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Abstract

The concepts and behaviours of k -strings and domain-walls are examined in 
higher representations through the scope of the Gauge-Gravity correspondence.

Tensions of strings in a representation of N  -ality k are examined in the strong 
coupling limit. Confining ^-strings are discussed in four dimensional gauge the­
ories using D5 branes in AdSs x  S 5 , and D3 branes in Klebanov-Strassler and 
Maldacena-Nunez backgrounds. Two main results are presented: The first that 
confining ^-string tensions in N  = 4 super Yang-Mills can be calculated using D5 
branes in AdSs x  S 5 with a cut-off in the bulk A dS . It is shown that the D5 brane 
can replicate a string of rank k in the antisymmetric representation. The second 
result shows that the S-Dual calculation to string tensions in N  -  1 super Yang- 
Mills gravity duals reproduces the action exactly, while providing a more natural 
manifestation of the string charge k.

Quantum broadening effects of fc-string objects are investigated in both confin­
ing and non-confining theories. An old result by Luscher, Munster and Weisz is 
generalised to the case of a fc-string. When the fundamental string is replaced by a 
bound state of k strings, the bound state is better described by a wrapped D-brane. 
The width of the k-string (the wrapped D-brane) is calculated in several confining 
backgrounds by using a D-brane probe and a universal result is found. The widths 
of k -strings in A d S sx S 5 are examined via connected world-sheet methods, and via 
the exchange of light supergravity modes, and are shown to disobey the confining 
string result.

The tension of the deconfining domain walls of N  = 4 Super Yang-Mills are 
studied at weak and strong coupling. The fc-wall tension at one loop order is cal­
culated and found to be proportional to k(N -  k), the Casimir scaling. The strong 
coupling calculation is performed by using the Gauge-Gravity correspondence. Ar­
guments are made that the fc-wall should be identified with a 5-brane wrapping an 
S4 inside S 5 in an AdS-Schwarzschild x S 5 background. The tension at strong 
coupling is compared with the weak coupling result.

Preliminary results for tension scaling behaviours for thermal gauge theories in 
two-index representations are presented and briefly discussed.
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Chapter 1

Introduction

“Nothing is more interesting to the true theorist than a fact which directly con­
tradicts a theory generally accepted up to that time, for this is his particular work"

- Max Planck

“Before I came here I  was confused about this subject. Having listened to your 
lecture I  am still confused. But on a higher level.”

- Enrico Fermi

“The only things known to go faster than ordinary light is monarchy, according 
to the philosopher Ly Tin Weedle. He reasoned like this: you can’t have more than 
one king, and tradition demands that there is no gap between kings, so when a king 
dies the succession must therefore pass to the heir instantaneously. Presumably, he 
said, there must be some elementary particles -  kingons, or possibly queons -  that 
do this job, but o f course succession sometimes fails if, in mid-flight, they strike 
an anti-particle, or republicon. His ambitious plans to use his discovery to send 
messages, involving the careful torturing o f a small king in order to modulate the 
signal, were never fully expanded because, at that point, the bar closed.”

- Terry Pratchett, Mort

1



2 CHAPTER 1. INTRODUCTION

1.1 Birth of modem string theory

Following Einstein’s proposal of General Relativity in 1916 as a description of 
gravity, and the formulation of quantum mechanics to describe sub-atomic particles 
in the early 2 0 th century; two highly successful theories of nature, physicists have 
endeavoured to combine them into a single theory, describing both gravity and 
particles. However, there is a problem. Of the four fundamental forces of nature; 
Gravity, electromagnetism, and the strong & weak nuclear forces, all but gravity 
can quite successfully be described by quantum theories. The inclusion of gravity 
into a quantised formalism leads to theories that are unrealistic, i.e. the theories 
produce infinite answers. This is indicative of some unknown underlying physics.

One of the many proposed solutions to this underlying theory was the radical 
idea of string theory. String theory is a theory of not point-like particles, but ex­
tended 1-dimensional objects called, unsurprisingly, strings. These strings live in 
a higher dimensional space, and different vibrations of these strings in the higher 
dimensional space, represent different particles to an observer (or more likely, a 
particle accelerator). The advantages of string theory is that gravity is automati­
cally included in its definition, while the string interactions replicate the particle 
interactions. However, string theory is very difficult to test. The length of these 
strings are very small, and because of this, there are no experimental verifications 
that string theory is indeed a theory of everything.

In 1963, a theory was discovered of combining two of the four fundamental 
forces of nature; the electromagnetic governing photons, and the weak interactions; 
the exchange of W and Z bosons. Towards the end of the 1960’s, attempts were 
made to devise a theory of consistently describing the Strong nuclear force, and the 
myriad of hadrons that had been discovered in particle accelerators the world over.

1968 saw the pioneering insight of Veneziano. He discovered that a combination 
of Euler Beta functions of the Regge trajectories of hadrons, described a scattering 
amplitude that was later determined to be the scattering amplitude of four tachyonic 
open strings. Calculations of loop amplitudes using the ideas of Veneziano lead 
to inconsistencies unless the number of spatial dimensions was 25, which when 
including time, gives a critical dimension of 26. Bosonic string theory was bom.
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By the mid 1970’s, string theory had been pushed aside following the devel­
opment of Quantum Chromodynamics, the quantum field theory of the strong in­
teraction. The vast array of hadrons were no longer described by vibrations of a 
string, but by combinations of more fundamental particles, namely quarks. The 
revelation of QCD completed the set of interactions of fundamental particles, the 
U(l) x  S U(2) x  S U(3) model or, more commonly, the Standard Model. Gravity 
was still unaccounted for.

Following the discovery of supersymmetry in the early 1970’s, in which symme­
tries between bosons and fermions were found to exist, there began a revival in the 
string theory community, with supersymmetric string, or “superstring”, theories. 
Incorporating fermions reduced the critical dimension of the superstring theory to 
10. Originally found in the context of string theory, supersymmetry seemed to be a 
realistic way of looking at physics beyond the Standard model. Could a superstring 
theory be not only a theory of the strong interaction, but be the foundation of an 
underlying theory of all interactions? One issue was the fact that there isn’t just 
one superstring theory, but five.

In the mid-eighties after a number of developments in the superstring arena, su­
perstring theories started to be considered as respectable. One major development 
was the realisation that an N =  1 supersymmetric theory in ten dimensions required 
one of two gauge groups (S 0(32) or E% x E%), and was found to be consistent and 
anomaly free. String theory started to be accepted by the high energy physics com­
munity as a real candidate for the inclusion of gravity into a theory of everything. 
It was during this first “superstring revolution” that the five superstring theories 
were discovered, each requiring 1 0  space-time dimensions to be consistent, and all 
including supersymmetry. The five theories were recognised as Type I, Types IIA 
& IIB, and the Heterotic theories, 50(32) & E% x E%. The heterotic models and 
Type I exhibit N  = 1 supersymmetry (SUSY) in the full 10 dimensions, while the 
type II theories have N =2 SUSY.

It was not until the mid-nineties, the era of the second superstring revolution, 
was it discovered that the five theories along with 1 1 -dimensional supergravity, the 
supersymmetry extension of Einstein’s gravity to which low energy string theory 
reduces to, were all limits of some single underlying 1 1 -dimensional theory, myste­
riously called “M-theory”. Dualities where found that would transform one theory
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£ 8x £ 8 Heterotic SO(32) Heterotic

M-TheoryType I <  M-Theory >  lldSU G R A

Type IIB Type IIA

to another, and back again.

1.2 The dawn of AdS/CFT

In 1997, Maldacena [1] made a bold proposal. He conjectured that an exact 
equivalence exists between Type IIB superstring theory on a 10-dimensional man­
ifold; the product of an Anti de-Sitter 5-space and a 5-sphere, AdSs x S 5 , and a 
conformal field theory, namely the supersymmetric gauge theory N =4 super Yang 
Mills, residing on the 4 dimensional boundary of the AdSs space.

The conjecture states that the coupling constants in both theories are identified: 
T h e’t Hooft coupling of the field theory is related to the radius of the AdSs space, 
V I = R2Ads/a ' while the string coupling constant is inversely proportional to the 
number of colors in the field theory, gs ~ 1 / N . This implies that in the limit 
where the number of colors becomes very large, the string interactions essentially 
vanish, and the string theory becomes essentially classical. This limit is known as 
the Large-AT limit, and plays an important role in the understanding of QCD, as 
discussed below.

The identification of coupling parameters indicates that a strongly coupled gauge 
theory is equivalent to a weakly coupled string theory, and vice-versa. As it is eas­
ier to compute perturbative observables in weakly coupled theories, to work in 
the strongly coupled regime of a gauge theory, one simply performs an equiva­
lent, weakly coupled computation in the string theory. The same logic applies to 
strongly coupled string theories.

It is not simply the identification of the coupling constants between the two the­
ories, but a complete matching of BPS states, symmetries and degrees of freedom.
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In the 12 years since its inception, numerous tests of the correspondence have been 
made, and all have given positive results (See [2] for a review). The AdS/CFT 
correspondence, or more generally Gauge-Gravity duality, was bom.

This was a highly significant development in the string theory community. Since 
the invention of QCD, precise calculations involving quark and gluon interactions 
have always proved difficult. Unlike Quantum Electrodynamics (QED), QCD is a 
non-abelian theory; the gauge bosons (in this case, gluons) interact not only with 
the fermions (quarks), but with themselves. Together with the higher coupling 
constant for QCD, higher order corrections for Feynmann diagram computations 
are larger than the value they are supposed to be correcting!

Inspired by the AdS/CFT correspondence, thought moved to finding a string the­
ory that was dual to QCD. Being able to perform relatively simple weak coupling 
string theory computations that would be equivalent to strongly coupled QCD re­
sults, while modelling other aspects of QCD, including confinement & asymptotic 
freedom, would be a highly sought prize. It seems that describing the strong force 
with string theory has come full circle.

In this thesis, a number of gauge-gravity dualities are discussed. In chapters 
3 & 4, the full AdS/CFT duality is explored, as well as a restricted, confining 
version called Hardwall AdS. Another duality between Type IIB string theory and 
N  = 1 super Yang-Mills is also discussed. In chapter 5, non-zero temperature 
N  = 4 SYM is explored. The gravity dual of this is a gauge theory that exhibits a 
black hole. See the relevant chapters for more detailed information.

1.3 Quantum Chromodynamics

Quantum Chromodynamics, or simply QCD, is a quantum field theory describ­
ing the strong force interactions between fermions, called quarks, and the gauge 
bosons mediating the strong force, the somewhat amusingly named (which seems 
quite normal for particle physicists in modem times) gluons. Both quarks and 
gluons carry a charge, separate from any electrical charge, called “color” (Hence 
chromodymmics). The theory is of the form of a non-abelian Yang-Mills theory. 
The Lagrangian for QCD can be seen belw:
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The indices i, j  are the color indices (i, j  e [ l,N  = 3]) and are implicitly summed 
over. The index I  represents the number of species or “flavours” of quarks, N f = 6. 
The gauge symmetry group of QCD is SU(3), 3 denoting the number of color 
charges; Red, Green & Blue. However, these color charges have never been di­
rectly observed. This leads to the first interesting property of QCD: Confinement.

In QCD, mesons & hadrons are comprised from combinations of quarks; hadrons 
(i.e., protons, neutrons,. . . )  are assemblies of three quarks, or anti-quarks ( qqq or 
qqq), while mesons are comprised of a quark and anti-quark iqq). As the quarks are 
in the fundamental representation, each quark has a color charge Red (R), Green 
(G) or Blue (B) from the 3 triplet, together with anti-Red (R), anti-Green (G) and 
anti-Blue (B) for anti-quarks from the 3. As color charges cannot be directly ob­
served, bound states of quarks in hadrons & mesons must be devoid of color charge, 
a color-singlet state, i.e. colorless. For hadrons, this requires a quark of each color 
(or anti-color), qn qc qB (or qg q$ qg). Mesons require a matching color and anti- 
color quark pair, e.g., qR qg. Gluons, however exist in the adjoint representation of 
SU(3) and are not colour singlets. As the force carrier, they exhibit one of 8  (from 
the 8  representation of SU(3)) possible color states, commonly referred to as the 
octet, each a tensor product of color - anti-color charges.

As discussed above, color charges are never seen in isolation, yet quarks have 
non-zero color charge. This is due to the phenomenon of color confinement. In 
QED, when two electrically charged sources are separated, the force between them 
drops off as an inverse power law, so that sources far apart have very little influence 
over each other. However, in QCD the further apart you take two color sources, the 
greater the potential between them becomes.

Vqq = <rr

The potential increases linearly, proportional to a constant tension, cr. 
Gluon fields mediating between color sources form a string or tube of color flux. 
The further the sources are separated, the longer the tube becomes, and the more 
energy is required to separate them further. For infinite separation, an infinite 
amount of energy is required.
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That is slightly misleading, as this is only true for non-dynamical (infinite mass) 
quarks. In true QCD, if quarks are separated by imparting energy roughly equiva­
lent to the mass of two quarks, the flux tube with break, forming a pair of quarks 
from the vacuum. This is known as hadronisation, and is the source of quark jets 
in particle accelerators, a tell-tale sign of quark interactions.

Another peculiarity of QCD, is the property of Asymptotic freedom discovered 
in 1973 by, and subsequently earned Nobel prizes in 2004 for, Gross & Wilczek and 
Politzer. Asymptotic freedom in QCD is the property that the interaction strength 
of color charged objects get weaker at shorter distance (and accordingly higher 
energies). It’s discovery grew from a calculation on the beta-function of QCD 
(how the coupling parameter changes with varying energy scales). For non-abelian 
SU(N) gauge theories with N f  flavours;

8
167T2

+ 0(g5)

For QCD, the gauge group is SU(3), therefore the index of the representation, 
T(R) = 1/2, while the index of the adjoint representation, T(A) = N  = 3. This 
leaves the beta function for QCD as

/?(«) = - ^ 2  A), f i o  = n - §  Nf

It is clear that the beta-function is only positive, implying increasing coupling 
strength with increasing energy scale if the number of flavours, N f  is greater than 
16. In QCD, this isn’t so, with only 6  flavours of quarks (up, down, top, bottom, 
charmed & strange - another example of particle physicists nomenclature oddities) 
the beta function is negative. The higher the energy of the system, the more weakly 
coupled the interactions become. What is the reasoning behind this weak quark 
interaction at short distances?

In QED, the charge of an electrical source when probed at long distances is 
screened by virtual electron-positron pairs, thereby producing a lower effective 
source charge. This effect is also present in QCD, with color sources being screened 
by virtual quark pairs. However, due to the non-abelian nature of the theory, virtual 
or “soft” gluons are able to pop into existence from the vacuum, and due to their
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color-charge they are able to affect the screening behaviour of sources in a nega­
tive way - they increase the effective charge of a source at long range. This is know 
as “anti-screening”. At short ranges, sources appear weaker, thus forces between 
sources at shorter & shorter ranges becomes asymptotically weaker, with quarks 
becoming effectively free.

Large-N

In a QCD-like theory with gauge group SU(N), the scale of the theory, A q c d  is 
set by the strength of the coupling constant, ars;

_ 2 ;r
5 A)l0g(f2/A.QCD)

With the momentum of the quarks Q, and Aqcd ~ 200MeV, there is no obvious 
parameter about which to expand. In 1973, G. ’t Hooft [3] proposed expansions 
around l/N , where aspects of a theory at finite A can studied much more easily 
in the N —► oo limit, with additional corrections ~ Oil IN). One often quoted 
example, is that in a certain large-N limit, it was found that Feynmann diagrams 
of pure Yang-Mills theory can be classified to overall factors of (1/AO" for some 
integer n. Keeping the combination g2N  = A, the so-called ’t Hooft coupling, fixed 
while taking the N  —> oo limit, classified loop diagrams into genus. Diagrams 
which can be drawn on the surface of a sphere (genus 0 ) will contribute factors 
of 0(N 2), while those that can only be drawn on a torus (genus 1) will contribute 
factors 0(N°), and a general diagram of genus h, have contributions of 0 (N 2~2h).

For example, consider the three loop diagram of pure U(N) Yang-Mills, figure
1.1. Here, two graphs that contribute to the same three loop diagram are shown. 
The first can be drawn on a sphere or plane, and is thus planar. Such a graph 
contributes a factor of (g2N)2N 2 = A2N2. The second however, has a gluon prop­
agating out of the plane. Such a diagram can only be drawn on a surface of genus 
1 at minimum (i.e. a torus), and only contributes a factor of g4N 2 = A2N°. In the 
large-// limit, the second diagram is suppressed by a factor of l/N . The diagrams 
that can be drawn on a plane dominate at large-7/, greatly simplifying computa­
tions. This is known as the planar limit.

As was seen earlier, the large-Af limit is an important limit not only for gauge 
theories, but also for string theories in the AdS/CFT correspondence, where large-
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g4N 4 = (g2N )2N 2 = A2N 2

Figure 1.1: Planar and non-planar graph examples fo r  3 -loop gluon vacuum am ­
plitude in a U(N) pure Yang-Mills theory. Representing each gluon propagator in 
the double index notation, each vertex contributes a fac to r o f  g, while each loop 
provides a fa c to r  o f  N . The middle graph has fo u r  loops i, j, k, & I, giving a factor  
o f N 4, and fo u r  vertices giving g2. In terms o f  the ’t Hooft coupling, this can be 
simply written as A2N 2. This graph can be drawn on a plane, and hence known as 
a planar graph. The right-most graph is non-planar, as the single loop j  crosses 
over itself. There are two loops, i & j, and fo u r  vertices, giving a total fac to r o f  
g2N 2 = A2. This graph is suppressed by 1 /N 2 in the large-N , A fixed  limit.

N  approximations render string theories effectively classical, requiring only con­

sideration of dominant terms, as corrections vanish as ~ (9(1 /N).  The discussions 

in this thesis will be within this arena of la rge-N . It shall be seen later that k -strings 

are very sensitive to the methods of taking N  to infinity.
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1.4 Thesis outline

This thesis is organised into 3 main result chapters, each one originates from an 
original research publication.

Chapter 2: A brief introduction to the concepts of k -strings and their properties 
within the AdS/CFT framework.

Chapter 3: The concepts of string tension computations are introduced, before 
reviewing fc-string computations in AdSs x S 5 . Following this review, tensions 
of k -strings in backgrounds that exhibit confinement are discussed, namely Hard­
wall AdS and N  = 1 super Yang-Mills gravity duals. This chapter is an extended 
discussion of [4].

Chapter 4: Introduction and review of the quantum broadening effect and it’s 
measurement. Attempts at string width measurements in AdSs x 5 5 are discussed, 
and reasoning behind their failings are put forth. Supergravity width descriptions 
in AdSsXS5 are tested, before discussing widths in confining backgrounds, namely 
Hard-wall AdS & N =  1 SYM duals. The confining discussions chapter formed the 
basis of [5].

Chapter 5: The ideas of domain wall tensions at finite temperature are intro­
duced, before investigating the k -domain walls of finite temperature N  = 4 SYM 
in the weak coupling limit. Following the weak coupling result, a strong cou­
pling, string computation is conducted and directly compared with the weak result. 
These results were summarised in [6 ]. In addition, some preliminary results are 
put forward for the tensions of k -walls in weak coupling theories with two index 
representations. These results are to appear [7].



Chapter 2

Introduction to k -Strings

2.1 What is a A; -string?

In the AdS/CFT framework, a quark - anti-quark pair, and the forces between 
them, can be described by a string. The end points of the string, restricted to 
R4, model the quark pair with a force between then proportional to the tension 
of the string, cr. A single string models a single quark pair in the fundamental 
representation.

Figure 2.1: Quark - anti-quark pair represented by the end points o f a fundamental 
string.

If the number of colors, N  of the theory is taken to be greater than 3, then a 
higher string can arise. If one takes a pair of quarks and a pair of anti-quarks, 
between the pairs will extend two strings. In a theory with 2 colors, the quarks 
will form a colorless baryon state, as will the anti-quarks, and the string will break. 
However, for a theory with more than 3 colors, the strings will interact to form a 
bound state of two strings, imaginatively called a 2-string1. In a more general case, 
for k interacting strings, where k e [1, N], k e Z, they will form a bound state; the 
k -string.

’A 2-string object in a theory of N = 3 is equivalent to a fundamental string, due to charge 
conjugation symmetry, which is introduced later.

11
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k -strings are often referred to as higher representational strings, as fcalso repre­
sents the iV-ality of the color representation of the sources. In confining theories, it 
is thought that the tension of a ^-string between sources of N -ality k is independent 
of the representation of the sources, and only varies with the //-ality, k. This is due 
to a screening effect by “soft” gluons. A source with representation of V-ality k, 
can be transformed into a source of any representation with the same //-ality, via 
the emission or absorption of a relevant number of adjoint gluons. As the adjoint 
representations of gluons has A-ality 0, the //-ality of the sources is unaffected. As 
a result, adjoint sources should not exhibit a flux tube between them, as the sources 
would be completely screened. Take for example the expression below:

qVJi (2.1)

A quark in the symmetric representation is able to transform into one in the 
anti-symmetric representation via the emission of a single adjoint gluon.

Via the emission of a maximal number of gluons, the representation of the 
sources will appear completely anti-symmetric at distances ~ A-1, the dynami­
cal scale of the theory. The ^-strings between sources in the anti-symmetric rep­
resentation are considered to be strings in a ground state (or so-called bone-fide 
^-strings [8 ]). Strings in a different representation of the same TV-ality are said 
to be excited, and will eventually decay to the anti-symmetric via gluon emission 
outlined above (see [8-10] and references within). It will be these anti-symmetric, 
ground state fc-string that will be of interest.

2.2 Tensions of k -strings

A highly active area in recent years has been the determination of the properties 
& tensions of k -strings in various theories, both confining and conformal in nature. 
A large catalogue of work exists in both string theory [9-21] and lattice communi­
ties [22-30]. The basis for these works is the scaling of the fc-string tension with 
the number of colours in the theory, N. Why is this important?

As briefly mentioned above, a k -string is a bound state of k fundamental strings, 
giving the k -string a binding energy. The binding energy, and therefore the tension 
of a k -string, cr* has been shown to depend on the //-ality, k of the source probes,
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together with the number of colours in the theory, N. For finite N, erk is less than 
the tension of k non-interacting fundamental strings;

crk < kcrf (2 .2 )

The tension of the k -string, to leading order scales as a function of l/N', for a 
given k, as N  increases, the interactions between the strings in the bound k -string 
become weaker and weaker, such that in the limit where N —* oo, all interactions 
cease, and crk = kerf. It is important to stress that this vanishing of the binding 
energy occurs in the large N  limit when & is fixed. When k ~ O(N), binding effects 
are still apparent. There are two distinct limits of taking N  to infinity here:

N  —> oo, k = fixed 

N ,k —* oo, = fixed

In both limits, semi-classical methods can be used to analyse observables, how­
ever, in each limit the k -string acquires different properties: For N  —* oo, k = fixed 
the k -string becomes a set of k coincident, non-interacting fundamental strings, and 
can be modelled as such, while k -strings in the N, k —■> oo, £  = fixed limit remain 
tightly bound states. This can be seen explicitly by studying Wilson loops.

