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Abstract

This thesis explores different aspects of QCD and QCD-like theories through the 

use of Lattice Gauge Theory (LGT).

This work is composed of three different projects: the first one investigating 

the scaling behaviour of pure SU(N)  gauge theories; the other two investigating 

and calculating hadron masses, using Domain Wall gauge configurations.

In the first project (chapter 3) the Lattice-Distorted Perturbation Theory 

approach to the lack of asymptotic scaling for Monte Carlo data is described. 

Quenched Monte Carlo data from different sources, different observables and dif­

ferent gauge actions are considered. The main purpose of our calculations is to 

show the importance of lattice corrections in the relationship between the running 

coupling g2(a) and the lattice spacing a, where g2{a) is either the bare lattice cou­

pling or some renormalized one. We show not only that the 0 ( a n) corrections are 

not negligible, but also that their coefficients turn out to be the order we expect. 

We consider a parametrization of the lattice /3-function which includes both the 

0 (a n) corrections and higher order terms in g2, since the observed lack of asymp­

totic scaling is presumably due to a mixture of the two effects: the presence of 

lattice artefacts due to the finiteness of a and the inclusion of only a finite num­

ber of terms in the perturbative expansion (renormalized coupling approach). We 

study these two effects both together and separately. Furthermore, we apply our
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ABSTRACT  ii

approach to SU(N)  data for the number of colours TV ^  3, and show the validity of 

the Lattice-Distorted PT method in particular at large N. All our investigations 

lead to a remarkable consistency both in the fitted A parameters and in the size 

of the 0 ( a n) corrections.

The second part of this work (chapter 4) uses lattice QCD for spectroscopy 

studies with Domain Wall gauge configurations generated with the Iwasaki gauge 

action by the RBC-UKQCD collaboration, at fixed lattice spacing. In particular, a 

study of nucleon masses is presented on two different lattice sizes. The calculation 

of the nucleon mass is a very good test for LGT since its value can be compared with 

the one very accurately determined by experiments. Furthermore, LGT can be a 

powerful predictive tool for other baryonic states whose experimental values are not 

known as accurately as the nucleon one. Here we present results using correlation 

functions at unitary, mvai =  m aea, and non-unitary points, multiple sources per 

configuration and several different types of smearing to improve the signal. Firstly, 

we determine the masses for each channel via a fit to individual correlators; then 

in order to increase the precision of the result, we fit the correlation functions 

simultaneously to the same mass M  for each channel. The study also includes the 

nucleon parity partner, TV*.

In chapter 5 preliminary results axe presented for a study of the D„ meson 

spectrum. The discoveries of new resonances D aj  some years ago have provoked 

much interest in heavy-light systems in general and in the D a mesons in particular. 

The existence and properties of the multiplet {0+, l +}, partner of the {0~,1~}, 

were predicted from the theory before its discovery. In fact the mass splittings be­

tween these different states can be understood in terms of a combination of heavy 

quark and chiral symmetry. In particular, the quantities mainly investigated in D a
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calculations are the parity and hyperfine splittings, in order to compare them with 

their experimental values, and their independence on the spin and on the parity 

respectively. We carry out this study using dynamical domain wall configurations. 

The novelty of our study is considering the charm quark propagating as an overlap 

fermion and the strange quark as a domain wall fermion. Also a quenched calcu­

lation is performed with identical valence quarks as the dynamical case in order 

to investigate sea quark effects.
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Chapter 1 

Introduction

Quantum field theories are the generally accepted framework for describing the 

electromagnetic, weak and strong interactions between elementary particles. The 

Standard Model is up to now the most successful description of the interac­

tions of elementary particles. This theory incorporates quantum electrodynam­

ics (QED), the electroweak theory of Glashow, Salam and Weinberg, and quan­

tum chromodynamics (QCD), the currently accepted framework to describe strong 

interactions. The Lagrangian describing these combined quantum fields has a 

SU(3)c  x SU(2)l x U (l)y  gauge symmetry1, with degrees of freedom respectively 

colour for SU{3), weak isospin for SU (2) and weak hypercharge for U( 1).

The elementary particles which are currently known to exist in nature are 

fermions, divided into two categories, leptons and quarks, and gauge bosons, which 

mediate or ’carry’ the fundamental forces between fermions. The photon 7 is the 

mediator of the electromagnetic interactions and is massless; the gauge bosons 

corresponding to the weak interactions are the massive W ± and Z\ finally, the 

strong force is mediated by a ’colour’ octet of massless gluons. Both leptons and

1A gauge theory is a theory which is invariant under a set of (gauge) local transformations, 
i.e. transformations that depend on space and time.

1



CHAPTER 1. INTRODUCTION  2

quarks can interact via the weak nuclear force and, excluding the neutral leptons, 

or neutrinos, via the electromagnetic force. Quarks, carrying the colour charge, 

are also subject to strong interactions, or in other words, SU(3)c  acts only on the 

colour degree of freedom. The strong interactions are flavour blind, but sensitive 

to colour. From this QCD takes its name. The fact that its gauge group S U (3) is 

non-Abelian makes QCD a very different theory from QED.

QCD presents two peculiar properties: asymptotic freedom and confinement, 

related to the strong interactions properties in the high and low energy regimes 

respectively. As discussed in more detail later in this work, the coupling constant 

in a non-Abelian theory becomes a running coupling. Asymptotic freedom tells 

us that at small quark separations the coupling of QCD becomes so small that 

quarks are like free particles: this allows perturbative methods to provide reliable 

predictions for physical observables in processes involving only high momenta or 

short distances. However, in order to study hadrons and quarks and understand 

better their features, perturbative methods cannot be applied, since the coupling 

constant becomes very large at scales corresponding to the size of hadrons (large 

distances, low energies). Quarks have never been detected in isolation, but only 

as constituents of hadrons: the non-observation of free colour charges is called 

confinement.

Lattice field theory is a non-perturbative method that provides a very pow­

erful tool in the investigation of low energy QCD. Lattice QCD, LQCD, was 

first proposed by Wilson in 1974 [1] to investigate the confinement mechanism 

of quarks. Until then all predictions of QCD were restricted to the perturbative 

regime. LQCD mainly provides a numerical way of testing low energy QCD by 

calculating the masses of the hadrons and then comparing them with their exper­
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imental values. In fact, the QCD Lagrangian (see Section 2.2) has seven unknown 

input parameters: the coupling constant and the masses of the up, down, strange, 

charm, bottom and top quarks. In the lattice formulation, once these free param­

eters have been fixed in terms of seven measured hadron masses for instance, the 

properties of the other particles made up of these quarks and gluons have to agree 

with experiments. Thus this formulation of a gauge field theory on a discretized 

Euclidean space-time, allows the evaluation of physical observables from first prin­

ciples. LQCD also may be used as a predictive tool for quantities difficult to be 

measured directly by experiments.

The natural framework to quantize the lattice theory is the path integral formal­

ism: the path integrals corresponding to expectation values of physical observables 

can be computed numerically via Monte Carlo simulations. This is an important 

advantage of the lattice formulation. However for years, the applicability of lattice 

gauge theory was strongly constrained by limited computational resources. There­

fore, the quenched approximation has been for a long time the main framework 

for lattice calculations: it consists in excluding the contribution from dynamical 

quarks, introducing many unphysical effects into lattice simulations. Fortunately, 

the availability of powerful computational resources, together with algorithmic ad­

vancements in recent years, allows us to simulate dynamical quarks. Of course this 

is much more expensive and constant further development is necessary in order to 

include the correct number of flavours as well as simulate at quark masses closer to 

the physical ones (in other words, require the correct flavour and chiral symmetries 

of QCD).

In the next chapter, after a brief review of the main features of QCD in the 

continuum, the basic ideas and concepts behind lattice gauge theories, and in
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particular lattice QCD, are explored. More emphasis will be given to those topics 

that will be of use for the calculations described later in this work.

Chapters 3, 4 and 5 explore different aspects of LQCD.

Chapter 3 investigates the generally known problem that the behaviour pre­

dicted from perturbation theory for asymptotically free theories like QCD has not 

been directly observed in Monte Carlo simulations. In particular, we show that the 

lattice artefacts due to the finiteness of the lattice spacing give the best explanation 

to such disagreement. We also explore the possibility that this discrepancy is due 

to the poor convergence properties of the perturbative series in the bare coupling 

constant, by replacing it with some renormalized coupling constants. Preliminary 

results of the same calculations applied to SU(N)  data, with the number of colours 

N  different from 3, are also presented. All the data considered are from quenched 

calculations. An estimate of the S U (3) A-jjg in the Wilson gauge action case is 

also given.

A study of the nucleon state and its parity partner is carried out in chapter 4, 

as part of a more comprehensive calculation of the baryon spectrum by the RBC- 

UKQCD collaboration. The nucleon correlators are obtained from simulations of 

domain wall QCD with one dynamical flavour approximating the strange quark, 

and two degenerate dynamical flavours approximating the up and down quarks. 

Two different lattice sizes are considered at fixed lattice spacing and several kind 

of smearing are implemented while generating the nucleon correlators. Our results 

for the nucleon mass are in good agreement with the experimental values.

Chapter 5 presents preliminary results of the D s meson spectrum on the same 

2 +  1 domain wall gauge background with a single lattice spaping. We implement 

the strange quark as a domain wall fermion and the charm quark as an overlap
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fermion, in order to make good use of the chiral properties of domain wall fermions 

and the 0 (a m c) error suppression from the overlap formalism. A quenched cal­

culation is also performed in order to investigate possible sea quark effects. We 

investigate the signal of different J p channels and perform a study of the dispersion 

relation, as a reflection of the 0 ( a 2m2) errors. We find that the parity splittings, 

at least for the two heavier mesons considered, are in agreement with the experi­

mental values within rather large errors. The hyperfine splitting is overestimated, 

in both the dynamical and quenched case. Our calculations seem to be affected 

by 0 ( a 2m 2): a finer lattice spacing is therefore necessary.

Finally, our conclusions are summarized in chapter 6.



Chapter 2 

Background Theory

LQCD calculations are non-perturbative implementations of field theory based 

upon the Feynman path integral approach. The technique essentially involves a 

rotation to the Euclidean metric and the discretization of space-time to obtain a 

finite hyper-cubic lattice. In this formulation the system takes the form of a clas­

sical four-dimensional statistical model. The path integrals can then be performed 

over the discretized space-time using numerical methods. The matter fields are 

treated as classical stochastic variables assigned to the points of the lattice, while 

the gauge fields are associated to the links. A fundamental requirement is that 

the continuum limit of the lattice action reproduces the correct continuum action. 

Before going into more details, let us have a closer look at the path integrals and 

the continuation to imaginary time.

2.1 Path Integral Approach

Path integrals are used to calculate the expectation values of the physical observ­

ables of a quantum field theory. In QCD, given some observable 0[ip, A J  in 

terms of the time-ordered product of gauge and quarks fields, its expectation value

6
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in the Feynman path integral approach is given by:

7

<0|TO[V, &  A„]|0> =  J  V1>Vi>VA„Oli>, i>, A J e ^ - H  (2.1)

where Z  is the partition function

Z  =  J  V ^ V i p V A ^ ^ ^  (2.2)

and S  is the action of the theory, related to the Lagrangian density C(ip, ip, AM) by

S[ip,ip, A J =  J  dAxC(ip,ip, Am). (2.3)

Since we are particularly interested in QCD, the expression for the QCD action is 

explained in section 2.2 .

The integral (2.1) is over all field values, ip(x), ip(x) and A ^ x),  and since space­

time is continuous, this means it is over an infinite number of degrees of freedom. 

Later in this chapter it is shown how to introduce a lattice of points in space and 

time and overcome this problem.

The second thing to notice is that the functional integral is complex and 

strongly oscillating. The way to overcome this issue is performing all calculations 

in Euclidean space rather than Minkowsky space. There is no loss of generality

in this, since path integrals in the Minkowsky space can be obtained by analytic

continuation of the Euclidean ones. Performing an analytic continuation to imag­

inary time, essentially by making the substitution t  —> — i t1, gives the Euclidean 

partition function as

Z E =  JVil>Vi>V  (2.4)

xOr in other words by performing a Wick rotation: xq —>• —ix o, £,• ->• X{ .
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where Se denotes the action in the Euclidean space. The partition function is now 

similar to those in statistical mechanics, weighted by the factor e~SE instead of the

Boltzmann factor. The integrand is now real and exponentially decreasing, that 

means numerically tractable. Note that all the indices E will be dropped from now 

on.

We now have a closer look at the QCD action, first in the continuum, then at 

its discretized form.

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-Abelian gauge theory invariant under 

colour S U (3) transformations. It is currently the best description of the strong in­

teractions and owes its name to the colour quantum numbers of quarks and gluons. 

The quarks belong to the fundamental representation of the colour S U (3) gauge 

group, while their antiparticles belong to the conjugate representation. These par­

ticles interact via the exchange of vector bosons called gluons, corresponding to 

the eight generators of the SU(3) group. The quarks also carry flavour degrees of 

freedom which are independent of the colour. At present, there are six flavours, 

forming three generations of quarks, (u, d), (c, s) and (£, b).

The Lagrangian density of QCD is given by

(2.5)

where ipi(x) is the fermionic field corresponding to a quark of flavour i with mass 

rrii'. it is a 4-component spinor and the conjugate field $  is given by

=  ^74- (2.6)
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Note that m* is a Nf x Nf mass matrix in the flavour space. The sum in (2.5) 

is over the number of flavours, a  and /3 run over the 3 colours, and the covariant 

derivative is defined as

]p =  -  igA^x)),  (2.7)

in terms of the vector gauge fields AA X) =  E o A°^S(a0 > with Aa, o =  l , ..., 8, de­

noting the Gell-Mann matrices, generators of the SU(3) group2. The field strength 

tensor is related to the vector potential through

=  d„Al -  d„Al -  gfabcApAl, (2.8)

where f abC are the completely antisymmetric structure constants of the SU(3) 

group and g the bare coupling constant. The covariant derivative (2.7), with the 

gauge fields A ^ x),  is introduced in order for the Lagrangian density to remain 

invariant under a local gauge transformation

S(x) =  eio«WA“, (2.9)

where cta(x), a =  1,..., 8, are a set of arbitrary SU(3) group parameters. The third

term in (2.8) is typical of non-Abelian gauge theories: it implies that the gauge

fields can self-interact, since the Yang-Mills piece in the Lagrangian density will 

involve triple and quartic interaction terms such as:

+ 9 f a U d „ K ) K A i  -  l ^ f a b c f a d 'A lA iA tA l .  (2.10)

This means that gluons themselves carry colour.

2The 517(3) Lie algebra generators satisfy [A0,Ab] =  i f abcXc and Tr(A°Ab) =  ^ -  in the
fundamental representation. See Appendix A for their expression.
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2.3 Lattice Discretization

10

At long distances, the self-interaction of the gauge bosons, or gluons, leads to an 

increase in the coupling strength, which allows only non-perturbative treatments, 

like lattice QCD, to extract physics from QCD.

The QCD action has to be transcribed onto a discrete space-time lattice in 

such a way to preserve all the key properties of QCD. The simplest choice is an 

isotropic hyper-cubic space-time lattice with lattice spacing a, the distance between 

two sites, equal in both spatial and time directions. The continuum space-time 

index x^ is replaced by a discrete index n^, only defined on the sites of the lattice, 

i.e.

Xp — Tip — 0, 1, ..., Ngti 1, (2.11)

where N Syt determines the size L of the lattice, LSjt =  Najta, in the spatial and time 

direction respectively. Consequently, the fermionic fields ^(n), i/j(n) are now only 

defined on the lattice sites.

For numerical simulations all the parameters need to be scaled by the lattice 

spacing according to their canonical dimensions3. Also the integration over the 

Euclidean space-time is replaced by the sum over all sites on the lattice, and the 

derivatives become finite differences, i.e.4

d ^ x )  =  d^in)  =  ^[V>(n +  A) ~  il>(n -  A)], (2.12)

where A is a unit vector in the fi direction (the hats will be dropped in the follow­

ing).

3For example, -¥  ^ aV ’(n)-
4 Note that a different choice could be made as long as the ordinary derivative is recovered in 

the limit a  -> 0.
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2.4 The Gauge Action

The gauge part of the action, the second term in (2.5), is constructed from el­

ements of SU(3) corresponding to transporters of the field from a lattice site n 

to a neighbouring site n +  fi, defined as C/(n, n -I- /z) =  t/M(n). Since these group 

elements live on the links connecting two sites, they are often called link variables,

Thanks to their unitarity, the conjugate U^{n) connects the two sites in the oppo­

site direction, i.e. U(n, n +  (i) =  W (n +  n, n) (see figure 2.1). Each link transforms 

under the SU (3) gauge group in the fundamental representation as

U(n, n +  fi) —► U'(n,n  +  ft) =  S(n)C/(n, n +  n)S^(n +  /i), S(n) €  SU(3). (2.13)

In section 2.5, we will see how U(n,n  4- n) allows to construct a gauge invariant 

bilinear term with fermionic fields, i.e. ”0 (n)[/(n, m)^(m), where C/(n, m) can be 

written as

U(n, m) =  ei s& , (2.14)

and in the limit of small a,

U(n,m) =  e%agÂ  ~  1 +  iagA^n),  (2.15)

where Ap(n) is the gauge potential on the site n. The simplest gauge invariant 

object that we can build from the link variables is the trace of the product of gauge 

links along a closed curve, referred to as a Wilson loop. The smallest and simplest 

such loop is the plaquette, graphically represented in figure 2.1,

Pnv(n) =  ^(nJC/^fn +  +  v)Ul{n). (2.16)
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Note that the order is important since the U^n) matrices do not commute. The 

Wilson gauge action [1] is defined in terms of these plaquette variables,

SG =  A  £ f t e 7 Y ( l  -  P ^ n ) ) ,  (2.17)
°  f J i < V

where the coupling, g, has been written in terms of the constant /3 =  ^  with 

Nc number of colours; the trace is over the colour indices and the sum is over 

all plaquettes on the lattice with /i <  v. It can be shown that the action (2.17)

reproduces the correct continuum limit expression when a —¥ 0. Substituting the

expression (2.15) for the link variable in eq.(2.16), we obtain

P  (71) =  eia9Ap(n)eiagAu(n+p)e-iagAp(n+v)e-iagAu{n) (2.18)

For small a, we can expand this expression in powers of a using

A ^ n  +  v) — A^(n) +  adyA^n) +  0 ( a 2); (2.19)

then applying the Baker-Campbell-Hausdorff formula

eAeB =  eA+B+UA'Bl+- (2.20)

gives

JV (n) =  eia2gF̂ n\  (2 .21)

with F^y given by

FftV =  d^Ay -  dyAp +  igiAft, Ay], (2.22)

analogous in components to eq.(2.8). Expanding eq.(2.21) gives

JV (n) =  1 +  ia2gF^(n) -  +  0 ( a 6), (2.23)
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which, once substituted in (2.17), will give

Sc  =  ai J 2  +  0 ( a 2)] -> f  d'xF^F'"' +  0 ( a 2).
n fi, v

Uv(n+M)

Figure 2.1: The plaquette in a two-dimensional isotropic lattice.

2.4.1 Improved Gauge Actions

As eq.(2.24) shows, the Wilson action suffers from 0 ( a 2) errors, which can be 

significant if the lattice spacing a is not small enough. Improved gauge actions 

attempt to reduce the 0 ( a 2) discretization errors further by adding irrelevant 

operators to the action, i.e. operators that go to zero in the continuum limit. 

This means adding some higher order terms to the action. The simplest choice are 

terms involving Wilson loops created from six links instead of four, as the standard 

plaquette. There are three types of six link loops that one can draw on the lattice: 

they are shown in fig. 2.2. The simplest example is the first one on the left, called

Ul{n+v)

13

(2.24)
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planar rectangular 1 x 2  Wilson loop, R^(n),

Rp v(n) =  U^rijU^n  +  ii)Uv(n +  2 n)Ul(n  +  n +  ^ U ^ n  +  v)Ul(ri). (2.25)

When the Wilson action is improved by adding this type of loop, the lattice gauge 

action becomes

Sg =  - ~ ( c o  ^ ^ K e T r [P „ „ (n ) ]  +  Cl £  ^ t t e T r ^ n ) ] ) .  (2.26)
0 n n <v  n fi<  v

The coeffiecients co,ci are determined by Renormalization Group considerations 

and this kind of improved actions are called Renormalization Group Improved, 

RGI. The main idea of the RGI actions is to have an action as close as possible 

to the Renormalized Trajectory RT, where there are no scaling violations: for 

clarity, simulations done using an action along the exact RT, would reproduce 

the continuum physics without discretization errors. The RGI actions are usually 

obtained through block transformations, which rescale the size of the system and 

suppress the short distance lattice artefacts with a proper choice of the additional 

parameters c*.

The most popular examples of this type of improved gauge actions in 2-parameter 

space (co, Ci) with the form (2.26) are the Iwasaki [2] and the Double Blocked Wil­

son (DBW2) [3] actions. Note that the two parameters follow the normalization 

condition cq =  (1 — 8ci), in order to ensure that the correct gauge action is re­

stored in the continuum limit. In particular, c\ =  —1.4069 for the DBW2 and 

Ci =  —0.331 for the Iwasaki gauge action.
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Figure 2.2: Six link loops: from left to right, the rectangle, the bent rectangle and 
the chair.

2.5 Fermions on Lattice

To discretize the Dirac fermionic action is less straightforward. Simply replacing 

the derivative in the Euclidean free fermion action

SF =  J  d*x$f(x)('ytidfi +  m f)’ipf(x) (2.27)

with the symmetrized difference and applying the other transformations considered 

in section 2.3 leads to

Sf =  5Z  +  A*) -  i ’in -  rf] +  £  rra/>(n)i/>(n). (2.28)
n,n n

This discretized expression of the action contains bilinear terms in the fermionic 

fields, '^(n)ip(n +  /i), which are not invariant under a local gauge transformation

^(n) -» S(n)ip(n) V>(n) —> ,0(n)S,t(n). (2.29)

In fact,

i/j(n)^(n +  fi) ->■ ip(ri)S*(ri)S(n +  +  //), (2.30)
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and this is not surprising since we are trying to compare two fields at two different 

points in space-time. The solution is in the link variables (2.15) which allow to con­

struct a gauge invariant bilinear term with fermionic fields, since U^n) transforms 

according to eq.(2.13). Therefore, a more sensible substitution to the derivative 

piece of the action, including appropriate gauge links, leads to a discretized gauge 

invariant version of the fermion action

SF =  ^ \ ^ n ) i p [ U p { n ) ^ ( n  + i i ) - U l { n - V ) ]
n,fj,

+  5Z m ^(n)^(n), (2.31)
n

commonly referred to as ’naive fermion action’.

2.5.1 Fermion Doubling

It is important to remember that the form of the lattice action is not unique: the 

naive fermion action in (2.31) is the simplest gauge invariant choice. However this

choice results in a lattice model with extra low energy modes which need to be

eliminated in order to obtain the correct continuum limit.

In order to show how these extra fermion species arise, we write eq.(2.31) in a 

more compact notation as

SF =  y ^ ( n ) M nmi/f(rn), (2.32)
n, m

where M is the fermion matrix, whose inverse gives the fermion propagator S. 

In particular, the free field propagator can be calculated in momentum space by 

Fourier transformations

Mnm =  j T  (2.33)
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with

S - 1(p) =  -  In sin (op/i) +  m. (2.34)
n  * ^

The naive free fermion propagator is then

a,  \ _  ™ - » E „ 7,.sin(ap„)/a , .  . . .
W  m? +  sin2(ap^)/a2 ’ ^

which reduces to

S(p) =  +  0 (a2) (2.36)m z +  p£

in the continuum limit a —> 0. The continuum propagator has a pole at p4 =  

i y / m 2 -I- p 2 corresponding to a Dirac particle, while the discretized propagator 

with m =  0 has a pole at each of the sixteen corners of the 4-dimensional Brillouin 

zone, —7T < ap^ <  7r, all giving sin (apM)/a  =  0. In d space-time dimensions there 

will be 2d species of fermions. This is known as the doubling problem.

The two most popular schemes for eliminating these extra fermions have been 

proposed by Wilson [1] and Kogut and Susskind [4], and are briefly described in 

the following two sections.

2.5.2 W ilson Fermions

Since one has the freedom to add an arbitrary number of irrelevant operators to 

the action, as these do not change the continuum limit, Wilson proposed to add a 

second-derivative-like term to the naive fermion action:

— CLT
(2.37)

where r is called the Wilson parameter and the 4-dimensional lattice Laplacian is 

defined as

djty(w) =  -^Pn{n)ip{n +  p) +  U^n -  p)^{n -  p) -  2ip(n)]. (2.38)
CL
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The effect of this term is to modify the mass m  in the propagator in momentum 

space by

m  +  -  ^ ( 1  -  cosfap^)), (2.39)
(Z

and this new mass term will diverge near the edges of the Brillouin zone as a —► 0. 

In practice, the result is to raise the masses of the unwanted fermions to values 

above the order of the cutoff, 1/a , so that they become infinitely heavy in the 

continuum limit and decouple from the continuum physics, or in other words, will 

not appear in the dynamics of the continuum theory. Unfortunately this removal 

of the doublers comes at the expense of the chiral symmetry which is now explicitly 

broken even at m =  0.

This is a very general problem. In fact the so called no-go theorem by Nielson 

and Ninomiya [5] shows that it is impossible to define a local hermitian lattice 

theory which has no doublers and at the same time is chirally symmetric. In 

section 2.6, after reviewing the idea of chiral symmetry, we will discuss how this 

can be recovered on the lattice. But first, we discuss briefly another very popular 

approach to the doubling problem.

2.5.3 Staggered Fermions

Another commonly used method to deal with the fermion doubling problem is the 

one proposed by Kogut-Susskind, known as staggered fermion formalism. This 

essentially consists in interpreting the additional fermions as different degrees of 

freedom and eliminating them through spin-diagonalization. In practice, a local 

change of the fermionic variables is performed,

=  Tnx(n), $(n) =  xW T ], (2.40)
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where

T„ =  1T 1T 1T 1T  (2.4i)

is a 4 x 4 unitary matrix diagonalizing all the 7  matrices in such a way that

3 3 7 ^  =  > ) » I .  (2-42)

The phase factors rj^n) satisfy

r i M  =  ( - l ) Bl+~+n' - 1, % (n) =  1. (2.43)

The action written in terms of x{n) x(n) is diagonal in the spinor space. 

