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A bstract

In this thesis we study two classes of backgrounds in Type IIB supergravity which 
adm it interpretation in terms of dual K  =  1 Supersymmetric Field Theories. The 
first is obtained by wrapping D5 branes on a two-cycle inside the conifold; the second 
is the class containing the dual to the baryonic branch of Klebanov-Strassler. These 
backgrounds are related via a ‘solution generating procedure’ (or rotation) and have 
a number of interesting properties.

First, we study non-Supersymmetric deformations of the baryonic branch by mak­
ing use of the rotation procedure. We interpret these deformations as soft-breaking 
through the addition of gaugino masses, and calculate various observables which 
support this picture. We then explore the two-dimensional solution space of super­
gravity solutions associated with these deformations, finding a number of interesting 
limiting cases. We see th a t much of the structure of the Supersymmetric baryonic 
branch survives, even for large values of the deformation.

Second, we study probe-D7 branes which wrap an internal three-dimensional mani­
fold and lie a t the equator of the transverse two-sphere, in the class of wrapped D5 
brane backgrounds. We employ this method to model Chiral-symmetry breaking 
and present a simple diagnostic tool for determining the classical stability of such 
embeddings. In particular cases we find th a t a new type of phase transition appears, 
putting limits on the region of parameter space which can be used to study physics 
of the dual field theory.

Finally, we study the relationship between confinement in a Quantum  Field Theory 
and the presence of a first-order phase transition in its Entanglement Entropy. We 
determine the sufficient conditions for such a phase transition and compare to the 
conditions on a Rectangular Wilson Loop to  probe confinement. In certain back­
grounds with non-local high energy behaviour, we show th a t new configurations 
(associated w ith the introduction of a UV cutoff) are required in order to recover 
the otherwise absent phase transition. We also show th a t a local UV-completion, 
obtained using the rotation procedure, to the non-local theories has a similar effect 
to  the cutoff.

This thesis is based on papers [1-5].
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Chapter 1

Introduction

In the sixteen years since its advent, the G ange/Gravity Correspondence [6 - 8 ], although still 

only conjectural, has provided us with one of the most effective tools for studying the non- 

perturbative dynamics of a variety of Quantum Field Theories. It furnishes an equivalence 

between a field theory a t strong coupling and a weakly coupled gravity dual (under suitable 

conditions). The original correspondence described strongly-coupled K  =  4 Super Yang-Mills in 

four dimensions from the dual point of view of Type IIB string theory propagating on AdS§ x S 5, 

but has since been generalised to apply to  settings with broken conformal symmetry and reduced 

Supersymmetry. In this Ph.D. thesis, we shall look at some of these more phenomenologically 

relevant models, where applying the ideas of the Gauge/Gravity Correspondence allows us to 

learn more about dual strongly-coupled field theories with realistic features.

Many interesting duals to field theories with low amounts of Supersymmetry are based 

on the conifold and its variations [9]. There exist various well studied supergravity solutions 

within this framework [10-14]. These are solutions to Type IIB supergravity which fall within 

the Papadopolous-Tseytlin (PT) ansatz [15], which is a subtruncation of a more general Super- 

symmetric consistent truncation of T 1 ,1  (the base of the conifold) [16, 17].

Two such solutions, whose dual theories have behaviour similar to  th a t of N  =  1 Super 

Yang-Mills in the IR, and which are globally regular, are the deformed conifold background of 

Klebanov and Strassler [12] and the Chamseddine-Volkov/Maldacena-Nunez (CVMN) solution 

[13,18]. The Klebanov-Strassler background consists of n  D3 branes and M  fractional D5 branes 

living a t the tip of the deformed conifold, and is dual to  a !N =  1 cascading S U (M  + n)  x S U (n ) 

quiver gauge theory with bifundamental m atter fields. In the IR, the theory confines and is 

essentially N  =  1 SU(M) Super Yang-Mills theory. On the other hand, the CVMN solution is a

1



1. IN TRO DU C TIO N

twisted compactification of D5 branes on a two-cycle of the resolved conifold, preserving N  =  1 

Supersymmetry. This model also exhibits confinement in the IR, and is dual to K  =  1 Super 

Yang-Mills, plus a tower of ‘Kaluza-Klein’ massive chiral and vector multiplets.

Both theories exist as points on the baryonic branch of Klebanov-Strassler [14], a one- 

parameter family of solutions of IIB supergravity, corresponding to different expectation values 

for a baryonic operator. We shall discuss the relationship between these backgrounds in more 

detail in Chapter. 2 through a certain ‘solution generating procedure’ (i.e. a U-duality [19]). 

Further, these solutions were studied in [20], in the presence of a Vacuum Expectation Value 

(VEV) for a dimension-six operator. This generated a model with multi-scale dynamics on the 

baryonic branch with many interesting features.

The presence of residual Supersymmetry has played an im portant role in the discovery 

and success of many of these setups, both in guaranteeing the stability of, and in simplifying 

the search for such solutions, but despite this we are not restricted to examples of this sort. 

Indeed, there has been considerable headway made in finding solutions where Supersymmetry 

is completely absent. One such area is in duals of Gauge Theories a t finite tem perature [21], 

which are solutions in which a black hole is present in the background, examples of which can 

be found in [22-25].

Another avenue is to construct dual backgrounds to field theories where supersymmetry has 

been softly broken through the addition of deformations via relevant operators inserted in the 

Lagrangian. Then using Supersymmetric theories where the Correspondence is well understood 

as a reference point, it is then possible to  find dual gravity solutions which are the corresponding 

non-Supersymmetric deformations of these theories, as was achieved for example in [26-31].

These systems should preserve some of the dynamics of the original Supersymmetric case 

but have completely broken Supersymmetry. As such, we expect the low energy dynamics 

to be a non-linear combination of the Supersymmetric and non-Supersymmetric effects, and 

the deformed background will recover the original one asymptotically. It is the fact th a t the 

deformed backgrounds share many of the features, such as symmetries, of the Supersymmetric 

solutions which means th a t it is viable to make progress on this problem.

We discuss this idea in Chapter. 3, where we find the non-Supersymmetric deformations 

of the backgrounds discussed in Chapter. 2, compute a number of observables and then ex­

haustively study the space of solutions generated by such a deformation, finding a number of 

non-Supersymmetric generalisations of known Supersymmetric backgrounds.

2



Another aspect of the Correspondence is the study of non-local operators in the dual field 

theory, by considering the dynamics of probes with end-points on the UV boundary which 

explore the bulk of the gravity solution. It is thus possible to study Chiral-symmetry breaking, 

using a stack of Nf  Dp branes which introduce dynamical flavors and probe the geometry, as 

in [32].

If we look for U-shaped embeddings of the probe branes, extending from the boundary 

to some finite value of the radial coordinate, the theory living on the stack has a U(Nf)-  

symmetry, but the U-shape is a double covering of the radial direction, and effectively we 

find a U (N f)L  x U( Nf ) ^-symmetry. Due to the merging of the two branches, at a point in 

the space, this symmetry is broken, and the result is a strongly-coupled model in which the 

breaking U{Nf)i ,  x U{Nf )n  —> U( Nf ) o  occurs. The minimum of the U-shape sets the scale of 

the Chiral-symmetry breaking. This idea was proposed and applied in [33] to the background 

of [21], using D8  branes to  extend in the Minkowski directions and wrap an internal S 4, with 

the U-shape profile exisiting in the radial coordinate and an internal S 1. These results were 

generalised to a number of different contexts in [34-36].

Another example was developed by introducing non-Supersymmetric probe-D7 branes * on 

the backgrounds related to the conifold [37, 38]. This new embedding ansatz was then applied 

[39] to the multi-scale model discovered in [40]. The interest in this setup arises from the 

possibility th a t multi-scale dynamics, as developed from the perspective of the Gauge/Gravity 

Correspondence, may help in the resolution of a number of problems (such as the size of the S 

parameter) of models of Electroweak symmetry breaking.

In Chapter. 4, we study probe-D7 branes on the large class of backgrounds defined in 

Section. 2.2, giving first a general formalism, and then developing an elegant way of analysing 

the perturbative stability of these probes, without having to perform the heavy duty task of 

explicitly computing the spectrum of fluctuations. Because of the various complexities of the 

backgrounds, we find curious phenomena (including a new phase transition associated with an 

imposed UV cutoff in the background) appearing when introducing the probe branes. We also 

discuss which of these backgrounds (in the presence of the probe branes) is suitable as a model 

of Chiral-symmetry breaking (or further, Electroweak symmetry breaking).

The Correspondence also allows for the calculation of certain interesting field theory ob­

servables from a holographic perspective. One example we shall discuss is the Entanglement

*Here we shall describe the setup with an abuse of language as “probe-D7 branes” but each time we are 
actually referring to a stack of D7 branes and a stack of anti-D7 branes in line with the ideas of [37, 38].

3



1. INTRO D UC TIO N

Entropy. This is a quantity which was originally defined in quantum mechanical systems, de­

scribing the amount of quantum  correlations, and has found a wide range of applications in 

different branches of physics. Reviews of these applications and formalisms can be found in 

[41-45].

The holographic description was first proposed in [46], in the context of a d + 1  dimensional 

Conformal Field Theory, which is dual to an AdSd+ 2  background. The holographic Entangle­

ment Entropy is then given by minimising the d dimensional area in the dual background, whose 

boundary coincides with the boundary of the entangling region. They then generalised this to 

duals where the dilaton runs and the volume of the internal space can vary [47]. The authors 

of [48] applied this generalised prescription to non-conformal theories and found th a t certain 

backgrounds, which are dual to confining systems (at zero tem perature), exhibit a first-order 

phase transition in the Entanglement Entropy as a function of the width of the entangling 

region.

Another well understood observable is th a t of the Rectangular Wilson Loop [49], which from 

a holographic perspective also involves minimising an area, and has also been used as a probe 

of confinement. Due to the similarities in setup, there would seem to be a strong possibility of 

relating behaviours of these two observables.

More recently, there has been progress in studying the behaviour of the Entanglement 

Entropy in Field Theories which exhibit non-locality, see for example [50-54]. In a local theory, 

the degrees of freedom with correlations across the boundary of the entangling region, must live 

near the boundary, and this leads to an Area-Law for the Entanglement Entropy. * In non-local 

theories, the behaviour of the Entanglement Entropy deviates from this, and it has been shown 

to  give a Volume-Law behaviour.

In Chapter. 5 we will calculate the Entanglement Entropy in various models of confinement, 

and compare the equivalent results for the Rectangular Wilson Loop, showing th a t the calcula­

tions fall into the general formalism presented in Section. 4.1. We go on to study a number of 

examples (including the solutions in Section. 2.2 and generalisations including sources) where 

the expected phase transition in the Entanglement Entropy is often missing, discuss how this is 

related to potential non-localities present in the UV of these models, and look at possible way 

of recovering it.

Strictly, the Area-Law corresponds to the leading order divergence in the calculation of the Entanglement 
Entropy.

4



Chapter 2

A Family of W rapped D5 Brane 
Solutions

2.1 Overview

Initially, we present two Supersymmetric field theories, which are connected via ‘Higgsing’ (see 

discussion in [19, 20]), although they appear quite different on the surface. The first of the two 

theories is th a t found when wrapping N c D5 branes on a two-cycle inside the resolved conifold, 

and we shall refer to this as “Theory A ”. The second is th a t of the baryonic branch of the 

Klebanov-Strassler Quantum  Field Theory which we shall call “Theory B”.

Theory A is generated by starting from a six-dimensional S U (N C) Supersymmetric Yang- 

Mills Theory with 16 supercharges, and then performing a special twisted compactification over 

a two-manifold (which in this case is a two-sphere), preserving 4 of the supercharges. This was 

studied in [13, 55, 56]. The field content (in the four-dimensional language) is th a t of a massless 

vector multiplet, and also a “Kaluza-Klein” (KK) tower of massive chiral and vector multiplets. 

The form of the Lagrangian, as well as the weakly coupled mass spectrum and degeneracies of 

the theory can be found in [55, 56]. This theory has an S U (N C) gauge symmetry, and its global 

symmetries are

SU(2)l x SU (2)r  x (7(1)*. (2.1.1)

In the low energy theory (that of four-dimensional N  =  1 S U (N C) Super Yang-Mills), the 

massless vector multiplet contains a gauge field and a M ajorana spinor A, both transforming 

in the adjoint of the gauge group. Strictly, in the UV this theory is related to a Little String 

Theory, and is only like K  =  1 Super Yang-Mills in the IR  (and thus it exhibits confinement).
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This four-dimensional theory can be thought to be valid at energies lower than the inverse 

volume of the two-sphere (which is related to the coupling as we discuss around Eq. 2.2.13), 

but as we move to higher energies (those comparable with the inverse volume of the two-sphere) 

the KK tower of massive chiral and vector multiplets enter the spectrum again. *

The R-symmetry of the theory is anomalous, breaking U(1)r  —¥ Z2 nc- Further, in the IR 

due to  the formation of a gluino condensate, there is spontaneous breaking Z2 n c ^ 2 - The 

gauge theory has N c inequivalent vacua as a consequence of this condensation (discussed for 

instance in [57]), and there exists domain wall configurations interpolating amongst the different 

vacua, whose tension is related to the different choices of VEV for the condensate (which we 

shall discuss further in Section. 3.3.5).

Theory B is a quiver, with gauge group S U (M  + n) x SU(n),  * and bifundamental m atter 

multiplets Ai, B a (with i , a  = 1,2). The global symmetries in this theory are given by

SU(2)l x SU (2)r  x U {l)B x C/(1 )H. (2 .1 .2 )

where the “baryon num ber” U ( 1 ) b  takes Ai -> e*7Ai and B a —» e~l l B a . Further, the U(1)r  

R-symmetry is anomalous, breaking to J.2 M- The bifundamentals transform under the local 

and global symmetries as

Ai = + n, n, 2 , 1 , 1 , ,

There is also a superpotential of the form W  = ^eij€apTT[AiBa AjBp] and this field theory is 

known to  be dual to the Klebanov-Strassler background [12].

The exact beta functions in this theory are given by [12]

P&al ~  3(n +  M )  -  2 n (l -  7 ), (5 ^ 2  ~  3n -  2 (n +  M )(l -  7 ). (2-1.4)
a?- »r

where 7  is the anomalous dimension of operators T r (A iB a ). Taking M  = 0, it must be the case 

th a t to  have agreement with the conformal invariance of the Klebanov-W itten S U  (n) x SU  (n) 

theory [10], and in addition the symmetry of the field theory under M  —> —M , the anomalous 

dimension is of the form 7  =  —1 +  Further discussion of the gauge couplings

*In [27] the authors point out that since these theories are at large 9y m ^ ° ,  then the massive modes coming 
from the presence of the two-sphere are never fully decoupled, and thus these gauge theories are not the pure 
four-dimensional theories that one would hope for.

tHere, as mentioned already, we have a situation where we have n D3 branes and M  fractional D 5 branes 
on the conifold. Later on it will often be the case that we relabel M  by N c-

B„= (M  + n, n,  1, 2, - 1, - (2 .1.3)
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and beta functions can be found in Section. 3.3.2 where we analyse the non-Supersymmetric 

deformations effect.

As we flow toward the IR, the theory above undergoes Seiberg duality transformations [58] 

(under which we send n  —» n  — M , decreasing the rank of the gauge groups) every time the 

gauge coupling (^1 ,^ 2 ) of one of the gauge groups moves towards strong coupling, and then 

diverges (the gauge couplings flow in different directions). This transform ation allows us to 

move to a Seiberg dual description of the theory which is more suitable, and is weakly coupled. 

These transformations are repeated as we move further towards the IR, until the gauge group is 

reduced to  S U (M  + p) x S U (p ), with 0 < p < M .  This is what is known as a “duality cascade” 

[59]. Further discussion of Seiberg duality can be found in Section. 3.3.3 and in Appendix. A.4 

where we discuss the effect of the non-Supersymmetric deformation.

When p = 0, at the base of the cascade, we are basically left with an N  =  1 SU  (M ) gauge 

theory. It has many interesting properties (discussed for instance in [12, 59]) including con­

finement and a discrete spectrum with a mass gap. The theory also includes Chiral-Symmetry 

Breaking, further (spontaneously) breaking the remaining Z2 m ^-2 - This is due to  the forma­

tion of a (AA) condensate, and as a consequence the theory has M  identical isolated degenerate 

vacua, and further there are domain walls which separate one vacuum from the next (see further 

discussion in Section. 3.3.5).

At the “last step” of the cascade, the gauge group is SU (2M )  x S U ( M ), and here we find 

th a t there are both mesons M  ~  A B ,  and baryonic operators

®  ~  M o r 1 ( ^ i ) r  • ■ • • ■ • w s r ,

B ~  . . .  (B ,)" M(B2 ) i M+1 (B 2 ) = M + 3  . . .  (B 2) " „ .  (2.1.5)

The baryonic operators are both invariant under SU(2)l x SU (2)r  global symmetry which 

rotates A i , B a . The moduli space for this theory has two branches [60], a baryonic, and a

mesonic. We shall be interested in the first, th a t of the baryonic branch [14] * where the

mesons M  are zero. The baryons on the other hand take

3  = i ( A 2M, 3  = l- A 2M, (2.1.6)

where the branch has complex dimension one parametrised by C, and A2M is the strong coupling 

scale of the gauge group SU (2M ).  Here the U(1)b  global symmetry is broken spontaneously,

It turns out that the SU(2M)  x SU (M )  is the simplest gauge theory picture of the baryonic branch but it 
exists for any n =  qM,  where q is an integer.

7



2. A FAMILY OF W R A PP E D  D5 B R A N E  SOLUTIONS

and the associated massless pseudo-scalar Goldstone mode corresponds to the phase of This 

lives in a N  =  1 Chiral multiplet (by Supersymmetry), and has a scalar partner (a saxion) 

corresponding to  changing the modulus of £ [61].

The VEV of the operator whose Oc^d component is the U(1)b  current, through different 

values of (, gives our position on the baryonic branch [60], and is given by

U ~ T  r { A ^ A - B ^ B ) .  (2.1.7)

This will play an im portant role in our discussions of the gravity dual to the baryonic branch 

throughout. Finally, note th a t the Klebanov-Strassler corresponds to  having £ =  1, and corre­

sponds to a particular choice of vacuum with |!B| =  \3\ = A2M, and is a particular Z2 symmetric 

point on the branch. At any point other than this on the branch, the Z2 symmetry is broken, 

and we shall see this in the dual gravity solutions.

It is possible to connect Theory A and Theory B via the ‘Higgsing’ mentioned earlier. Giving 

a particular (classical) baryonic VEV to  the fields (A i , B a ) and expanding around it, one can 

reproduce the degeneracies and field content of [55, 56]. * This connection between weakly 

coupled field theories can also be realised in the Type IIB solutions dual to the respective 

field theories, and is manifest as a U-duality [19] or rotation (which was studied further in 

[20, 62-65]). It is to these dual solutions we now turn  our attention.

We start with a background which is dual to Theory A, which is the geometry produced by 

taking the strong-coupling limit of the gauge theory, on a stack of N c D5 branes wrapping an 

S 2  inside T 1,1, extending in the Minkowski directions (with j  =  0 ,1 ,2 ,3 ), and located at the

tip  of the conifold (given by a cone over T 1,1). This is described by a truncation of Type IIB

supergravity which includes only gravity, a dilaton <F, and a Ramond-Ramond (RR) three-form 

F 3 . A configuration of this kind can be written compactly using the vielbeins

E xi =  e%dxj , E p =  e%+kdp, E e = e%+hd6 , E*  = e%+h sin 9dp,

E 1 =  ^ e ^ +p(u> 1 +  ad$), E 2  =  ^ e * +9 (u)2 — asinddip),

E 3  = +fc(w3 +  cos 9d<p). (2.1.8)

* Further, in [20], the authors propose the possibility of a planar equivalence between the two theories, and 
discuss the key results which highlight why this could be the case.
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where we have used the following S U (2) left-invariant one-forms

u>i =  cos ipd9 + sin ip sin 6  d(p, o»2 =  — sin ipd9 + cos ip sin 9 d(p,

Cj3  =  dip +  cos 9 d(p. (2.1.9)

In terms of these, the background and the RR three-form (in Einstein Frame) read

d-s % = y ^ c ^ 1)2)
i

F3  = e " ^ [ / i E 1 2 3  +  f 2 E e<p3 +  h ( E 0 2 3  +  E * 13) +  U { E pw +  £ w 2) ] , (2.1.10)

where the range of the five angles spanning the internal space i s O < 0 , 0 < 7r , O < y ? , y > <  

27r, 0  <  ip < 4 7 t, and we have used the definitions

E ijk...i = E i A E i A E k A • • • A E l,

h  = - 2 N ce - k - 2*, h  =  P pe~ k~2 h(a2  -  2 ab +  1 ),

h  = Nce - k- h-9(a -b) ,  f i  = Y c~k~k~n '- (2111)

In this setup, we have set a'g 3 = 1, and the dilaton is a function of the radial coordinate 

only 3>(p). The full background is then determined by solving the equations of motion for the 

six functions {g, h, Jc, <&, a, 6 } which also all depend only on the radial coordinate. Further, it 

is possible to derive and solve a set of BPS equations from the above ansatz, which we shall 

discuss in more detail shortly.

We shall present a family of solutions in Section. 2.2 which corresponds to  the dual Field 

Theory A coupled to  gravity, due to a deformation by a dimension-eight operator inserted into 

the Lagrangian. Thus the UV of the field theory requires completion, and this is achieved 

through the aforementioned U-duality/rotation. It can be thought of as a solution generating 

procedure which can be summarised in the following steps [19]:

• Start from the system of Type IIB supergravity solutions describing the backreaction of 

wrapped D5 branes, with additional RR three-form flux F3, as described above. *

• Compactify the three spatial Minkowski directions spanned by the original D5 branes 

on a torus, perform T-dualities along these three directions, leaving us with a Type IIA 

solution involving D2 branes wrapped on the original S 2, and F4  (dual to the Fq) flux.

*From the ansatz of the related system of wrapped NS5 branes, perform an S-duality.

9
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• Perform a lift to M-theory (introducing a new direction x#), and then introduce a boost 

(with rapidity /3) to the configuration in the t — x** plane,

t —y cosh/it — sinh/fx1*, x** —» — sinh fit  +  cosh fix^. (2 .1 .1 2 )

meaning we have a configuration with M2 branes, generating (via the boost) KK momen­

tum  charges (with an A \  potential), and a G4  in 1 1 -dimensions.

• Reduce this configuration back to a Type IIA background which now contains DO and 

D2 branes. The background is ingrained with an F4  = dA$ + A \  A # 3 , an H 3  from the

dimensional reduction of G 4 , and further an F2  =  dA\.

• Finally, perform T-dualities back along the three spatial Minkowski directions. We are 

then left with a Type IIB solution with D3 and D5 brane charge, an F 3 , an H 3  and a 

self-dual F$ flux.

More details on the steps of the procedure are given in [65] . Performing these steps yields the

rotated background, in which the vielbeins are given by

ex° = e * h  * dxJ , ep =  e * +kh* dp. 

e1 =  ^ e ^ +9 h'i (u 1 + ad9),  

e3  =  (<I>3 +  cos0 d< )̂.

ee =  e * +hh* d9, =  e 4 +hh 4 sin 0 dtp.

(2.1.13)

The rotation leaves the RR three-form invariant *, and turns on extra fluxes as described above. 

The new metric, RR and NS fields are

F 3  =  ^ - [ / i e 1 2 3  +  / 2 e^ 3  +  M e 6 2 3  +  e^13) +  f 4 {ep 1 9  +  c ^ 2) ] ,

# 3  =  [ -  h ^ p -  f 2 ep 1 2  -  f 3 {ee2p + eplp) +  f 4 (e1 9 3  + e*23) ] ,

C4  =  - k —t -  dt A dx  1 A dx 2  A dx3 ,
h

,6ip 123 (2.1.14)

The factor of h is only present due to the change in definition of the vielbeins.

10
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The form of the NS B 2  potential in this case is given in Eq. A.3.1, with H 3  =  (IB2 . Here we 

have a new warp factor defined by *

h = l -  « 2 e2*. (2.1.15)

The constant k is carefully chosen such th a t the eight-dimensional irrelevant operator is removed 

and as such the dual Quantum  Field Theory is decoupled from gravity. The correct choice for 

this to occur is such th a t k =  where <J>oo is the asymptotic value of the dilaton in the

UV. A more in-depth discussion of this choice is given in [20, 65].

2.2 A  Class of Supersym m etric Solutions

It is possible to derive a system of non-linear, coupled, first-order BPS equations for the back­

ground described in Eq. 2.1.10 (details are presented in the Appendix of reference [6 6 ]). These 

can be conveniently repackaged using a particular change of basis functions {P, Q, Y, r , a, $} in 

which the equations decouple (explained extensively in [67-69]). This allows us to rewrite the 

background functions {g , h, k, $ , a, 6 } in terms of this new set of basis functions as follows

4e2h =  TT~2 ^ , e2g = P cosht  — Q,  e2k = 4V,P  cosh t — Q
4$ e4 ^ 0 cosh2 2 p \  sinh r  1

e = —-— ------   , a =  —------------- —, N cb — a  (2.2.1)
Y ( P 2  -  Q2) sinh2 t  P cosh t  — Q v ’

From here, most of the BPS equations reduce to algebraic relations, and we are left with a 

single decoupled second-order equation for the function P  (which is referred to  as the “Master 

Equation”) given by

p " + ** +  T r f  “  4co th (2^ - 2^ ) )  =  o- (2-2-2)

where

Q =  (Qo +  N c) coth(2 p -  2 pA) +  Afc [2 pco th(2 p -  2 pA) -  1], (2.2.3)

and Q 0  and p \  are two constants of integration. The M aster Equation describes a large class 

of solutions th a t shall interest us. We are required to fine-tune Qa =  — N c, to  avoid a nasty 

singularity in the IR. Further, we will always take the IR end-of-space to be p \  =  0, which

*One must send the rapidity /3 —>■ 00, plus an appropriate rescaling of the Minkowski directions, to gain this
form of the background, fluxes and warp factor.

11
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amounts to setting the dynamical scale in terms of which all other dimensional parameters are 

measured, to one. Note, a solution to the above Master Equation in Eq. 2.2.2 will be a solution 

to two different backgrounds, which are the backgrounds related by the rotation described 

above.

We can break up the Supersymmetric solutions to the Master Equation by using a rough 

approximation for P  of the form

P(p)  ~  Pa =  sup j c 0 , 2N cp, c+e4 p / 3  } , (2.2.4)

where c+ > 0 and cq > 0 are two integration constants. Although this approximation is not a 

smooth function, the solutions to P , which it approximates, are and thus it will provide us with 

an illustrative tool in classifying the various solutions of interest. Essentially, Pa is constructed 

such that P  and P'  be monotonically increasing, and th a t for any p > 0 we have P  > Q. All the 

regular solutions for P , are either of this form, or can be obtained using a limiting procedure 

on Pa-

The most notable solution, and the only one which can be written in closed form, is that 

of the CVMN solution [13, 18], given by P  =  2N cp. This can be thought of as a limiting case 

(such th a t c+ —>• 0), as all other solutions have P  > 2N cp, for any p > 0. This solution has the 

exact form

e2 g e2 k e2 h o P2 1

Ac =  N c =  ’ W c =pCOt P ~  sinh2 2 p ~  4 ’

a = b = 2p , e4*—4 * 0  =  ? k e- 2h sinh2 2p. (2.2.5)
sinh 2p 4 H v '

In this solution the dilaton $  grows indefinitely in the UV. As it will be useful for comparison 

later we also present here the IR  and UV expansions for the CVMN background. The IR 

expansion (for p —> 0 ) takes the form

^ = P 2 - ^ 4 + 0 (A  a =  1 -  ? p 2 +  0 (p4), = 1 +  +  0 ( A  (2 .2 .6 )

and in the UV we have an expansion (for p —>■ oo) of the form

e2 h i
—  =  p -  -  +  0  (e~4p) , a  =  Ape~2p +  0 (e "6" ) , $  =  p +  0(log p). (2.2.7)
rs c ^

The rest of the solutions we shall present are only known in a semi-analytic form, as IR and 

UV expansions, and a smooth numerical interpolation between them. A second interesting case

12
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occurs when Co =  0 and c+ > 0, in which case P  is always dominated by exponential growth 

for large p. In this case Pa is not a good approximation near to the IR end-of-space where the 

expansion for P  actually takes the form [6 6 ]

where the constant h i > 2NC. In terms of the background functions, we find the expansion in 

this case to be

e2« =

e2h

/  5 N c 2 N 2\  ,  4

- 2 + l 5 { 3 - ~ h T - l q ) p  + ° ( P ) ’ 
hr ,  4hi (  15NC 1 6 A ?\ ,  .

e*-*« =  1 +  ^ p 2 +  0  (p4),

• - i-(2- |£ ) ' ,+o<a ( 2 - 2 - 9 )

where is the ability to shift the dilaton. These IR expansions hold for all solutions in which 

co =  0 , and although it is not known in closed form, the relationship between h\ and c+ is 

known numerically

c+ =* (2 .2 .1 0 )

for large values of h\ and c+ [62].

If instead we have Co 7^ 0, then we can write the IR  expansion for P  as [40]

Pc =  CO +  W  +  % C 0 P s -  jfcfcoP6 +  +  0 ( p 8 )  (2  2 11}
5 lU5co

where now Co and are the free parameters. The IR  expansions of the background functions 

in this case are given by

e2p =  7 "  +  g (3cofc2 — 8ATcj  p4 +  0(A

e2h =  y P  ^ P 3 +  g (3coh2 +  8 iVc)  p4 +  0 (p5),

e2 fc _  3C|fc2^ 2 +  2 c o ^ 2 /0 4 _  3 <^£2 ^ 5  +  ©(p6),

4 * - 4 * 0 =  !  +  327VC 4 _  2 5 6 A ^  6 7
+  9 cj> p 135cq P +  1P h
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a — 1 -  2 p2  +  ~£^P 3  +  "g"P4 +  ®(p5)i

6 = ^  = 1 - I ^  + ^ 4 + 0 ( A  M

Again, 0o is the ability to shift the dilaton and the relationship between k,2 and c+ is not known 

analytically. W ith having two free parameters, we can think of solutions in this class as more 

general, but this param etrisation should be treated with care. As mentioned above, the CVMN 

solution is the limiting case, and it is possible using this expansion for Pc to choose small enough 

values of k,2 , such th a t a t some value of p the corresponding solution will be smaller than the 

CVMN case, and this yields a bad singularity. Thus one must be aware tha t there is a minimal 

value of depending on the value of Co chosen.

All solutions with a non-zero cq will be referred to  here as ‘walking’. This nomenclature 

refers to the fact th a t in these solutions, there is a region over which a suitably defined gauge 

coupling (before rotation), is running anomalously slow. By considering a fivebrane (in the 

probe approximation) wrapping L 2 =  [0 = 6 , ip = 2n — ip, ip — 7r], we can define a four dimensional 

gauge coupling <74 (essentially defined by the inverse size of the S'2) [40]

g \N c N c coth p
8 tt2

(2.2.13)

An example of this is plotted, with the corresponding P, in Fig. 2.1 for a number of solutions 

with CVMN UV asymptotics. Strictly, as we can rescale the radial coordinate (which is equiv­

alent to regularisation-scheme dependence), this plot does not give us a good idea of how ‘long’ 

the walking region is.

Let us now turn  our attention to  the other possibility for the UV (differing from th a t of the 

CVMN solution with linearly growing dilaton). In this case P  behaves exponentially for large 

values of the radial coordinate

_  C+eW 3 +  ^  g  _  ,  +  p2)  e-4 ,/3  +  ( c_ _  e -3 ,/3

+  ^  ~ 2~W P + T p 2  -  36p3)  e " 1 W 3  +  0  ( e " MV/3)  (2-214)

which shows the two free param eters (or integration constants) labelled by {c+ ,c_}. The
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2 12 122

Figure 2 .1: P lots of the function P (p )  on the left, and on the right, in the CVM N system  of 
D5 branes wrapped on a two-cycle and related walking solutions. T he solid black line represents 
the CVM N solution , while the blue and yellow lines are the related walking solutions w ith p . ~  4 
and p .  ~  7 respectively. In the case of the yellow walking solution , th is coupling varies slowly  
over the region 2 <  p  <  p . , and we call th is walking.

background functions have equivalent UV expansions of the form

e 2» =  c + c * p +  N c { 1 -  2p) +  ^  -  Ap +  4p2^ e " $ p +  0 ( c ~ ^ p ),

, 2 /)
=  T eU  ~T (1" 2p) + ( l l  ” 0 ( e " § , > ) ’

2cj
e 2 k =  t± ± e b  

3
3 N.

- ^  (f -  2°P -  8 p2)  e~3p +  0 ( e - § p),

e4(-t>-*oo) =  1 +  +  0 (e  a*),

2 A,
a =  2 e“ 2p------- ^ ( 1  -  8 p )e ~ ~ p + 0 ( e ~ - p), b =

2 p
(2.2.15)

c+ ' ' s inh 2 p ’

The constant c_ is related to Co, but again the relation is not known in closed form. If one 

chooses arbitrary values for c+ and c_, the solution found will be mildly singular, with only 

a divergent Kretschmann scalar in the IR [20] (but the other curvature invariants are finite), 

and would have an IR given by Pc with non-zero Co- One must carefully tune the value of c_ 

for a fixed c+ to recover a globally regular solution with an IR given by P(. * Thus one may 

associate the globally regular solutions with P  —» 0 a t the IR end-of-space.

