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‘So many of the properties of matter, especially when in the gaseous form, can be 
deduced from the hypothesis that their minute parts are in rapid motion, the 

velocity increasing with temperature, that the precise nature of this motion becomes
a subject of rational curiosity’.

James Clark Maxwell (1860)
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Outline

This thesis presents research carried out at The Civil and Computational Engi­
neering Centre at Swansea University between September 2004 and December 2007. 
The focus of the research was the application of modern finite element solution 
techniques to the governing equations of molecular gas dynamics in order to solve 
macroscopic gas flow problems. The journey of research began by considering and 
comparing various finite difference and finite element formulations in the solution of 
a simple scalar convection equation. This formed the basis for developing a solver 
for a variety of forms of the Boltzmann equation of molecular gas dynamics, and 
application of these solvers to a range of subsonic, transonic and supersonic gas flow 
problems. The merits and drawbacks of the molecular approach, particularly when 
compared with more traditional continuum CFD solvers, are identified along with 
possible extensions to the work presented here.
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Nom enclature

In this section, some of the standard notation used throughout this thesis is sum­
marised. Uniqueness of semantics has been attempted wherever possible. However, wher­
ever a symbol is used with a different meaning to that defined below, it will be clearly 
indicated. The units of variables has also been included where relevant.

K n Knudsen number dimensionless
A mean free path  of molecules m
L length scale 771

n molecular number density ™ -3771

N to ta l number of molecules dimensionless
m molecular mass K g
f ( r ,  c, t) molecular distribution function dimensionless
/ . ( c ) single particle distribution function dimensionless
f sp( r , c, t) single particle distribution function in phase space dimensionless
/ w ( c i  > ^ l i  •••) C N )  r / v , 0 N-particle distribution function dimensionless
/o(c) Maxwellian equilibrium distribution function dimensionless
r ( x , y , z ) position in physical space 771

r ( x , y , z ) velocity vector in physical space m s ~~1
r ( x , y , z ) acceleration vector in physical space _ 2m s
c (u , v, w) velocity vector (position vector in velocity space) m s ~ 1
c* (u , v , w ) post-collision velocity vector m i ' 1
/  (C,r>, t) post-collision distribution function dimensionless
c therm al/ peculiar/perturbation  velocity m s ~ l
F ( r ) force field vector N
Q ( f , f ) collision term  in Boltzm ann equation
fir physical space domain

velocity space domain
r  r physical space domain boundary
crcKl differential cross section of a  molecular collision 77l2

(Jrp to ta l collision cross section __2771

X deflection angle of the relative velocity vector
b distance of closest approach of undisturbed molecular trajectories 771

v( r , t ) BGK coefficient (oc molecular collision frequency) s _1
Xoo free stream  value of a macroscopic flow param eter
v(u,  V, w ) bulk (macroscopic) flow velocity m s -1
p{r) density K g m ~ 3
p{r) sta tic  pressure P a
T( r ) tem perature K
Tk (r) kinetic tem perature K
k Boltzm ann constant (1.380630524 x :
R gas constant k J / k g K
a absorption coefficient dimensionless
T}{r,t) flux conservation param eter dimensionless
R f specular component of reflected distribution function dimensionless
M f diffuse component of reflected distribution function dimensionless
Q molecular quantity
Q mean molecular quantity
( v , 0 coordinates for spectral discretisation of velocity space dimensionless
A t tim estep size s
v m^ r ,c X  defined a t tim estep m , p-space coord r ,  v-space coord c
N k linear finite element shape function associated with node k
F ( X ) flux of variable X
F n ( X) normal flux of variable X  a t a wall

lumped (3x3) f.e. mass m atrix  for linear, triangular elements
A e element area , 9771

rv radial extent of velocity space 771S- 1

Wi quadrature weighting of sam pling point i in spectral v-space dimensionless
J transform ation Jacobian

23J/ kg)
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1.1 General Background

The concept of air as a fluid exerting mechanical pressure on a surface dates back to 
the early 17th century. Torricelli, Pascal and Boyle are the earliest known scientists 
to make attempts at establishing the physical nature of air. They managed to 
persuade their colleagues that Earth is surrounded by a ‘sea’ of air that exerts 
a pressure much in the same way that a body of water does. Their work also 
convinced scientists that it was this ‘air pressure’ that was responsible for many of 
the phenomena previously attributed to ‘nature’s abhorrence of a vacuum’. This 
change in approach was part of the transition lead by Galileo, Boyle and Newton to 
a ‘mechanico-corpuscular’ view of nature which replaced the postulation of ‘occult 
forces’ or teleological principles, the philosophical ‘form follows function’ approach, 
to explain natural phenomena. It was believed that all natural phenomena would 
eventually be explained simply in terms of matter and motion.

But what did this ‘m atter’ consist of? It wasn’t long before scientists and philoso­
phers started taking this question very seriously. From a philosphical standpoint, 
there was the ancient view that a body could not fill space continuously (in the math­
ematical sense), but rather it must consist of discrete parts. These discrete parts 
were unobservable however because of their small size. The philosophical reasoning 
for this proposal was straight forward: ‘An actual continuum must consist of an in­
finite number of parts; and yet an infinite number is undefinable’ [5]. Newton even 
talks about the importance of this question in his groundbreaking ‘Philosophiae 
Naturalis Principia M athematica’ (1687). Alongside his famous universal laws of 
motion, he mentions briefly the consequences of various hypotheses about the forces 
between the building blocks of matter, which by now have been given the name 
‘atoms’, on the relation between pressure and temperature.

Progress slowed in the 18th century, as the majority of physicists and mathe­
maticians directed their energy towards the study of celestial bodies, rather than 
freely moving atoms. However, one contribution from this period can be regarded 
as the birth of The Kinetic Theory of Gases; Daniel Bernoulli’s derivation of the gas 
laws from a ‘billiard ball’ model, much like the one still used in elementary textbooks 
today! The idea that atoms were freely moving and could travel through space until 
colliding with another atom was truly radical and viewed by many as too drastic. 
W hat had happened to the ‘ether’ ?

Laplace and Poisson worked on theories of repulsion between atoms in the late 
18th century, but it took a long time for these ideas to catch on. It wasn’t until Lord 
Rayleigh took up this new way of thinking, in the late 19th century, that kinetic 
theory really took hold. Also taking place in the 19th century was Joule’s work 
on the equivalence of heat, work and other forms of energy (the birth of classical 
thermodynamics) and Maxwell worked on theories of diffusion, viscosity and heat 
conduction. It was upon the shoulders of these giants that Boltzmann was able to 
make the discoveries that lead to the development of his famous ‘transport equation’ 
in 1872, now more popularly known simply as ‘The Boltzmann Equation’.
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Classical thermodynamics is an axiomatic and macroscopic science dealing with 
‘lumps of m atter’. It presupposes no microscopic structure for these ‘lumps’ and it 
begins with a number of accepted laws, which have no definite proofs, and all results 
flow from a completely logical and mathematically rigorous process. These results 
are of very general validity, but to apply them to specific cases requires the use of 
empirical data or relationships, such as specific heat capacity or the gas equation of 
state. This empirical approach is required to ‘close’ and solve the governing equation 
system.

This macroscopic, continuum approach is satisfactory for the majority of engi­
neering applications. However, many people do not find the empirical nature of the 
method completely satisfying and wish to acquire a physical understanding of how 
the macroscopic theory relates to the microscopic behaviour of the molecules. Also, 
there are a growing number of applications in fluid mechanics where the contin­
uum hypothesis is not justified, because the empirical relations break down, and it 
is essential to model the fluids at the microscopic level. For example, combustion 
and reactive flows, multi-phase flow, nano-scale flows, rarefied gas dynamics and 
hypersonics.

There are two quite different theories of the molecular behaviour of fluids; sta­
tistical mechanics and kinetic theory. Statistical mechanics has been the most suc­
cessful so far in analysing equilibrium situations, i.e. gases in thermodynamic equi­
librium. It makes no attempt to describe the motion of molecules or their behaviour 
during collisions. Instead, a counting procedure is employed to enumerate all possi­
ble microscopic configurations of the molecules, the microstates, comprising a sys­
tem. It is then assumed that the random motion of the molecules causes the system 
to pass through all possible microstates and the observed equilibrium macrostate is 
that state associated with the most abundant type of microstate.

In contrast, kinetic theory applies the laws of mechanics to the motion of molecules 
both in ‘free flow’ and during collisions. Macroscopic results then follow from sta­
tistical averages, obtained by integrating over all the molecules. Unlike statisti­
cal mechanics, kinetic theory can handle non-equilibrium situations. In fact, it is 
the only practical approach currently available for analysing certain types of non­
equilibrium flow. Boltzmann’s transport equation is his attem pt to give this method 
a solid mathematical foundation. It is an integro-differential equation describing the 
evolution of a scalar variable, called the velocity distribution function, which gives 
the probability of finding a molecule at a given location in space in a given velocity 
state at a given time. If the Boltzmann equation can be solved for a particular 
molecular model and boundary conditions, then the velocity distribution function is 
known everywhere and all thermodynamic gas properties can be calculated, without 
making any further assumptions about the nature of the flow. Transport properties, 
such as the viscosity and thermal conductivity, appear naturally as part of the so­
lution and it is, therefore, not necessary to introduce them via empirical equations. 
Much of modern research in kinetic theory is based upon attempts to solve The 
Boltzmann Equation or similar equations for other kinds of distribution functions.
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It is interesting to note that all of Boltzmann’s work took place before any kind 
of proper establishment of the atomic and molecular structure of matter. In fact, 
Boltzmann committed suicide in 1906, fearing that all his work had been in vain, 
just a few years before Brownian motion experiments were explained by Perrin [81], 
confirming Einstein’s theoretical explanations [28], and the scientific community 
came to an agreed acceptance of the existence of atoms. This must surely be one of 
the great ironies in the history of modern science!

1.2 Background to Com putational Fluid Dynam ­
ics

Most engineering fluid flow problems are now solved, at least in part, by means of 
computational fluid dynamics (CFD); the use of computers to aid in the solution 
of the governing equations of fluid dynamics by numerical methods. The governing 
equations for the majority of practical fluid flow problems are partial differential 
equations, as is the case, for many naturally occurring phenomena. It is, there­
fore, of no surprise that the development of CFD has paralleled the development 
of the mathematical tools of numerical methods for partial differential equations. 
Numerical methods have been known since the time of Newton in the 1700s. At this 
time, solution strategies were conceived, but only on paper. W ithout the aid of the 
computer, the full exploitation of these techniques was impossible.

Modern CFD has its roots in the 1950s, with the advent of the digital com­
puter. However, the basic numerical tools of the finite difference method and the 
finite element method have different origins. Richardson presented the first paper 
on the finite difference method in 1910 at the Royal Society of London [84]. He 
applied the technique manually to the governing equation for the stress analysis of 
a masonry dam. In contrast, the first finite element technique was presented in a 
paper published in the Aeronautical Science Journal by Turner, Clough, Martin and 
Topp in 1956 [98]. They applied the technique to aircraft stress analysis. Since 
then, both methods have been developed extensively and have generated a massive 
number of variations and ‘add-ons’ to the original formulations. One of the newer 
techniques which combines the ideas of the finite difference method and the finite 
element method is the finite volume method. This method began its life in U.S. 
weapons research during the 1950s and 1960s at Lawrence Livermore National Lab­
oratory [114], but significant development in more general applications did not occur 
until the 1970s ([16],[43]).

At the heart of all CFD numerical schemes is the fundamental consideration of 
how one should represent a continuous function in discretised form, i.e. how should 
one accurately store a function defined for an infinite number of points in some 
finite way? The most popular method of achieving this is to discretise the solution 
domain into a finite number of small cells/elements forming a mesh or grid, and to 
then apply a suitable algorithm to values stored at the intersections of the mesh
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elements I cellselements I cells

nodesnodes

(a) Discretisation of a rectangular do- (b) Discretisation of a rectangular do­
main using an irregular assembly of tri- main using a regular assembly of quadri- 
angles laterals

nodes

elements I cells

(c) Discretisation of a 3D domain using 
an irregular assembly of tetrahedra

Figure 1.1: Discretisation methods in 2 and 3 dimensions

(nodes) to solve the governing equations.
The finite difference method (FDM) is based on transforming the derivatives in 

a partial differential equation into their discrete analogs. This approach results in a 
set of coupled equations with all unknowns prescribed at discrete mesh nodes across 
the entire solution domain. The FDM is relatively straightforward to formulate 
and program and hence became the dominant force in CFD in the 1960s and 70s. 
However, it is restricted to uniform/structured grids and therefore is difficult to 
apply to problems involving complex geometries.

The finite volume method (FVM) begins with the integral form of the governing 
equation, as does the finite element method. The unknowns are usually stored as 
constants across the volume, although higher order FVM methods do exist with 
the solution being discontinuous at the volume interfaces. A flux solver must then 
be applied to the discontinuous solution at each volume interface. The FVM has 
become popular because of its simplicity, combined with the ability to apply it to 
unstructured meshes, allowing a discretisation around complex geometries.

Although the finite element method was established in the 1950s, it has taken 
considerably longer to be taken up as a serious tool for use in CFD. In fact, even by 
the early 1980s its penetration was still relatively small. There are many variations 
of the FEM, but the most popular of these is the Galerkin method. This involves 
discretising the solution by means of shape/basis functions, of arbitrary order, which 
are defined for each element. The residual of the governing PDE is then multiplied,
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or ‘weighted’, by these basis functions and integrated over the entire solution domain, 
to spread and minimize the solution error. Methods based on FEM have become 
increasingly attractive, despite their more complex formulation because they lead to 
general purpose computer codes which can be applied to aribitrary mesh structures. 
In addition, the FEM is based on a solid theoretical foundation which has resulted 
in rigorously formulated procedures for elliptic [20] and parabolic [97] equations, 
while much is now understood about the application to hyperbolic equations [82].

A more recent development in the FEM, tha t has received significant recent inter­
est is the discontinuous Galerkin FEM. In this discretisation approach, the solution 
is allowed to be discontinuous at element interfaces and the elements communicate 
by means of appropriately derived fluxes across these interfaces. There are parallels 
between this method and high order finite volume methods and some would argue 
that the discontinuous Galerkin FEM is somewhere in between finite element and 
finite volume methods. The key difference between the two being that in the discon­
tinuous FEM, unknowns are still stored at nodes and interpolated across the element 
from these nodes, whereas, in high order finite volume schemes, a single unknown is 
prescribed per element /  cell and the solution is ‘reconstructed’ across the cell using 
information from surrounding cells in some way. However, both require some kind 
of flux solver at element interfaces to deal with the discontinuities present.

It is also worth mentioning that discretisation techniques also exist which do 
not require a mesh (known collectively as meshless methods) for example, smoothed 
particle hydrodynamics. This method involves a division of the fluid into a set 
of discrete ‘fluid elements’ whose interactions are governed by means of, so called, 
‘kernel functions’ [72].

The intense research activity of the last 50 years in the area of CFD has largely 
been driven by the aerospace industry, with its requirements for highly accurate 
solutions at minimum cost. At first, potential flow problems were the main focus 
but as computational resources have improved in the last few decades, the CFD 
community has largely focused its attention on finding solutions to the Euler and 
Navier-Stokes equation sets. One of the principle limiting factors in CFD has been 
available computing power, both in terms of processor speed and memory. One of 
the features of fluid flows that results in accurate solution strategies being extremely 
intensive numerically is turbulence. Turbulence is chaotic in nature and works at 
both very small and very large length scales. Therefore, to truly capture a turbu­
lent flow accurately requires a large and highly discretised mesh. For example, it 
is estimated that approximately 1018 unknowns are required for accurate prediction 
of turbulent flow around a typical aircraft configuration and today we can solve 
problems involving approximately 108 unknowns at best. However, there is no need 
to be pessimistic about the potential for CFD. Moore’s law states that available 
computing power doubles every 18 months and research into more and more effi­
cient numerical techniques is currently taking place. As computing power expands 
exponentially and algorithms of ever increasing efficiency are developed, who know 
where the possibilities in CFD will end?
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1.3 W h y  K in e t ic  T h e o r y  a n d  C F D ?

A gas flow may be modelled at either the macroscopic or microscopic level. However, 
at the macroscopic level, we must make the assumption that the gas can be regarded 
as a continuous medium. If this is possible, then the Navier Stokes equations provide 
the appropriate mathematical description of the physics of the flow. Contrary to 
popular belief, this is not always the case! If we cannot ‘close’ the equation set 
by assuming some empirical relationships between the macroscopic flow properties, 
e.g. the ideal gas equation and relationships for shear stress and heat flux, then the 
Navier-Stokes equations are int ractable.

We can classify a flow in term s of a nondimensional param eter called the Knudsen 
number (K n ), defined as

K n  =  X  O - 1)

where A is the mean free path of molecules in the flow, i.e. the average distance 
travelled between collisions, and L is some typical length scale in the flow. The 
traditional rule-of-thum b is tha t K n  should be less than 0.1 for validity of the 
continuum assumption. However, this can be misleading if L is chosen to be some 
overall dimension of the flow in order to define a single global K n  for the flow. The 
limit can be defined more precisely if we define a local K n  with L

L = dpdi-

as the scale length of the macroscopic gradients where p is the fluid density.
The Knudsen number limits on the conventional m athem atical formulations to 

describe gas flows is shown schematically in Figure 1.2 (taken from [5]).

Disci e te  Particle 
Molecular 

Model BOLTZMANN EQUATION
C 0L L 1S I0N L E S S

BOLTZM ANN

Continuum E U L E R N A V IE R  -  S 'T O K E S
Model E Q S E Q S

0.1 1 

Local Knudsen Number

100

Figure 1.2: The Knudsen Regime

It is clear from Figure 1.2 th a t there is a significant range in the Knudsen regime 
within which the traditional continuum equations are no longer valid. There are 
many hypersonic applications which involve low density /  high K n  flow, generally 
involving flight at high altitudes. For example, it has been noted in [74] that, flow 
in the nose region of the space shuttle above 92km (about cannot be
treated properly by purely continuum assumptions and, for any given flight, as

C2D
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altitude increases, and hence the density decreases and A increases, the continuum 
assumption becomes tenuous. An altitude will be reached where the conventional 
viscous no-slip condition begins to fail and the flow velocity at a surface takes on 
some finite value. This is termed the velocity slip condition. In a similar way, a 
temperature differential may be set up between the surface material and flow at the 
surface. This is called the temperature slip condition. At this point, the continuum 
equations may still be applied, with modifications to the boundary conditions, and 
successful solutions achieved.

However, as altitude continues to increase, a point is reached where we can no 
longer cling onto the continuum equations. Then we must seek solutions to the 
fundamental Boltzmann equation and think in terms of the underlying molecular 
kinetics. Finally, the air density can become low enough for the collisions between 
molecules to be ignored. For the space shuttle, this free molecular regime begins at 
an altitude of about 150km (500,000ft).

Therefore, in a very simplified sense, we can think of a spacecraft re-entry passing 
through various distinct phases; first the free molecular regime in which we must 
seek a solution to the collisionless Boltzmann Equation, next the spacecraft will 
enter the kinetic regime, in which we must seek a solution to the full Boltzmann 
Equation, then the transition regime is entered and we can model the flow using 
the continuum equations with modified boundary conditions, and finally we enter 
the continuum regime, in which the standard continuum equations apply. This is 
an overly simplistic view because the regime is based on a local Knudsen number 
which means that in practice, different regions of any given flow may actually have 
a different local value of K n.

There is a further, more subtle, reason for using kinetic theory and the governing 
Boltzmann Equation as the starting point for analysing hypersonic flows. Contin­
uum theory assumes that a gas is always in thermodynamic equilibrium, i.e. the 
distribution of molecular velocities is always described by a Maxwellian distribution 
function. This, in turn, is based on the assumption that there have been a sufficient 
number of molecular collisions, in a sufficiently small frame of time, to return any 
perturbations from equilibrium back to the equilibrium state. However, there are 
many problems in high-speed gas dynamics where the gas is not given the luxury of 
the necessary time to come to equilibrium. A typical example is flow across a shock 
wave, where the pressure and temperature are rapidly increased within the shock 
front. When the pressure and temperature of a gas are changed, its vibrational 
and chemical equilibrium properties will change. The fluid element will start to 
‘seek’ these new properties but this requires collisions and, hence, time. By the time 
sufficient collisions have occured, the fluid element will have moved some distance 
downstream of the shock front, resulting in a region downstream of the shock in 
which equilibrium conditions do not prevail. We must, therefore, study such regions 
using kinetic theory, including the vibrational and chemical degrees of freedom of 
the gas.
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It will be useful, at this stage, to introduce the Boltzmann equation, for which 
a derivation will be provided in the following chapter, to allow a discussion on the 
solution strategy,

d± i i + c . ? m + F d± i i = > W i / )
ot or  oc  A n

(1.3)

where /  =  f { r .  c, t) is the distribution function, n is the molecular number density, 
F  describes any force fields (gravitational, electrostatic etc) that might be present, 
Q (/, / )  is the term accounting for molecular collisions.

The term  Q{J\ f )  is a five-fold integral, in 3 space dimensions, and is the source 
of many of the difficulties in solving this equation. The Boltzmann equation is an 
integro-differential equation and analytical solutions are restricted to extremely sim­
ple applications ([70],[1]). We must, therefore, adopt a numerical solution approach.

The numerical approaches for solving the Boltzmann equation can be broadly 
categorized into two classes of methods. The first are direct Boltzmann CFD meth­
ods whereby the governing equation is discretised and solved directly. The second 
are based on the simulation of the physics of the flow and do not depend on a m ath­
ematical model. The situation has been complicated by efforts to link some of the 
simulation methods to the Boltzmann equation with sufficient rigour tha t they may 
be regarded as ‘solutions’ of tha t equation. The situation is summarised in Figure 
1.3

Solution Approaches for The Boltzmann Equation

Analytical
Methods

(e g. Narasimha 1962)

Direct Boltzmann \
CFD )

- Finite difference methods 
(e g Nordsieck & Hick 1967)
- Finite volume methods 
(e g Abdusslam et al 2006)
- Finite element methods 
(e g  Evans, Morgan, Hassan 2006) - Molecular Dynamic

(MD) Methods 
(e g Alder and 
Wainwright 1957)
- Lattice gas cellular 
automata 
(Boon 1990)

Simulation 
( Methods

Deterministic Probabilistic

- Direct Simulation Monte 
Carlo (DSMC) Methods 
(e g Bird 1963)

Figure 1.3: Categorisation of Solution Approaches

Today, CFD has a particularly strong impact in hypersonic aerodynamics re­
search, in comparison with other strands of fluid dynamics, mainly because of the
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limited availability of hypersonic wind tunnels and other hypersonic ground-test 
facilities. Thus, in the modern world of hypersonics, CFD serves as a powerful tool 
for research, development and design.

1.4 Background to Hypersonics

1.4.1 W hat is H ypersonic A erodynam ics?

The previous section has shown that one area of fluid dynamics in which a kinetic 
approach is certainly appealing, if not essential, is hypersonics. The first question 
one must ask when approaching the topic of hypersonic aerodynamics is ‘What is 
hypersonic flow?’ Sometimes this question is answered with an overly simplistic an­
swer; ‘whenever the freestream Mach number is greater than 5’. But this is nothing 
more than a rule-of-thumb. In reality, a flow truly becomes ‘hypersonic’ when one 
or more of the following phenomena, highlighted by Anderson [47], dominate:

1. Thin Shock Layers
At high Mach numbers, the shock waves supported by a vehicle are very strong 

and, hence, invoke a massive density increase. The mass flow behind a shock can 
therefore ‘squeeze’ through a small area, resulting in the traditional bow shock 
‘wrapping around’ the vehicle to form a thin ‘shock layer’.

2. Entropy Layers
At hypersonic Mach numbers, as well as the shock layer being very thin, the 

shock detachment distance is very small and, in a blunt body nose region, the shock 
wave is highly curved. This high curvature results in large gradients of entropy in 
the blunt body shock layer. This ‘entropy layer’ flows downstream and can ‘wet’ 
the body a large distance downstream from the nose. This ‘entropy layer’ affects 
the way in which we treat the body’s boundary layer.