Although x  is a 4-component spinor, all components interact independently and 

identically, i.e. they are decoupled, so we can reduce the multiplicity of naive 

fermions by a factor of four simply by discarding all but one Dirac component of 

X• The resulting one-component field is the staggered fermion field. The residual 

’doublers’ degrees of freedom are called ’tastes’: a single staggered fermion corre­

sponds to four tastes of continuum fermions in the 4-dimensional theory. In order 

to simulate such a single quark, the quark determinant that appears in the path 

integral (see eq.(2.83)) is replaced by a fourth root.

Let us notice that the one-component action for staggered fermions is invari­

ant under a modified U{ 1) chiral transformation: this remnant chiral symmetry is 

the reason why staggered fermions are preferred over Wilson ones when the chiral 

properties of the fermions dominate the dynamics, and they can be used to study 

the spontaneous breakdown of the remaining lattice symmetry U(l)  x U(l).  Oth­

erwise Wilson fermions may be preferred due to their correspondence with Dirac 

fermions in terms of spin and flavour [6].
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2.6 Chiral Symmetry

The fermionic field ip can always be decomposed into ’left’- and ’right’-handed 

parts as follows:

ip =  *I>r +  (2.44)

The projection operators PR,L =  |(1  ±  75), =  PR,L, where 75 =  270717273,

project out left- and right-handed field states,

</>r  =  P r $ ,  i>L =  P l iI>,

ipR =  ipPL, ipL =  ipPR. (2.45)

Chiral symmetry is the symmetry associated with the independent transformations 

of the left- and right-handed chiral states of a particle. Therefore, for Nf  quark 

flavours, QCD possesses chiral symmetry if the QCD Lagrangian is invariant under 

separate transformations of the left- and right-handed chiral fields, or in other 

words, possesses a SU{Nf)i,  x SU(Nf)R symmetry. This is equivalent to the 

SU(N f)y x SU(Nf)A symmetry, under the vector and axial transformations

SU(Nf)y  : i p e x9ip ip -> ipe~%e (2.46)

SU(Nf )A : i p ^ e ^ i p  ip^upe**9, (2.47)

where 9 can be written as 6ara, with ra the generators of flavour SU(Nf).  These 

two transformations are associated with the conservation of the vector and axial 

current respectively, J^x)  =  ip(x)/y^9ip(x) and J^(x)  =  ip{x)'yfi'y59ip(x). For non­

vanishing quark mass, the axial current is not conserved, and this symmetry is 

explicitly broken from SU(Nf)v  x SU(Nf)A to SU(Nf )v . This is why the chiral 

symmetry is often referred as 75 symmetry. Associated with this broken symmetry 

are (Nj  — 1) Goldstone bosons, i.e. the non-zero mass of the pions.
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2.6.1 Chiral Symmetry on the Lattice

In order for the fermionic lattice action to be invariant under the transformation

ip —»• e'^ip,  0  —► 0e*750, the lattice Dirac operator D,  i.e. the fermionic matrix in

eq.(2.32) in the massless limit, has to satisfy

75-P75 =  $ +- (2.48)

The naive fermion action (2.31) for m  =  0 is clearly chiral invariant since the Dirac 

operator was defined by simply taking the symmetric difference for the derivative. 

However, introducing for example the Wilson term in order to solve the doubling 

problem, spoils this symmetry, even for zero mass5.

As we already mentioned, this is a general problem, validated in the Nielsen- 

Ninomiya theorem [5]. However chiral symmetry can be recovered on the lattice 

without doublers if we only require that the Dirac operator satisfies the Ginsparg- 

Wilson [7] relation (GW)

75 Ip +  Ip 75 =  {75, Ip} =  a p ^ ip .  (2.49)

This corresponds to the following field transformation

ip —¥ ei'r50̂ 1~^^ip, ip —> 0 e*^1-^ 75, (2.50)

so that for an infinitesimal transformation, 0 «  1, the massless fermion lattice

Lagrangian L ~  ‘iplpip, with ip satisfying (2.49), will be invariant under such

transformation. Provided one can find a Dirac operator satisfying the GW relation, 

it is then possible to construct a chiral theory without the presence of the fermion 

doublers.

5The Wilson term is ~  analogous to a mass term
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Overlap fermions [8, 9] and Domain Wall fermions [10,11,12] are two closely re­

lated, but independently developed, formulations of the ’Ginsparg-Wilson’ fermions. 

The overlap fermions have exact chiral symmetry even at finite lattice spacing and 

contain the correct flavour symmetry. We will describe the overlap operator in sec­

tion 2.8 since it has been used in the D s project (chapter 5). Domain Wall fermions 

(DWF) also preserve flavour symmetry and restore chiral symmetry by introduc­

ing an infinitely long fifth dimension. In practice this dimension is finite, but the 

residual chiral symmetry breaking is in any case smaller than the Wilson fermions

case, for example, by a few orders of magnitude. As explained in next section, the

only effect of this chiral symmetry breaking is an additive renormalization to the 

bare quark mass.

2.7 Domain Wall Fermions

Kaplan [10] first proposed the idea of reproducing the behaviour of massless chi­

ral fermions in 2n dimensions from massive interacting fermions in 2n + 1  dimen­

sions. This formulation introduces an extra space-time dimension, usually denoted 

with s with length Ls. In the case of QCD, this means formulating the chiral 

four-dimensional theory by constructing a five-dimensional theory with massive 

fermions6. In the fifth dimension the mass term has the shape of a step function:

M5 s  > 0
m(s) =  < 0 s =  0 (2-51)

- M 5 s  <  0.V u

Such a mass defines a domain wall separating the two half-spaces s >  0 and 

s <  0 from each other. If the fifth dimension is infinite, there is a single chiral

6Note that the extra dimension contains only fermion fields: the gauge fields remain four- 
dimensional.
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fermion on the four dimensional boundary. But for a finite Ls on a lattice with 

0 <  s <  Ls — 1, if a domain wall is located at s =  0, there will necessarily be 

a second wall, an “anti-domain wall”, on the other boundary, s =  Ls — 1: the 

zero-modes of opposite chirality are bound to the opposite walls and their overlap 

will exponentally decrease. Therefore, while in the infinite-length limit for the fifth 

dimension, exact chiral symmetry is restored, for finite values of Ls these two states 

mix between the walls, with consequent chiral symmetry breaking. However, their 

mixing, and the chiral violation, is exponentially suppressed with the size of the 

fifth dimension, i.e. 0(exp(—a L s)/a).

2.7.1 DW F Operator

The formalism generally used to describe DWF is the one developed by Furman 

and Shamir [12]. Following their conventions, we denote the coordinates in the 

usual four dimensions as x , while the s =  0,1 ,..., Ls — 1 is the coordinate of the 

fifth direction, with Ls assumed to be even. The DWF operator acts on a five­

dimensional fermion field denoted as \I/(:z, s), while the four-dimensional fermion 

field is still denoted ip(x). The domain wall fermion action is then given by:

S%w =  5 3  s'), (2.52)
XyX'lSjS*

with the DWF Dirac operator defined as
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The D\ ^ part has the form of a Wilson action with modified mass term7:

Dl *  =  +
n=l

+  (M s -  4 ) ^ .  (2.54)

M5 is sometimes referred as the domain wall height The gauge field is replicated 

along the s direction, so that each four-dimensional slice in the fifth dimension 

has identical gauge fields (see figure 2.3). The D^s, term instead describes the 

propagation in the fifth dimension. It can be thought of as describing the coupling 

between the five dimensional slices:

Ds,s' =  2 ^* — +  0 - +  75)^-i,s' -  26S>S/]

— ~2^[(1 _  75 )$s,L a- 1^0,s' +  (1 +  75Ms,0^La-l,s ']-  (2.55)

771/  is the input bare quark mass and directly couples the two domain walls at 

s =  0 and s =  Ls — 1.

The four dimensional fermionic fields, ip(x), are constructed from the five di­

mensional ones, ^(a;,s), by projection of the different chiralities on the walls [12]

ip{x) =  PLV(x, 0) +  Pr $ ( x , Ls -  1) , ,
0 (z) =  $ ( * , £ , - 1)Pl  +  * ( z ,0)Pk, ^ ’0D;

where Pr7l are the projection operators defined in section 2.6.

2.7.2 Residual Chiral Symmetry Breaking

The discretization of the action seen in the previous section, leads to one left- 

handed fermion mode localised on the left boundary of the fifth dimension, and

one right-handed fermion mode on the right boundary: their wave functions decay

7Note that the modified mass makes the modes heavy and suppresses their propagation along 
the 4-d slices.
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Figure 2.3: Schematic illustration of the domain wall fermion formulation. The 
massless chiral states fall off the walls exponentially. The light blue slices give an 
idea of how the gauge fields are replicated along the fifth direction.

exponentially in the fifth dimension and, for finite separation between the two

boundary walls, they overlap in the middle of the fifth dimension. We see now

how to quantify the size of the consequent sym m etry breaking.

The chiral transform ation is defined to  ro tate  the fermions in the two halves of 

the fifth dimension8:
6V( x , s )  = ie(s)ra^ ( x , s )  , .
^ ( r r ,  s) = —ie(s)Tafy(x,s)

where

8 E q.(2.57) corresponds to the usual chiral transform ation for the four-dimensional quark fields,
Saip(x)  =  i r a 7 5 «/>(a:), 6a ip(x) = ip(x) iTa 7 5 .
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The axial current generated by this transformation is

L*~l L — 1
=  Y h  si9n(s — s~2— W fo  s )> (2-59)

«=0

where

= ^[y{x + V,s)(l + T»)Ul{x + fi)Taif/(x,s)

-  $ {x , s ) { l  -'y^)Ufi(x)ra^{x-\-p,s)].  (2.60)

The divergence of this current satisfies

A pAl  =  2 mf Jl(x)  +  2Jfy(x), (2.61)

where A^f(x) =  f(x)  — f (x  — p) is a finite difference operator and J$(x) is the

pseudoscalar density, written in terms of and ^  as

Jg(x) =  - $ { x ,  Ls -  l )PLr a^(x,0)  +  $(x ,0 )PRTa'&(x,Ls -  1)

=  -0 (a;)ra75^(x). (2.62)

Equation (2.61) differs from the corresponding continuum expression by the term 

referred as the “mid-point” operator, built from fermion fields in the middle 

of the fifth dimension and given by

r ) =  -  &(x, Ls/2  — l )PLr a^(x,  Ls/2)

+  Ls/2)PRr aV{x , Ls/2 -  1). (2.63)

This mid-point term adds an additional term to the axial Ward identity for DWF 

[12] which can be written then as

A/* <  -A“(x)0(y) > =  2m, <  Jg(x)0(y)  >  +2 < J ^ (x )0 {y )  > + i  <  6“0(y )  > . 

(2.64)
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The mid-point term in eq.(2.64), which vanishes when La —» oo [12], represents the 

contributions of finite Ls effects on the low-energy physics of domain wall fermions. 

Since in the continuum limit eq.(2.64) must agree with the corresponding identity 

in the effective continuum theory, the sum of the first two terms must be equivalent 

to an effective quark mass, meff  =  m /+ m rea, times the pseudoscalar density J${x):

J^{x) =  mres Jl(x)  +  0(a).  (2.65)

An especially important case is when the operator is itself a pseudoscalar density, 

0(y )  =  In this case, close to the continuum limit, eq.(2.64) becomes

(z) J$(y) > =  2(mf  +  mres) < J£(x)J£(y) >  . (2.66)

So the pseudoscalar meson masses vanish for m / +  mres =  0, i.e. the chiral limit 

for domain wall fermions is defined at rrif =  —mres, instead of m / =  0 as in the 

continuum limit. In other words, the effect of the violation in chiral symmetry is to 

shift the four dimensional bare quark mass, m /, by some small additive piece mres, 

the residual or anomalous mass. In practice the residual mass term is computed 

by means of the ratio [13]

R{t) ~  o , o ) > ’ (2-67)

and for sufficiently large t , where the effects of low-energy long-distance physics 

are dominant, behaves as eq.(2.65) and R(t) represents mres.

2.8 Overlap Operator

A possible operator that satisfies eq.(2.49) was proposed by Neuberger [9] after 

a long time since Ginsparg and Wilson suggested the relaxation of the chirality
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condition as a way around the no-go theorem. Writing the operator as

alpo =  1 +  75  V, (2 .6 8 )

without loss of generality, the search for D0 is algebraically equivalent to a search 

for a unitary, hermitian operator V. In fact, the hermiticity of V, V =  V \  comes 

from requiring the 7 5  hermiticity of 1pQ itself, eq.(2.48), while its unitarity comes 

by multiplying the GW relation on the left by 7 5

tyo +  =  a-Po-Poi (2.69)

so that

- ( l  + 75V) + i ( l  + V S ) = 4 ( 1 + Kt^ )(1 + 'r=v ) (2-7°)a a az
2 +  7sy  +  1̂ 75 =  1 +  75 V +  V75 +  V 2 (2.71)

=>V2 =  1. (2.72)

The expression proposed by Neuberger for V  can be written as

y  =  7,Dwlp) t (2 73)
y /D w (pY D w (p)

where Dw  (P) is the usual Wilson fermion operator9 with a negative mass param­

eter, Dw{p)  =  -Chv(O) — p/a  with 0 < p <  2. The reason why we get exactly 

massless quarks is that no fine tuning is needed for V  to have eigenvalues very 

close to —1. Note that D w {0) may have near zero eigenvalues, causing problems 

when inverting the matrix. This is why the additive mass parameter p is present: 

it does not affect the continuum limit since, as showed below, we only require the

9In general, it can be any valid lattice Dirac operator: it needs to be 7 5 -hermitian in order 
for V  to be unitary and hermitian.
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sign of the Dw  eigenvalues. In fact, substituting V  into eq.(2.68)

aip„ =  1 +  , Dw(p)  (2.74)
\JD w {pY D w (p)

=  ( 2 ' 7 5 )

= 1 + * J h J w ( p r  ( 2 ' 7 6 )

where we used that H  =  75Dw{p)  is hermitian. This expression can be written as

alpo =  1 +  75 sgn{H), (2.77)

where sgn(H) =  H/\ [H^  is the matrix sgn function of H. For the massive case, 

this gives10

a]p0(mq, p) =  p{ 1 +  ^ )  +  p( 1 -  ^ ) 7ssgn(H)  (2.78)

which is sometimes written as

alpo(p) =  p{ 1 +  p) +  p{ 1 -  //)t5sgn(H),  (2.79)

where p, — This is the form of the overlap operator used in chapter 5 to

simulate the charm valence quark.

The overlap fermions, despite their high cost, have very desiderable features, 

significant for both light and heavy fermions [75]. Apart from the essential feature 

of allowing an exact chiral symmetry on the lattice, in numerical simulations with 

overlap fermions there is no additive quark mass renormalization, no exceptional 

configurations and no flavour symmetry breaking. Not only they are free from 

O(a) and 0(am)  errors, but the 0 ( a 2m 2) and 0(AQCD^2m) errors are apparently 

small (see [75] for an in depth discussion and references).

10Note the factor p  is a rescaling factor in order to have the correct continuum limit.
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2.9 Monte Carlo Integration

30

As mentioned in section 2.1, the starting point for any calculation of hadron masses 

and matrix elements in lattice QCD is the path integral

j

and the QCD lattice action composed of both fermionic and gauge actions,

The fermionic piece Sf is bilinear in the quark fields, so we can integrate out the

The fermionic contribution is now contained in the highly non-local determinant 

and the integration is only on the gauge degrees of freedom. The direct computa­

tion of the fermionic determinant is numerically very expensive. This is why for a

calculations: it consists of setting the determinant in the integral equal to one. 

In perturbation theory, it is equivalent to turning off vacuum polarization effects 

of quark loops, which is unphysical and can introduce uncontrollable systematic 

errors. However, since quenched QCD differs from full QCD only in the weighting 

of the background gauge configurations, it was considered reasonable to perform

=  Y [ V U V ^ f T>i,f O, S l q c d  [U,rl),ip] (2.80)

with the partition function given by

I  n  VUVipfVipf:f,-SLQCD[U,1p,1p] (2.81)

Slqcd[U, ip, i>\ =  SF\U, i>, i>] +  SG[C/]. (2.82)

fermionic degrees of freedom by applying the Grassman algebra (see Appendix B) 

and obtain a determinant of the fermionic matrix for each flavour

J  Y [ V U d e t ( M f [U])01 (2.83)

long time the so called “quenched approximation” played a central role in lattice
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quenched simulations in order to understand and control other sources of errors. 

Fortunately today the advent of powerful computers together with the improve­

ment of the algorithms allow dynamical simulations to be performed. We now 

briefly describe how this works.

The number of integration variables in the integral (2.83) is normally extremely 

large, so generating the gauge configurations would be computationally extremely 

demanding11: this is why statistical methods must be used to evaluate such quan­

tities. Monte Carlo techniques can be used to generate a sample of gauge con­

figurations with probability distribution e~Sa û\  Note also that the probability 

distribution of the gauge configurations is highly peaked at the classical mini­

mum of the action, so that the functional integral (2.83) is dominated by those 

configurations around the peak: this is why one can generated a sequence of N  

importance-sampled gauge configurations according to the probability distribution 

given by

P[U\ =  ^ e ~ Sa[u,] J }  det(Mf [Uil). (2.84)
1

Therefore the expectation value of an observable O  becomes an ensemble average 

over N  gauge configurations

(2-85)
t= l

where the sum is now over the gauge configurations appropriately weighted as 

explained above.

Numerical algorithms generate a sequence of configurations known as Markov 

chain such that the C*+1 element is generated from the Ci one stochastically ac­

11 For instance, in a 163 x 32 lattice, the number of links U  is 4 x 163 x 32, and since they are 
S U (3) matrices, it corresponds to a total of 8 x 4 x 163 x 32 =  4194304 integrations. Furthermore, 
if each integration is approximated by n points, the number of terms to be calculated is n4194304.
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cording to some transition probability. The chain will converge to the desired 

probability distribution if it satisfies the two important conditions of detailed bal­

ance and ergodicity. Details of the Markov Chain Monte Carlo (MCMC) methods 

and different algorithms used can be found in literature: [14, 15, 16] axe some 

examples. Here we just remark the fact that in the generation of the gauge con­

figurations there is some amount of simulation, or Monte Carlo, time before the 

system reaches the equilibrium. When this happens, we say that the system is 

thermalized. The number of measurements required for thermalization depends 

on the observable considered or on the algorithm used for instance. In order to 

find this number, the plot of some observable (typically the Polyakov loop or the 

plaquette) versus the Monte Carlo time is considered: the thermalization typically 

starts at the onset of the plateau. The thermalized configurations are then the 

ones used to measure the observables of interest.

In this work the RHMC algorithm and its recent improved versions have been 

used [17, 18, 19, 20].

2.10 Autocorrelation

The fact that the gauge configurations are generated in a Markov chain as ex­

plained in the previous section, gives rise to correlations between the configurations 

in the molecular simulation time, known as autocorrelations. The autocorrelation 

function between two measurements of some observable O, separated by t molec­

ular dynamics time units, is defined as

N

p(t) =  ' £ ( O i - 6 ) ( O i+t- 6 ) ,  (2.86)



CHAPTER 2. BACKGROUND THEORY 33

where O  is the average over the N  measurements which, for ./V —> oo, gives the 

vacuum expectation value (C?), as defined in eq.(2.85). In order to measure the sta­

tistical dependence between gauge configurations, the integrated autocorrelation 

time is defined as12

In practice, the sum in the equation above is truncated at some tmaxi for values of 

t large enough, t  >  tmax, the measurements are sufficiently independent and p(t) 

becomes a random noise. Typically two measurements which are separated by 

2Tint in the molecular dynamics time can be considered statistically independent.

length b equal or bigger than 2Tjnt, and then from the blocked (or binned) data, 

carry out the analysis described in the following sections. Of course an important 

test is investigating possible variations in the final results as 6 is changed.

In order to calculate observables, hadron masses for instance, and test our theory 

against physical values obtained by experiments, we can use correlation functions, 

or correlators, constructed from interpolating quantum field operators whose form 

depends on the particular observable one wants to compute. In the previous section 

we saw how the expectation value of some observable can be estimated by an 

average over an ensemble of gauge configurations. In particular, the two point 

correlation functions are defined to be the vacuum expectation value of the time

12Note that p ( —t) =  p(t ) .

(2.87)

The standard way to deal with autocorrelations is to bin the data into blocks of

2.11 Correlation Functions
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ordered product of two interpolating operators at two times,

CAB(x , t ;0 ,0) =  |  J  W W O i ( J , l ) O l , ( 0 , 0 ) e- sw

=  (0 |f{OM (z,«)OU0, 0)} |0>

= (0|Oa(x, t)Og(0,0) |0>, (2.88)

where O#(0, 0) creates a hadron at the source location (0, 0) and Oa (x , t) destroys 

the hadron at the sink (if, t). In momentum space eq.(2.88) becomes

CAB(p, t ; 0,0) =  £ < 0 |O,4(a?, t)O^(0 , 0)|0)e - i?*. (2.89)
2

Expecially when we want to determine hadron masses from the lattice, the corre­

lators are usually projected to zero momentum. The two-point correlator can then 

be written as

CAB(t) =  £ < 010.4(1 , < )O U M )|0>. (2.90)
2

If we insert a complete set of energy eigenstates of the Hamiltonian and consider 

that Oi(t) evolves as eHtOie~Ht, eq.(2.90) becomes

CAB(t) =  £  (01 o ^  In ) (n  |Ob 10) e~m"^  (291)
2rrin

n

where the normalization (n\n') =  2m n6ntn> is used13. In the limit of large time the 

correlation function is dominated by the lowest states. In particular, the ground 

state mass of the particle ra0 can be extracted from the large time limit

lim CAB{t) A°ABe -mot (2.93)
f-foo

13Note the special case of a diagonal correlator, i.e. A  — B ,  gives

ln)|2<
2 mnCW = E  (2.92)
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where A^B =  - Due to the finite time extent of the lattice, the hadron

correlators will also receive contributions from the backward propagating state, so 

that the function to be fitted will actually differ from (2.93) and will depend on 

the particular hadron state. We will see examples in next two sections.

2.11.1 M eson Correlation Functions

For meson correlators, the operator O* =  Om takes the form of

0 M(x) =  (2.94)

where T is some combination of the 7  matrices which will give the spin and parity 

properties of the meson state to be studied. Since there is no unique correspon­

dence between particle states and operators, the request is that the operator has 

the same flavour content and same J pc  as the state in question, where J  is the to­

tal angular moment and P  and C  are the parity and charge conjugation quantum 

numbers. Table 2.1 shows the mapping of the T operators to the corresponding 

meson states.

Written in terms of the quark fields, the meson correlator is

c M(t) =  (2.95)
£

By performing Wick contractions of the Grassmann quark fields, the correlators 

can be reduced to products of quark propagators. If the propagator is given by 

(^“(rc)^ (0)) =  G“f(x ;0 ) ,  neglecting the disconnected part present for flavour 

singlet mesons, eq.(2.95) becomes

CM{t) =  -53(T r[G (0,i)rG (i,0)rt]), (2.96)
£
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where the trace runs over spin and colour indices which have been dropped for 

simplicity. The evaluation of this term means computing two point-to-all propa­

gators: the 75-hermiticity of the Dirac operator can be used though and the two 

propagators can be related to each other,

G(0,x) =  75Gt(x ,0)75. (2.97)

Equation (2.96) becomes

G „(t) =  -  0)75rG (x , O ) ! ^ ,  (2.98)
£

where ()u reminds us of the integration over the gauge fields U (see section 

2.9). Therefore only one inversion of the fermionic matrix per configuration is 

required in the degenerate quark case. In the flavour-singlet case, there will be 

another term in (2.96) which requires the computations of all-to-all propagators, 

i.e. G{x\x)  =  G(x, t;x , t ) ,  considerably more difficult and computationally more 

expensive, therefore neglected in most calculations.

Recalling eq.(2.93) and how the ground state mass is extracted, the backward 

propagating state needs to be included. So the two point function for large time 

is properly given by

lim CAB(t) ->• (2.99)
t-> OO

where T  =  Nt is the extent of the lattice in the time direction and the factor 

rj depends on the time reversal symmetry of the operators. For instance, the 

pseudoscalar meson state for degenerate operators will have 77 =  1 and

C(t) —» 2A°e~m°T/2 cosh[mo(^- — t)]. (2.100)
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Bilinear r jPC Example
Scalar I, 74 0++ fo or a
Pseudoscalar 75,7475 0"+ 7r ,K
Vector 7*5 7*74 1— P
Axial vector 7*75 1++ ai
Tensor 1+- h

Table 2.1: Meson states created by the quark bilinear interpolating operators ipFip. 

2.11.2 Baryon Correlation Functions

For baryons, the standard interpolating operator is composed of a local diquark 

operator and a spectator-like quark field:

Os,kAX) =  eabc£i j  [ ^ la  ( z M , « 5  M , ( 2 .1 0 1 )

where T is again one of the possible 16 Dirac matrices and C =  747214 is the charge 

conjugation operator. The superscript T denotes transpose and a&c, i jk  and a/36 

are colour, flavour and Dirac indices respectively. Note the totally antisymmetric 

tensor etJ on two indices (e11 =  e22 =  0, e12 =  1 and e21 =  — 1 ) ensures the 

operators have the correct flavour content. This baryon operator is colour singlet 

and has one free spinor index necessary for describing spin-| octet and spin-| 

decuplet baryons. More details will be given in chapter 4. In particular in this 

work (chapter 4) we will deal with nucleons. The operators corresponding to the 

14Note

c* =  c - 1 =  CT =  -C  

Cy^C-1 = - 7J.
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nucleon (proton) state are

Ni,a(x) =  eabc(uT'a(x)Cisdb(x))uca(x)

A W * )  =  tabc{uT'a( x ) C w bdb{x))uca(x), (2 .1 0 2 )

where u and d nominally indicate the up and down quark respectively. Note that 

a combination of these two operators can also be considered. Also, the baryon 

operators do not have a definite parity. They couple to both the negative and 

positive parity states, transforming under parity as

VOB,k,s(x^ = l tOB>kAx^ ~x)' (2.103)

Since 7 4  =  diag( 1 , 1 , —1 , - 1 ), the two upper components of Ob transform with 

positive parity while the lower two transform with negative parity. In particu­

lar it turns out that the backward propagating state has an opposite parity to 

the forward propagating one. And since the masses of positive and negative par­

ity states are not necessarily the same due to the spontaneously broken chiral 

symmetry, the projection operators P± =  | (1 ± 7 4 ) are used to project out pos­

itive and negative states. In general a baryon two-point correlator at time t, 

Cx{t) =  N(t)N*(0)), can be written as

C „(i) =  (1 +  74)A+e~m^  ±  (1 -  74)A+e-">+<T-'>

T(1 +  74M -e -m-<r - ‘) -  (1 -  74)A _e-ra- ‘, (2.104)

where the subscripts indicate the parity of the corresponding state and the (lower) 

upper sign corresponds to choice of a finite lattice with (anti-) periodic boundary 

conditions. Projecting out the positive and negative parity states gives

C],(t) =  Tr{P+CN(t)} =  A+e -m+‘ T

=  Tr{P-Cn(t) }  =  ±  A+e~m+ T̂~‘K (2.105)
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As we can see, there is no time reflection symmetry as in the meson case, since the 

forward and backward propagating states depend on different mass values.

