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Summary

This thesis presents a high-order numerical method for the Time-Domain solution of Maxwell’s 
Electromagnetic equations in both one- and two-dimensional space.

The thesis discuses the validity of high-order representation and improved boundary representa­
tion.

The majority of the theory is concerned with the formulation of a high-order scheme which is 
capable of providing a numerical solution for specific two-dimensional scattering problems.

Specifics of the theory involve the selection of a suitable numerical flux, the choice of appropriate 
boundary conditions, mapping between coordinate systems and basis functions.

The effectiveness of the method is then demonstrated through a series of examples.



A cknow ledgem ents

iii

I would like to write a few personal lines thanking the people who allowed me to get to this 
situation. The first thanks has to go to my teacher Professor Ken Morgan, who has showed me great 
patience and helped me whenever he could. I must also thank Professor O. Hassan and Dr P. Ledger 
for their help.

Swansea University, as a whole, provided me with invaluable support, and I would like to thank 
the University for its support over the years. I must also thank BAE systems and EPSRC for their 
monetary support.

I would also like to pay a special thank you to Pat and Bernard for their continual help and support 
and all of my family. And Lisa, my love, a special thank-you to you, for being with me. Thanks all.



Contents

1 Introduction 1
1.1 B ackground...........................................................................................................................  1
1.2 Methods employed for the solution of electromagnetic p ro b lem s.................................  2
1.3 Numerical m e th o d s..............................................................................................................  3
1.4 Computer Methods for Scattering P ro b lem s....................................................................  4
1.5 Objective of the T h e s is ........................................................................................................  5
1.6 Outline of T h e s i s .................................................................................................................. 5

2 Preliminaries 7
2.1 Basic Electromagnetics........................................................................................................ 7

2.1.1 Reduction to two-dimensional sp a c e ..................................................................... 8

2.2 Scattering problem s..............................................................................................................  10
2.2.1 The two-dimensional scattering problem ..............................................................  10

2.3 Scattered field fo rm ulation .................................................................................................  11
2.3.1 Non-Dimensional fo rm ...........................................................................................  11
2.3.2 Conservation f o r m ..................................................................................................  12
2.3.3 Boundary cond itions............................................................................................... 13

3 The Finite Element Method 15
3.1 Introduction...........................................................................................................................  15
3.2 Brief discussion concerning the finite element m ethod....................................................  15

3.2.1 Spatial discretisation............................................................................................... 16
3.3 Mappings and the resulting Jacobian . .  ........................................................................ 17
3.4 Temporal discretisation........................................................................................................ 19

3.4.1 The fourth-order Runge-Kutta temporal algorithm ...........................................  19
3.5 hp-type methods .................................................................................................................. 20
3.6 Evaluation of in te g ra ls ........................................................................................................  21

iv



CONTENTS v

3.7 Analytical solutions..............................................................................................................  21
3.7.1 The Courant-Friedrichs-Lewy num ber................................................................ 22

3.8 The discontinuous Galerkin finite element m ethod...........................................................  22
3.8.1 Chronology of the Discontinuous Galerkin s c h e m e .........................................  22
3.8.2 Other discontinuous Galerkin methods................................................................ 23
3.8.3 The discontinuous Galerkin method for Maxwell’s equations..........................  24
3.8.4 Concerning the discontinuous Galerkin method: advantages and disadvantages 24

3.9 The Runge-Kutta discontinuous Galerkin m e th o d ...........................................................  25
3.10 The traditional Galerkin m e th o d ........................................................................................  26

3.10.1 The variational formulation ................................................................................ 26
3.10.2 The approximate solution ...................................................................................  27
3.10.3 Discontinuous s p a c e ............................................................................................. 28

3.11 Upwind s c h e m e s .................................................................................................................  28
3.11.1 Other numerical f lu x e s .......................................................................................... 29
3.11.2 Characteristic flux decom position ......................................................................  29
3.11.3 Mathematical representation of the Roe f lu x .......................................................  32

3.12 The Rankine-Hugoniot condition.......................................................................................  32

4 The One-Dimensional Problem 35
4.1 Introduction............................................................................................................................ 35
4.2 A one dimensional example..................................................................................................  36

4.2.1 Domain discretisation .......................................................................................... 36
4.2.2 The variational statem ent......................................................................................  36

4.3 The one-dimensional b a s i s ..................................................................................................  37
4.3.1 The local elem ent...................................................................................................  38
4.3.2 Legendre po lynom ials .......................................................................................... 38
4.3.3 The revised approximate s o lu t io n ......................................................................  39

4.4 The 1-D line in te g ra l ............................................................................................................ 39
4.5 The mass m atrix .....................................................................................................................  39
4.6 The one-dimensional Roe f l u x ...........................................................................................  40
4.7 L2 N orm ..................................................................................................................................  41
4.8 Specification of the P ro b le m ............................................................................................... 41
4.9 Results.....................................................................................................................................  42

4.9.1 Exact solution ......................................................................................................  42
4.9.2 Tables of results ...................................................................................................  43



CONTENTS vi

4.10 The lowest L2 n o r m s ..........................................................................................................  44
4.11 The CFL n u m b e r ................................................................................................................  45
4.12 The real time taken to perform an an a ly sis ........................................................................  47

4.12.1 Verifying the numerical s o lu tio n s ......................................................................  47
4.12.2 R efinem ent............................................................................................................. 47

4.13 A Taylor-Galerkin com parison ..........................................................................................  56

5 The Two-Dimensional Scattering Problem 61
5.1 Introduction..........................................................................................................................  61
5.2 Statement of p rob lem ..........................................................................................................  61
5.3 The two-dimensional p ro b le m ..........................................................................................  62
5.4 The b a s i s .............................................................................................................................  62
5.5 Two coordinate system s.......................................................................................................  64

5.5.1 The first m apping............................................................. : ...................................  64
5.5.2 The second m ap p in g ............................................................................................. 6 6

5.5.3 Development of bases .......................................................................................... 6 8

5.5.4 Orthogonal principal functions............................................................................. 6 8

5.5.5 Jacobi polynom ials................................................................................................  69
5.5.6 Polynomial sp ace ...................................................................................................  70
5.5.7 The approximate solution ...................................................................................  70
5.5.8 The number of unknowns ...................................................................................  70

5.6 The area integral ................................................................................................................. 71
5.7 Evaluation of the mass matrix ..........................................................................................  71
5.8 Characteristic decomposition.............................................................................................  71
5.9 Boundary c o n d itio n s ..........................................................................................................  72

5.9.1 Roe flu x ...................................................................................................................  73
5.9.2 Near and far-field boundary conditions ............................................................. 74
5.9.3 Perfect electrical conducting boundary................................................................ 75
5.9.4 Far f ie ld ...................................................................................................................  76

5.10 Treatment of boundary in teg ral..........................................................................................  77
5.10.1 The basis upon a boundary ...................................................................................  79

5.11 Treatment of area integral.................................................................................................... 81
5.12 Polynomial expansions for the continuous modal b a s i s .................................................. 83

5.12.1 LU decom position................................................................................................  84
5.13 Electrical leng th .................................................................................................................... 8 6



CONTENTS vii

5.14 The radar cross s e c tio n ...................................................................................................... 8 6

5.15 Analytical Solutions............................................................................................................  87
5.16 Results................................................................................................................................... 87

5.16.1 Numerical convergence for the P E C ................................................................... 87
5.16.2 The m esh es............................................................................................................  87
5.16.3 Comparison between the L 2 and C° Dubiner b a s e s .........................................  89
5.16.4 Verifying the numerical s o lu tio n s ..........................................................................100

5.17 Scattering by two further o b je c ts ...........................................................................................104
5.17.1 The PEC aero fo il.......................................................................................................104
5.17.2 Open cav ity ................................................................................................................ 105

6 Perfectly Matched Layers and Blending Functions 112
6.1 Introduction to c h a p te r ..........................................................................................................112

6.1.1 Constructing the P M L ............................................................................................. 113
6.1.2 Mathematical detail for the P M L ............................................................................. 113
6.1.3 The absorption coeffic ien t.......................................................................................114
6.1.4 A new i d e a ................................................................................................................ 115
6.1.5 Mathematical detail....................................................................................................116

6.2 The area integral ................................................................................................................... 117
6.3 The nature of the PML equations..........................................................................................117

6.3.1 Numerical flux of the fourth e q u a tio n ................................................................... 117
6.3.2 Boundary conditions . . . • .......................................................................................120

6.4 Blending Functions................................................................................................................ 121
6.5 Results.......................................................................................................................................121

6.5.1 Results achieved from blending te ch n iq u es ..........................................................125

7 Conclusion and further work 127
7.1 Introduction to c h a p te r ..........................................................................................................127

7.1.1 Discussion concerning Chapter F o u r ...................................................................... 127
7.1.2 Discussion concerning Chapter F iv e ...................................................................... 128
7.1.3 Discussion concerning Chapter Six ...................................................................... 129

7.2 Future w o rk .............................................................................................................................129
7.2.1 Additions to the scheme presented..........................................................................129

7.3 Other aspects that could be investiga ted .............................................................................130
7.3.1 Quadrature-free form ulation................................................................................... 130



CONTENTS

7.3.2 Differing time steps
7.3.3 Modal over nodal



List of Figures

3.1 The dimensionless characteristics........................................................................................  33

4.1 A one-dimensional discontinuous discretisation..............................................................  36
4.2 p-refinement on initial 128 element mesh: comparison of the convergence of the elec­

tric field with the exact solution..........................................................................................  48
4.3 Numerical solution: solution details the comparison between p=0 polynomial and the

exact solution on a mesh of 128 elements ....................................................................... 49
4.4 Numerical solution: solution details the comparison between p=l polynomial and the

exact solution on a mesh of 128 elements .......................................................................  49
4.5 Numerical solution: solution details the comparison between p=2 polynomial and the

exact solution on a mesh of 128 elements .......................................................................  50
4.6 Numerical solution: solution details the comparison between p=3 polynomial and the

exact solution on a mesh of 128 elements ....................................................................... 50
4.7 ^-refinement: solution details the comparison between a p=0 polynomial and the ex­

act solution upon a mesh of 128 e le m e n ts ....................................................................... 51
4.8 /i-refinement mesh consists of 512 elements: solution details the comparison between

a p= 0  polynomial and the exact solution for the first h-refinement................................  51
4.9 h-refinement mesh consists of 2048 elements: solution details the comparison be­

tween a p=0 polynomial and the exact solution upon the second /i-refinement . . . .  52
4.10 Comparison between exact solution and order 1 polynomial with 20 elements per 

w av e le n g th ..........................................................................................................................  52
4.11 Comparison between exact solution and order 1 polynomial with 10 elements per 

w av e le n g th ..........................................................................................................................  53
4.12 Comparison between exact solution and order 2 polynomial with 5 elements per wave­

length ....................................................................................................................................  53

ix



LIST  OF FIGURES x

4.13 Comparison between exact solution and order 2 polynomial with 4 elements per wave­
length .................................................................................................................................... 54

4.14 Comparison between exact solution and order 3 polynomial with 3 elements per wave­
length .................................................................................................................................... 54

4.15 Comparison between exact solution and order 3 polynomial with 2 elements per wave­
length .........................................................   55

4.16 Comparison between exact solution and order 4 polynomial with 3 elements per wave­
length ....................................................................................................................................  55

4.17 Comparison between exact solution and order 4 polynomial with 2 elements per wave­
length ....................................................................................................................................  56

4.18 Comparison between exact solution and order 4 polynomial with 1 element per wave­
length ....................................................................................................................................  57

4.19 Comparison between exact solution and order 5 polynomial with 2 elements per wave­
length ....................................................................................................................................  57

4.20 Comparison between exact solution and order 5 polynomial with 1 element per wave­
length ....................................................................................................................................  58

4.21 Comparison between exact solution and Taylor-Galerkin scheme with 10 elements
per w av e len g th ..........................................................................................................  58

4.22 Comparison between exact solution and Taylor-Galerkin scheme with 5 elements per 
w av e len g th ................................................................................................................. 59

4.23 Comparison between exact solution and Taylor-Galerkin scheme with 4 elements per 
w av e len g th ................................................................................................................. 59

4.24 Comparison between exact solution and Taylor-Galerkin scheme with 3 elements per
w av e len g th ................................................................................................................. 60

5.1 The three coordinate systems encountered..............................................................  63
5.2 Scattering by a circular cylinder of electrical length 2A: an unstructured mesh con­

sisting of 15580 elem ents  90
5.3 Scattering by a circular cylinder of electrical length 2A: an unstructured mesh of 682

elem ents.......................................................................................................................  90
5.4 Scattering by a circular cylinder of electrical length 2A: an unstructured mesh of 158

elem ents.......................................................................................................................  91
5.5 Scattering by a circular cylinder of electrical length 2A: contours of E x for converged

solution of p — 0 .......................................................................................................  92



LIST  OF FIGURES xi

5.6 Scattering of a TE wave by a circular disc of electrical length 2A on mesh of 15580 
elements: convergence of the RCS distribution with increase in P ..........................  92

5.7 Scattering of a TE wave by a circular disc of electrical length 2A on mesh of 15580 
elements: comparison of exact solution with p=l approxim ation................................  93

5.8 Scattering of a TM wave by a circular cylinder of electrical length 2A on mesh of 682 
elements: convergence of the RCS distribution with increase in P ................................  93

5.9 Scattering of a TM wave by a circular cylinder of electrical length 2A: comparison
between exact RCS and converged numerical solution on the 682 element mesh . . .  94

5.10 Scattering of a TE wave by a circular cylinder of electrical length 2A: comparison
between exact RCS and the converged numerical solution on the 682 element mesh . 94

5.11 Scattering of a TM wave by a circular cylinder of electrical length 2A on mesh of 158
elements: convergence of the RCS distribution with increase in P ..........................  95

5.12 Scattering of a TM wave by a circular cylinder of electrical length 2A: comparison 
between exact RCS and converged RCS for 158 element m e s h ...................................  95

5.13 Scattering of a TE wave by a circular cylinder of electrical length 2A: comparison 
between exact RCS and converged RCS for 158 element m e s h ...................................  96

5.14 Scattering of a TE wave by a circular cylinder of electrical length 2A on mesh of 158 
elements: the difference between the exact solution and that for the range of P values 96

5.15 Scattering by a circular cylinder of electrical length 2A: comparison between 682 
element mesh RCS and 158 element mesh with a p — 0 uniform approximation . . .  97

5.16 Scattering by a circular cylinder of electrical length 2A: comparison between exact
RCS and converged solution for the 682 element mesh and the 158 element mesh, 
with a p = 3 uniform approxim ation................................................................................  97

5.17 Scattering by a circular cylinder of electrical length 2A: comparison of RCS distribu­
tions for the C° expansion basis and L2 basis, with a p =  1 approxim ation................  98

5.18 Scattering by a circular cylinder of electrical length 2A: comparison, with the exact 
solution, of RCS distributions for the C° expansion basis and L2 basis, with p =  3 . . 98

5.19 Refinement both h and p; scattering of a TE wave by a circular annulus of electrical
length 2A on 158 element mesh: the scattered width distributions for p = 0 ...................  99

5.20 p-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A
on 158 element mesh: the scattered width distributions for p = l ...................................  99

5.21 p-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A
on 158 element mesh: the scattered width distributions for p = 2 ....................................... 100

5.22 p-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A
on 158 element mesh: the scattered width distributions for p = 3 ....................................... 101



LIST OF FIGURES xii

5.23 /i-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A
on first refined mesh of 650 elements: the scattered width distributions for p=0 . . . .  101

5.24 ^-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A
on final refined meshof 2514 elements: the scattered width distributions for p=0 . . . 102

5.25 Scattering of a TE wave by a circular cylinder of electrical length 12A on mesh of 
1082 elements: contours of Ex for converged solution........................................................103

5.26 Scattering of a TE wave by a cylinder of electrical length 10A on mesh of 882 ele­
ments: convergence of the RCS distribution with increase in P ....................................... 103

5.27 Scattering of a TE wave by a cylinder of electrical length 12A on mesh of 682 ele­
ments: the converged RCS distribution compared with the exact solution 104

5.28 Scattering by a NACA0012 aerofoil of electrical length 2A: the mesh consists of 432 
elem ents.....................................................................................................................................105

5.29 Scattering by a NACA0012 aerofoil of electrical length 2A: Ey con to u rs....................... 106
5.30 Scattering by a NACA aerofoil of electrical length 1 A: the mesh consists of 472 elements 106
5.31 Scattering by a NACA aerofoil of electrical length 1A: RCS distributions when aero­

foil is illuminated from the front.............................................................................................. 107
5.32 Scattering by a NACA0012 aerofoil of electrical length 2A: RCS distributions when 

aerofoil is illuminated from the front.......................................................................................107
5.33 Scattering by NACA aerofoils: comparison between the converged RCS distributions

of the NACA aerofoils, from the f r o n t ................................................................................. 108
5.34 Scattering by NACA aerofoils: comparison between the converged RCS distributions

of the NACA aerofoils, from the r e a r .....................................................................................108
5.35 Scattering by NACA0012 aerofoils: comparison between the converged RCS distri­

butions of the RKDG scheme and a hp-FEM scheme, from the r e a r ................................. 109
5.36 Scattering by a semi-open cavity: the mesh consisting of 377 triangles............................. 110
5.37 Scattering by a semi-open cavity: convergence of the RCS for an incident wave prop­

agated along the x-axis.............................................................................................................. 1 1 0

5.38 Scattering by a semi-open cavity: convergence of the numerical solution for an inci­
dent wave propagated along the x-axis.................................................................................... I l l

6.1 Scattering by a circular cylinder of electrical length 2 A: an unstructured mesh of 682
elem ents..................................................................................................................................... 1 2 2

6.2 Scattering by a circular cylinder of electrical length 2 A: the contours of Ey ......................123



LIST OF FIGURES xiii

6.3 Scattering by a 682 element circular cylinder of electrical length 2A: the compar­
ison between the converged PML boundary condition, the converged characteristic 
boundary condition and the exact solution, for p =  4 ........................................................123

6.4 Scattering by a 682 element circular cylinder of electrical length 2A: comparison
between the converged numerical solution and the exact solution, obtained from a 
PML boundary condition, for p = 4 .................................................................................... 124

6.5 Scattering by a 158 element circular cylinder of electrical length 10A: comparison
between the converged numerical solution and the exact solution, obtained from a 
PML boundary condition, for p — 4 .................................................................................... 124

6 .6  Scattering by a circular cylinder of electrical length 2A, on the 682 element mesh: the 
comparison between a linear and blended approximation, for differing approximations 125

6.7 Scattering by a circular cylinder of electrical length 10A on the 158 element mesh: the
comparison between the converged RCS distributions, for both a linear and blended 
approximation........................................................................................................................... 126



Chapter 1 

Introduction

1.1 Background

Electromagnetic theory, in all its forms, has captivated many of the great minds, including such lumi­
naries as Descartes, Newton and Albert Einstein.

The mathematical theory associated with electromagnetism consists of a set of equations accred­
ited to Maxwell. The Maxwell equations govern the flow of electromagnetic phenomena. Solutions 
to the equation set allow for an understanding of many physical, real life occurrences.

Michael Faraday (1791-1867) is attributed with the discovery that electromagnetic forces are gen­
erated by fields originating from charged objects [1]. Further to Faraday’s discovery, James Clerk 
Maxwell (1831-1879) established that electromagnetic disturbances, emitted from a source, traveled 
in a form that can be regarded as having wave like properties. The combination of these theories 
resulted in a set of equations termed the Maxwell equations.

The above describes a very brief summary of classical electromagnetic theory, conducted pri­
marily in the 19th century. What is electromagnetism? There are various forms of electromagnetic 
waves; x-rays, television-rays, microwaves and light are all types of electromagnetic wave, differing 
only with respect to the magnitude of the wavelength associated with the propagating wave. The wide 
ranging implications of electromagnetic waves is thus clearly apparent.

It has now been realised that the implications of electromagnetism are more widespread than first 
thought, to illustrate consider some of the following, modern, applications.

Communication in most forms, varying from mobile phones to television to military purposes, 
is dependent upon antennae. Antennae are employed for transmitting electromagnetic waves and are 
'Often seen in highly visible areas so that no obstacles interfere with the waves. Should this interference 
•occur then the electromagnetic wave becomes scattered.

1
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The ability to provide an electronic system that is impervious to the interference provided by other 
electronic devises (as exhibited on airplanes, when mobile phones are required to be switched off) will 
greatly enhance the design capabilities of systems.

Of interest to the medical world is the absorption of electromagnetic waves. Consider the fact that 
the obstacle of interference is a human brain, then it becomes desirable to find the effects, if any, of 
absorbing the waves.

The detection of objects, via electromagnetic waves, is also possible and prevalent to this thesis. 
In this employment, the waves can be used to find objects varying from land mines to ancient cities. A 
closely linked application is radar. The ability to find and track military objects is of great importance 
to defence agencies. The radar profile of an object emerges from the scattering of an electromagnetic 
wave. It is clearly important to have the ability to predict a profile to allow recognition. An opposing, 
but equally important skill, is the ability to minimise the radar profile observed.

It is, therefore, plain to see that electromagnetic theory has a massive bearing on day to day life 
and has many interesting and important applications.

1.2 Methods employed for the solution of electromagnetic prob­
lems

Generally, the electromagnetic problems encountered, for which a solution is of interest, are complex. 
The equation set that needs to be solved, requires the solution of a set of partial differential equations. 
An analytical solution to a set a partial differential equations is only available for a relatively small, 
relatively non-complex, set of problems. The possibility of an exact solution is further decreased 
by the appearance of either complex geometry or difficult, associated, boundary conditions. These 
two factors increase the complexity of the equations thereby making the equations harder to solve. 
The need to devise methods that provide accurate and efficient solutions to complex and diverse 
electromagnetic problems is a necessity.

