

 Swansea University E-Theses ___

The development of problem solving environments for

computational engineering.

Jones, Jason William

 How to cite: ___
Jones, Jason William (2003) The development of problem solving environments for computational engineering..

thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42503

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42503
http://www.swansea.ac.uk/library/researchsupport/ris-support/

School of Engineering
University of Wales Swansea

T h e D e v e l o p m e n t o f
P r o b l e m S o l v in g E n v ir o n m e n t s
f o r C o m p u t a t io n a l E n g in e e r in g

JASON WILLIAM JONES
BSc.

Thesis submitted to the University o f Wales in candidature for the degree of
Doctor of Philosophy

December 2002

ProQuest Number: 10801733

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10801733

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

£ r s itP

lib r a r y

Declaration
This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signed (Candidate)

Date ,Q2r

Statement 1
This thesis is the result of my own work/investigation except where otherwise stated.
Other sources have been acknowledged by footnotes giving explicit references. A
bibliography is appended.

Signed (Candidate)

Date (5 - 1 2 - - 0 2-

Statement 2
I hereby give consent for my thesis, if accepted, to be available for photocopying and for
inter-library loans, and for the title and summary to be made available to outside
organisations.

Signed

Date I 5 I Z - 0 2

(Candidate)

A ck no w ledg em ents

First and foremost I would like to thank Professor Nigel Weatherill, Professor Ken
Morgan and Dr. Oubay Hassan for their guidance and friendship throughout my time in
the group, as well as allowing me to join their research group in the first place. I have
always felt it a great privilege to be part of such a high profile group in such a world class
department.

The pleasant atmosphere in the department is, of course, also a product of all of the other
members, some of which have moved onto pastures new. In particular, I would like to
thank my good friends Ed Tumer-Smith, Mike Sotirakos, Peter Brookes, Daniel van der
Leer and Ben Larwood with whom I have had many fim times both in and out of work;
and Lynette Jones and Anne Davies whose friendship I will always treasure.

I would also like to thank Yoon K Ho, Andy Wood, Peter Stow and Les Harper, from
Rolls-Royce pic; David Rowse, from BAE Systems; and Luciano Fomasier and Herbert
Rieger, from EADS. Their enthusiasm, input and continuous testing of the two
environments has made them what they are today.

Of course, I would like to thank my parents whose continuous support and
encouragement throughout my life has enabled me to be where I am today.

And last, but not in any way least, I would also like to thank my friends outside the
University that have made my time in Swansea so enjoyable.

Su m m a r y

This thesis presents two Problem Solving Environments that enable engineers in industry
to utilise complex computational simulation algorithms during their design processes.
The work addresses the issues of allowing the end user to interact with the algorithms in a
user-friendly manner through the use of graphical user interface design and advanced
computer graphics. Throughout this thesis major emphasis is placed on being able to
tackle a wide range of problem sizes from routine to grand challenge simulations through
the use of parallel computing hardware. The effectiveness of both the environments in
their domain is demonstrated using a series of examples.

1. CHAPTER 1. INTRODUCTION..10

1.1. W hat is a Problem Solving Enviro nm ent (PSE)?...10
1.2. Review of Problem Solving En v ir o n m e n t s ..11

1.2.1. Pre-processors to Conventional Programming Languages... 12
1.2.2. New Programming Languages...12
1.2.3. Graphical PSE’s for Specific Mathematical Domains..13
1.2.4. Visual Programming Environments... 14
1.2.5. Graphical PSE’s for Specific Applications.. 15
1.2.6. Futuristic PSE’s ..16

1.3. The Problem D om a in: Com putational Sim u l a t io n ..16
1.3.1. Mesh Generation.. 17
1.3.2. Computational Analysis.. 17
1.3.3. Mesh Refinement / Adaptation..17

1.4. Requirements for a Com putational S im ulation P S E ... 18
1.4.1. Geometry Preparation...19
1.4.2. Mesh Density Specification..21
1.4.3. Mesh Quality Evaluation and Repair.. 22
1.4.4. Boundary Condition Specification.. 22
1.4.5. Solver Monitoring... 23
1.4.6. Solution Visualisation... 23
1.4.7. Mesh Refinement Control...23

1.5. Layout of Th e s is .. 23

2. CHAPTER 2. TECHNICAL BACKGROUND... 25

2.1. B ackground to Three-D im ensional Gr a ph ic s ... 25
2.1.1. Breakdown o f the Rendering Process...25
2.1.2. Examples o f Software Libraries for 3D Graphics.. 29

2.2. B a c k g r o u n d t o P a r a l l e l C o m p u tin g ... 30
2.2.1. Shared Memory Parallel Architectures...30
2.2.2. Distributed Memory Parallel Architectures..31
2.2.3. Hybrid Distributed-Shared Memory Parallel Architectures..32
2.2.4. The Message Passing Programming Model..33

2.3. Su m m a r y ... 34

3. CHAPTER 3. PROMPT - AN IMPLEMENTATION OF A PROBLEM SOLVING
ENVIRONMENT...35

3.1. R eq u ir em en ts ..35
3.1.1. Current Status at Rolls-Royce (circa 1995)...36
3.1.2. Aims o f the PROMPT Environment...38

3.2. Scope a n d Context of PRO M PT... 38
3.3. The A rchitecture of PRO M PT..40

3.3.1. The Structure o f PROMPT...40
3.3.2. The Communication Mechanism used within PROMPT.. 41
3.3.3. Module Initiation and Termination...43

3.4. Global D ata Structures used within PR O M PT...45
3.4.1. Structured Curvilinear Grids (Single Block).. 45
3.4.2. Structured Curvilinear Grids (Multi-Block)... 46
3.4.3. Structured Curvilinear Grids with Local Refinement...49
3.4.4. Unstructured Hybrid Grids..51

3.5. The V isualisation a n d Control M o d u l e ... 53
3.5.1. The Visualisation Window..53
3.5.2. Region and View Configurations...54
3.5.3. On-Screen Manipulation o f Data.. 54
3.5.4. Feature Selection..56

1

3.5.5. Feature Selection Algorithm ...57
3.5.6. The Pull-down and Pop-up M enus ... 60
3.5.7. The Selection Gizmo Panel..63
3.5.8. The Colour Editor Gizmo P anel.. 64
3.5.9. The Appearance Gizmo P anel..66
3.5.10. The L ighting/ M aterial Gizmo P anel... 68
3.5.11. The Clipping Plane Gizmo P a n el...69
3.5.12. The Clipping Plane Algorithm ...71
3.5.13. The Print Gizmo P anel .. 72

3.6. The Task D ata b a se M o d u l e ...73
3.6.1. The Task Database Window ..73
3.6.2. Loading Data Files into PROM PT ... 74
3.6.3. Saving Data Files to the D atabase ... 75
3.6.4. Deleting Data Files from the Database...76
3.6.5. Attaching User Comments to Data Files in the Database .. 77
3.6.6. Importing External Files into the D atabase .. 78
3.6.7. The Task Database Importing M echanism ...80

3.7. M esh A n a l y s is ... 83
3.7.1. The Mesh Analysis Window ..>..............83
3.7.2. Performing a Mesh A na lysis ..83
3.7.3. Fixing Areas o f Poor Q uality ...87

3.8. The B o und ar y Condition Specification Pa n e l ..88
3.8.1. The Boundary Condition W indow .. 89
3.8.2. Boundary Condition Definition fo r Structured M eshes ...90
3.8.3. Boundary Condition Definition fo r Unstructured M eshes ...94

3.9. The Solver Execution Pa n e l .. 94
3.9.1. The Solver Execution Panel A ppearance ...95
3.9.2. Solver Execution M echanism .. 97

3.10. Solution V isualisation a n d Post-Pro cessing .. 100
3.11. Conclusions a n d Exam ple T est-Cases using PRO M PT..101

3.11.1. Agard B4 Test C ase ... 101
3.11.2. Generic Engine fo r a Vertical Take-off A ircraft...103
3.11.3. Conclusions..105

4. CHAPTER 4. PSUE II - A PARALLEL PROBLEM-SOLVING ENVIRONMENT 107

4.1. In t r o d u c t io n ... 107
4.2. Context of PSUE II within the JULIUS Project...107
4.3. The R equirem ent for a Parallel Env ir o n m en t .. 109

4.3.1. An Example: The Equation Solver...110
4.3.2. An Initial Parallel Problem Solving Environment..112

4 .4. D is tr ib u tin g t h e D a t a - S e t s ...114
4.4.1. Sequential Geometry F orm at..114
4.4.2. Sequential Surface M esh F orm at...116
4.4.3. Sequential Volume Mesh F orm a t...117
4.4.4. Sequential Solution Form at..117
4.4.5. Partitioned Geometry Form at.. 118
4.4.6. Partitioned Surface Mesh Form at... 118
4.4.7. Partitioned Volume Mesh Form at... 119
4.4.8. Partitioned Solution Format.. 122

4.5. Su m m a r y ...122

5. CHAPTER 5. THE IMPLEMENTATION OF THE ENVIRONMENT (PSUE n VI.0).......123

5.1. VEQUALISATION AND INTERACTION ISSUES..123
5.1.1. The Visualisation P ipe-L ine ...123
5.1.2. D istributing the Visualisation Pipe-Line ...125

2

5.2. Internal D a ta Co m m unication Sy s t e m ..130
5.2.1. UNIX Socket Transfer (TCP/IP).. 131
5.2.2. UNIX Socket Transfer (UDP/IP)... 131
5.2.3. MPI (Message Passing Interface)..131
5.2.4. PVM (Parallel Virtual Machine)..132

5.3. The Control Structure of the En v ir o n m e n t ..132
5.3.1. The Two Types o f Communication... 134

5.4. Sum m a r y ...134

6. CHAPTER 6. PSUE II V 2.0-A N IMPROVED ARCHITECTURE.. 136

6.1. Improving Flexibility of U s e ..136
6.1.1. The CORBA Architecture..137
6.1.2. The Use o f CORBA within the PSUE II v2.0..141

6.2. R educing N etwork Co m m u n ic a t io n ... 142
6.2.1. The Mesh Management Class Hierarchy...147
6.2.2. Mesh Manager Object... 147
6.2.3. Mesh Server Object..147
6.2.4. Mesh Volume Object... 148
6.2.5. 2D Mesh Object...149
6.2.6. Render Object..149
6.2.7. Co-operation between the Objects...149

6.3. Improving Lo ad B a l a n c in g ..150
6.4. Increasing the Perform ance of V olum e D a t a Set Tr a versa l .. 154
6.5. Increasing R endering Spe ed s ...158
6.6. The Integration of Third-Party A p pl ic a t io n s ... 160

6.6.1. Stage 1 - Application Execution... 160
6.6.2. Stage 2 - Data File Transferral... 162
6.6.3. Stage 3 - PSUEII and Application Interaction at run-time..163

6.7. Su m m a r y ...164

7. CHAPTER 7. THE FUNCTIONALITY OF THE PSUE II V2.0...165

7.1. The M ain D isp l a y .. 165
7.2. The N ested To o l b a r s ..:... 166

7.2.1. The PSUE IINested Toolbar.. 167
7.3. The ‘Co nfiguration’ To o l b a r ... 169
7.4. The ‘G eom etry’ To o l ba r .. 172

7.4.1. The ‘GeometryEdit’Sub-Toolbar.. 175
7.5. The ‘Sourc es’ To o l b a r ..177
7.6. The ‘M esh ’ To o l b a r .. 178
7.7. The ‘B o und ar y Conditio ns’ To o l ba r ...185
7.8. The ‘So lution’ To o lbar ...186
7.9. The ‘Post-Pro cessing ’ To o l ba r ...190

8. CHAPTER 8. ADDRESSING THE ISSUES OF SOFTWARE PORTABILITY................... 194

8.1. Lan g u ag e Fe a t u r e s ... 195
8.1.1. Fortran 77 Pointers...195
8.1.2. Fortran 77 Subroutine and Variable Names...196

8.2. Gr a p h ic s .. 197
8.3. Threading In t er fa c e ...197
8.4. Input / Ou t pu t ..198

8.4.1. Unformatted I/O between Fortran 77 and C ..198
8.4.2. Portability Issues due to Big and Little Endian Computers... 199

8.5. Inter-Process Co m m u n ic a t io n ..200
8.6. Su m m a r y ..200

9. CHAPTER 9. EXAMPLE TEST-CASES... 201

3

9.1. Explanation of Test-Ca s e s ... 201
9.2. CFD S imulation over a D assau lt Fa l c o n ... 201
9.3. CFD S imulation over a complete F16 c o n fig u r a t io n .. 209
9.4. Pre-processing a n d Post-processing of a Gr a n d -Challenge S im ulation o ver a

D assau lt Fa l c o n .. . 217
9.5. S um m ary of Test Ca s e s .. 221

10. CHAPTER 10. CONCLUSIONS AND FUTURE RESEARCH... 223

10.1. Co n c l u sio n s ...223
10.2. Future Resea r c h ... 226

11. CHAPTER 11. BIBLIOGRAPHY... 230

12. APPENDIX A. EQUATION EDITOR - EQUATE.. 242

A.I. D e fin it io n o f a G en er ic M a th e m a t ic a l E x p ress io n in EQUATE..................................... 242
A.2. EQUATE S y n ta x a n d S e m a n t ic s .. 243
A .3. Sy n ta x a n d Sem antics of Ex p r e ssio n s .. 244
A .4. Sy n t a x a n d Sem antics of Operators..245
A .5. Sy n ta x a n d Sem antics of Fu n c t io n s ..246
A .6. Sy n t a x a n d S em antics of V a r ia b l e s ..247
A .7. Sy n ta x a n d Sem antics of Co n s t a n t s ...249
A .8. Some Implementation D e t a il s ... 249
A .9. Performance Fig u r e s ... 249

4

Figure 1 - A short ELLPACK pr o g r a m ... 12
Figure 2 - A typical session in M a tLa b .. 13
F igure 3 - Typical U ser Sessions in LSA an d PDELa b ... 14
F igure 4 - Typical Maps in A VS a n d IRIX Ex p l o r e r ...15
Figure 5 - Overlapping Su r fa c e s ... 20
Figure 6 - Inter-Surface Ga p s ... 20
F igure 7 - Sliver Surface at W ing T ip... 20
Figure 8 - Sliver Surface on Fu se l a g e ...20
Figure 9 - Complex Geometry with So u r c es ..21
Figure 10 - M esh Sm o o th ing ...22
Figure 11 - Element Rem o va l ...22
Figure 12 - Face Sw a ppin g ..22
Figure 13 - N on Planar Polygon transform ed to a Self Intersecting Po ly g o n 25
Figure 14 - The V ertex Transform ation P ipeline ... 26
Figure 15 - Tra nslation , Scaling an d Rotation Ma t r ic e s ..27
Figure 16 - The Orthographic Projection M a t r ix ..27
Figure 17 - The Perspective Projection M atrdc...27
Figure 18 - Flat , Go ura ud an d Phong Sh ading Mo d e l s ..28
Figure 19 - The Shared M emory A rc hitecture .. 31
Figure 20 - SMP Configurations from the Leading V e n d o r s ...31
Figure 21 - The D istributed Mem ory A rchitecture.. 32
Figure 22 - The ccN U M A D istributed-Sh ared M emory A rc hitecture ... 33
Figure 23 - M em ory H ierarchies of RISC an d ccN U M A A rchitectures...33
Figure 24 - Influences on the D esign of M ilitary N ozzle / A fter-B o d ie s ..36
Figure 25 - Thrust V ectoring Technolog ies...36
Figure 26 - A n Exam ple of the Solver Control Files (c .1995)..37
Figure 27 - Logical Processes performed within the PROMPT En v ir o n m e n t39
Figure 28 - The Options contained within PRO M PT.. 39
Figure 29 - The A rchitecture of PR O M PT ..41
Figure 30 - Flattening of a typical hierarchical d a ta st r u c t u r e .. 42
F igure 31 - M odule Initiation within PR O M PT ..44
F igure 32 - The Top-Level M esh D ata Str uc tu re ...45
F igure 33 - Data Structure for a S ingle-B lock Structured M e s h ... 45
F ig u re 34 - A n ex a m p le o f a S in g le -B lo c k S tr u c t u r e d M esh w ith Dead N o d e s46
F ig u re 35 - D a ta S t r u c t u r e f o r a S in g le -B lo c k S tr u c t u r e d M esh w ith Dead N o d es 46
Figure 36 - A n exam ple of a Multi-B lock M esh with S ingle Face M a t c h in g ..47
Figure 37 - A n exam ple of a M ulti-B lock M esh with M ultiple Face M a t c h in g 47
F ig u re 38 - D a ta S t r u c t u r e f o r a M u lt i-B lo c k M esh w ith D ead N o d es ...47
Figure 39 - B lock a n d Face Co ordinate A x e s .. 48
Figure 40 - N um bering Convention for B lock-B lock In t er fa c es ...49
F ig u re 41 - A S tr u c t u r e d M esh w ith H a n g in g N o d e s (an d D ead N odes) ...50
Figure 42 - D ata Structure for a M ulti-B lock M esh with Hanging an d D ead N o d e s 50
Figure 43 - The (i,j,k) structure of a m esh with h ang ing n o d e s ..51
F ig u re 44 - T he c o n t e n t s o f t h e n odeConn a r r a y f o r t h e h a n g in g n o d e s ... 51
Figure 45 - D a t a Structure for a n U nstructured Hybrid M e s h ... 52
Figure 46 - N ode N um bering Conventio ns used for the Unstructured Elem ent Ty p e s52
Figure 47 - A typical exam ple of the V isualisation W in d o w ...53
Figure 48 - Possible Region Co n fig u r a t io n s ... 54
Figure 49 - The S election Giz m o ...57
Figure 50 - Point outside the po ly g o n .. 58
Figure 51 - Point inside the po l y g o n ..:.. 58
Figure 52 - N o de counted as one intersection ... 58
Figure 53 - N o de counted as zero or two intersectio n s...58
Figure 54 - The Pull-do w n m en u h ie r a r c h y .. 60
Figure 55 - The Inform ation Pa n e l s ... 60'

5

Figure 56 - The Pop-up m enu h ie r a r c h y ..61
Figure 57 - A n exam ple of resizing r e g io n s ... 62
Figure 58 - The Selection Gizmo for U nstructured M e s h e s ..63
Figure 59 - The Selection Gizmo for Structured , M ulti-B lock M esh es ..63
F igure 60 - The Colour Editor G izmo Pa n e l .. 64
Figure 61 - The RGB Colour Spa ce ..65
Figure 62 - The HSV Colour Sp a c e ..65
Figure 63 - The A ppearance G izmo Pa n e l .. 66
Figure 64 - V arious A ppearance G izmo Panel settings for a m e s h ...68
Figure 65 - The L ighting / Material G izmo Pa n e l ... 69
Figure 66 - The Clipping G izmo Pa n e l ..69
Figure 67 - M anipulating a Clipping Plane through a m esh ... 70
Figure 68 - T he sam e m esh after it has been c l ip p e d ...70
Figure 69 - H exahedron intersecting a Clipping Pl a n e ...72
Figure 70 - The Print G izmo Pa n e l ...72
Figure 71 - A standard File Selection bo x u sed in the Print G izmo Pa n e l ...73
Figure 72 - The Task D ata b a se W in d o w ...74
Figure 73 - A Schematic of D ependencies betw een D ata Files.. 74
Figure 74 - The D ependencies after a m esh h as been selec ted .. 75
Figure 75 - The final set of Selectable D a t a Fil e s ..75
Figure 76 - The ‘Save D a t a ’ Pa n e l ..76
Figure 77 - D eleting D ata F iles from the Task D a t a b a s e ...77
Figure 78 - Editing the A nnotation of a D ata Se t ...78
Figure 79 - The ‘Import D a t a ’ Pa n e l .. 79
Figure 80 - Saving Imported F iles in the PROMPT form at...80
Figure 81 - Editing the List of A vailable File Co n v e r t e r s ...80
Figure 82 - A Schematic of the Importing Pr o c e ss ...81
Figure 83 - The M esh A n a ly sis Pa n e l ..83
Figure 84 - The Four H istogram Selection M e t h o d s ..85
Figure 85 - Zoom ing into the H isto g ram ..86
F ig u re 86 - Ba d E le m e n ts h ig h l ig h te d in t h e V is u a l is a t io n W in d o w ... 87
Figure 87 - Editing a M esh Pl a n e ..88
Figure 88 - The B o und ar y Condition w indow for a Structured M e s h ... 89
Figure 89 - The B o und ar y Condition w indow for a n U nstructured M e s h ...90
Figure 90 - D efining a Region on a M esh Plane for a B o und ar y Co n d it io n .. 91
Figure 91 - The CFDS Inlet B o u n d a r y Condition Pa n e l .. 92
Figure 92 - The CFDS Outlet B o u n d a r y Condition Pa n e l ...92
Figure 93 - The CFDS W all Bo und ar y Condition Pa n e l ...92
Figure 94 - The CFDS Free Stream B o u nd ar y Condition Pa n e l ..92
Figure 95 - The CFDS R epeat B o und ar y Co ndition Pa n e l ...93
Figure 96 - The CFDS Sym m etry B o und ar y Condition Pa n e l ..93
Figure 97 - The CFDS C entre L ine B o und ar y Condition Pa n e l ..93
Figure 98 - A n exam ple of a ID param eter profile for a B o u n d a r y Co n d it io n94
Figure 99 - A n exam ple of a 2D param eter profile for a B o u n d a r y Co n d it io n94
Figure 100 - The ‘Flow Param eters’ Pan el for the CFDS so lver .. 95
Figure 101 - The ‘Runtim e Co ntrol’ Panel for the CFDS so lv er .. 96
Figure 102 - The M ixing-Length Turbulence M odel Pa n e l .. 96
Figure 103 - The k-e Turbulence M odel Pa n e l .. 96
Figure 104 - The k-l Turbulence M odel Pa n e l ... 97
Figure 105 - A n ‘Initial Gu e ss’ Panel for constant initial v a l u e s ...97
Figure 106 - A n ‘Initial Gu e s s ’ Panel for profiles of initial v a l u e s ...97
Figure 107 - A typical convergence history log of a so l v e r ..98
Figure 108 - A typical set of Convergence H istory P lots for the CFDS So l v e r 98
F ig u re 109 - C o n n e c t in g PROMPT t o a s o l v e r u s in g a N a m e d P i p e ..99
Figure 110 - A typical session u sin g V isual 3 ..100
Figure 111 - D efining new equations usin g E Q U A T E .. 100

6

Figure 112 - Illustrations of the A gard B 4 no zzle ...101
Figure 113 - Structured M esh ar o u nd the A gard B4 no zzle ... 102
Figure 114 - Un stru ctur ed M esh ar o u n d the A gard B 4 n o z z l e ...102
Figure 115 - Com parison betw een Solver R esults a n d Experim ental D a t a for the A gard B4

N o z z l e ..103
Figure 116 - The Geom etry of the V ertical Tak e-Off En g in e ..104
Figure 117 - The U nstru ctur ed M esh a r o u nd the En g in e .. 104
Figure 118 - Solution Co nto ur s from the Cind y so l v e r ...104
Figure 119 - Pressure D istributions from the Two So l v e r s 105
Figure 120 - A n Illustration of the M em ory U sage for the va rio us So l v e r s 106
Figure 121 - A Schematic of the 6S Enviro nm ent show ing the d a t a fl o w s ... 108
Figure 122 - A schematic show ing the logical layo ut of the 6S En v ir o n m e n t109
Figure 123 - Estim ated Execution T ime for Typical S im ula tio ns.. 110
Figure 124 - Typical M esh S ize for S im ulations on a Complete A ir c r a f t ..I l l
Figure 125 - Typical sequence of operations within a Parallel So l v e r ... 112
Figure 126 - The B ottle-n eck produced b y a Sequential Pr o c e ss ... 113
Figure 127 - The PSE with no Sequential B o ttl en ec k s ... 114
F igure 128 - A simple geom etry illustrating its co m po nen ts ..115
Figure 129 - A M ore Com plex Geometry illustrating the concept of T rim m ed Su r f a c e s 116
Figure 130 - The Path from the V olum e M esh back to the Geom etry v ia the Surface M esh 117
Figure 131 - Exam ples of Complex A erospace Co n fig u r a t io n s .. 118
Figure 132 - A solver ru nn ing with 4 ba la nc ed pa rtitio ns ...120
Figure 133 - A Solver ru nn ing o n 4 u n ba la nced partitions..120
Figure 134 - Com m unication Structure betw een M esh Pa r titio n s ...121
Figure 135 - The link betw een M esh Partitions a n d the Original Surface M esh 122
Figure 136 - The V isualisation P ipe-L ine ... 124
Figure 137 - The Im age D ata Tra nsfer M eth o d .. 126
Figure 138 - The Graphics D a t a Transfer M e t h o d ... 128
Figure 139 - The Geom etry D a t a Transfer Me t h o d ...129
Figure 140 - Possible H ar dw a re Scenario on which to use the PSUE I I ... 130
Figure 141 - The Sequence of Operations required to load a Solution F ile 133
Figure 142 - Mapping of Solution V alues to Co l o u r s ..134
Figure 143 - Req uest being sent via C O R B A ...138
Figure 144 - The Structure of the Request B roker Inter fa c es .. 139
Figure 145 - Steps perform ed for a M ethod Inv o c atio n (using C + +) ... 141
Figure 146 - The Fina l , C O R BA -ba sed A rchitecture of the PSUE II.. 142
Figure 147 - A Rough Cutting Pla n e ...143
Figure 148 - A Smooth C utting P la ne .. 143
F igure 149 - The Geometric Primitives affected b y a Cutting Pl a n e ... 144
Figure 150 - Position of the Cutting Plane during for Collection of St a t ist ic s 145
Figure 151 - The H ierarchy of C lasses used to m an ag e the M esh D a t a Sets within PSUE II v2 .0

.. 146
Figure 152 - Face , Edg e a n d N ode N um bering for a simple 2D M e s h .. 148
Figure 153 - The two types of Edg e-B a sed D a t a Structure for a m e s h ... 152
Figure 154 - Partitioner P erform ance Gr a p h s ...153
Figure 155 - The 2D M e s h .. 154
Figure 156 - The Qu a d -Tree D a t a St r u c tu r e .. 154
Figure 157 - M issing a n Elem ent in a Qu a d -Tree se a r c h ... 155
Figure 158 - The Im proved Qu a d -T ree D ata St r u c t u r e .. 156
Figure 159 - A 200 M illion Elem ent M e sh ..158
Figure 160 - Statistics for the 200 M illion Elem ent M esh .. 158
Figure 161 - Statistics for the Rendering D ata for the M e s h ...159
Figure 162 - Com parison betw een S ingle Primitives a n d Str ips .. 159
Figure 163 - Statistics for the Rendering D a t a using Triangle-S t r ip s ... 160
Figure 164 - The Main PSUE II G U I.. 165
Figure 166 - Mapping of the PSUE II Toolbars to the S im ulation P r o c e ss ...167

7

Figure 165 - The Structure of the N ested To olbar in the PSUE II..168
F igure 167 - Region Lay o u t Pa n e l ...169
F igure 168 - Lighting a n d M aterial Pa n e l ...170
Figure 169 - V arious M aterial Pr o pe r tie s ...171
F igure 170 - G eneral A ppear an ce Pa n e l ... 172
Figure 171 - A File Selection Pa n e l ... 173
Figure 172 - Entering the n u m b e r of Geom etry Se r v e r s ... 173
Figure 173 - The Parallel Platform Pa n e l ... 173
Figure 174 - The Geom etry A ppearance Pa n e l ... 174
Figure 175 - G eom etry Colour Pa n e l ... 175
Figure 176 - Outer B o u n d a r y Editing Pa n e l ...176
Figure 177 - The Topology Edit Pa n e l .. 176
Figure 178 - The Edit Sources Pa n e l ..177
Figure 179 - D ragging Ha n d l es for So u r c es ...178
Figure 180 - Lo adin g a Partitioned V olum e M e s h ...179
Figure 181 - The Surface M esh Generation Inform ation Pa n e l ...181
Figure 182 - Specifying the Param eters for the Parallel D e l au na y M esh Gen er ato r182
Figure 183 - The M esh A ppearance Pa n e l ... 182
Figure 184 - The M esh Colour P a n e l ... 183
Figure 185 - The M esh Qua lity A n a ly sis Pa n e l ...183
Figure 186 - S electing a ra ng e of H istogram B a r s ..184
Figure 187 - The sam e H istogram zoomed into the selected r a n g e ... 184
Figure 188 - Som e V o lum e Elem ents highlighted in the M e s h .. 185
Figure 189 - The B o u n d a r y Conditio n Editor Pa n e l ... 186
Figure 190 - The Solver Control Pa n e l ...187
Figure 191 - The V ariable Selection Pa n e l ..188
Figure 192 - The D efault So lution-Colour M a ppin g ..189
Figure 193 - The U ser-D efined Solution-Colour Mapping ...189
Figure 194 - The U ser-D efined S olution-Colour M apping with Co n t o u r in g189
Figure 195 - The Cutting Plane Pa n e l .. 190
Figure 196 - A Rough C utting P l a n e .. 191
Figure 197 - A Smooth Cutting Pl a n e ..191
Figure 198 - The Iso-S urface Pa n e l ...192
Figure 199 - A n Iso -S urface of M ach 1.0 over the Gulf-St r e a m ..193
Figure 200 - B yte layo ut for a 32 -bit q u a n t it y ...199
Figure 201 - Creation of the Outer B o u n d a r y ..202
Figure 202 - Creation of the So u r c e s ... 203
Figure 203 - The Surface M esh of the D assau lt Fa l c o n .. 204
Figure 204 - The V olum e M esh (w ith interface surfaces) ...204
Figure 205 - The M esh Quality G raph of the Falcon M e s h .. 205
F ig u re 206 - H ig h lig h t in g t h e f l a t e le m e n ts w ith in t h e m esh ... 206
Figure 207 - Solution Co lours of M ach N u m b e r .. 207
Figure 208 - Solution Co nto ur s of M ach N u m b e r .. 207
Figure 209 - A Cutting Pla ne through the Fa l c o n 208
Figure 210 - A n Iso -Sur fa ce of M ach 1 .0 ... 209
Figure 211 - Illustration of the Com plexity of the F 16 Co nfig uratio n ... 209
Figure 212 - The FI 6 Configuration with Outer B o u n d a r y ...210
Figure 213 - The Sources u sed for the F 16 ..211
Figure 214 - The Surface M esh of the F 16 ...212
Figure 215 - A zoom ed view of the F 16 Surface M esh .. 212
Figure 216 - A Cut through the V o lum e M esh of the F 1 6 ..213
Figure 217 - The M esh Quality G raph for the F 1 6 .. 213
F ig u re 218 - H ig h lig h t in g t h e p o o r e r q u a l i t y e le m e n t s .. 214
Figure 219 - The Flow Solution o v er the F 16... 215
Figure 220 - A C utting Pla n e o ver the FI 6 W i n g ...216
Figure 221 - A n Iso-S ur fa ce of M ach 1.0 over the FI 6 ..216

8

F ig u re 222 - M o d if ic a t io n o f t h e O u te r B o u n d a r y f o r th e CEM S im u la t io n 217
F ig u re 223 - M o d ify in g t h e S o u r c e s f o r t h e CEM S im u la t io n .. 218
F ig u r e 224 - T h e S u r fa c e M esh f o r t h e CEM S im u la t io n ... 219
F ig u r e 225 - T h e S u r fa c e M esh zo o m ed in o n t h e f r o n t o f t h e e n g in e .. 219
F ig u r e 226 - A c u t t h r o u g h t h e V o lu m e M e s h ... 220
F ig u r e 227 - A zo o m ed v ie w o f t h e c u t a r o u n d t h e e n g in e ...221
F ig u re 228 - A sim p le p r o to ty p e o f a VPE w ith in t h e PSUE II.. 227
F ig u re 229 - E x a m p le o f r e p r e s e n t in g e d g e s b y fo rm in g n o d e p a ir s ..244
F ig u re 230 - E x a m p le o f r e p r e s e n t in g t r i a n g u la r f a c e s b y fo r m in g 3 - tu p le s o f n o d e s244

9

Chapter 1. Intr o d u c tio n

1.1. What is a Problem Solving Environment (PSE)?
In April 1991, a research conference was held from which a long report was issued
[Gallopoulos94] exploring the field of PSE’s. The definition of a Problem Solving
Environment that emerged was:

"A Problem Solving Environment is a computer system that provides all
the computational facilities needed to solve a target class o f problems.
These features include advanced solution methods, automatic and
semiautomatic selection o f solution methods, and ways to easily
incorporate novel solution methods. Moreover, PSE’s use the language
o f the target class ofproblems, so users can run them without specialised
knowledge o f the underlying computer hardware or software. By
exploiting modern technologies such as interactive colour graphics,
powerful processors, and networks o f specialised services, PSE’s can
track extended problem solving tasks and allow users to review them
easily. Overall, they create a framework that is all things to all people:
they solve simple or complex problems, support rapid prototyping or
detailed analysis, and can be used in introductory education or at the
frontiers o f science."

This definition can be summarised by the formula:

“PSE = Natural Language + Solvers + Intelligence + Software Bus”

Here, the Software Bus represents the computing infrastructure, i.e. the computers,
networks, etc.

The level of intelligence that a PSE requires depends on the number of options available
and how much background information is required in order to make an informed choice.
This does not mean that the PSE must be capable of answering complex questions such
as:

• What is the best simulation software for this problem?
• What time step size is needed to achieve the accuracy required?
• Which computer should be used?
• Where is the data needed for this computation?

But at the very least, a PSE should be able to present the options in a manner that allows
the user to make an informed choice without requiring a detailed knowledge of the
algorithms.

10

C h a p t e r 1: In t r o d u c t io n

The term ‘Solver’ refers to the class of algorithms that will actually compute the results
for the particular class of problem. The term used in the equation is plural since a PSE
will naturally have more than one solver available since it is unlikely that there will be
one solver that is best for all cases in a given class of problems.

The ‘Natural Language’ component means that a PSE must communicate with the user in
a language that is suitable for that application. This means the data that is input or
displayed should be in a form that is readily understood by the user, rather than in a form
that is used internally inside the algorithm. Examples of this can range from presenting
simple data using SI units to using advanced two- and three-dimensional graphics in
order to make sense of a large set of data.

The need for a PSE becomes obvious when the complexity of today’s problems are
considered. Problems involving a single discipline (such as fluid flow) are continuously
being replaced by more complex, multi-disciplinary problems (such as fluid-structure
interaction). Furthermore, these problems are increasingly being tackled by people in a
commercial or industrial environment where there may be little or no expertise in the
underlying algorithms. In these situations, there is a fundamental requirement for a
software system that can guide the user as much as possible through the steps involved in
solving the particular problem.

Due to the high level and wide ranging goals of a PSE it naturally leads to a large and
complex software system. For this reason, unlike many of the actual tools within the PSE,
the architecture of the system is of utmost importance in ensuring robustness,
performance and flexibility.

1.2. Review of Problem Solving Environments
One of the difficulties of reviewing Problem Solving Environments is that for almost any
problem domain that utilises computers one or more PSE’s exist. Even if we restrict
ourselves to the domain of mathematics, there are many PSE’s for the many different
branches.

If we restrict ourselves further to the domain of interest to this thesis, computational
simulation, then there are still a large number of PSE’s but they do mostly fall into one or
more of six main categories depending on their generality:

• Pre-processors to conventional programming languages
• New programming languages
• Graphical PSE’s for specific domains of mathematics
• Visual Programming Environments (VPE)
• Graphical PSE’s for specific applications
• Futuristic PSE’s.

11

C h a p t e r 1: In t r o d u c t i o n

1.2.1. Pre-processors to Conventional Programming Languages
The most general type of PSE takes the form of a pre-processor to a conventional
programming language. A typical example of this type of PSE is ELLPACK [Purdue02a,
Rice86] developed in the Department of Computer Sciences at Purdue University. This
takes the form of a pre-processor to the FORTRAN language that, with the use of a large
library of mathematical routines, converts a program in the form shown in Figure 1 into
FORTRAN that can then be compiled and executed. Its purpose is to greatly reduce the
programming effort required to solve ‘routine’ elliptic problems.

EQUATION. UXX + Y*UYY + SIN(X+Y)*U = 1 - X + Y
BOUNDARY. U = 0 ON X = 0.

U = Y ON X = 1.
U = 0 ON Y = 0.
U = X ON Y = 1.

GRID. 21 X POINTS $ 21 Y POINTS
DISCRETIZATION. HERMITE COLLOCATION
SOLUTION. LINPACKBAND
OUTPUT. PLOT(U) $ TABLE(U)
END.

Figure 1 - A short ELLPACK program

Although this is not a conventional form of PSE, as it still requires considerable
programming experience, it does relieve the need for a programmer to know all o f the
implementation details of the various methods of solving elliptic problems in order to
obtain a solution.

1.2.2. New Programming Languages
A more sophisticated example of a general PSE is that of a domain specific programming
language. Examples of these include MATLAB [MathWorks] (Figure 2), Maple
[Maplesoft, WrightOl] and Mathematica [Wolfram]. These systems consist of an
environment in which mathematical problems can be expressed in mathematical notation
rather than conventional programming language notation. This makes them more
accessible to people without a programming background and can even be preferred by
programmers over traditional languages for rapid prototyping purposes.

12

C h a p t e r 1: I n t r o d u c t i o n

E*# Edd vww. weC ijflndow Q»t>
D 1^ U ? Currw* Cvvdory f

EaBSHHHHBMHHHHaH
b <7i i •u-.r u

26456x1 211664 e

LiliJ

VVorltspice

atlonSdelaunay *»] - j fi) Ct

K Clles ru e Type Last Bodifi
H-Clle 18-0et-2002a H-£U« 20-Sep-2002
B-£Ue IS-Qct-2002

Om,.. B-flie 29-0CC-2002
[i)sea&ent interse. . H-£U* 18-0ct-2002

B-CUe 2 J-Sep-2002a, H-£Ue 06-Sep-2002
3 9pUne2deurve. & B -tlll 07-0cc-2002
aspnn._t.ound.. ■-file 22-0ct-2O02
a« « _ to ec_ ... B-£U« 25-0ct-2O02

«i__
B-tile 01-0ct-2002

i=i

: : ; y

Command History Current Directory

"3J

1() is in Uiangie();

ED

=d

Figure 2 - A typical session in M atLab

1.2.3. Graphical PSE’s for Specific Mathematical Domains
If the domain of the PSE is restricted still further then graphical environments appear in
which the user can solve problems with little or no programming knowledge. Examples
of this type of PSE are PDELab [Purdue02b] that solves systems of partial differential
equations (PDE), and LSA [Bramley98] that solves sparse systems of linear equations.

These environments allow the user to solve their particular mathematical problem using
point-and-click techniques with the environment assisting the user in selecting the
appropriate technique for the given problem. This alleviates the user from having to
expend the effort to learn all of the subtleties o f the individual mathematical techniques
that are needed in order to solve the PDE or system of equations. Instead, the user can
treat them purely as a tool that can be used in order to progress in their own field of
expertise.

Figure 3 shows a typical session in LSA and PDELab.

13

C h a p t e r 1: I n t r o d u c t i o n

Z*nc*l

(a) LSA (b) PDELab

Figure 3 - Typical User Sessions in LSA and PDELab

1.2.4. Visual Programming Environments
A common style of graphical PSE is that of the general Visual Programming
Environment (PSE). There are a number of implementations in the research domain,
including SCIRun [Johnson98, JohnsonOO] and the Component Architecture Toolkit
[Vilacis99]), and a number of commercial implementations including AVS [AVS] and
IRIX Explorer [Nag].

Here, the user is presented with a number o f modules that perform individual tasks. Each
module is represented by a box, with the various inputs and outputs that are required for
that module represented by connectors. The user can then take any combination of these
modules and construct their environment (often called a map) by connecting the input
and output ports of the various modules in a point-and-click manner. Figure 4 shows an
example o f a map in AVS and IRIX Explorer.

14

C h a p t e r 1: I n t r o d u c t i o n

(a) AVS (b) IRIS Explorer

Figure 4 - Typical Maps in AVS and IRIX Explorer

The initial purpose of the above four environments was to enable the user to easily
produce customised visualisations of their results. However they were designed with
sufficient flexibility that, with sufficient programming experience, it is possible to create
user-defined modules that can then be included in a map. This ability enables the VPE to
potentially become a PSE for almost any problem domain. For AVS and IRIX Explorer
in particular, there is a substantial collection of pre-written modules freely available in
the public domain so even users who are not experienced programmers can extend the
functionality of these environments to meet their own requirements.

However, even with modules available for a particular problem domain, the VPE is more
suitable for the user who has an understanding of the process they are undertaking
including the order in which the various components must be linked. For any user who is
purely using a PSE as a means of obtaining a result for a particular class of problem and
who needs guidance through the process, the VPE is not really a suitable method.

1.2.5. Graphical PSE’s for Specific Applications
In order for a user with little or no knowledge of how to solve a particular problem, but
whom requires the solution in order to further their own work, a graphical PSE that is
tailored for a specific application is the most appropriate choice. For example, a team
designing the shape of a car has to take into account how the moving car interacts with
the stationary air. In order to obtain such results Computational Fluid Dynamics (CFD)
would most likely be used. In an ideal world, these users are not interested in any aspect
of the CFD process - they would prefer to input a geometry of a car with some details
concerning its speed, wind direction, etc. and obtain results such as drag, wind noise, etc.

However, the current state of the algorithms that form the CFD simulation process means
that this is not yet possible. In order to overcome this the PSE forms a compromise in
which as much of the process as possible is fully automatic, and the tasks that need user
involvement are made as simple and intuitive as possible.

15

C h a p t e r 1: In t r o d u c t io n

In order to achieve this, a typical application-specific PSE includes all of the relevant
tools for setting up the problem (pre-processing), solving the problem and visualising and
interrogating the results (post-processing). These tools are generally integrated into one
seamless Graphical User Interface (GUI). Numerous examples of this type of PSE exist
in both the research domain [Gaither96, Brodersen98, Goel99, GaitherOO, RavishankarOO,
ShevareOO, RamakrishnanOl] and the commercial sector (e.g. Fluent, MSC, CFX, Ansys,
etc.).

1.2.6. Futuristic PSE’s
The continuing increase in power of modem computers has allowed more and more
complex simulations to be performed. Modem state-of-the-art simulations are invariably
multi-disciplinary and involve heavy use of high-performance parallel computing
technology. The next stage in this evolution is to connect computers that are
geographically disparate in order that a much larger computer may be created and hence
allow much larger simulations to be performed.

This continuing increase in size of the simulation and the complex issues involved in the
management of such wide-ranging networks of computers will mean that the use of a
PSE will be of fundamental importance. To this end, a number of projects have been
initiated looking into the requirements of such a PSE. NASA and a number of the US
National Laboratories started one of the largest projects, called the Information Power
Grid (IPG). The aim of this project is to produce a general, all encompassing, prototype
PSE that will allow the user to semi-transparently access the vast amounts of computation
power available around the world in order to solve Grand Challenge problems. Several
components have been developed, including GLOBUS [FosterOl] for distributed resource
management and a scientific software library, PetSc [BuschelmanOO], but at this time the
overall PSE is more of a vision than a reality.

1.3. The Problem Domain: Computational Simulation
For this thesis, we concentrate on Problem Solving Environments for the computational
simulation process, more specifically, for finite element or finite volume based
algorithms for CFD and Computational Electromagnetics (CEM).

A typical computational simulation process for these types of applications often involves
three main classes of algorithms:

• Mesh Generation,
• Computational Analysis and
• Mesh Refinement / Adaptation.

Traditionally, these tasks were performed using simple command-line driven tools with
little or no graphical capability.

16

C h a p t e r 1: In t r o d u c t io n

1.3.1. Mesh Generation
Assuming the geometry on which the mesh is to be generated is topologically correct,
current unstructured mesh generation technology has made this process virtually
automatic. The only user interaction required is the definition of the mesh density in the
various regions of the domain. A common means of achieving this is by placing a number
of point, line and planar sources in the domain at key positions. However, this process is
very time-consuming for a complex geometry and requires the user to know in advance
the dimensions of the domain and the coordinates of all of the key features.

Once the sources have been placed then the mesh generation process can begin. This is
generally split into two main sub-tasks; surface and volume mesh generation. Surface
mesh generation involves the generation of nodes and edges along all of the intersection
curves. Further nodes are then placed on the interior of the geometry surfaces (including
any symmetry planes and outer boundaries) and connected to form triangles and/or
quadrilaterals. This mesh is then used as the starting point for the generation of the
volume elements (i.e. tetrahedra, pyramids, prisms and hexahedra) that fill the entire
computational domain.

1.3.2. Computational Analysis
Like the mesh generation phase, the majority of the Computational Analysis phase is
fully automatic. Before the solver can be executed, regions of the computational domain
need to be assigned solver specific properties called boundary conditions. These are used
to inform the solver how to treat the various surfaces and/or volumes. For example, when
performing a CFD analysis, the surfaces might represent entities such as engine inlets or
exhausts, or viscous or inviscid solid walls. In a CEM analysis, portions of the volume
mesh may be assigned different material properties. Other types of boundary condition
may not represent physical entities at all; instead they might represent topological entities
such as symmetry planes.

Once all of the geometry surfaces have had boundary conditions applied the solver may
be initiated. The algorithms of the solver are extremely computationally intensive and are
therefore often executed on a, possibly remote, super-computer.

1.3.3. Mesh Refinement / Adaptation
As with any algorithm that relies on numerical approximations to the governing
equations, the accuracy of the result depends heavily on having an appropriate density of
sampling points in regions where the solution changes rapidly. Knowing, in advance, the
locations of all of these regions is either impossible, or at the very least requires a great
deal of experience on the part of the user. The purpose of the Mesh Refinement phase is
to analyse the solution with respect to the geometric spacing of the nodes of the mesh in
order to produce an estimate of the error. These regions can then be refined using a
number of algorithms, including /^-refinement, r-refinement [Scott-McRaeOO] and local
remeshing, with the new mesh being passed back to the solver again to continue from the
existing solution and produce a more accurate solution.

17

C h a p t e r 1: I n t r o d u c t io n

1.4. Requirements for a Computational Simulation PSE
As stated above, the three main stages of the computational simulation are all fairly
automatic processes once they have been initiated. The area where user interaction is
beneficial is in the preparation of the input data for each stage and in the analysis of the
output from each stage. If these are taken into account, then the number of stages
involved in a simulation increases from three to ten:

• Geometry Preparation
• Mesh Density Specification
• Mesh Generation
• Mesh Quality Evaluation and Repair
• Boundary Condition Specification
• Computational Analysis
• Solver Monitoring
• Solution Visualisation
• Mesh Refinement Control
• Mesh Refinement / Adaptation.

It is during these interactive stages (blue) that the most time is spent during a simulation.
In fact, it has been estimated that for a complex simulation, the time required for the
preparation of the input data (stages 1 and 2) accounts for 90% of the total.

If the PSE is to be used to perform very large simulations of the order of 10’s or 100’s of
millions of elements, then the use of parallel computing hardware throughout the
simulation is essential. Executing and monitoring tasks on a remote parallel computer is
much more difficult than performing the same task locally. This has been made even
more difficult with the recent trend towards using clusters of PC’s or workstations to
form a parallel computer since the user has to decide on which computers to run the job.

Therefore, the key requirements of a PSE in the field of computational simulation can be
summarised as follows:

• Problem set-up time must be reduced.
• The user must be guided through the simulation process.
• The details of the execution of tasks on remote parallel computers must be hidden

from the user.

In order to achieve these requirements, a number of challenges must be overcome:

• The User Interface must remain intuitive throughout the simulation
This means ensuring that all information is presented to the user in a manner to
which he/she is accustomed, i.e. in engineering language rather than computer
language.

