

 Swansea University E-Theses ___

Algebraically modelling object-orientated programs.

Biddle, Justin

 How to cite: ___
Biddle, Justin (2006) Algebraically modelling object-orientated programs.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42519

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42519
http://www.swansea.ac.uk/library/researchsupport/ris-support/

A lgebraically M odelling
O b jec t-O rien ted P rog ram s

Justin Biddle BSc. (Wales)

A thesis submitted to the University of Wales in
candidature for the degree of Philosophiae Doctor

Department of Computer Science
University of Wales, Swansea

June 2006

ProQuest Number: 10805268

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10805268

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

LtBRAft t

Sum m ary

We explore the process of building algebraic models of the behaviour of
Java classes. A fundamental building block of object-oriented programs is
the class that can typically contain multiple fields, constructors, and methods.
In Java a programmer can control access to the various methods, fields and
constructors of a class. We will be formally specifying and documenting a
class’ public behaviour algebraically.

In practice even a simple Java class can have complex behaviour. A
full algebraic specification (FAS) of a class can be complicated and hard
to understand for someone who wishes to quickly ascertain the behaviour
of a class. This complexity is largely as a result of machinery needed to
define class behaviours that are implicit, that is behaviour that is considered
part of Java’s general language behaviour and defines the general structure
of classes, methods, fields and constructors. However, it is unreasonable to
expect a programmer to write such full specifications. Therefore we introduce
the concept of an Algebraic Class Specification (ACS) that provides a much
reduced version of the FAS of a class. The ACS is therefore more readable
and is aimed at showing what we consider to be key information in the
specification of a class that cannot be programmatically inferred from the
language definition. Using the ACS we present a methodology for generating
an FAS thus reducing the complexity of specification for the user.

We will show that the ACS provides a reader with a clear formal under
standing of a class’ behaviour using a minimum of information. The ACS is
designed to be human readable yet still machine readable. We will show that
in order to aid users in creating specifications of classes we have mimicked
the Java syntax closely in the specification syntax. We will, in addition,
present a methodology for embedding the formal semantic description for a
Java class within javadoc comments thus allowing Java API documentation
to contain both a formal specification of the behaviour of a class and its
components and an informal general textual description.

These techniques have been developed by the analysis of case studies. We
will demonstrate all of these techniques applied to a wide and varied range
of both invented and existing examples of Java classes.

D eclaration

This work has not been previously accepted in substance for any degree
and is not being concurrently submitted in candidature for any degree.

Signed (candidate)

Date

Statem ent 1
This thesis is the result of my own investigations, except where other

wise stated. Other sources are acknowledged by footnotes giving explicit
references. A biblioeraphv is appended.

Signed . (candidate)

Date ...

Statem ent 2
I hereby give my consent for my thesis, if accepted, to be available for

photocopying and for inter-library loan, and for the title and summary to be
made available to outside organisations.

Signed (candidate)

Date a Z / 0 . 7 . . / . . 2 r . . 0 . ° . L .

A ckno w ledge m ent s
This thesis would not have been possible without the help and encouragement

of a number of people. Firstly I must thank my supervisor Dr. Neal Harman. Not
only his knowledge has been invaluable but also without his guidance on direction,
style, and motivation I would not be where I am today. He has been patient with
me even when I know I have been at times too head strong and always helped me
to see the correct course of action to take. I would also like to thank Professor John
Tucker who has also been invaluable with his insight into my work and providing
his tremendous experience to the structure and style of this thesis.

I would like to thank the University for their 3 year grant and putting their
trust in me to complete this work. W ithout their financial aid this doctorate would
not have been possible. I would also like to thank my employers CGram Software,
not only for providing me with a wage to support me through my final year but
also for their incredible accommodation and patience in allowing me the time to
finish my thesis and to meet with my supervisor on a regular basis.

David Clark has been a great friend whose sense of humour and honest opinion
have kept me going and helped me to see sense whenever I began to loose focus.
W ithout his friendship it would have been a long and difficult fours years. Gareth
Daniel like David is another of my closest friends who has always been there for me.
His support and encouragement have helped make sure I never gave up no m atter
how difficult things became. W ithout G areth’s help I would not have become the
person I am today and for that I am eternally grateful. Finally of my three closest
friends there is Leah Clark. Leah has always been there to cheer me up and to
support me whenever I needed it. Leah has been an example to me of someone who
perseveres with something no m atter how difficult things become and I have tried
to follow her example. A thank you must also go to all the other post-graduates
who have been there during my studies. A day in the lab was never dull with you
around. I also wish to thank Chris Whyley who despite my best efforts retained
his sanity and good humour despite almost relentless attem pts to rob him of them.

I wish to thank all the members of my family for their support especially my
Mum, Dad, Anth, and Marianne whose moral and financial support have been
invaluable. Thank you for always being there for me. I also wish to thank Gerry,
Diane and Naomi Shaw who helped provide a family environment down here in
Swansea for the final year of my PhD. It has been a joy to spend time with you
all especially during this difficult final year.

Finally I could not have completed this thesis without the faith and strength
of my Saviour, Jesus Christ. W ithout my faith I would not have had the strength
to have completed this thesis and as with all things I do, they are to honour him.

C ontents

1 Introduction 1
1.1 Specification and D ocum entation .. 5
1.2 Automatically Building ACS and FAS specifications................. 11
1.3 Executable Specifications.. 14
1.4 Ease Of U s e .. 15
1.5 Specifying F unctiona lity .. 15
1.6 Overview of T h e s is ... 15

2 An Overview of Object-Oriented Programming and Alge
braic Specification IT
2.1 Object-Oriented Programming... 18

2.1.1 A Brief History of Object-Oriented Programming . . . 20
2.1.2 The Current State of Object-Oriented Programming . . 22
2.1.3 J a v a .. 25

2.2 Algebraic Specification... 28
2.2.1 Introduction to Many-Sorted Signatures, Algebras, and

Specifications..28
2.2.2 Mathematical P relim inaries ... 30
2.2.3 Many-Sorted S ig n a tu re s ... 31
2.2.4 Many-Sorted A lg e b ra s ...31
2.2.5 Many-Sorted Specifications.. 33
2.2.6 Order-Sorted Signatures, Algebras, and Specifications . 34
2.2.7 Equating Order-Sorted Algebras to Many-Sorted Alge

bras ... 37
2.2.8 Applications of Algebraic Specification.............................. 39

2.3 Object-Oriented Program Modelling.. 45

3 From Java Classes To Algebraic Class Specifications 50
3.1 Object-Oriented C la s s e s ...52

3.1.1 Class N a m e ..53
3.1.2 F i e ld s ... 54

v

CONTENTS vi

3.1.3 Constructors ... 54
3.1.4 M ethods....................... 55
3.1.5 Inheritance .. 56

3.2 Algebraic Class Specifications... 57
3.2.1 Concrete and Abstract S y n tax .. 57
3.2.2 Identifier Names .. 58
3.2.3 F i e ld s ... 59
3.2.4 Constructors ... 59
3.2.5 M ethods.. 60
3.2.6 Operations... 62
3.2.7 In te rfa c e s ... 62
3.2.8 Algebraic Class Specifications Preliminaries 64
3.2.9 E q u a tio n s ... 64
3.2.10 Variables.. 65
3.2.11 Hidden O p e ra tio n s ... 65
3.2.12 Class Specifications... 66

3.3 Java Classes to A C S s..................................... 67
3.3.1 Transforming a Java Class into an In te r f a c e 68
3.3.2 Shape In te rface ... 68
3.3.3 Rectangle In te rface ... 70
3.3.4 Square Interface... 71
3.3.5 Algebraic Interface Specifications to Algebraic Class

Specifications... 73
3.3.6 Shape Class Specification.. 74
3.3.7 Rectangle Class Specification .. 75
3.3.8 Square Class Specification.. 76

3.4 Algebraic Structure of Interfaces.. 78
3.4.1 Basic Structure of an Interface.. 78
3.4.2 Object-Oriented IDLs ... 78
3.4.3 Queries That Can Change The System S ta te 79
3.4.4 Algebraic Class Specification B o d y80

3.5 Automatically Building ACS Specifications................................... 80
3.5.1 Overview Of The Implemented Algorithm For ACS

Generation ... 81
3.5.2 Field Exam ple.. 84

3.6 Sources.. 85

4 From Algebraic Class Specifications to Full Algebraic Speci
fications 86
4.1 E xam ple...88
4.2 Basic Class Specification Conversion .. 91

CONTENTS vii

4.2.1 In-built functionality..91
4.2.2 Modelling M ethods... 91
4.2.3 Method Conversion O perators...96
4.2.4 Field Operators and Equations ..107
4.2.5 Constructors .. 109

4.3 Inheritance and Class Specification Conversion............................ 110
4.3.1 Order of Class Specification Evaluation 118
4.3.2 Inheriting M ethods... 120
4.3.3 Sort, Subsorts, and Hidden O perators................................ 123
4.3.4 Multiple Level Inheritance.. 124

4.4 Interface Tagging, Joining and Flattening...................................... 135
4.4.1 Interface Flattening... 135
4.4.2 Joining and T a g g in g .. 136
4.4.3 Inheritance and Flattening...138

4.5 Automatically Building FAS Specifications...................................141
4.5.1 Overview Of The Implemented Algorithm for FAS Gen

eration ... 142
4.5.2 Field Example.. 145

4.6 Sources...146

5 The Pre-Defined Executable Model System 147
5.1 A rra y s ...148
5.2 R eflection .. 155

5.2.1 The Class Reference R epository... 155
5.2.2 The Class C lass... 158
5.2.3 The Field C la ss ... 161
5.2.4 The Method Class ... 163
5.2.5 Modelling Reflection on User Defined Classes 168

5.3 The Automated Conversion P ro g ra m .. 174
5.4 Sources.. 178

6 Examples Of Class Specifications 179
6.1 Stack E x a m p le ... 180
6.2 ArrayList E xam ple ... 189
6.3 Label E x a m p le ... 196
6.4 Geometric E xam ples.. 199

6.4.1 Point2D Exam ple.. 199
6.4.2 Line2D E x a m p le .. 204
6.4.3 Dimension2D Exam ple...210
6.4.4 Rectangle2D E x a m p le ...211

6.5 An Inheritance E x am p le ..216

CONTENTS viii

6.6 A Reflection Example.. 222
6.7 Problems and Future W ork...224

6.7.1 Exceptions...224
6.7.2 Static M e th o d s ..226
6.7.3 Additional Reflection Functionality...................................226
6.7.4 Type Resolution ...226
6.7.5 Execution M o d e l...227
6.7.6 Input and O u tp u t...228

6.8 Sources...229

7 Conclusions 230
7.1 Future W ork..232

Bibliography 232

Appendices 246

A CD Repository 247
A.l File Locations.. 247
A.2 Compiling and Running the Translation P ro g ra m247
A.3 Loading the Executable FAS Maude modules............................... 248

C hapter 1

Introduction
i

\

This thesis explores the process of building algebraic models of the behaviour
of Java classes. A fundamental building block of object-oriented programs is
the class which for now can be approximated as a datatype that can typically
contain multiple fields, constructors, and methods. In Java a programmer can
control access to the various methods, fields and constructors of a class. In
this thesis we are specifically interested in those parts of the class that are

: public. That is the fields, methods, and constructors that programmers can
access externally with their own classes and programs. In particular, we are
interested in formally specifying and documenting a class’ public behaviour
algebraically [MT92].

We have chosen to specify classes algebraically because of the long history
of research by workers currently in the Algebraic Methods Group at the Uni
versity of Wales Swansea, such as [BT87, BT93, ReeOl, STR03, Ste96, HarOO,
Har02]. In practice even a simple Java class can have complex behaviour.
For example, consider the following class.

pub lic c lass AClass{

public AClass(){
>

public in t re tu rn4(){
re tu rn 4;

}
}

One possible algebraic model of this class (written in Maude [SRI05]) is

1

2

shown below.

fmod AClass is

p ro tec t in g BUILDLINK .

so r t AClass .
so r t AClassInt .

op AClass() : -> AClass .

op AAClass : -> AClass .

op : AClass In t -> AClassInt .
op oval(_) : AClassInt -> AClass .
op qval(_) : AClassInt -> Int .
op _ .re tu rn4 () : AClass -> AClassInt .
op _ .re tu rn4 () : AClassInt -> AClassInt .
op _ .re tu rn4 ()o : AClass -> AClass .
op _ .re tu rn 4 ()q : AClass -> In t .

var A : AClass .
var ac lass : AClass .
var in t : In t .
var a c la s s in t : AClassInt .

eq AClassO = AAClass .
eq (A).re turn4()q = 4 .
eq o v a l(a c la s s , in t) = aclass .
eq q v a l(a c la s s , in t) = in t .
eq (ac lass) .re turn4() = (aclass) .re tu rn 4 ()o , (ac la ss) . re tu rn 4 ()q .
eq (a c la s s in t) . re tu rn 4 () =

(o v a l(ac la ss in t)) .re tu rn4()o , (o v a l (a c la s s in t)) . r e tu rn 4 ()q .

endfm

The above example is a simplified version of an algebraic specification
modelling the above Java class. For example, among other simplifications,

3

every Java class inherits from another class called Object, however the ex
ample above omits this.

Some important points about the algebraic specification of AClass above
are as follows:

1. p ro te c tin g BUILDING imports a series of Maude modules containing
predefined functionality such as the sort INT (see appendix A).

2. so r t AClassInt This defines a tuple type which is returned by meth
ods to allow them to return both a value and the updated instance of
the class.

3. The tupling operator which combines an AClass instance and an
integer value to produce a tuple of the type AClassInt.

4. Operators oval and qval and equations. These are used to project the
value part qval and the new class instance part oval of the tuple type.

5. There are two definitions of return4. One takes in the class type,
AClass, as an input, the other takes in the tuple type, AClassInt,
and both return the tuple type, AClassInt. This is neccessary so as
re tu rn4 can be called on all possible tuple types as well as the class
type.

6. We have two operators defining the behaviour of re tu rn4 . The re tu rn 4 () q
operator defines the query value and re tu rn 4 ()o defines the new class
instance returned by return4. However because method re tu rn 4 is a
query (that is, it does not change the state of a class instance) we only
define the behaviour of re tu rn 4 ()q and omit the trivial equation that
re tu rn 4 ()o is the identity function.

7. Finally we have equations like the following:

eq (a c la s s) . r e tu rn 4 () = (a c l a s s) . r e tu r n 4 () o , (a c la s s) . r e tu r n 4 () q .

These equations are used to build the tuple type AClassInt using
re tu rn 4 ()q and re tu rn4 ()o as the value returned by re tu rn4 .

As can be seen the above example, the full algebraic specification (FAS)
of a class can be complicated and hard to understand for someone who wishes
to quickly ascertain the behaviour of a class even for the very simple exam
ple that we have chosen. This complexity is largely as a result of machinery
needed to define class behaviours that are implicit, that is behaviour that is

4

considered part of Java’s general language behaviour and defines the general
structure of classes, methods, fields and constructors. However, it is unrea
sonable to expect a programmer to write specifications like that of AClass.
Therefore we will introduce the concept of an Algebraic Class Specification,
ACS that provide a much reduced version of the FAS of a class. The ACS is
therefore more readable and is aimed at showing what we consider to be key
information in the specification of a class that cannot be programmatically
inferred from the language definition. As will be seen in Section 5.3 we have
created a tool called the Algebraic Specification Generator (ASG) that can
generate an FAS from a class with embedded information representing an
ACS. The following is an ACS for our example above.

Class AClass{

Hidden{
op AAClass : -> AClass .

>

Fields{
>

Constructors{
AClass : .

>

Methods{
op re tu rn4 : -> In t .

>

Operations{
>

Variables{
var A : AClass .

>

Equations{
eq AClassO = AAClass .
eq (A).re tu rn4()q = 4 .

>

1.1. Specification and Documentation 5

>

The ACS, we feel provides a reader with a clear formal understanding of
a class’ behaviour using a minimum of information. The ACS is designed to
be more easily human readable yet still machine readable. A large part of
this thesis (Chapter 4) is about how we generate an FAS from an ACS.

The specification techniques used throughout this thesis were developed
experimentally by analysis of case studies which we examine in more detail
in Chapter 6.

1.1 Specification and D ocum entation
Object-oriented languages are promoted for their ability to provide a mod
ular approach to programming, allowing programmers to design classes that
perform a common set of tasks that can then be easily reused and expanded
upon. All another programmer needs to know is the public interface of a
class. They would then be able to utilise that class within their own pro
grams. This is the basis of the notion of an Application Program Interface
(API). However, although the syntax of the public interface of a class itself
can and usually is documented in a reasonably formal way, the semantics is
defined simply with natural language. Java in particular offers API docu
mentation [Sun05g] which specifies the syntax of the public interface of all
its built in classes together with an informal description for the semantics
of the class and its methods, fields and constructors. The javadoc tool also
allows other programmers to generate API documentation in the same for
mat for their own classes by extracting documentation (and specification)
information from special javadoc comments. However due to the informality
of the semantic description this documentation can be often difficult to un
derstand, ambiguous, or incorrect. We will now look at examples of each of
these cases. The first two cases are actual examples of the Sun Java API. The
third example is one of our own devising, used to show how an inexperienced
user can incorrectly define the behaviour of a Java class using the informal
documentation.

• Difficult to understand documentation. Consider the informal docu
mentation for a method called relativeCCW from the class Line2D as
shown in Figure 1.1. The informal textual description is quite long and
in places difficult to follow. If we look at our formal documentation
shown in Figure 1.2 the added equational definition given in the docu
mentation clearly and precisely defines the behaviour of the method.

1.1. Specification and Documentation 6

relativeCCW

p u b lic s t a t i c in t relativeCCW(double XI,
double Y l,
double X2,
double Y2,
double PX,
double PY)

Returns an indicator o f where the specified point (PX, PY) lies with respect to the line segment from (XI, Y l) to (X2, Y2).
The return value can be either 1, -1, or 0 and indicates in which direction the specified line must pivot around its first
endpoint, (X I , Y l) , in order to point at the specified point (PX, PY).

A return value o f 1 indicates that the line segment must turn in the direction that takes the positive X axis towards the
negative Y axis. In the default coordinate system used by Java 2D, this direction is counterclockwise.

A return value o f -1 indicates that the line segment must turn in the direction that takes the positive X axis towards the
positive Y axis. In the default coordinate system, this direction is clockwise.

A return value o f 0 indicates that the point lies exactly on the line segment N ote that an indicator value o f 0 is rare and not
useful for determining colinearity because o f floating point rounding issues.

If the point is colinear with the line segment, but not between the endpoints, then the value will be -1 if the point lies "beyond
(X I, Y l) '1 or 1 if the point lies "beyond (X2, Y2)“.

Returns:
an integer that indicates the position o f the third specified coordinates with respect to the line segment formed by the
first two specified coordinates.

Figure 1.1: relativeCCW Informal API Documentation.

• Ambiguous Documentation. Consider the informal documentation for
the methods called d istance and distanceSq from the class Point2D
as shown in Figure 1.3. Due to the informality of the documentation,
the actual behaviour of the methods is ambiguous. Informally it might
be read that d is tance performs the full calculation for the distance
and that distanceSq is calculated by squaring the value returned by
d istance . However this is not in fact the case. Due to the fact that
d is tan ce can also be viewed as being the square root of d istanceSq to
calculate the two methods in the manner discussed above will result in
rounding errors when finding a square root and then squaring it again.
If the original code is examined then it is seen that d is ta n ce is actu
ally calculated by taking the square root of distanceSq. Therefore the
informal documentation is ambiguous about the true behaviour of the
methods which could lead to inaccurate results being generated. How
ever if we look at the formal documentation in Figure 1.4 the behaviour
of both methods is clearly defined by the formal equations and removes
the ambiguity of the informal documentation (note the sq r and i s q r t
are built in functions used to calculate the square and the square root
of a given number respectively).

1.1. Specification and Documentation 7

relativeCCW

p u b l ic s t a t i c i n t re la tiv eC C W (d o u b le XI,
d o u b le Y l,
d o u b le X2,
d o u b le Y2,
d o u b le PX,
d o u b le PY)

Returns an indicator of where the specified point (PX, PY) lies with respect to the Kne segment from (X I , Y l) to (X2, Y2). The return
value can be either 1, -1 , or 0 and indicates in which direction the specified line must pivot around its first endpoint, (X I , Y l) , in order
to point at the specified point (PX, PY).

A return value o f 1 indicates that the line segment must turn in the direction that takes the positive X axis towards the negative Y axis. In
the default coordinate system used by Java 2D, this direction is counterclockwise.

A return value of -1 indicates that the line segment must turn in the direction that takes the positive X axis towards die positive Y axis. In
the default coordinate system, this direction is clockwise.

A return value o f 0 indicates that the point lies exactly on the line segment. Note that an indicator value o f 0 is rare and not useful for
determining colinearity because o f floating point rounding issues.

I f the point is colinear with the line segment, but not between the endpoints, then the value will be -1 if the point lies *beyond (X I, Yl)"
or 1 if the point lies "beyond (X2, Y2)".

R e tu rn s:
an integer that indicates the position o f the third specified coordinates with respect to the line segment formed by the first two
specified coordinates.

v a r PX : I n t .
v a r PY i I n t . ,
c eq (L) . re la tiv eC C W (X I, Y l, X2, Y2, PX, PY) q - -1

i l ((((P X - XI) » (Y2 - Yl)) - ((PY - Yl) * (X2 - X I))) - - 0)
and ((((P X - XI) » (Y2 - Y l)) + ((PY - Yl) » (X2 - Xl>)) < 0) .

c e q (L) .re la tiv eC C W (X I, Y l, X2, Y2, PX, PY) q - 1
i f ((((P X - XI) * (Y2 - Y l)) - ((PY - Yl) * (X2 - XI))) - - 0)
and ((((P X - XI) * (Y2 - Y l)) + ((PY - Yl) * (X2 - XI))) > 0) .

c e q (L) . re la tiv eC C W (X I, Y l,X 2, Y2, PX,PY)q - 0
i f ((((P X - XI) * (Y2 - Y l)) - ((PY - Yl) * |X2 - X I))) — 0)
and ((((P X - XI) * (Y2 - Y l)) + ((PY - Yl) * (X2 - X I))) - - 0) .

c eq (L) . rela tlveC C C T (X I,Y l, X2, Y2, PX,PY)q - 0
i f ((((P X - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI))) > 0)
and (((((P X - XI) - X2) * (Y2 - Yl)) + (((PY - Yl) - Y2) * (X2 - X I))) < - 0) .

c eq (L) . re la tlv eC C IT (X l, Y l,X 2, Y2, PX,PY)q ■ 1
i f ((((P X - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - X I))) > 0)
and (((((P X - XI) - X2) * (Y2 - Yl)) + (((PY - Yl) - Y2) * (X2 - XI))) > 0) .

c e q (L) . re la tlv e C C U (X l,Y l,X 2 , Y2, PX,PY)q - -1
i f ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI))) < 0) .

Figure 1.2: relativeCCW Formal API Documentation.

1.1. Specification and Documentation 8

distanceSq

p u b l i c s t a t i c d ou b le d i s t a n c e S q (d o u b l e XI,
d o u b le Y l,
d o u b le X2,
d o u b le Y2)

Returns the square of the distance between two points.

Returns:
the square of the distance between the two sets o f specified coordinates.

distance

p u b l i c s t a t i c d o u b le d i s t a n c e (d o u b l e XI,
d o u b le Y l,
d o u b le X2,
d o u b le Y2)

Returns the distance between two points.

Returns:
the distance between the two sets of specified coordinates.

Figure 1.3: d is tance and distanceSq Informal API Documentation.

1.1. Specification and Documentation 9

distanceSq

p u b l i c s t a t i c d o u b le distan ceS q ;(double XI,
doub le Yl,
doub le X2,
doub le Y2)

Returns the square of the distance between two points.

Returns:
the square of the distance between the two sets of specified coordinates.

v a r P : Point2D .
v a r XI : I n t .
v a r X2 : I n t .
v a r Yl : I n t .
v a r Y2 : I n t .
eq (P) ,d i s t a n c e S q (X l ,X 2 , Yl, Y2) q « sqr(X2 - XI) + sqr(Y 2 - Yl) .

distance

public s ta t ic double distance(deuble XI,
double Yl,
double X2,
doub le Y2)

Returns the distance between two points.

Returns:
the distance between the two sets o f specified coordinates.

v a r XI I n t
v a r X2 I n t
v a r Yl I n t
v a r Y2 I n t
eq (P) .d i s t a n c e (X I ,X 2 ,Y 1 ,Y 2) q = i s q r t ((P) . d i s t a n c e S q (X I ,X 2 , Y l , Y2) q) .

Figure 1.4: d istance and distanceSq Formal API Documentation.

1.1. Specification and Documentation 10

pop

p u b l i c j a v a . l a n g . O b j e c t p o p (j a v a . l a n g . O b j e c t O)

Returns the top element o f the stack.

Parameters:
o - Object

Returns:
Object

Figure 1.5: pop Informal API Documentation,

pop

p u b l i c j a v a . l a n g . O b j e c t p o p (j a v a . l a n g . O b j e c t O)

Returns the top element o f the stack.

Parameters:
o - Object

Returns:
Object

v a r 0 : O b je c t ;
v a r 8 : S ta c k ;
eq (3 . p u s h (0)) . p o p () q ■* 0 ;
eq (S . p u s h (0)) . p o p () o ■ S ;

Figure 1.6: pop Formal API Documentation.

• Incorrect documentation. Consider the informal documentation for
the method called pop (as shown in Figure 1.5) from a class Stack
which can be assumed to define the obvious behaviour for a stack. The
behaviour of the method is defined as returning the top value of the
stack. However, in this case pop also removes the top element from the
stack at the same time. Although this behaviour is usually assumed
to be the standard behaviour for popping an element of a stack, the
informal documentation does not explicitly state this and therefore it
is incorrect. A user might read the informal documentation and decide
to call the pop method to obtain the top element of the stack and not
realise that the state of the stack has been changed as well. If we look
at the formal definition of the pop method as shown in Figure 1.6 the
behaviour is fully defined by the formal equations and therefore the
documentation is now correct.

1.2. Autom atically Building ACS and FAS specifications 11

As seen above in order to try and solve this problem we will show in
this thesis how we can embed the formal semantic description for a Java
class within the javadoc comments thus allowing the API documentation
to contain both a formal specification of the behaviour of a class and its
components and an informal general textual description (see Section 5.3).
The purpose of the documentation is as follows:

• To allow a developer who is uncertain of the behaviour of the informal
documentation to be able to refer to the concrete formal specification.
This formal specification will provide a clear and precise definition of
the class it is defining. For example, the informal specification for
our AClass example using standard Javadoc comments is shown in
Figure 1.7. Using our formal documentation which is embedded within
the informal documentation we get a clear and precise definition of
the behaviour of AClass as shown in Figure 1.8 (note we have only
shown those bits of the new documentation which contain the formal
documentation and omit the parts that remain the same as the standard
informal documentation to avoid repetition).

• The formal specification can be extracted into an executable Maude
specification. A user will also be able to execute the specification to
test how a class is meant to behave and to use their own specifications
to experiment with how a class will interact with their own user defined
classes.

• A future use of our documentation would be to allow users to extract
the formal specification into the executable Maude format to allow
them to test it against the actual Java class it specifies. This can be
used to verify if the implementation of Java class behaves as specified.

1.2 A utom atica lly B uilding A CS and FAS spec
ifications

In order to aid the user we have implemented a program called the Alge
braic Specification Generator (ASG) that can take in a Java class with extra
embedded equations and can use this to generate both the ACS and FAS
specifications. The tool was primarily built to aid in the testing of new con
cepts and refinements to our model as discussed in section 5.3. However the
tool can also be used to aid in the automatic generation of the ACS and FAS
specification. As the code is long we will not be examining the full program

1.2. A u tom atically B uilding ACS and FAS specifications 12

Class AClass

j a v a . l a n g . O b j e c t
I— A C l a s s

public class AClass
extends java.lang.Object

A generic Java class example

Constructor Summary
A C l a s s ()

Creates an empty AClass

Method Summary
i n t r e t u r n 4 ()

Re turns the value 4.

Constructor Detail

AClass

p u b l i c A C l a s s 0

Creates an empty AClass

Method Detail

retum4

p u b l i c i n t r e t u r n 4 ()

Returns the value 4.

Figure 1.7: AClass Informal API Documentation.

1.2. A u tom atically B uilding ACS and FAS specifications 13

Constructor Detail

AClass

p u b l i c A C l a s s f)

Creates an empty AClass

eq A C l a s s f) = AAClass

Method Detail

retum4

p u b l i c i n t r e t u r n 4 ()

Returns the value 4.

v a r A : AC l a s s .
eq (A) . r e t u r n 4 () q

Figure 1.8: AClass New Formal API Documentation.

1.3. E xecu tab le Specifications 14

71« m m » • tt -to
iBuiiaeij x ?*> typiicaliiHil j X 'iPM son] *

■ T f e ' u r a ’ S ' f r w ■■
J(si«.! J3 * n ifl - I l> I esMMwX r.l. | ^i»,.i-A iri [l w K H r « . | .« rla. Ifll .c<

Figure 1.9: Examples of an input class (AClass) listing to the ASG and its
outputs for the ACS and FAS.

listings. Instead we will discuss its basic structure and examine example
sections of the codes in later chapters. The full code can be found on the
appendix CD and instructions on its use can be found in appendix A. An
example of input and outputs for the ASG can be seen in Figure 1.9.

1.3 E xecutab le Specifications

As already stated, our algebraic specification is written in Maude [SR105]
allowing us to make it executable. We do this because we feel that it would be
beneficial for the specification to be run and to be able to test the behaviour
of the formal specification. However it is not a requirement of our algebraic
specification that they should be written in Maude and is simply the language
which we have chosen. Other specification languages such as CASL [CAF05c]
could be used instead. A consequence of our choice of Maude is that we use
the initial model [MT92] for algebraic specification.

1.4. Ease Of Use 15

1.4 Ease O f U se
One of our aims is that our formal specifications should be easy to use and
understand for a Java programmer, if they are to be usable in practice.
It is important therefore that the specification notation follows the Java
syntax as much as possible. It is also important that the equations that
are a consequence of the Java language definition (not the equations used
to define the semantics of the methods and constructors themselves) should
be automatically generated. As will be seen later we have designed a tool
which we used in order to design and test new concepts for our specification
model which could be adapted to be used for the purpose of automatically
generating FASs for user defined classes.

1.5 Specifying Functionality
In our work we try and specify a broad range of Java’s functionality. It is
our aim to provide a strong basis for specifying Java that in future work
can be extended and improved upon. Java is a large language with a lot
of built-in classes. It would therefore to be impossible to model the whole
language in complete detail in the scope of this thesis. Rather it is our aim
to model a strong general model that specifies what we consider to be the
core functionality of Java. We will also attempt to model functionality that
we consider interesting such as Java’s reflection classes. Reflection is used by
our automated tool and therefore we feel it is important for a concise model
to show how these classes are modelled algebraically.

1.6 O verview of Thesis
The structure of this thesis is as follows:

In Chapter 2 we will examine the background to our research. We will
look at the history of object-oriented languages with particular attention
paid to C #, C ++ and Java. We will then examine algebraic specification
and different types of algebras such as many-sorted and order-sorted algebra.
We will look at how under certain conditions order-sorted algebra can be
considered to be equivalent to many-sorted algebras. We will also look at
some practical application of algebraic specification and the different tools
available. Finally we will look at some of the work done in formally specifying
object-oriented concepts, programs, and languages.

In Chapter 3 we will look at the process of algebraically modelling the
publicly visible parts of Java classes. We will examine the key features of

1.6. Overview of Thesis 16

a Java class (methods, fields, constructors, and inheritance). We will then
introduce the concepts of algebraic interfaces and algebraic class specification
(ACS) for Java and use these concepts to create a full algebraic specification
(FAS) of a Java class. We will then look at how our works relates to and
builds on the work of [STR03] on interfaces and libraries. Finally we will look
at the code we have written for automatically building an ACS specification
from a Java class.

In Chapter 4 we will show how we will show how to extend an ACS into an
FAS which will require many extra equations and operators to fully define the
class. We will first examine how we fully model the basic structure of a class.
We will then examine how we fully model the inherited features of a class
looking at modelling classes with several levels of inheritance. These FASs
will be written in the Maude language to allow us to produce an executable
specification. We will then again examine how this work relates to and builds
on the work of [STR03]. Finally we look at the parts of the code we have
written for automatically building an FAS specification from a Java class.

In Chapter 5 we will extend the functionality of our model with extra Java
functionality that we have pre-defined. We will look at modelling arrays and
how to generate equations for arrays. In addition we will model reflection
and will examine it in some detail. We do this as we feel that reflection
is an important part of a concise model of Java object-oriented programs.
We will also look at the automated conversion tool we have written which
was used to help develop our model. The tool can take a Java class with
appropriate equations embedded in the Javadoc comments and convert it
into an executable FAS written in Maude. The user is only required to define
the semantic equations for the behaviour of each method and constructor.

In Chapter 6 we will look at examples of specifying Java classes from
both the Java API and from user defined classes. We will look at interesting
aspects that we encountered when modelling them and how we solved partic
ularly interesting problems in modelling some of the semantics. Finally we
will examine particular problems that our model as yet cannot specify and
suggest ways in the future that they could be solved and the model improved.

Finally in Chapter 7 we will summarise our achievements and suggest
areas where further work can be done (besides those concerning Java func
tionality mentioned in Chapter 6) to build upon the work we have presented
here.

Chapter 2

An Overview of
Object-O riented Program m ing
and Algebraic Specification

This chapter surveys existing work in the field of formal specification and,
in particular, algebraic specification and its application to Object-Oriented
Programming. We will briefly examine the history of object-oriented pro
gramming and in particular Java, which is the object-oriented programming
language that we have chosen as the basis of our model. We will also examine
the background of algebraic specification and its various forms. We will look
at existing work on Java and other object-oriented programming languages
in the field of formal specification.

The structure of this chapter is as follows. Section 2.1 will look at the
history of object-oriented programming and some of the main languages avail
able. We will discuss the history of these main languages and also examine
their contributions to object-oriented programming. We will look in most
detail at the language of Java as this is the object-oriented language that we
have chosen to model. Section 2.2 will examine the background of algebraic
specification and some of the important forms of algebraic specification avail
able. We will look at the different types of algebra that we use in our model,
chiefly many-sorted and order-sorted algebras. We will also show how, under
certain conditions, order-sorted algebras can be shown to be equivalent to
many-sorted algebras which is important for our work. We will look at several
specification languages but focus in more detail on three important algebraic
languages CASL, Maude (and its predecessor OBJ), and Larch. We will look
at Maude in the most detail as this is the specification language we have
chosen to use. We will also look at a variety of ways in which algebraic spec
ification has been used (although uses relating specifically to object-oriented

17

2.1. Object-Oriented Programming 18

programming will be discussed in Section 2.3). Finally in Section 2.3 we will
examine some of the major areas in which formal specifications have been
successfully applied to that of object-oriented programming. In particular
we are interested in formally specifying object-oriented languages and Java
using algebraic methods. We will examine three key pieces of research that
relate to our own, the most relevant being a way of automatically generating
algebraic equations for Java classes. We will briefly discuss other interesting
works in the field of formally specifying object-oriented programs.

2.1 O bject-O riented Program m ing
In this section we will give a brief overview of the history of object-oriented
programming and look at the current state of object-oriented programming
languages. We will pay particular attention to Java as this is the language
that we wish to specify. Because object-oriented programming is a broad
topic, we will restrict ourselves to areas we consider to be the important
background for this thesis. Our work is primarily interested in the modelling
of the public interfaces of classes. We will be focusing on the modelling of
the concepts of a class, a class instance, a constructor, a method, a field, and
the behaviour of class inheritance.

As object-oriented programming is broad and varied we will choose in
the thesis to model only those concepts which we consider to be core to
the object-oriented paradigm. We are principally interested in Classes. The
core features of object-oriented classes are a collection of methods, fields,
and constructors. Fields are a variables that specifically belong to the class.
They can only be accessed through an instance of the class (commonly called
objects). Fields can either be primitive datatypes such as integers and floating
point numbers or more complex datatypes such as arrays and class instances.
There are different ways for handling fields. One way is enforce that all access
to fields is done via functions that can be used to get and set the field’s value.
Another method is to allow full access to a field, allowing code external to the
class to directly set and get the field’s value. In Java a combination of these
two approaches is used. Access to a field can be restricted or allowed by use
of the public, private, and protected modifiers. As we are only interested in
a classes public interface therefore we will only be modelling fields that can
be accessed directly (those with the public identifier). Methods are functions
which also specifically belong to the class. These can be used both to return
a value and change the state of the class (by changing the class’ field values).
In Java, methods which do not return a value are called void methods and
their return types are denoted as void. Constructors are special methods

2.1. Object-Oriented Programming 19

that are used to create a new instance of a class. At their basic level they
simply create a new class with all fields set to those values which Java defines
as the default initial value for a certain type. More complex constructors can
be used to create new class instances and initialise a class’ fields to specific
values.

In addition to these core components of an object-oriented class we will
also in this thesis model the behaviour of class inheritance. Using inheritance,
classes can be defined as being more specialised versions of other classes.
These inheriting classes inherit methods and fields are then considered as
belonging to this new class as well. The inherited methods can be overridden
by new method definitions if desired. In Java if a class overrides an inherited
method, then the inherited methods original behaviour can be accessed via
use of the super keyword (see Section 4.3 for a more detailed discussion
of inheritance). Although some object-oriented languages permit a class to
inherit from multiple classes, Java only allows single inheritance therefore
we will only concentrate on single inheritance and will not be discussing the
complications of multiple inheritance in this thesis.

In order to model complete object-oriented programs we would need to
model the concept of an execution model [GM96, Har89, Ste96]. The basic
principles of an execution model are as follows. The state of a system is
altered by the iteration of a next state function.

F(0, a) = init(a)
F (t + 1, a) = n ex t(F (t, a))

Which is defined as follows.

• A is the set of all possible states of the system.

• T is the set of all possible steps of the system (often denoting units of
time).

• F : T x A —» A where F calculates the state of the system at a given
step t. The element t G T is the current step in the system and a € A
represents a state of the system.

• i n i t : A —> A is used to initialise the state of the system.

• next : A —> A calculates the next state of the system based on the
current state of the system.

2.1. Object-Oriented Programming 20

An executable model of an object-oriented system would define the state
of a program as being defined as the current state of all the objects in the
system. Objects would be stored in a repository to which new objects can
be added, objects can be changed, and objects can be removed from the
repository. The state of each object would be defined in terms of its member
variables (fields). A single step in the system is harder to define. The exe
cution of a method belonging to one of the objects in the repository could
result in the execution of many more methods, in many more objects before
it is completed. In our model we are only interested in the local behaviour of
a class. Our model will look at the behaviour of individual classes and single
instances of them (occasionally with the addition of extra ’’helper” classes
and instances when needed to fully test the behaviour of the individual class
being modelled) and as such our model does not include an execution model.
In Section 6.7.5 we will examine the complexities that would be involved if
our model was adapted to model the concept of a program consisting of many
individual classes and instances.

2.1.1 A Brief History of Object-Oriented Program m ing
The first example of object-oriented programming dates back to 1962 when
development began on a language called SIMULA I which was completed
in 1965. SIMULA I was an extension of the Algol 60 language [And64].
Although lacking many of the key features of an Object-Oriented language
it introduced the concept of a record class which in turn would lead the way
to Object-Oriented Programming Languages. This was followed in 1967 by
SIMULA 67 [Bir72, DMN70]. This language is credited with introducing
many of the main Object-Oriented programming principles we use today
such as objects, classes and inheritance. In the 1970’s Alan Kay’s group at
Xerox PARC developed Smalltalk [PW88] using SIMULA as a platform. This
language added a graphical user interface and interactive program execution
to the concepts of object-oriented programming. Although not widely used
commercially anymore Smalltalk is still in limited use in some sectors of
the industry. Between 1982 and 1983 Brad Cox and Tom Love developed
Objective C [CN91, Koc03]. This language extends C [Ker88, Ber86] by
adding classes, messages and inheritance. It is compatible with C and a C
program can be compiled with an Objective C compiler. The extensions
made to the C language are specifically based on Smalltalk with the object
model in Objective C being similar to Smalltalk-76. The operating system
M AC OS X [ACI05] is written in Objective C. Another important object-
oriented language is Eiffel [Mey92b, Mey88, TW95] developed in 1985 by
Bertrand Meyer. The language had many of the key concepts of object-

2.1. Object-Oriented Programming 21

oriented programming such as multiple inheritance (although we will see in
section 2.1.2 the current view is that this is no longer considered to be good
practice) and the idea of a class being a type. It also introduced the concept
of Design By Contract [Mey92a, ESo05] which although not being an object-
oriented programming concept was well suited to the programming style. The
concept of ‘Design By Contract’ is based around pre and post conditions as
defined in Hoare Logic [Hoa69, Ten02]. The main feature of this was the
Hoare Triple

W C {<?}
The triple is used to describe how the computation state is changed upon

the execution of a piece of code. C represents the command being executed
and P and Q are assertions that have to hold before and after the execution
of C. P is the precondition and Q is the postcondition. The above equation
can be read as that whenever P holds before the execution of C then Q must
hold after the execution, provided that C terminates. A simple example is
as follows

{x = 2} y := x * 2 {a; = 2 A y = 4}

This is adapted to ’Design By Contract’ by stating conditions that have
to hold before and after the execution of a piece of code. The preconditions
are user requirements and the user has to fulfil these before running the
piece of code. An example might be that the user must not pass a null
pointer to a method that requires a pointer to be passed. The postconditions
are conditions placed on the routine that is being called and the routine
guarantees that it will fulfil these conditions on completion. An example
might be that the routine will always return a value greater than zero.

The first industrially successful object-oriented programming language
was C ++ [Str91, ES90]. Up to this point the difficulty of persuading the
commercial sector to use any of the object-oriented programming languages
developed was that they all required a programmer to learn a completely
new language. C ++ got round this problem by extending the C language
with object-oriented programming similar to how Objective C was designed.
C, which was a widely used language in the commercial sector, allowed pro
grammers to continue programming in a language and style they were familiar
with and to adapt more naturally to the object-oriented programming style.
Through, among other things, better marketing, C ++ succeeded where Ob
jective C failed.

Next we will look in more detail at the state of object-oriented program
ming today.

2.1. Object-Oriented Programming 22

2.1.2 The Current State of Object-O riented Program
ming

A new object-oriented programming language that is rapidly growing in pop
ularity is C # [HWG03, Wil02]. C # is a strongly typed object-oriented pro
gramming language written by Microsoft for their Visual Studio package and
makes use of their .NET platform [JSY03]. It is intended to improve on
C ++ and most especially Java in terms of simplicity and performance. C #
was built with the benefit of hindsight of previous object-oriented languages
particularly C ++ and Java. In many respects its syntax is closer to Java’s
than C++. Some advantages C # has over Java is that it provides a more
natural object-oriented syntax for accessing member fields of an object than
Java does. Below is a simple example of a Person class in C # .

/ / person .cs
using System;
c lass Person
{

p r iv a te s t r in g myName ="N/A";
p r iv a te in t myAge = 0;

/ / Declare a Name property of type s t r in g :
public s t r in g Name
{

get
{

re tu rn myName;
>
se t
{

myName = value;
}

>

/ / Declare an Age property of type i n t :
public in t Age
{

get
{

re tu rn myAge;

2.1. Object-Oriented Programming 23

}
se t
{

myAge = value;
}

>

public override s t r in g ToStringO

re tu rn "Name = " + Name + ", Age = " + Age;
>

public s t a t i c void MainO

Console.WriteLine("Simple P ro p e r t ie s ") ;

/ / Create a new Person object:
Person person = new Person();

/ / P r in t out the name and the age a ssoc ia ted
/ /w i th the person:
Console.WriteLine("Person d e ta i l s - {0}", person);

/ / Set some values on the person ob ject:
person.Name = "Joe";
person.Age = 99;
Console.WriteLine("Person d e ta i l s - {0}", person);

/ / Increment the Age property:
person.Age += 1;
Console.WriteLine("Person d e ta i l s - {0}", person);

}
>

The two most popular object-oriented programming languages in use to
day are C ++ (we looked at this briefly in the previous section) and Java
(which we will look at in more detail in the next section).

C + + is currently the most widely used object-oriented programming lan
guage. The intention when it was designed was to make sure that the lan
guage would achieve a wide acceptance. One of the key factors in this was

2.1. Object-Oriented Programming 24

designing it to be a superset of the language C which was a very popular lan
guage particularly in its use for development of the UNIX operating system
[AA86]. This means that any C code can be compiled by a C + + compiler.
In 1985 C ++ was released to universities with virtually no support. By 1987
the first C ++ conference was held attended by 200 people rising to 600 in
the next year. By the early 1990’s the number of users was estimated to be
over 500,000 which made C ++ the fastest growing programming language in
the world. Below is an example of a simple Person class in C ++.

using namespace std ;
#include <iostream>
#include <cstring>

c lass person
{

p u b l ic :

char *name;
in t age;

person (char *n = "no name", in t a = 0)
{

name = new ch ar[100];
s trcpy (name, n) ;
age = a;

}

person (person &s) / / The COPY CONSTRUCTOR
{

name = new ch a r[100] ;
s trcpy (name, s.name);
age = s .age;

>

"person 0
{

d e le te [] name;
>

>;

2.1. Object-Oriented Programming 25

i n t main ()
{

person p;
cout << p.name << ", age " « p.age « endl << endl;

person k ("John", 56);
cout « k.name « ", age " « k.age « endl « endl;

p = k;
cout « p.name « ", age " « p.age « endl « endl;

p = person ("Bob", 10);
cout << p.name « ", age " « p.age « endl « endl;

re tu rn 0;
}

2.1.3 Java
The other language that is in large commercial use today is Java. As this
is the language that we have chosen to model we will look at Java in more
detail. Java was developed by Sun Microsystems [Sun05a]. Java itself began
as a small project. It was originally built as an internal project within Sun.
Frustrated by C + + ’s syntax (which they considered to be confusing), API,
and tools, an engineer at Sun called Patrick Naughton started work on a new
technology called the Stealth Project. He was joined by James Gosling and
Mike Sheridan and the project was renamed the Green Project. Originally
they planned to use C++ as the language for the new technology but decided
against it as they felt C++ was a complicated language and often misused.
They also considered the fact that C++ did not have any form of garbage
collection to be a disadvantage. They required a language that supported
multi-threading, distributed programming, and better security than C ++
provided. Most important of all they needed a language that was portable
and could be used on many different types of devices.

They decided in the end to create a completely new language which they
named Oak. By 1992 they were able to demo the Oak programming language.
In June and July of 1994 after a three day discussion the team decided
to refocus efforts and attempt to provide support in Oak for the internet.
Although still in its early days the team felt that the internet would be a
big market in the future. Another important event of 1994 was the discovery

2.1. Object-Oriented Programming 26

that Oak was already a registered trademark forcing them to change the
name to Java. In October 1994 Sun executives were given their first demo
of Java and it was made available for download shortly after. Java was first
made publicly available at the Sun World conference on the 23rd May 1995.
The Java language was given a further boost at the same conference by the
announcement that the Netscape browser [NCC05] would support Java.

Over the years there have been many releases of Java. However three
of these releases are considered the most important, Java 1.0 (the original
release) and Java 1.2 (also known as Java 2) and Java 5.0. Java 5.0 [Sun05h]
was released during 2004 when the majority of the work in this thesis had
been completed hence we will not be examining this version any further.