3. Viscous Interaction
At hypersonic Mach numbers, boundary layers can get very thick. In fact, the 

boundary layer can become so thick that it merges with the shock wave resulting 
in a ‘merged shock layer’. When this happens, the entire shock layer must be 
treated as fully viscous and conventional boundary layer analysis must be completely 
abandoned.

. 4. High Temperature Effects
A high velocity flow contains large amounts of kinetic energy, which gets partly 

dissipated in the boundary layers and shock waves as thermal energy. Hypersonic 
flows are, therefore, prone to very high temperatures and high temperature effects, 
such as vibrational excitation, dissociation, ionization and chemical reactions may 
require consideration.

5. Rarefied Gas Effects
As the mean free path between molecular collisions increases towards typical 

length scales of the flow, the ratio of these two being characterised by the Knudsen
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number, the ‘transition regime’ is entered whereby the continuum theory, on which 
the previous discussion in this section has been assumed, breaks down and we must 
revert to studying the flow at the molecular level. This transition regime occurs when 
the Knudsen number increases. This can be caused either by the mean free path 
increasing, e.g. in the outer atmosphere during spacecraft re-entry, as discussed in 
the previous section, or in regions of the flow with small length scales, e.g. very thin 
shocks. A typical transient hypersonic flow may pass through a range of Knudsen 
regimes and, at any time, feature different regions of the flow in different regimes.

1.4.2 The H istory o f H ypersonic Research

Many would view the ‘glory days’ of hypersonic research as the late 50s and 60s, 
when aerodynamic research was dominated by hypersonics. The motivation for this 
research is clear; earlier emphasis on re-entry design for intercontinental ballistic 
missiles was now greatly reinforced by the fledgling Apollo program, whose goal was 
to place man on the moon by the end of the 60s. All aspects of hypersonic flow 
were under intense investigation. This research was, however, in the most part ex­
perimental, featuring large and expensive hypersonic wind tunnels and shock tubes. 
These facilities were appearing at all major aerodynamic laboratories in government, 
industry and even in universities. By the 1970s, however, the situation could not 
have been more different. The Apollo missions had now finished, the design of the 
new space shuttle fixed and the design for warheads somewhat standardised. In fact, 
in the 1970s, we are hard pushed to find any obvious signs of hypersonic research 
at all. Many hypersonic wind tunnels and shock tubes had been decomissioned and 
some even cut up to be used for scrap metal! However, some hypersonic research 
continues under the guise of CFD which is undergoing an explosive growth period. 
Hypersonic applications were being used in CFD to validate new codes and tech­
niques. This transition in research emphasis, from experimential to computational, 
has also been observed in other fields of fluid dynamics in recent decades. The rise in 
CFD research has been largely due its relatively low cost, high speed, repeatability 
and versatility. It is important to note that CFD has not, and probably will not 
ever, completely replace experimental research in fluid dynamics, as experimental 
data will always be required to validate new CFD codes. In fact, experimental re­
search at NASA Langley is still going strong, making use of their impressive 8-Foot 
High Temperature Tunnel. This tunnel has the capabilities for experimental testing 
at speeds of up to Mach 7 through a range of altitudes from 50,000 to 120,000 ft.

This brief study of the history of hypersonics research does now beg the question 
‘why should we study hypersonics today?’ Since the Wright brothers’ pioneering 
first flight in 1903, humans have always had an urge to fly faster, higher and further 
and so it is to this day. Although funding for research into high speed flight has 
ebbed and flowed over time, this underlying drive has always existed and shows no 
sign of disappearing. NASA have recently announced new plans for man’s return to 
the moon and also plans for manned flights to Mars and, along with the ESA (Eu­
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ropean Space Agency), have missions planned, and undergoing, for interstellar and 
planetary probes, pushing further and further into our Solar System and beyond. 
The current model space shuttle will probably reach the end of its lifespan within the 
next decade, leading to new developments in reusable spacecraft technology requir­
ing the most efficient re-entry design. Also, with the launch of Virgin Galactic in 
2004 and the company’s more recent highly publicised unveiling of ‘SpaceShipOne’, 
the 21st century may witness a whole new commercial industry in space travel. 
Design concepts have been launched for hypersonic passenger aircraft, cruising at 
between Mach 7 and Mach 12, with the capability of carrying people from New 
York to Tokyo in less than two hours! Many of these ideas are increasing, in viability 
and turning from pipe dreams into reality largely due to developments in SCRAM- 
jet (supersonic combustion ramjet) technology, which is now capable of providing 
extreme high speed propulsion. A wide range of hypersonic applications currently 
under development have already been mentioned here, without even acknowledging 
developments within the military sector. It seems clear that there will be a trend 
towards faster aircraft and spacecraft in the future and many exciting challenges for 
the hypersonic aerodynamicist are being posed [27].

1.5 Thesis Outline

This thesis is divided into five distinct chapters entitled:

1. Introduction

2. Problem Formulation

3. The Solution Algorithm

4. Examples

5. Concluding Remarks

In the remainder of Chapter 1, the objectives and history of the project are 
summarised and a review of the literature is presented. This provides sufficient 
basis to move onto Chapter 2; Problem Formulation.

Chapter 2 begins with an introduction to the single dependent variable of the 
Boltzmann equation; the velocity distribution function. Also, a review of binary 
molecular collision theory is provided before a derivation of the Boltzmann equation 
from first principles. The connection of the Boltzmann equation to the Liouville 
equation is discussed and the BGK model equation introduced. Finally, the crucial 
step of regaining macroscopic data from the velocity distribution function by taking 
moments of the Boltzmann equation is described.

Chapter 3 begins by looking at the methodology employed for discretisation of 
the solution domain of the Boltzmann equation; phase space. The discussion of the 
solution procedure begins with a look at a standard discontinuous Taylor-Galerkin 
algorithm for the scalar convection equation as this forms the basis of the Boltzmann
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solution procedure. The discussion then moves on to the solution algorithm em­
ployed for the Boltzmann equation in a variety of forms; the collisionless Boltzmann 
equation, the BGK-Boltzmann equation and the full Boltzmann equation. The pro­
cedure for implementation of the boundary conditions is then provided, along with 
the methodology for computing the moments of the Boltzmann equation.

Chapter 4 begins by comparing a variety of techniques for solving the scalar con­
vection equation beginning with standard finite difference procedures before moving 
on to a comparison of the Taylor-Galerkin procedure using continuous and discon­
tinuous elements. Example problems are then studied to benchmark the Boltzmann 
solver.

Initially, the collisionless Boltzmann solver is applied to high Knudsen number 
problems including a shock tube problem and flow over a vertical plate in 2D. These 
solutions are compared with data in the literature. A highly rarefied hypersonic 
example of Mach 25 flow over a double ellipse geometry, simulating a generic re­
entry configuration, is then shown.

The BGK solver is then applied to flow over a vertical plate at a variety of 
Knudsen number below the free molecule limit and again results are compared with 
data in the literature. The BGK solver is then applied to a range of aerofoil flow 
problems including subsonic, transonic and supersonic conditions. The failure of the 
BGK solver at high Mach number is also demonstrated.

Finally, a validation example for the full Boltzmann solver is presented. It shows 
the ability of the full collision term to restore a non-Maxwellian distribution function 
to equilibrium. The full Boltzmann solver is then applied to a number of flow prob­
lems at a range of Mach numbers and, critically, the limitations of this methodology 
are highlighted and discussed.

In Chapter 5, the main conclusions derived from the work in this thesis are 
identified and discussed. Possible extensions to the work in this thesis are then 
highlighted.

1.6 Objectives of the Project

The objectives of this project were set out in the summer of 2004. At this time, 
the author was completing a Masters degree program in which he became interested 
in the field of molecular gas dynamics. This interest, coupled with the high level 
of expertise in CFD at the Civil and Computational Engineering Centre at the 
University of Wales, Swansea, led to the initial concept for the project of using 
traditional numerical techniques to find solutions to flow problems based on the 
Boltzmann equation of molecular gas dynamics. Also, at this time there was (and 
continues to be) significant interest in the discontinuous Galerkin finite element 
procedure. It was, therefore, agreed that a discontinuous Galerkin finite element 
solution procedure would be applied to the Boltzmann equation.
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It was clear from an early stage that using the Boltzmann equation to study 
flow phenomena would be significantly more expensive than using standard CFD 
techniques. The specific goals of the project were therefore set out as follows:

To develop a 2D Boltzmann equation solver using a discontinuous Galerkin finite 
element procedure in order to

- have a flow solver for non-equilibrium gas flow problems such as highly rarefied 
gas flows and hypersonic flows.

- gauge the competitiveness of a full Boltzmann solver over standard CFD tech­
niques under other flow conditions (i.e. transition regime flows, continuum regime 
flows).

1.7 Project H istory

The timescale for this project was three years and there are some clear phases of 
the project that can be identified.

Year one began with a literature review (detailed in the following section) and 
a review of computational fluid dynamics techniques, specifically the finite element 
method. It became clear that at the heart of the Boltzmann solver, an accurate scalar 
convection equation solver would be necessary. Time was, therefore, invested in the 
early stages of the project into analysing different, scalar convection equation solution 
approaches including both finite difference methods and finite element methods. An 
existing C2EC Taylor-Galerkin code was used as a basis for the finite element work. 
This was then adapted for discontinuous elements to allow a comparison of the 
discontinuous and continuous finite element techniques.

Year two consisted of the development of the discontinuous Taylor-Galerkin 
scalar convection solver into a collisionless Boltzmann equation solver. At this stage, 
significant time was invested into an effective velocity space discretisation method. 
Also, boundary condition application procedures required much development time. 
On achieving a working collisionless Boltzmann equation solver, a variety of free- 
molecule flow examples were analysed using the solver. The code was parallelised at 
this stage as the allowable problem size became limited due to memory constraints.

In year three the main thrust of the project turned to dealing with the right-hand 
side of the Boltzmann equation. First, the simplified Boltzmann-BGK equation 
was considered and tested. Once the limitations of the Boltzmann-BGK solver 
became apparent, the full Boltzmann right-hand side was tackled and a Monte 
Carlo approach developed. Some test cases were attempted and the limitations of 
using the full Boltzmann solver for realistic flow problems identified.

1.8 Literature Review

In this section, we begin by reviewing the literature directly related to the con­
tent of the aforementioned introductory theory. Books, papers, articles concerned
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with the Boltzmann equation, relevant numerical methods, specifically discontinuous 
Galerkin procedures and hypersonics research are first highlighted. Next, material 
concerned with ‘non-finite element’ solution approaches for the Boltzmann equation 
are identified. These include lattice Boltzmann techniques, discrete velocity mod­
els, Monte Carlo methods and gas kinetic schemes. We then examine other finite 
element solution approaches to the Boltzmann equation that have been attempted 
and some analytical solutions.

Two books that provide much of the theory for the essential groundwork required 
to understand the characteristics of the Boltzmann equation are ‘The Boltzmann 
Equation and its Applications’ by Carlo Cercignani [18] and ‘Molecular Gas Dy­
namics and the Direct Simulation of Gas Flows’ by Graham Bird [5]. In his book, 
Cercignani effectively demonstrates the necessity of a statistical approach to prob­
lems in kinetic theory. He states that it is impossible to specify the absolute initial 
conditions for a specific problem in kinetic theory as this requires knowledge of the 
positions and velocities of every particle relevant to the problem, which in principle 
could be every particle in the universe! We, therefore, must revert to a method in 
which we are ‘averaging over our ignorance’ and it is this very statistical philosophy 
that leads us to the Boltzmann equation. He considers in detail probability density 
functions and the connection between the Boltzmann equation and the Liouville 
equation and Liouville’s theorem. Cercignani also provides a rigorous derivation of 
the Boltzmann equation using the Liouville equation as his start point. Bird also 
provides a derivation of the Boltzmann equation, but rather than beginning with 
the Liouville equation, his derivation is-from first principles. He, therefore, has to 
provide a lengthy discussion on the binary molecular collision theory necessary for 
deriving the collision term on the right-hand side of the Boltzmann equation. The 
second half of the book focuses on the direct simulation Monte Carlo method for 
analysis of the Boltzmann equation. This is a technique pioneered by Bird him­
self. A collection of Boltzmann’s own work is contained in the book ‘Lectures on 
Gas Theory’ [7]. In this collection of work, we find a huge range of topics related to 
Boltzmann’s expertise in the field of kinetic theory ranging from derivations of mean 
free path to his famous H-theorem. Much of the work is discussed from a philosoph­
ical standpoint. In [69], Bhatnagar, Gross and Krook demonstrate the usefulness of 
transforming the full collision integral right-hand side of the Boltzmann equation 
into a simpler form, resulting in their BGK-Boltzmann model equation. Analytical 
solutions to the Boltzmann equation are limited, due to the complexity of the equa­
tion. However, one famous analytical approach is provided by M ott-Smith [75], 
in which an analysis of the density and velocity profiles through a shock wave is 
provided by assuming a ‘bimodal’ distribution function.

Morgan and Peraire provide an excellent overview of the Galerkin finite element 
method for problems in fluid mechanics in [79]. This review places a particular 
emphasis on adaptive grid procedures, but also covers the history of computational 
fluid dynamics, details of the Galerkin method, stabilization, explicit and implicit 
timestepping, discontinuity capturing and TVD schemes.
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Since the advent of the multiple processor supercomputer, parallel algorithms 
have played a crucial role in allowing the analysis of more complex, CPU inten­
sive, high memory problems especially in three dimensions. The benefits of parallel 
simulations are clearly demonstrated in [51],[30],[92],[110].

This thesis deals largely with a technique based around the Taylor-Galerkin 
finite element method. The Taylor-Galerkin method is the finite element equiva­
lent of the Lax-Wendroff method in finite differences. The Lax-Wendroff method 
was introduced by Lax and Wendroff in a paper looking at solutions of hyperbolic 
equations with high order of accuracy in 1964, [112]. Leith also adopted this ap­
proach in his ‘Methods in Computational Physics’ published in 1965, [53]. The 
Taylor-Galerkin approach was introduced by Donea [25] and has since been used 
widely ([96],[73],[111]) in both its one-step and two-step formats as an alternative 
to Runge-Kutta timestepping. Qiu et al. provide a good comparison of Taylor- 
Galerkin timestepping (or ‘Lax-Wendroff Type Timestepping’) with the Runge- 
K utta approach in the context of the discontinuous Galerkin method [90].

The term ‘discontinuous Galerkin’ (DG) is first encountered in the literature 
in 1978 in a paper by Delfour and Trochu [101], but did not become widely used 
until the early 1980s. Zienkeiwicz and Taylor provide a thorough, albeit sceptical, 
overview of the method [101], in which they examine the various methods of ‘link­
ing’ the discontinuous subdomains for convective and diffusive problems. They also 
examine the relationship between discontinuous Galerkin methods and finite volume 
methods. It is observed that finite volumes, as frequently used, are simply discon­
tinuous Galerkin elements wherein very low order approximations are assumed to 
represent the variable in the cell. In [91], Zhang and Shu also note the similarities be­
tween discontinuous Galerkin and finite volume methods. They make comparisons 
between a discontinuous Petrov-Galerkin procedure and a spectral finite volume 
method for analysing ID, linear, hyperbolic conservation laws. Bernardo Cockburn 
has been a staunch advocate of discontinuous methods in recent times. He provides 
a brief introduction to the method [22] and in a plenary lecture presented at the 80th 
Annual GAMM Conference in 2002, he emphasises the benefits of the discontinuous 
methods in terms of the significances of the block-diagonal mass matrices generated 
by the method in terms of parallelizability, as well as the significance of the local 
conservativity of such schemes at the element level. He also stresses the benefits 
of being able to vary the order of the polynomial approximation on each element 
which makes the method ideal for adaptivity algorithms. In [21], he identifies a wide 
variety of problems (ID and 2D) in which discontinuous methods ‘perform well’. An 
important point raised by Cockburn is the importance of the definition of, what he 
terms, the numerical trace, this will later be referred to as the inter-element flux in 
this thesis, in terms of the consistency, stability and accuracy of the particular DG 
scheme. Cockburn also, importantly, identifies that the ‘jumps’ in the approximate 
solution that results from the DG method are the source of the stabilising artificial 
viscosity of the scheme. The scheme is thus stabilised without the loss of accuracy 
resulting from traditional artificial viscosity methods. This is particularly impor­
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tant when resolving shocks in the solution as the DG method will tend to ‘trap’ any 
spurious oscillations in the elements in the vicinity of the shock rather than allowing 
them to propagate throughout the domain. Other techniques in the literature that 
have been used to overcome this problem include the flux corrected transport (FCT) 
method and kinetic flux vector splitting method ([24],[103],[9],[60]). The flux vector 
splitting method will be examined in more detail below as it has a significant rela­
tionship with a direct Boltzmann scheme. Recently, the DG method has been used 
in a wide range of applications . For example, Persson and Peraire [80] demonstrate 
the shock capturing characteristic of the DG method when applied to the Euler and 
Navier-Stokes equations . Qiu, Dumbser and Shu [90] develop a Taylor-Galerkin 
(Lax-Wendroff) variation of the DG method. Brubeau, Sagaut and Bruneau [11] 
look at limiting for the DG method and Grooss and Hesthaven [38] look at a DG 
method for free surface flows.

All of the theory of hypersonic aerodynamics relevant to this thesis is contained 
in a book by John D. Anderson Jr. entitled ‘Hypersonic and High Temperature Gas 
Dynamics’, [47]. This book covers some important ground, including the definition 
of hypersonic flow, rarefied hypersonic flow and examines a wide variety of viscous 
and inviscid hypersonic flow examples. He also provides a survey of hypersonics 
research as things stood in the mid 1980s in [46]. Hypersonic flow has been analysed 
by a wide range of methodologies ranging from the analytical techniques such as the 
Lighthill-Freeman model ([57],[31]) and those of Anderson [47] and the experimental 
techniques of Harvey et al in [32], through standard CFD techniques [71] to the 
innovative direct simulation Monte Carlo (DSMC) of Bird [5] used, for example, by 
Yamaguchi et al [64]. This thesis details a further approach to the study of rarefied 
hypersonic flows, that of direct numerical solution of the Boltzmann equation. A 
comparative study of some of the aforementioned methodologies is provided by Chen 
et al [8].

A class of methods that has the Boltzmann equation at its heart, although can­
not be truly regarded as providing solutions of the Boltzmann equation, are lattice 
Boltzmann methods (LBMs), [26]. The LBM is a mesoscopic particle-based ap­
proach to simulate fluid flows and has become a serious alternative to traditional 
methods in CFD for certain applications. The LBM is often derived from the sim­
plified Boltzmann-BGK equation (see section 2.3). In lattice gases, particles live 
on the nodes of a discrete lattice. Particles ‘jum p’ from one node of the lattice 
to another according to their discrete velocities. This highly simplified view of the 
propagation of molecules differentiates it from the Boltzmann solver detailed in this 
thesis. Particles may collide and acquire new discrete velocities in the ‘collision 
phase’. This method is applied to three dimensional flows in pipes and around 
a sphere at moderate Reynolds numbers by Rossi et al [93] and an example of 
the treatment of boundaries is provided by Yu, Mei and Shyy [113]. There are 
many cases of the LBM being applied to microchannel flows, thermal problems and 
mesoscale/nanoscale flows in the literature ([56],[109],[58]). However, the author is 
unaware of any successful applications to rarefied hypersonic flows to date.
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A class of methods known as discrete velocity models (DVM) ([68],[107],[6]) 
exist that have much in common with the LBM. Succi [94] provides a comparison 
of the LBM and DVM pointing out that even though they are close relatives in 
mathematical terms (since they are both based on grid-bound particles moving 
with a set of discrete speeds), the DVM remains more faithful to the underlying 
kinetic theory whereas the LBM is more concerned with ‘capturing hydrodynamic 
phenomena’, i.e. it is a more phenomenological methodology.

As was mentioned in Section 1.3, there are molecular interaction ‘simulation’ 
methodologies that have been linked with the Boltzmann equation rigourously enough 
that they have been regarded as ‘solutions’ of the equation [99]. One such technique 
is the direct simulation Monte Carlo (DSMC) method pioneered by Bird [5]. In 
the strictest sense, the DSMC method is merely a phenomenological model, simu­
lating the gas molecules rather than being derived from fundamental theory. The 
DSMC method is, however, extremely popular for simulating rarefied and highly 
non-equilibrium gas flows ([13],[76],[83]) because of its efficiency and parallelisabil- 
ity [102] and will almost certainly be the major competitor to a direct Boltzmann 
solver for the type of applications in which the Navier-Stokes equations become 
invalid. The method uses a probabilistic Monte Carlo approach in the tracking of 
simulation molecules, representing a large number of real molecules, through phys­
ical space and in the modelling of inter-molecular collisions and molecule-surface 
collisions. However, even though historically Monte Carlo simulations have been the 
usual method of choice to tackle such problems because of the inability to resolve 
the phase space on available computers, recently, work ([33],[77]) has demonstrated 
that efficient deterministic methods can be competitive with Monte Carlo methods.

A family of numerical schemes which may be generically described as ‘kinetic 
schemes’ exist ([19],[44],[104],[45],[95],[59])that are designed specifically for the anal­
ysis of high Knudsen number flows. The method involves a Chapman-Enskog ex­
pansion analysis [23] of (usually) the Boltzmann-BGK equation to form a set of 
equations, similar in form to the Navier-Stokes equations, but including additional 
terms to account for the inter-molecular interactions and molecule-surface inter­
actions. This removes the need for any kind of ‘special’ boundary treatment for 
high Knudsen number flows using the standard Navier-Stokes equations. One pop­
ular variant of such types of scheme is the Kinetic Flux Vector Splitting method 
([29],[63],[55]). This scheme employs a particular type of upwinding based on the 
flow physics at the Boltzmann level rather than the Euler/Navier-Stokes level. It is 
important to note that such methods are not direct solutions of the Boltzmann equa­
tion. Nevertheless, as with the DSMC method, kinetic schemes will be a significant 
competitor to direct Boltzmann solution schemes.

There are a limited number of direct numerical Boltzmann solvers detailed in 
the literature at the time of writing. Aristov [3] provides a general overview of dis­
cretisation approaches, especially focussing on the discretisation of velocity space. 
However, in physical space, he is limited to a finite difference approximation. Anal­
ysis of the literature on direct numerical approaches makes it clear that one of the
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principal difficulties in solution of the Boltzmann equation lies in the right-hand 
side collision term. A ‘spectrally accurate approximation of the collision operator’ 
is presented in [88] and [87]. A high order method for approximating the distri­
bution function in velocity space based on ideas from these papers is detailed in 
this thesis. In [78], a second order upwind finite difference scheme is applied to the 
simplified BGK and higher moment models of the Boltzmann equation. Success­
ful application in both rarefied and continuum hypersonic applications is achieved. 
Other direct Boltzmann solution procedures do exist ([77],[86],[15]). However, the 
majority of applications are in micro-scale flows. Application to larger scale flows 
places very different requirements on the discretisation of phase space. The only 
other Boltzmann solver available at the time of writing (to the author’s knowledge) 
that employs a discontinuous Galerkin procedure in physical space is by Gobbert 
and Cale [14]. They present a 3D kinetic transport equation solver for reactive, 
rarefied flows and apply it to chemical vapor decomposition (nano-scale) problems. 
They outline a methodology similar to that presented in this thesis whereby the 
Boltzmann equation is reduced to a ‘large number of conservation laws’, each solved 
by means of a discontinuous Galerkin scheme. A method similar to this was first 
introduced by Reed and Hill [39] for solving the neutron transport equation.

The idea behind the approach presented in this thesis was first outlined by Evans 
et al [37]. In this paper, the general methodology was applied to the collisionless 
form of the Boltzmann equation (valid for high Knudsen number flows) and used 
to analyse a rarefied shock tube example and rarefied subsonic flow over a vertical 
plate. A possible extension to the work in this thesis is hinted at by le Tallec and 
Mallinger [52] in which they identify a strategy for coupling Navier-Stokes solution 
domains to Boltzmann solution domains.
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2.1 T h e  V eloc i ty  D i s t r ib u t io n  F u n c t io n

In a classical sense, a gas flow would be completely described if we could list the 
positions, velocities and internal states of all its constituent molecules at any instant 
in time. The number of molecules in a real gas is, however, far too large for this 
type of description to be possible and we, therefore, resort to a statistical descrip­
tion in terms of probability distributions. There are a number of distinct velocity 
distribution functions employed in kinetic theory and to avoid any confusion, espe­
cially when referencing other work in this field, the relationship between them will 
be reviewed.