• All invalid routes through the environment should be disabled

Key

• Interactive Stages
• Non-Inter active Stages

18

C h a p t e r 1: In t r o d u c t io n

This means ensuring that only the options that are valid should be presented to the
user. The validity of an option depends on whether the data sets required to
perform that option are present or whether the option makes sense at the current
stage of the simulation.

• All three-dimensional rendering must be real-time
This is of paramount importance since any delays occurring whilst manipulating
the model on the display will invariably cause user frustration. This should be
achieved regardless of the size of the model or mesh. As the size of the data sets
increases the PSE should automatically adapt its rendering in order to maintain
interactive frame rates.

• All interaction must remain as close to real-time as possible
This means ensuring that, as far as possible, any operation performed on a data set
must happen in a timely fashion. Obviously, when performing complex operations
on a large model some periods of unresponsiveness are inevitable but these should
be minimised. For example, if the user performs the option to create an iso­
surface then a small period of computation is expected. However, clicking on the
model to select a geometry surface should be instantaneous.

• The use o f parallel computers should be (semi-) transparent
When working with large and complex models, with meshes of the order of 10’s
of millions of elements, the use of parallel computing technology is inevitable in
order to satisfy the previous four conditions. However, this should not complicate
the use of the PSE any more than necessary. The maximum amount of extra user
interaction that should be tolerated is the selection of which computers should
form the parallel computer. Even this extra interaction should be presented to the
user in a user-friendly manner where the selection can be made purely by pointing
and clicking. All of the details of executing the parallel processes and initiating
the communication links should be completely hidden.

1.4.1. Geometry Preparation
In a typical industrial environment, the geometry is usually extracted directly from the
CAD database. These geometries invariably arrive in a form that makes the later stages of
mesh generation impossible due to the fact that they are tailored more for a
manufacturing or prototyping purpose than for a computational simulation which have
quite differing requirements. For example, geometries intended for the manufacturing
process would include gaps around doors and hatches, or locations of rivets and bolts. For
most simulations, for example, CFD, these features would need to be removed.

Regardless of their purpose, geometries that are specified by their boundary
representation (B-Rep models) are defined as a combination of surface patches and
intersection curves. For a geometry to be meshable, it needs to be topologically valid (or
closed). A closed geometry is one in which every surface has one or more sets of
intersection curves forming a closed loop and every intersection curve is attached to two,
and only two, surfaces. This forms a domain in which the inside and outside of the
domain can be determined unambiguously.

19

C h a p t e r 1 : I n t r o d u c t i o n

There are many features of a geometry that may make it topologically invalid, but they
generally fall into one of two categories; overlapping surfaces or inter-surface gaps.

Overlapping surfaces are where any two adjacent surfaces that, through inaccuracies or
design faults, do not meet along an intersection curve but overlap slightly. This is shown
in Figure 5.

Inter-surface gaps are where any two adjacent surfaces that, for similar reasons, do not
meet along an intersection curve but have a small gap between them. This is shown in
Figure 6.

Figure 6 - Inter-Surface GapsFigure 5 - Overlapping Surfaces

Even if a geometry is valid, there may be features that inhibit the generation of a good
quality mesh. These problems occur because most surface mesh generators operate a
surface at a time. A typical example is a surface with a very small angle at a comer.
Sometimes this is unavoidable due to the shape o f the geometry, for example at the nose
of an aircraft or then end of a wing (Figure 7), but often this is simply due to the choices
made by the designer of the original CAD model (Figure 8).

Surface Sliver

Surface Sliver

Figure 7 - Sliver Surface at Wing Tip Figure 8 - Sliver Surface on Fuselage

The purpose of the Geometry Input phase is to convert a CAD geometry into a form on
which a good quality mesh can be generated. This process is often referred to as CAD
Repair. This process is, at best, semi-automatic in which the CAD repair algorithms can

20

C h a p t e r 1: I n t r o d u c t i o n

repair small anomalies leaving the user to repair larger areas through graphical
interaction.

1.4.2. Mesh Density Specification
Once a suitable geometry has been obtained, the density of the mesh in the various
regions of the domain needs to be defined. As stated previously, a common method is to
place point, line and planar sources at the positions of key features [Weatherill94a].

A point source is defined as a 6-tuple, {x, y, z, r\, ri, 5 }. Geometrically, a source
comprises two spheres centred on the point [x, y, z], with radii n and rj. The mesh
spacing (i.e. element edge length) within the inner sphere is defined as s. In the region
between the inner and outer sphere the mesh spacing increases linearly from the spacing,
s, and the background spacing o f the mesh. Line sources are a linear combination o f two
point sources that, geometrically, form the shape of a sausage. Planar sources are a
further extension of the point source created by linearly combining three point sources to
form a triangular area.

A typical example is shown in Figure 9.

(a) FI6 Fighter Jet with Sources (b) F16 Sources without Geometry

Figure 9 - Complex Geometry with Sources

This is a process heavily dependent on user interaction since the placement and strength
of the sources depend on a number of factors including:

• The type of simulation to be performed
• The areas of interest
• The shape of the geometry and
• Any prior knowledge as to where interesting features occur (e.g. shock waves or

vortices in CFD).

For this process to be performed efficiently, it is necessary for the PSE to be able to
interact directly with three-dimensional models on the screen. The user must then be able
to interactively place the sources at key locations and receive instant graphical feedback

21

C h a p t e r 1: In t r o d u c t io n

as to how the source strength affects the density of the mesh by illustrating the mesh
spacing or size of elements within the source in real-time.

Techniques are also available to automatically place these sources based on feature
detection [MezentsevOO] such as curvature but results invariably need some user
interaction to fine-tune their positions and strengths.

1.4.3. Mesh Quality Evaluation and Repair
Once a surface and volume mesh has been generated, it should be analysed to evaluate its
suitability for the intended solver. This can be achieved by using a combination of
statistical quality measures to identify any poorly formed elements, and graphical
interaction with the model in order to identify the positions of these elements with respect
to areas in the domain that are of particular interest.

If the poorly formed elements occur away from regions of interest then it may be decided
that no action to improve the quality of the elements is required. However, if it is deemed
necessary to improve the element quality then a number o f techniques could be used to
improve the quality of the mesh in that area [Hassan99c]. These include:

• Mesh Smoothing - The vertices of the elements that are local to the bad element are
moved in order to minimise a pre-defined energy function (Figure 10).

• Element Removal - Thin elements (slivers) can often be collapsed completely and
removed from the mesh resulting in an overall improvement in mesh quality (Figure

U)*• Face Swapping - Swapping the faces of two adjacent elements can often increase the
quality of both elements (Figure 12).

• Re-Meshing - If the above techniques fail then the only alternative may be to re­
generate the mesh in a region local to the poor element but with modified mesh
density parameters.

Figure 10 - Mesh Figure 11 - Element Figure 12 - Face
Smoothing Removal Swapping

1.4.4. Boundary Condition Specification
The last interactive process before the computational analysis phase can proceed is the
definition of the boundary conditions. This process, although reasonably quick, does
benefit significantly from the use of graphical interaction in order to select the surfaces of
the model on which to apply the various boundary conditions. Graphical feedback,
through the use of colouring, helps identify which conditions have been applied to which
surfaces helping to reduce any errors.

22

C h a p t e r 1: In t r o d u c t io n

1.4.5. Solver Monitoring
During the execution of the solver, it is often useful for the user to be able to monitor the
progress of the solver through the plotting of parameters, such as the residuals of the
solver variables. Since a solver is often executed remotely and may take a number of
hours or days to run, the monitoring tools should be able to connect and disconnect from
the running solver at any time without affecting the execution of the solver in any way.

1.4.6. Solution Visualisation
Once the solver has finished, and a solution obtained, it is essential to represent the huge
quantity of numbers in a form that can be analysed easily by the user. This can range
from simple two-dimensional plots to the use of advanced three-dimensional graphics
and feature extraction algorithms such as vortex detection, iso-surfaces, streamlines, etc.
Regardless of the form of the output, it is essential to be able to interact with the model in
an efficient manner in order to define the positions of these entities.

1.4.7. Mesh Refinement Control
If it has been deemed that mesh refinement is necessary, the user must be able to identify
the areas of the mesh that must be refined. Although, in theory, this could be fully
automated through the use of error estimation algorithms, in practise, the error estimation
is only one factor in determining how much of the mesh is refined. Other factors include:

• Mesh Size - Refining based on an error estimator alone may produce a mesh that is
too large to be able to continue the simulation.

• Areas o f Naturally High Error - Mesh refinement at the outlet of an aircraft engine
may always produce an unusually high error due to the very high gradients of the
solution at that point. Refining the mesh in this region may be deemed a waste of
resources.

In order to be able to define regions, in which mesh refinement should occur, a
combination of the automatic error estimator and graphical interaction with the model is
essential.

1.5. Layout of Thesis
The layout of the thesis encompasses eleven chapters that describe the design and
implementation of two Problem Solving Environments. Throughout both of these
projects, the industrial partners in each project, many of whom were leading European
Aerospace companies, influenced the design of the PSE’s.

Chapter 1 sets the scene by introducing the concept of a Problem Solving Environment
along with the requirements that a PSE for computational simulation has to meet in order
to be useful in an industrial environment.

Chapter 2 then gives a brief background of the two main technologies behind the two
PSE’s described in this thesis; three-dimensional graphics and parallel computing.

23

C h a p t e r 1: I n t r o d u c t io n

Chapter 3 describes the design and implementation of the first PSE, called PROMPT.
This was an environment developed for the Nozzle After-body division of the Military
Power-plant Technology group in Rolls Royce with the aim of enabling the engineers to
use the simulation tools developed within, and for, the company.

After the PROMPT project, a European Project, called JULIUS, started in which a
parallel environment was developed with the aim of being able to perform very large-
scale simulations within an easy-to-use interface.

Chapter 4 introduces the aims of the JULIUS project, along with the role that University
of Wales Swansea played. This is then followed by the requirements that a parallel
environment had to fulfil. Finally the partitioning of the main data structures used
throughout the environment is described.

Chapter 5 continues the theme by describing the design and implementation of the first
version of the parallel environment, called PSUE II.

Chapter 6 then identifies the areas in which the PSUE II could be improved and describes
the new design and implementation.

Chapter 7 gives an overview of the functionality and user interface of the second version
of the PSUE II along with a description of the mechanism through which 3rd party
applications can be integrated within the environment.

Chapter 8 concludes the description of the two environments by describing the various
design and software issues that had to be overcome in order to ensure the environments
were portable across all major UNIX platforms as well as platforms based on Microsoft
Windows NT/2000.

Chapter 9 then presents some simulations that were performed using the two
environments. These are accompanied by a number of statistics to illustrate the
effectiveness of the two environments in their domain.

Chapter 10 and 11 then draw some conclusions and present ideas for future research into
this growing field of research.

24

C hapter 2. T ech nical B a ck g r o und

2.1. Background to Three-Dimensional Graphics

2.1.1. Breakdown of the Rendering Process
In order to represent a three-dimensional object on a two-dimensional display a number
of operations need to be performed. In a general-purpose framework, these operations can
be classified into four stages:

• Scene Construction.
• Scene Projection.
• Vertex / polygon based effects.
• Rasterisation with pixel based effects.

Scene Construction
Regardless of the original form of the data that needs to be rendered, it must be
converted into a set of simple primitives that can then be passed on to the graphics
sub-system of the computer. For most modem systems, these primitives are
points, straight lines and triangles. Although most systems also allow convex
quadrilaterals, they are generally regarded as being unsafe since a convex
quadrilateral can change to a self-intersecting polygon from some angles if it is
non-planar as shown in Figure 13

Figure 13 - Non Planar Polygon transformed to a Self Intersecting Polygon

The result of this stage is a simple sequence of primitives along with any
associated colour and normal data.

Scene Projection
In order to render a three-dimensional scene, constructed of simple primitives,
onto a two-dimensional display a series of transformations need to be applied.
This is generally regarded as being analogous to taking a photo with a camera.
These steps could be:

25

C h a p t e r 2 : Te c h n ic a l B a c k g r o u n d

• Arranging the objects in the scene to be photographed into the desired
composition and pointing the camera at the scene (modelling
transformation).

• Choosing the camera lens or adjusting the zoom (projection
transformation).

• Determining how large you want the final print to be (viewport
transformation).

After these steps have been taken the picture can be taken, or the scene can be
drawn.

In three-dimensional graphics, these transformations are represented as a series of
4x4 matrices with the vertices being represented as homogenous co-ordinates as
shown in Figure 14.

x
y
z
w

Object
Coordinates

Vertex Modelling
Matrix

Projection
Matrix

Viewport
Transformation

Eye
Coordinates

Normalized
Device

Coordinates

Window Pixel
Coordinates

Figure 14 - The Vertex Transformation Pipeline

The modelling matrix is usually a combination of translation (Figure 15a), scaling
(Figure 15b) and rotation (Figure 15c-e) operations in order to position the objects
and the camera in the correct positions in relation to each other.

26

C h a p t e r 2 : T e c h n i c a l B a c k g r o u n d

X 0 0 O'

0 y o 0
0 0 z 0
0 0 0 1

(b)
Scaling by (x z)

cos # - sin # 0 0
sin # cos# 0 0

0 0 1 0
0 0 0 1

(e)

1 0 0 0
0 cos 6 - s i n # 0

0 sin# cos# 0

0 0 0 1

(c)
Rotation around x-axis

1 0 0 x
0 1 0 y
0 0 1 z

0 0 0 1

(a)
Translation by (x, y, z)

cos# 0 sin# 0

0 1 0 0
- s in # 0 cos# 0

0 0 0 1

(d)
Rotation around y-axis Rotation around z-axis

Figure 15 - Translation, Scaling and Rotation Matrices

The projection transformation is invariably a choice between an orthographic
projection matrix in which all lines that should be parallel are parallel, and a
perspective projection matrix in which lines converge as they travel away from
the viewer.

r - I

0
t - b

0

0

r + /
r - I
t + b

~ T - b
 f + n
f - n f ~ n

0 1

0

0

- 2

Top (t

Left (I)

N ear (n)
F ar (f)

B ottom) b)

Figure 16 - The Orthographic Projection Matrix

2 n r + l0 0
r - I r - I

2 n t + b
0 0

t - b t - b

0 0 f + n - 2 fn
f ~ n

0 0 -1 0

Figure 17 - The Perspective

Bottom) b)

Projection Matrix

27

C h a p t e r 2 : T e c h n i c a l B a c k g r o u n d

The viewport transformation is simply a two-dimensional scaling and translation
in order to transform the objects coordinate system into the pixel coordinate
system of the display.

These transformation matrices are multiplied together in order to form a single
transformation matrix. Each vertex is then multiplied by this combined matrix in
order to produce a position on the display.

Vertex / Polygon Based Effects
During the transformation of the scene from three to two dimensions, a number of
other effects can be applied in order to produce a more realistic appearance. One
of the most common effects is that of lighting. In its most basic form, this is a
simple calculation based on the angle each light source makes with each vertex or
polygon o f the scene. The user positions the light sources within the scene using
the same coordinate system as the model. The vertex or polygon normals are
usually also supplied by the user and are used to determine the intensity o f the
light as it bounces off the model towards the display.

During the transformation of the scene into display coordinates, the contributions
from the various light sources are transformed into colours for each vertex /
polygon. Figure 18 shows the three most common lighting models used in modem
graphics libraries.

m

(a) Flat Shading (b) Gouraud Shading (c) Phong Shading

Figure 18 - Flat, Gouraud and Phong Shading Models

The flat shading model uses polygon normals in order to compute a colour for the
entire polygon. This is normally the quickest for the graphics system to calculate
but for curved surfaces produces the least realistic appearance (Figure 18a). The
second and third models use normals calculated at the vertices of the polygons.
For the Gouraud shading model, these normals are then used to calculate the
colours at the vertices o f the polygons. These colours are then linearly
interpolated across the polygon. This model requires more calculations than the
flat shading model but give a smoother appearance (Figure 18b). The Phong
shading model interpolates the normal across the polygon and at each pixel uses
the interpolated normal to compute the required colour. This last model requires
the most calculations but does produce the most realistic effects (Figure 18c).
Until recently, the only models that were implemented in hardware in most
graphics systems were the flat shading and Gouraud shading models. However,
recent advances in graphics hardware have meant that Phong shading has become
a viable alternative.

28

C h a p t e r 2 : Te c h n ic a l B a c k g r o u n d

Rasterisation with Pixel Based Effects
The last stage in the rendering process is the rasterisation procedure. Essentially,
this takes the transformed coordinates, and colours, and produces the image in the
frame buffer, which is then rendered on the display. During this process, a process
known as depth buffering is often applied.

Whereas the frame buffer stores the colour information for every pixel on the
display, the depth buffer stores a depth value for every pixel on the screen. When
drawing each pixel, its depth buffer value is compared with that already in the
depth buffer. If it is less (i.e. closer to the viewer) then the pixel is drawn into the
frame buffer and its depth is stored in the depth buffer. This is a very simple
method of rendering scenes with hidden surfaces.

Other effects, which are beyond the scope of this introduction, can also be applied
at this stage, including texture-mapping, transparency, anti-aliasing, bump
mapping, etc.

2.1.2. Examples of Software Libraries for 3D Graphics
Over the years, a number of software libraries have aimed at standardising the interface
to the graphics sub-system of each computer. Each library has approached this problem at
various levels ranging from libraries that allow the user to define the scene as collections
of objects using many representations from simple primitives to complex bi-cubic
patches, down to libraries that restrict the user to simple primitives and operations. There
have been many such libraries over the years. GKS (Graphics Kernel System) [ANSI85]
was the first ever library to be officially standardised by ANSI in 1985. However, it was
limited to two dimensions. An extension, GKS-3D [IS088], added three-dimensional
graphics and also became an ANSI standard in 1988. Later, more complex libraries that
allowed nested groupings of primitives appeared including PHIGS (Programmer’s
Hierarchical Interactive Graphics System) [ANSI88] and PHIGS+ [PHIG88], an
extension to PHIGS.

Nowadays, there are two main standards for low-level graphics. These are DirectX and
Open-GL [OGL-ARB92, Neider93].

DirectX [Microsoft95] was introduced in 1995. It is a suite of multimedia API’s
(Application Programming Interface) developed by Microsoft and built into the Windows
operating systems. These API’s give applications easy access to two and three
dimensional graphics, but also go much further by incorporating interfaces to sound
cards, joysticks, keyboards, mice, etc.

Open-GL was introduced in 1992 and was designed as a streamlined, hardware-
independent interface to be implemented on many different hardware platforms. It
includes two and three-dimensional graphics incorporating a large number of
visualisation effects. It is a very stable interface with additions to the standard being well
controlled by a review board including representatives from leading companies such as
SGI, Hewlett-Packard, IBM, Intel, NVidia and Microsoft. It is a very scalable and

29

C h a p t e r 2 : Te c h n ic a l B a c k g r o u n d

portable graphics standard with implementations on every conceivable platform ranging
from low-end PC’s and Macs to multi-million pound graphics super-computers from
companies such as SGI, and every conceivable language including C, C-H-, Fortran,
Python, Perl and Java. It is undisputedly the most widely adopted graphics standard in
existence.

The higher level libraries that allow the user to describe entire scenes, rather than low
level primitives, are then built on top of these libraries. Examples include Open Inventor,
OpenGL Volumiser, OpenGL Optimiser and OpenGL Performer.

2.2. Background to Parallel Computing
Parallel computing is the division of work into smaller tasks, assigning these smaller
tasks to multiple processors to work on simultaneously. Its main goals are to solve much
larger problems in less time. This concept is summed up well by a quote from Grace
Hopper (1906-1992) during one of her many public presentations:

"In pioneer days they used oxen fo r heavy pulling, and
when one ox couldn V budge a log, they didn’t try to grow
a larger ox. We shouldn ’t be trying fo r bigger computers,
but fo r more systems o f computers. ”

The power of parallel computing, especially modem Massively Parallel Computers
(MPPs), is illustrated clearly in the current Top500 supercomputers in the world
(www.top500.org). Here, an overwhelming 456 out of the top 500 super-computers in the
world are parallel computers based on standard, scalar processors1.

Although there are many different types of parallel computing hardware available, they
all fall into one of three categories:

• Shared Memory
• Distributed Memory and
• A hybrid of the two called Distributed-Shared Memory.

2.2.1. Shared Memory Parallel Architectures
A standard shared memory architecture is shown in Figure 19. Here, there is one global
pool of memory that each processor can access with equal priority and is often referred to
as an SMP (Symmetry Multi-Processing) architecture. This architecture is by far the
simplest one to construct a parallel program for a number of reasons:

• The data on which the program operates can stay in one piece rather than having to be
partitioned into many smaller pieces.

• A sequential program can be parallelised one routine at a time in an incremental
fashion. This makes it easy to ensure that at each stage the program is still producing
the same results as the sequential version.

1 Statistics as of 10th December 2002.

30

C h a p t e r 2 : T e c h n i c a l B a c k g r o u n d

• For many shared memory architectures, the compiler can actually perform most o f the
parallelisation automatically.

Global Memory

Shared Memory Bus

Proc 1 Proc 2 Proc 3 Proc 4

Figure 19 - The Shared Memory Architecture

However, the shared memory architecture does have one major drawback; it is not very
scalable. True shared memory architectures do not scale beyond 64 processors and are
most commonly found in configurations o f two or four processors. This is illustrated by
Figure 20 that shows the largest SMP configuration for each of the major vendors.

Manufacturer Model Name Max CPUs Source of Information
HP
(Compaq)

AlphaServer GS320 32 http://www.compaq.com/alphaserv
er/

Sun Enterprise 10000 64 http://www.sun.com/servers/compa
ri son/ enterpri se/index. htm 1

SGI Power Challenge 36 http://www.sgi.com

Figure 20 - SMP Configurations from the Leading Vendors

This is due to the contention between the processors to access the memory. As the
number of processors increases this contention increases to the extent that no further
performance increase occurs.

2.2.2. Distributed Memory Parallel Architectures
A distributed memory architecture (Figure 21) is a stark contrast to the shared memory
architecture in that the advantages and disadvantages are the exact reverse. Here, each
processor has its own pool of memory with the only means of accessing data from
memory in the other processors is through explicit message passing. This means that
parallelising a program for this type of architecture is more difficult for the following
reasons:

• The data on which the program operates must be distributed in order for each
processor to be able to work simultaneously. The way in which this data is sub­
divided can often be a major research effort in itself.

• A sequential program often has to be parallelised in one go. In fact, the parallel
version of the program is often so different in structure from the sequential version

31

C h a p t e r 2 : T e c h n i c a l B a c k g r o u n d

that two versions are often maintained. This can make incremental testing and
debugging virtually impossible.

• Although, there are compilers and pre-processors available that will attempt to
parallelise a sequential program automatically for a distributed architecture, they are
often limited in their application and / or produce poor scalability and performance
[Berthou97, Sturler97, Mehrotra98].

Memory Memory Memory M emory

Proc 1 Proc 2 Proc 3 Proc 4

Proc 5 Proc 6 Proc 7 Proc 8

Memory Memory Memory M emory

Figure 21 - The Distributed Memory Architecture

However, unlike a shared memory architecture, the scalability of distributed memory
architectures is phenomenal with most vendors being able to scale well above 1000
processors.

2.2.3. Hybrid Distributed-Shared Memory Parallel Architectures
The aim of the distributed, shared memory architecture is to try to lever the advantages of
both the shared and distributed memory architectures and produce an architecture that is
both as easy to program as a shared memory architecture and as scalable as a distributed
memory architecture.

One of the most successful implementations o f this type o f architecture is the Origin
family o f computers from SGI. As Figure 22 shows, these have a shared and distributed
memory architecture but the operating system hides this and presents a single, shared-
memory image to the user.

32

C h a p t e r 2 : T e c h n i c a l B a c k g r o u n d

Memory Memory

Proc 3Proc 1 Proc 2 Proc 4

Proc 5 Proc 6 Proc 7 Proc

MemoryMemory

Figure 22 - The ccNUMA Distributed-Shared Memory Architecture

The architecture of the Origin is called ccNUMA (cache-coherent Non-Unifonn Memory
Architecture). To the user, this means that the memory hierarchy of modem RISC
computers is extended one more level to include memory on remote processors as
illustrated in Figure 23.

P r o c e sso r
R e g is te r s

C a c h e
M em ory

L ocal Main
M em ory</)

Ji
Q)
OO
<o
"O
CD
CD
CL(/)

R e m o te Main
M em ory

P r o c e sso r
R e g is ters

C a c h e
M em ory</)

CO
(Do
O
<
o Main

M em ory■o
CD
CD
Q .

S iz e of M em ory S iz e of M em ory

(a) Memory Hierarchy of RISC processor (b) Memory Hierarchy of ccNUMA architecture

Figure 23 - Memory Hierarchies of RISC and ccNUMA Architectures

This architecture has many of the advantages o f the shared memory architecture but has
been shown to scale beyond 512 processors.

2.2.4. The Message Passing Programming Model
Ironically, regardless o f which parallel architecture is being used, by far the most
common parallel-programming model is message passing. This is probably due to a
number o f key issues:

• The message-passing model can be implemented efficiently on any of the above
architectures.

• There are programming libraries that hide many of the details o f the underlying
communications hardware, and present a standard, hardware-independent interface.

33

C h a p t e r 2 : Te c h n ic a l B a c k g r o u n d

• Due to the fact that the data is sub-divided amongst the processes, cache utilisation is
likely to be better than with a global data structure. This results in a program based on
the message-passing model often outperforming an equivalent program based on a
shared memory model even on a shared memory platform.

2.3. Summary
The previous two sections present a basic introduction to the fields of three-dimensional
graphics and parallel processing. Both of these technologies play an important role in the
design and implementation of the two PSE’s described in this thesis and will be expanded
upon in later chapters.

34

C hapter 3. PROMPT - A n im p le m e n ta t io n
o f a Pr o blem Solving E n v ir o n m en t

The purpose of this chapter is to describe an implementation of a Problem Solving
Environment called PROMPT (PRe-processing Option for Military Power-plant
Technology). This environment was developed for Rolls-Royce pic and DERA (Defense
Evaluation Research Agency) with the aim of enabling the actual design engineers to
make use of the existing numerical analysis software already developed in the two
companies.

The first section of this chapter will provide an overview of the PROMPT environment
by placing it in the context of the two companies. This will then be followed by a
description of the overall architecture of the PROMPT environment along with the global
data structures used throughout the environment. Finally, the operation and
implementation of each of the modules is described.

3.1. Requirements
PROMPT was primarily developed for the Nozzle After-body division of the Military
Power-plant Technology group. The nozzle / after-body is a key element to a successful
engine - airframe integration. There are many factors influencing its design (Figure 24)
but a key factor is its drag since it can make up between 30% and 50% of the total drag of
the aircraft.

• The main design requirements are:
• High internal performance
• Low drag
• Low cooling flow
• Low weight
• Low maintenance
• Maintained engine matching
• Observables management and
• Thrust vectoring (Figure 25).

35

C h a p t e r 3 : PRO M PT- A n im p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Flow incidence (a ,P)

H orizontal/vertical
tail interactions

1R and RCS

Forebody/afterbody
interaction

Thick boundary
layer - strong
viscous influences

N ozzle/afterbody
contouring

Thrust Vectoring

em issions

\
Plum e interaction

Figure 24 - Influences on the Design of Military Nozzle / After-Bodies

Figure 25 - Thrust Vectoring Technologies

3.1.1. Current Status at Rolls-Royce (circa 1995)
Considerable effort has been expended over a number o f years in developing proprietary
computer simulation technology in order to be able to perform many more iterations o f
the design process much more quickly and cheaply than was possible with traditional
experimental processes such as wind tunnels. However, these tools were primarily suited
to the applications of civil aerospace design and turbine blade design where the changes
in shape and topology between different products were minimal. When these tools were
subsequently applied to the wide variety of military nozzle designs, the meshes had to be

36

C h a p t e r 3: PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

created by individually authored Fortran codes involving upwards o f 1000 lines. This
process could take a skilled person at least one month and upwards o f six months in
unskilled hands.

Once the meshes were generated they were visualised using command-line driven
applications, which restricted the view, in many cases, to two dimensions, and the quality
of the mesh was judged by eye. In order to execute the flow solver, the user was required
to edit up to eight command files, each containing obscure file notation only made
intelligible by referencing the solvers user guide (Figure 26). This was highly susceptible
to user error.

‘NEWVAR- 2 0
‘U l ’ 4 1
•U2’ 4 1
‘U3’ 4 3 2
4 2 4
0 0 0 31280 10
0 0 I 5708
0 0 I 0 2.0 3 0

Initialise flowfields
Set U l to 0.0
Set U2 to 0.0
Set U3 on reference grid

•Typical Command
6002 Boundary Condition 2
NYENGY’
LCOORF'

V: NO INDICATORS
7 : NO PARAMETERS

PAFC’.l -
TSFC’

User inputs shown in red

Figure 26 - An Example of the Solver Control Files (c.1995)

The post-processing of the results was then performed using a combination o f four
simple, graphical tools and command-line driven tools in which the user had to recall
features of the mesh in terms of (/, J, K) plane or (x, y, z) notation.

The simulation process as described above was far from ideal. It required a skilled
programmer (for the mesh generation), a very experienced user (to judge the mesh
quality) and a combination of a very experienced user and the design engineer to perform
the simulation, which was highly susceptible to user error through the use o f unintuitive
control files. The combination o f all of these different stages, including the time to bring
the relevant people together, meant that simulations could take of the order of 25-30
weeks which was unacceptable and meant that the take-up o f the software by the design
engineers was slow. The need for a Problem Solving Environment, as defined in Chapter
1, was obvious if these simulations were to be performed:
• In an error-free manner
• In a reasonable time frame
• By the design engineer and
• Without the need for a skilled programmer/user.

37

C h a p te r 3: PROM PT-A n im p le m e n ta tio n o f a P r o b le m S o lv in g E n v ir o n m e n t

3.1.2. Aims of the PROMPT Environment
To address these issues, the PROMPT project was started with the following aims :

• Enable CFD computations for Nozzle / After-body configurations to be prepared,
initiated and examined within an intuitive workstation environment by non­
specialist personnel.

• To allow meshes from a range of sources to be submitted to the Rolls Royce
production solvers thereby avoiding the memory and CPU time overheads
characteristic of commercial codes.

• To enable exploitation of the best of current and future in-house, commercial and
University mesh generation and solver developments.

• To dramatically reduce the time needed to apply CFD to nozzle / after-body
configurations.

• To minimise cost and lost time arising from pre-processing errors.
• To provide portability across SGI and Hewlett Packard workstations3.

3.2. Scope and Context of PROMPT
These aims were subsequently expanded into the processes that needed to be performed
within the PROMPT environment (Figure 27). This defined the PROMPT environment as
“An intuitive user interface and graphics environment encompassing”:

• Mesh and Solution file Input / Output Translators
• Grid Visualisation and Diagnostics
• Grid Refinement
• Boundary Condition and Solver Control Definition
• Multiple, embedded solvers accessed from the same interface and graphics tools
• Convergence Monitoring
• Solution Visualisation
• Data Plotting
• Data Integration
• Output Translators to non-embedded solvers and special-purpose post-processors and
• On-line Help.

The logical processes encapsulated in the PROMPT environment are shown in Figure 27.

2 Extracted from the brochure titled ‘Applied Research Package 07b Milestone M83501 Review’
3 The range of Sun workstations was later added to this list.

38

C h a p t e r 3: P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Load M esh from
Task D atabase

Import M esh
from External Source

A nalyse M esh
Quality

Define Boundary
Conditions

Define Solver Controls

Export Data S ets
to External Solver

Execute Solver

P ost-P rocess
Solution

Export Solution to
External P ost-P rocessor

R efine M esh

Figure 27 - Logical Processes performed within the PROMPT Environment

Figure 28 shows the number of other systems both proprietary to Rolls Royce, and
commercial, that PROMPT needed to interact with.

Commercial Post-processors

Commercial Solvers

R A M P A N T

GAMBLE
T E T R A /H E X A

GEOM ESH

Genera to pIndustry Nles

S W IP E

S A U N A

PROM PT

V ISU A L ISIN G
PRE-PR O C ESSO R

A
/Tm.

> a o K . j

E N SIG I IT

WNI

C I N D Y /H Y D R A

S A U N A

D E L T A
Stress/thermal analysis
SC03

Solution Visualisation
VISUAL 3

Figure 28 - The Options contained within PROMPT

39

C h a p te r 3: PROMPT - A n im p le m e n ta tio n o f a P r o b le m S o lv in g E n v ir o n m e n t

3.3. The Architecture of PROMPT
Once the aims of PROMPT were defined, the next decision to make was how to perform
the implementation in order to meet the objectives and provide for future expandability
and ease of maintenance in an industrial environment.

3.3.1. The Structure of PROMPT
The first decision to be made was whether the environment was to be implemented as a
single module or whether it should be a number of closely coupled modules. Although a
single module would be conceptually simpler to implement, splitting it up into a number
of modules was seen to have a number of benefits:

• Each module would be smaller and easier to manage during initial
implementation and future maintenance.

• The overall robustness of the system would be increased. This was based on the
assumption that the central module, which would store the computational data
sets, would be both as simple as possible and would not change much throughout
the life of PROMPT. These two design considerations would combine to
minimise the occurrence of any software errors (bugs). This would mean that
regardless of the robustness of the other, more complex, modules the main data
sets would remain intact.

• It would allow PROMPT to fit into the software structure currently in place in
Rolls Royce. The current system (called SWIPE [Bradley91a, Bradley91b,
Northall02]) employs a configurable Menu Module that allows the user to select
the required task. The module that then performs that task would then be
executed. If PROMPT was a single module then it would only be shown as a
single option in this Menu Module, which would make PROMPT look like a
completely separate environment from the SWIPE system. However, if it was a
number of separate modules, one for each logical process in the CFD analysis,
then this could be represented as a number of options in the Menu Module. This
would make PROMPT look more integrated into the SWIPE system thus allowing
the system to be configured easily for each type of user. This was important
because designers of different parts of the aircraft propulsion system had different
requirements in terms of mesh generators and solvers. In order to accommodate
these different requirements, PROMPT either had to present each user with all of
the possible options (which could cause confusion) or be tuneable to each users
needs.

• In order to ensure portability across the different UNIX platforms mentioned
previously, all source code will be in ANSI C, the graphical user interface would
be written using OSF / Motif [Nye88, Nye90, Nye93, OSF93, OSF95] and all
three-dimensional graphics will be rendered using OpenGL.

The resulting architecture is illustrated in Figure 29 and is composed of nine main
modules:

• Main Menu Module
• Data Storage Module
• The Visualisation Module

40

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

• The Task Database
• The Mesh Quality Analysis Module
• The Boundary Condition Definition Module
• The Solver Controls and Solver Execution Module
• The Solution Post-Processing Module and
• The Mesh Refinement Module.

P ro cess Initiation
M esh Quality

Analysis
V isualisation

Interaction

Solution
P o st-P ro cesso r

Main
M enu

M odule

T ask D atab ase

Boundary
Conditions

Solver Execution

~| M esh R efinem ent'

t____

* * Data Storage Module !»-*-*

Figure 29 - The Architecture of PROMPT

Here, the two key modules are the Rolls Royce Main Menu Module, which initiates each
of the modules, and the Data Storage Module, which is responsible for storing all o f the
mesh and solution data sets. The user then initiates the other modules in order to perform
one of the logical processes in the simulation.

3.3.2. The Communication Mechanism used within PROMPT
The second decision was how the various modules within the PROMPT environment
would co-operate. A number of alternative solutions were investigated:
• MPI (Message Passing Interface) [Dongarra95, Gropp99a, Gropp99b],
• PVM (Parallel Virtual Machine) developed at Oak Ridge National Laboratory and

University o f Tennessee [Sunderam90, Beguelin94],
• Native Shared Memory [Stevens90] and
• Native UNIX Sockets [Stevens90].

During the execution o f PROMPT, modules will be initiated and then terminated. Upon
initialisation, they will need to connect to each other in order to co-operate. This dynamic
nature meant that MPI was not suitable since it imposed a static set o f processes
throughout the execution of the environment.

41

C h a p t e r 3: P R O M P T - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

PVM does allow dynamic process configurations but imposes the restriction that a
process can only be added to the group of communicating processes by one already in
that group. As mentioned previously, the Main Menu Module, which is not in a PVM
group, will initiate the PROMPT modules and then connect them to the Data Storage
Module, which would be in a PVM group. This means that PVM is also not suitable.

The third alternative was to use the native shared memory mechanism provided by the
Operating System. This would allow both the dynamic connection and disconnection o f
processes without imposing the restrictions of PVM. However, the shared memory
implementation on most platforms does have its own drawbacks:
• At the time, there was no standardised interface to the shared memory mechanism

thus using shared memory in a manner that was portable to a number o f different
platforms would be difficult.

• The same was true of the locking mechanisms supplied by the various Operating
Systems in order to ensure that only one process could access the shared regions at
any one time.

• The number o f individual shared memory segments that could be allocated per
process was limited (sometimes as little as 4-5). This meant that a naturally
hierarchical set o f data structures would have to be flattened in order to be stored in a
small set o f contiguous memory regions. The flattening of a typical tree-like data
structure is illustrated in Figure 30. The flattening of the data structures would have a
major impact on the dynamic nature of the data structures. For example, increasing
the size of one mesh block would mean shifting all of the data stored in that shared
memory segment in order to make room. Adding any extra data to a shared memory
segment, requires allocating an entirely new segment with space for the extra data,
the existing data must be copied into the new segment and then the old segment
released back to the system. This has significant memory and speed penalties.

• If the environment does fail for any reason then it is very difficult to ensure that any
shared memory segments are freed cleanly since they are not freed automatically by
the OS upon the program exiting. These can then build up over time until codes that
use shared memory will no longer run. This can only be cured by either using special
commands to force memory segments to be freed (assuming it is known which ones
are not currently in use by another program) or rebooting the workstation.

Data 2 J

= £ 1 =
:a 4 1 . | Data

PataT̂

Data 3 1

Flattening
Data 1 | Data 2 | Data 4] Data 5 | Data 3

| Data 4 ^ j Data 5 ^

□
Indexes into a global array

(Static data structure)

Pointers to memory addresses
■ (Completely dynamic data structure)

Figure 30 - Flattening of a typical hierarchical data structure

42

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

The fourth alternative was to use the native socket communication system supplied by the
OS. This method has the advantages of having a standard interface throughout all UNIX
workstations, imposing none of the restrictions mentioned above, and the OS performing
all necessary cleanup operations if a program exits prematurely. The only requirement is
that each program can gain access to a string and a number that uniquely identifies the
communication port of the Data Storage Module. This requirement is easily met by
storing this data in a file in a known location with a known name. An example could be
" / tm p /p ro m p tc o m m . < u id > " where < u id > is the user’s unique identifier.

3.3.3. Module Initiation and Termination
The method chosen for implementation within the PROMPT environment was the UNIX
socket method. This means that when a module is initiated through the Main menu
Module, it must establish a communication path to the Data Storage Module in order to
receive any necessary data. This is achieved by reading a small text file in the “/ tm p ”
directory initially written out by the Data Storage Module. This text file contains two
items, the IP address of the computer on which the Data Storage Module is running and a
port number. The new module uses this data to request a connection. On receiving this
request, the Data Storage Module accepts the connection and a new communications path
is formed.

The new module then informs the Data Storage Module of its interests. These interests
include data sets, such as meshes, boundary conditions and solutions, and events, such as
the user selecting a mesh plane via the Visualisation Module. Expressing a modules’
interests in this way has two advantages:
• The Data Storage Module knows which data sets the module needs and, thus, does

not need to communicate all of the data sets. This improves efficiency.
• The Data Storage Module doesn’t need to know in advance the interests o f every

module that will be connected to it. This enables the Data Storage Module to adapt to
future developments in each of the modules in PROMPT without having to be
changed. This improves the robustness o f the Data Storage Module, and hence, the
robustness of the entire environment.

An example o f this process is shown in Figure 31. Here the module that is responsible for
allowing the user to define boundary conditions is initiated. This module needs the mesh
and current boundary condition data sets, and needs to be told when the user, in the
Visualisation Module, has selected a mesh plane.

B o u n d a ry C o n d i t ion M odule

Boundary Condition Module is initiated

Data S to ra g e Module

Plane S elections j | Boundary C onditionT

| Mesh j | Solution j | Solver Controls j

(a)

43

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Data S to ra g e Module B o u n d a ry Condi t ion Module

| Plane S elec tions J (Boundary Conditions j
| M esh j | Solution j | Solver Controls j f My interests a re 1

(b) Boundary Condition Module sends its interests to the Data Storage Module

Data S to ra g e Module B o u n d a ry Condi t ion Module
Boundary Conditions j [M esh j | Plane Selection| Plane S elec tions j (Boundary Conditions j | Plane S elec tions j j Boundary Conditions j

(M esh j [Solution j | Solver Controls j (M esh j

(c) Data Storage Module sends the requested data sets to the Boundary Condition Module

Data S to ra g e Module B o u n d a ry Condi t ion Module

| Plane S elec tion s] | Boundary Conditions j | P lane S elec tion s j | Boundary Conditions J
| M esh j [Solution j | Solver Controls j | Thank you :-) J f M esh J

(d) The Boundary Condition Module sends an acknowledgement of receipt

Figure 31 - Module Initiation within PROMPT

At any time during a module’s execution, it may:
• Change its interests by sending a new list to the Data Storage Module. This may

cause the Data Storage Module to send new data sets, if necessary.
• Update the Data Storage Module with new data. This would cause any other

connected modules that are interested in that data set to be updated.

When a module exits cleanly, through the user pressing the ‘Close’ button on the panel, it
informs the Data Storage Module of its intentions, closes its end of the communication
path and then exits. The Data Storage Module receives the modules exit signal and closes
its end of the communication path.

If a module exits prematurely for any reason, it will not have the opportunity to inform
the Data Storage Module. The OS will automatically close the module’s end o f the
communication path during its automatic cleanup operations. However, the Data Storage
Module will not have been informed. To overcome this scenario, the Data Storage
Module has two defences:
• It periodically pings each of its communication paths to test whether the module at

the other end responds. If no response is received within a given time period
(approximately 5 seconds), it closes the connection to that module.

• If data is inadvertently sent along a path to a module that has exited, then the OS
automatically sends a signal to the sending process. If this is not caught and handled
correctly, it results in an automatic termination of that process. The Data Storage
Module registers a handler for this signal upon start-up and, thus, recovers from these
communication errors by assuming the module at the other end has exited and closing
the communication path.

44

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

3.4. G lobal Data Structures used within PRO M PT
In order to ensure PROMPT continues to be in full use for as long as possible there was a
need to implement data structures that could represent the majority of meshing topologies
and solver requirements in use today. This list includes:
• Structured Curvilinear Grids (Single-Block),
• Structured Curvilinear Grids (Multi-Block),
• Structured Curvilinear Locally Refined Grids and
• Unstructured Grids with mixed cell types.

To allow the storing of these in a consistent manner throughout the execution of
PROMPT, the top-level of the data structure is shown in Figure 32. This allowed both
structured and unstructured meshes to be referred to as a mesh. The structures
S t r u c t u r e d M e s h and U n s t r u c tu r e d M e s h are in a u n io n , which means that they
use the same segment of memory. The actual type of mesh that is stored is decided by the
variable, m e s h _ ty p e . The lower-level data structures that describe the specifics o f each
type of mesh are described in the following sections.

M esh

int m esh_typ e

union m esh

StructuredM esh s_ m esh

UnstructuredM esh u m esh

Figure 32 - The Top-Level Mesh Data Structure

3.4.1. Structured Curvilinear Grids (Single Block)
Although the single-block, structured grid imposes strict limitations on the complexity of
the geometry that can be represented, its simplicity means it is still frequently used where
possible. The data structure used to store the mesh is also very simple as shown in Figure
33. It is essentially a mapping between Cartesian space and parametric space.

real z

real x

real y

Vertex

Vertex points[m ax_i][m axJ][m ax_k]

int m a x j

int m ax k

int max i

Structured Sinqle-Block M esh

Figure 33 - Data Structure for a Single-Block Structured Mesh

For all but the simplest geometries, the use of a single block mesh is too restrictive.
However, instead of choosing the much more complex multi-block strategy it is common

45

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

to generalise the single block approach by allowing nodes of the mesh to be placed inside
the solid regions of the geometry. These are then flagged to the solver as dead nodes and
can then be subsequently ignored for the computation. A simple 2D example o f this is
shown in Figure 34. The accompanying data structure, which is a simple extension of the
previous data structure, is shown in Figure 35.

Figure 34 - An example of a Single-Block Structured Mesh with Dead Nodes

real z

real x

real y

Vertex

Vertex points[m ax_i][m axJ][m ax_k]

int m ax k

boolean d ea d [m axj][m axj][m ax_k]

int max i

int m a x j

Structured Sinqle-Block M esh

Figure 35 - Data Structure for a Single-Block Structured Mesh with Dead Nodes

3.4.2. Structured Curvilinear Grids (Multi-Block)
Structured multi-block grids allow the application of structured mesh generation and
solver technology to much more complex configurations. A multi-block grid is composed
of many single-block grids adjacent to each other, each with their own local parametric
co-ordinate systems. These are stored along with information detailing how these blocks
interface with each other. Figure 36 shows a simple multi-block mesh that imposes the
limitation that any face on any block must be adjacent to at most one other block. This
restriction is often relaxed so that any block face can be adjacent to any number of other
blocks as shown in Figure 37. As can be seen, by relaxing this restriction the number of
blocks required to represent the geometry is halved. Since a complex geometry may
require many hundreds of blocks, these savings can be very significant, albeit with an
increase in the complexity of the algorithms and data structures used within the actual
solver.

46

C h a p t e r 3 : PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Figure 36 - An example of a Multi-Block Figure 37 - An example of a Multi-Block
Mesh with Single Face Matching Mesh with Multiple Face Matching

The data structures implemented within PROMPT allows any o f the above multi-block
configurations to be utilised. The data structure for a single or multi-block mesh is shown
in Figure 38.

Vertex
Structured Multi-Block M esh

real x
int num blocks Block

real y
Block blocks[num _blocks] int m ax i real z

int m a x j

int m ax kConnection
Vertex points[m axJ][m ax_j][m ax_k]int adjacent_block
boolean d ea d [m a x j][m a x j][m a x _ k]int adjacent_face
F ace faces[6]int adjacent_connection

int adjacent_orientation

int min u F ace

int max u int num connection s

int min v C onnection connections[num _connections]

int m ax v

Figure 38 - Data Structure for a Multi-Block Mesh with Dead Nodes

The upper two data structures allow the mesh to comprise any number of blocks. The
b l o c k structure also contains a set of six f a c e structures, one for each face of the
block. Each f a c e structure then contains a set o f n c o n n e c t i o n structures, one for
each adjacent block face. The c o n n e c t i o n structure defines how the grid lines
propagate through adjoining blocks. The first field, n u m _ c o n n e c t io n s , specifies the
number o f adjacent block faces. The other fields are then dimensioned appropriately and
contain all of the necessary details of the connection of each adjacent block. The fields
are:
• a d j a c e n t _ b l o c k - The number o f the adjoining block.

47

C h a p t e r 3 : PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

• a d j a c e n t _ f a c e - The face number o f the block specified in a d j a c e n t _ b l o c k .
Figure 39 shows the conventions used within PROMPT for the numbering of the
faces o f a block.

• a d j a c e n t _ c o n n e c t i o n - The connection number of the face specified in
a d j a c e n t _ f a c e .

• a d j a c e n t _ o r i e n t a t i o n - Each face of a block is given a unique local (u, v)
coordinate system as shown in Figure 39. The a d j a c e n t _ o r i e n t a t i o n field
contains a code that uniquely identifies the mapping between the two interfacing
blocks. Figure 40 shows the eight possibilities.

• m in _ u , m ax_u, m in _ v , m ax_v - These fields define the region o f nodes that are
coincident with the adjacent block.