Java 1.0 lacked many of the key features associated with Java today. In
particular its classes for handling graphics and GUI interfaces were basic and
limited. In 1997 several important new features such as inner classes were
added to Java with the release of Java 1.1. Java’s next significant release
came in 1998 with the release of Java 1.2 with major changes to the API
where important new features such as Reflection [FF04] were introduced.
Also Java’s graphic and GUI classes were greatly expanded upon with the
introduction of the Swing API [GRV03]. In 2000 Java 1.3 was released which
contained only minor changes and bug fixes. In 2002 Java 1.4 [AGH00] was
released. Again this contained only minor changes. As of 2004 it was the
most widely used version of Java and it is this version which we have chosen
to model in this thesis. Sun have segmented their API’s into three platforms
each targeting different programming environments.

• Micro Edition. This is aimed at environments with limited resources.

• Enterprise Edition. This is aimed at large distributed or internet envi
ronments

• Standard Edition [Sun05g]. This is aimed at workstation environments.
This is the environment we have chosen to base our model on, although
our work could be adapted and extended to other environments.

The following is a simple example of a Person class in Java.

public c lass Person {

public S tr ing name;
public in t age;

2.1. Object-Oriented Programming 27

public Person(String name,int age){
t h i s . age=age;
t h i s .name=name;

>

public Person(){

}

public S tr ing toS tr ing (){
re tu rn this.name + " " + th is .a g e ;

>

public s t a t i c void main(){
Person p = new P erson("Justin" ,25);
Person p2 = new PersonC James" ,21);
System.out.printIn(p.name + " " + p .age);
System.out.printIn(p2.name + " " + p .age);
S y s tem .o u t .p r in tIn (p) ;
S y s tem .ou t.p r in tln (p2);

>

>

Java has several advantages over other programming languages. Its chief
advantage and the one Sun Microsystems identifies as its core value is the
’’Write once, run anywhere” [Pol97] principle. A Java program can be writ
ten on any platform and can then be run on any platform that has a Java
Virtual Machine written for it allowing programmers to write code that is
truly platform independent. Another key feature that Sun sells Java on is
Java’s security. Users can download untrusted code over a network and have
it run in a secure environment where it cannot spread viruses and cannot
read or write files from the hard drive. Also Java’s security model is highly
configurable allowing different security levels and options to be set for dif
ferent Java code. This security model is not limited to internet applications
(Java Applets [Gos96]) but can be used with any Java code. Finally Java
was designed with particular emphasis on network computing so it provides
many classes that allow programmers to write powerful network and internet
programs. One thing Java does not support is Multiple Inheritance, making
use of only Single Inheritance. However many software engineers now view

2.2. Algebraic Specification 28

Multiple Inheritance as bad practice. Also as Java is compiled into Java
Byte Code and then interpreted by a Java Virtual Machine [LY99] it can be
slower and more resource heavy than other languages, however as the speed
and power of computers have increased over time along with the continued
optimisation of the Java Virtual Machine this problem has practically dis
appeared. One of the most important optimisation was the introduction of
Just-In-Time compilers (JIT). As of Java 2 a JIT compiler was added to
Java’s collection of tools [Sun05b]. JIT compilers work by compiling the
Java byte code into machine instruction code. This is only done when the
code is first encountered thus improving runtime performance by preventing
Java byte code used multiple times having to be continually translated into
machine code. The translated code is stored in a runtime cache. The effec
tiveness of a JIT compiler is dependent on how intelligent its choice of which
byte code to precompile into machine code is. Some code will take longer
to compile than it would to simply run the Java byte code especially if only
used once.

2.2 A lgebraic Specification
In this section we will briefly introduce Algebraic Specification. We will look
in particular at Many-Sorted and Order-Sorted algebra. We will also examine
how many-sorted algebra and order-sorted algebra can be considered to be
equivalent under certain conditions. Finally we will briefly look at some of
the important areas in which algebraic specification has been successfully
applied. Algebraic specification is a complex subject, and we will not discuss
it any detail. Useful reading on many-sorted algebras can be found in [ST99,
GTWW77, GTW78, Wag81, MG85, EM85, Wec91, MT92, ABBK99]. Useful
reading on order-sorted algebras can be found in [Gog78, GM92, GD94]

2.2.1 Introduction to M any-Sorted Signatures, A lge
bras, and Specifications

We wish to introduce three concepts. We will be following closely the work of
[TS06] when introducing these concepts. The first concept we will introduce
is that of a Many-Sorted Signature. A signature defines purely the syntax of
a system. It consists of sort, operation, and constant names. It is purely a
syntactic structure and does not appeal to a reader’s understanding of what
any symbols defined in the signature mean.

For example a signature might consist of an operation called succ. Al
though we might intuitively assume that succ calculates the successor of a

2.2. Algebraic Specification 29

given number there is nothing in the signature to define this to be the case.
In the signature succ is declared purely as syntax and the semantics of it are
not defined here.

The next concept we will introduce is a Many-Sorted Algebra. In brief,
an algebra consists of sets of data with functions on the sets of data. The
functions provide some basic tests and operations for working with the data.
A many-sorted algebra can contain multiple sets of data and functions that
can operate over different combinations of the data sets.

An algebra assumes an understanding of the semantics of its operations
on the user’s part. For example, suppose we have an algebra with a function
as follows.

_ 4- _ : N at x N at —> N a t

Taking Nat to be the data set of natural numbers ({ 0 ,1 ,2 ,3 ,..., N })
and the underscorses (_) to represents the function’s inputs, then intuitively
we can assume that the function takes in two natural numbers, adds them
together and returns the new number as the result. Therefore the algebra
assumes an understanding of the semantics on the user’s part (in the example
it assumes and understanding of the + function).

In order to specify a system we will want to define the behaviour of a
signature that does not require the user to have a pre-understanding of the
semantics involved. To do this we will introduce our third concept, a Many-
Sorted Specification. A many-sorted specification consists of the following:

Signature T Axiom s

In our model the axioms will consist of equations and conditional equa
tions. This again like the signature is syntactic and does not require the user
to have a prior understanding of any semantic meaning.

A signature can be interpreted by many different algebras. Many of
these interpretations might be considered to be invalid depending on a user’s
point of view. For instance an algebra of the booleans could map both true
and false to a singleton value such as 1. Although this would be a legal
interpretation of the signature for the booleans, in itself it is not a very
useful interpretation (although some researchers might feel that this algebra
is just as important and valid as other algebras). We solve this by using the
initial model (although it should be pointed out that other researchers with
different view points may choose a different model).

Given algebras A and B over the same signature, we define a homomor
phism ., h as follows:

2.2. Algebraic Specification 30

h - . A ^ B

Where for every CA interpretation in A of a constant in the signature and
Cb interpretation in B of a constant in the signature:

h(CA) = Cb

and for x ,y , and z variables in A, f A operation in A, and f b operation
in B :

h (fA(x, y , z)) = f B(h{x), h(y),h (z))

A is initial if there exists exactly one homomorphism from A into any B
in 5, the class of all algebras.

2.2.2 M athem atical Preliminaries
In this section we define the mathematical notations that we will be using
for signatures and algebras.

• A family of sort sets indexed by S called A is written as follows (A s \ s G
S). For example S could be the set {na t,in t} . A nat could be the
set consisting of {0 ,1 ,2 ,3 ,...} and Aint could be the set consisting of
{ .. . , —3, —2, —1,0 ,1 ,2 ,3 ,.. -}1. The set S is therefore simply the set
of names of sorts and A s is the set that represents the sort called s.

• We define S* to denote the set of all finite sequences over S. This
includes the empty sequence A. S + is used to denote the set of all
finite sequences over S minus the empty sequence. It is defined as
follows S+ = S* - {A}.

• We define the following

Aw = A S1 x . . . x A Sn

for each u = Si . . . sn G S +.

• Finally we define operations as maps of the form / : A u —► A s for some
oj G S* and s G S. When uj = A, that is an operation has no argument
sorts, then the operation would be a constant c G A s.

xOf course, there are many other ways to represent Anat and Aint.

2.2. Algebraic Specification 31

2.2.3 M any-Sorted Signatures
A Many-Sorted Signature E is represented by the following triple.

E = (Name, S, < EW)S | u £ S*, s £ S >)

E consists of the following:

• The name N am e of the signature, also called the identifier.

• A set 5 of sort names.

• An S* x S indexed family of sets as follows:

< EW)S I u £ S*,s e S >

The elements of this family are the constant (where lj = A) and oper
ation symbols.

The following is an example of a many sorted signature ENatBooi-

S = {nat, bool}

Sa ,nat = {0}
,booi — {true, f alse}

^~>nat,nat = {SUCC}
^ bool,bool — {not}
^ bool bool,bool ~ {and}
^ n a t nat,bool = {—}

2.2.4 M any-Sorted Algebras
We now define Many Sorted Algebras of a signature E = (N am e, S, <
£ u,a \ w £ S* ,s e S >). An algebra A consists of the following.

• An 5-indexed family of sets

< A s \ s £ S >

Where A s for each s £ S is called the carrier of sort s and interprets
the sort name s.

2.2. Algebraic Specification 32

• An S* x 5-indexed family of sets of constants and functions.

For each sort name s G S and each word l j = s (l) . . . s(n) G S +

= { f A I / 6 s-,»}
Where for each operation name there is a function of the appropriate
type

f • As(i) x . . . x As(n) ► A s

or
f A : A“ ^ A S

which has the domain = As(i) x . . . x As(n) —> A s.

Constants are defined as function with no arguments where for each
sort s G S and empty string A G S*

= { C A | C e £,,s}

Where the element
cA G A s

is called a constant of sort s 6 S. This interprets the constant symbol
c G £ A)S

An example of a many sorted algebra ANatBooi that interprets the many
sorted signature T>NatBooi as defined earlier is as follows:

A N at Bool = {N ,B}

2.2. Algebraic Specification 33

2.2.5 M any-Sorted Specifications
A many-sorted specification consists of a signature plus axioms. A speci
fication is purely syntactic and unlike algebras, it does not require a prior
knowledge of the behaviour of the functions defined in it to understand how
a specification defines a system. In our work we make heavy use of specifi
cations in order to model object oriented languages. The axioms we use in
specifications consist of equations and conditional equations (although other
types of axioms could be used if desired).

We will not be continuing with the style of notation that we used for
signatures and algebras when it comes to specifications. The syntax we used
for these is not very convenient and is not very human readable. As part of
the aim this thesis is to provide a way of formally specifying object-oriented
programs in a way that is clear and understandable to an object-oriented
programmer, for the rest of this chapter we will adopt a different style of
syntax for specifications. This new syntax style is deliberately designed to
be similar to object-oriented programming code. Also it should be noted
that like the algebras, the new syntax does not contain constants. This is
because we have treated constants as operations with no arguments and thus
they are treated as operations. The constants therefore are now of the form
c »• A. The syntax for specifications are as follows:

Specification N am e{

Sorts { A i , . . . , As}

Operations {
/ i : Ai x ... x Aj -> A k,
. . . ,

fn - At x ... x A u ► A v

}
Equations {

}

}

It should be noted that although the N am e part of the syntax is allowed
to be whatever a user wishes, we often use the names of the sorts that it

2.2. Algebraic Specification 34

uses as the name of the specifications. Note we will discuss the format of
equations and conditional equations in chapter 3. If we consider an algebra
Bool it would be presented in the new syntax as follows.

Specification Bool {

Sorts {B}

Operations {
true > B ,
fa lse :—>• B ,
succ : N N,
n o t : B —> B,
and : B x B —> B,

}

Equations {
not(false) = true
not(true) = fa lse
and(true,true) = true
and(true, fa lse) = fa lse
and(false,true) = fa lse
and(fa lse , fa lse) = fa lse

}

}

As can be seen in the above example constants 0, true, fa lse are all cat
egorised as operations.

2.2.6 Order-Sorted Signatures, Algebras, and Specifi
cations

Order-Sorted signatures, algebras, and specifications further extend the con
cept of the many-sorted varieties by imposing a partial order on the sort sets.
It does this using the notion of a subsort which defines an ordering on sorts.

2.2. Algebraic Specification 35

If we have two sorts s\ and S2 then we can say s2 < Si which means that
S2 is a subsort of s\. We introduce Order-Sorting in order to provide a way
of expressing the inheritance relationship between Java classes in our model.
As will be seen in chapter 4 the subsort predicate is used to indicate that
one class is a subclass of another.

Adapting our notation for many-sorted specifications, we define order-
sorted specifications as follows:

Specification A \ . . . A s {

Sorts {Ai , . . . , As}

Subsorts {Ai < A j , . . . , A m < A n}

Operations {
f i : Ai x .. . x Aj A k,
. . . ,

fn • At x . . . x A u ► A v

}

Equations {

}

}

Consider the following specification where we combine the I and N inte
ger and natural number specifications together. We have four operators, a
successor operator succ that finds the next successive value of an integer, an
integer predecessor function predint which calculates the predecessor of an
integer number and returns it as an integer, a natural number predecessor
function prednat which calculates the predecessor of a natural number and
return it as a natural number value. Its behaviour is informally the obvious
behaviour for a predecessor function for numbers greater than 0. As natural
numbers do not have negative values then the for the value 0 prednat can be
assumed to return 0. Finally we have 0, a constant operator (the equations
have been omitted).

2.2. Algebraic Specification 36

Specification I N {

Sorts {I , N }

Subsorts {N < 1}

Operations {
0 > N,
succ \ I —> I,
predint : I —►
prednat : N N

}

}

The succ and predint operators works on integer numbers. However as
the specification defines natural numbers to be a subsort of the integers, the
succ and predint operators can be applied to natural numbers also. However
this is not the case for the prednat operator. This operates on natural num
bers and although we have defined natural numbers to be subsort of integers
this does not mean it is necessarily true that integers are subsort of natural
numbers (they are obviously not). Therefore the prednat function cannot
operate on integer numbers. As there are no negative values in the natural
numbers it is therefore not true that every integer value has an equivalent
natural number value. Therefore the prednat functions is restricted to nat
ural numbers and we are not able to pass integer values to the function.
The function prednat also behaves differently when passed the value 0 than
predint does. Whereas predint would be expected to return the —1 integer
value if passed 0 as its input, prednat is unable to do this as it can’t re
turn negative values so it is specified to return 0. Informally the equation
definition for prednat would be as follows:

eq p red n a t(0) = 0
ceq prednat(N) = N - l i f N > 0

2.2. Algebraic Specification 37

2.2.7 Equating Order-Sorted Algebras to M any-Sorted
Algebras

The work in this thesis makes use of order-sorted algebra to model the be
haviour of class inheritance in particular with the use of the subsort relation
ship. Order-sorted algebra is considered by some to present problems that
many-sorted algebras do not [Tuc06]. Specifically it is the view with some
people that certain operators over order-sorted algebras would return results
where, due to the order-sorting, it is unclear what the exact return type of
the operator is. We will not be drawing conclusions on these viewpoints in
this thesis. However in this section we will show how under certain conditions
order-sorted algebra is equivalent to many-sorted algebra in order to provide
an alternative approach for those who consider the results of order-sorted
algebra operators to be ambiguous.

One of the requirements to allow us to be able to equate our order-sorted
algebra to a many-sorted one is that our model needs a least sort. That is
there must be a sort type for which all Java types are ultimately subsorts of.
In Java, all classes ultimately inherit from a class called Object. Classes that
are not specifically designated as inheriting from another class are considered
to implicitly inherit from the Object class. In our model we often omit this
implicit inheritance in order to keep the discussion and examples in this thesis
simple and clear.

However, although the Object class can be considered the least sort with
respect to Java classes, it does not cover simple types. In Java, simple types
such as integers and booleans are not Java classes and therefore do not inherit
from the Object class. Therefore our model would require a new sort type
which would be a least sort for both Object and the simple data types.
The Object class and simple date types would all inherit directly from this
overall least sort. Our model does not incorporate this overall least sort as
we are not concerned in the details of allowing our order-sorted model to be
translated to a many-sorted one. We only discuss how it can be done in this
section as an example of how our model could be adapted to use a many-
sorted specification by researchers who prefer many-sorted specifications to
order-sorted specification.

This idea was first presented in [GM92], see also [TM94]. An order-sorted
algebra A is isomorphic with some many-sorted algebra B if A is regular: that
is, there exists a least sort that all other sorts are related to by the subsort
predicate, and if B satisfies a set of many-sorted equations defined below.

Subsort relations are translated into standard equations. For every sub
sort relationship s < s' in the order-sorted algebra A we view the subsort
relationship as a mapping from s to s' in the form of embedded functions or

2.2. Algebraic Specification 38

coercions called cSjS> where

C s , s ! • S ̂ ®

The following set of equations must be satisfied for every subsort mapping
cS)S' for the many-sorted algebra B

• The Identity equation. cSjS for each s G S. That is every sort includes
itself mapping from one sort to the same sort will always produce the
same element.

• The Injectivity equation, x = y if cSiS'(x) = cSjS>(y) for each s < s' in
S. This makes sure that two different values in s do not map to the
same value in s'

• The Transitivity equation. c3>yS»(cS}a'(x)) = c3)3»(x) for each s < s' < s"
in S. This ensures that if a value a in s maps to a value b in s' and
that value b in s' maps to a value c in s" then a mapping of the value
a from s to s" will also map to the value c

• The Homomorphism equation.
cs,s'(fs{x i, = fs'(cs,s'(x i) , . •., c3>s>(xn)) where f s : S n ^ S and
f st : S ,n —> S' are in A and s < s' are in S. This states that all subsort
relations must be homomorphisms as shown in the diagram below

S n S

S /n ------ ► S'
f s '

This means that for those who prefer many-sorted algebras that order-
sorting can be considered to be a notational convenience, allowing us to easily
specify inheritance between classes using subsorts which using the above
equations can be adapted to a many sorted specification. As discussed earlier
our work does not fully support the concept of a least sort. However it would
be straight-forward to implement the Object class in our model and future
work will need to be done to add this class correctly to if was desired that
our algebra is regular and thus can be equated to many-sorted algebras.
As this thesis is aimed at demonstrating modelling a wide range of Java
functionality we have not focussed on the small details of ensuring our model
has a least sort although we believe it would not be hard to introduce. The
concept of a least sort and equating order-sorted algebras to many-sorted

2.2. Algebraic Specification 39

is only shown as a proof of concept as to how order-sorted notation can be
used without moving away from many-sorted algebras, which as mentioned
above is considered by some researchers to be more concise than order-sorted
algebras.

2.2.8 Applications of Algebraic Specification
In this section we will look briefly at some of the important modelling tools
that are available for writing algebraic specification and also at some of the
key areas where algebraic specification has been utilised.

The first specification tool that we will examine is C a s l [C A F 0 5 c , BM04,
The04, CAF97] designed by CoFl (The Common Framework Initiative)
[CAF05b] for algebraic specification and development. It is an expressive
language and can be used to specify conventional software (requirements,
design and architecture). The following example demonstrates a specifica
tion for numeric addition and successor in C a s l . It is taken from the CASL
website sample section [CAF05a].

spec Natural =
free type Nat ::= 0 | sue(Nat)

spec Natural Order =
Natural

then f ree { pred < : Nat X Nat
f o r a l l x , y : Nat

. 0 < suc(x)

. x < y -> suc(x) < suc(y) }
end

spec Natural Arithmetic =

Natural Order

then ops 1 : Nat = suc(O);
+ : Nat X Nat -> Nat , assoc, comm, u n i t 0;

2.2. Algebraic Specification 40

f o r a l l x , y : Nat

. x + suc(y) = suc(x + y)
end

The Natural and Natural Order define a natural number sort and suc
cessor operator sue. The Natural Arithmetic defines an addition operator on
the natural numbers.

The language is not restricted to equational logic and allows other forms
of logic such as First Order Logic. All of C a s l ’s features exist in at least
one other main existing algebraic specification framework. There are a few
exceptions and the one most relevant to our work is that of subsorts. They
have chosen to avoid imposing the condition of regularity on order-sorted
algebras leaving the decision up to the person writing the specification. As
we saw earlier it is important to the work in this thesis that we impose
regularity on our model in order that we can equate order-sorted algebras
to many-sorted algebras. C a s l also allows Operator Overloading. C a s l
distinguishes between two different types of subsorts.

• The more traditional view of subsorts where one sort is considered to
be a more specialised version of another sort (e.g. integers to real
numbers)

• The domain of definition of a partial function (e.g. the even numbers
for integer division by two)

Casl consists of three types of specification.

• Basic Specification. These declare signatures of sorts, total and partial
functions, predicates, and subsorting relationships. Axioms are written
in first order logic with equality and specify sort generation constraints.

• Structured Specification. These allow extensions of other specifications
and introduce (among other constructs) translations, reduction, and
union of specifications. They are formed by starting with Basic Spec
ifications and combining specifications in various ways. These specifi
cations do not impose any structure on the modules. They are used
only to present specifications in a modular style.

• Architectural Specification. These allow the user to express specified
software as being composed of separate units which can be reused.
These units have clear interfaces so their usage is clear to the soft
ware engineer. These specifications allow a large specification to be
represented in logically organised smaller specifications.

2.2. Algebraic Specification 41

Finally each of these three groups of specifications can be gathered to
gether into Libraries allowing the storage and distribution of named specifi
cations.

The next specification tool that we will examine is Maude [SRI05, CELMOO,
DM99, CDE+01, CDE+03, McC03, CDE+04]. Maude is a high-level language
that provides support for writing specifications that can then be executed us
ing rewriting logic. It also supports declarative programming. Maude also
provides support for equational specification as rewriting logic incorporates
equational logic. The type of equational logic that Maude supports is Mem
bership Equational Logic. This type of logic provides sorts, subsorts, and
operator overloading. Maude also has metaprogramming capabilities includ
ing user definable module operations and the ability to declare strategies to
control the deduction process of the Maude system. Maude is influenced
by OBJ3 (which we will examine later in this section) especially Maude’s
equational logic language which essentially contains OBJ3’s equational logic
language as a sublanguage. The following is a simple Maude example speci
fication of natural numbers.

fmod BASIC-NAT is

so r t Nat .

op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat

vars N M : Nat .

eq 0 + N = N .
eq s(M) + N = s(M + N)

endfm

One of the main extensions that Maude makes on OB J3 is that of member
ship equational logic [Mes98] which extends OBJ3’s order-sorted equational
logic. Membership logic is a specialised form of rewriting logic. A pair (T, R)
is called a rewrite pair where T is a membership equational theory and R is
a labelled collection of rewrite rules which are sometimes conditional. These
rules will involve terms in the signature of T.

2.2. Algebraic Specification 42

Maude uses functional modules (see the example of fmod BASIC-NAT
above) to define theories in membership equational logic using equalites of
the form t = t' and membership assertions of the form t : S where t is
a term of sort S. The logic supports order-sorted algebra in the form of
sorts, subsorts, polymorphic operator overloading, and the definition of par
tial functions. Functional modules are executed using rewriting techniques
and operational semantics defined in [BJMOO]. The functional module’s equa
tions are treated as rewrite rules and used until a canonical form is found.
For this reason the equations should be terminating and sort decreasing in
order to guarantee that equations will rewrite all terms to a canonical form.
Typically the rewriting in a functional module will terminate with a single
value as the outcome.

Maude’s system modules strictly enforce that the rewrite rules r : t —►
t' are not equations. From a computational view they are interpreted as
transition rules with a system. From a logical view they are interpreted as
inference rules in a logical system.

Unlike functional modules where the rewrite terms are expected to be
terminating, that is not the case for system modules where the rewrite rules
can be both divergent and infinite. In system modules, rewrite rules t —*■ t'
are not treated as equalities but local state transitions where the left hand
side is a pattern to be matched to the current state of the system and the
right hand side is state that system can change to if it matches the left hand
side. These state changes can run concurrently with other state changes so
long as they do not overlap, thus rewriting logic is the logic of concurrent
state change.

Maude supports reflection upon these modules through its meta level lan
guage defined in its M ETA-LEVEL module. This allows a user to, among
other things, define their own rewriting strategies. Also the M ETA-LEVEL
can be extended with new data types allowing the user to state formal re
quirements on parameters and the ability to change, initialise, and create
new modules.

Due to Maude’s use of rewriting logic, Maude is able to provide support
for concurrent object-oriented computation. Maude provides a special syntax
to support this in the form of object-oriented modules. Object modules in
Maude can be used to model object-oriented systems which provides a more
convenient syntax for modelling these systems than the system modules. An
object module can declare a series of CLASSES each with a set of attributes
which are the equivalent of fields in our model. When declaring instances of
classes, the object modules require the user to explicitly declare values for all
the attributes. Subsorts are used to define if one class inherits from another
class. Methods are defined as messages to specified objects using rewrite

2.2. Algebraic Specification 43

rules. These rewrite rules are used to specify the behaviour of the system in
relation to the messages that pass between the objects. Object modules are
actually syntactic sugar that are internally turned into system modules.

We have chosen to model our system using Maude’s functional modules.
Although we could use the object modules we wish to be able to specifically
model objects and classes using our own structure. There are two main
reasons for this. The first and most important reason is that although we
make use of Maude for our formal model, we do not wish to limit our model
to only using Maude. If we were to use the object modules which are specific
to Maude then it would become much harder to adapt our model to other
specification languages. The second reason is that we want to explicitly
define the complete structure of an object-oriented class. If we were to make
use of the object modules then some of the internal workings of a class would
be hidden. We feel it is important that a user can see the complete explicit
structure of a class being modelled if they so wish. Also we wish to model
using equational logic and not rewrite rules.

Maude itself is influenced by another specification language called OBJ3
[GW88, GM96]. OBJ3 (and its predecessor OBJ [GWM+93]) is an alge
braic programming and specification language. It is based upon the logic of
order sorted equational logic algebra. It is syntactically similar to Maude
which maintains many of OBJ3 's features and also adds an implementation
of rewriting logic. OBJ3 is implemented in Common Lisp

Another older specification language is Larch [MIT05, GHG+93]. Larch
specifications are written in two languages. The first language is defined for
a specific programming language: these are called Larch interface languages.
The second language is independent of any programming language and is
called the Larch Shared Language (LSL).

The interface languages specify how program components communicate
across an interface. It allows a user to define assertions about a program’s
state and also provides support for features such as side-effects, exception
handlers, iterators and concurrency. The Larch specification language is
used to write auxiliary specifications which are used by interface languages.
Auxiliary specifications provide semantics for the primitive terms used in
interface specifications. The principle behind this two-tier approach is to
allow basic constructs to be written in the LSL level and for program language
specific constructs to be written in the interface level. It is considered good
practice in Larch to restrict most of the complexity of a specification to the
LSL level. This is for several reasons.

• LSL specifications, being platform independent, will be more resusable

2.2. Algebraic Specification 44

• Less mistakes will be made with LSL specifications as they are simpler
than interface specifications as they lack platform related complexity

• The semantic properties of LSL specifications are easier to verify than
the semantic properties of interface specifications

Although some Larch specifications can be executed most can not. Larch
does allow tools to mechanically check assertions to verify specifications.

Algebraic Specification has been used in numerous areas. We will now
present a range of examples (that is by no means exhaustive) that have
employed algebraic specification.

• Specifying the semantics of Abstract Data Types (ADT’s)[GH78]

• A set of mathematical tools for modelling microprocessors including
pipelined and super-scalar models.[Har89, HarOO, Har02]

• A strategy and tools for modelling and proving the compiling of a high
level language to a low level language[Ste96]

• Creating Interface Definition Languages (IDL’s) for the specificaiton of
interfaces [ReeOl, STR03]

• Formalising the overall structure as well as the structure of individual
diagrams of UML using a Casl specification UML [RCAOO]

• Using homomorphisms to model user defined and structured data types
in imperative languages [ARZ99]

• Various approaches including algebraic modelling for specifying soft
ware systems concerned with concurrent systems [AMRW85, ABR99]

• Analysis of various approaches and requirements in modelling systems
which are based on services[Fia02]

• Proving the correctness of the JavaCard achitecture bytecode verifica
tion security[BCDS02]

• Extending Casl to specify functional programs and to be able to per
form rapid prototyping[SM02]

• Discovering classes of parametric hybrid systems that are decidable
[Hen96, AR02]

2.3. Object-Oriented Program Modelling 45

• Initial work on establishing a framework for connecting together the
various forms of order-sorted algebra [Ste02]

• Extending a type system to control access to state changing methods
and prevent unanticipated changes to object references[Sko02]

• Methods for verifying the correctness of Casl Architectural Specifica
tions [Hof03, Hof02]

• Using CASL to design 3D geometric modelling software [LAGB02,
Duf97]

• The AGILE project which is concerned with modelling systems with
mobile components [ABB+03, Bau05]

• Establishing a formal relationship between different proposals for the
semantical interpretation of Petri Nets [BMMS01, BBM03]

• Proving that states are behaviorally equivalent using Hidden Algebra
which distinguishes between visible and hidden sorts for data [GMOO,
GLR03]

• Techniques for specifying and verifying the correctness of cryptographic
protocols[HW03, BAN96]

• Structuring concepts for Rule-Based Systems that are independent of
the types of rules and to what the rule are applied to[KK03]

• Using Multialgebra to combine multiple specifications in different alge
braic frameworks[LW03, Lam02]

2.3 O bject-O riented Program M odelling
In this section we will look at the key areas in which algebraic specification
has been applied to object-oriented programming languages with particular
emphasis on Java. We will also look at other work besides algebraic spec
ification which is relevant, and explain how our work will differ from these
approaches.

The most relevant work in algebraic specification of object-oriented pro
gram is that of Henkel et al [Hen04, HD03, HD04a, HD04b]. They too are
modelling Java classes algebraically but their work differs from ours in that
the entire specification process is automated. Like us they use the Java
Reflection API [McC98, Gre05, Sun05c] to discover the signature of a class

2.3. Object-Oriented Program Modelling 46

but they also use an automated discovery tool to build the semantics auto
matically. Their tool takes in a Java class and uses the reflection API to
discover the names of all the methods and constructors and also any input
parameters and return types. Their tool then generates test terms based on
this extracted signature to test the behaviour of the methods it has discov
ered and hence attempts to construct equations. The process itself is quite
complex and works by analysing the results returned from tests and, if nec
essary, generates new test terms based on the results to test the class further
and further refine the equations. Because this is automated the results can
neither be considered to be complete or correct as it is possible that auto
mated tool may not discover all possible results for the behaviour of methods
or it may form incorrect conclusions based on the results it receives. They
contribute to work previous done in [AHOO] by creating a mechanism that
allows the integration of algebraic rewriting techniques into Java, and they
are more interested in the automation of the process than in the soundness
and completeness of the specification itself. They themselves admit that the
more complex the class being modelled, the more incomplete the discovered
specification is likely to be. Our work differs from theirs as we are more in
terested in the completeness and correctness of the model itself rather than
the automation. Unlike us they do not model fields, expecting them to be
defined by public methods. Also their work is mostly limited to modelling
container classes such as arrays and lists whereas we are interested in mod
elling a wide and varied range of Java classes and functionality. However we
do feel that their tool, with adaption, could be used as a starting point for
generating an initial set of semantic equations for a class. This would be
especially useful for encouraging users who are less familiar with algebraic
specification, allowing them to use the automatically generated equations to
build upon to create a more concise, complete, and correct algebraic seman
tics for a class. However it should be pointed out that their approach does
require an implementation of a class before it is able to generate equations
for the semantics. Therefore it is limited to pre-existing Java class and could
not be used in designing new classes.

Another important work in specifying object-oriented programs is that of
the Java Modelling Language (JML) [JML05, LC05, LBR05, LPC+05] and
consists of a variety of tools [BCC+wn] for specification writing, testing and
debugging. JML follows Eiffel’s method of using expressions in assertions and
combines it with a model-based approach. As well as pre and post conditions
it allows assertions to be intermixed in the Java code to aid in verification and
debugging. The expressions use an extended form of Java’s own expressions
and add extra notation such as quantifiers. A simple example of a JML
specification for a function that returns the integer square root of a number

2.3. Object-Oriented Program Modelling 47

is as follows:

public c lass IntMath0ps4 {
/** In teger square root function.

* Oparam y the number to take the root of
* ©return an in teger approximating
* the p o s i t iv e square root of y
* <pre><jml>
* public normal_behavior
* req u ire s y >= 0;
* assignable \nothing;
* ensures 0 <= \ r e s u l t
* && \ r e s u l t * \ r e s u l t <= y
* && y < ((\ r e s u l t + 1) * (\ r e s u l t + 1));
* </jml></pre>
* * /

public s t a t i c in t i s q r t (i n t y)
{

re tu rn (in t) Math. s q r t (y) ;
>

>

The JML is embedded within the comments of the Java file (although it is
possible to write JML specs in a seperate file and link to them from the main
Java file). The above JML spec says that the input to the function must
be greater than or equal to 0, that the method is not allowed to assign any
values to fields (assignable \nothing), the final result multiplied by itself
should be equal or less than the original value and that the final result plus
one multiplied by the final result plus one should be greater than the original
value. The JML specification can be used to create API specifications list
ing containing the formal JML specification as well as the informal textual
specification. The above specification can be compiled into the Java pro
gram using a special JML tool to create design by contract conditions within
the compiled Java program. It can also be used by other tools for testing,
verification and debugging amongst other things. JML therefore provides a
way of axiomatically specifying Java programs by embedding the JML spec
ifications into Java comments which can then be extracted and manipulated
using special JML tools.

Another key piece of work in object-oriented program specification is that
of [Miil02, MPH97, MPH97]. They provide modular specification and verifi

2.3. Object-Oriented Program Modelling 48

cation techniques for a language called Mojave which is a subset of sequential
Java with an added type system for alias control. Mojave is quite restric
tive on many of full Java’s abilities, omitting static overloading, user-defined
constructors, abrupt completion (e.g break,return), exception handling and
arrays among other things. Similar to that of JML, a Hoare Style logic of
pre and post conditions are used on methods to specify the behaviour of the
system. They also use a type system to not only give type declarations but
also to provide alias information which is used to control sharing. They use
an ownership model for their type system which takes the view that groups of
objects which work closely together to complete a common task are dynamic
components. Some of the objects within these components are used to in
teract with other dynamic components and are called interface objects. The
other objects purely work internally to the component and are considered to
be the internal representation of the component. The aim is to control refer
ences to the representation objects and thus prevent a method from causing
unwanted side effects to references that need to be protected. One crucial
problem with their techniques which they admit themselves is that they are
too complex to be used by programmers.

In addition to these three key pieces of research into the specification of
object-oriented programs we list a selection of other interesting works in the
field.

• A Hoare logic for reasoning about Object-Oriented programs [AL97]

• Formal specification and verification techniques for object-oriented pro
grams that use subtypes [LW90]

• Defining behavioral subtypes to allow modular reasoning for adding
new subtypes to object-oriented programs [Dha97]

• A specification technique to use the inheritance of specifications to force
appropriate behaviour on subtype objects [DL96]

• Using a tool called LOOPS to translate Java programs into a high order
logic to be used by a theorem prover for reasoning [JvdBH+98]

• A formal notation for the specification and verification of software com
ponents in Java applications [CC99]

• A technique for specifying, refining, and proving properties of a small
Java program using standard categorical constructs [Cla99]

• Extending Java to include assertions generated by Object-Z and CSP
[Fis99]

2.3. Object-Oriented Program Modelling 49

• A performance model of Java execution using Petri Nets [RSOO]

• An approach that adds access control to object references to limit the ef
fects of aliasing while still allowing full referential object sharing [KT99]

• Defining the axiomatic semantics of a small Object-Oriented langauge
called Ecstatic [RL96]

• Discussion on extending Java to check Object Invariants [RLS97a]

• Introducing the concept of Virginity which provides a way of specifying
that an object is not globally reachable and can therefore be used in
the implementation of a higher level of abstraction [RLS97b]

• A series of tools that allow an algebraic specification of an Abstract
Data Type to be used in unit testing of object-oriented programs [DF94]

• A tool called Bandera that can automatically extract a Finite-State
Model from Java source code which can then be used by a variety of
verification tools [CDH+00]

• A tool for algebraically testing object-oriented programs that use side-
effects to implement Abstract Data Types [HS96]

• A tool called iContract that adds Design By Contract features to Java
code [Kra98]

• An experimental tool based on an algebraic continuation passing style
(CPS) semantics for the verification of properties of a sequential im
perative subset of the Java language [SM06].

• Using a coalgebraic approach to model Object-Oriented classes and ob
jects and extending the approach to model inheritance [Jac96b, Jac96a,
JP03].

Chapter 3

From Java Classes To A lgebraic
Class Specifications

In this chapter we will examine the process of modelling a Java class as an
Algebraic Class Specification (ACS). The aim of this chapter is to show how
to translate a standard Java class into the formal specification that we will
define in this chapter. The ACS is not a full algebraic specification (FAS) but
a simplified version of the FAS. The FAS as we will see in Chapter 4 can be
quite lengthy and complex as it has many equations and operators used to
define the internal working of the class structure. Our ACS is designed to be
a more human readable way of writing down a class’ algebraic specification.
As we will see in this chapter, it contains all the information that we feel
would make it clear to a reader how a class behaves, particulary its methods
and constructors. The ACS can then be used to build the FAS, as will be
seen in Chapter 4. We will look at the complexities that arise from defining
a Java class as an ACS and how these problems are overcome. We will also
look at how modelling a Java class as an ACS extends and builds upon the
work on modelling interfaces by [STR03].

We are interested in specifying the public interface of a class. That is, all
the fields, methods and constructors that are declared as being public. We
are interested in modelling the behaviour of fields, constructors and meth
ods. We wish to be able to model methods that can both return a value and
change the state of a class instance. We are also interested in modelling the
behaviour of class inheritance (although most of the specification of inher
itance behaviour is not discussed until Chapter 4). Later in Chapter 5 we
will look at how we further the model by introducing specification techniques
for arrays and reflection classes. A grammar for the syntax of Java itself can
be found at [Sun05d]. There are few aspects of Java programming that at
present we cannot model but would like to do so in the future. The following

50

51

are the two key concepts that we are not able to model at present.

• Exceptions. Exceptions in Java provide a useful mechanism for runtime
error control. At present we are unable to model Java Exception classes
however we believe that with further investigation apd work it would
be possible to incorporate this into our model. See Section 6.7.1 for a
more detailed discussion on the subject.

• Static Methods. Static methods in Java are methods that can be ex
ecuted that do not require a valid class instance to execute them on.
Although we cannot model these at present we believe that it would
not be too difficult to incorporate them into our model and as such
have created a section in the ACS where these can appear in future
work.

Section 3.1, will identify what we consider to be the core aspects of object-
oriented classes. This will include the concepts of a Class, its methods, con
structors, and fields, and the principles of inheritance. At this stage the
concept of inheritance is kept relatively simple, where a class inherited by
another class is defined in the ACS as a name link to the inherited class.
The modelling of inheritance requires many equations and operators to fully
define how a class inherits from another class and we will concentrate on
modelling the actual inheritance issues in classes in chapter 4. The aim in
section 3.1 will be to identify and define the basic features of a class that
we wish to model. In section 3.2 we look at the notation we have designed
for writing ACSs. This will look at how we model each of the concepts we
discussed in section 3.1. As will be seen, we have attempted in our notation
to make it close syntactically to Java in order to provide a more natural and
readable specification for a Java programmer. In section 3.3 we will show
how a set of Java class examples are modelled by ACSs. We will use exam
ples to illustrate the process of modelling the concepts described in section
3.1 using the concepts discussed in section 3.2. This will be split into two
stages. First we will transform a Java class into an algebraic interface which
purely defines the syntax of the class. We will then take the interface and
add equations to it to create the ACS. Section 3.4 will then give an overview
of the work done by [STR03] on modelling interfaces and signatures. Also in
section 3.4 we will relate the work of [STR03] to our work and show how our
ACSs relate to interfaces and signatures. We will show that our work goes
into more detail than the work they do relating to the concept of the body of
the interface. Finally in section 3.5 we will examine part of the program we
have implemented for building an ACS from a Java class.

3.1. Object-Oriented Classes 52

3.1 O bject-O riented Classes
In order to attempt to model Java classes as ACSs we need to identify the key
components of a class in object-oriented programs [CN91]. It is beyond the
scope of this thesis to model a complete representation of all the concepts
of an object-oriented class seen in the very wide range of object-oriented
programming languages. However we will define a modelling framework for
what we consider to be the core features. Some other additional features
that we have not been able to implement in our modelling framework are
discussed in section 6.7 where we will give suggestions on how they could be
incorporated into our model. Throughout the remainder of section 3.1 we
will use excerpts from a Java class called Person to illustrate each concept.

pub lic c la ss Person{

public S trin g name;
pub lic in t age;

pub lic Person(){

>

pub lic Person(S tring aName,int anAge){

name=aName;
age=anAge;

}

p ub lic void addYear(){

age=age+l;

}

public S tr in g to S trin g (){

re tu rn name + " Age:" + age;

>
>

3.1. Object-Oriented Classes 53

3.1.1 Class Nam e
The first component of a class is the classname. A classname is a unique
name which cannot be shared with any other class. In Java, classes are
stored in packages which are themselves given a name. In Java, a classname
is constructed in the following format:

nam el.name2.name3 classname

This is part of a package structure where namel, name2 and name3 are
packages. Although from this it can be read that namel contains name2
(and similarly for name2 and name3), name2 is not a subpackage of namel
but are completely separate packages. This therefore means that namel and
namel .name2 should be treated as entirely separate packages (although often
in Java there is an inferred relation between them).

The package and classname structure, shown above, is shortened to class
name without the package by creating linking references to the corresponding
package name using the package statement followed by the package structure.
Other packages can also be made easier to access by the use of the import
statement. For example to use a class from another package to create a class
instance (also called objects) variable, you would have to write the following:

mypackage.MyObje c t myvar;

This can be shortened to:

MyObject myvar;

by declaring an import statement at the start of the class file:

import mypackage;

This is not to be confused with the include statement from C which copies
code from a named file. Here is an example of a classname in Java.

public c la ss Personf

where Person is the classname itself.

3.1. Object-Oriented Classes 54

3.1.2 Fields
Fields are variables which belong to class instances. In the class Person there
are two fields. One is a S tring field called name and the other is a primitive
data type integer field called age. The intuition being that a person has a
name and an age.

pu b lic S tr in g name;
pu b lic in t age;

The primitive data type int is not a class instance. It is one of several
basic data types built into Java. They are not classes largely for efficiency
and programming convenience. It should be noted that S tr in g is a class
itself and hence name is a class instance of S tring . It has methods, fields
and constructors. Its main purpose is to represent strings in Java. With
class instances, Java uses dynamic binding. With dynamic binding the field
representing the class instance is bound to the corresponding class definition
at runtime. This means that a user can replace the original class definition
with a new one while a program is running. So long as the new definition
has the same signature as the old definition then the program will be able to
continue to run uninterrupted but will exhibit different behaviour in relation
to the newly added class definition. Our modelling technique is unable to
handle dynamic binding. Each class is specified before it is executed for test
ing purposes. Therefore if someone was to replace the original class definition
with a new one, then the specification would not match the new definition.
In order to do so the new class would need to be respecified. It should be
noted that this is not a limitation of the model itself but is purely down
to the fact that we choose to fully specify and create the executable model
before we test it. The model could be adapted to cope with dynamic binding
by having it specify each class every time it is called. This would ensure that
the model would always be using the most recent behaviour of the class. In
order to maintain clarity and also as the practice of substituting new classes
at runtime would be considered an unusual occurrence we have chosen to
stay with the process of fully specifying classes before testing them.

3.1.3 Constructors
Constructors are used to create class instances. In Java, the name of the
constructor is always the same as the classname. A class can have more
than one constructor provided their signatures are different. That is, they

3.1. Object-Oriented Classes 55

do not have the same number and types of arguments. This is called operator
overloading. If a class has more than one constructor then the number, order,
and types of input parameters entered will determine which constructor is
called when a class instance is created.

In the example below there are two constructors. The first constructor has
no inputs and when called it simply creates an empty class instance. Note, in
this case the empty no-argument constructor must be implicitly included if
we wish it to be present because we have also included another constructor.
However, if we had no constructors at all defined, then the default is to
automatically assure the existence of the basic no-argument constructor.

The second constructor is called with S trin g and integer arguments.
These are used to initialise the values of the fields name and age (see section
3.1.2).

pub lic Person(){

}

public Person(S tring aName.int anAge){

name=aName;
age=anAge;

>

3.1.4 M ethods
In Java, methods take on the role of procedures and functions in procedural
programming languages. Methods need not return a value. If they do not
return any value their return type is void.

In the Person example below there are two methods. In this case neither
method take arguments. However it is common for methods to take in argu
ments. The first method is addYear which simply increases the value of the
age field by one. The addYear method does not return a value so its return
type is void. The second function, called to S trin g , builds and returns a
S tring . This string is formed by concatenating the two fields and a string
literal to create a human readable sentence describing the Person based on
the values contained in the fields.

3.1. Object-Oriented Classes 56

pub lic void addYear(){

age=age+l;

}

pub lic S tr in g to S trin g (){

re tu rn name + " Age:" + age;

>

3.1.5 Inheritance
Inheritance is the process of extending and specialising a class [CN91]. For
example, a new class could extend an existing class by adding new fields,
methods and constructors. It could also modify existing methods and con
structors. The new class is a subclass of the inherited class. In Java, if the
new class contains a method with the same signature (same name, input
types and return type) as the inherited class then the old method is over
ridden by the new method. Note, in other object-oriented languages this is
more complex, for example in C # [HWG03].

We will define a new class Student that inherits from Person. In Java, the
keyword extends is used to denote inheritance. This means that all the fields
and methods from Person are also available to the Student class. Student
has a new integer field called student Id in which a personal identification
number for a student can be stored. S tudent’s constructor initialises this
value along with the name and age fields.

The other important thing to note about this class is the redefinition
of the to S tr in g method. Because this already exists in the inherited class
Person, when we define it in Student we override it with our new definition.
However we can still access the original method of the Person class by use
of the keyword super which allows us to access overridden methods from the
inherited class. In the Student example, this allows us to use the Person
class’ original to S trin g method to build a new S trin g with s tu d en tld
concatenated onto the end.

pub lic c la ss Student extends Person{

3.2. Algebraic Class Specifications 57

pub lic in t s tuden tId ;

public S tuden t(S tring aName, in t anAge, in t aNum){

name=aName;
age=anAge;
studentId=aNum;

>

pub lic S tr in g to S trin g (){

re tu rn su p e r .to S tr in g () + s tuden tId ;

>

>

3.2 A lgebraic Class Specifications
In this section we will look at the notation that we have developed to model
object-oriented classes. There are two parts to this notation. The first is the
algebraic class interface which models purely the class syntax without any
semantics. For the second part we add variables and equations (axioms) to
define the semantics of the class and thus create an Algebraic Class Speci
fication (ACS). We will also examine how we model each of the individual
core aspects of an object-oriented class as identified in section 3.1. It should
be noted that as we are concentrating on modelling Java and ultimately cre
ating an FAS in Maude, the syntax we have created shares similarities with
that of Java and Maude.

3.2.1 Concrete and Abstract Syntax
Throughout this section we will be introducing new syntax for each of the
object-oriented concepts in the Java language that we are going to model
in our ACS language. As the ACS will eventually be translated into an
FAS written in Maude, the ACS syntax is essentially that of Maude with
some added syntactic sugar to provide additional clarity and simplification.