Figure 2.1: Positions and Velocities of a Group of Molecules

2.1.1 T h e  Single P a r t ic le  D is tr ib u tio n  F unction

The single particle distribution function, / s(c) for a group of N  particles is defined 
to be such that

d N  = N f s( c ) d u d v d w  (2.1)

where d N  is the number of molecules in the sample with velocity components in the 
range u to u + du, v to v F d v . w  to w +  dw where dig dig die are small incremements 
in u , v , w .  We call these class c molecules, where c =  ( u , v :w).
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W

c=c(u,v.w)

Figure 2.2: Velocity Space

The product du du die may be identified as a volume element in velocity space and 
can be denoted as dc, so tha t equation (2.1) may be written as

d N  = N  f s(c) dc (2.2)

and this definition is no longer restricted to Cartesian coordinates. Since d N  and 
N  refer to molecules in the same volume of physical space, we can rewrite equation 
(2.2) in the form

dn
—  = f s dc  2.3
n

where n is the molecular number density (the number of molecules per cubic metre) 
and dn / n  is the fraction of class c molecules. Since all molecules must occupy a 
point in velocity space, it follows that

/ oo poo poo poo

/ / f sd u d v d w =  /  f sdc = N / N  = l. (2.4)

■ o o  J  —  o o  J  —  o o  J — o o

This is known as the normalisation condition for the single particle distribution 
function and provides a good check in any numerical scheme that one is computing a 
valid distribution function. It is worth noting tha t, since f s is a probability function, 
it can never take on a negative value and must either have finite bounds in velocity 
space or tend to zero as |c| tends to infinity.

2.1.2 T h e  Single P ar tic le  D is tr ib u tio n  Function  in P h ase  
Space

So far, we have only considered a statistical description of the velocity distribution 
of molecules at a fixed point in physical space, i.e. /  has been a function of c alone. 
However, it is clear that, just as the macroscopic gas properties, e.g. bulk velocity, 
can vary in physical space and time, so too can the form of the velocity distribution
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function. We, therefore, define the single particle distribution function in phase 
space as *

dN  =  f sp(c, r , t ) d c  dr  (2.5)

with dN  now representing the number of molecules in the phase space element d cd r. 
In cartesian coordinates, this means that dN  is the number of molecules with spatial 
coordinates lying in the range x t o x  +  da:, y to y +  dy, z to z  +  dz  where da:, dy , dz 
are small increments in a:, y , z, and with velocity components lying in the range u to
u-\-du, v to v + dv,w to w + dw. Note that f sp defines the total number of molecules
in a phase space element, rather than the fraction of molecules, and integrating 
over all phase space gives the total number of molecules in the system, N , rather 
than unity. Applying the single particle distribution function in velocity space to a 
physical space element dr, produces the relationship

dN  = N f s(c)dc = f sp( c , r , t ) d c d r  (2.6)

which implies that

n f s(c) = f sp(c, r , t ) .  (2.7)

since the number density in the phase space element is N/dr.

2.1.3 T he N -P article D istribution  Function

The most descriptively specific form of the distribution function is that which gives 
the probability of finding a system of N molecules existing at a point in a 6N di­
mensional phase space i.e. 3N physical space dimensions and 3N velocity space 
dimensions. The probability, P,  of finding the system in an elemental volume in 
this 6N dimensional space is represented as

P  =  ./W(ci, 7*1 , c2, r 2, cN , r N , t) dci dc2...dcjv d r x d r2...drjv (2.8) 

where Jn  is the N-particle distribution function.
A reduced particle distribution function, / r , for R  of the N  molecules is defined by

/ oo poo

/  f N dcR+1...dcN d rR+1...drN  (2.9)
oo J  —oo

and we regain the single particle distribution function in the particular case when 
R = 1. This is because the probability of finding molecule number 1 in phase space 
element d c id r !  at time t is f i { c1, r 1,t) irrespective of the positions of the other 
N  — 1 molecules. Since the molecules are indistinguishable, the number of molecules 
in the phase space element at time t is N f i , leading to

N  fi  = f sp. (2 .10)
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More details on the subject of velocity distribution functions is given in Chapter 
3 of [5]. From now on in this thesis, simply /  will be used when referring to the 
velocity distribution function and this will refer to the single particle distribution 
function in phase space.



2.2. Derivation o f the Boltzmann Equation 29

2.2 Derivation of the Boltzm ann Equation

2.2.1 T he Liouville Equation

The mathematical statement for the conservation of the N-particle distribution func­
tion in 6N dimensional phase space is the best description of the evolution of a 
system of N particles. This mathematical statement is called the Liouville equation 
(see [34],[17],[36]). Unfortunately, the Liouville equation is not particularly useful in 
itself, since the description of a real gas flow in terms of the N-particle distribution 
function, f x ,  is completely out of the question due to the massive number of inde­
pendent variables. However, just as a hierarchy of reduced distribution functions 
is possible, see equation (2.9), so a hierarchy of equations, known as the BBGKY 
equations, may be obtained by repeated integration of the Liouville equation. The 
final equation in the hierarchy defines the single particle distribution function, /i ,  
and, by making the assumption of molecular chaos and using equation (2.10), we 
can derive an equation equivalent to the Boltzmann equation.
The derivation of the Boltzmann equation starting with the Liouville equation is, 
mathematically, the most rigorous approach in terms of defining the limits of validity 
of the equation. However, the physical interpretation of each term in the Boltzmann 
equation is more readily appreciated if it is derived from first principles. A simplified 
derivation from first principles will be shown in Section 2.2.3 based on the single 
particle distribution function in phase space for a simple, monatomic, single species 
gas. However, first we must spend some time looking at binary molecular collision 
theory, which will provide the basis for deriving the term in the Boltzmann equation 
which deals with the effects of molecular collisions on the distribution function.

2.2.2 B inary M olecular Collision Theory

In a dilute gas, i.e. one in which the mean free molecular path is significantly larger 
than a typical molecular cross section, molecular collisions are overwhelmingly likely 
to be binary collisions, involving just two molecules. It is possible to make rapid 
progress if we make the assumption that these collisions are elastic, i.e. there is 
no interchange of translational and internal energy. By writing expressions for the 
conservation of momentum and energy, we can derive relationships for the pre­
collision and post-collision velocities of two colliding molecules. The binary collision 
process is shown in Figure 2.3.

Conservation of momentum implies that

where cm is the velocity of the centre of mass of the molecules. Conservation of 
energy can be expressed by the equation

mi Ci +  m2c2 =  mic* +  m2c2* =  (mi +  m2)cm (2 .11)

+  7712^2 =  m l  C I 2 +  ™ 2 C j 2 . (2 .12)
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Figure 2.3: A Binary Molecular Collision

Equations (2.11) and (2.12) lead to  the results

m 2
C-, — C m  T1 — '-m m  i + 777-2

'in
777] +  77? 2

mi -  (2.13)

where c* is the post collision relative velocity, c* — cj, and

77?i Cj +  7772C2 =  (mi  +  777-2 )c^n +  777rC2 

777iC*2 +  7/72C*2 =  (777i +  7772 ) c ^  +  777rC*2 (2-14)

where 777r =  171^ 2 / (mi +  7772), the reduced mass. Comparison of equations (2.12) 
and (2.14) reveals that

. K \  =  \Cr \ .  (2.15)

The significance of this result is tha t the determination of the post-collision velocities 
reduces to the calculation of the change in direction of the relative velocity vector.

lin e  of c e n t r e
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The equations of motion of the two molecules in Figure 2.4 are
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Figure 2.4: Intermolecular Force

m i r 'i  =  F

m 2 r  2 — —F  (2-16)

These lead to the equation

m i m 2( f i  — r  2) — ( m i +  m,2) F

and, therefore,
m r c r  =  F  (2-17)

This implies tha t the change in direction, x  °f the relative velocity vector, cr . is sim­
ply dependent on the intermolecular force model chosen. If we consider the binary 
collision in the centre of mass reference frame, as shown in Figure 2.5, we notice 
th a t just two impact param eters are required to completely specify the collision be­
tween two spherically symmetric molecules. The first of these impact param eters is 
the distance of closest approach of the undisturbed trajectories of the molecules in 
the centre of mass reference frame b. The plane in which the trajectories lie in the 
centre of mass reference frame is called the collision plane, and the second impact
param eter is chosen as the angle e between the collision plane and some reference
plane. Note th a t the line of intersection of the collision and reference frames must 
be parallel to cr . If we consider the plane normal to cr and containing O, we can
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dQ

b d bde

Figure 2.5: Impact Parameters (taken from Bird’s Molecular Gas Dynamics)

define a differential cross section a df2 for the collision, using the impact parameters 
b and e, as

crdQ = bdbde (2-18)

where dO is the solid unit angle about the vector c*. From Figure 2.5 it is apparent 
that dQ, = s inx  dxde, so that

a =  (6/sinx)|d6/dx|. (2.19)

Finally, the total collision cross section at  is defined by

/*47T /*7T

aT = adQ =  27r / as inxdx- (2.20)
Jo Jo

The determination of this integral is key to being able to describe the effect of 
molecular collisions in a gas in kinetic theory. It can be shown (see [5]) that, for 
many of the more realistic molecular models, this integral diverges and it is then 
necessary to introduce effective, or nominal, cross sections. However, for simpler 
models, such as the hard sphere model, this integral is straightforward to compute.

2.2.3 D erivation from First Principles

The most meaningful approach to a first principles derivation of the Boltzmann 
equation is to consider conservation of molecules in phase space. This is the same 
as considering class conservation in physical space. If the location and shape of an 
element in phase space does not vary in time, the rate of change of the number of 
class c molecules, N,  in that element is given by
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d N  d
- a i  =  d t { n f )d c d r  (2-21)

where /  is the single particle distribution function in phase space. The processes 
that contribute to this change are

(i) convection o f m olecules across the face o f dr  by the m olecular velocity  
c

Figure 2.6: Convection of molecules across the face of a P-space element

The number of class c molecules in dr is nfdcdr .  Therefore, the net inflow of 
molecules of this class is given by

— / n f c . e r dSrdc.
Jsr

and applying the Divergence Theorem (see Appendix B), we deduce that this be­
comes

— [  V . ( n f c ) d ( d r ) d c  = V . ( n f c ) d r d c = —c . ^ ^ - d c d r  
Jdr dr

(ii) the ‘convection’ o f m olecules across th e  face o f dc as the result o f the  
external force per unit mass

In velocity space, convection under the influence of an external force per unit 
mass, F,  is completely analagous to convection in physical space due to a velocity 
vector, c. We, therefore, have an expression for the flux of molecules across the 
surface of the v-space element that is completely analagous to equation (2.22) with 
c replaced by F  and d / d r  replaced by d / d c , i.e.
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collisions

►

Figure 2.7: Convection /  scattering of molecules across the face of a v-space element

(iii) th e  sca tte rin g  of m olecules in to  and  o u t o f dc as a  resu lt of in te r­
m olecular collisions

If the gas is assumed to be dilute, the collisions are instantaneous events at fixed 
locations in physical space. Therefore, collisions only cause molecules to change 
their positions in velocity space. They remain at the same point in physical space 
and time. Also, all collisions are assumed to be binary.

From the work done in the previous section, it is possible to show that the 
number of collisions per unit time of a test class c molecule with class Ci molecules 
is given by

Since the number of class c molecules in the phase space element is n f d c d r , the 
number of c, Ci —> c*, c j collisions per unit time is given by

where /  denotes the value of /  at c and f \  denotes the value of /  at C\ . The existence 
of inverse collisions means that the number of class c*, c j —> c, Ci collisions per unit 
time is given by

d c d r (2 .22)

nf i  Cr crdQdci. (2.23)

n 2 f  f \ C r (j d f M c i  d c  d r (2.24)

n 2 f *  f l  c*r ( a  d n ) *  d e l d c * d r (2.25)
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in the phase space element dc* d r  where /j* denotes the value of /  at c* and /* 
denotes the value of /  at c*. However, equation (2.15) shows that

and symmetry between the direct and inverse collisions means that there is a unit 
Jacobian for the transformation between the pre-collision and post-collision values 
of the product of the differential cross section and velocity space elements. This 
means that

|(a d n )d c i dc| =  |(<rd£l)* dcj dc*|. (2.26)

Expression (2.25) then becomes

n2 f* f t  Cr cr d f l d c i d c d r .  (2.27)

The final expression for process (iii) is, therefore,

/OO /»47T

/  n2(/* /i - / / i ) c ra d ^ d c id c d r .  (2.28)
oo Jo

Assembling expressions (2.21),(2.22),(2.22) and (2.28) gives

| ( n / )  +  c . M  +  =  j T  j \ W l  -  d f id d  (2.29)

which is the Boltzmann equation for a monatomic, single species gas under the
influence of an external force field, F.
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2.3 The BG K  Approxim ation
An expression for the distribution function of a gas in thermodynamic equilibrium 
was established late in the 19th by Maxwell [67], and later confirmed by Boltzmann 
himself. This has now become known as the Maxwell-Boltzmann equilibrium dis­
tribution function or simply the Maxwellian distribution function. The form of this 
distribution function is,

•Wc) =  )exP(“ ^ 2(c “  Co)2) (2.30)

in 3 dimensions, where Cq is the bulk velocity of the flow and (3 = (2RT)~1/2 =  . 
^ m /{ 2 k T ) .  R  is the gas constant, T  is the gas temperature measured in Kelvin, 
m is the molecular mass and k is the Boltzmann constant (1.380 650524 xlO-23 
Joules/Kelvin). A helpful derivation of the Maxwellian distribution function is pro­
vided by Vincenti and Kruger in [48]. It is important to note that /o is a symmetric 
function, i.e. cX0 )Cy cyQ̂ cz qzo) — (cj, cxoi))Cy CyOiCz Qzo) —
f (cx — cxo, — (cy — cyo),cz — cz$)etc. This is why it is possible to define a single static 
pressure for gases in equilibrium, since px — py = pz without ambiguity (see section 
2.4).

Simplified versions of the full Boltzmann equation exist in which the right-hand 
side term is modelled rather than expressed explicitly, as in equation (2.29). The 
best known model equation due to Bhatnager, Gross and Krook [69] is called the 
BGK equation. The assumption is made that the effect of molecular collisions, in a 
non-equilibrium gas, is to force it back to equilibrium. This is indicated graphically 
in Figure 2.8.

0 .0 1 4
equilibrium  distribu tion  
norvequilibnum  d istribu tion

0.012

0.01

0 .0 0 8

B  0 .0 0 6

0 .0 0 4

0.002

-8 0 0 -6 0 0 -2 0 0-1000 -4 0 0 0
m o le c u la r  v e loc ity

200 4 0 0 6 0 0 8 0 0 1000

Figure 2.8: Effect of the BGK Collision Term on the Distribution Function

The integrals on the right-hand side of equation (2.29) mathematically describe 
this process and can, therefore, be replaced by the term v(c)((nfo) — (n /)), where
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n is the molecular number density, v{r , t)  is a term proportional to the molecular 
collision frequency and /o is the local Maxwellian equilibrium distribution function. 
The BGK equation may therefore be written as

J l(ra /)  +  c . ^ p .  + F - ^ p -  = v(r , t)((nfo) -  (n f )). (2.31)

The inclusion of the equilibrium distribution function means that the BGK equation 
is still a non-linear integro-differential equation, because /o is a function of the 
stream velocity, Co, and the temperature, T, which are obtained by taking integrals 
over / .  However, computationally, the BGK term is significantly less demanding 
than the full right-hand side term.
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2.4 M oments of the D istribution Function
The form of the distribution function at any point in physical space is not particu­
larly useful in itself, but knowledge of the distribution function allows us to calculate 
more familiar gas properties, such as density, p, temperature, T, pressure, p , and 
bulk velocity, v, by taking moments of the distribution function.

At each point in physical space, the mean value of any molecular quantity, Q , is 
defined as

By setting Q to the appropriate molecular quantity, we can obtain the macroscopic 
properties as follows;

-density p: Q = nm  where m  is the molecular mass

-bulk velocity v*: Q = Ci
-static pressure p*: Q = nmc^Cj where c\ =  c* — Vi (thermal /  peculiar velocity)

This definition of static pressure is clearly a vector quantity. The vectorial nature 
of pressure is a true characteristic of a non-equilibrium gas. In the more familiar 
world of contimuum gas dynamics, an equilibrium gas is always assumed resulting 
in a pressure vector that has each directional component equal. This is the subtle 
fact that allows us to specify a single scalar quantity for static pressure. We are 
more accustomed to dealing with pressure as a scalar and so the static pressures 
specified in this work will be taken as the mean of the Cartesian components.
To determine the temperature, we simply use the definition of kinetic temperature,

It is also possible to define non-standard macroscopic gas properties that may 
be of interest in certain applications. The algorithm for performing these moment 
integrals will be detailed in the following chapter.

(2.32)

(2.33)
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In this chapter we will look at the solution approach that has been adopted to 
solve the collisionless, BGK and full Boltzmann equations. The scheme is based 
on a two step discontinuous Taylor-Galerkin methodology. The continuous Taylor- 
Galerkin procedure is a method that has been widely used previously ([25],[53],[73],[96]).

3.1 D is c re tis a tio n  o f P h a s e  S pace

As we discovered in the previous chapter, the dependent variable of the Boltzmann 
equation, the distribution function, is defined over both physical and velocity space, 
known collectively as phase space. We must therefore adopt a suitable discretisation 
procedure for both of these domains.

3.1.1 P hysica l Space

In this thesis, we restrict ourselves to problems in two physical space dimensions. 
The two dimensional p-space domain, Dr , is discretised into an unstructured assem­
bly of discontinuous, linear, triangular elements. The unstructured nature of the 
discretisation allows meshing around complex geometries to take place and the dis­
continuous nature of the elements has a number of benefits, especially for hypersonic 
applications. These benefits include excellent shock capturing properties, this will 
be dem onstrated in section 4.1.6, allowing the algorithm to be parallelised relatively 
easily, explicit local conservativity and the potential for variable order elements, 
i.e. neighbouring elements need not be of the same order. The major disadvantage 
of the discontinuous elements is a significant increase in the memory requirement. 
However, the ease of parallelisation offsets this disadvantage to some degree.

f(c.t)

In te r-e lem en t

fluxes

Figure 3.1: Discontinuous representation of the solution

It is clear from Figures 3.1 and 3.2 th a t the elements do not share nodes. They must 
therefore communicate by means of inter-elem ent fluxes. Details of the construction 
of these fluxes will be provided in subsequent sections.

The nodes associated with an individual element will be referred to as element nodes 
or discontinuous nodes. It is im portant to make a distinction between these nodes
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Mesh ntxio

r  *'

Element
mxics

Physical 'pacedom ain. U<

Figure 3.2: Physical Space Discretisation

and the mesh nodes used for the output of results, which are comprised of a number 
of element nodes which meet at a point as shown in Figure 3.2. The solution a t these
mesh nodes is constructed from a weighted average based on associated element size.

3.1.2 V elocity Space

The two dimensional v-space domain, Dc, is, in principle, infinite in extent. However, 
we must place a finite limit on the radial extent of the domian, which in real, 
physical terms means placing a limit on the maximum possible speed of a molecule. 
We are, thereby, making the assumption that any molecules travelling faster than 
this critical speed have negligible impact on the bulk flow properties. Gauging 
where this limit should be placed is critical for ensuring a balance between accurate 
results and computational efficiency. A standard rule of thumb for the limit is tha t 
the maximum speed in v-space should be at least several times the mean therm al 
molecular velocity [5]. The therm al velocity is defined as the component of molecular 
velocity relative to the fluid velocity.

An order of magnitude estim ation for the value of the mean thermal molecular 
velocity can be calculated using some simple kinetic theory results. In section 2.4, 
we noted tha t we can regain the macroscopic gas flow properties by taking moments 
of the distribution function. This moment calculation for the non-equilibrium static 
pressure in a given direction was shown to be

n m c'c '/(c ) dc (3.1)

Taking an average over three spatial dimensions,

p = 1/3 pd2.

so that the rms thermal molecular velocity may be written as

(3.2)
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\ / T  =  V 3R T.  (3.3)

Extent o f V-space -  several 
thermal velocities

Figure 3.3: Velocity Space Domain

Two approaches for the discretisation of v-space will be detailed in the following 
sections and results using both methods shown in the following chapter.

V -S p ace  Q uads

The most straightforward discretisation approach is to use standard structured, 
continuous, quadrilateral, linear elements to provide a mesh for the circular domain, 
Qc as shown in Figure 3.4. The major advantage of this approach is its simplicity 
and the ease in which integrals over the full domain or a sector of the domain may 
be performed. The im portance of this will become apparent in sections 3.5.3 and
3.3. The significant disadvantage of this approach in terms of discretisation, is the 
relatively large number of nodes required to achieve a given level of accuracy in 
computing the integrals.

S p ec tra l V -sp ace

As the v-space domain contains no internal geometries, it can be discretised as a 
single high order (spectral) element. This is advantageous for efficient integration 
over the domain. However, in order to apply a high order discretisation, the domain 
must be mapped from Cartesian or polar coordinates in real space as shown in Figure 
3.3 into a standard quadrilateral element in the (77, Q  plane as shown in Figure 3.5. 
The mapping is achieved using the transformation
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Cy

T c  -  limit of velocity 
space domain, radius 
~ several thermal 
velocities

Cx

Velocity space domain. Q c  

Figure 3.4: Velocity Space Domain Discretisation using Linear Quads

2r
T]= -------1

rv

C  =  - •7r
(3.4)

where (r, 6) are polar coordinates in real v-space and rv is the radius of the v-space
domain, i.e. the maximum molecular speed. A high order quadrature method is
then applied to the element. In the 77 direction, a Lobatto quadrature is applied
whereas in the (  direction a constant spacing /  constant weighting discretisation
is applied. This results in a rotationally symmetric distribution of sampling points
with no preferred radial direction, when the points are mapped back into real space. 

-1 +1

Figure 3.5: A Standard Quadrilateral Element in the (77, ()  Plane

The coordinates of the quadrature points and the associated weightings in the (77, £)
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plane are shown in Figure 3.6 for a (20 x 20) discretisation. If these points are then 
mapped back into real space, the (n, v) plane, the corresponding coordinates and 
weights are as shown in Figure 3.7.
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Figure 3.6: Q uadrature Coordinates and Weights in the (//,() Plane

One of the dangers in approximating a function using spectral methods is the 
Runge phenomenon [1 0 0 ] which can occur when approximating functions using high 
order polynomials. However, it is the accuracy of the integrals of the distribution 
function over v-space th a t is of concern here. This is because, ultimately, it is the
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Figure 3.7: Q uadrature Coordinates and Weights in the (u,v)  Plane

macroscopic variables tha t are of interest which are computed by taking moments of 
the distribution function (see section 2.4). Testing of this method for typical forms of 
the distribution function showed that this spectral approach was perfectly capable 
of accurately performing the necessary integrals. A more rigorous m athematical 
analysis of quadrature methods for circular domains is contained in [62].
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3.2 A Two Step Discontinuous Taylor-Galerkin  
Procedure

3.2.1 T he T aylor-G alerkin  M ethod for th e Scalar Convec­
tion  Equation

The two step Taylor-Galerkin method is the finite element equivalent of the Lax- 
Wendroff method in finite difference schemes. A two step version of this method 
has been adopted to tackle the Boltzmann equation. It will become apparent that 
underpinning the Boltzmann solution approach is a relatively simple scalar convec­
tion algorithm. A single step Taylor-Galerkin algorithm for the scalar convection 
equation is presented in this section for completeness and to demonstrate the basis 
of the second order accuracy in physical space and time.

