be given elsewhere.

Implications of (5.42) on the correlations between final and interim MLEs If
(5.42) holds, then we have, for large samples,

Corr (8,8,) ~ P A
Yy r) — ’Aaa x ’A,?.‘a - Aga

is given by

o? (a+ 1)2 (a+2) (1 + aL-mQ) {7'2 + rnafy — n2a2[(1 —7) pgo — p0’1]2}
n (ro? + nadQ,) {(a+ 1) (a+2)+al@+1)2Q—a2(a+2)[1—7y— ¢(a)]2}’

AaT

Aaa X / A;"r

Corr (Q,Ty) ~
is given by

—{1-7—9%(x)} x
o? (a +2) {r? + rnaQ, —n2e?[(1 - ) poo — po,l?}
™m (1+ﬁ59) {(a+1)2(a+2)+a(a+1)29—a2(a+2) [l—fy—v,b(a)]z}

Aa‘r

Corr (T,a,) ~
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is given by
{1 -7 - 9(@)} x
ot (a+2) {r? + rnaQ, — n202[(1 —7) poo — Po,)?}
n (ra? + no3Qy) {(a +1)2%(a+2)+a(e+1)20-0?2(a+2)[1 —v— ¢(a)]2}’
and
Corr (’7:, ’7:7-) ~ —\/;4?14)(—-\/14_:7'
ATT
~ I

o [+ 0P et (P + el = w2el((d =) poo — i)
rn{(a+1)2(a+2)+a(a+1)2Q—a2(a+2)[1—7—1/)(a)]2}’

in which we refer to Section 2.4.1 for the expressions for p ,, and €, and Section 2.4.3 for
Q.

5.4.2 Link between EO.I and §0_1,

We move on to consider the extent to which §0,1,r can be regarded as a reliable guide to
Bo. It will prove more illuminating to here start with a worked example, taking, as before,
a=4,7=3,r =15,n = 25 so that, from (2.54),

bo \ [ —0.0252
b, | 0.1203 /’

and using (5.3), we can approximate Corr (§0.1, §0.1,15) by

—0252 \ [ 7885 .1671 0.9375 -—1.8174 2.5538 .7672 —.0252
1203 1671 1879 —-1.8174  6.0499 7672 3957 1203

—0252 \ [ 7885 .1671 ~0252 ) —0252 \' [ 2.5538 .7672 —.0252
1203 1671 .1879 1203 1203 7672 .3957 1203
which can be shown equal to 0.9049.

Otherwise, the agreement between the simulated values of Cov (§0.1, ﬁo.l,r) with their

theoretical counterparts Var (ﬁo.l), as shown in Table 5.24 for various r and n with 104

replications, suggests that it might be possible to extend (5.9) to the Burr case, so that we
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n Theory r

(=Var(§0_1)) 02n | 04n | 06n | 08n | 1.0m
% 1002208 | .002318 | .002320 | .002314 | .002315 | .002318
50 1001104 | .001106 | .001109 | .001109 | .001108 | .001111
100 1000552 | .000558 | .000557 | .000557 | 000559 | .000560
1000 7000055 | .000055 | .000055 | .000055 | 000055 | .000055
2500 7000022 | .000022 | .000022 | .000022 | 000022 | .000022
5000 7000011 | .000011 | .000011 | .000011 | .000011 | .000011

Table 5.24: Theoretical and simulated values for C’ov(Bo'l, Bo'l,,») calculated at various r,n
using Burr data generated with o = 4,7 = 3 and 10* replications.

could use (5.10) to obtain, for large n,

s o\ [z Acatopb AeT AT
CO’I"I‘ (BO]., BO].,”') - \/bgA,?.a + 2babTA$T + bZA:T’

in the above example, this correlation is

\/ (~0.0252)° x 0.7885 — 2 x 0.0252 x 0.1203 x 0.1671 +-0.12032 x 0.1879 _ 0

(—0.0252)% x 2.5538 — 2 x 0.0252 x 0.1203 x 0.7672 + 0.12032 x 0.3957

exactly as before.

5.4.3 Numerical Results

Next, we provide some validation for the above expressions through simulation experiments;
we revisit Section 2.4.4 for the 10? replications of &, 7, and Eo.l,,, generated with o = 4
and 7 = 3. Tables 5.25 to 5.29 summarise the theoretical (upper) and practical (lower)
values for Corr (@, a;),Corr(a,7,),Corr (7,a,),Corr (7,7,) and Corr (§0,1, §0,1,r) re-
spectively, and consistently show a good agreement between theory and simulation, for all
r and n considered. We also noted that, when r = n, Corr (&,7,) = Corr (7, &,) becomes

Corr (@, 7T) = — aft—y—d(@)} _ 0.4340

(@+1),/1+ 3550

for all sample sizes. Therefore, this value acts as an upper bound on the strength of cross-
parameter correlation there; it depends on a, though is independent of n and 7. In addition,
the theoretical correlation values obtained here confirm the pattern observed in Figures 2.13
to 2.17. In particular, agreement so far means that we can now employ these expressions to

compute the confidence limits for final estimates, given earlier estimates.
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T

25

50

100

1000

2500

5000

0.2n

.1942
.0708

1835
.0418

.1806
.0667

.1760
.1501

1757
1518

1756
1687

0.4n

.3616
.0627

.3537
.1998

.3495
.3038

.3456
.3152

3454
.3493

.3453
.3334

0.6n

.5557
.2065

.5495
.4532

.5464
.5186

5434
5154

.5432
.5516

.5431
.5361

0.8n

7740
6112

7706
7281

.7689
.7590

7672
7506

7671
7708

7671
7596

1.0n

1
1

1
1

1
1

1
1

1
1

1
1

Table 5.25: Theoretical (upper) and simulated (lower) values of Corr(a ar) for various r, n,

for Burr data generated with a = 4,7 =3.

r

n

25

50

100

1000

2500

5000

0.2n

1635 |
1343

1575
.1420

1541
.1505

.1509
.1240

1507
1331

.1506
.1382

0.4n

.2348
.2185

2304
.2243

.2280
.2299

2258
.1960

2257
.2310

2256
2076

0.6n

.2991
3175

.2959
.3055

.2042
.2992

.2027
2611

.2926
.3021

.2925
2757

0.8n

.3631
.3953

.3612
.3824

.3602
3726

.3592
.3354

.3592
.3623

.3591
.3431

1.0n

.4340
.5035

.4340
4789

4340
4369

.4340
4217

.4340
4350

4340
4191

Table 5.26: Theoretical (upper) and simulated (lower) values of Corr(&, 7,) for various r, n,

for Burr data generated with o = 4,7 = 3.

r

n

25

50

100

1000

2500

5000

0.2n

.0843
.0284

.0804
.0195

.0784
.0254

.0764
.0583

.0763
0715

0762
.0822

tl4n

.1569
.0357

.1535
0945

1517
1320

.1500
.1306

.1499
.1534

.1498
.1466

0.6n

2411
0953

.2385
2114

2371
2161

.2358
2179

.2357
.2422

.2357
.2293

0.8n

.3359
.3055

3344
.3420

.3337
.3286

.3330
.3182

3329
.3420

3329
.3192

1.0n

4340
5035

4340
4789

4340
4369

.4340
4217

4340
4350

4340
4191

Table 5.27: Theoretical (upper) and simulated (lower) values of Corr(7, &,) for various r, n,

for Burr data generated with a = 4,7 = 3.
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T n
25 50 100 | 1000 | 2500 | 5000
0.2n | .3767 | .3628 | .3551 | .3477 | .3472 | .3470
3365 | .3103 | .3194 | .3264 | .3459 | .3490
0.4n | .5410 | .5309 | .5254 | .5204 | .5200 | .5199
4722 | 4891 | .5024 | .5047 | .5284 | .5153
0.6n | .6891 | .6818 | .6780 | .6744 | .6742 | .6741
.6362 | .6496 | .6611 | .6646 | .6827 | .6704
0.8n | .8368 | .8323 | .8300 | .8278 | .8276 | .8276
.8060 | .8181 | .8249 | .8209 | .8331 | .8211
Ton T 10 11 1 1 i 1
1 1 1 1 1 1

Table 5.28: Theoretical (upper) and simulated (lower) values of Corr(#, 7,) for various r,n,
for Burr data generated with a = 4,7 =3.

T n

25 50 100 | 1000 | 2500 | 5000
0.2n | .8470 | .8530 | .8558 | .8582 | .8583 | .8584
.8647 | .8604 | .8612 | .8572 | .8635 | .8561
0.4n | .8736 | .8706 | .8688 | .8670 | .8669 | .8668
8791 | .8721 | .8700 | .8648 | .8716 | .8657
0.6n | .9049 | .9015 | .8997 | .8979 | .8978 | .8977
9043 | .8993 | .8995 | .8970 | .9009 | .8971
0.8n | .9469 | .9446 | .9433 | .9422 | .9421 | .9421
9446 | .9433 | .9438 | .9410 | .9438 | .9404 )
1.0n 1 1 1 1 1 1
1 1 1 1 1 1

Table 5.29: Theoretical (upper) and simulated (lower) values of Corr(Bo 1, }_A?o'ly.,) for various
r,n, for Burr data generated with o = 4,7 = 3.
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5.4.4 Confidence Limits Considerations

We also wish to obtain confidence intervals for @, 7, 30,1, given that we know the values of
a,,?,,ﬁo,l,,.. We denote

Aa = a_ary
AT = T_Tfr,

Apy,; = Boi- By,

and assume that each of these differences is Normally distributed with zero mean; provided
that (5.42) holds, the variances for A, and A, are, respectively,

Var(oa) = Var(a) - Var@)

and
Var(A;) = Var(7,;) — Var(7),

and if (5.9) holds, we could approximate the variance of Ap,, by
Var(Ap,,) = Var(ﬁo,l,r) - Var(ﬁo_l)

which, in turn, depends on Var(A,), Var(A;) and Cov(Aq, A7). These, in turn, yield the
approximate 95% confidence intervals for final estimate, given interim estimate; we have

A=A+ 1.964/Var(Aj)

for A = a, T, By.1. In practice, we would then estimate the true value of , 7 with the MLEs
a,, T, calculated at r.

As our first example, Table 5.30 presents these limits for various r for the arthritic
patients data in Table 1.3. As r approaches n = 50, we notice fluctuating @(Aa), as shown
in Figure 5.6, but a smoothly decreasing .s:;i(A,-), as displayed in Figure 5.7. For Ap,,, the
interval size reduces steadily as r increases, as shown in Figure 5.8.