The physical states represented by the operators (2.104) are not only the nu­

cleons, iV(940), with J p =  | +, but also the heavier state iV(1535), commonly 

known as N*, parity partner of the nucleon, J p =  \  . I n  order to find their cor­

responding masses, the positive and negative correlators (2.105) need to be fitted 

simultaneously. Note that contributions to the negative parity state come also 

from the interpolating operator (2.101) with T =  1 , i.e. tabc(uT,a{x)Cdb(x))u°a(x)', 

while its corresponding positive parity operator has a poor overlap with the nu­

cleon ground state. We will see more details in chapter 4. From now on we will 

indicate m + =  MN and m_ =  Mn* .

2.11.3 Effective M asses

We just saw how the ground state masses can be extracted from the correlators. 

However it is not always easy setting tmin in the fitting range, [tmin, tmax] , high 

enough that the lowest mass dominates the correlation function and the contami­

nation from higher mass states is not significant. A convenient way to proceed is 

to examine effective mass plots. The effective masses for mesons and baryons are 

defined as

=  cosh-1[ ^ + 1 )  +  C'( t _ 1 ) l
2 C(t)

.b  _  . , C j t + l ) .

C(t)

A plot of these functions versus t should plateau where the lowest mass term 

dominates and the excited states have decayed away: looking at this kind of plots 

then gives an indication on the fitting range to extract the ground state mass.
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2.11.4 Smearing

We saw that the main idea of creating mesons and baryons functions is to choose 

operators with a non-zero overlap with the state to be studied, i.e. with the correct 

quantum numbers J PC. In some cases it can be necessary to improve the signal 

from the data, in particular when we want to extract ground state masses since 

we need to look at large Euclidean times, where the noise increases. In this case 

we may like to increase the ground state amplitude relative to the first excited 

state. A way of proceeding is using smeared operators at the source and/or the 

sink which cover an extended region of the lattice, instead of a local point, in order 

to obtain a better overlap with the desired state. Since in most cases the source is 

constructed on a single time-slice, it is computationally cheaper to perform source 

smearing than sink smearing. All the smearing in this work are at source, apart 

from the case when both sink and source are smeared. The smearing operators 

used are wall/box [21], hydrogen-like [22] and Gaussian [23] operators.

2.12 Fitting Methods

In section 2.11 we gave examples of model functions that parametrize the large 

time behaviour of mesonic and baryonic correlation functions. In general we need 

to fit the numerical data, in our case correlation functions, C(t), to some known 

function model /(a ) , where a i,a 2,... represent the unknown parameters of the 

model. Assuming No  independent data points, the general approach is to find the 

model parameters a that minimize the so called uncorrelated defined as
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where C(U) is the average value of the ith data point over all the configurations 

N,
1 N

C(ti) =  (2-108)
k=l

with ei its standard error (see section 2.13 for more details). The number of 

data points to be fit minus the number of parameters to be determined gives the 

number of degrees of freedom, dof. With many degrees of freedom, we expect to 

get x 2 =  dof ±  y/2dof, so \ 2/dof  ~  1 indicates a good fit15.

In Monte Carlo simulations, the data points are more likely to be correlated 

since, for instance, the correlators necessary to obtain hadron masses are calculated 

from the same operator and gauge configurations. The function to minimize in

this case is the correlated x 2

Nd
X2(S) =  £  (C(u) -  f(a,  U M C o v - ^ m j )  -  f (a,  tj)). (2.109)

i,3= 1

Cov is the covariance matrix which describes correlations among the data points 

or correlators. It describes the distribution of the data around the mean value 

C(U) and it can be written as

1 N
C m j  =  jV (jV -l)  E ( C*(*') -  C W H ^ fe )  -  C(tj)).  (2.110)

Note that only when the number of measurements is much larger than the number 

of data points, N  »  ND, a good estimate of the covariance matrix is possible. In 

the other cases, the estimated covariance matrix introduces too much noise in the 

fit, or in other words, the correlated x 2 would be larger than one16. In this work

we will always quote uncorrelated fit results.

15The probability distribution for the best fit is the probability distribution for x 2> i e. for a
(do f)  dimensional vector: each component will be Gaussian distributed with a standard deviation
of unity.

18In the extreme case N  <  N d , the smallest eigenvalues are zero and the covariance matrix 
cannot be inverted.
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2.13 Error Analysis

Numerical simulations on the lattice introduce two sources of errors: statistical and 

systematic errors. The latter are due for instance to the finite size of the lattice 

and the finite lattice spacing. Systematic errors are also introduced in the fitting 

procedure described in the previous section, for instance in the choice of the time 

range. Usually the systematic uncertainties are considered negligible if smaller 

than the statistical errors. A calculation of systematic errors is often difficult since 

several sources of errors need to be included in the analysis. We will discuss finite 

volume effects, a possible source of systematics, in chapter 4, but in this work we 

will always quote statistical errors, except where specified.

The statistical errors come from the fact that performing the functional inte­

grals as seen in section 2.9 in order to compute observables, employs statistical 

sampling: the results then will have statistical errors. The so called standard error 

is simply calculated from the standard deviation of the average of our measure­

ments. Keeping the same conventions as in section 2.12, it is given by

Accurate methods for estimating the standard error and taking into account cor­

relations within the measurements are the jackknife and bootstrap methods. They 

are methods of regrouping a data sample in order to find a reliable estimate of the 

error for a quantity computed from that sample.

2.13.1 Jackknife M ethod

Starting from a sample of N  values, the jackknife method removes one of them in 

turn, leaving a sample size of N —1: the analysis is carried out on the reduced set of
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N  — 1 configurations and a best fit result for the parameters is obtained. Then the 

measurement is repeated N  times, each time removing a different element of the 

sample. The jackknife variance is the average of the squared deviation multiplied 

by N  — 1 to compensate for the bias introduced by the reuse of data in constructing 

the sample:

=  - i c r  -  c & W ’ (2-112)
k=l

where Ck(t) =  ^  £ £ lf¥ * <?<(*).

2.13.2 Bootstrap M ethod

The bootstrap method has similarities with the jackknife, but the main difference 

is that it involves a random selection of N  values, where N  is the total number 

of configurations. The quantity of interest is then evaluated from this sample. 

This procedure is repeated Nboat times, giving iV6oot replications of the quantity to 

estimate, one for each bootstrap sample. In this case, it is possible that the new 

set has repetitions: in fact we could even have Nboat > N.  The standard error 

is given by the standard deviations on the Nboat estimates or replications. The 

advantage of the bootstrap sampling method is that it does not assume any prior 

form for the distribution of the correlation functions.



Chapter 3 

Scaling and Asymptotic Scaling

The two main features of the strong interactions are asymptotic freedom and con­

finement, related to their properties in the high and low energy regimes, respec­

tively.

One way to show that QCD is the correct theory of strong interactions is 

through the coupling constant: the coupling extracted at different scales is unique, 

in the sense that its variation with scales is described by the renormalization 

group1. The consequence is that the coupling constant that appears in the QCD 

Lagrangian or action, see eqs.(2.5 & 2.7), becomes a running coupling in the full 

quantum theory and its dependence on the energy scale is quantified by the so- 

called /3-function. Through the perturbative study of the /3-function, it was shown 

that at very high energies the coupling becomes so small that the quarks are like 

free particles - hence the term asymptotic freedom.

In the following section we will explore in detail the concept of asymptotic free­

dom. We will see that it is necessary that lattice predictions of QCD reproduce 

the weak coupling perturbation theory in the limit of the bare coupling going to

xThe renormalization group equation describes how the parameters behave by changing the 
scale of the theory, in the case of our interest, the lattice spacing.

44
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zero, go ► 0. However, it is a generally known problem that the behaviour pre­

dicted from perturbation theory for asymptotically free theories like QCD has not 

yet been observed in Monte Carlo simulations of these theories. This discrepancy 

has been explained in the past [24] with the poor convergence properties of the 

perturbative series in the bare coupling constant.

This chapter is devoted to illustrate this possibility and in particular to explore 

an alternative method which explains the disagreement between Monte Carlo data 

and perturbative scaling through the presence of lattice artefacts.

3.1 Asymptotic Scaling

The term asymptotic freedom implies that the running coupling goes to zero as 

the momentum scale, //, goes to infinity, in accordance with predictions from per­

turbation theory. The /3-function quantifies the dependence of the coupling on the 

scale fi through the renormalization group equation, /3(/i) =

In a lattice regularised theory, g, is replaced by a-1 , the inverse lattice spacing. 

For a finite lattice spacing, a, the functional dependence of the coupling g(a) on 

a will depend on the observable considered. For sufficiently small a, however, a 

universal function g(a) should exist, which ensures the finiteness of any observable. 

The renormalization group equation for the bare coupling on the lattice is given 

by:

Pl(9o) =  ~ a~fa =  ~ 2bo9o ~  2&igo ~  2b2gg +  . . . ,  (3.1)

where the one- and two-loop coefficients, &o and &i, are scheme independent. In 

the case of SU(N)  pure-gauge theories, when the number of flavours is equal to
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zero, they depend only on the number of colours2 N:

b° =  W ^ N ’ <3'2)

The three-loop coefficient 62 is scheme-dependent and its expression in the lattice 

scheme, b%, can be obtained with a 2-loop calculation relating the lattice coupling 

to some other coupling for which 62 is already known. For the Wilson pure-gauge 

SU(N)  action, the three-loop coefficient on the lattice is [25]

Integrating the expression of the /3-function (3.1) up to three loops, one obtains 

a relation between g0 and a which is the usual expression for the running of the 

coupling:

■" ■ 3 S S S ’ <3'4)
where

fpr{9o) =  e ^  (b0gl ) “£ (1 +  ^ ( 6? -  #&o)0o)

=  e (6000)^(1  +  ^200) (3-5)

is the scaling function. The subscript ‘PT’ refers to quantities obtained from 

weak-coupling perturbation theory. The integration constant AL is the scale of the 

lattice regularized theory with dimensions of mass. It is the fundamental QCD 

parameter Aqcd ’measured’ in the lattice scheme, and can be related to Aqcd in 

other schemes by a multiplicative constant. In a pure gauge theory (i.e. number

of flavours Nf  =  0) there exists only one relevant coupling corresponding to a

single universal scaling function defined in equation (3.5). Every physical quantity

!Note the number of colours will be referred as N  in this chapter.
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with dimension of a mass must then be proportional to Al in the continuum 

limit. And the mass in lattice units, which is the quantity that one evaluates in 

numerical simulations, should vary as a function of go according to eqs.(3.4 h  3.5) 

as the coupling goes to zero, g% —> 0. This perturbative scaling behaviour is called 

asymptotic scaling.

However, this perturbative behaviour has not been observed for current pa­

rameter values in lattice simulations when the coupling used is the bare coupling 

g0. This old problem has been approached in the past by stressing the need for 

improved lattice coupling schemes, in particular by Lepage and Mackenzie [24]. 

In fact, using a renormalized coupling, gn, usually defined in terms of quantities 

obtained from a Monte Carlo simulation, enhances the convergence of the pertur­

bative series. Lattice perturbation theory expressed in terms of gn then becomes 

much more reliable. Of course the choice of the expansion parameter is not unique 

and its value can depend on the length scale relevant to the process considered.

An alternative point of view to the renormalized coupling approach has been 

developed [26] where the presence of cut-off effects due to the finiteness of the lat­

tice spacing are assumed to cause the disagreement between Monte Carlo data and 

the asymptotic scaling formula. Following this alternative scenario, we extended 

the work in [26] in different directions, as illustrated in detail in the rest of this 

chapter.

3.2 Lattice-Distorted Perturbation Theory

The approach described in this section, called “Lattice-Distorted Perturbation The­

ory”, stresses the need for lattice spacing corrections. Any quantity determined
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from a lattice simulation will suffer from systematic lattice spacing effects due to 

the discretization inherent in the lattice action used. Thus, for example, gluonic 

sector quantities in quenched SU(3), will have 0 ( a 2) errors associated with them 

when the Wilson action (see eq.(2.17)) is used. It is then natural to assume that 

eqs.(3.1 & 3.4) will need to be adjusted by these same 0 ( a 2) systematics whenever 

the scale is determined by such a gluonic sector quantity obtained from a Monte 

Carlo simulation. The coefficients of these 0 ( a 2) terms can be found from simple 

fits to the Monte Carlo data, and will be, in general, quantity dependent.

A complete parametrization of the lattice /3-function should include both the 

0 ( a n) terms and higher order terms in gJ, since the observed lack of asymptotic 

scaling is presumably due to a mixture of the two effects [26], [27]: (i) the presence 

of lattice artefacts due to the finiteness of a and (ii) the inclusion of only a finite 

number of terms in the PT expansion. We can then write the lattice /3-function 

in the following implicit form:

P l { 9 o ) =  ~ a ~ ^ ~  =  —^ ( M o  +  M o  +  b 2 9 o  +  ^ - i 0 o /+2)
f= 4

X  (1 +  C n { g l ) a n { g D ) .  (3.6)
n—1

This is simply eq.(3.1) with the addition of 0 ( a n) terms. The Cn are the (non- 

universal) coefficients of the 0 ( a n) terms and are, in general, polynomial functions

of So-

Equation (3.6) can be integrated giving

a _ 1 (0o) =  ,  2\ x  i 1  +  0 ? " 4) ' 1 x  t 1 +  X X ^ o ) / p t ( 0 o ) ) >  (3 -7 )
JPT{9o) i - 4  n - l

where fp r  is defined in equation (3.5). The 0 ( a n) term has been expressed in

terms of fp lT without any loss of generality since any difference between a and f p r
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is higher order and can be absorbed into the coefficients cJMq) for m > n .

We will use this ansatz for the asymptotic scaling function later in this work. 

For the moment we set the higher order coefficients in gq, dL, to zero and focus 

our attention on lattice-distorted PT, i.e. on the 0 ( a n) part.

While there can be no doubt about the presence of such 0 ( a n) corrections, their 

importance could be questioned: we will show that their contribution is actually 

never negligible and that their coefficients turn out to be of the order we expect. 

In order to make progress with fitting data, higher order terms in eq.(3.7) are 

truncated leaving the following simpler form:

—1 /  2 \  ^-L

0 {9o) =  M s f ) x
v  Sofprido) v  ffo fpr(ffo)

' r * v  fn  (/~ 12 \  fn ' (C 12 \U stdJP T V J  std) I* sidJ P T \ ^  std).

Here X„fl/ and Yn>y are respectively the leading-order (LO) and the next-to- 

leading-order (NLO) coefficients of the 0 ( a n) expansion, and there is no implicit 

summation over n and v. As described in the following, we performed both LO 

(Ynf y  =  0) and NLO fits3. The values of the indices n , n ' depend upon the 

lattice action and the quantities used to set a, as better explained below. The 

variation of the coefficients (^(gl) with go is truncated to leading order, hence the 

presence of the g% and g$ terms. The values of v and v’ will be discussed below. 

The 0 ( a n) terms are normalized so that for example X njV is the fractional system­

atic effect coming from the 0 ( a n) term at some standard (i.e. convenient) value 

of 0o? Gstd. The values of f) =  2N/g^ corresponding to the standard values G3td 

for the different actions considered are listed in Table 3.1. For the Wilson action, 

sections 3.6 and 3.7 show an analysis of SU(N)  data for N number of colours dif­

ferent from 3, so Table 3.1 also shows the /3std value for each N considered. These

(3.8)

3 When we had enough data, we also performed NNLO fits, as a test for the convergence of 
the series (see section 3.4).
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Action N /3std =  2 N /G 2std
Wilson 2 2.45
Wilson 3 6.0
Wilson 4 11.0
Wilson 5 17.45
Wilson 6 25.2
Wilson 8 45.5
Iwasaki 3 2.6
DBW2 3 1.04

Table 3.1: Values for the “standard” coupling, Gatd, expressed in terms of (3std =  
2N /G 2atd, for the different actions and number of colours considered in this work.

values for Gstd were chosen in order to have the lattice spacing a -1 ~  2 GeV at 

g o  — G std-

3.3 Setting the Scale and Data Sets

Lattice calculations set the scale a-1 by calculating some (dimensionless) quantity 

on the lattice, f2L, and comparing it with its experimental (dimensionful) value,

Once one dimensionful low energy observable is specified, all other dimensionful 

quantities can be expressed in terms of it. We consider different physical quantities 

to set the scale a, listed in the first column of Table 3.2: the hadronic scale ro [28], 

the string tension o and the critical temperature Tc. The method of lattice planes 

also provides an alternative way to set the scale a [33]. The length scale rc is an 

additional reference scale analogous to (but smaller than) ro, defined through the 

force F(r)  between static quarks. The range where one has the best information
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Gauge Action
Wilson Iwasaki DBW2

ro,rc
o,Tc

e>(sV) + <%V)
0 ( a 2) +  0 ( a 4)

0 ( g 2a2) +  0 ( g 2a4) 
C*(a2) +  0 ( a 4)

0 ( g 2a2) +  0 ( g 2a4) 
0 ( a 2) +  0 ( a 4)

Method Fermionic action
of Planes 0 ( g 2a) +  0 ( a 2)

Table 3.2: LO and NLO correction terms in the fitting function (3.8) for each 
lattice quantity and each action used.

on F(r)  is at distance of around 0.5 f m  [28]. One then calculates r(c) satisfying 

the equation

r2F (7')|r=r(c) =  c, r0 =  r(1.65) «  0.5/m . (3.10)

When one is interested in short distance properties of the theory, it is convenient 

to choose a smaller reference length scale [29],

r2F(rc) =  0.65, (3.11)

related to r0 through rc/ r 0 =  0.5133(24) [29]. This smaller length scale allows one 

to work with larger beta values without being constrained by finite volume effects.

In Table 3.2, the values for n, n', v, 1/  in eq.(3.8) for both the LO and the 

NLO terms are listed. As already mentioned, these different values for n, n', z/, v' 

are due to the different discretization errors associated with the different actions 

considered. Note that the behaviour of the scale obtained from the method of 

planes is different from the other cases with the Iwasaki action. This is because 

it is derived from the meson masses and thus the quark part of the action has to 

be included. The leading scaling violation of the quark clover action considered in 

[30] is 0 ( g 2a).
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Our sources of SU(3) data are [29], [30] and [31]. In [29] the quantities ro and 

rc are considered. In particular, the ratio r^fa is evaluated for the usual Wilson 

plaquette action, as well as for the Iwasaki and DBW2 actions. [29] also defines 

the additional reference scale rc for ft >  6.57 only. Since we wish to use rc values 

over the entire (3 range, we evaluate rc for ft <  6.57, by locally interpolating the 

force F(r)  between static quarks using data taken from [32]. The results for the 

full P range are listed in Table 3.3. Tables 3.4 and 3.5 show the ro/a values used 

for the Iwasaki and DBW2 actions respectively.

The string tension data used for the Wilson and Iwasaki actions are listed in 

Tables 3.3 and 3.4 respectively. The string tension a  is commonly defined through 

the static quark potential

V(r) =  const. +  err+  — + 0 ( - r), (3.12)
r rz

where 7  is an universal factor depending only on the dimensions of the system.

The physical temperature for a given lattice spacing a, is related to the time 

extent of the lattice Nt by

1  =  Nta(0), (3.13)

thus the temperature can be varied by either changing Nt or by varying the lattice 

spacing (which can be achieved by changing the coupling). To determine the 

critical temperature at a phase transition4 one usually studies the temperature 

dependence of an order parameter, like for example the Polyakov loop. The general 

idea consists of fixing JVt, while varying the gauge coupling /? or g, and therefore 

implicitly the lattice spacing, and, via eq.(3.13), the temperature. In this way one

4The phase transition is characterized by the fact that for T  < T C the confining string tension 
is non-zero, a  ^  0, while for T  > T C we have a  =  0.
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moves the lattice system through the phase transition obtaining

L  =  Nta(f)c), (3.14)

where fic is the critical coupling. Tables 3.3, 3.4 and 3.5 show the values of at 

given Nt for the Wilson, Iwasaki and DBW2 actions respectively.

The last column in Table 3.4 contains the values for a-1 using the method 

of lattice planes [33] obtained by [34] using the meson masses from [30]. In this 

method, lattice physical planes for masses and decay constants are defined in 

order to set the scale and to determine physical quantities, without relying on 

chiral extrapolations. Specifically on the plane (My a , (Mpsa )2), the intercept of 

the curve My a =  Mk */Mk \Z{Mps (i)2 with the linear fit of the lattice data defines 

Mkcl and The lattice spacing a can then be set by comparing one of the

values found with its well determined experimental value.

Finally, Table 3.6 shows all the values for a~l we will use in our fits to eq.(3.8). 

These a~l were obtained from Tables 3.3, 3.4 and 3.5 using the following values5:

ro =  0.49 f m  rc =  0.49 x 0.5133 f m

(3.15)

Tc =  300 M eV  a  =  (440 M eV)2.

All the tables of data show the references from where the data are taken.

5Note that those are the correct values for SU(3 ) .  For N  ^  3, if we fix one of the above 
quantities to its SU(3) value, the others are expected to differ from their respective quoted 
values by an 0 ( 1 / N 2) correction.
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3.3.1 D ata

54

p Pc rc/a a^fd Nt
Ref [35] [31] [35]

5.6925
5.6925(2)

0.3970(19)
4

5.6993 0.3933(16)
5.7995 0.3148(12)
5.8

5.8941(5)
0.3133(13)

6
5.8945 0.2607(11)
5.95

6.0624(12)
2.53(1)

8
6.0625 0.19466(73)
6.07 3.09(1)
6.2 3.79(2)
6.3380

6.3380(23)
0.12930(69)

12
6.4 5.02(2)
6.57 6.25(4)
6.69 7.29(5)
6.81 8.49(5)
6.92 9.82(6)

Table 3.3: SU(3) Wilson data used to set the scale, a. rc/a  values for /? >  6.57 
are taken directly from [29], and those for /3 < 6.57 are obtained using force data 
from [32] as described in the text.
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(3 & ro/a era2 Nt a" 1 [GeV] 
method of lattice planes

Ref [36] [30] [36] [30, 34]
2.1551(12) 2.320(11) 3

2.187 2.494(35) 0.2157(32) 1.0238(116)
2.214 2.621(43) 0.1949(25) 1.0769(132)
2.247 2.801(28) 0.1713(18) 1.1314(141)
2.281

2.2879(11)
3.001(36)
3.026(5)

0.1487(17)
4

1.1643(158)

2.334 3.289(23) 0.1241(14) 1.2587(147)
2.416 3.824(13) 0.0921(10) 1.4228(202)
2.456 4.080(16) 0.0800(16) 1.5410(160)
2.487

2.5206(24)
4.286(15)
4.511(8)

0.0725(11)
6

1.5971(202)

2.528 4.570(21) 0.0637(11) 1.6989(212)
2.575

2.7124(34)
4.887(16)
5.999(24)

0.0561(7)
8

1.8119(220)

Table 3.4: SU(3) Iwasaki data used to set the scale, a. The ro/a data come from 
two sources: [29] for the critical /3 values, [30] for the other ft values.

(3,PC ro/a Nt
Ref [29] [37]

0.75696(98) 2.225(12) 3
0.82430(95) 3.036(17) 4
0.9636(25) 4.556(26) 6
1.04 5.452(27)

Table 3.5: SU(3) DBW2 data used to set the scale, a.

3.4 Details of the Fit and Results

We perform a simple least chi squared fit of the data for a-1 in each column of 

Table 3.6 to eq.(3.8).

Both LO and NLO fits were performed as a test of the convergence properties of 

the lattice distorted perturbation theory approach. As a check, for those quantities
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o '_1 [G eV] from

0 r c T*0 y / a T c K  - K * A c tio n R ef.
5.6925 1.2000(3) Wilson [29]
5.6925 1.108(5) Wilson [31]
5.6993 1.119(5) Wilson [31]
5.7995 1.398(5) Wilson [31]
5.8 1.404(6) Wilson [31]
5.8941 1.8000(11) W ilson [29]
5.8945 1.688(7) Wilson [31]
5.95 1.985(8) Wilson [29]
6.0624 2.4000(34) W ilson [29]
6.0625 2.260(8) Wilson [31]
6.07 2.424(8) Wilson [29]
6.2 2.973(16) Wilson [29]
6.3380 3.6000(99) Wilson [29]
6.3380 3.403(18) Wilson [31]
6.4 3.938(16) Wilson [29]
6.57 4.903(31) Wilson [29]
6.69 5.719(39) Wilson [29]
6.81 6.661(39) W ilson [29]
6.92 7.704(55) Wilson [29]
2.1551 0.934(4) 0.9000(13) Iwasaki [29]
2.187 1.004(14) 0.947(7) 1.024(12) Iwasaki [30]
2.214 1.056(17) 0.997(6) 1.077(13) Iwasaki [30]
2.247 1.128(11) 1.063(6) 1.131(14) Iwasaki [30]
2.281 1.209(15) 1.141(7) 1.164(16) Iwasaki [30]
2.2879 1.219(2) 1.2000(16) Iwasaki [29]
2.334 1.325(9) 1.249(7) 1.259(15) Iwasaki [30]
2.416 1.540(5) 1.450(8) 1.423(20) Iwasaki [30]
2.456 1.643(6) 1.556(16) 1.541(16) Iwasaki [30]
2.487 1.726(6) 1.634(12) 1.597(20) Iwasaki [30]
2.5206 1.817(3) 1.8000(52) Iwasaki [29]
2.528 1.840(8) 1.743(15) 1.699(21) Iwasaki [30]
2.575 1.968(6) 1.858(12) 1.812(22) Iwasaki [30]
2.7124 2.416(10) 2.4000(98) Iwasaki [29]
0.75696 0.896(5) 0.9000(11) DBW 2 [29]
0.82430 1.223(7) 1.2000(14) DBW 2 [29]
0.9636 1.835(10) 1.8000(54) DBW 2 [29]
1.04 2.196(11) DBW 2 [29]

Table 3.6: Values for a 1 obtained from data in Tables 3.3, 3.4 and 3.5 by using 
the constants in eq.(3.15).
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with enough data points, we included the next-to-next-leading term in the fit, 

but the results were entirely consistent with the NLO fits. Values for A£,, the 

coefficients X  and, in the NLO case, Y , with corresponding x 2? are listed in Tables 

3.7, 3.8 and 3.9 for the Wilson, Iwasaki and DBW2 data respectively. The second 

column of these tables specifies the form of the scaling function /pp, eq.(3.5), used 

in the fit, i.e. if the 3-loop term d \  is included or not. Notice that the 3-loop 

coefficient is not known for the Iwasaki and DBW2 actions, so d% was left as a free 

parameter in the 3-loop fits to data from these actions.