3.2. Algebraic Class Specifications 58

For most of this chapter we will be using a concrete syntax to define these
concepts in our model. However, later, for the more complex constructs such
as an Algebraic Class Interface and an Algebraic Class Specification which
are built from the earlier syntactic concepts, as well as concrete syntax we will
be making use of an abstract syntax. This abstract syntax is used to combine
the simpler syntactic concepts into the more complex syntactic components.
The abstract syntax consists of a series of operators and equational definitions
for the operators.

For the simpler syntactic concepts we will define each concept as follows.

1. A cartesian product of the Java concept we are modelling which will
be used to store all the relevant information for that concept.

2. A general version of the actual concrete syntax that will appear in an
ACS.

3. An operator that allows us to write the actual concrete syntax as shown
in the general case.

4. An actual specific example of the syntax concept that has been intro
duced.

Where we differ from this format and introduce abstract syntax we will
clearly identify in the text.

3.2.2 Identifier Names
Both classnames and inheritance classnames share the same sort type Name.
Classnames are unique as discussed earlier. Identifiers must begin with either
a letter, an underscore(_), or a Unicode currency symbol (e.g. $). The
initial character can then be followed (optionally) by one or more letters,
underscores or currency symbols.

We treat Name and Sort as the same types for notational convenience
and hence we use them interchangeably. With Sort we make use of the n
notation to denote a list of Sorts.

Sort0 = A
Sort1 = Sort
Sortn+1 = Sortn x Sort

Where A denotes the empty list of Sorts. To denote Sortn where n can
be any integer value from 0 to infinity we use the notation Sort*. To denote

3.2. Algebraic Class Specifications 59

Sortn where n can be any integer value greater than 0 we use the notation
Sort+.

For example S o rt* denotes a sequence (or list) of zero or more Sorts (eg.
The sequence sortl x sort2 x sort3 can be considered to be in Sort* where
sort 1, sor£2, and sort3 € Sort).

We omit the definitions for the * and + notation for other data types that
we declare throughout the rest of this chapter as they can be considered to
be similar to the definition above.

3.2.3 Fields
A field is a pair consisting of a name and a sort type. The sort type can be
either a primitive data type such as an integer or a real number or it can be
a reference type such as an array or a class instance of a certain class type.
We define the following for fields.

Field = N am e x Sort

Fields are written in the following format.

fieldnam e : sorttype .

This will create a field of sort type sorttype. We define an operator to
build field operators:

_ : _ : Nam e x Sort —» Field

where _ : _ is the operator name. In applying the _ : _ operator, we replace
the _’s with the Name and Sort arguments.

An example of the age field from Person is

age : In t .

3.2.4 Constructors
A constructor has a name (which is always the same as the name of the
class being modelled) and (optionally) arguments. Each class constructor is
distinguished by its input parameters. We define constructors as follows.

Constructor = N am e x Sort*

Constructors are written in the following format.

3.2. Algebraic Class Specifications 60

C lassNam e : inputtype.

Where the list of sorts, inputtypes, could be empty. This will create a
constructor of sort type Constructor. We now define a family of operators
for building constructor operators:

_ : _n : Nam e x Sortn —> Constructor

Where _n is used to denote a sequence of n underscores. An example of
an operator for a two argument constructor is as follows:

_ : _ _ : N am e x Sort x Sort —> Constructor

An example of a two argument constructor from Person is:

Person : S tr in g In t .

3.2.5 M ethods
A method consists of a name, a list of sorts which are the method’s input
types and another sort which is the method’s return type. If a method returns
no value, then its return type is void.

Methods may either solely return information about a class instance
(Queries), solely modify a class instance (Commands) or do both. For in
stance we may have an integer field called number. If this field is declared as
being private then we will not be able to access it directly outside of the class
as the field will not be part of the class’ public interface (and hence the field
itself would not appear in our model). In order to view and change number
we would need to provide two methods. The first would be something similar
to the following:

public in t getNumber(){
re tu rn number;

>

This method allows us to view the current value of number. It does not
allow us to change the state of number. We would call this method a query
or accessor method. The second method would be similar to the following:

pub lic void setNumber(int i){
number=i;

>

3.2. Algebraic Class Specifications 61

This method allows us to change the current state of number. We would
call this method a command or mutator method. The query/command model
would require that there be a clear divide between the two types of method.

In our model we have decided to allow methods that do both (and hence
a method which might be traditionally viewed as a query is also capa
ble of changing the state of the system as well) rather than adapting the
query/command model. We will show later how we actually model the ex
ecution of methods that can both return a value and change the state of
the system. Note that we still informally, on occasion, refer to queries and
commands where it is convenient to distinguish different types of method.

We define methods as follows:

M ethod = N am e x Sort* x Sort

Methods are written in the following format.

opmethodname : inputtypes —> returntype .

This will create a method of sort type Method. We now define a family
of operators for building method operators:

op _ : _n —> _ : Nam e x Sortn x Sort —► M ethod

Again we make use of _n notation to denote a sequence of underscores.
An example of a single input argument method operator is as follows:

op _ : Nam e x Sort x Sort —> M ethod

An example of a single input argument method from Person is:

op addAge : In t -> In t .

For methods that do not return a value (i.e. void methods) we define
the return type as being void. For example:

op ameth : In t -> void .

We will show later in Section 4.2.2 how we define a special sort type void
to accommodate this. For now void should be viewed as another sort type
and treated in the same way as any other sort used as a return type. As we
would never define the equation for calculating the new class instance part
of a void method, the void sort type is never evaluated to an actual value.

3.2. Algebraic Class Specifications 62

3.2.6 Operations
At present it is proposed that the operations will be the static methods of
a class, however this is currently not implemented yet. For reasons why see
section 6.7.

3.2.7 Interfaces
When modelling a class we first identify its public interface or signature.
This defines the syntax of the class by stating which methods and fields are
available together with their arguments and return types. However, there is
no definition of the semantics of the class at this stage. In the class interface
we wish to include the syntax for all the object-oriented aspects stated above.

An interface is a named collection of methods, constructors and fields that
optionally extends (inherits from) another interface. We define interfaces as
follows:

N am e x N am e x Field* x Constructor* x Method* x Operation*

Interfaces are written in the following format:

Interface name [Extends ename}{
Fields {fie ld s}
Constructors {consts}
M ethods {m eths}
Operations {ops}

}
Note that E x tends is optional. If a class does not extend another class

then we omit it. In Java, all classes ultimately inherit from the Object
class. Object does not inherit from anything else, so, in modelling Java,
the interface only omits the E xtends part for the Object class (however
in practice we usually omit the E xtends clause for any classes that are
inheriting directly from Object for covenience). Also note that we use Bold
type face to denote text that exists verbatim within the structure. We define
interfaces as being of sort type Interface. We also define an abstract syntax
operator called Makelnterface which we use to build an interface from its
component parts discussed earlier in this section.

3.2. Algebraic Class Specifications 63

M a ke ln ter face : Nam e x N am e x Field* x
Constructor* x Method* x Operation* —> In te r fa ce

We define Makelnterface in terms of the concrete syntax using the fol
lowing equation:

M akeln ter f ace{name, ename, f ie ld s , const, m eths, ops) =
Interface name
Extends ename{ Fields{/ie/ds}
Constructors{const} Methods{me£/is}
Operations {ops} }

We define a special case of Makelnterface to deal with case that a class
does not inherit from another class.

M akeln terface(nam e , n il, f ie ld s , const, m eth s , ops) =
Interface name { Fields {/ze£ds}
Constructorsjconst} Methods{me£hs}
Operations{ops} }

Where the word m/ means no class, that is it is used to indicate that a
class does not inherit from another class. When nil is passed in as the ex
tending class name to Makelnterface then the Extends part of the interface
is omitted.

We also define abstract syntax projection functions to project out each
component of an interface.

We use getName to extract an interface’s name:

get Nam e : In terface —► N am e

This is defined by the following equation:

g etN am e{M akeln terf ace(name, enam e, f ie ld s , const, m eth s , ops))
= name

Other projection functions for the other components of an interface are
defined in the obvious way.

3.2. Algebraic Class Specifications 64

3.2.8 Algebraic Class Specifications Prelim inaries
In order to be able to define the structure of an Algebraic Class Specification
(ACS) we need to introduce three new concepts.

• Equations. These are used to define the behaviour (semantics) of a
class, specifically the behaviour of the methods and constructors.

• Variables. These are used in equations. The specification language
Maude requires all variables to be explicitly declared. As we are using
Maude for our FAS specifications we will be providing a section in the
ACS to explicitly declare all variables used.

• Hidden Operators. These are special operators that are not part of the
interface specification of a class but are still neccessary in specifying the
behaviour of a class and to aid in simplifying specification equations.

3.2.9 Equations
In order to be able to create an ACS we need to add a definition of the
semantics of a class to a class interface. We do this using equations:

e q T e rm l = Term 2 .

We can also have conditional equations:

ceq T erm l = Term 2 i f Condition .

With conditional equations we only assert the equality of Terml and
Term2 if Condition is true. We use the standard Maude definition of a
T erm [CDE+04].

When invoked, a method potentially returns a pair consisting of a return
value and a new state for a class instance. We need to differentiate between
equations defining a method’s return type (queries) and equations defining
how a method changes the state of the system (commands). Given a method
called meth for example we use the following notation for equations relating
to the state change:

m eth(inputs)0

and the following notation for equations relating to m eth 's return type.

m eth(inputs)q

3.2. Algebraic Class Specifications 65

For methods that do not return a value (void methods) we leave the
behaviour of the m ethq operator undefined. For methods that only return a
value and do not change the state of a class instance we leave the behaviour
of the m eth0 operator undefined. How we actually handle the use of the
method notations as well as handling inheritance and field access in the FAS
will be dealt with in chapter 4 when we look at how we expand an ACS to
an FAS written in Maude.

It should be noted that in our model the the concrete syntax for assigning
a value to a field looks like the following:

afield := avalue

This is different to the Java field assignment operator which is simply =.
This has been changed to avoid confusion with the equation equals operator.
Algebraically, the syntax for := is defined as follows:

_ := _ : N am e x Sort —> Sort.

Where the Sort input type is the sort type of the field called Name. Note
that we are actually defining a set of := operators for each sort with an
accessible field.

3.2.10 Variables
Variables are used in equations and every variable used has to be declared
together with its sort type. We only need to define variables due to require
ments of the Maude software which we use for the executable specification.

We define variables as:

var varname : Sort .

3.2.11 Hidden Operations
The final section we need to create for the ACS are hidden operations. These
are used to define constructs such as constants which are used in the equation
definitions. For instance in order to equationally define a stack we make use
of a constant that represents an empty stack. This would be done by defining
an operation op E m pty Stack : —► Stack. The Empty Stack operator is not
an aspect of the original class that we are modelling but is considered in our
specification to be necessary for creating equational definitions of the class.
Hence we need some mechanism to introduce it, and we have chosen to group
all such operations together, and collectively call them H idden. We also use

3.2. Algebraic Class Specifications 66

this section to define operators that can be used to simplify the specification
of a class. Hidden operators can be treated at present as the same format as
Operations (which we define as the standard Maude definition for an operator
[CDE+04]) hence the same type.

3.2.12 Class Specifications
To describe the behaviour of a class using its algebraic class interface we add
semantics to the interface (using equations) to create the Algebraic Class
Specification (ACS). At this point the ACS for the class is complete. We
define the following for ACSs:

ClassSpec = Nam e x N am e x Operation* x Field* x
Constructor* x Method* x Operation* x
Variable* x Equation*

ACSs are written in the following format.

Class name [Extends enames]{
H idden {hops}
Fields { f i d s }
C onstructo rs {const}
M ethods {m eths}
O perations {ops}
Variablesfyars}
Equations{egs}

}
As in section 3.2.7 the E xtends is optional for the same reasons given in

that section. Also, again we use Bold typeface to denote strings that exist
verbatim within the definition. We define ACSs as the sort type ClassSpec.
We define an abstract syntax operator called Make Class to take in an inter
face and a class’ semantics defined using variables and equations to build an
ACS.

M akeC lass : In terface x Operation* x Equation* x Variable*
—► ClassSpec

3.3. Java Classes to ACSs 67

Make Class is defined in terms of the concrete syntax as follows:

M akeC lass{M akeln ter f aceiname, ename, fie ld s , const, m e th s , ops),
/iops, eqlist, varis) =

Class N am e
E xtends ename{ Hidden{/iops}
Fields { fie ld s} Constructors{cons£}
M ethods {m eths} Operations{ops}
Variables-jvarzs} Equations{egZzs£} }

We again make use of nil to define the behaviour of MakeClass in the
case where a class does not inherit from another class. The equation for this
case is similar to that defined for Makelnterface in the previous section so
we will omit it here.

We also define projection functions to project out each component of an
ACS.

We use getName to extract an ACS’s name:

getName : ClassSpec —► N am e

This is defined by the following equation:

getN am e(M akeC lass(M akeln ter face(
nam e, ename, fie lds, const, m eths, ops), hops, eqlist, va ris) = name

Other projection functions for the other components of a class are defined
in the obvious way.

3.3 Java C lasses to ACSs
In this section we consider how ACSs can be constructed from Java classes
with the addition of equations that model the class’ behaviour. We will first
look at the more trivial process of translating Java classes to a class interface
and then the more complex issue of adding semantics to the interface to
create the ACS. We will use a set of simple Java classes based on geometric
shapes to illustrate the conversion process.

3.3. Java Classes to ACSs 68

3.3.1 Transforming a Java Class into an Interface
The translation from a Java class to a class interface is relatively simple.
At this point we are only interested in syntax and therefore only simple
syntax translation is required. In our model, due to the fact we eventually
want to produce an FAS in Maude, we try and translate the Java syntax
to something that is closer to the Maude syntax while still retaining a Java
feel to the layout of the specification. This is done to allow users of either
language to be able to easily read the specification. It should be noted that
fields and methods are called using a member access notation [Sun05e]. That
is given an object obj which has a method meth we access that method by the
following notation obj.meth(inputs). However commonly when documenting
a Java class, the syntax of m eth(inputs) would be used, ignoring the member
access part of the notation.

3.3.2 Shape Interface
Shape is a the general class for, geometric shapes. It can be assumed that all
classes that inherit from this class will have the general attributes of Shape.
We will first give the original Java class code for the Shape class.

pub lic c la ss Shape {

pub lic in t number;

pub lic Shape() {
}

pub lic in t a rea (){
re tu rn 0;

>

pub lic in t p e rim e te r(){
re tu rn 0;

>

pub lic in t re tu rn 4 (){
re tu rn 4;

>

3.3. Java Classes to ACSs 69

}

At this stage we are only interested in representing the syntax not the
semantics of the class. The Shape Interface will look like the following:

In te rfac e Shape Extends Object{

F ields{
Number : In t .

>

C onstructors{
Shape : .

>

Methods{
op area : -> In t .
op perim eter -> In t .
op re tu rn 4 : -> In t .

>

Operations{
>

>

Note that we say that this interface extends Object. This is the de
fault class that any Java class inherits from. At present we can assume for
simplicity that the Object interface and ACS is empty and serves no pur
pose. As such, in some examples we choose to omit the Extends part of the
specification as any specification without an Extends part can be assumed
to E x tend Object. As can be seen Shape is very general and serves more
as a base structure for more complex geometric shape classes. In some re
spects Shape would be better defined as an actual Java Interface (not to
be confused with our algebraic interface) as most of Shape’s methods will
be overridden, but we will define Shape as a class for the sake of showing a
consistent example.

3.3. Java Classes to ACSs 70

3.3.3 R ectangle Interface
Rectangle will inherit from Shape as it too is a type of Shape. However
Rectangle is a more complex Shape and is therefore less general. This
means that it will override several of Shape’s methods (such as area) with
R ectangle’s own definitions. Here is the Rectangle Java class code:

public c la ss Rectangle extends Shape {

public in t s id e l ;
pub lic in t side2;

pub lic R ectangle(){
>

public R ectang le(in t i , i n t j) {
s id e l = i ;
side2 = j ;

>

pub lic in t a rea(){
re tu rn s id e l * side2;

>

public in t p e rim ete r(){
re tu rn (2 * s id e l) + (2 * s id e 2) ;

>
>

Here is R ectangle’s algebraic interface specification:

In te rfac e Rectangle Extends Shape{

F ields{
s id e l : In t .
side2 : In t .

}

C onstructors{

3.3. Java Classes to ACSs 71

Rectangle : .
Rectangle : In t In t .

}

Methods!
op area : -> In t .
op perim eter : -> In t .

}

O perations!
}

>

As can be seen this class overrides Shape’s a rea and perim eter meth
ods. However it does not override the re tu rn4 method of Shape, hence
R ectangle’s re tu rn4 method’s behaviour will be identical to the re tu rn 4
method of Shape. All of Shape’s fields are inherited as fields cannot be over
ridden. We have introduced two new fields s id e l and side2. All of this is
especially important when we define semantics for this class in the ACS.

3.3.4 Square Interface
The final class we will look at is Square. This will inherit from Rectangle.
This means that Square is not only a more specialised form of Shape but
also a more specialised form of Rectangle. This will mean it will override
some of R ectangle’s methods. Here is Square’s Java class code:

public c la ss Square extends Rectangle!

pub lic S quare(in t i) !
}

public in t a re a O !
re tu rn s id e l * s id e l;

>

public in t perim ete r() !
re tu rn 4 * s id e l;

>

3.3. Java Classes to ACSs 72

public void se tS id e (in t a){
sidel= a;

>

>

Here is Square’s Algebraic Interface Specification:

In te rfac e Square Extends Rectanglef

F ields{
>

C onstructorsf
Square : In t .

>

Methods{
op area : -> In t .
op perimeter : -> Int .
op setS ide : In t -> In t .

>

Operations{
}

}

Once again any methods we inherit from Rectangle, including any meth
ods that we inherit from Shape through Rectangle will not appear here and
are linked to via the Extends statement. We also again override the a rea
and perim eter methods with Square’s own definitions. Finally we intro
duce a new method called setSide. This method only belongs to Square
and is not part of Shape or Rectangle.

3.3. Java Classes to ACSs 73

3.3.5 Algebraic Interface Specifications to Algebraic
Class Specifications

The next stage is to convert our new interface specifications into ACSs. To
do this we need to define the semantics of each class. We do this equationally.
This requires the user of this algebraic system to identify what the equations
should be that define the behaviour of all the methods and constructors.

We will look at a simple example of this. Let us look at the Java code
for Square’s area method.

public in t a rea(){
re tu rn s id e l * s id e l;

>

An equational definition for this is as follows:

eq (S) .a re a ()q = (S) .s id e l * (S) .s id e l .
eq (S). a reaO o = S .

There are several important points to note from this example. In the
equations we use the member access notation as discussed earlier. This in
cludes both fields and methods. This is because we are now defining how
people would actually use the class. To do this we use a Square variable S
which will need to be defined like in the following statement:

var S : Square .

Another thing to note is that we now introduce the q and o notation as
discussed earlier to show if we are defining a method’s state change function
ality or its query return value functionality. In the example above we define
the value that area returns. As area does not change the state of Square
in any way, it just returns a value, we do not need to provide an equation
defining state change using the o notation. However we have done so here to
illustrate both the query and command parts of method definitions. In the
above case the command definition simply returns S (the unchanged state
of Square. In practice and for the rest of this example we will omit the
command definitions when a method does not change the state of the class
instance. All the equations and operators that would need to be defined to

3.3. Java Classes to ACSs 74

deal with all this new notation are discussed in chapter 4 when we create the
FAS . A lot of this can be automatically generated as we will see in section
5.3.

We will now show what the ACSs looks like for each of our interfaces.

3.3.6 Shape Class Specification
The ACS for the Shape interface is as follows:

Class Shape Extends Object{

Hidden{
op AShape : -> Shape .

>

F ields{
number : In t .

>

C onstructors{
Shape : .

>

Methods{
op area : -> In t .
op perim eter -> In t .
op re tu rn 4 : -> In t .

}

Operations{
>

V ariables{
var S : Shape .

>

Equations{
eq Shape() = AShape
eq (S) .a re a ()q = 0 .

3.3. Java Classes to ACSs 75

eq (S) .perim eterO q = 0 .
eq (S).re tu rn 4 ()q = 4 .

}
>

There are several points to note here. First we have introduced a hidden
operator op AShape : —► Shape . This effectively allows us to define an
empty (default) Shape class instance and can be considered to be a type
of constant. This can be seen in the Shape constructor which returns the
default AShape operator. The second thing to note is that all the methods
in our example are only defined by their query return values. This means
that none of the methods change the state of Shape (that Shape has no
commands).

3.3.7 Rectangle Class Specification
The ACS for the Rectangle interface is as follows:

Class Rectangle Extends Shapef

Hiddenf
op ARectangle : -> Rectangle .

}

F ie ld s f
s id e l : In t .
side2 : In t .

}

C onstructorsf
Rectangle : .
Rectangle : In t In t .

>

Methods{
op a rea : -> In t .
op perim eter : -> In t .

>

3.3. Java Classes to ACSs 76

Operations{
>

V ariables{
vars I J : In t .
var R : Rectangle .

>

Equations{
eq R ectangle() = ARectangle .
eq R ec tan g le (I, J) =

((A R e c tan g le) .s id e l:= (I)) .s id e2 := (J) .
eq (R).a rea()q = (R).s id e l * (R).side2 .
eq (R) .perim eterO q =

((R) .s id e l * 2) + ((R).side2 * 2) .
>

>

In this specification the empty Rectangle class instance is ARectangle .
This is used in both constructors. The first equation defines the constructor
with no arguments. The second one takes in two integer values. It creates
the empty ARectangle class instance and further defines it by assigning the
two integer values to the fields s id e l and s id e2 thus effectively defining the
Rectangle’s dimensions. As with Shape, the other two methods, a rea and
perim eter, only return query values, but now they use the standard formulas
for defining the perimeter and area for a rectangle to return a value. Although
they are not visible here, due to the extends keyword, Shape’s number field
and re tu rn 4 methods are inherited by the Rectangle class.

3.3.8 Square Class Specification
The ACS for the Square interface is as follows:

Class Square Extends Rectangle{

Hidden{
op ASquare : -> Square .

>

F ields{

3.3. Java Classes to ACSs 77

}

C o n s tru c to rs {
Square : I n t .

>

Methods{
op a re a : -> I n t .
op p e r im e te r : -> I n t .
op s e tS id e : I n t -> I n t .

}

O p e ra tio n s{
>

V a ria b le s {
v a r I : I n t .
v a r S : Square .

>

E q u a tio n s^
eq S q u a re (I) = (A S quare). s id e l := (I) .
eq (S) .a r e a O q = (S) . s i d e l * (S) . s i d e l .
eq (S) .p e r im e te r () q = (S) . s i d e l * 4 .
eq (S) .s e tS id e (I) q = (S) . s i d e l .
eq (S) . s e tS id e (I) o = (S) . s i d e l := (I) .

}
}

In this specification the em pty Square class instance is ASquare. The
constructor only assigns a value to one of the s id e fields, s i d e l (which is
inherited along w ith other m ethods and fields from R e c ta n g le and, through
R ec tan g le , from Shape). A S quare’s dimensions can be defined from one
side alone. Therefore there are new definitions for a r e a and p e r im e te r .
We also have a new m ethod called s e tS id e . This has bo th a s ta te change
equation and a query value return equation. Informally th is m ethod returns
the current s i d e l value and assigns a new value to s id e l .

We have now examined each of the geometric shape examples and shown
the complete conversion process from Java class to Algebraic Class Specifi

3.4. Algebraic Structure of Interfaces 78

cation (ACS).

3.4 A lgebraic Structure o f Interfaces
In this final section we will examine the work of [STR03] on the Algebraic
Structure of Interfaces. We will also look at their work on deriving a simple
object-oriented interface definition language. We will look at how our alge
braic model builds on and extends the work in [STR03]. However we will not
look at interface flattening, joining and tagging until Section 4.4 as it relates
more closely to work shown in Chapter 4 on creating FASs.

3.4.1 Basic Structure of an Interface
An interface is defined as follows:

In ter face = N am e + Imports -t- Body.

The Name must be a unique identifier for the interface. In Java names
are made unique by prepending their package name. The Imports are a list of
interface names that may be required in the body. These interfaces are stored
in an interface repository. This allows one interface to import the features of
an existing interface. In [STR03], an interface name in the import list need
not have a corresponding interface in the repository. However in our work we
do not allow this. In Java a missing class causes a compile error. We are only
interested in modelling classes that successfully compile (i.e. classes that are
syntactically correct) and therefore there will be no missing interfaces. Later
we will examine how our ACSs relate to the [STR03] interface definition
language by defining the body part of the Interface which [STR03] largely
omit.

3.4.2 Object-Oriented IDLs
[STR03] includes preliminary work on defining a simple interface definition
language (IDL) for object-oriented systems. This IDL captures interactions
by seperating the components or methods out into commands that can only
change the state of the internal implementation, and queries that can only re
turn values and are strictly prohibited from changing the state of the internal
implementation (however note that [STR03] suggest a notation of combin
ing both which we will look at in Section 3.4.3). The body of this IDL is
constructed from the following:

3.4. Algebraic Structure of Interfaces 79

• data type declarations of the form:

so r ts . . . , s , . . .
constan ts -> S, . . .
opera tions . , . , f : s (l) * . . . * s (l) -> s , . . .

for its data sets, constants and operations.

• program module declarations which are split into:

— the state-altering modules

commands . . . , p : s (l) * . . . * s(m), . . .

— the state-query modules

queries . . . , q : s (l) * . . . * s(n) -> s , . . .

[STR03] then substitute these declarations for interface bodies in their
general IDL which forms an interface with seven declaration sections, of the
form:

in te rfa c e I
import
sorts . . . ,s, . . .
constants . . . ,c: -> s, .
operations s(l)* . . * s (l) -> s
commands . . . ,p: s(l)* . . * s(m), . . .
queries . . . ,q: s(l)* . . * s(n) -> s
end in terface

3.4.3 Queries That Can Change The System State
In our model we do not separate methods into queries and commands but
instead allow each method to both return a value and change the state of a
class instance (however in practice many methods only either return a value
or change a class instance). This is similar to [STR03]’s function:

Q : World x 0 1 D x As(i) x . . . x As(n) —> (W orld x A,).

3.5. Autom atically Building ACS Specifications 80

That is a query can return a value (As) and a new state (World), where
OID is an object identifier and World is World — [01D —> State] which is
informally the set of all object states.

3.4.4 Algebraic Class Specification B ody
Just as with [STR03]’s IDL our ACSs have both a name and an import list
(note Java only allows single inheritance so our model will only have either
none or one import name in the import list). However there are several major
differences to [STR03]’s model of object-oriented IDLs.

The first relates to constants. In our model constants are not assigned a
separate section. Instead constants would be added to the operations section
and take the form of operations with no inputs.

There are also special types of constants that are added to the H idden
section along with other operations that are used to define the internal struc
ture of a class such as a distinguished constant (operation) to represent an
empty stack for example. We also omit to state sorts as there is only ever
one sort introduced in a class specification which has the same name as the
class specification itself. We assume its presence to be implicit.

The other change as stated previously are commands and queries that in
our model are combined into one section called M ethods. However we do
not explicitly state that methods can return a new class instance as this is
the case for all methods.

The biggest difference between our model and the [STR03] model is that
we define the semantics as well as the syntax whereas [STR03] is only con
cerned with syntax. This means that we add to our body two sections. These
are E quations which are used to define the semantics of the methods, and
constructors, and V ariables which are used in the equations.

3.5 A utom atica lly Building A CS Specifications
In order to aid in the testing of new features to our specification we designed
a program to aid in the automatic generation of ACSs and FASs for a Java
class with extra embedded information. We called this program the Algebraic
Specification Generator (ASG). The use of the program for this purpose is
discussed in more detail in section 5.3. The program can also be used to
automate the building of the ACS and FAS specifications for a user. This is
especially useful for FASs because as we will show in the next chapter a large
amount of booking keeping and extra information needs to be generated to
model the structure of a class. In this section we will look at how we extract

3.5. Autom atically Building ACS Specifications 81

information about a Java class using Reflection and how we then use that
information to output an ACS. We have omitted discussing in any detail
how we embed equations into Java source code comments and how they are
extracted as this is discussed in greater detail in section 5.3. We will also show
examples of the code and the output it produces in the case of generating
specification details for fields. The code itself is too long to discuss in full
in the body of the thesis, however the complete code can be found on the
appendix CD and instructions on how to use it in appendix A. We will leave
discussion of how the program generates an FAS till section 4.5.

3.5.1 Overview Of The Im plem ented A lgorithm For
ACS Generation

There are three phases to the ASG when building an ACS specification.

1. Extracting information about the Java class to be specified both from
it’s compiled class information and from its source code file.

2. Manipulating the extracted data into an appropriate form for the ACS
by converting it to required formats and generating any extra informa
tion required.

3. Outputting the newly generated information as an ACS.

Extracting information about a Java class is done in two stages. First the
ASG uses the Java Reflection classes to extract the signature of the class.
Java Reflection can be used to (amongst other things) obtain information
about the structure of a class. The names of the fields, constructors and
methods are discovered using reflection. Once these parts of a class have
been identified reflection is further used to discover the input parameters
of methods and constructors and the types and return types of fields and
methods. As we are only interested in public methods, fields and constructors
of a class we discard any that are not declared as being pub lic

The second stage in extracting information about a class is to extract
information from the classes source code. Therefore someone using the pro
gram must provide the source code for the class as well. The information
we wish to extract are equations defining the behaviour of the methods and
constructors of a class. This information is embedded in Javadoc comments
and is surrounded by special tags. The information to be extracted is done
by pattern matching on these tags. We discuss the format of these tags and
the extra embedded information in greater detail in section 5.3.

3.5. Autom atically Building ACS Specifications 82

Once the information has been extracted the ASG then manipulates the
data to reformat it into the required format for an ACS and generate any
extra information that might be needed. With an ACS very little extra
information is needed and relatively few changes need to be made to the
extracted data. One of the main things done in this phase of the program is
to verify no variable names have been declared in the embedded comments
twice. If a variable has been declared twice and is of the same type then the
duplicate declaration is simply deleted. If the name is declared twice for two
different types of variables then the program renames one of the variables.
It then changes any calls to that variable in the equations it was declared for
to the new name. This is done by a series of pattern matching to identify
any references to the variable in the equations. When generating an FAS a
lot more reformatting and extra information needs to be generated and we
will discuss this in more detail in section 4.5.

The final phase is to output all this information as an ACS. This is a rel
atively simple phase that takes the required information and outputs it with
extra syntax that makes up the structure of an ACS. For instance methods
are outputted as a list and enclosed in the Methods{. . .} syntax. Below is an
example of the source code for a Java file with embedded java doc comments.

/ * *

* <p>Title: AClass</p>
* <p>Description: A generic Class example</p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t tr ib u ta b le
* ©version 1.0
<hidden>op AAClass : -> AClass .</hidden>
* /

pub lic c la ss AClass {

/ **

* An in te g e r f ie ld .
* /

pub lic in t a f ie ld ;

/* *
* C reates an empty AClass
<code>
eq AClass() = AAClass .

3.5. Autom atically Building ACS Specifications 83

</code>
* /

p ub lic AClass() {
>

/* *

* Returns the value 4.
* ©return in t
*
<code>
var A : AClass .
eq (A).re tu rn 4 ()q = 4 .
</code>
*/

public in t re tu rn4 () {
re tu rn 4;

>

}

One advantage of the ASG is that a user does not need to implement the
bodies of methods and constructors in order to generate an FAS. All that
needs to be provided are the embedded equations and variables and dummy
stubs can be generated for the method and constructor bodies. This allows
specifications to be built before a class is fully implemented.

The corresponding ACS generated by the ASG for the above class is as
follows.

Class AClass {
C onstructorsf

AClass :
>
F ie ld s {

a f ie ld : In t .
}
Hidden{

op AAClass : -> AClass .
>
Methods-f

re tu rn 4 : -> in t .
}

3.5. A utom atically Building ACS Specifications 84

Operations{
}
V ariables^

var A : AClass .
}
Equations{

eq AClass() = AACLass .
eq (A).re tu rn 4 ()q = 4 .

}
}

3.5.2 Field Example

In this section we will look at some examples of ASG source code for
extracting information about fields from Java classes and generating ACS
information for them. We will not be showing the complete code as it is very
long but will instead be focussing on key sections of it. Let us consider the
following section of code.

F ie ld m[] = th e c la s s .g e tF ie ld sO ;

fo r (in t i = 0; i < m .length; i++) {
f = m [i] ;

f . getName () ;
type = f .getTypeO .getName() ;

i f (ty p e . compareTo("int") == 0) {
type = "I n t ";

>

i f (ty p e . compareTo("boolean") == 0) {
type = "Bool";

}

In the above code theC lass is class instance of type C lass which is the
Java Reflection representation of the class we are modelling. The method
get F ie ld s returns an array of F ie lds which are the Reflection representa
tion of the class’ fields. Each of these instances of F ie ld can be used to

3.6. Sources 85

extract information about the fields in the class. We use getName to extract
the field’s name and getType to discover the field’s type. The two i f state
ments are used to check to see if the types of the fields are in t or boolean.
These are not the correct format for these types in Maude so if they are
found to be so we need to change the types to In t and Bool respectively.
Field information is then stored in an array of FieldDecs which is a custom
class used to gather together all the information discovered for each field.

Very little else needs to be done on the fields at this point and all the
information gathered can be output as the ACS representation of a field as
shown in the code below.

o u t ,p r in t ln (" \F ie ld s { ") ;
fo r (in t k = 0; k < f i e l d s . s i z e () ; k++) {

FieldDecs f ie ld = (FieldDec) f i e l d s fk] ;
o u t .p r i n t l n (" \ t \ t " + field .nam e + f ie ld . ty p e) ;

>

This simply prints out each fields name and type in the F ie ld s section
of an ACS.

Therefore the line pub lic in t a f ie ld ; in the Java source code becomes
the following in the ACS.

F ields {
a f ie ld : In t .

>

3.6 Sources
The biggest influence on the work in this chapter is that of [ReeOl, STR03].
We discussed the relationship between our work and theirs in section 3.4.
The actual structure and design of our Algebraic Class Interfaces and Spec
ifications are influenced by syntax of Java itself [Sun05g] although the over
all concept is the work of JB. Also as we will see in the next chapter the next
stage in our work is to take the Algebraic Class Specification and produce
a Full Algebraic Specification written in Maude. Therefore the structure
and design of an ACS has been influenced by that of the Maude language
[SRI05]. The code written to automatically build an ACS from a Java class
is the work of JB.

Chapter 4

From Algebraic Class
Specifications to Full A lgebraic
Specifications

In this chapter we will examine the next stage in our modelling process where
we expand an Algebraic Class Specification ACS into a Full Algebraic Speci
fication FAS written in Maude. We saw in chapter 3 how to create an ACS
by extracting syntactical information from a Java class and adding semantic
equations to define the behaviour of the methods and constructors. As we
discussed in chapter 3, the ACS is not a complete algebraic specification and
much more information has to be added in order to produce the FAS. This
chapter will show how in order to create the FAS we need to provide a great
many more operators and equations to fully model the structure of a class.
We have chosen Maude to write the full specification in. As a consequence of
using Maude we will be able to execute the FAS, which is useful for testing
and analysis purposes. As will be seen in this chapter a large amount of book
keeping and extra information needs to be generated in order to create the
FAS and it is important to be able to automate as much of this as possible.
Therefore we will be discussing the automatic generation of FAS information
later in this chapter. The main aim of this chapter is to show the process of
transforming an ACS into an FAS.

Throughout this chapter we will be describing the process of translating
an ACS into an FAS. For each concept in the FAS we will be presenting
examples of the concrete syntax for an FAS both in the general and in specific
example cases. We do not make use of any abstract syntax in this chapter.
As the translation process is long and complex we will only be demonstrating
the formal operators and equations for the implementing algorithm needed
to translate ACS methods to FAS methods. For all other concepts we will

86

87

informally describe the translation algorithm for each case. The complete
translation algorithm implemented in Java for all concepts discussed in this
chapter can be found in Appendix A.

Section 4.1 will show the example ACS that we are going to use to il
lustrate the principles discussed in this chapter. It also shows the resulting
FAS. The aim of this section is to give the reader a complete view of what
we will be defining in this chapter. Section 4.2 will identify and explain the
extra operators and equations that need to be created to transform a class
specification into a FAS (i.e. one without inheritance). We will also look
at how we need to change the format of some of the existing equations and
operators. The section will focus on the modelling of the methods of a class,
taking into account the fact that methods need to be able to return both a
query value and change the state of the class instance. We will also show
the formal operators and equations needed to convert ACS methods to FAS
methods and give formal definitions for parts of the structure of an FAS.
Unfortunately, due to time restraints these formal equations will only deal
with aspects relating to ACS to FAS method conversion to demonstrate how
we convert a component of an ACS to an FAS. We have chosen methods
as an example as they represent a non trivial conversion process. In future
work we would wish to define formal operators for the entire ACS to FAS
conversion process. We will also show in this section how we implement class
fields in our FAS by creating special operators for them. Finally the section
will look at how we model the class constructors. This section will not deal
with inheritance as that will be dealt with separately in the next section.
Section 4.3 will look at how we transform an ACS that models a class which
inherits from another class, into an FAS. This involves the concept of flat
tening the class inheritence tree. We will show all the extra equations and
operators we need to generate in order to handle the inheritance behaviour
of a class. We will also show the order in which classes with inheritance need
to be processed in order to generate the FAS for a class that inherits from
another class. We will mostly use a class with only one level of inheritance
to demonstrate the process in this section. However we will at the end of
the section look at an example that has more than one level of inheritance
and show how we accommodate this in our model. Section 4.4 will examine
the work of [STR03] on interface flattening, joining and tagging and how it
relates to our work. We will show that when we model inheritance in our
work, we are using a similar concept to interface flattening in their work.
In our work, we flatten the inheritance tree for a class, tagging inherited
classes members with the keyword super. We will also explain how the way
[STR03] join interface bodies together relates to the way our model combines
the semantics of an inherited class with that of an inheriting class. Finally

4.1. Example 88

in section 4.5 we will continue to examine the code we have written for au
tomating the building of specifications. We will look specifically at how it
can build an FAS specification based on the information extracted earlier, as
discussed in section 3.5.

By the end of this chapter, combined with the work in the previous chap
ter, we will have shown the whole process of taking a Java class, generating
an ACS from it, and then generating an FAS written in Maude.

4.1 Exam ple
In this section we will show the example Shape as an ACS and the FAS that
will be produced from it. Throughout the remainder of this chapter we will
show how we generate the FAS. Consider a simplified version of the Shape
class specification.

Class Shape Extends Objectf

Hiddenf
op AShape : -> Shape .

>

F ields{
number : In t .
s id e l : In t .

>

C onstructorsf
Shape : .

>

Methods{
op re tu rn4 : -> In t .

>

Operations{
>

V ariables{

4.1. Example 89

var S : Shape .
>

Equations!
eq Shape() = AShape .
eq (S).re tu rn 4 ()q = 4 .

>

}

This example has been simplified to have one constructor, two fields and
one method. The corresponding FAS is show below.

fmod SHAPE is

p ro te c tin g BUILDLINK .

so r t Shape .
s o r t ShapeInt .

op Shape() : -> Shape .

op AShape : -> Shape .

op : Shape In t -> Shapelnt .
op oval(_) : Shapelnt -> Shape .
op qval(_) : Shapelnt -> In t .
op _ .re tu rn 4 () : Shape -> Shapelnt .
op _ .re tu rn 4 () : Shapelnt -> Shapelnt .
op _ .re tu rn 4 ()o : Shape -> Shape .
op _ .re tu rn 4 ()q : Shape -> In t .

op number : Shape -> In t .
op number:=_ : Shape In t -> Shape .
op number:=_ : Shapelnt In t -> Shape .
op _ .number : Shapelnt -> In t .
op s id e l : Shape -> In t .
op s i d e l :=_ : Shape In t -> Shape .
op s i d e l :=_ : Shapelnt In t -> Shape .
op _ . s id e l : Shapelnt -> In t .

4.1. Example 90

var S : Shape .
var SYSO Shape .
var SYS1 In t .
var SYS2 Shapelnt
var SYS3 Shape .
var SYS4 Shape .
var SYS6 In t .
var SYS7 In t .
var SYS8 In t .
var SYS9 In t .
var SYS10 : In t .
var SYS11 : In t .

eq Shape() = AShape .
eq (S).re tu rn 4 ()q = 4 .
eq oval(SYSO,SYSl) = SYSO .
eq qval(SYSO,SYSl) = SYS1 .
eq (SYSO),return4() = (SYSO).return4()o, (SYSO) .re tu rn 4 ()q .
eq (SYS2).return4() =

(oval(SYS2)) . re tu rn 4 ()o , (oval(SYS2)) .re tu rn 4 ()q .

eq ((SYSO).number:=(SY§8)).number = SYS8 .
eq (SYS2).number:=(SYS8) = (oval(SYS2)) .number: = (SYS8) .
eq (SYS2).number = (oval(SYS2)).number .
eq ((SYSO). s id e l : = (SYS9)) .number = (SYSO) .number .
eq ((SYSO).sidel:=(SYS10)).sidel = SYS10 .
eq (SYS2) .s id e l : = (SYS10) = (oval(SYS2)) . s id e l : = (SYS10) .
eq (SYS2).sidel = (oval(SY S2)).sidel .
eq ((SYSO).number:=(SYS11)).sidel = (SYSO).sidel .

endfm

We will examine each aspect of this example later in detail. As can be
seen the FAS has many more equations and operators than the ACS. Many
of the methods have been changed in format to more directly match the
object-oriented operator format (in fact the above example is a simplified
version of the FAS format, with many operators and equations left out. For
example, it does not include the operators and equations that define array
construction and access).

4.2. Basic Class Specification Conversion 91

4.2 B asic Class Specification C onversion
In this section we will examine the basic conversions that need to be done
to convert a stand alone ACS to an FAS. We will deal with how we model
inheritance in section 4.3, so in this section we are only interested in the
stand-alone class. We will look chiefly at how we model methods that can
both change the state of a class instance and return a value. We will also
look at field access and assignment, and sorts.

4.2.1 In-built functionality
We will first examine the first line in the above FAS example:

fmod SHAPE is p ro tec tin g BUILDLINK

The first two words identify that we are creating a new functional Maude
module called Shape. The rest of the line allows us to access predefined
functions and equations contained in other Maude modules. We will look at
the inbuilt functionality in more detail in Chapter 5.3. The complete listing
for the BUILDLINK module can be found on the Appendix CD at the end of
this thesis.

4.2.2 M odelling M ethods
As we saw in the last chapter, methods can both change the state of a
class instance and return a value. Effectively their return type is State x
Value. However Maude cannot directly model functions that return two
types. In order to do so we need to create a tuple of the two types that
can be returned and create construction and extraction operators to handle
this. When it comes to the equations to define each return type we have
already created seperate notation for each through the method(inputs)o and
the method(inputs)q notation discussed in the previous chapter. W hat we
have to do at this stage is provide all the extra operators and equations that
join it all together. We will also need to change the syntax of each method
to more closely reflect the object-oriented member access notation.

We will use the re tu rn4 method from the above ACS example and show
its corresponding FAS functions and equations that are generated for it as
shown in the FAS example. The ACS defines re tu rn 4 by the following two
lines:

4.2. Basic Class Specification Conversion 92

op re tu rn 4 : -> In t .
eq (S) .re tu rn 4 ()q = 4 .

So for every method belonging to a class, which we will call AClass in
general, we will need to make the following conversions and additions.

The format of the method operator in the ACS is informally as follows:

op method : Input Field* —► ReturnType.

This will need to be changed to the following format:

op -.method(- ,. . . , _) : AClass Input Field* —» ReturnType . (4.1)

So op re tu rn 4 : -> In t . becomes the line from the FAS example:

op _ .re tu rn 4 () : Shape -> In t .

The first thing to note is that an input has been added before the V
notation. This input is a class instance variable of the class itself. This allows
us to use the object-oriented member access notation. The original inputs
are contained within the round brackets (although the re tu rn 4 example
does not actually have any extra inputs). The final thing to note is that the
return type has changed. This new return type will be the tuple containing
both the state change return type and the query return type. These tuples
and relevant operations and equation only need to be declared once for each
different query return type that a class’ methods can return. These tuples
are necessary in order to model methods that both return a value and change
the state of a class instance (although in practice we use the tuples for all
methods). The Maude language can not handle methods that return two
types. To get around this problem we define a tuple as a new sort type which
combines the two individual method return types together. For instance if
we have a method that changes the state of a class called AClass and returns
an integer value then we define a sort type AClassInt which, informally is
formed as follows (a c la s s ,in t) .

In order to model this we will need to add a new sort which will be the
tuple sort type.

sort A C lass ReturnType . (4.2)

In the FAS example this generates the line:

so rt Shapelnt

4.2. Basic Class Specification Conversion 93

We then need to add an operator that will allow us to create an instance
of this new return type tuple as well operators that will allow us to extract
the components of a tuple instance. In particular we will need to extract
the class instance part of the tuple in order to be able to pass it into other
methods as ultimately the methodq and method0 style method operators are
enacted upon the class instances alone, not the tuple types.

op _ : AClass x ReturnType —> AClass ReturnType . (4.3)

op oval (I) : A C I ass ReturnType —> A C la s s . (4.4)

op qval(-) : A C lass ReturnType —► ReturnType . (4.5)

In the FAS example these are the lines:

op : Shape In t -> Shapelnt .
op oval(_) : Shapelnt -> Shape .
op qval(_) : Shapelnt -> In t .

Next we will need to define the equations that define the behaviour of
these new operators.

eq oval(aclass, retype) = aclass .

eq qval(aclass, retype) = retype .

In the FAS example these are the lines:

eq oval(SYSO,SYS1) = SYSO .
eq qval(SYSO,SYSl) = SYS1 .

Next we may have several equations in the ACS defining the state and
query return values for each method using the o and q notation. We will
need therefore to define actual operators for these.

op _.m e t h o d (. . . , _)o : AClass x InputF ield* —> AClass . (4.8)

op _.method(. . . ,_)g : AClass x InputField* —► ReturnType . (4.9)

In the FAS example these are the lines:

(4.6)

(4.7)

4.2. Basic Class Specification Conversion 94

op _ .re tu rn 4 ()o : Shape -> Shape .
op _ .re tu rn 4 ()q : Shape -> In t .

Another important equation we need to add is one that links the original
method operator with the method(inputs)o and method(inputs)q operators.

eq
(aclass) .method(inputs)o, (aclass).method(inputs)q.

In the FAS example this is the line:

eq (SYSO).return4() = (SY SO).return4()o,(SY SO).return4()q .

As mentioned earlier in Section 3.2.5 we use a special sort type called void
to model the behaviour of methods that do not return a value (void meth
ods). This sort type is defined in the usual way in the in-built functionality
contained in the BUILDLINK module. It is defined as follows:

(aclass). method(inputs) —

so rt void .

A void method is defined as returning a tuple consisting of the new class
instance and void.

op _.ameth(_) : AClass In t -> AClassvoid .

As with all other methods, a void method is defined as consisting of the
values of its o and q method definitions.

eq (a c la ss).am e th (i) = (a c la s s) .a m e th (i)o ,(a c la s s) .a m e th (i)q .

Where in particular am eth(i)q is declared with the following operator.

op _ .am eth(i)q : AClass In t -> void .

