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Abstract

This thesis explores different aspects of QCD and QCD-like theories through the
use of Lattice Gauge Theory (LGT).

This work is composed of three different projects: the first one investigating
the scaling behaviour of pure SU(N) gauge theories; the other two investigating
and calculating hadron masses, using Domain Wall gauge configurations.

In the first project (chapter 3) the Lattice-Distorted Perturbation Theory
approach to the lack of asymptotic scaling for Monte Carlo data is described.
Quenched Monte Carlo data from different sources, different observables and dif-
ferent gauge actions are considered. The main purpose of our calculations is to
show the importance of lattice corrections in the relationship between the running
coupling g%(a) and the lattice spacing a, where g2(a) is either the bare lattice cou-
pling or some renormalized one. We show not only that the O(a") corrections are
not negligible, but also that their coefficients turn out to be the order we expect.
We consider a parametrization of the lattice S-function which includes both the
O(a™) corrections and hi.gher order terms in g2, since the observed lack of asymp-
totic scaling is presumably due to a mixture of the two effects: the presence of
lattice artefacts due to the finiteness of a and the inclusion of only a finite num-
ber of terms in the perturbative expansion (renormalized coupling approach). We

study these two effects both together and separately. Furthermore, we apply our
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approach to SU(N) data for the number of colours N # 3, and show the validity of
the Lattice-Distorted PT method in particular at large N. All our investigations
lead to a remarkable consistency both in the fitted A parameters and in the size
of the O(a™) corrections.

The second part of this work (chapter 4) uses lattice QCD for spectroscopy
studies with Domain Wall gauge configurations generated with the Iwasaki gauge
action by the RBC-UKQCD collaboration, at fixed lattice spacing. In particular, a
study of nucleon masses is presented on two different lattice sizes. The calculation
of the nucleon mass is a very good test for LGT since its value can be compared with
the one very accurately determined by experiments. Furthermore, LGT can be a
powerful predictive tool for other baryonic states whose experimental values are not
known as accurately as the nucleon one. Here we present results using correlation
functions at unitary, mye = M4, and non-unitary points, multiple sources per
configuration and several different types of smearing to improve the signal. Firstly,
we determine the masses for each channel via a fit to individual correlators; then
in order to increase the precision of the result, we fit the correlation functions
simultaneously to the same mass M for each channel. The study also includes the
nucleon parity partner, N*.

In chapter 5 preliminary results are presented for a study of the D, meson
spectrum. The discoveries of new resonances D;; some years ago have provoked
much interest in heavy-light systems in general and in the D, mesons in particular.
The existence and properties of the multiplet {0*,1%}, partner of the {0~,17},
were predicted from the theory before its discovery. In fact the mass splittings be-
tween these different states can be understood in terms of a combination of heavy

quark and chiral symmetry. In particular, the quantities mainly investigated in D,
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calculations are the parity and hyperfine splittings, in order to compare them with
their experimental values, and their independence on the spin and on the parity
respectively. We carry out this study using dynamical domain wall configurations.
The novelty of our study is considering the charm quark propagating as an overlap
fermion and the strange quark as a domain wall fermion. Also a quenched calcu-
lation is performed with identical valence quarks as the dynamical case in order

to investigate sea quark effects.



To my family



Declaration

This thesis is the result of my own investigations, except where otherwise
stated. Other sources are acknowledged by explicit references. A bibliography
is appended.

Some preliminary results of the calculations in chapter 3 are in

e Asymptotic scaling and Monte Carlo data, A. Trivini and C. R. Allton,
PoS LAT2005 (2006) 036 [arXiv:hep-lat/0511006].

The results in chapter 3 will appear in a paper which is in progress.

Chapter 4 is part of the ongoing baryon project by the baryon group of the
RBC-UKQCD collaboration. The results in chapter 4 will appear in a paper
which is in preparation. The DWF gauge configurations in both chapter 4 and 5,
as well as the correlators in chapter 4, were generated on the QCDOC machines
in Edinburgh and Columbia University jointly by members of the RBC-UKQCD
collaboration.

The project in chapter 5 is carried out in collaboration with Chris Maynard and
Robert Tweedie within the RBC-UKQCD collaboration. The quenched gauge con-
figurations were generated by Alistair Hart. The meson correlators, unquenched
and quenched, were generated by me using UKQCD computer code. Preliminary
results of the calculations in chapter 5 are in

e Exploratory study of the D, spectrum in 2+1 domain wall QCD with heavy
overlap, C. Allton, C. Maynard, A. Trivini and R. Tweedie,
PoS LAT2006 (2006) 202 [arXiv:hep-lat/0610068].

This work has not previously been accepted in substance for any degree and is
not being concurrently submitted in candidature for any degree.

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

o

Signature of Author

(/11/2007
/ D

ate




Acknowledgements

This work would not have been possible without the support and help of many
people I take the chance to thank now.

Firstly I am very grateful to my supervisor Chris Allton for all he taught me
through all my PhD, as well as for his support and patience in listening and
answering even stupid questions. I also would like to thank all the Physics group
in Swansea University for the friendly welcome and nice atmosphere through the
years. A special thought to Dave, Linda and Ray for the prompt help they always
offered. I also would like to thank Swansea University for providing funding and
making all this possible.

I thank members of the RBC and UKQCD collaborations who I had useful
discussions with: in particular while visiting Edinburgh University and Brookhaven
National Laboratory, I learnt a lot from Chris Maynard, Robert Tweedie and
Meifeng Lin.

My years in Swansea would have been mush less enjoyable without the com-
pany of many colleagues and friends, especially Avtar, Andy, Steve, Antonio and
Emiliano: I especially thank Emiliano for listening to me and my frustrations in
the last few months. My thoughts also go to all the special friends I found in my
first year in Beck House, in particular Gayane, Annie, Ganesh, Arun and Deepak:
I hope to see you all again soon. I cannot forget my dearest friends in Italy. A
list will be too long, but hopefully I will have the chance to thank them in person.
However, I would like to name my dearest friend Bianca, who so promptly came
to visit me and get to know my life here.

I am also grateful to Mestre Maxwell, Teacher Soraia and all the Ile de Capoeira
Welsh School to help me relieve the stress of my final year through movement as
well a smile and laugh. Through them I met people I will never forget: above all
Amy.

My experience in Swansea of course is made of all the persons I met over these
three years, but a special place is definitely taken by Avtar: these three years
would have been much different without him and the special relation between us.

Finally and most importantly, there are no words to explain how thankful I
am to all my family. The smile of my splendid nieces often kept me up in bad
moments: I only wish I had spent more time with them. I will always be grateful
to my parents, my brother and my sister in law for their unconditional love and
support. To all my family I dedicate this thesis.

vi



Contents

Abstract
Acknowledgements
1 Introduction

2 Background Theory

2.1 Path Integral Approach . . . . . ... ... .. ... ... ...,
2.2 Quantum Chromodynamics . . ... ... ..............
2.3 Lattice Discretization . . . . . . . ... .. ... .. ... ...,
24 The Gauge Action . . .. ... . ... .. ... ...........
2.4.1 Improved Gauge Actions . . . . . . ... ... .. ......
2.5 Fermionson Lattice. . . . . .. ... ... ..............
2.5.1 Fermion Doubling . . . . ... ... ..............
2.5.2 Wilson Fermions . .. ............ e
2.5.3 Staggered Fermions . . . . . . ... ... ... ........
2.6 Chiral Symmetry . . . e
2.6.1 Chiral Symmetry on the Lattice . . . . . ... ........
2.7 Domain Wall Fermions . . . . . ... ... ..............
271 DWFOperator . . ... .............c......

vii



CONTENTS viii

2.7.2 Residual Chiral Symmetry Breaking. . . . . . .. ... ... 24

2.8 OverlapOperator . . . . . . ... .. . ... 27
2.9 Monte Carlo Integration . . ... ... ... ............. 30
2.10 Autocorrelation . . . . . . ... L Lo Lo oo 32
2.11 Correlation Functions . . . . .. ... ... .............. 33
2.11.1 Meson Correlation Functions . . . . ... ... ... ... .. 35
2.11.2 Baryon Correlation Functions . . . ... ... ........ 37
2.11.3 Effective Masses . . . . . . ... .. ... . ... ... .. 39
2.11.4 Smearing . . . . . . .. .. e 40

2.12 FittingMethods . . . . . . . .. ... ... ... ... ... 40
2.13 Error Analysis . . . . . . . . . . . . . e 42
2.13.1 Jackknife Method . . . . . ... .. .. ... ... ... .. 42
2.13.2 Bootstrap Method . . . ... ... ... ... . ....... 43

3 Scaling and Asymptotic Scaling 44
3.1 Asymptotic Scaling . . . .. ... ... ...... . ... PR 45
3.2 Lattice-Distorted Perturbation Theory .. ... ... ........ 47
3.3 Setting the Scale and Data Sets . . . . .. ... ... ........ 50
331 Data ... ... ... ... ... e 54

3.4 Details of the Fitand Results . . . . ... ... ... ........ 55
341 Comments . . ... ... ... ... ... 57

3.5 Renormalized Coupling Fits . . . . . ... ... ... .. ...... 61
36 SUNN) ............. e 70
3.7 SU(N)in gg Scheme . . . o oo oot 76
38 Conclusions . .. ... ... ... . ... . 79



CONTENTS

4 Nucleons from 241 DWF
4.1 Baryons . . . . . . ...
4.2 Calculation Details . . .. ... ....................
4.3 Simulation Parameters . . . . . e e e e e
4.4 Setting the Lattice Scale . . . . . ... ... ... ..........
4.5 Dataand Analysis . . .. ... ... ... ... .. ...

4.6 243 x 64: fits
4.7 16° x 32: fits

e e s e o o & e 8 e s + s+ e ® s e s+ 3 e s e e e s e e e e

..............................

4.8 Finite Volume Effects . . . . . . ... ... ..............
4.9 243 x64:tesults. . . . ... ...
491 SimultaneousFits. . . ... ... ... ............
4.9.2 Extrapolations . .. ... ... ... .. ... ... ...

4.10 Conclusions

...............................

5 D, Mesons with Overlap

51 D, Physicsand LGT . ... .. ... ... ... .. .........
5.2 The Parity Doubling Model . . .. . ... ... ...........
53 Numerical Details . . . . . . .. ... ... ... .. ... ...
5.4 Dynamical Analysisand Results . . . . .. ... ... ........

5.4.1 Dispersion Relation . . . . ... ... .............

54.2 Mass Splittings . . . . .. .. ... .. Lo
5.5 Dynamical plus Quenched . . ... .. .. SRR PP

5.6 Conclusions

6 Conclusions

...............................

ix
84
84
85
87
88
89
93
99
103
115
115
117
121

125
125
127
129
131
132
137
139
141

146



CONTENTS X

A Gell-Mann Matrices 149

B Grassmann Variables 150



Chapter 1

Introduction

Quantum field theories are the generally accepted framework for describing the
electromagnetic, weak and strong interactions between elementary particles. The
Standard Model is up to now the most successful description of the interac-
tions of elementary particles. This theory incorporates quantum electrodynam-
ics (QED), the electroweak theory of Glashow, Salam and Weinberg, and quan-
turm chromodynamics (QCD), the currently accepted framework to describe strong
interactions. The Lagrangian describing these combined quantum fields has a
SU(3)c x SU(2)L, x U(1)y gauge symmetry’, with degrees of freedom respectively
colour for SU(3), weak isospin for SU(2) and weak hypercharge for U(1).

The elementary particles which are currently known to exist in nature are
fermions, divided into two categories, leptons and quarks, and gauge bosons, which
mediate or 'carry’ the fundamental forces between fermions. The photon 7 is the
mediator of the electromagnetic'interactions and is massless; the gauge bosons
corresponding to the weak interactions are the massive W* and Z; finally, the

strong force is mediated by a ’colour’ octet of massless gluons. Both leptons and

1A gauge theory is a theory which is invariant under a set of (gauge) local transformations,
i.e. transformations that depend on space and time.
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quarks can interact via the weak nuclear force and, excluding the neutral leptons,
or neutrinos, via the electromagnetic force. Quarks, carrying the colour charge,
are also subject to strong interactions, or in other words, SU(3)¢ acts only on the
colour degree of freedom. The strong interactions are flavour blind, but sensitive
to colour. From this QCD takes its name. The fact that its gauge group SU(3) is
non-Abelian makes QCD a very different theory from QED.

QCD presents two peculiar properties: asymptotic freedom and confinement,
related to the strong interactioné properties in the high and low energy regimes
respectively. As discussed in more detail later in this work, the coupling constant
in a non-Abelian theory becomes a running coupling. Asymptotic freedom tells
us that at small quark separations the coupling of QCD becomes so small that
quarks are like free particles: this allows perturbative methods to provide reliable
predictions for physical observables in processes involving only high momenta or
short distances. However, in order to study hadrons and quarks and understand
better their features, perturbative methods cannot be applied, since the coupling
constant becomes very large at séales corresponding to the size of hadrons (large
distances, low energies). Quarks have never been detected in isolation, but only
as constituents of hadrons: the non-observation of free colour charges is called
confinement.

Lattice field theory is a non-perturbative method that provides a very pow-
erful tool in the investigation of low energy QCD. Lattice QCD, LQCD, was
first proposed by Wilson in 1974 [1] to investigate the confinement mechanism
of quarks. Until then all predictions of QCD were restricted to the perturbative
regime. LQCD mainly provides a numerical way of testing low energy QCD by

calculating the masses of the hadrons and then comparing them with their exper-
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imental values. In fact, the QCD Lagrangian (see Section 2.2) has seven unknown
input parameters: the coupling constant and the masses of the up, down, strange,
charm, bottom and top quarks. In the lattice formulation, once these free péram—
eters have been fixed in terms of seven measured hadron masses for instance, the
properties of the other particles made up of these quarks and gluons have to agree
with experiments. Thus this formulation of a gauge field theory on a discretized
Euclidean space-time, allows the evaluation of physical observables from first prin-
ciples. LQCD also may be used as a predictive tool for quantities difficult to be
measured directly by experiments.

The natural framework to quantize the lattice theory is the path integral formal-
ism: the path integrals corresponding to expectation values of physical observables
can be computed numerically via Monte Carlo simulations. This is an important
advantage of the lattice formulation. However for years, the applicability of lattice
gauge theory was strongly constrained by limited computational resources. There-
fore, the quenched approximation has been for a long time the main framework
for lattice calculations: it consists in excluding the contribution from dynamical
quarks, introducing many unphysical effects into lattice simulations. Fortunately,
the availability of powerful computational resources, together with algorithmic ad-
vancements in recent years, allows us to simulate dynamical quarks. Of course this
is much more expensive and constant further development is necessary in order to
include the correct number of flavours as well as simulate at quark masses closer to
the physical ones (in other words, require the correct flavour and chiral symmetries
of QCD).

In the next chapter, after a brief review of the main features of QCD in the

continuum, the basic ideas and concepts behind lattice gauge theories, and in
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particular lattice QCD, are explored. More emphasis will be given to those topics
that will be of use for the calculations described later in this work.

Chapters 3, 4 and 5 explore different aspects of LQCD.

Chapter 3 investigates the generally known problem that the behaviour pre-
dicted from perturbation theory for asymptotically free theories like QCD has not
been directly observed in Monte Carlo simulations. In particular, we show that the
lattice artefacts due to the finiteness of the lattice spacing give the best explanation
to such disagreement. We also explore the possibility that this discrepancy is due
to the poor convergence properties of the perturbative series in the bare coupling
constant, by replacing it with some renormalized coupling constants. Preliminary
results of the same calculations applied to SU(N) data, with the number of colours
N different from 3, are also presented. All the data considered are from quenched
calculations. An estimate of the SU(3) Az in the Wilson gauge action case is
also given.

A study of the nucleon state and its parity partner is carried out in chapter 4,
as part of a more comprehensive calculation of the baryon spectrum by the RBC-
UKQCD collaboration. The nucleon correlators are obtained from simulations of
domain wall QCD with one dynamical flavour approximating the strange quark,
and two degenerate dynamical flavours approximating the up and down quarks.
Two different lattice sizes are considered at fixed lattice spacing and several kind
of smearing are implemented while generating the nucleon correlators. Our results
for the nucleon mass are in good agreement with the experimental values.

Chapter 5 presents preliminary results of t'he D, meson spectrum on the same
2 4+ 1 domain wall gauge background with a single lattice spacing. We implement

the strange quark as a domain wall fermion and the charm quark as an overlap
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fermion, in order to make good use of the chiral properties of domain wall fermions
and the O(am,) error suppression from the overlap formalism. A quenched cal-
culation is also performed in order to investigate possible sea quark effects. We
investigate the signal of different J* channels and perform a study of the dispersion
relation, as a reflection of the O(a?m?) errors. We find that the parity splittings,
at least for the two heavier mesons considered, are in agreement with the experi-
mental values within rather large errors. The hyperfine splitting is overestimated,
in both the dynamical and quenched case. Our calculations seem to be affected
by O(a?m?): a finer lattice spacing is therefore necessary.

Finally, our conclusions are summarized in chapter 6.



Chapter 2

Background Theory

LQCD calculations are non-perturbative implementations of field theory based
upon the Feynman path integral approach. The technique essentially involves a
rotation to the Euclidean metric and the discretization of space-time to obtain a
finite hyper-cubic lattice. In this formulation the system takes the form of a clas-
sical four-dimensional statistical model. The path integrals can then be performed
over the discretized space-time using numerical methods. The matter fields are
treated as classical stochastic variables assigned to the points of the lattice, while
the gauge fields are associated to the links. A fundamental requirement is that
the continuum limit of the lattice action reproduces the correct continuum action.
Before going into more details, let us have a closer look at the path integrals and

the continuation to imaginary time.

2.1 Path Integral Approach

Path integrals are used to calculate the expectation values of the physical observ-
ables of a quantum field theory. In QCD, given some observable Oy, %, A,] in

terms of the time-ordered product of gauge and quarks fields, its expectation value
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in the Feynman path integral approach is given by:

OITOW, 3, AJ0) = 5 [ DYDIDALOW, 5, AJSW94,  (21)

where Z is the partition function
Z = / DYDYDA &SPl (2.2)
and S is the action of the theory, related to the Lagrangian density £(v, %, A,,) by

St Al = [ d'aLb, 5,8, (2.3)

Since we are particularly interested in QCD, the expression for the QCD action is
explained in section 2.2 .

The integral (2.1) is over all field values, ¥(z), ¥(z) and A,(z), and since space-
time is continuous, this means it is over an infinite number of degrees of freedom.
Later in this chapter it is shown how to introduce a lattice of points in space and
time and overcome this problem.

The second thing to notice is that the functional integral is complex and
strongly oscillating. The way to overcome this issue is performing all calculations
in Euclidean space rather than Minkowsky space. There is no loss of generality
in this, since path integrals in the Minkowsky space can be obtained by analytic
continuation of the Euclidean ones. Performing an analytic continuation to imag-
inary time, essentially by making the substitution £ — —it!, gives the Euclidean

partition function as

Zg = / DyYDYDA e SEWPAL] (2.4)

1Or in other words by performing a Wick rotation: zo ~ —izg, i = ; .
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where Sg denotes the action in the Euclidean space. The partition function is now
similar to those in statistical mechanics, weighted by the factor e~5F instead of the
Boltzmann factor. The integrand is now real and exponentially decreasing, that
means numerically tractable. Note that all the indices E will be dropped from now
on.

We now have a closer look at the QCD action, first in the continuum, then at

its discretized form.

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-Abelian gauge theory invariant under
colour SU(3) transformations. It is currently the best description of the strong in-
teractions and owes its name to the colour quantum numbers of quarks and gluons.
The quarks belong to the fundamental representation of the colour SU(3) gauge
group, while their antiparticles belong to the conjugate representation. These par-
ticles interact via the exchange of vector bosons called gluons, corresponding to
the eight generators of the SU(3) group. The quarks also carry flavour degrees of
freedom which are independent of the colour. At present, there are six flavours,
forming three generations of quarks, (u, d), (c, s) and (¢, b).
The Lagrangian density of QCD is given by
Ny
Lacn = (@)D - m) (@) - FF,FLY, (25)

i=1
where 1;(z) is the fermionic field corresponding to a quark of flavour i with mass

m;: it is a 4-component spinor and the conjugate field v is given by

% =Pl (2.6)
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Note that m; is a Ny x Ny mass matrix in the flavour space. The sum in (2.5)
is over the number of flavours, @ and 8 run over the 3 colours, and the covariant

derivative is defined as
-w = 'YuDu = 'Yy(au - igA,‘(x)), (2‘7)

in terms of the vector gauge fields A,(z) = )_, A*A§(z), with A%, a = 1,..., 8, de-
noting the Gell-Mann matrices, generators of the SU(3) group?. The field strength

tensor is related to the vector potential through
Fi, = 0,45 — 0, A5 — gfucALAL, (2.8)

where f,,. are the completely antisymmetric structure constants of the SU(3)
group and g the bare coupling constant. The covariant derivative (2.7), with the
gauge fields A,(z), is introduced in order for the Lagrangian density to remain

invariant under a local gauge transformation
S(z) = i@ (2.9)

where o,(z), a = 1, ..., 8, are a set of arbitrary SU(3) group parameters. The third
term in (2.8) is typical of non-Abelian gauge theories: it implies that the gauge
fields can self-interact, since the Yang-Mills piece in the Lagrangian density will

involve triple and quartic interaction terms such as:
1
+gfabc(6,‘A,‘f)AZAf, ~1 G fave fadeAZAﬁAzAﬁ. (2.10)

This means that gluons themselves carry colour.

2The SU(3) Lie algebra generators satisfy [A%,AY] = if°*A¢ and TT(A°A?) = % in the
fundamental representation. See Appendix A for their expression.
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2.3 Lattice Discretization

At long distances, the self-interaction of the gauge bosons, or gluons, leads to an
increase in the coupling strength, which allows only non-perturbative treatments,
like lattice QCD, to extract physics from QCD.

The QCD action has to be transcribed onto a discrete space-time lattice in
such a way to preserve all the key properties of QCD. The simplest choice is an
isotropic hyper-cubic space-time lattice with lattice spacing a, the distance between
two sites, equal in both spatial and time directions. The continuum space-time
index z, is replaced by a discrete index n,,, only defined on the sites of the lattice,
ie.

T, = nua, ny=0,1,..,Ngp — 1, (2.11)

where N, determines the size L of the lattice, L,; = N, .a, in the spatial and time
direction respectively. Consequently, the fermionic fields v(n), 1(n) are now only
defined on the lattice sites.

For numerical simulations all the parameters need to be scaled by the lattice

3. Also the integration over the

spacing according to their canonical dimensions
Euclidean space-time is replaced by the sum over all sites on the lattice, and the

derivatives become finite differences, i.e.%
1 N -
8,(z) = 0,9(n) = 5-[¥(n + 1) — $(n - A), (212)

where [ is a unit vector in the u direction (the hats will be dropped in the follow-

ing).

3For example, 1¥(z) - = ¥(n).
4Note that a different choice could be made as long as the ordinary derivative is recovered in
the limit a — 0.
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2.4 The Gauge Action

The gauge part of the action, the second term in (2.5), is constructed from el-
ements of SU(3) corresponding to transporters of the field from a lattice site n
to a neighbouring site n + u, defined as U(n,n + p) = U,(n). Since these group
elements live on the links connecting two sites, they are often called link variables.
Thanks to their unitarity, the conjugate U ;j (n) connects the two sites in the oppo-
site direction, i.e. U(n,n+ ) = UT(n+ p,n) (see figure 2.1). Each link transforms

under the SU(3) gauge group in the fundamental representation as
Uln,n+p) = U'(n,n+p) = S(n)U(n,n+p)ST(n+p), S(n) € SU(3). (2.13)

In section 2.5, we will see how U(n,n + u) allows to construct a gauge invariant
bilinear term with fermionic fields, i.e. ¥(n)U(n, m)y(m), where U(n, m) can be

written as

U(n, m) = eig I Au(zn)dzn, , (2.14)
and in the limit of small a,
U(n,m) = 494%™ ~ 1 +iagA,(n), (2.15)

where A,(n) is the gauge potential on the site n. The simplest gauge invariant
object that we can build from the link variables is the trace of the product of gauge
links along a closed curve, referred to as a Wilson loop. The smallest and simplest

such loop is the plaquette, graphically represented in figure 2.1,

Py (n) = Us(n)Us(n + p)U} (n + v)US (n). (2.16)
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Note that the order is important since the U,(n) matrices do not commute. The

Wilson gauge action [1] is defined in terms of these plaquette variables,
S¢ = b ReTr(l — P, 2.17
G—ﬁz € 7‘( - uv(n))a ( )

¢ pu<v

where the coupling, g, has been written in terms of the constant § = 2—9”;1 with
N, number of colours; the trace is over the colour indices and the sum is over
all plaquettes on the lattice with 4 < v. It can be shown that the action (2.17)

reproduces the correct continuum limit expression when a — 0. Substituting the

expression (2.15) for the link variable in eq.(2.16), we obtain

P‘w (n) — eiagA,. (n)eiagA., (n+u)e—iagA,,(n+u) e—iagAu (n) . (218)

For small a, we can expand this expression in powers of a using
Au(n+v) = Au(n) + ad,Au(n) + O(a?); (2.19)

then applying the Baker-Campbell-Hausdorff formula

eAeB — gAt+B+3[A.Bl+.. (2.20)
gives
P, (n) = @’ 9Fu(m), (2.21)
with F,, given by
Fu = 0,A, — 0,A, +1ig[Ay, A, (2.22)

analogous in components to eq.(2.8). Expanding eq.(2.21) gives

2.4

Pu(n) = 1+ ia’gFu(n) = £ Fu(n)F*(n) + 0(a°), (2.23)
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which, once substituted in (2.17), will give

S¢ = a* Z Z[F,,,,(n)F“"(n) + O(a?)] = /d4xF,,,,F“”-+ 0(a?). (2.24)

nouw

1.
Ul(n+v)

Uin) U, (n+ 1)

)

]

Figure 2.1: The plaquette in a two-dimensional isotropic lattice.