Figure 39 - Block and Face Coordinate Axes

48

C h a p t e r 3: P R O M P T - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Figure 40 - Numbering Convention for Block-Block Interfaces

3.4.3. Structured Curvilinear Grids with Local Refinement
One of the problems with structured grids is that of mesh refinement. As mentioned
previously, a common path through the latter stages o f the simulation process is to cycle
between the steps of:
1. Calculate the solution using the current grid
2. Interrogate the solution to find regions o f the grid that need more resolution
3. Increase the density of the nodes in the regions indicated
4. Interpolate the solution from the old grid to the new grid and then
5. Obtain another solution on the new mesh using the interpolated solution as the

starting point.

This cycle is repeated until the solution is of an acceptable accuracy. When using a
structured mesh, if any cells are sub-divided then the i ,j ,k planes which are created by the
new node must be propagated throughout the entire mesh in order to maintain
conformance. This invariably causes regions, in which there was little solution change, to
be refined unnecessarily thus placing an extra burden on the solver.

To overcome this deficiency, a technique known as local refinement is often used. This
enables any new nodes to be added to the mesh with the new mesh planes only being

49

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

propagated as far as required. This approach introduces into the mesh a set of hanging
nodes as shown in Figure 41.

(
\ ()

. . "A _
/ V.

c

)

■

_ +

T

Figure 41 - A Structured Mesh with Hanging Nodes (and Dead Nodes)

In order to maintain the structured nature o f the grid, and enable rapid traversal of the
nodes, the data structure in Figure 42 was implemented.

Structured Multi-Block M esh

int num _blocks

EBIock blocks[num _blocks]

Connection

int adjacent_block

int adjacent_face

int adjacent_connection

int adjacent_orientation

int min_u

int m ax_u

int min_v

int m ax v

Figure 42 - Data Structure for a Multi-Block Mesh with Hanging and Dead Nodes

This contains an index array, nodeNum, which maintains the (i j ,k) structure of the grid
as if the new planes were propagated. The coordinates of the real nodes are then stored in
a linear array, p o i n t s , which is indexed by the array nodeNum. Any entry in the
nodeNum array that does not represent a real node contains -1 . In order to resolve any
ambiguities, an additional array, no d e Conn, was introduced. This array is structured in
the same way as the nodeNum array and either, contained a 0 if no hanging node is
present, or an encoding of the mesh planes that meet at the hanging node. This encoding
is defined as:

nodeConn = connection(T) + 4 * connection(J) + 1 6 * connection(K)
Where

connection(A) = 0

Vertex

real xEBIock
real yint m ax i
real zint m a x j

int max k

int num _points

Vertex points[num _points]

boolean dead[num _points]

int node_num [m ax_l][m axJ][m ax_k]

F ace faces[6]

F ace

int num connection s

C onnection connections[num _connections]

50

C h a p t e r 3 : P R O M P T -A n i m p l e m e n t a t / o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

If node is connected in +ve A direction then connection(A) = connection(A) + 1
If node is connected in -ve A direction then connection(A) = connection(A) + 2

Figure 43 and Figure 44 show an example of a simple grid. The grid on the left shows the
structure of the grid with any added planes being propagated throughout the mesh.

The grid on the right is the same but with examples of the values stored in the
n o d e C onn array at the hanging nodes.

Figure 43 - The (i,j,k) structure of a
mesh with hanging nodes

A

Figure 44 - The contents of the
nodeConn array for the hanging nodes

3.4.4. Unstructured Hybrid Grids
Unlike their counterparts, unstructured grids have no mapping between parametric space
and Cartesian space. Instead, an unstructured grid comprises a set of nodes irregularly
placed within the domain. A connectivity table is then used to define the joining of these
points in order to form surface and volume elements. A hybrid mesh usually contains a
combination o f element types chosen from the set o f volume elements (tetrahedra,
pyramid, prism and hexahedra) and a set o f surface elements (triangles and
quadrilaterals).

In order to accommodate the use of hybrid meshes within PROMPT, the data structure
shown in Figure 45 was implemented. The conventions used within PROMPT for the
node numbering of each element type is shown in Figure 46.

51

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Unstructured Hybrid M esh

int num _points

int num _triangles

int num tetrahedra

int num _pyram ids

int num _prism s

int num hexahedra

Vertex points[num _points]

Triangle triangles[num _triangles]

Quad quads[num _quads]

Tetrahedron tetrahedra[num _tetrahedra]

Pyramid pyramid[num_pyramids]

Prism prism[num_prisms]

H exahedron hexahedra[num _hexahedra]

int nodes[4]

int nodes[6]

int nodes[8]

int nodes[3]

int nodes[4]

int nodes[5]

real x

real y

real z

Prism

Hexahedron

Tetrahedron

Pyramid

Quad

Triangle Vertex

Figure 45 - Data Structure for an Unstructured Hybrid Mesh

(b) Quadrilateral
1

(c) Tetrahedron

1

(f) Hexahedron(e) Prism(d) Pyramid

Figure 46 - Node Numbering Conventions used for the Unstructured Element Types

1
(a) Triangle

52

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

3.5. The V isualisation and Control M odule
The most important module in PROMPT is the Visualisation and Control (V&C)
Module. It provides the main front-end for all o f the other modules; it displays and allows
the user to interact with the 2D and 3D data sets; it contains all of the data sets within
PROMPT and it co-ordinates the communication between all of the other modules within
PROMPT. Throughout the development o f the V&C Module a large emphasis has been
placed on speed; not only in the manipulation of data on the screen, but also in the
selection o f features of that data. At each stage of the development, the design of the data
structures and algorithms have been oriented towards providing an increase in speed for
operations that are performed frequently, even if it is at the possible expense o f some
operations that are performed infrequently. An example of this is the increase in
computation necessary to construct the data structures for a mesh when loaded from disk
in order to increase the performance o f any screen updates or feature selections.

3.5.1. The Visualisation Window
A typical example of the Visualisation Window is shown in Figure 47. As can be seen,
the Visualisation Window covers the full display of the workstation. This allows the user
to examine and manipulate the 3D data sets in more detail.

[c=» PROMPT (PRe-processing Option for Military Powerptant Technofogy) (Version 1.6)

Process User Mode Information Gizmos Hefp

■ h P) K

HBfiMIBBMS

Figure 47 - A typical example of the Visualisation Window

53

C h a p t e r 3: PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

3.5.2. Region and View Configurations
During the early development o f PROMPT, the need to have different ways to view the
object became apparent. For example, when the operations consist entirely of looking at
or selecting features in a mesh then a single, full-screen view of the mesh is desirable
since this allows small features to be distinguished easily. Whereas when a position in
space is being identified then the only way of specifying the x, y and z coordinates is to
have three views of the mesh, the convention being front, top and left views.

In PROMPT, this flexibility is taken two stages further. Firstly, the user can configure the
display to show any number of regions between 1 and 4; and second, the user can
configure any o f the visible regions to show any view o f the object. The possible
combinations o f regions available in PROMPT are shown in Figure 48. Within each of
these regions the user can choose between one of the six orthographic projections (front,
rear, left, right, top and bottom) and a fully rotateable view.

1 2

3 4

1

3 4

3 4
2

1 2

CO

1 2

4
Stretch Stretch Stretch

Vertically Horizontally Both Ways

Figure 48 - Possible Region Configurations

3.5.3. On-Screen Manipulation of Data
Objects on the screen in the Visualisation Window may be translated, enlarged or rotated.
All of these operations are performed using the movement of the mouse with the middle
mouse button pressed and a combination of the SHIFT , CTRL and TIT” keys. All three of
these manipulations are performed in a manner that is deemed most intuitive to the user.

Scaling
The scaling of the model is the simplest manipulation to perform. The current
scaling factor is determined in an incremental fashion using the formula,
S = MAX{0.000\ ,S +D /100), where S is the current scaling factor and D is the

54

C h a p te r 3: PROMPT - A n im p l e m e n t a t io n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

distance the mouse has travelled since the last time its position was recorded. This
formula achieves two intuitive features:
• As the scaling factor increases so does the amount it increases for a given

mouse movement. This allows the user to zoom into an area of the model
without needing to use an excessive amount of mouse movement.

• Performing a mouse movement and then returning the mouse to the original
position returns the model to the original scale.

• The 'MAX' part of the expression ensures that the scale never reaches zero,
thus causing the model to disappear, and it never becomes negative, causing
the model to invert.

During the rendering process, the scaling operation is always the first to be
applied. This means that the user always zooms into the centre of the display. This
was felt to be more intuitive than applying the operation last which would cause
the user to zoom into the centre of the model regardless of where it was
positioned on the display.

Translation
The most intuitive form of translation of the model is for it to behave as it was
attached to the mouse pointer, i.e. if the user clicks on a feature of the model and
then moves the mouse, that feature will stay positioned under the mouse pointer.
This is achieved by simply maintaining a translation vector that has its x and y
components incremented by the distance the mouse pointer moves in each
direction. Maintaining the model under the mouse pointer regardless of the size of
the display or the model is achieved by a simple scaling of the mouse movements
taking into account the difference between the co-ordinate system in which the
model is stored and the pixel co-ordinate system of the display.

In order for the model to travel in the direction of the mouse pointer regardless of
its current rotation, the translation is always performed second. Performing it
before the scaling would cause the translation to be multiplied by the current scale
factor and, thus, would result in uncontrollable behaviour at high scale factors.
Performing it after the rotation would cause the model to be translated along its
own local axes rather than the global axes of the display.

Rotation
The rotation of the model is the most complex operation to make intuitive. The
aim is to rotate the model around the global vertical axis when the mouse is
moved from left to right and around the global horizontal axis when the mouse is
moved up and down. This is achieved by maintaining a current rotation matrix
and continuously pre-multiplying it by the rotation matrix constructed by the
current mouse movements as shown in the following equation:

55

C h a p t e r 3: PROMPT- A n im p le m e n ta t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

cos dy 12 0 sin dy 12 O' "l 0 0 0"
0 1 0 0 0 cos 8x12 -s m S x l2 0

- sin dy / 2 0 co sd y ll 0 0 sm & cll cos 8x12 0
0 0 0 1_ _0 0 0 1_

Here the first matrix performs the rotation around the y-axis, the second performs
the rotation around the x-axis and R is the current rotation matrix. The variables

and by are the current movement of the mouse pointer in their respective
directions.

Global Transformation
Combining each of these transformations the matrix pipe-line is:

"1 0 0 “1 0 0 s 0 0 0"
0 1 0 - y c R

0 1 0 y t 0 s 0 0 y m
0 0 1 ~ Z c 0 0 1 z t 0 0 s 0 Z m

0 0 0 1 0 0 0 i _0 0 0 1 1

Where

[xc y c zc] is the centre of the model,
[x, y t z t] is the current translation vector,
R is the current rotation matrix,
s is the current scaling factor and
[r v z m 1 is each coordinate of the model.L m s m m J

3.5.4. Feature Selection
Another operation performed in the Visualisation Window is the selection (or picking) of
features in the mesh. At first, this operation may seem to be trivial; the user places the
mouse pointer over the required feature and then clicks the left mouse button. However,
that action can be inherently ambiguous. For example, when a user clicks on a section of
a multi-block, structured mesh the software has to decide whether the user wishes to
select a face of a cell, a cell, a plane of a mesh block, an outer surface of a mesh block or
the entire mesh block. In PROMPT, the user decides this by selecting the feature of
interest in the Selection Gizmo. As can be seen in Figure 49, the Selection Gizmo
consists of a number of buttons each representing a feature of the mesh that the user
might need to select for a given operation. The interests o f the module currently
connected to the V&C Module decide the options available to the user; the remaining
being ghosted.

56

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

= i Selection Gizmo
■=> Selection Gizmo Geometry

Geometry Guves

CUi'-OS Loops

Loops Suifaces

Surfaces Topology

Topology Mesh

Mesh Mesh Block

Mesh Partition 1-Planes J-P lanes | K-Planes

Mesh Surface Mesh Ceils

Mesh Cells Mesh 'Cell Faces

Mesh Ceil Faces Mesh LT Value

Ignore Sparse Ignore Sparse

Selection Informationmmm
Selection Information

Block Num: 1

1-Plane Num: 3■
Perform Selection Perform Selection

Figure 49 - The Selection Gizmo

3.5.5. Feature Selection Algorithm
The algorithm used to decide which item is being selected by the mouse pointer depends
on whether the item consists of points / lines or faces. Regardless of the algorithm, each
of the primitives to be tested is projected from the three-dimensional space of the model
to the two-dimensional space o f the display using the matrices described above. If the
items to be selected are points or lines, then the algorithm simply selects the item with the
smallest perpendicular distance to the cursor.

If solid faces are to be selected then the Crossings Test [Shimrat62] is used on the two-
dimensional projected polygons. This algorithm simply projects an infinitely long line
from the cursor along the Jt-axis. The number of times this line intersects with a polygon
then determines whether the cursor is inside or outside o f the polygon. If the line crosses
the polygon an even number of times then it is outside, otherwise it is inside. Both cases
are illustrated in Figure 50 and Figure 51.

57

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t io n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Figure 50 - Point outside the polygon Figure 51 - Point inside the polygon

If a cursor is deemed to be inside the polygon then the projected z-coordinate of the
intersection of the cursor and the polygon determines the front-most polygon.

This algorithm is very simple to implement; however, it does have an ambiguity if the
infinite line crosses a polygon exactly on a node. If this occurs then there are two
possibilities. If the nodes adjoining this node are on opposite sides of the infinite line then
the node is counted as one (Figure 52), otherwise it is counted as either zero or two, since
both produce the same result (Figure 53).

Figure 52 - Node counted as one Figure 53 - Node counted as zero or two
intersection intersections

Although this algorithm is simple and very efficient, the need to traverse every polygon
within the mesh in order to determine which has been selected can still lead to
performance degradation. In order to overcome this, the polygons are grouped by their
block number, plane direction and plane number for structured meshes; and by surface
number for unstructured meshes. The selection algorithm is then modified to test the
cursor against the projected bounding box of each of these groups with the individual

58

C h a p te r 3: PROMPT - A n im p l e m e n t a t io n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

polygons being tested only if the cursor falls within its bounding box. This grouping
enables a large number of polygons to be disregarded without the need to test each one
individually.

A number of other algorithms were considered for feature selection.

Angle Summation Test
This algorithm forms the sum of the signed angles formed at the test point with
the endpoints of each edge. If the sum is near zero then the point is outside
otherwise it is inside. Although this algorithm is simple it is computationally
expensive since for each edge, a square root, arc cosine, division, dot and cross
product must be computed.

Open-GL Selection Mechanism
The Open-GL system has a facility to perform image-based selection [Neider93,
OGL-ARB92]. When in this mode the image on the display is untouched. Instead
when the drawing commands are issued, each primitive can be assigned a unique
index and the system logs the list of primitives that intersect with the viewing
volume. Using the projection matrix, the viewing volume can be shrunk to form a
small square around the cursor. Any primitive that intersects with this volume
could be considered a candidate for selection. The speed of this method depends
on the speed of the graphics hardware that, with modem workstations, is
sufficient even for large models. However, if more than one primitive intersects
with the viewing volume then there is no easy way of determining which
primitive was in front (for solid faces) or the closest to the cursor (for points and
lines).

Framebuffer Selection Technique
If the image is drawn into an off-screen buffer using a colour-index4 mode rather
than an RGB5 mode, then each polygon could be drawn with a unique index.
Picking a polygon is then just a simple case of reading the colour index from the
frame buffer at the required position [Hanrahan90].

This technique is very simple to implement and with accelerated graphics
hardware one polygon can be picked in a fraction of a second even when millions
of polygons exist. However, it does have two major drawbacks:
On workstations with low to medium range graphics capabilities, the range of
indices can be limited, sometimes as low as 256 (for 8-bit displays, or 65536 for
16-bit displays). This means that polygons must be grouped with each group
being drawn with the same colour index. This limits the ability of the user to be
able to pick single polygons.

4 Colour Index mode allows the user to specify colours as an integer index that is then used in a lookup
table to form the actual colour.
5 RGB mode allows the user to specify colours as triples of red, green and blue. This value is then either
stored in the frame buffer or is approximated by stippling if the frame buffer cannot represent the colour
precisely.

59

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

This method does not work for selecting points or lines because if the user clicks
on an area close to a point or line then the colour index read from the frame buffer
will be that of the background and no point or line will be selected.

3.5.6. The Pull-down and Pop-up Menus
In PROMPT, there are two types of menu used; the pull-down menu and the pop-up
menu. The pull-down menus are used for global operations such as initiating the other
PROMPT modules, retrieving size statistics about the data sets and initiating the various
Gizmo panels (these will be described later). The pop-up menus are used to control
operations pertaining to the region in the display area that currently contains the mouse
pointer.

The hierarchy o f the pull-down menus is shown in Figure 54. The first menu provides the
list o f modules in PROMPT that may be initiated. These modules will be described in
detail in later sections.

Process User Mode Information Gizmos Heip

Task Database FI
Mesh Analysis / Editing FA
Boundary Condition Definition F5
Solver Controls / Execute Solver F5
Solution Visualisation F7
Mesh Adaption FB
Quit Alt Q

Boundary Conditions

Selection Gizmo A ltS
Clipping Gizmo Shift* Aft C
Colour Editor Gizmo Alt C
Lighting / Material Gizmo Shift* Alt L
Projection Gizmo Shift * Aft P
Appearance Gizmo Shift*Aft A
Print Gizmo Alt P

Selection Gizmo Alt S
Clipping Gizmo Shift*Alt C
Colour Editor Gizmo Alt C
Lighting / Material Gizmo Shift*A/tL
Projection Gizmo Shift*Alt P
Appearance Gizmo Sh i ft*Alt A
Print Gizmo AU P

Figure 54 - The Pull-down menu hierarchy

The second menu allows the user to retrieve various size statistics about the mesh,
boundary conditions, solution, etc. The panels for these are shown in Figure 55.

« Entity Information Pane1__

Entity Type: Mesh

Global Data: File Name: j

Blocks

Selected Blocks Block Data
Num Nodes: | I: [J : | K: |

Nuin Cells:

X Coords:

Y Coords:

2 Coords: | - |~""

Num Dead Cells:

Nuin Exterior Faces: |

-4____ U

] <=> Entity Information Panef

Entity Type: Boundary Conditions

Selected Boundaries Boundary Data

! [— p

Help

Figure 55 - The Information Panels

60

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

The third menu allows the user to open the various Gizmo panels available within the
V&C Module. The Gizmo panels are used to split the functionality of the V&C Module
into logical groups. Each of these Gizmo panels will be described later. The last menu
pane provides the user with context sensitive on-line help for the various operations
available within PROMPT. A Help button is also available at the bottom of every panel.
This takes you directly to the help associated with that panel.

The Pop-up menu contains options pertaining to the region that the mouse pointer
currently occupies. The hierarchy of options is shown in Figure 56.

Views
This allows the user to choose the view that will be displayed within the current
region.

Regions
This allows the user to choose the size for the current region. This is performed by
doubling the region in the horizontal and / or vertical directions or leaving it as a
single area. The other regions shrink or expand as necessary in order to fill any
gaps. Figure 57 shows the result of the user performing these operations on the
top-left region.

Local O ptions

Views *
R egions '

Global O ptions

Labels
S e t C en tre P osition
R e s e t -
Load Settin gs...
S a ve Settin gs...

■ Draw G lobal Axes

Draw Local Axes
M ovem ent
Appearance... A lt A
Color Editor... A lt C
L o c k 3 D

Bottom

Left

R igh t

Front

v Back

♦ 3 -D

Single

H D ouble

V D ouble

♦ D ouble

M esh
E ntities C en tre
Find E ntities C en tre
S e l e c t C e n t r e P o i n t

AH 3
P osition
Rotation

♦ With inertia

W ithout inertia

Figure 56 - The Pop-up menu hierarchy

61

C h a p t e r 3: P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Process IJigrUaeJn tntormthan Gtnmas Http

Horizontal

Doubling

k
Doubling

Vertical
Doubling

HHp

Figure 57 - An example of resizing regions

Set Position
This menu allows the user to set the centre of gravity of the objects currently
being displayed. This is then used as the centre of any subsequent rotations. The
first item, ‘Find Entities Centre’, recalculates the centre of gravity based on the
portions of the objects currently visible. This is most often used when a clipping
plane has been used to cut away a section of the mesh. By default, the centre of
gravity is not changed and the object will continue to centre on the same point as
before. Selecting this object re-centres the rotation. The second item, ‘Centre on
Selection’ causes the centre of gravity to be placed at the centre of the feature that
is currently selected (for example, a mesh plane or a mesh block). This allows the
user to examine a portion of the mesh more closely without it disappearing from
view when performing a rotation.

Reset
This menu allows the user to reset the position, size or the rotation o f the objects
on the screen back to their default positions. It should be noted that this does not
reset the centre o f gravity defined by the previous menu item. It merely sets
[xt y t z t] to 0, S' to 1 and R to the identity matrix.

Draw Global Axes
This toggles whether a set o f axes showing the current x, y and z directions is
displayed.

62

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Draw Local Axes
This toggles whether a set of axes will be overlaid on top of each structured mesh
block showing the current i, j and k directions.

Movement
This allows the user to switch inertia on or off. Inertia causes the object to keep
performing any manipulation that was currently being performed when the middle
mouse button was released. For example, if the user was rotating the object then
the object will keep spinning in the same direction and at the same speed until the
user stops it by briefly clicking the middle mouse button without moving the
mouse. If the mouse was stationary when the middle mouse button was released
then the object remains stationary. Turning this option off causes the object to
become stationary when the user releases the middle mouse button regardless of
the current motion o f the mouse.

3.5.7. The Selection Gizmo Panel
The Selection Gizmo Panel allows the user to select which one of the possible features of
the mesh can be selected by clicking the left mouse button in the visualisation window.
The set of features, from which to choose, is decided by the interests of the module
currently linked to the V&C Module. For example, for a structured mesh the Boundary
Condition Definition (BCD) Module requires an z, j , or k mesh plane to be selected on
which a boundary condition may be applied. Upon start-up, the BCD Module registers
these interests with the V&C Module that causes the Selection Gizmo to disable all but
the mesh plane selection buttons. Figure 58 and Figure 59 show the two typical
appearances o f the Selection Gizmo Panel.

=» Selection Gizmo
= Selection Gizmo Geometry

Geometry Cirves

Cu^es Loops

Leaps Surfaces

Surfaces Topology

Topology Mesh

Mesh Mesh Clock

M esh Partition 1-Planes J-P lan es | K-Planes

Mesh Surface Mesh Cells

Mesh Cells M esh Cell Faces

Mesh Cel! Faces M esh LT Value

P Ignore Sparse Ignore Sparse

Selection Information Selection Information

n Block Num: [T

i 1-Plane Num: ["i
-

i

f—

Perform Selection Perform Selection

Figure 58 - The Selection Gizmo for Figure 59 - The Selection Gizmo for
Unstructured Meshes Structured, Multi-Block Meshes

63

C h a p t e r 3 : PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

The bottom region of the Selection Gizmo Panel provides both a numerical verification
of the feature that has been selected (e.g. mesh plane number), and a numerical means by
which the user may select the chosen feature.

3.5.8. The Colour Editor Gizmo Panel
The Colour Edit Gizmo Panel provides a means by which the user can edit the colour of
any o f the objects displayed in the visualisation window. The panel is divided into five
sections as shown in Figure 60.

Color Gizmo

-J Apply J Close Load Save R eset

Figure 60 - The Colour Editor Gizmo Panel

Entity Type Selection
The first selection to make in this panel is the type of object that is to have its
colour edited. Currently in PROMPT, there are two options; Mesh and Generic.
The Mesh option allows the user to edit the colours of various parts of the mesh.
The Generic option allows the user to edit the colour of the ancillary items such as
any text labels, the background, the axes, etc.

Sub-Entity Type Selection
Under the Mesh option, the user needs to choose whether the colours should be
altered for the edges drawn around each o f the cells in the mesh (Wire) or the
solid faces of the mesh (Solid).

Entity Selection
This list contains all of the items contained within the selected entity type. For a
structured mesh, it is a numbered list of the mesh blocks; for an unstructured
mesh, it is the surfaces contained within the mesh and for the Generic entity, it

Geometry Block Topology
Item Selection _ . _

Green:
Blue:

7 Automatic Colouring Options

64

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

contains the list o f generic features (e.g. background, text colour, etc.). Selecting
one or more of these items causes the Colour Editor section to be enabled.

Colour Editor
The Colour Editor section allows the user to alter the colour of the selected items
using either the HSV (Hue, Saturation and Value) colour model or the RGB (Red,
Green and Blue) colour model. These two colour spaces are illustrated in Figure
61 and Figure 62.

Figure 61 - The RGB Colour Space Figure 62 - The HSV Colour Space

The RGB colour space is the native colour space of any monitor but the HSV
colour model is much more intuitive to the user since it mimics the way different
coloured paints may be mixed to produce new colours.
To convert from the RGB colour space to the HSV colour space, the following
equations are used [Yang92, Foley90]:

H = 60*

(G - B) / a if R = max(R,G,B)

2 + (B - R) / a if = ma x(R,G,B)

4 + (R - G) / a if B = max(i?,G, B)

where

a - max(i?, G, B) - min(/?, G, B)

S = (ma x(R, G, B) - min(i?, G, B))/ ma x(R, G, B)

F = ma x(R,G,B)

To convert back again:

Viewed along
the 90° axis

Viewed along
the 270° axis

65

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

where floor(z) returns the largest integer < i
f is the fractional part o f H

if i =

i = floor(///60)

f = H /i
p = V*(\ - s)
q = V * (l - (S * f))

t = V * (\ - (s * (\ - /)))

0 then (R,G, B) = (v, t ,p)

1 then (R,G,B)= (q,v, p)

2 then (R,G,B)= (p,v,t)
3 then (R,G,B) = (p,q, v)

4 then (R,G, B) ={t ,p, v)
5 then (R,G,B)= (v,p,q)

Automatic Colouring
The last section of the panel provides some quick short-cuts to commonly used
colour schemes such as giving each mesh block / surface a different colour. All of
the options in this menu can be performed using the manual features of the panel
but will just take much longer.

3.5.9. The Appearance Gizmo Panel
The Appearance Gizmo Panel is similar in layout to the Colour Editor Gizmo Panel and
is used to allow the user to edit the non-colour-related attributes of the mesh. As shown in
Figure 63, the panel is also divided into five sections.

= A p p e a ra n c e G izm o

Entity Draw Control:

. Geometry Block Topology Mesh

Mesh Analysis Solution

Geometry Block Topology Mesh Mesh Analysis Solution

Item Selection
A

Block-1

Draw Control:
CXter Inner Quick Volume Vokme

Drawing Mode Motion Still
Sparse r J
Outline j J

Wireframe j r

Solid j j

Lit Solid j j

Apply

Figure 63 - The Appearance Gizmo Panel

Draw Control
If PROMPT currently contains a number of entities, such as mesh, mesh analysis
data, etc., then drawing them all at once would make the display very cluttered.

66

C h a p te r 3: PROMPT - A n im p le m e n ta tio n o f a P r o b le m S o lv in g E n v ir o n m e n t

To overcome this, the Draw Control section at the top of the panel allows the user
to selectively turn on or off these individual entities.

Entity Type Selection
As with the Colour Editor Gizmo Panel, the user must choose the feature whose
appearance is to be altered by selecting one of the tabs. This changes the options
that are available in the next three sections.

Entity Render Mode
Under the ‘Entity Type Selection’ section, the features of the current entity that
are to be drawn are selected. For a structured, multi-block mesh, the options are:
• ‘Surface’ - This only draws the faces of the mesh cells that actually are

identified as being on geometrical surfaces. This data is contained as part of
the mesh.

• ‘Outer’ - This draws the cell faces that appear on the outer faces of the mesh
blocks, i.e. the face of a block with no adjacent block.

• ‘Inner’ - This causes the cell faces that appear on all six faces of each mesh
block to be drawn regardless of whether there is an adjacent block or not.

• ‘Quick Volume’ - This effectively draws only the faces that would be seen if
the every cell in the volume mesh had been drawn using hidden-line removal.
This produces similar results to the previous options until clipping planes are
introduced.

• ‘Volume’ - This actually draws every cell in the volume mesh. This option
isn’t often chosen since it reduces the rendering performance significantly and
can cause a cluttered display for fine meshes.

Item Selection
This list has an identical purpose to the list in the Colour Editor Gizmo Panel. It
used to select the items within the selected entity for which any changes in
appearance will affect.

Item Drawing Mode
The last section of this panel allows the user to alter how the selected items will
be drawn. The choice does depend on the entity type that is selected but usually
includes:
• ‘Sparse’ - Vertices are drawn as single dots.
• ‘Grid’ - Any edges are drawn as lines.
• ‘Solid’ - Any faces are drawn as solid polygons.
• ‘Solid Lit’ - Drawn as ‘solid’ but lit from a single, user-configurable light

source.
Most of these options can be combined, for example ‘Solid Lit’ can be selected
along with ‘Grid’ to produce a solid lit entity with a grid of lines overlaid on top.
Figure 64 shows some examples of a mesh drawn using a number of the
appearance combinations.

67

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Solid , W irefram e

W irefram e

Figure 64 - Various Appearance Gizmo Panel settings for a mesh

For the convenience o f the user PROMPT associates two drawing modes with
each entity; one for when it is stationary and one for when it is in motion. This
allows a lower detailed view of the mesh that provides a higher frame rate whilst
it is being manipulated by the user and a higher detailed representation when it is
stationary without the need to repeatedly open the Appearance Gizmo Panel to
change the settings.

3.5.10. The Lighting / Material Gizmo Panel
As mentioned previously, PROMPT has the ability to render objects as thought they are
lit from a single, white light source at an infinite distance6. The Lighting / Material
Gizmo allows the user to fine tune the direction from which the light is coming and the
reflective properties of the objects on the screen. Figure 65 shows the panel with the light
source pointing into the screen from the top, left comer and with the objects material
being quite metallic.

6 This is representative o f the light from the sun, w hich is far enough aw ay that all o f the light rays can be
assum ed parallel. This is in stark contrast to a local spotlight w hose rays em anate from a central point.

68

C h a p t e r 3: P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

= > L ig h tin g /M a te r ia l G izm o

Lighting Control

Material Settings

Apply Close ! Reset Help |

Figure 65 - The Lighting / Material Gizmo Panel

The direction the light is coming from is shown on the sphere at the top of the panel.
Simply clicking within the region of the sphere and dragging can change this direction.
PROMPT will stop any attempts to make the light source go behind the object since this
would make all the objects on the screen appear very dark.

The two scroll bars at the bottom of the panel changes the degree to which the objects
appear as plastic or polished metal, and whether the surface is rough or smooth in
appearance.

3.5.11. The Clipping Plane Gizmo Panel
PROMPT has the facility to define planes that clip away portions of the mesh. This
valuable tool allows the user to investigate the interior of a volume mesh. These clipping
planes can be manipulated on the screen in real-time using the mouse in a similar fashion
to manipulating the mesh itself, i.e. translation and rotation. The Clipping Gizmo Panel is
sub-divided into two sections as shown in Figure 66.

= > Clipping Gizmo
P la n e P rim itiv e

jj P lane Box | S phere 1

D elete All

C lip O p e r a t io n s

N ew J F F u

Marlip u la t io n

Clip | Both |Entities

Figure 66 - The Clipping Gizmo Panel

Clip Operations
This section deals with the creation and deletion of clipping planes. Clicking on
the ‘New ’ button causes a new clipping plane to be defined. This is drawn on the
display as a white, translucent rectangle that performs a rough clipping of the

69

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

mesh. This is shown in Figure 67. Selecting the ‘Remove’ button will cause the
currently selected clipping plane to be deleted and any portions of the mesh
clipped by that plane will be restored. To fix the position o f the current clipping
plane the ‘Fix’ button should be selected. This will remove the white rectangle
and perform the final clipping of the mesh. An example of this is shown in Figure
68 .

Figure 67 - M anipulating a Clipping Plane through a mesh

Figure 68 - The same mesh after it has been clipped

70

C h a p te r 3: PROMPT - A n im p le m e n ta tio n o f a P r o b le m S o lv in g E n v ir o n m e n t

Manipulation
In order to position the current clipping plane the user must translate or rotate it
using the mouse and the middle mouse button along with the SHIFT, CTRL and
,41, T keys in an identical manner to manipulating the mesh itself. As the plane is
manipulated, the rough clipping of the mesh will update in real-time to give the
user instant feedback. The ‘Manipulation’ buttons allow the user to, either
manipulate the clipping plane with the mouse whilst keeping the mesh stationary,
manipulate the mesh whilst keeping the clipping plane stationary or move both at
the same time. The latter is most used to provide a different view of the scene
without disturbing the relative positions of the mesh and the plane.

3.5.12. The Clipping Plane Algorithm
Regardless of whether the mesh originated as a structured, multi-block mesh or an
unstructured mesh the clipping plane algorithm treats each element as an unstructured
element. The algorithm is shown below:

for each element in the mesh do
Count the number of nodes on the unclipped side of the clipping plane
if the number of unclipped nodes = 0 then

Do nothing {The cell does not intersect the plane}
else if the number of unclipped nodes = the number of nodes in the element then

Do nothing (The cell does not intersect the plane}
else

Set mask = (1 and (node 1 clipped))
+ (2 and (node 2 clipped))
+ (4 and (node 3 clipped))
+ (8 and (node 4 clipped))
+ and so on fo r elements with more nodes

Use the value of mask in a lookup table to determine the face numbers to draw
Use a second lookup table to determine the node numbers for each face
Add face primitive to the render list

end if
end for

The first lookup table is a two dimensional array with its dimensions defined as two
raised to the power of the number of nodes in the element and the maximum number of
faces that can be drawn after nodes have been clipped. In the case of the hexahedron, the
former is 256 and the latter is 3. The use of the first lookup table using the m ask variable
is illustrated in Figure 69.

This result of this algorithm is a complete surface of triangles and/or quadrilaterals that
are formed from the closest set of element faces to the clipping plane. The same
procedure is applied to the surface faces of the mesh in order to clip unwanted portions of
the surface. The need to test the clipping plane against every element is alleviated in the
same manner as for the feature selection algorithm (described previously) by grouping

71

C h a p t e r 3: PR O M PT- A n im p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

the elements into mesh blocks, testing the blocks against the clipping plane and only
testing the elements if the block intersects the plane.

Algorithm Results
- Nodes 1 and 2 are clipped
- mask = 3.
- Lookup table entry 3 contains:

{ 2 , 6, -1 }
where 2 and 6 are the faces that should be
drawn (shown in red) and -1 signifies a
blank entry since only two faces are drawn
for this combination o f clipped nodes.

Figure 69 - Hexahedron intersecting a Clipping Plane

3.5.13. The Print Gizmo Panel
The Print Gizmo Panel (Figure 70) allows the user to easily create a hard copy snap-shot
of the graphical display without the need for any third-party screen grabbing utilities.

s a Print Gizmo

Color Quality: v Low v Metiimi ^ High ^ Msedmun

Color Mode: •A Color v- GreyScale

Size Control: TNpfc |
Width: | 361 Height: 499

Approx EPS File Size: j 1073.11 (Kb)

Print Close | Help

Figure 70 - The Print Gizmo Panel

Using the panel the user can select between a bitmap image as a TIF (Tagged Image
Format) file or an EPS (Encapsulated PostScript) file [Adobe90]. The user also has a
number o f options that allow a trade-off between quality and image size:
• The user can choose between a full colour image and a grey-scale image,
• The user can choose the number of colours used to produce the image. PROMPT

provides four levels of colour quality, and
• The user can control the dimensions o f the final image. The actual image produced is

always the full visualisation window. The change in image dimensions represents a
change in resolution in which the image is rendered.

Whilst the user is altering these settings, the dimensions o f the image and the size (in Kb)
o f the final image file are constantly updated.

The four colour quality levels represent the image being rendered using a 24-bit
(16,777,216 colours), a 16 bit (65,536 colours), a 12 bit (4,096 colours) or an 8-bit (256
colours) representation. Combining the red, green and blue components of the full-colour
image into a single luminescent value for the grey-scale image generates the grey-scale

U n c lip p e d
N o d e s

C lip p ed
N o d e s

C lipp ing P la n e

72

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

representation. This is performed using the NTSC standard [Yang92, Yang97] where the
luminescence is defined by:

Y = 0.299R + 0.587G + 0.114B

The different weightings given to the three primary colours directly correspond to the
human eyes differing sensitivity to same three colours.

Once the settings are satisfactory the ‘Save’ button is selected. This opens a standard File
Selection box (Figure 71) that is used to determine the name and directory o f the image
file.

Color Quality: . Lov Medium • High Madmun

Color M(
E P S F ile n a m e

/c iv en g /cv s ig m a3 /cg jo n es/» .ep s

Directories Files
A FIB Full Config.eps A

ICACIient
JV06defaults
PSUE
^Contact
acal
.alarms /
^1 A** -J 1 ,

Selection
/c i v eng /cvs1gm a3/cgjones/scrdum p. eps

Help

Figure 71 - A standard File Selection box used in the Print Gizmo Panel

3.6. The Task Database M odule
The purpose of the Task Database is to store all of the data files related to sessions within
PROMPT. The approach the Task Database takes is to take control over how these
various data files are placed. This allows the Task Database to keep track o f the
dependencies between the different files. For example, if a solution is obtained on a
particular mesh then that solution will be associated with that mesh and the user will not
be allowed to mistakenly overlay it on a different mesh. This relieves the user from
having to remember which data files go together and, therefore, significantly reduces the
number o f consistency checks that need to be made by PROMPT when loading data files.

3.6.1. The Task Database Window
When the Task Database is opened, the panel will appear like Figure 72. The operations
performed using this panel fall into five main categories:
• Loading data files into PROMPT,
• Saving data files to the database,
• Deleting data files from the database,
• Attaching User Comments to data files currently residing in the database and

73

C h a p t e r 3: PR OM PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

• Importing data files from outside sources into the database.

T as k F ite In fo rm a tio n /A c q u is itio n (V e rs io n 1 .6)

Mesh
List

Bndry Cond
List

Solver Controls
List

Solutio
List

■.mesh A 5 A Biick2.soi
j E S u S S B H I H 8i1ck2.bc J 8iick2.6C J RTSGNi.TV2.soi
■Battom.mesh rt.80ngv.bc r.SOngvAC lkl.se!
nesh RT6GNi.Tv2.l3C RT80T-H3V2.se ohm ins.sol
■iesh ricieni.elfxjw.LJC omS ins.sol
.mesh ihieni.mfj2.tx-. asvenjjoiar.sc sgartiB4«oi
mesh fluent foiici-bc asvenu32.se

i n ...„i i— / i ew.t ■<e>«nfc'4Q k-e / m m m m a m m m ' ■

I 1 " M 1 ^ W ------------- 1 - D

Measurement Unit ooy Selected Link

Access Mode Creation Date: Loaded M esh
User Comments

L o ad ed B ou n d ary C onditions!

o a tie d S o lver C ontro ls
Remove

Loaded SolutionSort Lists by
Most recently selected enlityBy Date

By A-Z

Load D ata Selec t All R ese t

Figure 72 - The Task Database Window

3.6.2. Loading Data Files into PROMPT
As mentioned previously, the dependencies between data files are tracked automatically
by the Task Database. This means that selecting the correct set of files to load together is
very easy and error-free. To load a set of data files the user simply selects the respective
entries in the ‘Entity Lists’. As data files are selected, all other entries that are not
compatible with the selected entries are ghosted, and thus cannot be selected. This has the
effect that as the user selects data files from each of the columns the choice remaining
decreases. This effect is shown in Figure 73 where the dependencies between data files
are shown schematically. At first, all o f the data files are selectable. If the user selects a
mesh then all o f the data files except for those related to the selected mesh are disabled
(Figure 74). This process then continues when the user selects one of the remaining
solution files (Figure 75).

M esh 1

BndC onds 1.1

BndC onds 1.2

-* Solver Controls 1.1.1

-* Solver Controls 1.2.1

-> Solver Controls 1 .2 .2

-> Solution 1.1.1.1

-> Solution 1.2.1.1

-> Solution 1.2.2.1

M esh 2

BndC onds 2.1

BndC onds 2.2

-> Solver Controls 2.1.1

-► Solver Controls 2 .2.1

-> Solution 2.1.1.1

-> Solution 2.2.1.1

-> Solution 2 .2 .1 .2

Figure 73 - A Schematic of Dependencies between Data Files

74

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

M esh 1

M esh 2

B ndC onds 1.1

B ndC onds 1.2

BndC onds 2.

BndC onds 2.2

-► Solver Controls 1.1.1

-* Solver Controls 1.2.1

-> Solution 1.1.1.1

-► Solution 1.2.1.1

-> Solver Controls 1 .2.2 ■> Solution 1.2.2.1

■>

■>

■>

->

Figure 74 - The Dependencies after a mesh has been selected

M esh 1

ldC onds 1.1

BndC onds 1.2

-►

->

-> Solver Controls 1 .2 .2

-► olution

Solution 1.2.2.1

S o lu t io n 2

Figure 75 - The Final set of Selectable Data Files

3.6.3. Saving Data Files to the Database
To save entities currently residing in PROMPT to the Task Database, the user must first
select the correct access mode in the ‘Access Box’ then select the ‘Save Data’ button.
This will cause a panel to open (Figure 76) into which the names of the data files are
typed.

75

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Task File Information / Acquisition (Version 1.6) i* □
Mesh Bndry Cond
List List

Solver Controls
List

Solutio
List

8on.ont.me6h

F3
M easurement Un

Access Mode Cr
v Load

Save
Remove

Sort Lists by
By Date
By A-Z

8iick2.bc
rt60ngv.bc
RT80N3V2.bc
iUenl.elbcu/.bc
IUieni.nibZ.bc.
t i t jc n i .g r jp i l»r—

BilcUZ.sC.
rr.60ngv.se
RTQONGV'Z.aC
orft6_tns,sc
asven_poiar.se

Save Files...

Save Mesh as:

Save Boundary Conditions as:

Save Solver Controls as:

Save Solution as:

OK Reset

Spl HBrick.mesh

S p litB r ic k .b c

S p l i t B r ic k .s c

S p l i t B r ic k .s o l

BilckZ.sol
RTSOWSvZ.aol
Isl.soi
ohm_i.ns.soi
om6_tns.sol

rciB4.soi

Help

Im pG ii H e lp

Figure 76 - The ‘Save D ata’ Panel

At this stage, a number of checks are performed by the Task Database to ensure the
consistency of the dependencies:
1. If none of the names currently reside in the Task Database then the data files are

simply saved and their relationships are stored.
2. If the name of a data file does exist in the Task Database then that file is compared to

the currently saved version. If they are identical and their dependencies are
compatible then the remaining data files are saved and their relationships are merged.

3. If the name o f a data file exists and that file is either different or their dependencies
are not compatible then the user is requested to choose another name.

3.6.4. Deleting Data Files from the Database
Since the links between data files are controlled by the Task Database, it is not enough to
just manually remove the files from the disk using a UNIX shell. In PROMPT, the only
way to remove data files cleanly is to use the Task Database.

To perform this action, the user must first select the correct access mode using the
‘Access M ode’ box, and then select the data files in the ‘Entity Lists’ that are to be
removed. Finally clicking on the ‘Delete’ button will remove the selected data files and
modify the links appropriately. In order to maintain consistency in the Task Database,
each data file that depends on the data files selected for removal are also removed. Since
this could lead to more files than the user intended, a dialog box (Figure 77) is shown
which confirms the users actions before actually performing them.

76

C h a p t e r 3: P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Task Fite Information /Acquisition (Version 1.6) i a
Mesh Bndry Cond Solver Controls Solutio
List List List List

meal’s______
Gottom.mesh
iiesii•iesfi
.mesh
.mesh

Use

R „

M easurem ent Unit

A c c e ss M ode Cre

v' Load
| v Save

Remove

Sort Lists by

^ By Date
v By A-Z

A
8i1ck2.bc J Biiek2.sc
rt.60iigv.be rt.60ngv.se
RT60NCiV2.be RT6iTNi.TV2.se
HuenLeliX3W.be 0f'i6 Wij.sc

JJOI - Removal Confirmation

Are you sure you
want to delete these files
(and their dependandes)

Help

Biick2.sol
RTfiQNi.TvZ.sol
Isl.soi
ohrri_i.ns.sol
orri6_i.ns.soi

iL.opy Selected Link

vlesh

3oindary Conditions;

Loaded Solver Controls

Loaded Solution

Most recently selected entity 1

Irripoit

Figure 77 - Deleting Data Files from the Task Database

3.6.5. Attaching User Comments to Data Files in the Database
Often when a data file, such as a solution, is obtained it is preferable to be able to
annotate it with a small message describing the purpose for which it was created.
Traditionally, these might be encoded, rather cryptically, in the filename somehow or a
separate text file might be created to contain the annotation. Both of these methods have
disadvantages. The filename approach limits the amount of information that can be stored
due to the limit on the number of characters imposed by the file system. Whereas creating
a separate file that sits alongside the solution data file has the disadvantage that it could
easily become out of sync or even lost over time.

In the Task database, an annotation may be stored along with any data file. When a data
file is selected in one o f the entity lists its annotation automatically appears in the ‘User
Comments’ box from where it can be easily edited by the user.

The actual information is stored in a fixed length block o f 2000 characters at the front of
the data file. Although choosing a fixed size for this block does limit the length of the
annotation, it does have a major advantage over a variable sized block. When the user
selects a data file only the annotation section of the file is read, and if this is subsequently
edited then the new fixed length block o f characters is overlaid on top of the original.
This removes the need to read in and write out the entire data file every time the user
highlights it in a list to view or edit its annotation. This procedure is shown in Figure 78.

77

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Annotation

■sr

Read and display
the annotation -

Overlays old annontation
with edited version

New Annotation

Data Set Remainder of the
data set is not accessed

Data Set

Figure 78 - Editing the Annotation of a Data Set

3.6.6. Importing External Files into the Database
As described previously, the Task Database controls the storage o f any data files used
within the PROMPT environment. As well as maintaining the dependencies between the
data files, PROMPT also enforces the format in which these data files are stored. This is
to ensure that the data files are syntactically correct and efficient to read and write. The
PROMPT file formats also accommodate data sets that are commonly used by the
modules within PROMPT but may be time consuming to compute. In order to be able to
use data (in particular meshes and/or solutions) from outside the PROMPT environment,
the Task Database provides a mechanism for translating the external files in a format
foreign to PROMPT into the internal PROMPT format that can then be stored within the
Task Database.

In order to activate this mechanism the ‘Import’ button needs to be selected. This opens a
panel like the one shown in Figure 79.

78

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

uisition (Version 1.6) . .nil.
1 Import Data

Filter Added Files
/clveng/cvslgm a3/cgjones/PR O M PT D ataFI1es/H ydraVi s c o u s / f 1a tp /«

D irectories Files
/□veng/cvsigma3/cgjones/PROMPTDataRles/HydraViscous/flatp/.
/tiveng/cvsigma3/cgjones/PROMPTDataFiles/HydraViscous/flatp/..

n ~
Selection

e n g / c v s i g m a 3 / c g j o n e s / P R 0 M P T D a t a F i l e s / H y d r a V i s c o u s / f l a t p / f p i a t e 2 .m e s h . a d f

Save Data Filter Edit Converters Reset

ate2.mesh.adf

dat
nputdat
outflow.dat

m
Figure 79 - The ‘Im port D ata’ Panel

The left-hand side of the panel looks and behaves like a standard UNIX file selection
panel with the directory listing on the left and the file listing on the right. On the right-
hand side there is a list that contains the files currently selected for importing. Double
clicking on a file in the file selection section or clicking on a file and selecting the ‘Add’
button adds it to the currently selected list. Selecting an item in this list and clicking on
the ‘Remove’ button removes it from the list. Selecting multiple files to import behaves
in exactly the same manner as opening the Import Data panel multiple times and selecting
one file each time.