Before the advent of numerical methods, experimental and theoretical procedures were the fore­
most methods employed to solve problems in electromagnetics. The problems that could be consid­
ered, using such traditional methods, were of a low complexity. Theoretical methods, by their nature, 
tend to be limited in application to problems which involve simple geometries. Experimental methods 
can be expensive and put constraints on the design cycle of a product.

To address these issues computational methods are now employed where relevant. By definition, 
computational methods yield only approximate solutions, however these methods provide fast and 
cheap solutions to problems.



CHAPTER1. INTRODUCTION 3

At present a numerical scheme provides the best method with which to solve the problems associ­
ated with Maxwell’s equations. The idea of employing such methods is that electromagnetic problems 
simulated upon a computer will provide fast, highly accurate, approximations to very complex prob­
lems.

Once numerical schemes have been decided upon, the analyst has many decisions to make. The 
two major concerns are accuracy of approximation and speed of computation. The analyst attempts 
to influence certain factors with the goal of controlling the accuracy and efficiency of the scheme.

Recent years have witnessed an increase in the speed of computation (facilitated by an impressive 
advancement in computer technology), whilst the accuracy of the approximation has seen improve­
ment courtesy of improved domain representation and high-order approximation, amongst other fac­
tors. The accuracy of the results achieved via these numerical methods, is measured against existing 
exact analytical solutions.

One such area that requires the use of numerical methods for an adequate solution, is the calcu­
lation of the radar profile for electromagnetic scattering problem. The challenge presented by these 
problems is of great interest. For the frequencies of interest, the wavelength of the waves is extremely 
short when compared to the scatterer. So, even given the capabilities of the modern computer and 
today’s computational techniques, this is still a problem of massive interest.

1.3 Numerical methods

Numerical methods are employed to supply approximate solutions to electromagnetic problems (amongst 
others). The use of numerical methods is now so widespread, that when numerical solutions to partial 
differential equations are sought, any newly devised scheme should offer an advantage over exist­
ing techniques. The improvement(s) may be exhibited in computational cost or in an increase in the 
accuracy of the scheme. The analyst, ever seeking improved solutions to Maxwell’s equations via 
a numerical method, encounters many possibilities. Depending upon the method of approximation, 
certain requirements have to be strictly adhered to, which can limit the efficiency or accuracy of a 
scheme.

A numerical method that allows the practitioner room for manoeuver is the finite element method 
[2]. The finite element method was initially developed for use in the aerospace industry, to find the 
strains and stresses placed on an aircraft during flight. The correct application of the finite element 
method can provide highly accurate and computationally efficient approximate solutions to partial 
differential equations.

The fact that the finite element method yields approximate solutions to, say, Maxwell’s equa­
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tions, and that these solutions are acquired with the aid of computer technology, naturally infers that 
the practitioner will seek ever more efficient and accurate solutions. The continual advancement of 
applicable technology suggests that improvement may be achieved on two fronts: one a theoretical 
advancement of the numerical scheme, the other, improvement of existing technologies.

It is clear that the efficiency/computational cost, combined with the accuracy of the solution, is 
paramount to the implementation of a numerical scheme. These factors are of continual thought to 
the programmer. The concept of compromise, regarding cost, efficiency and accuracy, is therefore 
necessarily introduced. Generally, whilst considering numerical methods, improvement in one aspect 
tends to have an adverse consequence in another area. To exemplify consider a typical example of the 
compromise in numerical schemes when seeking a solution to Maxwell’s equations: The numerical 
method employed may ably represent a complex solution domain, however the accurate represen­
tation of this domain may have adverse consequences for the efficiency of the scheme (due to the 
complex representation) and vice-versa. Hence a factor to consider when a numerical scheme is to 
be employed, is that any perceived improvements do not adversely affect the quality of the scheme 
in another area and thereby reduce the overall excellence of the scheme. Such considerations are not 
limited to such simplistic concepts as to which method to employ, they permeate throughout the nu­
merical scheme and are inclusive of such topics as matrix inversion, choice of numerical integration 
etc. Therefore, care is need in all areas so that the practitioner does not err.

1.4 Computer Methods for Scattering Problems

At present, there exists a number of computer methods that can be employed to solve electromagnetic 
scattering problems. A most popular method is the finite difference (FD) method. The FD method 
is highly regarded due to the efficiency of a particular implementation, the Yee scheme [3]. The 
Yee scheme provides an extremely fast method capable of producing accurate solutions in the time 
domain. The method fails however when anything other than a pointwise approximation of the so­
lution is required. Therefore, the method is unable to provide highly accurate solutions for complex 
geometries (which occur in real life situations).

In the frequency domain, high order elements [4] have provided a means for efficient modelling of 
multilayer structures. A recent trend has seen the employment of fast multipole techniques, another 
method that sees vast employment is the Method of Moments [5]. This method however becomes 
expensive in storage and CPU time for large scale problems . Although currently limited in appli­
cation, fast multipole techniques show that large scale scattering simulations can be undertaken with 
available computer resources.
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Clearly, an important consideration is the accuracy and reliability of the numerical scheme. To 
ensure accuracy and reliability, a large number of efficient and accurate error estimators have been 
developed. These estimators allow the quantification of the error for problems without analytical 
solutions (therefore of great interest).

1.5 Objective of the Thesis

The objective of this thesis is to present a new numerical method suitable for the numerical solution 
to Maxwell’s electromagnetic equations in the time domain. In particular this thesis presents the 
implementation of a method suitable for the solution of Maxwell’s equations in the time domain 
using a new boundary representation. The method employed for the solution of Maxwell’s equations 
is called the Runge Kutta discontinuous Galerkin method (discussed in detail in chapter three).

The problems under consideration are in both one- and two-dimensional space. For the numerical 
scheme in two-dimensional space, only triangles comprise the solution domain. Using this method 
it is hoped that the scattering of large electromagnetic problems can be found with a high degree of 
accuracy. The method is to be detailed in the subsequent chapters.

1.6 Outline of Thesis

Brief detail is now given to describe the chapters present in this thesis.

• Chapter Two: This may be considered as an introductory chapter to the underlying mathemati­
cal procedures of electromagnetic theory.

•  Chapter Three: This chapter discuses the fundamentals of the scheme to be employed for the 
solution of Maxwell’s equations, raising issues such as approximating functions, and discreti­
sation. The chapter concludes by discussing the numerical scheme that is to be employed.

•  Chapter Four: Here the one-dimensional case is discussed, and the results obtained are pre­
sented and analysed.

• Chapter Five: The theory is now extended to consider two-dimensional problems involving the 
scattering of an electromagnetic wave, the results which accompany these problems are then 
considered.
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•  Chapter Six: A new method that truncates the infinite computational domain is presented. Also 
presented is the theory of blending. The results obtained from the imposition of these theories 
are then presented.

•  Chapter Seven: The conclusion, and suggestions for further research, are presented.



Chapter 2

Preliminaries

2.1 Basic Electromagnetics

Maxwell’s equations govern electromagnetic phenomena. The equations provide the relation between 
the electric and magnetic field intensity vectors E* and H*.  The equations also provide a relation 
between the fields and the properties of the medium in which they propagate. The full set of equations 
can be written as

div D* =  7 * (2.1)

div B* =  0 (2.2)
<9D*

curl H* =  j ;  +  —  (2.3)

dB*
curl E* =  — —  (2.4)

d t  v '

It remains to specify the constitutive equations and the equation that conserves charge, the latter 
formally known as the equation of continuity. These equations are represented by

D* = e*E* B* =  /** H* J* = cr*E* (2.5)

d'y*
divJc* = - ^  (2.6)

where B * is the magnetic flux density vector, J* is the electric current density vector, D* is the 
electric flux density vector and 7 * is the electric charge density. Here e*, fi*, and a* represent the 
permittivity, permeability and conductivity of the medium respectively. The superscript * indicates a

7
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dimensional quantity.
A simplification of this governing set of equations is readily obtainable by making six basic as­

sumptions. These assumptions take into consideration the nature of the materials that are to be exam­
ined. These assumptions are made throughout this thesis

• The electric charge density is zero, i.e. 7 * =  0;

• The materials are assumed to be non-lossy1;

• Material conductivity is negligible, i.e. a* — 0;

• The permittivity and permeability do not vary in time;

• The medium obeys Ohm’s Law J * — a*E*;

• Problems are considered in two space dimensions only2.

With these assumptions, in conjunction with the constitutive relations, it can be shown that the gov­
erning equations may be re-written as

iQT?*
curl H* =  e * (2.7)

dt v '

curl E* = (2.8)

div e* E* =  0 (2.9)

div 11*11* =  0  (2 .1 0 )

This reduction of Maxwell’s equations to two curl and two divergence equations, represents the form 
adopted to attempt an approximate numerical solution to given problems. The reduced set of equations 
now only involve expressions of the electric E* and magnetic H*  field intensity vectors and two 
properties of the material. The numerical solution of these four equations is the goal of this thesis. It 
is assumed that the divergence equations are satisfied at some initiall time t — 0  [6 ].

2.1.1 Reduction to two-dimensional space

The representation of Maxwell’s equations in an even more simplistic manner is of direct relevance 
to the problems encountered in Chapter Five. The equation set (2.7-2.10) can be reduced further

dissipation o f electromagnetic energy
2This property is independent of the material assumption
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if the solutions are sought in two spatial dimensions only. Determining approximate solutions in 
two-dimensional space suggests that a decomposition, in to transverse electric (TE) and transverse 
magnetic (TM) polarised waves, be considered.

In three dimensional space, the electric field is E* — (E*, E*, E*z) relating to a Cartesian coordi­
nate system. Similarly, the magnetic field is given by H* — (H *, H*, H*). When considering a TE 
polarisation, variables of interest reduce to E*, E* and H z , while for the TM case if*, if* and E* are 
required.

Transverse electric and magnetic waves

For problems in two dimensional space, it is possible to simplify the analysis by solving for a specific 
polarisation. One can simplify the problem by employing decomposition into a transverse electric 
(TE) and transverse magnetic (TM) polarisation. For example, if it assumed that for a TE polarisation 
the electric waves are contained in the plane of incidence, this implies that Ez, and therefore Hx 
and Hy, are zero. Clearly this reduces the number of electric components that need to be found. 
Reconsidering equation (2.8), to reconstruct the magnetic field for a TE polarisation, yields

,dH* dE* dE*
" 1 H = + (2' U )

^  (2-12)dt dx
.dE* dH*z

e l i f  =  I T  (2-l3)

Hence, once E  has been determined we can find H  for a TE polarisation. Similarly, for a TM 
polarisation one assumes the z  component of the magnetic field to be zero (the x  and y components of 
the electric field are also zero). As the transverse magnetic wave is such that the magnetic waves are 
contained in the plane of incidence, this in turn recasts the electric field of equation (2.7) as follows

P

,dEl _ dH; dH*
dt dx dy

dH; dE;
dt dx

dH'x dE*z
dt dy

(2-14)

(2.15)

(2.16)

This completes the procedure for constructing a TM polarisation.
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2.2 Scattering problems

The simulation of scattering of electromagnetic waves by various objects is of intense interest and the 
emphasis of this thesis. This interest becomes particulary apparent in the aerospace industry, where 
information regarding objects such as aeroplanes is desired.

Essentially, scattering problems occur when an electromagnetic wave, generated by a source lo­
cated in the far field, impinges upon an object. As a result of the interaction between wave and object 
(technically referred to as a scatterer), the wave is reflected off the scatterer. Knowledge of the precise 
behavior of the reflected, or scattered wave, then becomes desirable.

Mathematically a scattering problem necessitates a domain that extends to infinity. The infinite do­
main presents a problem, in computational simulation, as, by definition, it is impossible to represent. 
A suitable truncation scheme needs to be introduced to mimic the infinite domain, this is discussed 
at relevant points throughout the thesis. The thesis concerns itself with the numerical solution of 
outgoing waves only.

2.2.1 The two-dimensional scattering problem

Consider the following problem: An, incident, electromagnetic wave, generated by a source in the 
far field, interacts with a perfectly conducting obstacle (the scatterer). The scatterer is assumed to 
be situated in free space. The unknown, desirable, quantities are the electric and magnetic field 
intensity vectors. The field vectors are expressed relative to a Cartesian coordinate system Ox*y*z*. 
The unknown field vectors are of the form E* — (E*, E*, E*) and H* — (H*, H*, H*), with E* or 
H* zero depending a TE or TM polarisation.

The incident wave

The problems of interest, in this thesis, involve the interaction between plane electromagnetic waves 
generated by a source in the far field. The mathematical nature of the incident wave, adopted in this 
thesis, is given by

I T  = 5

—  suit 

cos# 

0

?—iw(x  cos 6 + y  s in 6) (2.17)

Where U l is the incident field vector. Here 6 is the angle of incidence and it is assumed and that the 
angle of incidence is zero, hence the incident wave propagates along the x  axis. Also, 5 is either 1,
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for TE simulations or —1 for TM simulations.

2.3 Scattered field formulation

A mathematical system that represents the scattering problem is derived by considering, for two 
spatial dimensions, the (x*,y*) plane as the plane of incidence for the scattered electromagnetic 
waves.

2.3.1 Non-Dimensional form

Consider the non-dimensional form of Maxwell’s equations as detailed in [7]. This form of the 
equations becomes the starting point from which a numerical solution is to be found in this thesis. To 
achieve the non-dimensional form, dimensionless variables are introduced.

Xj = x*/L* t = t* /  L* y/e^jlo e = e*/e0 (2.18)

and

£ , =  £* /£*  H] = H*/H'a m =  (2.19)

where L* denotes a representative length scale associated with the problem, €0 and fi0 denote the 
dielectric permittivity and magnetic permeability of free space and j  = 1 , 2  (as the problem is posed 
in two-dimensional space). The amplitude of the incident electric wave is denoted by E la.

Decomposition into incident and scattered waves

As scattering problems are under consideration, it is convenient to decompose the field vectors into 
incident and scattered components, as

E  =  E s +  E i H  = H S + H i (2.20)

where the superscripts s and i denote the scattered and known incident fields respectively. The deter­
mination of the scattered field components is now the objective.
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2.3.2 Conservation form

For the purpose of this thesis, it is desirable to express the Maxwell equations in conservation form. 
The dimensionless, conservation form maybe written as

dU
dt

+ V - F ( U )  = S (2.21)

where U  is the unknown vector and S  is a source term. The source term encountered in this thesis 
is generally zero. The flux term, for two dimensional space, F (U )  =  [Fi(E7), F2(U)\, has been 
introduced in equation (2 .2 1 ), we therefore have, for the unknown, U,  and the flux, F (U )

e E s \  (  - e i x H

U ~ '
(2.22)

where e» signify the Cartesian unit vectors. The unknown field vectors and flux variables reduce, for 
TE case, to

U  =

El  \  

El  

\ m j

u  =
HI \

\ E t )

F \ U )  =

and for the TM case we have,

F \ U )  =

( 0 \
HI

\ ED

0  \  

- E l  

~ Hl  I

It is advantageous to define a unified formulation

F 2(U) =

( - m  \  

0

-E .

F 2(U) =

/

E ‘r \  

0

\ H ’* J

( ux \
U =  Uy

\ u . j

yielding, for the TE case

, F \ U )  = 6

( 0 \
u z

\ u y  )

F 2{U) = 5

(  - u z \  

0

V ~ Ux J

5 = 1 Ux — E sx Uy = E sy Usz =  Hz (2.23)
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for the TM case we have

S = - l  Ux — HI Uy = H sy Uz =  E sz (2.24)

This representation of the variables is of direct relevance as it has implications for the designing of 
a computer code. A code can be written which amalgamates both the TE and TM schemes into one 
single code, with little effort and computational cost.

2.3.3 Boundary conditions

To achieve an accurate solution to any problem represented by differential equations, boundary con­
ditions need to be considered. Boundary conditions, that are particular to electromagnetism, allow for 
the accurate modeling of problems such as resistive sheets, material interfaces, impedance boundaries 
and perfectly conducting walls. Poor specification and implementation of boundary conditions will 
result in a significant loss of accuracy.

The two boundary conditions, encountered at the extremities of the computational domain, in this 
thesis are:

Far field

An important consideration in the scattering of electromagnetic waves is the behavior of the scattered 
wave at the outer limits of the computational domain. At a suitable distance from the scattering 
object the (scattered) electric and magnetic field components consist of outgoing waves only. It 
is therefore important to accurately represent this behaviour. A number of possible methods exist 
for the truncation of an infinite domain. Some of these methods include the coupling of the finite 
element process with a boundary integral approach which is then capable of approximating the terms 
at infinity.

The issue of how to properly devise the required far field boundary condition has received much 
attention in the past. Some of the more complex schemes that are employed involve radiation bound­
ary conditions based on a localisation of the Dirchlet to Neumann (DtN) map [8 , 9], or an asymptotic 
expansion of the far field solution [10]. A simplistic method involves the use of characteristic bound­
ary conditions [1 1 ], this method however is only accurate for a close to perpendicular incidence of 
the wave. Other, alternative, methods involve the use of of buffer or sponge layers. In these methods, 
the waves are either damped [12], accelerated to supersonic conditions [13], decelerated [14] or a 
combination of the three [15]. For an informative review of these papers I refer the reader to [16].
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Perfect electrical conductor

A perfect electrical conductor (PEC), is employed to simulate regions of infinite conductivity. In the 
event that the scatterer equates to a perfect electrical conductor, and that an electromagnetic wave im­
pinges upon this body3, then certain assumptions can be made. These assumptions, that no tangential 
electric or normal magnetic field can exist, are mathematically represented by the following equations

n  x E  =  0  n  • H  =  0 (2.25)

where n  =  ( n x , ny) is the associated outward surface normal.

3the fields are unable to penetrate the body



Chapter 3 

The Finite Element Method

3.1 Introduction

To begin, this Chapter presents and briefly discusses the finite element method as a whole. A fa­
miliarity of the method is assumed, therefore the basic concepts shall not see much investigation. 
The chapter continues with topics that are specific to the method employed in this thesis, they are 
identified and considered in further depth.

The sections that follow involve subjects that in some capacity relate to the numerical scheme 
employed in this thesis, for example h- and p-type analysis. The chapter evolves by detailing the 
theory required for the evaluation of an integral.

The time evolution algorithm is discussed in some detail. The discontinuous Galerkin method is 
then brought to the fore. The properties of the numerical scheme, both advantageous and detrimental, 
are included in this discussion, culminating with a chronological evolution of the method.

The chapter progresses with the theory required to provide a numerical solution to the Maxwell 
equations. From this theory all the solutions to Maxwell’s equations, in this thesis, are derived. Fol­
lowing the discussion of the aforementioned method, the emphasis tends toward the discontinuous 
nature of the FEM to be employed. Upon encountering the final topics of the chapter, an understand­
ing on how information is passed between elements is achieved.

3.2 Brief discussion concerning the finite element method

The finite element method is a numerical method that can be employed to provide approximate so­
lutions to partial differential equations. The origins of the finite element method can traditionally 
be traced to Courant [17] who, in 1947, employed piecewise approximations in order to determine

15
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unknown variables. Subsequently, due to the method’s success, numerous mathematical concepts, 
such as boundary condition representation and assembly, were incorporated into the scheme. These 
acquisitions, amongst others, clearly enhance the ability of the finite element method, allowing for a 
higher accuracy in the solution, whilst simultaneously providing a strong mathematical spine.

The finite element method revolves around the basic concept of splitting a would be computational 
domain into a series of polygons, termed elements. For a two-dimensional problem, these elements 
are typically triangles or quadrilaterals. If required, a mesh can consist of a hybrid of these two.

This thesis involves itself with the numerical solution of Maxwell’s equations upon a discretised 
domain consisting of triangular elements. The method employed in this thesis involves determining 
the numerical solution is upon each element of the computational domain. Combining the solutions 
from each element1 yields an approximate solution over the entire computational domain.

Three intricacies of the method, that are important to the numerical scheme employed in this 
thesis, are the selection of a basis function, with which to represent the unknown variable on the 
element, adequate representation of boundary conditions and the nature of the element which is to tile 
the computational domain (this later point only relevant for the two-dimensional case).

Electrical problems were first considered, with the idea of solving them via the finite element 
method, by Arlett and Zienkiewicz [18]. The finite element method was considered for electrical 
problems due to the fact that the method allows for the treatment of material inhomogeneity without 
code alteration. The FE method can also allow for the treatment of diverse geometries by using 
triangles to tile the domain and, traditionally, has a low memory requirement (due to sparse matrices) 
[19].

Since the advent of the finite element method it is clear that rapid advancements, in the important 
areas such as accuracy and efficiency, have been made. The method has evolved. These advance­
ments, including high-order and complex domain representation, are apparent in the finite element 
scheme that is to be employed in this thesis [20]. But, also, as the finite element method grows, and 
new schemes become realised, so the complexity of the schemes increase. As a result of the increase 
in complexity, new problems inhibit the analyst. A typical problem being the ability to determine a 
suitable procedure to employ, out of the multitude that exist, and then efficiently applying it. But first, 
consider some fundamental concepts of the finite element method.

3.2.1 Spatial discretisation

For practical applications, the requirement of modeling complex geometries means that unstructured 
mesh methods are particularly attractive. Unstructured meshes involve a tiling of the domain with

term ed assembly
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triangular elements (in two-dimensional space, tetrahedra in three-dimensional space). Generating 
complex geometries is a non-trivial task. The difficulties occur, primarily, as a consequence of the 
shape of the solution domain. The initial concern is the choice of element, specifically which element 
to employ, and the implications of this choice upon the scheme. The elements that comprise the mesh 
each have their own attributes.

