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Preface

The connection between geometric spaces and commutative algebras is very intimate. In 
algebraic geometry, geometric problems are transferred into algebraic ones by considering 
the functions on a space. Moving a geometric space into the realm of algebra in this way 
(here by geometric space we mean a locally compact Hausdorff topological space) results 
in a special type of algebra termed a commutative C*-algebra. From such an algebra, up 
to some isomorphisms, it has been shown how a classical space can be reconstructed, via 
what is called the Gelfand-transform. Thus establishing a one-to-one correspondence be
tween isomorphism classes of commutative C*-algebras and homeomorphism classes of 
geometric spaces. Much of the theory of geometric spaces has been shown to have an ana
logue in the theory of commutative C*-algebras. Moreover, much of this dual theory has 
been shown to extend to non-commutative C*-algebras. In view of the one-to-one corre
spondence we have already mentioned, these non-commutative C*-algebras can be readily 
thought of as a generalization of geometric space. Proceeding along these lines, the the
ory non-commutative geometry envisaged by Connes [19] has been highly successful, and 
many of the tools developed for this theory have been found to be useful when transferred 
back into the classical setting. One aspect of this theory which has been of interest to 
mathematical physicists is what happens to principal bundles in the move to this algebraic 
setting. Proceeding by concentrating on algebraic structure and removing some of the finer 
detail, a notion of what is termed a quantum principal bundle has been developed, that 
has the algebraic properties required of a sensible dual to a classical principal bundle. Re
markably, this notion coincided with an object, termed a Hopf-Galois extension, that had 
already been studied under the auspices of the theory of Hopf algebras (see [18] and [29]).

In this thesis we investigate further generalizations which can be made from the start
ing point of Hopf-Galois extensions. From a mathematical physics point of view, such 
generalizations have been required to accommodate certain classes of examples. In the 
development of these more general objects, new mathematical structures called entwining 
structures were discovered by Brzezinski and Majid [10]. In order to analyze these objects, 
it has proved fruitful to associate what are called corings to these objects. The theory of 
corings also predates non-commutative geometry, and was initiated by Sweedier in [37]. 
The main subject of this thesis is to develop the theory which is dual to that of corings, 
and then use this to provide structure theorems for what are called weak coalgebra-Galois 
extensions. We proceed as follows

C hapter 1 Quantum principal bundles or Hopf-Galois extensions are introduced. En
twining structures are then defined, and using this definition generalizations of quantum 
principal bundles are described. The category of modules for an entwining structure is

vii



viii PREFACE

defined and shown to be a generalizations of certain module categories appearing in the 
theory of Hopf algebras. C-Galois extensions and A-Galois coextension are introduced, 
and it is shown how to recover entwining structures from these objects. Finally an outline 
of the theory of quasi-finite comodules is given.

C hapter 2 An outline of the theory of A-corings and their comodules is described, in
cluding Galois theory. It is shown how to associate an A-coring to an entwining structure. 
Weak entwining structures and weak C-Galois extensions are then introduced, and it is 
shown how to associate a weak entwining structure to a weak C-Galois extension. Fol
lowing joint work with T. Brzezinski and A. P. Wrightson [13], a notion of invertibility 
for weak entwining structures is introduced, and the consequences of the definition for 
associated A-corings and modules are explored.

C hapter 3 Following joint work with T. Brzezinski [12], an outline of the theory of C- 
rings and their modules is described, and the associated Galois theory developed. It is then 
shown how some of this theory extends to certain firm comodules of firm coalgebras. A 
Galois connection for matrix C-rings is given. It is shown how a C-ring can be associated 
to a weak entwining structure and necessary and sufficient conditions for a C-ring to be of 
entwined type are given. The implications of invertibility of a weak entwining structure for 
associated C-rings and modules are explored.

C hapter 4 Brings together structure theorems from [12] and [13]. Using the techniques 
developed in proceeding chapters, these structure theorems for A-Galois coextensions and 
C-Galois coextensions are proved. It is shown that some existing theorems can be seen as 
corollaries of these structure theorems.



Chapter 1 

Introduction

In this chapter, after agreeing on notation and terminology, we introduce the abstract con
cepts that will be expanded upon within this thesis.

1.1 Generalities
In this section we describe the basic notation and terminology that will be be used through
out this thesis. In what follows k will be a commutative ring, although within some other 
sections of this thesis it will be a field.

Tensor Products The unadorned tensor product <g> will denote the tenor product over the
base ring k. When the tensor product is over an algebra A it will be denoted <g>.

A

Identity map For any /:-module M, M  : M  —> M  will denote the identity map.

Algebras Algebras will always be associative and unital. For a fc-algebra A we denote 
the

• product j : A ® A —> A, a<g>a' i—> aa ',

• unit 1,4 : k —► A, k ^ k \ A.

We simply write fj, or 1 in cases where the algebra is clear from the context. We define the 
opposite algebra of A, written A op, to be the same as A as a ^-module but with the product

HaoP : A op ®A o p A op, a ® a ' ^ n A(af ®a).

Note that 1  ̂ is a unit in Aop.

Coalgebras Coalgebras will always be coassociative but not always counital, non couni- 
tal coalgebras will be identified as such. For a (counital) fc-coalgebra C we adopt the 
Sweedler-Heyneman notation for the coproduct, and denote the

• coproduct Ac : C —* C <g> C, c i—> L c(i) ® c(2);

1



2 CHAPTER 1. INTRODUCTION

•  counit £c : C —> k.

We simply write A or e in cases where the coalgebra is clear from the context. Since the 
coproduct A will always be coassociative, for all c G C, we write

Ao (A® C)(c) =  Ao (C<g>A)(c) =  £ c ( ! )  <8>C(2) ®C(3),

and follow the same pattern in cases where A is combined with itself more times.

Modules Let A be an algebra. Then for any right A-module module M  and left A-module 
N  we usually denote the

• right A-action on M  by pM : M<g>A —> M, m <g> a > ma,

•  left A-action on N  by : A <g> N  —> N, a<g>n\-^an.

Occasionally, when more clarity is useful we denote the

• right A-action on M  by pM : M  8 > A —»M, m<g>at-+ m- a,

•  left A-action o n / / by/vp : A 8 >N—> N, a-n.

Comodules Let C be a coalgebra, that is not necessarily counital. Then for any right 
C-comodule M and left C-module N,  we adopt the Sweedler-Heyneman notation for the 
coactions, and denote

• right C-coaction on M  by p M : M  —> M ® C ,  m i-> £ mp] 8 > ,

•  left C-coaction on N  by Np  : N  —► C<g>N: n >->

Since the coaction p M will always be coassociative, for all m G M, we write

(Af <8>A) o p M(m) =  (pM ®C) o p M(m) =  J ^ m[o] ® m [i] ® "*[2]

and follow the same pattern in cases where A and p M are combined with each other more 
times. We adopt the symmetric convention for left C-comodules.

Cotensor product For any right C-module M  and left C-comodule N.  The cotensor 
product is defined as the equalizer

p m ® n

M ^ N  * M ® N = -------> M 8 > C 8> AC
M®pN
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Categories of modules and comodules For any k-algebra A and £-coalgebra C (not nec
essarily counital), we write

• M* or Vect£ (when k is a field), for the category with objects that are A:-modules and 
morphisms Hom^(—, —) which are ^-linear maps.

• My\, for the category with objects that are right A-modules and morphisms 
Hom_,i(—, —) which are right A-linear maps.

•  M c , for the category with objects that are right C-comodules and morphisms 
Hom- c ( - , - )  which are right C-colinear maps. In cases where C is not counital, 
right C-comodules do not necessarily satisfy any counitality condition.

•  ^M c , for the category with objects that are both right C-comodules and left A- 
modules, for which the left A-action is a right C-colinear map, or equivalently the 
right C-coaction is left A-linear. In either case we require that

PM ° mP =  (ai p ® C ) o { A ® p M).

The morphisms in this category will be right C-colinear left A-linear maps. 

Symmetrically, we define ^M, CM and cM/4, in the obvious way.

Dual modules For any M e  we denote the dual left A-module Hom_^(M,A) by M*. 
Similarly for any N  G we denote the dual right A-module Homi4_(N,A) by *N.

Notions of projectivity Let A be a /:-algebra and C be a fc-coalgebra then we say that

•  M e  M c is a projective C-comodule provided that, for any surjective map of right 
C-comodules i t : M' —* M" and any right C-comodule map f  : M  —> M", there exists 
a right C-comodule map g \ M  —> M' such that n o g  = f .  Or equivalently, in the 
language of category theory, for any epimorphism n  : M ' —»M" in M c , the mapping 
of sets

Hom- c (M, 7r) : Horn_C(M ,M') -> Hom_ c (M ,M"), f ^ n o f  

is surjective.

• M e  c M/1 is a C-equivariantly projective right A-module provided that, for any epi
morphism n \ M '  —> M" in CMU, which splits in CM, and morphism /  : M  —> M" in 
cMj4, there exists a morphism g : M  —> M" in c M/4, such that n o g  = f .  Or equiva
lently, the map : M 0 A —> M is a split epimorphism in cM/\.

• M e  M/i is a k-relatively projective right A-module provided that, for any epimor
phism n : M ' —> M" in M^, which splits in M*, and morphism /  : M  —► M", there 
exists a morphism g : M  —> M' in such that n o  g = f .  Or equivalently, any 
epimorphism n  : iV —> M  in M^, which splits in M*, splits in M^.

Note that the list of equivalent conditions given above is not exhaustive. Similarly we 
define left handed versions of these notions.
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Notions of injectivity The notions of injectivity we shall use, are those which are dual 
to those we have explained for projectivity.

The convolution product Let C be a fc-coalgebra and A be a £:-algebra. Then it possible 
to define a product on Hom^(C,A) by defining, for all / , g  G Homjt(C,A) and c G C,

This product is termed the convolution product. Note that with this product Horn*(C, A) is 
an algebra, termed the convolution algebra, with unit element 1̂  o ££.

Bialgebras and Hopf algebras Let H  be a ^-module that is both a k-algebra and a k- 
coalgebra. Then we shall say that H  is a k-bialgebra provided the pn  and 1//, are comulti- 
plicative, and Ah and £// are multiplicative. If moreover, the identity map H  has an inverse 
S in the convolution algebra Horn* ( // ,/ /) ,  then we shall say that H  is a Hopf algebra with 
antipode S.

Comodule algebras and module coalgebras Let A be a A>algebra, B be a fc-bialgebra 
and C be a ^-coalgebra. Then we shall say that A is a right 5-comodule algebra provided, 
A G Mfl and the coaction is a multiplicative map, where A <g>5 has the tensor product algebra 
structure. Similarly we shall say that C is a right 5-module coalgebra provided, C G M# 
and the action is a comultiplicative map, where C ® 5  has the tensor product coalgebra 
structure. Similarly we can define left landed versions.

1.2 Entwining structures

1.2.1 Origins in quantum group bundles
Entwining structures where first introduced in [10] in order to broaden the following defi
nition:

Definition 1.2.1. P = P(B,H)  is a quantum principal bundle with universal differential 
calculus, structure quantum group H  and base B or a Hopf-Galois extension if and only if:

1. H  is a Hopf algebra.

2. P is a right //-comodule algebra.

3 B = PcoH: = { u e P \ p p (u) = u ® l } .

4. canp : P ® b P —> P ® H ,  canp =  o (5<g)pp) is a bijection.

This notion of a Hopf-Galois extension, in this form, was introduced in [29], and built 
upon an earlier definition given in [18]. This object can be thought of as the object dual to 
a principal bundle as defined in ordinary differential geometry (cf. [34]). The differential 
geometric meaning of a Hopf-Galois extension was further explored in [11], where the 
theory of connections was developed. Importantly from this standpoint it can be shown
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that the universal rc-forms on P, defined as £lnP {<w G P ®'1+1 : Vi G 1 , ju,G) =
0} where jU, denotes the multiplication in P  acting on the i and i +  1 factors in 
admit a right //-coaction. Not to loose this geometric meaning it was critical that any 
useful generalization should also have this property. Also, in order to include specific 
examples it was desirable that the conditions on the structure quantum group H  should be 
relaxed in order to accommodate generic coalgebras. With these considerations in mind 
a generalization of a quantum principal bundle with universal differential calculus was 
proposed as follows.

Definition 1.2.2. A coalgebra C and an algebra P are entwined if there exists a map y/ : 
C ® P  —> P  ® C such that the following diagram commutes:

C ® P® P C<g>C(g>P

Pc ¥

IO C

<8>CP

The map y/ is referred to as the entwining map.

Let n be a positive integer, for 1 < i < n let w,/+i symbolize the entwining map applied 
to the i and / +  1 legs of p ®'-1 ®C(g>P<g>P<S)Al~ '-1 then the following Proposition, taken 
from [10], defines a generalization of a quantum principal bundle.

Proposition 1.2.3. Let C,P be entwined by y/. For every group-like element e E C  we have 
the following:

1. For any positive n, P®n is a right C-comodule with the coaction p p®n = y/n,n+\ ° 
y/n- ] }n ° ••• ° V̂ i,2 ° (Tic® P®n) , where Tfc : k —> C, cc i—> ae.

2. The coaction p p®n restricts to a coaction on £lnP.

3. M  =  PecoC =  {u G p : p p (u) = u <S> e} is a subalgebra o f P.

4. The k-linear map canp : P<g>P —> P<g>C, ^  uy/(e®v) is well-defined. Ifcanp
B

is a bijection we say that we have a yr-principal bundle P(M ,C, y/,e).

Proof. See [10, Proposition 2.2]. □

In the following example, again taken from [10], we see that this notion is indeed a 
generalization of a quantum principal bundle.
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Example 1.2.4. Let H  be a Hopf algebra and P be a right //-comodule algebra. The 
^-linear map y/:H<g>P—>P<g)H defined by ii/(h<8> p) =  LP[o] ® ^P[i] entwines H  and
P. Therefore with this choice of y/, P(M,H)  a quantum principal bundle with universal
differential calculus can be seen as a y/-principal bundle P ( M, H , i//', 1//).

Proof. See [10, Example 2.3], □

Remark 1.2.5. Just as for Hopf algebras the diagram which must be satisfied for an en
twined algebra and coalgebra is formally self-dual, in that by swapping jUp with Ac, 1 p 
with £c and P with C, you arrive back at the initial diagram. This allows proposition 1.2.3 
to be dualized as follows.

Proposition 1.2.6. Let C, P be entwined by y/ :C<S>P —> P<g>C. For every algebra character 
K : P —> k we have the following:

1. For any positive integer n, C®n is a right P-module with the action pc®n :=  (jc® 
P®n)oy f  i )2 oy/2 , 3 ° - 0  yrn,n+l-

2. The action Pc®« maps A£(C) to itself.

3. The subspace 4  =  span{cu — c k ( u ) \ c  6 C,wG P} is a coideal. Hence D = C/ IK is a 
coalgebra. Denote the corresponding canonical surjection by nK : C —►D.

4. There is a map j3 :C<8>P —> C D C  defined by p ( c ® u )  =  L c(i) ® C(2)M> where C is
viewed as a (D,D)-bicomodule via the map n K : C —> D. I f  ft is a bijection we say 
that C(D , P; y/, k ) is a dual y/-principal bundle.

Proof. See [10, Proposition 2.6], □

1.2.2 Conventions
Beyond the original situation for which they were intended, an entwined pair of a coalgebra 
and an algebra was found to have a lot of algebraic structure. As such, these objects have 
been studied in their own right. We now consider triples (A,C, yr)  consisting of an algebra 
A, coalgebra C and some map y f .  Depending on the properties of y /  we make the following 
definitions.

Definition 1.2.7. If C and A are entwined with entwining map y/ as in Definition 1.2.2 
(with P = A) we say that (A,C, yf) is a right-right entwining structure. Writing, for all 
a e  A and c EC , y/(c <S> a) = aa ® ca this means that

Y ,(ab)a ® ca = £  aabp ® caP, ( 1.1)
a a ,p

Y ,a a£c(ca ) = J^£c(c)a, ( 1.2 )
a a

£ a a <g>Ac(ca ) =  ® c(2)a > (1.3)
a

£ lc c ® C a =  1 ®c. (1.4)
a
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The category of right-right entwining structures E* is defined to have objects which are 
entwining structures and morphisms which are pairs ( / ,g )  : (A,C, iff) —> (A',C', y f)  con
sisting of an algebra map /  : A —► A' and a coalgebra map g :C  —> C' such that

{ f ® g ) ° W  =  i / 0 (g ® /)-  (1-5)

Definition 1.2.8. If C and A are entwined with entwining map y/ : A ® C  —> C ® A  as in 
Definition 1.2.2 but with yr-arrows reversed we say that (A,C, y f )  is a left-left entwining 
structure. Writing, for all a G A and c G C, yr(a®c) = Y,EcE ® aE this means that

Y , cE®(ab)E = Y , cEF®aFbE, ( 1.6)
E  E, F

Y , £c{cE)aE =  £ a e c (c ) ,  (1.7)
E  E

52 Ac {°e ) ® cF  =  52 c(l)£ ® c(2)£ ( 1-8)
£ £,£

52c£ ® i £ ~  1- (1-9)
E

The category of left-left entwining structures is denoted by *E.

Interestingly if (A,C, y f )  is a right-right entwining structure with invertible yr then 
(A,C, y/~l ) is a left-left entwining structure. In the case when yr is invertible the triple 
(A,C, \jf) is called an invertible entwining structure. Similarly one can define the notions 
of left-right and right-left entwining structures, for which the corresponding categories are 
denoted ,E # and *E. respectively. We refer to [17] for more details about all possible 
conventions and definitions of categories of entwining structures.

1.2.3 Unification of modules
In the study of Hopf algebras many different categories of associated modules have ap
peared. These include Hopf modules [36], relative Hopf modules [21] [39] and Yetter- 
Drinfeld modules [42] [31]. In order to obtain a better understanding of these modules it 
has proved profitable to bring the theory of these modules together by considering them 
each as part of a more general category of modules. Such a unifying category of modules 
was proposed, independently in papers by Doi [22] and Koppinen [28], as follows.

Definition 1.2.9. A right-right Doi-Koppinen structure is a triple (H,A,C)  where H  is 
bialgebra, A a right //-comodule algebra and C a right //-module coalgebra. The category 
of modules corresponding to such a triple, denoted M (//)J  , has objects which are right C- 
comodules with a right A-action satisfying the compatibility condition, that for all m E M  
and a G A,

p M(ma) = Y*m[0]a[0]®m[i]a[i]> (L1°)

where p M(m) =  Yim [o] G M ® H  and p A(a) =  Lap] ® 0[i] £ A ® H ,  and morphism 
which are right A-linear and right C-colinear maps. Objects of this category are called 
unifying or Doi-Koppinen Hopf-modules.
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Similarly one can define left-right, right-left and left-left Doi-Koppinen structures and 
their corresponding categories of modules, denoted /\M (//)C, c M (//)/\ and %M(H)  respec
tively.

Remark 1.2.10. For any right-right Doi-Koppinen structure (H,A,C)  the map y / : C®A —> 
A ® C defined y///(c® a) =  L fl[o] ^ c^[i] gives a corresponding right-right entwining struc
ture (A,C, yffj). In this way one sees that right-right entwining structures are at least as 
general as right-right Doi-Koppinen structures. Under the assumption that A is finitely 
generated and projective as a fc-module it has been shown in [41] that every right-right 
entwining structure can be generated in this way. However for general algebras and coal
gebras this is not true and an example of an entwining structure not arising from a Doi- 
Koppinen structure was provided in [32]. Hence in some sense entwining structures can be 
thought of as a generalization of bialgebras.

Just as a category of modules can be associated to a Doi-Koppinen structure, one can 
associate a category of modules to an entwining structure, as described in [7], as follows.

Definition 1.2.11. For a right-right entwining structure (A,C,y/)  the category of right- 
right entwined modules, denoted M (yr)J, has objects M  which are right C-comodules with 
a right A-action satisfying the compatibility condition, for all m G M  and <2 £ A

p M(ma) = (1.11)
a

and morphisms which are right A-linear and right C-colinear maps.

Similarly for left-right, right-left and left-left entwining structures one can define their 
corresponding categories of entwined modules, denoted /\M(i/r)c , cM (i//r)/4 and (y/) 
respectively. In the notation of Remark 1.2.10 it is easy to see that M (Z/)J =  M (i/(//)$ 
hence entwined modules are a generalization of unifying Hopf-modules. Many results 
about unifying Hopf-modules generalize into this broader setting.

1.2.4 Coalgebra extensions and algebra coextensions of Galois type
Just as a quantum principle bundle with universal differential calculus P(B,H)  can be de
scribed as an Hopf-Galois extension, in this section we mention how a principal yr-bundle 
and dual principal i/r-bundle, can equally be viewed as certain types of algebra extension 
and coalgebra coextension respectively. In particular following [9] we mention how the 
entwining map can be recovered from these (co)extensions.

Definition 1.2.12. Let C be a coalgebra and A be an algebra that is also a right C-comodule. 
Then

B := A coC := {b e  A\pA(ba) =  bpA(a),Va e  A},

is a subalgebra of A, which is termed the subalgebra o f (right) coinvariants. We say that 
B C A is a (right) coalgebra-Galois extension (or C-Galois extension) provided that the left 
A-linear right C-colinear map

can^ : A®A —>A®C, can& :=  (p  ®C) o (A gip '4),
B B

is bijective.
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Now for such an extension there is the following result.

Theorem  1.2.13. Let B C A be a C-Galois extension. Then there exists a unique map 
\j/:C<g)A—>A<g>C entwining C with A and such that A G M fi/rjJ with the structure maps 
p  and p A. This entwining map is referred to as the canonical entwining map associated to 
the C-Galois extension B CA.

Proof. For a C-Galois extension define

lff : C ® A —>A®C, \j/(c<S>a) = can/1((can^1(l <g>c))a),

see [9, Theorem 2.7] for detailed proof. □

Dually there is the following.

Definition 1.2.14. Let A be an algebra and C be a coalgebra that is also a right A-module. 
Then the space

I  := sp an { £ (ca )(1)a((ctf)(2)) ~ Y , c(i)a (c(2)a )\a £ A ,c 6 C ,o :g  Hom*(C,fc)}

is a coideal of C (see [9, Lemma 3.2] for a proof of this). Now B := C / I  is a coalgebra 
and we say C -» B is an (right) algebra-Galois coextension (or an A-Galois coextension) 
provided that the left A-linear right C-colinear map

P : C<8>A —► CD C, /3 :=  (C ® pc ) o (Ac<8>A)
B

is bijective.

In the algebra-Galois coextension case there is a dual result.

Theorem 1.2.15. Let C -» B be an A-Galois coextension. Then there exists a unique map 
y  \ C ® A  A ® C  entwining C with A and such that C G M (yr)J with the structure maps 
Ac and p c . This entwining map is referred to as the canonical entwining map associated 
to the A-Galois coextension C -» B.

Proof. For an A-Galois coextension define 

i/r: C®A -»• A<g>C, yr(c® a) =  £ ( ( £ C® ^) °j3 - 1(c(i) ® (c(2)a )(i))) ® (c(2)«)(2)? 

see [9, Theorem 3.5] for detailed proof. □

1.3 Dual notions of finitely-generated and projective for 
comodules

In this section we recall the dual notions of finitely-generated and projective for comodules. 
Following [14, Section 12] and [38] we also review further constructions which can be 
made from comodules satisfying such notions, in particular those which will be used in 
subsequent chapters. Throughout this section we work over a field k.
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Definition 1.3.1. A right C-comodule M  is said to be quasi-finite, provided that the functor 
— ® M  : Vert* —► M c has a left adjoint. If such a functor exists it is denoted by hc{M , - )  : 
M c —» Vectfc and called the co-hom functor.

Example 1.3.2. Since Horn-C (M, V ® C) ~  Hom*(M, V) it is clear that the forgetful func
tor M c —> Vect  ̂ is the left adjoint of -  <g> C : Vect* —> Mc , so C is quasi-finite as a right 
C-comodule.

Remark 1.3.3. Suppose that M is a quasi-finite right C-comodule, N  is a right C-comodule 
and V is a vector space over k. Let

Q.Ny  : H omk{hc {M,N) ,V)  -* Horn"C(JV,V ®M),

denote the functorial isomorphism required by Definition 1.3.1. Given any map 
/  £ Hom~c (iV, V ®M)  let u £  H om ^/ictA f,^), V) be the unique map such that f l ^ y ^ u )  = 
f .  Now recall that f l ^ y  can be expressed in terms of the corresponding unit of adjunction, 
(pw : N  —+ hc(M,N)  ®M,  in this case as f l ^ y ( u )  =  (u ® M ) o (p̂ j. Hence it is clear that any 
right C-colinear map /  : N  —> V ® M  can be factorized as a composition

N  hc {M,N) ® M  V ®Af, 

for a unique choice of ^-linear map u : hc(M,N)  —> V.

Remark 1.3.4. By the previous remark any right C-comodule map /  :N  —> L induces a map 
hc ( M, f )  : hc(M,N)  —► hc(M,L)  determined uniquely by the condition

<PL°f= (hc { M, f ) ® M) o (p N.

Since the result of applying the co-hom functor to a map /  : N  —► L  produces a map satis
fying this condition, this notation is justified, i.e. the result of applying the co-hom functor 
to a map /  results in the map hc{M, f ) .

Proposition 1.3.5. Suppose that M  is a quasi-finite right C-comodule, N  is a right C- 
comodule and V is a vector space over k. Then the map

: hc ( M , V ®N )  —> V ® h c {M,N ),

determined uniquely by the condition

V ® (Pn = 0P va® M ) o <py®/Vi

is an isomorphism.

Proof. See [40, Proposition 3.2]. □

Corollary 1.3.6. The maps 'P -,- defined above are the natural transformations fo r  an 
isomorphism o f functors

h c { M , - ® ~ )  ~  - ® h c {M, - ) .
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Proof. To see that these are natural transformations in the first component, we need to 
check that, for all vector spaces V and W, and ^-linear maps /  : V —> W, the diagram

hc {M, V ® N )  'lc(M'/w ) > hc { M, W®N)

V ® h c {M,N) f<Shc{M’Ni w ® h c (M,N),

is commutative. To check this observe

(0JV.N ° h c { M , f ® N ) )  ®M)  o (pv®N = (vVw,N®M)o(pw®N o ( f  ®N)
= (W ® (pN) o ( f  ® N)
=  ( f ® h c (M,N) ®M)  o (V <g> <pN)
= ( f  <g>hc(M,N) <8>M) o ('Py x  ® M ) o (pvQH 

— {( ( f  ®hc{M,N))  oTV,yv) ®M) ° (pv®N

By multiple use of the defining properties of xP - jn and h c ( M , f  ®N) .  Hence the commu
tativity follows by the universal mapping property observed in Remark 1.3.3. A similar 
calculation shows these transformations are natural in the second component. □

Proposition 1.3.7. Let M be a quasi-finite right C-comodule. Suppose that N  is a (F ,C )- 
bicomodule then hc(M,N)  is a left F-comodule with hc(MN̂)p -= m FN ohc (M, Np).