Solutions with UV asymptotics like th a t of Pu, have a dilaton th a t approaches a constant 

$ 0 0  in the UV, and are the solutions to which one may apply the rotation procedure. In these

* Again it is possible to choose the value of c_ too small for a particular choice of c+ such that we find a 
bad singularity in the IR.
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rotated solutions, exploring the baryonic branch (these solutions have a regular IR given by 

Eq. 2.2.8) amounts to changing the value of hi,  or c+ . In the limit hi, c+ —> oo, it is possible 

to recover the Klebanov-Strassler background [12], which has a constant dilaton. Note that 

this can be thought of as the opposite end of the baryonic branch to  the CVMN solution (with 

hi —> 2N c or c+ —» 0), but the point is somewhat subtle. Strictly one cannot directly rotate 

the CVMN solution, as 3>oo —> oo in this case, but instead one may rotate a generic baryonic 

branch solution, and then take corresponding limit. In this case it has been argued th a t one 

finds a theory which is well described by fivebranes wrapped on a fuzzy two-sphere [19] which 

becomes less and less fuzzy as one moves towards the CVMN limit.

It is also of interest to discuss how these dual gravity solutions correspond to  particular 

modifications of the conifold [19]: the deformed conifold with a finite three-sphere and a col­

lapsing two-sphere in the IR, and the resolved conifold with a finite two-sphere and a collapsing 

three-sphere in the IR. The geometry produced by placing D5 branes on the two-sphere in the 

resolved conifold and taking into account the backreaction, leaves us with a geometry with 

fluxes corresponding to a large bayonic VEV in the dual field theory, and this is close to the 

CVMN solution (which we would only recover if we were to have an infinite baryonic VEV). In 

the other extreme, if we are at the other end of the baryonic branch where we can think of the 

dual field theory having a small Baryonic VEV, and we have a solution which looks like the 

deformed conifold, with a large three-sphere (and thus close to  the Klebanov-Strassler solution). 

The deformed and resolved conifolds would usually be distinct branches of moduli space, but 

due to the presence of the fluxes, we have a smooth interpolation between them (a “geomteric 

transition”). At the end of the next Section, we shall comment on the relation between the 

scales in the above solutions, and the deformation/resolution of the conifold.

2.3 Further D etails o f the Supersym m etric Solutions

By looking a t the asymptotic behaviour of fields (and combinations of them) it is possible to 

think of these solutions (and the associated constants) in terms of the operators which are 

deforming a fixed point (specifically Klebanov-W itten fixed points th a t are associated with 

geometry AdS$ x T 1 1  and its dual conformal theory). We may do this as it is understood tha t 

a generic field M  ~  u~A as u —¥ oo behaves in the following manner: If A > 0 (or A =  0) it 

is either an indication of a relevant (or marginal) operator in the Lagrangian, or the VEV for 

an operator of dimension A. If instead, A <  0, then it indicates the insertion of an irrelevant
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operator of dimension (4 — A) into the Lagrangian. We can then link this to our usual length 

scale via the relation u = e2p/ 3. Here we present the analysis, based on expanding in the UV of 

our Supersymmetric solutions (after rotation) near the Klebanov-W itten fixed points, in terms 

of the five dimensional fields present in the P T  ansatz, the corresponding field theory operators 

in terms of the two gauge groups, and the particular scaling dimensions chosen by the BPS 

equations [14, 20]

a —> T r(W 2 — W 2), A =  3; g —> T t(AA -  B B ) ,  A =  2;

4> -4 T r(F , +  ), A =  0 ,4; ft, -4 T r(J ?  -  jpf), A =  0,4;

x , p ^ T r W 2 W 2, A =  —4 ,6 ; 6 ,ft2 -4 T r(v lJ  +  B B ) W 2, A =  3 , - 3 .  (2.3.1)

Here our background functions {a, b, 4>, g, h , k}  are related to those of the PT  ansatz 

{ a ,b ,$ ,x ,g ,p , 'E ,x ,h i ,h 2 } through the relations

a —> a, b->b, e2x = ^ e 2h+29+* , e2» =  4e2/l~2», e - 6 p =  £ e2*+h+®+*
4 8

2 = ft2 = - j / 4e2,,+M-»+\  A'j = - K e 2*  ( ^ e k+'>+» -  t l aek+2^ \  , 

ft', +  x ' =  - « e 2 t ( / , e fc+2h +  f 3 aek+g+h -  j a 2 ek+2A  , ft', -  x ' = j e ‘ +2s+2*. (2.3.2)

These are w ritten in terms of the background functions after applying the rotation. It is also 

possible to study the system before rotation as a truncation of the full P T  system. This 

truncation is achieved by setting h =  1, « =  0 in the above. We can then see this amounts 

to having h\ =  0 =  /i2 =  X = £ , leaving a system of six functions {a, 6 , $ ,x ,p ,  g} with the 

following one-to-one mapping between the two notations

a —> a, b -> 6 , $  -¥ 4>, e2x =  \ e2h+29+* ,
4

e2s =  4e2/i-29j e-6P =  l e2fc+/l+9+# (2.3.3)
8

We shall return to  this operator analysis in the next Chapter when we analyse particular non- 

Supersymmetric deformation of the given Supersymmetric solutions.

We conclude this Chapter by giving a summary of the relevant scales tha t exist in the class 

of solutions described above. We outline them here, following the discussions in [20], *

* These are not necessarily all independent, and changing one may have a non-trivial effect on the others.
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2. A FAMILY OF W R A P P E D  D5 B R A N E  SOLUTIONS

• pa corresponds to a VEV for a dimension-three operator (the gaugino condensate) related 

to the background function a(p) (also b(p)) and is invariant under the rotation procedure. 

This is usually associated with the deformation of the conifold, and it sets the scale by 

which all other quantities are measured. Setting p \  =  0 means th a t the coupling defined 

in Eq. 2.2.13 diverges below p ~  1.

• <f>o (and also $oo) corresponds to  the normalisation of the dilaton and to  a marginal 

coupling. The dilaton $  is invariant under the rotation procedure.

• c+ (or h\)  is related to the dimension-eight operator (adiabatically switched off via the 

rotation procedure), and is associated with the scale p above which P  is exponentially 

growing.

• c_ (or co) is related to the VEV for a dimension-six operator, and is associated with the 

scale p* below which P  is approximately constant. A related quantity is M 2  =  e2h+2a~4k 

which is invariant under the rotation.

• The combination of background functions M i =  4e2h~2g + a 2  — 1 is related to  a VEV 

for a dimension-two operator and is associated with the resolution of the conifold. It is 

invariant under the rotation procedure and setting it to zero recovers the Z2 symmetry 

characteristic of the Klebanov-Strassler background.

W ritten in term s of these scales, a generic solution for P  will be constant (walking) in the IR 

(for p < p*), followed by a region where P  is linear (CVMN), eventually growing exponentially 

toward the UV (for p > p). It is possible th a t one or more of these regions may not be present 

depending on the values of cq and c+ chosen (or equivalently h\  and c_).
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Chapter 3

Non-Supersym m etric 
Deform ations

In this Chapter we study Non-Supersymmetric deformations of Theory B, th a t of the baryonic 

branch of Klebanov-Strassler, which are introduced by the insertion of relevant operators into 

its Lagrangian. To do this, we shall no longer be able to use the Master Equation described 

in Eq. 2.2.2, but instead must solve the full equations of motion for the supergravity system 

dual to  Theory A (see Eq. 2.1.8), consisting of six coupled second-order differential equations 

(that of the Einstein, dilaton and RR-form presented in Appendix. A .l). We further impose 

th a t irrelevant operators are absent from the dynamics and tha t the backgrounds are globally 

regular. We can then apply the rotation procedure described in Section. 2.1, to these non- 

Supersymmetric background solutions, and thus we find the non-Supersymmetric background 

dual to  Theory B. *

In the first half (mainly based on the work of [1]), we shall concentrate on the case where 

the breaking can be thought of as ‘soft’, in which case the Supersymmetry breaking parameters 

are kept small with respect to  the other scale in the problem (that of the strong coupling scale 

A). We shall present the series expansions for the IR  and UV of the background in the presence 

of this Supersymmetry-breaking deformation, which we then use to find a smooth numerical 

interpolation between them along the whole radial coordinate. We shall then study various field 

theory quantities, all of which support an interpretation of the dual theory being deformed by 

the insertion of a relevant operator, th a t of masses for the gauginos, which break Supersymmetry

*It has been checked that solutions to the equations of motion of the background dual to Theory A (presented 
in Appendix. A .l) automatically satisfy the equations of motion of the system after the rotation procedure.
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(and further may influence the other VEVs). To conclude, we make some comments with regard 

to the stability of these backgrounds, under such a soft breaking.

In the second half (mainly based on the work of [2]), we look to establish a more complete 

understanding of the space of solutions generated by such a deformation, exploiting the fact 

tha t the non-Supersymmetric solutions experience much of the same structure as their Super- 

symmetric counterparts. This prompts us to  explore a two-dimensional solution space which 

contains a number of previously studied cases. Contained within this solution space is the back­

ground dual to the baryonic branch of Klebanov-Strassler (and its interpolation between the 

CVMN solution, and the Klebanov-Strassler solution), the solutions of [25] and [70] as limiting 

cases, and we use understanding gained from these to describe generic non-Supersymmetric so­

lutions in term s of particular regions where the Supersymmetric or non-Supersymmetric effects 

dominate. Further to this, we find another natural non-Supersymmetric generalisation of the 

Klebanov-Strassler background which preserves the Z 2 -symmetry between the two-spheres in 

the internal space, and finally in the limit where the deformation takes its largest value, we find 

a solution in which the UV no longer matches the Supersymmetric case asymptotically.

3.1 A  Supersym m etry-Breaking D eform ation

Let us now introduce the relevant expansions we use to set up our Supersymmetry-breaking 

deformations. In the IR, our ansatz is such th a t the solution is regular, and th a t the two-sphere 

shrinks to zero a t the IR end-of-space, as in Eq. 2.2.9. This gives us expansions of the form

e2g = gnpn , e2h = ^  hnpn , e2k =  knpn ,
n = 0  n—2 n = 0

o o  o o  o o

e4$ =  ^ 2  f nPn , a = ^ T w npn , b = ^ v npn . (3.1.1)
n—0 n=0 n=0

We then proceed by substituting these into the equations of motion (presented in hill in Ap­

pendix. A .l), finding five independent parameters, taken to  be {ko, fo, V2 , w 2 }- To make

£ 1  
2

Eq. 2.2.9 by taking

connection with the Supersymmetric case, we set ko =  4J- and fo  =  e4<̂ °, so th a t we can recover

, 2ft! 8A? 2 8 N c
k 2  = —  - ~ h '  V 2  = ~ r  W 2  = w r 2- (3X 2)
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3.1 A Supersym m etry-Breaking Deform ation

Thus we are left with five independent parameters

hi,  0o, k2, v2, w2, (3.1.3)

and IR  expansions *

2 * _  hi hi f  k 2  4N 2  N 2v j w%\ 2  4

e - - 2 + T { 1 - - h 1 - J q - - i q -  + T ) p + 0 ( p  >’

e2ft = ^ 2 _ ^ A  % _ 4g  + 3^ |  + M ) /  + 0 ( A
2  6  V 3/if hj

=  y  +  *2 P2 +  0 (p4), e*-*» =  1 +  ^  ( 5  +  4 )  P2 +  0 (P4),

a =  1 +  w2 p2  +  0 (p 4), 6 = 1 +  v 2 p2  +  0(p4). (3.1.4)

In the UV, we use the following ansatz as our generalisation of the Supersymmetric case in 

Eq. 2.2.15,

00 m 00 m

e 2 g  =  E  E  Gm„ p V < 1- m> '+  =  E  E
m=0 n= 0  m= 0  n= 0

0 0  771 0 0  771

e“  =  E  E  W e 4" “” W3, e4® =  E  E  < W V 4(1"”')',/3,
771=0 77=0 771= 1 71=0
OO 771 OO 771

0 =  E  E  w'm„p"e2<1-"‘> +  6 =  E  E  v’m»p"e2(1‘ m)'>/3- (3.1.5)
m=l n=0 771=1 7 7= 0

It will tu rn  out th a t this ansatz will not cover all the cases we will study but we shall discuss 

these individually as they arise. As in the IR, we substitu te this ansatz in to  the equations of 

motion, and in this case we find instead nine independent parameters, which are given by

#oo, # 3 0 , H 1 0 , # n ,  * 1 0 , 3*30, W2 0 , W4 0 , ^40, (3.1.6)

which again to make contact with the Supersymmetric case we relabel as

*00 =  Y 1 , -Hio =  Y ’ $ io =  e44,“ , ^ 3 0 =  C~ ~ ^ 4'" 'C+ , ^40 =  26“  (3.1.7)

Then we have nine independent parameters labelled by

c+, c_, 4 *0 0 , Qo, Pa , # i i ,  W2 0 , $ 3 0 , V407 (3.1.8)

More complete expressions, both for the IR and UV expansions in Eq. 3.1.9, can be found in the Appendix 
of [1].
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3. N O N -SU PERSY M M ETR IC DEFORM ATIONS

and the UV expansions are given by

=  c + e y  -  (4H n p  + Qo + 2c+W%0) +  0 ( c " > ) ,

e2h =

2c+ A te2k = —r-Le 3P +  
o

= 1 ■ ( I f  ̂  ■ e' 4 t“ ^ £ )  e' %p+ ° ( e" 4'')-

( 3 H n W w  + e - i ,  + 0 {e - ^a — \V2 0 e 3f} +  

b = 9Wzoe. U  +

(3.1.9)

10W& e-2p +  0 ( e " ^ p).
\  c+

The most obvious difference here, when compared to the Supersymmetric expansions in Eq. 2.2.15, 

is the fact th a t new terms are present a t leading order in the background functions a and b in 

the UV (parametrised by W 2 o)- We can recover the Supersymmetric case from these expansions 

by setting

N  37V 2
H n  =  - y ,  ^ 2 0  =  0, *̂30 =  -  4 )X e ” (3JVC +  4Q„), Vi 0 = — e2 ^ ( N c + Qa). (3.1.10)

Note, th a t we must also fix the values of the integration constants p \  =  0 and Q 0  =  —7VC, to 

recover the exact expansions given in Eq. 2.2.15.

In summary, our solutions are described by the fourteen parameters, given by the five from 

the IR Eq. 3.1.3, and nine from the UV Eq. 3.1.8. However, if we consider only solutions which 

match both the IR and UV expansions these parameters are clearly not all independent. There 

can be at most five independent parameters, as the required solutions can be parametrised by 

the IR boundary conditions alone, although we generically expect even fewer. In Appendix. A.2 

we discuss the equivalent IR  expansions for non-Supersymmetric deformations of the walking 

background whose Supersymmetric solution has the IR  expansion given in Eq. 2.2.12. This 

solution interpolates to the same general UV expansion presented in Eq. 3.1.9, and shares 

many similarities with the globally regular solutions we discuss here.

Our goal is to find a solution which smoothly interpolates between these IR and UV ex­

pansions. This will require th a t these two parametrisations lead to identical functions. We can
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3.1 A Supersym m etry-Breaking Deform ation

express this as a system of twelve equations, *

g{hx . . . w 2 \p) =  g(c+ .. .  V4 0 \p), £ g { h x . . . w 2 -,p) = £ g { c + .. .V40; p),
h (hx . . .  w2 \p) = h(c+ . . .  V4 0 -,p), f - h { h x . . . w 2 \p) = Toh{c+ . . .  V4 0 ; p),

. (3.1.11)

b{hx . . . w 2 ‘,p) = b(c+ . . .  V4 0 ; p), ±b(h, x . . . w 2 \p) = j^b(c+ . . .  V4 0 ; p).

This system can be further reduced using the constraint (see Appendix. A .l). We can for 

instance express the derivative of one of the functions in terms of the other functions and their 

derivatives. We are left with a system of eleven independent equations which we would expect 

to allow us to solve for eleven of our fourteen parameters. * Of the three remaining parameters, 

one corresponds to our ability to shift the dilaton, which has no other effect on the solution. 

The final two parameters we then associate with movement along the baryonic branch, and 

finally the breaking of Supersymmetry.

In much of the following it will be convenient to describe the solution space in term s of 

the parameters th a t appear in the IR expansions. Firstly, the smaller number of param eters 

makes finding suitable numerical solutions much simpler starting from the IR. Secondly, our 

IR ansatz Eq. 3.1.1 imposes a comparatively natural restriction on the solutions, while the 

UV ansatz Eq. 3.1.5 is more arbitrary, merely being a candidate for a generalisation of the 

Supersymmetric solution. We shall see th a t it does not apply in several special cases.

As with the Supersymmetric case, we choose h x to  parametrise the position along the bary­

onic branch. We could then in principle choose any combination of the remaining IR param eters 

v2, w 2  and k2  to  describe the remaining Supersymmetry-breaking degree of freedom. It turns 

out th a t a description in terms of v2  is usually simplest, as it can be seen from Eq. 3.1.2, th a t 

its Supersymmetric value =  —2/3 is independent of h x.

Finally, it has been checked th a t to these non-Supersymmetric backgrounds (which are dual 

to Theory A), we can apply the rotation procedure, and generate non-Supersymmetric solutions 

to the background with additional fluxes (dual to Theory B).

*We write the functions resulting from a given choice of the IR parameters {hi ,  k2, v 2, w 2}  in the form 
g ( hi , k2,V2,W2\p)- Similarly the expressions of the form g(c+, c _ , Q a, p^, H u , W20, $ 30, V40; p) refer to the 
functions resulting from a given choice of the UV parameters.

t Although in principle further redundancy in the system of equations Eq. 3.1.11 would allow for more 
independent parameters up to a maximum of five.

23



3. N O N -SUPER SY M M ETR IC DEFORM ATIONS

3.2 The non-Supersym m etric B2

Here we will derive the form of the NS B 2  potential in the non-Supersymmetric case, as the 

result differs from th a t of the Supersymmetric case. We propose the following ansatz, using 

intuition gained from the Supersymmetric example

B 2  =  £>i {p)ep 3  + b2 (p)e9tp +  b3 (p)e1 2  +  b^(p)e9 2  +  b5 (p)etpl. (3.2.1)

By imposing tha t =  # 3 , and further th a t the Page Charge vanishes Qpage, D3 =  0, we 

obtain (the computational details are discussed in more detail in Appendix. A.3)

2p—2 k p
6 1  =  — , | 2 6 3 $ ' -  3h&3$ ' -  4hb3 g' -  2 hb '3  + KNce ^ ~ 2 hh^  (a2  -  2 ab + l ) l

4 h
P- 2 h

6 2  =
4 /IV2

| e 2 5 /i2 ( l — a 2) b3  — -j^-e * |N 2(a — b)b' +  4e2 9̂+,l^ /j |

6 4  =  6 8 ^ - ^ o t a - ^ J i; ; ~ fcy, (3.2.2)

where b3 (p) is a function to be determined. The remaining freedom in the choice of b3 (p)

corresponds to a gauge transformation. A general B 2  can be expressed as

B 2  =  (B 2)H= 0  -  l d ( e a» - ‘ +* /4 h , / 4 43  e3)  . (3.2.3)

In the next section, we calculate various observables of the strongly coupled non-Supersymmetric 

field theory B 2, but first it shall be prudent to define a (periodic) quantity th a t will appear in 

the analysis. Given the two-cycle defined by,

E 2 =  [ 6  = 6 , ^  = 27t -  0 , 0  =  -0a ], (3.2.4)

we then define

6 a =  (3-2.5)

Using the explicit form of the B 2  potential in Eq. 3.2.1 and Eq. 3.2.2, we find th a t

&a ( 0 a ) =  ^y^-e 2 *b'{b +  cos 0 A) -----^L_e2*+2/l+2s$ /. (3.2.6)
47T 7T iV g

These two quantities, as well as those appearing in the background of Eq. 2.1.14, will be 

im portant in the study of the non-perturbative field theory dynamics.
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3.3 F ield  Theory A spects and Observables

In this section, we will analyse various field theory aspects of a non-Supersymmetric version 

of the quiver theory, tha t of Theory B. We will use the non-Supersymmetric background one 

obtains when plugging our numerical solutions (see discussion in Section. 3.6.2) into the back­

ground of Eq. 2.1.14 dual to Theory A. We now move into the calculation of a number of 

observables th a t will help our understanding of the field theory interpretation of our new solu­

tion.

3.3.1 Interesting A sym ptotic Behaviour

Let us begin by looking at some particular combinations of the background fields th a t are of 

interest. To do this, we reduce the system here to  five-dimensions as in [20]. From the five­

dimensional perspective, it was shown th a t some combinations of the background functions are 

invariant under the rotation procedure. As mentioned in Section. 2.3, these tu rn  out to be, the 

dilaton 4>, and the combinations

M l =  4e2h~2g +  a2  -  1 , M 2 =  e2h+2g~4k. (3.3.1)

In the case of the non-Supersymmetric solutions the associated UV expansions are given by

= 1 -  ~  e - * p + 0 ( e -4p),

Mi =  —  ( 8 H n p + 3c+W 20  +  2Q0) e~ 4 ^ 3  +  0 ( e ~8p/ 3), 
c +

M * = b  “  + ° ( e~Sp/3)- (3-3-2)

Using the analysis presented in Section. 2.3 it can be seen, from the UV expansion above (using 

the definition u  =  e2p/3), th a t the dilaton falls into the marginal operator category (and is 

associated with a certain combination of gauge couplings g \  discussed below).

Applying the same analysis on the expansion of the function b(p), presented here for con­

venience

6 = 9Ŵ o e - | p + lOWlo f  +  ^4e2pA -  „  +  n o ] e - V  +  0 (<,-•¥*),

(3.3.3)

indicates th a t the “Supersymmetry-breaking constant” W 2 0  corresponds to the insertion of an 

operator of dimension-three into the Lagrangian. We associate this operator with the mass for
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the gauginos and in an analogous way (consistent with the Supersymmetric case), the constant 

e2pA, which appears a t next-to-leading order in M \ , is associated with the VEV for the gaugino 

as discussed in Section. 2.3.

It should be noted th a t this association is not exact once we have broken Supersymmetry. 

This is because the Supersymmetry-breaking parameter can also deform the gaugino VEV, as 

indicated by the contributions from W 2 0  and V4 0  to M i  in Eq. 3.3.2. Schematically we have

Following this logic, the expansion of the field M i  ~  u 2 is interpreted as the VEV for a 

dimension-two operator [60],

This is the same operator which gains a VEV in the Supersymmetric case, and it is exactly tha t

that the Supersymmetric breaking coefficient W 2 0  contributes to this VEV, in the expansion in 

Eq. 3.3.2.

Finally, it is curious to  note tha t, as Theory B has two gauge groups, we should expect 

two independent gaugino masses. Here, we are taking advantage of the fact th a t the solution 

is obtained by applying the rotation procedure on a background dual to  Theory A, which has 

only one gauge group. It appears th a t we have only one integration constant which we are 

associating with gaugino mass, th a t of W 2 0 • We may hope to  find the extra freedom through 

terms like V2 1 , W 2 1  which would appear in the functions a ~  b ~  pe_ 2 p / 3  in the corresponding 

UV expansions. These could then be associated with this second mass param eter but they are 

forced to vanish in our particular solution, meaning this freedom is not realised.

3.3.2 Charges, Energy, Gauge Couplings and B eta Functions

Here we look at various quantities and how they are affected by the non-Supersymmetric de­

formation. Firstly, we define the Maxwell and Page Charges as

W 2 0  -> m xAA, e2pA -> (Tr(AA)) ~  A3. (3.3.4)

U ~  Tr(A*A -  B 'B ) . (3.3.5)

which allows us to explore the baryonic branch, as discussed around Eq. 2.1.7. Further, observe

QM axwcll, D3 F 5 , ^M axw ell, D1

(3.3.6)
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where we are using the manifolds S 5 =  [0, tp, 0, (p, ip], and S 3 =  [0, (p, ip]. As in the Supersym­

metric case we have tha t

^ M a x w e ll, D3 =  - e 2 9 +2 /l+2 <*,<3>', ^ M a x w e ll, D5 =  N c . (3.3.7)
7T

Recall, we imposed th a t QpAge, D3 =  0 in determining the B 2  field in Eq. 3.2.1 (see Ap­

pendix. A.3). The reason behind this is tha t the vanishing of the D3-Page charge is a feature 

of the Supersymmetric non-singular solutions. * Using the UV expansions, the Maxwell charge 

for D3 branes is

00

^ M a x w e ll, D3 =  ~  P  247T °° °°^3o)

+  3 3 e * ' ° fVi o e - 4 /,/3 +  0 ( e - 8 p /3 )  ( j  3 g )
OZ7T

So, we see th a t W 2 o, the param eter we associate with the mass of the gaugino according to 

the discussion above, changes the large p value of the Maxwell charge (and correspondingly the 

c-function discussed below) in a subleading way, as one expected.

Taking the derived expression for the ADM Energy of the non-Supersymmetric backgrounds 

as derived in [1], and applying the map in Eq. 3.3.4, we obtain tha t

£adm  ~  c2+e2 *°°e2 f>*W2 0  ~  m AA3. (3.3.9)

Thus the energy is proportional to the gaugino mass and the strong coupling scale, as expected. 

This result was first obtained in [71, 72].

Turning our attention to the gauge couplings and beta functions, we briefly review what 

happens in the Supersymmetric case. In the S U (N c +  n) x S U (n) Supersymmetric quiver, 

we have two couplings 9 1 , 9 2 - Close to the Klebanov-W itten conformal point (in the UV), 

the anomalous dimensions are 7  This implies th a t the beta functions for the diagonal

combinations

-  0**2 -  j9g,a =  6 A^, /3b, , 2 =  (3^2 +  @£*2 =  0. (3.3.10)
aU a f  si” 9?” si”

It would be interesting to see if one can obtain a regular non-Supersymmetric solution in the presence of 
sources indicated by a non-vanishing Page charge.

27



3. N O N-SU PERSYM M ETR IC DEFORM ATIONS

As in the Supersymmetric case, we will adopt the definitions

47r2 , 47t2 a
—  =ire~  , —r  = 2ne~ [1 -& a (t0 ], (3.3.11)
9+ 9 -

where 6a ('0a) is defined in Eq. 3.2.5 and Eq. 3.2.6. We obtain

47T2

9-
=  2e-*  ^ 7T +  -jLe29+2h+2*& ')  _  ^ £ e * ( 6  _  ! )6/. (3.3.1.2)

Notice th a t this result is independent of the function 6 3  (p). In the UV, these formulas can be 

trusted and the expansions are given by

w +  * p  ~  i e ' M' " ,r4 '30)  e ~ Sp/3  +  ° ( H 4 > e _ 4 p ) I3 -3 -1 3 )
4 7 r2 _  / 3e $ 0 0  7r 1

9+ \

and

^  =  ( 2P -  ^ 4 $ 3 0 e - 4$~ +  27^-*°° -  -  ^ 2 0 e - 2 p / 3  +  0 ( e " 4p/3). (3.3.14)

Let us now compute the beta functions straight from the geometry. Using the energy/radius 

relation

u = e2 p / 3  =  ^  (3.3.15)

where p is the energy scale at which we probe the process, and A the reference or strong coupling 

scale of the given gauge group. Notice th a t this choice is arbitrary, just reflecting the scheme 

dependence in choosing p(p). To calculate the beta functions we perform

■- i  (?) * (i)+̂ + (?)
+o(^,ogG )© )’

^  = i  { f )  3UOT = ̂ + (£)+0 (?) ■ (3'316)

W ith a naive use of the NSVZ expression for the Wilsonian beta functions, one may have

interpreted this result for 0 ^ 2 , as the Supersymmetric breaking param eter W2 0  only slightly
sT

changing the value of the anomalous dimensions 7  ~  — |  +  0  but this does not match

the analogous calculation for /?8tr2 , and thus this solution does not respect the NSVZ expression 

(as expected).

* These are strictly correct in the N  =  2 examples, and at the KW fixed point, thus we adopt the same 
definitions here to try to understand the non-Supersymmetric dynamics.
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Finally, notice th a t while in the Supersymmetric case the beta functions receive corrections 

0  ( ^ y ) ,  whereas here we have an example where the Supersymmetry breaking param eters 

produce lower order corrections 0

3.3.3 A non-Supersym m etric Seiberg-like Duality

Here we shall follow the method developed in [73] and compare the quantity 6 a (VO from Eq. 3.2.6 

to  the Supersymmetric case. The Seiberg duality is identified with a large gauge transformation 

such tha t 6 a ±  1, and the charge of D3 branes changes by ± N C. If we consider the Page 

charge defined in Eq. 3.3.6, under a large gauge transformation to Z?2 , 6 a will change by one 

unit, and this in tu rn  corresponds to a change of N c units in the Page charge (exactly as in 

[73]).

Now let us see how the Maxwell charge behaves under this Seiberg duality. Focusing on the 

UV of the background, where the cascade is known to work in the Supersymmetric case, and 

following the steps described in Appendix. A.4, we have

ili / 2 e $ / 2  ju r i
6 a =    [6 2 e2h -  6 4 (a +  cosipA)eh+g] = ^(/ +  k) + (k -  / ) c o s ^ a J  , (3.3.17)

b ' ( b - l ) - j ^ e 2g+2h&

b ' { b + l ) - ^ e 2g+2h&

with (using the explicit values for 6 2 , 6 4 )

p $ / 2 t l / 2  „23>
/  =  2Nc [h e2h -  b4 eg+h(a -  1)] =  k —

p * / 2 t l / 2  „2S>
k = —  [b2 e2h -  b4 cg+h(a +  1)] =  k —

K \ [  p 2 $ + 2 h + 2 g
-» 6 a =  — 7 ---- 6 ' ( 6  +  cos Vm) 77------------------------------------------ (3.3.18)

47T 7rNc

Notice th a t far in the UV, the Maxwell charge given by

K k N 2 p
QMaxwell,D3  =  — e2g+2h+2®$' =  — j  6'(6 +  cos V»a) -  N cb\,  (3.3.19)7T 47T

under a change in 6 a, behaves as

6 a ~  6 a 1  ̂QMaxwell,D3 ~  QMaxwell,Z?3  “F Afc. (3.3.20)

There is a ‘correction’ of the form 6 ' ( 6  +  cos ip a ), but a t large p this is suppressed. Note th a t 

in the Supersymmetric case, where 6 ' ~  e-2p, the suppression is greater than in our non- 

Supersymmetric solutions, where 6 ' ~  e-2p/ 3. Thus, the ‘Seiberg duality’, associated with a
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large gauge transform ation of index k, which changes the Maxwell charge by k N c units, is better 

approximated in the Supersymmetric than in the non-Supersymmetric case. Nevertheless, in 

both cases, the transform ation is correct to leading order.

So, as expected, in the far UV we could think of this decrease in the Maxwell charge, as a 

non-Supersymmetric version of Seiberg duality at work.

3.3.4 The Central Charge

Here we shall calculate the (holographic) central charge c of this non-Supersymmetric solution 

[74, 75]. In particular it is one of the anomaly coefficients, associated to the trace anomaly 

in four dimensions (T£) ~  —aE 4 +  cW*vpa, where E 4  is the Euler Density and WpUpa is the 

Weyl Tensor. Strictly it is only well defined at fixed points, but here we shall calculate it using 

holographic methods, allowing us to determine a ‘candidate’ central charge along the RG flow. 

It is conjectured to be monotonically decreasing towards the IR of the theory (see for instance 

[76]). This is in line with the idea th a t the central charge can be thought of as a measure of the 

number of degrees of freedom along such a flow, and thus as we integrate them  out, its value 

decreases.

We shall see th a t in this case, it is indeed a monotonically decreasing function of p (from 

the UV to the IR), and reaches zero in the IR. * Instead of following the procedure presented in 

[74, 75], requiring a reduction to five dimensions, we instead shall follow an equivalent method 

[48]. This treatm ent indicates th a t the central charge (for d = 3) is given by c - ^ ( s e e  

Eq. 5.1.2 and Eq. 5.1.3 for definitions of (3 and H), and thus is given in our case by

e 2h+2g+2$+4k}l2
L- ’ '

( 2 h' + 2  g' +  2 $ ' +  k' + 

In the IR, the expansion for the central charge is

c  ~  e ^ o - ^ o o  ( e 2 # o c  _  e 2 < fc > )2  ^ 5

(3.3.21)

+  i e2 *o_4*oo (e2*°° -  e2*0) h \  e2*°° ( -1 6  -  15/iifc2 +  12h\)  
y

+  e2<̂° (28 +  15/iifc2 — 12h2 +  9?>!) p7  + 0 (p 9), (3.3.22)

*Due to the fact that in the far UV this theory does not actually reach a fixed point, we do not expect the 
central charge to attain a maximum value, but it will be zero in the IR due to the theory having a mass gap.
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and in the UV,

c ~  e2̂ °° p2  — Q e 2$°° +  ^ c 2 e“ 2* ~ $ 30^ p + (3.3.23)

It, is easy to see tha t in the UV the Supersymmetry-breaking parameters are not present 

at the leading order. In the IR, the problem is slightly more subtle in tha t, although no 

Supersymmetry-breaking param eters appear in the leading term, there is still an effect. This 

is because, unlike the Supersymmetric case, fixing hi and fo  in the non-Supersymmetric case 

does not determine 4>oo, and thus we can expect th a t under the deformation, it will change. 

Indeed, it turns out th a t if we compare Supersymmetric and non-Supersymmetric numerical 

solutions with the same h\  and fo ,  we find th a t $ 0 0  changes (see Fig. 3.1).

3.3.5 Dom ain W alls

Here we shall compute the tension of a domain wall (already discussed in Section. 2.1), which 

in the Supersymmetric case separates adjacent vacua [60], as the effective tension of a fivebrane 

th a t sits a t p =  p \  =  0, and is extended along Eg =  [£, X\,X 2 , 9, <p, ip]. Before the rotation we 

obtain th a t the induced metric on such a fivebrane is (in string frame)

r G^ — ~ Ĝ *̂ — n
ds2nd =  e$ |dx\ 2  +  — {d,02  + sin2 9dip2) + + cos 9d(p)2  ̂ (3.3.24)

The induced tension on the three-dimensional wall is

7\ n  = 2ir2 TDsc2* +29+k |p=0 =  | (3.3.25)

which is unchanged from the Supersymmetric result.