Triangular elements used to be synonymous with a low-order representation, due to the lack of 
a suitable, accompanying, high-order basis. Triangular elements are capable of yielding fast results 
whilst simultaneously representing, due to their nature, a complex domain.

Conversely high-order representation tends to involve rectangular elements, but, by their nature, 
these elements fail to accurately model complex geometries [4].

This thesis concerns itself with high-order approximation upon an unstructured, triangular, mesh.

3.3 Mappings and the resulting Jacobian

The finite element method places a strong emphasis on the transformation between coordinate sys­
tems, the formulation employed in this thesis relies heavily on such mappings. Any mappings that 
occur are so that a general element, in the computational domain, may be mapped to a local, bounded, 
element. A simplicity and , in this thesis an increase in efficiency, arises as a result of these mappings.

Any mappings that are employed in this thesis provide a one-to-one relationship between coordi­
nate systems [2 1 ].

Isoparametric mappings2 can be used to transform general elements, from the solution domain, 
to what is termed a normalised domain. The basis that is subsequently to be employed must then be 
defined upon this normalised element.

Specifically, for the two-dimensional problem encountered in a subsequent chapter, the transfor­
mation theory is employed twice. The two-dimensional problem, considered in this thesis, necessi­
tates the use of a high-order representation applied to an unstructured grid. Therefore, as a conse­
quence of the basis, two transformations must occur. These transformations are now investigated.

The first mapping occurs for the reasons defined above. A second mapping is required so that a 
coordinate system can be provided in which the basis is well-defined and bounded by constant limits. 
The second mapping involves a transformation from a local triangular element to another normalised 
element, this time the unit square.

To devise an efficient high-order scheme, the basis function should endeavor to be formulated 
from a tensor-product of one-dimensional functions. If a basis is so comprised, the evaluation of the

2 A  mapping where the geometry and the field variable are represented to the same degree
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integrals, and any associated mathematics, becomes simplified.

The general Jacobian

As mappings have been introduced, it naturally follows that their consequences should be discussed. 
A Jacobian arises as a result of a mapping between coordinate systems. The mathematical form of a 
Jacobian is derived from the relation between the coordinate spaces.

Upon completion of a mapping, any formulae defined in terms of the original cartesian coordinate 
system, (x, y), needs to be suitably amended and expressed in terms of the new coordinate system

i ^ v )  say.
Here an example details how the derivative of a basis function can be expressed with regard to the 

normalised coordinate system. The chain-rule facilitates the change in coordinate systems.

A derivative with respect to rj is similarly given. The matrix form of the transformation is thus

The Jacobian matrix, J, is readily determined from the transformation. Inversion of the Jacobian 
matrix provides the relation

A final consideration, arising from the mapping process, is the exact form of the integral in terms 
of the new coordinate system. A change of coordinate system results in an amendment to the in­
finitesimal area (line in one-dimensional and volume in three dimensional) element, dxdy .

dNie dN? dx d N f  dy
d£ dx d£ dy d£

(3.1)

given as

dx  dy
da dt
dx dy  
drj d£

= m
(

(3.2)

(3.3)

dxdy  =  det[J]d^drj (3.4)

resulting in the integral

1+1 d N e
J  1-^-det[J]d£drj (3.5)
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Note the constant limits, providing an integral which is more efficient to evaluate.

3.4 Temporal discretisation

Employing time domain schemes, in particular long-time integration for electromagnetic problems, 
has proven, recently, to be computationally more efficient than other finite element methods (fre­
quency domain) [22,23]. It has been proposed, in [24], that for the long-time integration of Maxwell’s 
equations, higher-order numerical methods provide the most cost-effective approach [25]. The prob­
lems in this thesis are advanced, in time, via the explicit fourth order Runge-Kutta algorithm (other 
possibilities do exist, such as the Euler forward-step method, or indeed the second-order Runge-Kutta 
algorithm).

In numerical analysis the Runge-Kutta methods are considered an important family of iterative 
methods for the approximation of ordinary differential equations. These techniques were developed 
in the year 1900 (circa) by the mathematicians C. Runge and M. Kutta.

3.4.1 The fourth-order Runge-Kutta temporal algorithm

An investigation of the Runge-Kutta algorithm is to follow. Let an initial value problem be defined as

Suppose that yn is the value of the variable at time tn. The fourth-order Runge-Kutta method then 
takes yn and tn and calculates an approximation for yn + 1 at a brief time later, tn +  h. The formula is 
defined by

y ' = y(.t0) = y0 (3.6)

(3.7)

tn+i — tn h

where yn + 1 is the RK4 approximation of y{tn+1) and

(3.8)

• h  = h f ( t n, yn)

• k2 =  h f { tn +  \ , y n +

• h  = h f ( t n +  f ,T/„+ §fc2)
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• h  = h f { tn +  h, yn +  hk3)

Therefore, the next value (yn+i) is determined by the present value of yn plus the product of the 
size of the interval h and an estimated slope. The slope is a weighted average of slopes

• ki is the slope at the beginning of the interval

• k2 is the slope at the midpoint of the interval, using slope k\ to determine the value of y at the
point tn +  h/2  using Eulers method

• is again the slope of the midpoint, but now using k2 to determine the y-value

• k4 is the slope at the end of the interval, with its y-value determined using fc3

When the four slopes are averaged, more weight is given to the slopes at the midpoint

Slope  =  fcl +  2 K 2 +  2 K 3 +  (3.9)
6

The fourth-order part of the method means that the error per step is on the order of h5, while the 
total accumulated error has order /i4.

A problem for consideration, encountered when seeking time-domain solutions, is that errors 
can accumulate with time. This implies that large scale scattering becomes very complex if not 
impossible.

3.5 h p -type methods

The fundamental concepts of the /ip-type methods appear in the method that is to be used in this 
thesis, for the numerical solution of Maxwell’s equations. It would therefore be advantageous to state 
the main concepts of these methods.

The methods referred to as h-type methods focus on element size. A polynomial of set degree 
is chosen to represent the desired unknown over each element, whereupon an improving solution is 
achieved via a diminishing element. The approximate solution tends to the exact solution, as h, the 
element length, tends to zero.

Conversely, p-adaptivity methods employ a fixed element mesh. Continually increasing the order, 
p, of the polynomial results in a continual increase in the accuracy of the solution.

In general it has been determined that p-adaptivity methods appear less computationally expensive 
when directly compared to finding a solution upon finer meshes [26]. This statement is investigated 
in subsequent chapters.
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For a detailed analysis of spectral/hp methods I refer the reader to [27, 28] and the references 
therein.

3.6 Evaluation of integrals

A solution to a variational statement (discussed shortly) involves the evaluation of integrals. Upon 
expressing an integral in the desired form (any procedures such as mappings, that are required, are 
performed), how is the integral to be evaluated? The integrals encountered in this thesis are ap­
proximated. The approximation is a result of quadrature formulae. The quadrature formulae are 
substituted in place of the integral. The quadrature formulae, and hence what they approximate, are 
readily determined via a computer or computers. Clearly the formulae are perfectly suited to com­
puter implementation [29]. The quadrature employed, for the numerical solution of integrals, in this 
thesis, is due to Gauss.

Gaussian quadrature formulae are considered the foremost accurate procedures available for nu­
merically evaluating an integral [29], Quadrature formulae rely on the fact that the relevant data 
is available at specific, pre-determined points. The quadrature points are dictated by the choice of 
Gaussian quadrature, their number increase (along with the computational cost) with respect to the 
order of the approximating polynomial. In general, integrals in one- and two-dimensional space can 
be approximated by a summation of terms. Bearing this in mind it becomes important that the bases 
selected for the approximation can be expressed in terms of a tensor-product, as the computational 
cost, when employing Gaussian quadrature, can be kept to a minimum.

/ I nip

G(v)dv = W0G0(r,0) + ■ ■ ■ +  W„G„(»?„) =  Y  Gm(r,)Wm(v) (3.10)
m= 1

where Wm(iS) and Wn{rf) are the associated integration weights of the quadrature. The sampling 
points, 770, . . . ,  r)n, are again determined by the choice of quadrature. This form of the integral is 
entirely suitable for computer implementation.

3.7 Analytical solutions

Any results that are acquired from a numerical scheme will have to be verified. The verification 
is performed by comparing the numerical solutions against any existing analytical solutions of the 
problem. The work conducted by Balanis [30] allows for analytical solutions, relevant to the problems 
encountered in this thesis, across the given computational domain, to be derived.
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3.7.1 The Courant-Friedrichs-Lewy number

The Courant-Friedrichs-Lewy number provides a condition for partial differential equations to be 
convergent. In many explicit time-marching schemes, the time-step meet certain requirements. If 
these requirements are not met the approximate solution will produce incorrect results. The CFL 
condition is given by

AT
A ^  =  C  C -11)

and the constant C  depends upon the equation, or equation set to be solved, not on A T or Ax.  
The CFL number can be a very limiting constraint on the time step (AT decreases as the order of 
approximation increases). The CFL number is something that will be investigated where relevant.

3.8 The discontinuous Galerkin finite element method

The discontinuous Galerkin method may be considered as an amalgam of two schemes, in that the 
method combines features from both finite volume methods and finite element methods.

The finite volume similarities appear in the form of numerical fluxes. Numerical fluxes are es­
sential to the success of finite volume methods and are incorporated in the discontinuous Galerkin 
method for similar reasons, to provide a communication between contiguous elements. It is worth 
noting that the scheme employed in this thesis, is devised in such a way that when piecewise constant 
approximations are used for the spatial discretisation and the forward Euler method is employed for 
the temporal discretisation, a standard finite volume scheme is obtained.

The FE similarities arise as the computational domain of interest is discretised into elements, and 
the numerical solution is then sought upon each element of the discretised computational domain 
[31]. The discontinuous Galerkin method employs completely discontinuous piecewise polynomials 
for the numerical solution and the test functions, defined upon each element in turn. Therefore the 
numerical solution is discontinuous at element interfaces.

3.8.1 Chronology of the Discontinuous Galerkin scheme

The evolution of the discontinuous Galerkin method, in accordance with Cockburn, Karniadakis and 
Shu [26], is now presented. The discussion is not complete, in that it neglects to include areas of 
non-direct relevance to this thesis.

The name discontinuous Galerkin first appeared in a paper produced by Delfour and Trochu as 
early as 1981 [32]. The method however existed previously, only lacking in name. The first study of



CHAPTER 3. THE FINITE ELEMENT METHOD 23

the discontinuous Galerkin (DG) method, as it later became known, can be traced to Reed and Hill 
[33]. The equation under consideration at the time was the independent linear hyperbolic neutron 
transport equation. It was noted that the linearity of the equation, allied to the smoothness of the 
solution, permitted an approximate solution to be defined upon each element of the solution domain. 
The method was then readily applied to ordinary differential equations by LeSaint and Raviart [34]. 
The analysis of the method, with regards to ordinary differential equations has not relented, many 
papers provide a detailed analysis of this topic [35, 36].

The first comprehensive analysis of discontinuous finite element methods for two-dimensional 
linear hyperbolic equations was performed by Lesaint and Raviart [34]. They provided a convergence 
of (A x )k=1, for the scheme on general triangulations. A subsequent proof, for the rate of convergence 
upon general triangulations, was derived by Johnson and Pitkaranta [37], who proved, numerically, 
that the rate of convergence, for general triangulations, was (A x)k+1^2, where k is the order of the 
approximating function. This rate of convergence was later shown to be optimal by Peterson [38]. 
The stability and accuracy properties, of the method, have rigorously been proven in such papers as 
[39, 40, 41,42]

The culmination of the research conducted in this area allowed for the discontinuous Galerkin 
method to be readily applied to such diverse areas as gas-dynamics, oil recovery, meteorology, turbu­
lent flows, weather forecasting and electromagnetism amongst others.

3.8.2 Other discontinuous Galerkin methods

The discontinuous Galerkin method has since been suitably amended to find numerical solutions to 
other types of problem. For example the local discontinuous Galerkin method proposed by Cockburn 
and Shu [43], seeks solutions to second, third and even higher order partial differential equations. 
The LDG method is capable of this by applying the DG method a relevant number of times. The DG 
method also sees employment in the solution of elliptic problems.

The quadrature-free [29] implementation of the discontinuous Galerkin method appears most 
promising, and is worth considering for further research, for the following reason. Discontinuous 
Galerkin methods insist that the integrals are evaluated with quadrature formulas. This insistence 
increases the memory requirements of the scheme. The quadrature-free DG method avoids the use of 
quadrature formulas, hence improving the efficiency of the scheme. A quadrature-free formulation 
involves a set of matrices, the same for each element, that allow the area and boundary integrals to 
be calculated analytically. The quadrature-free method therefore provides low storage requirements 
and ameliorates the concern of cost, at no loss of accuracy, whilst maintaining the ability to model 
complex geometries.
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3.8.3 The discontinuous Galerkin method for Maxwell’s equations

Important advancements, in terms of solving Maxwell’s equations via a DG scheme, were achieved 
by Warburton and Karniadakis [44]. They provide a discretisation of the Maxwell equations by em­
ploying the DG method. Warburton [45] extended this discretisation to involve unstructured /ip-finite 
elements, which is of particular relevance to this thesis. A discontinuous spectral method has been 
introduced by Kopriva, Woodruff and Hussaini [46]. This theory is also of relevance to the work in 
this thesis.

3.8.4 Concerning the discontinuous Galerkin method: advantages and disad­
vantages

The discontinuous Galerkin method can be considered as a robust and compact finite element method 
that provides an excellent framework for large-scale, time-dependent problems that require high-order 
accuracy on unstructured grids [47, 24]. The high-order, time-domain and unstructured aspects of the 
scheme are the most desirable qualities.

An important characteristic of the discontinuous Galerkin method, that distinguishes it from tra­
ditional finite element methods, is the lack of continuity between the numerical solution within each 
element. That the elements in the formulation are considered as completely separate entities, neces­
sitates that the solution within each element be built anew. The numerical solution is acquired from 
information contained in each element and the boundary data of a neighbouring element(s) only.

The discontinuous nature of the elements, the ability to treat each element as unique, suggests that 
the basis functions are defined in a completely discontinuous polynomial space. It becomes apparent 
that as a result of the discontinuous nature of the basis functions, a unique flexibility is acquired. 
This flexibility allows for a freedom in which to chose the degree of approximation for each element, 
irrespective of the order of a contiguous element (p-adaptivity). The advantage being the ability to 
investigate areas of high interest thoroughly. Conversely regions of low interest can be represented 
by a low order approximation and, thereby, increase the efficiency of the scheme. This suggests 
that a computational domain could be constructed, in two dimensional space, of a hybrid mesh of 
both triangles and quadrilaterals. The flexibility also allows the discontinuous Galerkin method to 
employ arbitrary sized triangulations (/i-adaptivity), allowing for mesh refinement in particular areas 
of interest [48, 49].

The local data structure of the discontinuous Galerkin scheme results in a formulation with a high 
parallel efficiency. The discontinuous Galerkin method also exhibits an insensitivity to the smooth­
ness of the mesh [50]. As there exists a complete decoupling of elements, the inclusion of a heteroge­
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neous collection of materials is dealt with in a natural way, their specification, in the relevant element, 
is all that is required.

The DG method does exhibit some disadvantages however. These problems become clear upon 
implementation. The discontinuous Galekin scheme must store the coefficients associated with the 
judiciously chosen basis. As high-order representation is often required or desired, the coefficients 
become numerous and the high storage and computational requirements become apparent [51].

3.9 The Runge-Kutta discontinuous Galerkin method

Problems of interest, in computational electromagnetics, share similarities in that they are generally 
computationally very large with respect to the computational wavelength, and include complex ge­
ometries. The accurate modeling of such complex problems involves an analysis over a long duration, 
thus implying that high-order methods be considered to generate a solution to Maxwell’s equations in 
the time-domain. Chavent and Salzano [52], to avoid implicit time discertisations (computationally 
inefficient due to the need of evaluating at each time-step), devised the first explicit version of the DG 
method. This method however failed upon analysis3. Another explicit scheme needed to be derived.

The Runge-Kutta discontinuous Galerkin (RKDG) method was first introduced by Cockbum and 
Shu [53]. Cockburn and Shu showed that the RKDG method is perfectly suited in providing high- 
order accurate solutions to scalar hyperbolic conservation laws [54]. The recognition that high-order 
schemes significantly enhance the quality of the solution demanded that they be considered [55, 56]. 
The culmination of extensive work performed upon RKDG schemes resulted in a paper, [57], that 
provided RKDG techniques for the numerical solution of conservation laws.

Standard spectral methods provide high-order numerical solutions. Although these methods are 
highly accurate for smooth functions, their failing quality is a dependence upon a simplistic solution 
domain; they suffer on complex geometries [55, 58]. To address this deficiency, spectral methods 
evolved to incorporate spectral element methods [59]. Spectral elements consist of tiling the com­
putational domain with quadrilaterals in two dimensions (hexahedral in three dimensions). The un­
desirable consequence of such a discretisation is that the solution domain consists of a structured 
mesh, and is therefore, only a moderate improvement. Natural evolution of the scheme led to the idea 
of non-conforming elements [60]. Non-conforming elements can be employed to extend the spec­
tral discretisation to more complex geometries, although this increases the computational cost and 
lessens the adaptive capability. It can therefore be understood that the derivation of a new high-order 
finite element method suitable for unstructured grids, at a computationally low cost, was essential.

3the method was unstable for ^  =  c, aconstant
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Much of the work in the area of high-order approximations on unstructured grids, for time dependent 
problems, have involved modal expansions [22, 25, 55, 44].

Traditionally the prevailing methods, when the geometry is complex, are low order finite element 
or finite volume methods (high-order finite volume methods [61, 62] for unstructured grids do exist 
but they are rather complex and expensive [31]) . These methods were employed for the reasons 
detailed in Chapter One. It is well known that triangular elements are much more adept at repre­
senting complex solution domains. As expected, the extension of a low-order approximation to that 
of a higher order is non-trivial. Attempting to derive a high-order basis from a low-order basis gen­
erally results in ill-conditioning. The ill-conditioning arises due to linear dependence of the basis. 
Alternatively, collapsing the corners of spectral elements (quadrilaterals) onto a triangular domain is 
not a possibility for hyperbolic equations, as time-step restrictions are introduced that are unaccept­
able [63]; something new was needed. Intuition suggests that an amalgamation of the two theories 
would provide an excellent solution. The idea is to extend the spectral element method to incorporate 
triangular elements. The incorporation of triangular elements, into spectral methods, would result 
in an increase in the complexity of the domain representation, whilst maintaining a high order of 
representation. This theory would be of interest for further research.

3.10 The traditional Galerkin method

In order that the numerical scheme to be employed is fully understood, the Galerkin finite element 
method is now analysed. It will become apparent that the discontinuous Galerkin method applies the 
traditional Galerkin method to each element of the discretised computational domain in turn.

3.10.1 The variational formulation

The variational statement [64], that accompanies the DG formulation, is derived by applying the 
Galerkin procedure to each individual element of the computational domain. Consider a system of 
equations in dimensionless, conservation form, ably represented by equation (2.21). The solution to 
equations (2.7) and (2.8) is of interest as, for the reasons given in Chapter Two, equations (2.9) and 
(2.10) are assumed to be satisfied.

The computational domain, Q, is partitioned into a collection of non-overlapping elements T*. 
The elements must tile the entire solution domain, hence U S  Ti — Q where N e  represents the 
total number of elements. The variational statement is achieved upon multiplication of equation 
(2.21) by a test function and by introducing a weighting function (for Galerkin methods the test and
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weighting functions inhabit the same space, <$a, to be discussed shortly). Therefore, multiplying by a 
test function W  and then integrating over each element, e, [22], we obtain, for two-dimensional space

f  BTJe 2 f  ci F e
/  ^ - W d D  +  V  /  V -1W d n  =  0 (3.12)

Jcie dt Qe dxi

Where Ue is the unknown vector and Fe is the previously defined flux term over each element e . 
To be in accordance with Galerkin, the test function exists in the same finite element space, 4>a, as the 
approximate solution. The space, $ a, is a finite-dimensional subspace of the space of discontinuous 
functions. The exact solution, Ue, in each element is approximated by Ueae$a. Applying Gauss’ 
divergence theorem (integration by parts in one-dimensional space) to equation (3.12) yields the weak 
variational [64] formulation.

[  ^ W d Q +  j  F l W d T - ^  f  ^ F i ( U l ) d n  = 0 (3.13)
v j__  ̂ */ rig ^

where

n D i m

Fn = ' * r  UiF.iUl) (3.14)
i =  1

here n* represents the outward normal. The connection between neighbouring elements depends 
upon how the boundary conditions are enforced. The chapters that follow provide procedures that 
adroitly present a means of solution to this variational statement, equation (3.13).

3.10.2 The approximate solution

In the discontinuous Galerkin formulation, a numerical solution Uea is sought within each element. 
The approximate solution is given as a linear combination of a basis function weighted by unknown 
degrees of freedom.

