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Abstract
In this thesis we consider subordination (in the sense of Bocnher) of vari­
able order. This work extends previously known results related to operators 
of variable (fractional) order of differentiation, or variable order fractional 
powers. The first main result gives a formal backround to the proof that for 
certain classes of negative definite symbols q(x,£) and state space dependent 
Bernstein functions f {x ,s )  the pseudo-differential operator —p (x ,D )  w ith  
symbol —f{x ,q (x ,£ ))  extends to the generator of a Feller semigroup. A  new 
concrete example is given. The final result improves upon this result. This 
is achieved by proving the crucial estimates previously assumed for a large 
class of symbols and Bernstein functions.
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Notation
N natural numbers 
N0 =  N U {0}
Ng set of all multiindicies
N?,, =  {P e Ng \\(3\ > 0 and 0 < \p\ <  7}
Z integers 
R real numbers 
R+ =  {x  G R \x >  0}
Rn euclidean vector space 
C complex numbers 
Cn unitary vector space 
A  closure of a set
A \ B  set theoretical difference of two sets
a! =  ol\ \ . . .  a n\, a e N J
xa =  x®1 • .. .  • x%n, a € NJ and x G Rn

0  u dx̂ ...dx?tn
D au =  (—id)au

X a characteristic function of the set A
u+ positive part of u, i.e. u+ =  u V 0
u~ negative part of u, i.e. u~ =  — (it V 0)
Re f  real part of a function
Im  f  imaginary part of a function
( / , )  sequence of functions
f o g  composition of functions
/  * g convolution of functions
u, Fu  Fourier transform
F ~ lu inverse Fourier transform
supp u support of a function

B Borel sets in Rn 
cr(S') cr-field generated by S 

Lebesgue measure in Rn

signum of a

a A b =  m in(a , b) 
a V b =  max(a, b) 
diagA =  {(x, x) : x E A}
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ea Dirac measure at a E Rn
e0 Dirac measure at 0 E Rn
Mi ® M2 product of the measures //i and P2

p 1 * /̂ 2 convolution of the measures p\ and p2

||/x|| total mass of a measure p
supp p support of a measure p
(Mt)t>0 convolution semigroup of subprobabilities
(Mt )t>o subordinate convolution semigroup

f a +  =  f(a ,bj

B(Q) Borel measurable function 
C(G) continuous functions
Co(G) continuous functions w ith compact support 
C0 0 (G) continuous functions vanishing at in fin ity 
Cb(G) bounded continuous functions 
C m(G) m-times continuously differentiable functions 
Cgl(G) =  Cm( G ) n C 0(G)
C°° arbitrarily often differentiable functions
Co° arbitrarily often differentiable functions w ith  compact support

space of //-measurable functions /  such tha t \ f \p is integrable 
H * 'a(Rn) =  { u e  S'(Rn); ||u ||^a < 00}
S(Rn) Schwartz space
S"(Rn) the dual space of 5(R n) (tempered distributions)

\x\ Euclidean distance in Rn 
\x\oo =  m ax{|a;i|,. . . ,  |xn|}, x e R n 
\z\ Euclidean distance in Cn 
||n||x norm of u in the space X
IM U .x  =  IH U  +  l l^ n IU  graph norm w ith  respect to the operator A 
11A11 =  ||A||x,y operator norm of the operator A 
IMIo, (u,u)0 norm and scalar product in L 2(Q,,p)
IHloo =  sup\u(x)\
||w||^,a norm in the space H ^ ,s(Rn)
P m u t r u W  =  SUpxeK„ (( l  +  | l | 2) 2 £ | Q|<m2 |d“u (z)l)

P c A u) =  SUPxeR” l ^ c ^ x )

X  Y  continuous embedding of X  into Y  
B (X )  bounded linear operators from X  into itself 
(A , || • \ \x ) Banach space X  w ith  norm || • ||x 
X * dual space of a topological vector space
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< u, x > duality pairing between X *  and X  
(.A , D (A ))  linear operator w ith  domain D (A )
D (A )  domain of an operator 
R(A)  range of an operator 
A closure of an operator 
p(A) resolvent set of an operator 
P+{A) =  p(A) n  (0, oo)
(.R\)\>o  resolvent of an operator
R ^ J X - A ) - 1
(B, D (B ))  bilinear form w ith  domain D (B )
B{u,v) bilinear form
B\(u, v) =  B(u, v) +  A(u, u)0
gsym Symmetric  part of a bilinear form B
gasym antisymmetric part of a bilinear form B
q(x, D )  pseudo-differential operator w ith  symbol q(x, £)
'iJj(D) pseudo-differential operator w ith  symbol ?/>(£)
{Tt)t>o one parameter semigroup of operators
(Tt*)t>o adjoint semigroup of {Tt)t>0
( r / ) t>o subordinated semigroup
A*  generator of subordinated semigroup
C ) t>o semigroup on C<*>
^(°°) generator of o
{ T (p)) t>o semigroup on L ^ R 71), 1 <  p <  oo 
A ^  generator of ( T ^ ) t>o
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Introduction
The main purpose of this thesis is to investigate subordination (in the sense 
of Bochner) of variable order. S. Bochner introduced a method called sub­
ordination which was used to obtain a new process from a given one by a 
random time change. His original papers are [5] and [6]. We w ill however, 
study subordination using an analytic approach by using the books of Chr. 
Berg and G. Forst [4] and N. Jacob [20]. There is a long history of construct­
ing a functional calculus for generators of subordinate semigroups, w ith  the 
first general results obtained by R. S. Phillips [34]. Many calculi for this topic 
have been proposed, however, we only mention the paper of Chr. Berg, Kh. 
Boyadzhiev and R. de Laubenfels [3], J. Faraut [10], the monograph of R. de 
Laubenfels [8] and the papers of R. L. Schilling [35] and [36]. We should note 
that F. Hirsch [15]-[16] had obtained related results prior to this. The repre­
sentation of fractional powers of generators is the the best known result, this 
is due to A. V. Balakrishnan [1], see also K. Yosida [39], M. A. Krasnosel’skii 
et al. [26] and V. Nollau [32]-[33]. A t the root of our work is the result that 
for a continuous negative definite function 0  and a Bernstein function / ,  foip  
is also a continuous negative definite function. Further, i t  is already known 
that for one parameter semigroups, the subordinate semigroup is given by

Ttf u =  (  Taurjt{ds).
JRn

where the convolution semigroup {rjt)t>o supported by [0, oo) is linked to /  
by

poo

C(r}t){x) :=  /  e~xsrjt{ds) =  e~l^ x\  x >  0 and t >  0.
Jo

I t  is known that if  Tt is a Feller semigroup on C00(Mn) then T (  is also a 
Feller semigroup on Coo(Rn). Similarly i f  Tt is a sub-Markovian semigroup 
on L ^M 71) then T /  is also a sub-Markovian semigroup on L ^ M 71). For the 
translation invariant case we have clear results for the generators of Feller 
and sub-Markovian semigroups and for the subordinate case.

Subordination has also been studied on the level of pseudo-differential 
operators. I t  is illustrated in the thesis that under certain conditions the 
pseudo-differential operator —p (x ,D )  w ith  symbol —f(q (x ,£ )) ,  where /  is a 
Bernstein function and q belongs to Hoh’s symbol class, extends to the gen­
erator of a Feller semigroup. A  similar result is shown for the sub-Markovian 
case. This result is not to ta lly  unexpected since we know that the function

£ f { q { x ,0 )
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is a continuous negative definite function provided £ —» q(x,£) is a con­
tinuous negative definite function, hence the pseudo-differential operator 
— ( /  oq)(x, D )  w ith  symbol —}{q{x , £)) is a candidate for an operator having 
an extension generating an ZAsub-Markovian or Feller semigroup.

This now leads us to the next step, i.e. subordination of variable order. 
By subordination of varibale order we mean the case when we replace a fixed 
Bernstein function /  by a family of Bernstein functions, f ( x , •) depending 
on x. Pseudo-differential operators of variable order of differentiation have 
already been studied by A. Unterberger and J. Bokobza [40], and in particular 
by H.-G. Leopold [27], [28]. Feller semigroups obtained from the symbol 
(1 -I- |{|2)r(l) have been studied by N. Jacob and H.-G. Leopold [23], where 
further work is due to A. Negoro [31], in particular to K. Kikuchi and A. 
Negoro [24], [25]. I t  should also be noted that Weyl-Hormander calculus 
can be used to consider operators of variable order of differentiation, see F. 
Baldus [2]. Moreover Hoh, [19] has shown that when

/ ( * ,« ( * , { ) )  =  («(*,

where 0 <  m(x) <  1, then under certain conditions the pseudo-differential 
operator

-p (x ,  D )u  =  -(27 t)“ £ [  elx<(q(x, f ) ) m(x)u(£)df
J]Rn

extends to the generator of a Feller semigroup.
The aim of this thesis is to extend these ideas; we want to enlarge the class 

of examples and obtain a general proof showing tha t the pseudo-differential 
—p(x, D )  w ith  symbol —f(x ,  q(x, £)) extends to the generator of a Feller semi­
group. The process of subordination of variable order may also be described 
as considering pseudo-differential operators of variable order of differentiation 
as generators of semigroups.

In this work we first meet subordination of variable order in chapter four. 
Here we give a formal backround to the proof tha t — p(x, D )  generates a 
Feller semigroup. The aim is to use the Hille-Yosida-Ray theorem to prove 
this result. The m ajority of the work in the proof comes from solving the 
equation p \0(x ,D )u  =  g which is one of the conditions of the Hille-Yosida- 
Ray theorem. The essence of the proof is as follows. We first assume

mfn f (y ,  s) >  fo(s) for all s G [0, oo)

and
sup f (y ,  s) <  f i(s )  for all s € [0, oo)
y e R n

9



where / 0 and / i  are Bernstein functions. Further, when q{x, £) is comparable 
w ith a fixed continuous negative definite function i/j, we find

<  f(x ,q (x ,Z ))  <  c i / i ( ^ ( 0 )  =  ^ i ( 0

and similarly

p(z,£) >  f ( x ,q ( x ,0 )  >  Cofo{ip{0) =  ^o (0 -

Therefore, we have continuous negative definite functions -00 and 'ipi as lower 
and upper bounds for p(x , £). Under further assumptions for ?/>, ^ 0, ipi and /  
we get the following embedding results:

H ^ ' l (Rn) ^  H m (Rn)

and

for m > 0. These results become crucial further in the proof. We now assume 
p belongs to the class S'2+ri,^1(]Rn) (for Hoh’s symbol class see (2.2)), for 
some appropriate r  >  0. This allows us to derive some important continuity 
estimates for p (x ,D ).  In order to solve the equation p \0(x ,D )u  =  g we 
assume that for the bilinear form B (u , v) =  (p(x , D )u , v)o

\B(u,v)\ <  f t lM U . i lM k . i ,  k >  0

and
B (w ,it)  >  7 |M |J o ,i ~  A0||u||o, A0 >  0, 7 >  0.

Since these estimates are in different spaces we introduce an intermediate 
space H Pxo(Rn). By the Lax-Milgram theorem we have tha t for every g G 

R n) (since H ^ °~ 1(W l) =  (H Pxo(R n))*) there exists a unique element 
u G H Pxo (R n) satisfying

BXo(u,v) = < g , v >  (0.1)

for all v G i / p*o(Rn). We next prove that we have a unique variational 
solution to px0{x ,D )u  =  g for g G / f ^ 0,“ 1(Rn) and u G i / ’̂ 0,1(Rn). More 
regularity is achieved by assuming that p ^ (x ,£ )  =  ^ +Ap belongs to the
symbol class S“ 2+‘ro’̂ °(Rn) for some ro >  0. We now have all the tools we 
require to prove that — p(x, D )  extends to the generator of a Feller semigroup 
by the Hille-Yosida-Ray theorem. To demonstrate the scope of our result we 
consider an example where

p(x,£) =  ( l  +  g (rc ,0 )£̂ ( l - e _4(1+9(x,0)^ 1),

10



i.e. the family of Bernstein funtions is given by

f (x ,s )  =  3 ^ ( 1  -  e“ 4ŝ ) .

We prove that p(x,£) and —■ belong to the appropriate symbol classes
and then we apply the general framework to find that —p(x, D )  extends to 
the generator of a Feller semigroup.

We improve the results of chapter four in chapter five, namely by proving 
the crucial estimates that axe previously assumed. We prove that p belongs 
to the symbol class S'2ri+2c*^(Rn) and that the symbol belongs to the 
class S~2r0+2̂ ( R n). This is true assuming that q(x,£) is comparable w ith  
a fixed continuous negative definite function ip and /  is a Bernstein function 
such that for appropriate e and 5q

|d?a* /(x ,s ) |  <  cQiM ^ / ( i , s)s£

holds for all x G Mn and s >  So w ith ca<k,e independent of x and s. This w ill 
imply the estimates required in chapter four.

To summarise the content of this thesis, the first chapter begins w ith 
some important definitions such as continuous negative definite functions 
and Bernstein functions. One parameter operator semigroups are also intro­
duced, in particular Feller and sub-Markovian semigroups and their genera­
tors. We then conclude this chapter by looking at subordination of operator 
semigroups.

Chapter two gives a description of Hoh’s symbolic calculus; i t  defines 
anisotropic Sobolev spaces and introduces estimates for bilinear forms in 
these spaces. These estimates are needed when try ing to solve the equation

p(x, D )u  =  f .

We dedicate chapter three to pseudo-differential operators as generators 
of Feller or sub-Markovian semigroups. Here we first introduce the idea of 
using the Hille-Yosida-Ray theorem to prove tha t an operator extends to the 
generator of a Feller semigroup, a method very important in  the chapters to 
follow.

As mentioned, chapter four gives a general framework of a proof that 
—p(x, D ) generates a Feller semigroup. A new example is then given. In 
chapter five we prove the estimates required in chapter four for a large class 
of symbols and Bernstein functions. The final chapter looks at other pos­
sibilities of studying variable order subordination, namely Dirichlet forms. 
Here we only indicate the approach and refer to the literature.

11



1 Some Considerations on Operator 
Semigroups

The main purpose of this chapter is to introduce strongly continuous con­
traction, Feller and sub-Markovian semigroups. We w ill look closely at their 
generators and deal w ith  subordination (in the sense of Bochner) of these 
semigroups. We w ill begin by considering some introductory material crucial 
to this work. We follow in our presentation essentially [20], see also [4]

1.1 Introductory Definitions
We w ill begin by defining a positive definite function.

D e fin it io n  1.1.1. A function u : Rn —> C is called p o s itive  d e fin ite  if
for any k € N and vectors f 1, . . .  ,£fc € Rn the matrix (u { — £l) ) j , i = i s  
positive Hermitian, i.e. for all A i . . .  A* € C we have

k

Y  “ K* -  ^  °-
3,1=1

We can now define a negative definite function.

D e fin it io n  1.1.2. A function : Rn -h► C is called negative  d e fin ite  i f

</>(0) >  0

and
£ —► (2n)~% e~1̂  is positive definite for t >  0.

D e fin it io n  1.1.3. A co n vo lu tio n  sem igroup on Rn is a family of bounded 
Borel measures (pt)t>o on Rn such that the following conditions hold

A^(Rn) <  1 for all t >  0;

f-̂ s * pi — Pt-j-s s, t ^  0 and po — cq , 

pt —> eo vaguely as t —> 0.

Further we have a relationship between convolution semigroups and con­
tinuous negative definite functions.

12



Theorem  1.1.4. For a convolution semigroup (pt)t>o on Rn there exists a 
unique continuous negative definite function : Rn —► C such that

AH(0 =  (2»r)-»e-*«>  (1.1)

holds for all (  G f  and t >  0. Conversely, given a continuous negative 
definite function iJj : Rn —> C i/iere exists a convolution semigroup (pt)t>o on 
Rn swc/i that (1.1) holds for all £ £ Rn and t >  0.