3.4.1 Comments

Some comments about the results in Tables 3.7, 3.8 and 3.9 are necessary. The 

X  parameters from the NLO fits are compatible with those from the LO fits. 

Furthermore in the NLO fit, the coefficient Y  is an order of magnitude smaller 

than the coefficient X.  This suggests that the expansion in fp r  forms a convergent 

series, with most of the cut-off effects being due to the leading order term at these 

P values. Note also that the size of the cut-off effects for the Wilson data at the 

“standard” coupling /3atd =  6.0 is around 20-25%, very compatible with what was 

found previously [26].

It is interesting to note that the X  coefficients for the Iwasaki action for ro 

are significantly smaller than the 20-25% values obtained in the Wilson case. This 

suggests that the Iwasaki action is optimized to reduce the lattice artefacts in this 

quantity. It is difficult to draw similar conclusions for the DBW2 case since there 

are too few data points available.

From the x 2 values in Tables 3.7, 3.8 and 3.9, the quality of the LO and NLO 

fits is generally excellent. Note also that the x 2 values for the NLO fits are smaller
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than for the LO ones (with the single exception of the DBW2 action where there 

are a very small number of data points).

Let’s notice that if

g'2 =  g2 +  r ig4 +  r2g6 +  ... (3.16)

is the relation between the running couplings in two different schemes, the lambda

parameters in those two schemes are related by

A' =  Aeri/26°, 6'2 =  b2 -  biri +  b0(r2 -  r\)  (3-17)

where the second expression is the relation between the 3-loop coefficients, which

will be useful later in this chapter.

We can convert Ax, to the generally used M S  scheme, Ajjg. In the Wilson 

case, the known conversion factor [40] is

( ^ S ) =  38.852704 exp ( - ^ )  (3.18)

with N  number of colours. For SU(3) this gives the value listed in Table 3.10. 

As can be seen from Table 3.7, the Ajjg  values for the three quantities considered 

in the Wilson case are consistent to within ~5% for the 3-loop NLO case. These 

differences are, at some level, due to the uncertainty in the physical values used, 

eq.(3.15). Also, since the data studied here is quenched, we cannot expect perfect 

agreement for all lattice quantities.

The Ajfs  values from the 2-loop NLO case are ~15% lower than the 3-loop 

case, in agreement with what expected due to the addition of the d\g§ term in 

the definition of the 3-loop fpr,  eq.(3.5). Since the range of gq is very modest, 

this 3-loop term is essentially a constant for the data considered, and in the SU(3) 

Wilson case we have d% =  0.1896.
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Due to the very good agreement between them, we take our best estimate of 

Ajjs using rc and Tc data in the 3-loop NLO case. We assign an error of ~  10% to 

this value due to uncertainties in the physical estimate of rc and Tc, and to allow 

for the small discrepancy between the Ajfg values obtained from the string tension 

a  and from rc and Tc. We therefore have (using eq.(3.18)):

A ^ °  =  21 7 ± 2 1  MeV, (3.19)

similar to previous lattice determinations in quenched QCD [26], [38].

Using the conversion factors in Table 3.10 for the Iwasaki and DBW2 data 

unfortunately does not produce sensible values for Aj^g. Moreover, previous cal­

culations of Ajjg from improved actions found similar problems [39]. However 

despite this concern, the 2-loop Iwasaki Al values are compatible for all the phys­

ical quantities considered, allowing for some additional uncertainties in the values 

in eq.(3.15). Introducing the 3-loop term in the fit with a free coefficient spoils 

this agreement. Note however, that the coefficient of this term, > should be 

scheme-dependent and not quantity dependent. From Table 3.8 it is clear that d\  

is highly unstable, and we therefore discount these 3-loop fits.

Table 3.9 shows the results obtained from the DBW2 data. In this case, the 

small amount of data points available did not allow an accurate investigation. 

However, the NLO 2-loop fit performed in the r0 case confirms the validity of our 

approach.

We plot the data and the fits for a-1 versus j3 in figures 3.1 and 3.3 for the 

Wilson and the Iwasaki actions respectively. In order to show the high level of 

agreement between the data and the lattice distorted perturbation theory fits, we 

plot the ratio of the data to these fits in figures 3.2 and 3.4: they show that the
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0 ( a ) -loop Quantity A  L X Y X2/ d o f A-m s

LO 2 Tc 6.41(2) 0.210(4) - 2.2 184.8(6)
LO 2 Tc 6.163(7) 0.1776(4) - 55 177.6(2)
LO 2 a 5.94(2) 0.194(2) - 2.1 171.1(7)
LO 3 Tc 7.48(2) 0.193(4) - 1.2 215.5(7)
LO 3 T c 7.250(8) 0.1683(4) - 41 208.9(2)
LO 3 a 6.97(3) 0.184(2) - 1.5 200.9(8)

NLO 2 Tc 6.50(3) 0.27(2) -0.047(16) 0.87 187(1)
NLO 2 T c 6.44(3) 0.231(5) -0.020(2) 0.44 185.6(8)
NLO 2 a 6.09(6) 0.23(1) -0.016(5) 0.40 175(2)
NLO 3 Tc 7.54(4) 0.23(2) -0.031(16) 0.69 217(1)
NLO 3 T c 7.53(3) 0.213(5) -0.016(2) 0.87 216.8(9)
NLO 3 a 7.12(7) 0.21(1) -0.012(5) 0.42 205(2)

Table 3.7: Fit results for the SU(3) Wilson data using both LO and NLO and both 
2- and 3-loop perturbation theory. All the A values are in MeV.

agreement is at the sub-percent level.

0(a) -loop Quantity A L X y C?2 X2/  dof
LO 2 to 225.6(5) 0.0563(4) - - 5.4
LO 2 Tc 235.5(7) 0.1704(9) - - 5.1
LO 2 a 222(1) 0.163(3) - - 0.63
LO 2 K - K * 216(3) 0.073(4) - - 0.98
LO 3 TO 490(80) 0.040(2) - 0.5(2) 0.6
LO 3 Tc 290(20) 0.158(4) - 0.10(4) 0.5
LO 3 a 350(140) 0.13(2) - 0.3(3) 0.4
LO 3 K - K * 2(2) xlO3 0.006(6) - 4(5) xlO3 0.69

NLO 2 ro 238(2) 0.083(3) -0.0099(12) - 0.44
NLO 2 Tc 241(2) 0.193(7) -0.007(2) - 0.97
NLO 2 a 231(7) 0.21(3) -0.02(1) - 0.39
NLO 2 K - K * 300(50) 0.35(11) -0.4(2) - 0.59
NLO 3 TO 260(70) 0.08(2) -0.008(4) 0.05±0.14 0.47
NLO 3 a 110(30) 0.4(1) -0.06(2) -0.27(6) 0.3
NLO 3 K - K * 160(50) 0.50(9) -0.57(11) -0.28(9) 0.67

Table 3.8: Fit results for the SU(3) Iwasaki data using both LO and NLO and 
both 2- and 3-loop perturbation theory. No NLO fit for the Tc data is possible due 
to the small number of data points available. All the A values are in MeV.



CHAPTER 3. SCALING AND ASYM PTOTIC SCALING 61

G(a) -loop Quantity A L X Y d\ X2/dof
LO 2 ro 1352(8) 0.0550(3) - - 2
LO 2 T± c 1894(7) 0.4995(7) - - 141
LO 3 TO 1500(200) 0.053(2) - 0.02(2) 3

NLO 2 TO 1420(60) 0.07(1) -0.008(7) - 2.9

Table 3.9: Fit results for the SU(3) DBW2 data using both LO and NLO and 
both 2- and 3-loop perturbation theory. Due to the small number of data points 
available in this case, no LO 3-loop fit for Tc was possible, and the only NLO fit 
possible is the 2-loop ro case. All the A values are in MeV.

Action Ref.

Wilson 28.81 [40]
Iwasaki 28.81/59.05 [40],[41]
DBW2 1/45.4 [42]

Table 3.10: Conversion factors for the A values between the M S  and lattice 
schemes in SU(3) case.

3.5 Renormalized Coupling Fits

As already mentioned, performing the fit to Lattice-Distorted PT with a renormal­

ized coupling constant instead of go, means fitting the data to the fitting function 

in eq.(3.7) with <7# replacing g0.

The point of using a renormalized coupling is to enhance the convergence of the 

go series, i.e. to re-sum the higher order terms by using a Monte Carlo quantity 

whose perturbative expansion is known and can therefore be used to define a 

renormalized coupling. For example, the coupling constant in the so called energy 

scheme [43], gE, is defined as

9e =  “  T?TrUplaq) =  gl +  +  ..., (3.20)1V
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8

g()-PT fit (o  data)

O  Monte Carlo data from a
Q  Monte Carlo data from T

X Monte Carlo data from r.6

solid lines are NLO LD-PT fits

/a
4

2

76.86.2 6.65.8 6 6.45.6

P

Figure 3.1: P lot of the SU(3) Monte Carlo d a ta  a -1 obtained from observables 
with the Wilson action together with the NLO 3-loop fits (using the param eters 
in Table 3.7).

using the weak expansion of the average plaquette [46, 47j, [25],

(1 — -jyTrUplaq) = C\gl +  c2^q +  c3<?o +  ••• (3.21)

where

N 2 -  1 iV2 -  1 1
Cl =  8N C2 =  — ( ° ° 2043-  3 2 ^ )  <3-22>

N( N2 -  l ) / r t_ o r , 0.01812 0.01852
C3 =  8 (0.006354 -  +

Many other possibilities for renormalized schemes have been used, i.e. gE2 |38], 

g-MS [44], gVI and g y n  [24]. The idea of the gE 2 scheme, for example, is to introduce 

a coupling by inverting the relation

(1 — ~ jyT rU p iaq) =  c \ g E2 +  C2gE2i (3.23)



CHAPTER 3. SCALING AND ASYMPTOTIC SCALING 63

1.02

1.01

,1
53 0.99

0.98

0.97

0.1 0.2 0.3 0.4 0.5

Figure 3.2: Plot of adata/ a fit versus aPT for all SU(3) d a ta  in the W ilson case, 
where a/}T = h i / f p r i d o), using the NLO 3-loop fit.

corresponding to truncating  the weak expansion (3.21) after the second term. For 

the M S  coupling we have:

^ “  V TrfW  +  ° 025' (3'24)

The definitions of gvi  and g y u  are related to the strength of the sta tic  quark- 

antiquark potential. If c t i (q )  is the coupling strength  of a gluon with m omentum  

q, where i = V I , V / / ,  its relation with the bare lattice coupling a L6 is given by:

a Vi{n /a )  = — ^ — -(1 +  0 .513o v j ) ,  (3-25)
(1 -  TrU piaq)

and

1 47r
- l n (  1 -  — TrU piaq) = — a VII( 3 A l /a ) ( l  -  l . l 9 a VII). (3-26)

6 N ote that a  =  g2 / 4n.
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X Monte Carlo data from r()

O  Monte Carlo data from o
O  Monte Carlo data from T

^7 Monte Carlo data from ak, k

g()-Fr fit (T. data)

solid lines are NLO LD-PT fits

2.5

/
a

2.2 2.82.4 2.6

P

Figure 3.3: Plot of the SU(3) Monte Carlo d a ta  o_1 obtained from observables 
with the Iwasaki action together with the NLO 2-loop fits (using the param eters 
in Table 3.8).
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Figure 3.4: Plot of dfata/ CLjlt versus apr  for all SU(3) d a ta  in the Iwasaki case, 
where a ^ lT = AL/ fp r iS o ) ,  using the NLO 2-loop fit.
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We included these schemes in our analysis, but it will be clear in the following why 

the gs  scheme became our favourite choice. Note that the plaquette values used 

here for SU(3) are from [45].

Before going on to describe our analysis, we should specify that the lattice 

coupling scheme is expected to have large higher order perturbative corrections, 

as we can see from the large ratio between Al and A ^  (Table 3.10). This implies 

that the coefficient r\ in the relation between the two couplings, eq.(3.16), must be 

also large, as one can easily see from eq.(3.17). So if g^  is a ’good’ scheme with 

modest higher order terms in the /3-function, this will not probably be the case 

for the lattice coupling gq. Since we only know the lattice /3-function to 3-loops at 

most, it would be wise then to seek a lattice coupling scheme where there is less 

reason to expect large higher order corrections.

Figures 3.5, 3.6 and 3.7 show the x 2/ dof obtained in our different fits for the rc, 

Tc and a  Wilson data respectively, using 3-loop perturbation theory. Note that gE 

is the only renormalized coupling considered known to 3-loops, so the fits in the 

other renormalized schemes have always one extra fit parameter compared to the 

gE and the go schemes. In these figures, the expansion in go and in a renormalized 

scheme with no 0(a)  terms, are labelled simply go and <7# respectively. Clearly 

the x 2/d o f  values for the g0 scheme with no 0(a)  terms are extremely poor, as 

expected. Furthermore, while the renormalized schemes considered improve upon 

this situation, they still have unacceptably large x 2/dof.  Thus to obtain reasonable 

X2/ d o f  values, one needs to include 0(a)  terms.

The go scheme at LO and NLO of LDPT, give x 2/d o f  ~  1, with the exception 

of the Tc fits, as shown in figure 3.6. In this case, the errors in the Monte Carlo 

data are so small (see Table 3.6), that NLO fits are required to obtain sensible fits.
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Comparing g# and go fits at LO and NLO with the same number of fit pa­

rameters7, we conclude that the LDPT go fits are at least as good as the gr fits 

augmented by 0(a)  terms.

We introduce some criteria which the fits should satisfy in order that a renor­

malized scheme successfully reproduces the data (we initially restrict attention to 

renormalized coupling fits without any 0(a )  terms). These criteria are:

(i) The 3-loop coefficient, d\ , should be smaller than the d \  value in the g0 

scheme for all quantities fitted, i.e. d% <  0.20. This is an important feature since 

the main idea of the renormalized schemes is that perturbation expansions are 

better convergent than in the go scheme.

As we can see in Table 3.11, this constraint leaves only two renormalized 

schemes, the g# and gvn-

(ii) The Ajjg value should be in a sensible range:

200MeV < Ams <  250MeV.

(iii) Since the 3-loop coefficient, d%, is scheme dependent, but not quantity 

dependent, we check that dj is consistent for fits to the rc, Tc and a  data.

Both these two criteria are satisfied only from the gs  scheme.8

(iv) Finally we demand that a sensible fit should have a x 2/d o f  value less than

10 .

This leaves no renormalized coupling scheme (at zeroth order in 0(a))  which 

satisfies the above four criteria. The clear implication of this is that the addition

7 As  commented above, the 3-loop coefficient is unknown for all the gn  schemes but the gE 
one, so comparing fits with the same number of parameters means, for example, looking at go at 
NLO and g v i  at LO.

8In fact, for the gE scheme, the d% value is known [25]. For N  =  3, d f  =  ~  bfbo) =
0.01163.
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of 0(a)  terms is crucial for there to be agreement between the fitting functions 

and the data.

Quantity A d$ X 2/ d o f ^ M S

Po-PT
Tc 5.512(9) 0.1896 370 159
Tc 4.891(1) 0.1896 30000 141
a 5.007(8) 0.1896 900 144

9 e ~ PT
t c 17.65(3) 0.01163 29 245
T-*• c 16.691(4) 0.01163 632 232
a 15.74(3) 0.01163 68 218

g E2~ P T

Tc 12.9(5) 0.357(48) 4.7 372
T■Lc 11.2(1) 0.207(9) 142 323
O 18(1) 1.01(13) 3.4 519

9m s~^T
Tc 136(5) 0.686(52) 7.7 136
T± c 370(12) 3.0(1) 18 370
a 1200(450) 12(5) 3.6 1200

9 v i ~  P T

Tc 206(7) 0.60(4) 7.4 129
Tc 438(10) 1.93(6) 17 274
o 845(156) 4.6(9) 3.3 528

gv n -PT
t c 141(3) 0.10(1) 3.6 88
T-*• c 122.0(5) 0.021(2) 183 76
cr 143(3) 0.15(1) 5.3 89

Table 3.11: Results from the zeroth order in 0(a)  fits for the SU(3) Wilson data, 
using 3-loop PT with different renormalized coupling constants. Note that for the 
go and gE schemes, the coefficients are known, whereas they are fit parameters 
in the other schemes. All the lambda values are in MeV.

As we can see from Table 3.12, the quality of the fit improves drastically go­

ing from the gE-PT without 0 ( a n) to the one with Lattice-Distorted PT terms. 

Also, a comparison between values from Table 3.12 and Table 3.7 in section 3.4.1
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is further support for the validity of the Lattice-Distorted Perturbation Theory

approach: the lattice artefacts provide the mismatch between Monte Carlo data 

and asymptotic scaling, without resorting to the use of a renormalized coupling. 

To convert the lambda in the gE scheme’s A E to A ^ ,  we use

=  (3 .27)
A e  A e A  e

with the formula for the ratio A ^ /A l given in eq.(3.18) [40] and with

( 260ci)’^  =  exp [ ) , (3.28)

from eqs.(3.17) and (3.20). The A ^  values obtained are listed in last column of 

Table 3.12.

As can be seen, the spread in the Aj^g values obtained from different physical 

quantities, is greatest for the zero-th order fits: as we turn on the 0(a )  terms, 

A ms becomes more stable.

We take our best estimate of A u s i n g  the 3-loop NLO fits. We assign an 

error of 10% to this estimate to allow for uncertainties in the physical estimate of 

rc, Tc and a, as we did in the go case. From the gE fits we therefore have:



CHAPTER 3. SCALING AND ASYMPTOTIC SCALING 69

rc

1000

100 X—x g,

"O

NLOLO

Figure 3.5: Plot of the x 1 j  dof  obtained in the SU(3) rc d a ta  fits (Table 3.3) in 
different schemes, using 3-loop P T  and up to NLO Lattice Distorted PT. The lines 
connecting the da ta  points are guides for the eye.

Tc

1000

100

x—x g,

gy NLO g n LO N LOLO

Figure 3.6: Plot of the x 2/ dof obtained in the SU(3) Tc d a ta  fits (Table 3.3) in 
different schemes, using 3-loop P T  and up to NLO Lattice Distorted PT. The lines 
connecting the da ta  points are guides for the eye.
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a
1000

* - X  8o 
x—x  gE 
x—x gK

100

NLOgo NLO LOLO

Figure 3.7: P lot of the \ 2/ d°f  obtained in the SU(3) a  d a ta  fits (Table 3.3) in 
different schemes, using 3-loop PT  and up to NLO Lattice Distorted PT. The lines 
connecting the da ta  points are guides for the eye.

3.6 SU(N)

This section reports results of a first application of the Lattice-D istorted PT  

m ethod to SU(N) data , when the number of colours N  is different from 3. Our 

sources of da ta  are [31 j, [48j, [49], [50], [51] and [52| and their values are reproduced 

in Table 3.13 for the SU(2) case, and Table 3.14 for other SU(N) cases. All d a ta  

is for the Wilson gauge action.

Looking at those tables of data, we can easily notice the short range of beta 

values, even for those sets with several da ta  points. We will see how such a short 

range in a will constrain our fits and results. In the SU(2) case, there is more 

d a ta  available in [31] and |48| a t smaller /3 values, bu t it corresponds to an inverse 

lattice spacing a~x <  0.9 GeV. In order to be compatible with our SU(3) fits, we 

do not include this da ta  in our fits. All the other SU(N) d a ta  have a -1 >  0.9 GeV.
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0(a) -loop Quantity A E X  Y X2/  dof AMS
zero 2 rc 17.42(3) 31 241.8(4)
zero 2 T± c 16.435(4) 695 228.12(5)
zero 2 O 15.51(2) 70 215.3(3)
zero 3 rc 17.65(3) 29 245.0(4)
zero 3 T■L c 16.693(4) 633 231.68(5)
zero 3 O 15.75(3) 67 218.5(3)
LO 2 rc 18.08(5) 0.050(3) 0.59 250.9(7)
LO 2 Tc 17.03(2) 0.0124(3) 266 236.3(2)
LO 2 a 16.51(6) 0.033(2) 15 229.1(8)
LO 3 rc 18.30(5) 0.049(3) 0.6 254.0(8)
LO 3 Tc 17.26(2) 0.0117(3) 259 239.5(2)
LO 3 a 16.73(6) 0.032(2) 15 232.2(8)

NLO 2 rc 18.05(8) 0.04(2) 0.005(12) 0.7 251(1)
NLO 2 Tc 18.35(6) 0.096(3) -0.0199(8) 2.1 254.7(8)
NLO 2 a 17.3(1) 0.097(7) -0.018(2) 0.39 241(2)
NLO 3 rc 18.26(8) 0.04(2) 0.007(12) 0.7 253(1)
NLO 3 Tc 18.58(6) 0.094(3) -0.0196(8) 2.3 257.9(8)
NLO 3 G 17.6(1) 0.096(7) -.018(2) 0.39 244(2)

Table 3.12: Fits results for the SU(3) Wilson data using the gs  scheme at both 2- 
and 3-loops in perturbation theory. The zeroth order fits in 0 ( a ) expansion axe 
included as well as LO and NLO ones. All the A values are in MeV.

P Pc ay/a Nt
Ref [48] [31] [48]

2.2986 0.3667(18)
2.2986(6) 4
2.37136(54) 5

2.3715 0.2879(13)
2.3726 0.2879(10)
2.4265 0.2388(9)

2.4271(17) 6
2.5090(6) 8

2.5115 0.1768(8)

Table 3.13: SU(2) data used to set the scale a.
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P Pc ay/a Nt Ref.
10.550 0.3739(15) [31]
10.637 0.3254(6) [31]

10.63727(53) 5 [49]
10.65 0.3225(11) [51]
10.68 0.3083(13) . [51]
10.700 0.2977(13) [31]
10.75 0.2834(11) [51]
10.789 0.2706(8) [31]

SU(4) 10.7898(16) 6 [49]
10.83 0.2566(10) [51]
10.870 0.2467(11) [31]
10.95 0.2285(7) [51]
11.05 0.2077(7) [51]
11.085 0.19868(83) [31]

11.0880(22) 8 [49]
11.20 0.1819 (6) [51]
11.400 0.15277(72) [31]
11.50 0.1417(7) [51]
16.755 0.3844(21) [50]

SU(5) 16.975 0.3034(20) [50]
17.27 0.2452(15) [50]
17.45 0.2221(17) [50]
24.350 0.3886(18) [31]
24.500 0.3416(18) [31]

24.5139(24) 5 [49]
24.515 0.3385(15) [31]

SU(6) 24.670 0.3075(14) [31]
24.845 0.2798(11) [52]

24.8467(30) 6 [49]
25.050 0.2520(5) [52]
25.452 0.2097(7) [52]

25.4782(64) 8 [49]
43.78 0.3758(16) [52]
43.85 0.3614(14) [52]

43.982(14) 5 [49]
44.00 0.3413(13) [52]

SU(8) 44.35 0.3014(13) [52]
44.535(37) 6 [49]

44.85 0.2597(10) [52]
45.654(32) 8 [49]

45.70 0.2086(8) [52]

Table 3.14: SU(4), SU(5), SU(6), SU(8) data used to set the scale
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Also, let’s notice the fact that while for SU(3) there is a smooth cross-over between 

strong and weak coupling, so one would not really know a priori from which value 

of P a weak coupling expansion in g2 and a is appropriate, for SU(N  >  5) there is 

a first order transition [50] clearly separating the two regimes. This removes the 

ambiguity of where one might expect a weak coupling expansion to be applicable, 

and enables us to quantify the importance of 0 ( a 2) lattice corrections in the large 

N case.

This data are fitted to eq.(3.8), as in SU(3) case, with all the dependence on 

N  coming from the coefficients of the /^-function (eqs.(3.2 & 3.3)). Studying this 

in detail, we have (at 3-loops and zero-th order in 0(a))  from eqs.(3.4 &; 3.5),

Alo(^q) =  fpr{gl)  =  e (bo§%) (1 +  ^ ( b \  -  b%bQ)gl) (3.30)

bo ~  O(N)

bi ~  O i N 2)

b$ ~  0 ( N 3)

We can rewrite eq.(3.30) in terms of /3 as follows:

Aa(/3) ~  e - M  (P /N2)1" (1 +  (3.31)
r

where
h0 ~  Oi l /N2) 

hi ~  0(1)  ?  f ( N)  

h% ~  0 ( N 2).

From this behaviour we would expect <7o-PT to get worse with AT, since the higher 

loop coefficients grow with N 2. However, we note that ft always occurs in eq.(3.31)
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std

,2
N"

Figure 3.8: Plot of P std against the square of the num ber of colours, iV2, where 
/33td is the P value where the inverse lattice spacing a~l ~  2 GeV.

with a factor of 1/TV2. In order to m aintain fixed lattice spacing then, we require 

P  ~  N 2. This then means th a t the go~PT will not necessarily get worse with 

N.  The relationship P ~  N 2 is confirmed by the values for Pstd in Table 3.1. 

Recall th a t Pstd is the P value such th a t the lattice spacing a~x ~  2 GeV. P lo tting  

P std against N 2 in figure 3.8 confirms to a very high precision the relationship 

P std  ~  ./V2, in accord with w hat expected for the t ’Hooft coupling9.