However as a void method does not return a value, the behaviour of
am eth(i)q will be left undefined. Therefore it will never be evaluated and
so it will not return an actual value for the void part of the tuple.

Next we have to add extra method operators that can take in any other
of the class’ tuple types including the one we have just created as its first
class instance argument in the member accessor notation. The reason for
this is that each method can potentially return one of the classes other tuple
types as a class instance. This tuple type contains a valid class instance

4.2. Basic Class Specification Conversion 95

and therefore needs to be passable in some form to other class methods. An
alternative way of doing this would be requiring the user to use the oval
methods to extract the actual class instance part of the tuple. However we
have chosen to try and distance the user as much as possible from the internal
workings and operations of an FAS. Therefore we have decided to generate
extra operators and equations for each of the tuple types to allow them to be
passed directly to the class’ methods. For example, with AClass we would
still need to add the following operator for A C lass ReturnType:

op -.method(-,. . . , _) : A C lass ReturnType InputField* —>
AClassReturnType .

There is only one method in our example so we only have one extra
method operator needed for the tuple we have just created.

op _ .re tu rn 4 () : Shapelnt -> Shapelnt .

The final aspect of this we need to add is the equation that links this
method operator with the method{inputs)o and method{inputs)q operators.

eq (aclassretype).method(inputs) =
(oval(aclass)).method(inputs)o, (qval(aclass)).method(inputs)q.

In the FAS example this is the line:

eq (SYS2).return4() =
. (oval(S Y S 2)).re tu rn4()o ,(oval(S Y S 2)).re tu rn4()q .

Finally the equations from the ACS are copied into the FAS unchanged.
If a method only defines either the state change of a class instance or a query
return value, the equation defining either the query value or the class instance
value needs not to be defined. This is because there will never be a need to
evaluate the missing return type els that is not in the functionality of the
method.

So in the FAS example we copy the equation:

eq (S).re tu rn 4 ()q = 4 .

The only thing we have omitted from this conversion is the declaration
of all the extra variables used in the equations els this is a trivial addition.

4.2. Basic Class Specification Conversion 96

4.2.3 M ethod Conversion Operators
In this section we will show the formal functions needed for the conversions
shown in the previous section. As already stated, due to time limitations we
have only been able to produce the formal functions for the previous section.
We have chosen to present the operators and equations for method conversion
as we feel this represents a non-trivial conversion example.

The first part of this section gives the concrete syntax for the operators
and equations that we will need in the FAS to model each method. The
second part shows the equations for translating an ACS method into and
FAS method. These equations are a component part of the overall algorithm
for translating an entire ACS into an FAS.

Before we begin there are a few details to note. The first is that we treat
the types Sort and Name as being equivalent which allows us to concatenate
Names and Sorts together (we will discuss this later). The other thing to
note is the use of the U notation. We use this to denote underscores which
are copied in as literal characters. In order to provide explanation for the
following operators and equations we refer back to formulae discussed in the
previous section. We also again make use of the Bold typeface to denote
literal strings to be copied in verbatim.

First we present all the operators and equations which are used to define
elements of the concrete syntax of an FAS relating specifically to methods.

The following operator is used to define an FAS method operation as
shown and explained earlier in formula 4.1.

FASM ethodO p = Nam e x Sort x Sort* x Sort
o p U . _ (U, . . . , U) : _ x _ — > _

: Nam e x Sort x Sort* x Sort —► FA SM ethodO p

The following operator is used to define an FAS tuple sort type as shown
and explained earlier in formula 4.2 (in actual fact it can define any FAS sort
type although we only use it for the tuple sorts in this section).

F A SSort = N am e
s o r t _ : N am e —> F A S S o rt

The following operator is used to define the structure of an FAS tuple
type as shown and explained earlier in formula 4.3.

FASTupleO p — Sort x Sort x Sort
o p U, U : _x_—>_ : Sort x Sort x Sort —> F A STupleO p

4.2. Basic Class Specification Conversion 97

The following operator is used to define the qval operator as shown and
explained in formula 4.5.

FASQ valO p = Sort x Sort
o p qv al(U) : >_ : Sort x Sort —> FA SQ valO p

The following operator is used to define the oval operator as shown and
explained in formula 4.4.

FASO valO p = Sort x Sort
o p oval(U) : >_ : Sort x Sort —> F A SO valO p

The following operator defines the equation for modelling the behaviour
of the qval operation and is defined in formula 4.7.

FA SQ valE q = N am e x N am e x Name
e q qval(_,_) = _ : Nam e x Nam e x Nam e —» F A SQ valE q

It should be noted that the general definition of an equation (as discussed
in section 3.2.9) is informally as follows:

eq Ihs = rhs

Where Ihs and rhs are terms. However the definition of terms would
be broad and is already well defined (we ourselves make use of the Maude
language definition of equations [CDE+04]). For the purposes of this section
we will give definitions for specific formats of equations which relate to the
modelling of FAS methods. These can be considered to be more specialised
forms of the general format for an equation.

The following operator defines the equation for modelling the behaviour
of the oval operation and is defined in formula 4.6.

FA SO valE q = N am e x N am e x Name
e q oval(_,_) = _ : Nam e x Nam e x Nam e —► F A SO valE q

The following operator is used to define the FAS method state change
operator as shown and explained in formula 4.8.

FASM ethodO O p = Nam e x Sort x Sort* x Sort
op U ._(□,..., Ll)o : _x_—>_

: N am e x Sort x Sort* x Sort —> FA SM ethodO O p

4.2. Basic Class Specification Conversion 98

The following operator is used to define the FAS method query return
value operator as shown and explained in formula 4.9.

FASM ethodQ Op — N am e x Sort x Sort* x Sort
op U ._(l_l,. . . , U)q : _x_—>_

: N am e x Sort x Sort* x Sort —> FASM ethodQ O p

The following operator defines the equation for modelling the linking of
a method’s state change and query return values into a tuple type as shown
and explained in formula 4.10.

F A SD efau l tM ethL inkE q —
Sort x Nam e x Sort* x Sort x N am e x Sort* x Sort x N am e x Sort*

eq (_)._(_) =(-).-(-)o, (-)•-(-)q :
Sort x Nam e x Sort* x Sort x N am e x Sort* x Sort x N am e x Sort*
—*■ F A SD efau ltM ethL inkE q

The following operator defines the equation for modelling the linking of a
methods state change and query return values into a tuple type, which takes
in a tuple type as the class instance as shown and explained in formula 4.11.

F A STup leM ethLinkEq =
Sort x Nam e x Sort* x Sort x N am e x Sort* x Sort x N am e x Sort*

eq (-)-(-) =(oval(-))._(-)o, (qval(-))._(-)q :
Sort x N am e x Sort* x Sort x N am e x Sort* x Sort x N am e x Sort*
—► F A STupleM ethLinkEq

The actual ACS method equations are copied in from the ACS to the
FAS unchanged and hence we do not need to define the format for it here.

Now we have defined the concrete syntax for all the operators and equa
tions needed to define a method in an FAS we will now show how we generate
these by translating an ACS method into an FAS method. This translation is
done through a series of operators and equations which we will define below.
These form part of the complete translation algorithm for transforming an
ACS into an FAS. The complete code for this is given in Appendix A. The
operator and equations for transforming an ACS method to an FAS method
as shown and explained in formula 4.1 is as follows.

4.2. Basic Class Specification Conversion 99

A C SM ethodT oF A S : Sort x Method —> FASM ethodO p
A C SM ethodToF A S (aclass, op name : input f ie ld s—̂ ret fie ld) =

op -,name(Spacer (input fields)) : aclass 'xinput f ie lds ̂ a c la s s + ret f ie ld

Where aclass £ Sort, name £ Name, input f ie lds £ Sort*, ret f ie ld £
Sort.

The function Spacer is defined as follows:

Spacer : Sort* —> String
Spacer (empty field) = "
Spacer (a field) = ’ U '
Spacer(afield x fieldlist) = 'U , ' + Spacer(fieldlist)

Where empty f ie ld £ Sort0 and denotes an empty Sort set, afie ld £ Sort,
and fie ld lis t £ Field+ (i.e. a set of one or more Fields, see chapter 3 for
discussion on the * and + notation). Spacer is used to define the series of
underscores to represent an FAS method operator’s input arguments.

The operator and equation to generate the FAS tuple sort type as shown
in formula 4.2 is as follows.

GenFASTuple : Sort x Sort —» F A S Sort
GenFASTuple(aclass, afield) = so rt aclass + a fie ld

Where aclass £ Sort and afield £ Sort. The above equation uses the
operator + on aclass and afield to join their literal string names together. A
Sort or a Nam e can be considered to consist of simply a literal string identi
fier. For instance the operators to generate Sorts and Nam es are informally
as follows.

op _ : String —» Sort

op _ : String —*■ N am e

The + operator, which essentially is used to represent string concate
nation, can have as inputs both Sorts and Names. We assume d- is able
to project out the string component of Sorts and N am es when passed as
arguments (remember we treat Sorts as being equivalent to Names). For
example given two input sorts called AClass and Int then + will produce the
result AClassInt.

4.2. Basic Class Specification Conversion 100

In order to generate tuple types we need to know the return type of a
method. We use the following operation to discover this.

GetSingleRetType : Method —*■ Sort
GetSingleRetType(op name : input f ie ld s—̂ rettype) = rettype

Where rettype G Sort. It should be noted that this and other equations
could be simplified with the use of projection functions on ACS classes and
their components.

We need to examine all of an ACS’s methods and create a list of sorts
representing all their return types. We use the following operation to do this.

GetMethRetTypes : Sort* x Method* —> Sort*
GetMethRetTypes(sortlist, Em pty Methods) = sortlist
GetMethRetTypes(sortlist, methodlist) =

G etM ethRetT ype s (GetS ingleRetT ype (head(methodlist))-\-
sortlist, tail(methodlist))
(ifGetSingleRetType(head(methodlist)) not G sortlist)

GetMethRetTypes{sortlist, methodlist) =
GetMethRetTypes(sortlist, tail(methodlist))
(ifGetSingleRetType(head(methodlist)) G sortlist)

Where head and tail can be assumed to be standard list operators, sortlist G
Sort*, methodlist G Method*, and Em pty Methods G MethodP. In this case
+ is used to as a list addition operator by adding a new element to a list.
It should be noted that when we generate the tuple sorts and operations we
only want to create one for each return type. Therefore if for example two
methods return an int then we only want to add one reference to int to the
sort list returned by GetMethRetTypes. Therefore the above operation checks
to see if a sort type is already in the sort list to be a returned and only adds
the sort if it doesn’t already exist in the list.

The following operation takes in a list of methods and returns a list of
FASSorts as shown and explained in formula 4.2.

GetAllTupleSorts : Sort x Method* —> F A S Sort*
GetAUTupleSorts{aclass, methodlist) =

GetAllTupleSortsAux(aclass, GetMethRetTypes(methodlist))

4.2. Basic Class Specification Conversion 101

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAllTupleSortsAux which is defined as follows:

GetAllTupleSortsAux : Sort x Sort* —> F A S Sort*
GetAllTupleSortsAux(aclass, EmptySorts) = E m ptyF asTupleSorts
GetAllTupleSortsAux(aclass , sortlist) =

GenF ASTuple(aclass, head(sortlist))+
GetAllTupleSortsAux(aclass , tail(sortlist))

Where Em ptySorts G Sort0 and Em ptyF A STup leSorts G F A S S o rt* .
This takes a list of Sorts and returns the FASSorts.

The following operation takes in a list of methods and returns a list of
FASTupleOps as shown and explained in formula 4.3.

GetAllTupleOps : Sort x Method* —> FASTupleOp*
GetAllTupleOps (aclass, methodlist) =

GetAllTupleOpsAux(aclass, GetMethRetTypes(methodlist))

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAllTupleOpsAux which is defined as follows:

GetAllTupleOpsAux : Sort x Sort* —> FASTupleOp*
GetAllTupleOpsAux(aclass, EmptySorts) = Em ptyFasTupleOps
GetAllTupleOpsAux(aclass, sortlist) =

GenTupleOp(aclass, head(sortlist))+
GetAllTupleOpsAux(aclass,tail(sortlist))

Where EmptySorts G Sort0 and Em ptyFASTupleO ps G F A STup leO p*.
This takes a list of Sorts and returns the FASTupleOps.

The following operation takes in a list of methods and returns a list of
FASOvalOps as shown and explained in formula 4.4.

GetAllOvalOps : Sort x Method* —> FASOvalOp*
GetAllOvalOps(aclass, methodlist) =

GetAUOvalOpsAux(aclass, G etM ethRetT ypes (methodlist))

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAllOvalOpsAux which is defined as follows:

4.2. Basic Class Specification Conversion 102

GetAllOvalOpsAux : Sort x Sort* —*■ FASOvalOp*
GetAllOvalOpsAux(aclass, EmptySorts) = E m pty FasOvalOps
GetAllOvalOpsAux(aclass, sortlist) =

GenOvalOp(aclass, /iead(sort/zst))+
GetAUOvalOpsAuxiadass , tail (sortlist))

Where Em ptySorts G Sort0 and Em ptyFASO valO ps G FASOvalOp*.
This takes a list of Sorts and returns the FASOvalOps.

The following operation takes in a list of methods and returns a list of
FASQvalOps as shown and explained in formula 4.5.

GetAllQvalOps : Sort x Method* —► FASQvalOp*
GetAllQvalOps(aclass, methodlist) =

GetAllQvalOps Aux(aclass, GetMethRetTypes(methodlist))

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAllQvalOpsAux which is defined as follows:

GetAUQvalOpsAux : Sort x Sort* —» FASQvalOp*
GetAllQvalOpsAux(aclass, EmptySorts) = Em ptyFasQ valOps
GetAllQvalOpsAux(aclass, sortlist) =

GenQvalOp(aclass, head(sortlist))-\-
GetAllQvalOpsAux(aclass, tail(sortlist))

Where E m ptySorts G Sort0 and E m ptyFASQ valO ps G FASQvalOp*.
This takes a list of Sorts and returns the FASQvalOps.

The following operation generates the FASTupleOp as defined and ex
plained in formula 4.3.

GenTupleOp : Sort x Sort —> FASTupleOp
GenTupleOp(aclass, afield) — op _ : aclass x a fie ld —> aclass -1- a fie ld

The following operation generates the FASOvalOp as defined and ex
plained in formula 4.4.

GenOvalOp : Sort x Sort —> FASOvalOp
GenOvalOp(aclass, afield) = op oval(_) : aclass + a fie ld aclass .

4.2. Basic Class Specification Conversion 103

The following operation generates the FASQvalOp as defined and ex
plained in formula 4.5.

GenQvalOp : Sort x Sort —» FASQvalOp
GenQvalOp(aclass, afield) = op qval(_) : aclass + a fie ld —» a fie ld .

The following operation takes in a list of methods and returns a list of
FASOvalEqs as shown and explained in formula 4.6.

GetAllOvalEqs : Sort x Method* —> FASOvalEq*
GetAllOvalEps(aclass , methodlist) =

GetAUOvalEqsAux(aclass1 G etM ethRetT ypes (methodlist))

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAUOvalEqsAux which is defined as follows:

GetAllOvalEqsAux : Sort x Sort* —► FASOvalEq*
GetAllOvalEqs Aux(aclass , Em ptySorts) = E m pty FasOvalEqs
GetAllOvalEqsAux(aclass, sortlist) =

GetOvalEqs(aclass, head(sortlist))-\-
GetAUOvalEqsAux(aclass, tail(sortlist))

Where Em ptySorts G Sort0 and Em pty F A S Oval Eqs G FASOvalEq*.
This takes a list of Sorts and returns the FASOvalEqs.

The following operation takes in a list of methods and returns a list of
FASQvalEqs as shown and explained in formula 4.7.

GetAUQvalEqs : Sort x Method* —> FASQvalEq*
GetAllQvalEps(aclass, methodlist) =

GetAUQvalEqs Aux(aclass, G etM ethRetT ypes (methodlist))

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GetAUQvalEqs Aux which is defined as follows:

GetAUQvalEqsAux : Sort x Sort* —> FASQvalEq*
GetAUQvalEqsAux(aclass, EmptySorts) = Em ptyF asQ valEqs
GetAUQvalEqsAux(aclass, sortlist) =

GetQvalEqs(aclass, head(sortlist))+
GetAUQvalEqsAux(aclass, tail(sortlist))

4.2. Basic Class Specification Conversion 104

Where Em ptySorts G Sort0 and E m ptyF A SQ valE qs G F A S Q va lE q *.
This takes a list of Sorts and returns the FASQvalEqs.

The following operation generate the FASOvalEqs as shown and described
in formula 4.6.

GenOvalEq : Sort x Sort —► FASO valEq
GenOvalEq(aclass, rettype) =

GenOvalEqAux(GenVarName(aclass), G enVarName(rettype))

This operator and others in this section make use of GenVarName. We
will not define it here, however informally this operation takes in a sort type
and returns the name of a variable of that sort type. It is assumed that this
variable name is either added too or obtained from a list of existing variable
names.

The above operation takes in two sorts, generates variable names for them
and passes them to GenAllOvalEqAux which creates an FASOvalEq and is
defined as follows:

GenOvalEqAux : Name x Nam e —> FA SO valE q
GenOvalEqAuxiaclassvar, afieldvar) =

eq oval(aclassvarafieldvar) = aclassvar

The following operation generate the FASQvalEqs as shown and described
in formula 4.7.

GenQvalEq : Sort x Method —» FASO valEq
GenQvalEq(aclass, rettype) =

GenQvalEqAux(GenVarName(aclass), G enV arN ame(rettype))

The above operation takes in two sorts, generates variable names for them
and passes them to GenAllQvalEqAux which creates an FASQvalEq and is
defined as follows:

GenQvalEqAux : Name x N am e —> F A SQ valE q
GenQvalEqAux(aclassvar, afieldvar) =

eq qval(aclassvar,afieldvar) = afieldvar

The following operation generates the FAS method’s state change opera
tor as shown and explained in formula 4.8:

4.2. Basic Class Specification Conversion 105

GenMethOOp : Sort x Method —> FASM ethodO Op
GenM ethOOp(aclass, op nam e:inputf ie lds^re ttype) =

op _.name(Spacer (input fields)) o : aclass x inpu tfie lds —> aclass .

The following operation generates the FAS method’s query return oper
ator as shown and explained in formula 4.9:

GenMethQOp : 5ort x Method —> FASM ethodQ Op
GenMethQOp(aclass, op name\inputfields-+rettype) =

op-.name(Spacer(inputfields))^ : aclass x inpu tfie lds —> rettype .

The following operation generates the FASDefaultMethLinkEq as shown
and discussed in 4.10.

GenM ethLinkEq : Sort x Method —> F A S D e fa u l tM e th L in kE q
GenM ethLinkEq(aclass , op name:input fie lds -^rettype) =

GenM ethLinkEqAux(name, GenV arName(aclass),
GenVar Names (input fields))

The above operation takes in a sort and a method, generates variable
names for them (we assume GenVarName is capable of producing a list of
variable names from a list of sorts for the sake of convenience) and passes
them to GenM ethLinkEq Aux which creates an FASDefaultMethLinkEq and
is defined as follows:

GenM ethLinkEq Aux : Nam e x N am e x Name*
—> F A SD efau ltM ethL inkE q

GenMethLinkEqAux(name, aclassvar, input fieldvars) =
eq (aclassvar).nam e(inputfieldvars)o,
(aclassvar).name(inputfieldsvars)q

The following operation generates the FASTupMethLinkEq as shown and
discussed in 4.11.

GenTupM ethLinkEq : Sort x Method —► F A S T u p le M ethLinkEq
GenTupMethLinkEq(aclass, op name'.inputfields—>rettype) =

GenT upM ethLinkEq Aux (name,
GenV arN ame(aclass), GenVar N am es (input fields))

4.2. Basic Class Specification Conversion 106

The above operation takes in a sort and a method, generates variable
names for them and passes them to GenTupLinkEqAux which creates an
FASTupleMethLinkEq and is defined as follows:

GenTupM ethLinkEq Aux : N am e x Nam e x N a m e *
—► F A STupleM ethLinkEq

G enTupM ethLinkEqAux(name, aclassvar, inputfie ldvars) =
eq (ova\(aclassvar)).name(inputfieldvars)o ,
(ova\(aclassvar)).name(inputfieldsvars)<\

The following operation takes in a list of methods and defines FASTu-
pleMethLinkEqs for each possible tuple type as shown and described in for
mula 4.11.

GenAllTupM ethLinkEqs : Sort x Method* x Method
—► FASTupleM ethLinkEq*

GenAllTupM ethLinkEqs(aclass , methodlist, amethod) =
GenAllT upM ethLinkEqs Aux(aclass,
G etM ethRetT ypes(methodlist), amethod)

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GenAUTupMethLinkEqsAux which is defined as
follows:

GenAllTupM ethLinkEqs Aux : Sort x Sort* x M ethod
—> F A STupleM ethLinkEq*

GenAllTupM ethLinkEqs Aux(aclass, Em pty Sor ts , amethod) =
Em pty F A S T upleM ethLinkEqs

G enAllTupM ethLinkEqs Aux(aclass, sortlist, amethod) =
GenTupMethLinkEq(aclass + head(sortlist), amethod)-\-
G enAllTupM ethLinkEqs A ux (aclass, tail(sortlist) , amethod)

Where Em ptySorts G Sort0 and
Empty F A STupleM ethLinkEqs G FA STupleM ethL inkEq* . This takes a
list of Sorts and returns the FASTupleMethLinkEqs.

The following operation generates FAS method operators for each of the
possible tuple types.

4.2. Basic Class Specification Conversion 107

G enAllAC StoFASTupM eths : Sort x Method* x Method
-> FASMethodOp*

G enAllACStoF ASTupM eths (aclass, methodlist, amethod) =
G enA llA C ST o F A S T upMethsAux(aclass,
G etM ethRetT ypes (methodlist), amethod)

The above operation extracts a list of sorts from a list of methods’ return
types and passes them to GenAUACStoFASTupMethsAux which is defined
as follows:'

G enAllAC S T oF A STupM eths Aux : Sort x Sort* x M ethod
-> FASMethodOp*

GenAllAC S T o F A STupM eths Aux(aclass, E m p tySorts , amethod) =
Em pty F A S MethOps

GenAllAC SToFasTupM eths Aux(aclass , sortlist, amethod) =
A C SM ethodT oF A S (aclass + head(sortlist) , amethod)+
G enAllACSToFASTupM ethsEqsAux(aclass , tail(sortlist), amethod)

Where Em ptySorts 6 (Sort0 and
Em ptyFASM ethodO ps E FASMethodOps*. This takes a list of Sorts and
returns the FASMethodOps.

4.2.4 Field Operators and Equations
In order to model fields in the FAS we make use of two operations which will
be used to define the behaviour of fields. We define equations that allow us to
get and set the field values of a given class instance. To a user, knowledge of
the implementation of this is not required and will appear to them as though
they are assigning and accessing fields as they normally would in Java.

As in the previous section we will demonstrate how we do this, first in
the general case using a general class AClass and then show how we do it
using the Shape example above. From the ACS example we define a field:

number : Int .

First we must define the get and set operations for a field.

op _.afie ld : AClass —» FieldType

4.2. Basic Class Specification Conversion 108

op . .a f ie ld ■:= _ : AClass FieldType —> AC lass .

In the FAS example this generates the lines:

op number : Shape -> In t .
op number:=_ : Shape In t -> Shape .

We also need to create get and set operations that take in each of the tuple
types that have been generated for the methods earlier as each of these are
potential input types of a class instance using the member access notation:

op _.a fie ld : A C I ass ReturnType —> FieldType .

op a fie ld := _ : A C lass ReturnType In t —> AClass .

In the FAS example these are the lines:

op number:=_ : Shapelnt In t -> Shape .
op number : Shapelnt -> In t .

Next we create an equation that defines the get and set methods for the
operators.

eq ((aclass).a fie ld := (avalue)).afield = avalue .

In the FAS example this is the line:

eq ((SYSO).number:=(SYS8)).number = SYS8 .

Next we define a couple of equations that define how to deal with any of
the tuple types that are passed as class instances to the get and set operators.
These use the oval operators to unpack the class instance part of the tuples.

eq (aclassrettype).afield := (avalue) =
(oval(aclassrettype)).afield \= (avalue) .

eq (aclassrettype).afield = (oval(aclassrettype)).afield .

In the FAS example these are the lines:

eq (SYS2).number:=(SYS8) = (oval(SYS2)).number:=(SYS8) .
eq (SYS2).number = (oval(SYS2)) .number .

4.2. Basic Class Specification Conversion 109

Finally for every field other than the one we are currently defining, we
have to have an equation that allows us to scan through the class instance’s
term list and ignore the other fields terms.

eq ((aclass).a fie ld := (fieldtype)) .another f ie ld = (aclass).a f ie ld .

This allows us to search for a particular field term within the class in
stance’s term list and discard field terms that are not for the field we are
looking for. We need to do this for every alternative field in the class and
also to do the same thing for the other fields to. In our FAS example this
produces the following equation:

eq ((SYSO).number:=(SYS11)) .s id e l = (SYSO).sidel .

There is only one other field, called s id e l, so we only need one equation
to deal with this field.

4.2.5 Constructors
Constructors are similar to methods except they only return the class type as
there is no query part to constructors. Therefore they do not need to make
use of tuples. Also they do not need to take in an instance of the class due
to their construction nature.

All constructors will return a new instance of the class initialised to some
default setting specified by the constructor’s defining equations. Usually this
is some operator which symbolises the empty class or default class. This
empty class is specified by the user in the H idden section of the ACS.

As in the previous section we will demonstrate how we convert construc
tors in the ACS to constructors in the FAS. We will first demonstrate a
generic example for a class called AClass. We will then show how we do the
translation for the example Shape. In the ACS example there is only one
constructor, which is defined by the following lines:

Shape : .
eq Shape() = AShape .

These in turn are making use of the hidden declaration. The hidden dec
laration is ported to the FAS without any alteration or additional equations.

op AShape : -> Shape

4.3. Inheritance and Class Specification Conversion 110

The only changes we make to constructor declarations is to state that
it is an op and to specifically define the parenthesis structure of the input
parameter for the operator declaration. We also define the return type as
that of the class to which the constructor belongs.

op AC lass{ . . . ,_) : InputTypes —> AClass .

All other equations are ported to the FAS unchanged. In our example
the operator declaration changes to the following:

op Shape() : -> Shape .

There are no input types in our example so empty parenthesis are used.

4.3 Inheritance and Class Specification C on
version

In this section we will look at how we model inheritance. The importing of
methods from an inherited class is reasonably trivial but the modelling of
method overriding and accessing overridden methods is more complex. In
Java there exists only single inheritance so our model does not have to cope
with multiple inheritance. However we still have to be able to model a class
with many levels of inheritance.

To illustrate this we will first use the more complex version of the Shape
ACS example that we looked at in Section 3.3.6.

Class Shape Extends Object!

Hidden!
op AShape : -> Shape .

>

F ie ld s !
number : In t .

>

Constructors!
Shape : .

>

4.3. Inheritance and Class Specification Conversion 111

Methods!
op area : -> In t .
op perimeter -> In t .
op re turn4 : -> In t .

>

Operations!
>

Variables!
var S : Shape .

}

Equations!
eq Shape() = AShape .
eq (S) . a reaO q = 0 .
eq (S).perim eter()q = 0 .
eq (S) .re tu rn 4 ()q = 4 .

>
>

This using the ACS to FAS conversion methods that we looked at in
Section 4.2 will produce the following FAS:

fmod SHAPE is

p ro tec ting BUILDLINK .

so rt Shape .
so r t Shapelnt .

op Shape 0 : -> Shape .

op AShape : -> Shape .

op : Shape In t -> Shapelnt .
op oval(_) : Shapelnt -> Shape .
op qval(_) : Shapelnt -> In t .
op _ .a rea() : Shape -> Shapelnt .
op _ .a rea() : Shapelnt -> Shapelnt .

4.3. Inheritance and Class Specification Conversion 112

op _ .a rea()o : Shape -> Shape .
op _ .a rea ()q : Shape -> In t .
op _ .perim eter() : Shape -> Shapelnt .
op _ .perim eter() : Shapelnt -> Shapelnt .
op _ .perim eter()o : Shape -> Shape .
op _ .perim eter()q : Shape -> In t .
op _ .re tu rn4() : Shape -> Shapelnt .
op _ .re tu rn4() : Shapelnt -> Shapelnt .
op _ .re tu rn4 ()o : Shape -> Shape .
op _ .re tu rn 4 ()q : Shape -> In t .

op ..number : Shape -> In t .
op _ .number:=_ : Shape In t -> Shape .
op _ .number:=_ : Shapelnt In t -> Shape .
op ..number : Shapelnt -> In t .

op nu ll : -> Shape .

var S : Shape .
var SYSO : Shape .
var SYS1 : In t .
var SYS2 : Shapelnt .
var SYS3 : Shape .
var SYS4 : Shape .
var SYS5 : ShapeArray .
var SYS6 : In t .
var SYS7 : In t .
var SYS8 : In t .

eq Shape() = AShape .
eq (S) .a rea ()q = 0 .
eq (S) .perim eter()q = 0 .
eq (S) .re tu rn4 ()q = 4 .
eq oval(SYSO,SYS1) = SYSO .
eq qval(SYSO,SYS1) = SYS1 .
eq (SYSO) .area() = (SYSO) .a rea ()o , (SYSO) .a re aO q .
eq (SYS2).area() =

(oval(SYS2)) ,a rea()o , (oval(SYS2)) .a re aO q .
eq (SYSO) .perimeterO =

(SYSO) .perim eter()o , (SYSO) .pe rim ete rO q .
eq (SYS2) .perimeterO =

4.3. Inheritance and Class Specification Conversion 113

(oval(SYS2)) .p e r im e te rO o , (oval(SYS2)) .p e r im e te r()q .
eq (SYSO).return4() =

(SYSO).return4()o,(SYSO).return4()q .
eq (SYS2).return4() =

(oval(SYS2)).re tu rn4 ()o ,(ova l(S Y S 2)) .re tu rn4 ()q .

eq ((SYSO).number:=(SYS8)).number = SYS8 .
eq (SYS2).number:=(SYS8) = (oval(SYS2)).number:=(SYS8) .
eq (SYS2).number = (oval(SYS2)) .number .

endfm

We then extend the Shape ACS with the Rectangle ACS seen in Section
3.3.7.

Class Rectangle Extends Shape{

Hidden!
op ARectangle : -> Rectangle .

>

F ie ld s !
s id e l : In t .
side2 : In t .

>

Constructors!
Rectangle : .
Rectangle : In t In t .

>

Methods!
op area : -> In t .
op perim eter : -> In t .

}

Operations!
>

4.3. Inheritance and Class Specification Conversion 114

Variables!
vars I J : Int .
var R : Rectangle .

}

Equations!
eq Rectangle() = ARectangle .
eq Rectangle(I, J) =

((ARectangle).sidel:=(I)).side2:=(J) .
eq (R).areaOq = (R).sidel * (R).side2 .
eq (R).perimeter()q =

((R).sidel * 2) + ((R).side2 * 2) .
>

>

The corresponding FAS for Rectangle in which the inheritance is mod
elled is as follows:

fmod RECTANGLE is

p ro tec ting BUILDLINK .

so rt Shape .
so r t Rectangle .
so r t Rectanglelnt .
so r t Shapelnt .

subsort Rectanglelnt < Shapelnt .
subsort Rectangle < Shape .

op Rectangle() : -> Rectangle .
op Rectangle(_,_) : In t In t -> Rectangle .

op AShape : -> Shape .
op ARectangle : -> Rectangle .

op : Rectangle In t -> Rectanglelnt .
op oval(_) : Rectanglelnt -> Rectangle .
op qval(_) : Rectanglelnt -> In t .

4.3. Inheritance and Class Specification Conversion 115

op : Shape In t -> Shapelnt .
op oval(_) : Shapelnt -> Shape .
op qval(_) : Shapelnt -> In t .

op _ .a rea () : Rectangle -> Rectanglelnt .
op _ .a rea () : Rectanglelnt -> Rectanglelnt .
op _ .a rea ()o : Rectangle -> Rectangle .
op _ . a reaO q : Rectangle -> In t .

op _ .p e rim e te r() : Rectangle -> Rectangleln t .
op perim eterO : Rectanglelnt -> R ectangle ln t .
op _ .perim eter()o : Rectangle -> Rectangle .
op _ .perim eter()q : Rectangle -> In t .

op _ . super .areaO : Shape -> Shapelnt .
op _ . super .areaO : Shapelnt -> Shapelnt .
op _ . super .a reaO o : Shape -> Shape .
op _ . su p er .a reaO q : Shape -> In t .

op _ . super.perim eterO : Shape -> Shapelnt .
op super .perim ete r() : Shapelnt -> Shapelnt .
op _ . super.perim eter()o : Shape -> Shape .
op super .perim eterO q : Shape -> In t .

op _ .re tu rn 4 () : Rectangle -> Rectanglelnt .
op _ .re tu rn 4 () : Rectanglelnt -> Rectanglelnt .
op _ .re tu rn 4 ()o : Rectangle -> Rectangle .
op _ .re tu rn 4 ()q : Rectangle -> In t .

op _ . super .re tu rn 4 () : Shape -> Shapelnt .
op _ . super .re tu rn4 () : Shapelnt -> Shapelnt .
op _ . super .re tu rn4 ()o : Shape -> Shape .
op super .re tu rn 4 ()q : Shape -> In t .

op _ . s id e l : Rectangle -> In t .
op _ . s i d e l :=_ : Rectangle In t -> Rectangle .
op s i d e l :=_ : Rectanglelnt In t -> Rectangle .
op _ . s id e l : Rectanglelnt -> In t .

op _ .s ide2 : Rectangle -> In t .

4.3. Inheritance and Class Specification Conversion 116

op _.side2:=_ : Rectangle Int -> Rectangle .
op _.side2:=_ : Rectanglelnt Int -> Rectangle .
op _.side2 : Rectanglelnt -> Int .

op _ .number : Rectangle -> Int .
op _ .number:=_ : Rectangle Int -> Rectangle .
op _ .number:=_ : Rectanglelnt Int -> Rectangle .
op number : Rectanglelnt -> Int .

var S : Shape .
var SYSO Rectangle .
var SYS1 Shape .
vars I J In t .
var R : Rectangle .
var SYS2 Shape .
var SYS3 Rectangle .
var SYS4 In t .
var SYS5 Rectanglelnt .
var SYS6 In t .
var SYS7 Shapelnt .
var SYS8 Rectangle .
var SYS9 Rectangle .
var SYS10 RectangleArray
var SYS11 In t .
var SYS12 In t .
var SYS13 In t .
var SYS14 In t .
var SYS15 In t .
var SYS16 In t .
var SYS17 In t .
var SYS18 In t .
var SYS19 In t .
var SYS20 In t .
var SYS21 In t .

eq (S) . su p e r . a reaO q = 0 .
eq (S) .su p e r .p e r im ete r()q = 0 .
eq (S) .su p e r .re tu rn 4 ()q = 4 .

eq (R).a reaO q = 0 [owise] .
eq (R).perim eter()q = 0 [owise]

4.3. Inheritance and Class Specification Conversion 117

eq (R).re tu rn4()q = 4 [owise] .

eq Rectangle() = ARectangle .
eq Rectangle (I , J) = ((A R ec tan g le) .s id e l:= (I)) .s id e2 := (J) .

eq (R).a reaO q = (R).s ide l * (R).side2 .
eq (R).perim eter()q = ((R) .s id e l * 2) + ((R) .s ide2 * 2) .

eq oval(SYS3, SYS4) = SYS3 .
eq qval(SYS3, SYS4) = SYS4 .
eq oval(SYS2,SYS6) = SYS2 .
eq qval(SYS2, SYS6) = SYS6 .

eq (SYS1). super .re tu rn4()q = (SYS1),return4()q [owise] .
eq (SYS1). super .re tu rn4()o = (SYS1).return4()o [owise] .

eq (SYS3). areaO = (SYS3) .a rea()o , (SYS3) .a re a O q .
eq (SYS5) .a reaO =

(oval(SYS5)) .a reaO o , (oval(SYS5)) .a re aO q .
eq (SYS3) .perimeterO =

(SYS3) .perim eter()o , (SYS3) .perim eterO q .
eq (SYS5) .perimeterO =

(oval(SYS5)).perimeter ()o, (oval(SYS5)) .perim eter ()q .

eq (SYS2) . super .a reaO =
(SYS2) .super .a rea ()o , (SYS2). super. a reaO q •

eq (SYS7) . super .a reaO =
(oval(SYS7)) . super .area()o , (oval(SYS7)) .s u p e r .a re a O q .

eq (SYS2). super .perimeterO =
(SYS2) .super, perimeter ()o, (SYS2). super .perim eter Oq .

eq (SYS7). super.perim eter() =
(oval(SYS7)). super.perim eter()o ,
(oval(SYS7)). super.perim eter()q .

eq (SYS3) .re turn4() = (SYS3) .re tu rn4 ()o , (SYS3) .re tu rn 4 ()q .
eq (SYS5).return4() =

(oval(SY S5)).return4()o ,(oval(SY S5)),re turn4()q .

eq (SYS2). super.re tu rn4() =
(SYS2).super.return4()o,(SYS2). super. r e tu rn 4 0 q .

eq (SYS7) . super.re tu rn4() = (oval(SYS7)) .su p e r .re tu rn 4 ()o ,

4.3. Inheritance and Class Specification Conversion 118

(oval(SY S7)).super.re turn4()q .

eq ((SYS3). s i d e l :=(SYS13)) . s id e l = SYS13 .
eq (SYS5).sidel:=(SYS13) = (oval(SYS5)).sidel:=(SYS13) .
eq (SYS5).sidel = (oval(SYS5)).sidel .
eq ((SYS3).side2:=(SYS14)).sidel = (SYS3). s id e l .
eq ((SYS3).number:=(SYS15)).sidel = (SYS3).sidel .
eq ((SYS3). s ide2 :=(SYS16)) . side2 = SYS16 .
eq (SYS5). side2:=(SYS16) = (oval(SYS5)) . side2:=(SYS16) .
eq (SYS5). side2 = (oval(SYS5)).side2 .
eq ((SYS3). s i d e l :=(SYS17)) .side2 = (SYS3).side2 .
eq ((SYS3).number:=(SYS1 8)) .side2 = (SYS3).side2 .
eq ((SYS3).number:=(SYS19)).number = SYS19 .
eq (SYS5).number:=(SYS19) = (oval(SYS5)).number:=(SYS19)
eq (SYS5).number = (oval(SYS5)).number .
eq ((SYS3).sidel:=(SYS20)).number = (SYS3).number .
eq ((SYS3) .side2: = (SYS21)) .number = (SYS3) .number .

endfm

As can be seen this FAS is longer and more complex than the FAS seen in
Section 4.2. This is not just due to the addition of new methods, fields and
constructors, neither is it just due to the need to import methods, fields, and
constructors from Shape. There is a large amount of additional equations
and declarations generated to allow us access to the super or inherited class’
(in this case Shape) original methods and fields, which is important if they
have been overriden by the inheriting class (Rectangle).

Throughout the rest of this section we will examine how we model inher
itance in the general case and then refer back to the above Rectangle FAS
as an illustrative example of each concept we introduce. As before we will
not be looking at the declaration of the variables as this is trivial and is only
required by the Maude language.

4.3.1 Order of Class Specification Evaluation
In order to create the FAS for a class that imports from another class we need
to first traverse the inheritance hierarchy till we reach the topmost class (i.e.
the class that does not inherit from any another class).

We then need to generate the FAS for each of this class’ methods, fields
and constructors as discussed in Section 4.2. However we do not actually

4.3. Inheritance and Class Specification Conversion 119

need to generate an FAS Maude module for this class but we do need to keep
a record of the information generated so that we can import it into the next
class in the inheritance chain.

We also need at this stage to note which operators relate to the methods,
which ones relate to the constructors, and which to the fields. Therefore
when the user generates the FAS, it is important that they keep a record of
what each operator relates to.

We then move onto the next class down in the inheritance tree and create
an FAS for that class. Then we take the FAS information we generated for
the class it inherits from and import it into the new FAS. We will discuss
how we do this in the next section.

If this is the last class in the inheritance hierarchy (i.e. the class we
wish to actually model) then we output all the FAS information as an FAS
Maude module. If not we again categorise the operators and proceed down
the inheritance hierachy to the next class.

Fields remained unchanged as it would make no difference to the class
to override a field. All we have to do when we import a field is to copy its
equations and operators into the inheriting class and of course create any
new equations that are needed to search through a class instance’s term list
for a given field as we saw in section 4.2.4. Therefore we will not refer again
to fields in this section.

Constructors are not inherited so we will not be referring to them again
either. All we are interested in in this section is modelling how inheritance
and methods are translated to an FAS.

In Java when a method is inherited by a class, one of two things can
occur:

1. The inherited method is overridden by a new definition in the inheriting
class.

2. The inherited method is not overridden by a new definition.

If the method is not overridden then the inherited methods definition is
used (as we will see later in our model this means we use the inherited method
equations to define the method in the inheriting class). If it is overridden
then the new definition is used instead of the inherited definition (we will see
later how we make use of a notation called [owise] in Maude to allow us to
do this).

Whether overridden or not, the original definition of an inherited method
can be accessed from the inheriting class via the use of the keyword super.
For instance if a class inherited a method called amethO from a class, then

4.3. Inheritance and Class Specification Conversion 120

the original definition could be accessed as follows su p er . ameth 0 . We will
show later how in our model we make use of a serious of operators and linking
equations to allow us to model accessing overridden method definitions.

4.3.2 Inheriting M ethods
We will look at how we model inherited methods in an FAS, first with a
general case where we use AC la ss as the inheriting class and I Cl ass as the
class that AClass will inherit from. We will then use the methods a rea and
re turn4 to illustrate this. As will be seen area is a method that will be
overridden and re turn4 is a method that is inherited without being overrid
den.

Firstly we make two copies of all the inherited method’s equations. With
the first copy we tag the keyword [owise] on to the end of each of the method
equations. These new equations we will represent the original definitions of
the inherited methods. The [owise] keyword ensures that we only call the
original equations for an inherited method once all other possibilities have
been tried. This ensures that if a method is overridden then the overriding
definition is executed instead of the original inherited method definition. We
need to have the original definitions tagged with [owise] to allow us to
model methods that may not have been overridden.

eq te rm l - termfl [owise] .

In the FAS example this creates the lines:

eq (R).areaOq = 0 [owise] .
eq (R).return4()q = 4 [owise] .

Next we take the inherited class’ method operators and tag su p e r. onto
them between the _. notation and the method name for each reference to
the method name. This is done so as the original method definitions are
now accessible via the use of the super notation. As mentioned earlier if we
inherit a method call amethO then the original definition for the method
is accessed as follows super .am ethO. So if we have a method that was
originally in the following format:

op _.methodQ : IC lass Input L ist —► IC lassReturnType .

This is converted to the following format:

4.3. Inheritance and Class Specification Conversion 121

op super.methodQ : IClass InputL ist —> IC lassR eturnT ype .

In the FAS example this produces the following lines:

op sup er.a reaO : Shape -> Shapelnt .
op su p er.re tu rn 4 () : Shape -> Shapelnt .

Note that we retain the inheriting class’ original return types. We will
explain how we are able to do this in Section 4.3.3.

If the method is not overridden (i.e. there is no overriding new definition
for a method in the inheriting class) then we also need to retain a copy of
the original operator for the method but change the class instance input and
return types to match the inheriting class’ types. As the inherited method
will now refer to class instances of the inheriting class type, the class type the
method is to be enacted upon as well the return type of state changes to a
class instance need to refer to the inheriting class type and not the inherited
class type. So if the original operator was of the following format:

op -.methodQ : IClass InputL ist —► IC lassReturnType .

The new converted copy would be of the following format:

op _.methodQ : AClass InputL ist —> AC lassReturnType .

In the FAS example re tu rn4 is not overridden so it produces the following
extra operator:

op _ .re tu rn 4 () : Rectangle -> R ectangleln t .

For all inherited methods we also do the same for any operators that
handle the tuple query and state change return types for each method as
shown in Section 4.2.2. These operators allow us to enact methods belonging
to a class on any of the tuple types of that class as these tuples are also valid
instances of the class. In our FAS example this accounts for the following
lines.

op _ .sup er.a reaO : Shape -> Shapelnt .
op _ . su p er.a reaO : Shapelnt -> Shapelnt .
op _ . su p e r.areaO o : Shape -> Shape .

4.3. Inheritance and Class Specification Conversion 122

op su p e r.a re a ()q : Shape -> In t .

op _ .re tu rn 4 () : R ectanglelnt -> R ectangleln t .
op _ .re tu rn 4 ()o : Rectangle -> Rectangle .
op _ .re tu rn 4 ()q : Rectangle -> In t .

op su p e r .re tu rn 4 () : Shapelnt -> Shapelnt .
op su p e r .re tu rn 4 ()o : Shape -> Shape .
op su p e r .re tu rn 4 ()q : Shape -> In t .

All the necessary tuple equations, operators and types for an overridden
method’s new definition will have already been generated during the initial
code generation for the inherited class so we will not discuss them here. The
same applies to the new equation definitions for evaluating the method. We
will only be showing any new code generated for modelling inheritance in
both the general case and the example.

Next we generate equations for each non overridden method, linking the
super versions of each method’s query and state change definitions to its
standard version. If a method has not been overridden then by calling a
method via the super keyword will be the same as simply calling the method
without the keyword. Therefore we define the super .method0 in terms of
the inheriting class’actual method() definition. We use the [owise] keyword
to ensure this equation isn’t called if the method has been overridden (if the
method has been overridden then we do not want to have super .method0
calling a method() as this will not be the correct behaviour of super .method
as it will have a different definition).

eq (AClass).super.amethodQq = {AClass).amethod()q [owise] .
eq (AC lass), super.amethodQo = (AClass).amethodQo [owise] .

We use the [owise] keyword to ensure these equations are only called
once all other equations have been tried to prevent incorrect behavior. In
our FAS example this produces the following lines:

eq (SYS1). su p e r .re tu rn 4 ()q = (SY S1),return4()q [owise] .
eq (SYS1). su p er.re tu rn 4 ()o = (SYS1).return4()o [owise] .

Finally we take the second copy we made of the inheriting class’ methods’
equations and as we did with the operators we tag super, between the _.
notation and method name for any reference to a method’s name in the
equation. This will ensure the equations from an inherited class refer to

4.3. Inheritance and Class Specification Conversion 123

the original definitions of the inherited class. These original definitions are
accessed via the super method operator therefore all references to the original
methods must be changed to super methods.

In our FAS example this produces the following lines:

eq (SYS2). su p e r .a rea () =
(SYS2) .su p e r .a re a O o , (SYS2) .su p e r .a reaO q .

eq (SYS7). su p e r .a rea () =
(oval(SYS7)) . super .a reaO o, (oval(SYS7)) .super .a re a O q .

eq (SYS2). su p e r .re tu rn 4 () =
(SYS2). su p er. re tu rn 4 () o , (SYS2). su p er.re tu rn 4 0 q .

eq (SYS7). su p e r .re tu rn 4 () = (ova l(S Y S 7)).super.re tu rn4 ()o ,
(o v a l(SYS7)) . su p e r.re tu rn 4 () q .

4.3.3 Sort, Subsorts, and Hidden Operators
The other aspect of classes that we have to deal with in inheritance are
sorts and the hidden operators. Hidden operators are trivial and are copied
unchanged from the inherited class into the inheriting class.