Proof. To see this coaction is coassociative observe that the diagram

hc (M,N)
hc (M,Np)

hc ( M, F ® N )
Vf,n F ® h c {M,N)

hc(M,NP) hc{M,Ap®N)

hc { M, F ®N)  kc{M’Fe,N̂ hc ( M , F ® F ® N )

V f .n ^F,F^N

A p<8)hc{M ,N)

F ® h c ( M , N )  F®hc{M' £ ]f ® h c ( M , F ® N )  F > F ® F ® h c ( M, N ),

is commutative. The commutativity of the top left quadrilateral in the diagram follows 
from the coassociative of Np  and the commutativity of the other two quadrilaterals follows 
since 'P - ,-  is natural in either component, as shown in Corollary 1.3.6. To see that the 
triangle is commutative observe that, by the defining property of VP - ,- ,

0P f® f,n  ®M)(Pf®f®n =  F(8)F<g)(pN
=  F  ®  ((*Pf,jV ® M )  o ( P f ® n )

=  (F £>xP/rw <g>M)o(F ®(Pf®n )
=  (F (gl'P/r/v <8)M) O (T V )/r(g>Jy  <g>M) O ( p F ® F® N  

=  ( ( ( F ® xP/Tjv) oXPf,F<8>aO °  ( pF ® F® N-
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Now reading around the edges of the diagram exhibits the coassociativity. By making 
similar observations it is possible to show that the diagram

hc (M,N ) hc(M'Nl>l h c { M , F ® N )  <1'fA >F ® h c {M,N)

is commutative, and reading around the edges of this demonstrates that the left coaction is 
counital. □

Proposition 1.3.8. Let M  be a (D ,C)-bicomodule such that M  is quasi-finite as a right 
C-comodule. Suppose N is a right C-comodule then hc(M,N) is a right D-comodule with 
coaction p hc(M>N) uniquely determined by the condition

0hc {M,N) ®Mp)  o(pN = (phc(MN) 0 ^

Proof. The map p hd MN) js coassociative since 

([phc(M'N) ® D ) 0 p hcW>N) ® M )o<pN =  (phc(M'N' >®D®M)o{phcW'N) ® M ) o (pN

= (phc(M'N) <g>D<g>M) o (hc (M,N)  <8>Mp) o <pN 

=  {hc { M , N ) ® D ® Mp ) o ( p hc(M'N) ® M ) 0(pN 
= {hc ( M , N ) ® D ® Mp ) o ( h c { M , N ) ® Mp)o(pN 
=  (hc(M,N) ®AD(g)M) o (hc (M,N) <g)Mp)  o <p/v 

=  (hc ( M , N ) ® A D® M ) o ( p ĥ M'N)®M)o(pN 

=  {((hc (M,N) ® Ad ) o p hd M^ )  ®M)  o (pN.

These equalities follow by multiple use of the defining property of p hc(M>N) and the coasso
ciativity of Mp.  Now by the adjointness it is clear that p hc(MN) [s coassociative. Similarly

((hc (M,N ) O eD) o p hc(M>N) ®M)o(pN
= (hc {M,N)®ED® M ) o ( p hcW'N) ® M ) 0(pN 
= (hc { M, N)®£D® M ) o ( h c ( M , N ) ® Mp)o(pN 

= (hc{M,N)®M)o(pN,

by the defining property of p hc(MC) and the counitality of Mp.  Therefore, by the adjoint
ness it is clear the p hd MF) is counital. □

Remark 1.3.9. If M  is a (D, C) bicomodule which is quasi-finite as a right C-comodule, then 
the previous propositions allow the co-hom functor to be viewed as a functor hc(M , —) : 
Mc Md .

Proposition 1.3.10. Let M be a (£), C)-bicomodule such that M is quasi-finite as a right C- 
comodule. Suppose that N is an (F,C)-bicomodule. Then hc(M,N) is an (F,D)-bicomodule 
with the coactions given in the previous propositions.
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Proof. First observe the diagram

NPN ------------------

<Pn

hc ( M , N ) ® M  P)®>Mhc  ( M , F ® N ) ® M  —  F ® h c ( M , N ) ® M ,

is clearly commutative and so (pM is left F-colinear. Now compute 

(((*c(M,N)p ,3 0 ) 0 p hc(M.N)') o

= (ĥ M-N>p c/j D9j M) o (phc(M.N) 0  M)  O <pN 

= (Hc(M'N)p ® D ® M ) o ( h c { M , N ) ® Mp)o<pN 

= (F ® h c { M , N ) ® Mp ) ° { Hcl'M'N'>p®M)o<pN 

=  {F ® h c { M , N ) ® M p ) o { F  ®<Pn ) ° n p
=  ( F ® p hcl-M'N) ® M ) o ( F ® ( p N) o Np  

=  (F ® p hc(M'N)® M ) o { hc(M'N')p®M)°<!>N 
=  ( ( (F ® p hc,M'N>) ohc,M-N> p ) ® M )  o <pN.

This follows by making multiple use of the defining property of the map p ftc(M,w) ancj 
left F-colinearity of (p^. Now by the universal mapping property mentioned in Remark
1.3.3 the previous computation shows that the coactions must be compatible. □

Proposition 1.3.11. Suppose M  is quasi-finite as a right C-comodule. For each right C- 
comodule N, the map 5/v : hc(M,N)  —> NUh c ( M, C)  uniquely determined by the condition

(8N ®M)o(pN = (ND(pc ) o p N,

has the following properties.

1. I f  N  is a (D,C)-bicomodule then 8m is left D-colinear with the left D-coaction de
scribed in Proposition 1.3.7.

2. I f  M  is a (D,C)-bicomodule then 8m is right D-colinear with the right D-coaction 
described in Proposition 1.3.8.

Proof. This is a straight forward calculation and is left to the reader. □

The observation made in Remark 1.3.9 can be further developed to give an alternative 
definition of quasi-finite for bicomodules as follows.

Theorem 1.3.12. Suppose that M  is a (D,C)-bicomodule, then M is quasi-finite as a right 
C-comodule i f  and only i f  the functor — DM  : M D —> M c has a left adjoint, moreover this

D
left adjoint will be given by the co-hom functor.
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Proof. See [38, Proposition 1.10]. □

Another instance in which the co-hom functor corresponding to M, a quasi-finite right 
C-comodule, returns an object with additional structure to that of a vector space occurs 
when the co-hom functor is applied to M  itself. In this case E  :=  hc(M,M)  can be given a 
coalgebra structure by defining Ae and £e to be the unique maps satisfying

(E <g> ( p / ^ )  o  (pM  =  (Af <g>M) o  cpM , (£ e  ®M) o  (pM  =  M.

That this produces a coalgebra structure can be checked in a similar way to which p hc(M0  
is shown to be coaction in proposition 1.3.8 (a full proof of this can be found in [14, 
Subsection 12.9]).

Definition 1.3.13. Suppose M  is quasi-finite as a right C-comodule then E  :=  hc(M,M)  
with the coalgebra structure defined by the above maps, is called the coendomorphism 
coalgebra o f M .

Proposition 1.3.14. Let M be a quasi-finite right C-comodule and set E = hc{M,M) to be 
the coendomorphism coalgebra ofM.  Then M  is an (E ,C)-bicomodule, with left coaction 
given by the unit o f adjunction (pM : M  —* hc{M,M) <8>M. Furthermore i f  M is also a 
(D,C)-bicomodule, then there exists an unique coalgebra map 7 t: E —> D such that the left 
D-coaction is equal to ( f t  (g> A/) o  (pm -

Proof. From the defining properties of the coendomorphism coalgebra it is clear that 
(p M  : M  —> E  ® Af will be a left coaction and by the definition of (pM  this map must be right 
C-colinear. Hence M  is an (E,C) -bicomodule with this left coaction. Now suppose M  is 
also a (D,C)-bicomodule. By the universal mapping property of Remark 1.3.3, Mp  : M  —> 
D (g) M  can be factorized by the composition

M  ^ E ® M  ^ U D ® M ,

for a unique choice of ^-linear map i c :E —>D. Now observe

({ADo n ) ®M ) o ( p M = (AD® M ) o Mp
=  { D ® m p ) o m p  

= { D ® M p ) o ( n ® M ) o ( p M 
= (n ® Mp)o(pM
=  (7T<8> {{n®M)o(pM))o(pM

— (n ® 7t M) o (E ® (pM) ° (pM
=  (tt <g) n  <g>M) o (Ae ® Af) °  ( p M 

=  (((7T<g>7r) O Af) ®M)o(pM.

Where the equalities follow by the coassociativity of Mp  and the defining characteristics of
the maps n  and Ae- Hence the map 7t as defined above is comultiplicative. Similarly it is
clear that

( ( £Do n ) ® M ) o ( p M =  ( e d ® M ) o m p  =  Af =  ( e e  ®M) o  q>M, 

hence the map n  is also counital. □
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Definition 1.3.15. A right C-comodule M is called an injector if the tensor functor — ® M : 
Vect* —► Mc respects injective objects.

Proposition 1.3.16. I fM  is quasi-finite as a right C-comodule then M  is an injector i f  and 
only i f  the co-hom functor is exact.

Proof. Suppose V is an injective object in Vect* and hc{M,  —) is exact. Since V 
is an injective object the contravariant functor H om ^(-,V ) is exact. Now observe this 
implies that the composition Hornk(hc(M,—),V)  is exact and so by the adjointness iso
morphism Hom_ c (—,V <g>M) must also be exact. Therefore V ® M  is an injective object 
in Mc . Conversely suppose that the tensor functor — ® M  : Vect* —> Mc respects injec
tive objects. Since hc{M, —) is a left adjoint it is right exact, so it is only necessary to 
check that hc(M , —) preserves monomorphisms. Let /  : N  —► L be a monomorphism and 
set g =  hc ( M , / ) .  Now by the adjointness for all V G Vect* there is a commutative diagram

Horn k(hc ( M , L ) , V )  = ^H om  ~C( L , V®M)

Hom*(*,v)

Hornk ( hc ( Mi N) , V ) -------------^H om  c (iV, V <g>Af).

All categories of modules over rings have an injective cogenerator, and so in particular 
such a diagram exists for V an injective cogenerator in Vect*. With this choice of V and the 
assumption that the tensor functor preserves injective objects Hom_ c (—, V <8>M) is exact 
and so Horn- c ( / ,  V ® Af) is a surjection. By the diagram this means that H om ^g, V) is 
surjective. Now since V was chosen to be a cogenerator this implies that g = hc ( M, f )  is a 
monomorphism. Therefore the co-hom functor is exact. □

Remark 1.3.17. Suppose M  is a (D,C)-bicomodule which is quasi-finite as a right C- 
comodule. By the the previous proposition saying that M  is an injector as a right C- 
comodule is equivalent to saying that the functor h c ( M, —) : M c —> Vect* is exact. In 
view of Theorem 1.3.12 in this situation it is just as well to view the co-hom functor as 
hc(M,  - )  : M c —► M d . N ow hc(M,  - )  : M c —> Vect* is exact if and only if hc(M, - )  : 
M c —> M d is exact. By a similar method to that used in the previous proposition it is 
possible to show that hc(M, - )  : M c —► M D is exact if and only if — D M  : M D —* M c 
preserves injective objects. Hence the following statements are equivalent

1. M is an injector as a right C-comodule.

2. hc{M , —) : M c —> Vect* is exact.

3. - D M  : M D —► M c preserves injective objects.
D

4. hc (M , —) : M c —► M D is exact.

Proposition 1.3.18. Suppose M  is a quasi-finite injector as a right C-comodule. Then the 
map <5/v (as defined in Proposition 1.3.11) is an isomorphism fo r  every right C-comodule 
N. Moreover these isomorphisms are natural transformations, and hence form  an isomor
phism o f functors

hC( M, —) ~  —Uhc(M,C) ,
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where hc(M,C) has the left coaction described in Proposition 1.3.7.

Proof. By the assumptions the co-hom functor preserves injective maps hence the 
rows of the following diagram are exact

hr(N 0N) hc{M,N<S>Ac)
0  * h c { M , N )  -— —-*-hc (M ,N ® C )------------- Z hc ( M , N ® C ® C )

8n

hc {M,pN®C)
't'wsc.c

N®hc(M'c )p
0  * N U h c {M, C) ------------- > N ® h c {M,C) I N  ® C ® h c (M,C),

p N®C

where the maps SP are isomorphisms as defined in Proposition 1.3.5. Now a few straight 
forward calculations show that this diagram is commutative and since the maps are 
isomorphisms so is the map 5/y. For all right C-comodule maps /  : TV —> L, the diagram

h c ( M , N )  — -  hc(M,L)

8n Sl
fDhc(M,C)

N D h c { M , C ) - S  >Lnhc( M, C) ,

is commutative since

( ( 8L o h c { M , f ) ) ® M ) o ( p N =  (8L ® M ) o ( p L o f

=  (L \3 (pc) o p L o f

= (La<pc ) o ( f n c ) o p N 

= ( fOhc(M,C)<g>M)o(NO(pc)opN 

= ( ( ( f n h c (M,C) )odN)®M)o<pN.

The above equalities follow by the repeated use of the defining characteristics of the maps 
8 and hc(M, f ) ,  and the right C-colinearity of / .  Hence the result follows by the universal 
mapping property of Remark 1.3.3. □

This completes our introduction to the theory of quasi-finite injectors. In chapter 3 we 
will return to the results we have mentioned here to study a special class of quasi-finite 
comodules.



Chapter 2 

Corings and weak entwining structures

2.1 Corings

2.1.1 Introduction

The concept of a coring is a generalization of a coalgebra. It is an interesting structure 
as many results which can be proven for coalgebras over commutative rings hold in this 
more general setting. Also the concept of a coring unifies many other algebraic structures. 
Finally there are situations in which one is drawn to consider such a structure, for example 
in investigating ring extensions. In fact it was in this context in which corings were first 
seriously studied as algebraic objects, see [37].

Definition 2.1.1. An A-coring is an (A,A)-bimodule £  together with two (A,A)-bimodule 
maps £<r: £  —»A and A<r: £  —> £  <g> £  which render the diagrams

/i

Ac

£<g>£
A

£<g>£
A

(£<8>A <r 
A

 ̂ £ 0 £<g>£ 
A A

£(r<g>e;

commutative. The map £$ is referred to as the counit and map A<r as the coproduct. A  
morphism of A-corings is a map /  : £  —► 2) satisfying

( / < g > / ) o A ( r  =  A2 o / ,  
A

0 f  — e<£

Example 2.1.2. To any algebra map f  : B —* A  it is possible to associate an A-coring as 
follows. First define £ =  A ®A where A is viewed as a (B, B )-bimodule via the map /  and

B
view £ as an (A,A)-bimodule in the obvious way. Then set

Ac : £ £<g>£,
A

£<r: £  —> A,

a® a ' a®  a'
B  B A B

a®  a' i—> a d .

An A-coring arising in this way is called a Sweedler A-coring (see [37]).

17
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Generalizing these most fundamental examples of A-corings, are the following type of 
A-corings introduced in [23].

Example 2.1.3. Given a (5 ,A)-bimodule M  that is finitely generated and projective as a
right A-module, set M* :=  Hom^(M,A) to be the dual (A, fl)-module. Then letting {ei G
M, e* G M*}/e/ be some choice of finite dual basis of M, it is possible to define an A-coring
structure on the (A,A)-bimodule M* 0 M by setting

B

: M* 0 M  —> M* 0 M  0  M* 0 M, <b 0  m V  <2> 0  e,- 0  e*[ 0  m,
B B B A B

% ,®m: ^ * 0 ^ _>A, 0 0 mH-»0 (m).

An A-coring arising in this way is called a comatrix A-coring. It is shown in [23] that for 
such an A-coring the coproduct is independent of the choice of finite dual basis.

The notion of comodules for a coalgebra can be generalized to A-coring as follows.

Definition 2.1.4. A comodule for an A-coring is a pair (M , p M) where M  is a right A- 
module and p M : M  —> M  0  <t is a map of right A-modules satisfying

A

( p M 0 C ) o p M =  ( M 0 A £ ) o p M , ( M 0 £ c ) o p M = M .
/4 /4

The map is referred to as a right C-coaction and just as for comodules the above con
ditions are referred to as coassociativity and counitality. The category of all such objects 
with morphisms /  : M  —> N  that are right A-linear and right C-colinear (in the sense that 
( /  0) £) o p M = p N o f )  is denoted M c .

A

Example 2.1.5. Suppose M  is a right C-comodule that is finitely generated and projective 
as a right A-module. Then a left C-module structure can be defined on M* = Hom_^ (M, £) 
by the composition of maps

M* -> H o m ^ ( M, €) —> £ 0 M*,
A

described for some choice of dual basis {e; G M,e* G M*},G/ as follows

g>-> ( g ® £ ) o p M ^  £g(e,-[0])e/[i]
A i e i  A

where p M(ei) =  Y*ei[o] <8>e/[i]- [14, Subsection 19.14] for a more detailed account of
A

these constructions. It will also be useful to note that there is a natural isomorphism be
tween End_C(M) and Endc - (M*) which we shall denote by Ta/ : End_ c(M) —>Endc _ (M*). 
For a choice of dual basis {et- G M,e* G A/*}te/, s G E n d -£(M), % e M \ t e  EndC~(M*) 
and m G M

r A/W(?) :=  5 r ^ ( 0 W  =  £ ( 0 (m) =  ( O H .  (2.1)
i'g/ /e/ i e l

In this way one views M* as a right End_c (M) -module with the action §,s =  rAf(.s)(£) =



2.1. CORINGS 19

We shall now highlight the unifying power of the theory of A-corings by showing how 
concepts relating to entwining structures can be viewed as special cases of the theory of 
A-corings. This was first noticed by Takeuchi, and was the main cause of the recent resur
gence of interest in corings.

Proposition 2.1.6. For an entwining structure (A,C, yf) it is possible to define an A-coring 
structure on £  := A <8> C as follows. First view £  as an (A, A)-bimodule by setting a • (a! ® 
c) • a" \= aa! yf{c a") and then define A £ : £ —>C®C~Ac><)C<S)C, A<r :=  A ® Ac and 
£(r =  A ® £c. Conversely i f  the the maps above define an A-coring structure on A ®  C 
then (A,C, l/r) must be an entwining structure. Furthermore under this correspondence
M c =  M (yOj.

Proof. See [4, Proposition 2.2]. □

2.1.2 Galois corings and comodules

With the previous proposition in mind it is possible to define a special type of A-coring 
which generalizes A-corings which are constructed in the way described in Proposition
2.1.6, from the canonical entwining structure associated to a C-Galois extension B C A. 
These constructions first appeared in [4]. As background to these constructions we will first 
investigate how the notion of a grouplike element in coalgebra generalizes to A-corings. 
This idea was originally developed by Sweedier in [37].

Definition 2.1.7. An element g of an A-coring £  is said to be grouplike if A<r(g) =  g <g>g
A

and e(g) =  1.

For such elements there is the following result [37, Proposition 1.9].

Proposition 2.1.8. Let £  be the Sweedler A-coring associated to an extension (j) : B —> A 

then
(a) 1 0  1 is grouplike element o f £.

B

(b) Let D be some other A-coring and let denote the set o f grouplike elements,
g, in V  satisfying <j)(b)g = gQ(b) fo r  all elements ofB.  For each g E G(p(D) there 
exists a unique A-coring map f  : £  —> Q such that J  (1 <8> 1) =  g. Conversely fo r  each

A-coring map § : £  —*■ V , the element § (1 <g> 1) E Gq (£)).
B

Also as regards the comodules of an A-coring we have the following correspondence

Proposition 2.1.9. For any A-coring £, there is a one to one correspondence between right 
£  coactions on A and grouplike elements in £.

Proof. The correspondence goes as follows: given a right £-coaction on A, the element 
p £ ( 1) is grouplike. Conversely given a grouplike element g E £, set p A(a) := 1 ®ga.  See

A
[4, Lemma 5.1] for details. □
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Now given an entwining y/ that arises from a C-Galois extension B C A, let 0  denote 
the associated A-coring. Since A E M (i\f)cA = M ® there is a distinguished grouplike ele
ment Furthermore letting </> : J5 —> A be the canonical inclusion of the coinvariant
subalgebra we obtain that g E G^(D). So by Proposition 2.1.8 for the Sweedler coring £  
associated to (J> there is a unique coring map ^ : £  —> D  such that §(1 <g> 1) =  g. In this

B
situation it turns out that § is an isomorphism. Removing the requirement that D  arises in 
this way one arrives at the following entwining free definition.

Definition 2.1.10. Let £  be an A -coring with a grouplike element g and define B := A C0(L =  
{b E A\bg = gb}. £  is said to be Galois (with respect to g) if the map t, : A ® A  —> £

B
uniquely defined by the condition |( 1  <g> 1) =  g is an isomorphism of A-corings.

A

By the considerations already mentioned the A-coring arising from a C-Galois exten
sion via the canonical entwining is a Galois coring. Furthermore the converse is true. This 
is described in the following example from [4].

Example 2.1.11. Let (A,C, y / )  be a (right-right) entwining structure and let £  = A <g>C be 
the associated A-coring. Then £  is a Galois coring if and only if (A,C, y / )  is the canonical 
entwining structure of a C-Galois extension.

Continuing this chain of generalizations, in order to obtain further insight into Galois 
corings it has proved productive to study special types of comodules of an A-coring. This 
approach started in [23] and was further investigated in [5].

Definition 2.1.12. Let £  be an A-coring, M  E and set S : = End~^(M).  Then M  is said 
to be a Galois (right) comodule provided that it is finitely generated and projective as a 
right A-module, and the evaluation map

<jp,r: Horn-C (M ,£) (g>M —> C, / ®  m =  /(m ),

is an isomorphism of right C-comodules, where £  is viewed as a right £-comodule in the 
obvious way via its coproduct.

The map (p above can been seen to have its origins as the counit of the pair of adjoint 
functors (— (g)M,Hom-c:(M, —)), for which the counit is the evaluation map and unit is

given by the map x [x  > x®m].  Equivalently such comodules can be defined in a way 
which is easily seen to generalize Galois A-corings. First observe that M  as described 
above is an (S,A)-bimodule and Hom~c (M, £) ~  M*. Studying the situation in this way 
one observes it is possible to make the following equivalent definition.

Definition 2.1.13. Let £  be an A-coring, M  E and set S \= End-C (A/). Suppose M  is
finitely generated projective as a right A-module then M  is (S, A ) -bimodule and M* <g)M

s
can be viewed as a comatrix A-coring as described in Example 2.1.3. Now there is a natural 
A-coring map

canM : M* ® M —► £, 5 ® m n  (m|0])m[ij.

M is a Galois comodule if this map is an isomorphism.
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Remark 2.1.14. Now with this definition it will be useful to observe that in the special 
case when M  = A  that the corresponding comatrix A-coring is precisely the Sweedler A- 
coring of the inclusion of the subalgebra of coinvariants Aco(j:. To see this, first note that 
each /  6 End_ c(A) is right A-linear and therefore uniquely determined by its value at 1. 
Then note that any right A-linear map g : A —> A uniquely determined by the condition 
that g (l)  = b  is right C-colinear if and only if b E AcoC. It is then easily seen that A cot is 
isomorphic to S = End_ c(A). In view of this, it is clear that A is a Galois C-comodule if 
and only if (T is a Galois A-coring.

The main properties of such comodules are described in the following theorem first 
stated in [23, Theorem 3.2].

Theorem 2.1.15. (The Galois comodule structure theorem) Let £  be an A-coring and let 
M  be a right £-comodule which is finitely generated projective as a right A-module. Set 
5 =  End"c (M).

(a) The following are equivalent:

(1) M is Galois comodule which is flat as a left S-module.

(2) £  is a flat left A-module and M is a generator in M c.

(3) £  is flat left A-module and, fo r  any N  £ M £, the counit o f adjunction <p/v :
Hom-C (A/,7V’) ®M  —*• N  is an isomorphism o f right £-comodules. 

s
(b) The following are equivalent:

(1) M is a Galois comodule which is faithfully flat as a left S-module.

(2) £  is a flat left A-module and M is a projective generator in M c.

(3) £  is a flat left A-module and Hom-<!:(M, —): —> Ms is an equivalence with
inverse — ® M  : Ms M£. 

s

Proof. See [14, Subsections 18.23 and 18.27]. □

We have already seen how it is possible to associate an A-coring to a C-Galois ex
tension, how Galois A-corings generalize such an object and then continuing the chain of 
generalization introduced Galois comodules. Now as a model for non-commutative prin
cipal bundles, a particular type of C-Galois extension termed a principal C-extension has 
been introduced in [6]. This notion generalizes that of a faithfully flat Hopf-Galois exten
sion with a bijective antipode and is a mild generalization in that it enjoys many of the same 
nice properties. Making a chain of generalizations for these principal C-extensions, as has 
already been demonstrated for C-Galois extensions, one can arrive at a special class of Ga
lois comodules. These comodules generalize faithfully flat Hopf-Galois extensions with 
bijective antipode, yet still admit a theorem similar to what is referred to as Schneider’s 
Theorem 1, as stated in [34]. We first recall Schneider’s result.

Theorem 2.1.16. Let H  be a H opf algebra over a field. Assume the antipode o f H  is 
bijective and B C A is a H-Galois extension. Then the following are equivalent:

(a) (1) A is injective as a right H-comodule;

(2) c a n : A®A —>A ® //, a ® a! i—> Y.aa'[o] ®0[i] ^  surjective.
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(b) M b -> M " M h  Af0 A, is an equivalence.
B

(c) bM ^ aM h ,M>-*A 0  M, is an equivalence.
B

(d) (1) A is faithfully flat as a left B-module;
(2) cai\4 is an isomorphism.

(e) (I) A is faithfully flat as a right B-module;
(2) cai\4 is an isomorphism.

Now this result can be generalized as follows. For completeness we provide a proof 
for algebras over a commutative ring. For algebras over a field this is precisely [5, Theo
rem 4.4].

Theorem 2.1.17. Let £  be an A-coring and M  a right d-comodule that is finitely generated 
and projective as a right A-module. Let S = End-e:(M). Suppose that:

(a) the map

X : S<8>M —> Homc _ (M*,M*0 M), b<&m t—> [§ i—> % ob{—)0 ra],

is an isomorphism o f left S-modules;

(b) the map
cah.M : A/*0 M —► £, <j;0 mi—► (m[0])m[i],

w a epimorphism o f left d-comodules.
Then M is a Galois comodule and M  is a k-relatively projective left S-module (meaning that 
any S-module epimorphism N  —> M  that splits as an k-module map splits as a S-module 
map).

Proof. First observe that Homc - (Af*, <£) ~  *(M*) ~  M, where the first isomorphism 
is an example of a Hom-tensor relation for left £-comodules (see [14, Subsection 18.27]) 
explicitly, for general L , N  G and X  G /\M,

Homc" (N, £ 0 X)  Hom^- (N,X),  f  i-> (e<r 0 X)  o / .
A

The second of the isomorphisms, M  ~  *(M*), is given by, for each m G M, evaluating 
elements of M* at m. This produces a natural map M  —► HomJ4_(Hom_/4(M,v4),A) which 
must be by bijective since M is finitely generated projective. Now in view of assumption
(b) €  is a direct summand of M* 0  M, by the isomorphism in (a) and the isomorphism 
described above, this then means that Homc_ (M *, £) ~  M  is a direct summand of the left 5- 
module Homc _ (M*,M*0 M) ~  50M . Now observe that 5 0 M  is a k-relatively projective 
left 5-module, since given any N  G sM  and left 5-module epimorphism /  : TV —> 5 0  M, 
with a fc-linear splitting v, it is easily verified that v : 5 0 M - > i V  given by the formula 
v (s 0  m) =  sv (10  m), is a left 5-linear splitting of / .  Therefore, since 5 0M  is a k-relatively 
projective left 5-module, so is M.