We have made checks throughout the theory developed so far, and now we need to
validate the resulting confidence intervals using our simulation experiment set up. Again,
we plot the 10 simulated observations of @, 7, §0.1, and, in each case, record the number of
a,T, Eo_l within the 95% confidence limits evaluated, firstly, at true parameter values o =
4,7 = 3 (corresponding to upper entries), and secondly, at the MLEs &, 7, (corresponding
to lower entries); these results are summarised in Tables 5.31 to 5.33. The difference between
entries is due to the penalty on replacing the true values by their MLEs in the calculation,
and in particular, for small samples with low to mild censoring, the results are largely
distorted by some large values of @, as shown in Table 2.16. In general, and entirely as
expected, the results approach 9500 with increasing n and r.
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r 10 20 30 40 50
ar 4.5450 | 7.9878 | 8.9031 | 7.7911 | 8.2681
sd(A.) | 3.9577 | 4.4005 | 3.1000 | 1.4676 0
7 4.1860 | 4.8626 | 4.9997 | 4.8490 | 5.0006
sd(A;) | 1.1043 | 0.8237 | 0.5823 | 0.3568 0
Boar 0.4080 | 0.4112 | 0.4112 | 0.4113 | 0.4185
sd(Ag,,) | 0.0201 | 0.0167 | 0.0141 | 0.0109 0

Table 5.30: Standard deviations of A,, A; and Ap,, for the arthritic patients data.
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Figure 5.6: &, and 95% confidence limits for & given &, for the arthritic patients data.

r n
25 50 | 100 | 1000 | 2500 | 5000
0.2n | 6996 | 7532 | 8290 | 9216 | 9515 | 9443
9682 | 9616 | 9543 | 9416 | 9482 | 9509
0.4n | 7443.| 8094 | 8597 | 9384 | 9507 | 9439
9662 | 9583 | 9415 | 9463 | 9494 | 9456
0.6n | 7907 | 8563 | 8962 | 9459 | 9487 | 9487
9636 | 9496 | 9426 | 9468 | 9520 | 9485
0.8n | 8432 | 8943 | 9176 | 9442 | 9434 | 9461
9596 | 9489 | 9548 | 9437 | 9517 | 9493

Table 5.31: Number of replications of & within the 95% confidence limits based on true o, T
(upper) and &, 7 (lower), for Burr data generated with a = 4,7 = 3.
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Figure 5.7: 7, and 95% confidence limits for ¥ given 7, for the arthritic patients data.

T n
25 50 | 100 | 1000 | 2500 | 5000

0.2n | 7796 | 8182 | 8849 | 9424 | 9491 | 9487
9218 [ 9268 | 9342 | 9479 | 9497 | 9513

0.4n | 8296 | 8910 | 9155 | 9447 | 9523 | 9458
9316 | 9365 | 9416 | 9748 | 9507 | 9468

0.6n | 8724 | 9058 | 9287 | 9492 | 9519 | 9490
9413 | 9406 | 9456 | 9480 | 9514 | 9495

0.8n | 9006 | 9289 | 9376 | 9465 | 9527 | 9476
9458 | 9479 | 9526 | 9467 | 9560 | 9503

Table 5.32: Number of replications of # within the 95% confidence limits based on true o, 7
(upper) and &, 7 (lower), for Burr data generated with o = 4,7 = 3.
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Figure 5.8: Bo_l,,n and 95% confidence limits for BO.I given BO‘L,. for the arthritic patients

data.

T n
25 50 | 100 | 1000 | 2500 | 5000

0.2n | 9604 | 9562 | 9555 | 9451 | 9569 | 9460
9512 | 9468 | 9494 | 9466 | 9550 | 9497

0.4n | 9485 | 9487 | 9512 | 9473 | 9535 | 9495
9486 | 9458 | 9474 | 9487 | 9525 | 9543

0.6n | 9429 | 9426 | 9497 | 9492 | 9543 | 9487
9472 | 9440 | 9465 | 9499 | 9542 | 9522

0.8n | 9426 | 9508 | 9497 | 9468 | 9531 | 9475
9477 | 9499 | 9494 | 9499 | 9590 | 9505

Table 5.33: Number of replications of By1 within the 95% confidence limits based on true
o, T (upper) and &, 7 (lower), for Burr data generated with a = 4,7 = 3.
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5.5 Practical Implications

Our work in the last two chapters so far has been primarily concerned with establishing and
validating theoretical results. In this section, we briefly consider some practical implications
of our work, based on published and simulated data. The relevance and importance of the
percentile By have been discussed in chapter one and two, and we have further shown in
chapter three that the statistical properties of the sampling distributions of §0'1,T are more
desirable (in the sense that asymptotic results apply in samples of smaller size) than those
of the MLEs of parameters. Therefore, our discussion here focus mainly on the reliability of
EO.I,T, calculated at censoring level r, can be regarded as a reliable guide to 30.1- We have
already seen the agreement between §0.1,r and its counterparts for complete samples, but
in practical terms, we would like to know the smallest  at which the experiment can be
reasonably or safely terminated with the interim analysis still providing a close and reliable . -
guide to the analysis of the final, complete data, as represented by the standard deviation

of final estimate, given interim estimate.

5.5.1 Published Data
Epstein’s Failure Times Data

We recall from Table 2.1 that §0_1,20 = 11.0523 is the closest to ﬁo.l = 11.0512, but also
has the largest (estimated) standard deviation. In contrast, By, 1,10 = 7.1224 is the farthest
from Bo 1, with sd(Bo 1,10) = 2.2523, only shghtly less than sd(301 20) = 2.4714. Hence,
intuitively, an experimenter may prefer Bo 1,20 to Bo 1,10 as a guide to Bo 1; in this case, the
experiment time would be cut from X49.49 = 354.4 to X20.49 = 55.6, with, approximately, a

84% reduction in time. However, in the analysis of the reliability of a sequence of Type II
censored estimates, we could also take into account the link between the interim and final
estimates before a conclusion can be drawn. Table 5.2 shows that the variation between
30_1, and §0.1 gradually converges to 0 as r approaches n = 49. Strikingly, we see that the
pattern on standard deviations when r = 10 and 20 has reversed; a:;i(go.l —Eo_l,lo) = 2.0094
is now slightly larger than &l(ﬁo‘l - §0_1,20) = 1.9013, but the two values remain similar.
Thus, 30,1,10 and §0,1,20 seem to provide similar amount of information concerning §0,1.
Statistically, this suggests that it may make no practical difference whether to terminate
the experiment after » = 10 or r = 20, because the resultant censored estimates would
be equally reliable in providing a guide to the final estimate. However, from a practical
perspective, censoring at r = 10 is certainly not the same as r = 20, particularly in terms of
the experiment time and costs; the former would give an extra saving in experiment time,
which is cut from X49.49 = 354.4 to X10.49 = 15.2, an additional reduction of 40.4 units
compared to r = 20. We remark that this information is obtained with hindsight, of course,
but may be proven useful to an experimenter when planning a life test; if the precision

level is set prior to an experiment, he or she could save the experiment time and costs by
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terminating the experiment at or around the smallest r for which the data is likely to yield
the required level of precision.

Ball Bearings Data

Table 5.15 shows that the interim estimates slowly converge to §0,1; the last three failures
have a significant effect on the value of Boa, implying that the precise value relies heavily
on the last few failures. More strikingly, we see that the precision levels associated with
Bo1g and By116 are quite similar (sd(Ap,,) = 2.9231 for r = 8 and sd(Ap,,) = 2.6749
for r = 12); this provides partial answers to some questions posed in Section 5.1, again, we
emphasise with the benefit of hindsight. In real life scenarios, censoring often leads to earlier
termination of a life test; if the tolerance level is set prior to an experiment, an experimenter
could terminate the test sooner than might have been thought. In this example, censoring

at 7 = 8 would save the expenment time by roughly 70%, an extra saving of 19% compared

to 7 = 16, but, notably, it would also yield interim estimates which are as consistent with
the final values as those obtained by censoring at » = 16. Moreover, we could also plot the
95% confidence limits for 2 < r < n = 23 for the ball bearings data. Figure 5.9 shows that
the limits are generally quite flat for censoring values around r = 5 to 8, indicating that
the precision obtained on censoring about this range of 7 would be approximately similar,
as shown below:

r 2 3 4 5 6 7 8
X,.23 28.92 | 33.00 | 41.52 | 42.12| 45.60| 48.48 | 51.84
sd(Ap,,) | 3.6921 | 2.8068 | 3.7321 | 2.8481 | 2.8824 | 2.8619 | 2.9232
r 9 10 11 12 13 14 15
X3 51.96 | 54.12 | 55.56 | 67.80 | 68.64 | 68.64 | 68.88
sd(Ag,,) | 2.5951 | 2.5435 | 2.4218 | 3.0910 | 2.8689 | 2.6212 | 2.4016
r 16 17 18 19 20 21 22
X3 84.12 | 9312 9864 | 105.12 | 105.84 | 127.92 | 128.04
sd(Ap,,) | 2.6748 | 2.6174 | 2.4468 | 2.2492 | 1.9674 | 1.7195 | 1.2655

Arthritic Patients Data

Table 5.30 shows that §0.1,r converges to EO.] in an almost horizontal line, and the limits
decrease with r at a steady rate up to r = 40, after which we see a sharp convergence to 0,
corresponding to the case 7 = n. In this example, the case for early censoring is less obvious;
as in previous example, the last 10 relief times contain important information regarding the
precise value of §0_1.
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Figure 5.9: Bo.m and 95% confidence limits for By given Bo.m, for 2 <r <n=23, for
the ball bearings data.

5.5.2 Simulation Experiments

The results from the analysis when all the failure times are observed seem to suggest that,
for a specified level of precision, it may be possible to design experiments in which early
stopping is a viable option. In contrast, as r is to be specified before testing commences,
this general conclusion may be less useful in practical terms. However, the practitioner
could follow this method to establish a confidence interval for the final estimates, based
on the censored estimates calculated at that r; if the precision level meets the required
level set prior to running the test, then further tests can be terminated with even smaller
r. Otherwise, one could increase the sample size or the censoring number to meet the
tolerance level. This information is important for an experimenter, as he or she can then
choose an acceptable censoring number and sample size, with the (expected) time required
to complete a test generally directly linked to its cost. If the initial cost of test units is
cheap compared to experiment time, he or she can increase the initial sample size to obtain
results economically.