We list our results from the fits in Table 3.15 for N  = 2, and in Table 3.16 

for N  — 4, 5, 6, 8. W here possible, also the NLO fit in 0 ( a n) was performed, but 

sometimes the coefficients and their large errors, made these fits unreliable (see 

Table 3.16). To convert the lam bda in the g0 scheme’s A L to A ^ ,  eq.(3.18) has

9As N varies, we expect [53] that we will need to keep constant the t ’Hooft coupling, A, and 
its inverse, 7 :

A(a) =  g2(a)N;  7 =  \  ^  (3.32)

for a sm ooth large N limit. Therefore ft ~  N 2.
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been used for different N.

In the SU(2) case the best fits were obtained with the NLO (rather than LO) 

functions. The values for the LO coefficient, X Ujl/ and Ajjg  are very similar for 

both quantities considered.

In the SU(N) case (N>3), the best fits are from LO rather than NLO, since the 

coefficient X n generally has a very large error in the NLO fits. This somewhat 

disappointing fact can be explained by the small range of a-1 for these data sets, 

as mentioned at the beginning of this section. With such a small lever arm, it 

is natural to assume that it is hard to obtain sensible fits at higher order in the 

0 ( a n) expansion.

For the best fit results for all N, we notice the remarkable fact that the coeffi­

cient, X njl/, is always ~  20 — 25%. Also the A i s  very consistently independent of 

the quantity being considered: for the 3-loop case A ^  ~  180 — 230 M eV. These 

two facts add weight to the argument that the LDPT fits are correctly reproducing 

the data.

We graphically depict the quality of the string tension fits in figure 3.9, where 

the x 2/ d o f  is plotted for all values of N. The x 2/ d o f  value for the zero-th order 

go fit is shown near the middle of the graph, and to the left of this the LO and 

NLO (go) X2/ d o f  values are also shown. As can be seen, increasing the number of 

terms in the a expansion decreases the x 2/ d o f  value to ~  0{T). Note that SU(5) 

is not included in the plot since the small amount of data points available in this 

case did not allow a reliable investigation (see also table 3.16).
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0 (a ) - lo o p Q uantity A l X  Y X2/  dof A MS

LO 2 Tx  c 8.89(2) .098(1) 243 176.3(4)
LO 2 a 9.16(5) .112(3) 29 182(1)
LO 3 Tx  c 10.04(2) .093(1) 225 198.9(5)
LO 3 a 10.31(6) .104(3) 28 204(1)

NLO 2 Tx  c 10.05(6) .269(7) -.062(3) 3.9 199(1)
NLO 2 G 10.4(1) .27(2) -.059(6) 1 . 2 206(3)
NLO 3 Tx  c 11.30(6) .260(7) -.061(3) 3.6 224(1)
NLO 3 G 1 1 .6 (2 ) .26(2) -.056(6) 1 .1 230(3)

Table 3.15: F it results for the SU(2 ) da ta  in the go scheme, using both LO and 
NLO in the O(a) expansion and both 2 - and 3-loop perturbation  theory. All the 
A values are in MeV.

a
1000

x - x  SU(2) 
x - x  SU(3) 
x—x SU(4) 
x —x  SU(6) 
x - x  SU(8)

100

-a 10

0 g (i N LO  g0 LO 8< g| g ,.L O  g E NLO’0 ’i;

Figure 3.9: Plot of the x 2 /  dof obtained in the a  SU(N) da ta  fits in different 
schemes, using 3-loop PT  and up to NLO Lattice Distorted PT. The lines connect­
ing the d a ta  points are guides for the eye.

3.7 SU(N) in gE Scheme

Finally, we repeat the gE scheme analysis performed for the SU(3) da ta  in section 

3.5 with the N  ^  3 data. Tables 3.17 and 3.18 contain results for the S U ( 2 ) and
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0(a) -loop Quantity A L X Y X2 /  d°f A MS
SU(4)

LO 2 T± c 5.29(1) .204(1) - 32 173.8(4)
LO 2 a 4.90(1) .215(1) - 4.9 160.8(4)
LO 3 T± c 6.41(2) .198(1) - 40 210.4(5)
LO 3 a 5.88(2) .204(1) - 5.4 193.1(5)

NLO 2 a 4.66(4) .13(1) .039(7) 2.4 153(1)
NLO 3 a 5.58(5) .12(1) .041(7) 2.3 183(2)

SU(5)
LO 2 o 4.55(5) .242(5) - 12 159(2)
LO 3 a 5.54(6) .231(5) - 12 193(2)

NLO 2 a 3.0(3) -.41(21) .28(9) .6 x 10"5 104(11)
NLO 3 a 3.7(4) -.40(20) .26(8) .4 x 10-3 128(13)

SU(6)
LO 2 Tc 4.65(2) .235(2) - 4.0 167.8(5)
LO 2 a 4.26(2) .262(3) - 7.0 153.7(7)
LO 3 Tc 5.75(2) .229(2) - 6.4 207.1(7)
LO 3 a 5.22(3) .251(3) - 7.3 188.2(9)

NLO 2 a 3.7(1) .06(5) .10(2) 3.1 134(4)
NLO 3 a 4.6(1) .05(5) .09(2) 3.0 164(5)

SU(8)
LO 2 T-1 c 4.45(5) .221(4) - 2.0 166(2)
LO 2 a 3.97(2) .239(3) - 4.0 147.8(9)
LO 3 Tx c 5.53(6) .215(5) - 2.4 206(2)
LO 3 O 4.89(3) .228(3) - 4.2 182(1)

NLO 2 a 3.5(1) .07(5) .07(2) 1.2 131(5)
NLO 3 a 4.3(2) .06(5) .07(2) 1.2 162(6)

Table 3.16: Fit results for the SU(N) data in the go scheme, using both LO and 
NLO in the 0(a )  expansion and both 2- and 3-loop perturbation theory. All the 
A values are in MeV.
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SU(4),SU(5),SU(6),SU(8)  fits, respectively. The plaquette values used are from 

[50] for SU(2) and SU(5), from [50] and [51] for SU(4), and from [52] for SU(6) 

and SU(8). To convert the lambda in the gB scheme’s AB to A ^ ,  eqs.(3.18 & 

3.28) have been used as in section 3.5.

As in the go fits (see section 3.6), we concentrate on the LO rather than NLO 

fits, except for the SU(2) case where we have more data. For all the fits, the A ^  

values are very stable and no considerable dependence on N  is observed.

Again, we graphically depict the quality of the fits in figure 3.9 where the 

X2/ d o f  is plotted for all values of N. The x 2/ d o f  value for the zero-th order gB 

fit is shown near the middle of the graph, and, to the right of this the LO and 

NLO (gB) X2/ d o f  values are also shown. As can be seen, increasing the number of 

terms in the a expansion decreases the x 1 j d o f  value to ~  <9(1) f°r N  (except 

for N  =  2 LO case). This again shows the necessity of introducing 0 (a n) terms in 

order to obtain sensible fits.
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0 ( 0 ) -loop Quantity A E X  Y X2/  dof A MS

zero 2 T1 c 19.70(2) 129 226.8(2)
zero 2 a 19.85(4) 16 228.5(4)
zero 3 Tc 19.84(2) 130 228.4(2)
zero 3 a 19.98(4) 16 230.1(4)
LO . 2 T-1 c 19.44(4) -.008(1) 167 223.8(5)
LO 2 a 20.0(1) -.005(3) 21 230(1)
LO 3 T-1 c 19.56(4) -.008(1) 166 225.2(5)
LO 3 a 20.1(1) -.004(3) 20 232(1)

NLO 2 T 20.88(9) .091(5) -.027(1) 5 240(1)
NLO 2 O 21.6(2) .10(1) -.027(3) 1.6 248(3)
NLO 3 T-*• c 21.00(1) .090(5) -.027(1) 5 242(1)
NLO 3 O 21.7(2) .10(1) -.026(3) 1.5 250(3)

Table 3.17: Fits results for the SU(2) data using the gs  scheme at both 2- and 3- 
loops in perturbation theory. These fits were obtained by including various terms 
in the 0(a)  expansion. All the A values are in MeV.

3.8 Conclusions

In this chapter, the running coupling on the lattice was discussed. We emphasized 

how the dependence of the lattice spacing a on the lattice coupling #o(a) needs to 

incorporate lattice spacing corrections in addition to the perturbative expression 

that one obtains in the continuum. The simple perturbative interpolation will not 

fit the Monte Carlo data without these G(an) lattice corrections. This has been 

shown fitting quenched data to the expression of the running coupling (3.4) with 

and without 0 ( a n) terms.

In the SU(3) case, different observables have been considered, as well as differ­

ent gauge actions. We drew similar conclusions in all the cases where enough data 

were available. We gave an estimate of the SU(3) A ^  from the fit of Wilson data 

to the fitting function at NLO in the 0 (a n) expansion, using the 3-loop expression
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of the /3-function:

Axre ° =  217 ±  21 MeV.M b

For the Wilson case, in order to improve the convergence of the series in go, we 

also considered the case when the lattice coupling is replaced by different choices 

of renormalized coupling, with particular focus on the gs  renormalized scheme. 

We observed a reduction of the discrepancy between Monte Carlo data and per­

turbative scaling, but the quality of the fit is reasonably good only after including 

0 ( a n) terms.

Finally, we extended our analysis to SU(N)  Wilson data for N  ^ 3 ,  performing 

again fits for different observables and at different order in the lattice spacing 

expansion. From the comparison of the results obtained in the lattice scheme go 

and in the qe scheme, we drew similar conclusions to the S U (3) case. Also, the 

Ajjs values obtained at different N  are consistent and hardly dependent on the 

quantity and the N  value considered.

The fact that the SU(N) fits match so well with lattice distorted perturbation 

theory for all values of N  is not surprising given the similarity of the data. This 

can be seen in figure 3.10, where we plot a-1 obtained from the string tension 

against 32(/3/N2) for all N  values, i.e. the ratio /3/N2 normalized relative to the 

SU(3) data (note: the inverse of the t ’Hooft coupling is 7  =  1 /g 2N  =  (3/2N2). As 

can be seen the data lie on curves which run parallel to each other at different N  

values and the curves represent the LDPT fits at NLO for SU(2) and SU (3) and 

LO for other N, i.e. our best fits, as previously motivated.

Another way of picturing the success of this approach is displayed in figure 

3.11. Here is the plot of the ratio a“1/ a ^  for all values of N  against a |T . a" 1 is
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defined from the Monte Carlo data for the string tension as before, apr  is defined 

in eq.(3.4), =  Al/Zpt^o)? an(  ̂ the 3-loop formula for fpp  has been used here.

Clearly, if Monte Carlo data were well described by the 3-loop asymptotic scaling 

formula, eq.(3.4), the ratio here plotted would be equal to 1. The deviation from 

one is precisely the discrepancy being studied in this work: moreover the plot 

shows that this discrepancy agrees well with 0 ( a 2), as expected.

In conclusion, all our investigations support the validity of the Lattice-Distorted 

Perturbation Theory method. This approach leads to a remarkable consistency 

both in the fitted A parameters and in the size of the 0 (a n) corrections.

The lack of perturbative scaling is probably due to a mixture of the two effects here 

considered, the poor convergence of the go perturbative series and the presence of 

cut-off effects due to the finiteness of the lattice spacing. However, we have given 

strong arguments to support the claim that the lattice artefacts represent the 

dominant effect.
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Figure 3.10: Plot of the SU(N) a - 1  from the string tension for all values of N  
against the inverse of the t ’Hooft coupling (note 7  = =  j  = /3 /2N 2), normalised 
relative to the SU(3) data. The curves represent the LD PT fits a t NLO for S U (2) 
and S U (3) and LO for other N, i.e. our best fits, as m otivated in the text.
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Figure 3.11: Plot of the ratio  a~l /a p XT for all values of N  against a2PT, where 
a,p]T =  A1 1 fp r{g 0 ), and the 3-loop expression of fp p  has been used. The straight 
lines, connecting the point (0 ,1 ) with the last d a ta  point, represent a guide for the 
eye.
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0(a) -loop Quantity A l X  Y X2/dof AMS
SU(4)

zero 2 Tc 15.755(5) - 245 233.45(7)
zero 2 a 14.44(1) - 58 213.9(2)
zero 3 Tc 16.139(5) - 217 239.14(7)
zero 3 a 14.78(1) - 54 219.0(2)
LO 2 Tc 16.48(3) .022(1) 41 244.1(5)
LO 2 a 15.39(4) .040(1) 3.5 228.0(5)
LO 3 Tc 16.83(4) .021(1) 40 249.4(5)
LO 3 a 15.71(4) .039(1) 3.4 232.8(6)

NLO 2 a 15.59(8) .061(7) -.007(3) 3 231(1)
NLO 3 a 15.91(8) .058(7) -.007(3) 3 236(1)

SU(5)
zero 2 a 13.67(4) - 26 208.7(7)
zero 3 a 14.07(4) - 24 214.9(7)
LO 2 a 14.7(1) .038(4) 1.8 224(2)
LO 3 a 15.1(1) .036(4) 1.9 230(2)

NLO 2 a 13.8(5) -.03(5) .019(12) .90 211(8)
NLO 3 a 14.2(5) -.04(5) .020(12) .91 217(8)

SU(6)
zero 2 Tc 15.317(8) - 127 237.8(1)
zero 2 a 13.52(2) - 43 209.9(3)
zero 3 Tc 15.820(9) - 108 245.6(1)
zero 3 a 13.95(2) - 39 216.6(3)
LO 2 Tc 15.98(4) .024(2) 12 248.1(7)
LO 2 a 14.36(6) .042(2) .79 222.9(9)
LO 3 Tc 16.45(5) .022(2) 11 255.4(7)
LO 3 a 14.78(6) .040(3) .71 229.5(9)

NLO 2 a 14.7(2) .07(2) -.010(5) .15 228(3)
NLO 3 a 15.1(2) .07(2) -.010(5) .14 235(3)

SU(8)
zero 2 Tc 15.23(3) - 14 240.3(5)
zero 2 a 13.09(2) - 33 206.7(3)
zero 3 Tc 15.78(4) - 12 249.0(6)
zero 3 a 13.57(2) - 29 214.1(3)
LO 2 Tc 16.0(1) .023(4) .02 252(2)
LO 2 a 13.94(7) .032(2) .57 220(1)
LO 3 Tc 16.5(1) .021(4) .01 260(2)
LO 3 a 14.39(7) .030(2) .52 227(1)

NLO 2 a 14.2(2) .06(2) -.007(5) .25 224(4)
NLO 3 a 14.6(2) .05(2) -.006(5) .25 231(4)

Table 3.18: Fits results for the SU(N) data using the gs  scheme at both 2- and 3- 
loops in perturbation theory. These fits were obtained by including various terms 
in the 0 (a )  expansion. All the A values are in MeV.



Chapter 4 

Nucleons from 2+1 DWF

4.1 Baryons

The baryon spectrum is a good place to test lattice gauge theory, in particular for 

those lowest lying states very well determined by experiments. Furthermore, LGT 

can be a powerful predictive tool for those baryonic states whose experimental 

values are not known very accurately.

Baryons are sufficiently complex states to reveal physics hidden in the mesonic 

sector, but at the same time they are simple systems of three quarks, obeying 

the Pauli exclusion principle and giving the so called baryon octet and decuplet. 

Their total state function is anti-symmetric under interchange of any two equal- 

mass quarks (up and down quarks in the commonly considered limit of isospin 

symmetry). We can then write the baryon state function as

|qqq > a =  \colour > a  x |space > s  x |spin,  f l a v o u r  > s , (4.1)

where the subscripts S and A  indicate symmetry or antisymmetry under inter­

change of two equal-mass quarks. The colour part of the baryon state function is 

an S U (3) singlet, a completely antisymmetric state of the three colours; the space 

part is symmetric when considering lowest lying states at L =  0, and consequently

84
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the product of spin and flavour parts has to be symmetric too. When the total 

spin of the baryon is S =  J  =  then the spin part is clearly symmetric, and the 

flavour one must be symmetric too. There are 10 possible combinations of three 

quarks giving such a total state function: they form the baryon decuplet. When 

the total spin is S =  J  =  | ,  then the product of spin and flavour state functions 

has to be symmetric, but they are not necessarily separately symmetric (mixed 

symmetry): in this case we have the baryon octet.

The nucleons, proton and neutron, are members of the ground state octet of 

spin= \  baryons. The calculation of the nucleon mass is a particularly good test for 

lattice gauge theory since its value can be compared with the one very accurately 

determined by experiments.

In this chapter we present preliminary results of the lowest lying, valence de­

generate states with J p =  I*, N  and N*, on two different volumes at a single 

lattice spacing with 2 +  1 dynamical flavours. The good chiral properties of the 

domain wall fermions formulation are used in order to reproduce the large mass 

splitting between the nucleon iV(939) and its parity partner 7V(1535). As discussed 

previously, domain wall fermions have only mild chiral symmetry breaking, which, 

in particular for masses 0(1) GeV  in the chiral limit, can be approximated by a 

constant mass term. This study of nucleon masses is part of the ongoing baryon 

physics project by the RBC-UKQCD collaboration.

4.2 Calculation Details

In this work we consider nucleon correlators with different smeared operators in 

order to improve statistical accuracy and systematics. The correlators can also
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differ in the interpolating operators used to reproduce the desired baryonic state. 

Before giving details of our analysis then, we classify these correlators.

We can essentially divide our data into type A and type B, due to the different 

methods used to produce them. The type A correlators were generated in the UK 

using both the interpolating operators in eq.(2.102). In this case, only the positive 

parity state was produced: this means that both the masses of the positive and 

negative parity partners, N  and AT*, were determined by a fit to the first correlator 

in eq.(2.105) which, in our case of anti-periodic boundary conditions, becomes

C%(t) =  A+eMfft +  (4.2)

The type B correlators were generated in the US. The interpolating operators 

used to produce them are Ni =  N *  in the first line of (2.102) and (dropping 

the Dirac indices) N >+(x) =  eabc(uT,a(x)Cdb(x))'Y5Uc(x). As previously mentioned, 

this second operator has a poor overlap with the nucleon ground state, so for the 

nucleon only the Ni actually contributes. For the N* instead, the corresponding 

negative-parity interpolating operators of both Ni and N' are considered1:

N i ( x ) =  75^i+(®) =  eabc{uT'a(x)Ci5db{x))7bu°(x),

N >~(x) =  i 5N'+(x ) =  eabc{uT'a(x)Cdb(x))uc(x). (4.4)

The type B data have both the positive- and negative-parity parts. Therefore, 

the mass of both N  and N* are determined by a simultaneous fit to both the

xNote that for instance
V N i  (*4, x ) V  =  - 74A T f ( z 4, - x ) . (4.3)
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correlators in eq.(2.105) which, for anti-periodic boundary conditions, become

C,+(t) =  A+e~MK‘ +  j4_e_M"-<T_l)

C f(() =  —A -e~ M,,’t — A +e~M"(T~tK (4.5)

Note that the subscript i corresponds to the Ni operator for the nucleon and to 

both JVi, N ' for the N*. Note also that according to eq.(2.91), the amplitude A  in 

eqs.(4.2) and (4.5) will be given for instance by

All =  AlAl (4*6)

in the LL correlator case, or

A gl =  A qAl (4.7)

in the GL correlator case.

4.3 Simulation Parameters

The analysis was performed on 2 -I-1 flavours DWF ensembles generated jointly by 

the RBC and UKQCD collaborations. Two lattice volumes were studied, 163 x 32 

and 243 x 64. The simulations used the Iwasaki gauge action with /? =  2.13 and the 

domain wall fermion quark action with the fifth dimension fixed to La =  16 and the 

domain wall height set to M5 =  1.8. The fixed lattice spacing of a-1 =  1.62(4) GeV  

gives a corresponding spatial volume of (1.9 f r n f  and (2.9 /m )3 for the small and 

large volume respectively. We first check the possible finite volume effects on the 

nucleon and N* states by comparing the results obtained from the two different 

volumes. For the sake of reproducing the nucleon states, it is more advantageous 

for us to obtain results from the larger volume simulations, as we will show in the 

following. At each volume, three sets of configurations were generated with a light
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isodoublet with masses mud =  m 9ea =  0.01,0.02,0.03, and a fixed approximate 

strange quark mass, m s =  0.04. All masses are in dimensionless lattice units. The 

ensembles were generated using the RHMC algorithm and its implementations 

[19]. More details of the ensembles can be found in [54] and [55].

4.4 Setting the Lattice Scale

The determination of the lattice scale is not part of this work. Therefore in this 

section we will only recall the different methods that have been used to set the 

lattice scale. The small lattice calculations can be found in [54]. Here is a summary 

of the values obtained.

The determination of the lattice scale from the mass of the vector meson p is 

one of the methods employed. A partially quenched linear fit to the values of m y  

was performed, using the following phenomenological form:

m v  =  A (m sea +  mTes) +  B(mi + m 2 +  2 mres) +  C, (4.8)

where mi and m 2 denote the masses of the two valence quarks that make up the

mesons. Setting mx =  m 2 =  m sea =  —mres gives the p mass in the chiral limit,

from which the lattice scale was found to be

a-1 |p =  1.61(3) GeV. (4.9)

The lattice scale was also determined from the static quark potential using the 

Coulomb gauge method [56]. Taking r0 =  0.5 fm ,  the lattice scale was determined 

to be

a-1 |ro =  1.63(5) GeV. (4.10)
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A preliminary analysis of this calculation was reported in [57] and a more detailed 

analysis is the subject of another paper in progress. The third method used for 

determining the lattice scale is the “method of lattice planes” [33], already briefly 

described in section 3.3. Here a chiral interpolation in the valence quark sector 

rather than extrapolation is required. Then a linear extrapolation in the sea quark 

mass to the chiral limit, m sea =  —mre3, gave

fl_11latticepiane =  1.62(5) GeV. (4.11)

All these methods gave consistent results for the lattice scale. The same approach 

as in the small volume simulations was adopted in the large volume case, and 

several methods were used to determine the lattice scale. More details will appear 

in the outcoming paper [55]: the updated values of the lattice scale from the 

different methods are consistent with the results from the small volume analysis. 

Therefore the average of the above values was taken as central value, and an 

average of their statistical errors as the error. This gives

a" 1 =  1.62(4) GeV  (4.12)

which will be used whenever a lattice scale is needed through this work, and the 

errors will be propagated accordingly by quadrature. In physical units, it implies 

a lattice spacing of a =  0.122(4) fm .

4.5 Data and Analysis

This work considers degenerate nucleons, with all three valence quarks having the 

same mass. In some cases only unitary data points are available, i.e. only correla­
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tors composed of valence quarks with masses equal to the quark mass in the sea2, 

mvai =  m sea; for other correlators several valence masses are available for the same 

sea quark, and we have both unitary and partially quenched points. To improve 

statistics, correlators were oversampled and averaged into bins whose size depends 

on the Monte Carlo time separation between measurements. Multiple sources per 

configuration on different time-planes are used in order to increase statistics and 

reduce the fluctuations within the gauge configurations. The correlation functions 

are averaged over the different source locations before the analysis is performed. As 

already mentioned, several different types of smearing are also used to improve the 

signal. Note that a baryon correlator composed of just quark propagators with a 

(hydrogen-like) wall source and a local sink will be denoted as (HL) WL for brevity, 

instead of (HL-HL-HL) WL-WL-WL. When the correlator is Gaussian smeared at 

source we will write GL, when both source and sink are Gaussian smeared we will 

have a GG correlator. Finally a nucleon composed of only local, unsmeared quark 

fields is denoted simply as LL. For all the measurements, anti-periodic boundary 

conditions were applied to obtain the quark propagators.

Table 4.1 lists all the data used for both the volumes, specifying the correlator 

type, as explained in the previous section, the smearing, the range of measurements 

and the number of sources. Note the wider range of type A  measurements for the 

amsea =  0.03 ensemble in the small volume, 163 x 32: it comes from a subsequent 

extension of the ensemble performed using an implementation of RHMC algorithm. 

The two RHMC versions were compared and studied in detail in [54]. Here we 

performed tests to see how the nucleon mass varies when the original ensemble,

2Note that in our case of 2 +  1 flavours, the dynamical quark can also have the mass of the
strange quark, so that unitary points include the m vai =  0.04 case.
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500 — 4020, or the extended one, 500 — 7600, were considered. In Table 4.2, the 

masses from a simultaneous fit to the correlator LL , GL, GG  are shown for the 

different cases: the original ensemble is indicated as RHM C1,  while the extended 

one as R H M C  1 4- R H M C 2. We concluded that the data generated from the two 

algorithms can be combined and considered as a unique set of data. However, for 

our purpose of performing simultaneous fits to all the available correlators, we will 

consider the range of measurements common to the WL correlator, i.e the original

ensemble R H M C 1 .

TTl gea type V TTlval N t r a j A N m e a a N g r c smearing

0.01 A 163 x 32 0.01 0.04 500-4015 10 352 4 LL GL GG
B 163 x 32 0.01 0.02 0.03 0.04 500-4015 5 704 2 WL

0.02 A 163 x 32 0.02 0.04 500-4045 10 355 4 LL GL GG
B 163 x 32 0.01 0.02 0.03 0.04 500-4045 5 710 2 WL

0.03 A 163 x 32 0.03 0.04 500-7600 10 710 2 LL GL GG
B 163 x 32 0.01 0.02 0.03 0.04 500-4015 5 704 2 WL

0.01 A 243 x 64 0.01 0.04 800-4060 10 327 2 LL GL GG
B 243 x 64 0.005 0.01 0.02 0.03 0.04 1500-3860 40 60 2 BL
B 243 x 64 0.01 1500-3860 40 60 4 GL GG

0.02 A 243 x 64 0.02 0.04 1600-3610 20 101 2 LL HL
B 243 x 64 0.005 0.01 0.02 0.03 0.04 1520-3600 40 53 2 BL
B 243 x 64 0.02 1800-3600 40 46 4 GL GG

0.03 A 243 x 64 0.03 0.04 1000-3060 20 104 2 LL HL
B 243 x 64 0.005 0.01 0.02 0.03 0.04 900-3060 40 55 2 BL
B 243 x 64 0.03 1020-3060 40 52 4 GL GG

Table 4.1: Measurement parameters for all the correlation functions used for the 
three ensembles in each of the lattice volumes. V is the space-time volume of the 
lattice, Ntraj is the lowest to highest trajectory analysed with A the separation 
between measurements in molecular dynamics time unit. Nsrc is the number of 
different sources used for each set of measurements.