For the adjoint pair of functors
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the counit of the adjunction

Vm '®m ■ M ' ® Hom£-(M*,AT®Af) -*  M*®M, m * ® f  ^  f { n f )  
s s

can be factored as the following composition of maps

M* ® Hom£_ (M*, M" ® M)
s

-> M* ®S<g>M ^  M* ®M.  
s

Hence is an isomorphism. Using the naturality of <p it is possible to produce a
diagram

M* ® Hom£-(A r
s

A/*<g>Home: (A/*,canyif) 
S

M*®M

can a*

M* <g> H oirr (Af*, C) . yg____________
5

Where the upward pointing arrows are sections of M ^sH om ^^M ^cariA /) and cariM re
spectively. The existence of these maps is guaranteed by assumption (b). Since 
is an isomorphism, the map <p<r is bijective (it is a ^-linear isomorphism). Using the iden
tifications Homc - (Af*,<£) ~  M  and M* ~  Hom-e:(M, C) there is a fc-linear isomorphism 
M*<g>sHomC -(M*,€) ~  Hom_(!:(Af,(£)<g>sM, and using this isomorphism we can construct 
a commutative diagram

M* <8) Homc -  (M*, (£) 
s

<P<L

Horn C(M, £ )® M  
s

from which we can deduce that since (p£ is bijective, so is (p<r. Therefore since <p£ is a 
bijective morphism in Mc, it must an isomorphism of right C-comodules, so we conclude 
that M  is a Galois right C-comodule. □

In the case of algebras over a field, which is of primary interest, to non-commutative 
geometry for example, the special class of Galois comodules which satisfy the assertions 
of Theorem 2.1.17 is described as follows.

Definition 2.1.18. A Galois (right) comodule M  is called a principal comodule provided 
M  is projective as a left S := End-c:(M) module.

This definition is equally valid for algebras over a commutative ring, and it is possible 
to obtain a generalized version of [5, Theorem 4.4]. We are able to realize such a result as 
corollary of the previous theorem as follows.
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Corollary 2.1.19. Let £  be an A-coring and M  a right £-comodule that is finitely generated 
and projective as a right A-module. Let S =  End~c (Af). Suppose that:

(a) M  is a projective k-module;

(b) the map
c a r i M '• M *  <g>M—> £ ,  (™[0])™[1]>

is a split epimorphism o f left £-comodules.

Then M  is a principal comodule.

Proof. It is well known that for any left A-module N  which if finitely generated 
projective and k-module V the map

0 : EndA-(N) ®V —» HomA-(N,N(g> V), t <g> v i—> / ( —) <g> v,

is a ^-isomorphism. The inverse of 0 can be described in terms of a choice of dual ba
sis {ei G N f e t  G *N}iei of aN  as follows, for all /  G Hom^-fA^N <g>V )y writing f ( n )  =  
£ / ( n ) [l|® /( n )121 e N ® V

0'1(/)=E*^(-)/(e')[1|®/(e-')121
/e /

We now consider such a map 0 with V = M  and N  = M*. By the definition of 0 it is 
clear that it maps elements of Endc_ (A/*) eg) Af to left £-colinear maps. We shall now show 
that, going in the other direction, 0 _1 will map left C-colinear maps into Endc - (Af*) <g>M. 
Since M  is a projective k-module it must also be flat as a fc-module, hence we are able to 
check if § ® m is an element of End£_ (Af*) <g> Af as follows. First define a map

<5 : E n d a -(A T ) -> HornA_(M*,£<g> Af),
A

by

<5(£) M  :=  £ * [ - i ]  ® 5 (*[0]) “  E ( €  W )[-i] ?  (5 M)[o]•
/4 n

Where L*[-i] ® *[o] is the result of applying the left <£-coaction on x  G Af*, as described in
A

Example 2.1.5. With this definition § G Endc _ (Af*) C End^-fA/*) if and only if § G 
ker(<5). By the flatness of M  ker(5 <g> Af) =  ker(<5) <g>Af. Hence to check 0 _1( /)  G 
End£_ (Af*) £g Af all that is required is to verify that (<5 ®  Af) o 0 _1 ( / )  =  0. For any left 
C-colinear map /  : Af* —> Af* <g>M and x  G Af*, we can compute

*[_!]&> 0 _1 (/)(*[O]) =  £ * [ - 1 ] ®  *£/(•*[()} ) f ( e i ) [ l ] ® f i e i ) [2] 
i e l

= £ * [ - 1] ®/Te/C*[0] h ) [1] ® /(*e/(* [o ]h )[2]
i e i

= L ^ [ - i ]® /(^ [0])[1] ^ / ( ^ [ 0])[21-
i e i

= £ / M [11[-i] <3»/W[1,[oj ® / M [2]-
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Where the second equality follows by the left A-linearity of / ,  the third by the properties 
of a dual basis and the last equality by the assumption that /  is left C-colinear. Likewise

j'e /

i e i

=  L / w [1][-u ® / w [1][oj ® / w [2]-

So (<5 (8) Af) o 0 _1 ( / )  =  0. Now it clear that 6 restricts to a ^-isomorphism Endc~(M*) 0  
M  ~  H o r n 0 M). Now using the isomorphism

r M : 5 =  End~c (M) Endc~(M*),

as described in (2 .1), we can construct is a chain of isomorphisms

S 0 M  Endc _ (M*) 0  M Hom€" (M*,M*®M)

s ® m  i—» [§ [£ i—> o 1y(—) 0  m]

This is precisely condition (a) of Theorem 2.1.17. Now since M  satisfies the conditions 
of this theorem M  is a Galois comodule and M  is a k-relatively projective left S-module. 
Since M  is a k-relatively projective left S module and M  is a projective k-module, M  is a 
projective S-module, hence a principal comodule as required. □

2.2 Weak entwining structures

2.2.1 Motivation
In certain topics in mathematical physics, for example in the theory of operator algebras 
and monoidal categories, it has been useful to consider an algebraic structure which is a 
generalization of a bialgebra. Following [3] and [30] the axioms for this object are as 
follows.

Definition 2.2.1. A weak k-bialgebra H  is a k-module with a k-algebra structure (jU, 1) and 
a k-coalgebra structure (A, e), such that A is a multiplicative map and

A2(l)  = E 1(l) (g>1(2) 1(l/) <g>1(2/) = E 1(1)® 1(1/)1(2) ^  1(2/) (2-2)

e(hkl) =  I>(«C (i))e(*(2)0 =  Z e ( h k (2))e(km l) (2.3)

for all /z,k,/ e H .  Here A ( l )  = £ 1 ( 1 ) 0 1 ( 2 )  =  L  l(i') ® 1(2')-

When considering such a structure it becomes natural to consider certain projections
H  —> H, since these maps will feature a lot in what what follows we label them as follows.

n L ( h )  =  £ e ( l ( , )A ) l (2 ) .  I f  (A) =  5>(1(2)A)1(1),

n*(A) =  J > ( A 1 (2))1(1), r f  (A) =  £ e ( A l (1)) l (2).

Firstly using these projections one can give sensible conditions for an antipode.
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Definition 2.2.2. A weak H opf algebra is a weak k-bialgebra with a ^-linear map S : H  —► 
H, called the antipode, such that, for all h e  H,

i> (i)S (A (2)) =  n L(h), Z s (hv) )hm s (hc))  =  E s (ftd ))/!(2) =  n R{h).

With this definition the antipode is both an anti-algebra and an anti-coalgebra map. 
Furthermore it satisfies

n*- =  n *  o s, nR = nLos, (2.4)

and
S o n L =  n Ro s , 5 o n R =  n i os. (2.5)

With mind to generalize Doi-Koppinen structures to the case where the auxiliary bialgebra 
is replaced with a weak bialgebra, notions of (co)module (co)algebras for weak bialgebras 
were developed in [2]. Such objects were defined as follows.

Definition 2.2.3. Given a weak bialgebra H,  a right H-comodule algebra is a fc-algebra A 
with a right H  coaction p A : A —> A®H, such that for all a, b e A,

p A{ab) = p A{a)pA{b), (2.6)

and
£ a [0]® n L(a[1]) =  £ l[o ]« ®  l[i]- (2.7)

Given the multiplicativity of p A (2.6), as was noticed in [2, Definition 2.1] and [15, 
Proposition 4.10], there are numerous equivalent ways in which to state the condition (2.7). 
We list these for future reference.

P 2(l)  = ] £ 1[0]® 1 [1] 1(1) ® 1(2), (2.8)

P 2(!) = L 1[0]'8>1(1) 1[1]® 1(2)> (2.9)

£ a [0] (a{l]) =  £ a l [ 0] ® l[i], (2.10)

£ l [0]® r f ( \ {l]) = p( \ ) , (2.11)

E i [o] ^ n L( i [1]) =  p ( i) . (2.12)

Dually one considers the following

Definition 2.2.4. A right H-module coalgebra is defined as a coalgebra C and a right H- 
module such that, for all h ,k  e H  and c eC,

Ac (ch) =  £ c (1)/i(1)®c(2)/i(2), (2.13)

and
£c(chk) =  Y , £c ( ch{2))eH{h^)k). (2.14)

Again with this dual definition given that Ac satisfies the comultiplicative condition 
2.13 there are several equivalent statements which can replace 2.14, see [15, Proposi
tion 4.12] for details. Left //-comodule algebras and left //-m odule coalgebras can be
defined in a similar way.
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Definition 2.2.5. A weak right-right Doi-Koppinen structure is a triple (H , A , C ) where H  
is a weak fc-bialgebra, A a right //-comodule algebra and C a right //-module coalgebra. 
The category of modules corresponding to such a triple, denoted , has objects
which are right C-comodules with a right A-action satisfying the compatibility condition

(2.15)

and morphisms which are right A-linear and right C-colinear maps. Objects of this category 
are called weak Doi-Koppinen Hopf-modules.

Similarly one can define left-right, right-left and left-left weak Doi-Koppinen structures 
and their corresponding categories of modules, denoted cM{H) a and (H)
respectively.

Now a reasonable question to ask is whether it is possible to relax the axioms of an 
entwining structure in order replace the auxiliary weak &-bialgebra in a weak right-right 
Doi-Koppinen structure, in a similar way to what had been done in the non-weak case. 
This question was resolved in [15] where a more general type of entwining was introduced 
as follows.

Definition 2.2.6. A triple (A, C, ij/r ) consisting of a fc-algebra A, £-coalgebra C and ^-linear 
map y/R : C ® A —► A <g> C is called a (right-right) weak entwining structure provided the map 
\f/R satisfies the conditions encoded in the following commutative diagram.

C ® C

C ® A ®A

C ® \® C

C <8>A <8>C

C® A® A
Yr<8)A

A ® C®A 

a®yi?

A ®A ®C

C ® .4 - ^ C ® C ® /1

,u®C
•A ®C

/4®A

C®yR

C ® A ® C
Wr ® C

A <g> C ® C

A ® C® A

^'A®e®C
A ® C ® C

Writing, for all a G A and c G C, y/x(c®a) = E a aa <8>ca , yfR(c<g>a) =  X^aj3 etc., 
these conditions can be expressed as

Y ,(ab)a ® ca =  aabp <g> c^ , (2.16)
a a,p

£ a a £c(ca ) =  ^ e c (ca )la« , 
a a

(2.17)

]Tfla ®Ac(ca ) =  ^ ^ ® C (1)^®C(2)a , (2.18)
a a,j3

^ l a O ca = ^ ^ ( c (1)a ) l a ® c(2). (2.19)
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Modules over right-right weak entwining structures are defined with the same compat
ibility as in the non-weak case. We use the same notation for the category of comodules 
weak entwining structures, i.e. M(i/a)J. Also as in in the non-weak case these conditions 
are self dual, in the sense they are invariant under the operation which replaces A with C, 
Ec with 1 and A with jU.

Definition 2.2.7. A triple (A,C, y/) consisting of a A>algebra A, fc-coalgebra C and k-linear 
map y//,: A <g> C —> C Cg>A is called a (left-left) weak entwining structure provided the map 
y/ satisfies the conditions encoded in the diagram obtained from the diagram in Definition
2.2.6, by reversing the y/R arrows and replacing y/R with y/^. Writing, for all a G A and 
c G C , y/zXfl® c) =  1l e ce ® aE-> V/L(f l® c) =  1Lf cf etc., these conditions can be 
expressed as

Y ce ® (ab)E = Y C e f ® qFbE ’ (2 .20)
E E , F

X)£c(ce)<z£ =  52«£c(c£)1£ , (2 .21)
E E

Y Ac{cE) ® a E = Y c{\)E®c{2)F®aEF, (2 .22)
E E, F

Y ce ® =  L c (1) <8>$:(c(2)e)1£ . (2.23)
E E

Modules over left-left weak entwining structures are defined with the same compatibil
ity as in the non-weak case. Similarly one is able to define (left-right) and (right-left) weak 
entwining structures and their associated categories of modules.

Remark 2.2.8. Just as in the non-weak case for any weak right-right Doi-Koppinen struc
ture (//,A ,C ) one is able to give a corresponding right-right entwining structure (A,C, y/>/) 
where y///(c® a) :=  L a [o] ® Cfl[i]- Furthermore the modules associated to these correspond

ing structures are the same, i.e. M j[(//) =  M (y///)J.

2.2.2 Generalizing results from non-weak case

With the axioms for a weak entwining structure in place, we now investigate how it is 
possible to generalize some of the results for non-weak entwining structures to weak en
twining structures. We start by showing how it is possible to associated an A-coring to a 
weak entwining structure. This result builds upon the first part of Proposition 2.1.6 and 
first appeared in [4, Proposition 2.3].

Proposition 2.2.9. Let (A,C, y//?) be a right-right weak entwining structure. Define the 
map

Pr : A ® C —» A ® C, pr  :=  (p  ®C) o (C® yfo) o (A ® C®  1),

and the set
£  := Im pr = { ^ f l | l a ® c“ | Y ai ® ci

i , a

Then pr is a projection, i.e. pro  pR = pR, and
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(1) €  is an (A, A)-bimodule with the left action a'(Jja a 1« ® ca ) =  ® ca and
the right action (L a fl 'la  ® ca )a =  £ a 0 a '\aap <®c°^ =  £ a a'aa®ca.

(2) £ is an A-coring with counit £<r =  (A <g> £ c )k  coproduct, fo r  all a G A, c G C,

A(r(£<2la <®Ca ) =  ]jTala ®Ca (1) ® l®Ca (2). 
a a  A

(3) =

Similarly for a left-left weak entwining structure there is another version of this propo
sition.

Proposition 2.2.10. Let (A,C, y/i) be a left-left weak entwining structure. Define the map 

P i : C® A —> C®A, pL =  (C® p )  o (y//,® A) o (1 ®>C® A),

arca? ?/ie set
® := Im p i  = \ ^ c lE ® l £a' | ® al G C®A}.

i,E i

Then p i  is a projection, i.e. Plo p i  = pL, and
(1) D is an (A,A)-bimodule with the left action a ( ^ EcE®^Ea') = 

and the right action (X,EcE ® \Ea,)a — Y,EcE ® \Ea!a.

(2) D is an A-coring with counit £© =  (£c ® A )|s  and coproduct, fo r  all a G A, c G C,

A :d (£ c£ ®  \ Ea) = £ c e ( ! ) ®  1®C(2)£®  \ Ea.

(3)

Recall we have already seen that it is possible to associate an entwining structure to 
a C-Galois extension B C A. Is there some more general type of extension to which it is 
possible to associate a weak entwining structure?

Definition 2.2.11. Let C be a coalgebra and A algebra that is also a right C-comodule. 
Then let

B := {b £ A | p A(ba) = bpA{a),"ia G A},

denote the subalgebra of (right) coinvariants. We say that B C A is a (right) weak coalgebra- 
Galois extension (or weak C-Galois extension) provided that the left A-linear right C- 
colinear map

can,* : A®)A —>A®)C, can,* :=  (p  ®C) o ( A ® p A),
B B

is a split monomorphism in the category /*MC, that is to say there exists some morphism 
% : A®)C —> A®)A in,*Mc such that r  ocan,* =  A®A.

B B

Now for such an extension there is the following result
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Theorem 2.2.12. Let B C A  be a weak C-Galois extension. Then there exists a unique 
right-right weak entwining structure (A,C, y/R) such that A C M(vfo)J with the canonical 
right A action (multiplication in A) and the predetermined right C-coaction. This weak 
entwining structure is referred to as the canonical weak entwining structure associated to 
the weak C-Galois extension B CA.

Proof. Let % be the map which splits canA and set

t : C - > A 0 A, t : = ^ ( 1 0 c ) ,
B

to be what we will refer to as the weak translation map. Then the map

y/R : C 0 A  y/R := c a n ,* o (A 0 p )o (T 0 A ),
B

is the weak entwining map with the required properties. See [14, Subsection 37.9] for more 
details. □

Proposition 2.2.13. Let £  be an A-coring associated to a right-right weak entwining struc
ture, (A, C, y/R), and gCC.be a grouplike element. Then £  is a Galois A-coring with respect
to g i f  and only i f  canA : A 0 A —► C  0 A is injective and £  C Im(can^), where the right C-

B
coaction on A used in the computation o f canA is that induced by g via Proposition 2.1.9 
and Theorem 2.2.9.

Proof. By Proposition 2.1.9 for the grouplike element g, there is a corresponding 
right C-coaction on A, p £(a) =  1 0 ga ,  and in turn by Theorem 2.2.9 a corresponding right

C-coaction on A, p A = ga, for which A g M ( i^ ) J .  Clearly with these choices of coactions 

Acoe = { b € A \ b g  = gb} = { b e A \  p A (b) = bpA (1)} = A coC.

Therefore, setting B := Aco£ =  AcoC the unique A-coring map ^ : A® A —* <£ determined by
B

the condition £, (1 0  1) =  g (see Lemma 2.1.8) must be identically equal to can,* : A 0  A —*
B B

A 0 C, since
can,* (ia 0  a!) =  apA (a') = aga' = § (a <S>af).

Hence the result follows. □

Proposition 2.2.14. The A-coring associated to the weak entwining structure in Theorem 
2.2.12 is a Galois A-coring. Conversely, i f  the A-coring associated to a weak entwining 
(A,C, y/R) is a Galois A-coring, then A is a weak C-Galois extension.

Proof. Suppose (A,C, y/R) is as in Theorem 2.2.12 then canA is clearly injective and 
since A C M (y/k)J, p c (l)  E £  is grouplike. Furthermore by the definition of y/R it is 
clear that Im(i///?) C Im(can^) and so since can,* is left A-linear all elements a \a 0 c a C 
Im(can,*). Hence £  C Im(can,*) and £  is Galois with respect to p c (l) E £. Conversely, 
suppose £  is an A-coring associated to an entwining structure and that £  is Galois with 
respect to g. By the characterization of such a coring given in proposition 2.2.13 must have
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that £  C Iir^can,*) and the map ccuia is injective. Also note that from the proof of 2.2.13 it 
is clear that in fact In^can,*) =  £. Hence the corestriction can^ : A  <g> A —* C is invertible.

B

Since cana is a morphism in it is clear that c a n f x must also be a morphism in this 
category. Now observe that p R : A ®C  —> £  is also morphism in /4M c . That it is left A-linear 
is clear. To see it is right C-colinear observe that

p € o p R(a®c)  =  £ f l l a ® ca (1)(g><:a (2) 
a

= ® C(2)a 
a

= Y , a l aP£ (C(2)a ) ® C(l)P ® C(3) 
a

=  ^ <3l «£ (C(l)a (2) )® C(l)a ( l ) ^ C(2)
a

=  £ « l a ® C (1)a (g>C(2).

By use of relations (2.18) and (2.19). Having made these considerations it is clear that the 
composition can! 1 o p R \ A ® C —*A <S>A splits can^ in the required way. Hence A.is a weak

B
coalgebra-Galois extension. □

2 3  Invertible weak entwining structures
With the notion of a weak-entwining structures in place, we now investigate what it should 
mean for a weak entwining structure to be invertible. We do this with mind to generalize 
results which require invertibility of an entwining structure in their assumptions in partic
ular, [5, Theorem 4.6]. First observe this is a non-trivial problem since the obvious choice, 
requiring the entwining map to be bijective, leads to something unsatisfactory.

Proposition 2.3.1. I f  (A,C, Yr ) is a right-right weak entwining structure such that \j/R is 
bijective then (A,C, Yr ) must be a right-right entwining structure.

Proof. Let Yr X '• A <8> C —* C ® A be the ^-linear inverse of yfR, which must exist since 
y(R is assumed to be bijective. Using the convention of writing \f/jjl (a ®c)  =  Y<EcE ® a E 
we immediately have that for all a £ A and c G C,

ca e <8> aaE = c®a,  ^ a Ea®CEa = a<g>c.
a , E a , E

Combining these with the relation (2.16) it is clear that, for all a,b  G A and c G C,

52 (dFbE)a <S>cEFa = 52 aFabEp ® cEFaP = a b ® c .
a , E , F  a , E , F

So applying y t o  the above we obtain, for all a , b e A  and c e  C,

52 cef <S> aFbE =  52 ® {ab)E.
E , F  E
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With this knowledge, for any a G A and c £ C, we can perform the computation

= £ v fo °Y 'i?1( a la ® c a ) 
a a

— ^ V r {c<Xef <8>aFla E)
a

— ^ W R { cF ® a F) = a<g>c.
F

Setting a = 1 in the above it is clear that £ a 1 a ® ca =  1 0  c. Furthermore this observation 
can be combined with relation (2.17) to compute that

£ a a e(ca ) =  £ e ( c a )aa =  e(c)a.
a  a

Hence (A,Ct Yr ) is a right-right entwining structure. □

Hence in the case of weak entwining structures a weaker notion of invertibility is re
quired. We propose

Definition 2.3.2. An invertible weak entwining structure is a quadruple (A,C, lj/r , Yl ) such 
that

(a) (A,C, Yr ) is a right-right weak entwining structure and (A,C, Y l ) is a left-left weak 
entwining structure;

(b) Y r ° V l =  Pr and Yl ° Y r ~  Pl -

Initially when we proposed the definition in [13] we required a third condition, that for 
all c G C

£ e ( c £ ) l £ =  £ l a e(c“ ). (2.24)
E  a

However it was subsequently observed in [1] that in fact this is a consequence of the other 
assumptions. For completeness we recall the proof of this.

Proposition 2.3.3. For an invertible weak entwining structure (A,C, Yr , Wl ) equation (2.24) 
holds fo r  all c EC.

Proof. To see this equation is always satisfied take any c E C  and compute 

L e ( c ( i ) “ ) lo e (c (2)£ ) l£ =  £ l a e ( c “ £ ) l £
a , E  a , E

= £ e ( c “ £ ) l a £
a , E

= £ e ( c £ ) l £ .
E

Where the first equality follows by relation (2.19), the second by (2.21) and the last equality 
since Y l  ° Yr (c ® 1) =  P l ( c <8> 1) =  Y,e ce  ® However it is also possible to simplify the
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expression as

Z ^ {l)a ) l a e (c {2)E) l E =  ^ e ( c £ a ) \ a \ E
a , E  a , E

=  £ e ( c £ a ) l £a
a , E

a

Where the first equality follows by relation (2.23), the second by (2.17) and the last equality 
since \jfR o y/L{\ ®c) =  p/?(l <g>c) =  £ a 1 a ® ca . □

As motivation for the definition of an invertible weak entwining structure the follow
ing observations were made. In the non-weak case the right-right entwining structure 
corresponding to a Doi-Koppinen structure (H,A,C), where H  is a Hopf algebra with 
invertible antipode is invertible. To see this recall that the associated entwining map 
y/H : C®  A —> A ®  C is given by y/)/(c ® a) =  £a[o] ® c a^ ,  with the knowledge that the 
antipode S of H  is invertible it is possible to define an inverse for this map

Vf j1 '■ —> C®A,  a ® c  i—> 22cS,_1<3[1] ®a[o]. (2.25)

In the weak case one could expect the right-right entwining structure corresponding to a 
weak Doi-Koppinen structure (H,A,C),  where H  is a weak Hopf algebra with invertible 
antipode, to be invertible in a weaker sense. This is demonstrated in the following.

Proposition 2,3.4. Let (H,A,C) be a right-right weak Doi-Koppinen structure such that H  
is a weak H opf algebra with an invertible antipode S. Then (A,C, y/R, y/i) is an invertible 
entwining structure where \J/r is the associated right-right weak entwining map, i.e. y/)?(c <8> 
a) = £fl[o] ® cap], and y/i : A ® C  —► C ® A  is defined as y/L{a®c) =  L cS - 1(ap])

Proof. We first need to establish that (A,C, y/t) is a left-left weak entwining structure. 
Rather than checking the necessary relations directly we shall do this by showing that in 
fact y/i is the natural left-left weak entwining structure associated to some left-left weak 
Doi-Koppinen structure (H,A,C).  We define such as structure as follows. Firstly define 
H  :=  H op, the opposite algebra to H.  Agreeing to write h for element an element h E H  
but viewed in H,  there is a natural choice of left //-module structure on C given by

he =  ch,

for all c e C .  Moreover this left //-action is comultiplicative since the given right //-action 
on C is comultiplicative and the comultiplication in H  is the same as in H.  Explicitly one 
computes

^cific) = Ac(ch) = ® c{2)h(2) — X )^(l)C(l) ® ^(2)c(2) — ^L^(l)c(l) ® ^(2)c(2)-

Also observe that, for all c E C and k , h e  H,

edkhc)  =  £c(chk) = Y , £c (ch(2))£H(h(i)k) = Y , £H(kh{i))£c(h{2)c),
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and so C is a left //-m odule coalgebra. Next as a candidate for a left H  coaction on A 
consider a ^-linear map

A : A —>//(g>A, a ®0[o]-

That this defines a coaction follows immediately from the fact that S and therefore 51-1 
is an anti-coalgebra map. That A is a multiplicative map can easily be seen by using the 
multiplicativity of the right //-coaction on A and the fact that S ~ l must be an anti-algebra 
map. Finally by virtue of equations (2.5) and (2.12) we can compute

^ n V 1^ ] ) ®  i [0] =  D ^ _ 1n L( i [1])(g)i[o] =  £  s -1 i[i] ®

which can be seen as a left-handed version of condition 2.11. Hence A is a left //-comodule 
algebra and (//,A ,C ) is left-left weak Doi-Koppinen structure for which the associated 
entwining y /^  must be equal to \j/i since

i% (a® c) =  J^fl[_i]C(8>fl[[o] =  J 2 cS- 1ap] ® fl[0] =  VL(a®c).

Hence (A,C, y//,) must be a left-left weak entwining structure.
To complete the proof we now show that \(/R and y/  ̂ are compatible, in the sense of 

part (b) of Definition 2.3.2. First with these choices of entwining maps the corresponding 
projections can be written explicitly as

p R(a®c)  = J 2 fll[0]® c l[1]> p l (c <8>o) =  £ c S ,“ 1l[1](g>l[o]tf-

Now to verify the required compatibility first take any a £ A and c G C and compute 

Yl ° V r {c ® o) = VL(Y, a[0]®ca[i]) = Y , ca[i](2)s ~ la[' )V)®a[0}

=  52 c‘s'” 1(«[i](i)^[i](2))® fl[o] =  5 2 c5~ ln L (a [i])® fl[o]
=  52cS-1 lp] ® 1[O]0 = PL{c®a).

Where the third equality holds since S and therefore S-1 are anti-algebra maps. The fourth 
equality then follows by one of the defining characteristics of a weak Hopf algebra. The 
fifth equality follows since A is a right //-comodule coalgebra and therefore condition (2.7) 
holds. It now only remains to show that the compositions of the entwining maps in the other 
order yields the required result. Before performing this calculation it will first be useful to 
note that, for all h G H,

S - ' U R { h )  =  U L { S - ' h )  =  ' £ e { h l w ) \ {2) = U R ( h ) .  ( 2 . 2 6 )

This follows by the properties of the antipode stated in (2.4) and (2.5). Now take any a e A  
and c eC  and compute

\!/RoyL(a®c)  = \i/R( Y , c S - 1a[l]® a [0]) =  £ t f [ 0] ® cS-1 (tf[1](2))a [1](1)

=  Y , a [o]®cS~ l ((Sam ) ) am2))  = Y , a[o]®cS~ l n R (a[\fi
=  £ f l [ 0]® c n % [i])  =  ]E fll[0]® c l [i] = p R{a®c).
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Again the third equality holds since S  and therefore S'-1 are anti-algebra maps and the 
fourth equality then follows by one of the defining characteristics of a weak Hopf algebra. 
The fifth equality follows by the computation (2.26). Finally the sixth equality follows be
cause A is a right //-comodule algebra and therefore (2.10) holds. Therefore (A,C, i(/r , Yl) 
must be an invertible weak entwining structure. □

In particular restricting this to the case of weak Doi Koppinen structures of the form 
(H , A , H ) we obtain

Corollary 2.3.5. Let H  be a weak H opf algebra with an invertible antipode S and let A 
be a right H-comodule algebra. Then (A ,//, Yr , Yl ) Is an invertible entwining structure 
where Yr is the associated right-right weak entwining map, i.e. y//?(/i<g><z) — L a [o] ® 
and

Y l : A<g>// —> H <8>A, a ® h  ► ^ h S ~ la ^  <8>fl[o]-

Before continuing it will be useful to point out an obvious consequence of Definition 
2.3.2.