The scalar convection equation for a scalar variable, (7, can be written as

dU dU n 
dt + C dr

(3.5)

where c is the fixed convection velocity. Consider a Taylor series expansion for U in 
time of the form

r \ T T

y m +1 =  Um +  A t f££
dt

m A t 2 d2U m
+ 2 dt2

+  0 ( A t 3) (3.6)

where the superscript, m denotes an evaluation at time t = tm and the timestep 
A t  = tm + 1 — tm. We can remove the time derivatives from (3.6) by substituting 
from the governing equation (3.5) as

dU__ _
dt °  dr  dr

(3.7)

where F  =  cU. It is often more convenient to write expressions such as (3.7) in the 
indexed format,

dU = _  =
dt 01 dr 4 dr 4

(3.8)

where F  = CiU and the Einstein summation convention is implied. Similarly, the 
second time derivative is

d2U d dFj 
dt2 ~  d r ^  d r /

Substituting into equation (3.6), it follows that

(3.9)

r\
j j m + l  _ l j m  =  A U =  _ At

dn 2 dr j
(3.10)

ignoring the 0 ( A t 3) terms.
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3.2.2 N otation

We must be able to specify our discretised unknown, n f  in terms of time, space 
and velocity. Therefore, we will employ the notation ( n / ) ^ c to mean the value 
of n f  at timestep m, spatial coordinate r  and velocity coordinate c. This sub­
script/superscript convention will also be adopted for other variables.

3.2.3 Solution A lgorithm  for the C ollisionless B oltzm ann  
Equation

The collisionless Boltzmann equation, in the absence of any external force fields, is 
a good place to start in developing an algorithm for solution of the full Boltzmann 
equation since the third term on the left-hand side of the equation, the force field 
term, and the right-hand side term, the collision term, are both set to zero. This 
results in a considerable simplification. The collisionless Boltzmann equation, in the 
absence of external force fields, has the form

(,.n,
It is apparent that the form of this equation is not disimilar to the scalar convection 
equation that was studied in section 3.2.1, except that now the dependent variable, 
n / ,  is a function not just of space and time, but also of velocity, c. However, if we fix 
our position in v-space, i.e. hold c constant, then the form of the collisionless Boltz­
mann equation is identical to that of the scalar convection equation. This allows 
us to develop a collisionless Boltzmann algorithm based on the scalar convection 
algorithm described in section 3.2.1, by looping over the nodes or sampling points 
in v-space and applying an adapted scalar convection algorithm at each v-space 
node independently. The convection velocity used is given by the coordinate of the 
v-space node in question. A Galerkin weighted residual method is used together 
with the approximation

Cn f ) T H  =  ( n f ) ?  -  (3'12)

to obtain the increment A (nf )  in a two-step manner.

F irs t S tep

The first step is equivalent to computing the term inside the bracket on the right- 
hand side of equation (3.10). A piecewise constant increment A (n /) reic is computed 
on each physical space element according to

(3.13)
re,C



3.2. A  Two Step Discontinuous Taylor-Galerkin Procedure 49

where the summation k extends over the three nodes of element re, A t  is the global 
timestep determined by the Courant stability condition

A t  = (3.14)
VI I max

with hmin representing some minimum characteristic element size in the physical 
space mesh and |v |TOajc denoting the maximum velocity in the velocity space mesh. 
Here, JV*. is the standard, piecewise, linear finite element shape function associated 
with node k in physical space and

FTkc = F i {(nf)Zc) = c { n f ) l c (3.15)

The element fluxes at the half timestep are then approximated by the piecewise 
linear discontinuous representation

F r +i]re,c = m n f ) l c  + A (nf)re,c)Nk (3.16)

Second S tep

The second step is the discontinuous Galerkin weighted residual approximation to 
equation (3.6), given the computation of the half-timestep fluxes in step 1. A 
piecewise linear approximation for A (nf )  on each physical space element is assumed 
which is discontinuous at the element edges. The element nodal values of the solution 
increment over the complete timestep are determined according to

ML\reA ( n f ) k,c = A t  f  F ^ N kd r re - A t  f  F ^ ^ - d Q re (3.17) 
v r  7»g «/ Qj'g ^

where Mi\re is the standard, lumped, 3x3 physical space element mass matrix, 
Fn c 2 denotes the normal component of the upstream flux at the physical space 
element edges for a velocity of c (this is the inter-element flux mentioned in section 
3.1.1 which will be dependent on boundary conditions if the edge is at a domain 
boundary), r re is the physical space element boundary and Dre is the physical space 
element domain.

For inter-element edges, the direction of the flux across the edge must be calcu­
lated based on the convection velocity determined by the velocity space mesh node 
under consideration. If the flux is ‘into the element’, the integral in the first term 
on the RHS of 3.17 is given a value based on the corresponding upstream element 
edge flux, i.e. with reference to Figure 3.8, 2 =  |c .n ( (n /) J l+a +  (nf)™+2). If
the flux is ‘out of the element’, the same term is given a negative value based on the 
normal edge flux at tha t edge in the element. This ensures the local conservativeness 
of the scheme, since the sum of the fluxes into the element, minus the sum of the 
fluxes out of the element, will give the mass increase within the element.
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Figure 3.8: Construction of the Inter-element Flux
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3.3 M om ents o f the D istribution Function

The method of taking moments of the distribution function, as described in section
2.4, again depends on the nature of the v-space discretisation. The integral tha t we 
are computing, however, is always

Q = /oo

Q f ( c )
■oo

dc (3.18)

3.3.1 M om ents using V -Space Quads

In the case where the v-space has been discretised using linear quads, equation 
(3.18) may be performed as

f i  E f t l  Q[nf \ eA  
£ f = l  M e A e

(3.19)

where N  is the number of velocity space elements,[nf]e is the mean value of (n f ) 
for the four element nodes and Ae is the area of the v-space element.

3.3.2 M om ents using Spectral V -Space

In the case where the v-space is discretised using the spectral method, we must 
compute the integral in equation (3.19) by transforming the coordinate system from 
the real v-space coordinates to the (77, Q  plane. Moving from Cartesian to polar 
coordinates gives us

du du
u =  r  cos 0 => —  =  cos 0, —  =  — r sin 1 

or 06
dv dv

v =  r  sin 6 => —  =  sin 0. —  =  r  cos a. 
or 06

(3.20)

The Jacobian, J , of the transformation from Cartesian to polar coordinates is there­
fore

du du

=  r  cos2 0 +  r sin2 6 =  r\ J \  =
dr d6 
dv dv 
dr dO

so that

/ oo p+TT r rv

Qf(c)dc=>  /  /  Q f ( r , 0) r d r d 0.
■OO J  — 7T JO

The mapping from the real polar v-space to the (77, £) plane gives

(3.21)

(3.22)
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so that the Jacobian, J , of the transformation is

dr dr
— 0drj dC _ 2

d6 de
0 7T

dr\ d (

We can rewrite equation (3.22) as

Q = J  J  Qf (v,  +

so that the integral in equation (3.18) may be evaluated as

q  _ I2tiwiQ(nf)i\J\ 
Y,?=1wi(nf) i\J\

(3.24)

(3.25)

(3.26)

where the summations are over all the v-space sampling points in the discretisation, 
Wj is the weighting associated with the point, as described in section 3.1.2, and 
\J\ =  i r r j fa  +  l)/4 .
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3.4 Inclusion of the Collision Term

3.4.1 T he BG K  C ollision Term

The BGK equation in the absence of an external force field may be written as

=  * )((" /» )_  ("/))• (3-27)

The additional BGK term can be treated as a source term, with v{r, t)  computed 
as

/+oo

ot \c — Ci\f  dci (3.28)
■OO

where at  is the total collision cross section defined in section 2.2.2. If we make the 
assumption of hard sphere molecules, we obtain the simplest possible expression for 
the total collision cross section, gt =  ?rd2, where d is the molecular diameter. The 
Maxwellian distribution function, /o, is computed as in equation (2.30).

In the two step procedure described for the collisionless Boltzmann equation 
(3.12) must now be modified as

( n / ) : +l =  (n f ) T + (y ) Q m -  (3'29)

This means that the first step, formerly equation (3.13), is now written as

(3.30)^ { n J )re,c — 0 ^ Q k ,c ^ k o ik
d r ‘ J re,C

and the second step, formerly equation (3.17), is now written as

M L] r M n f ) k , c  = A tM L\reQm+i +  A t f  F ^ N kdTre -  At f  F™+J ^ d C l re,c
•IT re ’ JQre ' &  *

(3.31)
Here Qm = v((nfo) — (n f ) m) and =  1/3(Q^C +  Q™c +  Q™c )• ln the BGK
formulation shown here, the term v  can be regarded as a collision frequency term 
and governs the rate at which the distribution function is restored to equilibrium. 
The form of the BGK collision term is such that the distribution function will be 
restored to equilibrium in a timescale,

t  =  0 (1 ). (3.32)

This places a further restriction on the allowable timestep size, in addition to the 
Courant condition, equation (3.14), that

A t < ^ .  ' (3.33)

We therefore have two limits on the allowable timestep size. The Courant limit, 
condition (3.14), is fixed by the mesh geometries and is a function of advection
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instability, whilst the BGK limit, condition (3.33), varies as the solution proceeds 
through time since it is dependent on the molecular collision frequency which, in 
turn, is dependent on pressure and temperature. This has the obvious effect of 
increasing the computational demand as density, and hence, pressure increase, since 
the timestep size must reduce.

It should also be clear that the BGK approximation provides no guarantee that 
the integral of the distribution function over v-space is preserved as it is forced to 
equilibrium. This means that we have lost the local conservativity that was ensured 
in the collisionless Boltzmann algorithm. This means that solutions based on the 
BGK approximation are only valid for flows that experience small perturbations 
from the Maxwellian distribution function. In real, practical terms, this means that 
the BGK solver will only be able to handle flows with up to Mach 2 strength shocks. 
This will be shown in the following chapter.

3.4.2 T he Full R ight-H and  Side Collision Term for Hard 
Sphere M olecules

The full Boltzmann equation right-hand side is dealt with in a very similar way to 
the BGK right-hand side in terms of the algorithmic steps. In fact, the two step 
procedure outlined in section 3.4.1 can be used. However, the source term, Q must 
now be modified to

/OO /*47T

/  ™2(/7 i*  ~ / / iK < rd f id c x  (3.34)
oo J  0

This equation holds in three dimensions. In the three dimensional case, Bird [5]
recognises that for the simplest molecular interaction model, that of hard sphere
molecules, f * n o df2 reduces to red2, which is termed the total collision cross section, 
where d is the molecular diameter. The number density, n, is independent of molec­
ular velocity and can therefore be brought outside the integral, allowing equation 
3.34 to be rewritten in two dimensions as

/oo

( / 7 i * - / / i M d  (3.35)
-oo

Here all the terms take on the same meanings as described in the Boltzmann equation 
derivation contained in section 2.2.3.

It is clear that computing this full source term will be significantly more ex­
pensive in terms of computation time in comparison with the BGK simplification. 
This is because for every sampling point in velocity space, collisions, with molecules 
travelling with velocities at every other point in velocity space must be considered 
and the post collision velocities calculated, based on the binary collision theory of 
section 2.2.2.
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3.4.3 T he Full R igh t-H an d  Side Collision Term for Variable 
Soft Sphere M olecules

Unfortunately, the hard sphere molecular interaction model is overly simplistic. 
Koura and Matsumoto ([65],[66]) suggest a modified molecular collision model called 
the variable soft sphere (VSS) model. In this model, the effective collision diameter, 
d  varies as

d =  d r e f i ^ y  (3.36)

Here, the subscript ref  denotes reference values, cT is the magnitude of the relative 
velocity vector of the pre-collision velocity components and v is a user-specified 
dimensionless parameter, not to be confused with collision frequency as in the BGK 
approximation! It is clear that, now, the effective collision cross section is a func­
tion of the size of the relative velocity vector. The greater the relative velocitiy 
of molecules, the smaller the effective cross section of a potential collision. This 
requires that the term d  in equation (3.35) must be kept inside the integral.

Also, in the VSS model, the deflection angle is calculated as

X =  2cos_1((5/d)1/a) (3.37)

Here, b is the distance of closest approach of the undisturbed pre-collision trajecto­
ries and a  is a user-specifed parameter ranging between 1 and 2, not to be confused 
with the absorption coefficient used for the wall boundary condition! In the finite 
element discretisation, however, we consider the value of the collision term at a fixed 
node in physical space, implying that the parameter b is effectively zero. A Monte 
Carlo sampling procedure is therefore employed to randomly select the pre-collision 
positions of molecules with velocities c  and C\ within a circle of radius d  centred on
the discontinuous p-space node under consideration as shown in Figure 3.9. This
determines the direction in which the relative velocity vector will deflect. However, 
since this simulation is two-dimensional, the distance of closest approach of the 
undisturbed trajectories, 5, is still zero. The parameter, 6, is, therefore, randomly 
sampled between 0 and d  to be used in equation (3.37) to determine the magnitude 
of the deflection angle.

Equation (3.34) is now written as

/ oo

(/* /*  -  f f i )  nd2 Crd C l (3.38)
OO

Figure 3.4.3 shows a typical pattern of the pre- and post-collision velocities for a 
collision molecule with a pre-collision velocity (it =  270m / s , v  = 200m/s) colliding 
with an assembly of test molecules positioned at the quadrature sampling points in 
v-space. In this case, a = 1.5. Figure 3.10(a) shows the pre-collision velocities of 
the test molecules. Figure 3.10(b) shows the post-collision velocities of the collision 
molecules based on collisions with each of the test molecules. Figure 3.10(c) shows
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positions of pre 
molecules

discontinuous /  
p-space node

\  p-space finite 
element

Monte Carlo sampled 
positions of pre-collision 
molecules

Figure 3.9: Monte Carlo sampling to determine the collision deflection angle

the post-collision velocities of each of the test molecules. A ring of post-collision 
velocities centred on the coordinate (u = 270ra/s,u  =  200m /s) is observed in both 
post-collision figures. This is due to the concentration of sampling points at the 
origin in the Lobatto quadrature discretisation.

It. is essential tha t momentum and energy are conserved in each collision. This 
is ensured by the binary collision theory detailed in section 2.2.2. If this is achieved, 
the integral of (n /)  over v-space should not be altered by collisions and. hence, mass 
is conserved.

As in the hard-sphere molecule approach, the integral in equation (3.35) is eval­
uated using the spectral method. This was explained in more detail in section 3.3.

3.4.4 N um erica l E v a lu a tio n  of th e  Full B o ltzm an n  Collision 
In teg ra l

A convenient method for evaluating moment integrals of the distribution function 
was detailed in section 3.3. This procedure can be adapted to compute the full 
Boltzmann source term in equation (3.35) as

N

(3.39)
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Figure 3.10: Example of collision dynamics using the VSS model and Monte Carlo 
sampling

and in equation (3.38) as
N

Q(ci) =  7r ^ i 0j ((n /)J(n /)*  -  (n /M n/) . ,)  d2 \cr(ij )\\J\ (3.40)
3=1
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where Q(ci) is the source term for v-space node z, the summation is over all other 
v-space nodes j ,  Wj is the quadrature weight associated with node j ,  (n f ) x is the 
pre-collision value of (n f ) associated with node x, (n/)* is the post-collision value 
of (nf )  associated with node x , \cr(ij)\ is the magnitude of the relative velocity 
between nodes i and j ,  d is the computed collision cross section diameter, and 
\J\ =  7T rKr/j + l)/4 .
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3.5 Boundary Conditions

For the standard equations of continuum fluid mechanics, i.e. Navier-Stokes, Euler, 
we consider the conditions that must be placed upon the macroscopic variables at the 
boundaries of the domain of interest. For example, we might assume zero mass flux 
across a wall, or zero pressure gradient across an inflow. Also, the number of con­
ditions placed on each boundary will be determined by the nature of the governing 
equations; elliptic, parabolic or hyperbolic. However, when solving the Boltzmann 
equation, our dependent variable is the distribution function and we must do a little 
bit more groundwork before we can establish the condition that must be placed upon 
this variable at the boundaries of the physical domain. A study of the literature re­
veals that there is no standard approach for dealing with these boundaries. A popu­
lar approach for solid wall boundaries, especially when applying a lattice Boltzmann 
method, is the bounce back technique ([113],[49],[50],[4]). Lattice Boltzmann tech­
niques for open boundaries (inflows/outflows) are described in ([113],[4],[54],[116]). 
There are even more variations in boundary treatm ent approaches when studying 
the literature for fully discretised kinetic schemes. For example, Filbet and Russo 
[87] present a boundary approach applied to a high order time-splitting method 
for solution of the Boltzmann equation, Pareschi and Trazzi [99] present a bound­
ary approach for their time relaxed Monte Carlo (TRMC) method and Tallec and 
Mallinger [61] present a method of coupling a Boltzmann domain to a Navier-Stokes 
domain using, what they term, half-fluxes. Each approach has its merits, but it is 
unclear which is the most appropriate in any given situation. The approach adopted 
here borrows ideas from several of the afore-mentioned references.

Application of the boundary conditions in the algorithm is achieved by an appro-
777 ~priate modelling of FnC 2 in the first term on the right-hand side of equation (3.17) 

in the collisionless Boltzmann algorithm, and the second term on the right-hand side 
of equation (3.31) in the BGK algorithm. Since the choice of flux at the boundary 
is dependent on the molecular velocity at a given node in v-space, we are implicitly 
accounting for the hyperbolic or elliptic nature of the problem. This means that 
there is no need to adjust the boundary procedure for subsonic, sonic or supersonic 
inlets or outlets.

Essentially, three types of boundary need to be considered; inflow (inlet), outflow 
(outlet) and wall (solid).

3.5.1 Inflow

If the assumption is made that the gas flow entering the domain, as in Figure 3.11, 
is in thermodynamic equilibrium, and we know the macroscopic properties of the 
gas, i.e. density, bulk velocity, pressure, temperature, then we are in a position to 
be able to constuct the Maxwellian distribution function for the inflow.

For element edges at an inflow boundary, calculation of the inter-element flux 
will depend upon whether the molecular velocity is in a direction that is ‘into’ the
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P, 

P,

T*
1L

V:0

Figure 3.11: An Inflow Boundary

L

element (c .n  < 0), as in the top element in Figure 3.12, or the molecular velocity 
is in a direction th a t is ‘out of’ the element (c.n  > 0 ) as in the bottom  element in 
Figure 3.12.

B U L K  F L O W .  Co

Figure 3.12: Element Edges at an Inflow Boundary

In the first case, the molecular velocity is directed into the element, and the 
inter-element flux is constructed as

Fn,c 2 = c.n(  —  )exp (-/?2(c -  c0)). (3.41)
7T

(/52/ 7t) exp(—(32(c — c0)) is the Maxwellian distribution function, equation (2.30), 
modified to its two dimensional equivalent, where j3 — (2 R T ) ~ lC =  (m /2 /cT)1//2.

If the molecular velocity is directed out of the element, the inter-elem ent flux is
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constructed as

3.5.2 O utflow

i  1 // , .vin+t /0 , ~,

e , . c  =  2 C ' n ( ( " - / ) i  +  ( n / ) 2 ’ )• ( 3 - 4 2 )

If a domain boundary is an outflow, as in Figure 3.13, the boundary condition 
application is straightforward.

a

Figure 3.13: An Outflow Boundary

The method of construction of the inter-elem ent flux is independent of the di­
rection of the molecular velocity, i.e. it is independent of c.n.  The inter-element 
flux is constructed as

C c +i =  - U n ( ( n / r O  ( n / r f l (3.43)

and can, therefore, take on a positive or negative value.

B U L K  F L O W .  C o

Figure 3.14: Element Edge at an Outflow Boundary

3.5.3 W all

At a wall, the condition th a t must be enforced is zero mass flux across the boundary. 
In a kinetic theory description, this is expressed as
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Fn,c d c d f Y  =  0 (3.44)

where T \c  — (c .n) f (c , r , t )  and Tr is the physical space domain boundary. This 
condition is ensured by an appropriate modelling of molecular collisions with the 
wall. We make the assumption that a certain fraction, a , of molecules are absorbed 
by the wall and rem itted in equilibrium with the wall. i.e. they are reflected back 
into the domain with a Maxwellian distribution based on the wall tem perature. This 
is termed diffuse reflection. The remaining fraction. (1 — a), are not absorbed by 
the wall and simply reflect directly back into the domain. This is termed specular 
reflection. These two models, for the interaction of a flux of molecules with a solid 
surface, was first suggested by Maxwell [67]. The term  a  is known as the ‘absorp­
tion coefficient’ and the resulting distribution functions, in terms of the absorption 
coefficient, for molecules impinging on a wall and reflecting from a wall are shown 
in Figure 3.15.

The distribution function of the net, reflected flux of molecules is, therefore, con­
structed as

and n  is the outward facing unit normal at the wall, as shown in Figure 3.16. If Tw 
is the wall tem perature and /? is the gas constant, then M w is determined as

(nf)  = ( l - a ) R f ( c ,  r J )  + a M f ( c . r , t )

Figure 3.15: A Wall Boundary

f ( c , r , t )  = ( l —a ) R f ( c , r , t )  + a M f ( c , r , t ) ,  for c .n  < 0 (3.45)

where a  is the absorption coefficient

R f (c ,  r,  t) = f ( c  -  2n (n .c ) ,  r,  t) 

M f ( c . r .  t) = rj(r. t )M w(c)

(3.46)

( 3 . 4 7 )

(3.48)

The parameter rj is used to enforce the condition in equation (3.44) i.e. it is used to 
ensure conservation of mass at the the wall, which implies tha t
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V

'I

V -space domain

u

wall

Figure 3.16: Coordinate transform ation in V-space under Specular Reflection

relaxed Monte Carlo procedure for solution of the Boltzmann equation.

M ath em atica l P ro o f  of th e  W all B o u n d ary  C ond ition

We saw in equation (3.44) th a t the condition of zero mass flux across a wall is 
written as

This statem ent is essentially th a t the integral of the distribution function over the 
region of v-space outside of the domain bounded by the wall is identical to the 
integral of the distribution function over the region of v-space inside the domain. 
These regions are indicated in Figure 3.17. If the reflected wall flux is constructed

as described in the previous section, we can write the left hand side of equation
(3.50) as

(3.49)

A technique similar to this has been applied by Pareschi and Trazzi [99] to a time

F„, c d c d r r =  0. (3.50)
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Figure 3.17: D istribution Function a t a Wall Boundary

r r+oo

/ /  FUyc  dc d r r
J rv  J — oo

r r+oo

= / c . n f  ( c , r , t )  dc dT r
Jrr 4—oo 

since Fn ĉ = c . n f c

= I c . n f ( c , r , t )  dc +  / c .n ( l  — a ) / ( c  — 2 n (n .c ) , r ,  t) dc +
4 rr \ J c . n >o J c n <o

ac.nr) (r , t )M w(c) dc I d r r
J c n <  o

by splitting the integral over v-space into c .n  > 0  and c .n  < 0  parts, and substi­
tuting for /  from equation (3.45).

It is shown in Appendix A, that this expression reduces to zero and, hence, the 
condition described by equation 3.44 is achieved and we have zero mass flux across 
the wall.

Now tha t we have a method for modelling the distribution function at a wall 
whilst ensuring zero mass flux across the wall, we must turn our attention to the 
construction of the inter-elem ent flux term. For molecular velocities towards the 
wall (c .n  > 0), as in the left-hand element in Figure 3.18, the inter-element flux is

09756598
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constructed as

Figure 3.18: Element Edges at a Wall Boundary

nm41 1 ,, , rxm+
C ,.c  =  2 C n ( W ) i  + ( n / ) 2 (3.51)

At a wall boundary, the construction of the inter-element flux will depend on the 
direction of the molecular velocity. For molecular velocities away from the wall 
(c.n  < 0), as in the right-hand element in Figure 3.18, the inter-element llux is
constructed based on the reflected distribution function defined by equation (3.45),
so that

Fn,c 2 = c .n ((l -  a ) R f m+5 (c, r , t) +  « M /m^ ( c ,  r ,  t )). (3.52)

Here, a  is the absorption coefficient and

R f Tn+̂ ( c , r , t )  = / m+2 (c — 2 n ( n . c ) , r , t )  (3.53)

M /m+5(c , r , t )  =  7?m+5 (r,t)M u;(c). (3.54)

If Tw is the wall tem perature and R  is the gas constant, then M w is determined as 
in equation 3.48 and

;„m+i {r, t) =
Jc.n(r)>  o

/ m + 2 (c, r ,  t.)\c.n(x) | dc
(3.55)

M w(c) \c .n (x) \  dc
Jc.n(r)<  o

The calulation of rj will depend on whether the v-space domain is discretised using 
linear quads or the spectral method.