We w ill now introduce the L e vy  K h in c h in  fo rm u la . This formula gives 
a representation for a continuous negative definite function.

Theorem  1.1.5. Let ifr : Rn —► C be a continuous negative definite function. 
Then the following representation for 'ijj holds

^ ( 0  =  c +  • 0  +  <?(£) +  ^  ( i  -

w/iere c is a non-negative constant, d £ Rn a vector, q a symmetric positive 
semidefinite quadratic form on Rn and v a Borel measure integrating x —► 
1 A \x\2.

As we w ill be dealing w ith  subordination in the sense of Bochner it  is 
essential to define a Bernstein function.

D e fin it io n  1.1.6. A real-valued function f  £ C°°((0,oo)) is called a B e r n ­
stein fu n c t io n  if

f >  o

and

{- 1)k^ r - °  fc e N '

Theorem  1.1.7. Let f  be a Bernstein function. Then there exists constants 
a ,b >  0 and a measure p on (0, oo) verifying

r°° s
/  T T z K d s )  <  OO ( 1 .2 )

J0+ 1 i s

such that poo

f ( x ) = a  +  b x +  /  (1 — e~xs)p(ds), x >  0. (1.3)
J o+

The triple (a,b,p) is uniquely determined by f .  Conversely, given a,b >  0
and a measure p on (0, oo) satisfying (1.2), then (1.3) defines a Bernstein
function.

13
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Compare Theorem 3.9.4 in [20].

R em ark  1.1.8. We may extend f  : (0, oo) —► Mn continuously using the 
representation (1.3) above into the half plane Re z >  0, i.e.

poo

f ( z )  =  a +  bz +  /  (1 — e~z3)fj,(ds), Re z >  0.
J o+

We w ill now discuss the relation between Bernstein functions and certain 
convolution semigroups of measures.

D e fin it io n  1.1.9. Let {rjt)t>o be a convolution semigroup of measures on JR. 
I t  is said to be supported by [0, oo) i f  supp r\t C [0, oo) for all t >  0.

Theorem  1.1.10. Let f  : (0, oo) —> R be a Bernstein function. Then there 
exists a unique convolution semigroup (rjt)t>o supported by [0, oo) such that

poo

C{r\t)(x) :=  /  e~xsT}t(ds) =  e~l^ x\  x > 0 and t >  0. (1.4)
Jo

The converse is also true, i.e. for any convolution semigroup (r}t)t>o sup­
ported by [0, oo) there exists a unique Bernstein function f  such that (1.4) 
holds.

In the above theorem the convolution semigroup {r]t)t>o is associated w ith  
the continuous negative definite function given by y —► f ( iy )  where /  is 
the Bernstein function. I f  we consider representation (1.3) of a Bernstein 
function, i.e.

poo

f (x )  =  a +  b x +  /  (1 — e~X3)p(ds), x >  0.
J o+

then oo
(1

-  +
which is the Levy-Khinchin representation for a continuous negative definite 
function. Therefore for any Bernstein function /  the function £ —► ^(£ ) =  
/(z£) is continuous and negative definite. Further using (1.3) we may consider 
the composition /  oift namely

poo

( /  ° ^ ) ( 0  =  a +  6^(£) +  /  (1 -  e~s m )/j,(ds),
J o+

for every continuous negative definite function. Since (1 — is negative
definite, we can derive that /  o ip is also negative definite. This leads us on 
to the following result which is our first encounter w ith  subordination in the 
sense of Bochner.

/ ( i f )  =  a +  ifcf +  f
JO

14



Lem m a 1.1.11. For any Bernstein function f  and any continuous nega­
tive definite function ip : R n C, the composition function f  o ip is also 
continuous and negative definite.

To summarise

P ro p o s itio n  1.1.12. Let ip be a continuous negative definite function with 
associated convolution semigroup (pt)t>o on Further let f  be a Bernstein 
function with associated convolution semigroup (r)t)t>o supported on [0, oo). 
Since f  o ip is a continuous negative definite function there exists an asso­
ciated convolution semigroup, which we will denote by (p{)t>o- We call this 
convolution semigroup the convolution semigroup subordinate (in the sense 
of Bochner) to (pt)t>o with respect to (rjt)t>o and it is given by

f  f ° °\H =  /  ^rjtids) (vaguely).
Jo

We now introduce complete Bernstein functions.

D e fin it io n  1.1.13. A function f  : (0, oo) —> Rn is called a com p le te  B e rn ­
s te in  fu n c tio n  i f  there exists a Bernstein function g such that

f (x )  =  x2C(g)(x)

holds for all x >  0.

For /  : (0, oo) —> Rn the following are equivalent

1. /  is a complete Bernstein function.

2. /  is a Bernstein function having the representation

poo

f  (x) =  a +  bx +  /  (1 — e~3X)p,(ds), x >  0,
^o+

where a and b are non-negative constants and the measure p is given by 
p(ds) =  m(s)X^(ds). The density m is given by

poo

m(s) =  /  e~tsr(d t ), s >  0,
J o+

where r  is a measure on (0, oo) satisfying

f 1 1 f°° 1
j  j T(dt) +  J  <  oo.
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1.2 Operator Semigroups
In this section we aim to describe basic facts of the general theory of one 
parameter semigroups of operators, in particular we w ill consider Feller semi­
groups on Coo(]Rn) and sub-Markovian semigroups on LP(M.n). In the follow­
ing let (X , 11 • I U )  to be a real or complex Banach space.

D e fin it io n  1.2.1. A. A one parameter family (Tt)t>o of bounded linear op­
erators Tt : X  —> X  which satisfies T0 =  id and Ts+t =  Ts o T t (semigroup 
property) for all s , t > 0  is called a (one param eter,) sem ig roup  of opera­
tors.
B. We call (Tt)t>0 s tro n g ly  con tinuous if

D e fin it io n  1.2.2. Let (Tt)t>o be a strongly continuous contraction semigroup 
on (Coo(Rn), ||*||oo) which is p o s it iv ity  p reserv ing , i.e.

Then we call (Tt)t>o a F e lle r sem igroup.

Further, we require

D e fin it io n  1.2.3. Let (Tt)t>0 be a strongly continuous contraction semigroup 
on L ^ R 71), 1 <  p < oo. We call (Tt)t>o a su b -M a rko v ian  sem ig roup  on 
LP, 1 <  p <  oo i f  for u G L ^ R 71), such that 0 <  u <  1 almost everywhere it 
follows that 0 <  Ttu <  1 almost everywhere.

As an illustration we may consider on ^ (R 71) the operator

lim  ||Ttu -  u\\x =  0 
*-► o

for all u G X .
C. The semigroup (Tt)t>o which satisfies ||Tt || <  1 for all t >  0 is called a 
contraction semigroup.

Important for our work is

u >  0 yields Ttu > 0 , t >  0.

Using the convolution theorem and the fact that /h(£) =  (2ir) *e we 
obtain
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When u G Coo(Mn), Ttu is also in C ^ W 1) and then (Ttu)t>o is an example 
of a Feller semigroup. Further when u G L 2(Rn), Ttu is also in L 2(Rn) and 
then (Ttu)t>o is an example of a sub-Markovian semigroup.

Sometimes we write ( T ^ ) t>0, 1 < p < oo, to indicate that {Tt)t>0 is an 
iZ-sub-Markovian semigroup. For p =  oo, i.e. when w riting ( T ^ ) t>o, we 
always mean that (Tt )t>o is a Feller semigroup.

1.3 Generators of Operator Semigroups
The purpose of this section is to investigate generators of strongly continuous 
contraction, Feller and sub-Markovian semigroups. Important in this topic 
are the Hille-Yosida and the Hille-Yosida-Ray theorems.

D e fin it io n  1.3.1. Let (Tt)t>o be a strongly continuous semigroup of operators 
on a Banach space (X , || • ||x)- The genera to r A of (Tt )t>0 is definied by

rJ  ^

Au :=  l im  ------ (strong lim it)  (1.5)

with domain

_ . .. f . . . . .  Ttu — u . . .
D (A )  := < u G X | l im    exists as a strong lim it

Compare Definition 4.1.11 in [20]. In order to get a characterisation of 
all generators of strongly continuous contraction semigroups we first require 
the following definition.

D e fin it io n  1.3.2. We call a linear operator A  : D (A )  —> X ,  D (A ) C X  
d iss ipa tive  if

\ \X u -  Au\\x  >  A||u||x 

holds for all A > 0 and u G D(A ).

We can now state the Hille-Yosida Theorem.

Theorem  1.3.3. A linear operator (A , D (A )) on a Banach space (X , || • ||x) 
is the generator of a strongly continuous contraction semigroup (Tt)t>o i f  and 
only if  the following three conditions hold:

1. D (A )  C X  is dense;

2. A is a dissipative operator;

3. R (A — A) =  X  for some A > 0.

(1.6)
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ii

Compare Theorem 4.1.33 in [20]. More useful for us is

T heorem  1.3.4. A linear operator on a Banach space (X ,  || • ||x ) is closeable 
and its closure A is the generator of a strongly continuous semigroup on X  
i f  and only if  the following three conditions hold

1. D (A )  C X  is dense;

2. A is a dissipative operator;

3. R{A — A) is dense in X  for some A >  0.

Compare Theorem 4.1.37 in [20]. To progress further we introduce the 
positive maximum principle.

D e fin it io n  1.3.5. Let A  : D (A )  —► B (R n) be a linear operator, D (A )  C 
B( Rn). Then if  for anyu G D {A ) such that for Xq G Rn, u(x0) =  supa€Rn u(x) >  
0 implies that Au{xo) <  0 we say that (A , D (A ))  satisfies the p o s itive  m a x­
im um  p rin c ip le .

: A linear operator (A ,D (A )) ,  D{A)  C Coo(Rn), on C ^ R 71) that satisfies
the positive maximum principle on D (A )  is a dissipative operator. The 
fact that the generator (A, D (A ))  of a Feller semigroup satisfies the positive 
maximum principle leads us to the Hille-Yosida-Ray theorem.

Theorem  1.3.6. A linear operator [A, D {A )) , D (A )  C C'QO(Rn) ; o n C ^ R 71) 
is closable and its closure is the generator of a Feller semigroup i f  and only 

; i f  the following conditions hold:

\ 1. D (A )  C Coo(Rn) is dense;

2. (A , D (A )) satisfies the positive maximum principle;

3. R {A — A) is dense in Coo(Rn) for some A >  0.

Compare Theorem 4.5.3 in [20].
We now continue to consider generators of sub-Markovian semigroups. 

We cannot use the positive maximum principle here and therefore we cannot 
use the Hille-Yosida-Ray theorem since pointwise statements do not make 
sense. We do know however, that generators of sub-Markovian semigroups 
are Dirichlet operators.

D e fin it io n  1.3.7. A closed, densely defined linear operator A  : D (A )  —> 
L ^ R 71), 1 <  p <  oo, D (A )  C L ^ R 71), is called a D ir ic h le t o p e ra to r in 
17 (Rn) i f  for all u G D (A )

j  (Au)((u — l ) + )p~l dx <  0 (1.7)
J Rw
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holds

D e fin it io n  1.3.8. Let (A ,D (A )) ,  D (A ) C i7 (R n) ; be a linear operator 
A : D (A )  —► L ^ R 71). A is called negative  d e fin ite  in Lp(Rn) i f  for all 
u G D(A)

We note here that Dirichlet operators are negative definite. Further if  
(A ,D (A )) is a negative definite oprerator in L ^ R 71), 1 <  p <  oo, then it  is 
dissipative. Therefore it  follows

P ro p o s itio n  1.3.9. Let (A ,D ( A )) be a Dirichlet operator in L ^ R 71),
1 < p < oo. Then A is dissipative.

Lem m a 1.3.10. Let {Tt)t>o be a sub-Markovian semigroup on Lp(Rn);
1 <  p <  oo, with generator (A ,D (A )) .  Then for all u G D (A ) condition 
(1.7) holds, i.e. A is a Dirichlet operator.

Therefore we know that every generator of a sub-Markovian semigroup is 
a Dirichlet operator, however in general not every Dirichlet operator is the 
generator of a sub-Markovian semigroup. As a converse we have (Theorem 
4.6.17 in [20]).

Theorem  1.3.11. Let A be a Dirichlet operator on Lp(R71), 1 < p <  oo, with 
the property that R(Xid — A) =  / / ( R 71) for some A > 0. Then A generates a 
sub-Markovian semigroup on ^ ( R 71).

1.4 Subordination in the Sense of Bochner of Operator 
Semigroups

In the final section of this chapter we w ill consider subordination in the sense 
of Bochner of the semigroups we have dealt w ith  so far.

Let /  : (0, oo) —> R be a Bernstein function and (r}t)t>o be the associated 
convolution semigroup on R supported by [0, oo). Further let {Tt)t>o be a 
strongly continuous contraction semigroup on the Banach space (X ,  || • \\x) 
with generator (A, D (A )).

D e fin it io n  1.4.1. Let (Tt)t>0 and (r]t)t>o with corresponding Bernstein func­
tion f  be as above, then for u G X  we define

/ (Au)(signu)\
J Rn

holds.
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We can prove this is a strongly continuous contraction semigroup on X .  We 
call (T/ ) t>o the semigroup sub o rd in a te  to (Tt)t>0 with repesct to {rjt)t>o or 
with respect to f .

I f  {Tt )>o is a Feller semigroup on CooQR71) then (T’/ ) t>0 is also a Feller 
semigroup on Coo(Rn). Further if  (Tt)>0 is a sub-Markovian semigroup on 
I f i W 1), 1 <  p < oo, then ( T / ) t>o is also a sub-Markovian semigroup on 
LP(Rn), 1 < p  < oo.
We w ill conclude by considering subordination on the level of generators for 
the translation invariant case.

E xam ple  1.4.2. Let (Pt)t>o be a convolution semigroup associated with the 
continuous negative definite function 4> : Rn —> C, i.e. At(£) — e~1̂ ) ,
Further, let f  : (0, oo) — ► R be a Bernstein function with representation 
(1.3) and corresponding convolution semigroup {r}t)t>o, supp r)t C [0,oo).

A sub-Markovian semigroup (T ^M  can be associated with {pt)t>o on the
\  J t> o

space i7 (M n), also we can associate with (pt)t> o cl Feller semigroup ( t / 00̂ )
\  / 1> o

on the Banach space (Coo(Mn), || • ||oo)7 compare section 1.2. On S(Rn) we 
have for these semigroups

Ttu(x) =  (2tt)_^ f  
J Rn

or equivalently
(Ttu)A(,ti) =

The generator of the semigroup is given on 5 (R n) by

Au(x) =  -(27r)- ^ f  eta!ty (f)& (O d?
, /R n

After subordination we have

T /u (x )  =  (27t )” 2 f  elx^e- t - ^ ^ u (£ )d £

or
(T /)a(£) =  

and for its generator A* we get

A f u(x) =  - ( 2 t t ) - ^ [
«/Rn

It  is possible to deduce that the generator of the subordinate semigroup (T /)t>  o 
zs pzven by —f ( —A). This however requires a more formal definition of 
—f ( —A ) in the sense of a closed operator and some more involved discussions 
of domains.
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2 H oh’s Symbolic Calculus
The aim of this chapter is to introduce Hoh’s symbolic calculus and then use 
this theory to obtain estimates for pseudo-different ail operators. For Hoh’s 
symbolic calculus, see W. Hoh [17] or [18], compare also [21]. For the related 
estimates we w ill follow [21].

2.1 Essential M aterial
This section is dedicated to introducing the key points of Hoh’s symbolic 
calculus and defining Sobolev spaces, spaces in which we w ill now frequently 
work.

