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Summary

Modelling of uncertainty increases trust in analysis tools by providing predic-
tions with confidence levels, produces more robust designs, and reduces design cycle
time/cost by reducing the amount of experimental verification and validation that
is required. However, uncertainty-based methods are more complex and compu-
tationally expensive than their deterministic counterparts, the characterisation of
uncertainties is a non-trivial task, and the industry feels comfortable with the tra-
ditional design methods.

In this work the three most popular uncertainty propagation methods (Monte
Carlo simulation, perturbation, and fuzzy) are extensively benchmarked in struc-
tural dynamics applications. The main focus of the benchmark is accuracy, simplic-
ity, and scalability. Some general guidelines for choosing the adequate uncertainty
propagation method for an application are given.

Since direct measurement is often prohibitively costly or even impossible, a novel
method to characterise uncertainty sources from indirect measurements is presented.
This method can accurately estimate the probability distribution of uncertain pa-
rameters by maximising the likelihood of the measurements. The likelihood is es-
timated using efficient variations of the Monte Carlo simulation and perturbation
methods, which shift the computational burden to the outside of the optimisation
loop, achieving a substantial time-saving without compromising accuracy. The ap-
proach was verified experimentally in several applications with promising results.

A novel probabilistic procedure for robust design is proposed. It is based on
reweighting of the Monte Carlo samples to avoid the numerical inefficiencies of re-
sampling for every candidate design. Although not globally convergent, the proposed
method is able to quickly estimate with high accuracy the optimum design. The
method is applied to a numerical example, and the obtained designs are verified
with regular Monte Carlo.

The main focus of this work was on structural dynamics, but care was taken
to make the approach general enough to allow other kinds of structural and non-

structural analyses.
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Chapter 1
Introduction

The increase of computing power has shifted the modelling of structures to early
design stages in order to cut development costs. However, it is increasingly apparent
that the deterministic nature of the modelling methods employed for low frequency
structural dynamics modelling have serious drawbacks. The variance in the noise
and vibration response of structures, such as vehicles, is still a major concern and
large resources are expended to identify and remove sources of variability.

Many engineers believe that any structure may be modelled to arbitrary accuracy
merely by increasing the finite element mesh density. But this is not so. These
refined meshes are able to model the geometry of the structure more accurately, but
the modelling errors due to uncertainty can never be resolved in such a fashion.

The use of nondeterministic models allows the estimation of the uncertainty
in the model predictions. These estimates can be given as standard deviations,
confidence bounds, or even probability distributions. But the major advantage is
in the feedback of these uncertainty estimates into the design decisions, via robust
design techniques. These allow the designs to quickly reach the stage where they
are insensitive to the uncertainty in the model.

Therefore the modelling of uncertainty is advantageous. It increases confidence
in analysis tools by providing predictions with confidence levels. It produces more
robust designs. And it reduces design cycle time and cost by reducing the amount
of experimental verification and validation that is required.

However, there are barriers to the adoption of uncertainty-based design meth-
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ods. The major barrier is that uncertainty-based design methods are more complex
and computationally expensive than their deterministic counterparts. The compu-
tational overhead caused can be of several orders of magnitude higher. Another
barrier is that the characterisation of uncertainties, which are necessary for accu-
rate uncertainty modelling, is a non-trivial task. There is little existing knowledge
for such characterisation. The uncertainty characterisation depends on the chosen
structural configuration, materials, and manufacturing processes. Finally, the in-
dustry feels comfortable with the traditional design methods, which are supported
by well-established tools.

1.1 Objective

The objective of this thesis is to determine ways to overcome the above mentioned
barriers to the adoption of uncertainty-based methods for the particular application
domain of structural dynamics. It aims to provide a set of methodologies to effi-
ciently and accurately incorporate uncertainty into structural dynamic modelling
and design. More specifically, how to adequately characterise the uncertainty in dy-
namic structures, how to accurately propagate that uncertainty through the dynamic
models of structures, and how to efficiently and accurately design the structures so

that their dynamical properties are robust to those uncertainties.

1.2  OQutline

Chapter 2 gives the background terminology and methodology for uncertainty analy-
sis within the scope of computational engineering. The main sources of uncertainties
are identified and classified. The most popular uncertainty representations are de-
scribed along with their benefits and disadvantages. The most common uncertainty
propagation methods are also presented.

In chapter 3 the three most popular uncertainty propagation methods (the Monte
Carlo simulation method, the perturbation method, and the fuzzy method) are ex-
tensively benchmarked in structural dynamics applications. The applications range

from a simple cantilever beam to a curved shell model. The main focus of the bench-



INTRODUCTION 1.2 Outline

mark is accuracy, simplicity, and scalability with respect to the model size and the
number of uncertain parameters. Finally, some general guidelines for choosing the
adequate uncertainty propagation method for an application are given.

Chapter 4 presents a novel method to identify uncertainty in parameters from
measured experimental data; it can be used for uncertainty characterisation in do-
mains where bespoke measurements are difficult. The method is based on the appli-
cation of maximum likelihood estimation, where the likelihoods are estimated using
efficient variations of the perturbation and Monte Carlo simulation methods. These
variations shift most of the computational burden to the outside of the optimisa-
tion loop, achieving a substantial time-saving without compromising accuracy. The
method is applied to numerical and experimental applications, and the results of
the perturbation and Monte Carlo approaches are compared.

In chapter 5 a novel probabilistic method for the optimisation of robust design
problems is presented. The method is based on the same variation of the Monte
Carlo simulation approach presented in chapter 4. By shifting most of the computa-
tional burden to outside of the optimisation loop, optimum designs can be achieved
efficiently and accurately. The method is applied to a numerical example, and the
obtained designs are verified with regular Monte Carlo.

Chapter 6 presents the main conclusions of this work together with some direc-

tions for future work.



Chapter 2

Background terminology and
methodology

2.1 Uncertainty classification

Uncertainty can stem from:
e lack of knowledge
e physical randomness
e ambiguity due to incompletely or improperly defined outcomes

e vagueness due to uncertainty in set membership (i.e., fuzziness) or boundaries

(i.e., roughness)
e conflicting or inaccurate information

Uncertainty may be distinguished into epistemic and aleatory uncertainty [51].
Epistemic uncertainty is a measure of the lack of knowledge. It can be reduced by
further research. It is also referred to as reducible uncertainty. Aleatory uncertainty
is a measure of heterogeneity or diversity in a population. It can not be reduced by
further research. It is also referred to as irreducible uncertainty or variability.

For a mathematical model it is possible to distinguish parametric and model form

uncertainty [50]. Parametric uncertainty can be entirely specified as parameters in a



BACKGROUND 2.2 Uncertainty representation

model. Model form uncertainty concerns structural changes within a model. While
both forms commonly occur together in a realistic analysis, only the parametric
form of uncertainty will be addressed in this work.
A general problem with parametric uncertainty can be formally described by the
equation
y =f(x) (2.1)

where X = [z1Z3 ... T,|T are uncertain parameters, and y = [y1 92 ... ym|T are
the desired response quantities. Examples of parameters are structure geometry
and material properties. Examples of response quantities are natural frequencies,

frequency response functions, and time responses.

2.2 Uncertainty representation

Mathematical tools such as intervals, the probability theory, or fuzzy sets can be
used to represent uncertainty. This section briefly describes such representations,
highlighting the associated advantages and disadvantages.

2.2.1 Probability theory

Probability theory provides a sound basis for modelling uncertainty. Using prob-
ability distributions to quantify uncertainty allows the designer either to optimise
the mean performance or to minimise the failure risk.

Frequencist interpretation The probability of an event is commonly defined as the
ratio of the number of occurrences of that event over the total number occurrences,
as the number of experiments approaches infinity. This is the frequencist probability
interpretation, which is intuitive and widely accepted.

Probability theory is applied to the general problem in equation (2.1) by assum-

ing the parameters x and response y are realisations of the random vectors X and
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Y, respectively, which follow the probability distributions

X ~ Dx (2.2)
Y ~ Dy (2.3)

where Dx and Dy are the parameter and response multivariate probability distribu-
tions. The parameter and response joint probability density functions are denoted
by fx(x) and fy(y). Section 2.3 describes numerical methods to derive the response
distribution from the parameter joint probability density function fx(x).

Care must be taken in choosing the parameter and response distributions. Nor-
mal or multivariate normal distributions are often chosen, because of their well-
known statistics properties, their easily estimated parameters, and their wide avail-
ability in software packages. While some physical phenomena has been shown to
follow a normal distribution, many do not, making distributions with different prop-
erties (e.g., positiveness or asymmetry) a more sensible choice [2].

Bayesian interpretation The frequencist interpretation of probability is well-suited
for aleatory uncertainty, but is less-so for for epistemic uncertainty. The problem
arises when no experiment has been performed, or could ever be. In such situations
frequency makes no sense: “What is the probability of life on Mars?”, “What is the
probability that a building can withstand a major earthquake?”. To address this
difficulty, the Bayesian interpretation of probability considers probability as a degree
of belief, conditional upon some prior information. The probability p of an event
can be seen as the willingness to bet £p in exchange for a £1 if the event occurs.
The name comes from Bayes’ theorem, which is often used to update the probabil-
ity of a given statement (prior probability) in the face of new evidence (conditional
probability).

The Bayesian interpretation helps in manipulating epistemic uncertainty. Imag-
ine that equation (2.1) refers to the dynamic response of a building. If we assign
prior distributions of the construction material and soil properties then we can cal-
culate posterior probabilities of the building collapsing to a given excitation. Also,
we can dynamically test the building to update the prior probabilities and/or the
collapse probability.
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The Bayesian interpretation requires the specification of the prior probabilities.
When those prior probabilities are unknown, the principle of mazimum entropy can
be used to choose the most uninformative of the prior distributions, e.g., assigning
1/2 as the probability of a binary parameter, but this leads to a paradox such as
the following [33].

(...) A factory produces cubes with side-length between 0 and 1 foot;
what is the probability that a randomly chosen cube has side-length be-
tween 0 and 1/2 a foot? The tempting answer is 1/2, as we imagine
a process of production that is uniformly distributed over side-length.
But the question could have been given an equivalent restatement: A
factory produces cubes with face-area between 0 and 1 square-feet; what
is the probability that a randomly chosen cube has face-area between 0
and 1/4 square-feet? Now the tempting answer is 1/4, as we imagine a
process of production that is uniformly distributed over face-area. This
is already disastrous, as we cannot allow the same event to have two dif-
ferent probabilities (especially if this interpretation is to be admissible!).
But there is worse to come, for the problem could have been restated
equivalently again: A factory produces cubes with volume between 0
and 1 cubic feet; what is the probability that a randomly chosen cube
has volume between 0 and 1/8 cubic-feet? Now the tempting answer is
1/8, as we imagine a process of production that is uniformly distributed
over volume. And so on for all of the infinitely many equivalent refor-
mulations of the problem (in terms of the fourth, fifth, ... power of the
length, and indeed in terms of every nonzero real-valued exponent of the
length). What, then, is the probability of the event in question?

The paradox arises because the principle of indifference can be used
in incompatible ways. We have no evidence that favours the side-length
lying in the interval [0, 1/2] over its lying in [1/2, 1], or vice versa, so the
principle requires us to give probability 1/2 to each. Unfortunately, we
also have no evidence that favours the face-area lying in any of the four
intervals [0, 1/4], [1/4,1/2], [1/2,3/4], and [3/4, 1] over any of the others,
so we must give probability 1/4 to each. The event “the side-length lies in
[0,1/2]”, receives a different probability when merely redescribed. And
so it goes, for all the other reformulations of the problem. We cannot
meet any pair of these constraints simultaneously, let alone all of them.

Another problem with the Bayesian probability interpretation is that the proba-
bility itself cannot convey how much evidence is held. Consider the following three

situations [78] where you have a box and:

7
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1. you know that there are some white and some black balls in it;

2. you tried to draw some balls from it, and half the time you drew a black one
and the other half a white one;

3. you know that there are exactly the same number of white and black balls in
it.

If a Bayesian probability was assigned to the event “drawing a black ball” then
a probability of 1/2 would be assigned in all these situations, spite the different

amount of evidence in each.

2.2.2 Interval arithmetic

Uncertainty can be represented as intervals, whereby all parameters and response

variables are bounded as

7 € [2,%), i=1,2,...,n (2.4)
Y;i € [Qjaij .7 = 1,2,- ..,mMm (25)

This representation is particularly useful to prevent the possibility of extreme
events. For example, when proving the response lies within an admissible range.
Interval arithmetic, also called interval mathematics, interval analysis, and in-

terval computation, defines the operations on intervals, such as

la,a] + [b,b] = [a+b,a+ b (2.6)
[g'-, Zi] - [-b’ E] = [.a'_ - B,E - b] (2.7)
[a,@) x [b,b] = [min(ab, ab, @b, ab, ), max(ab, ab, Gb, ab, )] (2.8)

[Q’ E]/[Q, _6] = [min(g/l_), _@/a a/l_), 6/5’ )’ max(g/l_), Q/Ba _a-/b’ 5/5, )] (2'9)

Although interval arithmetic can be carried out for virtually any expression that
can be evaluated using class arithmetic, a naive replacement of classical arithmetic
by interval arithmetic will fail to produce adequately narrow bounds [36].



BACKGROUND 2.2 Uncertainty representation

Interval arithmetic is subdistributive such that, if x, y, and z, are intervals, then
x(y +2z) C xy + xz (2.10)

so, although addition or multiplication of intervals is commutative and associative,

the distributive laws do not hold [37]. For example, the following expressions

X2—X

x(x—1)

always produce equal results in classic arithmetic, yet when considered under the
interval arithmetic they yield surprisingly different results. Taking, for example, x
as the interval [1, 2], they yield

[1,2]2 - [1,2] = [1,4] - [1,2] = [-1,3]
[1’2]([1v2] - 1) = [1’ 2][07 1] = [07 2]

The reason behind this difference is that the dependency between operands is unac-
counted for during intermediate computations. x? and x are dependent quantities,
but are considered as independent quantities in the subtraction, and the result is
that the bounds are overestimated.

Furthermore, there is an additive identity [0,0] and a multiplicative identity

[1,1], but additive and multiplicative inverses do not exist. For example
1,2 - [1,2] = [-1, 3]

This phenomena invariably reflects as an overestimation of the resulting interval
width. And, if care is not taken, the interval width overestimation can grow to ex-
tremely large values (when compared to the mean), rendering the resulting intervals
useless.

Therefore, most numerical algorithms need to be modified for interval arith-
metic. With no alternative, the resulting interval for any function can be computed
by resorting to a double-optimisation of that function. The response intervals for



BACKGROUND 2.2 Uncertainty representation

equation (2.1) are then given by
[gj,ﬂj] = [min f;(x), max f;(x)] such that z; € [z;,T:], 1 =1,2,...,n (2.11)

for every j-th response variable.
Affine interval arithmetic provides a partial solution to the interval width over-
estimation problem, and has been proposed as an alternative for interval arithmetic

for uncertainty modelling in finite element analysis [42].

2.2.3 Fuzzy sets

Fuzzy sets model uncertainties through vague definition rather than by chance. A
conventional (crisp) set either contains an element, or not. However, fuzzy sets
define a series of intermediary belonging states between these two statements.

The degree to which a real number z belongs to a fuzzy set is specified by the
membership function p(z). The membership function values range from zero to one.
A membership value of one means that the given point is sure to belong to the fuzzy
set. A membership value of zero means that the given point does not belong to the
set. Fuzzy sets use membership functions as a replacement for probability density

functions.

ue |

Y

| |
x(@ x(@

Figure 2.1: Interval representation of a fuzzy number
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For numerical computation, a fuzzy number is approximated by a set of closed
intervals corresponding to specific a-cuts of the membership function. This is illus-
trated by figure 2.1. However, this representation implies that membership functions
must be convex; they cannot represent bi-modal variables.

Fuzzy arithmetic operations can be carried out by using interval arithmetic op-
erations at each of the a-levels independently, so the membership functions have a
simpler and computational more efficient algebra than the probability density func-
tions. However fuzzy arithmetic also inherits all of the complications of interval

arithmetic mentioned in section 2.2.2.