We use simulations to assess how the increase in censoring level increases the precision
of §0.1,r as a guide to 30,1, when, as we have seen above, the final few failure times may
have a considerable effect on the precise values of the final estimates, and the expected time
required to complete the test may also increase considerably. Tables 5.34 to 5.36 give a
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T n
25 50 100 1000 | 2500 | 5000
0.2n | 4.2144 | 2.9800 | 2.1072 | 0.6664 | 0.4214 | 0.2980
4.2660 | 2.9976 | 2.1019 | 0.6698 | 0.4212 [ 0.3003
0.4n | 2.5808 | 1.8249 | 1.2904 | 0.4081 | 0.2581 | 0.1825
2.5881 | 1.8198 | 1.3025 | 0.4117 | 0.2590 | 0.1824
0.6n | 1.7205 | 1.2166 | 0.8603 | 0.2720 | 0.1721 | 0.1217
1.7075 | 1.2187 | 0.8641 | 0.2746 | 0.1708 | 0.1212
0.8n | 1.0536 | 0.7450 | 0.5268 | 0.1666 | 0.1054 | 0.0745
1.0468 | 0.7449 | 0.5230 | 0.1675 | 0.1056 | 0.0744

Table 5.34: Theoretical (upper) and simulated (lower) standard deviations of Ap,, for
various r, n, for exponential data generated with 8 = 100.

summary of theoretical (upper) and simulated (lower) standard deviations of Apg,, from
the exponential, Weibull and Burr distributions respectively, based on 10* replications.
We see good agreement between theory and simulation. The conclusions reached for a
single data set are confirmed here: the standard deviations decrease as r increases, meaning
the experimenter would need to compromise between saving time (or cost) and additional
information obtained from extra failure times. We also note that the ratio of change in
standard deviations to change in censoring proportions decreases with r, suggesting that, if
the censoring level has to be small relative to n, say r < 0.4n, then the experimenter may .
not need to consider too closely the exact value of r to use.

We can try to place this in a more practical context: in Table 5.35, based on the Weibull
distribution with 8 = 100, 8 = 2, suppose there are n = 100 specimens put on a life test.
If this experiment was to run to completion it" would take, on average, F [X100.100] = 226
units, (we may assume, somewhat arbitrary, that time units are hours - of course, they
could be days or even months), obtained on setting i = n = 100,60 = 100,38 = 2 in (3.3).
If, instead, we terminated the experiment after 40 failure times have been recorded, for:
which the expected experiment time is given by E [X40.100) = 71 units, there would be a
reduction in duration of 69%, together with a standard deviation sd(§0_1 —§0.1,40) of 2.1726.
Alternatively, we may consider to stop the experiment as soon as 20 failure times have been
observed, for which E [X20:100] = 47 units and sd(ﬁo,l - 30_1,20) = 2.2865, to trade just 5%
increase in the standard deviation value for a further 10% reduction in experiment time.
In particular, in the case where the initial cost of test units is expensive, the penalty of
replacing 30,1,40 by §0,1,20 as a guide to §0‘1 may be regarded as less important, compared
to the value of test units and/or time saved.

In real life scenarios, censoring often leads to earlier termination of a life test; for a given
tolerance level, an experimenter may repeat the analysis described in this chapter at each
of a sequence r = 11, 72,... < n, and examine the pattern of trade off between precision and
censoring number, to give the smallest r needed to achieve that level of precision.
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r

n

25

50

100

1000

2500

5000

0.2n

4.7476
4.5148

3.2735
3.2023

2.2865
2.2575

0.7153
0.7106

0.4521
0.4580

0.3196
0.3230

0.4n

4.2678
4.2485

3.0520
3.0616

2.1726
2.1681

0.6917
0.6902

0.4377
0.4424

0.3095
0.3126

0.6n

3.2717
3.7794

2.6742
2.7211

1.9085
1.9180

0.6088
0.6082

0.3853
0.3881

0.2725
0.2747

0.8n

2.8326

12,9132

2.0459
2.0778

1.4627

'1.4608

0.4673
0.4702

0.2957

0.2976 |

02002
0.2087

Table 5.35: Theoretical (upper) and simulated (lower) standard deviations of Apg,, for
various r,n, for Weibull data generated with 8 = 100, 8 = 2.

r

n

25

50

100

1000

2500

5000

0.2n

0.0295
0.0280

0.0203
0.0197

0.0142
0.0139

0.0044
0.0045

0.0028
0.0028

0.0020
0.0020

0.4n

0.0262
0.0261

0.0188
0.0187

-0.0134

0.0134

0.0043
0.0043

0.0027
0.0027

0.0019
0.0019

0.6n

0.0221
0.0227

0.0160
0.0162

0.0114
0.0114

0.0036
0.0037

0.0023
0.0023

0.0016
0.0016

0.8n

0.0160
0.0167

0.0116
0.0117

0.0083
0.0083

0.0026
0.0027

0.0017
0.0017

0.0012
0.0012

Table 5.36: Theoretical (upper) and simulated (lower) standard deviations of Ap,, for
various r,n, for Burr data generated with o = 4,7 = 3.
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5.6 Chapter Summary and Conclusions

We initially examined the relationships between the final and interim estimates of model
parameters and a specific percentile in Chapter 2. We have now further studied these
relationships, and, in particular, we are able to quantify the correlations between the two sets
of ML estimates of model parameters and Bp ;. Our formulae are relatively straightforward
and computationally tractable; provided that the conjectures, obtained from the exponential ‘
distribution, at (5.8) and (5.9) hold, we see correlations would follow immediately from the
complete and censored EFI matrices. The extension of (5.8) and (5.9) to the Weibull case
could be regarded as natural, but it turns out that similar extension might also hold in
the Burr distribution. There is obvious scope to assess the extent to which (5.8) and (5.9)
hold in other lifetime distributions and censoring regimes; for instance, Finselbach (2007)
proves these results for Weibull data obtained from a Type I censoring. This, in turn, yields .
approximate 95% confidence limits for the final estimate given earlier estimate. We have
also shown that these asymptotic results agree with the behaviour observed in simulation
experiments for various combinations of censoring number r and (finite) sample size n,
and validated the asymptotic 95% confidence limits, from which some issues on practical
applications have been discussed.

The main focus of this chapter has been on the effect of censoring has on the precision
of a Type II censored estimate as an estimate to its complete counterpart, and to establish
some guidelines on an optimal censoring number to stop an experiment, which maximises
the practical benefits while minimising the loss of statistical information. The decision
to concentrate on Bpj was due to its widespread use in practice, and more favourable
theoretical properties (in the sense that asymptotic results apply in samples of smaller size)
against those of the MLEs of parameters. Based on published examples, and using hindsight,
we see that if the tolerance level is set prior to an experiment, the practitioners could
terminate the test sooner than might have been thought. While with simulated data, we
noted the reduction in standard deviation of Ap,, changes with the reduction in censoring
level at a varying rate, notably slow when r < 0.4n. Therefore, if 7/n is small, perhaps due
to high initial costs of running the experiment, it transpires that, as r decreases, there may
be little loss in information extractable from the observed failure times, in comparison with
the benefits gained from the reduction in the test duration and the costs of running the test.

Overall, the results are encouraging, suggesting that for a given set of interim estimates
and the precision required, it may be possible to design experiments in which early stopping
was a viable option. However, further work is required before a firm conclusion can be
reached, especially with different combinations of parameter values to cover, as wide as

possible, the whole range of real life scenarios.



Chapter 6
Summary and Conclusions

In this final chapter, we provide an overview of our work and present our conclusions. We
begin by summarising our interests and aims, and discuss the extent to which each of these
was achieved. We then present an overall conclusion, and finish by considering further areas

of investigation.

6.1 Summary

Reliability Distributions

Our work has centred around three reliability models, namely, the exponential, Weibull and
Burr distributions; some basic concepts for each of these models were given in Chapter 1,
along with a list of relevant mathematical functions and properties of order statistics. We
saw that, due to its lack-of-memory property, results for the exponential lifetime data are
relatively straightforward to obtain. Then, by exploiting the relationship between Weibull
and exponential random variables, these results transformed easily to the Weibull distrib-
ution. In contrast, despite of the limiting relationship between Burr and Weibull, it was
not as simple to obtain results for the Burr distribution; throughout, we have seen that the
analysis of Type II censored Burr data was considerably more complicated.

ML Estimation for Model Parameters and Percentiles

Although ML estimation for both complete and censored samples is widely discussed in the
literature, discussion has focused in detail on both the theoretical and (to a somewhat lesser
extent) the numerical aspects of this method. In Chapter 2, we considered the mathemati-
cal and computational methodology involved in ML estimation of parameters and percentile
functions for some reliability models mentioned in Chapter 1, under a Type II censoring
regime; some corresponding results under complete censoring were briefly presented, ob-
tained simply by setting » = n. We have concentrated on By throughout this thesis, but
the details and principles can be easily adopted to other percentiles; depending on the form
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of the cdf, By is often a non-linear function of model parameters, and we can linearise this
relationship by considering a first order Taylor series expansion of Bg 1. The theoretical EFI
(matrix) for exponential and Weibull distributions was first considered, before moving on to
the Burr distribution. Here, we have established closed-form expressions for the elements of
the Type II censored EFI matrix for the Burr distribution, previously unobtained by Wingo
(1993). This, in turn, yielded asymptotically valid variances and covariances of the MLEs
of parameters and percentile function.

Numerical examples were presented using published data to illustrate the relevant cal-
culations involved. In addition, asymptotic results were validated through extensive sim-
ulations with 10* replications, for various combinations of sample of finite size, censoring
number and parameter values. We found generally good agreement between theory and
practice (simulations), and this improved as the m and r increased. We also observed

smaller standard deviations by increasing n and r, as expected.

Asymptotic Normality of MLEs

In many situations, it is not enough to have merely an estimate of the parameter or By, but
some indication of the likely accuracy of these estimates is also desirable. The asymptotic
Normality of MLEs is widely known, and is often used in practice to obtain approximate
confidence regions around parameters; this leads to symmetrical confidence intervals for a
single-parameter case, and elliptical confidence regions for two. However, there appears
to be no detailed information on how large a sample needs to be for this large-sample
approximation to hold. We investigated, by means of extensive simulation studies, the
distributions of the MLEs of parameters and By 1, with particular emphasis on the rate at
which the MLEs approach Normality, and the effect of Type II censoring has on the progress
towards Normality; this extended the work introduced by Chua et al. (2007), where the
emphasis focused only on Type II censored Weibull data.

