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Abstract
This thesis investigates the use of Synchronous Concurrent Algorithms (SCAs) in the

development of safety related software, where a stricter adherence to mathematical
correctness is required. The original model of SCAs is extended to produce abstract
and concrete dynamic SCAs (dSCAs) that allow dynamic, but predictable, SCAs to
be produced whose wiring maybe different at different values of a program counter.
A relaxed implementation of the Generalised Railroad Crossing Problem is used to
demonstrate each of the SCA models.

SCAs were originally defined by Tucker and Thompson and were restricted to
unit-delays between modules. Hobley investigated the introduction of non-unit delay
SCAs and how non-unit delay SCAs may be represented as unit delay SCAs. Poole,
Tucker and Thompson introduced the concept of hierarchies of Spatially Expanded
Systems, of which SCAs are a form. All of these tools are used and expanded upon in
this thesis to provide a mechanism enabling an SCA representation of an algorithm
to be transformed into an SCA representation of a computing device that implements
that algorithm, and to be able to demonstrate correctness.

As each SCA model can be represented algebraically, this thesis provides the
transformations as meta-algebras, i.e. algebras that can transfrom one algebra to

another algebra.
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Chapter 1

Introduction

Software is being used in systems where a high-level of confidence in the correct
operation of the system is required. Accidents, such as the radiation overdosing of
patients using the Therac-25 cancer treating system ([LT93]), the overshooting of an
Airbus A3XX aircraft at Warsaw airport ([Com94]) and the Ariane 5 rocket incident
([Lio96]) demonstrate that care is required in the construction of such systems and
that there is perhaps still some way to go to achieve the high level of confidence
expected by the general public. Informally these types of systems are referred to as
safety related systems; and these in turn are one form of a class of systems called
high-integrity systems.

This thesis will investigate the use of a simple mathematical model that can be
used at different levels of abstraction in the development of Safety Related Systems;
the aim being to develop processes that have the potential to reduce the cost of safety
related software development and minimise the introduction of errors whilst crossing
between different mathematical models currently used.

There are many (disparate) approaches proposed in the literature that allow the
developer of a high integrity system to understand the (safety) requirements of these
system and then to subsequently develop the software to be used in a controlled

manner, producing the body of evidence necessary to demonstrate the system’s correct
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operation in a well defined environment.

Techniques, such as mathematical correctness and refinement, have been developed
by others to increase confidence that an implemented system meets its specification,
and confidence in the correctness of a specification can be increased by using math-
ematical specification techniques. All of these techniques have generally been borne
out of research into four streams of approaches to high integrity systems: depend-
ability (e.g. see the work on Predictably Dependable Computer Systems ([RLKL95],
and [ESP94])), safety engineering (e.g. the work of Leverson ([Lev86])), security(e.g.
financial systems) and real time systems. Each approach tackles similar problems
of integrity demonstration but from different domain perspectives. Rushby provides
a useful taxonomy of high integrity systems ([Rus94]), by comparing and drawing
together the terminology used in the four approaches above.

The techniques described in the literature generally cover particular aspects in
the development lifecycle, e.g. specifications using formal specification techniques or
hardware components using hardware description languages. The lack of a single
formalism for all phases implies there is additional effort required to translate and
maintain correctness across different models if a formal approach is to be adopted
from “cradle to grave”. This potentially increases both development costs, due to
different skill sets per development phase, and the opportunity for error introduction,
during the transition between formalisms at the boundary of phases. It should be
noted that it may not be necessary, appropriate or even commercially viable to apply
formal techniques to all stages of the development, and as is often the case in safety
related software development the risks to humans and/or environment needs to be
ascertained before appropriate methods are used.

A problem with many of the techniques given in the literature is that they require
the developer to become proficient in their specialised symbolism and are often based

on mathematical concepts beyond those with a cursory mathematical background.
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A driving motivation for this work is for it to be done in a formal notation that is

readily accessible to engineers. Our choice of SCA meets this since:

e SCA networks have a graphical representation that allows easy understanding,

for example a three module SCA can be represented as:

a, a, a, a,

Figure 1.1: Simple SCA

e Values output by modules in an SCA can be specified using simple equations,

for example the output of Module 1 can be represented by an equation such as:

%(t + la a, :E) = add (Vz(t, a, 113), ‘/3(t>a'>$))

e We will show that SCAs are applicable across a hierarchy of models of differing

abstraction, reducing the need to be an expert in many different formalisms.

In 1961 McCarthy proposed that one of the goals of computational theory should
be

“....to represent computers as well as computations in a formalism that
permits a treatment of the relation between a computation and the com-

puter that carries out the computation.” ([McC63]))

In their work on Synchronous Concurrent Algorithms, the mathematical model
used in this thesis, Poole, Holden and Tucker presented the Integrative Hierarchy

Problem:
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“Develop a mathematical theory that is able to relate and integrate dif-

ferent mathematical models at different levels of abstraction” [PHT98]

Poole, Holden and Tucker show that the construction of a hierarchy of Spatially
Expanded Systems (SES) ([PHT98]), of which Synchronous Concurrent Algorithms
are a form, is possible. They provide a mathematical framework that supports the
demonstration of equivalence between SES’s in a hierarchy. This thesis investigates
whether Synchronous Concurrent Algorithms (SCAs), originally introduced by Tucker
and Thompson in [T'T85] and Thompson’s PhD thesis, [Tho87] (but best described in
the 1991 Technical Report from Swansea ([TT91]) which was subsequently updated
as the 1994 Technical Report - [TT94]) and further expanded to handle non-unit
delays by Hobley [Hob90] can be used in the development of safety related software
and thus fulfill McCarthy’s goal / the Integrative hierarchy problem.

The author’s motivation for the work comes from a) his formulative career years
in the UK Ministry of Defence dealing with the practical implementation of safety
related systems on a variety of UK only, UK/US and European projects, and b)
his undergraduate project that considered the implementation of dataflow architec-
tures as a grid of processing elements, notably the work of Rumbaugh ([Rum77)).
Implementations could either be as a grid architecture (e.g. The Manchester Proto-
type Dataflow Architecture, [GKW85]) or a token based architecture (e.g. Arvind’s
dataflow architecture with tagged tokens, [AP80]) - more information on dataflow
architectures can be found in Sharpe’s work, [Sha85]. Indeed, the initial thoughts of
the for study after his bachelors degree was to determine how a grid architecture can
be implemented as a single processor if all elements in the grid are executed under
some form of sequential ordering.

The first part of the author’s career, in the UK Ministry of Defence, gave an
added aspect to these initial thoughts. During this period, he worked in a section

focussed on safety related systems, and together with his knowledge on Synchronous
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Concurrent Algorithms (SCAs) - which he was already aware could model hardware,
and assumed could implement the dataflow graph in a formal manner - led to the
pondering of whether the following development path for high integrity systems was

valid:
e Formal specification of a system in a language such as Z, or B;
e Translation of the formal specification into a functional language;
e Animation of that specification to confirm correctness of specification;
e Creation of a dataflow graph of the functional language program;
e Implementation of the dataflow graph as a SCA;
e Implementation of the target architecture as a SCA; and

e Map implementation of the dataflow graph to implementation of the target

architecture.

Informally, a SCA consists of a set of modules that calculate and communicate in
parallel with respect to some external clock. Data is read into an SCA at a set of input
modules, and can be read out of the SCA at a set of output modules. SCAs can be
specified algebraically, and can therefore be algebraically manipulated. A refinement
methodology is provided in this thesis under which a computation represented as a
SCA can be transformed into a SCA modelling the computation device carrying out
the computation.

The class of systems considered in this thesis is the sub-set of real-time systems
known as reactive systems. The definition of a reactive system is given in Harel and
Pnueli’s work “On the development of reactive systems” ([HP85]). To summarise, a

reactive system is defined to be a system that controls a set of actuators based on
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the values read in from some set of sensors. Figure 1.2 shows an example reactive

system.

Control Signpls Sensor Values

Environment
| 7|

Figure 1.2: Example Reactive System

In such a system, there is a time delay between the reading in of values from the
sensors, the performing of some processing on those signals and the resultant sending
of control signals to the actuators. If it is stipulated that the reading in, processing,
and sending of these signals are co-ordinated by some external clock, then reactive
systems map to the notion of SCAs.

This thesis will present the usual model of SCAs and will then discuss a number
of “limitations” identified in relation to this work. To address these limitations a
number of syntactic extensions are introduced that support the notion of refinement
steps in safety related software development. SCAs that use these extensions are
known as Dynamic Synchronous Concurrent Algorithms (dSCAs) and it is useful to
distinguish between two types of dSCAs: abstract dSCAs, which allow concepts such
as the ability to look back over greater than one time unit; and concrete dSCA, which
contain concrete implementations of the abstract concepts of an abstract dSCA, e.g.
looking back greater than one time unit can be modelled as a finite tuple of memory
values. We acknowledge the work of Hobley ([Hob90]) which first introduced the

concept of non-unit delay SCAs, and how non-unit delay SCAs may be represented
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as unit-delay SCAs, on which we build.

Each dSCA is given a defining shape, V, described in detail later, which is a
tuple indicating the number of modules and the number of operations each particular
module can perform for a dynamic network. By default, the defining shape of a
Dynamic SCA directly representing a SCA with n modules would be V = (n,1)
indicating there are n modules, each capable of performing only 1 operation. Similarly,
the defining shape of a simple computing device with one CPU executing a program
with n operations would be V = (1,n).

This thesis takes advantage of the property of dSCAs that allow a dSCA with a
particular defining shape to be folded into a dSCA with a different defining shape.
Consider an algorithm which has 20 separate functions to be implemented; it could
be implemented on a dSCA where V = (20, 1) - the usual notion of an SCA - or some
other valid defining shape, some of which are V = (10,2),V = (5,4), V = (4,5),V =
(1, 20) - the last defining shape perhaps representing a single processor machine. Each
dSCA can be algebraically specified (since they are SCAs) and thus it is hypothesised
that it is possible to construct algebraic methods to transform between dSCAs of
differing defining shapes.

As concrete and abstract dSCAs are SCAs with syntactic extensions, it can be
further hypothesised that it is possible to construct algebraic methods to transform
between SCAs and both forms of dSCAs. The transformations investigated are shown

in Table 1.1.

[ Transformation | Result | Result Represents ]
Start SCA SCA representation of Algorithm
1 Abstract dSCA | dSCA representation of SCA
2 Abstract dSCA | Abstract hardware representation of dSCA
3 Concrete dSCA | Hardware implementation

Table 1.1: Transformations
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Underlying each algebraic specification of SCAs and transformations is an algebra
specification the defines the operations each module can perform, this is referred to
as the machine algebra, or M.

The input into the transformation process shall be a (source) SCA representation
of an algorithm it is wished to implement on a hardware system: the computation.
Modules in this SCA must implement a single operation from M4 and the initial
transformation (or refinement step) will take this SCA and produces an equivalent
dSCA with a defining shape of V = (n, 1). The next refinement step/transformation
shapes the resultant dSCA into a shape matching the defining shape of the target
architecture, for example, a single processor machine with defining shape of V =
(1,n). The final refinement step creates a concrete dSCA from an abstract dSCA. The
resultant concrete dSCA represents the computer that carries out the computation.

To summarise, the main tools that this thesis uses from the literature are:

e Synchronous Concurrent Algorithms ([TT94])
¢ Non unit delay Synchronous Concurrent Algorithms ([Hob90])
e Hierarchy of Spatially Expanded Systems ([HT'T89])

and the thesis provides:

e Dynamic Synchronous Concurrent Algorithms (abstract and concrete)

e Methods for the mechanical transformation between SCAs and abstract dSCAs,
and further, abstract dSCAs to concrete dSCAs.

It is sensible to divide this thesis into three main sections. This section provides the

introduction, and is followed by a section that introduces the original SCA model as
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well as the syntactic extensions used to create abstract and concrete dSCAs. The final
section introduces the refinement steps/transformations mentioned above as three
separate transformations. Throughout this thesis the techniques are exposed through
the use of a case study: The Generalised Railroad Crossing Problem, introduced later.

The remainder of this introductory section establishes the context of safety related
software development by detailing the mathematical preliminaries and introducing
the case study. Chapter 2 introduces a number of issues relating to the development
of safety related systems, and includes an explanation of the environment that such
developments take place in and highlights the applicable legislation. This chapter
also provides a discussion on mathematical specification, correctness and refinement.
Chapter 3 discusses the class of reactive systems and introduces the case study. Con-
cluding this section is chapter 4 which presents the thesis statement, the contribution
it is making and then describes the structure and organisation of the remainder of

the text.



Chapter 2

Safety Related Software
Development

The processes used in the development of Safety Related Software mark a return to
the basic mathematical methods and techniques of decidability/computability from
which computing initially emerged. Over the years development has diversified from a
strict mathematical basis driven by the commercial reality of producing software in an
environment where the target is the constant reduction in (development) costs. The
risk of developing incorrectly functioning software, introduced by a non-mathematical
approach, has been addressed, to some extent, by the emergence of the software
engineering discipline.

In this chapter, key moments where a mathematical basis has been fundamental
to the development of the computer field are discussed, from Church and Turing’s
1930’s exposition of computability to the work of Spivey and others on the formal
mathematical specification of programs. The approach taken is not intended to pro-
vide a clearly recognisable path of developments or to single out individual “heroics”,
but rather to look at where mathematics has been applied to various stages of de-
velopment and indicate those contributions we see as significant. In summary the
class of computable functions, the progression of the computer field to computers

and assemblers, and the development of high level languages are considered. The

11
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correctness of programs and specifications is also considered.

2.1 Mathematical Evolution of Software
development

Class of Computable Functions

Modern day computing stemmed from the need to address the questions posed by
the field of mathematics known as computability theory - a topic that is addressed by
Cutland ([Cut89]). Church ([Chu36b, Chu36a]) and Turing ([Tur36]) both identified
models that could demonstrate the falseness of the Entscheidungsproblem - one of a
number of problems posed by Hillbert and Ackermann in their 1928 work, “Grundzuge
der Theoritischen Logik” ([AH28]). Both Church and Turing arrived at their solutions
independently, Turing by introducing his logical computing machines (now known as
Turing machines) and Church by the application of lambda-calculus. The closeness

of each solution was identified by Kleene who stated:

“So Turing’s and Church’s thesis are equivalent. We shall usually refer to

them both as Church’s thesis, or ... as the Church-Turing thesis” [Kle67].

The modern day understanding of Church’s and Turing’s work is that whatever can
be calculated by a machine can be calculated by a Turing Machine. Since the precise
class of problems that are Turing computable are known, there can be confidence
that the computational limits of what can be implemented on/by a modern processor
are well understood. See “Introduction to Metamathematics” chapters 12 and 13 by
Kleene ([Kle52]) for perhaps the fullest summary of Turing computable problems.

Onto Computers and Assemblers

The 1940’s work of von Neumann and others on computing machines (Neumann’s
original internal work has been published in many places, for example [Neu93]) led

to the development of devices that could be successfully programmed and allowed
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to compute on inputs - effectively allowing the implementation of the set of Turing
computable problems as stored programs. Von Neuman’s architecture is suited to
the implementation of Turing machines. Later work on functional languages took
Church’s lambda-calculus forward as the basis of a machine architecture, and led
us to the development of dataflow architectures, see ‘A dataflow Architecture” by
Rumbaugh ([Rum77]), amongst others. Backus had views on dataflow architectures
which were given in his paper “Can programming be liberated from the von Neumann
Style?” ([Bac78]).

In 1949 Wilkes ([Wil49]) showed that mnemonics codes, which had recently been
used to design programs on paper before the process of hand translation into bit-
wise machine code used by machines based on von Neuman’s architecture, could be
“compiled” by the EDSAC computer system he was using. Soon Wilkes added an
ability for symbolic addressing ([Wil52, Wil53]) to his mnemonics, creating what is
now referred to as assembly languages, and the programs used for translation were
to become known as assemblers. By 1954 Backus was directing the implementation
of assembler for the IBM 701, the Speedcoding system ([Bac54]), and it wasn’t long
before the development of high-level languages and compilers was being undertaken,
notably Backus and others on FORTRAN ([BBB*57]) - Backus was later to play a
major part in the development of mathematical formalisms for languages. In this
period Bohm ([B54]) showed that a compiler for a language could be written in its
own language thus providing the first seeds of a potential mechanism to demonstrate
compiler correctness via a bootstrapping mechanism.

In 1961 McCarthy proposed 5 goals in his work “A Basis for the Mathematical
Theory of Computation” ([McC63)); these are paraphrased below:

1. To develop a universal programming language.

2. To define a theory of equivalence of computation processes.
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3. To represent algorithms by symbolic expressions.

4. To represent computers as well as computations in a formalism that
permits a treatment of the relation between a computation and the

computer that carries out the computation.

5. To give a quantitative theory of computation.

It is the fourth of these goals that is specifically considered in this thesis.

The Development of Formalisms for High-Level Languages

A mathematical basis to computing was still being applied as more abstract steps
were taken away from bitwise machine code programs. Algol 60 ([Bac59], which
was subsequently revised as [BBGT63]) was the first high-level language to have its
syntax formally specified using Backus-Naur Form (BNF). BNF introduced the notion
of grammars and formal semantics into high level language development and is closely
linked to the work on context-free grammars performed by Chomsky in his research
into the syntax of natural languages ([Cho56, Cho59]). In 1962 Floyd showed that
ALGOL 60 was not a context-free language; and further, that any programming
language where all programming variables must be declared before they are used,
and where the names of these variables can be arbitrarily long, are not context-free
either ([Flo62]). Floyd’s result showed that most modern day programming languages
are not context-free. The reader is pointed to Stephenson’s work on “An Algebraic
Approach to Syntax, Semantics and Compilation” ([Ste95]) for a good understanding
of where the field has gone since Floyds work.

Correctness of Programs

Providing formalisms for programming languages led to questions being raised on
how to demonstrate program correctness. Floyd continued his work on languages

looking at the semantics of programs and trying to determine how meanings could be
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assigned to programs. In his work, “Assigning Meanings to Programs”, Floyd states

that the paper:

“attempts to provide an adequate basis for formal definition of the mean-
ings of a programs in appropriately defined programming languages, in
such a way that a rigorous standard is established for proofs about com-
puter programs, including proofs of correctness, equivalence, and termi-

nation” [Flo67].

Initially Floyd considers correctness, equivalence and termination of a flowchart
language by considering verification conditions for each component of the flowchart.
Similar techniques were then applied to a subset of the ALGOL language by con-
sidering verification conditions for semantic units, i.e. ALGOL statements. The
complexities of a high-level language begin to become clear during its exposition,
and Floyd states that the introduction of “compound statements with bound local
variables..causes some difficulties” [F1o67].

Interestingly, Floyd makes a passing remark on the use of the GOTO statement
stating that:

“transfers out of a block by go-to statements cause local variables to the

block to become undefined” [Flo67]
Floyd also notes that his paper:

“does not say that local variables loose their values upon leaving a block,
but that preservation of their variables may not be assumed in proofs of

programs.” [Flo67]

Dijkstra continued the debate with his paper that identified the GOTO statement

as being considered harmful ([Dij68]). It is easy to understand not just from Dijkstra’s
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viewpoint of creating confusing unmanageable code, but also from Floyds statements
on the status of local variables upon leaving blocks that this type of branching is not
welcome, and not seen, in Safety Related Software. Indeed, the 2001 ISO technical
report on the use of Ada within high integrity systems, of which the author was the
co-project editor, states very strongly that the goto statement is not included in high

integrity systems since the use of goto:

“is exceptional because its use is contrary to all principles of structured
programming. There are no circumstances in which goto can be used
where the use of some other construct is not preferable on grounds of
good practice, readability, and aesthetics. Given this, the use of goto
within high integrity systems is almost not an issue and the reasons for

not using it..... are almost irrelevant.” [ISO00] (also published in [Wea99])

An argument may be made that careful use of GOTO can be used for exception
handling, however, the ISO guidance discourages the use of exceptions since its use
makes verification more difficult, particularly for symbolic and functional analysis.

In this period Hoare’s paper “An axiomatic basis for computer programming”
([Hoa69]) argued that a set of axioms and rules of inference can be gained from
studying computer programs, and that these axioms and rules of inference can be
used in formal proofs of the properties of computer systems. Hoare’s work introduced
the notion of pre and post conditions, where given a precondition P, a program Q
and a description of the result of the programs execution R, then it could be written
that:

P|Q|R

meaning that

“if the assertion P is true before initiation of a program (@, then the

assertion R is true on its completion.” [Hoa69|
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Hoare provides axiomatic rules for the majority of procedural language constructs

including assignment, consequence, composition and iteration, and agues that:

e “When the correctness of a program, its compiler, and the hardware
of the computer have all been established with mathematical cer-
tainty, it will be possible to place great reliance on the results of the
program, and predict their properties with a confidence limited only

by the reliability of the electronics...; and

e ..but the practical advantages of program proving will eventually
outweigh the difficulties, in view of the increasing cost of program-

ming error” [Hoa69]

Several years later Dijkstra ([Dij75, Dij76]) introduced the concept of weakest
preconditions and guarded commands in order to formally derive proofs of program
correctness. Dijkstra’s 1982 book “Selected Writings on Computing: A personal
perspective” ([Dij82]) challenged the then growing perception that formal proofs are
only usable for small toy programs.

The late 1960’s saw the emergence of the “software crisis” and this led to the
emergence of the field of Software Engineering (identified in [NR69]). This software
engineering field has undoubtedly added structure and control to the development
of software, and techniques such as Rapid Application Development have enabled
more complex systems to be developed with a reduced number of errors, but limited
guarantees that it is absolutely free from errors. When it comes to safety related
software, where absolute reliance on correct operation is required, it is the author’s
view that formal methods must be applied, albeit with an appropriate amount of
pragmatism.

NASA researchers Butler and Finelli, at the Langley research facilities, provide ev-

idence in their report “The Infeasibility of Quantifying the Reliability of Life-Critical
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Real-Time Software” ([BF93]) that the use of statistical methods, e.g. testing, is not
feasible to ensure the reliability of high integrity systems.
A study by Hetzel ([Het84]) found that the probability of making a correct change

is less than 50%. Hetzel identifies two main reasons why changes fail:

e “unforeseen side effects: the change accomplishes what it was supposed to, but

also affects something that was working before.

e partial change completion: a change is applied to most parts of a system, but

one or more parts are overlooked.” [Het84]

Sommerville ([Som95]) indicates that removing X% of software faults does not
imply that an X% increase in reliability will be observed. Indeed Sommerville notes
that a particular study reported only a 3% increase in reliability after the removal of
60% of software faults. In summation, Sommerville proposes that the emphasis must
be upon removing faults with the most serious consequences.

Formal methods offer an opportunity to ensure that a developed system meets
its specification and that specification has resolved anomalies and omissions. How-
ever, as Sommerville points out, there is a risk that program proofs derived from the
specification may be incorrect, or based upon assumptions on the system’s environ-
ment which are incorrect. Additionally, it is the author’s experience that industry in
general see formal methods as cumbersome and expensive.

The Arianne rocket incident ([Lio96]) is an apt example of demonstrating that
although a component may work correctly in one environment, no assumptions can
be made about its operation in another environment. Modern safety practises require
a safety case including statements regarding the environment the system has been
built for to be produced.

For the sake of cost, and sanity, the use of formal methods should be targeted to

those parts of a system where the biggest benefits will be obtained. Modern safety
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related development methodologies require a system to be engineered to minimise,
and compartmentalise, safety related software aspects.

Dijkstra’s pre and post conditions can be seen in current safety related software
development techniques where it is not unusual to supplement the chosen development
languages with defined annotations associated with program code to enable automatic
static analysis to take place. Languages/approaches such as Anna ([LvKBO87]) and
SPARK Ada ([CG90, CGM92, Bar97]) are examples of where annotations are used

to provide pre and post conditions for use in analysis by a static analysis tool.

Correctness of Specifications

The Software Project Managers Network (SPMN), an organisation established in
the US in 1992 by the Assistant Secretary of the Navy to “identify proven industry
and government software best practices and convey to .. Department of Defense

system acquisition programs” | indicates that:

1. “Rework...” - the process of having to go back to a previous part of
the development process correct an issue and then redevelop - “...is

off the radar screen as a potential killer of cost and schedule.

2. First inspections are informal code walk-throughs despite the fact
that metrics consistently show (i) impact of requirements and design
defects is much greater than the impact of code defects and (ii) the
cost of finding and fixing a defect grows very rapidly with the time
between making and finding the defect.

3. The amount of rework done on the project is not tracked.” [SPM]
Boehms work, Software Engineering Economics ([Boe81)), defined the relative cost

of fixing an error introduced in the requirements phase depending upon where in the

development phase it is found in. This work demonstrates that finding an error in the
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maintenance phase is typically 100 times more expensive to fix than if it was found in
requirements definition phase. In the safety context, any requirements error found in
maintenance implies that an accident may already have occurred, and thus the cost
would be many many more times higher, both in terms of human issues and potential

litigation!

In “Analyzing Software Requirements Errors in Safety Critical, Embedded Sys-
tems”, Lutz ([Lut93]) analysed the software errors found in the development of the
Voyager and Galileo spacecraft software, and placed them within a framework based
on Nakajo and Kume’s error classification scheme (see [NK91]). Lutz places his work
in context with a large number of other studies into software errors, and indicates
that his study is the only one to consider complex safety related embedded systems.
One of the conclusions of his work is the need to use formal specifications techniques
in addition to natural language specifications in order to reduce number of errors.
This conclusion is based on the fact that primary cause of functional faults was due
to errors in understanding the requirements (62% on Voyager and 79% on Galileo).

Formal development is often thought of by industry as being expensive due to
the need to have suitably qualified resources. The ConForm project, an application
experiment under the European Commission’s European Systems and Software Ini-
tiative (Grant 10670), demonstrated that the cost of using formal methods, across the
whole lifecycle was close to that of conventional development - noting that additional
effort required in the system design phase was recuperated in the reduction of effort
for the other phases ([TBL96]).

Lightweight Formal Methods ([JW96, Jon96, DKLM98, ELC*98)) is an approach
that brings the benefits of formal methods to the early stages of development, but
acknowledges that the cost of completing the development in a formal manner may

be disproportionate to the benefits gained. The ConForm project concluded that the
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best use of formal methods was to target them at appropriate areas rather than have
a blanket use (in the conclusions of [FBGL94]). Other authors have attempted to in-
clude formal methods within the traditional approaches such as SSADM, HOOD and
Yourdon. For example Draper’s work on integrating Z into the SSADM methodology
“Practical Experiences of Z and SSADM” ([Dra92]); Giovanni and lachini’s work on
HOOD and Z “HOOD and Z for the Development of Complex Systems” ([DI90]);
and the work on Yourdon and Z by Semmens and Allen “Using Yourdon and Z: An
Approach to Formal Specification” ([SA90]).

A useful survey on the industrial use of formal methods is given in the work
conducted on behalf of the Canada’s Atomic Energy Control Board, US National
Institute of Science and Technology and the US Naval Research Laboratory entitled
“International Survey of Industrial Applications of Formal Methods” ([CGR93]).

Leverson led a research group where one of the tasks has been looking at how to
make formal methods more accessible to industry. Their paper, entitled “Investigat-
ing the Readability of State Based Formal Requirements Specification Languages”
([MZL02]) set out to understand one of the common complaints from industry that
formal methods are difficult to read, and therefore require higher levels of training
and more intelligent staff. Subjects taken from either a computer science or subject
matter background, were shown specifications in a textual, graphical, tabular, and
logical expressions of a Traffic alert and Collision Avoidance System (TCAS). The
results show that background is an influential factor in understanding specifications
- a good background in the specification method being used is better than a good
background in the subject matter. Graphical approaches were useful when trying
to understand overviews and tabular methods when looking at details. The textual
specification provided was found to be not that helpful.

For a list of criteria that can be used when comparing the use of different formal

specification methods in reactive systems the reader should consult Ardis et al, “A
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Framework for Evaluating Specification Methods for Reactive Systems Experience
Report” ([ACJ*T96])

The reader is pointed to Jones and McCauley work entitled “Formal Methods
- selected historical references” ([JM92]) for a considerable expansion on historical
references than has been provided, including references to some of the technical and
company reports that were later to lead to significant published efforts. Our intention
has been to show the progression of development within a context of a mathematical
basis, what is covered next are some of the current techniques used in the development
of safety related software.

The result of this discussion could lead to the conclusion that the best return
on effort would be from investigating the requirements phase, however this phase is
adequately covered by other work, and the author is convinced that reducing the

costs for other phases of development is beneficial.

2.2 Current Safety Related Software Development
Techniques

Following on from his original comments in his 1969 paper, “An axiomatic basis for
computer programming”, ([Hoa69]) in which Hoare pointed out his thoughts that the
advantages of program proof would eventually outweigh the difficulties, Hoare later
reflects in his 1996 paper, “How did software get so reliable without proof?” ([Hoa96])
that the various predictions of doom and gloom given over the last 20 years regarding
software safety have not materialised. Hoare’s justification of why these problems
have not occurred in such a predicted magnitude is interleaved within the previous
discussion: the worry of these predictions becoming true have led to the introduction
of various engineering techniques which have contributed to the reduction in errors.
The author’s view is that when it comes to human life, and safety related development,

can we afford to take the risk of using ” rule of thumb” techniques as opposed to formal
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development?

To understand safety, the point at which a system becomes sufficiently important
that confidence in its correct development and operation above that for other forms
of software must be understand. Under UK law this point comes at the balance of
risk: the developer of a system must show that the risk of an accident happening
due to the system has been reduced to “as low as reasonably practical”. In the UK,
the concept of safety is effectively embodied within the Health and Safety At Work
Act 1974 ([Gov84]), which requires the risk of danger to be As Low As Reasonably
Practicable (the ALARP principle); UK case law, notably Donoghue vv Stevens in
1932, requires that a manufacturer owes a duty of care, not just to those at work, but
to all persons to ensure that the systems they produce are safe and do not give rise

to injury:

“You must take reasonable care to avoid acts or omissions which you can
reasonably foresee would be likely to injure your neighbour (persons who
are so closely and directly affected by my act that I ought reasonably to
have them in my contemplation as being so affected when I am directing

my mind to the acts or omissions which are called into question).” [Dav93]

An accident occurring within UK jurisdiction could lead to criminal charges be-
ing brought under the Health and Safety At Work Act. However, it is increasingly
common for civil charges to be brought as well, and there is a lower level of proof
required for civil charges. Conviction of a civil charge usually results in the awarding
of damages to the injured party and the attraction of bad publicity. For these reasons

Davis states that:
“it is perceived that civil liability is the most important.” [Dav93]

Under civil law there are three areas of potential liability:
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e Liability under contract law,
e Liability under the law of negligence, and

e Liability under the new product liability legislation

The seller of a safety related system must also ensure that the goods a) comply
with their description, b) are of merchantable quality, and c) are fit for purpose.

Davis suggests that a corporation can protect itself from civil claims if they:

1. “ensure as a developer they have the necessary skills and knowledge

to develop the system
2. use best practice, e.g. standards
3. Include a reasonable limit of liability in the contract, including

(a) A requirement to comply with the instructions provided, and

(b) A description of the operating environment, perhaps with a warn-

ing about other environments” [Dav93]

Burnett, ([Bur96]), gives a useful overview of the issues involved in developing
safety related software as part of her work on the Rigorously Engineered Decisions
(RED) project, a project forming part of the DTI/SERC Safety Critical Systems
Research Initiative. Her views come from her position in a firm of solicitors dealing

with IT and associated litigation.
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Standards

The best defence a developer can use in a criminal/civil claim is the use of best

practise. To reduce the need to establish best practise in each case, and to provide

support to developers, many industries/professional bodies have captured what they

consider to be best practise in standards. The generic standard applicable to all

areas is now [EC 61508 ([IEC99]) where part 3 of this standard deals specifically with

software. Examples of sector and national specific standards are:

—

European Space Agency: ESA Software Engineering Standards ([ESA91]);

US DoD: Military Standard 882B: System Safety Program Requirements
([DoD84));

Nuclear Industry: IEC880 Software for Computers in the Safety Systems of
Nuclear Power Stations ([IEC86));

Medical Industry: IEC60196 Medical Electrical Equipment - Part 1: General
Requirements for Safety 4: Collateral Standard: Programmable Electrical Med-
ical Systems ([IEC96]);

. Pharmaceutical: Supplier Guide for Validation of Automated Systems in Phar-

maceutical Manufacture ((GAM]);

UK MoD: Defence Standard 00-55:The Procurement of Safety Related Soft-
ware in Defence Equipment and Defence Standard 00-56:Safety Management
Requirements for Defence Systems ([MOD89, MOD91] updated by [MOD97,
MODY6));

UK Railway Signalling: Safety Related Software for Railway Signalling ([RIA91]);

European Rail: Railway Applications: Software for Railway Control and Pro-
tection Systems ([CEN97]);
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9. Airborne Civil Avionics: DO-178B/ED-12B : Software Considerations in Air-
borne Systems and Equipment Certification ([RTC92]) Issued in USA by the
Requirements and Technical Concepts for Aviation and jointly in Europe by

the European Organisation for Civil Aviation Electronics;

10. Motor Industry ([MISRA94)).

All of these standards provide guidance that allow the merging of the commercial
reality of making profit and the need to adhere to the ALARP principle (or equivalent
in other countries). Many standards introduce the principle of safety integrity levels,
where, in brief, functional aspects of a system are graded based on level of risk,
probability of accident occuring and severity of that accident. Often a number of
techniques are suggested dependent upon the safety integrity level being claimed for
functions of the system in a particular environment.

The UK Ministry of Defence was one of the first organisations to generate a
standard relating specifically to software safety with Interim Defence Standard 00-55
(IMOD89]), which was also a unique / controversial standard in its mandating of the
use of formal methods and formal development. It was quickly realised that it was
not viable to have this standard sitting in isolation, as any requirement of its use
left an ambiguous notion as to where the boundary of the use of formal methods
would lie - in the worst case the whole development becomes safety related, and the
cost of development is therefore probably very high. Interim Defence Standard 00-56
(IMOD91]) was introduced to provide project managers and developers a mechanism
to identify what elements of a system are related critical. After a number of years of
review and practical use (mainly studies) these standards achieved full Defence Stan-
dard status (i.e. they are now legally applicable to all contracts) and are referenced
as [MOD97] and [MODY6].

In some particular industries, e.g. the UK Nuclear Power Industry, values for
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acceptable accidents are laid down in an Act of Parliament. Two objectives are
achieved by this: a) reassurances to the public that the executive of government
believes that these values are correct, and b) provision of protection to the developers
and safety auditors in what would be a very high profile case if something were to go
wrong.

Some industries take other approaches, for example the UK railway industry has
a formal licensing scheme introduced following the recommendations in the report
into the UK Clapham Rail Disaster. See [WWGY6] for an informal introduction to

this scheme.

Language Choice

The most significant language in relation to safety related software development is
Ada. Although the original language (Ada ’83, [[SO87]) was not designed specifically
for safety related development it’s mandated use for defence systems in UK and US
until the year 2000 means it has been subject to the most study. Its most recent
version (Ada ’95, [ISO95)) specifically addresses issues relating to high integrity in
an annex (Annex H). Ada originated from the US Department of Defense’s desire to
standardise on one High Order Language for its software development programs. On
the 28th January 1975 the Director of Defense Research and Engineering (DDRE)

issued a memorandum requiring:

“Military Departments to immediately formulate a program to assure
maximum DoD software compatibility...the advantages in...training, in-

strumentation, module reutilization, program transportability, etc. are

obvious” [Cur75)

Subsequently the Higher Order Language Working Group (HOLWG) was formed.
In the 1976 DDRE Memo covering the WOODENMAN version of the language

requirements ([Cur76]) there is visibility of some of the issues relating to conflicting
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requirements that are now considered good principles in developing safety related
software . Examples of these “conflicting requirements” are a)Programming Ease vs.
Safety from Programming Errors, and b)Object Efficiency vs. Program Clarity and
Correctness. WOODENMAN concludes these issues by stating:

“this tradeoff should be resolved in favor of error avoidance and against
programming ease” and “...the major criteria in selecting a programming
language should be clarity and correctness of programs within the con-
straint of allowing generation of extremely efficient object code when nec-

essary”. [Cur76]

An extensive evaluation took place of several languages and it was determined
that no existing language met all the requirements the HOLWG was looking for, as
recorded in [AWM™77]. A subsequent competition was held for a new language, and
in May 1979 the US Secretary of Defense announced the winner of the competition to
design and develop the new language ([Dun79]). Throughout the process the French,
German and UK governments were involved, the UK providing substantial advice on
language consolidation after previously performing its own similar exercise.

The reader is directed to Col. Whitaker USAF(Rtd)’s report in ACM SIGPLAN
on the HOLWG for a personal view on the development of Ada and the details of the
memos referred to above ((Whi93]). This work also indicates that Bell Laboratories,
upon invitation to submit the C programming language ({ISO90, KR78]) for the

evaluation, indicated that:

“there was no chance of C meeting the requirements for readability, safety,

etc.” [Whi93]

Work in the UK, on behalf of the Motor Industry Research Association has tried
to address the use of C in safety related systems. The use of C is wide spread through-

out the commercial software development world, and therefore the cost of resource is
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cheaper. Hatten’s book, Safer C ([Hat95]), shows that there are a large number of
constraints that must be placed on language constructs and a number of additional
tools required before C can be used. In Germany, the TUV has issued a set of “Rules
for Programming in ’C”’ ([FKPW96]). The related programming language C++ has
also been considered in some areas, Binkley provides a technical report on the use
of C++ from the US Government’s National Institute for Standards and Technology
Software, High Integrity Software Systems Assurance department ([Bin97]). In re-
cent years other programming paradigms have been considered including functional
languages under the UK Department of Trade and Industry (DTI) study SADLI
([CBB*96)).

In the 2004 British Computer Society Intelligent Catalogue (available on-line to
members of the British Computer Society), of which the author of this thesis authored
the Safety Engineering and Safety Assessment chapters, it is suggested that:

“Language Choice - subsets of Ada, for example SPARK Ada, are the
prime candidates for development of safety systems for good engineering
reasons; however, this does not preclude the use of other languages. There
are systems written in C, and functional languages, such as ML, have been
used in research projects. However, the choice of language is guided by
requirements given in the standard relevant for the field, the amount of
tool support available, and the ability to demonstrate to peers why the

developed system is safe. It is for these reasons subsets of Ada are usually

used.” [Tac04]

Even though it is often used, the programming language Ada itself is not fully
suited to safety related software development, e.g. it includes the GOTO command.
To address concerns, the safety field created subsets of Ada and several of these

implementations include the ability to use annotations within a program to enable
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static code examination. Two examples of this approach are Anna - A Language
for Annotating Ada Programs ([LvKBOS87]) - and SPARK - a safety related subset
(|[CG90, CGM92, Bar97]).

The applicability of Ada in the development of safety related software increased
when the original Ada standard ([ISO87]) was updated, under ISO rules, and be-
came Ada’95 ([ISO95]). This new standard became the first ISO language standard
to specifically address issues relating to safety; detailed in Annex H of the standard.
Despite this, the high integrity community decided that whilst Annex H addressed a
number of issues, a clarification and re-emphasis document was required, and subse-
quently an ISO technical report was produced. The report is entitled “Guide for the
Use of the Ada Programming Language in High Integrity Systems” ([ISO00],[ISO00])
[also published in draft as “The Use of Ada in High Integrity Systems” ([Wea99])].
The technical report identified the techniques shown Table 2.1 as being in current use
in the development of high integrity software development to understand program
correctness.

The technical report then goes on to consider all of Ada’s language features, and

applies one of the following tags to each feature against the techniques above:

e “Included: A feature is included if it is directly amenable to the des-
ignated verification technique....Included features enable the analy-
sis to be undertaken and directly support the production of high
integrity code.

e Allowed: A feature is allowed if the designated verification step is
not straightforward, but is still achievable; or if the use of the feature
is necessary and the use of a problematic verification technique can

be effectively circumvented.

e Excluded: A feature is excluded if there is no current cost effective
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| Approach | Group Name | Technique |
Analysis | Symbolic Analysis Formal Code Verification
Symbolic Execution
Flow Analysis Control Flow
Data Flow
Information Flow
Stack Usage Stack Usage
Timing Analysis Timing Analysis
Range Checking Range Checking
Other Memory Usage Other Memory Usage
Object Code Analysis Object Code Analysis
Testing Structure-based Testing MCDC
Branch Coverage
Structure Coverage
Requirement-based Testing | Equivalence Class
Boundary Value

Table 2.1: Techniques

way of undertaking the designated verification technique. Assurance

of exclusion requires some form of verification” [ISO00]
The ISO technical report clearly describes how it’s approach should be used, i.e.:

1. “the set of verification techniques should be determined from stan-

dards and guidelines the development is to take place under,

2. identify and understand the objectives to be satisfied by those tech-
niques,

3. use the tables provided to determine what language features the tech-

nical report includes, allows or excludes and then finally

4. confirm the resulting subset and additional verification steps for any
allowed features can actually satisfy the programming and verifica-

tion requirements.” [ISO00]



SAFETY RELATED SOFTWARE DEVELOPMENT 32

It is the author’s view that any language considered for use in high integrity
environment should go through a similar exercise.

Towards Safe Systems

The author’s experience shows that Safety Related Software developments can use
a disjoint set of tools, specialised to particular design phases, that means a consistent
view of safety may be distorted when transitioning from one tool to another. In
Heisel’s Six Steps Towards Provably Safe Software, shown in Table 2.2 (([Hei95)), it
can be seen that a major boundary comes when crossing from step 4 to step 5, and

that these steps miss out the final part of a safety system, that of the hardware used

to execute the software.

| No | Step Proof Obligations
1 Define the legal states of the sys- | Show that the initial state is legal.
tem.
2 Define the actions the system can | Analyze the conditions under which the
perform. actions transform legal states into legal

states.

3 Define the interfaces of the sys-
tem to the outside world.

Show that the internal system operations
are only involved if their preconditions are
satisfied. Show that for each combination
of sensor values exactly only one internal
operation is invoked. Show that - if the
sensors work correctly - the system faith-
fully represents its environment.

4 Refine the data and operations of
the specification until data and
control structures of the target
programming language can be
used.

Show the correctness of the refinements.

5 Transform the specification in
Step 4 into a form suitable for a
program synthesis system.

Show the correctness of the algorithm per-
forming this task.

6 Use the synthesis system to ob-
tain a proven correct implemen-
tation of the system.

Proof obligations are generated by the
synthesis system.

Table 2.2: Heisel’s Six Steps Towards Provably Safe Software
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Adding an additional seventh step, shown in Table 2.3, to Hiesel’s 6 steps provides
a path of development that would meet McCarthy’s vision.

| No [ Step | Proof Obligations |

7 | Map the provably correct sys- | Proof obligations are generated by the
tem from step 6 to the mathe- | system that maps software implemen-
matical model of the hardware | tation to hardware implementation

under consideration

Table 2.3: Additional step to Heisel’s Six Steps

2.3 Other Development Techniques

Standards, such as Defence Standard 00-56 ([MODY6]), require a developer to justify
the safety integrity level particular functions in a system acquire. Once a particular
level of integrity is identified for a function, the hardware and software elements that
implement that function inherit that same level of integrity. It is possible, by design,
to implement lower level integrity systems together to produce a complete system of
higher integrity.

As a simplified example, consider a pipe in which molten metal will pass when
required, but when it is not required to flow, people are likely to be standing under-
neath the pipe performing maintenance or other functions whilst the molten metal is
held back (thus if the metal was to flow whist people were maintaining there could
be casualties). It would be easy to understand that the system that prevents the
molten metal flowing would have the highest integrity possible. Suppose this sys-
tem is a simple valve, then there would have to be very stringent requirements on
its construction. Perhaps it is even impossible to create a valve with such integrity.
These requirements can be reduced by proposing two valves in series. Now both valve
must fail before an possible accident could happen, and so it could be argued that

each valve can now have less integrity because the two in series meet the integrity
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requirement of the system.

For software compnets, one of a number of fault tolerance techniques could be
applied - these techniques are amply addressed by the reports from the Predictably
Dependable Computer Systems (PDCS) project, [RLKL95] and [ESP94]). As an
example of a technique, consider n-version programming, introduced by Chen and
Avizienis in [CA78]. In this technique multiple versions of the software are created
independently, and are subsequently executed with their outputs being collected and
examined by an external entity. This external entity then chooses which result it will
use - perhaps on a majority voting algorithm or similar functionality. Leverson and
Knight performed a much discussed experiment in n-version programming ([KL86])
in which they concluded that whilst a valuable technique, the assumption of indepen-
dence of errors did not hold in their experiment and that the levels of improvement
in reliability given by models was not achieved. An updated paper, ([KL90]), refutes
many allegations made against this experiment - particularly those by Avizienis and
his students. The Ariane 5 incident demonstrates that simply using copies of the
same software/hardware running in parallel is not sufficient.

The use of fault tolerant techniques and sound engineering principles will continue
to provide a reduction in failure rates below what could be expected. However,
as systems get more complicated and is it less easy to partition off safety related
aspects into distinct bounded parts of a system, the need to push forward with formal
techniques increases. Hoare concluded [Hoa96] by suggesting that it was the push for
formal methods that led to some of their principles being adopted by industry and that
there is still much research that has not yet crossed into the commercial world. The
work in this thesis is intended to be another step on the road of reducing complexity
of mathematical models for developers and reducing costs. Isaksen, Bowen, and
Nissanke ([[BN96]) provide a very comprehensive overview and bibliography of the

techniques used in developing safety related software.



Chapter 3

Reactive Systems

3.1 Introduction

The system investigated in this thesis is one of a type of systems collectively known as
reactive systems (Harel and Pnueli are credited as identifying this class of systems in
their 1985 work “On the development of reactive systems” ([HP85])). In “Models for
Reactivity” ([MP93]), Pnueli and Manna put reactive systems in context with more
commonly talked about real-time systems by defining a hierarchy of models (where

each subsequent model builds upon the previous model):

e “A reactive systems model that captures the qualitative (non quan-
titative) temporal precedence aspect of time. This model can only

identify that one event precedes another but not by how much.

e A real-time systems model that captures the metric aspect of time in
a reactive system. This model can measure the time elapsing between

two events.

e A hybrid systems model that allows the inclusion of continuous com-
ponents in a reactive real-time system. Such continuous components
may cause continuous change in the values of some state variables

according to some physical or control law”. [MP93|

35
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Correctness of Pnueli’s reactive systems is addressed in Ketsen, Manno and Pnueli’s
work “Verification of Clocked and Hybrid Systems” ([KMP98]) where reactive systems
are described as a clocked transition system.

This thesis will consider the class of reactive systems, and so the example is
restricted to one where only the fact that one event precedes another can be identified,
but not by how much.

It is useful to place this restriction so the thesis can concentrate on understanding
transformations in the simplest form - one where there is no state information required
to be handled by the system, and leave as the task for future work the application
and potential modification of our techniques to real-time and hybrid systems.

The example selected for this thesis is the Generalised Railroad Crossing prob-
lem introduced in “A Benchmark for comparing different approaches for specifying
and verifying real-time systems” ([HJL93]). Choosing such an example is aimed at
showing that the processes defined in this thesis are applicable to real-life examples.

The common example found during literature surveys on safety related systems
is that of a gas burner. The seminal definition of this problem is found in Ravl,
Rischel and Hansen’s work, “Specifying and Verifying Requirements of Real-Time
Systems” ([RRH93]) delivered as part of the Provably Correct Systems I project. It
was adopted by the Provably Correct Systems II (ProCos II) project as its case study,
(see [HLOR93]| for an overview of ProCos II and [BHL*96] for the ProCos II Final
Report), and has been studied, amongst others by, Lamport in “Hybrid Systems in
TLA+” ([Lam92]), using Temporal Logic of Actions (TLA+) (see [Lam91] for more
on TLA+). Lano et al introduce a similar gas burner example in their paper “Design
of Real-Time Control Systems for Event Driven Operations” ([LS97]). Both Bowen,
in his work “Hardware Compilation of the ProCoS Gas Burner Case Study using
Logic Programming” ([Bow96]), and Miiller-Olm, in “Compiling the Gas Burner Case
Study” ([MO95]) have looked at the compilation of the gas burner problem.
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In contrast to the work on implementations, when considering a comparison of
the specification, design and analysis of different formal verification techniques for
real-time systems, Hietmeyer’s Generalised Railroad Crossing (GRC) problem is the
benchmark problem found in the literature. This problem is defined in “A Benchmark
for comparing different approaches for specifying and verifying real-time systems”
([HJL93]). Hietmeyer and Lynch study this example in their MIT technical memo
“The Generalized Railroad Crossing: A Case study in Formal Verification of Real-
Time Systems” ([HL94al|, which is also summarised in [HL94b]). Pnueli has studied
the Generalized Railroad Problem, with details available in “Deductive Verification
of Real-Time system using STeP” ([BMSU98]). Puchol has provided an ESTEREL
solution described in “A Solution to the Generalized Railroad Crossing Problem in
ESTEREL” ([Puc95]).Piveropoulos and Wellings cover the Requirements Engineering
aspects of the GRC problem using the ¥-notation in “Requirements Engineering for
Hard Real-Time Systems: the ¥ Notation and a Case Study” ([PW99)).

Thus, both examples are well established in their relevant fields. The choice to
progress with Heitmeyer and Lynch’s GRC problem as the GRC problem was made
since it is a reactive system that provides a sensibly sized example. This allows the
proposed transformations to be exposed rather than worrying about a large state
space (that the real-time gas burner problem introduces) and an overly complicated
specification. Steggles has considered such a problem and demonstrated that (Second-
order) algebraic approaches can be used to describe he problem and also discussed

a form of functional refinement within his algebraic method (see either [Ste00a] and

[Ste00b)).
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3.2 Case Study - The Generalised Railroad
Crossing Problem

The generalized railroad crossing (GRC) was introduced by Heitmeyer and Lynch to
allow the comparison of the increasing number of formal methods being invented to
specify, design and the analysis real-time systems. The problem is produced in its

entirety below:

“The system to be developed operates a gate at a railroad crossing. The
railroad crossing I lies in a region of interest R, i.e. I C R. A set of
trains travel through R on multiple tracks in both directions. A sensor
system determines when each train enters and exits region R. To describe
the system formally, a gate function is defined as g (t) € [0,90], where
g (t) = 0 means the gate is down and g (t) = 90 means the gate is up.
Additionally, a set {A;} of occupancy intervals is defined, where each oc-
cupancy interval is a time interval during which one or more of the trains
are in 1. The i** occupancy interval is represented as \; = [r;,v;], where
7, is the i*" time of entry of a train into the crossing when no other train
is in the crossing and v; is the first time since 7; that no trains are in the
crossing (i.e. the train that entered at 7; has exited as have any trains

that entered the crossing since 7;)

Given two constants &; and &;, where & > 0 and & > 0, the problem is
to develop a system to operate the gate that satisfies the following two

properties:

Safety Property: ¢t € |J, A\ = g(t) = 0 (The gate is down during

all occupancy intervals)
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Utility Property:t ¢ |J, [ — &, vi + &) = g (t) = 90 (The gate is up
when no train is in the crossing)” [HJL93]

The system allows for there to be multiple trains in R at the same time.

Implementation of the GRC Problem

We will now consider an implementation of the GRC Problem, though it should be
noted that we are not overly concerned with this being a complete and formally correct
implementation. Rather, we wish to propose a solution that we can semantically
reason is correct in order to focus on demonstrating our methods and techniques.

It is proposed to implement a solution to the sensor system described above for a
region of interest, R, in which there are 2 tracks, tk; and tk,. Each track will have
two sensors sub-systems on it, one to the left of the gates and the other to the right of
the gates, and each sensor sub-system is constructed from two sensors, each capable
of counting how many trains have passed in a particular direction, with the intention
being that one sensor captures trains moving into R and the other trains moving out
of R (that is to say that they have cleared I).

There are two assumptions made about the property of trains travelling through

R:
1. a train must continue through R in the same direction in which it entered, and
2. a train cannot cross between tracks whilst in R.

and there are two assumptions made about the system overall:

1. the length of a train is no greater than the distance between the boundaries of

R and I, and

2. the time it takes a train to pass from the boundary of R to the boundary of I

is such that the barriers can be fully lowered or raised.
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Figure 3.1: Simple Crossing System

Note that if one of the sensors fails then the system fails into a safe situation of
the barriers down.

In order to identify whether there is a train in R for a particular track, the
difference between the values held by the sensors is calculated. If this difference
is zero, then there is no train in R, for that track.

Consider that track Tk; has sensors s; and s; in the sensor system on the left
hand side of R, and sensors s3 and s4 in the sensor system to the right hand side of
R. A train going left to right will first trip sensor s; on entering R and then s; on
leaving; similarly a train going right to left will trip sensor s4 on entering R and then

sg on leaving R. To identify if a train is in R the following logical test is performed:

inR(t) = (s1(t) — s3(t) > 0) V (54(t) — 82(t) > 0)



REACTIVE SYSTEMS 41

Where there is more than one track, sensor numbers will be annotated with the
track number, thus a two track system will identify if a train is in R by performing

the following logical test:

inR(t) = ( ((511(8) = 51,3(t) > )V (514(t) = 512(t) > 0))V )
((s2,1(t) — s23(t) > 0) V (s2,4(t) — s2.2(t) > 0))

and generically, for tracks Tk, ..., Tk, the logic will be:

((81’1(t) - 51‘3(t) > 0) \% (81’4(2':) — Sl’z(t) > O))\/

nR(t) = :
V((sn,l(t) - Sn,3(t) > 0) V (87,,,4(t) - Sn’Q(t) > O))

For a practical implementation, the counter value will keep increasing to large
values, however for our discussions this is not really an issue.

Let us assume that a train takes 2 time units to cross between sensors in R and
that one enters at time 2. Tables 3.1 and 3.2 show the values of sensors and the logic

above in this situation.

t | s1.1(t) | s12(t) | s1.3(t) | s1,4(2) 11 (t)(i)sl 3(t) S1.4 (t)(E)sl 2(t)

0 0 0 0
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[e] Nen] Nan] Han] Ren) Ha]
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OO == O
(o] Noo] Nen] Hon) Nan)

Table 3.1: One Train Passing Through R (Sensors)

Similarly, if the same train passes on T'k; entering at time 2 and another train
passes on Tk, entering at time 3 then sensors s; and s3 will trip for the train going
left to right and sensors sg and sg for the train from right to left. Table 3.3 shows the
values of sensors in this situation, and Tables 3.4 and 3.5 show the logic determining

whether a train is in R.
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. (c) (d) (e)

a>0 b>0 cVvd
False False False
False False False
True False True
True False True
False False False
False False False

Y x| W NI —O

Table 3.2: One Train Passing Through R (Logic)
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Table 3.3: Two Trains Passing Through R On Different Tracks

To meet the Safety property of the problem the sensors identifying the arrival
of a train in I (s, and s, 4) must be placed at the boundary of R in order to give
the gate time to close. Similarly the sensors identifying the departure from I (s, 2
and s, 3) must be placed on the boundary of R (assuming no train is longer than the
distance between boundaries of R and I). The values of & and & identified in the
Utility Property are therefore directly related to the distance between boundaries
of R and I, the maximum speed of trains travelling through R and the speed of the
gate movement.

Determining whether a train is in R is not the final step in our implementation;
the gates need to be implement. Recall that the definition of the problem introduced
the gate function, g (t) € [0,90], where g (t) = 0 means the gate is down and g (t) = 90
means it is up. This is implemented as a sensor on the gate that provides an output

in the required range.
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; (a) (b) (e) (d)
s1.1(t) — 81.3(%) 51,4(t) — 81,2(¢) s2.1(t) — s2,3(¢) 52,4(t) — 82,2(1)
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 1 0 0 1
4 0 0 0 1
5 0 0 0 0
6 0 0 0 0

Table 3.4: Two Trains Passing Through R On Different Tracks

; (e) (f) (9) (h) (@)
a>0 b>0 c>0 d>0 ((ev fyv(gVvh))

0 False False False False False
1 False False False False False
2 True False False False True
3 True False False True True
4 False False False True True
5 False False False False False
6 False False False False False

Table 3.5: Two Trains Passing Through R On Different Tracks

In addition a gate operation function is provided that will take the values from
g(t) and inR(t) to determine if the gate motor should be sent the command up, down

or stay according to the logic shown in Table 3.6.

[inR(t) | g(t) | Command ]

False | =90 stay
True >0 down
True =0 stay
False | <90 up

Table 3.6: Gate Control Logic
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We define motor(t) as:

( i ( ((inR(t) = False A g(t)

(inR(t) = True A g(t) =0
motor(t) = | else if (inR(t) = TrueAg(t) >0
then down

\ else up

)90) v ) then stay \

)

The correctness of this solution is discussed in chapter 8.2.
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Chapter 4

Thesis Overview

In this chapter the scope of the remainder of this thesis is proposed by identifying
the key elements discussed in the previous chapters and indicating the motivation for
the technical work contained in the following chapters.

So far the notion of high integrity software/systems has been discussed, as have
some details on the legal and professional pressures that drive the need for certain
approaches to be taken when building such a high integrity system. It has been indi-
cated that the author’s view is that a formal approach is required, rather than reliance
on extensive testing and that even in the US, where the author has some experience,
the reliance on testing is being questioned by researchers in key institutions, such as
NASA.

From these early chapters it can be seen that there are a number of differing
techniques that can be used at differing life-cycle phases, but there is not really one
technique that can traverse all levels. The discussion on language choice, sets the
scene for future work on investigations on whether functional languages are suitable,
and demonstrates that some research has been performed on translating Z to ML, and
the use of functional languages in safety related systems, namely the SALDI project.

By introducing the GRC Problem as a case study a problem, and a solution, have

been presented that will be returned to throughout this thesis to demonstrate the
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necessary extensions to the existing Synchronous Concurrent Algorithms model, and
how an implementation in one of the extended models may be transformed into an

implementation in another of the extension models.

4.1 Thesis Statement
4.1.1 Scope

Within this thesis we shall focus on developing a method to support a number of
transformations of an algorithm described as a Synchronous Concurrent Algorithm
to its implementation on a piece of hardware, also described as a SCA. A formal
basis is given to the methods by performing the transformations on the algebraic
specification of SCAs, and having the transformations themselves defined as algebra
specifications. For ease of discussion a pseudo algebraic format, that can trivially be

converted to descriptions that may be used an algebraic specification tool, is used.

4.1.2 Contribution

The core contribution of this thesis are the:

e introduction of syntactic extensions to SCA theory ([TT94] and [HTT90]),
named as dynamic SCAs (dSCAs), to solve the problem of being able to rep-
resent both the computation and the computing device that implements the

computation in the same notation. Two forms of dSCAs are introduced:

— Abstract dSCA;

— Concrete dSCA.
e algebraic methods necessary to translate between a number of SCA models:

— SCA to Abstract dSCA;
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— Abstract dSCA to Abstract dSCA (with differing defining shapes); and

— Abstract dSCA to Concrete dSCA.

4.2 Thesis Structure

The work in this thesis falls naturally into four areas:
1. Introduction of SCAs and our extensions to this model (Chapters 5-8);
2. Transformations between various SCA models defined (Chapter 9-12); and
3. Summary and suggestions for future work (Chapter 13).

This chapter concludes Part I.

Part II commences with Chapter 5 which gives an overview and definition of
Tucker and Thompson’s SCAs and a short comparison of other applicable models.
As well as an informal and formal definition of SCAs, it is discussed what it meant
by saying a SCA is correct and how an SCA is specified algebraically. The final part
of Chapter 5 looks at the use of SCAs in the literature and discusses some limitations
of the original definition relating to the purposes of this thesis.

Next the extensions to SCA theory are introduced. These extensions address the
limitations identified in Chapter 5. In Chapters 6 and 7 abstract and concrete dSCAs
are introduced, respectively, in a similar style to that of Chapter 5. A return is then
made to the case study and it is demonstrated in Chapter 8 how each SCA model
can be used to provide an implementation.

In part III of this thesis three transformations used in the transformation (or
refinement) of an SCA to a concrete dSCA are introduced. Firstly, Chapter 9 will
introduce the concept of correct transformation, and discusses a number of funda-
mental specifications necessary for transformations. The first transformations, SCA

to abstract dSCA, is defined in Chapter 10, with chapter 11 covering the abstract to
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abstract dSCA (a process that allows the “reshaping” of the dSCA structure), and
12 covers the abstract dSCA to concrete dSCA transformations.

This thesis concludes in Chapter 13 with a discussion on proposed further work.



Part 11

Synchronous Concurrent
Algorithms
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Chapter 5

Synchronous Concurrent
Algorithms

5.1 Introduction

Synchronous Concurrent Algorithms are defined by Tucker and Thompson in their
work “Equational Specifications of Synchronous Concurrent Algorithms” [TT91] and
[TT94]. SCAs were introduced as a means of modelling the behaviour of a number
of discrete processing elements, that communicate and process in parallel with re-
spect to a single clock. This chapter introduces Tucker and Thompson’s Synchronous
Concurrent Algorithms in an informal and formal manner. Following the exposition
of SCAs some other models from the literature are discussed, followed by how SCAs
are currently used. The chapter concludes by a) demonstrating how SCAs can be
specified algebraically, b) how the GRC problem can be implemented as an SCA and
finally c) what limitations have been found with the SCA original model during the

investigations for this thesis.

o0
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5.2 Informal Definition of SCAs

A Synchronous Concurrent Algorithm is a parallel algorithm consisting of a network
of M modules connected by channels. The network communicates and computes in
parallel over a data set A, with the communication and computation synchronised
with respect to a clock, T = {0,1,2,...} which measures discrete time. Input and
output to the network occurs at modules that are connected to sources and sinks,
respectively. A representative network is shown in Figure 5.1 consisting of 3 modules,

4 sources - ay, ..., a4 - and one sink - the output of module 1.

Figure 5.1: A Generalised SCA Network

Throughout this thesis it is implied that in the diagrams representing SCAs com-
munication between modules will always travel in a downwards direction. For example
in Figure 5.1 module 1 will receive its inputs from modules 2 and 3. This notion is

clearly obvious when looking at an SCAs associated wiring function definition.

5.2.1 SCA Components

Data and Time: The algorithm processes data from a set A, at times ¢ from a clock

T=1{0,1,2,...}.

Channels: Modules within a SCA communicate via the channels of the network.
Each channel has unit bandwidth, with respect to the carrier set A and each channel
is uni-directionary, that is to say, a channel may only transmit a single datum a € A

at any one time, in one direction. A channel may branch infinitely, with the intention
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that the datum being transmitted along the channel is “copied” and transmitted
along each of the new branches, but channels may never merge, since it would be

difficult to determine which datum would be used on the merged channel.

Modules: Each module in the network is capable of subsuming and processing its
inputs and producing one output. Consider the module m; € M, which has n(i) €
N input channels, the processing performed by this module is defined by the total
function f; : A”® — A. The intent is that if the values b, .. .bniy € A arrive on m;s

input channels, then m; computes f;(by, ..., bn)).

Source Modules (Input): Data is read into the network at sources, also known as
input modules. Sources have no input channels and a single output channel, which
as with other channels, may branch. A network with n sources will process n input
streams, ay,...,a, € [T — A] with the convention that a;(t) is supplied as input by

source 7 € I, at time t € T

Sink Modules (Output): Data is read out of the network by sink modules; by

definition, sink modules have a single input channel and no output channels.

5.3 Formal Definition of SCA

Let N be a synchronous network over data set A with clock T'. If N has n > 0 sources
then the input to N is represented as a stream ay, . . ., a, € [T — A]. It is also assumed
that N has k > 0 modules, my,...my (where Ny = {1,2,...,k}). Further, any vector
z1,...7; € AF serves to specify the networks initial values, with the intention that
module m; initially holds the value z;. The termination assumption is defined as

follows:

“At each time t € T a value is produced from each module. This value

can always by determined uniquely from the time ¢, the set of inputs a,
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and the set of initial values z.” [TT91]

To support the termination assumption the value held by module m;, at time ¢,
can be determined by introducing functions Vi, ..., V% where for i € Ny, the following
definition holds:

Vi:Tx [T — A"x AF - A

These functions are called the network’s Value Functions. By exploiting the ter-
mination assumption and the synchronous nature of the network, the output of every
module in the network is either specified initially, or is specified in terms of the values
held at previous time cycles. Value Functions for a module are defined in two phases
- the Initial State phase, where ¢t = 0, and the State Transition phase, where ¢ > 0,

i.e. for module m; the following is defined:

Vi(0,a,z)
Vit +1,0,z)
To complete the definition of Value Functions, it is necessary to define how the
modules are wired together, and what length of delay is required when selecting the
appropriate value from previous time cycles. This is achieved by the introduction of

wiring functions, (%, j) and §(4, ), and a delay function é; ;(t, a, z).
Wiring Functions

Given the network N with £ > 0 modules, n > 0 sources and modules m;, ..., my,
then m; (where i € Ny) will have an associated function, f;, that requires n(i) > 0
arguments and is defined as f; : A"® — A. Each argument will arrive on mis
input channels and will be filled with data from the set A from either a source, or
an adjacent module. Two operations, (4,7) and (%, 7) are introduced to identify

whether module m;’s j** input is from a source or an adjacent module, and the index

of that source or module (where 7 = 1,...n(7)).
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The operation ~(%,7), which indicates whether the input is from a source or a

module, is defined as follows:

v:Ng x N = {8, M}

where S indicates a source module and M indicates a module. The operation (3, j),

which identifies the index of the source or module, is defined as:

B:Np x N = N

For wiring functions the following three conditions always hold for 7 € N; and

1<j < n(i):

1. B8(i,5) | Av(i,7) | i.e. for all inputs j = 1,...,n(i) of all modules i € N; the
wiring functions (3, ) and (%, ) are defined.

2. v(i,j) = S = 1 < B(4,5) < n) with the intended meaning that if the j** input
channel of module m; comes from a source, then the index of that source,
provided by the g-wiring function, must be within the valid source indices

L...,n.

3. 7(4,j) = M = 1 < B(4,7) < k with the intended meaning that if the j** input
channel of module m; comes from a module, then the index of that source,

provided by the [-wiring function, must be within the valid module indices

1,...,k.
Delay Functions

For each input channel j of module m; data, calculated at some previous time cycle,
is selected. The delay function d; (¢, a, ) identifies how many clock cycles ago the

input was calculated, or was available at the source. The delay function is defined as:

6ij: T[T —A*x A" =T
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The value of the delay is deliberately set so that it takes account of the current
time, the current values of the input streams and the initial values of the network.
To preclude the construction of predictive circuits, i.e. where the value of §; ; is such
that it looks forward in time, a temporal condition is introduced such that for any
time t € T, inputs a € [T — AJ]", and initial values z € A*, the delay must be less
that t:

%;;(t,a,z) <t

Early work on SCAs introduced the Unit Delay Assumption ([TT91]), which said

that all delays would be of unit length. Hobley ([Hob90]) showed that this restriction

was not necessary, and that a SCA with non-unit delay could be represented as a unit

delay SCA if constructed, for example, using buffering in channels.
Value Function Initial State Phase

The Initial State phase for Value Functions defines the state of modules in N at time
t = 0. Since z;, the i** element of the set of initial values z, is intentionally the value

held by module m; at time ¢t = 0, it is appropriate to define, for ¢ € N:
Vi(0,a,z) = z;
Value Function State Transition Phase

The intention behind the module specification f; : A™) — A of module m; is that if
bi,...,bng) are the values selected by means of its delay functions d;1,. .., d; n¢) from
past data along its input channels, then f;(b1,...,b,) is the value held at time ¢.
However, for j = 1,...,n(i), the j** input is either supplied by some source at some
previous time, in which case, b; = a4(d;;(t,a,z)), or it is supplied by some other
module in the network at some previous time, in which case b, = V,(; (¢, a, z), a, z).

Accordingly, V;(t,a, x) is defined as:

‘/i(t,aax) = fi(bl’ s ’bn(i))
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where for j =1,...,n(i):

b, = aQ(éi,j(t)a)x)) if 7(7’,]) = S/\/B(%J) =4q
’ Vy(6:5(t,a,7),0,7) if y(i,5) = M A B(i,5) = q

Network Output

Vou: 1s defined as the vector representing the output from network N, consider that

LV

Sm

N has m > 0 sinks, then V,,; would be constructed as Voue = (V,, .. ), where
S1y...,8m € N.

Note that, in terms of specification, V,,; may be reformulated as the stream trans-
former th, such that the initial values can be considered as system parameters. In

this case the stream transformer \th is defined as:
‘Zut:[T—»A]” x AF — T — A]™

where:

—~

Vout (@, 2)(t) = Voui(t,a, )

for any time ¢ € T, set of inputs a € [T — A]", and initial values z € A*.

However, it should also be noted that whilst \Zut may be a useful alternative
form of specification to the Cartesian form originally given, there is a subtle problem
associated with the implicit A-abstraction on V,,; used in the definition of \70“,5. Tucker

and Thompson state the following theorem:

“For any SCA over a set A and module functions fi,..., fx, the local
state functions Vi, ..., Vj, global state function, Vy, and output function

Vout are primitive recursive over Ay. However, if A contains two or more

elements, then V., ¢ PR(Ay).” [TT94]

Thus, although the definition of a Synchronous Concurrent Algorithm can be

classed as primitive recursive, if the definition of V,,; contains more than one element,
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then it itself is not (the reader is referred to [TT94] for a proof of this). The result has

no impact on the proof of correctness of Synchronous Concurrent Algorithms, rather

Tucker and Thompson imply it is better to deal with SCAs using the Cartesian form.

