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Summary

This thesis has investigated Near Infrared (NIR) curing, a fast thermal curing technique 
for polyester coil coatings used in exterior building applications where fast line speeds 
are required. The aim has been to further understanding of the NIR cure mechanism.

UV/Vis/NIR spectroscopy and curing trials with two types o f AdPhos NIR ovens were 
used to assess the influence of NIR absorbing pigment locus on cure. Firstly, carbon 
black was removed from red and brown coatings and this resulted in a wider cure 
window, but re-siting this pigment in the primer layer was unable to maintain coating 
colour due to top coat opacity. Then the addition of 1 wt.% NIR absorbing pigment to 
the backing coat was shown to increase top coat PMT by ca. 46°C, thus enabling line 
speed or oven power settings to be reduced.

The convection cure of white coatings with carbon black primers was investigated and a 
5 wt.% loading was able to reduce top coat cure time by ca. 3s. In-situ scanning Kelvin 
probe (SKP) studies showed that rates o f coating delamination by cathodic disbondment 
remained unchanged for primer carbon black loadings of up to 3.5 wt.%.

Silver coatings are particularly difficult to cure by NIR, so glass and mica coated flake 
were investigated as alternatives to aluminium flake, but resulted in coatings with 
hiding powers reduced by more than 75%. Further formulation suggestions for silver 
coatings were made, and emissivity and pigment morphology were suggested as 
potential factors in cure.

Finally, NIR pigment additions o f up to 10 wt.% to transpired solar collector (TSC) 
coatings were investigated, and were found to have a much smaller influence on TSC 
steady state surface temperature than reducing wind speed. An outdoor study o f TSC 
temperature profile revealed that this closely mirrored the incident solar irradiation 
profile.
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Nomenclature

Common abbreviations used in this thesis:

AFM: atomic force microscopy 

CCD: charge coupled device

CIE L*a*b*: International Commission on Illumination colour

(French: Commission Internationale de VEclairage)

dft: dry film thickness

DMA: dynamic mechanical analysis

DSC: differential scanning calorimetry

DVL2: Dompel Verzink Lijn 2

EB: electron beam

GWG: Goosewing Grey

he: convective coefficient

HDG: hot dip galvanised steel

HMMM : hexamethylmethoxy melamine

MEK: methyl ethyl ketone



MZ: MagiZinc

NIR: near infrared

OCS: organically coated steel

PMT: peak metal temperature

PVB: poly vinyl butyral

PVC: poly vinyl chloride

PVD: physical vapour deposition

PVDF: polyvinylidene fluoride

RAL: European colour matching system

SEM: scanning electron microscopy

SHE: standard hydrogen electrode

SKP: scanning Kelvin probe

SRI: Solar Reflectance Index

SSPA-FTIR: Step-scan photoacoustic Fourier Transform Infrared spectroscopy 

SSST: steady state surface temperature 

TGA: thermo gravimetric analysis 

Tg: glass transition temperature



THF: tetrahydrofuran

ToF-SIMS: time-of-flight secondary ion mass spectrometry 

TSC: transpired solar collector 

TSR: total solar reflectance

ULAM: ultra low angle microtomy 

UTC: unglazed transpired collector 

Vis: visible

UV: ultra violet

VOC: volatile organic compound 

XPS: X-ray photoelectron spectroscopy

x
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Introduction
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1.1 Introduction to Organically Coated Steel

Organically coated steel (OCS) is a galvanised mild steel strip product which 

has been coated with an organic coating system prior to its finished use. The origins o f 

the OCS industry can be traced back to the 1930s when the Californian industrialist Joe 

Hunter came up with the idea o f a continuous process for coating paint onto the metal 

used for making Venetian blinds [1]. After the Second World War uses for OCS rapidly 

grew, and by the 1960’s production o f OCS by a continuous industrial process had been 

established in Europe. By 2010 the European pre-painted metal market in Europe was 

worth over €10 billion, with 81% of this market being on steel substrate [2]. Pre- 

finished OCS is now used across a range o f products as shown in Figure 1.1, with the 

market being dominated by roofing and cladding materials for the construction industry.

Building
79%

M iscellaneous
3%

Furniture
2%

Domestic Appliances 
8%

Automotive
8%

Figure 1.1 -  End Uses of Pre-Finished Steel Products (Europe 2010) - data taken from [3]

Organically coated steel in the construction industry is primarily used in an 

external environment. Organic coatings therefore serve three functions; firstly they 

provide a barrier to elements in the environment such as oxygen and rain water that 

promote corrosion o f the underlying steel substrate. In more aggressive environments 

such as coastal areas and industrial sites they will also act as a barrier to sea water and 

chemicals, such as sulphur dioxide and nitrous oxide.
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Secondly, organic coatings have an aesthetic function as shown in Figure 1.2.

Figure 1.2 -  Old Trafford Football Stadium : an O rganically Coated Steel Building

Image Copyright Steven Haslington. This work is licensed under the Creative Commons Attribution- 

Share Alike 2.0 Generic Licence.

Finally, organic coatings have a functional role. For example, coatings 

incorporating infrared reflective pigments, so called 'cool paints’, can be used to 

moderate the energy transfer in and out o f buildings [4-6]. Anti-microbial coatings can 

aid the self cleaning o f coating surfaces [7 ] and spectrally selective coatings with a high 

solar absorbance and low thermal emittance can aid energy harvesting in transpired 

solar collectors (TSCs) [8, 9].

In Europe, OCS is manufactured by steel companies who galvanise and apply an 

organic coating system to the steel in one continuous process known as coil coating. 

The resulting pre-finished OCS products are extremely robust, and hence companies 

such as Tata Steel are able to offer guarantees o f up to 40 years [10].

Steel manufacturers are always looking to produce their products at increasingly 

competitive prices. In 2006, Tata Steel Colors (then Corns Colors) installed a coil 

coating line on the end o f an existing galvanising line, Dompel Verzink Lijn 2 (DVL2) 

at their IJmuiden site in the Netherlands. In order to cure the coating coil coating lines 

have traditionally been dominated by gas fired convection ovens, but in this instance
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Tata Steel chose to install a relatively new technology, a Near Infrared (NIR) oven. 

There were three reasons for this at the time; time, energy and space savings. NIR cure 

is essentially a fast thermal cure with reports of increased energy efficiency compared to 

convection ovens [11], and a cure time of less than 3 seconds for a 15-20 pm coil top 

coat [12, 13]. This compares with ca. 30 seconds for the same thickness coating cured 

by a convection oven. The fast NIR cure time also means that NIR oven lengths are 

considerably smaller than convection oven lengths (10 m compared to 30 m).

As NIR curing was a relatively new technology with the only information 

about the cure mechanism at the time coming from the oven manufacturers, Tata 

Steel and BASF sponsored an Engineering Doctorate in 2006 to look at increasing 

the understanding of the effects of the NIR cure mechanism on the resulting coating 

properties of polyester coated steel [14]. Research by Knischka et al in 2009 

suggested that the presence of NIR absorbing pigments in the top coat may be 

beneficial for NIR cure [15], however key findings from the 2006 Engineering 

Doctorate were that for 25 pm polyester coated galvanised steel, coatings that did not 

absorb a lot of NIR radiation cured with a wider cure window, whilst coatings that 

absorbed a lot o f NIR radiation had a smaller process window and a surface prone to 

defects [14], This thesis is also sponsored by Tata Steel and BASF. The thesis aims 

to study the mechanisms involved in light absorption in NIR curing, and so to 

determine if  there is an optimum position for NIR absorbing pigments within the 

coating system. A further aim is to investigate if NIR absorbing pigments can be 

used in coatings for transpired solar collectors.
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1.1.1 The Coil Coating Process

Coil coating is a continuous roll to roll process which deposits an organic 

coating onto a substrate, frequently galvanised steel [16]. A typical coil coating line 

employing forced air convection ovens is shown in Figure 1.3.

Entry Accum ulator

►
Stitcher

Reel P reclean  $

<̂3

Pretreatm ent Oven Prime Oven

• • • • 0 ■
• • 0 Q

T ension
Leveller

Chem ical
Coater

Prime
Coater

Prime
Q uench

Flying
Shear Brander

i
T ension  Reel

Exit Accum ulator

Figure 1.3 -  A Typical Coil Coating Line

nviisM
Q uench Finish Oven

■ ©
O O

E m b osser Finishing
Coater

The first stage o f the coil coating process is alkali cleaning o f the galvanised 

steel strip followed by a water rinse to ensure that it is free from grease and particles. 

Entry and exit strip accumulators allow the line to operate continuously at high speeds, 

seven days a week and twenty four hours a day for maximum efficiency, with lines 

typically operating at speeds o f between 6 0 - 1 7 0  m/min, with coil widths o f  up to 1850 

mm and substrate thickness ranging from 0.3 -  2.0 mm.

A 1pm thick pretreatment layer, frequently chromate or phosphate, is then 

applied in the chemical coater to enhance corrosion resistance o f the substrate, and to 

modify the surface to improve compatibility between the steel substrate and organic 

coating. After application the steel strip is dried in an oven to remove water content 

from the coating. Next, a primer coat (between 5-8 pm thick) is applied to enhance 

corrosion resistance o f the coated product and to provide good adhesion between the 

pretreatment layer and top coat. Primers are based on epoxy, polyester or acrylic resins 

with the addition o f  corrosion inhibiters. The primer coating is cured in the prime oven, 

the steel strip is quenched and then moves on for top coat application. Once the top coat
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is applied, some coating products have an additional embossing stage to texture the 

surface o f the top coat. On some production lines an additional laminate film is added; 

this might be an integral part o f the coating system or as a temporary protective layer 

[17]. The steel strip is again quenched, and then re-coiled at the end o f the process. The 

typical composition o f a coil coated steel strip is shown in Figure 1.4.

O rgan ic Top C oat  

Primer 

Pre-Treatm ent Layer

G alvanised C oating  

Steel Substrate

Pre-Treatm ent Layer

O rganic Backing Coat

G alvanised  
C oating

Figure 1.4 -  Coating Layers of an Organically Coated Steel

The main categories o f top coat resins used in pre-finished steel for the 

construction market are polyester, PVC plastisol, polyurethane and polyvinylidene 

fluoride (PVDF), with top coat thicknesses ranging from 20 - 200 pm. This thesis deals 

with polyester coil coated steels, which also form the largest market share. Note that the 

top coat and backing coat are applied simultaneously to the steel strip. Backing coats are 

generally thinner (ca. 8 pm) than top coats and usually applied directly on top o f the 

pretreatment layer.

The polyester coil coated steel studied in this thesis differs from the usual 

coating layer structure shown in Figure 1.4. This is due to space constraints on the 

DVL2 line, that mean that the pretreatment layer and the primer layer have had to be 

combined and applied as a combined pretreatment primer layer. The coating layer 

structure o f polyester coil coated steel produced on the DVL2 line is hence as shown in 

Figure 1.5.
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20 pm polyester top coat 

5 pm pre-treatment primer

galvanised steel substrate (0.4 -1.2 mm)

< 0.2 pm chrome free pre-treatment 

8 pm backing coat

Figure 1.5 — Schematic of the Layer S tructure of a DVL2 Polyester Coil Coating Strip

Coil coating lines can run at line speeds in excess o f 150 m/min, so even with 

relatively long ovens the oven dwell time is approximately 30 seconds. Although capital 

costs for a coil coating line are high, transfer efficiency o f the coating to the substrate is 

high due to the reverse roller coating process illustrated schematically in Figure 1.6, and 

volatile organic compound (VOC) emissions are low due to thermal after burning and 

re-use as fuel. [18].

Coating material

Pick up roll Transfer roll

Work piece

Reverse operation

Figure 1.6 -  Schematic Illustration of Reverse Roller Coating -  reproduced from [18]
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1.2 Coil Coatings

The term coating has multiple usage; it can refer to the material (liquid, paste or 

powder) applied to a substrate, the process of application, or the dry film that has 

resulted from that application. There also exist many different ways o f classifying 

coatings such as by their service application (e.g., corrosion protection, self cleaning) or 

by their appearance (e.g., metallic effect, glossy) [19-21].

However, coil coatings are coatings that are applied as liquids and consist o f a 

mixture o f solid pigment particles and additives in a liquid vehicle. The vehicle is the 

total liquid portion of the coating, and consists o f the binder and solvents [22].

1.2.1 Binder

In order to make the transition to a finished thin dry continuous film adhering to 

the surface o f the substrate, the coating film needs to solidify by a film-forming process. 

This film-forming process requires the presence o f a film-forming agent or binder. A 

binder is a polymer resin, which also serve the purpose of binding pigments to each 

other and to the substrate [23, 24].

The resins that are most commonly used in coatings on galvanised steel 

substrates in the construction industry are polyester, polyurethane, PVDF and PVC 

plastisol [25, 26], with polyester coatings forming over 50% of the market [27]. 

Coatings can further be classified as those based on thermoplastic or thermosetting 

polymers. Thermoplastic coatings such as PVDF and PVC plastisol undergo film 

formation by physical drying by the release of solvents, and exhibit plastic properties at 

elevated temperatures. On the over hand, thermosetting coatings such as polyesters and 

polyurethanes undergo film formation by a process which includes a polymer cross- 

linking reaction. At elevated temperatures many thermosetting coatings will degrade by 

decomposition [18, 28, 29].
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1.2.2 Pigment

Pigments are solid materials o f fine particle size that are virtually insoluble in 

the coating resin. Their main purposes are to give colour and opacity to the coating, but 

they may also be added for functional reasons such as providing corrosion inhibition, 

UV protection or anti-microbial properties [30, 31].

1.2.2.1 Colourant Pigments

Colourant pigments can be sub-divided into organic and inorganic pigments, 

there being far more organic pigments than inorganic pigments. Commonly used 

organic and inorganic pigments are given in Table 1.1 and Table 1.2. As organic 

pigments range in size from 0.01 -  0.1 pm and are generally about ten times smaller than 

inorganic pigments, their smaller particle size means that they need to be effectively 

dispersed so that they end up evenly distributed within a coating.

1.2.2.2 Metallic Pigments and Effect Pigments

Other important pigments are metallic pigments and effect pigments. These 

pigments have a different morphology from most other organic and inorganic pigments, 

having a plate-like lamellar structure [21].

Metallic coil coatings account for a significant volume of coil coating sales, and 

are pigmented using aluminium flake pigments. Metallic pigments are achromatic, with 

their metallic effect caused by reflection. The metallic lustre effect of metallic coil 

coatings is decreased when the proportion of light that is scattered at the edges and 

comers o f the flakes is high. This means that larger flakes give a coating with a brighter 

more sparkling appearance. Smaller flakes on the other hand have greater opacity, a 

greyer appearance and give a coating with a smoother less sparkling finish.
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Table 1.1 - Organic Coil Coating Pigments - Adapted from [18]

Organic Pigments Colour

Azo pigments Red/Yellow

Metal complex pigments Blue/Green

Isoindolinones Y ello w/Orange/Red

Isoindolines Yellow

Anthraquinones Y ello w/Orange/Red

Quinacridones RedA/lolet

Perylenes/Perinones Red/Maroon

Dioxazines Violet

Quinophthalones Yellow

Diketopyrrolopyrrole Red

Pyrazoloquinazolone Red

10



Table 1.2 - Inorganic Coil Coating Pigments - Adapted from [18]

Inorganic Pigments Colour

Titanium Dioxide White

Carbon black Black

Iron oxide Red

Chromium oxide Green

Mixed phase oxides Yellow

Lead chromate/molybdate Bright Red/Y ellow

Bismuth vandate Yellow

Observed colour with metallic coatings is affected by viewing angle. It can be 

seen from Figure 1.7 that if a coating is viewed from an angle near normal, the path 

length of light through the coating will be short as it is soon reflected back by an 

aluminium flake. If however it is viewed from a greater angle to normal, the light that 

will be observed will have followed a greater path length in the coating film by being 

reflected backwards and forwards and will appear darker. This difference in colour 

when viewing from different angles is known as colour flop.
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Figure 1.7 -  Colour Flop in an Aluminium Flake Coating - reproduced from  [21]

The metallic effect o f coil coatings is also affected by differences in the 

aluminium flake shape, the flake size distribution, the smoothness o f the flake surface 

and the flake orientation in relation to the coil coating surface. Flake orientation in 

relation to the coil coating surface is affected by application method and solvent 

content. Aluminium flake pigments used in coil coatings are generally around 5 - 4 5  pm 

in diameter with thicknesses varying from 0 . 1 - 1  pm.

Most aluminium pigments are milled into flake-like particles by a wet milling 

process in the presence o f white spirit and a lubricating agent. Two types o f pigment 

can be produced depending on the type o f lubricant used; leafing and non-leafing 

pigments. Coil coatings employ non leafing pigments.

Leafing pigments are milled with a saturated fatty acid, typically stearic acid 

which creates a high surface tension on the pigment, and makes them resistant to 

wetting by the polymer binder. This results in the pigments rising to the surface o f the 

wet film and remaining there after drying due to interfacial tension. This is shown 

schematically in Figure 1.8.
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C o a t in g

S u b s tr a te

Figure 1.8 -  Schematic of Leafing Aluminium Pigment

Non-leafing pigments are milled with unsaturated fatty acids, typically oleic 

acid. This lubricant is strongly polar and allows the pigment to wet readily and spread 

evenly throughout the wet coating. A uniform dispersion o f pigment throughout the dry 

coating film is thus obtained, as shown schematically in Figure 1.9.

A lu m in iu m  f lakes

C o a t in g

S u b s tr a te

Figure 1.9 - Schematic of Non Leafing Aluminium Pigment

The first generation o f aluminium flake grades that were produced were 

'cornflake' pigments with irregular edges. This was followed by second generation
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flakes known as ‘silver dollar' pigments, which were thicker and smooth edged giving 

increased brightness and flop. Finally, there are physical vapour deposition (PVD) 

aluminium flakes (also known as Vacuum Metallized Pigments) which have even 

greater brightness and flop due to their thinness and mirror like surfaces. Cornflake 

morphologies are used in coil coatings. Scanning electron micrographs o f the three 

grades are shown in Figure 1.10.

Figure 1.10 -  Scanning Electron M icrographs of Aluminium Pigments; (a) Cornflake 
Type, (b) Silver Dollar Type, (c) PVD Type - reproduced from  [32]

Another category o f pigments that are used in coil coatings are effect pigments, 

also known as interference or pearlescent pigments. Theses pigments consist o f platelets 

o f substances such as natural or synthetic mica, silica, alumina or glass flake substrate, 

coated on all sides with thin layers (100 - 150 nm) o f high refractive index substances 

such as TiC>2 or Fe2C>3 [33]. The platelets are typically 5 - 1 0 0  pm in diameter and 0.3 -  

0.6 pm thick. A cross-section through a TiC>2 - mica pigment depicting the mica platelet 

and the outer TiCb layer is shown in Figure 1.11. As light impinges on the pigment, 

some light is reflected at the TiCb surface with the rest being refracted through this 

layer. The refracted light is then partially reflected at the TiC^/mica surface and will end 

up leaving the pigment parallel to the light that was reflected at the TiCb surface.

(a) (b)
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Depending on the thickness o f the metal oxide layer, its refractive index, the 

transparency o f  the substrate and the angle with which light impinges on the pigment 

surface, colour will be produced by thin film interference [34]. As the thickness o f the 

Ti0 2  layer increases on a Ti0 2  - mica pigment, the colour obtained changes from silver- 

white to yellow to red to blue to green.

0.5 |jm

Figure 1.11 -  Cross Sectional Transm ission Electron M icrograph of T i0 2-M ica Pigm ent
reproduced from [32]

1.2.3 Solvent

The main purpose o f solvents in the coating system is to dissolve the resin and to 

carry the pigments, whilst being volatile under the curing conditions for the coating. 

Solvents are also added for a variety o f other reasons; to adjust the viscosity o f the 

paint, to modify the evaporation rate or flash point o f the coating vehicle, to influence 

the gloss and texture o f the cured paint or to reduce cost. Modification o f the 

evaporation rate, for example, may help to regulate the film forming process during 

curing by keeping the coating ‘open' for longer. This will enable entrapped gaseous 

products to escape and prevent the formation o f surface blisters on the coating [18-20]. 

This can be especially helpful for NIR cure as the cure is so rapid.

Thermal oxidation o f solvents is used in the coil coating industry as a means o f 

reducing volatile organic compounds (VOC) emissions with 97% o f VOCs being 

captured and the recovered energy used to pre-heat incoming process air [27]. Solvents 

can also be added to the coating purely to adjust viscosity, and are then referred to as
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diluents. Furthermore, if these diluents are chemically incorporated into the coalescing 

coating film during curing, they are referred to as reactive diluents. Reactive diluents 

from renewable sources have been used to lower the emissions o f VOC in 

polyester/melamine coating systems [35].

Polyester coil coatings have a solvent content o f between 30 and 45%, with 

common solvents being aliphatic hydrocarbon mixtures (e.g. solvent naphtha), high 

boiling point aromatic hydrocarbons, glycol ethers or esters, and high boiling point 

esters. Mixtures of solvents are often used. Solvents can be classified as active solvents, 

latent solvents and non-solvents. An active solvent will readily dissolve a solute at room 

temperature, whilst a latent solvent although not capable of dissolving a solute by itself 

will have its solvent power activated by the addition o f a genuine solvent, or also by the 

addition of a non-solvent [18, 27].

1.2.4 Additives

Coil coatings need to be able to display a wide range of properties; for example 

they need enough flexibility to cope with fabrication without cracking or loss of 

adhesion, and to be able to withstand corrosion and degradation for 25 years or more. 

Although most of a coating formulation will consist o f the binder, solvents and 

pigments, various additives are included in the formulation so that these properties can 

be met. A coating can therefore have some 1 5 - 2 0  different components, however 

additives usually account for less than 5% of the formulation [36].

An additive can modify the physical or chemical property of a coating. 

Additives have varying volatility; some are designed to stay in the coalescing coating 

film during curing whilst others are designed to escape from it [23, 37]. A list o f the 

more common additives in coil coating systems and their effects are given in Table 1.3.
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Table 1.3 -  Coil Coating Additives

Additive Effect

Defoamer Foam (entrapped air) is introduced during the roller 

application of the coating. Act by lowering surface 

tension, causing bubbles to coalesce and burst.

Flow & leveling agent Act by reducing the surface tension of the wet coating, 

thus increasing the coating’s mobility after application 

and enabling leveling. Surface defects are hence 

minimised.

Catalyst Act by increasing the rate of the cross-linking reaction 

between the cross-linking resin and the primary resin. In 

polyester-melamine coating systems, blocked acid 

catalysts are used.

Matting (flatting) agent Act by increasing the level of micro-roughness o f a 

coating surface and hence decreasing the gloss. Both 

inorganic (silica gel) and organic (polymethyl urea 

resins) matting agents are used.

Anti sagging agent 

(rheology modifier)

Act by increasing viscosity.

Slip aid Wax that migrates to the surface during curing, coats the 

surface and improves slip characteristics. Important for 

the coil coating process as coils are rewound after coating 

and then post formed. PTFE modified polyethylene wax 

is used for coil coatings.

Wetting agent 

(dispersing agent)

Surfactants that lower surface and interfacial tension, 

hence improving dispersion of pigments and adhesion of 

the coating to the substrate.
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1.3 Curing

This thesis is concerned with polyester coil coatings used in the construction 

industry. These coatings are based on branched or linear saturated polyester resins 

which are then cross-linked. The resins are first formed by the esterification of a di- 

/polyacid and a di-/polyol; the basic condensation reaction between a diacid and a diol is 

shown in Figure 1.12. Commonly used polyols are neopentyl glycol and 

trimethylolpropane, and more recently 2-methyl-1,3-propanediol (MPDiol glycol) [38]. 

Polyacids are usually used as a mixture of an aromatic and aliphatic diacid, such as 

isophthalic acid and adipic acid [21].

x HO— C-R-C—OH +  (x+1) HO—R—OH 

diacid diol

HO-R^O—C—R-C-O—R -̂OH +  x H20
x

polyester water

Figure 1.12 -  Formation of Polyester by a Condensation Reaction

As an excess o f the diol is used in the polyester formation, the resulting 

polyester is hydroxyl terminated. It is these hydroxyl functional groups on the polymer 

backbone which form reaction sites for a cross-linking agent. The relatively low 

molecular weight polyester resin that is produced is thus able to form a very high 

molecular weight polymer with a 3D infinite network [39]. Polyester cross-linking 

agents are melamine formaldehyde resins, predominantly based on hexamethoxymethyl 

melamine (HMMM) which is shown in Figure 1.13 [40]. The resin to cross-linker ratio
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is usually between 70:30 and 90:10. The higher the melamine content, the harder and 

less flexible the resulting coating will be.

CHCH.

CH

CH

Figure 1.13 - Hexam ethoxy methyl Melamine (HMMM)

A three dimensional thermoset polymer network is hence built up, with exterior 

durability, good flexibility and good adhesion properties. The reaction is catalysed by a 

blocked acid catalyst, commonly p-toluene sulfonic acid, and methanol is produced as a 

by product [41]. The cross- linking reaction is shown diagrammatically in Figure 1.14.
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Amino Amino

C H 2OR c h 2
+ ROH

OH .CHPolyester

Polyester

Figure 1.14 -  Polyester Resin Formation by Cross-linking Reaction between Polyester and 
Amino Formaldehyde Resin -  reproduced from [39]

Curing can be defined as a process of film formation taking place; i.e. the 

conversion of a coating from its applied liquid state to a dry solid form [42]. In 

polyester coil coatings, film formation is occurring from a solution o f a cross-linking 

polymer system by a complex mechanism involving the two interdependent steps of 

solvent evaporation and cross-linking. These processes have been modelled 

mathematically; by quantifying the physical and chemical mechanisms involved, 

coating formulation and application conditions can be aided [43]. Models have shown 

that the final coating surface properties are dependent on the initial solvent content of 

the coating, the air velocity and the bulk air concentration o f solvent [44].

In the early stages o f the cure, solvent evaporation is independent of the 

presence of the polyester, with the rate of evaporation depending on the vapour pressure 

o f the coating solvents, the ratio o f the surface area to volume of the film and the rate of 

air flow. As the viscosity and glass transition temperature (Tg) o f the coating starts to 

increase, the rate o f solvent loss will start to become controlled by the rate of diffusion 

of the solvents through the film [42]. These have been described as the first and second 

stages o f solvent loss; in the first stage (vapour pressure controlled) evaporation rate has 

a first power dependence on wet film thickness. In the second phase (diffusion 

controlled) the evaporation rate depends on the inverse o f the film thickness [21].

At the same time that solvent evaporation is taking place, chemical reaction will 

start to occur between the polyester and melamine formaldehyde cross-linking agent,
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building up the molecular weight of the system. Methanol is a by-product of this 

reaction. A cross-linking reaction o f this sort can be kinetically controlled if the 

diffusion rate is greater than the reaction rate, and diffusion controlled if  the diffusion 

rate is slow compared to the kinetic reaction rate. In a polyester melamine system, the 

curing temperature is well in excess of the final Tg of the coating film. This means that 

free volume will be large and the rate of reaction will be kinetic controlled. The curing 

process is hence an extremely complex process, with the final film properties influenced 

by the viscosity time path followed by the coating during the cure.

The most common method used to cure polyester coil coatings is convection 

curing, with induction curing and near infrared (NIR) curing being more recent 

technologies.

1.3.1 Convection Curing

Forced air convection heating using gas catenary or gas flotation ovens with air 

temperatures of at least 350°C has been the conventional method o f curing coil 

coatings. This method o f curing has been favoured by coil coaters as it provides a fairly 

wide process window and predictable results for a broad range o f operating conditions 

[45].

Two important properties used in the coil coating industry to determine cure are 

the peak metal temperature (PMT) and the oven dwell time. PMT is defined as the 

temperature that a metal substrate has to reach in order to adequately cure (cross-link) 

the coating. Dwell time is defined as the time a coating spends within the oven. Typical 

polyester coil coatings have a PMT of between 216 and 232°C and take around 30 

seconds to cure for a dry film thickness (DFT) of 20 -25 pm [46].

During convection curing transfer o f heat is by convection onto the surface o f 

the coating and by conduction through the coating and metal. The solvent content o f 

polyester coil coatings are typically 30 - 45% of aliphatic hydrocarbon mixtures, high 

boiling point aromatics, glycol ethers and esters and high boiling point esters. These 

solvents are transported by diffusion through the coating to the surface of the film 

where they will start to evaporate off. As the temperature o f the strip continues to rise 

cross-linking of the polymer coating will be initiated.
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A cure time o f ca. 30 seconds is long enough for the physical process o f solvent 

evaporation and the chemical process o f cross-linking to be relatively well separated. If 

however process conditions are such that they are not well separated, a phenomenon 

known as solvent boil can occur. Here solvent evaporates by forcing its way through a 

surface film in an advanced stage o f cross-linking, resulting in crater like defects. Other 

defects known as pin-holes can occur. During the cure process, a coating needs a low 

enough viscosity to flow back and cover over holes left by escaping solvent. If the 

viscosity becomes too high, this flow back will not occur and pin-holes will be left on 

the coating surface. Solvent boil and pin-holes are shown in Figure 1.15. Note that 

solvent boil defects show a raised profile, whilst pin-holes do not.

1 mm

Solvent boil

Pin-hole

Figure 1.15 -  Polyester Coating Surface Showing Solvent Boil and Pin-hole Defects [47]
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1.3.2 NIR Curing

1.3.2.1 B ack g ro u n d  to N IR  C u rin g

Near infrared radiation lies just above the visible region and just below the 

infrared region o f the electromagnetic spectrum from 0.8 -  1.5 pm, and is highlighted in 

Figure 1.16. W hen NIR radiation is absorbed by a molecule it causes vibrational 

motions o f bonds in the molecule due to overtone and combination bands, rather than 

due to fundamental vibrations.