After the rotation procedure, in the background of Eq. 2.1.13, placing a similar fivebrane, 

the induced metric is,

ds2nd =  [ ^ = ^ 1 ,2  +  y/h(^-^-{dd2  +  sin2 6 d(p2) +  ^ - ( d ip  + cos0d(p)2^ .  (3.3.26)

There is also an induced B 2  field,

B 2  =  ^ V h e 2 9 +* / 2 b3 (p) sin 9d0 A d<p. (3.3.27)

In order to have a gauge invariant Born-Infeld Action we add an F2  field on the world-volume 

of the brane. Then the change due to a gauge transformation of the B 2  field can be cancelled
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by a (non-gauge)-transformation on F2 , and thus implies th a t the full action will be

2g+k+2$ r
s  =  - T D5(4tt) 2----------    I d2+1x  (3.3.28)

which gives the same effective tension as in Eq. 3.3.25, and is again the same as in the Super- 

symmetric case. * Thus the effective tensions before and after the rotation procedure are the 

same.

3.4 Rem arks on th e  D ual F ield  Theory

The comments in this section will be based on the ideas and analysis of [77], where the non- 

Supersymmetric deformations of N  =  1 SQCD are studied, t Here we are looking at a non- 

Supersymmetric deformation of the Klebanov-Strassler quiver field theory. In the Supersym­

metric case, the Klebanov-Strassler field theory is understood as N  =  1 SQCD with a gauged 

flavor group, and a quartic superpotential (see for example [59]), and thus the results of [77] are 

im portant here. It should be noted, th a t these results require us to keep the Supersymmetry- 

breaking parameters much smaller than  the relevant scale in the problem, namely A s q c d >  and 

thus we must be sure th a t W 2 0  is small in size.

When this is true, much of the structure of Seiberg’s SQCD [58] remains. Of particular 

interest is the fact th a t for S U ( N C) SQCD with N f  flavors and where N f  =  N c , there exists 

a  vacuum which spontaneously breaks the U ( l)-baryonic symmetry. This vacuum persists 

through to the non-Supersymmetric analysis of [77]. Note th a t in the Supersymmetric case, 

the last step of the cascade is such th a t N f  =  N c . Thus we argue th a t the non-Supersymmetric 

backgrounds here describe a situation where the Supersymmetry-breaking occurs due to gaugino 

masses and other VEVs, and the baryonic symmetry is broken by the vacuum state.

To be more precise, in [77], the authors added a term  to  the SQCD Lagrangian

& =  & S Q C D  +  A £ ,

A L ~  J  d4 0 MQ(Qt ev Q + Qt e~v Q) + J  d 20 M gS , (3.4.1)

*In the Supersymmetric case we have (using Eq. A .3.1)

63 =  — /ce3<f/ 2/i-1 / 2 c o s q , (3.3.29)

which vanishes for p =  p \  =  0 .
tSimilar ideas on (softly broken) non-Supersymmetric models can be found in [78, 79].
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where S  is the superfield S  = Tr(W/QVKQ), M q is a vector multiplet whose D-component equals 

the mass of the squarks (—m 2) and M g is a chiral multiplet whose F-component is the mass of 

the gluino. It was then argued tha t, to leading order in the Supersymmetry-breaking parameters 

M q and M g, one can write an effective Lagrangian in terms of mesons M, baryons ('B, B) and

S,

A L  ~  J  d^B M M gT rpV ttM ) +  B bM q {B^B +  & B )  +  J  d2 QMgS  +  . . .  (3.4.2)

One should then supplement the usual actions and superpotentials from the Supersymmetric 

case with the non-Supersymmetric terms discussed above. In the case of N f  =  N c of interest, 

one should minimise the potential term  coming from Eq. 3.4.2, as well as the potential coming 

from the Supersymmetric superpotential

W  = VFtree +  VFquant =  «T r(M fM) +  £(det M -  B B  -  A2Nc). (3.4.3)

Thus, the vacua of the theory are those th a t minimise the potential coming from the tree- 

level superpotential, together with th a t of the Supersymmetry-breaking term, subject to the 

constraint Wquant,. The result is th a t for the non-Supersymmetric case, one finds a vacuum 

state where where the mesons are at the origin of the moduli space (M =  0), and the baryons 

acquire a VEV.

Therefore, we argued th a t the solutions which break Supersymmetry, due to the presence 

of masses for the gauginos, have a very similar behaviour to the Klebanov-Strassler cascade. 

As we have seen, many aspects behave as they do in the Supersymmetric case a t leading order. 

So, w hat is happening is th a t the Supersymmetry breaking terms, such as the gaugino masses 

indicated by W 2 0 , are not im portant at high energy. They will enter into IR observables, but 

only as corrections to the Supersymmetric behaviour, and thus we take our breaking scale 

smaller than  the strong coupling scale.

3.5 Som e R em arks on (m eta)-S tab ility

Here, we shall make some comments on the stability of our solutions in the presence of soft- 

breaking. To check for perturbative stability, we could fluctuate our background, and then look 

for the presence of tachyons. It may be th a t the precise fluctuations we study, are not those 

leading to the instability, or it could be th a t we find a tachyonic mode, and this ensures the 

instability of the solution. We will not perform this analysis here, but instead present some 

arguments in favour of the stability of these background solutions.
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To begin with, we can draw close parallels between the Supersymmetric baryonic branch 

solutions, and the non-Supersymmetric deformations we present here. We are deforming the 

background by the presence of the coefficients W2  and i>2 which break Supersymmetry. Taking 

these coefficients to  be small is what allowed us in the last section to  use the results of [77]. 

In th a t paper, it was shown (using field theory techniques) th a t the generated potential has a 

minimum, which we believe is the vacuum of the field theory dual to our background solutions 

(due to  the analogous behaviour). This would then imply tha t tachyons are absent from the 

spectrum.

We could also suffer non-perturbative instabilities, associated with possible tunnelling be­

tween vacua with A3ew =  —A3, and thus we make an argument in line with th a t of [70]. * In the 

non-Supersymmetric background at hand, the tension of the domain wall (separating the vacua 

of the original Supersymmetric theory) is not modified by the Supersymmetry-breaking param ­

eters (see Section. 3.3.5). As discussed, so far we have solutions in which the strong coupling 

scale is hierarchically larger than the Supersymmetry-breaking scale, and in this way our solu­

tions are ‘close’ to the Supersymmetric ones. Further, the authors of [70] estim ate the action of 

a vacuum bubble introduced, for small values of m \  (using the ‘thin wall’ approximation) to  be 

given by 5& ~  N c j  t where m \  is the gaugino mass, and A is the strong coupling scale, t 

They conclude th a t the decay rate for tunnelling to other solutions is highly suppressed, at least 

for small values of m \ ,  and thus the solutions are free of such non-perturbative instabilities.

Finally, it would be best if we could make an argument along the lines of a ‘fake supergrav­

ity’ [80], but this would require the construction of a fake superpotential, and this seems an 

extremely challenging task.

3.6 G oing Beyond Soft-Breaking

3.6.1 D eform ation the CV M N  Case

The CVMN solution [13, 18], obtained in the limit hi —>• 2N c, (see discussion around Eq. 2.2.5) 

can be described in terms of 5 0 (4 ) gauged seven-dimensional supergravity. The 5 0 (4 )  gauge 

group corresponds, in the full ten-dimensional description, to rotations of the three-sphere 

(0, ip, ip). If we then wrap the five branes on the two-sphere (6 , tp), we get a four-dimensional

The authors make the following arguments for a particular non-Supersymmetric deformation of the original 
Klebanov-Strassler Theory (whose relation to the solutions presented here is discussed further in Section. 3.7.4). 
We can hope these ideas can be extended on to the Baryonic Branch, at least if we stay ‘close’ to their solutions.

*The shift in vacuum energy will be given by Eq. 3.3.9.
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world-volume theory. As there is exists no covariantly constant spinor on S 2, a gauge field is 

introduced, and this preserves some of the supersymmetry through a neat cancellation of the 

spin connection of the S 2  in the variation of a fermion

6 *  ~  D^e = (&„ + w J 'V "  -  A jfrV)e .  (3.6.1)

Such a cancellation can be achieved, whilst preserving 3\T =  1 Supersymmetry, through the 

introduction of an abelian gauge field £7(1) C S U ( 2 ) i , where SO (4) ~  S U (2 )r  x  S U (2 ) l .  

From the ten-dimensional point of view, this corresponds to the ‘tw isting’ given under the 

mixing of the S 2  coordinates 6  and ip in Eq. 2.1.8,

E 3  ~  d>3 4 - cos Odip. (3.6.2)

Although this solution turns out to be singular in the IR, it is possible to obtain the reg­

ular CVMN solution, by instead introducing a non-abelian S U (2) gauge field. This can be 

seen through the additional mixing param etrised by the function a(p) in Eq. 2.1.8 in the ten­

dimensional description. If a(p) =  1, as occurs at the IR end-of-space in the Supersymmetric 

solution, the gauge field is pure gauge and there exists a gauge transformation removing the 

field, which can be w ritten instead as a coordinate transform ation removing the explicit mixing 

[83, 84],

It is possible to  deform the CVMN solution, and this will prove useful for understanding 

the full space of deformations of the wrapped D5 system. In [30], the solution involving the full 

SO (4) ~  S U (2)l x S U (2)r  gauge field, and solving the full equations of motion, rather than  the 

BPS equations, was discussed. We shall not discuss this solution in its full generality, bu t shall 

discuss a simpler deformation, th a t of introducing a mass term  to  the single S U (2) gauge group 

solution, and thus breaking supersymmetry. This appears to  be the simplest supersymmetry- 

breaking deformation of the CVMN solution and corresponds to the globally regular extremal 

solutions obtained by Gubser, Tseytlin and Volkov (GTV) in [25].

These non-Supersymmetric solutions have the same restrictions on the background Eq. 2.1.8 

as in the CVMN solution, th a t of

2 g

*It is possible to preserve N =  2 Supersymmetry by instead choosing the 1/(1) to be in a diagonal SU( 2) n  C 
SU(2) r  x SU(2) l , as in [56, 81, 82].
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for all values of the radial coordinate, but no longer have an exact form as in Eq. 2.2.5. Again, 

we rely on expansions for the the IR and UV, such th a t in the IR we have

—  =  p2-  p4  +  0 (p6), a =  1 +  v2 p 2  +  0 (p4),

+  v2 ^  P2  +  ^ (p 4)) (3.6.4)

where the quantity v 2  is parametrising the Supersymmetry-breaking deformation. To recover 

the CVMN Supersymmetric solution, we take v2  =  — | .  As was observed in [25], we must 

restrict to —2 < v 2 < 0, to find solutions which interpolate to  a regular UV. For the expansions 

in the UV, we find a substantially different set of expansions for the background functions which 

(in the notation of [30]) are given by 

p 2 h  / 1 \

—  =  p + Gqo + 0  ( -  J , a = Map ' 1 ? 2  +  0 (p~3^2), $  = p + O(logp), (3.6.5)

where the param eters G<*, and M a can be thought of as functions of v2. The main difference 

to  note, is the introduction in the expansions of e2h and a, of terms which are decaying slower 

than exponentially. The interpretation of this presented in [27], is th a t here we are deforming 

Theory A by the addition of a gaugino mass, again through a soft Supersymmetry breaking 

mass deformation. * From the point of view of the above expansions in Eq. 3.6.5, the mass 

corresponds to  the additional term in the background function a(p), and is labelled by M a. 

This leading order change in the expansion of a(p) is reassuringly reminiscent of the leading 

order change in the more general UV expansions presented in Eq. 3.1.9.

W hen looking to  understand the consequence of the Supersymmetry-breaking in this case, 

it is thus best to consider the change in behaviour of the background function a(p). A generic 

non-Supersymmetric solution can be characterised by a scale ps . Below the scale p < ps the 

qualitative behaviour is th a t of the Supersymmetric CVMN solution, but for p >  ps we instead 

have the non-Supersymmetic UV behaviour dominating.

For a generic non-Supersymmetric solution we can define the deformation to a as

A a = a — as . (3.6.6)

Thus we can think of ps as the scale at which the deformation A a  (which decays slowly in the

*The authors in [27] also discuss the fact that under the addition of a gaugino mass to the M =  1 theory, 
the plane of vacua will be ‘tilted’ and thus instead of an 7Vc-fold degeneracy, we are left with a single unique 
vacuum.

e 4<t>-40o = 1 +  ( _
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UV) is of the same magnitude as as (which decays considerably faster). As a result, ps moves 

towards the IR  as we deform further away from the Supersymmetric solution. Note th a t this 

does not relate in an obvious way to the Supersymmetry-breaking scale. It would be more 

natural to associate the breaking scale with the scale above which A a has decayed significantly, 

and which moves into the UV as we deform further away from the Supersymmetric solution.

For V2  < — a(p) has a t least one zero. As V2  moves toward the minimum value, it gains 

more oscillations (and thus more zeros), and in the limit V2  —i> — § there are infinitely many 

zeros. In this limit, the UV changes again, such th a t the system approaches the “special Abelian 

solution” of [25] given by

e2 h i
—  -> 4> -> v'Sp. (3.6.7)

Finally, for V2  > 0, a(p) is always positive, and in the case V2  = 0, a(p) = 1 for all values 

of the radial coordinate. As alluded to above, this means we have a gauge field th a t is pure 

gauge. Thus we may remove the mixing between the spheres by the appropriate change of 

coordinates, leaving the internal geometry as simply S 2  x  S 3, and is thus related to the solution 

presented in [85]. The UV behaviour of the other background functions h and $  still have the 

form Eq. 3.6.5.

3.6.2 A M ethod for Finding Globally Regular Solutions

As discussed, for us to conclude th a t the IR  expansion given in Eq. 3.1.4, and the UV expansion 

given in Eq. 3.1.9, describe the same system of solutions, we must find a numerical interpolation 

between them. To this end, we can make use of the simpler system of GTV solutions described 

in the last section. Just as the Supersymmetric CVMN solution is a limiting case of the 

Supersymmetric baryonic branch solutions (by taking the limit hi —» 2N c), we can assume 

th a t the GTV solutions are the equivalent limit for the non-Supersymmetric defomations of the 

baryonic branch. Strictly, this is only a statem ent about the IR expansions, such th a t if one 

sets W2  =  V2  and =  0 in Eq. 3.1.4, we recover the GTV IR  expansions given in Eq. 3.6.4. 

The GTV UV expansion Eq. 3.6.5 on the other hand cannot be recovered from the general UV 

expansions Eq. 3.1.9. This is not surprising, as it is true th a t the Supersymmetric CVMN UV 

behaviour Eq. 2.2.7 cannot be obtained as a simple limit of the generic Supersymmetric UV 

Eq. 2.2.15.

As the GTV solutions have no redundant param eters in the IR, it is simple to generate 

numerical solutions. These can then be deformed by increasing h \ , and then adjusting W2  and
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V2  to  correct for the deviation from the UV behaviour. More precisely, for a given value of 

V2  =  A i>2 — 2/3 it is trivial to obtain a numerical solution with h\ =  2N c, for which W2  = r>2 

and &2 =  0. We then deform this by keeping A v 2  fixed and setting h\ =  2NC +  A h \ .  If we use 

a small perturbation A h i , we will require corrections of the form

W2  = 1 2̂ (A /ll) +  A v 2  +  8 w 2 (A h 1 , A v 2), k 2  = /c|(A /ii) +  8 k 2 {A h1, AU2 ), (3.6.8)

where Sw2  and Sk2  are extremely small.

It turns out th a t indeed the UV of these new deformed solutions fits th a t of the general 

ansatz Eq. 3.1.9, and thus our assumption th a t the GTV solutions are the correct limit of our 

deformations, is justified. Thus we can use this method to allow us to  understand the behaviour 

with generic values for both hi and V2  in terms of the corresponding Supersymmetric baryonic 

branch and GTV solutions.

3.7 T he Tw o-dim ensional Solution  Space

3.7.1 U nderstanding the Effects o f hi and v2

As discussed in Section. 3.1, there are two param eters which can be thought to describe the 

space of solutions, th a t of the position along the baryonic branch, and also th a t of the size of the 

Supersymmetry-breaking deformation. It is simpler to generate solutions by starting in the IR, 

and thus we choose hi and one of the three Supersymmetry-breaking param eters {w 2 , ^2 , ^2 }- 

It turns out tha t the best choice is tha t of V2  as it is independent of hi in the Supersymmetric 

case (there =  — § for all hi).

In Section. 2.3, we related the effect of varying hi  to  changes in the scale p, corresponding 

to  the change between the CVMN behaviour for P  (linear) in the IR, and the generic expo­

nential (Exp-like) P  behaviour in the UV (corresponding to those Supersymmetric solutions 

th a t can be rotated to  give solutions on the baryonic branch of Klebanov-Strassler). Further, 

in Section. 3.6.2 the scale ps was introduced and associated with the transition between Super- 

symmetric CVMN behaviour in the IR, and the (non-Supersymmetric) GTV behaviour in the 

UV.

So for a  generic non-Supersymmetic solution, corresponding to  hi > 2NC and V2  7  ̂ — §, we 

find th a t these features survive, and both scales are present. Then the solutions depend on the 

ordering of the scales. If p < ps the solutions have
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Figure 3.1: Plots of some of the background functions for different values of V2 , with hi =
Nc =  1 and <f>o = 0. At the top of the page are the solution space plots, showing the values 
of V2 , W2 and in each of the plots, which are colour-coded appropriately. The thick blue line 
represents the Supersyrnmetric solutions, the thick green line represents the GTV solutions, and 
the shaded grey areas are excluded from t he space of solutions. Solutions with W2 < — 2 are 
discussed in Sec. 3.7.3. In the left-hand plot in the middle row, we plot k, showing that the 
Supersymmetry-breaking parameter V2 has little effect on the behaviour unless one takes the limit 
V2 —> 0 (depicted in red). In the right-hand plot in the middle row we plot k ' , and the transition 
between the two gradients (k ~  ^  and k ~  •ŷ £ ) is shown clearly. We find that the effect of i>2 

on the other background functions g, h is very similar to the change in k. In the left-hand plot 
in the bottom row, we plot the dilaton in the various cases, showing explicitly that the UV value 
$oo varies with V2 (for constant hi). Finally, in the right-hand plot in the bottom row, we plot 
the effect on a.
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P < P  
P <  P <  Ps  

P >  Ps

k ~ g ~  const, a ~  b ~  e~2P (SUSY, CVMN-like)
k  ~  p ~  2 /9 / 3 , a ~  6  ~  e“ 2p (SUSY, Exp-like)
h ~  g ~  2p/3, a ~  6  ~  e ~ 2 p ! 3  (non-SUSY, Exp-like)

On the other hand, if ps <  p we have

P < P s  
Ps  <  P < P  

P >  P

k ~ g ~  const, a ~  6  ~  e~2p (SUSY, CVMN-like) 
k  ~  g ~  const, a ~  6  ~  p - 1 / 2 (non-SUSY, GTV-like) 
A: ~  g ~  2p/3, a ~  b ~  e~ 2 p ! 3  (non-SUSY, Exp-like)

It appears th a t p is almost independent of u2, and th a t ps is almost independent of h \ , although 

this may break down for sufficiently large hi and t>2 , depending on the precise definition used 

for the  scales. In fact the presence of the two scales becomes less clear as they move into the 

IR for large h\  and u2. We show the behaviour of the background functions for some generic

solutions in Fig. 3.1 where h i is large enough th a t p is close to the IR and is not visible.

3.7.2 Boundaries o f th e Solution Space

We noted earlier tha t the GTV solutions are restricted to  — 2 <  u2 < 0 for solutions with a 

regular UV. It is not obvious how to generalise these bounds for hi > 2N c, but numerical ob­

servations suggest th a t u>2 (h i,V 2 ) becomes independent of hi for V2  —> 0 , and th a t in particular 

there is a family of solutions with a = b =  1 and g =  k even for hi >  2 N c.

In our IR  expansions in Eq. 3.1.4, this is equivalent to setting

w 2  = v2  = 0, k 2  = Y ~  =  (3.7.1)

and these agree with the numerical values obtained. It appears th a t if we take V2  > 0, then 

a(p) > 1 for small p, and this leads to the background functions diverging for finite p, which 

seems to indicate th a t this is the correct generalisation of the boundary. An example of a 

solution on this boundary is given by the the solid red curves in Fig. 3.1.

Thus, if one sets a = b = 1 and g = k  in the equations of motion (the result is shown in 

Eq. A .I .10), we find th a t our ansatz for the UV expansions in Eq. 3.1.5, is no longer suitable. 

However, using the equivalent expansions in powers of e ^ 2p does lead to a expansions of the 

form

e2h =  ^ o o eV2P + { k ooK 2q +  N 2 N 2 \  e_ ^ p 0 re-3V2P\
2 V 2K 0 0  2y/2K 0 0  )  K '

e2k = K 0 0 e ^ p +  ( V 2 0  +  ~ ^ — p )  e ~ ^ p + 0 (e~3V2p)
\  v2Koo J

e4* - 4*°° =  l  -  J j -  (4ATooA:2o +  N c + 2 ^ N cP) e~2V*P + 0 ( e ~4V2p) (3.7.2)
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Figure 3.2: A plot of T for a V2 = 0 boundary solution, showing the subleading oscillatory 
behaviour, as seen in Eq. 3.7.3. The corresponding solution is the solid red curves in Fig. 3.1.

Note th a t although the ansatz we used to get these expansions was just given by replacing 

4p/3 —>• \/2 p in Eq. 3.1.5, it is not possible to obtain these expansions from the generic UV in 

Eq. 3.1.9 simply by a rescaling, or change of coordinates. An example is given in the fact th a t 

for all these solutions we have e2k = e2g, whereas in the generic case e2k ~  2e2g/3  for large p. 

Thus we do not attem pt to match the parameters here to the usual set {c+ ,c _ , . . .  }. Instead, we 

denote the two free parameters by K 00 and K 2o, the leading param eter (roughly corresponding 

to c+ ) being A'oo. Note that, as we have set V2  =  0, the two param eters A'oo and A'20 cannot be 

independent once we match to the IR. This also occurs when one wants to find globally regular 

solutions in the Supersymmetric case, in which the two UV parameters (c+ and c_) must be 

tuned, to match the one-parameter (h\) IR solutions. If one then tries to use this form of UV 

expansion to find an interpolating solution, although the leading order behaviour is correct, 

there is a set of subleading terms tha t are missed by the general UV expansion ansatz. One 

must instead include the possibility of trigonometric functions, such that one finds expansions 

of the form

e2h =  e '/2p + s*n ^ P  + H c cos \Z2p^j + 0 ( e -v/^p)

e2k = K o o e ^ 13 -  ^ (2 (V 2 H s + Hc) sin V2p + (4HC -  V 2H s )c.osV2p^ +  0 ( e ' ^ )

=  1 -  ^ r  ( 4 K ooI< 2 0  + N 2 +  2V 2 N 2p) e~2V2p +  0 ( e " 3^ )  (3.7.3)
4<!>_4<j>

»> -L00

where the trigonometric functions appear at the next order in 4>, and this appears to cover the 

behaviour for these boundary solutions. Again, we expect the new coefficients H s and H c to be 

determined in terms of one of the other coefficients, when we match to the IR. In Fig. 3.2 we
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show the presence of this oscillatory behaviour by plotting the combination 7{p) =  e2k — 2 e2h, 

in which it is the oscillations which are the leading order behaviour.

In Section. 3.6.1 we noted th a t the ‘tw ist’ which mixes the S 2  and the S 3  could be removed 

by a change of coordinates when a =  b = 1. In the solutions described above, we still have 

g = k, and thus the same coordinate transform ation still works, leading to a simplified system, 

similar to  the one discussed in [85]. W ith C4  and F 5 unchanged from Eq. 2.1.14, we now find

J2 k
ds% = e$ / 2 h 1/ 2dx l  3 +  h 1 / 2   ̂e2 kdp2  +  e2 hdO,2  +

N c _
F 3  =  — A a »2 A u>3,

H 3  = 2N ce2h- 2k+2*~*°° sin 6  dp A dd A dip. (3.7.4)

The boundary for ^ 2  < — corresponding to V2  =  — 2 in the GTV solutions, seems to be 

much less accessible numerically, in part due to  the presence of zeros in the functions a and b. 

Next we will discuss a possible way to learn more about this limit.

3.7.3 A  Z 2 Sym m etry

T he system described in Sec. 2 .1 , which contains all the solutions we consider, exhibits a Z2 

sym m etry which exchanges the two S 2  of the conifold, and changes the signs of the three- 

forms F 3  and H 3  in Eq. 2.1.14. To see this symmetry, we will use the fact th a t all the solutions 

described here fall into the P T  ansatz [15] which has a metric of the form

ds2E =  e* / 2 (h~ 1 / 2 dx 2 3  +  h 1 ^2 ds\), 

ds\ = ? e -8p+39(4dp2  +  gl)  +  e2p+3<?jc o sh y  [e*(u/J +  w2) +  e~z (u \  +  £ 2)]

-  2 sinh y  j , (3.7.5)

where the angular forms u  and <75 are given by

cji =  d6 , u>2 =  — sin 9 dip, <75 =  £ 3  +  cos 9 dip. (3.7.6)
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Figure 3.3: Plots comparing some of the background functions before and after the transforma­
tion in Eq. 3.7.8. The solid blue lines represent the original solution with W2 > —2, and the red 
dashed line is the transformed solutions with W2 < —2. This solution corresponds to that of the 
yellow point in Fig. 3.1. We plot the background functions g, h and a which are affected by the 
t ransformat ion, and also we plot z, which changes sign under the transformation.

It is possible to  write down the explicit relationship between the background functions in our 

case and that of the PT  ansatz. This takes the form

g lO p  _  j_e g + h - 2 k   ̂ e 15<j _  ^ e 4 g + 4 h + 2 k  ^
3 8

ey = 2 e~h ( \ ^ ?2ya-2 — ae9^ , ez =  e~9 \/4 e 2/l +  e2»a2. (3.7.7)

Under the exchange of (9,^p) {9,<p), and the relabelling z <-> —z, the metric and fields are

unchanged (aside from a change of sign). In the Klebanov-Strassler solution, which we can 

obtain by taking the limit h \ ,c + —» oo in the case of the Supersymmetric solutions, z = 0 and 

thus the transformation reduces to a change of coordinates. One can think of this as the 

N f  =  0 version of the Seiberg Duality discussed in Section. 3.3.3 and [66-68].

In our generic globally regular solutions, it is no longer the case tha t 2 =  0, and thus we
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now look at the effect of It is possible to write down the effect of taking z —z  on the 

background functions as

e2g —» e2g+2z, e2h —» e2h~2z, a ^ e ~ 2 za. (3.7.8)

This transform ation only has a subleading effect on g, h  and a, as can be seen from the 

expansions

( 1  +  ( 2  +  W2 )p2  +  0 (p4) for p ->• 0

1 1 +  ^ -  ^ 4 H n p  + Q 0  + ^ c +W 2̂ j  e ~ 4 p / 3  + 0 ( e -4p/ 3) for p -> oo. (3 7 9)

The transformed functions are still compatible with the form of the expansions in Eq. 3.1.1 and

Eq. 3.1.5. More specifically, it can be seen th a t for z —> —z, we need to take u>2 —> — 4 — 1^2 ,

which corresponds to a reflection in the line W2  =  —2. In Eq. 3.1.2, taking the limit h i —¥ oo 

means th a t W2  —> — 2 and this is compatible with the fact th a t the Klebanov-Strassler solution 

has z =  0. Further, as the background functions k  and b do not appear in Eq. 3.7.8, we can 

conclude th a t the other IR  parameters are unchanged under the transformation JP.

Thus, for any solution specified by (h i, 1*2 ), we can obtain another solution, with a different 

value of W2  and as the transformation J '  only acts on subleading term s in the expansions, 

we can be sure th a t the new solution will also be globally regular and fall within our ansatz. 

We compare two such solutions in Fig. 3.3. Although this means we have a new solution to 

the equations of motion describing the system, this solution does not correspond to a new 

background, and actually is just a non-trivial relabelling in the choice of basis we make.

By demanding th a t z —> — z while the other functions remain unchanged, it is possible to 

write the effect on the UV parameters as

|  _> |  _  3 2 W 2 0  ( a &  +  3W & )  (2 e ’«  -  -  | n )  ,

—  ~ 3 W i 0, e2p* —* e2fi/l — — W 2 0  — . (3.7.10)
c+ c+ C-j- 2  c+ c+

such th a t the values of {c+ , 4>oo, W 2 0 , V4 0 , $ 3 0 } are kept fixed.

For the family of solutions which lie on the line W2  =  - 2 ,  we find th a t the IR expansion 

for ez given in Eq. 3.7.9 is such th a t all subleading terms vanish, leaving z =  0. From the 

numerical solutions, we can see tha t this appears to hold for all p. This would mean th a t as in 

the Klebanov-Strassler solution JP is a symmetry of the geometry. This family of solutions is 

depicted as the yellow lines in Fig. 3.4, where it is known exactly in the (/ii,ty 2 )-plane, as here
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Figure 3.4: Plots of the full two-dimensional solution space for the IR parameters v2, W2 and 
k2- The blue curves represent the Supersymmetric solutions and the green curves represent the 
GTV solutions. The red curves correspond to the case with a = b = 1 discussed in Section. 3.7.2, 
while the yellow curves correspond to the solutions which are invariant under y  and thus have 
a Z2 symmetry of the geometry, discussed in Sec. 3.7.3. The dotted curves are the equivalent 
solutions with W2 —4 — w2■ Assuming that the two boundaries are the correct generalisation 
to the requirement. - 2  < V2 < 0 in the GTV solutions, the grey shaded areas show regions where 
no regular solutions exist.

'iv2  =  — 2 for all h\. For v2 and k2 it is has not been possible to determine the exact expressions 

for the corresponding line in the respective planes, but it can be shown numerically that

An2 (/?i) =  v 2 {h1) + 2 / 3 ------1 /h \ ,

a  M M  =  M M  -  M M  7 T - -  « ( M .  (3.7.U)4o#Z]

for large h\,  and the higher-order corrections to  A k 2( h \ ) are highly suppressed. Thus, the yellow 

curves in the corresponding {h i ,v2)- and (hi, fc2)-planes in Fig. 3.4 are fitted to expansions in 

powers of ^  for a number of numerical solutions.

Further, as we seem to find th a t these solutions are indeed symmetric under y  for all p, 

then we can look for equivalent relations between the UV parameters to w2 = —2 in the IR. If 

we look at the form of Eq. 3.7.9 or Eq. 3.7.10, it appears tha t taking

W'lo =  - P £ . —  = 0 ,  (3.7.12)3c-(- c+

is the correct set of choices, leaving one degree of freedom, such tha t we can move along the 

line w2 =  —2. Notice tha t in the limit c+ —> 00  we would recover the correct Supersymmetric 

values corresponding to the Klebanov-Strassler solution.

This has implications for the GTV solutions from Section. 3.6.1 also. This suggests that if
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we relax the condition a =  b (and thus W2  = ^2 ) and we parametrise these solutions by W2 , 

that there is no obvious lower bound on W2 , but th a t ^2 ( ^ 2 ) has a minimum at W2  =  — 2. If we 

then interpret this minimum in ^2 ( ^ 2 ) as the correct boundary, this would imply th a t W2  =  — 2  

is the correct generalisation of the GTV solutions for h\  > 2N c, and this is supported by the 

numerical analysis in th a t it appears we cannot find regular UV solutions for V2  smaller than 

those which correspond to W2  =  —2. This should be taken as strong evidence of the boundary, 

but it could also be th a t there are discontinuities in the values of V2  and &2 , across the line 

w 2  =  - 2 .

3.7.4 The Limit /ii,c+ —> 00

As we have so far considered the non-Supersymmetric generalisation of the baryonic branch, 

an obvious next step is to  consider the possible generalisation to  the Klebanov-Strassler so­

lution [12], which can be found in the limit h\ ~  c+ —> 0 0  in the Supersymmetric case. We 

shall continue to use the notation introduced in Eq. 3.7.5. In this form, the Supersymmetric 

Klebanov-Strassler solution has a simple exact form with z = 0 and =  const, and

o 5 /4
e10p =  K (p ) 3  sinh 2p, e15q = - ^ j ^ K ( p ) 2  sinh4  2p, ey =  tanh p, (3.7.13)

where we have defined

The remaining function b(p) is unchanged on the whole baryonic branch, and is given for 

instance in Eq. 2.2.9.

Thus we look to deform this solution, but to  do so, we must first ask which characteristics 

of the Klebanov-Strassler Supersymmetric solution we would like to retain under the non- 

Supersymmetric deformation. We have already discussed in the last section, one such possibility, 

in th a t by demanding z  =  0, we retain the Z 2 -symmetry of the geometry, associated with the 

family of solutions with W2  =  —2 .

In [70], Dymarsky and Kuperstein (DK) looked at a different deformation. They used the 

fact th a t the Klebanov-Strassler background has several other simplifying features which are 

retained in the linear deformations studied in [61, 8 6 ], but are lost when one moves to the 

baryonic branch. These features are

1. A constant dilaton, =  gs
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2. An imaginary self-dual three-form flux *, iG$ =  *6 ^ 3 , where G 3  = F3  + ^ - # 3

3. A RR four-form satisfying C4  =  / / _ 1Vol(i 3 ), where ds 2  = H ~ 1 / 2 dx2l +  H 1/ 2dsQ

4. A Ricci-flat six-dimensional unwarped metric

The outcome is th a t under these properties the fluxes decouple from the equations determining 

the metric, t By imposing these properties, a one-dimensional family of solutions remains, 

which breaks both Supersymmetry and the Z 2 -symmetry of the geometry. We thus look to see 

how these solutions appear in the two-dimensional solution space.