Lem ma 2.3.6. Let (A,C, y/)?, Yl ) he an invertible weak entwining structure. Then:

(1) Yr ° P l = Yr>

(2) Yl ° Pr — Yl-

Proof. For (1) first observe

Pr 0 Yr {c ®°)  —
a

by the use of relation (2.16). So by the conditions (b) of definition 2.3.2

Yr ° Pl = Yr ° Vl ° Yr = Pr ° Vr = Yr - 

Part (2) of the this Lemma can be shown in a similar way. □

We now investigate what an invertible weak entwining structure means for the A- 
corings which can be associated to its constituent weak entwining maps.

Proposition 2.3.7. Let (A, C,Yr , Y l ) he an invertible weak entwining structure and let 
(£ =  Im pr and D  =  Im p i  be the corresponding A-corings. Then the restrictions o f the 
entwining maps

VL : —► CD, 

are inverse isomorphisms o f A-corings.

Proof. First observe that it does make sense to restrict the targets of Y r and Yl in 
this way since from the conditions (b) of Definition 2.3.2 it is apparent that Imy//? C £  
and ImYL Q Moreover, since the maps pr and pl  are projections these conditions 
immediately imply that the given restrictions of Yr and Vl arc inverse isomorphisms of 
fc-modules. Now we demonstrate that Yr is a morphism of A-corings, starting by showing 
that it is (A,A)-bilinear. Firstly observe that, by Lemma 2.3.6, for all a G A and c G C,

Y r(£ * Ce ® 1£<3) =  Vr°Pl {c®o)  =  Yfo(c<g>fl) =  Y , aa ® c a - 
E  a
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We can also compute that

l E)a =  £ ( l a ® c“ ) a =  £  l aap ® ca(J =  £ a a ® c“ ,
E  a  a , p  a

by using relation (2.16) in the last step. Therefore we conclude that \j/R is a right A-module 
map. We can also compute that, for all a € A and c EC,

V0j(E o (c £ ®  1£)) =  =  i ^ ( £ c £ ® a E) = p R(a®c)  =  £ a l a ® c“ ,
E  E , F  E  a

where the second equality follows be the relation (2.20) and the third equality by the con
ditions (b) of Definition 2.3.2. Also using these conditions we can compute

a W R ^ cE®  1£ ) =  apR( 1 ®c) =  52«1 a ® c a .
E  a

Therefore, since we have shown that ij/R is right A-linear, we conclude that \j/R is a left 
A-module map. This completes the proof that \jfR is an (A,A)-bimodule map.

Next we aim to show that \ffR respects the counit. To do this take any c G C  and a G A 
and make the computation

£<L(VRC£,cE ® \Ea)) = £ f l a £c(ca ) =  £ l  a£c(ca )fl
E  a  a

=  £ =  9d ( £ ce ® l £fl)-
E  E

Where the first equality holds by Lemma 2.3.6 and the definition of £<r. The second equality 
then follows by the relation (2.17) and the third by Proposition 2.3.3. The final equality 
follows immediately from the definition of £j>. Hence y/R is a counital map.

Finally we show that \f/R is comultiplicative. Again start by taking c G C and a E A and 
first computing that

A ( C 0 Y r ( Y , c E  ®  1£ « )  =  A , r ( 5 2 « a  ®  C a )  =  5 2 <3a  ® C a ( 1 ) ® C a (2) ,
E  a  a

by using Lemma 2.3.6 and the definition of coproduct in C. On the other hand,

(Wr ® Yr) °A:d(52C£: ® =  I 2 ^ ( C£:(i) ® 1) ® V^(ce(2) ®

¥ r (c(])E ® 1) ® Wr (c(2)F ® l £/rfl)
£,F *

52 Vfo(c (l)E ® ® V)?(c (2)
E  A

£  1 a<S>c^)a ^ a p ^ c ^ ) 15
U,P A

52 1 <8>C(2)0
a,j3,y A
5 2 « a ® c a (]) <8) 1 <g;ca (2) =  A<r(52aa ® c a ).
m A ty
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Where the first equality follows by the definition of the coproduct in C and the second by 
the relation (2.22). The third equality follows by the bimodule structure of 3} and the fact 
that if/R is an (A,A)-bimodule map. Next part (b) of Definition 2.3.2 is applied, noting that 
L p /?(1 ® C(i)) ®C(2) =  L a la  ® c(i)a ® c(2)- The fifth and sixth equalities follow by the 
applications of relations (2.16) and (2.18). The final equality is just the definition of the 
comultiplication in € .  Thus ij/ r  is a morphism of A-corings. Similarly one can demonstrate 
that ij/i is also an A-coring map. □

In the case of invertible entwining structures it was shown in [7, Section 6] that if A G 
M (yr)J then A e  JM (\//-1 ). Similarly in the weak case we can use the previous proposition 
to show

Corollary 2.3.8. Let (A,C, y/)?, i//l) be an invertible weak entwining structure. I f  A G 
M(y//?)J, then A G (y/^) with the coaction

Ap(a) = y L{ ^ a \[0] ® lpj).

Proof. Suppose that A G M (y ^)J , then, by the correspondence given in Theorem 
2.2.9, it is clear that A is right (£-comodule. Therefore, by Proposition 2.1.9, there is a 
corresponding grouplike element g G C where g = p A (1) =  £  1 [o] ® 1 p]. Since one can just 
as easily show a left-handed version of Proposition 2.1.9, A is a left C-comodule with the 
coaction a h-» ag <8> 1. Now by Proposition 2.3.7, the map \\T i: £  —> D  is an isomorphism of

A
A-corings. Therefore using ifa it is possible to give a left 2)-coaction on A, explicitly

Ap(a) = 1/rL(ag)®l .
A

Therefore A G (xj/l) with the coaction Ap(a) =  ® 1 [i])* as stated. □
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Chapter 3 

Galois theory of C-rings

3.1 Introduction
In this chapter we develop the theory of objects which are dual to A-corings which were 
first defined in [4, Section 6]. In order to avoid making any flatness assumptions in this 
chapter all algebras, coalgebras etc. will be over a field k. Recall

Definition 3.1.1. A C-ring is a (C,C)-bicomodule s i  together with two (C,C)-bicomodule 
maps 77,gf \ C —> s i  and f i ^  : s i  □  s i  —► s i  which render the diagrams

litfUs/
s i D s i d s i  c y .e jd .o i  

c c c

r\rf Us*

s i \3 s i
c

s i D s i
c

s i s i D s i
c

commutative, where the standard isomorphisms s i  D C ~  s i  ~ C \ J s i  provided by the C- 
coactions are implicit. The map is referred to as the unit and map jd^  as the product. 
A morphism of C-rings is a map /  : s i  —> SB satisfying

p ^ o ( f B f )  = f o p Al f  o rfgf = T]cjg.

In principle the theory of such objects should be just as rich as the theory of corings. 
Importantly, where as A-corings can be used to study algebra extensions, we can expect to 
study coalgebra coextensions using C-rings.

Example 3.1.2. To any coalgebra map /  : C —> D it is possible to associate a C-ring as 
follows. First define s i  =  C D C  viewing C as a (D,D)-bicomodule via the map /  and let

s i  have the natural choice of (C,C)-bicomodule structure. Then set

c1 ® c2 (g)c3 ® c4 i—> c l e(c2) 0 e(c3)c4,jLV : s i  □  s i

and
r i ^ - . C - t s i ,  g>C(2)

We shall refer to a C-ring arising in this way as a Sweedler C-ring.

39
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It is clear that C-rings generalize algebras and that a notion of a module for a algebra 
can be extended in a sensible way to C-rings as

Definition 3.1.3. A (right) module for a C-ring is a pair (M,~Pm ) where M  is a right C- 
comodule and ~pM : M B s f  —> M  is a map of right C-comodules satisfying

~ ^ o ( p f 1 B s r f ) = p f j o ( M B p sj ) ,  p ^ o ( M D r f ^ )  = M .

Where again the standard isomorphism M B C  ~  M  provided by the C-coaction on M  is
  c

implicit in what is written. The map pM is referred to as a right srf-action and just as for 
standard modules, the above conditions are referred to as associativity and unitality. The 
category of all such objects with morphisms f  : M  —> N  which are right C-colinear and 
right j^-linear maps (in the sense that fopJj j  =  pw ° ( f B & f ) )  is denoted by M ^ .

3.2 Matrix rings contexts
In trying to further develop the theory of C-rings in the same way as has been outlined 
for corings one soon encounters a problem. In the case of A-corings, Galois comodules 
are assumed to be finitely generated and projective as A-modules, which is equivalent to 
saying that there is a finite dual basis. It is then standard to use such a basis in proving 
things about Galois comodules. However the notion of the existence of finite dual basis 
is not easily dualized (cf. Section 1.3). Instead we proceed by dualising the notion of a 
comatrix coring context as defined in [8].

3.2.1 Quasi-finite matrix ring contexts
Definition 3.2.1. A matrix ring context, (C,D,cN d ,dM c , <7, t ) ,  consists of a pair of coal
gebras C and D, a (C,D)-bicomodule N, a (D,C)-bicomodule M  and a pair of bicomodule 
maps

o : C  —>NBM,  t  : M B N - + D
D C

such that the diagrams

a D N
N B M B N  ̂ c

D C

N D  r
D

N B D .
D

C B N

N

M B N B M
C D

M D ac
M B C .

c

T D M  
D D B M

D

M

commute. The map <7 is called a unit and T is called a counit of a matrix context.

By the assumption that the counit t  of a matrix ring context is D-bicolinear, it is 
uniquely determined by its reduced form  T =  £q o  t .  To see this not that any D-bicolinear 
map / :  L —> D can expressed in terms of its reduced form /  =  £o ° /  as /  =  (D 0  / )  o Lp = 
(f<S>D) o p L. From this observation it is also clear that

(D<8>t ) o  (Mp®N)  = ( t ®D) o  [M®pN). (3.1)
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We shall refer to the map T as the reduced counit of the matrix ring context. Using the 
counitality of the coactions on M  and N, the diagrams in Definition (3.2.1) can be rewritten 
in term of T as

(Mg>?) O (cf□  N) ONp = N, (?<g>M) O (M U  o ) OpM =  M. (3.2)

As justification of the word context in our terminology recall the definition of pre-equivalence 
data or a Morita-Takeuchi context as was introduced in [38, Definition 2.3]. If in a context 
of this type

(C,D,cN d ,dM c J : C - » N O M , g  : D  -* M O N ) ,

the map g is injective then by [38, Theorem 2.3] g must be an isomorphism. Due to the 
constraints which are imposed on /  and g in the definition of a Morita-Takeuchi context it 
is then apparent that

(C,D,cN D,DMc , f : C ^ N O M , g ~ l : M O N  -*  D),

is a matrix ring context. Of greater importance to us, is the reason why the word ring 
appears in Definition 3.2.1

Proposition 3.2.2. Let (C,Z),cA'rD,DMc , (7, t )  be a matrix ring context. Then srf :=  N D M  
is a C-ring with the product and unit

=  N D z U M ,  11^ = 0,
D D

where T is the reduced counit. Furthermore, M  is a right -module with the action TDM 

and N  is a left -module with the action N D z .  The C-ring srf is called a matrix C-ring.
D

Proof. It is clear from their definitions that both p .^  and 7],& are C-bicolinear. To see 
that the map is well defined, i.e. Im(jU^) C N D M ,  observe that t  is D-bicolinear

so Im (A D TD M ) C N U D U M .  Similarly N U e D \ N H D  -> N  is right D-colinear so
D D D D D D

Im fA D e^n M ) C N U M  and therefore
D D  D

\ m { p ^ )  = lm{{NUeDU M ) o { N U z U M ) ) C N U M .

That jLV is associative is also easily verified as

( N D T B M ) o ( N B M D N n T D M )  = ( N D x D z D M )
D D D C D D  D D D

=  ( N D t U M )  o ( N n T D M D N D M ) .
D D D D C D

Using equation (3.2) it is a straight forward calculation to show that J]^ is the unit for 
The statements about the actions of srf are proven in a similar way. □

Example 3.2.3. To any coalgebra coextension /  : C —> D it possible to associate a matrix 
ring context (C,D,cCd ^ C 0 , Ac , f ) ,  where the D-coactions on C are those induced by / .  
The corresponding matrix C-ring is precisely the Sweedler type C-ring associated to the 
coextension.
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We now explore the meaning of a matrix ring context.

Proposition 3.2.4. I f  (C,D,cN d ,d M c , c t,t)  is a matrix ring context, then the cotensor 
functor F =  — □  N : Mc —»Vect^ is a left adjoint o f the tensor functor G =  — 0 M : Vect* —►

M c .

Proof. Define natural transformations

<p : M c —» GF, <px:=(XD(T)opx ,

v : FG  —> Vect*, vY := (Y <g> Ed) o  (Y <g> t )  =  Y  ® ?.

We need to show that these morphisms are the unit and counit, respectively, of the adjunc
tion. Take any right C-comodule X  and compute

V f(jo0 F(<Px) =  (X D W ® T )o ( ( (X D c r )o p x )[I]W)

=  ( x o N ® ? ) ° ( x n o a N ) o ( x n Np)  = x a N  = F( x ) ,

where the second equality follows by the definition of the cotensor product, and the third 
equality follows by the first of equations (3.2). On the other hand, for all vector spaces Y,

G(vy) o (pG{Y) = ( Y ® t ® M ) o ( Y ® M D o ) o ( Y ® p m) = Y ® M  = G(Y),

by the second of equations (3.2). Hence the natural transformations <p and v satisfy the 
required properties. □

Remark 3.2.5. Suppose (C ,D ,ciVD,DMc , cr, t )  is a matrix ring context. In view of sec
tion 1.3 and the previous proposition we can draw the following conclusions. Firstly since 
— <g> M  : Vect* —► Mc has a left adjoint, M  is a quasi-finite right C-comodule. Moreover 
by the uniqueness of adjoints there must be a functorial isomorphism hG(M,  —) ~  — C\N.

Now observe that hG( M, —) has a right adjoint so is right exact, and since — D N  is left
exact, the above isomorphism of functors implies that the co-hom functor must be exact. 
Therefore by Proposition 1.3.16 M  is an injector as a right C-comodule. Secondly, with 
the knowledge that M  is a quasi-finite injector as a right C-comodule, it then follows from 
Proposition 1.3.18 that there is a functorial isomorphism hG(M , —) ~  — Dhc(M,C) .  Com

bining this with the functorial isomorphism hG(M,  —) ~  — D N  it is then clear there must 

be an isomorphism hc(M,C)  ~  N.

Theorem 3.2.6. Let M  be a (D,C)-bicomodule and suppose that the right C-comodule M  
is a quasi-finite injector. Define N  :=  hc(M,C).  Then there exist maps o  and z  such that 
the sextuple (C ,D ,cÂd ,dMc , cr, t )  is a matrix ring context.

First observe from Proposition 1.3.14 that the left D-coaction on M  must be induced 
from the natural left coaction of the coendomorphism coalgebra E  =  hG(M,M)  by some 
unique choice of coalgebra map 7T: E —> D.  With this in mind we will prove Theorem 3.2.6 
by firstly considering the case where D = E.
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Lem ma 3.2.7. Suppose that a right C-comodule M is a quasi-finite injector and define 
N  hc ( M, C)  and E hc( M, M) .  Then there exist maps Ge and xe such that the sextuple 
( C , E  , CN E fi  f t p , Oe ^ e ) is a matrix ring context, where the coactions on N  and M  are as 
described in Propositions 1.3.10 and 1.3.14 respectively.

Proof. Since M  is an (E,C)-bicomodule which is quasi-finite as a right C-comodule, 
by Theorem 1.3.12 the functor — U M : —> M c has a left adjoint, which is given by the

E

co-hom functor viewed as a functor he : M c —> M £ . Furthermore since f t p  is a quasi-finite 
injector, by Proposition 1.3.18, h c ( M , —) — — U h c { M , C ) .  Therefore ( —U N ,  — U M )  is

C C E
an adjoint pair of functors. This is characterized by the existence of a unit and counit of 
adjunction,

(p : M c -> -  U N U M ,  v : -  U M U N  -> M E .
C E E C

Using these maps define right comodule maps

Ge := <Pc • C —> C U N U M  ~  N U M ,  xe ’■= Ve • M U N  ~  E U M U N  —> E.
C E E  C E C

In addition to being right comodule maps it turns out these maps are bimodule maps. To 
see that Ge is a C-bicomodule map use the fact that (p is a natural transformation to produce 
commutative diagrams

C--------—----- ► CgC------------c --------   »c»c
<Pc <Pc®c <?c

C U N U M ________ ^ C ® C U N U M  C U N U M _________ ^ C ® C U N U M
C E Ac n  N U M  C E c  E lc U N U M  c  E

C E C E

where lc{c') =  c®c' ,  for all c,c' G C. Since A r U N U M  can be identified with the left
C E

N U M
C-coaction E p , putting these two diagrams together we obtain, for all c G C,

E po(pc (c) =  52<jPc®c(C(i) ® c(2)) =  £<Pc® C°k(1)(c(2))

=  L ( /cd) 0 =  £ co ) 0  (pc(c(2))-

Hence Ge = <pc is a C-bicomodule map. A similar method can be used to show that xe is an 
E-bicomodule map. By the properties of the unit and counit of adjunction, the composition

( p c O N  VCDN

C U N  — C U N U M U N  — ^  C U N  (3.3)
C c  E c  c

yields the identity. Since v is a natural transformation, the commutative diagrams induced 
by the morphisms p N, ln : E  —► N<8E, x  i—► n®x, and Np , give the following equalities

Vn®e o (pN U M U N )  = p N o v N (3.4)

Vn®e ° (In U M DA^) =  /„ o yE (3.5)



44 CHAPTER 3. GALOIS THEORY OF C-RINGS

respectively. Hence, for all n ® m ® n '  € N U M  U N  (summation suppressed for simplicity),

p N o VN(n®m®n' )  — Vn®e o («[0] <S>«[!] ®m®n' )

=  £ /n |o ] °V£(rc[1]®m®rc/) = Y,n[o]®VE(n[l}®m®ri ) ,

where the first equality is from (3.4) and last by (3.5). And so applying N ®  £e to both sides 
and using the canonical identification N U E  ~ N ,  we obtain =  A ®  ?£, where Te :=

E
Ee o t e . Since Oe = <Pc* the first of relations (3.2) follows by the fact that the composition 
(3.3) is the identity. The other condition in (3.2) is proven in a similar way. □

With this knowledge we can now state a proof for Theorem 3.2.6.

Proof, (o f Theorem 3.2.6). By Proposition 1.3.14 there exists a unique coalgebra map 
7T : E  —> D  such that Mp = (x<g>M) o (pM. Combining this with the matrix ring context 
(C,E , cN e ,eM 0 , Ge , Te ) constructed in Lemma 3.2.7 it is possible to define the required 
matrix ring context by

cr : C N U M  N U M ,  z  : M U N  ^  E ^  D.
E D  C

It is immediate that these are bimodule maps and that they satisfy equation (3.2) is easily 
verified, for example

( A g ?) o ( o U N )  o Np = (N<S>(ed o k o Te ) ) o (ge <S>N)onp

= ( N ® f E) o (ge ® N ) o Np  =  N.

Where the second equality follows since 7t is counital and the final equality since

is a matrix ring context. □

It will also be useful to observe the following.

Proposition 3.2.8. Suppose that a right C-comodule M  is a quasi-finite injector, define 
N  hc(M,C),  E \= hc(M,M)  and let (C,E ,CN E ,EM c , Oe ,Te ) be the corresponding ma
trix ring context, as constructed in Proposition 3.2.7. Then by Proposition 1.3.18 there is 
an isomorphism E ~  M U N .  Under this identification the induced coalgebra structure on
M U N  can be written as

c

Am u n = M U g e UN,  £m d n  = 'cE’ (3.6)
c C c  c

Proof. By the definition of the coendomorphism coalgebra the coproduct for M U N
c

should be the unique map satisfying the condition

(Av/nw < 8 > M ) o  (pM = ( M U N <8> (Pm) ° <Pm-
C c
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Recall from the proof of Proposition 3.2.4

(pM : =  ( M U o ) o p M,

so we can verify

( ( (M <g> o  ® N)  o ( p M o (pM = ( ( ( M ® o ) o p M) ® N ® M ) o ( M ® o ) o p M

=  (M <g> o  <g> a )  o  (pM ® C) o p M 

=  ( M ®  ( ( o ’®  cr) o A c ) )  o p M 

=  (M <S> ( (N ® M  <g> g ) o (N<S> p M) o f f ) )  o p M 

=  ( M ® N ®  (Pm ) o (Pm -

Where the fourth equality follows since cr is a C-bicolinear map. Hence the coproduct has 
the stated form. It is possible to check the counit in a similar way.D

Remark 3.2.9. The notion of a matrix ring context has a very natural interpretation in the 
language of bicategories. Consider the bicategory of bicomodules where 0-cells are coal
gebras, 1-cells are bicomodules and 2-cells are bicomodule maps. Define the composite, 
g o / ,  of two 1-cells f  :X  —► T and g : Y  —► Z to be / □ #  : X —> Z. Then there are obvious 
associativity and unit isomorphisms. When the isomorphisms implicitly used in Definition 
3.2.1, such as (ADM ) H N  =  N O  ( M U N ) ,  are fully described it becomes apparent that in

this language (C,D,g : C —► D , /  : Z) —» C, <7, t) is a matrix ring context if  and only if the 
2-cells <7 : 1 c f ° g  and t : go f  =>■ \q  form an adjoint pair in the bicategory.

3.2.2 Infinite (firm) matrix contexts.
In the paper [27] the notion of a comatrix coring was generalized to allow for firm rings. In 
this section we follow their approach in the dual setting. This will lead to a more general 
theory in which we are not forced to consider comodules which are quasi-finite injectors.

Firstly recall a non-counital coalgebra D is said to be a firm  coalgebra provided that the 
coproduct Ad : D —> D D D  is an isomorphism. Denoting the inverse of Ad by V# : D D D  —>
D we are able to define firm comodules for a firm coalgebra as follows. A right (resp. left) 
non-counital D-comodule M  is firm  provided p M : M  —> M U D  (resp. Mp  : M  —> D D M )  is
an isomorphism of comodules. In calculations we shall denote the inverse of the coaction 
by Va/ (resp. a/V). It will be useful to note that if X  is a firm right D-comodule and Y a 
firm left D comodule then

( v * n y )  =  ( x n yv ). (3.7)

To see this apply p x  □  Y = X  □  Yp  to both sides of the equation.

Definition 3.2.10. An infinite matrix ring context, (C,D,cN d M c ,(7 ,t) , consists of a 
counital coalgebra C, firm coalgebra D, a (C,D)-bicomodule N,  a (Z),C)-bicomodule M,  
both counital as C-comodules and firm as D-comodules, and a pair of bicomodule maps

a :C - > A D M , t
D C

such that the diagrams in Definition 3.2.1 commute.
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In the case of an infinite matrix ring context we do not assume the existence of a counit 
for D, therefore we are unable to form a reduced counit as for matrix ring contexts. How
ever assuming N  is firm right D-comodule we are able to replace instances of N ®  Ed with 
Vyy. A similar substitution can be made for left D-comodules. Therefore in terms of 
and a/V , the commutative diagrams in Definition 3.2.1 read

Vyv o ( N D t )  o (ctCUV) o Np = N, mVo  ( t U M )  o ( M D g )  o p M = M.  (3.8)

Likewise we are able to adapt the proof of Proposition 3.2.4 to associate an adjoint pair of 
functors to an infinite matrix ring context.

Proposition 3.2.11. Given an infinite matrix ring context (C,D,cN d ,D , cr, t), denote 
by M D the category o f firm right D-comodules. Then the functor F = — U N  : M c —»

is the left adjoint o f G — — D M  : M ° —> M c .

Proof. Define natural transformations

( p : Mc —> GF, (px :=  ( X U o ) o p x ,

v . F G —>Md , Vy :=  Vy o ( f D r )

Then check these that these morphisms are the unit and counit, respectively, of the adjunc
tion. Firstly take any right C-comodule X and compute

Vf (x ) 0 ^(<Px ) =  ( X D A D t ) o ( ( ( X U o )  o p x ) U N )

= v ^ D^ o (x n A /rn T ) o ( x n a n ;vp)

( x D v ^ ) o ( x D A D T ) o ( x n c 7 n A ) o ( x n yvp)
C C D C C C

= X U N  = F(X)

Where the second equality follows the definition of the cotensor product and the third since 

it is clear that ( X □  V/v) is the inverse of p  c = X U p N. The fourth equality the follows 
from the equations (3.8). On the other hand, for all firm right D-comodules Y,

Y D M
C(vy) o (Pg(y) =  ((Vy o ( Y n x ) ) \ 3 M )  o (FD M D cr) o p  d

= (rn(Mv o (t d m ) ) ) o (y d m d g ) o (y o p m)

= Y U M  = G{Y).

Where the second equality follows by the relation (3.7) and the third by the second of the 
equations (3.8). □

Note that since we do not know that V/y : N U D  —> N  extends naturally to a function
D

on N  (g> D, we do not know that this adjoint pair of functors extends to functors between 
M c and Vect&. Therefore M is no longer forced to be a quasi-finite injector as a right 
C-comodule. However we are still able to associate a firm coalgebra and a C-ring to an 
infinite matrix ring context.
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Proposition 3.2.12. Let (C,D,cN d ,dMc , <7, x) be an infinite matrix ring context.
(1) J 2 / : = N D M  is a C-ring with the product and unit

jtW =  (V/vDM) o ( N U x U M )  = (TVEIa/V) o (A D tD M ), r \^  =  cr.D D D D D D

(2) E \= M U N  is a firm coalgebra with the coproduct

AE = { M U a U N )  o [pMQN)  = { M U a U N )  o ( M O Np).

Proof. (1) Since Vyv is the inverse of a (C,D)-bicomodule map, it must be a (C,D)~ 
bicomodule map. Hence p ^  is a composition of C-bicomodule maps and therefore a C- 
bicomodule map. That the two forms for the product are equivalent follows from equation 
(3.7). For the associativity of p ^  first compute

Prf ° ( Pr f U# / )  = ( N U m V) o ( N U x UM) o (((Vn UM)  o ( N U x U M ) )  U N U M )
C D D D  D D D C D

=  (V/vDa/V) o ( N U D U x UM)  o (7 /D rD M D iV D M )
D D D D D D C D

=  (V ^D a/V) o (A D t D t DM).
D D D D

On the other hand

P t f O ^ n p s f )  = (Vn U M ) o ( N U x U M ) o ( N U M U ( ( N U m V ) o ( N U x UM)))
C D D D  D C D D D

=  ( V ^ D a / V )  o ( A D t D D D M )  o  (iV D M D N D rD M )
D D D D D  C D D

=  ( V j v D a / V )  o  ( A D t D t D M ) .
D D D D

That Tf#/ is a C-bicolinear is clear. Finally that p #  is unital with respect to 77̂  follows 
from the equations (3.8).