The formal tests in Chapter 3 revealed that, unless the sample size is very large, the
hypothesis that the distribution of the MLE is Normal is unlikely to be formally accepted;
this covered both univariate distributions of parameters and percentiles, as well as the joint
distributions of parameters. In general, the progress towards Normality was slow, and
censoring further impairs this progress. Furthermore, univariate tests showed that the non-
Normality in the distributions of the MLEs was partially attributable to the problem of
right skewness, and hence the scatter plots for joint distributions did not become elliptical
until samples were very large. On the other hand, the distribution of §o.1,,. exhibited milder
right skewness, and converged to Normality at both earlier censoring (smaller ) and smaller
sample size than in the case of model parameters. Despite these poor approximations to the -
Normal distribution, the corresponding probability regions obtained were shown to provide
a good coverage of the ML estimates of parameters, but the non-elliptical shape of the
distribution was not well represented. This resulted in the investigation of an alternative

method to assess the precision in estimates of parameters in relatively small and/or highly
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censored samples.

An Alternative Measure of Precision - Relative Likelihood Contour Plots |

Where the asymptotic Normality assumption is implausible in samples of small to moderate
sizes, we have proposed an alternative measure of precision using the relative likelihood
function and its contour plots; this is essentially the second part of Chapter 3, in which
we considered the effects of varying 7 on the shape and the size of the relative likelihood
contours. As an extension to Watkins & Leech (1989), in which the algorithm concentrated
on Weibull data, we have outlined an automatic algorithm for drawing relative likelihood
contours using the IML procedure in SAS for Burr data subject to Type II censoring, and we
saw smaller and more elliptical contours as r increases. In addition to applying this method
to single sets of data, we have adapted the method to provide approximate confidence
fegiohs for the MLEs of pafarheters, by'intrddﬁcihg what we term idealised s‘arrnlpl.es;‘ we
computed the expected order statistics in Mathematica, subjected these to censoring as
appropriate, and then used the resulting values as data for plotting the expected relative
likelihood contours.

When comparing with Normal theory probability ellipses, we note that the two curves
overlap, and as n and r increase, the overlap increases, with the relative likelihood contour
moving towards the asymptotic Normal ellipse. We have also shown that in small or highly
censored samples, the non-elliptical nature of the relative likelihood contours captured more
accurately the behaviour of the Type II censored MLEs, where the asymptotic Normality
assumption seems to be invalid. Despite the more complicated computations involved in
the relative likelihood approach as a measure of precision, with the use of the algorithm
described and the computational advances today, we can reasonably recommend the use
of relative likelihood contour as an alternative to quantify the precision in estimates of

parameters in small to moderate samples, where large-sample Normal theory fails.

Moments and Product Moments of Order Statistics

We have seen much of the theoretical development in this thesis involved taking expectations
and joint expectations of order statistics, such as the derivation of the elements of the EFI
matrix. Chapter 4 then outlined some useful preliminary work for studying the correlations
between interim and final estimates of parameters and By, equivalently, the correlations
of the two sets of score functions. Unlike the Weibull distribution, which is linked to the
standard exponential distribution (with a relatively simple pdf and cdf), corresponding
analysis for the Burr distribution proved to be considerably more involved.

We considered two approaches, via direct integration (direct method) and repetitive
differentiations (derivatives method), to obtain the moments and product moments of order
statistics required in Chapter 5. Despite the more complicated functions (integrations of

exponential integrals and the hypergeometric series) being involved in the direct method,
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this approach generally consumed less computation time than the derivatives method when
implemented in Mathematica, and hence is more feasible in practice. On the other hand,
due to its flexibility in dealing with the logarithms and/or powers of order statistics, the
derivatives method was shown more useful in establishing the joint expectations of Burr
order statistics. We sought to validate these new results by means of simulation experiments.
We observed generally excellent agreement between theoretical and simulated results for
various combinations of order statistics, sample size and parameter values; despite some
computational problems for large sample sizes, we have covered most sample sizes and

ranges of censoring likely to be encountered in practice.

The Reliability of Type II Censored Reliability Analyses

We have observed in Chapter 2 some linear relatlonshlp between the 1nter1m and ﬁnal
estimates of parameters and B() 1, 1ncreasmgly evident as r converged to n. Chapter 5
essentially carried on where Chapter 2 left off, by extending the work by Chua & Watkins
(2007) and Chua & Watkins (2008a,b). We established a method to quantify the link
between censored and complete estimates, and used this to measure the precision in using
a Type II censored analysis as a guide to the final analysis.

We began with the exponential distribution, for which we benefited from its powerful
lack-of-memory property, and employed the usual asymptotic relationship linking the MLE,
the EFI and, the score function to calculate the correlation between the final and interim
estimates of parameter and Bpi. We saw that our problem could be transformed into a
study of the correlations between final and interim score functions, in which the covariance
of the two sets of score functions was shown to simplify to the censored EFI, see (5.6). This
correlation, in turn, provided the approximate 95% confidence limits for the final estimate
given earlier estimate, as a measure of precision of the censored estimate in estimating the
complete estimate.

We then followed the same approach as in the exponential distribution in the considera-
tion of the Weibull and Burr distributions. With two parameters, the analysis proved to be
more detailed, but the same concepts held, and the corresponding relationships between fi-
nal and interim estimates were found. We first considered correlations from basic principles,
using various expectations and joint expectations of order statistics outlined in Chapter 4.
We then considered a possible generalisation to (5.6), in which we saw correlations between
censored and complete MLEs might follow immediately from the two sets of EFI matrices,
with the theory presented in Chapter 2. Nonetheless, further work is needed to establish
analytically the simplification in the correlations. )

We sought to validate these new theoretical expressions with simulation experiments. We
established that these asymptotic results agreed with the behaviour observed in simulations
for various combinations of censoring number and sample size, providing confirmation to
our results, but the agreement was generally good even for early censoring and samples

of small to moderate sizes. Moreover, the confidence intervals for the final estimate given
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interim estimate have shown to provide a reasonable coverage of the final estimates.

Practical Implications - Planning the Experiments

Confidence limits for the final estimate given earlier estimate were presented for publishes
examples, and some practical issues on experimental design were identified and discussed,
with particular stress on providing a guide to experimenters wishing to know the smallest
number of failures at which a trial can be reasonably or safely terminated, but where the
censored analysis still provides a reliable guide to the analysis of the final, complete data.

The relevance and importance of the percentile By have been discussed in Chapters
1 and 2, and we have further shown that the statistical properties of §0,1,T were more
desirable than those of the MLEs of parameters; for instance, as seen in Chapter 3, the
samphng distribution of Bo 1r converged to Norma.hty more ra.pldly, while in Chapter 5
we found the values of Corr (Bo 1, Bo 1 r) were nota,bly g‘reater than Co'r'r (1r 7rr) for each |
combination of r and n considered. Therefore, since we have established a link between
censored and complete estimates of By 1, this provided a suitable ground to identifying an
optimum number of failures to censor.

In published data, we spotted, more than once, situations where two distinct censoring
numbers produced roughly equal values of s’Zl(A Bo.). Hence, if the tolerance level is set
prior to an experiment, an experimenter could terminate the test sooner than might have
been thought. This information may be viewed as a consequence of hindsight, but results
obtained from simulation study were equally, if not more, encouraging. We saw a trade
off between censoring level and sd(Ap,,), where the extent of trade-off varied with the
ratio of censoring number to sample size. It suggested that, if the censoring number was
expected to be small in relative to the sa.mple size, say r/n < 0.4, then it might be viable
to forgo the precision obtained in using Bo 1, as a guide to Bo 1, for a reduction in the
test duration and the cost of running the test. The reason has been the rate of decrease
in the (expected) experiment time was larger than that of the sd(Ap,,), when censoring
number is relatively small. Therefore, our analysis indicated that the combination of » and
n, specifically, the value of r/n, may have some role in the final decision-making process.
Our results showed that, for low censoring values (relative to the sample size), the reduction
in expected experiment time outweighs the loss in information. This transpires that it may
be possible to design experiments in which early stopping is a viable option.

We remark that the scope of these practical investigations was rather narrow, but, real-
life experiments are many and varied, and we can only partially cover the wide range of
possible parameter combinations that are used in the real world. Nevertheless, our methods
and results have provided practitioners with some insight into the roles of censoring number

r and sample size n in a Type II censoring setting.
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6.2 Conclusions

The principle aim of this thesis was to consider the relationship between final (r = n) and
interim (r < n) results, and hence the extend to which an interim estimate - here, using
information based on Type II censoring - can be regarded as a reliable guide to the final
estimate. Our investigations, although based on limited parameter values, illustrated useful
conclusions on the conduct of experiments under such censoring plan, and, consequently,
are of potential value to a practitioner who, prior to carrying out an experiment, would
like to know what combination of censoring level and sample size would return the most
information about the final results. '

Therefore, throughout this thesis, our primary focus has been on the development of
theoretical results, and the validation of these through extensive simulation experiments.
Having laid down the necessary groundwork, we first considered thé computational and
numerical aspects of maximum likelihood estimation, which often overlooked in published
discussions. On a whole, Type II censoring, in turn, induced the study on expectations and
joint expectations of order statistics, has not caused any special difficulty in the derivation
of EFI matrix, owing to the connection between the distribution of first order statistic and
the underlying distribution. Besides MLEs of parameters, we also obtained an estimate for
the 10" percentile of failure times, By 1, since practitioners would typically wish to make
inferences on the running time of the experiment.

In order to assess our ability to make small sample theoretical inspections, we then
proceeded to investigate, by means of a detailed simulation study, the extent to which
asymptotic Normality of MLE applies in samples of finite size, subject to Type II censoring.
We concluded that asymptotic Normality assumption is improbable in small samples, and
recommended the use of relative likelihood contour plots to obtain approximate confidence
regions of parameters in relatively small and/or highly censored samples (Chua et al., 2007).

We have obtained general expressions for the correlations between the interim and final
MLEs of model parameters, and a particular percentile. We noted that the evaluation of
these expressions via basic principles involved some lengthy algebra, chiefly due to various
moments and product moments of order statistics required. But the derivatives method
provided an alternative, and has shown to be useful particularly for the Burr distribution.
Furthermore, a possible generalisation from the exponential distribution suggests that cor-
relations between the two sets of estimates might follow immediately from the EFI matrix.
These, in turn, gave us approximate 95% confidence limits for the final estimate given in-
terim estimate, as an indication of the precision with which we can make statements on final
estimates, based on interim estimates.