Let us try  to identify the appropriate limit. Prom the generic IR  expansions given in 

Eq. 3.1.4, it is possible to recover a constant dilaton by taking hi  —>• 0 0 , as happens in the 

Supersymmetric case. As mentioned, this means the first three conditions are satisfied, and the 

fourth can be seen to be satisfied upon the substitution of the IR expansion into the form of 

the six-dimensional Ricci scalar.

It will be illustrative to relate the three IR Supersymmetry-breaking param eters {W2 , V2 , ^2 } 

to  the parameters {Cij C2 , C3 }> used in [70]. Initially, looking at the IR  expansion for 2  and 

comparing with the equivalent expression in [70] we find th a t

w 2  = 4 0  -  2. (3.7.15)

To gain the relation for &2 we look at the expansion for ey , and upon taking the limit h\ —> 0 0 , 

we find th a t in the p3 term  there is not enough freedom when compared to [70]. This is fixed 

by taking k 2  —>■ 0 0  while keeping fixed ^ 2  =  ^2 / ^ 1 - This then gives

eJ =  p -  ( |  +  4<? -  p3 +  0 ( A  (3.7.16)

which we can match to the result of [70] by setting

k2 = ^ -  = ^ ( 1 3 - 9 0 ( 2). (3.7.17)

Finally, we need to  determine the relationship between V2  and £3 . This can be achieved by 

comparing our expansion for b w ith th a t for F  =  (1 — b)/2  in [70], from which we obtain

 |(Ca +  I)- (3.7.18)

*Here *6 is the six-dimensional Hodge dual
tOnce 1. is implemented, 2. and 3. automatically follow in the solutions presented here.
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In summary, in the limit h\ —> oo we find the following relationships between our three SUSY- 

breaking IR  param eters and those used in [70]:

Then, setting Q =  0, we recover the correct large hi values corresponding to the Supersymmetric 

solutions. We can further see th a t if one writes, for example A w 2 (hi) = W2  — ^ ( h i ) ,  then

In the UV, it is more subtle, but it is clear from the numerical analysis th a t c+ —> oo is still 

the correct limit, and we also know th a t we must take 4>oo —» </>o to gain a constant dilaton.

the limit c+ —> oo is consistent with Ricci-flatness, and further taking the limit $ 3 0  —v 0 leads 

to a constant dilaton.

Finally, we note tha t our numerical approach does not allow us to take the limit hi —> 0 0  

explicitly. T hat aside, it is possible to probe sufficiently large values of hi,  such th a t the 

solutions have many of the characteristics expected in the true limit.

3.7.5 Further Remarks on the D ual Field Theory

We shall finish by discussing a few more points about the dual field theories to the gravity 

backgrounds, in light of the discussions regarding moving beyond soft-breaking. Here we have 

not restricted ourselves to  small deformations of the Supersymmetric backgrounds any longer.

Consider solutions with hi > 2JVC, the geometry is ‘alm ost’ asymptotically A dS 5 . More 

precisely, for large p we can write the metric in the form

w2 =  4£i -  2, k 2  — =  — (13 -  9 OC2 ), ^ 2  =  - ^ ( ( 3  +  1). (3.7.19)

(3.7.20)

Looking at the UV expansion for the six-dimensional Ricci Scalar, and the dilaton, we find tha t

H(u)  ~  const +  logu  -1- 0 (u 2), (3.7.21)

where we have defined a suitable radial coordinate u = e2 p / 3 (which is increasing in p). For 

solutions with i»2 =  0 discussed in Section. 3.7.2, we instead require the definition u =

The term  of order, log u in the correction to H{u), comes from the subleading behaviour of the 

dilaton (see for instance Eq. 3.1.9 and Eq. 3.7.2).
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It appears th a t W 2 0  —> 0 0  (at least numerically) as we approach the boundary at V2  = W2  =  

0. This suggests th a t we can interpret the solution at the boundary, with a = b = 1 for all p 

(see Section. 3.7.2) as corresponding to  a field theory in which the gaugino has been given an 

infinite mass. We can say th a t we definitely no longer have soft-breaking here, and the theory 

is non-Supersymmetric all the way into the UV. Presumably, by sending the mass to  infinity 

we are effectively removing the gaugino entirely, obtaining a completely non-Supersymmetric 

theory.

If we again look to the field combination M \  in Eq. 3.3.2 (which can be thought of as 

corresponding to the VEV of a dimension-two operator It, a t least in the Supersymmetric 

case), notice th a t in the Supersymmetric case W 2 0  =  0, the leading term  of M i vanishes for 

c+ —> 0 0 , and we recover the Supersymmetric Klebanov-Strassler background. This is also the 

limit in which the geometry is invariant under the Z2 symmetry discussed in Section. 3.7.3. 

In fact, from the field theoretical point of view, the transform ation J ’ can be identified with 

swapping A  ++ B  [61].

As soon as we move away from the Supersymmetric solutions we can no longer make the 

identification Eq. 3.3.5. It is still instructive to  consider the behaviour of the operator XL 

associated with M i. From Eq. 3.3.2, it is clear th a t we can expect XL to be changed when we 

break Supersymmetry, while keeping c+ fixed. Indeed, referring to the definition Eq. 3.3.1, we 

see tha t Mi =  0 when z = 0. This applies a t all p in all the solutions on the line W2  =  —2. It 

is interesting th a t the presence of the Z2 symmetry still corresponds to the vanishing of this 

quantity, even in the non-Supersymmetric case. This is perhaps indicative of the extent to 

which the structure of the Supersymmetric system survives in the generic non-Supersymmetric 

case.

As we increase V2  (and W2 0 ) from the Supersymmetric solutions, we find numerically tha t 

both term s at leading order in M \  diverge. However, in the limit we obtain the solutions 

described in Section. 3.7.2, and the expansions Eq. 3.3.2 are no longer valid. Instead, for large 

P.

M i =  2 +  — p ------ ((7H s +  V 2 H c) sin \ f l p  +  (7y/2Hc -  H s) cos V2p) e ~ ^ p +  0 (e-2 ^ ) .
5v2Koo '  '

(3.7.22)

This is qualitatively different to  the generic case. Firstly, we now have M \  —> 2 in the UV, as 

opposed to M i —> 0. This indicates th a t these solutions do not recover the Z2 symmetry in the
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UV. Secondly, the next-to-leading term  now contains oscillatory functions, although these are 

still suppressed by u~2.

There is some subtlety here in the fact th a t we have allowed our deformations of the Su­

persymmetric solutions to  become large. It is then not clear th a t any deductions based on an 

analogy with the Supersymmetric solutions remain valid. In particular, we cannot not neces­

sarily expect to find stable solutions for all values of W 2 0 . However, the similarities between 

the Supersymmetric and non-Supersymmetric solutions are interesting. Note th a t we still find 

a continuous and smooth deformation of the Supersymmetric solutions between smaller and 

larger values of the non-Supersymmetric deformations in the IR. We only find a different UV 

expansion in the limiting cases (i.e. on the boundaries of our solution space).
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Chapter 4

Probe-D 7 Brane Em beddings

In this Chapter (mainly based on the work of [3, 4]), we study the idea of modelling Chiral- 

Symmetry breaking, via the introduction of a probe-D7 brane in the class of backgrounds defined 

in Section. 2.2. There are various scales th a t play a role in describing these Supersymmetric 

solutions (see Section. 2.3), and we shall explore how the probe behaves under changes in these 

scales.

We begin the Chapter by setting up a general formalism into which all the probes we study 

fall. We discuss properties of the functions describing the embedding of such probes into a 

background and further we derive a useful tool in analysing the perturbative stability of the 

probe solutions. This is given by the function Z , and applying it in the various cases, will give 

us a greater insight into the stability of certain embeddings in this class of backgrounds, which 

have been studied in [39, 87-90]. These multi-scale setups were of particular interest to models 

of Technicolor and Electroweak-Symmetry breaking, see also the paper [91] for discussions.

We shall then discuss a resolution to a emergent problem in the context of the solutions 

with exponential growth in the UV of the function P  defined in Eq. 2.2.14 (but is not resigned 

to these, as we shall show with a particularly simple example). This will lead us to  introduce 

the idea of a ‘bulk’ phase transition *, which can occur when we are required to  introduce a 

UV cutoff, and then find th a t the probe dynamics are dominated by unphysical cutoff effects. 

This imposes unexpected bounds on the region of param eter space of the gravity theory as to 

where it is related to the dual field theory.

We then systematically explore the possibility tha t, the various gravity backgrounds de­

scribed in Section. 2.2, produce a suitable model of Chiral-Symmetry breaking, keeping in

This nomenclature is due to the similarity of this phenomenon with the idea of bulk phase transitions seen 
on the lattice (see for example [92]).

51



4. PR O BE-D 7 B R A N E  EM BEDDING S

mind the perturbative stability of the probe, and the possibility of a bulk phase transition 

occurring.

Finally, a comment is in order: in this C hapter we are using the term  “Chrial-Symmetry 

Breaking” to  describe w hat is going on within the following setups, i.e. we have a U (N f)L  x 

U (N f) f i -symmetry (due to  the two sets of N f  branes in the UV being distinguishable and thus 

we have two sets of massless chiral fermions), and then this symmetry is spontaneously broken 

by a non-zero VEV in the IR (where the branes join in a U-shape and the two sets could now 

interact), resulting in a strongly-coupled model in which we are left with only a single U(Nf)r)- 

We will be using the same embedding as other models based on the conifold (such as [37, 38] 

where they argue the setup has Weyl spinors rather than Dirac spinors), and it is confirmed 

th a t the setup does indeed have a broken Chiral Symmetry, and the associated Goldstone boson 

(corresponding to  a massless mode in the meson spectrum) has been identified. Thus here we 

rely on the close similarities between our models and those of [37, 38], and we shall use this 

term to  describe what is going on in each of our setups, but of course to  be sure this is actually 

the tru th  of the m atter, we should a ttem pt to identify the corresponding Goldstone boson in 

the spectrum.

4.1 A  G eneral Form alism  for Probes

4.1.1 Outline

Here we outline the form of some general results th a t will be applicable to  the cases we study 

in this Chapter and the next. We shall keep the explicit dependence on the UV cutoff pu  as 

this will play an im portant role in what follows. Some of the considerations we shall make here 

can be also be found in [93-98].

The basic setup we shall investigate is as follows: consider a classical system describing 

an extended object (a string, a brane or some higher dimensional surface) which is to be 

treated  as a probe (such th a t it does not have back-reaction on the geometry it is probing) and 

fiirther assume th a t there are just two coordinates for which the probe embedding is determined 

dynamically. Here, one of these will be the radial coordinate on the space p , and the other we 

shall label x. We can param etrise the one-dimensional profile of the probe in the (x, p)-plane 

in term s of a single variable a, such th a t x  =  x(a)  and p =  p{cr). In what follows, the class of

*In these backgrounds in question, this is a challenging numerical task, and is one that we leave to future 
work.
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actions we shall consider is of the form

(4.1.1)

where the prime represents the derivative with respect to <r, and T  is a constant. The two 

functions, F  and G, depend in general on the radial coordinate, but not explicitly on x, and 

are positive-definite and monotonically non-decreasing with p.

Taking this as the form of our action will be the strongest assumption made. Thus, for a 

system to be described by it, we shall potentially require th a t another embedding coordinate 

be fixed dynamically, or the Wess-Zumino term  to vanish. In the cases th a t follow, both these 

conditions will be met (although not necessarily for the same reason in each case). Once we 

have an action th a t reduces to  the form of the above, all of the following analysis applies, 

independent of the nature of the probe we are using and the background it is being used to 

explore.

The first configuration th a t we consider as a solution to the classical equations of motion 

coming from the above action, is given by x'  =  0, and we shall call it disconnected. This 

configuration consists of two straight lines, between pu  and the IR end-of-space p\ . The energy 

of such a configuration is given by

Another possible solution for the probe, is a configuration which forms a U-shape in the 

(p, x)-plane, starting at p —» oo. We can then parametrise the embedding profile by the mini­

use of the param etrisation invariance to  set a  =  p, and notice th a t there then must be two 

branches. We can define the following effective potential [97]

E 0 (p u ) = 2 dpG(p)
r P u

(4.1.2)

mum value reached in the interior which we shall call po- To solve the equations, one can make

(4.1.3)

and we can write the probe’s profile as

(4.1.4)

where angular separation L  at the boundary between the two end-points of the probe in the x
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direction is given by

f Pu 1 f pu G(p) 1
L (p 0 , p u )  =  2 dp  -- -p r =  2  /  d p — t —=  (4.1.5)

J po F {p)  i
V F (Po)

The to tal energy of the configuration is given by

E ( p o , p u ) = 2  / % f 1 . ( 4 , . 6 )

d/) F(A,) v^ - 1

which is obtained by replacing the classical solutions, with <j  = p, into the action. In general 

there will be a UV divergence and thus we shall use a UV cutoff p u ,  but bear in mind th a t 

physical results are expected to be independent of this. * We shall refer to configurations which 

are U-shaped as connected  throughout.

In general L(po) does not have to  be a monotonic function (as will occur often in what 

follows), and as such we can have different solutions (parametrised by the value of po) which 

have the same separation L, but different values of E.

As we are interested in holography, information about the field theory is encoded in the 

boundary values of the relevant functions, which probe the bulk geometry, and these can be 

thought of as ‘control param eters’, which specify the boundary conditions for the appropriate 

bulk equations of motion. There are occasions, as mentioned above, where there are a number 

of different bulk configurations for the same value of the control param eter (with the same 

boundary conditions). In this case, we must evaluate the actions of the various classical con­

figurations, for a given value of the control param eter, and keep only the one with the minimal 

action. The other solutions are often metastable, or unstable configurations. We shall, with a 

slight abuse of language, refer to the minimal action configurations as stable, and to  any others 

(if they exist) as unstable.

We can ask about the perturbative stability of these classical solutions through the presence 

of tachyons, or lack thereof, in the spectrum  of fluctuations. Note th a t being the minimal action 

solution does not mean th a t the spectrum of fluctuations is free of tachyons. Further, if we have 

a non-minimal action configuration, there is a possibility it could still be physically realised as 

a  m etastable state.

A quantity th a t will play an im portant role in our understanding of the perturbative stability

*The presence of a boundary in the space means we should add a boundary term to the action. We do not 
write it explicitly, but we use it implicitly to remove a divergence in the energy of the configurations.
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of our configurations is given by

(4.1.7)

A derivation of this function and an explanation of its ability for diagnosing instabilities is 

presented in Appendix. B .l. We now define a set of necessary conditions on the above functions

such th a t a  U-shaped embedding exists.

• The function F(p)  must be positive definite and monotonically increasing for p > p&.

happen in the presence of singular behaviour in the background geometry. In this case, 

there are no classical embedding solutions for the probe th a t will reach the end-of-space, 

and instead the embeddings extend down to a minimum value Pmm, suc^ F{p) is 

monotonically increasing for p > pmj„.

• The effective potential must be such th a t limp-j.+oo V̂ ff =  + 0 0  which means the relevant 

boundary conditions will be satisfied. This condition is what allows us to make a com­

parison between the asymptotic separation and a field theoretic quantity. In other words 

one wants L  to  converge as py  —> 0 0 .

• Z  <  0 is a  sufficient condition in ensuring stability (meaning tachyonic fluctuations of 

the classical configuration are absent), and descends from the concavity conditions on the 

relevant thermodynamic potential. If Z  >  0 for every p >  0, then in the limit pu —¥ 0 0 , 

all the U-shaped configurations are classically unstable.

The advantage of Z  is th a t it is simple to compute, even in complicated backgrounds tha t 

are potentially only known semi-analytically, and if it becomes positive for some value of the 

radial coordinate, the embedding will be unstable in th a t region. Further, if Z  is negative for all 

p then the probe is stable. It should be noted, th a t for more general embeddings, such as ones 

which have dynamics in a number of different directions, Z  may fail to  diagnose instabilities in 

these directions. For example, the functions F  and G  could depend on other internal angles, 

and the embedding could have instabilities along these other directions, as occurs in a number 

of examples studied in [94], and in these cases Z  would fail to detect these problems.

There is a general result (see for instance [93, 97]),

The reason for this is visible from the definitions Eq. 4.1.4 and Eq. 4.1.5. If F(p) is not 

monotonically increasing then there will be values of po such th a t V ^  <  0. This can

(4.1.8)
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which is independent of whether we take the limit p u  —> oo, or th a t E  diverges in this limit 

and we are required to add a counterterm. This counterterm should be independent of po, and 

hence also independent of L .  Thus we may consider F ( p o )  to be the effective tension of our 

probe.

Note two im portant things, firstly th a t if limPo_>PA F ( p o )  =  0 then the connected configura­

tion th a t reaches po is indistinguishable from a disconnected configuration with the same value 

of L .  We can thus compare the energies of the two different classes of solutions, and can regu­

late and renormalise them  using the same methods. Secondly, the energy of the disconnected 

configuration Eo is independent of the separation L , and this means there is a one-parameter 

family of disconnected configurations with the same value of E .

As the function F  is positive-definite, E ( p o )  and L ( p o )  are either both increasing, or both 

decreasing functions. Further, as F  is a monotonically increasing function, if we have two 

solutions which have the same L  but different values of p o ,  then it is the case th a t for the 

solution with larger p o ,  must have a larger value of F ( p o ) ,  and thus a larger gradient for 

d E / d L .

If we assume there are two different branches of connected configurations, for which we can 

vary p 0 in such a way th a t they approach a point { L i , E \ )  from the same side, in the (L , E ) ~  

plane, this means there exists a neighbourhood of this point where the two branches represent 

two different solutions for the same value of L .  The solutions which have higher values of po,  as 

argued, have a larger value of d E / d L ,  and hence will have lower E  than solutions with smaller 

Po, for L  <  L \ .  This means, of the two branches, they will be a classical minimum. On the 

other hand, they will have a higher value of E  for L  >  L \ ,  in which case the configurations 

with smaller po are preferred. This will be of importance in what follows.

4.1.2 A  Q uestion of Limits

Let us now discuss a subtlety of the formalism we have set up. The param eter p u  is the point 

at which we introduce our UV cutoff, and as such we shall always choose it to  be larger than 

any dynamical scale in the background we are studying. We should take the limit p u  oo 

to recover physical results. Looking at the forms of E { p o , P u ) in Eq. 4.1.6, and L ( p o , p u )  in 

Eq. 4.1.5, we see tha t for large values of po there are two possible orders in which we can take 

limits,
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(i) first fix po, take the limit pu —¥ + 0 0 , and then vary po

L a = lim lim L(p 0 ,p u ) ,  (4.1.9)
p0-» + o o  pc /-> + o o

E a = lim lim (E(p 0 ,pu) -  Eo(pu)) , (4.1.10)
p0-»  +  OO PC/—> +  °o

(ii) or, first fix the UV cutoff, study the system by varying po, and then finally take the limit 

pu  -» 0 0

L b = lim lim L(p 0 ,pu)  = 0 , (4.1.11)
PC/—> +  00 Po—t  +  p u

E b = lim lim (E(p0,p u ) -  E 0(pu )) . (4.1.12)
P c / — po—y + p u

where we have subtracted the disconnected configurations (defined in Eq. 4.1.2) to get E,  (in this 

scheme the disconnected configurations will always have vanishing energy). In many situations, 

these two limits commute, as often L a =  L b =  0. A problem occurs when L a is finite. There 

exists a number of examples where this is the case (see for instance the famous results of the 

D3-D7 system in [32]).

The convergence of the limits defining L a means tha t if we take po large enough, l im p y -^  L(po, pu)  

is effectively independent of po• This is not true in the case of L b. For po large, L  will initially 

tend to converge toward La, but when the configuration has po close to  pu, then L  begins to 

decrease such th a t the separation goes to zero in the limit. These short configurations exist for 

any value of the UV cutoff, but only probe a region of the geometry very close to the boundary.

Thus these configurations are missed if we follow procedure (i) above.

It so happens th a t the short configurations are required to  cure a pathology, namely th a t 

we would have a discontinuity in the energy as a function of the control param eter L, if we 

followed procedure (i). We shall see a number of examples of this in different contexts in what 

follows. These new short configurations are not always of interest, as they do not probe into the 

geometry described by F  and G, and are thus not necessarily linked to the dual Field Theory.

This aside, they become the minimal action solutions when L < L a, inducing what we shall 

refer to  as a bulk phase transition. For practical purposes, this indicates there is a lower bound 

on the L, below which the associated dynamics is dominated by cutoff effects.

Let us now see why procedure (ii) leads us to have a phase transition about L a. Taking 

a large value of the UV cutoff pu, we then vary po in a region close to th a t corresponding to 

separations approaching L a, it turns out there are two possibilities. Firstly, if dL/dpo < 0,
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then nothing special happens, L& will decrease and approach L a , until po becomes so close to 

pu  that the configuration becomes short, and L b  keeps decreasing monotonically. Secondly, if 

d L / d p o  > 0 for some large po, by increasing po the sign of this derivative will have to  change, 

since ultimately Lb vanishes. This signals th a t there is a turning point in the (Lb,Eb)~plane, 

giving rise to  two branches of solutions. As discussed earlier, in the neighbourhood close to 

the turning point, the derivative d E / d L  will be largest on the branch with larger po .  This 

corresponds to the branch of the short configurations, which is favoured.

By looking at Eb it can be seen th a t the short solutions have a (divergent) negative E  for 

pu  —> + 0 0 , and they are the minimal action configurations in the region they exist. However, 

this branch does not exist for L  >  L a , but the disconnected solution exists for all L  and has 

vanishing energy, which means th a t a t L a there must be a phase transition, with either the 

disconnected or a connected solution becoming the minimum of the energy in the physical 

region L  >  L a .

To conclude, let us finally discuss why procedure (i) is sometimes problematic. This proce­

dure leads to  the same results as gained using procedure (ii) for all branches aside from the short 

configurations. They are suppressed when using procedure (i), and thus we may find unphysi­

cal discontinuities. This means th a t when computing physical observables (including the Gibbs 

Free Energy S), we must first find the global minimum of the energy, only then afterwards 

apply subtractions, and then finally take the UV cutoff p u  to  infinity. Following procedure (ii) 

ensures th a t E ( L )  is always continuous, provides us with a natural bound L  >  L a , and does 

not affect any phenomena occurring in the physical region above this lower bound.

4.2 P robe-D 7 Brane Em beddings: The Setup

Making use of what we have discussed, we now look to embed a probe-D7 brane in the Type IIB 

background defined in Eq. 2.1.8, adopting the ansatz [37-39] such th a t the brane fills the four 

Minkowski directions and an internal three-manifold spanned by {6 , <p, ip} and does not preserve 

any Supersymmetry. In Appendix. B.2, we discuss an alternative choice for the probe-D7 brane 

embedding, such th a t the brane fills the four Minkowski directions, but this time the internal 

three-manifold is spanned by { 0 ,ip, ip}. *

*To understand how these probes are modifying the dual field theory, we should look to the expansions of 
<p about the asymptotic separation <p in the UV, but as the backgrounds we probing have UV issues themselves 
(like the presence of a dimension-eight operator in the case of the wrapped D5 system), we are unlikely to find 
something meaningful. One thing we can learn from is the IR behaviour which should not be modified drastically 
by the rotation. The true goal would be to be able to place these probe-D7 branes in the full baryonic branch 
solutions, but due to the presence of non-trivial fluxes, the correct procedure is not obvious. An attempt in this
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The transverse space is spanned by the remaining two-sphere whose coordinates are 0 <  9 < 

7r and 0 <  ip < 2n. It was shown in [37] th a t it is consistent to  assume the profile only depends 

on the embedding coordinate a, and not the rest of the angles. Since in this background B 2  

is trivial, the action for the probe-D7 reduces to the DBI part and we set the gauge field on 

the brane 7 2  =  0. We then have to  solve the equations for the profile of p(cr), and 0(a).

Integrating the rest of the angular variables, the DBI action given by

S D 7  ~  J  d 8 x c ~ *  V - d e t  g8, (4.2.1)

becomes

S D 7  ~  J  d 4X d a  yJe6 *+*9 +4 kp / 2  +  e6 $+4 S+2 fc+2 /i (Q'2 + s i n 2 q ^ /2 )  ̂ ( 4  2.2)

where the prime again denotes the derivative with respect to  a,  and we have suppressed an 

overall constant. Due to the fact th a t the S O (3) symmetry of the sphere remains unbroken, we 

see the problem is reduced essentially to finding geodesics on a sphere, and thus we can choose 

0 =  ^ for convenience, as in [37, 39].

This means th a t after fixing the value of 0 , our action falls into the class of Eq. 4.1.1, with

x  replaced with tp. * We shall denote the asymptotic angular separation p  which is equivalent

to L  in the general discussion.

We can thus use all the results we described in Section. 4.1, with the relevant functions 

taking the form
p 2  _  c&$>+4g+2k+2h q 2  _  e 6$+4g+4k  (4  2  3 ^

We can substitu te for the background functions the equivalent form in terms of P  and Q, giving

p2 = iQ + p $inh(4p)“ Q cosh(4rt>-

G 2  = 4y /2 P ' 2  (Q sinh(2p) -  Pcosh(2p ) ) 2 e^ °  sinh(2^  (4 .2 .4 )
( p , p 2 _ p / Q 2 ) 3 / 2

As discussed, an im portant quantity in what follows will be the value of the function F  in the 

IR, which can be associated with the effective tension of the brane. Using the expansion given 

in Eq. 2.2.8, the globally regular solutions to  P  give

2 x 23 / 4  e3 ^ 0 /  56 7VC2  -  60 h x N c + 6 6  h\  3

ftj/4 V +  45/i?
f , r  = -r ra— ------------- c t w  v  + 0 („5) ,  (4.2.5)) + 0  ( p s ) ,

direction was already made in [99].
Here, there is a subtlety in that ip is a bounded coordinate, whereas x need not be.
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where one can recover the CVMN solution by setting hi =  2N c as usual. For background with 

a walking IR  (see Eq. 2.2.11), we find instead

H  ' *  ' • )  * » ( ' - )  < “ ■ «

In both cases it so happens th a t -F(O) =  0, and thus the effective tension vanishes. This has 

repercussions on the types of embedding we may consider.

4.3 A Flavored A belian  Background

Here we will outline a related background to those defined in Chapter. 2. These are also 

solutions in Type IIB and are referred to as Abelian [6 8 ] (see discussion in Section. 3.6.1). This 

is because the background does not have the SU  (2)-twisting associated with the non-Abelian 

solutions [18], meaning some of the background functions are not present (for instance a{p) =  0 ). 

They are the functions tha t are associated with the gaugino condensate, and the new solutions 

can be obtained by setting r  =  0 in Eq. 2.2.1. The only further modification comes in the form 

of the dilaton, which now reads

1 e4 <£oe4P
4 Y { P 2 -  Q2)'

(4.3.1)

Now, we further modify the background by introducing flavor via N f  smeared D5 branes, using 

the procedure outlined in [67, 6 8 , 100]. The background metric is the same as the ansatz in 

Eq. 2.1.8 and the modification is only to the functions Q, Y,  and the Master Equation,

<“ ! l

There is an exact solution, in the case of N f  =  2NC,

P  = ^  + c+e4<‘' 3, Q = ^ ,  (4.3.3)

where c+ > 0 is a constant [6 8 ]. * Further, an even simpler solution can be obtained if one sets 

c+ = 0 , in which all the background functions become constant, except the dilaton (which is 

linear). W ith an abuse of language we shall term  these solutions scale invariant

Tt should be noted that the IR end-of-space is now at p —> —oo.
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We now study this collection of solutions in Eq. 4.3.3 as an example. We do this as they 

will be simple enough to  allow us perform some calculations analytically. Here the F  and G 

take the form (with N c = 1) ,

06 p P - Q
2 Y 2( p  + Q)(P ' + N f ) 

y/S e6p 
4 V^c+e4?/3 +  6

2 =  e6p l (P 2  -  Q 2 ){P’ +  N f ) 
{P + Q ) 2  V 2

e6p 2c+e4 p / 3  +  3
(4.3.4)

V6  (c+e4 p / 3  +  3) 3 / 2

Note th a t F  and G  are both monotonically increasing functions in p.

Setting c+ =  0 (corresponding to the scale invariant solutions), the above forms simplify to 

give
e6p o e6p

F  = G = (4.3.5)
4%/2 3\/2

and with this form of F  and G  we find

V*(P,Po) = \  (eHp~K) -  l)  , 
d E  1 e6p
dp 21/ 4\/3  \/e 6p -  eGp° ’

Z = 0. (4.3.6)

It is obvious th a t the relevant conditions on F  and are satisfied in this case, but for Z  it is

more subtle, as this is the limiting case, i.e. it is vanishing for all p.

One can then perform the integrals for the asymptotic separation and the energy explicitly 

giving

<p(po, pu) - — 7= arctan V e6(pt/-p°) — 1 ,
3v3
23/4 ,--------------

E(po,Pu) = 7j^=  v  e6pc/ -  e6po,

2 3 / 4

Ea{pv) =  7£J$e3pu' (4-3'7>
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Using the procedure (i), we find notably strange behaviour, in that independent of po

lim <p{poiPu) =  =  <p5,
Pi/->oo  3 ^ / 3

e 3 ( p o - P u )
E(po,pu) = E(po, pu) ~ E q(p u ) =  - 2 iy4- +  • • • -> 0 . (4.3.8)

This means that all the connected configurations sit a t one point in the (<p, E)-plane. Adding 

in the disconnected configurations, which as E(p) —> 0  when we take po —> —oo, and thus for 

any value of <p there exists the disconnected configuration with the same value of E  as the 

connected configurations.

E

■2 x

Figure 4.1: A plot of the function E(ip) in the scale invariant solutions of the Abelian flavored 
system. The disconnected configurations are shown in dashed red, alongside the connected con­
figurations with fixed pu, but varying po. The blue dashed line has pu =  9.8, while the solid blue 
line has pu = 10.

If instead we follow the procedure outlined in (ii), we obtain the new short configurations. 

The result is shown in Fig. 4.1. From this plot and also from the analytic calculation we can 

see a number of im portant things. The first is that, when they exist, the short configurations 

have a lower energy than the disconnected (and connected) configurations. Secondly, for larger 

values of p u , the  energy of the short configurations decreases. Also, a t the point where the 

disconnected configurations and the short configurations meet (smoothly) in the (<p, E)-plane at 

the point (<pa, Ea) there is a second-order phase transition (as we shall show explicitly below). 

Finally, note th a t the short configurations have the correct concavity for stability (see discussion 

in Appendix. B .l and Eq. 5.3.20).

As stated to  earlier, the setup is simple enough so th a t we can solve for po in terms of
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‘f(po,Pu),  and then substitute this into E  as follows

^'^) = §r3w(sin (2r*,)“1)’
d<pE{ ip , pu)  =  ^ / 4 e3pu c o s  ’

d p E f a p u )  =  - - ^  8 e3pu sin • (4-3.9)

Thus as we take we have vanishing £  and it also has a vanishing first derivative (with

respect to <p). It is only when we calculate its second derivative that we find a non-zero value 

and thus a discontinuity. This means we have a second-order phase transition.

We shall now consider the case in which c+ 0. In the IR, the geometry reproduces the 

results we have just seen. In the UV, where c+ has a dominant effect, new behaviour appears, 

as can be seen in Fig. 4.2. If we calculate Vch and Z in the solution defined by Eq. 4.3.3 (setting 

c+ =  1) we see that VPff —» oo for p —» oo, but Z is positive for all p. Thus the connected 

configurations are classically unstable for all po.

e
Ox

I Ox

1.5 x

•2.5;

PO

Figure 4.2: Plots of the functions <p(po) on the left, and E{(p) on the right, for Abelian flavored 
solution with c+ =  Nc =  1. The purple line represents the connected configurations with pu = 10, 
the green are the connected configurations with pu =  f§, and the red dashed line represents the 
disconnected configurations. The two grid lines represent the two asymptotic values of (p =
and (p=

So again, if we look at the connected configurations, and apply procedure (i), we find a 

branch which has E  > 0 for all values of po- This leads to two quite puzzling things, the 

first, being that, all of these solutions are unstable, and the second tha t they only exist over 

a restricted range i.e. < (p < The presence of the lower bound is easily explained
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through the fact tha t the IR  of the geometry is very similar to th a t of the case with c+ =  0. In

the UV, we find the new bound is due to the presence of the exponentially growing term. If we 

approximate the geometry by setting Q = N f  = 0 and P  = e4p/ 3, we find tha t

and further noted again th a t the short configurations are more dominant for larger values of 

the UV cutoff pu-

In this case, the transition is first-order, and also the connected solutions have energy dif­

fering from the disconnected configurations, unlike the scale invariant case. The connected 

configurations always have energy greater than  both the short and the disconnected configura­

tions. In this case, we conclude th a t this phase transition is associated with a bound on the 

values of (p. Further, the disconnected configuration is always preferred for <p > and thus 

this setup cannot be used to describe Chiral-symmetry breaking.

4.4 P robe-D 7 brane Em beddings in th e W rapped D 5 Sys­
tem

4.4.1 Solutions w ith  Linear P

Let us now focus on the solutions where P  is linear in the UV. As already discussed, these 

are a one-param eter class of solutions to  Eq. 2.2.2, param etrised by p*, at which scale the 

behaviour of P  changes from approximately constant (for small p), to approximately linear (for 

large p). This can be seen in the left plot of Fig. 4.3, where the three curves correspond to 

the CVMN background Eq. 2.2.5, and two other walking solutions with p* ~  3 and p» ~  6 . In 

the right-hand plot of Fig. 4.3, we have plotted M i, the function associated with the baryonic 

VEV Eq. 3.3.1. This is suppressed in the region below p* (with respect to the CVMN case), 

because the Z2 symmetry between the two S 2  of T 1 ,1  is partially restored, due to  the presence 

of a VEV for a dimension-six operator.

