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Abstract
In this thesis we consider subordination (in the sense of Bocnher) of vari
able order. This work extends previously known results related to operators 
of variable (fractional) order of differentiation, or variable order fractional 
powers. The first main result gives a formal backround to the proof that for 
certain classes of negative definite symbols q(x,£) and state space dependent 
Bernstein functions f {x ,s )  the pseudo-differential operator —p (x ,D )  w ith  
symbol —f{x ,q (x ,£ ))  extends to the generator of a Feller semigroup. A  new 
concrete example is given. The final result improves upon this result. This 
is achieved by proving the crucial estimates previously assumed for a large 
class of symbols and Bernstein functions.
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Notation
N natural numbers 
N0 =  N U {0}
Ng set of all multiindicies
N?,, =  {P e Ng \\(3\ > 0 and 0 < \p\ <  7}
Z integers 
R real numbers 
R+ =  {x  G R \x >  0}
Rn euclidean vector space 
C complex numbers 
Cn unitary vector space 
A  closure of a set
A \ B  set theoretical difference of two sets
a! =  ol\ \ . . .  a n\, a e N J
xa =  x®1 • .. .  • x%n, a € NJ and x G Rn

0  u dx̂ ...dx?tn
D au =  (—id)au

X a characteristic function of the set A
u+ positive part of u, i.e. u+ =  u V 0
u~ negative part of u, i.e. u~ =  — (it V 0)
Re f  real part of a function
Im  f  imaginary part of a function
( / , )  sequence of functions
f o g  composition of functions
/  * g convolution of functions
u, Fu  Fourier transform
F ~ lu inverse Fourier transform
supp u support of a function

B Borel sets in Rn 
cr(S') cr-field generated by S 

Lebesgue measure in Rn

signum of a

a A b =  m in(a , b) 
a V b =  max(a, b) 
diagA =  {(x, x) : x E A}
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ea Dirac measure at a E Rn
e0 Dirac measure at 0 E Rn
Mi ® M2 product of the measures //i and P2

p 1 * /̂ 2 convolution of the measures p\ and p2

||/x|| total mass of a measure p
supp p support of a measure p
(Mt)t>0 convolution semigroup of subprobabilities
(Mt )t>o subordinate convolution semigroup

f a +  =  f(a ,bj

B(Q) Borel measurable function 
C(G) continuous functions
Co(G) continuous functions w ith compact support 
C0 0 (G) continuous functions vanishing at in fin ity 
Cb(G) bounded continuous functions 
C m(G) m-times continuously differentiable functions 
Cgl(G) =  Cm( G ) n C 0(G)
C°° arbitrarily often differentiable functions
Co° arbitrarily often differentiable functions w ith  compact support

space of //-measurable functions /  such tha t \ f \p is integrable 
H * 'a(Rn) =  { u e  S'(Rn); ||u ||^a < 00}
S(Rn) Schwartz space
S"(Rn) the dual space of 5(R n) (tempered distributions)

\x\ Euclidean distance in Rn 
\x\oo =  m ax{|a;i|,. . . ,  |xn|}, x e R n 
\z\ Euclidean distance in Cn 
||n||x norm of u in the space X
IM U .x  =  IH U  +  l l^ n IU  graph norm w ith  respect to the operator A 
11A11 =  ||A||x,y operator norm of the operator A 
IMIo, (u,u)0 norm and scalar product in L 2(Q,,p)
IHloo =  sup\u(x)\
||w||^,a norm in the space H ^ ,s(Rn)
P m u t r u W  =  SUpxeK„ (( l  +  | l | 2) 2 £ | Q|<m2 |d“u (z)l)

P c A u) =  SUPxeR” l ^ c ^ x )

X  Y  continuous embedding of X  into Y  
B (X )  bounded linear operators from X  into itself 
(A , || • \ \x ) Banach space X  w ith  norm || • ||x 
X * dual space of a topological vector space
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< u, x > duality pairing between X *  and X  
(.A , D (A ))  linear operator w ith  domain D (A )
D (A )  domain of an operator 
R(A)  range of an operator 
A closure of an operator 
p(A) resolvent set of an operator 
P+{A) =  p(A) n  (0, oo)
(.R\)\>o  resolvent of an operator
R ^ J X - A ) - 1
(B, D (B ))  bilinear form w ith  domain D (B )
B{u,v) bilinear form
B\(u, v) =  B(u, v) +  A(u, u)0
gsym Symmetric  part of a bilinear form B
gasym antisymmetric part of a bilinear form B
q(x, D )  pseudo-differential operator w ith  symbol q(x, £)
'iJj(D) pseudo-differential operator w ith  symbol ?/>(£)
{Tt)t>o one parameter semigroup of operators
(Tt*)t>o adjoint semigroup of {Tt)t>0
( r / ) t>o subordinated semigroup
A*  generator of subordinated semigroup
C ) t>o semigroup on C<*>
^(°°) generator of o
{ T (p)) t>o semigroup on L ^ R 71), 1 <  p <  oo 
A ^  generator of ( T ^ ) t>o

7



Introduction
The main purpose of this thesis is to investigate subordination (in the sense 
of Bochner) of variable order. S. Bochner introduced a method called sub
ordination which was used to obtain a new process from a given one by a 
random time change. His original papers are [5] and [6]. We w ill however, 
study subordination using an analytic approach by using the books of Chr. 
Berg and G. Forst [4] and N. Jacob [20]. There is a long history of construct
ing a functional calculus for generators of subordinate semigroups, w ith  the 
first general results obtained by R. S. Phillips [34]. Many calculi for this topic 
have been proposed, however, we only mention the paper of Chr. Berg, Kh. 
Boyadzhiev and R. de Laubenfels [3], J. Faraut [10], the monograph of R. de 
Laubenfels [8] and the papers of R. L. Schilling [35] and [36]. We should note 
that F. Hirsch [15]-[16] had obtained related results prior to this. The repre
sentation of fractional powers of generators is the the best known result, this 
is due to A. V. Balakrishnan [1], see also K. Yosida [39], M. A. Krasnosel’skii 
et al. [26] and V. Nollau [32]-[33]. A t the root of our work is the result that 
for a continuous negative definite function 0  and a Bernstein function / ,  foip  
is also a continuous negative definite function. Further, i t  is already known 
that for one parameter semigroups, the subordinate semigroup is given by

Ttf u =  (  Taurjt{ds).
JRn

where the convolution semigroup {rjt)t>o supported by [0, oo) is linked to /  
by

poo

C(r}t){x) :=  /  e~xsrjt{ds) =  e~l^ x\  x >  0 and t >  0.
Jo

I t  is known that if  Tt is a Feller semigroup on C00(Mn) then T (  is also a 
Feller semigroup on Coo(Rn). Similarly i f  Tt is a sub-Markovian semigroup 
on L ^M 71) then T /  is also a sub-Markovian semigroup on L ^ M 71). For the 
translation invariant case we have clear results for the generators of Feller 
and sub-Markovian semigroups and for the subordinate case.

Subordination has also been studied on the level of pseudo-differential 
operators. I t  is illustrated in the thesis that under certain conditions the 
pseudo-differential operator —p (x ,D )  w ith  symbol —f(q (x ,£ )) ,  where /  is a 
Bernstein function and q belongs to Hoh’s symbol class, extends to the gen
erator of a Feller semigroup. A  similar result is shown for the sub-Markovian 
case. This result is not to ta lly  unexpected since we know that the function

£ f { q { x ,0 )
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is a continuous negative definite function provided £ —» q(x,£) is a con
tinuous negative definite function, hence the pseudo-differential operator 
— ( /  oq)(x, D )  w ith  symbol —}{q{x , £)) is a candidate for an operator having 
an extension generating an ZAsub-Markovian or Feller semigroup.

This now leads us to the next step, i.e. subordination of variable order. 
By subordination of varibale order we mean the case when we replace a fixed 
Bernstein function /  by a family of Bernstein functions, f ( x , •) depending 
on x. Pseudo-differential operators of variable order of differentiation have 
already been studied by A. Unterberger and J. Bokobza [40], and in particular 
by H.-G. Leopold [27], [28]. Feller semigroups obtained from the symbol 
(1 -I- |{|2)r(l) have been studied by N. Jacob and H.-G. Leopold [23], where 
further work is due to A. Negoro [31], in particular to K. Kikuchi and A. 
Negoro [24], [25]. I t  should also be noted that Weyl-Hormander calculus 
can be used to consider operators of variable order of differentiation, see F. 
Baldus [2]. Moreover Hoh, [19] has shown that when

/ ( * ,« ( * , { ) )  =  («(*,

where 0 <  m(x) <  1, then under certain conditions the pseudo-differential 
operator

-p (x ,  D )u  =  -(27 t)“ £ [  elx<(q(x, f ) ) m(x)u(£)df
J]Rn

extends to the generator of a Feller semigroup.
The aim of this thesis is to extend these ideas; we want to enlarge the class 

of examples and obtain a general proof showing tha t the pseudo-differential 
—p(x, D )  w ith  symbol —f(x ,  q(x, £)) extends to the generator of a Feller semi
group. The process of subordination of variable order may also be described 
as considering pseudo-differential operators of variable order of differentiation 
as generators of semigroups.

In this work we first meet subordination of variable order in chapter four. 
Here we give a formal backround to the proof tha t — p(x, D )  generates a 
Feller semigroup. The aim is to use the Hille-Yosida-Ray theorem to prove 
this result. The m ajority of the work in the proof comes from solving the 
equation p \0(x ,D )u  =  g which is one of the conditions of the Hille-Yosida- 
Ray theorem. The essence of the proof is as follows. We first assume

mfn f (y ,  s) >  fo(s) for all s G [0, oo)

and
sup f (y ,  s) <  f i(s )  for all s € [0, oo)
y e R n

9



where / 0 and / i  are Bernstein functions. Further, when q{x, £) is comparable 
w ith a fixed continuous negative definite function i/j, we find

<  f(x ,q (x ,Z ))  <  c i / i ( ^ ( 0 )  =  ^ i ( 0

and similarly

p(z,£) >  f ( x ,q ( x ,0 )  >  Cofo{ip{0) =  ^o (0 -

Therefore, we have continuous negative definite functions -00 and 'ipi as lower 
and upper bounds for p(x , £). Under further assumptions for ?/>, ^ 0, ipi and /  
we get the following embedding results:

H ^ ' l (Rn) ^  H m (Rn)

and

for m > 0. These results become crucial further in the proof. We now assume 
p belongs to the class S'2+ri,^1(]Rn) (for Hoh’s symbol class see (2.2)), for 
some appropriate r  >  0. This allows us to derive some important continuity 
estimates for p (x ,D ).  In order to solve the equation p \0(x ,D )u  =  g we 
assume that for the bilinear form B (u , v) =  (p(x , D )u , v)o

\B(u,v)\ <  f t lM U . i lM k . i ,  k >  0

and
B (w ,it)  >  7 |M |J o ,i ~  A0||u||o, A0 >  0, 7 >  0.

Since these estimates are in different spaces we introduce an intermediate 
space H Pxo(Rn). By the Lax-Milgram theorem we have tha t for every g G 

R n) (since H ^ °~ 1(W l) =  (H Pxo(R n))*) there exists a unique element 
u G H Pxo (R n) satisfying

BXo(u,v) = < g , v >  (0.1)

for all v G i / p*o(Rn). We next prove that we have a unique variational 
solution to px0{x ,D )u  =  g for g G / f ^ 0,“ 1(Rn) and u G i / ’̂ 0,1(Rn). More 
regularity is achieved by assuming that p ^ (x ,£ )  =  ^ +Ap belongs to the
symbol class S“ 2+‘ro’̂ °(Rn) for some ro >  0. We now have all the tools we 
require to prove that — p(x, D )  extends to the generator of a Feller semigroup 
by the Hille-Yosida-Ray theorem. To demonstrate the scope of our result we 
consider an example where

p(x,£) =  ( l  +  g (rc ,0 )£̂ ( l - e _4(1+9(x,0)^ 1),

10



i.e. the family of Bernstein funtions is given by

f (x ,s )  =  3 ^ ( 1  -  e“ 4ŝ ) .

We prove that p(x,£) and —■ belong to the appropriate symbol classes
and then we apply the general framework to find that —p(x, D )  extends to 
the generator of a Feller semigroup.

We improve the results of chapter four in chapter five, namely by proving 
the crucial estimates that axe previously assumed. We prove that p belongs 
to the symbol class S'2ri+2c*^(Rn) and that the symbol belongs to the 
class S~2r0+2̂ ( R n). This is true assuming that q(x,£) is comparable w ith  
a fixed continuous negative definite function ip and /  is a Bernstein function 
such that for appropriate e and 5q

|d?a* /(x ,s ) |  <  cQiM ^ / ( i , s)s£

holds for all x G Mn and s >  So w ith ca<k,e independent of x and s. This w ill 
imply the estimates required in chapter four.

To summarise the content of this thesis, the first chapter begins w ith 
some important definitions such as continuous negative definite functions 
and Bernstein functions. One parameter operator semigroups are also intro
duced, in particular Feller and sub-Markovian semigroups and their genera
tors. We then conclude this chapter by looking at subordination of operator 
semigroups.

Chapter two gives a description of Hoh’s symbolic calculus; i t  defines 
anisotropic Sobolev spaces and introduces estimates for bilinear forms in 
these spaces. These estimates are needed when try ing to solve the equation

p(x, D )u  =  f .

We dedicate chapter three to pseudo-differential operators as generators 
of Feller or sub-Markovian semigroups. Here we first introduce the idea of 
using the Hille-Yosida-Ray theorem to prove tha t an operator extends to the 
generator of a Feller semigroup, a method very important in  the chapters to 
follow.

As mentioned, chapter four gives a general framework of a proof that 
—p(x, D ) generates a Feller semigroup. A new example is then given. In 
chapter five we prove the estimates required in chapter four for a large class 
of symbols and Bernstein functions. The final chapter looks at other pos
sibilities of studying variable order subordination, namely Dirichlet forms. 
Here we only indicate the approach and refer to the literature.

11



1 Some Considerations on Operator 
Semigroups

The main purpose of this chapter is to introduce strongly continuous con
traction, Feller and sub-Markovian semigroups. We w ill look closely at their 
generators and deal w ith  subordination (in the sense of Bochner) of these 
semigroups. We w ill begin by considering some introductory material crucial 
to this work. We follow in our presentation essentially [20], see also [4]

1.1 Introductory Definitions
We w ill begin by defining a positive definite function.

D e fin it io n  1.1.1. A function u : Rn —> C is called p o s itive  d e fin ite  if
for any k € N and vectors f 1, . . .  ,£fc € Rn the matrix (u { — £l) ) j , i = i s  
positive Hermitian, i.e. for all A i . . .  A* € C we have

k

Y  “ K* -  ^  °-
3,1=1

We can now define a negative definite function.