As we will see from the effective masses plots in next sections, different source 

operators have different degrees of overlap with excited states, and hence the mini-
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Data N1 ’meas m n bin size
RHMC1 70 .910(9) 10

RHMC1+RHMC2 70 .907(7) 20
RHMC1+RHMC2 140 .907(6) 10

Table 4.2: Nucleon masses for the m 3ea =  mvai =  0.03 small volume case, obtained 
by a simultaneous fit to the LL, GL and GG  data. Shown are the values obtained 
by considering the original set of measurements, 500—4020, indicated as R H M C 1 , 
and the extended one, 500 — 7600, indicated as R H M C  1 +  R H M C 2 , where the 
second part is obtained using an implementation of the original algorithm. The 
second and third rows differ in the bin size.

mum time slice that should be included in each fit may differ. In order to determine 

a proper fit range, [tmin, tmax], for the nucleon and its parity partner N *, we first 

look at the effective masses, eq.(2.106), and choose the minimum time slice in the 

fit range to be the onset of the plateau. Once a first choice of the fit range is set, 

the more rigorous test to determine the best fit range is to check how the mass ob­

tained from the fit and the resulting x 2/ d o f  vary with the fit range. Since the fits 

are less sensitive to the maximum time slice used, we fixed the upper bound, tmax, 

and investigated the variations with respect the lower bound, tmin. Normally, we 

repeated the fits moving tmin a time slice closer to the origin (i.e. [8,11] —> [7,11]), 

then one farther (i.e. [8,11] [9,11]). In this way, we checked that shifting the fit

ranges in either direction by one time slice does not change either mass or x 2/ dof  

significantly. However, our final choice of time ranges is the one which minimizes 

the uncorrelated x 2f d o f , where the x2 is simply weighted by the statistical errors 

on the data points.

Since the x 2 from the uncorrelated fits cannot serve as the measure of goodness 

of the fits, as a check, we also performed correlated fits to each individual correlator 

separately to obtain a fit range which gives a reasonable x 2/ d o f , based on the
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criteria explained above. We checked that for a single correlator the correlated 

and uncorrelated fits give consistent results. However, due to the small number 

of configurations, in order to better estimate the parameters, we have to fit to 

multiple correlators (see section 4.9.1). For such simultaneous fits, typically to 

ten or twelve correlators, the number of data to fit and the number of parameters 

in the fit increase, so that the relation Nparama «  Ndata «  Ncfgs cannot be 

satisfied. Note Ndata gives the dimension of the covariance matrix and our typical 

number of measurements, Ncfg3, is not large enough to resolve a covariance matrix 

of this size. Therefore, all the simultaneous fits we performed were uncorrelated.

4.6 243 x 64: fits

Tables 4.3, 4.4 and 4.5 show the nucleon masses obtained from fits to each corre­

lation function available in the large volume case for the m 3ea =  0.01, 0.02, 0.03 

ensembles respectively. The symmetric error quoted is the jackknife error (section

2.13.1). The fit range, chosen as explained in the previous section, is quoted for 

each fit, as well as the corresponding uncorrelated x 2/dof.  In the third column 

the correlator type is specified: g'o and p45 correspond to the T =  75 and T =  7475 

interpolating operators respectively, while the +  and — indicate the positive- and 

negative-parity part of the corresponding correlator. Since the spatial extent of 

the source in the wall smeared operators is 163, so that it covers only a portion of 

the spatial volume of the larger lattice, it is more appropriate now referring to the 

correlator as ’box-local’, B L , instead of wall-local. Note also that we called GUI 

and GG2 the type B  correlators because they have a different smearing radius 

compared to the type A  correlators, which are called simply GL and GG.
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Figures 4.1, 4.2 and 4.3 show the effective masses obtained for each ensemble for 

the unitary points mvai =  m 1̂ 1. Note that the larger variety of data is available 

when the valence is equal to the light dynamical quarks, i.e. mvai =  0.01,0.02,0.03 

for the three ensembles respectively: this is why in the following our analysis will 

focus on these sets of data. Note that the negative-parity part of the type B 

correlators were omitted in the plots for clarity.

In the same way we present the masses obtained for N* for the three different 

ensembles in Tables 4.6, 4.7 and 4.8, and the effective mass plots corresponding 

to m vai =  m kgf* are shown in figures 4.4, 4.5 and 4.6. The correlator indicated 

as BL' in the tables and plots corresponds to the interpolating operator in 

eq.(4.4). It is clear that the mass of the negative parity partner of the nucleon 

can be less well determined due to the poor signal. In particular for the type A 

correlators, where only the contribution from the backward mover of the positive 

parity correlator can be considered, the signal is sometimes very poor and only a 

very tiny fit range can be considered.

In general, the effective masses from LL correlators typically have later ap­

proaches to plateaus and, in particular in the N* case, sometimes it is not even 

possible to set an onset, so we are left with fewer time slices to perform the fits. 

However, clear improvement is found going from the LL to the GG correlators 

for instance. The symbol x in the right-most column in Tables 4.6, 4.7 and 4.8 

indicates the data which will not be included in the simultaneous fits, as explained 

in more detail in section 4.9.1.
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m sea 'Rival correlator fit range m n X2 / dof
0.01 0.005 BL+ 6-11 0.679(17) 0.09
0.01 0.005 BL- 53-58 0.684(16) 0.04
0.01 0.01 LL-g5 10-15 0.729(24) 0.03
0.01 0.01 LL-g45 10-15 0.731(30) 0.04
0.01 0.01 GL-g5 8-14 0.721(10) 0.03
0.01 0.01 GL-g45 8-14 0.729(15) 0.03
0.01 0.01 GG-g5 6-14 0.717(8) 0.08
0.01 0.01 GG-g45 5-13 0.727(10) 0.07
0.01 0.01 BL+ 6-11 0.722(12) 0.12
0.01 0.01 BL- 53-58 0.718(10) 0.03
0.01 0.01 GL2+ 5-12 0.726(10) 0.02
0.01 0.01 GL2- 52-59 0.717(10) 0.09
0.01 0.01 GG2+ 4-14 0.720(10) 0.26
0.01 0.01 GG2- 50-60 0.721(13) 0.14
0.01 0.02 BL+ 7-10 0.796(8) 0.03
0.01 0.02 BL- 54-57 0.790(9) 0.005
0.01 0.03 BL+ 7-10 0.859(6) 0.03
0.01 0.03 BL- 54-57 0.854(9) 0.009
0.01 0.04 LL-g5 10-14 0.939(9) 0.04
0.01 0.04 LL-g45 10-14 0.935(9) 0.03
0.01 0.04 GL-g5 7-13 0.934(5) 0.03
0.01 0.04 GL-g45 7-13 0.936(6) 0.02
0.01 0.04 GG-g5 6-13 0.931(5) 0.03
0.01 0.04 GG-g45 6-13 0.937(5) 0.04
0.01 0.04 BL+ 8-13 0.933(6) 0.05
0.01 0.04 BL- 51-56 0.910(8) 0.07

Table 4.3: Fit results for the nucleon mass from all the correlators in the 0.01 
ensemble, 243 x 64 lattice. All the masses are in lattice units.
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tTlgea Tflvai correlator fit range m n X2 fd o f
0.02 0.005 BL+ 6-12 0.702(23) 0.03
0.02 0.005 BL- 52-58 0.712(26) 0.01
0.02 0.01 BL+ 6-12 0.745(15) 0.06
0.02 0.01 BL- 52-58 0.745(15) 0.04
0.02 0.02 LL-g5 8-11 0.828(18) 0.002
0.02 0.02 LL-g45 8-11 0.820(20) 0.008
0.02 0.02 HL-g5 6-12 0.814(7) 0.02
0.02 0.02 HL-g45 6-12 0.798(7) 0.01
0.02 0.02 BL+ 5-12 0.816(8) 0.11
0.02 0.02 BL- 52-59 0.813(8) 0.03
0.02 0.02 GL2+ 5-12 0.802(6) 0.02
0.02 0.02 GL2- 52-59 0.806(9) 0.11
0.02 0.02 GG2+ 5-12 0.788(9) 0.05
0.02 0.02 GG2- 52-59 0.802(12) 0.15
0.02 0.03 BL+ 6-12 0.883(8) 0.05
0.02 0.03 BL- 52-58 0.876(8) 0.02
0.02 0.04 LL-g5 9-11 0.956(15) 0.006
0.02 0.04 LL-g45 9-11 0.951(17) 0.02
0.02 0.04 HL-g5 7-12 0.940(6) 0.01
0.02 0.04 HL-g45 8-12 0.932(8) 0.008
0.02 0.04 BL+ 6-12 0.942(7) 0.03
0.02 0.04 BL- 52-58 0.937(7) 0.01

Table 4.4: Fit results for the nucleon mass from all the correlators in the 0.02
ensemble, 243 x 64 lattice. All the masses are in lattice units.
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irised n̂ val correlator fit range m n X2/ d o f

0.03 0.005 BL+ 5-10 0.720(16) 0.19
0.03 0.005 BL- 54-59 0.733(19) 0.11
0.03 0.01 BL+ 5-10 0.755(10) 0.14
0.03 0.01 BL- 54-59 0.768(12) 0.05
0.03 0.02 BL+ 8-14 0.815(15) 0.08
0.03 0.02 BL- 50-56 0.839(17) 0.03
0.03 0.03 LL-g5 9-17 0.882(11) 0.03
0.03 0.03 LL-g45 9-17 0.884(13) 0.06
0.03 0.03 HL-g5 6-15 0.886(6) 0.17
0.03 0.03 HL-g45 6-14 0.887(7) 0.04
0.03 0.03 BL+ 5-14 0.884(7) 0.03
0.03 0.03 BL- 50-57 0.906(8) 0.05
0.03 0.03 GL2+ 6-13 0.907(9) 0.04
0.03 0.03 GL2- 51-58 0.903(11) 0.02
0.03 0.03 GG2+ 6-14 0.890(10) 0.28
0.03 0.03 GG2- 50-58 0.894(17) 0.07
0.03 0.04 LL-g5 10-17 0.940(11) 0.05
0.03 0.04 LL-g45 10-17 0.946(12) 0.02
0.03 0.04 HL-g5 7-15 0.950(6) 0.06
0.03 0.04 HL-g45 7-14 0.952(7) 0.04
0.03 0.04 BL+ 5-11 0.944(6) 0.02
0.03 0.04 BL- 53-59 0.966(7) 0.11

Table 4.5: Fit results for the nucleon mass from all the correlators in the 0.03
ensemble, 243 x 64 lattice. All the masses are in lattice units.
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Figure 4.1: Effective masses for the nucleon obtained from the fits to the m sea = 
m vai =  0.01 correlators, in the 243 x 64 volume case. Note th a t the full symbols 
for the LL, GL and GG correlators correspond to the 7 5  interpolating operator, 
while the em pty symbols correspond to 7 4 7 5 .
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Figure 4.2: Effective masses for the nucleon obtained from the fits to the m 3ea = 
m val =  0.02 correlators, in the 243 x 64 volume case. Note th a t the full symbols 
for the LL and HL correlators correspond to the 7 5  interpolating operator, while 
the em pty symbols correspond to 7 4 7 5 .
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4.7 163 x 32: fits

The same kind of analysis was performed for the small volume ensembles in order 

to be able to estim ate finite volume effects, as explained in more detail in section 

4.8.

Tables 4.9, 4.10 and 4.11 show the nucleon masses obtained from fits to each cor­

relation function available in the small volume case, for the m sea = 0.01, 0.02, 0.03 

ensembles respectively. The sym m etric error quoted is the jackknife error. The 

tables have the same structure as explained in section 4.6.

Figures 4.7, 4.8 and 4.9 show the effective masses plots obtained for each en­

semble for m vai =

In the same way we present the masses obtained for N* for the three different 

ensembles in Tables 4.12, 4.13 and 4.14, and the corresponding effective masses in
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'Ffl'sea Tflval c o r r e la to r fit  r a n g e M n* X 2/ d o f

0.01 0.005 BL- 4-7 0.927(62) 0.23
0.01 0.005 BL+ 57-60 0.935(66) 0.12
0.01 0.005 BL’ 3-7 1.108(71) 0.11
0.01 0.01 LL-g5 55-57 1.033(95) 0.06 X

0.01 0.01 LL-g45 56-57 1.086(106) - X

0.01 0.01 GL-g5 55-58 0.978(41) 0.36
0.01 0.01 GL-g45 55-57 1.080(160) 0.002
0.01 0.01 GG-g5 56-60 1.043(27) 0.03
0.01 0.01 GG-g45 57-60 1.114(41) 0.04
0.01 0.01 BL- 4-7 0.985(37) 0.16
0.01 0.01 BL+ 57-60 0.975(41) 0.11
0.01 0.01 BL’ 3-7 1.033(33) 0.01
0.01 0.01 GL2- 4-7 1.028(33) 0.06
0.01 0.01 GL2+ 57-60 1.099(84) 0.01
0.01 0.01 GG2- 6-8 0.974(106) 0.01
0.01 0.01 GG2+ 56-58 0.977(177) 0.99
0.01 0.02 BL- 4-7 1.061(23) 0.06
0.01 0.02 BL+ 57-60 1.048(24) 0.06
0.01 0.02 BL' 4-7 1.046(23) 0.005
0.01 0.03 BL- 4-7 1.124(17) 0.04
0.01 0.03 BL+ 57-60 1.111(18) 0.05
0.01 0.03 B L’ 4-8 1.101(18) 0.03
0.01 0.04 LL-g5 54-56 1.232(40) 0.005 X

0.01 0.04 LL-g45 54-56 1.221(48) 0.005 X

0.01 0.04 GL-g5 53-56 1.181(34) 0.15
0.01 0.04 GL-g45 54-56 1.158(36) 0.001
0.01 0.04 GG-g5 54-57 1.167(27) 0.07
0.01 0.04 GG-g45 54-56 1.175(54) 0.06
0.01 0.04 BL- 4-7 1.181(15) 0.02
0.01 0.04 BL+ 57-60 1.168(14) 0.05
0.01 0.04 B L’ 4-8 1.156(15) 0.08

Table 4.6: Fit results for the N * mass from all the correlators in the 0.01 ensemble, 
243 x 64 lattice. All the masses are in lattice units.

figures 4.10, 4.11 and 4.12. Again, the correlator indicated as W L ’ in tables and 

plots corresponds to the interpolating operator N'~ in eq.(4.4), which contributes
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Tn>3ea TTlval correlator fit range M n* X2/d o f
0.02
0.02
0.02

0.005
0.005
0.005

BL-
BL+
BL'

3-7
57-61
3-7

1.220(54)
1.072(55)

1.211(115)

1.5
0.13
0.18

0.02 0.01 BL- 3-5 1.131(24) 0.03
0.02 0.01 BL+ 59-61 1.116(28) 0.05
0.02 0.01 BL' 3-7 1.130(55) 0.03
0.02 0.02 LL-g5 54-58 1.226(71) 0.05 X

0.02 0.02 LL-g45 56-58 1.456(82) 0.07 X

0.02 0.02 HL-g5 55-59 1.094(32) 0.25
0.02 0.02 HL-g45 56-59 1.137(41) 0.006
0.02 0.02 BL- 3-7 1.144(19) 0.08
0.02 0.02 BL+ 57-61 1.158(23) 0.08
0.02 0.02 BL' 3-7 1.132(29) 0.01
0.02 0.02 GL2- 4-8 1.128(31) 0.20
0.02 0.02 GL2+ 56-60 1.144(32) 0.16
0.02 0.02 GG2- 4-8 1.077(44) 0.15
0.02 0.02 GG2+ 56-60 1.156(64) 1.22
0.02 0.03 BL- 4-8 1.174(22) 0.12
0.02 0.03 BL+ 56-60 1.196(28) 0.008
0.02 0.03 BL' 3-7 1.168(22) 0.008
0.02 0.04 LL-g5 54-56 1.353(102) 0.01 X
0.02 0.04 LL-g45 54-56 1.371(122) 0.05 X
0.02 0.04 HL-g5 54-56 1.218(62) 0.006
0.02 0.04 HL-g45 54-56 1.237(73) 0.11
0.02 0.04 BL- 4-8 1.220(18) 0.18
0.02 0.04 BL+ 56-60 1.242(22) 0.003
0.02 0.04 BL' 3-7 1.211(18) 0.003

Table 4.7: Fit results for the N* mass from all the correlators in the 0.02 ensemble, 
243 x 64 lattice. All the masses are in lattice units.

to N*. There is no clear signal for the N * from the WL data in the m sea =  0.01 

case, so only the W L' data are considered. We already commented in the previous 

section on the difficulties in the determination of the mass of the negative parity 

partner of the nucleon. Note also that the small volume suffers from the fact
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TIT'sea TfT'val correlator fit range M n* X2/d o f
0.03 0.005 BL- 3-6 1.233(82) 0.44
0.03 0.005 BL+ 58-61 1.274(105) 0.43
0.03 0.005 BL' 3-7 1.678(277) 1.4 X

0.03 0.01 BL- 3-5 1.175(37) 0.004
0.03 0.01 BL+ 59-61 1.193(46) 0.09
0.03 0.01 BL' 3-7 1.314(98) 0.60 X

0.03 0.02 BL- 3-7 1.192(24) 0.07
0.03 0.02 BL+ 57-61 1.195(28) 0.004
0.03 0.02 BL' 3-6 1.204(36) 0.04
0.03 0.03 LL-g5 56-58 1.388(7) 0.12 X

0.03 0.03 LL-g45 55-57 1.287(147) 0.03 X

0.03 0.03 HL-g5 55-59 1.281(33) 0.09
0.03 0.03 HL-g45 56-59 1.271(38) 0.03
0.03 0.03 BL- 5-9 1.210(50) 0.07
0.03 0.03 BL+ 55-59 1.230(51) 0.02
0.03 0.03 BL' 3-6 1.216(23) 0.02
0.03 0.03 GL2- 4-8 1.195(27) 0.02
0.03 0.03 GL2+ 56-60 1.274(41) 0.09
0.03 0.03 GG2- 4-7 1.240(41) 0.69
0.03 0.03 GG2+ 57-60 1.251(60) 0.04
0.03 0.04 LL-g5 53-55 1.206(207) 0.04 X

0.03 0.04 LL-g45 53-56 1.246(131) 0.04 X

0.03 0.04 HL-g5 53-57 1.269(60) 0.04
0.03 0.04 HL-g45 54-57 1.284(67) 0.01
0.03 0.04 BL- 4-9 1.245(23) 0.04
0.03 0.04 BL+ 55-60 1.267(25) 0.08
0.03 0.04 BL' 3-7 1.248(18) 0.02

Table 4.8: Fit results for the N* mass from all the correlators in the 0.03 ensemble, 
243 x 64 lattice. All the masses are in lattice units.

that the sum in (2.90) is over 163 terms only compared to the 243 in the larger 

volume. Therefore the main objective here is using the small volume analysis in 

combination with the larger volume one to estimate the size of finite volume effects.
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Figure 4.4: Effective masses obtained for the N* from the fits to the m 3ea = m vai =  
0.01 correlators, in the 243 x 64 volume case. Note th a t the full symbols for the 
LL, GL and GG correlators correspond to the 7 5  interpolating operator, while the 
em pty symbols correspond to 7 4 7 5 .

4.8 Finite Volume Effects

An investigation of possible finite volume effects on the nucleon and the N * was 

conducted by comparing the results from the small and large volume ensembles. 

For completeness we showed all our results in the tables in sections 4.6 and 4.7. 

Even if sometimes the same correlator types are not available in both volumes for 

the same quark combinations (different smearing for instance), in most cases we 

can compare like for like. To make comparison easier for the reader, we list in 

Table 4.15 the mass values obtained from sim ultaneous fits to the unitary points 

mvai =  n^sea1 both cases (more details on the sim ultaneous fits are in section

4.9.1). Also, in figure 4.13 the effective masses of the nucleon and the N* with 

valence and dynamical light quarks equal to 0.01, from both the 163 x 32 and
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n̂ aea TTlval correlator fit range m n X2/ d o f

0.01 0.01 LL-g5 10-14 0.722(38) 0.002
0.01 0.01 LL-g45 9-14 0.743(29) 0.02
0.01 0.01 GL-g5 9-14 0.727(23) 0.03
0.01 0.01 GL-g45 8-12 0.736(15) 0.02
0.01 0.01 GG-g5 6-11 0.739(11) 0.13
0.01 0.01 GG-g45 6-11 0.737(11) 0.05
0.01 0.01 WL+ 8-13 0.722(16) 0.06
0.01 0.01 WL- 19-24 0.748(20) 0.41
0.01 0.02 WL+ 8-13 0.790(9) 0.003
0.01 0.02 WL- 19-24 0.809(10) 0.39
0.01 0.03 WL+ 8-13 0.857(6) 0.001
0.01 0.03 WL- 19-24 0.867(8) 0.20
0.01 0.04 LL-g5 10-14 0.943(9) 0.003
0.01 0.04 LL-g45 9-14 0.947(7) 0.007
0.01 0.04 GL-g5 9-15 0.939(5) 0.03
0.01 0.04 GL-g45 8-13 0.935(5) 0.02
0.01 0.04 GG-g5 6-11 0.936(5) 0.11
0.01 0.04 GG-g45 6-11 0.932(5) 0.08
0.01 0.04 WL+ 8-13 0.921(5) 0.006
0.01 0.04 WL- 19-24 0.925(6) 0.11

Table 4.9: Fit results for the nucleon mass from all the correlators in the 0.01 
ensemble, 163 x 32 lattice. All the masses are in lattice units.

243 x 64 ensembles are plotted. The top and bottom panels are for the LL  and 

the W L =  BL  correlator respectively, common to both the lattices. The effective 

masses for N  have very good agreement between the two volumes in both cases. 

Although the effective masses for N* show some differences, the large statistical 

errors make it hard to draw a final conclusion. The same kind of comparison was 

performed for the other ensembles. Note that the most appropriate comparison 

is the one between correlators of the same type in the two volumes, i.e. between 

Tables 4.3 and 4.9. From this comparison we conclude that no significant finite 

volume effects are observed for both the N  and N*. However, from the values
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Tfl 3ea mvai correlator fit range m n X2/ d o f

0.02 0.01 WL+ 5-11 0.731(10) 0.09
0.02 0.01 WL- 21-27 0.742(10) 0.05
0.02 0.02 LL-g5 10-14 0.828(17) 0.06
0.02 0.02 LL-g45 9-14 0.830(19) 0.01
0.02 0.02 GL-g5 9-15 0.826(13) 0.03
0.02 0.02 GL-g45 8-13 0.830(11) 0.04
0.02 0.02 GG-g5 7-13 0.821(10) 0.08
0.02 0.02 GG-g45 6-11 0.824(10) 0.04
0.02 0.02 WL+ 10-14 0.815(15) 0.007
0.02 0.02 WL- 18-22 0.808(16) 0.01
0.02 0.03 WL+ 6-12 0.866(6) 0.04
0.02 0.03 WL- 20-26 0.876(6) 0.009
0.02 0.04 LL-g5 10-14 0.952(8) 0.009
0.02 0.04 LL-g45 10-14 0.960(10) 0.003
0.02 0.04 GL-g5 9-13 0.951(7) 0.002
0.02 0.04 GL-g45 8-14 0.954(7) 0.007
0.02 0.04 GG-g5 7-13 0.949(6) 0.01
0.02 0.04 GG-g45 6-11 0.950(7) 0.02
0.02 0.04 WL+ 7-13 0.931(6) 0.06
0.02 0.04 WL- 19-25 0.939(6) 0.07

Table 4.10: Fit results for the nucleon mass from all the correlators in the 0.02
ensemble, 163 x 32 lattice. All the masses are in lattice units.
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Tf̂ sea 'TH'val correlator fit range m n X2/d o f

0.03 0.01 WL+ 8-13 0.794(21) 0.31
0.03 0.01 WL- 19-24 0.757(19) 0.06
0.03 0.02 WL+ 9-13 0.858(14) 0.05
0.03 0.02 WL- 19-23 0.844(14) 0.03
0.03 0.03 LL-g5 10-14 0.913(19) 0.003
0.03 0.03 LL-g45 10-14 0.922(18) 0.002
0.03 0.03 GL-g5 8-14 0.908(9) 0.01
0.03 0.03 GL-g45 8-14 0.910(10) 0.02
0.03 0.03 GG-g5 6-13 0.908(9) 0.02
0.03 0.03 GG-g45 6-12 0.914(10) 0.08
0.03 0.03 WL+ 9-13 0.910(10) 0.02
0.03 0.03 WL- 19-23 0.908(10) 0.05
0.03 0.04 LL-g5 10-14 0.969(13) 0.02
0.03 0.04 LL-g45 10-14 0.976(14) 0.01
0.03 0.04 GL-g5 8-14 0.966(7) 0.006
0.03 0.04 GL-g45 8-14 0.969(9) 0.01
0.03 0.04 GG-g5 6-13 0.966(8) 0.02
0.03 0.04 GG-g45 6-12 0.972(9) 0.05
0.03 0.04 WL+ 9-13 0.965(8) 0.007
0.03 0.04 WL- 19-23 0.965(8) 0.05

Table 4.11: Fit results for the nucleon mass from all the correlators in the 0.03
ensemble, 163 x 32 lattice. All the masses are in lattice units.
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TR'sea TTlyal correlator fit range M n* X 2 / d o f

0.01 0.01 LL-g5 22-25 0.948(97) 0.01
0.01 0.01 LL-g45 22-24 1.310(534) 0.10
0.01 0.01 GL-g5 23-25 1.027(98) 0.07
0.01 0.01 GL-g45 24-26 1.065(84) 0.06
0.01 0.01 GG-g5 23-27 0.948(46) 0.16
0.01 0.01 GG-g45 23-27 1.057(83) 0.11
0.01 0.01 W L ' 4-8 1.033(59) 0.01
0.01 0.02 WL' 4-8 1.027(24) 0.01
0.01 0.03 WL' 4-8 1.076(16) 0.01
0.01 0.04 LL-g5 22-24 1.219(38) 0.002
0.01 0.04 LL-g45 22-24 1.257(46) 0.10
0.01 0.04 GL-g5 22-25 1.206(19) 0.006
0.01 0.04 GL-g45 24-26 1.224(17) 0.15
0.01 0.04 GG-g5 24-27 1.183(14) 0.66
0.01 0.04 GG-g45 24-27 1.192(18) 0.41
0.01 0.04 WL' 4-8 1.129(13) 0.08