5.3.1 Example SCA

The following small SCA is introduced as a running example that will be referred to

during the next few chapters before we consider the GRCP in full. Consider the 3

module SCA network N shown in Figure 5.2.

al ai aj al

Figure 5.2: Example SCA

It is simple to define the delay functions for i = {1, 2,3} and j = {1, 2} as follows:

6i,j(t, a,:z) =t—-1

with the wiring functions for N being defined as

with the initial state vector being defined as z =

defined in their two phases as:

v(1,2) =M f(1,2)=
7(2,2)=S8 B(2,2)=
(1

W NN

,2,3) the Value Functions can be
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Vi(0,a,z) = 1,
V2(0,a,z) = 22
VE;(O,G, 'T) =23

_ Vo011 (t+1,a,2),0,z),
Vi(t+1,a,z) = add VoG (t+ La.2) 0.2)

ag(2,1)(61,1 (t + 1,0, 1)),
ag(2,2) (02,2 (t+ 1,a,x))
aﬁ(3,1)(53,1 (t +1,a, .’L‘)),
ap(3,2) (53’2 (t +1,a, .’L‘))

However, we will always write the definition of Value Functions out as the simpli-

Vo(t+ 1,a,z) = sub

Va(t+ 1,a,z) = sub

fied equations:

Vi(0,a,2) =1
V2(0,a,z) =2
V5(0,a,2) =3

Vit + 1,a,z) = edd (Va(t,a,z), V5(t,a, )
Va(t+ 1,a,z) = sub(a1(t), az(t))
Va(t+1,0,z) = sub(as(t),as(t))

5.4 Correctness

Thomson and Tucker introduce two types of correctness, Type I and Type II. Type
I correctness focuses on the behaviour of a network’s modules at particular times of
the system clock 7. The second type of correctness, Type II, focuses on the loading
of input data and recovery of output data from an external environment. Type I
correctness is analogous to traditional glass box testing, whereas Type II correctness
is analogous to black box testing. Type II correctness is now considered in more detail
as future correctness discussions in this thesis will be based on the ideas presented.

In Type II correctness, it is assumed that the user specification is based on another
external clock C = {0,1,2,...} that is running slower than the system clock T of the
network under consideration. If this is the case, then it is necessary to provide some
form of scheduling of input streams - and possibly output streams.

It is assumed that the relation:

UC[C— A" x [C — A]™
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specifies the computational task, or behaviour, such that for any set of inputs,

a € [C — A", and set of outputs, b € [C — A]™
U(a,b)

means that b is an acceptable stream of outputs for the stream of inputs a. We
call U a type II system task relation. To meet this specification there must be a

function that maps inputs to outputs. Let this function be ®, and be defined as:
¢:[C—-A"—>[C— A"
such that for any inputs a € [C — A]™, it can be said that:
U(a, 2(a))

The design of a network that meets this specification is given by choosing a new
clock T', with modules m;, ..., my and functional specifications fi,..., fx, so that a
n-source, k-module, m-sink network N can be constructed . This network is generally
running with respect to a faster clock than the specification, and thus some scheduling
of the inputs and outputs is needed to make the relation U still make sense. Scheduling

can be modelled by the introduction of stream transformers 6; and 6,, which are

defined as:
0, :[C — A" — [T — A™

0y: [T — A" - [C — A"
The following should be noted:

e 0, and 6, need not be related
e 0, and 0, are part of the design that implements .

There are no restrictions on the definition of 6; and 6,, apart from insisting that
they are primitive recursive over the appropriate algebra, and that they can perform

copying of data and other useful tasks.
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A special case is when 6, and 6, are determined by the clocks T" and C - this arises
when there is a deterministic relationship between the two clocks. This special case
is also known as retiming, not to be confused with the retiming of Leiserson and
Saxe ([LS91]), and is further discussed in Chapter 9.

To show correctness between the specification and design consideration needs to
be given to 60, 6;, and Vout. There is also a need to load the initial values into the
specification (since they do not exist). For convenience, this can be incorporated
within some initialisation operation within #; by defining for a given initial state
T € Ak

g7t [C — A" x AF — [T — A]™ x AF
by:
01" (a,z) = (b(a), z)

To further increase convenience of the notation, 8", 65, and V,,; can be combined

into one stream transformer specification, ¥, defined as:
\Ir;[C_,A]mxAk_,[C_,A]n

defined for each z € A* as:
U = 0y (Ve (607))

that is for each a € [C — A]" and z € A*:
U(a,2) = 2(Vous (67" (a), )
¥ is known as the external specification.

5.5 Use i1n Literature

SCAs have been used widely in the literature, but mainly stemming from the research

carried out from the research groups originally in Leeds, and subsequently, Swansea.
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Stephens provides a wide ranging summary of the use of Stream Transformers in the
literature in the paper “Survey of Stream Transformers” ([Ste97]), which covers the
use of SCAs. It is not intended to repeat this already accomplished work in this
thesis, and will restrict this section to a short summary to demonstrate that SCAs
are in actual use and not just a limited use tool.

Six useful papers are:

Synchronous Concurrent Algorithms [TT85];

Non-unit delay SCAs [Hob90];

Algebraic specification of Synchronous Concurrent Algorithms and Architec-

tures [TT91];

Equational Specifications of Synchronous Concurrent Algorithms [TT94];

Scope and limits of synchronous concurrent computations [MT88|; and

Clocks, retimings, and the transformation of synchronous concurrent algorithms

[HT94].

Hardware
There are a number of papers in the published literature relating to the application

of SCAs to hardware specification and design issues:

e Formal specification and the design of verifiable computers[HT88];

e Specification and verification of synchronous concurrent algorithms: a case

study of the Pixel Planes architecture[ET89a];

e Formal specification of a digital correlation ([HT90]);
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Specification and verification of synchronous concurrent algorithms: a case

study of a convolution algorithm [HTT89];

Clocks, retimings, and the formal specification of a UART ([HT89]);

Consistent refinements of specifications for digital systems [HT91];

Infinite synchronous concurrent algorithms: the specification and verification of

a hardware stack [MT93].

Language
The literature contains several articles relating to synchronous languages and re-

active systems, the following is a list of those specific to SCAs:

e A parallel deterministic language and its application to synchronous concurrent

algorithms[TT88].

Biological
The SCA model has successfully been applied to entities outside the direct field

of computing:
e Computational structure of neural systems [HT'T90]; and

e An algorithmic model of the mammalian heart: propagation, vulnerability, re-

entry and fibrillation [HPT96).

Other

e Specification, derivation and verification of concurrent line drawing algorithms

and architectures ([ET88));

e Tools for the development of a rasteration algorithm[ET89b];
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e Theoretical Considerations in algorithm design ([TT85));

o Concurrent Assignment representation of synchronous systems ([MT87]) revised

in ([MT89]); and

e Verification of synchronous concurrent algorithms using OBJ3. A case study of

the Pixel Planes architecture ([EST91]).

The author has not been able to identify any source in the literature referring to

the use of SCAs in Safety Related Software development.

5.6 Other Relevant Models

SCAs are not the only mathematical approach that could have been the basis for
investigation in this thesis. The literature has many models that could have applied, a
comprehensive overview of these models can be found written by Astesiano, Broy and
Reggio (contained in Chapter 13 of [ABR99]). In this work, algebraic specification
techniques are divided into (at least) four different approaches, and a simple case
study is used to examine how the techniques are used. Techniques identified in that

work and some others techniques are:

Milner’s Calculus of Communicating Systems (CCS) [Mil80];

Hoare’s Communicating Sequential Processes (CSP) [Hoa85];

Baeten and Weijland’s Algebra of Communicating Processes (ACP) - which is
built up from a Basic Process Algebra [BW90;

The International Organisation for Standardisation’s Language of Temporal

Ordering Systems (LOTOS) [ISO89);
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e Process Specification Formalism (PSF) [MV89] and [MV90], which incorporates
the Algebraic Specification Formalism (ASF) of Bergstra, Heering and Klint
([BHK89]);

o Petri Nets (original model defined in [Pet81]. Reisig ([Rei91]) considers Petri
nets and algebraic specifications and in [Rei98] their use in specifying concurrent

systems is considered; and

o Iterated Maps (see [FH98] for an example)

The author has chosen to use SCAs for their simplistic and readily accessible

mathematical notation.

5.7 Algebraic Specification of SCAs

Synchronous Concurrent Algorithms will be specified in an algebraic style, based on
the work of Ehrig and Mahr’s “Fundamentals of Algebraic Specification” ([EM92])
and Wirsing’s “Algebraic Specification” ([Wir90]). To understand the mathematical

background to algebraic specifications the following elements need to be introduced:

1. Signatures;

2. Algebras;

3. Terms;

4. Equations; and

5. Specifications.
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5.7.1 Mathematical Entities

Signatures

Informally by an algebra we mean a collection of sets Aj,...,A,, a collection of

constants, ¢; € A, for ¢ € I, and a collection of operations (or functions):
fii Aip X oo X Aip = Aiga

To describe, compare and reason about such algebras syntactic names are given to
each of these three kinds of objects. These names are collected together and organised
into a many sorted signature.

For any non empty set s € S of sort names, an S-Sorted signature (%) is the

S* x S indexed collection of sets:
Y ={Zysw=-s51,...,5, € S*,5s€ S}
where

e for the empty word A € S*, and each s € S, the element ¢ € 3, ; is called a

constant symbols of sort name S.

e for each non-empty word w = s1,...,8, € S*, and each s € S, the element

f € 2,5 is called a function name of domain type w, range type s, and arity n.

By a signature we mean a pair (S, ) consisting of the sort name set S, and the
S-sorted signature ¥. We can write a signature in a more human readable way, such

as:

Begin

Signature A

Sorts RO VR

Constant Symbols ...,¢;,...

Function Names v fit Asy X oo X Aginy = As(ayr - -
End
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Algebras

Where a signature defines the syntactic objects, an algebra provides the semantics. If
Y is an S-Sorted signature, then an S-Sorted ¥ — Algebra is the ordered pair (4,%4)
where A = {A,|s € S} is an s-indexed collection of sets.

For each sort name s € S
e the set A, is termed the carrier set of the algebra of sort names s
o ¥4 is an S§* x S-indexed collection of sets:
»A = {Eﬁ,shv =81,...,8, € S*,s € S}
where
e for each sort name s € S and the empty word X the following is defined:
24, = {calc € By}

where c4 € A is termed a constant of sort name s € S which interprets the

constant name ¢ € X, in the algebra.

e for each non-empty word w = s1,...,s, € St, and each s € S, the following is

defined:
Eﬁ,s = {fA'f € z:‘\w,s}

where f4 1 A¥ — A, is termed an operation with domain A,, x...x A, , range

As and arity m which interprets the function name f € ¥, ; in the algebra.

We can write an algebra out in a more human readable manner, such as:

Begin
Algerba A
Carriers LA
Constant  ...,cf — Ayq,. ..
Operations ..., fA: A1y X ... X Ay — Agqay, - --

End
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Terms

Let ¥ be a non void S-Sorted signature and X = {z;|s € S} be a family of sets of

variables, then the term algebra is defined as:
T(Z,X) = (T(Z, X), £TEX)
to be the ¥ — algebra with S-indexed family of carrier sets:
T, X) = {SIC%w = s,,,s, € S*,s € S}
as follows:

1. for any sort s € S and any constant symbol ¢ € X, ;, the following term can be

defined:

Cr(z,x) = Cs

2. for any sort s € S, any non-empty word w = s1,...,5, € S*, functional name
f € Lus, and any terms t; € T(X, X)s, for 1 <4 < n, the following term can
be defined:

fT(g,X)(tl, v tn) = fo(ty, .o tn)

This definition of terms allows the complex definition of new terms, e.g.

fa- (fb (fc(a‘) 7b) 7d>e)f)
Equations

Let 3 be a non void S-Sorted signature and X = {z;|s € S} be a family of sets of
variables and let s € S be any sort name. We define an equation , of sort name s, to
be an expression of the form:

t1 =t

where t1,t € T(3, X); are terms of sort s.
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Specifications

Finally we can introduce the notion of an algebraic specification. An algebraic spec-
ification is the pair (X, F) where ¥ is a signature and E a set of equations defining
the exact behaviour of the function names within the signature. We define that the

specification:

A: sz:As(l)x"'XAS(n)'_)As(i),...,
f‘iA(aS(l)7 e )as(n) = ...

can be written in a more human readable way as

Begin
Specification A
Sorts U VI
Constant Symbols ...,c,...
Function Names vy fi i Asy X oo X Ag(n) — As(i), - -
Equations o R sy Qsm) = - -
End

To further aid readability the notion of importing one specification into another is
introduced; by importing specifications the ability to define a specification A in terms

of another specification B is possible. Consider the specification B which is defined

as:

Begin
Specification B
Sorts ..., Bj, ...
Constant Symbols ...,cj,...
Function Names oo fj 1 Bgy X - X Bgn) = Bs(i)s - -
Equations v filasqy, s asmy = -

End
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then the specification given as:

Begin
Specification A
Import B
Sorts e A
Constant Symbols ...,q,...
Function Names ey fz : As(l) X...X As(n) — A_g(i), ey
..,fj : Bs(l) X...X Bs(n) ——>Bs(,;),...,
Equations ce fi(as(l), sy Og(n) = -
c filasay, - Qsny = - -
End

is an informal way of writing:

( A, By, \
yCiyeo oy Ciyenns
A= | .. fii As) X ... X Asn) = Asi)y - -+
ooy fi i Bsy X ..o X Bgmy — Bagg)s -
\...,f,-(bs(l),...,bs(n))=..., ...... ,fj(as(l),...,as(m)=...)

5.7.2 Algebraic Specification of SCAs

SCAs will be described in this thesis using a specific form of the algebraic specification
just introduced. Firstly all equations used in the specification of an SCA are special
cases of equations in that they are explicit definitions. Secondly, we introduce into our
specification notation additional divisions of the signature and equation components.

Our algebraic specification of an SCA will be:
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Begin

End

Specification
Import

Sorts

Constant Symbols
VF Function Names
~ Function Names
 Function Names
4 Function Names
v Equations

[ Equations

¢ Equations

IV Equations

ST Equations

SCA
T,A

Vi:Tx [T — A" x A* - A
v: Ny x N — {8, M}
ﬁ:kaN—AN
(5iijTX[T~+A]nXAk—>T
B j) =...

51',]'(?5,01,.%) =...
Vi(0,0,2) = ...

Vit+ L,a,z) = ...

Where we import 2 specifications, a clock specification (7) and a specification, A,

70

that defines the data that goes over the SCA channels and the operations that Value

Functions can implement.

It is a trivial task to turn the above algebra specification into an algebra specifi-

cation able to be executed in an algebraic specification tool, e.g. Maude ([CDE*99])

by removing elements such as the InitialValueEqgs section, and collapsing the indi-

vidual operation and equation sections. Both of these are in the definition to aid

construction and decomposition of SCA algebras. An example algebraic specification

produced by the removal of the proposed syntax is as follows:
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Begin

End

Specification
Import

Sorts

Constant Symbols
Function Names

Equations

sCcA
T, A

Vi : T % [T—»A]nxAk—>A
v:Nyx N—{S,M}
B:NpyxN—N
51;’jITX[T—>A]nXAk—>T
(@, 7)) = ...

Bl ) = ...

(5,;"7'('&,01,.’17) = ...
Vi(0,a,2) = ...

Vit +1,0,2) =...

Algebraic Specification of the Example SCA

71

Recall the simple SCA that was introduced in Chapter 5.3.1, as an algebraic specifi-

cation in our style it would become (with appropriate specifications for A and T'):
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Begin
Specification SCA
Import T,A
Sorts
Constant Symbols
VF Function Names V;:T x [T — A" x A¥ —» A
v Function Names  v:Ny x N — {S, M}
3 Function Names B:NyxN-—->N
§ Punction Names  §;;: T x [T — A" x AF =T
~ Equations
~1,1)=M
~7(1,2) =M
v(2,1)=S
v(2,2)= S
7(3,2) =S
(5 Equations
BA(1,1) =1
B(1,2) = 2
B2,1) =1
p(2,2) =2
B(3,1)=3
$(3,2) =4
4 Equations
d11(t,a,z) =t —1
b12(t,a,2) =t —1
doa(tya,z)=t—1
(52’2(t, a, .’B) =t—-1
(53,1(75, a, .'E) =t—1
d32(t,a,z) =t—1
IV Equations
Vi(0,a,z) =1
‘/2(07 a7 m) = 2
V3(0,a,2) =3
ST Equations
‘/l(t + 17 a, I) = add (%(ta a, .’D), %(ta a, .’L‘))
Va(t+ 1,a,z) = sub(a1(t),az(t))
Vé(t + 1) a, .’E) = sub ((L3(t), 0’4(t))
End

In the work performed to generate this thesis the author had no consistent access
to an algebraic specification tool, the use of which would be useful in demonstrating

the ease of modelling systems and the implementation of the transformations defined
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later in this thesis. It is proposed that these definitions and transformations are
placed into an algebraic specification tool as the first part of future work.

For the reader interested in a real life example, Appendix B contains an algebraic
SCA specification of the Generalised Railroad Crossing Problem that is used as the

case study.

5.8 Limitations of the Standard SCA Model

The simple translation of an SCA to hardware would require one “processor” per
module. This is achievable if it were to be implemented using a technology such as
Field Programmable Gate Arrays (FPGA), however this would not sit comfortably
with safety related software standards. This is because development of a new FPGA
is new hardware and would therefore introduce an untested and untried element to
the solution. Additionally, use of a FPGA potentially drives a large through life
cost as any upgrades/alterations would require new hardware. Ideally the solution
would be implemented on a generic microprocessor that is in wide spread use so that
a) known issues can be avoided, e.g. floating point problem with the Intel pentium
processor ([Int94]) and b) there is a reduced cost of upgrade and ownership. Note
that in recent years steps have been made to apply formal methods to hardware,
e.g. Hunt’s work on formally verifying the FM8501 microprocessor ([Hun94]), and
Harman and Tucker’s application of algebraic methods to correctness and verification
of microprocessors ([HT93], [HT96] and [HT97]) and also the work of UK Ministry of
Defence research establishment on the VIPER microprocessor ([Coh88] and [Coh89)).

The challenge addressed in this thesis is how to create an SCA that executes on
one processor from an SCA that requires a processor for each module, or put another
way, how is a single module SCA created that can alter its computation, wiring, and
delay operations depending upon the current execution time? It is contended that

this can be done using the existing model of SCAs, however the introduction of some
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syntactic sugar makes the process cleaner and easier to understand. Since an SCA
can be specified algebraically, then it is possible to create algebraic transformations
that can be applied to manipulate a multi-module SCA into a single module SCA,
through a hierarchy of such models. This hierarchy allows correctness proofs between
each layer of abstraction in a style resembling refinement.

Consider again our simple example SCA, shown in Figure 5.3, representing a
computation. It is intended to execute this computation on a single SCA module

(which is how the computing device will later be represented).

al a2 a3 ad

Figure 5.3: Sample SCA Network

In the simple example SCA network in Figure 5.3 each module performs a simple
mathematical operation. If this network is implemented by a single module then there
is the implication that each original network module is executed in sequence, e.g. at
time t = z the function from module 1 is executed, at time t = x + 1 the function
from module 2 is executed and then at time ¢ = z + 2 the function for the third
module, module 3, is executed; to make semantic sense the computation would wrap
around to execute module 1 at time ¢t = z + 3 etc. To summarise, module 1 should
execute at t mod 3 = 0, module 2 at ¢ mod 3 = 1 and module 3 at t mod 3 = 2.
Since the output of module 1 relies on the outputs of modules 2 and 3 in the original
network, it must be possible to access data produced at times greater than the unit

delay associated with the initial definition of SCAs, in this case at times ¢t — 1 and
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t — 2. To summarise, what is required is an SCA that allows:

e Execution different functions at different times;
e Introduction of delays greater than the unit delay; and

e Alteration of the wiring of a module depending upon the time.

A new module is introduced into the network, a program counter, that starts at
0 when t = 0 and is incremented at each clock cycle. This program counter can be
implemented either at each module or centrally, supplying values to all modules in
the network. Forms of SCAs that act in such a way are referred to as dynamic SCAs
(dSCAs).

Two forms of dynamic SCAs will soon be introduced - abstract and concrete.
Abstract dSCAs are a simple syntactical extension to Tucker and Thompson’s original

definition, which will support:

1. a functional specification for each module in N, except the program counter,
that contains a number of specific component operations, executing only one at

a time, dependent upon the value of a counter;

2. variations in the delay function between modules of N dependent upon the

value of a counter; and

3. variations in the wiring functions between modules in N dependent upon the

value of a counter.

Concrete dSCAs implement the abstract principles modelled by an abstract dSCA.
To achieve this requires the ability to store previously calculated values in tuples as
outputs on the SCA channels - in a manner similar to that proposed in Hobley

([Hob90]). In a concrete dSCA functions to manage tuples are provided that allow
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a consistent method for adding and retrieving values from the tuple. For this thesis,
two of the more interesting tuple management techniques, queues and indexed arrays,

will be considered.

5.9 Concluding Comments

Synchronous Concurrent Algorithms have been introduced, both informally and for-
mally, and it has been shown that they currently have practical uses. In addition, it
has been shown how a SCA can be specified algebraically.

To conclude, a number of limitations have been identified that need to be overcome
in order for SCAs to be used in a refinement structure for taking an SCA representing

a computation and producing an SCA that represents the computing device.

5.10 Sources

The initial work on Synchronous Concurrent Algorithms is an exposition of Tucker
and Thompson’s original work on SCAs, including some reference to the work of
Hobley who showed that SCAs did not need to be restricted to unit delay. The
author’s first ideas for this thesis were inspired by his work for his undergraduate
degree on dataflow architectures, and the subsequent desire to understand how SCAs
could represent dataflow machines. It was further inspired by the author’s initial

career in the Ministry of Defence related to safety related systems.



Chapter 6

Abstract Dynamic Synchronous
Concurrent Algorithms

Abstract dynamic SCA
To provide a model in which transformation of algorithm shape
can take place with an understanding on impact of time,

and, input and output streams.

6.1 Introduction

Abstract Dynamic Synchronous Concurrent Algorithms (referred to as abstract dSCAs)
are introduced to overcome those limitations that have been identified with SCAs and
to support transformations of the shape of a SCA. Next the elements of an abstract
dSCA are informally described and then progression to a formal description is made.
The chapter concludes with an introduction to the concepts of Defining Shape and

Defining Size of an abstract dSCA and how to specify an abstract dSCA algebraically.

7
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6.2 Informal Definition of Abstract dSCAs

Informally, an abstract dSCA module will execute a component specification where
the component executed is selected based on the value of a program counter supplied
to that module. Inputs to the component specification will be selected from the
dSCA channels and inputs as indicated by the wiring functions, and values will be
selected from previous calculations based on the delay function. Both the wiring and
delay functions will also be bound to the value of the program counter, enabling a
predictable but dynamically shaped SCA to be defined.

Before examining abstract dSCA components this thesis will consider the three
(syntactic) differences introduced for abstract dSCAs that address the limitations
identified with SCAs, namely:

1. Increasing number of functional specifications per module.
2. Relaxing unit delay assumption.

3. Variable wiring functions.

6.2.1 Increasing Number of Functional Specifications per
Module

A SCA computes values using on a single functional specification per module. In
the dSCA framework it is intended to choose a functional specification based upon
a particular value of a program counter, allowing one module to implement many
functions. To achieve this using simple syntactic extensions, a module’s specification
will be constructed from a number of component functional specifications with the
correct component selected by means of referring to an externally provided program
counter. This program counter value will be supplied to modules as the first argument.

Each module has the same finite number of component functional specifications,
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fios -+ fiMazy—1. This finite number is defined as Mazxy, and this fact has three

implications:

1. At some values of the program counter the module may be performing some

null calculation.

2. At some values of the program counter the functional specification may not use

all the arguments in the overall module specification.

3. In the traditional SCA model there is a single equation defining the Value
Functions Initial State phase and a single equation defining the State Transition
phase of the Value Function. In the dSCA model, a Value Functions initial state
phase must be provided for each component functional specification, i.e. there
are Mazy initial state equations representing the value for program counter

values pc =0,1,2,...,Maxy — 1 at times t =0,1,2,..., Mazy — 1.
The program counter value could be generated in three different ways:

1. aprogram counter per module (our investigations have shown that this approach
presents clumsy manual transformations and required additional proofs that all
program counters are set to zero at the start of execution and that they all

increase in step)

2. include the program counter value as part of the output such that the module
has 2 outputs, one containing the functional output and the other the updated
clock value. Again, proofs need to be shown that all values are set properly and

are suitably incremented.

3. a single globalised program counter that provides its output to all modules.
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Since this thesis will look at manual transformations the author has decided to
minimise the burden of transformation by generating the program counter using the
third option - the global program counter.

Allowing multiple functions on a module introduces a problem of cycle consistency,
where results required were calculated more then Mazy cycles ago. The notion of
cycle consistency is discussed in detail in chapter 6.2.3, since to make a sensible

discussion required the introduction of non-unit delays.

6.2.2 Relaxing Unit Delay Assumption

The delay function in an SCA allowed the retrieval of data calculated at previous
times - the original convention was the SCAs adhered to the unit delay assumption.
In a SCA with unit time delay, the definition of one Initial State phase and one State
Transition phase for Value Functions prevents the lookup of values where t < 0; since
at time ¢ = 0 the Initial State phase determines the exact value output by the module
and at times t > 0 the State Transition phase dictates the restriction by using inputs
calculated at most ¢t — 1 time units ago).

Hobley ([Hob90]) identified that restricting SCAs to unit delay was not necessary,
and further that a non-unit SCA could be represented as a unit delay if an appropriate
buffering of data was instigated (either in the channels or in the modules). Our work,
for the relaxing of the unit delay assumptions, draws heavily from Hobley’s work, but

notably:

e constrains the implementation to meet the needs of future transformations;
e introduces the notion of cycle consistency and cycle inconsistency; and

e generalises Hobley’s implementation, to produce a more flexible management of

buffering and a simplified syntax.



ABSTRACT DYNAMIC SCA 81

If the unit delay assumption is relaxed then it cannot be guaranteed that values
from times t < 0 are not requested if there are only definitions for t =0 and t+ 1. In
chapter 6.2.1 the value Maxy was introduced to indicate the number of components in
the functional specification. It is therefore defined that if there are Max components
in the specification then there must be Mazy initial values, for times 0, 1,..., Mazy—
1.

It is immediately tempting to bound the delays allowed to be no greater than
Mazy, however the concept of cyclic consistency needs to be considered. This concept
is discussed in the next section, but has the following implication: let pc_now be the
current value of the program counter, and pc.resi, ..., pc.resy,(; represent the values

of the program counter when the functions that produce results that m; uses, then:

1. if pccnow < pcresy,...,pcresy; < Mazy then the delay required is within
the range:

1,...,Mazy
2. Otherwise the delay required is in the range:
Mazy +1,...,2 X 2%x Mazy

6.2.3 Cycle Consistency

Allowing multiple functions per module implies that there is an execution order for
those functions. The investigations carried out in the author’s work has ascertained
that certain execution orders can introduce potential temporal issues.

Consider a module that executes 5 modules, thus Mazy = 5, then a cycle can
be defined to be any consecutive time period [ty,ts,t3,ts,t5] where & = 0 and t5 =
tatlta=ts+ 1L t3=to+1,tp=1+ 1L

If any time pc_now within the range [t1,...,¢5] is chosen then the component

functional specification executing at module m; at that point in time will select its
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inputs from the channels (or inputs) of the network calculated at some previous time,

as indicated by the delay functions. The following lemma is introduced:

Lemma 6.2.1. The execution order chosen for the modules will have a direct affect
on the period of delay functions required.

In any execution order the component specifications providing results required for
the functional specification operating at pc_now will be executed on some module at
values of the program counter corresponding to pc_res;, ..., pc_resyg.

Let us consider the case where:
pPC_TeSy, ..., PCTESy(;) > PCNOW
then there are three cases that need considering:

1. If pc_now is at the start of a cycle, for example when ¢t = Mazxy, then since the
functions that will create values for its inputs will not have executed yet, then
it is the case that the values it requires (from the initial state) are within the

range 0 < t < Mazy;

2. If pc_now is at the last point in the cycle it can be for its inputs to be calculated
after it, e.g. t = Maxzy+(Mazy—2) for a functional specification with 2 inputs,

then its inputs must be found at times t = Mazy — 2 and t = Mazy — 1; and

3. If pc_now is after the last point in the cycle it can be for its inputs to be

calculated after it then the system includes a loop - which is not allowed.

If for all values of the program counter it can be shown that functions that calculate
inputs happen at program counter values higher than the one under consideration,
then the abstract is defined to be a cycle consistent abstract dSCA.

A cycle inconsistent abstract dSCA is one where for some values of the program

counter on some modules, the component specification for any result is executed



ABSTRACT DYNAMIC SCA 83

earlier in the execution order. In such a case, the delay will always be greater than
Maxy for that particular input.

Further, a totally cycle inconsistent abstract dSCA is one where for all values of
the program counter, and all modules, the component specification for any result is
executed earlier in the execution order.

The effort required to show that a cycle inconsistent abstract dSCA is not totally
cycle inconsistent may be too great and thus any cycle inconsistent abstract dSCA
can be treated as totally cycle inconsistent. The implication of this is immaterial
for abstract dSCAs but has space implications for concrete dSCAs, this is discussed
later.

Demonstration Consider the 3 module SCA shown in Figure 6.1 which will be
implemented as a one module abstract dSCA.

al az a) al

Figure 6.1: Execution Order Example SCA

The Value Functions for the SCA are given as:

(0, 0,2) =
Va(0,a,z) =
Vi(0,0,7) =

Vit +1,a, :B) = add (Va(t,a, ), V3(t,a,x))
Va(t+1,a,z) = sub(ai(t), as(t))

Va(t+ 1,a,x) = sub(as(t), as(t))

The detail of the wiring and delay functions for the SCA are not given here

as they are not necessary for understanding (if the reader so wishes they may be
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easily constructed by examining the network structure of the Value Functions). Let
Vout = V1 and given the input streams below:

a; =(7,9,5,4,6,8,3,5,6)

a2 = (1,8,3,0,5,8,1,1,2)

a3 = (5,12,5,7,8,9,5,8,12)

as = (4,4,4,4,4,4,4,4,4)
then the execution of the SCA can be traced as shown in Table 6.1, where the value

of V.t at every clock cycle is given in the last row of the table.

Time 0{112/3[4(5]|6[7|8]9

Mod1Val |1{5|7|9]3|7]|5|5]3]|8

Mod2Val [2|6|1]2|411{0!2|4]|4

Mod3Val |3|1(8|1]|3{4|5[1(4]8

Vour(t,a,z) |1 |51719]|3|7|5|5[3]8
Table 6.1: SCA Execution Trace

Cycle Consistent abstract dSCA

The creation of a cycle consistent abstract dSCA will produce an abstract dSCA
where the functional specification that produces the results for any other functional
specification occurs later in the execution order. This is easily achieved in this example
by implementing the execution order of 1-2-3 (another viable alternative is the order
1-3-2).

In order to provide consistent inputs to the network the input stream must be
delayed by Mazx clock cycles, to take account of an initialisation period, and then
each input value must be held for Maxy clock cycles i.e. for the length of a cycle.
For this example, the input streams would be rescheduled as:

a = (u,u,u,7,7,7,9,9,9,5)
(u,u,%,1,1,1,8,8,8,3)
(u,u,u,5,5,5,12,12,12,5)
ag = (u,u,u,4,4,4,4,4,4,4)

Qg =
as =
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The value functions for the one module cycle consistent dSCA will be constructed

V1(0,a,2) = (1,0,0)
Vi(l,a,2) = (1,2,0)
Vi(2,a,2) = (1,2,3)
add (Vi(t — 1,a,z), Vi(t,a,z)) if Vie(t,a,z) =0
Vi(t +1,a,z) = { sub(a;(t),as(t)) if Vpe(t,a,z) =1
sub (a3(t), as(t)) if Vpe(t,a,z) =2

The program counter is defined as:

V,e(0,,2) = 0
Voe(t + 1, a,2) = mod (add (Vpe(t,a,z),1) .Mazy)

By examining the value function definition for V; it can be seen that the first
component of the specification represents module 1 in the SCA, i.e. when the program
counter value is 0, and the second and third components represent modules 2 and 3
of the SCA respectively.

If Vs = V1 then it is possible to trace the values output as time progresses. The

results of this tracing can be seen in Table 6.2.

Time 01123456789
PC Val oO(1{2(0|11{2|0(1|2]0
Module Val [ 1 |2 |3 |56 |17 |1|8]9
Vour(t,a,z) |[112|3(5(6]1|7|1(8|9

Table 6.2: 1-2-3-Execution Trace

As before, the results of V,,; are shown on the last row of the table, but in this case
only the results produced on every 3™ clock cycle from time ¢t = 0 are of interest (the

others results are intermediate results). The results that are of interest are shown in

bold.
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Comparing Tables 6.2 with 6.1 it can be observed that the correct set of results

are computed every 3rd clock cycle.

Cycle Inconsistent abstract dSCA
For a cycle inconsistent abstract dSCA the execution order of 2-3-1 is considered. The

naive, and incorrect, implementation would produce something akin to the following

dSCA:

V1(0,a,z) =2
Vi(l,a,2) =3
Vi(2,a,z) =1
sub (aq(t), az(t)) if Vie(t,a,z) =0
Vi(t+1,a,z) =< sub(as(t), as(t)) if Vipe(t,a,z) =1

add (Vi(t — 2,a,2),Vi(t — 1,a,2)) if Vj.(t,a,z) =2

In this example the component specification representing module 1 in the SCA is
executed last in the execution order, and the implementation simply tries to match
the delay function for its inputs to be in the same cycle as it. The result trace for

such an execution (assuming a similar rescheduling of inputs) is shown in Table 6.3.

Time 0]112[3[415]6[7]8]9
PC Val ol1l2]0[1|2|0]1]2][0
ModVal |23 |1]6|1|7(1|8|9]2
Vowlta,z) |23 |1|6]1|7]1]|8]9]2

Table 6.3: Wrong 2-3-1-Execution Trace

Again the important results are highlighted in bold whereas the other results are
intermediatory results. The first results is produced at time t = 2 which is fine,
however the second result is 7 and not 5 as expected. Looking at the intermediate
results it can be seen that the result required for the calculation are actually computed

at times t —5 and t —4 (or put another way at t —2xMazy —1 and t — 2% Mazy —2).
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If the definition of the Value Function is given to reflect these timings, then the
following abstract dSCA being defined:

Vi(0,a,z) =2
Vi(l,a,z) =3
Vi(2,a,z) =1
sub (a1(t), az(t)) if Ve(t,a,2) =0
Vit +1,a,2) = { sub(as(t),as(t) if Vpe(t,a,2) =1

add (Vi(t —5,a,2),Vi(t — 4,a,z)) if Vp.(t,a,z) =2
This abstract dSCA results in the trace shown in Table 6.4.

Time 0[1[2[3[4[5]6[7]8]9]10]11
PC Val o|1(2]0|1(2]0[L]2]0] 1] 2
ModVal |2]3[1[6|1[5|1]|8[7[2[1]9
Vorl,a,z) [2]3|1|6|1|5]1]8|7|2| 1|9

Table 6.4: Correct 2-3-1-Execution Trace

It can now be seen that the correct set of results (shown in bold) are obtained
every 3rd cycle after an initial delay of 3 clock cycles.
This difference in start time of correct results is easily managed using retimings if

a formal syntactic proof of correctness were to be performed.

6.2.4 Variable Wiring Functions

The introduction of a component based functional specification means that not all
inputs must be wired to the same modules for all values of the program counter (it
is also not necessarily true that all the inputs to a module are wired up for that
particular value of the program counter). The SCA definition of wiring functions are
extended to include the program counter as an index - Y, (¢,7) and By (%,7). Where
the component of the functional specification at a particular value of the program
counter does not wire up all inputs, a special value will be introduced to indicate

this.
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6.2.5 Abstract dSCA Components

Data and Time: As with SCAs, the algorithm will process data from a set A at
times ¢ from a global clock T'= {0, 1,2,...}.

Channels: The modules in a abstract dynamic Synchronous Concurrent Algorithm
communicate via the channels of a network. Each channel has unit bandwidth, with
respect to the carrier set A, and, each channel is uni-directionary. Thus, a channel
may only transmit a single datum a € A at any one time, in one direction. Channels
also have the properties that they may branch infinitely, but they may never merge.
When a channel branches, the intent is that the datum being transmitted along the

channel is “copied” and transmitted along each of the new branches.

Modules: Each module is capable of processing its inputs and producing one out-
put. Processing occurs according to the functional specification. Consider module
m; € M, where 1 > 0 and which has n(i) + 1 € N input channels. The processing
performed by this module for the functional specification is defined by the total func-
tion F; : A x A"+ — A. The intent being that if by, b1, ... bnu) € A were to arrive
on m;s input channels, then m; computes Fj(bg,b1,...,bnu), where F; is made of
Maxy component specifications fg, ..., fi Mazy—1 and the appropriate component is
selected based on the value of the program counter, by, and for 0 < pc < Mazy — 1,
fipc Will select the appropriate arguments from b, ... b, € A for its calculation.
The notation that mg will be referred to as the program counter module will be
adopted, and for ease of description this thesis will often refer to mg as my,.. The
program counter module is similarly specified to have Mazy component specifica-
tions, however each component will be the operation of adding 1 to its previous value

modulo Mazy. Additionally, the program counter module will output 1 mod Mazy
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at time ¢ = 0 through to 0 at time Maxy — 1. This slightly counter-intuitive def-
inition is necessary as the rest of the network will always consider the value of the
program counter at ¢t — 1. Thus, in the simplest case where the first state transition
value function is computed, the current time will be t = Mazy and it is intended to
execute the 0*" component which requires V,.(t — 1,a, ) to be 0, which is guaranteed
by the above rule.

In an SCA the inputs to a module m;, where ¢ > 0 were denoted as b;,...,b

+y gy
For an abstract dSCA the inputs will be denoted as bg, by, . .. ,bn(i) where by, ..., bn(,-)
correspond to the inputs in an SCA and b, is reserved for the value of the program
counter.

Source Modules (Input): Data is read into the network at sources, also known as
input modules. Sources have no input channels and a single output channel, which
as with other channels, may branch. A network with n sources will process n input

streams, ai,...,a, € [T — A] with the convention that a,(t) is supplied as input by

source ¢ € I, at time t € T.

Sink Modules (Output): Data is read out of the network by sink modules; by
definition, sink modules have a single input channel and no output channels. Data is

read out of the network as values from A.

6.3 Formal Definition of Abstract dSCAs

Let N be a synchronous network over data set A with clock T. If N hasn > 0
sources then the input to N is represented as the streams ay,...,a, € [T — A].
It is also assumed that N has k > 0 modules, mg,...m; and that each module
m; , where ¢ € Ni, has a maximum number, Mazy, of components in its functional
specification, and that m,, is the usual denotation for the programme counter module

my. Further, it is assumed that for any vector z, ...z € A* , where i € Ny, z; is a
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tuple of values, ; = (Zig, ..., TiMazy—1) € AM?2N will serve to specify the networks
initial Mazy values, with the intention that module m; holds the value z; . at time
t = pc and 0 < pc < Mazy — 1. The initial value for module m,, is specified as
the tuple z,. = (1,2,...,Mazy — 1,0). (the reason for the offset index of program
counter values, rather than starting from 0, is that a module at time ¢ will consider
the program counter at time t — 1, e.g. at time ¢ = 36, the value from the program
counter at time ¢t = 35 should be 0 otherwise the wrong component specification will
be selected!).

Further, the termination assumption from the definition of SCA applies such

that:

“We assume that at each time t € T there is a value output from each module, and
that this value can always by determined uniquely from the time t, the set of inputs

a, and the set of initial values =” ([TT94])

The value held by module m; at time ¢t can be determined as required by using the
termination assumption and the introduction of functions Vg, ..., Vi where for 7 € Ni

the following is defined:
ViiTx[T— A"x AF — A

These functions are called the network’s Value Functions.

The output of every module in the network can be determined by exploiting the
termination assumption and the synchronous nature of the network. Every module’s
output is either specified initially or is specified in terms of the values held at previous
time cycles. Value Functions can be defined in two phases, in a similar manner to

the definition of SCAs given earlier. For modules my, ..., m, there are Mazy Initial
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State phases (where t =0,1,..., Maxy — 1), and a single State Transition phase:

V;l (0) a,x) )

Vi(Mazy — 1,a,z),
Vit+1,a,2).
To provide the complete definition of Value Functions, it is necessary to introduce

wiring functions, Ypevai(?,7) and Bpcva (4, ), and delay functions, d; ; peval-
Wiring Functions

Modules in a dSCA are wired together in different ways depending on the value
of the program counter. Consider the network N which has k£ > 0 modules and
n > 0 sources, then a module m;, where 0 < i < k, will have an associated function
specification, F;, that requires n(z) + 1 > 0 arguments. These arguments will arrive
on the input channels for m; and will be filled with data from the set A from either
a source or an adjacent module. Two operations, Ypcvai(?,7) and Bpeva(i,) are
introduced that determine whether the j®* input for module m;, at the program
counter value pc_val, is from a source, an adjacent module or the undefined module,
and what the index of that source or module is.

For a module m; with inputs j = 0, ...n(3), the operation Yy 44 (%, j) is defined as
follows:

Ypewal - Nk X N — {S) M> U}

where S indicates a source module and M indicates a module, and U indicates the
input is not connected/needed for the pct" component functional specification of F;.

The value of Ypc v (%, 0) will always be M since it is always connected to the program

counter.

We similarly define B, 4q(%,7) as:

ﬂpc_va,l : Nlc XN — Nk U {(.U}
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where w represents a special value for an unconnected connection. The value of
Bpewvar(%,0) will always be pc, indicating that it is always connected to the program
counter.

We require the following five conditions to always hold (where i € Ny, j €
{0,...,n(7)} and pcwal € {0,..., Mazy — 1}:

L. Bpewai(%,5) | AYpewa;(%,7) | with the intended meaning that for all values of
the counter pcval =0,... Mazy — 1 and inputs j = 0,...,n(¢) of all modules

i=1,...,k, the wiring functions Bpc e (¢, J) and Ypcva(é,7) are defined;

2. Yoewat(1,J) =S = 1 < Bpeyar(d,7) < n with the intended meaning that if the 5
input channel of module m; at counter value pc_val comes from a source, then
the index of that source, provided by the S-wiring function, must be within the

valid source indices 1,...,n;

3. Ypewat(8,J) = M = 0 < Bpeva(i, j) < k with the intended meaning that if the
4t* input channel of module m; at counter value pc_val comes from a module,
then the index of that source, provided by the B-wiring function, must be within
the valid module indices 0, . . . , k (recall that the program counter module is my);

and

4. Ypewal(1,7) = U © Bpe(t,j) = w with the intended meaning that if the j** input
channel of module m; at counter value pc_val is not connected, then the value

of the B-wiring function, must indicate the special non connected index w.

5. Ypewal(t,0) = M A Bpeyai(i,0) = pc with the intended meaning that the zerot’
input to a module would always be from a module, whose index is the program

counter (and this includes the program counter module).

A consequence of the first condition is the need to define values of 74 (%,7) and
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Bpewvai(t,7) when the component of the functional specification under execution uses

only a subset of the module’s inputs.

Delay Functions

For each input channel j of module m; at program counter value pc_val a delay is
associated, §; jpcval; that indicates from what time cycle the input was produced. It
is defined as:

Ji,j,pc_'va.l T X [T — A]n X Ak

tup

- T

The delay function in a dSCA is deliberately set so that it can take account of
the current time, the current values of the input streams and the initial values of
the network, as per the SCA definition. It is additionally indexed to reflect the
different values it may take at different values of the program counter the dSCA
module is currently executing at. To preclude the construction of predictive circuits,
i.e. where the value of 6;;pcua (t,a,2) is such that it looks forward in time, the
temporal condition is introduced that for any time ¢ € T', inputs a € [T — A|", initial

values € AMAXNXK

, and values of the counter pcval € {0,1,2,... Mazy — 1} the
value of delay must be less than t, i.e.: §;;,.(t,a,2) < t.

For a cycle inconsistent dSCA the definition of the delay function is further bound
so it cannot look at data calculated at times greater than 2 x Mazy — 1 clock cycles

before the current time, i.e.:
t—(2x Mazy) < b jpevai(t,a,z) <t
and that it must never be allowed to refer to times less that 0:
di,jpeval(t,a,z) >0

The general rules of the delay function are that for ¢ € Ny, j € {0,...,n(i)} and
pcwal € {0,...,Mazy — 1}
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1. i jpenal (t,a,2) | with the intended meaning that for all inputs j = 0,...,n(z)

of all modules ¢ € Ny, the delay function 6; jpcvai (¢, @, z) is defined,;

2.t —2 X Mazy < 0;jpevai(t,a,z) < t with the intended meaning that for all
inputs j = 0,...,n(:) of all modules ¢ € Ny and at all values of the program
counter pcval =0,..., Mazy, the delay function 0, ; pc val (¢, @, ) must be as a
minimum the unit delay and as a maximum 2 x Mazy (for a cycle consistent
dSCA this constraint would be appropriately amended to cope with tuple of
length Mazy);

and specifically relating to the program counter:

1. b;0pcwa(t,a,z) = t — 1 with the intended meaning that all program counter

inputs to all modules are subject to a unit delay; and

2. Opcopewal(t,a,z) =t — 1 with the intended meaning that there is unit delay on

the input of the program counter module to itself.

There will be times where the values of 6 ;pc v (t,a,2) are meaningless for the
calculation; however, since the rules require a value to be provided for all modules at

all values of the program counter the unit delay will be used in these cases.
Value Function Initial State Phase

The initial state phase for Value Functions defines the state of modules in N at
timest =0,1,..., Mazy —1 for modules 0, ..., k. For modules 0, ...,k and program
counter values 0, ..., Mazy — 1 since z; 5, the pc" element of the 7" vector of the set
of initial values z, is intentionally the data value held by module m; at time t = pc

then it is appropriate to define:

Vi(pcval,a, ) = z;
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for i € N, and pcval =0,...,Maxy — 1.

For the program counter module, the values are specifically defined as:
(1,2,...,Mazy — 1,0)

with the intended meaning that:

Vie(0,a,2) =1
Voe(l,0,2) =2

Voe(Mazy — 2,a,z) = Mazy — 1
7{/‘z)c(]\la':r’l\f - l,CL,IB) =0

Value Functions State Transition Phase

For modules 0, . . ., k the intention behind the module specification F} : A x A0+
A is that if by, b1,...,b,(; are the values selected by means of its delay functions
0i.0,pc.val> 0,1 pevals - - - » Oin(i),pcval from past data along its input channels, then:

F; (b0> bla s )bn(i))

is the value held at time ¢.

The definition of F; for modules 1,...,k consist of Mazy component specifica-
tions, one for each value of pc, and may include producing the “undefined” constant;
where the intention is that the module performs no processing at that value of the
counter and simply outputs, u. The introduction of u is necessary to ensure that each
module has a value to output for each of its Mazy component functional specifica-

tions.
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Mazy component specifications are defined for F; as follows:

( ( b1,07 \
fi,l if bO =0
\ bn(zO ,0 )
b07 ( bl 1, \
F, bla — fi,2 if bO =1
\bnm)lj
bn(i) :
bl,MazN—l,
fz’,MazN ceey ifb():MaIN—]_
\ b'n(iaMaz'N—l),M'azN—l

where (b1, . .., bn(i,1),00 02,15 - - - On(i,Mazy)-1, Mazn) € {b1,...,bn}, ie. arguments
in the component specification are selected from arguments in the functional definition
of the SCA.

For 7 = 0,...,n (i), the j%* input is either supplied by some source at some
previous time, in which case, b; = aq(d;pcva (¢,a,2)), or it is supplied by some
other module in the network at some previous time, b; = V; (0 jpcoa (t,0,7), 0, ).

Accordingly, V; (t,a, z) is defined as:
Vi (t’a" x) =k (bO7 bla e abn(z))

where for j =0,...,n(i):

(

ag (850 (t,0,2)) if s, (4,5) = SA
B, (1,5) = q
b Va ( 1Jsbo (t,a,1),0,z) if Yoo (1,7) = MA
j - < . .
ﬂbo (Z)]) = q
v if Yoo (’i,j)=U/\
. ﬁbo (7',.7) =w
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it will always be the case that by = V. (¢, q, z).
For the program counter module, m,., the definition of component specification,

F;, is always:

mod (add (b, 1) Mazy) if by =0
Fi(bo) =
mod (add (by, 1) Mazy) if by = Mazy — 1

Network Output

V,ut is defined as the vector representing the output from network N. Consider that
N has m > 0 sinks, then V,,; would be constructed as V,,; = (V4,,...,Vs,,), where
S1,...,8m € {1,...,k}, ie:

Vout = (Vslg---,Vsm)

Voue 18 not allowed to change with the values of the program counter to ensure that
only one set of outputs is considered. However, it should be noted that if Mazy > 1
then a retiming is probably required on the values produced by V,,;: to ensure only
relevant values are observed. The relevant values will be produced every Mazy clock

cycles after an initial delay dependent upon the execution order chosen.

6.3.1 Defining Shape of an abstract dSCA

It is possible to implement the same algorithm on several dSCAs, differing only by
the number of modules and values of Maxzy. To distinguish between such dSCAs the
pair V = (k, Mazy) is defined as the Defining Shape of a dSCA, where k > 0 is
the number of modules in the dSCA network and Mazy is the number of component
specifications each module in the dSCA network has.

An algorithm which has 20 separate functions to be implemented, can therefore
be implemented on a dSCA where V = (20, 1) - the usual notion of an SCA - or some
other valid combination, some examples of which are V = (10,2), V = (5,4), V =
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(4,5), V = (1,20) - the last defining shape perhaps representing a single processor
machine.

It is possible for a dSCA to be defined where V can support more functions than
are available, e.g. in the example we are using the value could be given as V = (5, 5).
The only restriction placed on the defining shape is that there must be a sufficient
number of modules/computations allowed (value of Mazy) to handle all functions in

the computation. To determine this, the defining size of the dSCA is introduced.

6.3.2 Defining Size of an abstract dSCA

The Defining Size of a dSCA with a defining shape of V = (k, Mazy) is defined to
be A = (k X Mazy). The defining size provides a metric to understand if a particular
algorithm will fit onto a particular dSCA defining shape. The example used in the
defining shape section, section 6.2.1, with 20 operations would clearly need a dSCA
where A > 20 for it to be implemented on a dSCA.

6.4 Correctness

By inspection it can be seen that a dSCA is simply an SCA with some syntactic sugar
around the modules functional definition. Therefore the same correctness approaches
used for SCAs can be applied to abstract dSCAs.

Care must be taken to ensure that the same type of consistency is applied to
all modules, i.e. an abstract dSCA should not have modules where some are cycle

consistent and some are cycle inconsistent.

6.5 Algebraic Specification of abstract dSCAs

Since an abstract dSCA is really an SCA with some syntactic sugar, it can be specified

algebraically in the same way as an SCA. An example algebraic specification of an
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abstract dSCA is given in Appendix C.
As with the SCA example given in chapter 5, this form can be readily translated
into a format suitable for use within one of the algebraic tools available by collapsing

the additional operation and equation definitions in the notation, as shown for SCAs.

6.6 Concluding Comments

The introduction of abstract dSCAs is fundamental to this thesis, as it supports the
notion of transforming the defining shape of a dSCA, as will be demonstrated in
Chapter 11. The author has specifically ensured that abstract dSCAs are just simple
syntactic extensions of SCAs in order to provide a solid foundation for mathematical
analysis. This is known since it is possible to construct an abstract dSCA using just
the syntax of the normal definition of SCAs. In doing so, the indexing of the wiring
and delay functions would have to be removed and codified into the definition of the

function.

6.7 Sources

The work in this chapter on extending SCAs syntactically to cover the requirements
for dynamic SCAs is all my own work except for that that deals with the introduction
of non-unit delay SCAs which is based on the work of Hobley; however this thesis
enhances the understanding of non-unit delay SCAs when used in a hierarchy, in
particular the identification of cycle consistency and the need to provide equations
to represent the Initial State for times ¢t = 0,1,..., Maxy — 1. The initial work
investigated SCAs and what have now become concrete dSCAs - the author is grateful
to his supervisor, Dr. N. Harman, who suggested introducing the abstract dSCA

concept enabling the transformation of SCAs to be studied in a cleaner manner.



Chapter 7

Concrete Dynamic Synchronous
Concurrent Algorithms

Concrete dynamic SCA

To approximate a model of physical hardware implementation

with memory and a program counter.

7.1 Introduction

The previous chapter introduced abstract dSCAs allowing the limitations of SCAs,
in the context of this thesis, to be addressed. Data was passed around the network
as single datum from an underlying algebra A and the delay function was responsible
for selecting the correct data from previous time cycles, t —1,...,t — (2 x Mazy — 1)
(ort—1,...,t—Mazxy — 1 for cycle consistent abstract dSCAs). Current technology
does not support a machine with these temporal look-ups without the look-ups being
encoded in a more concrete manner. Concrete dSCAs are introduced to support the
encoding of results by storing these results in a finite length tuple per module.

As discussed in Chapter 6 a cycle inconsistent abstract dSCA can be either par-

tially or completely cycle inconsistent. It was also mentioned that for abstract dSCAs

100
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this distinction was merely a classification but that there were implications for con-
crete dSCAs. These implications relate to the size of the tuple needed for results.
Hobley, [Hob90], showed how non-unit delay SCAs may be represented as unit
delay SCAs by the introduction of buffered channels or internal storage. Whereas
Hobley’s work considers these buffers/storage as shift registers, we extend this and
generalise with the introduction of tuple management functions allowing, if we wish,
buffers to act as indexed arrays. Additionally, the concrete dSCAs that this thesis
introduces implement the other attributes of dynamic SCAs given in the previous

chapter.

7.2 Informal Definition of Concrete dSCAs

Recall that modules within an abstract dSCA network communicate via channels,
and each channels is of unit bandwidth with respect to the underlying algebra A,
and uni-directional. Concrete dSCAs, like abstract dSCAs, may be cycle consistent
or inconsistent, and this thesis will consider both types of concrete dSCAs since both
have differing requirements for storage.

In a concrete dSCA the size of the storage depends on the type of concrete dSCA

under examination:

e Cycle consistent dSCA needs a storage size of only Mazxy.
e A totally cycle inconsistent dSCA needs a storage size of 2 x Maxy.

e All other cycle inconsistent dSCA needs, as a minimum, a storage size of Maxy

plus a storage element for each result that is not cycle consistent.

Thus in the worst case it is necessary to store up to the last 2 x Mazxzy values

calculated by the module so they are available to other modules.
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This storage will be implemented in concrete dSCAs using tuples, thus the carrier
set Ay is constructed in such a way so that it includes the algebra A and tuples
made from A of the necessary length. Using A, it is now possible to maintain the
unit bandwidth notion of SCAs.

There are many conceivable ways of placing data into the tuple and subsequently
retrieving them. The complexity of these approaches is related to the type of cycle
consistency under consideration. For a cycle consistent and totally cycle inconsistent
concrete dSCA these tuple management functions can be relatively simple, for a
non totally inconsistent concrete dSCA the functions are more complex requiring
knowledge of which results are cycle consistent and those which are not. For reasons of
simplicity this thesis will consider only cycle consistent, and totally cycle inconsistent

concrete dSCAs. Two of the more interesting tuple management approaches are:
1. Queue. This is the most obvious implementation; and
2. Indexed array. This would closely map to a von Neuman architecture.
The tuple management operations will need to:
1. Update the data in the tuple, which consists of:

(a) inserting newly calculated data into the tuple at the correct position for

later extraction; and

(b) deleting old data from the tuple; and

2. Extract the required data

Updating the tuple values will be managed by the tuple update operation, T,

which for a cycle inconsistent concrete dSCA will be given as:

T:Ax A X X AgxMazy X A = A1 X -+ X Aos Mazy
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For a cycle consistent concrete dSCA the definition of the tuple update operation

is simplified to:
T:AX A X+ X AMagy X A— A1 X -+ X AMazy

The intention behind 7T is that the first argument will be program counter value,
the next 2 x Maxy arguments are the tuple values from this module at the previous
time, and the final argument is the result just calculated.

Selection for a cycle inconsistent dSCA is made by applying a projection operation,

2x Maz

di oo o 0N the tuple to select the value at the index d; j e, for the j** input of module

i at program counter value pc, and is given as:

2XMazpyn .
Mo se 2 ALY X Agxiany — A

Again, a cycle consistent concrete dSCA will define the projection operation over

the simplified tuple output as:

Maz

di j pe . A1 X e X AMa,zN — A

The two chosen tuple management techniques are now discussed in more detail.

7.2.1 Tuple Management : Queue

Updating Data:
Managing the tuple as a first-in first-out queue requires new data, b, to be added to
the left hand side of the tuple and the removal of the rightmost data.

Cycle Inconsistent Tuple Management Definitions

The tuple management definitions for a cycle inconsistent concrete dSCA are
defined simultaneously. Where the value of the program counter is less than Mazy—1,

then the values in the tuple at n get shifted right ton + 1, for 0 < n < Mazy — 1,
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and the new result added to the tuple at position O:
pc_val,
T ag, ..., AMazn_1» _ b7a07~ coy OMaz -2
AMazyy -+ A2x Maz -1 AMazpn—1) -+ -y B(2x Mazy)—2
, b

if the value of the program counter equals Mazy — 1 then the process above is

performed and then the whole first half of the tuple is copied into the second half:

Mazy — 1,
a07--'7a’Ma:z:N—-17 b, ag, ..., AMaz -2,
T = copy
AMoazyy « -+ s A2x Mazn—1 AMazn—1s-+ > a(2xMazw)—2
b

?
. b, ag, ..., GMazn—2)
b7 ag, ..., AMazn—2
The value of programme counter is not used in the queue tuple management

operations. It remains in the definition for ease of clarity across models.

Cycle Consistent Tuple Management Definitions

For a cycle consistent concrete dSCA there is no need to copy the data to higher

levels of the tuple at pc = Mazy — 1 so the definition of T is simplified as:

Y(pcwal,ag, ..., aMazy-1,0) = (b, a0, ..., GMazy—2)

Selecting Data:
Cycle Inconsistent Tuple Management Definitions

The value of d, j yc_vq; in the projection function, Hijﬁfz , is directly proportional
to the time that the result was calculated. Consider the output of module m; at time

t — 1 € T, which is what other modules will be restricted to observe, it will consist of
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a tuple of results as follows:

( Vh(t - laaa (L'), \
Vh(t - 2) a, .’L‘),

Vi(t — Mazy,a,x)

Vi(t = (Mazy + 1),a, ),

ey

\ Vi(t = (2 x Mazy),a,x) )

If it is intended to select the result calculated at time t-4 then it will have been
shifted (¢ — 1 — (¢t — 4) indexes to the right of the start of the tuple, i.e. it will be
at index 3 (assuming that Mazy is of course greater than 4) - note that indexing of

tuple elements starts at 0.

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA will have the same definition, but is restricted

to values up to Mazy time cycles ago.

7.2.2 Tuple Management : Indexed Array

Updating Data:

Managing the tuple as an indexed array ensures that new data is entered into to
a predetermined position in the array, whilst overwriting any existing data held in
that position. Since the program counter value is available to modules and uniquely
identifies values in the range of 0, ..., Maxy — 1 this value is chosen to indicate where

in the tuple results will be placed.

Cycle Inconsistent Tuple Management Definitions

In a cycle inconsistent concrete dSCA if the value of the program counter is less

than Mazy — 1 then the newly calculated value is entered into the array at position
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indicated by the program counter as follows:

pc_val,
T ( g, .- AMazy_1» ) _ ( aOa--->apc_'ual—17b)apc_va,l+17' -y QMazy -1, )
AMoazy s+« - s A2x Mazy—1 AMazyy -+ + s A(2x Mazy)—1
b

?

When the program counter equals Mazy — 1 then the newly calculated vale is

entered at index Mazy —1 and subsequently the values with indexes 0, ..., Mazy —1
are copied to indexes Mazy,...,2 X Mazy — 1, as:
Mazyn — 1,
T aiy ..., QMazy, — copy aO,...,aMMN_g,b,
AMazn+11y - - - ) A2x Mazn AMazns -+ s A(2xMazn)—-1
,b

_ aOa"'7aMaxN—-2ab7
ag, ... ,aMa,zN—Zy b

Cycle Consistent Tuple Management Definitions

For the cycle consistent concrete dSCA the definition would be:

T(pc-val)G'Oa oy OMazy -1, b) = (a'07 LRI apc_val-l, byapc_val+l; v aMa:L'N—l)

Selecting Data
Cycle Inconsistent Tuple Management Definitions

Retrieval of the correct datum from the tuple, i.e. the identification of the correct

Maz

value for d; ;,cvu in the projection function, Hg:‘j relies on knowledge of the

,pc-val )

program counter value when the result was calculated, and selecting the appropriate

index value.

Cycle Consistent Tuple Management Definitions

The cycle consistent concrete dSCA has a similar definition but is limited to retrieval

from a tuple of length Maxy.
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7.2.3 Cycle Consistency and Execution Order

Concrete dSCAs have the same properties as abstract dSCAs regarding execution
order and cycle consistency, and has been shown, a cycle consistent dSCA requires a
tuple of only Mazy length, whereas a cycle inconsistent concrete dSCA requires one

with a length of 2 X Mazy.

7.2.4 Concrete dSCA Components

Data and Time: As with SCAs, a concrete dSCA will process data from a set A
which is augmented with tuples of the length Mazx to form the set Ay, at times ¢

from a global clock T'={0,1,2,...}.

Channels: The modules in a concrete dSCA communicate via the channels of a
network. Each channel has unit bandwidth, with respect to the carrier set A;,, and
each channel is uni-directional. A channel may only transmit a single datum a € A,
at any one time, in one direction, where the tuples will be of length ¢t/ between all
modules except from the program counter, which is of length 1, i.e. a single datum.
Channels also have the properties that they may branch infinitely, but they may
never merge. When a channel branches, the intent is that the datum being trans-

mitted along the channel is “copied” and transmitted along each of the new branches.

Modules: Each module is capable of processing its inputs and producing one output,
which in all cases apart from the program counter, will be a tuple. Take a module
m; € M, where 7 > 0 and which has n(7) + 2 € N input channels; then the first input
channel is always from the program counter, the second from the module itself, and

the remaining inputs from sources or other modules in the network. the processing
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performed by this module is defined as the total function:

Fi: App X App X ATD 5 Ay,

tup

The intent being that if values by, b1, b2, . .. bnu)+1 € Awyp were to arrive on mjs
input channels, then m; computes F;(bo, b1, b, . . ., bys)+1), where the F; is made from
Mazy component specifications fig, . .., fi Mazy—1 and the appropriate component is
selected by the value of the program counter, by, and for 0 < pcval < Mazy — 1,
fipewvar Will select the appropriate arguments from by, . .. by(i)+1 € A for its calculation.

Each component specification will follow the following form:

di,p(i)—1,pc

Fipelboybrybay - bagyes) = T (boy b, £25 (bo, T, (B2), ... TTE (bay+1) ))

where Y is the chosen tuple management operation, II the associated projection

op

operation, f,7.

is the actual calculation performed by the module for that value of
the program counter and %! is either 2 x Maxy if the concrete dSCA is totally cycle
inconsistent, or Mazxy if it is cycle consistent.

Module my is defined as the program counter module, and the notion that this

module is referred to as m,. is adopted. The program counter module is always

specified as:

mod (add (V,e(t,a,z),1) Mazy) if V,.(t,a,2) =0
Vot + 1,a,2) =
mod (add (Vpe(t,a,z),1) Mazy) if Vie(t,a,z) = Mazy — 1

Source Modules (Input): Data is read into the network at sources, also known as
input modules. Sources have no input channels and a single output channel, which
as with other channels, may branch. A network with n sources will process n input
streams, ay,...,a, € [T — A] (note that tuples are not allowed for inputs) with the

convention that a;(t) is supplied as input by source i € I;;, at time t € T'.
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Sink Modules (Output): Data is read out of the network by sink modules; by
definition, sink modules have a single input channel and no output channels. Since
the modules will be producing tuple outputs it is necessary to select the required

value from the tuple output to obtain a sensible result.

7.3 Formal Definition of Concrete dSCAs

Let N be a synchronous network over data set Ay, which is the data set A augmented
with tuples of length ¢l (where tl is Mazy if the dSCA is cycle consistent or 2x Mazy
otherwise), with clock T'. If N has n > 0 sources then the input to N is represented
as the streams a;,...,a, € [T — A|. It is assumed that N has k > 0 modules,
my, ... my, and that each module m;, where 7 € N, has a maximum number, Mazxy,
of components in its functional specification, and that module my is a special program

counter module usually denoted as m,,..

It is further assumed that for any vector zo,...zx € Aﬁ:;,k, where for i € Ni, a
vector of values, z;, is defined for 1 <4 < k such that z; = (2i0, . . ., Zi Mazy -1) € A,

That is to say, that for each module m;, where 1 < 7 < k, there are Maxy initial
states defined and that for each value of the program counter, 0 <[ < ¢l — 1, the
initial value tuple is of the form (z;,0,...,2;4-1), and that this will serve to specify
the networks initial values. The intention is that module m; holds the value z;; at
time t € 0,], Mazy — 1. Additionally, for the program counter module the initial
values 2o = (Zop, - - - , Zo,Mazy—1) are defined where zg . a1 is a single value from A
Further, the termination assumption from the original definition of SCA and

abstract dSCAs is kept such that:

“We assume that at each time ¢t € T there is a value output from each

module, and that this value can always by determined uniquely from the
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time ¢, the set of inputs a, and the set of initial values z.” ([TT94))

The value held by module m;, at time ¢, can be determined, as required by the
termination assumption, by introducing functions V4, ..., V; where for : = 0,...,k

the following is defined:

Vi: T x [T — A" x AF

tup Atup

These functions are known as the network’s Value Functions. By exploiting the
termination assumption and the synchronous nature of the network, the output of
every module in the network is either specified initially, or is specified in terms of the
values held at previous time cycles. Value Functions for a module can therefore be
defined in distinct components - for the Initial State and one for the State Transition

, i.e. for each module m; where ¢ € Ny the following can be defined:

Vi(0,a,z),

Vi (Mazy — 1,a,z),
Viit+1,a,2).

The nature of the network is such that it is not until £t = Mazy — 1 that the initial
value is meaningful, i.e. produces a tuple that is filled with all the correct values,
thus it is only the value at ¢t = Mazy — 1 that is of interest; values before that could
be filled with undefined or some other chosen values. However, to ease correctness
proofs it is useful to have the state at time ¢ = 0 being a well defined and known
state.

An alternative approach would be to define one initial state phase for the value
function, at time ¢t = 0 which is equivalent to the previous approach at t = Mazy
and then begin processing from that point.

This extension will use the first approach to allow easier comparison to the abstract

dSCA which the concrete may be derived from.
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To provide the complete definition of Value Functions, it is necessary to consider

the following
e Wiring Functions, 7,.(7,j) and Bp.(7,7); and
e Delay Function, 6, ;(t,a, z).

Wiring Functions

Just like modules in an abstract dSCA, the modules in a concrete dSCA are wired
together in different ways depending on the value of the program counter. Consider
the network N which has k > 0 modules and n > 0 sources, then a module m; (i € Ni)
will have an associated function specification, F;, that requires n(i)+2 > 0 arguments.
These arguments will arrive on m’s input channels and will be filled with data from
the set Ay, from either a source, an adjacent module or the program counter module.
Two operations, Ypc_vai(%,J) and Bpcvai(4,J) are introduced that determine for module
m;’s 7" input whether it is from a source or an adjacent module, and what the index
of that source or module is at the pc_valt® cycle.

For a module m; with inputs j = 0,...7n(¢) 42, the operation Ypc.vai (%, j) is defined
as follows:

Ypeval - Nk XN — {Sa Ma U}

where S indicates a source module and M indicates a module, and U indicates the
input is not connected /needed for the pc_val®" component functional specification of
F;.

Bpewval (3,7) is similarly defined as:
B:NgxN—- N U{w}

where w represents a special value for no connection.
The following six conditions always hold where i € N, pcval € 0,..., Mazy — 1

and j €0,...,n(i) + L:
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L. Boewat(3,7) 1 Aype(,§) | with the intended meaning that for all values of the
program counter and for all inputs of all modules the wiring functions Bpc_vai (%, 7)

and Ypevai (¢, 7) are defined;

2. Ypewat(i,3) =S = 1 < Bpewali, j) < n with the intended meaning that if the 5%
input channel of module m; at counter value pc_val comes from a source, then
the index of that source, provided by the S-wiring function, must be within the

valid source indices 1,...,n;

3. Ypewat(1,7) = M = 1 < Bpeyai(t,7) < k with the intended meaning that if the
4" input channel of module m; at counter value pc comes from a module, then
the index of that source, provided by the G-wiring function, must be within the

valid module indices 0, ..., k;

4. Ypewai(t,J) = U © Bpevai(i,j) = w with the intended meaning that if the gt
input channel of module m; at counter value pc_val is not connected, then the
value of the S-wiring function, must indicate the special non connected value

W,

5. Ypewat(1,0) = pc A Bpesai(i,0) = M with the intended meaning that the zero®

input of each module m; is wired to the program counter module; and

and fori € 1,...,k

1. Ypewai(t;, 1) =t A Bpewar(i, 1) = M with the intended meaning that the 1% input
of each module m;, except the program counter module, is wired to that module
(recall that the program counter only has only input, and this case is covered

by the previous condition).

A consequence of the first condition is the need to define values of 7,.(¢, j) and
Bpc(i, ) even for when the component of the functional specification under execution

uses a subset of the modules inputs - hence the introduction of the values U and w.
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Delay Functions
For each input channel j of module m;, where ¢ € Ni, a delay is associated,
d;; (t,a,z), that indicates the delay between the time cycle the input was produced

and the current time. It is defined as:

5i’jITX[T-—>A]nXAk - T

tup

To preclude the construction of predictive circuits - where the value of §; ; . (¢, a, )
is such that it looks forward in time, the temporal condition is introduced that for
any time t € T, inputs a € [T — A", initial values z € Af, , the value of delay must

mean looking at times less that t:
6'i,j,pc(t’ a, ﬂ?) <t

Since the purpose of the introduction of concrete dSCAs is to remove the necessity
to look back greater than the previous time unit, the delay function is restricted to be
the unit delay introduced in the original SCA definition. Recall that values calculated
at timest —1,t —2,...,t — tl are preserved in the tuple produced at time t — 1. The
suffix of pc introduced in abstract dSCAs is no longer needed as the value of the delay
function is no longer dependant upon values of the program counter.