N e  N e  P

u * ' £ u « = ' E ' E  a>N i(* i) (3-15)
e = l  e = l  j = 0

where d j  denote the unknown degrees of freedom and N j ( x i ) , j  =  0 , 1 , . . . ,  P  denote the set of 
basis polynomials such that P  is the highest order of the polynomial. The coefficients, aJ5 now 
become the desired, and sought, unknowns.
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3.10.3 Discontinuous space

The space, $ a, in which the problem is to be posed is now considered. By definition, a continuous 
function space is not the natural place to pose the problems encountered in this thesis. The natural 
alternative is a formulation where $ a contains discontinuous elements4. Then each element that tiles 
the computational domain has polynomials defined within that element. These polynomials are zero 
outside of that element. We define

3>a =  { w  e  L2(fi) : W\ Ti E ViTi)  V Ti} (3.16)

where V{ft)  is the polynomial space defined on the domain ft [22],

3.11 Upwind schemes

When evaluating for the boundary integral upon internal edges, the flux terms are not uniquely de­
fined. The loss of uniqueness is a result of employing a discontinuous approximation polynomial 
(defined over each element only). The flux function is therefore evaluated in terms of a consistent 
numerical flux. The numerical flux depends upon both interface states and, as a result, introduces a 
necessary coupling between elements. As the Maxwell equations are a system of equations, an ap­
proximate or exact Riemann solver must be employed (as opposed to a monotone flux for single set 
of equations) [65].

The family of upwind schemes, whose origins can be traced to Courant, Reeves and Isaacson, are 
directed towards the introduction of physical properties of flow into the discretised formulation. Up­
wind schemes are dependent upon the hyperbolicity of the equation [66]. If an equation set, Maxwell’s 
equations for example, exhibit a hyperbolic nature then certain properties can be incorporated into the 
numerical scheme. Information is propagated along characteristics. The characteristics are deter­
mined by the eigenvalues of the associated Jacobian matrix. The signs of these eigenvalues dictate 
the direction of propagation. For the Maxwell equation set, due to their linearity, the eigenvalues 
are constant and, as a consequence of their hyperbolicity, the e-values are real, so determining the 
numerical flux is not so demanding.

Upwind schemes allow for the calculation of discontinuous solutions, so lend themselves perfectly 
to the discontinuous Galerkin method. The schemes differ with respect to the amount of physical 
information incorporated into the discretisation process.

4Continuous function spaces are neglected due to the possibility o f large banded matrices that result as a consequence 
of overlapping support
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Upwind schemes provide the platform from which more accurate schemes can be derived. The 
two foremost being the flux difference splitting and flux vector splitting [66]. Flux difference splitting 
involves the splitting of U,  as is done in this thesis, and flux vector splitting involves F  being split.

For a hyperbolic system of equations an approximate Riemann solver would be employed [22].5 
The numerical flux chosen for this thesis is due to Roe [67].

The general mathematical form of the Roe flux is discussed shortly, and we see its specific impo­
sition, for one and two dimensional cases, in Chapters Four (page 39) and Five (page 71).

The numerical flux is clearly of great importance. Basically, the numerical flux takes into ac­
count the direction of propagation of the wave at the element interface, and allows for a passing of 
information between elements [51].

3.11.1 Other numerical fluxes

Numerous possibilities exist for the choice of the numerical flux alternatives to the Roe flux employed 
in this thesis, are now considered, Two that come to mind are the Godunov flux and the Lax-Friedrichs 
flux. There exists basically two approaches to extending the theory one being flux difference splitting, 
of which some examples are the schemes are, Godunov [68], Osher [69], Harten, Lax, and van Leer 
[70] and Roe [67] (the numerical flux choosen for this thesis). The other approach is flux vector 
splitting, some examples of which are due to Stegerand Warming [71] and van Leer [72]. However, 
as the degree of the approximation increases the choice of numerical flux has diminishing effect on 
the quality of the approximation [73].

3.11.2 Characteristic flux decomposition

Physical properties of flow can be incorporated into the numerical scheme via a characteristic decom­
position. The method is detailed here for a general case, and will be employed when considering 
the one- and two-dimensional problems in the subsequent chapters that follow. Following the outline 
detailed by Sherwin [74], consider the set of equations

BU + m p ) =  o i = l , n d im  (3.17)
Ot OX i

In non-conservative form the equation becomes

—— b A n—— =  0 i — 1, ndim  (3.18)
o t  OXi

5As opposed to an exact solver, the names are self explanatory
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where A n is a Jacobian matrix whose entries are constant. A n is given by,

di m

An — ^ 2  Ui~ ^n  P*19)
• 1 d U  1 = 1

The Jacobian matrix A n can be decoupled into a diagonal matrix D  of eigenvalues, in the form

L A nR  =  D  (3.20)

and

R D L  =  A n (3.21)

Here the columns L  and R  are the left and right eigenvectors of A n respectively. The eigenvalues 
are derived from the characteristic equation

\XI — A n\ = 0 (3.22)

where the size of I, the identity matrix, depends upon the dimension of space in which the
Maxwell equations are to be solved. Substituting (3.21) into (3.18) implies that

dU  dU
-  + R D L -  = 0 (3.23)

When A n is symmetric, as is the case for the Maxwell equations, L  = R ,  and so we can write

R A n R 1 =  D  (3.24)

Let the solution’s of equation to (3.22) be

Ai =  u A2 =  —u (3.25)

the corresponding eigenvectors x \  and x 2 satisfy

Assume

A x  i =  AiCCi A x 2 =  A2£ 2 (3.26)
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X1 x\
* 1  - 9 x 2 - Jl

Xl. x 2

Then the matrix R  can be defined by

R  -  [x1 x 2]

with the inverse

x\ x\
/y»2Xi x2

(3.27)

(3.28)

R 1 =
/ y » l  /v » 2  ___ /'v»2 rp  1

1 2  1 2

It can now be shown

R A „ R  1 =
Ai 0  

0  A2
D

(3.29)

(3.30)

where D  gives the diagonal matrix and R  1R =  J . Let U  — R V  and pre-multiply the equation 
by R _1 the resulting equation yields

d V  . . d V  n 
~̂ 7~ +  R  A nR —— — 0
ot ox

where V  = [Vi, V2] are the Riemann invariants. It follows that

dV1 dV1 
dt dx

and

dt dx
=  0

hence

(3.31)

(3.32)

(3.33)

dx
dt =  1 , - 1 (3.34)

This implies that V\ and V2 are constant. Again, from U  = R V  we get, for the electromagnetic
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case

V ^ ^ E  + H] V2 = l- [ E - H ]  (3.35)

These are the Riemann invariants.

3.11.3 Mathematical representation of the Roe flux

The Roe flux [67] is represented mathematically by

F r x  (U L, U R) = (F nR + F nL) - \A\ (U R -  U L) 1 (3.36)

and is used at all internal boundaries in this thesis. Here U L and U R represent the values on the 
left- and right-hand-side of the interface and F n is defined in equation (3.14). The matrix A  is defined 
by

A  = P _1T P  (3.37)

and

A\ = P 1 |T| P  (3.38)

where P  is a matrix whose columns are the eigenvectors of A ,  and T is a matrix whose diagonal 
entries are the eigenvalues of A.  The modulus of the matrix A  is taken to ensure that the correct 
direction of propagation is assured (upstream).

3.12 The Rankine-Hugoniot condition

When a discontinuity exists between elements, the relation between the flow variables on either side 
of the discontinuity is provided by the Rankine-Hugoniot equation. Consider the following, one­
dimensional equation (similar to equation (3.17))
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t

A

Figure 3.1: The dimensionless characteristics
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here x(t) is the shock and must satisfy the Rankine-Hugoniot condition.

W - l f P  (3 .« )

where A is the eigenvalue, x  is the shock speed, whose direction is determined by the sign associ­
ated with it. Also, [it] =  u(x+) — u(x-)  and [F(it)] =  F(u(x+)) — F(u(x-) ) .

Another advantage of employing the dimensionless form of Maxwell’s equations is that the fol­
lowing eigenvalues are achieved.

Ai, — —1 A2 — 0, A3 — 1 (3-41)

The derivation of which shall be discussed when considering the solution of Maxwell’s equations 
in two dimensions. Employing the relevant Rankine-Hugoniot jump equations across each character­
istic direction, yields the equations for each boundary flux function, be it a PEC boundary or a far 
field boundary or an internal boundary.

The simplest manner of enforcing the non-reflective boundary condition (at the far field) is ob­
tained by splitting the flux into characteristic components and grouping the components according 
to whether their associated wave is entering or leaving the plane. The Rankine-Hugoniot condition 
provides the theory which allows for imposition of this far field boundary condition. The Rankine- 
Hugoniot condition can also be employed for the PEC boundary condition and inter-element formu­
lation.



Chapter 4 

The One-Dimensional Problem

4.1 Introduction

This chapter presents the theory required to express Maxwell’s one-dimensional equations in a form 
such that an approximate solution, via the Runge-Kutta discontinuous Galerkin method, can be deter­
mined. Methods by which numerical approximations to given problems will also be addressed.

The variational statement, introduced in the previous chapter, is recalled, with the precise one­
dimensional form subsequently investigated. The major interest in the one-dimensional variational 
statement is directed toward the boundary integral. Implementation of the boundary conditions is also 
considered.

The accuracy and efficiency of any scheme is highly dependent upon specifying an apt basis. The 
basis employed here is chosen as a consequence of its properties. The basis is capable of providing 
high-order accuracy and is efficient at doing so. To maximise the benefits of the selected basis, a 
mapping is required. The transformation, from the global ^-coordinate system to a local ^-coordinate 
system, and the resultant Jacobian, are discussed.

The integrals that comprise the final form of the one-dimensional variational statement are con­
sidered individually. Numerical evaluation of each integral is achieved via Gaussian quadrature. The 
chapter continues with a discussion of the implementation of the Runge-Kutta discontinuous Galerkin 
scheme.

A verification of the convergence of the scheme is performed and convergence of the L2 and 
semi-norm are considered.

35
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_______ e-1_____   e_______ _____ e+ 1______
Xn-1 Xn

Figure 4.1: A one-dimensional discontinuous discretisation

4.2 A one dimensional example

Normalising (the vacuum speed of light is unity i.e. so = hq — 1 and the lengths are scaled with 
respect to a selected length scale) the one-dimensional Maxwell equations yields a respective electric 
and magnetic field of

£7 =  (£7,0,0) H  =  (0 ,tf ,0 ) (4.1)

The fields are sought in the domains Q x T. Here 0  represents the entire spatial solution domain, 
0 <  Xi <  L  and T the temporal domain such that 0 <  t  <  T.  An approximate solution, U a, to this 
problem is desired.

The one-dimensional example considered here introduces the basis framework so that the two- 
dimensional example, considered in the next chapter can be fully understood.

As the intention1 of this example is to introduce the particulars of the scheme, the need to consider 
two materials, free space and a dielectric region, is not required. However, the interested reader will 
note that the incorporation of a dielectric is trivial and depends upon element identification (as each 
element is considered independently).

4.2.1 Domain discretisation

The spatial discretisation, for one-dimensional space, consists of a union of non-overlapping line 
elements as exhibited in figure (4.1). A typical element, e, shall be partitioned by (a:n_i, %n), where 
n  is the element index. The length, he, of this element is given by he =  x n — x n-\ .

4.2.2 The variational statement

The previous Chapter exemplified the procedure necessary to derive the multi-dimensional variational 
statement, however, it remains to investigate the areas specific to one-dimensional space.

Clearly note the sole intention, also hp analysis



CHAPTER 4. THE ONE-DIMENSIONAL PROBLEM 37

The main interest lies with the appearance of the boundary integral. The boundary integral is 
introduced via integration by parts. For the one-dimensional problem equation (3.13) implies2

£  d.T =  £  F (U ° ) ^  dx + £  nxF ( U A)Ni dT (4.2)

The simplified, one-dimensional, representation is

f  ? ^ N i d x =  f  F ( U a) ^  drc -  [ F ( t / 0 )JV<]Ill +  (4.3)
«/ Qg v Qg

where F  is the numerical flux, which has replaced the flux term. At an interface between two 
elements3, the flux vector is dependant upon the values of U a (approximate solution in each element) 
in both elements (the approximate solution, U a, is assumed to be discontinuous at the end points
of each element). The two values of U a, at the element interface, are given by U e~l and U l +1,
which correspond to the left and right elements, at a given, internal, element interface, respectively. 
With this knowledge therefore, the boundary flux maybe correctly expressed as F ( U e~l , U^+1). This 
formulation completes the spatial discretisation whilst simultaneously providing for a communication 
between elements.

4.3 The one-dimensional basis

Various possibilities from which to select a basis exist. However, the quality and efficiency, of a 
method is strongly dependant upon the choice of basis. The basis employed for this one-dimensional 
example must satisfy some pre-requisites, in that it must be both efficient and high-order accurate.

Legendre polynomials, are selected as the basis function, which adhere to these demands. Legen­
dre polynomials are capable of high-order approximation and provide excellent efficiency because of 
their L2-orthogonality property over the range [—1,1]. To improve the benefits of employing Legen­
dre polynomials as a basis, they ought to be standardised. Standardising the basis entails introducing 
a local domain; let £, such that £ e [—1,1] be the new local coordinate of this local domain. All 
operations are then performed with respect to this domain [2 1 ].

2It is taken that we will consider each element individually, hence the superscript notation e will be omitted unless 
required for clarity.

3the ends o f the element, i.e. £ n- i  and xn, in this one-dimensional case
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4.3.1 The local element

To facilitate numerical operations, each element, e, in the computational domain is mapped to a local 
element e e  [-1 ,1 ]. A simplicity arises as a result of transferring all the operations to the normalised 
local element, in that they become easier to perform i.e. integration between constant limits. The 
mapping between the two coordinate systems is defined by the transformation

=  (4.4)

where x c is the coordinate value at the centre of the element in the original coordinate system. The 
relevance of this expression becomes apparent when considering how element shape functions are to 
be formulated in terms of the local coordinate £. The right hand side derivative in equation (4.3) is 
recast as

(4.5)
dN_ _  dN_d£ _  dN_2_ 
dx d£ dx a£ he

where the derivative, d^/dx,  is obtained from equation (4.4).

4.3.2 Legendre polynomials

The Legendre polynomials are generated through the expression [75]

^ ( f )  =  2^ 1) 5  (  i )  (  J: '  i )  «  ■- ^  + ^

This formula allows for the f h  order polynomial to be generated. Inspection of equation (4.3) re­
veals the derivative of the Legendre polynomial, with respect to f , is also required. The derivative is
evaluated by the relation

=  K M i )  + (4.7)

where

bhj =  2 j( l  -  e )  b2J = - 2 j 2Z b3j  = 2 j2 (4.8)
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4.3.3 The revised approximate solution

In light of the above, the revised approximate solution, in each element is then defined as

p
U ea = ' £ ai Ni(x  i) (4.9)

j = 0

where

=  M 2(* ~ xg' )  (4.10)

4.4 The ItD line integral

Each integral in the variational statement must be recast in terms of the local coordinate £. The 
line-integral from equation (4.3), this now becomes

C BN f 1 BN  2j F (Ua)_ dx = ,J K  (4.H )

Substituting equation (4.5) into the above integral it follows that

f  BN f 1 BN
j F ( U a) - dx  = J _ F ( U « )  ̂  (4.12)

4.5 The mass matrix

The matrix on the left hand side of equation (4.3) is referred to as the mass matrix. The orthogo­
nality property of the Legendre polynomial has positive consequences with regard to the efficiency
of the scheme. The benefits of the orthogonality become clear when considering the mass matrix. 
Employing the Legendre polynomials, as the basis, results in an integral of the form

(4.13)

where Smn =  1 if m  is equal to n  and zero otherwise. This means that the mass matrix is diagonal 
and therefore easily invertible.

/ - l
0 i umn2m  +  1
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4.6 The one-dimensional Roe flux

An important consideration is the treatment and enforcement of the boundary terms. One type of 
boundary condition that must be enforced is the inter-element condition. This type of boundary 
condition is enforced via the numerical flux. The one-dimensional form of formula (3.36), due to 
Roe, is employed. The derivation of the Roe flux starts with an examination of the Jacobian matrix 
A .  The one-dimensional Jacobian matrix follows, from equation (3.19), as

d F
A = m  (414)

For this problem the entries of the Jacobian matrix A can readily be determined as

(4.15)

The eigenvalues of A  are given by A =  ±1. Following the procedure detailed in Chapter Three,

The diagonal matrix |T| is given by

We are now in a position to define | A\,  an integral part of the Roe flux, which is defined as

/  1 0

Substituting \ A\  into formula (3.13) results in the final form of the Roe flux. The unknown terms are 
now given by the electric and magnetic fields only,

F (U i ) U K) =  i ( l  e L | +  -  ) (4.16)

From the characteristic equation
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Reducing the expression above gives the numerical flux to be:

1 (  HL + H R \  (  E l -  Er

"  (,17>

This form of the numerical flux is incorporated directly into the numerical scheme.
The final form is a system of time evolution equations, and is, here, advanced in time via the 

fourth-order Runge-Kutta algorithm.

4.7 L 2 Norm

The convergence, | \e\ \l , rates of the scheme can be measured in the L2 to give information about the 
convergence behaviour of the scheme. The L2 norm is given by

\ !  f l i ( E  — e ) 2

lelU =  ■■  r r —  <4’18)

where E  is the exact, known, solution and e is the numerical solution.

4.8 Specification of the Problem

The problem under consideration is a one-dimensional problem where a plane single frequency inci­
dent wave is propagated and impinges upon a perfectly conducting obstacle, information regarding 
the scattered field is then desired.

The integrals

The mass matrix and the line-integral are evaluated via Gaussian quadrature as is the boundary inte­
gral. The mass matrix can be determined before the scheme is advanced in time. After acquiring the 
mass matrix, its inversion is trivial, mere division. It then follows to evaluate the line-integral. Fi­
nally, upon identification, the boundary conditions are then evaluated. The scheme is then forwarded 
in time. But the interest in the one-dimensional case lies with the boundary conditions. Understand­
ing how the conditions are enforced is essential to understanding the scheme. The first boundary acts 
as the PEC, which clearly relies upon the incident ray.

The excitation is given as
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27vt
E  = H  = cos(— ) (4.19)

A

this is directly incorporated into the scheme.

4.9 Results

The results achieved from the theory are now presented. The results serve more as a validation 
process, as this example has been investigated on previous occasions. For the results expressed in 
tabular form it can be taken that, unless otherwise stated, the wavelength, A, is equal to two and that 
the scheme is run for 2000 steps with a time increment of A t  =  0.01 (resulting in a CFL that is 
well within the required limits). When the problem is performed under these conditions, and for this 
duration, a steady state is achieved.

The tables that follow provide the results obtained for various forms of analysis. The first six 
tables provide information concerning the minimum number of elements required, per wavelength, 
for an acceptable solution.

The tables also provide the corresponding error analysis which yields the reasoning as to the 
quantity of elements to employ. Noting the norms, it can be seen, for example, that a cubic approxi­
mation requires 4 elements per wavelength as 3 elements per wavelength results in an increase in the 
L2-norm. These results are depicted visually in figure (4.10) through to figure (4.20) (note that the 
constant order approximation is not considered as it can be seen, from the relevant table, that a large 
number of elements per wavelength are required.

It is interesting to note that an examination of figures (4.17) and (4.19) reveals that, due to the 
computational cost involved, further analysis of an order five approximation is not required, as near 
identical results are obtained.

4.9.1 Exact solution

For the examples considered here, the verification often involves a comparison with an exact solution. 
The exact solution employed for this particular case is contained within the one-dimensional code and 
is in the form of a planar wave given by
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4.9.2 Tables of results

For a constant order approximation the required number of elements per wavelength is given by

Elements per lambda Element size Total elements L2-Norm H  — 1-Norm

160 0.0125 1600 0.3966 0.0321
1 2 0 0.0167 1 2 0 0 0.4001 0.0339
60 0.0333 600 0.5314 0.0453

For a linear order polynomial the number of elements required is deduced from

Elements per lambda Element size Total elements L2-Norm H  — 1-Norm Time taken (seconds)

25 0.08 250 0.0309 0.0119 9.03
2 0 0 .0 1 2 0 0 0.0360 0.0137 7.27
1 0 0 .2 1 0 0 0.0993 0.0284 4.22
9 0 .2 2 2 2 2 90 0.1238 0.0382 2 .0 1

Similarly for a quadratic polynomial

Elements per lambda Element size Total elements L2-Norm H  — 1-Norm Time taken (seconds)

6 0.33333 60 0.0405 0.0127 5.09
5 0.4 50 0.04120 0.0129 4.12
4 0.5 40 0.0582 0.0175 3.08

A cubic polynomial representation yields

Elements per lambda Element size Total elements L2-Norm H  — 1-Norm Time taken (seconds)

4 0.5 40 0.0312 0.0128 8.28
3 0.6667 30 0.0372 0.0190 6.92
2 0 .1 2 0 0.0691 0.0335 4.12

For an order 4 polynomial
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Elements per lambda Element size Total elements L2-Norm H  — 1-Norm Time taken (seconds)

3 0.6667 30 0.0316 0.0298 14.00
2 1 .0 2 0 0.0353 0.0306 9.38
1 2 .0 1 0 0.2560 0.0323 4.75

For an order 5 polynomial

Elements per lambda Element size Total elements L2-Norm H  — 1-Norm Time taken (seconds)

2 1 .0 2 0 0.0309 0.0331 18.89
1 2 .0 1 0 0.0661 0.0348 9.52

4.10 The lowest I ?  norms

The lowest achievable value for the L2-norm is now presented. The results achieved are for a con­
verged solution and the table presents the variation of the L2 norm of the error. The table also provides 
the minimum number of steps required for a converged solution with the associated value of delta t. 
Initially the length of each element is h = 0.1, then in the next table couple, elements of length 
h = 0.2 are considered. For both examples the mesh consists of 100 line elements with A =  2.0. All 
calculations are to six decimal places.

Order Nstep delta t L2-Norm

0 99 0 .1 0 1 0 1 0 0.589418
1 453 0.022075 0.04271
2 1190 0.008403 0.02615
3 2550 0.003922 0.020242
4 7980 0.001253 0.016934

For example if we require an order four approximation, the minimum number of steps that the 
code has to be run is 7980, using a time increment of 0.001253.