Overall, our results are reasonably encouraging. The standard deviation of final estimate
given interim estimate decreases with censoring number at varying rates, depending on the
ratio of censoring number to sample size, and, in particular, the final few failure times carry

important information regarding the precise values of the final estimates. The practical
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consequences of our work are as follows: for any r specified before testing commences, an
experimenter is now able to gain, from the resultant interim estimates, some information
concerning the final failure time. If the precision level is also set prior to the experiment,
as always in practice, he or she could save the experiment time and costs by terminating
the experiment at or around the smallest r for which the data is likely to yield the required
level of precision. The trade-off between early censoring and precision can be formalised bjr
considering the relationship between r and the standard deviation of final estimate given
interim estimate, which can then be used as the criterion for assessing competing experiment
designs. Practitioners can use the measure of precision discussed in this thesis to decide
whether an interim experiment results are sufficient to make inferences from, or whether
the experiment should continue to allow more items to fail.

Finally, we remark that with only one parameter, consideration of negative exponentially
distributed lifetimes is clearly of limited practical value; it 'do'és,' however, provide an useful -
insight in extending the analysis to other more widely used two-parameter lifetime models.
In addition, since our discussion is completely general, the principles followed in this thesis
have provided not only some guidance to practitioners wishing to conduct experiments
subject to their own circumstances, but also as a basis for further investigation.

6.3 Areas for Future Research

Throughout our work, we have concentrated on the exponential, Weibull and Burr distrib-
utions, but other lifetime distributions could well prove to be even more fruitful in terms of
quality of fit to data sets, robustness and practical applicability. Depending on the forms
of their pdfs and cdfs, we may find the corresponding analysis to be more complex, since,
as we have seen in Chapter 4, relatively basic theoretical properties of order statistics, such
as their expectations and joint expectations, will involve both the pdf and powers of cdf for
the underlying population.

Although attention is restricted primarily to models with two parameters, much of our
discussion also applies when there are three or more. Lemon (1975) considers ML estimation
for the three-parameter Weibull distribution based on censored samples. As mentioned
in Chapter 2, one could extend the two-parameter Burr to a three-parameter model by
including a scale parameter ¢ in many different ways. Naturally, its statistical analysis, like
the derivation of the EFI matrix, will be more involved; we refer to Watkins (1999) for more
details.

Analysis based on an accelerated framework could also be performed; see Nelson (1990)
for details on accelerated life testing. Our interest would be extended to cover the effect
of a certain combination of accelerated testing techniques, censoring number, sample size
and parameter values on the final decision-making process, and, specifically, to determine
an optimal censoring value, for a given set of values for the accelerated testing factors. This

requires the accelerated version of EFI matrix for complete and censored data, and will,
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naturally, involve more formidable algebra. For example, Watkins & John (2008) consider
constant stress accelerated life tests terminated by a Type II censoring regime at one of the
stress levels for data assumed to follow the Weibull distribution.

The mechanism which gives rise to censoring also has much room for further investi-
gation. So far we have considered singly censored samples (on the right) under Type II
censoring setting. But, in real life, some test units may have to be removed at different
stages in the study for various reasons. Consequently, it is of interest to look at doubly
censored samples, and even samples subject to progressive (or multiple) censoring. Some of
the recent contributors to the development of the theory underlying ML estimation for this
censoring regime have been Tse et al. (2000) and Wu (2002) for data assumed to follow a
Weibull distribution; Soliman (2005) and Wu et al. (2007) for the Burr distribution. Under
this extension, we may wish to investigate the extent to which 7;, conditional on m; (the
number of observations censored at the i*» failure), can be regarded as a reliable guide to -
7. We can also assess the trade-off between shortening the test duration, by collecting more
failure times in the early stage of the test, and the level of precision obtained.

Similarly, our approach can be carried on to the analysis of Type I singly and progres-
sively censored samples, where the length of the experiment ¢, rather than the number of
failure r, is fixed. In contrast to Type II censoring, Type I likelihood consists of independent
components with identical or non-identical distributions, based on whether the censoring
times are equal or not. Some discussion on the corresponding analysis of reliability data
are given by Finselbach & Watkins (2006) and Finselbach (2007) for lifetimes drawn from
a Weibull distribution.

In Chapter 3, the problem of right skewness in the distribution of MLE of parameter
appears to be consistent with the believe by Billmann et al. (1972), that slow convergence
to Normality was a consequence of lack of symmetry when the samples were censored on
one side (from the right). It follows that it would be of interest to investigate whether the
distribution of MLE would be left skewed when the data are censored from the left. We
have observed the overlap between relative likelihood contour and the large-sample Normal
theory probability ellipse, but the relative size of the two regions, as well as the extent of
the overlap in general, could be examined in much further detail.

In Chapter 4 the analysis of reliability of exponential data showed that the covariance
of interim and final score functions simplified to the censored EFI. Hence, there is scope
to assess the extent to which this simplification holds in other lifetime distributions and
censoring regimes.

From a practical perspective, we may wish to quantify the relationship between the
value r/n and the standard deviation of final estimate given interim estimate. We also
remark that our approach can be easily adopted in the analysis of claim time or survival
time data. In this case, typically, life insurers would be interested at drawing inference of
Byg, to determine the duration of, say, an endowment policy. Similar comments apply to

duration analysis in economics.
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Lastly, from a programming perspective, we could use alternative computing packages,
such as Matlab, to compute the expectations and joint expectations of order statistics
required, to see how its computation time compared to Mathematica. We could also use
statistical softwares other than SAS and SPSS; for instance, the R programming language,
widely used by statisticians and other practitioners requiring an environment for statistical

computing and graphics.
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Appendix A : List of Specific

Notations

“As previously mentioned at Section 1.2.1, this appendix summarises some specific no-

tations used throughout this thesis; for convenience of the readers, these are listed in the

order of the chapters, and, where relevant, some remarks have been inserted.

Chapter one:

pre-specified number of failures in a Type II censoring regime

sample size

censored value

arbitrary function

3':

i o

479 where g is univariate
with respect to
Fy1(a,b;c;2)
F32(a,b,c;e, f; 2)
probability density function
cumulative distribution function
vector of 7

transpose of 7

unknown model parameter
probability density function
cumulative distribution function
hazard function

survivor function

100¢** percentile function
quantile function

p** moment about the origin

expected value operator for the function g (z)

1<r<n
>0

0<gx<l1

p=1a273""
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standard Normal distribution

258
Py p** moment about the mean / pt* central moment p=123,---
p mean = U
221 skewness
Yo kurtosis
o? variance = u}
Var variance
0 Exponential and Weibull scale parameter >0
B Weibull shape parameter >0
Burr Burr Type XII distribution
a Burr Type XII and Pareto shape parameter >0
T Burr Type XII shape parameter >0
k Pareto location parameter >0
ot ' p‘re—'s.peciﬁed stopping time in a Type I censoring regime >0
m unknown number of failures obtained in a Type I 0<m<n
censoring regime
Xin ith order statistic of a random sample X3, Xo,..., X, 1<i<n
of size n
Fiiy cumulative distribution function of X;., 1<i<n
f@) probability density function of X., 1<i<n
Fi.5 joint cumulative distribution function of X;., and Xj.n, <i<j<n
Cijin R lsi<jsmn
f6.4) joint probability density function of X;., and Xj., 1<i<j<n
Cov covariance
h arbitrary function
N number of replications 10*
70l initial value used in the Newton-Raphson method
Chapter two:
ML estimation maximum likelihood estimation
EFI expected Fisher information matrix
MLE maximum likelihood estimator
L. (L=L,) likelihood function
I (I1=1y,) log-likelihood function
Ur (U=1U,) vector of score function
Tr (T =T0) maximum likelihood estimator of m
A, (A=A,) expected Fisher information matrix
Zy2 upper 100 (1 — %) percentage point of the 0<Aaxkl1
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my pth sample moment about the mean p=123,---
T sample mean
S? sample variance
K? test statistic for univariate Normality
Z (91) standardised and Normalised skewness
Z (g2) standardised and Normalised kurtosis
xz’l_ A 100 (1 — A\) percentage point of the chi-square 0<A<1
distribution with k degrees of freedom

91,k sample estimates of multivariate skewness

92,k sample estimates of multivariate kurtosis

SZ, test statistic for multivariate Normality

W (91,%) standardised and Normalised multivariate skewness

W '(gg',k)v " standardised and Normalised multivariate kurtosis

R relative likelihood function

A-contour 100 (1 — A) % relative likelihood contour 0<Akl1

Ty MLE of 7 obtained from idealised sample

) step size used to draw 100 (1 — X) % relative =0.01
likelihood contour

A-probability ellipse - 100 (1 — A\) % probability ellipse 0<Aa<l1

} dzdy
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Appendix B : SAS Code: Fitting
Burr MLEs to Arthritic Patients
Data

In this appendix, we give details of the SAS IML algorithm used to locate the MLEs
of the Burr parameters and the 10t* percentile for the arthritic patients data (see Table
1.3) where n = 50, when the data is subject to Type II censoring at the r = 30* failure.
Throughout, comments will be inserted and italicised.

proc iml;

start burrmle;
n=nrow(bdata);

r=30;

c=n-r;

one=j(r,1,1);
zero=j(c,1,0);
ind=insert(one,zero,r+1);
cdata=(ind#bdata);
t=max(cdata) ;
Int=log(t);
Intx2=log(t)*log(t);
lnx=log(bdata);
lncx=(ind#1nx) ;
Incx2=1ncx#lncx;

se=sum(lncx) ;

710 is set as 1
tau=1;
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dik
|

fhadd o .
Stopping criterion is set as draz=plll | < 1079
d2ix
~anF lut nasli

do iter=1 to 500 until (abs(plt/(-pltt)**0.5)<0.000000009);
term=exp(tauxlncx) ;
sfstar=sum(ind#log(term+1));
sflli=sum(ind#term#lncx/(term+1));
sf122=sum(ind#term#lncx2/((term+1)#(term+1)));
termt=exp(tau*lnt);
scstar=c*sum(log(termt+1));
sclil=c*sum(termt#1lnt/(termt+1));
scl122=c*sum(termt#1ntx2/((termt+1)#(termt+1)));
sstar=sfstar+scstar; -
s111=sf111+sclll;
s122=sf122+sc122;
pl=r*log(tau)+(tau-1)*se-sfstar-r*log(sstar)+r*(log(r)-1);
plt=r/tau+se-sflil-r*siil/sstar;
pltt=-r/(tau**2)-sf122-r*(s122/sstar-(s111/sstar) **2);
tau=tau-plt/pltt;

end;