Construction of membership functions Membership functions may be constructed
from expert knowledge. Alternatively, if probability density functions are known,
the membership functions may be obtained by their normalisation [9] as

1
pu(z) = mf(x) (2.12)

Y

Figure 2.2: Approximating a Gaussian distribution by a triangular fuzzy number

It is common to approximate the Gaussian random variables by triangular fuzzy

numbers, as seen in figure 2.2, where [31]
§=+V2mo (2.13)
In the framework of possibility theory, fuzzy numbers can be used to define an

11



BACKGROUND 2.2 Uncertainty representation

equivalence class of probability distributions compatible with the available data,
specifying corresponding upper and lower cumulative density functions [64].

Imprecise probabilities

Imprecise probability theories overcome most of the limitations of probability theory
when representing epistemic uncertainty by encoding both the amount of evidence
for and against a hypotheses. In probability theory these two quantities are com-
plementary. But in imprecise probability theory they do not necessarily add up to
unity. The gap encodes the lack of evidence either way — the lack of knowledge.

Imprecise probabilities theories include many different models, such as probabil-
ity intervals and Dempster-Shafer’s belief functions.

The Imprecise Probabilities Project provides on its web site! a repository of
information related to the imprecise probabilities theories.

2.2.4 Random fields

Uncertain properties, such as Young’s modulus, mass density or plate thickness,

vary in space. This variability can be described using random fields.

X

Figure 2.3: Random field example

A random field X (t) is a collection of random variables at points with coordinates
t = (¢t1,...,t,) in a n-dimensional parameter space [75]. Figure 2.3 illustrates a
beam’s thickness as a random field.

In most engineering applications the random fields can be considered homoge-

neous and isotropic. For an homogeneous random field all of the joint probability

lhttp://ippserv.rug.ac.be/
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distribution functions remain the same when the set of locations is translated in the
parameter space. For an isotropic random field all of the joint probability distribu-
tions functions remain the same when the set of locations is rotated in parameter
space. These two properties combined imply that the correlation p between the ran-
dom field value at two locations t; and t, depends solely on the distance 7 between

these two points:
p(t1,t2) = p(r) (2.14)

where 7 = ||t2 — t4]|.

Random field models

A simple random field model which observes the homogeneous and isotropic prop-

erties is the first order auto-regressive model, commonly abbreviated to AR(1).

First-order autoregressive model AR(1) The AR(1) model in space is given by
(V2 —a?) X(t) = U(t) (2.15)

where U (t) is an uncorrelated (white noise) random field and « is a parameter which
specifies the scale of variation.

The quantity L = 1/q is usually referred to as the correlation length, and gives
a measure of the roughness scale. Figure 2.4 shows instances of unidimensional
AR(1) random fields with same zero mean and unit standard variation but different
correlation lengths. Low correlation lengths yield rough curves while big correlation
lengths yield smooth curves.

The coefficient of correlation of an AR(1) random field in an one-dimensional
space by [75]

p(r) = (1+ )t (2.16)

and in a two-dimensional space is given by

p(r) = T Ko (—7) (2.17)

where L is the correlation length and Kj is the modified Bessel function of the

13
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Random field value, X (t)

\

Field location, t

Figure 2.4: Samples of a single dimension AR(1) model with different values of o

second kind of order 0.

Random field discretisation

To incorporate a spatial random field in a finite element analysis the random field
must be discretised to give a set of discrete random variables. Some methods devel-

oped for that purpose are described below.

Mid-point method In the mid-point method, which is the most straightforward
random field discretisation method, the field value over an element is taken to be

equal to the value at the mid-point of the element.

Local averaging method In the local averaging method the field value over an
element is taken to be equal to the spatial average of the field over the element [76].

Weighted integral method In the weighted integral method the field is replaced
by weighted integrals over its domain [69, 70, 13, 14, 46].

Orthogonal series expansion By making use of the Karhunen-Loéve expansion of

the covariance function the random field can be represented in terms of a finite set

14
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of uncorrelated random variables [67].

Optimum linear estimation The optimum linear estimation method represents
the random field as a linear function of nodal random variables using a set of shape

functions and applying the principles of optimal linear estimation [41].

The mid-point method is the most simple to implement, and for that reason
is often used. However it is not the most accurate. Li and Der Kiureghian [41],

Schiieller [65] reviewed most of the random field discretisation methods.

2.2.5 Transformation of random variables into normal variables

Some probabilistic methods require that the uncertain parameters are specified as
normal or multivariate normal distributions, because of their well-known statistical
properties. Nevertheless, it is generally possible to transform a set of non normal
variables into a set of independent normal variables.

Random variables may be transformed into uncorrelated Gaussian variables ex-
actly using the Rosenblatt transformation, or approximately using the Nataf trans-
formation [45, 80].

Rebba and Mahadevan [59] reviewed several of the normal transformation meth-

ods.

2.3 Uncertainty propagation

Incorporating uncertainty in a deterministic analysis by having its inputs as uncer-
tain and quantifying the consequent uncertainty in the outputs is commonly referred
as uncertainty propagation.

The response statistics, such as mean and variance, are usually sought

By) = [ fx) - £60 & (2.18)
Var(y) = [ () - (£ - B(£(0)* dx (2.19)
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The response joint probability density function

Frly) = 1)/ |0 (2.20

may be sought so it can be integrated over a failure/safe subset of the parameter
space and assess the structure failure/survival probability, respectively.

The analytical solution of these integrals is rarely available. The system func-
tion f usually includes highly complex simulations and analyses, such as the finite
element method, and its evaluation is costly. Therefore, approximate methods for
uncertainty propagation have been developed.

Most uncertainty propagation methods fall within three main categories: sam-

pling methods, response surface approximation methods, and convex methods.

Sampling methods The sampling methods propagate uncertainty by performing
sample evaluations of equation (2.1). The Monte Carlo simulation method and its
variants are the prime example, and is described in section 2.3.1.

Response surface approximation methods Response surface approximation meth-
ods replace equation (2.1) by a simpler low-order approximation, from which re-
sponse statistics are more easily derived. It includes the first and higher order

perturbation methods, described in section 2.3.2.

Convex methods Convex methods produce bounds on the response from the input
bounds. The interval and fuzzy methods are included in this category. The fuzzy

method is described in section 2.3.3.

The choice of the uncertainty propagation method is largely dependent on the
chosen uncertainty representation. Monte Carlo and perturbation methods are more
akin to the probabilistic representation of uncertainty. Each of the convex methods

is associated with the respective uncertainty representation.
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2.3.1 Monte Carlo simulation method

The Monte Carlo simulation (MCS) method is named after the city in Monaco
and its casinos. It is applied in many different fields of computational science, to
problems with and without probabilistic content. It provides approximate solutions
by performing statistical sampling experiments.

A large number N of samples of the uncertain parameters x;, fori = 1,2,..., N,
is generated according to the parameters’ probability distribution, and the respec-
tive response values y; = f(x;) are evaluated from equation (2.1). The response
statistical properties, such as mean and variance, can be determined directly from
the response samples.

A major advantage of the Monte Carlo simulation method is that accurate so-
lutions can be obtained for problems whose deterministic solution is know. Since
it is completely general the Monte Carlo simulation method is frequently used to
calibrate and validate other methods. It is thereby the workhorse of the uncertainty
propagation methods.

1 v v oved v ved v gel ol -l 01
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Figure 2.5: Convergence of the Monte Carlo method estimating the mean and stan-
dard deviation of a normal random variable N(x = 1,0 = 0.1).

The main disadvantage is that it is time consuming. Monte Carlo displays 1/ vN

convergence, i.e., it is necessary to perform one hundred times more experiments in
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order to achieve another decimal place of accuracy in estimates. Figure 2.5 illustrates
the Monte Carlo convergence by displaying the evolution of the mean and standard
variance estimate errors of a normal random variable with the number of random
samples taken for the estimate. Nevertheless, all other numerical methods that rely
on N point evaluations in a n-dimensional space to produce an approximate solution
have, in the absence of an exploitable special structure, an error that decreases as
N~/ at best. Therefore the Monte Carlo simulation method is frequently used for
numerical integration in high dimensional and irregular domains [55].

Since each realisation is independent of all others, the Monte Carlo simulation

method can be easily parallelised.

Sampling

The crucial step of the Monte Carlo method is the generation of samples that are
compatible with the statistical information of the problem, such as spectral density,

correlation, and density distributions.

Multivariate normal sampling When the uncertain parameters are multivariate
Gaussian the Mahalanobis transformation can be used to transform the parameters
into uncorrelated Gaussian variables.

A vector X of Gaussian (or normal) random variables is characterised by the
vector of mean values gy and the covariance matrix ¥ x. A property of the co-
variance matrix is that it is positive definite, so there exists a linear transformation
Z = CX that has a diagonal covariance matrix Xz [75]. The new random variables
of Z are uncorrelated and their variances are the eigenvalues of X x. The random

vector X can be expressed as
X =py+C '’z (2.21)

where Z is a vector of uncorrelated normal variables with zero mean and unit vari-
ance.
Samples of X can be obtained by sampling Z and evaluating equation (2.21).
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Latin hypercube sampling In the Monte Carlo simulation method, random sam-
pling can be replaced by other adequate quasi-random or pseudo-random sampling
sequences. A commonly used alternative is the Latin hypercube sampling (LHS).
In LHS the parameter space is partitioned in subspaces of equal probability,
and samples are taken from each subspace ensuring that every parameter is covered

evenly.

Figure 2.6: Latin hypercube sampling from a bidimensional parameter space

If sampling n samples of m independent parameters, the parameter space is
divided into n subspaces for each parameter. Samples are taken randomly from
each subspace such that for every parameter no sample is taken from the same
subspace twice, as illustrated by figure 2.6 for a bidimensional parameter space.

The advantage of LHS over conventional random sampling is that if the response
is dominated by a single parameter then it guarantees that the response is evaluated
for all levels of that parameter. Conventional sampling does not guarantee that. If
the response is dominated by more than a single parameter, the LHS provides no
clear advantage over other sampling methods.

LHS can also be performed adaptively [63], whereby subspaces are again sub-
divided by an integer number, allowing further samples to be generated without
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discarding the existing set.

Kernel Density Estimation

Response statistics such as mean, variance, and higher order moments can be directly
calculated from the response samples. However, continuous probability density func-
tions cannot be calculated directly from discrete response samples. Kernel density
estimation allows the estimation of probability density functions from a discrete set
of samples, so it can be used together with the Monte Carlo simulation method to
estimate the response probability density function.

If [x1 X2 ... Xn] are the N parameter samples generated during the Monte Carlo
simulation method and [y;y2 ... yn] are the respective response evaluations then
the response probability density function can be estimated using the kernel density
estimator [66, 34| as

f(v162) = Z ru(y — ¥i) (222)
where kg is the kernel function with a H bandwidth matrix
ku(y) = H| ' (H'y) (2.23)
The multivariate normal is a common choice of kernel function, where
k(y) = (2m) ™2~V V/2 (2.24)

A careful choice for the bandwidth matrix must be made for accurate estimates.

Hérdle et al. [34] suggested the following rule-of-thumb
—1/(m+4)§n1/2
H = N-V(m+ )zy/ (2.25)

where X, is the covariance matrix of the response samples, but if the number of
parameters n is smaller than the response dimensionality m then the response com-

ponents are necessarily dependent, and better results are achieved using

H = N~V/dxl/2 (2.26)
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where d = min(n, m) is the effective number of degrees of freedom in the response.

2.3.2 Perturbation method

The perturbation method is equivalent to a low-order Taylor expansion, and has been
widely used for its tractability and computational time-saving [65]. It expresses the
structural matrices and response in terms of a low-order polynomial function with
respect to the parameters centred at the mean values, i.e., it makes an approximation
of the response surface.

It is assumed that the uncertain parameters follow a multivariate normal distri-

bution
X ~ N, (p,, 3z) (2.27)

This incurs no loss in generality as random variables can be transformed into Gaus-
sian variables, as mentioned in section 2.2.5.
For the perturbation method equation (2.1) is first expanded as

y= f(#’x)

+ Zl %(p’x) . (xi - /in)
= (2.28)

1 n n 62f

+...

around the mean point p,. Taking only the first order terms, equation (2.28) can

be rewritten as
y = () +J- (x— pp) (2.29)

where J is the Jacobian of f, evaluated at the point u,. From equations (2.27) and
(2.29),
Y ~Np, (uy, ) (2.30)
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where
ny = £(u,) (2:31)
x, =J%.J7 (2.32)
The response joint probability density function is then given by
fe(y) = @m) /2 | e iR G2 (2:33)
Natural frequency derivatives Introducing the following notation
(DO = (I)(p’zluuzza te 1#’::-,‘) (234)
0P
¥ = 5g (Havs oy s i) (2.35)
82<I>
q)zIJI - 8.’13 (tu'-'zl’ Bzgy-- - l‘l’-’lin) (236)
for any variable ® which depends on the parameters z1,zs, . . . , Z,, then the stiffness
and mass matrices are expanded as
K=K+ Z Kle, + = Z Z K ee; + (2.37)
=1 _1—1
M=M°+ Z Mle; + = Z Z M/ eie; + (2.38)
1,—1 j=1
where €; = z; — jz,. In the same manner, for the eigenvalue problem
(K- XM)¢ = (2.39)
the resulting eigenvalues A and eigenvectors ¢ are expanded as
A=20+ Z Me + = Z Z Aeie (2.40)
'L—l j=1
¢=¢° +Z¢ez+ ZZ¢ Teie; + (2.41)
i=1 j=1

22



BACKGROUND 2.3 Uncertainty propagation

The mean and variances of the eigenvalues are

EDN=X+= ZZ)\HCOV [zs, 2] + - - - (2.42)
z—-l Jj=1
Var [\] = ZZ)\I)\ICOV [zs, ] + - - - (2.43)
i=1 j=1

It can be shown that A is given by [22, 61, 48]

0T (yeI _ \ongI) A0
A= ¢ (I;i)TL:¢1:4‘)¢ (2.44)

where \° and ¢° are obtained by the mean eigenvalue problem
(K° - \’M%) ¢’ =0 (2.45)

The natural frequencies can be expanded as

w =V
11 1 1 (2.46)
=i} + 5 0= ) = gat = )P+

Considering up to the first order term, the mean and standard deviation of the
natural frequencies can be obtained from equations (2.42) and (2.43) as

0w = 1 (2.48)

o
2V

A detailed study of the distribution of eigenvalues was carried out by Adhikari
and Langley [1]. Fox and Kapoor [22], Rudisill and Chu [61] developed efficient nu-
merical methods to calculate the eigenvector derivatives. Qu [57] described methods

to calculate frequency response functions derivatives using the modal superposition.

Limitations The perturbation method requires that the random variables involved

in the analysis do not deviate much from their expected values. If the coefficient of
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variation is insufficiently small then the solution cannot ever be improved by using
a finer mesh [16].

Of greater importance than the magnitude of variability of the original random
variables is how appropriate the response surface is. The response quantity should
be chosen in such a way that these quantities are mostly linear with respect to the
random variables, e.g., natural frequencies instead of a response in the time domain
[65].

If the number of random variables is large, such as in problems involving ran-
dom fields, or if a high-order expansion is used, then the calculation effort becomes

prohibitive.

2.3.3 Fuzzy method

A common fuzzy finite element approach is to replace the crisp stiffness and mass
matrices by fuzzy-valued matrices, and then solve the interval eigenvalue problem
at each a-level.

Due to the lack of certain properties of fuzzy numbers almost all classical nu-
merical techniques cannot be directly extended to fuzzy arithmetic. A method used
to determine the upper and lower bounds of the eigenvalues was proposed by Qiu
et al. [56). The i-th eigenvalue lower bound ); and upper bound }; for each a-level
satisfy

K¢ = \Mo, (2.49)
I_{Ei = XiMai (2.50)

where K and K are the lower and upper bound of the stiffness matrix and M and
M are the lower and upper bound of the mass matrix, for each a-level.