Therefore the corresponding CFL numbers, given by the Von Neumann analysis, are given by
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Order CFL number

0 1 .0 1 0 1 0

1 0.220751
2 0.084034
3 0.039216
4 0.012531

For the the following example the length of each element, is given by h = 0.2, in total there exists 
50 elements. The length of the wave is given by A =  2.0. Again all calculations are to six decimal 
places

Order Nstep delta t L2-Norm

0 40 0.25 0.6505312
1 2 0 0 0.05 0.079194
2 1115 0.008969 0.035018
3 2490 0.004016 0.0272218
4 3000 0.033333 0.0229184

The corresponding CFL numbers are given by

Order CFL number

0 0.5
1 0.250
2 0.04843
3 0.02008
4 0.01667

4.11 The CFL number

The results to follow are those achieved via a mesh comprised with elements of length h — 0.1 and 
h — 0.2 respectively. The results do not provide the lowest L2-norm but provide acceptable solutions. 
Viewing the results reveals that a factor of two permutates through the two tables, as the element 
length differs by a multiple of two it can be assumed that the number of steps (Nstep) and the time 
increment (delta t) approximately equate, resulting in very similar CFL numbers.
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Order Nstep delta t CFL L2-Norm H -l Norm

0 136 0.0735 1.4705 0.141799 0.2028
1 392 0.0255 0.5102 0.00884 0.0480
2 780 0.0128 0.2564 0.00402 0.0251
3 1258 0.0080 0.1590 0.00088 0.0239
4 1839 0.0054 0.1088 0.00023 0.0193
5 2501 0.004 0.080 0.00005 0.0191

The results obtained for h — 0.1

Order Nstep delta t CFL L2-Norm H -l Norm

0 70 0.1429 1.4290 0.3750 0.2830
1 204 0.0490 0.4902 0.0045 0.2723
2 393 0.0254 0.2544 0.0025 0.0148
3 642 0.0156 0.1557 0 .0 0 1 1 0.0116
4 938 0.0107 0.1066 0.0008 0.0080
5 1329 0.0075 0.075 0.0008 0.0078

The results obtained for h = 0.2

Order Nstep delta t CFL L2 H -l Norm

0 35 0.28570 1.4286 0.6699 0.2028
1 96 0.1042 0.5208 0.2665 0 .2 0 0 1

2 2 0 1 0.0498 0.2488 0.0078 0.0190
3 320 0.0313 0.1563 0.0033 0.0132
4 470 0.0213 0.1064 0.0003 0.0062
5 639 0.0156 0.0782 0.0003 0.0063

The corresponding CFL numbers that yield solutions

Order CFL np/wavelength Nstep

0 1.43 60 60/1.43=42
1 0.52 2 0 39
2 0.26 6 24
3 0.16 3 19
4 0 .1 1 2 19
5 0.08 1 13
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By analysing these tables, we are now in a position to select, if so desired, an order of approxi­
mation, a number of elements and a time-step that will provide the desired error that we are satisfied 
with. We will also be able to tell you how long this computation will take.

4.12 The real time taken to perform an analysis

The final table provides an insight into the operation time of the scheme. The table below proves that 
an order five approximation requires approximately double the real time when in comparison with an 
order four approximation.

Order delta T Nstep Element length No of el’s Time taken (seconds)

0 0 .0 1 2 0 0 0 0.5 500 5.0
1 0 .0 1 2 0 0 0 0.5 500 15.33
2 0 .0 1 2 0 0 0 0.5 500 47.49
3 0 .0 1 2 0 0 0 0.5 500 120.42
4 0 .0 1 2 0 0 0 0.5 500 270.66
5 0 .0 1 2 0 0 0 0.5 500 529.75

The above table, in conjunction with the previous results, therefore suggests that an order five 
approximation is avoidable as only marginal improvement in accuracy is achieved, but this at a large 
cost to the efficiency of the scheme.

Of the following, graphical, results only few are of direct relevance to the above tables. Figure
(4.2) depicts the numerical convergence of the electric field on a mesh consisting of 128 elements. 
This figure, figure (4.2), shows that the desired exact solution, for this problem, can be achieved with 
an order two approximation.

4.12.1 Verifying the numerical solutions

4.12.2 Refinement

As discussed in the previous Chapter, it is of interest to investigate the benefit of h-type analysis 
over p-type analysis. This comparison is easily done in one-dimensional space as the line elements 
can be easily varied. To determine the most suitable refinement strategy, h or p, the computational 
accuracy of particular examples is to be compared. The comparison will centre around the number of 
unknowns required to obtain the desired numerical solution.
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Exaci

0.5

-0.5

12 18 20 228 10 14 16 246

Figure 4.2: p-refinem ent on initial 128 element mesh: com parison o f the convergence of the electric 
field with the exact solution

For the ^-refinem ent strategies the initial mesh under consideration consists of 128 line elements, 

each o f length o f h =  0.2. The second and third meshes are obtained by refining this initial mesh by 

a factor of four and then sixteen. The polynom ial that is em ployed uniformly over each mesh, is of 

order p =  0.

When investigating the p-refinement strategies, the spacing in the initial mesh is m aintained, with 

numerical solutions achieved by employing polynom ials of order p =  0 ,1 , 2 and p =  3.

The analysis reveals that it is more beneficial to increase the polynomial order (as opposed to 

refining the mesh). This conclusion is drawn by analysing figure (4.2) with figures (4.7) through to

(4.9). These figures reveal that increasing the order o f the approxim ation from p =  0 to p =  2 leads to 

convergence to the exact solution. The /^-refinement figures show that the effect of splitting the mesh 

by a factor of 4 and then 16 fails to result in a converged solution, clearly a finer spacing is required 

for convergence using /i-refinement.



CHAPTER 4. THE ONE-DIMENSIONAL PROBLEM  49

1

0.5

0

-0.5

-1

Figure 4.3: Numerical solution: solution details the comparison between p=0 polynom ial and the 
exact solution on a mesh of 128 elements
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Figure 4.4: Numerical solution: solution details the comparison between p=l polynomial and the
exact solution on a mesh of 128 elements
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P=? ::
Exact  f
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Figure 4.5: Numerical solution: solution details the comparison between p=2 polynom ial and the 
exact solution on a mesh of 128 elements

\  p=3  
Exact
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8 10 12 18 20 22 246 14 16

Figure 4.6: Numerical solution: solution details the comparison between p=3 polynomial and the
exact solution on a mesh of 128 elements
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p=Q —
Exact
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22 248 10 12 18 206 14 16

Figure 4.7: /i-refinement: solution details the com parison between a p=0 polynom ial and the exact 
solution upon a mesh of 128 elements

p = 0
Exact
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8 10 12 18 20 246 14 16

Figure 4.8: /i-refinement mesh consists of 512 elements: solution details the comparison between a
p=0 polynomial and the exact solution for the first /i-refinement
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Figure 4.9: /i-refinement mesh consists of 2048 elements: solution details the com parison between a 
p=0 polynomial and the exact solution upon the second /z-refinement
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Figure 4.10: Comparison between exact solution and order 1 polynomial with 20 elements per wave­
length
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Figure 4.11: Comparison between exact solution and order 1 polynom ial with 10 elem ents per wave­
length
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Figure 4.12: Comparison between exact solution and order 2 polynomial with 5 elements per wave­
length
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Figure 4.13: Comparison between exact solution and order 2 polynom ial with 4 elem ents per wave 
length
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Figure 4.14: Comparison between exact solution and order 3 polynomial with 3 elements per wave­
length
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Figure 4.15: Com parison between exact solution and order 3 polynom ial with 2 elem ents per wave­
length
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Figure 4.16: Comparison between exact solution and order 4 polynomial with 3 elements per wave­
length
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Figure 4.17: Com parison between exact solution and order 4 polynom ial with 2 elem ents per wave­
length

4.13 A Taylor-Galerkin comparison

The major differences with the Taylor-Galerkin finite elem ent method and the RKDG method is that 

the temporal discretisation is based upon a truncated Taylor expansion, instead of the fourth-order 

Runge-Kutta algorithm. And the other other major difference is that for the spatial discretisation the 

approximate solution can be constructed by using elements that share and edge (in two dimensions, 

a face in three dim ensions and a point in one-dimension). Therefore C° continuous bases can be 

employed.

The one-dim ensional analysis concludes with a com parison between the RKDG scheme and 

the continuous, linear, Taylor-Galerkin scheme (TG). The Figures (4.21-4.24) provide the results 

achieved via the TG scheme. The results show that a minimum of 10 elem ents per wavelength is 

required for an acceptable solution, the TG scheme, employed here does not provide the option for p 
type higher-order representation, so should the case arrive when only 4 elem ents per wavelength are 

required then the TG scheme would not be o f much assistance. The figure (4.13) shows that numerical 

solutions for this electrical length can be provided, if desired (here an order two approxim ation was 

required), via a Runge-Kutta discontinuous Galerkin scheme.

The Taylor-Galerkin scheme em ployed in the examples was provided by K. Morgan.
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10 12 14



CHAPTER 4. THE ONE-DIMENSIONAL PROBLEM 57

0.5

0

-0.5

-1

Figure 4.18: Com parison between exact solution and order 4 polynom ial with 1 elem ent per wave­
length
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Figure 4.19: Comparison between exact solution and order 5 polynomial with 2 elements per wave­
length
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Figure 4.20: Comparison between exact solution and order 5 polynom ial with 1 element per wave­
length
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Figure 4.21: Comparison between exact solution and Taylor-Galerkin scheme with 10 elements per
wavelength



CHAPTER 4. THE ONE-DIMENSIONAL PROBLEM 59

0.5

0

-0.5

-1

Figure 4.22: Com parison between exact solution and Taylor-Galerkin scheme with 5 elem ents per 
wavelength
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Figure 4.23: Comparison between exact solution and Taylor-Galerkin scheme with 4 elements per
wavelength
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Figure 4.24: Comparison between exact solution and Taylor-Galerkin scheme with 3 elem ents per 
wavelength
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Chapter 5 

The Two-Dimensional Scattering Problem

5.1 Introduction

This chapter advances the theory required to provide a numerical solution to Maxwell’s equations by 
building on the topics presented in previous chapters.

The chapter begins by describing the simulation. Then the variational statement that accompanies 
the problem is provided. A decision on which basis to employ is then made. The discussion, con­
cerning the basis, will include any requirements placed upon the basis as a consequence of the finite 
element scheme. We continue by detailing the coordinate systems that are encountered in order to 
accommodate the basis. The various topics that the mappings raise are then considered.

Results are then produced and the scheme is verified.

5.2 Statement of problem

Scattering problems are considered in this chapter. Chapter Two saw the theory of transverse electric 
(TE) and transverse magnetic (TM) theory being investigated. Here the scattering problem, applicable 
to either of the polarisations, is presented. The problem under investigation is as defined in Chapter 
Two, with the unknowns being the respective two-dimensional electric and magnetic field vectors 
E  — (Ex, Ey, E z) and H  = (HX) Hy, Hz). The field vectors are reduced in accordance with the 
problem to be solved. The unknown fields are assumed to be decomposed into incident and scattered 
components, as specified by equation (2 .2 0 ).

61
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5.3 The two-dimensional problem

The variational statement, as it appears in equation (3.13), correctly represents the two-dimensional 
scattering problem: find U  such that

4- [ UtWd.f l = f y '  ^ - F H f l  -  [  F nWdT  (5.1)
d t Je Jr.

here the notation is consistent with Chapter Two, where Te denotes the boundary of the element e. 
The introduction of the boundary term is a consequence of Gauss’ rule (to be discussed next). In the 
boundary integral

2

F n = ' L  nj F j  (5.2)
j = 1

where n  = (nx , ny) is the unit outward normal vector.

5.4 The basis

To form a valid numerical scheme a basis must be specified. The basis is required to be high-order 
accurate and applicable to triangular elements. A basis that adheres to these requirements proved 
elusive until Karniadakis and Sherwin [74], followed by Warburton [45], described a basis suitable 
for constructing both L2 and C° expansions. These expansions are based upon the original ideas of 
Dubiner [63],

The Dubiner bases

The original basis proposed by Dubiner [63] is capable of high-order representation and can be defined 
upon triangular elements. This basis is attractive as it has the additional benefit of L2-orthogonality. 
However, Dubiner’s basis is not directly applicable to a continuous triangular mesh[4], as attempting 
to apply the basis to triangular elements destroys the orthogonality property. To counter this problem, 
Dubiner needed to devise an alternate basis that was applicable to a continuous triangular mesh, whilst 
still maintaining a high-order representation. The new basis is an extension of the old basis and, as a 
consequence, retains partial orthogonality. The new basis is referred to as the modified Dubiner basis.

To summarise: the original basis is high-order accurate, and applicable to non-connected ele­
ments. Similarly, Dubiner’s modified basis exhibits high-order accuracy and can be applied to a
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y

X

1. Original coordinate system

2. Coordinate system resulting from 3. Coordinate system to facilitate the
the first transformation basis

Figure 5.1: The three coordinate systems encountered

continuous mesh, but at the cost of a decrease in orthogonality. However, the intrinsic nature of the 
discontinuous Galerkin method resolves the problem presented by the original Dubiner basis. Con­
sider the fact that any basis that is to be employed, in a DG scheme, need not define a continuous basis 
(continuity of functions is not required for internal edges as discontinuous elements are employed). 
The conservativity property is automatically held [22] (L2 expansions are required). Therefore the 
original Dubiner basis is perfectly suited to the scheme and is therefore the chosen basis.
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5.5 Two coordinate systems

The basis proposed by Dubiner is a tensorial type of basis. The basis is a product of one- and two- 
dimensional tensors, this Dubiner referred to as a warped or general product [63] 1. As  the basis is so 
comprised, a suitable coordinate system, with independent limits, is a necessity. The need to employ

plexity. To facilitate the numerical operations that are to be performed, such as differentiation and 
integration, two mappings are required [55].

Defining a suitable set of local coordinates, on which the Dubiner basis is well posed, involves 
each triangular element in the discretised computational domain being mapped to a reference triangle. 
Following this initial mapping, the second and final coordinate system arises from the mapping of the 
triangular element to a rectangular element, for clarity consider figure (5.1)

5.5.1 The first mapping

The first transformation is a mapping from a general triangle, D  c  R 2, in the solution domain, to a 
local triangle, I  c  R 2, in the cartesian (£i, £2) coordinate system (depicted in figure (5.1)).

During the mapping elements which comprise the computational domain are assumed initially to 
be straight sided. It is further assumed that a mapping, 'F, from the D  simplex to the I  simplex has 
been established and is one to one and onto such that ^  : D  —> / .

Concepts of the first mapping

Figure (5.1) shows the triangle D  with vertices Vi, V2 and V3, and with corresponding coordinates 
(®i> 2/1)» (®2 i 2/2) and (£3 , 2/3). The counterclockwise numbering of the edges and vertices ensures a 
strictly positive Jacobian. The correspondence between the two coordinate systems is provided by the 
barycentric coordinates (Ai, A2, A3), where

such a coordinate system (although trivial in itself) introduces the majority of the mathematical com-

(5.3)

and

Ai +  A2 +  A3 — 1, 0 < (Ai, A2, A3) <  1 (5.4)

]The distinction is made so as not to confuse the warped/ general tensor product (employed upon triangles) with the 
standard tensor product (upon quadrilaterals).
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Any point in the triangle D  can be expressed as a function of the barycentric coordinates and the 
vertices, by

X 3 Xi

y
=  £

Vii=l

Equation (5.5) provides the required mapping between the coordinate systems. It is now possible to 
define the elements in terms of the new coordinate system. In a cartesian system, a triangular element 
would be defined as

t 2 =  {(£ i , & ) | - i < £ i , & ; £ i  +  & < 0 } 

and a quadrilateral element defined as,

Q 2 =  { ( 6 , 6)1 - 1  < & , & < ! }

Inspection reveals that the coordinates of the triangular region are not bounded by constant limits. This 
fact implies that another mapping is required. The second mapping serves to define a triangular region 
whose limits are bounded and constant. Upon completion of the second mapping, one-dimensional 
Gauss quadrature can be employed, with the two-dimensional nodal points appearing through a tensor 
product.

The quadrilateral region, Q2, exhibits the required attribute of boundedness. Noting this, a suitable 
coordinate system would arise by mapping the local triangular domain to a local quadrilateral domain 
in a new coordinate system.

Why the need for constant limits? As a consequence of this stipulation, two mappings must occur 
and therefore the complexity of the scheme increases? The reasoning is two fold.

• The basis proposed by Dubiner consists of a product of tensors, which need constant bounded 
coordinates in order to computationally efficient.

• Numerical operations, such as integration and differentiation, can be performed more efficiently 
on a bounded system, as the limits of the integration are fixed.

To emphasise the latter point, consider the relationship between integration in the two known coordi­
nate systems, i.e. after one mapping we have, for a smooth function f {x,  y)
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r r /*ci+?2=u
/ f ( x ,  y)dxdy — /  / ( & , £ 2) Jd£id& = /  /  f ( t i ,& )Jd £ id &  (5.6)

J d  J i  7 - 1 7 - i

The upper limit, of the final integral, is clearly variable, hence numerical integration becomes expen­
sive and therefore avoidable. Equation (5.6) also serves to introduce the first of the two transformation 
Jacobians, J .

The first Jacobian

For the first mapping, we have

D E T(J)  =  D E T ( ^ L )  =
dx dy  
d£i d£i
dx  dy  
d& d£ 2

where

dx x 3 -  Xi dx x -2 -  Xi dy y3 -  yi dy  ;/2 -  yi
d& 2  ’ 2  ’ d(3 2  ’

The determinate of the Jacobian is thus given by

(5.7)

(5.8)

D E T ( J )  = —— — —— — -  —— — —— — (5.9)
v ' 2 2 2 2 v '

which is also equivalent to half the area of the element.

Divergence

In this new metric, the divergence of a vector field F  — (Fx, Fy ) becomes

v ' F  = l [W i { J F ' v ? l)  +  W z ( J F ' V 6 ) 1  (5' 10)

This provides a shorthand representation of the divergence in the new coordinate system.

5.5.2 The second mapping

The second mapping results in local elements with constant independent limits. The element defined 
in this final coordinate system has the local coordinates (771, 272)- This coordinate system is achieved 
from the transformation
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2 ( 1  +  £i) 1 /c 1 1 \
m  =  — 1 ri2 =  £2 ( 5 . H )

The inverse of which allows any point in the (771,772) coordinate system to be expressed in terms of 
the (£1, £2) coordinate system as

( I  +  7 7 1 X I - 7 7 2 )  ,   ̂ _  / C 1 0 ,
£1 = ---------2---------------------------------£2 = 772 (5.12)

The inverse transformation is employed when calculating the associated transformation Jacobian ma­
trix J.  In this, the third coordinate system, the local coordinates have the desired, dual, properties of 
being bounded, and of representing the triangular element of the initial cartesian system.

T2 = {(771, 772)1 -  1 < 7/!, 7/2 < 1 }

Effectively, the second transformation maps the vertical lines of the rectangular element (lines of 
constant 771) onto the lines radiating out of the point (£1 = —1, £2 =  1) *n the triangular element. 
The triangular region can be defined by a ray coordinate 771, with £2 = rj2. Therefore, the triangular 
element defines a Cartesian quadrilateral.

Graphically this may seem misleading, the mathematical definition of the triangular region, T 2, 

is identical to that of the quadrilateral region, Q2. It is best to view the transformation (5.11) as a 
mapping from the triangular region to a quadrilateral region in the (t/x, t/2) coordinate system.

Proof of bounded constant limits

As is now known, the requirement of bounded local coordinates is essential to efficiency of the 
scheme. The proof that follows, detailed in [4], provides the verification that the local coordinates, 
employed in this thesis, are indeed bounded by constant limits.

Consider Figure (5.1). Here it is implied that 771 = — 1 along the line £1 = — 1 and has a value equal 
to 1 along the line £1+£2 = 0 except at the point £1 = —1, £2 = 1, where it is multi-valued (referred to 
as a Ray coordinate). It is important to show that £1 is bounded at this point, and consequently prove 
the local coordinates are bounded everywhere. This proof is performed by setting £x = — 1 + esinO 
and £2 = 1 — ecosQ. Substituting into (5.11) to give

2(1 -  1 + esinfl)
771 =  T\ n  m" “  1 =  2t&n0 ~  1(1 — 1 + ecosv)

As 0 < 9 < 7t / 4  then 0 < 9 < 1 and 771 is also bounded by these limits. Defining the collapsed
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coordinate system, allows for tensorial type expansions to be developed.

The second Jacobian

The second change in coordinate system introduces the transformation Jacobian J

D E T l J )  = D E T ( =  
o(rh,m)

dm dm
dti d& 
dm dm

1 -  V2 (5.13)

The matrix J ,  and its determinant, are easier to compute than J  (and its respective determinant) 
and is free of the requirement of straight edges.

5.5.3 Development of bases

Having produced the collapsed coordinate system, the basis proposed by Dubiner can now be pre­
sented . The basis arose due to the need of a high-order representation upon both a stmctured and 
unstructured grid. Only the latter, unstructured expansions, are considered here.

The unstructured expansion basis is a product of a one dimensional tensor 'ipi(z) and a two- 
dimensional tensor, 'tpij(z). The unstructured basis is given by

6 )  =  (5.14)

where the functions and ipijfo)  are technically referred to as the orthogonal principal
functions2.