D e fin it io n  1.1.2. A function : Rn -h► C is called negative  d e fin ite  i f

</>(0) >  0

and
£ —► (2n)~% e~1̂  is positive definite for t >  0.

D e fin it io n  1.1.3. A co n vo lu tio n  sem igroup on Rn is a family of bounded 
Borel measures (pt)t>o on Rn such that the following conditions hold

A^(Rn) <  1 for all t >  0;

f-̂ s * pi — Pt-j-s s, t ^  0 and po — cq , 

pt —> eo vaguely as t —> 0.

Further we have a relationship between convolution semigroups and con
tinuous negative definite functions.

12



Theorem  1.1.4. For a convolution semigroup (pt)t>o on Rn there exists a 
unique continuous negative definite function : Rn —► C such that

AH(0 =  (2»r)-»e-*«>  (1.1)

holds for all (  G f  and t >  0. Conversely, given a continuous negative 
definite function iJj : Rn —> C i/iere exists a convolution semigroup (pt)t>o on 
Rn swc/i that (1.1) holds for all £ £ Rn and t >  0.

We w ill now introduce the L e vy  K h in c h in  fo rm u la . This formula gives 
a representation for a continuous negative definite function.

Theorem  1.1.5. Let ifr : Rn —► C be a continuous negative definite function. 
Then the following representation for 'ijj holds

^ ( 0  =  c +  • 0  +  <?(£) +  ^  ( i  -

w/iere c is a non-negative constant, d £ Rn a vector, q a symmetric positive 
semidefinite quadratic form on Rn and v a Borel measure integrating x —► 
1 A \x\2.

As we w ill be dealing w ith  subordination in the sense of Bochner it  is 
essential to define a Bernstein function.

D e fin it io n  1.1.6. A real-valued function f  £ C°°((0,oo)) is called a B e r n 
stein fu n c t io n  if

f >  o

and

{- 1)k^ r - °  fc e N '

Theorem  1.1.7. Let f  be a Bernstein function. Then there exists constants 
a ,b >  0 and a measure p on (0, oo) verifying

r°° s
/  T T z K d s )  <  OO ( 1 .2 )

J0+ 1 i s

such that poo

f ( x ) = a  +  b x +  /  (1 — e~xs)p(ds), x >  0. (1.3)
J o+

The triple (a,b,p) is uniquely determined by f .  Conversely, given a,b >  0
and a measure p on (0, oo) satisfying (1.2), then (1.3) defines a Bernstein
function.

13
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Compare Theorem 3.9.4 in [20].

R em ark  1.1.8. We may extend f  : (0, oo) —► Mn continuously using the 
representation (1.3) above into the half plane Re z >  0, i.e.

poo

f ( z )  =  a +  bz +  /  (1 — e~z3)fj,(ds), Re z >  0.
J o+

We w ill now discuss the relation between Bernstein functions and certain 
convolution semigroups of measures.

D e fin it io n  1.1.9. Let {rjt)t>o be a convolution semigroup of measures on JR. 
I t  is said to be supported by [0, oo) i f  supp r\t C [0, oo) for all t >  0.

Theorem  1.1.10. Let f  : (0, oo) —> R be a Bernstein function. Then there 
exists a unique convolution semigroup (rjt)t>o supported by [0, oo) such that

poo

C{r\t)(x) :=  /  e~xsT}t(ds) =  e~l^ x\  x > 0 and t >  0. (1.4)
Jo

The converse is also true, i.e. for any convolution semigroup (r}t)t>o sup
ported by [0, oo) there exists a unique Bernstein function f  such that (1.4) 
holds.

In the above theorem the convolution semigroup {r]t)t>o is associated w ith  
the continuous negative definite function given by y —► f ( iy )  where /  is 
the Bernstein function. I f  we consider representation (1.3) of a Bernstein 
function, i.e.

poo

f (x )  =  a +  b x +  /  (1 — e~X3)p(ds), x >  0.
J o+

then oo
(1

-  +
which is the Levy-Khinchin representation for a continuous negative definite 
function. Therefore for any Bernstein function /  the function £ —► ^(£ ) =  
/(z£) is continuous and negative definite. Further using (1.3) we may consider 
the composition /  oift namely

poo

( /  ° ^ ) ( 0  =  a +  6^(£) +  /  (1 -  e~s m )/j,(ds),
J o+

for every continuous negative definite function. Since (1 — is negative
definite, we can derive that /  o ip is also negative definite. This leads us on 
to the following result which is our first encounter w ith  subordination in the 
sense of Bochner.

/ ( i f )  =  a +  ifcf +  f
JO

14



Lem m a 1.1.11. For any Bernstein function f  and any continuous nega
tive definite function ip : R n C, the composition function f  o ip is also 
continuous and negative definite.

To summarise

P ro p o s itio n  1.1.12. Let ip be a continuous negative definite function with 
associated convolution semigroup (pt)t>o on Further let f  be a Bernstein 
function with associated convolution semigroup (r)t)t>o supported on [0, oo). 
Since f  o ip is a continuous negative definite function there exists an asso
ciated convolution semigroup, which we will denote by (p{)t>o- We call this 
convolution semigroup the convolution semigroup subordinate (in the sense 
of Bochner) to (pt)t>o with respect to (rjt)t>o and it is given by

f  f ° °\H =  /  ^rjtids) (vaguely).
Jo

We now introduce complete Bernstein functions.

D e fin it io n  1.1.13. A function f  : (0, oo) —> Rn is called a com p le te  B e rn 
s te in  fu n c tio n  i f  there exists a Bernstein function g such that

f (x )  =  x2C(g)(x)

holds for all x >  0.

For /  : (0, oo) —> Rn the following are equivalent

1. /  is a complete Bernstein function.

2. /  is a Bernstein function having the representation

poo

f  (x) =  a +  bx +  /  (1 — e~3X)p,(ds), x >  0,
^o+

where a and b are non-negative constants and the measure p is given by 
p(ds) =  m(s)X^(ds). The density m is given by

poo

m(s) =  /  e~tsr(d t ), s >  0,
J o+

where r  is a measure on (0, oo) satisfying

f 1 1 f°° 1
j  j T(dt) +  J  <  oo.
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1.2 Operator Semigroups
In this section we aim to describe basic facts of the general theory of one 
parameter semigroups of operators, in particular we w ill consider Feller semi
groups on Coo(]Rn) and sub-Markovian semigroups on LP(M.n). In the follow
ing let (X , 11 • I U )  to be a real or complex Banach space.

D e fin it io n  1.2.1. A. A one parameter family (Tt)t>o of bounded linear op
erators Tt : X  —> X  which satisfies T0 =  id and Ts+t =  Ts o T t (semigroup 
property) for all s , t > 0  is called a (one param eter,) sem ig roup  of opera
tors.
B. We call (Tt)t>0 s tro n g ly  con tinuous if

D e fin it io n  1.2.2. Let (Tt)t>o be a strongly continuous contraction semigroup 
on (Coo(Rn), ||*||oo) which is p o s it iv ity  p reserv ing , i.e.

Then we call (Tt)t>o a F e lle r sem igroup.

Further, we require

D e fin it io n  1.2.3. Let (Tt)t>0 be a strongly continuous contraction semigroup 
on L ^ R 71), 1 <  p < oo. We call (Tt)t>o a su b -M a rko v ian  sem ig roup  on 
LP, 1 <  p <  oo i f  for u G L ^ R 71), such that 0 <  u <  1 almost everywhere it 
follows that 0 <  Ttu <  1 almost everywhere.

As an illustration we may consider on ^ (R 71) the operator

lim  ||Ttu -  u\\x =  0 
*-► o

for all u G X .
C. The semigroup (Tt)t>o which satisfies ||Tt || <  1 for all t >  0 is called a 
contraction semigroup.

Important for our work is

u >  0 yields Ttu > 0 , t >  0.

Using the convolution theorem and the fact that /h(£) =  (2ir) *e we 
obtain
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When u G Coo(Mn), Ttu is also in C ^ W 1) and then (Ttu)t>o is an example 
of a Feller semigroup. Further when u G L 2(Rn), Ttu is also in L 2(Rn) and 
then (Ttu)t>o is an example of a sub-Markovian semigroup.

Sometimes we write ( T ^ ) t>0, 1 < p < oo, to indicate that {Tt)t>0 is an 
iZ-sub-Markovian semigroup. For p =  oo, i.e. when w riting ( T ^ ) t>o, we 
always mean that (Tt )t>o is a Feller semigroup.

1.3 Generators of Operator Semigroups
The purpose of this section is to investigate generators of strongly continuous 
contraction, Feller and sub-Markovian semigroups. Important in this topic 
are the Hille-Yosida and the Hille-Yosida-Ray theorems.

D e fin it io n  1.3.1. Let (Tt)t>o be a strongly continuous semigroup of operators 
on a Banach space (X , || • ||x)- The genera to r A of (Tt )t>0 is definied by

rJ  ^

Au :=  l im  ------ (strong lim it)  (1.5)

with domain

_ . .. f . . . . .  Ttu — u . . .
D (A )  := < u G X | l im    exists as a strong lim it

Compare Definition 4.1.11 in [20]. In order to get a characterisation of 
all generators of strongly continuous contraction semigroups we first require 
the following definition.

D e fin it io n  1.3.2. We call a linear operator A  : D (A )  —> X ,  D (A ) C X  
d iss ipa tive  if

\ \X u -  Au\\x  >  A||u||x 

holds for all A > 0 and u G D(A ).

We can now state the Hille-Yosida Theorem.

Theorem  1.3.3. A linear operator (A , D (A )) on a Banach space (X , || • ||x) 
is the generator of a strongly continuous contraction semigroup (Tt)t>o i f  and 
only if  the following three conditions hold:

1. D (A )  C X  is dense;

2. A is a dissipative operator;

3. R (A — A) =  X  for some A > 0.

(1.6)
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ii

Compare Theorem 4.1.33 in [20]. More useful for us is

T heorem  1.3.4. A linear operator on a Banach space (X ,  || • ||x ) is closeable 
and its closure A is the generator of a strongly continuous semigroup on X  
i f  and only if  the following three conditions hold

1. D (A )  C X  is dense;

2. A is a dissipative operator;

3. R{A — A) is dense in X  for some A >  0.

Compare Theorem 4.1.37 in [20]. To progress further we introduce the 
positive maximum principle.

D e fin it io n  1.3.5. Let A  : D (A )  —► B (R n) be a linear operator, D (A )  C 
B( Rn). Then if  for anyu G D {A ) such that for Xq G Rn, u(x0) =  supa€Rn u(x) >  
0 implies that Au{xo) <  0 we say that (A , D (A ))  satisfies the p o s itive  m a x
im um  p rin c ip le .

: A linear operator (A ,D (A )) ,  D{A)  C Coo(Rn), on C ^ R 71) that satisfies
the positive maximum principle on D (A )  is a dissipative operator. The 
fact that the generator (A, D (A ))  of a Feller semigroup satisfies the positive 
maximum principle leads us to the Hille-Yosida-Ray theorem.

Theorem  1.3.6. A linear operator [A, D {A )) , D (A )  C C'QO(Rn) ; o n C ^ R 71) 
is closable and its closure is the generator of a Feller semigroup i f  and only 

; i f  the following conditions hold:

\ 1. D (A )  C Coo(Rn) is dense;

2. (A , D (A )) satisfies the positive maximum principle;

3. R {A — A) is dense in Coo(Rn) for some A >  0.

Compare Theorem 4.5.3 in [20].
We now continue to consider generators of sub-Markovian semigroups. 

We cannot use the positive maximum principle here and therefore we cannot 
use the Hille-Yosida-Ray theorem since pointwise statements do not make 
sense. We do know however, that generators of sub-Markovian semigroups 
are Dirichlet operators.

D e fin it io n  1.3.7. A closed, densely defined linear operator A  : D (A )  —> 
L ^ R 71), 1 <  p <  oo, D (A )  C L ^ R 71), is called a D ir ic h le t o p e ra to r in 
17 (Rn) i f  for all u G D (A )

j  (Au)((u — l ) + )p~l dx <  0 (1.7)
J Rw
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holds

D e fin it io n  1.3.8. Let (A ,D (A )) ,  D (A ) C i7 (R n) ; be a linear operator 
A : D (A )  —► L ^ R 71). A is called negative  d e fin ite  in Lp(Rn) i f  for all 
u G D(A)

We note here that Dirichlet operators are negative definite. Further if  
(A ,D (A )) is a negative definite oprerator in L ^ R 71), 1 <  p <  oo, then it  is 
dissipative. Therefore it  follows

P ro p o s itio n  1.3.9. Let (A ,D ( A )) be a Dirichlet operator in L ^ R 71),
1 < p < oo. Then A is dissipative.

Lem m a 1.3.10. Let {Tt)t>o be a sub-Markovian semigroup on Lp(Rn);
1 <  p <  oo, with generator (A ,D (A )) .  Then for all u G D (A ) condition 
(1.7) holds, i.e. A is a Dirichlet operator.

Therefore we know that every generator of a sub-Markovian semigroup is 
a Dirichlet operator, however in general not every Dirichlet operator is the 
generator of a sub-Markovian semigroup. As a converse we have (Theorem 
4.6.17 in [20]).

Theorem  1.3.11. Let A be a Dirichlet operator on Lp(R71), 1 < p <  oo, with 
the property that R(Xid — A) =  / / ( R 71) for some A > 0. Then A generates a 
sub-Markovian semigroup on ^ ( R 71).

1.4 Subordination in the Sense of Bochner of Operator 
Semigroups

In the final section of this chapter we w ill consider subordination in the sense 
of Bochner of the semigroups we have dealt w ith  so far.

Let /  : (0, oo) —> R be a Bernstein function and (r}t)t>o be the associated 
convolution semigroup on R supported by [0, oo). Further let {Tt)t>o be a 
strongly continuous contraction semigroup on the Banach space (X ,  || • \\x) 
with generator (A, D (A )).

D e fin it io n  1.4.1. Let (Tt)t>0 and (r]t)t>o with corresponding Bernstein func
tion f  be as above, then for u G X  we define

/ (Au)(signu)\
J Rn

holds.
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We can prove this is a strongly continuous contraction semigroup on X .  We 
call (T/ ) t>o the semigroup sub o rd in a te  to (Tt)t>0 with repesct to {rjt)t>o or 
with respect to f .

I f  {Tt )>o is a Feller semigroup on CooQR71) then (T’/ ) t>0 is also a Feller 
semigroup on Coo(Rn). Further if  (Tt)>0 is a sub-Markovian semigroup on 
I f i W 1), 1 <  p < oo, then ( T / ) t>o is also a sub-Markovian semigroup on 
LP(Rn), 1 < p  < oo.
We w ill conclude by considering subordination on the level of generators for 
the translation invariant case.