We can now find &, the mazimised log-likelihood, §0_1,T, the score functions and the
elements of the EFI matriz

alpha=r/sstar;
loglike=r*log(tau*alpha)+(tau-1)*se-(alpha+1)*sfstar-alpha*scstar;
b10=(((0.9)**(-1/alpha))-1)**(1/tau);

da=r/alpha-sstar;

dt=r/tau+se-alpha*si11-sfi11;

daa=-r/alpha**2;

dtt=-r/tau**2-alpha*s122-s£122;

dat=-s111;

print alpha tau loglike b10 da dt daa dtt dat;

finish burrmle;

Main programme
do;

data= {0.29,0.29,0.34,0.35,0.36,0.36,0.44,0.46,0.49,0.49,
0.50,0.50,0.52,0.53,0.54,0.55,0.56,0.565,0.66,0.57,
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0.58,0.58,0.59,0.59,0.60,0.60,0.61,0.61,0.62,0.64,
0.68,0.70,0.70,0.70,0.71,0.71,0.71,0.72,0.72,0.73,
0.75,0.75,0.80,0.80,0.81,0.82,0.84,0.84,0.85,0.87};
bdata=data;
run burrmle;

end;

quit;



Appendix C : SAS Code:
Drawing Relative Likelihood
Contours for Arthritic Patients
Data

In this appendix, we give details of the SAS IML algorithms used to draw the relative
likelihood contour for data drawn from the Burr distribution. We continue to use the
arthritic patients data, and assume r = n = 50 and A = 0.05; this yields the approximate
95% confidence regions for («, 7) under complete sampling. Relative likelihood contours for
other combinations of r,n and X values can be similarly obtained.

Stage 1 The location of (&, 7r) has been given in Appendix B.

alpha=r/sstar;
loglike=r*log(tau*alpha)+(tau-1)*se-(alpha+1)*sfstar-alpha*scstar;
b10=(((0.9)**(-1/alpha))-1)**(1/tau);

Instead of the score functions and the EFI matriz, we require L(¢y,Ty)
maxlike=exp(loglike);
print alpha tau loglike maxlike b10;
finish burrmle;

Stage 2 Defining the drawing area.

Set contour level as A = 0.05
p=0.05;
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Locate T

do i=1 to 10;
j=i%0.1;
mint=taux*(1-j);
termmint=exp (mint*1lncx) ;
sfstarmint=sum(ind#log(termmint+1));
termtmint=exp(mint#*lnt);
scstarmint=c*log(termtmint+1);
sstarmint=sfstarmint+scstarmint;
mintalpha=r/sstarmint;
loglikemint=r*log(mint*mintalpha)+(mint-1)*se-(mintalpha+1)*sfstarmint
E -mintalpha*scstarmint; SRR S
This yields L(e, T)
likemint=exp(loglikemint) ;
This defines R (a,T) = L(a, T)/L(ar, Tr)
relmint=likemint/maxlike;
print i mint likemint relmint;
if relmint < p then stop;
end;

Locate Tmax

do i=1 to 100;
k=i*0.1;
maxt=tau*(1+k) ;
termmaxt=exp (maxt*1lncx) ;
sfstarmaxt=sum(ind#log(termmaxt+1));
termtmaxt=exp (maxt*lnt) ;
scstarmaxt=c*log(termtmaxt+1) ;
sstarmaxt=sfstarmaxt+scstarmaxt;
maxtalpha=m/sstarmaxt;
loglikemaxt=r*log(maxt*maxtalpha)+(maxt-1)*se-(maxtalpha+1)*sfstarmaxt

-maxtalpha*scstarmaxt;

likemaxt=exp(loglikemaxt) ;
relmaxt=likemaxt/maxlike;
print i maxt likemaxt relmaxt;
if relmaxt < p then stop;

end;
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Locate amin

do i=1 to 10;
j=i*0.1;
mina=alpha*(1-j);
minatau=tau;
do iter=1 to 15;
termmina=exp(minatau*lncx) ;
sfstarmina=sum(ind#log(termmina+1));

sf11imina=sum(ind#termmina#lncx/ (termmina+1));

sf122mina=sum(ind#termmina#lncx2/((termmina+1)#(termmina+1)));

termtmina=exp(minatau*lnt);
scstarmina=c*log(termtmina+1);
scllimina=c*(termtmina#lnt/(termtmina+1));

sc122mina=c* (termtmina#lntx2/((termtmina+1)#(termtmina+1)));

sstarmina=sfstarminat+scstarmina;
silimina=sfilimina+sciliimina;
s122mina=sf122mina+sc122mina;
ltmina=r/minatau+se-(mina+1)*sfilimina-mina*scilimina;
lttmina=-r/(minatau**2)-(mina+1)*sf122mina-mina*sc122mina;
minatau=minatau-ltmina/lttmina;

end;

loglikemina=r*log(minatau*mina)+(minatau-1)*se-(mina+1)*sfstarmina

-mina*scstarmina;
likemina=exp(loglikemina) ;
relmina=likemina/maxlike;
print i mina likemina relmina;
if relmina < p then stop;

end;

Locate oamax
do i=1 to 100;
k=i*0.1;
maxa=alpha* (1+k) ;
maxatau=tau;
do iter=1 to 15;
termmaxa=exp (maxatau*lncx) ;
sfstarmaxa=sum(ind#log(termmaxa+1));

sfilimaxa=sum(ind#termmaxa#lncx/ (termmaxa+1));

sf122maxa=sum(ind#termmaxa#lncx2/ ((termmaxa+1)#(termmaxa+1)));
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termtmaxa=exp (maxatau*lnt) ;
scstarmaxa=c*log(termtmaxa+1) ;
scllimaxa=c*(termtmaxa#lnt/(termtmaxa+1));
sc122maxa=c* (termtmaxa#lntx2/ ((termtmaxa+1)#(termtmaxa+1)));
sstarmaxa=sfstarmaxa+scstarmaxa;
sllimaxa=sfllimaxa+sclliimaxa;
s122maxa=sfi122maxa+scl22maxa;
ltmaxa=r/maxatau+se-(maxa+1)*sfllimaxa-maxa*scllimaxa;
lttmaxa=-r/(maxatau**2)-(maxa+1) *sf122maxa-maxa*scl22maxa;
maxatau=maxatau-ltmaxa/lttmaxa;
end;
loglikemaxa=r*log(maxatau*maxa)+(maxatau-1)*se-(maxa+1)*sfstarmaxa
L . ‘méxa*scstarmaxa;' s o
likemaxa=exp (loglikemaxa) ;
relmaxa=likemaxa/maxlike;
print i maxa likemaxa relmaxa;
if relmaxa < p then stop;

end;

Stage 3 Drawing the 0.05-relative likelihood contour.

Set § as 0.01
delta=0.01;

Process 1: Find initial point on contour

a=1;
b=maxt/tau;
do until (abs(f/(-fb)**0.5)<0.000000009) ;
term2=ekp(b*tau*lncx);
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#1lncx/ (term2+1));
termt2=exp (b*tauxlnt) ;
scstar2=cxlog(termt2+1);
scl112=c*(termt2#1lnt/ (termt2+1));
f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*alpha+l)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+1) *sfstar+alpha*scstar-log(p) ;
fb=r/b+tauxse-(a*alpha+1)*tau*sfil12-a*alpha*tau*sc1112;
b=b-£/£fb;
end;
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alphah=a*alpha;

tauh=b*tau;

fa=r/a-alpha*sfstar2-alpha*scstar2;

gradient=-fa/fb;

anew=a+delta*fb/SQRT (fa**x2+fb**2) ;

bnew=b-delta*fa/SQRT (fa**2+fb**2) ;

al=al//a; bl=b1//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahli=alphahl//alphah; tauhl=tauhi//tauh;
anewll=anewl[1:nrow(anewl)]; bnewll=bnewl[1:nrow(bnewl)];
alphahii=alphahi[1:nrow(alphahl)]; tauhil=tauhl[i:nrow(tauhl)];
alphahii=alphahi[1:nrow(alphah1)]; tauhll=tauhi[1i:nrow(tauhl)];
matrix=all||bil||anewll||bnewll||lalphahii||tauhil;

varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;

create filel from matrix[colname=varnames];
append from matrix;
close filel;

Process 2: Continue drawing leftward and downward

do i=1 to 10000;

a=anew;

b=bnew;

do until (abs(f/(-£fb)**0.5)<0.000000009) ;
term2=exp (b*tau*lncx) ;
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#lncx/(term2+1));
termt2=exp(b*tauxlnt) ;
scstar2=c*log(termt2+1);
scl1112=c*(termt2#1nt/(termt2+1));

f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*alpha+1)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+l)*sfstar+alpha*scstar-log(p);

fb=r/b+tau*se-(a*alpha+1)*tau*sfi112-a*alpha*tau*sc1112;
b=b-£/£Db;

end;

alphah=a*alpha;

tauh=b*tau;

fa=r/a-alpha*sfstar2-alpha*scstar2;

gradient=-fa/fb;

anew=at+delta*fb/SQRT (fa**2+fb**2) ;

bnew=b-delta*fa/SQRT (fa**2+fb**2) ;
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al=al//a; bl=bl//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahi=alphahi//alphah; tauhl=tauhi//tauh;
ali=ali[l:nrow(al)]; bili=bi[1l:nrow(bi)];
anewll=anewl[1:nrow(anewl)]; bnewll=bnewl[1:nrow(bnewl)];
alphahil=alphahi[1:nrow(alphahl)]; tauhli=tauhl[1:nrow(tauhl)];
matrix=all||bll||anewll||bnewll||alphahil||tauhll;
varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;
create file2 from matrix[colname=varnames] ;
append from matrix;
close file2;

end;