Inspection reveals that the basis, </>̂ , is a function of (£1 , £2) but the basis is actually calculated in
terms of the collapsed coordinate system (?7i , 772), by using equation (5.12)

5.5.4 Orthogonal principal functions

The principal functions,^ and t/^-, that comprise the basis are defined by

A M  = p?'°M  (5.15)

2for the three dimensional case (t) is included, which is a three dimensional tensor. The basis is a product o f all 
three tensors
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= ^ - ^ V f +1'°(r,2) (5.16)

where P  is the Jacobian polynomial (stated below). The product of equation (5.15) and equation 
(5.16) yields the original L2 orthogonal Dubiner basis,

<M£i. SO =  p f i+1-°(r,2) (5.17)

Inspection of equation (5.1) reveals that the derivative, with respect to both coordinates, is also re­
quired. The derivatives of the basis are given by

3 < M £ i . 6 0  d f f ' ° ( , h ) ( i - ' ' ? 2 ) ’ p 2m , o f n )  - . o ’.
dm ~ 2 P> (m) (5'18)

ftMSi.SO = po,o( 1[(1 -7 2 ), 9P,2,+1'°(72) _ i p 2i+i,o( A l - r i i ) 1' 1), . .
dm * 2 dm 0 3 0

5.5.5 Jacobi polynomials

The Legendre polynomials, P̂ 0,0, were defined in Chapter 4. The kth order Jacobi polynomial is 
generated from the expression.

. k / k  + a \ / k  + l 3 \
p k , f ( o  =  ^ E l  . j  I k _ .  J  (5.20)

The derivatives of the polynomial, required for the area integral, are given by

>a,/3 
k_
d£

where

=  b2,kP ^ ( $ )  + b3,kP ^ ( 0  (5.21)

&i,fc =  (2 /c + a + /? ) ( ! - £ 2) b2,k = k ( a - / 3 - ( 2 k  + a  + j3)£) &3jfc =  2(fc + a ) (£+/?) (5.22)
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5.5.6 Polynomial space

If the polynomial basis is denoted by (£i, £2), then the polynomial space, V l> in which the Dubiner
basis is complete, is defined by

V L = S p a n { & t i } ij€{2 (5.23)

where

Q =  { fo)|0  < i , j \ i < L , i  + j <  M}, L < M  (5.24)

Here L  and M  represent the order of approximation. As the computational domain is given by Q, = 
IJ ■ Ti and elements overlap on edges only, it can be stated that the approximation space is defined by

S s = { W £  L2(Q) : W\Ti  G V('.Ti)VTi} (5.25)

where the approximate solution, over each element e, U ea, and test function W  are such that:
N  G <S(j and U a G S$

5.5.7 The approximate solution

The unknown vector, U,  is approximated in each triangular domain, e,by

U s l U l  = Y l U ij<l>ij(S 1 , 6 ) (5-26)
ij

where U\j is the expansion coefficient corresponding to the polynomial <f>ij(£ 1, ^2)-

5.5.8 The number of unknowns

The the minimum number of unknowns, to form a complete basis, per element, is provided by the 
formula

D oF  = (1 + order)(2 + order) (5  2 7 )

The degrees of freedom (DoF) and are used as the unknown coefficients.
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5.6 The area integral

The area-integral, expressed in terms of the new coordinate system, becomes

\  J  ̂  J  ~ 3/i) +  (?/i -  2/2)(l +  ^ i ) ] ^  +  “  3/2)(l -  F l  (5<28)

d/V <9iV
+  [2 ( z i - x 3) +  (x2 - X i X l +  771)]*— +  (x2 - X i X l -772) 0— ] F 2  (5 *29)d?7i dr]2

drjidr)2 (5.30)

5.7 Evaluation of the mass matrix

The mass matrix reappears here in far more complex form

[  N iNj d Q =  j  N iN jW W  drhdth
J He J Qg

(5.31)

where J  and J  denote the previously defined Jacobians from the first mapping and second map­
pings respectively. Due to the orthogonality of the basis, the resulting matrix, acquired from equation 
(5.31) is diagonal, so that inversion is therefore trivial, and achieved by division.

5.8 Characteristic decomposition

Prior to discussing the implementation of the boundary conditions, it is necessary to define the local 
characteristic decomposition. Consider the matrix A n where

^  8 F i OF1 d F 2
A " ~  L ni d u  ~  n* d u  +  n» QV (5.32)

i=l

Expressed in full this becomes

A n —

0 0 0 \ (  0 0 - n y \

0 0 n x 

0 nx 0

+ 0 0 0

— n y  0 0

(5.33)
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where n  = (nx,ny) is the unit normal vector. The eigenvalues are computed via the characteristic 
equation,

I A/ — A n\ —

A 0 ny

0 A —n:

ny A

= 0 (5.34)

where I  denotes the corresponding identity matrix. From (5.34) we get

-  nl)  + ny{ - \ n y) = 0

A A nx — A ny =  0

A(A2 -  1) -  0

(5.35)

(5.36)

(5.37)

So that the eigenvalues of the matrix, A n, are

Ai — — 1 A2 =  0 Aq — 1 (5.38)

The eigenvalues are essential to the boundary treatment, particularly when deriving the numerical 
flux.

5.9 Boundary conditions

The boundary conditions are imposed through the boundary integral

[  F nN idT=  [  
J r e J r e

n  A E l

- n A H i
NdT (5.39)

Where T represents the edge/boundary of the element. The right-hand side of integral (5.39) is em­
ployed for determining both near and far field conditions. The internal boundaries, however, are to be 
imposed via the Roe flux.
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5.9.1 Roe flux

To determine the Roe flux, we need to find the component parts of equation (3.36). Our starting point, 
in finding the matrix | A\,  is equation (5.33)

A.n —

0  0  —n%

0  0  nT

—ny nx 0

\ - 1

= p 0 p 1

1

We then continue by using the eigenvectors of A n to form the matrix P  

For A =  - 1

(5.40)

(  —1 0 — f l y  \

0  —1 nx

'  T l y  T l x  1

(5.41)

solving yields Vi — (ny, — nx , 1 ) 

For A =  0

(  0  0  - n y \  

0  0  nx

T l y  T l x  0

(5.42)

again, upon solving v 2 — (nx, ^ , 0 ) 
For A =  1

1 0 —n.

0 1 nx

—  T l y 1

(5.43)

solving yields v 3 =  (—ny, nx, 1). The matrix P  becomes
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/_ T l y  T l X  T l y

Tlx Tly Tlx 

1 0  1

(5.44)

with

1

L T l y  T l x  1

2  nx 2  Tiy 0

T l y  — n x  1

(5.45)

The matrix \A\ can now be determined.

\A\ = P \ A \P ~ 1 =

( ti* -  nxny 0  ^

- n xny n 2x 0

0  0  1

(5.46)

The final form of Roe flux is given by,

F roe(UL, U R) = -  ( (FnR +  F Ul ) -  \A\ (U R -  U L)) (5.47)

F roe(U L, U R) — -

I  —nvH ? — nvH i  — nxnvE i  +  n2E i  — n2E i  +  nvnxE ?  \

\

vy x xz  ",y 1±z  I ^ x ' o y ^ y  I ' ° y J- ,x " 'y ^ ’x  1 n y Tlx ^ y

nxH f  + n xH% +  n 2xE ^  -  nynxE% + nynxE ^  -  n2xE*  

H?  +  H i  +  nxE i  -  riyEi  +  nxE? — nvE?

(5.48)

/

where L and R  denote the left- and right-hand-side elements sharing an (internal) edge (in a 
counter-clockwise manner) and the normal vector n is outwardly pointing.

5.9.2 Near and far-field boundary conditions

Clearly, the evaluation of integral (5.39) is dependent upon the terms n  A El  and n  A HI,  as dipected 
in figure 3.1. These terms are found via the use of characteristic boundary analysis [76]. Characteristic
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boundary conditions [77] are employed primarily due to the simplicity involved, but their failing point 
is that they are only accurate for close to perpendicular incident waves [78]. And result in boundary 
conditions that are only imposed in a weak sense. The accuracy achieved via this type of boundary 
treatment is not as high as the far field treatment presented in the subsequent chapter.

5.9.3 Perfect electrical conducting boundary

The first boundary condition under consideration is the near field. In this thesis the scatterer is to be re­
placed with a perfect electric conductor. Referring to figure (3.1) (for clarity of sub- and superscripts) 
and substituting equation (2.19) into equation (2.24) results in

n x E s =  - n x E '  n  H s =  - n  H* (5.49)

Consider an arbitrary node x  that is situated on a PEC boundary. The characteristic boundary treat­
ment allows n  A. E l and n  A HI  to be determined at this point x. The Rankine-Hugoniot condition, 
detailed for the general case in chapter three, along a PEC interface is given by

- [ |U |]  =  [|F|] (5.50)

From equation (5.50) we have, for both the electric and magnetic fields,

[|fT|] =  [ | n A . E | ] ) [ |£ |]  =  - [ | n A f f | ] .  (5.51)

The ’jump’ terms are represented by

[\H\] =  H* — H l , [|J5|] = E* — E l (5.52)

Substituting, accordingly, equations (5.52) into equations (5.51), gives

n  A  E* = —n  A  E l ( 5 . 5 3 )

(H* -  H L) =  —n  A (E* -  E L) (5.54)

And finally by substituting equation (5.53) into (5.54), and then taking the curl, the desired form is 
achieved
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n  A H* = n  A H L +  n  A (n  A [J57* +  E L]) (5.55)

And so for the TE case,

n A E t

—n  A H I
*-

- n yH i

nxHj;

—nxE'  +  n„E‘:y ' Jx

(  ny(nxEy -  nyE R +  nxE\ -  nyEi)

nx{nxEy — nyE£ — nxEy +  nyE\[)

0 V

(5.56)

Here L denotes the value on the left hand side of the characteristic (refer to figure 3.1) and i represents 
the incident field.

5.9.4 Far field

To ensure that no waves are reflected back into the computational domain and thereby contamination 
the solution, a far field condition is to be enforced. Initially the far field condition is enforced with 
the use of the The Rankine-Hugoniot conditions. The far field is better represented later in the thesis.

The far field condition is represented along the interface where A =  1. Substituting for A =  1 in 
the Rankine-Hugoniot equation we get

[I H |] =  [| n  A E|] 

Once again the jump can be represented by,

E | ] =  —[| n  A H | (5.57)

[\H\\ = H r -  H** [|F?|] = E r -  E**

Upon substitution of equations (5.58) into (5.57), the following expressions are derived,

(H fl — H**) =  n  A (Er — E**)

( E * - E * * )  =  n A ( H * - E * * )

(5.58)

(5.59)

(5.60)

To reduce the unknowns (thereby increase the simplicity), the conditions from the PEC boundary
condition are employed, allied to the material interface conditions, to result in
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2n A E* = n A E L — n  A (n  A iT L)

2n A iT* — n A H L +  n  A (n  A E L)

The final form of the far field boundary condition, for the TE case, is given by

(5.61)

(5.62)

n  A E l I

—n  A H I ~  2
*-

nxH Lz

nxEy -  nyE%

1
+  2

(  ny (nxEy — nyE x ) \  

nx(nxE y — nyE x )

H fV

(5.63)

Where L  denotes the value on the left hand side of the characteristic (refer to diagram 3.1 for clarity).

5.10 Treatment of boundary integral

Given the theory it still remains a non-trivial task to ensure that the correct procedure upon a bound­
ary edge is being applied. As the basis is calculated in terms 771 and 772 careful thought is required 
when implementing boundary integrals. For correct boundary representation, the edge (from the lo­
cal triangle in the (£1, £2)-coordinate system) upon which the integration is to be performed must be 
identified. Once identified, each edge is mapped to a one-dimensional reference edge. A mapping of 
the general edge to a normalised edge element is now incorporated into the discussion, along with the 
details required to evaluate an edge integral. Consider the boundary integral

/„
n A E l

- n A H t
N idT (5.64)

This integral, upon completion of the mapping, becomes

I

n A E l I 1 n  A E l

—n  A H I
N idT  =

L —n  A H I
N i - d j (5.65)

where d'y is edge dependent and I is the length of the edge under analysis, with respect to the orig­
inal coordinate system. The validity of integral (5.65) is now examined. Consider the transformation 
given by
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11

1 ’ ( } ' 1

1
<n

r> to
1

=  5 ( 1 - 7 ) +  2 ( ! + 7 )
/ I  _

where 7 c [—1,1], When 7  =  —1 let (£i,£2) — (£i>£2 ) anc  ̂when 7  

(£1 , 6 2 ) — (£1 > £2 )* Now if we employ the chain rule we get

dx dx
dx = — d£x + —  d£2

3£i

From equation(5.66) it can be shown that

d£2

(5.66)

+ 1  then the coordinates

(5.67)

=  2 ^ 1  - & d~t 

Combining equations (5.67) and (5.68) yields

^ £ 2  =  2 ^ 2  -  £2 ) ^ 7

d'y 5£i 2

Similarly, an expression for dy/dy  is given by

dx dx  ( £ x2 -  £}) +  dx  (£| -  £j)
d&

dy dy (£j -  £j) +  dy (£| -  Q)

(5.68)

(5.69)

(5.70)
d7 5£i 2 d£2 2

All that now remains is to express d r  in terms of the new element. Considering the figure (5.1), it can 
seen by inspection that for any boundary edge of the element

d r 2 =  dx2 +  dy* (5.71)

thus, for any edge,

d r 2 =  ( dx  (£1 -  £1 ) +  dx  (£2 ~ £ 21) j 2 +   ̂dy (£? -  £1 ) +  dy  (£2 - £ 2 ) ^2

<9£ <9£2 '9£i d£2
(5.72)

Now d r  is derived for each edge that can arise

The horizontal line AB: The horizontal line has end coordinates given by (£}, £2) =  ( - 1 , - 1 )  and 

(£2, £ |) =  (1, —1). Employing equation (5.69) and equation (5.70) yields
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dx dx dy dy
dy d£ i dy d£i

The derivatives Jjr- are found, via equation (5.8), as

and, similarly,

Finally, by employing equation (5.72), we find that

dT
dy

The expressions for the vertical and diagonal edges are found in an analogous manner. 

The diagonal line BC: Here (£j, =  (1, —1) and , £ |) =  (—1,1), giving

^  =  \ A ! - f ) 2 +  ( ! - f ) 2 =  ' / 2 (5.77)

The vertical line CA: Here (£}, f j)  =  (— 1) and (£?, £2 ) =  —1)>
leading to

(5.73)

t r - f + !  (5-74)

+  — (5.75)
2 2 v ’

%  = +  =  v / ( | - | ) 2 =  m  (5.78)

Integrals over these three edges can now be performed.

5.10.1 The basis upon a boundary

There now follows a description for the precise formulation of the basis upon each edge. Upon 
identification of the edge, where the integral is to be evaluated, it remains to identify (771, 772). The 
one-dimensional form of the boundary integral implies that one or other of (771, 772) is constant. The 
constant value of a coordinate can be determined, by inspection, and is dependent upon the edge 
where the integral is to be evaluated and the choice of quadrature. The basis is defined in terms of the 
collapsed coordinate system (771, 772), the values of the coordinates on each edge are determined by
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inspection and are as follows 

The horizontal line AB

£i — 7 £2 =  - 1  (5.79)

making use of the transformation from equation (5.11), we get

r)i = 7 ??2 =  - 1  (5.80)

Therefore, for the horizontal edge, we have

nip j

£  5  w m -  - 1)
i — 1

This then provides the approximation to the integral upon this edge of the triangle.

The vertical line CA

Ci =  7 £2 =  - 1

again making use of the transformation from equation (5.11)

Vi = - 1  m  =  7 (5.83)

again we therefore get,

nip j 

i = 1

The treatment of the boundary integrals is now complete.

The diagonal line BC

-  Ci =  £2 =  7

Once again making use of the transformation from equation (5.11)

771 =  1 rj2 = 7  (5.86)

The approximation for the line integral becomes

(5.84)

(5.85)

(5.81)

(5.82)
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nip
(5.87)

i—1

Again this expression can be directly incorporated into the scheme to represent the boundary integral 
upon this edge.

5.11 Treatment of area integral

Consider the area integral

(5.88)

When considering the variational equation (3.8), as a consequence of evaluating each integral in the 
collapsed coordinate system, the area integral must be recast in terms of this collapsed coordinate 
system. The major consideration here is the partial derivative which must undergo two changes of 
coordinate system.

The first change of coordinate system, from the cartesian (x,y)  coordinate system to the local 
(£ii £2) coordinate system, results in the introduction of a Jacobian. This Jacobian has been derived 
perviously. The majority of the complexity arises from expressing each derivative in terms of the 
collapsed coordinate system. To do this the chain rule is applied.

d N  
dti  =

In matrix form, we get

d N  dx d N  dy 
dx  1 +  dy d£ 1

d N  _  d N  dx d N  dy 
d& dx d& +  dy d£2

(5.89)

" dN ' dx 1 '  dN_ ‘
dx

dN
3*2

dx
3*2 1

4
#

1
!2;| a 
co|<0

1

(5.90)

where the two by two matrix is the Jacobian J .  The expressions ^  and ^  are easily retrievable 
from equation (5.89). It follows that

” dN_ " ' dN "
dx

=  J ~ l
3*i

dN dN
dy <9*2

(5.91)

where J  1 is the inverse of the Jacobian matrix, J ,  and



CHAPTER 5. THE TWO-DIMENSIONAL SCATTERING PROBLEM 82

J ~ x =
det J

yz - y i yi -  yi 

Xi -  x 3 x2 — Xi
(5.92)

It is now possible to express the derivative in terms of the (£1 ,^2) coordinate system. A second 
mapping must now occur. The newly formed derivative again undergoes a similar treatment. Again, 
via a variation of equation (5.89), the second mapping from (£1 , £2 ) t0 yields

where

(5.93)

'  d N  ' '  dN_ "
~-l d m

=  Jd N d N
d£ 2 d m

J  =
r d ^ d£ 2

d m d m

d(,2
d m d m

(5.94)

Here the inverse of the transformation, equation (5.12), comes to the fore, this equation enables the 
partial derivatives to be found, such that

" d N  ■
dti 1

1

m
1

d e t j

0 '  dN_ '
d m

m )
d N
d m

(5.95)

The original derivatives are now expressed with respect to the relevant coordinate system.

'  dN_ -
dx 1 1 (2/3 -2 /l) (?/l -  2/2) 1 0 '  dN_ “

dm
d N
dy 4 |J | | J | ( z i  -  X 3 ) (x2 -  X x ) K 1 +  77i ) K 1 - ^ )

d N
d m

Note that the determinants of the Jacobians will disappear, due to the relationship.

dxdy =  \J\d^id 2̂ = \J\\J\dr)idr)2 

This completes the treatment for the area integral.

(5.97)



CHAPTER 5. THE TWO-DIMENSIONAL SCATTERING PROBLEM 83

5.12 Polynomial expansions for the continuous modal basis

The basis to be described subsequently would see employment in a c o n t i n u o u s  spectral//ip Galerkin

interior and boundary modes, themselves further reduced into vertex and edge modes. This, allied to 
the fact that the interior modes are zero on the boundaries, ensures the completeness of the basis [55].

Principal functions of the C° continuous basis

Employing the triangular expansion, equation (5.14),in conjunction with the above Principle functions 
for a C° continuous basis, allows for the modes at the vertices, the edges and the interior of the element 
to be derived. Again, it then becomes a matter of identifying where on the element the integral is to 
be evaluated, so that the appropriate form of the basis can be applied.

Vertex modes

The Vertex modes are given by

scheme. The analysis of this basis serves to highlight the deficiencies of the origonal Dubiner basis. 
In order that a C° continuous basis is constructed the orthogonal functions are decomposed into

(5.98)

(1 - z)i+l
ibb.(z) =  i ^

3 I (l~z)i+1(l+*) p 2i + l , l ^

, r ^ z )

i = 0, 0 < j  < J  

1 < i < I  ~  1, j  = 0 

1 < i <  /  — 1, 1 < j  <  J  -  1 

i = I, 0 < j  < J

(5.99)

Vertex A  :
(1 -  771) (1 -  772)

(5.100)
2 2

Vertex B  :
(I + 771) ( I - 772)

2 2
(5.101)

Vertex C  :
2

(5.102)
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By inspection it can be seen that the vertex modes are indeed the linear finite element basis, having a 
value of unity at one vertex and varying linearly to zero at the others.

Edge modes

The edge modes are defined as

Edge A B  : (1 (1 +  ^ 4 (0 <  p < P,) (5.103)

Edge A C :  (1 (1 (1 ^  P £  (0 < q < P2) (5.104)

Edge B C  : t f f .) i 1 .(1 ± !??) Pj L\  (0 < q < P2) (5.105)

Inspection reveals that the edge modes contribute from a local edge only, and are zero upon on all 
other edges (and vertices).

Interior modes

The interior modes, that contribute from a cubic representation and higher, are defined by

tnterior  : P ^ 1'1^ )  (5.106)

By inspection it can be seen that the interior modes are zero on the boundary of the triangle.
The C° continuous basis is to be compared with the L2 basis. This comparison will provide 

evidence that the, as the order of the approximation increases, the C° continuous basis will diverge 
from the exact solution. This analysis will prove the importance of basis selection.