The restrictions placed on ¢, ; for concrete dSCAs, wherei € Ny and j € 0,...,n(i) + 1,

are:

1. 4, (t,a,z) | with the intended meaning that for all inputs of all modules the
delay function 9, ; (¢, a,x) is defined; and

2. 0;; (t,a,z) = t—1) with the intended meaning that for all inputs of all modules
the delay function J; ; (t,a, ) is the unit delay.

Initial State
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The Initial State defines the state of modules in then network N. For module m;,
where ¢ € Ng, the Initial State is defined for times t =0,1,..., Mazy — 1.

Since z;p., the pct" element of the i*" vector of the set of initial values z, is
intentionally the tuple of data values held by module m; at time t = pc_val, for
0 < pcwal < Mazy — 1, and pc_val is the value of the counter, then it is appropriate
to define:

Vi(pc_'val, a, m) = T pc_val

fori=0,...,k and pcval =0,..., Mazy — 1.

The set of initial values is constructed in such a way that at time t = Mazy — 1
the output tuple for module m; is loaded with all necessary initial values in the order
specified by the tuple management scheme under use. It is permissable for the values
of the initial state prior to t = Maxzy — 1 to be undefined since they do not partake
in any of the computation.

For module mg the program counter (also written as m,,.), the value of z is always

defined as:
T = ((1)) (2)a ceey (MaxN - l)a (O))
State Transition

For module m;, where 7 € Ny, the intention behind the module specification:

E . Atup X Atup X An(’l.) hand Atup

tup

is that if by,...,bn)+1 are the values selected by means of its delay functions
i 05 - -+ 0;n(i)+1 from past data along its input channels, then F; (bo, by, b, ..., bn(i)ﬂ)
is the value held at time ¢. The definition of F; consists of Maz component specifica-
tions, one for each value of the programme counter, and may include the “undefined”
operation u - where the intention is that the module performs no processing at that
value of the counter and simply outputs, u (the introduction of the undefined value

is required to ensure each module outputs a value for each of its Mazy component
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functional specifications). Mazy component specifications are defined for F; as fol-

lows:

( bo,0,
( b1,0,

fio | b20, ifbo =0

\ bn(i,0,0
bo,1,
bo, b1,1,
bi, fir | b2, if bg = 1

bn(i)+1 \ bn(i1),1

bO,Ma:ZN—la
b1, Mazy—15
fi,Maa:N—l b2,Ma,zN—lv if bO = MaiL'N -1

oy

\ bn(i,Maa:N—l),MamN—l

where values (bo,o, b10s -+ bn@i1),0, 02,1, - - - s On(i, Mazy) -1, MaxN) € {bo, V.. ,bn(i)ﬂ},
i.e. arguments in the component specification are selected from appropriate argu-
ments in the functional definition of the SCA. Each f; pcvai, where i € Ng, will be
defined as:

( bO) \\
bl’ fili,Z,pc_ual (bz) ’

_ op
fi,pc_'val b2, =T bO’ bla fz‘,pc_‘ua.l SRR

tl

T di,n(z’)—l,pc-val (bn('i,pc_val))

\ b (i pe_val) )

where T is the appropriate tuple management operation for the tuple length, the

tl

. . . tl
projection functions Il di i) poval?

di,Z,pc-val’ Tt

select the appropriate data from the
tuples arriving on m;s input channels, and f;*. ,,; is the actual calculation performed.

However, for j = 0,...,n(i) + 1, the j** input is either supplied by some source at

some previous time, in which case, b; = a,(; ;(t, a, z)), or it is supplied by some other
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module in the network at some previous time, in which case b; = V,,(4, (¢, a, z), a, z).

Accordingly, V;(t,a, ) is defined for j = 2,...,n(7) as:

T (bo, by, fio (b2, b3, - - ., bnii))) ifbp=0

Vi(t,a,z) = ¢
T (bo, b1, fimazw—-1 (b2,b3, - - - bngi,Mazy—1)))  if bo = Mazy — 1

where for 7 =2,...,7(4):
(

% (035 (1, 7)) if o (4, 7) = SA
ﬂbo (%]) =4q
bj,pc_val = 1 " . "I
G, e (Va (85 (ta,2) 0, 3)) i %, (5,5) = MA
L /Bbo (’L)]) =4q

For j=0, the definition of concrete dSCA dictates that the 0" input comes from the
program counter module, m,.. Thus it is appropriate to define:
bO = V;m(éi,O(t: a, I), a, 'T)
= ‘/;’C(ta (1, ‘T)

The 1°¢ input to a module comes from itself, thus for j=1 it is appropriate to define:

by =Vi(d1(t,a,2),a,x)
= Vi(t,a,x)
For the program counter module, m,,, the following is defined:
mod (add (Vpe(t,a,z),1) , Mazy) if V.(t,a,z) =0
Voe(t +1,a,z) =
mod (add (V,e(t,a,2),1) , Mazy) if Vy(t,a,z) = Mazy — 1

Network Output
Vout is defined as the vector representing the output from network N. Consider
that N has m > 0 sinks, then V,,; would be constructed as V,,: = (V4,,..., V.

sm)>

where s1,...,8m € {1,...,k}, i.e:

%Utz(‘/su'“)v;m)'
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Since V,,; for a concrete dSCA is a vector of tuples, each tuple containing the last
Maz y results, any comparison of dSCA to other models requires the extraction of the
necessary values from the tuples for comparison. Such a mapping will be dependant
upon the tuple management scheme used, and whether the concrete dSCA is cycle

consistent or not.

7.3.1 Defining Shape of an concrete dSCA

As with abstract dSCAs, it is possible to implement the same algorithm on several
concrete dSCAs, differing only by the number of modules and values of Mazy. To
distinguish between such concrete dSCAs the pair V = (k, Mazy) is defined as the
Defining Shape of a concrete dSCA, as for abstract dSCAs, where k£ > 0 is the
number of modules in the dSCA network and Mazy is the number of component

specifications each module in the dSCA network has.

7.3.2 Defining Size of an concrete dSCA

The Defining Size of a concrete dSCA with a defining shape of V = (k, Mazy)
is defined to be A = (k X Mazy).

7.4 Correctness

By inspection it can be seen that concrete dSCAs are simple syntactic extension to
the original SCA model as such syntactic correctness of a concrete dSCA can be

shown by applying the techniques given for the original SCA.

7.5 Algebraic Specification

Concrete dSCAs can be specified algebraically using a similar format to that used

for SCAs and abstract dSCAs. An example of the Generalised Railroad Crossing
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Problem, described later in this thesis, represented as a concrete dSCA specification

can be seen in Appendix E.

7.6 Concluding Comments

Concrete dSCA are the final (syntactic) extension to the SCA model introduced, and
are necessary to remove the abstract concepts of an abstract dSCA. Hobley showed
that non unit delay SCAs could be represented as SCAs given a suitable mechanism
for the buffering of values, what we have done is again demonstrate this, but in a
cleaner and more general way, as well as implementing the dynamic rewiring that we

require.

7.7 Sources

The work on Concrete dSCAs is all my own work. However, credit is given to Hobley
for the initial discussion on relaxing unit-delay requirements of SCAs and suggestions

on how these non-unit delays may be implemented as unit delay SCAs.



Chapter 8

Generalised Railroad Crossing
Problem Represented as various

SCAs

8.1 Introduction

The GRCP case study can be represented in all of the SCA forms so far presented.
In this chapter a solution to the problem is provided for the following three forms of

SCAs:

e Synchronous Concurrent Algorithm;

e Abstract Dynamic Synchronous Concurrent Algorithm (2 forms with differing

defining shapes are given); and

e Concrete Dynamic Synchronous Concurrent Algorithm.

As previously indicated, we are not going to claim that the solutions are formally
correct, what is of more interest to us is that each of the models can be used to
construct a representation of the solution to the problem. We semantically discuss

the correctness of each model, and then in later chapters we discuss a convenient

119
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method of demonstrating correctness between models in a hierarchy, which it turns
out each of our descriptions in this chapter are.

During the introduction of SCAs and dSCAs we used the carrier algebra A to
define which data and operations were possible within the SCA. For the remainder
of this thesis we will deal with a specific instance of this algebra and will call this the

machine algebra, or M4. M, is specified in Appendix A.

8.2 Case Study as an SCA
8.2.1 Informal Definition

Recall that the proposed solution to the GRCP with 2 tracks consisted of 8 sensors
for the tracks, 2 sensors to indicate the gate positions, and the associated logic to
move the gates in relation to the values held by the sensors.

It was proposed that the tracks in the region of interest, R, would be named tk;
and tke. Each track would have two sensors sub-systems on it, one to the left of the
gates and the other to the right of the gates, and each sensor sub-system would be
constructed from two sensors, each capable of counting how many trains have passed
in a particular direction, with the intention being that one sensor captures trains
moving in to R and the other trains moving out of R, as shown in Figure 8.1.

The solution identified 2 distinct pieces of logic, one that interpreted the sensors
and another that controlled the actual gate.

To identify if a train is in R the following logic test is performed:
inR(t) = ( ((s1,1(t) — 51,3(t) > 0) V (s1,4(t) — 512(t) > 0))V .
((52,1(2) = s2,3(t) > 0) V (52,4(t) — s2,2(2) > 0))

Simplistically, this could be translated into a single SCA module that takes 8 input
streams as its input, one for each sensor, and produces a single output. However, for

the purpose of demonstrating the same example across SCAs and dSCAs an SCA
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Figure 8.1: Physical GRCP Solution

will be developed where the functional definitions of modules are unit elements from
the machine algebra, M4 (such an SCA is said to be atomic with respect to M4, or
simply an atomic SCA). Such an SCA implementation is graphically shown in Figure

8.2.

Figure 8.2: SCA Implementation of Sensor Logic

The logic for controlling the gates introduced the gate function, g (t) € [0, 90],
where g (t) = 0 means the gate is down and g (¢) = 90 means it is up. This function

will be implemented as a sensor on the gate providing an output in the required range,
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A motor(t) function was defined as:

( i ( ((inR(t) = False A g(t) = 90) V ) hem stay )
(inR(t) = True A g(t) = 0)
0

motor(t) = | else if (inR(t) = True A g(t) > 0)

then doun

\ else up )

An SCA that would represent this logic, as shown graphically in Figure 8.3.

Figure 8.3: SCA Implementation of Motor Logic

In this implementation inR(t) is the input from track sensors and g(t) will be an
actual input. Recall that we defined a reactive system to be a system such as that

depicted in Figure 8.4.

femiz) slgrhl Sceaze valuea

a
Environmen

Figure 8.4: Example Reactive System
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The overall SCA will be graphically represented as shown in Figure 8.5 which by
showing one of the tracks and the gate sensor/controller sets the context of the SCA

within the reactive system under consideration.

Track Gate Track Track
Sensor [ |Sensor Sensor/ [[|Sensor |
fontrollefr

Figure 8.5: Complete SCA Implementation of GRCP

For future transformations the SCA implementation of the GRCP requires the
modules in Figure 8.5 to be numbered in a breadth first and left to right manner
from the bottom most module, which will be module 1, giving a total of 36 modules.
For the purposes of defining the SCA the inputs are also renamed as shown in Table

8.1.
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| Diagram Name | SCA Name || Diagram Name | SCA Name |

S1,1 a1 51,3 Ge
51,3 ag 51,4 Qr
S14 as 51,2 ag
51,2 Q4 g Qg
81,1 as

Table 8.1: Renaming Inputs

8.2.2 Formal Definition

Wiring Functions

The ~ wiring functions are defined by the following three definitions, where for

i=1,...,15,22,...,28 and 5 = 1,2:

v(,5) =M
with:
v(1,3) =M
v7(4,3) =M
and:
~v(11,1) = S | v(31,1) = S | v(31,2) = S
v(13,1) = S | v(33,1) = S | 7(33,2) =
v(15,1) = S| ~v(35,1) = S| 7(35,2) = S
7(29,1) = 5| ~(29,2) = S

The 8 wiring functions for the SCA solution to the GRCP are defined in Table

8.2.

Delay Functions

The delay function will be the unit delay for all inputs to all modules, thus for
1=1,2,...,35and j = 1,2,3 as follows:

B(i,7) |= 6 ;(t,a,2) =t -1
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B, =2 [B(71,)=14 |B(5,1)=9 |B27,1)=33
B(1,2)=3 |B(7,2)=15 | B(15,2) =21 | B(27,2) = 34
B(1,3) =4 | B(10,1) =22 | B(22,1) = 23 | B(28,1) = 35
B(2,1) =5 | B(10,2) =16 | B(22,2) = 24 | B(28,2) = 36
B(2,2)=6 |B(1L,1)=9 | B(23,1)=25] B(29,1) =1
B(4,1) =7 | B(11,2) =17 | B(23,2) = 26 | B(29,2) = 2
3(4,2) =8 | B(12,1) =22 B(24,1) =27 | B(31,1) = 3
B(4,3)=9 | B(12,2) =18 | B(24,2) =28 | B(31,2) =4
B(5,1) =10 | B(13,1) =9 | B(25,1) =29 | B(33,1) = 5
3(5,2) =11 | B(13,2) = 19 | B(25,2) = 30 | B(33,2) = 6
B(6,1) =12 | B(14,1) =22 | B(26,1) =31 | B(35,1) =7
B(6,2) = 13 | B(14,2) = 20 | B(26,2) = 32 | B(35,2) = 8

Table 8.2: 3— Wiring Functions for SCA

Value Functions: Initial State
The actual values in the initial state vector z for the GRCP are not given in the

original definition, however, the following assumptions are made:

e at initialisation there are no trains in R;
e that the gates are fully up; and

e the initial output signal stay.

The other initial values in the system are provided in such a way that the stay
signal will be issued until the first input signals have propagated their way through
the system. Table 8.3 shows the initial state phase definition of the value functions
for this network.

Value Functions: State Transition

The state transition phase definition of the value functions for the control system
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Vi(0,a, ) = stay V2(0,a,z) = true V3(0,a,z) = stay V4(0,a,z) = up
Vs(0,a, ) = true V6(0,a,z) = false | V7(0,a,z) = false | V3(0,a,z) = down
Vo(0,a,z) = up V10(0,a,z) = true | V11(0,a,z) = true | V12(0,a,z) = false
V13(0,a,z) = false | V14(0,a,z) = false | Vi5(0,a,z) = true | Vi6(0,a,z) = false
V17(0,a,z) = 90 Vi1s(0,a,z) = true | Vig(0,a,2) =0 Voo (0, a, z) = true
V21(0,a,2) =0 Va2(0,a,z) = false | Va3(0,a,z) = false | Vay(0,a,z) = false
Vas(0,a,z) = false | Vog(0,a,z) = false | Va7(0,a,z) = false | Vag(0,a,z) = fal.se
Vag(0,a,z) =0 Va0(0,a,2) =0 V31(0,a,z) =0 V32(0,a,z) =
Va3(0,a,z) =0 V34(0,a,2) =0 V35(0,a,z) =0 Va6(0,a,z) =

Table 8.3: Initial State Values for SCA

are defined as follows:
Vi(t +1,a,z) = cond (Va(t, a, z), Va(t, a, z), V4(t, a, z))
Va(t +1,a,2) = or(V5(t, a,z), Vs(t, a, ))
Va(t +1,a,z) = start
Va(t +1,a,z) = cond (V4(t, a,z), V3(t, a, z), Vo(t, a, z))
Vs(t + 1, a,z) = and(Vio(t, a, z), V11(t, a, z))
Vﬁ(t +1,q, .’E) = and(V'IZ(ta a, :L‘), 1/13(1;1 a, :L'))
Va(t +1,a,z) = and(Vi4(t, a,z), Vi5(t, a, z))
Va(t + 1,a,z) = down
Vo(t +1,a,z) = up
VlO(t +1,a, .’II) = eQ(VZQ(ta a, I)a Vlﬁ(ta a, .’13))
‘/11(t +1,a, I) = eq(ag(t), V17(t’ a, 1"))
Viz(t + 1, a,z) = eq(Vao(t, a, z), Vig(t, a, x))
Vis(t + 1, a,z) = eq(ag(t), Vao(t, a, z))
Via(t + 1, a,z) = eq(Vao(t, a, z), Vo (t, a, x))

%5(t +1,q, .'L’) = gt(a9( )a%l(ta aax))
Vis(t + 1,a,z) = false
Vir(t+1,a,2) =90

Vig(t +1,a,2) = true
Vig(t + 1,a,2) =
Voot + 1,a,z) = true
Voi1(t + 1,a,2) =
Vao(t +1,a,z) = 0"”(V23(t a,z), Vay(t, a, x)
Vas(t + 1,a,z) = or(Vas(t, a, z), Vag(t, a, z)
Vaa(t + 1, a,z) = or(Var(t, a, x), Vas(t, a, x)

)
|
Vos(t +1,a,z) = gt(Vae(t, a, 2), Vao(t, a, z))
Vas(t + 1, a,x) = gt(Va1(t, a, x), V32(t, a, z))
Var(t + 1,a,z) = gt(Vas(t, a,x), Vau(t, a, x))
‘/28(t +1,aq, CL') - gt(V35(t a, .’L‘) Véﬁ(t’ a,a:))
Vao(t + 1,a,2) = sub(al( ), az(t))
Vao(t + 1,a,2) =

) =

Vai(t+1,a,z) = sub(ag( ), aqa(t))
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Vag(t +1,a,2
Va3(t + 1, a,z) = sub(as(t), ag(t))

)=0

)
V34(t+1,a,x) =0
)
)

Vas(t + 1,a,z) = sub(az(t), ag(t))
‘/36(t+ l,a,z) =0

The complete algebraic specification of the SCA is given in Annex B.

8.2.3 Correctness

There are two conditions that it are required to demonstrate as true according to
the definition of the GRCP - namely the Safety Property, where the gate is down
during all occupancy intervals, and the Utility Property, where the gate is up when
no train is in the crossing.

To demonstrate correctness, an appeal is made to a semantic argument, divided
into two parts (a syntactic proof along the lines identified in Chapter 5 using retimings
could be constructed, but this would require a more mathematical specification than
provided). First it is shown that if there are any number of trains in R, then they are
correctly identified as being so. Secondly, depending on the identification of train(s)

or not, the appropriate action is taken by the gate motor.

Lemma 8.2.1. The existence of trains in R (therefore are either in the region of
interest I or are heading into it)are identified by the output of the sensor subsystem
being greater than zero.

Figure 8.2 represents the sensor subsystem that is constructed from sets of similar
logic. The basic unit is the subtraction of two values followed by a comparison with
zero - the output being boolean.

Consider sensors s; ; and s; 3 whose intention is to count trains entering and exiting
from R from a left-right direction on the top track. As a train enters R the value of

51,1 is incremented and when the train leaves R the value of s; 3 is incremented. As
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discussed previously, a train entering R means the gates must be down before that
train enters the region of interest I, and a train leaving R implies that it is no longer
in I.

It is clear that whilst there are trains in R there will be a difference in the values
of s11 and s;3. Logic is constructed to obtain the difference between the two sensor
values and then compare this result with zero - a boolean true value indicating that
a train or trains are in R on the top track going in a left to right direction.

Similar logic is constructed for the top track in a right-left direction, using sensors
s14 and s;o. For the second track, sensors sy and sy 3 are fed to similar logic for
trains moving in a left-right direction and sensors s;4 and sz used for right-left
direction on the second track.

The result of all four sensor logic elements will be four boolean values, which are
then consecutively ” OR”-ed together, using the standard interpretation of boolean or
operation, the result being a single boolean value of true, if there are any trains in
R, or false if there are no trains in R.

Note that the unit delay between modules will introduce a delay of 4 time units
before signals from the sensors propagate into the network. Given the speed of modern
processors this is unlikely to be an issue. The benefit of an SCA approach is that this
value can be identified, and in larger examples may even be used to feedback to the
design. It should certainly be used in this example to help identify the distance that

the sensor detecting trains entering into R are placed from R.
Lemma 8.2.2. If a train enters R then the barrier is instructed to go down if it is

not fully down, or stay down if it is already so.

Figure 8.6 shows the motor logic and of particular interest are the two sections

labelled A and B.
Consider logic block A, we are interested in the case where there is a train in R,

inR = T and if the gate is down then the whole of block A, through the OR and
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Figure 8.6: GRCP SCA Down Logic

AND operations, will result in a value of true. If this result is true, then the output
module will pass the STAY result through. That is to say that if there is a train in
R and the gates are down then they will be requested to stay down.

Alternatively, the gate will not be fully down and so the logic in block A will be
false meaning the output module will pass through the logic from block B. The top
left logic of block B will be true since train is in R and the gate not down, thus the
DOWN signal will pass through the conditional gate in block B, and subsequently
through the output module.

Lemma 8.2.3. If all trains have left R then the barrier is instructed to go up if it is
not fully up, or to stay up if it is already so.

Figure 8.7 shows the motor logic and again of particular interest are the two
sections labelled as A and B.

Looking at the logic in block A, if there are no trains in R and the gate is fully
up, then the output module is provided a true signal and thus passes the stay signal.

If the gate is not fully up, the logic block A results in a false signal going to the
output module and thus the result of logic block B is passed. Block B itself will
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Figure 8.7: GRCP SCA Up Logic

output the UP signal since there is no train in R the conditional logic is false.

Safety Property

It has been shown that the SCA can correctly identify whether a train is in R
or not, and further, that the correct signal (either down or stay) is sent to the gate
motor depending on whether there are trains in R or not.

This does not fully address the safety property which is concerned with the region
of interest I. For this property to be met, the gates must be fully down before the
train reaches I, i.e. there is a defined delay between a identifying a train is in R and
the train reaching I, i.e. the gates being fully down. By considering the graph it
can be seen that it takes a minimum of 8 clock cycles before the system can react to
a change in sensor values. In addition there is a delay, dependent upon the motor
speed, required whilst the gate lowers.

Thus, together with a knowledge of train speeds towards I and the speed of closing
a gate, it is possible to determine the appropriate distance from I that the entry sensor

must be placed (the boundary of R) so that the safety property will be upheld, such
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that for all times ¢ in time intervals, A;: the gate is down:

Utility Property

The utility property states that the gate is up for all time intervals where there
are no trains in R. In a similar manner to the safety property, it has been shown that
the SCA can correctly identify when the train passes the bounday of R (i.e. there
should be no trains in ) and that if this is the case then the gate motors are sent
either the up or stay signal. Placing the exit sensor on the edge of R means there
is a slight delay whilst the gates are opening, but allows us to confirm there are no
trains in [ - on the assumption that the distance between R and I is sufficient for a
whole train to be held within.

The length of time required before a train enters R and after a train leaves R,
to allow a reaction to the sensors and time for the gates to lower and open are the

values £; and &; in the formal definition of the utility property:
t¢ U[Ti — &+ &= g(t)=90

The SCA implementation of the GRCP is shown in Appendix B.

8.3 Case Study as an Abstract dSCA

Two abstract dSCA implementations of the GRCP will be constructed: the first,
which will be referred to as the Form 1 abstract dSCA, will be where the defining
shape represents a simple SCA arrangement, i.e. V = (36,1); and the second one,
referred to as the Form 2 abstract dSCA, will be where the defining shape represents

a single processor machine, i.e. V = (1, 36).
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8.3.1 Form One Formal Definition

The first form for the abstract dSCA implementation is one where the defining shape
is V = (36,1), or simply it is an abstract dSCA that resembles the SCA. This first
form can be diagrammatically seen in Figure 8.8, and differs from Figure 8.5 by the

introduction of module m,. and the associated wirings.

Figure 8.8: Form One abstract dSCA GRCP Solution

Wiring Functions
The definitions of the 3-wiring functions for the first form of abstract dSCA are given
in Table 8.4. It should be noted that there is quite some similarity between the
definition of B-wiring for this abstract dSCA and those for the corresponding SCA.
This similarity is intentional.
Table 8.5 shows the wirings to the w element.

The definition of the  wiring functions can be decribed using the following two
definitions, where for ¢ = 1,2,3,...,28 and j =0,...,3:

. U if Bo(i,j) =w

Vi, J) = {

M otherwise
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c | Bo(14,1) = 22

,0) 7,00=p Bo(24, 1) =27 | 5o(31,0) = pc
/30( D=2 [A(l,D) =14 | Ao(14,2) =20 | 5o(24,2) = 28 | Go(3L,1) = 3
:80(172) =3 130(7a 2) =15 :60(15a0) =pc (25 0) =pc /80(31a2) =4
Bo(1,3) =4 | Bo(8,0) =pc | Bo(15,1) =9 | Bo(25,1) =29 | (32,0) = pc
Bo(2,0) = pc | 5o(9,0) = pc ﬁo(15 2) =21 | 5o(25,2) =30 | 5(33,0) = pc
Bo(2,1) =5 | Bo(10,0) = pc | (o(16,0) = pc | fo(26,0) = pc | fo(33,1) =5
Bo(2,2) =6 | Bo(10,1) = 22 | Bo(17,0) = P Bo(26,1) = 31 | f(33,2) = 6
Bo(3,0) = pc | Bo(10,2) = 16 | Bo(18,0) = pe | Bo(26,2) = 32 | Bo(34,0) = pe
Bo(4,0) = pe | Bo(11,0) = pc 500 pe | A27.0) = po [ Ao(5.0) = o
:60(47 l) =17 /80(11) 1) =9 IBO(QOa 0) =pc ﬁ0(27 1) =33 /80(35a 1) -
/80(4’ 2) =8 /60(11’2) =17 /80(21)0) = pc ﬂ0(27 2) =34 ﬁ0(35a2) =8
5o(4,3) =9 | Bo(12,0) = pc | o(22,0) = pe | fo(28,0) = pc | fo(36,0) = pe
5o(5,0) = pe | fol(12,1) = 22 | Bo(22,1) = 23 | fo(28,1) = 5| Ao 1) = pe
Bo(5,1) =10 | 5o(12,2) = 18 | (0(22,2) = 24 | (o(28,2) = 36
5o(5,2) = 11 | Bo(13,0) = pc | o(23,0) = pc | fo(29,0) =
5o(6,0) = pc | Bo(13,1) =9 | Bo(23,1) = 25 | Bo(29,1) =
Go(6,1) = 12 | Bo(13,2) = 19| B(23,2) = 26 | 50(29,2) =
Bo(6,2) =13 | fo(14,0) = pc | Bo(24,0) = pc | 5o(30,0) =

Table 8.4: f— Wiring Functions for Form 1 adSCA

and the following:
'70(11, 1)
Y0(13,1)
Y0(15,1)
70(29,1)
Y0(31,1)
70(331 1)
Y0(35, 1)
Y0(29,2)
Y0(31,2)
'70(33, 2)
'70(35’ 2)

1 | A T A
Nnnhunhnnhuhnhinn

Delay Functions
Since this abstract dSCA is supposed to be a representation of the original SCA,
then it is correct to define the delay function to be the unit delay for all inputs to

all modules. It is therefore possible to describe the delay functions using a single
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Bo(2,3) =w | BB, ) =w [BB2)=w |B(33)=w | [(53)=w
Bo(6,3) =w | fu(7,3)=w | Bo(8,1)=w | B(82)=w | [(8,3)=w
ﬁO(ga 1) =W ﬂO(ga 2) =w /80(9)3) =w /80(]-0, 3) =W /80(11’ 3) = w
,80(12, 3) =w ﬁ0(13a3) =w /80(15’3) =W ﬁ0(15’3) =w /60(16)1) =w
,80(16, 2) = w ,80(16, 3) = w ,8(](].7, 1) = W ,60(17, 2) = w ,60(17,3) = w
Bo(18,1) = w | fo(18,2) =w | Bo(18,3) =w | o(19,1) =w | £o(19,2) = w
/80(19a 3) = w /80(207 1) =w /60(207 2) =w /80(20a 3) =w /30(21) 1) =w
,80(21, 2) = w ﬂ0(21, 3) = w ,30(22, 3) = w ,30(23, 3) =Ww ,30(24, 3) =Ww
/30(25) 3) =w 50(26a 3) =w 130(2773) =w ﬂ0(287 3) =w 130(295 3) =w
Bo(30,1) =w | fo(30,2) =w | Fo(30,3) =w | Fo(31,3) =w | Fo(32,1) =w
,30(32, 2) = w ,80(32, 3) = W ,80(33, 3) = w ,80(34, 1) = Ww ,80(34,2) =W
B0(34,3) =w | [o(35,3) =w | Bo(36,1) =w | Fo(36,2) =w | £o(36,3) =w

Table 8.5: f— Wiring Functions to w for Form 1 adSCA
equation for i =1,2,...,35 and j =0, 1,2, 3 as follows:
5i,j,0(t, a, .’L') =t—-1
and
5pc‘0,0(t, a, .'L') =t—1

Value Function: Initial State

These are defined in Table 8.6.

V000 = stay | Va0,a,0) = true_ | Va(0,0,2) = stay | Val0,4,2) = up
Vs(0,a, z) = true V6(0,a,z) = false | V7(0,a,z) = false | V5(0,a,z) = down
Vo(0,a,z) = up Vi0(0,a,z) = true | V11(0,a,z) = true | V12(0,a,z) = false
V13(0,a,z) = false | V14(0,a,z) = false | V15(0,a,z) = true | Vi6(0,a,z) = false
Vi7(0,a,z) = 90 V18(0,a,z) = true | Vig(0,a,z) =0 Va0(0, a, ) = true
Vo1(0,a,2) =0 Va2(0,a,x) = false | Va3(0,a,x) = false | V24(0,a,z) = false
Vas(0,a,z) = false Vas(0,0a,z) = false Vor(0,a,z) = false Vog(0,a,z) = false
Vag(0,a,z) = V0(0,a,x) = V31(0,a,z) = V32(0,a,z) =0
Vas(0,a,z) = V34(0,a,z) = Vs5(0,a,z) = Va6(0,a,2) =0
Voe(0, 0, 7) =

Table 8.6: Initial State Values for abstract dSCA (Form 1)
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Value Functions: State Transition
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The corresponding definition of the State Transition phase for Value Functions

for the abstract dSCA solution to the GRCP are given as follows:

Vi(t + 1,a,z) = cond(Va(t, a, ), Va(t, a, z), Vu(t, a, z))

Vo(t+1,a,2) = or(Vs(t, a,z), Vs(t, a, z))

Va(t + 1, a,z) = start

1/,4(t + 1') a,l‘) = COTLd(V;(t, a,-’L'), ‘/8(t (Z,II/'), Vb(t, a,a:))
Vs(t+ 1,a,2) = and(Vio(t, a, z), V11(t, a, x))
Vs(t+ 1,a,z) = and(V12(t, a, z)

)

)

V?(t+ l,a,z)

Va(t +1,a,z) = down
%(t+ l,a,:c) =up
Vio(t + 1,a,z) = eq(Vaz(t,a
Vst +1,a,2) = eqlas(2), Vi
Vis(t +1,a,7) = eq(Vaa(t,a

T

.’L’), V16(t a, 'T))

17(t,a, ))
,x), Vig(t, a,x))

Vis(t + 1,a,z) = eq(ag(t), Vig(t, a, x))

,z), Vao(t, a, z))

Vis(t + 1,a,z) = gt(ag(t), Vai(t, a,x))

Vie(t + 1,a,z) = false
Viz(t +1,a,2) = 90
Vis(t+ 1,0,z true

) =
)
) =
) =
Vig(t +1,0,2) = eq(Va2(t, a
) =
) =
) =
) =
) =

Vig(t + 1,0,z

Voot + 1,a,2) = t'rue
Voi1(t+ 1,a,2) =0

Voo(t + 1,a,z) = or(Vas(t, a,
Vas(t + 1,a,z) = or(Vas(t, a,
Vos(t + 1,a,z) = or(Var(t, a,
Vos(t + 1, a,z) = gt(Vag(t, a,
V26(t +1L,aq, 1‘) = gt(V?:l(t’ a,
V27(t + 1,a,az) = gt(V33(ta a,
Vag(t + 1,a,2) = gt(Vas(t, a,

.’L'), V24(t, a, :L'))
z), Vas(t, a, z))
z), Vas(t, a, z))
IE), V30(t, a, .’L‘))
z), Vaa(t, a,x))
z), Va4(t, a,z))
zza V36(ta a, IE))

Vao(t + 1, a,z) = sub(ai(t), az(t))

Vgo(t+ l,CL,:B) =0

Va1(t + 1,a,z) = sub(as(t), asa(t))

Vae(t+ 1,a,2) =0

Vas(t + 1,a,z) = sub(as(t), as(t))

‘/234(15-{— 1,a,x) =0

Vas(t + 1,a,z) = sub(az(t),ag(t))

Vr?)ﬁ(t+ l,a,x) =0

,Vis(t, a, z))
= and(V14(t, a, z), V15(t, a, x))

if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,z) =0
if Vpe(t,a,z) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,z) =0
if Vpe(t,a,z) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
if Vie(t, a,z) = 0
if Vpe(t,a,2) =0
if Vpe(t,a,2) =0
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With the program counter module defined as:
Vee(t + 1,a,z) = mod (add (Vpe(t, a,z),1) , Mazy) if Vp(t,a,2) =0

The algebraic specification of the Form 1 abstract dSCA is provided in Appendix
C.

Correctness

Lemma 8.3.1. The form 1 abstract dSCA solution to the GRCP is equivalent to the
SCA implementation.

Correctness of this abstract dSCA is addressed by appealing to the structural
similarities between the SCA and the Form 1 abstract dSCA, see Figure 8.5 for the

SCA and Figure 8.8 for the Form 1 abstract dSCA.
Now consider the initial state values of the SCA, which are repeated in Table 8.7:

V1(0,a,z) = stay V2(0,a,z) = true V3(0, a,z) = stay Va(0,a,z) = up
V5(0,a,z) = true V6(0,a,z) = false | V7(0,a,z) = false | V3(0,a,z) = down
Vo(0,a,2) = up Vi0(0,a,z) = true | V11(0,a,z) = true | Vi2(0,a,z) = false
Vi3(0,a,z) = false | V14(0,a,z) = false | Vi5(0,a,z) = true | Vig(0,a,z) = false
V17(0,a,z) = 90 Vi8(0,a,z) = true | Vig(0,a,z) = Va0(0, a, x) = true
V21(0,a,z) = Vo2(0,a,2) = false | Va3(0,a,2) = false | V24(0,a,z) = false
Vas(0,a,z) = false Vas(0,a,x) = false Vor(0, a,z) = false | Vog(0,a,z) = false
Vao(0,a,z) = Va0(0,a,z) = V31(0,a,2) =0 Va2(0,a,z) = 0
Va3(0,a,z) = Vs4(0,a,2) = Va5(0,a,2) =0 Va6(0,a,z) =

Table 8.7: Initial State Values for SCA

A direct one-to-one mapping can be seen between these values and those given in

Table 8.6.
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Similarly, the state transition definitions of the value functions of the SCA, re-

peated here:

Vit + 1,a,z) = cond (Va(t,a, x), Va(t, a, x), Va(t, a, x))
V2(t + 17 a, .7)) = OT(VB(t’ a, .’L'), Vﬁ(t,a7 .’IZ))

Va(t+ 1,a,) = start

Vit + 1,a,z) = cond (V4(t,a,z), V3(t,a,z), Vo(t,a,x))
Vs(t + 1,0, z) = and(Vio(t,q, z), V11(t, a, z))

Ve(t+ 1,a,z) = and(Vi2(t, a, z), V13(¢, a, z))

Va(t + 1,0, ) = and(V14(t, a, z), Vi5(t, a, z))

Vs(t+ 1,a,x) = down

Volt +1,0,2) = up

Vio(t + 1,0, z) = eq(Vaz(t, a, z), Va6 (¢, a, 7))

‘/ll(t + 1704, fB) = eq( ( ) V17(t a 2}))

‘/12(t+ 1,0.,1:) = eq(sz(t a ‘1’) ‘/].S(t a, x))

Vis(t + 1, a,z) = eg(as(t), Vis(t, a, 7))
Vis(t + 1, a, ) = eq(Vaal(t, a, ), Vao(t, a, z))
Vis(t + L,a,z) = gt(ag(2), V21(t a,r))
Vie(t + 1,a,x) = false
‘/17(t +1, aﬂm) =90
Vis(t + 1,a,z) = true
‘/IQ(t + 150'}"1:) =0
Voo(t + 1,a, ) = true
1/21(t + l,a,x) =0

‘/zg(t + 1,(1, .'B) = 07"(V23(t, a, IL’), V24(t, a, .’E))
Vas(t + 1,a,z) = or(Vas(t, a, x), Vae(t,a, z))
Vos(t + 1,0, ) = or(Var(t,a, x), Vas(t, a, )
Vas(t + 1,a,) = gt(Vao(t, a, ), Vao(t, @, T))
1/25(f+ l,a ) = gt(V31(t a m),V32(t a, .’L‘))
Vor(t + 1,a,z) = gt(Vas(t, a, x), Vaa(t, a, x))
Vog(t + 1,a,z) = gt(Vss(t, a, z), Vas(t, a, z))
(

)=

) =

;

Vag(t+ 1,a,z) = sub(al( ), a2(t))
‘/30(t + 1,(1 r)

Vai(t + La,z) = Wb(as(t) ay(t))
‘/32(t + 1,0, .'L')

V33(t + 1,a a:) = sub(as (t) ae(t))
Vaa(t + 1,a,z) =

Vas(t+1,a,7) = SUb(a7(t) as(t))
Vag(t+ 1,a,2) =0

demonstrate a one-to-one mapping to the state transition definitions of the value
functions of the form 1 abstract dSCA, shown above (where the reference to the
program counter is added).

Since Vj.(t,a,z) is the result of adding 1 to the previous value mod Mazy = 1
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then the answer will always be 0 thus the Form 1 adSCA State Transition definitions
for the Value Functions will directly equate to the SCA State Transition definitions.
It can therefore be seen by inspection that the SCA and Form 1 abstract dSCA

are equivalent.

8.3.2 Form Two Formal Definition

The 2nd form abstract dSCA is a single module implementation, where the defining
shape is given as V = (35,1). In this case, the value of Mazy will be 36; and whilst
it is difficult to diagrammatically show an abstract dSCA where Maxy > 1 the shape

is indicate in Figure 8.9.

Figure 8.9: Form Two abstract dSCA GRCP Solution

It is decided to implement a cycle consistent abstract dSCA and therefore the
execution order needs to adhere to the principles of cycle consistency. This is achieved
by deriving the execution order from the module numbers in the Form 1 abstract
dSCA. Table 8.8 shows the proposed execution order:

A simple inspection of this execution order will demonstrate that the resulting
abstract dSCA is cycle consistent.

Wiring Functions
(B wiring functions are defined in Table 8.9.

It is also the case that the 0 input for each module is wired to the program counter,
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Form 1 Form 2 Form 1 Form 2 Form 1 Form 2

Module | Module | PC Val | Module | Module | PC Val | Module | Module | PC Val
1 1 0 13 1 12 25 1 24
2 1 1 14 1 13 26 1 25
3 1 2 15 1 14 27 1 26
4 1 3 16 1 15 28 1 27
5 1 4 17 1 16 29 1 28
6 1 5 18 1 17 30 1 29
7 1 6 19 1 18 31 1 30
8 1 7 20 1 19 32 1 31
9 1 8 21 1 20 33 1 32
10 1 9 22 1 21 34 1 33
11 1 10 23 1 22 35 1 34
12 1 11 24 1 23 36 1 35

Table 8.8: Execution Order of Form 2 abstract dSCA
so that for pcval =0,..., Mazy — 1:
Bpewvar(1,0) = pc
and that for the program counter the definition is that for pc_val = 0,..., Maxy — 1:
Bpevar(pc, 0) = pe

The «y wiring functions, indicating whether a module is linked to a module, source or
unconnected are defined in Table 8.10.
It is also the case that the 0% input for each module is wired to the program

counter, so that for pcval =0,..., Mazy — 1:
,ch_val(]-) 0) =M
and that for the program counter the definition is that for pcval = 0,..., Mazy — 1:

/BPC—'Uﬂl(pC) 0) = M
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Go(L,1)=1|06(1,1) =w | Bra(1,1) =9 | Bar(1,1) =1 | Bos(1,1) =11
ﬂ0(1’2) =1 /87(1>2) =w ﬁ14(1>2) =1 /321(112) =1 /828(1a2) =2
Bo(1,3) =1 [ Be(L,3) =w | f1a(1,3) =w | Bu(1,3) =w | Bas(1,3) =w
ﬂl(l, l) =1 ﬁg(l, 1) = W ,615(1, 1) = w ,822(1, 1) =1 ,829(1, 1) = W
,81(].,2) =1 ,68(1,2) = W ,615(1,2) = w ﬁ22(1,2) =1 ﬁ29(1,2) = w
B1(1,3) = W ,88(1,3) = W ,815(1,3) = Ww ,822(1,3) = Ww ,829(1,3) = w
,32(1,1) = w ﬂg(l,l) =1 ;316(1)1) = Ww ,823(1,1) =1 ﬂgo(l,l) =3
Ba(1,2) =w | Bo(1,2) =1 | Big(1,2) =w | Ba3(1,2) =1 | B3(1,2) =4
B2(1,3) =w | Bo(1,3) =w | fi6(1,3) =w | B3(1,3) =w | B30(1,3) =w
,33(]., 1) =1 ,310(1, 1) = 9 ,817(1, 1) = w ,324(1, 1) =1 ﬂ31(1, 1) = W
Bs(1,2) =1 | Bio(1,2) =1 | Bir(1,2) =w | faa(1,2) =1 | B(1,2) = w
,83(1,3) =1 ,810(1,3) = W ,817(1,3) = w ,824(1,3) = w ﬂ31(1,3) = W
Bu(1,1) =1 | B1(1,1)=1 | fis(l,1) =w | Pas(1,1) =1 | fBs52(1,1) =5
,84(1,2) = 1 ﬁ11(1,2) = ]. /618(1)2) = w /825(1,2) = ]. ,332(1,2) = 6
Ba(1,3) =w | fu(l,3) =w | Bis(1,3) = w B25(1,3) = w | B52(1,3) = w
B5(1,1) =1 | Bia(1,1) =9 | Bio(1, 1) =w | Boe(1,1) =1 | fa3(1,1) = w
,85(1,2) =1 ,612(1,2) = 1 ,319(1,2) = Ww ﬁ26(1,2) = 1 ,833(1,2) = w
Bs(1,3) =w | Bra(1,3) =w | Bi9(1,3) =w | Ba6(1,3) =w | Bs3(1,3) = w
Bs(1,1) =1 | Bi3(1,1) =1 | Boo(1,1) =w | Bor(1,1) =1 | Bas(1,1) =7
,36(].,2) =1 ,313(1,2) =1 ,320(1,2) = W ,327(].,2) =1 ,834(1,2) = 8
/36(1a 3) =Ww ﬁ13(1>3) =w ﬁ20(1’3) =uw /827(1’3) =w /634(]-’3) =w

Bas(1,1) =w | Bs5(1,2) = w | Bs5(1,3) = w

Table 8.9: f— Wiring Functions for Form 2 adSCA

Delay Functions

There is only one module within the 2nd form of abstract dSCA, and the delay
functions will need to reflect this, i.e. values required will have been calculated some
time in the past (bounded by Mazy).

For complicated examples it will be difficult to do this by hand, and in Chapter
11 this thesis provides a mechanical way of identifying these delays. It is defined that
for an abstract dSCA all delays where the wiring is to an input are unit delays, as
are the delays for the 0" argument (which goes to the program counter).

Consider the module that executes at pc = 36 in the Form 2 abstract dSCA, from
Table 8.8 it is possible to identify that this was module 1 in the Form 1 dSCA. It is also
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Table 8.10: v— Wiring Functions for Form 2 acvSCA

known that the values used as inputs to module 1 in the Form 1 abstract dSCA come

from modules 2, 3 and 4. Again, using Table 8.8 it can be identified that modules

2,3, and 4 are now executed on module 1 at values of pc = 1,2, 3 respectively. It is

therefore the case that the first input to Form 2 module 1 at pc = 36 was calculated at

pc = 1, or 35 clock cycles ago. Similar maths can be applied to the other arguments

to obtain the value of the delays for those inputs. The inputs to module 1 at pc = 36

will therefore be:

t—34
t—33
t—32

01,1,0

51,1,0

51,1,0
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A similar process can be applied to all the delay functions in Form 2, and the
resultant delay functions for all inputs which relate to the situation where v, (%, j) = M

are shown in Table 8.12.

d11,0(t,a,2) =t —35

01,16(t,a,z) =t —29

d1,221(t,a,z) =t — 34

01,20(t, a, z)=t—-34

01122(t,a,2) =t — 34

(51,3,0(1;, a, :L‘) =t-—33

(
d126(t,a,z) =t —28
(

51,2,22@, a,a:) =t—33

61,1’1(15, a, x) =t—-33

)

)
51,1'9 t, a,m) =t—24
51‘2'9(25, a, :L') =t-30

(51,1,23(75, a, .’L‘) =t—- 33

51’2’1(t, a,r) = t— 32

(51'2'10(15, a,xr) = t—30

51,2‘23(1:, a,x)=1t—32

61’1,3(13, a,r) = t— 33

61,1,11(15, a,r) = t—26

51'1'24(?5, a,r) = t—32

51,2,3(15, a,z)=t—32

51,2,11(t, a,z)=t—30

(51_2‘12(1:, a,z)=t—30

61,1,25(?5, a,xr) = t—31

01,14(t,a,2) =t — 31

)
)
51,2’24(t, a,z) =t—31
)
)

(51,2,25(75, a,x)=1t—30

51,2,4(t, a,z)=1t—30

51’2’13 t,a,x) =t — 30

51,1,26(75, a, :I)) =t—30

51,1,5(73, a,z)=1t—30
51,2'5(t, a,z)=1t—29

01,2,26(t,a,z) =t — 29
51‘1,27(15, a, .’L‘) =t-29
51'1’27(t, a, .’B) =t—28

) )
) )
) )
51,3,3(t, a, .’B) =t—-31 )
) 51'1,13(t, a,z)=1t—28
) )
) )
) )

(
51,2,14(t, a,z)=1t-30
61,1,21(t, a,r) = t—35

Table 8.12: Non-unit Delay Functions for Form 2 acvSCA

Value Functions: Initial State
The Initial State definitions of the Value Functions for the 2nd form of the abstract
dSCA solution are defined for both modules ¢ = 0,1. For the program counter, the

initial states are defined, for values of program counter pc_val =0, ..., 35, as:
Vae(peval, a, ) = Zpepeval
with the initial values for the program counter defined for pc_val = 0,...,35 as:
Zpepeval = Mod(add(pcval + 1), Mazy)

Initial State value equation for module 1 are related closely to those in the Form 1

abstract dSCA. The Form 2 values are given in Table 8.13.

Value Functions: State Transition
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V1(0,a,z) = stay Vi(1,a,z) = true Vi(2,a,z) = stay
Vi(3,a,z) = up Vi(4,a,z) = true Vi(5,a,z) = false
Vi(6,a,z) = false | Vi(7,a,z) =down | Vi(8,a,2) = up
Vi(9,a,z) = true V1(10,a,z) = true | V1(11,a,2) = false
Vi(12,a,z) = false | Vi(13,a,z) = false | V1(14,a,z) = true
Vi(15,a,z) = false Vi(16,a,z) = 90 Vi(17,a,x) = true
Vi1(18,a,z) = Vi1(19,a,z) = true | V1(20,a,2) =0
Vi(2l,a,z) = false Vi(22,a,z) = false | V1(23,a,z) = false
Vi(24,a,z) = false | Vi(25,a,z) = false | V1(26,a,z) = false
Vi(27,a,2) = false V1(28,a,z2) =0 V1(29,a,2) =0
V1(30,a,z) = Vi(31,a,2) =0 Vi(32,a,z) =0
V1(33,a,z) = Vi(34,a,z) =0 V1(35,a,z) =

143

Table 8.13: Initial State Values for abstract dSCA (Form 2)

The State Transition definition of the program counter Value Function is defined as

follows:

add(Vpe(t,a,x),1)mod36 if Vj.(t,a,z) =0
Vpe(t + 1,a,2) =

add(Vye(t, a, ), 1)mod36 if Vp(t,a,z) = 35

For module 1 the State Transition definition of the Value Function is constructed

to take account of the Mazy cases. The complete definition is as follows.
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%(t,a,l‘) = 4

Vi(t — 35,0, ),
cond | Vi(t — 34,qa,zx),

Vi(t —33,a,x)
or(Vi(t — 33,a,2), Vs(t — 32,a,

start

)
cond | Vi(t —32,a,2),

V]_(t —33,a,z),
Vl(t — 31,@, .'L')

and(V1(t — 31,a,2), V1(t — 30,qa,2)
29,a,r)
28,a,x)

and(V1(t — 30,a,z), V1 (t —
and(V1(t —29,a,z), V1 (t —
down

up

eq(‘/l (t —24,a, .'L'), Vl(t - 307 a,

eq(ag(t), V1(t — 30,a,z))

eg(vl (t - 269 a, x)) Vl(t - 30, a,

eq(ag(t), Vi (t

eq(Va(t —

gt(ag(t), ‘/l(t - 307 a, x))

false

90

true

0

true

0

or(Vi(t — 35,a,z), V1

Or(‘/l(t - 34) a, .’L'), ‘/1
Vi
Vi

- 30) a, 2:))

t—34,a
t—33,a
O‘)"(V'l (t - 33,“;:5):
gt(‘/l(t - 337 a, '7:)7

gt(Vi(t — 30,a,z), Vi(t — 29,a

sub(a;(t), as(t))
0
sub(az(t), as(t))
0
sub(as(t), as(t))
0
sub(ar(t),as(t))
0

28,a,z),Vi(t — 30,aq,

z))
z))
z))

( ,T))
( ,T))
(t—32,a,
(t—31,q,
gt(‘/l(t - 3170'; "E)a ‘/l(t - 307 a, ))
,T))
gt(Vi(t —29,a,z),Vi(t — 28,a,z))

z))
z))

xr

xr

if Vpe(t—1,a,2) =0
if Vpe(t—1,a,2) =1
if Vpe(t—1,a,z) =2
if Vpe(t—1,0,2) =3
if Vpe(t—1,a,2) =4
if Vpe(t —1,a,2) =5
if Vpe(t —1,a,2) =6
if Vpe(t —1,0a,x) :7
if Vpe(t — 1,0,z) =

if Vpe(t — 1,0,2) = 9
if Vpe(t—1,a,z) =10
if Vpe(t—1,a,2) =11
if Vpe(t —1,0,z) = 12
if Voe(t—1,0,2) =13
if Vpe(t —1,0,2) =14
if Vpe(t — L,a,2) =15
if Vpe(t —1,a,z) =16
if Vpe(t — 1,a,z) =17
if Vpe(t—1,a,2) =18
if Vpe(t —1,0,z) =19
if Vpe(t —1,a,z) =20
if Vpe(t — 1,a,2) =21
if Vpe(t — 1,a,z) =22
if Vpe(t —1,a,z) =23
if Vpe(t —1,a,z) =24
if Vpe(t —1,a,2) =25
if Vpe(t—1,a,z) =26
if Vpe(t — 1,0,z) =27
if Vpe(t —1,a,z) =28
if Vpe(t—1,a,z) =29
if Vpe(t — 1,a,z) =30
if Vpe(t — 1,a,z) =31
if Vpe(t —1,a,z) = 32
if Vpe(t —1,a,2) =33
if Vpe(t —1,a,2) = 34
if Vpe(t—1,a,2) =35

144
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Correctness

Lemma 8.3.2. The Form 2 abstract dSCA is a correct implementation of the Form
1 abstract dSCA.

Consider any time ¢ € T then the value of the program counter will be ¢t mod
Mazxy. By inspection, it can be shown that values and operations in the initial
values and state transition functions in the Form 2 abstract dSCA map directly to
the Form 2 abstract dSCA.

The algebraic specification of the Form 2 Abstract dSCA is shown in Appendix
D.

8.4 Case Study as a Concrete dSCA

A concrete dSCA implementation of the Form 2 abstract dSCA solution to the GRCP
will be considered in this chapter. The model will be cycle consistent, and therefore
will have a system comprising of one main module which manipulates a tuple of
length Mazy. There will also be the explicit definition of the single program counter

module. This situation is diagramtically shown in Figure 8.10.

Figure 8.10: Concrete dSCA Physical GRCP Solution

It has already been stated in this thesis that there are a range of tuple management
functions that could be selected, and in this exposition the indexed-array approach

will be adopted.



GRCP REPRESENTED AS SCAs 146

Wiring Functions

All wirings will either be to module 1, the programme counter module, or to an input
(or by the nature of an cdSCA will not be connected). The varying B-wiring functions
are defined in Table 8.14 (note that this table does not show arguments 0 and 1).
In comparison to the Form 2 abstract dSCA the index of arguments has been duly
shifted by one to accommodate that concrete dSCA definition of the 0%* argument

being from the program counter and the 1 argument from the module itself.

Bo(1,2) =1 | Br(1,2) =w | Bus(1,2) =9 ﬂ21(1,2) =1 |pxs(1,2)=1
Bo(1,3) =1 | B2(1,3) =w | B1a(1,3) =1 | B(1,3) =1 | Beg(1,3) =2
Bo(Li4) =1 | B(l,4)=w | Bru(l,4) =w | Bau(l,4) =w | Pos(1,4) = w
Bi(1,2) = pc | Bs(1,2) =w | Bis(1,2) =w | Bo2(1,2) =1 | B29(1,2) = w
Bi(L,3) =pc| Bs(1,3) =w | Bi5(1,3) =w | B2(1,3) =1 | B29(1,3) =w
Bi(1,4) =w | Bs(1,4) =w | Bis(1,4) =w | B22(1,4) =w | Bos(1,4) = w
Ba(1,2) =w | Bo(1,2) =1 | Fie(L,2) =w | B3(1,2) =1 | B30(1,2) =3
52(]-’3) =w /89(173) =1 ;616(1v3) =w 3(1a3) =1 /330(1>3) =4
/82(174) =w | fo(1,4) =w | fis(1,4) =w | Ba3(1,4) =w | B30(1,4) = w
Bs(1,2) =1 | B10(1,2) =9 | fir(1,2) =w | Boa(1,2) =1 | B(1,2) = w
B3(1,3) =1 | Bio(1,3) =1 | B17(,3) =w | Ba(1,3) =1 | B5(1,3) = w
Bs(1,4) =1 | po(1,4) =w | Bir(1,4) =w | Bas(1,4) =w | fa1(1,4) = w
Ba(1,2) =1 | Bui(1,2) =1 | f1s(1,2) =w | B25(1,2) =1 | B52(1,2) =5
Ba(1,3) =1 | Bu(L,3) =1 | Bis(1,3) =w | B2s(1,3) =1 | B32(1,3) = 6
Ba(Lid)=w | fu(l,4)=w | fis(1,4) =w | Bos(1,4) =w | Ba(L,4) = w
Bs(1,2) =1 | B12(1,2) =9 | Bo(1,2) = w | Bag(1,2) =1 | fa3(1,2) = w
Bs(1,3) =1 | B12(1,3) =1 | Bie(L,3) =w | B26(1,3) =1 | Bs3(1,3) = w
Bs(L,4) =w | f2(1,4) =w | B1o(1,4) =w | Bas(1,4) =w | fa3(1,4) = w
Bs(1,2) =1 | f13(1,2) =1 | Bao(1,2) =w | Bor(1,2) =1 | P34(1,2) =7
Bs(1,3) =1 | 13(1,3) =1 | B20(L,3) =w | Bar(1,3) =1 | B34(1,3) = 8
Bs(1,4) =w | fi3(1,4) =w | B(1,4) =w | Bor(1,4) =w | Bas(1,4) = w

B3s(1,2) = w | B35(1,3) = w | Bas(1,4) = w

Table 8.14: B— Wiring Functions for cdSCA

It is also the case that for 0 < pc_val < Mazy — 1:
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e the 0" input for each module is wired to the program counter:
Bpevar(1,0) = pc,

e the 1% input for each module is wired to the module itself:
Bpewar(1,1) = 1,

e and that for the program counter the definition is:

Brcval (pc,0) = pc.

For the y-wiring functions, indicating whether a module is linked to a module, source

or unconnected, it is also the case that:

e the 0% input for each module is wired to the program counter:

1 (1,0) =M for 1 <y < Mazn,

e the 1% input for each module is wired to the module itself:

Y (1,1) =M for 1 <y < Mazy,

e and that for the program counter the definition is:

Yy (pc,0) = M for 0 <y < Mazy

The remainder of the y-wiring functions are defined in Table 8.15. Again these too a
close resemblance to those given for the Form 2 abstract dSCA but with a correspond-
ing shift in argument index to accommodate the above definitions for arguments 0

and 1.
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Table 8.15: v— Wiring Functions for Form 2 acvSCA

Delay Functions

For a concrete dSCA the delay functions are always the unit delay as all look-backs

It is therefore defined that for 0 <

over time are now captured within the tuple.

peval < Maxy —1,i=1land 0 < j <4:

(511j,pc(t,a, IL') =t—1

The program counter module has only one input, from itself, and this is also by

definition always unit delay, so it is appropriate to define for 0 < pc_val < Mazy —1:

5PC,0,pc_val(t, a, I) =t—-1
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Value Function: Initial State

The Initial State definitions for the Value Functions for module m; of the concrete
dSCA solution to the GRCP needs to reflect the first Mazy, or 36, initial states. It is
known from the definition of concrete dSCAs that only the values at time ¢ = 0 and

t = 35 are of use to computation and comparison of correctness. It is appropriate to

define, for t = 0:

stay, u, u, u, ,u, U, U, U
u? u) u? u’ ,u’ u’ u, u,
Vi(pcwal,a,z) = u, u, u, u, ,u, U, U, U,
u’ u, u’ u, ’u, u, u, u’
U, U, U, U
and for 1 < pcwval < Maxy — 2 that:
Stay7 u, u) u, 7u, u) u, u’
u’ u1 u’ u’ ’u1 u} u) u‘)
Vi(pcwval,a,z) = u, u, U, u, U, U, U, U,
u, u’ u’ u’ ,u’ u’ u’ u,
U, u, U, U
The final definition, for ¢ = 35, is:
stay, true, stay, up, true, false, false, down,
up, true, true, false, false, false, true, false,
Vi(35,a,z) = | 90, true, 0, true, 0, false, false, false,
false, false, false, false, 0, 0, 0, 0,

0, 0, 0, 0
The Initial State definition of the Value Function for module m,, is given in accordance

with the definition of concrete dSCAs as:

Ww(Mazy —2,a,2) = Mazy — 1
Vo(Mazy —1,a,2) =0
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Value Functions: State Transition
The state transition definition for the value function for the single module reflects
the Mazy cases that need to be covered, and also include the tuple management

operations. The definition of the program counter module is:

mod (add (Vpe(t,a,z),1),36) if Vjpe(t,a,z) =0
Vet + 1,0,2) =
mod (add (Vpe(t,a,z),1),36) if V,e(t,a,2) = Mazy — 1

with the definition of module 1 shown overleaf.
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Network output: V,,;

Network output will be from module 1, i.e. :
‘/out(t) a, I) = ‘/l(t7 a, ﬂ'))

The correct value would have to be projects out if a comparison to an abstract
dSCA or original SCA is to be made. The execution order indicates that a new answer
will be available every 36" clock cycle starting at time ¢t = 0, and due to the tuple
management operation, the value to be compared will be held in the 0" element of

the array.

8.4.1 Correctness

The complete definition of the concrete dSCA 1is captured in Appendix E.

By inspection and application of the mapping of modules (from the execution
order) it can be seen that the concrete dSCA represents the Form 2 abstract dSCA.
Consider the value of V,,; of the Form 1 dSCA at time ¢t = 0, from Table 8.6 it can
be seen that it is equal to stay. The equivalent value in the Form 2 abstract dSCA
is provided as the 0" element in the tuple of V;. Recall that this tuple is defined as:

stay, u, u, u, ,u, U, U, U,
u, u, u, U, U, U, U, U,

Vi(pcval,a,z) = u, u, U, U, U, U, U, U
u, u, u, u, ,uU, U, U, U,
u u, U, u

bl 9y )

it can be seen that the 0t* element is stay, the same as for the Form 1 abstract dSCA.
A similar process can be applied for other times, notably important results will

be produced every 36 clock cycles.

8.5 Concluding Comments

Four solutions to the GRCP example have been given, and this chapter has provided

a discussion relating to the correctness of each model with respect to the ” previous”
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model.

It is now claimed that a SCA can be seen as the mathematical representation of a
computation, and that the concrete dSCA is a mathematical model of the computing
device that will implement the computation.

It is further claimed that the use of abstract dSCAs supports the mathematical
transformation of a SCA to a concrete dSCA using a number of mappings. The
challenge taken forward into the next part of this thesis is how to mathematically

define these mappings and transformations algebraically.

8.6 Sources

This chapter is all my own work.
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Transformations
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Chapter 9

Concept of SCA Transformations

9.1 Introduction

In the previous chapters it has been shown how the solution to the GRCP could be
represented as: an original SCA, two different abstract dSCAs and a concrete dSCA.
The correctness of each of those models has also been discussed. The reader may
have noticed that one model has, in some sense, been derived from a previous model.
For example the concrete dSCA is an implementation of the Form 2 abstract dSCA,
which itself is an implementation of the Form 1 abstract dSCA, which can be seen to
be an implementation of the original SCA implementation. Given such a hierarchy,
this thesis now proposes that there are mechanical methods to transform from one

model to another. Future discussions are restricted to the following transformations:

1. A k-module SCA network to an abstract dSCA network with a defining shape
of V = (k,1);

2. An abstract dSCA network with defining shape of V = (k,1) to an abstract
dSCA network with defining shape of V = (n, k); and

3. An abstract dSCA network with defining shape of V = (n, k) to a concrete
dSCA with defining shape of V = (n, k).

155
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Each transformation will be defined algebraically.

Such a series of transformations is analogous to refinement steps commonly found
in the development of safety related systems (though refinement steps are usually
applied to the transformation of a mathematical specification to a program). Program
transformation is a large field, which this thesis does not intend to delve into in depth
- the reader is pointed to Stephenson’s PhD thesis ([Ste95]) which covers a wide range
of program transformation in her literature study.

In this introduction reference has been made to the various SCAs existing in a
hierarchy. Poole, Holden and Tucker ([PHT98]) have previously considered hierarchies
of Spatially Extended Systems, of which SCAs are a form, and this provides a useful
alternative method for consideration of correctness in addition to the Type I and
Type II notion discussed previously in this thesis. They set out to demonstrate how
one SCA can abstract, approximate, or implement another SCA, and introduced the

Integrative Hierarchy Problem:

“Integrative hierarchy problem: Develop a mathematical theory that
is able to relate and integrate different mathematical models at different

levels of abstraction” ([PHT98])

Poole, Holden and Tucker argue that to compare two SCAs, the following must

be considered:
® spaces;
e clocks;
e global states; and

e input streams.
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Consider two networks, N; and N, with each network having non-empty sets
I, and I, of modules, computing with respect to clocks 7} and T5, sets In; and
In, of inputs. The previous discussions on SCAs has discussed the channels between
modules, but for hierarchies we formally introduce sets Ch; and Ch, to explicitly refer
to channels in network N; and N, respectively. The networks will therefore have the
sets M4™ and M4S" of initial states and sets [T} — Ma;]"™ and [Ty — M,]™ of
input streams. It is intended that the behaviour of the network NN, is an abstraction
of the behaviour of network N; then it should be possible to construct the necessary

mappings.

Spaces

For our purposes, the space of an SCA is analogous to the modules within networks.
An SCA respacing function can therefore be introduced that maps modules within
N;p to Ns:

7T3[1—>12

This mapping is a surjective function, with the intention that each module 7 € I;

in network N, is abstracted by the module (i) € I, in network N,.

Clocks
Mapping between two clocks, 77 and T5, is achieved by the introduction of retimings.
Retimings were introduced by Harman and Tucker in [HT89] and [HT90]; and these
should not be confused with the concept of retimings introduced by Leiserson and Saxe
(whose retimings relate to improving the timing behaviour of a circuit by reallocation
of registers - see [LS91] for details).

A clock is defined to be an algebra consisting of a set of natural numbers, the
constant 0 and the successor operation ¢t + 1. If R and T are two such clocks, then

a retiming A : T — R is a mapping between them capturing the concept that A(t) is
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the time cycle on R that corresponds with the time cycle ¢t € T'. This is demonstrated

in figure 9.1.
1 2 3 4
R e * ’ ’
T & & &0 & 20 8 0 82
1 2 3 4567 8 910 1112

Figure 9.1: Retiming

More formally, let T = (7,0,¢ + 1) and R = (R,0,7 + 1) be two clock algebras,
then if each clock cycle in R corresponds to more than one clock cycle in T then R is

at a higher abstraction than T. Further, A : T"— R is a retiming from T to R, iff:

2. ) is surjective, that is to say that for all 7 € R there is a t € T such that
A(t) = r; and

3. A is monotonic so that for any t,t' € T if t < t' then A(t) < A(t).

The set of all retimings from T to R is denoted as Ret(T,R). A few useful
operations relating to retimings are now discussed. X is known as the immersion of a

retiming A € Ret(T, R) and is defined as:

A7) = least t € T such that \(t) =T

Start, identifies the first clock cycle in the group that could be retimed to a value
in the other clock. For example Start,(5) in Figure 9.1 would be 4. It is defined as

applying the immersion to the result of the retiming of the clock under consideration:

Starty = (A))
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Global States
The global state of an SCA at time ¢t € T is defined as the set of values held by all
the channels at time ¢t € T. There exists a global state abstraction mapping, ¢ of the

form:
o: M,qlch1 — MA§h2

where the intention is that a global state s € M4S™ of SCA N, is abstracted in
SCA N, by the state ¢(s) € M4S™.

It is sometimes necessary to provide a data abstraction function within the global
state map if the algebras in each network are not the same. Poole, Holden and Tucker
demonstrate the use of this when considering the hierarchy between two systolic
convolvers, the first working on an algebra representing bits, and an abstraction

using the carrier set Mjy.

Input Streams
Input streams for network N; can be mapped to those in N, by means of the stream

abstraction function:
0 . [Tl —_ MA1]1n1 —_— [T2 b ]M'AZ]IR2

with the intention that streams a € [T} — M AI]I"1 for N; are abstracted in N, by
9(&) S [T2 — MAZ]Inz.

SCA Equivalence
To show the equivalence of two SCAs in a hierarchy, it is therefore necessary to show

the following diagram commutes:

V;
Tg X [TQ — ]\4,42]1n2 X MA20h2 ———>2 ]\4;420}7'2

A 0 1) 1)

1%
Starty  x[Ty — Mg ]™x M Lo pp, M
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Correctness within a hierarchy would therefore allow the syntactic demonstration
of the correctness of a model M, against a model M; - if M; is already shown to
be correct with respect to some specification S, then showing M; and M, are in
a hierarchy, such that 7, A, ¢ and 0 exist and a diagram for the above commutes,
would demonstrate that M, is also correct with respect to S. Consider the SCA
implementation of the GRCP to be M;, the Form 1 abstract dSCA implementation
to be M, the Form 2 abstract dSCA implementation to be M3 and the concrete
dSCA implementation to be My, then if the notation A > B is used to mean that
B is a correct implementation of A within a hierarchy, then the correctness of the

concrete dSCA with respect to the specification S can be asserted iff:
SDM1>M2[>M31>M4

In the exposition of transformations in this thesis a restriction is placed that the
machine algebra M, will be consistent across the SCA models. The implication of
this is that there will not be an investigation of the alterations of datatypes across
the models, which in turn may affect timings and mappings used.

Before discussing the transformations a discussion is provided next on a number
of fundamental algebras that will be used in the definition of the SCAs and the
transformations. Finally, Chapters 10, 11 and 12 describe the transformations in
detail and include a walk through of how the GRCP example is transformed from an

SCA to a concrete dSCA.

9.2 Fundamental Algebra Specifications

There are four types of fundamental algebra specifications used in this thesis:

1. Synchronous Concurrent Algorithms (SCA, adSCA and ¢dSCA)
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2. Machine Algebra
3. Lists

4. Forms of equations: Value Functions, wiring and delay functions, etc.

The important elements of each specification are discussed in the next set of sections,

and full definitions of relevant specifications are provided in Appendix A.