The stability analysis introduced in Section. 4.1.1 tells us th a t in the case of the CVMN 

background, as Z < 0 for all p (as can be seen in the right-hand plot of Fig. 4.4), the embedding

arctan yje  a6 (pu (4.3.10)

which for large values of pu  converges to  the upper bound

So instead, using procedure (ii), we find a new branch of short configurations which exist 

for <p <  which are energetically preferred when they exist. This can be seen in Fig. 4.2,
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we are considering is stable, in the sense tha t we do not expect tachyonic excitations to exist. In 

this case, for every possible <p there is a unique value of po such tha t the U-shaped embedding 

of the probe-D7 brane exists (and satisfies the correct boundary conditions).

p Mi

p

Figure 4.3: Plots of the functions P(p) on the left, and M\{p) on the right, for three examples 
of backgrounds with linear P  at large p. The purple line represents the special CVMN solution, 
the green is a related walking solution with p» ~  3 and the red line is a related walking solution 
with p, ~  6 .

Po
2 2

Figure 4.4: Plots of the functions (p{po) on the left, and Z(p) on the right, for three examples of 
backgrounds with linear P at large p. The purple line represents the special CVMN solution, the 
green is a related walking solution with p, ~  3 and the red line is a related walking solution with 
p* — 6 .

Turning our attention to the walking solutions, we see th a t in this case there is a region 

(for p < p*) in which Z is positive and thus we would expect the embeddings which probe this 

region to be perturbatively unstable. This is corroborated by the fact that in the left-hand plot 

of Fig. 4.4, we see there are different values of po with the same <p, and thus we expect to find
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the lower energy one is classically preferred. Further, any finite choice of the scale p* leads to 

a maximum value for (pm < n, above which the connected configurations do not exist.

It is illustrative to look at how the shape of the embedding changes in the (p, 0)-plane. This 

is shown for a range of values of po in Fig. 4.5. The CVMN case is is shown in the left-hand 

plot and is such th a t embeddings which only probe the UV of the space have smaller values 

for <p than those which probe down to the IR of the space, with the antipodal configuration 

reaching down the the end-of-space (with <p =  7r). This is similar to  the behaviour seen in 

the Sakai-Sugimoto case [33]. However, there is a difference, in th a t the transverse S 2  is of 

finite size a t the IR end-of-space, so the antipodal configuration has an arc which sits along the 

equator of the sphere a t p =  0. This will be im portant in the following discussion. The main 

point to take away is th a t all of the embeddings within the CVMN background appear stable 

and smooth.

W hen the scale p* is introduced, the behaviour of the embeddings changes. Examples of 

various embeddings in such a background (with p* ~  3) are shown in the right-hand panel of 

Fig. 4.5. For embeddings in which the turning point is much larger than the scale p» there 

is little difference in the behaviour to  th a t of the CVMN case just discussed. It is only when 

the embeddings probe deeper into the space than  p* th a t we see a significant change. As the 

probing depth po increases further, the separation <p decreases. A similar property occurred in 

the study of Wilson Loops in the same backgrounds in [97]. Unlike the Wilson Loop, in the 

limit po —> 0, the embedding profile degenerates into a cusp, effectively becoming two straight 

lines lying on top of each other in the (p, </>)-plane. The UV angular separation also vanishes in 

this limit.

Since the effective tension F(po) is vanishing at the end-of-space Eq. 4.2.5, it is prudent 

for us to compare the energy of the connected with the disconnected configurations. Our 

connected configurations deform continuously as they move to smaller po effectively becoming 

two independent branes in the limit. Thus we compare to the energy of the disconnected branes 

E q defined in Eq. 4.1.2. The vanishing of the effective tension at the IR  end-of-space is a signal 

th a t (at least part of) the compact space which the branes are wrapping effectively collapses. 

We stress that this comparison is only allowed due to the fact that the energy of a single U-shaped 

configuration degenerates into a special case of two disconnected branes allowing us to fix an 

additive overall constant that would remain undetermined otherwise. *

* See the critical discussions in [96] in which the exchange of bulk supergravity modes between disconnected 
objects are considered, the famous result of [95] showing that in particular cases non-perturbative effects are 
captured by special cases of connected configurations of extended objects, and an example of these special
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As the energy of the disconnected configuration is independent of the separation <p the two 

separate branches do not see each other. Thus we can interpret the disconnected configura­

tions as chiral-symmetry preserving, whereas the connected configurations are Chiral-symmetry 

breaking. We must consider all the possible configurations, and find the minimal energy con­

figuration, as this is the one tha t will be realised in practice. This is by analogy with the 

thermodynamic curve for S(p) (see discussion in Appendix. B .l).

Looking at the right-hand plot of Fig.4.6 , we can see tha t there is another interesting value 

for <p, which is the point at which the disconnected configuration crosses the connected one. 

We shall call this point <pc from now on. Thus, for 0 <  <p < <pc there are three possible choices 

for the classical solution. The minimal solution is the branch which is similar to the CVMN 

behaviour and thus has a large value of p0 > p». The other connected configuration, which has 

a value for the turning point po < p* is a maximum of E, which explains its tachyonic nature. 

The disconnected configurations sit a t an E  in between these two connected configurations.

p p

0.2 0 1

Figure 4.5: P lots of the U-shaped em beddings in two exam ples of the backgrounds from Fig. 4.3 
in the (<p, p)-plane, for various values of po. T he purple lines represent the special CVM N solution  
and the green lines are a related walking solution  w ith p . ~  3.

Moving to the region <pc < <p <  <pm, the disconnected solution becomes the minimal solution, 

and the two branches of the connected configuration have larger energy. Thus we have a first- 

order phase transition occurring at <pc. For values of <p < <pc we have a system which prefers a 

Chiral-symmetry breaking phase, whereas for <p > <pc we have a Chiral-symmetry restored phase 

preferred. Finally, as already discussed, above <pm, only the disconnected solution exists. The 

discontinuity in the derivative of E{(p) (when looking at only the minimal energy configurations) 

is analogous to the first-order gas/liquid phase transition of the Van dcr Waals gas, seen in S (p)-

configurations is presented in [98] in the background sometimes referred to as Q C D 3.
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r

Figure 4.6: Plots of t he funct ions E((p) on the left in t he CVMN background, and E(<p) on t he 
right in the walking background with p» ~  3. The red dotted line in both plots represents the 
disconnected configurations. The plots are zoomed in such that one can see <pc and <pm in the 
right-hand plot more clearly.

Before concluding this section it should be noted how this relates to the geometric properties 

of the backgrounds at hand. In the CVMN case, the manifold wrapped by the probe-D7 branes 

(spanning 0 , ip and ip) is a round sphere [2 0 ], and this carries through to any background which 

has a region for which P  behaves linearly. Regions which are not linear, lead to a squashing of the 

S  ' and it seems from what we have seen so far, th a t this squashing is associated with instabilities 

in the U-shaped configurations. It should also be noted th a t in the CVMN background, the 

quantity M\ (in Eq. 3.3.1) grows without bound. This corresponds to the largest breaking of 

the 2.2 symmetry between the two S 2. As mentioned earlier, the walking region corresponds to 

a region in which this symmetry is being recovered, and this is the region where instabilities 

arise.

We conclude that, backgrounds with UV asymptotics like that of the CVMN background, 

there exist stable configurations for all values of <p < n. There is a first-order phase transition 

in any backgrounds in which the scale p* is present, and it occurs at the value <pc which 

decreases for larger values of p*. This phenomenon can be thought of as the formation of a 

symmetry-breaking condensate or the presence of an explicit symmetry-breaking deformation. 

This condensate then only forms in the presence of a large enough source for the symmetry 

breaking (such tha t <p < (pc) in the walking backgrounds, whereas it is always present for the 

CVMN backgrounds.
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4.4.2 Solutions w ith Exponential P

Here we shall discuss the globally regular solutions (such th a t P  —» 0 in the IR and thus Co =  0 

as in Eq. 2.2.8), which again form a one-parameter family, with the scale this time being set by 

p, which is the scale at which the behaviour of P  changes from linear for p < p, to exponential 

for p < p. The UV param eter c+ (see Eq. 2.2.14) controls the scale p, and as discussed this is 

the scale below which the associated dimension-two (baryonic) VEV is im portant. An example 

of a background in this class is presented in Fig. 4.7, with p ~  3 (which is obtained using 

hi =  2.0044). Here the relevant conditions for F  and are satisfied, but the function Z is 

positive for p > p, so we expect the connected configurations to be unstable in this region.

p z

2

Figure 4.7: Plots of the functions P(p) on the left, and Z(p) on the right, for a solution with 
p ~  3. The grey dashed line represents the special CVMN solution for comparison.

In the IR, we find that the behaviour is the same as tha t of the CVMN case, such tha t at 

Po —> 0, we find again <p —>• n. Further, as can be seen in Fig. 4.8. in this limit E  —» 0. Again, 

at the IR end-of-space, we find tha t the effective tension F(0) =  0, meaning tha t the connected 

configurations approach the disconnected configurations from below (in the (ip. E)-plane). As 

such they are the stable configurations, for small po < P, with the correct concavity.

In each of the three plots in Fig. 4.8, showing the (<p, F)-plane (the top-left and the bottom 

row), we can see the four branches present, and the details of their behaviour. As discussed, 

the branch meeting the antipodal configuration <p —»• 7r, which exists for <p > <p\, the minimum 

value which depends on p, can be best seen in the bottom-right plot of Fig. 4.8 (from the plot 

<pi ~  0.75). If one looks at the plot in the bottom-left, one can see the presence of an unstable 

second branch, with the wrong concavity, and corresponding to connected configurations which 

have po > p. The configurations on this branch have a larger value of E  than those of the

69



4. P R O B E -D 7  B R A N E  E M B E D D IN G S

Po
20 3 000 0.5 1.0 1.50 2

E E

J

1.5 20 25 30

Figure 4.8: Plots of the functions <p(po), and £(</?), for a solution with p ~  3. The solid blue 
lines have pu — 10 , the red dashed line is the disconnected configuration, and each of the three 
£ ,((^)-p]ots are zoomed in to show a different branch more clearly.

CVMN-like IR branch, and are restricted to only take values <p\ < (p < <pa = There is

also a third set of solutions given by the disconnected configurations.

We now tu rn  our attention to the fourth branch of configurations. If only the three discussed 

so far had existed (which is what occurs when one follows procedure (z)) then we would be 

faced with the following problem. If we want to interpret the minimal solutions in E  as the 

free energy S, then we would be left with a discontinuity in S as a function of the separation (p. 

Thus in this case we would end with some results which do not make any sense. Instead, using 

procedure (n), we have the fourth branch of configurations which are close to the UV-cutoff. 

These configurations can be seen in the top-left plot of Fig. 4.8, and correspond to the branch 

which joins the UV separation <pa to zero, on the right-hand side of the plot. This is the fourth 

branch which is visible in the top-right plot of the same figure, and corresponds to the minimal 

configuration for E  over the region that they exist i.e. <p < <pa. Further note th a t they have 

the correct concavity for stability, and have a very large gradient in the (<p, E)-plane, which
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actually diverges in the limit pu  —> oo.

It is im portant to  note tha t, for any choice of the scale p , the minimum point of the connected 

configurations p \  in the (<p, E)-plane is always smaller than the UV asymptotic value p a. This 

is very im portant as it tells us th a t E  is always continuous. The value of <p\ is dictated by the 

value of p (or equivalently h i). In the small h i/la rge  p limit, the value of p \  -* 0 and thus we 

recover the CVMN case. In the opposite limit (for large h i/sm all p) we find p>\ —> <pa. In the 

second case, the limit corresponds to a suppression of the dimension-two VEV, and we recover 

(after ro ta tion ) the Klebanov-Strassler background [20, 62]. It can be checked numerically tha t 

<Pl < <Pa for very large values of h i ~  1 0 5, because any configurations with po >  p will still have 

^  > 0 , and for this to occur we must have <pi < <pa.

At the value <pa> we thus conclude th a t a first-order bulk phase transition takes place. For 

values of <p larger than <pa , we have long connected configurations with po < p, which are the 

minimal solutions. Below <pa , we must appeal to the short configurations, and these do not 

probe the bulk of the geometry. This leads us to describe this type of transition as a physical 

bound on <p and tha t for values of <p < p a it is not possible to interpret the results in terms of 

the dual field theory.

4.4.3 W alking Solutions w ith  E xponential P

Here, we shall look a t the backgrounds originally considered in [87], for which the probe-D7 

brane embeddings have been shown to be classically unstable [8 8 ]. These are solutions such 

th a t P  a t no point resembles the CVMN solution, and thus we will see a combination of the 

behaviour studied in the previous two sections playing an im portant role.

An example of a solution in this class is shown in Fig. 4.9, with P  in the left-hand plot, 

which is approximately constant for p < p*, and exponential for p > p*. In the right-hand 

plot, we plot the function Z , and it is positive definite in this case, which we associate with a 

classical instability. This is in line with the discovery of a tachyon in the com putation of the 

fluctuations of these particular embeddings [8 8 ].

From the left-hand plot in Fig. 4.10 it can be seen th a t the value of <p is a monotonically 

decreasing function of po, for po <  8 . This is ultimately the reason for the instability found. 

Further, from the right-hand plot, it can be seen th a t the disconnected configurations have a 

lower value of E  than  the connected configurations for all choices of p. We find tha t, for <p <  <pa , 

the th ird  branch (associated with the solutions which are close to  the UV-cutoff), is energetically 

favoured. From a geometrical point of view, backgrounds of this form approximately recover the
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Figure 4.9: Plots of the functions P(p) on the left, and Z(p) on the right, for a solution with 
p» ~  3 and exponential asymptotics. The grey dashed line represents the special CVMN solution 
for comparison.

Z2-symmetry between the two S 2 in the internal geometry, and considering what we discussed 

when P  had linear UV asymptotics it is likely that this is the source of the instability.

In conclusion, we have a first-order bulk phase transition at <pc =  <pa between the dis­

connected configurations and the short configurations. If we again interpret these short con­

figurations as a physical bound, we can conclude tha t in this background one cannot realise 

Chiral-symmetry breaking, since only the Chiral-symmetry restoring disconnected configura­

tions are physical.

We now consider backgrounds in which we have a non-vanishing P  in the IR, behave expo­

nentially as P  ~  e4^ /3 in the far UV , and also an intermediate region where P  is approximately 

linear (as in the CVMN case). In the left-hand plot of Fig. 4.11 we show an example of P  for a 

background in this class. There are now two physical scales which we can manipulate, the scale 

p* below which P  is approximately constant and p above which P  is exponentially growing. 

There is a third fixed scale set by the IR end-of-space chosen to be at p \  =  0. In the range 

p* < p < p is the region in which P  looks like the CVMN solution. In the right-hand plot of 

Fig. 4.11, we can see that Z has two places where it changes sign. One of these is in the far UV 

and is associated with the change of sign we saw upon the introduction of the exponential UV 

behaviour of P, and the other is in the IR and associated with the introduction of the constant 

behaviour in P. In the intermediate region p, < p < p, we see tha t Z approximately follows 

the CVMN solution (Z < 0). We can associate the zeros of Z with the two scales, i.e. p* ~  0.2 

and p ~  3.
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Figure 4.10: Plots of the functions <p(po), and 
asymptotics. The solid yellow lines have pu = 
configuration.
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Figure 4.11: Plots of the functions P(p) on the left, and Z(p) on the right, for a solution with 
p» ~  0.2 and p ~  3. The grey dashed line represents the special CVMN solution for comparison.

In Fig. 4.12 we show the resulting plots for this background. These have been made with 

UV-cutoff pu — 10. One should notice that the results are similar to the respective results 

previously seen, for po > P* the background is of the form of those with CVMN and exponential 

behaviour for P  discussed in Section. 4.4.3, and thus the resulting probe-D7 brane embeddings 

are the same. For po < p*, we find the same classical instability associated with this scale (it 

has the wrong concavity in the (<p, E)-plane), and thus we find the introduction of a fifth branch 

to the four seen in Section. 4.4.3.

We now have a more complex structure of phase transitions than before. The configurations 

close to the UV-cutoff arc the minimal solutions for <p < <p«, and increasing <p we find a first-order 

bulk phase transition, such that between <pa < <p < <pc the connected configurations replace
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Figure 4.12: Plots of the functions <p(po), and E(<p), for a solution with p, ~  0.2 and p ~  3. 
The solid orange lines have pu — 10, the red dashed line is the disconnected configuration, and 
each of the four ^(tpj-plots are zoomed to show a different branch more clearly.
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them  as the minimal solutions. As we have seen before upon the introduction of the scale p*, this 

branch of connected configurations no longer reaches all the way to the antipodal configuration 

at (p —> 7r, but attains a maximum, and the new fifth unstable branch of configurations is 

introduced. This branch has <p —> 0 as po —> 0. Thus for values of <p > <pc we again find th a t the 

disconnected configurations are the minimal solutions. Thus we have a physically interesting 

first-order phase transition between the connected and disconnected configurations a t the  point

<Pc-

For us to have this phase transition, we must keep the value of p* small, irrespective of the 

size of p. We approximate (by inspection of the top left-hand plot in Fig. 4.12) th a t if p* > 0.5 

then all the connected configurations have <p <  <pa , and so are never the preferred configurations, 

as this is the regime where the short configurations dominate. If p* >  0.5 the embeddings look 

like those of the first half of this section, such tha t the disconnected configuration is the minimal 

solution for <p > <pa .

4.5 A  C om pendium  o f P ossib le Solutions

We now give an overview of all the possible solutions for the backgrounds discussed in the 

previous sections. The full collection is presented in Fig. 4.13 and Fig. 4.14.

These correspond to the five possible supersymmetric solutions, which we have discussed, to 

the wrapped D5 system (which are not badly singular). The probe-D7 branes behave differently 

in each case and we discuss this here in the same order they take in Fig. 4.13 and Fig. 4.14.

• In the CVMN case, there exist both disconnected and connected configurations for all 

values of <p. The connected configurations (representing a broken Chiral-symmetry phase) 

are always preferred to  the disconnected, are classically stable in the sense th a t they have 

the correct concavity in the (<p, E)  -plane, and have Z  <  0 for all p.

• Upon the introduction of the scale p*, a new branch appears in the (<p, £))-plane, which 

is associated with the IR, but beyond this scale we have the same UV behaviour as the 

CVMN case. This new branch is always a maximum of E,  is classically unstable (such 

th a t it introduces a region with Z > 0), and is characterised by an endpoint with po < p*. 

The connected solutions for po >  p* have the same behaviour as the CVMN case, but 

have a maximum at <pi < 7r, such th a t they exist only in the range 0 <  <p <  (p\. There is a 

first-order phase transition with a critical value <pc which depends on p*. For <p >  <pc, the
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disconnected configurations are preferred, and Chiral-symmetry is restored. For ip <  <pc 

the connected configurations are preferred, and thus we have a model for chiral-symmetry 

breaking.

• Alternatively, one can look at backgrounds with a different UV, such th a t the scale is set 

by p, below which in the IR, P  grows approximately like the CVMN solution (linearly), 

but above in the UV P  grows exponentially. Here there are four branches to the solution. 

The disconnected configurations are never the minimal solutions of E.  The connected 

configurations again have two parts as in the previous bullet point. The first is a stable 

branch, which minimises E  for <p > <p0 =  and the second is an unstable branch

that is never preferred. These branches only exist for <p > <pi, with ip\ <  <pa , and <pi 

is a function of p (and now a minimum). The short configurations, for <p <  <pa, are the 

dynamically preferred solutions. We say th a t a t <pa there is a bulk phase transition. Thus 

the broken Chiral-symmetry (associated with the connected solutions) is the physical one 

connected to the field theory.

• We have P  such that, the walking scale p* dictates the IR  behaviour, but P  grows expo­

nentially for p > p , in the UV. In this case there are only three branches of configurations. 

The connected configurations exist for <p <  <ptt, and are classically unstable so never pre­

ferred. The short configurations, which exist for <p < <pa , are the dominant solutions in 

this region and are classically stable. Further, they have negative (divergent) E , and at 

ipa there is a first-order (bulk) phase transition, such th a t for larger values of <p > <pa the 

disconnected configurations are preferred. The disconnected solutions are in the Chiral- 

symmetry restored phase, and below ipa the system is not related to the field theory.

• Finally, we can have backgrounds which have the two scales separated, such th a t P  is like 

the CVMN solution (linear) for some intermediate region p* < p <  p. For p <  p*, P  is 

approximately constant, and for p > p, P  is exponentially growing. These solutions are 

the most complicated and have five branches in the (<p, E ) -plane. Below <pa the gravity 

is not related to the field theory as there is a bulk phase transition at <pa . If we keep p* 

small (i.e. p» <  | )  , then there is another first-order phase transition at <pc > <pa . For 

<p < <pc, the connected configurations are preferred and thus we are in a chiral-symmetry 

broken phase. For ipc < ip < n,  the disconnected solutions are preferred and thus we are 

in a chiral-symmetry restored phase. If we increase the scale p», we find the point <pc 

moves to  smaller values of <p until it is masked by the fixed bulk transition a t <pa and
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thus we lose our physical phase transition as in the last bullet point. In this scenario, for 

any (p < (pa, the Chiral-symmetry is restored (as the disconnected solution is preferred). 

In the {(p, £ ')-plane there are two turning points of the connected configurations a t (p\ 

and (p2 , which connect the different branches. They both appear in regions which are 

energetically disfavoured.
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Figure 4.13: Plots of generic solutions of probe-D7 brane embeddings for all cases in the wrapped 
D5 system discussed. On the left-hand side we have plots of P  as a function of p, while on the 
right-hand side we have E  as a function of (p in the corresponding backgrounds. The connected 
configurations are given in solid blue (stable) and green (unstable), the disconnected configurations 
given by dotted red, and the short, configurations in dashed red lines. The physically realised 
configurations are those with the lowest E  for a particular value of <p. We argue that the grey 
shaded region, to the left of the short configurations, is disconnected from the continuum limit, 
such that these results do not have an obvious interpretation in terms of the dual field theory.
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A continuation of the plots of of generic solutions of probe-D7 brane embeddings 
the wrapped D5 system discussed. These have the same colouring as in Fig. 4.13.
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Chapter 5

Holographic Entanglem ent 
Entropy and Confinement

In this Chapter (mainly based on the work in [5]), we shall study the calculation of (holographic) 

Entanglement Entropy in models which adm it confinement, and explore the idea th a t in the 

case where the entangling region is described by an infinite strip, there is always a first-order 

phase transition in the Entanglement Entropy of such models, as proposed in [48]. We shall 

discuss similarities and differences, between this calculation and th a t of the Rectangular Wilson 

Loop [101] (from a holographic perspective), using some of the general formalism proposed in 

Section. 4.1. Also, we will derive a set of sufficient conditions on the functions forming the 

background, for the Entanglement Entropy to adm it such a phase transition, and then check 

these conditions in various cases.

Further to this, we shall be interested in the idea th a t the Entanglement Entropy as a diag­

nostic tool for confinement, has implications on the UV behaviour, as well as the IR behaviour, 

of the background in question. We shall argue what kind of connection we expect between 

confinement and the UV behaviour of the dual Quantum  Field Theory. This will require us 

to  discuss the calculation of Entanglement Entropy in Quantum  Field Theories which have 

some non-locality, and we shall use a number of examples (involving D5 and D6  branes) to 

show tha t, in spite of the IR  geometry of the background being a suitable dual to a confin­

ing Quantum  Field Theory, the phase transition in the Entanglement Entropy is missing. We 

associate this with a UV non-locality in the Q uantum  Field Theory, and then propose th a t 

through the introduction of a UV cutoff (in line with the discussion in Section. 4.1.2) and the 

corresponding new configurations th a t emerge, we recover the phase transition. We then finish
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by studying the Entanglement Entropy in Theory A and Theory B defined in Chapter. 2 (and 

some related backgrounds including soi;rces), to  see how the rotation procedure (as a suitable 

UV-completion) recovers locality in these models.

This all suggests tha t the Entanglement Entropy is not only a useful quantity to  diagnose 

confinement, but further it can be used to study the question of UV locality in a Quantum 

Field Theory.

First, we shall present the definition of Entanglement Entropy following the discussions of 

[43]. A quantum  mechanical system with multiple degrees of freedom, at zero tem perature, is 

described by the pure ground sta te  |\J') (assuming no degeneracies). The total system has a 

von Neumann Entropy equal to zero (S t =  —Tr[pt logPt])> where the density m atrix is given in 

terms of the pure state as pt = |^ ) ( ^ | .  If we separate the system into two subsystems labelled 

A  and B,  then we can write the to tal Hilbert space IK as a direct product of two subspaces

= ‘H a QW-b - From this we can define the reduced density m atrix pa associated to subsystem 

A  as pa  = TrsPt  (where the trace is over J f s ) ,  which is what an observer will see, if they only 

have access to subsystem A.  The von Neumann Entropy of the reduced density m atrix pa  is 

thus given by

Sa  = ~T*[pA log p a ]- (5.0.1)

and this is what is taken as the definition of the Entanglement Entropy of the subsystem A. As  

we are a t zero tem perature, the Entanglement Entropy associated to subsystem B  is such th a t 

it is equal to  S a , assuming B  is the complement of A.  For finite tem perature, this equality is 

no longer true.

To extend the definition of Entanglement Entropy to  Q uantum  Field Theories, it should be 

considered th a t a Quantum Field Theory can be thought of as an infinite number of copies of a 

quantum  mechanical system, such th a t the associated Hilbert space is given by all the possible 

field configurations as a fixed time. Thus it is true th a t on a given time slice, the submanifold 

A  is defined uniquely by its boundary dA.  Due to this dependence on the submanifold A,  

in the context of Quantum Field Theories, the Entanglement Entropy is sometimes known as 

Geometric Entropy.

A holographic description for calculating the Entanglement Entropy was first proposed in 

[46]. In the context of a d +  1 dimensional Conformal Field Theory, dual to  an AdSd+2 back­

ground, the holographic Entanglement Entropy is then given by minimising the d dimensional 

area 7 ^  in the dual background, whose boundary coincides with the boundary of the entangling
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region, i.e. Q^a  — dA.  In this setup, it was then conjectured tha t the entanglement entropy 

S a  in the d + 1 dimensional Conformal Field Theory can be computed using the formula

A r e a ^ )  ,K 0,
=  I f f * "  ( 5 ' ° ' 2 )

Here G '^+2  ̂ is the (d+2)-dimensional Newton constant of the A d S  gravity theory. This quantity 

is generally divergent, and the leading order divergence is ~  and is proportional to

the boundary dA,  where a is a UV cutoff introduced in the theory, and this term  is what is 

commonly known as an Area-Law divergence. The original conjecture has been extended to 

be able to study theories which exhibit confinement [48], and this will be the subject of what 

follows.

Finally, we briefly discuss some ideas which motivated the proposal of the presence of a 

phase transition in the Entanglement Entropy of a confining theory. It was argued [48] tha t 

the phase transition present in the Entanglement Entropy in Confining Theories is reminiscent 

of the finite tem perature deconfinement phase transition [102] in a large-N c theory of glueballs 

(or in a string theory). In such a theory, the density of states grows exponentially fast. Thus, 

for a mass m,  the number of states N ( m )  is be given by

N ( m )  ~  m 2 be+pHm, (5.0.3)

where Ph  is the inverse Hagedorn Tem perature (which sets an energy scale), and 6 is a number, 

and the therm al partition function will be roughly given by

J  D m  N(rn)e~Pm = J  T>mm2 be+^ rn- pm. (5.0.4)

We see for tem peratures higher than  Ph  this partition function grows rapidly, while for tem­

peratures lower than Ph  it goes to  zero.

This led the authors of [48] to  write the Entanglement Entropy as

S A ~  J  T ) m m 2 be+0Hrn- 2mLA, (5.0.5)

where they used tha t, for non-interacting scalar degrees of freedom (our large-N c glueballs 

for instance), the Entanglement Entropy behaves as e~2mLA, where L a is the separation of 

the entangled regions. In a “tru ly” confining Quantum Field Theory (such as Yang-Mills) we 

should see a similar phase transition in the Entanglement Entropy. The phase transition is
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phenomenologically similar to the deconfinement phase transition discussed above. It is thus 

expected th a t for a given critical vahie for L a = Lc, below this the Entanglement Entropy 

grows rapidly, but above it is constant.

5.1 Entanglem ent Entropy in Confining Backgrounds: A  
R eview

To begin, let us review a number of known results th a t were discussed in [48]. The authors 

discussed a generalisation to  the original Ryu-Takayanagi conjecture (see discussion around 

Eq. 5.0.2) for the Entanglement Entropy, which covered non-conformal theories, such as those 

dual to  large N c confining gauge theories. The correct generalisation [47] is given by (in String 

Frame)

SA = 7 ^ m !  d < w _ 2 V s ,  (5 .i.i)4G ft J'Sb

where is the 10-dimensional Newton constant and pg is the induced metric on Eg. From

this, we can then calculate the Entanglement Entropy, by minimising the given action in 

Eq. 5.1.1 with respect to all surfaces which approach the boundary of the entangling sur­

face. In what follows we shall only consider, as the entangling surface, a strip of length L a - 

In the cases studied in [48], it was found th a t there were two such local minima of the action. 

The first a connected surface, a U-shaped configuration whose length depends on L a , and the 

second a disconnected surface, consisting of two lines separated by a distance L a - *

We will work with backgrounds tha t in general have a metric th a t can be w ritten (in the 

String Frame) in the following form

ds 2  =  a(p) ]dx2ld) + P(p) dp2J +  dyldyj , (5.1.2)

where parametrises an IRd+1, and p is the holographic coordinate tha t runs between p \  < P <

oo. The 8 — d internal coordinates are denoted by y l (with i = d + 2 , . . . ,  9). The background 

can be further imbued with a non-trivial dilaton <F. The background may also have RR or 

NS fluxes present, but these will not play a role in our analysis. An im portant quantity in 

the com putation of the Entanglement Entropy is the volume of the internal space (which is 

described by the y coordinates) and is given by Vint =  /  dyy/det[gij\.  Constructed from this,

*Here L a  plays the role of L in the general discussion in Section. 4.1.1.

84

\



5.1 Entanglem ent Entropy in Confining Backgrounds: A Review

we can define another quantity th a t will be of great importance in what follows

H(p)  = e - i<6 V l to.d. (5.1.3)

It is worth mentioning at this point some properties of the functions f3(p) and H(p)  as they 

will be central to our calculations of the Entanglement Entropy. H(p)  includes a factor of the 

volume of the internal manifold, and part of this typically shrinks to zero size at p =  p \ ,  as one 

would expect in line with the vanishing of the central charge at zero energies. Also, H(p)  is in 

general a monotonically increasing function of p in confining backgrounds. /3(p) on the other 

hand, (sometimes called a red-shift factor) can become constant or diverge a t p = p \ ,  and is 

typically a monotonically decreasing function of p.

By defining the minimal value th a t the connected surface probes along the p direction into 

the bulk by po, the Entanglement Entropy is given by

(5.1.4)
1 _  "(Po) V '
1 M W2G fq  J  PO

One can further define the Entanglement Entropy of the disconnected solution

S * =  r  < W /3 (p W p ), (5.1.5)
2 Gn  J Pa.

which, it should be noted, is independent of po (and L a )- We can define the length of the strip 

for the connected solution as a function of po as

L a ( p o ) =  2  f
J On

dp ^  (5.1.6)
JLLpL  _  i
h ( p o ) 1

Noting th a t in general the Entanglement Entropy is UV divergent, we will always calculate the 

difference between the connected S c(po) and disconnected Sd contributions

(10) r ° °  8 ( n \ H ( n \
v — S a (po) =  - r f - (Sc(po) - S d) = 2 dp -  2 /  dpy/0(p)H(p) ,  (5.1.7)
y d - 1 y d - 1 J Po A 1 ----- J ^ p f  pA

4 Gn

which is generally finite. It is easily seen th a t these definitions fall into the general formalism 

for probes th a t we discussed in Section. 4.1. The relationship between the functions is given by

F(p) = v ^ ,  G(p) =  y/H{p)0(p).  (5.1.8)
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For a given value of L a  (or po),  S c can either be positive or negative. When negative, it is 

the minimal solution, whereas when positive, the disconnected solution is the minimal solution. 

Between these two regions, we find a first order phase transition, characteristic of confining 

theories as described by Fig. 5.1.

La Sa

Pa

Figure 5.1: The generic phase diagram for the Entanglement Entropy of a strip in confining 
theories. On the left, the length of the connected solution as a function of the minimal radial 
position in the hulk L a ( p q ),  which is a non-monotonic function in confining theories. On the 
right, the Entanglement Entropy of the strip as a function of its length S a ( L a )- The solid blue 
line represents the connected solution while the dashed red line is the disconnected solution. At 
the point L a  =  L c there is a first order phase transition between the two types of solution.