5.12.1 LU decomposition

A direct consequence of employing the C° continuous basis is that the mass matrix becomes ’full’, 
so a method of matrix inversion needs to be employed. LU-decomposition provides the means to 
decompose an N  x N  matrix, A ,  into a product of a lower triangular matrix L  and an upper triangular 
matrix U,  such that the system A x  — B  can be solved
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L U  — A  (5.107)

Consider the system below

[Mi { M }  =  { E R R }  (5.108)

The inversion of the matrix A£ is sought by LU-decomposition. If we write the consistent matrix M 
as a product of L  and /T, equation (5.108) becomes

(LL][g])  { M }  = { E R R }  (5.109)

let

[g] { M }  = { R }  (5.110)

therefore, upon substitution

[L] { R }  =  { E R R }  (5.111)

First solve [ R {B }  — R H S . The first term is given, than a formula for any entry

l
=  T771^{R H S ^  -  (5-113)

j = 1

for i =  2,..., n. Now solve C/At/ =  JB. The solution is achieved by back substitution. The first 
(or final) entry is given by

A U = m h  ( 5 -1 1 4 )

i  n
A U  = TTTTTft5 ^ ) -  E  U ^ J ) A U U) (5-115)

 ̂ '  j= i+ 1

This algorithm provides the means to invert the mass matrix.
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5.13 Electrical length

The electrical length is a measure of the number of wavelengths which occupy a specified length scale 
of the scattering body. For the circular scatter’s employed in this Chapter the electrical length is given 
by the diameter. Clearly, the larger the electrical length the greater the computational challenge.

5.14 The radar cross section

The analytic solutions presented in this thesis are obtained from the work of Balanis [30]. Such a 
derived output is the radar cross section The scattering width, or the radar cross section, RCS, 
per unit length, for a transverse electric problem is defined by

xW>) =
IH s 12

\H;i 12 (5.116)

and

x(4>) =
IE:s  12

I E\i 12 (5.117)

for the TM problem. These expressions cannot be evaluated directly from the computational 
solution as they require far field data. The use of a near-field to far-field transformation [79] allows 
the scattering width to be calculated as

x (4>) = j \  j  ( w 2 cos 4> -  W 1 sin <f> +  w 3) e ^ (x'coa't,+y'ain*)dr\2 (5.118)
^ JTc

where (a:', y ') represent the coordinates of a general point on the scatterer and W  = (W i ,  W 2 , W 3 ) 

is given by

W

nyH sz(p

—nxHz(j)

nyE sx -  nxEy

(5.119)

For the above equations r  and (f) represent the cylindrical polar coordinates of a general observation 
point in the far field. For a meaningful description of the far field scattering, the scattering width is 
expressed in decibels. This is achieved by
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R C S  = lOloglo$(0) (5.120)

For the results that are to be presented, concerning the RCS, the axis labels are as follows, the 
horizontal, x, axis denotes 0, the cylindrical coordinate and the vertical, y, axis represents the RCS 
intensity.

5.15 Analytical Solutions

Existing analytical solutions, where they exist, to the scattering problems will be used to verify the 
numerical simulations. Analytical solutions are available for the TM and TE scattering observed from 
circular cylinders of infinite extent in the z-direction. Classical texts such as Balanis [30] provide a 
means to derive the desired analytical solution across the computational domain. The analytic results, 
used in this thesis, are due to Balanis [30] and can be found, for the transverse magnetic case on page 
612 and are given by equation 11-137, similarly for the transverse electric case the exact solutions are 
to be found on page 625 and are given by equation 11-155.

5.16 Results

5.16.1 Numerical convergence for the PEC

Initially, the numerical convergence of the scattering width is assessed by considering the scattering 
of 2 A PEC circular discs, for both the TE and TM polarisations (other electric lengths are considered, 
such as 12A). The analysis is performed upon the domains depicted by figures (5.3) and (5.4). The 
analysis then moves on to consider two other forms of scatterer, a PEC cavity figure (5.39) and two 
PEC aerofoils depicted by figures (5.28) and (5.32).

5.16.2 The meshes

The first mesh to be employed is depicted in figure (5.2). The mesh consists of 15580 elements and is 
employed for the results of figures (5.5), (5.6) and (5.7). A mesh consisting of this elemental quantity 
serves to prove that a denser mesh clearly requires a lower order of approximation for an acceptable 
solution, here an order of p=0 provides an excellent solition.

The figure (5.3) contains 682 unstructured elements and can be considered, along with the 158 
element mesh of figure (5.4), as an annulus which has an inner radius of 1A and an outer radius of 2 A.
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The remaining figures have the number of elements from which the meshes are constructed below 
them.

Convergence upon meshes

Figure (5.8) depicts the numerical convergence of the TM scattering width with polynomial orders of 
p =  0 ,1 ,2 ,3 ,4  and 5 on the computational domain depicted in figure (5.3). It is clearly seen that with 
an increase in the order comes an increase in the symmetry and an ever closer approximation to the 
exact solution. It is also noted that, for this simulation, once the converged solution is achieved, for 
p =  4, increasing the order of approximation does not provide any notable increase in the accuracy 
of the result, the scattering width remains constant. Figure (5.9) compares the exact solution with the 
converged numerical, TM, solution, the comparison is favourable for the RKDG method.

Depicted in figure (5.10), again performed on the 682 element mesh, is the converged transverse 
electric scattering width distribution, plotted against the exact solution. The results obtained from 
the TE distributions are in agreement with those obtained from the TM case, in that they compare 
favourably with the exact solution.

The results obtained by analysing the 158 element mesh, depicted in figure (5.4), are consistent 
with those exhibited by the 682 element mesh. The difference being, as expected, the comparison 
between the converged numerical approximation and the exact solution, clearly a better domain rep­
resentation will provide more accurate results.

Figure (5.11) proves that the numerical solutions, for the TM case, tend to a converged, symmetric, 
distribution by increasing the polynomial order p — 0 , 4 .  Figure(5.12) provides a comparison of 
the converged, p = 4 approximation, and the exact solution.

Similarly, for the TE simulation a comparison with the exact solution and the converged numerical 
solution is provided by figure (5.13).

Figure (5.14) provides a plot for the difference between the exact solution and for p — 0,.., 4. As 
expected this figure shows that as the order increases the difference between the exact solution and 
the numerical solution tends to zero.

The lack of symmetry exhibited in figure (5.13) is a result of the poor boundary representation, 
and is investigated in the following chapter where curved elements are introduced.

Figures (5.15) and (5.16) provide a comparison between the 158 and 682 element meshes. The 
comparison proves that if the order of the approximation is p — 0, figure (5.15), then the mesh density, 
and representation of the near boundary, has an important role. To exemplify this point consider figure 
(5.16), we see, as expected, that better domain and boundary representation added to more elements 
per wavelength provide for more accurate numerical solutions. Figure (5.16) shows that as the order



CHAPTER 5. THE TWO-DIMENSIONAL SCATTERING PROBLEM 89

of approximation is increased then the representation of the domain has diminishing effect. Close 
inspection of figure (5.16) reveals, as expected, that the distribution obtained from the denser mesh 
provides a more accurate solution, but the difference with the coarser mesh is minimal.

The constant approximation proves that if the solution domain is represented with more elements 
then a higher accuracy is achieved, but to counter this figure (5.16) shows that an increase in the 
polynomial order negates the need for a large amount of elements.

5.16.3 Comparison between the L 2 and C °  Dubiner bases

The mesh chosen for this comparison of bases is again represented by figure (5.3).
The initial comparison, figure (5.17), shows that if a low-order approximation is employed then the 

numerical distributions are very similar, however as expected (from the theory of Warburton, Lometev 
[55]) the disparity between the two bases increases with an increase in the order of approximation, 
this is emphasised in figure (5.18). This increase in error for the C° basis is a direct consequence of 
the fact that the basis is not defined within each element only, the basis for element e adversely affects 
the numerical approximation in neighbouring element e +  1. From this analysis it can be proven 
that as the order of approximation is increased, for the C° continuous basis, the numerical solution 
diverges from the exact solution.
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Figure 5.2: Scattering by a circular cylinder o f electrical length 2A: an unstructured mesh consisting 
of 15580 elements

Figure 5.3: Scattering by a circular cylinder of electrical length 2A: an unstructured mesh of 682 
elem ents
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C^ Y Y V W Y NII

Figure 5.4: Scattering by a circular cylinder of electrical length 2A: an unstructured mesh o f 158 
elem ents

Refinement

The previous chapter saw the im position o f refinement techniques. The results achieved from this 

analysis proved that an increase in polynom ial order is preferable to refining the mesh, this result is 

to be further analysed here, for two dim ensional space.

The refinement procedure em ployed is o f a form consistent with the analysis of the previous chap­

ter, the initial mesh is depicted in figure (5.4), the first refinement is produced by refining this initial 

mesh by approxim ately a factor o f four (resulting in 650 elements) and the final mesh is achieved by 

refining the initial mesh by a factor of 16 (in actuality 2514 elements). The results, depicted in fig­

ures (5.19-5.24) are consistent with the findings of the previous chapter; high-order representation is 

preferable to mesh refinement. But to consider this statem ent further, it is clear that as the polynomial 

order increases, then so does the com putational cost. Naturally as the polynom ial order increases, 

the error, in approxim ation, decreases and this type of refinement is faster than for simple h refine­

ment. The advantages become more apparent as a higher and higher accuracy levels are required. It 

is also worth considering that for the levels o f accuracy of interest to industry (which could be fairly 

low) there is little to choose between h and p refinement (this is again evident in the one-dim ensional 

example considered in the previous Chapter.
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Figure 5.5: Scattering by a circular cylinder of electrical length 2A: contours o f E x  for converged 
solution of p =  0
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Figure 5.6: Scattering of a TE wave by a circular disc of electrical length 2A on mesh of 15580
elements: convergence of the RCS distribution with increase in P
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Figure 5.7: Scattering of a TE wave by a circular disc o f electrical length 2A on mesh of 15580 
elements: com parison of exact solution with p = l approxim ation
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Figure 5.8: Scattering of a TM wave by a circular cylinder of electrical length 2A on mesh of 682
elements: convergence of the RCS distribution with increase in P
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Figure 5.9: Scattering of a TM wave by a circular cylinder of electrical length 2A: com parison be­
tween exact RCS and converged numerical solution on the 682 element mesh
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Figure 5.10: Scattering of a TE wave by a circular cylinder of electrical length 2A: comparison
between exact RCS and the converged numerical solution on the 682 element mesh
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Figure 5.11: Scattering of a TM wave by a circular cylinder of electrical length 2A on mesh of 158 
elements: convergence of the RCS distribution with increase in P
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Figure 5.12: Scattering of a TM wave by a circular cylinder of electrical length 2A: comparison
between exact RCS and converged RCS for 158 element mesh
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Figure 5.13: Scattering of a TE wave by a circular cylinder of electrical length 2A: com parison 
between exact RCS and converged RCS for 158 element mesh
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Figure 5.14: Scattering of a TE wave by a circular cylinder of electrical length ‘2A on mesh of 158
elements: the difference between the exact solution and that for the range of P values
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Figure 5.15: Scattering by a circular cylinder of electrical length 2 A: com parison between 682 element 
mesh RCS and 158 element mesh with a p =  0 uniform approximation
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Figure 5.16: Scattering by a circular cylinder of electrical length 2A: comparison between exact RCS
and converged solution for the 682 element mesh and the 158 element mesh, with a p =  3 uniform
approximation
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Figure 5.17: Scattering by a circular cylinder of electrical length 2A: com parison of RCS distributions 
for the C° expansion basis and L2 basis, with a p — 1 approximation
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Figure 5.18: Scattering by a circular cylinder of electrical length 2A: comparison, with the exact
solution, of RCS distributions for the C° expansion basis and L 2 basis, with p — 3
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Figure 5.19: Refinement both h and p; scattering of a TE wave by a circular annulus of electrical 
length 2A on 158 elem ent mesh: the scattered width distributions for p=0
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Figure 5.20: p-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A on
158 element mesh: the scattered width distributions for p=l
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Figure 5.21: p-Refinement; scattering of a TE wave by a circular annulus o f electrical length 2A on 
158 element mesh: the scattered w idth distributions for p=2

5.16.4 Verifying the numerical solutions

Each numerical solution, that involves a PEC disc, and hence the numerical scheme as a whole, is 

verified by a com parison with the analogous exact solution. The numerical solutions take the form of 

a scattering width distribution. For the first example, converged 2A distributions are com pared with 

the corresponding analytical solution.

The com parisons, with the exact solution, involve both the TE and TM polarisations. Figures 

(5.9), (5.10), (5.12) and (5.13) depict the converged RCS distribution, involving an order p =  4 

approximation. These distributions are plotted against what would be the exact solution. Inspection 

o f these figures shows that the numerical performance of the 2A TE and TM scattering problem s is 

excellent. The figure (5.5) shows the contours for the converged TE solution.

Problems of a larger electrical wavelength are more relevant to industry, and are now to be con­

sidered. Numerical solutions are sought for circular cylinder of electrical length 10A.

The com putational domain, containing 882 elements, involves a greater element com position than 

the two previous, investigated, meshes. The increase in elem ents is a direct consequence of the 

decrease in A. The mesh has the same spatial dim ensions as the 658 and 158 elem ent meshes; an 

inner radius of one and outer radius of two, here however A equals 0.2.

For the sim ulation where the order of the approxim ation is p =  7, then the numerical results are in 

excellent accordance with the exact solution, refer to figure (5.26). For the first time an order higher 

than p =  5 was required to produce a converged accurate solution.

Figure (5.27), involves a PEC cylinder of diam eter 12A on the unstructured mesh containing 682
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Figure 5.22: p-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A on 
158 elem ent mesh: the scattered width distributions for p -3
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Figure 5.23: /i-Refinement; scattering of a TE wave by a circular annulus of electrical length 2A on
first refined mesh of 650 elements: the scattered width distributions for p=0



CHAPTER 5. THE TW O-DIM ENSIONAL SCATTERING PROBLEM  102

Exact
p=0

-10
-15

-20
-25

-30
150 200-200 -150 -100 -50 0 50 100

Figure 5.24: /^-Refinement; scattering of a TE wave by a circular annulus o f electrical length 2A on 
final refined m eshof 2514 elements: the scattered width distributions for p=0

elements (figure 5.3), the convergence will improve in accuracy with, amongst other factors, a better 

domain representation on the far field boundary, this is to be investigated in the next chapter.
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Figure 5.25: Scattering of a TE wave by a circular cylinder of electrical length 12A on mesh o f 1082 
elements: contours of E x  for converged solution
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Figure 5.26: Scattering of a TE wave by a cylinder of electrical length 10A on mesh of 882 elements:
convergence of the RCS distribution with increase in P
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Figure 5.27: Scattering of a TE wave by a cylinder o f electrical length 12A on mesh of 682 elements: 
the converged RCS distribution compared with the exact solution

5.17 Scattering by two further objects
The perfectly electrical conductors now take a more complex form. The scatterers now consist of 

objects with no com parable analytical solutions. The sim ulations are perform ed upon an open cavity 

as in figure(5.38) and two aerofoils, one a NACA0012 aerofoil, figure (5.28) and the other a very 

coarse representation o f an aerofoil, termed the NACA aerofoil and depicted in figure (5.30). The 

m eshes are generated via the advancing front technique [80]. The meshes are again unstructured.

5.17.1 The PEC aerofoil

The following analysis involves sim ulating the scattering o f a transverse electric wave by a perfectly 

conducting NACA aerofoil. The cord length, c, o f the scatterer is given by c =  2A =  1. The 

unstructured mesh is compiled from 432 triangular elements. The NACA0012 aerofoil mesh is refined 

near the leading and trailing edges of the aerofoil. The refinement exists so as to provide the required 

geom etrical definition.

The scattering involves two separate cases. The first sim ulation involves illum ination from the 

front o f the aerofoil and the second, illumination from the rear.

Figure (5.29) depicts the contours achieved by the scattering of the E y  wave upon the NACA0012 

aerofoil, depicted in figure (5.28). As with the previous sim ulations the order of the approximation 

is increased until a convergence of the RCS is obtained. The figure (5.32) depicts the numerical 

solution tending to the converged solution as the order o f approxim ation increases. This numerical
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Figure 5.28: Scattering by a NACA0012 aerofoil of electrical length 2A: the mesh consists o f 432 
elements

convergence is achieved by, arbitrarily, illum inating the front of the aerofoil.

The coarse NACA mesh is introduced to highlight the fact that as the order of the approxim ation 

increases acceptable solutions can be achieved, even upon such a coarse mesh. This fact is proved in 

the figures (5.31), where the front o f the aerofoil is illuminated.

It comparison naturally follows involving the converged numerical solutions achieved from both 

the coarse NACA and NACA0012 aerofoils. Figures (5.33) and (5.34) provide such a comparison. 

The comparison, when considering illumination from the front, is good, but when com paring illum i­

nation from the rear the com parison is not excellent. This difference again highlights the importance 

of domain representation, the aerofoil requires more elements at the rear of the aerofoil, as is evident 

upon examination of figure (5.30) (compared with figure (5.28)). It is worth considering at this point, 

that the nature of the discontinuous Galerkin method would allow for mesh refinement at in this area 

(or any area of interest) and/or increased order of representation.

5.17.2 Open cavity

The final sim ulation is performed upon an sem i-open cavity. The cavity consists of two parallel walls 

connected at their right-hand end, as depicted in figure (5.36). An analysis of the transverse electric



CHAPTER 5. THE TW O-DIM ENSIONAL SCATTERING PROBLEM  106

Figure 5.29: Scattering by a NACA0012 aerofoil of electrical length 2A: Ey contours

Figure 5.30: Scattering by a NACA aerofoil of electrical length 1A: the mesh consists of 472 elements
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Figure 5.31: Scattering by a NACA aerofoil of electrical length 1A: RCS distributions when aerofoil 
is illum inated from the front.
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Figure 5.32: Scattering by a NACA0012 aerofoil of electrical length 2A: RCS distributions when
aerofoil is illuminated from the front.
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Figure 5.33: Scattering by NACA aerofoils: comparison between the converged RCS distributions of 
the NACA aerofoils, from the front
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Figure 5.34: Scattering by NACA aerofoils: com parison between the converged RCS distributions of
the NACA aerofoils, from the rear
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Figure 5.35: Scattering by NACA0012 aerofoils: com parison between the converged RCS distribu­
tions of the RKDG scheme and a hp-FEM  scheme, from the rear

RCS distribution is to be performed. The incident wave propagates along the x—axis. The mesh itself 

is an unstructured grid which is comprised of 377 triangles.

Following standard procedure, the order of the approxim ation is increased until convergence of 

the RCS distribution is achieved. It can be seen, from figure (5.37), that an order four and five 

approxim ation provide very similar distributions, and due to the com putational cost, here an order 

p — 4 approxim ation suffices.

Figure (5.38) proves that a converged numerical distribution is achieved when an order p =  5 ap­

proxim ation is used, as an order p — 5 and order p =  6 approxim ation provide identical distributions. 

Recalling that the com putational cost of attaining an order five approxim ation greatly exceeds that of 

an order four approxim ation, it makes com putational sense that the analysis should remain at an order 

four approxim ation.

Figure (5.38) proves that a numerical convergence is achieved for this example.
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Figure 5.36: Scattering by a sem i-open cavity: the mesh consisting of 377 triangles.

p=0

p=3
p=4

-10

-20

-30

150 200-200 -150 -100 -50 0 50 100

Figure 5.37: Scattering by a semi-open cavity: convergence of the RCS for an incident wave propa­
gated along the x-axis.
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Figure 5.38: Scattering by a semi-open cavity: convergence of the numerical solution for an incident 
wave propagated along the x-axis.



Chapter 6

Perfectly Matched Layers and Blending 
Functions

6.1 Introduction to chapter

This chapter is mainly concerned with an alternative approach to the far field boundary condition 
that was implemented in Chapter Five. This alternative approach yields an increase in the accuracy 
of the numerical solution, but at a computational cost. The theory regarding this far field boundary 
formulation will be discussed shortly. The mathematical description of the far field boundary, as it 
appears in implementation, is then presented.

As expected, the accurate representation of an infinite domain has received much attention in the 
past. Characteristic boundary conditions were earlier employed to represent the far field boundary. 
This method, however, is limited in application for the specified reasons. More elaborate far field 
schemes consist of, for example, radiation boundary conditions or an asymptotic expansion of the 
far-field solution. Another type of method, that attacks the problem from a different angle, is the 
buffer or sponge layer procedure, a far field representation of this type involves outgoing waves being 
damped and decelerated or accelerated to supersonic speeds [78].

In the context of solving Maxwell’s equations in the time-domain, Berenger proposed a novel way 
to derive the desired absorbing boundary conditions. Berenger suggested that an unphysical splitting 
of Maxwell’s equations would introduce, beneficial, additional degrees of freedom which would allow 
for layer construction. The layers could then maintain absorbtion properties, irrespective of the angle 
of propagation. The layers are defined in such a way that any waves entering the layers are completely 
absorbed (without reflections). These layers have been termed perfectly matched layers (PMLs).

While the imposition of PMLs has been wide spread, the initial method is by no means free
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of problems. It was relatively recently proven that the unphysical splitting of Maxwell’s equations 
results in a set of equations that are only weakly well-posed and therefore result in unstable schemes 
[81, 78], This discovery has focused the attention towards other, alternative, well-posed formulations 
of the electromagnetic PML. Naturally the alternate approaches involve unsplit PML methods. At 
the time of writting, there currently exists two types of unsplit PML methods, the first relies upon 
mathematical arguments whilst the second involves a physical reasoning [82].

Regardless of the original, erroneous, approach [81], the PML method has proven extremely 
beneficial for wave-like problems. The development of efficient, robust and accurate methods with 
which to truncate the computational domain is becoming ever more important, especially for high- 
order methods. As High-order methods produce an improved interior solution, it would be counter­
productive if they were hampered by artificial reflections.

The chapter concludes with a discussion on how to model curved elements. Real life simulation 
often entails the modelling of a curved boundary. The curvature of the elements is achieved via 
blending functions. The blending functions are to be stated and the results obtained are then presented 
and discussed.