To import the selected files the user simply clicks on the ‘Save data’ button. This cycles
through the selected files, imports them into the Task Database and presents the user with
a panel (Figure 80) into which the names may be entered.

79

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

TTnjL,Task File Information/Acquisition CVersion 1.6)
I m p o r t D a t a

Filter
/civeng/cvsigm aS/cgjonas/PR O M PT D ataFI1e s /H y d r a V isc o u s /f la tp /«

D irectories Files
/riveng/cvsigma
/civeng/cvsigma

Selection

= S a v e I m p o r t e d D a t a . ..

M esh Filename: F la tP la te

B oundary C onditions Filename:

Solver Controls- Filename:

Solution Filename:

Save Reset Cancel Help

ate2.mesh.adf A

en g /cv sig p ia S /cg jo n es/P R O M P T D a ta F ile s /H y d ra V isc o u s/fla tp /fp la te2 .m e sh .a d f Add Rei»0'--e

Save Data Filter Edit Converters Reset Close Help

Figure 80 - Saving Imported Files in the PROMPT format

In order to choose the correct conversion algorithm PROMPT uses the extension o f the
imported file to identify it. The user can change this mapping between file extension and
conversion algorithm by selecting the ‘Edit Converters’ button in the Import Data panel.
This opens a panel as shown in Figure 81. The majority of the panel is used to display the
current file extension mappings. New mappings may be added by entering the file
extension (with or without the V) and then selecting one of the available converters.
Mappings can be edited and removed in a similar fashion. In order to remove any
possible ambiguities, multiple extensions may be mapped to one converter but only one
converter is allowed to be mapped to a given file extension.

Edit Converters...

fTT (Delta2PROMPT) A
GRD (FluentMesh2PROMPT)
.dat (FluentUnstruct2PR0MPT)
.anse (ANSEMesh2PROMPT)
.mesh (RawMesh2PROMPT)
.msh (RuentMutti2PROMPT)
■fli (Flite2PROMPT) _

.emb (EmbeddedANSE2PROMPT)
pl3 (FliteMesh2PROMPT)

.pit (FliteMesh2PROMPT)
pis (PLS2PROMPT)

Extension: | hyb Elite Hybrid Mesh -> PROMPT

Apply Add ' Remove J Help

Figure 81 - Editing the List of Available File Converters

3.6.7. The Task Database Importing Mechanism
During the development of PROMPT, it became apparent that data files originating from
a wide, and rapidly increasing, range of sources might need to be imported into the
PROMPT environment. To satisfy this requirement there were two possibilities that were
considered:

80

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

• A conversion algorithm could be developed for each foreign file format and included
within the actual Task Database, or

• A conversion algorithm could be developed for each foreign file format and compiled
into a separate executable, which would take, as input, the filename for the file to be
imported and piped out the data sets in the PROMPT format.

The first method would be simple but it would require that the Task Database was
modified and redistributed every time a new file format was added. With a large number
of file formats, this could also make the Task Database very large. The second method
would require a more sophisticated architecture but would reduce the size of the Task
Database to a minimum. When a new file format was added then a new stand-alone
conversion module could simply be developed and distributed. A schematic of the
method used in PROMPT is shown in Figure 82.

File
C onversion

M odule
PROMPT

User Selects
Input Filenames

PROMPT Initiates
File Converter Module

PROMPT Chooses
File Converter Module

PROMPT saves
data in Task Database

Module transmits
PROMPT format
back to PROMPT

Module Loads File
and Converts to

PROMPT Format

PROMPT received
data in PROMPT

format

Figure 82 - A Schematic of the Importing Process

The process starts at the bottom-left with the filenames selected by the user. These are
then mapped onto the appropriate file conversion module by the Task Database. The
module is then initiated and passed the filename as a command-line argument. The stdout
port of the conversion module is connected to the Task Database via the standard UNIX
pipe mechanism. The Task Database then waits for the data in the appropriate PROMPT

81

C h a p t e r 3: PROMPT- A n im p l e m e n t a t io n o f a P r o b l e m S o l v in g E n v ir o n m e n t

file format to flow along the pipe before saving them in the database. Meanwhile, the
conversion module reads the supplied file, converts it to the appropriate PROMPT file
format and then uses the standard PROMPT I/O routines to write the file to the pipe in an
identical manner to writing it to a file.
The current list of file conversion modules, and their associated file extensions, is shown
in the table below. The algorithms used to perform the file conversion are detailed in
Appendix A.

Mesh Type Extension Description
CFDS ANSE Mesh .1 Single-block CFDS-ANSE mesh7
Fluent Mesh .GRD Single-block structured mesh from Fluent
Fluent Mesh .msh Multi-block structured mesh from Fluent
FLITE Mesh .pl3 Unstructured tetrahedral mesh from the

FLITE system9
CFDS ANSE Embedded .emb Single-block CFDS-ANSE mesh using

hanging nodes
SAUNA Multi-Block .xyz / .3d Structured multi-block SAUNA mesh
CINDY Unstructured .oxd Unstructured tetrahedral grids in the Oxford

CINDY format11
Fluent Unstructured .cas Unstructured grids from the Fluent system
Fluent Unstructured
Solution

.dat Solution files associated with Fluent
unstructured meshes

CINDY Unstructured
Solution

.oxs Solution files obtained using the Oxford
CINDY solver

HYDRA Unstructured .adf Unstructured meshes in the Oxford HYDRA1 9format
HYDRA Unstructured
Solution

.adf Solution files obtained using the Oxford
HYDRA solver

DELTA Structured .geom/ .1 Structured multi-block mesh files in the
Loughborough DELTA format13

DELTA Structured
Solution

.geom / . 1 Solution files obtained from the
Loughborough DELTA solver.

7 CFDS-ANSE is a proprietary solver from Rolls-Royce
8 Fluent is a company that develops software for the pre-processing and solution of many types of finite
element problems.
9 FLITE is a proprietary suite of tools including an unstructured mesh generation capability and various
CFD solution algorithms.
10 SAUNA is a proprietary suite of tools developed by ARA and DERA for the pre-processing and solution
of structured multi-block and unstructured CFD problems.
11 CINDY is an unstructured CFD solver developed by Oxford University Computing Labs.
12 HYDRA is the sequel to the CINDY solver developed by Oxford University Computing Labs.
13 DELTA is a structured multi-block CFD solver developed by Loughborough University.

82

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

3.7. M esh A nalysis
Once a mesh has been imported into PROMPT, it may be necessary to verify that the
mesh is o f a suitable quality for the intended solver; and if not, then highlight to the user
the areas that fall short of the required standard.

3.7.1. The Mesh Analysis Window
When the Mesh Analysis (MA) Module is first started, it shows the mesh analysis
features o f the module (Figure 83). The left of the panel contains a list of the blocks
comprising the mesh from which the user may select one or more on which to perform
the mesh analysis. The right-hand portion of the panel contains a histogram of the
currently selected mesh quality measure. The current mesh quality measure may be
selected from the pull-down menu above the histogram.

M e s h A n a ly s is (V e rs io n 1.6)

Mode of Operation: Analysis Swap Block Axes Edit Mesh Planes

Analysis Metric: Cell Volumes Selected Solver: CFDS (flNSE)

Cell Volumes Zoom
Unzooml

3.417>e-W SI»&e-08 6 83Ol'3e-08 8WS35e-08 102«fce-07 I 1948'8e-07
Analyse i Show C ells!

No cells selected
1-Plane ? ??
J-P lan e ?? ?
K -Plane ? ? ?

Close Reset Help

Figure 83 - The Mesh Analysis Panel

3.7.2. Performing a Mesh Analysis
In order to perform a quality analysis of a mesh, a number o f steps need to be performed.

Choosing the Mesh Quality Metric
The first step is to choose the quality measure by using the pull-down menu above
the histogram. The current choice of measures includes:

• Ratio of Adjacent Element Volumes
• Element Skewness
• Element Aspect Ratio

The quality metrics [Fol91, Belytschko84, Haimes93] were chosen to highlight
mesh elements that:

83

Ch a p t e r 3: PROMPT- A n im p l e m e n t a t io n o f a P r o b l e m s o l v in g E n v ir o n m e n t

Deviated from the ideally shaped element
Were neighbouring elements of a significantly different size and
Could be calculated for each of the element types.

Choosing the Mesh Blocks
For a structured, multi-block mesh, the next choice to make is on which block the
analysis should be performed. This is done by selecting the required blocks in the
list on the left of the panel. For a structured, single-block mesh or an unstructured
mesh this option is disabled since there is no choice to be made.

Performing the Analysis
The next step is to perform the analysis of the mesh. This is achieved by selecting
the ‘Analyse’ button. After a small delay, while the calculations are being
performed, the results appear in the histogram on the right of the panel. The
results are displayed as a set of 50 bars, each representing a l/50th of the total
range of values. The height of each bar indicates the number of elements that fall
into each range.

Although the histogram gives a graphical representation of the values of the
chosen quality metric, this is often not enough for the inexperienced user since
he/she may have no experience of which range of values is good for a particular
solver and which are bad. In the MA Module, a horizontal green and red bar
always accompanies the histogram. This indicates to the user which ranges of
values are valid for the particular solver. These ranges are solver specific and can
be changed by an experienced user by editing a simple ASCII file.

Selecting Ranges on the Histogram
As well as just displaying the mesh analysis results, the histogram also allows
ranges of values to be selected on which further operations may be performed.
There are four methods of selecting histogram bars:
• Single Selection - To select a single bar in the histogram the user just simply

clicks on it. This will cause any previously selected bars to be de-selected.
This is shown in Figure 84(a).

• Multiple Selection - Holding the SHIFT key whilst clicking on a bar will
cause the bar to be added to the list of currently selected bars, i.e. previously
selected bars will remain selected. This is shown in Figure 84(b).

• Drag Selection - Pressing and holding the left mouse button while dragging
the pointer over a range of bars will select the entire range and any bars
outside this range will be de-selected. This is shown in Figure 84(c).

• Multiple Drag Selection - Performing Drag Selection whilst holding the
SHIFT key will add the newly selected range to the list of currently selected
bars. This is shown in Figure 84(d).

84

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Cell A spect Ratio Cell A spect Ratio

smia

(b) S e le c t io n o f m ultip le, d istin c t b a rs

L7

(a) S e le c t io n o f a s in g le bar

Cell A spect Ratio Cell A spect Ratio
Unzocm

(c) S e le c t io n o f a r a n g e o f b a r s (d) S e le c t io n o f m ultip le r a n g e s o f b a rs

Figure 84 - The Four Histogram Selection Methods

Zooming In and Out of the Histogram
When a mesh analysis is performed, the initial histogram covers the entire range
o f metric values. For a large mesh, each histogram bar will represent a large
number o f elements, perhaps 1000’s or 10,000’s. When this occurs it may be
preferred to narrow the range of values being displayed to view them in more
detail. To zoom in to the histogram the user First needs to select the range of bars
o f interest as described in the previous section. The leftmost and rightmost
selected bar will determine the new value range. Pressing the ‘Zoom’ button will,
after a short delay, redraw the histogram with the 50 bars now representing the
selected range o f values. This procedure may be repeated up to ten times thus
allowing the user to focus in on a small number of elements regardless o f the size
o f the overall mesh.

To undo the previous zoom operation, the ‘UnzoonT button may be selected. This
may be repeated until the histogram returns to displaying the full range o f analysis
values. A typical sequence of zooming into the histogram is shown in Figure 85.

85

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

ZoomCell A spect Ratio

iS S “ I58&I8 316̂ .6 47*63 3 63Z&41 790&4.S

Cell A spect Ratio Zoom

1. O riginal H isto g ra m 3. R a n g e for s e c o n d z o o m

Cell A spect Ratio Zoom |
Unzooml

Cell A spect Ratio Zoom j
Unzooml

i.8aai iMtia 3 itto <?<6si safo i m bts vda .1 im to ~ ~ a W ~ i«£a» isaire 521 .17 Seii.W 602<59 6<jl.3 8836.02 7ttl M WSilS 8<6486_ wAs* KW29

2 . S e le c t io n o f a r a n g e to z o o m 4 . H isto g ra m after tw o z o o m s

Figure 85 - Zooming into the Histogram

Highlighting Bad Cells in the Mesh
After the histogram has been manipulated so that the bars in the area o f interest
represent a reasonably small number of elements, it might be preferable to view
the positions of the elements with respect to the rest of the mesh. For example, a
bad element might be acceptable if it occurs in a region where the solution is
constant but would be unacceptable if it occurred in a region of particular interest.

In order to highlight the appropriate cells, they need to be selected in the
histogram as described previously. Selecting the ‘Show Cells’ button will then
cause the elements whose quality metrics fall within the selected range to be
highlighted in the mesh display in the Visualisation Window. As can be seen in
Figure 86, the selected elements are colour coded according to their quality metric
and a colour scale is overlaid at the bottom o f the window for quantitative
puiposes [Haimes93].

86

34^88634

C h a p t e r 3 : P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

PROMPT (PRe-processing Option for Military Powerplant Technology) (Version 1.6)
P ro c e s s U s e r M o d e In fo rm a t io n G izm os H e lp

Figure 86 - Bad Elements highlighted in the Visualisation Window

3.7.3. Fixing Areas of Poor Quality
For structured, multi-block meshes a number o f facilities are available within the
PROMPT system to post-process the mesh in order to attempt to remove as many o f the
poorly shaped elements as possible.

Mesh Plane Movement
Figure 87 shows an example of moving a mesh plane. The panel shows a selected
block in the mesh and allows the user to interactively select and drag the mesh
plane along the appropriate axis. The nodes of the plane being moved are defined
as a simple weighted linear interpolation o f the planes either side. Any changes
made to the position of a plane are propagated through all adjoining mesh blocks
automatically.

87

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Edit Plane Direction:

Selected Plane Information:

1-Plane , 15

R otate to move plane: crrm
Remove Plane

R eset Angle|

Mesh Analysis (Version 1.6)

M ode of O peration: Analysis Swap Block Axes Edit M esh Planes

Illustration of Axes Alignment

Reset Help

Figure 87 - Editing a Mesh Plane

Adding / Removing Mesh Planes
If moving a mesh plane is not sufficient to repair poorly shaped elements then the
same panel can be used to add or remove mesh planes. To add a mesh plane, the
user simply selects the mesh plane to the left o f the plane to be added and then
selects the ‘Add’ button. A new plane is then created as a linear interpolation of
the two planes either side of it. Removal of a plane is performed in a similar
manner by selecting the plane and clicking on the ‘Remove’ button. After a plane
has been added or removed then the remaining planes may be moved interactively
as described above.

If all of the above methods fail then the mesh must be regenerated in order to try to
produce a mesh of a higher quality.

3.8. The Boundary C ondition Specification Panel
Once the mesh has satisfied any quality criteria, it is necessary to define the boundary
conditions for the relevant solver. These instruct the solver which criterion should be
applied to a given section of the mesh boundary. For example, if a mesh represents the
exterior o f an aircraft then the majority of the boundary would represent a solid wall, with
small sections representing the inlets and outlets of the engines. The solid wall criterion
tells the solver that no air is allowed to pass through that section, whilst the engine inlet
section prescribes the amount of air that will pass into the engine.

In PROMPT, the means by which the boundary conditions are applied depends on the
intended solver. For a structured, multi-block mesh this ranges from being able to apply
one boundary condition to each external block face (i.e. a block face not adjoining
another block) through to being able to apply a boundary condition to any section of any

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

plane within the mesh. For unstructured meshes, the process is restricted to applying a
14single boundary condition to each group of boundary faces .

3.8.1. The Boundary Condition Window
Due to the different methods of placing the boundary conditions, the Boundary Condition
Window has a different appearance depending on whether a structured or unstructured
mesh currently resides in PROMPT. Figure 88 shows a typical example of a structured
mesh boundary condition and Figure 89 shows an equivalent for an unstructured mesh.

Copy Profile I Paste Profile

Define Boundary Conditions (Version 1.6) » Q Boundary Condition Pane1

Show B oundary Type: Physical
Physical B oundary Conditions Shown
Block 1. Plane 1 Selected

Boundary: Freestream
Copy Paste I Copy To Same Name

Param eters: Static Pressure
Static Temperature
Mach Number
Direction Cosines (I)
Direction Cosines (J)

v' Direction Cosines (K)
. K

v Epsilon
P ressu re Profile

Delete Region Region Position Window

Boundaries:

Boundary Condition 2
Boundary Condition 3
Boundary Condition 4
Boundary Condition 5

| Boundary Condition 6

Boundary Condition 1

R eset back to Defaults

Default View

K:
P ressu re: Add : Remoue I

Min K: 34 Max K: 62
Min J : 0 Max J : 25
Profile Source: Profile Table

Figure 88 - The Boundary Condition window for a Structured Mesh

14 T he grouping o f faces is perform ed outside o f the PROM PT environm ent and is usually defined by the
m esh generator as the geom etric surface patch on w hich the boundary face lies.

89

C h a p t e r 3 : P R O M P T -A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

Boundary Conditions (Version i.6) • Q Condition Panel

Boundaries:
Default BC for surface 6
Default BC for surface 7
Default BC for surface 3
Default BC for surface 9
Default BC for surface 10

hJ.______________
D efau lt BC fo r surface 11

Apply

Apply

Help

InletBoundary:

Copy Paste | Copy To Same Name

Reset back to Defaults

Total Temperature: j 288

Total P ressu re: j 181500

Tangential Flow Angle: 0

Radial Flow Angle: 0

Turbulence Level: : 8 (For SA Models only)

Figure 89 - The Boundary Condition window for an Unstructured Mesh

The next two sections describe how these panels are used to define boundary conditions
for structured and unstructured meshes.

3.8.2. Boundary Condition Definition for Structured Meshes
In order to define a boundary condition on a structured, multi-block mesh a number of
steps have to be performed:

Selecting a Mesh Plane
The selection o f mesh planes is performed in the Visualisation Window and is
described more clearly in Section 3.5.4. To summarise, the mesh plane direction
(i.e. i, j or k) must be selected via the Selection Gizmo. The appropriate mesh
plane may then be selected by simply clicking on it in the Visualisation Window.
The chosen plane is highlighted in the mesh and a planar, Cartesian representation
o f it is shown in the top-left comer of the panel (Figure 90). If the solver is
restricted to defining boundary conditions on exterior block faces then any
selection in the Visualisation Window will also be restricted.

90

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

idary Conditions Shown
1 Selected

» Q[— ----------- —

Delete Region Region Position Window
Boundaries:

Boundary Condition
Boundary Condition
Boundary Condition
Boundary Condition

Boundary Condition Apply

Appiy Reset Close Help

Figure 90 - Defining a Region on a Mesh Plane for a Boundary Condition

Selecting a Region on the Plane
Once a plane has been selected, the next step is to define a rectangular region on
the Cartesian representation o f the plane in which the boundary condition will be
applied. The operations that can be performed on this Cartesian representation can
be likened to a simple desktop window manager. Regions may be created (like
windows) and they may be moved, resized and deleted.

Simply clicking where one comer of the region should be and then dragging to
define the position of the opposite comer of the region creates a new region. A
region may be resized by clicking on and dragging any comer or side, and moved
by clicking and dragging anywhere in the interior of the region. A region may be
selected by simply clicking on it; this allows the associated boundary condition to
be edited.

During this process the defined region is also updated on the three-dimensional
model in real-time. This gives the user the best possible feedback as to where any
boundary conditions are defined. This is shown in Figure 90.

Selecting the Boundary Condition
Once a region has been selected, it is possible to edit the boundary condition
associated with it. The boundary condition type may be selected using the pull­
down menu at the top-right of the panel. This alters the appearance of the rest o f

91

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

the right-hand side of the panel in order to reflect the parameters that need to be
defined.

In PROMPT, a boundary condition is either physical or topological. A physical
boundary condition represents real-world features of the mesh such as solid wall,
inlet, outlet, etc. In contrast, a topological boundary condition exists purely to
reduce the size o f problem that is to be solved. For example, a symmetry
boundary condition is a topological boundary condition that is used when the
solution to a problem would have reflective symmetry. Solving half the problem
and introducing the symmetry boundary condition along the plane o f symmetry
halves the amount of computation needed but still gives the same result. For the
CFDS solver, there are four physical boundary conditions (Inlet, Outlet, Wall and
Free Stream) and three topological boundary conditions (Repeat, Symmetry and
Centre Line). The panels for each of these boundary conditions are shown Figure
91 - Figure 97.

Boundary Condition 4
Boundary CondHJon 5
Boundary Condition 6

Paste Profile

\ Define,

:—Show

Conditions (Version 2.0) ■ Q | Boundary Condition Pond________

Boundary M/at

Copy Paatt j Copy To Same Name

r»: TotaJ Pressure
Total Temperature
Direction Cosines (I)
Direcuon Cosines (J)
Direction Cosines (K)

Epsilon

Copy | Paste j Copy To Same Name

Delete Region RtQton Posfaon Window
Boundaries:

Figure 91 - The CFDS Inlet Boundary
Condition Panel

Figure 92 - The CFDS Outlet
Boundary Condition Panel

Figure 93 - The CFDS Wall Boundary
Condition Panel

D<̂ - BoT n^ Co!3Plhona (Vcr3ion2C,)_ .«_Q
Boundary: tree sire am

Copy j Paste J Copy To Seme Name
Show Boundary Type: Physical
Physical Boundary Conditions Shown

Static Pressure
Static Terrperatue
Mach Number
Direction Cosines (I)
Direction Cosines (J)
Direction Cosines (K)

Delete Region Regcn PosrJon Window
Boundaries

Boundary Condition 2
Boundary condition 3
Boundary Condition 4
Boundary Condition 5
Boundary Condition 6

Boundary Condition

Apply Reset Close

Figure 94 - The CFDS Free Stream
Boundary Condition Panel

Delete Region Region Position Window
Boundaries: ___________________
Boundary Condition 2
Boundary Condition 3
Boundary Condition 4
Boundary Condition 5
Boundaiy Condition 5

Paste] Copy T o Same Name

Define Bonndfvy Conditions (V e r s io n ^ . Q

Show Boundary Type: Physical
Physical Boundary Conditions Shown
Block 1. Plane 36 Selected

Boundary Condition 7 Appy

Apply Reset Close He

Condition Panel

WaU

Wall Type: Viscous___tm/lsod
OMWAU.: | 8

Heat Type: Adiabatic isothermal Heat T-ansler

92

C h a p t e r 3: PR O M P T- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

* Boundary Conditions (VcriimZO) ■ Q l

Show Boundary Type: Topological
Topological Boundary Conditions Shown
Block 1. Plane 1 Selected

Delete Region Region Position Window

Boindary Condition I
Boundary Condition 3
Boindary Condition 4
Boindary Condition b
Boundary Condition 5

Boundary Condition 8 Appy

Apply Reset Close Help

Boundary Repeat Reset back to DefaJts
Copy | Paste | Copy To Same Name

Repeat Direction: 0

Start (I): [7
Start (J): ! 1

Start (K): I

End (I): 1

Figure 95 - The CFDS Repeat
Boundary Condition Panel

Show Boundary Type: Topological
Topological Boundary Conditions Shown
Block I. Plane 1 Selected

Delete Region
boundaries.
Boundary Condition 1
Boindary Condition 2
Boundary Condition 3
Boindary Condition 4
Boindary Condition b
Boundary Condition 6

Boundary Condition 8 Apply

Apply Reset Close Help

Condition Panel

Boundary: Symmetry
Copy | Paste I Copy To Same Name

Reset back to Defadls

Symmetry Direction:

Start 0): ["»
Start (J): [1

Start (K): | 1

End (I): | >

Figure 96 - The CFDS Symmetry
Boundary Condition Panel

Show Boundary Type: Topological
Topological Boundary Conditions Shown
Block I. Plane 1 Selected

Delete Region Region Position Window 1
Boundaries:
Boindary Condition l
Boindary Condition 2
Boindary Condkion 3
Boindary Condition 4
Boindary Condition 5
Boindary Condition 6

' ' - ■ R

Boundary Conditior 8 ~aw|
Apply Reset Cose Hep

Boundary Centre-Line

Copy Haa'e Copy To Same Name

Degeneration Direction:

Start (1): j I
Start (J): j l

Start (K); [I

End (J): j 78

Fnd(K) 63

No diametrically opposed point
Type o(Centre-Line: 360 degree symmetry

180 degree symmetry

Coincident Point Aids: I J K

Figure 97 - The CFDS Centre Line Boundary Condition Panel

Editing Profiles of Values
Instead o f just entering single values for boundary condition parameters that are
then applied to the whole region, many o f the parameters of the physical boundary
conditions have the added capability to define profiles of values. For this purpose,
PROMPT includes a Profile Graph Editor. The Profile Graph Editor allows the
user to define a ID or 2D grid of points each with an attached value. These points
do not have to coincide with mesh points but can be anywhere within the region.
Once a profile has been defined, the values in the profile are interpolated onto
each o f the mesh nodes.

Points are created and moved by interactively clicking and dragging them and
simply selecting a point and entering a new value can alter its height.
Figure 98 shows an example o f a ID profile of values for a typical region and
Figure 99 shows a typical example of a 2D profile.

93

C h a p t e r 3 : P R O M P T- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

0

Figure 98 - An example of a ID
param eter profile for a Boundary

Condition

Figure 99 - An example of a 2D
param eter profile for a Boundary

Condition

3.8.3. Boundary Condition Definition for Unstructured Meshes
Due to the restrictions o f where boundary conditions can be applied on an unstructured
nesh, the number of steps is reduced to:

Selecting a Mesh Surface
The selection o f unstructured mesh surfaces is very similar to the selection of
structured mesh planes. The Selection Gizmo Panel in the Visualisation and
Control Module is used first to enable mesh surface selection and then surfaces
are selected simply by clicking on them in the Visualisation Window. The
selected mesh surface is highlighted in the Visualisation Window and the
boundary condition attached to it is displayed in the right-hand portion of the
Boundary Condition Panel.

Selecting the Boundary Condition
Unlike structured meshes, the restriction that boundary conditions are applied to
whole surfaces means that there is no equivalent to the creation of sub-regions.
Instead, the process jumps straight to the selection of the Boundary Condition
type. This is performed in the same manner as for structured meshes except that
no parameters require profiles of values to be entered.

3.9. The Solver Execution Panel
The last step before the solver can be executed is the definition of the overall flow and
iun-time parameters o f the solver. Like the Boundary Condition definition stage, these
parameters vary considerably between different solvers. For the purposes of organisation,
tie Solver Execution (SE) Panel splits the various parameters into four types:

• General Flow Parameters,
• Runtime Control Parameters,

94

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

• Turbulence Model Control Parameters (only applicable if a turbulence model is
selected) and

• The Set-up o f the Initial Guess.

3.9.1. The Solver Execution Panel Appearance

The ‘Flow Param eters’ Panel
When first opened the SE Panel appears showing the various options categorised
as Flow Parameters. Figure 100 shows a typical example for the ANSE-CFDS
structured solver. The options in this panel are generally regarded as defining the
overall physical constants that are independent of the numerical scheme used in
the solver. Examples of these are the specific heat capacity o f the fluid, the
universal gas constant, etc.

Solver Controls & Execution QJersion 2.0) MO
Solver C ontrols: Flow Parameters Set Panel to defaults

PO 230400

TOj305.5

C p| 1004.8

RGAS| 287

Omega 0 Rotation Speed (rad/sec)

Apply Execute Solver Export Files Reset Close
.

Figure 100 - The ‘Flow Param eters’ Panel for the CFDS solver

The ‘Runtime Control’ Panel
The Runtime Control Panel contains the options that control the numerical
operation o f the particular solver. Examples o f these options are:

• Number of iterations,
• Relaxation Coefficients (such as CFL) and
• Multi-grid control options.

Figure 101 shows the Runtime Control Panel for the CFDS solver.

95

C h a p t e r 3 : PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Solver Controls & Execution (Version 2.0)

Solver C ontrols: Runtime Control —< j Set Panel to defaults

Number of TimeSteps [Ti Steps / R estart File | 2500

CFL Number 0 .4

CFD Model: ^ Turbulence Laminar

SMU2 0.01 Second and fourth
----------------------------------- O rder Smoothing

SMU4 0.01 Coefficients

Laminar Viscosity: Constant Sutherland Law

ViscA:| 4e-07 ViscB: | 0.68

Grid Type: SingleGrid M JtiGrid

Grid C ycle: ■A y v W No. Levels: I

Apply Execute Solver Export Files

Figure 101 - The ‘Runtime Control’ Panel for the CFDS solver

The ‘Turbulence Model’ Panels
The Turbulence Model panels allow the user to control which turbulence model is
used by the solver. Having chosen a turbulence model, the various parameters that
fine-tune this model can then be altered. For the CFDS solver, there are three
turbulence models available:

• Mixing-Length turbulence model,
• k-c turbulence model and
• k-/ turbulence model.

The CFDS panels for these options are shown in Figure 102, Figure 103 and
Figure 104.

f Solver C ontrols & Execution QJersion 2.0) • □

Solver C on tro ls : Turbulence M odel Set Panel to defadts

T urbulence M odel: ^ Mixing Length k - E v k - l

j Typical Flow P a ssa g e W idth / Height 0.02641 (m etres)

T urbulence In tensity (%) 3 .5

OR

I v ' Free stream Mixing length J

Wall F u n ctio n s: Spalding Approach Denton Approach

Maximum perm issib le u t fac to r 500

Apply Execute Solver Export Files Reset Close

Figure 102 - The Mixing-Length
Turbulence Model Panel

[Solver Controls & Execution QJersion 2.0) ____ i v Q

Solver C o n tro ls : Turbulence M odel Set Panel to defadts

Turbulence M odel: Mixing length k - E k -

Typical Flow P a ssa g e W idth / H eight 0 .0 2 6 4 1 (m etres)

High Reynolds Wall Function
R eynolds Setting :

Low Reynolds

T urbulence In tensity (%) 1 3 .5

OR

v* Freestream Mixing Length |

F reestream V elocity: i 0

Apply Execute Solver Export Files Reset Close

Figure 103 - The k-s Turbulence Model
Panel

96

C h a p t e r 3: P R O M P T -A n i m p l e m e n t a t j o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

| Solver Controls & Execution (Version ZO)

Solver Controls: Turbulence Mode1 Set Panel to defaults

Turbulence Model: Mixing Length k - E k - l

Typical Flow Passage Width / Height | 0.02641 (metres)

Turbulence intensity (%) 3.5
OR

Freestreain Mixing I ength |~

Apply Execute Solver Export Files Reset Close

Figure 104 - The k-/ Turbulence Model Panel

The ‘Initial Guess’ Panel
In order to converge, a number o f solvers need to start from an initial solution that
is not too far from the final solution. Often this can simply mean that the whole
domain is filled with the free-stream values. For some, more complicated flows,
constant values throughout the domain are not sufficient and profiles o f values are
necessary. For a solver that only needs constant values, the panel may look
something like Figure 105, whereas for the CFDS solver which often needs
profiles of values the panel is shown in Figure 106.

Solver C ontrols & Execution (Version 2.0)

Solver Controls:

Parameters: U l

Mesh Blocks Mesh I Planes

J t HI V "

A(0.757034
A(0.77193)
A(0.78422)
A(0.794361
A{0.802728

Add I DeleteA-Plane 0.71709B

Min(A): 0 Max(A): 2.10617

Apply Execute Solvi

Set Panei to defaults

Copy Profile 1 Paste Profile IAft
2-D

B: I

Add
Max C: 3
Max B: 1.5708

Export Files

Figure 105 - An ‘Initial Guess’ Panel for Figure 106 - An ‘Initial Guess’ Panel for
constant initial values profiles of initial values

For panels that allows the definition of constant initial values, the only input that
is necessary is a number for each o f the solver variables. For panels that require
the user to define profiles o f values, the operation is the same as that described for
defining profiles of boundary condition values in the previous section.

3.9.2. Solver Execution Mechanism
Once all o f the parameters have been entered, the next stage is to actually execute the
required solver. In general, as a solver completes each iteration, it produces a trace log of
its convergence. This is normally in the form of a table of numbers where the rows are

iDefadiViewC onstant

Solver Controls & Execution (Version 2 0) 1^1
Set Panel to defadts

Copy Profile Pe^te Profile 1

Add j Remove
Max C: A
Max B: 1.5708

Solver Controls:

Parameters: U l

Mesh Blocks

Velocity:
A-Plane 0 Add | Delete M inC:0

Min(A): 0 Max(A): 2.10617 Min B: 0

Execute Solver Export Files

97

C h a p t e r 3: PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

the iterations and the columns contain various residual values. A typical example o f this
is shown in Figure 107.

l«a xterm

E2 B ? mm
USw■Fj.- M/T

Jwp. K PP C Bp P
PiF P 1

pf? B 3 B '3m
Irfv

P i B jB
PI? P^p B /□ P m

P p P J p rfl
TPrt~p pu B j p m

pfr B ‘a P B
H r B 7.5 p P

i' (P ; p p
p ;; bF *
P 1 B < P v w ppB

1 'iff 1 ■ PjT P c P vj
jw W fjtfw P 3 P tbp Tf

If ‘I'M P t p
fAa I* B B| * B jlB ’■ pB * jfTj p

EH P amm
P IP o j

'Jf or t . 9 1 (SHU B H
Figure 107 - A typical convergence history log of a solver

Traditionally this log was examined periodically to see if the solver was converging to a
solution or diverging. In PROMPT, this periodic examination is performed automatically
and a set o f convergence plots is continuously updated on the screen. Figure 108 shows
an example o f this for a typical execution o f the CFDS solver.

Figure 108 - A typical set of Convergence History Plots for the CFDS Solver

In order for PROMPT to be able to do this, without requiring the solvers to be modified
in any way, it is necessary for PROMPT to be able to gain access to the log being output
by the solver. The most obvious way of performing this is for PROMPT to periodically
open the log file, read the entire file and then update the display. Unfortunately, this
approach has a number of flaws:

• Since the solver may have this log file continuously open for writing some systems
may not allow the file to be opened by another process for reading.

98

C h a p t e r 3: PROM PT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v /n g E n v i r o n m e n t

• When a large number of iterations have been performed, opening the file and reading
its entire contents every time the graph is updated will place a load on the processor,
thus inducing a performance penalty on the solver.

• Determining the frequency at which the solver log file should be read is difficult since
the time it takes to perform one step can vary considerably with the type of solver and
the size o f the problem.

In order to solve the above problems a mechanism called a named pipe is used. This
method effectively allows PROMPT to read the history log produced by the solver
directly without creating an intermediate file. The first step is to create a special kind of
file (called a FIFO) with the same name as that used by the solver. PROMPT then opens
this file for reading and, when executed, the solver will open the file for writing. The file
will never actually contain any data; instead, any data that is written to the file by the
solver is fed immediately to PROMPT for reading. Effectively the file is used purely as a
point for the two codes to convene. This method is shown in Figure 109.

1. JJ06 writes input files for solver

2. JJ06 creates a named pipe
with the same name as the solver log file

3. JJ06 Residual Graphs open the
named pipe for read access

4. Solver executes and opens
log file for writing.

5. As solver writes to log file, JJ06 reads
the residual data and plots the graphs.

Figure 109 - Connecting PROMPT to a solver using a Named Pipe

This approach eliminates any o f the previous three flaws:

• Clashes between PROMPT and the solver for access to the file are no longer a
problem since this is the sole purpose o f a named pipe [Stevens90].

• The named pipe means that PROMPT sleeps until data has been written to the pipe by
the solver. This is then read by PROMPT, line-by-line, in order to update the display.
In effect, PROMPT behaves as if it were reading a convergence history log once from
an extremely slow disk.

• The fact that PROMPT sleeps until data is ready to be read means that no decision
has to be made about how often the display gets updated.

Solver.log

r

99

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

When the solver has completed it will close the log file and this is signalled to PROMPT
by the end-of-file condition. This has the added advantage that PROMPT knows
immediately when the solver has finished regardless of whether it terminates after the
required number o f iterations or terminates abnormally during its execution.

3.10. Solution V isualisation and Post-Processing
Once the solver has finished and a solution obtained it needs to be analysed and presented
in a meaningful way to the user. The purpose of the Solution Post-Processing (SPP)
Module is to allow the user to define the method used to present the solution and then
traverse the large set o f solution values in order to extract the necessary information.
Most post-processing software packages contain a large number o f options to extract
features from the solution and present it in a meaningful way to the user. During the
development of PROMPT it was decided to utilise the capabilities o f Visual 3
[Haimes91a-c, Haimes98a, Haimes98b] for the following reasons:

• It contained all o f the necessary post-processing features, e.g. iso-contours, iso­
surfaces, cutting planes, vector tufts, stream lines [Darmofal92], particle tracing
[Plansky95, Haimes95], etc..

• It was very efficient in terms of both memory and performance.
• It was actively supported so new features were free.
• There were a number o f other projects within Rolls-Royce that fed into the Visual 3

system in order to enhance it.

An example o f the use o f Visual 3 is shown in Figure 110. The SPP Module also used
EQUATE (EQUATion Editor) [Jones98a] (Figure 111) developed during this project to
allow the user to enter any mathematical expression based on the generic solver variables
in order to create new variables of interest, e.g. Mach number, pressure, entropy, etc..
EQUATE is described fully in Appendix A.

Figure 110 - A typical session using
Visual 3

Solver Execution I Visualisation (Version 1.6)

Solver Variables User Defined Variables
Rho (R)
RhoU (RU)
RhoV (RV)
RhoW (RW)
RhoE(RE)
Pst (P)
TstCD

User Variable Formula Definition

Equation Type

Node-based

Built-In Functions/ Operators

x + y x - y x * y x /y x * y -x sin(x)
cos(x) tan(x) asin(x) acos(x) atan(x) sqrt(x) exp(x)

Post-processor: IUsual 3

Save Settings Execute P os t-P rocessor Integrated Param eters Close Test

Figure 111 - Defining new equations
using EQUATE

100

C h a p t e r 3 : P R O M P T- A n i m p l e m e n t a t / o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

3.11. C onclusions and Exam ple Test-C ases using PR O M PT
The aim of this section is to show how the use of PROMPT enabled the simulation o f two
test cases from Rolls Royce. In both cases the actual design engineers, for whom
PROMPT was intended, performed the entire simulation. This was in order to give a real
estimate o f the time taken for a typical simulation when performed by a user that was not
a computer specialist.

3.11.1. Agard B4 Test Case
The Agard B4 single nozzle (Figure 112) is one of a set of nozzle geometries in the
public domain for which experimental data exists in order to test computational
simulation results for realistic test cases.

Figure 112 - Illustrations of the Agard B4 nozzle

This geometry was simulated using a structured single-block (using hidden cells),
structured multi-block and unstructured meshes. Figure 113 shows a structured mesh
around the Agard B4 nozzle and Figure 114 shows the equivalent unstructured mesh. In
both cases the geometry is a quarter o f the whole with the structure o f the nozzle being
represented as the region with no mesh elements.

LIBRARY

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

Figure 113 - Structured Mesh around Figure 114 - U nstructured Mesh around
the Agard B4 nozzle the Agard B4 nozzle

The structured mesh was run both through PROMPT, using two versions o f an in-house
structured multi-block flow and heat transfer solver called CFDS-ANSE, and through a
commercial solver, Rampant, developed by Fluent Inc. The unstructured mesh was run
through Rampant only. The table below shows the typical run-times and memory usage
o f the four runs. It was not run through any of the in-house unstructured solvers because
they did not have the required heat transfer capability at the time.

Rampant
(Structured)

Rampant
(Unstructured)

CFDS-
ANSE 1
(Single-
block)

CFDS-
ANSE 2
(Multi-
Block)

Mesh Size (Cells) 212236 556714 93525 215858
Memory Used (Mb) 190 328 78 104
Grid Setup Time (Hours) 4 8 5 10
Convergence (Cycles) 400 400 5000 5000
Solution Clock Time (Hours) 30 100 11 22
Problem Turn-around 3 days 6 days 2 days 3 days

There are a number o f points to note about these figures:
• The meshes were generated individually for each run using a size that was

considered to give a solution with the required accuracy for the given solver.
• The memory requirements of CFDS-ANSE were considerably less than for

Rampant.
• The solution clock time was also considerably less. This coupled with the

reduction in memory usage, means that larger simulations are possible on a given
platform when using PROMPT with CFDS-ANSE.

102

C h a p t e r 3: PROMPT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

• The problem turn-around times were similar. The longer time for the unstructured
test case was caused by the excessive run-time of the solver.

Figure 115 shows a comparison between the various simulations and the experimental
results. This problem was chosen because it involved complex shock / boundary layer
interactions, and as such all o f the results stray from the experimental data with similar
degrees o f error.

External Static Pressure Coefficients - Test Case B.4.2 Row 5
M=0.938,NPR=4.02

0.4 T

0.2 -

-0.2 -

ao
-0.4 -

Rampant_struct

Rampant uns

Prompt 1 block_ml

Prompt 4 b lockm l

Prompt 4 block ke

-0.6 -

0.84 0.88 0.92 0.96 1

x lL

Figure 115 - Comparison between Solver Results and Experimental Data for the
Agard B4 Nozzle

3.11.2. Generic Engine for a Vertical Take-off Aircraft
This test case was designed to demonstrate the capability of PROMPT, with the in-house
flow solvers, to perform simulations on complex geometries. Figure 116 shows the
geometry o f the test case.

103

C h a p t e r 3: PROM PT - A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v i n g E n v i r o n m e n t

f

Figure 116 - The Geometry of the Vertical Take-Off Engine

The simulations were performed using only an unstructured, inviscid mesh (Figure 117)
due to the complexity o f creating a multi-block structured mesh for such a configuration.
Only half o f the geometry was meshed in order to decrease solution clock time (Figure
118).

Figure 117 - The Unstructured Mesh Figure 118 - Solution Contours from
around the Engine the Cindy solver

The simulation was performed using both the Rampant solver and an in-house
unstructured solver, Cindy. The table below shows the run times and memory usage as
before.

Rampant Cindy
Mesh Size (cells) 78494 78494
Memory Used (Mb) 54 17
Grid Setup Time (days) 2.5 2.5
Convergence (Cycles) 200 100
Solution Clock Time 2 hours 3.5 hours

104

C h a p t e r 3 : PRO M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

With this test case, the two solvers were run using the same mesh. Here the commercial
solver, Rampant, converged to a solution in less time but required over three times the
memory of the in-house solver, Cindy. This means that, like the previous test case, larger
simulations can be performed using the in-house solvers through PROMPT for a given
platform. As can be seen in Figure 119, Cindy produces results virtually identical to those
of Rampant despite the reduced memory usage.

Pressure Distribution at Turbine Exit Station
1.20 - -

1.15 x

1.10 ^
c 1.05
a>
E^ 1.00 TOOo

Q. 0.95

0.90

0.85

0.80 4------------ ■{--------------1-------------- (--------------1--------------1
0 60 120 180 240 300 360

Circum ferential Position (degs)

Figure 119 - Pressure Distributions from the Two Solvers

3.11.3. Conclusions
As stated at the beginning of this chapter, the design requirements of PROMPT were to:
• Enable CFD computations fo r Nozzle / After-body configurations to be prepared,

initiated and examined within an intuitive workstation environment by non-specialist
personnel.

Feedback from the design engineers that actually use PROMPT on a day-to-day
basis is positive. This has been reinforced by the considerable interest shown in
PROMPT by a number o f other groups within Rolls Royce, namely:
• LP Compression Systems
• Radar Cross Section (RCS) and Infra-Red (IR) Assessment
• Civil Powerplant Group to perform analyses of installed nacelles and
• Turbine Blading Group.

• To allow meshes from a range o f sources to be submitted to the Rolls Royce
production solvers thereby avoiding the memory and CPU time overheads
characteristic o f commercial codes.

Meshes have been imported from a number of sources including GeoMesh
(Fluent Inc.), ICEM CFD, Sauna (DERA) and in-house mesh generators from
Rolls Royce. These meshes have been successfully processed and passed to a

105

° Ram pant

ANSE

M
ac

hi
ne

M

em
or

y
R

eq
ui

re
m

en
t

(M
b)

C h a p t e r 3 : PR O M PT- A n i m p l e m e n t a t i o n o f a P r o b l e m S o l v in g E n v i r o n m e n t

number o f in-house structured and unstructured solvers. The results have then
been post-processed using the Visual 3 library within PROMPT. The memory
overheads when using the PROMPT approach as opposed to commercial solvers
are illustrated in Figure 120 '\

• To enable exploitation o f the best o f current and future in-house, commercial and
University mesh generation and solver developments.

The modular structure of PROMPT has enabled the integration o f further solvers
and mesh generators from University o f Wales Swansea, Oxford University
Computing Labs and Loughborough University after the end o f the PROMPT
project in further support projects.

• To dramatically reduce the time needed to apply CFD to nozzle / after-body
configurations.

The turn-around times of the two example test cases shown above are of the order
o f a few days. That is a significant reduction compared with the turn-around times
that were measured in weeks when the PROMPT project started.

• To minimise cost and lost time arising from pre-processing errors.
This has been shown to have been achieved through the reduction in turn-around
time and the fact that this was achieved by the actual design engineers rather than
specialist computer personnel.

• To provide portability across SGI and Hewlett Packard workstations.
The use o f industry standards such as ANSI C, OSF Motif and Open GL have
ensured portability between all of the major UNIX vendors.

1000

T x p i c a l i v o H v S l a l i o n i ^

sMJNAl xnse

100

sC
M esh Size (Cells)

Figure 120 - An Illustration of the Memory Usage for the various Solvers

1:1 E xtracted from the brochure titles ‘A pplied Research Package 07b M ilestone M83501 R eview ’

106

C hapter 4. PSUE II - A Par a llel Pro blem -
So lving En viro nm en t

4.1. Introduction
The previous chapter described a Problem Solving Environment called PROMPT that
was developed with funding from Rolls Royce and DERA. The purpose of PROMPT was
to enable simulations to be performed quickly and easily by the end-user engineer on
aerospace components such as nozzle after-bodies, turbine blades, etc. This was achieved
by embedding the numerical algorithms already available in these two companies within
a user-friendly environment that hid all of the complexities of problem set-up and post­
processing from the end-user.

During this time, another environment, called PSUE (Parallel Simulation User
Environment) [Turner-Smith96a, Tumer-Smith96b, Marchant96, Tumer-Smith98,
Weatherill99, ZhengOO], was being developed within a large European ESPRIT project
called CAESAR [Risk96]. This environment had very similar aims but was targeted at a
more general-purpose market and used the unstructured grid technology available within
University of Wales Swansea.

Both of these environments were very successful at achieving their objectives, but near
the end of their development it became clear that there was a growing need for a general-
purpose PSE that could handle much larger simulations than could be performed on a
single workstation. To address the problem a follow-on project to CAESAR was
conceived called JULIUS [RowseOO] in which an integrated PSE would be developed
which contained all of the numerical tools necessary to perform very large-scale
simulations fully utilising parallel computer hardware.

This and the next two chapters describe the developments that took place in order to
produce such an environment. This chapter introduces the aims of the work along with
some of the initial design decisions that had to be made before any development could
commence. The next chapter then continues with a description of the initial
implementation of the PSUE II [JonesOO, WeatherillOOa, WeatherillOla, WeatherillOlb,
Weatherill02]. The third chapter then continues with a description of the improvements
made to Version 2 of the PSUE II.

4.2. C ontext o f PSUE II w ithin the JU LIU S Project
The JULIUS Project (ESPRIT 25050) was a large European project involving many
partners, both in the form of large industries and smaller research institutions16. The aim
of the project was to produce a seamless environment in which the end-user engineer can

16 The partners involved in the JULIUS project were BAE Systems (UK), EADS (Germany), Dassault
Aviation (France), ESI (France), Genias (Germany), IPK (Germany), University of Wales Swansea (UK),
University of Oxford (UK), SMR (Switzerland) and NAG (UK).