(2) The map AE is coassociative since

(Ae ® E ) oAe = ( ( ( M U g U N ) o (p m U N ) ) ® M U N ) o ( M U g U N ) o (p m U N)

= ( M U g U N ® M U N )  o ( M U C U g UN)  o (((p MU C ) o p M) UN)

= { M U N ® M U g UN)  o ( M U g U C U N )  o (((M DAc) o p M) UN )

=  { M U N ® M U  g UN)  o (M D {{N® p M) o cr) UN)  o (p MUN)

=  ( E ® A e ) oAe .

Where the third equality follows by the coassociativity of p M and the fourth by the colin
earity of cr. To see that AE : E  —> E U E  is an isomorphism defineE

Vg : £ □ £  —»E, We = {mV O N ) o (x U M U N ) .
E C D C

Now note that the canonical D-bicomodule structure on E  is induced from the coproduct 
A^ via the comultiplicative map x : E —> D, therefore E U E  C E U E .  After making thisE D
observation we can compute that

V e oAe = (a/VDAO o (x U M U N )  o ( M U g UN)  o (pMUN)  = M U N  = E,
C D C C C  C C
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by the second of the equations (3.8). On the other hand

) u {M v I Î V ) u I I IVl LJIV

(m N U N U M U N )  o ( D U M U g UN)  o (.D U M U Np ) O (t U M U N )  

(m V U N U M U N )  O (t U M U N U M U N )  O ( M B N D A e )

Ae o V e = ( M U g U N ) o ( M U np ) o (m W U N ) o (t U M U N )
C C C C E C

=  (a/VDA^DMDA^) o (TDAfD^VnAfD^V) o
C D  C D C D  C E  C

= (Ve U M U N ) o (Ae U M U N ) = E U E .

Where the fourth equality follows by the definition of — □  — and the final equality by the
E

previous calculation. Hence is the inverse of Ae and E  is a firm coalgebra. □

Remark 3.2.13. In the case of a quasi-finite injective comodule M c , Proposition 3.2.8 
implies the coalgebra E  defined above coincides with the coendomorphism coalgebra.

3.3 £ / -coendomorphism coalgebra and Galois modules

In this section we develop the notion of Galois modules for a C-ring. We then give a 
structure theorem for these modules and also construct an associated Galois connection.

3.3.1 The srf-coendomorphism coalgebra and C-ring

In order to develop this theory we must first associate to a module of a C-ring a coalge
bra. Such a coalgebra should be thought of as a dual object to an endomorphism ring. 
To achieve this we restrict ourselves to modules which are quasi-finite injectors as C- 
comodules and adapt the associated coendomorphism coalgebra to take into account the 
action of the C-ring.

Lem ma 3.3.1. Let (C ,D ,cN d ,DM C, cr, t )  be a matrix ring context and let srf be a C-ring.
I f  M  is a right &Y-module, via the map pM \ M U s f  —► M, then N  is a left -module via

c
the map

ivp : sY U N  —> N,  J^p :=  (N®  ?) o (NO pf j  UN)  o ( o U t f U N )  o { f p  UN)

Proof. It is clear that since ’jfp  is a composition of left C-colinear maps, ffp is left
C-colinear. In order to check that ivp is associative and unital, we adopt the following 
conventions. Firstly we write g ( c )  = ® G N U M .  Secondly we denote the right

action Pa7(w ® a) as m <  a, and the left action Jfp (a <S>m) = a >  m. In this notation

^ a1 >  nl =  <1 a'[0]®rc'), for all ^ al®nl G st/U N .
/ i i c



3.3. srf-COENDOMORPHISM COALGEBRA AN D  GALOIS MODULES 49

Now we are able to verify that yvp satisfies the required associativity condition by taking 
any a<g>a' <g>n G (summation suppressed) and computing

( a>{ a ' >n) )  =  £ a [-i][1]̂ (fl[-i][21 <fl[0] 0 « /[-i][11)T(a/[_ i][2' < a '[0] ®n)

= < fl[0]®a [i][11)^(fl[i][2] < a '®n)

=  J2«[_i][1]T((a[_ 1][2] < ! ® (a[_i][2] <fl[0])[i][1])

<a-  -v <a'<8>n)

= Y , a[-1][ l 1 (fl[_ i][2] <  fl[0]) <  a! ® n)

= E « [ - i ] [1]T((fl[_i][2] <  («[o]«0) ®  n)

= E (flfl/)[- , ] [11T (((a i,)[_i][2] <1 (flfl,)[0])®w) =  ((aa/)> « ) .

Where the second equality follows since a ® a! G s f d s f  and the third by the right C-
colinearity of the right ^ -ac tion . Then the fourth equality follows from the second of the 
equations (3.2). Finally the penultimate equality holds because of the colinearity of the 
product p,g/. This proves the associativity. As for the unitali ty, take n e N  and compute

Y i Tl * ' ( n [ - i ] ) > n [o] =  £ ( ^ ( w [ - i ] ) ) [ - i ] ^ * ( ( ^ ( w [ - i ] ) ) [ - i ] ^  <  i r l r f { n [ - i ] ) ) [ o ]  ® w [o])

=  L  n [-2] [l]*(n[-2)[2] <  n *  (« [-1]) ® «[0])

=  52/1[-1][11T(/1[_i][21[0] < ^ ( / l [ _ i ] l2][i])®/l[0]) 

=  L w[-i]ll,^ ( 'i[ - iil21<g>w[0] )= n -
Where the second and third equalities follow by the left C-colinearity of 7]& and <7 respec
tively. Then the fourth equality holds since ~pM is unital and finally the last equality follows 
by the first of the equations (3.2). □

Before defining what an «c/-coendomorphism coalgebra is, we first need to observe the 
following.

Lem ma 3.3.2. Let (C ,D ,cN d ,£>Mc , <7 , t )  be a matrix ring context and let srf be a C-ring. 
Suppose that M  is a right srf-module, via the map Pm —*M (denoted by < between
elements) and let ~Np be the left srf-action on N  constructed in Lemma 3.3.1 (denoted by >  
between elements).

(1) For all m®a<g)n G M U  s i/U N  (summation suppressed fo r  clarity),

?(m <1 a ® n) =  r(w ® a >  n).

(2) The following diagram

P

C Z

g/UCF
. o / n c  c  y .q/ h n h m

C C D

— - — ^ N U M U s z / ------ £---------

n P  □  M

d  c

is commutative.

16

34
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Proof’.
(1) Take any (summation suppressed) and compute

f(m ® a \> n ) = £ ^(m ® <?[-i ] ^ *(<*[-1]^  <^[o] ®>0)

=  J ^ t (/H[0] (SmpjW?(/?![!] ̂  <a<g>/i))

=  ^ T (? (m [0] < a ® n )
= z(m<a<g)n),

where the second equality is satisfied because m<g)a E MUsrf , the third by the /:-linearity

of t and finally the last equality follows from the second of the equations (3.2).
(2) Take any a G ^ /  and compute

=  5 2 « [ - i ] [11̂ ( ( « [ - i ] t2] <fl[o])[o] ®  ( « [ - i ] 121 < f l [o ] ) [ i ]^ )®  ( « [ - i ] [2] <fl[o])[i][2] 

=  L a [-i][11<S)fl[-i][21<|fl[o]’

where the second equality follows by the C-colinearity of the right srf-action and the third 
from the second of the equations (3.2). □

Theorem  3.3.3. Let srf be a C-ring and M be a right srf-module which is a quasi-finite 
injector as a right C-comodule. Define N  :=  hc(M,C),  E  :=  hc{M,M) and E ^{M ) to be 
the vector space given by the coequalizer

Pm  O N

M n j a / H N   > /V /rW  ^
MOnP c

in which ~Pm is the right sY-action on M  and jfp  the corresponding left sY-action on N  in
duced from (C ,E ,cN e ,eM c , Ge , Te ) (as constructed in Lemma 3.2.7) in the way described 
in Lemma 3.3.1. After making the identification o f coalgebras E  ~  M U N  as described

Proposition 3.2.8, E ^ { M )  can be given a coalgebra structure such that

M U N ---------
c

is a coalgebra map. The coalgebra E ^  (M) is called an srf-coendomorphism coalgebra o f  
M.

Proof. Since Mc  is assumed to be quasi-finite injective, by Proposition 3.2.8 the 
identification E ~  M U N  induces a coalgebra structure on M U N  with coproduct and counit 
which can be written as

A m q n = M U o e U N ,  £m o n  =  ^e -
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Now by the previous lemma it is clear that the counit factors through n For the comulti
plication, writing % ^ { m 0 n )  = [m0n]  for all m 0 n  G M U N  and G e ( c )  =  £  C W  0  c I21 for

all c G C, take any m 0 a 0 n  e M O j z f f J N  (summation suppressed) and compute

^E^{M){\m ® a > n]) = {7t^/<S>7t^)oAMa N(m 0 a > n )

=  < g > 0> <fl[o] 0 h ]

=  J^[m(g)fl[0] 0  0/z]

=  J^[m <fl[o]0fl[i]^^](8)[a[i]^0n]

— ^ [ ( m < a)[0] 0  (m <3«)[i]^^] 0  [ { m < a ) ^  0n]

=  A EJj ( M) ( . l m < a ® n  ] ) •

Where the third equality uses the assumption m 0 a 0 n  G M D s t f D N  and the defining
c  c

property of 7t>. The fourth equality follows by part (2) of Lemma 3,3.2. Then the fifth 
equality again uses the defining property of %&. Finally the sixth equality follows by 
the right C-colinearity of ~pM• This demonstrates that the coalgebra structure onM D iV

descends onto E ^{M )  and the associated projection it#  is a coalgebra map. □

Corollary 3.3.4. Let srf be a C-ring and M  a right srf-module which is a quasi-finite 
injector as a C-comodule, and l e t N \ =  hc{M, C). Denote by Np the induced left C-coaction 
on N, as described in Proposition 1.3.7. Then

(1) M is an (EiS/ (M) ,C)  - bicomodule, with left coaction {k^ 0 M ) o ( M D ge ) ° p M. 
Furthermore this left coaction is right srf-linear.

(2) N  is a (C,Ejf(M)) - bicomodule, with right coaction ( N 0 o (ge O N ) o Np. Fur
thermore this right coaction is left -linear.

Proof. By Proposition 1.3.14, M  is an (£ ,C ) bicomodule with the left coaction given 
by the unit of adjunction for the adjoint pair (hc(M, —), — 0 M ) ,  q>M : M —> hc{M,M) 0 M .  
Now by Lemma 3.2.7 we can construct a matrix ring context (C ,E ,cN e f M 0 ,Ge,Te), 
and in terms of these maps (pM = ( MD ge )  o p M (see proof of Proposition 3.2.4). Then
since is a coalgebra map, it induces a left £ > - coaction on M  which is right C-colinear. 
Therefore M  is an (E^(M),C)--bicomodule with the prescribed left coaction. To see that 
the left coaction is right ^ -lin ea r  take m 0 a  G M O # / , and writing K ^ ( m 0 n )  = [m0n],  
compute

{Us# 0 M )  o ( M D ge) o p M(m<a)  =  J ^ [ ( m  < ]«)[o] 0  (m<a)[ \ }^]  0  im < a)[\}^

=  ^ [m < 3 a[o ]0 a [1][11] 0 a [ 1][21

=  £ [ m[o] 0 m[i]^] 0/W[i]^ <a  

— ((ftj* 0>M) o ( M D ge ) o p M(m)) <a.
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Where the second equality follows from the right C-colinearity of the right sY-action, the 
third by the the defining property of n & and the forth by part (2) of Lemma 3.3.2. Finally 
the fifth equality holds since m ® a  G M U # / .  For the the second part of the corollary

observe that since we can construct a matrix ring context (C,E , CN E E M c , C£, Ze ), N  must 
be a quasi-finite injector as a left C-module, by a left handed version of Proposition 3.2.4. 
We can then complete the proof in a way similar to the first part. □

Therefore to any right ^ -m odu le  M  which is a quasi-finite injector as a right C- 
comodule we are able to associate a matrix ring context

(C, E *  (M ), c N e * {M), , o , t ) ,

which is induced from (C,E ,CN E,EM**, Ge ^ e ) by the map n ^ .

Definition 3.3.5. The matrix ring context (C ,E ^ (M ),cN E-e/ M̂\ Eil/^ M c ,<7 ,t ) described 
above is called the srf-coendomorphism coalgebra context o fM  and the associated matrix 
C-ring the sY-coendomorphism ring ofM.

3.3.2 Galois and principal modules

Using the constructions of the previous subsection we now describe a special class of mod
ules for a C-ring and as the main result of this subsection give a structure theorem for such 
modules.

Proposition 3.3.6. Let be a C-ring and M  a right srf-module which is a quasi-finite 
injector as a C-comodule. Set N  := hc(M ,C) and define

P : £ / - + N < g ) M ,  : =  (N<8>Pm ) o ( g O j^ )  o ^ p ,

where G is the unit o f the corresponding srf-coendomorphism context associated to M  and 
pM signifies the right srf-action on M. Then, writing S for  the coalgebra

(1) P ( ^ ) C N D M .

(2) The map p  is a morphism ofC-rings.

Proof. Using the conventions of writing

(a) g (c) = for all c G C,

(b) 7tjrf(m ® n) =  [m ® n\, for all m ® n £ M D N  (summation suppressed),

(c) PA/(m (8) a) = m <3 a , for all m (g> a £ M U srf (summation suppressed),

(d) p p ( a ® m )  = a > m  , for all a<g>m £ & / D M  (summation suppressed),

(e) Mp  and p N for the E ^ ( M )  coactions described in Corollary 3.3.4,

we are able to write P(a) = <fl[o] f°r elements a £ sY. Using this
notation we can then proceed as follows.
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(1) To show that p(£?) C iV D M w e compute

(.N ® Mp ) ( P ( a )) =  < fl[0]®fl[i][I]]<8>fl[i][2]

=  L fl[-i][1](g)[fl[-i][2]<g)a[o] > a [i][I]]®tf[i][2]

=  ^ « [ - 2][1] [a[_2][2](S)«[_i][1]] 0 « [ _ i ] [2] < la [0] =  ( p N®M) ( P( a ) ) ,

where the first equality follows from the right C colinearity of the right ^ -ac tion , the 
second by the defining property of and the third by part (2) of Lemma 3.3.2. Then the 
last equality follows by the left C-colinearity of cr.

(2) Firstly it is clear that /3 is C-bimodule map since it is easily seen to be a composition 
of C-bimodule maps. To see that the map P respects the unit, take any c £ C and compute

P° Tl r f ( c )  =  ( N n m o ( c n * / ) o ' ' p o r i ( c )

=  £ ( ^ !=]m ) ( c ( i)[1]^ )C(i)[2]®T7(c(2)))

=  ^ { N U W ) ( c [l]® c [2\o]®ri(c[2][i])) = ° ( c)-

Where the second equality is by the left C-colinearity of 7], the fourth equality is by the 
left C colinearity of cr and the final equality follows since ~pM is unital. This shows that 
P is unital since cr is the unit of the ^/-coendomorphism C-ring N D M .  To see that j3 is

multiplicative take any a<S>a' £ srf □  srf (summation suppressed) and denoting the product
c

in g f  by juxtaposition, compute

p NUM{P{a)UP{a!)) =  < f l[0]<8)fl/[_ 1]I1,)(8>fl/[- 1]121 <a'[o]
s  c

= ] C a [ - i ] [11̂ [ - i ] [21 < a [o]® 0 [i][1]) ® « [ i ] [2] <al

=  < fl[0])[0] ® <0[O])[1]^)

® (a [ - i ] [2]<fl[0])[i][2]< f l '

=  5 2 « [ _ i ] [1] ( « [ _ i ] [2] < l«[0]) <!«'

=  Y , a[-'i)[l]® aH } [2]<alo}a'

=  L ( ^ ' ) [ - i ] [1] ® {aa')[-1][2] <  M [ o ]

=  P M -

Where the second equality is because a ® a' £ s f  □  srf, the third is by the right C-colinearity
of the action of srf and follows from the equations (3.2). Finally the penultimate equality 
is from the left C-colinearity of the product in srf. □

Definition 3.3.7. Let srf be a C-ring and M  a right srf-module which is a quasi-finite injec
tor as a C-comodule. Set N  := hc{M,C) and S :=  E ^{M )  to be the ^/-coendomorphism 
coalgebra of M. Then M  is called a Galois srf-module if and only if the map P : srf —> 
N D M ,  as defined in Proposition 3.3.6 is bijective. If in addition M  is injective as a left
S-module then M  is said to be principal.
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In fact just as Galois comodules generalize Galois corings, we now show that the Galois 
modules we have just defined generalize Galois C-rings, as defined in [4, section 6]. Firstly 
recall the notion dual to a grouplike element

Definition 3.3.8. Let ^  be a C-ring then k: : srf —*■ k is said to be a non-trivial character 
provided it is multiplicative and satisfies Ko = Eq-

Lemma 3.3.9. For any C-ring sY there is a one to one correspondence between right srf- 
actions on C and non-trivial characters K : sY  —> k.

Proof. Firstly given a right srf-action pc '■ C D jz/  —> C define a non-trivial character
c

K $ d ] : s i  -> k, k[Pc] ’■= £c °P c °^ P -  (3.9)

To see that k [ P c ]  is multiplicative take any a® a ' G srfTlsrf (summation suppressed) and 

compute, writing Pc(m ® a) =  m <  a for all m <g> a G M D  sY  (summation suppressed) and 
denoting the product in sY  by juxtaposition,

K\pc\(aa') =  5^ ec((aa /) [ - i ] < ( flfl/)[0])

=  52^c(«[-l] < a[0]a')

=  < a [0])

by using the left C-colinearity of and then the associativity of pc- On the other hand 
we can also compute that

K\Pc](a) K\Pc](a') =  ^ C c ( a [-l] < a[0])£c ( a'[-l] < fl/[0])

=  5 2 £ c ( « [ - 1 ]  < f l [ 0 ] ) £ c ( f l [l] < a ')

=  < ^ [ 0 ] ) ( l ) ) £ c ( ( « [ - l ]  < f l [ 0 ] ) ( 2 )  < a ' )

where the second equality follows because a ® a' G st/O  s f  * the third by the right C-
c

colinearity of pc  and the final equality since ef is the counit for C. Therefore K[pc] is 
multiplicative. Similarly a straight forward calculation, using the C-colinearity of r}#? and 
the unitality of pc,  shows that k o t \ ^  = Ec for all c G C. Therefore for any right ^ -ac tio n  
pc : C D st/ —> C the map ?c[pc] \ s f  —> k is a non-trivial character.

On the other hand given a non-trivial character k : s i  —> k we can define a right s t -  
coaction on C

f r [ K ] : C n s f ^ C ,  p£[k] := (£ £ □  ( c D C ) o ( c n p ^ ) .  (3.10)

It is a routine calculation, which we omit for brevity, to show that this is indeed a right 
action on C. That the correspondence given in (3.10) and (3.9) is one-to-one can also easily 
be checked, for example

k [p ^ [ k }} = £ c o ( £ c U K D C ) o ( C D p ^ ) o ^ p  =  ( £ c D K D 8 c ) o ( C D p ^ ) o ^ p  =  k .

Where the second equality follows by the fc-linearity of £c and the final equality by the 
counitality of the maps **p  and p**. □
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Lemma 3.3.10. For any C-ring srf with a nontrivial character K : srf —> kthe set

IK :=  { L ^ [ 0] h i ] - i : « [ - i ] ^ [ 0])l« £ & }  Q C, (3.11)

is a coideal o f C.

Proof. Observe that for any a £ s r f  and p \ , fc  £ {p  G Hom*(C, k) | P (IK) = 0}, writing 
* for the convolution product in Horn *(C, k),

E ^ f o i X A  =  ] ^ » c ( f l [ o ] ) f t ( f l t [ 1] ) & ( f l [2])

=  52 A  ( ^ [ - l ] ) ^ ^ ] )&(«[!])

=  ^ ( f t  * fc )(fl[ - l ]W a [0])•

Where the second equality follows since P\ (/^) =  0 and the third since p2 (IK) =  0. There
fore {/3 G Hom^(C,^) | P(Ik)  =  0} is a subalgebra of the convolution algebra Horn *(C, k) 
and so, by [36, Proposition 1.4.6], IK must be a coideal of C. □

Definition 3.3.11. Let srf be a C-ring with nontrivial character K. Then we call B K := C / I K 
the coalgebra o f coinvariants.

Proposition 3.3.12. Let be a C-ring, then every non-trivial character K ' . s ^ ^ k  induces 
a map ofC-rings

r K: jk' —> cnc,  r K:=(CDKac)o(cap^)o^p,  ( 3 . 12)
B)c C C C

where C D C  is the Sweedler type C-ring arising from the natural coextension C -» B K.
Bk

Proof. First recall that in the Sweedler type C-ring arising from the natural coextension 
C -» B k, the left and right B K coactions on C are those induced by the canonical projection 
7t ’. C —> C/ IK. That the map is well defined, i.e. Im C CD C, then follows since, for

Bk
all a G srf,

£ f l [ - 2 ] ® ^ ( f l [ - l ] K ( a [ 0 ] ) ) ® f l [l] =  E a H l  ® K ( K ( a [0})a [l})

by the linearity of n  and the definition of the coideal IK. Since TV is a composition of 
C-bicolinear maps, it must be C-bicolinear. To see that is unital take any c G C and 
compute

r ^ 0 7 ] ^ ( c )  =  X ( ^ W ) [ - l ] ( K : o ( T? ^ W [ 0 ] ) ) ® ( ^ W ) [ l ]

=  E c(1)(k: o (77 ^ (c(2))))®C(3)

=  E c0) ® c(2) =  ^ c n c W ,
Bk

where the second equality follows since 77.̂  is bicolinear and the third since K o r \ ^  — £c. 
That Tk; is a multiplicative map is easily confirmed by a straight forward calculation using 
the fact that the product in srf is C-bicolinear and the multiplicativity of k . □
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Definition 3.3.13. Let srf be a C-ring with a nontrivial character K. Then we say that is 
a Galois C-ring (with respect to k) if and only if the map T K : srf —> CLDC, as defined in

Bk

(3.12), is an isomorphism.

Proposition 3.3.14. Let &Y be a C-ring with a nontrivial character K : sY —> k. Then srf is 
a Galois C-ring (with respect to k) i f  and only ifC  is a Galois right -module (with the 
right &Y-action induced by k).

Proof. First observe that for every coalgebra C it is possible to associate a matrix
ring context (C,C ,c C °,cC f , cr, t ) ,  where x : C D C  —> C and <7 : C —»C D C  are the obvious

c c
isomorphisms. Therefore from Proposition 3.2.4 it is clear that C is quasi-finite as a right C- 
comodule and h c ( C , C ) =  C. By Proposition 3.3.9, C is a right j^-m odule with right action 
P c(c® a ) =  ££c(c)K:(fl[o])a[i] and the corresponding left ^ -ac tio n , given by Lemma 3.3.2, 
is c p ( a®c )  = Y,a[-\]K(a[o])£c (c)- 1° yiew ° f  this

S = C n C / l m ( p E  D C -  CO  £p) ~  C / { £  Kr(fl(0))a(i) -  K( a^ ) \ a  E = B K,

where the middle isomorphism is induced by the natural isomorphism C D C  ~  C. It then 

follows that C D C  =  CDC, but also observe that for all a E s r f ,
Bk S

P (a) = ( N O p E ) o ( o O ^ ) o ^ p

=  ® P c ( a [ - l ]  ® f l [0])

=  Y , a [ -2]  ® S c ( f l [ - l ] ) K ( f l [0])f l [l]

=  E a [ - l]0K:(a [O])fl[l] = r ic(«)- 

Therefore in this situation F K : sY  —̂ C D C  and B : s t  —> C D C  are precisely the same
Bk s

maps. Therefore if one is an isomorphism of C-rings so is the other and the result follows.
□

Proposition 3.3.15. I f  M  is a right principal Galois module fo r  a C-ring srf then srf is 
injective as a left C-comodule.

Proof. Suppose M  is a principal sit-module. Define N  := h c ( M, C)  and S := E ^ ,  and
let £  = M O N  denote the coendomorphism coalgebra of M. Since M  is Galois there is an

c
isomorphism ~ iV D M  and furthermore a chain of isomorphisms

A ^D M D j^ ~  N O M O N O M  ~  iV D £D M  ~  N O M  ~  srf.
E C  E C S  E  S S

Explicitly, following this chain from right to left the isomorphism —> N O M O & Y is
E C

given by the composition 

< N n M a B - ' ) o ( ( ( ( j E D N ) o Np ) ) ) D M o B
E C  C S

= ( N D M D p - [) o ( a E D N D M ) o ( C D P ) o ^ p
E C  C S C

=  ( o f e D ^ o ^ p ,
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where Oe is the unit of the matrix ring context described in Lemma 3.2.7 and the first equal
ity holds since p  is left C-colinear. Next observe that since M  is assumed to be injective 
as a left 5-comodule E D M  is injective as a left Zs-comodule (see [14, Subsection 11.11]).
Therefore in view of the existence of the chain of isomorphism

M O # /
c  c s s

M D sz/ is injective as a left Zi-comodule. Thus there exists a map p  which is a retraction 
for the obvious inclusion i : M d s r f  —> Since it is then clear that that N D p  is a left

C E

C-colinear retraction of N\Di there is a commutative diagram with (split) exact rows
E

N D i

0  x N H M t o # /
w E C  arnP E

A E A
~  Ge ® # ?

0 -----------► s t ---------------------- ► C<g>.c/ ,

from which it is apparent that the map **p  has a left C-colinear retraction. Therefore srf is 
injective as a left C-comodule. □

We now give the main result of this section

Theorem  3.3.16. Let srf be a C-ring and M  a right srf-module which is a quasi-finite 
injector as a right C-comodule. SetN  — hc{M ,C ) andS = ViewN(&M a n d N \3 M
as left srf-modules with the left action as in Lemma 3.3.1. Let (3 be as in Proposition 3.3.6. 
Then

1. The following statements are equivalent

(a) there exists a left srf-module map % : N®M  —> srf such that % o p  =  srf (i.e. 
(3 : —> N  ® M  is a split monomorphism o f left srf-modules);

(b) M  is a principal Galois srf-module.

2. The following statements are equivalent

(a) there exists a left -module map % : N U M  —> srf such that % o j3 = s r f  (i.e. 

p \ s f  —> N U M  is a split monomorphism o f left srf-modules);

(b) M  is a Galois srf-module.

Proof. (1) (a) => (b) Assume that % is a left srf-linear retraction of p. Then for 
every a G L z ( <T(a [-i]) < fl[o]) — where o  is the unit of the j/-coendomorphism ring 
context of M. In particular for every c G C, writing cr(c) =  <g> c ^ ,

V A c )  =  Lz(o(c(i)) < v A c { 2))) =  ® c[2|[0] < TMcPI[i])) = X ° A c ) ,
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where the first equality follows by the left C-colinearity of 77̂ ,  the second by the right 
C-colinearity of G and the third equality since the right srf action on M  is unital. Therefore

%oG = r \^ . (3.13)

After making this observation we now proceed to demonstrate that M  is injective as a left 
5-module, by constructing a left 5-comodule retraction of the left 5-coaction on M. Define 
8 : 5 8> M  —> M  to be the map the satisfying the commutative diagram

M O N ® M  > iS<g>M

MDx

M U sY  P* ^ M

This map is well defined since % is assumed to be left srf-linear and therefore the definition 
of 8 is independent of the choice of pre-image under the map Using equation (3.13) 
and the unitality of the right srf-action we can compute that, for all m £ M,

8 o Mp(m) = Y , m [0] <X(<*(m[]])) = Y , m [o]<rl ^ ( m [\}) = m -

Therefore 8 is a retraction of the left 5-coaction on M. Furthermore since Mp  is right $4-
linear (see Proposition 3.3.4), for all m<g>n £ M U N  and m! £ M , writing =

c

[m ® n], we can compute

(5(8) 8) o (As®M)([m(gm] 8 m ')  =  ^ [m p] 8 /n p j^ ]  ® ®n] ®m;)

=  H m[o] ®wi[i]f^]

=  Mp{m)  =  Mp ( m < x ( n ® m'))
=  Mp  o 8([m<8>n] 8 m ') .