A k -string tracing a contour C, can be expressed as a Wilson loop operator of 
N  -ality k . For a reducible representation of products of k fundamentals, <R, the 
Wilson loop Wk in the large-TV limit factorises into k coincident fundamental loops, 
with leading order corrections of the order 1 /N  raised to some positive integer 
power.

(Wk) = (Tr = ^Tr *4°° ^Tr = (Wf )k (2.3)

For the ^  = fixed, large-A limit, this factorisation effect is not a viable approxi­
mation. Why is this? In such a limit, the tightly bound 1-dimensional strings “blow 
up” into a higher dimensional object, called a D-brane, via the dielectric or Myers 
effect [31]. This brane is embedded in a transverse space in such a way as to appear 
as a string with charge k to an R 4 observer. It is the details of dimensionality of this
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D-brane, and it’s particular embedding in the transverse space which specifies the 
dependence on the tension to the string charge k. This method of using D-branes 
to describe ^-strings will be discussed in more detail later in this thesis.

There are a number of properties that A:-strings exhibit in the theories discussed 
here, and attempts to model fc-strings should reflect these. As above, the tension is 
highly dependent on the N  -ality, with the binding energy increasing with increas­
ing k/N. However, there is a limit: once k = N, each end of the ^-string forms 
a colourless baryon vertex, and the force between the quarks & anti-quarks, and 
therefore the ^-string, vanishes. In addition, adding a colourless baryon to each 
end of the string should not affect the properties of the string. The addition of a 
colourless baryon, k —> k + N  is a symmetry of the system. The system must also 
be invariant under charge conjugation of the quarks & anti-quarks. Imposing this 
invariance on the system enforces a second symmetry; k —> N - k .  A  ^-string obey­
ing this symmetry will appear to be most tightly bound at k = N/2, the self-dual 
point of the string. Computations of the tension of such strings should reflect these 
properties.

Throughout the literature of tension computations, expressions for cr* generally 
fall into two general forms (either exactly, or closely approximated); Casimir scal­
ing, and the Sine formula [21].

With appropriate normalisation, both scaling behaviours only deviate by a max­
imum of ~ 3%. However, it is not the approximation which is the defining aspect 
between these two scaling behaviours. Performing a large-A series expansion will 
reveal that the Casimir has leading order corrections like O il/N ), while the Sine 
law’s corrections have even powers, <9(1 /N 2). There is a lot of evidence point­
ing to both scaling behaviours for fc-string in many different theories, with lower 
dimensional theories exhibiting scaling behaviours which are better approximated 
by Casimir scaling (e.g. 2 & 3d QCD, 3d reduction of N  = 1 SYM), while string 
approaches are more suited to Sine law-like approximations (e.g. MQCD, softly 
broken N = 2 SYM, N  = 1 SYM).

k (N -k )  „  . . 
cr* ~ ——— — Casimir scaling (2.4)

formula (2.5)
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To correctly model the properties of the /:-string a higher dimensional object is 
required, a D-brane, which is embedded in the spacetime in such a way that any 
R 4 observer will see a string like object with additional properties. This method 
of using D-branes to describe strings was hypothesised in [32,33]. Using D-branes 
wrapping transverse manifolds to model fc-string properties was applied in AdSs x 
S 5 for D3 [16] and D5 [15] branes, modelling symmetric and anti-symmetric k-  
string respectively. This same technique was used for N  = 1 super Yang-Mills, a 
confining theory, via wrapped D3 branes [19,20].

2.3 D-branes

D-branes, or more correctly, Dp-branes, discovered in the mid-nineties [34], are 
extended p  + 1 dimensional objects on which strings can end, and are defined by 
the boundary conditions of these string endpoints. The endpoints of strings that ter­
minate on a D-brane obey Neumann boundary conditions along directions parallel 
to the branes extended directions, while observing Dirichlet boundary conditions 
in the transverse directions.

In Type II string theories, D-branes can couple to gauge fields and form stable 
branes. A n-form gauge field can couple electrically to a Dp-brane of p  = n -  1, 
or magnetically to one of p  = 7 -  n. In the Ramond-Ramond (RR) sector of Type 
II, there are n-form C„ fields, Cj, C3 , & C5 in IIA, which couple electrically to 
DO, D2 & D4 branes respectively. In IIB, Co, C2 , & C4  fields couple electrically to 
D-instantons (a point particle localised in time), D1 & D3 branes, and magnetically 
to D7, D5 & D3 branes respectively. Notice that D3 branes are charged electrically 
and magnetically; the field strength is said to be self-dual. In the Nevez-Schwarz 
(NSNS) sector of Type II, there exist 2-form fields parallel to the brane in question, 
Gab-, Bi, and a gauge field living on the brane F2, together with a scalar, the dilaton 
<D [35]. For an introduction to D-branes, see [36,37], while extensive reviews of 
D-branes and their mechanics can be found in [38,39]
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Chapter 3

A-string tensions

3.1 Intro to Wilson loop & tension calculations

One of the proposed applications of the AdS/CFT was that, in the large-A limit, 
the potential of a infinite mass, static quark - anti-quark pair in N =4 SYM could be 
determined by computing the expectation value of a Wilson loop operator on the R 4 

boundary of AdSs , traced by a single string moving through the bulk space [40]. 
The Wilson loop operator for a Yang-Mills theory is

W(C) = 1-Tr P e^c*  (3.1)
N

with C representing the closed loop on the boundary. The trace is over the 
representation of the string, which in this case is the fundamental representation. 
The ends of the string act as sources of chromoelectric flux, and are fixed to the 
R4 space, while the string can move in the full AdSs * commonly referred to as 
the bulk. As the quarks, separated by a distance L, evolve through a time T, a 
rectangular Wilson loop is traced out (figure 3.1).

From this semi-classical, large-A string perspective, the Wilson loop is described 
by the minimised surface area of the string world-sheet tracing the loop at the 
boundary. The expectation value of the Wilson loop can be expressed in terms of 
the minimal world-sheet action, S :

<W(C)> = <rs (3.2)
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L

Figure 3.1: A quark - anti-quark pair is restricted to the JR.4 boundary o f AdSs, 
and separated by a distance L. They evolve through a time T, tracing a rectangular 
Wilson loop, TL. The string, which is not restricted in the AdS bulk sweeps out a 
valley-like world-sheet, leading to an inter-quark potential linear in L: V(L) =
Va/l.

For theories that exhibit confinement, the action is expressed as the minimised 
area of the string world-sheet 3\, and a pre-factor cr defined as the tension of the 
string:

S 1 (3.3)

This known as the “Area Law” for Wilson loop expectation values. The Wilson 
loop acts as an effective order parameter, signalling confinement in a system with 
an area law behaviour. What does this imply? As the separation, and thus the 
potential of the quark - anti-quark pair increases, so does the size of the Wilson 
loop, along with the minimal area of the string world-sheet ending on the loop. 
Ergo, the energy of a quark pair is directly related to the area of the world-sheet, 
factored with the string tension cr.

Using the Wilson loop as an order parameter for confinement in this way is per­
fectly acceptable for a system with non-dynamical, infinite mass quarks. However, 
for finite mass quarks like those found in real QCD, the Wilson loop area law will 
only hold up to a point. Upon separating a quark pair, an area law effect will be 
manifest until enough energy is imparted to the pair to generate a qq pair from the 
vacuum. At which the string breaks, a qq pair is formed via hadronisation, and the 
area law is lost. At quark separation above this point, the Wilson loop is no longer 
a reliable order parameter. Even though no area law would be present, the theory 
would still be confining.
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In non-confining theories, the area law does not apply. For the AdSs case in 
figure 3.1, the minimised action for the string world-sheet and the subsequent inter­
quark potential are inversely proportional to their separation L.

S = V(L) = (3.4)

The area law is not present, and the pre-factor is no longer a tension, and is 
simply th e ’t Hooft coupling, VI.

For the purposes of this thesis, the pre-factors in both confining and non-confining 
cases will be referred to as tensions, and will be usually represented by cr. This is 
to simplify direct comparisons between the Wilson loop & string width computa­
tions in AdS$ x S 5 and Hardwall AdS$ . However the reader must bear in mind that 
the pre-factor is only strictly a tension in confining theories.

The problem with the method by Maldacena of computing quark potentials & 
string tensions via minimal world-sheet computations, is that it produces infinite 
results. These divergencies are due to the infinite mass of the static quarks. For 
AdSs x S 5 , the infinities can be simply isolated, and only finite parts examined, 
but this is rather ad-hoc. This method was refined [41] by proposing that using the 
Hamiltonian, as opposed the Lagrangian for the string action, automatically reg­
ularised the configuration, and eliminated the infinities due to the non-dynamical 
quark masses.

Although developed in conformal A d S ^xS 5 , these computations have also been 
extended to confining theories [42], and produce the area law effect as described 
above.

Section 3.2 introduces the explicit calculation of the string action for a single 
fundamental string in the AdS$ background.

Section 3.3 deals with the introduction of k -strings into the calculation scheme, 
and how they can be described in AdSs x  S 5 at the large N, k/N  fixed limit by a 6  

dimensional, D5 brane. The brane is wrapped on a 4-cycle in the space transverse 
to the R 4 space-time, effectively acting as a string-like object to any R 4observer. 
This section reviews the computation of [15]
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Section 3.4 introduces some original work, in which the method of [15], out­
lined in section 3.3, is applied to AdSs x S 5 with an Infrared cut-off, so-called 
Hardwall AdS, which is non-conformal. The work produces the expected area 
law behaviour for confining theories, and a ^-string tension like that of normal 
AdSs x  S 5 , with an overall factor related to the IR cut-off. It is shown that the 
ratios of fundamental & ^-string tensions is unchanged from section 3.3. These 
results were published in [4].

Section 3.5 introduces ^-string tension computations in the N =  1 SYM gravity 
duals, where the k -string is represented as D3 branes wrapped on a 3-cycle in the 
space transverse to the gauge theory. The calculations of [19,20] are discussed in 
the NS sector.

Following this review, original work is presented, in which the method of [14- 
lb] is applied in the the S-dual (I.e. the Ramond-Ramond sector) of the N =  1 SYM 
gravity duals. The D3 brane action, and subsequently the fc-string tension, of [19] 
is reproduced exactly, as expected via S-duality. This was published along with the 
results from section 3.4 in [4].

3.2 Fundamental strings

Consider a circular Wilson loop that sits on the boundary of AdSs space, with 
a single string describing the contour of the loop. The ends of the string obey 
Neumann boundary conditions in space-time at the boundary, tracing the loop at 
the boundary, while the string itself is allowed to move throughout the entire AdSs 
space. This system can be continuously deformed via conformal transformations 
to that of the rectangular Wilson loop discussed in section 3.1 [40]. Whereas the 
rectangular loop represents a static quark -  anti-quark pair evolving through time, 
the circular loop describes the creation and annihilation of a non-dynamical quark 
-  anti-quark pair.

Taking the metric of AdS5 in the Poincare patch in units of the AdS radius

c*5« =

ds2 = \ ( d y 2 + dr1 + r^dn2 + dxi + dxt) (3.5)y l  L. 3

with y  representing the AdS radial “direction”. As the fundamental string is 
restricted to only the AdSs manifold, the transverse 5-sphere is a spectator to the
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system and can be ignored. The Wilson loop is parameterised in x\ , * 2  by the radial 
co-ordinate r, and the angular measure 77, where r e [0, /?], and 77 e [0,2n], R being 
the radius of the Wilson loop on the boundary. Let y  and r become scalar fields of 
a variable p, and remain unchanged about rotations in 77. Taking the Nambu-Goto 
action for the string;

S rg . = [ A  V-det(Sab) (3.6)

= - ^ 7  f d p d n ^ i d r r f - K d p y )2 (3.7)

The equations of motion obtained by minimising the action with respect to p  can 
be solved using the ansatz

p = r, R2 = y2 + r2 (3.8)

Using this ansatz, it is clear to see that the string sweeps out a hemisphere world- 
sheet within the AdSs space, ending on the Wilson loop at the boundary. Applying 
this solution to the action gives

1 C2n CR r
S n.g. — ~~z— :R I drj I d r ----------- t- t  (3.9)

2noc Jo Jo ( r 2 — r2)

Integrating over r and 77, one will find that the action is unbounded, due to the 
AdS boundary at infinity. To regularise this, introduce a UV cut-off, by shifting the 
upper integration limit by an infinitesimal value, e; R —> R -  e:

Sn.g. = f R ‘dr 
a  J o0 (R2 -  r2f ' 2 <*'

l + ^ l T e + °(e) (3.10)

It is clear to see where the divergence arises. Ignoring the infinite e term, one 
finds the result to be simply 1 /or', which in units of the AdS radius, is equal to the 
square root of the ’t Hooft coupling, 1/or' = VI.

This truncation of the result seems quite ad-hoc. A more rigorous method of 
regularisation is to perform the computation using the Hamiltonian rather than the
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Lagrangian as the string action [41]. This is equivalent to adding conjugate mo­
mentum boundary terms for each field in the system, in this case, y.

S =  f d 2£ 'H  = f i t  (3 U)

This approach self regulates, and provides the same finite result as eq. 3.10:

__1_ f "  r3___________ Rr _  _J_  CR r _ J_
a ' Jo r R{R2 -  r2)3/2 (R2 — r2 ) 3/2 Jo T R ^ R 2 - r 2 <*'

(3.12)

Thus, the string ‘tension’ for a fundamental string in the strong coupling limit is 
simply o’/  = (o'7) -1  = VX It should be noted that in the rectangular Wilson loop 
computation, the result is yfXTIL. This is consistent, as with a circular Wilson 
loop, both T and L are replaced by the radius of the loop, R, and would cancel. 
Thus the action of a string tracing a circular Wilson loop in AdSs is constant with 
respect to the size of the loop.

In the following sections, it will be shown that a k -string exhibits the appearance 
of a single fundamental string, with a modified, “effective” string tension, depen­
dent on the charge or AT-ality of the k -string, k , and the number of colors in the 
theory, N.

3.3 k -strings in AdSs x S 5

In this section, the tension of anti-symmetric k -strings will be discussed in the 
AdSs x S 5 background, namely the strong coupling limit of N =4 super Yang-Mills 
theory. Tension computations of both anti-symmetric and symmetric fc-strings 
have been discussed extensively in AdSs x S 5 [14—17,43]. The work of Hartnoll 
& Kumar [14], and Yamaguchi [15] will be reviewed.

In these works, it was shown that in the anti-symmetric representation, the on- 
shell action of a D5-brane embedded in AdSs x 5 5 is equivalent to the expectation 
value of a Polyakov/Wilson loop in N  = 4 super Yang-Mills theory. This is anal­
ogous to the Wilson Loop traced by the fundamental string with string tension 
~ W- sin3 6k, with 6k as the embedding angle of the D5 in the transverse S 5.
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In the prescription, a D5-brane probe has two of it’s world-volume co-ordinates 
set in R 2 of A dSs, such that it will appear to a R 4 observer as a fundamental string, 
tracing the loop. The remaining four world-volume directions wrap an 5 4 c  S 5,

the iV-ality of the string, k.

Taking the definition of the AdSs space in eq. 3.5, include the transverse S 5

As previously, y is the radial AdS direction, and r, t j  parameterise the Wilson 
loop (of radius R). The measure dQ^ symbolises the S 5, and for convenience, can 
be re-written as a 4-sphere & an angular dependence, 6 ; dO1 + sin2 OdQ. .̂ Insert 
into this space, a D5-brane, with its world-volume identified as p, <f>, and the S4, 
fX*. 6 is identified as the angle at which the brane, wrapping the 5 4 , sits in the 5 5 , 
0 = Ok. Once again, y  and r are allowed to become functions of p, unchanged about 
rotations in t j .

In the AdSs x S 5 background, there exists a Ramond-Ramond 4-form potential, 
C4 , which satisfies G5 = dC*. As only components parallel to the world-volume 
are important, the relevant part of the 4-form is given as:

This satisfies Ĝ el = dC4e] = 4 sin4 0d6 A dQ^. In addition to the 4-form, an 
electric field exists on the string, T  = Tpn. The action for the brane in the AdSs x 
5 5 bulk is given by the Dirac-Bom-Infeld, (or DBI) and Wess-Zumino terms:

sitting at an azimuthal angle 6* in the 5 5 , which is directly related to the charge or

(3.13)

(3.14)

S Bulk =  S DBI +  S WZ

Tm f d 6f  ̂ d e t(0  + T „ ) -  i r D5f ?rdhT m  (3.15)

Q is the pullback of the background metric to the brane world-volume, & Tds  

is the tension of the D5-brane; expressed as Tos = (2n)5a'3 = fab7' Applying the 
metric and four-form potential, the bulk action becomes:
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Where G(0k) = (§0* -  sin 20* + |  sin 40*), and 9k = 0 = constant. Primes 
denote derivatives with respect to p.

As was first seen in section 3.2, to ensure the action is regularised correctly, 
additional boundary terms must be included in the action (The use of these terms 
to regularise tension computations with branes can be seen in the papers of Drukker 
et al. [16,41]). These terms take the form:

The equations of motion for the bulk action (which are unchanged for the total 
action) are solved by the following assignments for r(p) and y(p);

(3.17)

orprj

(3.18)

Summing these boundary terms with the bulk action, eq.3.16

s Total =  ^Bulk +  SBdy.y +  ‘S’fidy.A (3.19)

= rD5 J d 64 sin4 [ ^ c /2 + r'2) + T*,
1 - 1/2

(3.20)

y i p )  = p; (3.21)

As defined earlier, R denotes the radius of the Wilson loop at the boundary of 
AdSs • Notice how these solutions mirror the solutions for the fundamental string,
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eq.3.8. However, in addition, there are solutions for the electric field strength

The field strength solution is rooted to the azimuthal angle, 0*, in the 5 5 ; the 
angle at which the 5 4 , wrapped by the brane, sits in the 5 5 . The imaginary nature 
of the field strength is due to the Euclidean signature [14]. The solutions provide a 
relation between 9k and the electric charge on the string, k , which is defined by the 
variation of the action with TpJ1.

In [17], Hartnoll provides a general result for antisymmetric Wilson loops in a 
general type IIB background of the form M x  S 5 . Substituting the manifold M  
with AdSs provides the exact solutions produced here (it shall be shown later that 
the string tension is in strict accordance with this general result) Applying solutions 
eqs. 3.21, 3.22, & 3.23 to the total action eq.3.20, and integrating over the brane 
world-volume (Integration over the 5 4 provides a factor of ^ ) ;

Studying this result, and comparing to the fundamental string case in section 3.2, 
it is clear to see that the D5-brane, acting as a k -string, replicates a fundamental 
string with an effective string tension of cr* = sjn 3 with 9k related to k by

In the introduction, is was seen that the tension of k interacting fundamental 
strings was greater than the tension of a single k -string, cry- > <x*. A useful method 
of comparison is to look at the ratio of the fundamental tension and the k -string 
tension;

Tvm — f cos 9k ~, 
P

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

eq.3.23.
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Figure 3.2: Plot o f approximation (3.29) for o’k/crf against k . The k -string tension 
reaches a maximum at k = N/2, and via charge conjugation, k —> N  — k, is 
symmetric about k = N/2.

eric 2N
—  = —  sin3 6k (3.27)
cTf 3n

The expression, together with eq.3.23, satisfies the criteria of invariance under 
charge conjugation, k -* N  - k  and the addition of a colourless baryon to the state, 
k —> k + N. These symmetries of k translate into symmetries about 0*:

6k —> 7r — 6k 6k —> 7t + 6k (3.28)

Noting how 0* is the 5 5 azimuthal angle, it is clear to see how these symmetries 
arise.

Taking the large N  limit, the ratio eq.3.27, will tend to k, as it should. This can 
be seen more clearly using an approximation. Within 3% error for k = 0 . . .  N/2, 
the ratio can be expressed as a function of powers of sin n k /N  [44]:

This is manifestly invariant under k —> N  — k and k —> N  + k. This is illustrated 
in figure 3.2

This expression for the k -string tension is in contrast to the conjectured sine 
law of Douglas & Shenker for softly broken N  = 2 [18,21] where the tension 
can be expressed exactly as ~ sin As seen in the approximation above for 
strongly coupled N  = 4 , additional corrections of sin ^  are required to model
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the dynamics correctly (In the work of Armoni & Shifman [8 ], they show that in 
N  = 1 SYM at the saturation limit, the sine law does not exactly replicate string 
tensions, and higher order corrections are required. However, these corrections are 
highly suppressed, more so than the approximation given here).

As commented upon earlier, the calculation performed here is in direct correla­
tion with the general result of Hartnoll [17], thus showing the application of this 
result to k string tension calculations.

One should be reminded, that the D5-brane description of the k -string is only 
suitable in the large N  limit, where k/N  is kept fixed. At large N, when k is kept 
fixed, 1 /N  effects vanish, the interaction between the strings drops to zero, and the 
case is reached where erjc = kerf.

In section 3.4, this calculation will be adapted to a confining theory, namely 
AdS5 x S 5 with a cutoff in the radial AdSs direction. This background is also re­
ferred to as Hard-wall AdSs •

3.4 fc-string tensions in Hard-wall AdS 5 x S 5

To examine the effect of the k -string tension in a confining background, focus 
shifts to the case of a k -string in Hard-wall AdSs • Hard-wall AdSs is defined as an 
R 4 x 5 5 subset of AdSs x S 5 , that is to say, that a 4d flat space slice is selected in 
the interior of AdSs at a constant value of the AdS radius, y = y \  (An alternative 
description, would be that a system in Hard-wall AdS is considered at the IR cut­
off in AdSs x  S 5). Restricting the computation to this R 4 slice and the transverse 
S 5 , provides an effective confining background, that can be directly compared to 
the non-confining AdSs x S 5 case.

As in the full A d S sx S 5 case, the Wilson loop in this system sits on the boundary 
of Hard-wall AdSs > namely y  = 0 < y \ .  Ergo, the string world-sheet tracing 
the loop at the boundary is split into two regimes. In the range y e [0,yA), the 
string is unaffected by the IR cut-off y \ ,  and follows the complete AdSs solution, 
R2 = r 2 + y2. However, if the radius of the Wilson loop is greater than the depth 
of the cutoff, R > yA, there will exist a second regime, where variation in y is lost, 
namely the cut-off at ya. The world-sheet sits at y \ ,  and forms a disk of radius
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y = 0 (UV)

y = yA (IR)

Figure 3.3: A circular Wilson loop o f radius R sitting at the R 4 UV boundary o f 
AdSs produces an effective loop at the AdS cutoff yA o f radius R \, where R > y\- 
The cut-off at yA acts as an IR cut-off o f the theory, eliminating effects deep in the 
AdS bulk.