A major computational difficulty with fuzzy arithmetic is the problem of over-
estimating the interval widths of the response quantities when the problem involves
multiple occurrences of the same variable. To avoid this problem a combinatorial
analysis of the upper and lower bounds of the parameters can be used, but involves
2™ times the crisp computational effort. Chen and Rao [4] proposed a methodology
using Taguchi’s philosophy to choose the parameters for which the optimal settings
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should be found. Lallement et al. [40] developed a reanalysis technique to solve the

uncertain eigenvalue problem and reduce the computational effort.

2.3.4 Meta modelling

A meta-model is not an uncertainty propagation method per se, but it can be used
together with the sampling and convex uncertainty propagation methods to reduce
the calculation time.

Most models have a smooth response surface, whereby neighbouring points in the
parameter space map to neighbouring points in the response space. A meta-model
takes advantage of this redundancy.

A meta-model is a fast-running surrogate of the model’s response surface. It
captures the input/output relationship over the domain of interest at a fraction
of the computational time. Common meta-models are polynomials and artificial
neural-networks.

Equation (2.1) is replaced by
y=h(x)+e (2.51)

where h(x) is the surrogate for f(x), and ¢ is the error residual (or noise level).

The problem of constructing h(x) from evaluations of f(x) can be seen as a
design of experiments problem. However, there are differences between the design
of physical and computer experiments. Replicate observations of computer experi-
ments will produce the same response, but physical experiments do not. This calls
for different techniques, which are discussed by Sacks et al. [62].

Once an appropriate meta-model is constructed, the meta-model evaluations are
cheap. So, together with a meta-model, the Monte Carlo method becomes more

attractive, allowing more samples to be evaluated in a fraction of the time.
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Chapter 3

Comparison of the uncertainty

propagation methods

3.1 Introduction

The uncertainty propagation methods thrived in the risk modelling and structural
reliability communities, but the different requirements and aims of structural dy-
namics applications pose other challenges. The purpose of this chapter is to study
the application of the major uncertainty propagation methods to the specific field
of structural dynamics, and to provide guidelines to aid the determination of which
method is appropriate for a given kind of application, and which is not.

The scope of this work is actually narrower. The focus is not a single system
with random excitation or unknown properties, such as the building response to an
earthquake, but instead on repeated systems with intrinsic variability. For example,
the frequency response of a number of car body-in-white produced in series. So
care is required not only in preventing the occurrence of extreme events, but also in
attaining good mean behaviour.

While there are some comparisons of uncertainty propagation methods available
in the literature, few concern structural dynamics applications, and the depth of
existing comparisons is mostly superficial. In the JASSAR report on Computational
Stochastic Mechanics [65] the potential and limitations of the Monte Carlo simula-

tion method and the perturbation method for stochastic mechanics were assessed,
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but no comparison is made per se. de Lima and Ebecken [9] compared the Monte
Carlo simulation, perturbation, and fuzzy uncertainty propagation methods on the
displacement of simple structures under static loading where the Young’s modulus
was a random field. They found that, when the coeflicient of variation of the random
properties is less than 20%, the perturbation approach rendered the required pre-
cision in most applications, and also that the fuzzy method rendered good results,
despite the use of triangular membership functions.

The three most common uncertainty propagation methods will be compared: the
Monte Carlo simulation method, the perturbation method and the fuzzy method.
The main application features that will be taken into account in the comparison
are the number of parameters, the level of parameter variability, and the structure
complexity. The two main benchmarks are accuracy and efficiency, and how these
change for a wide range of applications, i.e., applicability and scalability, respec-
tively. The methods will be applied to vibration applications of increasing complex-
ity: a cantilever beam with uncertain thickness, a beam with an uncertain clamping
stiffnesses, a beam with an uncertain thickness and a compressor blade with an
uncertain thickness. The set of applications tries to capture particularly difficult
situations for each method, and to cover a reasonable range of complexity. The
chosen response quantities are modal frequencies and FRFs.

Note that the equivalence between possibilistic and probabilistic uncertainty rep-
resentations is not a consensual matter. On the one hand, there is more than one
way to convey probabilistic information in a fuzzy set (some of which were mentioned
in section 2.2.3). On the other hand, some assert that no attempt of a probabilistic
interpretation from fuzzy sets should be made at all, arguing these are two totally
dissimilar concepts. This disagreement must be taken in consideration while in-
terpreting the results presented in this chapter comparing fuzzy to the remaining

methods.
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3.2 Applications

3.2.1 Cantilever beam with point mass at uncertain position
m
-]

Figure 3.1: Application 1 — cantilever beam with point mass at uncertain position

ANN

The first application is a cantilever beam with a point mass at an uncertain position,
as illustrated by figure 3.1. This is the most simple application presented here,

having just a single parameter.

Table 3.1: Beam geometry

Dimension

length [ = 1000mm
width b = 20 mm
height h = 2mm

Table 3.2: Steel properties

Property

Young modulus E = 210GPa
Poisson coefficient v = 0.3

density p = T7800kg/m3

The beam has a rectangular cross-section with dimensions specified in table 3.1,
and it is made of steel with properties given in table 3.2.

The mass has a value of m = 0.1kg and its position, z, follows a normal distri-
bution with mean p, = 750 mm, and coefficient of variation (COV) o,/u, = 5%.

The beam is discretised into 20 elements, except where stated otherwise.
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3.2.2 Cantilever beam with uncertain joint

K,
QN
£

Figure 3.2: Application 2 — cantilever beam with an uncertain joint

The second application is a more realistic application which attempts to mimic
an uncertain joint. It is similar to the beam described in section 3.2.1, with the
exception that no mass is attached and the clamping stiffnesses are uncertain, as
illustrated in figure 3.2.

The two uncertain parameters are the spring stiffness K and the torsional spring
stiffness K;. They follow a normal distribution with means px = 200N/m and
tx, = 10 x 10® N/rad respectively, and a COV of 5% for both parameters.

3.2.3 Cantilever beam with uncertain thickness

AN

Figure 3.3: Application 3 — cantilever beam with uncertain thickness

The third application introduces the use of a random field. The beam described in
section 3.2.1 is used, but with a uncertain thickness h, as illustrated in figure 3.3.
The thickness is modelled as a first-order auto-regressive random field with mean
pr = 2mm, COV o /up = 5% and correlation length L = 100mm. The random
field was discretised by the mid-point method, therefore resulting in a number of

random parameters equal to the number of elements.
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3.2.4 Compressor blade

]
t
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!

Figure 3.4: Application 4 — compressor blade with uncertain thickness

The last and most complex application is a compressor blade with uncertain thick-

ness, as illustrated in figure 3.4.

Table 3.3: Blade geometry
Dimension

length

[ 304.8mm (12in)
curvature radius r = 609.6mm (12in)
curved width w = 304.8mm (24in)
thickness t = 3.0mm (.12in)

The blade nominal dimensions are given in table 3.3 and the blade is made of
the same steel specified in table 3.2.

The thickness is modelled as a first-order auto-regressive random field with mean
pt = 3.0mm(.12in), COV o¢/u: = 5%, and correlation length L = 30.5 mm(1.2in).

The blade was modelled with a 4 x 4 = 16 element rectangular mesh, unless
stated otherwise.

30



UNCERTAINTY PROPAGATION 3.3 Methodology

3.3 Methodology

Monte Carlo simulation method For the Monte Carlo simulation method, 10000
samples were used, unless stated otherwise. Compared to the other methods, the
Monte Carlo results represent an accurate approximation of the true values.
Modes were tracked across the samples using the modal assurance criterion
(MAC) to detect crossings in the natural frequencies.
The response probability density functions were estimated using kernel density

estimation, as described in section 2.3.1.

Perturbation method The standard first-order perturbation approach was used.
The derivatives of the stiffness and mass matrices were computed numerically by
perturbing each parameter by a very small amount and reevaluating the affected
element stiffness and mass matrices.

The eigenvalue, eigenvector, and FRF derivatives were calculated according to

the procedures referred to in section 2.3.2.

Fuzzy method For the fuzzy method the normalised probability density function
was taken as the membership function for the parameters, and vice-versa for the
response. The number of a-cuts used is 4.

The response membership functions are evaluated in three passes. First, the
response partial derivatives are computed for the crisp value of the parameters.
Second, the response is evaluated for the combination of parameter bounds which
maximise/minimise the response for each a-cut, assuming the response is monotonic
within those intervals. Third, using the points of the intervals contained in each
other (no further response evaluation), the response membership function intervals
are adjusted [grown]| in face of any detected nonmonotonicity. This procedure tries
to capture the most information from a conservative number of response evaluations.

It produces true bounds if the response is monotonic or inner bounds otherwise.

Appendix A gives more details about the implementation of these methodologies
and applications.
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3.4 Results
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Figure 3.5: Application 1 — response curve of the first four natural frequencies of
the cantilever beam vs. the point mass position.

Application 1 Having a single parameter the response surface for application 1
is reduced to a curve, allowing easy visualisation. Figure 3.5 shows the first four
natural frequencies with respect to the uncertain parameter value (the point mass
position). The most outstanding feature of this response is the increasing nonlinear-
ity for the higher modes. This means that for the perturbation method the estimates
of the standard deviations of the natural frequencies are worse for higher natural
frequencies, as shown in figure 3.6. As expected this adversity can be either aggra-
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Figure 3.6: Application 1 — the mean and standard deviation of the natural frequen-
cies estimated by several uncertainty propagation methods.
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Figure 3.7: Application 1 — response COVs estimated by several uncertainty prop-
agation methods with respect to the mass position COV. The ordinates axis is the
average COV for the first ten natural frequencies.

vated or softened by increasing or decreasing the parameter variability, respectively.
Figure 3.7 shows how the response COV estimated by each uncertainty propagation
method varies with the parameter COV. The perturbation method, owing to the
first-order approximation of the response curve, shows a perfectly linear relation-
ship between the parameter COV and the response COV, which rapidly departs
from the true values (given by the Monte Carlo method).

The fuzzy method estimates in figures 3.6 and 3.7 are substantially better (i.e.,
closer to the Monte Carlo estimates) than those obtained by the perturbation
method. This is expected as the fuzzy method can capture the nonlinear param-
eter /response relationship, since the a-cut interval bounds of the response mem-
bership function are taken directly from response evaluations. On other hand, the
natural frequency response for this application is nonmonotonic for modes higher
than the first (recall figure 3.5), which breaks the assumption made for the fuzzy
method. Indeed the fuzzy method, as implemented here, is unable to determine the
true membership bounds, as suggested by the probability density function of the
second natural frequency in figure 3.8.2. Nevertheless, the response variability —
given by the area enclosed by the membership function — is quite close to the area
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Figure 3.8: Application 1 — normalised probability density functions of the first two
natural frequencies estimated by several uncertainty propagation methods.
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obtained by the Monte Carlo simulation method, and hence relatively good overall
results are obtained with the fuzzy method. However, the probability estimates in
the tail would be poor, and a global optimisation procedure would have to be em-
ployed for each a-cut in order to find the true interval boundaries. Performing a
global optimisation procedure, or employing any other fuzzy method variant which
avoids the response monotonicity assumption, requires a excessive number of system

response evaluations, as will be shown later.

1000 ¢ ——
a ® &
®
e A AbEhils. SCREEES SERTTERTTRTTITTII R
sz\ o I &
o e
2 ®
10 |--mmmemm s e Q. Deterministic .__J
& . x MonteCalo ]
L o " ..+ Perturbation ]
1
1
T
=
§
[S)
0-01 """"""""""""""""""""""""""""""""" "' """""
------- g R OK
0.001

Figure 3.9: Application 2 — the mean and standard deviation of the natural frequen-
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cies estimated by several uncertainty propagation methods.
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Figure 3.10: Application 2 — normalised probability density functions of the first
two natural frequencies estimated by several uncertainty propagation methods.

Application 2 In application 2, the second natural frequency has the largest vari-
ation and the first natural frequency has the smallest, as shown in figure 3.9. But
their probability density functions have the same slightly asymmetric bell shape
(only with different mean and variance), as shown in figure 3.10.

As seen in figure 3.11, the perturbation method is valid over a wider range of pa-
rameter COV for this application than in the previous application (figure 3.7). The
range is almost 256% against just 2% for application 1, which shows that the parame-
ter COV is not the only limiting factor for employing the perturbation method — the
response surface nonlinearity, and hence the application itself, is also a determining

factor.

Application 3 The mean and standard deviation of the natural frequencies for
application 3 obtained by the Monte Carlo and perturbation methods are quite sim-
ilar, as shown in figure 3.12, but the standard deviations obtained with the fuzzy
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Figure 3.11: Application 2 — response COVs estimated by several uncertainty prop-
agation methods with respect to the clamping stiffnesses COV. The ordinates axis
is the average COV for the first ten natural frequencies.

method are slightly overestimated. This can be seen in more detail by comparing
the estimated probability density functions in figure 3.13. This overestimation in
standard deviation is most likely because the fuzzy method does not model the
correlation between parameters. Parameters are seen as independent intervals for
each a-cut, and the response interval upper/lower bounds for each a-cut are com-
puted by choosing the parameter bound combination which maximises/minimises
the response, regardless of how likely that combination is. For example, when choos-
ing interval bound combinations of two positively correlated parameters, the fuzzy
method makes no distinction between choosing the upper (or lower) bounds for both
parameters (more likely) and choosing the diametrical bounds for each parameter
(less likely). Often different parameters concern unrelated physical phenomena, and
therefore are independent and uncorrelated. But a common situation where corre-
lated parameters appear, and in a significant number, is as the result of discretising
random fields — as with this application. This causes, for each a-cut, the choice of
parameters combinations which are less possible than the possibility level specified
by «, and, therefore, the estimation of wider response membership functions.

To compare the behaviour of the methods for large variations, figure 3.14 shows
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Figure 3.12: Application 3 — the mean and standard deviation of the natural fre-
quencies estimated by several uncertainty propagation methods.
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Figure 3.13: Application 3 — normalised probability density functions of the first
two natural frequencies estimated by several uncertainty propagation methods.
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Figure 3.14: Application 3 — response COV with respect to the Young’s modulus
COV. The response COV used here was taken as the average COV of the first ten
natural frequencies.

how the response COV varies with respect to the parameter COV. As expected, the
perturbation methods shows again a perfectly linear relationship between the pa-
rameter COV and response COV, but that estimate is far from reality, as evidenced
by the Monte Carlo curve. The fuzzy method can capture some of the nonlinear
parameter/response relationship since the a-cut intervals are computed from the

system response evaluation, but it is still far from accurate.

Application 4 The fuzzy variability overestimation is aggravated with the two
dimensional random field in application 4, as shown in figures 3.15 and 3.16. The
perturbation method gives goods results for a parameter COV up to 25%, as shown

in figure 3.17.

FRFs Figure 3.18 shows the estimated FRF's of application 3 using several propa-
gation methods. The FRF mean and +3c envelope predicted by the Monte Carlo
and perturbation methods are reasonably close. The peaks are where more differ-
ences can be found. In some peaks the mean FRF predicted by the Monte Carlo
method looks flattened when compared to the deterministic FRF, but the perturba-
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Figure 3.15: Application 4 — the mean and standard deviation of the compressor
blade natural frequencies using several methods.
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Figure 3.17: Application 4 — response coefficient of variance (COV) with respect
to the thickness COV. The ordinates axis is the average of the first ten natural
frequencies COV.

tion method fails to observe that. The reason is that no damping was used, yielding
an infinite FRF peak at the natural frequencies and therefore a highly nonlinear re-
sponse surface around them. The mean FRF obtained by the perturbation method
is always equal to the deterministic FRF for the mean value of the parameters.
Nevertheless the u + 30 envelope is quite close, even around the peaks.