II 2 ym  12 ur*

Infrared

10.1 om 10 WI >0.38 nw

Figure 1.16 - Electrom agnetic Spectrum  Showing the N ear Infra  Red Region
reproduced from [48]

In the coil coating industry, gas fired convection ovens have dominated the 

curing process for years, as electrical based infrared (IR) or induction curing were seen 

to be too costly. Convection curing requires very long oven lengths to achieve the thirty 

second cure time at typical line speeds at 100 -  120 m/min. Coil coaters have long been 

concerned with the space occupied by the curing ovens, the time taken to start and stop 

the coating line, the cure time and the line speed as all these affect the profitability o f 

the coil coating process. A comparison o f the ranges in oven dwell times for different 

curing technologies is given in Figure 1.17 and shows that NIR curing offers the 

shortest dwell time.
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Figure 1.17 -  Com parison of Oven Dwell Times for 25pm Polyester Coil Coatings [49]

As well as cure time, NIR curing offers benefits in terms o f instantaneous on/off 

characteristics, short oven lengths and reduced energy operation costs [11]. NIR curing 

was developed from research by the European Space Program simulating the heat shock 

experienced by spacecraft re-entering the earth 's atmosphere, and has been used 

industrially since the late 1990's. Tata Steel took the decision to invest in NIR curing in 

2006 when expanding the capability o f an existing galvanising line (DVL2) at their 

IJmuiden site in Holland. The aim was to create an integrated galvanising -  coating line 

where space for the coating section o f  the line was limited. On a combined galvanising 

and coating line, the rate limiting step for thicker gauge substrate is the galvanising 

section o f the line with the maximum line speed being ca. 100 m/min for 1.2 mm gauge. 

For thinner gauge substrate, the coating line could become the rate limiting step, as the 

galvanising section can run at ca. 170 m/min for 0.4 mm gauge [50]. Maximising the 

speed at which curing can take place is obviously beneficial cost wise. NIR curing has 

been reported by AdPhos as allowing coating lines to run at line speeds o f up to 150 — 

180 m/min [11]. NIR curing is also in use at coil coating lines at Shree Precoated Steels 

in India and at Dongbu Steel in Korea [51, 52].

NIR is a radiative curing technique, but unlike ultra violet (UV) or electron 

beam (EB) curing it is essentially a fast thermal cure. NIR curing offers energy
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efficiency savings as heat is transferred directly into the coating by absorption o f NIR 

radiation by the coating system, including absorption at the surface of the galvanised 

coating. In contrast, in convection curing heat transfer occurs by heated currents o f air 

in the oven transferring heat at the surface o f the coating and then transfer by 

conduction through the depth of the curing coating. NIR curing hence negates the need 

to preheat an entire oven and changes in oven settings can almost instantly change 

substrate temperatures [53].

The NIR emitters in the laboratory curing ovens used in this thesis are identical 

to those on the industrial DVL2 coil coating line. All these ovens are manufactured by 

AdPhos and use broad range tungsten halogen emitters. Black body theory can be used 

to predict the spectral distribution of radiation emitted from these emitters. A black 

body is defined as an object that absorbs all radiation incident on it regardless o f 

wavelength or angle of incidence, and is also a perfect emitter of radiation. The Stefan- 

Boltzmann Law gives the total energy radiated from a black body per unit area and time 

over all wavelengths (Equation 1.1) [54].

Equation 1.1 Energy emitted = a  (T4)

where

o = Stefan-Boltzmann Constant = 5.670400 x 10 '8 W m'2 K 4 

T = absolute temperature (K)

Real materials such as the tungsten filament in a tungsten halogen emitter have a 

lower capacity to emit radiation compared to a black body. The emissivity, e of a 

material can therefore be defined as the relative ability of the material’s surface to emit 

heat by radiation compared to a blackbody at the same temperature. A black body has 

an emissivity of one, and the total energy radiated from a real material per unit area and 

time over all wavelengths can be given by Equation 1.2.

Equation 1.2 Energy emitted = en (T4)
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A black body will emit specific wavelengths of radiation as a function of 

temperature, given by Planck’s law o f black body radiation given in Equation 1.3 [54].

Equation 1.3 Me = (c/4)uek

where

Me = spectral radiant excitance per wavelength per m 

Ue). = 8jthc>;5(e hc'kT>- l ) - 1 (J in3)

T = absolute temperature (K)

X = wavelength (m)

h = Planck’s constant (6.626176 x 10'34 Js) 

c = velocity o f light (2.99792458 x 10s Ms-1) 

k = Boltzmann constant (1.380662 x 10'23 JK’1)

Cherrington modelled the emitter output from the Adphos emitters using 

Planck’s law and the colour temperature o f the emitters corrected for the ratio o f emitter 

input voltage to nominal voltage (supplied by the manufacturer Adphos). Emitter output 

was modelled at 100%, 50% and 30% emitter power settings and compared to empirical 

spectroscopic measurements o f the emitters, and is shown in Figure 1.18. This figure 

shows that the theoretical peak wavelength for the emitter is close to the measured peak 

wavelength, with the exception of the 30% power setting. The measured absolute 

irradiance at the maximum wavelength is also close to the theoretical spectral emittance 

at the peak wavelength. The majority o f the energy from the emitter is focussed 

between 800 -  1200 nm, but with some emission in the visible range as well [55].
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Figure 1.18 -  Com parison Between M easured and Modelled NIR E m itter O utputs
reproduced from [55]

Figure 1.18 shows that the NIR emitters are able to impart a very high radiation 

power density into a coating resulting in very short cure times. An energy density that is 

twice that o f an induction curing system and four to six times that o f an infrared curing 

system has been reported, with 15 -20 pm coil top coats curing in less than 3 seconds 

[12, 13].

Early reports in the literature suggested that NIR heating, as well as being used 

to cure coil coatings, could find use for heat treating metals, drying water and solvent 

based coatings, repairing micro-spot defects on car body coatings, plastic welding and 

curing powder coatings [12, 13, 52, 56]. More recently, NIR radiation has been 

suggested as a means o f reducing some o f the manufacturing steps in dye sensitised 

solar cell manufacture. Here it has been used to rapidly sinter titanium dioxide based 

photoanodes [57], reduce the processing time for silver inks used for current collection 

[58] and rapidly platinise counter electrodes [59], It has also been suggested as a means 

o f modifying the surface structure o f tinplate and galvanised coatings on steel [14] [60] 

and has been used to cure resins in restorative dentistry applications [61].
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1.3.2.2 NIR Cure Mechanism

NIR curing o f polyester coil coatings takes place as a fast thermal cure involving 

the two stages o f solvent evaporation and resin cross-linking. In convection curing the 

relatively longer oven dwell time o f 30 seconds means that these two stages can be 

easily separated. NIR curing employs a much shorter oven dwell time, so in order to 

separate the two stages and reduce the risk of solvent boil occurring, NIR ovens are 

divided into three zones with the NIR emitter power tailored to provide a cure which is 

temperature profiled with time. An example of such a cure profile using a laboratory 

NIR oven is shown in Figure 1.19. The first zone of the oven increases the temperature 

o f the steel strip to a point at which solvent evaporation begins to take place. Thermo 

gravimetric analysis (TGA) can be used to determine the temperature at which solvents 

evaporate and the percentage of solvent in the formulation. Temperature rise in zone 2 

is less rapid, which allows a lot of the solvent to evaporate. In this zone the substrate is 

being kept as long as possible at a temperature below the cross-linking initiation 

temperature, which is defined as the temperature at which the blocked acid catalyst 

unblocks. In zone 3, cross-linking occurs with polyester PMT being reached. Note that 

the small deflection in the zone 3 temperature profile can be attributed to the 

thermocouple wire used to measure the substrate temperature knocking against the wall 

of the oven. This temperature profiled cure contrasts with that used for a convection 

oven, where the temperature rises steadily to the PMT in one oven zone. A comparison 

of the two cure profiles using laboratory NIR ovens is shown in Figure 1.20. Once PMT 

has been reached the temperature needs to be decreased rapidly by a water quench 

which halts the cross-linking reaction. Quenching of the cross-linking reaction is 

required as an over cured coating can suffer from loss of gloss or flexibility.
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Figure 1.19 -  Typical NIR T em perature C ure Profile for a 25pm Polyester Coil Coating
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Figure 1.20 -  Com parison of Typical NIR & Convection Cure Profiles for 25 pm Polyester
Coil Coatings

A successfully cured coating is defined by its cure window, this being the range 

of temperature conditions over which the paint will cure and still meet its final 

performance criteria such as gloss, flexibility and weatherability. Coil coatings are
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coated onto both the front side and the back side o f the steel strip, with the backing coat 

having a smaller dry film thickness (dft) than the top coat. As the same oven conditions 

are curing both coatings, more industrial processing flexibility is available if this cure 

window is as wide as possible.

Coatings that have not reached a high enough temperature to ensure a sufficient 

enough amount of cross-linking has occurred will be soft. The lower cure window for a 

paint formulation is related to its resistance to solvents, and is commonly determined in 

the coil coating industry by the temperature above which a paint formulation passes the 

MEK rub test [62]. (See Section 1.4.2.1). The upper cure window can be defined as the 

temperature at which the onset of solvent boil first occurs. Polyester cure can also be 

determined by peak ratio measurement with Fourier transform infrared (FTIR) 

spectroscopy [63].

O f particular importance to NIR cure are the optical properties of the surface of 

the galvanising alloy immediately below the coating layers [53]. Although these alloys 

are highly reflective across the UV-visible-NIR region, it can be seen from the total 

reflectance spectra in Figure 1.21 that they show a peak at ca. 1000 nm associated with 

absorption by zinc. This peak is particularly pronounced for hot dip galvanised steel 

(HDG) and MagiZinc, the most commonly used substrates on Tata Steel’s NIR line. As 

this peak is in the region of Xmax for the output from the NIR emitters, coatings with a 

high transparency to NIR could allow a proportion of NIR through the coating to allow 

substrate absorption to play a role in curing the top coat.

White, black and silver polyester coatings can be used to illustrate different 

scenarios o f absorption, reflection and transmission of light occurring in a coating 

system, and how this affects cure. White polyester coil coatings get their colour from 

the TiC>2 pigment in their formulation. The reflectance spectra o f polyester coatings 

coated over HDG in Figure 1.22 show that for the white coating, the presence o f TiC>2 

pigment means that the white coating reflects visible light well, but has more 

transparency in the NIR region. An absorption peak at ca. 1000 nm is also apparent, 

matching the zinc absorption peak in the HDG spectrum in Figure 1.21. This suggests 

the white coating has a degree o f transparency in the NIR region, and this is confirmed 

by the Vis/NIR transmission spectrum of the white coating shown in Figure 1.23.
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Figure 1.21 -  UV-Vis-NIR Reflectance Spectra of M etallic Substrates

reproduced from [53]
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Figure 1.22 - UV-Vis-NIR Reflectance Spectra of W hite, Silver & Black Polyesters
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Figure 1.23 -  Vis-NIR Transm ission through Free Standing Films of W hite, Silver &
Black Polyesters

Black polyester coil coatings for exterior architectural applications are usually 

pigmented with carbon black pigment. As expected, the reflectance spectrum o f the 

black coating in Figure 1.22 shows that there is strong absorption across all wavelengths 

with very little reflection o f light. The transmission through a black coating in Figure 

1.23 indicates that the entire light incident on the coating is absorbed in the coating 

itself.

Silver polyester coil coatings get their silver metallic appearance from 

aluminium flake. Here, the coating reflects ca. 50% of UV-Vis-NIR incident on it, with 

Figure 1.22 showing the absorption peak at ca. 800 nm characteristic o f the aluminium 

flake. No absorption peak is seen at ca. 1000 nm, which suggests NIR radiation is not 

penetrating through to the substrate. The transmission spectrum for a silver coating in 

Figure 1.23 confirms that this is the case; silver coatings absorb all o f the 50% o f light 

that is not reflected at the surface o f the coating.

These spectroscopic observations suggest that while white coatings will make 

use o f substrate heating, in black and silver coatings heat transfer will start in the 

coating itself. Laboratory curing trials have shown that white coatings cure easily with a
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wide cure window, whilst black and silver coatings are difficult to cure with a small 

cure window and are prone to solvent boil [53].

This difference in curing ability can be illustrated by considering how NIR is 

reflected, absorbed or transmitted in the coating system, and this is shown schematically 

in Figure 1.24. In case A, there is some penetration o f the coating by radiation then 

absorption within the coating, whilst in case A ’ the penetration depth is greater before 

absorption. Case B shows penetration o f radiation through the coating to the substrate 

surface and absorption there. Case C denotes reflection o f radiation from the substrate 

surface and then absorption within the coating. In case D, radiation is reflected from the 

substrate surface but it is not absorbed as it makes its way back through the coating. 

Case E shows reflection o f radiation at the coating surface. In reality all these 

mechanisms will also be present at other layers in the coating system such as at the 

pretreatment-primer layer, but for simplicity in these Figures only interactions with the 

top coat are considered. Coatings such as white polyesters which cure easily with a wide 

cure window make use o f all o f these mechanisms. The presence o f mechanism B 

means that the coating is receiving heating from the bottom layer o f  the coating 

upwards, allowing solvent to more easily escape and minimising the chance o f solvent 

boil occurring.

A A* B C I) fc

W hi t e  c o a t i n g

Figure 1.24 -  Different Ways that NIR can In teract with a Coating System and its
Substrate

reproduced  from  [53]
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1 B l a c k  c o a t i n ' '

Substrate

Figure 1.25 -  NIR Interacting with a Highly Absorbing Coating

reproduced  fro m  [53]

The significant mechanisms at play in a darker more highly absorbing coating 

such as black polyester are shown in Figure 1.25. Here, most o f the NIR absorption 

occurs in the top coat. Absorption at greater depth in the coating (case A ’) and reflection 

from the surface o f the coating (case E) will become questionable if the pigment loading 

is high enough. All absorption will then occur in the outer few microns o f the coating. 

This means that solvent will have to force its way through the top few microns o f 

coating where cross-linking is already advanced, predisposing the coating to solvent 

boil.

In summary, the presence o f top coat NIR absorbers have been suggested as 

beneficial for some coating systems [15]. However, architectural polyester coil 

coatings on galvanised steel substrates have coating thicknesses and compositions that 

mean NIR cure is facilitated by a top coat largely transparent to NIR, but with a NIR 

absorbing substrate.



1.3.3 Other Fast Curing Techniques

1.3.3.1 Induction Curing

In induction heating, an alternating current is passed through an electromagnetic 

coil which is mounted around a coated coil substrate. This is accompanied by an intense 

and rapidly changing magnetic field in the space within the electromagnetic coil, which 

induces eddy currents in the coil substrate and leads to Joule effect heating from 

resistance. Heating rates o f hundreds of degrees per second can be reached, with heating 

commencing from the metal strip [64]. This means that induction curing produces a 

medium power density as opposed to the low power density of convection cure, but the 

power density is still half that o f NIR cure. Typical oven lengths for induction curing 

are hence 2.5 m compared to an NIR oven length of 1.5 m [11].

1.3.3.2 UV Curing & Electron Beam Curing

UV curing and electron beam are both forms of radiation curing techniques 

which have become well established in the wood coating, printed circuit board and 

printing ink industries for acrylate and epoxy resins, with UV curing being by far the 

most popular o f the two systems. They are, however, relatively new or emerging 

technologies in the coil coating industry and there has been considerable development 

effort by coil coaters and coating producers to develop these techniques [65]. The 

techniques are used to cure coating formulations that are liquid (containing polymer 

resin and reactive diluents) but with very little or no solvent content. This enables 

curing to be very fast, generally at near ambient temperature leading to the technologies 

being known as ‘cold’ curing techniques.

The main types o f emitters used in UV curing are mercury arc lamps, microwave 

excited bulbs and excimer lamps, with the UV radiation being transmitted through air or 

nitrogen directly onto the coating.
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Figure 1.26 -  Unimolecular free radical UV Curing

UV curing requires the presence of a photo initiator which forms an excited state 

by the absorption o f an UV photon. Two types of polymerisation reaction are possible 

with UV curing; either free radical or cation initiated chain growth polymerisation. With 

free radical initiated UV curing, there are two types o f photo initiator reaction. The first 

uses a unimolecular photo initiator whose excited state cleaves homolytically to form 

free radicals that initiate polymerisation. An example of this kind o f photo initiator are 

benzoin ethers which are shown in Figure 1.26 [21].

The second type is a bimolecular photo initiated reaction. Here an excited state 

photo initiator abstracts hydrogen from a hydrogen donor to yield free radicals that 

initiate polymerisation. An example o f this type of reaction is the use o f benzophenones 

as a hydrogen abstracter with tertiary amines as the hydrogen donor, and is shown in 

Figure 1.27 [23]. Free radicals produced in this manner are used to polymerise acrylate 

resins (polyester acrylates, epoxy acrylates, urethane acrylates and polyether acrylates).
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Figure 1.27 -  Bimolecular Photo Initiated UV Curing reproducedfrom [23]

Photo initiators for cation initiated UV curing are typically onium salts o f very 

strong acids which form protons by the type o f reaction shown in Figure 1.28. The 

presence of protons then promotes the ring opening polymerisation of epoxy resins [66].

hx>
Ar3S+ ► Ar2S+ + Ar • --------------------------  Ar2S + Ar-R + H+

+ R-H (e.g.binder)

Figure 1.28 -  Cationic UV Curing by a Sulphonium Photo-initiator - reproduced from [23]

Electron beam curing does not need a photo initiator, but involves direct 

interaction of high energy electrons (150 -  300keV) emitted from a hot cathode tube 

with the polymer resin, to form ionised molecules and radicals or radical ions thus
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enabling the start o f radical polymerisation. Other advantages over UV curing are that 

pigments do not interfere with the curing and curing is much faster, but capital cost of 

the equipment is higher, x-ray emission occurs with its associated shielding needs and 

an inert atmosphere is always required.

1.3.3.3 Infrared Curing

Infrared curing works with the same physical principles as near infrared curing; 

the energy of radiation in this range o f the electromagnetic spectrum is less than the 

bond dissociation energy of almost all chemical bonds, but is capable of making them 

vibrate which manifests itself as heat. Medium range infrared radiation with a maximum 

wavelength o f 3.5 -  2.5 pm produces a medium energy density cure. CH, OH and NH 

functional groups in the polymer resin will absorb radiation in this wavelength range, so 

that most radiation is absorbed at the surface of the coating and this limits the 

penetration depth of the radiation. This surface absorption means that if  curing is too 

rapid there is a risk of escaping solvent becoming entrapped under a surface skin of 

cured coating, leading to surface defects in the coating. An infrared cure typically takes 

about 15 seconds for a coil coating, so is shorter than a convection cure but longer than 

a NIR cure.
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1.4 Characterisation of Coatings

1.4.1 Analytical Techniques

A range o f analytical techniques have been used to explore the topography and 

morphology o f coatings.

Small quantities o f aliphatic or partly fluorinated wax lubricants are commonly 

added to coil coatings to improve coil frictional behavior. Fischer et al used confocal 

Raman spectroscopy, optical light and Atomic Force microscopy (AFM) to investigate 

the effect o f peak metal temperature and pigmentation on the morphology of polyester 

coatings modified with wax lubricant [67, 68].

Hexamethoxymethyl melamine (HMMM) is the cross-linking agent most 

commonly used in polyester coil coatings. During curing this cross-linking agent can 

self condense leading to regions of high cross-linking density within the coating, in a 

process known as melamine enrichment. This can modify the formability, stain 

resistance and weatherability of the coating, so it is therefore of great importance to coil 

coaters that this phenomenon is investigated. Zhang et al used confocal Raman 

spectroscopy to study the distribution o f HMMM on the coating surface. Depth 

profiling showed that the melamine enrichment occurred not only at the surface but also 

through the depth of the coating and was not affected by the presence of pigment in the 

coating. Furthermore, the melamine enriched areas were also harder indicating that they 

had been formed by a self condensation reaction [69, 70].

Step-scan photoacoustic Fourier Transform Infrared spectroscopy (SSPA-FTIR) 

along with X-ray photoelectron spectroscopy (XPS), AFM, scanning electron 

microscopy (SEM) and colour and gloss changes have been used to investigate the 

surface and bulk changes in polyester melamine coil coatings. In particular the effect of 

pigment on degradation has been investigated. Pigments were shown to have a large 

effect on the appearance o f the coating surface, with larger pigment particles and higher 

pigment loadings roughening the coating surface. Pigments affect the coating surface 

degradation; coatings with higher titanium dioxide content became more uneven at the 

surface after degradation due to the photo-activity of the titanium dioxide. [63, 71].

Step-scan phase modulation photoacoustic (SS-PM-PA) FTIR has also been 

used to look at the depth distribution of TiC>2 pigment within polyurethane coil coatings,
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and verified by SEM cross-section imaging. Ti02 pigment is shown to be 

heterogeneously distributed within the top coat, with the depth profile varying with 

increasing Ti02 pigment content [72],

X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) are both surface analysis techniques that can be used to study 

the depth profile and the distribution o f minor components within a coating and give 

information to help understand the processes occurring during application, curing and 

use o f the coating. For example, XPS and ToF-SIMS have been used to investigate the 

segregation o f siloxane based levelling agents in multilayer organic coating systems. 

Coil coatings are formulated with small quantities o f additives to improve coating 

properties with some o f these additives being added with the intention o f them 

migrating to the coating surface; one such of these is a levelling agent. XPS and ToF- 

SIMS analysis o f the surfaces o f the coating components suggested that levelling agent 

had migrated from the primer surface, dissolved into the bulk of the top coat, then 

migrated through such that it was observed at the air/top coat surface. As depth o f 

analysis with XPS is only about 5-8 nm, further information about the coating depth 

composition can be gained from XPS line scan along an ultra low angle microtomy 

(ULAM) taper o f the coating system. The ULAM technique investigates compositional 

depth profile or ‘buried’ interface surfaces by fabricating an ultra-low angle taper 

through a multilayer coating system using a microtome knife. In this case, the silicon 

concentration profile through the depth o f the top coat suggested that the levelling agent 

had migrated into the top coat during curing and prior to coating gelation [36, 73, 74].

ToF-SIMS with a bismuth cluster ion and a C6o sputter/etch source has been 

used to depth profile a poly(vinylidene difluoride) (PVdF) /poly(methyl methacrylate) 

(PMMA) coil coating. This showed that the topcoat was comprised o f three distinct 

layers; a thin outer surface layer o f flow agent, an acrylic rich sub-surface layer and a 

bulk topcoat underneath [75]. ToF-SIMS has also been used to depth profile a range of 

other minor coating components; a PVdF coating cross-linked with HMMM was found 

to have the greatest concentration o f the cross-linker at the surface of the coating [76]. 

Moreover, different cross-linkers have different abilities to segregate at the surface; 

HMMM is more concentrated on the surface o f a coating than a tris-isocyanurate 

cross-linker [77]. A titanium dioxide pigmented polyester coating was found to have the 

lowest concentration of TiC>2 at the coating surface, with the TiC>2 concentration 

increasing with coating depth until a stable concentration was reached in the coating
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bulk. The C6o etch source used was assumed to have removed the silica/alumina 

coating shell from the TiC>2 particles [76]. A polyurethane coating with a Cl/ Cl 

tagged acrylic based flow agent was shown to have a high surface concentration of flow 

agent and a depletion layer immediately below this [76].

Thermal analysis and spectroscopy techniques have been used to understand 

cure reactions. Polymeric coating materials undergo a dramatic change in their 

viscoelastic properties such as storage modulus, E', loss modulus, E" and loss factor, tan 

8 during cure; the change in these with oven baking temperature can be used to monitor 

cure. Frey et al hence used dynamic mechanical analysis (DMA) to monitor the cure o f 

OH functional polyacrylate thermosetting automotive clear coats. Already cured free 

films o f coatings were characterised using tensile mode dynamic mechanical analysis, 

and uncured liquid coating samples by impregnating them onto a glass fibre braid 

carrier which had an inherent small temperature dependant moduli effect [78]. 

Korhonen et al used DMA and differential scanning calorimetry (DSC) to investigate 

the cure o f polyester melamine coil coatings with different ratios of polyester resin to 

curing agent. Cured free standing coating films, liquid paint and cured coating on 

substrate were investigated, and a correlation between PMT and glass transition 

temperature (Tg) was made [79, 80]. Buder-Stroisznigg et al used DMA to investigate 

clear polyester coil coatings cross-linked with isocyanate based cross-linking agents, 

and found that similar thermomechanical and mechanical properties were obtained for 

coatings cured at industrial processing conditions and those cured at a much longer, 

lower oven baking temperature [81].

The effect o f cure rate on mechanical properties of other thermosetting resins 

such as UV curable dimethacrylate dental resins has also been studied by Lovell et al 

using DMA and near IR spectroscopy. This showed that the glass transition 

temperature (Tg) and storage modulus (E') were not affected by cure rate (varied by 

changing UV light intensity and cure temperature), but were strongly dependant on the 

final methacrylate double bond conversion. This was attributed to the high cross-linking 

density o f the polymer resin [82].

Fourier transform infrared (FTIR) spectroscopy has been used to study cure 

reactions by monitoring the consumption o f monomer with the decrease in a monomer 

functional group characteristic peak, relative to a reference peak as cure progresses. For 

example, de la Caba et al studied the cure reaction of an unsaturated polyester resin 

containing styrene, following the consumption of polyester C=C and styrene C=C bonds
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with a C =0 peak as an internal reference [83], whilst Grunden et al studied a similar 

resin system using fluorescence spectroscopy [84].

Escola et al studied the cure reaction of epoxy/amine and epoxy/amide coatings 

by near infrared (NIR) spectroscopy. The epoxy resin chain has oxirane rings at its ends, 

and the decrease in the intensity o f a NIR band from the oxirane ring was measured 

against the band from a phenyl ring which was taken as an internal reference [85].

Barista et al studied the degradation of clear polyester melamine coatings with 

different resin structures using a FTIR spectroscopy photo-oxidation index. The photo­

oxidation index was calculated by measuring the disappearance o f the CHn band and the 

appearance o f OH and NH bands during an accelerated weathering cycle, and was found 

to be consistent with gloss and optical microscopy results [86].

1.4.2 Physical Tests of Coatings

A huge variety o f quality control tests are available for use in the coatings 

industry to assess the performance of the product, including tests for impact resistance, 

viscosity, cure, gloss and colour, hardness, scratch resistance, boiling water resistance, 

flexibility and adhesion.

It is beyond the scope o f this thesis to give details o f all these tests; however 

some in common use in coil coating applications are described below.

1.4.2.1 MEK Rub Test

The MEK rub test is the most used method of determining the degree o f cure of 

a coating film in the coil coating industry. The test is based on the fact that as a coating 

becomes more cross-linked, its solubility in solvents decreases. The resistance of a 

coating film to the solvent methyl ethyl ketone (MEK) is determined by rubbing the 

cured surface of the coating with a cloth soaked with MEK until failure or breakthrough 

o f the film occurs [62]. The rubs are counted as a double rub (one rub forward and one 

rub backward constitutes a double rub). A double rub result o f 50 for a polyester coil 

coating is commonly taken as the minimum indication of adequate cure.
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The MEK rub test is used widely in the coil coating industry because it provides 

a quick relative estimation o f degree of cure and is the only method that has proved 

suitable for production conditions. It is however quite a subjective test, as it relies on 

constant force and speed being maintained by the operator. For this reason MEK rub 

test machines are available in an attempt to eliminate operator inconsistency. A ‘false 

negative’ result can also be obtained if the coating being tested has poor adhesion to the 

primer below; a low number o f double rubs may be reported but this could be due to 

poor adhesion and not lack o f cross-linking. Results should also be recorded from the 

middle of the rub area and not from the beginning or end as higher levels of force will 

be exerted here.

1.4.2.2 Viscosity

Viscosity is a measure o f the resistance of a fluid to deform under shear stress, 

and is commonly perceived as thickness, or resistance to pouring. It is the parameter 

that provides the best indication of the behaviour of a liquid coating with regard to its 

application to a substrate.

Viscosity can be measured with a flow cup, a simple gravity device that mea­

sures the timed flow of a known volume of coating passing through an orifice located at 

the bottom of a shaped cup. As viscosity is temperature dependant, the temperature of 

the test conditions needs to be specified. Typical coating systems measured by this 

method are polyesters, polyurethanes and PVdFs. Zahn and Ford 4 are common makes 

of viscosity cups.

Another method is a Brookfield rotational viscometer, which employs a spindle 

submersed in the coating, rotating at a constant speed and measures viscosity by sensing 

the torque required to rotate the spindle. The torque is proportional to the viscous drag 

on the spindle, thus the sample’s viscosity. Coatings with a higher viscosity such as 

PVC plastisol are measured by this technique.
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1.4.2.3 Colour

The CIE L*a*b* colour scale was introduced in 1976 to replace the CIE XYZ 

colour system, and provides a standard approximately uniform colour scale to enable 

colour values to be easily compared. It is used extensively in many industries including 

the coatings industry. CIE L*a*b* colour space is shown in Figure 1.29 and is 

organised in cube form with the L* axis running from 100 representing a perfect 

reflecting diffuser, to zero which represents black. The a* and b* axes have no specific 

numerical limits, with positive a* representing red, negative a* representing green, 

positive b* representing yellow and negative b* representing blue [87]. Colour can be 

measured by a colorimeter or a spectrophotometer.