Ra, where R2 = R \+  y \-  This is illustrated in figure 3.3. Ultimately, the large 
radius limit of the boundary Wilson loop is to be investigated (i.e. large quark 
separations). In such a case, for a fixed y \ ,  as R —» oo, RA —» R. It is therefore 
sufficient to consider simply the disk worldsheet at yA, neglecting the minimal 
effects at y < yA-

The 9d metric of the Hard-wall slice, in the Euclidean signature with AdS radius 
at unity, is expressed in the Poincare patch as:

d s \  = - j ( d r 1 + r^dij2 + dx% + dx%) + dO2 + sin2 6 d£l2 (3.30)
■'A

Here, y from the AdSs x S 5 metric is replaced by the constant yA, and is the 
position of the R4slice in the AdSs interior. This overall factor of y“ 2 effectively 
acts as a scaling on the background, independent of any dynamics. As previously, 
r, rj re-parameterises x\, X2 in polar co-ordinates, with the circular Wilson loop 
centred at r = 0. Again the S 5 is written as S 4  x S 1.

A D5 brane is inserted into this background, and as in section 3.3, the world- 
volume of the brane is identified as p ,  t j ,  and the S4. As the system is restricted to 
the yA slice, the brane’s degree of freedom in y is lost, effectively identifying p  & 
r. However, for now consider r as simply a general function of p. The Ramond- 
Ramond 4-form potential in the S 5 is unaffected by the selection of the flat-space 
slice, and thus remains unchanged from section 3.3, eq. 3.14.
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The bulk action is again given by the DBI and Wess-Zumino terms, including 
the electric field strength T  = Tpr], and simplifies to:

SBulk, a =  TD5J d 6g | sin4 0k ^ ^ - r /2 + 7 ^  -  iTm  G(6k) (3.31)

Where once again G(6k) = (§0* -  sin 20k + |  sin 4 ^  j, and 6k = 6 = constant. 
It is clear to see, that the only modifications to the calculations of the full AdSs x 
5 5 case are due to the loss of the variation in y. Examining the boundary terms, 
one finds that boundary effects for y vanish (dpy^  = 0 ), leaving simply the term 
relating to the electric field strength;

6S Bulk,
*$Bdy,A, A — Ppn

pri

= -T u f<d 6f
4 q.<jt2 

P’1sir? GkT c

y] ? Ar '2 + T^

i'Fprj G(dk)

(3.32)

(3.33)

Summing both the bulk action and boundary terms, the total action for the 
brane at the cut-off becomes

S Tot, A = S Bulk, A +  ‘S'Bdy.A.A

r2 r'2 sin4 0k
= Tds I d £•fd y l

(3.34)

Still keeping the p dependence of r undefined, the only equation of motion that 
remains is that for the electric field strength;

TPr, = - i  cos 0k r'  (3.35)
A

The dependence of kwith 6k is unmodified from eq. 3.23. This is consistent 
with the argument that the dependence of k on 6k should be independent of the 
cut-off in the AdS region. Application of eq. 3.23 & 3.35 into eq. 3.34 gives
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S Tot, A = Tbs- 7  f d 6g r r '  sin3 6k
y  a

(3.36)

The integration interval is over the complete S 4, as previously, together with 
the flat space area described by r and rj atyA- Integrating over the S 4, and explicitly 
identifying r top:

R \is  the radius of the Wilson loop on the slice yA- For comparison, consider 
the computation for the tension of a fundamental string in the same Hard-wall 
background. Using the Nambu-Goto string action,

Thus, the D5-brane system reduces to that of a fundamental string with a mod-

To complete the computation, the large radius limit is taken to negate the addi­
tional constant term from the AdSs region of the space. Taking the R —» oo limit, 
Ra —■> R. This is interpreted as almost the entirety of the brane world-sheet sitting 
on the flat space slice, while only a very small proportion of the brane stretches 
between y = 0 and y - y \  (i-e. in AdSs )•

S  Tot, A

(3.37)

(3.38)

ified string tension with a A: dependence of the form cr* = sin3 0*.

(3.39)

with the k string tension cr *

(3.40)

In the large R limit, the world-sheet area becomes equivalent to the area of the 
Wilson loop, hence making the area law, and thus confinement manifest. This is 
illustrated in figure 3.4.
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Figure 3.4: A t small R, the total action o f  the brane, S is constant, as the entire 
world-sheet sits in the A dS region. As R increases, the world-sheet gets closer to, 
and eventually touches, the cut-off, y \ .  As R increases further, the action begins 
to increase as the square the radius o f  the world-sheet disk that sits at Va- For 
R  ̂ oo, the radius o f  the disk a ty \ ,  R \  —> R.

As was discussed in chapter 2.1, kcrj > cr* for k interacting strings. Result 3.40 

gives the ratio of the k string tension and the fundamental string tension as;

This is the exact same ratio as was found for the anti-symmetric k -string in 

full A dS 5 x S  5 . This illustrates that the ratios of k -string tension in AdS$ x  S 5 are 

unaffected by the addition of a cut-off to the AdS$ space. This is o f course not true 

of the tension itself (eq.3.40). Moving to the non-conformal theory, the IR cut-off 

scale that was introduced into the AdS bulk becomes an effective energy scale to 

which the tension is now proportional to.

On a technical point, it is interesting to note that even when considering flat 

space in the large R limit, the effect of the electric field at the boundary must be 

included for the expressions to be finite, and thus consistent with those of the fun­

damental string. This may be explained by the R —» co, yA = finite limit being 

equivalent to R = finite, y \  —> 0; (i.e. the boundary). It would seem obvious why 

the boundary effects would be required in this case.

3.5 k  -string tensions in N  -  1 SYM gravity duals

Following the string tension calculations in the Hard-wall A dS  confining back­

ground, focus shifts to a theory more closely related to QCD, while still exhibiting 

a gauge-gravity correspondence in which semi-classical string methods can be em ­

crf in
(3.41)
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ployed. The theory to be utilised is N =  1 super Yang-Mills, and it’s gravity-duals.

Anti-symmetric k -strings in N  = 1 SYM Gravity Duals (hereafter referred to 
simply as N  = 1) at the IR limit, are described by wrapped D3-branes. The ten­
sions of k -strings in N  = 1 was given serious thought in the 2001 paper of Kle­
banov & Herzog [19]. In their paper, the authors use a D3-brane to describe an 
anti-symmetric k -string in both the Klebanov-Strassler (KS) [45] and Maldacena- 
Nunez D5 (MN) [46] N  = 1 SYM Gravity Dual backgrounds 1, following closely 
the method of Bachas et al. [20]. The computations performed are in the Neveu- 
Schwarz - Neveu-Schwarz (or Magnetic) sector of the theory, which contains a 
Neveu-Schwarz (NS) 2-form field, and a chromoelectric field strength, related to 
the magnetic monopole number, parallel to it.

Although differing in nature, both the Maldacena-Nunez & Klebanov-Strassler 
gravity duals of N  = 1 are achieved via the wrapping of N  D5 branes on an S 2 inside 
the resolved conifold, a Calabi-Yau 3-form manifold, CY3 , and allowing the branes 
to back-react on the geometry. As shall be seen, taking the IR limits and making 
a set of specific identifications, the two different backgrounds reduce to R 4 x S 3 

(For the MN background this is an exact reduction, while for KS, this is exact up 
to a ~ 6 % error. This is shown explicitly below).

In section 3.6, the computation of Klebanov & Herzog will be explicitly per­
formed in the MN background, while being carefully reviewed in the KS back­
ground. In section 3.7, an analogous computation to that of Klebanov & Herzog is 
performed: The MN & KS backgrounds are S-dualised, and it is shown that the ex­
act same action can be produced following the method used in section 3.4, without 
the requirement of a a priori selected field strength.

3.6 Tensions in NS Sector

3.6.1 M aldacena-Nunez NS Background

The first background to be considered is the Maldacena-Nunez background. The 
system again calls for a circular Wilson loop to be placed in the R4 spacetime. 
A D3 brane is embedded into the background and is wrapped over two compact

1 The Maldacena-Nunez gravity solution was first discovered by Chamseddine et al. [47], but was 
correctly interpreted as the gravity dual of N =  1 SYM by Maldacena and Nunez [46].
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directions transverse to R4. This allows the two remaining directions to sweep a 
string world-sheet in the R4, tracing the Wilson loop.

In the IR limit, the Maldacena-Nunez background has the topology of R 4 x R  x 
M5, where M5 is an 5 2 -  5 3 fibration. For the D3 brane to correctly wrap the 
transverse space, a 3-cycle is chosen within the 5 2 -  5 3 fibration, reducing the 
system to R 5 x 5 3 . It is the angle at which the D3 sits within the 5 3 that becomes 
related to the world-volume field strength charge, and thus the fc-dependency of 
the system. This is analogous to the 6k angle in the S 5 in the AdSs cases (Sections
3.3 & 3.4). The metric for the 10 dimensional (Euclidean) spacetime is given as:

ds\o - dr2 + r^drj2 + dx2 + dx^ + Na' {dp2 + e2h(p̂  (d6\  + sin 0\d(p2̂j + ^  (a>i -  A, ) 2

(3.42)
Where:

Ai = -a(p)dQi, A2 = a(p) sin6 \d<f>i, A3 = -  cos 0\d<f>\. (3.43)

oj\ = cos \j/d02 + sin 0  sin 02<f0 2 , (3.44)

a)2 = -  sin if/dO2 + cos 0  sin 0 2^0 2 ,

0)2 =  dif/ + COS 02d(f>2

The parameters r, 77, *3  & X4 represent the R 4 spacetime, and p, the effective 
energy level of the system, analogous to y \  in A d S s  • The angles 0 i , 0i & 02 , 0 2  , 
0  parametrise the S' 2 and fibered S 3 respectively. The ranges of the angles being:

01 6  [0, tt], 0] € [0,2n), 02 e [0 , 7r], 02 e [0,2^], 0  e [0,4^).

Within the background, there exists a B2 Neveu-Schwarz (NS) potential, which 
obeys H3 = dB2, and is given by:

Na'
Z?2 = — [0 (sin 0i<20i A d(f>\ -  sin02</02 A d fa )  (3.45)

-  cos 0i cos 0 2 ^ 0 1  A d<f)2 — (d 6\ A o)\ -  sin 6\d<p\ A 0)2)]

To select a 3-cycle in the transverse space for the D3 to wrap, a set of identifi­
cations are made. These reduce the S 2 and fibered S 3 to another S 3 , which shall
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be denoted as S 3. There are two possible sets of identifications, both of which, for 
this computation, provide identical 3-cycles.2 The identifications are grouped thus:

For this calculation, eq. 3.46 will be the identification applied, as in [19].

The background needs to be taken to the infra-red limit. This is applied by taking 
the zero-limit of the energy scale, p  —» 0. In this limit the functions of p  become 
trivial, a(p) —» 1 & e2h(fî  —> 0. Following this running of the system to the IR 
limit, along with the selection of the 3-cycle, the background and Z?2 simplify;

ds2 = dr2+r2drj2+dx%+dx%+Na' dp2 + <TU2 + sin2 T  {dO2 + sin2 &/02)] (3.48)

The D3 is embedded along r ,  t j  (effectively tracing out a flat disk world-sheet in 
R 4), and 9, <f> in the selected S 3, with T  being the angle at which the brane sits in 
the S 3.

A world-volume gauge field is turned on along 9 & <f>, parallel to the NS 2- 
form potential. Let this gauge field be designated by F2 = Fqq. The total energy of 
the D3 brane will have contributions from this gauge field, together with the NS 2- 
form field. These two fields generate the invariant, quantised entity, T  — B'l+'lnF2. 
Ensuring consistency, it is possible to select the gauge field in the form

Here, k is referred to as the “Magnetic monopole number”, and as shall be seen 
below, equates to the string charge. The total action for the brane is given by the 
DBI action

9 = 9]= 62, (f> = 0i = 'In — $2, 2T + ?r;

9 = 9\ =t: — 92, <p = <Pi = (p2, if* —* 2T.

(3.46)

(3.47)

(3.49)

(3.50)

2The symmetry between these identifications is realised as a symmetry in the geometry, and 
moving from one idenification to the other is equivalent to a “flop” in the geometry. See [48] and 
references there-in for discussions on this symmetry.
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S d b i  =  r D3[A Vdet (0 +  r) ( 3 .5 1 )

Where T  = B2 + 2nF2, and Q is the usual pullback to the world-volume. 7 d3 

is the D3 brane tension and is given by 7b3 = 1 /(2n)3a r2. Applying the metric, B2 

and F2, the action becomes.

S = T D3j A  N a 'r  sin#
a (xk 1 \ 21sin4 xP + ------ T  -  -  sin TT

U 2 1 _

(3.52)

Minimizing the action with respect to ¥ , the string charge k is related to the 
azimuthal angle of the D3 in the S 3by

(3.53)

Applying this solution for into eq. 3.52, integrating over 77, 0 & <f>, together 
with the integration over r e [0,/?] (R the Wilson loop radius, as usual);

S =
N . \n k]  CR 

 sin I —  I I 1
n a ' [ wJJo

drr  =
N

2na'
sin

n k
aT

R2 (3.54)

Studying the action, is it clear to see that it exhibits the area law discussed pre­
viously;

S = crkR2; a k =
N  

2n a 1
sin

n k
~N

(3.55)

The result provides a tension similar to the sine law proposed by Douglas & 
Shenker [21]. Taking the ratios of two tensions for differing string charge, kSc k', 
the exact sine law behaviour is revealed.

cr* s in [^ ]
—  = — f4 ^  (3.56)
^  sin [*£]

In section 3.7, it will be shown that this result can be obtained via an equivalent 
method, namely that of section 3.4, in the S-dual picture. Before moving to the
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S-dual case, first consider the fc-string tension calculation in the KS background in 
the Nevez-Schwarz sector.

3.6.2 Klebanov-Strassler NS Background

In the Klebanov-Strassler background [45,49], the same procedure is employed as 
the Maldacena-Nunez background case. The metric is expressed as the product of 
Euclidean spacetime R 4 and the 6 -dimensional Calabi-Yau metric of the deformed 
conifold; with an associated warp factor hip):

ds2 = h(p)-ll2(d^ ) 4 + h(p)ll2ds26 (3.57)

i e 4/3K(p) — * -A dp2 + g2) + cosh2 (g\ + g\) + sinh2 (g\ + g\)ds6 =

where

K < P ) -  2> /3  s t a h p  ( 3  5 8 )

and gi are angular 1-forms. These are given as:

1 ,
81

V2
1 ,

82 =  -7=0
V2
1 ,

83
V2('
1 ,

84 = —p(<
V2

85

+3̂II= d\J/ + COS 0\d<pi+ COS #2^02

Working in units of gs, the warp factor [49] is h(p) = 22̂ 3e 8/3 (Na ') 2 lip), 
where

I(p)=  [ " dx * coth* ~ 1 [sinh(2jc) -  2jc] 1/3 (3.59)
Jp sinh x

Applying the identifications used previously, eqs.3.46; namely 6 = 6 \ = 62, 
$ = <f>i = In  -  <f>2, & 0  -> TV + j i ,  while taking the IR limit (p —> 0), the 
functions h(p), and K(p) are found to become constants:
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K(p —> 0) = (2/3 ) 1/3 

h(p->  0) = a0iN a')222l3e~m

Thus causing the metric to simplify to

64/3
ds2 = —rjz-----------(dx2)4 + Na'b \d\f/ 2 + sin2 if/idG2 + sin2 6d<f>2)1 (3.60)

aQ 2  l^ N a '

The metric collapses to a R 4 x  5 3 slice at p  = 0. For notational convenience, 
b = | ^ a j /2, where

r X  COth X  — 1 .  1/1 n
d x  r [smh(2;c) -  2x] ' «  0.71805

s i n h  jc

Thus « 0.93266 [19,49]. There also exists a Nevez-Schwarz 2-form potential 
within the background, B2, which satisfies # 3  = dB2, and is expressed as:

B2 = N a ' ¥  -  i  sin(2*F) sin0d0A*/0 (3.61)

As previously, a magnetic field strength in 6 & 0 is also turned on, F ^ , and is 
parallel to the 2-form potential B2

k
Fqq = - -  sin 0d0 A d<p. (3.62)

The D3-brane that will trace the Wilson loop is embedded in the background 
with world-volume co-ordinates in the R4along r and 77, and wrapping 6  & <p in 
the transverse S 3 , again with as the angle the wrapped brane sits in the S 3. 
Integrating the DBI action over the world-volume;

S dbi =  7d3Jd*( V det(£7 +  T )

= " 0 i f  f i r —  7 \ l b2 s in 4  y  -  I  sin 2Y -  (3.63)2 / 3 / <r/2 \  \  2 W /
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The equation of motion for *F provides an expression for k :

^  y  + i(fc2 -  1) sin 2*F (3.64)

Notice how the action, eq.3.63 is equivalent, up to an overall factor, to the 
Maldacena-Nunez computation, eq.3.52, when b = 1. Although not completely 
solvable, applying the solution, eq.3.64 to the action, the tension can be expressed 
in terms of *F;

5 = I S S 5  V i W T  + sin*? (3.65)

<rk ~ sin*F Vl + (b2 -  l)cos2xF (3.66)

As for the MN background, the action once again exhibits an area law, as ex­
pected. The action and tension are also invariant under charge conjugation and 
additions of colourless baryons. Although not manifest, these symmetries are vis­
ible from the symmetry of 'F around n/2, *F -* n -  'F is equivalent to k —» N  -  k. 
This is more clearly visible if the approximation is taken that b is exactly 1 (i.e., 
MN background case).

In the next section, the S-dual case of the calculations considered here will be 
discussed, namely tension calculations in the Ramond-Ramond sector. The compu­
tation will show that while being non-trivially equivalent to that in the NS sector, 
identical dynamics, tensions and numerical factors can be reproduced in a more 
endogenous regime.

3.7 Tensions in RR Sector

In this section, the resultant actions for the wrapped D3 branes in section 3.6 will 
be replicated in the after performing an S-duality on the N - 1 dual backgrounds.

S-duality

S-duality, or more informatively, strong-weak duality, is an equivalence be­
tween two theories (in this case, string theories), one at weak coupling, the other 
strongly coupled. S-duality maps the properties of a theory with coupling g, to 
a theory of coupling 1 /g. The duality operation also exchanges topological and
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local charges, mapping fields between the electric (Ramond-Ramond) and mag­
netic (Nevez-Schwarz) sectors. In the N  = 1 duals, the NS 2-form field is trans­
formed into a Ramond-Ramond 2-form potential, along the same directions at the 
NS 2-form. The chromoelectric field strength of the NS-NS-sector, associated with 
the magnetic monopole number, is replaced by a field strength in the R 4, and be­
comes related directly to the electric charge of the k -string. S-duality also affects 
the branes that exist in the background. NS5-branes in the magnetic sector are 
mapped to D5-branes in the electric sector, fundamental strings map to DO branes 
(1-dimensional branes - string-like), while D3 branes map to themselves.

The MN background computation will be discussed in detail, to allow direct 
comparison with section 3.6.1, while the KS background will be discussed briefly.

3.7.1 Maldacena-Nunez RR Background

The action of S-duality on the background metric introduces an overall factor 
related to the dilaton field, O, while the remainder of the metric remains unchanged.

The factors A; and remain unchanged and are those given in eqs. 3.43 & 
3.45. As discussed earlier, the Z?2 NS field transforms into a C2 Ramond-Ramond 
potential, which obeys F 3 = dCj, and is given by:

Notice that this is identical to the NS B2 field previously. Applying the identifi­
cations (3.46), and taking the IR limit, the metric and C2 simplify to:

Na' [dp2 + e2h(p) (dO2 + sin M 0 2) + i  (<uf -  A,)2j (3.67)

C2 = ——  [0 (sin 9\d0\ A d<P\ -  sin 02d02 A d<p2 )

-  cos 9\ cos 02^01 A d(p2 -  (d9\ A o»i — sin 9\d<f)\ A 012)]

(3.68)

ds2 = dr2 + r2dTi1+dx2+dxl+Na' [dp2 + d¥ 2 + sin2 T  (dO2 + sin2 0d<f>2)] (3.69)



40 CHAPTER 3. K-STRING TENSIONS

C2 = N a' -  i  sin 2'1'j sin 6 d0 Ad(p (3.70)

In the IR limit, p  —» 0, the dilaton, O tends to a constant. For convenience, the
fl>

system is expressed in units of gs; (gs = e? = 1). In such units, two S-dual theories 
operate at the same coupling scale (g* = £ =1).

5 S

As before, the D3 world-volume is set along r, tj, 6 ,  & <f>. An electric field is 
turned on, that runs along the length of the D3 in the R 4 spacetime. The field 
strength F ^  acts as a measure of the chromoelectric flux travelling along the 
“string” in R4. This field strength is transverse to the field strength in the NS 
case.

The action governing the D3 brane includes the same DBI term, plus an addi­
tional Wess Zumino term:

Bulk = SDBI + Swz (3.71)

= Tmfd*{ Vdet (0 + r>- iTD3 fd*( Cl A f

As there is no B2 field, *F consists only of field strength components, therefore 
T  -  Ina'Frrj. Due to the Euclidean signature [14], the field strength is imaginary, 
so let Fhj —> iF. Applying the metric, C2 and F;

S Bulk = TD3N a 'J i%  sin 0 sin2 'F Vr2 -  4n2a '2F2 + 2na'F  i  sin 2 t |

(3.72)

As was performed in the AdSs x S 5 and Hardwall AdSs computations of sections
3.3 & 3.4 respectively, to find the string charge, k, take the variation of the action 
with respect to the field strength.

* = 2 * 5 -  = TmNa’ fd i sine + 2na' L  _ 1 sin2<iA
6F  J  Vr2 -  AiO-a^F1 \ 2 /

(3.
Finding a solution for F  in terms of k :
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( ¥ -  \ sin 2 ¥ ) - ^

' ^sin4 *F + [('F -  \ sin 2'P) -  $  ]'
F  =

7not
(3.74)

This a more natural expression for F  than that of the magnetic, NS-NS sector 
[19], as there is no freedom in this choice for F. Using this expression, the bulk 
action, Eq.(3.72), becomes;

N
Bulk = 2n2a4drdrjr

sin4 ¥  + [OF -  \  sin 2¥) -  $  ] (*F -  \  sin 2'P) 

^/sin4 *¥ + [OF -  \  sin 2 ¥ )  -  f  ] 2

(3.75)

As above, to correctly regularise the action, a boundary term for the field strength 
is required.

1 Bdy
^4^ ^Ffiuik 

6F
(3.76)

N C. .  t ”k \  [('P -  i  sin 2 ^ ) -

sin4 S? + [(¥  -  ± sin 2 T) -  f  f

Adding the bulk and boundary terms together, and integrating over the Wilson 
loop, r, & 77, the total action becomes:

s  Tot = S Bulk + S Bdy

■*R r 2 n

(3.77)

N
In2 a

N
2na'

- I *  f' Jo  Jo
drjr -i I sin T  + /vrt 1 • r\ »rr\ 7[kO F- - s m T ¥ ) -  — 

2 A

nk
Rz \lsin  *F + | OF -  -  sin 2*F) -  — (3.78)

Applying the solution for k , from the NS-NS sector, eq. 3.53;

N  ■) . nk 
S ™ = M R S m N

(3.79)

the total action in the R-R sector reduces identically to the total action in the 
NS-NS sector, eq.3.54. It can be seen that the action of S-duality on the system
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leaves not only the dynamics, but the entire action and numerical factors unaffected. 
Before discussing further, briefly consider the ^-string tension in the Klebanov- 
Strassler background, Ramond-Ramond sector.