Sorts require a bit more work. First of all we have to define a subsort
between the inherited class type and the inheriting class type.

subsort AClass < IC lass .

Therefore the inheriting class is a subsort of the inherited class. In our
FAS example this produces the line:

subsort Rectangle < Shape .

Next if any of the inherited class methods’ return types do not have
a corresponding tuple in the inheriting class then that type needs to be
generated along with any tuple operations and equations for that type. The
inheriting class still has to be able to accept these missing tuple types as
valid class instances for accessing method and fields from. Therefore they
will need to be generated for the inheriting class in addition to all the other
tuple types. So for instance if we have a sort tuple type IC lassReturnType
then we need to generate a corresponding sort type AC lassReturnType if
it has not already been generated. This will involve generating all the tuple
operators and equations in the same way as we did in section 4.2.2. We will
also need to create a subsort for these tuples.

4.3. Inheritance and Class Specification Conversion 124

subsort AClassReturnType < IC lassReturnType .

The new operations we would need to generate for this are as follows:

op _ : AClass ReturnType — > A C lass ReturnType .
op oval(J) : AC lass ReturnType — > AClass .
op qval(I) : AC lass ReturnType — > ReturnType .

We will also need the following new equations:

eq oval(aclass,rettype) = aclass .
eq qval(aclass,rettype) = rettype .

Finally we need to add the linking and extraction equations for the new
tuple types to each of the methods in the class.

eq (aclassrettype).amethod() =
(oval(aclassrettype)).amethodQo, (oval(aclassrettype)).amethod()q .

In our example there will be no need to generate these new tuple types as
they will already exist when we create FAS information to model R ectangle’s
existing methods.

4.3.4 M ultiple Level Inheritance
We also need to be able to model a class that has more than one level in its
inheritance tree. We add to our example the Square ACS which extends the
inheritance chain by inheriting from Rectangle.

Class Square Extends Rectangle!

Hidden!
op ASquare : -> Square .

}

F ie lds!
>

4.3. Inheritance and Class Specification Conversion 125

Constructors!
Square : In t .

>

Methods!
op area : -> In t .
op perimeter : -> In t .
op setSide : In t -> Int . .

>

Operations!
>

Variables!
var I : In t .
var S : Square .

>

Equations!
eq Square(I) = (ASquare). s id e l := (I) .
eq (S) . areaO q = (S) . s ide l * (S) .s id e l
eq (S).perim eter()q = (S) .s id e l * 4 .
eq (S) . se tS ide(I)q = (S) .s id e l .
eq (S) . setS ide(I)o = (S). s id e l := (I) .

>
}

The FAS for this class is as follows:

fmod SQUARE is

pro tec ting BUILDLINK .

so r t Shape .
so r t Rectangle .
so rt Square .
so rt Squarelnt .
so rt Squarevoid .

4.3. Inheritance and Class Specification Conversion 126

so r t Rectanglelnt .
so r t Shapelnt .

subsort Squarelnt < Rectanglelnt .
subsort Rectanglelnt < Shapelnt .
subsort Rectangle < Shape .
subsort Square < Rectangle .

op Shape() : -> Shape .
op Rectangle() : -> Rectangle .
op R e c t a n g l e : In t In t -> Rectangle .
op Square(_) : In t -> Square .

op AShape : -> Shape .
op ARectangle : -> Rectangle .
op ASquare : -> Square .

op : Square In t -> Squarelnt .
op oval(_) : Squarelnt -> Square .
op qval(_) : Squarelnt -> In t .
op : Square void -> Squarevoid .
op oval(_) : Squarevoid -> Square .
op qval(_) : Squarevoid -> void .
op : Rectangle In t -> Rectanglelnt .
op oval(_) : Rectanglelnt -> Rectangle .
op qval(_) : Rectanglelnt -> In t .
op : Shape In t -> Shapelnt .
op oval(_) : Shapelnt -> Shape .
op qval(_) : Shapelnt -> In t .
op _ . a rea() : Square -> Squarelnt .
op _ . a rea() : Squarelnt -> Squarelnt .
op _ . a rea() : Squarevoid -> Squarelnt .
op _ .a rea ()o : Square -> Square .
op _ . a reaO q : Square -> In t .
op _ .perim eterO : Square -> Squarelnt .
op _ .perim eterO : Squarelnt -> Squarelnt .
op _ .perim eterO : Squarevoid -> Squarelnt .
op _ .perim eter()o : Square -> Square .
op _ .perim eter()q : Square -> In t .
op _ . se tS id e (_) : Square In t -> Squarevoid .
op se tS id e (_) : Squarelnt In t -> Squarevoid .

4.3. Inheritance and Class Specification Conversion 127

op se tS id e (_) :
op _ .se tS ide(_)o
op setS ide(_)q

Squarevoid In t -> Squarevoid
Square In t -> Square .
Square In t -> void .

)
)o
)q

op areaO
op a rea()
op areaO
op a reaO o :
op a reaO q :
op . .p e r im e te r
op . .p e r im e te r
op . .p e r im e te r
op . .p e r im e te r
op . .p e r im e te r
op _ . s e tS id e (_
op _ .se tS ide(_
op _ . s e tS id e (_
op _ .se tS ide(_
op _ . s e tS id e (_
op _ . su p e r .a re a ()
op . . s u p e r .a re a O
op . . s u p e r .a re a ()o
op _. su p e r . a reaO q
op _. super .perimeterO
op _ . super .perim ete r()

Square -> Squarelnt .
Squarelnt -> Squarelnt

-> Squarelnt

Square -> Squarelnt .
Squarelnt -> Squarelnt
Squarevoid -> Squarelnt
Square -> Square .
Square -> Int .
)
)

Squarevoid
Square -> Square .
Square -> Int .

: Square Int -> Squarevoid .
: Squarelnt Int -> Squarevoid .
: Squarevoid Int -> Squarevoid .
: Square Int -> Square .
: Square Int -> void .

Rectangle -> Rectanglelnt .
Rectanglelnt -> Rectanglelnt .
Rectangle -> Rectangle .
Rectangle -> Int .

Rectangle -> Rectanglelnt .
Rectanglelnt -> Rectanglelnt

op _ . super.perim eter()o
op _ . super.perim eter()q

Rectangle -> Rectangle
Rectangle -> In t .

op _. su p e r . areaO
op _. su p e r . areaO
op . . s u p e r .a r e a O
op _ . su p er .a re a () o
op _. super .a reaO q
op _ . su p e r . super. a re a ()
op _ . su p e r . super. a re a 0
op _ . su p er . super. a re a ()o
op _ . su p er . super. areaO q
op . .su p e r .p e r im e te rO
op . .su p e r .p e r im e te rO
op . .su p e r .p e r im e te rO
op _ . super.perim eter()o
op . .su p e r .p e r im e te rO q

Square -> Squarelnt .
Squarelnt -> Squarelnt .
Squarevoid -> Squarelnt

Square -> Square .
Square -> In t .

Shape -> Shapelnt
Shapelnt -> ShapeI

Shape -> Shape .
Shape -> In t .

: Square -> Squarelnt
: Squarelnt
: Squarevoid

: Square -> Square
: Square -> In t .

-> Squarelnt
-> Squarelnt

op . .su p e r .su p e r .p e r im e te rO : Shape -> Shapelnt

4.3. Inheritance and Class Specification Conversion 128

op super .super.perim eterO :
op _ . super .super.perim eter()o
op _ . super .super.pe rim ete r()q

Shapelnt -> Shapelnt
Shape -> Shape .
Shape -> In t .

op _ .re tu rn4 ()
op _ .re tu rn4 ()
op _ .re tu rn4 ()
op _ .re tu rn4 ()o
op _ .re tu rn 4 ()q
op _ . super.re tu rn 4 (
op _ . super.re tu rn 4 (
op _ . super .re tu rn4(
op _ . super .re tu rn4(
op _ . super .re tu rn4(
op _ . super.re tu rn4(
op _ . super.re tu rn 4 (
op _ . super.re tu rn 4 (
op _ . super.re tu rn 4 (
op _ . super .super .re tu rn4 ()
op _ . super. super. r e tu rn 4 ()

Square -> Squarelnt .
Squarelnt -> Squarelnt .
Squarevoid -> Squarelnt .

Square -> Square .
Square -> In t .

Rectangle -> R ectangle ln t .
Rectanglelnt -> R ectangle ln t

Rectangle -> Rectangle .
Rectangle -> In t .

Square -> Squarelnt .
-> Squarelnt .

-> Squarelnt .
Squarelnt
Squarevoid

Square -> Square .
Square -> In t .

Shape -> Shapelnt .
Shapelnt -> Shapelnt

op _ . super. super .re tu rn4 ()o
op _ . su p er .su p e r .re tu rn 4 ()q

Shape -> Shape
Shape -> In t .

op _ . s id e l :
op _ . s i d e l :=.
op _ . s i d e l :=.
op _ . s id e l :
op _ . s i d e l :=.
op _ . s id e l :
op _ .s ide2 :
op _.side2:=_
op _.side2:=_
op _ .s ide2 :
op _.side2:=_
op _ .s ide2 :
op _ .number :
op _ .number:=
op _ .number:=
op _ .number :
op _ .number:=
op _ .number :

Square -> In t .
: Square In t -> Square .

, : Squarelnt In t -> Square .
Squarelnt -> In t .
. : Squarevoid In t -> Square
Squarevoid -> In t .
Square -> In t .

: Square In t -> Square .
, : Squarelnt In t -> Square .
Squarelnt -> In t .

: Squarevoid In t -> Square
Squarevoid -> In t .

Square -> In t .
: Square In t -> Square .

_ : Squarelnt In t -> Square
Squarelnt -> In t .

_ : Squarevoid In t -> Square
Squarevoid -> In t .

4.3. Inheritance and Class Specification Conversion 129

var SO : Shape .
var SYSO Rectangle .
var SYS1 Shape .
var J : In t .
var R : Rectangle .
var SYS2 Square .
var SYS3 Rectangle .
var I : In t .
var S : Square .
var SYS4 Shape .
var SYS5 Rectangle .
var SYS6 Square .
var SYS7 Int .
var SYS8 Squarelnt .
var SYS9 void .
var SYS10 : Squarevoid .
var SYS11 : In t .
var SYS12 : Rectanglelnt
var SYS13 : In t .
var SYS14 : Shapelnt .
var SYS15 : In t .
var SYS16 : In t .
var SYS17 : Square .
var SYS18 : Square .
var SYS20 : In t .
var SYS21 : In t .
var SYS22 : In t .
var SYS23 : In t .
var SYS24 : In t .
var SYS25 : In t .
var SYS26 : In t .
var SYS27 : In t .
var SYS28 : In t .
var SYS29 : In t .
var SYS30 : In t .

eq Square(I) = (ASquare). s id e l := (I) .
eq (S) . a reaO q = (S) .s id e l * (S) .s id e l .
eq (S).perim eter()q = (S) .s id e l * 4 .
eq (SO). se tS ide(I)o = (SO). s id e l := (I) .
eq Shape() = AShape .

4.3. Inheritance and Class Specification Conversion 130

eq (S) .su p e r .su p e r .a reaO q = 0 .
eq (S) . su p er . super .perimeter Oq = 0 .
eq (S O).super.super.re tu rn4()q = 4 .
eq Shape() = AShape [owise] .
eq (S) .su p e r .a re a O q = 0 [owise] .
eq (S) .super .per im ete rO q = 0 [owise] .
eq (SO). su p e r ,re tu rn 4 ()q = 4 [owise] .
eq Rectangle() = ARectangle .
eq R ec tang le (I , J) =

((A R e c tan g le) ,s id e l := (I)) .s id e2 := (J) .
eq (R) .super. a reaO q = (R).s ide l * (R).side2 .
eq (R) . super .perim eter Oq =

((R) .s id e l * 2) + ((R).side2 * 2) .
eq Shape() = AShape [owise] .
eq (S) .su p e r .a reaO q = 0 [owise] .
eq (S) . super .perim eter Oq = 0 [owise] .
eq (SO). su p er ,re tu rn 4 ()q = 4 [owise] .
eq Shape() = AShape [owise]
eq (S) .a rea O q = 0 [owise]
eq (S).pe rim eter()q = 0 [owise]
eq (SO).re turn4()q = 4 [owise]
eq Rectangle() = ARectangle [owise] .
eq R ec tang le (I , J) =

((A R e c tan g le) .s id e l := (I)) .s id e2 := (J) [owise] .
eq (R).a reaO q = (R).s ide l * (R).side2 [owise] .
eq (R).perim eter()q =

((R) .s id e l * 2) + ((R).side2 * 2) [owise] .
eq Square(I) = (ASquare). s i d e l :=(I) .
eq (S) .a rea O q = (S) .s id e l * (S) .s id e l .
eq (S) .pe rim eter()q = (S) .s id e l * 4 .
eq (S) .se tS id e (I)o = (S) . s id e l := (I) .
eq oval(SYS6, SYS7) = SYS6 .
eq qval(SYS6, SYS7) = SYS7 .
eq oval(SYS6, SYS9) = SYS6 .
eq qval(SYS6, SYS9) = SYS9 .
eq oval(SYS5, SYS11) = SYS5 .
eq qval(SYS5, SYS11) = SYS11 .
eq oval(SYS4, SYS13) = SYS4 .
eq qval(SYS4, SYS13) = SYS13 .
eq (SYS3) . super . super .a reaO q =

(SYS3). super . a rea()q [owise] .

4.3. Inheritance and Class Specification Conversion 131

eq (SYS3).super.super.areaOo =
(SYS3).super.area()o [owise] .

eq (SYS3). super . super .perim ete r()q =
(SYS3).super.perimeter()q [owise] .

eq (SYS3).super.super.perim eter()o =
(SYS3). super .perim eter()o [owise] .

eq (SYS3). su p e r .re tu rn 4 ()q = (SYS3).return4()q [owise] .
eq (SYS3). super .re tu rn 4 ()o = (SYS3).return4()o [owise] .
eq (SYS3).super.super.re turn4()q =

(SYS3). su p er .re tu rn 4 ()q [owise] .
eq (SYS3). super. su p er .re tu rn4 ()o =

(SYS3). su p er .re tu rn 4 ()o [owise] .
eq (SYS6).areaO = (SYS6) .a reaO o, (SYS6) .a re a O q .
eq (SYS8).areaO =

(oval(SYS8)) . a reaO o, (oval(SYS8)) .a reaO q •
eq (SYS10) .a reaO =

(oval(SYS10)) . a reaO o, (oval(SYSlO)) .a re aO q .
eq (SYS6) .perim eterO =

(SYS6) .perim eterO o , (SYS6) .perim eterO q .
eq (SYS8) .perim eterO =

(oval(SYS8)) .perim eterO o, (oval(SYS8)) .p e r im e te rO q .
eq (SYS10) .perim eterO =

(oval(SYSlO)) .perim eterO o, (oval(SYSiO)) .pe r im ete rO q
eq (SYS6).setSide(SYS15) =

(SYS6). setSide(SYS15)o,(SYS6). setSide(SYS15)q .
eq (SYS8).setSide(SYS15) =

(oval(SYS8)) . setSide(SYS15)o,
(oval(SYS8)).setSide(SYS15)q .

eq (SYS10).setSide(SYS15) =
(oval(SYS10)).setSide(SYS15)o,
(oval(SYSlO)). setSide(SYS15)q .

eq (SYS6).area() = (SYS6) .a rea ()o , (SYS6) .a re aO q .
eq (SYS8).areaO =

(oval(SYS8)) . a rea ()o , (oval(SYS8)) .a reaO q .
eq (SYS10) .a reaO =

(oval(SYSlO)). a rea ()o , (oval(SYSlO)) .a re aO q .
eq (SYS6) .perim eterO =

(SYS6) .perim eterO o , (SYS6) .perim eterO q .
eq (SYS8) .perim eterO =

(oval(SYS8)) .pe rim ete rO o , (oval(SYS8)) .p e r im e te rO q .
eq (SYS10).perimeter() =

4.3. Inheritance and Class Specification Conversion 132

(oval(SYSlO)) .perim eterO o,
(oval(SYSlO)) .perim eterO q .

eq (SYS6).setSide(SYS16) =
(SYS6). setSide(SYS16)o, (SYS6). setSide(SYS16)q .

eq (SYS8).setSide(SYS16) =
(oval(SYS8)) . setSide(SYS16)o,
(oval(SYS8)).setSide(SYS16)q .

eq (SYS10). setSide(SYS16) =
(oval(SYS10)) . setSide(SYS16)o,
(oval(SYS10)).setSide(SYS16)q .

eq (SYS5) .super .areaO =
(SYS5) .super .a rea ()o , (SYS5) .su p e r .a re a O q •

eq (SYS12) .super .areaO =
(oval(SYS12)).super.areaOo,
(oval(SYS12)) .super .a reaO q .

eq (SYS5) .super.perim eterO =
(SYS5) .super .perim eterO o, (SYS5). super .pe r im ete rO q .

eq (SYS12).super.perimeterO =
(oval(SYS12)) . super.pe rim ete r() o ,
(oval(SYS12)) .super .perim eterO q .

eq (SYS6) .super .areaO =
(SYS6) .super .a reaO o , (SYS6) .su p e r .a re a O q .

eq (SYS8) .super .areaO =
(oval(SYS8)). super .a reaO o, (oval(SYS8)) .super. a re aO q .

eq (SYS10) .super .areaO =
(oval(SYS 10)) .su per .a reaO o ,
(oval(SYS10)) .super .a reaO q .

eq (SYS4).super.super.area() =
(SYS4) . super. super .a rea() o, (SYS4) .super, super .a re aO q .

eq (SYS1 4).super. super.areaO =
(oval(SYS1 4)) .super. super.a re a () o ,
(oval(SYS14)) .su p er .su p e r .a reaO q .

eq (SYS6) .super.perim eterO =
(SYS6) .super. perim eterO o, (SYS6) . super .pe r im ete rO q .

eq (SYS8). super .perim eterO =
(oval(SYS8)). super.perim eter()o ,
(oval(SYS8)) .super .perim ete rO q .

eq (SYS10). super.perim eterO =
(oval(SYS1 0)) .super.pe rim ete r() o ,
(oval(SYSlO)). super .perim eter()q .

eq (SYS4).super.super.perimeterO =

4.3. Inheritance and Class Specification Conversion 133

(SYS4). super, super .perim eterO o,
(SYS4). super. super .perim eterO q .

eq (SYS14). super. super.perim eterO =
(oval(SYS14)) . super. super .perim eter() o ,
(oval(SYS14)) . super. super .perim eterO q •

eq (SYS6).return4() =
(SYS6),return4()o,(SYS6).return4()q .

eq (SYS8).return4() =
(oval(SY S8)).return4()o ,(oval(SY S8)).re turn4()q .

eq (SYS10).return4() =
(oval(SYSlO)) .re tu rn4 ()o , (oval(SYSlO)) , re tu rn 4 ()q .

eq (SYS5). super .re tu rn4() =
(SYS5). super.re tu rn 4 () o , (SYS5).super.return4()q .

eq (SYS12). super .re tu rn4() =
(oval(SYS12)). super .re tu rn4 ()o ,
(oval(SYS1 2)) .sup er .re tu rn 4 ()q .

eq (SYS6). super,re tu rn4() =
(SYS6). super.return4()o ,(SY S6). su p e r .re tu rn 4 ()q .

eq (SYS8). super.re tu rn4() =
(oval(SYS8)). super .re tu rn4()o ,
(oval(SYS8)) . super .re tu rn4()q .

eq (SYS10). super .re tu rn4() =
(oval(SYS1 0)) .super .re tu rn4 ()o ,
(oval(SYS10)).super.return4()q .

eq (SYS4).super.super.return4() =
(SYS4).super.super.return4()o,
(SYS4). super. super .re tu rn4 ()q .

eq (SYS14). super. super .re tu rn4() =
(oval(SYS1 4)) .super. super.re tu rn 4 () o ,
(oval(SY S14)).super.super.return4()q .

eq ((SYS6).number:=(SYS22)).number = SYS22 .
eq (SYS8) .number: = (SYS22) = (oval(SYS8)) .number: = (SYS22) .
eq (SYS8).number = (oval(SYS8)).number .
eq (SYS10) .number : = (SYS22) = (oval(SYSlO)) .number : = (SYS22) .
eq (SYS10).number = (oval(SYS10)) .number .
eq ((SYS6).sidel:=(SYS23)).number = (SYS6).number .
eq ((SYS6). s id e2 :=(SYS24)) .number = (SYS6).number .
eq ((SYS6).sidel:=(SYS25)).sidel = SYS25 .
eq (SYS8).sidel:=(SYS25) = (oval(SYS8)).sidel:=(SYS25) .
eq (SYS8).sidel = (oval(SYS8)) . s id e l .

4.3. Inheritance and Class Specification Conversion 134

eq (SYS10)
eq (SYS10)
eq ((SYS6)
eq ((SYS6)
eq ((SYS6)
eq (SYS8).
eq (SYS8).
eq (SYS10)
eq (SYS10)
eq ((SYS6)
eq ((SYS6)

endfm

In order to model methods inherited from the Shape class (which is in
herited through the Rectangle class) we need to be able to access Shape’s
definitions of methods. For instance, for the area method we do this by
calling the method as super. super. area. When we model the Square class
we will first generate all the equations for Shape and tag all the equations
operators with information as to which class, methods, and fields they re
late to (see Section 4.3.1). We then generate the equations for Rectangle
including equations to model how it inherits methods from Shape as seen in
Sections 4.3.2 and 4.3.3, but instead of outputting the FAS information we
tag it again and pass it down to the next level, Square. At this stage there
will exist, for example, an operator super. area generated when we modelled
the inheritance of Shape in Rectangle. To model the inheritance of this in
Square we have to tag on another super keyword. The following line of code
from the FAS example demonstrates this.

op super .super.a reaO : Shape -> Shapelnt .

We also need to generate the linking equations to link su p e r . su p e r . a rea
to super. area. The following lines from the FAS example demonstrates this.

eq (SYS3) .super .super.a reaO q = (SYS3) . super. a re aO q [owise] .
eq (SYS3).super.super.areaOo = (SYS3).super.areaOo [owise] .

4.4. Interface Tagging, Joining and Flattening 135

In order to do all this we needed to follow the same procedures shown in
Sections 4.3.1 to 4.3.3. The only difference in this case is we will have to keep
a reference to which methods are super methods. The methods’ operators
for Shape and Rectangle and their equations are altered by tagging another
super, to the name as shown in Section 4.3.1. We do not however need to
do anything else with these methods that already have at least one super
tagged on them except to tag on another super keyword and generate the
linking equations. All the other methods are handled in exactly the same
way as they are dealt with in Section 4.3.1.

This allows us to model classes with many levels of inheritance. However
as can be seen from the example, with every level of inheritance this becomes
more complex with the generation of many extra operations, equations, sorts,
and subsorts. This involves a large amount of book keeping to keep track of
where each new equation and operation originates from so as we know how
to model it as we proceed down the inheritance chain. In addition we have
omitted from our example all the necessary variable declarations for variables
that we generate during the conversion process. Maude requires us to declare
all variables that we use and also we must make sure that their names do not
clash with other already existing variables which again requires more book
keeping.

4.4 Interface Tagging, Joining and F la tten in g
In this final section we will continue our look at the work of [STR03]. We have
already examined how they defined an object-oriented interface definition
language and how our work built on that and extended it. In this section we
look at how they model the process of interface flattening through the use of
joining and tagging. We will also look at how this relates to how we model
inheritance in the FAS.

4.4.1 Interface Flattening
Flattening is an important transformation that takes an interface architec
ture and flattens it into one stand alone interface. An interface architecture
consists of interfaces that import other interfaces which themselves in turn
can import other interfaces. Interfaces are collected together into an Inter
face Repository. The process of flattening can be viewed as the process of
assembling the individual components of the interface architecture into a sin
gle interface that fully describes the whole system. This allows us to simplify
a complex architecture by removing the modularity or hierarchy of the sys

4.4. Interface Tagging, Joining and Flattening 136

tem represented by a system’s imports. An interface architecture is flattened
by using two operations called join and tag on the body of the interfaces.

The operation join can be viewed as a form of textual substitution. The
operator tag can be viewed as a way of maintaining the unique identity of
all the components in the interfaces.

The process of flattening is, however, not straightforward. It raises com
plications which need to be dealt with if the following occur:

1. One interface is dependant on (imports) an interface not in the interface
repository.

2. Interfaces do not have unique identifier names (i.e. there is a possibility
of name clashes).

3. An interface has already been used at some point during the assembly
process (i.e. it has already been imported at an earlier stage).

4. Interfaces are mutually dependant on one another.

[STR03] devote considerable attention to these issues. However in the
case of the work in this thesis, we note that none of them will apply to
correct Java code hence they do not concern us here.

4.4.2 Joining and Tagging
Tagging is used to record locational information. This is necessary to avoid
name clashes of components when we flatten interfaces and also to indicate
where each component originated from. [STR03] use lists of names to store
locational information. For example

tag{addN am e(m , addNam e(n , eNam e)), B)

This relocates the body B from n to m by using the operator addName
which adds a name to a list of names. If there is no locational information
then the tagging has no effect.

tag(eName, B) = B

[STR03] give two methods for recording location.

• local context tagging or single context tagging (typically the original
location)

4.4. Interface Tagging, Joining and Flattening 137

Local context tagging can be innermost if it follows the innermost tagging
rule.

tagiaddName{m , addNam e(n , N)), B) = tag{addName(n, N) ,B) .

Or it can be outermost if it follows the outermost tagging rule.

tag{addName{n, N), B)) = tagiaddNam e{n , eN am e), B).

For example if we have interface i that imports an interface x which itself
imports an interface z with body B then the tagging is innermost if body B
is tagged as follows:

x .B

and the tagging is outermost if body B is tagged as follows:

z .B

The other method for tagging is:

• global context tagging or multiple tagging.

Global context tagging means that the axioms for tag are not simplified,
all of the locational information is maintained. For example if we have in
terface i that imports an interface x which itself imports an interface z with
body B then the tagging is innermost if body B is tagged as follows:

z .x .B

In the work in this thesis we use a modified form of Global Context Tagging
which we will show in Section 4.4.3.

Joining is the the process of adding the components in interface bodies
together. One of the most important points to consider about this process is
what happens when you join a declaration to a body where the declaration
already exists in that body. As will be seen later this is equivalent to method
overriding in object-oriented programming. The process of tagging resolves
many of the difficulties that are caused by adding the same body components
from different interfaces. The names of interfaces are tagged to imported
body components to identify where they came from.

With the use of joining and tagging [STR03] are able to flatten an inter
face architecture.

4.4. Interface Tagging, Joining and Flattening 138

They use the following equation to define the meaning of importing an
interface J into an interface 7.

extend(I , J) = in tf(n a m e(I) ,
m rgN ame{cutN ame (nam e (J) , imports (I)), im port s(J)),
join(body(I), body(J)))

Where:

• cutNam e is used to remove the import reference to J in J ’s list of
imports.

• mrgN ame adds all of J ’s imports into 7’s import list.

• J ’s body is then joined with 7’s.

They then define the flattening of an interface 7 with respect to an inter
face J by extending 7 with the tagged interface J to produce the interface:

extend(I, i n t f (nam e(J), im ports(J),
tag(addN am e(nam e(J) , eNam e), body(J))))

The interface has:

1. 7’s name.

2. J ’s name removed from 7’s imports and any new imports from J added.

3. J ’s body tagged with J ’s name and joined to J ’s body.

4.4.3 Inheritance and Flattening
We will now examine how the work of [STR03] on flattening relates to our
model of inheritance. Java does not allow multiple inheritance, so we do
not have to deal with the issues raised by multiple inheritance in our model.
Also the other problems that [STR03] consider to do with importing such as
cyclicity and missing interfaces (discussed in Section 4.4.1) do not apply to
our model as we are only interested in modelling Java classes that can be
successfully compiled and thus these problems cannot occur in our model.

When we create the ACS or algebraic interface specifications we do not
flatten the specifications at this stage. All we do is state which, if any, other
classes a class inherits from.

4.4. Interface Tagging, Joining and Flattening 139

When we create the FAS, we completely flatten the specification into
one class. We do not create FASs for any of the intermediate classes in the
inheritance tree. We only generate operations, equations, and sorts for the
intermediate classes to be used in the final flattened specification. If a user
of our system wishes to generate specifications for these intermediate classes
they must model them as the base class of their own inheritance tree.

For example if we have a class B that imports class C and a class A that
imports B then if we flatten A we do the following:

1. We follow the inheritance hierarchy of A until we reach the top class
in this case C.

2. We then generate all the necessary sorts, operations, and equations for
class C and note that they belong to this class. We do not generate an
FAS for this class.

3. We move to the next class down in the hierarchy, B

4. We again generate all the necessary sorts, operations, and equations
for class B and note that they belong to this class. We do not generate
an FAS for this class.

5. We join class C ’s body (sorts, operators and equations) to B ’s body by
tagging the body of C. We will discuss our method of tagging shortly.
We also maintain a record of which methods have been tagged for the
reasons discussed in Section 4.3.4.

6. We move down to the base class in the hierarchy, A (the target class).

7. We again generate all the necessary sorts, operations, and equations
for class A.

8. We join class B ’s body (sorts, operators and equations) including all
tagged equations and operators from class C to A ’s body by tagging
the body of B.

9. We output all the equations, operators and sorts for class A as the final
FAS.

We define the meaning of importing a class J into a class I with the
following equation.

ex tend (I , J) = class(nam e(I) , im ports(J) , j oin(body(I), tag (body (J)))).

This creates a new class with:

4.4. Interface Tagging, Joining and Flattening 140

• J ’s name.

• J ’s imports (note J can only have at most one import due to Java’s
single inheritance).

• J ’s tagged body joined with J ’s body.

We then define the flattening of a class I with respect to class J by
extending I with the tagged interface J to produce the interface:

extend(I, class(nam e(J), im ports(J) ,tag(addN ame(super, e N ame), body (J)))).

The class has:

1. J ’s name.

2. J ’s name removed from J ’s imports and any new imports from J added.

3. J ’s body tagged with the super keyword joined to J ’s body.

In our model we use our own definition of the join function to join the
body of an inherited class to the body of an inheriting class. All fields
and their defining equations are copied in as they stand from the inherited
class. We also need to add extra equations to recognise the newly added
fields. Next we copy all the operations and equations for the methods from
the inherited class unchanged into the inheriting class but we add a special
keyword [owise] to the equations to ensure they are not called if they have
an overriding definition from the inheriting class.

For example if a class A inherits from class B then if class B has the
following equation:

eq (S) .c le a r ()q = EClass .

Then it is converted into the following and joined to A ’s body:

eq (S) .c lea r ()o = EClass [owise] .

We do not do this for tagged methods which we will discuss below.
We then copy in a second tagged copy of the inherited class method’s

operations and equations into the inheriting class body. These are used to
allow us access to the super class’ (the inherited class) method definitions.
We do this by tagging the key word super, to the method’s name. This
allows us to more closely mimic Java’s syntax.

For example if a class A inherits the following operator and equation from
class B:

4.5. Autom atically Building FAS Specifications 141

op c lea r ()o : AClass -> AClass .
eq (S) .c le a r ()o = EClass .

Then it is converted into the following and joined to A’s body:

op su p e r .c le a r ()o : AClass -> AClass .
eq (S) . su p er . c lea r()o = EClass .

As there is only single inheritance there is no danger of ambiguity as to
which inheriting class is being referred to with the keyword super. These
tagged methods are not copied into a class lower down the hierarchy of an
inheritance chain as part of the set of methods copied in without additional
tagging. We do pass a copy of them in with an extra su p e r . tag added to
the method names. So super. su p e r . amethod refers to the original method
definition of amethod from the super class of the super class of the base
class.

So if we have another class Z which inherits from class A then the clear
method’s operator and equation is converted and joined to Z 's body in the
following format:

op _ . su p e r .su p e r .c lea r()o : AClass -> AClass .
eq (S) . super. su p e r .c lea r()o = EClass .

When this has been done all the way through the inheritance chain as
seen in Section 4.3 then we have fully flattened the inheritance hierarchy into
a single FAS.

4.5 A utom atically B uild ing FAS Specifications
In section 3.5 we looked at the program called the Algebraic Specification
Generator (ASG) we had implemented to automatically build specifications
from Java classes with extra embedded information. In that section we looked
particularly at extracting information about the class and generating an ACS
from the extracted information. In this section we will focus on the final
stages of the program which generate an FAS from the information already
extracted. Therefore in this section we will not be discussing extracting
information about a class as we have already discussed this in section 3.5.
In this section we will give a general overview of the algorithm implemented
by the program. The program is too long to show and discuss the complete
code so, as in the section 3.5, we will focus on small examples of the code
for generating FAS information for the fields of a class. The complete code
can be found on the appendix cd and instructions for using the code can be
found in appendix A.

4.5. Automatically Building FAS Specifications 142

4.5.1 Overview Of The Im plem ented A lgorithm for FAS
Generation

There are two phases to the ASG for building an FAS specification (assuming
the first three stages discussed in section 3.5 have already been performed).

1. Manipulating the extracted data into an appropriate form for the ACS
by converting it into appropriate formats and generating all the extra
operations and equations required to properly model the class in an
FAS.

2. Outputting the newly generated information as an FAS.

Unlike generating an ACS, generating an FAS requires the creation of a lot
more extra information and reformatting of the gathered data from a class.
All the data has to be reformatted into a complete Maude code. This mainly
includes inserting the keyword op in front of method, field, and constructor
declarations to make them valid Maude operators. Once this is done the
program then generates all the extra operators and equations that have been
discussed earlier in this chapter. This means generating accessor and mutator
operations for fields and appropriate equations for them as shown in section
4.2.4.

Methods need several new operators and equations as discussed in section
4.2.2. Operators defining each method’s query and state change components
are generated by the ASG. The ASG also creates special versions of each
method operator that return the tuple version of the method’s query and
state change components. The tuples themselves need are generated as well
as operators for joining and extracting the components. For every possible
tuple return type, extra operators and equations for each method are gener
ated that will accept each tuple type as the class instance input as each of
these tuples is a valid instance type of the overall class. In order to avoid
creating multiple copies of a tuple type where multiple methods would return
the same tuple type, the ASG scans through all the methods and identifies
each unique tuple type that will be required before building them. Construc
tors are reasonable trivial and only require minor reformatting to turn them
into valid Maude operations.

In the case of classes with inheritance, the ASG processes the inheritance
chain as discussed in section 4.3.1. To briefly summarise that section, this in
volves finding the class at the top of the inheritance chain and generating the
appropriate data for that class. However at this point the data is not output
as an FAS. Instead the program stores the data in special storage structures
that contain each bit of data as well as special tags to indicate which class in

4.5. Autom atically Building FAS Specifications 143

the inheritance chain it belonged to. The ASG then proceeds down the chain
to the next class and does the same again. Once done it merges this class’
data with data from the class above and does appropriate conversions and
generates extra information neccessary to model the inheritance structure
between the two classes (we will discuss this in a bit more detail below). All
this information is then again stored in a the special storage structures with
extra tags to indicate which class they belong to in the chain and then the
ASG proceeds to the next class down in the chain. This is repeated until
the base class that is to be modelled is reached at which point, once all the
information has been gathered and generated, it is all output as a complete
FAS for that class with all the levels of inheritance fully modelled.

When modelling inheritance, the bulk of the specification generation is
done on modelling inheritance over methods. This requires the ASG to gen
erate all the extra operators and equations as discussed in section 4.3.2. This
includes tagging the keyword super onto the front of method names that have
been inherited from the class above and altering the appropriate equations so
that they call su p er. methodname as opposed to methodname. If the method
has been overwritten by a class lower down in the inheritance chain then no
further extra operators or equations need to be generated as the operator
and equations for the overriding method being modelled will supersede the
original definitions. However if the method has not been overridden then the
ASG generates special linking equations that link the methodname operators
to the su p er. methodname operators.

Finally extra sorts and subsorts are declared for each inherited class in
the inheritance chain as shown in section 4.3.3.

All of the above does not require any extra input from the user. It can
all be automatically generated based on the information that would have
already been provided to the ASG as discussed in section 3.5. Continuing
the example shown in that section we present the FAS code generated for
that class by the ASG.

fmod ACLASS is

p ro tec ting BUILDLINK .

so r t AClass .
so rt AClassInt .
so rt AClassArray .

op AClass() : -> AClass

4.5. Autom atically Building FAS Specifications 144

op AAClass : -> AClass .

op : AClass Int -> AClassInt .
op oval(_) : AClassInt -> AClass .
op qval(_) : AClassInt -> Int .
op _.return4() : AClass -> AClassInt .
op _.return4() : AClassInt -> AClassInt .
op _.return4()o : AClass -> AClass .
op _.return4()q : AClass -> Int .

op a fie ld : AClass -> Int .
op _.afield:=_ : AClass Int -> AClass .
op _.afield:=_ : AClassInt Int -> AClass .
op afie ld : AClassInt -> Int .

var A : AClass .
var
var
var
var
var
var
var
var

SYSO
SYS1
SYS2
SYS3
SYS4
SYS6
SYS7
SYS8

AClass .
In t .
AClassInt
AClass .
AClass .
In t .
In t .
In t .

eq AClass() = AACLass .
eq (A).re turn4()q = 4 .
eq oval(SYSO,SYS1) = SYSO .
eq q va l(SYSO,SYS1) = SYS1 .
eq (SYSO).return4() = (SYSO).return4()o,(SYSO).return4()q
eq (SYS2).return4() =

(oval(SY S2)).re turn4()o ,(oval(SY S2)).re turn4()q .

eq ((SYSO).afield:=(SYS8)) .a f ie ld = SYS8 .
eq (SYS2).afield:=(SYS8) = (oval(SYS2)) . afield:=(SYS8) .
eq (SYS2).afield = (oval(SY S2)).afield .

endfm

4.5. Automatically Building FAS Specifications 145

As can be seen, a large amount of extra information has been generated
for this simple example class. An even greater amount of information needs
to be generated for larger more complex classes especially those that have
several levels of inheritance. Therefore the ASG serves as a powerful tool for
automatically generating these large and complex FAS specifications.

4.5.2 Field Example
In this section we will look at how the ASG generates the necessary FAS
information for Java fields. We will not be showing the complete code as it
is very long but will be focussing on key sections of it. Let us consider the
following code.

fo r (in t i = 0; i < f i e l d s . s i z e 0 ; i++) {

temp = "op + fd.name + " : " + o r ig c la ss + " -> "
+ fd .type + " .";

f ie ldops.add(tem p);

temp = "op _." + fd.name + : " + o r ig c la s s + " "
+ fd .type + " -> " + o r igc lass + "

f ie ld o p s .add(temp);

temp = "eq ((" + c lassvar + ") ." + fd.name + ":=("
+ avar + ")) ." + fd.name + " = " + avar + "

f ie ld e q s .add(temp);

In the above code, the ASG goes through each field in turn that was
discovered earlier as discussed section 3.5. For each field it generates two
extra operators. One which is used to change the field’s value and one which
is used to view the field’s value. Each of these is stored as a string in the
special fie ld o p s storage structure. The last three lines are used to generate
the equation that defines the behaviour of the getting and setting operators..
Informally they are defined as (aclass.afield := avalue).afield = avalue.
Extra operators and equations are also generated to allow each of the classes
tuple types to be input as the class instance for accessing the field. However
as the code for this is similar to the above code we shall not list it here.

Very little else needs to be done for a field (except for generating any
necessary variables which we will not discuss here). The final stage of the
ASG concerned with fields is to output the information generated by the
above code as an FAS. This is done by the following code.

4.6. Sources 146

fo r (in t k = 0; k < f ie ld o p s . s i z e () ; k++) {
o u t .p r in tIn (" \ t" + (S tring) f ie ld o p s .g e t (k)) ;

>

fo r (in t i = 0; i < f ie ld e q s .s iz e O ; i++) {
o u t .p r in tIn (" \ t" + (S tring) f ie ld e q s .g e t (i)) ;

>

This simply prints out the operators and equations that were stored in the
special storage structures out to the FAS. The above code therefore generates
the following FAS information for the line pub lic in t a f ie ld ; from the
Java source code (variable declarations have been omitted).

op _ .a f ie ld : AClass -> In t .
op _ .a fie ld := _ : AClass In t -> AClass .
op _ .a fie ld := _ : AClassInt In t -> AClass .
op _ .a f ie ld : AClassInt -> In t .

eq ((SY SO).afield:=(SY S8)).afield = SYS8 .
eq (SYS2).afield:=(SYS8) = (oval(SYS2)) . afield:=(SYS8) .
eq (SY S2).afield = (oval(SY S2)).afield .

4.6 Sources
The main influence in this chapter was again that of [STR03]. In this chapter
their work on interface flattening, joining and tagging influenced the way
in which we model inheritance by flattening the inheritance tree of a class
into one whole FAS. In this chapter the syntax and style is more heavily
influenced by that of the Maude language [SRI05] than it was in the previous
chapter. This is obviously due to the fact the specification we created in this
chapter was written in the Maude language. We have however tried to keep
as close as possible to the syntax and style of the Java language [Sun05g] in
order to make the specifications more easier and natural to read for a Java
programmer. The actual process of creating the FAS and its format is the
work of JB. The code used to automatically build an FAS from a Java class
is also the work of JB.

Chapter 5

The Pre-D efined E xecutable
M odel System

In Chapters 3 and 4 we showed our methodology for modelling Java classes.
This showed a structured set of transformations that would ultimately pro
vide a user with an FAS for a class written in Maude. However there are
many features and classes that are part of the Java SDK for which it is
not easy to use the transformations to create the FAS. This is because their
functionality can be considered unique and special. However all classes in
Java are expected to possess and make use of this functionality. In order
for our model to include this functionality we pre-define these features and
classes and allow user defined FASs access to this pre-defined functionality.
We create a unique set of operators and equations for this functionality that
cannot be generated using our transformations shown in chapter 4.

In this chapter we will examine how we modelled some of these special
features and classes and how we can then generate equations that allow FASs
for user defined classes access to this functionality.

We will examine two important features of Java that we have modelled.
In Section 5.1 we will look at how we model arrays. Every FAS must define
equations to model its own type of arrays. We will show how this is modelled
in the general case and how we can then systematically generate equations
to incorporate arrays in each class we model. In our model, arrays have an
internal storage structure and external access notation which provides the
user with an interface to arrays that mimics the Java notation. In Section
5.2 we look at how we model the Reflection classes. Reflection is used to
reason about the structure of a class and class instances. Through methods
inherited from the Object class all Java classes can provide details about
the structure of itself and its methods and fields at runtime. We will show
how first we model Reflection and then how we can generate the necessary

147

5.1. Arrays 148

operators and equations for a class to use the reflection methods. It will be
seen that Reflection is quite complex to model and requires the generation of
special tuples to store reflection information which can then be used by the
Reflection specifications. We are not claiming in this section to have fully
modelled the Reflection classes. The aim in this section is to show how we
model some of the key concepts of Reflection which could then be expanded
upon in future work.

This is by no means a complete and concise model of all of Java’s built
in functionality, but it does show how we model several key and complex
features of this functionality. The purpose of this chapter is to show proof
of concept. That is we wish to show how work has been done to implement
powerful and important features of Java’s large built in functionality and
API that can be added to and expanded in the future.

Finally we discuss how our program which can automatically create an
FAS from suitably commented Java code was used for testing new functional
ity that we created for our specification model. As was shown in the chapter
4, the generation of an FAS requires a large amount of book keeping and
extra operators and equations. The program we created allows us to auto
mate the generation of all this information as much as possible allowing us
to rapidly design and test new functionality in our model.

5.1 Arrays
Arrays are a key data type that is used extensively in Java. In our model
we generate equations which define a storage structure for each array type.
We create what we call user level equations which allow us to link the more
commonly used Java array syntax to our storage structure syntax. We pre
define array equations and operators for the primitive data types and any
pre-defined classes and generate array equations and operators for the classes
that we model using our translation methodology. These array equations and
operators only appear at the FAS level of specification.

Below is a set of equations, operators and a sort defining an array in the
general case of AClass. As usual variable declarations are omitted from this
example

so rt AClassArray .

op n u ll : -> AClass .
op EAClassArray : -> AClassArray .

5.1. Arrays 149

op _ [_] : AClassArray Int -> AClass .
op : AClassArray Int AClass -> AClassArray .

op add : AClassArray Int AClass -> AClassArray .
op add : AClassArray AClass -> AClassArray .
op get : AClassArray Int -> AClass .

op ..len gth : AClassArray -> Int

op newAClassArray : Int -> AClassArray .
op new:AClass[_] : Int -> AClassArray .

ceq get(add(ACLASSARRAY,ACLASS), INT) =
ACLASS i f INT = (ACLASSARRAY). length .

ceq get(add(ACLASSARRAY,ACLASS), INT) =
get(ACLASSARRAY,INT) i f INT =/= (ACLASSARRAY). leng th .

eq (EAClassArray). length = 0 .
eq (add(ACLASSARRAY,ACLASS)) . length = (ACLASSARRAY). leng th + 1 .

ceq add(add(ACLASSARRAY,ACLASS1), INT,ACLASS2) =
add(ACLASSARRAY,ACLASS2) i f INT =
(ACLASSARRAY). length .

ceq add(add(ACLASSARRAY,ACLASS1) , INT, ACLASS2) =
add(add(ACLASSARRAY, INT, ACLASS2),ACLASS1)
i f INT < (ACLASSARRAY). length .

eq newAClassArray(0) = EAClassArray .
eq newAClassArray(INT) = add(newAClassArray(INT - 1) ,n u l l) .

eq (ACLASSARRAY)[(INT)] = get(ACLASSARRAY,INT) .
eq ((ACLASSARRAY)[(INT)]:=(ACLASS)) =

add(ACLASSARRAY, INT,ACLASS) .

eq new:AClass[INT] = newAClassArray(INT)

5.1. Arrays 150

We will now look at relevant sections of the generic example in turn and
show how we create the equivalent for a Shape array.

so rt AClassArray .
op n u ll : -> AClass .
op EAClassArray : -> AClassArray .

The first line declares the array sort type for an array of AC lass. The
sort of an array is always the class name with the keyword A rray suffixed
to it. It should be noted that if a user attempts to model a Java class
actually called AC lassArray then this will cause a name clash. Therefore
a more appropriate naming structure will need to be used or the sort type
should be rewritten if their names clash. However we are only interested in
demonstrating the concept of array modelling. The second line is used to
declare a constant called null of type AClass. When an array of any class
type is initialised in Java, all of its elements are set to a n u ll, to represent
a null instantiation of the class. Our null constant is used to represent the
null value for that class type. The third line is a constant which is used
to represent an empty array (I.E. an array with no elements). This is only
neccessary for the internal storage structure representation of the array and
is not used by a user of the system.

For an array of class Shape this would produce the following lines of code.

so rt ShapeArray .
op n u ll -> Shape .
op EShapeArray : -> ShapeArray .

Next we will look at the internal storage structure of the array. These
operators are only used internally in the system and are not used directly by
the user.

op add : AClassArray In t AClass -> AClassArray .
op add : AClassArray AClass -> AClassArray .
op get : AClassArray In t -> AClass .

op length : AClassArray -> In t

5.1. Arrays 151

The first three lines of code declare operators that allow us to get and set
elements of an array. The first line declares an operator to add an element
at a specific position. The second line declares an operator that adds an
element to an array at the current position. This operator is used in the
construction of an array and defines its structure. The third line declares an
operator that will return the value of an element at a given position. The
fourth line declares an operator that returns the capacity of the array. This
operator is also part of the Java language for arrays and is used both by the
user and in the internal structure of the array.