W h ite  L* = 1 0 0

G ree n  - a

Blue - b

Black L* = 0

Figure 1.29 -  CIE L*a*b* C olour Space

1.4.2.4 Gloss

Gloss is an optical property o f a surface, a measure o f a surface’s specular 

reflection o f incident light at a specified incident angle based on refractive index. It is 

measured by a gloss meter with a polished black glass sample with a refractive index o f  

1.567 being used as a standard and assigned a gloss o f  100 at all incident angles [88]. 

The angle at which gloss can be measured is usually taken at 20°, 60° or 85° to the
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normal o f the surface o f the coating. Smooth surfaces will reflect a high proportion of 

light falling on them and will have a high gloss value. Coating degradation can cause 

coating surfaces to pit, crack and roughen leading to a reduction in gloss which can be 

used to track degradation [25].

1.4.2.5 Flexibility  an d  A dhesion

Organically coated steels are subjected to stresses on fabrication into products 

by roll forming, brake bending and other deformation processes. These stresses can 

exceed the flexibility or adhesive strength o f the coating and result in the coating 

fracturing and exposing the substrate, or in loss o f adhesion to the substrate. It is 

therefore important to have a means o f  evaluating the ability o f a coating system to 

withstand the stresses o f fabrication.

The T-Bend test is commonly used in the coil coating industry to assess the 

flexibility o f a coating. Organically coated metal is bent back on itself at 180° as in 

Figure 1.30, and the bend is assessed for cracking. If no cracks are formed at this point, 

the result is recorded as 0T. If the coat has opened up, the metal continues to be folded 

around itself, forming a less severe bend, the result this time for no cracking being IT. 

The process is continued until the failure point is found.

Figure 1.30 -  T Bend Test - reproduced from [28]
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The cross hatch adhesion test is another common empirical test. A multi-cutter 

device is used to make a band o f several parallel notches into the coating down to the 

substrate. Another band o f cuts is then made at right angles, resulting in a grid o f 

squares as shown in Figure 1.31. A strip o f pressure sensitive adhesive tape is pressed 

over the cross hatched areas, and the adhesion assessed qualitatively by noting on an 

index scale o f 0 to 4 how much coating is removed from the incisions.

Figure 1.31 - Cross Hatch Cuts M ade for the Cross Hatch Adhesion Test
reproduced from [18]

A reverse impact test can be used to measure the resistance o f a coat to cracking. 

In this test an organic coating is applied to a panel and cured, then a standard weight is 

dropped a distance to strike an indenter that deforms the coating and the substrate from 

its backside. Films generally fail by cracking, which is made more visible by the use o f 

a magnifier or by a tape-pull test to determine the amount o f coating removed.

Another adhesion test has been proposed by Van Ooij; the emersion o f coated 

substrate in N-methyl pyrrolidone (NMP) which causes polymeric coatings to swell 

without dissolution and hence the coating film delaminates. Time taken to delaminate 

can be measured and is reproducible for a given coating system, and can be used to 

study interfacial changes [89].

1.5 Transpired Solar Collectors

There is currently considerable concern about climate change caused by 

greenhouse gas emissions, and this has driven the need for sustainable construction with 

better energy performing buildings that will meet current environmental, political,
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financial and architectural needs. The sun is a large source o f potential energy; it is 

estimated 30 minutes o f solar irradiation reaching the earth 's surface is equivalent to the 

w orld's energy demand for one year [90]. Organically coated steel buildings can 

harness this energy by functionalising the building envelope by the use o f renewable 

energy generating coatings enabling the building envelope to produce and export energy 

and thus cut CO2 emissions. This leads to the idea o f ‘buildings as power stations’ [91].

A transpired solar collector (TSC), sometimes also referred to in the literature as 

an unglazed transpired collector (UTC) is a solar air heating system which harnesses the 

power o f the sun to provide solar thermal energy. Collectors o f this type have been 

used for building ventilation air heating and more recently for crop drying [92, 93]. 

TSCs used for building ventilation air have the further advantage o f capturing night 

time heat loss through the walls o f the building to the atmosphere. During the day, air 

exiting the TSC will be cooler than indoor air temperature but greater than ambient; the 

TSC air will therefore have the effect o f de-stratifying building air and reducing heat 

loss through the ceiling. An example o f  a building with a transpired solar collector 

fagade is given in Figure 1.32.

Figure 1.32 -  Fire and Emergency Services Training Institu te at Toronto Pearson 
International A irport, incorporating a T ranspired  Solar Collector Facade

Image Copyright Conserval Engineering Inc. This work is licensed under the Creative 
Commons Attrihution-Share Alike 3.0 Unported Licence.
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A schematic o f the typical operation o f a TSC is shown in Figure 1.33. A TSC 

consists o f an additional skin o f organically coated profiled strip steel installed ideally 

on the southerly facing elevation o f a building envelope, the strip steel being uniformly 

covered across its entire face with thousands o f tiny perforations, which are 1-2 mm in 

diameter. The void fraction, that is the amount o f  collector surface area in holes, is 

typically about 2%. Collectors can be fitted on as new build or can be retro-fitted.

Solar energy striking the surface o f the collector is absorbed and heats the 

thermal boundary layer o f air immediately in front o f it. This heated layer o f boundary 

air is then drawn by a ventilation fan through the perforations and into a 10 - 15 cm 

sealed cavity (plenum) between the collector and the original building elevation. From 

there it can be fed directly into the building as heated ventilation air, ducted to 

supplement the building's heating system or used to dry crops.

Side-Mounted HVAC System
bypass

Outside air is heated 
passing through barrier 

<— Air gap
Heat loss through 
wall brought back 
by incoming air

Air space under 
negative pressure

— Air space

£  — SolarWall extenor
y  Profiled sheet provides 

wind boundry layer

Figure 1.33 -  Schematic of T ranspired  Solar Collector O peration

Image Copyright Conserval Engineering Inc. This work is licensed under the Creative 
Commons Attribution-Share Alike 3.0 Unported Licence.

Transpired solar collectors act as effective solar radiation-to-air heat exchangers 

where the overall heat balance can be modeled by considering convective and radiative 

heat losses [92, 94, 95]. High efficiencies (60-75%) can be reached, where efficiency is 

considered the ratio o f the useful heat delivered by the solar collector to the total solar 

energy input on the collector surface [96]. The perforations in the collector increase the
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convective heat transfer coefficient between the absorber surface and the air stream 

flowing through the collector. The continual drawing o f air through the system by the 

ventilation fan means that the heated layer o f boundary air is captured, and the 

convective heat loss to wind is therefore small [92].

1.6 Introduction to Solar Radiation

1.6.1 Terrestrial Solar Radiation

Solar radiation that reaches the ground is known as terrestrial solar radiation, 

comprising o f 5% UV radiation, 45% visible radiation and 50% near infrared radiation 

as shown in Figure 1.34. Terrestrial solar radiation varies in wavelength from 280 to 

4000 nm, with the majority being below 2500 nm.
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Figure 1.34 - T errestria l Solar Radiation

1.6.2 Interaction of Light with Matter

When solar energy strikes a surface, one or more o f the following can occur: 

reflection, absorption or transmission. Reflectance can be specular or diffuse (surface
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scattered). Glossy surfaces have a large amount of specular reflectance, where the light 

is reflected at an angle opposite that of the incident angle. Matt surfaces have a large 

amount of diffuse reflectance, where incident light is reflected at varying angles from 

the surface [97].

Absorption of UV solar energy will promote some molecules within the coating 

to an excited state which leads to the production o f free radicals and hence the 

breakdown o f polymeric structures within the coating [25]. A coating should therefore 

be as transparent and reflecting to UV radiation as possible.

Visible light is absorbed by chromophores present in pigments in the coating, 

hence producing colour by reflected light, as chromophores will exhibit selective 

absorption in the visible region.

Near infrared solar energy will stimulate increased molecular vibrations or heat, 

this energy being partially re-emitted in the longer wavelength thermal infrared region.

1.6.3 Total Solar Reflectance

The amount of incident terrestrial solar energy reflected from a surface can be 

expressed as the total solar reflectance (TSR), given by Equation 1.4.

Equation 1.4 %TSR= J  I  a  A .

where

R = percent reflectance

I = solar irradiance

dA, = the wavelength interval of integration

Total solar reflectance is expressed as a percentage, with titanium dioxide white 

pigmented coatings typically having a total solar reflectance o f 75% or greater, whilst 

black coatings based on carbon black pigmentation will have a total solar reflectance as 

low as 3.5%.
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1 .6 .4 Solar Reflectance Index

A composite index that is able to numerically express a coating’s overall ability 

to reject or retain heat is the Solar Reflectance Index (SRI), given by ASTM E l980-01 

and expressed as Equation 1.5 [98].

Equation 1.5 SRI = 123.97 -  141.35* + 9.655*2

where

X = ((a -  0.029s)(8.797 +hc))/(9.5205 e +hc) 

a  = solar absorbance (1 -  TSR) 

s = thermal emittance
7  ihe = convective coefficient, Wm' K"

A standard white coating (TSR=0.80, emittance=0.90) is assigned a SRI of 100, 

whilst a standard black coating (TSR=0.05, emittance=0.90) a SRI of zero. A high SRI 

value denotes a surface which is able to reject heat, and the index is often used to rate 

‘cool roo f products which require a high TSR and a high thermal emittance [99, 100].

1.7 Conclusions and Aims

Carbon black pigment in the top coat reduces the process window size, so in 

Chapter 3 o f this thesis UV-Vis-NIR spectroscopy and laboratory based cure trials were 

used to investigate whether moving the top coat carbon black pigment to the primer 

layer improves the NIR cure.

This led to an appreciation o f the importance of locus o f NIR absorbers in NIR 

cure. Carbon black pigmented primers can be used to reduce the power needed to NIR 

cure a top coat [46]. Chapter 4 investigates whether these power savings are also 

evident when a convection oven is used in a similar manner to cure a top coat. The 

effect o f adding carbon black so close to the substrate surface could also provide sites 

for oxygen reduction, so the Scanning Kelvin Probe technique was used to assess the 

effect o f carbon black additions on the corrosion performance of the coating system 

[46].
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Locus of NIR absorbers was explored further in Chapter 5 by using UV-Vis- 

NIR spectroscopy to assess how top coat cure was affected by addition o f NIR 

absorbers to the backing coat of the coating system.

Silver coloured coatings form an important part o f the architectural OCS market, 

but like darker coloured coatings, have a very small NIR cure window. These coatings 

are pigmented with aluminium flake, so alternative pigments to aluminium flake were 

explored as a way o f widening the process window.

Finally, another OCS product manufactured by Tata Steel, the transpired solar 

collector (TSC), was investigated. Here, the aim is for the organic coating surface to 

absorb sunlight radiation striking it. The outdoor performance of a TSC in UK weather 

conditions and the effect of additions of NIR absorbers to the TSC coating were 

investigated.
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2.1 Coated Sample Preparation

Polyester coatings were prepared for use in curing trials and spectroscopic 

studies at BASF laboratory facilities in Deeside. Formulations were supplied by BASF, 

and were based on near commercial formulations suitable for fast curing applications.

The polyester coatings were produced by the method used at the BASF 

laboratory, the pigment paste and converter method rather than by the two stage milling 

and let down method. Both methods are described in the next section.

Additionally, model Poly Vinyl Chloride (PVC) coatings were prepared. These 

coatings were simple air drying formulations consisting of only PVC resin and pigment, 

using tetrahydrofuran (THF) as a solvent. These formulations were used to produce free 

standing coating films that could be quickly used to assess the effect o f individual 

pigments by spectroscopic analysis.

2.1.1 Polyester Coating Formulation

2.1.1.1 Mill Base and Let Down Method

Firstly a mill base is produced, consisting of the pigments, some of the additives 

and a proportion of the resin and solvents. Ceramic mill beads are added to this mixture, 

which is then placed in a paint shaker to break up pigment particles agglomerations. A 

Fineness o f Grind (Hegman) gauge is used to check pigment agglomerations have 

broken down to below 15 pm. A Hegman gauge, shown in Figure 2.1, consists of a 

piece of steel with a wedge machined in it, with the varying depth of the wedge marked 

by the side o f the wedge. A pool o f coating is placed at the deepest end of the machined 

wedge and a steel blade is used to draw the coating down the length of the wedge 

towards the shallowest part o f the wedge. The point at which the coating displays a 

streaky, grainy appearance marks the point o f the coarsest ground pigment particles in 

the coating.

The mill beads are then removed by sieving and the remaining resin, solvent and 

additives are added in a process known as the let down. The formulation is mixed by 

further shaking and the viscosity and gloss are checked as described in Section 1.4.2.2 

and Section 1.4.2.4.
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Figure 2.1 -  Hegman Gauge

2.1.1.2 P igm ent Paste  and  C o n v erte r M ethod

The polyester coating formulations were supplied by BASF and produced using 

their laboratory facilities at Deeside. The coatings were based on a saturated polyester 

resin cross-linked with hexamethoxymethyl melamine (HMMM). Apart from the 

polymer resin, the coatings contained the standard constituents o f any polymeric coating 

system; pigment, catalyst, solvent and small quantities o f additives designed to improve 

the rheological and surface properties o f the coating.

Pigment was added to the formulation as pigment pastes, consisting o f ready 

milled pigments dispersed in solvent. The percentage by weight pigment content o f each 

pigment paste is shown in Table 2.1. The Kronos 2310 and Carbon Black FW200 

pigment pastes also contained Disperbyk 170, a wetting and dispersing additive.

Gloss converter and matt converter containing the resin, the cross-linker, some 

solvent, catalyst and all the additives were shaken with the appropriate amounts o f 

pigment pastes in a Skandex paint shaker. Solvent was added until the viscosity 

specification o f 65-70 seconds to empty a DINN 4 flow cup at 21°C was met, as 

described in Section 1.4.2.2. Gloss specification was 25 - 40% at an incident angle o f 

60° and was measured with an Erichsen gloss meter as described in Section 1.4.2.4.
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Further matting agent or additional solvent were then added to ensure that both gloss 

and viscosity specifications were met.

Formulation guidelines for the coatings are shown in Table 2.2.

Table 2.1 - Pigment Pastes used in Polyester Coating Formulations

Pigment
code

Pigment
name

Colour Chemical type Pigment 
(wt %)

Disperbyk 170 
(wt %)

M031 Kronos 2310 White Titanium

Dioxide

67.5 9.5

M994 Carbon

black

FW200

Black Carbon Black 6.25 6.5

M158 Colortherm

10

Yellow Iron Oxide 39.3

M3 06 Bayferrox 

130 BMP

Orange Iron Oxide 37.8

RX06-4226 Alu-Stapa 

Mobilux R 

187 (Eckart)

Silver Aluminium

flake
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Table 2.2 -  Formulation Guidelines for Polyester Coatings

White 
(wt %)

Black 
(wt %)

Brown 
(wt %)

Red
(wt

% )

Silver 
(wt %)

Clear 
(wt %)

Converter

gloss

19.7 21.16 21 22 86 31

Converter

matt

36.28 38.95 41 40.5 0 61.32

M031 36.86 1.74 1.56

M994 32.21 8.95 2.9

M158 14.24 4.16

M306 5.07 20.88

RX06-4226 6

Solvent

Naphtha

180/210

3.58 3.84 4 4 6 3.84

Bring to viscosity specification with approximately

Solvent

Naphtha

180/210

3.58 3.84 4 4 2 3.84
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2.1.2 Production of Polyester Coated Samples

Curing studies of coatings were carried out with panels of coated substrate 

where the coating had been applied by a wire wound draw bar according to ASTM 

D4147 [1]. These bars, also known as K-bars or Meyer bars, consist o f a steel bar with 

steel wire wound round it to produce a regular series of grooves. The distance between 

these grooves determines the wet film thickness of the coating, and this in turn 

determines the dry film thickness of the cured coating. The substrate panel is first 

cleaned with methyl ethyl ketone (MEK) to remove any residual grease from its surface, 

and then placed on paper on a flat surface. An excess amount of coating is poured 

across one end o f the panel and the draw down bar is placed across the coating layer and 

allowed to wet the wires of the bar. The bar is then drawn uniformly down the length of 

the panel towards the operator. This process requires some practice, needing a smooth 

and steady action to leave a uniform wet film behind on the substrate. Excess coating is 

carried over onto the surrounding paper. The wire wound draw down bar method is 

illustrated schematically in Figure 2.2.

Batches o f panels of galvanised mild steel were obtained from Tata Steel and 

used as substrate. The gauge of each batch was in the range 0.5 to 0.7 mm, depending 

on availability from the production line. Several different galvanised coatings can be 

used with organically coated steel, but the galvanised substrates used for this research 

were the substrates used on Tata Steel’s DVL2 NIR curing line, hot dip galvanised 

substrate (HDG) and MagiZinc (MZ). The compositions of these galvanised coatings 

are given in Table 2.3.

Table 2.3 -  Composition of Galvanised Coatings used in this Thesis

Substrate Zinc Aluminium Magnesium
(wt %) (wt %) (wt %)

HDG 99.85 0.15 -

MZ 96 - 9 8 1 - 2 1 - 2

HDG, otherwise known by the Tata Steel brand name Galvatite®, can be 

regarded as the bench mark for galvanised coatings. Aluminium is added to increase
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formability o f the galvanised coating by the formation of a Fe2(Al, Zn)s inter-metallic 

[2]. MZ is a more recent galvanised coating, and is the brand name of a hot dip zinc- 

magnesium-aluminium (ZMA) coating developed by Tata Steel Strip Products at their 

IJmuiden site. The presence of magnesium in the alloy produces a coating with superior 

corrosion resistance to HDG. MZ can hence be applied at reduced thickness to HDG, 

with associated cost savings [3].

Panels were de-burred before use, and were typically 200 x 100 mm when used 

with the AdPhos NIR Lab Unit, 296 x 210 mm or 148 x 210 mm with the AdPhos NIR 

Technicum and 148 x 210 mm with the Mathis convection oven. Sizes were chosen to 

fit the respective oven’s sample holder.

A wire wound draw down bar designed to produce a wet film thickness o f 60 

pm was found to give a dry film thickness of 20 - 22 pm with a polyester coating. Dry 

film thicknesses were measured with an Elcometer 456 Coating Thickness Gauge or 

Bore Gauge.
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 Wire wound draw bar

Pool of liquid coating

Substrate panel

Figure 2.2 -  Polyester B ar Coating M ethod Showing Substrate Panel Before and After
Draw Down
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2.1.3 Model PVC Coating Formulation

The model PVC coatings were air drying coating systems consisting of PVC 

resin, tetrahydrofuran (THF) solvent and pigment. These coatings were used to produce 

free-standing coating films for use in the spectroscopic studies. Pigment paste or 

pigment powder was dispersed in THF solvent and stirred using a magnetic stirrer to 

ensure homogeneous pigment dispersion. Laboratory grade powdered PVC was then 

added to the stirring dispersion, and left to stir for a further 48 hours to ensure 

completion dissolution o f the PVC and even dispersion o f the pigment. Dispersions 

were made up in glass bottles with lids to avoid evaporation o f the THF.

2.1.4 Production of Free-standing Coating Films

Free standing films of both polyester coatings and model PVC coatings are used 

to produce coating transmission spectra in the UV/visible/NIR wavelength range. The 

method of free-standing film production differs for the two coatings as the former is an 

oven curing coating requiring a substrate Peak Metal Temperature (PMT) of 216 - 

230°C, whilst the latter is a simple air drying coating.

2.1.4.1 Production of Polyester Free-standing Films

A wire wound draw down bar was used to draw down a polyester film on a 

PTFE bake-ware sheet, in a similar manner to that outlined in Section 2.1.2. The sample 

was cured for 50 seconds in a Mathis oven set to 240°C and quenched after curing on a 

magnetic chuck. The polyester coating film was then carefully peeled from the bake­

ware sheet and the dry film thickness measured with a Mitutoyo Micrometer.

2.1.4.2 Production of Model PVC Free-standing Films

Two thicknesses of electrical insulating tape were taped down the length of 200 

x 100 mm glass panels to act as a height guide for the coating thickness, resulting in a
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dry film coating thickness o f 20pm ±2  pm. A pool o f PVC coating was then placed on 

the top o f the panel and the coating drawn down the panel with a glass tube. This is 

illustrated schematically in Figure 2.3.

Glass tube

PVC Coating 

Glass plate

2 thicknesses of 
electrical 

^  insulatme tape

Figure 2.3 -  Draw Down Procedure for PVC Coatings

The panels were left for 24 hours in a fume cupboard for the THF solvent to 

evaporate, after which the coating film was carefully peeled from the glass panel and 

the dry film thickness measured with a Mitutoyo Micrometer.

2.2 Measuring Cure

A successfully cured polyester coating is defined by its cure window, this being 

the range o f oven conditions over which the coating will cure and still meet its 

performance criteria o f colour, gloss, flexibility and weatherability. Industrially, the 

convection cure o f 20 - 25 pm thick polyester melamine coil coatings is achieved on the 

production line with a PMT of between 216 and 232°C and an oven dwell time o f ca. 30 

seconds [4].

For the lab curing trials undertaken in this research, cure profile was logged 

using thermocouples and a data logger. Typical lab cure trial profiles for N IR and 

convection cure are shown in Figure 2.4. In these trials the convection oven had one
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temperature zone, whilst the NIR lab oven had three temperature zones to enable 

separation o f solvent evaporation and cross-linking.

250

200

150

50
C onvection

 NIR

40
Time (s)

Figure 2.4 -  Typical C ure Profiles for NIR and Convection Oven Cures

Thermocouples are a common way o f  sensing temperature and are based on the 

Seebeck effect, namely that an electric current flows in a closed circuit o f two dissimilar 

metals when one o f the two metal junctions is heated with respect to the other [5]. A 

simple circuit o f this type is shown in Figure 2.5. The properties o f the two metals and 

the temperature difference between the junctions affect the magnitude and direction o f 

the current. A thermocouple circuit will hence generate a low voltage output that is 

proportional to the temperature difference between the hot and the cold junctions. If the 

voltage-temperature relationship o f the two metals is known, temperature can be 

computed from measured voltage.
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junction
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Figure 2.5 -  Thermocouple Circuit of Two Dissimilar Metal Alloys

K type thermocouples are the most common type of thermocouples and having a 

temperature range of -270°C to +1370°C are well within the range needed to monitor 

polyester cure temperatures. They consist of two nickel alloy wires, chromel (90% 

nickel, 10% chromium) and alumel (95% nickel, 2% manganese, 2% aluminium, 1% 

silicon) and were welded together using a SR 50 capacitance discharge welder shown in 

Figure 2.6. The other end of the thermocouple wires are then connected to a 

thermocouple plug; the chromel wire forming the positive terminal and the alumel wire 

the negative terminal. The thermocouple can hence be connected to an Omega TC-08 

data logger, shown in Figure 2.7, which measures and calibrates the generated potential 

difference, with readings being recorded every 10 milliseconds.
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Figure 2.6 - SR 50 Capacitance Discharge W elder used to Spot W eld Therm ocouples

Good thermal contact between the thermocouple and the substrate is ensured by 

abrading away the galvanised substrate layer with emery paper prior to spot welding. 

The spot weld was strengthened by placing a small piece o f high temperature tape over 

the weld.

Infrared pyrometers are used on the industrial NIR line to measure the 

temperature o f the coated strip steel. Previous work by Mabbett using an infrared 

pyrometer with the Adphos NIR Lab Unit to measure the temperature o f a coated panel 

concluded that a pyrometer records a slightly higher temperature than a thermocouple 

attached to the steel substrate. He concluded that this suggests that the coating may be 

reaching a higher temperature than the steel substrate and that due to the short time 

involved in a NIR cure, the coating and metal substrate may not have had time to have 

fully equilibrated [6]. He advised that care must be taken when interpreting NIR cure 

temperature data as there are many sources o f  error. These include the absorption o f 

NIR by the thermocouple wires at higher cure temperatures, leading to blackening o f the 

wires. This blackening then increases NIR absorption even further. Other potential
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Figure 2.7 - Omega TC-08 Data Logger used to Record Thermocouple Temperatures

sources o f error include the temperature profile across the substrate panel due to heat 

sink effects and the fragility o f the thermocouple spot weld to the panel. He concludes 

that this marks a big change in what information can be derived from NIR cure PMT 

values [6]. PMT values have historically been used to measure convection cure where 

sufficient time has elapsed for thermal equilibrium between the steel substrate and the 

coating. In this situation PMT can be taken as the temperature a cross-linking polyester 

coating reaches during cure. With NIR cure, Mabbett concluded that PMT values can 

only be used to compare the relative robustness o f cure o f a coating system [6].

In this thesis the cure window o f a coating system was defined as the range o f 

NIR oven zone power settings and oven dwell times that would produce a cured 

coating. Coatings produced on an industrial NIR line will require as wide a cure 

window as possible in order to produce an industrially robust product. In this thesis the 

lower end o f the cure window was determined by the MEK rub test described in Section 

1.4.1.2, and the upper cure window limit by the temperature at which the onset of 

coating micro-blistering occurs.
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2.2.1 C onvection Curing

A Mathis convection oven as shown in Figure 2.8 was used to cure coatings by 

the conventional convection method. Samples were placed on the oven 's wire mesh 

sample holder which took the samples automatically in and out o f the oven for a pre-set 

cure time. The oven was set to 450°C to achieve a peak metal temperature (PMT) o f 

220 - 230°C for a 148 x 210 mm polyester coated substrate panel in 45 seconds. 

Samples were cooled on exit from the oven by quenching them in a bucket o f water or 

placing them on a heat sink such as a magnetic chuck.

Figure 2.8 -  M athis Oven for Convection C ure of Polyester Coatings

2.3 N IR  C u r i n g

Industrial NIR cure on Tata Steel’s DVL2 NIR curing line uses an AdPhos NIR 

oven. This company also supplies two laboratory NIR ovens, the NIR Lab Unit and the 

Technicum, which were used to perform laboratory based NIR curing trials. Both 

laboratory ovens are equipped with the same tungsten halogen emitters used in the 

industrial oven.
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2.3.1 AdPhos NIR Lab Unit

The NIR Lab Unit is shown in Figure 2.9 and consists of a substrate panel 

platform attached to a variable speed conveyor belt, which transports the substrate panel 

under the bank of six NIR lamps situated at the top of the oven and with a total oven 

power rating of 25.8 kW. Aluminium reflectors around the oven serve to focus the NIR 

radiation onto the substrate panel. The height between the upper and lower reflector 

panels can be varied, but for this research was set at 50 mm. This maximised the NIR 

radiation incident on the substrate panel, and was the smallest practicable gap that 

avoided the thermocouple wires catching on the reflector panels as they travelled 

through the oven. The distance from the NIR lamps to the substrate panel surface is 

variable from 50 mm to 100 mm, and for this research was kept constant at 70 mm.

The NIR Lab Unit is set up under extraction, which in our laboratory is provided 

by an extractor hood covering the whole unit. The extraction hood removes coating 

solvent fumes produced during the cure, but will also provide a level o f convective heat 

transfer within the oven. For this reason, the extraction hood was always placed on the 

same setting (full) during curing trials.

Samples of 200 x 100 mm substrate were bar coated with polyester coating and 

placed on the substrate panel platform. The touch control panel was used to set the line 

speed (conveyor belt speed) in meters per minute, the power setting o f the NIR lamp 

module as a percentage of full power, and to start movement of the substrate panel 

platform through the oven.
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Reflectors

Figure 2.9 -  AdPhos NIR Lab Unit Oven [7]

The substrate panel platform consists o f a metal holder which supports the 

substrate panel around its edges. Previous work using a thermal imaging camera has 

shown that conduction occurs between the substrate panel and the substrate panel 

platform, and that the substrate panel platform acts as a heat sink [6]. This results in the 

sides o f the substrate panel being cooler than the centre o f the panel, as shown in the 

thermograph in Figure 2.10.

Substrate
panel
platform

Conveyor belt

Lamp power 
and line speed 
control panel
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Figure 2.10 -  Therm ograph of a Substrate Panel that has been Irrad iated  with an AdPhos
NIR Lab Unit [6]

The two stages o f a NIR cure are firstly the removal o f solvents, and secondly 

the cross-linking o f the polyester resin. In the industrial AdPhos NIR oven, solvent 

removal and polyester resin cross-linking are separated out by using three temperature 

zones in the oven. As the NIR Lab Unit has only one NIR lamp zone, these three 

temperature zones are addressed within the NIR Lab Unit by the following process. 

First the sample is passed under the lamp module to remove the solvents (zone 1), a 

short period o f time elapses as the conveyor belt changes direction and brings the 

sample back towards the lamp module (zone 2) and then the sample passes back under 

the lamp module again to achieve the peak metal temperature (zone 3).

The leading edge o f the sample through the first pass o f the lamp zone becomes 

the trailing edge o f the sample as it passes back through the lamp zone again. This edge 

spends more time outside the lamp zone and therefore is cooler by the end o f the cure 

time than the opposite edge [7], as shown by thermography and backed up by variations 

in MEK rub test results across the panel [6].

Temperature measurements o f substrate panels were therefore taken by 

thermocouples welded to the centre o f the panels, as areas close to the side o f the panel 

will be suffering from heat sink effects.
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Line speeds used in the curing trials were typically 12 m/min giving a dwell 

time o f 7 seconds, and equivalent to a line speed on Tata Steel’s DVL2 line o f 110 

m/min.

2.3.2 AdPhos Technicum

The AdPhos Technicum is shown in Figure 2.11 and has a similar operation to 

the AdPhos Lab Unit through the substrate panel platform, conveyor belt and control 

panel system. The Technicum is a closer simulation o f the AdPhos NIR oven used on 

Tata Steel’s DVL2 line, as like the DVL2 oven it has three oven zones with lamps in 

each zone situated above and below the path o f the substrate panel. There are two banks 

o f staggered lamps in each zone, as shown in Figure 2.12. Each bank has six lamps 

providing a total o f 25.8 kW at full power, giving the Technicum a total power rating of 

154.8 kW.