3.7.2 Klebanov-Strassler RR Background

In this section, the k -string tension computation in the KS background in the RR 
sector will be briefly outlined, and shown to be identical to the NSNS sector result. 
Under S-duality, the background metric, eq.3.58 is unaffected. The field content is 
however: The NS 2-form field is replaced by a Ramond-Ramond 2-form potential, 
C2 , that obeys F3 = dC2. The Ft, is expressed as:

F 3 = N a' [g5 A g3 A g4 + d {F(p) (gi A g3 + g2 A g4)}] (3.80)

where g, are the angular 1 forms found in the metric, eq.3.58. The function 
F(p) interpolates between 0 and 1 /2 in the IR and UV limits respectively.

Again, working in units of gs = 1, and taking the usual angular identifications, 
the metric and C2 simplify in the IR limit to

ds2 =

F3

C2

(dxi + dp2)
64/3

al0/22V3Na>

+ Na'b [(TP2 + sin2 ^(dO2 + sin2 0d<f>2)\ 

dC2 = N a '[  1 -  cos(2T)] sin OdO A d(f> A dT

= Na' T  -  i  sin(2'F) sin OdO A d<p

(3.81)

(3.82)

(3.83)

Embed the D3-brane with world-volume co-ordinates along r, 77, 6 & <p, again 
with T  as the angle the brane sits in the S 3. Turn on an electric field strength in 
r and 77, Fn], which is set as imaginary, as before, due to the Euclidean signature;

iF.

Before any computation is attempted, one can see that the construction is almost 
entirely equivalent to that in the Maldacena-Nunez case. Computation of the DBI 
and Wess-Zumino actions, plus an additional boundary term for the description of 
the electric field at the boundary, reproduce the exact result obtained via the S-Dual 
arguments, eq. 3.63
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1 e4/3 r
S™ = 2

,4 /3  d2 I /  t _  r .\2

= 2W 3l,3f a t t ,i f s'n4 ^ ( ^ 2 S' " 2 T - ? )  (185)

The reader should note two points of interest here; firstly the ^-string action and 
subsequently the dynamics are invariant under S-duality, as expected. Secondly, 
there are some interesting technical differences between the computations.

It is easily seen that the S-Dual calculation reproduces not just the dynamics 
of the action, but the exact numerical factors. As expected, the dynamics of the 
^-string, moving between sectors is unaffected, and as the system is considered in 
units of gs, it is also comforting to note that the exact overall numerical factors 
arising from the world-sheet dynamics are also left invariant.

What is also of interest here, is how in the RR sector computations, the world- 
volume electric field strength on R 2 c  R 4 is determined, not a priori as with the 
NS sector method, but directly from the variation of the world-sheet action itself.

3.8 Discussions

As demonstrated in this chapter, k-string tension computations in various con­
fining backgrounds are not universal. They appear to be of very similar forms, 
namely exact factors, or approximations of sin(nk/N). This is true not only for the 
results in this thesis, but backgrounds (MQCD, softly broken N  = 2 , . . .) .  There 
is no reason why the tensions should be universal across various theories. What 
about universality between conformal & non-conformal theories?

For fc-strings in Hardwall AdS, the ratio of tensions, eq.3.41 is identical to that 
obtained from the full AdSs x S 5 background. Is this a universal result? Should 
the ratios be the same from a conformal model and a non-conformal modification? 
Moving from the conformal case of AdSs x S 5 , where there is no area law effect, 
and no string tension in the strict sense, to a non-conformal model where the Wil­
son loop as an order parameter signals confinement, naively there is no reason to

. 0  . A 1 . nk 2
b sin \f/ + (if/- - s i n  2 ^ ) -  —

i/i.
(3.84)
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generally expect the ratios of cr’s to remain universal. However, looking closely 
at the technical method of determining the fc-string tension, one will find that to 
impose a scale on the conformal system required an ER cut-off in the AdS region 
of space, while the k & N  scaling behaviours arise from dynamics in the transverse 
5 5 space. It would seem that the factorisation of the k & N  scaling dynamics and 
the string world-sheet dynamics was unaffected by the application of the IR cut-off, 
and the k dynamics in the transverse space were unaffected.

It would seem that provided the k & N  scaling dynamics were unaffected by 
the application of a non-conformal limit or cut-off, and the world-sheet dynamics 
remained decoupled from the k scaling, it would seems plausible that the invariance 
of the ratios might hold moving between conformal & non-conformal phases, but 
this is not guaranteed.

As was seen in section 3.5, the minimised action and subsequent dynamics of 
the ^-string in N  = 1 SYM Gravity dual theories was invariant under the action of 
S-duality on the systems.

Of interest in this section was not only the invariance of the models results under 
S-duality, which is not only expected but required, but also the dynamics of the 
world-volume electric field strength on R 2 c  R4 in the RR sector. The world- 
volume field is determined directly from the variation of the world-sheet action, 
and not prior to the minimisation of the action, as with the NSNS sector. This 
seems a more natural way to introduce the k scaling behaviour to the system, than 
via the requirement of gauge invariance within the DBI action [20]. The method of 
determining the string charge here seems more endogenous, and less manufactured 
as the gauge invariance argument suggests.

What is also intriguing is how in the RR sector computations, boundary terms 
are required to correctly capture the dynamics, and eliminate divergencies due to 
the non-dynamical quarks. This was seen in the computations detailed in section
3.3 & 3.4. In the NS sector discussions, no such boundary terms are required. 
Regularisation must be performed in another intrinsic way.

In addition to the Af = 1 computations outlined here, attempts were made to em­
bed NS5 and D5 branes in the MN background in an attempt to model ^-strings
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of representation different to the anti-symmetric. The computation called for addi­
tional wrapping in the space transverse to R 5. The NS5 brane method achieved a 
constant result for the action, independent of the string charge k, or the angle of em­
bedding, T. For the D5 brane complications arose as it was found the determinant 
of the 5 2 & 5 3 in MN vanish in the infrared limit. Electric fields were inserted in 
the space in an attempt to prevent this collapse, however no sensible results could 
be obtained. It may be that 6 dimensional brane structures in this background are 
unstable, or simply do not correspond to a representation of the Wilson Loop. This 
area is left open for future work.
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Chapter 4 

/c-string widths

4.1 Intro to width & correlator calculations

The idea of a “width”, or by the more revealing name “quantum broadening”, 
of a string was first seriously discussed in the 1981 paper “How thick are chromo­
electric flux tubes?" of Luscher, Munster & Weisz [50], They propose a method 
of measuring this broadening effect by evaluating the chromo-electric field density, 
*P(?c), above that of the vacuum, of an infinitely heavy, non-dynamical quark - anti- 
quark pair. The measure of the width is defined as follows:

s2 = f p & M  ( 4j )
f  dx±P(jc)

The electric field density of the quarks is evaluated over all transverse direc­
tions, jcj. to the flux tube.

For a confining theory, the flux tube is expected to be a localised object (quark 
separation being larger than the scale of the theory, i.e. Aq c d ) ,  with the width 
growing slowly with increasing quark separation. For non-confining theories, the 
“flux tube” acts like a dipole, with a width increasing as the square of the separa­
tion. Examples of both confining and non-confining string widths shall be shown 
later in this chapter.

Luscher et al performed width calculations in 4d flat space in the strong coupling 
limit on an SU(2) lattice model (modem lattice investigations include [51]), and via 
string arguments. They proposed that the energy density can be expressed as the

47
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Ri

x \ ,x 2w
*3

w 2
\Ri

Figure 4.1: Circular Wilson loops, *W\ & *W2 o f radius Ri & R2, sit at the origin 
in the x\, x2 plane, and at *3  = 0 & xj = L respectively.

correlation function between a pair of Wilson loops. As the point of interest is the 
string model, and shall be used as a basis for later calculations, consider the system 
of two circular Wilson loops.

Take two, circular Wilson loops, *W\ & "W2 , of radius R\ & R2 respectively, in 
the 2 d plane x\, x2, but separated by a transverse distance, L, in the x$ direction. 
This is illustrated in figure 4.1. Let *W\ represent the creation and annihilation 
of the quark pair, and when taking the R2 > 0 limit, rW2 represents an electric 
field strength operator, F2. For the string model, the correlator is described by the 
minimal surface area of the world-sheet of a closed string propagating between the 
two loops. In a 3 dimensional system, the minimal area forms a catenoid, and has 
the topology of an annulus.

For such a system with minimal area A (L ) and string tension <r, the energy 
density is given by the following correlation function

(4.2)

Such a computation, in the large quark separation limit, namely R\ & R \/R 2 -* 
oo provides a width which grows logarithmically with R \/R 2, to leading order in

Ri-

I .2 = ^ \ o g { R l /R1) (4.3)

Notice that the width is inversely proportional to the tension of the string.
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L < L . L >  L.

Figure 4.2: Connected (L < Lc) and disconnected (L > Lc) worldsheet phases o f 
the Wilson loop correlator in AdSs.

A natural area to experiment with this computation is within the AdS/CFT corre­
spondence. In the works of Zarembo [52], and Olesen & Zarembo [53], the Wilson 
loop correlator in AdSs x 5 5 is discussed from an analytical perspective. However 
a problem is encountered.

Using the configurations seen above, and applying them to an AdSs space, it is 
found that as one takes *Wi to infinite extent, the minimal surface solution is found 
to become inconsistent at some point. In fact, as any one, or combination, of the 
parameters (L, R\, R2) of the system is taken towards infinite extent, the solution 
encounters inconsistencies at parameter ratios of around 1 - 2  orders of magnitude. 
This would sound the death knell for the AdSs Wilson loop correlator, was it not 
for the Gross-Ooguri, or string breaking phase transition [54].

In AdSs > when *W\ & 'W2 are separated by a small distance L ^  R \,R i, the 
global minimum of the world-sheet is the connected phase, stretching between the 
loops. However, as L increases, a critical point is reached L = Lc, above which the 
connected world-sheet breaks into two world-sheets, each tracing one of the loops. 
The topology changes from the annulus to that of two disks. This is illustrated in 
figure 4.2. In the disconnected phase, the correlator is described by interactions via 
the exchange of light supergravity modes between the world-sheet surfaces.

Moving through the parameter space, the correlator in AdSs will encounter the 
Gross-Ooguri phase transition, before reaching the inconsistency. In the work of 
Greensite & Olesen [55], the width of strings in the AdSs /CFT are discussed from
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a numerical perspective. The inconsistency in AdSs is again found, however taking 
the limit of an R 4 slice in the AdSs bulk, and evaluating the correlator, and hence 
the width, the general result of Luscher et al. [5 0 ]  is found.

It was not until Gliozzi et al. [5 6 ]  that the quantum broadening effect was applied 
to higher representational, k -strings. They proposed that the width of a A: -string 
required a Wilson loop correlator between a set of k co-incident Wilson loops, and 
a single probe loop. Their conclusion showed that the k -string width is independent 
of A, as the fundamental loop couples to one of the A coincident loops, while the 
remaining A -  1 loops are spectators to the system. There are two significant issues 
here; one of limits, and one of suitable probes.

Consider first the case of limits. As was discussed in chapter 2, there are two 
large N  regimes that can be explored for a string of TV-ality A; A, TV —> oo, k/N  fixed 
& TV —» oo, A fixed. In the k/N  fixed limit of large N, the A -string is represented as 
a wrapped D-brane, whereas in the A fixed limit, the A -string is expressed simply 
as a collection of A co-incident, weakly interacting strings. The work of Gliozzi 
et al. falls into this second regime. A complete investigation of a A -string width 
requires consideration of both limits.

A second, more concerning point, is the selection of probe. What type of probe 
should be used in calculating the A-string width? There are two main choices; the 
use of a fundamental probe, or a probe in the A th antisymmetric representation, 
just like the A-string itself. The width will be dependent upon the type of the probe, 
so the aim is to find which is the most “physical” probe.

Consider the two point function, representing the connected world-sheet;

m  ( A m  ( / »  conn. (4.4)

namely *W\ being TV-ality A and the probe loop <W/2 in the fundamental repre­
sentation. Considering the large N, fixed A limit, *W\ can be expressed as the A-th 
tensor product of the fundamental representation (A coincident loops), namely that 
equation 4.4 takes the form

W  ( / ) ] *  -Wi ( / ) >  conn. ( 4 .5 )

At large-TV, the correlator can be factorised, 4.5 becomes
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k m  m  ( / )  W 2 ( / ) > conn. (4.6)

Notice that the probe connects to only one of the co-incident loops in *W\ , while 
the remaining k -  1 loops become spectators to the correlator. Thus, if the probe 
Wilson loop is in the fundamental representation, it will necessarily “see” only one 
constituent of *W\ at a time. This leads to the conclusion that the width of <Wi is 
the same as the width of a Wilson loop in the fundamental representation. This is 
exactly the case in [56].

Alternatively, consider a probe of A-ality k, again in the large N, fixed k limit. 
In such a case the two point function 4.4 is replaced by

m  2 m conn. (4 .7)

At large-A this takes the form of

< m  (/>] * I'Wi (/>] *>««..=h w  co w 2 ( / » l  (4-*)

Here, the probe interacts simultaneously with all the constituents of the ^-string 
and the resultant measurement is that the fc-string is a factor of k narrower than the 
fundamental string. Namely, cr in equation 4.3 is replaced by kcr.

Motivated by the above analysis, a system of a fc-string with a probe loop in 
the same representation, in the limit of k, N  —> oo, k/N  fixed is considered. This 
enables the width of the ^-string to be measured, and not the width of one of its 
constituents, ergo determining the true nature of the string width dependence on 
the A-ality k .

Section 4.2 reviews Wilson loop correlators via connected string world-sheets in 
AdSs x S 5 for fundamental strings, following the paper of Olesen & Zarembo [53]. 
By taking one of the Wilson loops to the probe limit, the connected world-sheet 
is shown to undergo a Gross-Ooguri phase transition before reaching a point at 
which the string equations of motion become inconsistent, thus saving the model. 
The inconsistency argument is briefly discussed with extension to the case of the 
fc-string.
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Motivations & discussions are made as to the suitability of probe loops of dif­
ferent representations, before disconnected Wilson loop correlators from light Su­
pergravity mode exchanges are examined and used to determine string widths in 
AdS5 x  S 5 after the Gross-Ooguri phase transition.

In section 4.3, original work is presented. The method of Luscher et al. [50] is 
employed to determine the fundamental string width in Hard-wall A d S s  briefly, be­
fore expanding to the fc-string width computation in Hardwall AdS using wrapped 
D5-branes. Finally, in section 4.4, the work of section 4.3 is extended to deter­
mine ^-string widths within N  = 1 gravity dual backgrounds. These two sections 
of original work were published with A. Armoni in [5].

4.2 String widths in AdSs  x S 5

4.2.1 Fundamental String Correlator in AdSs x  S 5

In this section, the paper of Olesen & Zarembo is reviewed [53]. The minimal 
surface Wilson loop correlator in AdSs x 5 5 will be examined, in an attempt to 
determine the flux tube width in the fundamental representation. However, it will 
be shown that it is not possible to form a Wilson loop correlator in AdSs via a string 
worldsheet for general loop size and transverse separation.

Consider again the setup of section 4.1, namely two concentric, circular, spatial 
Wilson loops, *Wi & *W2, of general radii R\ & R2 respectively, separated by a 
transverse distance L (visualised in figure 4.1). To calculate the minimal surface 
area of the worldsheet that stretches between the two loops, employ the Nambu- 
Goto string action, minimise, and find solutions for the connected sheets.

Taking the AdSs metric in the Poincare patch, with the spectator 5 5 ignored:

ds2 = -zidy2 + dr2 + r^drj2 + dz2 + dxi) (4.9)
r

The radius of AdSs is set to 1, with the boundary at y  = 0. The x\, X2 plane 
is reparametrised in circular co-ordinates by r & 77, with X3 relabelled as z- The 
Wilson loops sit on the boundary, and are separated in this z direction, where *W1 

& 'W 2 sit at z -  0 & z -  L respectively. Allowing the string to move through 
the interior of AdSs > y-> along with the spatial directions r, rj, z, use the string
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embedding; r -» r(r), y —> y(r), z —> z ( t ) ,  & rj —» 77 (cr) = cr. This embedding 
provides the string action1

Sjvg =  ^  dcrĴ dr ̂ 2 y lr ' 2 + y ,2 + z ' 2 (4 -10)

The Wilson loops are circular, thus the system is invariant under rotations in 77, 
simplifing the action to:

SNG = p T  4 ( 4 . 1 1 )
y

Minimising the action, provides the following equations of motion:

, /2  , , , / 2  , _/2

y2 V r ,2 + y ,2  + z '2

Y . l  c
y  ^ 7 7 2 7 ^ 7 2 7 ^ 2 J y2 >

=  /

+ -y'2 + Z' 2 = 0

V r ^ r ' 2 + y ' 2 + z '2) yU r ' 2 + y ,l + z ' 1 = 0/2 _

(4.12)

(4.13)

(4.14)

Where I is a constant of integration. As z increases monotonically from 0 to 
L, a gauge choice can be made, identifying z = r, thus expressing the equations of 
motions as:

r r -  4 ^  = 0 ; y / '  + ^ O ;  r '2 +y ' 2 + 1 = r
y 4Z: y 4/2 y 4/2

r7*"+yy" + 7-,2 + y /z + l = 0

(4.15)

(4.16)

The final expression is a sum of the previous three. Simplifying, and integrating 
twice;

(r2 + y2)" + 2 = 0 

r2 + yz + (z + b )2 = a2

(4.17)

(4.18)

With a & & as integration constants. These are determined using the boundary 
conditions on each Wilson Loop. Considering first the loop, *W\ at z -  0, y = 0

'In this chapter, unless stated, the string tension I/a' is set to 1 for notational convenience.
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and r  = /?i, and the second loop, rU/2 at z = L, y = 0  and r = R2, find

(4.19)

(4.20)

Eq.4.18 can be reparameterised into trigonometric functions of an angular pa­
rameter 0 .

At z = 0, r = R\, and moving along z toward z = L, r will become R2. As 
both loops sit on the boundary, y  will be zero. However, in the interval 0 < z < L, 
the minimal surface is not restricted to the boundary, as the string can leave the 
boundary of AdSs and can travel through the bulk where y  =£ 0. This implies that, 
while at both z = 0  and z = L, 0  will be zero, between the loops 0  is non-zero and 
can exist anywhere in the interval 0 e [0, n/2]. This further causes r to be generally 
less than R\ & R2 when not at the boundary. It must be noted, that <f> is not single 
valued, and will reach some maximal value within the allowed region. This will be 
considered fully below.

Applying the parameterisations back into Eq.4.15 the following expression is 
obtained for the behaviour of 0

The sign choice represents the two branches of the function; 0  increasing from 
0 at z = 0 to some maximum value, 0o, and 0 decreasing to 0 at z = L. The 
maximal value, 0 o is given when cot2 0  esc2 0  -  f a 2 vanishes:

There are four possible solutions for 0o from the above relation, but as 0o is pos­
itive, real, and restricted to the interval 0  e [0 , zr/2 ], there is only one consistent

r -  V<z2 -  (z + b) 2 cos 0

y = yja1 -  (z + b)2 sin 0 (4.21)

l[a2- ( b + z )2]
(4.22)

cot2 0 o esc2 0 o -  I2a2 = 0 (4.23)
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solution:

(po = arccos 1 1 -
,1/2

1 + Vl +4/2 a2)

From Eq.4.22, separate variables and obtain the following integral relation

(4.24)

f  l[a2 - (b + z )2] ± J
d<f>

yjcot2 <f) CSC2 (f> -  Pa2
(4.25)

Again there is a sign choice. To remove this, consider the integral limits. In the 
region z e [0 , zo], where 0 (z = zo) = <Po, <P is increasing, so take the positive root. 
In the region z € [zo, L], 0 decreases, take the negative root.

r °  dz _ f * ° _______ d$_______
Jo I [a2— (b+ z)2] Jo -^cot2 0 esc2 (f> — Pa2

r L dz = _ r °  w
J »  l[a2- (b +  z)2] LI [a2-  (b+ z)2] J *  ^ (f) esc2 4> -  Pa2

Summing both regions, and performing the integration over z provides:

(4.26)

fJo
dz -(ft} d<f>

l[a2—(b+z)2] \ J o J<fioI -y/cot2 (f>esc2 <p — P

= *
Jo -^cot2 0 CSC2 <f> — Pfl2

(4.27)

j lo g a - b  — L
j lo g

a + b
a — b ro 

-

A

d<p

o >/cot2 <p esc2 0 -  /2a2
(4.28)

Define a pair of functions, ^  ^ , for the left & right hand sides of 4.28
respectively. The function 7^ is defined with the combination la as a variable, as 
/ & a only appear in the d<f> integral in this combination, while Tn  is expressed in 
R\, /?2  & L.

Tn iR \,R i,L )  = -  log
R2 + R2 + L2 + ̂ L 4 + (R2 - R \ ) 2 + 2L2(R2 + R\)

2R2R2
(4.29)
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T* (la) = la r °  d<fl (4.30)
Jo  y/COt2 0 CSC2 (p -P -a 2

A consistent solution is one that equates T < r  &  .

T  = T<r (4.31)

It can be seen that T<r is unbounded from above, so now consider the behaviour 
of Ttp. Performing the 0  integration provides an expression for (la) in terms of 
elliptical integrals:

T td a )  =
2 / 2  a2

P-

-  n A
2  Pa2

arcsin

, -  arcsm

tan 0 o

tan 0 o

’ /* -

'P -

(4.32)

(4.33)

Where P± = 1 ± Vl + 4Pa2, and F and II are incomplete elliptical integrals 
of the 1st and 3rd kind respectively. Applying the value of 0o found above, the 
function simplifies to become.

r<p(la)=
P-

- n P+ Pi
2 Pa2 ’ p-

(4.34)

Where the elliptical integrals are now complete. This expression for (la) 
increases from la = 0, but reaches a maximum at la ~ 0.581, where T<t> (la) w 
0.501. The behaviour of Tq (la) can be seen in fig.4.3. As Tn  is unbounded above, 
there exists a interval space for R\, R2, & L, outside of which, eq. 4.31 is no longer 
consistent.

What are the consistency limits of *F1 T<r can be re-expressed in terms of ratios 
of Ri, R2, & L. Letting ^  and solving for p2 we find:

P2 = -------------   s----- (4.35)
H 2  £ cosh[2 !F] -  £ -  1

Assuming p  can be taken small, but non-zero (L can be large but not infinite), 
the limits to the magnitude of £ are;
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Figure 4.3: Plot ofT<p {la) against the combination la. It is clearly seen that T<t> {la) 
reaches a maximum o f « 0.501 at la ~  0.581.

1 + 2 sinh2 T  -  2 cosh T  sinh T  < {  < 1 + 2  sinh2 T  + 2 cosh T  sinh T  (4.36)

Using the upper limit for T  -  T# {la), the range of £ = R 2 /R \ that obeys eq. 