E xam ple  1.4.2. Let (Pt)t>o be a convolution semigroup associated with the 
continuous negative definite function 4> : Rn —> C, i.e. At(£) — e~1̂ ) ,
Further, let f  : (0, oo) — ► R be a Bernstein function with representation 
(1.3) and corresponding convolution semigroup {r}t)t>o, supp r)t C [0,oo).

A sub-Markovian semigroup (T ^M  can be associated with {pt)t>o on the
\  J t> o

space i7 (M n), also we can associate with (pt)t> o cl Feller semigroup ( t / 00̂ )
\  / 1> o

on the Banach space (Coo(Mn), || • ||oo)7 compare section 1.2. On S(Rn) we 
have for these semigroups

Ttu(x) =  (2tt)_^ f  
J Rn

or equivalently
(Ttu)A(,ti) =

The generator of the semigroup is given on 5 (R n) by

Au(x) =  -(27r)- ^ f  eta!ty (f)& (O d?
, /R n

After subordination we have

T /u (x )  =  (27t )” 2 f  elx^e- t - ^ ^ u (£ )d £

or
(T /)a(£) =  

and for its generator A* we get

A f u(x) =  - ( 2 t t ) - ^ [
«/Rn

It  is possible to deduce that the generator of the subordinate semigroup (T /)t>  o 
zs pzven by —f ( —A). This however requires a more formal definition of 
—f ( —A ) in the sense of a closed operator and some more involved discussions 
of domains.
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2 H oh’s Symbolic Calculus
The aim of this chapter is to introduce Hoh’s symbolic calculus and then use 
this theory to obtain estimates for pseudo-different ail operators. For Hoh’s 
symbolic calculus, see W. Hoh [17] or [18], compare also [21]. For the related 
estimates we w ill follow [21].

2.1 Essential M aterial
This section is dedicated to introducing the key points of Hoh’s symbolic 
calculus and defining Sobolev spaces, spaces in which we w ill now frequently 
work.

D e fin it io n  2.1.1. An arbitrarily often differentiable continuous negative def
inite function ip : Rn —> R belongs to the class A if  for all a  E Ng it satisfies

\ d ? ( i + m ) \ < c \ « \ ( i + m ) “ , (2 .i)

where p(k) =  k A 2 for k E Ng.

D e fin it io n  2.1.2. A. Let m E R and ip E A. We then call a C°°-function 
q\ l n x R n — > C a symbol in the class S™’^(R n) if  for all a, {3 E Ng there 
are constants ca^  > 0 such that

I 3 ^ ? ( * .£ ) l  <  ^ ( 1  + (2.2)

holds for all x E Rn and £ E Rn. We call m € R the order of the symbol
q{x, 0 -
B. Let ip € A and suppose that for an arbitrarily often differentiable function 
q : Rn x Rn — > C the estimate

\ d £ d % q { x ,  £ ) |  <  cQi/3( 1 +  i p ( 0 ) ^  ( 2 -3 )

holds for all a, (3 E Ng and x, £ E Rn. In this case we call q a symbol of the 
class S™lV,(Rn).

Note that S™’̂ (R n) C S™'^(Rn). For q E S'™’^'(Rn), hence also for q E 
Rn), we can define on S(M.n) the pseudo-differential operator q(x,D)

by

q(x,D)u(x)  := j  elx<q{x, £)u(£)d£ (2.4)
J Rn

and we denote the classes of these operators by iF™>^(Rn) and 'Fgl’̂ ,(Rn), 
respectively.
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Theorem  2.1.3. Let q E S™’̂ (Rn) then q(x,D)  maps S (R n) continuously 
into itself.

We now introduce anisotropic Sobolev spaces associated w ith  continuous 
negative definite functions.

Definition 2.1.4. Let 0  : Rn —> R be a fixed continuous negative definite 
function. For s E R and u E  5(R n) (or u E S'(Rn))  we define the norm

\ \u \ \ l , s  =  \ \ ( 1 +  'llJ( D ) ) * u \ \ o =  [  ( l  +  ^ ( s ) ) a | * ( O I 2df -  (2-5)
JRn

The space H ^'s(Rn) is defined as

H ^ s(Rn) :=  {u E  S"(Rn); ||u||^ia <  oo}. (2.6)

We call H ^ ,s(Rn) an anisotropic Sobolev space.

The scale H ^ ,3(Rn), s E  R, and more general spaces have been system
atically investigated in [11] and [12], see also [21]. In particular we know 
that if  for some pi >  0 and C\ > 0 the estimate 0 (£) >  Ci|£|Pl holds for all 
£ E  Rn, |£| >  R, R  >  0, then the space H ^ ,s(Rn) is continuously embedded 
into C'00(Rn) provided s >  —  .
The following result is of most importance to us

Theorem  2.1.5. Let 0  E  A. For qx E S™1̂ (Rn) and q2 E S™2'^(Rn) the 
symbol q of the operator q(x, D ) :=  qi(x, D)  o q2(x , D)  is given by

n

=  qi(x,€)  1 +  Y2dz j ql { x , O D Xjq2(x,£)  +  gn (z,£) (2.7)
3 = 1

with qn E S™1+m2~2'^(Rn) .

Rem ark 2.1.6. An easy calculation yields q\ • q2 E  S™1+m2,̂ (Rn),
fy jQi  ^  R n) and D Xjq2 E S™2'^(Rn). Hence the second term on the
right hand side in (2.7) belongs to S™1+m2~1,̂ (R n).

2.2 Estim ates for Pseudo-Differential Operators using 
H oh’s Symbolic Calculus

We w ill begin this section w ith  the theorem of Calderon and Vaillancourt.
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Theorem  2.2.1. Let q : Rn x Rn —> C be a function such that for all a, (3 G 
Ng, |a|, \/3\ <  3, the partial derivatives d^.d^q{x,f) exist, are continuous and 
satisfy the estimates

|d£<9£(?(z,£)| <  Ca,p-

Then the pseudo-differential operator q{x,D)  which is defined on S (Rn) ex
tends to a bounded operator from L2(Rn) into itself

Theorem  2.2.2. Let q G S™'^(Rn) and let q(x,D)  be the corresponding
pseudo-differential operator. For all s G R the operator q(x, D)  maps the 
space H ^ ,m+s(Rn) continuously into the space H^'s(Rn), and for all u G 
H^'m+s(Rn) we have the estimate

| ^  c| llil \iptm+S' (2*8)

On 5(R n) we may define the bilinear form

B(u,  v) :=  (q(x, D)u,  v)0, q € S ^ ( R n). (2.9)

Theorem 2.2.3. Let q G Sp'l,̂ (Rn) be real valued and m >  0. I t  follows that

|B(ti,tO| <  c||«||v,m ||u|^i f  (2.10)

holds for all u, v G S(Rn). Hence the bilinear form B  has a continuous 
extension onto H ^ ,r% (Rn). I f  in addition for all z G R 71

q(x,  0  >  50( l  +  ^ ( f ) ) *  Sor  I f  I >  R  ( 2 - l i )

with some >  0 and R >  0, and

lim  ^ ( f )  =  oo (2.12)
l€|-»00

holds, then we have for all u G Rn) the Garding inequality

r

ReB(u,u)  >  — A0||w||o- (2.13)
2 ’ 2

Furthermore we have 

Theorem 2.2.4. I f  we assume (2.11) and (2.12) then for s >  —m we have

111«| km +s <  I\q(x, D ) u 1 1 * +  IM  (2.14)

for q G 5™’̂ (Rn) real-valued and all u G iJ^,s+m(Rn).
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For solving the equation qx(x , D)u =  q(x, D)u  +  Xu =  f  we now set

£ a(u, v) =  {q(x, D ) u , v)0 +  A(w, u)0.

By Theorem 2.2.3 the bilinear form B x extends to a continuous bilinear form 
on H ^ 't  (Rn) denoted again by B x i.e. we have

I-Ba(u , w)| <  c||u|U,¥ |^ ||*m .

Important for us is the Lax-Milgram theorem which we have taken from [14], 
Theorem 1.14.1

Theorem  2.2.5. Let B be a sesquilinear form on a complex Hilbert space 
(# ,( . , . )# ) .  Suppose that

\B(u,v)\  <  c ||n ||tf|H |//

and
\B(u,u)\  >  7 ||« l&

hold for all u ,v £ H  with some 7 >  0. In  addition, let I : H  —> C be a 
continuous linear functional, i.e. I £ H * . Then there exist unique elements
v,w  £ H  such that ______

l(u) =  B(u,v)  =  B(w,u)

holds for all u £ H .

D efinition 2.2.6. We call u £ a variational solution to the equation

qx( x ,D)u  =  f  (2.15)

for all A € R and f  £ L 2(Rn) if

B \(u , <fi) =  (</>,/)0 

holds for all </> £ C0°°(Rn) ; or 0 £ H ^ ( Rn).

Therefore using Theorem 2.2.3 and the Lax-Milgram theorem there exists 
for all /  £ L 2(Rn) a unique variational solution u £ to (2.15). For more 
regularity we have

Theorem  2.2.7. Let q £ S™’̂ (R n) be as in Theorem 2.2.4, m > l .  Further 
suppose that for f  £ # ^ ,s(Rn), s >  0, there exists u £ Rn) such that

B(u,<l>) =  ( f  ,</>)& (2.16)

holds for all $ £ Rn) (or 4> £ 5 (R n)J. Then u already belongs to the
space H ^ m+S(Rn).

So far we have used properties of symbols to establish mapping properties 
and estimates for operators. The real power of a symbolic calculus is tha t it  
reduces calculations for operators to calculations for symbols.
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3 Pseudo-Differential Operators w ith Nega
tive Definite Symbols q G S2p’̂ {R")

In this chapter we want to deal w ith  pseudo-differential operators w ith  sym
bols from Hoh’s class which extend to generators of Feller or IP  sub-Markovian 
semigroups. Further we w ill investigate subordination of semigroups con
structed using this method.

3.1 Pseudo-Differential Operators as Generators of Feller 
or D* Sub-Markovian Semigroups.

In this section we w ill use the estimates considered in the previous chapter in 
order to extend certain operators as generators of Feller and certain IP  sub- 
Markovian semigroups. In  particular when considering generators of Feller 
semigroups we aim to use the Hille-Yosida-Ray theorem, Theroem 1.3.6.

Recall that the main characteristics of the Hille-Yosida-Ray theorem are 
D(A)  c  CoofR” ), ( A , D( A) )  satisfies the positive maximum principle and 
the range condition; R(X — A)  is dense in Coo(Rn). In our case we consider 
q(x,D)  on Co°(Rn) w ith  negative definite symbol i.e. £ —> q{x,£) is 
for x € Rn fixed a continuous negative definite function. Since Co°(Rn) is 
dense in C'00(Rn) the first condition of the theorem is satisfied. Theorem 
4.5.6 in [20] shows us that q(x, D)  satisfies the positive maximum principle 
on Co°(Rn), see also [7] . Therefore our problem is reduced to tackling the 
range condition, or equivalently to solve for some A >  0 the equation

q\ (x ,D)u  =  q(x,D)u +  \u  =  f  (3.1)

in Coc^R” ) for /  £ Cq>(Rn). This is too d ifficult to solve on the domain 
Co°(Rn). To overcome this problem we consider q(x, D)  on a larger domain 
H ^'s{Rn) where (3.1) is easier to deal with. For the positive maximum prin
ciple to hold on this larger domain we use

Theorem  3.1.1. Let D( A)  C Coo(Rn), and suppose that A  : D (A)  —> 
Coo(Rn) is a linear operator. In  addition assume that CQ°(Rn) C D(A)  
is an operator core of A in the sense that to every u € D( A)  there exists a 
sequence (4>k)ken> <fik € Co°(Rn), such that

lim  ||(j)k -  u \|oo =  lim  \\A fa  -  Au\\oo =  0
k—>oo k—*oo

I f  A \c°° satisfies the positive maximum principle on C q ^ R 71), then it satisfies 
the positive maximum principle also on D(A) .
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Comapare Theorem 2.6.1 in [21]. The following results are due to W. Hoh 
[17] and [18]. Using the estimates introduced in the last chapter together w ith  
the above theorem we get

Theorem  3.1.2. Let 'ip : Rn —> R be a continuous negative definite function 
in the class A such that rp(£) >  co|£|r°; r o > 0; holds. I f  q{x,£) E S ^ ( R n) 
is a negative definite symbol satisfying

q{ x , 0  >  1 +  ^ ( 0 )  (3-2)

for some 5 >  0 and all £ € Rn, |£| sufficiently large, then —q(x, D)  defined 
on Co°(Rn) is closeable in C ^ R 71) and its closure is a generator of a Feller 
semigroup.

Further for L 2 sub-Markovian semigroups we have

Theorem 3.1.3. Using the same assumptions as the previous theorem the 
operator (—q \ ( x , D ) , H ^ ,2(M.n)), A > Ao as in (2.13), is the generator of an 
L 2-sub-Markovian semigroup. Hence (—q \ ( x , D ) , H ^ ,2(Rn)) is a Dirichlet 
operator.

3.2 Subordination of Semigroups
In this section we w ill continue to develop the ideas of subordination that we 
have already met in section 1.4. However now we w ill apply subordination 
to the semigroups constructed using Hoh’s symbolic calculus.

I f  we recall the translation invariant case of section 1.4. I t  was shown 
that for a continuous negative definite function 'ip : Rn —► C

(Ttu n O  =  e -M O tt f )

for u E S'(Rn). Now if  /  is a Bernstein function w ith  corresponding convo
lution semigroup (r)t)t>o supported on (0, oo) the Fourier transform of the 
subordinate semigroup is given by

( r /)A(£) =

On the level of generators we saw that on 5(R n) the generator of (Tt)t>0 is 
given by

-'ip iD ffiix ) =  f  e%x̂ ip(^)u{fi)d^.
J Rn

Further the generator of the subordinated semigroup is given by

- i p f (D)u(x)  =  - ( /  o ip)(D)u(x) =  - ( 2?r)- ^ f  elx'c/ ( ^ ( f ) ) * ( O df-
J Rn
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We also illustrated that if  is the generator of { T ^ ) t>o, then =
is the generator of { T ^ ’̂ )t>o, where ( T ^  )t>o is an IP -sub- 

Markovian semigroup for 1 <  p < oo and a Feller semigroup for p =  oo. 
Further {T ^ )J ) t>o is again an Z^-sub-Markovian or Feller semigroup respec
tively

Now considering the pseudo-differential operator q(x, D ) w ith  symbol 
q : Mn x Rn —> C such that £ —> q(x,£) is a continuous negative definite 
function. Suppose the operator — q(x, D)  extends from S(Rn) to a generator 
of an l/-sub-M arkovian semigroup, 1 < p <  oo, and a Feller semigroup for 
p =  oo. We denote the generated semigroup by (Tt)t>0. When subordinating 
w ith  respect to a Bernstein function /  we no longer get the representation 
we had in the translation invariant case, i.e.