C alcu la tion  of rj using v-space quads

The numerator in the term on the right-hand side of equation (3.55) is determined
as

N

Jc.n(r)>o

^  |c .n | [nf]eA( 

/ (c , r ,  t ) \ c .n ( x )  \ dc =  e=1
N

(3.56)

e—\
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where the summations extend over all elements with at least two nodes with velocity 
coordinate (it, v) such th a t c .n  > 0 i.e. the shaded elements in Figure 3.19, [nf)e is 
the mean value of (n f )  for the four element nodes and A e is the area of the velocity 
space element.

t  o-

LA LLj A L  I L J A A

* — «>- -O 7*

4̂ ---- <>--------- <>----

Velocity space domain, Q c

Figure 3.19: Elements to he included in calculating rj

The denominator in the term  on the right-hand side of equation (3.55) can be 
calculated analytically as

'c.n(r)<  o
Mw(c ) \ c .n ( r ) \d c  —

f + oo r+oo  _ u 2 _ v 2

/  /  |u| exp(— —-) exp (-—— ) du dv
J — OO J 0 ^CLlw ZIx l w
since |c .n ( r ) | =  |w| with reference to Figure 3.19

+”  , - v \ 2 RTWa
exp- o -y!- )— -— du

O O 2 RT,
•+ o o

since
ro
•+oo

=  RTV

u e x p (—— ) du =  -  
a 2

eXp(2l k )dV

— RTwtt2 (2RTW) 2

f +oc - v 2
/  exP(— )

J —oo
since dv =  7T 2 u 2

= (3.57)

The above derivation has been conducted based upon the wall orientation as in Fig­
ure 3.19, but due to the spherical symmetry of the Maxwellian distribution function, 
the final result is applicable to any general case of wall configuration.
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C alcu la tio n  of 77 using  sp ec tra l v -sp ace

As the approach for spectral v-space discretisation outlined in section 3.1.2 is rota- 
tionally symmetric about the origin in term s of the locations of the sampling points, 
it is straightforward to compute integrals over half of the v-space. The procedure 
for computing integrals over the full v-space was detailed in section 3.3.2and the 
simple modification th a t is required to integrate over half of the v-space is to only 
include sampling points for which c .n  >  0  in the summation process, i.e. sampling 
points th a t fall within the shaded region in Figure 3.20.

This allows the determ ination of the integral in the numerator on the right-hand 
side of equation (3.55). The integral in the demoninator can again be determined 
using the analytical approach detailed in the preceding section.

W all B o u n d ary  R elax a tio n

For high subsonic and supersonic applications, a wall boundary relaxation procedure 
is required and applied over the first few hundred timesteps. This procedure effec­
tively ‘switches on’ the wall boundary gradually rather than instantaneously at the 
first tim estep allowing convergence towards a steady state from a uniform free-flow 
initial condition.

The im plem entation of this is straightforward and simply requires tha t the in­
coming flux a t a wall boundary is modified over the initial r timesteps as

Figure 3.20: Sampling points to be summed in calculating 77

F ? Z * = ( l - - ) F a u t  + ( - ) F waUr r
(3.58)

where Fout is the equivalent outlet flux (as detailed in section 3.5.2) and Fwau is the 
wall flux (as described in section 3.5.3).



68 Chapter 3. The Solution Algorithm

3.6 O b ta in in g  th e  S o lu tio n  a t  th e  M e sh  N o d es

The macroscopic variables are calculated at the element nodes using the method 
described in section 3.3. However, for post-processing of the results, data defined
at the mesh nodes is used. This is achieved using the simple element weighted
averaging procedure.

  . A a
Q m  = ^  T  (3.59)

Z^i=i A
where Qm is the value of the macroscopic variable at the mesh node, the summations 
are over each element node, z, meeting at the mesh node, Ai is the area of the element 
associated with element node i and Q{ is the value of the macroscopic variable at 
discontinuous node i.

discontinuous 
element nodes

mesh node

Figure 3.21: A mesh node and element nodes
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3.7 P a ra l le l i s a t io n

Due to the large memory requirement involved in discretising both p-space and v 
space domains, parallelisation of the algorithm was an essential requirement for the 
code to be applied to realistic problems. Physical space domain decomposition was 
chosen to achieve this, as shown in Figure 3.22.

Processor
Rankl

Processor
Ranks

Processor 
Rank 2

\

Figure 3.22: Physical Domain Decomposition

The only information th a t needs to be communicated between processors is the
T il  ~

value of the inter-elem ent flux, Fn 2, for element edges at a processor domain 
boundary. The direction in which this information passes depends upon the molec­
ular velocity vector. For example, if the molecular velocity vector is directed from 
left to right with reference to Figure 3.22, then processor 1 will pass the inter-elem ent 
flux for its three processor domain element edges to  processor 2 and processor 2 will 
pass the inter-elem ent flux for its two processor domain element edges in contact 
with processor 3’s domain to processor 3. Processor 3 will not communicate any 
information to processor 2  and processor 2 will not communicate any information 
to processor 1 .

The partitioning is performed as a pre-processing step using the software package 
METIS to form a partition  file, indicating which elements should be distributed to 
which processors. This program partitions the mesh in such a way as to minimise 
the number of communicating edges and, hence, maximise the efficiency of the code. 
An example of how a typical mesh is partitioned is shown in Figure 3.23. This mesh, 
around an aerofoil cross section, consists of 10.796 elements partitioned between 8 

processors. It is clear th a t the partitioning process has been performed in such a 
way as to minimise the communication between processors, i.e. it minimises the 
number of processor boundaries, whilst evenly distributing the number of elements 
per processor.
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(a) Pull P-space Mesh

(b) 1st Zoom in around Aerofoil

(c) 2nd Zoom in around Aerofoil 

Figure 3.23: Partitioning of the Physical Space Mesh
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A master-slave approach was used for the parallelisation. Only the master pro­
cessor, processor rank 0, has any form of communication with the outside world and 
its job is to read the input data to start the program, distribute the relevant data 
to each slave processor, to allow it to begin ‘solving’, and to assemble the output 
data file at the end of each timestep, or every given number of timesteps. Message 
Passing Interface (MPI) is used as the independent software for communications 
between processors. The relevant flux information was passed between processors 
simply by calling the predefined MPI routines from the FORTRAN code.
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3.8 Coding and Hardware
Initial development took place in serial using the FORTRAN77 language and compi­
lation using Salford Plato3. A standard desktop PC was used for running these jobs, 
with run times of no longer than a few hours. When the code was parallelised, the 
language was updated to take advantage of some of the benefits of the FORTRAN90 
language, such as allocatable memory. A flow chart showing the organisation of the 
various routines that comprise the FORTRAN90 Boltzmann solver code is given in 
Appendix C.

Two machines were used for running the parallel version of the code. The first 
was the Swansea University Civil and Computational Engineering Centre (C2EC) 
PC cluster. This is essentially a group of 16 processors connected via Myrinet, a 
special purpose optical fibre network with high bandwidth (2Gbit/s) and low latency. 
Each processor has memory associated with it ranging from 2GB to 8GB depending 
on the processor. This machine was used for the smaller, i.e. lower memory, shorter 
timescale, runs due to the limit on the number of available processors and the 24 
hour limit on the runtime.

The second machine used for running the parallel code was Swansea University’s 
high performance computing (HPC) facility, BLUE C. This is a large-scale super­
computer consisting of 11 nodes of 32 processors. Each node has 120 GB of memory 
associated with it. Larger runs were undertaken using this facility.
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4.1 Developm ent of a Scalar Convection Equation  
Solver

In section 3.2.1, it was mentioned that underpinning the Boltzmann solver is a simple 
scalar convection algorithm. Various scalar convection algorithms were written to 
test the properties of the different methods. Initially, simple and standard finite 
difference techniques were developed in MATLAB and the code for these short 
programs is contained in Appendix C. All of the MATLAB programs detailed in 
this section were run from a standard PC with a 3.0 GHz Intel Pentium processor 
and 1024 MB RAM.

This was followed by a two-step discontinuous Taylor-Galerkin algorithm im­
plemented in FORTRAN77. We will briefly look at some examples from these 
programs, as they will give some helpful understanding of what is happening within 
the more complex Boltzmann solver, which will be examined later in this chapter. In 
developing a scalar convection algorithm, we are aiming to achieve the transportive 
property i.e. it must be able to propagate a signal in a given direction, at a given 
speed, without distorting the form of that signal. If this property is achieved in 
the underlying scalar convection code, then the Boltzmann solver can be developed 
from a solid footing.

4.1.1 A n FTC S F in ite D ifference M ethod

The forward time centre space (FTCS) algorithm is a simple finite difference scheme 
tha t can be constructed and used as an attem pt to solve the scalar convection 
equation, equation (3.5). A ID explicit FTCS scheme, with 2nd order accuracy in 
space, can be written as

= (4.1)

where A t  is the timestep size, u is the convection velocity, h is the constant distance 
between sampling points and / f  indicates the value of the function at X{ and timestep 
n. This scheme must be complemented by suitable boundary and initial conditions. 
Here we look at the convection of a simple pulse and a sine wave from left to right 
with non-dimensional speed, u = 5, and a non-dimensional timestep, A t  = 0.1.

Unfortunately, as can be shown by a suitable von Neumann analysis [41] and 
.as is indicated by the results in Figures 4.1(b) and 4.2(b), the FTCS scheme is 
unconditionally unstable, for a purely advective system such as the scalar convection 
equation.

4 .1 .2  A n U pw ind F in ite D ifference M ethod

An equally simple scheme, which takes into account the physics of the flow, is 
an upwind method. Here, gradients are determined using only data points in the
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(a) Initial conditions

Figure 4.1: FTCS Convection of a Simple Pulse

(a) Initial conditions (b) Timesteps 1- 10

Figure 4.2: FTCS Convection of a Sine Wave

upstream direction to account for the direction in which information is propagating. 
For flow from left to right, the scheme can be written as

fr1=f? - ̂ (/r - furh
where identical notation has been used.

(b) Timesteps 1 - 200 (every 20
timesteps shown)

Figure 4.3: Upwind Convection of a Simple Pulse

(4.2)
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(a) Initial conditions
timesteps shown)

Figure 4.4: Upwind Convection of a Sine Wave

Again, we consider the pure convection of a simple pulse and sine wave. In 
this case the distance between sampling points was not fixed. Instead the distance 
between consecutive sampling points i — 1 and i was allowed to vary randomly 
between 0.5 and 1.25. The stability of this scheme is governed by the CFL condition 
which states that for stability we must ensure

C < 1 . 0  (4.3)

where the Courant number, C = u A t / h min. The convection velocity was set as 
u = 5 and the Courant number, C = 1.0. Figures 4.1.2 and 4.1.2 show that this 
scheme is stable. However, in the case of the pulse convection, the signal is seen 
to be smeared and in the case of the sine wave convection, the signal is decaying 
with time. This decay is not evident in Figure 4.3(b). However, running for a larger 
number of timesteps does result in a decay of the signal for the pulse propagation. 
Another disadvantage of this method is that the scheme is dependent on the di­
rection of the convection velocity. This is not a problem in the ID case examined 
here, but can become a more significant drawback in higher dimensions. Also, the 
upwind method is only first order accurate in space, compared with the second order 
accuracy achieved in the FTCS scheme. Higher order upwind schemes are available 
([115],[105],[89]) but alternative schemes including the Lax and Lax-Wendroff tech­
niques are the most established methods for overcoming some of the problems seen 
so far. These schemes will be examined next.

4.1 .3  A Lax F in ite  D ifference M ethod

The Lax finite difference scheme for the scalar convection equation is a simple 
extension to the FTCS scheme with the / "  term in equation (4.1) replaced by 
1/2(/i+i +  i). The Lax scheme is written as

/ f +1 =  i +  f h )  ~  A i u ( ^ h - / j j h ) (4.4)
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with hi now indicating the distance between sampling points i and i +  1 but with 
all other notation identical to that used previously.

V

(a) Initial conditions (b) Timesteps 1 - 200 (ev­
ery 20 timesteps shown)

Figure 4.5: Lax Convection of a Simple Pulse

(a) Initial conditions (b) Timesteps 1 - 200 (ev­
ery 20 timesteps shown)

Figure 4.6: Lax Convection of a Sine Wave

Figures 4.5(b) and 4.6(b) indicate that the LAX scheme again results in a smear­
ing of the convected pulse and a decay of both the pulse and sine wave, but that 
the schen.e is stable. These cases were run under the same conditions as the upwind 
scheme eiamples (it =  5, C =  1.0, 0.5 < h < 1.25).

4.1.4 A Lax-W endroff F inite D ifference M ethod in ID

The Lax-Wendroff approach achieves stability and second order accuracy in space 
and time. The scheme can be written, in two steps, as

^  /  t n  i f n \  ^  ( f n  f n \
Ji+ 1 ~  2 ^ i+1 '*i ' 2h  ̂ i+1 { '

r n + 1   r n _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ ^

1 ~  Ji  0 . 5 ( / i i  +  h i - i y  i+\  i~ \ )

Both of the Lax-Wendroff examples were run with a Courant number of 1.0
(required for stability) and sampling points spaced randomly, as in the previous 
examples with 0.5 <  h < 1.25. It is clear that the Lax-Wendroff scheme best

(4.5)
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L

(a) Initial conditions (b) Timesteps 1 - 100 (ev­
ery 10 timesteps shown)

Figure 4.7: Lax-Wendroff convection of a simple pulse

y ;

(a) Initial conditions (b) Timesteps 1 - 200 (ev­
ery 20 timesteps shown)

Figure 4.8: Lax-Wendroff convection of a sine wave

preserves the basic shape of the signal, but the signal is significantly distorted, par­
ticularly when the function undergoes large changes in gradient. These distortions 
are due to the unstructured nature of the discretisation employed.

4.1.5 A  Lax-W endroff F in ite Difference M ethod in 2D

The Lax-Wendroff scheme was extended into a second spatial dimension. The simple 
function used as an initial condition for a test case is shown in Figure 4.9. In the 
2D example shown here, the distance between sampling points, h, is non-uniform 
in both the x and y directions, but limited by the condition 0.75 < h < 1.25, the 
convection velocity is fixed as u  = lhi  +  15j (where i  and j  are unit vectors in the 
x and y directions respectively) and the x-y plane is such that 0 < x < 100 and 
0 < y < 100. The timestep is computed as

A t  = (4.6)
|u |

where hmin is the minimum sampling point spacing in either the x or y directions, |w| 
is the magnitude of the convection velocity and the Courant number, C =  1.0. With 
the convection velocity fixed as described, the form of the initial function should not 
change, but be seen to convect diagonally across the x-y plane.
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Figure 4.9: Initial Conditions for Lax-Wendroff Convection of a 2 D Pulse

The results, in Figure 4.10, show the convection of the initial pulse from three 
different perspectives. The first column of graphs shows the convection from the 
perspective of the x-axis, the second column is a view from the perspective of the pr­
axis and the third column is a view of the whole x-y  plane. It is evident, particularly 
from the first two columns, tha t the function is decaying with time. This decay 
characteristic is a property tha t was not observed in the ID Lax-Wendroff case.

The finite element equivalent of the Lax-Wendroff method desribed here is the 
tw o-step Taylor-Galerkin method. This method is examined next.

y-c*rect>on
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Figure 4.10: Lax-Wendroff Convection in Two Dimensions
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4.1.6 C om parison  of C on tinuous and  D iscontinuous Taylor
G alerk in  F in ite  E lem en t M e th o d s

The problem under consideration here is tha t of the propagation of a discontinu­
ity from left to right along a two dimensional, rectangular domain using linear, 
triangular elements. This problem was analysed, as it should dem onstrate the ben­
efits of using discontinuous finite elements over continuous finite elements. Initially, 
the scalar variable /  was set, to 1.0  across t he whole domain and an inflow with 
/  =  5.0, u = 10.0, v =  0.0 was set up on the left-hand boundary. The Courant 
number was set to 0.9 and initial tests were conducted using the structured mesh 
shown in Figure 4.11.
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Figure 4.11: Structured Mesh for Discontinuity Propagation Problem
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Figure 4.12: Propagation of a Discontinuity using a Continuous Taylor-Galerkin 
Method

Figure 4.12 shows a plan view of the discontinuity propagating from left to  right 
and Figure 4.13 shows the time evolution of the solution at points spaced along the 
horizontal centreline of the domain. It is clear that there is a significant distortion to 
the solution at both the top and bottom  of the discontinuity. In the field of Fourier

.
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1 708 21041 4 0 6 245 2 350

Figure 4.13: Point Analysis of the Discontinuity Convection using a Continuous 
Tay 1 or-G  aler k i n M e 11 i o d

analysis, this is referred to as the Gibbs phenomenon. However, the propagation 
speed of the discontinuity is correct.

Figures 4.14 and 4.15 show equivalent results using discontinuous elements. It 
was found tha t a Courant number of 0.5 was required lor stability in this case. A 
lower stability Courant number leads to a shorter timestep and, hence, larger run­
time, but the results are clearly an improvement over the continuous finite element 
method. The distortion at the bottom of the discontinuity has been largely removed 
but a small overshoot a t the top of the shock exists. This could be removed using a 
filter such as th a t described by Hirsch in [41] or a discontinuous Galerkin limiter as 
such as described by Burbeau et al in [12] if the Gibbs phenomenon overshoots and 
undershoots and the discontinuity are deemed unaccepable. This was not the case in 
this work, since the final solutions for the Boltzmann equation result from averages 
over a large number of scalar convection solutions. This means tha t the oscillations 
in the individual solutions do not significantly aifect the macroscopic properties 
obtained by taking moments of the distribution function (see section 2.4).

Finally, the same problem, under the same conditions, was analysed using the 
discontinuous method, but on the unstructured mesh, shown in Figure 4.16, as 
the problems to be analysed later, using a full Boltzmann solver, would require an 
unstructured meshing of the domain. Figures 4.17 and 4.18 indicate th a t switching 
from a structured mesh to an unstructured rnesli led to a small oscillation being set 
up at the top of the shock. It is unclear why this should be the case, but again, these 
oscillations could potentially be removed by means of a suitable filter if necessary. 
An understanding of the properties of various scalar convection algorithms, gained 
from studying the examples shown in the preceding sections, was im portant for
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Figure 4.14: Convection of a Discontinuity using a Discontinuous Taylor-Galerkin 
Method (structured mesh)
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Figure 4.15: Point Analysis of the Discontinuity Convection using a Discontinuous 
Taylor-Galerkin Method (structured mesh)
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Figure 4.16: U nstructured Mesh for Discontinuity Convection

analysis of the Boltzmann solver results which will be shown in the following sections. 
The code development for the Boltzmann solver detailed in Chapter 3 began with 
the discontinuous Taylor-Galerkin scalar convection code used for the discontinuity 
propagation example already shown.
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Figure 4.17: Convection of a Discontinuity using a Discontinuous Taylor-Galerkin 
Method (unstructured mesh)
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Figu'e 4.18: Point Analysis of the Discontinuity Convection using a Discontinuous 
Taybr—Galerkin Method (unstructured mesh)
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4.2 C o llis ion less  B o l tz m a n n  E x a m p le s

The remainder of the examples shown in this chapter were run on high performance 
parallel machines. This is because there is a significant increase in the com puta­
tion performance requirement for the Boltzmann solver compared with the scalar 
convection solver used previously.

As described in C hapter 3, two approaches to the discretisation of the circular 
velocity space domain were investigated; the first approach was to use an assem­
bly of linear, quadrilateral elements, whilst the second approach used a. spectral 
quadrature approach. In this section, examples will be shown using both methods 
for comparison.

4.2.1 G as E x p an s io n  P ro b le m

A highly rarefied ( K n  > >  1.0) gas of finite initial extent ( — L < x  < L) was modelled 
expanding into an infinite vacuum. This problem has a well defined analytical 
solution [5] and was, therefore, deemed a good test problem for the algorithm. A 
physical space mesh with 1538 elements /  4G14 discontinuous nodes, shown in Figure 
4.19, combined with a velocity space mesh with 900 elements /  961 nodes was used 
giving a to tal of 4,434,054 degress of freedom.

AAATOTVAAAAAAAAA( X  X  X  X  X  X  X  X  X X  X -x -X  V  X )W W W W W V  W  n/V
: i Initial extent of the gas

Figure 4.19: Physical Space Mesh for Gas Expansion Problem,
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Figure 4.20: Results for The Gas Expansion Problem with Quadrilateral V-Space 
Elements

In the left-hand plot in Figure 4.20, the time evolution of the non-dimensionalised 
number density is shown on the y-axis against the non-dimensionalised distance 
front the  vertical centreline of the domain. In the right-hand plot in Figure 4.20 
the time evolution of a non-dimensionalised measure of momentum flux is shown
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on the y-axis against the non-dimensionalised distance from the vertical centreline. 
The solid lines show the ID analytical solutions [5], given by equations (4.7) and 
(4.8), and the various markers are data points from the computational mesh. It is 
clear tha t a good agreement between the collisionless Boltzmann solver data and 
the analytical solution to this problem has been achieved.

— =  [erf(^i (x +  L)/t)  -  erf(/?2 (x -  L ) / t ) \ / 2 
n  i

nu(3\ n e x p ( —/32(x — L)2 f t 2) — exp(—/32(x +  L)2 f t 2

n i 7ii7ri[erf(/?i(x +  L ) / t )  -  erf ( f t  (a; -  L)/ t) \  

where erf(x) is the error function defined as erf(a) =  (2/ tt̂ ) f"  exp(—x 2)dx

Figure 4.21: Results for The Gas Expansion Problem with Spectral V-Space

The same problem was considered using the spectral quadrature approach for v - 
space discretisation. The discretisation of v-space consisted of 900 sampling points 
and radial extent, rv = 2000m /s .  This is slightly less than the number of nodes in 
the previous example, which, combined with the improved integration efficiency of 
the quadrature method resulted in a runtime speedup of approximately 50%. The 
simulation was, therefore, run for an increased number of timesteps, up to  a non- 
dimensional time, t f (PiL)  =  8.0, where f t  =■ y j \ f  (2RT\).  The results are shown in 
Figure 4.21 and, again, we see a good agreement between the com putational data 
and analytical solution.

4.2.2 Flow O ver a V ertical P la te

A rarefied, free-molecule (K n  = 9) gas was modelled, flowing through a 2D tunnel 
and over a plate of negligible thickness. The gas chosen was argon with a flow speed 
of \72mfs,  tem perature of 300/\ and with a corresponding Mach number of 0.53. 
Fully specular reflection was assumed on the lower boundary and vertical plate.

A physical space mesh with 369 elements/1107 discontinuous nodes, shown in 
Figure 4.22, combined with a velocity space mesh with 900 elements/961 nodes was

•  »
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used giving a to tal of 1,063,827 degrees of freedom. The runtime to steady state for 
this case was approximately 1 hour using 4 processors on the Swansea University 
C2EC PC Cluster.

Figure 4.22: P-space mesh for the flow over a vertical plate 
The resulting flow is seen, in Figure 4.23, to be symmetric about the plane of 

the plate. This agrees qualitatively with the DSMC simulation shown by Bird [5].

Figure 4.23: Streamtraces of flow over a vertical plate, quad v -space elements

The same problem was examined using the spectral quadrature approach for 
discretisation of v-space with 400 sampling points and rv = 2000m /s .  Figure 4.24 
indicates th a t using the spectral method gives remarkably good agreement with the 
preceeding results using linear quadrilateral elements, despite the fact tha t under 
half the number of data points is used and, therefore, significantly quicker run times 
are achieved. The runtime to steady state  was achieved in under 30 minutes, again 
using 4 processors on the Swansea University C2EC PC Cluster.
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Figure 4.24: Streamlrae.es of How over a vertical plate, spectral v-space
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4.2.3 H ypersonic Flow over a D ouble Ellipse

During the early stages of re-entry, a space vehicle will travel at extremely high 
velocity through a very rarefied atmosphere. The high Knudsen number (K n  > > 1 )  
of this flow allows it to be analysed using the collisionless Boltzmann equation. A 
typical re-entry vehicle, such as the space shuttle, will be required to decelerate 
from an orbital speed of 28,000 km /h or Mach 25 to allow it to descend into Earth’s 
atmosphere and configure for landing. The space shuttle is manoeuvred, by firing 
thrusters, so that it approaches the top of E arth ’s atmosophere at a 40° angle of 
attack. A massive deceleration then occurs due to the bombardment of molecules 
and the nose is lowered into a standard flight configuration ([2],[42],[85],[40]).