2.4.1 Improved Gauge Actions

As eq.(2.24) shows, the Wilson action suffers from O(a?) errors, which can be
significant if the lattice spacing a is not small enough. Improved gauge actions
attempt to reduce the O(a?) discretization errors further by adding irrelevant
operators to the action, i.e. operators that go to zero in the continuum limit.
This means adding some higher order terms to the action. The simplest choice are
terms involving Wilson loops created from six links instead of four, as the standard
plaquette. There are three types of six link loops that one can draw on the lattice:

they are shown in fig. 2.2. The simplest example is the first one on the left, called
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planar rectangular 1 x 2 Wilson loop, Ry, (n),
Ry (n) = Uy(n)Upu(n + w)U, (n + 2u)Ul(n + p + V)U):(n +v)Ul(n). (2.25)

When the Wilson action is improved by adding this type of loop, the lattice gauge
action becomes

Sg = ——%(co Z Z ReTr[Py(n)] + a1 Z Z ReTr[Ry(n)]). (2.26)

n u<v n u<v

The coeffiecients ¢y, c; are determined by Renormalization Group considerations
and this kind of improved actions are called Renormalization Group Improved,
RGI. The main idea of the RGI actions is to have an action as close as possible
to the Renormalized Trajectory RT, where there are no scaling violations: for
clarity, simulations done using an action along the exact RT, would reproduce
the continuum physics without discretization errors. The RGI actions are usually
obtained through block transformations, which rescale the size of the system and
suppress the short distance lattice artefacts with a proper choice of the additional
parameters c;.

The most popular examples of this type of improved gauge actions in 2-parameter
space (co, ¢;) with the form (2.26) are the Iwasaki [2] and the Double Blocked Wil-
son (DBW2) [3] actions. Note that the two parameters follow the normalization
condition ¢y = (1 — 8¢y), in ordér to ensure that the correct gauge action is re-
stored in the continuum limit. In particular, ¢; = —1.4069 for the DBW2 and

c; = —0.331 for the Iwasaki gauge action.
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Figure 2.2: Six link loops: from left to right, the rectangle, the bent rectangle and
the chair.

2.5 Fermions on Lattice

To discretize the Dirac fermionic action is less straightforward. Simply replacing

the derivative in the Euclidean free fermion action

S = [ ataby(@) 0+ mey ) (2.27)

with the symmetrized difference and applying the other transformations considered

in section 2.3 leads to
Sp = 3. b+ w) —b(n— W]+ Y mm(n).  (2:29)

This discretized expression of the action contains bilinear terms in the fermionic

fields, ¥ (n)w(n + p), which are not invariant under a local gauge transformation
Y(n) = Sn)yY(n)  (n) = P(n)S'(n). (2.29)
In fact,

Y)Y (n + p) = $(n)ST(n)S(n + w(n + u), (2-30)
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and this is not surprising since we are trying to compare two fields at two different
points in space-time. The solution is in the link variables (2.15) which allow to con-
struct a gauge invariant bilinear term with fermionic fields, since Uy,(n) transforms
according to eq.(2.13). Therefore, a more sensible substitution to the derivative
piece of the action, including appropriate gauge links, leads to a discretized gauge

invariant version of the fermion action

Sr = Y SBmlUL(n + ) ~ U — whb(n — 1)

+ ) mip(n)y(n), (2.31)
n
commonly referred to as 'naive fermion action’.

2.5.1 Fermion Doubling

It is important to remember that the form of the lattice action is not unique: the
naive fermion action in (2.31) is the simplest gauge invariant choice. However this
choice results in a lattice model with extra low energy modes which need to be
eliminated in order to obtain the correct continuum limit.
In order to show how these extra fermion species arise, we write eq.(2.31) in a
more compact notation as
Sp = Z@Z(")Mnm"/)(m), (2.32)
n,m
where M is the fermion matrix, whose inverse gives the fermion propagator S.
In particular, the free field propagator can be calculated in momentum space by

Fourier transformations

i d4 - wp(n—m
My = (%’)’45 L(p)etpn—m) (2.33)
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with
i .
§7(p) = =D Yusin(apy) + m. (2.34)
u

The naive free fermion propagator is then

Sy =" i), Yusin(apu)/a

, 2.35
m?2 + sin®(ap,) /a? (2.35)

which reduces to

_ M= Py 2
S(p) = et p2 + O(a®) (2.36)

in the continuum limit a — 0. The continuum propagator has a pole at p, =
z\/rm corresponding to a Dirac particle, while the discretized propagator
with m = 0 has a pole at each of the sixteen corners of the 4-dimensional Brillouin
zone, —7 < ap, < m, all giving sin(ap,)/a = 0. In d space-time dimensions there
will be 2¢ species of fermions. This is known as the doubling problem.

The two most popular schemes for eliminating these extra fermions have been
proposed by Wilson [1] and Kogut and Susskind [4], and are briefly described in

the following two sections.

2.5.2 Wilson Fermions

Since one has the freedom to add an arbitrary number of irrelevant operators to
the action, as these do not change the continuum limit, Wilson proposed to add a

second-derivative-like term to the naive fermion action:
N
¥(n) 2 BEw(n), (237)

where 7 is called the Wilson parameter and the 4-dimensional lattice Laplacian is

defined as

() = S+ )+ Uln = Wb(n =)~ 20(m)].  (239)
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The effect of this term is to modify the mass m in the propagator in momentum

space by
r
Z 1— 2.3
me L0 enlon), (239)

and this new mass term will diverge near the edges of the Brillouin zone as a — 0.
In practice, the result is to raise the masses of the unwanted fermions to values
above the order of the cutoff, 1/a, so that they become infinitely heavy in the
continuum limit and decouple from the continuum physics, or in other words, will
not appear in the dynamics of the continuum theory. Unfortunately this removal
of the doublers comes at the expense of the chiral symmetry which is now explicitly
broken even at m = 0.

This is a very general problem. In fact the so called no-go theorem by Nielson
and Ninomiya [5] shows that it is impossible to define a local hermitian lattice
theory which has no doublers and at the same time is chirally symmetric. In
section 2.6, after reviewing the idea of chiral symmetry, we will discuss how this
can be recovered on the lattice. But first, we discuss briefly another very popular

approach to the doubling problem.

2.5.3 Staggered Fermions

Another commonly used method to deal with the fermion doubling problem is the
one proposed by Kogut-Susskind, known as staggered fermion formalism. This
essentially consists in interpreting the additional fermions as different degrees of
freedom and eliminating them through spin-diagonalization. In practice, a local

change of the fermionic variables is performed,

¥(n) =Tax(n),  %(n) =x(n)T}, (2.40)
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where
Tw ='W (2.41)
is a 4 x 4 unitary matrix diagonalizing all the v matrices in such a way that

Tt’)’#an = nu(n)L. (2.42)

n

The phase factors 7,(n) satisfy
nﬂ(n) = (_1)nl+...+ﬂp—l’ 7]1(") =1. (2.43)

The action written in terms of x(n) and x(n) is diagonal in the spinor space.
Although x is a 4-component spinor, all components interact independently and
identically, i.e. they are decoupled, so we can reduce the multiplicity of naive
fermions by a factor of four simply by discarding all but one Dirac component of
x- The resulting one-component field is the staggered fermion field. The residual
"doublers’ degrees of freedom are called 'tastes’: a single staggered fermion corre-
sponds to four tastes of continuum fermions in the 4-dimensional theory. In order
to simulate such a single quark, the quark determinant that appears in the path
integral (see eq.(2.83)) is replaced by a fourth root.

Let us notice that the one-component action for staggered fermions is invari-
ant under a modified U(1) chiral transformation: this remnant chiral symmetry is
the reason why staggered fermions are preferred over Wilson ones when the chiral
properties of the fermions dominate the dynamics, and they can be used to study
the spontaneous breakdown of the remaining lattice symmetry U(1) x U(1). Oth-
erwise Wilson fermions may be preferred due to their correspondence with Dirac

fermions in terms of spin and flavour [6].
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2.6 Chiral Symmetry

The fermionic field 9 can always be decomposed into ’left’- and ’right’-handed

parts as follows:
Y =Yg+ YL (2.44)

The projection operators Pgj = %(1 + v5), P,%,L = Pg 1, where 75 = ivm17273,

project out left- and right-handed field states,

Yr = Pry, Y= Pry,

Yr=YPL, Y =1vPa (2.45)
Chiral symmetry is the symmetry associated with the independent transformations
of the left- and right-handed chiral states of a particle. Therefore, for Ny quark
flavours, QCD possesses chiral symmetry if the QCD Lagrangian is invariant under
separate transformations of the left- and right-handed chiral fields, or in other
words, possesses a SU(Ny)p x SU(Ng)g symmetry. This is equivalent to the

SU(N¢)v x SU(Ny)4 symmetry, under the vector and axial transformations
SU(Ns)y : ¢ — ey ¥ — e (2.46)
SU(Nj)a: ¢ —e™y o — el (2.47)

where 6 can be written as 6,7,, with 7, the generators of flavour SU(Ny). These
two transformations are associated with the conservation of the vector and axial
current respectively, J,(z) = ¥(z)7.0¢(z) and J,s(z) = ¥(z)y,750%(z). For non-
vanishing quark mass, the axial current is not conserved, and this symmetry is
explicitly broken from SU(Ny)y x SU(N¢)a to SU(Ny)y. This is why the chiral
symmetry is often referred as s symmetry. Associated with this broken symmetry

are (N7 — 1) Goldstone bosons, i.e. the non-zero mass of the pions.
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2.6.1 Chiral Symmetry on the Lattice

In order for the fermionic lattice action to be invariant under the transformation
Y — e, 1) — 1™, the lattice Dirac operator D, i.e. the fermionic matrix in

€q.(2.32) in the massless limit, has to satisfy

vsPvs = Pt (2.48)

The naive fermion action (2.31) for m = 0 is clearly chiral invariant since the Dirac
operator was defined by simply taking the symmetric difference for the derivative.
However, introducing for example the Wilson term in order to solve the doubling
problem, spoils this symmetry, even for zero mass®.

As we already mentioned, this is a general problem, validated in the Nielsen-
Ninomiya theorem [5]. However chiral symmetry can be recovered on the lattice
without doublers if we only require that the Dirac operator satisfies the Ginsparg-

Wilson [7] relation (GW)

1P + Dvs = {75, P} = a P P. (2.49)

This corresponds to the following field transformation
P o 65750(1—%p)¢’ ,J) - 1/36"0(1'%‘))75, (250)

so that for an infinitesimal transformation, § << 1, the massless fermion lattice
Lagrangian £ ~ ¢IPy, with D satisfying (2.49), will be invariant under such
transformation. Provided one can find a Dirac operator satisfying the GW relation,
it is then possible to construct a chiral theory without the presence of the fermion

doublers.

5The Wilson term is ~ 14, analogous to a mass term miy.
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Overlap fermions [8, 9] and Domain Wall fermions [10, 11, 12] are two closely re-
lated, but independently developed, formulations of the ’Ginsparg-Wilson’ fermions.
The overlap fermions have exact chiral symmetry even at finite lattice spacing and
contain the correct flavour symmetry. We will describe the overlap operator in sec-
tion 2.8 since it has been used in the D, project (chapter 5). Domain Wall fermions
(DWF) also preserve flavour symmetry and restore chiral symmetry by introduc-
ing an infinitely long fifth dimension. In practice this dimension is finite, but the
residual chiral symmetry breaking is in any case smaller than the Wilson fermions
case, for example, by a few orders of magnitude. As explained in next section, the
only effect of this chiral symmetry breaking is an additive renormalization to the

bare quark mass.

2.7 Domain Wall Fermions

Kaplan [10] first proposed the idea of reproducing the behaviour of massless chi-
ral fermions in 2n dimensions from massive interacting fermions in 2n + 1 dimen-
sions. This formulation introduces an extra space-time dimension, usually denoted
with s with length L,. In the case of QCD, this means formulating the chiral
four-dimensional theory by constructing a five-dimensional theory with massive

fermions®. In the fifth dimension the mass term has the shape of a step function:

Ms s>0
m(s)=<¢ 0 s=0 - (2.51)
—M5 s < 0.

Such a mass defines a domain wall separating the two half-spaces s > 0 and

s < 0 from each other. If the fifth dimension is infinite, there is a single chiral

6Note that the extra dimension contains only fermion fields: the gauge fields remain four-
dimensional.
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fermion on the four dimensional boundary. But for a finite L, on a lattice with
0 < s < L, —1, if a domain wall is located at s = 0, there will necessarily be
a second wall, an “anti-domain wall”, on the other boundary, s = L, — 1: the
zero-modes of opposite chirality are bound to the opposite walls and their overlap
will exponentally decrease. Therefore, while in the infinite-length limit for the fifth
dimension, exact chiral symmetry is restored, for finite values of L, these two states
mix between the walls, with consequent chiral symmetry breaking. However, their
mixing, and the chiral violation, is exponentially suppressed with the size of the

fifth dimension, i.e. O(ezp(—alL;)/a).

2.7.1 DWF Operator

The formalism generally used to describe DWF is the one developed by Furman
and Shamir [12]. Following their conventions, we denote the coordinates in the
usual four dimensions as =, while the s = 0,1, ..., Ly — 1 is the coordinate of the
fifth direction, with L, assumed to be even. The DWF operator acts on a five-
dimensional fermion field denoted as ¥(z, s), while the four-dimensional fermion
field is still denoted 9(z). The domain wall fermion action is then given by:

SPW = Y ¥(,5) Dy, 0 (7, 8, (2.52)

z,z';8,s'

with the DWF Dirac operator defined as

Dz,a;z’,s’ = 63,3’D|| + ‘Sa:,a:’Dj:gl- (253)

T,z
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The Dl!,’x, part has the form of a Wilson action with modified mass term”:

4
1
Dﬂ,r’ = 3 Z (1 = %)Uu(2)0s4p0 + (1 + ’7#)Ul;($’)61:—ﬂ,a:’]
p:

+ (Ms —4)bz0 ' (2.54)

Mj5 is sometimes referred as the domain wall height. The gauge field is replicated
along the s direction, so that each four-dimensional slice in the fifth dimension
has identical gauge fields (see figure 2.3). The Dsl’s, term instead describes the
propagation in the fifth dimension. It can be thought of as describing the coupling

between the five dimensional slices:

Ds o = [ ’)’5 3+1,3' + (1 + ’75)‘53 1,8 — 253,5’]

- —2_[(1 - '75)63,L,—150,3’ + (1 + 75)63,06&—1,3']' (255)

my is the input bare quark mass and directly couples the two domain walls at
s=0ands=1L,—1.
The four dimensional fermionic fields, (), are constructed from the five di-

mensional ones, ¥(z, ), by projection of the different chiralities on the walls [12]

Y(z) = PL\II(:I: 0) + PrY¥(z, Ls — 1)

¥(z) = ¥(z,L,—1)Py+ ¥(z,0)Pr, (2.56)

where Pgj are the projection operators defined in section 2.6.

2.7.2 Residual Chiral Symmetry Breaking

The discretization of the action seen in the previous section, leads to one left-
handed fermion mode localised on the left boundary of the fifth dimension, and

one right-handed fermion mode on the right boundary: their wave functions decay

"Note that the modified mass makes the modes heavy and suppresses their propagation along
the 4-d slices.
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Figure 2.3: Schematic illustration of the domain wall fermion formulation. The
massless chiral states fall off the walls exponentially. The light blue slices give an
idea of how the gauge fields are replicated along the fifth direction.

exponentially in the fifth dimension and, for finite separationbetween the two
boundary walls, they overlap in the middle of the fifth dimension. We see now
how to quantify the size of the consequent symmetry breaking.

The chiral transformation is defined to rotate the fermions in the two halves of

the fifth dimension8:
6V(x,s) = ie(s)ra™(x,s)
N(rr,s) = —ie(s)Tafy(x,s)

where

8Eq.(2.57) corresponds to the usual chiral transformation for the four-dimensional quark fields,
Saip(x) = irars«>@), 6aip(x) = ip(x)iTars.
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The axial current generated by this transformation is

= L,—1
A = Z sign(s — 82 )in(z, 8), (2.59)
=0

where
5o(es) = 31+ )1+ n)UYe + DUz, )
— U(z,s)(1 — ) Uu(z)m*¥(z + 2, 8)]. (2.60)
The divergence of this current satisfies
ALAL = 2mJg (z) + 2J5(2), (2.61)

where A, f(z) = f(z) — f(z — i) is a finite difference operator and J¢(z) is the
pseudoscalar density, written in terms of ¥ and ¥ as
J(z) = —-¥(z,L, —1)P.7*¥(z,0) + ¥(z,0)Prr®¥(z, L, — 1)
= P(@)r159(2)- (2.62)
Equation (2.61) differs from the corresponding continuum expression by the term

Jg,, referred as the “mid-point” operator, built from fermion fields in the middle

of the fifth dimension and given by
s(@) = — ¥(z,L,/2-1)Pr°¥(z, L,/2)

+ W(z,L,/2)Prr*¥(z,L,/2 - 1). (2.63)

This mid-point term adds an additional term to the axial Ward identity for DWF

[12] which can be written then as

A, < A (z)O(y) >=2my < J5(2)O0(y) > +2 < J5u(z)O(y) > +i < 6°O(y) > .
(2.64)
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The mid-point term in eq.(2.64), which vanishes when L, — oo [12], represents the
contributions of finite L, effects on the low-energy physics of domain wall fermions.
Since in the continuum limit eq.(2.64) must agree with the corresponding identity
in the effective continuum theory, the sum of the first two terms must be equivalent

to an effective quark mass, m.gs = ms+my.s, times the pseudoscalar density Jg(z):
J54(T) = Myes J5 () + O(a). (2.65)

An especially important case is when the operator is itself a pseudoscalar density,

O(y) = J&(y). In this case, close to the continuum limit, eq.(2.64) becomes
Ap < AL(2) TS (y) >=2(ms + myes) < J5(2)J5(y) > (2.66)

So the pseudoscalar meson masses vanish for my + m,., = 0, i.e. the chiral limit
for domain wall fermions is defined at my = —m,.,, instead of my = 0 as in the
continuum limit. In other words, the effect of the violation in chiral symmetry is to
shift the four dimensional bare quark mass, m¢, by some small additive piece m,.;,
the residual or anomalous mass. In practice the residual mass term is computed

by means of the ratio [13]

< Zz J;:/;(x) t)Jg(()’ O) >

RO = 25 Jem 0,05

(2.67)

and for sufficiently large t, where the effects of low-energy long-distance physics

are dominant, Jg, behaves as eq.(2.65) and R(t) represents m.,.

2.8 Overlap Operator

A possible operator that satisfies eq.(2.49) was proposed by Neuberger [9] after

a long time since Ginsparg and Wilson suggested the relaxation of the chirality
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condition as a way around the no-go theorem. Writing the operator as
o, =147V, (2.68)

without loss of generality, the search for D, is algebraically equivalent to a search
for a unitary, hermitian operator V. In fact, the hermiticity of V, V = V', comes
from requiring the 75 hermiticity of D, itself, eq.(2.48), while its unitarity comes

by multiplying the GW relation on the left by s

Po+ P} = aP{Po, (2.69)
so that
1 1
LY+ (14 Vi) = SV V) (270)
247V +Vys = 147V +Vys +V? (2.71)
=>V? = 1 (2.72)

The expression proposed by Neuberger for V can be written as

vsDw (p) (2.73)

¥ = /Dw ) D ()

where Dy (p) is the usual Wilson fermion operator® with a negative mass param-

eter, Dw(p) = Dw(0) — p/a with 0 < p < 2. The reason why we get exactly
massless quarks is that no fine tuning is needed for V' to have eigenvalues very
close to —1. Note that Dy (0) may have near zero eigenvalues, causing problems
when inverting the matrix. This is why the additive mass parameter p is present:

it does not affect the continuum limit since, as showed below, we only require the

9In general, it can be any valid lattice Dirac operator: it needs to be +ys-hermitian in order
for V to be unitary and hermitian.
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sign of the Dy, eigenvalues. In fact, substituting V' into eq.(2.68)

. _ Dw(p)
Po = 1% Dw (p) Dw (p) @)
_ ¥sDw (p) 7
s Vs Dw (0)[T s Dw ()] (2.75)
- _¥5Dw(p)
= e Dw o 210

where we used that H = 5D (p) is hermitian. This expression can be written as
alo =1+ yssgn(H), (2.77)

where sgn(H) = H/v H? is the matrix sgn function of H. For the massive case,

this gives!?
am am,
alp,(mqg, p) = p(1 + —2;)1) +p(1 - ﬁ)vssgn(H ) (2.78)
which is sometimes written as
alo(p) = p(1 + p) + p(1 — p)yssgn(H), (2.79)

where y = %‘l. This is the form of the overlap operator used in chapter 5 to
simulate the charm valence quark.

The overlap fermions, despite their high cost, have very desiderable features,
significant for both light and heavy fermions [75]. Apart from the essential feature
of allowing an exact chiral symmetry on the lattice, in numerical simulations with
overlap fermions there is no additive quark mass renormalization, no exceptional
configurations and no flavour symmetry breaking. Not only they are free from
O(a) and O(am) errors, but the O(a?m?) and O(Agcpa®m) errors are apparently

small (see [75] for an in depth discussion and references).

10Note the factor p is a rescaling factor in order to have the correct continuum limit.
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2.9 Monte Carlo Integration

As mentioned in section 2.1, the starting point for any calculation of hadron masses

and matrix elements in lattice QCD is the path integral
1 b Oe-S1acnlUw:]
Oy =3 [[ PUDY;DY;0e 5200010 (2.80)
f
with the partition function given by
Z= /HDUDt,be't;fe_s"QCD[U"I’"Z], (2.81)
f

and the QCD lattice action composed of both fermionic and gauge actions,

StocolU, ¥, %) = Se[U, v, %] + SclU]. (2.82)

The fermionic piece Sr is bilinear in the quark fields, so we can integrate out the
fermionic degrees of freedom by applying the Grassman algebra (see Appendix B)

and obtain a determinant of the fermionic matrix for each flavour
(0) = 1 / [[ pUdet(M![U])Oe~SeL. (2.83)
2 I

The fermionic contribution is now contained in the highly non-local determinant
and the integration is only on the gauge degrees of freedom. The direct computa-
tion of the fermionic determinant is numerically very expensive. This is why for a
long time the so called “quenched approximation” played a central role in lattice
calculations: it consists of setting the determinant in the integral equal to one.
In perturbation theory, it is equivalent to turning off vacuum polarization effects
of quark loops, which is unphysical and can introduce uncontrollable systematic
errors. However, since quenched QCD differs from full QCD only in the weighting

of the background gauge configurations, it was considered reasonable to perform
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quenched simulations in order to understand and control other sources of errors.
Fortunately today the advent of powerful computers together with the improve-
ment of the algorithms allow dyhamical simulations to be performed. We now
briefly describe how this works.

The number of integration variables in the integral (2.83) is normally extremely
large, so generating the gauge configurations would be computationally extremely
demanding!!: this is why statistical methods must be used to evaluate such quan-
tities. Monte Carlo techniques can be used to generate a sample of gauge con-
figurations with probability distribution e~5¢[V]. Note also that the probability
distribution of the gauge configurations is highly peaked at the classical mini-
mum of the action, so that the functional integral (2.83) is dominated by those
configurations around the peak: this is why one can generated a sequence of N
importance-sampled gauge configurations according to the probability distribution
given by

PU] = %e—SGIUil [T det(m? (V). (2.84)
f

Therefore the expectation value of an observable O becomes an ensemble average

over N gauge configurations
1 & '
(0) ~ % D_OlU, (2.85)
i=1

where the sum is now over the gauge configurations appropriately weighted as
explained above.
Numerical algorithms generate a sequence of configurations known as Markov

chain such that the C;;; element is generated from the C; one stochastically ac-

UFor instance, in a 162 x 32 lattice, the number of links U is 4 x 163 x 32, and since they are
SU(3) matrices, it corresponds to a total of 8 x 4 x 163 x 32 = 4194304 integrations. Furthermore,
if each integration is approximated by n points, the number of terms to be calculated is n#184304,
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cording to some transition probability. The chain will converge to the desired
probability distribution if it satisfies the two important conditions of detailed bal-
ance and ergodicity. Details of the Markov Chain Monte Carlo (MCMC) methods
and different algorithms used can be found in literature: [14, 15, 16] are some
examples. Here we just remark the fact that in the generation of the gauge con-
figurations there is some amount of simulation, or Monte Carlo, time before the
system reaches the equilibrium. When this happens, we say that the system is
thermalized. The number of measurements required for thermalization depends
on the observable considered or on the algorithm used for instance. In order to
find this number, the plot of some observable (typically the Polyakov loop or the
plaquette) versus the Monte Carlo time is considered: the thermalization typically
starts at the onset of the plateau. The thermalized configurations are then the
ones used to measure the observables of interest.

In this work the RHMC algorithm and its recent improved versions have been

used [17, 18, 19, 20).

2.10 Autocorrelation

The fact that the gauge configurations are generated in a Markov chain as ex-
plained in the previous section, gives rise to correlations between the configurations
in the molecular simulation time, known as autocorrelations. The autocorrelation
function between two measurements of some observable O, separated by ¢ molec-

ular dynamics time units, is defined as

N
p(t) =) (0; - 0) (O - O), (2.86)

=1
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where O is the average over the N measurements which, for N — oo, gives the
vacuum expectation value (O), as defined in eq.(2.85). In order to measure the sta-
tistical dependence between gauge configurations, the integrated autocorrelation
time is defined as'?
1o plt) 1 )
Tint = 5 Z —=-2-+Z—. (2.87)

t=—c0
In practice, the sum in the equation above is truncated at some t,,,.: for values of
t large enough, t > t,,4;, the measurements are sufficiently independent and p(t)
becomes a random noise. Typically two measurements which are separated by
2Tint in the molecular dynamics time can be considered statistically independent.
The standard way to deal with autocorrelations is to bin the data into blocks of
length b equal or bigger than 27;,,;, and then from the blocked (or binned) data,
carry out the analysis described in the following sections. Of course an important

test is investigating possible variations in the final results as b is changed.