No FRFs were obtained with the fuzzy method because the method is unsuited
for such high dimension response quantities and parameters. For a problem with
n parameters and m response variables the use of the fuzzy method with k£ a-cuts
in its most simple form (assuming a monotonic response surface) requires up to
1+ n+ k x 2 x m response evaluations (if computing the derivatives numerically,
followed by the parameter combinations which maximises/minimises the response for
each a-cut), or k™ (if propagating the full set of bounding vertices in the parameter
space). So, to compute an example with 20 parameters, 4 a-cuts, and a 261 point
FRF (as the one shown) the fuzzy method would require 885 evaluations. The
Monte Carlo method provides competitive results with a number of samples of the

same order.
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the same point.
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Figure 3.19: Applications 1-4 — convergence of the different methods as the number
of mesh elements increases.
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Convergence Figure 3.19 shows the influence of the mesh density on the methods’
accuracy.

For applications 1 and 2 (with a small number of parameters), once a minimal
accuracy is attained in the FE computations refining the mesh does not yield any
noticeable improvement in the uncertainty estimation. Even for application 3 (with
a two dimensional random field), there is no noticeable impact of the number of
elements and parameters in the response variability prediction. This means, on
the one hand, that the number of random parameters used in the random field
discretisation are sufficient in the range studied. On the other hand, it corroborates
the orthogonality between finer meshes and uncertainty quantification — increases
in the former do not imply better accuracy in the latter.

For application 4 (with a two dimensional random field), the methods’ accuracy
is more dependant of the mesh size. It takes a mesh of around 100 elements to
properly discretise the random-field, both for the Monte Carlo and perturbation
methods. The fuzzy method is insensitive to the mesh size since it does not model
the parameter correlation.

The slow convergence of the Monte Carlo method (which requires 100 times more
samples to obtain a further digit of precision) can be seen in figure 3.20 for appli-
cations 1 and 4. Despite the difference in structural complexity, both applications
show identical slopes of the error curves. The major difference in the error curves
is in the initial error offset. This depends mostly on the response COV: higher re-
sponse COVs lead to higher relative errors, and thereby require more samples to

attain the same accuracy.

Scalability Figure 3.21 shows the influence of the mesh density on the compu-
tational time of the uncertainty propagation methods for all applications. The
evolution of computational time for the cantilever beam with uncertain thickness
(figure 3.21.3) is substantially different to the cantilever beam with a point mass
at an uncertain position (figure 3.21.1). As the random parameters of the former
application are those resulting from the random-field discretisation, the number of
parameters is equal to the number of elements.

Since derivatives of stiffness and mass matrices with respect to each parameter

must be computed for the perturbation method, an increase in the mesh size means
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not only an increase of the mass and matrices sizes, but also the number of derivatives
to compute, and hence the steeper mesh-time curve.

The computation time of the methods shown in figure 3.21.4 follow the same
evolution as application 3 (figure 3.21.3), particularly for the perturbation method.
But since the computation time of a single response evaluation is so costly, the

perturbation method is more appealing over a wider range of mesh size than before.

3.5 Summary

Structural dynamics applications generally require solving a eigen-value and -vector
problem, which poses some mathematical difficulties to the uncertainty propagation
methods. If there is a significant probability that two or more modes change their
order then the mode shapes should be tracked using the MAC during the evalua-
tion of Monte Carlo samples to accurately quantify their variation. The eigenvalue
derivatives are undefined for multiple eigenvalues, and therefore the perturbation
method cannot be used in those circumstances. The lack of an accurate interval
eigenvalue algorithm forces the use of optimisation procedures instead of interval
arithmetic for the computation of eigenvalue fuzzy membership functions. Natural
frequencies, due to their smooth variation with respect to the parameters and their
relatively low dimensionality, are well suited as response quantities for most un-
certainty propagation methods. For undamped structures it is difficult to quantify
uncertainty in the peaks of the FRF's around natural frequencies.

Except when dealing with an excessive number of parameters, the perturbation
method usually produces the fastest results. Its accuracy varies greatly for each
application: the existence of nonlinearities in the response surface or large parameter
variations are problems. Moreover, the perturbation method lacks an easy way to
estimate the error incurred — this would require either the computation of higher
order derivatives or running the Monte Carlo simulation method separately — taking
away much of its simplicity and speed. Therefore, unless past experience shows
that it is applicable to a given application domain, the perturbation method should
only be used as an initial estimate — final conclusions should be deferred until after
running the Monte Carlo simulation method.

The fuzzy finite element method has proved to be less sensitive to the response
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surface nonlinearities than the perturbation method. A drawback of the fuzzy finite
element method is the required number of response evaluations. When the param-
eter and response dimensionality are large the number of required evaluations can
easily exceed those required by the Monte Carlo method for equivalent accuracy.
Other variants of the fuzzy finite element method which do not assume response
monotonicity require an even more explosive number of evaluations [43]. The fuzzy
membership functions do not model parameter inter-dependency, making the fuzzy
finite element method inappropriate for applications with strongly correlated param-
eters, such as applications involving random fields. The issue of converting fuzzy
membership functions to/from probability density functions is also a pertinent issue
— not just for benchmarking purposes but also when incorporating the uncertainty
analysis results back into the design process. Possibilities and probabilities are not
completely interchangeable concepts. Probability density functions are a widely es-
tablished and easily understood concept, but membership functions are not so. For
robust design applications this is a minor limitation, since two different designs can
be compared just by their membership functions, i.e., bypassing the conversion to
probabilities. But whenever probabilities are effectively sought (e.g., for a reliabil-
ity index of the structure) or as part of the design constraints (e.g., establishing a
maximum probability of failure) it is impossible to avoid this issue. The fuzzy finite
element method is an appealing choice for applications whose response nonlinearities
prevent the employment of the perturbation method, and have a small number of
independent parameters.

Although frequently seen as a brute force method, the universality of the Monte
Carlo simulation method still makes it an invaluable tool for uncertainty quantifica-
tion. The Monte Carlo method can easily be implemented in parallel, and together
with meta-modelling (section 2.3.4) substantial time savings can be achieved. A
drawback of the Monte Carlo simulation method is its difficulty in estimating the
tails of probability distributions (since, by definition, samples are taken less often
from the distribution tails) which makes it less attractive for estimating reliabilities,
but this was not covered in this comparison. As it stands today, the Monte Carlo
still is the workhorse of uncertainty analysis.

Figure 3.22 summarises the adequacy of the uncertainty propagation methods

according to the application characteristics, namely, the parameter number and vari-
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Figure 3.22: Choosing an adequate uncertainty propagation method
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ability, and the response smoothness and dimensionality. The deterministic methods
can only be used when the parameter variability is insignificant. The perturbation
method should be chosen when the response is known to be approximately linear over
the parameter variation range. When the response is nonlinear, the fuzzy method
can be chosen if the dimensionality of both the parameter and response spaces is
low. The Monte Carlo simulation method is the default choice when none of the

previous conditions is met.
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Chapter 4

Uncertainty identification

4.1 Introduction

Most often in probabilistic uncertainty problems, the parameter distributions are
known while the response distributions is sought — the uncertainty forward propa-
gation problem. But how is that knowledge created?

Parameter distribution knowledge can come from:

e direct parameter measurement
e expert knowledge
e design tolerances

Occasionally it may be possible to directly measure samples of the parameters,
but often it is easier to measure another response quantity. For example, it is easier
to measure the global natural frequencies or FRF's than to measure localised material
properties such as densities, thicknesses or equivalent joint stiffnesses. The statistics
of the parameters could be inferred from the measurements, and this knowledge
could then be applied to new problems. The inverse problem of estimating the
distribution of the parameters from that of the response measurements is called
uncertainty identification, and is the subject of this chapter.

The deterministic version of this problem, where parameters are unknown but
fixed, is addressed by model updating [24]. Statistical methods have been used in
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model updating for many years. Usually the estimated variance of the measurements
and parameters is used to weight the different terms in a least squares procedure [24,
7]. This is taken a stage further in the minimum variance estimation methods, where
the parameters are estimated that have the minimum variance [6, 23]. It should
also be emphasised that this work is not concerned with the choice of parameters
to update or with regularisation. This has been the subject of significant research
[24, 25], and most of the issues that are important in standard model updating will
be equally important for uncertainty identification.

Quantification of epistemic uncertainty is addressed by Bayesian model updating
[35, 54, 5] — a well-established procedure for refining parameter uncertainty using
experimental data (for example to update the predicted reliability index of a single
structure).

However, no such procedure is widely available for quantifying irreducible uncer-
tainty. For example, to quantify the variability in a structure due to the uncertainties
introduced by the manufacturing process. Attempting to fill the gap, an algorithm
that characterises the parameter uncertainty by maximising the likelihood of the
experimental data is developed. This algorithm is both reasonably efficient and
accurate, and it relies upon the established uncertainty propagation methods.

Mares et al. [44], Mottershead et al. [47] developed a similar but different pro-
cedure, called the stochastic model updating method, where an experimental data
cloud is converged upon by a simulated data cloud generated by the Monte Carlo
method.

4.2 Maximum likelihood estimation

To solve the inverse uncertainty propagation problem one might be tempted to invert
equation (2.1) as
x=f"(y) (4.1)

and then use the standard uncertainty propagation methods. The difficulty with this
approach is determining f~!, since the inversion is usually ill-conditioned or even
impossible. A better alternative is to employ the maximum likelihood estimation,

which also allows the use of existing uncertainty propagation methods, but does not
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require inverting f.
For estimation purposes it is assumed that the parameters follow a certain prob-
ability distribution, X, belonging to a probability distribution family, such as

X ~ D(8,) (4.2)

where 0, are the parameters of the family to be estimated. For example, for a
multivariate normal distribution, the parameters would be the mean vector p, and
covariance matrix X,. For a given 6., the response probability density function
f(y|0:) can be approximated by employing one of the well-known uncertainty prop-
agation methods.

Let Y’ be a set of M response measurements [y] y5 ... ¥5,]- The measurements

are assumed to be independent, therefore the measurement likelihood is

M
L(82) = f(¥1, Y5, Yul0z) = [ [ F(vil62). (43)

The log likelihood is more tractable and given by
M
I(62) =log L(6) = ) _log f(il6.). (4.4)
i=1

The maximum likelihood estimator 9,,. is the value of 6, for which [(6,) attains a
maximum. A non-gradient based optimisation method such as the simplex method
can be employed for the maximisation, allowing the use of standard uncertainty
propagation methods without alteration.

The drawback of this approach is its iterative nature. The uncertainty prop-
agation methods are by themselves computationally intensive, and to repeatedly
execute these methods in an iterative optimisation loop would be prohibitive for
most interesting applications. Ways to efficiently integrate the maximum likelihood
estimation with the two most common propagation methods is the purpose of the

following sections.
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4.2.1 Perturbation approach

Figure 4.1 illustrates the straightforward application of the perturbation method for
estimating the measurements likelihoods in a hypothetical single parameter, single
response example. The z and y axes correspond to the parameter and response
spaces, respectively, and f(z) describes the relation between them. Testing different
parameters distributions (different values of @) implies reevaluating the system
equation f(z) and its first-order derivatives at the new parameters mean point.

Reevaluating f(z) and its derivatives can be exceedingly time consuming for
complex and high-dimensional models, where the most of the time is spent just on
calculating these derivatives. Furthermore, there is little advantage doing so. As 6,
converges to the maximum likelihood estimate, so will the parameters mean, thereby
f(z) and its derivatives will yield basically the same linear approximation, over and
over. Therefore, reusing the same linearisation of f(z) can result in a substantial
time-saving, and with little impact in accuracy. Figure 4.2 illustrates this for the
same hypothetical single parameter, single response example of figure 4.1.

It is assumed that the uncertain parameters follow a multivariate normal distri-

bution
X ~ Ny (pg, 2z) (4.5)

where n is the number of variables, p, is the mean vector and X, is the covariance
matrix. In theory this incurs no loss in generality since random variables may be
transformed into uncorrelated Gaussian variables, as described in section 2.2.5.

All of the elements of p, and ¥, will be considered independent. However there
are examples where this assumption is relaxed, such as random fields where there is
a dependency structure. For example, when modelling a spatial AR(1) random field,
1, and 3, could be fully described by three scalars, namely the mean p, variance

o, and correlation length L.
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.

Figure 4.1: Straightforward application of the perturbation method — the different
parameter distributions are shown by the continuous, dashed, and dotted curves;
multiple linearisations of f(z) are performed.
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p(z) 4

>

Figure 4.2: Optimised application of the perturbation method — the different pa-
rameter distributions are shown by the continuous, dashed, and dotted curves; a
single linearisation of f(z) is performed.

59



UNCERTAINTY IDENTIFICATION 4.2 Maximum likelihood estimation

For the perturbation method equation (2.28) is rewritten as
y =£(x")
=, Of
DI ICRCES

+§§; xR

+ ..

(4.6)

around the point x° = [z3z? ... 28]T, which is assumed to be in the vicinity of p,.

The importance of the choice of x° will be considered in more detail later. Taking

only the first order terms, equation (4.6) can be rewritten as
y ~ 0+ J° (x — x°) 4.7

where f and J° are the function and its Jacobian, respectively, evaluated at the
point x°. From equations (4.5) and (4.7) the probability density distribution of y
may be approximated by

Y ~ Non(,, 5,) (48)

where
IJ’y = fO + ‘]0(,1’:: - xO) (49)
x, = I°%,J°7 (4.10)

and its probability density function by
flylu,, Tp) = (gw)—mﬂlgy|-1/26—(y-uy)T2;1(y—uy)/2, (4.11)

Replacing f(y;|0:) in equation (4.4) by the approximation given in equation (4.11)
yields

M
1 -
(py, Bs) = -5 (Mmlog27r—|— Mlog |%,| + E i — 1) 2, (vi - uy)> . (4.12)

i=1
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Ideally the linearisation point x° would be equal to the mean value p_, but
since the latter is unknown a priori a guess must be made for its initial value.
Depending how far this initial guess is from the estimated [, it may be necessary
to recalculate f° and J°, to more accurately approximate the response surface near
K. It is unnecessary, however, to perform a recalculation at every evaluation of
equation (4.12). For most applications, an approximate knowledge of the mean

value is available, reducing the need for such recalculations.

4.2.2 Monte Carlo simulation approach

Figure 4.3 illustrates the straightforward application of the Monte Carlo simulation
method for estimating the measurements likelihoods in a hypothetical single param-
eter, single response example. The z and y axes correspond to the parameter and
response spaces, respectively, and f(z) describes the relation between them. Here,
testing different parameters distributions (different values of 8.) implies resampling
the parameters and reevaluating the system equation f(z) for the new samples.

An alternative to resampling parameters is to reweight an otherwise constant
set of samples, thereby avoiding repeated time-consuming reevaluations of f(z).
Figure 4.4 illustrates this for the same example of figure 4.3.

Let X” be a set of N samples of the parameters [x]x35 ... x}], and Y” the
respective response set [y7y5 ... yn|- If the uncertain parameters are sampled
according to their probability density function f(x) then the response probability
density function can be estimated by kernel density estimation as in equation (2.22).
If the parameters are sampled according to a different probability density function
g(x) then the probability density function of the response may be estimated by

"
F(y16.) = N Z ki l,?)z) ru(y = ¥j)- (4.13)
Figure 4.5 illustrates this.

The suitability of different probability density functions of the parameters may
be tested using equation (4.13) without resampling X”. If the function g(x) is close
to f(x) then a smaller number of samples, N, would be required. However, the
only requirements for X” are that g(x) > 0 in the same region where f(x) > 0
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Figure 4.3: Straightforward application of the Monte Carlo simulation method —
samples have different distributions according to the different parameter distribu-
tions.

62



UNCERTAINTY IDENTIFICATION 4.2 Maximum likelihood estimation
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Figure 4.4: Optimised application of the Monte Carlo simulation method — samples
have the same distribution, but different weights (here represented by the symbol
size) according to the different parameter distributions.
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p(y) I 1)

ZAxoc- = M
N N\ N >

4.5.1: Conventional sampling

p(y)

4.5.2: Non-conventional sampling

Figure 4.5: Estimating the response probability density function from the Monte
Carlo simulation samples via kernel density estimation.
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and that a sufficiently high number of samples N is generated. In practice uniform
or Latin hypercube sampling of the parameters over the likely parameter subspace
is sufficient. Further time-savings can be achieved by employing meta-models, as
described in section 2.3.4.