Conveyor belt i

3 Lamp zones

E x t r a c t i o n

Substrate
panel
nlatform

Figure 2.11 -  AdPhos Technicum Oven
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Figure 2.12 - Schematic of AdPhos Technicum NIR Oven Showing the Position of the 
Three Oven Zones and the Staggered Lamps

The Technicum, like the DVL2 oven, has forced convection from a 

blower/extraction system, which introduces blown air at the oven exit and extraction at 

the oven entrance.

In the Technicum, the gap between the upper and lower reflector panels was set 

to 50 mm, and the substrate panel platform was set to carry the substrate panel through 

the Technicum equidistant between the upper and lower NIR lamps.

NIR lamps in zone 1, lamp banks one and two, are set at a percentage o f  full 

power required for solvent evaporation. Zone 2 allows time for most o f the solvent 

evaporation to complete and this usually requires lamp banks three and four to be set to 

zero. Lamp banks five and six in zone 3 are then set at power percentages that enable 

the peak metal temperature for cross-linking to be achieved. On exit from the oven, the 

substrate panel has its thermocouples removed and is promptly quenched in a water 

tray.

The slowest line speed used in the curing trials was 9 m/min, which is equivalent 

to a line speed on Tata Steel’s DVL2 line o f 110 m/min, a typical operating line speed. 

Highest line speeds used were 12 m/min to 15 m/min, equivalent to 150 m/min to 180 

m/min and representing the highest target line speeds required from the DVL2 line.
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2.4 UV-Vis-NIR Spectroscopy

UV-Visible spectrophotometry was originally developed as a technique that uses 

UV-Visible light to measure chemical concentrations. In this technique, the 

spectrometer is used in transmission mode with samples o f dilute solutions that do not 

spread the spectrometer’s light beam by scattering. The spectrometer’s light beam 

comes from a tungsten lamp for the visible part o f the spectrum and from a deuterium 

lamp for the ultra violet part. The light beam is dispersed into its constituent 

wavelengths in a monochromator and light of a narrow wavelength band width is passed 

through a cuvette o f a sample containing UV/Visible absorbing chromophores.

The Beer Lambert law (Equation 2.1) is then used to determine the 

concentration of a specific analyte in a sample at a specific wavelength [8, 9].

A = s c 1 (Equation 2.1)

Where s = molar absorptivity (M ^cm'1) 

c = analyte concentration (M)

1 = path length (cm)

A = absorbance = log T 

T = transmittance

The absorption of a photon by a molecule increases the molecule’s energy, with 

different regions o f the electromagnetic spectrum being associated with stimulating 

different types o f molecular excitation, as shown in Figure 2.13. UV-Visible 

absorptions are typically due to electronic excitations and tend to be broad in nature, 

whilst mid infrared absorptions stimulate molecular vibrations and produce sharper 

absorption bands. Infrared spectroscopy is an important tool in the characterisation of 

organic compounds. NIR absorptions can be due to electronic excitations or to 

combinations or overtones o f molecular vibrations, with NIR spectroscopy having 

found uses in pharmaceutical analysis and medical diagnostics.
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Figure 2.13 -  The Electrom agnetic Spectrum  Showing the Different Electronic Excitations

In addition to a spectrophotometer being used in transmission mode with dilute 

solutions, the instrum ent's scope can be extended further by the use o f an integrating 

sphere. Here, the integrating sphere is used to measure the transmission and reflectance 

spectra o f samples that scatter light. This makes an integrating sphere an ideal accessory 

for analysis o f polyester coated steel, as both transmission through semi-opaque free 

standing polyester coating films and reflectance from the surface o f polyester coated 

steel substrates can be tackled.

An integrating sphere consists o f a completely spherical chamber with its 

interior wall coated with a highly diffuse reflecting surface, commonly Spectralon®, a 

Teflon® based material that reflects more than 99% o f incident light falling on it. 

Integrating spheres range in size from 50 to 300 mm diameter [10-12].

In order to measure the transmittance o f a turbid liquid or a semi-opaque 

material such as a free standing polyester coating film, the sample is placed directly in 

front o f the integrating sphere, as shown in Figure 2.14 (a). The spectrom eter’s light 

beam passes through the sample, and then on into the integrating sphere. Light is 

captured by the integrating sphere that in a conventional sampling arrangement would 

otherwise have been lost through diffuse transmittance. Light entering the integrating 

sphere is scattered again and again until it reaches the detector which is built into the 

sphere.
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(a) Total Transmittance
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Figure 2.14 -  Schematics of Integrating Spheres, Showing the Sample A rrangem ent for
(a) Total T ransm ittance (b) Total Reflectance (c) Reflectance Specular Excluded

A reflectance measurement o f an opaque sample, such as polyester coated steel 

substrate, is made by placing the sample at the back o f the integrating sphere. Total 

reflectance can be measured, but this can also be separated into diffuse and specular 

components, by either including or excluding the specular component, as shown in 

Figure 2.14 (b) and (c).

In diffuse reflectance, light is scattered at all angles from a surface as with a matt 

surface, whilst in specular reflection, the light reflected from a surface has an angle o f 

reflectance equal to the angle o f incidence as with a mirror surface [13]. Polyester 

coated steel substrates will have surfaces which reflect both specular and diffuse 

components, so for this reason total reflectance is measured.

Specular reflectance can also be used to determine the thickness o f  thin films. 

The amount o f light reflected from a thin film over a range o f wavelengths is measured, 

and the thickness o f the film computed from the wavelength separation o f the 

interference bands o f the wavelength scan. Films as thin as 0.1 pm can be measured by 

this method [14].
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2.4.1 Perkin Elmer Lambda 750S Spectrophotometer

The Lambda 750S spectrophotometer is a double beam, double monochromator 

instrument equipped with a 60 mm integrating sphere [15], and is shown in Figure 2.15. 

The instrum ent's detectors are a photomultiplier and a PbS detector, which allows 

detection over the UV-Vis-NIR wavelength range, 190 -  3300 nm. The photomultiplier 

detects in the UV-Vis region and the PbS detector in the NIR region, with detector 

changeover occurring at 860 nm. The spectrophotometer’s light beam comes from two 

light sources, a deuterium lamp for the UV region (up to 319 nm) and a tungsten 

halogen lamp for the Vis-NIR region.

The Lambda 750S operates over a wavelength range that more than covers the 

region o f maximum output from the AdPhos NIR lamps, which is from 800-1500 nm, 

as shown in Figure 1.18. This makes the spectrophotometer, along with its integrating 

sphere, an ideal tool for the investigation o f the NIR cure o f polyester coating systems.

Integrating sphere enclosureCuvette holder enclosure

Figure 2.15 -  Perkin E lm er Lam bda 750S Spectrophotom eter [6]
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2.4.2 O cean O ptics H R 2000+  S pec tro m ete r

The HR2000+ spectrometer is a miniature modular UV-Vis-NIR spectrometer 

using an optical fibre patch sampling cable fitted with a cosine corrector. SpectraSuite, 

the spectrom eter’s operating software, controls the spectrometer via an USB lead and 

Notebook PC. The instrument is shown in Figure 2.16.

Figure 2.16 -  Ocean Optics HR2000+ Spectrom eter

The spectrometer can also be configured to make optical measurements in 

absorbance, transmission or reflection mode, but in this thesis was used to make 

absolute irradiance measurements o f  sunlight. The absolute spectral response o f the 

spectrometer in the UV-Vis-NIR region was radiometrically calibrated using a DH- 

2000-CAL deuterium/tungsten halogen standard light source supplied by Ocean Optics 

[16]. Recalibration o f  the spectrometer is necessary if the optical fibre patch cable is 

detached from the SMA connector.

A schematic o f the HR2000+ spectrometer is shown in Figure 2.17. Sampled 

light (sunlight) enters the spectrometer via an optical fibre cable attached to the SMA 

connector (1). A slit (2), a rectangular aperture directly behind the SMA connector, 

regulates how much light enters the spectrometer. Light then passes through a filter (3) 

which filters out unwanted wavelengths and onto a collimating mirror (4) which 

focuses the light onto the grating (5). The grating diffracts the light from the
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collimating mirror and directs the diffracted light onto the focusing mirror (6). From 

here it passes to the detector (8). The detector is a charge coupled device (CCD) array 

with a spectral acquisition range from 220 to 1050 nm. The CCD converts the optical 

signal into a digital signal by each pixel on the CCD responding to the wavelength o f 

light that hits it.

1

Figure 2.17 -  Schematic of the HR2000+ Spectrom eter Optical Bench - reproduced from
[17]

(1) SMA connector

(2) Slit

(3) Filter

(4) Collimating M irro r

(5) G rating

(6) Focusing M irro r

(7) L2 Detector Collection Lens

(8) CCD Detector



2 .5  E m itta n ce

A Devices & Services AE1 Emissometer, shown in Figure 2.18 was used to 

make emittance measurements o f cured polyester coated substrate panels.

Thermopile detector head Heat sink

High emittance standard I Scaling digital voltmeter 
Low emittance standard

Figure 2.18 - Devices & Services AE1 Em issom eter, showing the Calibration Procedure 
with Low Em ittance and High Em ittance S tandards

The emittance o f a surface can be defined as the ratio o f the radiation emitted by 

the surface to that from a black body at the same temperature [18]. The AE1 

emissometer measures emittance with a thermopile detector head which responds to 

radiation heat transfer, producing a voltage output that is linear with emittance. Samples 

and reference materials are kept at the same temperature by placing them on a heat sink, 

using a few drops o f water between the sample and heat sink to ensure good thermal 

contact.

The emissometer is first calibrated using standards o f known emittance (e); a 

black high emittance standard (c = 0.88) and a silver low emittance standard (s = 0.05).
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2.6 Total Solar Reflectance

The Lambda 750S spectrophotometer [19] and a spreadsheet tool based on 

ASTM E903-96/G159-98 [20-22] were used to measure Total Solar Reflectance (TSR) 

from the surface o f coated substrate panels. Total raw reflectance from a coated 

substrate surface was measured in 5 nm increments from 300 to 2500 nm and solar 

weighting factors from ASTM G159-98 applied. These solar weighting factors reflect 

the solar spectral irradiance available to a surface at each wavelength. This is then used 

to calculate TSR.

TSR along with emittance values give a measure of how much a surface will 

heat up, and have been used extensively with ‘cool ro o f technology [23, 24]. For this 

reason they are also useful measures for transpired solar collectors.
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Chapter 3 
The Effect of Black Pigment on the 

NIR Cure of Coloured Polyester
Coatings
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3.1 Introduction

Industrial experience at Tata Steel’s NIR curing line has shown that white 

coloured polyesters are the easiest to cure, having the widest cure window and being the 

least prone to solvent boil defects [1]. Tata Steel is keen to expand the range of colours 

produced on this line beyond white, and the aim of this chapter is to use spectroscopy 

and laboratory curing trials to investigate ways of improving the cure of coloured 

polyester coil coatings.

Polyester resin itself is largely transparent to NIR radiation as shown in Figure 

3.1, so the varying ability o f cure of different coloured polyester coatings can be 

attributed to the type o f pigment present in the coating [2]. In Section 1.3.2.2 it was seen 

that white and black coatings can be used to illustrate different scenarios of absorption, 

reflection and transmission of NIR occurring in a coating system during NIR cure. A 

white coating pigmented solely with titanium dioxide, was seen to make use of substrate 

heating and had a high transparency to NIR. The coating was heated from the lower 

layers upwards, helping to minimise solvent boil. In contrast a black coating (pigmented 

solely with carbon black), had extremely little transparency to NIR and heat transfer 

started in the coating itself. This difference in locus of the initial NIR absorption 

predisposes black coatings to solvent boil. In a black coating all absorption is occurring 

in the top few microns o f the coating, so solvent will have to force its way through the 

top layers of the coating that are already highly cross-linked [3].

In laboratory curing trials, the cure window can be defined by taking the lower 

limit o f the cure window as the passing of a MEK 50 double rub test, and the upper 

limit as the outset of blistering. The wider the range o f process parameters (line speed 

and NIR lamp power settings) over which a coating can be cured in laboratory curing 

trials will then give an indication o f how easily the coating should cure industrially on a 

coil coating line. The different response of a range of coloured polyesters to changes in 

cure process parameters is given in Table 3.1, summarised by a curability scale. It can 

be seen that white polyesters have the greatest robustness to altering process parameters, 

black and silver polyesters the least robustness with other colours falling somewhere in 

between.
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1250
Wavelength (nin)
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Figure 3.1 -  UV-Vis-NIR Transm ission Spectrum of Free Standing C lear Polyester
Coating adapted from  [4j

Table 3.1 -  How Well Coatings C ure and Their Robustness to Process V ariability [31

C o lo u r R eflec tance  a t 920 nm  ( X . m a x 

em ission a t 100%  pow er on 

N IR  lam p  (% )

Range of line 

speeds with 

successful 

cure (m /min)

Power

settings

with

successful 

cure (% )

C u ra b ility

Scale

White 69 9-15 10 5

Red 18 9-15 5 4

Brown 7 9-15 2 3

Black 4 12 1 2

Silver 44 12 0 1

In the curability scale, 5 means cures well with a good process window and 4 

means cures with a smaller process window. 3 means cures, but with very small process 

window. Here, any changes in parameters are problematic. 2 denotes cures, but with 

imperfections on the top coat and 1 denotes does not cure well at all [2].
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The near commercial red and brown polyester coil coating formulations used in 

this thesis contained differing proportions o f carbon black pigment to tint their colour 

and it is thought that the presence o f this pigment contributes to these coatings 

absorption of NIR and therefore reduces the size o f their cure windows. In this chapter 

the effect o f lowering the position o f carbon black in the coating system will be 

investigated with the aim being to widen cure window but also maintain colour. Red 

and brown top coats will have carbon black removed from their formulations and will 

be coated over a black tinted primer layer. It is proposed that the presence of carbon 

black in the primer layer rather than in the top coat should widen the NIR cure window 

and help to reduce solvent boil. The colour of carbon black-free top coats coated over a 

carbon black primer layer will be compared to standard formulation top coats coated 

over a standard primer layer, to see if  colour has been maintained.
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3.2 Experimental Techniques

3.2.1 Polyester Coating Formulation

Polyester coatings were made up by the pigment paste and converter method 

given in Section 2.1.1.2. The coatings were near commercial formulations slightly 

modified for NIR fast cure applications, and produced using the pigment pastes and 

formulations supplied by BASF in Table 3.2 and Table 3.3.

Table 3.2 - Pigment Pastes for Polyester Coatings

Pigment code Pigment name Colour Chemical type Pigment 

(wt %)

M031 Kronos 2310 White Titanium Dioxide 67.5

M994 Carbon black FW 200 Black Carbon Black 6.25

M158 Colortherm 10 Yellow Iron Oxide 39.3

M306 Bayferroxl30 BMP Orange Iron Oxide 37.8
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Table 3.3 - Polyester Coatings Formulations

Component White 

(wt %)

Black 

(wt %)

Brown 

(wt %)

Brown

without

black

(wt %)

Red 

(wt %)

Red 

without 

black 

(wt %)

Converter

gloss

19.7 21.16 21.0 21.0 22.0 22.0

Converter

matt

38.28 38.95 41.0 41.0 40.5 40.5

M031 36.86 1.74 1.74 1.56 1.56

M994 32.21 8.95 2.9

M158 14.24 14.24 4.16 4.16

M306 5.07 5.07 20.88 20.88

Solvent

naphtha

180/210

3.58 3.84 4.0 12.95 4.0 6.9

Bring to the viscosity specification with approximately:

Solvent

naphtha

180/210

3.58 3.84 4.0 4.0 4.0 4.0

96



The converter gloss and converter matt contain polyester resin, catalyst, some 

solvent and small amounts of any additives needed to increase the curing and casting 

capabilities of the coatings. These were shaken with the appropriate amounts o f pigment 

pastes in a Skandex paint shaker, and then solvent was added until the viscosity 

specification was met. Viscosity was checked with a DINN 4 flow cup. The gloss o f the 

coatings was checked with an Erichsen gloss meter, and matting agent or additional 

solvent added to ensure that both gloss and viscosity specifications were met. Standard 

white, black, brown and red coatings were formulated; in addition brown and red 

coatings with the M994 carbon black pigment omitted were also formulated.

The polyester top coats were coated over a primer layer, which in this case was 

Granocoat 2840, a combined pretreatment-primer supplied by Henkel. 5% carbon black 

(Special Black® 100) tinted pretreatment-primer was prepared by magnetic stirring for 

24 hours.

3.2.2 NIR Curing Trials using an AdPhos Technicum NIR Oven

Panels o f 0.47 mm non pre-treated HDG substrate were cut to 150 x 200 mm 

and the rough edges removed with a deburring tool. The composition o f HDG is given 

in Table 2.3. Panels were cleaned with MEK and top coat was applied with a wire 

bound coating bar to produce a dft of 20± 1 pm.

The temperatures of the panels were monitored during the cure process by an 

Omega TC08 data logger recording data from a K type thermocouple spot welded to the 

middle of the back of the panels. One piece of heat resistant tape was placed over the 

thermocouple spot weld to give extra strength to the spot weld.
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3 .3 R esu lts  and  D iscu ss ion

3.3.1 U V -V is-N IR  S pectroscopy

Standard pretreatment-primer and black tinted pretreatment-primer were over­

coated with 20 pm brown and red polyester top coats. Two versions o f the top coats 

were used, the standard top coat formulation and the top coat with the carbon black left 

out o f the formulation. The UV-Vis-NIR spectra in transmission and reflectance mode 

were recorded for these four coating systems and are consistent with there being a 

decrease in the NIR absorption o f the coating system when carbon black pigment is 

removed from the formulation.

Figure 3.2 shows that NIR transmission through free standing films o f polyester 

coatings increases when there is no carbon black present. There is a bigger increase in 

NIR transmission when carbon black is removed from the brown polyester compared to 

from the red polyester; this is consistent with there being a greater percentage o f carbon 

black in the brown formulation.

oo
Brown without black pigment 
Red without black pigment 
Brown 
Red

60

40

20

250 750 1250
W avelength  (nm)

1750 2250

Figure 3.2 - UV-Vis-NIR Transm ission Spectra of Free Standing Polyester Films
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A decrease in coating NIR absorption due to carbon black removal is also 

confirmed by the reflectance spectra in Figure 3.3 which shows standard red and brown 

coatings, and also these coatings with the black pigment omitted. All four coatings are 

cured over a standard un-tinted pretreatment-primer. As NIR absorption in the top coats 

is reduced by carbon black removal, NIR reflectance in the coating systems increases 

due to reflectance from the HDG substrate. A dip in reflectance is now observable at 

ca. 1000 nm; the HDG reflectance spectra shown in Figure 3.4 suggests that this is 

probably due to absorption o f NIR radiation by zinc in the HDG. This dip in reflectance 

is not seen when carbon black is present in the top coat, as the coating is then a lot less 

transparent to NIR radiation. Note also that the reflectance spectra o f pretreatment- 

primer coated over HDG in Figure 3.4 indicates that the pretreatment-primer only 

reduces the reflectance o f  the HDG slightly.

60

em ission Adphos lamp 
(100%  power)

50

40
Top coats coated over  
standard pre-treatment

\ \

20

“ “ •Red without black pigment 
“ “ •Brown without black pigment 
 Red
' ' Brown_______________________

250 750 1250
W a v e le n g th  (n m )

1750 2250

Figure 3.3 - UV-Vis-NIR Reflectance Spectra of Brown & Red Polyester Coatings with 
and w ithout Carbon Black, coated over S tandard  P retreatm ent-p rim er
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100
Zn absorption at 
ca. 1000 nm

80

60

40

20
 HDG

•—“ HDG coated with Pretreatment-Primer 
 (Granocoat 2 840)

22501250
Wavelength (nm)

250 750 1750

Figure 3.4 - UV-Vis-NIR Reflectance Spectra of HDG

The reflectance spectra shown in Figure 3.5 and Figure 3.6 compare the standard 

system o f red and brown polyesters coated over standard un-tinted pretreatment- 

primers, with polyesters with the carbon black omitted coated over black tinted 

pretreatment-primer layers. These two coating systems hence represent a standard 

coating system, and one where the carbon black content o f the top coat has been 

lowered to the primer layer. These two systems show a sizeable difference in reflectance 

in the visible region o f the spectrum (highlighted as the light blue areas on Figure 3.5 

and Figure 3.6), with the brown coating showing a greater difference than the red 

coating. This confirms the large Delta E* values seen in Table 3.4 ( 27.78 for brown, 

8.59 for red) and the colour differences seen in Figure 3.7 and Figure 3.8. The opacity 

of the top coats without carbon black is too high to allow tinting o f  the top coat colour 

with carbon black from the pretreatment-primer layer. There is therefore almost 

identical Delta E* values when top coat with no black over standard primer is compared 

to top coat with no black over black primer, i.e. they are the same colour.
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40
——Red coated over 

standard primer
Visible NIR

Red without black 
coated over black primer

30

1750 2250250 1250
W a v e l e n g t h  ( n m )
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Figure 3.5 - UV-Vis-NIR Reflectance Spectra of Red Polyester coated over S tandard  
Pretreatm ent-prim er, and Red Polyester without C arbon Black Pigment coated over

Black Tinted P retreatm ent-prim er

40
— Brown coated over 

standard primer
V isible NIR

— Brown without black 
coated over black primer

30

250 1250
W a v e l e n g t h  ( n m )

1750 2250750

Figure 3.6 - UV-Vis-NIR Reflectance Spectra of Brown Polyester coated over S tandard  
P retreatm ent-prim er, and Brown Polyester without C arbon Black Pigment coated over

Black Tinted P retreatm ent-prim er



The NIR region in Figure 3.5 and Figure 3.6 are shown by the yellow shaded 

areas. The spectra in these figures show that the coating systems incorporating 

formulations with carbon black omitted from the top coat have a higher NIR reflectance 

than the standard formulations which have carbon black in the top coat; it would hence 

be expected that the cure windows for the formulations with carbon black omitted 

would be wider with lower PMTs being reached at the same NIR lamp power settings.

Table 3.4 -  DE* (CIELAB 1976) for Brown & Red Coating Systems (Standard Top Coat 
Coated over Standard Primer is Reference)

Sample DE*

Brown coating Red coating

Top coat without black 

pigment coated over 

standard primer

28.86 8.75

Top coat without black 

pigment coated over black 

primer

27.78 8.59

Standard top coat coated 

over black primer

0.80 0.97
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Standard Brown Polyester Standard Brown Polyester
Standard Pre-treatment Black Pre-treatment
Primer Primer

Brown Polyester without 
Carbon Black
Standard Pre-treatment Primer

Brown Polyester without 
Carbon Black
Black Pre-treatment Primer

Figure 3.7 - Brown Polyesters with and without C arbon Black Pigment cured over 
S tandard  and Black Pigmented Prim ed Substrate

Standard Red Polyester 
Standard Pre-treatment 
Primer

Standard Red Polyester 
Black Pre-treatment 
Primer

Red Polyester without Carbon 
Black
Standard Pre-treatment Primer

Red Polyester without Carbon 
Black
Black Pre-treatment Primer

Figure 3.8 -  Red Polyesters with and w ithout C arbon Black Pigm ent cured over S tandard
and Black Pigmented Prim ed Substrate

103



3.3.2 Curing Trials

Curing trials o f the red and brown formulations with and without carbon black 

were conducted with the Adphos Technicum oven to check the assumption that 

formulations without carbon black require less power to cure. Samples were coated onto 

0.47 mm un-pretreated HDG and cured using the same NIR lamp powers and line 

speed. Five replications o f samples were carried out. At the particular oven settings used 

( line speed = 12 m/min; lamp powers set to 80%, 0% and 30% in oven zones 1, 2 and 

3), the red and brown formulations with carbon black omitted reached lower peak metal 

temperatures, and typical cure profiles are shown in Figure 3.9 and Figure 3.10. Figure 

3.11 shows that at these oven settings brown formulations reached on average a 19% 

lower peak metal temperature when carbon black was omitted from the formulation, 

whilst red coatings reached on average a 16% lower peak metal temperature.

180
—  Red

160
— Red - carbon black omitted

Q 140

5  120

Time (secs)

Figure 3.9 -  Typical Cure Profile of Red Polyester with and without C arbon Black at the
same NIR C ure Conditions

1 0 4
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Brown

160 Brown - carbon black omitted

140

120

100

T im e  (s e c s )

Figure 3.10 -  Typical C ure Profile of Brown Polyester with and without 
C arbon Black at the same NIR Oven Settings

Standard formulation 

Formulation without carbon black

« 120

Brown Red

Figure 3.11 - Peak Metal Tem peratures reached for Brown and Red Form ulations with 
and without Carbon Black, C ured at the same NIR Oven Settings
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The cure trial was then extended and the formulations cured over a range of 

different power settings and line speeds (9, 12 & 15 m/min). Samples which did not 

pass a 50 double rub MEK test were deemed to be under cured and below the lower 

cure limit, whilst samples that were blistered were deemed to be over cured and above 

the upper cure limit. The results are summarised in Table 3.5, and show that removing 

carbon black increases the chance of successful cure.

Table 3.5 -  Cure Trial Results for Polyesters with and without Carbon Black

Formulation Total number of cure 

trials from 

experiments with 

different

combinations of line 

speeds & lamp power 

settings

Total number of 

successfully cured 

panels

Percentage of 

successfully 

cured panels 

(%)

Brown coating 14 1 7

Brown coating with 

Carbon Black omitted

10 4 40

Red coating 9 1 11

Red coating with 

Carbon Black omitted

8 4 50

In contrast to the standard formulations with carbon black, the formulations 

without carbon black could be cured at all three line speeds. At a Technicum oven line 

speed o f 15 m/min, which equates to a production line speed o f 180 m/min, it was not 

possible to successfully cure the standard red and brown formulations with carbon black 

content included. There was evidence o f both micro-blistering and pinholes in the cure 

of these coatings at 15 m/min, as shown in Figure 3.12 and Figure 3.13. Micro- 

blistering occurs when cross-linking has reached an advanced stage before sufficient 

solvent has escaped from the coating. The solvent then tries to force its way through the 

coating and will either create a micro-blister bubble (as in the examples in Figure 3.12 

and Figure 3.13), or a volcano like hole in the coating with the edges o f the hole being 

raised above the rest of the coating surface. Pinholes occur when the solvent is removed
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too rapidly; usually the coating will flow back to fill these holes, but if  the viscosity o f 

the coating is too high or if the hole are large and there is not enough time for this to 

happen then a hole will result. This time the edges o f the hole will not protrude above 

the rest o f  the coating surface.

Figure 3.12 -  Brown Polyester with C arbon Black Showing Both Pinholes and M icro­
blisters. (Line speed = 15m/min)

It has been shown that micro-blistering can be countered by increasing the NIR 

power in zone 1 o f the Technicum oven; this helps to remove most o f the solvent before 

cross-linking occurs [2]. This would also have the effect o f increasing the PMT, but this 

would then make pin holing worse. The remedial actions for micro-blistering and pin 

holing thus act against one another and from this it can be construed that the 

combination o f micro-blistering and pinholes in the same sample is indicative o f a very 

small or a non-existent cure window.

The red and brown formulations without carbon black successfully cured at 15 

m/min. The increase in line speeds over which the formulations can be cured when 

carbon black is removed from the formulations is evidence o f a wider range o f process 

parameters on removing carbon black from the formulations.
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M icro blister

\
Pin holes

Figure 3.13- Red Polyester with C arbon Black Showing Both Pinholes and M icro-blisters.
(Line speed = 15m/min)
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3.3.3 NIR Transparent Black Pigments

NIR transparent black pigments may be suitable as an alternative pigment to 

carbon black in the red and brown polyester formulations. These pigments are marketed 

as ‘cool’ black pigments because they give the optical appearance o f blackness whilst 

absorbing minimally in the near infrared. As NIR radiation accounts for 58% of 

sunlight, pigments of this type have found a role in coatings for the solar heat 

management of buildings [5].

PVC free standing films of the three near infrared transparent pigments were 

prepared and their transmission spectra are shown in Figure 3.14. Paliogen® and 

Sicomix® are commercially available BASF pigments. Paliogen® is an organic pigment 

based on perylene, whilst Sicomix® is a blend o f organic and inorganic pigments. The 

Silberline pigment is currently under development and due to commercial sensitivity no 

further information on chemical composition was supplied by the manufacturer.

The Silberline and Paliogen® pigments show the highest transparency in the NIR 

and although not a true black colour (as indicated by their spectra in the visible region), 

they do provide a better colour than the Sicomix ® pigment. Note that the oscillations in 

the Paliogen® spectra are an interference pattern resulting from the thin film nature of 

the sample; interference fringes o f this type have an application in determining coated 

thin film thicknesses [6].

109



% 
T

ra
ns

m
is

si
on

100
NIRVisible

60

40

Silberline 10%

—  BASF Paliogen 10%

BASF Sicom ix 10%

250 1750
W a v e l e n g t h  ( n m )

2250 2750750 1250

Figure 3.14 - Transm ission Spectra of Free Standing PVC NIR T ransparen t Black
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3.4 Conclusions

Previous work has shown that NIR curing can be optimised when the substrate 

absorbs most o f the NIR radiation, with only a small proportion of NIR being absorbed 

by the top coat [3]. White coatings are hence the easiest coatings to cure and have a 

wide cure window, as their sole pigmenting agent titanium dioxide is a strong reflector 

o f NIR and the coatings are relatively transparent to NIR. Black coatings however, are 

more difficult to cure and have a small cure window due to the presence o f carbon black 

which is a strong absorber o f NIR.