Table 4.12: Fit results for the N* mass from all the correlators in the 0.01 ensemble, 
163 x 32 lattice. All the masses are in lattice units.
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TTlval correlator fit range Mn* X 2 / d o f

0.02 0.01 WL- 5-8 1.129(96) 0.04
0.02 0.01 WL+ 24-27 1.102(93) 0.32
0.02 0.01 WL' 3-5 1.277(81) 0.08
0.02 0.02 LL-g5 23-25 1.169(68) 0.03
0.02 0.02 LL-g45 25-26 1.484(81) -
0.02 0.02 GL-g5 23-26 1.169(44) 0.006
0.02 0.02 GL-g45 24-26 1.227(49) 0.00002
0.02 0.02 GG-g5 24-27 1.188(42) 0.03
0.02 0.02 GG-g45 25-27 1.244(57) 0.30
0.02 0.02 WL- 5-8 1.124(36) 0.04
0.02 0.02 WL+ 24-27 1.092(40) 0.13
0.02 0.02 WL' 5-8 1.211(68) 0.40
0.02 0.03 WL- 5-8 1.156(22) 0.08
0.02 0.03 WL+ 24-27 1.137(26) 0.07
0.02 0.03 WL' 4-8 1.191(33) 0.50
0.02 0.04 LL-g5 22-24 1.269(40) 0.0003
0.02 0.04 LL-g45 20-22 1.283(227) 0.002
0.02 0.04 GL-g5 22-25 1.231(27) 0.06
0.02 0.04 GL-g45 22-26 1.263(24) 0.03
0.02 0.04 GG-g5 24-27 1.257(22) 0.20
0.02 0.04 GG-g45 23-26 1.244(38) 0.005
0.02 0.04 WL- 5-9 1.194(18) 0.05
0.02 0.04 WL+ 23-27 1.187(21) 0.04
0.02 0.04 WL' 5-8 1.199(20) 0.023

Table 4.13: Fit results for the N * mass from all the correlators in the 0.02 ensemble, 
163 x 32 lattice. All the masses are in lattice units.
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n̂ sea ITlval correlator fit range Mfi* X2/d o f

0.03 0.01 WL- 3-7 1.136(49) 0.46
0.03 0.01 WL+ 25-29 1.070(46) 0.02
0.03 0.01 w v -
0.03 0.02 WL- 3-7 1.114(20) 0.23
0.03 0.02 WL+ 25-29 1.068(19) 0.21
0.03 0.02 WL' 3-5 1.142(26) 0.02
0.03 0.03 LL-g5 22-24 1.332(112) 0.004
0.03 0.03 LL-g45 24-26 1.499(93) 0.01
0.03 0.03 GL-g5 24-27 1.214(19) 0.11
0.03 0.03 GL-g45 24-27 1.262(34) 0.01
0.03 0.03 GG-g5 22-27 1.189(32) 0.06
0.03 0.03 GG-g45 25-27 1.223(40) 0.01
0.03 0.03 WL- 5-8 1.177(30) 0.02
0.03 0.03 WL+ 24-27 1.108(24) 0.007
0.03 0.03 WL' 5-8 1.220(40) 0.05
0.03 0.04 LL-g5 22-24 1.334(70) 0.006
0.03 0.04 LL-g45 24-26 1.499(52) 0.05
0.03 0.04 GL-g5 24-27 1.264(15) 0.17
0.03 0.04 GL-g45 24-28 1.299(17) 0.04
0.03 0.04 GG-g5 23-27 1.245(23) 0.09
0.03 0.04 GG-g45 25-27 1.280(31) 0.006
0.03 0.04 WL- 5-8 1.214(21) 0.02
0.03 0.04 WL+ 24-27 1.170(19) 0.009
0.03 0.04 WL' 5-8 1.233(25) 0.11

Table 4.14: Fit results for the N* mass from all the correlators in the 0.03 ensemble, 
163 x 32 lattice. Note that no signal was found for the N* from the WL' correlators 
with m vai =  0.01. All the masses are in lattice units.
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quoted in Table 4.15 from the simultaneous fits, we notice that the results for the 

N* do not follow a particular trend, while some evidence for marginal finite size 

effects is present for the nucleon.

Tfl'gea Tflval N N*

mass X 2/ d o f mass X 2 / d o f

0.01
0.01

0.01
0.01

0.738(9)
0.722(5)

0.29
0.15

1.020(35)
1.035(17)

0.38
0.71

0.02 0.02 0.825(9) 0.13 1.161(26) 0.65
0.02 0.02 0.808(4) 0.21 1.143(12) 0.68
0.03 0.03 0.910(8) 0.22 1.211(18) 0.32
0.03 0.03 0.890(5) 0.34 1.252(12) 0.76

Table 4.15: Comparison of N  and N* masses from a simultaneous fit to all corre­
lator types for each ensemble in the unitary case mvai =  m The first row of 
each set is from the 163 x 32 volume, the second from 243 x 64. The errors quoted 
are from a jackknife analysis. All the masses are in lattice units.

The origin of finite size effects is closely related to nuclear forces and it has 

been shown that for sufficiently large lattices of side L, the finite volume correc­

tions in the mass M  of a given state fall off as e~mpsL [58]. A typical test to 

determine the lattice size needed for observables involving quark propagation uses 

the pseudoscalar meson as it is the lightest particle and thus it has the largest 

correlation length. It has been shown that the exponential suppression applies 

for m psL  >  4, therefore finite size corrections are negligible in this case. For our 

lattices with L =  1.95 f m  and L =  2.9 /m , considering m P s  ~  390 MeV, we 

have mPsL  ~  3.85 and 5.7 respectively. So the marginality of finite size effects is 

not surprising. As already mentioned, in order to fully satisfy the condition for 

negligible finite volume effects then, we consider the large volume simulations our 

source of physical results for the nucleon spectrum.
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Figure 4.13: Comparison of the nucleon and the N* effective masses from the small 
and large volume ensembles with the valence and light dynamical quark masses 
equal to 0.01. Top and bottom  panels show the L L  and W L  correlators case 
respectively.

4.9 243 x 64: results

4.9.1 S im ultaneous F its

From the tables and plots ju st seen, it is easy to realize th a t different correlators 

can have very different behaviours: for instance the plateaus s ta rt earlier or later, 

and the mass values obtained can sometimes differ somewhat. This is why fitting to
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a single smearing type is not a very reliable method of analysis. The availability 

of different correlators types for the same sea-valence combination allows us to 

perform a simultaneous fit to all the correlators and minimize systematic errors 

arising from different characteristics of the operators. Therefore a more detailed 

study was performed for the unitary data points of each ensemble, where the largest 

variety of correlators is available. The non-unitary data points were included in 

the analysis mainly in order to perform an extrapolation in the valence quarks as 

well as in the sea quarks.

Table 4.16 shows the results from a simultaneous fit to all the available cor­

relators for each data set in each ensemble: a unique value for the mass is then 

obtained. Since the correlators axe measured on the same gauge background, in 

principle we should take into account correlations among different correlators and 

different time slices of the same correlator. However we explained in section 4.5 

that our statistics does not allow a reliable correlated fit, due to the poor resolution 

of the covariance matrix one gets when the number of data points is comparable to 

or greater than the number of independent configurations. The fit ranges used in 

the simultaneous fits (shown in the tables of fits) are the ones individually chosen 

as explained in section 4.5.

Some more comments regarding our results are necessary at this point. As 

already noticed, different correlators can have different behaviour. Also, a smeared 

type operator can be very effective in improving the signal for some valence (and 

sea) value, but become ineffective for a different value, corresponding to a different 

hadron size. The same applies for different interpolating operators. As we can see 

from Tables 4.3, 4.4 and 4.5, the signals for the nucleon state are very stable. 

However the considerations above often apply to its parity partner, see Tables 4.6,
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4.7 and 4.8. This is why, when performing simultaneous fits, we decided to discard 

those correlators that show a very bad signal or do not show a signal for the state 

in study, giving a mass far from the other values or with very large error bars: 

these are the correlators ticked with a x in Tables 4.6, 4.7 and 4.8.

fTlaea Tfi'val Ncfga N N

mass X2/d o f mass X2/d o f

0.01
0.01
0.01

0.005
0.01
0.02

60
60
60

0.6831}?
0.7221?
0.7921J

0.48
0.15
0.02

1.013!jK
1.0251}?
1.0551}?

0.83
0.62
0.28

0.01
0.01

0.03
0.04

60
60

0.8551®
0.9323

0.02
0.23

1.1131}?
1.1681}°

0.45
0.29

0.02
0.02
0.02
0.02
0.02

0.005
0.01
0.02
0.03
0.04

46
46
46
46
46

0.7061}?
0.7451}?
0.8083
0.8801J
0.9393

0.10
0.10
0.22
0.02
0.11

1.1683?
1.1261}®
1.1381}}
1.177!}®
1.222!}?

0.83
0.10
0.38
0.45
0.34

0.03 ‘ 0.005 52 0.726l}2 0.34 1.24635 0.33
0.03
0.03

0.01
0.02

52
52

0.7611J0
0.8261J3

0.01
0.07

1.1823}
1.195!}®

0.05
0.05

0.03 0.03 52 0.8913 0.39 1.2411}} 0.52
0.03 0.04 52 0.9513 0.31 1.2551}? 0.17

Table 4.16: Values of the N  and N* masses from a simultaneous fit to all correlator 
types for each ensemble. Ncfga is the number of measurements considered in each 
simultaneous fit: the different Ntraj ranges for each correlator type, Table 4.1, are 
restricted to a common range for each ensemble and accurately binned in order 
to have the same number of configurations for each set of correlators. The errors 
quoted are from a bootstrap analysis (section 2.13.2). All the masses are in lattice 
units.

4.9.2 Extrapolations

Once all the simultaneous fits for each combination m sea — mvai are performed, we 

are able to carry out an extrapolation in the valence quarks: for each ensemble we
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Figure 4.14: Valence extrapolation of the nucleon mass M N for all three ensembles 
at m vai = —m res. Also shown is the extrapolated value a t the lowest sea and the 
corresponding value for the mass in physical units.

have 5 da ta  points (all the possible valence available). Note th a t since we perform 

our sim ulations a t quark masses heavier than the physical up and down quark 

masses, extrapolations are needed to obtain physical results for the hadronic ob­

servables of interest. In figure 4.14 the chiral valence extrapolation is shown for all 

three ensembles. Note th a t in the extrapolations the value of m res =  0.003147(12) 

[55] is used. Neglecting higher-order corrections, the chiral lim it is defined at 

wif 4 - m res = 0 or rrif =  —m res, where m j  is the input quark mass. In figure 4.14, 

as an indication for the reader, we also show the nucleon mass extrapolated at 

the lightest sea with the corresponding value in physical units obtained using the 

lattice spacing a - 1  =  1.62(4) G e V .

A more rigorous value for the nucleon mass is obtained considering an extrapo­

lation in both the valence and sea quarks. We perform different types of extrapola­

tion as follows. We first consider all three ensembles, with 15 sea-valence combina­

tions in total; then we include only the two lightest ensembles, m sea =  0 .0 1 , 0 .0 2 ,
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with a total of 10 sea-valence combinations. Finally, we only consider the two 

lightest sea as well as the two lightest valence. Table 4.17 quotes the values from 

each of these three methods for the nucleon mass in lattice units, aMn , as well 

as the corresponding physical values in GeV  estimated using a-1 =  1.62(4) GeV. 

Presumably, including only lighter quark masses gives a more reliable chiral ex­

trapolation. In fact the nucleon mass decreases and gets closer to the physical 

value3 when we consider the lightest quark combinations.

Wl>aea ITlval aM s M N[GeV]
0.01 0.02 0.03 

0.01 0.02 
0.01 0.02

0.005 0.01 0.02 0.03 0.04 
0.005 0.01 0.02 0.03 0.04 

0.005 0.01

0.6191s
0.6151®
0 .5 9 llg

1.003126 
0.996126 
0.9571H

Table 4.17: Value of the nucleon mass obtained from extrapolations in both the 
sea and the valence quark masses, as indicated in the first and second columns. 
Last column shows the corresponding physical values in GeV  obtained using a-1 =  
1.62(4) GeV.

A similar approach is used in the case of the N*. We first performed an 

extrapolation in the valence quarks for each ensemble. From Table 4.16 we can 

see that the N* masses obtained from the mvai =  0.005 correlators, in particular 

in the m sea =  0.02, 0.03 cases, are not very consistent with the trend of growth 

of the other valence compositions and present larger errors. In the m 9ea =  0.02 

case, the value quoted is from a simultaneous fit to the BL  and B V  correlators 

which show a very poor signal at this light valence value; for m sea =  0.03 the BL' 

was not even included in the simultaneous fit and the value quoted comes from the

3From http://pdg.lbl.gov/2007:

Mp =  (938.272029 ±  0.000080) M e V  an d  M n =  (939.565360 ±  0.000081) M e V  

for proton and nucleon respectively.
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correlator BL. A better signal is present in the m sea =  0.01 case, but no significant 

difference is found by including or not the m vai =  0.005 point in the extrapolation4. 

Therefore we exclude the lightest valence from all three extrapolations, as shown 

in the plot in figure 4.15.

For a better determination of the N* mass, we then consider an extrapolation in 

both the valence and sea quarks. As for the nucleon case, we first consider all three 

ensembles, with 12 sea-valence combinations in total; then we exclude the heaviest 

ensemble, with a total of 8 sea-valence combinations in the m sea =  0.01, 0.02 

sector. Finally we only consider the two lightest sea values as well as the two 

lightest valence values. Table 4.18 quotes the three values obtained for the mass 

of N* in lattice units, aM^*, as well as the corresponding values in GeV.

Note that we could have chosen to extrapolate at the physical point, corre­

sponding to Mps =  140 M eV , instead of at quark mass equal to zero. The 

determination of the physical quark mass requires a well controlled chiral extrapo­

lation in the light quark limit. Ideally the next-to-leading-order chiral perturbation 

theory (NLO xP T )  should be used, but it has been shown [59] that our data can 

not be described by the NLO x P T , probably due to too heavy quark masses cor­

responding to pion masses of 390 to 630 M eV  [59]. A linear extrapolation can be 

then considered, i.e.

=  +  (4.13)

The determination of the physical quark mass was not part of this work: us­

ing results in [59] we can qualitatively quote M N =  0 .9 8 4 ^  GeV  and Mu* =  

1.452I 4® GeV  as the masses we obtained through an extrapolation at the physical

4In fact, the N *  masses obtained in the m vai =  0.005 and 0.01 cases have very close values, 
see Table 4.16.
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Figure 4.15: Valence extrapolation of the N* mass for all three ensembles at 
m vai — —m res. The m vai =  0.005 da ta  points have been discarded, as explained in 
the text.

quark masses in the light quark limit.

m>sea TYlvai olM n * M N.[G eV }

0.01 0.02 0.03 
0 . 0 1  0 . 0 2  

0 . 0 1  0 . 0 2

0.01 0.02 0.03 0.04 
0.01 0.02 0.03 0.04 

0 . 0 1  0 . 0 2

0.905±^
0.881^21
0.878^8

1.466^42
1.4271JJ
1.4221J?

Table 4.18: Value of the N* mass obtained from extrapolations in both the sea 
and the valence quark masses, as indicated in the first and second columns. Last 
column shows the corresponding physical values in G eV  obtained using a~l = 
1.62(4) G eV.

4.10 Conclusions

We saw in Table 4.17 how the values for the nucleon mass obtained from chiral 

extrapolations approach the experim ental value going to lighter quark masses. We 

can then quote our final result for the nucleon mass as

M n =  9 5 7 tg t? (4.14)
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where the first error is statistical and the second takes into account the other two 

values in Table 4.17, found when different (heavier) sea-valence combinations are 

considered.

Following the same arguments for the nucleon parity partner state, we can 

write

Mn . =  1422±g?±S“ MeV. (4.15)

Despite the rather large uncertainties, the M#* value appear much lower than the 

experimental estimate, 1525 — 1545 MeV. Following [71], we explored a possible 

explanation for the apparently fast falling of the data with the quark mass. At 

sufficiently light quark masses, the decay channel N* —> N  +  n is open. In order 

to investigate the possibility of our N* to decay into such a lighter state, we look 

at the m sea =  0.01 ensemble, where more statistics are available and no data were 

discarded in the simultaneous fits. The data points in figure 4.16 are the MN. 

values from the simultaneous fits (Table 4.16), while the dashed line connects the 

values of the mass of the nucleon plus the pseudoscalar meson. All the masses axe 

in physical units. We see from this plot that our data points do not follow the 

dashed line, even if the lightest point were discarded. Clearly the interpolating 

operators used to reproduce the N* at our parameters values for our lattice size 

have a stronger overlap with the single-hadron state and we can conclude that the 

state studied in this work is actually the Af(1535).

In figure 4.17 we plot our values for N  and N *, as well as the corresponding 

experimental values, iV(939) and A^(1535). The nucleon state N  is much better 

determined than the N*. We already commented on the difficulties to determine 

the N*. We conclude that our results for the nucleon mass are in good agreement
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Figure 4.16: Chiral extrapolation of the N* mass for the m sea =  0.01 ensemble. 
The dashed line represents the nucleon mass plus the pseudoscalar meson mass.

with the experiments within the rather large statistical uncertainties.

A more comprehensive calculation of the nucleon and baryon spectrum  is under 

active pursuit. The work in progress includes da ta  from a lighter ensemble at 

Tnsea = 0.005, which clearly will make more precise the chiral extrapolation of 

particles under study. Final results will appear in an upcoming paper [55] written 

jointly by the baryon group of the RBC and UKQCD collaborations.
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Chapter 5 

D s  Mesons with Overlap

5.1 Ds Physics and LGT

The discoveries a few years ago of new resonances D aj  have provoked much interest 

in heavy-light systems in general and in the D a mesons in particular. The BaBar 

collaboration first reported [61] evidence for a new narrow resonance decaying to 

D+7T° at a mass near 2.32 GeV. The data were consistent with the identification 

of this state as one of the four lowest-lying members of the cs mesons system with 

orbital angular momentum L =  1. It was named Z)*j(2317) and its characteristics 

suggest a J p — 0+ assignment. In the search for the Z)*j(2317) meson and other 

possibly related states, the CLEO collaboration observed [62] another narrow res­

onance in the D*+7r° final state, with a mass near 2.46 GeV. They confirmed 

the consistency of the data with the possible interpretation of the two states at 

2.32 and 2.46 GeV  as cs mesons with L =  1 and spin-parity J p =  0+ and 1+ 

respectively.

These observations were consistent with the theoretical prediction [63] in heavy- 

light meson systems of the existence of the heavy spin multiplet {0+, 1+}, parity 

partner of the ground state multiplet {0- , l - } (see next section for more details).

125
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In this scenario, the D s mesons (and D  physics in general) clearly appear very 

interesting objects to be studied on the lattice. Not only does the spectrum offer 

several new possibilities of investigation, in particular after the discovery of the 

positive parity partners of the Da and £)*, but also the recent determination by the 

charm factory of the leptonic decay constants fo  [64, 65] and fo a [66] produced 

new challenges and possible tests for lattice QCD: for instance, new determinations 

of the CKM matrix elements V^ and Vca and the amplitude ratio f o j  I d -

In this work we focus on the Da spectroscopy and on the experimentally deter­

mined quantities in D a calculations: the parity and hyperfine splittings and their 

independence on the spin and the parity respectively. Many previous lattice calcu­

lations [67, 68, 69, 70, 71, 72] tried to reproduce the features of these heavy-light 

charm mesons: most of these consider a static or non-relativistic heavy charm 

quark, with the exception of [70] which uses the Fermilab approach and [72] which 

describes the charm quark as a domain wall fermion. All these works are in the 

quenched approximation.

Here we present preliminary results of the very first study with 2 +  1 dynamical 

flavours. We also perform a quenched approximation calculation at a matching 

lattice spacing. The novelty of our work is considering the charm quark propagat­

ing as an overlap fermion, while the light strange quark is a domain wall fermion. 

We will see in more detail in next section how the chiral symmetry of the light 

quarks are important in the model for heavy-light systems: in fact we exploit the 

good chiral symmetry of DWF for the light strange quark. As far as the heavy 

quark is concerned, the charm quark has a mass of around 1.2 — 1.5 G eV , so it is 

not surprising that lattice actions develop rather severe discretization effects when 

m c ~  a-1 . This is why when the quark mass is the same size as the cutoff, the
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study of the properties of heavy quark systems relies on effective field theories. 

The effective action for the heavy quark has the form of an expansion in powers 

of a small parameter: Heavy Quark Effective Theory (HQET), whose expansion 

parameter is the inverse of the heavy quark mass, is usually used in heavy-light 

systems. However, we might be interested in physical processes at scales not far 

below the cutoff, where effective theories become poor as well. As explained in 

section 2.8, overlap fermions, not only have good chiral properties, but can also 

alleviate some problems related to simulating heavy quarks, since they appear to 

be free from 0 ( m ca) errors, and have small 0 { m 2ca2) corrections [75]. This is the 

principle reason why we implemented the charm as overlap.

This study is carried out in collaboration with RBC-UKQCD members.

5.2 The Parity Doubling Model

Heavy-light mesons, containing one heavy quark Q and one light quark q, are 

subject to powerful symmetry constraints [63]. In fact, the pseudoscalar and vec­

tor mesons containing one massive and one light quark become degenerate in the 

heavy quark limit, ttiq —»■ oo, due to a heavy quark spin symmetry valid up 

to ( 9 ( l / m g )  [73], While heavy quark (HQ) symmetry maintains the degener­

acy within the {0- , l - } and {0+, 1+} multiplets, i.e. spin degeneracy, implying 

vanishing hyperfine splitting effects, unbroken chiral symmetry of the light quark 

(LQ) would imply the degeneracy of the two multiplets themselves. In fact, in 

the LQ limit, mq —► 0, with q =  (u, d, s), the Lagrangian must be invariant under 

SU (3)l x SU(S)r  chiral symmetry. Therefore the breaking of the chiral symme­

try leads to a mass gap between parity partners, with associate pionic transitions
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Figure 5.1: Schematic representation of the {0 ~ , 1 ~} and {0 +, l + } m ultiplets, in 
the double lim it of HQ and LQ symmetry, dashed symbols, and when both the 
symm etries are broken, full symbols.

{0+ , l  + } —» {0~,1~} +  7r, elevating the heavier {0+ , l  + } m ultiplet and depress­

ing the lighter {0_ , l - }. These decay transitions are governed by a Goldberger- 

Tleim an relation |74], gn =  A M / f n, where A M  is the 0+ — 0~ mass difference, gn 

is the 0+ —> 0_ 7r coupling constant and the pion decay constant. More details 

on the parity  doubling model of Bardeen, Eichten and Hill are found in [63, 73] 

and are not in the scope of this study. We ju st give a visualization in figure 5.1: in 

the double lim it of heavy quark and chiral sym m etry the m ultiplets appear totally 

degenerate, i.e. the dashed oval figures shown in a horizontal line. The full oval 

figures give an idea of the splitting due to both the HQ and LQ broken limits: the 

gap between the red and light ovals in each rectangular represents the hyperfine 

splitting, while the gap between the two red ovals, as well as between the two blue 

ones, represent the parity splitting.
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5.3 Numerical Details

129

The dynamical analysis was performed on 2 +1 flavours DWF ensembles generated 

jointly by the RBC and UKQCD collaborations. These were the ’small volume’ 

ensembles used in chapter 4. Specifically, the simulations used the Iwasaki gauge 

action with j3 =  2.13 and the domain wall fermion quark action with the fifth 

dimension fixed to Ls =  16 and the domain wall height set to =  1.8. The 

volume size is 163 x 32 and a single lattice spacing of a-1 =  1.62(4) GeV1 gives a 

corresponding spatial volume of (1.9 f m )3. Three sets of configurations were gen­

erated with a light isodoublet with masses amud — amsea =  0.01, 0.02, 0.03, and 

a fixed approximate strange quark mass, ams =  0.04. As mentioned in chapter 4, 

the ensembles were generated using the RHMC algorithm and its implementations 

[19], and they are described in more detail in [54].

The meson correlators were measured with sources on multiple time planes, 

in order to improve our statistics. Details of the three ensembles used are listed 

in Table 5.1. Note that momenta different from zero have been also considered 

in order to investigate higher mass states and mainly allow a dispersion relation 

analysis, as explained in section 5.4.1.

The D s correlators were generated in this gauge background with the light 

strange quark as a domain wall fermion and the heavy charm as an overlap fermion. 

The main analysis of this work was performed on correlators generated at two 

different charm quark masses, amc ~  0.72, 0.9, producing two different heavy- 

light mesons for each ensemble, labelled Hz and H± respectively. Recalling the 

xSee section 4.4 for the determination of the lattice scale.
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TTlge 0 N t r a j A N m e a 8 N g r c P m ax a m c Meson

0 .0 1 500-4000 50 282 4 4 0.72 0.9 h 3 h a

0 .0 2 1000-4025 50 1 2 2 2 4 0.72 0.9 h 3 h 4
0.03 1000-4000 50 1 2 1 2 2 0.72 0.9 h 3 h 4

0 .0 2 1000-4040 1 0 305 1 4 0.36 0.54 H i H 2

quenched 10000-29200 2 0 0 97 1 4 0.36 0.54 0.72 0.9 H i H 2 H 3 H 4

Table 5.1: Measurement parameters for all the datasets used in this study. Ntraj is 
the lowest to highest trajectory analysed with A the separation between measure­
ments in molecular dynamics time unit. Nsrc is the number of different sources 
used for each set of measurements. In the last two columns, the charm quark mass 
considered and, for labels, the corresponding meson are specified for each set of 
data.

expression of the massive overlap operator, eq.(2.79), we write

aDo,, =  p( 1 +  /i) +  p( 1 -  g )^ sg n {^ {a D w -  p)), (5.1)

where g =  and p is any mass parameter that can be added to the Dirac 

operator D w  without affecting the continuum limit: here it was chosen equal to 

1.3 looking at the heavy-heavy pseudoscalar meson. The overlap operator was 

used to invert on hyp-smeared DWF gauge configurations for mass parameter 

g  ~  0.277, 0.346, corresponding to the two charm mass values above.