9.2.1 SCA Algebraic Specification

As defined in Chapter 5.7.2, the specification of an SCA will be written as

Begin
Specification SCA_Neme
Import T,My4
Sorts 0
Constants Symbols ||
VF Function Names V;:T x [T — M4|™ x Mk — My,
~Function Names Y(i,7) : Np x N — Ny,
SFunction Names B(i,7) :Ng x N = {S,M},
SFunction Names 8;j: T x [T — Ma]* x Mk — T,
IV Equations Vi(0,a, x) = xo,
Vn(0,0,2) =z,
ST Equations Vit + 1,a,z) = f;,
Vm(t+ 1aaa :L') = f’i
vEquations ¥(0,0) = =,
SEquations B, =1L,
B, j) =L
sEquations 0i;(t+ 1,a,2) =t,
(5,,;"7'(25 + 1, a, l') =t
End

which of course is a convenient way of writing:
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N,B,

0,true, false,u \
succ: N— Njadd : NxN-o-Ncond:BxNxN-N,...,
V,;:TX[T—»MA]"XMI’X—»MA,

7(i,§) : Ni x N = Ny, 8(3,5) : Ne x N = {S, M},

5,;’]' T x [T—>MA]n X ]\/fﬁ HT,

suce(n) = n + 1, add(succ(a), b) = add(a, succ(b)),. ..,

Vo(0,a,7) = 5,...,

Vo(t + 1,a,z) = add(Vi(t,a, z),2),. ..,

7(1,0)=M,...,

\[3(1,0)=2,..., }

61,0(t,a,1:) =t— ].,. e

To enable the construction of such specifications and provide access to the con-
stituent parts, the SCAAlgebra specification is provided. It has one construction
operation, CreateSC A, which takes enough arguments to create a representation of
an SCA in the algebraic notation. There are also 13 decomposition operations that
provide access to the various components of an SCA. The constructor operation,

CreateSCA, is given as:

CreateSCA: Name x ImpList x SortList x ConsListXx
VFOpList x yOpList x BOpList x §OpListx
IV EqList x STEqList x yEqList x fEqList x § EqList — SCA

and has the following definition:

( Begin \

name, \ Specification name

import, Import import

sorts, Sorts sorts

constants, Constant Symbols constants

opsV'F, VF Function Names opsV F

ops~, v Function Names ops~y
CreateSCA | opsg, = B Function Names opsf

opsé, 0 Function Names ops

eqsVFIV, IV Equations eqsVFIV

eqsVFST, ST Equations eqsV FST

eqsy, v Equations eqsvy

eqsps, B Equations eqs(

\ eqso, ) 0 Equations eqsd

\ End /
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Decomposition operations provide access to the component parts of an SCA speci-
fication, e.g. the y-wiring functions. As an example, consider the GetSEqs operation
whose purpose is to return the list of imported specifications in the definition of an

SCA. It is given as:
GetBEqs : SCAAlgebra — fSCAFEqList

and defined as:

( Begin \
Specification name
Import import
Sorts sorts
Constant Symbols constants
VF Function Names opsV F
~ Function Names opsvy
GetBEqgs B Function Names opsf = eqsf
4 Function Names ops
IV Equations eqsVFIV
ST Equations eqsVFST
v Equations egsvy
£ Equations eqsf
0 Equations eqsd
K End

Similar operations are defined to allow access to all constituent parts of an SCA and

the complete definition of the SCA Manage specification is given in Appendix A.1.
Since abstract and concrete dSCAs are syntactic extensions to SCAs then the

specifications for those will be defined in a similar manner. For brevity, this thesis

will not define these specifications.

9.2.2 Machine Algebra Specification

The Machine Algebra, denoted as My, is the carrier algebra A so far used in the

definition of Synchronous Concurrent Algorithms. It is renamed to focus the reader
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on the objective of the thesis, that of ‘compiling’ an SCA to a target machine archi-
tecture. Operations within M, are said to be atomic, i.e. they cannot be further
subdivided with relation to the level of abstraction currently under consideration.
M 4 includes operations that depend upon the underlying machine that transfor-
mations are targeted at. For the purposes of this thesis a target machine that can
perform simple mathematical and logical operations over the set of natural numbers
and booleans, as shown in Table 9.1 (where the usual meaning is applied to the

operations) will be used.

Natural | Boolean | Combined
add or eq

sub and It

mult not gt

div cond

Table 9.1: Operations in M4

It is important that operations in M4 can handle the undefined element, u, in
any of its arguments. The result of an operation where any argument is u will be
u, even in the case of boolean operations, e.g. the OR operation where it might be
expected that a u for one argument and a true for the other would result in true,
will result in u. This is done because of the field in which this thesis is positioned
where an undefined value would be erroneous and thus the undefined value should be
propagated so it can be handled outside the computation system. My is fully defined
in Appendix A.2.

9.2.3 List Algebra Specifications

The SCA specifications contains many lists, each of which will have a corresponding

list specifications. Lists are required for the following;:

1. Imported types (ImpList).
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2. Sorts (SortList).

3. Constants (ConsList).

4. Value Function operation definitions (VFOpList).

5. «-wiring function operation definitions (yOpList).

6. B-wiring function operation definitions (8OpList).

7. Delay function operation definitions (6OpList).

8. Initial Value equations (ISV EqList and dSCAISV EqList).

9. State Transition equations (STV EqList and dSCASTV EqlList).
10. «-wiring function equations (7ySCAFEqgList and vdSC AFEqList).
11. B-wiring function equations (8SCAFEqList and dSC AEqList).
12. Delay function equations (§SC AEqList and 6dSCAFEqList).
13. Project function equations (ProjFEqlList).

14. Mapping function equations (MapList).

Each specification, is similarly defined, with the main difference the definition of
the GetEl operation. GetEl returns a particular elements from a list of equations
from a defined position. All the specifications have standard head and tail operations.

This thesis will be mainly concerned with Equation Lists in an specification, rather
than, for example, the operation or constant lists. The STV EqList specification
is now discussed in detail, and then a discussion on the differences of the GetEl

operation for various other equation list specifications will be performed.
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SCA State Transition Equation List Specification

Within the ST EqList specification a single composition function is provided, _, _, that

enables the recursive creation of a lists of elements. Three decomposition operations,

hd, tl and GetEl are provided that extract the head of a list, the tail of a list and an

element from a particular position in a list respectively. The empty list will always

be represented by the constant ||

To create a list the specification provides one infix operation:

- -: STV Equation x STV EqList — STV EqList

Thus, (a,[]) and (a, b, c, []) are both equation lists.

For the decomposition operations, consider the following example list:

Vi(t,a,z) = add(1,7),
Va(t, a, ) = mult(3, 6),
Vu(t,a,z) = sub(6.3),

[

The hd operation returns the head of a list, it is given as:
hd : STV EqList — STV Equation

and is therefore be defined as:

hd (1) =]
hd(a,as) = a

such that the hd of the above list is:
Vi(t,a,z) = add(1,7)
The tl operation, which returns the tail of a list, is given as:

tl: STVEqList — STV Equation
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and is defined:
tt([) =1

tl (a,as) = as
such that the ¢l of the above list would be:
Va(t,a, ) = mult(3,6),
Vo(t,a,z) = sub(6.3),
[

The final list operation allows the selection of a particular equation out of a
list. In the case of the STFEqList, each equation is a value function that has a
particular module number associated with it; the operation of GetEl is therefore to
select the State Transition equation from the list that corresponds to a particular

module number. GetEl it is given as:
GetEl : STV EqList x N — STV Equation

and is simultaneously defined as:

GetFEIl([]],n) = |
GetEl ((Vo(t,a,z) = z,vs),n) = (Vu(t,a,z)=2)
GetEl (Vy(t,a,z) = z,vs),n) = GetEl(vs,n)

The GetEl operation is the main operation that changes in all of the list specifi-

cations and is now discussed for the remainder of the lists.

Initial State Value Equations List Specification

Definition of the Initial State for Value Functions are of the form:
‘/’H,(O) a, I) = I?’L

the retrieval of an Initial State definition for a Value Function is performed in the

same manner as for the State Transition definition of a Value Functions, that is to
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say by recursing over the list of equations until the correct element is found. GetEl
is given as:

GetFEl . ISV EqList x N — ISV Equation

and is simultaneously defined as:
GetEl([],n) = null
GetEl (Vu(t,a,z) = z,vs),n) = (Vp(t,a,z) = 2)
GetEl ((Vp(t,a,z) = z,vs),n) = GetEl(vs,n)
The GetEl operation for a dSCA Initial State Value Equation List is similarly
defined with the appropriate types.

dSCA State Transition Value Equations List Specification

DSCA State Transition Value Functions are of the form

Vn(t + 1) a, I) = fn(a‘,rgla ce aargp(i))
the retrieval of an Initial State definition of the value function is performed in the
same manner as for the State Transition definition of the Value Function, that is to

say by recursing over the list of equations until the correct element is found. GetFEl

is given as:
GetEl : dASCASTV EqList x N — dSCASTV Equation

and is simultaneously defined as:

GetEl([],n) = null
GetEl ((Vu(t,a,z) = z,vs),n) = (Vu(t,a,z) = 2)
GetEl ((V,y(t,a,z) = z,vs),n) = GetEl(vs,n)

~v Wiring Function Equation List Specification

There are two forms of y-wiring function lists, one for SCAs and the other for dSCAs.

For an SCA the v-wiring functions are of the form:

v(i,5) = X
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thus selection will be based on the variables ¢ and j, and it is therefore appropriate
to define:
GetEl : ySCAEqList x N* — vSC AEquation

as:

GetEl([]14,7) = null

GetEl((v(1,5) = X,vs),1,5) = (v(4,4) = X)
GetEl ((v(m,n) = X,vs),n) = GetEl(vs,i,7)

For a dSCA, the v-wiring function is of the form:
'72(7').7) = X

and selection will therefore be based on the variables 7, 7 and z. It is therefore

appropriate to define:
GetEl : vdSCAEqList x N* — 4dSC AEquation

as:
GetEl(]]1, 7, 2) = null

GetEl((v.(4,7) = X,vs),4,4,2) = (1:(,5) = X)
GetEl((y.(m,n) = X,vs),4,j,2) = GetEl(vs,1,7,2)

{8 Wiring Function Equation List Specification

The [-wiring operation are extracted in a similar manner as for the y-wiring oper-
ation. Again, there are two forms of (-wiring function lists, one for SCAs and the

other for dSCAs. In the SCA the (-wiring functions are of the form:
Bi,j) =X

thus selection will be based on the variables 7 and j, and it is therefore appropriate

to define:
GetEl : BSCAEqList x N* — 3SC AEquation
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as:
GetEl([)4,7) = null

GetEL((8(,7) = X,vs),4,5) = (6(:,5) = X)
GetEl ((B(m,n) = X,vs),n) = GetEl(vs,i,}j)

For a dSCA, the B-wiring function is of the form:

BZ(iJ) =X

thus selection will be based on the variables i, j and z. It is therefore appropriate to
define:
GetEl : BdSCAEqList x N® — 3dSC AEquation

as:

GetEl([]1, 7, 2) = null

GetEL((B:(1,5) = X,vs),4,5,2) = (B:(i,5) = X)

GetEl ((B.(m,n) = X,vs),1,7,2) = GetEl(vs,i,], 2)
Delay Function List Specification

Delay functions also have 2 forms, one for both SCAs and concrete dSCAs, and
another for abstract dSCAs. In SCAs and concrete dSCAs the delay functions are of
the form:

Ji’j(t, a, ﬂ.?) =X

and selection is therefore based on the variables 7 and j, and it is therefore appropriate

to define:
GetFEl : §EqList x N* — §Equation
as:
GetEl([] 4, 7) = null
GetEl ((6;(t,a,x),vs),1,7) = (4;;(t,a,z) = X)

GetEl ((6mn(t,a,z) = X,vs),n) = GetEl(vs,1,})
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For concrete dSCAs, the delay function is of the format:
dij.(t,a,z) =X
thus selection is based on the variables %, 7 and z. GetFEl is given as:
GetFEl : 0dSCAEqList x N* — 6dSCAEquation

and defined as:

GetEl([]1,7, 2) = null
GetEl ((9;5.(t,a,x),vs),1, 7, 2) = (0i;.(t,a,z) =X)
GetEl ((bmnp(t,a,z) = X,vs),1,7,2) = GetEl(vs,t,j,2)

Mapping Function List Specification

The Mapping Function List contains elements the mapping (or inverse mapping),

these are of the form
2(i,5) = (z,y)
and elements are therefore selected by means of the variables 7 and 7, using the GetEl

operation of the Mapping Function List specification:
GetEl : MapFEqList x N> — MapEquation

which is defined as:
GetEl([]1,7) = null
GetEl ((E(3,7) = X,vs),4,j) = (2(3,7) = X)
GetEl((E(m,n) = X,vs),n) = GetEl(vs,1,}j)
it is similarly defined for the inverse mapping.

Project Functions List Specification

Projection functions are of the form

¥, = N

VI
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thus it is appropriate to define the GetEl operation:

GetEl : ProjEqList x N* — ProjEquation

as:
GetEl([]1, 5, 2) = null
GetFEl ((dﬁy,z = X,’US),'i,j,Z) = (d’ﬁ;,z = X)

GetEl ((dan,n,p = X, 'US), i,j, Z) = GetEl(’US, i7j7 Z)

9.2.4 SCA Value Functions

SCA State Transition Equation Specification (STVEquation)

An SCA State Transition definition of the Value Function is an equation of type

STVEquation. The STVEquation specification defines how these definitons of Value

Functions (a restricted form of equation) are constructed. The specification contains

one operation for constructing and two operations for decomposing a Value Function.
A State Transition definition is an equation made up from two terms, one of the

form V;(t,a,z) and the other f;(argi,...,arg,), as follows:
Vi(t,a,z) = fi(argy, ..., argn)

The i** module in a network N with k modules and n inputs will have an operation
component of:

Vii:T x [T — Ma]* x M5 — My

where T represents some imported clock, and algebra M4 is the imported specification
from which data in the network is selected.
The equational component in the SCA specification for the i** module will consist

of two entries, one that defines the value at time ¢t = 0:

Vi(0,a,z) =e
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and one that defines the value at all other times ¢t € T for some clock T':
‘/‘L(t) a, ‘T) =e

This section is dealing with the State Transition, and thus define it is appropriate
to give one construction operation that takes a module number, a time term and a

VFOpTerm:
CreateVF : N x Term x VFOpTerm — ST Equation
and to define it as:
CreateV F(n,t, ta) = (Vo(t,a,z) = t2)
A constructed Value Function equation is made up of two component parts,
VFCallTerm = VFOpDef

where the V FCallTerm type are terms that are of the form V,(¢,a,z) and the
V FOpTerm type as terms built from elements of M,4. For example, CreateV F(n,t+
1, add(5,4) would result in V,,(t + 1,a,z) = add(5,4)

The decomposition operations provided in the Value Function specification are
used to extract various components from a Value Function definition and also from
the components of the Value Function. For example, the RetTerm operation will

return a term from an ST Equation, it is given as:
RetTerm : STV Equation X N — Term

and defined as:

RTerm(V,(t,a,z) = fo,1) =V, (t,a,x)
RT@"'m(V;z(t,awm) = fn72) = fn
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SCA Initial State Equation Specification (ISVEquation)
An SCA Initial State definition of a Value Function is of type ISVEquation, and this
specification defines how these definitions of a Value Functions (a restricted form of
equation) are constructed. The specification contains one operation for constructing
and two operations for decomposing the Initial State component of a Value Function.

The Initial State is an equation made up from two terms as follows:
Vilt,a,z) = z,,
One construction operation is defined, and it is given as:
CreateVF : N* x VFOpTerm — ST Equation

and defined:
CreateVF(n,t,t2) = (Vo(t,a,x) = t2)

For example, CreateV F(n,0,4) would result in V,,(0,a,2) =5

The decomposition operations provided in the Value Function specification are
used to extract various components from a Value Function and also from the compo-
nents of the Value Function. For example, the RetTerm operation will return a term

from an ST Equation, it is given as:
RetTerm : ISV Equation X N — Term

and defined as:

RTerm(V,(0,a,z) = z,,1) = V,,(0,a, z)
RTerm(V,(0,a,z) = z,,2) =z,

9.2.5 VFCallTerm and VFOpTerm Specifications

Both the VFCallTerm and VFOpTerm are specifications of terms, and it is not in-

tended to provide an algebraic definition of terms above and beyond that given in
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Chapter 9.2. In this section an object of the form V;(¢,a,z) is called a VFCallTerm
and one called a VFOpTerm will be a term conforming to one of the following three

definitions:

e An constant from M, or an operation from M, whose arguments are VFCall-

Terms, for example add(V,(t,a, z), Vo(t, a, ) or true;
e a VFCallTerm, for example V,(t,a,z); or
e a term representing an input stream, and being of the form a;(t)

A single decomposition operation is defined for each of the VFCallTerm and
VFOpDef elements. For the VFCallTerm access is allowed to the index of the
VFCallTerm given as:

Getlnd : VFCallTerm — N
and defined as:

GetInd(V,(t,a,2)) =n

The decomposition operation for the VFOpDef term is one that can return ar-

guments:

GetArg : VFOpDef x N — Term

defined appropriately over the number of arguments that are possible in an operation

built from M4, for example:
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9.2.6 Wiring Function Specification
The wiring function specification consist of:

1. vSCAFEquation;

2. vdSC AFEquation;

3. BSC AEquation;

4. dSCAEquation.

In this chapter the definition of the vSCAFquation specification is given in detail
as an example and the other specifications can be produced in a similar manner.

One operation is required for composition:
Buildy : N* x {S,M,U} — vSCAEquation
given as:
Buildy(a,b, X) = (v(a,b) = X)

Decomposition is provided by one operation:
GetArg : ySCAFEquation X N — Term

given as:
GetArg (y(a,b) = X, 1) = v(a,d)
GetArg (v(a,b) = X,2) = X
The dSC AyFEquation specification will introduce am additional index for the pro-

gram counter, therefore the equations are defined appropriately.
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9.2.7 Delay Function Specification

As with some of the other specification, there are two forms of the delay function,
one for SCAs and concrete dSCAs, and one for abstract dSCAs. First the SCA form
is discussed.

One operation is required for composition:
Buildé : N? x Term® — §SC AEquation

given as:
Buildé(i,j,a,z,t — 1) = (03, j(t,a,z) =t — 1)
Decomposition is provided by two operation, the first GetIndex returns the index

of the delay function:

GetIndex : 6SC AEquation — N?
given as:

GetIndez(d; (t,a,z) = z) = (1, 5)
and the second decomposition operation is the Get Arg operation which returns ele-
ments from the arguments of the delay function:

GetArg : 6SCAFEquation x N — Term

note that we are not interested in the actual values, just that a term is returned:

GetArg (6, ;(a,b,c) = X,1) =a
GetArg (6;;(a,b,c) = X,2) =b
GetArg (6;;(a,b,c) = X,3) =c
The abstract dSCA forms are similarly defined but take account of the additional

index introduced for the program counter.
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9.2.8 Conclusion

This section has provided the details on the fundamental specification used in the act
of transforming one SCA model to another. The algebraic nature of these transfor-

mations leads to the potential of automation of the process in the future.

9.2.9 Sources

This chapter is all my own work, except for the discussion on hierarchies of SCAs

which comes from Poole, Tucker and Holden’s work, [PHT8].



Chapter 10
SCA to Abstract dSCA

Purpose of Transformation
To introduce the necessary syntactic sugar required to describe
an existing SCA as an abstract dSCA, where the defining shape
of the abstract dSC A re flects the shape of the source SCA.

10.1 Process

This chapter describes the process used to build the components of the abstract
dSCA with defining shape V = (k, 1) from an SCA with defining shape V = (k, 1).

It considers the necessary transformations of:

1. Wiring Functions;
2. Delay Functions;
3. Initial State Value Function Equations; and

4. State Transition Value Functions.

179
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Once the individual transformations are described in detail they are pulled to-
gether to provide details of the transformation specification. At the end of this
chapter this transformation specification is applied to the SCA implementation of
the GRCP to produce a Form 1 abstract dSCA implementation. Finally, the correct-
ness of the generated Form 1 abstract dSCA is discussed. The transformation of the

operations part of the specification will not be discussed.

10.1.1 Prerequisites

There are a limited number of prerequisites for this transformation. For the SCA to

Form 1 abstract dSCA there are the following prerequisites:

e The source SCA is an atomic SCA;

e Arguments to the functional specification of a state transition phase definition
of Value Function are indexed from 1, such that the wiring and delay functions

also start with the index 1;

e Module numbering starts at 1, and sequentially increments, i.e. no module is

ever denoted as my;

e Modules are numbered such that if there are k modules in the network, then

they are numbered 1,...,k; and

e All delays in the source SCA are of unit length.

10.1.2 Wiring Functions

There is a subtle difference between the wiring functions in an SCA and those in a
corresponding Form 1 abstract dSCA. This is due to the requirement of the dSCA to
have wiring functions for all values of n(¢) + 1 (the number of arguments to modules)

and this value being consistent across all modules.
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Additionally, a suffix is introduced to reflect the value of the program counter
the wiring function relates to. Since this transformation constructs a simple abstract
dSCA that maps to the SCA, then Mazy will only ever reaches 1, and thus the suffix
will always be 0.

Each module in the abstract dSCA will replicate the wiring in the SCA and will
also get a wiring for its 0** input to wire it to the program counter (this is the reason
for the first prerequisite). The program counter’s wiring itself must also be created,
and the second prerequisite allows the program counter module to assume the index

of 0 as described in the definition of abstract dSCAs.

v-wiring Operations

Consider the SCA «-wiring function:
V(z,y) =2

the transformation should produce the corresponding dSCA ~-wiring function:
Y(z,y) =2

The informal process for generating the y-wiring functions for a Form 1 abstract

dSCA from an SCA is:
e For each module m; in the target network, where 1 <17 <k

— Add the following y-wiring function to the list of new ~- wiring functions

to represent the wiring to the program counter:
Yo ('l, 0) =M

— For each argument 1 < j < n(i) add:

o old_value if old_value exists in the source SCA
Yo(4,7) = .
U otherwise
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e Add the wiring function for the program counter:
%(pc, 0) = M
Formally, the Createrys operation is introduced:
Createys : SCAAlgebra — yEqList

which takes the SCA and calls the Bys operation passing it the number of modules

and value of p(¢) (the number of arguments, and which will be referred to as Mazx4

in the transformations) from the source SCA. Mazx, for the target SCA will be one

greater than in the source dSCA since the shape of the SCA is not being altered,

but an additional argument is required. Additionally, the Bys operation takes the

extracted ~y-wiring functions from the source SC'A and an emntv liet (which will
( num_mod(source_.SC A),

eventually contain the Form 1 abstract dSCA ned as:
GetMazA(source .SCA),

GetyEqs(source .SCA),
GetMaxA(source_.SCA),
GetyEqs(source_.SCA),

I

C’reate'ys( source . SCA ) = B~s

The B+ys operation:
Bvs: N? x ySCAEqList x vdSCAEqList — ydSC AEqList

is defined simultaneously in two cases to recurse over the number of modules. The
first case is where the number of modules is greater than 0, in this situation recursive
calls to the B-ys operation are made whilst decrementing the number of modules, and

creating a new ~y-wiring list from a call to the B~y operation appended to the second
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argument:
( num-mod — 1, \
num-mod, Maz 4,
Mazx eqs
Bns A = Brys 7%
€eqs, Mazy,
neqs, By | num_mod, | ,negs

\ egs /

where the operation B~:
By : N? x ySCAEqList — vdSCAEqList

will construct the 0t arguments wiring function and calls the ByArg operation to

create the wiring functions for the other arguments 1,..., Maz4:

Yo, Ma:L'A

Mazx,, ’
. num_mod, num_mod,
By | num-mod, | = | Buildy , ByArgs

0’ eqsa
€qs,

M [

BvyArgs is given as:
BvyArgs : N? x ySCAEqList x ydSCAEqList — vdSCAEqList

and is defined simultaneously over the Max, argument, the first case being:

argval, argval — 1,
arg-val,
num_mod, num_mod,
BvyArgs = | ByArgs ,BYArg | num_mod,
€gs, €qs,
eqs

[ [

where the operation ByArg is used to generate the wiring function, depending upon

whether it existed or not in the source SCA:

ByArg : N* x ySCAEqListx — vdSCAFEqList
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it is defined as:

( ( 7o, \

num_mod,

Buildy if GetEl | num_mod, | # ||
arg-val,

arg_val, arg_val
g > M < g

€qs,

B~Arg | num_mod, | = {
Yo,

num_mod,
Buildy otherwise

arg-val,

\ \U /

The second case of the ByArgs operation is defined to return the generated list of

eqs

wiring functions:
0,
num_mod,
BvyArgs = neqs
eqs,
neqs
The second case definition for the B+s operation is where the module number
under consideration is 0. This module does not exist in the source SCA and so the

process generates the wiring function for the program counter:

0) Yo,

Mazy, , C,
B~ys = | negqs, Build~y

eqs, 0,

negs, M

B-wiring Operations

Consider the SCA S-wiring function:

B(z,y) =z

the transformation should produce the corresponding dSCA (-wiring function:

Bo(z,y) = z
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The informal process for generating the (-wiring functions for a Form 1 abstract

dSCA from an SCA is:

e For each module m; in the target network, where 1 <1 < k:

— Add the following [-wiring function to the list of new 8- wiring functions

to represent the wiring to the program counter:
ﬁO(i’ O) =pc

— For each argument 1 < j < n(7) add:

old_value if old_value exists in the source SCA

U otherwise

/80(1)]' ) = {
e Add the wiring function for the program counter:
Yo(pc, 0) = pc

Formally, the Createf3s operation is introduced as:
Createfs : SCAAlgebra — EqList

and it takes the SCA and then calls the Bfs operation passing it the extracted (-
wiring functions from the SCA, an empty list (which will eventually contain the Form
1 abstract dSCA (-wiring functions), and the details of the source SCA used for the

same purpose as described in the y-wiring transformation. It is defined as:

num_mod(source_.SCA),
GetMazA(source.SCA),
GetfEqs(source .SCA),

I

Createfs ( source_.SCA ) = Bfs
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The Bfs operation:
Bps: N2 x BSCAEqList x ,BdS_CAEqList — BdSCAEqList

is defined simultaneously by two cases to recurse over the number of modules. The
first case is where the number of modules is greater than 0, in this situation recursive
calls to the Bfs operation are made, decrementing the number of modules, and
creating a new [(-wiring list from a call to the Bf operation to be appended to the

second argument:

( num_mod — 1, \
num._mod, Mazxa,
Maz,, eqs,
BBs 4 —Bgs|
eqs, Maz 4,
negs, BB | num_mod, |,neqs

VL e /

where the operation Bg:
BB : N* x BSCAEqList — BdSCAEqList

constructs the 0" arguments wiring function and calls the B3Arg operation to create

the wiring functions for the other arguments 1,..., Mazx4:
) Mazx
MCLIL‘A, ﬁO ; A, ]
num_maod, num_mo
BB | num_mod, | = | BuildB , BBArgs ’
’ eqs7
€gs,
pc [

BB Args is given as:

BBArgs : N* x BSCAEqList x 3dSC AEqList — dSCAEqList
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and is defined simultaneously over the Maz 4 argument, the first case being:

arg-val, argwal — 1,
arg-val,
num_mod, num_mod,
BpBArgs = | BBArgs ,BBArg | num_mod,
eqs, €gs,
eqs

[ [

where the operation BFArg is used to generate the wiring function depending upon

whether it existed or not in the source SCA:
BBArg: N*> x BSCAEqListx — 3dSCAEqList

it is defined as:

([ o, \

nm,
Buildg | “* if cond;
eqs,
av, RetTerm(GetEl | nm, |,2)
BBArg | nm, | =« \ }
av
eqs ([3
(¢F)
Buildg nm, otherwise
av,

\ \ w

where:
eqs,

cond; = GetEl | nm, | # [
av

The second case of the BFArgs operation is defined to return the already generated
list of wiring functions if the argument number under consideration is 0:
0,
num_mod,
BBArgs = neqs
€gs,

neqs
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The second case definition for the B@3s operation, is where the module under
consideration is module number 0, which does not exist in the source SCA, but does
in the abstract dSCA, and the wiring function for the program counter is generated

in this case as:

num_mod, Bo,
Mazx C
Bgs A — | negs, Buitag | ¥
€qs, 0’
neqs, pc

10.1.3 Delay Functions

Consider the SCA delay function:
bij(t,a,z) =2

in the Form 1 abstract dSCA it would be transformed into the form:
dijo(t,a,z) =2

and it is always the case in the Form 1 abstract dSCA that the delay is a unit delta.
Informally, to create the Form 1 abstract dSCA delay functions from the SCA the

following process is executed:

e For each module m; in the target network, where 1 <i < k:

— For each argument j where 0 < j < n(i) generate:
5i,j,0(t,a, iL‘) =t-1
e Add the delay function for the program counter:

(51,6,0,0(1},&,1') =t—-1.
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Formally, the Createds operation is introduced to recurse through the list of SCA
delay functions and create the list of Form 1 abstract dSCA delay functions. Createds

operation is given as:
Createds : SCAAlgebra — dsEqList

It is defined as an operation that takes an SCA and extracts the number of modules
and the maximum value of n(i) which will be referred to as Maxz,4 through the
transformation. Createds calls the Bds operation with the above arguments and an

empty list (to hold the returned values), it is defined as:

nummod(source_SCA),
Createds(source.SCA) = Bds | GetMazA(source_.SCA),

[]7

The Bds operation, given as:
Bés: N26dSCAEqList — 6dSCAFEqList

is defined by two cases. The first case adresses the situation where the number of

modules is greater than 0, where the following definition applies:

/ num-_mod — 1, \
num_mod, Maz4,
Bis | Mazxy, = Bds Maz 4,
negs BéArgs | num_mod,

\ 0 )

with the BdArgs operation given as:
B6Args : N* x 6dSCAEqList — dSC AEqList

and defined, recursively over the number of arguments, with the first case definition
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of:
num_mod,
arg-val, argval — 1,
, arg,al,
BbéArgs | num-mod, | = | B6Args | num_mod, , Buildé 0
neqs neqs ’
q q £ 1

When the arg_val number is 0 the base case for the BdArgs operation is defined

to build a delay function for the 0** argument:

num_mod,
0, 0
BéArgs | num_mod, | = Buildé 0’
neqs ’
1 t—1

The second case of Bds, where the module number is 0, returns the results calcu-

lated so far, appended to the delay function for the program counter:

num_mod,
0, 0
Bés | Mazxas, | = | negs, Buildd ’
0,
negqs
1 t—1

10.1.4 Initial State Equations

Consider an Initial State Equation from the SCA, it will be of the form:
Vi(0,a,2) = 2;
The corresponding Initial State Equation in the Form 1 abstract dSCA will be:
Vi(0,a,2) = z;

It can be seen that there is no transformation to make for the Initial State Equation

of the SCA modules; however, the Form 1 abstract dSCA has an additional module,
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the program counter. Informally, the process for creating Form 1 abstract dSCA

Initial State equations is therefore:
e Copy across the Initial State equation from the SCA; and
e Add an Initial State equation for the program counter V;.(0,a,z) =0
Formally, the Createl SV F's operation is introduced:
Createl SVFs: SCAAlgebra — dSCAISV EqList

and it is defined as taking the SCA, extracting the Initial State equations from it,

and adding an Initial State equation for the program counter to the resultant list:

GetEqlV (S SCA
CreateISVFs(Source_SCA)=< etEqIV(Source )’)

CreateV F(pc,t,0)

10.1.5 State Transition Equations

State Transition equations in the abstract dSCA differ from those in an SCA by the
need to wrap the functionality in a conditional operation. Consider the SCA State
Transition equation:

Vit + 1,a,z) =e
when transformed for the Form 1 abstract dSCA it would become:
Vit + 1,a,z) = eif vp(t,a,z) =0
or if written with strict compliance to M4 it would be written as:
Vit + 1,a,z) = cond(Vpe(t,a,z) = 0, e, null)

Note that the cond requires 3 arguments, and so the null value is placed into the
definition for the case where V.(t,a,z) does not equal 0 - which will not be the case

for an abstract dSCA where Maxy = 1, as here.
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Informally, the process of transformation can be written as:

e For each SCA State Transition equation:

— Select VFCallTerm,;
— Select VFOpTerm;

— create new VFOpTerm term cond(V,.(t,a, z) = 0, rewire(VFOpTerm), null)
using a version of VFOpTerm that has had its inputs rewired to take ac-

count of the new wiring and delay functions; and

— create new State Transition equation.

e Add the following equation to reflect the program counter:

Vie(t + 1, a, ) = mod(add(Vpe(t, a, z), 1), 1) if Vpe(t,a,x) =0

When describing the abstract dSCA State Transition equations the cond operation
is turned into the more readable form.

Formally, the CreateSTV F's operation is introduced:
CreateSTV Fs: SCAAlgebra — dSCASTV EqList

with the intention that it takes an SCA specification and creates a list of Form 1
abstract dSCA State Transition equations by extracting the SCA State Transition
equations and supplying the new wiring and delay functions to the BST's operation.

It is given as:

[ GetEqIV(Source_SCA), \

0,
CreateSTV Fs(Source.SCA) = BSTs | Createfs(GetBOps(Source_SCA)),

Createys (GetyOps(Source_.SCA)) ,
\ Createds (GetéOps(Source SCA)), )
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The operation BST's:

BSTs: STV EqList x dASCASTV EqList x fdSCAFEqList x vdSC AEqListx
0dSCAEqList — dSCASTV EqList
is defined recursively over the SCA State Transition equation list, in 2 cases; one
case for when there are still equations to process, and the second for when there are
no equations left to process. In the first case a recursive call is made to the BST's
operation with the tail of the equation list, and the newly created State Transition

equation appended to the 2nd argument:

[ eas )

[ (e,eqs), ) i

Bs,
negqs, BST ,negs | ,
BSTs | s, — BSTs e
Js
YS,
s’
I i

Y8,
\ &5 /
The operation BST:

BST : 1V Equation x OplList x yOpList x §OpList — IV Equation

is subsequently defined as:

( RetTerm(e, 1), \
([ (m=0 \)
& ( RetTerm(e, 2), \
BsT | P | = CreatevF newV FTerm,
V8, cond | rewire | Bs, ’
0s "8,
\ ds )

\\\ .
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where:

mll = VRctTcrm(GctEl('ys,i,O),Z) (RetTerm(GetEl(dsa i; Oa 0)7 2)> a, 1?)
= VRetTcrm(*yg(i,O):pc,‘Z) (RetTeTm(Ji,O,O (ta a, .’D) =t- 1’ 2)7 a, :1:)
= Vpe(t — 1,0, 2)

but in this example t = ¢ + 1 thus:
mll = ‘/pc(t7 a, IL')

and:

newV FTerm = GetIndex(RetTerm(e, 1))

To complete the definition of State Transition equation transformation a definition
of the rewire operation is required. Whilst it is possible to provide a definition
covering the general case of any number of arguments to an operation, in the example
there will only ever be a maximum of 3 arguments (see definition of M,4) and so a

specific implementation of rewire can be defined. It is given as:
rewire : Term x N x BOpList x yOpList x §OpList — Term

and defined as:

(o, )
rewire ﬂ’s,
s,
\ )
(we) [ (™)

I

op

rewire | fs,

op | wire
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rewire

rewire | fs,

2

Bs,

757
\ 0s

( op(t1,ta, t3), \

=0p

/

op

wire

\

where the wire operation is defined as:

and:

(i)
i,

Js

Bs,

wire

55

wire

, wire

, wire

s )

, wire

{ Vinew.indez(new_time,a, z) if wiring = M

Qpew_index (TL@’U) —time)

if wiring = S

wiring = RetTerm(GetEl(vs,1,j,0),2)

195

A true implementation would define new_indexr and new_time to return the first

part of the relevant elements, e.g. (3,0, resulting in a State Transition equation

similar to:

Vit + 1,a,z) = op (Vﬁo(i,l)(5i,1,o(t +1,a,1),0, 93))

and then at a future point these would be simplified to the values, resulting in:

Vi(t+1,0,3) = op (Vi(t,a,))
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Instead the issue is expediated and simplification is performed now, thus new_index

and new_time are defined to return the 2nd term of the respective wiring and delay

( (és,

new_index = RetTerm | GetEl z', ,2

Js
\ o\
( ( Js,

Z?
new_time = RetTerm | GetEl ,2

Lo

The second case definition for BST's simply takes the list of Form 1 abstract dSCA

functions:

State Transition equations supplied as an argument and returns them, with the State

Transition equation for the program counter appended. It is therefore defined as:

(0, \ ( neas )

neqs, Vpe(t + 1,0, 1),
BST = Vie(t, a,2) = 0,
S|P CreateVF pell 0,2)
cond | mod(add(V,(t,a,z),1),1),

\ 53, } \ null )

10.1.6 Transformation Process

Each of the operations above need to be coordinated together so that a SCA can be
transformed into an abstract dSCA. The Create_adSCA operation is provided to do

this, it is given as:
Transform : SCAAlgebra — adSCAAlgebra

The operation takes the source SCA and the name of the abstract dSCA, along
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with the number of mcdules and number of inputs in the source SCA. It is defined:

( GetName(SCAq.), \
SCAAlgebra ,

0,

0,
V FOp,

vo : N? = {M,S, U},
Transform(SCAs.) = CreateadSCA | f,: N> — N,

00p ,

Createl SVFs(SCAg.),
CreateSTV Fs(SCAg.),
Createys(SCAgc),
Creates(SCA.),

\ Createds(SCAgre) )

where
Vo :T x M7 x MEY — My,
VFOp=| :
Vigr: T x M% x ME — My,
80,00 : T x M} X Mﬁ“ — T,
Op=| :
ijo:T x M2 x Mt T
and
k = num_-mod(Src.SCA)
Jj = Get_MaxA(Src_.SCA)

n = num_inp(Src_.SCA)
The complete algebraic specification for the SCA to Form 1 abstract dSCA trans-

formation is given in Appendix F.
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10.2 Correctness

Theorem 10.2.1. The transformation of SCA to a Form 1 abstract dSCA preserves
correctness.

The original SCA and transformed result, the Form 1 abstract dSCA, exist in a
hierarchy and it is possible to show that the transformation is correct by considering
Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let Nsca be NJ®4 > 0 module source SCA network with n¢4 > 0 sources
processing data from a set M5C4 against a global clock 79¢4

Let Nysca be N#5€4 > 1 module source SCA network with n45¢4 > 0 sources
processing data from a set M45C4 against a global clock 7954 as generated from
Nsca using the SCA to abstract dSCA transformation.

Poole, Holden and Tucker claim that if it is possible to generate appropriate
mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.

V,
Ingsca Chasca _'t9t Chasca
Tusca X [TdSCA - MAdSCA] X MAdSCA - MAdSCA

A 0 ) 1)

I Ch sre Ch.
Startk X [TSCA — MASCA] nscA MAsng _— MAS:CTC

Mappings are needed for four areas:
e spaces;

e clocks;

e global states; and

e input streams.
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The mappings are defined as follows:
Spaces. Spaces (modules) in the two networks do not differ for modules m; where
i € NJ°4 and ¢ > 0. Thus it is appropriate to define the respacing operation 7 :
Insca — INdSCA as:

(i) =i forl<i<k

Clocks. There is no alteration in timing between the two networks, therefore the
retiming between clocks T9¢4 and T45C4 is \ : TSCA — T5CA for t € T5C4 and

s € T95C4 can be appropriately defined as
Alt) =s

Input Streams. There are no timing or data abstractions require for inputs since these
are not altered by the transformation. Thus is it appropriate to define the input

— [T — MA]"

SCA dSCA

stream abstraction 6 : [T — M4|" as the identity operation:

Global States. It is defined in the transformation that the carrier data set for source
SCA and target abstract dSCA are the same, M,4. Thus there is no data abstrac-
tion required for consideration. We therefore consider the state abstraction map
¢+ MSPsea — MMsCA for all states s € MS"S4 to be defined as follows, for
i € NJCA:

¢(s)(2) = (1)

Consider now any module m; in the SCA, it will have two equations in the SCA

specification and two corresponding ones in the abstract dSCA specification.

Ve (A1), 0(a), ¢(2)) = V¥ (s, a,2)



SCA TO ABSTRACT dSCA 200

We now compare the two networks in the Initial State and the State Transition
phases.

Initial State Phase Consider the output of the module at time ¢ = 0 then

Vg (A(0),0(a), ¢(z)) = ¢(z:)

= V#4(0, 0, z)

The transformation process for SCA to abstract dSCA creates the dSCA initial
state equation by simply copying it from source SCA, thus the above is correct.

State Transition Phase Consider the output at time ¢t = ¢ + 1 then

VSSA(E +1),0(a), $(z) = filba, ..., bugi))

For j € 1,...,n(i) then the input is either from another module in the network

or is from an input, thus

b' — { V‘”(‘J)(JW(Q)J(’\(t)’a)x)’a’ 2’,‘) lf /8(77(7')7]) = qA’Y(ﬂ(i)’j) = M
T\ dla(t) if B(r(3),§) = g Ay(7(3),5) =

or rewritten as
b { Vy(s,a,2) if B(i,5) = M(5,5) = M
i = e e .
ag(s)) i B7) =Ay(i,5) =S
thus the mapping functions provide the same functionality as the process for
rewiring in the transformation specification. Finally, the state transition equation

in the dSCA is copied directly from the same numbered module and included in a

conditional statement:

cond(Vye(s,a,z) = 0, f;, null)
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The value of V. is always zero (consider the definition of the program counter
values in a Form 1 abstract dSCA), therefore m; in the abstract dSCA always executes

f; at all times ¢ > 0 and it can therefore be written that:

Vit (At +1),6(a), ¢(2)) = Vi (s + 1,0, 2)

10.3 Generalised Railroad Crossing Problem SCA
Transformed to an Abstract dSCA

This section contains a manual walk through of the transformation of the SCA so-
lution to the GRCP using the specification provided in the previous chapter. The
input to the process is the algebraic specification of the SCA, as shown in Annex B,
and the first step is to confirm that it meets the prerequisites for transformation.

The discussion following shows the transformation in process.

v-Wiring Equation Transformation

The ~y-wiring functions transform by way of the Createrys operation that takes the

SCA as an input. This is defined:

num_mod(source . SCA),
GetMazA(source_.SCA),
GetyEqgs(source_SCA),

I

C’reate’ys( source_.SCA ) = Bys
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The call to GetyEgs extracts the following details from the source SCA:

v(1,1) =M, ~(7,1)=M, ~(15,1)=S, ~(27,1)=M,
v(1,2) = M, v(7,2) = M, v(15,2) = M, ~(27,2) =M,
v(1,3) = M, ~(10,1) = M, v(22,1) = M, ~(28,1) = M,
v(2,1) = M, v(10,2) = , 7(22,2) =M, ~(28,2) =M,
v(2,2) = M, ~(11,1)= S v(23,1) =M, ~(29,1) =S,
v(4,1) =M, ~(11,2) =M, ~(23,2) =M, ~(29,2)=S,
v(4,2) = M, ~(12,1) =M, ~(24,1)=M, ~(31,1)=S,
v(4,3) =M, ~(12,2) =M, ~(24,2)=M, ~(31,2)=S,
v(5,1) = M, ~(13,1)=S, ~(25,1)=M, ~(33,1) =S,
v(5,2) = M, ~(13,2) =M, ~(25,2) =M, ~(33,2)=S,
v(6,1) = M, ~(14,1) =M, ~(26,1)= M, ~(35,1)=S5,
v(6,2) = M, ~v(14,2) =M, ~(26,2) =M, ~(35,2)=S,

and the num_mod operation identifies that there are 36 modules in the source SCA,
and that the largest number of inputs to any one module in the SCA is 3. It is

therefore possible to rewrite the Createys call as:

36,

3,
GetyEqs(source SCA),
I

Subsequently the call to B<ys operation will result in the invocation of the first

Createqs( source_.SCA ) = Brs

case (where the module number is greater than 1):

[ 35, \

36, 3,
3, eqs,
Brys = Bns 1
eqs7 37
neqs, By | 36, , NEqs
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The call to By expands as:

3, Yo, 37
: 36, 36,
By | 36, = | Bwildy , ByArgs
0, eqs,
eqs,
M I

Following the call to ByArgs results in the following list:

Y(36,1) = U,
70(36,2) = U,
7%(36,3) = U
since module 36 is not wired to anything in the source module. The return from B~y
is the list:
Y(36,0) = M,
7(36,1) = U,
70(36,2) = U,
Y(36,3) =U
The call to Bvys becomes:
[ 35, \
3,
eqs,
Bys | 7(36,0) =
Y0(36,1) =
7(36,2) =U,
\ (36,3)=U, )

which in turn would see another call to the By operation of:

3 Yo, 35
’ 35, 35,
By | 35, = | Buildy 0 , ByArgs
) € S’
eqs, I

M [
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When considering the call to ByArgs this time, the first result (for argument
3) is still unwired, however the recursive call considers a situation where there are

definitions in the original SCA. The result from ByArgs this time will be the list:

’70(35, 1) = S,
7%(35,2) = S,
7%(35,3) =U

and subsequently the return from B~y will be the list:

Y0(36,0) = M,

70(363 1) = Sa

70(36,2) = S,

7(36,3) =U

The overall result of Createys is:

'70(1’0) = M, 70(1, 1) = M, '70(1a2) = M, '70(1’3) =M,
70(2’0) =M, ’70(2’ 1) =M, 70(2v2) = M, ’)’0(2“3) =U,
70(330) =M, 70(3a 1) =U, 70(3a2) =U, 70(35 3) =U,
'70(4’0) =M, '70(4’ 1) =M, '70(4a 2) =M, 70(45 3) =M,
70(5a0) =M, 'YO(Sa 1) = M, 70(5’2) =M, 70(5’3) =T,
'70(6,0) =M, '70(65 1) =M, 70(6a2) =M, 70(6, 3) =U,
'70(7a0) =M, '70(7’ 1) =M, '70(772) = M, '70(7a 3) =U,
’70(8’0) = Ma '70(8’ 1) = U> '70(812) = Ua 70(8’ 3) = Ua
'70(9>0) =M, 'YO(ga 1) =U, 70(9a2) =U, 70(91 3) =U,
70(10, 0) =M, ’70(10’ 1) =M, 70(10, 2) =M, 70(107 3) =U,
Y(11,0) =M, (11,1) =S, (11,2)=M, %(11,3)=UT,
70(12,0) =M, '70(12, 1) =M 70(12’2) =M, '70(12,3) =U,
70(13,0) =M, '70(13, 1) =5, '70(1312) =M, 70(13,3) =U,
’)’0(14, 0) =M, '70(141 1) =M, 70(14’ 2) = M, ’)’0(14’3) =U,
70(15’0) =M, '70(15, 1) = Sa 70(15,2) =M, ’70(15’3) =0,
70(16’ 0) =M, 70(16’ 1) =U, 70(16,2) =U, 70(16’3) =T,
(17,0 = M, %(17,1) =U, 2(7.2)=U, 2(7.3)=U,
70(18, 0) =M, 70(185 1) =T, 70(18,2) =U, 70(18,3) = Ua
70(19,0) = M, 1(19,1) =U, %(19,2)=U, %(19,3)=71,
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70(20,0) = M, ~(20,1) =U, 7(20,2) =U, ~,(20,3)=U,
70(21,0) = M, ~(21,1) =U, (21,2)=U, %(21,3) =71,
70(22,0) = M, (22,1) = M, 7(22,2) =M, %(22,3)="U,
70(23,0) = M, ~(23,1) = M, 70(23 2) =M, v(23,3) =1,
70(24,0) = M, 70(24,1) =M, 7(24,2) =M, 1(24,3) =0,
70(25,0) = M, %(25,1) = M, %(25,2) = M, ~(25,3) =U,
7(26,0) = M, 70(26,1) =M, 7(26,2) =M, 7(26,3) =0,
7(27,0) = M, (27,1) =M, %(27,2) =M, 1(27,3)=U,
70(28,0) = M, 70(28,1) =M, 1(28,2) =M, ~(28,3)=1,
7(29,0) = M, 7(29,1) =S, 1(29,2) =5, 7(29,3)="U.
70(30,0) = M, %(30,1)=U, 9(30,2)=U, 7(30,3)=0,
Y0(31,0) = M, %(31,1)=S, (3L,2)=2S5, (3L,3)="1,
70(32,0) =M, (32,1)=U, (32,2)=U, %(32,3)="1,
7(33,0) = M, %(33,1)=S, 1(33,2)=5, %(33,3)=0,
70(34,0) =M, 1(34,1)=U, (34,2)=U, 7(34,3)="1,
70(35,0) = M, v%(35,1) =S, 4(35,2)=38, ~(353)="U,
Y0(36,0) = M Y0(36,1) = U, 0(36 2)=U, 7(36,3)=U,
Yo(pc, 0) =

205

G Transformation
The SB-wiring functions from the SCA are transformed into the following Form 1

abstract dSCA (-wiring functions:

,80(130) = D¢, :80(1’ 1) =2, 130(1 2) =3, B0(1’3) =4,
Bo(2,0) =pc, [o(2,1) =35, [o(2,2)=6, [o(2,3) =w,
ﬁ0(3» 0) = p¢, [30(3’ 1) =w, 50(3 2) = wa 130(3a 3) = w,
180(4a0) = p¢, ﬁ0(4a 1) =17, ( 12) )60(4’ 3) =9,
ﬂ0(51 0) = pc, ﬁ0(5’ 1) = 10, (5’ 2) = ,30(5> 3) = w,
ﬁO(G’ 0) = D¢, :30(61 1) =12, (6’ 2) = 1 :80(6a 3) = w,
/80(7a 0) = p¢, ﬁ0(7s 1) = 14’ (71 2) =15, 130(7a 3) = uw,
BO(& 0) = D¢, ﬁ0(8a 1) = w, ( 2) = w, 50(8)3) =w,
ﬂO(ga O) = pc, ﬂO(ga ]-) = w, ﬁO(ga 2) =w, 50(9’ 3) = W,
Bo(10,0) = pe, Bo(10,1) =22, Bo(10,2) = 16, Bo(10,3) = w,
50(11’0) = D¢, ﬁO(]-l’ 1) =9, :80(11a2) =17, ,80(11)3) = w,
B6(12,0) = pe, o(12,1) =22, fo(12,2) =18, £o(12,3) = w,
Bo(13,0) =pc, Fo(13,1)=9, Fo(13,2) =19, 5o(13,3) = w,
Bo(14,0) = pc, Bo(14,1) =22, [o(14,2) =20, [o(14,3) = w,
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Bo(15,0) = pc, Bo(15,1) =9, Bo(15,2) =21, fo

) (15,3) = w,
Bo(16,0) = pc, Bo(16,1) =w, [o(16,2) =w, [o(16,3) = w,
,30(17) 0) = p¢, 130(17 1) - w» :60(17 2) W, 130(17x 3) =w,
Bo(18,0) = pc, Bo(18,1) = Bo(18,2) = w, [o(18,3) = w,
B0(19,0) = pe, Bo(19,1) = w, B0(19,2) =w, fo(19,3) = w,
130(20’0) = p¢, ﬂO(zO 1) ,30(20 2) w, ﬂO(QO’ 3) =w,
Bo(21,0) = pc, Bo(21,1) = w, Bo(21,2) = Bo(21,3) = w,
Bo(22,0) = pc, [o(22,1) =23, Po(22,2) = 24 Bo(22,3) = w,
50(23,0) = pc, Bo(23,1) =25, [0(23,2) =26, [(p(23,3) = w,
(0(24,0) = pc, Bo(24,1) =27, [o(24,2) =28, [o(24,3) = w,
B0(25,0) = pc, Bo(25,1) =29, Bo(25,2) =30, Bo(25,3) = w,

)
B0(26,0) = pc, Bo(26,1) =31, [o(26,2) =32, [0(26,3) =
B0(27,0) = pe, Bo(27,1) =33, [Bo(27,2) =34, [0(27,3) = w,
B0(28,0) = pc, Bo(28,1) = 35 B0(28,2) = 36, [0(28,3) = w,
B0(29,0) = pc, Bo(29,1) = Bo(29,2) = 2, )
ﬁ0(30> 0) = pc¢, /80(30 1) W, BO(BO’ 2) = w, 60(30’ 3) =
/30(31’0) = p¢, /30(31 1) =3, /80(31’2) =4, ﬁ0(3173) =w,
ﬂ0(327 O) = D¢, ﬁ0(32» 1) =w, /30(323 2) =
60(33’0) = pc¢, ,80(33’ 1) =5, ﬁ0(33»2) =

w, ,30(32,3) = w,
6’ :30(33’ 3) =,
B0(34.0) = pe, fo(34.1) =w, fo(34,2) =w, fo(343) = w,
/80(35a0) = D¢, :80(35’ 1) =1, :80(3512) =38, ,80(351 3) =uw,
B0(36,0) = pe, [(o(36,1) =w, [o(36,2) =w, [(o(36,3)=w
Bo(pe, 1) =pc

)

Delay Function Transformation (§ )
The delay functions are transformed such that fori=1,...,36 and j =0,...,3:

51',]',0((‘,, a, a:) =t-—1
and the new delay function for the program counter modules is created as:
6pc,0’0(t, a, JI) =t—-1

Initial State Equation Transformation
The transformed Initial State equations for the Form 1 abstract dSCA are a copy of
the SCA Initial State equations with the addition of an Initial State equations for the
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programme counter. The resultant Initial State equations are therefore given as:

V1(0,a,z) = stay  V2(0,a,z) = true  V3(0,a,z) = stay
Vu(0,a,z) = up V5(0,a,z) = true  V5(0,a,z) = false
V7(0,a,z) = false V3(0,a,z) = down Vy(0,a,z) = up

Vio(0,a,z) = true  V11(0,a,z) = true  V12(0,a,z) = false
V13(0,a,z) = false Vi4(0,a,z) = false Vi5(0,a,z) = true
Vi6(0,a,2) = fal.se V17(0,a,z) = 90 Vis(0,a,z) = true
Vi9(0,a,z) = V20(0,a,z) = true  V21(0,a,z) =
Vo2(0,a,2) = false Vo3(0,a,z) = false Va4(0,a,z) = false
Va5(0,a,z) = false Va6(0,a,z) = false Var(0,a,z) = false
Vog(0,a,z) = false Vag(0,a,z) = V30(0,a,z) =
V31(O,a,x) =0 V32(0, a, :L') V33(0,a .’L‘)
Va4(0,a,2) =0 Vs5(0,a,z) = Vi6(0,a,z) =

Vpe(0,0,2) =0

State Transition Equation Transformation
Transforming the State Transition equations commences with a call to the CreateSTV F's

operation:

( GetEqIV (Source_SCA), \

0,
CreateSTV Fs(Source.SCA) = BSTs | Createfs (GetB0ps(Source.SCA)),

Createys (GetyOps(Source_SCA)) ,
\ Createds (GetdOps(Source_SCA)) , )

where the last three arguments to the call to the BST's operations are the lists ob-
tained above and the first argument is the list of State Transition Equations extracted
from the SCA algebraic specification.

Consider the call to BST's, this will initially result in a recursive call to itself as

[ (e,eas), ) [ eas, \
I, (BST(e, B5,5,35), }),
BSTs | Bs, = BSTs | gs,

=) s /

follows:
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where e is the State Transition equation:
Vi(t + 1, a,2) = cond(Va(t,a, ), V3(t,a, z), V4(t,a, x))

The call to BST within this definition is as follows:

( RetTerm(e, 1), \
([ m=0 \)
& [ RetTerm(e,2), \
BST Bs, — CreateVF | newV FTerm,
VS, cond | rewire | Bs, :
s 78,
\ 0s )

L\ )] )

which can be rewritten as:

[ Vit +1,a,2), )
( ( Vpe(t,a,z) =0, \ \

( Va(t,a,2), | )

e, cond | Va(t,a,z), |,
BST B, = CreateVF Valt,a,2)
VS, cond | rewire | 1, ,
ds Bs,
Y8,
\ 55 /

VL )] )
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the call to rewire is simplified as:

Va(t, a, z), \
cond | Vi(t,a,z), |,
Vi(t,a, z) Va(t,a, ),
rewire | 1, =cond | Vi(t,a,z),
Bs, Va(t,a, )
Y8,
\ &s /

and therefore the call to BST can be rewritten as:

[ Vit +1,a,2),

209

€, ( ( ‘/Pc(t7aax) = 07
Valt
Bst | P¥ | = CreatevF 2(t,0,),
,YSa cond CO’nd VE‘I(t)a'v fb), ’
0s Vi(t,a, )
\ )]}

finally resulting in:

(Vpc(t,a,x) =0, \

Va(t,a, x),

Vi(t+1,a,z) =cond | cond | Vi(t,a,z), |,
Va(

t,a,x)

\ null }

or written in a more natural form:
Vi(t + 1,a,z) = cond(Va(t,a, z), V3(t,a,z), Va(t,a,z)) if Vo(t,a,x) =0

Finally, the recursive part of the BST's operation produces the State Transition

equation for the program counter of (written in a more natural form):

Vi(t + 1,a,z) = mod(add(Vpe(t,a,x),1),1) if Vpe(t,a,x) =0
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The complete list of transformed, and simplified, State Transition equations are

as follows:
Vi(t + 1,a,z) = cond(Va(t, a, ), Va(t,a,z), Va(t, a,z)) if Vpe(t,a,x) =0,
Vo(t + 1,a,z) = or(Vs(t, a, ), Vs(t, a, z)) if Vpe(t,a,x) =0,
Va(t + 1,a,z) = start if Vpe(t,a,x) = 0,
Va(t + 1,a,z) = cond(Vz(t, a, ), Va(t,a,z), Vo(t, a,z)) if Vpe(t,a,x) =0,
Vs(t + 1,a,z) = and(Vio(t, a,z), V11(t, a, x)) if Vpe(t,a,x) =0,
Vs(t + 1,a,z) = and(Vi2(t, a, z), V13(t, a, x)) if Vpe(t,a,x) =0,
Va(t + 1, a,z) = and(Vi4(t, a, z), Vi5(t, a, x)) if Vpe(t,a,x) =0,
Va(t + 1,a,z) = down if Vpe(t,a,x) =0,
Vo(t + 1,a,z) = up if Vpe(t,a,x) =0,
‘/10(t+ l,a,m) = eq(‘/22(ta a’x)3V'16(t’ a,ZL')) if VPC(t a X) a
Vi1t + 1,a,z) = eq(ag(t), Vi7(t, a, x)) if Vpe(t,a,x) =0,
Viz(t + 1, a,z) = eq(Va2(t, a,z), Vis(t, a, x)) if Vpe(t,a,x) =0,
Vis(t + 1,a,z) = eq(ag(t), Vig(t, a,z)) if Vpe(t,a,x) =0,
Via(t + 1, a,z) = eq(Vaza(t, a, z), Vao(t, a, z)) if Vpe(t,a,x) =0,
Vis(t + 1,a,z) = gt(ag(t), Vai(t, a, z)) if Vpe(t,a,x) =0,
Vie(t + 1,a,z) = false if Vpe(t,a,x) =0,
Viz(t+1,a,2) = 90 if Vpe(t,a,x) =0,
Vis(t + 1,a,z) = true if Vpe(t,a,x) =0,
Vig(t+1,a,2) =0 if Vpe(t,a,x) =0,
Vao(t + 1,a,x) = true if Vpe(t,a,x) =0,
Voi1(t+1,a,2) =0 if Vpe(t,a,x) =0,

Voo(t + 1,a,z) = or(Vas(t,a,x
Vas(t + 1,a,z) = or(Vas(t, a,x
Vaa(t + 1,a,z) = or(Vor(t,a,z
Vas(t + 1,a,z) = gt(Vag(t,a,z
(
(

, Vau(t, a, x)) if Vpe(t,a,x) =0,
, Vag(t, a,x)) if Vpce(t,a,x) =0,
, Vag(t, a, z)) if Vpe(t,a,x) =0,
, Vag (t a,z)) if Vpe(t,a,x) =0,

Vas(t + 1,a,z) = gt(Va1(t, a,z ) if Vpe(t,a,x) =0,

)

)

) =
=
Vor(t + 1,a,z) = gt(Vas(t,a,z if Vpe(t,a,x) =0,
) =
) =
)=
)=

- raiveio
w
[\
—~~
@b—
Q
H

Vog(t + 1,a,z) = gt(Vss(t, a,z ,Vg,e(t a,z if Vpe(t,a,x) =0,
Voot + 1,a,z) = sub(al(t),ag t)) if Vpe(t,a,x) =0,
Vao(t + 1,0,z if Vpe(t,a,x) =0,
Vai1(t+1,a,2) = sub(ag(t) a4(t)) if Vpe(t,a,x) =0,
Vao(t+1,a,2) =0 if Vpe(t,a,x) =0,
Vas(t + 1,a,z) = sub(as(t), as(t)) if Vpe(t,a,x) =0,
Vaa(t+1,a,2) =0 if Vpe(t,a,x) =0,
Vas(t+1,a,z) = sub(a7(t) ag(t)) if Vpe(t,a,x) =0,
Vag(t + 1,a,2) = if Vpc(t,a, x) =0,
Vpe(t + 1,a,2) = mod(add(‘/},c(t a,z),1),1) if Vpe(t,a,x) =

The complete Form 1 abstract dSCA created from the transformation of the SCA
at Appendix B is shown in Appendix C.
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10.4 Correctness of Example

The generated Form 1 abstract dSCA created from transforming the SCA can be
seen to be the same as the Form 1 abstract dSCA given in Chapter 8.3 - the semantic
proof of correctness given in that chapter shows that this abstract dSCA is a correct
implementation of a solution to the GRCP.

The notion that the global behaviour of SCA abstracts that of the abstract form
1 dSCA is now formalised. Let V.. and Vg be the global state functions determined
from the channel state functions of these 2 SCAs.

Conjecture It is believed that the following diagram commutes:

In Chigt V;gt Chigt
Tig X [Tigr — Apge] ™t X Ayt —— Ay

A 0 ¢ ¢

V.
Sta’,rt)\ X[Tsrc N ASTC]In"cX AChsrc __sre, AChsrc

src src

We have seen from the definition of the correctness of transformation that this is

true. Given the construction of appropriate mappings for:
e spaces;
e clocks;
e global states; and

e input streams.

We rely on Theorem 10.2.1 for proof of correctness. A quick examination of the
specifications for the SCA and Form 1 abstract dSCA in the appendices demonstrates
the theorem holds.
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10.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping a SCA to an
abstract dSCA with a defining shape that represents the SCA. Using the SCA solution
to the GRC Problem, the transformation has been demonstrated by producing an

abstract dSCA representation of the GRC Problem.

10.6 Sources

The definition of the transformation and the walk through of the example is all my

own work.



Chapter 11
Abstract dSCA to abstract dSCA

Purpose of Transformation
To transform an abstract dSC A with a defining shape
of V = (n1,m1) to an abstract dSC A with de fining
shape V = (ng, my) using a mapping function =
which shows how operations at program counter value m;
on module ny in Network N; are transposed to
execute at program counter value mo on module ngy

in Network Ns.

11.1 Process

This chapter highlights the key points in the process of transforming an abstract

dSCA with defining shape V = (n;, m1) to an abstract dSCA with an defining shape

of V = (ng, msy). Full details of this transformation can be found in G.
Transformations are required for the following equation lists within a supplied

abstract SCA algebraic specification are covered:

1. Wiring Functions;

213
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2. Delay Functions;
3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the
abstract dSCA produced in the last chapter to an abstract dSCA with defining shape
of V = (1, k). Subsequently the correctness of the transformed Form 2 abstract dSCA

is discussed.

11.1.1 Prerequisites

e The source network, N; has k; > 1 modules and Maz,, > 0 component speci-

fications in its modules definitions;

e The object network, Ny has k; > 1 modules and Mazx,, > 0 component speci-

fications in its modules definitions;

e The defining size of N, must be equal to or greater than the defining size of Ny,
ie. A(Ng) > A(L);

e There exists the total mapping, = given as:
=2 Ng, X Ny, = Ny, X N,

that maps modules and execution orders of N; to modules and execution orders

of Ny; and
e There exists the inverse mapping =71, given as:
—==1.
= T Nk2 X Npcg ~ Nlc1 X Npcl

(Note that this mapping may not be total, since some functional components of

N, may be the undefined operation used to ensure synchronicity of the network).
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11.1.2 Mapping Function

The provision of a mapping function is a fundamental prerequisite before this trans-
formation can occur. Its purpose is to provide a total mapping between when a
particular function executed on a particular module in the source network and what
module and when it will execute on the target network. It is a simple list of equations
containing two pairs:

(i1, pcvaly) = (i, pc-valy)

and must be defined for all values i; € N_k; of the k-module source abstract dSCA
and pc_val; € {0,...,Maz,, —1}. The mapping is denoted as =, and has the (partial)

inverse Z~1. There is no need to map the program counter module.

11.1.3 Wiring Functions

Unlike the previous transformation, wiring functions will alter values radically to
provide the dynamic retiming and structure necessary to support a re-shaped abstract
dSCA. The process of generating the wiring functions is quite simplistic and so this
thesis will restrict itself to an informal demonstration (a more formal description is

given in G).

~v-wiring Operations

Consider the source abstract dSCA ~-wiring function:
Yoewaly (31,71) = 21

the corresponding target abstract dSCA ~-wiring function will be:
Yoewaly (32, J2) = 22

where j; = j2, and E (i1, pcvaly) = (iz, pcvaly)
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The informal process of generating target abstract dSCA ~-wiring functions is to
walk the structure of the target architecture creating wiring functions for all modules

at all values of the program counter for the number of inputs to each module.

e For each module m; where ¢ € Ni, and ¢ > 0:

— For each pc_val where pcval € {0,..., Mazy, — 1}:

* For the ot* argument of each module create:

prc-val (7” 0) =M
x For each argument where j € {1,...,ny(¢)} create a new y-wiring
function

’Y;;m_val (Z’J) = {

Value from source if 271(4,5) |

U otherwise

with the intended meaning that the undefined connection is given if
the inverse mapping is not defined, otherwise the appropriate value

from the source network is used.

e For module 0 create Mazy, y-wiring functions wiring mg back to itself.

B-wiring Operations
Consider the source abstract dSCA S-wiring function:
ﬂpc-’uall (ilajl) =21

the corresponding target abstract dSCA [-wiring function will be:

/ch_valg ('i27j2) = 2y

where j; = jo and = (i1, pcvaly) = (i2, pcvalzy) The informal process of generating
target abstract dSCA [-wiring functions is to walk the structure of the target archi-
tecture creating wiring functions for all modules at all values of the program counter

for the number of inputs to each module:
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e For each module m; where ¢ € N,:

— For each pcwal € {0,...,Mazy, — 1}:
x For the o* argument of each module create:

/

ﬂpc_val(i’ 0) =M

x For each argument where j € {1,...,n2(i)} create a new [-wiring
function

Value from source if Z71(3,7) |

w otherwise

ﬁ;’w_'ual(i) ]) = {

with the intended meaning that the undefined index is given if the
inverse mapping is not defined, otherwise the appropriate value from

the source network is used.

e For module 0 create Maxy [-wiring functions to wire mg back to itself.

11.1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format,
however the derivation of the delay is more complicated than the simple generation of
the wiring functions, and thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time
delay between now and the time the result was calculated. In the source abstract
dSCA this is given by the defined delay function. For the object abstract dSCA this
value needs to be derived from the data available.

Informally, target abstract dSCA functions are produced as follows:
e For each module m; where i € Ny,:

— For each pcval € {0, ..., Mazy, — 1}:
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x We define, for the 0" argument, the unit delay:

/

5’i,0,pc_val (t7 a, $) =t—1
* For each argument where j € {1,...,n2(3)} create a new ¢-wiring
function
. (B4, pcval)) | A
o t — new_value if o
6pc_'ual(7').7) = (’ch_val(za]) = M)

t — new_value if
t—1 otherwise

e For module 0 create Maxy delay operations of unit length delay to represent

the wiring of my back to itself.

The usual recursive functions are defined to walk the structure of the new abstract
dSCA, but of particular interest is how the creation of a new delta function for
particular values of pcwal, ¢ and j. The B¢§ operation, which is responsible for
creating the new delay function for the arg_valt* (j**) argument of module mod_val

at program counter pc_val, is called and it is given as:

Bd: N3 x 6dSCAEqList x ydSCAEqList x fdSCAEqListx
N? x MapEqList? — §dSC AEquation
To provide a definition of Bé the new value of the delay needs to be generated from
the existing knowledge of the two abstract dSCAs. To understand what the delay
should be, an understanding of what the module links to is required. If the wiring is
to a source, or is unconnected, then the unit delay is generated. This case is identified

by considering the target abstract dSCA G-wiring functions, thus the first definition
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is given as:
( mod_val, \
arg_val,
pe_val,
oldds mod_val,
ld —val,
Bé s, = Build) arg-va if cond;
newfs, pc_val,
Maz3e, t—1
M am?@t,
Cuth
where:
oldys,
c_val,
cond; = | RetTerm | GetEl P 2| #M
mod_val,
arg-val

In the situation where this condition is not true, i.e. the wiring under consideration
is to another module, then the value of the new delay function needs to be calculated.

To calculate the new value, the following process is followed:

1. Find the module and program counter value in the source abstract dSCA that
relates to the current module and program counter value in the target abstract

dSCA, using the inverse mapping function;

2. Identify the module in the source abstract dSCA that produces the value we

are interested in from the S-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value

we are interested in is calculated from the delay functions;
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4. Find the module and program counter in the target dSCA that produces the

value we are interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the

program counter value from (4).

The module and program counter in the source abstract dSCA is given directly

by the inverse mapping function:
=~ (mod_valy, pc_valy) = (mod_valy, pc_valy)

The position of arguments in the functional specification cannot change in the trans-
formation. Thus if arg_val is the argument number under consideration in the target
abstract dSCA, then it will also be in the source abstract dSCA. This fact and the
(B-wiring function in the source abstract dSCA are used to determine the module that

produces the value for that argument, in the source SCA:
modvall® = By yal, (Mod_valy, arg_val)

Using the delay function from the source dSCA, the value of the program counter
that the result was calculated at can be determined. It will be the current source
program counter value minus the delay value for this argument modulus the value of

Mazy in the source abstract dSCA:
pc_val;cs = (pc-vall - (t - ng_vall,av'g_val,pavall (t’ a, ‘T))) mod MaINl

It is now possible to determine the value of the program counter in the target abstract
dSCA by applying the mapping function to the values pc_val]*® just determined, and

mod_val]®, and taking the second element of the returned tuple:

pcvaly® = snd(E(mod_val]®

, pevali®™))
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The value of the delay can be worked out from the difference between the program

counter in the target abstract dSCA now, and the value of pc_val3®:

(pcval — pcvaly®) mod Mazx3,

BJ§ is defined for this case as:

Bé

arg_val,
pc_val,
oldds
oldrys,
oldfs,
Maz3°,
Maz'¥,

-1
)

[n

—
(1]

( mod_val, \

= Build)

mod_val,
arg-val,
pc_val,

t — ((pc-val — pcvalfsy) mod M az'd)

and:
pcvalyy = snd | RetTerm | GetEl | modval?e, | ,2
pevalg?
with:
oldgs,
pc—valsrca
mod_val,’> = fst | RetTerm | GetEl ,2
mod_valg.,
arg-val
and:
oldds,
res mod_valgy.,
pcvally = pcvalg, — | t — GetEl mod Maz°

arg_val,

pc_valgy.
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where mod_val,,. and pc_val,,. are:

=-1
=,

pcvalg,. = snd | RetTerm | GetEl | modwval, |,2

pc_val

-1
)

mod_vals. = fst | RetTerm | GetEl | mod_val, |,2

(1]

pc_val

11.1.5 Initial State Equations

Consider the target abstract dSCA module m;, its Initial State equations, will be of

the form:
‘/1',(01 a, .’II) = xi,O
I/z(oa a,a:) = 1'1',1
M(Oa 0,,.’17) = xz’,Ma,zNz-l
where each value z; pc va1, Where pcval = 0,1,..., Mazy, — 1, will either be the

undefined element, or will come from some particular module and value of the source
abstract dSCA program counter. Values of the source program counter and module
are given directly from the mapping function, =.