(T /u )A(0  ?  e - v ^ u t f )

and
A f u 7̂  j  e~lx<f{q{x, f ) )u{f>)df>. (3.3)

J
In the following we write —f (q ( x , D )) for the right hand side of (3.3). This 
should be understood as a shorthand for (f o q ) ( x , D).  We are now interested 
when —f (q ( x , D) )  extends to the generator of a Feller or sub-Markovian 
semigroup. We w ill see that often if  q G S™'^(Rn) and /  is a Bernstein 
function, then /  o q is also a symbol belonging to Hoh’s class. Further, if  
£ —> q{x,£) is a continuous negative definite function then so is the function 
£ —> f(q(x,  £)), therefore it  is sensible to investigate whether —( /  o q){x, D)  
extends to the generator of a Feller or sub-Markovian semigroup. Of course, 
this procedure is closely linked to subordination in the sense of Bochner. By 
modifying the proof to Theorem 2.6.4 in [21] we find

Theorem  3.2.1. Let q € 5 ^ ( R n) be a continuous negative definite symbol 
satisfying (3.2) such that —q(x, D)  generates an LP-sub-Markovian semigroup 
{Tt)t>o- Further let f  be a Bernstein function with corresponding semigroup 
{Vt)t>o supported on [0, oo), then —{ f °q ) {x ,  D ) extends to the generator of a 
Feller or sub-Markovian semigroup. We will denote the generated semigroup 
by {St )t>0.

R em ark  3.2.2. I t  is important to note that the semigroup generated by — ( / o  

q){x, D) , (St)t>o is not, in general equal to the original subordinated semigroup 
w i )  t>o- However knowing (<S,f)t>o helps us to approximate ( )t>o-
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4 Subordination of Variable Order - Part I
This chapter w ill follow [14] closely in order to consider two important topics 
related to subordination of variable order. Formally, subordination of vari
able order means that we replace a fixed Bernstein function /  by a family of 
Bernstein functions depending on x. Firstly, we suggest a method to study 
“variable order subordination” for more general Bernstein functions than the 
example studied by Hoh / Q(s) =  sa, 0 <  a  <  1. More precisely, we consider 
symbols of the form

P ( x , 0  =  f ( x , v ( x , 0 )  (4-1)

where q is a suitable symbol from Hoh’s class and /  : Rn x [0, oo) —> R 
is a smooth function such that for fixed x G Rn the function s —> f (x ,s )  
is a Bernstein function. Our method uses some ideas from the theory of 
t-coercive (differential) operators as investigated by I. S. Louhivaara and C. 
Simader [29]-[30] in order to establish the result that —p( x , D)  generates a 
Feller semigroup. A  different view to our approach is to interpret f ( x , r )  as 
a state space dependent (family of) Bernstein functions which is obtained by 
making parameters state space dependent i.e. consider a function f ( r ) a,b,c,...
depending on parameters a, 6, c ,  By making these parameters state space
dependent we obtain for a negative definite symbol q{x,£) a new negative 
definite symbol by f a(x),b(x),c(x),-Xl £))• More precisely, let /  be a Bernstein 
function w ith  representation

poo poo

f ( r )  =  (1 -  e~sr)p{ds) =  /  (1 -  e~sr)m(s)ds. (4.2)
J 04" J 0+

Suppose that rh depends on parameters a, b, c . .. i.e. m(s) =  rha,b,c...(s)' 
Now we may let the parameters depend on x t i.e. we switch to (x , s) —► 
™'a{x),b{x)Ax)...{s) and consider the family of Bernstein functions

poo

f * ( x , r ) =  /  (1 -  e~sr)ma{x)tb(x),c(x)...(s)ds.
J o+

Thus we may consider the symbol (a;,£) —> p(x,q{x,£))  defined by

oo

(1 -  e "a9(x>0)m a(a.)>6(x)>c(a.)...(5)d5.
+

More generally, let us consider w ith  a suitable function r  : Rn x R+ —► R

poo

f ( x , r )  =  /  (1 -  e~sr)r(x,s)ds  (4.3)
J o+

p{ x , q{ x , £ ) ) =  /  
Jo
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and the associated symbol

p(z, 0  =  /(z ,  qfa  £)) =  /  ( !  “  e a9(x,0 M x ,  s)ds. (4.4)
v / 0 +

The second purpose of this chapter is to enrich the class of examples by 
studying the Bernstein function

s i—> s * ( l  — e~4s7).

4.1 Jusification of the Phrase “Variable Order Subor
dination”

This section w ill follow section 2.10 of [21]. Discussing “variable order subor
dination” is related to the study of pseudo-differential operators w ith  variable 
order of differentiation. To illustrate this we consider the example where the 
Bernstein function s > f (s)  is substituted by (x, s) h-> sr (x) w ith  r  : Mn —> R 
being a continuous function such that 0 <  r(x)  <  1. We now let s be the 
continuous negative definite function |£|2. We know ( |f  |2)r^  is also a con
tinuous negative definite function. This implies that the pseudo-differential 
operator

Au(x)  =  ( - A ) 'W  =  - (2 t t) -»  /  ete4( | f |2)rW «(f)d?
J R n

is a candidate for a genarator of a Feller semigroup. Note tha t when n — 1 
and instead of using the symbol |£|2 we use and we get the operator 
(■^3®)’ hence ^ e  phrase “operator of variable order of differentiation” .

4.2 The Formal Background of our Proof that 
—p(x, D) Generates a Feller Semigroup

The proof that —p{x, D)  extends to a generator of a Feller semigroup de
pends on various estimates which might be different for different operators. 
However, once these estimates are established we only need to apply a piece 
of “soft” analysis. In this section we discuss this part of the proof, i.e. we 
w ill assume all crucial estimates hold.
Let /  : E n x [0, oo) —> R be an arb itrarily often differentiable function such 
that for z/6  Rn fixed the function s /(?/, s) is a Bernstein function. More
over we assume

in f f ( y , s) >  f 0(s) for all s 6 [0, oo) (4.5)
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as well as
sup f (y ,  s) <  f i  (s) for all 5 € [0, oo) (4.6)
y € R n

where /o and f i  are Bernstein functions. For a given real-valued negative 
definite symbol q(x,£) i t  follows that

p(y;x , ( )  := f {y ,q(x,£) )  (4.7)

give rise to a further negative definite symbol by defining

p(x,£) := p (x ;x ,£ )-  (4.8)

In case where q (x ,() is comparable w ith  a fixed continuous negative definite
function 0 , i-e.

0 <  Co <  ^  C1- c> ^  1' (4-9)
TO )

for all x E Rn and £ € Rn, we find using Lemma 3.9.34.B in [20]

<  f {x,q(x,  £)) <  c i/ i(0 (£ ))  (4.10)

and we define
0 i(O  := C ! / i(0 (£)). (4.11)

Moreover it  holds

p(z,£) >  f (x ,q{x,£) )  >  c'0/o (^(£))

and we set
* (C )  “  c'0f 0m ) ) -  (4-12)

Clearly, 0 O and 0 i are continuous negative definite functions. Later on we
assume that for |£| large

0 (0  >  Ci|£|Pl, ci >  0 and pi >  0 (4.13)

holds as well as

f{yo,s) >  CoSPo, c0 >  0 and p0 >  0. (4-14)

This implies for |£| large that

M 0  > h \ i \ p0P\  C2 >  0, (4.15)

holds. Since 0o(O <  ^ i ( 0  we ^ ave

H ^ ' l (Rn) H m {Rn). (4.16)
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We add the assumption that there exists 0 < cr < |  such that

( l  +  ^ i) *  € 5 ^ ° ( R n). (4.17)

This w ill imply that

H^° ,m(l+a)^Rnj ^  H * ltm(Rn) (4.18)

holds for m >  0. Further, (4.17) implies that if  p i( x , f )  is any symbol be
longing to  ̂ ’̂ ( R ” ) then it  also belongs to 5™̂1+t7̂ ° (R n) which follows
from

\d^d^pi(x^)\ <  catp(l  +  ^ i ( 0 ) m_̂ |a|)

<  cQ|/3(1 + ^ o(0 ) 2

<  Ca)/S( l  +  ^ o ( f) )  2

The pseudo-differential operator q(x,D)  has the symbol q G Sp^(Rn). 
We assume that the pseudo-differential operator p ( x , D ), defined on 5 (R n) 
by

p ( z ,  £ > ) u ( : r )  =  ( 2 t t ) - ^  f  elx<p{x ,£ )u {€ )d€
J R"

=  (2tt)_ 2 [  elx<f{x,q{x^) )u{C)d^  (4.19)
J En

has a symbol p G 5p+Tl,^1(Rn) for some appropriate T\ >  0. This implies 
together w ith (4.17) that the operator p(x, D ) is continuous from 
jpil>o,2+Ti+2( T + T i a + s j j i p o particular it  is continuous from 
#V>o,l(R n) to H^° - l - n - 2a - r ia ^ n ^
W ith  p(x , £>) we can associate the bilinear form

B(u,v)  := (p(x, D ) u , v )0, u, u e <S'(Rn). (4.20)

Assuming the estimate

\B(u,v)\  <  « >  0, (4.21)

to hold for all u,v  G 5(R n), we may extend B  to a continuous bilinear form 
on iT^1,1(Rn). This extension is again denoted by B.  For u G i f ^ ’1,1(Rn) we 
assume in addition



Following ideas from I.S. Louhivaara and Chr. Simader, [29] and [30], we 
consider an intermediate space. To do this we consider

B \ 0(u,v)  :=  B(u,v)  +  \ 0(uyv)0, (4.23)

where B  is the symmetric part of B , i.e.

B \ 0{u,v) =  i ( B Xo(u,v) +  B Xo{v,u)

on H ^1,l(Rn). We have

\BXo{u,v)\ <  /c lH l^ . iH v ll^ , !

and
Bx0(u,u) >  7 ||u||^0il.

Since B \0(u, v) is a scalar product on we may consider the comple
tion of Rn) w ith  respect to B \0{u, v). We denote this new intermediate
space by H Pxo(Rn) . We have

f^ i* i ( R n) H p>o(Rn) H ^ i Rn) (4.24)

in the sense of continuous embeddings.

Lemm a 4.2.1. The bilinear form B \0 is continuous on H Pxo(Rn).

Proof We find by using Corollary 2.4.23 in [21] that

i ( p A0(®, D ) +  Pa0(x ’ D )) =  ^(Pa0(z, D ) +  pAo(z, £>)) +  n (x , D )

=  pXo{ x , D ) + r 1(x ,D )  

where r\  € S lp+Tl^ 1 (Rn) and we used that p(x,£) is real-valued. Consider

\B\0{u,v)\ =  |(pao(®, ^ ) K v ) o |

<  5 1( (PAo(z, D)  +  (x, L>))u, v ) 0 \ +  \ ( n (x, £>)u,u)01

=  \BXo{u,v)\ +  |(r i(x , D)u,v)o\.

We know that B \ 0(u,v) is continuous on H Pxo(Rn) therefore our calculations 
are reduced to estimating |(r i(x , D)u,  u)o|.
We know that r\  E Sf1+1,̂ 1(Rn) therefore r \  E 5'p+T1+£7+riO’,̂ 0(Rn), this im
plies by Theorem 2.2.3 that



I f  T\ +  a +  ricr < 1 we get

I fy| I i/'Q,l+r1̂-g+r1g <  |M|l/>0,l — CIMIpA0

implying the result by (4.24). □

Now, by the Lax-Milgram theorem, for every g G ( H Pxo (R n))* exists a 
unique element u G H Pxo(Rn) satisfying

B \ 0(u,v) = < g , v >  (4.25)

for all v G H Pxo(Rn). This element we call the variational solution to the 
equation p(x, D)u  +  \ q u  =  g.
Prom (4.24) we derive

Ĥ Po,-i(Rn) =  (7jV-o,i(Rn ^*  ^  ( H Pxo(Rn) ) * , (4.26)

hence for g G # ^ 0,-1(R n) there exists a unique u G i7 p*o(Rn) satisfying 
(4.25). We claim now that for every g G / / ^ ° ,-1 (R n) there exists a unique 
u G # ^ 0,1(R n) such that

p\0(x, D) u  =  p(x , D )u +  A0u =  p (4.27)

holds. Denote by u G H Pxo(Rn) the unique solution to (4.25) for g G 
Rn) given and take a sequence (uk)keN, E 5 (R n), converging in 

H Pxo (Rn) to u. I t  follows from

(pAo(a :,D )u A;,u)o =  BXo(uk,v ), u G S{R n),

and the continuity of pAo(x, D ) from i7^0,1(Rn) into if^o>(-1- 2or-Ti - T̂ a)(Mn) 
that for /c —> oo

< p\Q(x, D)u,  v > =  B \0(u, v) = <  g,v >

for all v G 5(R n). Thus pXo(x, D)u =  g in S'(Rn). The uniqueness follows of 
course once again from (4.22).
In order to get more regularity for variational solutions or equivalently for 
solutions to (4.27) we assume that for A > Ao the function p f 1 (x, £) :=  p̂ x ^ +A 
belongs to S~2+To,̂ ° (Rn) for some To > 0. In this case we can prove

T heorem  4.2.2. Letp(x ,£) be given by (4-8) where we assume for q condi
tion (4-9) and for f  we require (4-5), (4-9) to hold. In  addition we suppose 
that p G S2+Tl-^ (R n) C S£+Tl+2ff+riff^ ( R n) and p f l G S'-2+T0’l/’0(Rn),
T\ +  t 0 +  2cr +  Tier <  1. Let u G H Pxo(Rn) C i7 ^ 0,1(Rn) be the solution to 
(4-27) for g G i7 ^ 0,A:(R n), k >  0. Then it follows that u G H'l>0'2+k~'ro (W 1) .
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Proof. Prom Theorem 2.1.5 i t  follows that

P\o(x >D ) ° P* o (x ,D )  =  id +  r(x,  D)  (4.28)

w ith  r  G S f 1+Tl+To+2a+Tl<T’'>JJo(Rn). Since p\0( x ,D )u  =  g we deduce from 
(4.28) that

u =  P ^ { x , D ) o p ^ ( x , D ) u - r ( x , D ) u  

=  P\o(x ’ D ) 9 ~ r ( x , D ) u .

Now, pf * (x , D) g  G jpl>o,k+2-ToQftn'j an(j  1- (x ,D)u  G H^°'2~Tl~T°~2<J~Tl17 (M.n) 
implying that u G H ^0,t(R n) for t =  (k +  2 — r 0) A (2 — 7i — r 0 — 2cr — t \ g ) > 1. 
W ith  a finite number of iterations we arrive at u G H ^° '2+k~T0(Rn). □

R e m a rk  4.2.3. Prom t\ +  r 0 +  2<j +  Tier <  1 the necessary condition a < |  
follows.