2.11 Correlation Functions

In order to calculate observables, hadron masses for instance, and test our theory
against physical values obtained by experiments, we can use correlation functions,
or correlators, constructed from interpolating quantum field operators whose form
depends on the particular observable one wants to compute. In the previous section
we saw how the expectation value of some observable can be estimated by an
average over an ensemble of gauge configurations. In particular, the two point

correlation functions are defined to be the vacuum expectation value of the time

12Note that p(—t) = p(t).
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ordered product of two interpolating operators at two times,

CAB(f,t;ﬁ, 0) = %/DUDtpD'([—;OA(f,t)OL(ﬁ, O)e_SLQCD

(0IT{04(Z, )04 (T, 0)}|0)

(0]04(%,t)0%(0,0)|0), (2.88)

where O%(0, 0) creates a hadron at the source location (0, 0) and O4(Z, t) destroys

the hadron at the sink (Z,¢). In momentum space eq.(2.88) becomes
Cap(5,1;0,0) = Y _(0|04(Z,t)0k(0,0)[0)e~#%. (2.89)
F

Expecially when we want to determine hadron masses from the lattice, the corre-
lators are usually projected to zero momentum. The two-point correlator can then

be written as
Cas(t) =D _(0104(Z, t)O}(0,0)|0). (2.90)
4

If we insert a complete set of energy eigenstates of the Hamiltonian and consider

that O;(t) evolves as e?*0;e~#t, eq.(2.90) becomes

( t —mnut -
CAB(t) — Z(()lOAln)(;;LS‘B'O)e , (291)

where the normalization (n|n') = 2m,d, . is used!®. In the limit of large time the
correlation function is dominated by the lowest states. In particular, the ground

state mass of the particle mg can be extracted from the large time limit

tl_i’m Cag(t) > A% ge ™" (2.93)

13Note the special case of a diagonal correlator, i.e. A = B, gives

Ze—m,‘t

n

(2.92)
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t
where A% 5 = 0194 IngEgIO 9 Due to the finite time extent of the lattice, the hadron
correlators will also receive contributions from the backward propagating state, so
that the function to be fitted will actually differ from (2.93) and will depend on

the particular hadron state. We will see examples in next two sections.

2.11.1 Meson Correlation Functions

For meson correlators, the operator O; = Oy, takes the form of

Om(z) = ¥i(z)Ty;(z), (2.94)

where T is some combination of the ~ matrices which will give the spin and parity
properties of the meson state to be studied. Since there is no unique correspon-
dence between particle states and operators, the request is that the operator has
the same flavour content and same JFC as the state in question, where J is the to-
tal angular moment and P and C are the parity and charge conjugation quantum
numbers. Table 2.1 shows the mapping of the I' operators to the corresponding
meson states.

Written in terms of the quark fields, the meson correlator is

Cu(t) =Y _ (¢ (x)T* 4 (z)9] ()T (0)). (2.95)
Z

By performing Wick contractions of the Grassmann quark fields, the correlators
can be reduced to products of quark propagators. If the propagator is given by
(1/;?(3:)155 (0)) = G?jﬂ (z;0), neglecting the disconnected part present for flavour

singlet mesons, eq.(2.95) becomes

Cu(t) = = _(Tr[G(0,z)IG(z,0)T1), (2.96)
3
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where the trace runs over spin and colour indices which have been dropped for
simplicity. The evaluation of this term means computing two point-to-all propa-
gators: the ys-hermiticity of the Dirac operator can be used though and the two

propagators can be related to each other,
G(0,z) = vG'(z, 0)vs. (2.97)
Equation (2.96) becomes
Cu(t) = = Y (TrlnsG (z,01950G @, O, (298)
F

where ()y reminds us of the integration over the gauge fields U (see section
2.9). Therefore only one inversion of the fermionic matrix per configuration is
required in the degenerate quark case. In the flavour-singlet case, there will be
another term in (2.96) which requires the computations of all-to-all propagators,
ie. G(z;z) = G(z,t;z,t), considerably more difficult and computationally more
expensive, therefore neglected in most calculations.

Recalling eq.(2.93) and how the ground state mass is extracted, the backward
propagating state needs to be included. So the two point function for large time

is properly given by
tlim Cags(t) = A% gle™™* + ne~ ™o T, (2.99)
—00

where T' = N; is the extent of the lattice in the time direction and the factor
1 depends on the time reversal symmetry of the operators. For instance, the

pseudoscalar meson state for degénerate operators will have n =1 and

C(t) - 2A% ™ T/2 cosh[mo(%’ —t)] (2.100)



CHAPTER 2. BACKGROUND THEORY 37

Bilinear I JFC  Example
Scalar Iy 0" fyoro
Pseudoscalar  vs,74ys 0~ F m K
Vector YiYive 177 p
Axial vector YiYs 1*++ a
Tensor Yiyi(oi) 17~ b

Table 2.1: Meson states created by the quark bilinear interpolating operators 1/I'y.

2.11.2 Baryon Correlation Functions

For baryons, the standard interpolating operator is composed of a local diquark

operator and a spectator-like quark field:
OB,k,J(x) = fabcfij["l’iq,‘:(z)craﬂ¢;,ﬂ(z)]wﬁ,6(x)’ (2'101)

where T is again one of the possible 16 Dirac matrices and C = 47,4 is the charge
conjugation operator. The superscript 7" denotes transpose and abc, ijk and o6
are colour, flavour and Dirac indices respectively. Note the totally antisymmetric
tensor €/ on two indices (¢'! = €22 = 0, €2 = 1 and €} = —1 ) ensures the
operators have the correct flavour content. This baryon operator is colour singlet
and has one free spinor index necessary for describing spin-% octet and spin--g-
decuplet baryons. More details will be given in chapter 4. In particular in this

work (chapter 4) we will deal with nucleons. The operators corresponding to the

14Note

—C

ct=c! ¢t =
CyC™' = —f.
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nucleon (proton) state are

Nia(z) = eae(uT(z)Cysd®(z))us (z)
Npo(z) = eapc(u"*(2)Cravsd’(z))us (), (2.102)

where u and d nominally indicate the up and down quark respectively. Note that
a combination of these two operators can also be considered. Also, the baryon
operators do not have a definite parity. They couple to both the negative and

positive parity states, transforming under parity as
POB,k,J(-’L‘4a )P = ’Y4OB,k,J(iL‘4, 7). (2.103)

Since 4 = diag(1,1,—1,—1), the two upper components of Op transform with
positive parity while the lower two transform with negative parity. In particu-
lar it turns out that the backward propagating state has an opposite parity to
the forward propagating one. And since the masses of positive and negative par-
ity states are not necessarily the same due to the spontaneously broken chiral
symmetry, the projection operators Py = %(1 + «y4) are used to project out pos-
itive and negative states. In general a baryon two-point correlator at time ¢,

Cn(t) = Y z(N(t)NT(0)), can be written as
Cw(t) = (1 + 1) Are ™ £ (1 — ) Aye ™ T
F+7)Ae™ T — (1 - y)Ae ™, (2.104)

where the subscripts indicate the parity of the corresponding state and the (lower)
upper sign corresponds to choice of a finite lattice with (anti-) periodic boundary

conditions. Projecting out the positive and negative parity states gives

C?\;(t) T"'{P+CN (t)} = A+e—m+t == A_e m-(T-1)

Cr(t) = Tr{P_Cy()} = —A_e ™'+ A e ™T, (2.105)
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As we can see, there is no time reflection symmetry as in the meson case, since the
forward and backward propagating states depend on different mass values.

The physical states represented by the operators (2.104) are not only the nu-
cleons, N(940), with J¥ = %J', but also the heavier state N(1535), commonly
known as N*, parity partner of the nucleon, J* = %—. In order to find their cor-
responding masses, the positive and negative correlators (2.105) need to be fitted
simultaneously. Note that contributions to the negative parity state come also
from the interpolating operator (2.101) with T' = 1, i.e. €qpe(uT?(z)Cd*(x))us(z),
while its corresponding positive parity operator has a poor overlap with the nu-
cleon ground state. We will see more details in chapter 4. From now on we will

indicate m, = My and m_ = My..
2.11.3 Effective Masses

We just saw how the ground state masses can be extracted from the correlators.
However it is not always easy setting tm:, in the fitting range, [tmin,tmaz], high
enough that the lowest mass dominates the correlation function and the contami-
nation from higher mass states is not significant. A convenient way to proceed is
to examine effective mass plots. The effective masses for mesons and baryons are

defined as

(1) = cosnCEFDHCE-1)

2C(t) b
mb(t) = — ln[%l—)]. (2.106)

A plot of these functions versus ¢ should plateau where the lowest mass term

dominates and the excited states have decayed away: looking at this kind of plots

then gives an indication on the fitting range to extract the ground state mass.
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2.11.4 Smearing

We saw that the main idea of creating mesons and baryons functions is to choose
operators with a non-zero overlap with the state to be studied, i.e. with the correct
quantum numbers JFC. In some cases it can be necessary to improve the signal
from the data, in particular when we want to extract ground state masses since
we need to look at large Euclidean times, where the noise increases. In this case
we may like to increase the ground state amplitude relative to the first excited
state. A way of proceeding is using smeared operators at the source and/or the
sink which cover an extended region of the lattice, instead of a local point, in order
to obtain a better overlap with the desired state. Since in most cases the source is
constructed on a single time-slice, it is computationally cheaper to perform source
smearing than sink smearing. All the smearing in this work are at source, apart
from the case when both sink and source are smeared. The smearing operators

used are wall/box [21], hydrogen-like [22] and Gaussian [23] operators.

2.12 Fitting Methods

In section 2.11 we gave examples of model functions that parametrize the large
time behaviour of mesonic and baryonic correlation functions. In general we need
to fit the numerical data, in our case correlation functions, C(t), to some known
function model f(a@), where a;,as,... represent the unknown parameters of the
model. Assuming Np independent data points, the general approach is to find the

model parameters @ that minimize the so called uncorrelated 2, defined as

Z [C( t’) — )]2, (2.107)
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where C(t;) is the average value of the i** data point over all the configurations
N,

_ 1

C(t:) = N kz_:l Cx(t:) (2.108)
with e; its standard error (see section 2.I3 for more details). The number of
data points to be fit minus the number of parameters to be determined gives the
number of degrees of freedom, dof. With many degrees of freedom, we expect to
get x%2 = dof & +/2dof, so x*/dof ~ 1 indicates a good fit*5.

In Monte Carlo simulations, the data points are more likely to be correlated
since, for instance, the correlators necessary to obtain hadron masses are calculated
from the same operator and gauge configurations. The function to minimize in
this case is the correlated x?

Np
2@ = 3 (Ct) - £(@8))(Cov™)5(Clty) - £(&,1:). (2.109)

i,j=1
Cov is the covariance matrix which describes correlations among the data points

or correlators. It describes the distribution of the data around the mean value

C(t;) and it can be written as
N
Covyy = =—= 3 (Cult) — C()(Cilty) — C(1)- (2.110)
N(N - 1) k=1 ! !
Note that only when the number of measurements is much larger than the number
of data points, N >> Np, a good estimate of the covariance matrix is possible. In
the other cases, the estimated covariance matrix introduces too much noise in the

fit, or in other words, the correlated x? would be larger than one'®. In this work

we will always quote uncorrelated fit results.

15The probability distribution for the best fit is the probability distribution for x2, i.e. for a
(dof) dimensional vector: each component will be Gaussian distributed with a standard deviation
of unity.

16In the extreme case N < Np, the smallest eigenvalues are zero and the covariance matrix
cannot be inverted.
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2.13 Error Analysis

Numerical simulations on the lattice introduce two sources of errors: statistical and
systematic errors. The latter are due for instance to the finite size of the lattice
and the finite lattice spacing. Systematic errors are also introduced in the fitting
procedure described in the previous section, for instance in the choice of the time
range. Usually the systematic uncertainties are considered negligible if smaller
than the statistical errors. A calculation of systematic errors is often difficult since
several sources of errors need to be included in the analysis. We will discuss finite
volume effects, a possible source of systematics, in chapter 4, but in this work we
will always quote statistical errors, except where specified.

The statistical errors come from the fact that performing the functional inte-
grals as seen in section 2.9 in order to compute observables, employs statistical
sampling: the results then will have statistical errors. The so called standard error
is simply calculated from the standard deviation of the average of our measure-

ments. Keeping the same conventions as in section 2.12, it is given by

2 N ) — C(t:))2
. \/Nailz Zu(G) Ol 2.111)

Accurate methods for estimating the standard error and taking into account cor-
relations within the measurements are the jackknife and bootstrap methods. They
are methods of regrouping a data sample in order to find a reliable estimate of the

error for a quantity computed from that sample.

2.13.1 Jackknife Method

Starting from a sample of N values, the jackknife method removes one of them in .

turn, leaving a sample size of N —1: the analysis is carried out on the reduced set of
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N —1 configurations and a best fit result for the parameters is obtained. Then the
measurement is repeated N times, each time removing a different element of the
sample. The jackknife variance is the average of the squared deviation multiplied
by N —1 to compensate for the bias introduced by the reuse of data in constructing

the sample:

2 N-1 o 5 ~ 2
% =N > (Celts) — C (1)), (2.112)
k=1
2.13.2 Bootstrap Method

The bootstrap method has similarities with the jackknife, but the main difference
is that it involves a random selection of N values, where N is the total number
of configurations. The quantity of interest is then evaluated from this sample.
This procedure is repeated Ny, times, giving Nyo, replications of the quantity to
estimate, one for each bootstrap sample. In this case, it is possible that the new
set has repetitions: in fact we could even have Ny, > N. The standard error
is given by the standard deviations on the Ny, estimates or replications. The
advantage of the bootstrap sampling method is that it does not assume any prior

form for the distribution of the correlation functions.



Chapter 3

Scaling and Asymptotic Scaling

r.I‘he two main features of the strong interactions are asymptotic freedom and con-
finement, related to their properties in the high and low energy regimes, respec-
tively.

One way to show that QCD is the correct theory of strong interactions is
through the coupling constant: the coupling extracted at different scales is unique,
in the sense that its variation with scales is described by the renormalization
group’. The consequence is that the coupling constant that appears in the QCD
Lagrangian or action, see eqs.(2.5 & 2.7), becomes a running coupling in the full
quantum theory and its dependence on the energy scale is quantified by the so-
called S-function. Through the perturbative study of the B-function, it was shown
that at very high energies the coupling becomes so small that the quarks are like
free particles - hence the term asymptotic freedom.

In the following section we will explore in detail the concept of asymptotic free-
dom. We will see that it is necessary that lattice predictions of QCD reproduce

the weak coupling perturbation theory in the limit of the bare coupling going to

IThe renormalization group equation describes how the parameters behave by changing the
scale of the theory, in the case of our interest, the lattice spacing.

44
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zero, go — 0. However, it is a generally known problem that the behaviour pre-
dicted from perturbation theory for asymptotically free theories like QCD has not
yet been observed in Monte Carlo simulations of these theories. This discrepancy
has been explained in the past [24] with the poor convergence properties of the
perturbative series in the bare coupling constant.

This chapter is devoted to illustrate this possibility and in particular to explore -
an alternative method which explains the disagreement between Monte Carlo data

and perturbative scaling through the presence of lattice artefacts.

3.1 Asymptotic Scaling

The term asymptotic freedom implies that the running coupling goes to zero as
the momentum scale, y, goes to infinity, in accordance with predictions from per-
turbation theory. The B-function quantifies the dependence of the coupling on the
scale p through the renormalization group equation, 3(u) = pgﬁ.

In a lattice regularised theory, u is replaced by a™!, the inverse lattice spacing.
For a finite lattice spacing, a, the functional dependence of the coupling g(a) on
a will depend on the observable considered. For sufficiently small a, however, a
universal function g(a) should exist, which ensures the finiteness of any observable.
The renormalization group equation for the bare coupling on the lattice is given
by:

2

d
Br(gd) = —a% = —2bogy — 2b1gg — 2bagh + - . -, (3.1)

where the one- and two-loop coeflicients, by and b;, are scheme independent. In

the case of SU(N) pure-gauge theories, when the number of flavours is equal to
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zero, they depend only on the number of colours? N:

11 4
- =22 N2 2
sar Y sy (3.2)

bo
The three-loop coefficient b, is scheme-dependent and its expression in the lattice
scheme, bL, can be obtained with a 2-loop calculation relating the lattice coupling

to some other coupling for which b, is already known. For the Wilson pure-gauge

SU(N) action, the three-loop coefficient on the lattice is [25]

3
1433. 214
bl = ( N ) (—366.2 4 14388 —3) . (3.3)

1672 N2 N4
Integrating the expression of the B-function (3.1) up to three loops, one obtains

a relation between gy and a which is the usual expression for the running of the

coupling:
A
—~1 L
= —", 3.4
fer(gs 34
where
2 — _26192 2 _;Ib} 1 2 L 2
fer(gg) = e ™% (bogy) >0 (1+ﬁ(b1—b2b0)90)
0
_ __26_7151 2 ;_:} L 2
= e ™% (bogg)*o (1 +d3gp) (3.5)

is the scaling function. The subscript ‘PT’ refers to quantities obtained from
weak-coupling perturbation theory. The integration constant Ay is the scale of the
lattice regularized theory with dimensions of mass. It is the fundamental QCD
parameter Agcp 'measured’ in the lattice scheme, and can be related to Agcp in
other schemes by a multiplicative constant. In a pure gauge theory (i.e. number
of flavours Ny = 0) there exists only one relevant coupling corresponding to a

single universal scaling function defined in equation (3.5). Every physical quantity

2Note the number of colours will be referred as N in this chapter.
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with dimension of a mass must then be proportional to Ay in the continuum
limit. And the mass in lattice units, which is the quantity that one evaluates in
numerical simulations, should vary as a function of gy according to egs.(3.4 & 3.5)
as the coupling goes to zero, g2 — 0. This perturbative scaling behaviour is called
asymptotic scaling.

However, this perturbative behaviour has not been observed for current pa-
rameter values in lattice simulations when the coupling used is the bare coupling
go- This old problem has been approached in the past by stressing the need for
improved laftice coupling schemes, in particular by Lepage and Mackenzie [24].
In fact, using a renormalized coupling, gg, usually defined in terms of quantities
obtained from a Monte Carlo simulation, enhances the convergence of the pertur-
bative series. Lattice perturbation theory expressed in terms of gg then becomes
much more reliable. Of course the choice of the expansion parameter is not unique
and its value can depend on the length scale relevant to the process considered.

An alternative point of view to the renormalized coupling approach has been
developed [26] where the presence of cut-off effects due to the finiteness of the lat-
tice spacing are assumed to cause the disagreement between Monte Carlo data and
the asymptotic scaling formula. Following this alternative scenario, we extended
the work in [26] in different directions, as illustrated in detail in the rest of this

chapter.

3.2 Lattice-Distorted Perturbation Theory

The approach described in this section, called “Lattice-Distorted Perturbation The-

ory”, stresses the need for lattice spacing corrections. Any quantity determined
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from a lattice simulation will suffer from systematic lattice spacing effects due to
the discretization inherent in the lattice action used. Thus, for example, gluonic
sector quantities in quenched SU(3), will have O(a?) errors associated with them
when the Wilson action (see eq.(2.17)) is used. It is then natural to assume that
eqs.(3.1 & 3.4) will need to be adjusted by these same O(a?) systematics whenever
the scale is determined by such a gluonic sector quantity obtained from a Monte
Carlo simulation. The coefficients of these O(a?) terms can be found from simple
fits to the Monte Carlo data, and will be, in general, quantity dependent.

A complete parametrization of the lattice S-function should include both the
O(a™) terms and higher order terms in g2, since the observed lack of asymptotic
scaling is presumably due to a mixture of the two effects [26], [27]: (i) the presence
of lattice artefacts due to the finiteness of a and (ii) the inclusion of only a finite
number of terms in the PT expansion. We can then write the lattice S-function

in the following implicit form:

dgd
Bu(g) = _ad_; = —2(bogs + b1gg + b7 90 + Ebt 192”2)
X (1+ ) ca(gd)a"(g2))- (3.6)
n=1 :

This is simply eq.(3.1) with the addition of O(a") terms. The ¢, are the (non-
universal) coefficients of the O(a") terms and are, in general, polynomial functions
of g2.

Equation (3.6) can be integrated giving

(90) For ( 2) x (1 +ZdlL 1901 4)— (1 +Z (go)fPT go)) (3.7)

where fpr is defined in equation (3.5). The O(a") term has been expressed in

terms of f72. without any loss of generality since any difference between a and fpr
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is higher order and can be absorbed into the coefficients ¢/, (g3) for m > n.

We will use this ansatz for the asymptotic scaling function later in this work.
For the moment we set the higher order coefficients in g2, d~, to zero and focus
our attention on lattice-distorted PT, i.e. on the O(a™) part.

While there can be no doubt about the presence of such O(a™) corrections, their
importance could be questioned: we will show that their contribution is actually
never negligible and that their coefficients turn out to be of the order we expect.
In order to make progress with fitting data, higher order terms in eq.(3.7) are

truncated leaving the following simpler form:

V. rn 2 v oen/ 2
a~(g?) = L [1 - X, 96.fPr(g0) — Y g,o fP,T(go) ] ) 3.8
@) = 7@ Craltr G Tt G) Y

s
Here X,, and Y, are respectively the leading-order (LO) and the next-to-
leading-order (NLO) coefficients of the O(a") expansion, and there is no implicit
summation over n and v. As described in the following, we performed both LO
(Ynr,» = 0) and NLO fits®. The values of the indices n,n’,v,’ depend upon the
lattice action and the quantities used to set a, as better explained below. The
variation of the coefficients ¢, (g7) with gy is truncated to leading order, hence the
presence of the g§ and g terms. The values of v and / will be discussed below.
The O(a") terms are normalized so that for example X, , is the fractional system-
atic effect coming from the O(a") term at some standard (i.e. convenient) value
of go, Gsta- The values of 8 = 2N/ gg corresponding to the standard values G4
for the different actions considered are listed in Table 3.1. For the Wilson action,

sections 3.6 and 3.7 show an analysis of SU(N) data for N number of colours dif-

ferent from 3, so Table 3.1 also shows the 5,4 value for each N considered. These

3When we had enough data, we also performed NNLO fits, as a test for the convergence of
the series (see section 3.4).
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Action N fyuq=2N/G%,

Wilson 2 2.45
Wilson 3 6.0
Wilson 4 11.0
Wilson 5 17.45
Wilson 6 25.2
Wilson 8 45.5
Iwasaki 3 2.6
DBW2 3 1.04

Table 3.1: Values for the “standard” coupling, G4, expressed in terms of [, =
2N/G?,,, for the different actions and number of colours considered in this work.

values for G,y were chosen in order to have the lattice spacing a™! ~ 2 GeV at

Jo = Gstd-
3.3 Setting the Scale and Data Sets

Lattice calculations set the scale a~! by calculating some (dimensionless) quantity
on the lattice, QF, and comparing it with its experimental (dimensionful) value,

Qexp;
. (ezp

o (3.9)

a

Once one dimensionful low energy observable is specified, all other dimensionful
quantities can be expressed in terms of it. We consider different physical quantities
to set the scale a, listed in the first column of Table 3.2: the hadronic scale rq [28],
the string tension ¢ and the critical temperature 7,. The method of lattice planes
also provides an alternative way to set the scale a [33]. The length scale r, is an
additional reference scale analogous to (but smaller than) ro, defined through the

force F(r) between static quarks. The range where one has the best information
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Gauge Action

Wilson Iwasaki DBW2
rore  O(¢°a®) + O(¢%a*) O(g’a’) + O(g%a*) O(g%a’) + O(g%a’)
o, T, O(a?) + O(a?) 0(a?) + O(a?) O(a?) + O(a?)
Method Fermionic action
of Planes O(g%a) + O(a?)

Table 3.2: LO and NLO correction terms in the fitting function (3.8) for each
lattice quantity and each action used.
on F(r) is at distance of around 0.5 fm [28]. One then calculates r(c) satisfying

the equation

r?F(r)ly=r() = ¢, 1o =7(1.65) ~ 0.5fm. (3.10)

When one is interested in short distance properties of the theory, it is convenient

to choose a smaller reference length scale [29],
r2F(r.) = 0.65, (3.11)

related to ro through r./ro = 0.5133(24) [29]. This smaller length scale allows one
to work with larger beta values without being constrained by finite volume effects.

In Table 3.2, the values for n,n',v,// in eq.(3.8) for both the LO and the
NLO terms are listed. As already mentioned, these different values for n,n’, v,/
are due to the different discretization errors associated with the different actions
considered. Note that the behaviour of the scale obtained from the method of
planes is different from the other cases with the Iwasaki action. This is because
it is derived from the meson masses and thus the quark part of the action has to
be included. The leading scaling violation of the quark clover action considered in

[30] is O(g%a).
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Our sources of SU(3) data are [29], [30] and [31]. In [29] the quantities ro and
r. are considered. In particular, the ratio ry/a is evaluated for the usual Wilson
plaquette action, as well as for the Iwasaki and DBW2 actions. [29] also defines
the additional reference scale r. for 8 > 6.57 only. Since we wish to use r, values
over the entire 8 range, we evaluate r. for 8 < 6.57, by locally interpolating the
force F(r) between static quarks using data taken from [32]. The results for the
full B range are listed in Table 3.3. Tables 3.4 and 3.5 show the ro/a values used
for the Iwasaki and DBW2 actions respectively.

The string tension data used for the Wilson and Iwasaki actions are listed in
Tables 3.3 and 3.4 respectively. The string tension o is commonly defined through

the static quark potential
0% 1
V(r) = const. + or + -+ 0(;5), (3.12)

where + is an universal factor depending only on the dimensions of the system.
The physical temperature for a given lattice spacing a, is related to the time
extent of the lattice N; by
1

T = Ma(B), (3.13)

thus the temperature can be varied by either changing N, or by varying the lattice
spacing (which can be achieved by changing the coupling). To determine the
critical temperature at a phase transition* one usually studies the temperature
dependence of an order parameter, like for example the Polyakov loop. The general
idea consists of fixing NV;, while varying the gauge coupling § or g, and therefore

implicitly the lattice spacing, and, via eq.(3.13), the temperature. In this way one

“The phase transition is characterized by the fact that for T' < T. the confining string tension
is non-zero, o # 0, while for T > T, we have o = 0.
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moves the lattice system through the phase transition obtaining

% = Na(Bo), (3.14)

where S, is the critical coupling. Tables 3.3, 3.4 and 3.5 show the values of 3. at
given N, for the Wilson, Iwasaki and DBW2 actions respectively.