4.31:

0.367 <  (  < 2.72

Implying there exists a limit to how small the probe loop can be taken. Arrang­

ing eq.4.35 to give a function of L

L = R\ ^ 2 t ; c o s h [ 2 T ] - { ; 2 - l  (4.37)

For both limits of L vanishes. Note that taking £ w 0.367 and T  ~ 0.501, 

sends L to zero. What is the maximal value of L, for a given £? M aximising with 

respect to f:

cosh[2 !F] -  £
d ,L  = R \ —; J I  = 0 (4.38)

V 2 ^ c o sh [2  T ] - f 2 -  1

c = 1 + 2  sinh2 T  (4 .39)

Giving the maximal value of L  as:
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Lmax = Ri sinh I T  (4.40)

Thus, for our upper bound of T r , the value of « 1.178/?]. Any value of L 
greater than this, and the solution becomes inconsistent.

This inconsistency must not be reached,other wise the solution is not acceptable. 
Before reaching the inconsistency, the connected world-sheet should collapse to 
two disconnected surfaces by the Gross-Oguri Phase Transition. To check find the 
minimal surface area of the connected world-sheet, and find the point in R\, R2, 
L space at which it is equal to the disconnected surface. Providing this point is 
reached before the inconsistent region, the solution is acceptable.

Applying the re-parameterisations, Eq.4.21, to the action, Eq.4.11;

S = ±  I ,  . -  (4.41)
= ± / - / ------------------------ycos2 0  -  Pa2 sin4 0

Again, there exists a sign choice relating to integration branches. In a similar 
vein as the eq. 4.27, integrate over the two regions separately. However, the integral 
is divergent at 0  = 0. To regularise, a boundary term is included in the action, of 
the form of a Legandre transform, to remove this divergence.

dS r V  
S bdy =  = ~ ,  y - ( 4 .4 2 )dy' y y/ r 2̂ + y ,2 + l

Introduce a cut-off near the boundary, y = e, where 0 < e «  1, at which 0  

becomes very small. Near the boundary, r « R, where R can be R\ or R2, depending 
on the limit of z under consideration. This implies that both r ' and y '  tend toward 
zero near the boundary. In this limit, with y = e, and r -  R, the boundary term 
reduces to

*̂ bdyly=f = (4.43)
6

From Eq.4.21, e «  R <f>. The total action, adding boundary terms for both loops, 
becomes:

s  Total = s + S bdy/Wi +  S  bdy %  (4.44)
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= ( f \  H  . C°t20^  + ^  (4.45)
\ e//?i e//?2/ ^COS2 0 -  I2**2 sin4 0 6

This integrates in terms of elliptical integrals to:

5 Conn. =  S tooiI = 2 ^ | ^  (E [/?+//?-] -  * [^+//?-]) (4.46)
p+

Here, E  is the complete elliptical of the second kind (The expression for <f>o, 
shown explicitly above, has been applied). This is the complete action for the 
connected minimal surface area, as a function of la, of two Wilson loops *W\ & 
'W/2 of radii R\ & R2 respectively. For the disconnected surface area, the action is 
simply the sum of the areas of the two loops individually.

The action for a circular loop of radius R, S r :

Using the solution R2 = y2 + r2, and regularising as above:

4W^ _ R r d r _  R 

( t f - r 2)3'2 + *
5V = f  ~~r~~z~Tn + ~  (4-48)

= 1 (4.49)

Thus, the disconnected area is given as

■^Disconn. — &W\ + &W2 (4.50)

= 2 (4.51)

The phase transition will occur when the connected and disconnected surface 
areas are equal. If this occurs before the connected solution becomes inconsistent, 
then the system is safe, as the inconsistency will never be probed.

Equating both actions, the two actions are found to be equal at la «  1.316 (= 
/flcrit). This is illustrated in fig.4.4.
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Figure 4.4: Plot o f  the connected action against the combination la. Also shown is 
the disconnected area. The Gross Ooguri Phase Transition occurs where the two 
lines intersect, S = 2, at la *  1.316.

The value of lacn{ translates into a value of T# (lacr jt )  «  0.438, which is within 

the limits computed above. This provides a range limit to f  (from eq.4.36) of:

0.416 < £ < 2.40,

and a subsequent critical value for Z^ax.crit ~ 0.99 R \. Therefore, taking limits 

in an L, R  i, R2 parameter space, one will encounter the Gross-Ooguri Phase Tran­

sition before any inconsistent sectors of the system are reached, thus protecting the 

model and method.

This provides a restriction to using the minimal surface area approach to calcu­

lating the Wilson Loop correlator, when using one loop as a probe. Ultimately, to 

determine the correlator for k-strings, a generalisation of the arguments outlined 

here are required to extend to that of the /c-string case.

4.2.2 fc-String extension

Section 4.2.1 illustrated that in A d S s , the connected world-sheet between two 

Wilson loops does not exist across the entire parameter space of the loop radii, 

R 1, R 2 , and their transverse separation L. To refresh, to allow the string width to 

be calculated accurately, one of the loops must be taken to infinitesimal size, and 

evaluated over all possible transverse distances, L e [0 ,00].
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For the extension to the k -string, the fundamental string is replaced by a wrapped 
higher dimensional object. As was learnt in section 3.3, in AdSs x S 5 the k -string 
is modelled by a D5 brane, wrapped on the transverse 5 4 c  S 5, at an angle related 
to the string charge k .

Following the work of Gilozzi et al. [56], and their idea of a k -string being 
probed by a fundamental loop, and the motivated idea of section 4.1 to probe a 
k -string with a loop in the same representation, there are two possible methods of 
calculating the width:

D5-F correlator

Take a k-string in the antisymmetric representation, and probe with a string in 
the fundamental representation

Use a D5-brane to model a k-string tracing a single Wilson loop, *W\ , then 
find the connected world-sheet of a fundamental string propagating from this D5- 
brane/k-string Wilson loop world-sheet within AdSs to the probe Wilson loop on 
the boundary, .

In such a case, the connected world-sheet only reaches the boundary at > and 
terminates on the brane in the AdSs interior. The world-sheet is described by the 
Nambu-Goto string action, with boundary conditions at the brane end governed 
by the brane’s minimal area. This is a similar calculation to that performed in 
section 4.2.1, with the brane boundary conditions imposed on the equations of 
motion of the fundamental string. There is an additional complexity imposed by 
the angle that the brane sits at in the S 5. The angle at which the string sits in the 
S 5 is independent of the brane. This introduces an additional degree of freedom, 
imposing an additional equation of motion. This calculation was performed by 
Yamaguchi [57], and this construction was also shown to undergo a Gross-Ooguri 
phase transition to a disconnected world-sheet state, before the solution becomes 
inconsistent.

D5-D5 correlator: Probe a k-string with k-string

Take a kstring in the antisymmetric representation, and probe with a second 
k-string in the same representation, with the same N-ality k .
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Use a single D5-brane to model the entire connected world-sheet between two 
Wilson loops, *W\ & 'W/2 , effectively modelling the propagation of a ^-string from 
W i to TV2 .

In this case, the brane moves through the interior of AdSs > and reaches the 
boundary at both Wilson loops. As the same brane models the entire connected 
world-sheet, both loops sit at the same angle in S 5, and thus have the same k, 
therefore not introducing the additional degree of freedom seen in the D5-F corre­
lator. Such a calculation, once integrated over the transverse S 4, will reduce to the 
calculation in section 4.2.1, with the action exhibiting a suitably modified string 
tension, proportional to k . Ergo, the Gross-Ooguri phase transition will be reached 
before a desirable probe system is reached.

It is clear that the connected string world-sheet cannot be used to generate ac­
curate string widths within AdSs • However, after transition to the disconnected 
state, the two disconnected Wilson loop world-sheets are able to interact via light 
supergravity mode exchange. In the next section, this exchange will be examined 
for application to a width calculation.

4.2.3 Fundamental String widths via dilaton exchange

As shown previously, the world-sheet two point correlator in AdSs x S 5 cannot 
be used to calculate the width of a string. Taking one of the Wilson loops towards 
zero size, while the second has finite extent, a Gross-Ooguri transition is passed, 
beyond which a world-sheet between the two loops ceases to exist. In such a case, 
the system will collapse to two separate Wilson loop world-sheets, interacting via 
the exchange of light supergravity modes. In the limit of the small loop becoming 
point-like, the system is a Wilson loop described by a string, with an operator 
insertion at a transverse distance L. The operator insertion under consideration will 
be the gauge invariant operator, F2, measuring the chromoelectric field strength at 
a distance L from the Wilson loop.

To calculate such a correlator, the following object must be evaluated:

(W(C)F2)con.
<W(C)>

(4.52)
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The numerator selects only connected graphs. For an F2 operator, the lightest 
exchanged mode is the dilaton. To compute such a correlator, it is necessary to 
perform an Operator Product Expansion of the Wilson Loop. This was done for 
single dilaton exchange in [58]. It was shown that for a chiral primary operator of 
conformal dimension A, the correlator

^ g r  = C onstT (fl)^  J  d A G (y J ,y ',? ',A )  (4.53)

G(y, j? , A) represents the Green’s function of the propagator from the oper­
ator insertion point (y, 5t) to a point on the string world-sheet that ends on the finite 
Wilson loop (y', J?')- This function is integrated over the surface of the world-sheet 
f  dA. There is an additional spherical harmonic factor, and an overall constant 
related to the conformal dimension A.

Considering a system akin to that reached after passing the Gross-Ooguri Phase 
transition in section 4.2.1, namely that of the probe loop, , taken to infinites­
imal size, and effectively becoming an F2 operator insertion at the boundary, a 
distance L transverse to the plane of the loop *W\ , and aligned centrally, (r = y = 
0, X3 = L). The Green’s function for such a system produces:

G ( f ,y ', / )  = Const. ^---------   (4.54)
[ ( t - t ' ) 2 - y 2]A

For the chiral primary operator F2, A = 4, using the area element of a circular 
Wilson loop, f  dA = f ^ d y  dif/, and solution of the world-sheet surface of *W\ as 

= r2 + y2, the correlator becomes

(W(C)) ° nS Jo V  [l2 + J?2]4 ~ (L2 + R2i )4

Letting P  oc , the width is computed as:

2̂ _ f d u ? p _  1

* = 7 Z F = 5r (  (456)
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Due to the normalisation factor, all overall constants in the correlator *P cancel. 
The width of the string in this system exhibits a dipole-like behaviour, growing 
like R2, faster than the quark separation. This illustrates that the “flux tube” in 
AdSs x  S 5 , and thus N  = 4 SYM is non-localised. This is reasonable, as there is 
no confinement exhibited in N  = 4 SYM, and ergo no confining flux tube. Also 
note how the width is completely independent of the string tension. This seems to 
indicate that such a SUGRA computation is not suitable for capturing the required 
string dynamics. Nevertheless, a further interesting question is how this width, in 
a ^-string extension, would vary with respect to k, if at all.

4.2.4 ^-String widths via dilaton exchange

To extend to a fc-string case, consider the two methods of section 4.2.2:

D5-F correlator

The world-sheet ending on W i is no longer traced by a fundamental string, but 
by a D-brane. The propagator is still that of the dilaton, and the operator insertion 
is unchanged to that of section 4.2.3. Subsequently, the only modification to the 
calculation is the modified area element of *W\ , namely the DBI action of the 
D5-brane tracing the loop:

Computing the ^-string width with this modified area element provides the same 
result as that for the fundamental string, i.e.,

(4.57)

(4.58)

(4.59)

(4.60)

It is obvious to see that for this method, the width computation does not capture 
any k scaling behaviour exhibited by the addition of the D-brane, and once again,
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is seeming independent of the fc-string tension. In the next computation, using D5- 
branes for both loops may yield some form of k scaling, if not dependence on the 
string tension.

D5-D5 correlator

This method requires both 'Wi & 'Wz to be traced by D-branes, and thus requires 
a little more thought. The simplist approach is the following: Consider the dilaton 
mode exchange between the world-sheets of 'Wi & 'Wz , traced by two D5-branes, 
D5] & D52, before the probe limit is taken. The expression for such a correlator is 
given in [58] as:

m  'Wz > 
W  ) { W 2 )

= exp Y(0)i f dA\ dAz 
2na’ 2iiaf

G[w(o-i , o-2)] (4.61)

The bulk-to-bulk propagator between the D5i & D52 world-sheets, cr\ & cr2, 
tracing 'Wi & 'Wz respectively is governed by the Green’s function:

G(yv) = ~rw A 2Fi(A, A + * ^ ;2A -  d + 1; -4w)
P

w = y \ y i
Cvi -  y i )  +  Z(*i -  x 2 )2

(4.62)

(4.63)

where d  is the dimensionality of the space-time (here d = 4), 2Fi is the gen­
eralised hypergeometric function, and ao & fi constants. Now consider the probe 
limit, taking Rz (and subsequently y2 & r2) towards zero, letting Rz s  y2 s  r2 = e 
with e —» 0.

4 4

G(w) a  ' l * ,  , (4.64)
(L2 + «J)4

The area element of 'Wz , dAz, will reduce to an overall constant, ~ sin5 Ok, thus 
reducing the correlator to that of the D5-F case, but with a different multiplicative 
constant dependent on k . And as overall constants inflict no changes on the width, 
the result is the same, £ 2 = once more independent of the string tension, and 
any form of k scaling. This would seem to sound the death knell for using such 
SUGRA mode exchange methods to determine string widths in AdS$ x S 5 .
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May this issue lie with the non-localised flux tube in a conformal theory, or with 
the method of using SUGRA mode exchanges? It may even lie with the definition 
of the string widths in conformal theories being ill-defined. Extending the SUGRA 
computation to include higher orders may give some indications to this issue. This 
area is left open for future work.

In the following section, connected string world-sheet methods will be employed 
to determine string widths in non-conformal Hard wall AdS.

4.3 String widths in Hardwall AdSs x S 5

In section 4.2 attempts were made to determine the width of fundamental and 
k -strings in the conformal AdSs x S 5 background. As was noted, the width of a 
string in such a background should provide a non-localised flux tube width, as the 
theory the background is dual to N = 4  SYM. As this is a non-confining theory, no 
true flux tube should exist.

A more revealing calculation would be one in a confining background. As a 
demonstration to the change in width behaviour between a conformal and confining 
background, consider an R4 slice of AdSs» more commonly referred to as Hard­
wall AdSs • The width of a fundamental string will be determined in Hard-wall 
AdSs before generalising to the k -string case.

4.3.1 Fundamental String W idth in Hardwall A dS 5 x  S 5

Hard-wall AdSs consists of an R4 slice in the AdSs interior, with a transverse S 5, 
as with true AdSs x S 5 . The R4 slice sits at a constant value, or “cut-off” of the 
AdS radius, y = Const. = y \ ,  where yAacts as the scale of the theory (C.F. ~ Aqcd 
). The metric in the Euclidean Poincare patch becomes:

1 2
ds2 = — (dr2  + p-drj1 + dz1 + dxi) + d ti2 (4.65)

yA

It is apparent from section 4.1 that the fundamental string width in such a metric 
will be equivalent to that of Luscher et a l, bar a modified string tension depen­
dent on the theory scale yA- Following the set-up & procedure of section 4.1, the 
fundamental string width is simply
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I 2 = y2 log[/?! /R2] = 2 ^ -  log[/?i /* 2] (4.66)

To generalise this method to consider k -strings, replace the string world sheet 
by the world sheet of a D-brane wrapping a suitable manifold, as was encountered 
with regards to k -string tensions in section 3.4.

4.3.2 k  -String Width in Hardwall AdSs x  S 5

As in AdSs x S5 , the anti-symmetric fc-string is described by a D5 brane wrap­
ping a 4-cycle inside the transverse S 5, in Hard-wall A dS, the same configuration 
can be used, with the brane having one less degree of freedom in the AdS (R4) 
region.

In section 4.2.2, there were two possible cases for the measurement of a k -string 
width, namely a fundamental string probing a k -string (D5-F correlator), and a k -  
string probing a k -string (D5-D5 correlator). For the D5-F correlator in Hard-wall 
AdSs , one finds that the string width calculation will not extract any k dependence. 
Why is this? From a technical aspect, as the probe is in the fundamental repre­
sentation, (i.e., a fundamental string), the correlator is the connected worldsheet 
from the probe loop to the surface of the D5 brane. As the fundamental string 
has degrees of freedom only in the R 4, the boundary conditions that give rise to 
a k dependence, namely the angle of the S 4 c  S 5, Ok, are ignored. Thus, a D5-F 
correlator computation will produce a width equivalent to eq.4.66. For a D5-D5 
correlator, the probe loops is intimately dependent on Ok. It is this computation that 
will be of interest.

In analogy with the AdSs x  S 5 case, consider a D5 brane wrapping an S 4 c S 5, 
with the remaining two directions along r  & cr, the string co-ordinates. The action 
of the brane is described by DBI & Wess-Zumino parts;

S Bulk =  T D s f d * f  +  T )  -

The integration is performed over the S 4 c S 5, t  & cr, with Tds as the brane ten­
sion, Q as the induced metric on the D5, C4 the Ramond-Ramond 4-form potential 
that exists in the 5 4 , which satisfies G5 = dCA. T  -  2na'FT(r, where FTa is the 
quantised chromoelectric field strength that sits on the brane in r, cr space.

iTDs \(? Z C AA T (4.67)
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As previously, in addition to the bulk action, there is an additional conjugate mo­
mentum term due to the effects of the field strength at the boundary. The addition 
of this term provides a total action for the brane;

It is this total action that will describe the minimal area of the catenoid between 
*W\ and <n /2 • This shall be employed to provide the k -string width. Using the 
metric, eq. 4.65, and re-expressing the S 5 as S 1 x S 4;

As previously, the loops *W\ & lie in r, tj space, separated in the z direction 
with *Wi at z = 0, and *W2 at z = L. Note that due to the angular symmetry of 
the problem, the distance between the centres of the Wilson loops does not depend 
on JC4 . As the loops are concentric, the centre of each loops lies at r = 0. At *W\ 
r = Ri, and as z increases, r will interpolate towards r = R2 at 'W2 , likely reaching 
some minimum in-between. dQ% represents the S 4 c  S 5 which is wrapped by the 
brane, while the angle 6 is the constant angle which the 5 4 sits in the S 5, and is 
related to k .

There exists a Ramond-Ramond 4-form potential, C4 , which in this co-ordinate 
system is of the form

Due to the symmetry of the system, let t j to be identified with cr, and allowed to 
vary across [0,2n \  As the radius, r, of the catenoid varies with z, allow both r and 
z to be general functions of r.

•^Total — *5 Bulk ^ OT
(4.68)

ds1 = ~y (dr2 + r^drj1 + dz? + z2dxfj + dO1 + sin2 OdQ.\ (4.69)

(4.70)

r -» r(r), z —> z(r) (4.71)

Using this string embedding, the bulk action is expressed as
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With TD5 as the D-brane tension, and d6̂  = drdcrdQ4 . For simplicity of no­
tation, let G(0) = (§0 -  sin 20 + |  sin 40). The primes denote derivatives with re­
spect to r. Due to the euclidean signature, T  is re-expressed in terms of F, where 
T  = 2na'FT(T -  i Ina 'F .

As was seen in section 3.3, in AdSs x S 5 it is known that 0 = 0* = constant is 
related to k =  ̂g^lk, by the following relation

As mentioned earlier, there exists a conjugate momentum term due to the electric 
field strength F which must be added to the bulk action to provide the total action 
of the system.

Applying the expression for F & k into the total action, using Tqs = (let 
ar'become explicit), and integrating over the S 4, the action simplifies to

(4.73)

o r
This relation can be shown to hold in this string width system also, k  = 

leads to the expression of F in terms of 0*

Ina 'F  = cos 0*-^- Vz'2 + r '2 (4.74)

S  Total =  S  Bulk “  kF (4.75)

Total — o . «3 7rcr 2na
2 N  1

(4.76)
31

The classical equations of motion for r & z are

0 (4.77)
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~ i= =  = «  (4-78)
Vz'2 + r72

m is defined as a constant in r. It is now appropriate to make the same gauge 
choice as was made in section 4.2: As both r  and z increase monotonically, let 
z(t) = t = z. Using this choice, the equations of motion combine and simplify, and 
using the fact m is now constant in z;

1 + r'2 -  rr" = 0 (4.79)

This is solved by

“Z - Z o ‘r(z) = B cosh (4.80)
B

where zo is defined as the value of z at the minimum radius of the catenoid, 
and B is a constant. Applying this solution to the total action, and integrating over 
z e [0,L], & t) e [0,27r].

S  Total ~
2 N  1 B

etf dzdrlC°*h
Z - Z o

N B
B

sin3 6k | l  -  |  |sinh L^j  _ sjnh j  j  ( 4  g2 )

(4.81)

3 na'

At this stage, eq. 4.81 is entirely equivalent to that of the Liischer et al. case, 
with a string tension modified by the integration over the wrapped portion of the 
D5 brane. Continuing the computation, from the solution for r(z), the expression 
for zo can be found by using the boundary conditions for z& r .

R\ = B cosh /?2  = B cosh
L - z o

1
z° ~  2 L - B  ̂ arccosh

B
+ arccosh I ] ) ]

(4.83)

(4.84)

An expression for B cannot be determined in an analytic fashion, therefore an 
approximation is required.

Stepping back for a moment to consider the model, for the string width 'U/2 

must be considered as a probe loop, and thus must be very small, as outlined earlier.
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Therefore consider the limit of R\ & the ratio R\ /R2 becoming large. In such a 
limit, the value of B is approximated to leading order as

B = , , g ; P i + °  lR2 ir 2 (4.85)log[/?i//?2]

Substituting into the total action the expressions for B and zo

L2N  1 . 3
S Total = -z— 7 - y  sin Ok in a ' \og[Ri/R2]

(4.86)

As only the second term has a dependence on the loop separation, L, when the 
string width is computed, in the numerator the exponent will cause the first term to 
cancel with an identical term from the denominator, thus only the second term is 
relevant. The width is calculated as

2* = J°^o- ■„-----7— (4.87)
JT00 e~STotaiL2dL 

jT50 e~SjolaidL 

3tty \a '
-  log [RJR2] (4.88)

2N  sin Ok

= ^ — ioglRi/Ri] (4.89)
2  JTCTk

Comparing this result to that of the fundamental string, 4.66, it is obvious that 
the direct replacement of the fundamental string tension with the ^-string tension 
seems to hold in this case, oy —> crk- For a general k & k \  the ratio of widths 
becomes

sin3 0k>
~T  = — =-*- (4.90)

sin3 0k

It would appear that this method captures the correct, and most expected, dy­
namics of the k -string width. The width is slowly increasing for increasing quark 
separation, signalling a localised object in R4, as expected in a confining theory.

One can see how the ratio of the widths of the ^-strings is the reciprocal of the 
tension ratios for the Hardwall calculation. For increasing k/N,  the tube width 
shrinks, to a minimum at k = N/2,  reflecting the increasing inter-string interaction
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within the A-string when described as an assembly of A interacting strings. The 
string become maximally bound at the smalled string width, at k -  N/2.