C o ro lla ry  4.2.4. In  the situation of Theorem 4-2.2, if  2 +  k — r0 > 2^7  > 
compare (4-15), then u G Coo(Rn).

Finally we can collect all preparatory material to prove

Theorem  4.2.5. Let f  : Rnx [0, oo) —> R be an arbitrarily often differentiable 
function such that for y G Rn fixed, the function s —► f (y ,  s) is a Bernstein 
function. Moreover assume (4-5), (4-6) and (4-14)- In  addition let ip : Rn —*■ 
R be a continuous negative definite function in the class A which satisfies in 
addition (4-13). For an elliptic symbol q G S2,̂ (Rn) satisfying (4-9) we define 
p(x,£) by (4-8). For ipi and fa  defined by (4-11) and (4-12), respectively we 
assume (4-18). Suppose that p G S'2+ri,^1(Rn) and G S'~2+ro’̂ °(Rn). I f  
7*1 + t 0 +  ct(2 +  t i )  <  1, a as in (4-18), then —p ( x , D ) extends to a generator 
of a Feller semigroup on Cqc^R71)-

Proof. We want to apply the Hille-Yosida-Ray theorem, Theorem 1.3.6 We 
know that p(x ,D)  maps H ^Q,2+k+2a+Tx+Tia(Rn) into H ^0,k{Rn). Hence if  
k >  2̂ -  the operator (—p(x, D), H’̂ 0,2+A:+2tT+ri+ri£r(Rn)) is densely defined 
on Coo(Rn) w ith  range in Coo(Rn). That — p(x, D)  satisfies the positive max
imum principle on H^°,2+k+2a+Tl+Tltr(Rn) follows from Theorem 3.1.1 Now, 
for A >  A0 we know that for g G / / ^ 0,fc+1(Rn) we have a unique solu
tion to p \ ( x , D ) u  =  g belonging to H ^0'2+k+1~ro(M.ny Tl _ j_  Tq _ j_  2g +  
T\G <  1 implies that H^°'2+k+1~T° (Rn) c  H^>0,2+k+2a+Tl+Tl<T(M.n) i hence for 
g G H^°,k+1(Rn) we always have a (unique) solution
u e H i>o,2+k+2a+n+T1c(W i} implying the theorem. □
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4.3 Some Concrete Examples
The first part of this section w ill consider the work W. Hoh has done on 
pseudo-differential operators w ith  variable order of differentiation. We w ill 
consider the case where the Bernstein function s —> f (s)  is substituted by 
(x, s) —» s771̂ ) w ith  77i : Kn —> K being a smooth function such that 0 < 
m(x)  <  1 holds. Let q : K n x Mn —> C be a continuous function such that 
f  —> <?(x,£) is a continuous negative definite function. I t  then follows that

£ - < z ( * . 0 m(x) (4.29)

is once again a continuous negative definite function implying tha t the pseudo
differential operator

Au(x)  :=  -(27 t)"£  [  elx^q(x,^)m{x)u(^)d^ (4.30)
J Kn

is a candidate for a generator of a Feller semigroup. We now meet Hoh’s 
result:

Theorem  4.3.1. Let ip : Mn —> R be a fixed continuous negative definite 
function such that

ip(£) >  col?|r , If I large and r  >  0, (4.31)

holds. Let q E Rn) be a real-valued negative definite symbol which is
elliptic, in the sense that we have

q ( x , Z )> 8 o ( l  +  4>(0)- (4-32)

Further let m : Rn —> (0,1] be an element in CJ°(Rn) satisfying

M  -  <  1 (4.33)

u;/iere M  :=  supm(x) and 0 <  p :=  in f ra(x). Consider the symbol

( * , f ) - p ( * , f ) : = « ( * , O m<*) (4-34)

which has the property that £ —► p(x,£) is a continuous negative definite 
function. The operator

- p ( x , D ) u ( x )  := f  etx<p(x,£)u(€)d£ (4.35)

maps Co°(Mn) into CooOR"), is closeable in Coo(Mn) and its closure is a gen
erator of a Feller semigroup.
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For a proof see W. Hoh [19], compare also [18].

We are now going to consider a further example. First note that the 
function s —► V ^ ( l “  e-4v^) is a Bernstein function. Hence, using Corollary 
3.9.36 in [20], i t  follows that for 0 <  a  <  1 the function s —> s t ( l  — e~4ŝ ) 
is also a Bernstein function. Thus, given a negative definite symbol q G 
Sp^(M.n) we may consider the new symbol

p (:r,f)  =  ( l  +  g(2; , f ) ) ^ 1( l - e _4(1+9(x’0 )^ )  

for a(-) being an appropriate function.

Lem m a 4.3.2. Let q G S ^ ( Rn) be a real-valued negative definite symbol 
which is elliptic in the sense that

q { x , S ) > 8 o ( l+ ^ ( 0 ) ,  *o > 0 . (4.36)

Also let a(-) : Rn —> (0,1] be an element in Cjfi(Rn) satisfying

1
m - f i  < -  

where m =  sup and p =  in f > 0.

Now if  we letp(x,£)  =  (1+  g (x ,^ ))£̂ ( l  — then we have for
all e >  0 the estimates

\d^d?p(x,()\ <  cQi/3,ep ( x ,^ ) ( l+  ^ ( { ) )  '><l2l' +‘ (4.37)

i.e. p  €  S ^ + ^ f R ” ) .

Proof We have to estimate

=  ^ a f ( ( l  +  g(a;,0 ) ^ 1( l - e _4(1+9(a;’0 )^ ) )

_  d^dl3(e£̂ L logfi+^foO)^ _  e- 4(i+9(*.0 )_^ '

Using (2.19) in [20] we get

^a^/3(e^ log(1+g(x,0)(i _  g-4(l+9(x,0)- ^ i )) —

log(l+g(x,0)
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x(d“- “'a£-'3'( l  -  e - ^ + ^ f ) ) ^ ) ) .  (4.38)

First consider
K ^ 'a f e 2^ log(1+,(l’£)))|.

By (2.28) in [20] w ith  I =  |a'| +  \(3'\ we get

l( a f 'a fe 2f 1|06(1+,(i'£)))| <

e ^ i i o 6( i + ,(x ,{) )  ^  | c{a ,w p 9o^ ( a : , O I ,  ( 4 . 3 9 )

a '1 +  . . .  +  a'v =  a'  -,=1
/3'1 +  . . .  +  /?"' =  f f  

I ' =  0 , 1 , . . . ,  I

where

=  d f 'S f ’ ( ^ h o g ( l  +  g(x,£))')

= E (%) (s f -^ )  mi+«(*,€)).
f i ' j  < f 3 ' i  \  \  /

Now, using (2.26) in [20] w ith  /c =  |a°| +  > 0 we get

d f ’ d f  log (l +  q(x, ( ) )  =

A df''dt (1 + <l(x,t))
~ , i  ^  . «  ( l + 9 ( * , 0 )  '
a  +  . . . +  a "  1-1

/3'1 +  . . .  +  /?"' =  ^

Since we assume that 9(1 , £) is an elliptic symbol (in the sense of (4.36)) in 
S ^ ( R ” ), we get

d f ’d f ) log (l +  g(x,£))

— ,/3'J
a '1 +  . . .  +  a " ' =  a'-* i=1 
/3'1 +  . . .  +  /?"' =

^  /1 . , / f u -pUq0I)
< (1 +  ^ (0 ) 2 .
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where we used the subadditivity of p.We always have

|lo g (l +  g (x ,f)) | <  ce( l  +  ^ ( 0 ) ^

I t  follows for a  G ( ^ ( R 71) that

(440)[ (i +  ^ (0 )2i, a/J = o.

Putting (4.39) and (4.40) together we get

K a fa f  e ^ log(1+9(l'{)))| <  ca.^ ,ee ^ log(1+,(:c'f))( 1 +  (4.41)

For the desired result we need

\Qa-a' gff-0' ( j  _  ) |

< ca,,0,,aA l  ~  e-4<1+̂ » ^ ) ( i  +

When a  — a' =  0 and P  — P ' =  0 there is nothing to prove.
Otherwise, by (2.28) in [20] w ith  l2 =  \a — a ! \  +  \P  — /3'|, we get

|g * -a'dP -0 '(i — e- 4(1+9(a?,0)- ^  )| <

e- 4(i+g(a,Q)gir11 Y \  q(a-a')j{0 -p')j(x, g)|, (4.42)
i =i

where the sum is such that

(a: — a')1 + (a — o')1* =  (a — a')
(/3 -  /5')1 +  . . .  + (/?- /?')'" =  (/? -  /?')

1'2 =  1, . . . ,  l2

and where

<l(c,-a ') i (J3 - l3 ') i (x ,£ )  =  d ^ ~ a'y  d i0 ^ 3 (4 (1  + q ( x , ^ ) ) ^ 1 ).

Since q(x,£)  is a symbol in the class S ^ { Rn) and satisfies (4.36) we have 
the estimate

\q(a-a'y(i3- p ) i ( x , 0 \ <  L(1 +  q(x,€)) for all (a -  a' )3, {P  -  P ') 3 G NJ,
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where L (A) is a suitable polynomial >  0 which might depend on (a — a ')J 
and (j3 — (3'Y. Now returning to (4.42) we get

-  e—*(1+sr(*.0 )2SEl)| <

1 +  4(1 +  q(x, £)) 2 4(1 + 9(1 , 0 )  2

p ( |q  —q^l) p ( |q  — a^l)

x ( i  +  ^ ( 0 ) 2 U +  2

1 +  4 (1 +  9(1 , 0 ) 2

since
<*(*)

1 +  4(1 +  9( x , ^  +  +  ?(2.) f) )e -4(1+,( x ,0 ) ^

4 ( 1 +  9 ( i , 0 ) “ ^
Now using (2.7) in [20] i.e for all a >  0 and t >  0 the estimate

at <  1 _  e-«‘

< Cq.

1 -I- at 

we get

l^-aO^-ZSO (1  _  e-4(l+?(x,{))2^  ) | <  Co(l _  e-4(1+,(x ,0 )^  ) (1
(4.43)

Substituting (4.41) and (4.43) into (4.38)

|^o :^ (e^ log(i+g(x,0 ) ( i  _  e-4(i+9(x,0)Ĥ i ^ |

@ \  .  . . .  „ 2̂ log(l+9(x,0)s e e (;)
a ' < a ( 3 ' < ( 3  '  '  ^  '

x ( i+m)=̂ a±1o- - e - 4(i+̂ » ^ ) ( i +

< C c A ^  'oe t'+ ^ ’O) (1 -  e-4'1̂ ) ^ ) 

X ( 1 + V ' ( 0 ) 2

<  Ca,/3,ep ( l , 0 ( l  +  V,(0 ) P<2'>+<-

The proof now follows from the estimate p(x,£)  <  (1 +  ^ ( f ) ) 771-

□
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Lem m a 4.3.3. The function px l (x,tf) =  belongs to the class Sp 2/i+e’̂ (R n).

Proof. Using (2.27) in [20] we find w ith  I =  \a\ +  \/3\ that

laf 1 (*>£)! ^
a H +  a  — a 3

df ’ d x P x f a O

P\{x,£)

/51 H h /?z =  /?

For any e > 0 we find using (4.37) 

df dPp x(x ,£ )

P\ (x,€)
I /.-w -p(IqJD+£ 

<  caj)(3j { l  +  ^ ( 0 ) 2

and the e llip tic ity assumption of q(x,£) together w ith  the subadditivity of p 
yields

I ^ ^ P a H z . O I  ^  C a , A < ( l  +  V ' ( ^ ) ) _ M ( 1  +  ^ ( 0 )  ' ,<l?l>+<
which proves the lemma. □

Now applying the general framework in section 4.2 to Lemma 4.3.2 and 
Lemma 4.3.3 we get

Theo rem  4.3.4. Let q G 5 2,̂ (R n) be a real-valued negative definite symbol 
which is elliptic in the sense that

q(x, 0  >  *o(l +  V>(0 )> > 0,

where if G A satisfies
V>(0 >  cb|f|r .

j4/so let a(-) : Rn —> (0,1] 6e an element in C£°(Rn) satisfying

m - p <  -  

where m =  sup and p =  in f > 0.

./Vow set p{x,£)  =  (1 +  g (x ,^ ))£̂ ( l  — e_4 1̂+̂ x’̂ )_^ )  which implies that 
£ —> p{x,£) is a continuous negative definite function since £ —> g(x, £) a 
continuous negative definite function.. For alle >  0 we havep G S'2m+e,1̂ (Rn) 
a n d pf l (x,£)  € <S'~2/x+e,̂ (R n) £/ien £/ie operator —p( x , D)  extends to the gen
erator of a Feller semigroup.
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5 Subordination of Variable Order - Part II
In this chapter we aim to improve the ideas already met in the previous 
chapter. This is achieved by proving the “crucial” estimates tha t are assumed 
in the formal background of the proof described in section 4.2. Let /  : 
Rn x (0, oo) —> R be an arb itrarily often differentiable function such that for 
y G Rn fixed the function s —> f ( y , s) is a Bernstein function. We assume 
that w ith  some 0 <  r \ <  1 we have

sup f (y ,  s) < cisri for s >  70 (5.1)

as well as for some 0 <  ro and 77 >  0 such that 0 <  r 0 — 77 <  77 i t  holds

in f f (y ,s )  >  c2sr° - f} for s >  70. (5.2)
y e R n

In our applications we w ill consider symbols f ( x i q(xi ^)) where q(x,£) >  
Ao(l +  ^ ( 0 )  f° r some real-valued continuous negative definite function ij). 
Thus we can always confine ourselves to the case where 70 >  1. Consider 
again the negative definite symbol

P(x,£) =  f ( x , q ( x , 0 )  (5.3)

where the symbol q (x ,() is comparable w ith  a fixed continuous negative 
definite function -0 satisfying lim ^oo 0 ( f)  =  00 , i.e.

0 <  C3 <  2 ^ 1  <  c4, (5.4)

for all x E Rn and f  G Rn. Note that the lower bounds im ply 0 ( f )  >  0. 
Since f  —> 0 ( f)  — 0(0) is also a continuous negative definite function the 
lower bound in (5.4) corresponds to an estimate c ( l +  0 ( f ) )  <  q(x, f )  for 0  
being a continuous negative function which might have a zero. We find using 
Lemma 3.9.34.B in [20]

P(x, f )  =  f (x ,q(x,  0 )  <  5 i( l +  0 ( f ) ) ri (5.5)

and
p{x , 0  >  c2( l  +  0 ( f ) ) ro^  (5.6)

i.e p(x, f )  is bounded above and below by continuous negative definite func
tions.
The pseudo-differential operator

p(x,D)u(x)  =  (27r)“ t  f  etx'€p (a ;,f)w (f)d f
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=  (2?r) * [  eix^f (x ,q(x^) )u(^)d^  (5.7)
jRn

has a symbol p G S'2ri+2e,̂ (Mn). The following section gives a detailed proof 
of this result.