107

C h a p t e r 4 : P SU E II - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

focus more creatively on their design goals rather than on the software and hardware
complexities o f managing computational simulations on parallel platforms.

Consequently, its objectives were:

• To develop an integrated functional HPCN environment for simulation in multiple
disciplines,

• To provide and demonstrate HPCN tools and engineering simulation tools that
efficiently work together in this environment,

• To put developments in place to remove the major limitations and bottlenecks in
engineering simulations and

• To demonstrate the entire system working with embedded applications software for
realistic, industrial problems.

The resulting environment was named 6S (Sixth Sense) and was designed to have a
modular structure into which 3ld-party applications could be integrated.

CAD
Import

CAD
R epair

CAD
S y ste m

M esh
G eneration

M esh Quality
A n alysis

V isualisation
and Interaction

D ata Extraction and
P o s t-P r o c e ss in g

Flow
S olver

Equation
S o lv e rs

CEM
S o lv e r

M EM-COM D a ta b a se M an ager

Figure 121 - A Schematic of the 6S Environment showing the data flows

Figure 121 shows a schematic illustrating both the various data flows through the 6S
Environment and the individual modules that were combined to form the environment.
Although this gives a good indication of the size and complexity o f the structure o f the
environment, it does not show the structure in terms of how the end-user would see it.
Obviously, if an environment is to appear seamless to the end-user it needs a central
focus in which most, if not all, of the user interaction takes place. The PSUE II (Parallel
Simulation User Environment 2) performs this central role. Its generic functionality
encompassed the modules developed by the University of Wales Swansea, with the
remainder being linked in as 3rd-party modules in a seamless manner. As can be seen in
Figure 122, this provided a central focus to 6S encompassing the following functionality:

• Visualisation and Interaction with the various data sets involved in a computational
simulation,

• Mesh Generation [Weatherill94a, Hassan96, WeatherillOOb, LarwoodOl],

108

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

• Equation Solving (both CFD [HassanOl, SorensonOl] and CEM [Hassan02,
MorganOO]),

• Mesh Refinement [Weatherill94b] and
• Integration of 3rd party applications.

Proprietary IGES ^ CAD
C ad S y s te m File R epair

O ptim isation
P r o c e s s e s

C FD CEM
S o lv e rs S o lv ers

=» How Sofver

Number of Time-Steps (1000): p"a00™"™"

Gamma (1.4): [1.4

Parallel Solver — J
An Front-End

Vaw Angle (0.0): [8.0

□ Rev»t horn Kiving solution

Exec ire Solver | Close

PSUE II
P**o rmt S*l*e»d Ptrtorm.

!hc.jg

Parallel
avrmwtan Platform

Configuration
a 1 .a !

Z rtm t Cancel

Main PSUE
WindowSurface Mesh

Generation
Front-End Parallel Volume

Mesh
Generation
Front-End

Parallel Mesh
Quality Analysis

MEM-COM D a ta b a se M anager

Figure 122 - A schematic showing the logical layout of the 6S Environment

4.3. The R equirem ent for a Parallel Environm ent
Although Problem Solving Environments, such as PROMPT, do enable the spread of
computational simulation software into the domain of the traditional engineer, there is an
inherent limitation on the complexity of simulation that may be performed. This is due to
the architecture of the environment being designed to run exclusively on a standard
graphical workstation. This isn’t a problem when simulating the behaviour o f individual
components where the size of the meshes involved is small, such as turbine blades in the
aerospace industry.

However, as the use of such environments becomes more commonplace, there is an
increasing requirement to be able to perform simulations using meshes of a much larger
magnitude. This increase in size has come about in two ways:

109

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Simulating Larger Portions of the Problem
When engineers became accustomed to the benefits of using computational
simulation in the design o f turbine blades, it was natural to want to apply the same
techniques to the design o f the whole engine. Moving to the airframe, engineers
began using computer simulation to design aircraft wings, which then naturally,
led to the requirement to simulate the entire aircraft.

The Strive for Increased Accuracy
As computational simulation was used for geometries that were more complex,
there was a need to capture smaller features of the solution more accurately. In
CFD, for example, this has led to inviscid simulations being replaced by viscous,
turbulent calculations, which, in turn, require much larger meshes.

4.3.1. An Example: The Equation Solver
As numerical simulations are getting larger and more complex, they place a huge burden
on the available computational resources. Despite this, the requirement for rapid turn­
around of solutions is still paramount. Ideally, a turn-around time from a given geometry
to the solution should be o f the order o f a few days. In terms of computer time, by far the
most expensive section of the whole process is the equation solver. It is, therefore,
essential that as simulations get more complex that special attention is paid to the run­
time of the solver.

Figure 123 and Figure 124 illustrate some typical scenarios of large simulations along
with their required mesh sizes and computational demands for the solver [Hassan02]. The
figures are based on performing a simulation over an entire aircraft configuration.

CEM
1024

■1GHz U nsteady N.S.Turbuleni
25 6

CEM
500MHz-

'Laminar

' CEM
350MHz-

Num ber of
P ro cesso rs

U nsteady
Euler .Euler

64 hours1 hour 4 hours 16 hours4 .5 15
m ins m ins

Estim ated Simulation Time

Figure 123 - Estimated Execution Time for Typical Simulations

110

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Log(NoN)
4

11

10

LES

o

Lam inar

o
Euler

o

Physics C om plexity

LogfNoN)

11

10

I _ _
a25 050 1.0 2.0 4 .0 &0

(b) CEM

Frequencv(Gffe)

(a) CFD

Figure 124 - Typical Mesh Size for Simulations on a Complete Aircraft

This clearly shows that, even without considering linking together multiple simulations,
as the simulations get more complex, the size o f the meshes involved and the demands
the solvers place on the available computing power increase dramatically. Therefore, it is
obvious that if state-of-the-art calculations are to be performed on a regular basis then
considerable computing power is required; far more than can be obtained using a
standard workstation / PC. For these types of calculations it is clear that parallel
computing platforms cannot be beaten in terms o f performance (for dedicated parallel
computers) or performance / cost ratio (for clusters of networked workstations / PCs).

As mentioned in a previous chapter, in order to design a module, such as a solver, for a
parallel computer, the most scalable, and certainly the most flexible, strategy to use is the
message-passing paradigm, which assumes a distributed memory architecture. This
means that the data sets on which the solver operates must be split amongst the various
processors. Each processor can then spend most o f the time working on its own sub-set of
data producing a local solution, only occasionally passing data along a network between
the processors to complete the global solution. A typical sequence of operations is shown
in Figure 125.

I l l

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Solver P r o c e s s 1 S o lver P r o c e s s 2

Compute solution on boundary nodes
(including partial solutions in nodes

neighbouring another domain)

Compute solution on boundary nodes
(including partial solutions in nodes

neighbouring another domain)

Compute solution on all interior nodesCompute solution on all interior nodes

Load Mesh Partition Load Mesh Partition

Send partial sums of interface nodes
to neighbouring domains

Send partial sums of interface nodes
to neighbouring domains

Receive partial solutions from
neighbouring domains
to complete solution

Receive partial solutions from
neighbouring domains
to complete solution

Figure 125 - Typical sequence of operations within a Parallel Solver

The methods used inside the PSUE II to split the various data sets are described in
Section 4.4, titled ‘Distributing the Data-Sets’.

4.3.2. An Initial Parallel Problem Solving Environment
An initial extension to the architecture of a PROMPT-like environment could be
implemented by leaving the graphical front-end o f the environment running on the
graphical workstation but move the computationally expensive modules, such as the
solver or mesh generator, to the parallel computer.

This would be a simple extension just requiring the addition of a facility to execute
modules either locally or remotely on another computer. In this environment, each
module is treated as a black box by the PSE, just requiring an indicator as to whether the
module should be executed locally on the workstation or remotely on the parallel
computer. The extra work necessary for the parallel module in order to spawn n copies of
itself and partition the data set could conceivably be done by a script outside the
environment. This scenario does make the assumption that there is a common file-store
between the parallel computer and the workstation, but this can often be achieved in a
closed environment through the use of NFS (Network File System) or similar.

Although this implementation of a Parallel PSE would deliver a performance increase
over an environment that was purely sequential, the sizes of simulation are still limited to
what can be physically stored and manipulated on the graphical workstation. This is
illustrated in Figure 126 where the partitioned data sets from a parallel mesh generator
are passed to the parallel solver after the boundary conditions have been applied inside
the PSE.

112

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Figure 126 - The Bottle-neck produced by a Sequential Process

In order to be able to perform large-scale, state-of-the-art calculations in a user-friendly
Problem Solving Environment, a new architecture that utilises the power of the parallel
computer throughout the simulation process is necessary. An overview of such a structure
is shown in Figure 127.

Parallel Mesh Generator

Parallel Flow Solver

Sequential Problem
Solving Environm ent

113

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Parallel Mesh Generator

V olum e
D a ta S e ts

R en d e rin g D ata

Parallel Problem
Solving EnvironmentV olum e

D ata S e ts

Parallel Flow Solver

Figure 127 - The PSE with no Sequential Bottlenecks

Here, the same steps are performed except that the actual PSE runs on the parallel
computer, thus removing any sequential bottlenecks. This means that the partitioned data
sets are never recombined which, in theory, limits the size of simulation that can be
performed to the size of the parallel computer.

4.4. D istributing the Data-Sets
The four major data sets used within a PSE are the geometry, the surface mesh, the
volume mesh and the solution. This section will begin by describing, in the usual order of
creation, how each of these four data sets are stored as global entities. Afterwards, the
manner in which these four data sets are partitioned will be described.

4.4.1. Sequential Geometry Format
The first data set to be created during the simulation process is the geometry. In fact, the
actual creation of this data set is often deemed to have occurred before the simulation
process begins. Regardless of which geometrical representation was used to construct the
geometry it must be converted to use a Boundary Representation (BREP) model based on
a Ferguson patch representation [Hassan99a, Hassan99b] before it can be imported into
the PSUE II.

114

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

This form of representation is constructed from three main entities; surfaces, curves and
lopological information. The combination o f all three allows the construction of a
watertight model on which mesh generation can be performed. Figure 128 shows a
simple example consisting of half a sphere adjoining a flat plane.

Figure 128 - A simple geometry illustrating its components

As illustrated, the main structure of the geometry is made up of the two parametric
surfaces (red). In order for the model to be topologically valid, a number o f curves (blue)
must also be present to denote the boundary o f the surface on which they appear. In order
to be topologically valid and form a closed domain the following rules must apply:

• Each curve must be associated with two, and only two, surfaces.
• Each trimmed portion of a surface must be completely bounded by a whole number of

curves.

The resultant surface mesh is shown alongside. This illustrates how the curves that
interface the half sphere and the plane cut a disc out of the plane in order to form a
watertight solid. The generation o f the volume mesh would produce a solid half-sphere.

Figure 129 illustrates the concept of trimming portions of a surface. Here the two half­
spheres trim a halo out of the plane with the resultant volume mesh producing a hollow
half-sphere.

115

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Figure 129 - A More Complex Geometry illustrating the concept of Trimmed
Surfaces

In order to complete the description o f the geometry, topological information is needed to
associate the curves and surfaces in order to produce valid volumes. This is simply stored
as a sequence of pairs, one for each curve, with each pair representing the two surfaces
associated with it.

4.4.2. Sequential Surface Mesh Format
In its simplest form, the surface mesh approximates the surface o f the original geometry
with a collection of 2D linear elements (triangles and/or quadrilaterals). Together, they
completely enclose the one or more domains in which the volume mesh will be
generated. These elements are stored in two parts using a standard connectivity table. The
first table stores the coordinates at the vertices o f the elements. A second table is then
used to define the elements by specifying their vertices using the indices from the
coordinate table.

However, during the surface mesh generation process the mapping between the geometry
surfaces and curves, and the surface mesh is created as a by-product. This information
comes in the form of a set o f tables, one for each surface and curve. Each table lists the
nodes in the surface mesh that lie on the particular surface, or curve, and their respective
parametric coordinates, (w,v) pairs for surfaces and u coordinates for curves. This
information is stored alongside the surface mesh since it is both very useful during later
stages of the simulation (e.g. calculating normals at mesh points or point projection
during mesh refinement), and difficult to compute at a later stage.

116

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

4.4.3. Sequential Volume Mesh Format
The sequential volume mesh format is very similar to the surface mesh in that it
represents the mesh as a collection o f vertex coordinates and elements referencing the
appropriate coordinates. The volume mesh is described using three tables. The first lists
the coordinates o f all of the vertices in the mesh. The second references the vertex table
in order to define the volume elements (tetrahedral, pyramids, prisms and hexahedra).
The final table defines the surface elements (triangles and quadrilaterals). These are
defined in exactly the same order as the surface mesh data format and contain three sets
of data:

• Face - Node connectivities - These refer to the nodes o f the volume mesh instead of
the surface mesh.

• Surface Number - As with the surface mesh, this contains the geometry surface on
which the face lies.

• Parent Element - This references the volume element on which this boundary face
lies.

This small amount of duplication provides a convenient path from the volume mesh back
via the surface mesh, through the duplication o f surface elements, to the geometry,
through the inclusion of the parametric coordinates o f the surface nodes in the surface
mesh format. This path is illustrated in Figure 130.

Coordinates

Surface
Parametric Elements:

HHM

Surface
Grid

Surface Volume
Faces Grid

Figure 130 - The Path from the Volume Mesh back to the Geometry via the Surface
Mesh

4.4.4. Sequential Solution Format
The solution data set is the last o f the major data sets, and has the simplest structure. The
solution data set falls into one of two categories based on whether it is overlaid on a
surface or volume mesh. Regardless of the type, it simply consists of a set o f tables, each
containing the values of one variable at each of the nodes in the surface or volume mesh.

117

C h a p t e r 4 : PSUE I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

4.4.5. Partitioned Geometry Format
Although the geometry is often the smallest of the four main data sets in the simulation
process, for complex configurations the number o f surfaces and bounding curves can be
very significant. As an example, Figure 131 shows a model of the F16 fighter jet and the
Airbus A3XX, both of which consist of over 500 parametric surfaces and over 1000
curves.

Figure 131 - Examples of Complex Aerospace Configurations

Performing calculations, or searches, on geometries of this size can be quite time-
consuming. It is therefore, for speed, rather than memory capacity, that these geometries
are partitioned and stored on the parallel computer.

As mentioned previously, a geometry is composed o f three main components: surfaces,
curves and topology information. When partitioned, the surfaces are spread amongst the
processors, as are the curves. The topology information is then partitioned in a manner
such that every surface knows on which processors the curves that surround it reside, and
each curve knows which processors contain its two adjacent surfaces.

It is acknowledged that partitioning a geometry surface by surface is not an ideal method
for partitioning in terms of load balancing, as compared to splitting individual surfaces
and/or curves amongst processors, but it does have some major advantages:

• The partitioning algorithm is extremely quick and simple.
• There are usually many more surfaces and curves than processors, so by distributing

the largest entities first, a pseudo-load balancing is achieved.
• Many operations performed on geometries require information about a whole curve

or surface at a time so performing a distribution where these entities are kept as a
whole reduces inter-process communication to a minimum.

4.4.6. Partitioned Surface Mesh Format
Invariably surface mesh generators generate surface meshes by placing points along the
bounding curves and then discretising the individual surfaces in a sequential manner.

118

C h a p t e r 4 : PSUEI I - A P a r a l l e l P r o b l e m -S o l v in g E n v ir o n m e n t

This allows the surface mesh to be easily partitioned in a similar manner to the geometry
data set, in that collections of surface elements are grouped together depending on which
geometry surface they were generated. These are then distributed as whole entities in the
same manner as the actual geometry surfaces. This has the same disadvantage in that load
balancing may be far from ideal but also has similar advantages:

• The partitioning algorithm is quick and simple.
• There are usually many more surfaces than processors so a pseudo-load balancing can

often be achieved.

It should be noted that although the surface mesh is sub-divided based on the original
geometry surfaces, the partitioning algorithm would invariably not place corresponding
geometry and mesh surfaces on the same processor. This is because a more complex
surface description does not necessarily result in the generation of a large number of
surface mesh elements. For example, a symmetry plane will often have a very large
number of surface elements generated on it but, geometrically, it is a very simple entity
defined using only four points.

4.4.7. Partitioned Volume Mesh Format
The partitioned volume mesh is by far the largest of the four major data sets. In fact, as
could be seen from Figure 124 the size of this data set can easily reach many 100’s of
Megabytes. Due to its size, and the fact that it is the primary data set for many of the
parallel modules, it is the most important data set to be partitioned for use in a parallel
environment.

Obviously, the volume mesh could not be partitioned in the same manner as the surface
mesh since the majority of the elements do not touch any surface so a new strategy had to
be adopted. It became obvious, looking through the literature, that there have been many
algorithms developed over the years for partitioning volume meshes in preparation for the
execution of parallel solvers [Hsieh95, Karypis98, Karypis02, Walshaw97, WalshawOl,
Walshaw02a, Walshaw02b]. Despite the wide variety of methods, they all have a number
of common goals:

Balanced Partitions
If a number of processors are all performing the same operations on a sub-set of
the mesh then it is obvious that these sub-sets all need to be approximately the
same size in order to make full use of processing power. If partitions are
unbalanced then processors operating on the smaller partitions will finish sooner
than the larger partitions and will wait for the larger partitions to finish. For
example; given a small mesh consisting of just 16 elements partitioned into 4 sub-
domains, Figure 132 shows a plot of processor usage per solver iteration when the
partitions are balanced, each with 4 elements. Figure 133 shows the same plot
when the partitions contain two, eight, two and four elements respectively.

119

C h a p t e r 4: P S U E II- A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

Iter 1 i Iter 2 j Iter 3 j Iter 4 1 Iter 5

S la v e 1

S la v e 2

S la v e 3

S la v e 4

0 Run-Tim e of Solver (s e c s) 20

Figure 132 - A solver running with 4 balanced partitions

Iteration 1 I Iteration 2 j Iteration 3 j Iteration 4 \ Iteration 5

S la v e 3

S la v e 4

□ □ □ □ □

□ □ □ □ □
l_l [3 □ □ □

0 8 Run-Tim e of Solver (s e c s) 32 40

Figure 133 - A Solver running on 4 unbalanced partitions

Minimum Communication
When a process needs information from a neighbouring partition, that data needs
to be transferred between the two processors along a network. Depending on the
type o f parallel computer, the speed at which this can be achieved can vary from
approximately lOMb/s, for a network o f clustered PCs, to over lOGb/s for
dedicated connections inside an MPP (Massively Parallel Platform) such as the
Cray T3E [CraylncOl]. However, regardless of the speed o f this connection, it is
not comparable to the speed of the actual processor so minimising communication
is still o f fundamental importance. Therefore, an ideal partitioning of a mesh
minimises the number o f interface nodes.

The structure in which the partitioned mesh is stored on each processor was largely
determined by the requirements o f existing parallel solvers. This is illustrated in 2D in
Figure 134. Here, the mesh is sub-divided so that each partition always contains complete
elements. This is done in a similar manner to a jigsaw where, if the partitions were solid
objects, they could fit back together again to form the original mesh. This has the side
effect that nodes along the boundaries formed by the partitioning process (interface
nodes) are duplicated in each partition.

120

C h a p t e r 4 : P S U E I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

For each partition, a set o f communication tables exist, one for each neighbouring
partition; where each table contains pairs of node indices, the first being the interface
node in the local partition and the second being the node index of the coincident point in
the neighbouring domain. The ordering of the nodes in these tables is also significant.
Each process lists its interface nodes in the same order as its neighbouring partitions. This
allows the sending process to pack any data that needs to be sent to its neighbours by
simply traversing the communication tables. The receiving process then unpacks the data
by simply traversing its own communication table. This allows bulk data to be
communicated without the need to send neighbouring node numbers.

Partition 1 Partition 2

Partition 2
Partition 3
Partition 4

0 0 0 3

5,4

4 ,6

3,2

Partition 3

0 3 0 2

4 ,6 1,5

6 ,5 4 ,3

2,3

0 0 3 2

6 ,4 1,1

5 ,6 6,3

3 ,2

Partition 4

3 2 2 0

4 ,5 1,1 5,1

6,4 3 ,6 3,4

2 ,3

Figure 134 - Communication Structure between Mesh Partitions

This information, along with the partitioned meshes, are all most parallel modules need in
order to perform their calculations. For modules that need to link back to any geometrical
information a link between the surface meshes o f the partitions and the original surface
mesh is needed. Due to the introduction of extra surface faces on inter-partition
boundaries the surface mesh for a partition is no longer an exact duplicate of the original
surface mesh. This is overcome by the existence of a set of tables, one for each partition,
that map between the surface node numbers of the partition and their corresponding
nodes in the original surface mesh. This link is shown in Figure 135.

121

C h a p t e r 4 : P S U E I I - A P a r a l l e l P r o b l e m - S o l v i n g E n v i r o n m e n t

P a r t i t i o n 2

P a r t i t i o n 6
P a r t i t i o n 4

Partition 1 Partition 2 Partition 3 Partition 4

6 15 14 15

11 13 3 5

5 3 12 9

1 4 9 7

7 2 8 14

10 9 2 1

Partitioned M esh Partition - G lobal S u r fa c e M esh

Figure 135 - The link between Mesh Partitions and the Original Surface Mesh

The aim of the Parallel PSE is to always store and operate on these volume meshes as
individual partitions since they are considered too large to ever be combined into one
global mesh.

4.4.8. Partitioned Solution Format
The partitioning o f a solution data set depends heavily on whether it is associated with a
surface or volume mesh. Regardless of its type, the solution data set is always partitioned
in the same manner as the mesh data set on which it is based.

4 .5 . S u m m a ry
This chapter has described the requirements and basic design considerations of the
parallel PSE called the PSUE II. Chapters 5 and 6 continue the theme by describing the
challenges facing the design and implementation of such an environment in greater detail.

G lobal S u r fa c e M esh

122

C hapter 5. T he Im plem entation of the

E n v ir o n m e n t (PSUE II vl.O)
Chapter 4 introduced the basic requirements of the PSUE II along with the definition of
the major data sets. Before it was possible to implement a PSE that could handle
simulations with many 10’s of millions of elements, a number of key issues need to be
addressed:
• The method used to enable the real-time visualisation and interaction with these very

large data sets,
• The facilities utilised to provide the internal data communications within the

Environment.
• The use of these communication facilities to control the overall flow of operations

between the various modules of the environment.

5.1. Visualisation and Interaction Issues
As with PROMPT, the ability to visualise and intuitively interact with the various three-
dimensional data sets throughout the entire Computational Simulation process is o f
fundamental importance. Obviously, the techniques used within PROMPT to visualise
moderate data sets on one workstation do not lend themselves well to visualising very
large data sets distributed across multiple processors. In order to provide real-time
visualisation and interaction capabilities with this type of data requires the algorithms to
be modified in order to both make efficient use of the extra performance available on the
parallel platform, and the rendering ability of the graphics workstation.

Unfortunately, unlike many parallel, number crunching algorithms, the Visualisation
Process is a prime example of Amdahl’s Law [Amdahl67]. This is due to the necessary
existence of the single graphics workstation with which the user interacts with the model.
This means that no matter how many processors are available on the parallel platform,
the graphics workstation always introduces a sequential bottleneck.

5.1.1. The Visualisation Pipe-Line
The visualisation process is often described in terms of a pipeline, i.e. a process
consisting of a number of stages in which the output from one stage is used as the input to
the next. Before we can attempt to parallelise this pipeline, a clearer understanding of the
various stages is required.

One possible breakdown is shown in Figure 136. This representation defines the pipeline
as a three-stage transformation that uses the Data Reduction Process, the Rendering
Process and the Imaging Process to convert the volume data sets to a rendered image on
the display.

123

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE II vl.O)

J
Raw Data Geometry Data Plot Commands Image Data

i____________ 1 1____________ *_i____________ *
Tesselation Rendering Imaging

Process Process Process

What is to be How it is to Draw
drawn be drawn it...

Converts the Translates the Executes the
Raw Data into primitives into commands

geometric plotting to produce
primitives commands the image

Figure 136 - The Visualisation Pipe-Line

□
" J *

Move x,y
Draw x,y
Draw x,y
Draw x,y

The Data Reduction Process
This involves the conversion of the raw data sets into a number of sets of simple
geometric primitives, e.g. points, straight lines, triangles or planar quadrilaterals.
The operations that are executed in order to perform this conversion are wholly
dependent on the chosen representation of the data sets.

For example, if the data set represents a geometry then it invariably takes the form
of a series o f co-ordinates and/or coefficients which define the parametric form of
a patchwork o f bi-cubic surfaces (e.g. Ferguson Patches, NURB surfaces, etc.)
which, together, form the boundary surface o f the model. With this representation,
the Data Reduction Process involves calculating the approximation of the curved
surfaces with a set o f quadrilaterals and/or triangles. This process always involves
a trade-off between the need to maintain a faithful reproduction of the original
surface and the need to minimise the number of generated polygons in order to
maintain an interactive frame-rate.

For an unstructured mesh, the data-sets take the form of a list o f co-ordinates of
the nodes in the mesh along with the connectivity information which defines how
these nodes are connected together to form the various surface and volume
elements which comprise the mesh. For this representation, the elements already
form triangles and quadrilaterals so no tessellation is necessary. However,
requiring the graphics workstation to render every face inside a mesh is not only
inefficient, but serves no purpose except to produce a cluttered display. In order to
reduce the number of primitives that are drawn and, at the same time, produce a
clearer picture o f the mesh, a decision is usually made to only render the

124

Ch a p t e r 5: Th e Im p l e m e n t a t io n o f t h e E n v ir o n m e n t (PSUE II v l . 0)

outermost parts of the visible mesh. The Data Reduction Process does this by
extracting only the faces that are on the boundary of the mesh along with any that
lie on user-defined features within the mesh, e.g. cutting planes, iso-surfaces, etc.

The Rendering Process
This process uses the output from the Data Reduction Process and converts the
series of geometric primitives into actual plotting / drawing commands which can
later be turned into an image. Since the Rendering Process only has to perform
operations on sets of geometric primitives, and not the multitude of original
representations, its operation is simplified considerably. The only extra
information that needs to be provided at this stage are the various appearance
attributes of the primitives. These attributes include the colour used to draw the
primitives, the detail used for rendering (e.g. sparse points representing the nodes,
a wire-frame outline or a solid, lit representation).

The Imaging Process
This process uses the plotting commands from the Rendering Process to produce
the final image on the display of the workstation. It is here that the final
transformations take place to convert the three-dimensional coordinates to a two-
dimensional screen taking into account the various zoom, translation and rotation
operations performed by the user.

So to summarise, the Data Reduction Process decides what is to be drawn, the Rendering
Process decides how it is to be drawn and the Imaging Process draws it. The distribution
of this pipeline can be thought of as partitioning these three processes between the
parallel platform and the graphics workstation. This needs to be done in a manner that
ensures the most efficient use is made of both types of computer, and equally important,
to ensure that the amount of traffic communicated along the inter-connecting network is
minimised.

5.1.2. Distributing the Visualisation Pipe-Line
In this section three approaches to the distribution of the visualisation pipe-line are
discussed; each being classified by the type of data that is transferred between the parallel
computer and the workstation.

Scenario 1 - The Image Data Transfer method
The first scenario involves the parallel computer performing almost the entire
visualisation pipeline. As Figure 137 illustrates, each processor in the parallel
computer performs the entire Data Reduction Process, the entire Rendering
Process and a significant part of the Imaging Process. As with the other methods
each processor performs these operations on the portions of the data set that
resides locally on that processor. The result is a set of images, each showing part
of the global domain. These partial images then need to be re-combined to form
the full image. This task is performed by the workstation using the z co-ordinate
(depth value) associated with each pixel in each image. This process is shown in
Figure 137.

125

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE I I vl.O)

At first, this method seems to make full use o f the both the large memory capacity
o f the parallel computer to store the original data sets and the computing power in
order to create the partial images. The amount of communication between the
parallel computer and the workstation is also purely dependent on the spatial and
colour resolution of the final images. Since the individual images are all produced
in parallel leaving the workstation very little work to do, it seems that this method
is very scalable. Another advantage is that the workstation does not need to have
an advanced 3D graphics capability. Any workstation, or PC, which could
combine a set of images, would be suitable.

o n

♦
MOVE x.y MOVE x,y MOVE x.y MOVE x.y
DRAW x.y DRAW x.y DRAW x.y DRAW x.y
DRAW x.y DRAW x.y DRAW x.y DRAW x.y
DRAW x.y DRAW x.y DRAW x.y DRAW x.y

4 * t 4

>fl l>fl l>fl l>fc
1

C om m s
Netw ork

Figure 137 - The Image Data Transfer Method

However, the Image Data Transfer scenario does have a number o f serious
drawbacks that are all related to the network that connects the parallel computer
to the workstation. As mentioned previously, the amount of data that needs to be
transferred over the network is proportional to the size of the eventual image.
Assuming the details of an average workstations display is:

• A resolution of 1280 * 1024 pixels,
• A minimum of 65536 colours (i.e. 16-bit colour) and
• A minimum z-buffer resolution for a complex model is 16 bits.

Then the amount of information required to represent one of the images is exactly
5Mb. Assuming a minimum refresh rate of 10 frames per second is needed for

126

Ch a p t e r 5: Th e Im p l e m e n t a t io n o f t h e E n v ir o n m e n t (PSUE II v l . 0)

real-time interaction then a continuous network bandwidth of 50Mb per second is
required. With this method, each processor is generating its own image of its
mesh partition that then needs to be transmitted to the workstation. Although each
image will, on average, be smaller than the complete image there will invariably
be a considerable overlap thus the total image data that is sent to the workstation
is considerably more than 5Mb. This situation gets worse as the number of
processors, and therefore partitions, increases since the amount of overlap
between sub-images also increases.

It is obvious from the above figures that this bandwidth is well beyond the
capabilities of any general purpose, departmental network and is not even
sustainable on all but the fastest dedicated networks. However, despite these
drawbacks, this method is used for the visualisation of large data sets in a number
of applications whose volume data sets consist of voxels [Hancock97, Robb99,
Sommer99, XiaoOO]. However, many of these applications either suffer from a
combination of limited resolution and / or limited frame rate, or require large
graphics super-computers such as the Onyx2 from SGI.

Scenario 2 - The Graphics Data Transfer method
The second approach attempts to move some of the workload from the parallel
computer onto the less powerful workstation with hope of reducing the required
bandwidth on the inter-connecting network. As with the previous scenario, the
parallel computer performs the entire Data Reduction Process and the Rendering
Process. However, this time, the plotting commands resulting from the Rendering
Process are transmitted to the workstation. The workstation receives a set of
plotting commands from each processor and then creates the final image by using
the 3D rendering capability found in most modem workstations and PCs. This is
shown in Figure 138.

Unlike the previous method, the workload is more evenly shared with each type
of computer utilising its strengths. The storage and performance of the parallel
computer is used to traverse the large data sets and generate the more manageable
sets of plotting commands, and the rendering capabilities of the workstation are
used to produce the image.

127

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE II v l . 0)

i

Figure 138 - The Graphics Data Transfer Method

The main disadvantage o f this approach is that the network bandwidth is now
dependent on the number of geometric primitives used to create the final rendered
image that, for a realistic geometry and mesh, can be quite considerable.
However, this problem can be solved using a combination of two methods:

1. Instead o f transmitting the plotting commands to the workstation every time
the image needs to be redrawn, they can be cached locally on the workstation.
This means that a new set need only be transmitted when the appearance of
the model is altered, e.g. drawing mode (for example, sparse to wire-frame),
colour change, cutting-plane definition, etc. When the user just alters the
viewpoint, through rotation, translation or zooming, then the cached data can
be used to redraw the model. This reduces the necessary bandwidth in two
ways; the network traffic now takes the form of occasional short bursts rather
than a continuous stream, and even if the transmission takes of the order of 4-
5 seconds, it is acceptable to the user since it only happens occasionally.

2. The number of geometric primitives that are needed to render the image can
be reduced [Cignoni98, Hoppe98, Reinhard98]. This can occur most often
with very fine mesh data sets since the number of mesh faces required to
produce an accurate solution far exceeds the number needed for rendering.
This approach also has the added benefit that it reduces the number of
primitives that actually need to be rendered by the workstation for each frame
thus improving frame-rate.

128

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE II v l . 0)

Scenario 3 - The Geometry Data Transfer method
The Geometry Data Transfer method [Haimes94, Hirsch94, Haimes97, Jones98b,
Jones98c, Jones99, Jones02] is very similar to the previous method. As can be
seen in Figure 139, this method continues the trend of moving more of the
workload on to the workstation. Instead of the plotting commands being
transmitted across the network, the actual geometric primitives are transmitted.

X Y Z X Y Z X Y Z

Do ~ b

Com m s
^ N etw ork

MOVE x,y
DRAW x,y
DRAW x,y
DRAW x,y

I

> c

Figure 139 - The Geometry Data Transfer Method

Although, at first, this method might seem identical to the previous method, there
are a number o f important advantages:

1. The amount of data that needs to be transmitted for a given set of geometric
primitives is reduced. For example, given the need to communicate 5 million
triangle primitives, the Graphics Transfer Method requires 15 million sets o f
coordinates, colours and normals to be sent, each requiring three real numbers
for representation. This requires over 5 10Mb of information.

The Geometry Data Transfer method can transmit the triangles as tables of
coordinates and connectivities leaving the workstation to traverse the data to
produce the drawing commands. The colour information can also be reduced
by transmitting a single index to a colour lookup table rather than the actual
three components (red, green, blue) of each colour. This allows the overall
data size to be reduced to approximately 123Mb. This difference is

129

C h a p t e r 5 : T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE II v l . 0)

proportional to the number o f faces that are sent so can become quite
considerable for a realistic model.

2. No material or drawing mode information needs to be sent from the parallel
computer since this can be stored locally on the workstation and inserted when
performing the Rendering Process.

3. Since only the positional and colour information of the data sets is transmitted
from the parallel computer, this need only be done when significant changes
are made to the visible portions of the data sets, i.e. mesh cutting plane,
change of solution variable, etc.. Any lesser changes, such as changing the
drawing mode from a wire-frame appearance to a lit, solid appearance can be
performed locally.

This reduction in both the amount of data that needs to be transferred, and the
reduction o f the frequency with which the communication takes place, means
that this approach lends itself very well to the process of visualising large,
distributed, unstructured data sets when used in a standard working
environment.

5.2. Internal Data C om m unication System
In order to produce an efficient implementation o f the chosen visualisation strategy there
is a need to make the most efficient use o f the slowest component of the entire system,
the inter-connecting hardware. In order to meet the original aims o f the system, that is to
be able to run on any type of parallel MIMD architecture, the communication mechanism
must be able to cope with a configuration such as the one shown in Figure 140.

Building A
Workstation Cluster

(100M-1 Gbit/s network)

Figure 140 - Possible H ardw are Scenario on which to use the PSUE II

1
Site Network
(10-100Mbit/s)

Building B
Shared Memory

Parallel Computer
Building C

Visualisation Workstation

As the figure shows, each o f the processors comprising the parallel platform must be able
to communicate with each other; and each processor must be able to communicate with
the graphics workstation. The four most appropriate mechanisms for achieving this are:

• UNIX Socket Transfer (using the TCP / IP protocol) [Stevens90],

130

Ch a p t e r 5: Th e Im p l e m e n t a t io n o f t h e E n v ir o n m e n t (PSUE II v l . 0)

• UNIX Socket Transfer (using the UDP / IP protocol) [Stevens90],
• MPI (Message Passing Interface) [Dongarra95, Gropp99a, Gropp99b] and
• PVM (Parallel Virtual Machine) [Sunderam90, Beguelin94].

5.2.1. UNIX Socket Transfer (TCP/IP)
Implementing the communication architecture for the PSUE II using the TCP/IP protocol
involves the initialisation of one communication channel between every pair of processes
comprising the server and one channel from each of the server processes to the client
process running on the graphics workstation. Each channel consumes one file handle at
each end, which are used to send and receive data. The TCP/IP protocol ensures that data
written to one end of a channel is received at the other end in the same order with the
assumption that the communication is performed with no transmission errors. This
provides an intuitive means by which inter-process communication can be achieved.
However, the OS restricts the number of file handles available to a process to sometimes
as little as 30. If, for example, we need eight for file I/O operations (including the
standard three channels for console input, output and error reporting), this limits the
number of processors that can communicate to 22, including the graphics workstation.
Since the PSUE II is designed for very large, parallel problems, it was decided that
limiting the size of the parallel platform to 20-30 processors was too restrictive.

5.2.2. UNIX Socket Transfer (UDP / IP)
Another standard UNIX communications protocol is UDP/IP. This is referred to as a
connectionless protocol since there are no longer any defined channels between
processors. Instead, the data stream to be transmitted needs to be broken down into small
fragments (or packets) of about 500 bytes. These are then transmitted to the required
destination where they are reassembled into the original stream. The UDP/IP protocol
eliminates the file handle restriction since it requires only one per process regardless of
the number of processes. However, it is an unreliable protocol. This means that there is
no guarantee that any transmitted packets are received and there is no guarantee as to the
order of the received packets. This unreliability would impose a heavy burden on the
communication algorithms within the PSUE II since they would need to detect and
automatically re-send lost packets and then ensure they are in the correct order. This was
deemed too difficult a task to implement efficiently and robustly and, since it would form
the core of the entire environment, any software bugs would be unacceptable.

5.2.3. MPI (Message Passing Interface)
To hide these, and many other complexities inherent in the use of native UNIX socket
communication, a number of libraries have been developed, most of which are freely
available in the public domain. The two most commonly used libraries for parallel
architectures are MPI (Message Passing Interface) and PVM (Parallel Virtual Machine).

As well as providing an easy-to-use means of inter-process communication, they can also
utilise any platform specific features that enable increased performance. This includes
using protocols specially designed for high-speed networks (Myrinet, Gigabit, ATM,
FDDI, etc.), using blocks of shared memory as a communication means on shared

131

Ch a p t e r 5: Th e I m p l e m e n t a t io n o f th e E n v ir o n m e n t (PSUE II v l . 0)

memory parallel platforms or using native communication hardware on distributed
MPP’s (Massively Parallel Platforms).

Unfortunately, the MPI-1 standard did not contain any capabilities to change the parallel
configuration dynamically at run-time. This is necessary in order for the PSUE II to
execute and connect to both the visualisation server processes, and any external parallel
modules, such as mesh generators or equation solvers.

5.2.4. PVM (Parallel Virtual Machine)
The second parallel communication library that was investigated was PVM. This library
includes all of the benefits of MPI, but also includes the abilities to dynamically execute
and connect to processes and, in the case of workstation clusters, add extra computers
into the parallel configuration.

5.3. The Control Structure of the Environment
It is clear from its interactive nature that, unlike many parallel computationally intensive
codes, the communication infrastructure of a Parallel Problem Solving Environment is
used for more than pure data transfer. It is also used as a means of controlling the timing
and order o f operations during its execution.

As with any Problem Solving Environment, the control of the environment originates
from the user through interaction with the keyboard and mouse. These inputs are passed
directly to the master process running on the graphical workstation. For simple
operations, in which the set of rendering primitives stays constant, the master process
performs all of the necessary rendering operations with no interaction necessary with the
parallel slave processes. Operations such as moving or rotating the object on the screen,
or changing whether the primitives are drawn as wire-frame outlines or solid facets fall
into this category.

However for more complex operations, which involve the creation of new rendering
primitives from the distributed volume data sets, the master needs to be able to instruct
the slaves to perform the required operations and then receive the new set of primitives
produced as a result of those operations. A simple example of this is a user requesting a
solution file to be loaded and overlaid on the mesh.

132

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE I I vl.O)

flglD

f f
(a) Client

instructs the
Servers to load

the solution

■SSE-

ft
1 t

(b) Servers read
the solution data

set for the
volume mesh

from disk

(c) Servers
communicate

their local
solution ranges
to find a global

range

f t i D

$

(d) Servers
traverse the

volume data sets
to produce the

coloured
rendering
primitives

A

f f
(e) Servers
transmit the
rendering

primitives to the
client for

visualisation

Figure 141 - The Sequence of Operations required to load a Solution File

As can be seen in Figure 141, the sequence of operations needed to perform this
operation comprises five main steps.

The Client instructs the Servers to Load the Solution File
Whilst the server processes are idle they wait to receive an instruction from the
client via PVM. This instruction is purely an integer constant followed by any
relevant data (in this case a filename).

When the user selects the required solution file, the client sends each server
process the appropriate instruction code followed by the filename. The client then
becomes idle whilst waiting for a response from the servers.

The Servers load the Solution File
When the server processes receive the instruction code and filename they
independently load their solution data sets and compute their local minimum and
maximum solution values.

The Servers communicate with each other
In order to construct the colourful rendering primitives representing the solution
values on the mesh, it is necessary for a global minimum and maximum to be
computed for each variable. The server processes achieve this by communicating
with each other to perform a global reduction operation.

The Servers construct the Rendering Primitives
Once the global minimum and maximum values have been computed, each server
processes then traverses the volume data sets to construct the rendering primitives

133

C h a p t e r 5: T h e I m p l e m e n t a t i o n o f t h e E n v i r o n m e n t (PSUE I I vl.O)

required for visualisation. The solution values are mapped to a colour scale as
shown in Figure 142. This operation is performed independently with no
communication.

Min Max
Value Value

Figure 142 - Mapping of Solution Values to Colours

The Servers return the Rendering Primitives to the Client
When the rendering primitives have been constructed, they are then sent back to
the client process. The client process, which has been idle waiting for this data,
now receives the data from each server in turn and returns control back to the
user.

5.3.1. The Two Types of Communication
Without clouding the scenario with any algorithmic details, this sequence of operations
clearly shows the two types of communication used within the PSUE II; control-flow and
data-flow. Step 1 forms the initiation of a control-flow in which an instruction token is
passed from the client to each of the servers along with the specified filename. This type
of communication is analogous to a subroutine call in a sequential process with the
filename being passed as an in argument.

Step 3 forms a data-flow in which each slave needs to know the global minimum and
maximum of the solution variable before any colour coding of the rendering primitives
can be perfonned. However, only local minima and maxima can be calculated from the
list o f variable values in each solution file. The global range can only be found by
communicating the local ranges between the servers. Here, no control information is
passed, only required data. This is analogous to copying data items within a sequential
process and is the type o f communication used in most batch parallel processes such as
equation solvers.

Step 5 represents the culmination of the control-flow initiated in step 1. Although data is
transmitted from the servers to the client, it is analogous to the return value, or out
argument, o f a subroutine call in a sequential process and therefore is deemed a control-
flow operation.

5.4. Sum m ary
This chapter has described the means by which the visualisation o f the very large data
sets is achieved, and the technologies used to perform the communication between the
various processes comprising the initial version o f the PSUE II. Chapter 6 details the
improvements made to the design and implementation in order to produce a more

134

Ch a p t e r 5: Th e Im p l e m e n t a t io n o f t h e E n v ir o n m e n t (PSUE II v l. 0)

flexible, parallel environment capable of handling data size an order of magnitude greater
than was possible with the initial implementation.

135

Chapter 6. PSUE II v2.0 - A n Im pro ved
A r c h itec tu r e

The previous chapter briefly described an implementation strategy of the PSUE II that
used the PVM communications library throughout the system. Whilst this was being
implemented, a number of improvements to the strategy became apparent:

• Improving Flexibility o f use
This involved adding the ability to connect and disconnect from parallel processes
at any time during their execution even if they were implemented with a
communication library other than PVM, e.g. periodically monitoring the status of
solvers during their execution.

• Reducing Network Bandwidth
A more intelligent strategy for sending the geometric primitives from the slaves to
the master process was needed. In the initial implementation, if an operation, such
as a defining a cutting plane, were performed then all of the geometric primitives
would be sent from the slaves to the master process. This is obviously not the
ideal situation since the master would already have many of these primitives. A
more complex data management scheme would be needed to ensure that only the
primitives that had changed would be transmitted.

• Re-partitioning the mesh.
The previous strategy used the partitions as generated by the parallel mesh
generator. This had two disadvantages; the partitions were not necessarily very
well balanced, and it restricted the number of slave processes to the number of
partitions that were originally generated. These two disadvantages would be
overcome by re-partitioning the mesh to the required number of slaves at run­
time.

• Improving the performance o f traversing the volume data sets
In order to be able to interactively manipulate data sets consisting of hundreds of
millions of elements the ability to geometrically search for elements had to be
improved from a linear search as in the previous strategy.

The sections in this chapter describe how each of the above improvements was achieved.

6.1. Im proving F lexibility o f Use
Since the PSUE II is designed for very large problems requiring large parallel computers,
it is inevitable that the compute-intensive portions of the simulation process (i.e. the mesh
generators, equation solvers, etc.) will take a significant amount of time to execute. The
solvers, in particular, can often run for many days.

The traditional way of running these codes would be to run them on a remote parallel
computer and then log-out and leave them, occasionally logging in to check on their
progress. If the PSUE II is going to be used in this kind of environment then it needs to
assist the user with this process. Ideally the PSUE II would allow the user to execute a

136

Ch a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h it e c t u r e

solver on a remote computer and then perform the periodic checking of its progress
automatically, leaving the user to perform other tasks either within the PSUE II or not.

In order for the PSUE II to be able to do this, it must have the ability to disconnect from a
set of processes and then re-connect at will. In fact, this ability should be extendable to
the execution of many solvers on many different computers.

With the exclusive use of PVM as the means of connecting to computers, spawning and
terminating processes, and inter-process communication, this kind of functionality is not
feasible.

The use of PVM has another unwanted side effect when trying to spawn 3rd party
applications that use another communication library since most communication libraries
used for parallel computing require their own method of starting the processes. For
example, PVM requires that slaves be started using the subroutine ‘PVM_Spawn’,
whereas MPI requires that all processes be started using the command ‘m p ir u n \ These
two requirements are incompatible.

In order to alleviate all of these problems a communication system must be used that is
both independent of the method used to start the processes, and allows disconnection and
reconnection at will regardless of how the processes were initiated.

Since none of the communication libraries intended for parallel computing possess the
required flexibility, there was a need to look outside the parallel computing community,
where performance is paramount, and look in the distributed computing community
where this kind of flexibility is often required.

Although there are a number of groups researching into the problem of distributed
computing, if you require a system that is flexible and robust there are only three major
contenders: DCOM [Microsoft95, Microsoft97, Brockschmidt95], JAVA/RMI
[Daconta96] and CORBA [Schmidt95a, Schmidt95b, Yang96, Vinoski97, Henning99,
OOC99, Schmidt99].

DCOM is unsuitable since it is only implemented within Microsoft Windows and
JAVA/RMI is unsuitable because it can only be used with software written in JAVA.
CORBA was chosen because it is platform independent; language independent and a
number of robust implementations are freely available on many platforms for non­
commercial use.

6.1.1. The CORBA Architecture
The Common Object Request Broker Architecture (CORBA) is a very flexible means of
allowing distributed objects to be integrated in a co-operative manner.

137

C h a p t e r 6 : PSUE II v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

Method Invocation

Client
Object

Implementation

ORB
Figure 143 - Request being sent via CORBA

Figure 143 shows a request being sent by a client to an object implementation, both of
which may reside in separate processes on geographically disparate computers. The client
is the entity that wishes the object to perform an operation and the object implementation
is the entity containing the code and data that actually performs that operation. A simple
analogy is a subroutine call in a simple program. Here, the client is the part of the
program performing the subroutine call and passing arguments, and the server is the
actual subroutine that receives the arguments and performs the actual operation.

In order for these two steps (the subroutine call and the subroutine) to be located on
separate computers in a transparent manner, there is a need for a system by which the
arguments in the subroutine call are transmitted to the process containing the subroutine
automatically. The ORB (Object Request Broker) performs this task by managing all o f
the communication mechanisms that:

• Find the object implementation (subroutine) to which the request (subroutine call and
arguments) should be sent,

• Package up and send the request,
• Prepare the object implementation to receive the request and
• Ensure the object implementation performs the operations associated with that

request.