D e fin it io n  2.1.1. An arbitrarily often differentiable continuous negative def­
inite function ip : Rn —> R belongs to the class A if  for all a  E Ng it satisfies

\ d ? ( i + m ) \ < c \ « \ ( i + m ) “ , (2 .i)

where p(k) =  k A 2 for k E Ng.

D e fin it io n  2.1.2. A. Let m E R and ip E A. We then call a C°°-function 
q\ l n x R n — > C a symbol in the class S™’^(R n) if  for all a, {3 E Ng there 
are constants ca^  > 0 such that

I 3 ^ ? ( * .£ ) l  <  ^ ( 1  + (2.2)

holds for all x E Rn and £ E Rn. We call m € R the order of the symbol
q{x, 0 -
B. Let ip € A and suppose that for an arbitrarily often differentiable function 
q : Rn x Rn — > C the estimate

\ d £ d % q { x ,  £ ) |  <  cQi/3( 1 +  i p ( 0 ) ^  ( 2 -3 )

holds for all a, (3 E Ng and x, £ E Rn. In this case we call q a symbol of the 
class S™lV,(Rn).

Note that S™’̂ (R n) C S™'^(Rn). For q E S'™’^'(Rn), hence also for q E 
Rn), we can define on S(M.n) the pseudo-differential operator q(x,D)

by

q(x,D)u(x)  := j  elx<q{x, £)u(£)d£ (2.4)
J Rn

and we denote the classes of these operators by iF™>^(Rn) and 'Fgl’̂ ,(Rn), 
respectively.
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Theorem  2.1.3. Let q E S™’̂ (Rn) then q(x,D)  maps S (R n) continuously 
into itself.

We now introduce anisotropic Sobolev spaces associated w ith  continuous 
negative definite functions.

Definition 2.1.4. Let 0  : Rn —> R be a fixed continuous negative definite 
function. For s E R and u E  5(R n) (or u E S'(Rn))  we define the norm

\ \u \ \ l , s  =  \ \ ( 1 +  'llJ( D ) ) * u \ \ o =  [  ( l  +  ^ ( s ) ) a | * ( O I 2df -  (2-5)
JRn

The space H ^'s(Rn) is defined as

H ^ s(Rn) :=  {u E  S"(Rn); ||u||^ia <  oo}. (2.6)

We call H ^ ,s(Rn) an anisotropic Sobolev space.

The scale H ^ ,3(Rn), s E  R, and more general spaces have been system­
atically investigated in [11] and [12], see also [21]. In particular we know 
that if  for some pi >  0 and C\ > 0 the estimate 0 (£) >  Ci|£|Pl holds for all 
£ E  Rn, |£| >  R, R  >  0, then the space H ^ ,s(Rn) is continuously embedded 
into C'00(Rn) provided s >  —  .
The following result is of most importance to us

Theorem  2.1.5. Let 0  E  A. For qx E S™1̂ (Rn) and q2 E S™2'^(Rn) the 
symbol q of the operator q(x, D ) :=  qi(x, D)  o q2(x , D)  is given by

n

=  qi(x,€)  1 +  Y2dz j ql { x , O D Xjq2(x,£)  +  gn (z,£) (2.7)
3 = 1

with qn E S™1+m2~2'^(Rn) .

Rem ark 2.1.6. An easy calculation yields q\ • q2 E  S™1+m2,̂ (Rn),
fy jQi  ^  R n) and D Xjq2 E S™2'^(Rn). Hence the second term on the
right hand side in (2.7) belongs to S™1+m2~1,̂ (R n).

2.2 Estim ates for Pseudo-Differential Operators using 
H oh’s Symbolic Calculus

We w ill begin this section w ith  the theorem of Calderon and Vaillancourt.
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Theorem  2.2.1. Let q : Rn x Rn —> C be a function such that for all a, (3 G 
Ng, |a|, \/3\ <  3, the partial derivatives d^.d^q{x,f) exist, are continuous and 
satisfy the estimates

|d£<9£(?(z,£)| <  Ca,p-

Then the pseudo-differential operator q{x,D)  which is defined on S (Rn) ex­
tends to a bounded operator from L2(Rn) into itself

Theorem  2.2.2. Let q G S™'^(Rn) and let q(x,D)  be the corresponding
pseudo-differential operator. For all s G R the operator q(x, D)  maps the 
space H ^ ,m+s(Rn) continuously into the space H^'s(Rn), and for all u G 
H^'m+s(Rn) we have the estimate

| ^  c| llil \iptm+S' (2*8)

On 5(R n) we may define the bilinear form

B(u,  v) :=  (q(x, D)u,  v)0, q € S ^ ( R n). (2.9)

Theorem 2.2.3. Let q G Sp'l,̂ (Rn) be real valued and m >  0. I t  follows that

|B(ti,tO| <  c||«||v,m ||u|^i f  (2.10)

holds for all u, v G S(Rn). Hence the bilinear form B  has a continuous 
extension onto H ^ ,r% (Rn). I f  in addition for all z G R 71

q(x,  0  >  50( l  +  ^ ( f ) ) *  Sor  I f  I >  R  ( 2 - l i )

with some >  0 and R >  0, and

lim  ^ ( f )  =  oo (2.12)
l€|-»00

holds, then we have for all u G Rn) the Garding inequality

r

ReB(u,u)  >  — A0||w||o- (2.13)
2 ’ 2

Furthermore we have 

Theorem 2.2.4. I f  we assume (2.11) and (2.12) then for s >  —m we have

111«| km +s <  I\q(x, D ) u 1 1 * +  IM  (2.14)

for q G 5™’̂ (Rn) real-valued and all u G iJ^,s+m(Rn).

23



For solving the equation qx(x , D)u =  q(x, D)u  +  Xu =  f  we now set

£ a(u, v) =  {q(x, D ) u , v)0 +  A(w, u)0.

By Theorem 2.2.3 the bilinear form B x extends to a continuous bilinear form 
on H ^ 't  (Rn) denoted again by B x i.e. we have

I-Ba(u , w)| <  c||u|U,¥ |^ ||*m .

Important for us is the Lax-Milgram theorem which we have taken from [14], 
Theorem 1.14.1

Theorem  2.2.5. Let B be a sesquilinear form on a complex Hilbert space 
(# ,( . , . )# ) .  Suppose that

\B(u,v)\  <  c ||n ||tf|H |//

and
\B(u,u)\  >  7 ||« l&

hold for all u ,v £ H  with some 7 >  0. In  addition, let I : H  —> C be a 
continuous linear functional, i.e. I £ H * . Then there exist unique elements
v,w  £ H  such that ______

l(u) =  B(u,v)  =  B(w,u)

holds for all u £ H .

D efinition 2.2.6. We call u £ a variational solution to the equation

qx( x ,D)u  =  f  (2.15)

for all A € R and f  £ L 2(Rn) if

B \(u , <fi) =  (</>,/)0 

holds for all </> £ C0°°(Rn) ; or 0 £ H ^ ( Rn).

Therefore using Theorem 2.2.3 and the Lax-Milgram theorem there exists 
for all /  £ L 2(Rn) a unique variational solution u £ to (2.15). For more 
regularity we have

Theorem  2.2.7. Let q £ S™’̂ (R n) be as in Theorem 2.2.4, m > l .  Further 
suppose that for f  £ # ^ ,s(Rn), s >  0, there exists u £ Rn) such that

B(u,<l>) =  ( f  ,</>)& (2.16)

holds for all $ £ Rn) (or 4> £ 5 (R n)J. Then u already belongs to the
space H ^ m+S(Rn).

So far we have used properties of symbols to establish mapping properties 
and estimates for operators. The real power of a symbolic calculus is tha t it  
reduces calculations for operators to calculations for symbols.
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3 Pseudo-Differential Operators w ith Nega­
tive Definite Symbols q G S2p’̂ {R")

In this chapter we want to deal w ith  pseudo-differential operators w ith  sym­
bols from Hoh’s class which extend to generators of Feller or IP  sub-Markovian 
semigroups. Further we w ill investigate subordination of semigroups con­
structed using this method.

3.1 Pseudo-Differential Operators as Generators of Feller 
or D* Sub-Markovian Semigroups.

In this section we w ill use the estimates considered in the previous chapter in 
order to extend certain operators as generators of Feller and certain IP  sub- 
Markovian semigroups. In  particular when considering generators of Feller 
semigroups we aim to use the Hille-Yosida-Ray theorem, Theroem 1.3.6.

Recall that the main characteristics of the Hille-Yosida-Ray theorem are 
D(A)  c  CoofR” ), ( A , D( A) )  satisfies the positive maximum principle and 
the range condition; R(X — A)  is dense in Coo(Rn). In our case we consider 
q(x,D)  on Co°(Rn) w ith  negative definite symbol i.e. £ —> q{x,£) is 
for x € Rn fixed a continuous negative definite function. Since Co°(Rn) is 
dense in C'00(Rn) the first condition of the theorem is satisfied. Theorem 
4.5.6 in [20] shows us that q(x, D)  satisfies the positive maximum principle 
on Co°(Rn), see also [7] . Therefore our problem is reduced to tackling the 
range condition, or equivalently to solve for some A >  0 the equation

q\ (x ,D)u  =  q(x,D)u +  \u  =  f  (3.1)

in Coc^R” ) for /  £ Cq>(Rn). This is too d ifficult to solve on the domain 
Co°(Rn). To overcome this problem we consider q(x, D)  on a larger domain 
H ^'s{Rn) where (3.1) is easier to deal with. For the positive maximum prin­
ciple to hold on this larger domain we use

Theorem  3.1.1. Let D( A)  C Coo(Rn), and suppose that A  : D (A)  —> 
Coo(Rn) is a linear operator. In  addition assume that CQ°(Rn) C D(A)  
is an operator core of A in the sense that to every u € D( A)  there exists a 
sequence (4>k)ken> <fik € Co°(Rn), such that

lim  ||(j)k -  u \|oo =  lim  \\A fa  -  Au\\oo =  0
k—>oo k—*oo

I f  A \c°° satisfies the positive maximum principle on C q ^ R 71), then it satisfies 
the positive maximum principle also on D(A) .
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Comapare Theorem 2.6.1 in [21]. The following results are due to W. Hoh 
[17] and [18]. Using the estimates introduced in the last chapter together w ith  
the above theorem we get

Theorem  3.1.2. Let 'ip : Rn —> R be a continuous negative definite function 
in the class A such that rp(£) >  co|£|r°; r o > 0; holds. I f  q{x,£) E S ^ ( R n) 
is a negative definite symbol satisfying

q{ x , 0  >  1 +  ^ ( 0 )  (3-2)

for some 5 >  0 and all £ € Rn, |£| sufficiently large, then —q(x, D)  defined 
on Co°(Rn) is closeable in C ^ R 71) and its closure is a generator of a Feller 
semigroup.

Further for L 2 sub-Markovian semigroups we have

Theorem 3.1.3. Using the same assumptions as the previous theorem the 
operator (—q \ ( x , D ) , H ^ ,2(M.n)), A > Ao as in (2.13), is the generator of an 
L 2-sub-Markovian semigroup. Hence (—q \ ( x , D ) , H ^ ,2(Rn)) is a Dirichlet 
operator.

3.2 Subordination of Semigroups
In this section we w ill continue to develop the ideas of subordination that we 
have already met in section 1.4. However now we w ill apply subordination 
to the semigroups constructed using Hoh’s symbolic calculus.

I f  we recall the translation invariant case of section 1.4. I t  was shown 
that for a continuous negative definite function 'ip : Rn —► C

(Ttu n O  =  e -M O tt f )

for u E S'(Rn). Now if  /  is a Bernstein function w ith  corresponding convo­
lution semigroup (r)t)t>o supported on (0, oo) the Fourier transform of the 
subordinate semigroup is given by

( r /)A(£) =

On the level of generators we saw that on 5(R n) the generator of (Tt)t>0 is 
given by

-'ip iD ffiix ) =  f  e%x̂ ip(^)u{fi)d^.
J Rn

Further the generator of the subordinated semigroup is given by

- i p f (D)u(x)  =  - ( /  o ip)(D)u(x) =  - ( 2?r)- ^ f  elx'c/ ( ^ ( f ) ) * ( O df-
J Rn
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We also illustrated that if  is the generator of { T ^ ) t>o, then =
is the generator of { T ^ ’̂ )t>o, where ( T ^  )t>o is an IP -sub- 

Markovian semigroup for 1 <  p < oo and a Feller semigroup for p =  oo. 
Further {T ^ )J ) t>o is again an Z^-sub-Markovian or Feller semigroup respec­
tively

Now considering the pseudo-differential operator q(x, D ) w ith  symbol 
q : Mn x Rn —> C such that £ —> q(x,£) is a continuous negative definite 
function. Suppose the operator — q(x, D)  extends from S(Rn) to a generator 
of an l/-sub-M arkovian semigroup, 1 < p <  oo, and a Feller semigroup for 
p =  oo. We denote the generated semigroup by (Tt)t>0. When subordinating 
w ith  respect to a Bernstein function /  we no longer get the representation 
we had in the translation invariant case, i.e.

(T /u )A(0  ?  e - v ^ u t f )

and
A f u 7̂  j  e~lx<f{q{x, f ) )u{f>)df>. (3.3)

J
In the following we write —f (q ( x , D )) for the right hand side of (3.3). This 
should be understood as a shorthand for (f o q ) ( x , D).  We are now interested 
when —f (q ( x , D) )  extends to the generator of a Feller or sub-Markovian 
semigroup. We w ill see that often if  q G S™'^(Rn) and /  is a Bernstein 
function, then /  o q is also a symbol belonging to Hoh’s class. Further, if  
£ —> q{x,£) is a continuous negative definite function then so is the function 
£ —> f(q(x,  £)), therefore it  is sensible to investigate whether —( /  o q){x, D)  
extends to the generator of a Feller or sub-Markovian semigroup. Of course, 
this procedure is closely linked to subordination in the sense of Bochner. By 
modifying the proof to Theorem 2.6.4 in [21] we find

Theorem  3.2.1. Let q € 5 ^ ( R n) be a continuous negative definite symbol 
satisfying (3.2) such that —q(x, D)  generates an LP-sub-Markovian semigroup 
{Tt)t>o- Further let f  be a Bernstein function with corresponding semigroup 
{Vt)t>o supported on [0, oo), then —{ f °q ) {x ,  D ) extends to the generator of a 
Feller or sub-Markovian semigroup. We will denote the generated semigroup 
by {St )t>0.