To see that the first equality holds recall that n ^  is a coalgebra map and the coalgebra 
structure of E ~  M U N  given in Proposition 3.2.8. This shows that 8 is left 5-colinear and
therefore completes the proof that M  is an injective left 5-comodule.

Next we show that /3 is an isomorphism. Define j§ =  x \n u m * since Im/3 C M U N  and
S s

A A

X is a retraction of 78, it is clear that j3 o /3 =  s f . Moreover j3 is right inverse of j3, to see 
this take any rc 8  m £ N U M  and compute

j 3 o / 3 ( « ® r a )  =  J 2 c j ( j 8 ( n ® m ) [ _ 1] )  <1 j § ( n ® m ) [ 0 ] =  5 ^ C 7 ( n f _ ] ] )  < 1 t j ® m )

=  ^ « ® m [ 0] <j3(<r(m[1])) =  ]T/i<g>m[o] <  =  n 8 m .

Where the second equality follows since x  is left ^ -linear, which requires that % is a 
left C-colinear map. To see that the third equality let A : S U M  —* M  be the unique map
satisfying

A o (k^ U M )  =p j ^ o ( MU P ) .

^
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Such a map can defined since is surjective and P is left j^-linear. Now recall that 
n ® m e  N D M  and therefore £(Mg>7r^®M)(a(rc[_q)®rc[0] ® m -rc® ra[0]<8>O’(m[1])) =  0,

applying N ®  X to this equality gives the third equality. Then the fourth equality follows by 
equation (3.13) and the final final equality bye the unitality of Pa/. Hence j3 is an inverse 
of p  and so we are able to conclude that M  is a principal Galois srf-module.

(1) (b) => (a) Suppose that M  is a principal Galois .^-m odule and let 5 : —> M 
be a S-comodule retraction of Mp.  Then define % : N<8>M —» srf to be the composition of 
maps,

N ® M  N B S & M  N D M  ^  s t . 
s s

Since p N is left ^ -lin e a r  (see Proposition 3.3.4) and j3_1 is assumed to be left .^-linear, 
X is a composition of left srf-linear maps and therefore left srf-linear. Moreover we can 
compute,

X °  P — P ~ l o (N <S> 8) o (p N <S>M)op = p ~ l o (N ® 8) o (N ® Mp)  o p = p ~ ] oj3 =

using the fact that Im(j3) G N D M  in the second equality. So we conclude £  is a left

ca/-linear retraction of /3.
(2) that (b) => (a) is trivial. To show (a) => (b) the same method can be used as for 

(l)(a) => (l)(b). □

We shall later use this result to produce a generalization of Schneider’s Theorem II.

3.3.3 A Galois connection
In [20] a way of associating a Galois connection to a comatrix coring was described. Using 
a similar method we now show how it is possible to associate a Galois connection to a ma
trix C-ring. In what follows we assume that C is a coalgebra over a field k and that M  G M c 
is a quasi-finite injector. We then define N  :=  hc( M, C)  and E to be the coendomorphism 
coalgebra of M.  Finally we let n  : E  —► D be a coalgebra map, define srf := N D M  to be
the associated matrix C-ring and view M  as right srf-module by the action described in 
Proposition 3.2.2.

Firstly observe that for any subcoideal X  C ker n, K factors through E / X  and therefore 
it is possible to define a matrix C-ring

srfiX) := N D M .
V '  E / X

Observe that for any subcoideal Y C l ,  the canonical coalgebra map E /Y  —> E / X  induces 
an inclusion of C-rings st/(Y) C Since ^ ik e x n )  =  srf, this implies that any sub
coideal Y C ker7T induces an inclusion of C-rings s^{Y) C g / .

Lemma 3.3.17. For any subcoideal X  C ker7T,

C l ,

where ker7r^(x) ts epimorphism defining the srf (X)-coendomorphism coalgebra ofM,  
as described in Theorem 3.3.3, and the right srf(X)-module structure on M  is as described 
in Proposition 3.2.2.
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Proof. First recall from Theorem 3.3.3 that and n^^x) are defined by the
coequalizer

Pm D N

M r w m n w  _  >M H N ------ 5 2 _ *  £■*■(*) (M),
c  c  a / D  /y p  c

where P a7  and /l/p are as defined in Proposition 3.2.2. Also observe that Jfp coincides 
with the left -action on N  obtained by feeding P a7  into Lemma 3.3.1. Therefore 
x  E ker7r^(x) if and only if there exists m ® n ® m '  ® n '  E (summation
suppressed) such that

x  =  %E(m(g)n)mf <g>n' — m<S>nXE(m'<S>nf).

Writing 7ix : E  E / X  for the canonical coalgebra epimorphism, the E / X - coaction on M
and N  are

Mp (m )  =  p N(n) =  £ rc [ - i] [% M " [ - i ] [21®"[0]),

where Ge(c) =  for all c EC . Therefore if m ® n <g> m! ® n' E M D ^ (X )D A ,
then

?£(m(8;A?)^A,(w/(8)Ai/) =  ^?£(ra(gw);rA'(m'[o](g>m/[1][1])T£(ra/[1]f2W /)

= ]C ̂  1][1] )nx {n[-1][2] ®/i[0]) % (m'gin')
=  nx(m<g)n)TE(m,®n').

Where the first and third equalities follow since ?£ is the reduced counit of the coendomor
phism context of M, and therefore satisfies the equations (3.2). The second equality holds 
since m®n®m!<&n' £ MEI N U\ M U N ,  in which the middle cotensor product is over E / X .

c  E / X  c

Therefore for all x  E k e r ^ ^ j ,  7tx{x) = 0 and so Y&rjt^^x) Q ker 71* =  X. □

Setting X  = ker Tlx in the previous lemma, we see that ker n ^  C ker^, since srf(ker n) = 
srf. Now suppose SS is a C-subring of sY  and Kgg is the coalgebra map defining the S8- 
coendomorphism coalgebra of M. Then it is clear that ker7T^ C ker7T^ and so we can 
define a corresponding subcoideal of ker/r,

SC(S3) :=  ker7T^.

Where the right ^ -action  on M  is induced by the right srf-action via the inclusion. Note 
that if SS C 38’ are C-subrings of sY , then SC (SS) C SC ( & ) .  Therefore we are able to give 
an order reversing correspondence between partially ordered sets

3C{-)
{C-subrings of srf} < f: {subcoideals of kerrc} ,

sf(-)

where the subcoideals are ordered by the relation X'  < X  if and only if X  C X '  and the 
C-subrings by inclusion. Moreover we shall now show that this correspondence is a Galois 
connection.
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Proposition 3.3.18. For all C-subrings 38 C and subcoideals X  C ker7T,

(1) 3$ C {3$)), and 38 =  (3#)) i f  and only ifM  is a Galois 38-module;

(2) S F ( ^ ( X ) )  C X, and 3£{r f (X) )  = X  if  and only i f E ^ {x)(M) = E/X.

Proof. (1) First compute,

£/(3F (38)) = £/(kcT7C&) = N  □  M  = N  □  M.
E/VstUgg E<g(M)

Now by virtue of Lemma 3.3.17 ker7T̂ > C ker 7 ^  C ker n  and therefore K : E  —>D factors 
as K : E —> E@(M)  —> D. Hence there is a coalgebra map Egg(M) —> D which induces an 
inclusion N  □  M  C N D M .  In view of this enclosure we can draw the following diagram

Eg(M) D
with exact rows.

n  □  M ________ ^ N D M
u D »

p\
0 ---------* 3 8  * srf

where p  is the map in Proposition 3.3.6 (with 38 in place of srf). Moreover for all n ® m 6 
38 C N D M  (summation suppressed),

D

P(n®m)  = ® (w[0] ® m ))

=  0/t[oj) ®/n = n<g>m,

In the above for all c G C we have written c(c)  = 0 c ^ ,  where o  is the counit of
the ^-coendomorphism context, and f  is the reduced unit. The right ^ -action  on M  takes
the above form since it is induced by the right N U M  action on M.  The final equality then
follows by the equations (3.2). Therefore, the above diagram is commutative and the map 
P is the required inclusion. Once the inclusion is described this way it is clear there will 
be equality if and only if p  is bijective, i.e. if M  is Galois ^-m odule.

(2) Since 3F(srf{X)) = kerTT^pr) the first part of the statement follows by Lemma 
3.3.17. The equality holds if and only if ker 7 ^ * )  =  ker71*, and this is equivalent to the 
statement that E^^X)(M) = E / X .  □

Remark 3.3.19. Since the diagram included in the previous proposition is commutative 
for all C-subrings 38 C s f , it is valid in the case when srf =  38. In this situation it is 
then clear that the map P is bijective and therefore M  must be a Galois s f  -module. Since 
D was an arbitrary choice of coalgebra for which there existed a coalgebra epimorphism 
K '. E  —> D, M  must be a Galois module for any associated matrix C-ring induced by a 
coalgebra epimorphism with domain E.

Corollary 3.3.20. The Galois connection constructed in Proposition 3.3.18 establishes a 
one-to-one correspondence between C-subrings 38 C s t  such that M  is Galois 38-module 
and subcoideals X  C ker n  such that E ^ ^  (M) =  E/X.
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Proof. For any subcoideal X  C ker7T, the C-ring s3(X ) is the matrix C-ring in
duced by the projection 7Xx E —* E /X , and therefore by the Remark 3.3.19 M  must 
be a Galois srf(X)-module. For the converse, observe that if M  is a Galois 33 module, 
then 3 3 (srf(33(33))) — 33(33) by the first part of Proposition 3.3.18. Therefore 33(33) 
is a subcoideal of ker7T satisfying the required property by the second part of Proposi
tion 3.3.18. □

Since every coideal in X  C ker 7T induces an ‘intermediate coextension’ E  -» E /X  -» D, 
the Galois connection we have just constructed establishes a correspondence between these 
‘intermediate coextensions’ and C-subrings 33 C sX . From this standpoint the Galois con
nection described in this subsection can be understood as a dual version of the Galois 
connection for comatrix corings described in [20, Proposition 2.1]. The connection con
structed in [20] generalizes a Galois connection that was given for Sweedler type corings 
in [33], which in turn, was a natural extension of the correspondence in Sweedler’s Funda
mental Theorem [37, Theorem 2.1].

3.4 C-rings and invertible weak entwining structures
We now look again at (invertible) weak entwining structures, this time from a C-ring the
oretic point of view. We begin by showing how to associate a C-ring to a weak entwining 
structure. Then we present dual versions of the results for A-corings associated to weak 
entwining structures that we described in the second chapter. Furthermore we describe 
necessary and sufficient conditions conditions for a C-ring to be isomorphic to a C-ring 
which arises from a weak entwining structure. Throughout this section we shall use the 
notations for weak entwining structures that was introduce in Definitions 2.2.6 and 2.2.7, 
also since there is no scope for confusion we shall write £c — e and Aq — A.

Theorem 3.4.1. Let (A,C, y//?) be a weak right-right entwining structure. Define the map 

~Pr : C®A —► C<g>A, ~pr :=  (C ® A ® e) o (C<g> xj/r) o (A® A),

and the set

: = I m ^ =  ( Y i cl{ i )®aa £(cl{2)a ) I Y*a l® cl ^  A 0 C}.
a , i

Then ~pk is a projection, i.e. ~p r Q~Pr := ~Pr, and
(1) s t  is a (C,C)-bicomodule with the left coaction **p  :=  A® A and the right coaction

:=  (C<8> y/fl) o (A® A).

(2) The (C,C)-bicomodule srf is a C-ring with product

jU'f/Ijz/Djz/ —> sX, 'YalC i® ai® cli ®a!i ^ '^ C i® E (c 'i)aia!i,
C i i

and unit
r } t f ' . C ^ s r f ,  c ^ ~ p r (c ®\ ) .

(3) =  M(y/k)J.
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Proof. Firstly observe that pr  is a projection since, for all c ® a E C 0  A,

PRopa(c®a)  = cS>«cee(c(2)OC))
a

=  £ t( i)® « a p e (c (2 ) /i)e(c(3)“ )
a , p

=  H c(l) ^ fla e (c(2)a (l))e (c(2)a (2))
a

=  ^ c ( 1) 0 f l a e (c (2)a ) =PR{c®a). 
a

Where the third equality follows by equation (2.18). That is a left coaction follows 
immediately from properties of the coalgebra (C,A,e). To see that p ** defines a right 
C-coaction, first observe by using equation (2.18) we can compute, for all a E A and c EC,

£ p ^ ( c (1) <8>aa e(c(2)a )) =  £ c (1) <g>aa <g>C(2)a . (3.14)
a  a

Having established this, we next show that p ^  o~pr = (p r <8>C) op ^  o~p^, since ~pr is a 
projection, this will imply that p ** C.sV<g>C. To see that this equality holds apply ~p r ® C  
to equation (3.14) and observe

£ ( p *  <8> c )  O p ^  O p r (c®o) = £  C(1) ® <3«p£(c(2)/3) ® C(3)a
a a , p

=  J ^C (1)(g>fla (8)C(2)a = P ' ^  o ^ ( c ® f l ) .  
a

Where the second equality follows by (2.18) and the the final equality by (3.14). Applying 
C®  A ® e to (3.14) it is immediate that p ^  is counital. It now only remains to show that 
p ** is coassociative. Take any c® a  E C<g>A (summation suppressed) and compute

( p ^  <8>C)op^ o~p r (c®o) = £ p ^ ( c ( i )  <8)«a)®C(2)a =  ® a ap ®C(3)a
a a,j3

=  ^ C ( 1)<8>aa (8)C(2)a (i)(8)C(2)a (2) =  <g>A)op^op£(c<g>a),
a

where the the first and last equalities follow from (3.14), and the third equality follows by 
(2.18). That p ** and **p  define a C-bicomodule structure on sV is easily checked using the 
coassociativity of the coproduct A of C.

(2) First we need to check that is well defined, i.e. p ^ ( s V D  srf) C sV. Before 
attempting this calculation first observe that

s fU s t t  =  { £  ci{\ )®aia ®Ci(2)a ®a'ip£{.cf) | E A  andc/,cj EC}.  (3.15)
C i , a , l 3

This can be seen by applying (C®A®C<g>£®A) to the defining relation of the cotensor
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product s i n  s i .  Now take any a, a! G A and c,c ' G C and compute

Y , P R ° P * / { c ( \ )  <8>C(2 ) a  0 a ^ 8 ( c / / 3 ) )

a , / 3

=  L  P/? (c( i)e (c(2) “ ) ® aaa'p e (c//3)) 
a,/3

=  L  c(1)e(c(3)0 )® (a a ap )re(c(2)r )e(c '/i) 
a,i3,7

=  £  C(i)£(c(3)“ )® a a ra^ e (c(2)r“ ) e ( ^ )
a, {} , Y, (Q

=  £  c(l)® a a a p<oS(C(2)“ “ )e (C,P)
a, (5, a)  

a, j5,Co

=  £  c(1) <8)fla ^ e ( c (2)a )e (c ^ )  
a,j3

Where the third and final equalities follow by (2.16), the fourth by (2.18) and the fifth by 
(2.17). Therefore since is a projection we conclude that ( s i n  s i )  C s i .  That
is left C-colinear is clear from its formulation. It is straight forward to check that is 
right C-colinear by using (2.16). That f i ^  is associative is easily seen from its definition. 
It now remains to show that is a (C,C)-bicolinear and that it is unit with respect to the 
product (.v . From the definition of 7]^ it is clearly left C colinear. Using (2.19) and (3.14) 
we immediately find

1)®C(2) =  £ c ( l)®  la<8>C(2)“ =  op£(l® c),
a

hence r\sg  is right C-colinear as well. Making use of (3.14) and (2.16) it is easy to verify 
that p.#? o ( s iO  Tjtf) = s i .  Finally we compute, for all a G A and c G C,

p £/o(ri 'C/D s i ) o ^ p o p £ ( c ® a )  = ° ( r j ^ n s i ) ^  ®C(2) <S>aae(c(3)a ))
c a

= L  c(1) ® l/3«a e(c(2)^)e(c(3)a ) 
a,P

=  L c (1) ® aa^e(c (2/ ) e ( c (3)a ) 
a ,  ft

= £ c (1)<g>fla £(C(2 )a ) = P R ( c ®a)  
a

where the third equality follows by (2.17). This completes the proof that the given maps 
define a C-ring structure on s i .

(3) First let ¥  : —> M(y//?)J be the map which leaves each ^ -m odu le  unchanged
as a C-comodule, but which changes the right s i -action into a map

'¥(&<)■ M ® * 'i‘(p^) - . = p ^ o ( M D p ^ ) o ( p M®A).  (3.16)
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We now show that each such map, 'P(pm), defines a right A-action on M  for which M  is an 
entwined module. Firstly to check the unitality, compute, for all m E M,

1) =  Y,PM°(M ^ P R ) ( m [0] ® w [l] ® 1) = pM ° ( M B  71^)0 p M(m) =  m,

where the first equality uses the definition of the unit 77̂  and the second equality uses the 
unitality of the right j^-action. For the associativity, take any a, a' E A and m E M  and 
calculate

®>A)(m®a ® a')

=  ^ P A /o(M D p ^)(p A/op^(m [0](8)m[1] 0 a a e(m [2]a )) ® a')
a. c

=  ^ P m  0{ M U p r ){(pm ®C)(mjo]<S>m̂  0  a a 0  m 2̂\a ) ®> a!)
a  c

=  ® aa )®PR(jn[2\a ® a'))
a c

=  J2PA7°(A^O^)(wi[0]®(m[l] ® ̂ a)®P^(^[2]a ® «'))
a c

=  E P M ( W [ 0 ] ^ [ ] ] ^ « a 4 e (m[2]a (l))£ (w[2]a (2)^))
a , / 3

=  0 (a f l/)a e(m[2]a )) = '1 /B ) (m ® f lf l /).
a

Where the second equality follows from the right C-colinearity of pji7 and (3.14), and the 
fourth by the associativity of p ^ . Then the penultimate equality follows by the definition 
of a counit and (2.16). Now we proceed to show that this right action makes M  an entwined 
module

(^(Pa7)OC) o (M®y//?) o (pM®A) =  (p f i <g>C) o (M®C® i//*)0 (M®A®A) o (pM®A)
= {pM ®C) o (M □  p ^  o pfi) o (pM ® A)

=  p A/o p ^ o (M D p ^ )o (p M®A) = p A/o vF (p ^ ),

where the first equality follows by the coassociativity of a coaction, the definition of a 
counit and (2.18), the second by (3.14) and penultimate equality by the colinearity of p ^ .

We have seen what ¥  does to the objects of M ^ , but we also need to know what it does 
to the morphisms. Given a morphism f  : M  —> N  in M ^ , we define ¥ ( / )  =  / .  Using the 
right C-colinearity of /  and the the right s t -linearity of / ,  we can calculate that

/o 'F ( p ^ )  =  ( / opyi7) o (M Dp/j) o ® A)

— Pw° (/D «eO  ° (AfDpj?) ° (pM ®A)

=  Pw° (A^Dp^) o ((pN o f )  ®A)

=  ^(p/v) o ( / 0 A).

Hence when M and N  are viewed as A-modules with actions ^ ( P m ) and xf/(p)v) respec
tively, the map 'F(Z) is right A-linear. Therefore ¥  is a functor.
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Conversely, define 0  : M(y/')J —> to be the map which leaves each entwined mod
ule M  unchanged as a C-comodule, but which changes the right A-action Pm into a map

©(Pm) : M U # /  —>M, ®(p m ) = Pm ° { M ® £ ® A ) -  (3.17)

To see that this gives an associative action, observe that all elements of M U s# \3 s tt are
c  c

linear combinations of * =  £ a p m[0] ® aa ®W[2]a <S>a^e(c^) with a, a' G A and m G 
M. For such elements we can compute

0(p^)o(A fD ju)(jc) =  Yi ®( PM)(m [0} ®m [\}£ (m [2)a ) ® aaa'p£ (cli))

= Y , m [o}(aaa/p)e (m \i}a )£ (cP) 
a,p

=  L  (m[oj1a« )a'pe (m[i i1a )e (c/3)
a,j3

=  0 (P A /)o (0 (p M )a ^ )W .

Where the third equality follows by the associativity of pM. Therefore since all maps are 
k-linear 0(Pm) must be associative. Also observe, for all m G M

0(PA/)(M D77^)(m) =  ^ m [ 0] la e(w[1]a ) = m l  =  m. 
c a

Where the second equality follows since M  G M (yr)J and the final equality since Pm is 
unital. Hence 0 (p ^ )  is unital. To show that ©(Pm) gives a right ^ -ac tio n  on M  we 
need to check that it is a right C-colinear map. Since M d s f  — (M \3~p r )(M \3C®A), all

elements of M D # /  are linear combinations of y = Y,am [o}®m []}®aa£ (m [2]a ) with a ^  ^

and m G M. Then using (3.14) and the fact M  G M (yr)J, we can compute

p M o @ ( p M){y) =  Y*m [o]a a ® m []]a =  ( p M ® C ) o ( M ® £ ® A ® C ) o ( M ® p ^ ) { y )  
a

Since all maps are assumed to be ^-linear this shows that 0(pA/) is a right C-colinear map.
Given a morphism /  : M  —> N  in M (t/r)J, define 0 ( / )  =  / .  Clearly 0 ( / )  is always 

right C-colinear. Moreover in view of the definition of the srf-action and the A-linearity of 
/ ,  it is easily checked that 0 ( / )  is right j^-linear. Since the composition in both categories 
is provided by the composition in the category of vector spaces, 0  : M (y/)J —> is a
functor.

Finally, to complete the proof we need to demonstrate that T* and 0  are inverse isomor
phisms of the categories. Firstly for all M  G M (yr)J, m G M  and a G A,

x¥ ( ® { p M ) ) { m ® a )  =  £ P M ( m [ 0] ®<3a e ( m [i]a ) )  =  Y , ( m a )[0]£ ( ( m a ) [ l \ )  =  P M { m ® a ) ,  
a

where the second equality follows by the fact that M  is an entwined module. On the 
other hand, taking M  G and applying (0('F(pjif)) to y =  L a m[0]®m[i]®a a£(w[2]a ) 
we immediately obtain that (© (^ (p a /))^ )  =  pM(y),  completing the proof. □
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Definition 3.4.2. Let A be an algebra and C be a coalgebra that is also a right A-module. 
Then the space

I := s pan{£(ca) (1)a( (ca) (2)) ~ E c(i )a(c(2)a)\a 6 A , c  e  C , a  e  Hornk(C,k)j

is a coideal of C (see [9, Lemma 3.2] for a proof of this). Now B := C / I  is a coalge
bra and we say C -» B is a (right) weak algebra-Galois coextension (or a weak A-Galois 
coextension) provided that the left A-linear right C-colinear map

/3 : C 0 A  —> CD C, j3 :=  (C®pc)  ° (A® A)
B

is a split epimorphism in the category c M/4, that is to say there exists a morphism X : 
C D C  —> C<S>A in c M/\ such that B o y  =  CDC.

B B

In the weak algebra-Galois coextension case there is a result dual to Theorem 2.2.12.

Theorem  3.4.3. Let C -*> B be a weak A-Galois coextension. Then there exists a unique 
right-right weak entwining structure (A,C, yfjf) such that C G with the canonical
right C-coaction (via the coproduct in C) and the predetermined right A-action. This weak 
entwining structure is referred to as the canonical weak entwining structure associated to 
the A-Galois coextension C -» B.

Proof. Let % denote the map which splits j3 and set

t  : C D C  —»A, r := (e<g>A) o%,
B

to be what will refer to as the weak cotranslation map. We first investigate some properties 
enjoyed by such a map. Firstly

Pc ° (C ® ?) o  (A (g) C) =  pc o(C<g>£(g)A)o(C®%)o(A<g)C)
— pc°(C<g>£®A)o(A<g)A)ox

= P c o x
=  (e ® C )o j3 o £ ,

where the second equality follows from the left C-colinearity of x  and the last equality by
noting that (e® C ) o P(c®a)  = £ e (c (i))  ®c^2)a = ca. Now since % splits j8 this implies

P c °  (C<8>t)o (A®C) =  £<8)C. (3.18)

Also observe that

t o  (C<g>pc)(c<g>c'®a) = (£<g>A)ox(c®c'a)
= ( £ ® A ) o x ( c ® c ' ) a  
■- r(c<g)cf)a
= po(T<g>A)o(c(g>c/ <g><z),

where the right A-action on C <g> A is C <g> p  and the second equality follows by the right 
A-linearity of X- From this observation it is then clear that

p  O (?<g)T) =  TO (C ® pc o (C<8) t) ) ,  (3.19)
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on C D C ®  CDC. Combining the previous equation, (3.19), with equation (3.18) it is clear 
that on CD  C D C  we have

B B

p o ( T 0 ? ) o ( C 0 A 0 C )  =  t o ( C 0 £ 0 C ) .  (3.20)

Making use of the above observations and the elementary properties of the map in ques
tions, we now show that the map

y/R : C ® A A ® C ,  y/R : =  ( t 0 C ) o ( C 0 A ) o / 3 ,  

gives a right-right weak entwining structure (A,C, y/fl). Firstly that

(A 0  £ 0  C) o (y/R <g) C) o (C 0  1 0  C) o A =  y/R o (C 0  1)

and
jU o (A 0 £  <8)A) o (Yft 0 A) o ( C 0 l  0 A) =  (A 0 e) o y/R 

can easily be confirmed by a straight forward calculation. Next compute

(H 0 C) o (A 0  y/fl) o (y/fl 0 A)
=  ((jU o (t 0  t)) 0 C )  o (C®3 0  A) o (C 0  ( (C 0  j3) o (A 0A ))) o (j3 0A )
=  ((jUo (t 0 t) ) 0 C ) o (C®3 0 A ) o ( C 0 ( ( A 0 C ) o / 3 ) ) o ( j 3  0 A )

=  ((p  o ( ? 0  t) o (C 0  A 0 C ) 0 C )  o ( C 0 C 0  A) o (C 0  j3) o ()3 0A )
=  ((to (C 0 e 0 C ))0 C )o (C 0 C 0 A )o (C 0 j3 )o ( j3  0A )
=  ( ? 0 C )  o (C 0  ((e 0 C 0 C )  o (C 0  A) o/3)) o (j3 0A )
— ( T 0 C ) o ( C 0 A ) o ( C 0 P c ) ° ( j 3 0 A )

=  (t 0 C )  o (C 0  A) o j3 o ( C 0 / i )
=  yfoo (C 0 p ) .