Informally, the set of Initial State equations is created as follows:

e For each module m; where i € Ny, and ¢ > 0:

— For each pcval € {0,..., Mazy, — 1} create a new Initial State equation:

Vi(pcval,a,z) = { newvalue if Z71(,pc)) |

U otherwise

e For mg, the program counter:
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— For each pcval € {0,..., Mazy, — 1} create a new Initial State equation:
Vo(pcval, a, z) = (pc-val + 1) mod Mazy,

The usual set of operations to perform a recursive walk of the new structure are
given, resulting in a call to the BIVpc operation, where the key work is done in this
transformation component. It is defined by two cases, the first representing the case
where the program counter is greater than zero and the second case is where the
program counter is zero.

The first case is defined for two situations, where the inverse mapping is defined
(in which case a new equation is created from values in the source abstract dSCA)
and where it is not (in which case an equation is created that returns the undefined
value u in the appropriate parts of the initial state vector):

(pc—l, \

2)

BIVpc ( new_val, ) if 271(4,pc) |

(

neqs

BIVpc | oegs, =9

=-1 b
\“ ) BIVypc BuildIV | pe, if Z71(4,pc) 1

where:
i,
newval = BuildIV | pc,
RetTerm (GetFEl (oeqs, RetTerm(GetEl(271,1,pc), 2)) , 2)



ABSTRACT DSCA TO ABSTRACT DSCA 224

The second case of BIV pc, where the program counter is zero is the simple case
of creating the equation for that value of the program counter and appending it to

the list of already generated Initial State equations:
(o0, )
1

’ BuildlV
BIVpc | oeqs, | = RetTerm

\ o1 ) neqs

11.1.6 State Transition Equations

1
GetFEl(oegs, =71(4,0)), ) ;
2

Consider the target abstract dSCA module m;, its State Transition equations, will be
of the form:

fio(.o) if pc=20

Vit + 1,a,2) =
firazy-1(...) if pc= Mazy — 1
where each functional specification component f;pcva, for values of pcval =

0,1,...,Maxy — 1, will either be the undefined element, or will be the component
specification extracted from some particular module and value of the source abstract
dSCA program counter in the source abstract dSCA. In a similar manner to creating
the Initial State equations, values of the program counter and module number in the
source abstract dSCA for values in the target abstract dSCA are provided by the
inverse mapping function, 21,

Informally, the set of State Transition equations is created as follows:
e For each module m; where 7 € Ny, and 7 > 0:

— For each pcval € {0,..., Mazy, —1} in abstract dSCA extract and rewire
the relevant functional specifications from the source abstract dSCA, if one

exists, otherwise use the undefined constant u.
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— Create a new State Transition equation from the previous result.
e For my, the program counter:

— Create the program counter State Transition equation:
mod(add(Vye(t,a,z),1), Mazy) if Vp(t —1,a,z) =0
Voe(t+1,a,2) = ¢
mod(add(Vy(t,a,z),1), Mazy) :

The pattern for transformation is a familiar one of recursion over the structure
of the target abstract dSCA. There are a couple of key functions that need to be
explained in some more detail.

Consider that the VFOPDef term of a Value Function equation for an abstract
dSCA is of the form:

( fio(.-.) if pc=0

filpe,...) = < f( ) ifpc=1

L firazy—1(...) if pc= Maxy —1
It has already been noted that this is a convenient syntactic way of writing the

conditional. If written according to the machine algebra, My, it would appear as:

( pc =0,
fiol--), \
[ pe=1, \
filpe,...) = cond fialoo),
cond pc = Mazy — 1,
cond | ...,cond | fipazy-1(...),
\ \ null ) )

It is this second form that is used to select the component specification based on a

particular value of the program counter. To do so, the operation GetF'n is introduced:

GetFn : VFOpDefTerm x N — Term
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and is defined recursively over the structure of the VFOpDef term definition:
GetFn(cond(a,b,c),0) =b
GetFn(cond(a,b,c), pcreq) = GetFn(c, pcreq — 1)

To generate a target abstract dSCA State Transition equation for a module a list
of the appropriate VFOpDef Terms, selected from the source abstract dSCA by means
of the inverse mapping function =~, the GetEl operation for STEqList specifications
and the GetF'n operation defined above are used. Consider module m; in the target

abstract dSCA, at program counter value pc_val it is defined to be executing either

the:

1. VFOpDef term in module fst(271(z,pcval)) at the source program counter
value snd(Z71(4, pc_val)) in the source abstract dSCA, if the mapping is defined;

or

2. the output u, if the mapping is undefined.

The NST operation is introduced to determine which case is under consideration,

and it is given as:
NST : N? x dSCASTV EqList* x MapEqList — VFOpDef List

and recurses over the program counter values to produce a list of VFOpDef terms that

are used for the definition of the State Transition equation for a particular module.

It is defined:
( pcval — 1, \

( pc_val, \ mod_val,
mod_val, oeqs,
NST | negs, = NST neqs, Extract | mod_val,,., ,
0€eqs, pcval g
\ g1 ) oegs,

= /
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where:
-1
]

modvalsg. = fst | RetTerm | GetEl | mod_val, | ,2

[1]

pc_val

and:
-1
]

pcvals,. = snd | RetTerm | GetEl | modwval, |,2

(1

pc_val

The Extract function used in the above definition is given as:
Extract : dSCASTV EqList x N* — VFOpDefTerm

and is defined as:

oeqs,
1 GetEl(oegs, mod.-val),
Extract | mod_val, | = GetFn
pc_val
pc_val

The second case of the N ST operation is defined as returning the list of VFOpDef
terms constructed by appending the value for the program counter at 0 to those
VFOpDef terms already obtained.

To complete the generation of a State Transition equation for module M 04 v
in the target dSCA the list of rewired VFOpDef terms must be turned into the

component specification. This is done using the NewST operation, given as:
NewST : VFOpDefList x N — VFOpDef

which takes the list of VFOpDef terms (which has the VFOpDef term corresponding
to pc = Maxy — 1 at the head and the VFOpDef term corresponding to pc = 0 at
the end) and recurses down the list producing the appropriate target dSCA VFOpDef
term. For the recursive case it is defined as:
(e,es), es,
NewST | pcwal, | = NewST | pcval —1,

neqs cond(Vpe(t, a,z) = pc_val, e, neqs)
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and the base case is defined:

e)
NewST | pcwal, | = cond(Vpe(t,a,z) = pc_val, e, negs)

negs

11.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new abstract
dSCA can be created by transforming the source abstract dSCA. The Create_adSCA

operation is provided to do this, it is given as:
Transform : adSCAAlgebra x N* x MapEqList? — adSCAAlgebra

The operation takes the source abstract dSCA and the defining shape of the

target abstract dSCA together with the mapping and inverse mapping functions. It
is defined for

Vo: T x M2 x M5 — M,,
VFOp= 5

Vi: T x M2 x ME — M,

So000:T x M3 x M% — T,
Op=1| i,
bijo: T X M2 x Mt T
and:
Jj = Get_-MazA(Src_.SCA)
n = num_inp(Src.SCA)

as:
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( GetName(SCAsre), \
adSC AAlgebra,

IE

0,
VFOp,

Yo - Nz—*{M,S,U},
Bo: N? =N,

d0p,

[ SCAype,
k,

Createys Mazy,

=1

SCAure, fCAsrca ﬂ
k, Createfls M

Transform | Mazn, = CreateadSCA OTN,

=—1
=

?

zi—l SCAsrcv
= X,
Createds | Mazxy, ,

—
—y

=1
b b

SCAsrm
CreatelVs

CreateSTs | Mazpy,

It is not intended to bring together all the operations defined in this chapter into

a written down specification in this thesis for reasons of brevity. If this was to be
performed, then it would appear similar to the algebraic specification provided for

the SCA to abstract dSCA transformation in Appendix F.

11.2 Correctness

Theorem 11.2.1. The transformation of a Form 1 abstract dSCA to a Form 2 ab-
stract dSCA preserves correctness.

The Form 1 abstract dSCA and transformed result, the Form 2 abstract dSCA,



ABSTRACT DSCA TO ABSTRACT DSCA 230

exist in a hierarchy and it is possible to show that the transformation is correct by
considering Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded
Systems.

Let Nysca, be a N#C¢Al > 1 module source Form1 abstract dSCA network with
ndSCAL > 0 sources processing data from a set M4C4! against a global clock T45¢At

Let Nyscaz be a Né5¢42 > 1 module Form 2 abstract dSCA network with n9¢42 >
0 sources processing data from a set M35C€42 against a global clock T95¢4? as gener-
ated from Njgc a1 using the abstract dSCA to abstract dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate

mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.

Ingscal Chascal Visca Chascat
Tuscmr  %[Tuscar = Maysca,) X My 208 ——— M, 45

A 0 ¢ ¢

Ingscaz Chascaz Viscaz Chasc a2
Sta’l"t; X [TdSCAZ — MAdSCAz] X MAdSCAz _— MAdSCAz

Mappings are needed for four areas:
e spaces;

e clocks;

e global states; and

e input streams.

The mappings are defined as follows:
Spaces. Spaces (modules) in the two networks differ, this is the point of the trans-

formation, however, for modules m; where i € N#5¢42 the inverse mapping function
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provides the necessary details. Thus it is appropriate to define the respacing operation

T INyooan X NM‘“’Ndsc'Az = INgscar X NM“szscm as:
7 (i, pc) = =7 (i, pc)

Clocks. There exists a timing abstraction between the networks which is clearly given
by the relationship between the values Mazy,.,, and Mazy,,.,,- The retiming
between clocks T#C42 and T99CAl is the retiming X\ : T9¢4 — T99CA  where for
t € T%C42 jt can be appropriately defined as:
t
(M ATN4sc A2 )
MazN ;5041

) =

Input Streams. There are no data abstractions required for inputs since these are
not altered by the transformation. However there is a temporal abstraction, which

matches the above retiming. Thus is it appropriate to define the input stream ab-

straction 0 : [T45CA2 — M, 17°C%  [T95CAL A, o 17" as the operation:
0(a)(t) = a(A(?))
= a(s)

Global States. 1t is defined in the transformation that the carrier data set for source
abstract dSCA and target abstract dSCA are the same, M 4. Thus there is no data
abstraction required for consideration.

There is though an alterations of channels between the two modules based on the
inverse mapping function identified. We therefore consider the state abstraction map
¢+ Mghisear —, MERsOAL for gl states s € My ¢4 to be defined as follows, for
i € NéscA2,

¢(s)(7) = s()
Conjecture Given this set of mappings it is believed that the diagram above

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.
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11.3 Generalised Railroad Crossing Problem as a
single processor Abstract dSCA

Now this thesis will consider the transformation of the (source) Form 1 abstract dSCA
from the previous chapter, which has a defining shape of V = (k, 1), to the (target)
Form 2 abstract dSCA with a defining shape of V = (1, k). The following example is
based on the full definition of transformation given in Appendix G, as highlighted in
the previous section.

Before walking through the processes of transformation, the prerequisites are re-

viewed:
e the source abstract dSCA has 36 + 1 modules;

e cach module in the source abstract dSCA has Maz%° = 1 component specifi-

cations;
e the target abstract dSCA has 1 4+ 1 modules;

e each module in the target abstract dSCA has M aazﬁ\grt = 36 component specifi-

cations;

e the defining size of the source abstract dSCA is A,,. = 36; and

the defining size of the target abstract dSCA is A, = 36, thus Ay, > A,

Thus, with the exception of a mapping between the source and target abstract
dSCAs, the prerequisites are met. There are many possibilities for producing a map-
ping function, and of interest is the development of an automatic method for produc-

ing a mapping which results in a cyclic consistent abstract dSCA.

11.3.1 Automating the Generation of the Mapping Function

Recall the definition of a cycle consistent abstract dSCA:



ABSTRACT DSCA TO ABSTRACT DSCA 233

“If for all values of the program counter it can be shown that functions
that calculate inputs to other modules execute at program counter values
greater than the value of the program counter when the module that uses

those input values executes, then the abstract dSCA is said to be cycle

consistent”

The generation of a mapping between a source abstract dSCA with a defining
shape of V = (k, 1) to a target abstract dSCA with a defining shape of V = (1, k)

can be automated, if the following conditions are true:
e V,.: contains only one module;
o Mazy =1,
e There are no loops in the network; and
e The modules are (re-)numbered in a breadth first manner from V,,;.

Figure 11.1 shows an abstract dSCA network that meets such conditions.

Figure 11.1: Numbered abstract dSCA network

The generation of the mapping for such a network is the simple process of walking

the network in a breadth first manner. It can be seen by inspecting Figure 11.1 that an
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algorithm of this type ensures that no module executes after the modules generating
its inputs have executed - thus the resultant abstract dSCA is cycle consistent.
Using such an algorithm on the source abstract dSCA implementation of the

GRCP, generates the following mapping function definition:

=(1,0) = (1,0) | £(10,0) = (1,9) | £(19,0) = (1,18) [ £(28,0) = (1, 27)
2(2,0) = (1,1) | 2(11,0) = (1,10) | £(20,0) = (1,19) | £(29,0) = (1,28)
=(3,0) = (1,2) | 2(12,0) = (1,11) | (21,0) = (1,20) | £(30,0) = (1, 29)
=(4,0) = (1,3) | 2(13,0) = (1,12) | (22,0) = (1,21) | £(31,0) = (1,30)
=(5,0) = (1,4) | 2(14,0) = (1,13) | (23,0) = (1,22) | £(32,0) = (1,31)
=(6,0) = (1,5) | £(15,0) = (1,14) | £(24,0) = (1,23) | £(33,0) = (1,32)
=(7,0) = (1,6) | £(16,0) = (1,15) | £(25,0) = (1,24) | £(34,0) = (1,33)
=(8,0) = (1,7) | £(17,0) = (1,16) | £(26,0) = (1,25) | =(35,0) = (1, 34)
2(9,0) = (1,8) | £(18,0) = (1,17) | £(27,0) = (1, 26) | =(36,0) = (1,35)

—

The corresponding inverse mapping function, 271, is subsequently defined as:

=-1(1,0) = (1,0) | 27(1,9) = (10,0) |[=%(1,18) = (19,0) | =71(1,27) = (28,0)
271(1,1) = (2,0) | 71(1,10) = (11,0) | ==1(1,19) = (20,0) | =71(1,28) = (29,0)
2-1(1,2) = (3,0) | E71(1,11) = (12,0) | =-1(1,20) = (21,0) | =71(1,29) = (30, 0)
=71(1,3) = (4,0) | =71(1,12) = (13,0) | E71(1,21) = (22,0) | =7(1,30) = (31,0)
=711,4) = (5,0) | 271(1,13) = (14,0) | =71(1,22) = (23,0) | E71(1,31) = (32,0)
=-1(1,5) = (6,0) | E71(1,14) = (15,0) :-1(1 23) = (24,0) | =71(1,32) = (33,0)
=-1(1,6) = (7,0) | =71(1,15) = (16,0) | ==(1,24) = (25,0) | =~1(1,33) = (34,0)
=71(1,7) = (8,0) | =~ l(1,16) (17,0) | =71(1,25) = (26,0) | E71(1,34) = (35,0)
=-1(1,8) = (9,0) | 271(1,17) = (18,0) | E71(1,26) = (27,0) | E-1(1, 35) = (36,0)

It is possible that there are other methods for producing cycle consistent dSCAs,
this is the only one that we have considered.
~v-wiring function

The target network has 1 + 1 modules and 36 component specifications for each
module. Each module except the program counter will have a maximum of 3 + 1
arguments. The Createys operation will therefore be called as follows:
[ SourceSC4, \
L,
Createys | 36,
4,

\ =" /
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which would expand, according to its definition, to the call to B~ys of:

Createys

1,
36,
4,

=-1
=

( Source.5C4, \

/

(

= Bns

\

1,

Getys(Source_.SCA),

I,
36,

4,
=-1

)

/

235

The right hand side of this definition will result in a recursive call to B~ys as well as

a call to the B-ypc operation. Considering the call to B~pc first, it can be seen below

that the value of Mazy is decremented by one in preparation for the recursive nature

of B-ypc and are supplying the empty list for the new values of y-wiring functions to

be added to:

B~ys

(o

old~s,

(

Bvypc

olds,
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The B-ypc call expands as:

Bypc

[ 35,
oldrys,

IF

)

4,
-
—

1

\

)

= Brypc

/

[ 34,
oldrys,

(

Brarg

\

1,

4,
=

236

/

Taking a look at the call to the Byarg operation, it can be seen to recurse over

all the arguments, argval € {0, 1,2,3}, and it can be ascertained that:

75:1?1(5—1(1,35))(f5t(5_1(1, 35)), argval) 1

or written to remove the inverse mapping function:

Y5 (36, arg-val) 1

these values are to be expected, since module 36 in the source abstract dSCA simply

provides a constant and has no inputs. The list of «y-wiring functions returned for the

4 arguments of module 1 at pc_val = 35 are:
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The recursive call to Buildvypc will expand to:

(5 \

oldvs,
[ (3% )
[ 34, \ oldrs,
oldrs, Brarg I, |
735(1,3) = U, 1,
v35(1,2) = U, 34,
Bype | | ms(L,1)=U, | | =Bype K = ) |
735(1,0) = M Y35(1,3) = U,
1, 735(1,2) = U,
4, Y35(1, 1) = U,
| = ) \ \ 1,0 =01 ) )
1
4,

= }

The call to Byarg in this case is more productive since =(1,34) = (35,0), and
module 35 in the source abstract dSCA is wired to two inputs. The expansion of the

B~arg call is:

[ 2, \
oldrs,
/s Cn o))
old~ys, 3,
B b
SE
34,
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The first call to B~y will instigate the case where there is no corresponding y-wiring

function in the source abstract dSCA and so will produce a wiring to the undefined

module:
(1, )
3. ’1Ya4a
By | 34, = Buildy ’
oldys, ’
\= ) ’
= 734(1> 3) =U

The recursive call to Bryarg will be:

olds,
(20 ) [ (1 ) )
oldys, 2,
Brarg newnys, = Bryarg Byl 34, Mt
1, oldys,
# \ \= ) )

34,
= /

This time the call to B~ will be the case where the mapping exists, and there is

a corresponding y-wiring function in the source abstract dSCA. In this situation B~y
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will expand as:

( Y34, \

(1, ) L
2, 2,

By 34, = Buildfy oldfys,

RetTerm | GetFEl , 2

where:
ia = fst(RetTerm(GetEl(=71,1,34)),2)
= fst(RetTerm(=Z71(1,34) = (35,0)),2)
— f5t(35,0)
=35
and:

pCog = sndf st(RetTerm(GetEl(Z71,1,34)),2)
= snd(RetTerm(Z71(1,34) = (35,0)),2)
= snd(35,0)
=0

239
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the call to B~ can be rewritten as:

( Y34,
(1) L \

2, 2,
By | 34, = Buildy olds, \
lds, 35,
oS RetTerm | GetEl ,2

=1 2,
\= ) \ ! < )
( Y34,

L,
2,
> RetTerm (v4(35,2) = S),2) )

= Buildy

Y34,
1,
2,
\ §

= (734(1a2) = S)

= Buildy

Similarly the remainder of the y-wiring functions for module 1 at program counter

value 34 are determined, providing the following list:

v34(1,3) = U,
v34(1,2) = S,
v34(1,1) = 5,
v34(1,0) = M
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The process continues through the values of the program counters and modules,

until the call to Bvs where the module number is 0 is reached. This will result in:

(o )

oldrs,
newvys,
35,

4
\= )

= | Buildy

Yo, V355

0, 0,
y- .., Buildy

0, 0,

M M

, NeWys

The complete list of -wiring functions generated from this process are listed

below:

70(pc70) - M$
’71(pc,0) =M,
72(pc,0) = M,
73(])0,0) = M,
v4(pc,0) = M,
vs(pc,0) = M,
76(pca0) = M,
77(pc’0) = M,
’Yg(pC,O) = M,
Y(1,0) = M,
’}’1(1,0) = M,
72(1a0) =M,
'73(1’0) =M,
'74(130) =M,
'75(1»0) =M,
76(1,0) = M,
’)’7(1,0) = M,
78(1’0) = Ma
79(1’0) =M,
’710( ’0) = M,
71(1,0) = M,
’712(1,0) e M,
713(1»0) =M,

’)’g(pc, 0) =
Y10(pc, 0) =
71(pc,0) =
Y12(pc, 0) =
m3(pc,0) =
71a(pc,0) =
Y15(pe,0) =
76(pc,0) =
Y17(pc,0)

I

Il
TSSRETETERIER

I
SRS

=2
[=2)
—~
[a—
p—
= = = R e e e N e N N N N Y

M,

iiiiiii

vs(pc,0) = M
, m9(pc,0) =M
’}120([)0,0) =M
Y21(pc,0) = M
’722(1’0,0) =M
v23(pc,0) = M
» 724(pc,0) = M
v25(pc,0) = M
Y26(pc,0) = M
Y0(1,2) = M,
71(1,2) = M,
72(1’2) = Ua
'73(1’2) =M,
74(1’2) = M,
75(1’2) =M,
')’6(1,2) =M,
7(1,2) =T,
78(1’2) = Ua
'79(10’ 2) = M,
’YIO(LZ) = Ma
'711(132) =M,
’)’12(1,2) = M,
713(112) = M,

Yz (pc,0) =
Ye8(pc, 0)
Ye9(pc, 0) =
¥30(pe, 0) =
’731(1)0, O) =

323332222

Il
SSSE

3
&
I
SESESESE~E

710(1,3) =
711(1,3) =
)
)

2

SN

W w

|
ngq



75(1,0
716(1 0

718(1 0
719(1,0

T T T T T A
E§§§E§§§§§§§§§§§§E§§§§

o

N N N N N e e N N N N N N N S N N S N N

735(13 0) =

G-wiring functions

Bo(pc,0) =
Bi(pc,0) =
B2(pc,0) = PC,
Bs(pc, 0) = pc,
ﬁ4(pc, 0) = pc,
Bs(pc,0) = pe,
Be(pc, 0) = pc,
B (pc,0) = pe,
/68(1’6» 0) = p¢,
ﬂO(la 0) = p¢,
B1(1,0) = pc,
B2(1,0) = pc,
B3(1$ 0) = pc,
)84(1» 0) = p¢,
185(1, O) = p¢,
Bs(1,0) = pc,
/87(1a 0) = pc,
/88(1a 0) = D¢,

-

-

Il
SSy

I
SESESRSRS

T e e A T T | Il
NS SNSnERRREERRS

NI N NP AN N RN N N P L W W M N g e

Bo(pc,0) =
ﬂlo(PC 0) =
B11(pc,0) =
Pr2(pc, 0) =
B3(pc,0) = pe,
ﬂ14(pc, )
Bis(pc,0) =
B16(pc,0) =
Bi7(pe, 0)
Bo(1,1) =
pi(1,1) =
ﬁ2(1 1) w,
Bs(1,1) =
Ba(1,1) =1,
Bs(1,1) =
Be(1,1) =
pr(1,1) =
Bs(1,1)
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-

T I T I T I
ShEMNSNESNETRRRRRRSSSESESSER

e e e’ et e e N e e S e e e N N N N N N’ N

Bis(pc,0) =
B19(pc,0
B20(pc, 0
Ba1

)=
)=
,0) =

522 e, 0; pC,
,0) =
,0) =
)

B2s (PC 0) = pc,

14(1,3)
115(1,3)
116(1,3)
717(1,3)
18(1,3)
119(1,3)
Y20(1,3)
v21(1,3)
722(1’3)
Y23(1,3)
v24(1,3)
¥25(1,3)
Y26(1,3)
Y27(1,3)
Y8(1,3)
)
)
)
)
)
)
)

RN
SESESRS

o

’729(]. 3
¥30(1,3
v31(1,3
¥32(1,3
v33(1,3
v34(1,3
v35(1,3

o

SESESRCRCRSES

The transformation of g-wiring functions results in the following:

B27(pc,0) =
,328(170 0) =
B29(pc,0) =
B3o(pc,0) =
B31(pc,0) =

B32(pc, 0) = pc
Bas(pc,0) = pe
534(290’ O) =pc
B3s(pc, 0) = pc

I
eI Su i s ol S L Su B Wi S

- - -

-

Il
S

pc,

ﬁ0(1,3) =1,
£1(1,3) = w,
,32(1,3) = w,
B3(1,3) =1,
Ba(1,3

135(1 3) = w)

B7(1,3

)=
)=
Bs(1,3) =
)=
Bs(1,3) =

242
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:39(130) = p¢, ﬁQ(ls 1) =1, ﬁ9(1=2) =1, /89(1 3) =w,
ﬂlo(l’ 0) /610(1’ 1) =9, ﬂ10(1’2) =1, [310(1 3) = w,
f11(1,0) = PC, fui1(1,1) =1, pu(l,2)=1, B£u(l,3)=w,
B12(1,0) = pc, B12(1,1) =9, PB12(1,2) =1, f12(1,3) = w,
ﬁ13(1 O) pc ,813(1, ].) = 1, ,813(1,2) = 1, ﬁ13(1 3) w,
B14(1,0) = pc, B1a(1,1) =9, Bua(1,2)=1, B1a(1,3)=w,
f15(1,0) = pc, Bis(1,1) =w, Bi15(1,2) =w, Bi15(1,3) = w,
ﬂlﬁ(lao) = p¢, ﬁlﬁ(]ﬂ 1) = w, /816(112) =uw, ;316(1 3) = W,
p17(1,0) = pc, Bi7(1,1) =w, B17(1,2) =w, Br17(1,3) = w,
B18(1,0) = pc, Br1g(1,1) =w, B18(1,2) =w, B18(1,3) = w,
B19(1,0) = pc, Bro(1,1) =w, P19(1,2) =w, P1o(1,3) = w,
B20(1,0) = pc, Bao(1,1) =w, B20(1,2) =w, B20(1,3) =w,
B21(1,0) = pc, B21(1,1) =1, p[21(1,2) =1, ﬁgl(l 3) =w,
B22(1,0) = pc, fF22(1,1) =1, pB22(1,2)=1, B22(1,3)=w,
B23(1,0) = pc, B23(1,1) =1, [23(1,2) =1, f23(1,3) =w,
B24(1,0) = pc, Baa(1,1) =1, P24(1,2) =1, P2s(1,3) =w,
:325(1’ 0) = p¢, ﬂZS(la 1) =1, ﬂ25(1’2) =1, ,325(1 3) = w,
B26(1,0) = pc, Pos(1,1) =1, B26(1,2) =1, [26(1,3) =w,
,627(1, 0) = pc, 527(1, 1) = 1, ﬁ27(1,2) = 1, ﬂ27(1, 3) =W,
,323(1, 0) = pc, 528(1, 1) = 1, ﬂzg(l 2) = 2 528(1, 3) = w.
B29(1,0) = pc, Pao(1,1) =w, P2o(1,2) =w, P29(1,3) =w,
B30(1,0) = pc, Bs0(1,1) =3, PBs0(1,2) =4, PB30(1,3) = w,
/831( ,0) pc, 631(1’ 1) = w, ﬂ31(1’2) = w, ,831(1a 3) =w,
B32(1,0) = B2(1,1) =5, P32(1,2) =6, PB32(1,3) =w,
B33(1,0) = PC, B33(1,1) =w, P33(1,2) =w, Ps3(1,3) =w,
B34(1,0) = pc, B34(1,1) =7, B34(1,2) =8, B3(1,3)=w,
B35(1,0) = pc, B3s5(1,1) =w, B35(1,2) =w, PB35(1,3) =w,
Bo(pe, 1) = pc

Delay Functions

The initial call to create the delay functions is to the Created operation:

( .IS’ource_SC’A, \

36,
Createds

243
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this expands to:

g |

GetdEqs(Source_ SCA),
0,

47
( Source_SCA, \ GetyEqs(Source.SCA),
L ( Source SCA, \
Createds %, = Bés L
4, Createf3s | 36, ,
E, 4,
\=n \=

GetMazy(Source_.SCA),
36,

—_—
—
—

=-1 )
— )

the B-wiring functions are given in the previous section, and the operations GetyEqs,

GetdEqs and GetMaxy are defined in the SCA specification. The first call to Bds

is the recursive case:

Oa
oldds, \
1, [ (3% ) )
()
. U
4’ b)
old~s, 4,
Bés news, = Bés Bépc Zl;lu:/;; A0
1 bl
b 1)
55 .
\= =)
4, oldvs, newfs,

1,36,="1,2 ]
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This involves a recursive call to itself, and a call to the Bdpc operation to produce

the delay functions for the values of the program counter:

( 34, \

oldds,
[ 35, \ [ 3, \ \
oldds, oldds,
newds, 1,
1, 1,
4, 35,
Bépc | oldvs, = Bépc Béarg | oldys, ,newds | ,
newfs, newpfs,
1, 1,
36, 36,
=1, k =71,
\ ) 1,4,oldfys,$bewﬁs,
1,36,21,= )

Building the delay function for the arguments of module 1 at program counter
value 35 would result in 4 unit delay functions since module 36 in the source abstract
dSCA is not wired to anything.

The next recursive call is:

33,
oldds, \
[ 34, \ ( 3, w
oldds, oldés,
newds, 0,
1, 1,
4, 34,
Bépc | oldys, = Bdpc Béarg | oldys, ,newds | ,
newps, newfs,
1, 1,
36, 36,
=1, | =1,
= \ = /

1,4, oldvys, newfs,
1,36,2°1,2 /
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where the call to Bdarg considers a module which is wired to two sources:

[ 2 \
oldés,
[ (L
3,
34
3, \ ’
( oldés, 3;3&2’
newds, B§ nelz,@; ,newds | ,
1, ’
s, 3
Béarg | oldys, = Béarg e
newps, K =
1, 1 - /
36, ’
> 34,
K; ’ ) old~s,
= newps,
1,
36,
=1

The 4" argument to module 1 at program counter value 34 is not wired and

therefore the call above would produce the delay function:

51,3,34(t,a, .’17) =t—1
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The recursive call to Bdaryg is:

(L )

oldés,
[ (L
by )
34
2, \ ’
( oldds, Z;Z&:
newds, Bé 755 ,newds | ,
) newps,
34, ”
Béarg | oldvs, = Béarg 1
newps, \ =
1, 1 =
50 34,
K; ’ ) old~s,
- newps,
1,
36,
E_l

\= )

It is known that [s4(1,2) is defined, and that the input is wired to a source, since:
=71(1,34) = (35,0)

and that from the source abstract dSCA:

ﬂ0(357 2) =35

hence, the delay function will be the unit delay. It is a similar situation for the
1% argument to this module at this program counter value, and of course the 0t*
argument is wired to the program counter and so will, by definition, be the unit
delay. The process generates the following list of delay functions for module 1 at

program counter value 34:

01334(t,a,2) =t —1,
d1234(t,a,z) =t —1,
d1134(t,a,2) =t —1,
d1034(t,a,2) =t —1
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If the following call for program counter value 23, which occurs in the recursive

path of Bdpc, is considered then it can be seen that it makes some calls to other

modules within the source abstract dSCA:

22,
oldés, \
23, \ 3, \
( oldds, ( ( oldéds, \
newds, i,
1, 1,
4, 23,
Bépc | oldys, = Bépc Béarg | oldys, , newds
newpfs, newps,
1, 1,
36, 36,
E-—l’ E_l,
\ / 1,4, 0ldvys, newpBs,
1,36, 1,2 )

This produces a unit delay for the 4** argument, but when considering the call for

the 3"¢ argument, the following is found:

1,

( 9 old6s, \
s, | [ \
newos, 25
;;3 oldds,

J oldrys,
Bbarg | oldys, = Bédarg Bé new s ,newds
newpfs, ) ’
1, !
36, 36,
=—1 =

\ = / \ \=s

- 1,23, oldvys, newfs,

1,36,=71,2




ABSTRACT DSCA TO ABSTRACT DSCA 249

The call to Bd now invokes the case where the wiring is to a module and thus a

new delay needs to be determined:

(L)

B oldys, _ Builds ( 01,2,23, )

t — ((pcval — pevalfy?) mod M azidh)

where:
=1,
pcvals,e = snd | RetTerm | GetEl | 1, , 2
23
= snd(RetTerm(271(1,23) = (24,0),2))
= snd((24,0))
=0
and:

mod_val,,, = fst| RetTerm | GetEl | 1

= fst(RetTerm(E_l (1, 23) = (24> O)a 2))

= fst((24,0))
=24
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which means that:

oldfs,
, 0,
modvallts = fst | RetTerm | GetEl o1 , 2
2
= fst(RetTerm(Bo(24,2) = 28,2))
= fst(28)
= 28
and:
oldés,
24,
pewall?s = pcuvals. — | t — RetTerm | GetEl , 2 mod 1
2,
0

=0— (t — RetTerm (02420(t,a,z) =t —1,2)) mod 1
=0—-(t—t+1)mod1l

=0-1mod1

=0

the value of pcvali} can therefore be determined to be:

pewvaliyy = snd | RetTerm | GetEl | 28, |,2
0
= snd (RetTerm (2(28,0) = (1, 27),2))
= snd ((1,27))
=27
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finally, the instantiation of Bd can be completed as:

(1)

BS _ Builds [ 0
oldfs, t — ((23 — 27) mod 36)

)
— Builds | **
t — 32)

= (01223(t,a,z) =t — 32)

The Bdspc operation continues to recurse until it reaches the case where the
program counter is 0 and then produces the delay functions for module 1 at program
counter value 0. To complete the generation of delay functions, the second case of

Bés is instigated - where the module number is 0:

o)
oldds,

newds,

4
Bés ’ = | Builds$ %000, , newds
olds, t—1

= ((0pc00(t,a,z) =t — 1), newds)



51’1,0(t, a, CL‘) =t—-35
61’2’0(15, a, .T) =t— 34,
51’3,0(75, a,:v) =t— 33,
(51’1’1(75, a,x) =1t — 33,
51,2,1(t, a, :L') =t—32,
51’1,3(75, a, :L') =t - 33,
51’273(1‘,, a, .’L’) =t— 32,
01,33(t,a,z) =t —31,
51,1'4(15, a,x) =t— 31,
51,2'4(t, a, l’) =t— 30,
51,1’5(t, a, :L‘) =t— 30,
(51'2'5(1;, a, iL’) =t— 29,
51‘2,14(25, a, :I:) =t—-30
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The values of all the non-unit delays are given as:

61,1,6(t> a, iL‘) =t— 29,
61,2,6(t, a, .’L”) =t 28,
5171’9(1}, a, IL') =t— 24,
(5172’9(15, a, CL') =t— 30,
51,2710(@ a,m) =1 30,
51,1711(1‘,, a,a:) =t — 26,
61,2,11(12, a, .’L') =1 — 30,
01,2,12(t,a, ) =t — 30,
(51,1’13(1,', a, :I:) =t— 28,
51,2,13@, a, .’L‘) =1t - 30,
51,1,21(t, a, CL’) =t- 35,
51,2,21(t, a,z) =1t — 34,

Initial State Equations

5111,22(12, a, .’I:) =t — 34,
51,2‘22@, a, l‘) =t— 33,
51'1'23(15, a, CE) =t-—33,
(51‘2’23(15, a, 33) =1 — 32,
51,1,24(15, a, :B) =t—32,
01,2,24(t, a,z) =1t —31,
(51,1,25(t, a, l’) =t-31,
012,25(t,a,2) =t — 30,
(51,1,26(t, a, CL”) =t - 30,
51’2’26(t, a, l‘) =t—29,
51’1,27(7?, a, l’) =t—- 29,
51’2,27(t, a, .’E) =1t 28,

252

The generation of Initial State equations for the target abstract dSCA begins with

a call to the CreatelV's operation:

CreatelV s

Source_

SCA,

which expands to the recursive call:

BIVs

(1)

0eqs,

= BIVs

(1

3
— BIVs
[

[ o,
36,

oegs,

BIlVpc

\ =

Y

6,

3

GetEqlV (Source SCA),

\ =-1
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We consider the call to BIV pc first, this expands in all cases as (since the inverse

mapping in our example is total and there will be no undefined operations required

to maintain synchronicity):

BlVpc | oeqs, | = BIVpc| oegs,

(35, ) [ 34, )

] )

1, ( new_val, [] ) ,

\=" ) = )

where new_val is the following set of definitions:

= BuildlV

= BuildIV

= BuildlV

= BuildlV

= BuildlV

L,
35,
oeqs,
=1
RetTerm | GetEl RetTerm | GetEL | 1, )2 2
35
35,

oeqs,

RetTerm (GetEl< RetTerm (Z-1(1,35) = (36,0),2) ) ’2)

7

35,

oeqs,
RetTerm { GetEl | 36, , 2
0
1

35,

RetTerm (V36(0,a,z) =0, 2) )
L,

35,

0

= (Vi(35,a,2) = 0)

The recursive call to BIVpc above therefore becomes:

BlVpc

(35, [ 34, )

? ]‘7
oeqs, | = BIVpc| oegs,
1, (w@s,a,2) =0 ),

=) = )
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This process continues for all values of the program counter for module 1, and
then the recursive call to BIV's where the module number is zero is made. In this

situation, the following case of the BIV s operation is invoked:

(0. )

)

BIVs | oeqs, | = (BpcIVs(36,]]), negs)

neqs,
=

where the call to BpclV s is expanded as:

[ 34, \

35, 0,
BpelVs | ], = BpclVs BuildIV | 35, A
36 mod(35 + 1,36)
36 )
[ 34,
= BpcIVs | (W(35,a,z) =0,]),

\ 36

The recursion progresses, finally making a call to the base case where the program

counter value is 0:

0, 0,
BpclVs | egs, = | BwldIV | 0, |,egs
36 1

= (Vo(0,a,z) = 1,eqs)
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The result of applying the mapping to the Initial State equations is:

Vo(0,a,z) =1,
Vo(3,a,z) =4,
Vo(6,a,7) =7,
Vo(9, a,z) = 10,

Vo(12,a,z) = 13,

Vo(15,a,z) = 16,
Vo(18,a,2) = 19,
Vo(21,a,z) = 22,
Vo(24,a,z) = 25,
Vo(27,a,2) = 28,
Vo(30,a,z) = 31,

Vo(33,a,z) = 34,
V1(0,a, z) = stay,

Vi(3,a,z) = up,
V1(6,a,2) = false,
V1(9,a,x) = true,
Vi(12,a,x) = false,
Vi(15,a,z) = false,
Vi(18,a,z) =
Vi(2l,a,2) = false
Vi(24,a,z) = false,
Vi1(27,a,z) = false,
V1(30,a,z) = 0,
V1(33,a,2) =0,

State Transition Equations

Vo(l,a,2) =2,
%(4,(111:) = 5a
Vo(7,a,z) = 8,

Vo(10,a,z) = 11,
Vo(13,a,2) = 14,
Vo(16,a,z) = 17,

Vo(19,a,z) = 20,
Vo(22,a,2) = 23
Vo(25,a,2) =
Vo(28,a,z) = 29
Vo(31,a,z) = 32,
Vo(34,a,z) = 35,
Vi(1,a,z) = true,
Vi(4,a,z) = true,
Vi(7,a,2) = down,
V1(10, a, ) = true,
Vi(13,a,z) = false,
V1(16,a,z) = 90,
V1(19,a,z) = true,
Vi(22,a,2) = false,
V1(25,a,z) = false,
V1(28,a,z) =0,
Vi(31,a,z) =0,
Vi(34,a,2) = 0,

%(2aax CL') = 33
%(5’0431‘) = 6a
Vo(8,a,z) =9,

Vo(11,a,z) = 12,
Vo(14,a,z) = 15,
Vo(17,a,x) = 18,
Vo(20,a,z) = 21,
Vo(23,a,z) = 24,
Vo(26,a,z) = 27,

)

)

Vo(29,a,2) = 30,
Vo(32,a, ) = 33,
Vo(35,a,z) =0,
Vi(2,a,z) = stay,
Vi(5,a,z) = false,
Vi(& a,z) = up,
Vi(11,a,z) = false,
Vi(14,a,x) = true,
Vi(l7,a,z) = true
V1(20,a,z) =
Vi(23,a,z) = false
Vi(26,a,2) = false
Vi(29,a,2) =
Vi(32,a,2) =
Vi(35,a,z) =

To commence translating the State Transition equations, a call to the CreateST's

operation is made:
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CreateSTs

Source_SCA,

1
’ = BSTs
36,

(1,

36,

GetEqSTV F(Source_.SCA),

Createfs

( Source_.SCA, \
k,

Mazy,

=-1
=

\

Createds

=1
=

k,

—_
=

—
\ —=-1
— )

/
{ Source SCA, \

Mazy,

) )

which in turn makes a call to the BST's operation once it has extracted the source

State Transition equations. This call is expanded as:

(o,

BST's

[ 1,
36,
STV F's,

[]?

=-1

- b

tgtfs,

\ tgtds

= BST's

\

(

BST

\ [
36

[ 36,
STVFs,

=-1
=

)

tgtBs,
tgtds,

\ 1

)

/

It can be seen that this expansion makes a recursive call to itself, decrementing

the value of the module number as it does so, and makes a call to the BST operation
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which creates the Value function equation for the module under consideration. This

call to BST is expanded as follows:

(1 )

/36, \ / (new_vfopdef, \ \
1, 1,
STV Fs, _ rewire | 36, ,
BST = BuildST
=1 NewST Begs,
s, K deqs )
\ 65, ) 36,

\ \ null ) )
[ 36, W

newvfopdef = NST | [],
STV Fs,

(=t

where:

The call to NST operation, expands as:

[ 34, \
(35, L
1, oeqs,
NST | [, = NST [, Extract | mod_valg., ,
0egqs, pcval g,
\ =21 ), oeqs,
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where:

=1
mod_valg. = fst | RetTerm | GetEl | 1, ,2)
2

and:

= fst (RetTerm ((27(1,35) = (36,0)),2))

= fst(36,0)
= 36

pcvaly,. = snd | RetTerm | GetEl

NST

= snd (RetTerm ((271(1, 35) (36,0)),2))
= snd(36,0)
=0

Thus the NST call becomes:

35,
1,

0.

= NST

= NST

34,
L

oeqs,
(], Extract | 35, ,
0

oeqs,
E._l
34,

L,
(0),
oeqs,

=1
=

258
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The next instantiation of the recursive call to NST proceeds:

33,
34, ( 1, \

1, oeqgs,
NST | (0), =NST (|, Extract | 34, ,
oeqs, 0

=-1 oegs,
\ =
33,
1,
= NST | (0,sublazr(t),as(t))),

oeqs,

2

NST finally completes it recursion for module 1 and produces the following list:

0, sub(ar(t), ag(t)), 0, sub(as(t), as(t)), 0, sub(as(t), as(t)),

0, SUb(a'l(t)a a2(t))a gt(V35(t» a, :L‘), V36(t’ a, .’E)), gt(%B(ta a, 33)’ ‘/?34(t, a, .’B)),
gt(Va1(t, a, z), Vaa(t, a, z)), gt(Vas(t, a, x), V3o(t, a, z)), or(Var(t, a, ), Vas(t, a, z)),
or(Vas(t, a,z), Vag(t, a, z)), or(Vas(t, a, z), Vaa(t, a, z)), 0, true, 0, true,

90, false, gt(a1o(t), Va1 (t, a, x)), eq(Vaa(t, a, z), Vao(t, a, ), eq(a10(t), Vie(t, a, x)),
eQ(V22(ta a, :E)a ‘/13(t, a, IL’)), eQ(G‘lO(t)’ V17(ta a, .’L‘)), eQ(V22(t’ a, .’L‘), VIG(t’ a, l’)),

up, down, and(V14(t, a, z), Vi5(t, a, ), and(Via(t, a, x), Vi3(t, a, z)),

a’nd(Vm(ta a, :II), ‘/11(t> a, (E)),

V7(ta aal')a V4(ta CL,.’L‘),
cond | Va(t,a,z), |,stay,or(Vs(t,a,z),Vs(t,a,z)),cond | Vs(t,a,z),

Vo(t, a, x) Va(t, a,x)
The next part of the process is to rewire the above list for the new network, which

is done by the rewire operation:

(e, [ (e \ (es, \)

1, mod_val, 1,
rewire | 35, = |rw | pcwal, yrewire | 34,
Begs, Begs, Begs,

\ deqs ) \ \ deqs ) K deqs ) )

The rewire operation recurses through the list and produces a new list, in the

same order but uses the rw operation to rewire each VFOpDef term encountered. For
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the first term, 0, the first instance of rw is used:

(o)
Bs,
rw| s, | =0
1,
\% )
The next term it encounters invokes the third form of rw:

([ sub(ar(t), as(t)), \ (=@ [(as(t), ) )

s, s,
g, B g
. ds, , ds,
Tw | Js, = sub | wire . , wire
: 1,
L
\ 34

) 1’ 27
o\ )\ )
this invokes the use of the “input” form of the wire operation:
wire ar(8), = ap, GetEl (t)
- ctTer tE ,1,1,34),2
Bs,0s,1,1,34 eeTerm(Getbi(ps »2)

= QRetTerm((Bs3a(1,1)=7),2) (%)
= a(t)

The second argument is:

wire ( as(t),

Bs 5s.1.2.34 ) = aRctTerm(GetEl(ﬁs,1,2,34),2)(t)

= QRetTerm((Bs34(1,2)=8),2) (t)
= asg (t)

therefore the rewired VFOpDef term will be:

sub(a(t), ag(t))
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The complete list of VFOpDef terms returned from the rewire operation is:

0,

g?b(m(t), as(t)),
sub(as(t), as(t)),
S;Lb(ag(t), aa(t)),
g;tb(al(t), as(t)),

gt(‘ll(t - 29, a,x), Vl(t - 2870" 'T)),
gt(‘/l (t - 30,“1 .’l:), Vl(t - 29)0') .’XI)),
gt(vl(t - 317 a,z), Vl(t - 3070“7 .’E)),
gt(‘/l(t - 33, aym)7 Vl(t - 31, a,m)),
Or(‘/l(t - 33, a, .’I?), ‘/1(t - 327 a, I)),
or(Vi(t — 34,a,z),Vi(t — 33,0, 2)),
OT(‘/I(t - 35’ a, .T), ‘/l(t - 345 a, IE)),
0,

true,

07

true,

90,

false,

gt(a1o(t), Va(t — 30,4, x)),
(Vl(t—28 a,x), Vl(t 30,a,zx)),
eq(anolt), Va(t — 30,0,2)),
eq(Vi(t — 26,a,z), V1(t — 30, q, x)),
eq(aio(t), Vi(t — 30,q,z)),

eq(Vi(t — 24, 0,2), Vi(t — 30,0, 7)),

up,

down,

and(Vi(t — 29,a,z), V(¢

and(Vi(t — 30,0, ), V1(t — 29,0, z)),

and(Vi(t — 31,a,z), Vi(t — 30,a,x)),

Vl(t —33,a, IB),
cond | Vi(t —32,a,2), |,
V;l(t - 31,&, 1)

—28,a,1)),

stay,
OT(‘/I(t - 3370'7'7:)1‘/1(t - 327 0,,15)),

Vi(t —35,q,x),
cond | Vi(t —34,q,2),
Vi(t —33,a,z)
The original list of terms is now fed into the NewST operation, the purpose of

which is to construct the conditional VFOpDef term for the module under consider-

ation by recursing the list and creating the correct format. Finally, the new State
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Transition equation is constructed using the BuildST operation, where results, for

module 1 in the following (the more readable form for the conditional operation is

used where appropriate):

Vilt,a,z) = ¢

4

Vi(t — 35,a,z),

Vi(t —34,a,z),

‘/l(t - 33, a, .’E)

m'(‘/l(t —33,a, III), VG(t —32,aq, .’L))
start

cond

‘/i(t - 33,(17 .'E),
Vit —32,a,z),
‘/l(t - 31,&, :t)

cond

and(V1(t — 31,a,z), Vl(t —30,a,z))
—29,a,z))
and(Vi(t — 29,a,z), V1(t — 28,a,2))

and(Vi(t — 30,a,2), Vi (t —
)

down

up

eq(Vl(t - 247 a, '7:) VI(
eq(as(t), Va(t — 30,a, z))
eQ(Vl(t - 267 a, .’E), Vl (t - 307 a, .’E))
eq(a’.‘)(t)7 Vl (t - 309 a, .’B))
eq(V1(t — 28,a,2), Va(t —

30,a,z))

30,a,z))

gt(a9(t)7 Vi (t - 307 a, ‘T))
false
90
true
0
true
0

or(Vi(t — 35,a,z), V1(t — 34,a,z))
or(Vi(t — 34,a,z),Vi(t — 33,0, ))
or(Vi(t — 33,a,z),Vi(t — 32,a,z))
gt(Vi(t — 33,a,z),Vi(t — 31,0,1))
gt(Va(t — 31,a,z),Vi(t — 30,q,x))
gt(vl(t_307a7 m);‘/l(t 29707‘1’))
gt(Vi(t — 29,a,z), V1 (¢t — 28,0, 2))
sub(ay (£),a2(1))
0
sub(as(t), a4(t))
0
sub(as(t), as (£))
0
sublar(2), as 1))
0

i Vet —

if Vet —

if Vot

if Vot

if Vot —

if Ve (t

if Vot —

i Vot —
i Vet —
if Vet —
if Ve (t —
if Voot —
if Vet~

if Vie(t —

if Vpe(t —
if Vie(t —
if Vet —
if Vpe(t —
—l,a,zx
—1,a,x
—1l,a,2

if Vo(t
if Vot
if Vot

if Vpe(t —
if Vpe(t —
—1l,a,x

)
)
)
)
)
)
)
)
)
)
)
—1,a,1)
)
)
)
)
)
)
)
)
)
)
)

if Voe(t
if Vot
i Vpe(t
if Vot

l,a,2
—1,a,2
l,a,2

la,z) =

l,a,z) =
—1l,a,z) =

—1,a,z)

bl

7 7

) =
)
)
)8, T) =
lax)
la,z) =
l,a,2)
1,a,z)
1,a,z)
l,a,z
lazx
l,a,x
l,a,z
l,a,z

l,a,x
l,a,x

—1,a,2
—la,x
if Vpe(t —
if Vpe(t —
if Vipe(t —
if Vpe(t —
if Vpe(t —
if Vpe(t —
if Vpe(t —
if Vie(t —
if Vpe(t —

l,a,z
La,x
l,a,z
l,a,z
l,a,2
l,a,z
l,a,x
lL,a,x
l,a,z

0

1
2

=3

4
=5
=6

7

—10
=11
=12
=13
=14
=15
=16
=17
=18
=19
=20
=21
=22
=23
=24
=25
=26
=27
=28
=29
=30
=31
=32
=33
=34
=35
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The final step in the process is the recursive call to the BST operation with module
number equal to 0, in this case the function above is returned with the following State

Transition equation for the program counter appended on to it:

mod(add (Vpe(t,a,z),1),35) if Vpe(t —1,a,2) =0
Vet + 1,a,2) =
mod(add (Vpe(t,a,x),1),35) if Vpe(t —1,a,2) =35

The complete translated abstract dSCA can be seen described algebraically as
shown in Appendix D.

11.4 Correctness

The generated target abstract dSCA created from transforming the abstract dSCA in
the previous chapter can be seen to be the same as the Form 2 abstract dSCA given
in Chapter 8.3.2 - the semantic proof of correctness given in that chapter shows that
this abstract dSCA is a correct implementation of a solution to the GRCP.
Additionally, this and the previous abstract dSCA could exist in a hierarchy, and

this will be shown by means of introducing mappings for:
e spaces;
e clocks;
e global states; and

e input streams.

Consider the Form 1 abstract dSCA given in Chapter 10 and the Form 2 abstract
dSCA given above, we will now discuss the relationship between each of the models.
To clearly distinguish between the two systems reference will be made to the Form 1

abstract dSCA as Njgsca: and the Form 2 abstract dSCA as Ngsca2. Components of
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each network will be named as the sets I;5042 and ;5041 for the modules (or spaces),
the sets Ingscae and Ingsaci of input streams, and the sets Chgscaz and Chgscal

for the channels of the networks, where:

Iisca1 =10,1,2,3,...,k}
Iisca2 = {0,1}

Ingscar = {0,1,...,10}
Ingscaz2 = {0,1,...,10}
Chgsca1 = {0,1,...,36}
Chascaz = {0,1}
Outgscar = {1}
Outascaz = {1}

Component Abstraction To compare the behaviours of Nyscae and Nysca: the

mappings between their components are first defined.

Spaces. Spaces between the two SCAs are clearly related by the provided mapping
function, for it is this that has been used to create the Form 2 abstract dSCA. The
mapping is more complicated than a simple module to module mapping since we need
to take account of the value of the program counter to understand the source module:

The respacing 7 : Iyge X Napazy — Isre is clearly defined by:

7(i,pc) = fst:Z"(i,pc) fori=1

=0 fori=0

Clocks. Each clock cycle in the source SCA is represented by 36 clock cycles in the
abstract dSCA. Thus a retiming A : Tysca2 — Tyscai can be defined for all t € Tygo a2

as:
t

(Maa:Nds: 2)
MazNyoo a4

At) =

where Mazn 504, = 1 and Mazn,o.,, = 36 thus:
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or further simplified to,

A(t) = [t/36]

the corresponding immersion M Tuscar — Tuscas is defined, for all t € Tysca1 by

A(t) = 36t, and Start) is defined to therefore have the values Starty = 0, 36, 72, 108, . . ..

States. There is no need to introduce a data abstraction map since it is defined that
all SCAs under consideration will be based on the machine algebra M 4.

States are still a measurement of the channels in the relevant SCAs, however, it
now makes sense to consider observable states rather than the whole state. The most
appropriate observable states for this system is the output of m; in the target SCA
and the output of module msg in the source SCA - i.e. the modules in V,,; for each
network.

The state abstraction map ¢ : M5 — M$" is introduced for observable states

s € thl as:

¢(s,pc)(1) = s(pc)

Input Streams. Input streams are on one hand relatively simple since the transfor-
mation neither adds or removes input streams from the network. However, there are
timing issues. Take the gate sensor input, this is used by several modules in the Form
1 abstract dSCA and has a delay of unit length for all these modules to make it con-
sistent with the SCA. In the Form 2 abstract dSCA, this value is required by module
1 but at several different times as the modules from the Form 1 abstract dSCA are
now executing at different values of the program counter. The most appropriate and

global solution to this problem is to require the input values to be available for a whole
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cycle, in this case 36 lock cycles. This allows values to be available when required (this
solution would need to be considered further for cycle inconsistent abstract dSCAs).

We define an input stream abstraction 6 : [Tyscaz — M4|Chiscaz — [Tyscar —
M 4)Chascar to be the identity operation since input streams do not change between
models, however we need to keep the result for 36 clock cycles (consistent with the

retiming); thus we write:

0(a)(t) = a(A?))

Abstraction of global behaviour. The notion that the global behaviour of
the Form 1 abstract dSCA abstracts that of the abstract form 2 dSCA is now for-
malised. Let V; and V; be the global state functions determined from the channel
state functions of these 2 SCAs, then it is conjectured that the following diagram
commutes:

Conjecture Given the above mappings, it is believed that the following diagram

commutes:

V
Ingscar Chasca1 dSCAlL Chasc a1
TdSCAl X [Td.S’CAl — MAdSCAl] X MAdSCAl —_ MAdSCAl

A 0 ) ¢

Ingscaz Chasc a2 Vascaz Chasc a2
Start, X[TdSCA2 — MAdSCA2] X MAdSCAz _— MAdSCAz

11.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA
with one defining shape to an abstract dSCA with another defining shape. A demon-
stration has been given by taking the Form 1 abstract dSCA solution to the GRC
Problem, which represents the computation, and mapping that to a Form 2 abstract

dSCA that represents the computation device.
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11.6 Sources

The definition of the mapping process is all my own work.



Chapter 12

Abstract dSCA to concrete dSCA

Purpose of Transformation
To transform an abstract dSC A with a defining shape
of V = (n,m) to a concrete dSC A with defining shape V = (n, m)

12.1 Process

This chapter highlights the key parts of the processes used for the transformation
of an abstract dSCA with defining shape V = (n,m) to a concrete dSCA with a
defining shape of V = (n,m). Appendix H contains the complete formal definition of
this transformation.

The following equation lists, within a supplied abstract dSCA specification, are

considered for transformation:

1. Wiring Functions;
2. Delay Functions;

3. Initial State Equations; and

268
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4. State Transition Equations.

This chapter’s first part considers the mechanisms for such a transformation and
the second part demonstrates the application of the transformations to the Form 2
abstract dSCA produced in chapter 11. Recall that this abstract dSCA has a defining
shape of V = (1, 36). The transformation will be to a cycle consistent concrete dSCA.
It should be noted that if transformation to a cycle inconsistent concrete dSCA was
required then alteration of the tuple lengths and the use of appropriate tuple mapping

functions (examples of which are given in Chapter 7) would have to be used.

12.1.1 Prerequisites

The following prerequisites are required for the transformation:

e The source and object networks have k£ > 1 modules and Maxy > 0 component

specifications in their modules definitions;
e The defining shape of the target network equals that of the source network; and

e Condition definitions of each adSCA module, except the programme counter,

are of the format:
cond(pc = 0, a, cond(pc = 1,b, cond(pc = 2, ¢, cond(...))))
12.1.2 ~-Wiring Functions

The «-wiring functions in the target concrete dSCA will not differ much from those
in the source abstract dSCA since the “look and feel” of the SCA is not being altered.
What is different is the introduction of a new input to argument 1 which will require
arguments 1,...,n(z) of the abstract dSCA becoming arguments 2,...,n(7) + 1 in
the concrete dSCA. The new argument introduced in concrete dSCA is a wiring of

the first argument to the output of the module itself.
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Informally, to generate the target concrete dSCA v-wiring functions from a source

abstract dSCA the following process is followed:

e For each module m; where i € Ny,:

— For each pcval € {0, ..., Mazy, — 1}:

* For each argument where j € {2,...,n(i) + 1} create a new S-wiring

function
’Y]%c_val(i’j) - fY;zlm_val (Z7J - 1)
x For the of* argument of each module create:

7;;c_val(i? 0) =M

x For the 1% argument of each module create:

Wpc_'ual(i7 1) =M
e For module 0 create Mazy [-wiring functions to wire mg back to itself.

12.1.3 [-Wiring Functions

In a similar way to how the target concrete dSCA «-wiring functions were constructed
from source abstract dSCA «-wiring functions, so are the concrete dSCA S-wiring
functions. The B-wiring functions in the target concrete dSCA again differ only in so
much that the index of arguments 1,...,n(7) shifts to 2,...,n(7) + 1.

Informally, to generate the target concrete dSCA (-wiring functions from a source

abstract dSCA the following process is used:
e For each module m; where i € Ny,:

— For each pcval € {0,..., Mazy, — 1}:
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* For each argument where j € {2,...,n(4) + 1} create a new S-wiring

function

zc_'ua.l(i)j) = ;c_val(i)j - 1)

* For the o** argument of each module create:

/

Ich_'val (Z’ 0) =M

* For the 1% argument of each module create:

!

/ch_'ua,l(i7 1) =M

e For module 0 create Maxy B-wiring functions to wire mg back to itself.

12.1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number
equal to the wiring functions. Thus, a unit delay function will be created for every

element in the newly generated y-wiring equation list.

12.1.5 Initial State Equations

The Initial States for each module m;, where i € Ny, are Mazx tuples of length Mazxy
(recall that the mapping is being defined for a cycle consistent abstract dSCA). We
will make use of the fact that calculations will only care about the initial state given
for t = Maxy — 1 and t = 0, by defining the tuple at time ¢t = 0 and use that value
for all other initial values until ¢t = Maxz — N — 1 where the final initial state equation
will be generated.

The usual recursive equations are given for walking the structure of the abstract

source dSCA, rsulting in a call to the BIV operation:

BIV : N® x dSCAISV EqList* — dSCAISV EqList
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which is defined recursively in two cases over the first argument. Firstly for when the
first argument does not equal Maxy, then the operation is dealing with an initial
state from a time prior to t = Maxy — 1, and as such an initial state will be created
containing u elements in all positions, except for the first element (note that the
positioning of the first element is dependant upon the tuple management schemes
used, however for both schemes identified as of interest the first generated value is

placed at position 0 in the tuple). BIV is defined as:

( pcwval + 1, \
Mazxy,
c_val,
( P \ mod_num,
Mazx N>
: 0€egs,
BIV | modnum, | = BIV
mod_num,
0€eqs,
pc_val,
\ neqs ) GenlVs ,neqgs | ,
Mazy,

\ 0eqs )

The GenlIV's operation used in BIV is given as:
GenlVs: N* x dSCAISV EqList — dSCAISV Equation

and is defined to create a Mazy length tuple with the first element being the initial

value produced at time ¢ = 0 in the source abstract dSCA initial values:

mod_num, mod_num,
_wval, val,
Genlvs | P<° = Buildrv | P
Mazy, RetTerm(VF,2),
oeqs Uoy - -+ y UMazy—2

where:

VF = GetEl(oeqs, mod_num, pc_val)
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The second case definition of BIV, where t = Maxy — 1, is given such that it

constructs the complete initial state needed at time Mazy, — 1 as:

mod_num,
( Mazy, \ ( ( \ \
pc_val,

Ma:vN, Max
BIV | modnum, | = | BuildIV ) ok ,megs

oeqs, InitState moa-mut,

oeqs,
\ ness ) !

\ \ i ) )

The operation InitState is where the Initial State for module mod_num at time
t = Mazx — 1 is created. Since we are using the array tuple management then the
Initial State under these conditions will consist of a list of values with the first being
the element calculated at t = 0 and the last being the one calculated at t = M ary

in the source abstract dSCA. It is given as:
InitState : N* x dSCAISV EqList x TermList — TermList

and is defined recursively, with the recursive case:

pc_val, pcval — 1,
_ mod_num, _ mod_num,
InitState = InitState
0€eqs, 0egs,
nlist (RetTerm (VF,2),nlist)

and the recursion being stopped by the 1** argument reaching O:

(o, )

mod_num,
InitState | oegs, = (RetTerm (VF,2),nlist)

nlist,
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where in both cases:
VF = GetEl(oegqs, mod_num, pc_val)

The base call to the recursive BIV's operation is where the initial state for the

program counter is given. It is defined as:

0,
Ma:vN—l,
Mazy,
BIVs = | BIVpc| [], , NEQS
0€qs,
Maxy
neqs

where BIVpc is given as:
BIVpc: N x dSCAISV EqList x N - dSCAISV EqList

and is defined recursively over the values in Mazy, such that:

( pcval — 1, \
pc_val, 0,
BIVpc | negs, = BIVpc BuildlV | Mazxy, ,neqgs | ,
Mazxy pcval + 1 mod Mazxy
\ Mazy )
and:
0, 0,
BlVpc | negs, = | BwldIV | 0, | ,negs

Mazxy 1
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12.1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it

will be similar to:

or(Vi(t —32,a,z), Vi(t — 31,a,z)) if Vo.(t —1,a,2) =23

Vi(t,a,z) =
( ) T gt(Vi(t — 31,a,2), Vi(t — 30,a,z)) if Vp(t —1,a,2) =24

L
the corresponding component specification in the concrete dSCA would be of the

form:

[ Vielt,a,2),

Vi(t,a,z),

. ( 4 . (ilt,a,2)), )
1y, ,, (Vi(t,a,2))

Voe(t, a, ),

Vi(t,a,z),

gt ( %, 04 (Vilt, a,2)), )
\ {5 04 (Vi(t, 0, 7))

Vit + 1,a,z) = >

if Vpe(t,a,z) =24

The differences are attributable to the introduction of the tuple management
functions, T and II (as well as the need to identify the value in the tuple that results
are to be extracted from).

Informally, the process for creating the new State Transition equations is a two

step process

e Generate the d functions - those that are used in the projection part of the tuple

management functions
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e Create the new State Transition equations.

We consider the two key steps of creating the d functions and the new State
Transition equation in more detail next.
Generation of the d functions
For an indexed array tuple management approach the results are stored relative to
the value of the program counter when that result was calculated. The values of the
d functions for each argument, given a cycle consistent dSCA, can be determined by

using the following formula:

dmod.num,a,rg.num,pc_val = (M arn + pC—’Ual - 6mad-num,a.rg.num,pc-va.l)

As an example, if a module has a definition:
( .

Vi(t — 34,a,x),
Vi(t,a,z) = T cond | Vi(t—33,a,1), if Vpe(t—1,8,x) =0
‘/l(t_327a7 :L')

Then its arguments would be stored at positions 1,2 and 3 in the array. Assuming

Mazy = 36, then if the first argument is considered, d; 2 can be determined as:

d1,210 = (36 +0-— 51,2,0) -1

From the definition of the value function it can be seen that §120(t,a,z) =t — 34,

therefore:
diso =(36+0-34)—-1

=(2) -1
=1
To generate the d functions the Createds operation is introduced that recurses
over the structure of the concrete dSCA (since the source abstract dSCA and con-
crete dSCA are the same “shape” means there is no requirement to use the mapping

function).
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Having produced the d functions for the new network attention can be returned
to the generation of the State Transition equations. Consider again the format of the
State Transition equation in the source abstract dSCA, it will be similar to:

( .

or(Vi(t — 32,a,z),Vi(t — 31,a,2)) if condl

Vi(t, a,z) =
gt(Vai(t — 31,a,xz), Vi(t — 30,a,z)) if cond2

L
and the corresponding component specification in the concrete dSCA would be of the

form:

( ‘/7)0(61,0,23(1:)0":3)70’7 .’L‘), \
Vi(6 t ,
- 1(61,1,03(¢,a, ), a, ) P
. ( 1Y, . (Vi(b1223(t,a,7), 0,3)), )
V(t+1 a IL‘) :< > Hfill’g,za (‘/1(51,3,23@,0,,:17),0.,33)) )
o %6(61.0.24(taa9$))a71‘)a \
V(6 t ,T),
T 1 ( 1,1,24( ,0,T),a,T) if cond?
o ( I, (Vi(1204(t, 0,2),0,)), )

Htl (‘/1(51,3,24(1:10'7 .’IJ),CL, .’E))

d1,3,24

®

The structure of the function does not change, except the introduction of the
tuple management operations T and II, so the operation can create the new State
Transition equations by recursing over the list of source State Transition equations.

This is done using the CreateST's operation:
CreateSTs : adSCAAlgebra x Function®* — dSCASTV EqList

which in turns finally calls a cs.ewire operation that is responsible for inserting

the tuple management functions into the State Transition equation. The true path
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component, i.e. the functionality that is used if the conditional component is true,
needs to be manipulated to incorporate the tuple management functions, i.e given a
component specification:
cond(a, b, c)

then b would be transformed into:

Voelt, a, z),

Tl Vinodnum(t,a, ),
rewire(b)
To achieve this the cs_rewire operation is introduced:
cs_rewire : Term x N3 x ProjEqList x ydSCAEqListx
BdSCAEqList x 6dSCAEqList x Function — Term

and it is defined as:

[ trm \ ( Voelt,0,2), \
d, Vmod_num(ta a, 1")7
mod_num,
pc_val, ( trm, \
Maz mod_num,
N,
cs_rewire | ds, =7 pe-val,
b5 - Mazxy,
5 ’ ds,
S’
- Bs,
LI
\ A\

The rewire operation is responsible for rewiring the network using the new delay

and wiring functions.

12.1.7 Transformation Process

Each of the operations above need to be coordinated together so that a new concrete

dSCA can be created by transforming the source abstract dSCA. The Create_cdSC A
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operation is provided to do this, it is given as:
Transform : adSC AAlgebra x Function® — cdSC A Algebra

The operation takes the source concrete dSCA and is defined as:

IF
VFOp,

Yo : N2 = {M,S U},

SCAge, Bo: N2 = N,
Transform | T, = CreatecdSCA | s0p ,

II Createys(SCAsre)
Createfs(SC Asre) >
Createds(S'C Asre)
CreatelVs(SCA,.) ,

SCAgrec,
CreateSTs | T,

I /

where:
\

‘/0 T x Mztup X Mﬁtup - MAtupn
VFOp=

"

. n k
Vk : T x Atup X MAtup - MAtup» y

(50,0’0 T % Mz X Mﬁtup — T, \

tup

00p =

‘9

67;,3"0 T x Mﬁtup X M}Xtup - T /



ABSTRACT DSCA TO CONCRETE DSCA 280

and:

k = num_mod(SCA,,.)
j=Get_MazA(SCAsrc)
n = num_inp(SC Agc)
It is not intended to bring together all the operations defined in this chapter into
a written down specification in this thesis for reasons of brevity. If this was to be
performed, then it would appear similar to the specification provided for the SCA to

abstract dSCA transformation in Appendix F.

12.2 Correctness of transformation

Theorem 12.2.1. The transformation of a Form 2 abstract dSCA to a concrete
dSCA preserves correctness.

The Form 2 abstract dSCA and transformed result, the concrete dSCA, exist in a
hierarchy and it is possible to show that the transformation is correct by considering
Poole, Holden and Tucker’s work on hierarchy of Spatially Expanded Systems.

Let Nysca: be a N¢5¢Al > 1 module source Form 2 abstract dSCA network with
nd3CAL > (0 sources processing data from a set M$5C41 against a global clock T95¢4!

Let Nyscaz be a N&5¢42 > 1 module concrete dSCA network with n45¢42 > 0
sources processing data from a set M45942 against a global clock T95C4? as generated
from Ngsca; using the abstract dSCA to concrete dSCA transformation.