R em ark  3.2.2. I t  is important to note that the semigroup generated by — ( / o  

q){x, D) , (St)t>o is not, in general equal to the original subordinated semigroup 
w i )  t>o- However knowing (<S,f)t>o helps us to approximate ( )t>o-
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4 Subordination of Variable Order - Part I
This chapter w ill follow [14] closely in order to consider two important topics 
related to subordination of variable order. Formally, subordination of vari­
able order means that we replace a fixed Bernstein function /  by a family of 
Bernstein functions depending on x. Firstly, we suggest a method to study 
“variable order subordination” for more general Bernstein functions than the 
example studied by Hoh / Q(s) =  sa, 0 <  a  <  1. More precisely, we consider 
symbols of the form

P ( x , 0  =  f ( x , v ( x , 0 )  (4-1)

where q is a suitable symbol from Hoh’s class and /  : Rn x [0, oo) —> R 
is a smooth function such that for fixed x G Rn the function s —> f (x ,s )  
is a Bernstein function. Our method uses some ideas from the theory of 
t-coercive (differential) operators as investigated by I. S. Louhivaara and C. 
Simader [29]-[30] in order to establish the result that —p( x , D)  generates a 
Feller semigroup. A  different view to our approach is to interpret f ( x , r )  as 
a state space dependent (family of) Bernstein functions which is obtained by 
making parameters state space dependent i.e. consider a function f ( r ) a,b,c,...
depending on parameters a, 6, c ,  By making these parameters state space
dependent we obtain for a negative definite symbol q{x,£) a new negative 
definite symbol by f a(x),b(x),c(x),-Xl £))• More precisely, let /  be a Bernstein 
function w ith  representation

poo poo

f ( r )  =  (1 -  e~sr)p{ds) =  /  (1 -  e~sr)m(s)ds. (4.2)
J 04" J 0+

Suppose that rh depends on parameters a, b, c . .. i.e. m(s) =  rha,b,c...(s)' 
Now we may let the parameters depend on x t i.e. we switch to (x , s) —► 
™'a{x),b{x)Ax)...{s) and consider the family of Bernstein functions

poo

f * ( x , r ) =  /  (1 -  e~sr)ma{x)tb(x),c(x)...(s)ds.
J o+

Thus we may consider the symbol (a;,£) —> p(x,q{x,£))  defined by

oo

(1 -  e "a9(x>0)m a(a.)>6(x)>c(a.)...(5)d5.
+

More generally, let us consider w ith  a suitable function r  : Rn x R+ —► R

poo

f ( x , r )  =  /  (1 -  e~sr)r(x,s)ds  (4.3)
J o+

p{ x , q{ x , £ ) ) =  /  
Jo
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and the associated symbol

p(z, 0  =  /(z ,  qfa  £)) =  /  ( !  “  e a9(x,0 M x ,  s)ds. (4.4)
v / 0 +

The second purpose of this chapter is to enrich the class of examples by 
studying the Bernstein function

s i—> s * ( l  — e~4s7).

4.1 Jusification of the Phrase “Variable Order Subor­
dination”

This section w ill follow section 2.10 of [21]. Discussing “variable order subor­
dination” is related to the study of pseudo-differential operators w ith  variable 
order of differentiation. To illustrate this we consider the example where the 
Bernstein function s > f (s)  is substituted by (x, s) h-> sr (x) w ith  r  : Mn —> R 
being a continuous function such that 0 <  r(x)  <  1. We now let s be the 
continuous negative definite function |£|2. We know ( |f  |2)r^  is also a con­
tinuous negative definite function. This implies that the pseudo-differential 
operator

Au(x)  =  ( - A ) 'W  =  - (2 t t) -»  /  ete4( | f |2)rW «(f)d?
J R n

is a candidate for a genarator of a Feller semigroup. Note tha t when n — 1 
and instead of using the symbol |£|2 we use and we get the operator 
(■^3®)’ hence ^ e  phrase “operator of variable order of differentiation” .

4.2 The Formal Background of our Proof that 
—p(x, D) Generates a Feller Semigroup

The proof that —p{x, D)  extends to a generator of a Feller semigroup de­
pends on various estimates which might be different for different operators. 
However, once these estimates are established we only need to apply a piece 
of “soft” analysis. In this section we discuss this part of the proof, i.e. we 
w ill assume all crucial estimates hold.
Let /  : E n x [0, oo) —> R be an arb itrarily often differentiable function such 
that for z/6  Rn fixed the function s /(?/, s) is a Bernstein function. More­
over we assume

in f f ( y , s) >  f 0(s) for all s 6 [0, oo) (4.5)
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as well as
sup f (y ,  s) <  f i  (s) for all 5 € [0, oo) (4.6)
y € R n

where /o and f i  are Bernstein functions. For a given real-valued negative 
definite symbol q(x,£) i t  follows that

p(y;x , ( )  := f {y ,q(x,£) )  (4.7)

give rise to a further negative definite symbol by defining

p(x,£) := p (x ;x ,£ )-  (4.8)

In case where q (x ,() is comparable w ith  a fixed continuous negative definite
function 0 , i-e.

0 <  Co <  ^  C1- c> ^  1' (4-9)
TO )

for all x E Rn and £ € Rn, we find using Lemma 3.9.34.B in [20]

<  f {x,q(x,  £)) <  c i/ i(0 (£ ))  (4.10)

and we define
0 i(O  := C ! / i(0 (£)). (4.11)

Moreover it  holds

p(z,£) >  f (x ,q{x,£) )  >  c'0/o (^(£))

and we set
* (C )  “  c'0f 0m ) ) -  (4-12)

Clearly, 0 O and 0 i are continuous negative definite functions. Later on we
assume that for |£| large

0 (0  >  Ci|£|Pl, ci >  0 and pi >  0 (4.13)

holds as well as

f{yo,s) >  CoSPo, c0 >  0 and p0 >  0. (4-14)

This implies for |£| large that

M 0  > h \ i \ p0P\  C2 >  0, (4.15)

holds. Since 0o(O <  ^ i ( 0  we ^ ave

H ^ ' l (Rn) H m {Rn). (4.16)
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We add the assumption that there exists 0 < cr < |  such that

( l  +  ^ i) *  € 5 ^ ° ( R n). (4.17)

This w ill imply that

H^° ,m(l+a)^Rnj ^  H * ltm(Rn) (4.18)

holds for m >  0. Further, (4.17) implies that if  p i( x , f )  is any symbol be­
longing to  ̂ ’̂ ( R ” ) then it  also belongs to 5™̂1+t7̂ ° (R n) which follows
from

\d^d^pi(x^)\ <  catp(l  +  ^ i ( 0 ) m_̂ |a|)

<  cQ|/3(1 + ^ o(0 ) 2

<  Ca)/S( l  +  ^ o ( f) )  2

The pseudo-differential operator q(x,D)  has the symbol q G Sp^(Rn). 
We assume that the pseudo-differential operator p ( x , D ), defined on 5 (R n) 
by

p ( z ,  £ > ) u ( : r )  =  ( 2 t t ) - ^  f  elx<p{x ,£ )u {€ )d€
J R"

=  (2tt)_ 2 [  elx<f{x,q{x^) )u{C)d^  (4.19)
J En

has a symbol p G 5p+Tl,^1(Rn) for some appropriate T\ >  0. This implies 
together w ith (4.17) that the operator p(x, D ) is continuous from 
jpil>o,2+Ti+2( T + T i a + s j j i p o particular it  is continuous from 
#V>o,l(R n) to H^° - l - n - 2a - r ia ^ n ^
W ith  p(x , £>) we can associate the bilinear form

B(u,v)  := (p(x, D ) u , v )0, u, u e <S'(Rn). (4.20)

Assuming the estimate

\B(u,v)\  <  « >  0, (4.21)

to hold for all u,v  G 5(R n), we may extend B  to a continuous bilinear form 
on iT^1,1(Rn). This extension is again denoted by B.  For u G i f ^ ’1,1(Rn) we 
assume in addition



Following ideas from I.S. Louhivaara and Chr. Simader, [29] and [30], we 
consider an intermediate space. To do this we consider

B \ 0(u,v)  :=  B(u,v)  +  \ 0(uyv)0, (4.23)

where B  is the symmetric part of B , i.e.

B \ 0{u,v) =  i ( B Xo(u,v) +  B Xo{v,u)

on H ^1,l(Rn). We have

\BXo{u,v)\ <  /c lH l^ . iH v ll^ , !

and
Bx0(u,u) >  7 ||u||^0il.

Since B \0(u, v) is a scalar product on we may consider the comple­
tion of Rn) w ith  respect to B \0{u, v). We denote this new intermediate
space by H Pxo(Rn) . We have

f^ i* i ( R n) H p>o(Rn) H ^ i Rn) (4.24)

in the sense of continuous embeddings.

Lemm a 4.2.1. The bilinear form B \0 is continuous on H Pxo(Rn).

Proof We find by using Corollary 2.4.23 in [21] that

i ( p A0(®, D ) +  Pa0(x ’ D )) =  ^(Pa0(z, D ) +  pAo(z, £>)) +  n (x , D )

=  pXo{ x , D ) + r 1(x ,D )  

where r\  € S lp+Tl^ 1 (Rn) and we used that p(x,£) is real-valued. Consider

\B\0{u,v)\ =  |(pao(®, ^ ) K v ) o |

<  5 1( (PAo(z, D)  +  (x, L>))u, v ) 0 \ +  \ ( n (x, £>)u,u)01

=  \BXo{u,v)\ +  |(r i(x , D)u,v)o\.

We know that B \ 0(u,v) is continuous on H Pxo(Rn) therefore our calculations 
are reduced to estimating |(r i(x , D)u,  u)o|.
We know that r\  E Sf1+1,̂ 1(Rn) therefore r \  E 5'p+T1+£7+riO’,̂ 0(Rn), this im­
plies by Theorem 2.2.3 that



I f  T\ +  a +  ricr < 1 we get

I fy| I i/'Q,l+r1̂-g+r1g <  |M|l/>0,l — CIMIpA0

implying the result by (4.24). □

Now, by the Lax-Milgram theorem, for every g G ( H Pxo (R n))* exists a 
unique element u G H Pxo(Rn) satisfying

B \ 0(u,v) = < g , v >  (4.25)

for all v G H Pxo(Rn). This element we call the variational solution to the 
equation p(x, D)u  +  \ q u  =  g.
Prom (4.24) we derive

Ĥ Po,-i(Rn) =  (7jV-o,i(Rn ^*  ^  ( H Pxo(Rn) ) * , (4.26)

hence for g G # ^ 0,-1(R n) there exists a unique u G i7 p*o(Rn) satisfying 
(4.25). We claim now that for every g G / / ^ ° ,-1 (R n) there exists a unique 
u G # ^ 0,1(R n) such that

p\0(x, D) u  =  p(x , D )u +  A0u =  p (4.27)

holds. Denote by u G H Pxo(Rn) the unique solution to (4.25) for g G 
Rn) given and take a sequence (uk)keN, E 5 (R n), converging in 

H Pxo (Rn) to u. I t  follows from

(pAo(a :,D )u A;,u)o =  BXo(uk,v ), u G S{R n),

and the continuity of pAo(x, D ) from i7^0,1(Rn) into if^o>(-1- 2or-Ti - T̂ a)(Mn) 
that for /c —> oo

< p\Q(x, D)u,  v > =  B \0(u, v) = <  g,v >

for all v G 5(R n). Thus pXo(x, D)u =  g in S'(Rn). The uniqueness follows of 
course once again from (4.22).
In order to get more regularity for variational solutions or equivalently for 
solutions to (4.27) we assume that for A > Ao the function p f 1 (x, £) :=  p̂ x ^ +A 
belongs to S~2+To,̂ ° (Rn) for some To > 0. In this case we can prove

T heorem  4.2.2. Letp(x ,£) be given by (4-8) where we assume for q condi­
tion (4-9) and for f  we require (4-5), (4-9) to hold. In  addition we suppose 
that p G S2+Tl-^ (R n) C S£+Tl+2ff+riff^ ( R n) and p f l G S'-2+T0’l/’0(Rn),
T\ +  t 0 +  2cr +  Tier <  1. Let u G H Pxo(Rn) C i7 ^ 0,1(Rn) be the solution to 
(4-27) for g G i7 ^ 0,A:(R n), k >  0. Then it follows that u G H'l>0'2+k~'ro (W 1) .
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Proof. Prom Theorem 2.1.5 i t  follows that

P\o(x >D ) ° P* o (x ,D )  =  id +  r(x,  D)  (4.28)

w ith  r  G S f 1+Tl+To+2a+Tl<T’'>JJo(Rn). Since p\0( x ,D )u  =  g we deduce from 
(4.28) that

u =  P ^ { x , D ) o p ^ ( x , D ) u - r ( x , D ) u  

=  P\o(x ’ D ) 9 ~ r ( x , D ) u .

Now, pf * (x , D) g  G jpl>o,k+2-ToQftn'j an(j  1- (x ,D)u  G H^°'2~Tl~T°~2<J~Tl17 (M.n) 
implying that u G H ^0,t(R n) for t =  (k +  2 — r 0) A (2 — 7i — r 0 — 2cr — t \ g ) > 1. 
W ith  a finite number of iterations we arrive at u G H ^° '2+k~T0(Rn). □

R e m a rk  4.2.3. Prom t\ +  r 0 +  2<j +  Tier <  1 the necessary condition a < |  
follows.

C o ro lla ry  4.2.4. In  the situation of Theorem 4-2.2, if  2 +  k — r0 > 2^7  > 
compare (4-15), then u G Coo(Rn).

Finally we can collect all preparatory material to prove

Theorem  4.2.5. Let f  : Rnx [0, oo) —> R be an arbitrarily often differentiable 
function such that for y G Rn fixed, the function s —► f (y ,  s) is a Bernstein 
function. Moreover assume (4-5), (4-6) and (4-14)- In  addition let ip : Rn —*■ 
R be a continuous negative definite function in the class A which satisfies in 
addition (4-13). For an elliptic symbol q G S2,̂ (Rn) satisfying (4-9) we define 
p(x,£) by (4-8). For ipi and fa  defined by (4-11) and (4-12), respectively we 
assume (4-18). Suppose that p G S'2+ri,^1(Rn) and G S'~2+ro’̂ °(Rn). I f  
7*1 + t 0 +  ct(2 +  t i )  <  1, a as in (4-18), then —p ( x , D ) extends to a generator 
of a Feller semigroup on Cqc^R71)-

Proof. We want to apply the Hille-Yosida-Ray theorem, Theorem 1.3.6 We 
know that p(x ,D)  maps H ^Q,2+k+2a+Tx+Tia(Rn) into H ^0,k{Rn). Hence if  
k >  2̂ -  the operator (—p(x, D), H’̂ 0,2+A:+2tT+ri+ri£r(Rn)) is densely defined 
on Coo(Rn) w ith  range in Coo(Rn). That — p(x, D)  satisfies the positive max­
imum principle on H^°,2+k+2a+Tl+Tltr(Rn) follows from Theorem 3.1.1 Now, 
for A >  A0 we know that for g G / / ^ 0,fc+1(Rn) we have a unique solu­
tion to p \ ( x , D ) u  =  g belonging to H ^0'2+k+1~ro(M.ny Tl _ j_  Tq _ j_  2g +  
T\G <  1 implies that H^°'2+k+1~T° (Rn) c  H^>0,2+k+2a+Tl+Tl<T(M.n) i hence for 
g G H^°,k+1(Rn) we always have a (unique) solution
u e H i>o,2+k+2a+n+T1c(W i} implying the theorem. □
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4.3 Some Concrete Examples
The first part of this section w ill consider the work W. Hoh has done on 
pseudo-differential operators w ith  variable order of differentiation. We w ill 
consider the case where the Bernstein function s —> f (s)  is substituted by 
(x, s) —» s771̂ ) w ith  77i : Kn —> K being a smooth function such that 0 < 
m(x)  <  1 holds. Let q : K n x Mn —> C be a continuous function such that 
f  —> <?(x,£) is a continuous negative definite function. I t  then follows that

£ - < z ( * . 0 m(x) (4.29)

is once again a continuous negative definite function implying tha t the pseudo­
differential operator

Au(x)  :=  -(27 t)"£  [  elx^q(x,^)m{x)u(^)d^ (4.30)
J Kn

is a candidate for a generator of a Feller semigroup. We now meet Hoh’s 
result:

Theorem  4.3.1. Let ip : Mn —> R be a fixed continuous negative definite 
function such that

ip(£) >  col?|r , If I large and r  >  0, (4.31)

holds. Let q E Rn) be a real-valued negative definite symbol which is
elliptic, in the sense that we have

q ( x , Z )> 8 o ( l  +  4>(0)- (4-32)

Further let m : Rn —> (0,1] be an element in CJ°(Rn) satisfying

M  -  <  1 (4.33)

u;/iere M  :=  supm(x) and 0 <  p :=  in f ra(x). Consider the symbol

( * , f ) - p ( * , f ) : = « ( * , O m<*) (4-34)

which has the property that £ —► p(x,£) is a continuous negative definite 
function. The operator

- p ( x , D ) u ( x )  := f  etx<p(x,£)u(€)d£ (4.35)

maps Co°(Mn) into CooOR"), is closeable in Coo(Mn) and its closure is a gen­
erator of a Feller semigroup.
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For a proof see W. Hoh [19], compare also [18].