For an array of class Shape this produces the following lines of code.

op add : ShapeArray In t Shape -> ShapeArray .
op add : ShapeArray Shape -> ShapeArray .
op get : ShapeArray In t -> Shape .
op length : ShapeArray -> In t

Next we have the equations defining these operations.

ceq add(add(ACLASSARRAY,ACLASS1) , INT, ACLASS2) =
add(ACLASSARRAY,ACLASS2) i f INT = (ACLASSARRAY). leng th .

ceq add(add(ACLASSARRAY,ACLASS1) , INT,ACLASS2) =
add(add(ACLASSARRAY, INT,ACLASS2),ACLASS1)
i f INT < (ACLASSARRAY).length .

These define the add operators. The first equation defines what happens
if we attempt to add an AClass class instance (A C L A S S 2) to an array
at position IN T . If I N T equals (AC L A S S A R R A Y).len g th then we are
at the correct position in the array and we discard the A C lass class in
stance called A C L A S S I. This is stored in the array by the following term
add(AC L A S S A R R A Y , A C L A S ST). We discard this term and replace it
with add(AC L A S S A R R A Y , A C L A SS2) which stores the new A C lass class
instance A C L A SS2 in the array. The second equation is the case where
I N T is less than A C L A S S AR RAY.length. In this case we call add again
on A C L A S S A R R A Y with I N T and A C L A S S to continue searching for the
element position I N T . We add A C L A SS2 to the result of this new add call.

For an array of class Shape this produces the following lines of code.

5.1. Arrays 152

ceq add(add(SHAPEARRAY,SHAPED, INT,SHAPE2) =
add(SHAPEARRAY,SHAPE2) i f INT = (SHAPEARRAY). len g th .

ceq add(add(SHAPEARRAY,SHAPED, INT,SHAPE2) =
add(add(SHAPEARRAY, INT, SHAPE2),SHAPED
i f INT < (SHAPEARRAY).length .

Next we define the get operator.

ceq get(add(ACLASSARRAY,ACLASS), INT) =
ACLASS i f INT = (ACLASSARRAY). length .

ceq get(add(ACLASSARRAY,ACLASS), INT) =
get(ACLASSARRAY,INT) i f INT =/= (ACLASSARRAY). len g th .

The first equation defines what happens if we attempt to get an element
from a position I N T and A C L A S S AR R A Y.length is equal to I N T . If this
is the case then we have the correct element and we return the A C L A S S
at that position. The second equation is the case when I N T does not equal
A C L A S S AR R A Y.length in which case we continue searching through the
rest of the array.

For an array of class Shape this produces the following lines of code.

ceq get(add(SHAPEARRAY,SHAPE), INT) =
SHAPE i f INT = (SHAPEARRAY). length .

ceq get(add(SHAPEARRAY,SHAPE), INT) =
get(SHAPEARRAY,INT) i f INT =/= (SHAPEARRAY). len g th .

All of these operators rely on the length operator which is defined in the
obvious way.

eq (EAClassArray). length = 0 .
eq (add(ACLASSARRAY,ACLASS)) . length = (ACLASSARRAY). leng th + 1 .

5.1. Arrays 153

For an array of class Shape this produces the following lines of code,

eq (EShapeArray). length = 0 .
eq (add(ASHAPEARRAY,SHAPE)).length = (SHAPEARRAY) . leng th + 1 .

Next we define an operator and equations for creating and initialising an
array of a given size.

op newAClassArray : In t -> AClassArray .

eq newAClassArray(0) = EAClassArray .
eq newAClassArray(INT) = add(newAClassArray(INT - 1) ,n u ll) .

The operator newAClassArray takes an integer value and creates and
initialises an array with the same number of elements as the integer value.
The first equation returns the empty array E A C lassA rray if the integer
value is zero. The second equation is called if the first fails and adds a null
element to the result of recursively calling new A C lassA rray on the integer
value reduced by one. In Java an array of size N indexes from 0 to N -l.

For an array of class Shape this produces the following lines of code.

op newShapeArray : In t -> ShapeArray .

eq newShapeArray(0) = EShapeArray .
eq newShapeArray(INT) = add(newShapeArray(INT - l) ,n u l l) .

In order for our model to more accurately reflect the Java syntax we also
define operators and equations that allow us to use a Java style syntax

op _[_] : AClassArray In t -> AClass .
op : AClassArray In t AClass -> AClassArray .

op new:AClass [_] : In t -> AClassArray .

5.1. Arrays 154

The first operator allows us to retrieve an element stored at a given index
in the array. The second operator adds a new AC lass to the array at the
given position. For example given an array called a then a [3] aclass adds
a class instance aclass to an array a at position 3 and a [3] returns the element
stored in position 3. We use the : = notation instead of the = notation (which
is the notation Java uses for assignment) to avoid confusion with the Maude
syntax use of =. The third operator takes in an integer value and creates and
initialises a new array of a size equal to the integer value.

For an array of class Shape this produces the following lines of code.

op _[_] : ShapeArray In t -> Shape .
op _ [_]:=_ : ShapeArray In t Shape -> ShapeArray .

op new:Shape[_] : In t -> ShapeArray .

Finally we define these operators using the following equations:

eq (ACLASSARRAY)[(INT)] = get(ACLASSARRAY,INT) .
eq ((ACLASSARRAY)[(INT)]:=(ACLASS)) =

add(ACLASSARRAY,INT,ACLASS) .

eq new:AClass[INT] = newAClassArray(INT) .

The first equation links the Java style syntax array lookup method to the
get method used in the internal structure. The second equation links the Java
style syntax add method to the add method used in the internal structure.
The third equations links the Java style syntax initialisation method to the
new AC lassArray method used in the internal structure.

For an array of class Shape this produces the following lines of code.

eq (SHAPEARRAY)[(INT)] = get(SHAPEARRAY,INT) .
eq ((SHAPEARRAY)[(INT)]:=(SHAPE)) =

add(SHAPEARRAY,INT,SHAPE) .

eq new:Shape[INT] = newShapeArray(INT) .

5.2. Reflection 155

5.2 R eflection
In Java, Reflection is a tool used to reason about classes. Its primary func
tionality is to allow runtime discovery and manipulation of classes, methods
and fields. Through special methods inherited from the Object class the un
derlying structure of the class belonging to a class instance can be accessed.
This allows us to find out which methods and fields belong to a class and
manipulate them (amongst other things).

Reflection on methods allows us to discover a method’s input types and
return types and to invoke the method. Reflection on fields allows us to
discover a field’s type and to alter the field’s value. Reflection provides
additional functionality to what has been discussed here but we will only
model a selection of examples of what we consider to be core features of Java
Reflection.

In order to model Reflection we have chosen to predefine Java’s reflection
classes. Although some elements of the class can be automatically generated
for Reflection, due to its unique functionality, the core structure of reflection
cannot be easily automatically generated like other classes. To accommodate
this we predefine the structure of the reflection classes and automatically
generate equations for other classes we define to link up with the reflection
functionality. We will examine in this section our predefined Java Reflection
classes and the automatically generated equations and operators.

5.2.1 The Class Reference R epository
In order to avoid confusion when we refer to the Class class throughout this
chapter we will use the term R ef Class to represent the Class class. As will
be seen later when we define special structures to model Reflection there is a
danger in Maude of creating cyclical references and infinite recursion in the
evaluation of terms. For instance if a RefClass A refers to a Method instance
B then B will also have a reference back to A thus causing a cyclical reference
in Maude which could cause it to go into an infinite loop when evaluating
terms. In order to avoid this we use strings to represent any references to
other RefClasses. We provide a special structure called a Class Reference
Repository and functions that allow us to use these strings to lookup the
actual RefClass. A user does not need to use or have knowledge of the
repository as it can be considered to be part of the internal mechanism of
the model and the Class Repository’s functions and the lookup process is
performed by the system automatically. We define a functional module in
Maude to represent the Class Reference Repository and its functions.

5.2. Reflection 156

fmod CLASSSTORE i s

p ro te c t in g OBJECTALGEBRA .

s o r t C lassStore .
s o r t ClassRep .

op : S tr ing Class -> ClassStore .

op theClassRep : -> ClassRep .
op ERep : -> ClassRep .

op add(_,_) : ClassRep ClassStore -> ClassRep .
op l o o k u p : ClassRep S tr ing -> Class .

vars S S2 : S tr ing .
var R : ClassRep .
var C C2 : Class .

eq lookup(ERep,S) = n u l l .
ceq lookup(add(R,(S,C)) ,S2) = C i f (S <= S2) and

(S >= S2) .
eq lookup(add(R,(S,C)),S2) = lookup(R,S2) [owise] .

endfm

We will now examine this module in more detail. The line protecting
OBJECTALGEBRA links this Maude module with another existing Maude
module called OBJECTALGEBRA. All the sorts for predefined classes need
to be declared in the first Maude module as their sort types are often used
later in other predefined Maude modules.

Next we define two sorts.

sort ClassStore .
sort ClassRep .

The first sort will be used to define a tuple for storing a class name and
the reference to its corresponding RefClass. The second sort is used to define

5.2. Reflection 157

the Class Reference Repository itself.
Now we define a tuple for ClassStore

op : S tr ing Class -> ClassStore .

This line defines the structure of ClassStore. ClassStore is defined as a
tuple of a String and a Class (called RefClass in this discussion). A Class
Reference Repository entry is therefore a RefClass with a unique string to
identify it.

Next we define constants for ClassRep

op theClassRep : -> ClassRep .
op ERep : -> ClassRep .

The first line declares the actual Repository which we will add ClassStores
to and look them up from. The second line defines an empty Class Reference
Repository called ERep.

Next we declare operators on ClassRep.

op add(_,_) : ClassRep ClassStore -> ClassRep .
op l o o k u p : ClassRep S tr ing -> Class .

The first line defines an operator add which takes in a Repository and a
ClassStore and adds the ClassStore to the Repository. The second line defines
an operator lookup that takes in a repository and a String and lookups up
the the String in the Repository and returns the corresponding RefClass.

Next we declare variables.

vars S S2 : S tr ing .
var R : ClassRep .
var C C2 : Class .

5.2. Reflection 158

These variables are used in the equations defining the operators discussed
above. They need to be declared as Maude requires all variables used to be
explicitly declared. We will ignore the variables throughout the rest of this
chapter as their declaration is trivial.

Finally we define equationally the add and lookup functions.

eq lookup(ERep,S) = n u l l .
ceq lookup(add(R,(S,C)) ,S2) = C i f (S <= S2) and

(S >= S2) .
eq lookup(add(R,(S,C)) ,S2) = lookup(R,S2) [owise] .

Informally the first line says that if we lookup a String in an empty
repository then we return a null class instance. It should be noted that in
our model this should never occur as the model will never lookup a string
that does not exist in the repository. However we have included the condition
for completeness. The second line says that if we lookup a String S2 in a
repository where (S,C) is the head element and R is the tail then we return
the RefClass C if S is the same string lexigraphically as S2, the search string
(Maude does not provide an equality operator for strings so we have to check
that S is both less than or equal to and greater than or equal to S2). The
third line of code is only used if the other two equations fail. It discards the
head element (S,C) of a repository and continues searching for String S2 on
the tail R.

In order to use the class repository a list of class name strings together
with the name of each class’ corresponding RefClass instant need to be stored
for later use. These are then used once all the other modelling stages have
been performed to create the class repository by adding the following equa
tion to a Maude module.

eq theC lassRep = add(. .. (add(ERep , AC lass 1),...) , A C lassN) .

5.2.2 The Class Class
Every class in Java has a corresponding RefClass instance. The RefClass
provides a large functionality [Sun05c]. However we will only define part of
the functionality as examples of some of the functionality we consider to be
core to Reflection. For instance some of RefClass’ methods can return a list
of the private and protected class members. As our model abstracts away

5.2. Reflection 159

from internal representation of classes we only model the public interface.
Therefore there are no private or protected methods in our model and so we
are unable to model the methods that retrieve these members.

We will model three of the functions in the RefClass: getMethods, get
Fields, and getName.

• The method getMethods returns an array of Method class instances
that represent methods that belong to the class represented by the
given RefClass instance.

• The method getFields returns an array of Field class instances that
represents fields that belong to a class.

• The method getName returns the name of a class represented by the
RefClass instance as a string.

We define a functional Maude module called CLASS to represent and
define the structure of the class Class (RefClass).

fmod CLASS is

p ro te c tin g CLASSSTORE .

op : S tr in g MethodArray FieldA rray -> C lass .

op _ .g e tF ie ld s () : C lass -> FieldA rray .
op _ .getM ethods() : C lass -> MethodArray .
op _ .getName() : C lass -> S trin g .

var F : FieldA rray .
var M : MethodArray .
var S : S tr in g .

eq (S,M,F).getName0 = S .
eq (S,M,F) .g e tF ie ld sO = F .
eq (S,M,F) .getMethodsO = M .

endfm

5.2. Reflection 160

Note the above code does not include operators and equations for defining
an array of Classes which have been omitted to simplify the example. Also
the declarations of the sort type for RefClass is not shown here as it is
declared in the functional Maude module OBJECTALGEBRA along with a
subsort.

so r t Class .
subsort Class < Object .

The line p ro tec t in g OBJECTALGEBRA is used to link up with other prede
fined Maude modules that are used in the internal representation of classes.

The next lines defines a tuple.

op : S tr ing MethodArray FieldArray -> Class .

This allows us to define a tuple which stores the structure of a RefClass.
We have decided that a RefClass will consist of:

1. a String name,

2. an array of Method class instances,

3. an array of Field class instances.

Next we declare the operators for the RefClass’ methods.

op _ .g e tF ie ld s () : Class -> FieldArray .
op _ .getMethods() : Class -> MethodArray .
op getName0 : Class -> S tr ing .

These define operators for getFields, getMethods, and getName respec
tively.

Finally we define the operators with equations.

eq (S,M,F).getName0 = S .
eq (S,M,F) .getFieldsO = F .
eq (S,M,F).getMethods() = M

5.2. Reflection 161

These are projection functions that project out parts of the RefClass
tuple. The first line defines getName by projecting out the String component
of the RefClass tuple. The second equation defines getFields by projecting
out the array of Field class instances component from the RefClass tuple.
The final equation defines getMethods by projecting out the array of Method
class instances component from the RefClass tuple.

5.2.3 The Field Class
The Field class is used to define the structure of a field and functions that
can be performed on it. Every field in every class in Java has a correspond
ing Field class instance. We define three of the Field methods: getName,
getType, and getDeclaringClass where:

• The method getName returns the name of the field as a String.

• The method getType returns the RefClass representing the fields type.
If this is a primitive type such as an in t then this returns the wrapper
class version (e.g. Integer).

• The method getDeclaring Class returns the RefClass that represents the
class that declared the field.

We define a Maude functional module to represent Field called FIELD.

fmod FIELD is

p ro te c tin g CLASS .

subsort F ie ld < Object .

op : S trin g S trin g S tring -> F ie ld .

op _ .getName() : F ie ld -> S trin g .
op getType() : F ie ld -> Class .
op _ .getD eclaringC lass() : F ie ld -> Class .

var S S2 : S tr in g .
var C : S tr in g .

eq (S,C,S2).getName() = S .

5.2. Reflection 162

eq (S ,C ,S2).getType0 = lookup(theClassRep,C) .
eq (S ,C ,S 2).getD eclaringC lassO = lookup(theClassRep,S2) .

endfm

Again for simplicity we have omitted the operators and equations defining
arrays of fields. The sort type for Field is already declared in OBJECTAL
GEBRA as

so rt F ie ld .

The first line for the functional module defines the subsort,

subsort F ie ld < Object .

This declares the sort Field as a subsort of Object. That is Field inherits
from Object and therefore Field is a less general type of Object.

The next line defines a tuple.

op : S tr in g S tr in g S trin g -> F ie ld .

This defines Field as being a tuple consisting of three Strings. The first
String is the fields name, the second string is the name of the R e fC la ss
that represents the field’s type and the third string is the R e fC la ss that
represents the class that declared the field. We use strings to represent the
R e f Classes to avoid cyclicle references in Maude as discussed earlier. As
will be seen below, we use these strings together with the Class Reference
Repository and its lookup function to obtain the actual R e f Classes.

Next we declare the operators for Field's methods.

op _ .getName() : F ie ld -> S trin g .
op _.getType() : F ie ld -> Class .
op _ .getD eclaringC lassO : F ie ld -> Class .

5.2. Reflection 163

These define operators for getName, getType, and getDeclaring Class re
spectively.

Next we define the semantics of these operations through the following
equations:

eq (S ,C ,S2).getName() = S .
eq (S,C,S2).getType() = lookup(theClassRep,C) .
eq (S ,C ,S2).getD eclaringClassO = lookup(theClassRep,S2) .

The first equations defines getName as a projection function that projects
out the name string in the Field tuple. The second equation defines getType.
It passes the type string to the class repository lookup function to lookup the
RefClass that matches the string passed to it and returns it as the result of
getType. The third equations defines getDeclaring Class in exactly the same
way but passes the declaring class string part of the tuple to the lookup
function.

5.2.4 The M ethod Class
The Method class is used to define the structure of a method and the functions
that can be performed on it. Every method in every class in Java has a
corresponding Method class instance. We define five of the Method methods:
getName, getDeclaring Class, getReturnType, getParameter Types, and invoke
where:

• The method getName returns the name of the method as a String.

• The method getDeclaring Class returns the RefClass that represents the
class that declared the method.

• The method getReturnType returns the RefClass representing the method’s
return type. If this is a primitive type such as an in t then this returns
the wrapper class version (e.g. Integer).

• The method get Parameter Types returns an array of RefClass repre
senting the method’s input parameter types. If any are a primitive
type such as an in t then this returns the wrapper class version (e.g.
Integer).

• The method invoke allows us to invoke the method represented by the
Method instance which we will discuss in more detail below.

5.2. Reflection 164

The method invoke allows a user to invoke the underlying method rep
resented by a Method class instance. It has two parameters. The first pa
rameter is a class instance of the class that the method belongs to on which
we want to invoke the method. This is passed in as the Object class. This
is valid as all other classes inherit from Object and are therefore subtypes of
Object. When the actual method is invoked the class instance is passed to
it. If the class instance then turns out to be the wrong subtype Java would
throw an exception. However our model does not include exceptions so our
Maude code will be unable to evaluate a call to invoke if the wrong type is
passed (see section 6.7 for more on the exception problem). The second input
parameter is an array of Object. These must be in the correct order and be
of the correct subtypes of Object as the input parameters of the method to
be invoked. If any of the input parameters are primitive types then they are
passed in the array as wrapper classes and the wrapper class value extracted
when it is passed to the actual method. Again exceptions are thrown if the
parameters in the array are incorrect for the method to be invoked. As stated
above we do not model exceptions therefore invoke will fail to evaluate if they
are not correct. The method invoke returns the result of the method as an
Object instance. If the method returns a primitive then it is returned as the
wrapper class instance version (returned as the more general Object type).
If it does not return anything (the return type is void) then invoke returns
null.

We define a functional Maude module called METHOD to represent and
define the structure of the class Method.

fmod METHOD is

p ro te c tin g FIELD .

subsort Method < Object .

op : S trin g StringA rray S trin g S trin g -> Method .

op getName() : Method -> S tring .
op ..ge tD ec la rin g C lassO : Method -> C lass .
op getReturnType() : Method -> Class .
op _.getParam eterTypes() : Method -> ClassArray .
op _ . invoke(_,_) : Method Object ObjectArray -> Object .

op g e t P a r a m e t e r T y p e s A u x :

5.2. Reflection 165

StringArray In t ClassArray -> ClassArray .

var S S2 : S tr in g .
var C : S tr in g .
var CA : StringA rray .
var RESULT : ClassArray .
var A : MethodArray .
vars I J K : In t .
vars X Y : Method .

eq (S,CA,C,S2).getName() = S .
eq (S,CA ,C ,S2).getD eclaringClassO =

lookup(theClassRep,S2) .
eq (S,CA,C,S2).getReturnType() = lookup(theClassRep,C) .
eq (S,CA,C,S2).getParameterTypesO =

getParameterTypesAux(CA,0 ,EClassArray) .

ceq getParameterTypesAux(CA,I.RESULT) = RESULT
i f I == (CA).length .

ceq getParameterTypesAux(CA,I,RESULT) =
getParameterTypesAux(CA,I + 1,
add(RESULT, lookup(theClassRep,CA[I])))
i f I =/= (CA).length .

endfm

Again for simplicity we have omitted the operators and equations defining
arrays of methods. The sort type for Method is already declared in OBJEC
TALGEBRA as

so rt Method .

The first line for the functional module defines the subsort.

subsort Method < Object

5.2. Reflection 166

The next line defines a tuple.

op : S trin g StringA rray S trin g S tr in g -> Method .

This defines Method as being a tuple consisting of a String followed by
a String array and then two more Strings. The first string is the method’s
name, the string array is an array of the names of the RefClasses that repre
sents the methods’s input types, the third string is the RefClass that repre
sents the class that declared the method, and the fourth string is the name
of the RefClass the represents the method’s return type . We use strings to
represent the RefClasses to avoid cyclical references in Maude as discussed
earlier. As will be seen below, we use these strings together with the Class
Reference Repository and its lookup function to obtain the actual RefClasses.

Next we define operators for Method's own methods.

op _.getName() : Method -> S trin g .
op _ .getD eclaringC lass() : Method -> Class .
op _.getReturnType() : Method -> Class .
op _.getParam eterTypes() : Method -> ClassArray .
op i n v o k e : Method Object ObjectArray -> Object .

These define operators for getName, getDeclaringClass, getReturnType,
getParameterTypes, and invoke respectively. It should be noted that we
will not give any equation defining invoke in the METHOD module. Each
Method instance has its own definition for invoke. This will be defined for
each method when a class is modelled, which we will look at in Section 5.2.5.
These invoke equations can be generated automatically.

Finally we give the equations defining these operators.

eq (S,CA,C,S2).getName() = S .
eq (S ,CA ,C ,S2).getD eclaringClassO =

lookup(theClassRep,S2) .
eq (S,CA,C,S2).getReturnType() = lookup(theClassRep,C) .
eq (S,CA,C,S2).getParameterTypesO =

getParameterTypesAux(CA,0 ,EClassArray) .

5.2. Reflection 167

The first equation defines getName as a projection function that extracts
the name string from the Method tuple. The next equation defines getDeclar-
ing Class by extracting the declaring class string from the tuple and returning
the RefClass that the string represents by passing the it to the class reposi
tory lookup function. The next equation does the same but passes the return
type string instead to the class repository lookup function. The final equation
defines getParameterTypes by extracting the string array from the Method
tuple and passing it together with an integer 0 and an empty class array to
a function called getParameterTypesAux.

Finally we define getParameterTypesAux. First we declare its operator.

op g e t P a r a m e t e r T y p e s A u x :
StringArray In t ClassArray -> ClassArray .

This defines getParameterTypesAux as a function that takes in a string
array, an integer, a RefClass array, and returns a RefClass array. Informally
its purpose is to take in an array of strings that represent RefClass names
and convert this into a RefClass array by looking up in the class repository
the RefClass for each string in the string array in turn.

Finally we define the conditional equations for getParameterTypesAux

ceq getParameterTypesAux(CA,I.RESULT) = RESULT
i f I == (CA).length .

ceq getParameterTypesAux(CA, I ,RESULT) =
getParameterTypesAux(CA,I + 1,
add(RESULT, lookup(theClassRep,CA[I])))
i f I =/= (CA). length .

The first equation is the base case and returns the RefClass Array param
eter (RESULT). It is only used if the integer I is the same size as the length
of the string array (CA). That is, it is only used if we have already looked
up each string in the string array. The second equation passes the string
in the string array (CA) at the Ith position to the class repository lookup
function. The RefClass this returns is added to the RefClass array (RESULT)
and getParameterTypesAux is called recursively.

5.2. Reflection 168

5.2.5 M odelling Reflection on User Defined Classes
When a user wishes to model their own defined classes then for every method
and field in their class they will need to define Method and Field instances.
These can then be used to define the RefClass instance for their class which
will also need to be added to the class reference repository. In addition, for
every method modelled they will need to provide equations for the invoke
method definiton for each method in their class. This can all be done auto
matically. We will show here the operations and equations that needs to be
generated for the Reflection.

First we will look at how we create a Field instance for an arbitrary field.
Suppose in a user defined Java class which we will class My Class we

declare the following field

public S tr ing mystr;

We will need to define the Field instance for this field. First we need
to define a constant operator for the field. We have chosen to follow the
following naming pattern.

• The field’s name

• The name of the class it belongs to

• The word ’Field’.

So this creates in the general case a name of the following format

af ieldnameAClassField

This is used to declare the following operator,

op afieldnameAClassField : -> F ie ld .

In our example this produces the name

mystrMyClassField

5.2. Reflection 169

We use this to declare the following operator,

op mystrMyClassField : -> F ie ld .

It should be noted that there is the potential for name clashes if another
component in a Java class is called mystrMyClassField and a mechanism
for tracking this and altering the name if this occurs will be needed.

Next we define the operator as a tuple using an equation. Recall a F ie ld
tuple consists of three strings.

• The name of the field.

• The name of the declaring class.

• The name of the class representing the field’s type.

In the general case the equation that defines this operator is as follows

eq afieldnameAClassField = ("afieldname", "AClass", "TypeClass") .

In our example this produces the following equation,

eq mystrMyClass = ("m ystr" , "MyClass", " S tr in g ") ;

Next we look at how we create a Method instance for an arbitrary method.
Suppose in our Java class MyClass we have a method of the following

format.

public in t mymeth(Integer i c , i n t ip)

We are not interested in the implementation of the method itself here.
We need to define the Method instance for this method. First we define a
constant operator to represent the Method instance. We have chosen the
following naming pattern.

5.2. Reflection 170

• The method’s name.

• The name of the method’s declaring class.

• The keyword ’Method’.

In the general case this produces the following name:

amethodAClassMethod

This is used to create the following operator:

op amethodAClassMethod : -> Method .

In our example this produces the following name:

mymethMyClassMethod

This is used to create the following operator:

op mymethMyClassMethod : -> Method .

It should be noted that there is the potential for name clashes if another
component in a Java class is called mymethMyClassField and a mechanism
for tracking this and altering the name if this occurs will be needed.

Next we define the operator as tuple using an equation. Recall a Method
tuple consists of four components.

• The String name of the method.

• An array of String names of the classes that represent the method’s
input parameters. Note that the string name of a class instance that
is any subtype of Object is allowed in the String array.

• The String name of the class representing the methods’s return type.

5.2. Reflection 171

• The String name of the declaring class.

In the general case the equation that defines this operator is as follows:

eq amethAClassMethod = ("ameth",
ad d (. . . (add(add(EStringA rray, " In p u tC la ss l") ,
"Inpu tC lass2"), . . .) , InputClassN),
"RetTypeClass", "AClass") .

In our example this produces the following equation.

eq mymethMyClassMethod =("mymeth",
add(add(EStringA rray, " In te g e r") , " In te g e r") ,"
In te g e r" , "MyClass") .

Note that both the primitive integer input and return types are repre
sented by its wrapper class (In teger). This is true for all primitive return
types.

We also need to provide the defining equation for Method's invoke oper
ator for this method.

In the general case this produces the following:

eq ("am eth".A rrayofS trings, "RetType", "AClass"). in v o k e(0 ,I) =
(0) . ameth (I [0] , I [1] , . . . , I [N-l]) .

If any of the input types are primitive types then they will need to be
unwrapped when passed to the actual method. For example:

eq ("am eth2",A rrayofS trings, "RetType", "A C lass").invoke(0 ,I) =
(0). am eth((I [0]) .getV alueO) .

Also if the return type of a method is a primitive type then it needs to
be wrapped before it is returned to the invoke method. For example:

5.2. Reflection 172

eq ("ameth3",ArrayofStrings,"RetType", "AClass").invoke(0,I) =
WrapperClass((0) .mymeth(I [0])) .

In our example this produces the following equation.

eq ("mymeth", add(add(EStringArray, "Integer") / ' I n te g e r ")
, " In te g e r" , "MyClass").invoke(0,I) =
ln teg e r((0) ,mymeth(I [0] ,I[1] .getValueO))

Next we need to produce the RefClass for MyClass that will contain all
the Method and Field instances we have created for the class. First we need
to define a constant operator for the class. We have adopted the following
naming convention:

• The name of the class.

• The keyword ’Class’.

In the general case this produces the following name:

AClassClass

This produces the following operator:

op AClassClass : -> Class .

In our example this produces the following name:

MyClassClass

We use this name to produce the following operator:

5.2. Reflection 173

op MyClassClass : -> Class .

It should be noted that there is the potential for name clashes if an
other component in a Java class is called MyClassClass and a mechanism
for tracking this and altering the name if this occurs will be needed.

Next we define the operator as tuple using an equation. Recall a C lass
tuple consists of three components.

• The String name of the class.

• An array of the class’ Methods.

• An array of the class’ Fields.

In the general case the equation that defines this operator is as follows

eq AClassClass = ("A C lass",add(. . . (add(add(EMethodArray,
amethlAClassMethod),ameth2AClassMethod), . . .) ,
amethNAClassMethod),add(.. . (add(add(EFieldA rray,
a fie ld lA C lassF ie ld),a fie ld 2 A C lassF ie ld), . . .) ,
afieldNAClassField)) .

In our example if we assume that MyClass consists only of the field and
method we defined earlier then we produce the following equation.

eq MyClassClass = ("MyClass, add (EMethodArray, mymeth) ,add(EFieldA rray,m ystr))

Finally we need to add this together with any other RefClasses (which
will be stored in a special file for future reference) to theC lassR ep to build
the Class Reference Repository.

This will produce the following equation.

eq theClassRep = a d d (. . . (add(add(ERep,("AClassl",
A C lasslC lass)), ("AClass2",AClass2Class)) , . . .) ,
("MyClass",MyClassClass)) .

5.3. The Autom ated Conversion Program 174

5.3 T he A utom ated C onversion P rogram
In this section we will examine the tool that we used to assist the development
of our model. The tool allowed us to add and test new functionality to our
model and many of the important concepts of our specification process were
trialed using this tool. We have called the tool the Algebraic Specification
Generator (ASG).

The ASG allows the automatic generation of all the extra equations
needed to fully define the full algebraic specification (FAS) of the class as
discussed in chapter 4. This allowed us to quickly test new ideas without
having to write out all the operators and equations by hand. This leads to
another possible use for the tool. The process of taking an algebraic class
specification (ACS) in the format described in chapter 3 and creating the
FAS with all the extra information needed to define the complete semantics
of a class as shown in chapter 4 can be very complex.

Many extra operation and equations have to be created in order for the
specification to be fully defined. This becomes even more complex when
the class to be specified is part of an inheritance hierarchy as all the classes
in the inheritance chain have to be specified and then equations generated
that handle access to super class methods and deal with inherited method
semantics. The ASG can automate this process allowing the user to only
have to enter a minimal amount of specification information themselves.

However the ASG was not originally designed for this purpose and was
aimed at allowing us to define and test new specification ideas in our model.
Therefore more work would need to be done in order to make it more usable
and robust. For instance the tool is not foolproof. The ASG is vulnerable
to slight syntactic variations in the layout of the method equations in the
Javadoc comments such as the presence of unexpected whitespace characters.
This would need to be improved if it were to be used for the purpose of
generating specifications for user defined classes.

5.3. The A utom ated Conversion Program 175

/* *
*
* Oreturn boolean
* <code>
* var S : Stack .
* var 0 : Object .
* eq (AStack). empty()q = t ru e .
* eq ((S) .p u sh (0)o) .empty()q = fa ls e .
* </code>
* /

public boolean empty(){

The above example shows how we embed formal specification information
within Javadoc comments. Javadoc comments are used by the Sun-supplied
javadoc tool to create API HTML documentation as seen in [Sun05g]. We
embed our equations for the semantics of methods and constructors in the
Javadoc comments in the source file using HTML tags that our program
recognises. This means that when the javadoc tool is run on source code,
equations (and related information) are copied into the API HTML docu
mentation. Hence the defining equations become part of the javadoc docu
mentation. For instance the above example could be displayed in the docu
mentation in a format similar to figure 5.1.

At present the specification information is just added into the documen
tation unformatted but in future work we would hope to add more tags to
our embedded equations that Javadoc recognises so that the equations are
added into the documentation with suitable formatting and headings.

The ASG reads this embedded information and extracts it to generate
a fully formed FAS. The ASG takes as input the original source code .java
file, extracts the embedded specification information and combines it with
other information that it obtains from the compiled class itself. In this way
as can be seen from the example above a user only has to provide the bare
minimum of formal information for a class and the tool is able to generate all
the other equations and operators for the FAS. The FAS is output as Maude
code to allow us to be able to execute specifications. However the ASG need
not be limited to Maude output and could be converted to other forms of
specification language output if desired.

We use the tags <code> and </code> to encapsulate our specification
declarations which the ASG will extract. Embedded within these tags are
equations and variable declarations for the equations that define the method

5.3. The A u to m ated C onversion P rog ram 176

Method Detail

push

puli l i e v o id push(Inc E|

Push an element onto the stack

var t : E i t j
var 5 : StacStOfElt ;
eq (5 .push(E| I « to p (I = E ;
eq (S .push (E || . pop(f = S ;
eq (S.pusli(E)) . lBEiDpt-ydi = ra is e ,*

Parameters:
s - Element, to push onto stack

Figure 5.1: Formal API Documentation.

or constructor (in the earlier example, a method called empty). The pro
gram will associate these declarations with the empty method. We embed
equations and variable declarations for the constructors in exactly the same
way. We will not discuss the meaning or format of the equations and variable
declarations themselves as this is discussed in more detail in chapters 3 and
4 of this thesis.

In addition to code tags, we allow hidden tags as shown in the following
example.

/ * *

* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not attributable
* ©version 1.0
*
* <hidden> op AStack : -> Stack .</hidden>
* /

5.3. The Autom ated Conversion Program 177

public c lass Stack {

In the above example we embed additional specification information in the
Javadoc comments that appear at the top of the class describing class wide
information. We embed this information within <hidden> and </hidden>
tags. Any declarations within these tags are copied into the FAS unchanged.
This is useful if we want to declare special operators or equations that are
used in many method specification equations throughout the class.

A common declaration as seen above is to declare an operator to symbolise
an initial or empty state of an instance of the class. The example above
declares an operator AStack which is used to denote an empty stack and
as will be seen in chapter 6 it is used by many method equations for the
Stack class. It would be possible to generate AStack automatically. However
other information may still be needed that can not so easily be automatically
generated.

In Maude it is required that all variables are declared. It also a require
ment that each variable name is unique. All of the variable declarations are
checked by the ASG to make sure there are no name clashes. If there is name
clash for a variable and they are both the same type then one of the vari
able declarations is simply deleted. If they are not the same type and they
clash then the name of one the variables is changed along with any reference
to it in the corresponding method/constructor equations. The same is not
true of equations and it is acceptable to have duplicate equations in Maude.
Therefore the ASG does not need to check for duplicate equations.

The ASG uses Java Reflection [McC98] to discover the interface informa
tion for the class such as class name, method name, field name, field type,
method input names and types etc (the use of Reflection in the ASG was a
motiviation for modelling the Java Reflection classes). This information is
used to create extra operators and equations as described in Chapter 4 to
create the FAS . If the class being specified is part of an inheritance chain
then the ASG will find the class at the top of that inheritance chain and au
tomatically specify that class and then move down the chain and specify the
next class. It will then combine that specification with the specification from
the class above and generate appropriate operations and equations to model
the super class methods and inheritance properties. This is then repeated
with the next class down and so on till the ASG has specified all the way
down to the class we have asked it to specify.

Finally we would like to point out that many of the algebraic specification
examples in the next chapter were generated using this tool.

5.4. Sources 178

5.4 Sources
The majority of the work in this chapter makes use of the modelling tech
niques we defined in Chapters 3 and 4 and is the work of JB. We have shown
how to model Java arrays [Sun05f] and Java Reflection [McC98] and have
used Java’s own definitions of these as the basis for our modelling of them.
Also we have used Java’s Reflection API in our automated conversion tool to
discover the interface of the class we are specifying. The idea of embedding
formal specifications in Java comments is similar to that of [JML05]. The
actual ASG program is the work of JB.

Chapter 6

Exam ples Of Class
Specifications

In this chapter will look at a series of examples that illustrate all the con
cepts of our modelling technique. These examples will not only show the
capabilities of our model but will also be used to demonstrate the current
limitations.

The majority of these examples are taken from the Java vl.4.2 API. We
have chosen the API library for several reasons. Firstly it provides a set of
complete and relatively well documented classes. Also in order to be able to
model our own classes we will need to make use of many of Java’s internal
classes and will therefore need to model them. In order to determine the func
tionality of the classes that we are modelling we have referred to the API’s
informal documentation [Sun05g]. In many cases this has demonstrated the
inadequacies of informal documentation as the Java documentation was of
ten ambiguous and confusing. When this occurred we were forced to refer
back to the original source code for the API in order to try and identify the
actual functionality. Although in some cases this proved useful, in others the
code was hard to interpret. This shows why models such as ours would be
useful in program development. Throughout this chapter we will not always
present the full example and i t’s corresponding FAS, but focus on key points
from the examples. Also in the Java examples we have removed the original
code from the method bodies as this is not of importance in this chapter.
Only a few of the classes will model reflection in the FAS. This is again to
reduce the size of the examples. Finally as our model is unable to model
exceptions as will be discussed in section 6.7, we have removed all references
to exceptions from the code examples.

This chapter will be split into two parts. Sections 6.1 to 6.6 will focus on
a set of examples that represent successful modelling of Java classes using

179

6.1. Stack Example 180

our specification methods. There are however some elements of the origi
nal classes that proved difficult or impossible to specify using our current
modelling techniques. In these instance we will indicate and discuss these
problems. In general though, this section demonstrates our modelling pro
cess functioning and working on a variety of examples. The examples will
cover everything from basic class specification, to classes with inheritance
and Reflection. Section 6.7 will examine specific cases from other classes
which we know we cannot model. We will look at why we cannot specify
them and suggest how future work could improve our model to accommo
date these problems. We feel that with time all the problems discussed in
this section can be solved and incorporated into our specification techniques.
These problems and future work will specifically talk about problems with
modelling functionality in Java. Other problems not relating specifically to
Java functionality will be discussed in chapter 7.

Finally it should be noted that many of the API classes we model inherit
from other API classes. In our examples we have ignored and removed the
inherited classes in most cases. This is for two reasons.

1. To reduce the size of the examples as we want to focus on the specific
modelling of the classes themselves, not the modelling of the super
classes (except where we want to demonstrate specifically the modelling
of a class with inheritance).

2. There are many methods in the inherited classes that we cannot model.
This does not cause a problem with modelling inheritance itself but it
does mean that as we can not fully model the inherited classes yet, we
are unable in certain cases to model them when extended by another
class.

6.1 Stack Exam ple
Our first example is of a simple class that represents a Stack. In this case
we will give the full example. First we will give the original Java Stack class
along with the embedded equations for modelling the class algebraically.

/* *
* <p>Title: </p>
* <p>Description: </p>

6.1. Stack Example 181

* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
*
* <hidden> op AStack : -> Stack .</hidden>
* /

public c lass Stack {

/* *
*
* <code>
* eq StackO = AStack .
* </code>
* /

public StackO {

>

/* *
*
* ©return boolean
* <code>
* var S : Stack .
* var 0 : Object .
* eq (AStack).empty()q = t ru e .
* eq ((S) .push(O)o) .emptyOq = f a ls e .
* </code>
* /

public boolean empty(){

>

/* *
*
* ©return Object
* <code>
* var S : Stack .
* var 0 : Object .
* eq ((S) .push(O)o) .peekOq = 0 .

6.1. Stack Example 182

* </code>
* /

public Object peek(){

}

/ * *
*

* ©return Object
* <code>
* var S : Stack .
* var 0 : Object .
* eq ((S).push(O)o).pop()q = 0 .
* eq ((S).push(O)o).pop()o = S .
* </code>
* /

public Object pop(){

>

/* *
*

* ©param o Object
* ©return Object
* /

public Object push(Object o){

>

/* *
*

* ©param o Object
* ©return in t
*
* <code>
* var S : Stack .
* var 01 : Object .
* var 02 : Object .
* eq (AStack). search (01)q = -1 .

6.1. Stack Example 183

* eq ((S).push (O l)o). search(01)q = 1 .
* eq ((S).push (02)o). search(01)q = i f ((01 =/= 02) and
* ((S) . search(01)q == -1)) then (-1)
* e lse (((S) . search(O l)q) + 1) f i .
* </code>
*
* /

public in t search(O bject o){

>

}

We define an operator between the hidden tags called AStack to represent
the base empty stack. This is used by the class’ only constructor to create an
empty stack instance. A stack is made up an empty stack AStack followed
by a series of push calls which add an object to the top of the stack. As
push is used as part of the structure of stack, we do not need to provide any
reduction equations as we wish to retain the push calls. The pop command
provides an example of a method that both returns a value and changes the
state of a class instance. The method is defined by the following equations.

eq ((S) .push(O)o) .popOq = 0 .
eq ((S) .push(O)o) .popOo = S .

The first equation defines the query value pop by returning the object at
the top of the stack, that is the object contained in the right outermost push
call. The second equation defines the state change functionality of the pop
method. It does this by removing the right outermost push command.

Another method of interest in this example is the search method. This
returns the distance from the top of stack to the object being searched for.
If the object being searched for is not in the stack then the method returns
-1. At first this may appear to be easily defined as follows.

eq (AStack). search(01)q = -1 .
eq ((S).push(O l)o). search(01)q = 1 .
ceq ((S).push(02)o).search(01)q = (S) . search(O l)q) + 1

i f 01 =/= 02 .

6.1. Stack Example 184

However if we are searching for an object that is not in a stack then
this will return an incorrect result. For instance if the stack contained three
objects then a search for an element not in the stack would return 2 when it
should return -1. The correct way to define this method is as follows.

eq (AStack). search(01)q = -1 .
eq ((S).push(O l)o). search(01)q = 1 .
eq ((S).push(02)o). search(01)q = i f ((01 =/= 02) and

((S) . search(01)q == -1)) then (-1) e lse
(((S) . search(O l)q) + 1) f i .

In this version we check the value returned by a recursive call to search
to see if it has returned -1. If it does we retain the -1 value rather than
add one to the recursive call’s return value. This demonstrates how extra
consideration needs to be used when creating equations for methods that
need to keep track of the value returned by recursive calls.

The resulting ACS for the Stack class is as follows.

Class Stack Extends Object {
C onstructors{

Stack :
>
Hidden!

op AStack : -> Stack .
>
Methods!

pop : -> Object .
push : Object -> Object .
empty : -> Bool .
peek : -> Object .
search : Object -> In t .

}
O perations!
}
V ariab les!

var 0 : Object .
var S : Stack .
var 01 : Object .

6.1. Stack Example 185

var 02 : Object .
>
Equations{

eq StackO = AStack .
eq (AStack).empty()q = t ru e .
eq ((S) .push(O)o) .emptyOq = fa ls e .
eq ((S) .push(O)o) .peekOq = 0 .
eq ((S) .push(O)o) .popOq = 0 .
eq ((S).push(O)o).pop()o = S .
eq (AStack). search(01)q = -1 .
eq ((S).push(O l)o). search(01)q = 1 .
eq ((S).push(02)o). search(01)q = i f ((01 =/= 02) and

((S) . search(01)q == -1)) then (-1) e lse
(((S) . search(Ol)q) + 1) f i .

>
>

Finally we give the corresponding Maude code for modelling this class.

fmod STACK is

p ro tec ting BUILDLINK .

so rt Stack .
so r t StackObject .
so r t StackBool .
so r t S tacklnt .
so r t StackArray .

op StackO : -> Stack .

op AStack : -> Stack .

op : Stack Object -> StackObject .
op oval(_) : StackObject -> Stack .
op qval(_) : StackObject -> Object .
op : Stack Bool -> StackBool .
op oval(_) : StackBool -> Stack .

6.1. Stack Example 186

op qval(_) : StackBool -> Bool
op : Stack In t -> Stacklnt
op oval(_
op qval(_
op _•pop(
op _•pop(
op _•pop(
op _•pop(
op _•pop(
op _•pop(
op _.push
op _.push
op _.push
op _.push
op _.pusM_Jo
op _.push(_)q
op empty(
op empty(
op empty(
op empty(
op empty(
op empty(
op _.peek()
op _.peek()
op _.peek()
op _.peek()
op _.peek()o
op _.peek()q
op _.search(_
op _.search(_
op _.search(_
op _.search(_
op _.search(_
op search(_

Stacklnt -> Stack .
Stacklnt -> In t .
Stack -> StackObject .
StackObject -> StackObject .
StackBool -> StackObject .
Stacklnt -> StackObject .
Stack -> Stack .
Stack -> Object .

Stack Object -> StackObject .
StackObject Object -> StackObject
StackBool Object -> StackObject .
S tackln t Object -> StackObject .

: Stack Object -> Stack .
: Stack Object -> Object .
Stack -> StackBool .
StackObject -> StackBool .
StackBool -> StackBool .
S tacklnt -> StackBool .

: Stack -> Stack .
: Stack -> Bool .
Stack -> StackObject .
StackObject -> StackObject .
StackBool -> StackObject .
S tackln t -> StackObject .

Stack -> Stack .
Stack -> Object .

Stack Object -> S tackln t .
StackObject Object -> S tack ln t
StackBool Object -> S tack ln t .
S tackln t Object -> S tack ln t .

Stack Object -> Stack .
Stack Object -> In t .

op n u ll : -> Stack .
op _[_] : StackArray In t -> Stack .
op : StackArray In t Stack -> StackArray .
op add : StackArray In t Stack -> StackArray .
op add : StackArray Stack -> StackArray .

6.1. Stack Example 187

op get : StackArray In t -> Stack .
op length : StackArray -> In t
op newStackArray : In t -> StackArray .
op new:Stack[_] : In t -> StackArray .
op EStackArray : -> StackArray .

var 0 : Object .
var S : Stack .
var 01 : Object .
var 02 : Object .
var SYSO Stack .
var SYS1 Object .
var SYS2 StackObject
var SYS3 Bool .
var SYS4 StackBool .
var SYS5 In t .
var SYS6 Stacklnt .
var SYS7 Object .
var SYS8 Object .
var SYS9 Stack .
var SYS10 : Stack .
var SYS11 : StackArray
var SYS12 : In t .
var SYS13 : In t .

eq StackO = AStack .
eq (AStack).empty()q = t ru e .
eq ((S) .push(O)o) .emptyOq = f a l s e .
eq ((S) .push(O)o) .peekOq = 0 .
eq ((S) .push(O)o) .popOq = 0 .
eq ((S).push(O)o).pop()o = S .
eq (AStack). search(01)q = -1 .
eq ((S) .push (O l)o) . search(01)q = 1 .
eq ((S).push(02)o). search(01)q = i f ((01 =/= 02) and

((S) . search(01)q == -1)) then (-1) e lse
(((S) . search(Ol)q) + 1) f i .

eq oval(SYS0,SYS1) = SYSO .
eq qval(SYSO,SYS1) = SYS1 .
eq oval(SYSO,SYS3) = SYSO .
eq qval(SYSO, SYS3) = SYS3 .