" Process 3: Contour is around its extreme left edge

do i=1 to 10000;
b=bnew;
a=anew;
do until (abs(f/(-fa)**0.5)<0.000000009) ;
term2=exp (b*tau*lncx) ;
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#lncx/(term2+1));
termt2=exp (b*tau*lnt) ;
scstar2=cxlog(termt2+1);
scl112=c*(termt2#1lnt/(termt2+1));
f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*alpha+1)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+1)*sfstar+alpha*scstar-log(p);
fa=r/a-alphaxsfstar2-alpha*scstar2;
a=a-f/fa;
end;
alphah=a*alpha;
tauh=b*tau;
fb=r/b+tau*se-(a*alpha+1)*tau*sfi112-a*alpha*tau*sc1112;
gradient=-fa/fb;
anew=a+delta*fb/SQRT (fax*2+fb**2) ;
bnew=b-delta*fa/SQRT (fa**2+fb**2) ;
al=al//a; bl=bl//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphahl//alphah; tauhl=tauhl//tauh;
all=al[l:nrow(al)]; bili=bi[1:nrow(b1l)];
anewll=anewl[1:nrow(anewl)]; bnewll=bnewl[1:nrow(bnewl)];
alphahii=alphahi[1:nrow(alphahi)]; tauhii=tauhl[i:nrow(tauhl)];
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matrix=all||bll||anewll||bnewll||alphahil||tauhi];
varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;
create file3 from matrix[colname=varnames];

append from matrix;

close file3;

end;
Process 4: Continue drawing rightward and upward

do i=1 to 10000;
a=anew;
b=bnew;
do until (abs(f/(-£fb)**0.5)<0.000000009);
term2=exp (b*tau*lncx) ;
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#1lncx/ (term2+1));
termt2=exp (b*tau*lnt);
scstar2=cxlog(termt2+1);
scl112=c*(termt2#1nt/(termt2+1));
f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*alpha+l)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+l)*sfstar+alpha*scstar-log(p);
fb=r/b+tau*se-(axalpha+1) *tau*sfi1112-a*alpha*tau*sc1112;
b=b-£/£fb;
end;
alphah=a*alpha;
tauh=b*tau;
fa=r/a-alpha*sfstar2-alpha*scstar2;
gradient=-fa/fb;
anew=a+delta*fb/SQRT (fa**2+fb**2) ;
bnew=b-delta*fa/SQRT (fa**2+fb**2) ;
al=al//a; bl=bl//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahi=alphahl//alphah; tauhi=tauhl//tauh;
ali=ai[i:nrow(al)]; bii=bi[1:nrow(b1)];
anewll=anewl[1:nrow(anewl)]; bnewll=bnewl[1:nrow(bnewl)];
alphahil=alphahi[1:nrow(alphah1)]; tauhii=tauhi[1:nrow(tauh1)];
matrix=all||bll||anewll||bnewll||alphahlil||tauhil;
varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;
create file4 from matrix[colname=varnames];
append from matrix; |

close filed;
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end;
Process 5: Contour is around its extreme right edge

do i=1 to 10000;
b=bnew;
a=anew;
do until (abs(f/(-fa)**0.5)<0.000000009) ;
term2=exp(b*tau*lncx) ;
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#lncx/(term2+1));
termt2=exp (bxtau*lnt) ;
3cstar2=c*log(termt2+1);
scl112=c*(termt2#1nt/ (termt2+1));
f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*xalpha+1)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+1)*sfstar+alpha*scstar-log(p);
fa=r/a-alpha*sfstar2-alpha*scstar2;
a=a-f/fa;
end;
alphah=a*alpha;
tauh=b*tau;
fb=r/b+tau*xse-(a*alpha+1)*tau*sfil12-a*alpha*tau*sc1112;
gradient=-fa/fb;
anew=a+delta*fb/SQRT (fax*2+fb*x*2) ;
bnewsb-delta*fa/SQRT (fa**2+fb*#*2) ;
al=al//a; bl=bl//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphahl//alphah; tauhl=tauhl//tauh;
all=ai[1:nrow(al)]; bii=bi[1i:nrow(bl)];
anewll=anewl[1:nrow(anewl)]; bnewll=bnewl[1:nrow(bnewl)];
alphahil=alphahi[1:nrow(alphahl)]; tauhli=tauhil[1:nrow(tauhi)];
matrix=all||bli||anewll||bnewll||alphahil||tauhl];
varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;
create file5 from matrix[colname=varnames] ;
append from matrix;
close file5;

end;
Process 6: Accomplish the contour

do i=1 to 10000;
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end;

a=anew;

b=bnew;

do until (abs(f/(-fb)*x0.5)<0.000000009) ;
term2=exp (b*tau*lncx) ;
sfstar2=sum(ind#log(term2+1));
sf1112=sum(ind#term2#1ncx/ (term2+1));
termt2=exp(b*tau*lnt);
scstar2=c*log(termt2+1);
sc1112=c*(termt2#1nt/(termt2+1));

f=r*log(b*tau*a*alpha)+(b*tau-1)*se-(a*alpha+1)*sfstar2-a*alpha*scstar2
-r*log(tau*alpha)-(tau-1)*se+(alpha+1)*sfstar+alpha*scstar-log(p);

fb=rm/b+tau*se-(a*alpha+1)*tau*sfill2-a*alpha*tau*sc1112;
b=b-f/fb; o ‘
end; '
alphah=a*alpha;
tauh=b*tau;
fa=r/a-alpha*sfstar2-alpha*scstar2;
gradient=-fa/fb;
anew=at+delta*fb/SQRT (fa**2+fb**2) ;
bnew=b-delta*fa/SQRT (fa*x*2+fb**2) ;
al=al//a; b1l=b1//b; anewl=anewl//anew; bnewl=bnewl//bnew;
alphahl=alphahi//alphah; tauhl=tauhi//tauh;
all=ai[1l:nrow(al)]; bii=bi[1:nrow(bl)];
anewll=anewl[l:nrow(anewl)]; bnewll=bnewl[1l:nrow(bnewl)];
alphahili=alphahi[1:nrow(alphahl)]; tauh11=tauhi[1:nrow(tauh1)];
matrix=all||bll||anewil||bnewll||alphahiil||tauhll;
varnames=’a’//’b’//’anew’//’bnew’//’alphah’//’tauh’;
create file6 from matrix[colname=varnames];
append from matrix;
close file6;
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This appendix gives expressions of the expectations at (4.19), obtained from (4.20).
1. E(ZinInZ;,) (4.19a) is given by

i-1j—i-1 ; i—1 j—i—1
—k—1 J 10,01
Cijm 3, 2, (1) ( k ) ( I )Ai+l—k,n—i—l .

k=0 [=0
| SR G i 9 | G
; Eo iz (G+l—k)2m—i-1)(n—k)?
f { —(i+l—k) [+l —k) +n—i—1] }
|
|
|
|

= GCijn

—(m=k2hn(n—-i-)+Mn—-i=-0)(n+i—2k+1)In(n—k)

2. E{(InZ;:,)Z;.n) (4.190) is given by

i—1 j—i-1 e (i—=1\[(j—i—1
Cijmn Z 2 (_1)'7 kot ( k ) ( l )A(i)-}-’ll—ok,n—i—l

k=0 i=0

i—1j—i-1 (_1)j—k—l (izl) (j—;'—l)

k=0 i=0 (n—i—1)%(n—k)?2
{@n—i—-k-l[y+In(n—k)]—(n—i-1)}

= —Cijn

3. E(lnZ;,In Z;.,] (4.19¢) is given by

icligicl i1\ [ff—i—1
S NC el (i [

k=0 =0

s e
= Cv,,J:nkS:_:O zgo (i+l—k)(n—i—1)(n—k) 8

" yln(n—i—-0)+In(i+i—-k)In(n—-i-1)
~(n- )[ —1n(z'+l—k)1n(n—k)+Li2(ﬂn—Ti;—l)

—(+1—k) [+ (n—k)] +y(n—2i+k—2)In(n—k) + % (n—i — 1)
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4. E(ZinZj:nn Zj.y) (4.19d) is given by

—1i271 e [1=1\(j—i—-1
,an Z l)J k l( k )( l )Azﬁlllkn—z—l

k=0 [=0
i Vil 9| W
B a‘”‘"kg Z% (i+1— k)2(n—i—l)2l(n—k)3

{—(z+l— )[(7—1)(z'—i—l——k)(3n—2i—k—2l)+(n—i—l)2]
—m—kBln(n—i—1)+n—i-0)2®n+2 —3k+2)In(n k)

5. F [Z’i.:n(ln Zi:’n)Zj:n] (4-196) is given by

—1771 -1 —i—1
. ljkl( )(J )Anm
. ,.? k2=:0 E) ( ) k AN l , i+l k'n—z l .
LA i w9 | )

T 20 G+1—k)2(n—i—1)%(n—k)3

GH+1-k?[(i+1-k) Q-7+ @ —i-1)(4—-37)]
+In(n — k) [(n—z’—l)2(n+2i—3k+2l)—(n—k)3]

6. E[(InZ;:n)ZjmIn Z;.] (4.19f) is given by

“1jl i— 1 -1
—k—1 (1 J—t 01,1
Gi,jin Z Z l)J ( k ) ( l )Azil Ik n—i—l

k=0 [=0
S e e 9 | G )
k§0 20 G+l-k)(n—i-1)%(n—k)?2
~(n — k)2 [ln(n—z'—l)(7+ln(i+l—k))+Lz‘2("n%’;’)]
+y(GE+l—k)(Bn—2i—k—2l)— (i+1—k)(2n—i—k—1) [y +In*(n — k)]
+1n(n-k)[(n-'k)2(1-7 "_"+ln(z+l—k))+2('y—1)(n—z—l)]
T(n—z—l)2

= —Gjmn

7. E(Zinln ZinIn Zj.) (4.19g) is given by

—1j7i71 _ -1 i—1
s o P () (07T Al

’0““3*‘1 D ED T

k§0 iz (i+1—k)2Mm—i—1)(n—k)?2

( —(n — k)2 [ln(n—’i—l)('y—1+ln(i+l—k))+Li2 (",%;l)] ’

—y(@+1—k)(n—2i+k—2) — (i+1—k)? [y2 +1n%(n — k)]

. +1n(n—k)[(n—k)zln(i+l—k)—3(i+l—k)(n—i—l)—(n—z'—l)z]

+yIn(n — k) [—(i-{-l—k)2+2(z’+l—k)(n—i—l)+(n—z’—l)2]
Zn—i—1)(n+i—2k+1)

= —Gjmn

~
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8. E[Zin(In Zi:n)Zjn(In Z;.)] (4.19R) is given by

151 -1 —3—-1
—k—1 Jj—1 11,11
aJ"Z Z: ( l)J ( k )( l >A1+l kn—i—l

k=0 =0
e Ll vl B
0 (t+1— )2(n—i—l)2(n—k)3 '

— (G +1-k)?(3n -2 —k —21) [1++2 +In’(n — k)]

+In(n — k)

+(n -k} + (n— k)3 (" iz ’+1n(z+l-k))

\ +2 (n+ 2 — 3k +20) (n —i — )

—6(i+l—k)(n—i-12-3(n—Fk) (n—i-1)>

_(n k¥ |ln(n—i—10)(y—1+In(i+1—k))+ Lis (n zkl)]
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|
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Appendix E : Mathematica
Code: Computing Covariances of
Final and Interim Weibull Score

Functions

This appendix gives details of the Mathematica code used to compute the expectations
.Hj to Hj2 (defined at Section 5.3.1.1) required in the covariances of final and interim Weibull
iscore functions, given at (5.25) to (5.28). This requires the single and joint expectations of
tthe forms at (4.12) and (4.19); here, we calculate these expectations using the direct method.