Following through the computation steps, the k dynamics factorise from the min­
imised area of the world-sheet, thus reducing the system to the computation of a 
fundamental string, with a modified string tension. It will be interesting to see if 
this is a universal effect of the computation in various confining backgrounds.

As interesting as it is to look at an AdS hard-wall background, it would be more 
meaningful to study the flux tube width in a theory with a greater resemblance 
to QCD (albeit with only one flavour), namely N  = 1 super Yang-Mills. In the 
next section, discussions with turn to the computation of A:-string widths within 
the gravity-dual of N =  1 SYM.

4.4 k -string width in N  = 1 SYM Gravity Dual

In this section it will be shown that the A-string width can be calculated in the 
Maldacena-Nunez background in the R-R sector at the IR limit using the same 
method presented in the previous section. It must be noted that although the R-R 
sector has a greater cross over to the string width calculation of hard wall A dS , the 
width can also easily be calculated in the NS-NS sector via S-duality.

As was seen in the string tension calculations of sections 3.6 & 3.7, the anti­
symmetric A-string is described by a D3 brane wrapping an S 2 in a 3-cycle of a 
space transverse to the R 4 in which the A -string resides.

Again, using the same Wilson loop construction, with the probe in the anti­
symmetric representation, the 10 dimensional cylindrical Euclidean MN metric is 
most easily be expressed as

ds20 = (dr1+r2dT]2+dz2+dj(^)+Na' \dy2 + e2h(ŷ  (d6\  + sin 6 \d<p2>) + ^ (a>,• -  A‘)2j

(4.91)
Where:

A 1 = - a(y)d6\ , A2 = a(y) sin Qidfa, A3 = -cos0\d<[>i. (4.92)
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to\ = cos i//d02 + sin if/ sin #2^0 2 »

a>2 = -  sin if/dO2 + cos if/ sin 62d<f>2,

6J3 = dif/ + COS #2^02

(4.93)

with a(y) and h(y) functions dependent on the radial co-ordinate y. The topol­
ogy of the transverse space is of two 2-spheres, S 2 & S \ ,  with an S 1 fibration 
between them. The angles Oi, (f>i & 62, (f>i parametrise the S 2 & S \  respectively, 
while the fibered S 1 by if/. Along with the metric there exists a C2 Ramond-Ramond 
potential, which obeys F 3 = dC2, and is given by:

Net'
C2 = -^-[if/(smQ\dQ\ A d<p\ -  sin#2 ^ 2  A dfc)  (4.94)

The IR limit is defined as y —> 0, causing the functions a(y) —» 1 and e2h(ŷ  —> 0. 
Making the choice d = 6\ = 62, <f> = <f>\ =  2n  -  <f>2, &  if/ —■► 2VF  +  tt, a 3-cycle, S  3 is 
selected from the transverse space, causing the metric and C2 to reduce to;

ds2 = (dr2+r2dT12+dz2+dx24)+Na' [dy2 + d ¥ 2 + sin2 x¥(dQ2 + sin2 6d<p2)\ (4.95)

The action is that of the previous section, namely the DBI, Wess-Zumino and 
chromoelectric field strength momentum terms. With *W\ and W1/2 set in r, tj 
space, while being separated in z , the D3 is wrapped along cr & r, with t j  —» cr, 
r —> r(r) and z —* z(r), while the remaining two directions are wrapped upon an S 2 

in the transverse 3-cycle, S 3. Turning on an electric field strength T  -  2na'Fr(r = 
Ina 'iF , and allowing k = the total action becomes

-  cos 61 cos 02d<f>i A d(p2 -  (d0\ A -  sin 9\d(f>\ A 0J2)]

(4.96)

Total =  S d B I  +  (5 DBI +  *^ w z) (4.97)

= rmfi V [ V d e t ( £ +r)~ iCi a  r]- r - L  (,sDBI + Swz)

(4.98)
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Again, primes denote derivatives with respect to r, and Tq3 = 1 /(2n)3a '2. The 
equations of motion for r and z are identical to those from the hard-wall case, 
implying that the solution and gauge choice for r and z respectively will directly 
apply to this computation. Once more, the systematics of the k dependence in the 
transverse space, and those minimal area in 4d spacetime, factorise completely and 
do not influence each other.

Using the solution for r, the total action simplifies to become

BN . n k  C u2\ z - z o
S ibud = ^ 7  sin — Jdrjdz  cosh B

(4.99)

Integrating over z & // (z e [0,L] & t j  e [0,2n]), using the boundary conditions 
for r & z to eliminate zo, and taking the limit where R\, & the ratio R \/R 2, both 
become very large, the total action to leading order is expressed as

N . nk  
Total = 2na' Sm ~N

(R\ -  R2) +
L2

log[/?i//?2]
(4.100)

Calculation of the string width provides a result of the same form as for the 
hard-wall A dS , and ultimately the fundamental string case.

" t  = . l og[«l / «2] (4.101)
iVsin

= r - ! - lo g [ f i i /« 2] (4.102)
Incr/c

Performing the equivalent calculation in the KS background provides a string 
width of the exact same form; namely oc 1 /cr*. Both R-R & NS-NS sectors of both 
N =  1 backgrounds provide the same result. For a general k & kf, the ratio becomes

O • ttV0)7 sin
= (4-103)< 4  s i n f

Once more, the ratio of the widths of the ^-strings is the reciprocal of the ten­
sion ratios, as for the Hardwall calculation, signalling smaller string widths as k
increased towards k/N. The localisation of the string, and thus the flux tube, is also 
apparent as expected for non-confining N  - 1 SYM.
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4.5 Discussions

It appears that a universal result has been found. It would seem, following from 
these calculations in Hardwall AdS, and the Maldacena-Nunez , and Kelbanov- 
Strassler gravity duals of N =  1 SYM, that string width computations in a confining 
background will be yield a width of the general form of the reciprocal of the string 
tension. Indeed this seems correct when performing a generalised string width 
calculation on a R 4 x M  spacetime, for a given manifold, M.

For a ^-string system, this universal result would also apply, providing the k 
dynamics factorise. This would occur automatically, provided the mechanism for 
introducing the k scaling operates solely within the transverse space (I.e. manifold 
M  above).

Following the results of string widths in both Hardwall AdS, and N  = 1 gravity 
duals, it has been learned that the method of determining ^-string tensions using a 
fundamental probe [56] was fatally flawed, and only in the large-Af, k fixed limit 
could it be used to provide accurate results, where the ^-string is described by a 
fundamental string. To correctly gain the k scaling dynamics in which cry —» cr> 

for the transition from a fundamental string to a ^-string, the probe must exist in 
the same representation as the string it is probing.

The studies of string width attempts via light Supergravity mode exchanges did 
not produce the expected results of inverse dependence on the string tension. There 
are a number of possible causes for this. Firstly, the computation considered only 
primary operators, and only light exchanged modes. It may be that higher order 
exchanges must be considered to unveil hidden dynamics. Secondly, as was briefly 
mentioned earlier, the definition of the string width detailed in this thesis may not 
be applicable to SUGRA methods, and would require redefinition. Finally, there 
might be no width to compute. In a conformal theory, there is no strict localised 
flux tube with a tension. This might be all that the mode exchange computation is 
revealing. This area is still of interest and is left open to further work.

After the publication of the fc-string width results, a number of lattice based 
experiments have been discussed to model the results obtained here. It will be very 
interesting to see the results of such experiments.
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For future work, it would be interesting to see how the ^-string width would be 
affected, if at all, when a ^-string is probed by a Wilson loop of the same N  -ality, 
but different representation. One such system might be an antisymmetric string, 
a D3 brane, probed by a symmetric probe, namely a D5 brane [16]. Does the 
width depend only on the N  -ality, just like the tension computations, or does the 
representation of the probe come into play? This question is left open.



Chapter 5

Domain walls at Finite 
Temperature

5.1 Intro to domain walls at finite temp

In SU(N) gauge theories with matter in the adjoint representation, there exists 
a deconfinement transition as a temperature is applied to the system (See [59] and 
references within). At zero temperature, the system sits in a confined phase, with 
an unbroken Zn gauge group centre of SU(N). At non-zero temperature, the cen­
tre spontaneously breaks as the system becomes deconfined, generating N  distinct 
vacua. Each vacua is separated from its neighbour by a physical interface, which 
is more commonly known as a domain wall. These “fundamental” domain walls 
interpolate between two adjacent vacua.

The phase transition has an associated order parameter, the expectation value of 
the Polyakov loop [60,61]. In the confining phase, the order parameter is zero, P = 
0 , while in the deconfined phase it takes on a phase of one of the M h root of unity, 
P = exp(i2nl/N), where I is the label of the vacua, I e [0, N - 1]. Fundamental walls 
interpolate between vacua of value P = exp i2nl/N, and a neighbouring vacua, 
P = exp i2n(l + l)/N, giving a phase difference of P = exp i2n/N.

To impose a temperature on the system, which causes the spontaneous breaking 
of Zw, the system is compactified on a temporal circle. For the systems consid­
ered in this thesis, take a four dimensional Euclidean space and impose periodicity 
along the Euclidean time direction of length 2nfi, giving a topology of S 1 xR3. This

77
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k = 2

k = 4

Figure 5.1: Examples o f k = 1,2,4 domain walls for the vacuum structure of  
SU(10), with each dot representing a distinct vacua & straight lines representing 
domain walls.

imposes a temperature on the system, T = 1//?, where (3 is the radius of the tempo­
ral circle. The Polyakov order parameter can be explicitly defined for a gauge field 
A(x, t), along the periodic Euclidean time direction t as:

P(x)= ^ T r p L r u  £  A0(x,t)dt\. 0  = i /T .  (5.1)

In a more general case, there also exist “k-walls”. A k -wall is defined as a 
domain wall interpolating between vacua of phase difference P = expi2nk/N, 
namely between vacua of values P = exp i ln l/N  and P = exp i2n{l + k)/N. A  
fundamental wall is equivalent to a A: = 1 wall. A vacuum diagram illustrating 
fundamental and k -wall examples can be seen for SU(10) in fig. 5.1.

In this chapter, the tensions of k domain walls will be computed and discussed in 
the context of N =4 super Yang-Mills theory. It will be shown that at the one-loop 
effective action level at weak coupling, the domain wall tension obeys the Casimir 
scaling law, namely 7* ~ k(N -  k). An argument will also be put forward in an 
attempt to justify the expected existence of the Casimir scaling at the two-loop 
level for N =4 SYM.

There has been a lot of interest and progress in the area of high temperature 
domain walls at weak coupling [62-67]. It has been shown that the tension of 
domain walls in pure Yang-Mills theory exhibit Casimir scaling at one-loop [62,63]
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and two-loop [64], but this breaks down at three-loops, where Casimir scaling is 
no longer present. The tensions of these domain walls were also investigated form 
lattice perspectives [68-70], and the Casimir scaling was found to hold, within 
errors, at low temperatures close to the critical temperature.

In this chapter, the procedure employed in [65] to determine k domain wall ten­
sions (and their Casimir scaling behaviour) in pure Yang-Mills, is extended in orig­
inal work to include the adjoint scalars and fermions of N  = 4 SYM at the 1-loop 
level. Following this result for 1-loop, a plausibility argument is presented in which 
it is argued that Casimir scaling will remain at 2-loops. In section 5.4, k domain 
walls are examined from the strong coupling limit. Applying the procedure of [14] 
to the AdS-Schwarzschild black hole in AdS5 x S 5 , an original result of the k do­
main wall tension in the strong coupling limit is obtained. Following this, some 
preliminary results are presented for original work, where the procedure of [65] is 
once again used to determine domain wall tensions in a theory with matter in two 
index representations.

5.2 &-wall scaling in N =4 SYM at 1-loop

Before looking at the N  = 4 SYM case, the tensions of interfaces will be re­
viewed from a semiclassical description, in the context of pure Yang-Mills, before 
introducing the matter fields in adjoint representation of N =4 SYM.

The first step in the domain wall tension computation involves the parameteri- 
sation of the expectation value of the Polyakov loop as it varies across the domain 
wall. This is done by considering a classical, background value for the temporal 
gauge field Ao, which can subsequently be factored in classical and quantum parts.

A0 = < + A ’“ (5.2)

Application of this factorisation will be briefly discussed in the context of the 
fundamental interface, before expanding the discussion to the general k - wall.

5.2.1 Fundamental wall

From the three dimensional effective theory viewpoint, the domain wall inter­
face is 2 -dimensional, therefore it can be though of as a string-like object moving
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through time. Taking this interface to span the jci & X2 directions, the different 
vacua will sit at different points along the X3 = z-direction. Regarding the back­
ground field, an ansatz can be chosen where A^1 can be expressed in terms of a
diagonal traceless generator fa,

Ao = = D i a g [ l , l , l , . . . , l , l  -AT| (5.3)
8 y m N  B(N) '--------------- ----------------- -N— 1 entries

B(N)  = (5.4)
y /2 N (N  -  1)

The spatial components of the gauge field are set to zero, A,- = 0 for i = 1,2,3. 
The function q(z) acts as a profile function, parameterising the N  different vacua. 
Evaluating the Polyakov loop with the above expression for the classical gauge 
reveals the profile function role of q explicitly (the z dependence will be dealt with 
later);

2ni _  2>n(l-A O  _ 1

( N -  \ ) e ^ q + e s - 1*1] (5.5)

Allowing q to take on integer values, q = 0 ,1 ,2 , . . . ,  N  -  1, one can select each 
of the N  vacua, labelled by P = e $ q. As the vacua sit at integer values of q, 
non-integer values of q correspond to positions within the domain interface that 
interpolates between two vacua.

The ansatz for the background field, eq.5.3, can be used to describe a single 
wall, interpolating between two phases labelled by consecutive integers (i.e. 
two neighbouring vacua). As all vacua are physically equivalent with regards to 
wall tensions, a single interface can be focussed upon without loss of generality. It 
is simplest to select the interface between q = 0  and q = 1 , with q(z) interpolating 
between q(z = 0) = 0 and q(z = L) = 1, where L is the extent of the interface 
between neighbouring vacua.

Up to this point, the walls under scrutiny are fundamental or k = 1 walls, i.e. 
they exist between vacua of singular phase difference. To consider walls between 
vacua of multiple Z# “charge” difference, k, the ansatz for Aq1 must be modified.
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5.2.2 k  -wall ansatz

Before proceeding, consider the conventions for the TV2 - 1  generators of SU(N). 
Using the Cartan basis, they take the form of N — 1 diagonal generators and N ( N - \ )  
off-diagonal or ladder generators. The N  -  1 diagonal generators are of the form,

tdiag = U = B(J) Diag[l, 1 ,1 ,. . . ,  1,1 -  i ,0 ,0 , . . . ,0 ], i e [2,N]. (5.6)
i - 1 entries N—i entries

The normalisation B(i) is as defined in eq.5.4, and ensures that

Tr(t,tj) = y , j  (5.7)

For every diagonal generator f,-, there exist 2(/ -  1) ladder generators, f,y, with 
one non-zero element;

^  = - ^ < 5 7 ;  7  € [ l , i - l ] .  (5.8)

tij provides the off-diagonal generators with non-zero matrix elements in the 
upper right half, while the lower left off-diagonal generators are given by the trans­
pose, tji. Together, the ladder generators provide N(N  -  1) generators, and com­
bined with the N  -  1 diagonal ones, provide the total of N 2 -  1 generators required.

The off-diagonal generators are normalised in the following way

Tr(tjy tj>i') = — 8n> djj/ (5.9)

The algebra of the generators simplifies significantly in this basis, with the only 
non-vanishing generators being of the form

[th ] = NB(i) t ij; [th tji] = -NB(i) tjt (5.10)

Returning to the idea of an interface between multiple charged vacua, a so called 
fc-wall, a modified ansatz is required. As a fc-wall is an interface between two vacua 
with a charge difference k, as opposed to a charge difference of 1 for a fundamental 
wall, the generator t^  in Aq is replaced with a hypercharge matrix 1 *
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(5.11)

The matrix T* is defined as

Yk = D i a g [ I c ,k ,k , . . . , k ,k - N ,k - N  k — N], k e [ l ,N ]  (5.12)
N-k entries k entries

As with tn, Yk is traceless, and by cyclic invariance, the system obeys charge 
conjugation k «-» N -  k, as required by the Zn invariance of the theory.

Applying these modifications to the order parameter, the role of q is now clear. 
Previously, the parameter q had a dual role, defining each vacua individually when 
integer valued, with non-integer q characterising a point within an interface. For 
k-walls with k > 1 , it is no longer q, but the product kq that specifies a given vacua 
for integer q; q now becomes a parameter varying across the fc-wall, as before from 
#(0) = 0 to q(L) = 1.

The Polyakov loop order parameter for the modified ansatz becomes;

5.2.3 fc-wall Tension in N = 4  SYM

Having specified the ansatz for the k -wall solutions, the aim is to determine the 
interface tension of the fc-wall in TV=4 SYM. The idea is to insert the classical pro­
file for the Zn instanton, and use weak coupling to expand around the background 
configuration. The quantum fluctuations induce a one-loop effective potential for 
the profile functions q(z). This is used to determine the solution of the wall and 
its tension. It is also necessary to ensure the resulting system is self-consistent at 
weak coupling.

At the classical level, there is no interface solution. Therefore one-loop effects 
must be included. The only terms in the action of N  = 4 SYM that are relevant 
are those that involve interactions of the background gauge field Aq with quantum 
fluctuations:

P=-\(N-k)eVti + keV»-^  
N

(5.13)

2tri j.
with P = 1 at q = 0 as before, but P = e~NK atq  = 1.
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= M 4 r + Tr
A=1 L i=l

(5.14)

The relevant portion of the action includes only kinetic terms for four Majo- 
rana fermions and six real scalars, and their interactions with the background field 
through the covariant derivative. Yukawa couplings, and the N  = 4 quartic scalar 
potential term are omitted. Ultimately, the action will be integrated over the fluc­
tuating quantum fields (f>, if/, the fluctuating gauge field, A^u, and associated gauge 
fixing ghosts; thus providing an effective potential for the classical gauge fields.

Working in 4d  Euclidean space, on R 3 x 5 1, with the S 1 of radius /? = 1/T  as 
the time direction, and the remaining space spanned by x\ , X2 and z. Each of the 
quantum fluctuations will be considered separately below.

Gauge field fluctuations

The one-loop calculations outlined in this section follow essentially standard 
steps, however they are included here as a review and for completeness. As pre­
viously seen, the gauge field A*1 consists of classical and quantum parts, thus the 
gauge part of the action can be separated accordingly.

sk = si + s\qu (5.15)

Letting q be a general function of z, and using the fact that the only non-zero 
classical gauge field is Aq, the classical action can be calculated simply on this 
background.

= Tr [(<9zAq)2] = Tr
4nzT2

0dzq ? Y 2k
s I m" 2

(5.16)

The trace over Y? gives Tr[F?] = (N -  k)k2 + k(N -  k)2 = Nk(N -  k). Thus the
classical action reduces to
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As mentioned briefly at the start of section 5.2.3, the classical action alone is not 
enough to show the existence of /c-walls, since it is only sensitive to the gradient 
energy, as taking the Hamiltonian only yields a constant q solution. To find a fc-wall 
solution, the action must be calculated beyond tree level; in this case, 1-loop, while 
remaining self-consistent at weak coupling.

To compute the contribution from the gauge fluctuations at one-loop order, shift 
attention to the quantum gauge part of the action. Here gauge fixing must be im­
posed. Employing the usual background field R^ gauges to obtain the action for 
these gauge fluctuations;

J% = Tc + Tr 5Ki<)21+t̂ h ^ h  <5i8>
with Tj Sl q being the Fadeev-Popov ghosts, and the adjoint covariant derivates 
& D^1 defined thus;

D(j = dp -  igYM[A^, ], = dp -  igYMiAp, ]. (5.19)

At the level of one-loop, interactions between different fluctuations are negli­
gible, and can be ignored. This allows the full covariant derivative D^, with its 
background field equivalent D which is gauge covariant with respect to the back­
ground. Integration by parts and assuming the background field is constant;

(5.20)

It is important to note a technical point. The background field is assumed to 
be constant, thus providing an effective potential for constant background field 
configurations only. However, the ultimate aim is to apply this to non-constant 
domain wall profiles. Therefore this requires that the profile function is slowly 
varying.

Performing the functional integral over the gauge fluctuations Ajj1, and the ghost 
fields, the one-loop contribution becomes;
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s ?  = f  &  j ^ d r  \  Tr [in (-D* ; T  + (1 -  i ) 0 ^ ) ]  -  Tr [in (-£>*)] (5.21)

The effective action can be shown to be independent of the gauge fixing parame­
ter £ due to the commutativity of the covariant derivatives for constant background 
fields. Therefore for slowly varying wall profiles, gauge invariant results are effec­
tively guaranteed. Taking the Feynman gauge, £ = 1;

As the background field present j4q(z) in the adjoint covariant derivative is only 
non-zero along the temporal direction, r, it reduces to an ordinary derivative in the 
transverse directions, x\, X2 and z. In the compact temporal direction the back­
ground field is proportional to the matrix Yk, and being diagonal with N  elements, 
there exist non-trivial contributions to the covariant derivative when acting upon 
ladder generators f,7 and tji (E.g. eq.(5.10)). Following the notation of [6 6 ];

The commutator of T* with the ladder generators of SU(A0 has very similar 
properties to the commutator in eq.(5.10). However, there are significant differ­
ences. In the diagonal generators, tn , there is only one non-unity element (namely 
1 -  N). However, in Yk, there are k  elements which take the form k - N \  thus:

All other commutators vanish. Full non-trivial q dependence arises from the ac­
tion of the covariant derivates on the ladder generators, or equivalently, integrating 
out all off-diagonal fluctuations that do not commute with Yk. Therefore one can 
write:

D0 ~ hitiTq) t\j — Dq tij

D0 tji = (d0 + 2niT q) tji = Dq tji

(5.23)

(5.24)

Dei (Dq,3) (5.26)
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Fourier transforming to Euclidean momentum space, the classical temporal deriva­
tive do may be replaced by the Matsubara frequencies po-

ido P o -  2nnT, n e Z. (5.27)

On ladder operator-like fluctuations, the covariant derivative from eq.(5.24) acts 
as;

/Dq —» Pq = 2nT(n ± q) (5.28)

As the sum over the Matsubara frequencies, n includes both positive and negative 
values, the sum over p^  is equivalent, up to an overall sign, to the sum over p^. 
Hence it is reasonable to consider only the sum over n for p^, and subsequently 
introduce an overall factor of 2 to the action. Also, since there are exactly k(N -  
k) non-zero fluctuations, eq.(5.25), the effective action for the gauge fluctuations 
becomes:

S f  = 2k(N -  k)VaLT  Z  f  H “? ln ( ^ > 2 + P2) (5'29)n=—oo J  ̂ *

Here Vtr is the volume transverse to the z-axis,

Ftr = L\Lqfi (5.30)

with L\ &Lq. being the length of the system in x\& X2 directions respectively. 
As the Euclidean time circle is compactified, a factor of T has been introduced 
cancelling the factor of /?, thus effectively reducing the system to a 3 dimensional 
problem. In such a case, the fc-wall becomes smeared along this direction.