! using the method

The last column in Table 3.4 contains the values for a~
of lattice planes [33] obtained by [34] using the meson masses from [30]. In this
method, lattice physical planes for masses and decay constants are defined in
order to set the scale and to determine physical quantities, without relying on
chiral extrapolations. Specifically on the plane (Mya, (Mpsa)?), the intercept of
the curve Mya = Mk./Mg/(Mpsa)? with the linear fit of the lattice data defines
Mga and Mg,a. The lattice spacing a can then be set by comparing one of the
values found with its well determined experimental value.

Finally, Table 3.6 shows all the values for a~! we will use in our fits to eq.(3.8).

These a~! were obtained from Tables 3.3, 3.4 and 3.5 using the following values®:

ro =049 fm r,=0.49 x 0.5133 fm
(3.15)

T, =300 MeV o = (440 MeV)2.

All the tables of data show the references from where the data are taken.

SNote that those are the correct values for SU(3). For N # 3, if we fix one of the above
quantities to its SU(3) value, the others are expected to differ from their respective quoted
values by an O(1/N?) correction.
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3.3.1 Data
B Be re/a ay/o N
Ref [35] [31] [35]
5.6925 0.3970(19)
5.6925(2) 4
5.6993 0.3933(16)
5.7995 0.3148(12)
5.8 0.3133(13)
5.8941(5) 6
5.8945 0.2607(11)
5.95 2.53(1)
6.0624(12) 8
6.0625 0.19466(73)
6.07 3.09(1)
6.2 3.79(2)
6.3380 0.12930(69)
6.3380(23) 12
6.4 5.02(2)
6.57 6.25(4)
6.69 7.29(5)
6.81 8.49(5)
6.92 9.82(6)

Table 3.3: SU(3) Wilson data used to set the scale, a. r./a values for 8 > 6.57
are taken directly from [29], and those for 8 < 6.57 are obtained using force data
from [32] as described in the text.
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B Be To/a oa? N, a~! [GeV]
method of lattice planes
Ref [36] [30] [36] [30, 34]
2.1551(12) 2.320(11) 3
2.187 2.494(35) 0.2157(32) 1.0238(116)
2.214 2.621(43) 0.1949(25) 1.0769(132)
2.247 2.801(28) 0.1713(18) 1.1314(141)
2.281 3.001(36) 0.1487(17) 1.1643(158)
2.2879(11) 3.026(5) 4
2.334 3.289(23) 0.1241(14) 1.2587(147)
2.416 3.824(13) 0.0921(10) 1.4228(202)
2.456 4.080(16) 0.0800(16) 1.5410(160)
2.487 4.286(15) 0.0725(11) 1.5971(202)
2.5206(24) 4.511(8) 6
2.528 4.570(21) 0.0637(11) 1.6989(212)
2.575 4.887(16) 0.0561(7) 1.8119(220)
2.7124(34) 5.999(24) 8

Table 3.4: SU(3) Iwasaki data used to set the scale, a. The ry/a data come from
two sources: [29] for the critical 8 values, [30] for the other 3 values.

B, Be To/a Ny

Ref [29]  [37]
0.75696(98) 2.225(12) 3
0.82430(95) 3.036(17) 4
0.9636(25) 4.556(26) 6
1.04 5.452(27)

Table 3.5: SU(3) DBW2 data used to set the scale, a.

3.4 Details of the Fit and Results

We perform a simple least chi squared fit of the data for a~

Table 3.6 to eq.(3.8).

! in each column of

Both LO and NLO fits were performed as a test of the convergence properties of

the lattice distorted perturbation theory approach. As a check, for those quantities
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[ a~! [GeV] from
B Te o Vo T, K — K* | Action Ref.
5.6925 1.2000(3) Wilson  [29]
5.6925 1.108(5) Wilson  [31]
5.6993 1.119(5) Wilson  [31]
5.7995 1.398(5) Wilson  [31]
5.8 1.404(6) Wilson  [31]
5.8941 1.8000(11) Wilson ~ [29]
5.8945 1.688(7) Wilson ~ [31]
595 | 1.985(8) Wilson  [29]
6.0624 2.4000(34) Wilson  [29]
6.0625 2.260(8) Wilson  [31]
6.07 2.424(8) Wilson  [29]
6.2 2.973(16) Wilson  [29]
6.3380 3.6000(99) Wilson  [29]
6.3380 3.403(18) Wilson  [31]
6.4 3.938(16) Wilson  [29]
657 | 4.903(31) Wilson ~ [29]
6.60 | 5.719(39) Wilson  [29]
6.81 | 6.661(39) Wilson ~ [29]
6.92 | 7.704(55) Wilson  [29]
21551 0.934(4) 0.9000(13) Twasaki [29]
2.187 1.004(14) | 0.947(7) 1.024(12) | Iwasaki  [30]
2.214 1.056(17) | 0.997(6) 1.077(13) | Iwasaki  [30]
2.247 1.128(11) | 1.063(6) 1.131(14) | Iwasaki  [30]
2.281 1.209(15) | 1.141(7) 1.164(16) | Iwasaki [30]
2.2879 1.219(2) 1.2000(16) Iwasaki [29]
2.334 1.325(9) | 1.249(7) 1.250(15) | Iwasaki  [30]
2.416 1.540(5) | 1.450(8) 1.423(20) | Iwasaki [30]
2.456 1.643(6) | 1.556(16) 1.541(16) | Iwasaki [30]
2.487 1.726(6) | 1.634(12) 1.597(20) | Iwasaki [30]
2.5206 1.817(3) 1.8000(52) Iwasaki [29]
2.528 1.840(8) | 1.743(15) 1.699(21) | Iwasaki  [30]
2.575 1.968(6) | 1.858(12) 1.812(22) | Iwasaki  [30]
2.7124 2.416(10) 2.4000(98) Iwasaki [29]
0.75696 0.896(5) 0.9000(11) DBW2 [29]
0.82430 1.223(7) 1.2000(14) DBW2 [29]
0.9636 1.835(10) 1.8000(54) DBW2 [29]
1.04 2.196(11) DBW2 [29]

Table 3.6: Values for a=! obtained from data in Tables 3.3, 3.4 and 3.5 by using
the constants in eq.(3.15).



CHAPTER 3. SCALING AND ASYMPTOTIC SCALING 57

with enough data points, we included the nezt-to-nezt-leading term in the fit,
but the results were entirely consistent with the NLO fits. Values for A, the
coefficients X and, in the NLO case, Y, with corresponding x?, are listed in Tables
3.7, 3.8 and 3.9 for the Wilson, Iwasaki and DBW2 data respectively. The second
column of these tables specifies the form of the scaling function fpr, eq.(3.5), used
in the fit, i.e. if the 3-loop term d} is included or not. Notice that the 3-loop
coefficient is not known for the Iwasaki and DBW2 actions, so d was left as a free

parameter in the 3-loop fits to data from these actions.

3.4.1 Comments

Some comments about the results in Tables 3.7, 3.8 and 3.9 are necessary. The
X parameters from the NLO fits are compatible with those from the LO fits.
Furthermore in the NLO fit, the coeflicient Y is an order of magnitude smaller
than the coefficient X. This suggests that the expansion in fpr forms a convergent
series, with most of the cut-off effects being due to the leading order term at these
B values. Note also that the size of the cut-off effects for the Wilson data at the
“standard” coupling Byq = 6.0 is around 20-25%, very compatible with what was
found previously [26].

It is interesting to note that the X coefficients for the Iwasaki action for rg
are significantly smaller than the 20-25% values obtained in the Wilson case. This
suggests that the Iwasaki action is optimized to reduce the lattice artefacts in this
quantity. It is difficult to draw similar conclusions for the DBW2 case since there
are too few data points available.

From the x? values in Tables 3.7, 3.8 and 3.9, the quality of the LO and NLO

fits is generally excellent. Note also that the x? values for the NLO fits are smaller
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than for the LO ones (with the single exception of the DBW2 action where there
are a very small number of data points).
Let’s notice that if

g% =g +rigt +rag®+ ... (3.16)

is the relation between the running couplings in two different schemes, the lambda

parameters in those two schemes are related by
A = Ae™ /o bl = by — byry + bo(ry — 72) (3.17)

where the second expression is the relation between the 3-loop coefficients, which
will be useful later in this chapter.
We can convert Ay to the generally used MS scheme, Azz. In the Wilson

case, the known conversion factor [40] is

Az 32
—== 1 = 38.852 - 1
( AL ) 38.852704 exp( 11N2) (3.18)

with N number of colours. For SU(3) this gives the value listed in Table 3.10.
As can be seen from Table 3.7, the Ayz values for the three quantities considered
in the Wilson case are consistent to within ~5% for the 3-loop NLO case. These
differences are, at some level, due to the uncertainty in the physical values used,
eq.(3.15). Also, since the data studied here is quenched, we cannot expect perfect
agreement for all lattice quantities.

The Ajzzg values from the 2-loop NLO case are ~15% lower than the 3-loop
case, in agreement with what expected due to the addition of the d¥g? term in
the definition of the 3-loop fpr, €q.(3.5). Since the range of g2 is very modest,
this 3-loop term is essentially a constant for the data considered, and in the SU(3)

Wilson case we have df = 0.1896.
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Due to the very good agreement between them, we take our best estimate of
Az using 7. and T, data in the 3-loop NLO case. We assign an error of ~ 10% to
this value due to uncertainties in the physical estimate of r. and T, and to allow
for the small discrepancy between the Az values obtained from the string tension

o and from r. and T,. We therefore have (using eq.(3.18)):

Ng=0
M0 =217+21 MeV, (3.19)

similar to previous lattice determinations in quenched QCD |[26], [38].

Using the conversion factors in Table 3.10 for the Iwasaki and DBW2 data
unfortunately does not produce sensible values for Az;g. Moreover, previous cal-
culations of Azzz from improved actions found similar problems [39]. However
despite this concern, the 2-loop Iwasaki Ay, values are compatible for all the phys-
ical quantities considered, allowing for some additional uncertainties in the values
in eq.(3.15). Introducing the 3-loop term in the fit with a free coefficient spoils
this agreement. Note however, that the coefficient of this term, d%, should be
scheme-dependent and not quantity dependent. From Table 3.8 it is clear that d%
is highly unstable, and we therefore discount these 3-loop fits.

Table 3.9 shows the results obtained from the DBW2 data. In this case, the
small amount of data points available did not allow an accurate investigation.
However, the NLO 2-loop fit performed in the ry case confirms the validity of our
approach.

We plot the data and the fits for a=! versus # in figures 3.1 and 3.3 for the
Wilson and the Iwasaki actions respectively. In order to show the high level of
agreement between the data and the lattice distorted perturbation theory fits, we

plot the ratio of the data to these fits in figures 3.2 and 3.4: they show that the
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O(a) -loop | Quantity Ap X Y x2/dof Azrs
L0 2 re | 641(2) 0.210(d) n 2.2 184.8(6)
L0 2 T. |6.163(7) 0.1776(4) ; 55 177.6(2)
L0 2 o 5.94(2)  0.194(2) ; 21  171.1(7)
IO 3 re | 748(2) 0.193(4) » 1.2 2155(7)
LO 3 T. | 7.250(8) 0.1683(4) ; 41 208.9(2)
L o | 6973) 0.184(2) _ 1.5  200.9(8)

NLO 2 re | 6503) 027(2) -0.047(16) 0.87 187(1)

NLO 2 T. |6.44(3) 0231(5) -0.020(2) 044 185.6(8)

NLO 2 o 6.09(6) 0.23(1)  -0.016(5) 040 175(2)

NLO 3 re | 7.54(4) 023(2) -0.031(16) 069 217(1)

NLO 3 T. |753(3) 0213(5) -0.016(2) 087 216.8(9)

NLO 3 o 712(7)  0.21(1)  -0.012(5) 042  205(2)

Table 3.7: Fit results for the SU(3) Wilson data using both LO and NLO and both
2- and 3-loop perturbation theory. All the A values are in MeV.

agreement is at the sub-percent level.

O(a) -loop | Quantity I AL X Y d¥ x?%/dof
IO 2 re | 2256(5) 0.0563(4) 5 5 54
L0 2 T, |2355(7) 0.1704(9) - ; 5.1
L0 2 o | 22201) 0.163(3) - ] 0.63
LO 2 | K—K* |216(3)  0.073(4) ] ] 0.98
IO 3 ro | 490(80)  0.040(2) - 05(2) 0.6
L0 3 T. |290(20) 0.158(4) ] 0.10(4) 0.5
L0 3 o | 350(140) 0.13(2) ] 0.3(3) 0.4
LO 3 | K—K* |2(2)x10% 0.006(6) ; 4(5)x10%  0.69

NLO 2 ro | 238(2)  0.083(3) -0.0089(12) . 0.44

NLO 2 T, |241(2)  0193(7) -0.007(2) - 0.97

NLO 2 o |231(n)  0213)  -0.021) ; 0.39

NLO 2 | K—K* |30050) 035(11) -0.4(2) . 0.59

NLO 3 7o | 260(70) 0.08(2)  -0.008(4)  0.05%0.14 0.47

NLO 3 o |11030) 0.4(1)  -006(2)  -0.27(6) 0.3

NLO 3 | K—K* |160(50) 050(9) -057(11)  -0.28(3)  0.67

Table 3.8: Fit results for the SU(3) Iwasaki data using both LO and NLO and
both 2- and 3-loop perturbation theory. No NLO fit for the T, data is possible due
to the small number of data points available. All the A values are in MeV.
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O(a) -loop | Quantity AL X Y d  x2/dof
LO 2 To 1352(8) 0.0550(3) - - 2
LO 2 T, |1804(7)  0.4995(7) - ; 141
L0 3 ro | 1500(200) 0.053(2) T 0.02(2) 3

NLO 2 ro | 142060) 0.07(1)  -0.008(7) - 2.9

Table 3.9: Fit results for the SU(3) DBW2 data using both LO and NLO and
both 2- and 3-loop perturbation theory. Due to the small number of data points
available in this case, no LO 3-loop fit for T, was possible, and the only NLO fit
possible is the 2-loop rq case. All the A values are in MeV.

Action  Ayz/AL Ref.

Wilson 28.81 [40]
Iwasaki 28.81/59.05 [40],[41]
DBW2 1/45.4 [42]

Table 3.10: Conversion factors for the A values between the MS and lattice
schemes in SU(3) case.

3.5 Renormalized Coupling Fits

As already mentioned, performing the fit to Lattice-Distorted PT with a renormal-
ized coupling constant instead of gy, means fitting the data to the fitting function
in eq.(3.7) with g replacing go. -

The point of using a renormalized coupling is to enhance the convergence of the
go series, i.e. to re-sum the higher order terms by using a Monte Carlo quantity
whose perturbative expansion is known and can therefore be used to define a
renormalized coupling. For example, the coupling constant in the so called energy

scheme [43], g, is defined as

1 1 Co
gg=—(1- 1 Uptaq) = 95 + agé

C3 6
+ —q, + ... 3.20
1 cl 90 ) ( )
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g(-PT fit (o data)

(o] Monte Carlo datafrom a
1] Monte Carlo datafrom T

6 X  Monte Carlo datafrom r.

solid lines are NLO LD-PT fits
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Figure 3.1: Plot of the SU(3) Monte Carlo data a-1 obtained from observables
with the Wilson action together with the NLO 3-loop fits (using the parameters

in Table 3.7).

using the weak expansion of the average plaquette [46, 47]j, [25],

(1 —-jyTrUplag) = C\gl + c2°q + c30 + o=

where
N2- 1 iv2- 1 1
a= 8N Q= — (°°2043- 327)
N(N2- 1)/rt__ _or, 0.01812 0.01852
= 8 (0.006354 - +

Many other possibilities for renormalized schemes have been used, i.e.

(3.21)

<3-22>

gE2 |38],

g-MS [44], gVI and gyn [24]. The idea of the ge2 scheme, for example, is to introduce

a coupling by inverting the relation

(I —~jyTrUpiag) = c\gE2 + C2gE2i

(3.23)
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Figure 3.2: Plot of adata/afit versus aPT for all SU(3) data in the Wilson case,
where a/}T = hi/fprido), using the NLO 3-loop fit.

corresponding to truncating the weak expansion (3.21) after the second term. For

the M'S coupling we have:

A« VTrHW  + ° 025 (3124)

The definitions of gvi and gyu are related to the strength of the static quark-
antiquark potential. If eti(q) is the coupling strength of a gluon with momentum

q, where i = VI,V//, its relation with the bare lattice coupling a L6 is given by:

Vi{n/a) = — » — (1 + 0.5136 v j), 3-25
aVi{n/a) - TrUpiaq)( i) ( )

and

1 47
-ln(1- —TrUpiag) = —ra VII(3A1/a)(l - 1.19aVII). (3-26)

¢Note that a = g2/4n.
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X Monte Carlo data from r()

Monte Carlo data from o

2.5 Monte Carlo data from T

(>N}

A7 Monte Carlo data from ak, k
g)-Fr fit (T. data)

solid lines are NLO LD-PT fits

2.2 2.4 2.6 2.8

P

Figure 3.3: Plot of the SU(3) Monte Carlo data o 1 obtained from observables
with the Iwasaki action together with the NLO 2-loop fits (using the parameters

in Table 3.8).
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Figure 3.4: Plot of dfata/ Qjit versus apr for all SU(3) data in the Iwasaki case,
where aI' = AL/fpriSo), using the NLO 2-loop fit.
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We included these schemes in our analysis, but it will be clear in the following why
the gr scheme became our favourite choice. Note that the plaquette values used
here for SU(3) are from [45].

Before going on to describe our analysis, we should specify that the lattice
coupling scheme is expected to have large higher order perturbative corrections,
as we can see from the large ratio between Ay, and Azzz (Table 3.10). This implies
that the coefficient r; in the relation between the two couplings, eq.(3.16), must be
also large, as one can easily see from eq.(3.17). So if g2 is a ’good’ scheme with
modest higher order terms in the S-function, this will not probably be the case
for the lattice coupling g2. Since we only know the lattice A-function to 3-loops at
most, it would be wise then to seek a lattice coupling scheme where there is less
reason to expect large higher order corrections.

Figures 3.5, 3.6 and 3.7 show the x?/dof obtained in our different fits for the r,
T, and o Wilson data respectively, using 3-loop perturbation theory. Note that gg
is the only renormalized coupling considered known to 3-loops, so the fits in the
other renormalized schemes have always one extra fit parameter compared to the
ge and the go schemes. In these figures, the expansion in go and in a renormalized
scheme with no O(a) terms, are labelled simply go and gg respectively. Clearly
the x2/dof values for the gy scheme with no O(a) terms are extremely poor, as
expected. Furthermore, while the renormalized schemes considered improve upon
this situation, they still have unacceptably large x?/dof. Thus to obtain reasonable
x2/dof values, one needs to include O(a) terms.

The go scheme at LO and NLO of LDPT, give x?/dof ~ 1, with the exception
of the T, fits, as shown in figure 3.6. In this case, the errors in the Monte Carlo

data are so small (see Table 3.6), that NLO fits are required to obtain sensible fits.
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Comparing gg and go fits at LO and NLO with the same number of fit pa-
rameters’, we conclude that the LDPT g, fits are at least as good as the gy fits
augmented by O(a) terms.

We introduce some criteria which the fits should satisfy in order that a renor-
malized scheme successfully reproduces the data (we initially restrict attention to
renormalized coupling fits without any O(a) terms). These criteria are:

(i) The 3-loop coefficient, d%, should be smaller than the df value in the gy
scheme for all quantities fitted, i.e. d¥ < 0.20. This is an important feature since
the main idea of the renormalized schemes is that perturbation expansions are
better convergent than in the gy scheme.

As we can see in Table 3.11, this constraint leaves only two renormalized
schemes, the gg and gvr.

(ii) The Ay value should be in a sensible range:
200MeV < Agg < 250MeV.

(iii) Since the 3-loop coefficient, dZ, is scheme dependent, but not quantity
dependent, we check that dZ is consistent for fits to the r., T, and o data.

Both these two criteria are satisfied only from the gg scheme.®

(iv) Finally we demand that a sensible fit should have a x2/dof value less than
10.

This leaves no renormalized coupling scheme (at zeroth order in O(a)) which

satisfies the above four criteria. The clear implication of this is that the addition

7As commented above, the 3-loop coefficient is unknown for all the ggr schemes but the gg
one, so comparing fits with the same number of parameters means, for example, looking at g at
NLO and gvr at LO.

8In fact, for the gg scheme, the d¥ value is known [25]. For N = 3, df = 2—},5(11% - bFby) =
0.01163.
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of O(a) terms is crucial for there to be agreement between the fitting functions

and the data.

Quantity A d x2/dof Azs
go-PT
v 5512(9) 0.896 370 150
T,  4.801(1) 0.1896 30000 141
o 5007(8) 0.1896 900 144
gE—PT .
17.65(3) 0.01163 29 245

Te

T,  16.691(4) 0.01163 632 232

o 1574(3) 001163 68 218
ge2-PT

Te 12.9(5) 0.357(48) 4.7 372

T, 11.2(1) 0.207(9) 142 323

o 18(1) 1.01(13) 34 519
9ir5-PT

. 136(5)  0.686(52) 7.7 136

T.  370(12) 3.0(1) 18 370

o 1200(450) 12(5) 3.6 1200
gvi-PT

r.  206(7)  0.60(d) 74 129

T.  438(10) 1.93(6) 17 274

o 845(156) 4.6(9) 3.3 528
gvir-PT

r.  141(3) _ 0.10(1) 36 &8

T,  1220(5) 0.021(2) 183 76

o 143(3)  0.15(1) 53 89

Table 3.11: Results from the zeroth order in O(a) fits for the SU(3) Wilson data,
using 3-loop PT with different renormalized coupling constants. Note that for the
go and gg schemes, the d¥ coefficients are known, whereas they are fit parameters
in the other schemes. All the lambda values are in MeV.

As we can see from Table 3.12, the quality of the fit improves drastically go-
ing from the gg-PT without O(a™) to the one with Lattice-Distorted PT terms.

Also, a comparison between values from Table 3.12 and Table 3.7 in section 3.4.1
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is further support for the validity of the Lattice-Distorted Perturbation Theory
approach: the lattice artefacts provide the mismatch between Monte Carlo data
and asymptotic scaling, without resorting to the use of a renormalized coupling.

To convert the lambda in the gg scheme’s Ag to Azrg, we use

AMS AMS AL
Ans _ Aums AL 3.97
Az A, Ag (3.27)

with the formula for the ratio Az;5/AL given in eq.(3.18) [40] and with

AL C2
e - 3.28

from eqgs.(3.17) and (3.20). The Ay;z values obtained are listed in last column of

Table 3.12.

As can be seen, the spread in the Azzz values obtained from different physical
quantities, is greatest for the zero-th order fits: as we turn on the O(a) terms,
A375 becomes more stable.

We take our best estimate of Az using the 3-loop NLO fits. We assign an
error of 10% to this estimate to allow for uncertainties in the physical estimate of

re, 1. and o, as we did in the gy case. From the gz fits we therefore have:

Ny=0
M_fs =255+26 MeV. (3.29)
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Figure 3.5: Plot of the x /j dof obtained in the SU(3) rc data fits (Table 3.3) in
different schemes, using 3-loop PT and up to NLO Lattice Distorted PT. The lines
connecting the data points are guides for the eye.
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Figure 3.6: Plot of the x2/dof obtained in the SU(3) 7Tc data fits (Table 3.3) in
different schemes, using 3-loop PT and up to NLO Lattice Distorted PT. The lines
connecting the data points are guides for the eye.
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Figure 3.7: Plot of the | 2/d°f obtained in the SU(3) a data fits (Table 3.3) in
different schemes, using 3-loop PT and up to NLO Lattice Distorted PT. The lines
connecting the data points are guides for the eye.

3.6 SU(N)

This section reports results of a first application of the Lattice-Distorted PT
method to SU(N) data, when the number of colours N is different from 3. Our
sources of data are [31j, [48), [49], [50], [S51] and [52| and their values are reproduced
in Table 3.13 for the SU(2) case, and Table 3.14 for other SU(N) cases. All data
is for the Wilson gauge action.

Looking at those tables of data, we can easily notice the short range of beta
values, even for those sets with several data points. We will see how such a short
range in a will constrain our fits and results. In the SU(2) case, there is more
data available in [31] and |48| at smaller /3 values, but it corresponds to an inverse
lattice spacing a~x < 0.9 GeV. In order to be compatible with our SU(3) fits, we

do not include this data in our fits. All the other SU(N) data have a-1 > 0.9 GeV.
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O(a) -loop | Quantity Ag X Y x%/dof  Azs
zero | 2 . | 17.4203) 31 241.8(4)
Zero 2 T, 16.435(4) 695  228.12(5)
Zero 2 o 15.51(2) 70  215.3(3)
Zero 3 Te 17.65(3) 29  245.0(4)
Zero 3 T, 16.693(4) 633  231.68(5)
Zero 3 o 15.75(3) 67  218.5(3)
LO 2 re | 18.08(5) 0.050(3) 059  250.9(7)
LO 2 T. |17.032) 0.0124(3) 266  236.3(2)
LO 2 o |1651(6) 0.033(2) 15 229.1(8)
LO 3 re [ 18.30(5) 0.049(3) 06 254.0(8)
LO 3 T, |17.26(2) 0.0117(3) 259  239.5(2)
LO 3 16.73(6)  0.032(2) 15 232.2(8)
NLO 2 r. | 18.05(8) 0.04(2) 0.005(12) 0.7  251(1)
NLO 2 T, |18.35(6) 0.096(3) -0.0199(8) 21  254.7(8)
NLO 2 o |17.3(1) 0097(7) -0.018(2) 039 241(2)
NLO 3 . | 18.26(8) 0.04(2)  0.007(12) 0.7  253(1)
NLO 3 T. |1858(6) 0.094(3) -0.0196(8) 2.3  257.9(8)
NLO 3 o | 176(1) 0.096(7) -018(2)  0.39 244(2)

Table 3.12: Fits results for the SU(3) Wilson data using the gg scheme at both 2-
and 3-loops in perturbation theory. The zeroth order fits in O(a) expansion are
included as well as LO and NLO ones. All the A values are in MeV.