A standard double ellipse geometry is used to model the nose region of a generic 
vehicle in two dimensions. Since these high Knudsen number runs assume a negligble 
effect due to molecular collisions, no shock will form and the solution will extend, 
in principle, infinitely far both upstream and downstream. The p-space mesh used 
for runs at a range of angles of attack from 40° to 20° is shown in Figure 4.25. 
It consists of 7,565 elements /  22,695 discontinuous nodes. Due to the extreme 
high velocities present in such a flow, the extent of the v-space domain had to 
be increased. By (numerical) experiment, it was determined that setting rv =  
13,000m/s was sufficient. The number of sampling points in v-space was also 
increased from 400 to 1,000. This results in a value of 22,659,000 for the total number 
of degrees of freedom of the system. The positioning of the v-space sampling points 
is shown in Figure 4.26.

Table 4.1 summarises the flow parameters and computational requirements for 
the 3 cases studied. The free stream Knudsen number quoted is based on the 
maximum diameter of the double ellipse geometry cross section for the typical length 
scale of the flow.

In each of the three cases, the number density and Mach number distributions, 
constant pressure contours and streamtraces are shown. Each plot has been rotated 
such that the freestream flow is horizontal. It is first important to note that no 
shocks form despite the Mach number being greater than 1. This is because the 
formation of a shock wave is dependent on collisions between molecules which are 
insignificant at K n  »  1. The flow solution must, therefore, vary continuously from 
regions where M  > 1 to regions where M  < 1.

The number density plots (Figures 4.27(a),4.28(a),4.29(a)) clearly show an order 
of magnitude increase in the molecular number density on the nose of the vehicle. 
The exact position of this region and its extent is clearly dependent on the angle 
of attack. The effect of the vehicle on the number density extends out into the 
upstream flow a distance of the same order of magnitude as the vehicle diameter.

Coupled with the number density increase on the nose, is a pressure increase, 
detailed in the plots of constant pressure contours (Figures 4.27(b),4.28(b),4.29(b)). 
It is this pressure increase that causes the vehicle to decelerate to a velocity at 
which it can configure for landing. Above the nose there appears to be ‘spokes’
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Figure 4.25: Double Ellipse Mesh

C ase 1 C ase 2 C ase 3

F low  Param eters

Moo 25 25 25

A oA

OO

0
0 O O 20°

Knoo 100 100 100

a 0.9 0 .9 0.9

C om p u tin g  R esources

num ber tim este p s  to  converge 15,000 15,000 15,000

runtim e to  converge 35hrs 35hrs 35hrs

num ber processors 4 4 4

com p u tin g  facility C 2E C  C luster C 2E C  C luster C 2E C  C luster

Table 4.1: Details of Mach 25 collisionless flow over a double ellipse

in the pressure contour pattern and a ‘jaggedness’ in the contours upstream. In­
vestigations discovered th a t the formation of the spokes and the non-smoothness 
in the contours is connected with the pattern  of sampling points in the v—space 
discretisation, i.e. they are not real flow phenomena. Using the spectral v-space
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Figure 4.26: V-space sampling points for the collisionless hypersonic examples

discretisation approach used for this work, it is impossible to completely remove this 
numerical phenomenon, bu t minimising the tangential distance between sampling 
points in the far field of the v-space domain appears to help.

The Mach number plots (Figures 4.27(c),4.28(c),4.29(c)) show large regions of 
massively decelerated fluid upstream of the nose and in the wake region. It is 
interesting to note, that the flow is not accelerated above the free stream value at 
any point. The stagnant fluid in the wake is separated from the free stream fluid by 
a clearly defined shear layer or contact discontinuity. Across this horizontal layer, 
the pressure is continuous bu t velocity discontinuous. If collisions were present, 
the effect of viscosity would not allow such a phenomenon to exist. This contact 
discontinuity is stable in this case because no collisions means no momentum transfer 
across the layer. The diffusion tha t does exist, and shown in the Mach number plots, 
is purely numerical.

The stream trace plots (Figures 4.27(d),4.28(d),4.29(d)) indicate tha t the flow di­
rection remains very close to horizontal at all times. Mass conservation is achieved 
by means of massive density variations rather than streamline deflection. The po­
sition of the stagnation point is seen to move from the lower surface towards the 
upper surface as the angle of attack is reduced.

It is also worth noting th a t in case 3, at 20° angle of attack, a pressure and 
density increase are experienced on the cockpit bubble. This feature is not present 
for case 1 and case 2 at the higher angles of attack.
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(c) Local Mach num ber d istribu tion  (d) Streamtrac.es

Figure 4.27: Collisionless Hypersonic Case 1 (M ^ =  25, AoA = 40°, K n  ~  100)
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Figure 4.28: Collisionless Hypersonic Case 2 (M ^ =  25, AoA  =  30°, K n  ~  100)
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Figure 4.29: Collisionless Hypersonic Case 3 (M ^ =  25, AoA =  20°, K n  ~  100)
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4.3 B G K  B o l tz m a n n  E x a m p le s

4.3.1 Subsonic Flow O ver a  V ertical P la te

For free molecule flow, governed by the collisionless Boltzmann equation, all molecules 
travel in straight lines and, for the standard boundary conditions described in sec­
tion 3.5, it is impossible for vort ices to exist. For free molecule flow, we therefore get 
the stream trace pattern  shown in Figures 4.23 and 4.24. As the Knudsen number is 
reduced, however, the effect of molecular collisions becomes significant and we must 
introduce the right hand side collision term into the Boltzmann equation. In this 
section, the results shown are for the BGK approximation to the full collision term, 
detailed in section 3.4.1. As in the previous free molecule examples, the monotomic 
gas, argon, was modelled with the flow conditions a t infinity set as u = 172m/s, 
T  = 300A' with corresponding Mach number M  = 0.53 at a variety of Knudsen 
numbers. Again, fully specular reflection was the assumed boundary condition on 
the lower boundary and on the vertical plate.

Figure 4.30: P-Space Mesh for BGK Flow Over a. Vertical Plate

These examples were only considered using the spectral v space approach as the 
results from the preceding sections had indicated th a t the spectral method results 
in a better efficiency than the quadrilateral element approach. The p-space mesh 
used for these examples consisted of 2163 elements/6489 discontinuous nodes and 
was refined in the region downstream of the plate, where the vortex formation was 
expected. The mesh is shown in Figure 4.30. The v-space discretisation consisted 
of 400 sampling points with rv =  2000m/s. The runtimes to steady state for these 
examples using the BGK code were several hours using 4 processors on the Swansea 
University C2EC PC Cluster.

We see from Figures 4.31, 4.32 and 4.33 that as the Knudsen number reduces, 
and we move from the free molecule regime, through the transition regime and 
to the fully continuous or Navier-Stokes regime, with reference to Figure 1.2, the 
downstream vortices produced by separation at the top of the plate become more 
significant features. Initially, as the Knudsen number is reduced by an order of 
m agnitude from the free molecule example in the previous section, we observe tha t 
the symmetry in the stream traces is lost, but no vortex is formed. Reducing Kn by 
a further order of magnitude results in a small, low velocity vortex and a further 
decrease in m agnitude results in a larger and higher velocity vortex. These results 
agree well with the same examples modelled by Bird [5] using a DSMC approach.
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Figure 4.31: Vertical Plate Kn =  1.0

Figure 4.32: Vertical Plate Kn =  0.1

Figure 4.33: Vertical Plate Kn=0.01
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4.3.2 Subsonic F low  over a n  Aerofoil (Investiga tion  in to  th e  
effect of th e  a b s o rp t io n  coefficient, a )

The examples involving flow over a vertical plate indicated tha t the BGK solver was 
capable of predicting phenom ena such as flow separation and recirculation zones. 
The next examples tha t were considered involved flow over an aerofoil cross section. 
The p-space mesh used to analyse these flows is shown in Figure 4.34 and consists 
of 7640 elements /  22920 discontinuous nodes. The velocity space was discretised 
using 400 sampling points and rv =  2000m /s .

M X-X'VXXX-X )rX-#

Figure 4.34: P -space mesh for subsonic/transonic NACA0012 cases
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The wall boundary condition method was detailed in section 3.5.3 in which it was 
mentioned that two extreme cases for modelling the interaction of molecules with a 
solid surface is possible. The first was purely specular reflection (corresponding to 
the absoption coefficient, a = 0) and the other was purely diffuse reflection (corre­
sponding to a = 1.0). Flow (of air) over a NACA0012 aerofoil [106] under subsonic 
conditions (M ^ =  0.5, AoA  =  0°, Re = 10,000) was considered under these two ex­
treme cases and the results compared with Navier-Stokes solutions for the same flow 
conditions. Table 4.2 shows the flow conditions and computational requirements for 
the a  = 0.0 case. It is worth noting that the computational requirements using the 
BGK solver greatly exceed those for a solution to this problem using a standard 
Navier-Stokes approach. It is also important to note that even though air is being 
modelled, we are not analysing it in its multi-component form. We are simply using 
the gas constant for air in constructing the distribution function and an average 
diameter of a ‘typical’ air molecule in the collision term. Nevertheless, remarkably 
accurate predictions are possible and it is certainly feasible to extend the algorithm 
to consider a multi-component gas.

Flow Parameters

Moo 0.5

AoA 0°

Re 10,000

K n  oo 0.0001

a 0.0

Com puting Resources

number tim esteps to  converge 45,000

runtim e to  converge 60hrs

number processors 4

computing facility C2EC Supercomputing Cluster

Table 4.2: Details of subsonic case 1 (a = 0.0)

The streamtrace plot shown in Figure 4.35(c) indicates that the correct general 
flow pattern is achieved (it also shows that mass conservation is being achieved at the 
aerofoil boundary). However, it is clear by comparison of Figures 4.35(a),4.35(b) and 
4.35(d) with Navier-Stokes solutions (e.g. [108],[35]), that the more specific features 
of the flow are not captured correctly with a fully specular reflection boundary 
condition in place. For example, as the flow is at AoA = 0°, we would expect 
a symmetry about the chord of the aerofoil which is clearly not present. Also, 
Figure 4.35(d) indicates that there is a significant difference between the predicted 
pressure coefficient distribution on the top (red circles) and bottom (green circles)
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of the aerofoil which should not be the case. This might suggest that the specular 
reflection algorithm applied to the spectral quadrature v-space on boundaries that 
are not vertical or horizontal (as was the case in the vertical plate example), or to 
be more precise, th a t are not on a line of symmetry in the v-space discretisation 
does not perform well.

(a) p ressure contours (b) rnach num ber contours

0 2  0 4  0 6  0 6

(c) strearn traces (d) surface pressure d istribu tion

Figure 4.35: Subsonic Case 1 (M ^ =  0.5, AoA = 0°, Re = 10,000. a  =  0.0)

Table 4.3 shows the flow param eters and com putational requirements for the 
a  - 1.0 case. It is worth noting th a t every param eter remains constant except for 
a  so tha t we can get a direct comparison between purely specular reflection and 
purely diffuse reflection.

Figures 4.36(a) and 4.36(b) provide a much better agreement with solutions in 
the literature than the a  =  0.0 case. There are some non-symmetry features (partic­
ularly in the pressure contour plot) but these may be attributed to viscous boundary 
layer phenomena and /o r non-sym m etry in the unstructured p-space mesh. Again, 
the sreamtrace plot gives a good general flow pattern solution and indicates tha t 
mass is conserved at the aerofoil boundary. The surface pressure coefficient distri­
bution was almost identical on t he upper and lower surfaces and this distribution is 
shown in Figure 4.36(d). This agrees well with pressure coefficient plots generated 
using Navier-Stokes solvers in the literature.

It is clear tha t the Kutta-Joukow ski condition is met. The pressure coefficient
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Flow  Param eters

Moo 0.5

AoA 0°

Re 10,000

K n 0o 0.0001

Q 1.0

C om p u tin g  R esources

num ber tim este p s  to  converge 4 5 ,000

ru n tim e to  converge 60hrs

num ber processors 4

co m p u tin g  facility C 2E C  Su p ercom p u tin g  C luster

Table 4.3: Details of subsonic case 2 (a =  1.0)

(a) pressure contours (b) mach num ber contours

0 61 03 03 04 00 Ce 07  09 09 1

(c) stream traces (d) surface pressure d istribu tion

Figure 4.36: Subsonic Case 2 (M<x> — 0.5, AoA  =  0°, Re =  10, 000, a  =  1.0)

on the upper and lower surfaces merge a t the leading edge leading to smooth flow. 
Also, Cp is close to unity at the stagnation point and approaches zero at the trailing
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edge. These are all features that are in excelent agreement with viscous aerofoil 
theory.

In [99], Trazzi and Pareschi note tha t in reality a combination of specular and 
diffuse reflection is the most realistic description of molecular interaction with a 
solid boundary. They note that a value ‘close to 1’ for a  has been experimentally 
estimated as an appropriate figure. This subsonic case was therefore repeated with 
ot — 0.9 and all other parameters held constant (detailed in Table 4.4).

Flow Param eters

Moc 0.5

AoA 0°

Re 10,000

R  rioo 0.0001

a 0.9

Computing Resources

number tim esteps to  converge 45,000

runtim e to converge 60hrs

number processors 4

computing facility C2EC Supercomputing Cluster

Table 4.4: Details of subsonic case 3 (o: =  0.9)

Comparison of Figures 4.36 and 4.37 indicates that changing the wall boundary 
parameter, a  from 1.0 to 0.9 has not made a significant difference on the flow 
solution. Also, comparison of Tables 4.2, 4.3 and 4.4 indicates tha t in terms of 
computational requirements, there is no advantage in running with any particular 
value for a. It was, therefore, decided to use a = 0.9 for all further examples.

It is worth noting that to achieve the Boltzmann-BGK solutions here, a discreti­
sation involving some 9,168,000 degrees of freedom has been used. If you compare 
this with the Navier-Stokes solutions obtained by Habashi [35] in which he uses 
a discretisation of only 6,685 degees of freedom for the same problem, it quickly 
becomes clear how expensive a Boltzmann solution for such applications is.
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(a) pressure contours (b) rnach num ber contours

(c) stream traces (d) surface pressure d istribu tion

Figure 4.37: Subsonic Case 3 (M ^ =  0.5, AoA  =  0°, Re — 10.000, a  =  0.9)
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4.3.3 Transonic Flow over an A erofoil

Transonic flow over a NACA0012 aerofoil was examined next using the BGK solver. 
Flow (of air) at a free stream mach number, of 0.85 and an angle of attack, 
AoA  of 2° was considered at Reynold’s numbers, Re of 1,000 (case 1) and 10,000 
(case 2). These two cases correspond to flow with global Knudsen number, K n ^  
(based on the aerofoil chord length) 0.002 and 0.0002 respectively. This places both 
cases well within the continuum or NS regime with reference to Figure 1.2.

The p-space mesh used for case 1 is shown in Figure 4.34, consisting of 7640 
elements /  22920 discontinuous nodes. A region of mesh refinement is positioned 
around the aerofoil and downstream in an attem pt to capture the boundary layer 
features, viscous wake and any shocks tha t may be present. The velocity space was 
discretised using 400 sampling points and rv = 2000m /s.

Table 4.5 gives details of the flow parameters and the computing resources re­
quired to run case 1 (Re = 1000).

Flow Param eters

Moo 0.85

AoA 2°

Re 1000

K tIoo 0.0002

Q 0.9

Com puting Resources

number tim esteps to  converge 10,000

runtim e to  converge 14hrs

num ber processors 4

computing facility C2EC Supercomputing Cluster

Table 4.5: Details of transonic NACA0012 case 1

Figures 4.38(a) and 4.38(b) show plots of constant pressure contours and constant 
Mach number contours for the case 1 steady state solution. It is clear that the 
solution does not involve any shocks and a clearly defined downstream viscous wake 
is present. Also, the Mach contours indicate the presence of a thick boundary layer. 
Figures 4.38(c) and 4.38(d) show streamtraces for the flow and the surface pressure 
coefficient plot respectively (red circles represent the top surface and green circles 
represent the bottom surface). These results compare well with data in the literature 
for NS solutions for the same flow conditions. However, the runtime to convergence 
using the BGK solver is significantly longer than runtimes to convergence using a 
typical NS solver.



106 Chapter 4. Examples

(a) pressure contours (b) mach num ber contours

>O0000oc

(c) stream traces (d) surface pressure d istribu tion

Figure 4.38: Transonic Case 1 = 0.85, AoA = 2°, Re = 1000)

In case 2, the Reynold’s number, Re was increased by one order of magnitude 
with all other parameters held constant. The run was initially undertaken using 
the same mesh configuration as for case 1 to determine the position of the standing 
shock on the upper aerofoil surface. Details of this run are shown in Table 4.6.

The run was then repeated on the p-space mesh shown in Figure 4.39. This 
mesh has 10749 elements /  32247 discontinuous nodes. The mesh has an increased 
level of refinement for boundary layer capture and a refinement zone positioned to 
capture the shock formed on the upper surface. The position of this refined region 
was determined from an initial run on the p-space mesh in Figure 4.34. When 
combined with a v-space mesh of 400 sampling points (again, rv =  2000m/s), the 
total number of degrees of freedom in this problem was 12,898,8800.

The details of this run are shown in Table 4.7. It is immediately clear that the 
introduction of mesh refinement has lead to a significant increase in computational 
demand. The number of processors, and hence, computational power is doubled 
and the runtime to convergence is an order of magnitude larger than when using the 
mesh in Figure 4.34.

The pressure contour and Mach number plots for case 2 (Figures 4.40(a) 4.40(b)) 
indicate th a t increasing Re has resulted in the formation of a standing shock on the
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Flow Param eters

Moo 0.85

A oA 2°

Re 10000

K r loo 0.002

a 0.9

C om puting Resources

num ber tim esteps to  converge 50,000

runtim e to  converge 70hrs

number processors 4

computing facility C2EC Supercomputing Cluster

Table 4.6: Details of transonic NACA0012 case 2 (run 1)

Flow Param eters

Moo 0.85

AoA 2°

Re 10000

K  71 oo 0.002

a 0.9

Com puting Resources

number tim esteps to  converge 120,000

runtim e to  converge 480hrs

num ber processors 8

com puting facility C2EC Supercomputing Cluster

Table 4.7: Details of transonic NACA0012 case 2 (run 2)

upper surface of the aerofoil. It is also evident that the boundary layer thickness has 
decreased. This is in agreement with an analytical analysis of the Prandtl equations 
for a flat plate boundary layer that indicates that boundary layer thickness, 5 is pro­
portional to the square root of the inverse of Re (<5 oc y ^ ) -  Again, a viscous wake 
region is present downstream of the aerofoil. The streamtrace plot in Figure 4.40(e) 
shows a significant region of non-laminar flow on the upper surface downstream of 
the shock and in the wake. This region is more pronounced than in case 1, another 
flow feature that is in agreement with theory (see [10]). Although the general trends
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Figure 4.39: Refined p-space mesh for transonic NACA0012 cases

in the surface Cp plot, Figure 4.40(f), are correct, when compared with typical NS 
solutions for such a flow, the shock is significantly smeared in this BGK-Boltzmann 
solution. If the pressure contour plot is examined, this smearing appears to be 
associated with the shock-boundary layer interaction. This phenomenon is not en­
countered in NS solutions of such a flow. Also, significant oscillations are present in 
the Cp solution. It is unclear whether these oscillations are real, physical features 
of the flow, numerical instabilities or a failure of the BGK collision term under such 
flow conditions.

In this example, the underlying distribution function has been plotted at various 
points within the flow domain in Figure 4.41. The two plots at each point show 
the distribution function profile and planform contours of the distribution function 
using identical scales for each of the axes. The numbering of points in Figure 4.41
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(a) pressure contours (b) mach num ber contours

(c) density  contours (d) tem pera tu re  d istribu tion

0 01 02 03 0*4 05 00 0T 00 09 1
*A. .

(e) stream trac.es (f) surface pressure d istribu tion

Figure 4.40: Transonic Case 2 (M ^  =  0.85, AoA — 2°, Re  =  10,000)

relates to  position labels in Figure 4.40(e). It is immediately clear that there are no 
large departures from a Maxwellian form for the distribution function, even close 
to the shock. It is, perhaps, surprising th a t such a complex flow pattern can result 
from such minor variations in the underlying distribution function. One interesting 
point to note is tha t all of the points tha t feature ‘distortion’ of the distribution 
function in the far field are outside of regions of the flow where viscous effects are 
significant.
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(b) point2 (c) poini3(a) point 1

(d) point4 (e) point.5 (f) point6

(g) point7 (h) point8

Figure 4.41: Velocity distribution functions at selected points in the flow field
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4.3 .4  Supersonic Flow  over an Aerofoil

To complete the validation study of the BGK solver, supersonic flow over a NACA0012 
aerofoil was examined. The freestream Mach number, was increased to 1.5 at 
AoA  =  0° and Re = 10,000 (K n ^  = 0.002). The p-space mesh used was the same 
as that in the subsonic and preliminary transonic cases (shown in Figure 4.34) with 
7640 elements /  22920 discontinuous nodes. Again, v-space is discretised with 400 
sampling points and rv = 2000m /s . A summary of flow parameters and computa­
tional requirements is shown in Table 4.8.

Flow Param eters

Moo 1.5

AoA 0°

Re 10000

Krioo 0.002

OL 0.9

Com puting Resources

number tim esteps to  converge 30,000

runtim e to  converge 42 hrs

number processors 4

com puting facility C2EC Supercomputing Cluster

Table 4.8: Details of supersonic NACA0 0 1 2  case

The pressure contour and Mach number contour plots, Figures 4.42(a) and 
4.42(b) respectively, for the fully supersonic case indicate that the solution includes 
a weak detatched bow shock with subsonic flow downstream. The shock has been 
smeared over a few elements (see Figure 4.34). A crisper shock capture could be 
achieved by refining the mesh in the shock position indicated by this solution. The 
Mach number contour plot also indicates a viscous boundary layer and wake region. 
This wake region begins to get smeared in the far right of the plot in the region where 
element size increases (again, with reference to Figure 4.34). This example clearly 
demonstrates the importance of using an appropriate mesh refinement to achieve 
an accurate solution. Both the pressure contour and Mach number plots agree well 
with Navier-Stokes solution for this flow (by, for example, Hafez and Wahba [108]). 
The streamtrace plot, Figure 4.42(c), shows no significant deflection of the flow at 
the bow shock which is to be expected for flow across a weak, approximately normal 
shock wave. The temperature distribution plot, Figure 4.42(d), does indicate a sig­
nificant temperature increase across the shock. The temperature jump immediately 
across the shock is given by ■Tdô ^ r—̂  «  | | |  =  1.29. We can compare the BGK 
estimation of the temperature jump with the isentropic normal shock relationship
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for a calorifically perfect gas,

Tdownstream _  [^1 M 2 ~  ~  1)][(7 -  1 ) M 2 +  2]
Toe "  (7 + 1)2M 2 ( * 9 )

which predicts a tem perature jum p of /rfou;.r;:st,'SQm - 1.32. This is a very good agree-1 oo
ment and again, helps confirm tha t the BGK solver is a suitable method for such 
flows. The tem perature distribution plot also indicates significant viscous heating 
in the nose region and wake.