The next step is to determine the ^-dependence of the one-loop effective action. 
Up to additive constants, that can be discarded, the ^-dependence is determined by 
the variation of S^u with respect to q,

1 dSqu +0°________ _ A

2jiT dq

Using the standard expressions for integration using dimensional regularisa- 
tion, the spatial momentum integration transforms into a product of n and q addi-
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tions;

f  ( P+0 )
J  (2tt)3 V(Pq) 2 + P2J

d3p ( Pp ) = Pp H - l /2 )  
(4^)3/2 r ( i )

(5.32)

~ P +o\p I\ (5.33)

= - n T  (n + q)\n + q\ (5.34)

Thus the variation of the action simplifies, with the sum over the Matsubara 
frequencies, n, now explicitly shown.

as
dq

= - 4 k(N -  k)(2nT)VtrLnT3 ^  (n + q)\n + q\ (5.35)

Using zeta function regularisation, the explicitly divergent sum over n can be 
controlled quite elegantly. Using the zeta function definition,

+00

£(/, m) = ^ ( n  + m)~l (5.36)
n=0

and re-expressing the sum over n from n e [-o o , oo] to a sum in the region 
n e [0 , oo], the variation becomes:

j r  (n + q)\n + q\ = [(n + q f  -  (n + 1 -  q f  \ -  [£(-2, q) -  £(-2,1 -  q)]
n=-oo n=0

(5.37)
dSqu

= -4 k(N -  k)(2nT)V«LnT3 [£(-2, q) -  £(-2 ,1  -<?)]. (5.38)
dq

The particular form of the zeta function is a simple polynomial in q,

f (-2 .9 )  = - j — [‘f t l - ? 2)] (5.39)

Negating any addition-wise constant, thus concentrating on the q dependence 
only, and letting L revert to an integral over z, the one-loop effective action for 
slowly varying q(z) becomes:
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S T  = \ k W  ~ f  *  <?2d  -  <7) 2 (5-40)

It can be seen that this one-loop gauge effect acts like a wall in q € [0,1], with 
minima at both q = 0  and q = 1 ; the factor q2(l -  q)2 is invariant under the shift 
q —» 1 — q, illustrating a form of symmetric ‘kink’-like configuration interpolating 
between the two minima.

Combining the quantum action at one-loop with the classical kinetic term cal­
culated earlier, the total effective action can be compactly expressed, using a co­
ordinate rescaling of z —>z'= -^g\MN !3Tz as;

(5.41)

The double well potential, represents the so-called “#-valley”. Due to the rescal­
ing of z -* z \  the upper limit of integration L is also effectively rescaled; L! = 
( yfN/3gTL -> oo). The large volume limit corresponds to g2MNTL —> oo, 
which can also be viewed at the three dimensional limit when the thermal circle 
shrinks to zero size.

It is now possible to self-consistently justify the use of the constant-# effective 
potential to infer the existence of the spatially varying domain wall. Considering 
the z' coordinate, it is clear that the width of the domain wall is simply a number 
~ Oil). In physical units, the width of the domain wall is subsequently set by

{ ^ ymN T ) » which is the Debye or electric screening length. At weak coupling 

this is much larger than the typical thermal wavelength T ~l . Thus the domain wall 
is a thick and slowly varying configuration.

Following this review of the perturbative gauge field contributions, the next sec­
tion will introduce the matter fields in the adjoint representation of N  -  4 SYM 
theory.

Scalar field contributions

Due to the similarity in the calculation to the gauge field contribution, consider 
now the 6  Hermitian scalar fields transforming in the adjoint representation of the
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gauge group, before turning to the fermion fields in the next section. The scalar 
part of the action coupled to the classical background field is simply the kinetic 
term for the scalars with the background field covariant derivative:

where ns represents the total number of real adjoint scalars, here ns = 6 , how­
ever it will be kept explicit for illustrative purposes. Integrating out the scalar 
fluctuations

This expression is equivalent to eq.(5.22) up to the overall number of scalars. 
Following the procedure used with the gauge fluctuations, the scalar action reduces 
to effectively ns/2  times the expression for S^u;

Fermionic field contributions

The fermion contributions arise from n/ = 4 Majorana fermions, which trans­
form as a 4 of the SO(6 ) R-symmetry. These play a crucial role at finite temperature 
as they exhibit anti-periodic boundary conditions around the thermal circle, which 
breaks the supersymmetry of the system. At one-loop order;

where rif is left explicit. Working in Euclidean space, the Gamma matrices 
convention taken is taken as;

J rT rln (-D ^ ) (5.43)

47t2J '3 ns CL j j
S s = - p r r - k iN  -  k )~ V „  dz'q2(l -  q f

V3Ng 2  Jo
(5.44)

with the Pauli matrices convention is taken as
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The functional integral over the fermion fields yields the Pfaffian of the Dirac 
operator, since if/a and \f/a are not independent, via the Majorana condition.

So far, the formal treatment has been similar to the bosonic contributions; how­
ever at this point, the analysis departs from that of the gauge and scalar contribu­
tions.

Consider firstly the case at zero temperature, where the compact direction has 
periodic (SUSY preserving) boundary conditions for the fermions. The fluctuation 
determinant eq. 5.48 would be identical to that of the bosons, but of the opposite 
sign. This produces a one-loop action of the form Sp  = -« /S ^ u. With supersym- 
metric, periodic boundary conditions the three fluctuation terms at the one-loop 
level would cancel, leaving only the classical action,

Slbol = S ^  + S ^  + S s + S F = S«  + (1 + n , /2 -  n / ) S f  = S^1 (5.49)

This cancellation effect between the bosons and fermions will persist to all loops 
for SUSY-preserving periodic boundary conditions.

However, in the Euclidean thermal theory, this cancelation effect is not an issue; 
as the fermions exhibit anti-periodic boundary conditions around the thermal circle. 
This causes the Matsubara frequencies to be shifted to half-integer values, n —> 
n + n € Z. Therefore, for fermions, the definition of the covariant derivative, eq. 
(5.28) is modified thus

It is this shift that removes the fermion-boson cancellation in the one-loop ef­
fective potential. Under the half-integer shift of the Matsubara frequencies, the 
sums over n for pq and p^ are no longer equivalent, therefore, each sum must be 
evaluated separately.

(5.50)
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S F = - k ( N - k ) V tILTnf  £  f  - |^ ( l n [ ( p J ) 2 + p2] + ln[(/7o) 2 + p2]) (5.51)
n= -o o  ^  v /

As previously with the gauge term, taking the variation of the action with q in 
order to determine the ^-dependence;

^  = -2 k{N -  kM nTWxLTrif  Y  f  — r ------i ^ r — 2
d<l (2tt) vCPo> + P (P0) + P

(5.52)

Again, integrating over the spatial momenta p, employing dimensional regulari- 
sation;

^  = 2k(N -  k){2nT)V\jLTnf (nT2) (5.53)

+00

X  £  [ (n+ l/2  + q ) \n + l /2  + q \ - ( n + l / 2 - q ) ) n  + M 2-q \]  (5.54)
n——oo

To perform regularisation of the sum over n with zeta functions, consider the 
sum in two separate regions of q, q e [0 , 1/2] & q e [1/2,1]

+oo

q e [0,1/2] 2 £  [(« + 1/2 + ? ) 2 -  (n + 1/2 -  q)1] (5.55)
rt=—oo 

+OQ
? 6 [1/2,1] 2 2  [(" -  1/2 + qf  -  (» + 3/2 -  ?)2] (5.56)

Applying the shift q —» 1 -  q swaps the two terms and their respective regions 
of validity in q. As there is no loss in generality, it is acceptable to only consider 
the region 0 < q < 1/2 and introduce an overall doubling factor. The definition of 
the Hurwitz zeta function as a derivative, eq.5.39, allows the action to be explicitly 
determined, up to integration constants,

4 t̂ T 3
S F = —

'fWgYM
k(N -  k)Vtrnf  x 2 J 'dz j j . (5.57)
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The integration region is now only defined over 0 < q < 1 /2. It is obvious that 
this fermionic action will not cancel with the quantum gauge and scalar parts.

Full N =4 SYM one-loop effective action

Summing all the above contributions, the one-loop effective action for the inter­
face is obtained, with the integration range adjusted accordingly;

S Total =  Sa +  S s + S f
4tt2T3 r

= —=  k(N -  k)Vti2 dz'
V3NgYM J

2

(I

(5.58)

(5.59)

(5.60)

Letting ns and n/  take their explicit values, the total quantum effective action 
simplifies to

5  Total —
4 nLTI t 'S

V3Ng
-k(N -  k)Vtr

Y M - H D ’+ 2# (3 -  4q) -  1/4 (5.61)

It is a simple exercise using the Hamiltonian to obtain the minimum configura­
tion that interpolates between the two vacua q = O & q = 1 , satisfying (dq/dz')2 = 
2q2(3 -  4q), so that the action for the interface is

47r2r 3 f 1/2 I--------------
*5Total = - =  k(N -  k)Vtr X 4 d q J l q 2(3 -  4q) (5.62)

V 3N g Y M  J o

4tP~T3 yJl r-
UN -  k)V{, - - 0  y t t - 2 )  (5.63)

ifiNg Y M

One concludes, therefore that the tension of the k -wall in the Euclidean high 
temperature limit, TV=4 SYM theory at weak coupling is;

4tt27’2 V 2 r-
T k = - = = -----3 V 3 -2 )  (5.64)

'BNgYM 5
4tc2T2

« 0.904—— ----k(N -  k) (5.65)
V l N g Y M
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where one factor of T has been cancelled against the size of the thermal circle 
in Vti, leaving the tension of a 1 + 1 dimensional interface in three dimensions.

5.2.4 Discussions

Focussing on eq.5.65, note that the dependence on the gauge coupling is the 
same as in ordinary Yang-Mills theory. One difference however, is that unlike in 
pure Yang-Mills, the gauge coupling does not run, and therefore does not depend 
on the temperature. Nevertheless, one is free to chose an arbitrarily weak coupling 
in N  = 4 theory, gYM c  1. All other qualitative aspects of the solution are similar 
to that of pure YM. Specifically, the wall is “fat”, with a width set by the Debye

screening length ( ^ g \ MNT  j .

Finally, the one-loop calculation demonstrates a Casimir scaling law for the k - 
wall tension in N  = 4 SYM, as found in the pure Yang-Mills theory, it is not a 
priori clear that Casimir scaling will persist at higher loop orders, since at one- 
loop its origin is essentially kinematic.

In the next section, a plausibility argument will be put forward for the Casimir 
scaling behaviour to hold at 2 -loops.

5.3 k -wall scaling in N =4 SYM at 2-loop

It has been shown [64,65] in pure Yang-Mills that Casimir scaling of Z;v domain 
walls remains at two-loops, but is lost at three-loops. Below, the calculation for 
the two-loop contribution to pure Yang-Mills is reviewed, before being adapted 
to argue that the scaling behaviour for domain walls in N  = 4 SYM will also be 
Casimir-like at two-loop order.

5.3.1 Pure Yang-Mills at 2-loop

Consider the two-loop calculation for the domain wall tension in the deconfined 
phase of pure Yang-Mills theory. Setting out definitions and notations, let the struc­
ture constants of SU(N) & their normalisation be defined thus:

i f  bc = 27r(\t“,tb] f ) ,  ( r Acf  = \ (5.66)
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The indices a, b, c can represent either the diagonal generators, tdiag, or the lad­
der generators, Uj, tp. It follows from this definition, that the only non-zero values 
of f a,b'c occur when no more than one of the generators is diagonal, due to the com­
mutativity of a diagonal generator with itself. These non-zero cases are explored 
in more detail below.

In [64-66], it was demonstrated that all possible graphs at the two-loop level, 
including three & four-gluon interaction vertices, and gluon ghost interactions, all 
generate contributions to the k -wall action of the form

(5.67)
a,b,c

The function Z?2 is related to the second Bernoulli polynomial, which is even in 

Ca
B2( C „ ) ~ ( c J - |C J  + 1/6) (5.68)

The variables Ca represent a function C,;, that introduces all the q dependencies.

Cjj = Aoi -  A0J ~ q [<l»i -  (n);] (5.69)

Obviously Ca = 0, while C,-7- is only non-zero when i & j  sit in different sectors 
of Yjc. Thus Cij = 0 or ± q up to an overall factor.

Explicit computation of eq. (5.67) provides a Casimir-like scaling, like that 
at the one-loop level, by summing all non-zero terms that express non-trivial q 
dependence (i.e. ignoring all # 2 (0 ) 2 terms). All non-trivial cases can be classified 
and accounted for, as seen in Appendix A. The final result after summing all 
contributing terms:

~ NUN -  k) [B2(q f  + 2B2(q)B2<0)] (5.70)

As outlined in the Appendix, there are two key technical reasons for the Casimir 
scaling to arise in the final result. Firstly, all ^-dependence in eq.5.67 arises form 
terms where at least one of the two indices a or b are off-diagonal generators. 
Secondly, and perhaps more importantly, the combination # 2 (Ca)#2 (Q>) is a even 
function of Ca.
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5.3.2 Argument for Casimir scaling for N=4 SYM at 2-loops

The two factors outlined in the previous section, coupled with the structure con­
stants, effectively guarantee Casimir scaling in pure Yang-Mills. For this scaling 
to be present in N  = 4 theory, the same factors must apply. It can be argued that 
the propagators for adjoint scalars in N = 4  SYM, are equivalent (up to an overall 
factor) to the ghost propagators in pure YM. Therefore, inclusion of the adjoint 
scalars are not expected to change the Casimir scaling at two-loops.

As for the adjoint fermions in N = 4 ,  a SUSY-based argument can be employed. 
In the 1-loop case, it was seen that the action for the adjoint fermions with periodic 
boundary conditions cancelled the quantum gauge field and adjoint scalar contri­
butions when considering a constant or slowly varying background field Ao. For 
SUSY to hold, this cancellation effect must hold for all perturbative levels. Since 
the bosonic fluctuations at two-loops yield the Casimir scaling of the effective po­
tential, the fermionic contributions will also exhibit this scaling.

Switching focus to the thermal interpretation; imposing anti-periodic boundary 
conditions on the fermions, there will simply be a shift in the q dependence, q —» 
q' = q ±  1/2 due to the Matsubara frequency shift. It is expected that this will have 
no effect on the overall N  scaling, leading to terms of the form

~ (/'•7,-/1’diag)2B2(Cfj )B2(Cji) + permutations (5.71)

where Cjj is the shifted difference:

Cfj ~ (A 0l- A ()j ) ± \ ~ q ± \  (5.72)

Such a term would arise from a two-loop graph as seen in figure 5.2. This 
would then imply

~ \ k ( N - k ) Mq) [S2 (q + i )  + « 2 ( ? -  ^)] (5.73)

= \ k ( N - k ) q 2(l -  q)2 |(1 + q f  (1 -  q f  + + q f  ( \  - q f  j (5.74)

representing a pair of gluon - fermion vertices, as in figure 5.2. These argu­
ments make it plausible that Casimir scaling of the k -wall tensions persist at the
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Figure 5.2: A two-loop fermion contribution to the effective action.

two-loop level in N  = 4 SYM, as with pure Yang-Mills theory. However, there is 
no reason for this Casimir scaling behaviour to exist at higher loops.

5.4 k - wall scaling in N =4 SYM at strong coupling

At this point attention turns to the domain walls in the strongly coupled N  = 
4 SYM theory in the large N  limit and at finite temperature. The deconfined phase 
of the four dimensional field theory at strong coupling is described by Type IIB 
string theory in the Schwarzschild black hole in AdSs x S 5 [71]. In the euclidean 
picture, the conformal boundary of the geometry is R 3 X S 1 , with the S 1 being 
identified as the Euclidean thermal circle of the strongly coupled field theory. The 
spontaneous breaking of the Zjy centre symmetry in the deconfined phase arises 
as the thermal circle can shrink smoothly to zero size, and does this at a radial 
co-ordinate in the geometry corresponding to the horizon of the black hole. This 
resulting “cigar” shape, or Di (= R  x S 1) black hole, can be wrapped by a string 
world-sheet of finite action, generating a non-zero Polyakov loop (the order param­
eter), which spontaneously breaks the Z#  symmetry.

5.4.1 D-string as domain wall

In the deconfined phase, with the Zn  symmetry spontaneously broken, it should 
be possible to identify the N  distinct vacua of the strongly coupled theory in the 
IIB string dual. Shifting the phase of the Polyakov loop through the N  -th roots of 
unity, moves through the A possible vacua states. In the string dual picture this is 
realised as a 2nk/N  shift of the two-form NS field B2 integrated over the black hole 
cigar [72]
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f B2 -> f B2 + ^ ,  k = \ , . . . N .  (5.75)
J d2 J d2 n

World-sheets wrapping the cigar will pick up a phase exp(i2n;k/N), determining 
the expectation value of the Polyakov loop for a given vacua k.

Across a domain wall, the phase of the Polyakov loop jumps. It was discussed 
in [72] that a D-string world-sheet I c R 3 and point-like in the transverse £>2 and 
5 5 , provides a suitable jump. Across Z, the RR three form flux, £ 3  changes by one 
unit for a single D-string.

There is another argument establishing the connection between Zn domain walls 
at the D-string. This exploits the direct relation between Z# interfaces and spatial 
’t Hooft loops [67,73]. The spatial’t Hooft loop operator V(C) along a contour 
C, creates an infinitely thin tube of chromoelectric flux along C. The spatial loop 
bounds a surface, a “Dirac sheet”, across which the gauge potential Aq is discon­
tinuous. The explicit perturbative computation of the expectation value of th e ’t 
Hooft loop in the deconfined phase can be shown to reduce to the computations for 
the domain wall in section 5.2.3. Specifically, the leading contribution to the large 
’t Hooft loop in R 3 is proportional to the minimal surface area, A bounded by the 
contour C.

V(C) ~ exp(-7“A)

Therefore the tension T  of a domain wall of infinite volume is computed by a 
spatial’t Hooft loop of infinite size.

From the AdS/CFT correspondence, the ’t Hooft loop is a Euclidean D-string 
disc world-sheet, whose boundary traces the spatial loop in the field theory on 
the conformal boundary of the spacetime. In the AdS-Schwarzschild black hole 
geometry, as with the Hardwall case previously, the D-string world-sheet dips into 
the bulk, but as the loop is scaled upwards, a greater proportion of the world- 
sheet sits on the horizon where the geometry smoothly ends. Thus the spatial’t 
Hooft loop exhibits an area law. Taking the loop to infinite extent, a Euclidean 
D-string world-sheet Z is obtained, located at the horizon of the Euclidean black 
hole. This is the Z# interface.
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5.4.2 k  -wall tensions

The metric for the finite temperature, Euclidean AdS-Schwarzschild black hole 
in AdS 5 x S 5 (explicitly including the AdS radius, R) is:

ds2 = R2 [f(y)dt2 + f - 1(y)dy2 +y2dx^ + dD2] (5.76)
Tj-4 j-4

/W  = f - — r  (5-77>r

where R4  = An(gsN)a'2 = (gyMN)a'2. The Dl-brane world-sheet is described 
by the DBI action with no coupling to background RR potentials.

S m  = f  V diti? (5.78)

The dilaton is constant, with e~° = l /g s = l/gyM• Embedding the world-sheet 
I  along the x\,X2 plane, let £1 = x\ & &  = *2 - Minimising the action, the D-string 
will sit at the smallest possible value of y, which in this geometry is y  = jtT. The 
tension of the k = 1 wall at strong coupling is

Ti = — — R V r 2 = 'h? N  T2. (5.79)

Remarkably, the parametric dependence of this formula on gyM & N, closely re­
sembles eq.5.65. The dependence on the temperature is guaranteed to be quadratic 
by the underlying conformal invariance of N  = 4 SYM. The N  dependence is con­
sistent with the domain wall being a D-brane in the large-A limit and the fact that 
the tension of the D-string in AdS is proportional to 1/ yjgyMN  is also obvious 
from supergravity. It is also interesting to note that the formula at weak coupling 
has the same dependence on th e ’t Hooft coupling, VI = yjg2MN .

In the large-N limit, for a collection of &D-strings, with k ~ 0(1), the tension is 
simply k times that of a single Dl-brane. For the limit of large-A, fixed k/N, the 
collection blows up into a higher dimensional brane via the analogue of the dielec­
tric effect [31]. In analogy with the tension computations of chapter 3, there are 
two possible brane configurations to consider in the AdSs x  S 5 black hole geome­
try carrying k units of D-string charge. At zero temperature, in AdS5 x S 5 , electric
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Wilson loops in the k tb rank antisymmetric and symmetric tensor representations 
of S U(N), are computed by a D5-brane wrapped on an S 4 c  S 5 and a D3-brane 
wrapping an 5 2 c  AdS5 , respectively [14-16,43]. Hence, in a S-dual picture, a 
collection of AD-strings representing’t Hooft loops can expand into wrapped NS5 
and D3-branes.

The A;-wall as a 5-brane

The correct configuration describing a k -wall is expected to be a wrapped 5- 
brane. This yields the k?h rank antisymmetric tensor representation of Wilson/’t 
Hooft loop. As seen previously, this system is invariant under k —» N  -A , which is 
required for Z# interfaces.

It is most convenient to consider the D5-brane configuration, carrying A units 
of fundamental string charge, before S-dualising the system to obtain the D-string 
domain wall. The action for the probe D5-brane has both DBI & Wess-Zumino 
terms, and closely following the analysis of [14]:

1 Bulk = — J* d6^  [ yjdet(§ + 2na'F) — igs2na'F  A C4J (5.
(2n)5a '3gs

C4 = £8s
3 * 3
- (9  — 7r) — sin 0cos 6 -  -  cos 0sin 9 
2 2

d£l4

80)

(5.81)

The C4 is the relevant part of the RR four-form potential parallel to the 5 4 . The 
D5 wraps an S 4 at the azimuthal angle 9 e [0, n] in the 5 5 . The D5 have a world- 
volume 2 x 5 4 where £  is embedded in the x\, * 2  plane. A world-volume electric 
field is turned on along L, FXlX2, giving the D5 an f-string charge, and FXlX2 = iF 
due to the Euclidean signature.

Letting the AdS radius be re-expressed, R4 = 4n(gsN)a'2, the D5-brane action 
becomes

Bulk =
NyfA 
3 7T2 I dx\dx2 sin4 9 yjy*~

AitF2 2nF

VI ( W (5.82)
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The ’t Hooft coupling has been defined as A = g \MN  and

3 3
G{6) = —-(0  -  n) + sin3 6 cos 6 + -  cos 6 sin 6 (5.83)

The equation of motion for the gauge field associated with F provides the quan­
tised total f-string charge k . Thus

Together with the equation of motion for the azimuthal angle in the S 4 , the angle 
0 is completely determined in terms of the string charge k .

This location of the S 4 inside the 5 5 is explicitly linked to the charge k . Impor­
tantly, the system is invariant under k —> N  -  k, as this maps to a shift in the angle, 
9 -» n — 6. This is of course necessary for the Z/v interface.