We first define some useful notations:

v = EulerGamma;

n

. 2 —!
ci[n_,i_] := @-1)! G-1)

. s . . '
cijlo_,i_,j ] = goragrnram

We then define the single expectations at (4.12):

i-1 —1— . . <
Elnziln_,i) := cilni] * & (A Binomialin.dl (_y — Logn — k)
i—1 _4)i—1—k p. .
Bziluziln_,i) = ciln,i] » 3 (H—upetlll (1 — 5 — Login — K]
i—-1 —1— . . <
E22ilnziln i) = ciln,i] + ¥ A il (3 - 2y — 2Loghn — X))
k=0

i—1 —1—k p. . s
Ela2zifn_,i] := ciln,il * o pincatallt] (£4(—y — Logln — K])°)

i-1 i1k g .
Eziln2zi[n_,i_] := ciln,i] * ) (=1) Binomial [n, i)

=5 (n—k)?
("73—1 +(1—v—Logln— k])2)
=t (=1)*~1"* Binomial[n,il
Ez2iln2zi[n_,i_] := ci[n,i] * Y 3 *
k=0 (a—k)

(5-5+ G -7 - Logla - ¥)°)
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For the joint expectations at (4.19), it will prove more convenient to first define the

relevant functions A’:‘t

qb,

_8(ys+t)+(s+t)* Log[t]—t(2s+t) Log[s+t]

Alst[s_,t_] :=

82t(s+t)°
A2st[s_,t_] := _(s+2t)(t’;-(i;1:5§;+t])—t
—(s+1) 7 Log[t] + Log[s] Log][t]
—Log[s] Log[s + t] + PolyLog[2,s ]

A3st[s_,t_] := 'gt(:+t5

1

A4st[s_,t_] = mﬂ_—t)g

—s(v? +Log[s + t] )
+(t —s)y Log[s + t]+%2t
—s((s*+3st)(y — 1) +t2) — (s + t)° Loglt]
+t2(3s + t) Log[s + t]

ASst[s_,t_] := m {32(3 — s + 4t — 37t)+Log[s + t](t3(3s + t) — (s + t)°)}

A6st[s_,t_] := ~——21 4

[ —(s + t)(Loglt](y + Log]s]) + PolyLog[2,7%])
+7s(s + 3t) — s(s + 2t)(’y2+Log[s +1t]2)

st2(s+t) +Log[s + t] ((s +t)*(1—y + 3% + Log]s])

\ +2t3(y - 1))+’r t2
[ —(s +t)?(Log[t](y — 1 + Log[s]) + PolyLog[2,5%;])
—vs(t —8) — s2('y +Log|[s + t] )

A7st[s_,t.] := ~5——
stis s?t(s+t) < +Log[s + t] (Log[s](s + t)* — 3st — t2)
+7 Log[s + t] (—s2 + 2st + 1:2)+’r t(2s + t)
[ —(s+ t) (Log[t](y — 1 + Log][s]) + PolyLog[Q,Ht )
—ys(—28%—7st + t2) — s%(s + 3t) (1+y>+Log[s + t]*)
A8st[s_,t_] := -WtH-t)S 4 +Logls + t] —6st2 —3t2(s +t) + (s +t)°
+(s+t)? (‘a+t + Log|[s])
| +7 Logls +t] (—(s — t)(s® + 4st + t2))+ 2 t2(3s + t)

N

v

Hence, we can now define the joint expectations at (4.19):

Ezilnzj[n_,i_,j_] :=

Elnzizj[n_,i_,j_] :=

Elnzilnzj[n_,i_,j_] :

Ezizjlnzj[n_,i_,j_] :

Ezilnzizj[n_,i_,j_]

cijn,i,j] * ifj_fl(-l)i_l_k Binomial [i-1,k]

Binomiall[j -;fg , :150 * Alst[i+l-k,n-i-1]
cijln,i,j] =* ifj_fi(-ni—i-k Binomial [i-1,k]
Binomial[j-llt-_—g ﬁo* A2st[i+1-k,n-i-1]
cijln,i,j] * izijii( 1)~k Binomial[i-1,k]
Binomiall[j -1-11‘T§I).] 1;0 A3st[i+l-k,n-i-1]
cijln,i,jl * ifj_fl(—ni*—k Binomiall[i-1,k]
Binomiall[j -i—fgg 1? Mt [1+1-k,03-1]

i-1j—i—

:= cijn,i,jl * ¥ Y (-1)i'~% Binomial[i-1,k]

k=0_1=0
Binomial[j-i-1,1] * Abst[i+l-k,n-i-1]
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i—1j-i-1

Elnzizjlnzj[n_,i_,j_] := cijln,i,j1 * > 3 (-1)i"1~* Binomiall[i-1,k]

k=0 1=0
Binomial[j-i-1,1] * A6st[i+l-k,n-i-1]
1—13-i-1

Ezilnzilnzj[n_,i_,j_] := cijln,i,jl * 3, Y (-1)*~'~* Binomial[i-1,k]

k=0 1=0
Binomial[j-i-1,1] * A7st[i+l-k,n-i-1]
13—i-1

Ezilnzizjlnzj[n_,i_,j_] := cij[n,i,j] * Z 3> (1) 1~k Binomiall[i-1,k]

k=0 1=0
Binomial[j-i-1,1] * A8st[i+l-k,n-i-1]

We then define the expectations H; to His:

Hi[n_] :=
H2[n_] :=
H3 ‘[n_v] k
H4[n_,r_]

H5[n_,r_]

H6[n_,r_]

H7[n_,r_]
H8 [n_ ’ I'_]

H9 [n_ ’ r_]

H10[n_,r_]

n
-ny
n(i-’y) .
e Ceg e
ZElenz:L[n_,l ]+Z > Ezilnzj[n,i,jl+>, > Elnzizj[n,i,j]
i=1 =1j=1+1 i=1 =141
+Z Z Elnzizj[n,i,j]
i=1 j=r41
r r-1 r
= > Eln2zil[n_,i_]+2) >  Elnzilnzj[n,i,j]
i=1 i=13=141
r n
+>° 5 Elnzilnzj[n,i,j]
i=1 j=r+1
r r-1 r
= > Eziln2ziln_,i_ 1+ 3 Elnzizjlnzj[n,i,j]
i=1 i=13=1+1
r— r r n
+Y° ) Ezilnzilnzj[n,i,jl+)_ >  Elnzizjlnzj[n,i,j]
i=1 j=i+1 i=1j=r+1
= r(n+1)
ZEnlnz:.[n i ]+Z 2 Ezilnzj[n,1i,j]
1— 1_1_1+1
n
+2 Z Elnzizj[n,i,j]+z 3" Ezilnzj[m,i,j]
i=1 j=1+1 i=1j=r+1

+(n-r) (Z Elnzizj([n,i,r]+Ezilnzi[n,r]+ E Ezilnzj[n,r J])

j=r+1
r r—-1 r
Z 11n21[n_,1 1+> > Ezizjlnzj [n,l,J]
=1 1—1j—i+1
r-1 r
Z > E211n21z_] [n,i J]+Z Z Ezizjlnzj[n,i,j]
i=1 =i 1j—1‘+1

+(n-r) (Z Ezilnzizj([n,i,r]+Ez2ilnzi[n,r]+ Z Ezizjlnzj[n,r J])
j=r+1
r
ZEz211n21[n_,1 ]+E > Ezizjlnzj[n,i,j]
1_1 i=13j= i+1

r— n
+Z E Ezilnzizj [n,i,j]+2 )" Ezilnzizj[n,i,j]
i=13=1+1 i=13=r+1
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Hii[n_,r_]

Hi2[n_,r_]

+(n-r) E Ezizjlnzj[n,i,r]+Ez2ilnzi[n,r]+ Z Ezilnzizj[n,r,j]

r r—

i=1 i=

T

i=1j=i+1

J=r+1
1

= ZEzi1n2zi[n_,i_]+Z Z Ezilnzilnzj [n,i,j]

1j= 1+1

r—1 '
+Y° 3" Elnzizjlnzj[n, 1,J]+Z Z Ezilnzilnzj[n,i,j]

=1j=r+1

z_: Elnzizjlnzj[n,i,r]+Eziln2zi[n,r]

+(n-r) | = n
+ Y Ezi
j=r+t

r
= Y Ez2iln2zi[n_,i_J+2
i=1

1n211nz_] [n,r,j]

r—1
3 §: Ezilnzizjlnzj([n,i,j]
i=1j=i+1

r n
+Z > Ezilnzizjlnzj[n,i,j]

=1 j=r+1
Sy or—=1

> ElenZlZJanJ [n i, r] +Ez211n2zl [n r]

+(n-r) | =t

+ z Ezilnzizjlnzj[n,r,j]

j=r+1

Finally, we are in the position to compute the covariances in (5.25) to (5.28):

covdtdt[n_,r_,6 ,5_]
covdtdb[n_,r_,0 ,B_]
covdbdt [n_,r_,0 ,B_]

covdbdb[n_,r_,0 ,B_]

B% 6=2(u7[n,r]-rH1[n])
=1 (rH1[n]+H4[n,r]-H10[n,r])
6~1(H8[n,r]-rH2 [n]-H9 [n,r]+rH3[n])
-2 ( rH2[n] + H5[n, 1]

—rH3|n]

— Hil[n, x| )

— H6[n, r] + H12[n, r]

For example, we set § = 100, 8 = 2,r = 15,n = 25; we have

In[1]:=
Out[1]:=
In[2]:=
Out[2]:=
In[3]:=
Out[3]:=
In[4]:=
OQut[4]:=

N[covdtdt[25,15,100,2], 10]
0.006000000000

N[covdtdb[25,15,100,2], 10]
0.04559706435

N[covdbdt [25,15,100,2], 10]
0.04559706435
N[covdbdb[25,15,100,2], 10]
5.092796735

)