Poole, Holden and Tucker claimed that if it was possible to generate appropriate

mappings and show the following diagram commutes then the two spatially expanded

systems under consideration were correct with respect to each other.
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T T M Ingsca1 Chascar VdSCAL \fChascar
ascar  X[Tascar — Mazsca X My o0t ——— M, 25

A 0 @ )

Ingscaz Chisca2 Vascaz Chascaz
Start X[TdSCA2 _)MAdSCAz] X .[\4;4(__“;0142 —-’MAdSCA2

Mappings are needed for four areas:
e spaces;

e clocks;

e global states; and

e input streams.

The mappings are defined as follows:
Spaces. Spaces (modules) in the two networks are equivalent, for modules m; where
i € N&5C42 thus it is appropriate to define the respacing operation 7 : In,cn,, —
IN,coa @S
(i) =1
Clocks. There is no timing abstraction between networks, thus the retiming A :

T45CA2 _, TdSCAL where for t € T45C42 can be appropriately defined as:
At) =t

Input Streams. There are no data or temporal abstractions required for inputs since

these are not altered by the transformation. Thus is it appropriate to define the input

[TdscA2 ]nSCA2 — [TdSCAl

. dSCAl
stream abstraction 6 : ™

= Mayscas as the

- MAdSCAl

operation:
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(Note: recall that we are comparing inputs between the Form 2 abstract and

concrete dSCA).

Global States. 1t is defined in the transformation that the carrier data set for source
abstract dSCA and target concrete dSCA differ by the introduction of tuples. These
means that the state abstraction map is related to the tuple management functions
(namely the tuple insertion function)

We therefore consider the state abstraction map ¢ : thdscm — MGhascar for

tup AdscAal

all states s € M5 45642 to be defined as follows, for i € N¢S°4? (assuming the use of

queue tuple management functions):
() (i) = I ™™ s(0)
Conjecture Given this set of mappings it is believed that the diagram above

commutes, and proof of such is done in a similar manner as for Theorem 10.2.1.

12.3 Generalised Railroad Crossing Problem as a
single processor Concrete dSCA

Finally the transformation of the (source) abstract dSCA from the previous chapter,
which has a defining shape of V = (1,k), to the (target) concrete dSCA with a
defining shape of V = (1,k), using the array style tuple management functions is

considered. The prerequisites are reviewed first:

e The source and object networks have k > 1 modules and Mazx, > 0 component

specifications in its modules definitions; and

e Condition definitions of each adSCA module, except the programme counter,

are of the format:

cond(pc = 0, a, cond(pc = 1, b, cond(pc = 2, ¢, cond(...))))
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~v-wiring Functions

The process of transformation first creates the concrete dSCA ~v-wiring functions.

To do so, the Createys operation is called as:

( Get NumM odules(Source_SCA),

Createys ( Source.SCA, ) = Bys | GetMazN(Source_SCA),
\ GetyEqs(Source .SCA),
(1

= Bys| 36

)

\ GetyEqs(Source . SCA),

The call to Bys expands as follows:

1, 1,
Bys | 36, = Rewireys | 36,
oldys, Reindezys (oldys)

This call to the Reindexys operation expands as:
Reindexvys(e,es) = (Reindexy(e), Reindexys(es))

The list of abstract dSCA ~-wiring functions contains as the first 8 elements:

- - -

IR
SXEREEREEK
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So if Reindexys is applied to this list, the results would be:

v0(1,0) = M, \ Reindezy(yo(1,0) = M), \
'YO(LI):M’ '70(1’1)=M1 \‘
Y(1,2) = M, Y(1,2) = M,
) 1,3) =M, 1,3) = M,
Reinderys 3?%1, O; =M, - Reindexys Z(l)él, O; =M,
7m(1,1) =M, ’}’1(1, )=M,
71(1’2):M’ 71(1’2) = M,
\ '70(070) =M / \ \ 70(Ov0) =M /

Reindexy(y1(1,1) =
Reindexy(v1(1,2) =
\ Reindezvy(7(0,0) =

M)
which, after applying the Reindexy operation would result in the following list of

~-wiring functions:

TR
SIS

e e e N N N N
Il

-

70(0,0) =

Application of the y— wiring transformation to the complete list of y—wiring oper-

ations from the abstract dSCA produces the following list of v-wiring function for
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70(1’0):M’ (1’2)=M» '70(1a3) =M, 70(174):M1
'71(1>0)=M7 '71(1a2):M’ '71(1,3):Ma 71(1’4):U»
72(1)0) =M, '72(1v2) =0, '72(1>3) =U, 72(174) =U,
3(1,0) =M, ~3(1,2)=M, ~3(1,3)=M, 3(L,4)=M,
74(1,0) = M, 74(1 2)=M, w(,3)=M, w(L,4)=U,
'75(110) = Ma 75(1 2) = Ma 75(1!3) = M) 75(1’4) = U,
')’6(1’ 0) = M> '76(1 2) = Ma 76(1a3) = Ma '76(114) = U,
77(1 0) = M, '77(1 2) =0, 77(1a3) =U, 77(1’4) =U,
'78(1 0) =M, 78(1 2) =U, 78(1a3) =U, '78(1’4) =U,
9(L,0) =M, 7(1,2) =M, 7(10,3)=M, (1,4) =T,
m0(1,0) =M, mo(1,2)=S5, m0(1,3) =M, m0(1,4) =0,
’)’11(1,0) = M, ’)/11(1,2) = M ’}’11(1,3) = M, 'Yll(l 4) = U,
112(1,0) = M, 72(1,2) =S8, 72(1,3) =M, ~12(1,4) =7,
713(]-)()) = Ma ’713(1!2) = Ma 713(]-,3) = Mi '713(1 4) = Ua
’)’14(1,0) = M, "/14(1,2) = S, ’}’14(1,3) = M, ’714(1 4) = U,
15(1,0) =M, %5(1,2)=U, ms5(1,3)=U, ms(1,4)=1,
116(1,0) =M, me(1,2) =U, 6(1,3)=U, me(1,4)=T1,
17(L,0) =M, m7(1,2)=U, m7(1,3)=U, m(1,4)=10,
ms(1,0) =M, ms(1,2)=U, ~s(1,3)=U, ms(l,4)="1,
19(1,0) =M, me(1,2) =U, m9(1,3)=U, mo(l,4)=1,
’)/20(1,0) = M, ’)’20(1,2) =U, ’)’20(1,3) =T, ’)’20(1 4) =,
Y21(1,0) =M, ¥1(1,2) =M, 7u1(,3)=M, ~yu(l,4)=U,
'722(1,0) = M, ’722(1,2) = M, ’)’22(1,3) = M, ’722(1 4) = U
Y23(1,0) = M, 7v23(1,2) = M, 723(1,3) =M, 3(1,4)=U,
724(1,0) = M, ’)’24(1,2) = M, 724(1,3) = M, 724(1 4) =U,
725(1,0) = M, 725(1,2) = M, 725(1,3) = M, ~25(1,4) =T,
Y26(1,0) = M, 7v26(1,2) = M, 726(1,3) = M, m26(1,4) =T,
’727(1,0) =M, ’727(1,2) =M, 727(1,3) =M, ’)’27(1,4) =U,
')’28(1,0) = M, 728(1’2) = Sa 728(1a3) = Sa '728(1a4) = U)
729(1,0) =M, 729(1,2) =U, ’729(1,3) =U, 729(1,4) =,
¥30(1,0) =M, 730(1,2) =S, 730(L,3) =S, 730(1,4) =0,
31(1,0) = M, 1(1,2)=U, 11(1,3)=U, ~au(l,4) =7,
'732(1v0) = M, '732(172) = Sa 732(153) = S’ '732(1’4) = U,
733(1,0) = M, 7v33(1,2) =U, 733(1,3)=U, 33(1,4) =7,
v34(1,0) = M, 734(1,2) = S v34(1,3) = S, 734(1,4) = U,
v35(1,0) = M, v35(1,2) = v35(1,3) =U, v35(1,4)=U

285

and for the program counter, where 0 < pcval < Maxy — 1 the following y-wiring

functions are produced:

Ype_val (pc7 0) =M
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After the Reindex~ys operation completes, the result is used as an input to the
call to the Rewire operation:
1,
Rewireys | 36,
Reindexvs (oldys)

which expands as:

(o, \

1, 36,
Rewireys | 36, = Rewireys 35,
new-ys ReWireypc | 1, , NEWYS

\ ! /

where the call to Rewire-ypc results in the expansion of the first case (where pc_val >

0):

[ 34, \
L,
35, )
Rewirevype | 1, = Rewireypc ’
1,
newys Buildy , NewWys
35,
M, )

\
[ 34,
1

= Rewireypc ,

\ ((rs(1, 1) = M), mewys)
The recursion in Rewireypc will continue until the base case is reached, where

pc_val = 0, in which case the following definition is invoked:

0, 1,
: 1, : L
Rewireypc = | Buildy , NEwys
oldrs, 0,
newys M,
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Finally, the recursive call to Rewireys where the module number is 0 is reached

and in such a case the following definition is used:

0,
Rewireys | 36, = newvys

newys

Completing the Rewireys operation completes the generation of y-wiring func-
tions for the concrete dSCA. The list below shows the y-wiring functions produced

for the GRCP solution:

Y(1,0) =M, v(L,2)= %0(1,3) =M, (1,4 =M, (1,1)=M,
71(1,0) =M, m(1,2)= M n(L3) =M, m(l,4)=U mn(l1)=M,
72(L0) =M., 7%(1,2)=U 7(13)=U %14 =U x(,1)=M,
73(1 O)ZMs ’73(1»2):Ma 73(173)=M> 73(1 4) M’ '73(1 1) =M,
’)’4(1 0) = M, ’74(1,2) = M, ’)'4(1,3) = M, ’)’4(1 4) U, ’74(1 1) = M,
75(1 O) = M, ’75(1’2) = Mv 75(1a3) = Ma '75(1 4) = Ua 75(1 1) = M,
76(1 0) =M, '76(1’2) =M, '76(133) = M, '76(154) =U, '76(1 1) =M,
’77(1 0) = Ma ’)’7(172) = Ua '77(1)3) = U’ 77(]-’4) = U’ 77(1 1) = M,
78(1 ) =M, 78(1,2) =U, '78(1,3) =U, 78(1a4) =U, '78(1 1) =M,

( ’ ) =M, 79(112) =M, '79(10, 3) =M, ’79(1a4) =U, '79(1’ 1) =M,
710(1 0)=M, m0(1,2)=28, m0(1,3) =M, m0(1,4)=U, 70(1,1) = M,
11(L,0) =M, y1(1,2)=M m(L,3)=M, m(,4)=U, y(l,1)=M,
’712(1 O) = M, ’)'12(1,2) = S, ’)/12(1,3) = M, ’)/12(1,4) = U, 712(1, 1) = M,
13(1,0) =M, m3(1,2) =M, ms3(1,3)=M, 3(1,4) =U, ms3(1,1)=M,
714(1 O) = M, ’714(1,2) e S, ’}’14(1,3) = M, 714(1,4) = U, ’714(1, 1) = M,
15(1,0) =M, vs5(1,2)=U, ms5(1,3)=U, ms5(1,4)=U, ~5(1,1) =M,
Vlﬁ(lao) = M’ ’716(172) = U’ 716(1a3) = Ua 716(1’4) = U> 716(1 1) = Mv
77(1,0) =M, m7(1,2)=U, m7(1,3)=U, mn7(1,4)=U, ~7(1,1)= M,
718(1w0) =M, 718(152) =U, 718(1»3) =U, 718(]-a4) =U, '718(1> 1) =M,
719(1,0) =M, v9(1,2) =U, mo(1,3)=U, moe(1,4)=U, my(1,1)=M,
Y20(1,0) = M, 720(1,2) =U, 70(1,3) =U, 720(1,4)=U, 7v2(1,1) =M,
721(170) = Ma ’721(172) = Ma ’721(1a3) = M) ’721(134) = U, 721(1 1) = M1
Y22(1,0) = M, 722(1,2) = M, 7v22(1,3) =M, ~22(1,4) =U, ~2(1,1) =M,
723(1,0) = M, 73(1,2) = M, 73(1,3) =M, 723(1,4)=U, ~a3(1,1) =M,
")/24(1,0) = M, ’724(1,2) = M, 724(1,3) = M, 724(1,4) = U, ’)/24(1 1) = M,
Y25(1,0) = M, 725(1,2) =M, 75(1,3) =M, 725(1,4) =U, ~5(1,1) = M,
v26(1,0) = M, 726(1,2) = M, ~26(1,3) =M, 76(1,4)=U, ~26(1,1) =M,
Y2r(1,0) =M, vr(1,2) =M, vr(1,3) =M, vr(1,4)=U, ~(1,1)=M,
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v28(1,0) = M, 728(1,2) =S, ~v28(1,3) =S, 7(1,4)=U, ~(1,1) =M,
Y20(1,0) = M, 729(1,2) = U, 729(1,3) =U, 720(1,4) =U, ~29(1,1) =M,
v30(1,0) = M, 730(1,2) =S, 730(1,3) =S, 730(1,4) =U, 730(1,1) =M,
731(1,0) = M, 731(1,2) = U, v31(1,3)=U, v31(1,4) =U, ~31(1,1) = M,
v32(1,0) = M, 732(1,2) =S, 7v32(1,3) =S, 732(1,4) =U, ~s2(1,1) = M,
733(1’0) = M: 733(1’2) = Ua 733(1’3) = Ua '733(1)4) = U) 733(1 1) = M,
734(1,0) = M, 734(1,2) =S, 734(1,3) =8, 734(1,4) =U, 734(1,1) =M,
735(1)0) = Ma ’735(1’2) = U1 735(]-’3) = U’ 735(1’4) - U’ 735(1 1) =M
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where, for the program counter, where 0 < pc_val < Maxy —1 the following y-wiring

functions are defined:

B-wiring Functions

Ypeval (pc,0) =

M

The new (-wiring function for module 0 of the concrete dSCA are defined, for

0 < pcval < 35, as:

,ch_va.l (pC, 0) =pc
and for module 1:
50(1’0) =pc ﬁO(l 2) 1, :80(1,3) =1, ﬁ0(1a4) =1, ﬂO(l’ 1) =1,
ﬁ]_(l,O) = pc ﬁl(l 2) 1, 181(1)3) =1, :61(114) = w, ,81(11 1) =1,
B2(1,0) = pc, B2(1,2) —w, Ba(l,3)=w, Bo(l,4)=w, P(1,1)=1,
/6'3(1a0) =Dpc ﬁ3(1 2) 1, :33(1’3) =1, ﬁ3(1a4) =1, )83(1’ 1) =1,
ﬁ4(1a0) = pc /64(1 2) 1, ﬂ4(1,3) =1, ﬁ4(1a4) =W, ﬁ4(la 1) =1,
ﬁ5(1,0) =pc BS(I 2) =1, ﬂ5(1»3) =1, /65(1a4) =w, 55(1’ 1) =1,
ﬁG(LO) =pc :36(1,2) =1, ﬁﬁ(las) =1, ﬁ6(154) =W, 66(1’ 1) =1,
/87(110) =pc 187(1a2) = w, ﬂ7(1’3) =w, ﬁ7(1,4) = w, 67(1’ 1) =1,
ﬂg(l,O) = p¢, ﬁ8(192) =uw, ﬁ8(173) =uw, ﬁ8(1a4) = w, 58(1, 1) =1,
/69(110) = D¢, 189(1 2) =1, B9(1’3) =1, ﬁ9(174) = w, ﬂ9(1> 1) =1,
610(1>0) bc, /810(1) ) 9, ﬁ10(1a3) =1, ﬁ10(1’4) = w, :810(1’ 1) =1,
ﬁll(l’o) pc, 511(1)2) =1, ﬂll(1a3) = ]-a ﬂll(1a4) = w, 1811(1) 1) = 1>
B12(1,0) = pe, Bi12(1,2) =9, B12(1,3) =1, f12(1,4) =w, Bi2(1,1) =1,
P13(1,0) =pc, Bi3(1,2) =1, B13(1,3) =1, Pf13(1,4) =w, Bi3(1,1) =1,
B14(1,0) = pe, £1a(1,2) =9, Bua(1,3) =1, pu(l,4) =w, Bua(1,1)=1,
515(1,0) = pc, ,615(1,2) = w, 515(1,3) = w, B15(1,4) = w, ,315(1, 1) = 1,




ABSTRACT DSCA TO CONCRETE DSCA 289

B16(1,0) = pc, Br16(1,2) =w, Frs(1,3) =w, PB1s(1,4) =w, Pis(1,1) =1,
ﬁ17(1 0) = pcC, ﬂ17(1 2) = w, ,317(1 3) = w, ,817(1,4) = w, ,317(1, 1) = 1,
B18(1,0) = pe, fFis(1,2) = w, B18(1,3) =w, p18(1,4) =w, [(is(1,1) =1,
B19(1,0) = pc, Bi9(1,2) =w, Pi9(1,3) =w, ﬁ19(1,4) =w, Po(1,1)=1,
B20(1,0) = pe, B20(1,2) = w, B20(1,3) =w, P20(l,4) =w, [20(1,1)=1,
B21(1,0) =pc, Pan(l,2) =1, B21(1,3) =1, PB21(1,4) =w, Ba1(1,1) =1,
ﬂzg(l 0) = pc, ﬁzg(l 2) , ,822(1,3) = 1, 2(1,4) = w, ﬂgz(l, 1) = 1,
B23(1,0) = pe, Pa3(1,2) =1, B23(1,3)=1, f3(1,4) =w, B3(1,1) =1,
B24(1,0) = pe, [2a(1,2) =1, [2s(1,3) =1, Pau(l,4)=w, Pa(1,1)=1,
B25(1,0) = pe, Pos(1,2) =1, [25(1,3) =1, PBas(1,4) =w, Bos(1,1) =1,
ﬂ26(1a0) = p¢, :326(1 2) a 1826(133) = 17 /826(1 4) =uw, ﬁ26(1v 1) = 11
B27(1,0) = pc, P2r(1,2) = 1, B2r(1,3) =1, Por(1,4) =w, Bor(1,1) =1,
B2g(1,0) = pc, B2s(1,2) =1, [2s(1,3) =2, Pos(l,4)=w. Pes(1,1) =1,
B29(1,0) = pc, P20(1,2) =w, P2g(1,3) =w, P2g(1,4) = ﬁzg(l,l) =1,
B30(1,0) = pc, B30(1,2) =3, PBs0(1,3) =4, Pa(l,4) =w, PB30(l,1) =1,
B31(1,0) =pe, Ba1(1,2) =w, Ba(1,3)=w, B31(1,4)=w, Ba(l,1)=1,
B32(1,0) = pc, B32(1,2) =5, B32(1,3) =6, f32(l,4) =w, Pa2(1,1) =1,
B33(1,0) =pc, B33(1,2) =w, B33(1,3) =w, f33(1,4) =w, P33(1,1) =1,
B34(1,0) = pc, B34(1,2) =7, PB34(1,3) =8, P34(1,4) =w, PBsa(1,1) =1,
B35(1,0) = pc, B35(1,2) =w, B35(1,3) =w, P35(1,4) =w, Ps5(1,1)=1

Delay Functions
Creating the delay functions for the concrete dSCA is performed by the Createds

operation:

Createys(Source SCA
Createés( Source.SCA ) — Bss ( reateys(Source SCA), )

which calls the Bds operation with the first argument being the list returned from the
generation of the concrete dSCAs ~y-wiring functions (as shown above) and an empty
list for the new delay functions. The call expands as follows since there is more than

one element in the list of wiring functions:

(e )

(e, e5) GetArg(RetTerm(e, 1), 1),
e,es

B§ U =B

s ( ) s Builds GetArg(RetTerm(e,1),2),

GetIndez(RetTerm(e, 1),1), |

\ J

?
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The first element in the y-wiring function list, produced above, is:
70(]-, 0) =M

The call to Bés will progress in the following manner:

/ es, \

GetArg(v(1,0),1),
) _ Bss Get Arg(vo(1,0),2),

GetIndez(yo(1,0),1),

>es’ t—1 \ )

_ BS
| Buias| & |

W\ L) )

= Bés ( s )
(dr00(t,a,2) =t —1),]]

The recursion will complete when there is only one element left in the list of -

Buildé

wiring functions, in which case the following call to Bds is used:
GetArg(RetTerm(e, 1), 1)

1

GetArg(RetT 1),2

Bos( @ ) = Builas | CHATIUREITerm(e 1).2)
negs, GetIndex(RetTerm(e, 1),1),

t—1

9
3

For this example, it can be seen from the y-wiring function transformation above

that the last element in the list is:
Y35 (pC, 0) =M
which under the defined transformation will produce the delay function:

51,0'0,35(15, a, ZE) =t-—1
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The complete list of delay functions can be seen in Appendix E.

Initial State Equations

Construction of the new Initial State equations commences with a call to the

Createl Vs operation:

num_modules(Source_.SCA),
GetMazN (Source .SCA),
GetlIV(Source_.SCA),

[

where the call to BIV's is expanded as the recursive call:

(o, \

CreatelVs ( Source_SCA ) = BIVs

36,
1, 0eqs,
36 0
BIVs ’ = BIVs ( o \ \
oeqs, 35,
neqs BIV | 1, , EqS

oeqs,

VLo ) )

Observe that the call to BIV is in this case a recursive call to itself, with the

value of the first argument incremented by one:

(1 \

0. 35,
( . ) §
Biv| 1, |=Brv| %"
oeqs, b
\ negs ) GenlVs 2’5 , Neqs

\ 0egs }
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The result of the GenIV operation will be the following Initial State equation:

stay,u,u,u, U, U, U, U, U,
U, Uy Uy U, Uy Uy Uy Uy U,y
Vi(0,a,2) =

u,u,u,u,u, U, U, U, u,

U, Uy Uy Uy Uy Uy Uy Uy U

The recursive nature of BIV's is such that the result above is repeated until we

produce the Initial State equation for module 1 at time ¢t = 34:

stay, u, u, U, U, u, U, U, U,
u) u) u) u) u? u) u) u) u)
Vi(34,a,z) =

u,u,u,u,u,u, U, U, u,

Uy Uy Uy Uy Uy Uy Uy Uy U
The next call to BIVs is to the non-recursive version:
1, \
w0 \
35

)

3, (35, )

BIV b = | BuwildlV 1, ,negqs
0eas, InitState | oeqs,
negqs, 0
=-1
=7 ) .
S U S P
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which results in a call to the InitState operation, which is itself defined recursively,

and in this case results in:

[ 34, \

(35, 1,
1, 0eqs,
InitState | oeqs, = InitState 0egs,
IF RetTerm | GetEl | 1, 21,01,
\ =1 35

\ == /
[ 34, \
1,

= InitState | oegs,

(RetTerm (V1(35,a,2) = 0,2),1]),

o /

= InitState | oeqs,

the next recursive call will look like:
35, 33,

= InitState
oeqs, oeqs,

IF (0,0,1)),

InitState
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This recursion continues until the value for the first argument reaches 0, in which

case the following result is produced:

(stay, true, stay, up, true, false, false,

0, down, wup, true, true, false, false, false,
) 1, true, false, 90, true, O, true, 0,
InitState =
oeqs, false, false, false, false, false, false, false,
nlist, 0, 0, 0, 0, 0, 0, 0,
\o )

This result from InitState is subsequently used to construction the Initial State

equation at time t = Mazy — 1 = 35:

( stay, true, stay, up, true, false, false,
down, wup, true, true, false, false, false,
true, false, 90, true, 0, true, 0,
V1 (35, a, $) =
false, false, false, false, false, false, false,
0, 0, 0, 0, 0, 0, 0,
\ o /

Next the case where BIV's is called with the module number equal to 0. In this

case the base case of BIVs is invoked as:

0,
35,
36,
BIlVs = | BiVpc | [], , neqs
oeqs,
35,
negs,

where BIVpc builds the following list of Initial State equations:

‘/0(35’ a? x) = 07
Vo(34,a,z) = 35,

Vo(l,a,2) = 2,
‘/O(Oaa'a I) =1,
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The complete list of Initial State equations can be seen in the algebraic specifica-

tion of the concrete dSCA at Appendix E.

State Transition Equations
To generate the State Transition equations the CreateST operation is called with

the source SCA as an argument:

( GetEqSTV F(Source_SCA), \

IE
Createds(Source_.SCA),

Source SCA,
CreatefBs(Source .SCA),
CreateSTs | 7T, = BST's
- Createds(Source_.SCA),

GetMazN (Source.SCA),
T

|1t )

All of the arguments are either extracted from the source specification, e.g. ex-

tracting the previous delay functions, or are created using elements of this transfor-
mation, e.g. the creation of new wiring functions. Arguments that have to be created
have already been shown in this chapter, with the exception of Createds, which is
now shown.

Generation of the d function for the concrete dSCA network commences with a

call to the Createds operation:

(GetNumModules(Source_SCA),\
GetMaxN (Source_SCA),

createds ( Source SCA ) = Bds | GetMazA(Source_.SCA) + 1,
GetdEqs(SourcesCA),

\ [ )
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which for the source abstract dSCA under consideration, with a defining shape of

(1,35) and maximum number of arguments of 4, can be written:

( GetNumM odules(Source SCA), \
GetMazN (Source_.SCA),
createds ( Source_.SCA ) = Bds | GetMaxA(Source_.SCA) + 1,
GetdEqs(SourcesCA),

> [ )
L )

36,

= Bds | 5,

Getd Eqs(SourcesCA),

\ 1 )

The call to Bds expands into the recursive call:

[ o )
36,
51

(;76 \ oldegs,

Bds | 5, = Bds ( {35’ \ )
oldegs, b
0 Bdspe ;}) 0
oldegs,
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Expanding the call to Bdspc results in the recursive call:

[ 34, \
L
5,
( ?5, ) %,
5’ oldegs,
Bdspc 325, = Bdspc ( (4, \ \
35,
oldegs, )
\[] ) Bdsarg 35, Nl
oldegs,

\\ v ) ))

Now, the call to the Bdsarg operation expands to the recursive call of:

(3, )
1,

[ 4, \ 35,

1, 36,

Bdsarg 35, = Bdsarg oldeqs,

36, ( (1, ) )

oldegs, 4,

\1 Buildd | 35, |,[

35,

N ) )
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with:
oldegs,
1
dwal = (Mazy + pcval) — | t — RetTerm | GetEl ’ ,2
3,
35,
= (36 4+ 35) — (t — RetTerm (41335 =t —1),2)
— (1) = (t = (t— 1))
=71 (t—t+1)
=71-1
=70
thus:
[ 3 \
L
( 4, \ 35,
1, 36,
35 ldegs,
Bdsarg ’ = Bdsarg oneas
36, ( (1, ) )
oldegs, 4,
[ J Buildd | 35, |, ]
35,
N\ \n ) )
[ 3, )
1,
39,
= Bdsarg
36,
oldegs,

(d?,szx,:as = 70, [D )

Values are of limited interest until we arrive at program counter values of 27 since

all values of the delay function up to this point are the unit delay. For program
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counter 27 the 5th argument is unwired, thus of unit delay, however the recursive call

to Bdsarg for the 4" argument, is as follows:

(2 )

1,
[ 3, \ 27,
1, 36,
Bd 27, _ B4 oldegs,
sarg 36, = Bdsarg ( / . \ \
oldegs, 3,
K neqs ) Buildd | 27, ,d3% 97 = 62, megs
35,
L e ) )

and d_val is calculated thus:

1
dwal = (Mazy + pcval) — | t — RetTerm | GetEl ’ ,2

= (36 +27) — (t — RetTerm (81927 =t — 28),2)
= (63) — (t— (¢ - 28))

— 63— (t—t +28)

=63 — 28

=35
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and therefore, Bdsarg can be traced as follows:

(2, \
L
[ 3, \ 27,
1, 36,
Bdsarg i;’ = Bdsarg o;deqs, (l \ \
oldegs, 3,
\ neqs J Buildd | 27, | ,d%¥,,; = 62,negs
35,

.\ ) )

—
— “[\')
—

27,
36,

oldeqs,
\ (%27 = 35, 0%, 57 = 62,neqs) /

= Bdsarg

Similarly the recursive call with the argument value of 2 will result in the recursive

call:
(1, \

1
27,
36,
Bdsarg | oldegs,
d?,sz,w = 34,
diszsm = 35,
d?iu? = 62,

K neqs )
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At this point, the recursive call to Bdsarg is made, which simply returns the list

(1, )

of new d equations:

L
27,
36 d‘;’?zm = 34,
, d§53 97 = 39,
Bdsarg oldegs, = ™
a3, .., =62
d35 — 34 1,4,27 )
1,2,27 = 9% negs
d??3,27 = 39,
d?,s4,27 = 62,

\ negqs )

The next step will be to recurse on the next value of the program counter, which

will continue until the following base case is invoked:

N ()

)

5 1

Bdspc ’ = | Bdsarg ’ , NEqs
36, 36, !
oldegs, oldegs,

\negs )\ VR

which would result in:

(50 =1, = 2,0, = 3,negs )
at this point the generation of d-values is now finished by recursively calling the Bds
(o, )
36,
Bds | 5, = neqs

operation, using its base case:

oldegs,
neqs )
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The values of d which are interesting, i.e. are not of unit delay, are:

d?,sz,o =1, d??3,3 =1, d??z,e =13, dz},u =17, d:f?a,m = 23, d??3,25 =31
A% =2, [ diys =8, |diye =14, | di5 5 =18, [ di%, = 24, [ dF5 5 = 32
A0 =3 [di%4 =9, |di3e =15, [dl53=21,[d}%, =25, [d}5 =33
d?zm =4, d§’§3,4 =10, dzgz,g =21, d1,53,13 =19, | di% 03 =26, | d)5 5, = 34
A%, =5, | di%s =11, [ d}% 0 = 16, d1,53 12 = 20, | d3% 93 = 27, [ d3% 0, = 35
d‘;’523 = 6, d?s?, 5 =12, di 2,11 — 21, | dy 2,21 = 22, | dy 224 = 28, d%?3,24 =29

dse =30

12,25

Other calculated values, which will not be used in the eventual concrete dSCA due

to them being wired to inputs or the special w module are:

%1 =36 [ di%10 =45 | dip1y =52 | divygs = 58 | din g = 66
d?,szz =37 d?i;,lo =45 d%?3,17 = 52 d%?4,24 =59 d1,53,31 = 66
dissz =37 | dyy,, =46 dﬁ,n = 52 d:f?4,25 = 60 d1,54,31 = 66
dﬁ,z =37 | dy 2,12 = 47 d%?2,18 =53 d%?4,26 =61 d1,52,32 = 67
di%4 =39 | di%y 19 =47 | di% 15 = 53 | di%y oy = 62 [ T3 5, = 67
d?i},s =40 | d 4,13 = 48 dﬁ,ls =53 d?,sz,zs = 63 dli,32 = 67
d:fil,s =41 dy 2,14 — 49 d?,ﬁ2,19 =54 d?,ss,zs =63 d1,52,33 = 68
d:{’,‘r’zﬂ =42 |dj 4,14 — 49 | dy 3,19 — 54 d‘;’,s4,28 = 63 d1,53,33 = 68
d%,%,? =42 | dy 2,15 — 50 d1,4,19 =54 d‘z’,sz,zg = 64 d154,33 = 68
dﬁ,? =42 | dy 3,15 — 50 d1?2,20 =95 d??3,29 = 64 d152,34 = 69
d‘;’,sz,s =43 d1,4,15 =50 d153,20 =95 d?,s4,29 = 64 d153,34 =69
disg =43 | di% 16 =51 | diy 00 =55 | dipz0 = 65 | d55, 44 = 69
diyg =43 | di% 16 =51 | divp =56 | di30 =65 | dih 45 = 70
d??«x,g =44 df’g,le =31 d‘;’,‘r’4,22 =7 d1?4,30 = 65 d?,ss,ss =170

di% 35 = 70

The process of generating the State Transition equations can now continue. Recall
that the initial call would be:
[ GetEqSTV F(Source_SCA), \

0,
Createds(Source SCA),

Source_SCA, Creat . o
CreateSTs | Y, = BST's reatefs(Source_ )
I Createds(Source SCA),

GetMazN (Source_.SCA),
T

| )
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In the GRCP example there are two modules, thus there are two equations in the
list of State Transition equations from the source abstract dSCA. The expansion of

the call to BST's is given as:

( eqs7

( (e, V)

GetIndex(RetTerm(e, 1)),
0,
((e,eqs),\ Mazy,
neqs, BSTck | newds, ,negs |,
newds, newps,
BSTs newpfs, _ BSTs newds,
newds, T,
o )
T, newds,
KH ) newfs,
newds,
36,
T,




ABSTRACT DSCA TO CONCRETE DSCA

Considering module 1, then the call to BST'ck will result in the following call to

304

the BST operation, since the module is not my:

(

cond

L,
0,
36,

newds,

BST

newps,
newds,

T

\

Vpe(t, a, ) = 0, \\

b, ,

C

/

= cond

( perewire (Vpe(t,a,z) = 0),

b,
cs_rewire | 1,0, 36, )
newds, 3s,6s, Y, 11
c,
BST | 1,1,36,
\ newds, newfs, newds, Y, 11

Each of the parts on the right hand side will be expanded as:

perewire (Vpo(t,a,z) =0) = (Vpe(t,a,z) = RetTerm(Vp.(t,a,z) = 0,2))
= (%c(t7a,m) =0)

( Vi(t - 35,a,2),

cond | Vi(t — 34,a,z),

cs_rewire Vi(t —33,a,x)
1,0,36,

\ newds, #s,8s, T, 11

?

[ Vielt,a,2),
Vi(t,a, ),
( Vi(t —35,a, 1),
Vi(t — 34,0, 1),
Vi(t —33,a, )

cond

rw

I

/
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with the rw operation expanded as:

/ (Vl(t—35,a,:v),\ \

( Vi(t — 35,a,x), \ ) Bs,ds,ds,
wire )
cond | Vi(t —34,a,z), |, 1,2,0,
Vi(t — 33, a, 1) > 36, I1 <
1, Vi(t — 34, a,x),
0, _ Bs,ds,ds,
rw =cond | wire ,
36, 1,3,0,
ds, 36, I1
3s, Vi(t —33,a,1),
8s, . Bs,ds,ds,
wire ’
\ 1 ) 1,4,0,

\ o \asm ) ]

As an example, the first wire call expands as:

Vl(t - 35, a, I),
,08,ds,
wire ps = Hﬁfﬁal(Vncw_mdex(new_time, a,z))
1,2,0, i
36,11
with:
ds,
, 1,
prjwal = RetTerm | GetEl ,2
2,
0

= RetTerm (dsi20 = 1,2)
=1



ABSTRACT DSCA TO CONCRETE DSCA 306

Bs,
. 1,
new_index = RetTerm | GetFEl ,2
2,
0
= RetTerm (6o(1,2) = 1,2)

=1

new_time = RetTerm | GetEl

= o N R S
\.vvm
“\—_—/

[\)

+

—

= RetTerm (8120(t,a,z
=t—1+1
=t

—1,2)+1

therefore the first call to the wire operation is:

Vi(t — 35,a,x),
. ﬁs7 53? ds)
wire =¥ WVi(t,a,z
120, 1 (Vi(t a, 7))

36,11
and rw therefore becomes:
( Vi(t — 35,a,x), \
cond | Vi(t—34,a,z), |,
Vi(t —33,a,z)

H?S(Vl(t7 a, l’)),
rw = cond | T(Vi(t,a,3)),
1°(Vi(¢, a, 7))
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( Vie(t,2,2) =0, ) )
cond | b, , ( Vie(t,a,z) =0,
c { Vpe(t,a, ), \
1, Vi(t,a, ),
0, T I (Vi (¢, 0, 3)),
BST | 36, = cond cond | II35(V;(t,a,x)),
newds, \ I135(Vi(t, a, x)) )
newpfs, c,
newds, BST | 1,1,36,
T, \ _ newds, newfs, newds,
\ 1 /

The expansion of BST continues recursively until the complete function for module
1 is produced (this can be seen in Appendix E).

If the call to BSTck is considering module 0, then BSTck returns the original
definition as the program counter definition does not change. In the GCRP example,

the result of BST ck for module 0 will be:
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[ mod (add (Vpe(t, a, z), 1
mod (add (Vpe(t, a, ), 1

if Vpe(t — 1,0,2) =0
if Vpe(t — 1,a,2) =1
if Vpe(t — 1,0,2) =2

)=3

), 36)
),36)
mod (add (Vpe(t, a,2),1) , 36)
mod (add (Vpe(t, a,x),1),36) if Vpe(t — 1,0,z
mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,a,2) =4
mod (add (Vpe(t, a,z),1),36) if Vpe(t —1,a,2) =5
mod (add (V;,L(t a,z),1),36) if Vpe(t —1,a,2) =6
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,2) =7
mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,a,2) =8
mod (add (Vpe(t, a,x),1),36) if Vpe(t — 1,a,2) =9
mod (add (Vpe(t, a,z),1),36) if Vipe(t — 1,a,2) = 10
mod (add (Vpe(t, a,z),1),36) if Vipe(t — 1,a,2) =11
mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,a,2) =12
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,z) = 13
mod (add (Vpe(t, a,),1),36) if Vpe(t — 1,a,z) = 14
mod (add (Vpe(t, a,z),1), 36) if Vpe(t —1,a,2) =15
mod (add (Vpe(t, a,),1),36) if Vpe(t — 1,a,2) = 16
mod (add (Vye(t, a,z),1),36) if Voot — 1,a,2) = 17
Vaelt +1,0,2) = S mod(add(Vgc(t a,z),1),36) i Vzc(t— l,a,z) = 18
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,2) =19
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,z) = 20
mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,a,z) =21
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,2) = 22
mod (add (Vpe(t, a,x),1),36) if Vp(t — 1,a,z) = 23
mod (add (Vpe(t, a,x),1),36) if Vpe(t — 1,a,z) = 24
mod (add (Vpe(t, a,x),1),36) if Vpe(t — 1,a,2) =25
mod (add (Vpe(t, a,z),1),36) if Vp(t — 1,a,2) = 26
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,z) = 27
mod (add (Vpe(t, a,x),1),36) if Vpe(t — 1,a,z) = 28
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,2) = 29
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,2) = 30
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,z) = 31
mod (add (Vpe(t, a, z),1),36) if Vpe(t — 1,a,2) = 32
mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,a,2) = 33
mod (add (Vpe(t, a,z),1),36) if Vpe(t — 1,a,z) = 34
[ mod (add (Vpe(t, a,2),1),36) if Vpe(t — 1,0,2) = 35

Recursive calls to BST's continue until the base recursive call to BST's is made,
which results in the base case call to just BST'ck with the appropriate functionality

from above selected depending upon the module number under consideration.
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For brevity we do not reproduce the transformed State Transition equations for
other modules here, instead, they are defined in the concrete dSCA specification given

in Appendix E.

12.4 Correctness of concrete dSCA Example

The generated target concrete dSCA created from transforming the abstract dSCA

in chapter 11 can be seen to be the same as the concrete dSCA given in Chapter 8.4

- the discussion of correctness given in that chapter is therefore still valid.
Additionally, this concrete dSCA and the previous abstract dSCA could exist in

a hierarchy, and this will be demonstrated by introducing mappings for:
e spaces;
e clocks;
e global states; and

e input streams.

Spaces
Spaces (modules) in the two networks are equivalent, for modules m; where i € N§S€42

thus it is appropriate to define the respacing operation 7 : In oo ., — INysca, 8S:
w(i) =1
Clocks

There is no timing abstraction between networks, thus the retiming A : 795642

T45CAL where for t € T49Y42) can be appropriately defined as:

A(t) =t
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Global States

The set of sensible obvservable states for this SCA is the output of module 1 at regular
intervals, given by the retiming. Additionally, the appropriate value from the tuple
must be projected, and in this case it will be element at the value of the program
counter. The global state of an SCA at time ¢t € T is defined as the set of values held
by all the observed channels at time t € 7', We introduce a global state abstraction

mapping, ¢ of the form:

. AChasca2 Chasc a1
Bobs : Agsdis” — Agstim

which is defined to project out the relevant element of module 1.

Input Streams
Input streams for the source and target dSCAs also exhibit a one-to-one mapping,

and we therefore construct the stream abstraction function:

Ingscaz Ingscal

0 : [TdSCA2 - MAdSCA2] - [TdSCAl - MAdSCAl]

as:

where A(t) = t, thus
0(as(t)) = ai(t)
Conjecture It is believed that the following diagram commutes:

Ingscary  pgChasca Vascar Chasc Al

Tuscar  %[Tuscar — Maysca] Agson Aganct

A 0 [0) ¢

In Chasc a2 Viscaz Chasca
tart < [T - M dSCA2 y¢ tddrd 2
S A [ dSCA2 AdSCA2] MAt‘u.pdSCAz MAt“PdSCAz
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12.5 Concluding Comments

This chapter has demonstrated the techniques required for mapping an abstract dSCA
to a concrete dSCA with the same defining shape (and same type of cycle consistency).
The techniques have been demonstrated by taking the Form 2 abstract dSCA solution
to the GRC Problem and generating the appropriate concrete dSCA solution.

12.6 Sources

This transformation is all my own work.



Chapter 13

Summary and Future Work

This thesis set out to investigate whether a method could be developed to support
the transformation of an algorithm described as a Synchronous Concurrent Algorithm
to its implementation on a piece of hardware, also described as a SCA. Through the
investigations it has been determined that this is the case, and that if a small number
of syntactic extensions are made to the standard model of SCAs then a concise set of
models can be produced that ease the understanding of such transformations. The
benefits of restricting the extensions to syntactic ones are that the dicsussion never
moves away from the well-founded notion of SCAs, and hence the work done on such
algorithms is still valid in the new models.

To summarise, this work has introduced abstract and concrete dynamic SCAs and
has demonstrated that there exist algebraic transformations that allow an algorithm
described as an SCA to be transformed into an an implementation on hardware that
is described as an SCA.

It has also been identified that the simplest and most compact transformations
will take place with algorithms that can be described as cycle consistent abstract
dSCAs.

The implementation of the models and techniques has been demonstrated by

applying them to the Generalised Railroad Crossing Problem. Subsequently it has

312



SUMMARY AND FUTURE WORK 313

been shown that all models of the solution exist within a hierarchy, thus conjectures
on the proof of correctness can be made. Sensibly, the first piece of future work should
be to demonstrate that these conjectures are true.

Proposed further work can be divided into X sections:

e Work on documented techniques;

Extensions to techniques;

Extending Boundaries; and

Related Further Work.

Work on Techniques Documented.

Perhaps the one weakness of the work has been the manual nature of the transfor-
mations performed, since the author had very limited access to algebraic specification
tools. However, the algebraic style and nature taken give confidence that implemen-
tation in actual tools will be straightforward, with only small adjustments needed to
the descriptions given to take account of any notation required be the chosen tool.
Hence the second proposed piece of work is the automation of the transformations.

Areas that should be explored within the transformations themselves are those
concerned with the options we have not considered, for example gaining a further
understanding of the changes to the transformations required if cycle inconsistent
SCAs are considered; or the impact of other mapping functions or tuple management
systems.

Extensions to techniques.

In developing our transformations, the work has been conscious of issues that
will begin to tax the minds of safety engineers in the future. Take a system that is
today implemented in a particular way, that has functionality that may be required

in the future, but the hardware it is implemented on may not be available (or there



SUMMARY AND FUTURE WORK 314

may be another reason for changing the hardware implementation). If this is the
case, then extending the set of transformations to include a transformation from
concrete to abstract dSCA would aid the understanding of the new system. The
old implementation could be turned into an abstract dSCA and then manipulated
as required before being turned back into a concrete dSCA representing the new
hardware configuration.

One other piece of future work would be the investigation of allowing the machine
algebra, M4 to alter across models. The current work requires M, to be consistent
across all models, which immediately precludes the use of higher level data objects.
Allowing M4 to alter introduces the benefits of higher level programming concepts
to be used, such as enumerations, but adds levels of complexity to transformations.
Some care can be used in determining what can be allowed, enumerations for example
would be relatively easy to implement as in one abstract model they can be enumer-
ations and at a lower level of abstraction could be implemented as integers. Potential
complexities arise where the abstract data types require the more concrete dSCAs to
implement multiple modules per high level concept. An example of this would be an
abstract dSCA that uses integers, and a concrete dSCA that only operated on bits;
if the abstract dSCA used 8-bit words, then the concrete dSCA would need eight
modules per abstract module to manage 32-bit integer operations. Note that SCAs,
and more importantly the hierarchy of SCAs, can manage this as Poole Tucker and
Holden show in their paper. Another interesting element to look at for future work
is that of increasing the spatial efficiency for cycle inconsistent dSCAs that are not
totally cycle inconsistent.

Extending Boundaries.

At the boundaries of this work there is ample opportunity for future work. It

was noted in the introduction of this thesis that work has been done on directly

producing functional language programmes from formal specification languages, and
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we have indicated how our work was initially inspired by the dataflow approach to
implementation of functional languages. Fruitful results maybe gained by bridging
the gap between the work on generation of functional language programs from formal
methods, implementation of those programs as dataflow graphs, and finally imple-
mentation of those dataflow graphs as SCAs (where this work can then complete the
path to actual implementation). At the other boundary, this work has targeted a ma-
chine with a shared-memory like implementation, other models of computing should
be considered.

Related Further Work.

Finally, the author feels that the field of Petri-nets may provide some benefits
when looking at analysis of the SCAs used in out transformations. Heiner and Heisel
discuss the modelling of safety-critical systems with Z and Petri nets (see [HH99)),
and it would appear, at a trivial level, there is a link between SCAs and Petri Nets -
in that SCAs can be converted to Petri Nets. A classical Petri net is a directed graph
which consists of nodes and arcs (see Peterson [Pet81]), an SCA consists of nodes
and channels - however, it may be more appropriate to consider the nodes of an SCA
graph as arcs in a petri net and the channels as nodes, and introduce a new petri net
node for the clock. Considering SCAs as petri nets may open up the work already
done on safety analysis using petri nets (e.g. Leverson and Stolzy’s work [LS87]).

This thesis has achieved the aim it set out to study.
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Appendix A

Fundamental Algebraic
Specifications

A.1 Synchronous Concurrent Algorithm Specifi-

cation
(SCA Algebra)
This defines the specification that defines a standard Synchronous Concurrent Algo-
rithm.
Begin
Specification SCAAlgebra
Import
Sorts

Constant Symbols
Function Names
CreateSCA: Name x ImpList x SortListx
ConsList x VFOpList x vOpListx
BOpList x 60OpList x IV EqListx
STEqList x yEqList x 3EqListx
dEqList — SCAAlgebra
GetImport : SCAAlgebra — ImpList
GetSorts : SCAAlgebra — SortList
GetConsts : SCAAlgebra — ConsList
GetVFOps : SCAAlgebra — VFOpList
GetyOps : SCAAlgebra — 4OpList
Getf0ps : SCAAlgebra — BOpList
GetdOps : SCAAlgebra — §OpList
GetIV Eqs : SCAAlgebra — IV EqList
GetSTEqs : SCAAlgebra — STEqList

A-1



FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

GetyEqs : SCAAlgebra — ~yEqList
Getf3Eqs : SCAAlgebra — BFEqList
GetdEqs : SCAAlgebra — dFEqList

Equations

CreateSCA

GetImport

GetSorts

name,
import,
sorts,
constants,
opsV'F,
ops7,
opsf3,
opsd,
eqsVFIV,
eqsVFST,
eqs,
eqsf3,
eqsé,

Begin

End
Begin

End

Begin

End

Specification name

Import import
Sorts sorts

Constant Symbols constants
VF Function Names opsV F’
~ Function Names opsy

(3 Function Names opsf3

6 Function Names ops

IV Equations eqsVFIV

ST Equations eqsV F'ST

~ Equations egsvy

B Equations eqs3

4 Equations eqsd

Specification name

Import import
Sorts sorts

Constant Symbols constants
VF Function Names opsV F’
v Function Names opsy

(8 Function Names ops3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~ Equations egsy

5 Equations eqsf3

6 Equations eqsé

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
~ Function Names ops~y

B Function Names ops3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~ Equations egsvy

(3 Equations eqs3

6 Equations eqsd

= import

= sorts




FUNDAMENTAL ALGEBRAIC SPECIFICATIONS

GetConsts

GetVFOps

GetyOps

/ Begin

End
Begin

End
Begin

End

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
v Function Names opsy

[ Function Names opsf3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~v Equations eqs~y

3 Equations egsf3

é Equations eqsé

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
v Function Names opsy

[ Function Names opsf3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~v Equations egs~y

[ Equations egsf3

0 Equations egsé

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV' F
~ Function Names ops~y

3 Function Names ops3

¢ Function Names ops

IV Equations eqsVFIV

ST Equations eqsV F ST

v Equations egs~y

[ Equations eqsf3

¢ Equations egsd

= constants

= opsVF

= opsy
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Get30ps

GetdOps

GetlV Eqgs

Begin

End
Begin

End
Begin

End

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV' F
v Function Names opsy
 Function Names ops3

6 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~ Equations egs~y

(3 Equations egsf

4 Equations eqsd

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV' F'
~ Function Names opsy

# Function Names opsf3

¢ Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

v Equations eqs~y

[ Equations egsf3

¢ Equations egsd

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F’
4 Function Names opsy

[ Function Names ops3

¢ Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~ Equations eqs~y

# Equations eqsf3

¢ Equations eqsd

= opsf3

= opsé

=eqsVFIF
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GetSTEqs

GetyEqs

GetBEqs

Begin

End
Begin

End
Begin

End

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
4 Function Names opsy

[ Function Names ops3

0 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

v Equations egsy

3 Equations eqs3

6 Equations egsé

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
v Function Names opsy

3 Function Names opsf

é Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

v Equations egsy

{8 Equations eqsf3

§ Equations eqsé

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV F
~v Function Names opsy

[ Function Names opsf3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

v Equations eqsy

3 Equations eqsf3

§ Equations eqsé

=eqsVFST

= egsy

=eqsf
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End

GetéEqs

Begin

End

Specification name

Import import

Sorts sorts

Constant Symbols constants
VF Function Names opsV' F
~v Function Names ops~y

[ Function Names opsf3

4 Function Names ops

IV Equations eqsVFIV

ST Equations eqsVFST

~ Equations egsy

( Equations egsf3

¢ Equations eqsd

= eqsd
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A.2 Machine Algebra (M,) Specification

This describes the machine algebra specification used throughout the example in this

thesis.
Begin

Specification
Import
Sorts

My
N.B

Constant Symbols 0,true, false,u

Function Names

Equations

add: NU{u} x NU{u} - NU{u}

sub: NU{u} x NU{u} - NU{u}

and: BU{u} x BU{u} — BU {u}

or: BU{u} x BU{u} — BU{u}

not: BU{u} — B

eq: NU{u} x NU{u} — BU {u}

lt: NU{u} x Nu{u} -» BU{u}

gt : NU{u} x NU{u} - BU {u}

cond: BU{u} x NU{u} x NU{u} - NU {u}

add(a,0) =a

add(a, succ(b)) = add(succ(a),b)
add(u,b) =u

add(a,u) =u

sub(a,0) =a
sub(succ(a), suec(b)) = sub(a,b)
sub(u, b) =u
sub(a,u) =u
and(true, true) = true
and(true, false) = false
and(false,true) = false
and(false, false) = false
and(u, b) =1u
and(a,u) =u
or(true, true) = true
or(true, false) = true
or(false,true) = true
or(false, false) = false
or{u,b) =u

or(a,u) =u
not(true) = false
not(false) = true

not(u) =u

eq(0,0) = true
eq(succ(a),0) = false
eq(0, succ(b)) = false
eq(succ(a), succ(b)) = eq(a,b)
eq(u,b) =y
eq(a,u) =u
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End

1¢(0,0)
lt(suce(a), 0)

1t(0, succ(b))
lt(succ(a), suce(b))
lt(u,b)

lt(a,u)

9t(0,0)
gt(succ(a),0)

gt(0, suc(b))
gt(succ(a), succ(b))
gt(u,b)

gt(a,u)
cond(false, b, c)
cond(true, b, ¢)
cond(u, b, c)
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A.3 Important List Specifications

A.3.1

Begin

End

A.3.2

Begin

End

~ Function Equation List

Specification ~vSCAEqList

Import ~SC AEquation

Constant Symbols ]

Function Names -, - vSCAEquation x vSCAEqList — vSCAEqList

hd : vSCAEqList — vSCAEquation
tl : ySCAEqList —vSCAEqList
GetEl : ySCAEqList x N2 — vSCAEqList
Equations
a,b=a,b
hd ([]) = [
hd(a,as) =a
t () =1
tl(a,as) = as
GetEl([],i) = null
GetEL((v(4,)) = x,e9s),%,§)) =v(5,)) ==
GetEl((v(y, 2) = z,€gs),1,])) = GetEl(egs,1, j)

dSCA ~ Function Operation List

Specification ~vdSCAEqList
Import ~vdSC AEquation
Constant Symbols ]
Function Names
o, - :vdSCAEquation x ydSCAEqList — vdSCAEqList
hd : vdSCAEqList — vdSC AEquation
tl: vdSCAEqList — vdSCAFEqList
GetEl : vdSCAEqList x N3 — vdSCAEqList
Equations
a,b=a,b
ha () = |
hd (a,as) =a
() -
tl(a,as) = as
GetEl([],7) = null
GetEl ((7k(1)]) =2z, eqs)aiajv k) = ’Yk(Z;J) =z
GetEl((va(b, ) = z,€q5),4, j, k) = GetEl(egs, 3, j, k)
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A.3.3 [ Function Operation List

Begin

End

A34

Begin

End

Specification BSCAFEqList
Import BSCAEquation
Constant Symbols ]
Function Names
-, -: BSCAEquation x BSCAEqList — 3SCAEqList
hd : BSCAEqList — 3SCAEquation
tl : BSCAEqList — 3SCAEqList
GetEl : BSCAEqList x N2 — 8SCAEqList
Equations
a,b=a,b
hd () = [
hd(a,as) =a
() =
tl(a,08) = as
GetEl([] ,2) = null
GetEL((B(i, ) = z,e45),5,§) = B(i, j) = =
GetEl ((B(y, 2) = z,eq9s),1,j) = GetEl(egs,i,7)

dSCA ([ Function Operation List

Specification BdSCAEqList
Import BdSC AEquoation
Constant Symbols ]
Function Names
-, - : BdSCAEquation x 3dSCAEqList — 3dSCAEqList
hd : BdSCAEqList — 3dSC AEquation
tl: BdSCAEqList — [dSCAEqList
GetEl : BdSCAEqList x N3 — 3dSCAEqList
Equations
a,b=a,b
ha([) ~ |
hd(a,as) =a
1 (l) = [
tl (a,as) = as
GetEl([] ,i) = null
GetEl ((:Bk(zvj) = "B7€qs)’i7j7 k) = ﬂk(Z)J) =z
GetEl ((B4(b,c) = z,eqs),1, j, k) = GetEl(egs, 1,7, k)
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A.3.5

Begin

End

A.3.6

Begin

End

0 Function Operation List

Specification 8SCAEqList
Import 8SCAEquation
Constant Symbols ||
Function Names
- -:8SCAEquation x SCAEqList — §SCAEqList
hd : 6SCAEqList — 6SCAEquation
tl: SCAEqList — 8SCAEqList
GetEl : SCAEqList x N2 — §SCAEqList
Equations
a,b=ua,b
pa([) = |
hd(a,as) =a
i) =
tl (a,as) = as
GetEl([] 1) = null
GetEl ((67'»».7. (tv a, .’D) = tl7 €q.9), 27.7) = Ji,j(t’ a, 1’.) =t
GetEl ((6pc(t,a,x) =t',eqs),1,7) = GetEl(egs,i,7)

dSCA ) Function Operation List

Specification 8dSCAEqList
Import 0dSC AEquation
Constant Symbols ||
Function Names
-, -: 6dSCAEquation x §dSCAEqList — 6dSCAEqList
hd : 8dSCAEqList — §dSCAEquation
tl: 6dSCAEqList — §dSCAEqList
GetEl : 6dSCAEqList x N3 — 6dSCAEqList
Equations
a,b=a,b
hd () =
hd(a,as) =a
d(l) = |
tl(a,as) = as
GetELl([],1) = null
GetEl ((5i»j»k(t’ a, "E) = tl7 6q3)7 iajv k) = ‘i,j,k(ta a, .’B) =t
GetEl ((Ompq(t,a,z) =1t',eqs),1,7, k) = GetEl(eqs, 1)
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A.3.7 Project Function Equation List

Begin
Specification ProjEqlList
Import ProjEquation
Constant Symbols ||
Function Names

A-12

End

Equations

- -: ProjFEquation x ProjEqList — ProjEqList
hd : ProjEqList — ProjEquation

tl : ProjEqList — ProjEqList

GetEl : ProjEqList x N> — ProjEqList

a,b=a,b

hd ([]) = [

hd(a,as) =a

t (=1

tl (a,as) = as

GetEl([] ,1) = null

GetEl ((d(27.77 k) =t, eqs)’ihj? k) = d(laja k) =t
GetEl ((d(m,p,q) =t,eqs),1,7,k) = GetEl(eqs,1)

A.3.8 Map Function Equation List

Begin

End

Specification

Import

Constant Symbols
Function Names

Equations

MapFEqList
MapEquation

il

_,-: MapEquation x MapEqList — MapEqList
hd : MapEqList — MapFEquation

tl: MapEqList — MapEqList

GetEl: MapEqList x N> — MapFEqList

a,b=a,b

hd () =11

hd (a,as) =a

() =1

tl (a,as) = as

GetELl([],i) = null

GetEL((2(i, j) =t,egs),1,J) =5(,§) =1
GetEl ((E(m,n) = t,eqs),i,j) = GetEl(egs,1)
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A.3.9 SCA Initial State Equation List

Begin
Specification ISV EqList
Import ISV Equation
Constant Symbols ]
Function Names _,.: ISV Equation x 1SV EqList — 1SV EqList
hd : ISV EqList — ISV Equation
tl : ISV EqList — ISV EqList
GetEl . ISVEqList x N — ISV Equation
Equations a,b=a,b
rd () = [
hd (a,as) = a
£ ([) = |
tl (a,as) = as
GetEl ([],i) = null
GetEl ((Vi(0,a,z) = 2,eqs),1)
= VL(O7 a, ZI?) =z
GetEl ((Va(0,a,z) = z,eqs),1)
= GetEl(egs,1)
End

A.3.10 dSCA Initial State Equation List

Begin
Specification dSCAISV EqList
Import dSCAISV Equation
Constant Symbols (]
Function Names
-, -: dSCAISV Equation x dSCAISV EqList — dSCAISV EqList
hd : dSCAISV EqList — dSCAISV Equation
#l : dSCAISV EqList — dSCAISV EqList
GetEl : dSCAISV EqList x N — dSCAISV Equation
Equations
a,b=a,b
h([) = |
hd(a,as) =a
() =1
tl (a,as) = as
GetEl([],1) = null
GetEl((Vi(0,a,z) = 2,e98),i) = V;{0,a,2) = 2
GetEl ((Va(0,a,z) = z,eqs),1) = GetEl(egs, 1)
End
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A.3.11 SCA State Transition Equation List

Begin
Specification STV EqList
Import STV Equation
Constant Symbols |]
Function Names
_,-: STV Equation x STV EqList — STV EqList
hd : STV EqList — STV Equation
tl : STV EqList — STV EqList
GetEl : STVEqList x N — STV Equation
Equations a,b=a,b
hd () = [
hd(a,as) =a
() = |
tl (a,as) = as
GetEl([] ,7) = null
GetEl((Vi(t,a,z) = z,eqs),1) = Vi(t,a,z) = 2
GetEl ((V,(t,a,z) = 2,eqs),i) = GetEl(egs, 1)
End

A.3.12 dSCA State Transition Equation List

Begin
Specification dSCASTV EqList
Import dSCAISV Equation
Sorts

Constant Symbols ||
Function Names
_,-:dSCAISV Equation x STVFEqList — dSCASTV EqList
hd : dSCASTV EqList — dSCAISV Equation
tl : dASCASTV EqList — dSCASTV EqList
GetEl : ASCASTV EqList x N — dSCAISV Equation
Equations
a,b=a,b
hd([) = [
hd(a,as) =a
() =
tl (a,a8) = as
GetEl(]],1) = null
GetEl ((Vi(t,a,z) = 2,e95),1) = V;(t,0,z) = 2
GetEl ((Va(t,0,x) = 2,eq8),1) = GetEl(egs, 1)
End
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A.4 Equation Specifications

A.4.1 SCA State Transition Equation

A-15

Begin
Specification STV Equation
Import
Sorts
Constant Symbols
Function Names
CreateVF : VFCallTerm x VFOpTerm — STV Equation
RetTerm : STV Equation x N — Term
RetIndex : STV Equation X N - N
Equations
CreateVF(tl,t2) = (tl = tz)
RetTerm(Vy,(t,a,x) = fa,1) = Vo(t,a,2)
RetTerm(Vy(t,a,z) = fn,2) = fn
RetIndex(Vp(t,a,z) =2)=n
End

A.4.2 dSCA State Transition Equation

Begin
Specification dSCASTV Equation
Import
Sorts
Constant Symbols
Function Names

CreateVF : VFCallTerm x VFOpTerm — dSCASTV Equation

RetTerm : dSCASTV Equation x N — Term
RetIndex : dSCASTV Equation X N — N
Equations
CreateVF(tl,tg) = (tl = tz)
RetTerm(V,(t,a,x) = fn,1) = Vo(t,a,x)
RetTerm(Vu(t,a,z) = fn,2) = fa
RetIndex(Vy(t,a,z) =2) =n
End
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A.4.3 SCA Initial State Equation

Begin
Specification ISV Equation
Import
Sorts
Constant Symbols
Function Names
CreateVF : VFCallTerm x VFOpTerm — ISV Equation
RetTerm : ISV Equation X N — Term
RetIndex : ISV Equation x N — N
Equations
CreateV F(t1,t2) = (t1 = t2)
RetTerm(Vy,(t,a,z) = fo,1) = Vo (¢,a,2)
RetTerm(V,(t,a,z) = fn,2) = fa
RetIndex(V,(t,a,z) =2) =n
End

A.4.4 dSCA Initial State Equation

Begin
Specification dSCAISV Equation
Import
Sorts
Constant Symbols
Function Names
CreateVF : VFCallTerm x VFOpTerm — dSCAISV Equation
RetTerm : dSCAISV Equation x N — Term
RetIndex : dSCAISV Equation x N — N
Equations
C’reateVF(tl,tg) = (tl = t2)
RetTerm(Vu(t,a,z) = fa,1) = Vu(t,a, )
RetTerm(V,(t,a,z) = fn,2) = fn
RetIndex(Vi(t,a,x) =2)=n
End
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Appendix B

SCA Definition of GRCP

Begin

Specification
Import
Sorts

Constant Symbols
VF Function Names
# Function Names
~ Function Names
4 Function Names

v Equations

8 Equations

SCA

Ma, T
SCA_Algebra
I

Vi:T x M} x M% — Mu
B:NxN-—>N
v:NxN—{S,M}
(si’jZTXMXXM‘IX—)T

| | [

RERXK RKRXEKREREREK

CLODN H N~ Wi+
e e e N e N e

-

N N N N S’ N N N N N’ S e’ e e e N
T e A T |

== = O 00 1 O O N

=

—~

D
DN — N — WN N =W~ N =N
LW~ o~

=M,

S

“ER

T
SNESES

TR
TRR™

7(15,1) = S,
7(151 2) = M,
v(22,1) = M,
7(22’2) =M,
¥(23, 1) =M,
v(23,2) = M,
v(24,1) = M,
7(24,2) = M,
¥(25,1) = M,
~7(25,2) = M,
~v(26,1) = M,
v(26,2) = M,
B(15,1) =9,

5(15,2) = 21,

A(22,1) = 23,
5(22,2) = 24,
B8(23.1) = 25,
5(23,2) = 26,
8(24,1) = 27,
B(24,2) = 28,
5(25,1) = 29,

5(25,2) = 30,
£(26,1) = 31,

5(26,2) = 32,
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é Equations

IV Equations

ST Equations

51’1('&,0.,11) =1— 1,
51’2(t,a,3:) =1t— 1,
51’3(t,a, .’IJ) =t— 1,
62,1(t,a, 15) =t— 1,
52:2(t,a, r)=t—1,
54,1(t, a, x) =t— 1,
042(t,0,2) =t —1,
54,3(1‘,,0,, r)=t—1,
55,1(25, a,x) =t— 1,
65’2(t,a,x) =t— 1,
56,1(t7a’ .’E) =t-1,
0 2(t,a,z) =t —1,
(57,1(t,(1,, .’L') =t— 1,
d72(t,a,z) =t —1,
510’1(t, a,x) =t— 1,
(510~2(t,(l,.'17) =t— 1)

V1(0,a, z) = stay

Va(0,a,2) = up

V2(0,a,z) = false
V10(0, 0, 2) = true
V13(0,a,x) = false
Vi6(0,a,z) = false
V19(0 a, 27) =0

Va2(0,a,z) = false
Vas(0,a,x) = false
Vas(0,a,z) = false
V31(0,a,2) =0

V34(0,a,m) =0

511,1(t, a, .’L‘) =t—- 1,
511,2(t,(1, :I?) =t— 1,
(512’1(t, a,x) =t 1,
S122(t,a,2) =t —1,
613’1(t, a, l‘) =t— 1,
613,2(t)aa x) =t- ]-a
514’1(?5, a,x)=t—1,
614,2(7:, a,x) =t 1,
515,1(t, a,:z) =t— 1,
515,2(t, a,x) =t— 1,
b221(ta,2) =t — 1,
522Y2(t,(1, z) =t— 1,
523,1(t, a,z) =t— 1,
523,2(t,a, z)=t—1,
024.1(, , x)=t-—1,
524’2(75, a, .I') =t— 1,

V2(0,a,x) = true
V5(0,a,z) = true

V5(0,a, z) = down
V11(0,a, x) = true
V14(0,a,z) = false
V17(0 a, m) =90
Va0(0,a,x) = true
V23(0,a,z) = false
Va26(0,a,x) = false
Vag(0,a,2) =0
‘/32(0 a .’L’) 0

‘/35(0, a, .’L’) =0

625,1(t,a, JJ) =1t— 1,
52572(t, a,r)=t—1,
(526,1(t, a, .’17) =t— 1,
526,2(t,a, .’B) =1— 1,
527,1(t, G.,.’E) =1{— 1,
627,2(taa7$) =t— 1’
528,1(1‘,, a,z)=t—1,
523,2(t,a, l‘) =f{— 1,
529,1(t,a, .’I}) =t— 1,
529,2(t,a, z)=t—1,
631,1(t,a‘) 1‘.) =t— 1)
(531’2(t, a, .’L') =t— 1,
53351(?5,0,, .’L') =t— 1,
533,2(t,a, x)=1t— 1,

)
635,1(t, a, .’[) =t-1,
)

535’2(t, a,r)— t—1

Vs(0,a,z) = stay
Vs(0,a,z) = false
V5(0,a,z) = up
V12(0,a,z) = false
Vis(0, a,x) = true
Vis(0,a,2) = true
‘/21(0’04 "I:)
V24(0,a,2) = false
Va7(0,a,z) = false
I/30(0)0' iL‘)
V33(0,a .’L’)
V36(O,a ’B)

Vi(t + 1,0,z) = cond(Va(t, a,), Va(t, 0, 2), Va(t, 0, 7)),
V2(t+ 1,(1 r)= OT(V:')(t a, :v),Vs(t,a,a:)),

Vs(t + 1,a,z) = stay,

Va(t + 1,a,z) = cond(Vz (¢, a, z), Vs(t, a, z), Va(t, a, z)),

);

),
Ve(t + 1,a,z) = and(Va2(t, a, x), Vis(t,a, z)),
Va(t + 1,0, 2) = and(V1a(t, 0, 2), Vi5(t, a, 2)),

) =
)
Vs(t+1,a,z) = and(Vio(t, a, z), Vi1 (¢, a, 2)),
) =
) =
) =

Vs(t + 1,0, z) = down,

Vo(t+1,a,z) = up,

VIO(t + ]-a a,x) = eq(V22(t7a7 m)’ Vlﬁ(taa7 .'15)),
Vii(t + 1,0, z) = eq(ag(t), Viz (¢, a,x)),
Via(t + 1, a,z) = eq(Vaa(t, a, z), Vis(t, a, x)),
Vas(t + 1,a0,) = eglas(£), Vio(t, 0,)),
Via(t + 1,a,7) = eq(Vaa(t, 0, ), Vao(t, a, 7)),

Vis(t+1,a,x

Viz(t+ 1,a,z) = 90,

gt(as(t), Va1 (t, 0, 2)),
false,

Vig(t+ 1,a,2) = true

)=
)=
) =
)=
Vlﬁ(t + 1, a .’L‘)
)=
)=
)=

Vlg(t + 17 a,r

A-19
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End

Vao(t + 1,a,x) = true,
Var(t + 1,a,z) =0,

Vao(t + 1,a,z) = or(V23(t a,z), Vau(t,a,2)),
Vos(t + 1,a,2) = or(Vas(t, a, z), Vas(t, a, z)),
Vaa(t + 1,a,z) = or(Var(t, a, ), Vas(t, a, x)),
Vas(t + 1,a,z) = gt(Vae(t, a, z), Vao(t, a, 2)),
Vas(t + 1,0, ) = gt(Va1(t, a,z), Vaa(t, a, 7)),
Vor(t + 1,0, z) = gt(Vas(t, a, ), Vaa(t, a, x)),

)

Vag(t + 1,a,z) = sub(al( ), a2(t)),
‘/BO(t + 170' T
Vai(t+1,a,2) = sub(a3( ), a4(t)),
Vao(t + 1,0,z
‘/33(t + 170' I)= SUb(a'S( ) a6(t))1
‘/34(t + 1,(1 r