Here the second equality follows by the left C-colinearity of /3 and the fourth by equation 
(3.20). For the sixth equality observe that

( e 0 C 0 C ) o  (C 0A ) o j3 (c 0 a )  =  ^ e (c (i))A (c (2)«) =  A(ca). (3.21)

Finally the penultimate equality follows from the right A-linearity of /3. Now there is 
only one thing left to check in order to demonstrate that (A,C, y/fc) is a weak right-right 
entwining structure. Again compute

(yfo0C ) o (C 0  y/R) o (A 0A )
=  ( y ^ 0 C ) o ( C 0 T 0 C ) o ( C 0 C 0 A ) o ( C 0 ] 8 ) o  (A 0A )
=  (y /> ? 0 C )o (C 0 T 0 C )o (C 0 C 0 A )o (A 0 C )o j8  
=  ( t 0 C 0 C )  o (C 0  A 0 C ) o ((j3 o (C 0  t )  o (A 0 C )) 0 C )  o (C 0  A) o j3 
=  ( ? 0 C 0 C ) o ( C 0 A 0 C ) o ( ( j3 o ^ ) 0 C ) o ( C 0 A ) o /3  
=  ( t 0 C 0 C ) o ( C 0 C 0 A ) o ( C 0 A ) o )3 

=  (A 0 A )o (? 0 C )o (C 0 A )o /3  
=  (A 0  A) o y//j.
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Here the second equality follows by the left C-colinearity of /3 and the fourth follows 
because using the colinearity of %

( C 0  T) O (A 0  C) =  ( C 0 £ 0 A )  o ( C ® % )  O ( A 0 C )  =  ( C 0 £ 0 A ) o ( A 0 A ) o £  =  %.

Finally, the sixth equality in the computation of ( y /R 0 C )  o (C 0  y//?) 0 (A 0A ) follows by 
the coassociativity of A. Hence (A,C, y//?) is a weak right-right entwining structure. Now 
we can follow the same proof as in [9, Theorem 3.5], to show that C G M(i/a)J with the 
canonical action and coaction:

(pc<0C)o (C® y/)?)o(A®A)

=  (Pc ® C) o (C 0  t  0  C) o (C 0  C 0  A) o (C 0  /3) o (A 0  A)

— ((Pc o (C,0 t ) ) 0 C ) o ( C 0 C 0 A ) o ( A 0 C ) o /3
— ((Pc ° ( C 0 t) o ( A 0 C ) ) 0 C ) o ( C 0 A ) o /3

=  (£ 0  C 0  C) o (C 0  A) o 

=  A o p c .

In this computation the second equality follows by the left C-colinearity of j3, the fourth 
by equation (3.18) and the final equality by equation (3.21). Finally to complete the proof 
of the theorem the uniqueness of y/R can be demonstrated as follows. Suppose there exists 
some other weak entwining map iJ/r such that C G M ( ^ ) J  with the obvious action and 
coaction. Then

y/R =  ( t 0 C ) o ( C 0 A ) o ( C 0 P c ) o ( A 0 A )

=  ( t 0 C )  o  (C 0  ( (p c 0 C )  o  (C 0  V r )  o  (A 0A ))) o (A 0A )
=  ( ( t o  ( C 0 p c ) ) 0 C )  o ( C 0 C 0  \(/r) o ( C 0 A 0 A ) o ( A 0 A )

=  ( ( f o ( C 0 p c ) ) 0 C ) o ( A 0 i ^ ) o ( A 0 A )

=  ( ( t o  ( C 0 p c )  o ( A 0 A ) ) 0 C ) o ( C 0  V/r)  ° (A 0 A )

=  ( ( t o  j3) 0 C )  o (C 0  V ^ )  o (A 0A )
=  (£ 0 A  0 C )  o  (C 0  y//;) o (A 0A ) =  y/R.

Here the second equality follows by the compatibility condition required so that C G 
M(v/fc)J with the prescribed action and coaction. The fourth equality follows by the coas
sociativity of A. Finally the sixth and seventh equalities follow from the definitions of the 
maps p  and ?  respectively. □

Having established how to associate a weak entwining structure to a weak algebra- 
Galois coextension, we now describe a necessary and sufficient condition on a weak en
twining structure to determine whether it arises from a weak algebra-Galois coextension. 
Recall that in the case of weak coalgebra-Galois extensions (c.f. Theorem 2.2.12) this can 
be achieved by looking at the associated A-coring, as described in Proposition 2.2.14.

Lemma 3.4.4. Suppose C G M(i//r )^  with the natural right C-coaction. Then the coideal I  
ofC, described in Definition 3.4.2, coincides with the coideal IK defined in Lemma 3.3.10. 
Where K : srf —> k is the nontrivial character associated to the right action on C o f  the 
C-ring srf arising from  (A,C, y/R) (cf. Lemma 3.3.9 and Theorem 3.4.1).
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Proof. First observe that by equations (3.9) and (3.17) we can compute that, for all
c ® a £  srf,

K ( c 0 a )  =  £ o p c o (C<S>e<S>A) o^p(c<g>a)

— ^ £ o P c °  (C® e® i4)(c(!) <8>C(2) =  e(ca).

In view of this observation it is clear that

IK = {c a -Y ,C (i)£ (c (2)a) | c® a  G s f } ,

and since e G Hom*(C,A:), it is clear that IK C I. On the other hand all elements of I  
are linear combination of x  — 'L(ca){ i)^((ca){2]) ~  L c(i)? (c(2)a ) with a e  A, c e  C and 
§ G Hom*(C, k). Now observe that for each such x

X =  L C(l)a “ ^ C(2)a ) _ C (l)e ((C(2)a )(l))'?((C(2)<,)(2))
a

=  E c(0 apS (cP)P) _ E c0 )e (c(2)a a )£ (c(3)a )
P  a

=  E  c(l)a a/3e (c(2)^)l(c(3)°) ~ c(l)e (c(2)a a )£ (c(3)°)-
a ,  P

Here the first and second equalities follow since C G M(i//)?)J with the canonical right C- 
coaction, and the third by equation (2.18). Using (2.18) it is straight forward to verify that 
E a c ( i )  ® a a ^ { c ( 2)a ) £  • Hence we can conclude that jc G I K and therefore that /  C IK. □

Lemma 3.4.5. Suppose srf is a C-ring associated to a weak entwining structure (i//>?,A,C) 
such that C G =  M(vto)J. Then sY is a Galois C-ring (with respect to K =  £ o pc) if  
and only i f  P \^  : s f  —> C D C  is a bijection.

B

Proof. Observe that for this choice of K the induced C-ring map T K : st/ —> CD C, as
B k

described in Proposition3.3.12, satisfies, for all c® a  G s f ,

T K(c® a) =  ^ C(1) 0 e(c(2)fla)c(3)a 
a

=  J3 c (1)®C(2)fl =  jS(c(8)fl).

Where the first equality follows since C G M(yfo)J. Also in view of the previous lemma 
B k = B. T k : jzf —> C U C  is an isomorphism if and only if j3 |^  : —> C D C  is a bijection.

B k B□

Proposition 3.4.6. The C-ring associated to the weak entwining structure in Theorem 3.4.3 
is a Galois C-ring. Conversely, i f  the C-ring associated to a weak entwining structure 
(A,C, ty/fl) is a Galois C-ring, then C is a weak algebra-Galois coextension.
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Proof. If s f  is the C-ring associated to the weak entwining structure in Theorem 3.4.3, 
then for the associated projection ~pr  : C® A —> C®  A,

~Pr =  (C® A®  e) o (C® Vr) o (A® A)
=  (C ® A ® £ )o (C ® £ ® A ® C )o (C ® £ ® C )o (C ® C ® A )o (C ® /3 )o (A ® A )
=  (C ® £ ® A )o (C ® £ )o (C ® /3 )o (A ® A )
=  (C ® e® A )o (C ® ^ )o (A ® C )o /3  
=  (C ® £ ® A )o (A ® A )o * o /3  = * o j3 ,

where the fourth and fifth equalities follow by the left C-colinearity of p  and x  respectively. 
Hence s f  = ImQfo p)  and since p o~x =  CD C, the map P is a bijection. Therefore,

B

by Lemma 3.4.5, s f  is a Galois C-ring. Conversely if s t  is a Galois C-ring and associated 
to a weak entwining structure then by Lemma 3.4.5, p \ ^  : srf —► C D C  is a bijection,

B

furthermore it is clear from the definition of P that it is a morphism in c M/4. Now observe 
that the composition of the maps j3 |^  : C D C  —► and then the inclusion s f  C® A

B

is a morphism in cM a splitting j3. Therefore C -» B is a weak algebra-Galois coextension.
□

We have already demonstrated in this section how it is possible to associate a C-ring to 
a right-right entwining structure, now we show how to associate a C-ring to a left-left weak 
entwining structure.

Theorem 3.4.7. Let (A,C, Vl) be a left-left weak entwining structure. Define the map 

~pf\ A ® C ^ A ® C ,  ~Pl’-=  (£®A®C)o( i / /^®C)o(A®A),

and the set

3 8 \= \m  p l =  { ^ £ { c\ \ ) e )ciiE ®C(2) |£ V ® c ' eA ® C } .
E, i

Then p [  is a projection, i.e. ~Pl °~Pl =  ~Pl> and
(1) 38 is a (C,C)-bicomodule with the left coaction ®p \= (A® ifff) o (A® Ac) and the 

right coaction p®  : = A ® Ac-

(2) The (C,C)-bicomodule 38 is a C-ring with product

p@ : 38UBS —> 38, ^ f l / ® c , - ® a j ® c 5  i—>• ^ « , f l j £ ( c / )  ® cj,
C i i

and unit

( 3 )

Proof. This theorem is simply a ’left handed’ version of Theorem 3.4.1, and can be 
proved in a similar manner. □

Before investigating the C-rings associated to an invertible weak entwining structure, it 
will be useful to recall the following result [1, Proposition 1.5].
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Lemma 3.4.8. Let (A,C, i//>?, l{/l) be an invertible weak entwining structure. Then pR = p l  
and p l  = p R.

Proof. To see that p l  =  p i,  take any a e A  and c G C, and compute

p l(c ® a ) = £ c (])® aa e(c(2)a ) =  £ c (1) ® £(c(2)a ) l a a 
a  a

= £ c (1) ® £(c(2)E) l Ea =  Y<cE ® =  pL(c® a ),
£ £

where the second equality follows by (2.17), the third by (2.24), and the fourth by (2.23). 
A similar calculation shows that ~pl = Pr - □

Remark 3.4.9. Lemma 3.4.8 shows that conditions (b) in the definition of an invertible 
weak entwining structure (Definition 2.3.2) may be replaced with alternative conditions:

(b*) Vr o \}/l = p l  and \ifL o\l/R = p l.

Note further that both s f  and are not only C-rings but also A-corings.

Remark 3.4.10. Using the previous remark and (2.18), it is clear that

Vr °P r = P R °V r = Vr - (3.22)

Similarly using (2.22)
Wl °P l = Pl °W l = Vl - (3.23)

Proposition 3.4.11. Let (A,C, y/)?, i//l) be an invertible weak entwining structure and let
srf — Im p l  and £8 =  Im ~pl be the corresponding C-rings. Then the restrictions o f the
entwining maps

\j/L : & —> s t , Wr : -* SB

are inverse isomorphisms o f C-rings.

Proof. Since p l  and ~pl are projections, the conditions (b*) in Remark 3.4.9 imply 
that the restrictions of \)/r and if/L to Im p l  and Im ~pf respectively, are mutually inverse 
isomorphisms of vector spaces. Using (2.18) and the definitions of the C-coactions on srf 
and we can compute that

(y fR ® C )op£/ o p l  — (\i/R®C)o(C®\i/R)o(A<%)A)opl
= (A<S>A)o\f/R o p l  = o y /R op l,

therefore xj/r : srf —► &  is right C-colinear. Similarly one easily finds

38P °W r °~Pr =  (WL®C)o(A<g>A)o\}/Ro-pi
= (Vl®C) o  (\j/R®C) o (C<g)i//fl) o (Ac<8>A) o~pl 
=  (pl< S> C )op^opi = p ^ o p i= ( C ( ^ y /R ) o ^ p o p i ,

where the first equality follows by the definition of ^ p , the second by (2.18) and the third 
by condition (b*) of Remark 3.4.9. Then the fourth equality follows since ~pl is a projection 
with image stf. Finally, the last equality holds by the definitions of ̂ p  and p**. In view of



3.4. C-RINGS AN D  INVERTIBLE W EAK  ENTW INING STRUCTURES 73

this calculation we conclude Yr : sd  —» SB is a left C-colinear map. By performing similar 
calculations it is straight forward to check that Yl : &S —> sd  is a (C,C)-bicomodule map.

We now show that Yr  : sd  —> ^  is unital and multiplicative. Firstly for the unitality 
take any c G C and compute

WRorl ^ ( c) = Vr °P r {c ® 1) =
a

~  H e (c(l)°!) 1a ®C(2) =  X^£(c(l)^ )lE(g)c(2)
a E

= P l( l  ®c) =  7]^,

where the second equality follows by (3.22), the third by (2.19) and the fourth by (2.24). 
Hence \\fR is a unital map. As for the multiplicativity, firstly observe that all elements 
of xd U sd  are linear combinations of x =  c^) ®a$ ®C(2)^(i) ® « ae (c(2)^(2)a ) with
a, a' G A and c G C. For such elements the definition of the product in $d and properties 
(2.16) and (3.22) yield

\j/R o ^ ( x )  =  £  Vr (c( \ ) ^ pa'a e { c {2/ a )) =  VRop£(c®aa!)  =  \\fR(c®aa!).  
a,j3

On the other hand using (3.22) along with conditions (2.16) and (2.18), we compute

jU#o (\i/R D\{/R){x) =  ° ( W R t l Y R ) { c ( i )® a (X® p R(c{2)a ® d ) )
c  a  c

= J2  fla i3 4 £ (c(i)^)0 c (2)a r  =  WR{c®aa'). 
a.0.7

Therefore we conclude that y/fc is multiplicative, completing the proof that ij/R is an iso
morphism of C-rings. □

Corollary 3.4.12. Let (A:C,YRi Wl) be an invertible weak entwining structure. I f  C G 
M(vfe)J, C G $M (yijf) with the action, fo r  all a e A ,  c G C,

ac = Y , cE(i)e icE(2)aE)- 
E

Proof. We arrive at this result by making the following chain of deductions. Firstly, 
C G M(y//j)J so by Theorem 2.2.9, C G M ^ .  Explicitly (3.17) tells us that the correspond
ing right ^ -ac tio n  is, for all c ® a G &d (summation suppressed for clarity) and d  G C,

d  <1 (c ® a) = e(c)cfa.

Since there is always a trivial matrix context (C ,C ,c Cc f C 0 , cr, t ) ,  as described in Propo
sition 3.3.14, Lemma 3.3.1 tell us that C G with the left j^-action

( c ® a )> d  = J 2c(i)e (c(2)fl)£ (c/)-

By Proposition 3.4.11, Y l • —* $d is an isomorphism of C-rings and so C G with
left ^ -action

(a ® c )> d  = ^ { c e  <8>aE) > d  = Y , cE(i)e (cE(2)aE)£(c')- 
E E
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Finally we can use the correspondence {yrf) (cf. Theorem 2.2.10) to view C in
jM ( i \rf). Explicitly we apply the functor —> jM ( i j/ifi, which leaves the objects
and morphisms unchanged as vector spaces but which changes the left ^ -actions ~Mp to a 
left A-actions 'F(mP) defined

*F()up) :A ® M  — > M, ^ (m P ) : =  a /P °  {jplUM ) o  (A ® Mp).

□
We have already demonstrated how to associate a C-ring to a weak entwining structure. 

Now we look for purely C-ring theoretic conditions which allow us to determine that a 
C-ring is of the type that arises from a weak entwining structure. As a corollary of the 
criteria that we find, we show that the Sweedler C-ring corresponding to a weak A-Galois 
coextension is of this type. By expanding on the conditions we are also able to characterize 
C-rings that arise from invertible weak entwining structures.

Proposition 3.4.13. Let A be an algebra and srf be a C-ring. Suppose in addition sY  G CM,4 
and there exists a right A-linear map 6 : s f  —> A satisfying the diagram

sY d sr f
c

Then y/:C<g>A-^A<g>C defined to be the composition

C ® A 7̂ £ r f ® A ? fL^ s r f — i . e / ® C - ^ A < g > C ,

makes (A,C, i/r) into a weak entwining structure. Moreover the C-ring associated to 
this weak entwining structure is isomorphic to sY via the map srf defined as
X '-= P *r°(ris/® A )\a .

Proof. In what follows we adopt the convention of writing r \^  as rj and denote 
the right A-action on srf by p^  (a®a!) = a- a1. Before checking the required computations 
notice that the diagram implies the product in srf is right A-linear since it is the composition 
of two right A-linear maps. To see that y/ preserves the coproduct in coalgebra observe that, 
for all a G A and c G C,

o (C®\l/)o(A®A)(c<8>a)
= Y ,iW ® C )(c{l) <8> 0((T7(c(2))-tf)[O])®(77(c(2)) •«)[!])

=  X^(V^<S)0(T7(^)[-i] 0 ( (t7(c) [O]-^)[o]) ^  (t7(^)[0] *«)[!])

= L(^®C)((77(c) ® 0((T7(c) -a)[o]) ® (vM •«)[!])
=  L  ° ( ( r l M  ' f l )[o]) ®  ( V M  ' a)[\) ®  ( r j (c) • a ){2]
=  (A <g> A) o \f/(c®a).
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Here the second equality follows because 7] is left C-colinear and the third by the right 
A-linearity of **p. The penultimate equality then follows since

E n ( (n W -a ) [ - i ] ) -0 ( ( J ? (e ) - a ) |O]) =  £ rj((T i(c)-a)[_ i|)(ri(c )-a)[o ] =  »?(c)-a,

by virtue of the assumption that = p ^  o (& /D 6). For the preservation of the multipli
cation in the algebra compute, for all a,b  E A and cG C ,

(p  ® C) o (A (8) y/) o (lf/<S>A) o(c®a<g>b)

=  E 6 ^ ( c ) ’O)[0]((»7((»7(c) '<*)[,])) ■fr)[0])®(lj((l?(c) •«)[!]) •*)[!]

= E  . » ' a)[0]n((f7(c)'a)[i])'fc)[o])®((»?(c)'a)[o]f?((r?(c)-a)[ii)-i>)[i]
=  -«*)[0]) ®  (ntc)-<3/>)[i]

=  y^o {C ® pA){c<g>a<g>b).

Here the second equality follows by the diagram and the right A-linearity of 0, and the 
third since product in srf is right C-colinear. To show that yr respects the unit of the algebra 
compute, for all c G C,

£ l  « 0 c a =  £ 0 ((t7(c))[O])® (t?(c))[i]
a

=  E0(f?(C(l)))<8>C(2)

= E £((^(C(l)))[lpd((^(C0)))[0])^C(2)

a

Here the second equality follows from the right C-colinearity of 77. Similarly for the algebra 
structure one computes that, for all a E A and c e C ,

J ^ a a £(ca ) =  5 2 0 ((T7(C) ' CE)[O])£ ((T?(C)-«)[1])
a

=  0(Tj(c))a

=  £ e ( c “ ) l a a.
a

Hence (A,C, y/-) is a weak entwining structure. Now we check that % :=  Pst 0 i7! ^  
is morphism of C-rings. Firstly since it is a composition of left C-colinear maps it is left 
C-colinear. Then observe, for any a G A and c G C,

Y , ^ cw ) ' a a ® c$ )a
a

=  E ^ O ) ) ' e ((rl(c(2)) -a)[0]) ® (IJ(C(2)) -a)[ii 

=  E TJ(c)[0] (n((nW)[i l ) -«)[o]®(n((»?W)[i]) 'a)[ i ]

=  E ( ( T)(c))[0]77((,l ( c))[ i] ) 'a))[0]®((r7(c ))[0]'?((7](c))[i])'«))|i]

=  •«)[!].

^
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by multiple use of the properties of 7], the right A-linearity and right C-colinearity of the 
product in srf. From this calculation it is clear that % is right C-colinear. Now to show that
X is multiplicative first notice that all elements of SBC3SB are linear combinations of

c

X  =  L C( 1) ®  e ( ( ^ ( c (2))  ' a ) [0 | )  ®  ( »?(C(2) )  • « ) [ ! ]  ®  o ' e ( c ' ) ,

with a, a' £ A and c, d  G C. For such an element

AW °  ( * □ * ) ( * )  =  £ ( f ? ( c ( i ) ) - 0 ( ( n ( c ( 2 ) ) - a ) [ o ] ) n ( ( ' ? ( c ( 2 ) ) - a ) [ l ] ) - « ' e ( c ' )

=  L ( ' ] ( c ) - a ) [ 0]I?( ( ,l ( c ) - a ) [ l ] ) -« 'e (c ')

=  (rj(c) ■ a) • a'e(c')
= T](c) ■aa'e(c')

Here the second equality follows by the the same considerations employed to show the 
right C-colinearity of %. On the other hand

=  £ z ( c ( i ) ® 0 ( » 7 ( c ( 2  ))-a)a'e(c'))

= E » j(c ( i)) - ®(t?(c(2)) a)a 'e(c ')
=  E»?((»lW )[-i])n(c)(o] ■aa'e(c') =  r?(c)-aa'e(c').

Here the third equality follows by the properties of rj. Hence % is multiplicative. That % 
preserves the unit follows since, for all c EC,

X °  =  Z ( C ( 1 ) ®  l a £ ( c ( 2 ) “ ) )  =  n ^ ( c ( l ) ) ' e ( , 7 « ' ( c ( 2 ) ) )

=  * M (jM c )) |_ i |) iM c )[o ]  =  r\rf{c).

To finish the proof of the proposition we now give an inverse for %• Define

x ~ ' x ~ '  ■■={C®0)°*p.  (3.24)

First we check C SB, recall elements of SB are precisely the elements of C®A
which are invariant under the map ~pr :=  (C<g> A <g> e) o (C® y )  o (A® A) now observe, for 
all a € sS ,

7 r ° X ~ \ o) =  L«[-i](i)®0((t?(«[-i](2))-̂ («[o])))
=  ]}))[-1] ® ^ ((^ (^ [- l] ) )^ ]^ ])

=  i])«[o])[-i] ^((T7(«[-i])«[o])[o])

=  £ a [-i]® e(fl[o ])

=  X ~ \a )-

Here the second equality follows by the diagram satisfied by G and the left C-colinearity 
of rf. The third equality follows by the left C-colinearity of the product in s d . Now check



3.4. C-RINGS AN D  INVERTIBLE W EAK ENTW INING STRUCTURES 77

that x  1 as defined is indeed the inverse of %• Again compute, for all a G A and c G C, 

£ x - 1 °X (c(i)® aa£ (c(2)a )) =  £ x _1(j](c(i))-aa£(c(2)a ))
a a

=  E n fc o ) ) ] - ! ]  ® 0(»?(c(i))[o])aae(c(2)“ )

=  I > (
a

= I  
= I  
= I
=  I 1

® 0 (7](c(2 ) )K e (c (3)a )

^  0(77(c(2)))0(t7(c(3 )))a

®0 { T] { C(  2))T](c(3)))fl

®0(W(C(2)))*
® aa £(c( 2)a ).

— P ^  ° 0), the definition of y/

he identity is a much simpler calculation,

‘(a

By the right A-linearity of 0, the assumption tha

and the properties of the map t j . That % ° X ~ l l s  
for all a G sV,

X  °  x ~ l M  =  L ^ - i ] 0  0 (fl[o])) =  ! > ( * [ - ! ] )  • 0 («[o]) =  L t ] ( « [ - i ] ) « [ 0] =

By the diagram that 6 satisfies and the properties of rf. This completes the proof. □ 

Remark 3.4.14. It is easy to see that with the additional requirement that

V Q

the assumptions of Proposition 3.4.13 will force srf to be isomorphic to a C-ring associated 
to a non-weak entwining structure.

Corollary 3.4.15. Suppose C -» B is a weak A-Galois coextension then the canonical cor
ing C D C  comes from a weak entwining structure.

Proof. By definition of B we know that C D C  G cM/4. Also recall, from the proof
B

of Theorem 3.4.3 there is a right A-linear map ? :  C D C  —> A, which we termed the co-
B

translation map, which is right A-linear. By the definition of this map it satisfies

p c ° ( C < g > ? ) o ( A ® C )  =  £<g>C

With this in mind it is clear the ?  satisfies the diagram of the previous proposition since 
elements of C D C D C D C  have the form cl <®c2^  <8>c2(2) ® c3 (summation suppressed) 
and so

O tX c 1 ®C2(j) <®C2(2)®C3)

=  C<S>pc) o [ s f  (8>r)(c1 <8>c2 ( 1 ) (8>c2 (2 ) ® c 3 )
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Now note this is precisely the product of these elements in CDC. Hence can apply the
B

previous proposition with 6 = f  to get required result. □

Remark 3.4.16. From the previous corollary it is clear that the construction of a weak 
entwining structure from a C-ring in CMU satisfying the conditions given in Proposition 
3.4.13 generalizes the construction of a weak entwining structure from a weak A-Galois 
coextension as described in Theorem 2.2.12. In the sense that the weak entwining structure 
associated to a weak A-Galois coextension C -» B, as constructed in Theorem 2.2.12, can 
also be obtained by feeding the associated Sweedier type C-ring CD C, which satisfies the

B

hypotheses by the previous Corollary, into Proposition 3.4.13.
Also note that for all weak entwining structures (A,C, y/R), the associated C-ring s f  

satisfies the hypotheses of Proposition 3.4.13 when combined with the map e <8>A : stf —► A, 
and the weak entwining structure generated is (A,C, y/R). Therefore all weak entwining 
structures can be generated in the way outlined in Proposition 3.4.13.

Corollary 3.4.17. Let A be an algebra and sY a C-ring. Suppose in addition that srf G 
CM„ n  aNIc and there exists a map £#/ ; sY  —► A which is both left and right A-linear 
satisfying the diagram

c

Then fo r  the maps

y/R : C<g>A ^ A ® C , y/R :=  (e ^ < 8 )C )o p ^ o p ^ o (7 ]^ 0 A ) ,

y/L : A®C^C<g>A, y/L :=  ( C ® e ^ ) o ^ p o ^ p o ( A ® r j^ ) ,

(.A,C ,y/i,y/R ) is a weakly invertible entwining structure. Moreover with the additional 
assumption that sY G ^MU, sY is also an A-coring with counit and product

A ^{a )  =  £ 77̂ («[_!]) (8>a[0].
A A

Recall that associated to an invertible entwining structure is an object &  which is both a 
C-ring and an A-coring. Now with this additional structure

X - = P ^ ° ( n ^ ® A ) \s s ,

is an isomorphism o f C-rings and A-corings.

Proof. That yfR is a right-right entwining structure follows from the proposition. 
Similarly one can prove a left handed version of the proposition and this will imply that y/^
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is a left-left entwining structure. Now with these assumptions

Pr =  { C ® A ® £ ) o ( C ® \ i/r ) o (Ac ® A )

= (C 0A  <g) e )  o (C <g> ( (e ^  <8>C) o p** o p tf  o (rjjtf ®A))) o (Ac ®A)
= (C®£'Sf)o(C<g>p£/)o(C<g>ri£/(g )A )o (A c® A )
=  (C<S>££/ ) o ( C < g > p ^ ) o ( ^ p 0 A ) o ( 7 ] ^ < g > A )

= (C ® e ^ )o ^ p o p ^ o ( r ]^ (8 )A ) .

Here the third equality follows by the couni tali ty of p ^  the fourth by the left C-colinearity 
of Tf#/ and final equality since the right A-action on a t  is left C-colinear. Similarly

Wl ° W r =  ( C ® £ s z ) o  ^  p  o t f p  o (A 0  r j^ )  o ( e ^  ® C) o p ^  o p ^ o  (r j^  ® A)
=  (C (8)£ t f )  O ^ p  O ^ p  O ( E j f  <g>a t )  O { a t <g> r \ ^ )  o p ^ o p ^ o  (77̂  <8>A )

=  (C (8)£rf) o ^ p  o p t f  o (a t  (8) 77̂ )  o p ^ o p ^ o  (77̂  OA)
=  (C (8) e ^ )  o o p ^ o  (77̂  ® A)

=  ?/?■

Where the third equality follows by the diagram and the fourth by the unitality of 77̂ .  
Likewise, one shows Vr ° V l = ~Pl • It is immediately clear that % is right A-linear. To see 
that it is left ^ -lin ea r  observe, for all a, a' G A and c EC ,

% { a ’ • ( c < g > a ) )  =  £ ( 7 7 ^ ( ( a '  • r ? ( ^ ) ) [ - i ] ) )  • ^  M ) [ o ] ) «

=  a'-risz/(c)-a  
= a '- x ( c 0 a ) .