The interface the client sees is independent of the location of the object, the language the
object is written in, the computer architecture on which the object is run or any other
details not specifically linked with the definition o f the interface.

This is achieved using an Interface Definition Language (IDL). The interface for each
object is defined in an object-oriented manner using the IDL. An IDL compiler is then
used to create the source code in the required language for both the client and the object
implementation. This is shown in Figure 144.

138

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

Client
Object

Implementation

Down-Call Up-Call

IDL Stub IDL Skeleton

ORB
Figure 144 - The Structure of the Request Broker Interfaces

Here, the client requests an object implementation to perform an operation. This request
is passed through an ‘IDL stub’, as a down-call, to the ORB. The ORB then locates the
required object implementation and transfers the request. The request is then received by
the TDL skeleton’, which then calls the appropriate method in the object implementation
as an up-call.

As a concrete C++ example, a very simple Database object could have an interface
definition as follows:

This defines the interface to a class that has three simple methods:

• add details - Add a name and age to the database
• fin d age - Return the age of a person with the given name in the argument age and

returns the success of the operation.
• remove_details - Remove the given name from the database and return the success of

the operation.

Implementing this object as a distributed object using CORBA involves three key steps:

class Database

private:
Some private data here

public:
void add_details(const string name, const int age);
boolean find_age(const string name, int& age);
boolean remove_details(const string name);

139

Ch a p t e r 6: PSUE I I v2 .0 - A n Im p r o v e d A r c h it e c t u r e

Defining the Object Interface using IDL
In order for the client and the database object implementation to be able to
communicate, the interface to the object needs to be defined using the IDL. An
example interface for the Database object is shown below.

interface Database
{

void add_details(in string name, in int age);
boolean find_age(in string name, out int age);
boolean remove_details(in string name);

i ; __

This definition is very similar to the C++ definition but is actually independent of
the language. The IDL definition would identical whether the target code was C,
Java, Python, etc.

Compiling the IDL
Once the interface has been defined it should be compiled using the IDL
compiler. This produces a ‘stub’ file and a ‘skeleton’ file in the required language.
The ‘stub’ file is linked into the client executable and is responsible for packing
and sending the request to the ORB. The ‘skeleton’ is linked with the object
implementation and is responsible for receiving the request from the ORB and
then calling the appropriate method in the object implementation.

In the case of the C++ example, the ‘stub’ file defines a class with exactly the
same interface as the original C++ Database object. The methods in this class
package the subroutine arguments and send them to the ORB. The ‘skeleton’ file
implements a simple routine that waits for requests from the ORB and then calls
the appropriate method in the Database object.

Performing a method on the Database Object
Once the client and the object implementation have been compiled, a client can
invoke a method on the Database object using the following code snippets:

pMyDatabase->add_details(“A N Other”, 45);
success = pMyDatabase->find_age(“A N Other”, age);
success = pMyDatabase->remove details(“A N Other”);

As these snippets show, the location of the Database object is transparent to the
client since if the Database object were a local C++ object, the syntax of the
methods calls would be identical.

Figure 145 illustrates the entire sequence.

140

C h a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h i t e c t u r e

M ethod Down-Call

pM yD B ase->add_nam e(“A N Other”, 4 5);

Client

void D ata b a se :: add_nam e(string nam e, int a g e)

Encode the arguments and send to ORB

IDL S tub

O b je c t Im p le m e n ta t io n

P o ssib le Optimisation
if Client and Object

Implementation are in
the sa m e ad d ress sp a c e

void D a t a b a s e j m p l:: ad d_n am e(string n am e, int a g e)
{

Add the nam e and age to the database
}

Method Up-Call

IDL S k e le to n
Receive and decode data stream.

Store arguments into temporary variables.

pD B O bject->add_nam e(tm pN am e, tm pA ge);

Data Transm ission Data T ransm ission

Receive data from client.

Locate Object Implementation.

Forward data to Object Implementation.

ORB

Figure 145 - Steps performed for a Method Invocation (using C++)

Although the logical model o f CORBA is standardised, the way in which it is
implemented is not. The ORB may be implemented as a library linked into the user’s
code, as a daemon running in the background on each computer or even as part o f the
service provided by the operating system. This is transparent to the application.

Conceptually, the code generated by the IDL compiler always packages up method
invocations as streams of data and then transmits them across the network to the
computer on which the object implementation is running. In reality, many
implementations optimise this process by bypassing the encoding, transmission and
decoding process if the object to which the client refers is located in the same program as
the client. In this case, the method invocation is just passed to the object implementation
as another method invocation with minimal overhead. These optimisations are also
transparent to the application.

6.1.2. The Use of CORBA within the PSUE II v2.0
Due to its flexibility, the architecture o f the PSUE II was modified to use CORBA as the
communication link between the client and the server processes. As well as the obvious
advantage that server and client processes could be connected and disconnected at will, it
also brought the advantage that the communication model used by CORBA matched the
communication model already used by the client-server link.

When PVM was being utilised, the method invocation model was emulated by encoding
a function call as a unique integer followed by any supplied argument data. This was then
sent via PVM to the server, which decoded the message and called the appropriate
function with the supplied arguments. The same process was then repeated for any return
values. With CORBA, the IDL compiler automatically generates the code that performs
the encoding, transmission and decoding process in a transparent manner thus eliminating
any coding errors.

141

C h a p t e r 6 : PSUE II v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

However, the communication amongst the server processes was still performed by the
PVM library. This was because:

• The PVM library matched the communication model of the server processes, i.e.
message passing. This could be emulated in CORBA by passing data as
arguments in a method invocation but this would produce unnecessarily complex
code requiring the use of multi-threading to avoid any deadlocks.

• The PVM library was more performance oriented than most CORBA
implementations.

As mentioned previously, the PVM library has specialised implementations that take
advantage o f any communication hardware available on a parallel computer to improve
performance still further.

The final architecture of the PSUE II is shown in Figure 146.

S i t e N e t w o r k
(10-1 OOMbit/s)

B u i l d i n g C
Visualisation Workstation

B u i l d i n g B
Shared Memory

Parallel Computer

CORBA Links
PVM Links

Figure 146 - The Final, CORBA-based Architecture of the PSUE II

6.2. R educing N etw ork C om m unication
The control structure of the PSUE II vl.O has already been described in the previous
section. The amount o f data transferred from the client to the server processes as a control
instruction is minimal, about 400-500 bytes, and so the time to communicate that data is
insignificant. However, the amount of data returned as the result of that instruction, in the
form o f rendering primitives, could be quite considerable ranging from hundreds of
kilobytes to many megabytes. For this size o f data the transfer time can have a significant
impact on the overall response of the environment. To minimise this impact, it is
necessary to reduce this amount of data, and therefore the number o f primitives that are
returned.

B u i l d i n g A
Workstation Cluster

(100M-1Gbit/s network)

142

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

A typical operation often performed on a finite element mesh is the cutting plane. This
allows the user to examine the interior o f a volume mesh for various features depending
on the type o f cutting plane. For investigating geometric features of the mesh elements, a
rough cutting plane can be produced by selecting the set of elements that are wholly on
one side of the plane. The others are then removed thus producing a jagged finish as
shown in Figure 147. The second type o f cutting plane is a perfectly smooth plane and is
commonly used for investigating features o f the solution such as shock waves or vortices.
This is produced by actually intersecting the volume elements with the plane and
producing a set of primitives that form a flat surface. This is shown in Figure 148 and
forms the test case scenario for the rest o f this section.

Figure 147 - A Rough Cutting Plane Figure 148 - A Smooth Cutting Plane

The method used by the PSUE II vl.O to generate a smooth cutting plane was to treat
both the volume data sets and the geometric primitives comprising the surfaces as simple,
global, flat data structures. This meant that when a cutting plane was defined then the
entire volume data set had to be searched to find which sets of elements were positioned
on the correct side of the plane and which were to be discarded. After that, the set of
geometric primitives that would form the surface o f the remaining volume mesh had to be
created after discarding the set of primitives present before the cutting plane was defined.
The final step then entailed transmitting this new set o f primitives across the network to
the workstation to replace the previous set. This procedure is detailed below:

DESTROY rendering^prim itivelist
FOR each element, e

IF e intersects cutting plane THEN
rendering_primitive = triangle/quad representing intersection
ADD rendering_primitive to rendering_primitive_list

ENDIF
ENDFOR
FOR each boundary fa c e ,/_______________________________________

143

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

IF / is to the left of the cutting plane THEN
ADD/ to rendering_primitive_list

ELSE IF/intersects cutting plane THEN
rendering_primitive = triangle/quad representing intersection
ADD rendering ̂ primitive to rendering_primitive_list

ENDIF
ENDFOR
TRANSMIT rendering^primitiveJist to client for display

It is obvious that this procedure is rather naive in that it does not make any use of the
previous set of geometric primitives. This results in a large number of primitives being
transmitted across the network that are exact duplicates o f primitives already present.

An obvious improvement over the previous algorithm would be to only send the
primitives that have actually been altered since the last set were generated. Figure 149
shows a coarse two-dimensional mesh through which a cutting plane has been defined.
The primitives comprising this mesh have been coloured according to whether they
remain unchanged (green); have been replaced with new primitives (red) or have been
removed (blue).

Cutting Plane Cutting Plane

Figure 149 - The Geometric Primitives affected by a Cutting Plane

Now, instead of the entire set o f primitives being sent back to the workstation as one long
message the data is split into two sections. The red primitives, that need to have their
details transmitted to the workstation, and the blue primitives for which flags need to be
transmitted to the workstation in order for them to be removed. Obviously, in a three-
dimensional case, the primitives making up the actual cutting plane are new and are thus
sent to the workstation for rendering.

For a CFD mesh around an F I6 Fighter Jet, consisting o f 6.7 million elements, 1.1
million nodes and 0.3 million boundary faces, the sizes of the various data sets that need
to be transmitted are shown in the table below. The position of the cutting plane (Figure
150) is across the aircraft wing roughly splitting the domain into two halves.

144

C h a p t e r 6: PSU EII v2.0 - A n I m p r o v e d A r c h i t e c t u r e

Original Scenario Improved Scenario
Nodes 2480298 90990
Triangles 1133778 46913
Primitive Deletion Flags 0 3204367
Total Data Size 14.12Mb 3.75Mb

Clear Volune

Generate
Hybrid
Vckr'.e

j Appearance |

| Clear Analysis |

Perform j :
Anaysis

Me jh Selection ‘ Surface irverface Rough Cut Zn

Select by Range. [
Hender Control: □ Geometry □ Soutes rfMesh J BBox
Status Trying to Initiate selected hosts...

All machines added correctly__________________

Smooth

Figure 150 - Position of the Cutting Plane during for Collection of Statistics

As can be seen from the table, the actual amount of information that needs to be passed
across the network has been significantly reduced by the second procedure, but the
number o f deletion flags is still quite considerable. If the time taken to traverse the array
of primitives on the master process and remove the flagged primitives is taken into
account then further improvements should be possible.

A good compromise between the two extremes o f re-transmitting all of the primitives and
transmitting a large array of primitive deletion flags is to use a modification of the second
procedure. Here, the geometric primitives are combined into groups that have either all of
their data re-transmitted if any member has been altered or all flagged for removal if all
o f their members are to be removed. One simple method is to group the primitives using
a combination of the type of entity from which they are created and the identifier o f that
type. Examples of these may be geometric surface numbers, cutting plane numbers, etc.
These groups can then be further sub-divided by treating the pair [partition number,
group number] as a group.

If the same fighter jet example is used partitioned into 16 partitions, the number of groups
becomes 8416. This comprises 16 groups for the cutting plane (1 for each sub-domain)
and 8400 groups for the geometry surfaces sub-divided by the 16 partitions (i.e. 525 * 16
= 8400). Obviously some of the groups will be empty since not all sub-domains will

145

C h a p t e r 6 : P S U E I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

contain a section of every surface and the cutting plane. The statistics for the sizes of the
data sets that need to be transmitted using this structure is shown in the table below.

Final
Scenario

Nodes 144867
Triangles 70913
Group Deletion Flags 2045
Total Data Size 1.00Mb

It is obvious from the table that the total amount of data that needs to be transmitted to
the workstation has been reduced significantly, in fact from the first scenario to the last
the amount of data that needs to be transmitted has been reduced by a factor of 14. The
time for searching through the existing primitives to see which have been altered has also
been reduced since the cutting plane can be compared to the bounding box cached for
each group thus eliminating any unnecessary intersection tests between the individual
primitives and the cutting plane.

This approach is more efficient, in terms of performance and network usage. In order to
maximise these gains a more complex data management scheme is required to ensure
both consistency between the geometric primitives on the workstation and the parallel
server, and between the primitives on the server and the original volume mesh data sets.

Mesh Server Object
CORBA References

Mesh Manager Object

Cached Selection Flags

Cached Surface Colours

Cached Render Objects

Master

Mesh Server
Object

Mesh Volume Object

Tetrahedron Connectivities

Pyramid Connectivities

Prism Connectivities
SurfaceHexahedron Connectivities

Mesh 2D Object
Nodal Coordinates

Surface Number
Surface Triangle Connectivities

Render Object
Surface Quad Connectivities

Cutting Plane
Mesh 2D Object

Surface Mesh 2D Objects

Cutting Plane Mesh 2D Objects
Plane Coefficients

Render Object
Iso Surface Mesh 2D Objects

Iso Surface
Mesh 2D Object

Variable Number

Iso Value

Render Object

One of n slaves

Figure 151 - The Hierarchy of Classes used to manage the Mesh Data Sets within
PSUE II v2.0

146

Ch a p t e r 6: PSUE I I v2 .0 - A n I m p r o v e d A r c h it e c t u r e

6.2.1. The Mesh Management Class Hierarchy
To achieve this an object-oriented structure was developed consisting of a hierarchy of
classes, with each object taking sole responsibility to ensure the consistency of the data
stored both within the class itself and the objects that form its children. An overview of
the hierarchy of classes for the management of the mesh data is shown in Figure 151.

6.2.2. Mesh Manager Object
The Mesh Manager object is responsible for the Master side of the Master-Slave CORBA
link. Its purpose is to hide all of the complexities of interacting with the multiple mesh
partitions distributed across many computers and maintain consistency between the
information stored on the workstation and that stored on the parallel server. The external
interface allows the rest of the routines within the master that interact with the user to
ignore this distribution and treat the data sets as if they were combined into one partition
and stored locally on the workstation.

Internally, each method call is converted into a number of CORBA method invocations
that are then transmitted to each of the slave processes. Since calling a method on a
CORBA object is analogous to calling a method on a local C++ object, the Mesh
Manager initiates a multi-threaded environment in which each thread invokes a method
on a slave and then waits for that method to finish. If the Mesh Manager was single­
threaded each method would have to wait for its predecessor to complete. This would
mean, at the least, the slaves performed their operations in a sequential manner thus
reducing performance and, more probably, if the slaves needed to communicate with each
other in order to complete their task, a deadlock would occur.

The last task performed by the Mesh Manager object is to cache small amounts of
commonly used data kept on the slaves. This information includes details such as the
number of each type of entity (e.g. surfaces, cutting planes) stored on each slave, which
of them has been highlighted by the user, etc. This eliminates the need for frequently
transferring very small packets of data across the network.

6.2.3. Mesh Server Object
The Mesh Server object forms the slave side of the CORBA link. Although this class has
a large number of methods that can be invoked via CORBA, it is actually a very simple
class. It essentially provides a PSUE II specific interface to the more general-purpose
Mesh Volume object (described next). Most of the methods have direct one-one
correspondences with methods in the Mesh Volume object. These methods simply invoke
their respective methods in the Mesh Volume object passing in any necessary in
parameters and passing back any out parameters whilst performing any necessary data
conversions between the PSUE II data structures and the CORBA equivalents.

The remaining methods perform operations that are deemed too specific to one particular
program to be included in the Mesh Volume object. These methods include the I/O
routines that store and retrieve the mesh partitions in the various formats specific to the
PSUE II.

147

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

6.2.4. Mesh Volume Object
The Mesh Volume object is probably the most important object within a slave process
since it stores all o f the data-sets associated with a given mesh partition. Examples of
these data sets include the nodal coordinates, volume element connectivities, boundary
element connectivities, inter-partition communication data and solution data.

It also performs all o f the operations pertaining to these data sets including all geometric
searching and analysis of the mesh partition. It calculates and stores a large number of
extra data structures that are used by the various methods within the object. Common
examples o f these data structures include:

• Element-based data structures
Elem ent^N ode and E lem ent^Elem ent connectivities.

• Face-based data structures
Face—>Left/Right Element + Node.

• Edge-based data structures
E dge^N ode and Edge—̂ Element.

• Node-based data structures
Elements around a node, Faces around a node, Edges around a node and Nodes
connected to a node.

1

(b) Edge Numbering(a) Face numbering (c) Node Numbering

Figure 152 - Face, Edge and Node Numbering for a simple 2D Mesh

Figure 152 shows a small 2D mesh with the face, edge and node numbering and the
following tables show examples of Element (Face)^N ode and Face(Edge)—»Nodes +
Left/Right Element(Face).

Element(Face)—>Node Connectivities
1 {7, 1,8} 2 {10, 1,7} 3 {4, 1, 10} 4 {10,3,4} 5 {4, 2,9}
6 {4,5, 1} 7 {2,3,6} 8 {5,4,9} 9 {3, 2, 4}

Face(Edge)->Left/Right Element(Face) + Node Connectivities
1 {7,8, 1,-1} 2 {1,4, 3, 6} 3 {4, 9 ,5 ,8 } 4 {2, 6, 7,-1} 5 {7, 10, -1, 2 }
6 {4, 2, 9, 5} 7 {10, 3 ,-1 ,4} 8 {5, 9, 8,-1} 9 {3,2, 7,9} 1 0 (8 ,1 ,1 ,- ! }

148

Ch a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h it e c t u r e

11 {1,5, 6 , - 1 } 12 {4, 10,3,4} 1 3 (1 ,7 ,1 ,2 } 14 {3, 4, 9, 4} 15 {3, 6 ,-1 ,7}
16(2, 9 ,-1 ,5 } 17 {4, 5, 8 , 6 } 18 {1, 10, 2,3}

For three-dimensional meshes, these data structures can all consume significant amounts
of memory, especially for large test cases, and can also take a significant time to
compute. Therefore, the Mesh Volume object caches these data structures in an
intelligent manner releasing them only when the memory is required for another data
structure.

The last task for the Mesh Volume object is to create, store and maintain the various 2D
Mesh objects that, later, form the rendering data for the master. These are stored in a
number of lists, one for each type of entity supported by the PSUE II. This forms the
means by which the various 2D Mesh objects can obtain the data they require in order to
ensure they are consistent with the volume data sets and each other. ,

6.2.5. 2D Mesh Object
A 2D Mesh object stores and maintains all of the information representing a given entity
within the slave processes. These include mesh surfaces, cutting planes, iso-surfaces, etc.
Each type of 2D Mesh object is specialised to perform the operations necessary for the
given type of entity. For example, the 2D Mesh object representing a cutting plane
includes the algorithms that can scan the volume data sets in order to produce the set of
elements that form the cutting plane surface. Although each type is different, they all
inherit a basic functionality from the same set of classes (described in the next section).
This allows the Mesh Volume object, for the most part, to be able to treat them as the
same object since they share a large number of their methods. This has the advantage of
reducing unnecessary code duplication. Essentially, the set of 2D Mesh objects are the
key to eliminating any of the unnecessary transmission of data sets that have not been
altered since the last transmission.

6.2.6. Render Object
The Render object stores and maintains all of the geometric primitives and associated
attributes that are necessary to render the object. There is a one-one correspondence
between Render objects and 2D Mesh objects since each 2D Mesh object contains an
instance of a Render object. Although the Render object stores data representing the same
entity as the 2D Mesh object it is stored in a manner that allows efficient rendering rather
than efficient searching and processing. This allows the structure of the two objects to be
altered over time without having to be concerned that a change to increase the
performance of processing the object might detract from its rendering performance. It is
also the only object described here that has a duplicate in the master process running on
the workstation and, thus, forms the means by which the rendering data is passed from
the slave processes to the master.

6.2.7. Co-operation between the Objects
To illustrate how all of these objects fit together during a typical operation, the steps
performed during a cutting plane definition will be described. As with most of the

149

Ch a p t e r 6: PSUE I I v2 .0 - A n I m p r o v e d A r c h it e c t u r e

operations performed within the PSUE II, defining a cutting plane is split into two main
steps, the definition of the plane and then the updating of the Render Objects.

The operations performed in the first step are listed below:

1. The user interacts with the model on the display to define the position of the cutting
plane.

2. The Mesh Manager Object then creates the appropriate number of threads and passes,
via CORBA, the coefficients of the plane to each of the slave processes concurrently.

3. The Mesh Server Object in each slave simply passes these coefficients onto the Mesh
Volume Object without performing any operations on them.

4. The Mesh Volume object checks to see if there is any Cutting Plane 2D Mesh Object
already defined that matches these coefficients. If there is, then an error condition is
returned. If there is no matching plane then a new Cutting Plane 2D Mesh Object is
created and added to the list.

5. The newly created object is then passed the relevant volume data sets in order to
produce the set of faces that represent the cutting plane.

6 . The plane coefficients are then passed to all existing Surface 2D Mesh Objects. These
objects then determine whether the cutting plane has affected their appearance. If not,
then they return without changing anything. If the plane cuts them then their data sets
are altered to reflect this.

At the end of this step, all of the data sets have been created and the only remaining
operations to perform are to pass any new or recently changed Render Objects back to the
Master. This is achieved in the second step:

1. The threads in the Mesh Manager Object created during the previous step request the
new set of Render Objects back from the slave processes.

2. This request is passed from the Mesh Server Objects in each slave to the Mesh
Volume Objects repeatedly until there are no more Render Objects to send back.

3. For each request, the Mesh Volume Object asks each of its 2D Mesh Objects, one by
one, if they have been altered since the last request. The objects that have been
changed then update their Render Objects to reflect these changes and pass them back
to the Mesh Volume Object.

4. These Render Objects are then passed back to the Mesh Server object, which stores
them in a list. When all Render Objects have been asked the entire list is then passed
back, via CORBA, to the threads in the Mesh Manager object.

5. The Mesh Manager then collates all of the Render Objects from the various threads
and terminates the threads. Any future requests to the Mesh Manager Object to draw
the Render Objects uses the updated sets.

6.3. Improving Load Balancing
The previous implementation strategy for PSUE II was based around the use of the mesh
partitions as created directly by the in-house parallel Delaunay mesh generator
[WeatherillOOb, LarwoodOl]. Although this was a perfectly valid approach, there were a
number of disadvantages:

150

Ch a p t e r 6: PSUE I I v2 .0 - A n I m p r o v e d A r c h it e c t u r e

• The mesh partitions produced by the parallel generator were invariably not balanced
in terms of the number of elements or the inter-partition communication.

• The number of slave processes used within the PSUE II was fixed to the number of
partitions chosen when the mesh was generated. This obviously was not ideal since
the mesh may have been generated on a large parallel computer in the past using 64
partitions, but the only computing hardware available at the current time might be a
cluster of 4 workstations.

• If the environment were used on a mesh generated sequentially then the environment
would operate sequentially due to their being only one partition (the global mesh).

In order to overcome these deficiencies, the parallel mesh generator was modified to
recombine the partitions into one global mesh during the output phase and a mesh
partitioning algorithm was implemented that would allow the reading and partitioning of
a global mesh into the required number of partitions at run-time.

There are a number of different approaches available for serially decomposing a given
unstructured mesh. However, for the purposes of the PSUE II it was envisaged that the
mesh data sets would be too large to load onto one processor. Therefore, the partitioning
process had to be parallelised and distributed amongst the processors at all times. The
implementation utilised the ParMetis [Karypis98, Karypis02] library for the partitioning.
This library produces high quality partitions in a fast, robust and parallel manner.

However, ParMetis operates exclusively on a graph data structure, which means that the
mesh had to be represented as a set of edges. One method of doing this was to create the
dual of the mesh, where the nodes represent the elements and the edge (si, 8 2) is present
if the two elements Si and 8 2 are adjacent (Figure 153a). An alternative method was to
create an edge-based representation of the original element edges (Figure 153b).

Using the dual of the mesh has the advantage of automatically producing an element
based partitioning, whereas the edge-based representation of the mesh produces elements
that are split across partitions. However, in the edge-based representation, the number of
edges is approximately the same as the number of elements, whereas the mesh dual
approach results in approximately twice the number edges as elements. For this reason, it
was more efficient to use the edge-based representation in the partitioning process.

The output of the ParMetis library is a mapping from node number to partition number.
For efficiency, a simple method of partitioning the elements was chosen in which the
partition an element is placed in is governed by the partition of its first node.

151

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

(a) The dual of the elements ^
(b) The edges of the elements

Figure 153 - The two types of Edge-Based Data Structure for a mesh

In order to minimise memory usage during the partitioning process; the elements are read
from disk twice. The first time is for the construction o f the ParMetis edge-based data
structure. This element information is then discarded before ParMetis is executed. When
ParMetis has finished, the elements, vertices and boundary faces are read from disk again
and placed in their respective partitions.

The final stage of the process involves the execution o f a reverse Cuthill-McKee
bandwidth minimisation algorithm [Cuthill69] on each partition independently in order to
improve cache reuse, and hence, to improve the performance of the PSUE II and third
party applications.

Figure 154 shows the performance o f the partitioner (including EO time) for various
numbers of processors. The timings were obtained on a Cray T3E with 1024 processors
and the mesh consisted o f 100 million elements. The left graph shows the real time it
took to partition the mesh and the right graph compares the speed up achieved compared
with the ideal speed up, both o f which are based on the result obtained with 64
processors.

152

C h a p t e r 6 : PSUE I I v 2 .0 - A n Im p r o v e d A r c h it e c t u r e

Partitioner T im es

— Ideal S p e e d Up

P a rtitio n er T im ing s

25

0 2 00 400 6 00 800 1000 1200

N um ber o f P r o c e s s o r s

S c a lab ility o f the P a rtitio n er

0 2 00 4 00 6 00 8 00 1000 1200

N um ber o f P r o c e s s o r s

 Partitioner T im ings]

Figure 154 - Partitioner Performance Graphs

As can be seen, the speed up achieved only starts to degrade markedly when using over
256 processors. This was attributed to the fact that the I/O transfer rate o f the computer
does not scale well with the number of processors.

153

Ch a p t e r 6: PSUE I I v2 .0 - A n I m p r o v e d A r c h it e c t u r e

6.4. Increasing the Perform ance o f V olum e Data Set
Traversal

The previous two sections have detailed how reducing network traffic and improving
processor utilisation has enhanced the performance. Despite this, when the meshes reach
the order of 100 million elements the time taken to traverse these large data sets to
produce features, such as cutting planes, starts to become unacceptable. The only way to
reduce this time is to reduce the number of volume elements the slaves must traverse.

In order to achieve this a more efficient data structure needs to be overlaid on top of the
linear arrays of element connectivities. In the PSUE II v2.0, the data structure that was
chosen was the Oct-tree. This is a very efficient data structure for many operations that
require spatially searching for an object in three dimensions.

The Oct-tree is essentially a continuous, hierarchical sub-division o f a cube into eight
smaller cubes (or octants) using the central point o f the parent as one of the comers of its
children. This sub-division continues until a specified criterion is satisfied. For example,
if an oct-tree is designed to spatially sort a collection o f points, then this criterion might
be to stop sub-division if an octant contains less than 100 points. When searching for a
point this would allow the majority of points to be discarded very quickly finishing with a
simple linear search through a maximum of 100 points.

As an example, Figure 155 shows an example of a mesh for which an Oct-tree data
structure will be created. For purposes of clarity a 2D mesh has been chosen and a quad­
tree data structure will be created. A quad-tree is a two dimensional equivalent of an Oct-
tree where cubes (octants) are replaced by squares (quadrants) and each square is sub­
divided into four children instead of eight. Figure 156 shows the quad-tree data structure
using points for subdivision and the limit for further sub-division is five points.

\ i

/ \
L /

y \

12 20

5

1 2

3

1 2

1 2

Figure 155 - The 2D Mesh Figure 156 - The Quad-Tree Data
Structure

154

C h a p t e r 6 : PSUE I I v2 . O - A n I m p r o v e d A r c h i t e c t u r e

In this example, it is assumed that the time taken to calculate the distance between two
points and the time taken to decide which quadrant contains a point are approximately
equal. Given that assumption, then even with this small data set it is obvious that the time
required to search for the closest point to the point, X, has been improved. Searching
linearly, the number of traversals is always 54, whereas with the quad-tree the worst case
has been improved to just five traversals, and the best case to two.

If the Oct-tree is used to spatially sort a set of points then this method is adequate.
However, in the PSUE II a more common set o f entities to search for are the volume
elements. This poses a problem for the Oct-tree since an element may span more than one
octant. One way to overcome this problem is to assume an element is placed within an
octant if any of its vertices are in that octant. This leads to a small amount o f duplication
when an element is present in more than one octant. However, using this procedure an
element may be missed during a search. This is illustrated in Figure 157 that shows an
element spanning four octants and having vertices in three of them. It is obvious that if
the marked point is searched for then it will miss this element since it is not deemed to be
in the fourth octant. In order to overcome this problem, a new way o f determining
whether an element is contained within an octant is required.

S earch Point

Figure 157 - Missing an Element in a Quad-Tree search

The method used within the PSUE II is to make three alterations to the algorithm that
generates the Oct-tree data structure:

1. When an octant is being sub-divided into its eight children, the octant that is deemed
to contain an element is the octant that contains the elements centre o f gravity.

2. In order to ensure no elements are missed when performing any search operations,
each octant’s boundary is enlarged to fully enclose all of the elements deemed to be
inside during the previous step.

3. These enlarged boundaries are then used when the octant is further sub-divided.

These additions to the basic algorithm ensure that an element cannot be missed during a
search operation although it is likely that octants will overlap each other. If the search

155

C h a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h i t e c t u r e

procedure comes across two, or more, octants overlapping in the area of the search
position then it has to choose one octant to follow and if that search is fruitless than it has
to backtrack and follow the other possible routes. This makes the search procedure
slightly more complicated but ensures that no elements can be missed. Figure 158 shows
the same mesh as Figure 155 but with the three new rules applied when generating the
quad-tree. For reasons of clarity, only one of the quadrants at each level is further sub­
divided.

(a) Split the initial quadrant

\ / y f '
\

• •

\
\ \ N / \

i 1

(b) Enlarge each quadrant to enclose its

elements

(d) Enlarge each child quadrant(c) Divide the enlarged quadrant

Figure 158 - The Improved Quad-Tree Data Structure

As mentioned previously, using an Oct-tree during the creation of a cutting plane can
significantly increase performance since the majority of the work involved when
producing such a cut is the traversal through the data sets in order to find which elements
have been cut by the plane. Without the use of a more advanced data structure, this search

156

C h a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h i t e c t u r e

involves traversing every element in the mesh, which for meshes o f the order of 100
million elements can take an unacceptably long time.

With the use o f the Oct-tree, the algorithm becomes:

for each octant do
if Outer boundary is wholly on the correct side of the plane then

Do nothing {All o f the elements contained within remain unclipped}
else if Outer boundary is wholly on the wrong side o f the plane then

Do nothing {All o f the elements contained within are removed}
else {Outer boundary o f octant intersects the plane}

if the octant has any children then
Repeat algorithm recursively for each child octant

else
for each element in octant do

if element intersects plane then
Produce intersecting primitive and add to cutting plane rendering list

end if
end for

end if
end if

end for

For two meshes over the same fighter aircraft, both partitioned into 16 sub-domains,
using the same cutting plane position as shown above, the run-time of the two algorithms
is shown in the table below. For this example, a octant is subdivided if it contains more
than 1000 elements.

Mesh Size
(Tetrahedra)

Linear Search
(seconds)

Oct-tree Search
(seconds)

F16 6,725,979 10.38 1.91
F16 18,020,126 14.10 2.16

It should be noted that the time required for transmitting the geometric primitives to the
master is not included in the measurements as it is the same for both cases; the timings
presented are purely for searching through the volume data sets and creating the
primitives.

As can be seen the performance improvements of the Oct-tree based algorithm are
considerable even on reasonably small meshes of the order of 6 - 20 million elements.
These improvements increase with mesh size as the 0(log8(«)) oct-tree algorithm further
diverges from the 0 (n) linear search algorithm.

157

C h a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h i t e c t u r e

6.5. Increasing R endering Speeds
As described previously, the PSUE II has always used the Vertex Array extension
provided by Open-GL for the following reasons:

• It is faster than repeatedly sending individual vertices, colours and normals in
Immediate Mode,

• It uses less memory than Display Lists and
• It can be altered more rapidly than Display Lists.

In PSUE II vl.O, this extension was used to render the geometric primitives contained
within the Render Objects, which included points, lines, triangles and quadrilaterals. As
already described this process involved creating the rendering data-sets on the slave
processes, transmitting them to the master and then the master using them to produce the
image on the display.

However, whilst testing the environment on a very large test case involving over 200
million elements (Figure 159), an unusual amount o f memory usage was witnessed on the
master running on the workstation. Further analysis revealed an unforeseen problem with
the use of vertex arrays that had the potential to limit the size of the simulation that could
be performed within the environment. Figure 160 shows the statistics of the mesh
involved and Figure 161 shows the statistics for the rendering data.

(a) Original Geometry Definition (b) The 256 mesh partitions

Figure 159 - A 200 Million Element Mesh

Global Mesh
Number of Tetrahedra 236,356,076
Number of Nodes 44,078,548
Number of Triangles 3,668,652

Figure 160 - Statistics for the 200 Million Element Mesh

158

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

Num Items Item Size Data Size (Mb)
Coordinates (3 / triangle) 11,005,956 3*sizeof(real) 125.95
Normals (3 / triangle) 11,005,956 3*sizeof(real) 125.95
Colour Indices (3 / triangle) 11,005,956 sizeof(int) 41.98

Total 3ata Size 293.89

Figure 161 - Statistics for the Rendering Data for the Mesh

As can be seen, although the memory usage of the slaves on the parallel server was
reasonable small, the size of the rendering data sets on the workstation was quite
alarming considering an average graphics workstation has between 256Mb and 512Mb of
memory.

To solve this problem, an alternative method was found in the form o f another set of
geometric primitives provided by Open-GL, called strips. These could be used for lines,
triangles and quadrilaterals. Figure 162 shows a comparison between the strips and their
respective primitives specified individually.

4 6 8 10

V * v \W

Figure 162 - Comparison between Single Primitives and Strips

For line strips consisting of n segments, the number of vertices needed is n +1 rather
than In when specifying them as individual lines. Similarly, a triangle strip consisting of
n triangles requires n + 2 vertices rather then 3n, and quadrilateral strips require 2n + 2
vertices rather than 4n for n quadrilaterals.

As can be seen, using strips of primitives can dramatically reduce the number o f vertices.
This reduction proves even greater when the fact that normals and colours are also
specified at the vertices is taken into account. The use o f strips also has a hidden benefit
in terms o f rendering performance since the graphics hardware in the workstation has far
less vertices to pass through its pipeline to render the same number o f triangles.

However, in order to be able to do this the individual primitives need to be transformed
into a set o f strips. Obtaining an optimal set o f strips for a given set o f primitives has
been proved to be an NP-complete problem (i.e. it cannot be solved in polynomial time)

159

C h a p t e r 6 : PSUE I I v 2 .0 - A n I m p r o v e d A r c h i t e c t u r e

since it is a variation on an Hamiltonian Cycle [Dillencourt92]. However, obtaining a
good (although not optimal) set of strips can be done in an efficient manner
[Kommann99, El-SanaOO]. The algorithm used in the PSUE II v2.0 is based on a paper
and source code by Kommann. This is a fairly straightforward algorithm that works in a
greedy manner with performance enhancements through the use of priority queues which
provide good results for a small amount of computation.

In order to maintain the structure of the classes involved in the mesh storage, it was
decided that this algorithm should be applied to the individual 2D Mesh objects and then
the resultant data sets could be passed on to the Rendering Objects as before. Although
this decision may produce slightly less optimal strips, it was deemed to be too complex
and error-prone to maintain the local grouping o f the primitives at the same time as
producing triangle strips that spanned these groups. The new statistics for the rendering
data are shown below in Figure 163. As can be seen, the memory required on the master
process on the graphics workstation has been reduced by over 50%. This reduction also
translates directly into the reduction into the amount of data that needs to be sent to the
graphics hardware during the rendering of every frame thus improving the interactive
performance.

Num Items Item Size Data Size (Mb)
Coordinates 4,891,340 3*sizeof(real) 55.98
Normals 4,891,340 3*sizeof(real) 55.98
Colour Indices 4,891,340 sizeof(int) 18.66

Total)ata Size 130.61

Figure 163 - Statistics for the Rendering Data using Triangle-Strips

6.6. The Integration o f Third-Party A pplications
One of the objectives of the PSUE II was to allow the seamless integration of third party
application software. The first stage o f this work was to allow the user to execute these
applications, which are possible parallel applications in their own right, on local or
remote platforms. The second stage was to allow the transferral of data files between the
application and the PSUE II. The third, and final stage, was to allow control and data
information to flow between the application and the PSUE II whilst the application was
running in order to support functionality such as monitoring the solution as a flow solver
runs or computational steering.

6.6.1. Stage 1 - Application Execution
The initiation of third-party applications from the PSUE II without the need to modify
any source code needed a method in which the user could add buttons and toolbars to the
existing toolbars on the left of the PSUE II window (Figure 164). These are arranged in a
hierarchical format (Figure 166) where clicking on a button on the top-level toolbar
overlays the top-level toolbar with the appropriate one at the next level.

160

C h a p t e r 6: PSUE II v2.0 - A n I m p r o v e d A r c h i t e c t u r e

The means by which the user can add to this hierarchy is through a simple text file with
the format:

Toolbar(“Button Title”, “Toolbar Title”)
{

Button(“Button Title”)
{

List o f Operations
}
Toolbar(“Button Title”, “Toolbar Title”)
{

Button(“Button Title”)
/1

List o f Operations
}

}
Button(Button Title”)
{

List o f Operations
}

J__

Here, a hierarchical description of the user-defined toolbars and buttons can be specified.
If the button title and toolbar title o f a toolbar is the same as an existing toolbar then the
items will be placed at the bottom of the existing toolbar. If it is preferred that a button is
placed in an existing toolbar in a particular position then this can be achieved by the
following line:

Button(“Button Title”) before/after “Existing Button Name”

The list o f operations for application execution consist of a list of one o f the following
operations:

execute command(“command”) Executes a shell command
define_platform() Allows the user to define a parallel platform

using a graphical panel (Figure 173).
save_platform(“filenam e”) Saves the last parallel platform configuration

defined using the define_platform() command
as a simple text file.

execute mpi command(“command”) Executes a remote mpirun on the first of the
platforms defined using define_platform() using
the remainder o f the machines as the
configuration file for the mpirun command.

161

C h a p t e r 6 : PSUE I I v2 . O - A n I m p r o v e d A r c h i t e c t u r e

The parsing o f the text file is performed using the GNU implementations o f the standard
lexical analyser Lex [Aho86, Levine92] called FLEX [Paxson98], and the standard parser
generator YACC [Aho86, Levine92] called Bison [Donnelly02].

The lexical analyser is used to scan arbitrary text files and return tokens that match
defined patterns of characters, for example:

[0 - 9] + Recognises a pattern o f one or more digits
(i.e. an integer)

[a -zA -Z] [_a -zA -Z O - 9] * Recognises a string starting with a letter and continuing
with one or more letters, numbers or an underscore
(i.e. a standard C identifier)

FLEX parses the pattern definitions, such as those on the left, and generates a C
subroutine that, when called from within a program, rapidly scans and matches patterns
in any input text file.

The parser generator uses the tokens returned by the lexical analyser to perform a more
sophisticated parsing of the text file. For example, the outline of a parser for a simple
calculator might look like:

e x p r e s s i o n NUMBER { $$ = num ber }
e x p r e s s i o n "+" e x p r e s s i o n { $$ = $1 + $2 }
e x p r e s s i o n e x p r e s s i o n { $$ = $1 - $2 }
e x p r e s s i o n e x p r e s s i o n { $$ = $1 * $2 }
e x p r e s s i o n " / " e x p r e s s i o n { $$ = $1 / $2 }

e x p r e s s i o n { $$ = - ($ D }
" s q r t " " (" e x p r e s s i o n ") " { $$ = s q r t ($1) }

Here, an expression is recursively defined as a number or as a sub-expression that
includes one or more expressions. The output of Bison is, again, a C subroutine that,
when called with a given input text string parses the string based on the definitions given
by the programmer.

The code in blue is actual C code that is placed in the generated C subroutine. The $$
symbol represents the return value of the expression and the $1, $2, ... represent the
arguments of an expression. When the generated C subroutine is called with input text,
the various portions of C code (in blue) are executed depending on which expression
match the input text.

6.6.2. Stage 2 - Data File Transferral
When a third party application is executed via the commands described in the previous
section it will often be necessary to transfer the data, in the form o f files, to the
application and then retrieve any output files generated by the application back to the
PSUE II.

162

Ch a p t e r 6: PSUE II v2.0 - A n Im p r o v e d A r c h it e c t u r e

To perform these tasks, the following commands were added to the list o f operations
described above:

clear #####() Clears the ##### from the PSUE II
load/save_#####(“platform
name”, ‘‘'filename”)

Loads/saves a ##### data file on the specified remote
platform using the specified filename.

Here ‘#####’ can be one of geometry, sources, surface mesh, volume mesh, boundary
conditions or solution. For file I/O on the local platform then the platform_name field
would contain localhost. The remote I/O is performed using the FTP protocol
[Stevens90].

6.6.3. Stage 3 - PSUE II and Application Interaction at run-time
Using the two previous stages, a remote application can be initiated, input files can be
passed to it and any output files can be retrieved when the application has finished. For
more advanced interaction between the application and the third party application, the
above two stages are not sufficient.

In order to accommodate this extra functionality, two additional means of communicating
with the PSUE II were developed:

• The ability to run Python programs from within the PSUE II using the configurable
toolbars was added.

• The PSUE II allowed CORBA connections from the outside world.

Python Integration
Python [Rossum02a-h] is an object-oriented scripting language that has all of the
programming constructs of many traditional programming languages such as
C++. Integrating Python into the PSUE II has been achieved on two levels that are
normally referred to as extending and embedding Python [Rossum02d].

Extending Python involved writing a series of modules, written in C, that are
callable by a Python program. These modules allow the Python program to gain
direct access to any information stored in the PSUE II and allow the Python
program to control many aspects of the PSUE II functionality. They are
implemented as a set of C subroutines that have a defined set of arguments. A
simple example of an embedded Python module is the GUI module that controls
the position of the model in the PSUE II window is shown below.

module gui
{

translate(dx, dy, dz)
rotate(angle, ax, ay, az)

scale(s)
redrawQ______________

// Translates the model.
// Rotates the model by angle degrees
// about the axis [ax, ay, az]
II Magnifies the model by s.
II Causes the model to be redrawn

163

Ch a p t e r 6: PSUE I I v2 .0 - A n I m p r o v e d A r c h it e c t u r e

u______________________________ i
Embedding Python involved initiating the Python interpreter from within the
PSUE II. This allows the PSUE II to execute Python commands and programs at
will. This functionality is accessed by adding the following command to the list o f
operations in the configurable toolbars:

execute_python_command
(“command’)

Executes a single python command.
Multiple commands may be
executed either by using multiple
instances of
execute_python_command or by
including multiple Python
commands within the quotes.

executejpython(
“filename”)

Executes a Python program
references by filename.

Outside CORBA Connections
This was achieved by allowing any external application to connect, via CORBA,
to either the PSUE slave processes for parallel data transfer, or to the PSUE
master process, for controlling its functionality. These extra connections allow
third party applications to:

• Update the PSUE II slaves with new data
This could be used to monitor the progress of a remote solver during its
execution by updating convergence data or even the whole solution. This
functionality could be combined with a separate GUI application that
could control the solver remotely to perform computational steering.

• Control the PSUE II master process operations
This could allow another application to control any or all of the
functionality of the PSUE II. For example, a program could instruct the
PSUE II to load in a set of solution data files, manipulate the position of
the model on the screen and create a series of snapshot images in order to
make a movie overnight.

Obviously, in order to be able to make use of this extra functionality, the external
application would need to be modified so is only of use if the source code is
available.

6.7. Sum m ary
This chapter has described a number of improvements over the initial implementation of
the PSUE II. As has been shown, these improvements had a significant improvement on
the performance of the environment, and therefore enabled the use of larger data sets
whilst still maintaining interactivity with the user. Chapters 7 and 9 complete the
description of the PSUE II by presenting the user interface and some complete
simulations performed using the environment.

164

C h ap ter 7. T h e F u n c t i o n a l i t y o f t h e
PSUE II v2.0

The aim of this chapter is to cover the various features available within the PSUE II. The
first section introduces the PSUE II main GUI, with the various components and
functionality detailed in later sections.

7.1. The M ain Display
One of the aims of the PSUE II throughout its design and implementation was to bring all
o f the user interaction with the three-dimensional models together in one area rather than
the user having to learn how to operate many different GUIs. Figure 164 shows a typical
appearance o f the main GUI of the PSUE II. This consists primarily of three sections:

• A set of nested toolbars on the left,
• Entity selection tools along the bottom and
• The main Drawing Canvas on the right.

<=» PSUE n (Parallel Simulation User Environment)

Layout

Set Range

£39955__________ £9944

~ T ' i

R ender Control: □ □ S--.*<■*& sfM e sh _J BBox

Status: Trying to initiate se lec ted hosts ...

All m aohines a d d e d oorreotly

Pofnts(O) Lrm (O)
Tri$(73£96,

763 r»s) 0 Q6*£34 it>.

Figure 164 - The Main PSUE II GUI

165

C h a p te r 7: T h e F u n c t io n a l i t y o f th e PSUE II v2.0

The Toolbar contains buttons for all of the operations available within the PSUE II. This
will be described in the next section.

The Drawing Canvas is used to display all of the data sets stored by the PSUE II. All of
the manipulation and selection of these models is performed within this area. Regardless
of the type of data currently residing within the environment, the manipulation is
performed in a consistent manner:

• The Left Mouse Button is always used for selection / picking actions.
• The Middle Mouse Button is always used to manipulate the view of the data on the

screen.
• With no keys pressed, the model is translated in order to follow the mouse

pointer.
• With the SHIFT key pressed, a zoom operation is performed on the model.

Moving the mouse right zooms in, and left zooms out.
• With the CTRL key pressed, a rotation is performed on the model. Vertical

motion of the mouse pointer causes the model to be rotated about the horizontal
axis, with horizontal motion performing a rotation about the vertical axis.

• The Right Mouse Button is used for miscellaneous operations when required for some
tasks.

7.2. T he N ested Toolbars
During the design phase of the PSUE II there were three main means of allowing the user
to perform operations within the environment. These were:

Microsoft Windows-style Graphical Toolbars
It was decided at an early stage that this style of toolbar would be too difficult to
implement in a UNIX environment and the design of the graphical icons would
consume too much valuable time.

Nested, Textual Toolbars
Nested toolbars have the advantages that they are straightforward to implement in
any windowing environment under any Operating System, they are easy to
maintain and adapt since they require no graphical design and they are a compact
means of representing a large number of options to the user.

They also have the added advantage that only the options required for a particular
operation are available to the user at any one time. This imposes a modal means
o f operation where the features of the model that are displayed and selected can
be adjusted automatically by the environment to suit the particular operation. For
example, if the user traverses to a toolbar that deals with mesh sources then the
environment can determine the set of operations that the user wishes to perform.
This allows the display of the model to be changed automatically so that the

166

C h a p te r 7: T h e F u n c t io n a l i t y o f th e PSUE II v2.0

sources are rendered in more detail, ready for editing, and any other features, not
necessary during this operation, can be rendered in less detail or not at all. It also
allows the environment to determine that during any selection operation it is the
sources that are to be tested for selection rather than geometry curves or surfaces.