These experiments have shown that removing the carbon black content in red 

and brown polyesters widens the cure window making them easier to cure and less 

prone to solvent boil, but at the same time having a critical effect on colour. At the same 

NIR power settings and line speed, removal o f carbon black reduces the peak metal 

temperature. Pigmenting the primer layer with carbon black in an attempt to provide the 

black tint in the polyester top coat colour is not successful, as the top coat is too opaque. 

We have however, tinted a primer layer with carbon black and used this layer to reduce 

the energy needed to NIR cure a white polyester top coat [4, 7]. The next chapter 

explores whether this energy benefit is also present with convection curing.

Further work could look at substituting the carbon black pigment in the 

polyester top coat with a near infrared transparent black pigment such as Paliogen® or 

Sicomix®. It would be anticipated that pigments o f this nature would reduce the peak 

metal temperature reached and widen the cure window. Draw backs would be that the 

pigments are not a true black colour, so may not provide the hiding power and colour of 

carbon black thus making it difficult to reproduce the colour of the top coat. The NIR 

lamps used in NIR curing also have substantial spill over into the visible region of the 

spectrum, so the strong absorption of the NIR transparent black pigments in the visible 

region may compromise their ability to widen the cure window of the top coat. 

Furthermore, the cost of such pigments and their ability to produce coatings for exterior 

applications with robust weatherability may restrict their use.
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Chapter 4 
The Effect of Carbon Black Tinted 
Primer on the Convection Cure of a 

White Polyester Coating
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4.1 Introduction

Chapter 3 looked at the effect of carbon black, a strongly NIR absorbing 

pigment, and how its presence in coloured polyester coatings affects NIR cure. Key 

findings were that removing carbon black pigment content from coloured polyesters 

widens the NIR cure window, thus making them easier to cure and less prone to solvent 

boil. This however, was at the expense of maintaining top coat colour. Adding carbon 

black pigment to the primer layer in an attempt to replace the black tint in the polyester 

top coat colour did not reproduce the top coat colour because the top coat was too 

opaque.

Early reports in the literature suggested that NIR absorbers should be added to 

top coat formulations to improve the efficiency of NIR cure [1, 2], however more 

recently we have proposed that with 25 pm polyester coil coatings, if  the coating 

absorbs too strongly, most o f the energy will be absorbed in the top few microns o f the 

cross-linking coating. This will result in solvent boil, as film formation and cross- 

linking occur before full solvent removal [3, 4]. NIR curing is hence optimised when 

the polyester top coat is relatively transparent to NIR and with the substrate absorbing 

most o f the radiation [3, 4].

We have also demonstrated that the benefits o f absorption occurring in the 

bottom most layers o f the coating system during NIR cure can be taken a stage further 

by tinting the primer layer o f a 25 pm white polyester coil coating system with a NIR 

absorbing material [5]. Here, an 18% lower PMT is observed when a standard primer is 

used rather than a 5% carbon black tinted primer. This leads to the opportunity o f either 

reducing radiation intensity during cure or decreasing the oven dwell time.

The aim of this work was to establish whether the energy saving advantages o f a 

tinted primer was also present for the convection cure of 25 pm polyester coil coatings. 

Coatings o f this type are conventionally cured in gas fired flotation ovens which achieve 

cure by convection currents. There will however be a certain amount o f residual mid 

infrared radiation emitted from the hot walls of the oven, and the aim is to see whether 

this can be harnessed to reduce the oven settings needed to achieve cure.

Carbon black is however a good cathode material [6], so the effect on corrosion 

performance of adding carbon black to the primer will also be assessed using a scanning 

electrochemical technique, the in situ scanning Kelvin probe (SKP). SKP is a technique
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that has been used extensively in delamination studies as it allows the temporal and 

spatial resolution of potential distributions below intact organic surfaces to be studied 

[7, 8]. The delamination kinetics o f thin polyvinyl butyral (PVB) coatings containing a 

range of concentrations o f carbon black additions and coated onto a galvanised steel 

substrate will be used for these experiments.

4.2 Experimental Techniques

4.2.1 Preparation of Coatings

The primer used in this work was Granocoat® 2840, a chromium free aqueous 

resin dispersion o f combined pretreatment-primer, supplied by Henkel. This 

pretreatment-primer (hereafter referred to as ‘primer’) was used to formulate tinted 

primers by the addition of weighed quantities of Special Black® 100 carbon black to the 

primer, dispersed with the aid of a magnetic stirrer for 24 hours. Primers with carbon 

black content o f 1.0%, 2.5%, 3.5% and 5.0% by weight were prepared and a Hegman 

gauge used to check pigment agglomerates were less than 15 microns in size.

The white polyester coating was prepared at BASF Deeside laboratories by the 

pigment paste and converter method given in Section 2.1.1, and was a near commercial 

formulation modified slightly for NIR fast cure applications. Pigment agglomerations 

were milled to below 15 microns and checked with a Hegman gauge. Specification was 

between 40-50% gloss at 60° and viscosity checked to take 65-70 s to drain a DINN 4 

flow cup at 21°C. The formulation contained 34.54% w/w polyester resin, 24.87% w/w 

coating solvents, 25.21% w/w TiC>2 and 15.38% w/w other additives.

4.2.2 Convection Curing Trials

Panels of 0.50 mm gauge, 210mm x 100mm HDG steel substrate were cleaned 

with MEK and primer applied to give a dft of 5 + lpm . Panels were then over-coated 

with white polyester top coat to produce a dft of 20±1 pm.

Cure profiles for the panels were measured using thermocouples and an Omega 

TC-08 data logger. Thermocouples were K-type, spot welded to the middle o f the back 

of the substrate panels.
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Convection cure trials were carried out using a Mathis D70 convection oven set 

to 355°C with an oven dwell time o f 30 seconds.

4.2.3 Scanning Kelvin Probe Technique

Figure 4.1 shows the SKP apparatus. SKP design, operation and calibration have 

been described in detail in the literature [9-11].

Gold wire reference electrode

|  Sample (working electrode)

Figure 4.1 -  Scanning Kelvin Probe A pparatus
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A schematic o f the SKP is shown in Figure 4.2. SKP works on a vibrating 

condenser method, whereby a gold probe (the reference electrode) oscillates 

perpendicular to the sample (the working electrode) at frequency co, separated by gap o f 

100 microns. The probe does not come into contact with the sample and is separated by 

a dielectric medium, air. The sample and probe are connected by an external circuit, and 

because o f a difference in Fermi levels o f the two materials, resultant current, Iac flows. 

An external voltage, Uext is switched into the circuit and the applied external voltage 

needed to null the current is noted; this is defined as the Volta potential, T.

Vibrating Metal 
([x, y] scanning)

Electrolyte
Working
Electrode

[Frequency CO

'} A T

Figure 4.2 -  Schematic of Scanning Kelvin Probe Technique
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It has been shown, for a metal surface coated with an adherent and/or a 

delaminated PVB film, that:

Ecorr= A T RefPoi + A Volts vs. SHE Equation 4.1

w here:

Ecorr = corrosion potential

A T  Refp0i = Volta potential difference measured between the SKP

reference probe (gold wire) and the polymer-air interface

A = constant.

The sample preparation procedure was based on methods given by Stratmann et 

al [7, 8, 12]. Polyvinyl butyral (PVB) solutions of MW 70,000 -  100,000 were prepared 

in 15.5% ethanol and the required amount of Special Black® 100 carbon black was 

added and mixed using a high shear mixer. Quantities o f carbon black added ranged 

from 0.5 to 5 % by weight. An aqueous slurry of 5 pm alumina was used to hand polish 

the sample surface to remove any contaminants and pre-existing oxide layer. 

Degreasing was carried out via an acetone rinse followed by air drying. PVB solution 

containing the appropriate amount of carbon black was bar cast onto a pre-cleaned 

sample and room-air dried. Carbon black was dispersed in PVB rather than the 

commercially available Granocoat® 2840 primer used in the curing studies, as this 

allowed the SKP experiments to be performed in a reasonable time frame and with an 

appropriate sample configuration.

The delamination experiments were carried out in an enclosed SKP chamber 

maintained at a constant 95% relative humidity and 25°C. Delamination was initiated 

each time using 0.86 M aqueous NaCl at pH 6.5. The SKP reference probe consisted 

o f a gold wire of diameter 125 pm vibrating vertically at 280 Hz and amplitude of 40 

pm at a distance of 100 pm above the sample surface. Ecorr data points were recorded at 

20 per mm. The SKP reference probe was scanned over the coated surface along a 12 

mm line normal to, and adjacent with, the defect-coating boundary, as shown in Figure 

4.3. Scanning commenced immediately on the addition of electrolyte and thereafter at 

hourly intervals over a period of > 24h.

118



12mm x 4mm

Figure 4.3 -  SKP Sample showing the Scan Area adjacent to the Defect-Coating Boundary
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4.3 R esu lts  and D iscussion

4.3.1 Spectroscopic Studies and Colour M easurement

The carbon black content o f the tinted primers was checked by using a 

Datacolour Spectraflash 600 Spectrophotometer to measure CIELAB Delta E* values o f 

primer coated substrate panels. Samples were measured in triplicate. This showed an 

increase o f CIELAB Delta E* with carbon black content, as given in Figure 4.4.

60

40

a
CO
<
—
w  20

2 3 4
% Carbon Black Pigment in Pre-treatment Primer

Figure 4.4 -  Relationship of Colour Difference to C arbon Black Content of P rim er

UV-Vis-NIR spectroscopy shows that the primer layer used in this work is 

largely transparent to IR radiation up to 2500 nm, as shown in Figure 4.5. Transmission 

through a 5 wt.% carbon black tinted primer layer is however almost negligible, as 

shown by the black spectrum in Figure 4.5, as carbon black absorbs strongly over all 

wavelengths o f the visible region and IR region up to 2500 nm.
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Figure 4.5 -  Com parison of UV-Vis-NIR Transm ission Spectra of Free-Standing Prim er
Films

The noticeable feature o f the UV-Vis-NIR total reflectance spectra o f HDG steel 

substrate shown by the blue dashed spectrum in Figure 4.6 is a peak associated with Zn 

absorption around 1000 nm [3]. When a primer layer is coated onto this HDG substrate 

only a modest decrease in absorption is seen in the reflectance, shown by the blue 

dotted spectra in Figure 4.6. This is consistent with the primer layer being highly 

transparent; a high proportion o f the radiation is making its way through the primer to 

give the characteristic Zn absorption peak at ca. 1000 nm. A primer layer tinted with 

carbon black however, shows extremely low transparency at all IR wavelengths in the 

spectra absorbing most o f the incident radiation as shown by the solid black spectrum in 

Figure 4.6.
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Figure 4.6 -  UV-Vis-NIR Reflectance Spectra of HDG Panels Coated with P rim er

Titanium dioxide reflectance dominates the visible region o f the spectrum for a 

white polyester coating, as shown in Figure 4.7. It would therefore be expected that 

white polyesters coated over a standard primer or a black tinted primer would show a 

similar colour. CIELAB 1976 delta E* values o f white top coats with increasing 

percentages of carbon black in the underlying primer layer are shown in Figure 4.8. 

Samples are measured in triplicate. The coil coating industry commonly uses this colour 

difference measurement when an industrial specification for a colour match is needed. 

A delta E* of 1.0 is commonly taken as barely perceptible to the human eye, and 

indicative o f an adequate colour match in the industry. As a white top coat coated over 

even a 5 wt.% carbon black loaded primer has a delta E* o f less than 1.1, the effect on 

colour is negligible.
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Figure 4.7 - UV-Vis-NIR Reflectance Spectra of W hite Polyester Coating

1 . 2

0.8

0.6

0.4

0.2

0
0 2 3 4 5 6

% Carbon Black in underlying Prim er Layer

Figure 4.8 -  Variation of W hite Top Coat Panel Colour with Underlying P rim er C arbon
Black Content
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An increase in absorption o f IR wavelengths in these panels should be seen 

when carbon black is present in the primer layer, as titanium dioxide pigment allows IR 

through the top coat [3]. The transmission spectra o f free-standing coating films in 

Figure 4.9 show that the clear polyester film has a high degree o f transparency to IR 

radiation up to 2500 nm. A white polyester coating (pigmented solely with titanium 

dioxide) and shown in the same Figure, still allows a sizeable proportion o f  IR radiation 

to pass through, with this increasing with increasing IR wavelength.
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Figure 4.9 -  Com parison of Vis-NIR Transm ission Spectra of Free-Standing Polyester
Films

The reflectance spectra o f FIDG substrate coated with a standard or a tinted 

primer and then over coated with a white polyester coating are shown in Figure 4.10. 

These show similar reflectance spectra in the visible region highlighted by the yellow 

area. In the IR region, the tinted primer samples show a decreasing reflectance or 

increasing absorption as carbon black content is increased. This indicates that some IR 

radiation is able to penetrate through the top coat and be absorbed by the increasing 

amount o f carbon black in the primer underneath.
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Figure 4.10 -  UV-Vis-NIR Reflectance Spectra of HDG Coated with P rim er and 20
microns W hite Top Coat

We have previously shown that this increase in absorption within the NIR range 

allows an increase o f efficiency during NIR curing, with a 18% lower peak metal 

temperature (PMT) being reached when a standard primer is used rather than a 5% 

carbon black tinted primer [4, 13]. There may be sufficient IR radiation emitted from 

the refractory brick walls o f a convection oven to enable a similar but smaller energy 

efficiency saving in a convection oven cure.
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4.3.2 Cure Trials

Panels o f coated substrate were initially cured in an AEW convection oven at the 

Tata Steel Tafarnaubach site, with the oven set to achieve a substrate PMT o f  224 -  232 

°C in 30 -  32 seconds. The cure temperature profile for a white polyester coating 

measured with a K-type thermocouple did not show an even temperature rise as 

expected; a typical cure profile is shown in Figure 4.11. Close examination o f the cure 

process indicated that the shape o f the cure profile correlated with the oven door being 

open and shut on the thermocouple wire. The refractory brick lining o f the oven door 

would appear to be acting as a heat sink and lowering the temperature recorded.

250

Panel removed from oven

200

P a n e l  q u e n c h e d
—  150

Oven door opened
100

Oven door closed50

Panel placed in oven

0
20 120 140 160 1800 40 60 80 100

Tim e (seconds)

Figure 4.11 -  T em perature Profile using Thermocouple and AEW Oven

The AEW oven was therefore not suitable for this work; work was carried out 

instead using a Mathis D70 convection oven at the BASF Deeside site, shown in Figure 

4.12.
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Figure 4.12 -  M athis D70 Convection Oven with Timed Autom ated Entry  and Exit

The Mathis D70 oven has timed automated entry and exit o f the sample into the 

oven on a wire tray, whilst the AEW oven entry and exit was performed manually with 

timing by a stop watch. The Mathis D70 oven will therefore reduce the error associated 

with timing o f the PMT.

Despite the simple workings o f a thermocouple, its performance must always be 

carefully checked. Performance can be affected by heat sink effects, by electrical 

shorting o f the thermocouple wires and by blackening o f the thermocouple junction

[14].

Once spectroscopic studies had given some understanding o f where different 

electromagnetic radiation wavelengths were interacting in the coating system, a cure 

trial was carried out in a convection oven to investigate the effect o f primer tint on top 

coat PMT. Panels with a white top coat, coated over either a standard or carbon black 

tinted primer were cured in triplicate at the same oven temperature and dwell time. The 

plot o f peak metal temperature versus the percentage o f carbon black in the primer layer 

in Figure 4.13 shows that PMT increases with increasing carbon black content in the 

primer layer.
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A 5% lower PMT was observed when a standard primer was used rather than a 5% 

wt.carbon black primer, as shown in Figure 4.14 and illustrated by the typical cure 

profiles o f Figure 4.15. As a consequence, this method offers the opportunity to reduce 

oven temperature during convection cure to obtain the same PMT.
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Figure 4.13 -  Variation of W hite Top Coat PM T with P rim er T int

Standard primer 5%  Black prim er

Figure 4.14 - PM Ts Reached by Panels with Different Prim ers with Identical Convection
Curing Conditions
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Figure 4 .15-T y p ic a l C ure Profiles of W hite Polyester with S tandard  and Tinted P rim er

A white top coat cured over a standard primer passed a 100 MEK double rub test 

after 30 seconds in a Mathis D70 convection oven set at 355°C. Figure 4.16 shows that 

a primer with 5 wt.% carbon black content reduces the time to reach PMT by ca. 3 

seconds. Samples were carried out in triplicate.

35

Standard prim er 5% Black prim er

Figure 4.16 -  Time for W hite Top Coat Under Coated with 5%  Black Tinted P rim er to
Reach Same PM T as Un-tinted System
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4.3.3 Interaction of IR Photons with the Coating System

We have proposed mechanisms for NIR photon interactions with more highly 

absorbing coating systems and less strongly absorbing coating systems [3, 4]. Proposed 

mechanisms for photon interactions up to 2500 nm with a paint system incorporating a 

carbon black tinted primer are deduced from the spectral information in Figure 4.5 to 

Figure 4.10 and are given in Figure 4.17. Mechanisms A and A ’ show photon 

absorption by the top coat, with better depth penetration at A \  As white coatings are 

largely transparent to NIR and lower midrange infrared photons, mechanism B 

(absorption o f photons by the primer layer) is likely to predominate. Mechanism C 

(photons reflected at the air/coating surface) will also be significant for a white top coat.

A A' B C

W h ite  to p  coat

Black p rim er  

Substrate

Figure 4.17 -  Proposed M echanisms for Photon Interaction with Coating System

Benefits o f tinting the primer layer are that mechanism B will result in heating 

o f the top coat by conduction from the primer, causing the bottom most layers o f the top 

coat closest to the primer to heat up very quickly. This will drive solvents outwards 

from the region in which they have furthest to diffuse. Lower regions o f the coating will 

cure before the upper regions; methanol, the resin cross-linking by-product will escape 

more easily and solvent boil will be minimised.

There is therefore scope for improved energy efficiency by increasing the 

amount o f incident radiation absorbed without altering the colour properties o f the 

coating. The increased IR absorbance o f the primed surface allows for either increased 

line speeds or reduced oven power settings to reach a given PMT value.
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4.3.4 Effect of Carbon Black Tinted Primer on Corrosion Performance 
of Galvanised Steel Substrate

The presence of carbon black in the primer layer improves the efficiency of the 

convection cure of a white polyester top coat, but there is a risk that this improvement 

may be counter balanced by a detrimental effect on the corrosion protection ability of 

the coating system. Due to the position of carbon in the galvanic series [6], carbon black 

pigment in the primer which is in electrical contact with zinc in the galvanised steel 

substrate could act as an under film cathode and accelerate coating delamination 

through a corrosion driven cathodic disbondment mechanism.

The cathodic disbondment mechanism is shown diagrammatically in Figure 

4.18. In this mechanism, cathodic disbondment of the coating occurs in the vicinity of 

the delamination front due to oxygen reduction at a local cathode [8, 10], shown by the 

half reaction in Equation 4.2.

0 2 + 2H20  + 4e' ^  40H ' Equation 4.2

Anodic zinc dissolution is constrained to the coating defect region, and is shown 

by the half reaction in Equation 4.3.

Zn ^  Zn2+ + 2e‘ Equation 4.3

A thin layer of electrolyte is able to make its way under the disbonding coating 

thus allowing the formation of an electrochemical cell.

The SKP is an ideal tool for studying the electrochemical delamination process 

at a coating substrate boundary, hence a SKP and model PVB coatings with and without 

carbon black additions were used to see the effect of carbon black being in contact with 

the hot dip galvanised steel substrate.
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Figure 4.18 -  Cathodic Disbondment under a Coating on Galvanised Steel
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Firstly, a control delamination experiment was used to characterise the baseline 

kinetics of a delamination cell under a PVB coating with no carbon black addition on 

HDG. Figure 4.19 shows a typical time-dependant corrosion potential (Ecorr ) vs. 

delamination distance (xdei) profile established upon the addition of 5% wt/v NaCl (aq) 

to the sample defect.
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Figure 4.19 -  Profiles of Time Dependant E corr vs. Distance from an Artificial Coating 
Defect (Xdei) for a HDG Substrate Coated with Uninhibited PVB Measured Hourly from 0 

min (left) to 840 min (right) where Delamination was Initiated with 5% wt/v Aqueous 
NaCI Solution and Experiments were Carried Out in 95% r.h.

Ecorr values o f the undelaminated region (Ejntact) in Figure 4.19 approximate to 

-0.3 V vs. SHE and indicate a passive zinc surface with the value for Eintact directly 

comparable to the potential for an uncoated galvanised surface in humid air. As time 

progresses, a change in electrochemical activity is observed, as the intact substrate- 

coating is replace by substrate-electrolyte and electrolyte-polymer interfaces, as shown 

in Figure 4.18 [15]. This is indicative of a delamination front, and is shown by the 

characteristic steep potential drop of ca. 0.3 - 0.4 V vs. SHE, with the location o f the 

delamination front being measured from the defect to the inflection midpoint o f the 

profile.
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Figure 4.19 also shows that by ca. 180 min after the addition o f electrolyte, 

measured Ecorr values in the region in direct proximity to the defect approximate the 

equilibrium potential o f the reaction in Equation 4.2 i.e. ca. -0.76 V vs. SHE. The 

delamination front then moves progressively away from the defect, reaching a distance 

o f ca. 11000 pm over a period of 840 minutes.

Previous work has shown that the migrational mass transport o f cations (Na+ 

ions in these experiments) from the defect region to the delamination front limits the 

ionic current linking the electrochemical half reactions, and hence the rate o f 

delamination [15]. Therefore the ingress o f Na+ ions, the loss o f coating adhesion and 

the onset o f oxygen reduction in Equation 4.2 can be seen to be associated with the 

steep potential drop o f the delamination front in Figure 4.19. Here, the time elapsed 

since the introduction of electrolyte (tdei) and the distance (xdei) over which delamination 

has occurred are given by:

X d e i  =  k d e i  ( t d e i  - t i )  '/j Equation 4.4

where:

tj = time for delamination cell to become initiated following electrolyte addition

kdei = delamination rate constant

The oxygen reduction in Equation 4.2 results in increased alkalinity at the 

delamination front, where previous research has shown values of pH 10-11 can be 

reached [16]. High alkalinity is favourable for disbondment as it aids polymer coating 

degradation. Eventually the high alkalinity will result in soluble zincate (Zn(> 2  ’) and 

bizincate (HZnCV) formation by the anodic equilibrium reactions in the underfilm area 

shown in Equations 4.5 and 4.6.

Zn(OH)2 (s) ^  Zn022' (aq) + 2FP (aq) Equation 4.5

Zn(OH)2 (s) ^  HZn02' (aq) + 2FT (aq) Equation 4.6
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As the Zn(0H)2 surface layer dissolves in the high pH environment of the under 

film region, the bare zinc that is revealed will have the ability to directly oxidise to 

bizincate by Equation 4.7 [8].

Zn (s) + 2H20  ^  HZnCV (aq) + 3 FT (aq) + 2e' Equation 4.7

Delamination experiments were then carried out with a delamination cell under 

PVB coatings with carbon black additions on HDG. Additions of 0.5%, 3.5% and 5.0% 

wt. carbon black were made to a PVB coating and applied to a HDG substrate. At all 

addition percentages Eintact values were comparable to those in the control experiments 

indicating that the presence of carbon black in the coating has minimal effect on the 

steady-state delamination cell potentials.

PVB coatings with 0.5% and 3.5% carbon black additions gave time dependant 

Ecorr delamination profiles that were similar to that o f the control experiment shown in 

Figure 4.19 and displayed Ecorr values of ca. -0.7 V vs. SHE at the defect boundary. 

There was, however a slight increase in the time (tj) taken for the delamination cell to 

become initiated following the addition of electrolyte, with 3.5% carbon black coatings 

showing an increase to 240 min.

A representative plot from an experiment with 5.0% carbon black coating 

content is shown in Figure 4.20. Here the first profile that shows the distinctive drop in 

potential representing the initiation of delamination was recorded at 600 min; this is an 

increase in the time taken for delamination to be established compared to the control. 

Also, the ECorr values recorded in close proximity to the defect region fall more slowly 

than the control and those with lower carbon black content, but they do eventually 

approach values associated with Equation 4.2 after ca. 900 min.

Most interestingly, 5% carbon black additions reduce the rate o f delamination. 

This can be seen in a plot o f Xdei vs. (tdei -ti) /2 shown in Figure 4.21, where Xdei is the 

distance over which delamination has occurred, tdei is the time elapsed since the 

application o f electrolyte and f  is time for delamination to become initiated following 

electrolyte addition.
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Figure 4.20 - Profiles of Time Dependant E corr vs. Distance from an Artificial Coating 
Defect (Xdei) for a HDG Substrate Coated with PVB Containing 5% Carbon Black, 
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Figure 4.21 -  Plots of Xdei vs. (tdei -ti) /2 for PVB Coated HDG Substrates where Additions of 
0%, 0.5%, 3.5% and 5% Carbon Black have been made to the PVB Coating
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Values for the delamination rate constant kdei for 0%, 0.5% and 3.5% carbon
1 /9black additions were 444, 442 and 440 pm min' respectively. Additions of 5% carbon

• 1 /9  •black however, gave a kdei value of 247 pm min' , a reduction of ca. 44% compared to 

the control. These values are summarised in Table 4.1.

Table 4.1 -  Values of Parabolic Rate Constant and Time to Delamination Determined for 
PVB Coatings Containing Various Values of Carbon Black on HDG Substrates.

Carbon black (%) ti (min) kdei (pm m in1/2) kdei change (%)

0 180 444 0

0.5 180 442 0.45

3.5 240 440 0.9

5.0 600 247 44.4

As all the plots in Figure 4.21 are linear, this suggests that rate control in the 

delamination cell is due to migration o f under film Na+ ions from the external 

electrolyte to the delamination front when carbon black is present in the coating at any 

of the experimental levels [15, 17]. It also indicates that the oxygen reduction reaction 

occurring at the delamination front is not being blocked.

Leng has shown that high levels o f water are present at the substrate-polymer 

coating boundary of unpigmented coatings when the coating has been exposed to high 

levels of humidity. This is because water is able to diffuse through the polymer layer to 

reach this boundary, and will hence provide an environment that will favour oxygen 

reduction. Delamination, however will not occur unless electrolyte has been able to 

ingress [15]. The increasing time for delamination (tj) to become established in these 

experiments may be due to the presence of carbon black in the PVB coating increasing 

the hydrophobicity of the coating and increasing the time taken for water to diffuse 

through the coating [18].

Five percent carbon black additions cause a reduction in delamination rate by ca. 

44%. As water can rapidly permeate through a coating in a delamination cell [15], and 

the ingress of an electrolyte layer under a coating can occur as a highly swollen polymer 

gel [19], an explanation of the reduction in delamination rate could be that at 5% carbon 

black loading the path for Na+ ion migration has become longer. Another explanation
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may be that the conductive nature of carbon means that the cathodic reduction of 

oxygen is displaced away from the metal/coating boundary into the coating, hence 

suppressing delamination [20].

4.4 Conclusions

We have shown that an increase in NIR curing efficiency or reduction in oven 

dwell time can be achieved when a NIR absorbing primer is used with the NIR cure o f a 

white top coat [3, 4]. In this scenario energy emitted from NIR curing lamps where most 

of the radiation is focused between 800 -  1200 nm, is being absorbed in the coating 

system [21].

This chapter shows a smaller increase in efficiency is also seen when cure is 

carried out in a laboratory convection oven; in this case a 5% lower peak metal 

temperature (PMT) is reached when a standard primer is used rather than a 5% carbon 

black tinted primer, with the oven set at 355 °C [4, 13]. Alternatively, oven dwell time 

can be reduced by ca. 3 secs. In this case a carbon black tinted primer is allowing an 

increase in the absorption of residual mid infrared radiation emitted from the hot walls 

of the convection oven.

Industrial coil coating convection ovens can be run in excess of 400°C, such as 

at the former Tata Steel Tafamaubach Works [22]. At these higher oven temperatures 

the increase in the non perfect black body emission from the oven walls is likely to 

result in an even greater percentage change in top coat PMT when a tinted primer is 

used. In this scenario it would be worth conducting an industrial line trial to assess the 

potential to reduce oven power settings. Polyester top coat ovens at Tata Steel Shotton 

Works, however, are commonly set to between 250 and 320 °C [23]. At these lower 

oven temperatures the potential to reduce oven power settings will be less.

Carbon black however can act as a cathode, so there is the possibility that its 

presence may drive cathodic disbondment reactions in the coating system. SKP 

disbondment studies with model PVB coatings were carried out to investigate this 

concern. The presence of carbon black was found to have little effect on the rate of 

cathodic disbondment; indeed at 5% loading there is evidence that carbon black may 

actually inhibit these reactions [13].
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Chapter 5 
The Effect of Backing Coat 

Absorbing Pigments on Top Coat
NIR Cure
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5.1 In trodu ction

We have shown that polyester coil coating top coats cure more easily with NIR 

if the top coat is relatively transparent to NIR radiation, with most o f the absorption of 

the NIR occurring at the surface o f the substrate underneath. In essence, this cures the 

coating from the bottom layer o f the coating upwards and helps to avoid solvent boil. 

Hence a white coating with titanium dioxide pigment cures with a wider cure window 

and with less problems with solvent boil than a black coating pigmented with carbon 

black [1].

Moreover this principle can be extended to show that pigmenting the primer 

layer with a 5% NIR absorbing pigment such as carbon black, results in an 18% higher 

top coat PMT during NIR cure compared to using a standard primer. In Chapter 4 it was 

shown that in convection cure a 5% higher PMT results [2, 3].

A schematic o f the layer structure o f  Tata Steel's 25 pm polyester coil coating 

system on a galvanised steel substrate is shown in Figure 5.1. The aim o f this chapter 

was to investigate whether NIR absorbing pigments could be added anywhere else in 

this coating system to obtain NIR curing energy savings.