)=

)=

)=

)=

)~

Vos(t+ 1,a, x% gt(Vas(t, a,z), Vas(t, a, z)),
)=

) =

)=

)0

Vas(t+ 1,a,2) = sub(a7( ), as (%)),

A-20
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Appendix C

Abstract dSCA Definition of
GRCP (Form 1)

Begin
Specification acvSCA
Import My, T
Sorts SCA_Algebra

Constant Symbols

VF Function Names V;:T x M? x Mk — M,
[ Function Names Bpe : NXN — N

~ Function Names Yoc : N X N — {S, M}

§ Function Names 8ijpe : T x M%Z x M — T
~v Equations

ISSSSRSSR

'70(1’0) = M, 70(171):M7 70(1,2):M; 70(173):
70(270) = J\/Iv 70(27 1) = A/[; ’70(27 2) = Ma 70(273) =
70(3a 0) = ]\/[7 70(3a 1) = U: 70(37 2) = U7 70(3a 3) =
70(4’ 0) =M, 70(4v 1) =M, ’7/0(45 2) = M, 70(47 3) =
70(570) = M, 70(5i 1) = M7 70(57 2) =M, 70(57 3) =
')’0(67 0) =M, 70(67 1) =M, 70(6?2) =M, 70(67 3) =
70(7> 0) =M, 70(77 ]-) = M, 70(7a 2) =M, 70(77 3) =
70(870) =M, 70(87 1) =U, ’70(87 2) =U, 70(873) =
'70(97 0) =M, 70(97 1) =U, 70(9, 2) =U, ’YO(ga 3) =
70(1070) = M) 70(101 1) = ]\/[a 70(1092) = A’L '70(10’ 3) =
')/0(1170) = M7 70(11, 1) = Ss 70(117 2) = M’ 70(117 3) =
70(12,0) =M, (12,1)=M 7(12,2) = M, 7(12,3) =
'70(1370) = M, 70(137 1) =5, 70(13’2) = M, 70(13’ 3) =
70(147 0) = M, 70(147 ]-) = M7 70(147 2) = M? 70(147 3) =
70(1570) = A/L 70(15’ 1) = S: 70(157 2) = J\/I’ 70(157 3) =
'70(167 0) = M) 70(167 1) = U7 70(167 2) = U7 70(16: 3) =
70(177 0) =M, 70(17, 1) =U, '70(177 2) =U, 70(177 3) =
70(1870) = M, 70(187 1) =U, 70(1872) =U, '70(181 3) =
70(19)0) =M, 70(19: l) =U, '70(197 2) =U, ’70(1973) =
70(20,0) = M, %(20,1) =U, %(20,2)=U, 7(20,3)=
70(21’0) - Ma 70(217 1) = U7 70(21) 2) - U7 70(217 3) =
’70(221 0) =M, 70(227 l) = M, 70(227 2) =M, 70(227 3) =

SES

RSESESASESESESESESESRS
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70(23,0) =M, 1(23,1)=M, (23,2) =M, %(23,3)="1,
70(24, 0) = M, 70(24, 1) =M, 70(24’ 2) = M, '70(247 3) =U,
'70(257 0) =M, '70(257 1) =M, 70(251 2) =M, 70(257 3) =U,
70(26,0) = M, (26,1)=M, 7(26,2) =M, ~(26,3)="1,
70(27’ 0) = M, 70(27) 1) =M, 70(277 2) =M, 70(277 3) =U,
70(28,0) = M, 70(28,1) =M, (28,2) =M, (28,3) =",
'70(297 0) = M, 70(297 1) =5, 70(297 2) =S5, 70(291 3) =U.
70(307 0) = M) 70(301 1) = Ua 70(30’ 2) = Ua 70(30’ 3) = U7
70(31,0) =M, 70(31, 1) =S5, 70(3172) =S5, 70(31,3) =U,
70(32, 0) =M, '70(32, 1) =U, '70(32’ 2) =U, 70(327 3) =U,
70(339 0) = M7 ’70(337 1) = S: '70(33’ 2) = S’ 70(33) 3) = U7
70(34,0) =M, 1(34,1)=U, %(34,2)=U, 7(34,3)="7,
70(35: 0) =M, 70(35’ 1) =5, '70(35, 2) =5, 70(35: 3) =U,
70(367 0) = M, 70(367 1) =U, 70(36, 2) =U, '70(36) 3) =U,
70(p01 0) =M
3 Equations

ﬂﬂ(la O) = p¢, ﬂ0(17 1) =2, .60(172) =3, ﬁ0(173) =4,
.HO(Z: 0) = pe, ﬂO(Q: 1) =5, :60(272) =6, :60(2,3) =w,
ﬂ0(3a 0) = p¢, /80(39 1) =w, ﬂ0(3’ 2) = w, ﬁ0(3a3) =W,
Bo(4,0) =pc, Bo(4,1)=7, Bo(4,2)=8, [o(4,3)=9,
ﬁ0(570) = p¢, 60(5: 1) = 101 :60(572) = 11, ﬂ0(573) =w,
ﬂ0(67 0) =pc, /30(67 1) =12, ﬂo(ﬁa 2) =13, ,60(6,3) =w,
60(77 0) = p¢, ﬁ0(77 1) = 147 ﬂ0(77 2) = 15, [7)0(77 3) = w,
[30(87 0) =pe [30(81 1) =W, 180(87 2) = w, ﬂ0(873) =uw,
/80(97 0) = Ppe, )80(91 1) = w, /30(9a 2) =w, ﬂ0(973) =w,
[30(107 0) = pec, :80(107 1) =22, ﬁO(IOv 2) = 16, [30(10, 3) = w,
ﬂo(ll,O) = pc¢, [30(1151) :97 [30(11,2) = 171 [30(11?3) =w,
Bo(12,0) = pe, Bo(12,1) =22, [o(12,2) =18, f(12,3) = w,
Bo(13,0) =pe, [o(13,1) =9, [o(13,2) =19, [o(13,3) =w,
:80(147 0) = pc, /30(147 1) =22, ﬂ0(14v 2) = 20, ﬁ0(147 3) = w,
Bo(15,0) = pc, [o(15,1) =9, [(o(15,2) =21, [p(15,3) = w,
,30(167 0) = pc, /60(167 1) =W, HO(IG, 2) =uw, ﬁﬂ(lﬁ’ 3) =w,
60(17’ 0) = p¢, /80(17, 1) =w, ﬁ0(17v 2) =uw, ﬁO(]-?, 3) =w,
ﬁ0(18, 0) = pc, :60(185 1) =w, ﬁ0(185 2) =w, 130(18, 3) = w,
Bo(19,0) =pc, Bo(19,1)=w, Bo(19,2)=w, [o(19,3) =w,
ﬁ0(207 0) = PG )60(207 1) =uw, ﬂ0(20a 2) = w, ﬂﬂ (207 3) =w,
Bo(21,0) =pe, Bo(2L,1)=w, [o(2L,2)=w, [o(21,3)=w,
Bo(22,0) = pc, fo(22,1) =23, [o(22,2) =24, [0(22,3) =w,
Bo(23,0) = pc, [o(23,1) =25, [(23,2) =26, (5(23,3) =w,
B0(24,0) = pc, [o(24,1) =27, [o(24,2) =28, [(p(24,3) =w,
$o(25,0) = pc, fo(25,1) =29, [o(25,2) =30, [0(25,3) =w,
:80(267 0) = pc¢, :80(261 1) = 313 /80(267 2) = 32) :30(26’ 3) = w,
130(27, 0) = pc, 130(277 1) = 337 :80(27’ 2) = 347 60(27, 3) =w,
Bo(28,0) =pc, [o(28,1) =35, [(28,2) =36, [0(28,3)=w,
/60(29, O) = pc, ﬁ0(291 1) = 17 ﬂ0(29? 2) = 25 ﬁ0(29, 3) =w.
$o(30,0) = pc, Bo(30,1) =w, [o(30,2) =w, [0(30,3)=uw,
/60(31’ 0) = pc, ,60(317 1) = 37 ﬂ0(317 2) = 47 ﬁ0(31) 3) =uw,
$o(32,0) =pc, Bo(32,1)=w, Bo(32,2)=w, [0(32,3)=uw,
$o(33,0) =pec, Bo(33,1)=5, [(33,2)=6, [(33,3)=uw,
,80(347 0) = pc, ,60(347 1) = w, ﬂO (347 2) =uw, 130(34a 3) =W,
Bo(35,0) =pc, Bo(35,1) =7, [o(35,2)=8, [u(35,3)=uw,
160(367 0) = pc, ﬁ0(36, 1) = w, ﬁ0(36, 2) =uw, ﬁ0(361 3) =w,
Bo(pe, 1) = pe



ABSTRACT DSCA DEFINITION OF GRCP (FORM 1)

6 Equations

51,0,0(t7 a, .’L’) =t— 17
51,3,0(t, a, .’E) =t- 17
52,0,0(t7 a, .’1:) =t- 17
52,3’0(7:, a, .’E) =t— 1,
d3,00(t,a,2) =t — 1,
d330(ta,2) =t —1,
64,0,0(ta a, .’L') =t- 1’
54,3’0(t, a, .’E) =t- 1,
55,0,0(taa7 (E) =t— 17
55,3,0(t>a: (L‘) =t—1,

66,0,0(t;a'7 .’IJ) =t— 17

d6,3,0(t, a, x) =t—1,

57,0,0 (t7 a, 'T) =t—1,

67,3,0(t, a, .’L’) =t—1,

58,0,0(t7 a, .’L’) =t— 17

58,3,0(t; a, 1.) =t- 17

59,0,0(t’ a, "L') =t— 17

59‘3,0(t7 a, .T) =t— la

610,0,0(t1a7 1‘) =1 17
610,3,0(t7 a, m) =t— 17
611,0,0(1:5 a, .’L’) =t- 17
b113,0(ta,2) =t — 1,
612,0 O(t a .’L‘) =t- 17
b12,3,0(t,0,2) =t -1,
d1300(t,0,2) =t -1,
b133,0(t,0,7) =1 — 1,
d14,0,0(t, 0, 93) =t—1,
(514’3 o(t a, .’E =t — 1,
b15,0,0(t,a,2) =t — 1,
b15,30(t,a,2) =t — 1,
516,0,0(t7a7x) =t 11
516,3,0(t,a7"£) =t-— 17
517,0,0(t7a'7 Z') =t 1:
617,3,0(t7a', .’L‘) =t— 11
518,0,0(t’ a, .’L‘) =t- 17
d183,0(t,a,x) =t —1,
519,0,0(t1 a,,x) =t- 1;
d19,30(t a,z) =t —1,
620,0,0(t1 a, .’L') =t—1,
520,3,0(t7 a, .'I?) =t—1,
621,0,0(ta O.,IL') =t— 17
d213,0(t,0,2) =1 — 1,
522,0,0(ta a, .’ZI) =t— 17
6223,0(t,a,2) =t —1,
623,0,0(ta a, x) =1— 17
523,3,0(t5 a, .’E) =t— 17
624,0,0(ta a, .’E) =t— 17
524,3,0(t7a7w) =t- 17
625,0,0(t’ a, .’L‘) =t-1,
525,3,0(taa7$) =t- 1’

d110(ta,2) =t —1,
d21,0(t0,2) =1t—1,
03,1,0(t,a,2) =t — 1,
ds1,0(ta,2) =t — 1,
05.1,0(ta,2) =t —1,
d1,0(ta,2) =t —1,
d71,0(ta,z) =1t —1,
0g.10(t,a,x) =1t—1,

(59,1’0(15, a, .’E) =t-—1,

510,1,0(taa,$) =t— 17

611,1,0(t7a7m) =t- 17

512,1)o(t, a, x) =t-1

b1310(t,a,2) =t — 1,
ba10(t,a,z) =t —1,
b1510(t,a,2) =t —1,
d16,1,0(t,0,2) =t — 1,
diza0(t a,z) =t -1,
d18,1,0(t,a,2) =t — 1,
619,10(t,a,2) =t — 1,
d20,1,0(t,a,2) =t —1,

621,1,0(t7 a, .'B) =t- 1)

022,1,0(t, 0, x)

(523’1’0(15, a,;r;) =t—-1,
624,1’0(75,0.,.2) =t— 1,

525,1,0(t, a,x) =t— 1,

=t—1,

A-24

b120(t,a,x) =t —1,
d220(t,0,z) =t —1,
0320(t,a,z) =t —1,
ds20(t,a,z) =t—1,
ds.20(t,a,2) =t —1,
dg20(t,a,z) =t —1,
07.20(t,a,2) =t — 1,
ds,20(t,0,2)=t—1,
do20(t,a,z) =t —1,

102,0(t,a,2) =t — 1,
1120t a,2) =t —1,
b122.0(t,a,2) =t —1,
d1320(t,a,7) =t~ 1,
b142,0(t,a,2) =t — 1,
d15,2,0(t,0,2) =t — 1,
016,2,0(¢,a,2) =t —1,
0172,0(t,a,z) =1t —1,
b182,0(t,a,2) =t —1,
d192.0(t,a,x) =t —1,
020.2,0(t,a,2) =t —1,
O212,0(t,a,2) =t —1,
0222,0(t,a,2) =t —1,
0232,0(t,a,2) =t —1,
0242,0(t,a,2) =t —1,

525‘2,0()5,(1,, .’L‘) =t— 1,
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IV Equations

626,0,0(t:a'7 1) =t— 17
626,3,0(t) a, l.) =t- 1)
bo7.00(t,a,x) =t — 1,
627,3,0(ta a, .’L‘) =t— 17
628,0,0(t7 a, 1‘.) =t— 1,
b283.0(t,a,z) =t — 1,
d29.0,0(t,a,x) =1 —1,
629)3‘O(t, a .’E) t—1.
830,00(t,a,7) =t — 1,
d30,3,0(t,a, ) =t —1,
d31,00(t,a,2) =t — 1,
831,30(t,a,2) =t —1,
d32,00(t,a,2) =t —1,
(532’3,0(?5,(1. .’L’) t— 1,
833,00(t,0,2) =t — 1,
633§3,0(t,a SL‘) =1t— 1,
d3s0,0(t,a,x) =t —1,
534,3,0(t, a, .’E) =t— 1,
035,00(t,a,z) =t — 1,
635,3,0(ta a, 'T) =t— 1)
d36,00(f,0,2) =t — 1,
636,3,0(1:, a, 2}) =1t— 1,
6pc,0,0(t1 a, KE) =t—1

1% (07 a,z) = stay

‘/4(07 a,z) = up
Vz(0,a,z) = false
V100, a, ) = true
V13(0,a,x) = false
Vi6(0,a,z) = false
‘/19(07047 z)=0

Va2 (0,a,2) = false
Vos(0,a,z) = false
Vas(0,0,2) = false
‘/31(0)0' .'IJ)
V34(0,a,2) =
‘/PC(Ova 'T)

d2s,1,0(t,0,2) =t — 1,
da71,0(8,a,z) =t — 1,
d2s1,0(t,a,2) =t —1,
d29,1,0(t,0,2) =t —1,

830,1,0(t,a,2) =t — 1,

631,1,0(ta a, I)

d321,0(ta,2) =t — 1,
0331,0(t,a,2) =t —1,
3a,10(t a,2) =t —1,
d35,1,0(t,0,2) =t — 1,

636,1,0(taa7‘7’l) =t— 17

Va(0,a,x) = true

=t-1,

A-25

d26,2,0(t,a,2) =t — 1,
da720(ta, ) =t —1,
028.2.0(t,a,2) =t —1,
b2020(t,a,2) =t —1,
d30,2,0(t,a,2) =t -1,
03120(t,a,2) =t —1,
032,20(t,a,2) =t — 1,
d33,2,0(t,0,2) =t — 1,
03420(t,a,2) =t — 1,
b3s5,20(t,a,z) =t — 1,

d36,2,0(t,a,z) =1t —1,

V3(0,a,z) = stay

Vs(0,a, ) = true Ve(0,a,z) = false
Vs(0,a,z) =down V4(0,a,z) = up
V11(0,a,z) = true  Vi2(0,a,z) = false
V14(0,a,2) = false Vi5(0,a,z) = true
Vi7(0,a,z) =90 V1s(0, a, ) = true
Vao(0,a,z) =true  Vo1(0,a,2) =0
V23(0,a,z) = false Va4(0,a,2) = false
Va6(0,a,2) = false Vo7(0,a,2) = false
VZQ(Oaa .’L‘) ‘/30(0,0' .’E)

V32(0, a .TB) V33(0, a, 11,‘)
V35(0,a E) ‘/36(0,(1 I)
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End

ST Equations

‘/2(t7 a, .'E),
‘/.’.’)(ta a, 1;))
Vi(t,a, z)

Vi(t+ 1,a,z) = cond

Va(t + 1,a,z) = or(Vs(t, a, ), Vs(t, a, 7))
Va(t+ 1,a,z) = start

Va(t,a,z),
Vit + 1,a,z) =cond | Vi(t,a,z),

‘/Q(t7 a’ x)

Vs(t + 1,a, ) = and(Vio(t, a, z), V11(t, a, z))
Ve(t + 1,a,z) = and(Viz(t, a, z), Vi3(t, a, x))
Va(t + 1,a,z) = and(V14(t, a, ), Vi5(t, a, z))
Ve(t + 1,a,z) = down

VQ(t+ 1’aix) =up

Vio(t + 1,a,z) = eq(Vaa(t, a, ), Vis(t, a, z))
Vi1(t + 1,a,z) = eq(ag(t), Vir(t,a, x))
‘/12(t+ 1’0' .I') - eq(v22(t a, x)"/ls t,a '1:))
Vis(t + L, a,z) = eq(as(t), Vig(t,a,2))
Via(t +1,0,2) = eq(Vaa(t, 0, ), Vao (2, a, 7))
Vis(t +1,a,z) = gt(as(t), Vai(t, a, 7))

Vie(t + 1,a,z) = false
1/17(t + 1,0, .’L') =90
Vis(t + 1,a,z) = true
‘/lg(t +1a '7") 0
Vaolt + 1,a,2) = true
Vzl(t + 1,0. T
‘/22(t + 1,(1 r
Vos(t + Lya,x
V24(t + 170‘ T
‘/25(75 + l,a xr

) =

) =

)= m'(V23(t,a,:c),V2 (t,a,z))
) m‘(V25(t,a,x),V25(t a .'L'))
) or(V27(t,a,m),V2 (t a .'E))
) = gt(Vao(t, a,z), Vao(t, a, x))
Vos(t + 1, a,z) = gt(Va1(t, a, z), Vaa(t, a, z))
Var(t + 1,a,2) = gt(Vs3(t, a, x), Vaa(t, a, 7))
Vas(t +1,a,z) = gt(Vas(¢, a,z), Vas(t, a, 7))
Voo(t + 1,0, ) = sub(a1(t), az2(t))
‘/30(t +1,a, .’17) 0

Vai(t+1,a,2) = sub(ag(t) a4(t))

%Z(t + 170‘ J’)

Vas(t + 1,a,2) = SUb(Gs( ),a6(t))

Vaslt + Lo, ) = 0

‘/35(t + 170'7"1’.) = S'U,b(a7(t),(l,g(t))

%G(t_" 1,0.,.’17) =0

Vpe(t + 1, a, ) = mod(add(Vp.(t, a, x),1), 36)

A-26

if Vie(t,a,z) =0,

if Vpe(t,a,2) =0,
if Vpe(t,a,2) =0,

if Vpe(t,a,z) =0,

if Vpe(t,a,z) =0,
if Vie(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,2) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,2) =0,
if Vie(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
) =

if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,2) =0,
if Vpe(t,a,z) =0,

if Vpe(t,a, ) =0,
if Vpe(t,a,z) =0,
if Vpel(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,x) =0,
if Vpe(t,a,z) =0,
if Vpe(t,a,z) = 0,
if Vpelt,a,z) = ,
if Vpe(t,a,z) =

i ,T) =

if Vpc(t a r) =0,
if Vpc(t,a, z) =0,
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Appendix D

Abstract dSCA Definition of
GRCP (Form 2)

Begin

Specification
Import

Sorts

Constant Symbols
VF Function Names
[ Function Names
~ Function Names

6 Function Names

v Equations

acvSCA
My, T
SCA _Algebra

Vi:T x M3 x M% — My
Bpe : N XN — N

Ype : N x N — {S,M}
éi,j,pc:TXMZXMf\_’T

Yo(pe,0) = M
’)/1(])0,0) =M,
v¥2(pc,0) = M,
v3(pc,0) = M,
74(;00, 0) =M,
75(pca 0) = M:
Vﬁ(pcs 0) =M,
77(pc, O) = M7
78(pc: 0) = M7
")/0(1, 0) = 1\/1,
71(15 0) =M,
’72(1, 0) = ]\/[,
73(11 O) = Ma
74(1,0) = M,
75(170) = M,
76(170) =M,
77(170) = Ma
78(1:0) = M)
’yg(l, 0) = M,
710(1,0) = M,
’Yll(l,O) = A/I,
712(1,0) = M,
713(1,0) = M,

Yo(pc,0) = M,

To(pc,0) =
T1(pc,0) =
T2(pe, 0) =

Ma4(pc,0) =
1s(pc, 0

) =
Te(pc, 0) = M
)

M
M
m3(pc,0) = M,
M,
M,

T17(pc,0) = M
Y(1,1) = M,
’71(171) = M’
72(1,1) =T,

73(171) = A/I,
74(171) = A’L
75(171) = Ma
Y6(1,1) = M,
v7(1,1) = U,

'78(1’1) =0,

"Yg(l,l) = M,
710(17 1) = S7
(1, 1) =M
T2(1,1) = S,
713(1,1) =M

Ts(pc,0) =

Y1(pc,0) =

[

ESEE%ESE?

)
T23(pc, 0)
Y24(pc, 0)

A-28
Yor(pc, 0) = M,
~as(pc, 0) = M,
729(1)07 0) = M’
T30(pc, 0) = M,
731(pC O) = M)
732(17670) = M>
733(1)0, 0) A/I)
Y34(pc, 0) = M,
')’35(pC 0) = Al[)
70(11 3) = M’
’Yl(lv 3) = U,
72(1: 3) = U,
73(11 3) = Ma
'74(173) =T,
’)’5(1, 3) = U,
76(173) = U:
'77(1, 3) =U,
’)’3(1,3) = U,
79(17 3) = U7
m0(1,3) =T,
1i(L,3) =0,
’712(1,3) = U,
713(1:3) =U,
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714(170) = A’L '714(17 1) - S7 714(172) = Ma 714(11 3) = U:
715(170) = M; 715(17 1) = U: '715(1’2) = U7 715(113) = U’
716(1,0) =M, me(1,1)=U, mse(1,2)=U, mse(1,3)=7,
717(1)0) = M7 ’717(11 1) = U7 ’717(1:2) = U) 717(173) = U7
718(1,0) = A/I: '718(1; 1) = U7 718(1a2) = Ua 718(19 3) = U7
719(170) =M, '719(17 1) =0, 719(172) =U, '719(17 3) =U,
720(1, 0) = M, 720(1, 1) = U7 720(1,2) =T, 720(11 3) = U,
721(170) =M, '721(11 1) =M, 721(1)2) =M, 721(17 3) =U,
")’22(1,0) = A’L '722(17 1) = Ma '722(17 2) = M’ 722(1’ 3) = U7
723(1) O) = M1 723(11 1) = M7 723(1’ 2) = M7 723(173) = U’
724(170) = M) ’724(171) = M7 724(172) = M) 724(17 3) = U7
Y25(1,0) = M, 75(1,1) =M, vs(1,2)=M, %s5(1,3)=U,
Y26(1,0) = M, y6(1,1) =M, 726(1,2) =M, 726(1,3) =0,
Y21(1,0) = M, r(l,1)=M, ~r(1,2)=M, ~7(1,3)=U,
728(1)0) = M1 728(1’ 1) = S’ 728(172) = Sa 728(1) 3) =U.
Y29(1,0) = M, 729(1,1)=U, 729(1,2)=0U, 729(1,3) =70,
730(1a0) = M: ’7'30(11 1) = S: ’730(17 2) = S) 730(113) = Ua
731(1’0) =M, 731(11 1) =U, 731(172) =U, 731(173) =U,
732(]-,[)) =M, 732(1a 1) =5, ’732(1,2) =S5, 732(1’3) =U,
733(1a0) = A’Ia 733(1a 1) = Ua '733(1’ 2) = Ua 733(1a3) = U7
734(1’0) = M) 734(11 1) = S) 734(17 2) = S) ’734(17 3) = U>
735(1,0) = M, 735(1,1)=U, 75(L,2)=U, 7s(1,3)=U
3 Equations

ﬂO(pcv 0) = p¢, ﬂg(pcl 0) = Pp¢, ﬂlS(pca O) = pc, ,327(}70 0
Pi(pc,0) = pe,  Pro(pe,0) = pe, Pig(pe,0) = pe, fFas(pe,0
Ba(pe,0) = pe,  Pu(pe,0) =pe, Bao(pe,0) = pe, Pao(pe,0 pc,
B3(pc,0) = pe, Pra2(pe,0 P21(pc,0) = pe,  Bso(pc, 0

Bs(pc,0) = pe, Pia(pc,0 B23(pc,0) = pc,  Paa(pc, 0
Bs(pc,0) = pe, Pis(pc,0 Pa4(pc,0) = pc, fa3(pc, 0
ﬁ7(pc7 0) = pc, ﬁlﬁ(pca O) = pC, ,825(1)07 0) = pc, ,334(}70 0

)=
) )=
o i
B4(pc,0) = pe, Pis(pe, 0; B22(pc,0) = pe,  Bai(pe, 0; pc,
- =
Bs(pc,0) = pe, Brr(pc,0) = pe, fPas(pc,0) = pe, Bas(pe,0) =

IBO(LO) = D¢, /HO(L 1) = 17 ﬁO(l 2) - 11 /HO(]' 3) - 17
ﬁl(l,o) =pc, 161(1 1) - 1: /81( 2) =1 ( 3) =uw,
£2(1,0) = pc, B2(1,1) = w, ,82(1,2) =w, (1,3) =w,
,33(1 0) /83(171) =1, ﬁ3(1a2) =1, (173) =1,
[7’4(1, 0) ﬂ‘l(l, 1) =1, :64(1a 2) =1, (173) =W,
ﬂﬁ(ly 0) = pc, ﬂ5(1a ]-) =1, 135(172) =1, (1,3) =w,
ﬂﬁ(l)o) = pc, :86(1,1) = 17 :86(172) = 11 ;56(1 3) = w,
.67(11 0) = pc, /87(17 1) = w, 137(172) = w, ( 3) = w,
/38(11 0) = pc, ﬂs(l, 1) =w, :B8(11 2) = w, 183(1 3) = w,
[39(17 0) = p¢, ﬂg(la 1) =1, :39(1,2) = 1; :69(1 3) = w,
ﬁlO(l,O) = p¢, /310(17 1) =9, ,310(1,2) =1, /810(1> 3) = w,
p1(1,0)=pc, Bu(l,1)=1, Fu(,2)=1, p(1,3)=uw,
P12(1,0) = pe, [i2(1,1) =9, f12(1,2) =1, f12(1,3) = w,
ﬁ13(1:0) - pC, :813(17 1) = 1a .613(172) = 17 [))13(1’3) =uw,
p14(1,0) = £1a(1,1) =9, p1a(1,2) =1, pu(1,3) =w,
ﬁlt’)(l 0) ,615(1, 1) = w, ﬂ15(1) 2) = W, /315(1’3) =w,
P16(1,0) Pis(L,) =w, fs(1,2) =w, fis(1,3) =w,
f17(1,0) Brir(L,1) =w, Bir(1,2)=w, Bir(1,3)=w,
,618(110) ,318(1 1) =w, 1318(172) = w, 1818(17 3) = w,
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6 Equations

P19(1,0) = pc, Pig(1,1) = B19(1,2) = w, Bi19(1,3) = w,
B20(1,0) = pc, B2o(1,1) =w, B20(1,2) =w, Po20(1,3)=w,
F21(1,0) =pe, Pau(l,1)=1, Ba1(1,2)=1, f(1,3) =w,
B22(1,0) = pc, faa(l,1) =1, [22(1,2) =1, f22(1,3) =w,
B23(1,0) =pc, P3(l,1) =1, [23(1,2)=1, f23(1,3)=w,
/824(1a 0) = Dp¢, ﬂ24(1 1) 17 /324(1:2) 17 ,824( 3) =W,
/825(11 0) = pc, 1625(1 1) 1, ,825(172) 1: :325(1 3) =w,
B26(1,0) = pc, fas(l,1) =1, [26(1,2) =1, fa6(1,3) =w,
B27(1,0) = pc, Por(1,1) =1, [or(L,2)=1, [27(1,3) =w,
B28(1,0) = pe, Ps(1,1) =1, p[og(l,2)=2, [23(1,3)=
B29(1,0) =pe, Pag(l,1) =w, fF29(1,2) =w, [29(1,3)=w,
B30(1,0) = pc, Pa0(1,1) =3, B30(L,2) =4, f30(1,3) =w,
B31(1,0) = pc, PFa(l,1) =w, B1(1,2)=w, PF3(1,3) =w,
F32(1,0) = pc, fF32(1,1) =5, B32(1,2) =6, [32(1,3) =w,
B33(1,0) =pc, Ba3(l,1) =w, B33(1,2) =w, fB33(1,3) =w,
P34(1,0) =pc, P34(1,1) =7, [24(1,2) =8, f34(1,3)=w,
F35(1,0) = pc, F35(1,1) =w, Bas(l,2) =w, f35(1,3) =w,
Po(pe, 1) = pe

6pc,0,0(t,a, .E) =t— 1,

5pc,0,27(t7 a, I) =t— 1,

Opcoa(t,a,z) =t —1,

5pc.0,28(t,a, -’D) =t—-1,

51,,:’0’2(75, a,x) =t— 1,

6pc,0,29 (t, a, .E) =t— 1,

6pc‘0,3(t, a,x) =t— ].,
6pc,0,30 (t, a, .’L‘)
5pc.0.4(t7 a, .T) =t- 15

6pc,0,31(t1 a, .L') =t— 1,

6,,030,5 (t, a, .’l)) =t — ].,

6pc,0,32(t1 a, 'r) =t— 17

5pc,0,6(t,a1 E) =t — 1,

6pc,0,33(ta a,z) =t—1,

6pc,0,7(t,a, .’E) =t—1,

5pc,0,34(t, a, :l,‘) =1f— 1,

6pc,0,8 (t, a, .'17) =t— 1,

Jpc70’35(t, a, .’E) =t— 1,

‘51,0,0(t,a,x) =t—1,
d1,30(ta,z) =133,
d101(t,a,x) =t —1,
5131(t a ’t)—-t—l,
6102(t a L)'t—l,
(5132(t0..'£) t—l,
6103(t a .’l))—t—l,
5133(t a .'E)*t—-gl,
5104(t a,x)=t—1,
5134(t a x)—t—l,
5105(t a, x)—t—l,
d135(t,a,z) =t —1,
5106(t a .’E)—t—].,
5135(t a iL‘)—t—l,
6107(t a z)—t—l,
5137(12 a, .’L‘)—t—l,

=t—1,

Jpc‘oig(t, a, IE) =t—1,

5pc,0,1o(t, a,r)=t—1,
Ope011(t,a,z) =t — 1,
8pe012(t,a,z) =t — 1,
Opc013(t,a,z) =t — 1,
5PC,0,14(t,a,z) =t—1,
bpe0,15(t a, ) =t — 1,
Spe016(t a, ) =t — 1,

5pc,0,17(ta a, .’L‘) =t 1,

01,10(t,a,z) =t — 35,
01,11(t,a,2) =1t — 33,
0112(t0,2) =1 —1,

01,1,3(t,a,2) =t —33,
01,1,4(t,0,2) =t — 31,
01,1,5(t,a,2) =t — 30,
011,6(t,a,z) =t — 29,

51!1,7(75, a, .’I)) =t — 1,

Opc018(t,a,2) =t —1,
Opc,0,19(t @, 2) =t — 1,
Opc020(t,a,2) =t —1,
Ope021(t,a,2) =t — 1,
dpep22(ta,z) =t —1,
Ope0,23(t,a,z) =t — 1,
Opc,0,24(t,0,2) =t —1,
Opc,0,25(t,a,x) =t —1,
Ope,026(t,a, ) =t — 1,
0120(t,a,z) =t — 34,
01,21(t,a,2) =t — 32,
b1,22(t,a,z) =t —1,

01,23(t,a,z) =t — 32,
01,2.4(t,0,2) =t — 30,
01,25(¢,a,z) =t — 29,
01,26(t,a,x) =t — 28,

61,2,7(t, a,m) =t—1,



d1,08(t,a,z) =t —1,
51,3,8(t7a‘ "L’) =t— 17
d109(t,a,z) =t —1,
(5139(t a .’E) —t—l,
b1000(t0,2) =t — 1,
51310(t a .’L)*tfl,
001t a,z) =t —1,
d131(ta,z)=t—1,
51012(t a .’13)-t—1,
61312(t a .’E)—t—l,
51013(t a Zﬂ)ﬁt—l,
01,313(t,a,2) =t — 1,
51014(tax) t—].,
(51314(t a .’E) =t— 1,
(51015(f a, E)—t—l,
61315(t a .’E) —t—l,
010,6(t,a,2) =t — 1,
61,3,16(t,a,2) =t —1,
01017(t,a,7) =t-- 1,
61?3_’17(t a .’L‘) =t— 1,
01,0,8(t,a,z) =t — 1,
01318(t,a,2) =t — 1,
51,0,19(t7av ‘II:) =t— 17
51,3,19(t,a7 1') =t— 1;
61,0,20(t, a, .’l)) =t— 1,
013,20(t,a,2) =t — 1,
61021(t,a,7) =t —1,
cs1,3,21(t7a'7x) =t- 17
010022(t,a,7) =t — 1,
01,3,22(t,a,7) =t -1,
1,0023(t,a,2) =t —1,
51’3’23(13,(1, .L) =t— 1,
51,0,24(t7a‘7 IL') =t- 15
51,3,24(t,a, .'L) =t 1,
61025(t,a,7) =t — 1,
1,3,25(t,a,2) =1 — 1,
61,0,26(t,a, .'L) =t— 1,
61,3,26(t)a7 27) =1— 17
51,0,27(t’a’a I) =t—1,
01327(t,a, ) =t — 1,
51028(t a 9") =1— 1,
61,328(t,a,2) =t — 1,
(51029(13 a, E) =1{— 1,
01,329(t,a,7) =t — 1,
b1,030(t,a, ) =t — 1,
51330(t a I) ——t*].,
61031(t a x) =t — ].,
51331(t a ZE) =t— 1,
) t— 17
) =t- l:

01,0,32(¢,a,
01,3,32(t,0

0118(t,a,2) =t—1,
61!1'9(1;, a, x) =1— 24,

51,1,10(t7 a, ‘T’I) =t~ 17

011.11(t,a,2) =t — 26,

di112(t,0,2) =t — 1,

51)1’13(1:, a, .’L‘) =t— 28,

01,1,14(,0,2) =t — 1,
01115(ta,2) =t —1,
011,16(t,a,2) =t —1,
dia7(t,a,z) =t —1,
01,118(t,a,2) =t —1,
b1110(t,a,2) =t -1,

51!1!20(25,(1,23) =t- 15

811.21(t,a,z) =t — 35,
011.20(t,a,z) =t — 34,
811.23(t,a,z) =t — 33,
611,24(t,a,2) =t — 32,
811.25(t,a,z) =t — 31,
61,1,26(t,a,2) =t — 30,

51‘1527(25, a, .'E) =t— 29,

01,1,08(t,a,2) =t —1,
b1,1,20(t,a,2) =t - 1,
01,130t 0,2) =t — 1,
has(te,z)=t—1,

61,1,32(t,aa 117) =t— 17
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51,2,8(t, a, ‘7") =t— 1a

51,2,9(t,a, CL‘) =1t— 30,

61,2,10(t,a,2) =t — 30,
01,211(t,a,2) =t — 30,
01 2.12(t,a, ) =t — 30,
01,2,13(t,a,2) =t — 30,

51,2,14(t, a, 2,') =t— 30,

b1,215(t,a,z) =t — 1,
O1,216(t,a,7) =t — 1,
d1217(t,a,z) =t — 1,
b12.18(t,a,z) =t —1,
b1219(ta,2) =1~ 1,

61,2,20(15,(1, .L‘) =t— 1,

b1.2,01(t,a, ) =t — 34,
01,2,22(t, 0, 2) =t — 33,
81,2.23(¢,a,2) =t — 32,
01,2.24(¢,a,2) =t — 31,
01,2,25(t,a,2) =t — 30,
01,2.26(t,a,z) =t — 29,

51’2,27(t, a, .’E) =t - 28,

01,2,28(t,a,2) =t —1,
01,2.20(t,a,2) =t — 1,
01,2,30(t,0,2) =t — 1,
01,231(ta,2) =t —1,

51,2,32(ta a,;v) =t- 11

A-31
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d1033(t,a,) =t—1, O1133(t,a,2) =t—1, &1 233(t,a,2)=t—1,
51,3,33(ta a, x) =t— 17
b1,084(t,0,2) =t —1, b1134(t0,2) =t —1, b1234(t,a,2) =t~ 1,
61,3,34(ta a,z) =t—1,
6103s(t,a,x) =t —1, d1135(t,a,x) =t—1, b1235(t,a,z) =t—1,
51,3,35(ta a, ‘T) =t—1,

IV Equations
‘/1(07 a ZE) - Sta’y7 I/l(lvav .’E) = true, ‘/1(21 a, Z) = Sta‘ya
‘/1(3, a, I) up, I/1(4, a, ZL') = true, ‘/1(5; a, .’l)) = false,
Vi(6,a,z) = false, Vi(7,a,z) =down, Vi(8,a,z)= up,
Vi(9,a,z) = true, Vi(10,a,z) = true, Vi(11,a,z) = false,

V1(12,a,2) = false, V1(13,a,z) = false, Vi(14,a,z) = true,
Vi(15,a,2) = false V1(16,a,z) = 90, Vi(17,a,1) = true
V1(18,a,z) = Vi(19,a,2) = true, V4(20,a,2) =
Vi(21,a,2) = false Vi(22,a,z) = false, V1(23,a,2) = false
Vi(24,a,z) = false, Vi(25,a,z) = fal.se V1(26,a,2) = false
Vi(27,a,2) = false V1(28,a,2) = V1(29,a,2) = ,
V1(30,a,z) = Vi(31,a,z) = , V1(32,a,1) = ,
‘/1(33701 IE\ - 0; ‘/1(34’(1 Z) ; ‘/'1(3570‘ .’L’) 1
%c(o)a"r) = 17 ‘/}76(1)047 .’E) , ‘/;76(2’013 23) 7
V;,,C(S,a,.’lt) =4, Vpc(47("’ z) =5, Vpc(5aa1 z) = 6,
Vpe(6,a,2) =7, Voe(7,0,2) =8, Vpe(8,a,2) =9,
Vee@a,7) =10,  Voo(10,0,2) =11,  V,o(1L,0,2) = 12,
Voe(12,a, ) = 13, Voe(13,a,z) = 14, Vpe(14, 0, z) = 15,
Voe(15,a,z) = 16, Vpe(16,a,2) = 17, Voe(17,a,z) = 18,
Vpe(18,0a,z) =19, Vpe(19,a,2) = 20, Vpe(20,0a, z) = 21,
Voe(21,a,2) = 22, Voe(22,a,z) = 23, Vpe(23,a, ) = 24,
Voe(24,0a,x) = 25, Vpe(25,a,x) = 26, Vpe(26,0a,x) = 27,
Voe (27,0, ) = 28, Vpe(28,a,2) = 29, Vpe(29,a, 2) = 30,
Vpe(30,a,z) = 31, Vee(31,a,z) = 32, Vpe(32,a x) = 33
Vpe(33,a,z) = 34, Vpe(34,a,x) = 35, Vpe(35,a,2) =
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ST Equations

Voe(t+1,0,2) =

ﬁ

mod (add (Vpc(t,a,x),1),
mod (add (Vpc(t,a,z),1),
mod (add (Vpc(t, a, z),
mod (add (Vpc(t,a, ),
mod (add (Vpe(t, a, x),
mod (add (Vp.(t,a,z),
mod (add (Vpe(t, a, x),
mod (add (Vpc(t, a, z),
mod (add (Vpc(t,a,x ,
mod (add (Vpc(t, a, ),

3
3
3
3
3
3
3
) 3
) 3
)
mod (add (Vpe(t, a, ),
)
)
)

i
1
H
?
)
)
?
)

mod (add (Vpc(t,a, ),
mod (add (Vpc(t,a, z),
mod (add (Vpc(t, a, z),
mod (add (Vpc(t, a, x),
mod (add (Vpc(t,a, ),
mod (add (Vp.(t,a, z),
mod (add (Vpc(t, a, z),
mod (add (Vpe(t, a, x),
mod (add (Vpc(t, a, ),
mod (add (Vpc(t,a, z),
mod (add (Vp.(t,a, x),
mod (add (Vpe(t, a, x),
mod (add (Vpc(t, a, x),
mod (add (Vpe(t, a, z),
mod (add (Vpe(t,a, )
mod (add (Vp.(t,a, x),
mod (add (Vpc(t, a, x),
mod (add (Vpe(t, a, z),
mod (add (Vp(t,a, z),
mod (add (Vpc(t,a, x),
mod (add (Vp.(t,a, z),
mod (add (Vpc(t,a, x),
mod (add (Vpe(t, a, x),
mod (add (Vpe(t,a, ),
mod (add (Vpe(t, a, z),
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if Vpe(t—1,a,2) =0
if Vpe(t — 1,a,2) =1
if Vpe(t—1,a,2) =2
if Vpe(t —1,a,2) =3
if Vpe(t —1,a,2) =4
if Vpe(t—1,a,2) =5
if Vpe(t —1,a,2) =6
if Vpe(t —1,a,2) =7
if Vpe(t —1,a,2) =8
if Vpe(t —1,a,2) = 9
if Vpe(t —1,0,2) =
if Vpe(t—1,a,2) = 11
if Vpe(t—1,a,2) =12
if Vpe(t—1,a,2) =13
if Vpe(t —1,a,2) = 14
if Vpe(t —1,a,2) = 15
if Vpe(t — 1,0,z) =16
if Vpe(t — 1,a,2) =17
if Vpe(t —1,a,2) =18
if Vpe(t —1,a,2) =19
if Vpe(t —1,a,2) =20
if Vpe(t —1,a,2) =21
if Vpe(t —1,0,2) = 22
if Vpe(t —1,a,2) =23
if Vpe(t —1,a,2) =24
if Vpe(t—1,a,2) =25
if Vpe(t —1,a,2) =26
if Vpe(t — 1,a,2) = 27
if Vpe(t —1,a,2) =28
if Vpe(t —1,a,2) =29
if Vpe(t —1,a,2) =30
if Vpe(t—1,a,2) =31
if Vpe(t — 1,a,z) =32
if Vpe(t —1,a,2) =33
if Vpe(t —1,a,z) = 34
if Vpe(t—1,a,2) =35
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End

‘/].(t, a? m) =

9

4

Vvl(t - 317 a, .'1,‘)
and(Vi(t — 31,a,z), Vi(t —

Vit —35,a,zx),
cond | Vi(t—34,0,z),
‘/l(t - 337 a, .T)
or(Vi(t —33,a,z), Vs(t — 32,0,
start
Vi(t — 33,a,z),
cond | Vi(t—32,a,z),

and(Vi(t — 29,a,2), Vi(t — 28,a,z))
down

up

61](‘/1 (t —24,qa, -'I:)a ‘/l(t — 30, a,

eq(ag(t), Vl(t - 30’ a, .’L‘))

eq(Vi(t — 26,a,z), Vi(t — 30, a,

eQ(O‘Q(t), Vl(t - 301 a, IB))

eq(Vi(t — 28,a,z), Vi(t — 30,a
gt(ag(t), 1/].(t o 30’ a, ‘r))

false

90

true

0

true

0

or(Vi(t — 35,a,2),Vi(t — 34, a,
or(Vi(t — 34,a,2), Va1(t — 33, q,
OT(‘/].(t - 337 a, ‘1:)7 ‘/i(t - 32, a,
gt(‘/l(t - 33, a, IL‘), ‘/l(t - 315 a,
gt(Vi(t — 31,a,z), Vi(t — 30, qa,
gt(lfl (t - 307 a, .’E), Vl(t - 29) a,
gt(Vi(t — 29,a,z), Vi(t — 28, qa,
sub(a1(t), a2(t))

0

sub(as(t), a4 (t))

0

sub(as(t), as(t))

0

sub(az(t), as(t))

0

z))

30,a, 1))
and(V1 (¢t — 30,a,x), V1(t — 29, a,z))

z))
z))

, 1))

z))
z))
z))
z))
z))
z))
z))

if Vpe(t —1,a,2) =0
if Vpe(t —1,a,2) =1
if Vpe(t —1,a,2) =2
if Vpe(t —1,a,2) =3
if Vpe(t —1,a,2) =4
if Vpe(t —1,a,2) =5
if Vpe(t —1,a,2) =6
if Vpe(t —1,a,2) =7
if Vpe(t —1,a,2) =8
if Vpe(t —1,a,2) = 9
if Vpe(t — 1,0,2) =

if Vpe(t —1,0,2) = 11
if Vpe(t —1,a,2) =12
if Vpe(t—1,a,2) =13
if Vpe(t — L,a,2) = 14
if Vpe(t — 1,a,2) =15
if Vpe(t —1,0,2) = 16
if Vpe(t — 1,a,2) =17
if Vpe(t —1,a,2) =18
if Vpe(t —1,a,2) =19
if Vpe(t —1,a,2) =20
if Vpe(t —1,a,2) =21
if Vpe(t —1,a,2) =22
if Vpe(t — 1,a,2) = 23
if Vpe(t —1,a,2) =24
if Vpe(t —1,a,2) =25
if Vpe(t — l,a z) =26
if Vpe(t — 1,a,2) = 27
if Vpe(t — 1,a,2) =28
if Vpe(t — 1,a,2) =29
if Vpe(t — 1,a,2) = 30
if Vpe(t —1,0,z) =31
if Vpe(t —1,a,2) =32
if Vpe(t —1,a,2) =33
if Voot — 1,a,) = 34
if Vpe(t — 1,a,2) =35
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Appendix E

Concrete dSCA definition of

GRCP

Begin
Specification
Import
Sorts
Constant Symbols
VF Function Names
3 Function Names
~ Function Names
6 Function Names
~ Equations

SCA_Algebra

k
X MAtup - A/[AWP

Vi: T x A"
Bpe : N xN — N
Ype : N X N — {S, M}

51'_3',;,0 T x A™ x ]\/[1]2

e

SKXRRRKRKREEER

o n

[ T N

SRRRERREER

— O OFROFFROFR,RORFORFROKFO O
NP RN N NN NN NN R P el e g S

=

[N N

tup —T
70(1,2) = M,
1(1,2) = M,
72(1,2) =U,
73(1,2) = M,
74(1,2) = M,
75(1,2) = M,
Y6(1,2) = M,
77(1,2) =T,
v8(1,2) =1,
79(1,2) = M,
mo(1,2) =S,

1i(L,2) =M

Y0(1,3) = M,
M(1,3) =M,
72(1,3) =T,

73(1,3) = M,
74(1,3) = M,
75(1,3) = M,
76(1,3) = M,
v7(1,3) =T,

18(1,3) =T,

79(10,3) = M,
710(1,3) = M,
11(1,3) = M,
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Yo(1,4) = M,
n(,4) =0,
72(1,4) =T,
v3(1,4) = M,
74(1,4) =1,
75(1,4) = U,
Y6(1,4) =,
v7(1,4) = U,
78(1,4) = U,
79(1,4) =T,
mo(1,4) =U,
m1(1,4) =0,



T2(1,
’Y12(1a
73(1,
13(1,
ma4(1,
714(17
ms(1,
1s(l,
16(1,
716(17
717(17
77(L,
Y18(
T18(
Y19(
T19(
Y20
¥20(
21(
Yeu (
Yo2(1,
22(1,
723(11
Y23(1,
Y2a(1,
Y24(1,
725 (1,
725(11
726(1a
~Yos(1,
o7(1,
727(1a
728(1,
728(17
Yoo(L,
Y29(1,

[ (I L (|

Il

Ll
SREXXKKRKKEKRRERE

?

-

Il

2

I

SEER

k]

b

2

—~
N S N N N s L e

- e e

O OMMOFROFROHROFOROFHROFHFOFROFROFEFOFRFROMFOFOFEFOFOFOFRFRORPROFORFORFORFEO

TR
SRRKRKREKRRKRRERERER

I (|

|

M e e e e e e e e e e N e e S N S e S S S N S S S e e N S e S S N S e

|

22 2
uw&éu
[~ N e B |
NN N
===

(I

-

(1]

-

I
REXXKREKEXRRRERERERER

il

Yo (pC,

N e N N i e e e S e e N e e e e e e

|
RRERER

m2(1,2) = S,
ms(1,2) = M,

Ma(1,2) =S,

ms(1,2) =0,
m6(1,2) =T,
mM7(1,2) =V,
ms(1,2) =T,
v9(1,2) = U,
Y20(1,2) =T,
Y21(1,2) = M,
Y22(1,2) = M,
Y23(1,2) = M,
Y24(1,2) = M,
v25(1,2) = M,
Y26(1,2) = M,
v27(1,2) = M,
Y28(1,2) = S,
Y29(1,2) = U,
Y30(1,2) = S,
731(1,2) = U,
v32(1,2) = S,
Y33(1,2) = U,
v34(1,2) = S,

?

M
M
T2(pc,0) = M,
M
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712(17 3) = A/-[)
m3(1,3) = M,

’714(1, 3) = ]\/I,

ms(1,3) =T,
ms(1,3) =1,
m7(1,3) =T,
ms(1,3) =1,
m9(1,3) =T,
Y20(1,3) = U,
Y21(1,3) = M,
722(1,3) = M,
Y23(1,3) = M,
Y24(1,3) = M,
Ye5(1,3) = M,
Y26(1,3) = M,
Y7(1,3) = M,
Y28(1,3) = S,
Y29(1,3) = U,
v30(1,3) = S,
731(1,3) =T,
v32(1,3) = S,
733(1,3) = U,
v34(1,3) = S,

735(17 3) = U7

Ms(pe,0) = M,
T9(pc,0) = M,
720(pc) 0) = A/Iy
Y1(pc, 0) = M,
Y2(pc, 0) = M,

me2(l,4) = U,
mns(1,4) =0,
m4(1,4) =T,
ms(1,4) =T,
me(1,4) =T,
m7(1,4) =T,
ms(1,4) =T,
T19(1,4) =T,
Y20(1,4) = U,
Y21(1,4) = U,
Y22(1,4) = U,
Y23(1,4) =T,
Y24(1,4) = U,
Y25(1,4) =T,
Y26(1,4) =T,
1er(1,4) =T,
~Yo8(1,4) = U.
Y29(1,4) = U,
v30(1,4) =T,
v31(1,4) = U,
Y32(1,4) = U,

v33(1,4) = U,
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¥5(pc,0) = M, m4(pc,0) = M, 723(pc,0) = M, v32(pc,0) = M,
Vﬁ(pcyo) - M7 ’715(])0,0) = Ma 724(pc, O) = Ma 733(}70, 0) - Ma
’77(170, 0) = A/Iy ’YIG(PC> O) = A/I’ 725(1)67 0) = M’ 734(1)0’ O) = M)
v8(pc,0) = M, me(pc,0) = M, ~26(pc,0) = M, ~35(pc,0) = M

 Equations

60(1) 0) = p¢, /80(172) =1, ﬂo(la 3) =1, ,HO(]-:4) =1,

Bo(L, 1) =1,

ﬁl(l’o) = p¢, :[31(1’2) =1, ﬁ1(173) =1, ﬂ1(174) =w,

pi(1,1) =1,

ﬂ2(13 O) = pc, ﬂZ(la 2) = w, ﬁ2(17 3) =w, :32(174) =uw,

Ba(1,1) =1,

133(170) =pc, ﬁ3(112) =1, :83(17 3) =1, [33(1,4-) =1,

ﬁ3(1, 1) =1,

ﬁ4(1’0) = pc, /34(172) =1, :64(1,3) =1, [7’4(]-’4) = w,

Ba(1,1) =1,

,85(1a 0) =pc ﬁ5(172) =1, ﬂ5(1a3) =1, 165(174) =uw,

ﬁ5(1’ 1) =1,

ﬂ6(1> 0) = pc, /[36(172) = 17 [)'6(11 3) = 17 ﬁ6(1?4) =W,

ﬂ6(17 1) =1,

[37(170) = pc, ;67(1a2) = w, 67(1, 3) =w, 187(1)4) = w,

ﬁ7(1i 1) =1,

188(17 0) = p¢, ﬁ8(172) =w, 58(17 3) =w, ﬁ8(174) =w,

Bs(1,1) =1,

ﬁg(l,O) = p¢, 159(172) = 1; ,Bg(l, 3) = 17 /39(1’4) =uw,

IHQ(]-? 1) = 17

ﬁlO(lx 0) = pc¢, ,610(1,2) = 97 ﬂ10(1;3) = 1, [7.10(1’4) =w,
ﬂ10(17 1) = 17

:811(110) = p¢, ,611(1;2) = 17 1811(173) = 1’ ﬁ11(154) =uw,
ﬁu(l, 1)=1,

/6.12(]-70) = pc, 1812(1;2) = 9) .612(113) = 1$ :312(174) =w,
Pr2(1,1) =1,

[7)13(1’0) = p¢, :313(172) =1, /813(113) =1, :313(1,4) =w,
[7)13(17 1) = 17

[7)14(1?0) = p¢, 614(112) = 9’ ﬂ14(1’3) =1, ﬁ14(174) = Ww,
614(1, 1) = 1’

$15(1,0) = pe, Bis(1,2) =w, [i15(1,3) =w, Bis5(1,4) =w,
1815(17 1) =1,

ﬁlﬁ(]-)O) = p¢, ,816(172) =uw, ﬂ16(173) =w, [315(1’4) =w,
ﬂlﬁ(lv 1) =1,

:617(170) = p¢, ﬁ17(1a2) = W, 1817(1,3) =w, /817(174) = w,
1817(1,1) =1,

ﬂ18(170) = D¢, :618(172) = w, [318(173) =w, /618(114) =W,
,[7‘18(17 1) = 17

,319(1,0) = p¢, :619(172) = w, /319(173) =w, :619(1’4) =uw,
[7.19(1’ 1) = 17

ﬂ20(150) = p¢, ﬁ20(1)2) = w, 1620(1,3) =W, ﬂ20(174) = w,
ﬁZO(la 1) = 17

,621(1)0) = pc, /821(112) = 1, /[321(1)3) = 1, 621(174) = w,
Ba1(1,1) =1,

B22(L,0) = pe, F2a(1,2) =1, [22(1,3)=1, [B22(1,4)=w,
P22(L,1) =1,

B23(1,0) = pe, F23(1,2) =1, [23(1,3)=1, pBa3(1,4)=w,
Pa3(1,1) =1,

B24(1,0) =pec, fa(l,2) =1, f24(1,3)=1, [2u(l,4)=uw,
/624(17 1) = 17
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4§ Equations

ﬂ25(1 0) = pc, :625(1a2) = ]-7 525(:[’ 3) - 1, :625(]-’4) =w
Bas(1,1) =1,

ﬁ26(1 0) pc, ﬁ26(1a2) = 1) ﬂ26(1,3) = 1, ﬂ26(154) = w,
1625(1 1) 17

B2r(1,0) = pc, B22(1,2) =1, f2r(1,3)=1, [ar(1,4) =w,
[327(1 1) = 17

B28(1,0) =pc, B2s(1,2) =1,  [23(1,3) =2, [s(1,4) =w.
Bes(1,1) =1,

P29(1,0) = pc, B29(1,2) =w, fo29(1,3)=w, fP29(l,4)=w
F2e(1,1) =1,

ﬁ30(1 0) = pc¢, ﬂ30(1a2) = 3, ,830(1a 3) = 4: ,6’30(1,4) =w,
Bao(1,1) =1,

ﬁSl( 70) = pc, 1331(1?2) = w, 1331(1a 3) =w, ﬁ31(174) =w,
ﬂ31(1 1) = 11

P32(1,0) =pc, B32(1,2) =5, [B32(1,3)=6, [2(1,4)=w,
B32(1,1) =1,

ﬂ33( ,0) = pc¢, ﬁ33(172) =w ,833(11 3) =uw, 533(1’4‘) =w,
B33(1,1) =1,

B34(1,0) = pc, B34(1,2) =7, (34(1,3) =8, [Fau(l,4)=w
1834(1 1) = 1,

Bs5(1,0) =pe, B35(1,2) =w, B35(1,3) =w, [35(1,4) =w,
B3s(1,1) =1,

Bo(pc,0) = pe, Ba(pe,0) =pe, Bis(pe,0) =pe, Baz(pe,0) = pe,
Pi(pc,0) = pc, Pro(pe,0) = pe, Pia(pe,0) = pe, Pas(pc,0) = pe,
B2(pc,0) = pe, Bui(pe,0) = pe, Pro(pe,0) = pe, Pre(pc,0) = pe,
B3(pc,0) = pe, Pr2(pe,0) = pe, Pa1(pc,0) = pe, Bao(pc, 0) = pe,
Ba(pc,0) = pe, [is(pe,0) = pe, Baz(pc, 0) = pe, Ba1(pe,0) = pe,
Ps(pc,0) = pe, Pia(pe,0) = pe, fas(pe,0) = pe, Bsa(pc,0) = pe,
Bs(pc,0) = pe, Pis(pc,0) = pe, Paa(pe,0) = pe, Pas(pc,0) = pe,
Br(pe,0) = pe, Pie(pe,0) = pe, Bas(pe,0) = pe, Bza(pc,0) = pe,
Bs(pc,0) = pe, Prr(pc,0) = pe, Pas(pc,0) = pe, Bas(pc,0) = pe

51,0,0(t7a 2:) =t- 17
61,3,0(taa’ .’L‘) t—1,
Jlﬂl(t a m)—t—l,
61,31(2, a:r)_t—l,
5102(t(11)—t—1,
‘5132(t a, 1’)*t_17
5103(ta‘1’)_t_17
d133(ta,z) =t —1,
6104(t )*t_lv
braalt,az) =t—1,
61,05(t,a,z) =t —1,
o135(ta,x) =t—1,
5105(fa111)—t—1,
(5136(t a,z)=t—1,
5107(t a "E)_t—la
bra7(ta, ) =t—1,
01,08(ta,2) =t —1,
(5138(t(1.'17)—t—1,
Sr09(t,a,2) = £ — 1,
Sra9(t,a,0) =t — 1,

51’1,0(1:,(1, l‘) =t—1,
51’4’0(t, a, 1,) =t—1,
61,1‘1(t,a, .'1:) =t — 1,
6114,1(15, a, I) =t— 1,
51,1,2(75, a,z)=1t-—1,
51’4’2(t, a,x) =t — 1,
61,1,3(taa1$) =t-1,
(5114,3(15, a, .'L') =t—1,
01,14(,0,2) =1t — 1,
01,44(t,a,2) =t —1,
d115(ta,z) =t—1,
51,4,5(75, a,x) =t— 1,
51’1’5(t, a, .’E) =t—1,
b1,46(t,a,z) =1t —1,
61,1,7(t,a, :L‘) =t—1,
d1,47(t,a,2) =t — 1,
61,1,8(t, a, ‘E) =t—1,
01,48(t,a,2) =t — 1,
51,1’9(‘6,0,, :II) =t—1,
5174,9(t, a,z)=t—1,

b121(t,a, ) =t—1,
0122(ta,z) =t—1,
0123(t,a,z) =t —1,
d124(ta,z) =t —1,
01,25t a,z) =t—1,
026t a,)=1—1,
01 27(ta,z) =t —1,
d128(t,a,z) =¢t—1,

51,2,9(t,a, 37) =t-—-1,
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(51’0’10(1‘,,0.,.'15) =t- 17
51)3)10(t, a, .'I?) =t— 1,
61,0’11(t, a,.’[) =t— 1,
(51311(t a .’L‘) —t—l,
51012(f a x) —t—l,
51312(t a x)—t—l,
51013(t a .L') —t—l,
(51313(t a I) =t— ].,
(51014(t a 1‘) =f— ].,
51314(t(1,1’) t—1,
51015(t a, .T) =t— 1,
61315(ta,z) =t — 1,
51016(t a .’E) =t—- 1,
61316(t a, ZE) =t— 1,
51017(t a .’lf) —t—].,
61317(t a .’E) =t 1,
61,0,18(t:a,z) =t — 1,
51313(t a, l‘) —t—l,
(51019(t Qa l) =t - 1,
(51319(t a .’L‘) =t— 1,
81,0,20(t,a ,x)=t—1,
013,20(f,0,2) =t — 1,
61,0,21(taa I) =t— 15
51?3,21(75, a, J,') =1{— 1,
51!0’22(t, a, .’L) =t — 1,
d1,320(8,a,2) =t —1,
51,0’23(@ a, IB) =t— 1,
(51’3!23(15, a, .'E) =t — 1,
51‘0,24(?5, a, .'E) =1 1,
01,3.24(t,a,z) =1 —1,
51:0,25(15, a, .’17) =t— 1,
51,3’25(75,0, .’E) =t— 1,
01,026(f @, ) =t — 1,
51326(t a l‘) —t—].,
(51027(t a .'L) =1f— 1,
(51327(t a .I?) =t— 1,
Jlgzg(t a .L) =1t— ].,
d1328(t,a, ) =1 — 1,
61020(t,a,2) =t —1,
b1329(f,0,2) =t — 1,
61,030t a,z) =t — 1,
61.3,30(t,a,2) =1 —1,
61,031(t,a,z) =t — 1,
br3a1(ta,z) =t —1,
51‘0’32(t, a, II?) =t— 1,
51,3,32(t,a, IE) =t— 1,
61,033(t,a,z) =t —1,
61’3,33(t,a, .’L‘) =t— ].,
61,0,34(t7 a, .'L') =t-— 1;
51’3_34(t, a, .’L‘) =t— ].,
d1,035(t,a,z) =t —1,
)

61,3.35(t7 a,r)= t— 1,
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61,1,10(t7 a, T) =t— 11
51’4,10(t, a,x) =1t— 1,
51’1’11(t, (L,.’L‘) =t— 1,
(51’4,11(t, ﬂ,.’L‘) =t— 1,
51112(t a .’E)—t—l,
d1402(ta,2) =t — 1,
d113(ta,2) =t —1,
51413(t a Z) —t—l,
61,1,4(t,a,2) =t — 1,
(51414(t CL.’L‘) t*l,
o1,1,15(t,0,2) =t — 1,
b1,4,15(ta,2) =t — 1,
511 16(t a, :1)) =t— 1,
61416(t a .L') =1t— 1,
61117(t a .'E)—t—l,
(51417(f a 3:) =t—1,
d11,18(fa,2) =t — 1,
51418(t a $) =f— 1,
(51119(t a IE) —t—].,
5194,19(t a, .’I)) =t— 1,
51,1,20(t7a’ I) =t— 1)
‘51,4,20(t7a7 IE) =t— 17
o1t a,z) =t—1,
61,4,21(t,a, :IJ) =1i— 1,
51’1’22(t, a, .’IJ) =t— 1,
61’4’22(t, a, .'L‘) =t— 1,
51,1,23(t,a,x) =t— ].,
61,4,23(t7a7$) =t- 1a
011.24(t,a,2) =t — 1,
51’4,24(?5, (),,.1,') =t— 1,
51,1,25(t; a,z) =t- la
(51’4,25(t, a, I) =1 1,
51,1,26(t: a, 3:) =t-— 17
51’4,25(t,0., .’I)) =1— 1,
51’1’27(1&, a, .’L) =t— 1,
61,4,27(t,a, .E) =1— 1,
51,1.28(t7a’ .']3) =t- 19
(51,423(7:,0,, .'L') =t— 1,
61,1,29(t1 a, J’) =t—1,
(51__4’29(75, a, .’L‘) =f— 1,
61’1’30(t, (L,.’E) =t— 1,
61,4!30(@ a,:r:) =1t— 1,
01131t a,z) =t—1,
61,4,31(t: a, l‘) =t- 17
61’1,32(?5, a, il?) =t— 1,
51,4,32(t, a, III) =t— 1)
51'1,33(15,01, :L‘) =t— 1,
5174’33(75,(1, :L') =t— 1,
51,1,34(t,a7 ZL') =t— ]-)
51’4’34(75, a, SL‘) =t— ].,
61,1135(t7 a, .E) =t— 1,

)

51’4’35@, a,r)=t—1,

d1,2,10(t,a,2) =t — 1,
d1211(ta,z) =t —1,
d1212(t,a,2) =t —1,
b1,213(ta,2) =t — 1,
61,2,14(t,a,2) =t — 1,
01,215(t,a,2) =t —1,
012,16(t,0,2) =t —1,
d1217(t @, ) =t — 1,
b1,2,18(ta,2) =t —1,
01,219(,a,z) =t —1,
d1.2,20(t,a,2) =t —1,
o1221(¢a,2) =1 — 1,
81,2.22(¢,a,2) =t — 1,
b1,2,23(t,a,2) =1 — 1,
61,2,24(t,a,x) =t — 1,
b1,2.25(t,a,z) =t — 1,
01,226t a,2) =t —1,
b1227(t,a,2) =t —1,
01,2,28(t,a,2) =t —1,
01229(ta,2) =t —1,
b1,2,30(t,a,2) =t — 1,
01231(t,a,2) =t —1,
01,2,32(t,a,2) =1 — 1,
b1,233(t,0,2) =t — 1,
b1234(t,0,2) =t —1,

51.2,35(?:, a, .'II) =t — l,
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Vpe(0,a,2) = Voe(1,a,2) =2, Vpe(2,0,2) = 3,
Voc(3,0,2) = Vpe(4,0,1) =5, Vpe(5,a,2) =6
Vpe(6,0,2) = Voe(T,0,2) =8, Vpe(8,a,2) =9,
Vpe(9,a,2) = 10 Voe(10,a,2) =11,  Vp(11,a,2) = 12,
Voe(12,0,2) =13, Vpe(13,a,z) =14, Vp.(14,a,z) = 15,
Voe(15,a,z) =16, V,(16,0,2) =17, V,.(17,a,z) =18,
Voe(18,a,2) =19, Vue(19,0,2) =20, Vpe(20,a,z) = 21,
Voe(21,a,x) =22, Vpe(22,0,2) =23, Vp.(23,a,z) = 24,
Vpe(24,0,2) = 25 Vpe(25,0,2) =26, Vpe(26,a,z) = 27,
Ve (27,0, ) = Vpe(28,0,2) =29,  V,e(29,a,z) = 30,
Vpe(30,a,2) = 31 Voe(3L,0,2) =32,  V,.(32,a,z) =33,
Vie(33,a,2) = 34, Vpe(34,0,2) =351, Vpe(35,a,z) =0,
stay ¥ u u U U U U
u U U U U U U U
Vi(0,a,2) = | u © u U u u u u |,
u U U U U U U U
u U ou u
stay u u u u U U U
u U U U U U U U
Villia,z)=| u U U U U U u u |,
u U U U U U U U
u u u u
stay © u U U U U U
u U U U U U U U
Vi(2,a,2) = | u U U U U U u u |,
u U U ou u U uU u
u U u u
stay v v u U U U U
u U U U U U U U
Vi(8,a,2) = | u U U U U U u u |,
u U U u U U U U
u U U u
stay u u U U U U U
u U U U U U U U
Vild,a,2) =] u U U U u U u u |,
u U U U U U U U
u U ou u
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stay v u u u U U U
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Stay v u uU U U U U
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Vi(34,a,2) =

V1(35, a, .’,E) =

ST Equations

Vpe(t + 1,a,2) =

A-46

stay v u U U uU U U

u U U U U U U U

u U U U U U U U

u U u U U U U U

u U U U

stay true stay up true  false false down

up true true  false false false true  false

90 true 0 true 0 false false false

false false false false 0 0 0 0

0 0 0 0

[ mod (add (Vpe(t,a,z),1),36) if Vpe(t—1,a,2) =0
mod (add (Vpe(t,a,1),1),36) if Vpe(t —1,a,2) =1
mod (add (Vpe(t,a,2),1),36) if Vpe(t — 1,a,2) =2
mod (add (Vpe(t,a,x),1),36) if Vpe(t — 1,a,2) =3
mod (add (Vpc(t,a,x),1),36) if Vie(t — 1,a,z) =4
mod (add (Vp.(t,a,x),1),36) if V.(t—1,a,2) =5
mod (add (Vpe(t,a,1),1),36) if Vi (t—1,a,2) =6
mod (add (Vpe(t,a,2),1),36) if Vpe(t — L,a,2) =7
mod (add (Vpe(t,a,x),1),36) if Vpe(t —1,a,2z) =8
mod (add (Vpe(t,a,),1),36) if Vpe(t—1,a,2) =9
mod (add (Vpe(t,a,x),1),36) if Vpe(t — 1,a,z) =10
mod (add (Vp.(t,a,2),1),36) if Vpo(t—1,a,z) =11
mod (add (Vpe(t,a,2),1),36) if Vpe(t — 1,0,2) =12
mod (add (Vpc(t,a,z),1),36) if Vpe(t —1,a,2) =13
mod (add (Vpe(t,a,2),1),36) if Vpe(t — 1,a,2) =14
mod (add (Vpc(t,a,2),1),36) if Vpe(t — 1,0,2) =15
mod (add (Vpc(t,a,x),1),36) if Vpe(t —1,a,z) =16
mod (add (Vpe(t,a,2),1),36) if Vpe(t — 1,a,2) =17
mod (add (Vpe(t,a,z),1),36) if Vpe(t —1,a,2) =18
mod (add (Vpe(t,a,2),1),36) if Vpe(t—1,a,2) =19
mod (add (Vpe(t,a,2),1),36) if Vpe(t — 1,a,2) =20
mod (add (Vpc(t,a,x),1),36) if Vpo(t —1,a,2) =21
mod (add (Vp.(t,a,z),1),36) if Vpo(t —1,a,z) =22
mod (add (Vpc(t,a,z),1),36) if Vpe(t — 1,a,z) =23
mod (add (Vpe(t,a,),1),36) if Vpe(t —1,a,z) =24
mod (add (Vpe(t,a,2),1),36) if Vpe(t —1,a,2) =25
mod (add (Vpc(t,a,x),1),36) if Vpe(t —1,a,2) =26
mod (add (Vpc(t,a,z),1),36) if Vpo(t —1,a,2) =27
mod (add (Vpc(t,a,),1),36) if Vpo(t —1,a,2) =28
mod (add (Vpc(t,a,x),1),36) if Vpe(t—1,a,2) =29
mod (add (Vpc(t,a,x),1),36) if Vp(t—1,a,2) =30
mod (add (Vpc(t,a,2),1),36) if Vpe(t — 1,a,2) =31
mod (add (Vpc(t,a,),1),36) if Vpo(t — 1,a,z) = 32
mod (add (Vpc(t,a,2),1),36) if Vpe(t — 1,a,2) =33
mod (add (Vpc(t,a,2),1),36) if Vpe(t —1,a,2) =34
| mod (add (Vpe(t,a,x),1),36) if Vpe(t—1,a,2) =35
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Appendix G

Abstract dSCA to Abstract dSCA
Transformation Details

G.1 Process

This appendix describes the process of transforming an abstract dSCA with defining shape V =
(n1,m1) to an abstract dSCA with an defining shape of V = (na, m2). The transformations required

for the following equation lists within a supplied abstract SCA specification are covered:

1. Wiring Functions;
2. Delay Functions;
3. Initial State Equations; and

4. State Transition Equations.

After discussing the necessary transformations they are used to transform the abstract dSCA

produced in the last chapter to an abstract dSCA with defining shape of V = (1, k).