We are now going to consider a further example. First note that the 
function s —► V ^ ( l “  e-4v^) is a Bernstein function. Hence, using Corollary 
3.9.36 in [20], i t  follows that for 0 <  a  <  1 the function s —> s t ( l  — e~4ŝ ) 
is also a Bernstein function. Thus, given a negative definite symbol q G 
Sp^(M.n) we may consider the new symbol

p (:r,f)  =  ( l  +  g(2; , f ) ) ^ 1( l - e _4(1+9(x’0 )^ )  

for a(-) being an appropriate function.

Lem m a 4.3.2. Let q G S ^ ( Rn) be a real-valued negative definite symbol 
which is elliptic in the sense that

q { x , S ) > 8 o ( l+ ^ ( 0 ) ,  *o > 0 . (4.36)

Also let a(-) : Rn —> (0,1] be an element in Cjfi(Rn) satisfying

1
m - f i  < -  

where m =  sup and p =  in f > 0.

Now if  we letp(x,£)  =  (1+  g (x ,^ ))£̂ ( l  — then we have for
all e >  0 the estimates

\d^d?p(x,()\ <  cQi/3,ep ( x ,^ ) ( l+  ^ ( { ) )  '><l2l' +‘ (4.37)

i.e. p  €  S ^ + ^ f R ” ) .

Proof We have to estimate

=  ^ a f ( ( l  +  g(a;,0 ) ^ 1( l - e _4(1+9(a;’0 )^ ) )

_  d^dl3(e£̂ L logfi+^foO)^ _  e- 4(i+9(*.0 )_^ '

Using (2.19) in [20] we get

^a^/3(e^ log(1+g(x,0)(i _  g-4(l+9(x,0)- ^ i )) —

log(l+g(x,0)
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x(d“- “'a£-'3'( l  -  e - ^ + ^ f ) ) ^ ) ) .  (4.38)

First consider
K ^ 'a f e 2^ log(1+,(l’£)))|.

By (2.28) in [20] w ith  I =  |a'| +  \(3'\ we get

l( a f 'a fe 2f 1|06(1+,(i'£)))| <

e ^ i i o 6( i + ,(x ,{) )  ^  | c{a ,w p 9o^ ( a : , O I ,  ( 4 . 3 9 )

a '1 +  . . .  +  a'v =  a'  -,=1
/3'1 +  . . .  +  /?"' =  f f  

I ' =  0 , 1 , . . . ,  I

where

=  d f 'S f ’ ( ^ h o g ( l  +  g(x,£))')

= E (%) (s f -^ )  mi+«(*,€)).
f i ' j  < f 3 ' i  \  \  /

Now, using (2.26) in [20] w ith  /c =  |a°| +  > 0 we get

d f ’ d f  log (l +  q(x, ( ) )  =

A df''dt (1 + <l(x,t))
~ , i  ^  . «  ( l + 9 ( * , 0 )  '
a  +  . . . +  a "  1-1

/3'1 +  . . .  +  /?"' =  ^

Since we assume that 9(1 , £) is an elliptic symbol (in the sense of (4.36)) in 
S ^ ( R ” ), we get

d f ’d f ) log (l +  g(x,£))

— ,/3'J
a '1 +  . . .  +  a " ' =  a'-* i=1 
/3'1 +  . . .  +  /?"' =

^  /1 . , / f u -pUq0I)
< (1 +  ^ (0 ) 2 .
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where we used the subadditivity of p.We always have

|lo g (l +  g (x ,f)) | <  ce( l  +  ^ ( 0 ) ^

I t  follows for a  G ( ^ ( R 71) that

(440)[ (i +  ^ (0 )2i, a/J = o.

Putting (4.39) and (4.40) together we get

K a fa f  e ^ log(1+9(l'{)))| <  ca.^ ,ee ^ log(1+,(:c'f))( 1 +  (4.41)

For the desired result we need

\Qa-a' gff-0' ( j  _  ) |

< ca,,0,,aA l  ~  e-4<1+̂ » ^ ) ( i  +

When a  — a' =  0 and P  — P ' =  0 there is nothing to prove.
Otherwise, by (2.28) in [20] w ith  l2 =  \a — a ! \  +  \P  — /3'|, we get

|g * -a'dP -0 '(i — e- 4(1+9(a?,0)- ^  )| <

e- 4(i+g(a,Q)gir11 Y \  q(a-a')j{0 -p')j(x, g)|, (4.42)
i =i

where the sum is such that

(a: — a')1 + (a — o')1* =  (a — a')
(/3 -  /5')1 +  . . .  + (/?- /?')'" =  (/? -  /?')

1'2 =  1, . . . ,  l2

and where

<l(c,-a ') i (J3 - l3 ') i (x ,£ )  =  d ^ ~ a'y  d i0 ^ 3 (4 (1  + q ( x , ^ ) ) ^ 1 ).

Since q(x,£)  is a symbol in the class S ^ { Rn) and satisfies (4.36) we have 
the estimate

\q(a-a'y(i3- p ) i ( x , 0 \ <  L(1 +  q(x,€)) for all (a -  a' )3, {P  -  P ') 3 G NJ,
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where L (A) is a suitable polynomial >  0 which might depend on (a — a ')J 
and (j3 — (3'Y. Now returning to (4.42) we get

-  e—*(1+sr(*.0 )2SEl)| <

1 +  4(1 +  q(x, £)) 2 4(1 + 9(1 , 0 )  2

p ( |q  —q^l) p ( |q  — a^l)

x ( i  +  ^ ( 0 ) 2 U +  2

1 +  4 (1 +  9(1 , 0 ) 2

since
<*(*)

1 +  4(1 +  9( x , ^  +  +  ?(2.) f) )e -4(1+,( x ,0 ) ^

4 ( 1 +  9 ( i , 0 ) “ ^
Now using (2.7) in [20] i.e for all a >  0 and t >  0 the estimate

at <  1 _  e-«‘

< Cq.

1 -I- at 

we get

l^-aO^-ZSO (1  _  e-4(l+?(x,{))2^  ) | <  Co(l _  e-4(1+,(x ,0 )^  ) (1
(4.43)

Substituting (4.41) and (4.43) into (4.38)

|^o :^ (e^ log(i+g(x,0 ) ( i  _  e-4(i+9(x,0)Ĥ i ^ |

@ \  .  . . .  „ 2̂ log(l+9(x,0)s e e (;)
a ' < a ( 3 ' < ( 3  '  '  ^  '

x ( i+m)=̂ a±1o- - e - 4(i+̂ » ^ ) ( i +

< C c A ^  'oe t'+ ^ ’O) (1 -  e-4'1̂ ) ^ ) 

X ( 1 + V ' ( 0 ) 2

<  Ca,/3,ep ( l , 0 ( l  +  V,(0 ) P<2'>+<-

The proof now follows from the estimate p(x,£)  <  (1 +  ^ ( f ) ) 771-

□
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Lem m a 4.3.3. The function px l (x,tf) =  belongs to the class Sp 2/i+e’̂ (R n).

Proof. Using (2.27) in [20] we find w ith  I =  \a\ +  \/3\ that

laf 1 (*>£)! ^
a H +  a  — a 3

df ’ d x P x f a O

P\{x,£)

/51 H h /?z =  /?

For any e > 0 we find using (4.37) 

df dPp x(x ,£ )

P\ (x,€)
I /.-w -p(IqJD+£ 

<  caj)(3j { l  +  ^ ( 0 ) 2

and the e llip tic ity assumption of q(x,£) together w ith  the subadditivity of p 
yields

I ^ ^ P a H z . O I  ^  C a , A < ( l  +  V ' ( ^ ) ) _ M ( 1  +  ^ ( 0 )  ' ,<l?l>+<
which proves the lemma. □

Now applying the general framework in section 4.2 to Lemma 4.3.2 and 
Lemma 4.3.3 we get

Theo rem  4.3.4. Let q G 5 2,̂ (R n) be a real-valued negative definite symbol 
which is elliptic in the sense that

q(x, 0  >  *o(l +  V>(0 )> > 0,

where if G A satisfies
V>(0 >  cb|f|r .

j4/so let a(-) : Rn —> (0,1] 6e an element in C£°(Rn) satisfying

m - p <  -  

where m =  sup and p =  in f > 0.

./Vow set p{x,£)  =  (1 +  g (x ,^ ))£̂ ( l  — e_4 1̂+̂ x’̂ )_^ )  which implies that 
£ —> p{x,£) is a continuous negative definite function since £ —> g(x, £) a 
continuous negative definite function.. For alle >  0 we havep G S'2m+e,1̂ (Rn) 
a n d pf l (x,£)  € <S'~2/x+e,̂ (R n) £/ien £/ie operator —p( x , D)  extends to the gen­
erator of a Feller semigroup.
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5 Subordination of Variable Order - Part II
In this chapter we aim to improve the ideas already met in the previous 
chapter. This is achieved by proving the “crucial” estimates tha t are assumed 
in the formal background of the proof described in section 4.2. Let /  : 
Rn x (0, oo) —> R be an arb itrarily often differentiable function such that for 
y G Rn fixed the function s —> f ( y , s) is a Bernstein function. We assume 
that w ith  some 0 <  r \ <  1 we have

sup f (y ,  s) < cisri for s >  70 (5.1)

as well as for some 0 <  ro and 77 >  0 such that 0 <  r 0 — 77 <  77 i t  holds

in f f (y ,s )  >  c2sr° - f} for s >  70. (5.2)
y e R n

In our applications we w ill consider symbols f ( x i q(xi ^)) where q(x,£) >  
Ao(l +  ^ ( 0 )  f° r some real-valued continuous negative definite function ij). 
Thus we can always confine ourselves to the case where 70 >  1. Consider 
again the negative definite symbol

P(x,£) =  f ( x , q ( x , 0 )  (5.3)

where the symbol q (x ,() is comparable w ith  a fixed continuous negative 
definite function -0 satisfying lim ^oo 0 ( f)  =  00 , i.e.

0 <  C3 <  2 ^ 1  <  c4, (5.4)

for all x E Rn and f  G Rn. Note that the lower bounds im ply 0 ( f )  >  0. 
Since f  —> 0 ( f)  — 0(0) is also a continuous negative definite function the 
lower bound in (5.4) corresponds to an estimate c ( l +  0 ( f ) )  <  q(x, f )  for 0  
being a continuous negative function which might have a zero. We find using 
Lemma 3.9.34.B in [20]

P(x, f )  =  f (x ,q(x,  0 )  <  5 i( l +  0 ( f ) ) ri (5.5)

and
p{x , 0  >  c2( l  +  0 ( f ) ) ro^  (5.6)

i.e p(x, f )  is bounded above and below by continuous negative definite func­
tions.
The pseudo-differential operator

p(x,D)u(x)  =  (27r)“ t  f  etx'€p (a ;,f)w (f)d f
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=  (2?r) * [  eix^f (x ,q(x^) )u(^)d^  (5.7)
jRn

has a symbol p G S'2ri+2e,̂ (Mn). The following section gives a detailed proof 
of this result.

5.1 Estim ates for p(x,£)

Let f  : Rn x (0, oo) —> M be an arb itrarily often differentiable function such 
that for each x G Mn the function f ( x , •) : (0, oo) —► R is a Bernstein function. 
For every Bernstein function h : (0, oo) —► R the estimates

\h^(s) \  <  —̂ -/i(s), s >  0 and k G No (5.8)
s

hold, compare [20], Lemma 3.9.34.D. Hence for /  as above we find

jM
| / ^ ( x ,  s)| <  s), s >  0, i e R" and & € No, (5.9)

5

where

We assume now in addition:
There exists rj >  0 and do > 0 such that for e G (0 ,77) and for all s >  So it  
follows that

\ %d* f (x ,  s) | <  ca^ e-^ f (x , s)s£ (5.10)

holds for all i E l n and s >  So w ith  ca}k,e independent of x and s.

Example 5.1.1. Consider f {x ,s )  =  sm^  for  0 <  m <  m(x)  <  M  <  1. I t  
follows that

p.m ifi) =  pk(m (x ) ) * s" M  (5.11)
gK

where Pk(t) is a polynomial of degree less or equal to k. I f  we assume in
addition that m(-) G C'°°(Rn) and \dam(x)\  <  ma for all a G Nq we find
using (5.11) that

d£d?s"‘<*>=aZ(Ptl(m(X) ) ± 3m(’ >)

=  p f  L  (  °a )  0a~p Pk(m(x)) C{M Y [ (90, (m(x) l n s ) ) s m ( : t ) .

/?! + ••■+/?<< =/3 i=1

Thus we arrive at

iMQfc m(i)| <  Q(\ns)  m(a,)
S
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provided s >  1 (otherwise, i f  s >  5q >  0, we need to treat the terms involving 
In s a bit differently, for example we may switch to | In s|) where Q is a suitable 
polynomial. Since for c >  0 we find a constant ce such that Q (lns) <  cese 
holds we arrive at (5.10).

m(x) m(x
Exam ple 5.1.2. Consider f {x ,s)  — s~2^(1 — e~4s~^~) where m : 
is arbitrarily often differentiable such that 0 <  m <  m(x)  <  M  <  2 and 
\d%m(x)\ < ma. Now we consider d%dgf(x, s) assuming 0 < 77 < 2 — M  and 
70 > 1. I t  follows with the notation used in Example 5.1.1 that

= ( g  (  t )  ^ - ' ^ ^ ( 1  -  e-4̂ ) )

m ( x ) \  1 m(x) . —4s
3k - l

For I 7̂  0 we find further

m ( x )  m ( x )

a ' ( l - e - 4>_F) =  - ^ ( e - 4ŝ )

e  c{^ n ^ ( - 4 ^ )

r \ H---------1- r v =  I j ~ l
V =  0, • • • I

m ( x )
—4s 2

(
y

E
TT / .v _ ( TTl(x) \  1 m( x)

r\  H h n> =  I j 1

v Z' =  0, . •

This leads to

m(x)
—4s 2

V. \
E  ^ ) n ^ ( m ( x ) ) i - Ŝ ) e - 4̂

r i  H 1-ri> =  I j ~ 1
V = (),■■• ,1

0 <l<k
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+ P A;(m (x ) ) ^ s !!!̂ i ( l  -  e 4ŝ ) |

=  ai“ (5 1(x) +  52(x)).

Consider the terms in S\ (x ). First we note that the powers of s always add 
up to Next, any derivative of Pk~i(m(x)) or Pf . (m(x))  will result in a

function which is bounded in x and independent of s. Each derivative of s11̂  
will give a term which we can write as

T7l ( x )
s 2 R(\ns,  m(x),  • • • , d].m{x)) (5.12)

with a suitable multi-index 7 G N[} and R is a polynomial The derivatives
m i x )

d2(e~4s ) are of the type

m i x )  _
e~4s R( lns,m(x) ,  • • • , dfm(x) )  (5.13)

where R is again a polynomial Taking into account that s >  1, we find that 
for every 6 >  0 there exists a constant such that

1 m ( x ) + 6  , — Lx )

< C j - r s - ^ - e " 4* ^ .  (5.14)

We split the second term into two terms, the first is the one where we take
m i x )

no derivatives of (1 — e-4s ). The second term then becomes similar to 
the terms already treated and for this term we get an estimate of type (5.14)- 
The first term leads to terms of type

and using previous calculations, for every e >  0 this term is bounded by

~ 1 m { x ) + 6  _4
c5-rs  2 (1 - e  ). (5.15)

sK

Assuming s >  1 implies

m j x )

<  ( T T ^ r ) ( l - e - 4s^ ) .
m ( x )  /  1 \  m ( x )

4s 2 ^  I  1 \ /-| „ -4 s  2
-  l e 4  -  1

Hence we have proved that for all a  6 N} and k G No there exists e >  0, 
0 < e < 77, such that

-  e - 4̂ ) |  <  ca,t , l s^ ( l  -  e- 4̂ ) .  (5.16)
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We now return to the general case. I t  should be noted here that due to 
their length calculations may have to be split over many lines. To avoid any 
confusion if  a calculation is w ritten as

x

it  means

E 
E

EE
and not

(£ ) (£) •
Eventually we need various controls on the symbol

(z ,0  -> f {x ,q {x , 0 )

where q{x, £) comes from a certain symbol class which we w ill introduce later. 
For this we use a formula to calculate higher order derivatives of composed 
functions which is due to L. E. Fraenkel [13], compare also [20], p i5.