-  20pm  Polyester  Top C oa t

— 5pm  P re - t r e a tm e n t  P r im er

HD G  o r  M agiZinc  Steel 
S u b s tra te  ( 0 . 4 -  1.2 mm)

< 0 .2pm  C h ro m e  free P re ­
t r e a tm e n t

 8pm  Backing C oa t

Figure 5.1 - Schematic of the Layer S tructure of Tata Steel’s 25 pm Polyester Coil Coating
Galvanised Steel Substrate
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Knischka et al added a ceramic NIR absorbing pigment with a high level of 

transparency in the visible region to an 80 pm dft polyester coil coating top coat applied 

onto primed aluminium or glass pane substrates. A 0.05% w/w pigment loading was 

reported to lead to more than a doubling of the NIR cure line speed when added to a 

45.0 % w/w titanium dioxide pigmented top coat [4]. However, in more recent research 

we suggest that NIR pigment additions to a top coat may increase the chance o f surface 

blistering and reduce the size o f the cure window [1]. This is likely to be particularly 

true at greater dry film thicknesses where the solvent has a further distance to travel 

before escaping.

In view of this it was decided to investigate the addition of NIR absorbing 

pigments to the backing coat o f the coil coating system. As shown in Figure 5.1, the 

backing coat is only 40% of the thickness of the top coat and therefore solvents 

escaping from the backing coat during cure will have a shorter distance to diffuse 

through the coating depth compared to with a top coat. This will mean that there should 

be a much lower chance of a backing coat blistering when NIR absorbing pigments are 

added to the coating compared to a top coat. The quality of the surface finish o f a 

backing coat and the colour specifications will also be less critical compared to that for 

a top coat. The beneficial principle o f heating the top coat from the bottom layer of the 

coating upwards is also maintained, thus helping to minimise blistering in the top coat.

The backing coat used in Tata Steel’s DVL2 coil coating product is either white 

or grey in colour, with products manufactured with a white backing coat forming the 

larger part of the sales volume. A NIR absorbing pigment with a high level of 

transparency in the visible region is therefore needed, particularly to maintain the colour 

of the white backing coat. Various NIR absorbing pigments were supplied by BASF and 

Merck for this investigation.
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5.2 Experimental Techniques

5.2.1 Polyester Coating Formulation

White and grey polyester backing coats were Akzo Nobel commercial 

formulations supplied via Tata Steel IJmuiden, as used at their DVL2 NIR curing 

production line. Three sets of the white polyester backing coats pigmented with either 

Iriotec 8840, IR202 or IR203 pigment were prepared with a range o f percentages of 

pigment up to 1% w/w using a high shear mixer at 1400 rpm. Even dispersion of the 

fine pigment powder in the paint was aided by first mixing the pigment powder to a 

paste with a little of the liquid coating. A Fineness of Grind (Hegman) gauge was used 

to check pigment agglomerates were less than 15 pm in size.

White and RAL 9006 silver polyester coatings were made up by the pigment 

paste and converter method given in Section 2.1.1.

5.2.2 NIR Curing Trials using an AdPhos NIR Oven

5.2.2.1 Single Sided Curing Trials

Panels of 0.56 pm MZ substrate (composition given in Table 2.3) were drawn 

down with white or grey polyester backing coat as described in Section 2.1.2. Samples 

were carried out in triplicate. Details of the samples are given in Table 5.1.

Table 5.1 -  Coated Samples for NIR Curing

AdPhos Oven Panel Size (mm) Backing Coat dft (pm)

Technicum 200 x 300 10+1

Lab Unit 100x200 14+1
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5.2.2.2 Double Sided Curing Trials

Additional MZ panels were drawn down with backing coat and cured as above. 

A chrome free pretreatment-primer layer (Henkel Granocoat 2840) was drawn down on 

the other side o f the panel to give a dft o f 5-7 pm after curing for 60 s in a convection 

oven at 90°C.

This primer layer was then over coated with a silver polyester top coat (Beckers 

RAL 9006 NIR formulation) to give a dft o f 15-17 pm when cured using the AdPhos 

Technicum NIR Oven. The thermocouple was spot welded to the top side o f the panel, 

with the experimental configuration shown in Figure 5.2.

P an e l  c o a te d  w ith  
p r im e r  an d  to p  co a t

P an e l  c o a ted  
w ith  p r im e r

U n c o a te d  panel

T e c h n ic u m  
sa m p le  h o ld e r

T h e r m o c o u p le  a t ta ch e d  to 
to p s id e  o f  su b s tra te  panel

H e a tp r o o f  tape

Figure 5.2 - Schematic Showing Coated Panel in Technicum Sample Holder (U nder Side
of Panel Coated with Backing Coat)

The final set o f Technicum experiments involved panels with a double draw 

down o f backing coat pre-cured in a convection oven at 370°C. H alf o f the back o f the 

panel was coated with non-pigmented white backing coat and the other half coated with 

pigmented backing coat (either 0.5 or 1.0% wt. IR202), as shown in Figure 5.3. The aim 

o f this experiment was to make a direct comparison within one panel o f the PMT 

reached by a top coat on either side o f the panel.
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IR202 pigmented Non-pigmented
white backing coat white backing coat
(0.5% or 1.0%)

Figure 5.3 - Schematic showing Back of Substrate Panel w ith a Double Draw Down of
W hite Backing Coat

White polyester top coat (formulation given in Section 2.1.1.2) was draw down 

on the front side o f the panels to give a dft o f 17-18 pm. With a line speed o f 9 m/min, 

lamp settings were optimised for white top coat cure at 65%, 0% and 75% power in 

zones 1, 2 and 3 respectively. Twelve replicates o f samples were run.

The temperatures o f the panels were monitored during the cure process by data 

loggers recording data from K type thermocouples spot welded to the front o f the panel, 

close to the top coat and is shown in Figure 5.4. The Technicum ’s data logger only has 

one data channel so additional data was acquired using a Grant Instruments Squirrel 

data logger. The Squirrel data logger collected data from the pigmented and non- 

pigmented side o f the panel, whilst the Technicum’s data logger collected data from the 

pigmented side. One piece o f heat resistant tape was placed over each thermocouple 

spot weld and also over the thermocouple wires near to the panel edge, to give extra 

strength to the spot weld.
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T h e rm o c o u p le s  w ith  
p ig m e n ted  b a ck in g  c o a t  on  
the  u n d e rs id e  o f  the  panel

T h e rm o c o u p le  w i th  n o n -  
p ig m e n ted  b a ck in g  co a t  on 
the  u n d e rs id e  o f  the  panel

S po t  w e ld ed  
th e rm o c o u p le s  
secu red  by  h igh  
t em p e ra tu re  tape

W h ite  to p  co a t

Figure 5.4 - Schematic Showing Front of Substrate Panel Drawn Down with W hite Top
Coat

5.3 Results and Discussion

5.3.1 C o m p ariso n  o f W hite and  G rey  B acking  C oats using the A dPhos 
N IR  L ab  U nit and  A dPhos T echnicum

Initial experiments involved the investigation o f white and grey backing coats on 

the back o f MZ substrate panels, to see how the backing coat affected the temperature 

reached by the uncoated top coat side o f the panel during NIR cure. UV-Vis-NIR 

reflectance spectra o f an uncoated MZ panel and panels coated with white backing coat 

or grey backing coat are shown in Figure 5.5. The panel coated with grey backing coat 

has the lowest reflectance (highest absorption) in the NIR region, and if  used as a 

backing coat during NIR cure could be expected to have a greater ability to increase the 

PMT reached by the top coat compared to the white backing coat. Note that the step 

change in reflectance at ca. 860 nm in all spectra can be attributed to a changeover in 

the spectrophotometer’s detector.
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 MZ
“ “ White Backing Coat 

~ ~ G r e y  Backing Coat
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W a v e le n g t h  (n m )
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Figure 5.5 - UV-Vis-NIR Reflectance Spectra of MZ, W hite Backing Coat and Grey
Backing Coat

A set o f curing experiments were carried out in an "upside down’ configuration 

on both the AdPhos NIR Lab Unit and the AdPhos Technicum. Panels o f either bare 

MZ, or MZ panels coated with white or grey backing coat were irradiated with the top 

set o f lamps only and the temperature o f the underside o f the panel measured with a 

spot welded thermocouple. As the experiments were ‘upside down" experiments the 

topside o f the panel (irradiated side) represented the backing coat o f the coating system, 

and the temperature recorded by the thermocouple represented the temperature that a 

top coat would be able to reach when different backing coats are used. The white and 

the grey backing coats were coated at a dft of 1 5 ± l p m  for both oven cures. The 

temperatures reached by the top coat side o f the substrate are shown in Figure 5.6; both 

curing ovens show a trend o f increasing temperature on the topside o f the panel on 

changing from uncoated MZ on the back o f a panel, to coating with a white backing 

coat, to coating with a grey backing coat. A direct comparison o f PMT cannot be made 

between the same backing system cured with the two different ovens due to the different 

lamp zone configurations and extraction systems o f the two ovens, and different NIR 

lamp power settings and substrate panel sizes being used. The lamp power settings and 

coating thickness for each coating cured on the same oven were the same. However,
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both sets o f experiments show broadly the same relative increases in temperature 

comparing substrate panels with backing coat to bare substrate panels, as shown in 

Table 5.2. This is consistent with the reflectance spectra.

300

250

200

150

I IJmuiden Technicum  
I SPECIFIC NIR Lab Unit

a .
E
£ 100

50

B are  M Z W hite  B a ck in g  C o a t G re y  B a ck in g  C o a t

Figure 5.6 -  Tem perature Reached during NIR C ure by the Top Coat Side of Substrate 
Panels, with Three Different Backing Systems

Table 5.2 -  Com parison of Relative T em perature Increases during NIR C ure with
Different NIR Ovens

Curing Oven %  tem perature increase %  tem perature increase

with white backing coat with grey backing coat

compared to bare MZ com pared to bare MZ

Technicum 36 87

Lab Unit 26 61

A RAL 9006 silver metallic coloured top coat was then cured from the back 

with a grey backing coat using the AdPhos Technicum. and reached a temperature 55°C 

higher than the same top coat cured at the same line speed and lamp settings with a 

white backing coat as shown in Figure 5.7. Moreover, the RAL 9006 top coat with the
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grey backing coat had become over cured exhibiting fine micro-blistering. This 

experiment shows that a backing coat with reasonable absorption in the NIR, such as the 

grey backing coat, is able to significantly influence the PMT reached by a top coat 

during cure. This equates to the cure time o f the silver metallic coloured top coat being 

reduced by ca. 34% when a grey backing coat is used rather than a white backing coat.

300 j
Fine micro blistering  
MEK DR = 100 

PM T =244° _____250

r  200

N o  blisters 
MEK DR =  95

c.
PM T =189°

“ “ Grey Backing Coat 

— W hite Backing Coat

Line speed =  7 m/min

5000 7000 9 000 13000  

T im e (ms)

1500011000 17000 19000 21000 23 0 0 0

Figure 5.7 - RAL 9006 Top Coat Cured from the Back with W hite and Grey Backing 
Coats using the Same NIR Lamp Power Settings and Line Speed

Similar experiments were carried out using the AdPhos NIR Lab Unit. This time 

no thermocouples were attached, but a visual comparison o f the panels was made, 

curing the panels at the same line speed and lamp power settings. The panel with the 

grey backing coat gave the most heavily blistered top coat, followed by the bare MZ 

panel and then the white backing coat panel, as shown in Figure 5.8 and Figure 5.9.
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Figure 5.8 -  Underside of Substrate Panels, Cured with Same NIR Settings 

Grey Backing Coat (Left), Bare MZ (Middle) and W hite Backing Coat (Right)

Figure 5.9 -  Corresponding Substrate Panel Topside (from 

Figure 5.8), Cured with Same NIR Settings 

with Silver Top Coat 

Note the Increasing Level of Blistering on moving from Right to Left
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The heavier blistering o f the top coat cured with a bare MZ underside surface 

compared to that with a white backing coat could be attributed to the relatively low 

emissivity o f a metal surface such as MZ [5].

A comparison was made between RAL 9006 silver top coats cured from the 

back o f the panel and is shown in Figure 5.10. In this set o f experiments a white backing 

coat was used. The amount o f NIR irradiation supplied was the same (NIR lamps in all 

three zones set to 100% with a line speed o f 7 m/min), but the thickness o f the top coat 

was varied.

300 i

—  10 m icrons dft top coat
100 MEK D ouble Rubs

250 -- —  14 m icrons dft top coat

— 16 m icrons dft top coat (20%  power added, zone 1)

t  200
80 MEK D ouble Rubs

150

100 MEK D ouble Rubs

All panels blister free

17000 9000 21000150007000 9000 1000 3000
T im e (ms)

Figure 5.10 -  Typical Cure Profiles for Silver Top Coat Cured from the Back of the Panel
with a W hite Backing Coat

These experiments show that the cure is sensitive to the thickness o f the top 

coat. The effect o f increasing the thickness o f the coating from 10 pm to 14 pm reduces 

the number o f MEK double rubs achieved from 100 down to 80. The state o f the cure 

was then restored back to 100 double rubs by adding an additional small amount o f 

power (20%) from the front o f the panel in zone 1 o f the Technicum. All panels in these 

experiments were blister free. Increasing the thickness o f the coating will increase the 

amount o f aluminium flake present in the coating, hence increasing the PMT reached. 

There will also be more solvent present, which will have a greater distance to diffuse 

through the thicker coating to evaporate at the coating surface.

153



5.3.2 Effect of Additions of NIR Absorbing Pigment to the White 
Backing Coat on Top Coat Cure

Three different NIR absorbing pigments were investigated; Iriotec 8840 (Merck) 

and IR202 and IR203 (BASF). Iriotec 8840 is a copper hydroxide phosphate, formula 

Cu3(P0 4 )2*Cu(0 H)2  and is marketed as a laser marking additive for polymers using 

fibre, YAG and vanadate lasers operating in the 1060 - 1070 nm region o f the 

electromagnetic spectrum [6], This wavelength range is close to the maximum 

wavelength of emission for the Adphos emitters, 980 nm. IR202 and IR203 are 

developmental doped metal oxide pigments, produced by BASF as NIR absorbing 

pigments to aid NIR cure.

The white backing coat used on Tata Steel’s DVL2 production line was prepared 

with various additions o f Iriotec 8840, IR202 or IR203 pigment ranging from 0.1 -  1.0 

% wt. As the BASF pigments were developmental pigments, no information was 

available about their formula or density so pigment additions were made on a 

percentage weight basis.

UV-Vis-NIR reflectance spectra o f the Iriotec 8840 cured coating panels are 

given in Figure 5.11 and show that at these percentage weight additions Iriotec 8840 

produces a negligible change in the NIR absorption of the white backing coat. The 

IR202 and IR203 pigments, however, have a greater effect on the NIR absorption o f the 

coating at the same weight percentages as shown in the UV-Vis-NIR reflectance spectra 

in Figure 5.12. IR202 pigment produces the greatest increase in the NIR absorption of 

the coating, as shown in Figure 5.13.
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Figure 5.11 - UV-Vis-NIR Reflectance Spectra of Cured Backing Coat Panels with Various
Additions of Iriotec 8840 Pigment

100
W hite Backer
0.1% w t. IR203 in White Backer 
•0.1% wt. IR202 in White Backer 
1.0% wt. IR203 in White Backer 

■0.5% wt. IR202 in White Backer 
1.0% wt. IR202 in W hite Backer 
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NIR
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Figure 5.12 - UV-Vis-NIR Reflectance Spectra of Cured Backing Coat Panels with Various
Additions of IR202 & IR203 Pigments
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% Wt. Pigment in W hite Backing Coat

Figure 5.13 -  Percentage Increase in the NIR Absorption of a W hite Backing Coat with %
Wt. Additions of IR202 & IR203 Pigments

The addition o f IR202 to the white backing coating results in a coating with a 

much lower transparency in the NIR compared to a coating pigmented with Iriotec 

8840; however IR202 additions also reduces coating transmission in the visible and IR 

regions, as shown in the UV-Vis-NIR transmission spectra in Figure 5.14.

100
"“ White Backer

NIR
— 0.10%vvt. Iriotec in W hite Backer

80 - “ 0.25%  wt. Iriotec in White Backer

0.50%  wt. Iriotec in White Backer

0.75%  wt. Iriotec in White Backer
60

.00% wt. Iriotec in W hite Backer

” 0.50%  wt. IR202 in White Backer

40 - “ 1.00% wt. IR202 in White Backer

20

400 900 1400
Wavelength (nm)

1900 2400

Figure 5.14 - UV-Vis-NIR Transm ission Spectra of Free-standing Films of W hite Backing 
Coat with Various Additions of NIR Absorbing Pigments
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Figure 5.15 shows that the addition o f only 0.1% w/w IR202 pigment to a white 

backing coat has the effect o f reducing the NIR transmission o f the white coating to a 

level which is about equidistant between that o f an un-pigmented white backing coating

and a grey backing coating.

100

Near Infra Red

80

40

— 'White Backing Coat

20
— White Backing Coat + 0.1%  wt. 1R202

“ “ Grey Backing Coat

400 900 1400
W a v e le n g th  (nm )

1900 2400

Figure 5.15 - UV-Vis-NIR Transm ission Spectra of Free-standing Films of W hite Backing
Coats and Grey Backing Coat

Figure 5.12 shows that in the visible region (wavelength 380 -  780 nm), 

additions o f 0.1% wt. IR202 or IR 203 pigment produce very little change to the white 

backing coat reflectance spectrum. However, at a 1.0% wt. loading reflection is 

noticeably reduced. This is reflected in the Delta E* colour difference chart shown in 

Figure 5.16; with a Delta E* o f ca. 1.0 a 0.1% wt. pigment loading o f  IR202 has a 

negligible effect on the colour o f the white backing coat.
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Figure 5.16 - Change in W hite Backing Coat Colour with NIR Absorbing Pigm ent (IR202)
Content

The conclusion from these transmission and reflectance spectra results is that the 

IR202 pigment is likely to have the greatest potential o f the three NIR pigments to 

increase the PMT reached by a top coat when used as a pigment addition in the backing 

coat, due to its greatest ability to absorb in the NIR region. IR202 pigment will have 

negligible effect on the colour o f a white backing coat at 0.1% w/w addition.

A quick initial test o f the likely effect on white top coat PMT, when NIR 

absorbing pigment is added to a white backing coat coated on the underside o f the 

substrate panel was carried out using an AdPhos NIR Lab Unit. The temperature o f  the 

top coat side o f the MZ substrate panel was measured by a thermocouple, with a white 

backing coat with increasing percentages o f NIR absorbing pigments IR 202 and IR 203 

coated on the underside. The results o f these solo experiments are given in Figure 5.17 

and show an increase in top coat PMT as the percentage o f pigment in the backing coat 

is increased. IR202 gave a 42% increase in PMT at 1% weight addition, whilst IR203 

gave a 28% increase.
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Figure 5.17 - PM T reached by a W hite Top Coat with Increasing W eight Percentages of 
NIR Absorbing Pigment in the Backing Coat, using AdPhos NIR Lab Unit Oven

As the IR 202 additions have the greater effect on raising top coat PMT, this 

pigment was investigated further by curing trials performed with the AdPhos 

Technicum oven.

The next set o f experiments used a double draw down o f IR202 pigmented and 

non-pigmented backing coat, so that two top coat PMT values could be recorded for 

each curing trial; one for a top coat cured with a non-pigmented backing coat on the 

underside and one with an IR202 pigmented baking coat on the underside. The double 

draw down will reduce variability in the recorded PMT caused by between run 

variability in backing coat and top coat thicknesses and Technicum Oven starting 

temperatures, all which can influence PMT. Schematics o f the experimental set up are 

shown in Figure 5.3 and Figure 5.4.

Figure 5.18 shows that the temperature differential between the two sides o f the 

panel remains constant following the immediate exit o f the panel from the NIR oven. 

This would suggest that the PMT readings are not cross influencing each other by 

conduction through the substrate panel.

Previous work has shown that the Technicum Oven does not produce a uniform 

temperature profile across a substrate panel, most likely caused by uneven airflow
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within the Technicum during the heating process [7]. Two thermocouples were hence 

spot welded close to one another on the pigmented side o f the panel to assess the 

variability of temperature across the panel.

A further check on the repeatability o f the recorded PMT values was made by 

re-running already cured panels through the Technicum again, with thermocouples left 

in place. From 12 sets of data for dry reruns of wet paint systems, the modal average of 

the difference was +3°C with a standard deviation of 8.9. This slight increase in PMT 

for a dry paint system is consistent with that found by previous research and could be 

accounted for by the energy required to evaporate solvents from the wet paint system

[7].

The double draws down experiments were carried out with 0.5% and 1.0% wt. 

additions of IR202 to the white backing coat. First, oven line speed and lamp power 

settings were adjusted so that the white top coat passed a 100 MEK rub test and was 

blister free. The average PMT recorded for the white top coat was 186°C, below the 

PMT range specified for the convection cure of a polyester (216 - 230°C), but the top 

coat was checked again by a MEK 100 rub test and deemed to be cured. Previous 

research has observed similar low PMTs during NIR cure [1, 8], which were confirmed 

to be cured by FTIR peak ratio measurement [3]. The short time of NIR cure means that 

there is not much time for the coating and metal substrate to equilibrate and hence PMT 

values for NIR cure must be used with caution. It is likely the top coat is reaching a 

higher temperature than that recorded for the metal substrate. The white top coat 

increases in PMT by ca. 34°C when cured with 0.5% wt. addition IR202 and by ca. 

46°C when cured with 1.0% wt. addition, at the same oven power settings and line 

speed and summarised in Figure 5.19. These differences in PMT show that there is 

potential for a white top coat to be cured at lower NIR lamp power settings when IR202 

pigment is added to the backing coat, compared to no IR202 pigment being present. 

Expressed alternatively, the cure time of a white top coat reduces from ca. 9 to 7 

seconds when 1% wt. IR202 is added to the backing coat, equivalent to an increase in 

line speed of ca. 23%. This is summarised in Table 5.3.
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Figure 5.18 - Tem perature Profile of Top Coat PM T Showing Differential between 
Pigmented and Non Pigmented Side of the Panel

0% wt. IR202 Pigment 0.5% wt. IR202 Pigment 1.0% wt. IR202 Pigment

Figure 5.19 -  Difference in W hite Top Coat PM T with Different Percentage W eights of 
NIR Pigment in the Backing Coat, using a Double Draw Down of Backing Coat
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Table 5.3 -  C ure Time for W hite Top Coats with 0% and 1.0% wt. 1R202 Pigm ent in the
Backing Coat

Sample White Top Coat C ure Time (secs)

0% wt. IR202 in backing coat 9.2

1.0% wt. IR202 in backing coat 7.1

Further evidence o f the increased temperature reached by a white top coat cured 

with a NIR absorbing pigmented backing coat is observation o f yellow discolouration in 

the white top coat on that side o f the cured panel, and is shown in a schematic in Figure 

5.20. The yellow discolouration gives a DE* (CIE 1994) o f 1.6 ± 0 .1.

T h erm ocoup le s  
with p igm ented  
backing coat on 
the u nde rs ide  of 
the panel

T h erm o co u p le  
with non 
p igmented  
back ing  coat on 
the  unders ide  
o f  the  panel

Visible 
yellowing 
o f  white  
top coat 
post cure

B o u n d a ry  m ark in g  non p igmented  & pigmented  
back ing  coat on the  unders ide  of the  panel

Figure 5.20 - Visible Yellowing of W hite Top Coat C ured over the IR202 Pigmented

Backing Coat

Two measurements can be compared as percentage loading o f NIR pigment in 

the backing coat is increased: top coat PMT and backing coat NIR absorption. Figure
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5.21 shows a comparison o f this sort for the Technicum experiments given in Figure 

5.19. Only a limited number o f data points are available here, but future work could 

investigate a ladder o f  pigment loadings to see if the NIR absorption o f the backing coat 

could be used to predict top coat PMT. This would allow the amount o f pigment added 

to the backing coat to be optimised, also taking into account pigment cost and NIR oven 

energy saving costs. More meaningful results would be obtained from this experiment 

with pigment loading expressed as a pigment volume concentration (PVC). The PVC is 

the volume percent o f pigment in the dry film, with a volume relationship controlling 

many o f the physical and optical properties o f coatings [9].
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Figure 5.21 -  Effect of Backing Coat NIR Pigment Loading on Backing Coat NIR 
Absorption (780-1500 nm) and Top Coat PM T

5.4 Conclusions

We have previously shown that NIR curing efficiency can be increased when a 

NIR absorbing primer is used with the NIR cure o f a white top coat [1], and this chapter 

has shown that the principle o f heating a top coat from the bottom upwards to minimise 

solvent boil can be extended further by moving the locus o f high absorption o f NIR in 

the coating system from the primer layer to the backing coat.

Backing coats in coil coating systems are thinner ( 8 - 10  pm dft) than top coats 

(20 pm dft). It therefore made sense to add NIR absorbing pigments to the thinner
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backing coat rather than the thicker top coat. This is because if the NIR absorbing 

pigments were added to the thicker top coat coating, the greater heating o f the surface 

layers of the coating caused by the addition of the pigments could cause the surface 

layer to reach polyester cross-linking temperatures before the solvent in the lower layers 

o f the coating has had time to escape. A thinner coat will have less solvent to remove, 

so this can be achieved in a shorter space of time and hence reduce the risk o f solvent 

boil.

The results showed that a silver coloured polyester top coat could be cured by 

NIR with a line speed ca. 34% faster when a grey backing coat is used rather than when 

a white backing coat is used, due to the greater absorption o f NIR by the grey backing 

coat. There is potential to translate these laboratory based increases in line speed to 

Tata Steel’s NIR DVLA coil coating line where both grey and white backing coats are 

used with the line’s coil coating system. Further work in the form of an industrial line 

trial would need to be carried out to assess the exact magnitude o f the change in line 

speed possible, as the industrial NIR oven has a greater forced air flow than the AdPhos 

laboratory oven. An alternative to increasing line speed would be to reduce the power 

settings of the industrial oven. Further work could assess these reduced power settings 

in a laboratory oven, followed by an industrial line trial.

In a similar way, NIR absorbing pigment additions to the backing coat were also 

able to increase the PMT reached by the top coat. UV-Vis-NIR spectroscopy was used 

to identify the most promising pigment, IR202, which at 1% wt. addition to a white 

backing coat increased the temperature reached by a white top coat cured by an Adphos 

Technicum oven by 46°C, compared to a non pigmented backing coat cured under 

identical oven conditions. This increase in PMT equated to the potential to increase the 

line speed by ca. 23% when 1% wt. IR202 was added to the backing coat.

The IR202 pigment did however reduce visible reflectance more than the Iriotec 

8840 pigment at the same pigment loading, with additions of more than ca. 0.1% w/w 

IR202 to the white backing coat being sufficient to fail an industrial quality control 

colour inspection (delta E* > 1). An assessment will have to be made of how much 

change in backing coat colour can be tolerated by customers. Further work to assess 

pigment impact on coating durability by means of accelerated weathering tests will also 

need to be carried out.
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Chapter 6 
The Effect of Modification of Silver 

Coloured Polyester Coating 
Formulation on NIR Cure
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6.1 In trod u ction

Organically coil coated steel is used extensively in the construction industry, 

with architects calling for a range o f colours as illustrated in Figure 6.1.

Figure 6.1 -  Sustainable Building Envelope C entre, Tata Steel Incorporating a Range of
Coloured Coil Coated Steel (1 j

In the polyester coil coated market, white polyesters account for a third o f the 

sales volume, metallic silver grey colours a further third, and with other colours making 

up the final third sales volume [2], Silver metallics hence form a significant proportion 

o f the market, however previous work has shown that these colours are the most 

difficult to cure with a NIR oven [3].

Mabbett investigated silver metallic polyester coatings with aluminium flake as 

the sole pigmenting agent. UV-Vis-NIR spectroscopy studies showed that transmission 

through an aluminium flake polyester free standing coating film remained at less than 

5% across the whole UV-Vis-NIR region, whilst reflectance from the coating surface 

was ca. 50% with a drop in reflectance in the region o f 800 nm attributed to absorption 

by the aluminium flake [3]. Silver polyesters o f this type could not be cured using the 

AdPhos NIR Lab Unit; curing trials resulted in panels that were blistered but were also 

under cured as they did not pass a MEK double rub test. This is indicative o f a very 

small cure window where the coating solvents have not had sufficient time to escape
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before cross-linking commences. In response to this the paint manufacturer was able to 

supply a formulation with the highest boiling point solvent omitted from the 

formulation and a cross-linking catalyst which unblocked at a higher temperature. These 

changes gave a less blistered but still under cured product with the AdPhos NIR Lab 

Unit, although a less blistered but cured product was achieved with the more 

sophisticated AdPhos Technicum [3].

Conclusions from Mabbett’s research were that during NIR cure, although a lot 

o f NIR radiation is likely to be reflected at the surface of an aluminium flake pigmented 

coating, a lot of the remaining NIR is being absorbed in the top layers o f the coating by 

the aluminium flake and leading to blistering [3]. Although formulations with a lower 

boiling blend o f solvents and a slower catalyst have improved NIR cure, it is unlikely 

that these changes alone will enable silver polyesters to be NIR cured on an industrial 

line where a reasonable sized cure window is needed.

The aim of this work was hence to investigate whether the NIR cure o f silver 

polyester coatings can be further improved by replacing the aluminium flake with 

alternative pigments that absorb less strongly in the NIR region, but which maintain the 

visual appearance of the silver coating.