(a) pressure contours (b) mach num ber contours

(c) stream traces (d) tem peratu re  d istribu tion

Figure 4.42: Supersonic Case =  1.5, AoA  =  0°, Re =  10,000)

H igh M ach N um ber P ro b lem s using th e  B G K  Solver

The supersonic case was repeated for higher Mach numbers again using the BGK 
algorithm. However, above = 2.0 an instability was observed originating in the 
vicinity of the bow shock. The problem manifests itself in the post-processing stage 
as an instability in the macroscopic variables. Analytical BGK solutions (described 
by Bird in [5]) also fail for Mach numbers greater than 2. The explanation for 
this is that for strong shocks, a region of significantly non-equilibrium flow exists 
in the vicinity of the shock. The stronger the shock, the further the distribution 
function is perturbed from its Maxwellian form. Under such conditions, the BKG
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approximation to the collision term fails to be sufficient to return the distribution 
function to equilibrium because of the use of a collision frequency that is independent 
of / .  We should not, therefore, be surprised that the BGK numerical solver fails at 
high Mach number since the assumption upon which it is based is that perturbations 
from equilibrium remain small. The full Boltzmann solver was, therefore, developed 
as an attem pt to overcome this problem.
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4.4 Full Boltzm ann Examples

4.4.1 Validation Study  

U sing the Hard Sphere M odel

Running the full Boltzmann algorithm using a hard sphere model for molecular 
interaction gave results that were identical to those using the collisionless Boltzmann 
algorithm. This phenomena, at first, appears paradoxical until we look closely at the 
pre- and post-collision velocities during binary collisions whilst remembering that 
when simulating a monatomic gas, all particles are essentially identical. Bird [5] 
shows that for hard sphere molecules, the collision cross section, 0 7 -, is independent 
of the change in direction of the relative velocity vector, and that the scattering 
of molecules is isotropic in the centre of mass reference frame. This means that all 
directions are equally likely for the post-collision relative velocity vector. Since all 
molecules are identical, in terms of mass and size, when integrating over a large 
number of collisions, it is as if molecules are simply trading places during collisions 
and, hence, no net effect is observable.

A more sophisticated molecular interaction model was therefore required. This 
led to the development of the algorithm by employing Bird’s variable soft sphere 
model for molecular interaction. This was achieved using a Monte Carlo sampling 
technique for the distance of closest approach.

U sing the Variable Soft Sphere M odel

An important property of the collision term is that it must return a strongly non­
equilibrium distribution function to Maxwellian form. This process was the assumed 
situation in the simplified BGK collision term. However, an important validation 
test for the full Boltzmann collision term, in which this equilibrium restoration 
property is not explicitly assumed, is to ensure that the collision term does, in fact, 
restore a non-equilibrium distribution function initial condition to equilibrium in a 
spatially homogenous case. The non-equilibrium initial condition was established 
by superimposing a sinusoidal perturbation, in the radial direction, to the standard 
Maxwellian distribution function, i.e. / (c )  =  /o(c) +  csin(107r(r/r,,)), with T  = 
294K , p = 50Pa and c, some non-dimensional constant. This initial condition is 
shown in Figure 4.43(a), in which, the value of (n f ) is shown at each of the sampling 
points in v-space. The evolution towards equilibrium, driven by the Boltzmann 
collision term is then depicted in Figures 4.43(b) -  4.43(e).

It is clear that the distribution function returns to a standard Maxwellian equi­
librium form. Also, the conservation of momentum and energy in each Monte Carlo 
sampled collision has ensured that the integral of (nf )  over v-space has remained 
constant, and hence, mass is conserved.

In section 3.4.3, it was shown that the VSS model requires specification of the 
parameters dre/, cr<ref  and v. dref  was chosen as 250xl0_12ra, a typical estimation of
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Figure 4.43: Evolution of distribution function to Maxwellian

the molecular cross-section of an oxygen molecule, cr,re/  was chosen as 10, s.
an estim ation of the typical maximum relative velocity of the pre-collision velocity 
components in a binary collision, and v  was chosen to be 0.5, as suggested by Koura 
and M atsumoto ([65],[66]).

4.4.2 Full B o ltzm a n n  A pp lica tion  to  Flow over a D ouble 
Ellipse

The full Boltzmann solver was applied to the generic re-entry vehicle double ellipse 
geometry at a selection of subsonic and supersonic Mach numbers and K n  ~  1.0. 
This Knudsen number places the problem in the transition regime between free

34
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molecule flow and fully continuous flow (see Figure 1.2). The same mesh as in 
the collisionless hypersonic case of section 4.2 was used. The size of the v-space 
discretisation was limited to 400 sampling points and rv = 4000m /s  due to the large 
computational demand of this solver. The 7,565 elements /  22,695 discontinuous 
nodes in p-space combined with 400 sampling points in v-space gives this problem 
3,000,000 degrees of freedom. Details of the three cases studied is shown in Table 
4.9.

Case 1 Case 2 Case 3

Flow Param eters

Moo 0.2 1.1 2.3

AoA 0° 0° 0°

K fl  oo 1 1 1

a 0.9 0.9 0.9

Com puting Resources

number tim esteps to  converge 10,000 10,000 10,000

runtim e to  converge 230 hrs 230 hrs 230 hrs

number processors 32 32 32

computing facility BLUE C BLUE C BLUE C

Table 4.9: Details of Transition Regime Flow over a Double Ellipse

It is immediately clear from Table 4.9, that the full Boltzmann solver computa­
tional demand, in terms of runtime, is at least an order of magnitude larger than 
the BGK-Boltzmann solver. To achieve convergence even on these relatively simple 
problems required running for almost 10 days on 32 processors with the paralleli- 
sation methodology currently employed. This is obviously a considerable drawback 
and limiting factor in terms of the development of this approach.

Due to the large run times, only a small selection of transition regime flow cases 
over the generic re-entry vehicle geometry were studied at a global Knudsen number, 
based on the maximum vehicle width, of approximately 1.0. This means that typical 
molecular mean free paths are of the same order as the typical vehicle length scale.

A low subsonic case, and two supersonic cases are shown in Figures 4.44(a) to 
4.46(c) detailing the number density, Mach number and pressure coefficient distri­
butions immediately around the vehicle. The first observation to make is that signif­
icant gradients in the variables considered here are ‘trapped’ in a small boundary- 
layer type feature around the vehicle surface. All cases show a stagnation bubble at 
the nose and cockpit, and a region of accelerated flow on the bottom surface accom­
panied by a drop in density and pressure. It is also evident that the molecule-wall 
interaction model is allowing slip at the wall boundary, as is to be expected at this



4.4. Full Boltzmann Examples 117

(a) N um ber D ensity  D istribu tion  (b) Local Mach num ber d istribu tion

(c) pressure coefficient 

Figure 4.44: Full Boltzmann Case 1 (M ^  =  0.2, AoA = 0°, K n  ~  1.0)

(a) N um ber D ensity D istribu tion  (b) Local Mach num ber d istribu tion

(c.) pressure coefficient

Figure 4.45: Full Boltzmann Case 2 (M00 = 1.1, AoA = 0°, K n  ~  1.0)

number. This slip was also observed in the collisionless cases (section 4.2.3), but not 
in the continuum cases using the BGK-solver (section 4.3). This does dem onstrate 
one of the advantages of a molecular approach in analysis over a range of Knndsen 
number since no modification to the wall boundary condition has been necessary to 
account for the presence of slip at the wall as would be the case when using a typical 
continuum solver.

The form of the distribution function and collision term at a point immediately
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(a) N um ber Density D istribution (b) Local Mach num ber d istribution

(c) pressure coefficient

Figure 4.46: Full Boltzmann Case 3 (M ^  =  ‘2.3, AoA = 0°, K n  ~  1.0)

ahead of the stagnation point for the M = 2.3 case was analysed to gain some 
understanding of the behaviour of molecules in this region as the solution evolved 
towards convergence. The form of the final distribution function satisfying steady- 
state equilibrium and the collision term over the final five timesteps are shown in 
Figures 4.47(a) to 4.47(f). The interesting point to note here is th a t even though 
the distribution function is now in a state of equilibrium, the stochastic nature of 
the collisions tha t are maintaining this equilibrium result in a varying collision term 
(Figures 4.47(b) to 4.47(f)). This does give some further insight into the depth in 
which this problem is being tackled and understood by using a molecular approach 
and helps understand why, computationally, it is so demanding.
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Figure 4.47: Velocity distribution function and collision function variation at a point 
ahead of the nose, M  =  2.3
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Parallelisation Speed Up

The speed-up achieved by parallelisation of the collisionless and BGK-Boltzmann 
solvers was insignificant and implemented essentially due to memory requirements. 
The poor speed-up performance in these cases is due to the large volume of data 
communicated between p-space partitions at each timestep i.e. the entire distribu­
tion function defined across v-space.

However, since the full Boltzmann solver performs so many more algebraic op­
erations per timestep than the collisionless and BGK versions, a significant paral­
lelisation speed-up was observed. The graph in Figure 4.48 shows the speed-up for 
the double ellipse problem running from 4 up to 32 processors. It can be seen that 
initially a super-linear speed-up is achieved but this level of speed-up deteriorates 
as the number of processors increases.

8.30

no. processors

Figure 4.48: Full Boltzmann solver parallelisation speed-up

Parallelisation speed-up performance may be improved by partitioning the v - 
space domain as well as the p-space domain, but this is beyond the scope of the 
work presented in this thesis.
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4.4.3 L im itations o f the Full B oltzm ann Solver

Clearly a ten day convergence time on 32 processors to solve a relatively simple 2D 
problem such as those shown here presents a massive limitation in terms of the scope 
of analysis using this method in its current form. It has already been mentioned 
that a parallelisation including decomposition of the v-space domain could provide 
further significant speedups.

The full Boltzmann solver was also applied to problems with higher Mach num­
bers and lower Knudsen number (higher density) problems. Unfortunately, these 
cases resulted in an instability that appeared to originate upstream of the nose at 
the point of formation of a bow shock. This limited the full Boltzmann analysis to 
cases with K n ^  >1 .0  and M  < 2.5. There are a number of possible strategies for 
investigating the cause of and protection from this instability. Some of these are 
detailed below:

P —space R efinem en t The p-space mesh used for these examples was relatively 
coarse. It might be the case that an adaptive refinement method to capture the shock 
would be sufficient to stabilise the scheme.

V -sp ace  R efinem en t Other than the simple distribution function and collision 
term plots shown in the previous section, no significant analysis into the form of the 
distribution function solution across v-space has taken place. It might be the case 
that the spectral discretisation of v-space described in section 3.1.2 is not providing 
an adequate description of the distribution and/or collision term in zones of highly 
non-equilibrium flow. A v-space refinement might be necessary to overcome this.

L im iting  It might be the case that the discontinuous Taylor-Galerkin scheme 
underlying the whole solver requires further stabilisation in the form of a discontin­
uous limiter such as described in [12] when strong shocks are present.

Evidently, there is much scope for further research and development but this, 
unfortunately, is beyond the scope of this project. In the final chapter, the main 
conclusions of all the work presented here and recommendations for further study 
will be summarised.
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5.1 Conclusions

The work presented in this thesis lays the foundations for the study of the connection 
between the governing equations of molecular gas dynamics and macroscopic gas 
flow phenomena in terms of finite element solutions of the Boltzmann equation and 
its variants. Research in this field is very much still in its early days and simply 
showing the connection between molecular interaction models and phenomena such 
as shock waves may be regarded as significant. The significance of analysing such 
macroscopic flows as shown in this thesis begninning with microscopic behaviour 
of fundamental particles, rather than the standard continuum equations, cannot be 
stressed enough.

The first stage of the research was a comparison of scalar convection equation 
solvers. Particular emphasis was placed upon comparing discontinuous and continu­
ous finite elements and structured/unstructured meshes. The results and discussion 
from this study are detailed in section 4.1. It is clear that the main benefits of 
a discontinuous approach are that it minimises the undershoots and overshoots at 
a discontinuity. Unfortunately, moving from structured to unstructured meshes, 
which is necessary for computations around complex geometries, offsets some of the 
benefits gained from the discontinuous approach. Nevertheless, the advantages of 
the discontinuous approach, combined with the improved parallelisability that it 
provides, made it an attractive scheme for tackling the Boltzmann equation.

The solution methodology presented has been based on the discontinuous Taylor- 
Galerkin algorithm and has been developed for three of the fundamental equa­
tions of molecular gas dynamics; the collisionless Boltzmann equation (3.11), the 
Boltzmann-BGK equation (2.31) and the full Boltzmann equation (2.29). The ba­
sis for each of the solution approaches is a scalar convection equation solver applied 
at indivudual nodes or sampling points in a v-space discretisation. Two discretisa­
tion approaches for the v-space domain have been suggested and compared. These 
approaches are laid out in section 3.1.2 and the conclusion that a spectral approach 
is preferable to using standard linear finite elements is drawn in section 4.2.1.

In section 4.2, the collisionless Boltzmann equation solver was applied to highly 
rarefied (high Knudsen number) gas flows in which the effect of collisions between 
molecules can be deemed negligible. The examples examined included a shock tube- 
type free expansion problem, flow over a vertical plate and hypersonic flow over a 
generic re-entry vehicle nose geometry. The benchmark tests showed remarkable 
agreement with both analytical solutions and results from alternative numerical 
approaches resulting in a trustworthy rarefied gas flow solver that could be applied 
to the non-standard highly rarefied, hypersonic cases.

In section 4.3, the Boltzmann-BGK equation solver was applied to lower Knud­
sen number, low Mach number problems. These problems included flow over a 
vertical plate and subsonic, transonic and supersonic flow over an aerofoil at a range 
of Knudsen and Reynolds’ numbers. The boundary condition formulation was also
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examined in this section comparing the two types of molecule-wall interaction; spec­
ular reflection and diffuse reflection. A wall boundary condition dominated by dif­
fuse reflection was deemed to be the most appropriate when modelling such flows. 
It was also shown in this section, that the Boltzmann-BGK solver fails when the 
flow contains shocks stronger than approximately Mach 2.

In section 4.4, two different molecular interaction models were first considered. 
This analysis showed that a simple hard sphere interaction model fails in the nec­
essary requirement of the Boltzmann equation collision term to restore a non­
equilibrium distribution function to equilibrium. The more complex variable soft 
sphere model was, therefore, adopted using a Monte Carlo sampling methodology 
for selection of the pre-collision velocity pairings. The full Boltzmann equation 
solver was then applied to a selection of transition regime flows, that is flows with a 
Knudsen number close to unity, at a range of Mach numbers over the same generic 
re-entry vehicle nose geometry as in section 4.2. It became clear that computa­
tional demand places a massive limitation on the scope of study when using the 
full Boltzmann solver to analyse transition regime flows. This limitation made it 
impossible to overcome stability problems experienced for lower Knudsen number 
problems and higher Mach number problems. In section 1.3, in which the question 
of why a combined kinetic theory and CFD approach was analysed, the different 
Knudsen regimes experienced by a spacecraft on hypersonic re-entry was described. 
It appears to be the case that it is the transition regime between fully free molecu­
lar flow, governed by the collisionless Boltmann equation, and fully continuous flow, 
governed by the continuum Navier-Stokes equations, that remains to be the real 
challenge for CFD.

Clearly, one of the significant disadvantages, and indeed, limiting factors, of mod­
elling a gas at the molecular level is the massive increase in computational demand 
over traditional macroscopic continuum approaches. The necessity of phase-space 
discretisation leads to a memory increase of at least an order of magnitude and sim­
ilar increases in convergence times. When using typical computing resources avail­
able today, this essentially limits study to fairly modest two-dimensional problems. 
Nevertheless, the opportunities that a scheme such as that described in this thesis 
may unveil are many and varied and will continue to diversify as computational 
resources grow in the future. Any fluid flow problem that exhibits significantly non­
equilibrium behaviour should be analysed beginning with the fundamental equations 
of molecular gas dynamics. Such applications include combustion problems, nano­
scale problems, rarefied gas flows and hypersonics. At some point in the future, 
Moore’s law suggests that computational resources will be such that extensions into 
three-dimensions will be made possible.

5.1.1 E xtensions

Since the work presented here is foundational, there are numerous possibilities for 
extensions to the research. These extensions highlight both the limitations of what
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has been achieved so far, but also the possibilities that a finite element analysis of 
the Boltzmann equation holds.

In this thesis, when ‘air’ is modelled, it is not done so in its true multi-component 
form. Instead, air is considered as a single-species gas, with identical monatomic 
molecules satisfying a variable soft sphere interaction model when collisions are con­
sidered. When a Maxwellian distribution function is constructed, it is done so based 
upon the gas constant for air. This is obviously a massive simplification of reality 
(yet remarkably accurate results have been achieved!) and, therefore, a modelling 
of air using separate distribution functions for its different component gases is an 
obvious next stage in development. Also, if we are to model the constituent particles 
as the polyatomic molecules of reality, the distribution function becomes a function 
of internal vibrational and rotational energy modes (see [5]) as well as time and 
phase-space position.

In the present analysis of wall boundaries, detailed in section 3.5.3, the wall 
temperature is assumed to be fixed at a preset user-defined temperature. Of course, 
in reality, the wall temperature of a container/aerofoil/re-entry vehicle will vary 
according to the gas in contact with it by means of heat flux to and from the wall. 
This process is ignored here and presumably is an important factor in an accurate 
simulation of problems, particularly those involving very high temperatures such as 
the hypersonic applications. An adaption of the boundary condition to allow the 
wall temperature to vary until it falls into equilibrium with the gas in contact with 
it is, therefore, another obvious extension. This is already a standard boundary 
condition technique in continuum solvers.

Whilst on the subject of gas at high temperatures, it was mentioned in the 
introduction, that one of the features of hypersonic flow is high temperature gas 
effects including chemical reactions and ionisation. Clearly, the simple description 
of a gas in the analysis here does not allow any such effects to be considered. An 
extension into a multi-component gas model, with internal energy modes accounted 
for, would allow such effects to be considered.

All of the examples in this thesis have indicated that one of the serious drawbacks 
of this family of methods is convergence time. Although the methods presented here 
will never compete with standard continuum solvers for flows in which the contin­
uum approach is valid, it still would seem sensible to investigate the application of 
convergence accelerating algorithms, such as multigrid ([44],[96]), to the Boltzmann 
solvers.

The source term in the BGK-Boltzmann approximation requires the calculation 
of the molecular collision frequency. The algorithm to perform this calculation is 
detailed in section 3.4.1. This is a computationally expensive procedure since it 
involves integrals over v-space. Analytical formulations for the collision frequency 
of a gas do exist (see [47]) that are strictly only applicable to gases in thermodynamic 
equilibrium. It might be beneficial, however, to investigate the effect of applying a 
collision frequency formula, which will be a function of the macroscopic properties 
of the gas, instead of computing it explicitly i.e. make the assumption that the
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difference between the collision frequency for an equilibrium and non-equilibrium 
gas given the same macroscopic conditions is negligible. If this turns out to be true, 
significant acceleration of the BGK-solver could be achieved.

A further source of convergence acceleration could be achieved if a method for 
parallelising the v-space were to be investigated as well as the physical domain 
decomposition detailed in section 3.7. The physical space domain decomposition 
is not as efficient as one might expect in comparison with a typical Navier-Stokes 
solver due to the massive volume of data transfer at processor domain boundaries. 
A v-space parallelisation might help overcome this problem.

Finally, it was mentioned in the introductory chapter that it is slightly misleading 
to characterise an entire flow with a single Knudsen number, but rather a local 
Knudsen number varying throughout the flowfield is more appropriate. Also, it 
is certainly the case that non-equilibrium features resulting from strong shocks 
will always be localised. This suggests that the most effective application of a 
non-equilibrium methodology such as those described here is only applied in the 
truly non-equilibrium regions of a flow field and a more efficient continuum solver 
everywhere else. This would necessitate the ‘patching’ of the Boltzmann solver to a 
Navier-Stokes solver. In the discontinuous Galerkin context, this might be achieved 
simply by having a tranformation from the distribution function inter-element flux 
to the Navier-Stokes fluxes and vice versa, possibly resulting in a very powerful and 
multi-purpose algorithm.

5.1.2 Final Rem arks

The work in this thesis has demonstrated an alternative approach for simulation of 
gas flows to the mainstream continuum CFD solvers. This approach begins with a 
more fundamental model of the physics of gas flows and hence, at least in principle, 
is more generally applicable. The drawbacks of such an approach in its current 
form and with the current day computing power are evident, but the possibilities 
for development and progress in a field of computer modelling in its infancy, that 
might best be described as ‘computational molecular gas dynamics’, are many and 
fascinating.
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A ppendix A

P roof of the Wall Boundary 
Condition

*+oo
cdcdr,

I  /J T r J  — OO
n r+oo

= c .n f {c , r , t )d c
J T r J — OO

by applying the definition of the normal flux, Fn>c , at a wall

=  / ( / c .n /(c , r, t) dc + / c .n (l — a )/(c  — 2n(n.c), r, t) dc + • •
Jrr \Jc.n>o Jc.n<o

/ ac.nrj(r, t)Mw{c) dc ) drr 
Jc.n<o )
by splitting the integral into components that are towards the wall and away 
from the wall and substituting from equation (3.45) for the reflected flux

=  I c . n f ( c , r , t ) d c — / c .n /(c , r, t) dc H-----
Jrr \Jc.n>o Jc.n>o

a  / c .n /(c , r ,t)d c  + o  / c.nrj{r, t)Mw(c) dc ) drr
Jc.n>o Jc.n< o /

noting that / c .n /(c  — 2n(n.c),r, t) dc =  — / c .n /(c , r, t) dc
Jc.n< o Jc.n>o

=  [ a  c .n /(c , r ,t)d c  + a  / c.nr](r, t)Mw(c) dc J drr
Vrr- V Jc.n>o Jc.n<o /

by cancelling like terms.

If 7](r,t) is defined as in equation (3.49), we then have
/* /»+oo

/ / jPnjCdcdrr
»/ r r J —oo

= ( a c .n f (c ,r , t )d c  —a / c .n /(c , r,t) dc ) drr
Ay V Jc.n>o Jc.n>o J

= 0
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A ppendix B

Divergence (G auss’) Theorem

| Note that the divergence theorem is a special case of the more general Stokes’
! theorem which generalizes the fundamental theorem of calculus.

J  J  b ' ,F ) iv - J  / / " ds
1 where n  denotes the outward unit normal at differential surface element dS  and

surface S  encloses volume V.