The connected solution only exists over a finite range 0 < La < Lrn and within this range 

there are two possible values for the connected solution for every value of po, corresponding to 

the two branches, depicted in Fig. 5.1. As a result of this double-valued behaviour, there is 

a first order phase transition at the point La = Lc, between the connected and disconnected 

solutions. Thus, in alignment with [48], the signal for confinement is the non-monotonicity of 

L a ( p o )- We shall show later in a number of examples, th a t every peak in L a ( p o ) corresponds 

to a possible phase transition in the Entanglement Entropy S a ( L a )-

5.2 W ilson Loops in Confining Backgrounds: A R eview

Here we will review some known results concerning rectangular Wilson Loops in confining 

backgrounds. Many of the results below were found in [101]. Defining the function g(p) =  

a(p) \ /Plp) ,  one can then write the regularised energy of the Wilson Loop as

E w ( p o ) = 2 f  d p g g  7 ^ C F - 2  d p 9 (p). (5.2.1)
J p 0 \  1 -  Pa

86



5.3 Comparison of Entanglem ent Entropy and W ilson Loops in Confining
Backgrounds

From the point of view of the Wilson Loop calculation, the first term  is the bare energy, while 

the second term , which is subtracted to regularise the divergence, is the energy of two straight 

strings (stretched between the IR  end-of-space p — Pa and the boundary). There is also the 

length of the Wilson Loop given by

Thus for a background to adm it linear confinement, one of the following conditions on the 

functions must be satisfied [1 0 1 ]

1 . a  (p) has a minimum
(5.2.3)

2 . g (p) diverges

If one of these conditions is satisfied a t a particular value of p = pT, then the corresponding 

effective tension is given by q (p t)  7^ 0. Thus, the energy at long distances will behave as

E w  (L w ) — a ( p r ) L w  + 0  ^  (5.2.4)

if one of the above two conditions is satisfied. Again, these definitions fall into the general 

formalism for probes th a t we discussed in Section. 4.1. The relationship between the functions 

is given by

F(p) = a(p),  G(p) = g(p) = a(p)  ̂ /p(p).  (5.2.5)

Further it was shown th a t in confining backgrounds, Lw(po)  is a monotonically decreasing 

function. This then corresponds to  the fact th a t E w ( L w )  is a monotonically increasing function

i.e. th a t it always increases with the length of the rectangular Wilson Loop. We finish by noting 

th a t in general, in the confining backgrounds we will study, the Wilson Loop has P t  — P a -

5.3 Com parison o f Entanglem ent Entropy and W ilson  Loops 
in Confining Backgrounds

In the last two sections, we have reviewed some long-known results for both the Entanglement 

Entropy and the Wilson Loop, in confining backgrounds. On the surface, these two observables 

have quite different behaviours, as we have discussed, in tha t generically the Entanglement 

Entropy shows a phase transition, whereas the Wilson Loop is monotonic. Curiously though,

87



5. H O L O G R A P H IC  E N T A N G L E M E N T  E N T R O P Y  A N D  C O N F IN E M E N T

Ew

Po

Figure 5.2: The generic phase diagram for the rectangular Wilson Loop in confining theories. 
On the left, the length of the Wilson Loop as a function of the minimal radial position in the bulk 
Lw(po), which is a monotonically decreasing function in confining theories. On the right, the 
regularised Energy of the Wilson Loop as a function of its length Ew(Lw)-  Linear confinement 
corresponds to the fact that the Energy is linear in the Length at long distances.

as they are both probes of confinement, this hints at a deeper relation between them. Further, 

the functional form of both calculations, from a holographic point of view, is very similar and 

both fall into the general formalism of Section. 4.1.

We can write the length of the Entangling strip (in Eq. 5.1.6) and the length of the rectan­

gular Wilson Loop (in Eq.5.2.2) as

L/t(/?o)'|o) r°°
\ = 2 ( F )  =  2  d p  

L w { p o ) )  \

P(p)
E ( p )2 i

FO T "  1
(5.3.1)

where the corresponding function F(p) is given in by

F a { p ) =  V H ( P ) ,

Fw (p) = a  (/>).

(5.3.2)

(5.3.3)

We can write the Entanglement Entropy of the strip (in Eq. 5.1.7) and the Energy of the 

rectangular Wilson Loop (in Eq. 5.2.1) in a similar form

4 G ( 10)

Vd_, •S a {po)

F w ( p o )  J

, =  6 (F ) =  2 r  dpF(p )  li{P{ -  2 F  A p F W s / m  (5.3.4)
J po \  1 —F (pr PA



5.3 Comparison of Entanglem ent Entropy and W ilson Loops in Confining
Backgrounds

We can m anipulate Eq. 5.3.4 into the following form

6(F) = F(p0)£(F(p0)) -  2£(F (p0)) (5.3.5)

(5.3.6)
poo   p oo

* ( F ) = /  d p F { p ) y ^ j -  dpy/0(p){F(p)*-F(po)2)

This rearrangement of Eq. 5.3.5, makes it easy to  see th a t the long distance behaviour of E w

is linear (in the case of the Wilson Loop) and th a t F(po) is a monotonically increasing function 

in both cases. Further, as both the Entanglement Entropy and the Wilson Loop calculations 

are based on minimisation problems, the fact th a t both observables can be w ritten in the same 

functional form, is not entirely surprising.

The remaining question is where the difference between them lies. The claim is th a t, in 

a confining Quantum  Field Theory, the behaviour of F(po) close to  the IR end-of-space p \  is 

dictating this difference in behaviour. The Wilson Loop in confining backgrounds, in the IR, is 

related to  the confining string tension, and thus F ( p \ )  = a ( p \ )  ^  0. This is not the case for 

the Entanglement Entropy, as we have discussed, in th a t F ( p a ) =  \ f H ( p \ )  =  0, in accordance 

with the shrinking of the internal volume, and its agreement with the vanishing of the central 

charge a t zero energies, characteristic of confining field theories. Hence this appears to be the 

qualitative difference between the two observables.

Let us now tu rn  our attention to a specific example, tha t of Dp branes wrapped on a circle, 

which are backgrounds dual to confining field theories in p space-time dimensions. These are 

generalisations of th a t written by W itten, as a dual to a Yang-Mills-like 4-dimensional Quantum

Here, R c is the radius associated with the compact cycle (see for example [105]), and is given

Field Theory [21, 86, 103, 104] (with a'  = gs = 1),

+ ( r )  2 <'¥’« + ( £ )  2 R 2 d n b-P)<

- ° w  = ( s ) 2 - -  j m ’ (5-3-7>

which means th a t we have

(5.3.8)
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and S n - 1  =  -ffnY is the surface area of an n-sphere.

From eq. 5.3.8, it is easy to  see th a t the behaviour near the IR end of space differs dra­

matically between the two quantities. In the case of the Wilson Loop, F w (p a ) ~  Pa ~P^ 2 7̂  0, 

whereas in the case of the Entanglement Entropy Fa{pa) =  0 (this is caused by the presence of 

the function f (p )  in F a {p ),  and its notable absence in Fw{p))- It is exactly this difference th a t 

leads us to the monotonic behaviour of the Wilson Loop, with the linear growth in E w { L w )  at 

large separations. This is not reproduced in the case of the Entanglement Entropy, in which we 

see a first order phase transition (in Sa(La)) ,  due to the vanishing of Fa a t the IR  end-of-space.

5.3.1 Sufficient Conditions for a Phase Transition

We have already seen the relevant conditions a background must satisfy, in order for the Wilson 

Loop to show the corresponding confining behaviour in Eq. 5.2.3, which were originally derived 

in [103]. We have further noted th a t the behaviour differs from that of the Entanglement 

Entropy (at least in the IR), but it is informative to  consider th a t they are still both probes of 

confinement, and thus ask what conditions exist on a background such th a t we have a phase 

transition in the Entanglement Entropy.

Following the logic of [103], we will look to derive sufficient conditions on the background, 

such th a t the Entanglement Entropy shows a phase transition. W hat we mean by this is th a t 

we will look for conditions on backgrounds th a t lead to the function L a {po) decreasing for 

asymptotically large values of po and increasing in po close to  p \ .  These asymptotic properties 

will lead to (at least one) maximum L a (po), and thus it will be double-valued, as required for 

a phase transition.

Initially, we look at conditions on the UV of the background, such th a t L a ( p o )  is a decreasing 

function for large p. Close to the boundary, we can expand as (with ji, k > 0)

H(p) = h}p> + 0 ( p > - 1), 0  ( p ) = 0 k p - k + O(p-k+l), (5.3.10)

such th a t we find

_ 1 ____

f - Y  -  1
Po )

  /»oo
L a (p o ) =  2 y f p k  /  dp p~

J On



5.3 Comparison o f Entanglem ent Entropy and W ilson Loops in Confining
Backgrounds

To get this result, we have used the change of variables r  =  ( ^ J , and we read off th a t the 

condition for L a ( p o ) to be monotonically decreasing near the boundary is that

k > 2. (5.3.12)

This means th a t we require f3(p) to approach zero faster than  in the UV. For k < 2, we 

would expect L a (po) to  diverge (for k < 2), or saturate to a constant value (for k  =  2).

We can perform the equivalent calculation for the IR  of the background, such th a t L a ( p o ) is 

an increasing function for small p. Assuming the following expansions for H(p)  and j3(p) (with 

m , n >  0),

H{p) = hm (p -  pA)m +  0{p -  p \ ) m+1, P(p) = Pn{p ~  P a ) - " +  0(p  ~  P a ) ~ u + 1 , (5.3.13)

and we can approximate the integrand in L a ( p o ) using this (as the major contribution to the

integral comes from the divergence of the integrand close to the IR end-of-space)

1______

( jB = £  _  i
\  Po  P a  )

poo  n
=  2 V^ ( P o - P a )1- * / i

= 2v ^ r r(flH ) (p0 ” Pa)1’? ' (5'3-14)

This time we used the change of variables r  =  ( p o - p A  )  * anc  ̂ can rea<  ̂ i'̂ iai' i'̂ ie condition for 

^ a (Po) to  be monotonically increasing is

n <  2. (5.3.15)

Thus, close to pA, P(p) should not diverge faster than •

Between these two limits, we will find a maximum (labelled by L m in Fig. 5.1), giving the 

required double-valued behaviour we require for a phase transition in S a ( L a )-  Before we look 

at some examples to show agreement with the above results, it is interesting to note th a t these 

conditions are only on /3(p), and not H(p).  Further, we expect there are backgrounds tha t 

would fall outside of our ansatz for the expansions proposed above, and we shall see an example 

of this in the next section.

   pOO
L a (p o ) =  ^ y / P n  /  d p  ( p -  p a ) - =

J  Po
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5.3.2 Exam ples o f Criteria for a Phase Transition

It will now be instructive to see how the above criteria work in models, that either exhibit 

confinement, or do not. We shall look at the famous example of AdS§ x S 5, the Hard- and 

Soft-wall models, as well as Dp branes wrapped on a circle (for 3 > p > 6 ) defined in Eq. 5.3.7, 

and finally the Klebanov-Strassler model.

First we start with the canonical example of AdS 5 x S ' \  and the Entanglement Entropy of 

N =  4 Super-Yang-Mills, as a demonstration of a non-confining model, and show that it does 

not adm it a phase transition. The relevant metric in this case takes the form

dsAds5 =  ( 7 2̂ )  <**(1,3) +  dP2 +  5 (5.3.16)

where ( p \  =  0) <  p <  00, and the dilaton is constant. This leads to the following for the 

functions

0(p) = ( * )  . wM = ( i r )  * V -  <5'317>

Thus we can read off tha t k = n = 4. In this case the condition on n is violated and thus we do 

not find a phase transition, as expected in a con formal theory. The length of the strip L a {Po), 

and also the Entanglement Entropy S a (La ), are plotted in Fig. 5.3.

Po

Figure 5.3: Plots of the functions La( po)  on the left, and S a ( L a )  on the right, in the case of 
AdS?, x S 5 . The solid blue line represents the connected solution while the dashed red line is the 
disconnected solution.

In this case, it is possible to perform the integrals explicitly, such tha t we find

m , 0) =  E ® £ ( I ) « !  (5 .3 .i 8)
\/7T po
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and

(5.3.19,
o  y  7r

From the above, it can be seen th a t La(po)  goes to zero for large po, and diverges for small 

Po- Further, Sa{La)  will always be negative (and monotonically increasing), and thus the 

connected solution is always preferred to the disconnected. This of course means tha t there is 

no phase transition between the two. It is instructive to note tha t the concavity of S a ( L a ) is 

such that

f t  < 0. (5.3.20)

throughout the space, and thus one would call this stable according to the appropriately derived 

conditions (sec for example [93, 106] and the discussions in Chapter. 4 and Appendix. B .l).

We move our attention to the Hard- and Soft-wall models. The Hard-wall model was 

proposed in [107] to describe the low-energy properties of QCD from a holographic approach. 

This was achieved introducing a hard cutoff of the radial coordinate, of the A d S  setup, at a 

value p — p a - Thus the metric takes the same form as Eq. 5.3.16, and the relevant functions 

are those in Eq. 5.3.17. We plot the resulting functions L a (Po) and S a (L a ) in Fig. 5.4.

Po

Figure 5.4: Plots of the functions La (po) on the left, and S a (La ) on the right, in the Hard- 
wall model. The location of the Ilard-wall was set to p\  = 1 in the figures. The solid blue line 
represents the connected solution, while the dashed red line is the disconnected solution and the 
dashed blue line represents the continuation of the AdS solution beyond the Hard-wall.

As an improvement to the Hard-wall model, in [108], a modification was suggested. The new 

model still cuts the A d S  space, but now the cut is made in a smooth manner. This smoothing is 

achieved by retaining the form of the metric in Eq. 5.3.16, but introducing a non-trivial dilaton
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of the form

which leads to a modification of the form

( -
V p

H{p) —
8tt2

3
R a

(5.3.21;

(5.3.22)

The difference is shown in the new form of H(p),  such tha t is goes to zero exponentially fast, 

as we move toward the IR end-of-spacc, which is now fixed at p \  =  0. We plot the resulting 

functions L a {po) and S a (La ) in Fig. 5.5.

As the Hard-wall model is just a cut AdS-space, and the Soft-wall model does not admit an 

expansion of the form Eq. 5.3.13 for H(p)  in the IR due to the presence of the exponential, it 

is not possible to check the derived conditions for confinement.

Po

Figure 5.5: Plots of the functions L a ( p o )  on the left, and S a ( L a )  on the right, in the Soft-Wall 
model. The solid blue line represents the connected solution while the dashed red line is the 
disconnected solution.

Next we turn  our attention to the backgrounds initially discussed in Eq. 5.3.7, those of Dp 

branes wrapped on a circle. In this case, one finds when expanding close to the IR end-of-space

P =  P\i
/  R  \  7~ p /  n.  \  1

+  . . .  (5.3.23)m  =  ( —
\PA

PA
7 - p J  (p ~ P a ) 

where the “ . . .  ” represent the sub-leading (finite) terms.

From this it is easy to see that n  =  1, thus for any value of p  the condition Eq. 5.3.15 is 

satisfied and in the IR the function L a (po) will always approach zero. In the UV, /3(po) ~  Po~7, 

meaning k = 7 — p. As this is not independent of p, we find a change in behaviour as we move to
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higher dimensional branes. For p < 4, the condition Eq. 5.3.12 is satisfied and we find a phase 

transition in the Entanglement Entropy (see the top two rows in Fig. 5.6), whereas for p = 5, 

we see th a t L a (po) takes a finite value near the boundary (see the th ird  row in Fig. 5.6) and 

for p = 6 we see th a t L a {po) grows without bound (see the bottom  row in Fig. 5.6). Further, 

there is a change in the concavity of the UV branch, when p  > 5 the condition Eq. 5.3.20 is 

violated.

We will finally look at another case discussed in [48], which is the Entanglement Entropy in 

the background dual to the Klebanov-Strassler. The Entanglement Entropy exhibits a phase 

transition similar to th a t of the D3 and D4 branes wrapped on a circle, as expected for a 

confining theory. We will try  to see how this background follows the conditions for exhibiting 

a phase transition.

The supergravity solution of the deformed conifold is of the following form [12, 109] 

ds2KS = h ~ ^ { r ) d x 2{j  3 ) +  f c i ( T ) d s § ,

d s l  =  ( T ) ( — L - j  [ * - *  +  ( s » ) 2] +  s i n h * ( I )  [ ( 9 1 ) 2 +  ( j » ) 2]

+  cosh2 [(p3) 2 +  (s4) 2] ^ , (5.3.24)

where is the metric of the deformed conifold, e is the scale and

w  \  / \ 2 „ . r 2  - S  f°° ,  r C O t h ( z )  —  1h(r)  =  2* (gaa  ) M  e a dz  w
sinh (z )

(sinh(2z) — 2z) 3,

K{r)  =  (8in9h1(2T )- 2; ) S . (5.3.25)
23 sinh(r)

The radial coordinate is r  and it runs between 0 <  r  <  oo. From this we have, 

a(T ) = 'h-i(r), P(t) = k(T)€‘
QK2 ( t )  ’

o_6
Vint = —  e ^ h ^ ( r ) K 2 ( t )  sinh4 (r),

o_6
H ( t ) = e -V V & c ?  = —  e^/i(r)/< :2(r)s in h 4(r). (5.3.26)

In this case, for small values of the radial coordinate t, the function /?(r) approaches a finite 

value, meaning we have n  =  0 and agreement with the condition in Eq. 5.3.15. For large values 

of the radial coordinate r ,  we find th a t the leading order in the background functions h(r)  and
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Po

La

Po

Po L a

S a

Po L a

Figure 5.6: Plots of the functions La( po)  on the left, and S a { L a ) on the right, in the near 
extremal Dp brane backgrounds for p =  3, 4 ,5 ,6 , moving down the page. The solid blue line 
represents the connected solution while the dashed red line is the disconnected solution. The 
location of the horizon was set to p\  = 1 in the plots. The D3 and D4 branes show a phase 
transition while in the D5 and D6 branes there is no phase transition.
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K ( t ), takes the form

h( r )  —► 3 x 23 (gaa ' ) 2M 2e~s  ~  ’ t f ( r ) -> 2 i e “ * ,  (5.3.27)

such tha t the relevant functions used in calculating the Entanglement Entropy behave as

P(t ) -> -^-e~3(gsa ' )2M 2 ^ r  -  ^  e - ^ 1, / / ( r )  -> nhe4(gsa ' ) 2M 2 ^  e2r. (5.3.28)

Thus, in this region, the functions do not admit the power expansion we assumed. We note due 

to  the exponentially fast decay of fi(r) toward the UV, that, this is a sufficiently strong decay 

and thus in agreement with k > 2, and from direct computation [48] Ij a {Po) does go to zero, 

and the Entanglement Entropy does adm it a phase transition

2

Figure 5.7: A plot of the function /3(r) in the Klebanov-Strassler background. 0 ( t )  saturates to 
a finite value at the origin r  = 0 and therefore meets the condition for a phase transition.

5.4 Confinem ent and P hase Transitions: A D iscussion

Let. us now look a t how the conditions for confinement we have derived coincide in the two cases 

at hand, the phase transition in the Entanglement Entropy (i.e. those presented in Eq. 5.3.15 

and Eq. 5.3.12), and the conditions on the Wilson Loop (i.e. those discussed in Eq. 5.2.3). 

From a physical perspective, both the observables are probes of confinement, thus we expect 

agreement between the two cases. Although we will not prove the last statem ent, we will give 

indication of its success in some examples, and discuss how in other cases a puzzle arises. We 

will then look to resolve this contention.

Here we have written the equivalent functions to those presented in Eq. 3.7.13, but with the replacement 
t  — ‘Ip , consistent with the notation of [48].
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The conditions on the Wilson Loop in Eq. 5.2.3, are really only a statem ent about the IR, 

and such should be compared to the conditions on the Entanglement Entropy in the IR. The 

condition Eq. 5.3.12 required /3(p) should not diverge faster than  p̂_*Ap- such th a t a phase 

transition will be observed in the Entanglement Entropy. As oc(p a ) sets the string tension in 

the case of the Wilson Loop, and must be finite under the conditions for linear confinement, 

it will not play a part in IR  divergences. Thus we associate the divergence of (3(p) w ith the 

divergence of g(p), i.e. the second condition in Eq. 5.2.3.

If we take the case of Dp branes wrapped on a circle (see Eq. 5.3.7) as an example, we see 

tha t in the IR

02( P ) = ( ^ ) ^ —  +  ••• (5-4.1)\ 7 - p J  p -  PA

where the “. . .  ” correspond to finite corrections. This agrees with the condition Eq.5.3.15 on 

ft(p) for all the relevant values of p.

Although unaware of a particular example, a stronger divergence of g(p) could lead to  a 

violation of Eq. 5.3.15. * In the case of the Wilson Loop, when a(p) has a minimum at p =  pa 

(i.e. the first condition in Eq. 5.2.3), it seems the equivalent condition for the Entanglement 

Entropy would be (3(p) is constant in the IR. W hen this occurs, it appears th a t the relation 

/5 ~  such th a t the maximum of /3(p) corresponds to the minimum of a(p), a t p = Pa - An 

example of this can be seen in Fig. 5.7.

So, if we now focus on the UV, we see there is a puzzle. As far as the Wilson Loop is 

concerned, the only condition we demand is linearity at long distances, and this as we have 

discussed is a condition on the IR. In contrast, we have a condition in the UV for a phase 

transition in the Entanglement Entropy Eq. 5.3.12, as well as one in the IR. As we have seen, in 

the case of Dp branes wrapped on a circle with p >  4, this UV condition is not satisfied. This 

leads us to the following question: Is it true th a t there are cases which show linear confinement 

in the Wilson Loop, but do not show a phase transition in the Entanglement Entropy?

W ith the aid of Volume-Law behaviour for the Entanglement Entropy, ideas surrounding 

non-locality in Quantum  Field Theories, UV-cutoffs and UV-completion (approaching a near 

conformal point), we shall attem pt to  answer this question. Further, we shall then look a t a 

variety of models based on wrapped branes, and see how one can further understand models of 

confinement through studies of the corresponding Entanglement Entropy.

An example may be a background with not one, but two shrinking circles, such that the tip of the cigar in 
both, is situated at the same radial position.
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5.5 Area-Laws, Volum e-Laws, UV-CutofFs and Confine­
m ent

We shall bring together what we have seen in the last section, to lead us toward an answer 

to the question posed. Initially, we shall analyse the case of AdS$ x S 5 and compare to duals 

of confinement, move on to NS5/D5 branes, looking a t the role non-locality plays in the dual 

field theory, and finally look again at the analogue of W itten’s confining model, but instead D5 

branes wrapping a circle.

L a  S a

P aP a

L a

Figure 5.8: Plots of the generic change in behaviour of L a { p o ) and S a { L a )  when we have 
a theory with confinement. The navy blue lines (solid and dashed) in both plots represent the 
behaviour of the connected part of conformal solutions, like that of A d S 5 x S 5 (i.e. L a { p o )  ~  Po ! ), 
the green line is the unstable branch introduced by confinement (as in the Soft-wall model). The 
dotted navy blue (at p\)  and red (at p\)  lines represent the disconnected solution in the respective 
cases. In the confining case there is a phase transition at the point L c .

Returning to the calculation of the Entanglement Entropy in the well understood AdS*, x S'5 

background, which we shall use as a basis of comparison in what follows, the connected solution 

is always preferred and is thus the minimal solution throughout the space. The disconnected 

solution always has a higher value for the Entanglement Entropy (see Fig. 5.3). For a local 

field theory, the Entanglement Entropy follows what is sometimes termed a “Heisenberg-like” 

relation, such tha t L^ipo)  ~  for some region of the minimal solution. The leading order 

divergence is the expected Area-Law. In the case a t hand, this is easily seen from the fact that 

the connected solution asymptotes the connected solution from below for large po- This type 

of behaviour is characterised by the navy blue lines (both solid and dashed) in Fig. 5.8.

Another point to notice from Fig. 5.8 is tha t the introduction of confinement can be thought 

of as an effect on the IR region of the corresponding AdS$ x S 5 behaviour for the Entanglement
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Entropy. As discussed, this effect can be modelled by a Soft-Wall background, and this leads 

to us replacing the usual L a { p o ) ~  ^  IR behaviour, with an unstable branch (see the green 

lines in Fig. 5.8). * The effect is such th a t the disconnected branch now comes into play, being 

moved down (in the S a ( L a ) plot) and meeting a t L a  =  L c the stable connected branch. These 

solutions still follow the standard Area-Law behaviour for the leading order divergence. The 

presence of the unstable branch will occur for all theories we study th a t exhibit confinement.

Moving our attention to the NS5/D5 branes, as discussed in [50], we find th a t the con­

nected branch has L a ( p o ) =  where R  =  a ' g s N c . This means we have an infinite number

of connected solutions, parametrised by po, which have the same separation L a = L c. For 

L a > L c, we have the standard case in th a t the disconnected solution is preferred and the 

minimal surfaces fall all the way though the space. For L  < L c, it was proposed in [50] (using 

the approximation of a capped cylinder similar to the one we shall discuss shortly), these are 

solutions tha t must live near the UV, or near the UV-cutoff when one is imposed. In these 

solutions, the main contribution to the Entanglement Entropy comes from the cap of the cylin­

der, and thus we find th a t the leading divergence is no longer an Area-Law, bu t instead of a 

Volume-Law and this is associated with non-locality in the dual Quantum  Field Theory.

This leads us back to  our discussion of the D5 branes wrapped on a circle, which is a model 

of a  confining 4 +  1-dimensional Quantum  Field Theory. In our new language, the connected 

solution here is similar throughout the space to  the unstable IR  branch of the Soft-wall model 

mentioned above. The difference lies in the lack of a stable branch, as we move toward the UV, 

such th a t we would only keep the green branch in Fig. 5.8. Thus our example of D5 branes 

wrapped on a circle have the IR features of a confining model (reminiscent of the Soft-Wall 

model), but the UV behaviour of a non-local Quantum  Field Theory (akin to th a t of the NS5/D5 

branes). So even though the Wilson Loop shows the behaviour associated with confinement, 

for the Entanglement Entropy we have the disconnected branch preferred throughout, instead 

of the unstable connected branch (which always has higher Entanglement Entropy) and thus 

no phase transition. We will look to clarify the details of this example further.

*We use this description as this branch does not obey the criteria in Eq. 5.3.20.
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5.5.1 A  Useful Q uantity

As an aside, we will introduce a combination of the background functions, which is closely 

related to Z  defined in Eq. 4.1.7, by the following

Z = - d „ ( y ( p ) ) .  (5.5.1)
7T

This function in term s of f3 and H  takes the form

W  =  (W -2)

This function approximates the integral for L a (po) defined in Eq. 5.1.6, and is very useful in a 

number of cases where the background is only known semi-analytically, as in many of those we 

shall discuss in Section. 5.6.

5.5.2 Study o f D5 branes on S'1 System

By considering the simplest confining field theory in 4 +  1-dimensions, constructed by wrapping 

N c D5 branes on a circle, imposing periodic boundary conditions for the bosons and anti- 

periodic boundary conditions for the fermions, we will try  to emphasise th a t the UV behaviour 

of the field theory dictates whether (or not), we will find a phase transition in the Entanglement 

Entropy. This example is in analogy with th a t of W itten in [21] generated by double Wick 

rotating a black-brane solution.

Choosing p = 5 in Eq. 5.3.7, we have in the string frame, a metric of the form 

~ar  = Q )  +  f ( u ) dipi\  +  ( ^ j  +  R u d n l ,  R  =  y/g 3 a 'N c, (5.5.3)

where f ( u )  and the background dilaton read

/ w = l - ( £ )  ’ e* = 9‘Q'G ) -  (5-5-4)

One can change to the radial variable p =  a 'u  such th a t the background and relevant functions
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for our calculations are,

ds2  = ( - 0  [ ^ ( 1 ,4 ) +  f (p )  dv i \  + ( ^ j  j +  RpdVtl, R  = yjgsa 'N c, 

f (p )  = 1 -  ’ e$ =  9 s  ( 0  , Ra = a 'A,

<*(p) = ( 0  > P{p) = ( ^ j  Vint = (4tt)2 iv Ry/Ji^) p2,

H{p) = R 2  £l  M  P4’ = dip. (5.5.5)
9  s 9

Using the approximation presented in eq. 5.5.2, one can compute th a t L a (pq) asymptotes a 

constant value from below

L A(po -» oo) ~  V(p -> oo) =  lim n R ^ f  ^  f p  =  ^ r y / g ^ N ^ .  (5.5.6)
p-> oo [Zpz — R f j  I

This means th a t L a {po) does not have any double-valued behaviour for the connected solution 

and thus the Entanglement Entropy does not exhibit a phase transition (see the third row of 

Fig. 5.6). Further, the concavity of the connected branch is such th a t it is unstable throughout 

the space, and indeed the disconnected solution is the minimal Entanglement Entropy solution 

for all L a -

We now venture to ask: are there other solutions with a smaller value for the Entanglement

Entropy for some range of values for L a , th a t we should also consider?

In [50, 51], it was discussed how non-locality can affect the Entanglement Entropy, and 

argued tha t one should add a UV cutoff, such th a t one can consider solutions th a t live ‘close’ 

to  it (solutions represented by B  in Fig. 5.9). In the presence of these new solutions, we 

can have a new minimum for the Entanglement Entropy, but these solutions no longer follow 

the standard Area-Law divergence, and instead posses an extensive ‘Volume-Law’ divergence. 

This observation has also been made in other cases [52-54], and we shall work to understand 

how these solutions are relevant to our question. Note the similarities to  the discussion in 

Section. 4.1.2 involving the introduction of a UV cutoff.

The possibility of these new solutions, leads us to  find th a t there is also a likelihood of a

phase transition between the two divergence behaviours, and thus we can reconcile our puzzle 

of some models of confinement and lack of the expected phase transition. We shall find in what 

follows tha t the Volume-Law behaviour is always associated with the non-local UV behaviour 

of our models.
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P U

Po

PA
Lo

P U

Figure 5.9: Plots of the types of solutions we shall be considering in the left plot and details of 
the approximation in the right plot. In both, pu represents the UV boundary and p\  is the IR end- 
of-space. In the left plot, the red lines (including the dashed line at p^) represent the disconnected 
solution (D), the green line represents a generic connected solution (C ) which probes down to a 
depth po and finally in blue are the solutions which live close to the boundary (B ) and behave 
under the Volume Law for the Entanglement Entropy. In the right plot, we outline the various 
sections of the approximation. The solid purple lines map out the approximation to the connected 
dashed green solution, which we split into three parts: two vertical contributions labelled as A\ 
and a horizontal contribution labelled L. The surface mapped out by the dashed purple lines, 
which is useful when we regularise our approximation, consists again of three parts: the two 
vertical contributions labelled A2 and the horizontal contribution labelled Lq.

Let us return to the D5 branes wrapped 011 a circle to see how our new solutions play 

a role. As we already know, the introduction of a confinement scale can be associated with 

the introduction of an unstable branch in the Entanglement Entropy. This now joins our 

disconnected solutions (with a mutual point at one end of the green unstable branch labelled X  

in Fig. 5.10) to our new near UV solutions (with a mutual point a t the other end of the green 

unstable branch labelled Y  in Fig. 5.10).

Finally, it is im portant to note th a t with the introduction of the short configurations, and 

the possibility of a phase transition between these extensive solutions and the disconnected 

solution at the point Lc, we can argue this as a sign of non-locality [52-54]. Further, we can 

propose tha t this may be a sign th a t one may want to try and UV complete these theories in 

a non-trivial way, if they are to be correct duals to fully local Quantum Field Theories.

5.5.3 The Short Configurations

Here we shall further motivate the existence of the short configurations as a completion for 

some Entanglement Entropy diagrams. It will be instructive to use an approximation similar 

to the one used in [50].
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L a  Sa

PoP u

La

Figure 5.10: Plots of the different types of behaviour in a background like that of the D5 branes 
wrapped on an S 1. The dashed red line represents the disconnected solution, the green that of 
the confinement branch, and these join at the point X .  With finite UV cutoff pu,  we would find 
something similar to the dashed navy blue branch in both plots for solutions near the cutofr scale.
If we increase the UV cutoff (equivalent to moving the point Y  to larger values of po), we find that 
the gradient of the UV branch increases (and also the value of Lc < Lc), such that in the limit 
that we remove the cutoff completely, it becomes the vertical solid navy blue line and we have a 
degeneracy of extensive solutions with different values of S a , but the same value of La =  Lc.

We choose our approximating surface to be a rectangle (which is traced out by the solid 

purple lines in the right-hand plot of Fig. 5.9), consisting of a horizontal piece L  sitting at 

constant po, and such that it has sides (labelled A \ )  which follow the same path as the discon­

nected surface between p0 and p u  (where p u  is the point at which we shall cut the space in 

the UV, and can be removed by taking the limit pu  —» oo). To be more precise, we can start 

by rewriting the Entanglement Entropy of the disconnected solution S d, by splitting it into a 

similar construction to that of the approximation,

S d =  2(Aj +  A 2) +  L 0 , (5.5.7)

where A \  is the contribution between p u  and po, while A 2 is the contribution between po and 

the IR end-of-space p \ .  The extra term Lq comes from the horizontal piece sitting at the IR 

end-of-space, but this will be zero in the cases we shall be considering. As alluded to above, we 

can write the approximating surface as

S a =  2Ai +  L.  (5.5.8)

These approximating solutions are not solutions to the equations of motion and thus are not 

actual smooth extremal surfaces of the background. But, as A \  and A 2 are constant for a
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particular value of po, whereas L  is proportional to L a , in the limit L a  —>■ 0 we will also find 

L —¥ 0. This leads us to conclude: there will always exist a small enough value of La  such 

that L  < 2 A 2 , meaning S a < Sd. Thus for small enough values of L a  there will exist lower 

Entanglement Entropy solutions than  the disconnected solution.

We will now construct the form of the approximation in term s of the relevant functions to 

computing the Entanglement Entropy. Starting with L, we have

/ 8 —dd—l p-------- --------------nn dy dx^yjgind I d u y  g^LUX ^ 'X t/ (5.5.9)
i= 1 j = 1 ^

describing a volume filling surface in all directions, aside from x i  and the radial direction p. 

Using the standard param etrisation, w ith u = { — t y } ,  we find

L ~  Vin ta i e ~2*I L a = y/H {pQ) L A . (5.5.10)
i p - p o

One can define the distance A\  by

A ,  = f PU dp 0(p)H(p)  (5.5.11)
J  Po

which is divergent in the limit pu —> 0 0 . Choosing the same regularisation we performed in 

the case of S a , we remove the value of the disconnected solution Sd (see Eq. 5.1.5). Thus the 

approximation is given by

S a(L A) =  0 )  V H (p o )L a  - 2  J ^ °  d p y / 0 (p)H(p) (5.5.12)

where an extra multiplicative factor has been added by hand to improve the approximation.