5.1 Estim ates for p(x,£)

Let f  : Rn x (0, oo) —> M be an arb itrarily often differentiable function such 
that for each x G Mn the function f ( x , •) : (0, oo) —► R is a Bernstein function. 
For every Bernstein function h : (0, oo) —► R the estimates

\h^(s) \  <  —̂ -/i(s), s >  0 and k G No (5.8)
s

hold, compare [20], Lemma 3.9.34.D. Hence for /  as above we find

jM
| / ^ ( x ,  s)| <  s), s >  0, i e R"  and & € No, (5.9)

5

where

We assume now in addition:
There exists rj >  0 and do > 0 such that for e G (0 ,77) and for all s >  So it  
follows that

\ %d* f (x ,  s) | <  ca^ e-^ f (x , s)s£ (5.10)

holds for all i E l n and s >  So w ith  ca}k,e independent of x and s.

Example 5.1.1. Consider f {x ,s )  =  sm^  for  0 <  m <  m(x)  <  M  <  1. I t  
follows that

p.m ifi) =  pk(m (x ) ) * s" M  (5.11)
gK

where Pk(t) is a polynomial of degree less or equal to k. I f  we assume in
addition that m(-) G C'°°(Rn) and \dam(x)\  <  ma for all a G Nq we find
using (5.11) that

d£d?s"‘<*>=aZ(Ptl(m(X) ) ± 3m(’ >)

=  p f  L  (  °a )  0a~p Pk(m(x)) C{M Y [ (90, (m(x) l n s ) ) s m ( : t ) .

/?! + ••■+/?<< =/3 i=1

Thus we arrive at

iMQfc m(i)| <  Q(\ns)  m(a,)
S
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provided s >  1 (otherwise, i f  s >  5q >  0, we need to treat the terms involving 
In s a bit differently, for example we may switch to | In s|) where Q is a suitable 
polynomial. Since for c >  0 we find a constant ce such that Q (lns) <  cese 
holds we arrive at (5.10).

m(x) m(x
Exam ple 5.1.2. Consider f {x ,s)  — s~2^(1 — e~4s~^~) where m : 
is arbitrarily often differentiable such that 0 <  m <  m(x)  <  M  <  2 and 
\d%m(x)\ < ma. Now we consider d%dgf(x, s) assuming 0 < 77 < 2 — M  and 
70 > 1. I t  follows with the notation used in Example 5.1.1 that

= ( g  (  t )  ^ - ' ^ ^ ( 1  -  e-4̂ ) )

m ( x ) \  1 m(x) . —4s
3k - l

For I 7̂  0 we find further

m ( x )  m ( x )

a ' ( l - e - 4>_F) =  - ^ ( e - 4ŝ )

e  c{^ n ^ ( - 4 ^ )

r \ H---------1- r v =  I j ~ l
V =  0, • • • I

m ( x )
—4s 2

(
y

E
TT / .v _ ( TTl(x) \  1 m( x)

r\  H h n> =  I j 1

v Z' =  0, . •

This leads to

m(x)
—4s 2

V. \
E  ^ ) n ^ ( m ( x ) ) i - Ŝ ) e - 4̂

r i  H 1-ri> =  I j ~ 1
V = (),■■• ,1

0 <l<k
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+ P A;(m (x ) ) ^ s !!!̂ i ( l  -  e 4ŝ ) |

=  ai“ (5 1(x) +  52(x)).

Consider the terms in S\ (x ). First we note that the powers of s always add 
up to Next, any derivative of Pk~i(m(x)) or Pf . (m(x))  will result in a

function which is bounded in x and independent of s. Each derivative of s11̂  
will give a term which we can write as

T7l ( x )
s 2 R(\ns,  m(x),  • • • , d].m{x)) (5.12)

with a suitable multi-index 7 G N[} and R is a polynomial The derivatives
m i x )

d2(e~4s ) are of the type

m i x )  _
e~4s R( lns,m(x) ,  • • • , dfm(x) )  (5.13)

where R is again a polynomial Taking into account that s >  1, we find that 
for every 6 >  0 there exists a constant such that

1 m ( x ) + 6  , — Lx )

< C j - r s - ^ - e " 4* ^ .  (5.14)

We split the second term into two terms, the first is the one where we take
m i x )

no derivatives of (1 — e-4s ). The second term then becomes similar to 
the terms already treated and for this term we get an estimate of type (5.14)- 
The first term leads to terms of type

and using previous calculations, for every e >  0 this term is bounded by

~ 1 m { x ) + 6  _4
c5-rs  2 (1 - e  ). (5.15)

sK

Assuming s >  1 implies

m j x )

<  ( T T ^ r ) ( l - e - 4s^ ) .
m ( x )  /  1 \  m ( x )

4s 2 ^  I  1 \ /-| „ -4 s  2
-  l e 4  -  1

Hence we have proved that for all a  6 N} and k G No there exists e >  0, 
0 < e < 77, such that

-  e - 4̂ ) |  <  ca,t , l s^ ( l  -  e- 4̂ ) .  (5.16)
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We now return to the general case. I t  should be noted here that due to 
their length calculations may have to be split over many lines. To avoid any 
confusion if  a calculation is w ritten as

x

it  means

E 
E

EE
and not

(£ ) (£) •
Eventually we need various controls on the symbol

(z ,0  -> f {x ,q {x , 0 )

where q{x, £) comes from a certain symbol class which we w ill introduce later. 
For this we use a formula to calculate higher order derivatives of composed 
functions which is due to L. E. Fraenkel [13], compare also [20], p i5.

Let u : Rm —> C and Vj : Rn —> R, j  =  1 , . . . ,  rn, be smooth functions. 
Then for a  G Ng it  holds w ith  v =  (u i, . . .  vm)

dau(v(x)) =  dau(v i (x ) , . . . v m(x)) (5-17)

V—' (dau)(v(x)) V D . v T) ( \_  ^  ^ \ - v  2 ^  P 7 i ( < r i , u i ; x )  • •  P 7 m ( < 7 m , u m ; x )

1 <  |cr| <  |o:| 7 1 H b 7m =  a
a G Nq1 7j G No

where for 7 G Nq

N \ f  d^^v(x) \  Pl ( d ^ r^ v (x ) \Pr

w ith

R (7 , JV) :=  j p  £ y j PjP(j) =  7  and \p\ =  n \  , (5.19)

N £ 7  : =  {0  e  N S |  0  <  0  <  7 )  ( 5 . 2 0 )

and w ith  |NJ7| — r  an enumeration of Nq)7 is given by /3(1),. . .  ,/?(r). In
our concrete problem many reductions happen. We consider first /  : Rn x

45



(0, oo) —> R artificial as /  : Rn x Rn x (0, oo) —> R by setting f ( x , s) =  
f ( x i , . . . ,  xn, 1 , . . . ,  1, s). Next we introduce the 2n +  1 functions

In the following multi-indices in Ngn w ill be split as a  =  ( a ^ \ a ^ )  where 
a W acts on the z-variables and a ^  acts on the £ variables. Our problem is 
to estimate

7 1 H h 7 2n+1 =  (J

7j  e N ln

where to =  (/?, a). I f  7J =  (6 {, 5J2) then

=  {(c, r )  £ Ng" I Id  +  |r  | >  0 and 0 <  C <  &{, 0 <  r  <  <g}.

Let an enumeration of Ng", : r?(l) =  ( C ( l) , r ( l ) ) , . . .  =  (C (rj) ,T (r j))
where 77 =  77 (j j ) be given. Then we have w ith  a =  (<7i , . . . ,  <72n+i)

Xji 1 <  j  <  n
1, n +  1 <  j  <  2 n 

j  =  2 n +  l
(5.21)

/ ( •  • • >t>2n+l(*.{)) =  9 f9 f / ( x  1,

( y / ) ( n ( x ,Q )
rr!

X

i  <  M  <  M  + |/?| 
a € N l n + 1

P^i (au VuX ,€ ) - . . .*.Py2n+i(cr2n+i) ^2n+i; X, £) (5.22)

j

J=1

i=i

{p  e Nq ^  PiC(0 =  S1 ,Y 2  Pir(l) =  <?2 and \p\ =  ° i  }

and

pERi'ŷ Cj)
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where a  G Non+1 such that a  =  (crx, cr̂ , cr2n+1), 0x> G Nq and <J2n+i G No- 
When cjf ^  0 then daf  =  0 therfore

E
i  <  M  — 1̂ 1 + |/?|

(7 G N2n+1

reduces to

E
1 <  W x | +  02n+l <  |o;| +  \P \ 

a G Ngn+1, cr* =  0

Consider P ^ (o j, , £, £)

i) 1 <  j  <  n implies

^ % ( x , «  =  ^ ‘ )xJ =  {  ! ;  m : Z T e = °

therfore for 1 <  j  <  n 

n , ^  (Tjl f d iWdl{1)Vj(x,0 \ Pl ( d i {ri)dl{ri)vj (x,Z) \ Pr3

% £ , „ *  I  « 1)W ) ! j  ' "  • • (  W W  j  

£
aj\ / dj{l)dl{l)Vj{x,$,)\ Pl ( di{Ti)dT̂ Ti)Vj{x,i)V r2

p e { p '€ N o J | E j i i  P\< , { l )= (T j  a n d  £ { l ) = e i }  x '  '  '

i.e. in this case P ^ (a j ,V j ,x ^ )  =  Cj>a-

ii) n +  1 <  j  <  2 n implies

d ^ d ^ vj(x ,£ )  =  0 whenever £(&) ^  0 or r (k )  ^  0, i.e. (£(&), r(fc)) ^  0,

i.e. for n +  1 <  j  <  2 n

^  V - Oj\ ( d i {1)dl{1)V j{x ,Q \Pl ( d i {rj)dliri)vj (x ,Z ) \Pri

* » »  )  )  - •  

iii) Finally let j  =  2n +  1 and set r  =  rj, i.e.

H(72" +1,<r2n+1) =  {/5€N J

then

E f t ^ W ' r W ) =  72” +1’ \P\ =  ^ n + l}
1 = 1

P ~ f2 n + 1  (<J2n+l) ^ 2 n + l > ^ 5  £ )  —  P y2n +  l  (<J2n+l > ^(*^> 0 )
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Y '  o-2n+ i! ( 9 x l)d l {l)q { x , i ) Y l ( d j {Ti)d l (Ti)q{x1i ) Y TS

~ p' \ C(1)!r(1)! / V «r*)!rfa)! /
We observe that

(dGf )  (a? i , . .  .x n,s) =  0 i f  c r ^ O e N o -  

Thus we find using the previous calculations and (5.22)

a f a f  f (x ,g( x , o ) =  £  ( * , < ? ( * , « ) )

1 <  \&x\ + cr2 n + l  <  1^1 +  \P\ 
a  =  (c7x ,0 ,< T 2n + l )  ^  N o n + 1

X X  P 7 i ( o - i , x i )  • . . .  • P 7 2 n + i( c r 2 n + l , 9 ( a : , 0 )

7 1 H (-72n+ 1 =  (/?, a )
7J G Ngn

1 <  k x |  + 0 - 2n + l  ^  M  +  l-d| 
a =  (ax,0 ,a2n+ i ) e Ngn+1

X X  ‘ • • • • P {6\n+\ 5 l n+1) ^ r i ^ l , q { x ^ ) )

81 +  • • • +  6 jn+1 =  p  
8 \-\--------1 8\nJrl =  a

X I  ( ^ f )  (x ,q(x,0)
1 5: |<7x| +  0-2n+l 5: |a| +  |/?| 
cr =  (ax,0 ,a2n+i)  e Non+1

X ^  P(5l )(5l)((7l,Xl) • . . . • P(52n+i s2n+i) (a2n+l,q(x,0)
51 +  • • • +  <5? +  6 ln+1 =  p  
5\ +  • • • +  6$ +  5%n+1 =  a  

53k G Nq , 8Jk =  0, n +  1 <  j  <  2n

E (^f) (*.«(*.€))
1 < kx| + 02n+l < |o:| + |/3|
0 =  (^ x ,0 ,a 2n+ i)  e Non+1

X  X  P (« } f^ ) ( ° ' l » :c l ) - - - - - P ( f i J " + 1>5 a n + i) ( c 7 -2 n + l,g (a : ,0 )

5} +  • • • +  <5? +  5 jn+ l =  p  
5%n + 1  =  a 

53k G Nq , 5Jk =  0, n +  l  <  j  <2n  
5j G {0,eJ}, 1 < j  < n, 8 32 = 0, 1 < j  < n
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£  ( 5 9  (*,«(*.€))
1 <  \<?x\ +  0 2 n + l  5: |c*f| +  \P\

C7 =  ( C 7 a ; , 0 , ( 7 2 n + l )  G  N o n + 1

X  C ( < 5 } , . . . ,  < 5 ? ,  t f j i - - - .  <5 2 ) P ( « 5 2 n + J a ) ( C T 2 n + l ,  9 ( l ,  0 )

5} +  • • • +  5? +  5 ln+1 =  (3 
8%n+1 =  a  

83k G No, 83k =  0, n  +  1 <  j  <  2n 
8{ G {0, e3}, 1 <  j  <  n, =  0, 1 <  j  <  n

E te.gfoO)
1 <  |0z| +  02n+l <  1̂ 1 +  |/3| 
a =  (<7X, 0 , 0’2n + l) G Non+1

X  £  C(5\ ..................... * J )

<5J +  ■ • ■ +  Sf +  <5?*+1 =  0  
83k G Nq , =  0, n  +  1 <  j  <  2n

8j G {0, eJ}, 1 <  j  <  n, <̂ 2 =  0, 1 <  j  <  n

i p  g 2 n + l !  / ' ^ ( 1 ) O f < 1 ) g ( » . 0 ’ \ W

x **<,A),^+1)  ̂ v y ”" V ĉ >!̂ ) ! J
In order to estimate d ^ d ^ f ( x , q ( x , ^ ) )  we assume further

<  ccrU +  ^ C )) 2̂ 1111 (5.23)

and the ellipticity condition

q { x , 0  >  7 o ( l  +  ^ ( f ) ) -  ( 5 -2 4 )

Taking (5.10) into account we find for every e > 0 but sufficiently small that

\d%d£f{x,q{x,£))\  <  C ' i . p . e  X ]  g ( x  g ( x > 0 ) g ( ^ 0 £

1 <  l ^ x l  +  CT2n+l 5: M  +  \P\ 
a =  (ax , 0 , a 2n+ 1 ) G Nq”+1

E
. * }  + •■; + *? + 6 ln + 1  = P

83k G No, 83k =  0, n  +  1 <  j  <  2n 
8{ G {0, e5}, 1 <  j  <  n, =  0, 1 <  j  < n