Pull-down Menus
Like the nested toolbars, these allow the environment to present the user with a
large number of options in a textual and compact format. However, unlike the
nested toolbars the style of operation within the environment is entirely modeless,
i.e. any operation is available for selection at any time. This means that the
environment has no means of knowing which operation is to be performed next
and thus cannot adapt. Pull-down menus can also suffer from performance
degradation, particularly on lower-end computers. This is due to the fact that as
the user traverses the menus, any section o f the drawing canvas that was
previously obscured by a menu has to be redrawn before the next menu is
displayed. This time can be quite lengthy if the model is complex. On higher-end
computers this problem is eliminated since the menus are drawn into overlay
planes. Overlay planes are a computer equivalent to overlaying a piece of paper
with a sheet of transparency. Items drawn on the transparency obscure the paper
beneath but do not actually change the image on the paper. Removing the items is
simply a case of wiping the transparency without having to redraw anything on
the paper.

7.2.1. The PSUE II Nested Toolbar
The hierarchical structure of the nested toolbar in the PSUE II is shown in Figure 166.

The top-level menu presents the user with the main stages of the computational
simulation as would be performed within the environment as shown in Figure 165. Each
of these toolbars is described in more detail in later sections.

Mesh

Solution

Geometry Mesh
Adaptation

Boundary
Conditions

Post-
Processing

General PSUE
Configuration

Background Grid
/ Sources

Figure 165 - Mapping of the PSUE II Toolbars to the Simulation Process

167

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSUE II v2.0

1. Main

2. Geometry

3. Edit

Outer Bndry

Delete Item

Surface
Hierarchy

1. Main

2. Geometry

1. Main

2. General

3. E xport

Save Tift

Print

Import via
CAD Repair

1. Mam

2. Souroes/Bkg Grid

Clear

Load

1. Main

2. CORBA Mesh

3. Load Volume

Local FLITE

Local EFLITE

Export ~>

Corrtigure
Lighting

Layout

Geometry - >

1. Main

2. CORBA Mesh

Clear Surface

Bnd Cond ->

Load Surface

Load Volume -* >

Save Volume -- >

2. CORBA Bnd Cond

Clear

r

Perform
Analysis

1. Main

2. CORBA Adaptation

Edit Criteria

Refine

2. CORBA Visual

Cutting Planes

Surface Contours

1. Main

2. CORBA Solution

Clear_______

Load -->

Execute Solver |

Set Range

1. Mam

2. CORBA Mesh

3. Check

1. Mam

2. CORBA Mesh

3. Save Volume

1. Main

2. CORBA Solution

3. Load

Local FLITE

Combined FLITE

1. Main

2. CORBA Solution

3. Save

Local FLITE

Done

Surf <>Vol Map [

Figure 166 - The Structure of the Nested Toolbar in the PSUE II

168

C h a p t e r 1: T h e F u n c t i o n a l i t y o f t h e PSUE I I v2.0

7.3. The ‘C onfiguration’ Toolbar
The Configuration Toolbar contains the following options:

Layout
This option allows the user to change the general appearance o f any graphics
rendering on the main drawing canvas. As shown in Figure 167, the window is
split, vertically, into two main sections. The top section governs which views of
the model are displayed within the main drawing canvas. The top-left area
represents the region layout of the main canvas and is shown here as being split
into four regions displaying the front, left, top and a fully rotateable view o f the
model. This configuration can be changed by simply clicking on the buttons at the
right of this area. These button cause the centre of the crosshair to be moved in
the appropriate direction thus causing the number of regions to change from four,
through three and two, to one. The toggle buttons below this area govern which
views of the model each of the four regions’ displays.

Define Region Layout...

Down

j Region 1 Top \> Front

Region 2 C- Bottom - Back

j Region 3 Left Cy 3D

I ^ Region 4 Right

j J Mirror in Y-Z Plane: U Invert Background:

j J Two Sided Colouring: □ Cull Back Faces:

J Reverse Faces:

Tim. Limit 1500 |

|___________Apply |____________Close ||l

Figure 167 - Region Layout Panel

The lower half o f the panel controls various other miscellaneous rendering
options. These are:

• Mirror in X-Z Plane
This allows the user to mirror any model with a symmetry plane so as to
produce the full model. It should be noted that this doubling is only
performed for rendering. The actual model remains the same for
simulation purposes.

• Invert Background
This is a quick and easy method o f changing the background from black to
white, with any white renderings changed to black. This is mostly used for
producing screen dumps for printed material.

• Two Sided Colouring
Normally the appearance and lighting o f a surface is independent o f the
orientation of the rendering primitives. Selecting this option causes
surfaces using different orientations to be displayed in different colours.

169

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

(This is most often used as a debugging aid during mesh generation
development).

• Cull Back Faces
Selecting this option causes any rearward facing polygons to be ignored
during rendering. This can speed up rendering significantly and if the
model is solid with no surfaces removed then its appearance is not
changed. However, if any surfaces are removed then the missing rear
surfaces become noticeable. This is also true when cutting planes are
defined since they will only be visible from one side. When the model is
rotated the cutting plane will disappear since it is now considered
rearwards facing.

• Reverse Faces
This option causes the orientation of the normals for all rendering
primitives to be reversed. This affects the rendering when ‘Two Sided
Colouring’ or ‘Cull Back Faces’ is enabled. (This is mostly used as a
debugging aid).

The last item on the panel is the time limit box. This allows the user to fine-tune
the automatic transition between the rendering modes used for objects when the
model is still and the modes used when it is in motion. When the still rendering
time of the model exceeds the number of milliseconds in the box the rendering
mode for objects in motion is used. This is a simple means of maintaining an
interactive rendering speed even for large models.

Configure Lighting
The ‘Configure Lighting’ panel allows the user to change the direction o f the
lighting and the material properties of the model. The top section of the panel
represents the light source on a sphere constructed with a material using the
current settings. The light source can be moved around on that sphere simply by
clicking and dragging with the left mouse button.

■= Mesh Appearance..

Material Properties

Plastic *' m g -1 Metal

Smooth I " I IBM *• 1 Rough

Ambience: K I M ► 1

Test Settings

Apply |________________Cancel .

Figure 168 - Lighting and Material Panel

The material properties of the sphere can be adjusted using the Plastic-Metal and
Smooth-Rough sliders. The ambient light can be altered using the Ambience
slider. Figure 169 shows some typical effects along with their slider positions.

170

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P SU EII v2.0

The Material sliders determine the width of the spot of specular reflection along
with how quickly it degrades to having no reflection, and the Ambient slider
determines how bright the object is outside the specular region.

= M esh Appearance... — M esh Appearance...

&
m m

Mata rial Pro partes Malarial Properties

Plastic |« l l l l >1 Matal Plastic H llllf* Metal

S moo ft |*{ L l | | Rouqh S moo ft |-* |||U !► Rough

Ambisnoe: [<]_ | | _ » J Ambienoe: [j j » 1

Test Settings Test Settings

Apply j Canoe I Apply | Cancel

Rough Plastic Material Smooth Metal Material
with 50% Ambient Light with 50% Ambient Light

Smooth Plastic Material
with no Ambient Light

No Ambient Light

Figure 169 - Various Material Properties

General Appearance
The General Appearance Panel allows the user to customise the colours of the
overall drawing canvas (not including the models). The background colour and
the labelling colour are selected via the two tabs at the top o f the panel. The
colour can then be adjusted by either dragging the cursor across the colourful
hexagon or moving the sliders. This allows the colours to be set using either the
HSV (Hue, Saturation, Value) model or the RGB (Red, Green, Blue) model.

171

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

Label Text

V alue: h

CancelApply

Figure 170 - General Appearance Panel

Export
The sub-toolbar under the Export item allow the user to save the current drawing
canvas as either a TIFF image file or an EPS (Encapsulated Postscript) file. In
either case the user is prompted for a filename under which the image is saved.

7.4. The "Geometry’ Toolbar
The Geometry Toolbar contains the following options:

Clear
This option causes the geometry to be removed from the environment. This
disconnects and terminates the Geometry Servers and removes any Render
Objects from the Master process.

Load
This option allows an existing geometry file to be loaded into the environment. A
File Selection panel opens to allow the user to select the required file (Figure
171).

172

C h a p t e r 1: T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

«=* Load Geometry...

■cOl/eg julius/ViParTest/Gul f Stream/ *

Directories Files
A i/BPGG.oonf ▲

irTest/Gulf Stream/..

V

i/UPGG.inp
./gulfZCOM
i/gulf2.bac
i/gulf2.boo
i/gulf2.fli
i/gulf2.fro ▼

±1 _ J ill. P d ...JJILP

Selection

pt 01 / og j u 1 iu s / ViPa rTe s t / Gu 1 f S t ream/

Figure 171 - A File Selection Panel

Once this has been done the panel will close and a second panel will open (Figure
172) asking the user to enter the number o f servers to spread the geometry across.
After this a third panel, the Parallel Platform Panel (Figure 173), is opened
containing a list of computers on which the Geometry Servers may be executed.
Once the set of computers has been chosen, the requested number o f Geometry
Servers is then initiated and connected to the environment. These servers then co­
operate in order to load the geometry curves and surfaces and distribute them as
evenly as possible across them.

S e r v e r In it ia tio n ...

How many servers should
be started ?

Num Servers ^

Start I

Figure 172 - Entering the number of Geometry Servers

C re a te a V ir tu a l M a c h in e .. .

Available Platforms S elected Platforms

o v d e e p jh o u g h t 8

ov am d ah l 8

o v n e u m a n n 8

o v b e ta 1

cv new ton 1

ovoronoi 8

cvorville 1

A □ allow L » a l
Slave*:

□ !•:■ ife

□ Aggi:<'nwrate
PartiiiOi'rS

ovonyx 8 ▲

| |
▼

•:-Rwir>:-ve«l P -I !►'

C re a te | C a n c e l

Figure 173 - The Parallel Platform Panel

Save
This option allows the user to save the geometry currently stored within the
environment to a file on disk. The user is first presented with a File Selection

173

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P SU EII v 2 .0

Panel (Figure 171) into which the file location should be selected and then the
filename entered. The Geometry Servers then co-operate with each other to
recombine the various geometry curves, surfaces and topology information back
into one geometry file.

Edit
The ‘Edit’ option is actually the header of a sub-toolbar. Selecting this link causes
the current toolbar to be replaced with the ‘Geometry Edit’ sub-toolbar. The
options contained within this toolbar are described in detail in the next section.

Appearance
The ‘Appearance’ option allows the user to change the rendering style of the
various geometry curves and surfaces on the workstation display through the
opening o f the Geometry Appearance Panel (Figure 174).

| a G e o m e try A p p e a ra n c e ...

Visibility Control: 'Ut C u rv es 36 S u rfa c e s

One* Surfaces

[Appearance (Still) Appearance (Motion)

O S p a rse S p a rse

> W irefram e O W irefram e

O ' H idden-Line O H idden-U ne

O Solid O Solid

Ut Solid O Lit Solid

□ H idden

Apply j C anoel

Figure 174 - The Geometry Appearance Panel

This panel is divided, vertically, into two sections. The top section contains two
check boxes that control whether the geometry curves or surfaces are rendered.
These options operate globally regardless of the settings in the lower section of
the panel.

The lower section consists of two columns of toggles. These affect how the
geometry curves and surfaces are rendered. The first column of toggles controls
the rendering style of the geometry while it is still. The second column controls
the rendering style when the geometry is being manipulated using the mouse (i.e.
dragged, scaled or rotated).

At first these toggles will be disabled (ghosted) since no curves or surfaces have
been selected on which to edit their appearance. Curves and surfaces may be
selected using the Selection Bar in the Main Window (described above). The
toggles in the Geometry Appearance Panel become enabled once one, or more,
curves or surfaces have been selected. Each toggle always shows the current
appearance settings for the selected entities, or blank if the selected entities have
different settings for that particular toggle.

174

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P S U E I I v 2 .0

Selecting any toggle changes the appearance of all of the selected curves and
surfaces to reflect the settings of the toggles. These changes are not reflected on
the display until the ‘Apply’ button is selected. This closes the panel and updates
the selected entities on the display. Selecting the ‘Cancel’ button also closes the
panel and ignores any changes made by the user.

Colour
Selecting this option causes the Geometry Colour Panel to appear. The entity type
for which the colour is to be altered is selected using the tabs at the top o f the
window. Once the curves or surfaces have been selected, the panel updates to
show the current colour of the selected entities, or is blank and disabled if no
entities are selected.

The user may then change the colour by either dragging the cursor in the coloured
hexagon or by dragging the sliders below. The colours are then applied and the
window closed by selecting the ‘Apply’ button.

Geometry Colour Parte!...
Surfaces

Bio.: l ±

CancelApply

Figure 175 - Geometry Colour Panel

7.4.1. The ‘Geometry Edit’ Sub-Toolbar
The ‘Geometry Edit’ toolbar contains a number of items all connected with ensuring a
geometry is in a form in which mesh generation can take place. It has the following two
options:

Create Outer Boundary
This option allows the user to create a simple outer boundary for any geometry. A
panel (Figure 176) opens to allow the user to choose between a number of
standard outer boundary shapes comprising a sphere, cylinder or box with half­
spheres and half-cylinders for geometries that require a symmetry plane.

175

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

=» Create Outer Boundary...

Shape:
s> Cylinder O Sphere <£> Box

Half Cylinder v Half Sphere

Alignment: O Free ^ Axes

Rotate: About X-Axis | About Y-Axis j About Z-Axis

r None MmX \ y r-isx^-

A ttach: <> MHV O MaxY

O M InZ O M exZ

Geometry Feature:
Curves

O Surfaces

Create | Cancel

Figure 176 - Outer Boundary Editing Panel

Once the user has chosen a shape it appears on the main graphical display and can
be manipulated in the same manner as the geometry. For outer boundaries that
require a symmetry plane, the outer boundary shape can be attached to one of the
boundaries o f the geometry. When the outer boundary is of the correct size and in
the correct position, it may be fixed by pressing the ‘Create’ button. This closes
the panel and creates the relevant geometrical surfaces and intersection curves.
For shapes with a symmetry plane, the appropriate bounding curves of the
geometry are automatically attached to the symmetry plane to form a closed
volume.

Edit Topology
This panel (Figure 177) allows the user to attach curves and surfaces to each other
in order to form a topologically valid model. The panel contains a number of
options depending on whether it is most suitable to connect curves to surfaces,
surfaces to curves, disconnect curves or disconnect surfaces.

= Topology PaneI

Appearance □ Highlight Curves □ Highlight Surfaces

□ Hide Good Curves □ Hide Good Surfaces

□ Hide All Curves □ Hide All Surfaces

Add Curves To Surface Add Surfaces To Curve Detach Curves Detach Surfaces
1. Select Curves you wish to add to a surface

2. Select the surface to add the curves

Click to Pick Curves O Click to Pick Surfaces

3. Select 'Add Curves’ to add the selected curves
to the selected surface

Add Curves

Apply j_______________________________Cancel

Figure 177 - The Topology Edit Panel

To aid the user in selecting the appropriate curves and surfaces, the two entities
may be highlighted in red or green depending on whether they form part o f a valid
topology. To reduce any possible clutter on the display, any curves and surfaces

176

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

that are deemed to form part of a valid topology may be hidden. This allows the
user to concentrate on areas that need repair.

7.5. The ‘Sources’ Toolbar
The Sources Toolbar contains the following options:

Clear
This option causes the sources to be removed from the environment.

Load
The option allows an existing set of sources to be loaded into the environment. A
File Selection panel opens to allow the user to select the required file (Figure
171). The panel is then closed and the sources are loaded and displayed as a set of
spheres in the main window.

Save
This option allows the user to save the current set of sources to a file. The user is
presented with a File Selection Panel (Figure 171) into which the location and
name o f the file is chosen. The set of sources is then saved.

Edit
This option allows the user to create and/or edit the sources within the
environment through the Edit Sources Panel (Figure 178).

<=» Source Control Panel
S et B ackground S p ac in g : |5 .0 5 |

S o u rce Name: |3

In tensities: 0 .1 5

Radii: 0 .200001

App'y

Figure 178 - The Edit Sources Panel

177

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

Using this panel, sources may be created, destroyed or manipulated. Selection o f a
source is performed by either selecting its entry in the scrollable list in the panel
or by clicking on the source in the main graphical display.

Once a source has been selected, it maybe manipulated by either entering its
details into the panel and clicking the ‘Set Attributes’ button or by simply clicking
and dragging the highlighted source. A schematic of a selected point, line and
planar source is shown in Figure 179 with the handles in red. Clicking and
dragging the handles expands the source whereas dragging the source axes moves
the entire source.

(b) Line Source(a) Point Source

Figure 179 - Dragging Handles for Sources

(c) Planar Source

7.6. The ‘M esh’ Toolbar
The Mesh Toolbar contains the following options:

Clear Surface
This option causes the surface mesh to be removed from the environment. This
disconnects and terminates all of the Mesh Servers associated with the surface
mesh. The Render Objects representing the mesh are then removed unless a
volume mesh is also present, in which, no changes occur on the display.

Load Surface
This option allows an existing surface mesh to be loaded into the environment. A
File Selection Panel (Figure 171) opens to allow the user to select the required
surface mesh file. Once the file is chosen, the set o f computers on which the Mesh
Servers are executed is chosen using the Parallel Platform Panel (Figure 173). The
Mesh Servers will then be initiated on the selected computers and the surface
mesh will be loaded and distributed amongst them by their surface number (as
described in Section 4.4.6).

178

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU E I I v 2 .0

Save Surface
This option allows the user to save the surface mesh currently stored within the
environment to a file on disk. The user is asked to enter the file name and location
via a File Selection Panel. The Mesh Servers then co-operate to save the
combined surface mesh file.

Clear Volume
This option causes the volume mesh to be removed from the environment. This
disconnects and terminates all of the Mesh Servers associated with the volume
mesh. The Render Objects representing the mesh are then removed unless a
surface mesh is also present, in which case, only the Render Objects representing
features only in the volume mesh (e.g. cutting planes, iso-surfaces, etc.) are
removed.

Load Volume
This option allows an existing set of volume mesh partitions to be loaded into the
environment. The user is first presented with a File Selection Panel (Figure 171)
to select any partition o f the mesh. This panel is then replaced by a second panel
(Figure 180) that asks the user to enter the number of partitions that comprise the
mesh and place a symbol in place o f the partition number in the filename.

|=» Specify number of partitions...
Please place a sym bol where

where toe partition number should
be inserted

T g/cvonyxO l/og ju lius/V ±P arT est/G ulfS tream /gu lf2_ t.p it

Number o f partitions:

\i
Please select coordinate type:

pt%>o*>n O Doubt* P>%»*n

OK | Cancel

Figure 180 - Loading a Partitioned Volume Mesh

Finally, the Parallel Platform Panel (Figure 173) is opened to allow the user to
choose the set of computers on which the Mesh Servers are executed. The number
of Mesh Servers specified by the user are then initiated and connected to the
environment. These servers are each given a filename representing the mesh
partitions they should load. The files are loaded, in parallel, and the Render
Objects representing the mesh surfaces are sent back to the Master process for
display.

As an example, assuming the filename selected was ‘/h o m e /m y m e sh _ l . p i t ’
with 4 partitions. Placing the symbol changes the filename to
‘/h o m e /m y m e sh _ # . p i t ’. This causes four Mesh Servers to be initiated and
passed the following filenames:

1. ‘/h o m e /m y m e s h _ l . p i t ’ and ‘/h o m e /m y m e s h _ l . com ’,
2. ‘/h o m e/m y m esh _ 2 • p i t ’ and ‘/h o m e/m y m esh _ 2 • com ’,

179

C h a p te r 7: T h e F u n c t i o n a l i t y o f t h e PSUEII v2.0

3. ‘/hom e/m ym esh_3 . p i t ’ and ‘/h om e/m ym esh _3 . com’, and
4. ‘/hom e/m ym esh_4 . p i t ’ and ‘/h om e/m ym esh _4 . com’

The files with the ‘ . p i t ’ extension contain the volume mesh data sets and the
‘ . com’ files contain the communication information.

Save Volume
This option allows the user to save the mesh partitions currently stored in the
environment to a set o f files on disk. A File Selection Panel (Figure 171) opens to
allow the user to select the name and location o f the files. The chosen filename
then has the various suffixes appended before being sent to the Mesh Servers for
saving. As an example, if a filename ‘/home/mysave’ was selected then the
filenames sent to the four Mesh Servers are:

1. ‘/h o m e /m y sa v e _ l . p i t ’ and ‘/h o m e /m y s a v e _ l .com ’,
2. ‘/h o m e /m y sa v e _ 2 . p i t ’ and ‘/h o m e /m y sa v e _ 2 • com’,
3. ‘/h o m e /m y sa v e _ 3 . p i t ’ and ‘/h o m e /m y sa v e _ 3 • com’, and
4. ‘/h o m e /m y sa v e _ 4 . p i t ’ and ‘/h o m e /m y sa v e _ 4 . com’.

Save Combined Volume
This option allows the user to save the volume mesh partitions as a single volume
mesh file. Although the aim throughout the environment is to operate on
partitioned data sets without brining them back together, it is acknowledged that
there maybe circumstances when a single mesh file is preferable for operations
outside the environment. The user chooses a filename for the mesh in the normal
manner and then the Mesh Servers co-operate in order to produce a valid single
volume mesh.

Generate Surface
This option allows a surface mesh to be generated through the initiation o f a
CORBA-wrapped implementation o f the FLITE Surface Mesh Generator. This
module is then sent the necessary geometry data and sources in order for the mesh
to be generated successfully. During the mesh generation process an information
panel (Figure 181) appears showing the current progress o f the generator as it
passes over each geometry curve and then surface.

180

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

43 6904 3683

531

=> Surface Generator
Running Totals:

Surfaces Generated:

Output:

Stop

63220

31612

Figure 181 - The Surface Mesh Generation Information Panel

At any time during its execution, selecting the ‘Stop’ button terminates the
execution of the generator and closes the panel. At the end of the generation the
panel remains open until the ‘Close’ button is selected. This then causes the
surface mesh to be passed directly back to the environment in a manner analogous
to loading it from disk.

Generate Volume
Selecting this option causes a partitioned volume mesh to be generated in parallel.
This is accomplished by initiating the Parallel Delaunay Mesh Generator on a
specified set of computers, connecting it to the environment and then transmitting
the necessary surface mesh and source data to it.

Once the volume mesh partitions have been generated, a set o f Mesh Server
objects are initiated on the same set of computers, connected to the environment
and the volume mesh data sets passed to them in parallel. Once this has
completed, the Mesh Generator processes are disconnected and terminated.

The input parameters to the generator are specified using the Volume Generation
Control Panel (Figure 182). Once these have been specified, the panel is closed
and the Parallel Platform Panel is opened to allow the user to select the computers
on which the generator is executed. Once this has been done then the generator is
initiated and a window opened to show the output during its execution.

181

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

«= Volume Mesh Generation
Number of partitions: — o

Generator Alpha Value (0.9): |o .9

Number of C osm etics Loops (3): |3

Max Angle for Swapping (30.0): |3 0 .0

Maximum Angle for Collapsing (10.0): | l0 ■ o|

Number of Smoothing Loops (1): [l

! G e n e ra te M esh |______________ ^ ^ C l o s e ^ ^

Figure 182 - Specifying the Parameters for the Parallel Delaunay Mesh
Generator

Appearance
This option allows the user to change the rendering appearance o f the various
entities associated with the surface and volume mesh data sets. The appearance
and operation of the Mesh Appearance Panel (Figure 183) is almost identical to
that o f the Geometry Appearance Panel described in Section 7.4. The only
difference is that the curve and surface entities are replaced by the various mesh
entities, e.g. surfaces, interfaces, cutting planes, iso-surfaces, etc.

Visibility Control: jrf

v S p a rse -Jt

v O utline \ y

n> W irefram e v

Hidden-Line sy

\ y Solid O

Lit Solid V

Apply

W irefram e

Su rfaces

U1 Solid

Outline

S p a rse

C an ce l

■= Mesh Appearance...

Figure 183 - The Mesh Appearance Panel

Colour
This option allows the user to change the colours of the various entities associated
with the surface and volume mesh data sets. The appearance and operation of the
Mesh Colour Panel (Figure 184) is almost identical to that of the Geometry

182

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU E I I v2.0

Colour Panel described in Section 7.4. The only difference is that the curve and
surface entities are replaced by the various mesh entities, e.g. surfaces, interfaces,
cutting planes, iso-surfaces, etc.

» Mesh Appearance...
Visibility Control: s f Surfaces D lntartac*&

□ f+:-!.Kih Cuts D Shiooth Cuts

□ Smooth ls-:-s □ Stream Lin~>s

□ Mesh Quality □ Surtae * C:*n*-:«urs

□ lnteiaf»>e Coritouis □ H-h.Kih Co* C : ni-: urs

□ Smooth Cut Coritouis □ Shiooth Is-:- C:-nt-: «.irs i

■ ■ ■ ■ ■ 1 Solid Colours Variable Colours

Rod: |-<|

Green: 1 « |

Blue: Id. .

Value: h i

Automatic Colouring

Colour By Object | Colour By Partition |

ÂpplyJ__̂ Canod J

Figure 184 - The Mesh Colour Panel

Quality Analysis
This option allows the user to analyse the quality of a surface or volume mesh in
parallel. When selected the user is presented with the Mesh Quality Analysis
Panel (Figure 185).

<= Mesh Analysis Pane!
Z S lV s +VF

Volumes

Mm D ihedral Angle

User-Del Points

User-Def Cells

Create Edit Delete Load Save

Value Range:

Apply I

1 « "
No bars selected

Unzoom

Figure 185 - The Mesh Quality Analysis Panel

This panel is divided vertically into two sections. The left section lists the
available mesh quality measures. These are all either geometric or topological

183

215

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P S U E I I v 2 .0

measures that, together, give a good indication of how well a mesh will perform
within a typical equation solver.

To analyse a particular metric, the user simple selects it from the list and then
selects the ‘Use’ button. This instructs the Mesh Servers to compute the specified
metric, in parallel, and return the values used to fill the histogram on the right.
The histogram shows the range of values of the specified metric along the
horizontal axis. This range is divided into 100 bars, whose heights are determined
by the number o f nodes/edges/faces/cells that fit within that sub-range.

Using this histogram, the user can perform one o f three functions:

• Select a range of bars and then zoom into that range (Figure 186). This causes
the histogram values to be recomputed by the Mesh Servers. The histogram is
then updated to show the selected range o f values represented by all of the 100
bars (Figure 187). This operation can be performed repeatedly in order to
zoom in an ever-decreasing section o f the histogram.

Figure 186 - Selecting a range of Figure 187 - The same Histogram
Histogram Bars zoomed into the selected range

• Unzoom the histogram back to a previous level. This effectively undoes the
effects of the most recent zoom. This can be performed repeatedly until the
histogram, once again, covers the full range o f metric values.

• Highlight the individual nodes/edges/faces/cells whose metric value falls
within the range of the selected histogram bars. This causes the selected
entities to be highlighted within the actual mesh in the Main Window (). This
allows the user to examine whether any elements of poor quality are in
regions where the solution may be affected.

184

C h a p t e r I : T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

Clear Voltxne

Load Volume

Check

Done

Mesh Selection: Surfaoe interface Rough Cut

=» PSUE // (Parallel Simulation User Environment)

Layout

Shiooth i-sv S'ream Une > Mesh Quality

Manager| Set Centre |

Save Voltxne - >

Appearanoe

Clear Analyse |

Perform
Analysis

Range:

□ 6»:m»iry □ jtfMesh J e
Ready

All machines added ooneedy_____________

Figure 188 - Some Volume Elements highlighted in the Mesh

7.7. The ‘'Boundary C onditions’ Toolbar
The Boundary Conditions Toolbar contains the following options:

Clear
The Clear option causes any Boundary Conditions currently stored within the
environment to be removed.

Load
The Load option allows the user to load a pre-defined set of boundary conditions
from a file selected from a File Selection Panel.

Save
The Save option allows the set o f boundary conditions contained within the
environment to be saved to a file selected via the File Selection Panel.

Edit
This option allows the user to set up / create a set o f boundary conditions for a
particular geometry through the use o f the Boundary Condition Editor Panel
(Figure 189).

185

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v 2 .0

= Boundary Condition Panel.
Surfaces Curves

□ W all □ rjonnal

ZD Sym m etry □ IrailirKi E dqe

i ff O u terB ndry

□ Inletl

□ Inlet2

□ O u tle tt

□ O utlet2

C lo se

Figure 189 - The Boundary Condition Editor Panel

This panel is divided horizontally into two sections. The left section allows the
user to apply boundary conditions to the various geometrical surfaces and the
right second allows the user to flag certain geometry curves as sharp edges.

When the panel is opened and no boundary conditions exist then a complete set
are created, with a solid boundary condition being applied to all surfaces and
flagging all curves as not being sharp edges. These defaults were chosen since in
most cases the majority of the geometry will have these features applied with only
a few curves and surfaces being flagged differently.

To alter the boundary conditions, the user must select the required geometrical
surfaces in the main window. This then enables the boundary condition toggles to
allow the user to select a boundary condition to apply. If all o f the selected
surfaces currently have the same boundary condition then the toggles in the panel
reflect this, otherwise they remain blank to show that surfaces with different
boundary conditions are currently selected.

Flagging geometry curves as sharp edges (often referred to as trailing edges) is
performed in a similar manner. The user, in the main window selects the curves,
and then the required toggle is chosen.

The geometry and mesh can also be coloured according to their boundary
condition settings if the appropriate toggles are set in the Geometry and/or Mesh
Appearance Panels.

7.8. The ‘Solution’ Toolbar
The Solution Toolbar contains the following options:

Clear
This option causes the solution to be removed from the environment. This
instructs the Mesh Servers to free the solution values and then recreate the Render
Objects of the mesh. These are then passed to the Master process for display.

186

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

Load
This option allows an existing solution to be loaded into the environment. A File
Selection Panel (Figure 171) appears to allow the user to select one o f the
partitions solution files. This is then replaced by a second panel to allow the user
to place a ‘#* character in place of the partition number in a manner identical to
loading a set o f volume mesh partitions. These filenames are then passed to the
set o f Mesh Servers, which then load the solution files. These servers then
recreate the Render Objects and send them back to the Master process for display.

Save
This allows the solution currently stored within the environment to be written to
disk as a set of partition solution files. The filename is chosen via a File Selection
Panel (Figure 171) and then sent to each of the Mesh Servers, in parallel, to save
the files.

Execute Solver
This option allows the user to execute a parallel CFD solver on the volume mesh
data sets using the specified boundary conditions.

The input parameters to the solver are specified using the Solver Control Panel
(Figure 190). Once these have been specified, the panel is closed and the Parallel
Platform Panel is opened to allow the user to select the computers on which the
solver is executed. Once this has been done then the solver is initiated on the
specified computers and connected to the environment. The required mesh and
boundary condition data sets are then transmitted to it in parallel. During its
execution, depending on the users choice, the output from the solver processes are
either logged in a file or echoed into a set o f windows opened on the desktop.

When the solver has the specified number of time-steps, the solution data is then
transmitted back to the environment and the solver processes are disconnected
and terminated. The Mesh Servers then recreate the Render Objects to include the
solution values and send them back to the Master Process for display.

«=» Flow Solver

Number of Time-Steps (1000): tioo°i
Gamma (1.4): e h

CFL (0.5): EH
Relaxation (0.1): EH

Mach Number (0.84): l°-84l
Angle of attack (3.06): I3-06!

Yaw Angie (0.0): EH
□ front exteiirjg SviutK-n

E x ecu te SolverJ C lose

Figure 190 - The Solver Control Panel

187

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

Change Variable
This option allows the user to choose which of the solution variables is used to
colour the mesh. This is achieved by selecting the required variable in the list in
the Variable Selection Panel (Figure 191).

|c = M esh Appearance...

Visibility Control: Jtf Surfaces □ Interfaces

□ n-HKih Coi's □ Smooth Cuts

□ Shooth □ Str-i-srn Lin-*?

□ Mesh Quality □ Sorts* * C:-ni-:-i.irs

□ hiterf*)e Coiitouia □ Fi-HKih Cul C:-ni

□ Srvfocth Cut Contour- □ Snocth is-:- vurs

S t * Sold Colons Variable Colours I
! j Disable Solution Colouring

Density-1 A

U Velooity-1

V Velooity-1

W Veloclty-1

Energy-1

T Jd
Apply | Canoel j

Figure 191 - The Variable Selection Panel

Selecting the ‘Apply’ button causes the Mesh Servers to recreate the Render
Objects with the new variables’ values and then send them back to the Master
process for display.

The Variable Selection Panel also allows the creation of user-defined variables
based upon a combination of the generic variables produced by the solver and
geometric features of the mesh. Selecting the ‘Create’ button opens a sub-panel
that contains three fields to be filled by the user:

• The new variables name,
• A short mnemonic for the new variable. This would be used when referencing

this variable during the creation o f another, higher-level variable.
• A mathematical expression describing how this variable is to be computed

from the generic variables. This mathematical expression is entered in a
similar style to the C programming language. For details, see Appendix A.

Set Range
This option allows the user to alter the range of solution values that are mapped to
the colour scale. By default, the minimum solution value is mapped to the red end

188

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P S U E I I v 2 .0

of the scale and the maximum mapped to the magenta end. However, it is often
the case that a few rogue solution values cause the rest to be mapped into a small
section of this scale causing a loss o f detail and, generally, a washed out
appearance. Using this option, the range of values mapped to the colour scale can
be narrowed thus providing much more information. The solution values that then
fall outside this range are clamped to the appropriate end.

The user achieves this by sliding the bars representing the minimum and
maximum solution values until the required range has been achieved. Selecting
the ‘Apply’ button then causes the colours on the mesh in the Main Window to
change to reflect the new settings. Figure 192 shows the Mach number on an
aircraft using the default solution range o f 0.015 - 2.99. Figure 193 shows the
same variable but with the range reduced to 0.31 - 1.06.

Figure 192 - The Default Solution- Figure 193 - The User-Defined
Colour Mapping Solution-Colour Mapping

Figure 194 - The User-Defined Solution-Colour Mapping with Contouring

189

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e P SU EII v2.0

7.9. The ‘P ost-Processing’ Toolbar
The Post-Processing Toolbar contains the following options:

Cutting Planes
Selecting this option opens the Cutting Plane Panel (Figure 195) to allow the user
to define/edit cutting planes through the mesh.

| «=» C u tt in g P la n e P a n e !

_A

V
|»]

C re a te | D elete F lp

Align X I Align Y Align Z

Type: \> R ough xy S m oo th Clip Volume: J

*1 ' M 1*1 T ran sla te

Apply j C anoel

Figure 195 - The Cutting Plane Panel

Using this panel the user is able to define either rough or smooth cutting planes.
Rough cutting planes are defined as the set of faces bounding the set of elements
placed wholly on the correct side o f the plane. Smooth cutting planes are defined
as the faces created through intersecting each element by the cutting plane. These
are shown in Figure 196 and Figure 197.

190

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

Layout

Render Control: Q jtf Mesh _J 8Box
l: Trying to initiate selected hosta .

Ail w ch fcm added oorrecdy____________________

Figure 196 - A Rough Cutting Plane

Cleai

Save Vo lime

m m ? -I

Mesh 9eleotion: Surface iri»if*>e Rough Cut > Smooth Cut , Smooth!*: S 'reirt One Cjuefciy

Select by Range:
Render Control: Q 0W;«m*try Q S.-nrc-a* jffMesh _J BBox
Statos: Trying to wiitiate selected hosts...

All machines added oorrsotfy_____________________

Clear Volute

Clear Analyse |

Figure 197 - A Smooth Cutting Plane

The cutting planes currently defined are listed in the panel and shown in the main
window as rectangles at various orientations. Selecting one o f these causes the
associated rectangle to be highlighted. This can then be manipulated with the
mouse (translated, scaled and rotated) in the same manner as the mesh. Whilst this

191

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

is being performed the mesh is clipped in real-time using the Open-GL clipping
mechanism. Selecting the ‘Apply’ button causes the cutting plane to be fixed and
the various Mesh Server objects work, in parallel, to produce the set of faces
representing that cutting plane. When they have finished these faces are then
displayed.

Selecting one of the ‘Create X ’, ‘Create Y* or ‘Create Z ’ buttons creates a new
cutting plane. These create a new cutting plane that is aligned with the constant x-,
y- or 2 -axis. This alignment is purely a starting point since the user may
subsequently manipulate the plane.

Iso-Surfaces
This option opens the Iso-Surface Panel (Figure 198) through which the user may
create any number of iso-surfaces.

Iso Surface Panel
Density

U Velocity

V Velocity

W Velocity

Energy

Create Delete

Apply

Range: 0.015106 : 2.994410

Iso-Value: |l-19| Set

Cancel

Figure 198 - The Iso-Surface Panel

This panel contains a list of currently defined iso-surfaces, each o f which may be
selected for editing. Selecting the ‘Create’ button creates a new iso-surface based
on the first solution variable with a value placed at the centre of the range o f that
variable.

An iso-surface may be edited by simply selecting the solution variable on which
the iso-surface should be based and then entering the value that the iso-surface
should represent. To aid the user, the range o f values o f the selected solution
variable is also displayed in the panel.

Selecting the ‘Apply’ button causes the Mesh Server objects to recreate, in
parallel, all of the necessary primitives used to render the current set o f iso­
surfaces. These are then passed back to the Master process to be displayed. Figure
199 shows an example of rendering an iso-surface representing Mach 1.0 over a
small business aircraft.

192

C h a p t e r 7: T h e F u n c t i o n a l i t y o f t h e PSU EII v2.0

\Potnrs(0)
T-. '• ■ .

Pw ; W3 r*J) 0 75307? IpS

1. Main

2. CORBA Mash

Cleai- Su<ta>e |
Load Surface |

S*we Surtat |

Clear Volume |

Load Voliune-> |

Save Volume - > |

Geriei'ai-i

Yol'.irvi

Appearance

Clear Analysis j

Perform
Analysis

Mesh Seleotion: Surface ; > Rough Cut Smooth Cut > Smooth Iso J irea rU n e - M -s/i Quali'y

Select by Range: \ , Manager | Set Centre |

Render Control: □ □ .j- i f Mesh !_J BBox
Status: Trying to initiate selected hosts...

All machines added correctly ^

Figure 199 - An Iso-Surface of Mach 1.0 over the Gulf-Stream

193

C hapter 8. A d d r essin g the Issues of
Softw are Portability

As computational simulation moves from the traditional research environment into the
commercial design and manufacturing environment, the issues o f software portability
become fundamentally important.

For tools that are designed to run on high-performance computing platforms, the range o f
computers on which the codes may be used is quite extensive ranging from traditional
parallel super-computers, through traditional UNIX workstations and Linux based PCs to
Microsoft Windows based PCs.

For small Fortran 77 based codes the issues o f portability are usually quite simple to
overcome. This is, in most parts, due to two factors:

• The Fortran 77 language has been stable for a long number of years,
• Most Fortran 77 programs remain completely within the environment o f the language

itself. They often do not interface with the underlying Operating System in any way.

These two factors mean that any differences between the various underlying Operating
Systems are hidden from the program completely.

This can also be true when programs use the ANSI C language. Again, the language has
been stable for a number o f years and, for simple tasks, the program can stay within the
confines o f the language itself and, thus, be protected from the underlying Operating
System.

However, many programs written using C are not able to stay within the confines o f the
language and must interact directly with the libraries o f subroutines provided by the
Operating System. Examples o f these types o f programs include:

• Programs that create Graphical User Interfaces (GUIs),
• Programs that perform any graphical rendering (two-dimensional or three-

dimensional),
• Programs that need to perform any other operations that are not provided within the C

language.

The difficulties involved in ensuring these types o f programs remain portable across
different platforms depend heavily on the range o f platforms required. If the portability o f
programs can be limited to computers based around a UNIX Operating System then this
can be achieved with a little effort and forward planning. This is because modem
versions o f UNIX are based on one o f two standards, BSD from Berkeley and System V
from AT&T, with most incorporating the functionality o f both. However, some vendor

194

Ch a p t e r 8 : A d d r e s s in g th e I s s u e s o f S o f t w a r e P o r t a b il it y

specific functionality is still present in almost all versions o f UNIX and care must be
taken when this functionality is used.

If the range o f computers on which the programs must run include the Microsoft
Windows range o f Operating Systems then the issues o f portability become much more
difficult since there are almost no common sets o f subroutines with UNIX.

For programs coded using the C++ language then the problems o f ensuring portability
include all those found when using the C language. However, since the C++ language is
relatively new there tend to be incompatibilities between the various vendors’
implementations o f the actual language itself. This means that even if a program stays
within the confines o f the language, portability is in no way guaranteed.

For a large suite of programs such as PROMPT and the PSUE II, which include GUI’s,
three-dimensional graphics and frequently interface with the underlying Operating
System, the difficulties o f ensuring portability are numerous. The rest o f this chapter
describes the various incompatibilities that were encountered during development. These
are ordered according to the difficulty o f overcoming them:

• Language features,
• Graphics,
• Threading Interface,
• Input/ Output (I /O) ,
• Inter Process Communication (IPC) and
• Graphical User Interfaces.

8.1. L anguage Features
During the development o f both PROMPT and the PSUE II, by far the most portable
language out o f the three was C, where no problems were encountered on any platform.
Fortran 77 had a number o f portability issues, especially when mixing it with other
languages in the same program. The two most common ones were dynamic memory
allocation and subroutine name mangling.

The C++ language has only recently adopted a standard and thus has the most portability
issues, which are due mainly to the different degrees with which the various compilers
have managed to adapt at this stage. The two main features o f C++ that have the most
portability problems are templates and run-time type identification (RTTI). Of these, the
functionality o f RTTI can be emulated simply within the code and thus can be safely
ignored. However, the functionality inherent with templates is a very powerful feature
and, thus was considered too worthy not to use.

8.1.1. Fortran 77 Pointers
Fortran 77 has no intrinsic mechanism for dynamic memory management. This feature
was considered essential in user-friendly codes such as PROMPT and the PSUE II. In
order to overcome this limitation, an extension to the language, originally conceived by

195

Ch a p t e r 8: A d d r e s s in g t h e I s s u e s o f S o f t w a r e P o r t a b il it y

CRAY, allowed the use o f ‘C’ like pointers. These could then be used to allocate memory
at any point in the program and then use this memory as if it was a normal, static array.
This extension has since been widely adopted by all o f the commercial compilers for both
UNIX and Windows. The only exception to this is the GNU implementation o f Fortran,
g77, which is widely used under the Linux OS. However, this limitation could be
overcome through the use of commercial Linux compilers that do support the extension.

8.1.2. Fortran 77 Subroutine and Variable Names
Unlike C and C++, the Fortran 77 compiler performs some name mangling on subroutine
and variable names during the compilation process. This is normally completely
transparent to the user unless the Fortran routines are mixed with routines from C or C++.
The way a name is mangled is dependent on the compiler. Typical examples are given in
the table below.

Compiler Description o f Name Mangling F77 Label C Label
SGI (£77) /
Intel (ifc) /

Solaris (f77) /
DEC (£77)

Converted to lower-case and
underscore appended. SubRoutinel subroutine 1_

CRAY (f77) Converted to upper-case SubRoutinel SUBROUTINE 1
HP (f77) /
IBM (f77) Converted to lower-case SubRoutinel subroutine 1

GNU (g77) Converted to lower-case and two
underscores appended SubRoutinel subroutine 1__

As can be seen, most o f the name mangling is reasonably trivial to overcome. However,
there is an exception to this rule. When using the combination o f Microsoft Visual Studio
and Compaq Visual Fortran, the name mangling is somewhat more complex. For
example, a Fortran 77 subroutine declared as:

subroutine DoThis(j, a)

needs to be written as:

subroutine syscall DoThis(j , a)

and is called from C or C++ as:

dothis@8(&j, &a)

Passing a pointer to j and a is standard practise due to Fortran always passing variables
by reference. However, the ‘@8’ sequence is derived from the fact the two arguments to
that function take a total o f eight bytes.

196

Ch a p t e r 8: A d d r e s s in g t h e I s s u e s o f S o f t w a r e P o r t a b il it y

In order to overcome these difference in a neat manner a Macro Processor, called m4,
was used during the compilation process to pre-process the C, C++ and Fortran 77 source
code in order to ensure any subroutine and variable names were correct.

8.2. G raphics
During the early development o f PROMPT, a standard for three-dimensional graphics
was emerging called Open-GL. This was supported to varying degrees by most o f
computer vendors. For those that had not supplied a native implementation for their
hardware, a free software-based implementation was available called Mesa.

The core o f Open-GL was designed to be portable across all implementations on all
platforms and during the development o f both PROMPT and the PSUE II no portability
problems were encountered. Any extensions added to the library by a particular vendor
were clearly marked as such by appending an acronym identifying the vendor. For
example, glBegin () is a standard, core subroutine whereas glTexImage4DSGIS ()
is identified by the SGIS suffix as an SGI extension. This system easily identifies all non­
standard functionality, so as not to be used if portability is intended.

However, the Open-GL standard does not encompass the interaction between the three-
dimensional graphics functionality and the underlying windowing system since this is
inherently non-portable. These differences will be covered under the ‘Graphical User
Interface’ section below.

8.3. Threading Interface
It is often desirable to have the ability to execute more than one thread o f execution in a
given executable. These threads would execute concurrently17, all being able to access the
same memory spaces if only one thread was executing.

During the development of PROMPT creating such threads was vendor specific. For
example, SGI used a feature called Shared Processes (or sproc) whereas Sun used a
feature called Solaris Threads. Each o f these thread variants had a number o f features in
common, such as sharing the memory o f the process, being initiated by specifying a
subroutine name that is to be run as a separate thread. However, a number o f important
differences remained. For example, threads under the SGI variant had unique process
identifiers whereas the other vendors did not, some variants allowed threads to be
suspended and resumed at any time and the API to each o f the vendors thread
implementations was unique.

Soon after the PROMPT project was completed, most vendors adopted a standard called
POSIX threads. This provided a simple and portable interface to the multi-threading
capability o f the OS. This has been used throughout the PSUE II development where no
portability issues have arisen. A simple example o f its use is shown below.

17 As with normal multi-tasking, a single processor computer would emulate concurrency via time-sharing
whereas on a multiple processor computer each thread may, indeed, operate concurrently.

197

Ch a p t e r 8: A d d r e s s in g t h e I s s u e s o f S o f t w a r e P o r t a b il it y

void my_subroutine(void *pArgument)
{

/* Do something as another thread */
}

int main(int argc, char *argv[])
{
pthread_t threadID;

/* Start subroutine as another thread */
error = pthread_create(&threadID, my_subroutine, NULL,

NULL) ;

/* Do some other processing while thread is running */

/* Wait until thread finishes */
pthread_join(&threadID, NULL) ;

/* End program */
}

8.4. Input / Output
Performing formatted I/O in any o f the three languages is completely standard with no
portability problems either between computers or between languages. The only issue
arising is when reading and writing floating point numbers since the conversion between
binary and decimal representations ultimately leads to small losses o f accuracy. However,
this usually only affects the first or second least significant digit.

18For programs, such as the PSUE II, which deals with large files, formatted I/O is too
slow and produces files that are very large. For these operations, unformatted I/O19 is
necessary. However, unformatted I/O has some portability issues due mainly to the
differences between how numbers are stored internally inside different computers.