Let u : Rm —> C and Vj : Rn —> R, j  =  1 , . . . ,  rn, be smooth functions. 
Then for a  G Ng it  holds w ith  v =  (u i, . . .  vm)

dau(v(x)) =  dau(v i (x ) , . . . v m(x)) (5-17)

V—' (dau)(v(x)) V D . v T) ( \_  ^  ^ \ - v  2 ^  P 7 i ( < r i , u i ; x )  • •  P 7 m ( < 7 m , u m ; x )

1 <  |cr| <  |o:| 7 1 H b 7m =  a
a G Nq1 7j G No­

where for 7 G Nq

N \ f  d^^v(x) \  Pl ( d ^ r^ v (x ) \Pr

w ith

R (7 , JV) :=  j p  £ y j PjP(j) =  7  and \p\ =  n \  , (5.19)

N £ 7  : =  {0  e  N S |  0  <  0  <  7 )  ( 5 . 2 0 )

and w ith  |NJ7| — r  an enumeration of Nq)7 is given by /3(1),. . .  ,/?(r). In
our concrete problem many reductions happen. We consider first /  : Rn x

45



(0, oo) —> R artificial as /  : Rn x Rn x (0, oo) —> R by setting f ( x , s) =  
f ( x i , . . . ,  xn, 1 , . . . ,  1, s). Next we introduce the 2n +  1 functions

In the following multi-indices in Ngn w ill be split as a  =  ( a ^ \ a ^ )  where 
a W acts on the z-variables and a ^  acts on the £ variables. Our problem is 
to estimate

7 1 H h 7 2n+1 =  (J

7j  e N ln

where to =  (/?, a). I f  7J =  (6 {, 5J2) then

=  {(c, r )  £ Ng" I Id  +  |r  | >  0 and 0 <  C <  &{, 0 <  r  <  <g}.

Let an enumeration of Ng", : r?(l) =  ( C ( l) , r ( l ) ) , . . .  =  (C (rj) ,T (r j))
where 77 =  77 (j j ) be given. Then we have w ith  a =  (<7i , . . . ,  <72n+i)

Xji 1 <  j  <  n
1, n +  1 <  j  <  2 n 

j  =  2 n +  l
(5.21)

/ ( •  • • >t>2n+l(*.{)) =  9 f9 f / ( x  1,

( y / ) ( n ( x ,Q )
rr!

X

i  <  M  <  M  + |/?| 
a € N l n + 1

P^i (au VuX ,€ ) - . . .*.Py2n+i(cr2n+i) ^2n+i; X, £) (5.22)

j

J=1

i=i

{p  e Nq ^  PiC(0 =  S1 ,Y 2  Pir(l) =  <?2 and \p\ =  ° i  }

and

pERi'ŷ Cj)
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where a  G Non+1 such that a  =  (crx, cr̂ , cr2n+1), 0x> G Nq and <J2n+i G No- 
When cjf ^  0 then daf  =  0 therfore

E
i  <  M  — 1̂ 1 + |/?|

(7 G N2n+1

reduces to

E
1 <  W x | +  02n+l <  |o;| +  \P \ 

a G Ngn+1, cr* =  0

Consider P ^ (o j, , £, £)

i) 1 <  j  <  n implies

^ % ( x , «  =  ^ ‘ )xJ =  {  ! ;  m : Z T e = °

therfore for 1 <  j  <  n 

n , ^  (Tjl f d iWdl{1)Vj(x,0 \ Pl ( d i {ri)dl{ri)vj (x,Z) \ Pr3

% £ , „ *  I  « 1)W ) ! j  ' "  • • (  W W  j  

£
aj\ / dj{l)dl{l)Vj{x,$,)\ Pl ( di{Ti)dT̂ Ti)Vj{x,i)V r2

p e { p '€ N o J | E j i i  P\< , { l )= (T j  a n d  £ { l ) = e i }  x '  '  '

i.e. in this case P ^ (a j ,V j ,x ^ )  =  Cj>a-

ii) n +  1 <  j  <  2 n implies

d ^ d ^ vj(x ,£ )  =  0 whenever £(&) ^  0 or r (k )  ^  0, i.e. (£(&), r(fc)) ^  0,

i.e. for n +  1 <  j  <  2 n

^  V - Oj\ ( d i {1)dl{1)V j{x ,Q \Pl ( d i {rj)dliri)vj (x ,Z ) \Pri

* » »  )  )  - •  

iii) Finally let j  =  2n +  1 and set r  =  rj, i.e.

H(72" +1,<r2n+1) =  {/5€N J

then

E f t ^ W ' r W ) =  72” +1’ \P\ =  ^ n + l}
1 = 1

P ~ f2 n + 1  (<J2n+l) ^ 2 n + l > ^ 5  £ )  —  P y2n +  l  (<J2n+l > ^(*^> 0 )
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Y '  o-2n+ i! ( 9 x l)d l {l)q { x , i ) Y l ( d j {Ti)d l (Ti)q{x1i ) Y TS

~ p' \ C(1)!r(1)! / V «r*)!rfa)! /
We observe that

(dGf )  (a? i , . .  .x n,s) =  0 i f  c r ^ O e N o -  

Thus we find using the previous calculations and (5.22)

a f a f  f (x ,g( x , o ) =  £  ( * , < ? ( * , « ) )

1 <  \&x\ + cr2 n + l  <  1^1 +  \P\ 
a  =  (c7x ,0 ,< T 2n + l )  ^  N o n + 1

X X  P 7 i ( o - i , x i )  • . . .  • P 7 2 n + i( c r 2 n + l , 9 ( a : , 0 )

7 1 H (-72n+ 1 =  (/?, a )
7J G Ngn

1 <  k x |  + 0 - 2n + l  ^  M  +  l-d| 
a =  (ax,0 ,a2n+ i ) e Ngn+1

X X  ‘ • • • • P {6\n+\ 5 l n+1) ^ r i ^ l , q { x ^ ) )

81 +  • • • +  6 jn+1 =  p  
8 \-\--------1 8\nJrl =  a

X I  ( ^ f )  (x ,q(x,0)
1 5: |<7x| +  0-2n+l 5: |a| +  |/?| 
cr =  (ax,0 ,a2n+i)  e Non+1

X ^  P(5l )(5l)((7l,Xl) • . . . • P(52n+i s2n+i) (a2n+l,q(x,0)
51 +  • • • +  <5? +  6 ln+1 =  p  
5\ +  • • • +  6$ +  5%n+1 =  a  

53k G Nq , 8Jk =  0, n +  1 <  j  <  2n

E (^f) (*.«(*.€))
1 < kx| + 02n+l < |o:| + |/3|
0 =  (^ x ,0 ,a 2n+ i)  e Non+1

X  X  P (« } f^ ) ( ° ' l » :c l ) - - - - - P ( f i J " + 1>5 a n + i) ( c 7 -2 n + l,g (a : ,0 )

5} +  • • • +  <5? +  5 jn+ l =  p  
5%n + 1  =  a 

53k G Nq , 5Jk =  0, n +  l  <  j  <2n  
5j G {0,eJ}, 1 < j  < n, 8 32 = 0, 1 < j  < n

48



£  ( 5 9  (*,«(*.€))
1 <  \<?x\ +  0 2 n + l  5: |c*f| +  \P\

C7 =  ( C 7 a ; , 0 , ( 7 2 n + l )  G  N o n + 1

X  C ( < 5 } , . . . ,  < 5 ? ,  t f j i - - - .  <5 2 ) P ( « 5 2 n + J a ) ( C T 2 n + l ,  9 ( l ,  0 )

5} +  • • • +  5? +  5 ln+1 =  (3 
8%n+1 =  a  

83k G No, 83k =  0, n  +  1 <  j  <  2n 
8{ G {0, e3}, 1 <  j  <  n, =  0, 1 <  j  <  n

E te.gfoO)
1 <  |0z| +  02n+l <  1̂ 1 +  |/3| 
a =  (<7X, 0 , 0’2n + l) G Non+1

X  £  C(5\ ..................... * J )

<5J +  ■ • ■ +  Sf +  <5?*+1 =  0  
83k G Nq , =  0, n  +  1 <  j  <  2n

8j G {0, eJ}, 1 <  j  <  n, <̂ 2 =  0, 1 <  j  <  n

i p  g 2 n + l !  / ' ^ ( 1 ) O f < 1 ) g ( » . 0 ’ \ W

x **<,A),^+1)  ̂ v y ”" V ĉ >!̂ ) ! J
In order to estimate d ^ d ^ f ( x , q ( x , ^ ) )  we assume further

<  ccrU +  ^ C )) 2̂ 1111 (5.23)

and the ellipticity condition

q { x , 0  >  7 o ( l  +  ^ ( f ) ) -  ( 5 -2 4 )

Taking (5.10) into account we find for every e > 0 but sufficiently small that

\d%d£f{x,q{x,£))\  <  C ' i . p . e  X ]  g ( x  g ( x > 0 ) g ( ^ 0 £

1 <  l ^ x l  +  CT2n+l 5: M  +  \P\ 
a =  (ax , 0 , a 2n+ 1 ) G Nq”+1

E
. * }  + •■; + *? + 6 ln + 1  = P

83k G No, 83k =  0, n  +  1 <  j  <  2n 
8{ G {0, e5}, 1 <  j  <  n, =  0, 1 <  j  < n

E (i+*(0)fl=as=am" •••••(!+
p G f l ( (5 ? n + 1 , a ) )£72 n + 1 )
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£  T T T m ) ^ f {x M x ’0)q{ x ,0 ‘
1 <  \(Tx\ + ^ 2 n + l  <  M  +  \P\
&  —  { ^ x ^ i a 2 n + l )  G Ngn+1

E
6{ +  • •; +  <5? +  5*n+l = P 

5Jk e Nq , 63k = 0, n + 1 < j  < 2 n 
5{ e {0, e3}, 1 < j  < n, 532 — 0, 1 < j  < n

x ^ 2  ( i + V’(0 )pi+"‘+pr2n+i(i+ V '(0 )~ (i2Â 1}}pi+'”+(2Â r)^ r2n+i)-
p £ i t  ((<5jn + 1  ,a ) , t r 2 n + i )

Since for p G i? ((5 jn+1, <$2n+1)> cr2n+ i)  i t  follows that p i  +  • • • +  Pr2n+i =  
02n+i we arrive at

|d fd? 7 (z ,g (z ,f)) l ^  Ca,p,ef{x,q(x^))q(x ^ ) e X
1 5: \<rx \ +  ^ n + i  <  |q:| +  \P\

a  =  {ax , 0 , a 2n + i )  e  Non+1

£
5 }  +  - - ;  +  5 ?  +  <S?n + 1  = / 3  

G Nq , <$* =  0, n +  1 <  j  <  2n 

&{ e (0> e j}> 1 <  .7 <  ^2 =  °> 1 <  j  <  ri

x ^  (J _|_ ^,^^-|((2Ar(l))pi+-+(2Ar(r))pr)i

p e i ? ( ( 6 i n  +  1 , a ) , a 2 n + l )

Denote the last sum by UR^6 2n+i 5 2n+i^a2n+iy i.e.

p e i? ( ( 7 in + 1 ,72n + 1 )CT2 n + l)

I f  |o;| =  1 we get a contribution from i?((£in+1, <$2n+1), 1) of the type |r(/)| =  
1, pi =  1, and we have the estimate

i < V +\* i"+ ‘ >,i>i <  (1 + m r *  =  (1 + m r ^ Aian-

I f  \a\ =  2 we get at least one contribution from R((Sln+1, ^2n+1)> 2) of the 
type \ t ( 1)\ =  2, pi =  1 or |r(/)| =  |t(&)| =  1 and pi =  pk =  1 , I ^  k, hence 
we get that the estimate

< V - . *  i - ) , 2)i *  a + ^ ) r ‘ =  ( i + m r ^ an
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holds. Finally, for |a| >  3 we find the estimate by analysing the possible 
terms in R ( ( ^ n+1, ^ n + l )(72n+ i )  for a2n+1 >  3

w ith k >  3. Thus we have proved

T heorem  5.1.3. Suppose that f  : Rn x (0, oo) —* R is arbitrarily often dif­
ferentiable and that / ( x ,  •) : (0, oo) —> R is a Bernstein function. Suppose 
further that (5.10) holds. Let q : Rn x Rn —> R be an arbitrarily often differ­
entiable function satisfying with a fixed continuous negative definite function 
'ip : Rn —> R condition (5.23) and (5.24). Then for every e >  0 sufficiently 
small and all a, (3 G Nq it holds

\d%<%f(x,q{x,0)\ <  CaAJ ( x ,q ( x , t ) ) q ( x ^ ) e{ l  +  . (5.25)

This implies together w ith  Theorem 2.5.4 in [21] and (5.1) that p G 
g 2n+2e,i/>(Rn) an(j  £)) maps the space H'l(,,2ri+2e+3 (Wl) to the space
H ^ 3{Rn) i.e.

\\p{x,D)u\\^s <  c\\u\\^ , 2 r \ + 2 e + S '

In particular p (x ,D )  is continuous from i / ^ ,s(Rn) to H^'3~2r 1- 2e(Rn) je ,

I |p(*^> T ) ) u \ |-0,s—2 r i— 2e 5  ̂ ^ 1 1 1 *

We now consider the bilinear form

B (u , v) :=  (p{x, D )u , t>)o, it, v G 5 (R n).

Since p G S 2ri+2€’̂ (M.n) we may apply Theorem 2.2.3 to get

\B (u ,u)| ^  k \[rtl| ,̂)ri_)_e| I ' u ] (5.26)

for some k >  0 and all u,v  G S(Rn) i.e. B  has a continuous extension onto 
H^'Vl+e(Rn) again denoted by B. Furthermore we have

P ro p o s itio n  5.1.4. For u e /T Wri+2£(R” ) we have the Garding inequality

B(u ,u ) >  $ i|M & r0-t? -  A0||u||o, (5.27)

for some Aq > 0.
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Proof. We have the lower bound

P (z ,f)  >  c ( i +  ^ ( o r ° - ^ .

This implies
r(x , 0  =  p(x, 0  -  c ( l +  'ipiOY0 ' 11 >  0.

Now Theorem 2.5.5 in [21], which is due to W. Hoh, see [17], gives

( r (x ,D )u ,u )o >  -fc||u || 2 r \  +2e— 1 (5.28)
2

since (r(x , D )u ,u )o is real-valued, where

(r (x, D)u, u )0 =  i?eJ5(w, it) -  c||u||J,ro_^. (5.29)

Putting (5.28) and (5.29) together we get

ReB(u,u) >  c ||ri||| ro_jj -  /c|M |i r 1+̂ - i .

Under the assumption that

^(0  >  co|£|Po 

and r \  +  e — |  <  r 0 — fj we get for every e0 > 0

( i + <  4 ( i + m r * - * + < ? w

which leads to
M l ii+2e—i <  eo||u||^ro_^ +  c(e0)||ri||o|2

~i
2

implying the result. □

We are now dealing w ith  the space Rn) and the space H ^ ,ri+e(Mn)
which is the smaller of the two. Since our estimates for B  are in different 
space we seek to introduce an intermediate space.