Replacing f(y:|€.) in equation (4.4) by the approximation given in equation (4.13)
yields

[(0;) = —-Mlog N

o al " | " ' " (4'14)
+) "log exp [log f(x]|0) — log g(x}) + log ku(y; — ¥7)] -

i=1 j=1

Note that the only term in equation (4.14) that depends on 8, is the probability
density function of the parameters, f(xj|6.). All of the other terms can be pre-
calculated before entering the optimisation loop.

For the kernel density estimation a multivariate normal kernel was used, as per
equations (2.24) to (2.25).

4.3 Applications

4.3.1 Cantilever beam — simulation

Figure 4.6: Application 1 — simulated cantilever beam with a discrete mass at an
uncertain position.

/]

The simulated example is a cantilever beam with a point mass at an uncertain
position along the beam length, shown schematically in figure 4.6. The beam has
length [ = 1m, a rectangular section of 100 x 10 mm? and is made of steel with
Young’s modulus E = 210 GPa and density p = 7800kg / m3. The discrete mass is
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m = 0.100 kg and its position z follows a normal distribution X ~ N(u = 0.75m,0 =
0.05m).

305 Hz
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o4 (Hz)
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Figure 4.7: Application 1 — variation of the first four natural frequencies with the
position of the lumped mass, z.

If the z variation is small enough, the natural frequencies vary almost linearly
and the perturbation approach becomes attractive because of its computational effi-
ciency. Figure 4.7 shows the variation of the natural frequencies with the position of
the discrete mass and demonstrates that the perturbation approach is only suitable
for the lower natural frequencies and for small position variations.

Figures 4.8 and 4.9 show the log-likelihood given by equation (4.4) for the sim-
ulated cantilever beam for the perturbation and Monte Carlo approaches. In both
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Figure 4.8: Application 1 — log-likelihood given by equation (4.12) for the pertur-
bation method.
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Figure 4.9: Application 1 — log-likelihood given by equation (4.14) for the Monte
Carlo method.
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approaches the function is steep for mean values away from the real mean and for
low variance, but the function is flat for large variances. More importantly the log-
likelihood only has one maximum, which is close to the real parameter values, and
to which the estimation procedure will converge for any initial set of parameters.
For the analysis of the results two (relative) errors are defined. The real error is

the error between the estimates and the population statistics

€ = Hz ~ Pz or € = 9z — 0= (4.15)
Hz Oz

The effective error is the error between the estimates and the sample statistics

=2 4.16
= or € i (4.16)

The effective error is often the most relevant error, since for a fixed set of M mea-

surements the sample statistics are the best one can really ever hope to know.

1 . | | | | [ L
o ﬁ
w - o
g 107 = E
E 3 E
o ] C
2] s
g 102 3 3
g i
-( b
10° T T T T T

-9 -6 -3 0 3 6 9

Normalized linearization point, z, = (x; - L,)/0,

Figure 4.10: Application 1 — influence of the linearisation point on the effective
estimation error.

As mentioned earlier, the best results for the perturbation approach are usually
obtained when the linearisation is centred on the mean value of the parameters.
However this point is unknown beforehand and a guess must be made. Figure 4.10
shows the effect that performing the linearisation away from the real mean has on
the estimation error. Notice that the minimum error is not necessarily obtained at

the real mean.
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Figure 4.11: Application 1 — influence of the number of Monte Carlo samples on the
effective estimation error.

The accuracy of the Monte Carlo approach depends on the number of samples,
with an error estimate that decreases as N'/2, as evidenced by figure 4.11 for this

example.

10!

[y

— W, Perturbation
———- 0, Perturbation
—— W, Monte Carlo
— === o, Monte Carlo

— p—
e <
[ —

Effective error, €,
o — —
S = 2
W -L w

—
<
=N

sovund vvd ool 3ed e v 3ol

—_
<
i

T I [
5 10 15 20
Number of measured natural frequencies, m

(=]

Figure 4.12: Application 1 — effect of using higher natural frequencies in the esti-
mation.
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In this particular example there is a single parameter, and therefore measuring
a single natural frequency (for example the first) would suffice for estimating the
parameter. Figure 4.12 shows the effect of using more than one natural frequency
to estimate the discrete mass position. The extra information available using more
natural frequencies should allow more averaging of the measured data and therefore
more accurate estimates. However, this example highlights an undesirable property
of the perturbation approach, where adding more redundant information (in the
sense of adding new natural frequencies rather than more samples) can make the
estimates worse. The problem is caused by the loss in accuracy of the linearised
solution for the higher natural frequencies, and figure 4.7 has already demonstrated
that the higher natural frequencies vary more with mass position than the lower

frequencies.
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Figure 4.13: Application 1 — influence of the number of measurements on the real
estimation error.

As more measurements are taken the estimates obtained by both approaches gen-
erally improve, as shown in figure 4.13. The convergence of perturbation approach

is limited by the response nonlinearities as mentioned earlier.
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4.3.2 Cantilever beam - experiment

Figure 4.14: Application 2 - experimental setup of the cantilever beam with a
lumped mass at an uncertain position.

K, K
Figure 4.15: Application 2 - model of the experimental cantilever beam system.
For experimental validation a similar system to the one analysed in section 4.3.1
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was created, and is shown in figure 4.14. The model was modified to account for
the accelerometer (with mass m, = 34.18 positioned at z, = 20 mm from the beam
free end) and to allow for some translational and rotational clamping flexibility (K
and K;), as illustrated in figure 4.15. The beam has length [ = 60 cm, a rectangular
section of 70 x 12mm? and is made of steel with Young’s modulus £ = 210 GPa
and density p = 7800kg /m3. The discrete mass is m = 93.68 and its position z

follows a normal distribution X ~ N(x = 15¢m, 0 = 5cm).

Table 4.1: Application 2 — model updating of the clamping stiffnesses of the beam

without the discrete mass
Mode Measured (Hz) Updated (Hz) A (Hz)

1 25.9049 25.8906 -0.0143
2 162.9649 163.1180 +0.1532
3 456.7434 456.5961 -0.1473
4 890.0572 889.5894 -0.4678

The clamping stiffnesses were determined by model updating of the beam without
the mass, by minimising the relative error in the first three natural frequencies. The
estimated stiffnesses were K = 91.466 x 108 N/ m and K; = 109.825 x 103 N /rad,
and the first four measured and updated natural frequencies are given in table 4.1.
The resulting model is clearly excellent, although with two unknown parameters and
three natural frequencies some residual error will exist, as shown in table 4.1.

Fifty samples of z were generated and rounded to the nearest mm. The discrete
mass was positioned accordingly and the measurements of the first natural frequency
taken. Figure 4.16 shows these measurements and compares them with the response
of the model.

For each test the mass centre was aligned with the respective position along the
beam. The beam was excited by an impact hammer at the accelerometer location
but on the opposite side of the beam, and the average of three runs was taken at
each location. The data acquisition and analysis was performed using the SigLab
system with a bandwidth of 128 Hz and 1024 frequency lines. The first natural
frequency was estimated from the transfer function using circle-fitting.

Even after model updating there is a small bias A between the measured natural
frequencies and the ones derived by the model, given in table 4.1. To reduce these

modelling errors (which would otherwise yield an offset in the mean estimate) a bias
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Figure 4.16: Application 2 — Natural frequency response (experimental vs. model).

is introduced in equation (2.1) as

y=fx)+A (4.17)

Table 4.2: Application 2 — Estimated mean and variance for the experimental ex-
ample.
Lz (cm) o, (cm)
Real 15.00 5.00
Effective 15.15 4.95
Perturbation estimate 14.95 5.04
Monte Carlo estimate 15.34 4.85

Table 4.2 shows the estimates of u, and 0, compared with their real and effective
counterparts. The estimates obtained by the Monte Carlo method are only slightly
closer to the effective values than those obtained by the perturbation method. In
this application the perturbation method performs well, and this is because variation
of the first natural frequency is almost linear.
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Figure 4.17: Application 3 — The model of the free beam experiment.

4.3.3 Free beam

A rectangular beam of length 1m, width 40mm, height 5mm, and made from
bright mild steel (F = 210GPa and p = 7.8 x 103kg/m3) was suspended using
flexible supports to simulate free-free conditions. A small 478 mass (magnet) was
attached to the beam and its position was varied using a normal distribution with
mean p = 800mm and standard deviation ¢ = 30mm. 50 mass positions were
sampled from this distribution. The experimental setup is illustrated schematically
in figure 4.17. The accelerometer mass is 6 § and it was positioned 20 mm from the
end.

The test procedure is documented in [26] and the experimental data is available
on the web?.

For comparison a numerical model was created using 50 elements. Figure 4.18
shows the first three natural frequencies as a function of the mass position, and the
numerical results for comparison. The model is reasonably close and the offset in
natural frequency is caused by small differences in the flexural rigidity, FI, that
are likely to be within the measurement tolerance of the beam thickness. For the
update exercise this difference in flexural rigidity will be represented by a factor, k&,
where E ] becomes

EI = k (ET)nominal- (4.18)

Unlike the application in section 4.3.2, instead of deterministically updating the
FE model for a particular point in parameter space (i.e., for a specific mass position)
the ET factor k will be updated together with the distribution of the uncertain
parameters, i.e., while identifying the mass position mean and variance.

Table 4.3 shows the uncertainty identification results for the perturbation and

lhttp://www.aer.bris.ac.uk/research/uncertainty/
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Figure 4.18: Application 3 — Variation of natural frequency with mass position for
the free beam example.

Table 4.3: Application 3 — model updating results.

oo e Hz €e Oz €e Hk Ok
Description Method (mm) (%) | (mm) (%)
Real values 800. 30. N/A 0
Effective values 792.1 29.93 N/A
Nominal EI Perturbation | 701.6 -11.42 | 23.36 -21.95 — —

Monte Carlo | 940.4 18.72 | 0.03 -98.67 | — —

Perturbation | 871.7 10.04 | 23.36 -21.95 | 0.9487 —
Monte Carlo | 792.9 0.11 | 28.58 -4.52 | 1.0171 —

Perturbation | 772.4 -2.48 | 34.69 15.88 | 0.9786 | 1.022E-02
Monte Carlo | 793.8 0.21 | 29.05 -2.93 | 0.9710 | 3.255E-04

Unknown ET

Variable E1
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Monte Carlo approach assuming a nominal EJ (k = 1), an unknown but determinis-
tic ET (k = p), or a random ET following the normal distribution (kK ~ N(ux, 0%)).

The standard deviation estimate by the perturbation approach is unaffected by
a response offset between the model and measurements — in both instances o is
estimated to be 23.36 mm — only the mean estimate is affected. This feature may
be useful for applications where variation is mainly sought — when determining the
source of variability, for instance.

On the other hand, the Monte Carlo approach (which effectively models the
nonlinear relationship between parameters and response) is sensitive to offset errors.
The effective estimation error in the mass position mean and standard deviation
drops from 19% and 99% to 0.11% and 4.5%, respectively, as EI is allowed to
change. Once the model-experiment correlation is addressed, Monte Carlo gives
excellent results for the mass position distribution.

The beam used throughout the experiment remained the same, therefore ET is
unaccountable for any variability in the response. However, to determine how good
the methods were in identifying unknown sources of variability (when prior knowl-
edge on which parameters vary), k (hence EI) was taken as a random (Gaussian)
variable. The Monte Carlo approach is successful in locating the uncertainty, as it
estimates a negligible value for oy = 3.255F — 04. The perturbation approach is less
successful, attributing to EI a significant part of the variability.

4.4 Summary

As shown, the presented method does provide an efficient way to identify the param-
eter uncertainty from measurements. It can be used not only to identify aleatory
uncertainty (parameter probability distributions), but also to identify epistemic un-
certainty (deterministic parameters).

Although computationally efficient, the perturbation approach has problems
when the linear approximation to the response is poor, and can lead to more infor-
mation giving higher parameter estimation errors. Unless the response is known to
be almost linear, it should only be used as an initial trial for a problem. Due to its
lack of both accuracy and verifiability, any final conclusions should be deferred until

applying the Monte Carlo approach.
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The Monte Carlo approach produces accurate results, but care must be taken
to ensure that the computational effort is realistic. For most practical applications
a meta-model (which approximates the response surface on the parameter space
region of interest) should be built, and then used for the Monte Carlo simulations.

Since the method copes with extraneous deterministic parameters, it can be ap-
plied to discover the main uncertainty contributors from a set of potential parameters

— allowing the localisation of uncertainty sources.
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Chapter 5

Robust design

5.1 Introduction

[1. Conception I—)‘ 2. Modelling
[4. VeriﬁcationH& Optimisation)

Figure 5.1: Phases of the design process

The design process Design is the process of producing something to meet specified
functional and quality requirements.

The design process is usually achieved through the employment of optimisation
methods. The objectives and restrictions are respectively modelled as functions and
inequalities in terms of those variables which are under the designer control, referred
as the design variables.

The design process can be applied directly to a system via experimentation, or
to a model. The rest of this chapter assumes the latter, i.e., that a numerical model
of the system is created as a reality surrogate, and that experimentation is only used
for model validation and verification purposes.

Figure 5.1 shows the phases of the design process cycle.

79



ROBUST DESIGN 5.1 Introduction

Robustness in design The availability of well-established optimisation methods,
together with increasingly computational power has allowed the modelling and de-
sign of large and complex structures, and providing answers with fine precision.
However, these answers often prove to be poor when verified experimentally. This
happens because there can be considerable uncertainty embedded in a model: pa-
rameters whose precise value is not known, uncontrollable external variables, and, if
nothing else, there is always some uncertainty inherent in the act of modelling itself.
Furthermore, the quality is desired to be high, and also consistent.

Robust design is the process of designing in face of uncertainty. It takes into
account not only the nominal value of all input variables but also the uncertainty in
those parameters whose value is imprecisely known or is intrinsically variable. From
a mathematical point of view, robust design is the process of choosing the design
variables while maximising the expected objectives and/or reducing its variance.
That is, robust design aims to achieve designs which are less sensitive to uncertainty,

and hence more robust.

5.1.1 Taguchi method

A successful methodology for robust design is the Taguchi method [68, 60] — an
efficient and systematic methodology that applies statistical experimental design to
improve product and manufacturing design.

Genich Taguchi realised that “in much industrial production, there is a need to
produce an outcome on target, for example, to machine a hole to a specified diameter
or to manufacture a cell to produce a given voltage”, “that excessive variation lay at
the root of poor manufactured quality and that reacting to individual items inside

and outside specification was counter-productive” [79].

Quality and cost Poor quality results in losses to the manufacturer at the time
of production. These losses are due to discarding items that fall outside the specifi-
cation. Taguchi defended the wider view that it should also be considered the loss
to the customer and society as a whole from the time a product is shipped. These
losses are due to rework, waste of resources during manufacturing, warranty costs,

customer complaints and dissatisfaction, time and money spent by customers on
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failing products, and the eventual loss of market share [73].

A

Loss

Target

Y

Figure 5.2: Quadratic loss function

These losses are naturally small when an item is near to the nominal product.
To represent the losses Taguchi identified three situations: larger the better (for
example, agricultural yield); smaller the better (for example, carbon dioxide emis-
sions); and on-target, minimum-variation (for example, the mating of parts in an
assembly). The first two situations are represented by simple monotonic loss func-
tions, and the third situation by a squared-error loss function. Taguchi’s quadratic
loss function relates the quality cost to product variability (figure 5.2), allowing en-
gineers to calculate the optimum design based on cost analysis and experimentation

with the design.

Quality by design To achieve quality through variability reduction, Taguchi’s pro-
posed a strategy divided into three stages: system design, parameter design, and

tolerance design.

System design System design is the development of a functional system under
an initial set of nominal conditions. System design is the design at the conceptual

level, involving creativity and innovation.