We will now look a t how the approximation works in the cases studied in the previous 

section. Due to  our removal of the disconnected solutions from the approximation, in all the 

following it will again sit on the L a -axis of the S q(L a ) plots. Further, the collection of lines 

given by the approximation, maps out the path  of the connected solution in each case very 

well. Each of the lines which are given by the approximation will cut the L a - axis whenever

S o,(La ) =  0  and this quantity is defined by

i # /  x f ' ° d p y / m m  , CC1QA
M a(po) = —------ 7= = -------vr. (5.5.13)

v H \P o )

In the AdS& x S 5  case, depicted in the top left-hand plot of Fig. 5.11, we find th a t M a is a
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monotonically decreasing function of p o , such th a t the solutions which are toward the UV of 

the background sit nearly flat against the S a-axis, and the solutions toward the IR approach 

the disconnected solution from below.

In the Soft-Wall case, depicted in the top right-hand plot of Fig. 5.11, we see th a t the 

UV solutions again look similar to  those of the AdS^  x S 5  case, as expected. They differ as 

we move toward the IR, where the lines, instead of having increasing Ma, actually a tta in  a 

maximum intercept of the La-axis (around the point L c). They then have decreasing intercept 

approaching the disconnected solution this time from above. The phase transition is mapped 

out as expected in this case.

Moving to the backgrounds th a t exhibit non-locality, we initially study the case of the D5 

branes (as studied in [50]) and depicted in the bottom  left-hand plot of Fig. 5.11. In this case 

all the lines of the approximation have the same intercept at La  =  ^  (where we have set 

R = 1 in the plot). The gradient of the lines increases as we move toward the UV (for larger 

values of p o ) .  In the infinite cutoff limit we would expect to find a vertical line passing through 

La  =  as anticipated.

Finally, we move to the case of D5 branes wrapped on a circle, which is depicted in the 

bottom  right-hand plot of Fig. 5.11. Moving from the IR (with small values of po) toward the 

UV, we find an increasing intercept, which approaches the same value as th a t of the D5 branes 

above, th a t of L a = ^  (with the choice R  =  1 in the plot). The difference between the two 

D5 brane cases is th a t although both exhibit a phase transition between the Area-Law and the 

Volume-Law behaviour, in the D5 case, the connected solutions all sit at the point of the phase 

transition L a  = L c, whereas in the case of the wrapped D5 branes, the connected solutions 

make up the unstable branch.

The introduction of these short configurations living near the cutoff surface play an integral 

part in the recovery of the phase transition, in the presence of non-locality in the associated 

Q uantum  Field Theory, in models of confinement, introducing a stable connected branch to  the 

Entanglement Entropy diagrams, just as happened in the probe-D7 branes in Chapter. 4.

In the following sections we shall see other models which require this cutoff effect, but will 

show th a t in some of these cases, a similar resolution can be introduced through a non-trivial 

UV-completion of the Quantum Field Theory. This then gives a well-behaved phase transition 

in the Entanglement Entropy, which avoids Volume-Law behaviour for the leading divergence.
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i "
L a

L a

Figure 5.11: Plots of a number of the approximating surfaces S u{ L a ) in different models. The 
colour scheme is such that purple lines are surfaces with po approaching p \ ,  and the red solutions 
which have po approaching pu.  The top left-hand plot is that of AdS$  x S 5, the top right-hand is 
the Soft-Wall model, the bottom left-hand is D5 branes, and the bottom right-hand is D5 branes 
wrapped on a circle.
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5.6 The A bsence o f P hase Transitions in (Som e) Confining  
M odels

One may argue th a t the model we discussed, i.e. th a t of the D5 wrapped on a circle, is not a 

good choice of model for th a t of a confining theory. As, in principle, 4 + 1  dimensional field 

theories would have weakly coupled IR  behaviour, and strongly coupled UV behaviour, it could 

be th a t what we observe is just an echo of this, in contradiction to us assuming the model 

as confining. Then, it would be expected th a t when looking at duals to 3 +  1 dimensional 

field theories (or 2 +  1 dimensional as in Appendix. C .l), th a t the phase transition should be 

recovered.

To this end, we shall now analyse the case of a dual Quantum Field Theory obtained by 

wrapping N c D5 branes on a two-cycle of the resolved conifold, th a t we presented as Theory A 

in Chapter. 2. We find th a t the UV behaviour is not so different from the one of the D5 branes 

analysed in Sec. 5.5. Again, one may think th a t this is because the theory at high energy, 

has a higher dimensional dual Quantum  Field Theory (which can be seen through the fact 

th a t there is an infinite set of ‘Kaluza-Klein’ modes coming from the compactification of the 

branes). This is correct, but the point is subtle. It has been shown [56] th a t in the perturbative 

regime, the field theory is equivalent to  four-dimensional N  =  1* Yang-Mills, expanded about 

a particular point on its Higgs branch, which is a well-defined four-dimensional Quantum Field 

Theory. Further, we would find the same ‘Kaluza-Klein’ modes in the case of wrapping a stack 

of D4 branes on a circle (discussed in Eq. 5.3.7), and it was seen th a t there is a phase transition 

associated with the model confining. We shall now calculate the Entanglement Entropy for this 

model.

The functions required to calculate the Entanglement Entropy in the background Eq. 2.1.10 

(in the string-frame) are,

a  = e$ , /3 = a 'gse2k, V?nt = (27T )6 (a'gs)5 c4h+49+5qf+2k,

H  = (2ir)6 {a'gs)5 e4*+49+4h+2k. (5.6.1)

Initially, we will look at the case of the CVMN model, which is known analytically and 

presented in Eq. 2.2.5. This is characterised in term s of the function P(p) =  2N cp from the 

perspective of solutions to the ‘M aster Equation’. In this case, the behaviour of the dilaton is 

e4$ S-L which is reminiscent of the dilaton behaviour in Eq. 5.5.5 (when one makes the change 

of variable as p ~  logr), and thus both  are examples of backgrounds w ith a linear dilaton.
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If we now calculate the Entanglement Entropy S a {La ) in the CVMN case, then it can be 

seen (as in Fig. 5.12) th a t the minimal solution is given by the disconnected solution and the 

connected solution maps out an unstable branch for all L a - Further, the connected branch only 

exists 0  < L a < ^ \ f g sct'Nc such th a t S c(La —> 0 ) =  0 and S c(La —> § =  oo. Using

La Sa
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Figure 5.12: Plots of the functions L a ( p o ) on the left, and S a ( L a ) on the right, in the CVMN 
system of D5 branes wrapped on a two-cycle. The solid blue line represents the connected solution 
while the dashed red line is the disconnected solution.

the approximation in Eq. 5.5.2, we find tha t

L A{p) ~  V(p) = ^  ^  ^  ^  ^

fp2 _  n 2\
(5.6.2)

2 $ ' +  2 h' +  2 g' +  k'
7 ( P 2 -  Q2)

y/2 (2P 2 coth(2p) +  PP'  -  QQ'  -  2Q2 co th (2p))'

such that using the CVMN exact solution gives for the approximated asymptotics of the function

f-M(Po),

r , . nx ^ \ la 'g sN c T , , x n V a 'g sN C/, 1 x /K e
IjA{Po —> 0) ~  ------ ------- Po, L A(p0  -> oo) ~ -----------   (1 -  (5.6.3)

It is interesting to note that the Heisenberg-like relation La ~  ^  is violated here. Further, we

see tha t the entropy scales as

GioSc , 3 *
{a gs ) Nr2.

V2

So, as in the example of D5 branes wrapped on a circle, we see tha t the connected configuration 

is unstable, such that it doesn’t satisfy the correct concavity condition in Eq. 5.3.20. Again, we 

do not have a phase transition and thus we look to the short configurations and the effect of a
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UV cutoff.

In Fig. 5.13, we show the effect of adding in the short configurations upon the introduction 

of a UV cutoff. They are (as we have also seen in the context of the probe-D7 branes in the last 

Chapter), the correct configurations to consider, allowing us to remove the issue we face with 

the instability of the connected branch of configurations. Thus, the phase transition in S a {La ) 

is recovered, and one would expect from a confining model [48].

Po

F ig u r e  5 .1 3 : P lots of the functions L a ( p o ) on the left, and S a ( L a ) on the right, in the system  
of D5 branes wrapped on a two-cycle, but th is tim e w ith a UV  cutoff in place. T he green line is 
the solution w ithout UV cutoff, the dashed blue line is w ith the UV cutoff at pu  =  19, the dotted  
blue is with the cutoff at pu — 19.5, and finally the dashed red line represents the disconnected  
solution. N otice that increasing the value of pu leads to  an increase in the gradient in the visible  
branch in the S a ( L a ) plot, in the right-hand plot.

5.6.1 Further Com m ents on N on-Locality

If we now turn our attention to the solutions with exponential asymptotics for P{p) defined in 

Eq. 2.2.14, which describe another family of solutions associated with Theory A (but the field 

theory has different operators driving the dynamics), we shall try to further understand the 

ideas surrounding this non-locality.

In contrast to the CVMN solution, as mentioned before, we only know this second solution 

semi-analytically. The corresponding expansions are given in Eq. 2.2.8, and Eq. 2.2.14. As 

discussed, the IR expansion is similar to tha t of the CVMN solution, but in the UV the behaviour 

of P(p) is exponential rather than linear. We have also seen how this is associated with a 

dimension-eight, irrelevant operator driving the dynamics. One can think of this as a similar

T hese  “finite size” effects reflected in th e  non-zero asy m p to tic  value of L a  a t  infinity  have also been observed 
in th e  W ilson Loop w hen ca lcu la ted  in th e  CV M N  background  [66, 110-112],
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situation to retaining a constant factor in the warp factor of the D3 brane solution, such that
A r  4

the warp factor then reads h = 1 +  p -, and this extra factor makes the background dual to 

N =  4 Super Yang-Mills in the presence of a dimension-eight operator. Then to UV complete 

the Quantum Field Theory, we are required to reintroduce the whole tower of string modes.

The non-locality in the new background will tu rn  out to be more severe than in the case of 

the CVMN solution. Calculating the Entanglement Entropy in this case (where the irrelevant 

operator is inserted with a small coefficient h\ =  2N c + e), we find the results depicted in 

Fig. 5.14. It can be seen from the left-hand plot, tha t L a (po) increases without bound, and 

again there is only the disconnected configurations as the minimal solutions. This behaviour is 

such th a t we depart further from the Heisenberg-like scaling we expect for local field theories.

Po
05 I 5 2.0

F ig u r e  5 .1 4 : P lots of the functions La(po) on the left, and S a ( L a ) on the right, in the system  
of D 5s on a two-cycle, but th is tim e w ith exponential behaviour in P  (hi  =  f§§N c). T he solid  
blue line represents the connected solution w hile the dashed red line is the disconnected solution . 
T he grey line is the linear P  solution (hi  =  2N c) for comparison.

So even when we have a dual background which exhibits a confining Wilson Loop , the 

system fails to show a phase transition in the Entanglement Entropy and thus we must again 

appeal to the short configurations to recover our phase transition. This is due to the UV 

properties of the field theory. In Appendix. C .l we discuss another system which have similar 

high energy behaviour in the field theory.

In the next section, we shall see th a t if one uses the rotation procedure described in Chap­

ter. 2, such that we UV complete the field theory of this setup in terms of an inverse Higgs 

Mechanism, we fully recover the phase transition with the correct Heisenberg-like scaling.

In th e  case of P ( p )  grow ing exponen tia lly  for large p,  th e  W ilson Loop ca lcu la tion  c an n o t s tr ic tly  be 
perfo rm ed  d ue to  th e  v io lation  of th e  b o u n d ary  conditions for th e  strings a t infin ity  [97].
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5.6.2 The Baryonic Branch of K lebanov-Strassler

We have seen th a t in the case of the field Theory A (dual to  a stack of N c D5 branes compactified 

on a two-cycle of the resolved conifold), the non-local UV properties require the introduction 

of a UV cutoff (and the associated short configurations) to recover a phase transition in the 

Entanglem ent Entropy (even if the Wilson Loop displays the correct Area-Law). Here we 

look at a different way of recovering the phase transition with local UV behaviour, by using 

the rotation, which connects this system to  th a t of the baryonic branch of Klebanov-Strassler 

described by Theory B.

As we discussed, the specific choice of the constant k associated with the rotation, is associ­

ated w ith choosing the warp factor such tha t it goes to zero and switches off the dimension-eight 

irrelevant operator, whilst preserving the IR behaviour of the background. The new background 

generated (with the presence of extra fluxes) is w ritten in Eq. 2.1.14.

Now, the quantities required for the calculation of the Entanglement Entropy are given by

a  =  e ^ h " 1/2, P =gsa 'e 2 kh, V 2nt = (2tt f ( a ' g s)5 e4 h+^ + ^ +2 kh ^ 2,

H  =(2?T)6 (a'gs)5 e4 *+4 9 +4 h+2 kh. (5.6.4)

The obvious difference between Eq. 5.6.1 and these new quantities is the presence of the factor 

h, defined in Eq. 2.1.15. At large p this warp factor behaves as,

“UV2
h ~  (8p -  l ) e -8p/3 +  . . .  (5.6.5)

OC_j_

and it is this th a t brings back the decaying behaviour and thus the phase transition in the 

Entanglem ent Entropy. Using the approximation of L a  given in Eq. 5.5.2

L a (p ) ~  y(p) =  2 n y / a Fg~s -------------------e _ \ /h ------------- (5 .6 .6 )
(4$' +  4 g' + Ah' +  2k1) +  £

with IR  and UV behaviour given by

La(P 0  -+ 0) ~  po, La(po -+ oo) ~  e~2" ' 3. (5.6.7)

As anticipated, the IR behaviour is basically unchanged from the CVMN case, as the warp 

factor is approximately one for small p. The UV behaviour on the other hand is different, and 

now dom inated by the behaviour of the warp factor a t large p. Notice also, th a t in a convenient
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radial variable r  = e2p^3, we have

L a (tq -> o o )  , (5.6.8)
ro

which is a signal of locality according to [50]. Thus we see th a t the UV-completion by r o t at ing  

onto the baryonic branch field theory (Theory B) has recovered locality. W hat does this mean 

for the phase transition in the Entanglement Entropy? The results for the calculation of the 

Entanglement Entropy in association with the baryonic branch of the Klebanov-Strassler field 

theory can be seen in Fig. 5.15.

La Sa

Figure 5.15: Plots of the functions L a( po)  on the left, and S a ( L a )  on the right, for a typical 
solution on the baryonic branch of Klebanov-Strassler (hi  = Ac). The solid blue line represents 
the connected solution while the dashed red line is t he disconnected solution. The grey line is the 
linear P  solution (hi  = 2N c) for comparison.

Thus wo have solved the problem of recovering the phase transition in the Entanglement 

Entropy for these models of confinement.

To conclude this section we shall briefly look at the effect of introducing the dimension-six 

VEV associated with the walking solutions defined in Eq. 2.2.11. In [20], the authors showed 

that changing the scale associated with this VEV introduced a first-order phase transition 

in the calculation of the rectangular Wilson Loop. It is interesting to see how the equivalent 

effect translates to  the Entanglement Entropy. In the presence of this VEV, it appears that 

the Entanglement Entropy is suppressed in the IR of the theory, below the associated scale 

p*. This effect can be seen in Fig. 5.16, and it appears tha t increasing the size of the VEV is 

directly linked to increasing the severity of the first-order phase transition in the Entanglement 

Entropy. This is supported by the fact th a t in [20] they also calculated the central charge in the 

same walking solutions, and tha t in the presence of the VEV they argued tha t in field theory
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terms a large number of degrees of freedom freeze below the scale p*, and the central charge is 

suppressed.

2

Figure 5.16: Plots of the functions L a ( p o )  on the left, and S a ( L a )  on the right, for a typical 
walking solution on the baryonic branch of Klebanov-Strassler (with p. ~  2). The solid green line 
represents the connected solution for the walking case, while the dashed red line is the disconnected 
solution and the grey line is the equivalent solution on the baryonic branch with no walking present.

Now we look at a number of calculations which will lead to an improved understanding of 

the Klebanov-Strassler system (in agreement with the ideas presented in [GO]). We will move 

our field theory to a mesonic branch. Initially, we shall do this in such a way, as was argued 

in [62], that towards high energies the evolution of the Quantum Field Theory is described 

in terms of Seiberg dualities, but more im portantly successive ‘Higgsing’, which changes the 

m atter content quickly. This growth of the m atter content is equivalent to the addition of 

another irrelevant operator (of dimension-six in this case, different from the dimension-eight 

one we have discussed above). This was discussed in detail in [62, 113].

As a consequence of the insertion of this new high-dimensional irrelevant operator, with 

the added non-localities to the Quantum Field Theory (originally discussed in [113]), we will 

lose the phase transition. We will then explain how to restore the phase transition, through a 

precise way of switching off this new irrelevant operator.

5.6.3 The Addition of Sources

Here we shall look at the effect on the Entanglement Entropy if we move our Theory B (that of 

the Klebanov-Strassler Quantum Field Theory on the baryonic branch) to a mesonic branch. 

From the point of view of the quiver theory, we do this by de-tuning the ranks of the two gauge 

groups, which in baryonic branch is given by S U ( N C +  n) x SU(n).  If we add m atter in the
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form of D5 branes with induced D3 brane charge in the dual background we can change the 

gauge group to  S U (N C + n  + rif + ^ f )  x  S U (n  + rif). The N f  D5 branes and rif D3 branes 

are added as sources such th a t the background is a solution to the equations of motion of Type 

IIB Supergravity, but also there is a Born-Infeld Wess-Zumino action for the sources. The 

associated solutions were discussed in detail in [62, 113]. A characteristic of these backgrounds 

is th a t the sources must be added with a ‘profile’ S (describing how the sources are smeared), 

which vanishes toward the IR end-of-space to avoid curvature singularities (see discussions 

in [69, 112, 113]). Such a profile th a t preserves the same amount of Supersymmetry as the 

background and avoids singularities is given by [112]

S(p) =  N f  tanh(2p)4. (5.6.9)

Further, this profile can be translated to become ‘active’ a t a finite value of p

S(p) =  N f  0{p  -  p) tanh(2p -  2p ) 4  (5.6.10)

which still preserves the same amount of Supersymmetries and avoids singular behaviour.

There exists a  change of basis for the background functions similar to the one we described 

in Chapter. 2, such tha t it can be reduced to  solving a modified version of the ‘Master Equation’ 

for a single function P(p). This will contain all the effects of the extra (N f , r i f ) D5 and D3 

brane sources. Further, an equivalent rotation technique was derived, which takes solutions 

onto the mesonic branch of the Klebanov-Strassler Field Theory. We shall present the form of 

the modified ‘M aster Equation’ below but a clear summary of the details of the setup can be 

found in [113].

The modified ‘M aster Equation’ is of the form [113]

P"  +  N ,S '  +  (P 1 + N , S) ( P> + p '_ +q2Af/S +  P ' ~ p ' + Q N fS  ~  4 co th (2p)) =  0, (5.6.11)

where we have chosen the IR end-of-space to be at p \  =  0. The modified form of Q is given by

Q = coth(2p) ( £  dx  , (5-6.12)

where an integration constant has been set to avoid singularities in the IR. These can be seen 

to reduce to  Eq. 2.2.2 when N f  = B = 0.

A solution encoding the effect of the sources was found in [62, 113]. The large radius 

asymptotics of the warp factor h (as in Eq. 2.1.15) using the radial coordinate u =  e2p/3, is
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given by

lim h  ~  iV^ 2 +  35 l0gU, (5.6.13)
u —*oo u

which deviates from the cascading behaviour of the Klebanov-Strassler Quantum Field Theory 

in Eq. 5.6.5 by (what appears to be) the addition of a dimension-six irrelevant operator. As 

discussed in [113], from a field theory perspective, the number of additional D3 brane sources 

given by rif grows very fast as

rif ~  S(p)(sinh(4/9) — 4p ) 1 ^ 3  ~  e4p/ 3, (5.6.14)

and this rapid growth of the gauge group ranks as we move to higher energies (a ‘Higgsing’ 

occurs every time a sourced D3 brane is crossed) means th a t the Quantum  Field Theory loses 

the four-dimensional character of the Klebanov-Strassler Quantum  Field Theory.

In the calculation of the Wilson Loop in these backgrounds, for the solutions discussed, the 

result is th a t of an Area-Law behaviour indicative of confinement [111]- From what we have 

seen earlier, we should expect th a t even though the Wilson Loop shows the correct behaviour, 

for the Entanglement Entropy we shall not have a phase transition due to the presence of this 

dimension-six irrelevant operator.

If we now move to calculate the Entanglement Entropy in this case one finds this is true. If 

we look at the IR behaviour L a (p0 —> 0) ~  po it is unchanged, whereas in the UV we find

L A(p0  -> oo) =  ))(p ->oo) ~  ( 5 g l 5 )

The results can be seen in Fig. 5.17, such th a t unless we appeal to  the short configurations, we 

do not have a phase transition.

One may conclude from this tha t although the field theory maybe be in a mesonic branch 

with good IR properties, we need to remove the fast growth of source degrees of freedom as we 

move to  higher energies, by ‘localising’ the sources. This should allow us to recover the high 

energy four-dimensional behaviour seen in the case of the baryonic branch of Klebanov-Strassler 

(by UV-completing the system via the rotation procedure).

5.6.4 Sources w ith a Decaying Profile

As we have just discussed, the phase transition in the Entanglement Entropy being removed 

(w ithout introducing the short configurations), as well as the form of the warp factor given 

Note that the Wilson Loop does experience finite-size effects similar to those seen in the CVMN case.
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Po

Figure 5.17: Plots of the functions L a ( p o )  on the left, and S a ( L a )  on the right, for a typical 
solution with S —» N f  in the UV (N c =  4 and N f  = 9). The solid blue line represents the connected 
solution while the dashed red line is the disconnected solution. Note that we have chosen a value 
of h i such that we have hardly any linear behaviour in P.

in Eq. 5.6.13, indicates that the dual Quantum Field Theory is not behaving as a nice four- 

dimensional field theory, in the sense tha t ‘locality’ is being lost. As described, this appears to 

be due to the rapid growth of degrees of freedom [113], due to the addition of sources.

In backgrounds where we have a profile given by S  ~  tanh(2p)4, this is reflected in the fact 

that as we flow to the UV, we have a superposition of two behaviours. The first is the Seiberg 

dualities as seen through the presence of the logarithmic term in Eq. 5.6.13, and a ‘Higgsing’, 

shown by the term which is quadratic in the radial variable u. Similar interplay between these 

two effects have been before in [114, 115]. As a consequence, the solution with the source profile 

S  ~  tanh(2p )4 at high energies, is dominated by the ‘Higgsing’, and thus the UV of the field 

theory has behaviour differing from th a t of a four-dimensional Quantum Field Theory. This is 

reflected in the Entanglement Entropy, and the lack of a well behaved phase transition, unlike 

that achieved in Section. 5.6.2.

We now look to see if it is possible to force this mesonic branch solution of the Klebanov- 

Strassler Field Theory, to behave like four-dimensional Quantum Field Theory in the UV. 

To this end, we slow down the growth of the degrees of freedom by proposing (as in [113]) 

a phenomenologically supported profile for the sources. This profile is not derived from first 

principles, unlike a profile which is kappa symmetric, but nevertheless it will be of interest. The 

profile in question does have the following properties,

1. The background still satisfies BPS equations, suggesting the preservation of Supersym­

metry.
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2. The energy density of the sources Too is positive definite for profiles tha t decay at most 

as fast as the one we will propose.

3. The central charge of the dual Quantum Field Theory when calculated with this profile 

is a monotonically increasing function.

and takes the form

S(p) = N f  tanh(2p)4e~4p/3. (5.6.16)

W ith a profile of this form it is possible to find a background solution in which it can be thought 

th a t the sources are ‘localised’, and the dual Quantum Field Theory is in a mesonic branch. 

The explicit background solution and a more detailed explanation can be found in [113].

Figure 5.18: Plots of the functions La( po)  on the left, and S a { L a ) on the right, for a typical 
solution with § —> 0 in the UV (N c =  4 and N j  = 9 ). The solid blue line represents the connected 
solution while the dashed red line is the disconnected solution. Note that we have chosen a value 
of h\ such that we have hardly any linear behaviour in P.

The warp factor in these new solutions is modified such tha t it now reads

h(p -> oo) ~  [iVc2 (8p -  1 ) +  2 cNf  -  4 Nc NfS oo je -8^ 3 + . . .  

dpS  tanh(2p)2.
=  /J o

If we compare this with Eq. 5.6.13, the decay of the warp factor is the same, and the cascade of 

Sciberg dualities is present through the term  N^p  (which takes this form in the radial coordinate 

p). Further, the constant term is the effect of the sources, which still contribute even though 

they are heavily suppressed as we move into the UV. If we look at this in terms of the radial
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coordinate u  =  e2p//3, we see that the sources contribute to the warp factor as A ~  , which

is as expected for a localised stack of N f  ~  r i f  D3 branes.

If we then calculate the Entanglement Entropy in this setup, we find th a t the phase transition 

is recovered, as can be seen in Fig. 5.18. In this case we still find th a t La(p  —> oo) ~  in 

agreement with the locality criteria of [50]. An interesting observation is tha t we can again 

translate the point p  at which the sources become active by using a profile of the form

S(p) =  N f  0 (p  -  p .) tanh(2p -  2p*)4e~ 4p/3 (5.6.17)

and this introduces another scale into the system. Then it. turns out. th a t it is possible to gain a 

double-phase transition in the Entanglement Entropy (for a more detailed discussion of the role 

of the various scales, see [5]), as shown in Fig. 5.19, and calculated in the mesonic branch of the 

Klebanov-Strassler field theory, in the presence of a localised distribution of m atter, represented 

by a D3-D5 bound state.

L a  S a

La

20(100

Figure 5.19: Plots of the functions La{po)  on the left, and S a ( L a )  on the right, for a typical 
solution with S —> 0 in the UV but p =  f§ ( N c = 4 and N j  = 9). The solid blue line represents 
the connected solution while the dashed red line is the disconnected solution. Note that we have 
chosen a value of h\ such that we have hardly any linear behaviour in P.

Finally, wo close by emphasising th a t our findings are in line with th a t of [48] in th a t a phase 

transition in the Entanglement Entropy is a signal of a confining Quantum Field Theory. W hat 

we have seen is th a t we should be careful about the UV behaviour of the field theory, for instance 

if non-local effects play a role, we should look to cutoff effects or a UV completion, to recover 

the associated phase transition. Further, we can think of our findings for the Entanglement 

Entropy as a good diagnostic tool in deciding if a Quantum Field Theory is showing, or is
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not showing, the correct high energy behaviour expected from a four-dimensional (or lower) 

Q uantum  Field Theory, free of non-localities.



Chapter 6

Conclusions

Here we summarise the findings of this thesis, and present a number of potentially interesting 

avenues of investigation.

In Chapter. 3 of this thesis we used IR and UV expansions, and the numerical interpolation 

between them, to  study the globally regular backgrounds dual to particular non-Supersymmetric 

field theories. The field theories were those defined in Chapter. 2, Theory A and Theory B. We 

calculated a number of observables at low and high energies, which supported the field theory 

interpretation as soft-breaking via the introduction of masses for the gauginos. This is such 

th a t much of the structure of the Supersymmetric case remains and the non-Supersymmetric 

deformation only gives corrections to this.

We progressed to studying the full two-dimensional solution space, which generalises the 

Supersymmetric baryonic branch solutions, in more detail. This prompted us to  find gen­

eralisations to its limiting cases (that of the CVMN background and the Klebanov-Strassler 

background). In the corresponding limit of the Supersymmetric CVMN case we obtained, as 

the correct non-Supersymmetric generalisation, the solutions presented in [25] (GTV). In the 

limit corresponding to  the Supersymmetric Klebanov-Strassler solution, we found the solutions 

of [70] (DK). The behaviour of the generic solutions lying away from these boundaries was 

understood to  be a combination of the effects seen in the Supersymmetric baryonic branch 

solutions, and those of GTV.

In addition to  these two limiting cases, we found two additional one-parameter families 

of solutions. The first is the boundary on which the solution space has V2  =  u>2 =  0 where it 

appears th a t Supersymmetry is no longer softly broken, and we find the geometry changes to  an 

intrinsically non-Supersymmetric case (a cone over S 2  x S 3  related to the solution presented in
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[85]). Further, the UV expansion now has new trigonometric terms appearing at a subleading 

order. A second family is in the case where W2  = —2, where the geometry possesses a Z2 

symmetry like th a t of the Supersymmetric Klebanov-Strassler solution. Curiously, in all the 

solutions in this family, the function M i, which we associated in the Supersymmetric case with 

the baryonic VEV, is zero throughout the space. We discussed the fact th a t for every solution 

with W2  > - 2 ,  there is a corresponding solution with 11)2 < —2, and they are related via a Z 2 

transformation. These two solutions, although appearing different, actually describe the same 

physical system, which seems to  correspond to  the freedom to interchange the baryons A  and 

B.

It would be possible to learn more about how much of the Supersymmetric system is pre­

served if we were to calculate the mass spectrum  and compare this with the results from the 

Supersymmetric baryonic branch case. Although in the case of soft-breaking we discussed some 

idea to support the stability of these non-Supersymmetric deformations, this discussion does not 

necessarily extend beyond soft-breaking. Thus it would be of interest to  see if these solutions 

in the full two-dimensional solution space are actually stable.

It would also be of interest to look at other models which may lead to a similar solution 

space under non-Supersymmetric deformations. A suitable candidate is the setup describing 

D5 branes wrapped on a three-cycle (described in Appendix. C .l). One would expect a similar 

set of boundaries to emerge, with the possibility of finding a completely non-Supersymmetric 

case analogous to th a t of Section. 3.7.2. Here the dual field theory would be 2 +  1-dimensional. 

Further, due to the simplicity of the boundary solutions which exhibit the oscillatory behaviour 

in the background functions, we may try  applying the ideas of Non-Abelian T-duality to these 

solutions (see for instance [116]), which may tu rn  up interesting new features in the dual field 

theory.

In Chapter. 4 of this thesis, we studied the behaviour of probe-D7 branes in a collection of 

backgrounds. We began by introducing a general formalism for dealing with probes th a t have 

an action of the form Eq. 4.1.1. Using this form, we proposed an effective diagonostic tool Z 

for perturbative stability, arguing th a t Z < 0 is a sufficient condition for perturbative stability. 

On the other hand, if Z > 0 for any range of the radial coordinate, then these backgrounds 

present instabilities. This was discussed through a thermodynamic anology in Appendix. B .l.

Further to this, we discussed the fact th a t in particular cases (relevant to the backgrounds 

with P  exponentially growing in the UV), there can be a problem if one does not first introduce 

a UV cutoff in the calculation, find the minimal solutions with the cutoff fixed, and only
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thereafter remove the cutoff. In this case there are configuratons, which exist close to  the cutoff 

surface, tha t are the minimal action configurations in some cases where the separation of the 

usual connected configurations is non-zero for large values of po- Thus we examined the idea 

of a bulk phase transition, which in effect puts a  bound on the allowed range of the control 

parameter, showing th a t below this point the gravity calculation is no longer connected to 

the dual field theory. Notably, a new feature emerged in the context of the flavored Abelian 

background, namely the bulk phase transition is second-order. It would be interesting to try  

to understand whether this arises in other instances (in all other cases we discussed, the bulk 

phase transition was of first-order).

We then systematically discussed the various Supersymmetric solutions presented in Sec­

tion. 2.2 and found th a t one can effectively model Chiral-symmetry breaking in the walking 

model with CVMN UV asymptotics for P. This setup, in the presence of the walking scale 

p*, has a first-order phase transition between the connected and disconnected configurations 

at a point <pc which depends on p*. Also, Chiral-symmetry breaking can be modelled in a 

background with a small value for p* and exponential behaviour for P  in the UV. Here there 

is also a bulk phase transition, this time with <pa =  limiting the range over which <p is 

related to  the dual field theory. Further, the smallness of p* means it is likely th a t the walking 

region (associated with the ‘slow running’ of the gauge coupling defined in Eq. 2.2.13) in these 

backgrounds is negligible.

We also discovered the origin of the instability found in [88], by using Z. In this case Z  >  0 

for all values of the radial coordinate, so th a t all connected configurations are unstable and the 

(Chiral-symmetry preserving) disconnected configurations are preferred for all allowed values 

of dp > <pa. At (pa there is a bulk phase transition, but this only limits the allowed values of (p.

It would be of particular interest to  find non-Supersymmetric probe-D7 brane embeddings 

on the baryonic branch of Klebanov-Strassler, but due to  the presence of the background B 2 , 

these type of embeddings would likely fall outside of our formalism setup in Section. 4.1.1. 

Also, it would be interesting to investigate the behaviour of these probe-D7 branes, in a recent 

set of backgrounds related to  Klebanov-Strassler [117] in the presence of a dimension-six VEV, 

reminiscent of the one in the walking solutions. Further, it would be interesting to  complete 

the picture of the alternative embedding discussed in Appendix. B.2.

Finally, in Chapter. 5 of this thesis we discussed the behaviour of Entanglement Entropy 

in models of confinement. We began by considering the analogy between the holographic 

calculations of the Wilson Loop and the Entanglement Entropy. Since both are minimisation
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problems, they display many of the same features. This aside, .the two observables behave 

differently in the case of confining theories, where the Wilson Loop has a linear IR  dependence 

between the energy and separation of the quark-antiquark pair, whereas in the Entanglement 

Entropy we find a first-order phase transition. Next we calculated a set of conditions under 

which the Entanglement Entropy shows such a phase transition, and tested these in a number 

of examples.

We then showed th a t in some models based on higher Dp branes (p > 4) there was an 

absence of a phase transition in the Entanglement Entropy. This led us to the idea of non­

locality in a Quantum Field Theory, Volume-Law behaviour for the Entanglement Entropy and 

the realisation th a t we are required to introduce a UV cutoff to  recover some short configurations 

(which has crossover with the ideas of Section. 4.1.2) which complete the Entanglement Entropy 

diagrams.