,3 ﬂc a\/E Nt
Ref [48) 31  [48]
2.29086 0.3667(18)
2.2986(6) 4
2.37136(54) 5
2.3715 0.2879(13)
2.3726 0.2879(10)
2.4265 0.2388(9)
2.4271(17) 6
2.5090(6) 8
2.5115 0.1768(8)

Table 3.13: SU(2) data used to set the scale a.
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B Be av/G N, Ref.
10.550 0.3739(15) [31]
10.637 0.3254(6) 31]

10.63727(53) 5 [49]

10.65 0.3225(11) [51]

10.68 0.3083(13) . [51]

10.700 0.2977(13) 31]

10.75 0.2834(11) [51]
10.789 0.2706(8) [31]

SU(4) 10.7898(16) 6  [49]
10.83 0.2566(10) [51]
10.870 0.2467(11) [31]

10.95 0.2285(7) [51]

11.05 0.2077(7) [51]
11.085 0.19868(83) 31]
11.0880(22) 8  [49]

11.20 0.1819 (6) [51]

11.400 0.15277(72) 31]

11.50 0.1417(7) 51
16.755 0.3844(21) 50

SU(5) 16.975 0.3034(20) [50]
17.27 0.2452(15) [50]

17.45 0.2221(17) 50
24.350 0.3886(18) 31
24.500 0.3416(18) [31]
24.5139(24) 5 [49]

24.515 0.3385(15) [31]

SU(6) 24.670 0.3075(14) [31]
24.845 0.2798(11) [52]
24.8467(30) 6  [49]

25.050 0.2520(5) [52]
25.452 0.2097(7) [52]
25.4782(64) 8  [49]

4378 0.3758(16) 52]

43.85 0.3614(14) 52]
43.982(14) 5 [49]

44.00 0.3413(13) 52]
SU(8) 44.35 0.3014(13) 52]
44.535(37) 6 [49]

44.85 0.2597(10) 52]
45.654(32) 8 [49]

45.70 0.2086(8) [52]

Table 3.14: SU(4), SU(5), SU(6), SU(8) data used to set the scale a.
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Also, let’s notice the fact that while for SU(3) there is a smooth cross-over between
strong and weak coupling, so one would not really know a priori from which value
of B a weak coupling expansion in g2 and a is appropriate, for SU(N > 5) there is
a first order transition [50] clearly separating the two regimes. This removes the
ambiguity of where one might expect a weak coupling expansion to be applicable,
and enables us to quantify the irﬁportance of O(a?) lattice corrections in the large
N case.

This data are fitted to eq.(3.8), as in SU(3) case, with all the dependence on
N coming from the coefficients of the S-function (egs.(3.2 & 3.3)). Studying this
in detail, we have (at 3-loops and zero-th order in O(a)) from egs.(3.4 & 3.5),

Asalg) = fer(@) =< () ™ (14 o2 - thi)gl)  (530)

by ~ O(N)
b ~ O(N?)
by ~ O(N3).

We can rewrite eq.(3.30) in terms of 3 as follows:

mm~€wwmwm+%) (3:31)

where

ho ~ O(1/N?)
hy ~ O(1) # f(N)
Rl ~ O(N?).

From this behaviour we would expect go-PT to get worse with N, since the higher

loop coefficients grow with N2. However, we note that 3 always occurs in eq.(3.31)
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N

Figure 3.8: Plot of Pstd against the square of the number of colours, 1V2, where
/33d is the P value where the inverse lattice spacing a~/ ~ 2 GeV.

with a factor of 1/TV2. In order to maintain fixed lattice spacing then, we require
P ~ N2 This then means that the go~PT will not necessarily get worse with
N. The relationship P ~ N2 is confirmed by the values for Pstd in Table 3.1.
Recall that Pstd is the P value such that the lattice spacing a~x~ 2 GeV. Plotting
Pstd against N2 in figure 3.8 confirms to a very high precision the relationship
Pstd ~ /V2, in accord with what expected for the t’Hooft coupling9.

We list our results from the fits in Table 3.15 for N = 2, and in Table 3.16
for N —4,5,6,8. Where possible, also the NLO fit in 0(an) was performed, but
sometimes the coefficients and their large errors, made these fits unreliable (see

Table 3.16). To convert the lambda in the g0 scheme’s AL to A *, eq.(3.18) has

9As N varies, we expect [53] that we will need to keep constant the t’Hooft coupling, A, and

its inverse, 7 :
A(a) = g2(a)N; 7=\ n (3.32)

for a smooth large N limit. Therefore ft ~ N 2.
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been used for different N.

In the SU(2) case the best fits were obtained with the NLO (rather than LO)
functions. The values for the LO coefficient, X,,, and A7z are very similar for
both quantities considered.

In the SU(N) case (N>3), the best fits are from LO rather than NLO, since the
coefficient X,,, generally has a very large error in the NLO fits. This somewhat
disappointing fact can be explained by the small range of a~! for these data sets,
as mentioned at the beginning of this section. With such a small lever arm, it
is natural to assume that it is hard to obtain sensible fits at higher order in the
O(a") expansion.

For the best fit results for all N, we notice the remarkable fact that the coeffi-
cient, X, ,, is always ~ 20—25%. Also the Ay;z is very consistently independent of
the quantity being considered: for the 3-loop case Azg ~ 180 — 230 MeV. These
two facts add weight to the argument that the LDPT fits are correctly reproducing
the data.

We graphically depict the quality of the string tension fits in figure 3.9, where
the x2/dof is plotted for all values of N. The x%/dof value for the zero-th order
go fit is shown near the middle of the graph, and to the left of this the LO and
NLO (go) x2/dof values are also shown. As can be seen, increasing the number of
terms in the a expansion decreases the x?/dof value to ~ O(1). Note that SU(5)
is not included in the plot since the small amount of data points available in this

case did not allow a reliable investigation (see also table 3.16).
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0(a)
LO
LO
LO
LO

NLO

NLO

NLO

NLO

-loop Quantity

2

W NN W W N

I

a

e

a

T

G

.

G

AL

8.89(2)
9.16(5)
10.04(2)
10.31(6)
10.05(6)
10.4(1)
11.30(6)
11.6(2)

X

.098(1)
112(3)
.093(1)
.104(3)
269(7)
27(2)

260(7)
26(2)

Y

-.062(3)
-.059(6)
-.061(3)
-.056(6)

X2/ dof  AMs

243
29
225
28
3.9
1.2
3.6

1.1

176.3(4)
182(1)
198.9(5)
204(1)
199(1)
206(3)
224(1)
230(3)
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Table 3.15: Fit results for the SU(2) data in the go scheme, using both LO and
NLO in the O(a) expansion and both 2- and 3-loop perturbation theory. All the
A values are in MeV.
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Figure 3.9: Plot of the x2/dof obtained in the a SU(N) data fits in different
schemes, using 3-loop PT and up to NLO Lattice Distorted PT. The lines connect-

ing the data points are guides for the eye.

3.7 SU(NN) in gE Scheme

Finally, we repeat the gE scheme analysis performed for the SU(3) data in section

3.5 with the N ~ 3 data. Tables 3.17 and 3.18 contain results for the SU(2) and
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O(a) -loop | Quantity | Ag X Y X2/ dof Ayrs
SU(4)
0 2 T, [529(1) 204(1) - 32 1738(d)
L0 2 o |490(1) 2151) - 49  160.8(4)
L0 3 T, |641(2) .18(1) - 40 210.4(5)
LO 3 o |588(2) .204(1) @ - 5.4 193.1(5)
NLO 2 o |466(4) .13(1) 039(7) 24 153(1)
NLO 3 o |588(8) .12(1) .041(7) 2.3 183(2)
SU(5)
L0 2 o [455(5) .242(8) - 12 159(2)
LO 3 o |554(6) .231(5) - 12 193(2)
NLO 2 o [3033) -4l(21) 28(9) 6x10° 104(i1)
NLO 3 o [37(4) -40(20) .26(8) .4x10~% 128(13)
SU(6)
L0 2 T, [465(2) .235(2) - 40  167.8(5)
Lo 2 o |426(2) 2623) - 70 153.7(7)
LO 3 T. [ 5.75(2) .220(2) - 64 207.1(7)
L0 3 o |522(3) .251(3) - 73 188.2(9)
NLO 2 o [37(1) .06() .102) 31  134(3)
NLO 3 o [46(1) .05(5) 09(2) 3.0  164(5)
SU(8)
Lo 2 T, [445(5) 221(d) - 50 166(2)
L0 2 s |397(2) 2393) - 40  147.8(9)
LO 3 T. | 553(6) .215(5) - 54 206(2)
L0 3 o |489(3) .228(3) - 42 182(1)
NLO 2 o [35(1) 07(6) 072 12  131(5)
NLO 3 o |43(2) 06(5) .07(2) 12 162(6)

Table 3.16: Fit results for the SU(N) data in the go scheme, using both LO and
NLO in the O(a) expansion and both 2- and 3-loop perturbation theory. All the

A values are in MeV.
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SU(4), SU(5), SU(6), SU(8) fits, respectively. The plaquette values used are from
[50] for SU(2) and SU(5), from [50] and [51] for SU(4), and from [52] for SU(6)
and SU(8). To convert the lambda in the gg scheme’s Ag to Ay, €gs.(3.18 &
3.28) have been used as in section 3.5.

As in the gy fits (see section 3.6), we concentrate on the LO rather than NLO
fits, except for the SU(2) case where we have more data. For all the fits, the Agz
values are very stable and no considerable dependence on NN is observed.

Again, we graphically depict the quality of the fits in figure 3.9 where the
x2/dof is plotted for all values of N. The x2/dof value for the zero-th order gg
fit is shown near the middle of the graph, and, to the right of this the LO and
NLO (gg) x2/dof values are also shown. As can be seen, increasing the number of
terms in the a expansion decreases the x%/dof value to ~ O(1) for all N (except
for N = 2 LO case). This again shows the necessity of introducing O(a") terms in

order to obtain sensible fits.
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O(a) -loop | Quantity Ag X Y x?/dof Az
Zero 2 T, 19.70(2) 129  226.8(2)
zero 2 o 19.85(4) 16  228.5(4)
zZero 3 T. 19.84(2) 130  228.4(2)
zero 3 o |19.98(4) 16 230.1(4)
L0 . 2 T, | 19.44(4) -.008(0) 167 223.8(5)
L0 2 o |200(1) -.005(3) 21 230(1)
IO 3 T, | 19.56(4) -.008(1) 166 225.2(5)
LO 3 o |201(1) -.004(3) 20  232(1)
NLO 2 T, | 20.88(9) .001(5) -.027(1) 5  240(1)
NLO 2 o |216(2) .10(1) -.027(3) 1.6 248(3)
NLO 3 T, [2L.00(1) .090(5) -027(1) 5  242(1)
NLO 3 o |217(2) 10(1) -026(3) 15 250(3)

Table 3.17: Fits results for the SU(2) data using the gr scheme at both 2- and 3-
loops in perturbation theory. These fits were obtained by including various terms
in the O(a) expansion. All the A values are in MeV.

3.8 Conclusions

In this chapter, the running coupling on the lattice was discussed. We emphasized
how the dependence of the lattice spacing a on the lattice coupling g3(a) needs to
incorporate lattice spacing corrections in addition to the perturbative expression
that one obtains in the continuum. The simple perturbative interpolation will not
fit the Monte Carlo data without these O(a") lattice corrections. This has been
shown fitting quenched data to the expression of the running coupling (3.4) with
and without O(a") terms.

In the SU(3) case, different observables have been considered, as well as differ-
ent gauge actions. We drew similar conclusions in all the cases where enough data
were available. We gave an estimate of the SU(3) Ayzz from the fit of Wilson data

to the fitting function at NLO in the O(a") expansion, using the 3-loop expression
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of the B-function:

Ng=0 _
s = 217£21 MeV.

For the Wilson case, in order to improve the convergence of the series in go, we
also considered the case when the lattice coupling is replaced by different choices
of renormalized coupling, with particﬁlar focus on the gg renormalized scheme.
We observed a reduction of the discrepancy between Monte Carlo data and per-
turbative scaling, but the quality of the fit is feasonably good only after including
O(a") terms.

Finally, we extended our analysis to SU(N) Wilson data for N # 3, performing
again fits for different observables and at different order in the lattice spacing
expansion. From the comparison of the results obtained in the lattice scheme go
and in the gg scheme, we drew similar conclusions to the SU(3) case. Also, the
Ajzs values obtained at different N are consistent and hardly dependent on the
quantity and the N value considered.

The fact that the SU(N) fits match so well with lattice distorted perturbation
theory for all values of N is not surprising given the similarity of the data. This

! obtained from the string tension

can be seen in figure 3.10, where we plot a~
against 32(8/N?) for all N values, i.e. the ratio 3/N? normalized relative to the
SU(3) data (note: the inverse of the t'Hooft coupling is v = 1/¢g?N = B/2N?). As
can be seen the data lie on curves which run parallel to each other at different N
values and the curves represent the LDPT fits at NLO for SU(2) and SU(3) and
LO for other N, i.e. our best fits, as previously motivated.

Another way of picturing the success of this approach is displayed in figure
1-

3.11. Here is the plot of the ratio a;!/apy for all values of N against a%p. a;! is
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defined from the Monte Carlo data for the string tension as before, apr is defined
in eq.(3.4), apr = AL/ fpr(g?), and the 3-loop formula for pr. has been used here.
Clearly, if Monte Carlo data were well described by the 3-loop asymptotic scaling
formula, eq.(3.4), the ratio here plotted would be equal to 1. The deviation from
one is precisely the discrepancy being studied in this work: moreover the plot
shows that this discrepancy agrees well with O(a?), as expected.

In conclusion, all our investigations support the validity of the Lattice-Distorted
Perturbation Theory method. This approach leads to a remarkable consistency
both in the fitted A parameters and in the size of the O(a™) corrections.

The lack of perturbative scaling is probably due to a mixture of the two effects here
considered, the poor convergence of the gy perturbative series and the presence of
cut-off effects due to the finiteness of the lattice spacing. However, we have given
strong arguments to support the claim that the lattice artefacts represent the

dominant effect.
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Figure 3.10: Plot of the SU(N) a-1 from the string tension for all values of N
against the inverse of the t’Hooft coupling (note 7 == j = /3/2N2), normalised
relative to the SU(3) data. The curves represent the LDPT fits at NLO for SU (2)
and SU(3) and LO for other N, i.e. our best fits, as motivated in the text.
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Figure 3.11: Plot of the ratio a~I//apX for all values of N against aPT, where
apl = A1lfpr{go), and the 3-loop expression of fpp has been used. The straight
lines, connecting the point (0,1) with the last data point, represent a guide for the
eye.
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O(a) -loop | Quantity AL X Y x2/dof  Ayz
SU(4)
Zero 2 T 15.755(5) - - 245  233.45(7)
zero 2 g 14.44(1) - - 58 213.9(2)
Z€ero 3 T. 16.139(5) - - 217 239.14(7)
Z€ero 3 o 14.78(1) - - 54 219.0(2)
LO 2 T 16.48(3) .022(1) - 41 244.1(5)
LO 2 o 15.39(4)  .040(1) - 3.5 228.0(5)
LO 3 T. 16.83(4) .021(1) - 40 249.4(5)
LO 3 o 15.71(4)  .039(1) - 34 232.8(6)
NLO 2 ] 15.59(8)  .061(7) -.007(3) 3 231(1)
NLO 3 o 15.91(8) .058(7) -.007(3) 3 236(1)
SU(5)
Z€ro 2 o 13.67(4) - - 26 208.7(7)
Zero 3 g 14.07(4) - - 24 214.9(7)
L0 2 o 147(1)  .038(d) - 18 224(2)
L0 3 o 15.1(1)  .036(4) - 19 23002
NLO 2 o | 138(5) -.03(5) 019(12) 90  211(8)
NLO 3 o | 142(5) -04(5) 020(12) 81 217(3)
SU(6)
zeto 2 T. | 15317(8) - - 127 237.8(0)
zero 2 o | 1352(2) . ; 43 209.9(3)
zero 3 T, | 15.82009) - - 108 245.6(1)
zero 3 o 13.95(2) - ; 30 216.6(3)
L0 2 T. | 15.98(4) .024(2) - 12 248.1(7)
L0 2 o 14.36(6) .042(2) - 79 222.9(9)
IO 3 T, | 1645(5) .022(2) - 11 255.4(7)
L0 3 o | 1478(6) .040(3) - 71 229.5(9)
NLO 2 o [147(2) .07(2) -010(5) .15 228(3)
NLO 3 o |151(2) .07(2) -010(5) .14 235(3)
SU(8)
zero 2 T. [ 15.23(3) - n 4 240.3(5)
Z€ero 2 o 13.09(2) - - 33 206.7(3)
zeto 3 T, | 15.78(4) n n 12 249.0(6)
zeto 3 o |1357(2) : - 29 214.1(3)
LO 2 T. 16.0(1) .023(4) - .02 252(2)
L0 2 o |1394(r) 03202) - 57 220(1)
IO 3 T, | 165Q1)  .0214) - 01 260(2)
L0 3 o |1439(7) .030(2) - 52 227(1)
NLO 2 o |142(2) 06(2) -007(5) 25  224(d)
NLO 3 o |146(2) .05(2) -006(5) .25 231(d)
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Table 3.18: Fits results for the SU(N) data using the g scheme at both 2- and 3-
loops in perturbation theory. These fits were obtained by including various terms
in the O(a) expansion. All the A values are in MeV.



Chapter 4
Nucleons from 2+1 DWF

4.1 Baryons

The baryon spectrum is a good place to test lattice gauge theory, in particular for
those lowest lying states very well determined by experiments. F\urth;armore, LGT
can be a powerful predictive tool for those baryonic states whose experimenta]l
values are not known very accurately.

Baryons are sufficiently complex states to reveal physics hidden in the mesonic
sector, but at the same time they are simple systems of three quarks, obeying
the Pauli exclusion principle and giving the so called baryon octet and decuplet.
Their total state function is anti-symmetric under interchange of any two equal-
mass quarks (up and down quarks in the commonly considered limit of isospin

symmetry). We can then write the baryon state function as
lgqq > a= |colour >4 X|space >s X |spin, flavour >, (4.1)

where the subscripts S and A indicate symmetry or antisymmetry under inter-
change of two equal-mass quarks. The colour part of the baryon state function is
an SU(3) singlet, a completely antisymmetric state of the three colours; the space

part is symmetric when considering lowest lying states at L = 0, and consequently

84
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the product of spin and flavour parts has to be symmetric too. When the total
spin of the baryon is S = J = %, then the spin part is clearly symmetric, and the
flavour one must be symmetric too. There are 10 possible combinations of three
quarks giving such a total state function: they form the baryon decuplet. When
the total spinis S = J = %, then the product of spin and flavour state functions
has to be symmetric, but they are not necessarily separately symmetric (mixed
symmetry): in this case we have the Baryon octet.

The nucleons, proton and neutron, are members of the ground state octet of
spin= % baryons. The calculation of the nucleon mass is a particularly good test for
lattice gauge theory since its value can be compared with the one very accurately
determined by experiments.

In this chapter we present preliminary results of the lowest lying, valence de-
generate states with JX = %i, N and N*, on two different volumes at a single
lattice spacing with 2 + 1 dynamical flavours. The good chiral properties of the
domain wall fermions formulation are used in order to reproduce the large mass
splitting between the nucleon N(939) and its parity partner N(1535). As discussed
previously, domain wall fermions have only mild chiral symmetry breaking, which,
in particular for masses O(1) GeV in the chiral limit, can be approximated by a
constant mass term. This study of nucleon masses is part of the ongoing baryon

physics project by the RBC-UKQCD collaboration.

4.2 Calculation Details

In this work we consider nucleon correlators with different smeared operators in

order to improve statistical accuracy and systematics. The correlators can also
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differ in the interpolating operators used to reproduce the desired baryonic state.
Before giving details of our analysis then, we classify these correlators.

We can essentially divide our data into type A and type B, due to the different
methods used to produce them. The type A correlators were generated in the UK
using both the interpolating operators in eq.(2.102). In this case, only the positive
parity state was produced: this means that both the masses of the positive and
negative parity partners, N and N*, were determined by a fit to the first correlator

in eq.(2.105) which, in our case of anti-periodic boundary conditions, becomes
CH(t) = ApeMVt 4 A_e~Mn(T-1), (4.2)

The type B correlators were generated in the US. The interpolating operators
used to produce them are N; = N in the first line of (2.102) and (dropping
the Dirac indices) N'*(z) = €gc(uT®(z)Cd?(z))ysu(z). As previously mentioned,
this second operator has a poor overlap with the nucleon ground state, so for the
nucleon only the N; actually contributes. For the N* instead, the corresponding

negative-parity interpolating operators of both N; and N’ are considered!:

Ni(z) = 75N1(2) = eanc(u™*(z)Cr5d" () )y5u°(2),

N=(z) = %N (&)= eae(u*(z)Cd®(z))u’(z). (4.4)

The type B data have both the positive- and negative-parity parts. Therefofe,

the mass of both N and N* are determined by a simultaneous fit to both the

INote that for instance
PNy (24, )P = —1aNy (24, —%). (4.3)
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correlators in eq.(2.105) which, for anti-periodic boundary conditions, become

C:-(t) — A+e—MNt+A_6—MNo(T—t)

Ci(t) = —A_eMrvt_ A e Mn(T-h) (4.5)

Note that the subscript ¢ corresponds to the N; operator for the nucleon and to
both N;, N’ for the N*. Note also that according to eq.(2.91), the amplitude A in

eqs.(4.2) and (4.5) will be given for instance by
App = ALAL (4.6)

in the LL correlator case, or

Agr = AgAp (4.7)

in the GL correlator case.

4.3 Simulation Parameters

The analysis was performed on 2+ 1 flavours DWF ensembles generated jointly by
the RBC and UKQCD collaborations. Two lattice volumes were studied, 163 x 32
and 243 x 64. The simulations used the Iwasaki gauge action with 8 = 2.13 and the
domain wall fermion quark action with the fifth dimension fixed to Ly, = 16 and the
~ domain wall height set to Ms = 1.8. The fixed lattice spacing of a~! = 1.62(4) GeV
gives a corresponding spatial volume of (1.9 fm)? and (2.9 fm)3 for the small and
large volume respectively. We first check the possible finite volume effects on the
nucleon and N* states by comparing the results obtained from the two different
volumes. For the sake of reproducing the nucleon states, it is more advantageous
for us to obtain results from the larger volume simulations, as we will show in the

following. At each volume, three sets of configurations were generated with a light
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isodoublet with masses m,q = m,, = 0.01,0.02,0.03, and a fixed approximate
strange quark mass, m, = 0.04. All masses are in dimensionless lattice units. The
ensembles were generated using the RHMC algorithm and its implementations

[19]. More details of the ensembles can be found in [54] and [55].

4.4 Setting the Lattice Scale

The determination of the lattice scale is not part of this work. Therefore in this
section we will only recall the different methods that have been used to set the
lattice scale. The small lattice calculations can be found in [54]. Here is a summary
of the values obtained.

The determination of the lattice scale from the mass of the vector meson p is
one of the methods employed. A partially qﬁenched linear fit to the values of my,

was performed, using the following phenomenological form:
my = A(maea + mres) + B(ml +ma + 2mres) +C, (48)

where m; and m; denote the masses of the two valence quarks that make up the
mesons. Setting m; = my = Myeq = —Myes gives the p mass in the chiral limit,

from which the lattice scale was found to be
a’!|, = 1.61(3) GeV. (4.9)

The lattice scale was also determined from the static quark potential using the
Coulomb gauge method [56]. Taking ro = 0.5 fm, the lattice scale was determined
to be

a Y|, = 1.63(5) GeV. (4.10)
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A preliminary analysis of this calculation was reported in [57] and a more detailed
analysis is the subject of another paper in progress. The third method used for
determining the lattice scale is the “inethod of lattice planes” [33], already briefly
described in section 3.3. Here a chiral interpolation in the valence quark sector
rather than extrapolation is required. Then a linear extrapolation in the sea quark -

mass to the chiral limit, m,., = —m,.,, gave
a-lllatticeplane = 162(5) GeV. (411)

All these methods gave consistent results for the lattice scale. The same approach
as in the small volume simulations was adopted in the large volume case, and
several methods were used to determine the lattice scale. More details will appear
in the outcoming paper [55]: the updated values of the lattice scale from the
different methods are consistent with the results from the small volume analysis.
Therefore the average of the above values was taken as central value, and an

average of their statistical errors as the error. This gives
a™! =1.62(4) GeV . (412)

which will be used whenever a lattice scale is needed through this work, and the
errors will be propagated accordingly by quadrature. In physical units, it implies

a lattice spacing of a = 0.122(4) fm.

4.5 Data and Analysis

This work considers degenerate nucleons, with all three valence quarks having the

same mass. In some cases only unitary data points are available, i.e. only correla-
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tors composed of valence quarks with masses equal to the quark mass in the sea?,
Myal = Mgeq; TOr other correlators several valence masses are available for the same
sea quark, and we have both unitary and partially quenched points. To improve
statistics, correlators were oversampled and averaged into bins whose size depends
on the Monte Carlo time separation between measurements. Multiple sources per
configuration on different time-planes are used in order to increase statistics and
reduce the fluctuations within the gauge configurations. The correlation functions
are averaged over the different source locations before the analysis is performed. As
already mentioned, several different types of smearing are also used to improve the
signal. Note that a baryon correlator composed of just quark propagators with a
(hydrogen-like) wall source and a local sink will be denoted as (HL) WL for brevity,
instead of (HL-HL-HL) WL-WL-WL. When the correlator is Gaussian smeared at
source we will write GL, when both source and sink are Gaussian smeared we will
have a GG correlator. Finally a nucleon composed of only local, unsmeared quark
fields is denoted simply as LL. For all the measurements, anti-periodic boundary
conditions were applied to obtain the quark propagators.