Here the second equality follows by the diagram. Hence

(% ® X )°A & °X ~ 1(a) = T \ V ^ (a { - il)® a{0] =
A A

define an A-coring structure on a t  which has the required properties. □
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Chapter 4 

Structure theorems for coextensions and 
extensions

4.1 Coextensions of self-injective algebras

In this section we investigate coalgebras which are right entwined modules over an invert
ible weak entwining structure. In particular we will give a criterion for such a coalgebra C, 
over a field k, which is a right entwined module for an invertible weak entwining structure 
(A,C, Yr, Y l ),  to be weak A-Galois coextension. Since we will be working under the as
sumption C E M ( i S = E ^(C )  (where srf is the C-ring associated to (A,C, i//>?)) will
be isomorphic to B K, by the isomorphism described in the proof of Proposition 3.3.14.
Moreover by Lemma 3.4.4 it is clear that B K = B , so for simplicity we shall henceforth 
denote all these objects by B.

Proposition 4.1.1. Let (A,C, i//)?, Y l ) be an invertible weak entwining structure such that 
C is a right entwined module, and let srf be the C-ring corresponding to (A,C, i//>?). View C 
as a left A-module as in Corollary 3.4.12. Then C -» B is a weak A-Galois coextension and 
C is injective as a left B-comodule i f  and only i f  there exists a k-linear map g : C(g>C —> A 
such that, fo r  all c E C  and a E A ,

g(ca ® c') = Y,g{aaCa ® c'), (4.1)
a a

and
£ g ( c (i)®c(2)0) =  J ^ aa£c(ca ). (4.2)

a

Since in Proposition 4.1.1 it is assumed that C E M(y//?)J, using Theorem 3.4.1 we 
can deduce that C E M ^  with the action given in (3.17). Therefore, combining Proposi
tion 3.4.6 and Proposition 3.3.14 we find that C -» B is a weak A-Galois coextension and 
C is injective as a left J5-comodule if and only if C is a principal srf-module. In light of this 
observation, we set about proving Proposition 4.1.1 by finding criteria for C to be principal 
j2/-module. By Theorem 3.3.16 this problem reduces to finding necessary and sufficient 
conditions for there to exist a left srf-module retraction of /3 : —> C <g> C (as defined in

81
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Proposition 3.3.6), where the right .^-m odule structure on C<S>C is that induced in the 
obvious way from the left ^ -ac tio n  on C given by Lemma 3.3.1. Explicitly

c®cP : srf® C  ~  £?nC ® C  —> C 0 C , c ® a ® c ' ^  ^ c ^ E c i c ^ a )  ®

Before considering the problem of when there is a left ^ -m odu le  retraction of /3, we first 
study left srf-linear maps C 0  C —> &/.

Lemma 4.1.2. Suppose (A,C, y//?, y^) is an invertible weak entwining structure with C G 
M(yfe)J. Then there is a bijective correspondence between leftsrf-linearm apsg : C® C —> 
srf and k-linear maps g : C 0 C  —> A satisfying condition (4.1).

Proof. Substituting the definition of the left A-action in Corollary 3.4.12 the condition 
4.1 becomes

0  c') =  £ g (c ( i)0 c ')£ t(c (2)a). (4.3)
a

Given a fc-linear map g satisfying 4.1 we define

g : C ® C  —> g :=p£o(C<g>g)o(Ac<S>C), (4.4)

so on elements g(d ® d f) =  L «^(i) ®g(d(3) <S>d/)a£c(d(2)a ). Using (2.17), (2.19) and
condition (4.3), we find that, for all d ,d ' G C,

L ^ ( d (2) 0 <Oa£c(d(i)a ) =  ^ £ c ( ^ ( i ) a ) 1a,§(^(2) ® d’) = £  1 ag{da ® d’) = g (d ® d '), 
a a a

hence
g(d®d') =  £ d (i)® g (d (2)®d')- (4.5)

Now observe that all elements of C are linear combinations of
c

x =  ^C(!)<8)ao®C(2)a 0rf, 
a

with a G A and c,d  EC,  and for such elements

g°c® cp{x )  =  ££ ( (c ( i )® t fa )> (c (2 ) ° W ) )
a

=  L^(C(l)£c(C(2)«a)ec(C(3)a )® ^ ) 
a

=  E c (1)0g(C (2)0fll)£t(C(3)fl)

=  L c (1)0flo |(C (2)a «)^)
a

=  ^ C (1) 0 f l a ((£ c^ A )o g (c (2)a 0 ^ ) )  
a

-  ^ o ( ^ D g ) ( x ) ,

where the third equality follows by the assumption that C G M(y/fc)J and the fourth by 
condition 4.3. For the fifth equality apply (fifc 0 C )  to (4.5), to see that g =  (££ 0 A ) og.
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The final equality is then clear from the definition of p ^ .  Therefore g is a left ^/-linear 
map.

For the converse, given a left srf-linear map g :C<S>C —> srf define

g : C ® C - > A ,  g := ( £ c ® A ) o g .  (4.6)

Then observe that for all d ,d ' e C  and a e  A

y =  52^(i) ® aa ® d(2)a ® d' = p ^  o~pp[d® a) 0 d' G j^ D C ® C . 
a c

Therefore since g is left sV-linear we know that p ^  o (srfC\g){y) = goc®cP  00 > hence

L ( rf(i) ® a<*)g(d {2)a ® d') =  £ g ( ( d (l) ® >  (d (2)a ® */')). (4 -7)
a a

Finally after applying ££ ^  —► A to the above equation, (4.7), and using the fact that
it is multiplicative, we can continue to compute

£ f la g ( d a <8>d') =  £ g ( ( d ( i ) ® a a )> (d (2 )a ® <0) 
a a

=  5 2 l(^ ( l)ec(^(2)<3a)ec(^(3)a )® ^ /)
a

a

where the second equality follows by the definition of c®cP and the third by the definition 
of c p ,  observing that since Wl ° W r =JPr

Y^aada =  £  £c(daE(2)<3a£ )d a E(l) =  J^^(l)£<:'^(2)fla )eC'(^(3)a )- 
a a,£ a

It remains to show that the given correspondence is one-to-one. Clearly, applying Ec®A 
to g given in terms of g via equation (4.5), one obtains back g. On the other hand, since g 
is left C-colinear, g = (C®et<§M) o (C®g) o (Ac®C), thus establishing the converse corre
spondence. □

From the previous lemma we have established a correspondence between left ^/-linear 
maps g : C ® C —*■ srf and ^-linear maps g : C® C —> A satisfying (4.1). We now give a proof 
of Proposition 4.1.1 by showing that the maps g : C cg> C —> A which give left .^-linear re
tractions of j3, under the correspondence given in (4.4), are precisely those satisfying the 
hypotheses of Proposition 4.1.1, i.e. conditions (4.1) and (4.2).

Proof. (o f Proposition 4.1.1) Suppose that there is a map g : C<g>C —► A  satisfying (4.1) 
and (4.2). Then the corresponding map g : C<g>C —> A,  as defined in (4.4), satisfies, for all 
c <g> a G srf (summation suppressed),

goP {c® a)  =  £ c (1)<8>|(c(2)® c(3)a) =  £ c (1) ® a a £c(>(2)a )
a

=  'Pr { c ® ci)  —  C<glCl,
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using that g satisfies condition (4.2) in the second equality and the fact that ~pr is a projec
tion in the final equality. Therefore g is a retraction of j3, hence C -» B is a weak A-Galois 
coextension and C is injective as a left 5-comodule by Theorem 3.3.16.

Conversely, suppose C 5  is a weak A-Galois coextension and C is injective as a left 
5-comodule. Then, by Theorem 3.3.16 there is a left ^ -m odu le  retraction g of /3, for 
which the derived map g :=  (ef ® A) o g : C ® C  —> A satisfies condition (4.3) by Lemma 
4.1.2. Moreover we can compute, for all a G A and c GC,

L k  c(1)®c(2)<2) =  c(l) ® c(2)aa£c(C(3)a ))
a

= (£c<8>A) o g o / 3  op£(c® a)
=  (£c® > A )o^(c® a) =  £<za £c(ca ),

a

where the the first equality follows from the assumption that C G M(y/fc)J and the final 
equality since g is a retraction of /3. Therefore g satisfies the conditions required by Propo
sition 4.1.1. □

Remark 4.1.3. In the case where Yr  is a bijective map (with inverse Y l)  it is clear by 
condition (4.3) that, for all a G A and c, d  G C,

<3g(c®c') =  Y , aEag{cEa ® c') =  ^ | ( f l £ aC£a <2)c') =  g (ac® c '), 
a,£ a,E

therefore g is left A-linear. Moreover, since left linearity of g implies (4.3), it is clear that 
in the case of invertible entwining structures condition (4.3) is equivalent to requiring g to 
be left A-linear.

As an application of Proposition 4.1.1 we have the the following example.

Exam ple 4.1.4. Let H  be a Hopf algebra with a bijective antipode S and left A be a right 
//-comodule subalgebra of H, i.e. A is a subalgebra of H  and Ah (A) C A®//. Then we 
can define an associated invertible entwining map

Y r  : H ® A  —> A ® //, / z ® a  i—> ^ f l ( j ) ®

such that H  e M (y r )a an(  ̂which has inverse

Y l  ’ A®H  —> //®A, a<8>h ► ^ h S ~ l (fl(2))®

Using the map Yl it is possible to induce a left A-action on H  in the way described in 
Corollary 3.4.12, explicitly the action will be given by the formula ah :=  hS~l {a). Under 
the additional assumption that A is a direct summand of H  as a left A-module, letting 
p  : H  —> A be a left A-linear retraction of A C H, we are able to define a map

g : H<g>H —► A, h®h' ^  p(S{h)h').

Using the properties of the antipode and the left A-linearity of p, we find that, for all a G A 
and c,c ' G C,

g(ah® h') =  g(/z5 1 (a) <g>h') = p(S(hS la)h!)
=  p(a{Sh)h') = ap{{Sh)h!) =  ag(h® h').
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Hence g is left A-linear and therefore satisfies condition (4.3). Moreover, we can compute, 
for all a £ A and h e  H,

£ g ( / i (i) ® h[2)a) =  J^S (h {l))h{2)a = eH{h)a = Y , a{\)en (ha{2)) = a eH(ha ).
a

Therefore g also satisfies condition (4.2) and so, by Proposition 4.1.1, we can conclude that 
H  -» B is an A-Galois coextension H  is injective as a left 5-comodule.

We are also able to use Proposition 4.1.1 to characterize weak Galois coextension over 
self-injective algebras. Recall that an algebra A is called a separable algebra provided the 
product Pa is a split epimorphism in the category of (A, A)-bimodules. Equivalently, A is a 
separable algebra if it has a separability element, meaning an element e = J^ei (S>e2 E A  <g>A 
such that E e ie 2 =  1 and for all A e A a e  — ea.

Theorem  4.1.5. Let (A,C, i//)?, ty/̂ ) be an invertible weak entwining structure such that C 
is a right entwined module, and let srf be the C-ring associated to (A,C, Yr). Suppose 
that the map /3 : srf —> C ® C ,  c® a  »—>■ E c (i) ® c ^ a  is injective. I f  A is a left self-injective 
algebra, then C —» B is a weak A-Galois coextension and C is injective as a left B-comodule. 
Furthermore, if  A is a separable algebra, then C is also A-equivariantly injective as a left 
B-comodule (i.e., C is an injective left B comodule and the corresponding coaction has a 
retraction in BM a).

Remark 4.1.6. Recall that since k is assumed to be a field, A is an injective ^-module. 
Therefore if A is a separable algebra given any two left A-modules M' and M, injective A- 
linear map g \M '  —► M, and A-linear map / :  M' —> A, there exist a ^-linear map h :M  -+ H  
rendering the diagram

M'

f

commutative. Then using a standard method for separable algebras, denoting the separa
bility element of A by e G A <g> A, define

h :M ^ > A , h := [lA ° (A® h) o (A ® mP) ° (e<8>M),

using the properties of the separability element, it is easily checked that h is left A-linear 
and ho g  = f .  Therefore A is left self injective algebra.

Proof, (o f Theorem 4.1.5) Firstly, since xV = ImpR — Imp t, srf can be viewed as a left 
A-module in the way described in Theorem 2.2.10, explicitly by the composition

„ Wl<S)A C®ua
A ® srf ^ C<g>A<g)A ^ &/.

Secondly, we view C <g> C as a left A-module via the composition

A ® C ® C  s f® C  C®  C,
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which is easily seen to be equivalent to using the left A-action on C described in Corollary 
3.4.12 on the the first leg of C® C. Next define the map

r \ s r f —>A, r(c<g>a) = £c(c)a, (4.8)

note that since the domain of this map is we find that, for all c <g> a G srf (summation
suppressed),

r(c® a) = ro p £ (c® a ) = Y ,£c{ca )aa- (4.9)
a

Moreover, for all b G A and c ® a e  srf (summation suppressed)

r(b{c® a)) =  £ £ c (c e )£ £a =  ^ fc £ c (c £ )l£a =  b£c{c)a,
E E

where the second equality follows by (2.21) and the last equality since c® a  G s t  implies 
that Y,ece ® 1 Ea =  P l(c®  «) = c® a. Therefore we conclude that r G H ornx_(^,A ). We 
demonstrate that with the stated actions the map p  : —> C® C is also left A-linear. Firstly
observe that just as the corresponding left A-action on C, described in Corollary 3.4.12, is 
given in terms of the right A-action, symmetrically, it is possible to express the right A- 
action on C in terms of the corresponding left A-action. Explicitly, using the assumptions 
that C G M( Yto)S and ° Wr =  ~Pr we find that, for all a G A and C G C,

I * ( « « C a (l))c“ (2) =  52 £c (c a (l)£«a£ )ca (2) =  52 Eaocl3E)c(2)a
a a,£ a,/3 ,£

=  L  Sc(c0 )aa^)^c{c(2)P)c(3)a = ca,
a,j3

where the second equality follows by the definition of the left A-action in Corollary 3.4.12. 
Using the assumptions that C G jM (ipi) and \j/R ° ¥ l  = P l find fhat in particular, for 
all a G A and C G C,

Y , cEaE = 52 ec(aEaCEa {\))cEa {2) =  5 2 £c (a£c(2))£c (c(i)Z>)c(3) =  ^ ( f lc (1))c(2). (4.10)
£ a,£ £

Therefore, for all a , I ?gA and c G C,

P{bpL(c®a)) =  52c^(i)0 c ^(2)^£ f l=  H c(i)E®c(2)FbEFa
E  £ , £

=  L ^ O e ^ ^ ) ) 0 ^ ) 0 =  L ^ c(i)0 c (2)a =  bP(pL{c®a)),
E

where the second equality follows by (2.22), the third by (4.10) and the fourth since C G 
jM (i/^ ). Therefore p  is a left A-linear map. Furthermore, since we have assumed that A 
is injective as a left A-module and P is injective, there is an an exact sequence

Honu_(C<8>C,A) - ^ H o m A_ (^ ,A )  —> 0,

where, for all /  G Hom,4_(C<8>C,A), P*( f )  = f  °P-  In view of this exact there exists 
g G Hom/\_(C<8>C,A) s.t. p *og  =  g o p  =  r. By construction, g is left A-linear, hence (4.3)
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holds, and in view of (4.9) it is clear that g satisfies (4.2). Therefore by Proposition 4.1.1, 
C -» B is a weak A-Galois coextension and C is injective as a left 5-comodule.

Now we prove the second part of theorem. Assume that A is a separable algebra 
and let e =  <g> e2 E A <g> A denote the separability element. Then to show that C is
A-equivariantly injective as a left 5-comodule it suffices to show that there exists a retrac
tion of the left 5-coaction, given in Corollary 3.3.4, in Such a retraction can be
constructed as follows. Firstly, since C is injective as a left 5-module there exists a left 
5-colinear map A : 5  ® C —> C such that X  o cp — C. Using this map X  we define

A : 5 ® C  —> C, A =  pc o (A ® A) o (5®  pc®  A) o ( 5 eg)C®e). (4.11)

Next observe that, for all a E A and c E C,

Cp ° P c ( c ® a )  =  £ Cp ( c (i) <  (c(2) ® a o 6 c (c (3) ° ) ) )  =  L c (l)[-l] ® c (])[o]aa£c(c(2)a )
a

=  £ c[-l] ® c[0](l)tfa£c(C[0](2)a ) =  J 2 C[-1] ® c[0]«
a

= E(B®Pc)°(CP®A).
a

in which c p(c) =  L c[-i] ® c[o] an^ Pc(c®>a) =  c < l a  denotes the right j^-action on C 
given by the correspondence (3.17). The first equality in the computation holds by using 
the correspondence (3.17) to view the right A-action on C as an srf-action. Then the second 
equality follows by using the fact that cp is right ^/-linear, see Corollary 3.3.4, and the 
correspondence (3.16), to return the right .^-action on C back in an A-action. Also by the 
results in Corollary 3.3.4, c p is right C-colinear hence the third equality holds. Finally 
the fourth equality follows from assumption that C E M(i//)?)J. Therefore pc is left 5- 
colinear and it becomes clear that A is a composition of left 5-colinear maps, hence is left 
5-colinear. Also observe that, for all a E A, b E 5  and c E C, since we know ea = ae, we 
can compute that

A (b<g>ca) = ^ X ( b  (gicae \)e2 = X{b<S>ce\)e2d =  A (b<S>c)a.

Hence A is morphism in Next we check that A is a retraction from the left 5-coaction.
Again compute, for all c E C ,

A ° cp(c) =  J^A(c[_!] <8>C[0]<?i)e2

=  L ^ ( ( Cg l)[-l]® (^l)[0])e2  

=  E cele2 = C,

where the second equality follows from the left 5-colinearity of the right A-action, the 
third because A was chosen to be a splitting of the coaction and the final equality from the 
properties of the separability element. □

To see how this result fits in with existing theorems, in the next section we derive a 
dual version, as it is in the setting of coalgebra-Galois extensions in which the majority of 
previous results have appeared.
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4.2 Extensions of self-projective coalgebras
In this section we start with an invertible weak entwining structure such that A, an algebra 
over a commutative ring k, is a right entwined module and then use Theorem 2.1.17 and 
Corollary 2.1.19 to deduce criteria for this algebra to be a weak A-Galois extension with 
some additional structure. Since we work in this setting, S =  End_ c(A) (where C is the 
A-coring associated to the (right-right) weak entwining structure) will be the same as B = 
Ac°£ (cf Remark 2.1.14). Moreover, from the proof of Proposition 2.2.13, recall that 
AcoC^acoC, so for simplicity we shall henceforth denote all these objects by B.

Proposition 4.2.1. Let (A,C, Yr , Y l ) be an invertible weak entwining structure such that 
A is a right entwined module, and let C be the A-coring corresponding to (A,C, Yr )- View 
A ® A  as a left C-comodule via the map.

A®Ap  : A<g>A —* C8A, a®a' i—► ^fll[o]® l[i]® fl7- (4.12)

Then there exists a left C-colinear section o f cahA : A 8  A —* £  i f  and only i f  there exists a 
k-linear map f  :C  —> A 8  A such that, fo r  all c G C, writing f ( c )  =  8  c®

I > % ]  (8) 1[!] 0 c [2] =  £  Vfo(c(i) ® C ( 2 ) [1 ])  8  C ( 2 ) [2] (4.13)

and
ctmA o f ( c )  =  £ l a <g)ca (4.14)

a

Remark 4.2.2. Since in Proposition 4.2.1 it is assumed that A G M(ty//?)J, by Proposition 
2.2.9 A G M £, with the C-coaction defined, for all a G A,

PA(a) = Y , a[o] ® (lct®«[i]a ) (4.15)
a A

where £fl[o] denotes the result of applying the right C-coaction on a , see [4, Propo
sition 2.3] for more details. By Example 2.1.5 since A is finitely generated projective as a 
right A-module, there is a corresponding left C-coaction on A. The left C-coaction on A 8  A 
described above is the application of this left C-coaction on the first leg of A 8  A.

Before studying when there is a left C-colinear retraction of cahA, we first investigate 
left C-colinear maps C —> A 8  A.

Lemma 4.2.3. Suppose (A,C, Yr, Y l)  is an invertible weak entwining structure with A  G 
M ( y r ) a - Then there is a bijective correspondence between left C-colinear maps f  : C —► 
A 8  A and k-linear maps f  :C  —> A 8  A satisfying condition (4.13).

Proof. Since this result is a dual version of Lemma 4.1.2 we just state the required 
correspondences, for a full proof see [13, Lemma 5.2]. Given a ^-linear map /  satisfying 
(4.13) define

/  : C —> A 8 A ,  / ( £ a l « 8 > c a ) = J ^ a l af ( c a ). (4.16)
a a

Conversely, given a left C-colinear map /  : C —► A 8  A define

/ :  C —> A®A,  / ( c ) = / ( £ l « ® c “ ). (4.17)
a
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Then these correspondences are mutually inverse and the result holds. □

We now are able to give a proof of Proposition 4.2.1 by showing that the map /  : C —► 
A 0 A  which give left C-colinear sections oicahA, under the correspondence given in 4.16, 
are precisely those satisfying the hypotheses of Proposition 4.2.1.

Proof, (o f Proposition 4.2.1) Clearly if /  is a section of can a then the corresponding 
map /  satisfies (4.14). Conversely if /  satisfies (4.14) then for the corresponding map /  
we can compute that, for all a 0  c G C,

c m A o f ( a ®c) = cm A(Y ^a \af ( c <x)) = Y ,a la (c a h A ° f{c C1))
a  a

— ^ a \ a \ p ® c aP — pR(a®c)  = a®c.  
a , p

Here the second equality follows since canA is left A-linear, the fourth by (2.16) and the 
final equality since the map pr leaves elements C unchanged. □

As motivation for the following theorem we refer the reader to [35, Theorem 3.1]. 
Recall that a coalgebra C is called a coseparable coalgebra provided the coproduct has a 
retraction in the category of C-bicomodules. Equivalently, C is a coseparable coalgebra if 
there exists a cointegral, i.e., a ^-module map 8 : C<S>C —> k that is colinear, meaning, for 
all c, d  G C,

L C(1)5 (C(2)®C') =  L 5 (C0c/O))c/(2)’ <4-18)

and such that 8 o Ac = £c-

Theorem 4.2.4. Let (A,C, y/R, ifa) be an invertible weak entwining structure such that A 
is a right entwined module and let £  be the A-coring corresponding to (A,C, Vr ). Suppose 
that the map can^ : A 0>A —> £, a<S>d ^  apA(a!) is surjective. I fC  is a left self-projective 
k-flat coalgebra and the map

B<giA —> Homc - (A,A(g>A), b®a i—> [a' i—> a'b<g>a]

is an isomorphism o f left B-modules, then B  C A is weak C-Galois coextension and A is 
k-relatively projective as a left B-module. Furthermore, if  C is a k-projective coseparable 
coalgebra and A is k-projective, then A is C-equivariantly projective as a left B-module.

Remark 4.2.5. By dualising the arguments of Remark 4.1.6, it easily shown that a k- 
projective coseparable coalgebra is left self-projective. Also note that assuming C is k- 
projective implies that it is &-flat.

Proof, (o f Theorem 4.2.4) Again, other than using some additional assumptions, the 
proof of this theorem is a dual version of Theorem 4.1.5, so we only provide a brief account. 
For more detail we refer the reader to [13, Section 6 and 7].

Firstly, observe that since €  — Im pr =  Im p f, €  can be viewed as al left C-comodule in 
the way described in Theorem 3.4.7, explicitly 38p  :=  (A <g> \(/i) o (A 0  Ac). Secondly we 
view A ®A as a left C comodule through the composition (\\fi 0 A ) oA®Ap , which is easily
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seen to be equivalent to using the left C-coaction on A described in Corollary 2.3.8 on the 
first leg of A  eg) A. Now define the map

£ : C —> c t - ^ J ^ l a 0 c a . (4.19)
a

Now observe it can be shown that can^ : A <g> A —> <£ is left C-colinear and also that f?: C —> £ 
is left C-colinear. Therefore since 'cana is assumed to be surjective and C to be left self 
projective, the

r  / v Homc_ (C,czr\A) ~ ,
Horn (C,A ® A ) ---------- » Homc -  (C, £)

is surjective. This implies that there exists /  e  Homc - (C,A ®A)  such that

cah/i o f  — (4.20)

By Proposition 4.2.1 this guarantees that can^ : A ® A —> £ is a split epimorphism of left £- 
comodules. Therefore we can conclude from Theorem 2.1.17 that A is a Galois comodule 
and A is a ^-relatively projective left B-module.

For the second part of the theorem, observe that under the more stringent condition 
that A is /:-projective, by Corollary 2.1.19 we know that A is projective as a left B-module, 
guaranteeing the existence of a left B-linear map q : A —> B<g>A such that o q = A. 
Combining this with the cointegral 8 : C <g> C —> k we construct

q : A —>B<g>A, q = (B<S>A<S>8) o (B<g>pA<g>C) o {q®C) o p A. (4.21)

It can then be verified that this map is a section of the multiplication map in flMc , therefore 
A is C-equivariantly projective as a left B-module. □

Now for a Hopf algebra H,  with bijective antipode, we can then use this theorem to 
produced structure theorems for certain weak //-Galois extensions of //-comodule alge
bras. From the first part of the theorem, assuming that k is a field, we are lead to weak 
Hopf algebra version of the Kreimer-Takeuchi theorem [29, Theorem 1.7].

Corollary 4.2.6. Let k be a field and let H  be a finite dimensional weak Hopf algebra 
over k. Let A be a right H-comodule algebra and (E be the A-coring associated to the 
corresponding right-right weak entwining map, i.e. \\fR(h&a) : =  L«[o] <S)ha^. I f

cariA : A ®A —* (£, a<S>b t—> ^ a b ^  <S>£[i]

is surjective, then B C A is a weak Hopf-Galois extension and A is projective as a left (and 
right) B-module.

Proof. Firstly, since H  is assumed to be finite dimensional from [3, Theorem 2.10] 
H  must has a bijective antipode. In view of this, the right-right weak entwining structure 
associated to the right H  comodule algebra A is weakly invertible (cf. Proposition 2.3.5), in 
the sense that it forms part of weakly invertible entwining structure. Secondly, as the dual 
H* of a finite dimensional weak Hopf algebra is a weak Hopf algebra, [3, Theorem 3.11]
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implies that H * is a quasi-Frobenius algebra (i.e., it is self-injective). Then by [26, Re
mark 1.5] H  is projective as both a left and right //-comodule. Then since k is assumed to 
be a field, all assumptions in Theorem 4.2.4 are satisfied, and in addition A is k-projective, 
so A is projective as a left 5-module. That A is projective as a right 5-module follows since 
it is possible to produce left handed versions of the results we have used. □

Also, in view of Proposition 2.3.5, from the second part Theorem 4.2.4 it is clear that

Corollary 4.2.7. Let H  be a coseparable k-projective weak H opf algebra with bijective an- 
tipode and let A be a k-projective right H-comodule algebra. Let A b e  a right H-comodule 
algebra and <£ be the A-coring associated to the corresponding right-right weak entwining 
map, i.e. l///?(/* <g>fl) :=  L^[o] ®ha\ q. I f  the map

cariA : A<g>A ^  a<S>b ® fcp]

is surjective, then B C A  is a weak H-Galois extension and A is H-equivariantly projective 
as a left B-module.
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