Firstly, we consider the symmetric part B  of B  i.e.

B \ 0 (u,v) =  1(Bao(u,w) +  BXo(v,u)

on H'/,'ri+e(R"). Then

Bx0 (u,v) := B (u ,v ) +  \ 0 (u ,v )0, (5.30)

We have
\BXo(u,v)\ <  ^ I M k . i lM k . i
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and
Bxa{u,u) >  7 llu ll^0,i-

Since B \ 0 (u,v) is a scalar product on H^'ri+e(Rn) we may consider the com­
pletion of H ^ ,ri+e(Rn) w ith  respect to B \ 0 (u,v). We denote this new inter­
mediate space by H Pxo (Rn) . Clearly we have

H * 'Tl+e(Rn) <-> H Pxo(Mn) H ^ ro~p(Rn) (5.31)

in the sense of continuous embeddings.

Lem m a 5.1.5. The bilinear form B \ 0 is continuous on H Pxo(Rn).

Proof. We find by using Corollary 2.4.23 in [21] that

i ( p Ao(x , D)  +  p*Xo{x, D)) =  ^ (p \0 (x, D )  +  pxQ(x, D))  +  n {x , D )

=  pXo( x , D ) + r i ( x , D )  

where r \  E 5 2n+2e_1,̂ (R n) and we used that p{x,$f) is real-valued. Consider

\ B x q ( u , v ) \ = |(pa0(^, D ) ) u , v )0|

<  \ \ ( (P \o (x i D ) +P*\0(x i D ))u >v)o\ +  \ ( r i (x ,D )u ,v )0\

=  |B Xo{u,v)\ -I- \ { r i (x ,D )u ,v )0\-

We know that Bx0 (u,v) is continuous on H Pxo(Rn) therefore our calculations 
are reduced to estimating |(r i(x , D)u, u)o|.
We know that r \  E 5 2ri+2e_1,̂ (R n) which implies by Theorem 2.2.3 that 

\ { r i {x ,D )u ,v )0\ <  c\\u\\^ri+e_ i \ \v \ \^ ri+€_ i.

I f  r \  +  e — \  <  r 0  — fj we get

I M U . n + e - i  —  I M I v ’ .i ' o - t? —  C I M L 0

implying the result by (5.31). □

By the Lax-Milgram theorem, for every g E (H Pxo)* C S"(Rn) there exists 
a unique element u E H Pxo satisfying

B Xo(u,v) = < g , v >  (5.32)

for all v E H Pxo. We call u  the variational solution to p (x , D )u  -1- \qu =  g. 
Prom (5.31) we get

H i p , - ( r o - v ) ( R n j  =  ^ , r o - v ^ y  o ( R " ) ) * ,

hence for g E H^'~^ro~^(M.n) there exists a unique u E H Pxo(Rn) satisfying 
(5.32).
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P ro p o s itio n  5.1.6. For every g G H^' ^ (R n) there exists a unique u G
H ^ ro-^(Rn) such that

pXo(x, D )u  =  p{x , D )u  +  A0u =  g 

holds as an equality in S 'iW 1).

(5.33)

Proof. Denote by u G H Pxo (Rn) the unique solution to (5.33) for g G H ^ ,ro~p(Mn) 
given and take a sequence (uk)ken, Uk £ Sf(Rn) converging in H Pxo(Rn) to u.
I t  follows from

{pxo{x ,D )u k,v )0 =  BAo(ufc,u), u G S(Rn)

and the continuity of p \ 0 (x ,D )  from H ^ ,s(Rn) to iy^»s-2ri -2e(Rnj for 
k —> oo

< pAo(s,D )w ,u  > =  B \ 0 (u, v) = < g , v >

for all v G 5(R n). Thus p \ 0 {x, D )u  =  g in S"(Rn) and the uniqueness follows 
from (5.27). □

In order to get more regularity for variational solutions we have

T heo rem  5.1.7. Assume (5.10), (5.23), (5.24) and ™ addition letfj =  0 in
(5.2) to give for 7 > 0 that

holds where

7(1  +  m ) r° <  / o ( 7 o ( l  +  V > ( 0 ) ) (5.34)

(5.35)

Then for every rj >  0 sufficiently small the function Pxl {x,£) belongs to the 
class S~ 2r0+2̂ ( r ) .  •

Proof. Let us assume for simplicity that <50 =  7o? compare (5.10). For A > 0 
let Px(x,4) — A +  f (x ,q (x ,£ )) .  From (2.27) in [20] we find w ith  I =  \a\ +  \(3\

1 <

c r H h a  -  a  3

< 9 f  < 9 f p A ( x , £ )

/?> +  ..  . +  /3‘ =  f3

1

A +  f (x ,q (x ,£ ) )  ^  C{- > I 1
a 1 +  ■ ■ ■ +  a1 =  a  3-1
/31 H +  Pl =  p

d fd P p x(x ,S )

P x (x ,0
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From the definition of /i(s), (5.35), together with (5.24) we get

^  Ca,P

< 1

/i(7 o (l +  V>(£)))
a 1 H 4- a* =  a
p  + - - - + $ l = 0

3 = 1

d? Jd f  pA(^,0

— Ca,/3

/i(7 o (l +  ^ (0 ) )

1

E

Pa(z,0  
= a J~*
= (3

1 d f d £ J ( \  +  f (x ,q{x ,£) ) )n
a 1  ̂ h a 1 =  a  -7 -1
/31 + . . .+/?*=/?

/i(7 o (l +  ^ (0 ) ) E n
a 1 +  • • • +  a 1 =  a  J_1 
/?! + . . . + ^  = /5

A +  /0r,<7(x,£)) 

d f  d&  A + d £  f {x ,  q(x, 0 )

A + /(x ,g(x,0)

When a  =  (3 — 0 we find

1
<  Co,o

/ i ( 7 o ( l  +  ip {0 ) )

Moreover whenever a 3 =  (33 =  0, then

d f d ^ X  +  dfd% 3 f (x ,q ( x , 0 )
X +  f (x ,q (x ,£ ))  

Therefore wq now only have to consider

=  1.

1
, c. 

P \ ( x , 0
— Ca,P

/i(7 o (l +  ^ (0 ) ) E
i = nr J = 1a 1 H------- l-a  - a

0 1 + ---- bJ3‘ =  0
a? +  f t  >  0

r r  d f d ^ f { x , q { x ,  0 )

AA A + /(x ,g(x,0)

Further, using (5.25) we get

1 <
/i(7 o (l +  V>(0)) E

a A H +  a 1 =  a
pi  +  . . .  +  0 i = ( 3

a-J +  >  0

x jq  caJ;3j e/(a;,g(x,0)g(x,0e(l + ^ (0 )~ £il̂ J1

i= i A + f (x ,  q{x,£))

/ i(7 o (l + ^ ( 0 ) ) E
a 1 H +  a 4 =  a
/?i + ... + /3* =/? 

a 3 +  (33 >  0

' f (x ,q (x ,g ) )q (x , ty

, A + /(x,qf(x,0)) .

/ /  i
|  c a  j  p j  i
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x(l + ^(^))-^(p(|a1l)+-+p(l«,D)

/ i (7o(1 + V>(0)) E
a 1 +  • • • +  a 1 =  a  
/31 + ... + = (3

a? + 0 j  >  0

f (x ,q(x ,£) )q(x ,ZY
A + /(x,g(x,0 ) ( l+ ^ ( 0 ) " 4p(|a|)

using the sub-additivity of p. Since /(a,g(a,Q)

c Pa (z ,£ )
< Ca,/3,e

/i(7o(l +V»(0))

A+/(x,g(x,0)

E
a1 H + a 1 = a
p  + ...+/?<=/? 

ot? + f t  > 0

<  1 we find 

q(x,Ou(l + m ) ~ il,aan- (5-36)

Since g ( i,  f )  <  Co,o(l +  V'(O) i t  follows further that given fj >  0 we can find
ca,(3,f) > 0 such that

d ? d t  1 .
{ P\(x,Z)

Taking into account (5.34) we eventually arrive at

1 . . - 2r n + 2f7- p ( |Q | )  

<  Cat0tfi( 1 +  </>(0 ) 2

i.e. E Sp 2ro+2fi’̂ (Mn) proving the theorem. 

We can now prove

(5.38)

□

T heorem  5.1.8. Letp(x,£) be given by (5.3) where we assume for q condi­
tion (5.4)- For f  it is supposed that (5.1) and (5.2) hold. Then we have that 
p E S'2n + 2e’^(Mn) and pf 1 E 5 - 2ro+27?,V’^ n ^  we assume th a t r \—rQ <  \ .
Let u E H Pxo (R n) c  H ^ ,ro~p(M.n) be the solution to (5.33) for g E H^'k(Rn), 
k >  0. Then it follows that u E H ^ ,k+2r°~2p (Rn) .

Proof. The statements for p andpA 1 have already been proved, i.e. Theorem
5.1.3 and Theorem 5.1.7, respectively. Prom Theorem 2.1.5 it  follows that

Pao1^ ’ D ) °Pa0(z, D )  =  id +  r(x, D ) (5.39)

w ith  r  E  S qTi+2€ 2ro+2p 1,^ ( R n). Since P \ 0(x ,  D )u  =  g we deduce from (5.39) 
that

u =  Pxo (*> D ) ° P*o (*, D )u ~  r {x t D )  
=  P \ l i x , D )9 - r { x , D ) u .

u
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Now, p ^ { x ,D )g  G H+'2r° - 2 l>+k(W l) and r {x ,D )u  G H ^ 3ro~3f>-2r' - 2e+1 {Rn) 
implying that u G for t =  (k +  2r 0 — 277) A (3ro — 3fj — 2r\ —
2e +  1) > r 0 — 77. W ith  a finite number of iterations we arrive at u G
î/>,fc+2r0- 27^71^ j-|

C o ro lla ry  5.1.9. I f  k +  2ro — 2 f j>  compare (4-13) in the situation of 
Theorem 5.1.8, then u G Coo(Rn).

We finally arrive at

T heo rem  5.1.10. Let f  : Rn x (0,oo) —> R be an arbitrarily often differen­
tiable function such that for  y G l "  fixed, the function s —► f (y ,  s) is a Bern­
stein function. Moreover assume (5.1) and (5.2). In  addition let rjj : Rn —> R 
be a continuous negative definite function in the class A which satisfies in ad­
dition (4-13). For an elliptic symbol q G S 2 ,̂ (Rn) satisfying (5.4) we define 
p (x ,( )  by (5.3). We know that p G S f 'l+2e^  (JSin) and _ i_ e s - 2r0 +2^ ^ R ny

I f r \  — r 0 <  \  then —p(x, D ) extends to a generator of a Feller semigroup on 
C 0 0 (Rn).

Proof. The statements for p and p f l have already been proved, i.e. Theorem
5.1.3 and Theorem 5.1.7, respectively. We want to apply the Hille-Yosida- 
Ray theorem, Theorem 1.3.6 We know that p (x ,D )  maps H ^ ,2ri+2e+k(Rn) 
into t f ^ fc(Rn). Hence if  k >  ^  the operator (~p{x, D), H ^ 2r' +2€+k (Rn)) is 
densely defined on Coo(Rn) w ith  range in Coo(Rn). That —p (x ,D )  satisfies 
the positive maximum principle on H^'2ri+2<i+k(]&n) follows from Theorem 
3.1.1. Now, for A >  Ao we know that for g G H ^ ,k+2ri~2rQJt2fl+2e(Rn) we have 
a unique solution to p \ (x ,D )u  =  g belonging to H ^ ’k+2ri+2e(Rn) implying 
the theorem. □
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6 Dirichlet Forms
The purpose of this chapter is to study Dirichlet forms, we w ill indicate how 
D irichlet forms may lead to a different approach of variable order subordina­
tion.

6.1 Dirichlet Forms: A few Remarks in Relation to  
Subordination of Variable Order

Let {Tt )t>o be a sub-Markovian semigroup in L 2(Rn), i.e. (T t ) t > 0 is a strongly 
continuous contraction semigroup on L 2 (Rn) and i f  0 <  u <  1 holds almost 
everywhere then 0 <  Ttu <  1 holds almost everywhere for u G L 2(Rn). 
Denote by A  the generator of 7*, we know by Lemma 4.6.6 that A  satisfies

/J R'
(Au)(u  — 1 )+dx <  0

rjRn

for all u G D (A ), i.e. A  is a D ir ic h le t o p e ra to r.
Further, by Definition 1.3.8 a negative definite operator A  satisfies on its 
domain D{A )  C L 2(Rn)

j  (Au)(signu)\u\dx <  0 (6.1)
J]Rn

i.e.

or

/  (Au)udx <  0
J R n

JJ R7
{—Au)udx > 0

'Rn
for all u G D (A )  C L 2(Rn). This implies that {—A) is a non-negative definite 
operator. I f  we now let (7t)t>o be a symmetric sub-Markovian semigroup in 
L 2(Rn) then Tt =  T*  and by Corollary 4.1.46 in [20] it  follows that A =  A* 
as closed operators. Therefore (A  D (A ))  is a self-adjoint operator, i.e.

D{A*)  =  D (A ) and (Au,v) o =  (u ,A v )q.

To summarise, we have a non-negative self-adjoint operator (—A) such that

£{u,v) :=  ( ( - A ) * u , ( - A ) i v ) 0

is a continuous bilinear form on D (£ )  =  D ( ( —A )£) w ith  respect to the norm 
I M l? =  M ilo +  £(u ,u). Consider the bilinear form on u G D (A ) ,v  G D (£ )

£(u, v) =  (—Au, v)o =  /  (—A u )v d x =  /  (—A ) * ( —A )*u -v d x
J Rn J Rn
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=  f  (—A )* u (—A)*vdx
J R n’R n

=  { ( - A ) * u , ( - A ) * v ) 0.

Using the Cauchy-Schwarz inequality we find

\ ( - A u ,v )0| <  | | ( - A ) ^ | |o | | ( - A ) ^ | |o

or
\ ( - A u ,v ) 0\ <  { { -A u ,u ) 0 )^ { ( -A v ,v )0)^. (6.2)

In the sense of continuous embeddings we have

D (A ) ^  D {£ )  -+  L 2 (Rn).

We also find that
\£(u,v)\ <  {£i{u ,v))^{£i(u,v))^  (6.3)

where
£i(u ,v) =  £(u ,v)  +  (u ,u)0.

T heo rem  6.1.1. Let (A ,D ( A )) be a densely defined operator on L 2 (Rn) 
satisfying (6.1) and (6.2). Then there exists a closed bilinear form (£ ,D (£ ) )  
on L 2 (Rn) such that D (A ) C D ( £ ) C L 2 (Rn). Thus £  is densely defined and 
fo r u  6 D (A ), v € D (£ )  we have £(u, v) =  (—Au,v)o- Moreover, £  satisfies
(6.3).

Compare Theorem 4.7.5 in [20].

I t  is not assumed that (A, D (A ))  is a closed operator, however in the 
situation of Theorem 6.1.1 it  is closeable, where we denote the closure by A 
and the domain of its closure D (A )  is a subspace of D {£).  Theorem 6.1.1 also 
holds for any Dirichlet operator satisfying (6.2). We aim to find a certain 
converse to Theorem 6.1.1. Before we can state the main results between 
Dirichlet operators and certain types of bilinear forms, i.e. D irichlet forms, 
we have to introduce the following definitions

D e fin it io n  6.1.2. A bilinear form (£ , D (£ )) is a closed fo rm  on L 2 (M.n) 
i f  (D (£ ),  £{ym), where £ lym(u, v) :=  \{£ \{u , v)m +  £\(v ,u )) ,  is a Hilbert space 
and £  is continuous with respect to £ fym, i.e.