Table 4.1 lists all the data used for both the volumes, specifying the correlator
type, as explained in the previous section, the smearing, the range of measurements
and the number of sources. Note the wider range of type A measurements for the
aMgeq = 0.03 ensemble in the small volume, 162 x 32: it comes from a subsequent
extension of the ensemble performed using an implementation of RHMC algorithm.
The two RHMC versions were compared and studied in detail in [54]. Here we

performed tests to see how the nucleon mass varies when the original ensemble,

2Note that in our case of 2 + 1 flavours, the dynamical quark can also have the mass of the
strange quark, so that unitary points include the m,q; = 0.04 case.
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500 — 4020, or the extended one, 500 — 7600, were considered. In Table 4.2, the
masses from a simultaneous fit to the correlator LL, GL, GG are shown for the
different cases: the original ensemble is indicated as RHM(C'1, while the extended
one as RHMC1+ RHMC?2. We concluded that the data generated from the two
algorithms can be combined and considered as a unique set of data. However, for
our purpose of performing simultaneous fits to all the available correlators, we will
consider the range of measurements common to the WL correlator, i.e the original

ensemble RHMC1.

Msea type \% Myal N, traj A Npmeas Nere smearing
0.01 A 16% x 32 0.01 0.04 500-4015 10 352 4 LL GL GG

B 163 x 32 0.01 0.02 0.03 0.04 500-4015 5 704 2 WL
0.02 A 168 x 32 0.02 0.04 500-4045 10 355 4 LL GL GG

B 163 x 32 0.01 0.02 0.03 0.04 500-4045 5 710 2 WL
0.03 A 163 x 32 0.03 0.04 500-7600 10 710 2 LL GL GG

B 163 x 32 0.01 0.02 0.03 0.04 500-4015 5 704 2 WL
0.01 A 243 x 64 0.01 0.04 800-4060 10 327 2 LL GL GG

B 243 x 64 0.005 0.01 0.02 0.03 0.04 1500-3860 40 60 2 BL

B 243 x 64 0.01 1500-3860 40 60 4 GL GG
0.02 A 243 x 64 0.02 0.04 1600-3610 20 101 2 LL HL

B 243 x 64 0.005 0.01 0.02 0.03 0.04 1520-3600 40 53 2 BL

B 243 x 64 0.02 1800-3600 40 46 4 GL GG
0.03 A 243 x 64 0.03 0.04 1000-3060 20 104 2 LL HL

B 243 x 64 0.005 0.01 0.02 0.03 0.04 900-3060 40 55 2 BL

B 243 x 64 0.03 1020-3060 40 52 4 GL GG

Table 4.1: Measurement parameters for all the correlation functions used for the
three ensembles in each of the lattice volumes. V is the space-time volume of the
lattice, Niq; is the lowest to highest trajectory analysed with A the separation
between measurements in molecular dynamics time unit. Ny, is the number of
different sources used for each set of measurements.

As we will see from the effective masses plots in next sections, different source

operators have different degrees of overlap with excited states, and hence the mini-



CHAPTER 4. NUCLEONS FROM 2+1 DWF 92

Data Nieas My bin size
RHMC1 70 .910(9) 10
RHMC1+RHMC2 70  .907(7) 20
RHMC1+RHMC2 140 .907(6) 10

Table 4.2: Nucleon masses for the m,., = myq = 0.03 small volume case, obtained
by a simultaneous fit to the LL, GL and GG data. Shown are the values obtained
by considering the original set of measurements, 500 —4020, indicated as RHMC1,
and the extended one, 500 — 7600, indicated as RHMC1 + RHMC?2, where the
second part is obtained using an implementation of the original algorithm. The
second and third rows differ in the bin size.

mum time slice that should be included in each fit may differ. In order to determine
a proper fit range, [tmin, tmaz), for the nucleon and its parity partner N*, we first
look at the effective masses, eq.(2.106), and choose the minimum time slice in the
fit range to be the onset of the plateau. Once a first choice of the fit range is set,
the more rigorous test to determine the best fit range is to check how the mass ob-
tained from the fit and the resulting x?/dof vary with the fit range. Since the fits
are less sensitive to the maximum time slice used, we fixed the upper bound, ¢,,,2,
and investigated the variations with respect the lower bound, ¢,,;,. Normally, we
repeated the fits moving ¢, a time slice closer to the origin (i.e. [8,11] — [7,11]),
then one farther (i.e. [8,11] — [9,11]). In this way, we checked that shifting the fit
ranges in either direction by one time slice does not change either mass or x?/dof
significantly. However, our final choice of time ranges is the one which minimizes
the uncorrelated x2?/dof, where the x? is simply weighted by the statistical errors
on the data points.

Since the x? from the uncorrelated fits cannot serve as the measure of goodness
of the fits, as a check, we also performed correlated fits to each individual correlator

separately to obtain a fit range which gives a reasonable x?/dof, based on the
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criteria explained above. We checked that for a single correlator the correlated
and uncorrelated fits give consistent results. However, due to the small number
of configurations, in order to better estimate the parameters, we have to fit to
multiple correlators (see section 4.9.1). For such simultaneous fits, typically to
ten or twelve correlators, the number of data to fit and the number of parameters
in the fit increase, so that the relation Nporams << Naata << N¢ggs cannot be
satisfied. Note Ngu, gives the dimension of the covariance matrix and our typical
number of measurements, N,yq,, is not large enough to resolve a covariance matrix

of this size. Therefore, all the simultaneous fits we performed were uncorrelated.

4.6 243 x 64: fits

Tables 4.3, 4.4 and 4.5 show the nucleon masses obtained from fits to each corre-
lation function available in the large volume case for the m,, = 0.01, 0.02, 0.03
ensembles respectively. The symmetric error quoted is the jackknife error (section
2.13.1). The fit range, chosen as explained in the previous section, is quoted for
each fit, as well as the corresponding uncorrelated x2/dof. In the third column
the correlator type is specified: g5 and g45 correspond to the I' = y5 and I’ = 7475
interpolating operators respectiveily, while the + and — indicate the positive- and
negative-parity part of the corresponding correlator. Since the spatial extent of
the source in the wall smeared operators is 162, so that it covers only a portion of
the spatial volume of the larger lattice, it is more appropriate now referring to the
correlator as ’'box-local’, BL, instead of wall-local. Note also that we called GL2
and GG2 the type B correlators because they have a different smearing radius

compared to the type A correlators, which are called simply GL and GG.
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Figures 4.1, 4.2 and 4.3 show the effective masses obtained for each ensemble for
the unitary points m,, = m!i9"*. Note that the larger variety of data is available
when the valence is equal to the light dynamical quarks, i.e. m,q = 0.01,0.02,0.03
for the three ensembles respectively: this is why in the following our analysis will
focus on these sets of data. Note that the negative-parity part of the type B
correlators were omitted in the plots for clarity.

In the same way we present the masses obtained for N* for the three different
ensembles in Tables 4.6, 4.7 and 4.8, and the effective mass plots corresponding
to Myq = ml¥M are shown in figures 4.4, 4.5 and 4.6. The correlator indicated
as BL' in the tables and plots corresponds to the interpolating operator N'~ in
eq.(4.4). It is clear that the mass of the negative parity partner of the nucleon
can be less well determined due to the poor signal. In particular for the type A
correlators, where only the contribution from the backward mover of the positive
parity correlator can be considered, the signal is sometimes very poor and only a
very tiny fit range can be considered.

In general, the effective masses from LL correlators typically have later ap-
proaches to plateaus and, in particular in the N* case, sometimes it is not even
possible to set an onset, so we are left with fewer time slices to perform the fits.
However, clear improvement is found going from the LL to the GG correlators
for instance. The symbol x in the right-mosi: column in Tables 4.6, 4.7 and 4.8

indicates the data which will not be included in the simultaneous fits, as explained

in more detail in section 4.9.1.
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Mgea Mya  correlator fit range My x?/dof
0.01 0.006 BL+ 6-11 0.679(17)  0.09
0.01 0.006 BL- 53-58  0.684(16)  0.04
0.01 0.01 LL-gb 10-15 0.729(24) 0.03
0.01 0.01 LL-g45 10-15  0.731(30) 0.04
0.01 0.01 GL-gb 8-14 0.721(10)  0.03
0.01 0.01 GL-g45 8-14 0.729(15)  0.03
0.01 0.01 GG-gb 6-14 0.717(8) 0.08
0.01 0.01 GG-g45 5-13 0.727(10)  0.07
0.01 0.01 BL+ 6-11 0.722(12) 0.12
0.01 0.01 BL- 53-58  0.718(10)  0.03
0.01 0.01 GL2+ 5-12 0.726(10)  0.02
0.01 0.01 GL2- 52-59.  0.717(10)  0.09
0.01 0.01 GG2+ 4-14 0.720(10) 0.26
0.01 0.01 GG2- 50-60 0.721(13) 0.14
0.01 0.02 BL+ 7-10 0.796(8) 0.03
0.01 0.02 BL- 54-57 0.790(9)  0.005
0.01 0.03 BL+ 7-10 0.859(6) 0.03
0.01 0.03 BL- 54-57 0.854(9)  0.009
0.01 0.04 LL-gb 10-14 0.939(9) 0.04
0.01 0.04 LL-g45 10-14 0.935(9) 0.03
0.01 0.04 GL-gb 7-13 0.934(5) 0.03
0.01 0.04 GL-g45 7-13 0.936(6) 0.02
0.01 0.04 GG-gb 6-13 0.931(5) 0.03
0.01 0.04 GG-g45 6-13 0.937(5) 0.04
0.01 0.04 BL+ 8-13 0.933(6) 0.05
0.01 0.04 BL- 51-56 0.910(8) 0.07

95

Table 4.3: Fit results for the nucleon mass from all the correlators in the 0.01

ensemble, 243 x 64 lattice. All the masses are in lattice units.
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Msea Mya correlator fit range My x2/dof
0.02 0.0056 BL+ 6-12 0.702(23) 0.03
0.02 0.005 BL- 52-58  0.712(26)  0.01
0.02 0.01 BL+ 6-12 0.745(15) 0.06
0.02 001 BL- . 52-58  0.745(15)  0.04
0.02 0.02 LL-gb 8-11 0.828(18)  0.002
0.02 002 LL-g45 8-11 0.820(20) 0.008
0.02 0.02 HL-gb 6-12 0.814(7) 0.02
0.02 0.02 HL-g45 612  0.798(7)  0.01
0.02 002 BL+ 512 0.816(8) 0.11
0.02 0.02 BL- 52-59 0.813(8) 0.03
002 002 GL2+ 512 0.802(6)  0.02
0.02 0.02 GL2- 52-59 0.806(9) 0.11
0.02 002 GG2+ 512 0.788(9)  0.05
0.02 002 GG2- 52-50  0.802(12)  0.15
0.02 0.03 BL+ 6-12 0.883(8) 0.05
0.02 0.03 BL- 52-58 0.876(8) 0.02
0.02 0.04 LLgb 911 0.956(15) 0.006
0.02 0.04 LLgd5 911  0.951(17)  0.02
0.02 0.04 HL-gb 7-12 0.940(6) 0.01
0.02 004 HL-gd5 812  0.932(8) 0.008
0.02 004 BLf 6-12  0.942(7)  0.03
0.02 004 BL 52-58  0.937(7)  0.01

96

Table 4.4: Fit results for the nucleon mass from all the correlators in the 0.02

ensemble, 243 x 64 lattice. All the masses are in lattice units.
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Msea Mya  correlator fit range My x2/dof
0.03 0.005 BL+ 5-10 0.720(16)  0.19
0.03 0.005 BL- 54-59  0.733(19) 0.11
0.03 0.01 BL+ 5-10 0.755(10)  0.14
0.03 0.01 BL- 54-59  0.768(12)  0.05
0.03 0.02 BL+ 8-14 0.815(15)  0.08
0.03 0.02 BL- 50-56  0.839(17)  0.03
0.03 0.03 LL-gb 9-17 0.882(11)  0.03
0.03 0.03 LL-g45 9-17 0.884(13)  0.06
0.03 0.03 HL-g5 6-15 0.886(6) 0.17
0.03 0.03 HL-g45 6-14 0.887(7) 0.04
0.03 0.03 BL+ 5-14 0.884(7) 0.03
0.03 0.03 BL- 50-57 0.906(8) 0.05
0.03 0.03 GL2+ 6-13 0.907(9) 0.04
0.03 0.03 GL2- 51-58 0.903(11) 0.02
0.03 0.03 GG2+ 6-14 0.890(10) 0.28
0.03 0.03 GG2- 50-58  0.894(17)  0.07
0.03 0.04 LL-gb 10-17 0.940(11) 0.05
0.03 0.04 LL-g45 10-17  0.946(12) 0.02
0.03 0.04 HL-gb 7-15 0.950(6) 0.06
0.03 0.04 HL-g45 7-14 0.952(7) 0.04
0.03 0.04 BL+ 5-11 0.944(6) 0.02
0.03 0.04 BL- 53-59 0.966(7) 0.11

97

Table 4.5: Fit results for the nucleon mass from all the correlators in the 0.03

ensemble, 243 x 64 lattice. All the masses are in lattice units.
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Figure 4.1: Effective masses for the nucleon obtained from the fits to the m sea =
mvai = 0.01 correlators, in the 243 x 64 volume case. Note that the full symbols
for the LL, GL and GG correlators correspond to the 75 interpolating operator,
while the empty symbols correspond to 7475.
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Figure 4.2: Effective masses for the nucleon obtained from the fits to the m 3en =
mval = 0.02 correlators, in the 243 x 64 volume case. Note that the full symbols
for the LL and HL correlators correspond to the 75 interpolating operator, while
the empty symbols correspond to 747s.
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1.05

Figure 4.3: Effective masses obtained for the nucleon from the fits to the msea =
n’vai = 0-03 correlators, in the 243 x 64 volume case. Note that the full symbols
for the LL and HL correlators correspond to the 75 interpolating operator, while
the empty symbols correspond to 747s.

4.7 163 x 32: fits

The same kind of analysis was performed for the small volume ensembles in order
to be able to estimate finite volume effects, as explained in more detail in section
4.8.

Tables 4.9, 4.10 and 4.11 show the nucleon masses obtained from fits to each cor-
relation function available in the small volume case, for the msea = 0.01, 0.02, 0.03
ensembles respectively. The symmetric error quoted is the jackknife error. The
tables have the same structure as explained in section 4.6.

Figures 4.7, 4.8 and 4.9 show the effective masses plots obtained for each en-
semble for mvai =

In the same way we present the masses obtained for N* for the three different

ensembles in Tables 4.12, 4.13 and 4.14, and the corresponding effective masses in
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Msea Mwa  correlator fit range My x%/dof
0.01L 0.005 BL- 47  0927(62) 023
0.01 0.005 BL+ 5760  0.935(66)  0.12
0.01 0.006 BL 3-7 1.108(71) 0.11
0.0 001 LLgb 5557  1.033(95) 0.06 x
0.01 001 LL-gd5 56-57  1.086(106) - X
0.01 0.01 GL-gb 55-58 0.978(41) 0.36
0.01 001 GLgd5 5557 1.080(160) 0.002
001 001 GG-g5 56-60  1.043(27)  0.03
001 001 GG-g45  57-60 1.114(41)  0.04
001 001 BL- 47 0985(37)  0.16
0.01 0.01 BL+ 57-60 0.975(41) 0.11
001 001 BL 37  1.033(33) 0.01
001 001 GL2- 47  1.028(33)  0.06
0.01 0.01 GL2+ 57-60 1.099(84) 0.01
0.01 0.01 GG2- 6-8 0.974(106) 0.01
001 001 GG2+ -  56-58 0.977(177) 0.9
0.01 002 BL 47  1.061(23) 0.06
0.01 002 BL+ 57-60  1.048(24)  0.06
0.01 0.02 BL 4-7 1.046(23) 0.005
0.0 003 BL 47 1.124(17) 0.04
0.01 0.03 BL+ 57-60 1.111(18) 0.05
0.01 003 BL 48  1.101(18) 0.03
0.01 0.04 LL-gb 54-56 1.232(40) 0.006 x
001 004 LL-gd5 54-56  1.221(48)  0.005 x
001 004 GL-g5 53-56  1.181(34)  0.15
0.0l 004 GL-gd5 54-56  1.158(36)  0.001
0.01 0.04 GG-gb 54-57 1.167(27) 0.07
0.01 0.04 GG-g45 54-56 1.175(54) 0.06
001 004 BL- 47 1181(15)  0.02
0.01 0.04 BL+ 57-60 1.168(14) 0.05
001 004 BL 48  1.156(15)  0.08

Table 4.6: Fit results for the N* mass from all the correlators in the 0.01 ensemble,
243 x 64 lattice. All the masses are in lattice units.

figures 4.10, 4.11 and 4.12. Again, the correlator indicated as W L' in tables and

plots corresponds to the interpolating operator N'~ in eq.(4.4), which contributes
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Mgsea Mya correlator fit range My x%/dof

0.02 0.005 BL- 37  1.220(54) L5
0.02 0.005 BL+ 57-61  1.072(55)  0.13
0.02 0.005 BL' 37 1.211(115) 0.18
0.02 001 BL 35  1.131(2d) 0.03
0.02 001 BL+ 59-61  1.116(28)  0.05
0.02 001 BL 37  1130(55) 0.03
0.02 002 LLg5 54-58  1.226(71) 0.05 X
0.02 002 LL-g45 56-58  1.456(82) 0.07 X
0.02 002 HL-g5 55-59  1.004(32)  0.25
0.02 002 HL-gd5 56-59  1.137(41)  0.006
0.02 002 BL- 37  1.144(19) 0.8
0.02 002 BL+ 57-61  1.158(23)  0.08
002 002 BL 37 1.132(29) 0.01
0.02 002 GL2- 48  1.128(31)  0.20
002 002 GL2+ 56-60  1.144(32)  0.16
0.02 002 GG2- 48  1.077(44) 0.5
0.02 002 GG2+ 56-60  1.156(64)  1.22
0.02 003 BL 48  1.174(22) 0.12
0.02 003 BL+ 56-60  1.196(28)  0.008
0.02 003 BL 37 1.168(22) 0.008
002 004 LLgs 54-56  1.353(102) 0.01  x
0.02 004 LL-g45 54-56  1.371(122) 0.05 x
002 004 HL-g5 54-56  1.218(62) 0.006
0.02 004 HL-g45 54-56  1.237(73)  0.11
0.02 004 BL 48 1.220(18)  0.18
0.02 0.04 BL+ 56-60  1.242(22)  0.003
002 004 BL 37  1.211(18)  0.003

Table 4.7: Fit results for the N* mass from all the correlators in the 0.02 ensemble,
243 x 64 lattice. All the masses are in lattice units.

to N*. There is no clear signal for the N* from the WL data in the m,,, = 0.01
case, so only the WL’ data are considered. We already commented in the previous
section on the difficulties in the determination of the mass of the negative parity

partner of the nucleon. Note also that the small volume suffers from the fact
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Mgsea Myq  correlator fit range My x2/dof
0.03 0.006 BL- 3-6 1.233(82) 0.44

0.03 0.006 BL+ 58-61  1.274(105) 0.43

0.03 0.0056 BL' 3-7 1.678(277) 14 X
0.03 0.01 BL- 3-5 1.175(37)  0.004

0.03 001 BL+ 59-61 1.193(46) 0.09

0.03 0.01 BL 3-7 1.314(98) 060 x
0.03 0.02 BL- 3-7 1.192(24) 0.07

0.03 0.02 BL+ 57-61 1.195(28)  0.004

0.03 0.02 BL 3-6 1.204(36) 0.04

0.03 0.03 LL-gb 56-58 1.388(7) 012 x
0.03 0.03 LL-g45 55-57  1.287(147) 0.03  x
0.03 0.03 HL-gb 55-59 1.281(33) 0.09

0.03 0.03 HL-g45 56-59 1.271(38) 0.03

0.03 0.03 BL- 5-9 1.210(50) 0.07

0.03 0.03 BL+ 95-59 1.230(51) 0.02

0.03 0.03 BL 3-6 1.216(23) 0.02

0.03 0.03 GL2- 4-8 1.195(27) 0.02

0.03 0.03 GL2+ 56-60 1.274(41) 0.09

0.03 0.03 GG2- 4-7 1.240(41) 0.69

0.03 0.03 GG2+ 57-60 1.251(60) 0.04

0.03 0.04 LL-gb 53-55  1.206(207) 0.04 X
0.03 0.04 LL-g45 53-56  1.246(131) 0.04 x
0.03 0.04 HL-gb 53-57 1.269(60) 0.04

0.03 0.04 HL-g45 54-57 1.284(67) 0.01

0.03 0.04 BL- 4-9 1.245(23) 0.04

0.03 0.04 BL+ 55-60 1.267(25) 0.08

0.03 0.04 BL 3-7 1.248(18) 0.02

Table 4.8: Fit results for the N* mass from all the correlators in the 0.03 ensemble,
243 x 64 lattice. All the masses are in lattice units.

that the sum in (2.90) is over 16% terms only compared to the 243 in the larger
volume. Therefore the main objective here is using the small volume analysis in

combination with the larger volume one to estimate the size of finite volume effects.
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Figure 4.4: Effective masses obtained for the N* from the fits to the m 3ea = mvai =
0.01 correlators, in the 243 x 64 volume case. Note that the full symbols for the
LL, GL and GG correlators correspond to the 75 interpolating operator, while the
empty symbols correspond to 747s.

4.8 Finite Volume Effects

An investigation of possible finite volume effects on the nucleon and the N * was
conducted by comparing the results from the small and large volume ensembles.
For completeness we showed all our results in the tables in sections 4.6 and 4.7.
Even if sometimes the same correlator types are not available in both volumes for
the same quark combinations (different smearing for instance), in most cases we
can compare like for like. To make comparison easier for the reader, we list in
Table 4.15 the mass values obtained from simultaneous fits to the unitary points
mvai = n”seal  both cases (more details on the simultaneous fits are in section
4.9.1). Also, in figure 4.13 the effective masses of the nucleon and the N* with

valence and dynamical light quarks equal to 0.01, from both the 163 x 32 and
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0.02 correlators, in the 243x 64 volume case. Note that the full symbols for the LL
and HL correlators correspond to the 75 interpolating operator, while the empty

symbols correspond to 7475.
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Figure 4.6: Effective masses obtained for the N* from the fits to the m sea = mvai =
0.03 correlators, in the 243 x 64 volume case. Note that the full symbols for the LL
and HL correlators correspond to the 75 interpolating operator, while the empty

symbols correspond to 7475.
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Figure 4.7: Effective masses for the nucleon obtained from the fits to the m sea =
Tfivai = 0.01 correlators in the 163 x 32 case. Note that the full symbols for the

LL, GL and GG correlators correspond to the 75

interpolating operator, while the

empty symbols correspendytor7475. For the WLycorrelator, the full and empty
symbols correspondlto the positive- and negativqgparity parts respectively.
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Figure 4.8: Effective masses for the nucleon obtained from the fits to the msea =
mvai — o0.02 correlators in the 163 x 32 case. Note that the full symbols for the

LL, GL and GG correlators correspond to the 75

interpolating operator, while the

empty symbols correspond to 7475. For the WL correlator, the full and empty
symbols correspond to the positive- and negative-parity parts respectively.
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Figure 4.9: Effective masses obtained for the nucleon from the fits to the msea =
mivai = 0.03 correlators in the 163 x 32 case. Note that the full symbols for the
LL, GL and GG correlators correspond to the 75 interpolating operator, while the
empty symbols correspond to 7475. For the WL correlator, the full and empty
symbols correspond to the positive- and negative-parity parts respectively.
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Figure 4.10: Effective masses obtained for the N* from the fits to the msea =
mvai = 0.01 correlators, in the 163 x 32 volume case. Note that the full symbols
for the LL, GL and GG correlators correspond to the 75 interpolating operator,
while the empty symbols correspond to 7475.
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Figure 4.11: Effective masses obtained for the iV* from the fits to the msea =
mval = 0.02 correlators, in the 163 x 32 volume case. Note that the full symbols
for the LL, GL and GG correlators correspond to the 75 interpolating operator,

while the empty symbols correspond to 747s.
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Figure 4.12: Effective masses obtained for the N* from the fits to the msea =
m vai = 0.03 correlators, in the 163 x 32 volume case. Note that the full symbols
for the LL, GL and GG correlators correspond to the 75 interpolating operator,
while the empty symbols correspond to 7475.



CHAPTER 4. NUCLEONS FROM 2+1 DWF 108

Msea Mya correlator fit range My x?/dof
0.0l 001 LLgs 10-14  0.722(38) 0.002
001 001 LL-gd5 0-14  0.743(29)  0.02
0.01 0.01 GL-gb 9-14 0.727(23) 0.03
0.01 0.01 GL-g45 8-12 0.736(15) 0.02
0.01 0.01 GG-gb 6-11 0.739(11) 0.13
0.0 001 GG-gd5  6-11  0.737(11)  0.05
0.0l 0.01 WL+ 813  0.722(16)  0.06
0.0 001 WL- 19-24  0.748(20) 0.41
0.01 0.02 WL+ 8-13 0.790(9) 0.003
0.01 0.02 WL- 19-24  0.809(10) 0.39
001 003 WLT 813  0.857(6)  0.001
0.01 0.03 WL- 19-24 0.867(8) 0.20
0.01 0.04 LL-g5 10-14 0.943(9) 0.003
0.01 0.04 LL-g45 9-14 0.947(7) 0.007
0.01 0.04 GL-gb 9-15 0.939(5) 0.03
0.01 0.04 GL-g45 8-13 0.935(5) 0.02
0.01 0.04 GG-g5 611  0.936(5) 0.1
0.01 0.04 GG-g45 6-11 0.932(5) 0.08
0.01 0.04 WL+ 8-13 0.921(5) 0.006
0.01 0.04 WL- 19-24 0.925(6) 0.11

Table 4.9: Fit results for the nucleon mass from all the correlators in the 0.01
ensemble, 163 x 32 lattice. All the masses are in lattice units.