In later stages of this work, we ran a test with two lighter choices of the 

charm quark mass, amc ~  0.36, 0.54, obtaining two lighter heavy-light mesons, 

labelled Hi and H2 respectively: the new correlators were generated only on the 

omsea =  0.02 ensemble. The fourth dataset in Table 5.1 is specific for this case. 

Therefore, we will indicate in the following with H i,H 2,H$,H4 the four possible 

quark mass pairs, from the lightest to the heaviest. However, note that in the 

dynamical analysis for the am3ea =  0.01 and 0.03 ensembles, only the two heaviest
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combinations will be present, i.e. H3,H 4.

After our unquenched analysis, we decided to investigate possible sea quark 

effects and performing a quenched analysis at the same lattice spacing, using the 

dataset listed in the last row in Table 5.1. Note that all four heavy-light mesons 

were produced in the quenched case.

5.4 Dynamical Analysis and Results

The same criteria explained in section 4.5 for the choice of the fit ranges and the 

acceptance of x 2/ dof  were adopted for the D s analysis.

Table 5.2 shows the values of the masses obtained from uncorrelated fits to 

the four channels we are interested in: P(0~), V^l- ), <S'(0+), A (l+) label the 

pseudoscalar, vector, scalar and pseudovector or axial channel respectively, with 

the spin-parity composition specified in brackets. In the table the heavy-light 

meson type, as well as the fit range is specified. Figure 5.2 shows the typical 

effective masses for these channels. The left panels correspond to the heavy-light 

meson containing the lighter charm quark amc ~  0.72, i.e. H$, while in the right 

panels amc ~  0.9, corresponding to the meson H4. For the pseudoscalar and vector 

channels similarly reasonable plateaus are found for higher momenta. From Table 

5.2 we can see that the masses obtained for the H3 and H4 mesons are consistent 

among the different ensembles. In particular the pseudoscalar and vector masses 

show a statistical error of less than 1%. Considering an average of the three values 

from the three ensembles, and using a-1 =  1.62(4) G eV , we can qualitatively 

estimate the range spanned by our i / 3 and H4 values in physical units:

P(O') ->• [1840 -  2130] MeV; K (l") [2030 -  2320] MeV. (5.2)
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Therefore the experimental values of the corresponding mesons,

D s -► 1968.2(5) MeV\ D*s -► 2112.0(6) MeV, (5.3)

clearly lie in between our two heavy-light states, H3 and H±.

5.4.1 Dispersion Relation

We computed the meson masses at different lattice momenta and fit them to

commonly used continuum-like expression is linear in the square of the momentum,

However, we performed both linear and quadratic fits, i.e. to the eq.(5.4) and to

plained below. Also, following [75], we considered the momentum equal to pa =

the energies to a quadratic expression with the momenta as in eq.(5.5), is in our 

case the best approach, as explained below2.

2Only three momenta are available for the a m sea =  0.03 ensemble, i.e. there are only three
points in the plot of energies versus momenta, so we found the linear fit with p a  =  2 sin(7Ty/n/La)
is the best one in the 0.03 case.

the dispersion relation. The dispersion relation is defined such that the 0 ( m 2a2) 

error is reflected in the deviation of c, the effective speed of light, from unity. The

(E{jp)a)2 =  (E(0)a)2 +  (?(pa)2 (5.4)

where pa =  plCl is the discretized lattice momentum

(5.5)

(E(p)a)2 =  (E(0)a)2 4- c2(pa)2 +  K(pa )4 (5.6)

respectively. Note here the 0 ( a 4) term corresponds to a lattice artefact, as ex-

2 sm(7Ty/n/La) in addition to the expression in (5.5). We concluded that fitting
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Meson P(O-) V ( l- ) 5(0+) A{\+)

rnaea
0.01 H3 1.133(2)

[10-16]
1.241(5)
[12-16]

1.393(17)
[8-13]

1.490(20)
[8-14]

H* 1.315(3)
[11-16]

1.424(8)
[12-16]

1.569(18)
[8-14]

1.663(20)
[8-13]

0.02 0.771(1)
[9,15]

0.913(4)
[10,16]

1.060(24)
[8,13]

1.013(43)
[10,16]

h 2 0.955(2)
[9,16]

1.083(3)
[9,16]

1.211(28)
[9,16]

1.179(38)
[10,16]

h 3 1.134(4)
[10,16]

1.255(7)
[12,16]

1.336(54)
[9,16]

1.481(36)
[8,16]

Hi 1.318(5)
[10,16]

1.443(12)
[12,16]

1.544(58)
[9,16]

1.671(37)
[8,16]

0.03 h 3 1.133(3)
[12,16]

1.264(6)
[10,16]

1.443(67)
[9,16]

1.494(43)
[9,14]

H4 1.317(5)
[12,16]

1.427(14)
[12,16]

1.584(42)
[8,16]

1.683(34)
[8,16]

quenched Hx 0.767(3)
[10,16]

0.938(6)
[9,16]

0.935(134)
[9,15]

1.023(107)
[10,16]

h 2 0.952(3)
[10,16]

1.102(5)
[8,16]

1.111(82)
[9,15]

1.200(81)
[10,16]

h 3 1.136(4)
[11,16]

1.275(8)
[10,16]

1.357(49)
[8,14]

1.491(52)
[8,16]

Hi 1.324(6)
[11,16]

1.456(11)
[10,16]

1.539(39)
[8,13]

1.645(64)
[9,16]

Table 5.2: Fit results for the meson masses in lattice units for all the heavy-light 
possibilities and ensembles. Below each mass value the corresponding fit range is 
specified.



CHAPTER 5. Ds MESONS WITH OVERLAP 134

♦ A ( l )  

■ S(0+)
* V(i')
•  P(O')1.6

8 10 12 14 162 4 6

1.6 P(0 )

1.4

1. 2

8 10 12 14 162 4 6

•  P(O')
* V(l')

■ S(0+)

♦ A ( l+)

.8

1.6

1.4

1.2

10 12 162 4 6 8 14

1.8

1.6

1.4

1. 2

0 A ( l +)
□ S(0+)
* V(1 )
o P(0)

1  3E f t

10 12 14 16

1.6

1.4

1.2

12 162 8 10 144 6
•  P(0)
* V(l')

■ S(0+)

♦ A ( l+)

1.6

1.4

1.2

12 162 4 6 8 10 14

Figure 5.2: Effective masses for the heavy-light, mesons with charm mass am c ~  
0.72 on the left panels, corresponding to the / / 3 meson, and am c ~  0.9 on the right 
panels, corresponding to the H± meson. From the top to the bottom : a m sea =  
0.01, 0.02, 0.03.

Figure 5.3 is an example of our investigation: it shows the dispersion relation

for the pseudoscalar channel, upper panel, and the vector channel, lower panel,
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for the meson H3, the lightest of the two considered here, in the amsea =  0.01 

case, where five different momenta are available. We also show in the plot the 

values of the speed of light obtained from the fit to eq.(5.6), c =  0.897(12) for 

the pseudoscalar and 0.833(29) for the vector, higher than one might expect from

[75], considering our heavy charm. For completeness, we list in Table 5.3 the c 

values for the pseudoscalar and vector mesons obtained from all our sets of data. 

Clearly, the heavier the meson, the lower is the c value obtained. However, the 

fact that simulating quarks as heavy as charm can give rise to more difficulties, 

in terms of higher lattice artefacts for instance, is a well known problem. One of 

the methods trying to overcome the problems with heavy quarks (i.e. arriQ ~  1) is 

the Fermilab or Relativistic Heavy Quark approach [76]. It gives us an alternative 

interpretation of the dispersion relation. Here we recall the basic idea.

Considering the expansion of the energy-momentum relation in powers of the 

(lattice) momentum pa, we can write

(Ea)2 =  (Mia)2 +  ^ r ( pa)2 +  K(pa )4 +  ... (5.7)
M2

where Mi is the rest mass, Mi =  E(Q), and M2 is the so-called kinetic mass, M2_1 =  

(2 J^)p=o- The relativistic mass shell will have Mi =  M2, and the expression above 

in the relativistic limit becomes the well known

(Ea)2 =  (Mia)2 +  c2(pa)2 (5.8)

with c2 =  1. In practice, at our non-relativistic mass, we cannot truncate the 

expansion at p2, but we have to consider higher order terms, which take into 

account lattice corrections. The form of these corrections is not in the scope of 

this study, so we will simply indicate them 6Elat:

(Ea)2 =  (mQa)2 +  (?(pa)2 +  6Eiat. (5.9)
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The rest mass of non-relativistic particles decouples from the interesting dynamics, 

since in the m g  —* o c  lim it the heavy quark is a t rest relative to the hadron. The 

suggestion from the Fermilab approach |76j is then considering M 2 instead of M i 

and tuning the couplings in the Lagrangian so th a t M 2 takes the physical value. In 

th is prelim inary analysis we consider both M i and M 2 and look a t the dependence 

of the mass splittings on them , as explained in the following.

1.7
O  (Ea)2 

  quadratic fit
1.6

1.5

1.4 c = 0.897(12)

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6

1.9 O  (Ea)
  quadratic fit

,8

1.7

c = 0.833(29)1.6

1.5
0 0.1 0.2 0.3 0.4 0.5 0.6

(pa) 2

Figure 5.3: Dispersion relation plot for the pseudoscalar, upper panel, and vector 
channel, lower panel, of the meson in the am sea =  0.01 case. A quadratic fit to 
eq.(5.6) was performed.
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Meson P ( 0 ~ ) V ( l ~ )

dTTIgea

0 .0 1 h 3 0.897(12) 0.833(29)
H 4 0.785(15) 0.720(37)

0 .0 2 0.963(10) 1.001(26)
h 2 0.940(9) 0.963(17)
h 3 0.883(17) 0.850(44)
H a 0.808(21) 0.742(61)

0.03 h 3 0.862(22) 0.828(23)
H i 0.742(27) 0.647(47)

quenched H i 0.959(22) 0.964(45)
h 2 0.900(18) 0.905(37)
h 3 0.846(19) 0.826(35)
H i 0.763(22) 0.696(44)

Table 5.3: c values for all the pseudoscalar and vector mesons.

5.4.2 Mass Splittings

Our notation for the mass splittings considered the hyperfine and the scalar- and 

vector-parity splitting respectively, is as follows:

My  — Mp  =  1 — 0 =  A H

M s - M p  =  0+ -  0“ =  A S' (5.10)

MA - M v =  1+ -  I" =  AV.

In Table 5.4 the values of these splittings obtained for all the combinations of

heavy-light mesons are listed in lattice units; in Table 5.5, the same values are in 

M e V , and the experimental values are also listed, as a guide for the reader. Figure

5.4 shows the splitting values obtained in the unquenched analysis versus amsea. 

There is no discernible dependence on the sea quark mass, even for the hyperfine
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splitting, which has the smallest error bars3. However the hyperfine splitting is not 

well reproduced: our results are always overestimates compared with ~  144 M eV  

from experiments. The values from the quenched calculation also overestimate the 

hyperfine splitting, contrary to what is previously found in literature.

Also, it is important to notice the larger statistics available for the amsea =  0.01 

ensemble, more than twice the amsea =  0.02, 0.03 cases. So it is not surprising 

that the lightest ensemble gives results with sometimes smaller errors. In figure

5.4 we also inserted the values for the different splittings obtained for the Hi, Hi 

mesons at amsea =  0.02.

Following the considerations in section 5.4.1, we also performed some tests by 

computing the mass splittings defined in terms of M2 instead of Mi. This means 

considering the masses equal to M2 =  M i/c2, where Mi are the rest masses listed 

in Table 5.2 and the speed of light c values come from the dispersion relation fits, 

as explained in section 5.4.1. However, we often found bad signals at non-zero 

momenta, in particular in the scalar and axial cases. This meant that extracting c 

values was not always possible, so that we could not carry out a study of the mass 

splittings defined by the M2 kinetic masses. In section 5.5 we consider using M2 

to determine the meson mass scale from the pseudoscalar channel.

3 This clearly comes from the fact that the vector and pseudoscalar channels have good signals 
in all three ensembles, as the long plateaus in figure 5.2 show, while the axial and scalar ones 
become noisier going to higher mass, with larger error bars.
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0.2

0.030.020.01

Figure 5.4: Mass splittings values in lattice units (Table 5.4) for i / 3 , full diamonds, 
and i / 4 , empty diam onds, plotted versus a m sea. The triangles, full and empty, 
represent values for H 1 and H 2 respectively, in the a m sea = 0 . 0 2  case. Note the 
shift in the x  axis for clarity.

Meson AH AS AV

0.01 H z 0.108(5) 0.260(17) 0.249(21)
h 4 0.108(8) 0.254(18) 0.239(21)

0.02 Hy 0.142(4) 0.289(24) 0.100(43)
h 2 0.128(3) 0.256(28) 0.096(37)
h 3 0.121(8) 0.202(53) 0.227(36)
H \ 0.125(12) 0.226(58) 0.228(37)

0.03 h 3 0.131(6) 0.310(67) 0.230(42)
H i 0.110(14) 0.267(43) 0.256(34)

quenched Hy 0.171(6) 0.168(134) 0.084(106)
h 2 0.150(5) 0.159(82) 0.098(80)
h 3 0.139(7) 0.221(49) 0.217(50)
h 4 0.131(10) 0.215(39) 0.189(62)

Table 5.4: Mass splittings values obtained in lattice units.

5.5 Dynamical plus Quenched

The values of the ground sta te  masses obtained for all four heavy-light mesons gen­

erated from the quenched configurations are listed in Table 5.2. The corresponding
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mass splittings can be found in Tables 5.4 and 5.5, in lattice and physical units 

respectively.

In figures 5.5 the splittings in lattice units are plotted versus the inverse of 

the pseudoscalar mass l /M p,  where MP is equal to Mi, the rest mass of the 

pseudoscalar meson, in the upper panel, and equal to M2, the kinetic mass, in the 

lower one. The vertical dotted line corresponds to the experimental value of the 

Ds  meson (using a-1 =  1.62(4) GeV). As described in the previous section, our 

preliminary unquenched analysis shows a negligible dependence on the sea quark 

masses. Therefore we decide for clarity in these plots to show only one of the 

three ensembles studied, the amsea — 0.02 one, since all four heavy-light mesons 

are present, as for the quenched case. The dynamical values are plotted as full 

symbols and the quenched values as empty symbols. We can see that quenched

Meson AH AS AV

ill'tea

0.01 H z 175(8) 421(27) 403(34)
h a 176(13) 411(29) 387(34)

0.02 Hy 230(6) 469(39) 163(70)
h 2 208(5) 415(46) 156(60)
Hz 196(13) 327(86) 368(58)
H A 203(20) 366(94) 369(61)

0.03 Hz 212(10) 502(109) 373(68)
H i 179(22) 433(70) 415(56)

quenched Hy 278(10) 273(217) 137(172)
h 2 244(8) 258(132) 158(130)
Hz 225(12) 358(79) 351(82)
H i 213(16) 348(63) 306(100)

Experiment 143.8(4) 349.1(6) 346.9(1.0)

Table 5.5: Mass splitting values in M e V , using a 1 =  1.62 GeV. The experimental 
values are also showed.
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and dynamical splitting values are consistent within the errors: therefore no sea 

quark effects are observed. The shift in the x axis in the second plot compared 

to the first reflects the deviation of the c values from unity (see also Table 5.3): 

this probably tells us that simulating the heavy charm quark as an overlap is not 

enough to get rid of 0 {a2m2) errors at our large lattice spacing without resorting 

to the M2 definition of the meson mass.

Due to the spin degeneracy of the parity splitting, the ratio of the two parity 

splittings is expected to be equal to unity. From the experimental values in Table

5.5 we have in fact A V / A S  =  1+ — l _/0 + — 0“ ~  0.994. Figures 5.6 shows the 

values obtained for this ratio versus the inverse of the pseudoscalar meson mass 

1 /M p  in the upper plot, and versus the hyperfine splitting over the pseudoscalar 

meson mass A H /M p  in the lower one. In both plots Mp =  My, the rest mass. 

As can be seen, the two heavier mesons, i /3 and i / 4, have ^  =  1 within rather 

large errors. Going to lighter heavy quark masses, i.e. for the Hy and H2 mesons, 

the gap between the two parity splittings seems to increase in both quenched and 

unquenched.

5.6 Conclusions

In this chapter we described a preliminary study of D s mesons. For the very first 

time these systems are studied in 2 + 1  dynamical flavours, with the strange quark 

as a domain wall fermion and the charm quark as an overlap fermion. We found 

clear signals for all the four channels we were interested in, with the pseudoscalar 

and vector ones being the more stable. Very little if any dependence of the mass 

splittings on the sea quark mass is observed. However, the error bars in the parity
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Figure 5.5: Mass splittings in lattice units versus the inverse of the pseudoscalar 
meson mass, equal to the rest mass M i in the upper panel and to the kinetic mass 
M 2 in the lower panel. The results for all the four mesons are plotted for both the 
am sea =  0 . 0 2  ensemble, full symbols, and the quenched case, em pty symbols.

splitting  values are often very large, due to the fact th a t the scalar and axial 

channels are quite noisy. The hyperfine splitting always presents smaller errors, 

but the experim ental value is not well reproduced: it is always overestim ated, even 

in the quenched calculation. The ratio  of the two parity splittings is close to the 

experim ental value within the statistical errors, but we cannot draw any conclusion
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Figure 5.6: Here the ratio  of the vector parity over scalar parity is plotted versus 
the inverse of the pseudoscalar mass in lattice units in the upper panel, and versus 
the ratio  A H /M p  in the lower panel, with M P =  M 1? the rest mass, in both plots. 
The results for all the four mesons are plotted. The experim ental values are also 
shown.

at this stage due to the very large error bars usually present. B etter statistics is 

required for a more precise analysis. We tried to investigate possible sea quark 

effects com paring results from a quenched calculation, but we did not find the 

improvement we expected. We do not see significant difference in the two analysis, 

a t least for the two heaviest heavy-light mesons, H% and / / 4. Going to lighter

•  0.02 
o quenched 
• experiment

0 .08  0.1 0 .12 0 .14  0 .16
AH /  M„

0 .18  0 .2  0 .22
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heavy quark masses, we can see in both quenched and unquenched (amsea =  0.02 

case) that the gap between the two parity splittings tends to increase.

Following the suggestion from the Fermilab approach, we considered the kinetic 

meson mass M2 =  M i/c2 as alternative to the rest mass Mi to determine the mass 

splittings, and tried to investigate possible dependence of the splittings themselves 

on these two masses. Unfortunately, the determination of the speed of light c 

from the dispersion relation was not always possible, due to the increased noise at 

higher momenta: therefore at this stage we could not carry out this kind of analysis. 

An appropriate choice of smearing operators, as well as increased statistics, may 

improve the signal in the scalar and axial channels and allow a more comprehensive 

study of the dispersion relation in terms of M2. However, we used M2 determined 

from the pseudoscalar channel and saw a shift on all the data to heavier masses 

(see figure 5.5): this means that by using M2 instead of Mi we could study D a 

physics at charm mass values lighter than our initial choice.

At LO HQET, the hyperfine splitting for heavy-light mesons is expected to 

follow the inverse of the meson mass, A H  ~  1/M  (M ~  t u q ) .  T o test our 

lattice results, we plot in figure 5.7 the hyperfine splitting versus the inverse of 

the pseudoscalar meson mass, for all the four heavy-light mesons available in the 

quenched calculation. The diagonal line is a guide for the eye: we can see that our 

four points are not actually aligned, as we would expect. This probably tells us 

that the two heaviest of our mesons, on the left in the plot, are actually too heavy 

at our lattice spacing. It could be then that the effect of the 0 ( a 2m2) corrections 

is indeed significant. The RBC-UKQCD collaboration is now investigating these 

0 (a2m 2) errors: the generation of quenched configurations at a finer lattice spacing 

and larger volume is under progress.
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Figure 5.7: Hyperfine splitting versus the inverse of the pseudoscalar meson mass 
in quenched, with M p  =  M i, the rest mass (all in lattice units). The line is a guide 
for the eye, while the star symbol corresponds to the experim ental value obtained 
by using a -1 =  1.62(4) G e V .



Chapter 6 

Conclusions

This thesis is composed of three self-standing projects, exploring different aspects 

of QCD and QCD-like theories through the lattice gauge formalism.

Chapter 1 and 2 introduce the background theory of this work.

Chapter 3 investigates the well known problem of the lack of asymptotic scaling 

in Monte Carlo simulations. We considered the improvement obtained by replac­

ing the bare coupling constant in the perturbative expansion by some renormalized 

coupling, as pointed out in the past. However, the main purpose of our calcula­

tion was to emphasize how the lattice spacing corrections need to be included in 

the perturbative continuum-like expression of the lattice spacing in terms of the 

coupling <7o(a)* We fit quenched data to the running coupling expression based on 

these considerations. We also showed a first application of our approach to S U (N ) 

data, with the number of colours N  different from 3 and checked its validity in 

particular at large N.  By fitting the expression of the running coupling with and 

without 0 (an) terms, and using the bare lattice coupling as well as renormalized 

ones, our conclusions were that the lattice artefacts represent the dominant effect 

in the lack of asymptotic scaling. We also gave an estimate of the (pure-gauge)

146
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SU(3)  AJfgl

Ams =  217 ± 2 1  M eV  (6.1)

Chapter 4 presented an analysis of the nucleon state and its parity partner on 

2 +  1 flavour domain wall gauge configurations generated by the RBC-UKQCD 

collaboration. Correlation functions at unitary and partially-quenched points, as 

well as with different types of smearing were included in this study. By performing 

multiple fits to different correlators we aimed to minimize the systematic errors 

arising from different features of the operators. We considered two different lattice 

volumes, 163 x 32 and 243 x 64, in order to estimate possible finite size effects for 

the observables of interest. This work is at fixed lattice spacing corresponding to 

a-1 =  1.62(4) GeV. After discarding the possibility of significant finite size effects, 

we extracted physical values for the masses of the Ar(939) and N ( 1535) states from 

the large volume. The value for the nucleon mass obtained from an extrapolation 

in both the lightest sea and valence quarks is

M n =  957l^ lJ6 MeV , (6.2)

where the first error is statistical and the second takes into account the shift 

in the value obtained considering different sea-valence extrapolations. Less clear 

signals were found for the nucleon parity partner N *, resulting in a more difficult 

determination. From an extrapolation in both the lightest sea and valence quarks 

we quoted

Mn. =  MeV, (6.3)

with the errors as in (6.2). This value is much lower than the experimental one. 

However, after investigating the possibility of our N* decaying in the lighter state
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N  +  7r at sufficiently light quark masses, we concluded that the state isolated in 

this work is actually N*.

In chapter 5 preliminary results of the first study of the D a meson spectrum 

in 2 +  1 dynamical flavours were presented. The same domain wall gauge back­

ground as in chapter 4 was considered, on the small volume, 163 x 32, at a single 

lattice spacing. The strange quark was simulated as a domain wall fermion and 

the charm quark as an overlap fermion. A dispersion relation analysis was per­

formed and the mass splittings between different J p channels extracted, in order 

to compare them with their well determined experimental values. This study is 

a very preliminary investigation of possible 0 (a nm”) errors suppression, due to 

the implementation of the charm quark as an overlap fermion. Unfortunately, the 

rather large statistical error bars do not allow us to draw any conclusion in the 

comparison with experimental values. Increasing the statistics and implementing 

smeared operators may reduce the error bars substantially. At this preliminary 

stage, the effect of O{o?m2c) corrections may be significant. Further investigations 

at finer lattice spacing are in progress.



Appendix A

Gell-Mann Matrices

The standard basis for the fundamental representation of S U (3) is:

/ 0 1 0
Xi =  h 1 0 0

\ 0 0 0

1' 1 0 0

*3 =  5
0 - 1 0

\, 0 0 0

/f 0 0 —i

a5 =  § 0 0 0
 ̂ * 0 0

f 0 0 0

IIt*- 0 0 —i
 ̂ 0 i 0

Aa =  i

6̂ — \

2%/3

0 —i 0
i 0 0
0 0 0

0 0 1 >
0 0 0
1 0 Oy

0 0 0 >
0 0 1
0 1 o y

1 0 0
0 1 0
0 0 - 2
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Appendix B 

Grassmann Variables

The fermionic fields are represented by anticommuting Grassmann variables, be­

longing to the fundamental representation of SU(3). The path integral over 

fermionic fields will therefore involve the integration of these variables, as explained 

below. The generators of the Grassmann algebra, {0*}, satisfy the anticommuta­

tion relation

{0t ,0 j }  =  8i$i +  ei 0i, (b .i )

where =  1, ...,n  for a n-dimensional Grassmann algebra. The basic rules for

the Grassmann integration are

Jd0i  =  0, J  d0i0i =  1, (B.2)

where for multiple integrals the integration measures {dOi} anti-commute with 

themselves and the {0,},

{0i5 d0j} =  {dOi, dOj} =  0 Vi, j. (B.3)

We want to show that

n

d0id0iexp(— ^  OiMijQj) =  detM,  (B.4)
M=1
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which represents the main application of the Grassmann algebra in the integration 

of the partition function (eq.(2.83)).

We can write
n  n  n

exP(~ = II exP (-0 i  M i M  (B-5)
i , j - l  t = l  j = 1

n n

=  n o * * « * > .  (b .6)
*=i ji=i

since only the first two terms in the expansion of the exponential will contribute,

due to Of =  0. Due to (B .l), only the terms proportional to 0* will contribute to

the integral, in particular those terms that contains the product 0102 • • • 0n since 

repeated 0’s give zero. They have the form1

^   ̂ 0ji0i * * ‘ 0 jJ n M ln  • • • M njn. (B.7)

Since the product of Grassmann variables in (B.7) is antisymmetric under the

exchange of any pair of indices j i ,  we can rewrite eq.(B.7) as

0i0i * • • 0n0n eji ,- , jn^ i j i  ’ ’ ’ Mnjn, (B.8)
j l - j n

where is the e tensor in n dimensions. Recalling the definition of the

determinant of a matrix,

detM =  ^   ̂ en , . . tjnM ln  • •  • M nj n, (B.9)
j l —j n

we have

/» 71 fl 71 a

I  I\dQid0iex'p{— ^ OiMijOj) =  de tM (Y[  I <20 0̂,0*0*) (B.10)
<= 1 i , j = i  * = i  ^

=  detM. (B .ll)

^ote Q\dj1 = -O^Oi.
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