Parameter design Once the concept is established, during the parameter de-
sign stage, nominal values of the various dimensions and design parameters are set to
levels that make the system less sensitive to variation in manufacture, environment

and cumulative damage, thereby enhancing the system’s robustness.
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Table 5.1: Lg (3%) orthogonal array

A B CD
1{1 1 1 1
211 2 2 2
3|11 3 3 3
412 1 2 3
512 2 3 1
62 3 1 2
713 1 3 2
813 2 1 3
913 3 2 1

In order to determine the best combination of design parameters with a practical
number of experimental evaluations, Taguchi resorted to orthogonal arrays from
the design of experiments theory. Orthogonal refers to columns being mutually
orthogonal, i.e., for any pair of columns, all combinations of factor levels occur
and an equal number of times. Table 5.1 shows the orthogonal array for testing
four parameters A, B, C, and D, at three levels each, called the Lg orthogonal array,
where the 9 designates the number of rows or configurations to be experimented. The
orthogonal array experiment setup requires a fraction of the number of experiments
when compared to all possible combinations. A full factorial combination for the
same number of parameters and levels would require 81 (3*) experimental evaluations
instead of 9. There are greater savings in testing for larger arrays. For example,
using an L7 array, 13 parameters can be studied at three levels by running only 27
experiments instead of 1,594, 323 (312) [73].

Factors are divided in two types: control factors and noise factors. Control
factors are easily controllable by the experimenter. Noise factors are either difficult
or expensive to control during manufacturing or operation. The experiments are
setup as a cross array, where the control factors are varied according to an orthogonal
array and for each combination of the control factors, the noise factors are varied
systematically to another orthogonal array. The noise array provides “replications”
for each control setting which are used to calculate statistics such as the mean
response and the signal-to-noise (S/N) ratio. Figure 5.3 illustrates such experience

setup.
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Noise factors

jl1{2|3(4
X|1]1(2(2
Y|1[|2(|1]|2
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Control factors Data

111 1 1 1

211 2 2 2

311 3 3 3

412 1 2 3

512 2 3 1

62 3 1 2

713 1 3 2

813 2 1 3

913 3 2 1

Figure 5.3: Example of Taguchi’s cross array experimental setup

The purpose of the S/N ratio is to estimate the influence of noise factors on
the response and help to minimise that influence [3]. The control factors are then
divided into two groups: the adjustment and non-adjustment factors. The adjust-
ment factors affect the mean response but do not significantly affect the S/N ratio.
The non-adjustment factors affect the S/N. All other factors which do not influence
either the mean or the S/N ratio can be used to reduce the cost, but are of no

relevance in the parameter design problem itself.

Tolerance design After a successfully completed parameter design, and an
understanding of the impact that each parameter has on performance has been
attained, resources can be focused on reducing and controlling the variation in the
few critical dimensions, loosening tolerances where possible and tightening where

necessary.

Critics to Taguchi’s approach The greatest achievement with Taguchi’s robust
parameter design approach was to provide a systematic and effective methodology

for quality engineering. His techniques had worldwide influence. The main reason
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for the popularity of his approach is that it is simple, easy to understand and follow,
and does not require a strong background in statistics and mathematics.

However, Taguchi’s work was carried out in isolation from the mainstream of
Western statistics, and the solutions are often not optimal from that point of view.
His approach suffers from some potential problems, as the loss model approach and
product array experimental format may lead to suboptimal solutions, information

loss, efficiency loss, and less flexible and unnecessarily expensive experiments [72].

5.1.2 Reliability-based design optimisation

Robustness

Reliability

Probability density

Reliability

Random variable

Figure 5.4: Reliability versus robustness in terms of the probability density function
(adapted from [82]).

The reliability-based design problem is another class of uncertainty-based design
problems that is complementary to the robust design problem. In a typical robust
design problem a design with a performance measure that is relatively insensitive to
uncertainty is sought, but in a typical reliability-based design problem a design with
an acceptable (low) probability of failure is sought. Robust design is concerned with
the event distribution near the mean of the probability density function, whereas
reliability-based design is concerned with the event distribution in the tails [82], as
illustrated in figure 5.4.

The domains of applicability of robust design and reliability-based design are
different, but the same abstract mathematical formulation can be used to describe
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both.

Design space

l

Safe domain
g(x)>0

Failure domain - Limit state function
g(x) <0 g(x) =0

Figure 5.5: Limit state function

Reliability analysis Reliability analysis relies on the concept of the limit state
function g(x) — a nonlinear relationship between the design parameters where g(x) <
0 defines the system failure condition (figure 5.5).

The probability of failure is then given by

P <0)= [ fx(x)ds (51)
9(x)<0
The integral in the right-hand side of equation (5.1) is difficult to evaluate di-
rectly, because of the high dimensionality of the design space and the complexity of
the domain boundaries [82].
The First-Order Reliability Methods (FORM) and the Second-Order Reliabil-
ity Methods (SORM) approximate the failure probability by transforming the de-

sign space into standard normal space and replacing the limit state function with
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first-order and second-order Taylor series approximations, respectively, at the most
probable point (MPP) of the limit state function.

Design optimisation The reliability index given by equation (5.1) can be used to
achieve more robust designs. Hou et al. [32] devised a robust based design optimi-

sation procedure by deriving the reliability sensitivities.

Limitations The FORM and SORM methods are efficient and give satisfying ap-
proximations to the failure probabilities in many cases. However, there are known
counter-examples where these methods fail, such as when the normal transformation
can distort the limit state function considerably, when there are multiple important
failure regions, or when the first-order and second-order approximations are insuf-
ficient [58]. Thacker et al. [71] suggested using Monte Carlo sampling to find the
multiple MPPs and then to compute the system failure probability by applying
FORM and SORM at each MPP.

5.2 Conventional design optimisation

This section describes the standard formulation of design optimisation, which will
serve as a starting point for a probabilistic robust design formulation in section 5.3.1.

Design optimisation is the process of determining the combination of design
parameters which better meets the design objectives. Design objectives are specified

as target functions and a set of restrictions.

5.2.1 Problem formulation

This subsection describes the problem formulation, which concerns the modelling
stage of figure 5.1.

Design parameters The design parameters are those parameters which are con-
trollable from the designer point of view. For instance, the length of a structural
member or the thickness of a plate. Conventional design focus mostly on the nominal

values of the design parameters.
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The vector of design parameters will be denoted as
Xx=[zy12 ...)T (5.2)

System parameters The system parameters are those parameters which the de-
signer either cannot or does not want to control. They are intrinsic to the system,
and because of that are often omitted from design considerations.

Common system parameters are modelling parameters such as damping factors,
external loads to the structure such as wind or ground motion, or noise factors in
the manufacturing process.

The vector of system parameters will be denoted as

p=[pip..J" (5.3)

When system parameter values are not precisely known then their estimates

must be used instead, usually taken from worst-case scenarios.

Objectives An objective is a variable that is to be maximised or minimised. For

example, a designer may wish to minimise production cost, maximise performance,

minimise weight, minimise FRF peaks, minimise static displacement, etc.
Objectives will be denoted by

J(x,p) = [1(x,p) 2(x,p) . ] (5.4)

When there is more than one objective, they can either be weighted to form a

single objective or considered simultaneously.

Constraints A constraint is a formal condition which any candidate solution must
observe, regardless how fit it is with respect to the objectives.

Common design constraints are structural limits such as yield stress, geometric
limits such as the maximum allowable deflection or maximum overall dimensions,

economic limits such as a fixed budget, etc.
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Constraints can be formulated as a set of inequalities

g(x,p) <0 (5.5)

where g is the vector of constraints. Constraint inequalities can be reversed by mul-
tiplying by —1. Equality constraints can be replaced by two inequality constraints.
Constraints can either be used explicitly by the optimisation algorithm, or in-

corporated into the objective function [77].

Design parameters

System parameters

Objectives

Figure 5.6: Design model

Model The model relates the constraints and the objectives to the design param-
eters and system parameters (figure 5.6), and may be regarded as a black-box.

5.2.2 Problem solution

This subsection describes the problem solution, which concerns the optimisation
stage of figure 5.1.

Single objective problems If there is a single objective, then the optimum solution
is given by
Xopt = arg max J(x, p) (5.6)

for the set of x which satisfies equation (5.5). This problem can be solved using ap-
propriate optimisation techniques, such as gradient-based algorithms or the simplex
method.
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Multiple objectives problems If there is more than one objective then there is no

unique optimum solution.
The multiple objective problem can be transformed into a series of single-objective

problems [38], of the form
Ai
arg m;?xz S—fJi(x, P) (5.7)

where sf; is the scale factor and ); is the weight of the i-th objective, respectively.
Weights are typically chosen such that Y. A; = 1 and \; > 0 resulting in a convex

combination of the objectives.

o

A

Objective 2

/ Pareto front

Possible solutions

poy

Objective 1

Figure 5.7: Typical Pareto front for a two objective problem

The set of solutions of equation (5.7) forms the so called Pareto front — a set of
solutions such that no objective can be improved further without worsening another
at the same time. Figure 5.7 illustrates the Pareto front for a two objective problem.

The final choice of design variables is left to the decision maker, who weights the
objectives according to the trade-offs, thereby implicitly providing an aggregated

objective function.
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5.2.3 Limitations

The main limitation of the conventional design methodology described above is that
the uncertainty, both in the design and system parameters, is unaccounted for in
the optimisation.

Conventional design also does not provide an integrated process to design toler-
ances along with the nominal values. This is usually done by a posterior analysis,
based on the parameter sensitivities.

Resorting to worst-case values or high safety factors on system parameters to
compensate for the uncertainty/variability leads to over-dimensioned designs.

All of the these limitations usually lead to more iterations of the design cycle
(figure 5.1). More experiments are required to fine tune the system parameter values
and to adjust the tolerances of the design parameters to reach an acceptable design.

5.3 Probabilistic design optimisation

Robust design tries overcome the limitations of conventional design by taking into
account the variability of the manufacturing process and the uncertainty in the
modelling. This section describes a probabilistic approach to robust design, taking

as base the formulation of conventional design in section 5.2.

5.3.1 Problem formulation

Design parameters In robust design, the designer can not only control the nomi-
nal values of the design parameters, but also their tolerances. Other design variables
within the manufacturing process can also affect the variability in the design pa-
rameters. Generally, the designer can shape the probability density function of the
design parameters.

The design parameter vector x will now be a realisation of the design param-
eter random vector X. This vector is assumed to follow a probability distribution

belonging to a family of probability distributions, such as
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where X is the design parameter random vector, D, is the probability distribution
family, and X are the distribution parameters.

For example, when designing the length of a structural beam, the distribution
family D, could be a uniform distribution and the design variables X would be
the nominal value and tolerance. When designing the thickness of a plate, the
distribution family could be an AR(1) random field, and the design variables would
be the mean thickness, the thickness standard deviation, and the surface smoothness
(the random field correlation length).

The design variables X are distinct from the design parameters x. The design
variables are controlled by the designer, but the design parameters are fed to the
model. The former shapes the latter, but does not completely determine it — the

gap between them is filled by the uncertainty due to the manufacturing process.

System parameters Like the design parameters, system parameters will be refor-
mulated as probability distributions in order to account for their uncertainty. The
system parameter vector p will be the realisation of the system parameter random
vector P which follows a given distribution D,,

P ~D, (5.9)

Uncertainty in the system parameters can stem from lack of knowledge. For
example, damping factors are difficult to model precisely. Such system parameters
have reducible uncertainty. Bayesian probability theory can be used to update
the parameter probability distribution D, from experimental measurements. The
nature of other parameters is truly random, such as the loading caused by wind.

The uncertainty of these parameters is irreducible.

Constraints In robust design, constraints can no longer be satisfied in a Boolean
true or false sense. In general, for every combination of the design variables there is
a nonzero probability that either the constraint is observed or not.

So, enforcing a zero probability of the constraint not being satisfied could narrow
the set of admissible designs to the empty set. However, it is usually acceptable that

the constraint is unsatisfied with a probability lower than a small residual probability
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P(g(x,p) > 0[%) < a (5.10)

The complement probability, 1 — «, is referred as the confidence level or reliability.
The value of o depends on the gravity of the violation of the constraint. The
probability of structural failure should be low, but the probability of structural
collapse should obviously be even lower.
According to equation (5.10), the constraints of equation (5.5) are reformulated

g(%) = P(g(x,p) > 0X) —a <0 (5.11)

The probability in equation (5.10) is given by the integral
P(e(xp) > 0%) = [[  fx(xI%) fo(p) dpox (512)
8(x,p)>0
or alternatively

P(g(x,p) > 0[%) = / fx(xI%) fo(p) 6(g(x, p)) dp dx (5.13)

where

6(x) =

{ 1 ifz; > 0 for all ¢ (5.14)

0 otherwise

Equality constraints cannot be handled in a similar fashion to the inequality
constraints, as the probability of an equality constraint being satisfied is always zero.
Instead, equality constraints should be seen as a decrement in number of degrees
of freedom of the model. Effectively, the presence of equality constraints implies
that, for every equality constraint, the value of a parameter can be determined from
all remaining parameters. Therefore, equality constraints can be hidden inside the
model and the respective dependent parameter eliminated, as viewed from outside
of the model.

Objectives Like constraints, objectives can only be meet in a statistical sense.

Robust design objectives should be restated as maximising the original objectives
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in a mean sense
J(X) = E(J(x,p)[X) (5.15)

which is given by the integral
38 = [[ e fo(p) Ix,p) dpx (5.16)

Utilities Maximising the mean implies that favourable or unfavourable sce-
narios are respectively desirable or undesirable in an equal manner. However, the
designer may wish either to maximise the windfall likelihood or to minimise the risk
instead. This can be accomplished by attributing a utility to each possible response,
via the composition of a monotonic utility function u(-) to the objectives.

The reason this is unusually relevant for conventional design is because the po-
sition of the maximum response is unaffected by the composition with a monotonic
utility function. In other words, for conventional design, the best outcome is always
the best, regardless how better it is compared with all the others. But for robust
design, owing to the multitude of possible outcomes considered simultaneously, the

relative importance of each outcome does matter.

Design variables

Design parameters’ PDF

Design parameters System parameters’ PDF
Model System parameters
Objectives

Mean objectives

Figure 5.8: Robust design model
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Model Robust design takes only a different perspective of the same reality from
conventional design. Therefore the model, which describes the underlying reality,
remains basically unaltered in robust design. The difference is in the kind of inputs
fed to the model and in the outputs produced by it. The model parameters (in-
puts) are now joint probability density functions, and so is the expected response
(output). The shift from deterministic (conventional) design optimisation to prob-
abilistic (robust) design is more a change in substance than in form (figure 5.8).

Therefore, a good model for conventional design should also be good enough
for robust design. When moving to robust design the remaining modelling effort
is in choosing the appropriate probability distributions for the design and system
parameters.

Nevertheless, robust design may require more detailed parameters. Specifically,
whenever a nominal design parameter occurs more than once in the model a different
parameter should be used for each instance. Imagine for example, the diameter of a
set of spot welds. Although all of the spot welds have the same nominal diameter, the
actual diameter of each spot weld differs from the others because of the variability
in the welding process. So, although they can be modelled as a single diameter
parameter in the deterministic model, in the nondeterministic model there should
be a separate diameter parameter for each individual spot weld. This is necessary

to faithfully model the statistical independence between parameters.

5.3.2 Problem solution

Since the robust design problem formulation results in a problem equivalent to
conventional design, the solution procedures for conventional design described in
section 5.2.2 also apply to robust design.

The main difficulty is calculating the integrals of equations (5.13) and (5.16),

which can be reduced to the form
J[ #x(x1%) fo(0) hx, ) dpax (5.17)

Section 5.4 describes the traditional perturbation approach (similar to the tech-
niques used for reliability analysis in section 5.1.2) which is efficient, if the necessary
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conditions for its application (smooth response surface and small variations) are
met.

Section 5.5 describes a novel and general approach based on the Monte-Carlo
simulation method to evaluate these integrals.

As in chapter 4, the main idea behind both approaches is to factorise out of
equation (5.17) as much computation as possible, allowing those factors to be pre-
calculated before entering the iterative loop of the optimisation.