243 x 64 ensembles are plotted. The top and bottom panels are for the LL and
the WL = BL correlator respectively, common to both the lattices. The effective
masses for N have very good agreement between the two volumes in both cases.
Although the effective masses for N* show some differences, the large statistical
errors make it hard to draw a final conclusion. The same kind of comparison was
performed for the other ensembles. Note that the most appropriate comparison
is the one between correlators of the same type in the two volumes, i.e. between
Tables 4.3 and 4.9. From this comparison we conclude that no significant finite

volume effects are observed for both the N and N*. However, from the values
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Msea Myg correlator fit range My x2/dof
0.02 001 WL+ 511  0.731(10) 0.09
0.02 0.01 WL- 21-27  0.742(10) 0.05
0.02 002 LLg5 10-14  0.828(17) 0.06
0.02 0.02 LL-g45 9-14 0.830(19) 0.01
0.02 0.02 GL-g5 9-15  0.826(13) 0.03
0.02 0.02 GL-g45 813  0.830(11) 0.04
0.02 0.02 GG-gb 7-13  0.821(10) 0.08
0.02 0.02 GG-g45 6-11 0.824(10) 0.04
0.02 0.02 WL+ 10-14  0.815(15) 0.007
0.02 0.02 WL- 18-22  0.808(16) 0.01
0.02 0.03 WL+ 6-12 0.866(6) 0.04
0.02 0.03 WL- 20-26 0.876(6) 0.009
0.02 004 LLg5 10-14  0.952(8)  0.009
0.02 0.04 LL-g45 10-14  0.960(10) 0.003
0.02 0.04 GL-g5 913  0.951(7)  0.002
0.02 0.04 GL-g45 8-14 0.954(7)  0.007
0.02 0.04 GG-gb 7-13 0.949(6) 0.01
0.02 0.04 GG-g45 6-11 0.950(7) 0.02
0.02 0.04 WL+ 7-13 0.931(6) 0.06
0.02 004 WL- 19-25  0.939(6)  0.07

109

Table 4.10: Fit results for the nucleon mass from all the correlators in the 0.02
ensemble, 163 x 32 lattice. All the masses are in lattice units.
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Msea Mya correlator fit range My x2/dof

0.03 001 WL+ 813  0.794(21) 0.31
0.03 001 WL- 19-24  0.757(19)  0.06
0.03 002 WL+t 9-13  0.858(14) 0.05
0.03 0.02 WL- 19-23  0.844(14)  0.03
0.03 003 LLg5 10-14  0.913(19) 0.003
0.03 0.03 LL-g45 10-14  0.922(18)  0.002
0.03 0.03 GL-g5 8-14  0.908(9) 0.01
0.03 0.03 GL-gd5 8-14  0.910(10) 0.02
0.03 0.03 GG-g5 6-13  0.908(9)  0.02
0.03 0.03 GG-g45 6-12  0.914(10)  0.08
0.03 003 WL+ 9-13  0.910(10)  0.02
0.03 0.03 WL- 19-23  0.908(10)  0.05
0.03 004 LL-g5 10-14  0.969(13)  0.02
0.03 004 LL-g45 10-14  0.976(14)  0.01
0.03 0.04 GL-g5 814  0.966(7) 0.006
0.03 0.04 GL-g45 8-14  0.969(9) 0.01
0.03 004 GG-gb 6-13  0.966(8)  0.02
0.03 004 GG-g45 6-12  0.972(9) 0.05
0.03 004 WL+ 9-13  0.965(8)  0.007
0.03 004 WL- 19-23  0.965(8)  0.05

Table 4.11: Fit results for the nucleon mass from all the correlators in the 0.03
ensemble, 162 x 32 lattice. All the masses are in lattice units.
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Mgea Myg correlator fit range My x%/dof
0.01 0.01 LL-gb 22-25 0.948(97) 0.01
0.01 0.01 LL-g45 22-24  1.310(534) 0.10
0.01 0.01 GL-gb 23-25 1.027(98) 0.07
0.01 0.01 GL-g45 24-26 1.065(84) 0.06
0.01 0.01 GG-g5 23-27 0.948(46) 0.16
0.01 0.01 GG-g45 23-27 1.057(83) 0.11
0.01 0.01 wL 4-8 1.033(59) 0.01
0.01 0.02 wWL 4-8 1.027(24) 0.01
0.01 0.03 WL 4-8 1.076(16) 0.01
0.01 0.04 LL-gb 22-24 1.219(38)  0.002
0.01 0.04 LL-g45 22-24 1.257(46) 0.10
0.01 0.04 GL-g5 22-25 1.206(19)  0.006
0.01 0.04 GL-g45 24-26 1.224(17) 0.15
0.01 0.04 GG-gb . 24-27 1.183(14) 0.66
0.01 0.04 GG-g45 24-27 1.192(18) 0.41
0.01 0.04 WL 4-8 1.129(13) 0.08

Table 4.12: Fit results for the N* mass from all the correlators in the 0.01 ensemble,
162 x 32 lattice. All the masses are in lattice units.
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Mgea Mya correlator fit range My | x2/dof

0.02 001 WL- 58  1.129(96) 0.04
0.02 001 WL+ 24-27  1.102(93)  0.32
0.02 001 WL 35  1.277(81)  0.08
0.02 002 LLgb 23-25  1.169(68)  0.03
0.02 0.02 LL-g45 25-26  1.484(81) -

0.02 0.02 GL-g5 23-26  1.169(44)  0.006
0.02 0.02 GL-g45 24-26  1.227(49) 0.00002
0.02 002 GG-g5 24-27  1.188(42)  0.03
0.02 002 GG-gd5 2527  1.244(57)  0.30
0.02 002 WL- 58  1.124(36)  0.04
0.02 002 WL+ 24-27  1.092(40)  0.13
0.02 002 WL 58  1.211(68)  0.40
002 003 WL 58  1.156(22)  0.08
0.02 003 WL+ 24-27  1.137(26)  0.07
0.02 003 WL 48  1.191(33) 0.50
0.02 004 LLgb 22-24  1.269(40)  0.0003
0.02 0.04 LL-g45 20-22  1.283(227)  0.002
0.02 004 GL-g5 22-25  1.231(27)  0.06
0.02 0.04 GL-gd5 22-26  1.263(24)  0.03
0.02 004 GG-gb 24-27  1.257(22)  0.20
002 004 GG-gd5  23-26  1.244(38)  0.005
0.02 004 WL- 59  1.194(18)  0.05
002 004 WL+ 23-27  1.187(21)  0.04
0.02 004 WL 58  1.199(20)  0.023

Table 4.13: Fit results for the N* mass from all the correlators in the 0.02 ensemble,
162 x 32 lattice. All the masses are in lattice units.
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Msea Mya correlator fit range My- x2/dof
0.03 001 WL- 37 1.136(40)  0.46
0.03 001 WL+ 2520  1.070(46)  0.02
0.03 001 wL -

0.03 002 WL 37 1.114(20) 0.3
0.03 002 WL+ 25-29  1.068(19)  0.21
0.03 002 WL 35 1.142(26)  0.02
0.03 0.03 LL-gb 22-24 1.332(112) 0.004
0.03 0.03 LL-g45 24-26 1.499(93) 0.01
0.03 0.03 GL-gb 24-27 1.214(19) 0.11
0.03 003 GL-gds  24-27 1.262(34) 0.1
0.03 0.03 GG-g5 22-27 1.189(32) 0.06
0.03 0.03 GG-g45 25-27 1.223(40) 0.01
0.03 0.03 WL- 5-8 1.177(30) 0.02
0.03 0.03 WL+ 24-27 1.108(24) 0.007
0.03 0.03 WL 5-8 1.220(40) 0.05
0.03 004 LLgb 5224 1.334(70) _ 0.006
0.03 0.04 LL-g45 24-26 1.499(52) 0.05
0.03 0.04 GL-gb 2427  1.264(15) 0.17
0.03 004 GL-gds 2428 1.299(17)  0.04
0.03 0.04 GG-gb 23-27 1.245(23) 0.09
0.03 004 GG-gd5 2527 1.280(31)  0.006
0.03 0.04 WL- 5-8 1.214(21) 0.02
0.03 0.04 WL+ 24-27 1.170(19) 0.009
0.03 0.04 WL 58 1.233(25) 0.1
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Table 4.14: Fit results for the N* mass from all the correlators in the 0.03 ensemble,
162 x 32 lattice. Note that no signal was found for the N* from the W L/ correlators
with myq = 0.01. All the masses are in lattice units.
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quoted in Table 4.15 from the simultaneous fits, we notice that the results for the
N* do not follow a particular trend, while some evidence for marginal finite size

effects is present for the nucleon.

Msea Myal N N*

mass x?/dof mass x?/dof
001 00l 0738(9) 029 1020035 0.38
001 001 0722(5 0.15 1.035(17) 0.71
002 002 0.8259) 013 1.161(26) 0.65
0.02 002 0.808(4) 021 1.143(12) 0.68
0.03 003 0010(8) 022 1.211(18) 0.32
003 003 0.890(5 034 1.252(12) 0.76

Table 4.15: Comparison of N and N* masses from a simultaneous fit to all corre-

lator types for each ensemble in the unitary case m,q = mbight. The first row of

each set is from the 16 x 32 volume, the second from 243 x 64. The errors quoted
are from a jackknife analysis. All the masses are in lattice units.

The origin of finite size effects is closely related to nuclear forces and it has
been shown that for sufficiently large lattices of side L, the finite volume correc-
tions in the mass M of a given state fall off as e ™?sL [58]. A typical test to
determine the lattice size needed for observables involving quark propagation uses
the pseudoscalar meson as it is the lightest particle and thus it has the largest
correlation length. It has been shown that the exponential suppression applies
for mpsL > 4, therefore finite size corrections are negligible in this case. For our
lattices with L = 1.95 fm and L = 2.9 fm, considering mps ~ 390 MeV, we
have mpgsL ~ 3.85 and 5.7 respectively. So the marginality of finite size effects is
not surprising. As already mentioned, in order to fully satisfy the condition for
negligible finite volume effects then, we consider the large volume simulations our

source of physical results for the nucleon spectrum.
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Figure 4.13:
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Comparison of the nucleon and the N* effective masses from the small

and large volume ensembles with the valence and light dynamical quark masses

equal to 0.01.
respectively.

4.9 243 x 64: results

4.9.1

Simultaneous Fits

Top and bottom panels show the LL and WL correlators case

From the tables and plots just seen, it is easy to realize that different correlators

can have very different behaviours: for instance the plateaus start earlier or later,

and the mass values obtained can sometimes differ somewhat. This is why fitting to
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a single smearing type is not a very reliable method of analysis. The availability
of different correlators types for the same sea-valence combination allows us to
perform a simultaneous fit to all the correlators and minimize systematic errors
arising from different characteristics of the operators. Therefore a more detailed
study was performed for the unitary data points of each ensemble, where the largest
variety of correlators is available. The non-unitary data points were included in
the analysis mainly in order to perform an extrapolation in the valence quarks as
well as in the sea quarks.

Table 4.16 shows the results from a simultaneous fit to all the available cor-
relators for each data set in each ensemble: a unique value for the mass is then
obtained. Since the correlators are measured on the same gauge background, in
principle we should take into account correlations among different correlators and
different time slices of the same correlator. However we explained in section 4.5
that our statistics does not allow a reliable correlated fit, due to the poor resolution
of the covariance matrix one gets when the number of data points is comparable to
or greater than the number of independent configurations. The fit ranges used in
the simultaneous fits (shown in the tables of fits) are the ones individually chosen
as explained in section 4.5.

Some more comments regarding our results are necessary at this point. As
already noticed, different correlators can have different behaviour. Aléo, a smeared
type operator can be very effective in improving the signal for some valence (and
sea) value, but become ineffective for a different value, corresponding to a different
hadron size. The same applies for different interpolating operators. As we can see
from Tables 4.3, 4.4 and 4.5, the signals for the nucleon state are very stable.

However the considerations above often apply to its parity partner, see Tables 4.6,
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4.7 and 4.8. This is why, when performing simultaneous fits, we decided to discard
those correlators that show a very bad signal or do not show a signal for the state
in study, giving a mass far from the other values or with very large error bars:

these are the correlators ticked with a x in Tables 4.6, 4.7 and 4.8.

Mgea Myal N, cfgs N N*

- mass  x?/dof mass x%/dof

001 0.005 60 06835 048 1.01373; 0.83
0.01 001 60 0.722%; 015 1.025%7 0.62
0.01 002 60 0.792¥] 002 1.055%]; 0.28
0.01 003 60 0.855% 002 1.113%5 045
001 0.04 60 093272 023 1.168%° 0.29
0.02 0005 46 0.70673 0.10 1.168%; 0.83
0.02 001 46 07457 010 1.126%15 0.10
0.02 0.02 46 0.8087} 022 11387 0.38
0.02 003 46 0.880%% 0.02 117715 045
002 0.04 46 093973 011 1.222%% 0.34
0.03 "0.005 52 0.7267j; 0.34 1.2467;; 0.33
003 0.0t 52 0.761%° 001 1.182%% 0.05
0.03 0.02 52 0826%2% 007 1.195%}3 0.05
0.03 0.03 52 0891%3 039 1.241%]; 0.52
0.03 0.04 52 0951%3 031 1.255115 0.17

Table 4.16: Values of the N and N* masses from a simultaneous fit to all correlator
types for each ensemble. N, is the number of measurements considered in each
simultaneous fit: the different N,.,; ranges for each correlator type, Table 4.1, are
restricted to a common range for each ensemble and accurately binned in order
to have the same number of configurations for each set of correlators. The errors
quoted are from a bootstrap analysis (section 2.13.2). All the masses are in lattice
units.

4.9.2 Extrapolations

Once all the simultaneous fits for each combination m., — M, are performed, we

are able to carry out an extrapolation in the valence quarks: for each ensemble we
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Figure 4.14: Valence extrapolation of the nucleon mass M N for all three ensembles
at mvai = —mres. Also shown is the extrapolated value at the lowest sea and the
corresponding value for the mass in physical units.

have 5 data points (all the possible valence available). Note that since we perform
our simulations at quark masses heavier than the physical up and down quark
masses, extrapolations are needed to obtain physical results for the hadronic ob-
servables of interest. In figure 4.14 the chiral valence extrapolation is shown for all
three ensembles. Note that in the extrapolations the value of mres = 0.003147(12)
[55] is used. Neglecting higher-order corrections, the chiral limit is defined at
wif a-mres = 0 or rrif = —mres, where mj is the input quark mass. In figure 4.14,
as an indication for the reader, we also show the nucleon mass extrapolated at
the lightest sea with the corresponding value in physical units obtained using the
lattice spacing a-1 = 1.62(4) GeV.

A more rigorous value for the nucleon mass is obtained considering an extrapo-
lation in both the valence and sea quarks. We perform different types of extrapola-
tion as follows. We first consider all three ensembles, with 15 sea-valence combina-

tions in total; then we include only the two lightest ensembles, msea = 0.01,0.02,
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with a total of 10 sea-valence combinations. Finally, we only consider the two
lightest sea as well as the two lightest valence. Table 4.17 quotes the values from
each of these three methods for the nucleon mass in lattice units, aMy, as well
as the corresponding physical values in GeV estimated using a™! = 1.62(4) GeV.
Presumably, including only lighter quark masses gives a more reliable chiral ex-
trapolation. In fact the nucleon mass decreases and gets closer to the physical

value® when we consider the lightest quark combinations.

Mgea Myal aM N My [GBV]

0.01 0.02 0.03 0.005 0.01 0.020.03 0.04 0.619F; 1.003%%
0.010.02  0.0050.01 0.020.030.04 0.615*% 0.996+%
0.01 0.02 0.005 0.01 0.591%22  0.957*%%

Table 4.17: Value of the nucleon mass obtained from extrapolations in both the
sea and the valence quark masses, as indicated in the first and second columns.
Last column shows the corresponding physical values in GeV obtained using a=! =
1.62(4) GeV.

A similar approach is used in the case of the N*. We first performed an
extrapolation in the valence quarks for each ensemble. From Table 4.16 we can
see that the N* masses obtained from the m,, = 0.005 correlators, in particular
in the m,e, = 0.02, 0.03 cases, are not very consistent with the trend of growth
of the other valence compositions and present larger errors. Ip the mge, = 0.02
case, the value quoted is from a simultaneous fit to the BL and BL' correlators
which show a very poor signal at this light valence value; for m,., = 0.03 the BL'

was not even included in the simultaneous fit and the value quoted comes from the

3From http://pdg.lbl.gov/2007:
M, = (938.272029 + 0.000080) MeV "and M, = (939.565360 + 0.000081) MeV

for proton and nucleon respectively.
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correlator BL. A better signal is present in the m,., = 0.01 case, but no significant
difference is found by including or not the m,, = 0.005 point in the extrapolation*.
Therefore we exclude the lightest valence from all three extrapolations, as shown
in the plot in figure 4.15.

For a better determination of the N* mass, we then consider an extrapolation in
both the valence and sea quarks. As for the nucleon case, we first consider all three
ensembles, with 12 sea-valence combinations in total; then we exclude the heaviest
ensemble, with a total of 8 sea-valence combinations in the m,,, = 0.01, 0.02
sector. Finally we only consider the two lightest sea values as well as the two
lightest valence values. Table 4.18 quotes the three values obtained for the mass
of N* in lattice units, aMy-, as well as the corresponding values in GeV.

Note that we could have chosen to extrapolate at the physical point, corre-
sponding to Mps = 140 MeV, instead of at quark mass equal to zero. The
determination of the physical quark mass requires a well controlled chiral extrapo-
lation in the light quark limit. Ideally the next-to-leading-order chiral perturbation
theory (NLO xPT) should be used, but it has been shown [59] that our data can
not be described by the NLO xPT, probably due to too heavy quark masses cor-
responding to pion masses of 390 to 630 MeV [59]. A linear extrapolation can be
then considered, i.e.

M}z’S = B(mi’:t + mres)- (413)

The determination of the physical quark mass was not part of this work: us-
ing results in [59] we can qualitatively quote My = 0.984}3% GeV and My. =

1.452*38 GeV as the masses we obtained through an extrapolation at the physical

4In fact, the N* masses obtained in the m,q = 0.005 and 0.01 cases have very close values,
see Table 4.16.
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0.95
0.01 0.02 0.03 0.04 0.05

m.+m

Figure 4.15: Valence extrapolation of the N* mass for all three ensembles at
mvai — —mres. The mvai = 0.005 data points have been discarded, as explained in
the text.

quark masses in the light quark limit.

nised Tvai aMnN* MN.[GeV}

0.01 0.02 0.03 0.01 0.02 0.03 0.04 0.905" 1.466742
0.01 0.02 0.01 0.02 0.03 0.04 (.881721 1.427117
0.01 0.02 0.01 0.02 0.878”"8 1.4221J?

Table 4.18: Value of the N* mass obtained from extrapolations in both the sea
and the valence quark masses, as indicated in the first and second columns. Last
column shows the corresponding physical values in Gel obtained using a~[ =
1.62(4) GeV.

4.10 Conclusions

We saw in Table 4.17 how the values for the nucleon mass obtained from chiral
extrapolations approach the experimental value going to lighter quark masses. We

can then quote our final result for the nucleon mass as

MN= 957tgt? (4.14)
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where the first error is statistical and the second takes into account the other two
values in Table 4.17, found when different (heavier) sea-valence combinations are
considered.

Following the same arguments for the nucleon parity partner state, we can
write

Mpy. = 1422+8+% MeV. (4.15)

Despite the rather large uncertainties, the My« value appear much lower than the
experimental estimate, 1525 — 1545 MeV. Following [71], we explored a possible
explanation for the apparently fast falling of the data with the quark mass. At
sufficiently light quark masses, the decay channel N* — N + 7 is open. In order
to investigate the possibility of our N* to decay into such a lighter state, we look
at the m,., = 0.01 ensemble, where more statistics are available and no data were
discarded in the simultaneous fits. The data points in figure 4.16 are the My-
values from the simultaneous fits (Table 4.16), while the dashed line connects the
values of the mass of the nucleon plus the pseudoscalar meson. All the masses are
in physical units. We see from this plot that our data points do not follow the
dashed line, even if the lightest point were discarded. Clearly the interpolating
operators used to reproduce the N* at our parameters values for our lattice size
have a stronger overlap with the single-hadron state and we can conclude that the
state studied in this work is actually the N(1535).

In figure 4.17 we plot our values for N and N*, as well as the corresponding
experimental values, N(939) and N(1535). The nucleon state N is much better
determined than the N*. We already commented on the difficulties to determine

the N*. We conclude that our results for the nucleon mass are in good agreement
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Figure 4.16: Chiral extrapolation of the N* mass for the msea = 0.01 ensemble.
The dashed line represents the nucleon mass plus the pseudoscalar meson mass.

with the experiments within the rather large statistical uncertainties.

A more comprehensive calculation of the nucleon and baryon spectrum is under
active pursuit. The work in progress includes data from a lighter ensemble at
Tnsea = 0.005, which clearly will make more precise the chiral extrapolation of
particles under study. Final results will appear in an upcoming paper [55] written

jointly by the baryon group of the RBC and UKQCD collaborations.
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Figure 4.17: Comparison of the physical results obtained in this work (circles) with
the experimental values (horizontal lines).



Chapter 5

Dg Mesons with Overlap

5.1 D, Physics and LGT

The discoveries a few years ago of new resonances D,; have provoked much interest
in heavy-light systems in general and in the D, mesons in particular. The BaBar
collaboration first reported [61] evidence for a new narrow resonance decaying to
D}n® at a mass near 2.32 GeV. The data were consistent with the identification
of this state as one of the four lowest-lying members of the c§ mesons system with
orbital angular momentum L = 1. It was named D},;(2317) and its characteristics
suggest a JF = 0t assignment. In the search for the D?,(2317) meson and other
possibly related states, the CLEO collaboration observed [62] another narrow res-
onance in the D}*n° final state, with a mass near 2.46 GeV. They confirmed
the consistency of the data with the possible interpretation of the two states at
2.32 and 2.46 GeV as c5 mesons with L = 1 and spin-parity J¥ = 0% and 1%
respectively.

These observations were consistent with the theoretical prediction [63] in heavy-
light meson systems of the existence of the heavy spin multiplet {0%, 1%}, parity

partner of the ground state multiplet {0~, 1~} (see next section for more details).

125
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In this scenario, the D, mesons (and D physics in general) clearly appear very
interesting objects to be studied on the lattice. Not only does the spectrum offer
several new possibilities of investigation, in particular after the discovery of the
positive parity partners of the D, and Dj, but also the recent determination by the
charm factory of the leptonic decay constants fp [64, 65] and fp, [66] produced
new challenges and possible tests for lattice QCD: for instance, new determinations
of the CKM matrix elements V.4 and V,, and the amplitude ratio fp,/fp.

In this work we focus on the D, spectroscopy and on the experimentally deter-
mined quantities in D, calculations: the parity and hyperfine splittings and their
independence on the spin and the parity respectively. Many previous lattice calcu-
lations [67, 68, 69, 70, 71, 72| tried to reproduce the features of these heavy-light
charm mesons: most of these consider a static or non-relativistic heavy charm
quark, with the exception of [70] which uses the Fermilab approach and [72] which
describes the charm quark as a domain wall fermion. All these works are in the
quenched approximation.

Here we present preliminary results of the very first study with 2+ 1 dynamical
flavours. We also perform a quenched approximation calculation at a matching
lattice spacing. The novelty of our work is considering the charm quark propagat-
ing as an overlap fermion, while the light strange quark is a domain wall fermion.
We will see in more detail in next section how the chiral symmetry of the light
quarks are important in the model for heavy-light systems: in fact we exploit the
good chiral symmetry of DWF for the light strange quark. As far as the heavy
quark is concerned, the charm quark has a mass of around 1.2 — 1.5 GeV, so it is
not surprising that lattice actions develop rather severe discretization effects when

me ~ a~}. This is why when the quark mass is the same size as the cutoff, the



CHAPTER 5. Ds MESONS WITH OVERLAP 127

study of the properties of heavy quark systems relies on effective field theories.
The effective action for the heavy quark has the form of an expansion in powers
of a small parameter: Heavy Quark Effective Theory (HQET), whose expansion
parameter is the inverse of the heavy quark mass, is usually used in heavy-light
systems. However, we might be interested in physical processes at scales not far
below the cutoff, where effective theories become poor as well. As explained in
section 2.8, overlap fermions, not only have good chiral properties, but can also
alleviate some problems related to simulating heavy quarks, since they appear to
be free from O(m.a) errors, and have small O(m2a?) corrections [75]. This is the
principle reason why we implemented the charm as overlap.

This study is carried out in collaboration with RBC-UKQCD members.

5.2 The Parity Doubling Model

Heavy-light mesons, containing one heavy quark Q and one light quark q, are
subject to powerful symmetry constraints [63]. In fact, the pseudoscalar and vec-
tor mesons containing one massive and one light quark become degenerate in the
heavy quark limit, mg — oo, due to a heavy quark spin symmetry valid up
to O(1/mg) [73]. While heavy quark (HQ) symmetry maintains the degener-
acy within the {0~,17} and {0%, 1%} multiplets, i.e. spin degeneracy, implying
vanishing hyperfine splitting effects, unbroken chiral symmetry of the light quark
(LQ) would imply the degeneracy of the two multiplets themselves. In fact, in
the LQ limit, my — 0, with ¢ = (u, d, s), the Lagrangian must be invariant under
SU(3)L x SU(3)g chiral symmetry. Therefore the breaking of the chiral symme-

try leads to a mass gap between parity partners, with associate pionic transitions
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0 1 o4 14

Figure 5.1: Schematic representation of the {o~,1~} and {o+,1+} multiplets, in
the double limit of HQ and LQ symmetry, dashed symbols, and when both the
symmetries are broken, full symbols.

{0+,1+} —» {0~,1~} + 7, elevating the heavier {0+, +} multiplet and depress-
ing the lighter {0 ,1-}. These decay transitions are governed by a Goldberger-
Tleiman relation |74], gn = AM /fn, where AM is the 0+ —0~ mass difference, gn
is the 0+ —0_ 7 coupling constant and the pion decay constant. More details
on the parity doubling model of Bardeen, Eichten and Hill are found in [63, 73]
and are not in the scope of this study. We just give a visualization in figure 5.1: in
the double limit of heavy quark and chiral symmetry the multiplets appear totally
degenerate, i.e. the dashed oval figures shown in a horizontal line. The full oval
figures give an idea of the splitting due to both the HQ and LQ broken limits: the
gap between the red and light ovals in each rectangular represents the hyperfine
splitting, while the gap between the two red ovals, as well as between the two blue

ones, represent the parity splitting.
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5.3 Numerical Details

The dynamical analysis was performed on 2+ 1 flavours DWF ensembles generated
jointly by the RBC and UKQCD collaborations. These were the ’small volume’
ensembles used in chapter 4. Specifically, the simulations used the Iwasaki gauge
action with g = 2.13 and the domain wall fermion quark action with the fifth
dimension fixed to L, = 16 and the domain wall height set to Ms = 1.8. The
volume size is 163 x 32 and a single lattice spacing of a=! = 1.62(4) GeV gives a
corresponding spatial volume of (1.9 fm)3. Three sets of configurations were gen-
erated with a light isodoublet with masses am,q = am,,, = 0.01, 0.02, 0.03, and
a fixed approximate strange quark mass, am, = 0.04. As mentioned in chapter 4,
the ensembles were generated using the RHMC algorithm and its implementations
[19], and they are described in more detail in [54].