The starting point for this work was to compare the NIR cure of silver polyester 

coatings (RAL 9006) supplied by two competing paint manufacturers (Manufacturer A 

and Manufacturer B). The coatings investigated were the manufacturers’ optimised 

formulations for NIR cure. Modifications were the incorporation of a lower boiling 

point solvent blend and a slower catalyst, although due to commercial sensitivity exact 

details of the formulation modifications were not disclosed by the manufacturers.

This was then followed by investigations of the replacement o f the aluminium flake in 

the coating formulation by less absorbing coated glass flake and coated mica flake.
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6.2 Experimental Techniques

6.2.1 Polyester Coating Formulation

Polyester coatings were made up by the pigment paste and converter method 

given in Section 2.1.1 and using the pigments given in Table 6.1. The coatings 

formulations are given in Table 6.2 and Table 6.3. The converter gloss shown in Table

6.3 contained polyester resin, catalyst, some solvent and small amounts o f any additives 

needed to increase the curing and casting capabilities o f the coatings.

Table 6.1 -  Pigments for Polyester Coatings

Pigment name Manufacturer Chemical type Description

STAPA® Mobilux R187 Eckart Aluminium flake Aluminium flake paste

65% Aluminium flake

35% volatiles

dlO = 11 pm; d90 = 45

pm

Phoenix® PX 3001 Eckart Coated Mica 

flake

Free flowing powder 

Mica coated with Rutile 

TiC>2 & SnC>2 

5 - 2 5  pm particle size

Luxan C001 Eckart Coated Glass 

flake

Free flowing powder 

Glass flake coated with 

Ti02 & SnC>2 

15 -  60 pm particle size
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Table 6.2 - Mica Flake Polyester Coatings Formulations

A1 coating Al/Mica coating Mica coating

% wt. Flake in coating 4.55% A1 2.28% A1 

3.5% Mica

7% Mica

% wt. Synolac 9605 S 65 

(polyester resin)

50 50 50

% wt. Luwipal 066 LF (cross 

linking agent)

5.5 5.5 5.5

% wt. Crayvallac Flow 200 (flow 

agent)

0.6 0.6 0.6

% wt. Dynapol 1203 (catalyst) 1 1 1

% wt. NIR solvent blend 

(66.7% solvent naphtha 180/210, 

33.3% solvent naphtha 160/180)

34.4 34.4 34.4

% wt. Pergopak M4 

(matting agent)

1.5 1.5 1.5

% wt. STAPA® Mobilux R187 

(Aluminium pigment)

7 3.5 0

% wt. Phoenix® PX 3001 

(Mica pigment)

0 3.5 7
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Table 6.3 - Glass Flake Polyester Coatings Formulations

A1 coating Glass Flake 
coating (1)

Glass 
Flake/A1 
coating

Glass Flake 
coating (2)

Glass Flake 
coating (3)

% wt. Flake 

in coating

3.9 %A1 3.9% Glass 

Flake

3.9% Glass 

Flake + 

0.5% A1 

Flake

10% Glass 

Flake

20% Glass 

Flake

% wt.

Converter

gloss

86 86 86 80 70

% wt. 

STAPA® 

Mobilux 

R187

(A1 pigment)

6 0 0.8 0 0

% wt. 

Solvent 

naphtha 

180/210

8 10.1 9.3 10 10

% wt.

Luxan C001 

(Glass flake)

0 3.9 3.9 10 20
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6.2.2 NIR Curing Trials using an AdPhos Technicum NIR Oven

Manufacturers A and B supplied RAL 9006 polyesters with formulations 

modified for NIR cure Panels were cured using an AdPhos Technicum NIR oven at 

Tata Steel’s IJmuiden site. Substrate panel size was 210 x 300 mm 0.58 mm HDG 

primed with Henkel Granocoat 2840 pretreatment-primer.

Mica and glass flake substituted silver metallic polyesters (dft 19+1 pm) were 

cured using an AdPhos Technicum NIR Oven at BASF’s Deeside site. Substrate panel 

size was 150 x 200 mm 0.47 mm unprimed MZ. Samples were carried out in duplicate.

172



6.3 Results and Discussion

6.3.1 Comparison of the Cure of Silver Polyester Coating Formulations 
Modified for NIR Cure

A Technicum NIR oven line speed of 10.5 m/min (equivalent to an industrial 

line speed of 123 m/min on Tata Steel’s DVL2 industrial line) and a dry film thickness 

o f 20 pm were chosen as an initial starting point for this investigation as they represent 

typical industrial conditions. The aim was, for a given line speed and coating thickness, 

to compare the relative cure windows of two paint manufacturers’ RAL 9006 silver 

polyester coating were the formulations had been optimised for NIR cure. Optimisation 

of the formulations involved omission of higher boiling point solvents from the solvent 

blend and higher temperature cross-linking catalysts, but further details than this were 

not provided by the paint manufacturers due to commercial sensitivity.

Cure window is defined by the lower and upper cure limits. The lower cure limit 

can be defined as occurring at oven power settings which enable a coating to cure and 

pass a 100 double rub MEK test. The upper cure limit can be defined as occurring at 

oven power settings where the coating first becomes over cured and blistered.

The Adphos Technicum NIR oven has three power zones, zone 1, 2 and 3, as shown in 

Figure 6.2.
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Figure 6.2- Schematic of AdPhos Technicum NIR Oven Showing the Position of the Three
Oven Zones

Zone 1 corresponds to the zone where the majority o f the first stage of the NIR 

cure mechanism is happening; the removal o f solvent from the system. The temperature 

then rises at a slower rate in zone 2 to allow solvent evaporation to complete before 

cross-linking starts. This can often be achieved by setting the zone 2 NIR lamps (lamps 

3 and 4 in Figure 6.2) to 0% power. Lamp powers are then set to allow a higher 

temperature in zone 3 to achieve cross-linking of the polyester. Profiling o f the 

temperature of the NIR cure in this way allows the two stages of the cure mechanism to 

be distinct and helps to reduce the occurrence o f solvent boil, where solvent is still 

being removed through an already cross-linked coating creating blisters.

The initial starting point for the curing trials with a 20 pm dft coating gave an 

under cured coating with a dense covering of fine blisters with the power settings in 

zones 1, 2 & 3 set at 100%, 50% and 30%. The PMT reached was only 172°C and the 

coating failed a double rub MEK test. A higher power is therefore needed in zone 3 to
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increase the PMT. The problem with increasing zone 3 power in a coating which 

already shows a combination o f blistering and under curing, is that blistering is likely to 

get worse if zone 3 power is increased. Under these cure conditions the coating is 

showing the sign o f there being no separation o f the upper and lower cure limits.

A decision was therefore taken to investigate the conditions for a cure window 

using a thinner coating o f 19 pm dft. Previous work has shown that cure windows are 

wider on thinner coatings as there is less solvent present and the solvent has a shorter 

distance to diffuse to the surface and be removed [3].

The difficulties associated with the NIR cure o f RAL 9006 silver polyester 

(Manufacturer A) o f 19 pm dft are summarized in Figure 6.3 and Table 6.4.

Entry into Zone , Zone 2 Zone 3 Exit from 
Technicum Technicum

350
% Power

300

 100 :5C :80 (19 microns)

250 - -
100:0 1 00 (19 microns)

Uo
200 -  100:30 : 100 (19 micrans)

150   100 : 20 : 100 (15 micrans)
a*a.
E
£ 100

7000 9000 1700011000 13000 15000 19000
Time (ms)

Figure 6.3 -  NIR Curing profiles of RAL 9006 Polyester (M anufacturer A)
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Table 6.4 -  Comparison of Cure Conditions of M anufacturer A’s RAL 9006 Polyester

Profile Coating

Thickness(pm)

% Power 

Zones 1:2:3

100 MEK 

DR Test

PMT

(°C)

Red 19 100 50 80 Pass 222

Blue 19 100 0 100 Fail 177

Green 19 100 30 100 Pass 227

Amber 15 100 20 100 Fail 204

The red cure profile in Figure 6.3 produced an over cured coating above the 

upper cure limit, because although a MEK double rub test was passed as shown in Table

6.4, the coating surface also had a considerable number o f blister as shown in Figure

6.4. Closer inspection o f the red cure profile in Figure 6.3 shows a fairly steep 

temperature gradient in zone 2, and this could be contributing to the cross-linking 

process starting too early during the cure. Action needs to be taken to further separate 

the two stages o f the cure mechanism; solvent removal and polyester cross-linking. To 

this end the power in zone 2 was dropped from 50% to 0% and the power in zone 3 

increased slightly from 80% to 100% with the aim o f reducing the temperature gradient 

in zone 2 whilst still maintaining the final PMT reached.

Figure 6.4 -  Cured Coating Produced from the Red C ure profile in Figure 6.3
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The resulting cure profile is the blue profile in Figure 6.3, which shows that the 

temperature gradient in zone 2 has indeed dropped, but so too has the PMT reached by 

the end of zone 3, by some 45°C. The coating is now under cured as evidenced by the 

failed MEK rub test in Table 6.4, although the size and number o f surface blisters has 

decreased, as shown in Figure 6.5. Figure 6.3 also shows that the temperature o f  the 

blue cure profile is very low at the end o f zone 1, suggesting insufficient solvent has 

been removed from the coating at this stage.

Modifications to the three zone lamp settings o f the blue profile now need to be 

made to increase the PMT. As the lamps are currently set at 100%, 0% and 100% 

power, the only means o f increasing PMT is to put some power back in to zone 2 as 

zone 3 is already set at 100% power. Zone 2 is hence increased from 0% to 30% with 

the resulting profile for this modification being the green profile in Figure 6.3. PMT has 

increased as planned, but the quantity and size o f defects has increased significantly too, 

as shown in Figure 6.6. The temperature gradient o f zone 2 has increased and also the 

temperature reached by the end o f zone 1.

1 mm

Figure 6.5 - Cured Coating Produced from the Blue C ure profile in Figure 6.3 showing a 
Decrease in the Size and N um ber of Blisters Com pared to Figure 6.4
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These three cure trials illustrate the difficulty o f achieving a cure with 

aluminium flake pigmented polyester coatings. The curing process produces coatings 

that are blistered regardless o f whether they pass a MEK double rub test or not; this 

suggests that the top most layer o f the coating is reaching a higher temperature than the 

layer underneath. Cross-linking occurs rapidly in the top most layers, leaving solvent in 

the layers underneath with inadequate time to escape. Attempts to reduce the 

temperature reached by the top most layer results in the underlying layers not reaching a 

sufficiently high temperature to fully cross-link.

Figure 6.6 - Cured Coating Produced from the Green C ure profile in Figure 6.3 Showing 
an Increase in the Size and N um ber of Blisters C om pared to Figure 6.5

A final curing trial investigated the cure o f a thinner coating. This time the dry 

film thickness was reduced to 15 pm. Fifteen microns is the very lowest top coat 

thickness that coil coaters deem as acceptable for an architectural polyester coil coating; 

standard coating build is a twenty five microns coating system comprising five microns 

pretreatment-primer and twenty microns top coat. There is scope to increase 

pretreatment-primer thickness to eight microns, which would then give a total coating 

build o f twenty three microns. The amber profile in Figure 6.3 and associated figures in 

Table 6.4 show that the coating fails a MEK double rub test, but is still blistered, as 

shown in Figure 6.7.
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Figure 6.7 -  Cured Coating Produced from the Am ber C ure profile in Figure 6.3

A direct comparison was then made between the NIR cure o f M anufacturer A 

and Manufacturer B’s RAL 9006 silver polyester coating. These formulations 

represented each m anufacturer's best attempts to modify the formulation for NIR cure 

by changing the solvent blend and catalyst. The two competing formulations were 

drawn down on the same substrate panel and cured using the cure conditions for the 

amber profile in Table 6.4. Examples o f this direct comparison are given in Figure 6.8, 

Figure 6.9 and Figure 6.10. Manufacturer A and M anufacturer B ’s coatings failed a 

MEK double rub test and blistered, but the extent and size o f  blistering with 

Manufacturer A was substantially greater.

These initial experiments have indicated that modifications to the solvent blend 

and catalyst o f aluminium flake pigmented polyesters are unlikely to produce coatings 

with the capability o f having an adequate NIR cure window on the industrial line, 

although manufacturer B’s formulation is getting close to an acceptable finish. It should 

also be born in mind that these experiments were conducted at a line speed equivalent to 

an industrial line speed o f just over 120 m/min, whilst Tata Steel’s NIR coil coating 

line, DVL2 has the capability o f operating at speeds o f up to 180 m/min. Further
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modifications to the formulation are required, so the next step o f this work was to try 

replacing the aluminium flake with a less absorbing pigment that would have the 

capability o f producing the same visual effect as aluminium flake. The two pigments 

chosen for investigation were metal oxide coated mica pigment and metal oxide coated 

borosilicate flake (glass flake) pigment; both o f these are special effect pigments used to 

create pearl luster coatings. Metal oxide coated synthetic mica pigments have been used 

in automotive coatings since the mid 1980's and metal oxide coated glass flake pigment 

since 2002 [4-6].

Figure 6.8 -  Direct comparison of NIR Cure of RAL 9006 Silver Polyester; M anufacturer
A on Left, M anufacturer B on Right
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Figure 6.9 - NIR C ure of RAL 9006 Silver Polyester (M anufacturer B) with Blister Defects
Circled in Red

rA
S /v  '> * * & £ ? '

Figure 6.10 - NIR C ure of RAL 9006 Silver Polyester (M anufacturer A) with Blister
Defects Circled in Red
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6.3.2 Glass Flake Substituted Silver Polyesters

The metal oxide coated glass flake pigment used in this work was a borosilicate 

glass flake coated with TiCE & SnC>2 , with a particle size range o f 15 -  60 pm. (Eckart 

Luxan® C001), herein referred to as glass flake.

Polyester is largely transparent across the UV-Vis-NIR region as shown in 

Figure 6.11, whilst aluminium flake pigmented coatings exhibit a low level o f 

transparency across this region. This fits with the observation in Section 6.3.1 that 

aluminium flake coatings are difficult to cure with a small cure window, as most o f the 

absorption o f radiation during a NIR cure can be assumed to occur in the top most 

layers o f the coating hence increasing the risk o f surface blistering.

100

80
—“ Clear Polyester

 3.25%  A1 Flake

 3.9%  A1 Flake•2 60
 4.55%  A1 Flake

 6.5%  A1 Flake
40

20

2250250 750 1250
W a v e l e n g t h  ( n m )

1750

Figure 6.11 - UV-Vis-NIR Transm ission Spectra of Aluminium Flake Pigmented Polyester
Free-standing Coating Films

The difference in transparency o f aluminium flake and glass flake pigmented 

coatings was investigated and the UV-Vis-NIR transmission spectra are shown in 

Figure 6.12.
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Figure 6.12 - UV-Vis-NIR Transm ission Spectra of Polyester Free-standing Coating Films

As expected, transmission through coatings pigmented solely with glass flake is 

high compared to the low transparency o f the aluminium flake coating. Comparing the 

same percentage weights o f flake (3.9%), the aluminium flake coating has a 

transmission o f ca. 10% across the UV-Vis-NIR wavelengths whilst the glass flake 

coating has a transmission o f ca. 90% in the NIR dropping to ca. 85% in the visible 

wavelength range. This suggests that during NIR cure, radiation is able to penetrate 

through the glass flake coating to heat the coating from the bottom o f the coating 

upwards and hence minimise surface blistering.

The spectra further suggest that the glass flake coatings will have a low hiding 

power, so a glass flake coating was therefore prepared that had a small percentage 

(0.5%) o f aluminium flake added with the aim o f increasing hiding power.

The hiding power o f a coating is commonly defined in the coatings industry as 

the ability o f a coating to obscure a background of contrasting standard black and white 

colours. Polyester coatings pigmented with either 3.9% aluminium flake or 3.9% glass 

flake were drawn down over a Zehntner hiding power test chart to produce coatings o f 

dry film thickness o f 20 ±  1pm and are shown in Figure 6.13. The superior hiding 

power o f the aluminium flake pigmented coating can be clearly seen. Figure 6.14 shows 

the visual effect o f the addition o f 0.5% aluminium flake to the 3.9% glass flake
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coating, producing a marginally better hiding power than a 10% loading o f glass flake. 

Even at 20% loading the glass flake coating has very little hiding power.

The visual hiding power endpoint where no visual distinction can be made 

between coatings coated over standard black and white backgrounds can be measured 

photometrically and is defined as a contrast ratio greater than 0.98, as given in Equation 

6.1 [7],

CR = ~ >  0.98Rw Equation 6.1

Where : CR = contrast ratio

Rb = CIE-Y reflectance from coating over black background 

Rw= CIE-Y reflectance from coating over white background

< TEST CHART ZTC 2200 Wi ZEHNTNER
T f S f t N «  tMf tT ftUt f t 'MYl

3 .9%  A1 Flake

3 .9%  Luxan 
F lake
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Figure 6.13 -  Opacity C hart Showing the Visual Difference in Opacity between an 
Aluminium Flake and Glass Flake Pigmented Polyester Coating
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Figure 6.14 - Opacity C hart Showing the Visual Difference in Opacity between Polyester 
Coatings Loaded with Differing Percentages of Glass Flake

Contrast ratios for the 3.9% aluminium flake and the various glass flake 

pigmented coatings are shown in Figure 6.15 and are confirmed by the visual results of 

the hiding power test charts shown in Figure 6.14. It can be seen that aluminium flake 

provides a hiding power over 4.5 times that o f glass flake.
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3.9% Luxan 3.9% Luxan + 10% Luxan
0.5% A1

20%  Luxan

Figure 6.15 -  C ontrast Ratios of Aluminium and Glass Flake Pigmented Polyesters

The reflectance spectra o f the aluminium and glass flake coatings give further 

clues to the likely interaction o f the coatings with radiation during a NIR cure and are 

shown in Figure 6.16. There is a greater similarity between the spectra in the visible 

region compared to the NIR region; in the NIR the 3.9% aluminium flake coating has 

the greatest reflectance. Radiation that is not reflected must be either transmitted or 

absorbed, and as the aluminium flake coating shows low transmission, a lot o f the NIR 

radiation not reflected must be being absorbed. The reflection minimum at ca. 800 nm 

can be attributed to aluminium absorption [3]. This again supports the idea that most o f 

the absorption o f radiation during NIR cure is happening in the top layers o f  the coating, 

increasing the chance o f surface blistering.

The 3.9% and 10% glass flake coatings show a lower NIR reflectance than the 

aluminium flake coating that troughs at ca.1000 nm, the region o f maximum zinc 

absorption, suggesting that in agreement with the transmission spectra, NIR radiation is 

penetrating through the coating to the galvanised layer underneath and being absorbed 

by the zinc there. This should help to minimise surface blistering by heating the coating 

from the bottom o f the coating upwards.

The coating containing 3.9% glass flake and 0.5% aluminium flake shows a 

broadened reflectance trough in the NIR. suggesting that during NIR cure absorption is
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occurring due to both aluminium flake in the coating and zinc at the galvanised 

substrate surface.

100

Visible NIR

— 3.9%  A1 Flake

*3.9%  Luxan Flake, 0.5%  A1 Flake 

—  10% Luxan 

“ “ 3.9%  Luxan

250 750 1250

W a v e le n g th  (nm )
1750 2250

Figure 6.16 - UV-Vis-NIR Reflectance Spectra of Aluminium and Glass Flake Polyester
Coated Panels

The colour difference between the glass flake coatings and the 3.9 % aluminium 

flake coating shown in Figure 6.17, Figure 6.18 and Figure 6.19 were measured using a 

spectrophotometer with 8° diffuse sphere geometry and are shown in Table 6.5. 

However these results do not give meaningful colour differences in agreement with 

visual perception, as a spectrophotometer with 8° diffuse sphere geometry illuminates a 

sample with diffuse light from all angles meaning that colour measurement is the 

measurement at an average o f all angles. Metallic and interference coatings show 

differences in luminosity and chroma with viewing angle so a multi-angle 

goniospectrophotometer with a 45° angle o f incoming light and measurement of 

reflected light at 15°, 25°, 45°, 75° and 110° from the angle o f reflection is needed to 

measure colour difference [8].
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Figure 6.17 -  3.9% Glass Flake Polyester Coating (left); 3.9%  Aluminium Flake Polyester
Coating (right)

Figure 6.18 - 3.9%  Glass Flake Polyester Coating (left); 10% Glass Flake Polyester 
Coating (middle); 20% Glass Flake Polyester Coating (right)
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Figure 6.19 - 3.9%  Glass Flake Polyester Coating (left); 3.9% Glass Flake/0.5%  
Aluminium Flake Polyester Coating (middle); 3.9% Aluminium Flake Polyester Coating

(right)

Table 6.5 - Colour Difference Between Glass Flake Polyesters Using d8 Instrum ent 
Geom etry (Reference Coating: 3.9%  wt. Aluminium Flake Polyester)

Sample 111 Geom dE*

3.9%  wt. Glass Flake Polyester

(Eckart Luxan C001)

D65 d8 3.02

3.9%  wt. Glass Flake / 0.5% Aluminium Flake 

Polyester

(Eckart Luxan C001; Eckart STAPA® Mobilux 

R187)

D65 d8 4.12

10% wt. Glass Flake Polyester

Eckart Luxan C001) D65 d8 1.10

20%  wt. Glass Flake Polyester

(Eckart Luxan C001) D65 d8 1.96
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NIR cure trials were then carried out to assess the PMT reached by the 3.9 % wt. 

aluminium flake, 3.9 % wt. glass flake, and 3.9 % wt. glass flake + 0.5 % wt. aluminium 

flake coatings at the same line speed and power settings. Figure 6.20 shows typical cure 

profiles for the 3.9 % wt. aluminium flake and 3.9 % wt. glass flake coatings, with 

higher PMTs being reached at the end o f each oven zone by the aluminium flake 

coating. The aluminium flake coating reached a PMT 25°C higher than the glass flake 

coating as shown in Figure 6.21 w ith the PMT of the mixed flake coating being between 

the two. Once cured, the aluminium flake coating was densely covered with large 

blisters with surface browning in places; the mixed flake coating had a much sparser 

coating o f finer blisters, whilst the glass flake coating was blister free, as shown in 

Figure 6.22.

The PMT values were those recorded for the back o f the substrate panels, and 

are lower than the typical PMT range (216 - 230°C) specified for a polyester convection 

cure. The short cure time means that coating and metal substrate have not had time to 

equilibrate; the coatings are clearly reaching higher temperatures than the substrate as

the aluminium flake coatings are browned on the surface.
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Figure 6.20 -  NIR Tem perature C ure Profile for Aluminium Flake and Glass Flake 
Coatings C ured at the Same NIR Oven Settings
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Figure 6.21 -  Com parison of PM Ts reached by Aluminium Flake and Glass Flake 
Coatings under Identical C ure Conditions

3.9% Al Flake

3.9% Luxan Flake, 
0.5% Al Flake

3.9% Luxan Flake

Line speed 9 m/min
Lamp power settings: 100%, 0%, 50%

Figure 6.22 -  Com parison of Surface Finish of Aluminium Flake and Glass Flake Coatings 
Under Identical Cure Conditions Showing Aluminium Flake with Dense Blistering, Mixed 

Flake Coating with Sparser Fine Blisters and Blister Free Glass Flake Coating

191



6.3.3 Mica Substituted Silver Polyesters

The metal oxide coated synthetic mica pigment used in this work was a mica 

platelet coated with rutile TiCT & SnCf with a particle size range o f 5- 25 pm (Eckart 

Phoenix® PX 3001), herein referred to as mica pigment.

Figure 6.23 shows the transmission spectra o f free-standing films o f simple 

model mica PVC coatings and these confirm that the pigment has a high degree of 

transparency through the visible and NIR range, with transmission only beginning to tail 

o ff below ca. 410 nm.

A comparison was then made o f the transmission through free-standing films of 

standard formulation silver polyester coating pigmented with 7% aluminium pigment, 

and polyester coatings where part and all o f the aluminium pigment had been 

substituted with mica pigment. This is shown in Figure 6.24. Again, the transmission 

through the polyester coating solely pigmented with mica is high in the NIR region.

100

80

4 0

PV C

20
 20%  M ica  p igm ent in PV C

 14%  M ica  p igm ent in PVC

2 5 0 7 5 0 1 250
W a v e le n g t h  (n m )

1 7 5 0 2 2 5 0

Figure 6.23 -  UV-Vis-NIR Transm ission Spectra of Mica Pigment PVC Free-standing
Coating Films
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This contrasts with the polyester coating solely pigmented with aluminium 

pigment which has less than 10% transmission across the UV-Vis-NIR region. The 

coating pigmented with a mix o f aluminium and mica pigment has a transparency in 

between that o f the 100% aluminium and mica pigment coatings, but at 35% across the 

UV-Vis-NIR region it is much closer to the transmission exhibited by the 100% 

aluminium pigmented coating despite being loaded more heavily with mica.

100

80
— ” 7% M ica Pigment

”““ 3.5% M ica Pigment 3.5%  Aluminium  
Pigment

~ ” 7% Aluminium Pigment
!  60 

C /5

E
C /5c

20

250 750 1250 1750 2250
W a v e l e n g t h  ( n m )

Figure 6.24 - UV-Vis-NIR Transm ission Spectra of Polyester Free-standing Coating Films

The reflectance spectra o f cured coated substrate panels o f these three coatings 

show similar results to the glass flake pigmented coatings in Section 6.3.2 and are given 

in Figure 6.25. Here the 100% aluminium pigment coating and the coating with a mix 

o f aluminium and mica pigment exhibit similar spectra; a dip in reflectance at ca. 800 

nm attributable to absorption by aluminium and a relatively high reflectance in the NIR 

region. Once all o f the aluminium has been removed from the coating, a different 

pattern o f NIR reflectance is seen for the coating pigmented solely with mica; a marked 

drop at ca. 1000 nm which is also evident in the spectra o f the primed substrate due to 

zinc absorption. Like glass flake pigmented coatings, mica coatings have a high degree 

o f transparency in the NIR but a low hiding power. Figure 6.26 shows the low hiding 

power o f the 7% mica pigment coating with the green chromated primer layer clearly 

showing through the top coat.
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Figure 6.25 - UV-Vis-NIR Reflectance Spectra of Polyester Coated Panels
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Figure 6.26 -  Com parison of 7% Mica Pigment Coating (Left); 3.5%  Aluminium 
Pigment/3.5%  Mica Pigment Coating (Middle); 7%  Aluminium Pigm ent Coating (Right) 
Showing the Green Chrom ated P rim er Showing through the 7% M ica Pigm ent Coating
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NIR cure trials comparing the PMT reached by the aluminium and mica pigment 

coatings were carried out using the same NIR oven settings and the PMTs reached are 

shown in Figure 6.27. An increase in PMT was observed at both NIR lamp settings on 

moving from the mica pigment coating to the mixed pigment coating to the aluminium 

pigment coating; this is consistent with the spectroscopy results. This is mirrored in the 

surface finish at both lamp settings shown in Figure 6.28 and Figure 6.29; the surface 

becomes more extensively blistered and even browned when aluminium pigment is 

present.
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Figure 6.27 -  Com parison of PM Ts Reached by Aluminium Pigment and Mica Pigment 
Coatings using Two Different NIR Lam p Power Settings
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Figure 6.28 - Com parison of Surface Finish: 7% Mica Pigment Coating (Left); 3.5% 
Aluminium Pigment/3.5% Mica Pigment Coating (Middle); 7%  Aluminium Pigment 

Coating (Right) with 100% 0%  35%  Lam p Power Settings

Figure 6.29 - Com parison of Surface Finish: 7%  Mica Pigment Coating (Left); 3.5%  
Aluminium Pigment/3.5%  Mica Pigment Coating (Middle); 7%  Aluminium Pigment 

Coating (Right) with 80% 0%  50%  Lam p Power Settings
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W hilst the NIR transparency o f a coating seems to be key to its ability to cure, 

there must be other factors involved as transparency alone does not explain the 

difference in curability between black and silver (aluminium flake) coatings.

Another physical property which will affect cure is emittance, the ability o f a 

coating to re-emit absorbed radiation. The emittances o f the aluminium, glass and mica 

flake coatings along with those for standard white and black polyester were measured 

with a Devices & Services AE1 emissometer and are shown in Figure 6.30. It can be 

seen that compared to all the other coatings, the silver (aluminium flake) coating has the 

lowest emittance o f 0.68, i.e. it has the greatest ability to ‘hold on’ to the radiation that it 

has absorbed thus allowing a higher PMT to be reached during cure.

Black White Silver 3.9%  Glass 3.9%  Glass 3.5%  Mica 7% M ica
(3.9%  Al Flake F la k e /0.5%  Flake 2.28%  Flake

Flake) Al flake Al Flake

Figure 6.30 -  Em ittance of Polyester Coatings
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6 .4  C h a n g es to S u b stra te

It was noted during NIR cure trials with MagiZinc substrate that in some o f the 

cure trials using aluminium pigmented top coats, the microstructure o f the galvanised 

substrate had changed, such as shown in Figure 6.31.

Figure 6.31 -  Changes to the M icrostructure of the M agiZinc Substrate during NIR Cure

This suggests that the galvanised surface has got hot enough to reflow the 

MagiZinc. Tin plate is often reflowed during production promoting the creation o f an
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iron-tin inter-metallic layer as this improves surface finish, and NIR has been 

demonstrated in this application [9].

The changes to the MagiZinc microstructure appear to correlate with 

temperature variation across the substrate panel during NIR cure caused by substrate 

holder heat sink effects and variation o f air flow across the substrate due to oven 

geometry. It would be interesting to investigate this further using SEM and IR 

thermography.