E (i+*(0)fl=as=am" •••••(!+
p G f l ( (5 ? n + 1 , a ) )£72 n + 1 )
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£  T T T m ) ^ f {x M x ’0)q{ x ,0 ‘
1 <  \(Tx\ + ^ 2 n + l  <  M  +  \P\
&  —  { ^ x ^ i a 2 n + l )  G Ngn+1

E
6{ +  • •; +  <5? +  5*n+l = P 

5Jk e Nq , 63k = 0, n + 1 < j  < 2 n 
5{ e {0, e3}, 1 < j  < n, 532 — 0, 1 < j  < n

x ^ 2  ( i + V’(0 )pi+"‘+pr2n+i(i+ V '(0 )~ (i2Â 1}}pi+'”+(2Â r)^ r2n+i)-
p £ i t  ((<5jn + 1  ,a ) , t r 2 n + i )

Since for p G i? ((5 jn+1, <$2n+1)> cr2n+ i)  i t  follows that p i  +  • • • +  Pr2n+i =  
02n+i we arrive at

|d fd? 7 (z ,g (z ,f)) l ^  Ca,p,ef{x,q(x^))q(x ^ ) e X
1 5: \<rx \ +  ^ n + i  <  |q:| +  \P\

a  =  {ax , 0 , a 2n + i )  e  Non+1

£
5 }  +  - - ;  +  5 ?  +  <S?n + 1  = / 3  

G Nq , <$* =  0, n +  1 <  j  <  2n 

&{ e (0> e j}> 1 <  .7 <  ^2 =  °> 1 <  j  <  ri

x ^  (J _|_ ^,^^-|((2Ar(l))pi+-+(2Ar(r))pr)i

p e i ? ( ( 6 i n  +  1 , a ) , a 2 n + l )

Denote the last sum by UR^6 2n+i 5 2n+i^a2n+iy i.e.

p e i? ( ( 7 in + 1 ,72n + 1 )CT2 n + l)

I f  |o;| =  1 we get a contribution from i?((£in+1, <$2n+1), 1) of the type |r(/)| =  
1, pi =  1, and we have the estimate

i < V +\* i"+ ‘ >,i>i <  (1 + m r *  =  (1 + m r ^ Aian-

I f  \a\ =  2 we get at least one contribution from R((Sln+1, ^2n+1)> 2) of the 
type \ t ( 1)\ =  2, pi =  1 or |r(/)| =  |t(&)| =  1 and pi =  pk =  1 , I ^  k, hence 
we get that the estimate

< V - . *  i - ) , 2)i *  a + ^ ) r ‘ =  ( i + m r ^ an
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holds. Finally, for |a| >  3 we find the estimate by analysing the possible 
terms in R ( ( ^ n+1, ^ n + l )(72n+ i )  for a2n+1 >  3

w ith k >  3. Thus we have proved

T heorem  5.1.3. Suppose that f  : Rn x (0, oo) —* R is arbitrarily often dif
ferentiable and that / ( x ,  •) : (0, oo) —> R is a Bernstein function. Suppose 
further that (5.10) holds. Let q : Rn x Rn —> R be an arbitrarily often differ
entiable function satisfying with a fixed continuous negative definite function 
'ip : Rn —> R condition (5.23) and (5.24). Then for every e >  0 sufficiently 
small and all a, (3 G Nq it holds

\d%<%f(x,q{x,0)\ <  CaAJ ( x ,q ( x , t ) ) q ( x ^ ) e{ l  +  . (5.25)

This implies together w ith  Theorem 2.5.4 in [21] and (5.1) that p G 
g 2n+2e,i/>(Rn) an(j  £)) maps the space H'l(,,2ri+2e+3 (Wl) to the space
H ^ 3{Rn) i.e.

\\p{x,D)u\\^s <  c\\u\\^ , 2 r \ + 2 e + S '

In particular p (x ,D )  is continuous from i / ^ ,s(Rn) to H^'3~2r 1- 2e(Rn) je ,

I |p(*^> T ) ) u \ |-0,s—2 r i— 2e 5  ̂ ^ 1 1 1 *

We now consider the bilinear form

B (u , v) :=  (p{x, D )u , t>)o, it, v G 5 (R n).

Since p G S 2ri+2€’̂ (M.n) we may apply Theorem 2.2.3 to get

\B (u ,u)| ^  k \[rtl| ,̂)ri_)_e| I ' u ] (5.26)

for some k >  0 and all u,v  G S(Rn) i.e. B  has a continuous extension onto 
H^'Vl+e(Rn) again denoted by B. Furthermore we have

P ro p o s itio n  5.1.4. For u e /T Wri+2£(R” ) we have the Garding inequality

B(u ,u ) >  $ i|M & r0-t? -  A0||u||o, (5.27)

for some Aq > 0.
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Proof. We have the lower bound

P (z ,f)  >  c ( i +  ^ ( o r ° - ^ .

This implies
r(x , 0  =  p(x, 0  -  c ( l +  'ipiOY0 ' 11 >  0.

Now Theorem 2.5.5 in [21], which is due to W. Hoh, see [17], gives

( r (x ,D )u ,u )o >  -fc||u || 2 r \  +2e— 1 (5.28)
2

since (r(x , D )u ,u )o is real-valued, where

(r (x, D)u, u )0 =  i?eJ5(w, it) -  c||u||J,ro_^. (5.29)

Putting (5.28) and (5.29) together we get

ReB(u,u) >  c ||ri||| ro_jj -  /c|M |i r 1+̂ - i .

Under the assumption that

^(0  >  co|£|Po 

and r \  +  e — |  <  r 0 — fj we get for every e0 > 0

( i + <  4 ( i + m r * - * + < ? w

which leads to
M l ii+2e—i <  eo||u||^ro_^ +  c(e0)||ri||o|2

~i
2

implying the result. □

We are now dealing w ith  the space Rn) and the space H ^ ,ri+e(Mn)
which is the smaller of the two. Since our estimates for B  are in different 
space we seek to introduce an intermediate space.

Firstly, we consider the symmetric part B  of B  i.e.

B \ 0 (u,v) =  1(Bao(u,w) +  BXo(v,u)

on H'/,'ri+e(R"). Then

Bx0 (u,v) := B (u ,v ) +  \ 0 (u ,v )0, (5.30)

We have
\BXo(u,v)\ <  ^ I M k . i lM k . i
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and
Bxa{u,u) >  7 llu ll^0,i-

Since B \ 0 (u,v) is a scalar product on H^'ri+e(Rn) we may consider the com
pletion of H ^ ,ri+e(Rn) w ith  respect to B \ 0 (u,v). We denote this new inter
mediate space by H Pxo (Rn) . Clearly we have

H * 'Tl+e(Rn) <-> H Pxo(Mn) H ^ ro~p(Rn) (5.31)

in the sense of continuous embeddings.

Lem m a 5.1.5. The bilinear form B \ 0 is continuous on H Pxo(Rn).

Proof. We find by using Corollary 2.4.23 in [21] that

i ( p Ao(x , D)  +  p*Xo{x, D)) =  ^ (p \0 (x, D )  +  pxQ(x, D))  +  n {x , D )

=  pXo( x , D ) + r i ( x , D )  

where r \  E 5 2n+2e_1,̂ (R n) and we used that p{x,$f) is real-valued. Consider

\ B x q ( u , v ) \ = |(pa0(^, D ) ) u , v )0|

<  \ \ ( (P \o (x i D ) +P*\0(x i D ))u >v)o\ +  \ ( r i (x ,D )u ,v )0\

=  |B Xo{u,v)\ -I- \ { r i (x ,D )u ,v )0\-

We know that Bx0 (u,v) is continuous on H Pxo(Rn) therefore our calculations 
are reduced to estimating |(r i(x , D)u, u)o|.
We know that r \  E 5 2ri+2e_1,̂ (R n) which implies by Theorem 2.2.3 that 

\ { r i {x ,D )u ,v )0\ <  c\\u\\^ri+e_ i \ \v \ \^ ri+€_ i.

I f  r \  +  e — \  <  r 0  — fj we get

I M U . n + e - i  —  I M I v ’ .i ' o - t? —  C I M L 0

implying the result by (5.31). □

By the Lax-Milgram theorem, for every g E (H Pxo)* C S"(Rn) there exists 
a unique element u E H Pxo satisfying

B Xo(u,v) = < g , v >  (5.32)

for all v E H Pxo. We call u  the variational solution to p (x , D )u  -1- \qu =  g. 
Prom (5.31) we get

H i p , - ( r o - v ) ( R n j  =  ^ , r o - v ^ y  o ( R " ) ) * ,

hence for g E H^'~^ro~^(M.n) there exists a unique u E H Pxo(Rn) satisfying 
(5.32).
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P ro p o s itio n  5.1.6. For every g G H^' ^ (R n) there exists a unique u G
H ^ ro-^(Rn) such that

pXo(x, D )u  =  p{x , D )u  +  A0u =  g 

holds as an equality in S 'iW 1).

(5.33)

Proof. Denote by u G H Pxo (Rn) the unique solution to (5.33) for g G H ^ ,ro~p(Mn) 
given and take a sequence (uk)ken, Uk £ Sf(Rn) converging in H Pxo(Rn) to u.
I t  follows from

{pxo{x ,D )u k,v )0 =  BAo(ufc,u), u G S(Rn)

and the continuity of p \ 0 (x ,D )  from H ^ ,s(Rn) to iy^»s-2ri -2e(Rnj for 
k —> oo

< pAo(s,D )w ,u  > =  B \ 0 (u, v) = < g , v >

for all v G 5(R n). Thus p \ 0 {x, D )u  =  g in S"(Rn) and the uniqueness follows 
from (5.27). □

In order to get more regularity for variational solutions we have

T heo rem  5.1.7. Assume (5.10), (5.23), (5.24) and ™ addition letfj =  0 in
(5.2) to give for 7 > 0 that

holds where

7(1  +  m ) r° <  / o ( 7 o ( l  +  V > ( 0 ) ) (5.34)

(5.35)

Then for every rj >  0 sufficiently small the function Pxl {x,£) belongs to the 
class S~ 2r0+2̂ ( r ) .  •

Proof. Let us assume for simplicity that <50 =  7o? compare (5.10). For A > 0 
let Px(x,4) — A +  f (x ,q (x ,£ )) .  From (2.27) in [20] we find w ith  I =  \a\ +  \(3\

1 <

c r H h a  -  a  3

< 9 f  < 9 f p A ( x , £ )

/?> +  ..  . +  /3‘ =  f3

1

A +  f (x ,q (x ,£ ) )  ^  C{- > I 1
a 1 +  ■ ■ ■ +  a1 =  a  3-1
/31 H +  Pl =  p

d fd P p x(x ,S )

P x (x ,0
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From the definition of /i(s), (5.35), together with (5.24) we get

^  Ca,P

< 1

/i(7 o (l +  V>(£)))
a 1 H 4- a* =  a
p  + - - - + $ l = 0

3 = 1

d? Jd f  pA(^,0

— Ca,/3

/i(7 o (l +  ^ (0 ) )

1

E

Pa(z,0  
= a J~*
= (3

1 d f d £ J ( \  +  f (x ,q{x ,£) ) )n
a 1  ̂ h a 1 =  a  -7 -1
/31 + . . .+/?*=/?

/i(7 o (l +  ^ (0 ) ) E n
a 1 +  • • • +  a 1 =  a  J_1 
/?! + . . . + ^  = /5

A +  /0r,<7(x,£)) 

d f  d&  A + d £  f {x ,  q(x, 0 )

A + /(x ,g(x,0)

When a  =  (3 — 0 we find

1
<  Co,o

/ i ( 7 o ( l  +  ip {0 ) )

Moreover whenever a 3 =  (33 =  0, then

d f d ^ X  +  dfd% 3 f (x ,q ( x , 0 )
X +  f (x ,q (x ,£ ))  

Therefore wq now only have to consider

=  1.

1
, c. 

P \ ( x , 0
— Ca,P

/i(7 o (l +  ^ (0 ) ) E
i = nr J = 1a 1 H------- l-a  - a

0 1 + ---- bJ3‘ =  0
a? +  f t  >  0

r r  d f d ^ f { x , q { x ,  0 )

AA A + /(x ,g(x,0)

Further, using (5.25) we get

1 <
/i(7 o (l +  V>(0)) E

a A H +  a 1 =  a
pi  +  . . .  +  0 i = ( 3

a-J +  >  0

x jq  caJ;3j e/(a;,g(x,0)g(x,0e(l + ^ (0 )~ £il̂ J1

i= i A + f (x ,  q{x,£))

/ i(7 o (l + ^ ( 0 ) ) E
a 1 H +  a 4 =  a
/?i + ... + /3* =/? 

a 3 +  (33 >  0

' f (x ,q (x ,g ) )q (x , ty

, A + /(x,qf(x,0)) .

/ /  i
|  c a  j  p j  i
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x(l + ^(^))-^(p(|a1l)+-+p(l«,D)

/ i (7o(1 + V>(0)) E
a 1 +  • • • +  a 1 =  a  
/31 + ... + = (3

a? + 0 j  >  0

f (x ,q(x ,£) )q(x ,ZY
A + /(x,g(x,0 ) ( l+ ^ ( 0 ) " 4p(|a|)

using the sub-additivity of p. Since /(a,g(a,Q)

c Pa (z ,£ )
< Ca,/3,e

/i(7o(l +V»(0))

A+/(x,g(x,0)

E
a1 H + a 1 = a
p  + ...+/?<=/? 

ot? + f t  > 0

<  1 we find 

q(x,Ou(l + m ) ~ il,aan- (5-36)

Since g ( i,  f )  <  Co,o(l +  V'(O) i t  follows further that given fj >  0 we can find
ca,(3,f) > 0 such that

d ? d t  1 .
{ P\(x,Z)

Taking into account (5.34) we eventually arrive at

1 . . - 2r n + 2f7- p ( |Q | )  

<  Cat0tfi( 1 +  </>(0 ) 2

i.e. E Sp 2ro+2fi’̂ (Mn) proving the theorem. 

We can now prove

(5.38)

□

T heorem  5.1.8. Letp(x,£) be given by (5.3) where we assume for q condi
tion (5.4)- For f  it is supposed that (5.1) and (5.2) hold. Then we have that 
p E S'2n + 2e’^(Mn) and pf 1 E 5 - 2ro+27?,V’^ n ^  we assume th a t r \—rQ <  \ .
Let u E H Pxo (R n) c  H ^ ,ro~p(M.n) be the solution to (5.33) for g E H^'k(Rn), 
k >  0. Then it follows that u E H ^ ,k+2r°~2p (Rn) .