6.1. Stack Example 188

eq oval(SYSO,SYS5) = SYSO .
eq qval(SYSO,SYS5) = SYS5 .
eq (SYSO) .pop() = (SYSO) .pop()o, (SYSO) .popOq .
eq (SYS2).pop() = (oval(SYS2)).pop()o,

(oval(SYS2)) .popOq .
eq (SYS4).pop() = (oval(SYS4)).pop()o,

(oval(SYS4)) . pop() q .
eq (SYS6).pop() = (oval(SYS6)).pop()o,

(oval(SYS6)) .popOq .
eq (SYSO).push(SYS7) = (SYSO).push(SYS7)o,

(SYSO).push(SYS7)q .
eq (SYS2).push(SYS7) =

(oval(SYS2)) . push(SYS7)o, (oval(SYS2)) . push(SYS7)q .
eq (SYS4).push(SYS7) =

(oval(SYS4)).push(SYS7)o,(oval(SYS4)).push(SYS7)q .
eq (SYS6).push(SYS7) =

(oval(SYS6)).push(SYS7)o,(oval(SYS6)).push(SYS7)q .
eq (SYSO).empty() = (SYSO).empty()o,(SYSO).empty()q .
eq (SYS2).empty() = (oval(SYS2)).empty()o,

(oval(SYS2)).empty()q .
eq (SYS4).empty() = (oval(SYS4)) .empty()o,

(oval(SYS4)).empty()q .
eq (SYS6).empty() = (oval(SYS6)).empty()o,

(oval(SYS6)).empty()q .
eq (SYSO) .peekO = (SYSO) .peek()o, (SYSO) .peekO q .
eq (SYS2) .peekO = (oval(SYS2)) .peek()o,

(oval(SYS2)).peek()q .
eq (SYS4) .peekO = (oval(SYS4)) .peekOo,

(oval(SYS4)) .peekOq .
eq (SYS6) .peekO = (oval(SYS6)) .peekOo,

(oval(SYS6)) .peekOq .
eq (SYSO). search(SYS8) = (SYSO). search(SYS8)o,

(SYSO).search(SYS8)q .
eq (SYS2).search(SYS8) =

(oval(SYS2)). search(SYS8)o,(oval(SYS2)). search(SYS8)q .
eq (SYS4).search(SYS8) =

(oval(SYS4)).search(SYS8)o,(oval(SYS4)).search(SYS8)q .
eq (SYS6). search(SYS8) =

(oval(SYS6)) . search(SYS8)o, (oval(SYS6)) . search(SYS8)q .

6.2. Array List Example 189

ceq get(add(SYSll,SYS9),SYS12) = SYS9
i f SYS12 = (SYS11).length .

ceq get(add(SYSll,SYS9),SYS12) = get(SYS11,SYS12)
i f SYS12 =/= (SYS11).length .

eq (EStackArray). length = 0 .
eq (add(SYSll,SYS9)).length = (SYS11). leng th + 1 .
ceq add(add(SYSll,SYS10),SYS12,SYS9) =

add(SYSll,SYS9) i f SYS12 = (SYS11). length .
ceq add(add(SYSll,SYS10),SYS12,SYS9) =

add(add(SYSll,SYS12,SYS9),SYS10) i f SYS12 <=
(SYS11).length .

eq newStackArray(O) = EStackArray .
eq newStackArray(SYS12) = add(newStackArray(SYS12 - 1) ,n u ll)
eq (SYS11)[(SYS12)] = get(SYS11,SYS12) .
eq ((SYS11)[(SYS12)] : = (SYS9)) = add(SYSll,SYS12,SYS9) .
eq new:Stack[SYS12] = newStackArray(SYS12) .

endfm

It should be noted that the last set of equations define the array type
and operations for the Stack class. The Stack class provided no functionality
that we can not model. Hence it serves as a good example of the capabilities
of our model.

6.2 ArrayList E xam ple
For this and the rest of the examples we will not give the full example class
and corresponding specification code, but will instead focus on sections of
the example which show interesting modelling concepts and problems. An
ArrayList structure is defined in a similar way to the Stack example. An
ArrayList is defined as an empty ArrayList followed by add calls which add
objects to the ArrayList. There are several methods which are of interest.
The first we will examine is the set method that adds an object at a specified
index in the ArrayList.

/ **
*
* Oparam i

6.2. ArrayList Example 190

* ©param x
* ©return
*
* <code>
* var A : ArrayList .
* var I : In t .
* vars X Y : Element .
* ceq ((A). add(Y)o). se t(I ,X)o = (A).add(X)o
* i f I = (A) . s iz e O q .
* ceq ((A). add(Y)o). se t(I ,X)o = ((A). s e t (I ,X) o) . add(Y)o
* i f I =/= (A) .s iz eO q .
* eq (A). se t(I ,X)q = (A).ge t(I)q .
* </code>
* /

public Element s e t (i n t i , Element x) {

>

The problem with this method is that it uses an index to place the element
to be added into the ArrayList. However the structure of ArrayList has
no indexing component. In the original code, the indexing is most likely
incorporated through private methods and fields. However our model is
not interested in the private or protected components of a class only the
public interface so we need to incorporate the indexing using only the public
methods available. We do this using the size method. Let us look at the
equations that define the state change component of the method set.

ceq ((A) .add(Y)o) .se t(I ,X)o = (A).add(X)o i f I = (A) .s iz eO q .
ceq ((A).add(Y)o).set(I ,X)o = ((A).se t(I ,X)o).add(Y)o

i f I =/= (A).s izeO q .

The first equation says that if the index position we are looking for is
equal to the value returned by size when called on the ArrayList minus
the current right outermost element then we add the object at the current
position and discard the old object at that position. We add it using the add
method which is used in the structure of ArrayList. The second equation
recursively calls the set method on the ArrayList if the index value is not

6.2. ArrayList Example 191

equal to the size of the ArrayList minus the right outermost element. We
attach the right outermost element to the result of the recursive call of set
on the rest of ArrayList.

This method also has a query return value so we need to provide an
equation to define this.

eq (A). se t(I ,X)q = (A).g e t(I)q .

The query return value is the object currently held at index I (that is the
object at position I before set replaces it with the new object). The above
equation does this quite simply by calling the get method and passing to it
the integer index I.

The get method is defined by the following equations.

ceq ((A).ad d (X)o).g e t(I)q = X i f I = (A).s iz e ()q .
ceq ((A).ad d (X)o).g e t(I)q = (A).g e t(I)q i f I =/= (A).s iz e ()q .

This works in a similar way to the set method but when it finds the correct
index position it returns the object at that position. As can be seen the set
method is able to use the definition of get to define part of its functionality
thus reducing the need for repeated equations. As stated all of these methods
make use of the size method. We will now look at its definition.

/* *
*
* ©return
* <code>
* var A : A rrayList .
* var X : Element .
* eq (E l i s t) . s iz e ()q = 0 .
* eq ((A).ad d (X)o),s ize ()q = (A).s ize ()q + 1 .
* </code>
* /

public in t s iz e Q {

}

6.2. ArrayList Example 192

We define size using the following two equations,

eq (E l i s t) . s iz e ()q = 0 .
eq ((A).add(X)o).s ize()q = (A).s ize ()q + 1 .

The first equation defines the size of an empty ArrayList as zero. The
second equation recursively calls size on ArrayList when it is non-empty and
adds one to the result. This means that in no way do the elements of an
ArrayList have an actual index assigned to them. Their index positions are
defined by the size method. Therefore if a new element is inserted into an
ArrayList the index of all the subsequent elements will increase by one. This
is the expected functionality of ArrayList as specified by the API documen
tation [Sun05g].

Next we will examine two methods that are used to obtain the index
locations of a given element of an ArrayList.

/**
*
* Oparam x
* ©return
*

* <code>
* var A : ArrayList .
* vars X Y : Element .
* eq (E l i s t) . lastlndexOf(X)q = -1 .
* eq ((A).add(X)o).lastlndexOf(X)q = (A) .s iz e ()q .
* ceq ((A). add(Y)o). lastlndexOf(X)q =
* (A).lastlndexOf(X)q i f Y =/= X .
* </code>
* /

public in t lastlndexOf(Element x) {

}

This function returns the last index of a given element in the ArrayList
(that is the right outermost element in the ArrayList structure). We define
the function with the following three equations.

6.2. ArrayList Example 193

eq (E l i s t) . lastlndexOf(X)q = -1 .
eq ((A).add(X)o).lastlndexOf(X)q = (A) .s iz e ()q .
ceq ((A).add(Y)o).lastlndexOf(X)q =

(A). lastlndexOf(X)q i f Y =/= X .

The first equation returns -1 if the ArrayList is empty. That is, we have
searched through the entire ArrayList and have not found an entry for the
given object. The second equation returns the array position of the object
we are searching for if we have found it. The equation does this by returning
the current size of the ArrayList minus its right outermost element, if that
element is the object we are looking for. That is it returns the index position
of that element according to the definition of lastlndexOf (note that if you
have an ArrayList of size N then the ArrayList indexes from 0 to N - l). The
third equation recursively calls lastlndexOf on the remainder of an ArrayList
if the right outermost element is not equal to the object we are searching for.

Next we will look at the indexOf method.

/* *
*
* ©param x
* ©return
*

* <code>
* var A : ArrayList .
* vars X Y : Element .
* eq (E l i s t) . indexOf(X)q = -1 .
* ceq (A). indexOf(X)q = (A). lastlndexOf(X)q
* i f ((((A).rem ove((A).lastlndexO f(X)q)o). contains(X)q)
* == fa lse) .
* eq ((A).add(Y)o).indexOf(X)q = (A). indexOf(X)q .
* </code>
* /

public in t indexOf(Element x) {

>

Note that the vars keyword is used in Maude as a way of declaring mul
tiple variables of the same type. We use it here simply as a notational

6.2. ArrayList Example 194

convenience.
This method returns the index of the first occurrence of a given object

in an ArrayList (that is the left innermost occurrence of the object). This
is more complicated than the lastlndexOf method. We cannot easily keep
searching back through the ArrayList to find the first occurrence of the object
as we will not know when to stop once we have found it. The answer to this is
to remove the later repetitions of the object from the ArrayList until we are
left with the only the first occurrence of the object in the ArrayList. Then
all we have to is to call lastlndexOf which will now be equivalent to indexOf

We do this using the following equations.

eq (E l i s t) . indexOf(X)q = -1 .
ceq (A). indexOf(X)q = (A). lastlndexOf(X)q

i f ((((A).remove((A). lastlndexO f(X)q)o). contains(X)q)
== fa lse) .

eq ((A).add(Y)o). indexOf(X)q = (A). indexOf(X)q .

The first equation returns -1 on empty ArrayList (that is the ArrayList
does not contain an occurrence of the object we are searching for). The
second equation returns the lastlndexOf of the element we are searching for.
It is only used if when we find the lastlndexOf of the object we are searching
for, then remove that element and the new ArrayList does not contain any
more occurrences of that object. That is it is called if the ArrayList contains
only one occurrence of the object we are searching for. To do this it uses
two of Array List's other methods. These methods are remove which removes
an object at a given index and contains which returns true if an ArrayList
contains a given object and false if it does not. The third equation recursively
calls indexOf on the ArrayList minus its right outermost element. It is only
called if the first two equations fail.

Finally we will look at the removeRange method.

/*:4=
*
* Oparam
* Sparam
*
* <code>
* var A ArrayList

6.2. ArrayList Example 195

* vars I J : In t .
* eq (A).removeRange(I, I)o = A .
* eq (A).removeRange(I, J)o =
* ((A). remove(I)o). removeRange(I , J - l)o .
* </code>
* /

public void removeRange(int i , in t j) {

>

This method removes all the elements between the range of I - J where
I is inclusive and J is not.

eq (A).removeRange(I, I)o = A .
eq (A).removeRange(I, J)o =

((A).remove(I)o).removeRange(I, J - l)o .

The first equation returns the array unchanged if the range start point
is equal to the range end point. This ensures that the J ’th position of the
range is never removed (keeping it exclusive). The second equation removes
the element at the start of the range and then recursively calls removeRange
on the result with the end range value J reduced by 1.

A large percentage of the ArrayList class functionality has been modelled.
There are however a few components of this class that we are at present
unable to model. We will now look at each of these components.

The first problem are two of Array L is t’s constructors. The first allows you
to pass in a class instance of the Collection class to initialise the ArrayList
with the elements in the collection. Collection is a Java Interface class which
means it purely defines syntax but no semantics. At present was are unable
to model Java Interfaces so we cannot model this method. However we feel
that this could be incorporated through the correct use of Maude subsorts
and membership axioms. In Java, sub classes of Collection that fully define
the semantics are passed as class instances to this constructor. We feel the
same could be done using subsorting in Java. The second constructor allows
the user to pass in an integer to ensure the initialised ArrayList is of a given
capacity. This is essentially to help make code more efficient. However in our
model we do not model the underlying memory or elements usually hidden
from the user. Although we might be able to set the internal capacity it

6.3. Label Example 196

would make no difference to the structure of the ArrayList. At present we
see no way of modelling this sort of functionality without completely altering
the model to accommodate the hidden underlying system.

For similar reasons we cannot model the addAll, ensureCapacity, and
trimToSize as they all involve either the internal capacity or use of the Col
lection interface.

6.3 Label Exam ple
Our next example looks at how our specification techniques can be used to
model parts of the Java GUI component classes. The class we have chosen to
model is the Label class. It was while modelling this class that we altered our
modelling technique to accommodate multiple methods that can define the
structure (such as the field values) of a class instance. This new modelling
technique is at present experimental and has only been used in this one case
as an example solution to the problem of classes with multiple definitions of
its structure. This technique requires further investigation and refinement
before it is fully implemented into our model. All our previous examples have
only had one method forming part of the class structure. However Label has
two. In order to accommodate this we have to declare which methods they
are and what is the type of the value that they set in the structure.

/* *

* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
*

* <hidden> op ALabel : -> Label .</hidden>
* <struct>
* setText
* S tr ing
* setAlignment
* In t
* < /s truc t>
* /

6.3. Label Example 197

public c lass Label {

These extra declarations are placed between the struct keywords.

<struct>
setText
String
setAlignment
Int
< /s truct>

This declares that the structure of Label can consist of a method called
setText which sets a String value and a method called setAlignment that sets
an integer value. We will look at two methods that will need to make use of
setText and setAlignment. The first method is getText.

/* *
*

* Qreturn S tr ing
* <code>
* eq (L).ge tT ext()q = (L). s e tT ex t[. . .] .
* </code>
* /

public S tr ing ge tT ex t(){

}

The method is defined with a single equation.

eq (L).ge tT ext()q = (L) . s e tT ex t[. . .] .

This uses the operator setText[...] which can be generated from the
information between the struct statements. setTextf...] is used to obtain
the current value set by setText[...]. The equations for setTextf...] are given
below.

6.3. Label Example 198

eq ((SYSO). setAlignment(SYS7)o).setText[. . .] =
(SYSO).setText[. . .] .

eq ((SYSO).setText(SYS8)o).setText [. . .] = SYS8 .

This searches through a Label's structure ignoring any setAlignment calls
until it finds a setText call. When it finds a setText call it returns the string
value parameter of setText.

The second method we will look at, getAlignment, is defined in a similar
way.

eq (L).getAlignment()q = (L).setAlignment [. . .] .

The equations that define setAlignment[...] are similar to those defining
setText[...].

eq ((SYSO). setAlignment(SYS7)o).setAlignment[. . .] = SYS7 .
eq ((SYSO). setText(SYS8)o). setAlignment[. . .] =

(SYSO). setAlignment[. . .] .

We do however have a problem with the modelling of getAlignment and
the setAlignment. In the original Java code you can set the alignment
value by passing in one of the class’ constant integers LE F T , CEN TER ,
and RIGHT. The actual values of these are hidden from the user. However it
is possible that in some cases when this way of passing integer values is used,
it will be necessary to model the actual values as well. At present our model
doesn’t do this. Although it wouldn’t be hard to do, it would still mean that
a knowledge of the underlying Java code of a class would be needed in order
to discover the actual values of these constants.

There are two methods that we are currently unable to model in the
Label class. The first addNotify is used to control how the label appears
on screen. We are currently unable to model the on screen behaviour of
the GUI functionality of Java classes. There are possible ways to model
this sort of functionality. One suggestion is to have the Maude specification
generate a bitmap that will represent the current state of the on screen
display. However although this is possible it is probably not desirable. The
type of modelling we use is not interested in modelling GUI classes, but in

6.4. Geometric Examples 199

modelling computational classes, and storage classes. We only mention the
GUI aspect to emphasize that although we do not think it is neccessary to
model it, we believe it is possible to do so.

The other method we cannot model is getAccessibleContext. This returns
an AccesibleContext instance which contains more information on the Label
instance. We are unable to model this method because we have not modelled
AccessibleContext. AccessibleContext is tied heavily in with GUI aspects of
Java and thus it is at present not possible to model this class.

6.4 G eom etric E xam ples
The following set of examples are largely taken from the java.awt.geom pack
age which contains a collection of geometric themed classes, such as Line and
Rectangle. However we have adapted the classes contained in this package as
the majority of them are abstract. We have used classes contained both in
the java.awt and java.awt.geom that expand the classes we have modelled to
complete the abstract methods. We are unable at present to model abstract
classes so we have chosen to adapt them using these extended classes. The
original Java classes also use floating point numbers for the coordinate sys
tem. Our model at present only models integer numbers so for the purpose
of this example, the classes have been changed to use integer numbers. This
does generate a few issues when modelling certain aspects of these classes
and we will discuss those later. The aim of modelling these classes is to
demonstrate a good example of modelling classes that provide a high level
of computation functionality.

6.4.1 Point2D Example
This example is used to model a point in a cartesian coordinate system. In
Java the origin (0,0) is in the top left corner of the coordinate system, but
this does not affect the calculations and would only be noticeable if displayed
on a screen. This applies to all the geometric examples.

/* *
* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>

6.4. Geometric Examples 200

* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
*
* <hidden>op APoint2D : -> Point2D .</hidden>
* /

public c lass Point2D {

public in t x;
public in t y;

/* *
*
* Qparam x in t
* Qparam y in t
* <code>
* var X : In t .
* var Y : In t .
* eq Point2D(X,Y) = ((APoint2D).x:=(X)) .y:=(Y) .
* </code>
* /

public Point2D(int x , i n t y){

>

Structurally a Point2D is defined simply by its x,y coordinates which
are stored in fields x and y. There are several constructors that can be
used to create a Point2D instance. These are all variations on setting the
x,y coordinates by passing in these values in different ways such as another
Point2D instance or not passing in anything in which case the x, y coordinates
are both set to zero.

Next we will look at the clonel and equalsl methods.

/* *
*
* ©return Object
* <code>

6.4. G eom etric Exam ples 201

* var P : Point2D .
* eq (P) . c lo n e l()q = Point2D(((P) .x) , ((P) .y)) .
* </code>
* /

public Point2D c lo n e l(){

>

/* *
*

* ©param 0 Object
* ©return boolean
* <code>
* var P : Point2D .
* var OB : Point2D .
* ceq (P).equalsl(OB)q = tru e i f (((P) .x == (OB).x) and
* ((P) . y == (O B) . y)) .
* </code>
*/

public boolean equalsl(Point2D 0){

>

The functionality of these methods is relatively simple. The method
equalsl takes in another point and checks to see if the two points are equal
by checking to see if they have the same x,y coordinates. The clonel method
creates a new Point2D with the current Point2D,s x,y coordinates. These
are meant to be an implementation of Point2D’s clone and equals methods
which override methods of the same name inherited from Object. The equals
method should take in a general Object instance and clone should return one.
In actuality these will always be Point2D instances which are subtypes of
Object (if you tried to pass in an instance that was not of the subclass type
Point2D to the equals method you would generate an exception which at
present we can not model). In order to model this exactly we would need to
model class casting which at present we don’t. It might be possible to do this
by using Maude membership axioms together with Maude subsorts. In order
for us to model the functionality we have therefore changed the Object inputs
and return types to Point2D. However as Point2D is a subtype of Object Java
does not allow you to name these new function equals and clone as this will
cause a signature clash (it will not override the methods as Point2D is a

6.4. G eom etric Exam ples 202

subtype of Object not a completely separate type) so we have renamed our
methods equalsl and clonel for the purpose of this example.

Next we will look at the distance method.

/**
*
* ©param i in t
* ©return in t
* <code>
* var P : Point2D .
* var XI : In t .
* var X2 : In t .
* var Yl : In t .
* var Y2 : In t .
* eq (P) .distance(XI
* sqr(Y2 - Yl))
* </code>
*/

public in t d is ta n c e (in t x l , i n t x 2 , in t y l , i n t y2){

>

This method calculate the distance between two points. The distance is
the square root of the sum of the squares of the difference between the x co
ordinates and the y coordinates D = y j (X 2 — X I) 2 + (Y2 — Y l) 2. However
this poses a problem for us when modelling in Maude. Maude only has a
square root function that works with floating numbers and we are using inte
ger numbers. We therefore define a function in the built-in Maude modules
that allows us to find the square root of an integer number.

op i s q r t : In t -> In t .

eq i s q r t (I) = r a t (f l o o r (s q r t (f l o a t (I)))) .

The above equations make use of Maude’s conversion module. It first
converts the integer that you wish to find the square root of to a floating

6.4. Geometric Examples 203

point number. It then uses Maude’s floating point square root function to
find the square root of this number. Next it uses Maude’s floor function
to find the floor of the square root. Finally it uses Maude’s rat function
to convert the floating number back to an integer. As can be seen one of
the disadvantages of using integer numbers are rounding errors in this case
resulting from taking the floor of the floating point square root (although it
should be noted that even floating point numbers will suffer from rounding
errors albeit to a less degree than integers).

We also for convenience have defined a function to square integer numbers.

op sqr : In t -> In t .

eq sq r(I) = 1 * 1 .

The next method we will look at is distanceSq

/**
*
* Qparam xl in t
* Qparam x2 in t
* Qparam yl in t
* Qparam y2 in t
* Qreturn
•a.

in t
T

* <code>
* var XI : In t .
* var X2 : In t .
* var Yl : In t .
* var Y2 : In t .
* eq (P).distanceSq(Xl,X2,Yl,Y2)q =
* sqr((P),distance(Xl,X2,Y1,Y2)q)
* </code>
*/

public in t d is tanceS q(in t x l , i n t x 2 ,in t y l , i n t y2){
re tu rn 0;

}

6.4. Geometric Examples 204

This method returns the square of the distance. We have coded this
method so that it squares the result of a call to the distance method. However
this is not actually the correct functionality. In actual fact this should do
exactly what the distance method does but it should not take the square
root. If the square root is taken and then squared back again then there is
the danger of rounding errors as even with floating point numbers the square
root function cannot return an exact value in some cases. This demonstrates
the importance of formal documentation. The informal documentation that
is provided with this class does not make the importance of this function
clear and thus there is the danger of misinterpreting its functionality as we
have done deliberately to emphasize a point. The correct way to model the
functionality of this method is to have it calculate the distance itself and
not take the square root. The distance method could then make use of this
function by calling it and finding the square root of the result.

We have not been able to model hashCode which returns the hashcode
for this instance. As this is part of the internal working of the Java class
we are unable to determine how the hashcode is generated easily. Also we
are unable to model toString. This returns a string representation of the
class instance but as the representation can vary between platforms it is not
possible to accurately model this method. It would be possible to model it
in a general way but it would not be a completely accurate model of the
method’s functionality.

6.4.2 Line2D Example
The next geometric example class we will look at is Line2D. This class is
used to model a line in a cartesian coordinate system.

/ **
* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
*
* <hidden>op ALine2D : -> Line2D .</hidden>
* /

public c lass Line2D {

6.4. Geometric Examples 205

public in t x l;
public in t x2;
public in t y l;
public in t y2;

/* *
*
* Qparam xl in t
* Qparam yl in t
* Qparam x2 in t
* Qparam y2 in t
* <code>
* var XI : In t .
* var X2 : In t .
* var Yl : In t .
* var Y2 : In t .
* eq Line2D(Xl,Y1,X2,Y2) =
* ((((ALine2D).xl: = (X1)) .y l : = (Y1)) .x2: = (X2)) .y2: = (Y2) .
* </code>
* /

public Line2D(int x l , i n t y l , i n t x 2 , in t y2){

>

Structurally a Line2D is defined as two sets of x,y coordinates which are
stored in fields xl, yl, x2, and y2. The constructor above allows a user to
create a new Line2D instance by passing in values for these fields. Similar
to Point2D there are other constructors that allow us to create a Line2D
instance by passing in values for the fields in different formats, such as another
Line2D or two Point2D instances.

We will now look at some of the class’ methods.

/* *
*
* Qreturn Point2D
* <code>
* var L : Line2D .
* eq (L) .ge tP lO q = Point2D((L) . x l , (L) .y l) .

6.4. Geometric Examples 206

* </code>
* /

public Point2D ge tP l(){

>

The above method retrieves the first point of a Line2D instance. It
does this by creating a new Point2D instance using the Line2D :s x l and
y l coordinates. A similar method exists for the Line2D’>s second point. In
order to do this the algebraic specification for Point2D needs to be created
first. It then needs to be loaded into Maude first and then Line2D needs
to protect the Point2D module and be loaded in itself. This however would
present a problem if Point2D makes use of Line2D as we would have a
cyclical dependency and Maude would not be able to load in the modules
due to missing operators. One solution to this would be to create one large
Maude module with all the classes to be modelled in it. However this causes a
problem for the automated program conversion program as it could result in
name clashes with variables. A better solution is to remove all the equations
from each class to be modelled and place them into a separate Maude module
to be loaded last. This will allow all operators to be declared before they are
defined in the equations as being dependent on each other. So although in
this case there are no cyclical dependencies it is important to recognise this
problem and its potential solutions as there are cases in which it could occur.

Next we will look at one of Line2D’>s multiple contains methods.

/* *
*
* Qparam p Point2D
* Qreturn boolean
* <code>
* eq (L). con tains(P l)q = fa ls e .
* </code>
* /

public boolean contains(Point2D p){

>

The above method checks to see if the Line2D instance contains a Point2D
instance. However a Line2D is a one dimensional object and thus can not

6.4. Geometric Examples 207

contain anything. Hence this method and all the other contains methods
return false.

The next method we will look at is relativeCCW.

/* *
*
* Qparam xl in t
* Qparam yl in t
* Qparam x2 in t
* Qparam y2 in t
* Qparam px in t
* Qparam py in t
* Qreturn in t
* <code>
* var PX : In t .
* var PY : In t .
* ceq (L).relativeCCW(XI,Yl,X2,Y2,PX,PY)q = -1 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* == 0) and ((((PX - XI) * (Y2 - Yl)) + ((PY - Yl) *
* (X2 - XI))) < 0) .
* ceq (L).relativeCCW(XI,Yl,X2,Y2,PX,PY)q = 1 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* == 0) and ((((PX - XI) * (Y2 - Yl)) + ((PY - Yl) *
* (X2 - XI))) > 0) .
* ceq (L).relativeCCW(Xl,Y1,X2,Y2,PX,PY)q = 0 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* == 0) and (((PX - XI) * (Y2 - Yl)) + ((PY - Yl) *
* (X2 - XI))) == 0) .
* ceq (L).relativeCCW(XI,Yl,X2,Y2,PX,PY)q = 0 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* > 0) and (((((PX - XI) - X2) * (Y2 - Yl)) +
* (((PY - Yl) - Y2) * (X2 - XI))) <= 0) .
* ceq (L).relativeCCW(Xl,Yl,X2,Y2,PX,PY)q = 1 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* > 0) and (((((PX - XI) - X2) * (Y2 - Yl)) +
* (((PY - Yl) - Y2) * (X2 - XI))) > 0) .
* ceq (L).relativeCCW(Xl,Yl,X2,Y2,PX,PY)q = -1 i f
* ((((PX - XI) * (Y2 - Yl)) - ((PY - Yl) * (X2 - XI)))
* < 0) .

* </code>

6.4. Geometric Examples 208

*
* /

public in t relativeCCW(int x l , i n t y l , i n t x 2 , in t y 2 , in t p x , in t py){

>

The above method is used to determine where a given point lies in re
lation to a line. In order to be able to create equations for the function
it was neccessary to look at how the source code works and try and cre
ate equations that do the same thing. This demonstrates the importance of
formal modelling being done at the design phase. As we had to resort to
mimicking the source code, any errors in the source code will have been du
plicated in the equations. Also the source code is at times hard to interpret
and therefore there is the danger of new errors being introduced as we try
and determine the source code’s original functionality. There is also a lot of
repetition of calculations due to the differences in how equations work and
how the original source code works. The above shows how it is important the
programmers, designers, and formal modelers should work closely together
during every phase of the creation of new code. There are several methods
in this example and others where we have had to resort to trying to mimic
the original source code.

Finally we will look at the lineslntersect method.

/ **
*
* Qparam xl in t
* Qparam yl in t
* Qparam x2 in t
* Qparam y2 in t
* Qparam x3 in t
* Qparam y3 in t
* Qparam x4 in t
* Qparam y4 in t
* Qreturn boolean
* <code>
* var X3 : In t .
* var Y3 : In t .
* var X4 : In t .
* var Y4 : In t .

6.4. Geometric Examples 209

* ceq (L).linesIntersect(Xl,Yl,X2,Y2,X3,Y3,X4,Y4)q = t ru e
* i f (((((L).relativeCCW(XI, Yl, X2, Y2, X3, Y3)q) *
* ((L). relativeCCW(XI, Yl, X2, Y2, X4, Y4)q)) <= 0)
* and ((((L).relativeCCW(X3, Y3, X4, Y4, XI, Yl)q) *
* ((L).relativeCCW(X3, Y3, X4, Y4, X2, Y2)q)) <= 0))
* == t ru e .
* eq (L).linesIntersect(Xl,Yl,X2,Y2,X3,Y3,X4,Y4)q =
* fa ls e .
* </code>
* /

public boolean l in e s ln te r s e c t (in t x l , i n t y l , i n t x2,
in t y 2 , in t x 3 , in t y 3 , in t x 4 , in t y4){

}

The above method checks to see if one line intersects another. It does
this using relativeCCW to check to see where each point of the one line lies
in relation to the other. There are two potential problems with this method.
The first relates to the fact that we are using integers and not floating point
numbers for the coordinates of the lines. This could potentially lead to
rounding errors erroneously reporting that a line intersects the other line
when it does not or vice versa. This problem can be improved by adapting
the model to incorporate floating numbers. The other problem relates to
relativeCCW. Although it is not hard to see how we can use RelativeCCW
in this method to check if a line intersects another line we run the risk of the
possible bugs in the equations for relativeCCW as mentioned earlier causing
inaccurate results for lineslntersect. This shows that errors generated earlier
on in a different method can effect later methods that use the potentially
flawed method.

There are two methods both called getPathlterator which returns an it
eration instance that defines the boundary of the Line2D object. We have
not modelled these methods for two reasons. The first is that it returns a
Java interface instance and as already stated our model at present does not
model interfaces. Also it takes in an AffineTransform class instance as an
input which, although we are able to model, we have not modelled this class
due to time limitations.

6.4. Geometric Examples 210

6.4.3 Dim ension2D Example
This class is used to model a dimension for use with our Rectangle2D example
that we will look at later.

/* *

* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
* <hidden>op ADimension2D : -> Dimension2D ,</hidden>
* /

public c lass Dimension2D {

public in t height;
public in t width;

/**
*
* ©param w in t
* ©param h in t
* <code>
* var W : In t .
* var H : In t .
* eq Dimension2D(W,H) = (ADimension2D). setSize(W,H)o .
* </code>
* /

public Dimension2D(int w ,in t h){

>

A Dimension2D is defined as a width and a height dimension which are
stored in integer fields width and height. The constructor above allows a user
to create a Dimension2D by passing in values for these fields. Like in the
previous examples other constructors exist for this class.

We will not examine any of the methods here. They are relatively simple
and do not have any interesting features. The only methods we could not

6.4. Geometric Examples 211

model are hashCode and toString for the same reasons we gave in the other
geometric examples. The purpose of modelling this class is to allow us to
more fully model the functionality of the Rectangle2D as some of Rectan-
gle2D,s methods and constructors make use of Dimension2D

6.4.4 Rectangle2D Example
The final class we will look at in our geometric set of examples is Rectangle2D.
This class is used to model rectangles in cartesian coordinate systems.

/* *

* <p>Title: </p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2004</p>
* <p>Company: </p>
* ©author not a t t r ib u ta b le
* ©version 1.0
*
* <hidden>op ARectangle2D : -> Rectangle2D .</hidden>
* /

public c lass Rectangle2D {

public in t height;
public in t width;
public in t x;
public in t y;

/**
*
* ©param x in t
* ©param y in t
* ©param width in t
* ©param height in t
* <code>
* var X : In t .
* var Y : In t .
* eq Rectangle2D(X,Y,W,H) =
* ((((ARect angle 2D). x : = (X)) . y : = (Y)) . w id th : = (
* W)).height:=(H) .
* </code>

6.4. Geometric Examples 212

* /
public Rectangle2D(int x , in t y , i n t w id th ,in t h e ig h t) !

}

Structurally a Rectangle2D is defined as a set of x,y coordinates repre
senting the top left corner of the rectangle and a width and a height. These
are stored in integer fields x, y, width, and height respectively. The construc
tor shown above allows a user to create a new Rectangle2D by passing in
values for these fields. As in the other geometric examples there are other
constructors that allow you to pass in values for these fields in a different
way, such as another Rectangle2D instance or a Point2D and Dimension2D
instance.

First we will look at the add method.

/**
*
* Qparam x in t
* Qparam y in t
* <code>
* var R : Rectangle2D .
* var X : In t .
* var Y : In t .
* ceq (R).add(X,Y)o = ((((R).w id th :=(((R).x + (R).width) -
* X)).x := (X)).he igh t:= (((R).y + (R).height) - Y)
*).y:=(Y) i f (X < (R).x) and (Y < (R).y) .
* ceq (R).add(X,Y)o = (((R).w idth:=(((R).x + (R).width) -
* X)).x:=(X)).height:=(Y - (R).y) i f (X < (R).x) and
* (Y > ((R).y + (R) .he ight)) .
* ceq (R).add(X,Y)o = (R).width:=(X - (R).x) i f
* (X > ((R).x + (R).width)) and (Y >= (R).y) and (Y
* <= ((R).y + (R).height)) .
* ceq (R).add(X,Y)o = (((R).width:=(X - (R) .x)) .h e ig h t :=
* (((R).y + (R).height) - Y)).y:=(Y) i f (X > ((R).x +
* (R).width)) and (Y < (R),y) .
* ceq (R).add(X,Y)o = ((R).width: = (X - (R) .x)) .h e ig h t : = (Y -
* (R).y) i f (X > ((R).x + (R).width)) and (Y > ((R).y +
* (R).height)) .
* ceq (R).add(X,Y)o = R i f (X >= (R).x) and (X <= ((R).x +

6.4. Geometric Examples 213

* (R).width)) and (Y >= (R).y) and (Y <= ((R).y +
* (R).height)) .
* ceq (R).add(X,Y)o = ((R).he igh t:= (((R).y + (R).he ight) -
* Y)).y:=(Y) i f (X >= (R).x) and (X <= ((R).x +
* (R).width)) and (Y < (R).y) .
* ceq (R). add(X,Y)o = (R).height:=(Y - (R).y) i f (X >=
* (R).x) and (X <= ((R).x + (R).width)) and (Y > ((R).y
* + (R).height)) .
* ceq (R).add(X,Y)o = R [owise] .
</code>
* /

public void add(in t x , i n t y){

This method allows you to pass in an x,y coordinate. The method then
changes the Rectangle2D instance so that it contains the original rectangle
and the x,y coordinate in the smallest possible size. This is done with the
following equations.

ceq (R). add(X,Y)o = ((((R).w id th := (((R).x + (R).width) - X)
) .x := (X)) .he igh t:= (((R) .y + (R).height) - Y)).y:=(Y)
i f (X < (R).x) and (Y < (R).y) .

ceq (R). add(X,Y)o = (((R).w id th := (((R),x + (R).width) -
X)).x:=(X)).height:=(Y - (R).y) i f (X < (R).x) .and (Y >
((R).y + (R).he ight)) .

ceq (R).add(X,Y)o = (R).width:=(X - (R).x) i f (X > ((R).x +
(R).width)) and (Y >= (R).y) and (Y <= ((R).y +
(R).height)) .

ceq (R). add(X,Y)o = (((R).width:=(X - (R) .x)) .h e ig h t :=
(((R).y + (R).height) - Y)).y:=(Y) i f (X > ((R).x +
(R).width)) and (Y < (R).y) .

ceq (R).add(X,Y)o = ((R).width:=(X - (R).x)) .he igh t:= (Y -
(R).y) i f (X > ((R).x + (R).width)) and (Y > ((R).y +
(R).height)) .

ceq (R).add(X,Y)o = R i f (X >= (R).x) and (X <= ((R).x +
(R).width)) and (Y >= (R).y) and (Y <= ((R).y +
(R).height)) .

ceq (R). add(X,Y)o = ((R).he igh t:= (((R).y + (R).height) -

6.4. Geometric Examples 214

Y)).y:=(Y) i f (X >= (R).x) and (X <= ((R).x + (R).width))
and (Y < (R).y) .

ceq (R).add(X,Y)o = (R).height:=(Y - (R).y) i f (X >= (R).x)
and (X <= ((R).x + (R).width)) and (Y > ((R).y +
(R).height)) .

ceq (R).add(X,Y)o = R [owise] .

There are nine possible different scenarios that could occur when we add
the point. They are that the point is either directly left, directly right,
directly up, directly down, up and to the left, up and to the right, down
and to the left, down and to the right, and inside the rectangle. This is
reflected in the fact that there are nine conditional equations used to define
the functionality of the method. It is not simply a case of moving the (x,y)
coordinates to incorporate the new point, but also the width and height have
to be adjusted to encapsulate both the point and the rectangle using the
minimum possible area. As can be seen we need many equations with many
repeated computations to define the functionality of this method. However
as we will see in the next method we will look at, there are ways we can
reduce the number of equations required and to make them easier to write.

/ **
*
* Qparam r Rectangle2D
* Qreturn Rectangle2D
* <code>
* var R2 : Rectangle2D .
* eq (R). createUnion(R2)q = Rectangle2D(min((R).x,(R2) . x) ,
* m in((R).y , (R2).y),max((R).x + (R).w idth ,(R2).x +
* (R2).width) - m in((R).x ,(R2).x),m ax((R).y +
* (R).he igh t, (R2).y + (R2).height) - m in((R).y,
* (R2).y)) .
* </code>
* /

public Rectangle2D createUnion(Rectangle2D r){

>

6.4. Geometric Examples 215

The above method is similar to the add method. In this case is it returns
the union of two Rectangle2D instances. If we were to write equations like
we did for the add method it would take many conditional equations. For
this method we predefine a couple of functions that allows us to reduce the
code down to one unconditional equation.

eq (R). createUnion(R2)q = Rectangle2D(min((R).x,(R2) .x) ,
min((R).y,(R2).y),max((R).x + (R).w idth,(R2).x +
(R2).width) - min((R).x,(R2).x),max((R).y +
(R).he igh t, (R2).y + (R2).height) - min((R).y,
(R2).y)) .

The two functions we define are min and max which return the minimum
and the maximum of two integers respectively.

op min : Int In t -> In t .
op max : Int In t ► In t .

ceq m in(I,J) = I i f I <= J
ceq m in(I, J) = J i f I > J

ceq max(I, J) = I i f I >= J
ceq max(I, J) = J i f I < J

These functions are not linked to a class specification and work as com
pletely separate functions. They are defined with the built in algebra module
of our Maude code. However it could be defined within the Rectangle2D class
specification’s hidden section as this part of the class specification is passed
into the Maude code unchanged. However we chose not to do this as we
feel functions like ram and max are useful general tools which many classes
would find useful to have access to. The add method needed nine equations
due to it having to deal with different cases of two numbers being maximal
or minimal. The createUnion method is essentially similar. By introducing
the min and max functions we can reduce the equations down to just one.
We however left add using nine equations to demonstrate the difference.

Finally we will look at is Empty.

6.5. An Inheritance Example 216

/**
*

* ©return boolean
* <code>
* ceq (R) . isEmptyOq = tru e i f
* ((R).width <= 0) or ((R).height <= 0) .
* eq (R) . isEmptyOq = fa ls e [owise] .
* </code>
*/

public boolean isEmpty(){

>

As we are now dealing with an actual two dimensional shape we can check
to see if the rectangle is empty or not.

ceq (R) .isEmptyOq = t ru e i f ((R). width <= 0) or
((R).height <= 0) .

eq (R). isEmptyOq = fa ls e [owise] .

A Rectangle2D instance is empty if either its width or height is less than
or equal to zero.

There are several functions that we are unable to model in this class.
There are two getPathlterator methods that we are unable to model as we do
not model the AffineTransfrom classes which they use. We have not modelled
hashCode and toString for the same reasons we gave in other examples.
The two intersects Line methods were not modelled as due to the fact our
example is limited to just integers we felt that the methods’ results would be
too inaccurate to make it worth modelling them. Finally we are unable to
model the two outcode methods. This is due to the fact that they deal with
binary operations such as OR and as yet our model does not include binary
operations.

6.5 A n Inheritance Exam ple
We will now look at a series of classes that demonstrate inheritance modelling.
We have defined three classes: Person, Student, and PostGrad. The Person

6.5. An Inheritance Example 217

class defines some basic details for defining a general person such as age and
name. The Student class inherits from Person and expands on it with student
specific details such as their grade. Finally PostGrad inherits from Student
and hence also inherits from Person. It expands on these with Postgraduate
specific details.

For this example we will look at how the PostGrad class is modelled
algebraically. We will look at aspects from all three classes and then look at
the code generated to model them in the PostGrad FAS

The subclass structure of the inherit classes is defined using subsorts as
follows.

subsort Student < Person .
subsort PostGrad < Student .

First we will look at the toString method in Person

/ **
*
* ©return String
* <code>
* var P : Person .
* eq (P) .toStringOq = (P) . t i t l e + " " + (P).name .
* </code>
* /

public String toString(){
return t i t l e + " " + name;

>

This method returns a string consisting of the person’s title and name.
When Student inherits this method it provides its own definition and thus
overrides the Person's toString method.

/* *
*

* ©return String
* <code>
* van: S : Student .

6.5. An Inheritance Example 218

* eq (S) .to S tr in g O q = (S) . t i t l e + " " + (S) .name +
* " grade:" + (S).grade .
* </code>
* /

public S tr ing toS tr in g (){
re tu rn t i t l e + " " + name + " grade:" + grade;

>

This new toString method now also returns the student’s grade as well as
their title and name. The PostGrad class does not have its own definition of
toString so it does not override the method when it inherits it from Student.
The operators for this method in Postgrad are as follows.

op _ .to S tr in g () : PostGrad -> PostGradString .
op _ .to S tr in g () : PostGradString -> PostGradString .
op _ .toS tr ing ()o : PostGrad -> PostGrad .
op _ . to S tr in g O q : PostGrad -> Str ing .

op _ . su p e r . to S tr in g () : Student -> StudentS tring .
op _ . su p e r . to S tr in g () : StudentString -> S tudentS tring .
op _ . super .toS tr ing ()o : Student -> Student .
op _ . su p er . to S tr in g O q : Student -> S tr ing .

op _ . su p e r . to S tr in g () : PostGrad -> PostGradString .
op _ . su p er . to S tr in g () : PostGradString -> PostGradString .
op _ . super .toS tr ing ()o : PostGrad -> PostGrad .
op _ . su p er . to S tr in g O q : PostGrad -> S tr ing .

op _ . su p e r .su p e r . to S tr in g () : Person -> PersonString .
op _ . su p e r .su p e r . to S tr in g () : PersonString -> PersonString .
op _ . super. su p er . to S tr in g ()o : Person -> Person .
op _ . su p er .su p e r . to S tr in g O q : Person -> S tr in g .

The above defines the operators for the various toString methods and
their super versions together with different versions to accept all the possible
different class instance tuple input types.

6.5. An Inheritance Example 219

eq (P) . to S tr in g O q = (P) . t i t l e + " " + (P) .name [owise]
eq (S) . to S tr in g O q = (S) . t i t l e + " " + (S) .name +

" grade:" + (S).grade [owise] .

eq (P) . super . to S tr in g O q = (P) . t i t l e + " " + (P) .name [owise] .
eq (S) . super . to S tr in g O q = (S) . t i t l e + " " + (S) .name +

" grade:" + (S).grade .
eq (P) . super . to S tr in g O q = (P) . t i t l e + " " + (P) .name [owise] .

eq (P) . super . super . to S tr in g O q = (P) . t i t l e + " " + (P) .name .

The above equations define the behaviour of the various toString methods
and their super methods.

eq (SYS3) . super . to S tr in g O q = (SYS3) . to S tr in g O q [owise] .
eq (SYS3) . su p er . to S tr in g O o = (SYS3) . to S tr in g ()o [owise] .

eq (SYS3) .super, super . to S tr in g O q =
(SYS3). super . to S tr in g O q [owise] .

eq (SYS3) .super, super . to S tr in g O o =
(SYS3). super . to S tr in g O o [owise] .

The above equations are used to reduce a super version toString to its
next most current definition (I.E. if it is the super.super.toString method
then it gets rewritten as super.toString). The owise notation is used to
ensure this only happens if the method has not been overwritten (I.E. there
is no alternative definition to super, super, to String from super, to String).

eq (SYS7) . to S tr in g O = (SYS7) . to S tr in g O o , (SYS7) . to S t r in g O q .
eq (SYS9) . to S tr in g O =

(oval(SYS9)) . to S tr in g O o , (oval(SYS9)) . to S t r in g O q .

eq (SYS6) . super . to S tr in g O = (SYS6) .super . to S t r in g O o ,
(SYS6) . super . to S tr in g O q .

eq (SYS11). super . to S tr in g O = (oval (SYS11)) .super . to S t r in g O o ,
(oval(SYSll)) .su p e r . to S tr in g O q .

eq (SYS7) .super . to S tr in g O = (SYS7) . super . to S t r in g O o ,

6.5. An Inheritance Example 220

(SYS7) . super . to S tr in g O q .
eq (SYS9) . super . to S tr in g O = (oval (SYS9)) .super. to S t r in g O o ,

(oval(SYS9)) .su p e r . to S tr in g O q .

eq (SY S5).super.super.toS tringO =
(SYS5). su p e r . super . to S tr in g O o ,
(SYS5) .su p e r .su p e r . to S tr in g O q .

eq (SYS13). su p er . su p er . to S tr in g O =
(oval(SYS1 3)) .super. su p e r . to S tr in g O o ,
(oval(SYS 13)) .su p e r .su p e r . to S tr in g O q .

Finally the above equations are used to extract the query and state change
parts of the class instance tuple and recombine the result back into a query
and state change tuple.

Finally we will look at the updateGrade method

/ * *
*
* Oparam newgrade S tr ing
* ©return S tr ing
* <code>
* eq (S).updateGrade(G)o = (S).grade:=(G) .
* eq (S).updateGrade(G)q = (S).grade .
* </code>
* /

public S tr in g updateGrade(String newgrade){
S tr in g o ldgrade= th is .g rade ;
t h i s .grade=newgrade;
r e tu rn oldgrade;

>

This method is first introduced in the Student class. It has equations
that define both a query return value and a state change value.

eq (S).updateGrade(G)o = (S).grade:=(G) .
eq (S) .updateGrade(G)q = (S).grade .