Since the system is entirely determined at this point from a world-volume field 
and S 4 perspective, the effective action can be computed by simply applying eqs.

As seen in previous chapters, boundary terms must be included for the world- 
volume field;

6S 2N  2ttF  sin4 (9
+ < W (5.84)

2nF
= -  cot 6, cos 6 sin 6 -  (0 -  n) = —

N
(5.85)

4   4n2F2A

5.85;

dx\dx2y sin 6 + COS0 (5.86)

SB<iy = k I dx\dx2F (5.87)

Thus providing a total action;
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It is necessary to include such a boundary term due to the infinite extent to which 
the spatial Wilson/’t Hooft loop is taken for correct interpretation of domain walls. 
Inclusion of the term also ensures invariance under k —> N  -  k. As the equation of 
motion 5.85 implies F = - y2 V/lcos Qjln, the complete Lagrangian only depends 
on y2, and as the action is minimal at y = nT, the resulting formula for the tension 
is

Tension of the 5-brane k -wall

So far, the tension of a wrapped D5-brane carrying k -units of fundamental string 
charge has been computed. This configuration can be interpreted as a domain wall 
associated to the breaking of the magnetic Z# symmetry of N  = 4 SYM at finite 
temperature. Performing S-duality on this yields the domain wall in the electric 
picture as a wrapped NS5-brane carrying A: units of D-string charge.

S-dualising eq.5.89 by sending gs —» 1 /gs, obtains the tension of the k -wall at 
strong coupling;

It is obvious that this result bears little resemblance to the weakly coupled result, 
eq.5.65. Nevertheless there are a number of significant remarks that can be made. 
The dependence of th e ’t Hooft coupling is surprisingly similar to that of the weak 
coupled Yang-Mills regime, and in the large N , k/N  fixed limit, the tension scales 
as N 2 which is the expected from a classical soliton in a large-TV theory, such as a 
NS5-brane in the IIB dual. This feature is also visible at weak coupling from the 
Casimir scaling. In the large-//, fixed k limit, the tension can be expanded in terms 
of fractional powers of (k/N );

t 2
7>i = N  V I—  sin3 0. (5.89)

2/3

+ . . . (5.91)
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Figure 5.3: Casimir and  sin3 behaviours. The solid red line is sin3 (strong cou­
pling), whereas the dashed black line is the Casimir scaling (weak coupling).

5.4.3 Discussions

In this chapter the tension of domain walls in the deconfined phase of N  = 4 super 

Yang-Mills theory on R 3 x  S  1 was discussed . In the weak coupling limit, the 

tension of the domain wall exhibits Casim ir scaling, k(N  -  k) at the one loop level, 

and proposed to hold at two loops. This was confirmed after publication of the 

results in the paper or Korthals-Altes [74]. however, it was shown that the domain 

wall tension exhibits a different behaviour in the strong coupling regime. This is 

expected since it has already been shown that at three loops the Z/v domain wall 

tensions are not expected to exhibit a Casimir scaling [75].

However, a quantitative comparison of the weak and strong coupling behaviours 

of the tensions reveals interesting features.

In figure 5.3 the Casimir scaling (weak coupling behaviour) and the supergravity 

result (strong coupling) are plotted together as a function of k /N  for N  —> oo. 

The two graphs are normalised such that Tk/N=\/2 = 1- The maximum difference 

between the two graphs is about 4%.

These results can be compared to lattice simulations, which were performed for 

the pure YM theory. W ithin the measurement error, the lattice results are com ­

patible with a Casimir scaling [69, 70], even at low temperature (but above the 

deconfinement transition) where perturbation theory is not applicable and there is 

no reason to expect an exact Casimir scaling behaviour. It will be interesting to per­

form a more accurate simulation, in order to see a deviation from Casim ir scaling
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at low temperatures.

Although the results presented here were obtained for N  = 4 super Yang-Mills, 
they might be able to shed light on the expected tension of the pure Yang-Mills 
theory at strong coupling (low-temperatures). Qualitatively, it is expected that as 
the temperature of pure Yang-Mills theory decreases the ratio of the k-wall tension 
to the fundamental wall tension will increase, but only by a very small amount, this 
is illustrated in figure 5.3.

5.5 Domain walls with two-index matter

Until this point, only theories at weak coupling with adjoint matter have been 
discussed. In a finite temperature SU(N) theory with matter in the symmetric or 
anti-symmetric (or tensor sum of both) representations, the center symmetry is Z2 , 
generating two degenerate vacua separated by a phase of n  (i.e. vacua at 1 & -1). 
As with the adjoint case, there exists a domain wall interpolating between these 
vacua. In this section, the tension of a domain wall in two index representation 
theories is to be examined, following the same procedure as section 5.2.

As in the adjoint case, the order parameter for the deconfinement transition is 
the Polyakov Loop around the compactified time direction;

In the high temperature phase, the Polyakov loop acquires an expectation value 
across the deconfinement transition, signalling the spontaneous breaking of the 
centre symmetry, and the generation of distinct vacua separated by phases. For 
anti-symmetric or symmetric (from here on referred to as Asym or Sym) matter, 
the centre is broken to Z2 , as opposed to Zn for matter in the adjoint (Adj).

In contrast to the adjoint case where multiple domain walls can exist, for Asym 
& Sym, there exists only a single domain wall. The aim is to compare the tension 
of this wall in the weak coupling regime, with an equivalent domain wall in the 
adjoint case

(5.92)
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As in the adjoint case, the temporal gauge field Ao can be factored into classical 
and quantum parts, Ao = Aq + Ag11. As only a single domain wall exists, consider 
the following ansatz for the background field A^1, expressed in terms of the diagonal 
traceless matrix Yn ,

With spatial Ap vanishing, A, = 0 for i = 1,2,3. Yn is the hypercharge matrix;

Notice how Yn is split into two sections, each of equal size; one containing 
positive values of N/2, and the other negative. These sections will be referred to 
as the positive and negative sectors of Yn respectively. In the context above, q 
parameterises the 2 different vacua. This can be seen more explicitly using the 
order parameter with the background field Aq1 (The explicit jc dependence is dealt 
with later).

Here q is allowed to take one of two integer values, 0 or 1, specifying which of 
the two vacua are chosen, with P(q = 0) = 1 & P(q = 1) = -1

After compactification, the theory is effectively 3 dimensional with a tempera­
ture. In such a space, a domain interface can be represented as a string-like object 
moving through time. Consider this interface to sit in an jcj , X2 plane, with the dif­
ferent vacua sitting at different values of x$ = z. As the vacua sit at integer values 
of q, non-integer values must therefore sit within the domain interfaces. Allow q 
to be a function of z, where q(z = 0) = 0 and q(z = L) = 1, where L is the extent of 
the interface between neighbouring vacua.

5.5.1 Bi-Fundamental Fermions

(5.93)

Yn = D ia g [ N /2 ,N /2 , . . . ,N /2 ,-N /2 ,-N /2 , . . . , -N /2 ]  (5.94)
N / 2  entries N / 2  entries

(5.95)

The aim is to determine the interface tension of the domain wall in a theory 
with adjoint gluons and anti-symmetric or symmetric fermions. To simplify the 
discussion, firstly consider the tensor product of two fundamental representations,
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effectively the sum of the symmetric and antisymmetric cases, before focussing 
on the cases individually. As previously discussed in section 5.2, to perform this 
calculation the quantum action at one loop is required. At the classical level, as 
shall be shown, there is no interface solution, so 1-loop effects must be included. 
The only terms under scrutiny are those involving interactions with the background 
field, Aq1:

S = d r lT r + Tr if/if) if/i (5.96)

The action includes only a kinetic term for ny Dirac fermions, with the only in­
teractions through the covariant derivative. Ultimately, the action will be integrated 
over the fluctuating quantum fields i//, A^u, and associated ghosts; thus providing 
an effective potential for the classical gauge fields. Working in Euclidean R3 x S 1 

space with anti-periodic fermion boundary conditions, consider each part of the 
action separately.

Gauge Fields

As the gauge fields exist in the adjoint representation, one can simply use the 
gauge part of the N  = 4 SYM action, eq. 5.41, with fcset equal to N/2. This is 
equivalent to executing the gauge contribution computation using Yn as opposed 
to Y/c. The gauge action with such a replacement becomes:

S a =
4tt2T3 

V3Ngn
+ q2( l ~qf (5.97)

Fermionic Term

For the Sym/Asym fermionic term, the calculations will differ significantly from 
those previously encountered for adjoint fermions. To simplify the discussions, the 
tensor sum of the symmetric and anti-symmetric representations will be considered 
first, before considering each irreducible representation separately.

The fermionic term at finite temperature is crucial, as they have anti-periodic 
boundary conditions around the Euclidean time circle, hence breaking supersym­
metry. Taking rif dirac fermions, the action is simply the kinetic term:
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(5.98)

As the covariant derivative is no longer in the adjoint representation, but Sym ® 
Asym, the commutator is replaced by a simple additive operator. Looking at indi­
vidual elements, the commutator is replaced thus:

where i & j  run from 1 to N, if/ij is an element of an unconstrained, N  x  N  
matrix for i//a It is now obvious that diagonal elements of if/ will contribute, unlike 
the adjoint gluons and adjoint fermions in section 5.2. Focus for a moment on the 
q dependency, and the degree of freedom counting.

For the adjoint fermions to contribute a factor of q , i & j  must correspond to 
different sectors of Yn , therefore contributions only occur when i e [I,N/2] & 
j  e [N/2 + 1, N] and vice-versa, giving a total of N2/ 2 degrees of freedom, all of 
which come from off-diagonal elements of if/.

However, from eq.5.99, two-index fermions contribute a factor only when i & j  
are in the same sector of Y^, namely i, j  e [1, N/2] or i, j  e [N/2 +1,N], This will 
give \ (N 2 -  2N) off diagonal contributions, but unlike the adjoint case, there is an 
additional N  contributions from the diagonal, totalling N2/2 degrees of freedom, 
as expected. The fermionic action can now be written as

As the fermions are specified by anti-periodic boundary conditions around the 
Euclidean time circle, the Matsubara frequencies suffer a half-integer shift, n —» 
n+ j ,n  e Z. The eigenvalues of the covariant derivative, eq. (5.28) are modified 
thus;

(Aq)h if/ij -  (A fy j  if/ij (Aq)u if/ij + (ACX  if/ij (5.99)

fo

(5.101)
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This shift has a non-trivial effect on the effective potential. Under such a shift, 
the sums over n for and are no longer equivalent,and each sum must be 
evaluated separately.

S f = ~ V „ L T n f  ^  f  N>2 + P2] + ln [(Po)2 + P2]) (5-102)
n = -oo  J  \  J

As with the gauge term, taking the variation of the action with q;

dSp
dq

= -N \2 x T )V trLTnf  V ) (5.103)
(2?r) V(Po> + P (Po> +P /

Again, integrating over the spatial momenta p, employing the usual dimensional 
regularisation;

dS  +0°
= N \2 n T )V aLTnf  (nT2) £  [(" + 1/2 + <?) In + 1/2 + ?|

“  n = —oo

- ( n + l / 2 - ? ) | / i + l / 2 - ? | ]  (5.104)

To regulate with zeta functions, consider the sum in each region of q individually.

+00

2 2 [ ( n + l / 2  + ?)2 - ( n + l / 2  — q f ] ,  q e [0,1/2] (5.105)
n=0 
+oo

2 £ [ ( n - l / 2  + q f ~ ( n  + 3 / 2 - g f ] ,  q 6  [1/2,1] (5.106)
n=0

Applying a shift q 1 - q swaps the two terms, and the associated regions of 
q. Thus, there is no loss of generality to consider only the region q e [0,1/2], 
including an overall doubling factor. Using the Hurwitz zeta function once more, 
the fermionic action can be determined explicitly:

Vanf  x 2 f d z  (± + ?) f 1 -  qj . (5.107)
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Notice that the invariance under unit shifts in q is retained, with the two terms 
interchanging. Upon inspection, one will find that this action is exactly equivalent 
to that for the adjoint fermion case, when k = N/2. The next step is to consider the 
symmetric and antisymmetric, irreducible representations.

Irreducible representations

For the symmetric and anti-symmetric cases, there is only a small yet significant 
change to the above computation, and that difference resides with if/. Previously, 
the N x N  matrix for \j/ was considered entirely general, with no restrictions. For the 
anti-symmetric case, if/ij = -if/ji,  & if/a -  0, therefore, i can take on N/2  values in 
each sector, while j  can only take on N/2  - 1  values in the same sector, as diagonal 
terms are vanishing. There is an overall factor of 1/2 due to the reduced degrees of 
freedom, which is cancelled by the doubling due to there being two sectors of Yw, 
leading to a total of;

For the symmetric case, if/ij = -if/# & i]/u + 0. Counting off diagonal terms first, 
i can take on N/2  values in each sector, while j, N /2  -  1 values in the same sector. 
As with the anti-symmetric case, there is a factor of 1/2 cancelled by the sector 
doubling. There is the final addition of the diagonal terms, i = j, a factor of N;

(5.108)

With the fermionic action modified thus;

(5.109)

(5.110)

^  = [f CW + 2)] V̂ X2 J * ( l .+ q)2 ( \  - qJ .  (5.111)
It is easy to see that the sum of the fermionic terms from the irreducible repre­

sentations totals to that for the tensor sum action, as required.
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5.5.2 Total action

Summing all parts of the action, one can obtain the one-loop effective action for 
the domain wall;

Here fi is introduced as a representation parameter, yS = -2 , +2, +N for anti­
symmetric, symmetric, and reducible tensor sum representations respectively.

5.5.3 Discussions

In the limit of large N, both the Symm & ASymm actions converge, as expected. 
It is interesting to note that for the tensor sum (fi = N), the total action is identical 
to that obtained from a N  = 1 SYM computation (namely, the N  = 4 action with 
no scalars, ns = 0 , and the number of fermions, « / left explicit), where k is set to 
k = N/2.

It is hoped that an exact equivalence between N  = 1 SYM and a bi-fundamental 
fermionic theory can be shown and proved. This may prove useful for develop­
ing further dualities between N  = 1 SYM and theories of the Planar Equivalence 
(See [76] and references there-in). It must be noted that the results shown here 
are only preliminary results, and together with further discussions on two index 
representation domain walls, further work will be released [7].

S Total = S a + S f (5.112)
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Chapter 6

Final Discussions

As has been shown in this thesis, the ideas and concepts of higher representa­
tional objects provide very interesting and expansive environments for study. These 
objects have allowed a rich structure of interactions of quarks to become apparent, 
modelling interactions which are not manifest in real QCD.

The work on fc-string tensions in chapter 3 has shown that the methods applied 
to determine Wilson loop expectation values in conformal AdS5 x 5 5 can also be 
applied with only minor alterations to non-conformal Hard wall AdS, showing the 
existence of a true string tension, area law, and thus confinement in this back­
ground. This side-by-side comparison also illustrated the transition of the value of 
the Wilson Loop as it acts an order parameter, shifting from an electrostatic-like 
~ 1 /R  inter-quark potential in AdS5 x S 5 to a confining phase, linear potential, ~ R 
in Hardwall AdS.

Universality between the ratios of tensions or Wilson loop pre-factors between 
the conformal AdS5 x  S 5 & non-conformal Hardwall AdS has been shown, but 
this is by no means indicative of further universalities between conformal theories, 
and their possible non-conformal limits or truncations. It has also been shown that 
^-string tensions are not invariant of background, and in-fact vary significantly, 
even for different gravity duals of the same field theory. This can be seen by the 
differing result for the tension in the two duals of N  = 1 SYM, Klebanov-Strassler 
and Maldacena-Nunez.

The S-duality invariance on ^-string tension computations in N =  1 SYM gravity 
duals was not unexpected, however the differences in computation technique varied
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significantly from a technical view point. Shifting from the NSNS sector to the RR, 
repealed the requirement of selecting the explicit form of the world volume gauge 
field via gauge quantisation arguments in the DBI action. This provided a more 
endogenous selection of the world-volume field, determined by the background 
itself. However, this price was paid for by the inclusion of additional boundary 
terms due to the variance of this generated gauge field. It is fascinating how two 
different, separate methods of computation, each an S-dual to the other, are able to 
produce identical actions, numerical factors and dynamics.

Chapter 4 introduced the concepts of quantum broadening of strings from the 
1980’s to the framework of the AdS/CFT. Motivated by the first, incomplete at­
tempts by Giudice et al. , the correct method of determining the width of string 
flux tubes was found, where the probe of the flux tube was required to be of the 
same representation as the flux tube itself to correctly capture the k dynamics. Fun­
damental probe loops did not capture any of the k dynamics apparent in the large 
N, fixed k/N  limit. It was universally found that changing widths from a funda­
mental to a k-string requires a simple replacement of the fundamental tension with 
the k tension, ay  —» ay.

From the conformal theory perspective, the method of determining the width 
of strings breaks down. Connected world-sheet Wilson loop correlators do not 
exist over the full parameter space, so taking the probe limit is not possible in a 
connected state. Passing the Gross-Ooguri phase transition to the disconnected 
state allowed “widths” to be computed, which were invariant of the string tension, 
and any form of scaling with respect to k or N. This is most likely to be indicative 
of the lack of a confining flux tube in AdSsXS5 , or that this method of string width 
computation breaks down in the conformal phase.

It would be a fascinating prospect to determine flux tube widths from the weak 
coupling limit in N  = 1 SYM. Would widths in the weak coupling limit exhibit an 
almost inverse Casimir scaling, or would scaling like ~ N 2 still be apparent at the 
weak limit. This is an open question.

Finally, in chapter 5, the scaling behaviour of the domain walls of finite temper­
ature N  = 4 SYM were discussed. It was shown that following the domain wall 
tension computation of [65], in which k domain walls in pure Yang-Mills were
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investigated, the system could be expanded to determine the tension of k domain 
walls in N  = 4 SYM, by the inclusion of adjoint scalars and fermions. The added 
difficulty with this computation was the half-integer shifts of the Matsubara fre­
quencies, this requiring the system to be evaluated in two different regions and 
eventually summed. The k domain walls where found to exhibit the same Casimir 
scaling behaviour of k & N  at 1-loop, as found in the pure Yang-Mills case, along 
with the same dependence on the temperature and coupling. This Casimir scaling 
is expected to remain at the 2 -loop level, but there is no reason for it to remain 
at higher orders. The profile of the domain wall was slightly modified, with the 
N =4 SYM k-wall being a narrowing interface than that for pure Yang-Mills.

In the strong coupling limit, the k domain wall was found to be described by a 
wrapped D5-brane in the AdS-Schwarzchild black hole. This is, of course, similar 
in concept to the ^-string described by a wrapped D5-brane in AdS5 x S 5 from 
chapter 3. The tension of the k- wall at strong coupling is of course different to that 
from the weak coupling limit, however the results from both limits share the same 
dependence on th e ’t Hooft coupling and the temperature.

Preliminary results show that a possible duality may exist between a finite tem­
perature N  = 1 SYM theory with 1 adjoint fermion, and a theory with matter in 
a two-index representation (be it Symmetric, Anti-symmetric, or a reducible ten­
sor product of both) in the large-A limit. This is motivated by the equivalence of 
the domain wall tensions between the two theories in the large-W limit. Work is 
still on-going with these models, and results should be released in the foreseeable 
future.
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Appendix A

Combinatorics for 2-loop YM 
domain wall

Case I: Ca, Q, ^ 0

Ca and Cb are only non-zero when a & b represent ladder generators. The re­
maining index on f a'b,c, c is left unchosen. There are two possible subcases

c is diagonal

(A.1)

i, j  must be in separate sectors of T* for Q j  and Cji not to vanish. If C,- is let to
take on k, there are N - k  possible choices, while Cj is forced to b e k - N ,  for which 
there are k choices. And as i and j  can swap sectors, there is a doubling effect. 
Totalling all possible choices for i j\

-► 2k(N -  k)B2(q)2 (A.2)

Due to the even quality of B2, any sign change from Q,- = -C ;i is irrelevant.

a9b & c  are off-diagonal

f M ‘f i U % (Cu)B2(ClJ) (A.3)
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i, j  sit in the same sector of 7*, while I sits in the opposing sector. Letting C,- be 
k, there are N  -  k choices as in the diagonal case. However, as Cj sits in the same 
sector, there are only N  -  k -  1 choices. C/ is k -  N  and has k choices. In a similar 
vein for the swapped sectors, this gives a total of

[k(N -  k)(N - k - l )  + k ( k -  1 )(N -  k) ]B2(q)2 (A.4)

Case II: Ca = 0, Q, ^ 0 and Ca ±  0, Cb = 0

For this case, either a or b is diagonal, or a and b are off-diagonal, but either Ca or 
Cb has both indices defined in the same sector.

a or b is diagonal

f m i i f ,1-dJiB2(Cij)B2(Cd) or (A.5)

Following equivalent combinatorics to the diagonal case in I , plus an additional 
factor of 2  from a b\

-> 4k(N -  k)B2(q)B2(0) (A.6 )

a ,b  & c are off-diagonal

f m i i f mi>B2{Cl,)B2(C,j ) (A.7)

Here i and j  are in different sectors, therefore forcing I to be in a matching sector 
to one of them. Thus, either C,v or C/y- will vanish. Swapping sectors for i and j  
gives a factor of 2 .

2 [k(N -  k)(N - k - l )  + k ( k -  1 )(N -  k)] B2(q)B2( 0) (A.8 )

Total of I & II

Summing all non-vanishing, q dependent terms from both cases provides:
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-> (2 k(N - k )  + [k(N -  k ) ( N - k - l )  + k ( k - l ) ( N - it)]) B2{q) 2

+ (4k(N - k )  + 2 [k(N -  k)(N -  k -  1) + k(k -  \)(N -  it)]) B2(q)B2(0)

Nk(N  -  k) [B2(q)2 + 2B2(q)B2(0)] (A.9)

Casimir scaling remains at 2-loops in pure Yang-Mills. There are two main fac­
tors which lead to the Casimir-like scaling: Firstly only non-trivial ^-dependence 
arises from either one, or both of Ca & Cb being non-zero. Secondly, and more im­
portantly, the combined function B2(Ca)B2(Cb) is even. Thus for the cases where 
the indices of f 2, a, b & c are off-diagonal (as in both of the cases above) the 
two contributions from I being in different sectors sum to give the scaling. Explic­
itly, consider a general function of Ca and Cb, H(Ca, Cb), where all ^-dependence 
vanishes only for H(0,0). Focussing on the analogous arguments to Case I:

Cj,) = k(N -  k) [H(q, -q )  + H(-q, q)} (A.10)

The diagonal contribution produces the Casimir scaling. However, for the off- 
diagonal contributions:

f 'W f - ' J - i 'm C u , C,J) = U N - k ) [ ( N - k - l)H(q, -q )  + ( k - \  )H(-q, q)}
( A M)

Due to the non-even properties of H(Ca, Cb), there remain additional N  factors 
together with the overall k(N -  k).

The result, eq.A.9, is the pure Yang-Mills result, however there is a plausibility 
argument that the Casimir scaling remains at 2-loops for Af=4 SYM.