6.5 Conclusions

This work has demonstrated the difficulty o f NIR curing silver polyester 

coatings pigmented with aluminium flake. During the cure process both physical and 

chemical changes are taking place; the removal o f solvents and the cross-linking o f the 

polyester resin. With aluminium flake pigmented polyester coatings, it is very difficult 

to remove sufficient solvent before the polyester starts cross-linking and cured coatings 

result that are both soft (under cured) and blistered at the surface. Reformulation to 

remove some o f the higher boiling solvents and a slower catalyst to delay the start o f  the 

polyester cross-linking reaction have been seen to improve the cure, but are unlikely to 

be adequate enough measures to allow industrial NIR cure o f silver polyesters.

The assumption in this work was that a coating will cure most easily when it 

does not absorb a lot o f NIR radiation but allows NIR that is not reflected at the surface 

to be transmitted through the coating to cure the coating from the bottom layer upwards. 

The aluminium flake was therefore replaced with less NIR absorbing coated mica flake 

or coated glass flake resulting in coatings that reached lower PMTs than an aluminium 

flake coating at the same NIR oven setting. These coatings however had a much lower 

hiding power; aluminium flake has a hiding power ca. 4.5 times that o f glass flake.

Another physical property likely to affect the ability o f a coating to NIR cure is 

emittance. Compared to black or white polyester coatings silver coatings have a lower 

emittance, and are thus less able to re-emit any NIR radiation absorbed. This will 

contribute to the propensity o f silver polyesters to retain heat and visibly brown during 

curing.
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Pigment morphology may also be playing a part. In contrast to other polyesters 

pigmented with organic or inorganic pigments where the pigments are less than the 

wavelength o f NIR radiation in size, aluminium flakes have a lamellar geometry. The 

length o f the flakes are approximately the thickness o f the coating, so the flakes will end 

up orientating themselves in an over lapping manner as shown in Figure 6.32. This will 

lead to a longer more tortuous path being presented to the solvent for evaporation 

during cure. Indeed, aluminium flake is specifically used as a vapour barrier pigment in 

polymeric materials [10].

▲ A

Figure 6.32 -  Lam ellar Aluminium Flake Presenting a B arrier to Solvent Evaporation

In conclusion, the best NIR formulation for silver polyesters may be one where 

the aluminium flake is replaced by mica flake, as it gives a coating with a higher 

emittance than glass flake. However, it should be remembered that the lamellar structure 

o f mica flake could also act as a barrier to solvent evaporation during cure. Hiding
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power o f a mica flake coating could be increased by applying the coating over a primer 

tinted with small amounts of pigments such as carbon black. Mica flake size and size 

distribution range will affect the appearance of the coating, so a paint formulator will be 

able to use all these factors to formulate a coating with similar colour and appearance 

characteristics using a goniospectrophotometer to check colour difference. NIR curing 

trials can then be used to assess the cure window of this coating system.
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Chapter 7 
Investigation of Transpired Solar 

Collector Performance
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7.1 In tro d u ctio n

Previous chapters have explored how NIR absorption and the locus o f NIR 

absorbing pigments within the coating layers influence the NIR cure o f polyester 

coating systems on galvanised steel substrates. Understanding from this research has 

been o f use to Tata Steel in their industrial production o f NIR cured polyester coil 

coating products.

Another Tata Steel product utilising the interaction o f radiation with a coating 

system is the transpired solar collector Colorcoat Renew SC®, an example o f which is 

shown in Figure 7.1.

(ft)Figure 7.1 -  Jag u ar Land Rover Deck 92 Project incorporating Colorcoat Renew SC , a
transpired  solar collector [ 1 ]

In contrast to the interaction o f NIR with a polyester top coat during NIR cure, 

the aim with a transpired solar collector is for solar radiation (5% UV, 45% visible and 

50% NIR) to interact with the coating system and produce a high heat gain. This heat is 

then transferred to the thin barrier layer o f air in front o f the collector which is drawn by
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a fan through perforations in the collector surface into the plenum behind. The heated 

air is then carried on to supplement a building’s heating system or to dry crops.

An ideal transpired solar collector will therefore have a surface with a low Total 

Solar Reflectance (TSR) and low emittance ; such surfaces are known as solar selective 

surfaces [2]. The ideal reflectance spectrum for such a surface is given in Figure 7.2.

o i l
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Figure 7.2 -  Ideal Reflectance Spectrum  for a Solar Selective Surface

Black coatings will obviously produce the lowest TSRs, but previous research 

suggests 85% o f architects would prefer colours other than black, even if this incurs 

lower efficiencies [3]. Orel et al have produced coloured (red, blue and green) 

spectrally selective coatings whose spectral selectivity is independent o f coating 

thickness, so called thickness insensitive spectrally selective (TISS) coatings [3, 4]. In 

these coatings, low emittance was achieved by the presence o f aluminium flake, 

coloured aluminium flake or copper flake in the formulation whilst other inorganic 

pigments imparted colour with black pigment added to reduce TSR.

205



ASTM Standard E l980-11 defines the Solar Reflective Index (SRI) 

incorporating both TSR and emittance values to give a surface an index of ‘coolness’ 

and its associated Steady State Surface Temperature (SSST) [5, 6]. SRI is defined such 

that a standard black surface (reflectance = 0.05, emittance = 0.90) has a SRI of zero 

and a standard white surface (reflectance = 0.80, emittance = 0.90) a SRI of one.

For a surface exposed to the sun and when the conduction of the material is zero, 

its Steady State Surface Temperature (SSST) can be defined by:

Equation 7.1 al = e g  (Ts4 -  Tsky4) + hc (Ts-  Ta)

where

a = solar absorbance = 1 - solar reflectance 

1 = solar flux Wm"

£ = emittance

a  = Stefan Boltzmann constant, 5.66961 x 10'8 W m'2 K"4 

Ts = steady state surface temperature, K 

TSky = sky temperature, K
9 1hc = convective coefficient, W m' K‘

Ta = air temperature, K

If TSR, emittance and the convective coefficient are known, Equation 7.1 can be 

solved iteratively to obtain the steady state surface temperature. Alternatively, steady 

state surface temperature can be defined as follows:

^ , (1066.07a-31.98e) (890.94a2+2453.86ae)
Equation 7.2 Ts = 309.7 + (6.78t+hc) -  (6.78t+„c)2 ..... 1
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Solar Reflective Index is defined as:

Equation 7.3 SRI  = 100
[Tw Ts)

where

Tb = steady state temperature of black surface 

Tw = steady state temperature of white surface

Under standard solar and ambient conditions (solar flux = 1000 Wm' , ambient 

air temperature = 310 K, ambient sky temperature = 300 K), Equation 7.3 is reduced to:

Equation 7.4 SRI  = 123.97 -  141 .35*  + 9 .6555*2

where
T, (a-0 .029£)(8 .797+  h c)Equation 7.5 *  = -— —— 7 —

M ^  (9.5205f + h c)

An ideal transpired solar collector will therefore have a low SRI value. In this 

chapter the performance of transpired solar collectors were investigated. Two NIR 

absorbing pigments were assessed for their ability to improve transpired solar collector 

performance by increasing solar selectivity, and the outdoor performance of a transpired 

solar collector under UK weather conditions was investigated.
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7.2 Experimental Techniques

7.2.1 Preparation of NIR Pigmented Coating Panels

Samples of Goosewing Grey (RAL 7038) polyester were prepared with a range 

o f percentage weights o f NIR absorbing pigment. Discussions with pigment 

manufacturers resulted in Iriotec 8840 (supplied by Merck) and IR202 (supplied by 

BASF) being used for this purpose. Iriotec 8840, formula Cu3(P0 4 )2 *Cu(0 H )2  , is a 

polymer laser marking additive for use with fibre, YAG and vanadate lasers from 1060 - 

1070 nm. IR202 is a developmental research pigment o f doped metal oxide 

nanoparticles, synthesised via a thermal plasma route. Goosewing Grey (RAL 7038) 

polyester was used as supplied by Tata Steel and dispersed with the NIR absorbing 

pigments with the aid o f a high shear mixer.

Panels o f 0.50 mm x 210 mm x 150 mm HDG steel substrate were coated with 

NIR pigmented GWG top coat (dft 19 ±  1 pm) and cured in an AEW convection oven 

set at 340 °C with an oven dwell time of 30 secs.

7.2.2 Outdoor Testing of Transpired Solar Collector Panel

A unit of Solarduct® was used to investigate the outdoor performance o f a 

transpired solar collector under typical UK weather conditions. Solarduct® is marketed 

by Conserval Engineering as a modular roof top transpired solar collector [7]. It was an 

ideal choice for this work as it is designed to be used in settings where a wall mounted 

collector is not feasible. Health and safety considerations at Swansea University campus 

meant that there was not a suitable location for a wall mounted collector study, so an 

open roof top location was chosen instead.

The Solarduct® unit used is shown in Figure 7.3 and had a solar collector plate 

of area 0.79 m and a porosity of 0.2%, where porosity is defined as the percentage of 

pores covering the collector area. The panel coating was GWG with no NIR absorbing 

pigment additions. A fan and variable voltage AC/DC adapter were fitted to the unit to 

best match the flow rate range (36 -  110 m /h/m ) through the unit typical for transpired 

solar collectors given in the literature [8]. Hence a Bi-Sonic (BP802512H-03)12V DC 

fan with specification of 75 m /h flow rate was chosen, enabling a maximum flow rate 

o f 95 m3/h/m2.
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Figure 7.3 -  Unit of Solarduct® used for outdoor testing

The unit was placed outdoors and orientated due south to maximize solar heat 

capture. K type thermocouples were connected to an Omega TC08 data logger and used 

to measure temperature at four locations on the unit, as shown in Figure 7.4.

The temperature o f the collector panel was measured by a thermocouple taped to 

make contact with the underside o f the panel. Ambient air temperature was measured at 

the back o f the unit. The plenum (cavity) air temperature was measured by a 

thermocouple taped to the inside o f the collector panel and dangling in the plenum air 

space. The final thermocouple was taped close to the fan outlet and measured fan outlet 

air temperature. Temperatures were logged at one second time intervals over a 45 

minute time period.
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Thermocouple measuring fan air 
outlet temperature

Figure 7.4 -  Side elevation of Solarduct® showing position of therm ocouples

Thermocouples measuring collector panel 
surface temperature and plenum air temperatui

Thermocouple measuring ambient air 
temperature

A deuterium/tungsten halogen standard light source was used to make a 

radiometric calibration o f  the absolute spectral response o f a portable Ocean Optics 

HR2000+ UV-visible-NIR spectrometer. The spectrometer was fitted with an optical 

fibre patch cable and cosine corrector, and used to measure solar irradiance during a 45 

minute time period.

Measurements o f solar irradiance (W m '“) were taken at a distance o f 400 mm 

from the collector panel surface with the spectrometer probe orientated at the same 

angle to the sun as the panel surface. Spectral acquisitions were made as an integral 

spectral range from 118 to 1106 nm, this range being limited by the range o f the 

spectrom eter's CCD detector. An acquisition was made as an average o f  every 10 scans 

and with a boxcar setting o f 2. Box car width applies smoothing to spectral data 

acquisitions by averaging over a specified number o f pixels to the left and right o f a 

detector element.
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7.3 R esu lts  and  D iscu ssion

7.3.1 Effect o f NIR Absorbing Pigm ents on TSC Perform ance

UV-Vis-NIR spectra in reflectance mode were recorded o f Goosewing Grey 

coated HDG panels with varying percentages o f either Iriotec 8840 or IR202 added to 

the coating and typical spectra are shown in Figure 7.5 and Figure 7.6. Also 

superimposed in these Figures is the solar irradiation profile.
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-GWG + 0.69%  Iriotec 
-GW G + 1.09% Iriotec 
-GW G + 2.48%  Iriotec 
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GWG + 9.22%  Iriotec 
Solar Energy
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W a v e le n g th  (nm )
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Figure 7.5 -  UV-Vis-NIR Reflectance Spectra of GW G Polyester with additions of Iriotec
8840
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Figure 7.6 -  UV-Vis-NIR Reflectance Spectra of GW G Polyester with additions of IR202

Figure 7.5 and Figure 7.6 show that the presence o f the NIR absorbing pigments 

decreases the reflectance o f the coating. In the case o f Iriotec 8840 the diminishing in 

reflectance is concentrated over a much narrower band o f wavelengths than for IR202, 

with the maximum diminution occurring between 1180 -1190 nm. The IR202 pigment 

has a greater diminishing effect, and this effect also occurs over a far wider range o f 

wavelengths. Decrease in reflectance for this pigment is however more pronounced in 

the visible range (380 - 700 nm) and this will have the disadvantage o f affecting colour 

more. There is also more decrease at longer wavelengths (>  1800 nm); however solar 

irradiation levels are lower here too.

Addition o f the NIR absorbing pigments has only a very small effect on the 

emittance o f the coating surface, with 9% Iriotec 8840 increasing emittance by 0.02 and 

9% IR202 increasing it by 0.05.This could be attributed to a slight increase in surface 

roughness on pigment addition.

TSR values were calculated from the UV-Vis-NIR reflectance spectra in Figure 

7-5 and Figure 7.6, and together with emittance values were used to calculate the Steady 

State Surface Temperature using Equation 7.2. This equation requires a value for the
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convective coefficient, which is a measure o f heat transfer through convection due to 

wind and is specified in ASTM Standard E 1980-11 as 5, 12 and 30 W m '2 K '1 

respectively for low, medium and high wind conditions.

The variation o f Steady State Surface Temperature with NIR absorbing pigment 

content at low, medium and high convective coefficient values is shown in Figure 7.7, 

and highlights that as expected IR202 (red markers in Figure 7.7) has a greater effect on 

Steady State Surface Temperature than Iriotec 8840 (green markers in Figure 7.7). For 

example, a 5% pigment loading with medium wind conditions gives a 5°C lift in Steady 

State Surface Temperature with IR202 but less than 2°C lift with Iriotec 8840.

120
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■ IR202 
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Figure 7.7 -  V ariation of Steady State Surface Tem perature with NIR absorbing pigment 
content, at low, medium and high convective coefficient (hc) values

What is more interesting is the effect o f wind speed on Steady State Surface 

Temperature, as shown for 1% pigmented coatings in Figure 7.8. Flere, the effect o f 

varying wind speed has a far greater effect than that shown by pigment addition in 

Figure 7.7. For example, by dropping from a high to a low wind speed (30 to 5 W n f 2 

K '1), the Steady State Surface Temperature o f the 1% pigmented IR202 coating 

increases by 36°C as the rate o f convection off the surface decreases.
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Figure 7.8 - Variation of Steady State Surface Tem perature with convective coefficient
(wind speed)
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7.3.2 O utdoor Testing o f Transpired Solar Collector Panel

Temperature and solar irradiance data was collected over 45 minute time 

intervals on 22 September 2010 at a Swansea University campus roof location. 

Meteorological Office data for this day from the nearest Meteorological station, 

M umbles Head shows the variation in wind speed and temperature for that day is given 

in Figure 7.9 [9]. The maximum temperature for that day was 18 °C.

4020

30

Time (GMT)

Figure 7.9 -  M umbles Head M eteorological Station W eather Data for 22n<1 Septem ber
2010

The solar collector was operated at three different flow rates by varying the 

voltage across the collector fan, and profiles for the collector surface temperature as 

well as the plenum air and fan air outlet temperature were measured against the ambient 

air temperature for each flow rate. The flow rate resulting from operation o f the fan at
T 9

its specified voltage o f 12 V gave a flow rate o f 95 m 7 h /n r and was designated as the 

high flow rate. Designations o f low and medium flow rate were given to the collector 

operating with 7.5 V and 3 V applied across the fan motor, although it was not possible 

to equate these voltages (applied using a variable voltage AC/DC adapter) to a 

numerical flow rate. Solar irradiance was measured over the experimental time period.
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Temperature and solar irradiance profiles for the three flow rates are shown in 

Figure 7.10, Figure 7.11 and Figure 7.12. A clear lift in temperature is seen from 

ambient air temperature given by the purple plot, to the temperature at the back o f the 

collector panel (blue plot). The temperature o f the air inside the collector then drops as 

is makes its way through the collector unit due to heat transfer losses.

'B ack  o f  TSC  
panel

■Plenum air

Fan outlet  
air

■Ambient air

0
10:57:00 11:07:00 11:17:01 11:27:01 11:37:02

45 minute time period

Figure 7.10 -  TSC Tem perature Profiles for Low Flow Rate Conditions
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““ Plenum air

Fan outlet  
air

■Ambient air

0
11:55:00 12:05:01 12:15:01 12:25:02

45 minute time period

12:35:02

Figure 7.11 - TSC T em perature Profiles for Medium Flow Rate Conditions
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■Plenum air 

•Fan outlet air  

■Ambient air

13:07:00 13:17:00 13:27:01 13:37:01
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13:47:02

Figure 7.12 - TSC T em perature Profiles for High Flow Rate Conditions

The fan outlet air temperature in Figure 7.10 shows a ‘noisy’ profile which can 

be attributed to electrical noise picked up by the thermocouple from the fan motor.

The mean ambient air temperatures from the above Figures are shown in Table 

7.1 and are slightly higher than the mean meteorological station temperature o f 16.2 °C. 

This can be attributed to passive solar gain; ambient air at the roof top location will be 

warmed via solar radiation absorbed by the asphalt roofing surface (asphalt emissivity =

0.93).
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Table 7.1 -  Comparison of TSC Temperature Gain at Different Flow Rates

Low flow rate Medium flow rate High flow rate

Mean ambient air 

temperature (°C)

20 22 22

Mean back o f panel 

temperature (°C)

43 37 42

Mean temperature gain 

(°C)

23 15 20

Mean Solar Irradiance 

(Wm'2)

327 267 284

The dynamic range of the spectrometer’s charge-coupled device (CCD) detector 

is limited to the ultra violet, visible and near infrared wavelengths of the solar spectrum 

(up to wavelength 1106 nm); hence only 79% of the solar irradiance spectrum has been 

detected by the spectrometer’s detector, with the longer infrared wavelengths 

unrecorded (Percentage derived from ASTM-G-173-03 data). Interestingly, despite this 

limitation the temperature profiles in Figure 7.10, Figure 7.11 and Figure 7.12 all mirror 

the solar irradiance profiles suggesting a clear link between solar irradiance and heat 

gain. This has occurred at all three flow rates, despite three very different patterns of 

solar irradiance within the experimental time periods, resulting from fluctuating cloud 

cover.

Table 7.1 also shows that the largest temperature gain of 23 °C is obtained with 

the collector operating at the lowest flow rate. Previous theoretical and empirical 

models have shown that collectors with lower flow rates give lower efficiencies and 

higher temperature rises, whilst higher flow rates give higher efficiency and lower 

temperature rises [8, 10-13]. However as solar irradiation and wind speed are also 

obviously fluctuating during these experiments and will affect temperature gain, these 

experiments cannot be used to draw conclusions about the effect of flow rate on 

temperature gain.
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7.4 Conclusions

These experiments have shown that additions of NIR absorbing pigments to a 

transpired solar collector coating result in a modest increase in Steady State Surface 

temperature (ca. 5 °C lift for a 5% IR202 pigment loading), where Steady State Surface 

temperature is calculated via ASTM Standard E l980-1using measured TSR and 

emittance values. O f the two NIR absorbing pigments investigated, IR202 has a greater 

effect on Steady State Surface temperature than Iriotec 8840 as its addition to the 

collector coating results in a more greatly reduced coating reflectance over a greater 

range o f solar irradiance wavelengths, albeit with a more compromised coating colour.

In contrast to NIR pigment additions, convective heat transfer due to wind 

effects has a more significant effect on transpired solar collector surface temperature 

(ca. 36 °C decrease for 1% IR202 pigment loading on reduction from high to low wind 

speed). It can be concluded from this that decreasing the effect of wind from the surface 

o f a transpired solar collector would be beneficial in increasing collector surface 

temperature. Possible ways o f achieving this could be by the addition of baffles on the 

building to deflect wind, locating transpired solar collector panels on areas of a building 

where wind funnelling effects are minimised, or by the application of a transparent layer 

to the collector surface. A transparent layer over the collector surface would have the 

benefit o f not only reducing convective losses due to wind, but also creating an artificial 

greenhouse effect. Sutton et al concluded that the introduction of a transparent layer on 

the surface of a transpired solar collector does improve performance but were unable to 

conclude whether this was due to the reduction of heat loss due to wind, the creation of 

an artificial greenhouse effect or to both [14].

These experiments have also shown that September UK weather conditions are 

capable of producing a temperature rise in excess o f 20 °C across a transpired solar 

collector. These measured temperatures for the outdoor Solarduct® unit were lower 

than the Steady State Surface temperatures calculated from ASTM Standard E l980-11 

due to the Standard’s assumptions of standard solar conditions (solar flux = 1000 W m ' , 

ambient air temperature = 310 K, ambient sky temperature = 300 K) and conditions of 

zero conductive heat transfer not being met in outdoor experimental conditions.
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Outdoor experimental results showed that the temperature profile of the collector panel 

closely mirrored that of the solar irradiation profile falling on it, indicating a clear link 

between solar irradiation and heat gain.

Further work needs to be carried out in an outdoors experiment with a transpired 

solar collector, measuring the increase in temperature that could be realised with 

additions o f IR202 pigment to the TSC coating. A carbon black tinted primer could be 

added to the coating system to increase absorption, and aluminium flake to the top coat 

to decrease emissivity. The experiments need to be run over longer time periods, and the 

University’s recently acquired Kipp & Zonen pyranometer used to measure solar 

irradiance levels. A laboratory based experiment with a solar simulator source and a 

wind deflector to direct air onto the face of the collector panel would also provide 

complimentary results.
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8.1 Conclusions and Future Work

Tata Steel Colors is an international manufacturer of pre-finished steel for the 

building envelope, domestic appliances and manufactured goods markets, with 

manufacturing bases in the UK (Shotton), Holland (IJmuiden), France (Myriad) and 

Turkey (Sakarya). Manufacture of pre-finished steel is commonly carried out by a coil 

coating process which has traditionally employed gas fired convection ovens for the 

coating cure. NIR curing is however of interest to coil coaters, due to the reduced cure 

time and oven length possible with this technology.

Tata Steel has a galvanising line at their IJmuiden site producing galvanised 

steel substrate for the building envelope market. In 2006 they installed a NIR coil 

coating section on the end of this line, with the coating section having potential to reach 

line speeds of 180m/min. At these line speeds the coating section of the line becomes 

more closely matched to the line speed capability o f the galvanising section.

This Engineering Doctorate was sponsored by WEFO, Tata Steel Colors and 

BASF Coatings, and has looked at 25 pm polyester coated galvanised steel products 

produced for the building envelope. It has built on the work of a prior Engineering 

Doctorate and further explored the NIR cure mechanism by looking at the effect on cure 

o f changing the position of NIR absorbing pigments within the coating system. 

UV/Vis/NIR spectroscopy has been used to gain an understanding of where NIR 

absorption is likely to occur within the coating system and compared with laboratory 

based NIR curing trials showing ease of cure.

We have shown that white polyester coatings with titanium dioxide as their sole 

pigmenting agent cure with a wide cure window, whilst black coatings with carbon 

black as their sole pigmenting agent have a narrow cure window and are prone to 

solvent boil [1], This can be attributed to the black coating system absorbing too much 

NIR radiation within the top coat. In the white coating system the top coat is much more 

transparent to NIR and substrate absorption plays an important part in the curing 

mechanism.

This thesis has shown that removing the carbon black content o f red and brown 

polyester top coats widens their cure windows and makes them easier to cure, but this 

has a critical effect on their colour. Tinting the primer layer with carbon black in an 

attempt to restore the top coat colour is not successful, as the top coat is too opaque.
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Further investigations with near infrared transparent black pigments such as Paliogen, 

replacing part or all o f the carbon black pigment content of red and brown polyester 

formulations with Paliogen should be carried out, and a combination of UV/Vis/NIR 

spectroscopy, laboratory based cure trials and colour measurements used to assess the 

effect on NIR cure and any colour change. Potential problems with Paliogen are that 

unlike carbon black, it does not give a true black colour. Additionally the emissions 

from the Adphos NIR lamps spill over into the visible region, so this may limit the 

benefits o f using Paliogen. Further work could therefore explore alternative methods to 

generate NIR radiation such as a laser source, where a narrow band of NIR wavelengths 

could be produced.

When a coating with a high degree of NIR transparency such as a coating solely 

pigmented with titanium dioxide is cured, absorption of NIR by the substrate will result 

in the coating being heated from the bottom upwards. Tinting the primer layer of such a 

coating system with carbon black, a pigment that absorbs strongly across the whole NIR 

region, results in the opportunity to reduce radiation intensity or increase line speed 

during NIR cure [2].

Chapter 4 showed that a small increase in efficiency can also be observed in the 

convection oven curing o f white polyester coatings when a carbon black tinted primer is 

used. Here, the carbon black primer layer enables the residual IR black body emissions 

from the walls of the convection oven to be more efficiently absorbed [2, 3].

There was concern that inclusion of carbon black in the primer layer may have had a 

detrimental effect on the corrosion protection properties of the coating system, but in 

Chapter 4 in-situ scanning Kelvin probe studies showed that at additions of up to 3.5% 

wt. carbon black the coating delamination rate remained unchanged, whilst at 5% wt. 

addition the delamination rate was slowed down.

Outdoor weathering and accelerated QUV testing could be used to compare the 

durability performance of the same colour polyester coating cured by convection and 

NIR. A limited study o f NIR cured coatings has already been carried out, and has 

concluded that NIR cure is not detrimental to performance [4].

PMTs recorded by thermocouples during laboratory based NIR cure trials in this 

thesis were often lower for a cured polyester coating, when compared to the target PMT 

range o f 216 -  232 °C specified for polyester convection cure. Due to the short time of a 

NIR cure, it is likely that there is a temperature gradient across the coating system, with 

the coating probably reaching a temperature in excess o f 232 °C for a short period of
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time. In NIR cure, PMT cannot be taken as a good indication of coating temperature, as 

unlike in convection cure, there will not be enough time for thermal equilibrium 

between coating and metal substrate to be achieved. It would be interesting to use some 

depth profiling techniques to investigate whether the depth profile of NIR cured 

polyesters varies significantly from the depth profile of convection cured polyesters. 

Focussed ion beam-scanning electron microscopy could be used to image cross-sections 

o f dried coating films to see if  there is any difference in the 3D pigment dispersion of 

NIR cured coatings compared to convection cured coatings [5].

Chapter 5 showed that as well as increasing NIR absorption in the primer layer, 

adding NIR absorbing pigments to the backing coat is also beneficial to top coat cure, 

with the NIR absorbing pigment IR202 increasing the line speed o f NIR cure by ca. 

23% at 1% wt. addition to the backing coat.

Coatings pigmented with aluminium flake are particularly troublesome to cure 

with NIR. Although about half o f incident radiation is reflected by these coatings, the 

coatings have a low transparency to NIR and absorb the remaining radiation. 

Aluminium pigment has a lamellar geometry with a high surface to volume ratio, so the 

path length of the radiation through the coating will be increased by undergoing 

multiple reflections and this will give it more chances of radiation being absorbed. 

Additionally, aluminium has a low emissivity, and lamellar pigment geometry will 

mean that solvents have to take a longer path length to escape during cure.

Further work could be undertaken to assess alternative ways of producing a 

silver metallic coating; one idea may be to explore the effect of pigmenting the primer 

layer with aluminium flake and over coating with a clear top coat. Grey metallic 

coatings can be formulated using silver-white mica pigments blended with carbon 

black, or by incorporating the carbon black into a Ti02-mica structure to form a TiCV 

mica -carbon inclusion pigment [6]. The presence of carbon black in a top coat can 

lead to too much NIR absorption in the coating, so a coating system could be devised 

where the carbon black has been added to the primer layer instead. The high 

transparency o f mica flake coatings could also be capitalised on to produce a new 

coating where a mica sparkly top layer is coated onto a coloured base layer.

Transpired solar collectors are another Tata Steel product where the interaction 

of radiation with a coating is applicable. Here, the aim is for an organic coating to have 

high absorption o f solar radiation, enabling a high gain in air temperature as air flows 

through the collector. Chapter 7 identified that in an outdoor experiment the temperature
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profile of a collector panel closely mirrored that of the solar irradiation falling on it. A

model o f steady state surface temperature showed that wind effects have a much more

significant effect on collector surface temperature than weight additions o f NIR

absorbing pigment to the collector coating. For example, reducing the convective
0 1

coefficient (wind speed) from 30 to 5 W m' K' increases the steady state surface 

temperature of the collector surface 9 times more than adding 1% wt. NIR absorbing 

pigment to the collector coating.

This thesis has shown that the NIR curing of polyester coil coatings is a complex 

process. Industrially, as wide a process window as possible is required and this 

necessitates a careful selection of pigments to provide colour and NIR absorption to the 

coating system, consideration of where in the coating system NIR absorbing pigments 

are placed (top coat, primer coat or backing coat), selection o f solvents and catalyst used 

in the formulation, and consideration o f the heating rate. It was noticed in this research 

that the Adphos Technicum ovens used at Deeside and IJmuiden required different lamp 

power settings to cure identical coatings, which is likely to be due to differences in the 

rate of forced air flow through the ovens. This leads to the idea that an oven with 

combined NIR and convection curing capability may be the most flexible option for 

curing coil coatings. Out o f the two stages of the cure process the solvent removal stage 

is the one that can cope with the fastest heating rates so it would be more suitable to use 

NIR here. The cross-linking stage requires slower heat transfer to avoid problems with 

solvent boil, so convection cure could be used here.

Mathematical models have previously been used to quantify the curing of 

thermoset coatings (polyisocyanate/polyols) where solvent evaporation and cross- 

linking are taking place [7]. A similar approach could be applied to the cure of 

polyester coatings where both NIR and convection are used to transfer heat, and the 

model used to help optimise the cure process.
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