6.1.1 Constructing the PML

As is known, the problem presented by a typical scattering problem involves an infinite domain. The 
accurate representation of this infinite domain is of great importance. The technique to be presented 
here absorbs the outgoing waves, therefore yielding an accurate model, with no reflection. Theoret­
ically imposing a PML boundary entails a computational domain that is surrounded by a rectangle, 
which itself is formed from a structured mesh of triangles. Within the PML the z-component of the 
electromagnetic field is split into component parts. The rectangular shape of the truncated far field 
boundary is constant, and the minimum distance from the scatterer is |A. The thickness of the PML is 
given by A. The system is stable if the CFL numbers provided in [83] are satisfied. The mathematical 
theory to obtain a solution within the PML medium is subsequently described.

6.1.2 Mathematical detail for the PML

Original formulation

In accordance with Berenger [84], the Maxwell equations in an absorbing layer can be written as

— curlE  +  a E  — 0
ot

(6.1)
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d H
—---- \- curlE  +  a* H  =  0 (6.2)

where o and o* are the electric and magnetic conductivity respectively. Traditionally the layers 
that absorb the outgoing waves satisfy the condition

0 — 0 (6.3)

The above formulation has since been improved upon, and this improvement is discussed below. 
Berenger proposed a novel technique in which the theoretical reflection factor of a plane wave striking 
a vacuum-layer interface is zero at any frequency and at any angle of incidence. Assuming TM 
polarisation, the Maxwell equation set in a PML medium is obtained by introducing a new degree 
of freedom. The component E z is split into the component parts of Ezx and E zy resulting in an 
electromagnetic field of (Hx, Hy, E ZXJ Ezy). There now exists four unknown components to the EM 
field. When the scattered field enters the PML medium the waves are governed by the following

important. The values ox and oy can be considered as the absorption coefficients in their respective 
direction (discussed subsequently). A similar procedure is adopted for the TE case, here Hz is split 
into component parts and the desired unknowns are (Ex,E y, Hzx, Hzy).

equation set

(6.6)

(6.7)

(6.4)

(6.5)

Investigating this set of equations led Berenger to deduce that the choice of ox and oy is extremely

6.1.3 The absorption coefficient

The absorption coefficient, o, for the relevant direction, x  or y, is defined as

^ o t e  the fact that if  ax — ay then the Maxwell equations in a classical absorbing layer are achieved
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1 Sdist3x 18 dist3v
ax ~  Gy ~  ^ 4  (6*°)

where distx/y represents the distance from the far field boundary to a point in the PML, in the relevant 
direction. For the propagation of the electromagnetic wave in free space ax and oy are zero.

6.1.4 A new idea

Following the work outlined in [6], we discuss where the scheme employed in this thesis differs from 
Berenger’s. A simplification of the equation set (6.4-6.7) is possible. The simplification arises on the 
assumption that the component E zx can be rewritten as

Ezx =  E z — Ezy (6.9)

substituting this expression into the equation set (6.4-6.7) yields, for this thesis, the equations that 
are required to be solved for a numerical solution in a PML.

1 r + l r + ^  =  0 (610)

+  (6.11)

i k  + l i i  ~  i t + ° xEz + E *y{<7y - = 0 <6-12>
~ d tL + ~ d f  + ayEzy = 0 (6.13)

This set of equations provide the framework the for the perfectly matched layer boundary condition
enforced in this thesis. The above equation set is easily derived from the previous equation set (6.4-
6.7) by substituting equation (6.9) where relevant. The first three equations are Maxwell’s equations, 
in free space, with a source term. Thus the first three equations are solved as previously specified, the 
final equation, however, requires a appropriate numerical approximation.

This equation set, for Maxwell’s equations in the PML medium, differs from the set obtained in 
Berenger’s PML because Berenger split, for the two-dimensional TM case, the component Ez into 
two sub-components, E zx and Ezy, giving

E z — E zx 4- E zy (6.14)
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and

Hz = Hzx +  Hzy (6.15)

for the TE case. Therefore by employing equation (6.9) we get a different formulation, where as 
previously stated, only the final equation (6.13) requires a numerical approximation.

6.1.5 Mathematical detail

For a numerical solution in a PML medium, the system of equations may be written, in conservation 
form, as

dU  d F (U ) dG (U )  , x
~9t + ~ ^  +  9y  +  ( J =  °  (6-16)

where, for the TM case

U  = (Uu V2, Vi, U4) = (Hx, Hy, E s, Ezy) (6.17)

F(U)  = (0, - E z, - H y, 0) G(U)  = (Ez, 0, Hx, Hx) (6.18)

S ( t /)  ((JyHXI (JxHy , (TXEz {jjy Ox)E Zŷ  C7y E Zy) (6.19)

and for the TE case

U  =  (Uu U2l t/3, U4) =  (Ex, Ey, Hz, Hzy) (6.20)

F(U)  = (0, - H z, - Ey, 0) G(U)  =  (Hzt 0, Ex, Ex) (6.21)

E(L^) ((7yExi (JxEy^ axHz {(7y Gx)E[zyi GyEzy) (6.22)

As detailed in Chapter Two, a unified formulation provides a better platform from which to form the 
variational statement. The equation set in conservation form becomes
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—  +  VF(E7) +  E(E7) =  0 (6.23)

where F  =  (F (U ) ,G (U )). Adhering to the discontinuous Galerkin method, the variational 
formulation is

2. [ uwda= [y,^-w(uy<m - f  v'iuywdr- f  z,(u)wdn (6.24)
ut Je e j = 1 Je

Investigation of equation (6.24) reveals that the PML variational statement differs to the variational 
statement in Chapter Five by the appearance of the integral of a sum over the element [6].

6.2 The area integral

The final term on the RHS of equation (6.24) can be considered as an area integral. This integral is 
evaluated in manner similar to that of the mass matrix.

/ nip nip

T.(U)WdSl = Yj ',£ dY.(U)W\J\\j\WnWm (6.25)
n =  1 m = l

Care is needed to ensure that the element under consideration is contained in the PML medium.

6.3 The nature of the PML equations

The Maxwell equations are a hyperbolic system of equations and this factor infers that upwind type 
schemes be employed for the approximate solution [6]. Unfortunately, Maxwell’s equation in a PML 
medium do not represent a hyperbolic system, but de la Bourdonnaye [85] proved that incorporating 
the divergence and a compatibility equations yielded a system that is hyperbolic in the medium, 
resulting in a well posed problem [6].

6.3.1 Numerical flux of the fourth equation

In free space, the TE components Ex, E y and H z, of U, are found as previously stated, the remaining 
component Hzy is not required in free space. At the interface between the free space and the PML 
medium, Hzy needs to be evaluated, and is dependent upon Ex, Ey and Hz and found via Rankine- 
Hugoniot jump conditions.
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Numerical flux in the PML

The formulation that is now presented follows closely that outlined in the text of F. Bonnet and F. 
Poupaud [6].

The Rankine-Hugoniot jump relations are employed to calculate the numerical flux. From equa­
tion (5.32) the Jacobian matrix A ,  for the PML formulation, is given by

A  =

I  0 0 0 nr \

0 0 — n y  0

ny ny 0 0

/
— nx 0 0 0

V

Employing the characteristic equation, \XI — A \ =  0, it follows

(6.26)

A[A(A2) -  nx(nxA)] -  ny[ -n y( - n yA)] =  0

the eigenvalues are thus

(6.27)

A =  ±0, A =  ±1 

It follows from the Rankine-Hugonoit condition that:- ForA — 0

(6.28)

n  A (E ** - E * )  = 0 n  A (H ** -  FT ) = 0

For A =  —1

(6.29)

n  A (E* — E l ) = —n  A n  A (H * -  H L) n  A (H* — H L) — —n  A n  A (E* — E L) (6.30)r* t t L * ttL'

For A =  1

n  A (E r  — E**) = n  A n  A (H K -  FT*) n  A (H K -  H**) = - n  A n  A (E H -  E**) (6.31)rR t t

The approximation of the fourth numerical flux can now be presented. Let (f> be the approximate flux 
required, then, for the TM case
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(6.32)

Clearly the flux is determined by the value of H*. This value is found with the use of the Rankine- 
Hugonoit jump relations and transforming, via an appropriate change of variables (X , Y ) in the re­
spective normal and tangential directions, the bi-dimensional Riemann problem into a one-dimensional 
Riemann problem [86], consider

where now U  — (H x , H y, E z) and F (U ) = (0, —E z, —H y). The expression

(6.34)

is achieved directly from the Rankine-Hugoniot equations. Then since

Hx — TlxH x TlyHy (6.35)

it must follow that

HI = nxH*x  -  nyH*Y (6.36)

with

H x = \ { H LX ~  H*) (6.37)

Therefore

(6.38)

The numerical flux, in the terms of the original variables (x, y ), can then be written as

0 =  \ { H LX + Hx )ny -  i  ( £ ?  -  E L)nl 

and this is incorporated in the fourth equation that for the TM case.

(6.39)
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6.3.2 Boundary conditions

The boundary condition at the outer surface of the PML medium is that of a PEC. A PEC condition is 
enforced for the reason that if any wave exists after going through the PML medium then it is reflected 
off the PEC and further absorbed. The perfectly conducting condition is detailed in Chapter Two and 
for the TM case

The PML medium need not conclude with a PEC condition, other choices exist. As expected the other 
options offer the traditional advantages and disadvantages of efficiency etc. One possibility is to end 
the PML medium with an absorbing boundary condition. These considerations are possibilities for 
further research.

PEC conclusion of solution domain

If the Rankine-Hugoniot conditions are employed, along with the PEC condition, equation (6.40), the 
TM boundary flux that concludes the PML domain becomes

Ez = 0 (6.40)

while for the TE case

TiyEx 0 (6.41)

0 \

[  ¥ (U )W d T =  [
J F e  J e

0
W dT (6.42)

and for transverse electric polarisation, with use of equation (6.41), we obtain

nyHz \

[  W(U)WdT — f
J F e  Je

(6.43)
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This concludes the treatment for the PML medium.

6.4 Blending Functions

The blending functions for triangular elements are now presented. Blending methods typically involve 
adding extra points on the boundaries of the elements and thereby allow for a better representation of 
the geometry, for this thesis the edges on a curved boundary are completely represented. When an 
unstructured mesh is employed the blending function method reduces to the linear approximation for 
elements with straight sides.

Due to the addition of the PML, the blending functions are only applied to the elements that com­
prise the boundary of the scatterer, and only PEC cylinders are considered. The blending functions 
are given by

X 3 Xi

11 +  Viv2
y i = 1 Vi

9 l(y3 -  V2,X i,X 2) 

9i(v3 -  V2,y u y2)
+ (6.44)

V2V3

Here the expression

g£(v3 -  i>2, x 2, £3 ) 

0 2 ( ^ 3  -  ^2 , 2/2 , 2/3 )

and

g f a x ^ x k )  = Y ~ p i

0 ? ( x ,2/j,2/fc) =

+  W i
03 (V1 “  ^3,2/3,2/l) 

03^1 -  3̂, 2/3, 2/l)

(r) -  ^ Xk

03 (r ) -  ~

(6.45)

(6.46)

(6.47)

define the difference between the true edge and the approximation when straight sides are assumed. 
The exact shape of the edge, determined by 9 i(v ) and defined in terms of a non-dimensional
parameter v  which varies from —1 to 1 from vertex j  to k.

6.5 Results

The perfectly matched layers consist of a structured mesh. This mesh surrounds the unstructured 
mesh, as depicted in figure (6.1). The thickness of the PML is choosen to be between 2A and 3A. A
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Figure 6.1: Scattering by a circular cylinder of electrical length 2A: an unstructured mesh of 682 
elements

mesh consisting of 158 unstructured elem ents is also employed (not including elem ents in the PML).

The results presented here consist of the analysis performed upon the perfect electrically con­

ducting cylinders, encountered in the previous chapter. Again, the electrical length of the cylinder 

is 2A, unless otherwise stated. The scattering width distributions are then presented, with relevant 

comparisons, to the initial characteristic far field condition, presented in the previous chapter, made.

The figure (6.2) provides the contours o f the y-component of the electric field, the contours are not 

so well defined in the PM L medium due to a less fine mesh being employed. Figure (6.3) highlights 

the discrepancies between the results achieved from the previous chapter and the RCS distribution 

when a PM L condition is enforced. The figure (6.4) shows that the converged RCS distribution, with 

the PM Ls applied, on the 682 elem ent mesh is now indistinguishable from the exact solution, unlike 

the results achieved from the previous chapter. The RCS distribution depicted in figure (6.5) shows 

that, for a larger electrical length, the RCS distribution is all but identical to the exact solution.
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Figure 6.2: Scattering by a circular cylinder of electrical length 2A: the contours of Ey
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Figure 6.3: Scattering by a 682 element circular cylinder of electrical length 2A: the comparison
between the converged PML boundary condition, the converged characteristic boundary condition
and the exact solution, for p =  4
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Figure 6.4: Scattering by a 682 element circular cylinder of electrical length 2A: com parison between 
the converged numerical solution and the exact solution, obtained from a PM L boundary condition, 
for p =  4

Exact
P M L

-10

-20

-30

-200 -150 -100 -50 0 50 100 150 200

Figure 6.5: Scattering by a 158 element circular cylinder of electrical length 10A: comparison between
the converged numerical solution and the exact solution, obtained from a PML boundary condition,
for p = 4
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Figure 6.6: Scattering by a circular cylinder of electrical length 2A, on the 682 element mesh: the 
comparison between a linear and blended approximation, for differing approxim ations

6.5.1 Results achieved from blending techniques

The final examples, presented in this thesis, involve an improvement in com putational domain rep­

resentation. Blending techniques provide an increase in the capability of accurately representing the 

domain. The figures (6.6) and (6.7) provide a com parison between a linear geometry approximation 

and the numerical solution achieved from the blending techniques. The com parisons provided entail 

the relevant converged TE RCS distributions.

It can be gathered from the results that an increase in the domain representation provides a much 

higher quality of solution. Figure (6.6) shows a quadratic approximation, with blending applied, 

plotted against an order four approxim ation, the quadratic yields the more accurate approximation.

Figure (6.8) shows that for the converged RCS distribution, a solution is achieved that is identical 

to the exact solution for the blending example, whilst the linear result is incorrect.
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Figure 6.7: Scattering by a circular cylinder of electrical length 10A on the 158 element mesh: the 
comparison between the converged RCS distributions, for both a linear and blended approximation



Chapter 7 

Conclusion and further work

7.1 Introduction to chapter

This thesis has discussed the formulation and verification of a fully unstructured, high-order, accu­
rate scheme suitable for time-domain approximate solutions of Maxwell’s equations. The majority of 
the discussion has focused upon a precise formulation of the scheme with regards to computational 
electromagnetics. The scheme under consideration was the fourth order Runge-Kutta discontinuous 
Galerkin finite element method. It was the aim to present a description and analysis of this method 
so that efficient and accurate numerical solution to Maxwell’s equations could be found. The work 
produced by Warburton, Hesthaven Shu, and Kamadiakis [55, 4, 73, 44, 45, 46, 55] amongst oth­
ers, was of invaluable benefit and the theory detailed in Chapters Four, and Five relied upon their 
achievements.

The results achieved, in relation to the cost at which they were obtained, suggest that the Runge- 
Kutta discontinuous Galerkin method appears a most promising numerical method, even providing 
numerical solutions where the one-dimensional Taylor-Galerkin scheme could not.

To follow some brief detail on the results achieved and then a short description on some further 
analysis that could be performed as either an extension or a variation of this work.

7.1.1 Discussion concerning Chapter Four

It has been shown, toward the end of Chapter Four, that a RKDG comparison with a Taylor-Galerkin 
scheme proved most favourable. Indeed the RKDG method is capable of providing acceptable nu­
merical solutions where the TG scheme is not. The one-dimensional problem also served to provide 
a collection of CFL numbers, for various orders of approximation. These CFL numbers can be re­
ferred to when requiring solutions to problems that require a particular order of approximation. The

127
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error analysis also means that a numerical solution, for certain order numerical approxim ations upon 

selected elemental lengths, can be supplied that can meet pre-requisites of acceptable error.

Chapter four also showed, for the examples analysed, that employing an approxim ation higher 

than p =  4 is unnecessary. The results obtained from an order five polynom ial are nearly indis­

tinguishable from an order four approxim ation, but the cost of em ploying an order five polynom ial 

greatly exceeds that of an order four representation. This finding was also partially evident from the 

results achieved in Chapter Five (not so for the large electrical lengths). The table below highlights 

the m inim um  number of elements required to provide a numerical solution that was com parable with 

the exact solution

Order Element per A

1 20

2 5

3 4

4 2

5 2

Note that the same num ber of elements is required for an order 4 polynom ial as that for an order 5 

polynomial.

Chapter Four also provided an analysis between the benefits of /r-type refinement and p-type 

refinement. It was shown that considerably less unknowns were required for p-refinement strategies, 

whereas the same amount of unknowns was required for a p =  0 approxim ation upon the final h- 
refinement mesh and still no convergence was achieved. Hence it is clearly better to increase the 

polynomial order as opposed to refining the mesh, this was further endorsed for the two-dim ensional 

case.

Finally the Taylor-Galerkin comparison serves to prove, that the RKDG method will provide 

more acceptable approxim ations when a high-order of accuracy is required. The Taylor-Galerkin 

scheme was unable to provide acceptable solutions when five elements per wavelength were required, 

conversely the RKDG method still provides accurate solutions, albeit at an increase in com putational 

cost, when only two elements per wavelength are permitted.

7.1.2 Discussion concerning Chapter Five

In chapter Five we saw the analysis and verification of the two-dim ensional RKDG m ethod for the 

numerical solution o f M axw ell’s equations. Chapter five em ployed a basis due to Dubiner [63]. The 

results, prim arily the RCS distributions, obtained whilst investigating the PEC annulus were plotted
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and verified. The scheme was validated by comparing the scattering widths to known analytical solu­
tions. The scheme was then employed to consider scatterers which have no analytical solutions. For 
all of these examples it was shown that, upon a constant mesh, in accordance with the one-dimensional 
case, increasing, uniformly, the order of approximation led to convergence of the solution.

A similar refinement analysis to the one-dimensional case was also performed in this chapter. The 
analysis involved a comparison, upon unstructured meshes consisting of 2508 elements, 682 elements 
and 158 elements1. As expected, the results obtained proved favourable for p-type analysis.

It was also seen that for the problems involving a large electrical length that a higher-order of 
approximation was required.

7.1.3 Discussion concerning Chapter Six

The previous chapter saw the RKDG theory extended to include perfectly matched layers and, via 
blending functions, a superiour representation of the circular annulus. The blending technique pro­
vided an increase in the accuracy of the geometry representation, and, as a result the correct represen­
tation of the scatterer is maintained and a true converged solution is achieved.

The results acquired are as expected, blending techniques provide an increase in the accuracy of 
the solution, allied to an increase in efficiency. The larger electrical length with no blending shows 
that approximating the boundary to a high standard is important. It is therefore evident that improving 
the geometry representation provides for an improved numerical solution.

The analysis for the perfectly matched layer technique again produced the expected improvement 
in accuracy. The technique can be expensive due to the increase in the number of unknowns, but it 
was shown that the PML provides excellent solutions.

7.2 Future work

7.2.1 Additions to the scheme presented

There still exists a great amount of analysis that could be performed for RKDG schemes. To empha­
sise a natural extension of the scheme presented in the previous chapters, would see an extension to 
three spatial dimensions. In three dimensions the theory would remain similar, a three dimensional 
basis proposed by Dubiner, whose implementation naturally follows on from the two-dimensional ba­
sis, could be readily applied. Clearly the boundaries of the elements would consist of tetrahedral faces 
and the area integrals would become volume integrals, other such considerations would materialise.

1 Partially as a result o f the inability to generate unstructured meshes that exactly provide a factor o f 4 and 16 refinement
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An interesting variation to the scheme presented would see the perfectly electrical boundary, that 
concludes the perfectly matched layer medium, replaced by an absorbing boundary condition. This 
new formulation would be especially important for problems with a large electrical length. 2

7.3 Other aspects that could be investigated

7.3.1 Quadrature-free formulation

In chapter Three, section 3.8.2, quadrature-free discontinuous Galerkin methods were briefly dis­
cussed. An investigation of recent literature suggests that this method appears highly promising. The 
work of Atkins and Shu, during 1998 [29], provided the initial analysis of quadrature-free RKDG 
methods. The basic premise of the scheme is to employ a local basis that can be easily manipulated. 
The basis can be comprised of the the Taylor expansions. The integration of the product of poly­
nomials, in this local basis, can be pre-determined and therefore stored. A similarity transformation 
allows the data for only one reference element to be stored. This type of formulation results in simpler 
coding and a significant increase in the speed of computation [26].

7.3.2 Differing time steps

In the event /ip-refinement is to be performed, for a given region of the computational domain, then 
the time steps employed should vary, different time steps are required for different order approxima­
tions and different size elements, in order to maintain the benefits of adaptivity and parallelisability. 
Incorporating this idea into a numerical scheme would involve identifying the order of approximation 
in a particular element and then using the most efficient time increment. A similar procedure would 
be required for identifying the elemental length of each element and then applying the the relevant 
time step.

Enforcing this condition however is expensive in terms of the efficiency and in the programming, 
it would however be of interest to see the outcome of such an analysis.

7.3.3 Modal over nodal

Finally this thesis employed a modal basis but there does exist another option. A nodal basis as 
described in [87] is such an alternative, here the identification of a nodal set suitable for high-order

2For large electrical lengths the PML approach close to the scatterer can produce small oscillations but the PML/ABC  
exhibits now additional oscillations. Therefore a comparison between the two procedures would be interesting.
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representation upon unstructured grids is provided. A comparison between the two possible bases 
would be interesting.
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