5.4 Perturbation approach

The application of the perturbation uncertainty propagation method provides a fast
and often sufficiently accurate approximation to the integral of equation (5.17).
This is accomplished first by changing the domain of integration from the pa-

rameter space into the response space

/ / fx(x|%) fo(p) h(x, p) dp dx = / £, I%) dy (5.18)

where y = h(x, p) is the response variable. The response y is then approximated by

a first order Taylor series in A
oh oh
o B (0 0 O 0 _0V| (v _ 0 O 0 0\ (w0
v hOO ) + |08 - =) + [ 26080 -8 619)

around point (x% p°). If the parameters x and p follow multivariate normal distri-

butions
X ~ Ny 5s), P~ Npy, 5,) (5.20)

with mean vectors p, and p,, and covariance matrices ¥, and X, respectively,

then the response y will follow a normal distribution

Y ~ N(uy, 0y) (5.:21)
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where the mean response is

o = 68 + |68 - (e =2+ 26000 - 0y -8 (52

and the response variance is
2_ |0k, o o 3hooT Oh o o ahooT
Oy = 6_X(x P ) 3, &(X P ) + 6_p‘(x P ) 2? %(X P ) (523)

In particular, equation (5.16) becomes

Ji(pg, Bz) = py, y=Ji(x,p) (5.24)

for every i-th objective, and equation (5.12) becomes

P(g;(x,p) > 0|p,, Xz) =1 - Fy(0), y=g;(x,p) (5.25)

for every j-th constraint, where F, is the response (Gaussian) probability distribu-
tion function.

Even if the parameter distributions are not multivariate normal, they can be
transformed to be so, as described in section 2.2.5.

For the best approximation, the linearisation point (x°, p°) should be as close
as possible to the point (p,, p,). However, the final optimum value p, is unknown
beforehand since it is the final result of the optimisation. Therefore an estimate of
., must be used initially for x°, and if these two points differ too much then a further
linearisation and optimisation pass must be performed using the new estimate.

The perturbation method suffers from the usual limitations, already outlined in
previous chapters. The Monte Carlo simulation method, on the other hand, although
more computationally demanding, is generally appliable and is therefore the main
focus of this work.
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5.5 Monte Carlo simulation approach

The Monte Carlo simulation method approximates the integral of equation (5.17)
by sampling N values of x; and p; from the D.(X) and D, distributions respectively,

reducing the integral to a sum

/// F(xi%) fo(p) hop) dpx = 173 i) (5.26)

Every new test value of the design variables X corresponds to a different proba-
bility distribution being taken from the probability distribution family, D, (x). This,
in turn, implies that a new set of IV samples of x; must be generated for every new
value of X, and the respective points h(x;, p;) reevaluated. Resampling can be very
time consuming, even if a meta-model is used as surrogate for the A function, since
the number of samples needed for good accuracy in the Monte Carlo method is
usually high.

The estimates given by equation (5.26) are nondeterministic, i.e., two evaluations
using the same values of X will not necessarily give the same value, as the set of
random samples generated differs. Furthermore, near the border, the constraints of
equation (5.11) may sometimes be satisfied, but other times not. This phenomena
is a serious obstacle to the employment of most optimisation algorithms.

The use of a pseudo-random number sequence generator with constant seed may
reduce the problem, but that still does not guarantee the desirable smoothness of
the objective and constraint surfaces.

To completely overcome this limitation, a higher number of samples N must
be generated in order to reduce the randomness in the objective and constraint
functions to below the sought precision in the design variables X.

A better approach is to resort to the same reweighting technique developed for
the uncertainty quantification in section 4.2.2.

Reweighting Instead of resampling for every trial of X, a single set of samples is

reweighted according to the desired distribution, as illustrated in figure 5.9.

The samples x; are generated according to a different probability distribution
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PDF Resampling Reweighting

Figure 5.9: Reweighting versus resampling — there is a different distribution for each
row; the left column shows the PDF, where the density is indicated by the shade of
grey; the middle column shows samples taken according to each PDF, represented
by blobs; and the right column shows a fixed set of samples, reweighted according
to each PDF, where the sample weight is indicated by the blob size.
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9x(x), and equation (5.26) is rewritten as

[] 0 s P dpax~ S w@neeup) (620
where Fr(il%)
=y _ JXIXiX

w(®) == 05 (5.28)

Therefore only the weights w; depend on X, eliminating the need to resample x;

or reevaluate h.

Choosing the sample distribution The probability distribution gx should be as
close as possible to the probability distribution fx that we want to test. If they
are too different then some weights will drop to zero, because of the positiveness
and unit integral properties of the probability density functions. The more different
the distributions are, the more weights will be close to zero; the effective number
of samples used drops to a small fraction of N; and the accuracy of the integral
approximation will suffer.

The employment of an appropriate gx can be determined by applying a simple
statistical test. Lets assume that the integrand is the unit function, h(-) = 1.
Replacing this in equation (5.17) yields

[ sxx0se@)dpax = [ fxxiyax- [@p=1 (629

since both fx are fp are probability density functions. Since equation (5.27) is an

approximation to that integral, then

i Zwi(i) ~1 (5.30)

which is equivalent to saying that the mean weight W ~ 1. If a large number of
samples N is taken (true for virtually all applications) then, owing to the central

limit theorem, the mean weight w will approximately follow a normal distribution
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with N(u = @, 0? = s,,/N), where s,, is the variance of w, given by
R f:(w,. _ w2 (5.31)
N -1 —
That can be verified by the following statistical test for the mean of w [30]

w—1
/Sw/N

where « is the desired level of confidence, and z(a) the inverse of the normal tail

€ [-z(a), 2(a)] (5.32)

probability. This simple test can determine whether the given weights are effectively

consistent with the @ = 1 statement and, therefore, if an adequate gx was chosen.

Normalising the weights From equation (5.30) it follows that the mean weight
w does not generally match unity — a consequence of the number of samples being
less than infinity and the samples not covering all the parameter space. This can
yield strange results when estimating probabilities, such as probabilities outside the
[0,1] interval. To prevent this, it is advisable to normalise the weights in such

circumstances, such as with equation (5.13), by using
1 K w;
X N — —h(x;, P; 5.
// Fx(xI%) fe(p) h(x,p)dpdx ~ - i§=1 —h(xi, p:) (5.33)
instead of equation (5.27).

5.6 Application

The approach described earlier will now be demonstrated using a numerical appli-

cation.

5.6.1 Description

Model The application is a two dimensional beam truss structure with rigid joints

and circular cross section beams (figure 5.10). Each beam is modelled with four
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NN

l=0.6m

Figure 5.10: Application — beam truss

Euler-Bernoulli beam elements vibrating in the plane. Every node has three degree
of freedoms — displacement in z and y directions and a rotation in the out-of-plane
direction. The outer-left nodes are clamped.

The beams are made of steel, with a Young’s modulus of £ = 210GPa and a
density of p = 7800kg / m3.

Figure 5.11 shows the lower natural frequencies and respective mode shapes for

a nominal value of the diameter.

Design variables The design parameter is the beam diameter d.
x = [d] (5.34)

The hypothetical metalworking lathe that will be used to cut the circular beams
produces circular shapes with a deviation which follows a normal distribution with
30 = 1mm. Beams with a desired tolerance A4 are produced by scraping those
whose dimensions are outside the specification. Therefore the diameter follows a
truncated normal distribution (figure 5.12).

The robust design variables are the beam mean diameter p4, and its tolerance
Ag.

% = [pa Ag]” (5.35)

Objective The main objective is to minimise production cost, where only the ma-

terial costs will be considered.
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5.11.4: wqy = 148.42Hz

Figure 5.11: Application — mode shapes for a nominal diameter (d = 20 mm)
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Figure 5.12: Truncated normal distribution probability density functions

The mass of a single beam of length [ is

d2
M(d) = l”T (5.36)
10 1 L 1 |
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Beam nominal diameter, d (mm)

Figure 5.13: Application — the mass of a horizontal or vertical beam.

Figure 5.13 shows the mass associated with a horizontal or vertical beam.

The design objective is then

3(x) = [M(d)] (5.37)
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For robust design purposes, the cost will include the mass of the structure, but

also the mass of the scrapped metal
CxMxN (5.38)

where N is the expected number of beams which have to be produced in order to
find one within specification.

Let p be the probability that a beam diameter is on specification. Then the
probability that the first beam will have a diameter on spec is p, for the second is
(1—p) x p, the third is (1—p) x (1—p) X p, and so on. Therefore the average number

of beams which have to be produced in order to find a beam on specification is
N=Zix(1—p)’_1><p=I—) (5.39)
i=1
The probability p is given by

p = F,(A4/o) — F:(~A4/0) (5.40)

where F, is the zero mean unit standard deviation Gaussian probability distribution
function.

Figure 5.14 shows the predicted impact of the tolerance on the structure produc-
tion cost given by equations (5.39) and (5.40). Tolerances lower than the tolerance
normally given by the machine imply that a larger number of items will be scrapped.
Tolerances higher than the intrinsic machine tolerance have almost no impact in the
cost. Equations (5.39) and (5.36) show that the direction for lower costs is associated
with lower diameters and higher tolerances.

The objective function is then

3(%) = [M(ua) x N(AS)] (5.41)
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Figure 5.14: Application — cost associated with tolerance. The vertical axis has
the expected number of beams which have to be produced in order to find a beam
on specification. The horizontal axis has the specified tolerance normalised by the
three times the lathe’s standard deviation.

Constraints The only constraint will be that the fundamental natural frequency
of the whole structure must lie above 100 Hz.

g(x) = [100 —w;(x)] <0 (5.42)

g(X) = [P(w1(x) <100) —a] <0 (5.43)
for a = 10%.

5.6.2 Deterministic design

It is important to perform an initial deterministic analysis and design on the model.
This gives insight into the model response surface and its peculiarities. Furthermore,
the results from the deterministic design can be reused as initial estimates for the
robust design. This is even more important since the quality of the initial guesses
have a decisive impact on the results of the described methods.

Figure 5.15 shows the evolution of the first natural frequency of the truss, wi,
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Figure 5.15: Application - deterministic response

with respect to the beam diameter, d.

lid= 15.83 mm, Ad = 1.00 mm, 1000 samples
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Figure 5.16: Application - response probability density function for the deterministic
design optimum solution
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From equations (5.37) and (5.42) it follows that a beam diameter of d = 15.83 mm
would theoretically make the first natural frequency lie exactly at w; = 100 Hz. But
this value leaves no margin for variations. Figure 5.16 shows the resulting probability
density function obtained by running the forward Monte Carlo simulation method,
estimated from the samples using KDE. Clearly the structure does not observe the
design constraints even approximately, as more than half of the samples violate the
natural frequency constraint. Considering the need for a nonzero tolerance and the
monotonic nature of the response curve, this diameter value is necessarily a lower
bound for the final design value.

The curvature of the response curve is negative, which means that for higher
values of the diameter d the first natural frequency w; becomes less sensitive to

variations.

5.6.3 Robust design — first stage

For robust design equations (5.41) and (5.43) will be used.

In this initial stage, the beam diameters will be considered to be identical.

Taking in account the considerations from the preliminary deterministic analysis
in the previous section, the samples of the response curve will be taken uniformly
around and above the deterministic optimum.

Figure 5.17 shows the objectives and the estimated failure probability over the
area of interest of the parameter space, as well as the optimum design found. As
expected, the probability that the constraint is unobserved drops as ug4 increases,
and this drop is steeper for lower tolerances than for higher tolerances.

Considering all of the beam diameters to be equal is unrealistic. It is expected
that the fluctuation of fifteen independent parameters would sometimes cancel out,
resulting in less total variance due to averaging. Figure 5.18 shows the resulting
response probability density function by running the forward Monte Carlo simulation
method with the optimum design found, and it corroborates this statement as the
failure probability is well below admissible 10%. So, for the real optimum design to

be found, the beam diameters have to be considered individually.
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Figure 5.17: Application — objectives (above) and failure probability (below). The
optimum design is marked with x
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Figure 5.18: Application — response probability density function for robust design
optimum stage 1 solution

5.6.4 Robust design — second stage

In this second stage of robust design, the diameters of the individual beams which
make up the truss will be considered independent of each other. Equation (5.34)

will be replaced by
X = [d1 d2 . d15]T (544)

The main difficulty of this stage is the dimensionality of the parameter space, as
fifteen different parameters are considered instead of just one.

The first approach used to sample the parameter space was uniform sampling.
But this attempt produced no results, as virtually all of the weights (with the ex-
ception of one or two) in equation (5.28) dropped down to almost zero. Zero weights
occur when the distribution used for sampling does not produce enough points on
the likely subspace of the distribution being tested. It is easy to understand why
this happens with this application: although all of the diameters are independent,
they all follow the same distribution. Thus the true distribution of the parameters
will always be centred along the dy = d; = --- = dj5 line. Points sampled from
a multivariate uniform distribution will be spread over a 15-dimensional volume,
instead of being concentrated on the identity line manifold. This is illustrated by

figure 5.19 for a two-dimensional parameter space.
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Figure 5.20: Application - efficient sampling of the parameter space - samples
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A more efficient approach in this kind of application is to sample from the sum
of a univariate distribution plus a zero centred distribution, such as a zero mean
normal distribution:

U(a, b) + N(0, 0) (5.45)

where [a, b} specifies the range of interest to sample and o specifies the spread of the

samples around the identity line, as illustrated by figure 5.20.

10 -

9 -

Figure 5.21: Application - efficient sampling of the parameter space - PDF

This distribution probability density function is given by

f(x)= J[a Z-~afN(x~z)dz (5.46)

Equation (5.46) can be computed without much effort using numerical integration
along z. Figure 5.21 shows the joint probability density function obtained for the
same configuration as figure 5.20.

W ith this new distribution there were enough samples with nonzero weights. The

optimisation converged to a new optimum result, with a lower nominal diameter and
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Figure 5.22: Application — response probability density function for robust design
optimum stage 2 solution

higher tolerance, closer to the allowed 10%, as shown by figure 5.22.

These results could not be achieved if this stage was taken before the previous.
There would be insufficient information to sample the parameter space effectively,
rendering most sample points useless; and the presented method would give no

advantage over the conventional Monte Carlo simulation method.

5.7 Summary

In this chapter the concept of design and robust design was introduced. The merits
and criticisms of the Taguchi robust design approach were highlighted. A novel
probabilist robust design methodology was presented, which allows the specification
of design parameters and objectives in an intuitive manner, coping with uncertainty
in both the control and noise parameters.

Numerically, the method is based on reusing the same set of samples by reweight-
ing. Doing so is more efficient than the constant resampling performed with a
straightforward application of the Monte Carlo method. Another advantage is that
the resulting objective function becomes smooth and deterministic, facilitating the
performance of optimisation algorithms.

The method was demonstrated on an application which, albeit purely academic,
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included realistic features of cost and requirements. A staged approach to robust
design was illustrated, starting with the deterministic design problem and ending
with the fully-fledged robust model. This staged approach allows the accumulation
of knowledge of the problem, ensures a successful design optimisation, and prevents
the waste of computational resources.

The main disadvantage of the presented method is the requirement to know be-
forehand a reasonable estimate of the optimum design in order to efficiently sample
the parameter space. Therefore this method is more appropriate for rapid conver-
gence in the neighbourhood of the optimum design solution. If no prior estimate of
the optimum design is available then a globally more convergent approach, such as
resorting to simplified models or the regular Monte Carlo simulation method, should

be employed in order to get a reliable initial estimate.
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Chapter 6

Conclusions
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Figure 6.1: Uncertainty cascade

Figure 6.1 illustrates the stages of a typical uncertainty based analysis cascade.

The first stage is modelling (deterministically) the system under analysis.
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last stage is the experimental verification and validation. The work presented here
covered the inner stages: uncertainty identification, uncertainty propagation, and
robust design.

Central to all uncertainty-based methods are the uncertainty propagation meth-
ods. The three most common uncertainty propagation methods — Monte Carlo
simulation method, perturbation method, and fuzzy method — were compared in
chapter 3. Owing to its generality and simplicity, Monte Carlo simulation remains
the workhorse method of uncertainty methods. Because of its computational time-
saving, the perturbation method can be useful to quickly obtain first estimates and
eventually discard irrelevant parameters. However, considering today’s available
computing power and the Monte Carlo algorithm’s parallel nature there is little
reason to base design decisions on the unreliable predictions of other uncertainty
propagation methods.