The meson correlators were measured with sources on multiple time planes,
in order to improve our statistics. Details of the three ensembles used are listed
in Table 5.1. Note that momenta different from zero have been also considered
in order to investigate higher mass states and mainly allow a dispersion relation
analysis, as explained in section 5.4.1.

The D, correlators were generated in this gauge background with the light
strange quark as a domain wall fermion and the heavy charm as an overlap fermion.
The main analysis of this work was performed on correlators generated at two
different charm quark masses, am, ~ 0.72, 0.9, producing two different heavy-

light mesons for each ensemble, labelled H; and H, respectively. Recalling the

1See section 4.4 for the determination of the lattice scale.
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Msea Niraj A Npeas  Nore P?,m, ameg Meson
0.01 500-4000 50 282 4 4 0.720.9 H; H,
0.02 1000-4025 50 122 2 4 0.72 0.9 H; H,
0.03 1000-4000 50 121 2 2 0.720.9 H; Hy
0.02 1000-4040 10 305 1 4 0.36 0.54 H, H,
quenched  10000-29200 200 97 1 4 0.36 0.540.720.9 H, H, H; H,

Table 5.1: Measurement parameters for all the datasets used in this study. Ni,; is
the lowest to highest trajectory analysed with A the separation between measure-
ments in molecular dynamics time unit. N, is the number of different sources
used for each set of measurements. In the last two columns, the charm quark mass
considered and, for labels, the corresponding meson are specified for each set of
data.

expression of the massive overlap operator, eq.(2.79), we write

aDoy = p(1 + p) + p(1 — p)yssgn(vs(aDw — p)), (5.1)

where u = %";‘1 and p is any mass parameter that can be added to the Dirac
operator Dy without affecting the continuum limit: here it was chosen equal to
1.3 looking at the heavy-heavy pseudoscalar meson. The overlap operator was
used to invert on hyp-smeared DWF gauge configurations for mass parameter
p~ 0.277, 0.346, corresponding to the two charm mass values above.

In later stages of this work, we ran a test with two lighter choices of the
charm quark mass, am, ~ 0.36, 0.54, obtaining two lighter heavy-light mesons,
labelled H; and H, respectively: the new correlators were generated only on the
amseq = 0.02 ensemble. The fourth dataset in Table 5.1 is specific for this case.
Therefore, we will indicate in the following with H,, Hy, H3, H, the four possible

quark mass pairs, from the lightest to the heaviest. However, note that in the

dynamical analysis for the am,,, = 0.01 and 0.03 ensembles, only the two heaviest
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combinations will be present, i.e. H3, Hy.

After our unquenched analysis, we decided to investigate possible sea quark
effects and performing a quenched analysis at the same lattice spacing, using the
dataset listed in the last row in Table 5.1. Note that all four heavy-light mesons

were produced in the quenched case.

5.4 Dynamical Analysis and Results

The same criteria explained in section 4.5 for the choice of the fit ranges and the
acceptance of x2/dof were adopted for the D, analysis.

Table 5.2 shows the values of the masses obtained from uncorrelated fits to
the four channels we are interested in: P(07), V(17),S(0%), A(1%) label the
pseudoscalar, vector, scalar and pseudovector or axial channel respectively, with
the spin-parity composition specified in brackets. In the table the heavy-light
meson type, as well as the fit rahge is specified. Figure 5.2 shows the typical
effective masses for these channels. The left panels correspond to the heavy-light
meson containing the lighter charm quark am, ~ 0.72, i.e. Hj, while in the right
panels am, ~ 0.9, corresponding to the meson H,. For the pseudoscalar and vector
channels similarly reasonable plateaus are found for higher momenta. From Table
5.2 we can see that the masses obtained for the H3z and H; mesons are consistent
among the different ensembles. In particular the pseudoscalar and vector masses
show a statistical error of less than 1%. Considering an average of the three values
from the three ensembles, and using a=! = 1.62(4) GeV, we can qualitatively

estimate the range spanned by our H3 and Hj values in physical units:

P(07) — [1840 — 2130] MeV; V(17) — [2030 — 2320] MeV. (5.2)
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Therefore the experimental values of the corresponding mesons,
D, — 1968.2(5) MeV;  Dj; — 2112.0(6) MeV, (5.3)
clearly lie in between our two heavy-light states, H; and Hj.

5.4.1 Dispersion Relation

We computed the meson masses at different lattice momenta and fit them to
the dispersion relation. The dispersion relation is defined such that the O(m?a?)
error is reflected in the deviation of c, the effective speed of light, from unity. The

commonly used continuum-like expression is linear in the square of the momentum,
(E(p)a)® = (E(0)a)® + *(pa)?, (54)

where pa = ppa is the discretized lattice momentum

2my/n
La

pra = , n=nl+nl+nl, nelZt (5.5)

However, we performed both linear and quadratic fits, i.e. to the eq.(5.4) and to
(E(p)a)? = (E(0)a)? + *(pa)? + K (pa)* (5.6)

respectively. Note here the O(a*) term corresponds to a lattice artefact, as ex-
plained below. Also, following [75], we considered the momentum equal to pa =
2sin(my/n/La) in addition to the expression in (5.5). We concluded that fitting
the energies to a quadratic expression with the momenta as in eq.(5.5), is in our

case the best approach, as explained below?.

20nly three momenta are available for the am,., = 0.03 ensemble, i.e. there are only three
points in the plot of energies versus momenta, so we found the linear fit with pa = 2sin(#/n/La)
is the best one in the 0.03 case.
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Meson P(07) V(1) S(0t) A(1Y)
msea
0.01 H, 1133(2) 1241(5) 1.393(17) 1.490(20)
[10-16] [12-16]  [8-13] [8-14]
H. 1.315(3) 1.424(8) 1.569(18) 1.663(20)
[11-16]  [12-16]  [8-14] [8-13]
0.02 H,  0771(1) 0.913(4) 1.060(24) 1.013(43)
[0,15]  [1016]  [8,13] [10,16]
H, 0.55(2) 1.083(3) 1.211(28) 1.179(38)
0,6]  [9,16] [9,16] [10,16)
H, 1.134(d) 1.255(7) 1.336(54) 1.481(36)
[10,16] [12,16]  [9,16] [8,16]
H, 1.318(5) L.443(12) 1.544(58) 1.671(37)
[10,16] [12,06]  [9,16] [8,16]
0.03 Hy, 1133(3) 1.264(6) 1.443(67) 1.494(43)
[12,16] [10,6]  [9,16] [9,14]
H, 1317(5) 1.427(14) 1.584(42) 1.683(34)
[12,16]  [12,16]  [8,16] [8,16]
quenched  H, 0.767(3) 0.938(6) 0.935(134) 1.023(107)
[10,6]  [9,16] [9,15] [10,16]
H, 0.952(3) 1.102(5) 1.111(82) 1.200(81)
[10,16]  [8,16] [9,15] [10,16]
H, 1.136(4) 1L275(8) 1.357(49) 1.491(52)
[11,6] [10,16]  [8,14] [8,16]
H, 1.324(6) 1.456(11) 1.539(39) 1.645(64)
[11,16] [10,16]  [8,13] [0,16]

Table 5.2: Fit results for the meson masses in lattice units for all the heavy-light
possibilities and ensembles. Below each mass value the corresponding fit range is
specified.
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Figure 5.2: Effective masses for the heavy-light, mesons with charm mass amc ~
0.72 on the left panels, corresponding to the //3 meson, and amc ~ 0.9 on the right
panels, corresponding to the H+ meson. From the top to the bottom: amsea =
0.01, 0.02, 0.03.

Figure 5.3 is an example of our investigation: it shows the dispersion relation

for the pseudoscalar channel, upper panel, and the vector channel, lower panel,

16

16
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for the meson Hj, the lightest of the two considered here, in the am,,, = 0.01
case, where five different momenta are available. We also show in the plot the
values of the speed of light obtained from the fit to eq.(5.6), ¢ = 0.897(12) for
the pseudoscalar and 0.833(29) for the vector, higher than one might expect from
[75], considering our heavy charm. For completeness, we list in Table 5.3 the ¢
values for the pseudoscalar and vector mesons obtained from all our sets of data.
Clearly, the heavier the meson, the lower is the ¢ value obtained. However, the
fact that simulating quarks as heavy as charm can give rise to more difficulties,
in terms of higher lattice artefacts for instance, is a well known problem. One of
the methods trying to overcome the problems with heavy quarks (i.e. amg ~ 1) is
the Fermilab or Relativistic Heavy Quark approach [76]. It gives us an alternative
interpretation of the dispersion relation. Here we recall the basic idea.
Considering the expansion of the energy-momentum relation in powers of the

(lattice) momentum pa, we can write

M.
where M, is the rest mass, M; = E(0), and M, is the so-called kinetic mass, M5 1

(Ea)? = (Mya)? + E:(pa)z + K(pa)* + .. (5.7)

(2%;)1,:0. “The relativistic mass shell will have M; = M5, and the expression above

in the relativistic limit becomes the well known
(Ea)? = (M1a)? + c*(pa)? (5.8)

with ¢ = 1. In practice, at our non-relativistic mass, we cannot truncate the
expansion at p?, but we have to consider higher order terms, which take into
account lattice corrections. The form of these corrections is not in the scope of

this study, so we will simply indicate them 6 E;4:

(Ea)’ = (mqa)” + (pa)? + 6 B (5.9)
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The rest mass of non-relativistic particles decouples from the interesting dynamics,
since in the mg —* oc limit the heavy quark is at rest relative to the hadron. The
suggestion from the Fermilab approach |76j is then considering M2 instead of M i
and tuning the couplings in the Lagrangian so that M2 takes the physical value. In
this preliminary analysis we consider both Mi and M2 and look at the dependence

of the mass splittings on them, as explained in the following.

1.7

0 (Ea)

quadratic fit

1.6
15
14 c=0.897(12)
13
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6 ¢ =0.833(29)
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Figure 5.3: Dispersion relation plot for the pseudoscalar, upper panel, and vector
channel, lower panel, of the meson in the amsea = 0.01 case. A quadratic fit to
eq.(5.6) was performed.
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Meson P(07) V(@)
AMgeq
0.01 Hs  0897(12) 0.833(29)
Hy  0.785(15) 0.720(37)
0.02 H,  0.963(10) 1.001(26)
H,  0.940(9) 0.963(17)
Hy  0.883(17) 0.850(44)
Hy  0.808(21) 0.742(61)
0.03 H; 0.862(22) 0.828(23)
Hy  0.742(27) 0.647(47)
quenched H 0.959(22) 0.964(45)
Hy,  0.900(18) 0.905(37)
Hs  0.846(19) 0.826(35)
H, 0.763(22) 0.696(44)

Table 5.3: ¢ values for all the pseudoscalar and vector mesons.

5.4.2 Mass Splittings

137

Our notation for the mass splittings considered the hyperfine and the scalar- and

vector-parity splitting respectively, is as follows:

My—-Mp = 17-0"=AH

Ms—Mp = 0*—0" =AS

My—My = 1t -1"=AV.

(5.10)

In Table 5.4 the values of these splittings obtained for all the combinations of

heavy-light mesons are listed in lattice units; in Table 5.5, the same values are in

MeV, and the experimental values are also listed, as a guide for the reader. Figure

5.4 shows the splitting values obtained in the unquenched analysis versus ameq.

There is no discernible dependence on the sea quark mass, even for the hyperfine
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splitting, which has the smallest error bars®. However the hyperfine splitting is not
well reproduced: our results are always overestimates compared with ~ 144 MeV
from experiments. The values from the quenched calculation also overestimate the
hyperfine splitting, contrary to what is previously found in literature.

Also, it is important to notice the larger statistics available for the am,,, = 0.01
ensemble, more than twice the am,,, = 0.02, 0.03 cases. So it is not surprising
that the lightest ensemble gives results with sometimes smaller errors. In figure
5.4 we also inserted the values for the different splittings obtained for the H;, H,
mesons at am,e, = 0.02.

Following the considerations in section 5.4.1, we also performed some tests by
computing the mass splittings defined in terms of M, instead of M;. This means
considering the masses equal to My = M, /c?, where M, are the rest masses listed
in Table 5.2 and the speed of light ¢ values come from the dispersion relation fits,
as explained in section 5.4.1. However, we often found bad signals at non-zero
momenta, in particular in the scalar and axial cases. This meant that extracting c
values was not always possible, so that we could not carry out a study of the mass
splittings defined by the M, kinetic masses. In section 5.5 we consider using M,

to determine the meson mass scale from the pseudoscalar channel.

3This clearly comes from the fact that the vector and pseudoscalar channels have good signals
in all three ensembles, as the long plateaus in figure 5.2 show, while the axial and scalar ones
become noisier going to higher mass, with larger error bars.
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0.01 0.02 0.03

Figure 5.4: Mass splittings values in lattice units (Table 5.4) for i/3, full diamonds,
and i/4, empty diamonds, plotted versus amsea. The triangles, full and empty,
represent values for H1 and H2 respectively, in the amsea = o0.02 case. Note the
shift in the x axis for clarity.

Meson AH AS AV
0.01 Hz 0.108(5) 0.260(17) 0.249(21)
h4 0.108(8) 0.254(18) 0.239(21)
0.02 Hy 0.142(4) 0.289(24) 0.100(43)

n2  0.1283)  0.256(28)  0.096(37)
3 0.121(8)  0.202(53)  0.227(36)
H\  0.125(12) 0.226(58)  0.228(37)

0.03 n3  0.131(6)  0.310(67)  0.230(42)
wi  0.110(14)  0.267(43)  0.256(34)

quenched Hy  0.171(6)  0.168(134)  0.084(106)
2 0.150(5)  0.159(82)  0.098(80)
B3 0.139(7)  0.221(49)  0.217(50)
n4  0.131(10) 0.21539)  0.189(62)

Table 5.4: Mass splittings values obtained in lattice units.

5.5 Dynamical plus Quenched

The values of the ground state masses obtained for all four heavy-light mesons gen-

erated from the quenched configurations are listed in Table 5.2. The corresponding
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mass splittings can be found in Tables 5.4 and 5.5, in lattice and physical units
respectively.

In figures 5.5 the splittings in lattice units are plotted versus the inverse of
the pseudoscalar mass 1/Mp, where Mp is equal to M;, the rest mass of the
pseudoscalar meson, in the upper panel, and equal to M,, the kinetic mass, in the
lower one. The vertical dotted line corresponds to the experimental value of the
Ds meson (using a=! = 1.62(4) GeV). As described in the previous section, our
preliminary unquenched analysis shows a negligible dependence on the sea quark
masses. Therefore we decide for clarity in these plots to show only one of the
three ensembles studied, the am,,, = 0.02 one, since all four heavy-light mesons
are present, as for the quenched case. The dynamical values are plotted as full

symbols and the quenched values as empty symbols. We can see that quenched

Meson AH AS AV
Mgea
0.01 Hj 175(8) 421(27) 403(34)
Hy 176(13) 411(29) 387(34)
0.02 H, 230(6) 469(39) 163(70)

H, 208(5) 415(46)  156(60)
Hs  196(13) 327(86)  368(58)
Hy  203(20) 366(94) 369(61)
0.03 Hs  212(10) 502(109) 373(68)
Hy  179(22) 433(70)  415(56)

quenched H,  278(10) 273(217) 137(172)
H, 244(8) 258(132) 158(130)
Hs  225(12) 358(79) 351(82)
Hy  213(16) 348(63)  306(100)

Experiment 143.8(4) 349.1(6) 346.9(1.0)

Table 5.5: Mass splitting valuesin MeV, using a~! = 1.62 GeV. The experimental
values are also showed.
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and dynamical splitting values are consistent within the errors: therefore no sea
quark effects are observed. The shift in the z axis in the second plot compared
to the first reflects the deviation of the c values from unity (see also Table 5.3):
this probably tells us that simulating the heavy charm quark as an overlap is not
enough to get rid of O(a?m?) errors at our large lattice spacing without resorting
to the M, definition of the meson mass.

Due to the spin degeneracy of the parity splitting, the ratio of the two parity
splittings is expected to be equal to unity. From the experimental values in Table
5.5 we have in fact AV/AS =1t — 17 /0% — 0~ ~ 0.994. Figures 5.6 shows the
values obtained for this ratio versus the inverse of the pseudoscalar meson mass
1/Mp in the upper plot, and versus the hyperfine splitting over the pseudoscalar
meson mass AH/Mp in the lower one. In both plots Mp = M, the rest mass.
As can be seen, the two heavier mesons, H; and Hjy, have % = 1 within rather
large errors. Going to lighter heavy quark masses, i.e. for the H; and H; mesons,

the gap between the two parity splittings seems to increase in both quenched and

unquenched.

5.6 Conclusions

In this chapter we described a preliminary study of D, mesons. For the very first
time these systems are studied in 2+ 1 dynamical flavours, with the strange quark
as a domain wall fermion and the charm quark as an overlap fermion. We found
clear signals for all the four channels we were interested in, with the pseudoscalar
and vector ones being the more stable. Very little if any dependence of the mass

splittings on the sea quark mass is observed. However, the error bars in the parity
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Figure 5.5: Mass splittings in lattice units versus the inverse of the pseudoscalar
meson mass, equal to the rest mass Mi in the upper panel and to the kinetic mass
M: in the lower panel. The results for all the four mesons are plotted for both the

amsea = o.02 ensemble, full symbols, and the quenched case, empty symbols.

splitting values are often very large, due to the fact that the scalar and axial

channels are quite noisy. The hyperfine splitting always presents smaller errors,

but the experimental value is not well reproduced: it is always overestimated, even

in the quenched calculation. The ratio of the two parity splittings is close to the

experimental value within the statistical errors, but we cannot draw any conclusion
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Figure 5.6: Here the ratio of the vector parity over scalar parity is plotted versus
the inverse of the pseudoscalar mass in lattice units in the upper panel, and versus
the ratio AH/Mp in the lower panel, with MP = M 1? the rest mass, in both plots.
The results for all the four mesons are plotted. The experimental values are also
shown.

at this stage due to the very large error bars usually present. Better statistics is
required for a more precise analysis. We tried to investigate possible sea quark
effects comparing results from a quenched calculation, but we did not find the

improvement we expected. We do not see significant difference in the two analysis,

at least for the two heaviest heavy-light mesons, A% and //4. Going to lighter
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heavy quark masses, we can see in both quenched and unquenched (amg e, = 0.02
case) that the gap between the two parity splittings tends to increase.

Following the suggestion from the Fermilab approach, we considered the kinetic
meson mass M, = M;/c? as alternative to the rest mass M; to determine the mass
splittings, and tried to investigate possible dependence of the splittings themselves
on these two masses. Unfortunately, the determination of the speed of light c
from the dispersion relation was not always possible, due to the increased noise at
higher momenta: therefore at this stage we could not carry out this kind of analysis.
An appropriate choice of smearing operators, as well as increased statistics, may
improve the signal in the scalar and axial channels and allow a more comprehensive
study of the dispersion relation in terms of M,. However, we used M;, determined
from the pseudoscalar channel and saw a shift on all the data to heavier masses
(see figure 5.5): this means that by using M, instead of M; we could study D,
physics at charm mass values lighter than our initial choice.

At LO HQET, the hyperfine splitting for heavy-light mesons is expected to
follow the inverse of the meson mass, AH ~ 1/M (M ~ mg). To test our
lattice results, we plot in figure 5.7 the hyperfine splitting versus the inverse of
the pseudoscalar meson mass, for all the four heavy-light mesons available in the
quenched calculation. The diagonal line is a guide for the eye: we can see that our
four points are not actually aligned, as we would expect. This probably tells us
that the two heaviest of our mesons, on the left in the plot, are actually too heavy
at our lattice spacing. It could be then that the effect of the O(a?m2) corrections
is indeed significant. The RBC-UKQCD collaboration is now investigating these
O(a?m?) errors: the generation of quenched configurations at a finer lattice spacing

and larger volume is under progress.
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Figure 5.7: Hyperfine splitting versus the inverse of the pseudoscalar meson mass
in quenched, with Mp = Mi, the rest mass (all in lattice units). The line is a guide
for the eye, while the star symbol corresponds to the experimental value obtained
by using a-1 = 1.62(4) GeV.



Chapter 6

Conclusions

This thesis is composed of three self-standing projects, exploring different aspects
of QCD and QCD-like theories through the lattice gauge formalism.

Chapter 1 and 2 introduce the background theory of this work.

Chapter 3 investigates the well known problem of the lack of asymptotic scaling
in Monte Carlo simulations. We considered the improvement obtained by replac-
ing the bare coupling constant in the perturbative expansion by some renormalized
coupling, as pointed out in the past. However, the main purpose of our calcula-
tion was to emphasize how the lattice spacing corrections need to be included in
the perturbative continuum-like expression of the lattice spacing in terms of the
coupling g2(a). We fit quenched data to the running coupling expression based on
these considerations. We also showed a first application of our approach to SU(N)
data, with the number of colours N different from 3 and checked its validity in
particular at large N. By fitting the expression of the running coupling with and
without O(a™) terms, and using the bare lattice coupling as well as renormalized
ones, our conclusions were that the lattice artefacts represent the dominant effect

in the lack of asymptotic scaling. We also gave an estimate of the (pure-gauge)

146
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Azrs = 217 £ 21 MeV. (6.1)

Chapter 4 presented an analysis of the nucleon state and its parity partner on
2 + 1 flavour domain wall gauge configurations generated by the RBC-UKQCD
collaboration. Correlation functions at unitary and partially-quenched points, as
well as with different types of smearing were included in this study. By performing
multiple fits to different correlators we aimed to minimize the systematic errors
arising from different features of the operators. We considered two different lattice
volumes, 163 x 32 and 242 x 64, in order to estimate possible finite size effects for
the observables of interest. This work is at fixed lattice spacing corresponding to
a~! = 1.62(4) GeV. After discarding the possibility of significant finite size effects,
we extracted physical values for the masses of the N(939) and N(1535) states from
the large volume. The value for the nucleon mass obtained from an extrapolation

in both the lightest sea and valence quarks is
My = 957735108 MeV, (6.2)

where the first error is statistical and the second takes into account the shift
in the value obtained considering different sea-valence extrapolations. Less clear
signals were found for the nucleon parity partner N*, resulting in a more difficult
determination. From an extrapolation in both the lightest sea and valence quarks

we quoted

My = 1422789+%5 MeV, (6.3)

with the errors as in (6.2). This value is much lower than the experimental one.

However, after investigating the possibility of our N* decaying in the lighter state
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N + 7 at sufficiently light quark masses, we concluded that the state isolated in
this work is actually N*.

In chapter 5 preliminary results of the first study of the D, meson spectrum
in 2 + 1 dynamical flavours were presented. The same domain wall gauge back-
ground as in chapter 4 was considered, on the small volume, 163 x 32, at a single
lattice spacing. The strange quark was simulated as a domain wall fermion and
the charm quark as an overlap fermion. A dispersion relation analysis was per-
formed and the mass splittings between different J* channels extracted, in order
to compare them with their well determined experimental values. This study is
a very preliminary investigation of possible O(a™m?) errors suppression, due to
the implementation of the charm quark as an overlap fermion. Unfortunately, the
rather large statistical error bars do not allow us to draw any conclusion in the
comparison with experimental values. Increasing the statistics and implementing
smeared operators may reduce the error bars substantially. At this preliminary
stage, the effect of O(a?m?) corrections may be significant. Further investigations

at finer lattice spacing are in progress.



Appendix A

Gell-Mann Matrices

The standard basis for the fundamental representation of SU(3) is:
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Appendix B

Grassmann Variables

The fermionic fields are represented by anticommuting Grassmann variables, be-
longing to the fundamental representation of SU(3). The path integral over
fermionic fields will therefore involve the integration of these variables, as explained
below. The generators of the Grassmann algebra, {6;}, satisfy the anticommuta-
tion relation

{6:,6;} = 6:0; + 0,6;, (B.1)
where 4,5 = 1,...,n for a n-dimensional Grassmann algebra. The basic rules for

the Grassmann integration are

/d@, = 0, /dQ,G, = 1, (B2)

where for multiple integrals the integration measures {df;} anti-commute with

themselves and the {6;},
{6:,d0;} = {db;,dh;} = 0 Vi, j. (B.3)
We want to show that

/H d5.~d0,~e:cp(— Z @-M,-,JH,-) = detM, (B4)

i=1 i,j=1
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which represents the main application of the Grassmann algebra in the integration
of the partition function (eq.(2.83)).
We can write

ezxp(— z 6:M; ;0;) = Hezp(—éi ZMi,jﬂj) (B.5)
j=1

i,7=1 i=1

= ﬁ(l - 0_' i Mi,jioj.')’ (B.6)

i=1 7i=1
since only the first two terms in the expansion of the exponential will contribute,
due to 8? = 0. Due to (B.1), only the terms proportional to f; will contribute to
the integral, in particular those terms that contains the product 6,0, -- -6, since
repeated @’s give zero. They have the form!
Z 0,01 --0;,60 My, -+ - My, (B.7)
jl"'jn
Since the product of Grassmann variables in (B.7) is antisymmetric under the
exchange of any pair of indices j;, we can rewrite eq.(B.7) as
0191 e 9,,67,, Z Ejly“‘;janjl v Mnj,,a (B8)
Ji-Jn
where €, ... ;, is the € tensor in n dimensions. Recalling the definition of the
determinant of a matrix,
detM = Z €jl,'"1jnM1jl te Mnjn’ (B'g)
jl"‘jn
we have
n _ n n .
/ [1 d0:db:exp(— > 6:M;;8;) = detM (][] / d0;dg:6:0;)  (B.10)
i=1 i=1

ij=1

= detM. (B.11)

INote 610]'1 = —0]'19-1.
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