Proof. The statements for p andpA 1 have already been proved, i.e. Theorem
5.1.3 and Theorem 5.1.7, respectively. Prom Theorem 2.1.5 it  follows that

Pao1^ ’ D ) °Pa0(z, D )  =  id +  r(x, D ) (5.39)

w ith  r  E  S qTi+2€ 2ro+2p 1,^ ( R n). Since P \ 0(x ,  D )u  =  g we deduce from (5.39) 
that

u =  Pxo (*> D ) ° P*o (*, D )u ~  r {x t D )  
=  P \ l i x , D )9 - r { x , D ) u .

u
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Now, p ^ { x ,D )g  G H+'2r° - 2 l>+k(W l) and r {x ,D )u  G H ^ 3ro~3f>-2r' - 2e+1 {Rn) 
implying that u G for t =  (k +  2r 0 — 277) A (3ro — 3fj — 2r\ —
2e +  1) > r 0 — 77. W ith  a finite number of iterations we arrive at u G
î/>,fc+2r0- 27^71^ j-|

C o ro lla ry  5.1.9. I f  k +  2ro — 2 f j>  compare (4-13) in the situation of 
Theorem 5.1.8, then u G Coo(Rn).

We finally arrive at

T heo rem  5.1.10. Let f  : Rn x (0,oo) —> R be an arbitrarily often differen
tiable function such that for  y G l "  fixed, the function s —► f (y ,  s) is a Bern
stein function. Moreover assume (5.1) and (5.2). In  addition let rjj : Rn —> R 
be a continuous negative definite function in the class A which satisfies in ad
dition (4-13). For an elliptic symbol q G S 2 ,̂ (Rn) satisfying (5.4) we define 
p (x ,( )  by (5.3). We know that p G S f 'l+2e^  (JSin) and _ i_ e s - 2r0 +2^ ^ R ny

I f r \  — r 0 <  \  then —p(x, D ) extends to a generator of a Feller semigroup on 
C 0 0 (Rn).

Proof. The statements for p and p f l have already been proved, i.e. Theorem
5.1.3 and Theorem 5.1.7, respectively. We want to apply the Hille-Yosida- 
Ray theorem, Theorem 1.3.6 We know that p (x ,D )  maps H ^ ,2ri+2e+k(Rn) 
into t f ^ fc(Rn). Hence if  k >  ^  the operator (~p{x, D), H ^ 2r' +2€+k (Rn)) is 
densely defined on Coo(Rn) w ith  range in Coo(Rn). That —p (x ,D )  satisfies 
the positive maximum principle on H^'2ri+2<i+k(]&n) follows from Theorem 
3.1.1. Now, for A >  Ao we know that for g G H ^ ,k+2ri~2rQJt2fl+2e(Rn) we have 
a unique solution to p \ (x ,D )u  =  g belonging to H ^ ’k+2ri+2e(Rn) implying 
the theorem. □
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6 Dirichlet Forms
The purpose of this chapter is to study Dirichlet forms, we w ill indicate how 
D irichlet forms may lead to a different approach of variable order subordina
tion.

6.1 Dirichlet Forms: A few Remarks in Relation to  
Subordination of Variable Order

Let {Tt )t>o be a sub-Markovian semigroup in L 2(Rn), i.e. (T t ) t > 0 is a strongly 
continuous contraction semigroup on L 2 (Rn) and i f  0 <  u <  1 holds almost 
everywhere then 0 <  Ttu <  1 holds almost everywhere for u G L 2(Rn). 
Denote by A  the generator of 7*, we know by Lemma 4.6.6 that A  satisfies

/J R'
(Au)(u  — 1 )+dx <  0

rjRn

for all u G D (A ), i.e. A  is a D ir ic h le t o p e ra to r.
Further, by Definition 1.3.8 a negative definite operator A  satisfies on its 
domain D{A )  C L 2(Rn)

j  (Au)(signu)\u\dx <  0 (6.1)
J]Rn

i.e.

or

/  (Au)udx <  0
J R n

JJ R7
{—Au)udx > 0

'Rn
for all u G D (A )  C L 2(Rn). This implies that {—A) is a non-negative definite 
operator. I f  we now let (7t)t>o be a symmetric sub-Markovian semigroup in 
L 2(Rn) then Tt =  T*  and by Corollary 4.1.46 in [20] it  follows that A =  A* 
as closed operators. Therefore (A  D (A ))  is a self-adjoint operator, i.e.

D{A*)  =  D (A ) and (Au,v) o =  (u ,A v )q.

To summarise, we have a non-negative self-adjoint operator (—A) such that

£{u,v) :=  ( ( - A ) * u , ( - A ) i v ) 0

is a continuous bilinear form on D (£ )  =  D ( ( —A )£) w ith  respect to the norm 
I M l? =  M ilo +  £(u ,u). Consider the bilinear form on u G D (A ) ,v  G D (£ )

£(u, v) =  (—Au, v)o =  /  (—A u )v d x =  /  (—A ) * ( —A )*u -v d x
J Rn J Rn
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=  f  (—A )* u (—A)*vdx
J R n’R n

=  { ( - A ) * u , ( - A ) * v ) 0.

Using the Cauchy-Schwarz inequality we find

\ ( - A u ,v )0| <  | | ( - A ) ^ | |o | | ( - A ) ^ | |o

or
\ ( - A u ,v ) 0\ <  { { -A u ,u ) 0 )^ { ( -A v ,v )0)^. (6.2)

In the sense of continuous embeddings we have

D (A ) ^  D {£ )  -+  L 2 (Rn).

We also find that
\£(u,v)\ <  {£i{u ,v))^{£i(u,v))^  (6.3)

where
£i(u ,v) =  £(u ,v)  +  (u ,u)0.

T heo rem  6.1.1. Let (A ,D ( A )) be a densely defined operator on L 2 (Rn) 
satisfying (6.1) and (6.2). Then there exists a closed bilinear form (£ ,D (£ ) )  
on L 2 (Rn) such that D (A ) C D ( £ ) C L 2 (Rn). Thus £  is densely defined and 
fo r u  6 D (A ), v € D (£ )  we have £(u, v) =  (—Au,v)o- Moreover, £  satisfies
(6.3).

Compare Theorem 4.7.5 in [20].

I t  is not assumed that (A, D (A ))  is a closed operator, however in the 
situation of Theorem 6.1.1 it  is closeable, where we denote the closure by A 
and the domain of its closure D (A )  is a subspace of D {£).  Theorem 6.1.1 also 
holds for any Dirichlet operator satisfying (6.2). We aim to find a certain 
converse to Theorem 6.1.1. Before we can state the main results between 
Dirichlet operators and certain types of bilinear forms, i.e. D irichlet forms, 
we have to introduce the following definitions

D e fin it io n  6.1.2. A bilinear form (£ , D (£ )) is a closed fo rm  on L 2 (M.n) 
i f  (D (£ ),  £{ym), where £ lym(u, v) :=  \{£ \{u , v)m +  £\(v ,u )) ,  is a Hilbert space 
and £  is continuous with respect to £ fym, i.e.

\ £ { u , v ) \ < { £ r { u , u ) ) ^ £ { ym{v ,v )^  

holds for all u ,v  € D {£).
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D efin ition 6.1.3. Let (£ ,D (£ ) )  be a closed form on L 2(Rn).
A. We call (£ ,D (£ ) )  a sem i-Dirichlet form  i f  for all u G D ( £ ) it follows 
that u+ A 1 G D (£ )  and

£{u  +  ('u+ A 1), u -  (u+ A 1)) >  0

holds.
B. The form (£ ,D (£ ) )  is called a non-sym metric D irich let form  i f  for
all u G D ( £ ) it follows that u+ A 1 G D (£ ) and

£{u +  (u+ A 1), u — (u+ A 1)) >  0, , .
£ (u — (u+ A 1), u +  (u+ A 1)) >  0. ’

C. I f  ( £ ,D (£ ) )  satisfies ( 6 .4 )  and also is a symmetric form, then we call 
(£, D (£ ) )  a symmetric D irichlet form.

We axe now in a position to give some main results for Dirichlet operators 
and Dirichlet forms.

Firstly, if  (A ,D (A ))  is a Dirchlet operator on L 2(Rn) satisfying (6.2) 
and generating a sub-Markovian semigroup (T t ) t > 0 then the bilinear form 
(£ ,D (£ ) )  is a semi-Dirichlet form.. Conversely, suppose that (£ ,D (£ ) )  is a 
semi-Dirichlet form on L 2(Rn) then the associated operator (A ,D (A ))  is a 
D irichlet operator and the associated semigroup {Tt)t>0 is sub-Markovian on 
L 2(Rn).

Next we consider non-symmetric Dirichlet forms. I f  (A *, D (A *))  is also a 
D irichlet operator , then (£ ,D (£ ) )  is a non-symmetric Dirichlet form. Con
versely, I f  (£ , D ( £ )) is a non-symmetric Dirichlet form, then (A* , D (A *))  is 
a D irichlet operator and the associated semigroup (Tt)t>0 is sub-Markovian.

Finally, for symmetric Dirichlet form the following holds. I f  (A , D (A )) 
is selfadjoint then (£, D (£ ))  is a symmetric Dirichlet form. The converse is 
also true.

We now consider some examples w ith  the aim of demonstrating how the 
Fourier transform and continuous negative definite functions come into play.

Exam ple 6.1.4. Let ip : Rn —> R be a continuous negative definite function 
with associated convolution semigroup (pt)t>o- The operator —'ip(D) defined 
on Cq° (Rn) by

-ip (D )u (x )  =  - ( 27r)“ t  f  etx'^/>(£)u(£)d£ (6.5)
JRn

extends to a selfadjoint Dirichlet operator (A , H^'2(Rn)) (recall that the graph 
norm ||tz||-0(£>),o =  IMIo +  \\(p(D)u\\o is equivalent to ||ii||^,2/  Further for
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which implies that the symmetric Dirichlet form corresponding to (A , H^'2 (Rn)) 
has the domain D (£ )  =  H ^ ,l{Rn) and it is given by

£(u ,v) =  [  l/>(€)u(£)v(()d(
J R n

=  f  [tp(D)]^u • [tp(D)]%vd€, (6.6)
J R n

where [i>(D)]^u is given on Co°(Rn) by (6.5) but with 0(£)^ instead o /0 (£ ). 
In  particular, since (1 +  0 (0 ) *  a ŝo a continuous negative definite func
tion with values only in R, we see that for any continuous negative definite 
function 'if : Rn —► R the space (i7^ ,:l(Rn), (• ,-)i) is a symmetric Dirichlet 
space and therfore u G H ^ ,1(Rn) implies always that u+ A A and u A A, A >  0 
belongs to too.

We w ill now take a different approach, we w ill consider £(u ,v )  using a 
Levy- Khinchin representation for the continuous negative definite function 
0  : Rn —► R.

E xam p le  6.1.5. The continuous negative definite function 0  : Rn —► R has 
the following Levy-Khinchin representation

0 (0  =  c +  g (0  +  [  (1 -  cos(z • O M da0 (6.7)
J Rn \ { 0 )

where c >  0 is a constant, q a symmetric positive semidefinite quadratic form 
on Rn and v is a measure on Rn integrating x —► \x \ 2 A l.  Compare Corollary 
3.7.9 in [20]. We now substitute (6.7) into ( 6 .6 )  to get

£ ^ ( u ,v )=  [  f c + Qiktek + [  (1 -  cos(x • £))v(dx) J (6-8)
\  j,k=l JRn\f°} /



Using Plancherel’s theorem, Corollary 3.1.3 in [20] and the proof of Theorem 
3.10.17 in [20] to find

£'tp(u,v) =  c [  u(x)v(x)dx  +  [  T ;  Q k i dx (6.9) 
JRn JRn ^  8 xk 8 X1

j I  (u(x +  y ) - u ( x ) ) ( v ( x  +  y ) -v (x ) )v (d y )d x .
& JRn JRn

In  the case that qki =  0 for k, I =  1, . . .  n and c =  0 we have

/  /  (u(x +  y) -  u (x )) 2 v(dy)dx
JRn JRn

<  OOD {£ )  =  j u  e L 2(Rn) 

and (6.9) becomes

£^(u,v) =  ^ l  j  (u(x +  y) -  u(x))(v(x  +  y) -  v(x))u(dy)dx. (6.10)
JRn JRn

R e m a rk  6.1.6. I f  in the situation of Example 6.1.5 we have c =  0, the 
measure v(dy) =  0 and

I lk =  f o = {  q ’
l =  k 
l ^ k

then we have

£{u,v) =  ^ j  dx. (6.11)
JRn dxi dxi

I f  in the situation of Example 6.1.5 we can set v(dy) =  N (y )dy , where 
N (y )  is a density, then we may rewrite (6.10) as

£^{u,v) =  ]- f  (  (u(x +  y ) - u ( x ) ) ( v ( x  +  y ) -v (y ) )N (y )d y d x .  (6.12)
JRn JRn

Or equvalently

£^{u, v) =  i  [  f  {u{x) -  u(y))(v(x) -  v (y ))N (x  -  y)dydx. (6.13)
j R n JRn

We now want to compare our representation for a Dirichet form (6.10) 
w ith  the Beurling-Deny representation for symmetric Dirichlet forms.
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Theorem  6.1.7. (Beurling-Deny) I fE  is a symmetric, regular Dirichlet form 
on L 2 (Rn) then we have the following representation for E

du dv

~dxi~dx~k X
E(u,v) =  /  cu(x)v(x)dx +  / E

JRn J K" k l=l

+  f  [  ( u { x ) - u { y ) ) { v { x ) - v ( y ) ) J { d x , d y )  (6.14)
j R n —D  J R n - D

where J(dx,dy)  is a measure on Rn x l n — D  and D  is the diagonal D  =  
{ ( x , x ) , x  G Mn}. Further, i f  E has no local part then we have

E(u, v) =  f  f  ( u { x ) - u { y ) ) ( v { x ) - v ( y ) ) J { d x , dy ) .  (6.15)
J R n - D  J R n - D

Recall tha t the generator A  of E^ is given by

Au{x) =  (27t)- ^ f  elx<i ;^ ) u ^ )d ^
J R n

Our next step is to use Dirichlet form techniques to study stable-like
processes. We study the following symmetric quadratic form on L 2(Rn)

£ > ( £ ■ > - { .  e  C V ,  : 1 1  <  oo

:Q ( u , t > ) =  f  j
J R n J W

(u(x) - u ( y ) ) ( v ( x )  - v { y ) )
dxdy,

rR„ \x -  y |"+«(*)

where 0 <  a\ <  a(x)  <  a2.
A  further extension is to consider the form

D ( r )  .  { «  €  L - (  I f ) :  <  0 0

where 0 <  ai <  a(x, y)  <  a2 .
In the case tha t (Ea,D (E a)) is closeable its closure is a Dirichlet form 

w ith  some generator (A , D(A) ) .  Considered as a pseudo-differential operator 
A  w ill be of variable order, i.e. the “order” of its symbol q{x,£)  w ill depend 
on x. Hence considering such type of Dirichlet forms w ill open a further way 
to consider variable order subordination. For considerations along these lines 
we refer to [37] and [38].
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