After a deterministic model is created, the uncertainty sources must be iden-
tified and characterised. Since direct measurement is often prohibitively costly or
even impossible, a novel method to characterise uncertainty sources from indirect
measurements was developed and presented in chapter 4. This method can accu-
rately estimate the probability distribution of parameters of the uncertain model
by maximising the likelihood of the indirect measurements. The measurement like-
lihood is estimated using highly efficient variations of the Monte Carlo simulation
and perturbation methods. The developed method effectively acts as an uncertainty
back-propagation method. The approach was verified experimentally in several ap-
plications with promising results.

The ultimate purpose of using uncertainty-based methods is almost always to
perform robust design, i.e., achieving designs that are less sensitive to the unavoid-
able uncertainty and, therefore, with more consistent quality. In chapter 5 a proba-
bilistic procedure for robust design was proposed. It is based on reweighting of the
Monte Carlo samples to avoid the numerical inefficiencies of resampling for every
design candidate. Although not globally convergent, the proposed method is able
to quickly estimate with high accuracy the optimum design.

The main focus of this work was on structural dynamics, but care was taken to
make the novel uncertainty identification and robust design methods general enough

to allow other kinds of structural and non-structural analyses.
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6.1 Directions for future work

Uncertainty representation This work was centred around the probabilistic un-
certainty representation. Probability theory has received many critics, mostly be-
cause it relies upon the characterisation of probability density functions which are
too often difficult to define precisely. Admittedly, if the probability distributions
are imprecisely defined then the uncertainty quantification is compromised. De-
spite the shortcomings of probability theory, it is the author’s strong belief that
the probabilistic representation of uncertainty is not only a huge step forward from
the deterministic-based design, but is also the most sure step. Probability theory
provides a sound framework for quantifying uncertainty.

Other representations, such as intervals and fuzzy sets, have less demanding char-
acterisation requirements. But they lead to non-optimum results when compared
with the probability theory, since they convey often incomplete information.

If there really is little information to characterise a source of uncertainty in a
model, then little reliable information should be expected from it. As the saying goes
“garbage-in, garbage-out”. Therefore this situation cannot be significantly altered
by simply choosing a different uncertainty representation. Effort should be spent
further characterising the uncertainty instead. That is, the “garbage-in” should be
replaced by real information to prevent the “garbage-out”.

In the future, higher order theories, such as imprecise probability theories, may
proliferate in the uncertainty quantification field. Such theories provide the benefits
of both worlds, at the expense of added complexity. They have the potential to
address that middle ground where some probability information is indeed available,

but it is incomplete or inaccurate.

Uncertainty propagation There is no such thing as an exhaustive comparison. No
matter how extensive a comparison is, some things are always left out. The review
in chapter 3 is not an exception.

There are many other variations of these three basic methods studied with more
or less popularity that could enrich the comparison. A valuable addition would be to
consider the Monte Carlo simulation plus meta-modelling, which has the potential
to be a one-size-fits-all approach, rather than just pure straightforward Monte Carlo.
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Even if just considering linear vibrations alone, there is a big gap between the
most complex structure compared and those of real world applications, leaving un-
closed the question of how far the conclusions drawn from these simple applications
can be applied to real world applications.

Only Gaussian distributions and random fields were used to model parameter
uncertainty on the studied applications. Although many physical phenomena follow
the Gaussian distribution, many do not. The reason for choosing Gaussian distri-
butions in this work was mainly convenience, because of its well known statistics
and availability in software. But the suitability of the Gaussian to model some real

world parameters is questionable, owing to its non-positiveness and symmetry.

Uncertainty identification Future work on the uncertainty identification method
presented in chapter 4 could include determining the impact in the estimation results
of choosing the wrong parameter distribution family. Or how the method copes with
an arbitrary distribution family, such as polynomial chaos.

Robust design A substantial improvement for the method presented in chapter 5
would be to include adaptive sampling. Allowing the incorporation of more samples
in the middle of the optimisation process, as better estimates of the optimum solution
are available, would permit consideration of a wider range within the design space.
The knowledge of a close initial estimate would then be less important, making the

method more globally convergent.

Substructuring Uncertainty-based methods demand large computing resources.
Substructuring analysis methods, such as component mode synthesis, provide effi-
cient means to manage the complexity of built-up structures. So there is a potential
time-saving benefit from integrating these methods into the proposed approach.
The synergy potential is even greater when the different subsystems are statistically
independent.
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Appendix A

Implementation details

The integration of the uncertainty-based methods into finite element modelling poses
a programming challenge. Virtually anything in a finite element model can be sub-
ject to uncertainty, and may therefore be parameterised. Node coordinates, material
properties, element properties, and external excitations may all depend on param-
eters. Uncertainty propagation methods other than the Monte Carlo simulation
method require non-trivial modifications to the finite element code for an efficient
implementation. Uncertainty identification and robust design techniques introduce
another higher class of parameters (parameterisations of the probability distributions
themselves), distinct from uncertain parameters. So, uncertainty-based methods add
a great deal of complexity to the finite element analysis.

This appendix describes how the finite element code, developed for the applica-
tions shown throughout this thesis, was implemented.

The code structure is described using Unified Modelling Language (UML) dia-
grams [52].

Programming language Finite element code, like most computer-intensive engi-
neering codes, has traditionally been written in the FORTRAN language, due to
its efficient translation of mathematical formula into machine code. However, for
research purposes, the use of an interpreted, object oriented language provides many
advantages. Object-oriented programming allows the mapping of the finite element
concepts into an object hierarchy, thereby increasing code reuse and helping to man-

age complexity. Interpreted languages have quicker development cycles, owing to
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the absence of the compilation stage and the use of dynamic typing. However, the
interpretation causes a runtime overhead, which is non-negligible unless vectorial
algebra is employed.

The first choice of language was MATLAB, also popular in engineering circles.
MATLAB has powerful multidimensional array algebra abilities which reduces the
interpretation overhead, provided the algorithms are rewritten in a vectorial fashion.
Recent revisions of the MATLAB language also include object-oriented program-
ming abilities. However, initial coding showed that its inefficient memory manage-
ment prevented even the less complex uncertain finite element models to run in an
acceptable time.

The final choice of language was Python', which is an interpreted, dynamically
typed, object oriented language. The Numerical Python extension module? was
also used, which adds MATLAB-like multidimensional-array abilities to the Python

language.

Finite element modelling and analysis Figure A.1 describes the data structure
of a finite element model. A model is composed of nodes, elements, element proper-
ties, and constraints. Every element is associated with multiple nodes and a single
property.

Everything in a finite element model can potentially depend on parameters (ei-
ther uncertain, or not). Also, every model constituent usually requires some initiali-
sation and cleanup work to be done before and after a finite element analysis. So, in
order to be treated uniformly by the code, every constituent in a finite element model
implements the Object interface, which specifies pre- and post-processing hooks, and
a model traverse hook.

The model traversing is accomplished with the aid of a visitor, which is called for
every model constituent as the model is traversed. A visitor can be used to collect
all uncertain parameters in the model, or design variables. This is illustrated in
figure A.2 for the Node class (which checks if its coordinates are parameters, passing
them to the visitor).

A property is either a field or a property sheet, i.e., a collection of properties

lhttp://www.python.org/
2http://numeric.scipy.org/
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Object

+accept(Visitor)

+pre_process(Analysis)
+post_process(Analysis)

Node &<

+coords: float[]

+dimension(): int
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

nodes

Element

+map(points)

+unmap (points)
+allocate_dofs()
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

property

1
I
1

Property

+subproperties()
+register(Element)
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

N

Constraint

nodes
———— Model
elements +dimension: int
roperties +find_parameters(): Parameter|
—EME% +accept(Visitor)

+pre_process(Analysis)
+post_process(Analysis)

N

+constrain_dofs()
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

----—T—-_—-"--"'“"______-_-_-__-----"'l'—'|-D

Parameter

+value

+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

Figure A.1: Finite element model class diagram
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Object Visitor
+accept(visitor:Visitor) +visit_node(Node)
l?& +visit_element(Element)
+visit_property(Property)

+visit_constraint(Constraint)
+visit_parameter(Parameter)
+visit_model (Model)

Node

visitor.visit_node(self)

+accept(visitor:Visitor)f = =

T > for coord in self.coords:
if isinstance(coord, Object):
coord.accept(visitor)

Figure A.2: Visitor class diagram

N

Property

+subproperties()
+register(Element)
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

L

Field PropertySheet

_subproperties

+evaluate(element:Element,points) +subproperties() |- =
+register(Element) > return self._subpropertigz]

1

[MaterialProperty SectionProperty

L

Figure A.3: Property class diagram
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(figure A.3). Young’s modulus, Poisson’s ratio, the beam cross section, and the shell
thickness are examples of fields. These are aggregated as materials properties, beam
properties, and shell properties, which are examples of property sheets. This scheme

allows the uniform treatment of individual fields, and collections of fields.

Analysis
+model: Model
+dofs

+process()
+pre_process()
+post_process()

subanalysis
MetaAnalysis j[@———

+process()
+pre_process()
+post_process()

Figure A.4: Analysis class diagram

A basic analysis is associated with a model, and operates on a series of degrees-of-
freedom (DoFs). There is another class of analysis, the MetaAnalysis, which operates

on results of a sub-analysis instead (figure A.4).

Structural dynamics analysis Figure A.5 shows the class hierarchy for the struc-
tural elements. Every structural element must allocate DoFs (nodal displacements)
during the pre-processing phase, and calculate its element stiffness and mass matri-
ces during the processing phase. Much of this calculation code can be shared for
classes elements. For the current implementation, these are the beam, shell, and
solid element classes.

There are three variations of the beam element — Beam1D, Beam2D, and Beam3D
— for one, two, and three dimensional spaces, respectively. BeamlD has in-plane
bending only; Beam2D has in-plane bending and axial compression; and Beam3D
has bending in two planes, axial compression, and axial torsion. The beam ele-
ments follow the Euler-Bernoulli theory for bending and the Saint-Venant theory

for torsion.
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Element

+map(points)
+unmap(points)
+allocate_dofs()
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

T

StructuralElement

+allocate_dofs()
+displacement(points)
+deformation(points)
+structural_matrices(): K, M

7

BeamElement ShellElement SolidElement
+map(points) +map(points) +map(points)
+transform_matrices(Kl,Ml): K,N +jacobian(points) +jacobian(points)

+displacement (points) +displacement (points)
+deformation(points) +deformation(points)
+elasticity(points) +elasticity(points)
+transform_matrices(Kl,Ml): K, N

A

BeamlD Beam2D Beam3D| |Quad4Shell Tria3Shell Hexa8Solid

Figure A.5: Structural element class diagram
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Shell elements follow the Reissner-Mindlin assumptions [83, cha. 8], with selec-

tive integration of the shear stresses.

Constraint

+constrain_dofs()
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

i

StructuralConstraint
ClampConstraint SupportedConstraint RigidBodyConstraintl
+node: Node +node: Node +nodes: Node[]
+constrain_dofs() +constrain_dofs() +constrain_dofs()

Figure A.6: Structural constraint class diagram

Figure A.6 shows the class hierarchy for the structural constraints. Every con-
straint must attach itself to DoFs (nodal displacements) during the pre-processing
phase, and translate the constraint into a linear equation in term of DoF's during
the processing phase.

Figure A.7 shows the class hierarchy for the structural analyses. The base struc-
tural analysis class assembles the global stiffness and mass matrices, which are used
by derived class to calculate the modes, which in turn are used to calculate the
FRFs.

Sparse matrices were used for the global stiffness and mass matrices. The
ARPACK library® was used to determine the eigenvalues and eigenvectors of sparse
matrices, and the UMFPACK library* was used to solve sparse linear systems.

Uncertainty representation and uncertainty propagation methods Uncertain
parameters are a specialisation of the Parameter class, and can co-exist in the same

model with other specialisations, such as design parameters (figure A.8).

3http://www.caam.rice.edu/software/ARPACK/
“http://www.cise.ufl.edu/research/sparse/umfpack/
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Analysis
+model

+process()
+pre_process()
+post_process()

StructuralAnalysis
+structural_matrices(): K, M
+process()
StaticAnalysis ModalAnalysiEl
+process() +modes ()
+process()
|ModaIFRFAnaIysis|
+frfs()
+process()

Figure A.7: Structural analysis class diagram

Parameter
+value

+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

A

UncertainParameter

+mean()
+variance()
+covariance(other:UncertainParameter)

+sample() = > self.value = self.mean}}]
+reset() - -

DesignParameters
+nominal
+reset() =00l ===-- - == — = > gelf.value = self.nominall

Figure A.8: Parameters class diagram
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MetaAnalysis
+model: Model
+subanalysis: Analysis

+process()
+pre_process()
+post_process()

UncertaintyAnalysis
+parameters: UncertainParameter| > populate self.parameters with al
+pre_process() e - - UncertainParameters in the model

1

i

|MonteCarIoAnalysi

PerturbationAnalysiJ

+nsamples: int

+process()

+sample()
+process()

T

FuzzyAnalysis
+nalpha: int
+process()

Figure A.9: Uncertainty analysis class diagram
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Uncertainty analyses are specialisations of the MetaAnalysis. They must always
be coupled with a sub-analysis, such as ModalAnalysis or ModalFRFAnalysis to prop-
agate uncertainty through the model into the modes or FRFs, respectively.

Monte Carlo simulation method The Monte Carlo analysis simply samples
the parameters; issues the sub-analysis to re-process itself; and computes the statis-

tics of the sub-analysis results.

PerturbationSubAnalysis| — = = =~ = — = = == = == = = = -D Analysis

+derivatives()

PerturbationStructuralAnaIysiJ—D StructuralAnalysis

+structural_matrices() +structural_matrices(): K, M

+process() +process()

+derivatives() A
-PerturbationModalAnalysig [>IModalAnalysis|

+modes () +modes ()

+process() +process()

+derivatives()

T T TR~

berturbationModalFRFAnalysis—————>{ModalFRFAnalysis]

+frfs() +frfs()
+process() +process()
+derivatives()

Figure A.10: Perturbation analysis class diagram

Perturbation method For an efficient implementation, the Perturbation anal-
ysis cannot be applied directly to any sub-analysis. It expects that the analysis
results include not only the response evaluation, but also the evaluation of the re-
sponse first order derivatives. Therefore, a parallel analysis class hierarchy was

implemented, which also calculates stiffness matrices, mass matrices, modes, and
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FRF derivatives (figure A.10). This added complexity allows for the derivatives to
be calculated on a per-element basis. For each element, only the partial derivatives
with respect to the parameters which affect that element are computed, and all
of the other partial derivatives are zero. This yields an enormous computational
time-saving compared to performing numerical derivatives of the global stiffness
and mass matrices, whereby every element stiffness and mass matrices would have
to be recomputed for each partial derivative. The modes, modal shapes, and FRF
derivatives were calculated from the stiffness and mass matrices using the techniques

referred to in section 2.3.2.

Fuzzy method In the current implementation, the fuzzy analysis is a speciali-
sation of the perturbation analysis, as the sub-analysis result derivatives are used to
reduce the parameter search space for each a-cut by assuming a monotonic response

function.

Random fields Element and material properties are modelled as fields, defined
over the mesh domain (figure A.11). Two kinds of fields are possible: constant
and random fields. The MidpointRandomField class can discretise a homogeneous
continuous random field model into a discrete set of random variable, creating the

respective instances of the UncertainParameter class.
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Property

+subproperties()
+register(Element)
+accept(Visitor)
+pre_process(Analysis)
+post_process(Analysis)

Field

+evaluate(element:Element, points)

Ji\

ConstantField RandomField
+value +elements: Element[]
+evaluate (element :Element, points +parameters: UncertainParameters|

MidpointRandomField
+fieldmodel
+evaluate(element:Element, points

Figure A.11: Random field class diagram
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