G.1.1 Prerequisites

e The source network, N; has k; > 1 modules and Maz,, > 0 component specifications in its

modules definitions;

A-57
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e The object network, N, has ks > 1 modules and Maz,, > 0 component specifications in its

modules definitions;

o The defining size of N2 must be equal to or greater than the defining size of Ny, i.e. A(N2) >

A1)
e There exists the total mapping, = given as:
E: N, x Npe, = Ni, x N,
that maps modules and execution orders of N; to modules and execution orders of Np; and
e There exists the inverse mapping =1, given as:
=1 Ng, X Npe, ~ Ny, x Npe,

(Note that this mapping may not be total, since some functional components of N, may be

the undefined operation used to ensure synchronicity of the network).

G.1.2 Mapping Function

The provision of a mapping function is a fundamental prerequisite before this transformation can
occur. Its purpose is to provide a total mapping between when a particular function executed on a
particular module in the source network and what module and when it will execute on the target

network. It is a simple list of equations containing two pairs:

(tsre, pevalsre) = (isge, PCvAl1g:)

and must be defined for all values i,,.. = 1,...,k of the k-module source abstract dSCA and
pcvalge = 0,...,Maxy —1. The mapping is denoted as =, and has the (partial) inverse =7!.

There is no need to map the program counter module.

G.1.3 Wiring Functions

Unlike the previous transformation, wiring functions will alter values radically to provide the dy-

namic retiming and structure necessary to support a re-shaped abstract dSCA.
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~-wiring Operations

Consider the source abstract dSCA ~-wiring function:

Ypevaly (ilij) =22

the corresponding target abstract dSCA ~-wiring function will be:

Ypc-valsy (7'2 ) .72) =22

where j; = jo, and Z (41, pcwaly) = (i2, pc-vals)
The informal process of generating target abstract dSCA ~-wiring functions is to walk the
structure of the target architecture creating wiring functions for all modules at all values of the

program counter for the number of inputs to each module.
e For each module m; where i € N, and 7 > O:
— For each pc_val where pcval € {0,..., Mazy, — 1}:
* For the ot" argument of each module create:
Yoeva(i 0) = M

* For each argument where j € {1,...,n2(i)} create a new ~y-wiring function

, . | Value from source if Z71(3,5) |
Yovvat(,J) = { U otherwise

with the intended meaning that the undefined connection is given if the inverse
mapping is not defined, otherwise the appropriate value from the source network

is used.
e For module 0 create Mazxy, y-wiring functions wiring mg back to itself.

Formally, the Createys operation:

Createys : dSCAAlgebra x N? x MapEqList — vdSC AEqList
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is introduced and is defined as:

nm,
Source SCA, GetyEqgs(source_.SCA),
num._mod, a1

Createys Mazy, = B~ys Mazy,
=1 GetMaxA(source_SCA),

=1

It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA
and then value of Mazxy for that network as well as the inverse mapping function equation list. The
maximum number of arguments that all modules take in the source is extracted from the source
specification - since this cannot change through transformation.

The B+s operation, given as:
Bvs: N x ydSCAEqList? x N x N x MapEqList — vdSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first representing
the case where the module number is 0, and the second case where it is not. When the module under

consideration is the 0t module, Bvs is defined as the recursive call to itself:

mod_val — 1, \
old~ys,
mod_val, (])\lddast - L
old~s, I 78
Brys new.ys, — Brs Bpe mod_val, ,newys | ,
Mazy, Mazx
Maz,, =1 4
=-1 -
- Mazy,
Max g4,
=1

The recursive call contains an argument where a list is appended to the newly generated y-wiring

functions for a module. This list is created by calling the B~ypc operation:
Brype: N x vsSCAEqList? x N x N x MapEqList — vdSCAEqList

which is itself defined recursively over the values that the program counter may take in two cases:

firstly where the program counter is equal to 0 and secondly where the program counter is greater



ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-61

than zero. In the second case Bypc is defined as:

pcval — 1,

oldvs,
pe_val, i\;Idm?sA -1
old~ys, A 15
newwys, _ Brarg ’ ,newys | ,

Bypc mod_val, |~ Bype n(zjoz:l)al,

Maz,4, ‘2—-1 ’
=—1 =
- mod_val,

MamA,

=-1

The operation recurses on itself building a list of new ~-wiring functions for a module at a

particular value of the program counter for all inputs to a module by calling the Byarg operation:
Bryarg : N x vdSCAEqList? x N? x MapEqList — vdSCAEqList

B~aryg is itself also defined recursively, this time over the argument number under consideration. It
has two cases, the first where the argument index is zero, and the second where it is not. For the

second case it is defined as:

( arg-num — 1, \
oldvys,
arg-num, mod_val,
old~s, arg_num,
new-ys, By | pcwal, ,negs | ,
=B
Bryarg mod_val, varg oldys,
=1
pc.val, =
=-1 mod_val,
pc_val,
=-1

—

where the B+ operation is used to construct the y-wiring function for this particular argument index

at a particular program counter for a particular module. It is given as:
By : N3 x vydSCAEqList x MapEqList — yEquation

To construct the y-wiring for a function it is first identified whether there exists a corresponding

element in the source abstract dSCA. This is achieved by examining the inverse mapping function.
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If the inverse mapping is undefined for the module and program counter values under consideration
then the wiring in both the source and target abstract SCAs are unimportant. In such a case, the
output of the B~ operation is defined to be the creation of a y-wiring function to the unconnected

value U. Therefore, where Z~1(mod_val, pcval) T we define:

mod_val, N
‘pe_vals
arg-val, . mod_val
By | pcwal, = Buildy ’
oldvys arg-val,
=-1 ’ U

Similarly, it may be the case that the inverse mapping function is defined, but in the source
abstract dSCA there is no y-wiring function defined for this combination of module number, program
counter value and argument number. It can be easily identified what the corresponding wiring

function was in the source abstract dSCA, since it will be:

Ysnd(E—1(mod_val,pcval)) (fSt (E_l (mOd-va'l) pC_’U(l.l) ) ) a”'g—val)

Where this v-wiring function does not exist then the result of B7 is:

mod_val, .,
arg_val, pcval,

By| pewval, | = Buidy [ ™o
oldys arg_val,
=1 U

The final case is where the inverse mapping is defined and a corresponding S-wiring function
exists in the source network. For this situation the v-wiring operation in the target dSCA is con-
structed as:

oldys,
Ypevat(mod_val,arg_val) = RetTerm | GetEl cJ: jz(j;ll’(mod_val,p c-val)), ,2

snd(E~Y(mod_val, pc_val))

the B+ operation can therefore be defined, when =~ (mod_val,pc.Val) | as:

Vpewals
mod_val, mod_val,
arg-val, arg-val,
By | pcwal, = Buildy oldrys,
C:’lil?s’ RetTerm | GetEL| ‘9% ,

arg-val,
PCold
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where:

io1q = fst(RetTerm(GetEl(Z~1, mod_val,pc_val)),2)
pcora = snd(RetTerm(GetEl(Z~ !, mod_val, pcval)), 2)

The second case of the Byarg operation, where the argument index is zero, simply generates a
~-wiring function for the 0t* argument. This wiring, by definition, will be to the program counter
module, and is appended to the list of functions generated for that module. The function returns

this new list, and is defined as:

0,
old~ys, Ypc_val
newwys, . . mod_val,
Brarg modval, | — Buildy 0, , Newys
pe_val, M

=—1
The second case of the B+ypc operation, where the program counter is 0, simply generates the

~-wiring functions for module mn at pc_val = 0, and appends them to the list of already generated

~-wiring functions for module mn at all other values of the program counter. It is defined as:

0, Maxs — 1,
olds, old~s,
new~ys, B 0,
Bype mod_val, | Brarg mod_val, s newys
Maz4, 0,

=-1 =—1

Finally, the second case definition of B+ys operation is defined for the case of module zero as:

0,
Old’YS, Yo, YMazy—1,
newwys, ) 0, X 0,
Bys Mazy, Buildy 0, y- -, Buildy 0. , Newys
Mazxy, M M
=1

(-wiring Operations

Consider the source abstract dSCA g-wiring function:
/ch_vall (7:17].1) =21
the corresponding target abstract dSCA S-wiring function will be:

ﬁpc-valg (iZ,j2) =22
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where j; = j» and Z (i1, pc_valy) = (iz, pc_valy) The informal process of generating target abstract
dSCA B-wiring functions is to walk the structure of the target architecture creating wiring functions

for all modules at all values of the program counter for the number of inputs to each module:
e For each module m; where i € Ni,:
— For each pcval € {0,...,Mazn, — 1}:
+ For the ot" argument of each module create:
Bpe.vat(i,0) = M
* For each argument where j € {1,...,n2(i)} create a new f-wiring function

g i) = Value from source if 271(4,5) |
poval\tB:]) =\ otherwise

with the intended meaning that the undefined index is given if the inverse mapping

is not defined, otherwise the appropriate value from the source network is used.

o For module 0 create Maxy (-wiring functions to wire my back to itself.
Formally, the Createf3s operation is introduced:
Createfs : SCAAlgebra x N? x MapEqList — 3dSCAEqList

and it is defined as:

k,
Source_SCA, Getf3Eqs(source .SCA),
|k _pgs| U
Createfls Mazy, = Bfs Mazy,
B! GetMazA(source_.SCA),

=1

It takes as arguments the source abstract SCA, the number of modules in the target abstract SCA
and then value of Maxy for that network as well as the inverse mapping function equation list. The
maximum number of arguments that any module can take, Maz 4, is calculated by the call to the

GetMazA function - the impact of this is that more wiring functions may be generated than are
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necessary but as these are wired to the unconnected module they will not partake in the functionality
of the resultant target abstract dSCA.

The purpose of the Createfls operation is to extract the relevant details out of the source
abstract SCA and call the Bf3s operation. The values that are extracted are the number of modules
in the source abstract SCA, the source S-wiring functions and Max 4.

The Bf3s operation:
Bfs: N x fdSCAEqList> x N> x MapEqList — SdSCAEqList

is defined recursively over the number of modules in the target SCA in two cases, the first represents
the case when the module number is 0 and the second case is where the module number is greater

than 0. In the second case the Bfs is defined with the recursive call to itself:

mod_num — 1, \
oldf3s,
mod._num, i‘;‘r;[;w - L
oldf3s, [ 5
Bfs newfs, — Bps Bpfpc mod.num, ,newfs | ,
Mazxy, Maz
Maz 4, =-1 4
=—1 -
- Mazxy,
Mazy,
=—1

The recursive call contains an argument where a list is appended to the newly generated S-wiring

functions for a module. This list is created by calling the BfSpc operation:
Bfpc: N x fdSCAEqList> x N2 x MapEqList — $dSC AEqList

which is defined recursively over the values that the program counter may take in two cases. The

first case is where the program counter is 0 and the second is where the program counter is greater
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than zero. In the second case Bfpc is defined as:

peval — 1, \
oldf3s,
Maxa —1,
pe_val,
old@s, ﬁldﬁ &
newf3s, _ Bfarg ’ ,newfs |,
Bppc mod.num, | = Bppe iofé?um,
Mazy, Z;_' 1
=1
= mod_num,
Moaz,,

=-1 /

This operation recurses on itself building a list of new (-wiring functions for a module at a
particular value of the program counter for all inputs to a module by calling the BBarg operation.

The Bfarg operation is given as:
Bfarg : N x BdSCAEqList? x N? x MapEqList — 3dSCAEqList

and is also defined recursively, this time over the argument number under consideration in two cases
- where the argument index is zero, and where it is not. For the second case it is defined as:

arg-num — 1,

oldfs,
arg-val, mod_num,
oldfs, argyal,
newfs, _ B@ | pcwal, ,newfs |,
Bfarg mod_num, | Bfarg oldps,
pewval, =t
=1 mod_num,
pcval,
=1

—

The B operation is used to construct the 3-wiring function for this particular argument index at

a particular program counter for a particular module. It is given as:
Bf: N3 x BdSCAEqList x MapEqList — dSC AEquation

To construct the S-wiring function it is first identified whether there exists a corresponding element
in the source abstract dSCA. This is achieved by considering the inverse mapping function, if it is

undefined for the values under consideration then its wiring in both the source and target abstract
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SCAs are unimportant. In such a case the output of the Bf operation is defined to be the creation

of a wiring function to the unconnected value w, where Z~!(mod_val, pc_val) 1, as:

mod_num,

arg.val, e

BB | pcwal, = Buildf - ’
oldfs arg-val,
=-1 ’ w

Where the inverse mapping is defined, the corresponding wiring function in the source abstract

dSCA can be identified as:

ﬂsnd(E— L (mod_-num,pc_val)) (fSt(E_ ! (mOd—numa pc_val) ) s arg_val)

The (-wiring operation in the target dSCA is therefore constructed as:

oldfs,

fst(E"1 (mod_num, pc_val)),
arg_val,

snd(E~(mod_num, pc_val))

Bpc_vai(mod_num, arg_val) = RetTerm | GetEl

the B[ operation, where =~ !(mod_val, pc.val) | can therefore be defined as:

ﬂpc-val:
mod_num, mod_num,
arg-val, arg-val,

BB | pcwal, = Buildf3 oldf3s,
o_lgl{is, RetTerm | GetEL | *o® ,2
= arg.val,

PCold

where:

ioid = fst(RetTerm(GetEl(E™1, mod_num, pcval)),2)
pcord = snd(RetTerm(GetEl(E~1, mod_num, pc.val)), 2)

The second case of the Bfarg operation, where the argument index is zero, simply generates a
B-wiring function for the 0** argument, which will be to the program counter, and appends it to the

list of functions generated for that module and returns the new list. It is defined as:

0,

OIdﬂS, ﬂpc_ual )

newfs, _ . mod_num, .
Bparg mod.val, | = Buildps 0, ,newfs

pc_11)al , pc
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The second case of the Bfpc operation, where the program counter is 0, simply generates the
B-wiring functions for module mn at pc_val = 0 and appends them to the list of already generated

B-wiring functions for module mn at all other values of the program counter. It is defined as:

0, Mazxg — 1,
oldBs, oldf3s,
newfs, _ 0,
Bfpe modwal, | Bfarg mod_val, ns
Mazx 4, 0,

=-1 =-1
Finally, the second definition of Bf3s operation is defined for the case of module zero, or the

program counter. In this case there is only one f-wiring function for each value of the program

counter:
0,
Oldﬂs, ﬁO; ﬁMa:rN—ly
newfs, | _ . 0, . 0,
Bgs Mazy, | = Buildp 0. y. .., Buildf 0, ,newfs
Maz,, pc pc

=—1
=

G.1.4 Delay Functions

The delay functions for the source and target abstract dSCA are of the same format, however the
derivation of the delay is more complicated than the simple generation of the wiring functions, and
thus a more detailed explanation of the derivation is given.

In both networks, it is the intention of the delay function to indicate the time delay between
now and the time the result was calculated. In the source abstract dSCA this is given by the defined
delay function. For the object abstract dSCA this value needs to be derived from the data available.

Informally, target abstract dSCA functions are produced as follows:

e For each module m; where i € Ni,:

— For each pcval € {0,...,Mazxn, — 1}:

* We define, for the 0®* argument, the unit delay:

’

5i,0,pc_ual (tv a, -'L) =t—1



ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-69

* For each argument where j € {1,...,n2(i)} create a new d-wiring function

=713, pewal)) | A
. t — new_value if ( (z,pc va
Spevaris §) = b Y Opears,5) = M)
t—1 otherwise
e For module 0 create Mazxy delay operations of unit length delay to represent the wiring of

mg back to itself.

Formally, the new delay functions are created by calling the Createds operation, given as:
Createds : dSC AAlgebra x N? x MapList® — §dSC AEqList

where the first argument is the specification defining the source abstract dSCA, the second and third
argument describe the defining shape of the target abstract dSCA, and the final 2 arguments the
mapping and its inverse. Createds is defined as:

k, )
GetdEqs(Source_.SCA),

GetMaxA(Source_.SCA)|],
GetyEqs(Source SCA),

iou’rce-S CA, Source_SCA,
b k’
Createds ﬁ/.faIN, = Bés | Createfis Mazxpy, '

=
’ =-1
[

GetMazn(Source_.SCA),
Mazxy,

—
=
—y

=-1
— )

=—1
— b

The Bds operation is defined recursively over the number of modules in the target abstract
dSCA. There are two cases, the first where the module index under consideration is greater than 0

and the second case where the index is 0. Bds is given as:

Bés: N x 8dSCAEqList?> x N x vdSCAEqListx
BdSCAEqList x N2 x MapEqList?> — 6dSCAEqList
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In the first case, Bds is defined as:

Biés

The internal call to Bépc creates a list of delay functions for a particular value of the program

/ mod_val, \
oldés,
newds,
Max 4,
old~s,
newfs,
Ma:cZG:,
Ma:z:ﬁ ,

=1

= Bés

3

i

mod_val — 1,

oldés,

(

Bépc

counter for module mod_val. Bépc is given as:

Tt is defined recursively over values of the program counter in two cases: where the program counter

Bépc :

Mazy — 1, \
oldds,

[] b
mod_val,
Maz,4,
old~s,
newps,

,newds

N x 6dSCAEqList? x N2 x vdSCAEqListx

BdSCAEqList x N2 x MapEqList? — §EqList
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is not zero and where it is. For the first case Bédpc is define as:

peval — 1,
oldéds,
Maxy — 1,
oldés,
IE
pc_val, mod.-val,
oldés, } pe-val,
newss, Béarg | oldys, ,newds
mod_val, newps,
Mazx 4, Mazx3e,
Bépe | oldrys, = Bépc Maz'g,
newps, =1
Mazx$¢, =
Maz'%, mod_val,
E_l’ Mazxy,,
= oldvys,
newfs,
M amz\}":,
Mazy',

The call to Bdarg enables the construction of a list of delay functions for the arguments of

module mn at program counter value pc, it is given as:

Béarg: N x 8dSCAEqList? x N? x ydSCAEqListx

BdSCAEqList x N2 x MapEqList* — § EqList

It is defined recursively over the number of arguments for the module in two cases - where the

argument index is not 0, and where it is 0. For the case where the argument index is not O then
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Béarg is defined as:

Béarg

arg-num,
oldés,
newds,
mod_val,
pe_val,

= Béarg

oldds,

Bs

mod_val,
pe_val,
old~ys,

arg-num — 1,

mod_val,
arg_num
pe_val,

oldds,

?

,newds
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Finally, the B§ operation, which is responsible for creating the new delay function for the jt*

argument of module mn at program counter pc, is called and it is given as:

Bé:

N3 x 8dSCAEqList x ydSCAEqList x fdSCAEqListx

N? x MapEqList? — §dSC AEquation

To provide a definition of Bé the new value of the delay needs to be generated from the existing

knowledge of the two abstract SCAs. To understand what the delay should be, an understanding

of the particular delay required is needed. If the wiring is to a source, or is unconnected, then the

unit delay is generated. This case is identified by considering the target abstract dSCA [(-wiring

functions:

mod_val,
arg-val,
pcval,
oldds

Bé

mod_val,

= Builds

arg-val,

pc_val,
t—1

if cond,
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where:

oldrys,
pe_val,
mod_val,
arg-val

condy = | RetTerm | GetEl 2| #M

In the situation where this condition is not true, i.e. the wiring under consideration is to another
module, then the value of the new delay function needs to be calculated. To calculate the new value,

the following process is followed:

1. Find the module and program counter value in the source abstract dSCA that relates to the
current module and program counter value in the target abstract dSCA, using the inverse

mapping function;

2. Identify the module in the source abstract dSCA that produces the value we are interested

in from the B-wiring function;

3. Identify the program counter value in the source abstract dSCA that the value we are inter-

ested in is calculated from the delay functions;

4. Find the module and programn counter in the target dSCA that produces the value we are

interested in, using the mapping function; and

5. Calculate the delay between the current value of the program counter and the program counter

value from (4).

The module and program counter in the source abstract dSCA is given directly by the inverse
mapping function:

=Y mod_valz, pc_valz) = (mod-val,, pc_val;)

The position of arguments in the functional specification cannot change in the transformation. Thus
if arg_val is the argument number under consideration in the target abstract dSCA, then it will also
be in the source abstract dSCA. This fact and the S-wiring function in the source abstract dSCA

are used to determine the module that produces the value for that argument, in the source SCA:

mod_val]®® = Bpc_val, (Mod_valy, arg_val)
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Using the delay function from the source dSCA, the value of the program counter that the result
was calculated at can be determined. It will be the current source program counter value minus the
delay value for this argument modulus the value of Maxy in the source abstract dSCA:

l;‘es

pcva = (pc_vall - (t - 511nod_'ua.l1,arg-’ual,pc.‘uall (t’ a, 2))) mod Ma’:r}\/

It is now possible to determine the value of the program counter in the target abstract dSCA by
applying the mapping function to the values pc_val(® just determined, and mod_val]®®, and taking

the second element of the returned tuple:
pewals® = snd(E(mod_vali®®, pcval(®®))

The value of the delay can be worked out from the difference between the program counter in the

target abstract dSCA now, and the value of pc_val5®®:

(pcval — pe_valy®®) mod Max3,

B§ is therefore defined as:

mod_val,

arg-val,

pe-val,

oldés mod_val,

old~s, _ . arg-val,

Bé oldps, = Buildd peval,

Mazx3e, t — ((pc-val — pc-valf;;) mod Maa;tlgt)

Maz'd',

=—1
and: _

pecwalisy = snd | RetTerm | GetEl | mod.valls, |,2

pewalg??
with:
oldfs,
res _ pevalsye,
mod-valyls = fst | RetTerm | GetEl mod_val.r,, ,2
arg-val
and:
oldés,
mod_val
pewallls = pcvalsre — | t — GetEl arg_val,arc’ mod Maz3;®

pc-valsrc
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where mod_valg.. and pc_val,,. are:
E_l
pevalgy. = snd | RetTerm | GetEl | mod.val, | ,2
pcval
E—l
mod_valg,. = fst | RetTerm | GetEl | mod_val, | ,2
peval

The second case of Bdarg, where arg_-num = 0, is a case of returning the list of delay functions

already generated with the delay for the channel to the program counter module added:

(o
oldés,
newds,
mn,
pe, ’
Béarg | =71, = | Builds | ,newds
- pe,
old~ys,
oldf3s,
Maz$7e,
Maz'd

The second case of Bépc, where pc_val = 0, is where the delay functions for module mn at

program counter 0 are appended to the already constructed delay functions:

0 Maxa —1,
oi dés oldds,
newds, 0,
mod_val, mod_val,
Bépc k{%xm _ | Blarg %_1 ’
=, o7d 3,
old~s, M(st"
Maz3e, N
tgt Max’
Mazxy N

neqs

Finally, the second case of Bds manages the situation where all the modules have been addressed,

except for module 0. In this circumstance, the delay functions already constructed are returned, in



ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-76

addition to a delay function for the program counter, my, as follows:

0,

oldds,
newds,
Maxpy,
Bss | Mezar | _ | Buitas

7

..., Builds

newds
y MazN - 1, !

o oo

=
—

old~ys,
Mazx$;,
Maz$,

G.1.5 Initial State Equations

Consider the target abstract dSCA module m;, its Initial State equations, will be of the form:
Vi(0,a,z) = zip
Vi(0,a,2) = ;1
.Vi(O, a,T) = Ti,Mazy—1
where each value ;pcvat, Where pcval = 0,1,...,Maxy — 1, will either be the undefined
element, or will come from some particular module and value of the source abstract dSCA program
counter. Values of the source program counter and module are given directly from the mapping
function, =.

Informally, the set of Initial State equations is created as follows:
o For each module m; where i € Ny, and 7 > 0:

— For each pcval € {0,...,Mazxy, — 1} create a new Initial State equation:

new.value if E71(3,pc)) |

Vi(pe-val,a,z) = { u otherwise

e For my, the program counter:
— For each pcwval € {0,...,Maxn, — 1} create a new Initial State equation:

Vo(pcwal, a, ) = (pcval + 1) mod Mazy,
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Formally, the Createl Vs operation is introduced as:
CreatelVs : dSCAAlgebra x N? x MapEqList — dSCAISV EqList

where the arguments are such that it takes a source abstract dSCA specification and values giving
the defining shape of the target abstract dSCA to produce the Initial State equations for the target

dSCA. We define the operation as:

Source_.SCA, k,
k Mazxy,

CreatelVs ’ =BIVs | GetEqIV(Source_.SCA),
Mazxy,

=1 IE

— —=—1
—

The purpose of the operation, BIVs, called by CreateIV's, is to build the new Initial State

equations for the network. It is given as:
BIVs: N? x dSCAISV EqList®> x MapEqList — dSCAISV EqList

and is defined recursively over the number of modules in the target abstract dSCA. There are two
cases: where the module number under consideration is greater than 0, and where the module
number is zero. In the first case BIV's is defined to recurse on itself, decrementing the module

number and adding the result of calling the BIV operation to the list of new Initial State equations:

num_mod — 1,

Mazy,
num_mod, 0eqs,
Mazxy, Mazxy — 1,

BIVs | oegs, = BIVs num_mod,
neqs, BlVpc| oegs, ,neqs |,
=t IE
=1
== 1

This operation makes a call to the BIVpc operation to generate the list of Initial State equations

for all values of the program counter for module num_mod. Where BIVpc is given by:
BIVypc: N? x dSCAISVEqList®> x MapEqList — dSCAISV EqList

where the first argument is the program counter value, the second argument the module number

under consideration, the third argument the list of Initial State equations from the source abstract
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dSCA, the fourth argument is the list of new Initial State equations that are being recursively created
and the final argument is the inverse mapping function.

BIVpc is defined recursively over program counter values with two cases, the first representing
the case where the program counter is greater than zero and the second case is where the program
counter is zero. The first case is defined for two situations, where the inverse mapping is defined (in
which case a new equation is created from values in the source abstract dSCA) and where it is not

(in which case an equation is created that returns the undefined value w):

(

bc— 11
i,
BlVpc ( new_val, > if 2714, pe) |
neqs ’
pe, =1
1, 4
BIVpc| oegs, | = pe— =
neqs, b .
=—1 b
- BlVpc BuildIV | pe, |, if Z71(3,pc) 1
U ?
neqs
5—1

where:
i
new-val = BuildIV | pc,
RetTerm (GetEl (oeqs, RetTerm(GetEL(E™1,4,pc), 2)) ,2)

The second case of BIVpc, where the program counter is zero is the simple case of creating the

equation for that value of the program counter and appending it to the list of already generated

Initial State equations:
0, :
i b
k) S ;:__1 .
BIVpc| oegs, | = BuildlV RetTerm( 2GetEl(oeqs,_ (3,0)), > ’
neqs,

=-1
=

neqs

The second case of BIV's returns the list of already generated Initial State equations, with the

list of functions for the program counter appended to the front of them:

0,
Maxy,

BIVs | oegs, = (BpclVs(Mazy, ), Maz n), neqs)
neqs,

=—1
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BpclV's is given as:

BpcIVs: N x dSCAISV EqList x N — dSCAISV EqList

and is recursively defined using two cases over the program counter values as:

0, 0,
BpcIVs | negs, = | BwldlV | 0, |,eqs
\ Maxn 1
pcval — 1,
0,
pcval, !
BpeIVs | negs, | =BpeIVs| |Buildlv | P ,eqs |,
Mazy d< peval + 1, )
Mazxn
Mazy

G.1.6 State Transition Equations

Consider the target abstract dSCA module m;, its State Transition equations, will be of the form:

fio(--) ifpc=0
Vit + 1,a,2) =< ...
fiMazy-1(...) if pc= Maxy —1
where each functional specification component f; ;¢ vai, for values of pcval = 0,1,..., Mazy—1,

will either be the undefined element, or will be the component specification extracted from some
particular module and value of the source abstract dSCA program counter in the source abstract
dSCA. In a similar manner to creating the Initial State equations, values of the program counter and
module number in the source abstract dSCA for values in the target abstract dSCA are provided by

the inverse mapping function, =~ 1.

e For each module m; where i € Ny, and ¢ > 0:

— For each pcval € {0,...,Maxy, — 1} in abstract dSCA extract and rewire the relevant
functional specifications from the source abstract dSCA, if one exists, otherwise use the

undefined constant u.

— Create a new State Transition equation from the previous result.

e For mg, the program counter:



ABSTRACT DSCA TO ABSTRACT DSCA TRANSFORMATION A-80

— Create the program counter State Transition equation:
mod(add(Vpe(t,a,x),1), Mazn) if Vpe(t—1,a,2) =0
Vet +1,a,2) =
mod(add(Vpe(t,a,2),1), Mazy) :

Formally the CreateSTs function is introduced as:
CreateSTs : SCAAlgebra x N2 x MapEqList? — dSCASTV EqList

CreateSTs takes a source abstract dSCA specification and values for the defining shape of the target

abstract dSCA and produces the State Transition equations of that target dSCA. It is defined as:

k,
Mazy, \
GetEqSTV F(Source SCA),

[]’

=—1
fource_SCA, Source . SCA,
CreateSTs | Maxn, = BSTs| Createls k, ,
=1 Mazy,
= 7, =1
= Source.SCA,
k,
Createds | Mazxn,
=51

¥

The operation called by CreateST's is the BST's operation which is given as:

BSTs: N2 x dSCASTV EqList?> x MapListx
BdSCAEqList x §dSC AEqList — dSCASTV EqList

and is defined recursively over the set of module numbers. In keeping with a number of these
transformation operations it has two cases, the first where the module number is greater than 0, and
the second where it is 0. The first case takes as arguments, the module number under consideration,
the value of Mazy, the list of source abstract dSCA State Transition equations, the target State

Transition equations, the inverse mapping, and finally the target abstract dSCAs -wiring and delay
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functions. It is defined as:

mod_num — 1,

mod_num, Mazxy,
Mazxy, STV F's,
STVFs, =1
BSTs | negs, = BSTs BST tgtQs, T,
=L tgtds,
tgtfs, mod_num
tgtds neqs
MaxN

The operation BST used in the above definition is given as:

BST : N2 x dSCASTV EqList x MapListx
BdSCAEqList x 6dSCAEqList — dSCASTV EqList

and is defined such that a new equation is built up for module mod_val under consideration. It is

defined as:
mod_val,
Mazxy, new_v fopdef,
mod_val, mod_val,
STV F's, _ . rewire | pcoal, ,
BST =1 = BuildST NewST Begs,
Bs, deqs
ds, Mazy,
null
where:
Mazy,
mod_val,
new_vfopdef = NST | ],
STVFs,

=—1
The NewST(rewire(NST(...))) component of the above definition needs some explaining. Con-

sider that the VFOPDef term of a Value Function equation for an abstract dSCA is of the form:

fio(..) ig pc=0
filpe,...) = :f,l( ) if pc
fi,MazN—l(. . ) if pc= Ma,xN -1

It has already been noted that this is a convenient syntactic way of writing the conditional. If
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written according to the machine algebra, M4, it would appear as:

pc=0,
fio(...),
pc=1,
filpe,...) = cond fialo- o),
cond pc= Maxy — 1,
cond | ...,cond | fimazny—-1(--.),

null
It is this second form that is used to select the component specification based on a particular

value of the program counter. To do so, the operation GetFn is introduced:
GetFn : VFOpDefTerm x N — Term

and is defined recursively over the structure of the VFOpDef term definition:

GetFn(cond(a,b,c),0) =b
GetFn(cond(a,b, c),pcreq) = GetFn(c,pcreq — 1)

To generate a target abstract dSCA State Transition equation for a module a list of the appro-
priate VFOpDef Terms, selected from the source abstract dSCA by means of the inverse mapping

function =7, the GetE!l operation for STEqList specifications and the GetFn operation defined

above are used. Consider module m; in the target abstract dSCA, at program counter value pc_val

it is defined to be executing either the:

1. VFOpDefterm in module fst(Z71(, pc_val)) at the source program counter value snd(Z~(i, pc_val))

in the source abstract dSCA, if the mapping is defined; or
2. the output u, if the mapping is undefined.

The NST operation is introduced to determine which case is under consideration, and it is given as:
NST : N% x dSCASTV EqList®> x MapEqList — VFOpDef List

and recurses over the program counter values to produce a list of VFOpDef terms that are used

for the definition of the State Transition phase of the Value Function for a particular module. It is
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defined:
peval — 1,
peval, mod_val,
mod_val, oeqs,
NST | negs, = NST neqs, Extract | mod.vals,., ,
0eqs, pevalgre
=1 oegs,
—=—1
where:
=1
mod_valsr. = fst | RetTerm | GetEl | modwal, | ,2
peval
and:

=1
=

’

pe_valgre = snd | RetTerm | GetEl | modwval, |,2
pe_val
The Ezxtract function used in the above definition is given as:

Extract : dSCASTV EqList x N> — VFOpDefTerm

and is defined as:

0€egs, .
Extract ( mod_al, | = GetFn ( GetEl(oegs, mod.val), )
pc_val
pcval

The second case of the NST operation is defined as returning the list of VFOpDef terms con-

structed by appending the value for the program counter at 0 to those VFOpDef terms already

obtained:
0,
mod_val, oeqs,
NST | negs, = | negs, Extract | modvals,.,
oeqs, pevalg.
=—1

—

where mod_vals,. and pc_vals,. are as defined for the first case of NST. The result of NST is to
produce a list of VFOpDef terms, however these terms will all be wired based on the values in the
source abstract dSCA and must be rewired. Rewiring is accomplished with the rewire operation,
whose purpose is to recurse down a list of VFOpDef terms, producing a new list of VFOpDef
terms with wiring and delay functions put in place to reflect the target dSCA. Consistent with the
definitions of the other transformations in this thesis simplification of the wiring and delay functions

is applied in-situ.
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The rewire operation is given as an operation that takes a VFOpDef list, the module number
and the program counter value under consideration together with the list of beta-wiring and delay

functions for the target abstract dSCA:
rewire : VFOpDefList x N2 x 3dSCAEqList x dSC AEqList — VFOpDef List

The operation rewire is defined recursively over the list of VFOpDef terms with the first case

being defined as:

(e, es), e, es,

mod_val, mod_val, mod_val,
rewire | pcoval, = |rw| pcwal, ,rewire | peval — 1,

Begs, Begs, Begs,

deqs deqs deqs

and the second case is defined as:

e’ e’

mod_val, mod_val,
rewire | pc_val, =rw | pcwal,

degs deqs

The operation rw used in rewire could be defined generically to take account of any number of

arguments, but for clarity in this thesis, it is defined for the 4 cases that M4 will allow (zero to 3

arguments):
L,
Bs,
rw | ds, =t
mod_val,
pcval
(t), o
Bs, 65,
rw | ds, =t | wire ’
mod_val, 71nod_val,
pe-val peval
tla t27
), i i
’ . ds, . ds
rw | ds, =t | wire ,wire !
mod.val mod_val, mod_val,
’ 1 2
pe-val ! ’

pe_val pe_val
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t(tlat% t3):

Bs, wire(t1, 3s,8s, mod_val, 1, pc_val),

rw| ds, =t | wire(ts,Bs,8s, modval,2,pcval),
mod_val, wire(ts, §s, s, mod_val, 3, pc_val)
pe_val

with the supplementary operation wire being given as:
wire : Term x BdSCAEqList x 6dSCAFEqList x N® — Term

and defined for the three cases that may make up an atomic term within Ma:

. const,
wire Bs, 65,1, j, pe = const
wire ?iz.)s(,té).;,i,j, pe = Onew_indez(t)
wire X’;Eg; zl,,_)c,l,pi), = Vhew.indez(new_time, a, x)
where:
new_index = RetTerm(GetEl((s, mod_val, j, pcval),2)
and:

new_time = RetTerm(GetEl(ds,mod_val, j, pcval),2) + 1

To complete the generation of a State Transition equations for module Mmmed_var in the target
dSCA the list of rewired VFOpDef terms must be turned into the component specifications. This is

done using the NewST operation, given as:
NewST : VFOpDefList x N — VFOpDef

which takes the list of VFOpDef terms (which has the VFOpDef term corresponding to pc = Mazn—
1 at the head and the VFOpDef term corresponding to pc = 0 at the end) and recurses down the

list producing the appropriate target dSCA VFOpDef term. For the recursive case it is defined as:

(e, es), es,
NewST | pcwal, | = NewST | pcwal —1,
neqs cond(Vpe(t, a,2) = pcval, e, negs)

and the base case is defined:

e,
NewST | pcwal, | = cond(Vp.(t,a,x) = pcval, e, negs)
neqs
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The function call to create the new VFOpDef term for the target dSCA is therefore:

rewire

NewST

Mazxy,
null

Mazxy,
mod_val,
NSTS [], oldegs,
=1
mod_val,
pcval,
Begs,
degs

?

)
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which can be seen in the definition of the BST operation, wrapped by the value function building

operation. This functionality is walked through in the section where we manually transform dSCAs.

The second case of BST's, where the module is 0 is where the list of already generated state

transition value functions is appended to the State Transition equations for the program counter,

and is defined as:

mod(add(Vy(t,a,x),1), Mazy) if c;

mod(add(Ve(t,a, ), 1), Mazy) if ¢

0,

M(L.’L'N,

neqs, B
BSTs| STVFs, | = Vo(t+1,a,z) =

=1

[33,, neqs

4s

where:

c1 = Vpe(t,a,z) =0

¢y = Vpe(t,a,x) = Mazy — 1

G.1.7 Transformation Process

b

Each of the operations above need to be coordinated together so that a new abstract dSCA can be

created by transforming the source abstract dSCA. The Create_adSC A operation is provided to do

this, it is given as:

Transform : adSCAAlgebra x N? x MapEqList? — adSC AAlgebra

The operation takes the source abstract dSCA and the defining shape of the target abstract

dSCA together with the mapping and invers mapping functions.. It is defined:
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Transform

where:

and:

= CreaieadSC A

GetName(SCAsrc) 5
adSCAAlgebra,

IE

I
VFOp,

v : N? = {M,S,U},
Bo:N? = N,

00p,

Createrys

Createfs

Createds

CreatelVs

CreateSTs

Vo: T x M3 x M5 — My,

VFOp =

00p =

Vk:TX]\/IZXMﬁ—»MA
50’(),O:TXMXXM£—>T’

54,;’]"0 T x ]VIZ’ X Mz —T

Jj=Get_-MaxA(Src_.SCA)
n = num-_np(Src.SCA)

( SCA,,., \
k,
Mazxpy,
=

[ SCAue,

SCAsre,
k,
MaxN,

=-1

SCASTC’

Maxy,

\
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Appendix H

Abstract dSCA to Concrete dSCA
Transformation Details

H.1 Process

This appendix defines the processes for the transformation of an abstract dSCA with defining shape
V = (n,m) to a concrete dSCA with a defining shape of V = (n,m). The following equation lists,

within a supplied abstract dSCA specification, are considered for transformation:
1. Wiring Functions;
2. Delay Functions;
3. Initial State Equations; and

4. State Transition Equations.

Recall that this abstract dSCA has a defining shape of V = (1, 36). The transformation will be
to a cycle consistent concrete dSCA. It should be noted that if transformation to a cycle inconsistent
concrete dSCA was required then alteration of the tuple lengths and the use of appropriate tuple

mapping functions (examples of which are given in Chapter 7) would have to be used.

H.1.1 Prerequisites

The following prerequisites are required for the transformation:

A-88
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e The source and object networks have k > 1 modules and Mazy > 0 component specifications

in their modules definitions;
o The defining shape of the target network equals that of the source network; and

e Condition definitions of each adSCA module, except the programme counter, are of the for-

mat:

cond(pc = 0, a, cond(pc = 1, b, cond(pc = 2, ¢, cond(...))))
H.1.2 ~-Wiring Functions

The ~-wiring functions in the target concrete dSCA will not differ much from those in the source
abstract dSCA since the “look and feel” of the SCA is not being altered. What is different is the
introduction of a new input to argument 1 which will require arguments 1,...,n(i) of the abstract
dSCA becoming arguments 2,...,n(i) + 1 in the concrete dSCA. The new argument introduced in
concrete dSCA is a wiring of the first argument to the output of the module itself.

Informally, to generate the target concrete dSCA +-wiring functions from a source abstract

dSCA the following process is followed:
e Tor each module m; where ¢ € Ni,:
— For each pcval € {0,...,Mazyn, — 1}:
* For each argument where j € {2,...,n(i) + 1} create a new S-wiring function
'ch_val(ivj) = ’Y;I;c_ual(iaj -1)
* For the ot argument of each module create:
Ype vat(i,0) = M

* For the 1%* argument of each module create:

’ch_val(i7 1) =M



ABSTRACT DSCA TO CONCRETE DSCA TRANSFORMATION A-90

e For module 0 create Mazy [-wiring functions to wire mg back to itself.
Formally, the Createys operation is introduced as:
Createvys : adSCAAlgebra — ydSCAEqList

and is defined:

GetNumM odules(Source . SCA),
GetNumM odules(Source . SCA),
Createys ( Source.SCA ) = Bys | GetMaxN(Source SCA),
GetyEqs(Source . SCA),

The B7ys operavion acileves uwo purposes, LISt 1 Calls uile newruerys vperation to manage
the alteration of indexes, as described above, and then it calls the Rewireys operation which is
responsible for adding the new wiring function for argument 0 to all modules, except the program

counter module, at all times of the program counter. B~ys is given as:
Brys : N2 x vdSCAEqList — vdSCAEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument

being the source abstract dSCA ~-wiring functions. It is defined as:

num-mod, num._mod,
Bys| Mazy, = Rewireys | Mazy,
old~s, Reindexys (oldys)

where the operation Reindexys is given as:
Reindexys : vdSCAEqList — vdSC AEqList

and defined as:
Reindexys(e, es) = (Reindexy(e), Reindexys(es))

and finally Reindex+y is given as:
Reindexy : vdSC AEquation — vdSCAEquation

and is defined in two cases, the first where the wiring function is for the 0** argument or the module
is 0, and the second for where it is not. The first case is defined:

Reindexy(e) = e if ( RetArg(RetTerm(e, 1),?; = 8v )

RetArg(RetTerm(e, 1),
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In the second case a new ~y-wiring function is created from the components of the source «-wiring

function, with the argument index incremented by one:

YRetFn(RetTerm(e,1))s
RetArg(RetTerm(e,1),1),

RetArg(RetTerm(e, 1),2) + 1,
RetTerm(e,2)

Reindexy(e) = Buildy

Having shuffled the existing v-wiring functions, the Rewirevys operation adds the additional
~-wiring functions for argument 1 for all values of the programme counter for all modules, except

the program counter module. It is given as:
Rewireys : N2 x ydSCAEqList — vdSC AEqList

and is defined recursively over the module number, in two cases. The first case is defined as:

mod_num — 1,

mod_num, peval,
Rewireys | pc-val, = Rewireys peval — 1,
newvys, ReWireypc | mod.num, | ,newys

where the operation Rewireypc used by the above definition is responsible for recursing over the

values of the program counter and producing the actual wiring function. It is given as:
Rewireypc: N? x ydSCAEqList — vdSCAEqList

and is defined recursively over the program counter values. The first case is where the program

counter is not 0, and it is therefore defined as:

pcval — 1,
mod_num,
pc_val,
. ) mod_num,
Rewireype | modnum, | = Rewireypc 1
newwys Buildy peval, , Newys
M,
The second case of the Rewireypc operation is defined as:
mod_num,
0, 1
Rewireype | mod-num, | = | Buildy 0’ , newys
newys ’

M,
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The definition of the second case of the Rewireys, where the module number if 0 is defined to simply

return back the list of newly generated equations:

0,
pc.val,
oldys,
newys

Rewirevys = new~ys

H.1.3 [-Wiring Functions

In a similar way to how the target concrete dSCA ~-wiring functions were constructed from source
abstract dSCA ~-wiring functions, so are the concrete dSCA §-wiring functions. The [-wiring
functions in the target concrete dSCA again differ only in so much that the index of arguments
1,...,n(i) shifts to 2,...,n(#) + 1.

Informally, to generate the target concrete dSCA [-wiring functions from a source abstract

dSCA the following process is used:

e For each module m; where i € Ni,:
— Tor each pcval € {0,...,Mazn, — 1}:
* For each argument where j € {2,...,n(i) + 1} create a new S-wiring function
:Bp?c_val(i»j) = ﬂ;lzc_val(i7j - 1)

* For the ot® argument of each module create:

7

Bpevar(1,0) = M
* For the 1%* argument of each module create:
Bpeva(is 1) = M
o TFor module 0 create Maxy (-wiring functions to wire my back to itself.

Formally the Createf3s operation is introduced as:

Create(s : adSCAAlgebra — (3dSCAEqList
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and is defined:

GetNumModules(Source_SCA),
Createfs ( Source SCA ) = Bfs | GetMazN(Source_SCA),
GetEqs(Source SCA),

The Bfs operation achieves two purposes, first it calls the Reindex(s operation to manage
the alteration of indexes, as described above, and then it calls the Rewirefs operation which is
responsible for adding the new wiring function for argument 1 to all modules, except the program

counter module, at all times of the program counter. Bf3s is given as:
Bfs: N? x BdSCAEqList — BdSCAEqList

taking as its first two arguments the defining shape of the concrete dSCA, and the third argument
being the source abstract dSCA f-wiring functions. The final argument is the transformed 3-wiring

functions. It is defined as:
num_mod, num-mod,
Bps| Mazy, = Rewirefs | Mazy,
oldf3s, Reindexfis (oldf3s)
where the operation Reindexfs is given as:

Reindexfs : BdSCAEqList — 3dSCAEqList
and defined as:
Reindezfs(e, es) = (Reindexz((e), Reindexs(es))
and finally Reindex(3 is given as:

Reindexf3 : fdSC AEquation — 3dSC AEquation

and is defined by two cases, the first where the wiring function is for the 0** argument or the module

ov
0

In the second case, a new [-wiring function is created from the components of the source F-wiring

is 0, and the second for where it is not. The first case is defined:

RetArg(RetTerm(e, 1),2)
RetArg(RetTerm(e,1),1)

Reindexf(e) = e if (

function, with the argument index incremented by one:

.BRetF‘n(RetTerm(e,l));
RetArg(RetTerm(e, 1),1)

1),
RetArg(RetTerm(e,1),2) + 1,
RetTerm(e,2)

Reindex3(e) = Build(
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Having altered the indices of the existing 3-wiring functions, the Rewire3s operation adds the
additional S-wiring functions for argument 1 for all values of the programme counter for all modules,

except the program counter module. Tt is given as:
Rewirefs : N* x fdSCAEqList — $dSC AEqList

and is defined recursively over the module number. Where the module number is not 0, then

Rewires is defined as:

mod_num — 1,

mod_num pe-val,
. - N . pcval — 1,
Rewiref3s Zceigl; = Rewirefls ReWirefpe | mod.num,

i L

newfs

the operation RewirefIpc used by the above definition is responsible for recursing over the values of

the program counter and producing the actual wiring function. It is given as:
Rewirefpc : N2 x BdSCAEqList — BdSCAEqList

and is defined recursively over the program counter values. The first case is where the program

counter is not 0:

pcval — 1,
mod_num,
pe-val, mod_num
Rewirefpc | mod_num, | = Rewirefpc 1 - ’
newfs Buildg pe.val, ,newfs
mod_num,
The second case of the Rewirefpc operation is defined as:
mod_num,
0, 1
RewirefBpc | modnum, | = | Buildf 0’ ,newps
newfs ’
mod_num,

The definition of the second case of the Rewirefs, where the module number is 0 is defined to return

back the newly generated f— wiring functions:

0,
Rewirefs 5 lci[;(;l, = newfs

newf3s
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H.1.4 Delay Functions

Delay functions for the concrete dSCA are all of unit delay, and there are a number equal to the
wiring functions. Thus, a unit delay function will be created {or every element in the newly generated
~-wiring equation list.

Formally, the Createds operation is introduced as:
Createds : aSCAAlgebra — SCAEqList

Note that delay functions in the concrete dSCA are of the type §SCAFEqgList and not ddSCAEqList.

The Createds operation is defined as:
Createds ( Source.SCA ) = Bds( E’T’eate’ys(S(mrce_SCA), )
The Bés operation is defined recursively over the elements in the y-wiring function list:

Bés : vydSCAEqList x §dSCAEqList — 6dSCAEqList

the case where the list is not a single element is defined as:

es,
(e, es) GetIndex(RetTerm(e, 1),1),
B ( € €5) ) = Bés Builds GetArg(RetTerm(e, 1), 1),
neqs, v GetArg(RetTerm(e, 1),2), »neqs
t—1

and the definition of Bds where there is only one element in the list of y-wiring functions is defined

GetIndex(RetTerm(e,1),1),

? )7
e, o GetArg(RetTerm(e, 1),1),
Bés ( ) = Builds GetArg(RetTerm(e, 1),2),
t—1

H.1.5 Initial State Equations

The initial states for each module m;, where 1 < i < k are Maxzy tuples of length Mazy (recall
that the mapping is being defined for a cycle consistent abstract dSCA). We will make use of the

fact that calculations will only care about the initial state given for ¢ = Mazy — 1 and t = 0, by
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defining the tuple at time ¢ = 0 and use that value for all other initial values until t = Maz — N —1
where the final Initial State equation will be generated.
The operation CreatelV's is introduced that takes the source abstract dSCA specification and

produces the Initial State equations. It is given as:
CreatelVs: adSCAAlgebra — dSCAISV EqList

and is defined as:

num-_modules(Source_SCA),
GetMaxN(Source.SCA),
GetIV (Source_.SCA),

0

The call to the BIV's operation is where the work of the transformation takes place. BIVs is

CreateIVs( Source.SCA ) = BIVs

given as:
BIVs: N? x dSCAISVEqList> — dSCAISV EqList

and it is defined recursively over module numbers in two cases, the first is where the module number

is greater than zero, and in such a case BIV's is defined as:

mod.num — 1, \
Mazy,
mod_num, 0eqs,
Mazy, 0,
BIVs 0eqs, = BIVs Mozy —1,
neqs BIV | mod_num, ,neqs
0eqs,

[

The operation BIV:
BIV : N® x dSCAISV EqList> — dSCAISV EqList

is defined recursively in two cases over the first argument. Firstly for when the first argument
does not equal Mazy, then the operation is dealing with an initial state from a time prior to
t = Mazy — 1, and as such an initial state will be created containing u elements in all positions,

except for 0" element. Note that the positioning of the first element is dependant upon the tuple
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management schemes used, however for both schemes identified as of interest the first generated

value is placed at position 0 in the tuple. BIV is defined as:

peval + 1, \
Mazy,
pec_val,
mod_num,
Mazxy, 0eas
BIV | modnum, | =BIV 9%
mod_num,
0eds, pc_val
neqs GenlVs Mazy, ,neqs | ,
oeqs

The GenlIV s operation used in BIV is given as:
GenlIVs: N® x dSCAISV EqList — dSCAISV Equation

and is defined to create a Maxn length tuple with the first element being the initial value produced

at time t = 0 in the source abstract dSCA initial values:

mod_num, mod_num,
pe_val, . . pe-val,

GenlVs Moazy, bl RetTerm(VF,2),
oeqs Ugs - - - UMazy—2

where:

VF = GetEl(oeqs, mod_num, pc_val)

With the second case of BIV, where t = Maxy — 1, then the complete initial state needs to be

generated (from previous values):

Maz mod_num,
M a:vx , pe-val,
BIV | mod.num, | = | BuildIV %:;Zum ,neqs
oeqs, InitState - ’
negs 0eqs,

[

The operation InitState is where the Initial State for module mod_num at time t = Maxy —1 is
created. Since we are using the array tuple management then the Initial State under these conditions
will consist of a list of values with the first being the element calculated at ¢ = 0 and the last being

the one calculated at £ = Maxzy in the source abstract dSCA. It is given as:

InitState : N?> x dSCAISV EqList x TermList — TermUList
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and is defined recursively, with the recursive case:

pc_val, pcval — 1,
InitState | ™0 | poiiGrare | TOd-mm,
0egs, 0€eqs,
nlist (RetTerm (VF,2),nlist)
and the recursion being stopped by the 1¢ argument reaching 0:
0,
mod_num,
InitState | oegs, = (RetTerm (VF,2),nlist)

nlist,
=1

b
—

where in both cases:

VF = GetEl(oegqs, mod_num, pc_val)
The base call to the recursive BIV s operation is defined as:

0
o Mazy —1,
BIVs Mazy, | _ (BIVpc( 1, ) ,neqs)
oeqs,

Mazx
neqs N

where BIVpc is given as:
BIVpc: N x dSCAISVEqList x N — dSCAISV EqList

and is defined recursively over the values in Mazxy, such that:

pcval — 1,
peval, 0,
BIVpc | negs, = BIVpc BuildlV | Mazn, ,neqs |,
Mazxy pc_val +1 mod Mazy
Maxpn

and: -

0, 0,
BIVpc | negs, = | BwildIV { 0, |, negs
Mazyn 1
H.1.6 State Transition Equations

Consider the format of the State Transition equation in the source abstract dSCA, it will be similar
to:

or(Vi(t — 32,a,z),Vi(t — 31,a,2)) if Vp(t—1,a,x) =23

Vit 0, 2) = gt(Vi(t —31,a,2),Vi(t — 30,a,x)) if Voe(t —1,8,x) =24
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the corresponding component specification in the concrete dSCA would be of the form:

4

V;Jc(t,aﬂ $),
Vi(t7 a7 :1:)7 .
T < Hfil1 1,23 (Vl(t, a, -T)) y ) if Vpc(t’ a, X) =23
Htt.‘il1.2.23 (‘ll (t’ a’ :r))
Vpc(ta a,r),
T Vl(ti a’ x)’
t ( Hilil,24 (Vvl(ta a, 1’)) ’ )
1-[5,2,24 (W(t,a,z))

Vit+1,a,z) = <

if Vpe(t,a,x) =24

The differences are attributable to the introduction of the tuple management functions, T and
IT (as well as the need to identify the value in the tuple that results are to be extracted from).

Informally, the process for creating the new State Transition equations is a two step process

e Generate the d functions - those that are used in the projection part of the tuple management

functions
e Create the new State Transition equations.

Generation of the d functions
For an indexed array tuple management approach the results are stored relative to the value of the
program counter when that result was calculated. The values of the d functions for each argument,

given a cycle consistent dSCA, can be determined by using the following formula:

dmod_num,arg_num,pc_val = (M(),.’L'N + pC—Ual - Jmod_num,arg_num,pc-val)

As an example, if a module has a definition:

Vi(t — 34,q,2),
Vi(t,a,z) =4 cond | Vi(t—33,a,2), if Vie(t—1,8,x) =0
Vl(t - 32,0,, .’L’)
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Then its arguments would be stored at positions 1,2 and 3 in the array. Assuming Maxy = 36,

then if the first argument is considered, d; 20 can be determined as:
di2,0=(36+0—0120)—1

From the definition of the value function it can be seen that 61 20(t,a,x) =t — 34, therefore:

digo = (36+0—34)— 1
=(2)-1
1

To generate the d functions the Createds operation is introduced that recurses over the structure
of the concrete dSCA (since the source abstract dSCA and concrete dSCA are the same “shape”

means there is no requirement to use the mapping function). Createds is given as:
Createds : adSCAAlgebra — ProjEqList

which is defined to take the abstract dSCA, defining shape of the target concrete dSCA and the
number of arguments per module, and calls the Bds operation whilst extracting the ds equations

from the source abstract dSCA:

GetNumM odules(Source_.SCA),

GetMaxN (Source_.SCA),
createds ( Source.SCA ) = Bds | GetMazA(Source.SCA)+ 1,

GetdEqs(SourcesCA),

[
The Bds operation is given as:

Bds : N® x §dSC AEqList x ProjEqList — ProjEqList

which is defined, in the recursive case, as:

k-1,
Mazxy,
mod.num, Maz s,
Mazy oldeqs,
Bds| Maza, — Bds Mazy —1,
mod_num
oldegs, M ’
neqs Bdspc MZﬁA, ,Neqs
N,
oldegs,

i )
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In keeping with most of the definitions in the transformations so far, the Bdspc operation will

recurse over the program counter values, and is defined as:
Bdspc: N* x 6dSC AEqList x ProjEqList — ProjEqList

this is also recursively defined, and the recursive case is as follows:

pcwval — 1,
mod_num,
pe_val, Maz 4,
Mazxy,
mod_num,
Maz oldegs,
Bdspe A = Bdspc Mazxy — 1,
Mazxy,
pe-val,
oldegs,
neqs Bdsarg mod.num, neqs
Mazy, ’
oldegs,

[

The Bdsarg is the operation that recurses over the arguments in a module:
Bdsarg : N* x §dSCAEqList x ProjEqList — ProjEqList

Again, this is defined recursively, and the recursive case is as follows:

arg.num — 1, \
mod_num,
arg-num, pcval,
mod_num, Mazxy,
) pc.val, - oldegs,
Bdsarg Mazy, = Bdsarg mod_num,
oldegs, Mazya,
neqs Buildd | pc_val, ,Neqs
Mazxzy — 1,
d-val, /
where:
oldegs,
mod_val,
dwal = (Mazxn + pcval) — | t — RetTerm | GetEl Maza, )2
pe-val,

the base case of the Bdsarg operation, where the argument number is equal to 1 (since argument 0

and 1 are wired to the program counter and the module itself and therefore require no projection of
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results) is defined as:

L
mod_num,
pe_val,
Mazy,
oldegs,
negs

Bdsarg = negs

Note that the value of 1 is subtracted from the Max 4 argument in the calculation of to reflect the
fact that argument indexes in the source abstract dSCA are one behind those in the target concrete

dSCA.

The base case of Bdspe, where the program counter value is 0 is defined:

0, Mazy4,
mod_num, pe_val,

Bdspc Moz, = | Bdsarg mod-num, neqs
Mazy, Mazy, ’
oldegs, oldegs,
neqs |

and the base case of the Bds operation - where the module number is 0, simply returns the d
functions already generated, since module 0 is the program counter and requires no such functions

to be defined: 0
MaxN,
Bds | Maxg, = neqs
oldegs,
neqs

Having produced the d functions for the new network attention can be returned to the generation
of the State Transition equations. Consider again the format of the State Transition equation in the

source abstract dSCA, it will be similar to:

or(Vi(t — 32,a,z),Vi(t — 31,a,z)) if condl

Vi(t,a,z) = gt(Va(t — 31,a,2), Vi(t — 30,a,z)) if cond2
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and the corresponding component specification in the concrete dSCA would be of the form:

4

‘/pc(51,0,23(t7 a, .’B), a, .’L’),

‘/1(51,1,23(t)a;:1")7a7 l'), .

T or ( Hfilla'm (Vl(61,2,23(t7 a, 1:)) a, Z)) ) lf condl

\ Y . ,, (Vi(61.3,23(t, 0, 1), 0, x))

V;Jc(él,O,ZAi(t,a: .’E),(I,, .'E),

‘/1(51,1,24(t7a7 IE), a, .')3), .

T gt ( Hélllzm (‘/1(61,2,24(t,a, x)’a’) m)) ’ if cond2
Hfill,a,u (‘/1(51,3,24(ta a, ‘1’.)7 a, .’B))

‘/i(t+ 1,(1,11) =9

The structure of the function does not change, except the introduction of the tuple management

operations T and II, so the operation can create the new State Transition equations by recursing

over the list of source State Transition equations. This is done using the CreateST's operation:
CreateSTs : adSC AAlgebra x Function® — dSCASTV EqList

which is defined as:

GetEgSTV F(Source_ SCA),
(

C’reateds(Source_SCA)
Source SCA, A '
CreateSTs ( T, ) — BSTs Createf3s(Source_.SCA),

. Createds(Source . SCA),
GetMaxN(Source_SCA),
T,

I

The BST's operation is where the structure of the equation list is recursed:

BSTs: dSCASTVEqList? x ProjEqList x fdSCAEqListx
ddSCAEqList x N x Function? — dSCASTV EqList

and it is defined recursively in two cases. The first case is where there exists a list of equations, and

a recursive call is made to this operation with the list of new equations (negs) being appended by



ABSTRACT DSCA TO CONCRETE DSCA TRANSFORMATION

the result of a call to the BST operation:

BSTs

(e, egs),
negs,

newds,
newps,
newds,
Mazy,

= BSTs

eqs,

BSTck

newds,
newps,
newds,
Mazy,
T

II

7

e’

GetIndex(RetTerm(e, 1)),
0,

Maxy,

newds,

newps,

newds,

T,

I

A-104

,neqs |

The operation BSTck is a simple checking operation to see if the module index is non zero.

If this is true then a call to BST is made to construct a new dSCA State Transition equation.

Alternatively, if this index is zero, then the module under consideration is the program counter

module and a new definition should be created to reflect this (as the program counter definition

will not change between modules, the shortcut of using the abstract dSCA definition in the concrete

dSCA rather than creating a brand new definition is taken). BST'ck is given as:

BSTck :

dSCASTV Equation x N3 x ProjEqListx

BdSCAEqList x §dSCAEqList x Function? — dSCASTV Equation

with the following definition:

BSTck

where:

€,

mod_num,

pcval,
Maxy,
newds,
newfs,
newds,
T
II

bl

CreateVF

mod_num,

t+1,a,z,
RetTerm(e,2),
mod_num,
pc-val,

A/[(L.'DN,

newds,

newfs,

newds,

T,

I /

BST

condy = mod_num # 0

if cond;

o' wise
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BST will be a recursive definition over the structure of a State Transition equation’s OpDef

Term - recall that this will be of the form:
cond(Vpe(t,a, ) = 0,a, cond(Vpe(t, a, z) = 1,b, cond(Vpc(t, a, ) = 2,c, cond(.. .))))

The three components (the conditional test, true path and false path) of each VFOpDef term will

be separately “rewired” . The conditional tests component is always of the form:
Vpe(t,a,z) = pc_val

and in the concrete dSCA definition it will be:

ds,
Viewpe | RetTerm | GetEl g,md_num, ,2 | ,a,z | = RetTerm(e,2)
RetTerm(e,2),
where:
Bs,
new_pc = RetTerm | GetEl g?od_num, ,2
RetTerm(e, 2),
and:

e = (Vpe(t,a,z) = pc_val)

The pc_rewire operation is introduced, which will create the new conditional component. For a
complete definition a new equation with references to the extractions from correct wiring and delay
functions should be produced, but in practice, the structure of the concrete dSCA does not differ
from the abstract dSCA and the definition of pc_rewire can be simplified to just return the input.
We give pc_rewire as:

perewire : STV Equation — STV Equation

and provide the following definition for it:
pe-rewire(e) = e

The true path component, i.e. the functionality that is used if the conditional component is

true, needs to be manipulated to incorporate the tuple management functions, i.e given a component
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specification:

cond(a, b, c)

then b would be transformed into:

|

Veelt,a, ),
Vmod.n'u.m (t7 a, 1:) b
rewire(b)

To achieve this the cs_rewire operation is introduced:

and it is defined as:

cs_rewire

trm,
mod_num,
pe_val,
Mazxy,
ds,

Bs,

ds,

T,

II

rw

)

cs_rewire : Term x N3 x ProjEqList x ydSCAEqListx
BdSCAEqList x §dSCAFEqList x Function — Term

‘/pc(t, a, .'I,‘),
Vmod-nu‘m (t7 a, $)7

irm,
mod_num,
pewval,
Moaxy,
ds,

Bs,

ds,

II

A-106

\

A generic rewire operation is not introduced, rather the definition for the number of arguments

used in the machine algebra is given (there are zero to 3 arguments):

rw:

x8dSCAEqList — Term

and rw is defined as:

rw

trm,

mod_num,

peval,
rw (Jl\f,amN ’
ﬁs7

ds,

II
trm(trmy), \
mod_num,
pe-val,

Mazy, =trm
ds,
Bs,
ds,

m /

)

wire

=irm

Bs,

ds,

ds,
mod_val,
2,
pc_val,
Mazxy,

trml, \

II

Term x N3 x ProjEqList x fdSCAEqList x Function



rw

trm(trmy, trms),
mod_num,
pe.val,

MamN,

ds,

Bs,

ds,

II

mod_num,
pcval,
Maxy,
ds,

Bs,

4s,

II

rw

=tirm

trm(trmy, trmsy, trms),

ABSTRACT DSCA TO CONCRETE DSCA TRANSFORMATION

irmy, trms,
ﬁs7 ﬁs’
ds, ds,
ds, ds,
wire | mod.val, | ,wire| mod_val,
2, 3,
pe-val, pe-val,
Mazxy, Mazxy,
I II
trma,
wire (s, 8s,ds,
mod_val, 2, pc_val,
Mazyn,II
trmo,
=trm | wire Bs, bs,ds,
mod_val, 3, pc_val,
MQ,.'EN, II
trms,
wire fs,0s,ds,
mod_val, 4, pc_val,
Mazn,II

with the supplementary operation wire being given as:

wire :

N4 x Function — Term

Term x fdSCAEqList x §dSCAEqList x ProjEqListx

Wire is defined for the three cases that may make up an atomic term within Mg4:

wire

wire

wire

where:

const,

B3s,9s,ds,
mod_val, j, pcval,
Maxy,I1

ap(t);

(3s,8s,ds,
mod_val, j, pc_val,
Maxp,II

‘/p(t - 17 a, .’E),

(s, 8s,ds,
mod_val, j, pc_val,
Mazxy,II

new_index = RetTerm | GetEl

const

Qnew_index (t)

Maxn—1
Hprj_'ual

Bs,

mod_val,

’

(Vncw_indezt (new—time, a, x))

,2

pcval
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and finally:

new_time = RetTerm | GetEl

prjval = RetTerm | GetEl

ds,

7

mod_val,

)2

pcval

ds
mod.val,

K

?

,2

pe_val

+1
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Finally attention is turned to the false path of the term; this needs to be passed as an argument

back to the BST operation. The definition of BST can therefore be given over the recursive structure

of the State Transition equation, given as:

BST: Term x N3 x ProjEqList x BdSCAEqList x §dSC AEqListx
Function? — Term

and defined as:

BST

cond(a, b, c),
mod_num,
pe_val,
Mazpy,
newds,
newfs,
newds,

T,

II

= cond

The recursive base case is defined as:

BST

C)
mod_num,
pe-val,
Mazy,
newds,
newfs,
newds,

T,

II

mod._num, pc_val,

newfs, newds

a?
pc_rewire
b,
cs_rewire
c)
BST

)

mod_num, pcval, Maxy,
newds, 3s,6s, T, 11

mod_num,pc_val + 1, Maxy,

newds, newB3s,newds, T,T1

= cs_rewire

¢,
mod_num,
pe-val,
Mazy,
newds,
Bs,

ds,

T

\ 1T

)

The base case definition of BST's, where only one State Value equation is in the list, is simply

the result of making a call to the BST'ck operation and appending the result to the new equations
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passed in as an argument:

e?
© GetIndex(RetTerm(e, 1)),
negs, 0
frlzfjus,s Mazy,
BSTs 7% | = | BSTck newds, ,neqs
newps,
newps,
newds,
newds,
T,
I ) X
n /

H.1.7 Transformation Process

Fach of the operations above need to be coordinated together so that a new concrete dSCA can be
created by transforming the source abstract dSCA. The Create_cdSC A operation is provided to do

this, it is given as:
Transform : adSC AAlgebra x Function? — cdSC AAlgebra

The operation takes the source concrete dSCA and is defined as:

Name,
A’[Atup )
I8
I
VFOp,
Y : N2 {M,S,U},
SCAqre, fio : N*— N,
Transform | T, = CreatecdSCA| 60p ,
I Createys(SCAgre) ,
Createfs(SCAsre)
Createds(SCAsre)
C’I"B(LteIVS(SCAsrc) ’
SCAsrca
CreateSTs | T,
I
where:
Vo:T x A/[Ztup X Mﬁwp — MAmp,
VFOp= ',
Vi : T x MR, X M"me — Matup
50,()'0 T x JV[Xtup X Mflt’up g T,
Op=|

L. n k
0ijo0:T x Mmup X MAmp — T
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and:

k = num_mod(SCA;,.)
j = Get_MazA(SCAsrc)
n = num_inp(SCAs,.)

It is not intended to bring together all the operations defined in this chapter into a written down
specification in this thesis for reasons of brevity. If this was to be performed, then it would appear

similar to the specification provided for the SCA to abstract dSCA transformation in Appendix F.