\I
|

II
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Appendix C

MATLAB code

function FTCS 
clear 
clc
V, set value of timestep 
dt-0.1;
'/.set the number of timesteps 
nstep-10
‘/.set the value of the flow velocity 
u-5
'/.set the lefthand and righthand boundaries of the domain
a-0;
b-500;
'/.set the number of spatial discretisations 
n-1000;
'/.set the width of a spatial step 
h-(b-a)/n;
'/.construct the spatial coordinate (x-axis) vector
for i-l:n
x(i)-i;
end
'/.construct the initial value of the function f across the domain (in this case a pulse) 
for i-l:20 
f1(i)-0; 

end
for i-21:40 
fl(i)-(i-20); 

end
for i-41:80 
fl(i)-20; 

end
for 1-81:100 
f1 (i)-(lOO-i); 

end
for i-101:n 
fl(i)-0: 

end
'/.plot the initial f-function
plot(x.fl)
axis([0 200 0 30])
‘/.create an (nstep x n) matrix of f-functions, each row is an f-function at 
'/.a given timestep,first row set to initial value of f 
for i-l:n 
f (l.i)-fl(i); 
end
‘/.loop over the number of timesteps to determine the time-evolution of f 
for t-2:nstep 
'/.calculate the FTFS approximation at f(l) 
f(t1l)-f((t-l),l)-(dt*u)*((f((t-l).2)-f((t-l),l))/h);
'/.calculate the FTCS approximation at f(2)->f(n-l) 
for i-2:(n-1)
f(t,i)-f((t-1), i)-(dt*u)*( (f((t-1),(i+l))-f((t-l),(i-l)))/(2*h)); 
end
'/.calculate the FTBS approximation at f(n) 
f (t.n)-f ((t-1) .n)-(dt*u)*((f ((t-1) ,n)-f ((t-1), (n-l)))/h).: 

end
'/.bring up new figure to plot the time evolutions of f 
figure
'/.plot each time evolution of f (contained in matrix f) 
plot(x,f)
axis([0 200 0 30])
•/.  ----------------------------
'/(repeat procedure for a new initial function
•/.—  ------------
'/.for new g-function set the boundaries of the domain
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a-0
b-10*pi
'/.set the width of a spatial step 
h«(b-a)/n;
'/.construct the initial value of the g-function across the domain (in this 
/(case a sine wave) 
for 1-1 :n 
gl(i)»Bin(i*h) 
end
'/.plot intial value of the function
figure
plot(x.gl)
axis ([0 n -1 1])
‘/.create an (nstep x n) matrix of g-functions, each row is a g-function at 
'/.a given timestep,first row set to initial value of g 
for i-l:n 
g(l,i)-gl(i); 
end
'/.loop over the number of timesteps to determine the time-evolution of g 
for t-2:nstep 
'/.calculate the FTFS approximation at g(l) 
g(t,l)»g((t-l),l)-(dt*u)*((g((t-l),2)-g((t-1),1))/h);
'/.calculate the FTCS approximation at g(2)->g(n-l) 
for i-2:(n-1)
g(t,i)«g((t-l),i)-(dt*u)*((g((t-l),(i+l))-g((t-l),(i-l)))/(2»h)); 
end

'/.calculate the FTBS approximation at g(n) 
g(t.n)-g((t-l),n)-(dt*u)»((g((t-l),n)-g((t-l),(n-l)))/h); 
end
'/(bring up new figure to plot the time evolutions of g 
figure
'/.plot each time evolution of g (contained in matrix g)
plot(x.g)
axis(CO n -2 2])



function upwind 
clear all; clc;
‘/•set the Initial value of the problem
% iopt-1 SQUARE PULSE
'/, iopt-2 smoothed wave
'/. iopt-3 PULSE2
'/. iopt-4 SINE WAVE
iopt-3;
'/.choose whether to animate the output or freeze frame the output 
'/. Jopt-1 ANIMATE
'/. jopt-2 FREEZE FRAME THE PULSE 2 FUNCTION 
'/. jopt-3 FREEZE FRAME THE SINE WAVE FUNCTION 
jopt-2;
'/.set the calue of the Courant number 
-1;
'/.set the value of the flow velocity 
u*5;
'/.set the value of timeend 
timeen d  - 1.7;
‘/.set the number of timesteps if freeze framing 
nstep-2000;
'/set the number of nodal points 
n-300;
'/.number of elements 
ne-n-1;
'/construct initial function dependent on iopt selection 
switch iopt 
case 1
/construct a vector of the element lengths of random length between 
'/.0.5 and 1.25 
x(1)-0.0; 
for ie-l:ne
h(ie)-(0.5+rand*0.75);
‘/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
/set the limits of the domain 
a-x(l) ; 
b-x(n) ;
/construct the initial value of the function f across the domain (in this 
'/.case a pulse) 
for i-l:n 
if x(i)<-10 
f(i)-0;
elseif x(i)<-20
f(i)—1;
else
f(i)-0;
end
end
case 2
/construct a vector of the element lengths of random length between 
'/,0.S and 1.26 
x(l)-0.0; 
for ie-l:ne
h(ie)-(0.5+rand*0.75);
/construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
/set the limits of the domain 
a-x(l); 
b-x(n);
'/. construct the initial value of the f-function across the domain
/ (in this case a sine pulse)
for i-l:n
if x(i)<-2*pi
f(i)-0;
elseif x(i)<-2*l.25*pi 
f(i)-(sin(x(i)/2+(pi)/2)+l); 
elseif x(i)<-2*l.76*pi 
f(i)-0.4*sin((x(i)/2-pi)); 
elseif x(i)<-2*2*pi 
f(i)-(sin((x(i)/2-(pi)/2))+l); 
else 
f (i)-0; 
end 
end 
case 3
'/.construct a vector of the element lengths of random length between
*/.0.5 and 1.26
x(l)-0.0;
for ie-l:ne
h(ie)-(0.5+rand*0.75);

x(ie+l)-x(ie)+h(ie); 
end
'/.set the limits of the domain 
a-x(l) ;
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b-x(n);
'/.construct the PULSE 2 initial condition
for >1:20
f(i)-0;
end
for >21:40 
f(i)-(i-20); 
end
for i-41:80 
f(i)-20: 
end
for >81:100 
f(i)-UOO-i); 
end
for >101 :n 
f(i)-0; 
end 
case 4
'/.construct a vector of the element lengths of random length between 
*/,0.5 and 1.25 
x(l)-0.0; 
ne
for ie-l:ne
h(ie)-(0.6+rand*0.75);
'/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie)j
end
'/.set the limits of the domain
a-x(l);
b-x(n);
'/.construct the initial value of the g-function across the domain (in this 
'/.case a sine wave) 
for >l:n
f(i)-sin(0.05*x(i));
end
end
end
'/.chooee whether to animate the output or static freeze frame the output 
switch Jopt 
case 1 
plot(x,f)
'/. ANIMATE THE OUTPUT:
'/set the time variable to 0 
time-0;
'/.set the icount variable to 0 
icount-0;
'/.plot the initial distribution of f 
set(gcf,’doublebuffer’,’on’) 
p-plot(x,f);
Mis ([a b -0.5 1.5])
'/.label the x-axis 
xlabelCdistance, x ’); 
set(p,’EraseMode’,’xor’); 
str-[’time- ’ num2str(time)]; 
title(str, ’FontSize’, 10) 
drawnow; 
pause
'/.loop over time steps 
while time < timeen d
'/.calculate value of timestep based on Courant number
dt-C*h/u;
time-time+dt;
'/.flux vector splitting to allow for LR advection and RL
'/.advection
upos-0.5*(u+abs(u));
uneg»0.5*(u-abs(u));
'/.upwind differencing method 
for k-2:n-l
fnew(k)-f(k)-(dt/h)*(upos*(f(k)-f(k-1))+uneg*(f(k)-f(k+1))); 
end
XSET BOUNDARY CONDITIONS
7,left hand boundary: unchanged
fnew(l)«f(1);
'/right hand boundary: unchanged
fnew(n)«f(n);
for k-1:n
f(k)-fnew(k);
end
pause(O.Ol);
set(p,’Ydata’,f);
str-[’time- ’, num2str(time)];
title(str, ’FontSize’,10)
drawnow;
end
case 2
dt-C*min(h)/u;
/flux vector splitting to allow for LR advection and RL 
'/advection
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upos-0.5*(u+abs(u)); 
uneg-0.5*(u-abs(u)); 
plot(x,f) 
axis ([a b 0 30])
'/create an (nstep x n) matrix of f-functions, each row is an
'/f-function ata given timestep, first row set to initial value of f
for i-l:n
fplot(l,i)-f(i);
end
'/.loop over the number of timesteps to determine the time-evolution 
'/.of f
for t-2:nstep
‘/fix the left and right boundary values 
fplot(t,l)-fplot(l,l); 
fplot(t,n)-fplot(l,n);
'/.calculate the upwind approximation for f(2)-> f(n-l) 
for i-2:(n-l)
fplot(t,i)-fplot (t-1, i)-(dt/h(i))*(upos*(fplot(t-1,i)-fplot(t-1,i-l))+uneg*(fplot(t-1,i)-fplot(t-1,i+1)));
end
end
'/, new figure to plot the time evolution 
figure
plot(x,fplot) 
axis ([a b 0 30])
'/.plot the evolution every 20 timesteps 
for tl0-l:10 
t-tl0»20 
for i-l:n
newfplot(tlO,i)-fplot(t,i);
end
end
figure
plot(x,newfplot) 
axis([a b 0 30]) 
case 3
dt-C*min(h)/u;
'/.flux vector splitting to allow for LR advection and RL
'/.advection
upos-0.5*(u+abs(u));
uneg-0.6+(u-abs(u));
plot(x,f)
axis([0 b -2 2])
*/,create an (nstep x n) matrix of f-functions, each row is an 
'/.f-function ata given timestep, first row set to initial value of f 
for i-l:n 
fplot(l,i)-f(i); 
end
'/.loop over the number of timesteps to determine the time-evolution 
'/.of f
for t-2:nstep
'/.fix the left and right boundary values 
fplot(t,l)-fplot((t-1),1);
fplot(t,n)-fplot((t-1),n)-(dt*u)*((fplot((t-l),n)-fplot((t-1).(n-l)))/h(ne));
'/.calculate the upwind approximation for f(2)-> f(n-l) 
for i-2:(n-l)
fplot(t,i)-fplot(t-1,i)-(dt/h(i))*(upos*(fplot(t-1,i)-fplot(t-1,i-1))+uneg*(fplot(t-l.i)-fplot(t-1,i+1))) ;
end
end
'/, new figure to plot the time evolution 
figure
plot(x.fplot) 
axis([0 b -2 2])
'/.plot the evolution every 10 timesteps 
for tlO-1:10 
t-tl0*20; 
for i-l:n
newfplot(tlO,i)-fplot(t,i);
end
end
figure
plot(x.newfplot) 
axis([0 b -2 2]) 
end
end '/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
'/.set the limits of the domain
a-x(l);
b-x(n);
/construct the PULSE 2 initial condition 
for i-1:20 
f(i)-O; 
end
for 1-21:40 
f(i)-(i-20); 
end
for 1-41:80 
f(i)-20;
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end
for i-81:100 
f(i)-(100-i) ; 
end
for i-101:n
f(i)-0;
end
case 4
'/.construct a vector of the element lengths of random length between 

' 7 . 0 .5 and 1.25 
x(l)-0.0; 
ne
for ie-l:ne 
h(ie)-(0.5+rand*0.75)j
'/.construct the spatial coordinate (x-axis) vector
x(le+l)-x(ie)+h(ie);
end
'/.set the limits of the domain 
a-x(l); 
b-x(n);
'/construct the initial value of the g-function across the domain (in this 
'/.case a sine wave) 
for i«l:n
f(i)-sin(0.05*x(i));
end
end
end
‘/.choose whether to animate the output or static freeze frame the output 
switch Jopt 
case 1 
plot(x.f)
‘/. ANIMATE THE OUTPUT:
'/.set the time variable to 0 
time-0;
‘/.set the icount variable to 0 
icount-0;
'/plot the initial distribution of f 
set(gcf,’doublebuffer’,’on’) 
p—plot(x.f); 
axis([a b -0.5 1.6])
‘/.label the x-axis 
xlabel(’distance, x ’); 
set(p,’EraseMode’,’xor’); 
str-[’time- ’ num2str(time)]; 
title(str, ’FontSize’, 10) 
drawnow; 
pause
‘/.loop over time steps 
while time < timeend
'/calculate value of timestep based on Courant number
dt-C*h/u;
time-time+dt;
‘/flux vector splitting to allow for LR advection and RL
'/.advection
upos-0.5*(u+abs(u));
uneg-0.5*(u-abs(u));
'/.upwind differencing method 
for k-2:n-l
fnev(k)-f(k)-(dt/h)*(upos*(f(k)-f(k-l))+uneg*(f(k)-f(k+1))); 
end
'/.SET BOUNDARY CONDITIONS 
/left hand boundary: unchanged
fnew(l)-f(1);
/right hand boundary: unchanged
fnew(n)-f(n);
for k»l:n
f(k)-fnew(k);
end
pause(O.Ol);
set(p,’Ydata’,f);
str-[’time- ’, num2str(time)];
title(str, ’FontSize’,10)
drawnow;
end
case 2
dt-C*min(h)/u;
'/flux vector splitting to allow for LR advection and RL
'/.advection
upos-0.5*(u+abs(u));
uneg-0.5*(u-abs(u));
plot(x,f)
axis([a b 0 30])
/create an (nstep x n) matrix of f-functions, each row is an 
/f-function ata given timestep, first row set to initial value of f 
for i-l:n 
fplot(l,i)-f(i); 
end
'/.loop over the number of timesteps to determine the time-evolution
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'/.of f
for t-2:nstep
'/.fix the left and right boundary values 
fplot(t,l)»fplot(l,l); 
fplot(t,n)-fplot(l,n)j
'/.calculate the upwind approximation for f(2)-> f(n-l) 
for i-2:(n-l)
fplot(t,i)-fplot(t-1,i)-(dt/h(i))*(upos*(fplot(t-l.i)-fplot(t-1,i-1))+uneg*(fplot(t-1,i)-fplot(t-1,i+1) ) )  ;
end
end
'/. new figure to plot the time evolution 
figure
plot(x.fplot) 
axis([a b 0 30])
'/.plot the evolution every 20 timesteps 
for tlO-1:10 
t-tl0*20 
for i-l:n
newfplot(tlO,i)-fplot(t,i);
end
end
figure
plot(x.nevfplot) 
axis([a b 0 30]) 
case 3
dt-C*min(h)/u;
'/.flux vector splitting to allow for LR advection and RL
'/.advection
upos-0.5*(u+abs(u));
uneg-0.5*(u-abs(u));
plot(x.f)
axia([0 b -2 2])
'/.create an (nstep x n) matrix of f-functions, each row is an 
'/.f-function ata given timestep, first row set to initial value of f 
for i-l:n 
fplot(l,i)-f(i); 
end
'/.loop over the number of timesteps to determine the time-evolution 
'/.of f
for t-2instep
'/.fix the left and right boundary values 
fplot(t,l)»fplot((t-l),1)j
fplot(t,n)-fplot((t-1),n)-(dt*u)*((fplot((t-l),n)-fplot((t-1).(n-l)))/h(ne));
'/.calculate the upwind approximation for f(2)-> f(n-l) 
for i-2:(n-l)
fplot(t,i)-fplot(t-1,i)-(dt/h(i))*(upos»(fplot(t-1,i)-fplot(t-1,i-1))+uneg*(fplot(t-1,i)-fplot(t-1,1+1)));
end
end
'/. new figure to plot the time evolution 
figure
plot(x,fplot) 
axis([0 b -2 2])
/.plot the evolution every 10 timesteps 
for tl0-l:10 
t-tl0*20; 
for i-l:n
newfplot(tlO,i)-fplot(t ,i);
end
end
figure
plot(x.newfplot) 
axis([0 b -2 2]) 
end 
end
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function LAX 
clear clc
'/.set value of timestep 
dt-0.1;
'/.set the number of timesteps 
nstep-200
'/.set the number of discretisation points 
n-1000;
'/number of elements 
ne-n-1;
'/.set the value of the flow velocity 
u-5
'/.construct a vector of the element lengths of random length between
'/.O.S and 1.25
x(l)-0.0;
for ie»l:ne
h(ie)-(0.5+rand*0.75);
'/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
'/.set the limits of the domain
a-x(l);
b-x(n);
'/.the Courant number 
C«u*dt/min(h)
'/.construct the initial value of the function f across the domain (in this
'/case a pulse)
for i-1:20
f1(i)-0;
end
for 1-21:40
fl(i)-(i-20);
end
for 1-41:80
fl(i)-20;
end
for 1-81:100
fl(i)-(100-i);
end
for i-101:n 
f 1 (i) —0; 
end
‘/plot the initial f-function
plot(x.fl)
axis([a b 0 30])
/create an (nstep x n) matrix of f-functions, each row is an f-function at
*/a given timestep,first row set to initial value of f
for i-l:n
f(l.i)-fl(i):
end
'/loop over the number of timesteps to determine the time-evolution of f 
for t-2:nstep
'/.calculate the FTFS approximation at f(l) 
f(t,l)-f((t-1),l)-(dt*u)*((f((t-1),2)-f((t-1),l))/h(l));
/calculate the LAX ’staggered’ FTCS approximation at f(2)->f(n-l) 
for i-2:(n-1)
f(t,i)-0.5*(f((t-1),(i+1))+f((t-1),(i-1)))-(dt*u)*((f((t-l),(i+l))-f((t-1). (i-l)))/(h(i)+h(i-l))); 
end
/calculate the FTBS approximation at f(n)
f(t,n)-f((t-1),n)-(dt*u)*((f((t-1),n)-f((t-1),(n-l)))/h(n-l)); 
end
/bring up new figure to plot the time evolutions of f 
figure
/plot each time evolution of f (contained in matrix f)
plot(x.f)
axis([a b 0 30])
/plot the evolution every 20 timesteps 
for tl0-l:10 
t-tl0*20 
for i-l:n
newfplot(tl0,i)-f(t.i);
end
end
figure
plot(x,newf plot) 
axis([a b 0 30])
'/, new figure to plot the time evolution 
'/ figure 
'/, plot(x.f)
'/. axis( [0 200 0 30])
/plot the evolution every 10 timesteps 
'/, for tl0-l:10 
*/. t-tl0*10;
/ for i-l:n 
Z newf(tlO.i)-f(t.i);
'/, end 
Z end 
'/, figure



'/, plot(x,newf)
•/, axis([0 200 0 30])
'/.   -------------
'/repeat procedure for a new Initial function
'/.   —  —— —— — — — —   —
‘/construct a vector of the element lengths of random length between 
'/0.5 and 1.25 
x(l)-0.0; 
for le-l:ne
h(ie)«(0.5+rand*0.75);
‘/construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
‘/set the limits of the domain 
a-x(l)j 
b-x(n);
'/.construct the initial value of the g-function across the domain (in this 
‘/.case a sine wave) 
for i«l:n
gl(i)«sin(0.05*x(i)): 
end
'/.plot intial value of the function
figure
plot(x.gl)
axis ([a b -2 2])
‘/.create an (nstep x n) matrix of g-functions, each row is a g-function at
‘/.a given timestep,first row set to initial value of g
for i-l:n
g(l,i)-gl(i):
end
'/.loop over the number of timesteps to determine the time-evolution of g 
for t-2:nstep
‘/.calculate the FTFS approximation at g(l)
‘/g(t,l)-g((t-l) ,l)-(dt*u)*((g((t-l) .2)-g((t-l) ,l))/h(l)); 
g(t,l)-0;
'/.calculate the LAX ’staggered’ FTCS approximation at g(2)->g(n-l) 
for i-2:(n-l)
g(t,i)-0.5*(g((t-l),(i+1))+g((t-l),(i-l)))-(dt*u)*((g((t-l),(i+l))-g((t-l),(i-l)))/(2*h(i))); 
end
‘/.calculate the FTBS approximation at g(n)
g(t,n)*g((t-l),n)-(dt»u)»((g((t-l),n)-g((t-l),(n-l)))/h(n-l))j 
end
'/.bring up new figure to plot the time evolutions of g 
figure
'/.plot each time evolution of g (contained in matrix g)
plot(x,g)
axis((a b -2 2])
'/.plot the evolution every 20 timesteps 
for tlO-1:10 
t-tl0*20 
for i-l:n
newgplot(tl0,i)«g(t,i);
end
end
figure
plot(x,newgplot) 
axis([a b -2 2])
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function LAXWENDROFF
clear all
clc
'/. iopt-1 PULSE2 
•/. iopt-2 SINE WAVE 
iopt-2;
'/.set the timestep size 
dt-0.01;
'/.set the value of the flow velocity 
u-5;
‘/.set the number of timesteps 
nstep-200;
'/.set the number of nodal points 
n-400;
'/.calculate the number of elements 
ne-n-1;
‘/.construct initial function dependent on iopt selection 
switch iopt 
case 1
'/.construct a vector of the element lengths of random length between
'AO.5 and 1.25
x(l)-0.0;
for ie-l:ne
h(ie)-(0.5+rand*0.75);
'/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
'Aset the limits of the domain
e-x(l);
b-x(n);
'/.the Courant number 
Csafe-u*dt/min(h)
'/.construct the initial value of the function f across the domain (in this
'/.case a pulse)
for i-1:20
f1(i)—0;
end
for i-21:40
fl(i)«(i-20);
end
for i-41:80
fl(i)-20;
end
for i-81:100
fl(i)-(100-l);
end
for i-101:n 
f1(i)—0; 
end
'/.plot the initial f-function 
plot(x,f1)
axis([a (b/1.5) 0 30]) 
case 2
'/.construct a vector of the element lengths of random length between
7,0.5 and 1.25
x(l)-0.0;
for ie-l:ne
h(ie)-(0.5+rand*0.75);
'/.construct the spatial coordinate (x-axis) vector
x(ie+l)-x(ie)+h(ie);
end
'Aset the limits of the domain 
a«x(l); 
b-x(n);
'/.the Courant number
Csafe-u»dt/min(h)
'/.construct the initial value of the g-function across the domain (in this 
'/.case a sine wave) 
for i-l:n
fl(i)-sin(0.05*x(i)); 
end
'/.plot intial value of the function
figure
plot(x,f1)
axis([a (b-50) -2 2]) 
end
'/.create an (nstep x n) matrix of f-functions, each row is an f-function at
'/.a given timestep,first row set to initial value of f
for i-l:n
f(l,i)-fl(i);
end
Xloop over time steps
XLAXWENDR0FF
for itime-1:(nstep-1)
Aset the upwind method weightings
wl-1;
v2-l;
'/.first LAXWENDROFF step
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for ie*l:ne 
ile“ie;iri-ie+l;
Fle»u*f(itime.ile)j 
Fri-u*f(itime.iri);
fh(ie)-(l/(wl+w2))*(wl*f(itime.ile)+w2*f(itine,iri))-(0.5*dt/h(ie))*(Fri-Fle)j 
end
‘/.second LAXWENDROFF step 
for k*2:n-l 
iri-kiile-k-1;
Fle-u*fh(ile);
Fri-u*fh(iri);
fnew(k)“f(itime,k)-(dt/0.5*(h(k)+h(k-l)))»(Fri-Fle); 
end
V.SET BOUNDARY CONDITIONS 
‘/.left hand boundary: 
fnew(l)“0.0;
‘/.right hand boundary: unchanged
fnev(n)~0.0;
'/,update the solution 
for k“l:n
f(itime+1,k)”fnev(k);
end
end
figure
plot(x.f)
axis([a (b-50) -2 2])
‘/.plot the evolution every x timesteps 
for tlO“l:10 
t-tl0*20; 
for i“l:n
newfplot(tlO,i)*f(t.i);
end
end
figure
plot(x.neufplot) 
axis([a (b-50) -2 2]) 
end 
end

|
I
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p-space mesh 
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subroutine

subroutine specific 
to BGK solver

subroutine specific 
to Boltzmann solver
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call to subroutine

further sub rout me 
info overleaf

Figure D.l: Program Flow Chart (part 1)
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GTGEO

Jr..
GFTLEN

GETMAT

k k
GETNOR

------

IT  MESH

k k
INICON

k k

k k

GEELOC
EDGCOM

ADVNCE c >

3 J t
OITTTUT output file

Figure D.2: Program Flow Chart (part 2)
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Figure D.3: Program Flow Chart (part 3)



SUBROUTINE DESCRIPTIO N
VSPACE Reads in the Lobbatto positions and weights and constructs the v-space discretisation
GTINPT Reads the p-space mesh file
BCASTP Broadcasts the necessary p-space data from master to slave processors
DG LIN CONVEC Discontinuous scalar convection solver
GTSID Constructs the ISIDE matrix containing the information about p-space element sides 

necessary for computing the inter-element fluxes
NORMAL Computes the normals to each element side in the p-space mesh
GTGEO Computes shape functions and Jacobians for each p-space element
GETLEN Computes a characteristic length scale for each p-space element
GETMAT Computes the inverse lumped mass matrix for each p-space element
GETNOR Computes the normals and lengths o f  each element edge
PTMESH Reads in the METIS mesh partition file and partitions the global p-space mesh
GETLOC Converts all global arrays into local arrays based on the p-space mesh partition
EDGCOM Computes communication matrices on each slave processor for the inter-element flux 

transfer in EDGFLX
INICON Sets up the initial conditions o f the problem or reads conditions from a ‘restart’ file
ADVNCE Performs the time-stepping
OUTPUT Prints the post-processing output files and restart file
ALOTIM Computes the Courant condition allowable timestep
MACROS Converts the distribution function information into macroscopic variable by ‘taking 

moments’
GETMAC Compiles the local macroscopic data into global arrays to be printed to a results file
FLUCON Conputes the wall boundary flux conservation parameter
COLLIS Computes the full Boltzmann collision source term
COMPMU Computes the collision frequency necessary for the BGK source term
ALO H M 2 Computes the BGK allowable time-step
GTEQNF Computes the M axwellian distribution function necessary for the BGK source term
GETFLA Computes fluxes o f  the distribution function
GETELC Computes the element contribution in the finite element algorithm
EDGFLX Computes the inter-element flux contribution in the finite element algorithm
GETBOU Deals with element edges that are at domain boundaries
GETTNC Computes the distribution function increment at each element node
ADTHEM Computes the new (end-of-timestep) distribution function value

Figure D.4: Subroutine Descriptions
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