This resolution may seem somewhat hard to stomach, but we point out tha t it recovers what 

one would expect if a UV completion for the field theory was given. This point was made clearer 

by using the solutions described in Chapter. 2, and showing th a t under the rotation procedure 

one is no longer required to  introduce the short configurations to gain a well behaved phase 

transition in the Entanglement Entropy. This recovery of a first-order phase transition was 

shown, in the case of both the baryonic branch and the mesonic branch (through backgrounds in 

the presence of sources with a decaying profile). This gave a pleasing picture, linking confining, 

non-local Quantum  Field Theories, and their local UV-completed counterparts. Thus we can 

understand the Entanglement Entropy as a measure of both locality and confinement.

We also considered the case of the walking solutions on the baryonic branch, which have been 

shown to  give a first-order phase transition in the calculation of the Wilson Loop. Interestingly, 

the presence of the dimension-six VEV (associated with the walking scale p*), led to an increase 

in the severity of the phase transition associated with the Entanglement Entropy. It would be 

useful to find a more complete picture of the relationship between phase transitions in the two 

observables.

It would be interesting to see if there are a set of rules th a t can be derived using the form of 

the Entanglement Entropy, th a t could then be used to  give ideas about how to reverse-engineer 

backgrounds th a t have both  confinement, and UV locality. This could potentially be used in 

conjunction with invariance of the Entanglement Entropy under different dualities (it is already 

understood to  be invariant under S-duality and non-Abelian T-duality [116, 118]) to  discover 

new supergravity solutions.
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A ppendix A

A .l  Equations o f M otion

In this appendix we write the full equations of motion, associated with the setup Eq. 2.1.8. We 

start with the effective Lagrangian and the constraint, and then write the equations of motion 

and have set N c =  1 for simplicity.

The effective Lagrangian is L = T  — U, with

T  = -  y^ge2* { e49 (a ')2 +  ( b ' f  ~  8 e2(g+h) [ 2 g' {2ti + k ' + 2$ ') +  (,g’f

+  2 t i  {k' +  2 $ ') +  (h’f  + 2 $ ' (k' + $ ') ]  },

(A .1.1)

U =  - L e- 2(9+,l- $ )( a 4e4s (1 +  e4fc) -  4a36e4fl +  2 a? e2g ( 2 b2  e2g +  e2s?
256 t V

+  4e2h — Se2 ĝ+h+k  ̂ +  4e4g+2h — e2g+4k +  4e2h+4k'j 

-  4abe2g (e2g + 4e2h) +  8b2 e2{g+h) +  e45 +  I 6 e4h

-  1 Qe^g+h+k) _  g4 e2 (g+2 h+k) + g4(g+k) +  16c4(fc+*) (A. 1.2)

The constraint is given by 

0 = T  + U

= e~2ig+h" $) [ - 2  (a ')2 e6g+2h +  a4 e4g (e4k +  l)  -  4a36e49

+  2a?e2g (2b2 e2g -  8 e2ig+h+k) + 4e4g+2h -  e2g+4k + e2g

+  4 e 2 h + 4 k  +  A e2h ^  _  4 a b e 2 g  ^ 2 g +  ^ 2 h )  _  2  ^  ^ g + h )

+  64e4 {9 +h)g 't i  +  32e4{g+h)g'k' +  64e4 {g+h)g '&  +  16e4(g+h) (g ' f
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+  8b2 c2{g+h) +  32e4{g+h)t i k '  +  M e ^ 9 +h)t i &  +  16e4(g+h) ( t i f  

+ 32e4(9+/l)fc'$' -  iQe2(2g+h+k) _  g4 e2 (s+2 /i+fc) +  S2e4('9+h) ( $ ') 2 

+  e4 (ff+fc) +  e49 +  16e4(fc+fc) +  16c4fcj (A .i.3)

The equations of motion are given by

g" = l .e-* 9 - 2 h p g (a/)2 _  4 a2e2g+4k _  ^ 2 &2g +  ^ 2 + ^ 2 g

-  e2 9  (b ' f  -  4b2 e2g -  16e4g+2hg 't i  -  16e49+2hg '&

-  W e4g+2h ( g ' f  + 32e2g+2h+2k -  16e2h+4k -  16e2/l] , (A. 1.4) 

h" = - i e- 29~4h [(a7)2 e49+2h + a4 e2g+4k +  a4 e2g -  4a3 be2g +  4a2 b2 e2g

-  8 a2 e2g+2h+2k +  4a2 e4g+2h -  2a2 e2g+4k + 2a 2 e2g

+  4a2 e2h+4k +  4a2 e2h -  4abe2g -  8 abe2h +  e2h ( b ' f

+  4b2 e2h + 16e2g+4hg 't i  +  16e29+4ht i &  +  16e2g+4h ( t i f

-  8 e29+2h+2k +  e2g+4k +  e29] , (A. 1.5)

k" = I e - 49- 4h \a4 e4g+4k -  a4 e4g +  4a 3 be4g -  4a2 b2 e4g +  8a2e29+2/l+4A:
8 L

-  8a2 c2g+2h -  8 a2 e6g+2h -  2a2 e4g+4k -  2 a2 e4g + 16abe2g+2h 

+  4abe4g -  8 b2 e2g+2h -  16e4g+4hg'k' -  16e4g+4ht ik '

-  16e4g+4hk '&  +  e49+4fc -  e4fl +  16e4h+4k -  16e4/l] , (A. 1.6)

=  I e- 49- 4h [a4e49 -  4a36e49 +  4a2 b2 e4g +  8a 2 e2g+2h -  16abe2g+2h

+  2a2 e4g -  4abe4g +  2 (b ' f  e2g+2h +  8 b2 e2g+2h -  16e4g+4hg

-  lGe4 g+4 ht i &  -  16e4g+4h ($ ')2 +  e49 +  16e4/l] , (A. 1.7)

a" =  e~4g~2h [ - 4 a!e4 g+2 hg' -  2 a'e4g+2h&  + a3 e2g+4k +  a3 e2g -  3a2 be2g 

+  2ab2 e2g -  8 ae2g+2h+2k +  4ae4g+2h -  ae2g+4k + ae2g

+  4ae2h+4k +  4ae2h -  be2g -  4be2h] , (A. 1.8)

b" =  —e~2h [a3 e2g -  2a2 be2g +  ae2g +  4ae2h +  2e2 hb'<f>' -  4be2h] . (A. 1.9)

The boundary case discussed in Section. 3.7.2, associated with setting v2 =  0, is far simpler. 

After setting a =  b =  1 and g = k, the equations of motion for the remaining three background
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functions {k ,h ,  $} are

k" = 2 -  2 e~4k -  2h'k ' -  2 {k' ) 2  -  2k '& ,  

h" = e2k~2h -  2 h'k'  -  2 {h' ) 2  -  2h!&,

=  2e~4k -  2 /i'$ ' -  2 ($ ')2 “  2 (A. I . 10)

and the constraint is reduced to

0 =  {h! ) 2  + 3(k ' ) 2  + 2 ($ ')2 +  + 6 h'k' + 4h '&  +  6 k '$ '  +  e~4k -  e2k~2h -  3. (A .I.11)

A .2 N on-Supersym m etric W alking Solutions

Here we present the equivalent set of IR  expansions to Eq. 3.1.4, for the non-Supersymmetric 

generalisation of the walking solutions defined in Eq. 2.2.12. In the IR we choose an ansatz for 

the expansions of the form (here we have set the IR to be at p \  =  0 as usual)

e2s = E
n= — 1 n = 1 n=2

oo oo oo
g4* =  a = ^ ~yWn)pn , b = ^ 2 [ v n]pn . (A.2.1)

n=0 n=0 n=0

Substituting these expansions into the equations of motion, we find nine independent param ­

eters, which we take to be [<?_i], [h2], [fo], [k3\, [0o], [0i]> [wo], [^ 3 ] and [^2 ]- We relabel 

=  |co , [k2\ =  \cok 2  and [0o] =  e4<̂ °, so th a t we can recover the Supersymmetric case 

Eq. 2.2.12 by making the choices

O A T  O

M  =  N  =  [01] =  0, [w0] =  1, M  =  ^ ,  N  =  - f  (a .2.2)

From now on we will drop the [ ] on the coefficients. After this relabelling, the nine independent 

free param eters are

co, k2, 0o, 0 i, h2, k3, v2, w0, w3. (A.2.3)

We can restrict our expansions further, by demanding an IR  satisfying one of the conditions for 

a background with a ‘good’ type of singularity as discussed in [20]. Looking at the expansions 

for three curvature invariants, the Ricci scalar !R, the Ricci tensor squared and the
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Riemann tensor squared IkM1/Tf7ft/xt'TC7 (or Kretschmann scalar), we see th a t they behave as

*  „  +  o  ( i  ; (A.2.4)+ 4 ( - l  +  w l ) 2 e ^ °  1 +  o  n  

12cg ̂ 2 W'o (e4^°)17/8 ^

m H co™o0i -  co (wo -  I)2 ^pe8</>o0i +  72 (w% -  l ) 4 e16<*° 1 /  1
^  ~  144cfe2u ;« (e^o )17/4 P4 +  U Vp 3 ' ’

320 1 16 ^15tUoCoA:2^i +  16e4<̂ ° ^4wofc3 +  3 /i2 ^ 2 ^  i  f \

^  9 c 2 fc2(e 4^0 ) l / 4  p8 2 ?  ^ ;2c3fc3 ( e 4 * o )5/4^  p 7 +  0  ( .p 6 1 ‘

From these quantities it seems th a t setting wq =  1 and 0 i =  0 will remove the leading term 

in both the Ricci scalar and Ricci tensor squared in the IR. Making these choices leaves them 

both finite, but leaves the Kretschmann scalar unchanged, a t least to leading order. W ith these 

two choices, we now write down the IR expansions,*

c0 1 2 h 2 {h2 k 2  + 2 k3) \  c0  ( ~  n 6/i! +  ^  24/i2
2g =  ^ ~ + ^ o  9 - - -̂ ^  9 f c 2 ~ 9 u ; 3 +  3 P2 +  0 ( p 3),

2 P y3 18cq9A:2 /  18 I co <*>

r  12CqA:2 +  3 /l2^ 2  +  2/12^3^ 1 /  \

e 2h =  — P +  / l2p2 +   ----------------- — — r---------------- --p3 +  -CO ( 1U3 +  f o )  P4 +  0 ( p 5),
* 18co«2 z \  /

o f6cgfc| +  3/i|jfe2 -  h 2 k 2 k 3  + k%)
e2k =  \ c o h f  +  fc3p3 +  k - l i  +  0 (p5),

^ 18co«2
e« - 4*0 =  j +  £ (4  +  3vf) ^  _  ^ ( 4  +  271^)^  +  0(p6)_

2 /  2h2  (3h 2 k 2  +  2fc3)  \
a = 1 -  2p2 +  w3p3 +  -  f 1 5 -^ 1 p4 +  0 (p 5),

o voho .  6  (2 + v2) (%k2  + 4v2 h 2  ( l2 h 2 k 2  -  k3)
6 = 1 +  v2p -  ^ p 3 + ------------------------ — ^ -------------- V  +  0 (p  ). (A.2.5)

co 4 5 c 0 « 2

Thus we have seven independent param eters governing our IR expansions

co, k2, <t>o, k3, v2, w3, h2. (A.2.6)

It is possible to  use these IR  expansions to  find a smooth numerical interpolation to  the gener­

alised UV expansions in Eq. 3.1.9, which contain enough freedom to  match to  these solutions 

which, unlike those discussed in Chapter. 3, are not globally regular. These solutions are thus 

the correct non-Supersymmetric deformation of the Supersymmetric walking solutions.

* N c =  1 in the following to be concise
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A .3 D etailed  C alculation o f th e N on-Supersym m etric B<i

Here we discuss in more detail the calculation of the B 2  field in the non-Supersymmetric setup. 

In the Supersymmetric case, we have

3 4,
B 2  =  [ e P 3  — cosa(e0(p + e12) — sin a (e e 2  +  e^ 1 )J , (A.3.1)

with

cosh(2 p) -  a 2 eh ~ 9  . . „
cos ot = ---- . — , s m a  =  — . , .. . . (A.3.2)

sinh(2 p) ’ sinh(2 p) v '

This is not valid in the general non-Supersymmetric case as although we obtain the same H 3  

as in the Supersymmetric case in Eq. 2.1.14, the relationship to  Eq. A.3.1 requires the BPS 

equations, as does the consistency of the definitions Eq. A.3.2.

Instead, we must determine B 2  by requiring th a t d i ?2 =  H 3. Assuming th a t B 2  has the 

same general structure as Eq. A.3.1

B 2  = b\{p)ep 3  + b2 (p)e0(fi +  b3 (p)e1 2  +  &4 (p)ee 2  +  bs(p)e<fil, (A.3.3)

which results in

c-h - fc - f  (ab3 e9  + 2 b4 eh) 1 9 3  e~h- k~ i  (ab3 e9  +  2 b5 eh) 2 3
ats 2  = --------------- —̂---------------- e H----------------- 7— ---------------- e

/lV4 fcl/4
( 6 4  — 6 5 ) e h 4 co t#

+

h> ! 4
e - 2  9 - f c - f

ee*i

e 
+  -

2 /l5/4
- h - k - i -

2/l5/4

+  e

(e 2* {h  [6 3  ( V  +  $ ')  +  2 b'3] + b3 h '}  +  4M e 2*) e^ 12 

^ b3 e9 ha' — 2 ab\e~9 he2k

h {h  [6 4  ( 2 g' + 2 t i  +  $ ')  +  2 6 4 ] +  M ' } ) ep 0 2

e- h - k - $
-i - — 7--------( b3 egha! — 2 ab\e 9 he2k

2h5/4

+  C" {h  [6 5  (2 g’ +  2 t i  +  $ ' )  +  2 6 5 ] +  h h ' ^ j  epipl 

p-h -k -%  /
+  2 ^ 5 / 4  ( - ( 6 4  +  b5 )e 9 ha'  -  ( a2  -  l )  bxhe2k~h

+  eh { h  [ 6 2  ( 4 / i '  +  $ ' )  +  2 b’2\ + b2 h , y j e p0,fi. ( A . 3 . 4 )
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If we compare this with Eq. 2.1.14, it can be seen tha t the e6<pl component of i / 3  vanishes, and 

this leads us to  find th a t 6 4  =  b5 as in the Supersymmetric case. The ep e 2 and epipl components 

of Eq. A.3.4 are then identical, as are the e1 6 3  and e¥’2 3  components. This leaves us with four 

remaining independent equations.

Equating the (e1^ 3 +  e^23) components results in

1 q h , KNce * r - p- hb' , AOE,
h  = ab3 -----------j p - - ------ , (A.3.5)

and the ep l 2  component gives

e 2 g - 2 k
=

4 h
[2 6 3 $ ' -  3hb3 <f>' -  4hb3 g' -  2 hb'3

+  KNce 3* 2 hh* (a 2 -  2ab +  l ) J . (A.3.6)

This leaves only 6 2  and 6 3  undetermined. Substituting these results back into Eq. A.3.4, we 

find th a t the (ep 6 2  + epipl) component of i / 3  =  d-B2 reduces to  the equation of motion Eq. A. 1.9 

for b. The remaining equation is th a t associated with the ep6(p component. It is a first-order 

differential equation in terms of the functions 6 2  and 6 3  given by

0 =  8 he2 9 +4 Hb'2  +  2 (a2  -  l)  he4 g+2 hb'3  + e2 9̂ +h)h' [(a2 -  l)  e2 gb3  +  4e2 H 2]

+  he2<3+h) [4ae2V 6 3 +  (a2 -  l)e 2s (4g' +  $ ')  6 3  +  462e2/l (4t i  +  $ ')]

-  KNcV k e 3 * / 2  [ - 2 a!b'e2{9+h) +  (a4  -  l)e4g

-  2(a2 -  \)abe4g +  2abe4g -  16e4/l] . (A.3.7)

which can be solved for 6 2  to  give

p —2h—$ / 2  rp ( p - 2 g - 2 h + %  f

h ‘ — l

-  he4g+2h [4aa' +  a 2 (4g' +  $ ')  -  4g' -  $ ']  6 3

+  KNcy /he 3 * / 2  [(a4  -  l)e 4s -  2 (a2 -  1 )abe4g -  2 a'b'e2(g+h) -  16e4/l] |

-  i  (a2  -  1) V h e 2 9 +%b'^J , (A.3.8)

which is not particularly useful. Instead, if we use the fact th a t we want Qpage, D3 =  0 (see

Eq. 3.3.6), we are required to impose th a t the e0 ^ 1 2 3  component of F 5 — B 2 A F 3  vanishes. This
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results in an equation which is algebraic in 6 2  and 6 3 , and results in

62= { e29hi  ^  ~  ° 2 ) 6 3  ~  K 2 (o _  b)b' +4e2<9+,“,$ ' ] } • (A-3-9)

Together with the results of 6 1 , 6 4  and 6 5  derived above, this completes Eq. 3.2.2. We then

check th a t the above form of 6 2  is compatible with the requirement d i? 2  =  i / 3 . Substituting

into Eq. A.3.7, we find th a t 6 3  cancels, and we are left with

0  =  4e4(9+h) { 2 h [2 g '&  +  2 /i '$ ' +  +  2 ($ ') 2] -  2g'h! -  2tih!  -  A"}

+  TV2 [a4 e4» -  2a3 be4 9  +  2(a -  6 )6 "e2(s+/l) +  4(a -  6 )6 'e 2(9+/l)$ '

+  2abe4g -  2  ( b ' f  e2{g+h) -  e4g -  16e4/l] . (A.3.10)

This is solved by the equations of motion for <E> in Eq. A .1.7, and the one for b in Eq. A .1.9.

To further understand the effect of the undetermined function 6 3 , we look a t the difference 

A B 2  =  B 2  — (B 2 )b3 - 0 , which is of the form

A B 2  =  F\ (p) sin 9 dO A dup +  /^ (p ) sin 9 d9 A dip +  F3 (p) cos9 dp A dip

+  F±{p) cos 9 dp A dp  +  F${p) dp A dip, (A.3.11)

where the i* depend on g, <f>, h, 6 3  and their derivatives. If we set this equal to

d ^ i ( p )  cos# d(p + fa ip) cos9 d<p +  (33 (p) dip^ (A.3.12)

we can solve for the j3t , giving

A B 2  = ~ \ d  [e2 g+*/ 2 V h b 3( cos 9 d(p + cos 9 d<p + dip)j

=  ~ d ( e 2 g- k+*/ 4 h 1 / 4 b3  e3)  . (A.3.13)

A .4 A  Seiberg-like D uality

In Section. 3.3.3, we discussed how Seiberg duality acts on our non-Supersymmetric solutions. 

Here we present two cases which will be helpful to compare to, both the Klebanov-Strassler 

and the baryonic branch case.
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A .4.1 The K lebanov-Strassler Case

We follow the treatm ent presented in [73], in the case where we have no flavors (Nf  = 0), then 

the NS B 2  potential is given by,

B 2  = [fgi a  9 2  +  kg3  A g4] (A.4.1)

where the definition of g\, . . . . ,< 7 4  can be found in [73]. W hen we then restrict this to the cycle

£ 2  =  [0 =  0, V  =  27r -  <p, ip =  -0a], (A.4.2)

we obtain th a t

U 2 I =  t t K /  +  k) +  (k — / )  cos V'a ] sin Odd A (A.4.3)
Ie2 2

From this one finds

6a = 4̂ L B2 = v  [/sin2 (t) + fccos2 pr). (A.4.4)

On the other hand (as computed in [73]), the Maxwell charge of the D3 branes is given by

Qm.xw.ii, £>3 =  ^  [ /  -  ( /  -  * ) f ]  ■ (A.4.5)

Under the change

/ - > / - £ .  (A.4 .6 )

the D3 branes Maxwell charge changes by

^ M a x w e ll, D3  £?Maxwell,£>3 “  Ac, 6  A ~ “  1- (A.4.7)

these transformations, are equivalent to changing the NS B 2  potential by a large gauge trans­

formation

B 2  B 2  +  — [<7i A g2  + g3  A <74] (A.4.8 )

which when evaluated on the cycle £ 2 ) produces the changes in Eq. A.4.7. Next, we discuss the 

Supersymmetric baryonic branch case.
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A .4.2 The Baryonic Branch Case

In this case the NS B 2  potential is given by Eq. A.3.1, and evaluating it on E 2 , we get

^ 2 <l>
bA =- [ ( * + / ) +  ( £ - / )  cos ^ a] ,

k + f = -

7T

r  /

N r
(az +  1 ) -  e2h ) cos a  +  a en + 9  sin ah+g

k - f  =
2 $

Nr
e2g h , a
~^~a cos a  + e s in a

Using the explicit expressions given in Eq. A.3.2, we have

,2 $ ,2$
k = —  Qcoth(p), f  =4N c ' 47VC

Then the Maxwell charge for D3 branes can be w ritten as

Q M axw e]J,D 3 =  — e 2 9 + 2 h + 2 ^ ^
7r

and by using the BPS equation for <J>', we find

N?

Q tanh(p)

QMaxwell,D3 =  [2 /  + (k — f ) F J

(A.4.9)

(A.4.10)

(A.4.11)

(A.4.12)

where F  =  (1 — b). So, once again, we obtain th a t under a large gauge transformation,

bA   ̂ bA  1 , ^ M axw ell ,D 3   ̂ ^ M a x w e ll,D 3 N c. (A.4.13)
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A ppendix B

B .l  D iscussion  o f Z

Here we shall discuss the function Z  defined in Eq. 4.1.7, and how it relates to perturbative 

instabilities. Some of the arguments presented here can be found in [93, 97]. S tarting from the 

expression for L  given in Eq. 4.1.5, we assume th a t locally L(po) is invertible, and then rewrite 

it as

=  2/J 0 iPo F(p)
F(p)

L*Vo)J

where the functional % is defined as

%\v) (B .l.2)
Vv2 ~ 1

As we know th a t p >  po and the function F  is a monotonically increasing function, meaning 

DC is real and positive definite. Performing an integration by parts (where the boundary terms 

must be retained), it is possible to  rewrite the derivative of the separation L  with respect to po

as

± L  =  2 Hm M M
dpo pu^ oo F(po)

G (pu) nr \ F(Pu)
dpF (p u ) l F ( p 0)_

+
r P u  

J  Po

dp DC F(p)
F(po)

a , G(p)
df F(p),

(B .l.3)

Under an appropriate change of variables p —> log F, it can be seen th a t the convergence a t the 

upper limit of Eq. 4.1.5, together with the divergence of F,  th a t the quantity (Veffdp log F ) - 1  -* 

0 as p —> oo. Under this condition (which is relevant for all cases we study) the first term  in
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Eq. B .l.3 vanishes (see also the arguments in [94]). Thus we obtain

^  =  2 Urn * & * >  f PV
d p 0 p u ^ o o  F ( p o )  J p o

F { p )
L^(po)J

Z { p ) .  (B.1.4)

By definition F  > 0, and we have already said th a t it is monotonically increasing, meaning 

d p F  > 0. As discussed, X  > 0 and thus we conclude th a t the sign of d L / d p o  is dictated by Z .  

In particular, in order for d L / d p o  < 0, a sufficient condition is Z  < 0. On the other hand, if 

Z  is positive over a certain range, d L / d p o  can vanish or become positive for some values of po .  

There are a number of ways to  argue th a t this indicates the presence of an instability. 

Through a similar exercise for E  the exact relation

(BL5)

can be found. To understand better the stability conditions of the system, it will be instructive 

to tu rn  to a thermodynamic analogy. It is possible to identify the function E  with the Gibbs 

Free Energy S(p, T), where the variable p  is the pressure (we work at constant tem perature T )  

which corresponds to the separation L  in Section. 4.1. Thus it is possible to  recognise Eq. B .l.5 

as simply the statem ent
dQ
- f -  =  V  =  F { p o )  > 0 (B.1.6)
dp

which is positive definite as expected. Further, we know th a t the system will be in the configu­

ration with minimal free energy as a function of the volume V  at fixed p .  This means we must 

single out the solution th a t minimises E ( p o ) .  Additionally, there are also well known concavity 

conditions which S must satisfy

d ^  d 2c>
dp “ °  ~

th a t, using the dictionary back to our setup, can be translated to  be d L / d p o  < 0, which is 

verified for Z  < 0. The conditions in Eq. B.1.6 and Eq. B .l.7 together are the requirements 

for local stability. These coincide with the concavity conditions discussed in [94] for the quark- 

antiquark potential, dual to a string probe which falls into the class of Eq. 4.1.1, and discussed 

a little in Section. 5.2.

In summary, we have presented strong evidence th a t Z  < 0 is a necessary and sufficient 

condition for stability of probe embeddings described by an action of the form Eq. 4.1.1.
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B.2 A R elated  P robe-D 7 Brane Em bedding

In Chapter. 4 we studied an embedding for a probe-D7 brane which chooses a particular set 

of coordinates to be those th a t are transverse. These are the coordinates tha t parametrise the 

manifest S 2  in the metric described by the angles {9, <£>}. In the past, making this choice of 

coordinates to be transverse was of little significance, as the two S 2  within the backgrounds 

had the same behaviour throughout the space. In the backgrounds we study here this is not 

the case, as with the introduction of a non-trivial (baryonic) dimension-two VEV, and the 

symmetry between the two S 2 is broken. W ith this in mind we explore how an embedding 

which chooses the other S 2  (with angles {0, <p}) as its transverse directions behaves.

Following the same steps as with the original embedding we find th a t the corresponding 

functions F  and G are given by

F 2  = F 2  x (M i +  1) =  e4 9 +2 k+2 h+e* (M i  +  ^  ^

G 2  = G 2  x (M i +  l ) 2  =  e49+4k+6* (M i +  l ) 2 . (B.2.1)

We can replace the expressions for the background functions, and write F  and G in terms of 

the functions P  and Q:

#2=F2xUothS)-0+1)’
62=g2x(p7othSr-Q+1)2- ( B ' 2 2 )

We see th a t these quantities are the same as the ones defined in Eq. 4.2.3 up to the additional

piece proportional to  M \  (defined in Eq. 3.3.2). This means th a t we expect for large hi th a t

the behaviour of the embeddings should be the same (as M \  —> 0, as h i —> oo), and (after the 

rotation) we recover the Klebanov-Strassler background. We shall use the same notation as in 

Section. 4.2, in th a t we shall call the angular separation (p, and the energy will be given by E.

We shall only give a summary of the behaviour of the probes in the case where the dimension- 

two VEV takes its largest value, i.e. th a t of the CVMN background and the related walking 

solutions. We shall not present the results of the actual numerical analysis but shall instead 

discuss the effects in a summary similar to th a t seen in Section. 4.5. Plots of the generic 

behaviour of the alternative probe-D7 brane in these backgrounds can be seen in Fig. B .l in 

the same order as the bullet points below.
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• In the CVMN case there are now four branches in this solution. The disconnected con­

figurations are never the minimal solutions of E. The connected configurations have two 

parts, the first of which is a stable branch th a t is preferred for (<p>b = <  <p < tt, and the 

second is an unstable branch th a t is never preferred. The branches only exist for (p > (p\ , 

with (p\ < (pb- Note in this case, there is no param eter in this solution which will change 

the value of (p\. The short configurations, for <p < (pb are the dynamically preferred and 

we thus say there is a bulk phase transition at (pb■ Thus the broken Chiral-symmetry 

phase (associated with the connected configurations) is the physical one connected to the 

field theory.

• Introducing the scale p* <  we find th a t this introduces a new branch in the (<p,E)~ 

plane, which is associated to the IR, bu t beyond this scale we retain the UV behaviour 

of the CVMN case. In this case there are then five branches. The new branch associated 

with the new scale p* is unstable and is never preferred. The short configurations are still 

the preferred branch for <p < <p>b- The connected configurations with po > p* have the 

same behaviour as in the CVMN case, but now have a maximum <p2 < tt, such th a t they 

are preferred only in the range <p& < <p <  <pc. At <pc there is a first-order phase transition 

and the value of <pc depends on p*. For <p><pc there is the Chiral-symmetry restored phase 

as here the disconnected configurations are preferred. At (pb we again have a bulk phase 

transition involving the connected configurations. Thus for <p >  pb we have a model of 

Chiral-symmetry breaking.

• If the scale p* >  ^ , we find th a t there are only three branches of configurations, with the 

connected configurations existing for <p < (pb which are classically unstable, so are never 

preferred. The short configurations exist for (p < (pb and are the dominant (classically 

stable) solutions in this region. Again a t <pj> there is a bulk phase transition such th a t for 

<p > <p>b the disconnected configurations are preferred. Thus we do not have a model of 

Chiral-symmetry breaking as the disconnected configurations are in the Chirally-restored 

phase, and below <pb the system is not related to the field theory.

1

i
!
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EP

<fib
P

7T

P

ir<fib
Figure B .l:  Plots of generic solutions of probe-D7 brane for the alternative embeddings for 
all cases in the wrapped D5 system discussed. On the left-hand side we have plots of P as a 
function of p, while on the right-hand side we have E  as a function of ip in the corresponding 
backgrounds. The connected configurations are given in solid blue (stable) and green (unstable), 
the disconnected configurations given in dotted red, and the short configurations in dashed red 
lines. The physically realised configurations are those with the lowest E  for a particular value of 
(p. We argue that the grey shaded region, to the left of the short configurations, is disconnected 
from the continuum limit, such that these results do not have an obvious interpretation in terms 
of the dual field theory.
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A ppendix C

C .l D5 Branes W rapped on a Three-C ycle

Here we look at the backgrounds presented in [119], and generalised in [120, 121], which are 

dual to  a 2 +  1 dimensional 1ST =  1 Chern-Simons Theory. We start by defining the following 

ansatz, such th a t there are two sets of SU(2) left-invariant one-forms, a 1 and wl (i = 1 ,2 ,3), 

which obey

da 1 = ~^€ijkcrj  A a k , dw% = ~ e i j k W j  A w k. (C.1.1)

Each parametrises a three-sphere, and can be represented by three angles, (9,(p,ip),

a i =  cos xpd9 +  sin sin ddtp, 0 2  =  — sin xpd9 +  cos xp sin 9d<p, <73 =  dip +  cos 9dtp (C .l.2)

and similarly, three angles (9 ,0 , xp) for w, which take a similar explicit form. * Our spheres will 

also be fibered with a one-form A 1. The A % take the form

A i = ^ ( l  + w ) a i (C.1.3)

where w  is a function of the radial coordinate. We can then write down our Type IIB metric 

ansatz (in Einstein Frame), in terms of the following vielbeins,

E x = e * d x j , E p =  e * +9 dp, E e =  — — a 1, E *  =  — — a 2, E*  =  - — a 3,

E ^ ^ i w ' - A 1), E 2  = ^ ( w 2 - A 2), E 3  = ^ - ( w 3 - A 3) (C.1.4)

*The range of the angles here is 0 <  6 , 6  <  i t , 0 <  </?, <p <  27r and 0 < xp, xp <  47r.
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where x J represents the Minkowski metric in 2 +  1 dimensions, p is the radial coordinate, and 

{ /, g, h} are only functions of p. This means we can write the metric compactly as

<*4 = E(£i)2 (ai-5>
i

The theory also contain a non-trivial dilaton 4>. There is also a RR three-form F 3  but we shall 

not require its expression here.

There is a solution generating procedure [122] (similar to the rotation discussed in the case 

of D5 branes wrapped on a two-cycle in Section. 2.1) which takes us from this solution to one 

of Type IIA (with extra fluxes). Here we write the relevant parts, we can write our metric in 

the String Frame using ds2  =  e®/2ds2, then use an S-duality. The S-duality takes

ds2s -> e " # ds2 =  ds2str, F3  -> H 3, $  -> (C.1.6)

leaving us in the common Type II NS-sector. Then after applying the dualities we generate the 

following Type IIA solution

ds2t — h ~ l t 2 dx 2  +  h 1 / 2 ds2, e2̂  =  h}^2 e~2̂ , h = ---- ^ ~  tanh 2 f3
* 7 cosh ^  V /

(C.1.7)

where hatted quantities denote the new rotated solution and the unhatted are the original Type 

IIB functions. Again, we shall not require the explicit forms of F4  and H3 for what follows. We 

can recover the original string frame metric by taking h  —> 1 .

We again read off the relevant quantities to  calculate the Entanglement Entropy as

= 4 * 4 x f t 3 / V ’+3\  H(p) = e - " V ^ ta 2, a(p) = h - 1/ 2, f)(p) = he2s (C.1.8)

and making the appropriate substitutions we find th a t

y/H (p) =  2tt2 x ^ i/2 e35+3/i+2$) ^  =  ^ 1 / 2 eg (C.1.9)

We can now discuss the behaviour of the Entanglement Entropy in each case. For the Maldacena- 

Nastase (MNa) case, we find the same as in the CVMN case (with linear P  =  2N cp), such th a t 

the separation L a  grows with po, and finds a maximum a t L a (po —> 0 0 ) The solution

before rotation initially follows the MNa behaviour in the IR, but then blows up, whereas the 

rotated result (which again follows the MNa result up to  around the same scale as the solution
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before rotation), goes to zero for larger po- This is presented in Figure C .l. 

La Sa

Po

Figure C .l: Plots of the functions L a ([>o) on the left, and S a ( L a ) on the right, for solutions 
associated with the Maldacena-Nastase Background and its generalisation. The MNa background 
is in grey (go = 1), the solution before rotation in green, and rotated in blue (both have go =
1 + 1 (T2).

This means tha t for the Entanglement Entropy, in both the MNa and solution before rota­

tion, the disconnected branch is always the lower than the connected branch and thus we again 

require the short, configurations and cutoff effects. This is not true in the rotated case, where we 

find a behaviour like tha t of a first-order phase transition (thanks to the presence of the warp 

factor h), akin to what happened with the D5 branes wrapped on a two-cycle, after moving the 

system onto the baryonic branch solution.
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