\ £ { u , v ) \ < { £ r { u , u ) ) ^ £ { ym{v ,v )^  

holds for all u ,v  € D {£).
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D efin ition 6.1.3. Let (£ ,D (£ ) )  be a closed form on L 2(Rn).
A. We call (£ ,D (£ ) )  a sem i-Dirichlet form  i f  for all u G D ( £ ) it follows 
that u+ A 1 G D (£ )  and

£{u  +  ('u+ A 1), u -  (u+ A 1)) >  0

holds.
B. The form (£ ,D (£ ) )  is called a non-sym metric D irich let form  i f  for
all u G D ( £ ) it follows that u+ A 1 G D (£ ) and

£{u +  (u+ A 1), u — (u+ A 1)) >  0, , .
£ (u — (u+ A 1), u +  (u+ A 1)) >  0. ’

C. I f  ( £ ,D (£ ) )  satisfies ( 6 .4 )  and also is a symmetric form, then we call 
(£, D (£ ) )  a symmetric D irichlet form.

We axe now in a position to give some main results for Dirichlet operators 
and Dirichlet forms.

Firstly, if  (A ,D (A ))  is a Dirchlet operator on L 2(Rn) satisfying (6.2) 
and generating a sub-Markovian semigroup (T t ) t > 0 then the bilinear form 
(£ ,D (£ ) )  is a semi-Dirichlet form.. Conversely, suppose that (£ ,D (£ ) )  is a 
semi-Dirichlet form on L 2(Rn) then the associated operator (A ,D (A ))  is a 
D irichlet operator and the associated semigroup {Tt)t>0 is sub-Markovian on 
L 2(Rn).

Next we consider non-symmetric Dirichlet forms. I f  (A *, D (A *))  is also a 
D irichlet operator , then (£ ,D (£ ) )  is a non-symmetric Dirichlet form. Con­
versely, I f  (£ , D ( £ )) is a non-symmetric Dirichlet form, then (A* , D (A *))  is 
a D irichlet operator and the associated semigroup (Tt)t>0 is sub-Markovian.

Finally, for symmetric Dirichlet form the following holds. I f  (A , D (A )) 
is selfadjoint then (£, D (£ ))  is a symmetric Dirichlet form. The converse is 
also true.

We now consider some examples w ith  the aim of demonstrating how the 
Fourier transform and continuous negative definite functions come into play.

Exam ple 6.1.4. Let ip : Rn —> R be a continuous negative definite function 
with associated convolution semigroup (pt)t>o- The operator —'ip(D) defined 
on Cq° (Rn) by

-ip (D )u (x )  =  - ( 27r)“ t  f  etx'^/>(£)u(£)d£ (6.5)
JRn

extends to a selfadjoint Dirichlet operator (A , H^'2(Rn)) (recall that the graph 
norm ||tz||-0(£>),o =  IMIo +  \\(p(D)u\\o is equivalent to ||ii||^,2/  Further for
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which implies that the symmetric Dirichlet form corresponding to (A , H^'2 (Rn)) 
has the domain D (£ )  =  H ^ ,l{Rn) and it is given by

£(u ,v) =  [  l/>(€)u(£)v(()d(
J R n

=  f  [tp(D)]^u • [tp(D)]%vd€, (6.6)
J R n

where [i>(D)]^u is given on Co°(Rn) by (6.5) but with 0(£)^ instead o /0 (£ ). 
In  particular, since (1 +  0 (0 ) *  a ŝo a continuous negative definite func­
tion with values only in R, we see that for any continuous negative definite 
function 'if : Rn —► R the space (i7^ ,:l(Rn), (• ,-)i) is a symmetric Dirichlet 
space and therfore u G H ^ ,1(Rn) implies always that u+ A A and u A A, A >  0 
belongs to too.

We w ill now take a different approach, we w ill consider £(u ,v )  using a 
Levy- Khinchin representation for the continuous negative definite function 
0  : Rn —► R.

E xam p le  6.1.5. The continuous negative definite function 0  : Rn —► R has 
the following Levy-Khinchin representation

0 (0  =  c +  g (0  +  [  (1 -  cos(z • O M da0 (6.7)
J Rn \ { 0 )

where c >  0 is a constant, q a symmetric positive semidefinite quadratic form 
on Rn and v is a measure on Rn integrating x —► \x \ 2 A l.  Compare Corollary 
3.7.9 in [20]. We now substitute (6.7) into ( 6 .6 )  to get

£ ^ ( u ,v )=  [  f c + Qiktek + [  (1 -  cos(x • £))v(dx) J (6-8)
\  j,k=l JRn\f°} /



Using Plancherel’s theorem, Corollary 3.1.3 in [20] and the proof of Theorem 
3.10.17 in [20] to find

£'tp(u,v) =  c [  u(x)v(x)dx  +  [  T ;  Q k i dx (6.9) 
JRn JRn ^  8 xk 8 X1

j I  (u(x +  y ) - u ( x ) ) ( v ( x  +  y ) -v (x ) )v (d y )d x .
& JRn JRn

In  the case that qki =  0 for k, I =  1, . . .  n and c =  0 we have

/  /  (u(x +  y) -  u (x )) 2 v(dy)dx
JRn JRn

<  OOD {£ )  =  j u  e L 2(Rn) 

and (6.9) becomes

£^(u,v) =  ^ l  j  (u(x +  y) -  u(x))(v(x  +  y) -  v(x))u(dy)dx. (6.10)
JRn JRn

R e m a rk  6.1.6. I f  in the situation of Example 6.1.5 we have c =  0, the 
measure v(dy) =  0 and

I lk =  f o = {  q ’
l =  k 
l ^ k

then we have

£{u,v) =  ^ j  dx. (6.11)
JRn dxi dxi

I f  in the situation of Example 6.1.5 we can set v(dy) =  N (y )dy , where 
N (y )  is a density, then we may rewrite (6.10) as

£^{u,v) =  ]- f  (  (u(x +  y ) - u ( x ) ) ( v ( x  +  y ) -v (y ) )N (y )d y d x .  (6.12)
JRn JRn

Or equvalently

£^{u, v) =  i  [  f  {u{x) -  u(y))(v(x) -  v (y ))N (x  -  y)dydx. (6.13)
j R n JRn

We now want to compare our representation for a Dirichet form (6.10) 
w ith  the Beurling-Deny representation for symmetric Dirichlet forms.
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Theorem  6.1.7. (Beurling-Deny) I fE  is a symmetric, regular Dirichlet form 
on L 2 (Rn) then we have the following representation for E

du dv

~dxi~dx~k X
E(u,v) =  /  cu(x)v(x)dx +  / E

JRn J K" k l=l

+  f  [  ( u { x ) - u { y ) ) { v { x ) - v ( y ) ) J { d x , d y )  (6.14)
j R n —D  J R n - D

where J(dx,dy)  is a measure on Rn x l n — D  and D  is the diagonal D  =  
{ ( x , x ) , x  G Mn}. Further, i f  E has no local part then we have

E(u, v) =  f  f  ( u { x ) - u { y ) ) ( v { x ) - v ( y ) ) J { d x , dy ) .  (6.15)
J R n - D  J R n - D

Recall tha t the generator A  of E^ is given by

Au{x) =  (27t)- ^ f  elx<i ;^ ) u ^ )d ^
J R n

Our next step is to use Dirichlet form techniques to study stable-like
processes. We study the following symmetric quadratic form on L 2(Rn)

£ > ( £ ■ > - { .  e  C V ,  : 1 1  <  oo

:Q ( u , t > ) =  f  j
J R n J W

(u(x) - u ( y ) ) ( v ( x )  - v { y ) )
dxdy,

rR„ \x -  y |"+«(*)

where 0 <  a\ <  a(x)  <  a2.
A  further extension is to consider the form

D ( r )  .  { «  €  L - (  I f ) :  <  0 0

where 0 <  ai <  a(x, y)  <  a2 .
In the case tha t (Ea,D (E a)) is closeable its closure is a Dirichlet form 

w ith  some generator (A , D(A) ) .  Considered as a pseudo-differential operator 
A  w ill be of variable order, i.e. the “order” of its symbol q{x,£)  w ill depend 
on x. Hence considering such type of Dirichlet forms w ill open a further way 
to consider variable order subordination. For considerations along these lines 
we refer to [37] and [38].

63



References
[1] Balakrishnan, A. V., Fractional powers of closed operators and the semi­

groups generated by them. Pac. J. Math. 10 (1960), 419-437.

[2] Baldus, F., Application of the Weyl-Hdrmander calculus to generators 
of Feller semigroups. Math. Nachr. 252 (2003), 3-23.

[3] Berg, Chr., K. Boyadzhiev and R. de Laubenfels., Generation of gen­
erators of holomorphic semigroups. J. Austral. Math. Soc. (Ser.A) 55 
(1993), 246-269.

[4] Berg, Chr., and G. Forst., Potential theory on locally compact Albelian 
groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (Ser.II), Vol. 
87, Springer Verlag, Berlin 1975.

[5] Bochner, S., Diffusion equation and stochastic processes. Proc. Natl. 
Acad. Sci. U.S.A. 35 (1949), 368-370.

[6] Bochner, S., Harmonic analysis and the theory of probability. California 
Monographs in Mathematical Science, University of California Press, 
Berkeley CA 1955.

[7] Courrege, Ph., Sur la forme integro-differentielle des operateurs de Cf? 
dans C satisfaisant au principle du maximum. In: Sem. Theorie du 
Potentiel 1965/66. Expose 2, 38 pp.

[8] de Laubenfels, R., Existence families, functional calculi and evolution 
equations. Lecture Notes in Mathematics, Vol. 1570, Springer Verlag, 
Berlin 1994.

[9] Evans, K.P., and N. Jacob, Feller Semigroups Obtained by Variable Or­
der Subordination. Rev. Mat. Complut. 20 (2007), 293-307.

[10] Faraut, J., Semi-groupe de mesures complexes et cacul symbolique sur 
les generateurs infinitesmaux de semi-groupes d ’opeerateurs. Ann. Inst. 
Fourier 20 (1970), 235-301.

[11] Farkas, W., N. Jacob and R. Schilling, Function spaces related to con­
tinuous negative definite functions: ifr-Bessel potential spaces. Disserta- 
tiones Mthematicae C C C X C II I  (2001), 1-62.

[12] Farkas, W., N. Jacob and R. Schilling, Feller semigroups, IP-sub- 
Markovian semigroups, and applications to pseudo-differential operators 
with negative definite symbols. Forum Math. 13 (2001), 51-90.

64



13] Fraenkel, L.E., Formulae for higher derivatives of composite functions. 
Math. Proc. Cambridge Phil. Soc. 83 (1978), 159-165.

14] Friedman, A., Partial Differential Equations Robert E. Krieger Publish­
ing Company, Huntington NY, 1976.

15] Hirsch, F., Extension des proprietes des puissances fractionaire. In: Sem. 
Theorie du Potentiel, Lecture Notes in Mathematics, Vol. 563, Springer 
Verlag, Berlin 1976, 100-120.

16] Hirsch, F., Domaines d ’operateurs representes comme integrates des 
resolvantes. J. Funct. Anal, 23 (1976), 199-217.

17] Hoh, W., A symbolic calculus for pseudo-differential operators generat­
ing Feller semigroups. Osaka J. Math. 35 (1998) 798-820.

18] Hoh, W., Pseudo differential operators generating Markov processes. Ha- 
bilitationsschrift, Universitat Bielefeld, Bielefeld 1998.

19] Hoh, W., Pseudo differential operators with negative symbols of variable 
order. Rev. Mat. Iberoam. 16 (2000), 219-241.

20] Jacob, N., Pseudo-differential operators and Markov processes. Vol.l: 
Fourier analysis and semigroups. Imperial College Press, London 2001.

21] Jacob, N., Pseudo-differential operators and Markov processes, Vol. 2: 
Generators and their potential theory. Imperial College Press, London 
2002 .

22] Jacob, N., Pseudo-differential operators and Markov processes, Vol. 3: 
Markov proceses and applications. Imperial College Press, London 2005.

23] Jacob, N., and H.-G. Leopold, Pseudo-differential operators with vari­
able order of differentiation generating Feller semigroups. Integr. Equat. 
Oper. Th. 17 (1993), 544-553.

24] Kikuchi, K., and A. Negoro, Pseudo differential operators and spaces 
of variable order of differentiation. Rep. Fac. Liberal Arts, Shizuoka 
University 31 (1995), 19-27.

25] Kikuchi, K., and A. Negoro, On Markov processes generated by pseudo 
differential operators of variable order. Osaka J. Math. 34 (1997), 319- 
335.

65



[26] Krasnosel’skii, M. A., P. P. Zabreiko, E. J. Pustylnik and P. E. 
Sbolevskii, Integral operators in spaces of summable functions. Mono­
graphs and Textbooks on Mechanics of Solids and Fluids, Ser. Mechanics 
Analysis, Noordhoff International Publishing, Leyden 1976.

[27] Leopold, H.-G., Pseudodifferentialoperatoren und Funktionenraume 
variabler Glattheit. Dissertation B, Friedrich-Schiller-Universitat Jena, 
Jena 1987

[28] Leopold, H.-G., On function spaces of variable order of differentiation. 
Forum Math. 3 (1991), 69-82.

[29] Louhivaara, I., and C. Simader, Fredholmsche verallgemeinerte 
Dirichlet-probleme fur koerzitive lineare partielle Differentialgleichun- 
gen. In: Proc. of the Rolf Nevanlinna symposium on complex analysis, 
Silivri. Publ. Math. Research Inst. Istanbul, Vol. 7, Istanbul 1978, 45-57.

[30] Louhivaara, I., and C. Simader, Uber koerzitive lineare partielle Differ- 
entialoperatoren: Fredholmsche verallgemeinerte Dirichletprobleme und 
deren Klasseneinteilung. In. Boboljubov, N. N., et al. (eds.), Com­
plex Analysis and its applications. A  collection of papers dedicated to 
I.N.Vekua on his 70th birthday. Izdat. Nauka Moscow 1978, 342-345.

[31] Negoro, A., Stable-like processes: Construction of the transition density 
and behaviour of sample path near t =  0. Osaka J. Math. 31 (1994), 
189-214.

[32] Nollau, V., Uber Potenzen von linearen Operatoren in Banachschen 
Raumen. Acta Sci. Math. 28 (1967), 107-121.

[33] Nollau, V., Uber den Logorithmus abgeschlossener Operatoren in Ba­
nachschen Raumen. Acta Sci. Math. 30 (1969), 161-174.

[34] Phillips, R. S., On the generation of semi-groups of linear operators. 
Pac. J. Math. 2 (1952), 343-369.

[35] Schilling, R. L., On the domain of the generator of a subordinate semi­
group. In Krai, J., et al. (eds), Proc Conf. on Potential Theory, Walter 
de Gruyter Verlag, Berlin 1996, 449-462.

[36] Schilling, R. L., Subordination in the sense of Bochner and a related 
functional calculus. J. Austral. Math. Soc. (Ser.A), 64 (1998), 368-396.

[37] Uemura, T., On path properties of symmetric stable-like processes for 
one dimension. Potential Anal. 16 (2002), 76-91.

66



[38] Uemura, T., On symmetric stable-like processes: some path properties 
and generators. Journal of Theoretical Probability, Vol. 17, No. 3 (2004), 
541-555.

[39] Yosida, K., Functional analysis. 4th ed. Grundlehren der mathematis- 
chen Wissenschaften, Vol. 123, Springer Verlag, Berlin 1974.

[40] Unterberger, A., and J. Bokobza, Les operateurs pseud differentiels 
d’ordre variable. C. R. Acad. Sci. Paris 261 (1965), 2271-2273.

67