6.5. An Inheritance Example 221

This method updates the old value of the grade field and returns the old
grade value as its query return value.

There is no overriding of this method in PostGrad so it is passed into
PostGrad unchanged.

op _ .updateGrade(_) : PostGrad S tr ing -> PostGradString .
op _ .updateGrade(_) :

PostGradString S tr ing -> PostGradString .
op _ .updateGrade(_)o : PostGrad S tr ing -> PostGrad .
op _ .updateGrade(_)q : PostGrad S tr ing -> S tr in g .

op _ . super.updateGrade(_) :
Student S tr ing -> StudentS tring .

op _ . super.updateGrade(_) :
StudentString S tr ing -> StudentS tring .

op _ . super.updateGrade(_)o : Student S tr ing -> Student .
op _ . super.updateGrade(_)q : Student S tr ing -> S tr in g .

The above defines the operators for updateGrade and its super version.
Note that as updateGrade is inherited from Student but not Person there is
no super, super, update Grade method.

eq (S).updateGrade(G)o = (S).grade:=(G) [owise] .
eq (S).updateGrade(G)q = (S).grade [owise] .

eq (S) . super.updateGrade(G)o = (S) .g rad e :=(G) .
eq (S) . super.updateGrade(G)q = (S) .grade .

The above equations define the functionality of the updateGrade and its
super version.

eq (SYS3). super.updateGrade(SYS4)q =
(SYS3).updateGrade(SYS4)q [owise] .

eq (SYS3). super.updateGrade(SYS4)o =
(SYS3).updateGrade(SYS4)o [owise] .

6.6. A Reflection Example 222

The above equations allow us to convert a super.updateGrade to a up
dateGrade call. Due to the owise they are only called if there isn’t already a
definition for super.updateGrade.

eq (SYS7).updateGrade(SYSW = (SYS7).updateGrade(SYS14)o,
(SYS7).updateGrade(SYS14)q .

eq (SYS9) .updateGrade(SYS 14) = (oval(SYS9)) .updateGrade(SYS14)o,
(oval(SYS9)) . updateGrade(SYS14)q .

eq (SYS6). super.updateGrade(SYS15) =
(SYS6). super.updateGrade(SYS15)o,
(SYS6). super.updateGrade(SYS15)q .

eq (SYS11). super.updateGrade(SYS15) =
(oval(SYS11)) . super.updateGrade(SYS15)o,
(oval(SY Sll)) . super.updateGrade(SYS15)q .

Finally the above equations allow us to extract the components of a class
instance tuple passed to the updateGrade method and its super version and
put the results back together as a new tuple.

6.6 A R eflection Exam ple
In this section we will look at an example of reflection. We have created
a simple class called Book with two String fields and two methods. The
fields are called name and author and the methods are called setName and
getName.

First we will look at the name field. The declaration for this field in the
java code is as follows.

public S tr ing name;

The reflection Field instance for this field is defined as follows.

op nameBookField : -> F ie ld .

eq nameBookField = ("name", "S tr in g " , "Book") .

6.6. A Reflection Example 223

This defines the Field instance for name as having the string name name,
field type String, and that the field belongs to the Book class.

Next we will look at the setName method. The Java code for this method
is as follows.

/ * *
*

* @param name S tring
* <code>
* var B : Book .
* eq (B). setName(N)q = (B).name .
* eq (B).setName(N)o = (B).name:=(N) .
* </code>
*/

public S tring setName(String name){
S tring tempname;
tempname=this.name;
this.name=name;
re tu rn tempname;

>

This method sets the name field to a new value and returns the old value
of name. The reflection Method instance for this field is defined as follows.

op setNameBookMethod : -> Method .

eq setNameBookMethod = ("setName", add(EStringA rray, "S tring") ,
"S tr in g " , "Book") .

This defines the Method instance for setName as having the string name
setName, the only input type of String, the return type of String, and that
the method belongs to the Book class.

Finally for setName we define the equation for the Method's invoke method.

eq ("setName", add(E S tringA rray ,"S tring"), " S tr in g " , "Book")
. invoke(0 ,0A) = (0) .setName(0A[0]) .

6.7. Problems and Future Work 224

The invoke method invokes the setName method by passing to it an
instance of a Book as 0 and an input string in the first position of the
ObjectArray OA.

Finally we define the reflection Class instance for the Book class.

eq BookClass = ("Book" ,add(add(EMethodArray,setNameBookMethod),
getNameBookMethod), add (add (EFieldArray .nameBookField) ,
authorBookField)) .

This defines the Class instance as having the string Book, an array of
Method instances for the methods setName and getName, and an array of
Field instances for the fields name and author .

6.7 Problem s and Future W ork
Finally we will examine certain Java functionality that we cannot as yet
model. We will discuss the difficulties they present and how in future work
we hope to be able to implement these problems.

6.7.1 Exceptions
A major aspect of the Java language that we are unable to model are Excep
tions. Consider the following example.

public S tring readLine(SomeInput SI) throws Exception

The above example is a Java method that we will assume reads a line
of data from the Somelnput class instance and returns a String. However
this method can also throw an exception (Java can throw different types of
exceptions such as an IOException which relates to input/output exceptions
but for the sake of simplifying the example we will just have the method throw
the general Exception class). In this case the method will stop executing and
throw an Exception instance. In Java this would either be thrown again by
the method that called readLine or it will be caught and dealt with as shown
in the following example.

6.7. Problems and Future Work 225

try {
S trin g S;
for(i=0;i<10;i++}{

namearray[i] = readL ine(in);
>
S = namearray[10] ;

}catch(Exception e){
...som e code to deal w ith th e exception event
>

It should also be noted that the above example could also throw an ex
ception if there is no array item at index 10.. However array out of bounds
exceptions are a special type of exception that do not need to be caught
and therefore do not fall within the standard exception behaviour. As our
model does not model exceptions, if an exception occurs (such as an array
out of bounds exception), then the term causing the exception will fail to
evaluate as it will not match any equations that are able to evaluate the
term. Although exceptions are an important part of the Java language, we
do not feel that this compromises the validity of our model. There are many
important features in Java and it would be impossible to model them all
within the scope of this thesis. Also we are not alone in choosing not to
model exceptions as can be seen in the work of Henkel [Hen04].

Exceptions present a complex modelling problem. You cannot naively
add an equation for the readLine method that returns an Exception instance
in the event of a problem as this will not match the type that is expected
to be returned from readLine. The modelling of exceptions algebraically is
considered to be a difficult and a lot of work has been devoted to this topic
by other researchers [GTW78, BT88]. In future work we suggest redesigning
the internal equations of the class to be able to cope with exceptions. One
suggestion on how to do this is as follows.

In the above example, readLine could be adapted so that instead of re
turning a String as defined above it would return a tuple which could consist
of the return type, an exception, and a boolean which would state whether
or not an exception had occured. Extra equations would need to be gener
ated to handle this when it is returned to the calling method and extract the
appropriate part of the tuple (either the result part or the exception part
depending on the value of the boolean) and then the appropriate equations
and operators could be used to process that the result. This would need to be
done for all methods and would be part of the internal working of the system,

6.7. Problems and Future Work 226

hidden from the user. With care all these extra equations and tuples could
be automatically generated so as far as such a user would be concerned, the
specification would be behave as they would expect the Java code to behave.
The user would be unaware of the tuples and their automatic processing go
ing on internally. This would require a large amount of work to implement
within our model and as such is outside the scope of this thesis. At present
this solution is only a proposal and would require further work to ascertain
its viability.

6.7.2 Static M ethods
At present we do not model static methods. Static methods are effectively
’’real” functions in that they do not rely on the class they belong to being
instantiated in order to run the method. This would be simple to implement
and is only missing from our model due to time restrictions. We have pro
vided in our algebraic class specifications a section called Operations which
we envision as storing static method operations. The only difference a static
method would require to a normal' method is that as well as the standard abil
ity to call it on an class instance we would also need an operator that would
allow us to call it on an class name (e.g. ClassName .methodName(inputs)).
Static methods would only have a query return type as they are unable to
change the state of class instances.

6.7.3 Additional Reflection Functionality
Although we are able to model reflection and have elements of the reflection
classes already defined there is still much that has not been modelled in
this area. Again this is due more to time restrictions than any difficulty in
modelling the concepts and it is hoped that in the future more functionality
could be implemented in this area of the model. A prime example would
be implementing the method in the Field class that allows a user to set the
value of the corresponding field in a similar manner to how we implemented
invoke in the Method class.

6.7.4 Type Resolution
Our model at present also has problems with resolving types when the classes
get sufficiently complex with respect to their inherited methods and fields.
However we feel that this problem is caused by the Maude method of resolving
types rather than in our model itself. In general the subtype system works
well but there are occasional problems that occur when the Maude rewrite

6.7. Problems and Future Work 227

engine selects an inherited method for the super type class instance rather
than the correct method for the actual type of the class method. For example
suppose we have a two classes AClass and BClass, and BClass inherits from
AClass. Suppose we do the following in Java.

AClass a= new BClass();

In the above example we have used a variable of type AClass and created
a class instance using BClass’ constructor. In Java it will therefore treat
the variable a as being of type BClass as it was instantiated using BClass'1 s
constructor. Our model does correctly model this.

However let us now assume that AClass had a method called meth and
BClass overrides that method with its own definition. We do the following
in Java:

а .m ethO ;

In Java because we initialised a using BClass’ constructor then BClass’
overridden definition of meth should be called. However in an algebraic
specification in Maude AClass’ original definition of meth is called which is
incorrect behaviour.

This problem would be solvable by imposing a precedence on types and
making sure Maude resolves types as we would expect Java to. This would
require us to impose our own type resolution rather than use Maude’s default
type resolution. It is hoped that all of the extra information that Maude
would need to do this can be automatically generated. Again it should be
noted that the problems to do with type resolution is a problem relating
specifically to the way Maude resolves types and is not necessarily a problem
with our algebraic model.

б.7.5 Execution M odel
Currently, there is no model of execution as discussed in Section 2.1. At
present our model only allows us to use the equations to do rewrite tests
to spot check the local functionality of individual classes and their instances
(occasionally with some ’’helper” classes and instances added in if needed
to fully test the behaviour of the class being modelled). Our model only
models the local behaviour of classes and does not model the concept of a

6.7. Problems and Future Work 228

program. In order to model a program the implementation of an execution
model would be needed. This would be quite complex and is beyond the
scope of this thesis.

In order to create an execution model we would need to define our own
rewrite strategy. At present we use the Maude default rewrite strategy.
In order to define our own we would need to make use of Maude’s meta
level functionality. In object-oriented programming the state of a program
is the set of all possible states of all the class instances of an object-oriented
program. The state of the class instances can be considered to be the current
states of each of their individual fields. This would require us to introduce
the concept of repositories for classes and class instances. This would not be
too hard to implement.

However, defining a single time step in the system is more difficult. The
execution of a method in one class instance may require the execution of
many other methods in other class instances before it can complete. With
an imperative program the concept of modelling the execution is relatively
easy where all the variables in the program can be used to define the current
state of the system and a function can be used to evaluate the next step in
the program . With object-oriented programs this is much harder as you
have a group of class instances, each with their own set of variables (fields).
Therefore further work would need to be done to decide what constitutes a
step in our model of object-oriented programs. As stated above, in order
to solve this problem we would need to define our own rewrite strategy.
A new strategy would need to decide which equations to use to evaluate
terms for a given time step and would also need to update the class instance
repository with new class instances, updated class instances, and remove
old class instances that are no longer needed. The default Maude rewrite
strategy is inadequate for this task.

All of this presents a complex problem in modelling execution that is be
yond the scope of this thesis to solve. We feel that what we have contributed
is a set of operations and equations that would link in with an execution
model which would use a special rewrite strategy to select which equations it
needed to use to calculate the next step and call each equation in the correct
order. The execution model would need to have some concept of what is a
valid complete step and what would be viewed as a substep in a computation
of an overall valid step.

6.7.6 Input and Output
Another problem with the specification is that there is at present no way of
handling input and output and thus Java’s input and output classes cannot be

6.8. Sources 229

specified. Again this comes down to a question of time and with future work
this could be successfully implemented. This could be achieved by modelling
input and output as streams, where the stream is defined as providing certain
data at specific steps in a system. A stream would be defined in general as
follows.

A : T —> B

Where a stream A at a given step f 6 T provides a value b G B. For
example A [10] would return the value of the stream at step 10 (for instance
T could be the time in seconds, so intuitively A[10] would return the value
of the stream at 10 seconds from the initial starting point). In order to do
this we would need to have an execution model as discussed in section 6.7.5.
However input particularly is a difficult concept to model.

6.8 Sources
The majority of the examples in this section are taken from the Java 1.4
API [Sun05g]. In places we have, as discussed earlier, made adaptations to
the classes in order that we can more effectively demonstrate our modelling
techniques. Any classes that are not part of the Java API were written by
ourselves usually to demonstrate a specific feature of the modelling process.
The FASs of the classes have mostly been at least partly generated by our
automated conversion tool as discussed in Section 5.3. This was done in this
way because to manually create the FASs takes a lot of book keeping and
work as discussed earlier.

Chapter 7

Conclusions

In this thesis we have algebraically specified some of the functionality of Java
classes using order-sorted specifications. We have shown a methodology that
will allow other programmers to easily be able to define specifications for
their own Java classes. We have kept the modelling of Java as broad as
possible to try and cover a wide ranging specification of Java’s functionality.
We have shown how to model specialised functionality of Java such as the
important Reflection API. We have also shown how the generation of many
of the equations defining the functionality of Java classes can be automated
thus reducing the work in specifying new classes.

In Chapter 2 we looked at the background to our research, examining
object-oriented programming and algebraic specification. Most importantly
we looked at how we can equate order-sorted algebra to many-sorted alge
bra which allowed us to use subtypes to model inheritance as a notational
convenience.

In Chapter 3 we examined the basic structure of a Java class and identi
fied what we considered to be the key features of the class. We then defined
the structure of an Algebraic Class Interface and added semantic equations
to the interface to create an Algebraic Class Specification (ACS). The ACS
is not a complete specification and is designed to be provide us with a more
human readable model, consisting of only those parts that cannot be pro
grammatically inferred from the Java language definition. We showed with
the aid of examples, the complete process in generating an ACS from a Java
class. We then looked at how our work related to and built upon the work of
[STR03]. Finally we gave an overview of the code we have written that can
build ACSs and FASs from Java classes with extra embedded information.
In this chapter we focussed primarily on the stages of harvesting information
from the Java class and generating the ACS. Due to the length of the code,
we discussed in general the implemented algorithm and showed examples of

230

231

the code for the particular case of generating ACS specifications for the fields
of a Java class.

We then looked in Chapter 4 at how create a Full Algebraic Specification
(FAS) written in Maude. Writing the specification in Maude allows it to be
executable which we consider to be an important advantage (though note
that there is not universal agreement about this). The FAS contains all the
extra operations and equations needed to model those parts of a class that
are not included in the ACS (i.e. those parts that are part of the implicit Java
language definition). We examined how we create an FAS for classes with
inheritance and examined all the extra equations and operators that needed
to be generated to support this. We again examined how our work in this
chapter related to and built upon the work of [STR03]. We looked particulary
at interface tagging, joining and flattening which was closely related with how
we dealt with inheritance in FASs. Finally we again discussed the code we
had written for building ACSs and FASs from Java classes. In this chapter we
primarily focussed on the building of the FAS using the information gathered
from the Java class as discussed earlier in Chapter 3. We again gave a general
overview of the implemented algorithm and then showed examples of the code
for the particular case of generating FAS specifications for the fields of a Java
class.

In Chapter 5 we looked at the functionality we had pre-defined in our
model, specifically functionality which could not be easily defined using the
specification procegs shown in Chapters 3 and 4. The aim of this chapter was
to provide the user with some of the key functionality that comes built into
the Java API. We looked at how we modelled arrays and how to generate
equations for arrays. We then looked at how we modelled the Java Reflec
tion API and how we solved specifying core components of these complex and
unique classes. Finally we looked at the Algebraic Specification Generator
(ASG) that we had written which allowed us to add and test new function
ality to our model. The ASG required that only the semantics of methods
and constructors of classes needed to be provided by the user by means of
equations and conditional equations. The ASG would be able to generate all
the other structure equations and operators that defined an FAS of a class
as discussed in Chapter 4.

Finally in Chapter 6 we examined a wide range of example class specifica
tions looking in particular at the process of taking a Java class and producing
an FAS. The aim here was to demonstrate our specification in action over
a series of varied examples. We looked at both built in Java API classes
and also user defined classes, examining interesting modelling problems. Fi
nally we examined functionality that at present we cannot model and offered
suggestions as to how future work could address these short comings.

7.1. Future Work 232

7.1 Future W ork
We have already discussed future work on modelling Java functionality in
section 6.7 so we will not do so again here. In this section we will look at
future work in building supporting software that does not specifically relate
to Java functionality. The majority of suggestions in this section focus on
how to make our specification techniques easier to use for programmers by
making the model easier to read and also by trying to reduce the amount of
information a user has to provide to build a model of their system.

One area where the specification process could be improved is in the
query/command structure of methods. At present a user has to state whether
they are defining the query or command part of the semantics of a method. It
would be desirable for the user not to have specify which part they are defin
ing of a method and for the specification process to be able to infer which
part they are defining and generate the appropriate equations. The first step
towards this would be to allow a default where if the user does not specify
whether they are defining the query or command part of a methods’ seman
tics, the tool will automatically assume it to be one of them. To actually be
able to automatically differentiate between the two types a more intelligent
modelling process needs to be developed as at present the technique is largely
syntactic.

The actual process of generating equations for the FAS also needs re
viewing as it is likely that several redundant equations and operators are
generated for each FAS. Although this does not affect our mathematical
model of class specifications, a more efficient and easier to understand set of
equations would be desirable.

As mentioned elsewhere in the thesis, although we embed our formal se
mantic equations for the methods and constructors within Javadoc comments
so as they can appear in API documentation, this is at present without any
proper formatting and is incorrectly displayed within the actual documenta
tion. Future work needs to change the tags we use to the correct Javadoc
tags that will allow the information to be properly presented.

Finally, at present our model specifically works with Java. With several
object-oriented programming languages in common use such as C + + and C #
it would be desirable to adapt our model to work with these other languages.
As shown in this thesis, our model is specifically aimed at Java. However
it is sufficiently general in places when it refers to object-oriented concepts
and features that it could be adapted to other object-oriented languages. We
therefore believe this could be done without a radical rewrite of the model
and the modelling process.

Bibliography

[AA86]

[ABB+03]

[ABBK99]

[ABR99]

[ACI05]

[AGHOO]

[AHOO]

G. Anderson and P. Anderson. The UNIX C Shell Field Guide.
Prentice-Hall, 1986.

L. Andrade, P. Baldan, H. Baumeister, R. Bruni, A. Corradini,
R. De Nicola, J. L. Fiadeiro, F. Gadducci, S. Gnesi, P. Hoffman,
N. Koch, P. Kosiuczenko, A. Lapadula, D. Latella, A. Lopes,
M. Loreti, M. Massink, F. Mazzanti, U. Montanari, C. Oliveira,
R. Pugliese, A. Tarlecki, M. Wermelinger, M. Wirsing, and
A. Zawlocki. Agile: Software architecture for mobility. In
M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent
Trends In Algebraic Techniques, volume 2755 of Lecture Notes
In Computer Science, pages 1-33, 2003.

E. Astesiano, B.Krieg-Bruckner, and H.-J. Kreowski. Algebraic
Foundations Of System Specification. IFIP State-of-the-Art Re
ports. Springer Verlag, 1999.

E. Astesiano, M. Broy, and G. Reggio. Algebraic specification
of concurrent systems. In E. Astesiano, B. Krieg-Bruckner, and
H.-J. Kreowski, editors, IFIP WG 1.3 Book On Algebraic Foun
dations Of System Specification. Springer Verlag, 1999.

Apple Computer Inc. http://www.apple.com/macosx/, 20th
September 2005.

K. Arnold, J. Gosling, and D. Holmes. The Java Programming
Language (3rd Edition). Addison-Wesley Professional, 3rd edi
tion, 2000.

S. Antoy and R. G. Hamlet. Automatically checking an imple
mentation against its formal specification. Software Engineer
ing, 26(1):55—69, 2000.

233

BIBLIOGRAPHY 234

[AL97]

[AMRW85]

[And64]

[AR02]

[ARZ99]

[BAN96J

[Bau05]

[BBM03]

[BCC+wn]

M. Abadi and R. Leino. A logic of object-oriented programs. In
M. Bidoit and M. Dauchet, editors, TAPSO FT ’97: Theory And
Practice Of Software Development, 7th International Joint Con
ference CAAP/FASE, Lille, France, volume 1214, pages 682-
696. Springer-Verlag, 1997.

E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the
parameterized algebraic specification of concurrent systems. In
H. Erhig, C. Floyd, M. Nivat, and J. Thatcher, editors, TAP-
SO F T’85, Vol. 1, volume 185 of Lecture Notes in Computer
Science. Springer, 1985.

C. Anderson. An Introduction To Algol 60. Addison-Wesley,
1964.

M. Adelaide and 0 . Roux. A class of decidable parametric
hybrid systems. In H. Kirchner and C. Ringeissen, editors, Al
gebraic Methodology And Software Technology, volume 2242 of
Lecture Notes In Computer Science, pages 132-146, 2002.

E. Astesiano, G. Reggio, and E. Zucca. Stores as homomor-
phisms and their transformations - a uniform approach to struc
tured types in imperative languages. In Science Of Computer
Programming, volume 34, pages 163-190. 1999.

M. Burrows, M. Abadi, and R. Needham. A logic of authentica
tion, from proceedings of the royal society, volume 426, number
1871, 1989. In William Stallings, Practical Cryptography For
Data Internetworks, IEEE Computer Society Press, 1996. 1996.

H. Baumeister.
h ttp : / / www. pst. informatik. uni-muenchen. de / pro j ekte / agile /,
20th September 2005.

P. Baldan, R. Bruni, and U. Montanari. Pre-nets, read arcs and
unfolding: A functorial presentation. In M. Wirsing, D. Pat-
tinson, and R. Hennicker, editors, Recent Trends In Algebraic
Techniques, volume 2755 of Lecture Notes In Computer Science,
pages 145-164, 2003.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. Rustan M. Leino, and E. Poll. An overview of JML tools
and applications. In International Journal On Software Tools
For Technology Transfer. Springer, Unknown.

BIBLIOGRAPHY 235

[BCDS02]

[Ber86]

[Bir72]

[BJMOO]

[BM04]

[BMMS01]

[BT87]

[BT88]

[BT93]

[CAF97]

[CAF05a]

G. Barthe, P. Courtieu, G. Dufay, and S. M. De Sousa. Tool-
assisted specification and verification of the JavaCard platform.
In H. Kirchner and C. Ringeissen, editors, Algebraic Methodol
ogy And Software Technology, volume 2242 of Lecture Notes In
Computer Science, pages 41-59, 2002.

J. T. Berry. Advanced C programming. Prentice Hall Press,
1986.

G. M. Birtwistle. Simula Begin. Petrocelli/Charter, 1972.

A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification
and proof in membership equational logic. Theoretical Com
puter Science, 236(1-2):35-132, 2000.

M. Bidoit and P. D . Mosses. C a s l User Manual. LNCS 2900
(IFIP Series). Springer, 2004.

R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. Functo-
rial models for petri nets. INFCTRL: Information And Com
putation (formerly Information And Control), 170, 2001.

J. A. Bergstra and J. V. Tucker. Algebraic specifications of com
putable and semicomputable data types. In Theoretical Com
puter Science, number 50, pages 137-181, 1987.

J. A. Bergstra and J. V. Tucker. The inescapable stack: An
excercise in algebraic specification with total functions. Report
13.88, The University of Leeds, Centre For Theoretical Com
puter Science, 1988.

J. A. Bergstra and J. V. Tucker. Equational specifications for
computable data types: 6 hidden functions suffice and other
sufficiency bounds. In J. V. Tucker and K. Meinke, editors,
Many Sorted Logic And Its Applications, pages 89-102. J Wiley
and Sons, 1993.

The Common Algebraic Framework Initiative. C a sl The CoFl
algebraic specification language rationale, May 1997.
Obtainable from http://www.brics.dk/Projects/CoFI/.

The Common Algebraic Framework Iniative.
http://www.brics.dk/Projects/CoFI/Documents/CASL/Sample/,
20th September 2005.

BIBLIOGRAPHY 236

[CAF05b]

[CAF05c]

[CC99]

[CDE+01]

[CDE+03]

[CDE+04]

[CDH+00]

[CELMOO]

[Cla99]

The Common Algebraic Framework Initiative.
http://www.brics.dk/Projects/CoFI/, 20th September 2005.

The Common Algebraic Framework Initiative,
http: / / www.brics.dk/Projects/CoFI/CASL.html,
20th September 2005.

S. Cimato and P. Ciancarini. A formal approach to the spec
ification of Java components. In B. Jacobs, G. T. Leavens,
P. Muller, and A. Poetzsch-Heffter, editors, Formal Techniques
For Java Programs, pages 18-25, 1999.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Martf-Oliet,
J. Meseguer, and J. F. Quesada. Maude: Specification and
programming in rewriting logic. Theoretical Computer Science,
2001 .

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Martf-Oliet,
J. Meseguer, and C. Talcott. The Maude 2.0 system. In
R. Nieuwenhuis, editor, Rewriting Techniques And Applications
(RTA 2003), number 2706 in Lecture Notes in Computer Sci
ence, pages 76-87. Springer-Verlag, June 2003.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Martf-Oliet,
J. Meseguer, and C. Talcott. Maude 2.0 Manual (Version 2.1).
SRI International and Department of Computer Science Uni-
veristy of Illinois at Urbana-Champaign, March 2004. Obtain
able from http://maude.cs.uiuc.edu/maude2-manual/.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, Corina S.
Pasareanu, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. In International Conference On
Software Engineering, pages 439-448, 2000.

M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In J. Meseguer, editor, Electronic Notes In Theoretical
Computer Science, volume 4. Elsevier Science Publishers, 2000.

T. Clark. Formal refinement and proof of a small Java pro
gram. In B. Jacobs, G. T. Leavens, P. Miiuller, and A. Poetzsch-
Heffter, editors, Formal Techniques For Java Programs, pages
26-32, 1999.

BIBLIOGRAPHY 237

[CN91]

[DF94]

[Dha97]

[DL96]

[DM99]

[DMN70]

[Duf97]

[EM85]

[ES90]

[ESo05]

[FF04]

B. Cox and A. Novobilski. Object-Oriented Programming : An
Evolutionary Approach. Addison Wesley, 2nd edition, 1991.

R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. In AC M Transactions On
Software Engineering And Methodology, pages 101-130. ACM
Press, 1994.

K. K. Dhara. Behavioral subtyping in object-oriented lan
guages. Technical Report 97-09, Iowa State University, Depart
ment of Computer Science, 1997.

K. K. Dhara and G. T. Leavens. Forcing behavioral sub
typing through specification inheritance. In Proceedings Of
The 18th International Conference On Software Engineering,
Berlin, Germany, pages 258-267. IEEE Computer Society
Press, 1996.

F. Duran and J. Meseguer. The Maude specification of Full
Maude, 1999. Manuscript, SRI International. Available at
http://maude.csl. sri.com, February 1999. 28.

0.-J. Dahl, B. M., and K. Nygaard. Common Base language,
volume S-22 of Norwegian Computing Centre. Publication. Nor
wegian Computing Centre, revised edition, 1970.

J.-F. Duford. Algebras and formal specifications in geometric
modelling. In The Visual Computer, chapter 13, pages 131-154.
Springer-Verlag, 1997.

H. Erhig and B. Mahr. Fundamentals of algebraic specifica
tion I: Equations and initial semantics. In EA TC S Monograph,
volume 6. Springer-Verlag, 1985.

M. A. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley, 1990.

Eiffel Software.
http: / / archive.eiffel.com/doc/manuals/technology/contract/,
20th September 2005.

1. R. Forman and N. Forman. Java Reflection In Action. Man
ning, 2004.

BIBLIOGRAPHY 238

[Fia02]

[Fis99]

[GD94]

[GH78]

[GHG+93]

[GLR03]

[GM92]

[GM96]

[GMOO]

[Gog78]

J. L. Fiadeiro. Application support for service-oriented archi
tecture. In H. Kirchner and C. Ringeissen, editors, Algebraic
Methodology And Software Technology, volume 2242 of Lecture
Notes In Computer Science, pages 75-82, 2002.

C. Fischer. Software development with Object-Z, CSP and Java:
A pragmatic link from formal specifications to programs. In
B. Jacobs, G. T. Leavens, P. Muller, and A. Poetzsch-Heffter,
editors, Formal Techniques For Java Programs, pages 33-39,
1999.

J. A. Goguen and R. Diaconescu. An Oxford survey of order
sorted algebra. Mathematical Structures In Computer Science,
4(3) :363—392, 1994.

J. V. Guttag and J. J. Horning. The algebraic specification
of abstract data types. In Acta Informatica, volume 10, pages
27-52, 1978.

J. V. Guttag, J. J. Horning, S.J. Garland, K.D. Jones,
A. Modet, and J. M. Wing. Larch: Languages And Tools For
Formal Specification. Texts and Monographs in Computer Sci
ence. Springer, 1993.

J. Goguen, K. Lin, and G. Rosu. Conditional circular coin-
ductive rewriting with case analysis. In M. Wirsing, D. Pat-
tinson, and R. Hennicker, editors, Recent Trends In Algebraic
Techniques, volume 2755 of Lecture Notes In Computer Science,
pages 216-232, 2003.

J. A. Goguen and J. Meseguer. Order-sorted algebra I: Equa
tional deduction for multiple inheritance, overloading, excep
tions and partial operations. Theoretical Computer Science,
105(2) :217-273, 1992.

J. Goguen and G. Malcolm. Algebraic Semantics Of Imperative
Programs. MIT Press, 1996.

J. Goguen and G. Malcolm. A hidden agenda. Theoretical
Computer Science, 245(1):55—101, 2000.

J. Goguen. Order sorted algebra. Semantics and Theory of
Computation Series 14, UCLA Computer Science Department,
1978.

BIBLIOGRAPHY 239

[Gos96]

[Gre05]

[GRV03]

[GTW78]

[GTWW77]

[GW88]

[GWM+93]

[Har89]

[HarOO]

[Har02]

[HD03]

J. Gosling. The Java Application Programming Interface: Win
dow Toolkit and Applets, volume 2. Addison Wesley, 1996.

D. Green. Trail: The Reflection API, 20th September 2005.
Obtainable from
http: / / j ava. sun. com / docs/books / tutorial / reflect /.

J. Gosling, M. Robinson, and P. Vorobiev. Swing Second Edi
tion. Manning, 2nd edition, 2003.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial
algebra approach to the specification, correctness and imple
mentation of abstract data types. In R. T. Yeh, editor, Current
Trends In Programming Methodology, pages 80-149. Prentice-
Hall, 1978.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright.
Initial algebra semantics and continuous algebras. JACM ,
page 69, January 1977.

J. Goguen and T. Winkler. Introducing OBJ3. Technical report,
SRI International, Computer Science Lab, 1988.

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen, editor, Applica
tions Of Algebraic Specification Using OBJ. Cambridge, 1993.

N. A. Harman. Formal Specifications For Digital Systems. PhD
thesis, Univeristy of Leeds, School of Computer Studies, 1989.

N. A. Harman. Correctness and verification of hardware sys
tems using Maude. Technical Report 3, University of Wales,
Department of Computer Science, 2000.

N. A. Harman. Verifying a simple pipelined microporcessor
using Maude. In M. Cerioli and G. Reggio, editors, Recent
Trends In Algebraic Techniques, volume 2267 of Lecture Notes
In Computer Science, pages 128-151, 2002.

J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. In L. Cardelli, editor, ECOOP 2003 - Object-
Oriented Programming, 17th European Conference. Springer,
2003.

BIBLIOGRAPHY 240

[HD04a]

[HD04b]

[Hen96]

[Hen04]

[Hoa69]

[Hof02]

[Hof03]

[HS96]

[HW03]

[HWG03]

[Jac96a]

J. Henkel and A. Diwan. Case study: Debugging a discovered
specification for java.util.ArrayList by using algebraic interpre
tation. Technical Report CU-CS-970-04, University of Colorado
at Boulder, 2004.

J. Henkel and A. Diwan. A tool for writing and debugging al-
gebriac specifications. In International Conference On Software
Engineering (ICSE), 2004.

T. Henzinger. The theory of hybrid automata. In IEEE Sym
posium On Logic In Computer Science, pages 272-282. 1996.

J. Henkel. Discovering And Debugging Algebraic Specifications
For Java Classes. PhD thesis, University of Colarado, 2004.

C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM , 12(10):576—585, 1969.

P. Hoffman. Verifying architectural specifications. In M. Cerioli
and G. Reggio, editors, Recent Trends In Algebraic Techniques,
volume 2267 of Lecture Notes In Computer Science, pages 152-
175, 2002.

P. Hoffman. Verifying generative CASL architectural specifica
tions, In M. Wirsing, D. Pattinson, and R. Hennicker, editors,
Recent Trends In Algebraic Techniques, volume 2755 of Lecture
Notes In Computer Science, pages 233-252, 2003.

M. Hughes and D. Stotts. Daistish: Systematic algebraic test
ing for OO programs in the presence of side-effects. In Inter
national Symposium On Software Testing And Analysis. ACM
Press, 1996.

J. Hughes and M. Warmer. The coinductive approach to verify
ing cryptographic protocols. In M. Wirsing, D. Pattinson, and
R. Hennicker, editors, Recent Trends In Algebraic Techniques,
volume 2755 of Lecture Notes In Computer Science, pages 268-
283, 2003.

A. Hejlsberg, S. Wiltamuth, and P. Golde. The C # Program
ming Language. Addison Wesley, 2003.

B. Jacobs. Inheritance and cofree constructions. In P. Cointe,
editor, European Conference on Object-Oriented Programming,
number 1098 in LNCS, pages 210-231. Springer, Berlin, 1996.

BIBLIOGRAPHY 241

[Jac96b]

[JML05]

[JP03]

[JSY03]

[JvdBH+98]

[Ker88]

[KK03]

[Koc03]

[Kra98]

[KT99]

[LAGB02]

B. Jacobs. Objects and classes, co-algebraically. In B. Fre-
itag, C.B. Jones, C. Lengauer, and H.-J. Schek, editors, Object-
Orientation with Parallelism and Persistence, pages 83-103.
Kluwer Acad. Publ., 1996.

JML Modelling Group.
http://www.cs.iastate.edu/~leavens/JML/, 20th September
2005.

B. Jacobs and E. Poll. Coalgebras and monads in the semantics
of Java. In Theoretical Computer Science, volume 291, pages
329-349. Elsevier, 2003.

B. Johnson, C. Skibo, and M. Young. Inside Visual Studio
.NET. Microsoft Press International, 2003.

B. Jacobs, J. van den Berg, Ma. Huisman, M. van Berkum,
U. Hensel, and H. Tews. Reasoning about Java classes. In
Proceedings, Object-Oriented Programming Systems, Languages
And Applications (OOPSLA’98j, pages 329-340, Vancouver,
Canada, 1998.

B. W. Kernighan. The C Programming Language. Prentice Hall,
2nd edition, 1988.

H.-J. Kreowski and S. Kuske. Approach-independant structur
ing concepts for rule-based systems. In M. Wirsing, D. Pat-
tinson, and R. Hennicker, editors, Recent Trends In Algebraic
Techniques, volume 2755 of Lecture Notes In Computer Science,
pages 299-311, 2003.

S. Kochan. Programming In Objective C. Sams, 2003.

R. Kramer. iContract - the Java design by contract tool. In
Technology Of Object-Oriented Languages And Systems. IEEE
Computer Society, 1998.

G. Kniesel and D. Theisen. Jac - java with transitive readonly
access control, 1999.

F. Ledoux, A. Arnould, P. Le Gall, and Y. Bertrand. Geometric
modelling with CASL. In M. Cerioli and G. Reggio, editors,
Recent Trends In Algebraic Techniques, volume 2267 of Lecture
Notes In Computer Science, pages 176-200, 2002.

BIBLIOGRAPHY 242

[Lam02]

[LBR05]

[LC05]

[LPC+05]

[LW90]

[LW03]

[LY99]

[McC98]

[McC03]

[Mes98]

Y. Lamo. Institution Of Multialgebras As A General Framework
For Algebraic Specification. PhD thesis, University of Bergen,
Department of Informatics, 2002.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de
sign of jml: A behavioral interface specification language for
java. Technical Report 98-06-rev27, Department of Computer
Science, Iowa State University, 2005.

G. T. Leavens and Y. Cheon. Design by contract with jml, 2005.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
and J. Kiniry. JML reference manual, 2005.

G.T. Leavens and W. E. Weihl. Reasoning about oject-oriented
programs that use subtypes. Technical Report 90-03B, Iowa
State University, Department of Computer Science, 1990.

Y. Lamo and M. Walicki. Combining specification formalisms
in the ’general logic’ of multialgebras. In M. Wirsing, D. Pat-
tinson, and R. Hennicker, editors, Recent Trends In Algebraic
Techniques, volume 2755 of Lecture Notes In Computer Science,
pages 328-342, 2003.

T. Lindholm and F. Yellin. The Java Virtual Machine Specifi
cation. Addison-Wesley, 2nd edition, 1999.

G. McCluskey. Using Java Reflection, January 1998. Obtainable
from
http://java.sun.com/developer/technicalArticles/ALT/
Reflection/.

T. McCombs. Maude 2.0 Primer (Version 1.0). SRI Inter
national and Department of Computer Science Univeristy of
Illinois at Urbana-Champaign, August 2003. Obtainable from
http: / / maude .cs.uiuc.edu/primer /.

J. Meseguer. Membership algebra as a logical framework
for equational specification. In In 12th International Work
shop On Recent Trends In Algebraic Development Techniques
(W A D T’97), volume 1376 of Lecture Notes in Computer Sci
ence, pages 18-61. Springer-Verlag, 1998.

BIBLIOGRAPHY 243

[Mey88]

[Mey92a]

[Mey92b]

[MG85]

[MIT05]

[MPH97]

[MT92]

[Mu.102]

[NCC05]

[Pol97]

[PW88]

[RCAOO]

B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1988.

B. Meyer. Applying ‘design by contract’. Computer (IEEE),
25(10):40-51, October 1992.

B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

J. Meseguer and J. A. Goguen. Initiality, induction, and compu
tation. In M. Nivat and J. Reynolds, editors, Algebraic Methods
in Semantics, pages 459-541. Cambridge University Press, 1985.

MIT. http://www.sds.lcs.mit.edu/spd/larch/, 20th September
2005.

P. Muller and A. Poetzsch-Heffter. Formal specification tech
niques for object-oriented programs. In M. Jarke, K. Pasedach,
and K. Pohl, editors, Informatik 91: Informatik als Innovation-
smotor. Springer-Verlag, 1997.

K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook Of Logic
In Computer Science, pages 189-411. Oxford University Press,
1992.

P. Muller. Modular Specification And Verification Of Object-
Oriented Programs. Number 2262 in Lecture Note in Computer
Science. Springer, 2002.

Netscape Communications Corporation.
http://browser.netscape.com/nsb/download/default.jsp, 20th
September 2005.

R. Pollie. Write Once, Run Anywhere-Is It For Real? Obtain
able from http://java.sun.com/features/1997/aug/wora.html,
August 1997.

L. J. Pinson and R. S. Wiener. An Introduction To Object-
Oriented Programming And Smalltalk. Addison-Wesley, 1988.

G. Reggio, M. Cerioli, and E. Astesiano. An algebraic semantics
of UML supporting its multiview approach. In D. Heylen, A. Ni-
jholt, and G. Scollo Editors, editors, AM iLP 2000, number 16,
2000.

BIBLIO G RAPH Y 244

[ReeOl]

[RL96]

[RLS97a]

[RLS97b]

[RSOO]

[Sko02]

[SM02]

[SM06]

[SRI05]

[ST99j

D. LI. L. Rees. A Theory Of Software Interfaces. PhD thesis,
University of Wales, Department of Computer Science, 2001.

K. Rustan and M. Leino. Ecstatic: An object-oriented program
ming language with axiomatic semantics. Technical report, Dig
ital Equipment Corporation System Reasearch Center, 1996.

K. Rustan, M. Leino, and R. Stata. Checking object invariants.
Technical Report #1997-007, Palo Alto, USA, 1997.

K. Rustan, M. Leino, and R. Stata. Virginity: A contribution to
the specification of object-oriented software. Technical Report
#1997-001, Palo Alto, USA, 1997.

O. F. Rana and M. S. Shields. Performance analysis of Java
using petri nets. In M. Bubak, H. Afsarmanesh, R. Williams,
and B. Hertzberger, editors, High Performance Computing And
Networking, number 1823 in Lecture Notes In Computer Sci
ence, pages 657-667, 2000.

M. Skoglund. Sharing objects by read-only references. In
H. Kirchner and C. Ringeissen, editors, Algebraic Methodol
ogy And Software Technology, volume 2242 of Lecture Notes
In Computer Science, pages 457-472, 2002.

L. Schroder and T. Mossakowski. Hascasl: Towards inter
grated specification and development of functional programs.
In H. Kirchner and C. Ringeissen, editors, Algebraic Methodol
ogy And Software Technology, volume 2242 of Lecture Notes In
Computer Science, pages 99-116, 2002.

R. Sasse and J. Meseguer. Java+ITP: A verification tool based
on hoare logic and algebraic semantics. In Proceedings o f the 6th
International Workshop on Rewriting Logic and its Applications
(W RLA 2006), Vienna, Austria, ENTCS. Elsevier, 2006. to
appear, see: http://banyan.cs.uiuc.edu/pub/JavaITP.pdf.

SRI International, http://maude.cs.uiuc.edu/, 20th September
2005.

D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Aste-
siano, H.-J. Kreowski, and B. Krieg-Bruckner, editors, Algebraic
Foundations Of Systems Specification, IFIP state-of-the-art re
ports, chapter 2, pages 13-30. Springer, 1999.

BIBLIO G RAPH Y 245

[Ste96]

[Ste02]

[Str91]

[STR03]

[Sun05a]

[Sun05b]

[Sun05c]

[Sun05d]

[Sun05e]

[Sun05f]

[Sun05g]

[Sun05h]

K. Stephenson. An Algebraic Approach To Syntax, Semantics
And Compilation. PhD thesis, University of Wales Swansea,
Department of Computer Science, 1996.

J. G. Stell. A framework for order-sorted algebra. In H. Kirchner
and C. Ringeissen, editors, Algebraic Methodology And Software
Technology, volume 2242 of Lecture Notes In Computer Science,
pages 396-410, 2002.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 2nd edition, 1991.

K. Stephenson, J. V. Tucker, and D. Rees. The algebraic struc
ture of interfaces. Science Of Computer Programming, 49:47-48,
2003.

Sun Microsystems, http://java.sun.com /, 20th September 2005.

Sun Microsystems.
http: / /java.sun.com/developer/technicalArticles
/Programming/GettingStarted/index.html, 20th September
2005.

Sun Microsystems. Java Reflection API, 20th September 2005.
Obtainable from
http://java.sun.eom/j2se/l.4.2/docs/api/index.htm l.

Sun Microsystems.
http://java.sun.com/docs/books/jls/second_edition/html/
syntax.doc.html, 20th September 2005.

Sun Microsystems.
http: / / j ava.sun. com / docs/books / tutorial/j ava/j avaOO
/classvars.html, 20th September 2005.

Sun Microsystems.
http://java.sun.com /docs/books/tutorial/java/data
/arrays.html, 20th September 2005.

Sun Microsystems, http://java.sun.eom/j2se/l.4.2/index.jsp,
20th September 2005.

Sun Microsystems, http://java.sun.eom/j2se/l.5.0/index.jsp,
20th September 2005.

BIBLIO G RAPH Y 246

[Ten02]

[The04]

[TM94]

[TS06]

[Tuc06]

[TW95]

[Wag81]

[Wec91]

[Wil02]

R. D. Tennent. Specifying Software. Cambridge University
Press, 2002.

The Common Algebraic Framework Initiative. C a sl Reference
Manual LNCS 2960 (IFIP Series). Springer, 2004.

J. Turner and L. McCluskey. The Construction Of Formal Spec
ifications : An Introduction To The Model-Based And Algebraic
Approaches. McGraw-Hill international series in software engi
neering. McGraw-Hill, 1994.

J. V. Tucker and K. Stephenson. Data, Syntax and Semantics.
In preparation, 2006.

J. V. Tucker. Personal Communication. In preparation, 2006.

P. Thomas and R. Weedon. Object-Oriented Programming In
Eiffel. International computer science series. Addison-Wesley,
1995.

E. G. Wagner. Lecture notes on the algebraic specification of
data types. Research Report RC 9203 39787, Mathematical Sci
ences Center, IBM Thomas J. Watson Research Center, York-
town Heights, New York, 1981.

W. Wechler. Universal algebra for computer scientists. In
EATC S Monograph. Springer-Verlag, 1991.

M. Williams. Microsoft Visual C # .NET. Microsoft Press, 2002.

A p p en d ix A

CD R ep ository

A .l F ile L ocations

The following files can be found on the CD attached to the inside back cover
of this thesis in the following locations.

• The predefined BUILDLINK algebra for FAS Maude module = in b u i l t \ .
This consists chiefly of declarations of sorts such as NAT numbers, basic
definitions for Integer and String classes, and definitions for specialised
classes such as the Reflection classes.

• Example Java classes source files = ex am p les\c lasses\

• Example FAS Maude modules = exam ples\f a s \

• Test data for example FASs = ex am p les \te s t\

• Java Translation program source code = t r a n s la t io n \

A .2 C om pilin g and R un n ing th e T ranslation
P rogram

1. Make sure you have a copy of the Java 1.4 or higher SDK available
from h t t p : / / j av a . sun . com.

2. Copy the sp ec if ic a t io n \ and te s t r u n \ directories in the Java trans
lation program on the CD to a directory of your choice.

3. Switch to your chosen directory.

247

A .3. Loading the Executable FAS M aude m odules 248

4. Compile the javaprogram by issuing the command javac te s tru n * .ja v a .

5. Run the program by issuing the following command jav a te s t ru n . A p p lica tion l
AClass c :\ lo c a tio n \A C la s s .ja v a where:

• AClass is the name of the class you wish to generate an FAS for.

• c :\ lo c a tio n \A C la s s .ja v a is the filename and full path to the
location of AClass source codes file.

Once run the ACS will be in the file o u tp u t. t x t in the current directory
and the FAS in the file spec.maude

A .3 L oading th e E xecu tab le FAS M aude m od
ules

1. Download Maude which is obtainable from
h t t p : / /maude. c s .u iu c . edu/download/download.php?
c a te g o ry = b in a rie s ; target=maude-windows. zip.

2. Copy the file algebra.maude from the i n b u i l t \ folder on the CD
along with any FAS Maude modules and runtime example data Maude
modules that you wish to use into the directory into which the Maude
program installed.

3. Start maude by running the maude.bat program.

4. Load the algebra.m aude file by typing in algebra.

5. Load the FAS module you wish to test by typing in spec where spec
is the name of the FAS file you wish to load.

6. Load (if required) and test data modules you wish to use by typing in
t e s t where t e s t is the name of the test file you wish to load.

7. You are now ready to begin running reduction tests on your loaded
FAS.