8.4.1. Unformatted I/O between Fortran 77 and C
When performing unformatted I/O in Fortran 77, the file is transparently sub-divided into
records. For example, given the following Fortran routine:

write(20) ((ielem(j ,i), i=l,nelem),j=l,4)
write(20) ((coorp(j,i), i=l,npoin),j=l,3)
write(20) ((iboun(j,i), i=l,nface),j=l,5)

18 Formatted I/O reads and writes files using ASCII files that are human readable.
19 Unformatted I/O reads and writes files using the computers native binary format that is not human
readable.

198

C h a p t e r 8 : A d d r e s s i n g t h e I s s u e s o f S o f t w a r e P o r t a b i l i t y

the following file is produced:

npoin*3
*sizeof(double)

Data Data Data

nelem *4
*sizeof(int)

' nboun*5
*sizeof(int)

This shows that the data is written out surrounded by record delimiters. These record
delimiters are four bytes long and store the length, in bytes, of the data.

When reading and writing in Fortran 77, these delimiters are dealt with transparently.
However, in C these records need to be read and wntten explicitly. These record
delimiters also cause a problem when individual records are longer than 2GBs (231-1
bytes) since the ability to store the data size in an integer is no longer possible. This
problem has yet to be overcome by many compiler vendors.

8.4.2. Portability Issues due to Big and Little Endian Computers
Although modem computers mostly use the standard 2 ’s complement format for storing
integers and the IEEE standard for storing floating point numbers, there is still an
incompatibility between how computers represent any multi-byte quantity. Two standards
encompass all common computers: big endian and little endian.

The big endian representation stores numbers in the intuitive manner with the left-most
bytes being most significant, whereas the little endian representation stores numbers with
the right most bytes being most significant. Figure 200 illustrates both representations.
Most modem RISC computers store numbers using the big endian format with the little
endian format being used almost exclusively by the DEC Alpha and Intel processors.

31 30 29 28 27 26 25 24 23 22 21 20

o> OO N - 16 15 o- 00 C\l o
05 00 f>- CO LO O CO CM - o

I
Big-Endian

CO LO O CO CM 0 15 O ' CO CM o
05 8 23 22 CM 20

05 CO N - 16 31 30 29

CO
CM 27 26 25 CN

| I
Little-Endian

Figure 200 - Byte layout for a 32-bit quantity

This problem was overcome by always maintaining any unformatted files using the big-
endian representation. Byte swapping routines were then defined as C++ inline functions
so as not to introduce any function call overhead. For platforms using the little-endian

199

Ch a p t e r 8: A d d r e s s in g t h e I s s u e s o f S o f t w a r e P o r t a b il it y

representation, these routines would swap the bytes during the I/O operations. For the
platforms using the big-endian representation, these routines were defined to be empty
subroutines with no operations and would therefore be removed during the optimisation
stage o f the compilation process.

8.5. Inter-Process Communication
As mentioned previously, the inter-process communication system used during the
development o f PROMPT was based around UNIX sockets. This communication
mechanism is supported in a portable fashion by all o f the UNIX vendors. The only
portability issue on UNIX platforms was when two processes communicate on two
computer platforms with different endian representations, but this could be overcome
using the same method as above. Although Microsoft Windows does not support UNIX
sockets as a native functionality a third-party library, called WinSock (available from
Microsoft and the public-domain), does provide the same functionality and interface thus
eliminating potential portability problems.

During the development o f the PSUE II, it was decided to use communication
mechanisms that abstracted away from the native UNIX sockets, and thus hid any
portability issues for all platforms. For communication between the slave processes the
MPI library was used and for master-slave communication, CORBA was used. Both o f
these libraries have, as one o f their major requirements, portability across the full range
of UNIX and Windows platforms.

8.6. Summary
The sections above have described the individual difficulties encountered whilst porting
both PROMPT and the PSUE II to a number o f UNIX platforms. In addition to these
points, decisions were made throughout the implementation o f both environments to
restrict the use o f system subroutine calls to those that are generally regarded as being
standard.

Unlike with UNIX systems, where OSF/Motif is fully supported, when Microsoft
Windows is considered, then portability issues involving the actual graphical user
interfaces (i.e. windows, menus, buttons, etc.) become very complex. In order to provide
this functionality the use o f third-party solutions is recommended. These include:
• Exceed from UniPress Software Inc. that provides a means by which UNIX

applications can be displayed on a Windows platform.
• WxWindows (www.wxWindows.org) which provides a freely available, cross

platform GUI library that provides a portable interface to the native GUI libraries o f
the various platforms. GUI libraries supported by wxWindows include MS Windows
95/98/Me/NT/2000/XP, Linux GTK, OSF/Motif and Apple Mac.

200

C hapter 9. Exam ple Test-Cases

9.1. Explanation of Test-Cases
In order to show the operation and functionality o f the PSUE II, three test cases were
chosen:

• CFD Simulation over a Dassault Falcon
The emphasis with this test case was to illustrate the majority o f the functionality
of the PSUE II, from geometry repair operations and creation o f sources, through
to mesh generation, quality analysis, flow simulation and post-processing.

• CFD Simulation over a complete FI 6 configuration
The purpose o f this test case was to illustrate the typical sequence o f operations a
user may perform if presented with a topologically valid geometry but with no
outer boundary. The actual geometry is far more complex than the Falcon and the
meshes involved are over six million elements.

• Pre-processing o f a Grand Challenge Simulation over a Dassault Falcon
The purpose o f this test case is to show how the parallel architecture o f the PSUE
II enables the user to manipulate very large meshes; in this case, approximately
half a billion elements.

For each o f the test cases, the process is divided into a number o f stages, each dealing
with one o f the major data sets involved. For each stage, the operations performed are
described along with the approximate times taken which include all user interactions. For
example, the time taken to generate a surface mesh begins when the button on the toolbar
in the PSUE II is selected and ends when the mesh appears in the main display window.
For this reason, all o f the times are approximate since, for smaller test cases, the speed of
the user could have a significant effect when compared to the execution time o f the
algorithm.

All parallel computations, including the slave processes o f the PSUE II were performed
on an SGI Onyx 3800 with 64Gb o f memory and 32 R 14000 processors running at
500MHz.

9.2. CFD Simulation over a Dassault Falcon
This test case involved performing a CFD simulation using a reasonably small mesh o f
approximately half a million elements. The geometry, although known to be
topologically valid, has had all o f the topological information removed, and its outer
boundary removed. The purpose o f this was to illustrate the pre-processing functionality
of the PSUE II in setting up the geometry, background grid and sources for mesh
generation and flow simulation.

201

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Geometry
The main pre-processing options that were necessary in order to prepare this
geometry for meshing were to recreate the topological information (i.e. which
curves are attached to which surfaces) and the outer boundary.

The first operation was to use the Outer Boundary Creation panel (described in
Section 7.4.1) to create a half-sphere outer boundary and symmetry plane, with
the symmetry plane attached to the correct side o f the aircraft. Figure 201 shows
the before and after appearance of the geometry.

(a) Without Outer Boundary (b) With Outer Boundary

Figure 201 - Creation of the Outer Boundary

This operation automatically attached the relevant geometry curves to the
symmetry plane so this would not need to be manually done later.

The second operation was to use the Edit Topology panel (also described in
Section 7.4.1) to attached the remaining curves to the surfaces.

These two operations took approximately 1.5 hours to complete.

Background Grid and Sources
Once the geometry was valid, the next operation was to create the sources that
would increase the mesh density in certain key areas o f the geometry, such as the
leading and trailing edges of the wings, and the fuselage.

This was performed using the Edit Sources panel (described in Section 7.5). The
panel and resultant sources are shown in Figure 202. Although, there is feedback
on how the source strength will affect the mesh density, it was still necessary to
generate two test surface meshes in order to be satisfied with the result.

202

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

<=» S o u r c e C o n t r o l P a n e !

Set Background Spacing: v Auto ^ Manual f9

1 ± 1
Selected:

2 = Delete | Focus

3
— Link | Unlinl

4 Hide | Show

l_copy2 Hide All | Show All

2_copy2 Creation

| 3_copy2 Create Point

4_copy2
V

Create Line

■*1 I*-:
Create Planar

Source Name: F

Intensities: F

Set Parameters

Apply | Cancel

(b) The resultant sources

(a) The ‘Edit Sources’ Panel

Figure 202 - Creation of the Sources

This operation, including the generation of the two test surface meshes, took
approximately two hours.

Surface and Volume Meshes
During the construction of the sources, the surface mesh was generated three
times with the last mesh being used for the volume generation. The final surface
mesh consisted of 12,366 triangles and 6183 nodes and took under one minute to
generate. The volume mesh was generated using eight processors in less than 2
minutes and comprised 304,374 tetrahedra and 55,216 volume nodes. Figure 203
shows the surface mesh and Figure 204 shows the interface surfaces of the
volume mesh as produced by the parallel Delaunay mesh generator.

203

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

■a
Layout

1 Main Region i
2. Mesh

Clear Si/face 1

Appearance j

Clear Analysis |

Perform
Anah/sh?

Mesh Selection: Sirface intjehace Rough m i Smooth CU

Select by Range: __ _ __ ___ __ __ __
Render Control: J Geometry J Sources atfMesh J BBox
Status: Trying to initiate selected hosts...

All machines added correct l y _________ ___________

Stream Une Mesh
____________________________Manager] Set Centre|

Figure 203 - The Surface Mesh of the Dassault Falcon

x j m m

Rough Cvt Smooth CU Smooth ifo Stream Line Mesh Quality

— PSUE it (Parallel Simulation User Environment)

Layout
1. Main
2. Mesh

3. Load Volume

Local FLUE

Local EFLITE 1

Mesh Selection: Sirface interface

Select by Range: j
Render Control: J Geometry J Sources jtfM esh _J BBox
Status: Trying to Initiate selected hosts...

All machines added correctly___________________

~\ Manager | Set Centre j

Figure 204 - The Volume Mesh (with interface surfaces)

204

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Mesh Quality Analysis
The quality o f the volume mesh was analysed by looking at the minimum dihedral
angle for each element. The histogram, shown in Figure 205, shows the angle
along the x-axis and the number o f elements that fall within each range along the
y-axis.

Elements with angles up to approximately 12° were then selected and highlighted
in the mesh. As can be seen in Figure 206, most of the flatter elements were
produced on the ends of the wings. Since this is due to the fact that the geometry
surfaces in these regions meet at an acute angle, the mesh is deemed suitable for
the solver. This process took under one minute to complete, although this does not
include the time for the user to analyse the highlighted elements once displayed.

Figure 205 - The Mesh Quality Graph of the Falcon Mesh

205

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

iutace

•?..c Surfaca

Clear Volume

Load Volume

Save Volume

Generate
Surface

«=> PSUE a (Parallel Simulation User Environment)

Layout

Appearance

Clear Analysts |

Perform
Analysis

Mesh Selection: y Surface in’enaee Rough' u 3mao»i> . .« Smooth 15c Slrear . '■& v Mesh Quality

Select by Range: ;[_________________ _________ _ ____________________________________ Manager j Set Centre |
Render Control: □ Geometry □ Souce* r f ’Mesh BBox
S tatus: Ready

Ail machines added correctly___

Figure 206 - Highlighting the fla t elements within the mesh

Boundary Conditions
The boundary conditions were trivial to apply. Firstly, all o f the surfaces were
selected and a wall boundary condition was applied. Then the symmetry plane
was selected and the boundary condition changed to be a symmetry. The same
was then done for the outer boundary. The last operation involved the selection of
the intersection curves on the trailing edges of the two wings and the fin. These
were then flagged as being trailing edges in order that the intended solver would
treat them accordingly.

This operation took approximately ten minutes.

Flow Solution
The flow simulation was performed using eight processors and converged in less
than five minutes. The resultant solution is shown using colour plots (Figure 207)
and contours (Figure 208).

206

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Potrfs(O) Lmes(O)
TM ItSdQ Quaas(O)
rmm{iQOms) 9 090909/ps

Statistics

Load Position

Save Position

Render Control: □ Georoe»jy □ Soirees j f Mesh J BBox Quick Set: Left) Right) Front) Back) Top| Bottom|
is: Trying to initiate selected hosts...

All machines added correctly____________________ ___

2. General

L»yoU |

Configue
Lighting

Figure 207 - Solution Colours of Mach Number

a PSUE U (ParaHei Simulation User Environment)________________________ ■ Q

Layout ___

Mesh Selection: ► Sirface Rougn •' \ i Smooth U Smooth 150 • Stream Line Mesh Quality

Select by Range: j[
Render Control: □ •Seometiy □ S o ir e e s *fMesh _1 BBox QuickSet: Left] Rigi
Status: Trying to initiate selected hosts...

All machines added correctly__________________________

]] Manager | Set Centre |

Appearance j

Clear Analysis |

Perform
Analysis

Figure 208 - Solution Contours of Mach Number

207

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Post-Processing
Figure 209 shows a cutting plane across the wing of the aircraft and Figure 210
shows an iso-surface o f Mach 1.0. The time taken to produce these features was
under 30 seconds in both cases.

— PSLieu (Parallel Sim ulation U s* EmjmnmenQ ' • □

Layout
fsfff) UrtesfC
'74089) Qj*.

2. General

Layout

Configixe
Lighting

Statistics

Load Position

Save Position

Render Control: □ (3eorrie»jy □ Sources stfMesh _J BBox Quick Set: Left| Right| Front| Back) Topj Bottom|
Status: Trying to initiate selected hosts...

All machines added correctly___

Figure 209 - A Cutting Plane through the Falcon

208

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

<= PSUE II (Parallel Simulation User Environment)

Layout
1. Main R S A Lmmtn

2. General r,rmtU8i 0350.

Configure
Lighting

appearance

Statistics

Load roes on

Save Position

Render Control: □ ^ eo m e tr/ □ Source* jffM esh J BBox Quick Set: Left] Right] Front| Back| Top] Bottom]

Status. Trying to initiate selected hosts...
All machines added correctly___

Figure 210 - An Iso-Surface of Mach 1.0

9.3. CFD Sim ulation over a com plete F16 configuration
The purpose o f this test case is to show a simulation over a complex geometry being
performed within the PSUE II. The F I6 (Figure 211) configuration comprises over 500
geometrical surfaces and over 1000 intersection curves. This geometry was made
available courtesy of EADS in Munich, Germany.

(a) FI6 Surfaces (colour coded) (b) FI6 Intersection Curves

Figure 211 - Illustration of the Complexity of the FI 6 Configuration

™ ::..

209

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Geometry
As the above figure shows, the geometry consisted of half an aircraft with no
outer boundary attached. The topology o f the curves and surfaces o f the geometry
was valid so the only operation that had to be performed was the creation o f the
outer boundary. As with the previous example, a half-sphere was created with
symmetry plane and attached to the aircraft. This automatically attached the
appropriate curves of the geometry to the symmetry plane and so created a
watertight model. The resultant geometry is shown in Figure 212. This operation
took less than ten minutes.

Figure 212 - The F16 Configuration with Outer Boundary

210

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Background Grid and Sources
The team in EADS, using the PSUE, had already positioned a number o f sources
at the key features of the geometry. The exact time for this was not available but it
was estimated about three days. The resultant sources are shown in Figure 213.

(a) F I6 Sources (with geometry) (b) F16 Sources (without geometry)

Figure 213 - The Sources used for the FI 6

Surface and Volume Meshes
The surface mesh was generated in under two minutes and comprised 310,030
triangles and 155,025 nodes. The volume mesh was then generated using eight
processors in under one hour and comprised 6,725,979 tetrahedra and 1,117,320
volume nodes. Figure 214 and Figure 215 show the surface and Figure 216 shows
a cut through the volume mesh.

211

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Render Control: _! Geometry _J Soirees jtfMesh J BBox
Status: Ready

Ail machines added correctly___________________

j =a PSUE II (Parallel Simulation User Environment)

Layout
1. Main

; Conflgiration — > j

) Geometry — > |

Soirees — > |

Mesh — >

j Bnd Cond — > |

j Solution — > |

: Post-Proc — > |

Out

Figure 214 - The Surface Mesh of the F I6

1. Main
2. General

Configure
Lighting

Appearance |

Load Position

Save Position

s=a PSUE U (Parallel Simulation User Environment)

Render Control: _j Geometry J Sources jtfMesh J BBox
Status: Ready

Ail machines added correctly___________________

Figure 215 - A zoomed view of the FI 6 Surface Mesh

212

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Pottys(O) UneSfQ) j
Tris(3dS7SO) GbM*$(0)
Tlme(1455 ms) 066X 91 p i

V V V

’ , V

Render Control: □ Geometry □ S a u c e r jtfMesh _1 BBox
Status: Trying to initiate selected hosts...

All machines added correctly____________________

«=» PSUE ti (Parallel Sim ulation U ser Environm ent)

Figure 216 - A Cut through the Volume Mesh of the F16

Mesh Quality Analysis
As with the previous test case, the quality o f this mesh was tested using the
minimum dihedral angle (Figure 217) and elements whose angle was less than 7°
were highlighted (Figure 218). As can be seen, like the previous test case the
elements with the small angles tend to cluster around ends of wings and tins due
to the shape of the geometry surfaces.

Figure 217 - The Mesh Quality Graph for the F16

213

C h a p t e r 9: E x a m p l e T e s t - C a s e s

Layout

i 56 te \ , y

Render Control: 3 Geo;. tnry Sct-ce* <TMesh BBox
Status: Ready

All machines added correctly____________________

Figure 218 - Highlighting the poorer quality elements

Boundary Conditions
The boundary conditions were created within the PSUE II by selecting all the
surfaces and applying a wall boundary condition. The individual symmetry, outer
boundary and engine inlets and outlets were then selected and the appropriate
boundary condition applied. The intersection curves that formed trailing edges on
the wings, aircraft fin and missile fins were then selected and flagged. This whole
operation took approximately 30 minutes.

Flow Solution
The flow solver ran using eight processors and converged in less than two hours
to the flow solution shown in Figure 219.

214

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Layout
*otnt$(0) Liqes(O)
’ris(3069$?i Ojads(0)
' t m t f m ms) 0 43SX7 (ps2. General

Lay oil

Configire
Lighting

Appearance

Statistics

Load Position

Save Position

■ ■ ■ ■

Render Control: □ Gee vein. □ Sojrse? jtTMesh _J BBox
Status: Trying to initiate selected hosts...

All machines added correctly____________________

Figure 219 - The Flow Solution over the F16

Post-Processing
Figure 220 shows a cutting plane over the wing and Figure 221 shows an iso­
surface of Mach 1.0. These operations were performed in less than 2 minutes
each.

215

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

\OuaUs(24046)
s)Q 336753 IpS

r/is(Xirfi
71me(2d36>

;:iear Su 'ace

Save Surface

Load Volume

Save Volume

Generate
Siatace

Generals
vokrf.e

Smooth 150 ' Stream Line <■ Mesh (Swatey

~] Manager | Set Centre |

M esh Selection: Sirface interface Rough CU Smooth C u

Select by Range: |
Render Control: □ Geometry □ Sou ce* *TMesh J BBox
Status: Trying to initiate selected hosts...

All machines added correctly__________________________

Getwale
Hybrid
Vokme

Appearance |

Clear Analysis |

Perform
Analysis

=> PSUE II (ParaHei Simulation User Environment)

Layout

Figure 220 - A Cutting Plane over the F16 Wing

Poinrs(O) Unes(0)
Tns(474U0) Gk/acts(50646)
Time;3363 ms) 0 475659 IpS

1. Main
2. General

.vv i- > »

KB&fev''
mki:T:r.m u .

Stereo

Statistics

Load Position

Save Position

> • v
jvsv „ ‘ V

llanatne

Render Control: □ Geometry □ Snu'cas rfM e sh J BBox
Status: Trying to initiate selected hosts...

All machines added correctly___________________

Figure 221 - An Iso-Surface of Mach 1.0 over the FI 6

216

C h a p t e r 9 : E x a m p l e T e s t -C a s e s

9.4. Pre-processing and Post-processing o f a G rand-
C hallenge Sim ulation over a D assault Falcon

The purpose o f this test case was to perform a simulation o f a high-frequency electro­
magnetic wave over a complete civil aircraft.

Geometry
Since the Dassault Falcon geometry has already been used within the environment
for various types of simulations, no geometry repair processes had to be carried
out, as the model was already topologically valid. The only editing processes
required were to:
• Remove the outer boundary and symmetry plane surfaces and curves.
• Create a reflection of the aircraft geometry and join the two halves to form a

complete aircraft.
• Create a closer outer boundary in the shape o f a box.

This process was completed in less than five minutes; the resulting geometry is
shown in Figure 222.

(a) Original Outer Boundary for CFD (b) Modified Outer Boundary for CEM

Figure 222 - Modification of the Outer Boundary for the CEM Simulation

Background Grid and Sources
The setting of sources was a trivial process as sources had already been defined
for previous CFD simulations. Since CEM simulations require a reasonably
constant mesh spacing, most of the sources were removed. The remaining sources
were re-scaled, along with the background spacing, to produce the required
number of elements. A coarser mesh was quickly generated in order to
approximate the scaling required for the background spacing and source strengths
in order to get the required number of elements. This process was completed in
approximately 30 minutes. Figure 223 shows the sources before and after this
process.

217

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

(a) Sources for a CFD Simulation (b) Modified Sources for the CEM
Simulation

Figure 223 - Modifying the Sources for the CEM Simulation

Surface Mesh and Volume Mesh
The surface mesh generation process took approximately five hours and produced
a surface mesh consisting of 4,190,720 triangles and 2,095,360 nodes.

The volume mesh was generated using the parallel Delaunay generator using 32
processors taking under 36 hours. The generated mesh consisted o f 488,370,760
tetrahedra and 81,612,618 volume nodes. This size of mesh was chosen because it
was estimated to be the largest CEM simulation that could be performed on the
given platform.

Figure 224 shows an overall view of the surface mesh of the aircraft. As can be
seen, the density of the mesh means that it looks like a solid model so Figure 225
shows a zoomed in area of the front of the engine in which the individual triangles
can clearly be seen.

218

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Layout
1. Main

2. Post-Proc

Cuuing Planes

Potnts(O) Unes(O)
Trts(1?0td60) Guads(O)
Ttmeni92ms) 0214777 Ips

Explode
Partitions

-lesi- •■xuawvMesh Selection: ► Sjrface

Select by Range Manager j Set Centre |
Render Control: □ GeOneiry □ Scares jrfMesh j BBox
Status: Trying to initiate selected hosts...

All machines added correctly____________________

Figure 224 - The Surface Mesh for the CEM Simulation

Mesh Selection: * Surtace we ace Rcugr a Smooth a Srr.oc’J' iso Stream Line >Mean •xualtty

Select by Range: [_] Manager| Set Centre |
Render Control: □Geometry □ Soures jtfMesh J BBox
Status: Trying to initiate selected hosts...

All machines added correctly___

PSUE H (Paratfel Simuiation User Environment)

Layout
1. Main

2. Post-Proc

Culling Planes |

Surface Coniou-j |

iso -S a i'a res }

Explode
Partitions

Vector Tuft* |

Done

Figure 225 - The Surface Mesh zoomed in on the front of the engine

219

C h a p t e r 9 : E x a m p l e T e s t -C a s e s

Mesh Post-Processing
Figure 226 shows the surface o f the aircraft with a cutting plane through the
volume o f the mesh. The cutting plane took approximately 5 minutes to produce.

=» PSUE II (Parallel Simulation User Environment)

Layout
1. Main Region a

2. Mesh

3D flomrs(O) Hnee(O)
r/n(i$0i79*) au*ts(Q)
Tme(T307m$) 0 634018 ps

Save Volume — >

Generate
H ybrid

VOKme

Clear Analysis

Perform
Analysis

Surface nert see y Rough Cut >tream Line M ean Siuwv

S^anagerl Set Centre!

Mesh Selection:

Select by Range:
Render Control: □ Geometry □ Soiree* jtfMesh _j BBox
Status: Trying to initiate selected hosts...

All machines added correctly

Figure 226 - A cut through the Volume Mesh

220

C h a p t e r 9 : E x a m p l e T e s t - C a s e s

Potats{Q) Un*s(0)
Ths(1501794) GUaOsfO)
ru>e(91€ms) 0.956023 ipf

«=» PSUE // (Parallel Simulation User Environment)

Layout

Mesh Selection: Sirface interface > Rough Cut Smooth V-U

Select by Range: |
Render Control: □ Geonifltvy □ 3ouce« jtfMesh _J BBox
Status: Trying to initiate selected hosts...

All machines added correctly

Smooth î o M esh 'iiualfcy

J Manager j Set Centre |

A ppearance____

Clear Analysis j

Perform
Analysis

Done

Figure 227 - A zoomed view of the cut around the engine

9.5. Sum m ary o f Test Cases
The two full simulations shown in the previous sections have shown that through the
combined use o f the PSUE II, and the various parallel modules, complete simulations can
be performed over complex geometries in a matter o f 4 - 5 days, with simpler
configurations being possible within a day.

The third test case, although not a full simulation, illustrates that the PSUE II can
successfully allow the user to interact with and manipulate very large meshes for state-of-
the-art calculations.

A summary o f the times involved whilst performing these test cases is summarised in the
table below.

Test Case 1: CFD Simulation over a Dassault Falcon
Action Approx. Time Taken
Geometry Preparation 1.5 hours
Background Grid and Sources 2 hours
Surface and Volume Mesh Generation < 4 minutes
Mesh Quality Analysis (not including time for user to view
analysis)

< 1 minute

Boundary Condition Definition 10 minutes

221

C h a p t e r 9 : E x a m p l e T e s t -C a s e s

Flow Simulation < 5 minutes
Post-Processing (Cutting Plane and Iso-Surface) < 1 minute

Total < 3 hours

Test Case 2: CFD Simulation over a complete F I 6 Configuration
Action Approx. Time Taken
Geometry Preparation < 10 minutes
Background Grid and Sources ~3 days
Surface and Volume Mesh Generation < 1 hour
Mesh Quality Analysis (not including time for user to view
analysis)

< 10 minutes

Boundary Condition Definition ~30 minutes
Flow Simulation < 2 hours
Post-Processing (Cutting Plane and Iso-Surface) < 4 minutes

Total ~3.5 days

Test Case 3: Pre- and Post-Processing o f a Grand Challenge Simulation
over a Dassault Falcon

Action Approx. Time Taken
Geometry Preparation < 5 minutes
Background Grid and Sources ~30 minutes
Surface and Volume Mesh Generation < 2 days
Post-Processing (Cutting Plane) ~5 minutes

Total ~2.5 days

222

C hapter 10. C o nclu sio ns and Future
R e se a r c h

10.1. Conclusions
In Chapter 1, a number o f requirements were listed for which a successful Problem
Solving Environment would have to meet. These were:

• Problem set-up time must be reduced.
• The user must be guided through the simulation process.
• The details o f the execution o f tasks on remote parallel computers must be hidden

from the user.

In order to achieve these requirements, a number o f challenges were listed that the PSE
must overcome in order to satisfy these requirements:

• The User Interface must remain intuitive throughout the simulation.
• All invalid routes through the environment should be disabled.
• All three-dimensional rendering must be real-time.
• All interaction must remain as close to real-time as possible.
• The use o f parallel computers should be (semi-) transparent.

In the context o f the JULIUS project, a number o f more specific requirements were
added:

• To develop an integrated functional HPCN environment for simulation in multiple
disciplines,

• To provide and demonstrate HPCN tools and engineering simulation tools that
efficiently work together in this environment,

• To put developments in place to remove the major limitations and bottlenecks in
engineering simulations and

• To demonstrate the entire system working with embedded applications software for
realistic, industrial problems.

It is obvious from the above three lists that, although expressed using different words, a
number of these requirements and challenges overlap significantly. In this section, the
key points in the lists above will be tackled one by one in order to show that the PSUE II
has been a successful Problem Solving Environment.

The user must be guided through the simulation process
This requirement has been a constant factor during the design o f the PSUE II and
has been manifested in the design and implementation o f the toolbars through
which all o f the functionality o f the environment is accessed. The organisation o f

223

Ch a p t e r 10: C o n c l u s io n s a n d F u t u r e R e s e a r c h

the top-level toolbar is designed to match the traditional route through a typical
computational simulation as described in Chapter 1. The hierarchical structure o f
the toolbars ensures the only options that are visible to the user are those that are
relevant to that stage o f the simulation. Other means o f presenting the
functionality o f the environment, such as pull-down menus, present all o f the
operations to the user all o f the time, which could be confusing.

Disabling any options that are inappropriate at that time, for example an operation
that needs a mesh, further enforces guidance through the simulation but there is
no mesh present. This functionality is extended to any user-defined toolbars
through the toolbar configuration files. For example, if any commands to save
data sets are present for a user-defined button, then that button will be disabled
unless all o f the required data sets are present within the environment. For
example, if a button was defined as:

Button("Generate Mesh")
{

save_geometry("/tmp/geom")
save_bkg_grid("/tmp/sources")
execute_command("mesh_generator")
load_surf_mesh("/tmp/mesh")

)__

then this button will only be enabled if the geometry and background grid are
currently present within the environment.

The PSUE II should be capable of dealing with realistic, industrial problems using
complex geometries and large meshes
The capability to cope with large and complex data sets was the main driving
force behind the PSUE II. As the testcases in Chapter 9 show, realistic geometries
can be used (e.g. F16 with 525 geometrical surfaces and over 1000 intersection
curves) and very large scale meshes (e.g. CEM calculation on a Dassault Falcon
comprising over 0.5 billion elements).

The use of parallel computing should be as transparent as possible to the user
Obviously, in order to be able to interact with data sets o f the order o f 100’s of
millions o f elements, the use o f parallel computing technology is fundamental. As
shown in Chapters 7 and 9, the only extra interaction needed by the user is to
choose which parallel computers and/or workstations are used to form a parallel
computer. Every other aspect o f parallel computing is hidden from the user. Even
this extra user interaction could be easily avoided if the organisation in which the
PSUE II is used has only one parallel computer. In this scenario, the use of
parallel computing would be completely hidden from the user.

224

C h a p t e r 10: C o n c l u s io n s a n d F u t u r e R e s e a r c h

All interaction with the PSUE II should be as real-time as possible
In order for a graphical environment, such as the PSUE II, to be deemed a success
in the eyes o f a user it must provide as much feedback to the user as possible. One
of the key elements to this is the time is takes for the environment to respond to a
user’s action. If the user is continuously waiting for the environment to catch up
then frustration can quickly build dramatically increasing the chance o f errors.

In order to maintain rapid response times, the performance o f a number o f key
areas is paramount:

• All rendering o f the three-dimensional data sets must be real-time. Any delays
whilst a user is manipulating an object on the display or selecting a feature o f
an object is intolerable.

• Any operation performed on the model, such as cutting plane, iso-surface, etc.
should be as rapid as possible. A typical user will appreciate that some
operations cannot be performed instantaneously but it should be remembered
that even 30 seconds can seem like hours when waiting for an operation to
complete.

In order to satisfy these requirements, a number o f features have been described in
previous chapters that enable the PSUE II to maintain reasonable response times
at all times. These are:

• The use o f parallel computing to perform all operations on the large volume
data sets.

• The use o f an oct-tree data structure to dramatically increase the performance
of any operations that involve traversing the volume data sets.

• The use o f intelligent techniques to minimise the network traffic between the
slave processes and the master.

• The use o f Open GL strips in order to reduce the size and increase the
performance o f the rendering in the master.

The PSUE II should be flexible and configurable enough to meet the demands of a
multi-disciplinary environment
Throughout the design o f the PSUE II, care has been taken to ensure that no
component o f the environment is hard-wired to any particular type o f simulation.
For example:

• Meshes can comprise any combination o f the common linear element types
(e.g. hexahedra, prisms, pyramids, tetrahedra, quadrilaterals and triangles).

• The definitions o f the boundary conditions is completely generic and can be
customised to any particular solver through a simple text file that maps integer
identifiers with boundary condition types.

• The types o f variables in the solution can be any combination o f scalar or
vector. The names o f these variables are defined in the solution data file itself.

225

Ch a p t e r 10: C o n c l u s io n s a n d F u t u r e R e s e a r c h

• The use o f parallel algorithms throughout the environment ensures that almost
any size o f simulation can be performed.

• The configurable toolbars allows any type o f mesh generator, solver or any
other code to be integrated within the environment.

Chapter 9 illustrates the use o f the environment for both CFD and CEM
calculations.

Problem set-up time must be reduced.
As has been shown in Chapter 9, the PSUE II has reduced problem set-up time
considerably when compared with performing the same simulations using a
standard shell window and command-line tools, especially for the non-computer
specialist. The reasons for this have been outlined in the points above.

Use of the PSUE II by non-specialist personnel
Probably the best indicator o f the success o f an interactive environment is its day
to day use by the people for which it was intended. In the case o f the PSUE II, it
is currently being used by:
• A number o f research students throughout the Centre for Computation and

Simulation within the School o f Engineering in Swansea.
• A number o f aerospace companies in Europe such as BAE Systems (UK) and

EADS (Germany).

The Army Research Labs in the US are also evaluating its use as an environment
in which their high-performance parallel algorithms could be integrated.

10.2. Future R esearch
Although the PSUE II has been shown to be a successful Problem Solving Environment,
there are still a number o f areas in which big improvements can be made:

Improve User Guidance
Although the user is guided through the simulation process by the PSUE II
disabling any options that would cause the user to stray, much more could be
achieved in terms o f actually helping the user to create suitable data sets. For
example, at the current time the user needs to define an outer boundary, sources
and a background spacing in order to get a suitable mesh for a particular CEM
calculation. However, the size o f the outer boundary and the mesh spacing could
all be determined automatically by the frequency of the wave to be simulated.
This means that instead o f the user defining low-level parameters, the interaction
could be at a much higher level. Similarly, the environment could warn the user if
the generated mesh is too coarse to pick up certain small geometric features.

Development of a Visual Programming Environment
There are a number o f features already implemented within the PSUE II that
enable some configuration by the user. These are described in Section 6.6 and

226

C h a p t e r 1 0 : C o n c l u s i o n s a n d F u t u r e R e s e a r c h

include configurable toolbars, run-time data link to third party applications and
the integration o f the Python scripting language.

However, these are all features that require some level o f program ming
experience in order to utilise them. For the design engineer, who wishes to
combine a num ber o f operations in order to perform a task, the Visual
Program ming Environment is the most appropriate tool.

A simple VPE could be implemented within the PSUE II with relative ease. This
could represent all o f the functionality o f the PSUE II as the traditional boxes o f a
VPE. These boxes could then be linked together graphically in order to form a
map which could then be executed either interactively or in a batch mode
overnight.

A simple prototype o f a VPE has been implemented within the PSUE (Figure
228). However, it is purely to show the possible appearance and has no actual
functionality to date.

a GRID Resources Setup..
Modules

Load Geometry j

Save Geometry |

i Load Mesh 1

Save Mesh j

Load SoMon ;

Save Soiuuon |

Mesh Generator |

I t t j M l

, EJer Solver |

Stress Code |

Opu miser j

S t r a n d *

Rvr j Slop Inlc Copy | Pa*le | Delete |

OK | Cancel

Figure 228 - A simple prototype of a VPE within the PSUE II

Geometry Editing and NURBS
Currently, the PSUE II uses a natural spline and Ferguson patch representation for
geometries. This decision was due to the native representation the in-house mesh
generation algorithms used. However, in the industrial environment, the use o f
NURBS is prevalent with standard file formats such as IGES and STEP being
used for geom etry file transfer.

Conversion between the NURBS representation and the Ferguson representation
is a difficult and very time consuming process, often involving days (or possibly
weeks) o f user time, which also can add a significant degree o f error. In order to
be able to operate directly on models obtained from typical CAD systems, a
number o f m odifications/additions are required:

227

Ch a p t e r 10: C o n c l u s io n s a n d F u t u r e R e s e a r c h

• The PSUE II needs to be modified to operate directly with NURBS curves and
surfaces.

• The Mesh Generation algorithms need a similar modification to be able to
generate meshes directly on NURBS geometries.

• A means by which an IGES (or STEP) file can be read directly into the PSUE
II.

• The geometry editing facilities need to be improved in order to be able to
produce topologically valid models from the IGES files. These enhancements
would, invariable, be driven by the user’s needs as and when they occurred.

There has been some recent work undertaken in this area using the DT Nurbs
library [http://ocean.dt.navy.mil/dtnurbs] for the underlying geometry operations.

Feature Detection
As simulations involving hundreds of millions of elements becomes more
common, the need for the environment to automatically detect and display
relevant information becomes paramount. Some simple feature detection
algorithms are currently implemented in the PSUE II, such as iso-surfaces,
contour lines and vector tufts. However, these need to be extended to encompass
features such as stream lines and vortex detection [Darmofal92, Haimes99,
CebralOl].

Virtual Reality
As the cost of high-performance graphics hardware decreases and the complexity
of the simulations being performed increases, the use of virtual reality as a means
of interacting with the data is increasing in popularity. Virtual reality technology
is available in many different forms depending on the users requirements and the
available budget.

The lowest end technology involves the use of shutter glasses with a high-end PC.
This can be used to produce stereoscopic images on the display where the model
appears to either pop out of the screen or move further into the depths of the
monitor. A simple extension to this is to use a projector and screen in a darkened
room instead of the computer monitor. This uses the same software but can
produce a more convincing effect since the screen takes up more of the users
peripheral vision and is matt so eliminating distracting reflections.

Several screens can then be combined with several projectors to form a small
cube shaped room (approximately ten feet in each direction). This produces a very
convincing three-dimensional image of the model in the centre of the cube. This
type of display was first developed in University of Chicago and is often referred
to as a CAVE [Cruz-Neira93]. However, the computer power required to drive
such a display increases well beyond the scope of a PC since the model needs to
be rendered once for each screen many times a second with the time for each
frame being perfectly synchronised. A typical computer often used for this type of
application is the Onyx supercomputer developed by SGI.

228

Ch a p t e r 10: C o n c l u s io n s a n d F u t u r e R e s e a r c h

Further enhancements can be made to this type of environment such as:
• Head tracking so the computer can draw the model taking into consideration

the position of the user’s head.
• Three-dimensional mice for interacting within the three-dimensional world.
• Gloves for allowing the user to grasp objects and move them directly.

The use of such virtual reality techniques within the PSUE II would enable the
user to interact with the various data sets in a much more intuitive manner than is
possible with a flat, two-dimensional screen.

Since this could be such a benefit to the user, a preliminary effort has been
undertaken to implement, within the PSUE II, the ability to render a stereoscopic
image that with the use of shutter glasses can be made to either pop out or move
back into the monitor.

Meta-Computing and the Grid
The previous points for improvement have concentrated on individual sections of
the PSUE II. A more fundamental change to the design of the PSUE II would be
the integration of meta-computing and the Grid.

The term ‘the Grid’ was coined in the mid-1990s to describe a distributed
computing infrastructure for advanced science and engineering. This, essentially,
entails the co-ordinated use of geographically disparate super-computers in order
to solve a problem. When using such an infrastructure several difficulties arise,
such as; authentication and authorisation of users; controlling resource access;
and, even, discovering resources that are available.

Significant progress has been made in the development of the underlying
infrastructure [Foster97b, Bamard99, AllcockOl, Keahey02], in particular the
GLOBUS toolkit [Foster97a], which attempts to alleviate some of the difficulties
described above.

In order to advance Grid technology further, a lot of funding is available for
research into this area, both in the UK, and around the world. For example, in the
UK, over £150 million pounds has been allocated over three years to support
research into e-Science and the Grid. This has enabled thirteen e-Science centres
to be set up in order to form a focus for Grid related research. As can be seen,
from this expenditure alone, the area of Grid technology is seen as being of
fundamental importance in the future.

The distributed, and parallel, nature of the PSUE II with its utilisation of CORBA
technology is in a prime position to form a basis for such research and
development.

229

Chapter 11. Bibliography
[Adobe90] Adobe Systems Inc. 1990. Postscript Language Reference Manual. Addison-
Wesley Publishing Company.

[Aho86] Aho, AV. Sethi, R. Ullman, JD. 1986. Compilers - Principles, Techniques and
Tools. Addison-Wesley Publishing Company.

[AllcockOl] Allcock, B. Foster, I. Nefedova, V. Chervenak, A. Deelman, E. Kesselman,
C. Leigh, J. Sim, A. Shashani, A. Drach, B. Williams, D. 2001. High-Performance
Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid
Technologies. Supercomputing 2001, November 2001.

[Amdahl67] Amdahl, G. 1967. Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities. AFIPS Conference Proceedings, (30), pp. 483-385,
1967.

[ANSI85] ANSI (American National Standards Institute). 1985. American National
Standard for Human Factors Engineering of Visual Display Terminal Workstations,
ANSI, Washington, DC. 1985

[ANSI88] ANSI (American National Standards Institute). 1988. American National
Standard for Information Processing Systems - Programmer’s Hierarchical Interactive
Graphics System (PHIGS) Functional Description. ANSI, X3.144-1988, ANSI, New York.
1988.

[AVS] Advanced Visualisation Systems. AVS. www.avs.com.

[Bamard99] Barnard, S. Biswas, R. Saini, S. Van der Wijngaart, R. Yarrow, M. Zechter,
L. Foster, I. Larsson, O. 1999. Large-Scale Distributed Computational Fluid Dynamics
on the Information Power Grid using Globus. Proceedings o f Frontiers ’99, 1999.

[Beguelin94] Beguelin, A. Dongarra, J. Geist, A. Manchek, R. Sunderam, V.S. 1994.
Recent Enhancements to PVM. International Journal fo r Supercomputer Applications, 9
(2).

[Belytschko84] Belytschko, T. Ong, J.S-J. 1984. Hourglass Control in Linear and
Nonlinear Problems. Computer Methods in Applied Mechanics and Engineering, 43, pp.
251 -276 .

[Berthou97] Berthou, J-Y. Colombet, L. 1997. Which approach to parallelizing scientific
codes - That is the question. Parallel Computing, 23, pp. 165 - 179. 1997.

[Bradley91a] Bradley, C. 1991. SWIPE: Monitor Program. Rolls-Royce Internal Report
CUGJH04. Dec 1991.

230

Ch a p t e r 11: B ib l io g r a p h y

[Bradley91b] Bradley, C. 1991. SWIPE: Structured Workstation Input Preparation
Environment. Rolls-Royce Internal Report CUGSWIPE. Dec 1991.

[Bramley98] Bramley, R. Gannon, D. Stuckey, T. Villacis, J. Balasubramanian, J.
Akman, E. Breg, F. Diwan, S, Govindaraju, M. 1998. The Linear System Analyzer.
Submitted fo r IEEE book on PSEs, March 1998.

[Brockschmidt95] Brockschmidt, K. 1995. Inside OLE, 2nd edition. Microsoft Press.
1995

[Brodersen98] Brodersen, O. Ronzheimer, A. Ziegler, R. Kunert, T. Wild, J. Hepperle,
M. 1998. Aerodynamic Applications using MegaCads. Proceedings o f the 6th
International Conference on Numerical Grid Generation in Computational Field
Simulations, Greenwich, London, pp. 793 - 802. July 1998.

[BuschelmanOO] Bushelman, K.R. Gropp, W.D. Mclnnes, L.C. Smith, B.F. 2000. PETSc
and Overture: Lessons Learned Developing an Interface between Components.
ANL/MCS-P858-1100. Proceedings o f the International Federation fo r Information
Processing Working Conference on Software Architectures fo r Scientific Computing,
Kluwer, 2000.

[CebralOl] Cebral, J.R. Lohner, R. 2001. Flow Visualization On Unstructured Grids
Using Geometrical Cuts, Vortex Detection and Shock Surfaces. AIAA Paper 2001-0915,
Reno, NV. January 2001.

[Cignoni98] Cignoni, P. Montani, C. Scopigno, R. 1998. A Comparison of Mesh
Simplification Algorithms. Computers & Graphics, 22 (1), pp. 37 - 54.

[CraylncOl] Cray Inc. 2001. Cray T3E 1350 Brochure.
http://www.crav.com/products/svstems/t3e/t3e.pdf.

[Cuthill69] Cuthill, E. McKee, J.M. 1969. Reducing the bandwidth of sparse symmetric
matrices. ACM Publication P69: Proceedings o f the 24th National Conference o f the
Association o f Computing Machines, pp. 157 - 172, New York, 1969.

[Cruz-Neira93] Cruz-Neira, C. Sandin, D. DeFanti, T. 1993. Virtual Reality: The Design
and Implementation of the CAVE. Proceedings o f SIGGRAPH 93 Computer Graphics
Conference, ACM SIGGRAPH, pp. 135 - 142, 1993.

[Daconta96] Daconta, M.C. 1996. JAVA for C/C++ Programmers. Wiley Computer
Publishing, John Wiley & Sons, Inc. 1996.

[Darmofal92] Darmofal, D. Haimes, R. Visualisation of 3-D Vector Fields: Variations on
a Stream. AIAA Paper 92-0074, Reno, NV. Janl992

231

C h a p t e r 11: B ib l io g r a p h y

[Dillencourt92] Dillencourt, M. 1992. Finding Hamiltonian cycles in Delaunay
triangulations is NP-complete. Canadian Conference on Computational Geometry, pp.
2 2 3 -2 2 8 , 1992.

[Dongarra95] Dongarra, J. Otto, S.W. Snir, M. Walker, D. 1995. An Introduction to the
MPI Standard. Internal Report CS-95-274. http://www.netlib.org/ncwn/mpi-cacm.ps.
January 1995.

[Donnelly02] Donnelly, C. Stallman, R. 2002. Bison - The YACC-compatible Parser
Generator, http://www.fsf.org/manual/bison-l.35/bison.html. May 2002.

[El-SanaOO] El-Sana, J. Evans, F. Kalaith, A. Varshney, A. Skiena, S. Azanli, E. 2000.
Efficiently Computing and Updating Triangle Strips for Real-Time Rendering.
Computer-Aided Design, 32, p p .753-772 .

[Fol91] Fol, T. Katossky, V. 1991. Brite-Euram Euromesh Sub-Task 1.2 : Basic Metrics
for Mesh Quality. Aerospatiale Division Avions No. 443.558/91.

[Foley90] Foley, J. van Damn, A. Feiner, S. Hughes, J. 1990. Computer Graphics:
Principles and Practice. Addison-Wesley Publishing Company.

[Foster97a] Foster, I. Kesselman, C. 1997. Globus: A Metacomputing Infrastructure
Toolkit. International Journal o f Supercomputer Applications, 11 (2), pp. 115 - 128.

[Foster97b] Foster, I. Geisler, J. Nickless, W. Smith, W. Tuecke, S. 1997. Software
Infrastructure for the I_Way High Performance Distributed Computing Environment.
Proceddings o f the 5th IEEE Symposium on High Performance Distributed Computing,
pp. 562-571 , 1997.

[FosterOl] Foster, I. Kesselman, C. Tuecke, S. 2001. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applications, 15 (3),
2001.

[Gaither96] Gaither, A. Jean, B. Remotigue, M. Whitmire, J. 1996. NGP: Defining a Grid
Generation Paradigm on NURBS and Solid Modeling Topology. Proceedings o f the 5th
International Conference on Numerical Grid Generation in Computational Field
Simulations, Mississippi, MS. April 1996.

[GaitherOO] Gaither, A. Marcum, D. Mitchell, B. 2000. SolidMesh: A Solid Modelling
approach to Unstructured Mesh Generation. Proceedings o f the 7th International
Conference on Numerical Grid Generation in Computational Field Simulations,
Whistler, BC. September 23-28, 2000.

[Gallopoulis94] Gallopoulos, S. Houstis, E. Rice, J. 1994. Computer as Thinker/Doer:
Problem-Solving Environments for Computational Science. IEEE Computational Science
and Engineering, Summer 1994.

232

C h a p t e r 11: B ib l io g r a p h y

[Goel99] Goel, A. Baker, C.A. Shaffer, C.A. Grossman, B. Mason, W.H. Watson, L.T.
Haftka, R.T. 1999. VizCraft: A Problem Solving Environment for Configuration Design
of High Speed Civil Transport. Internal Report TR-99-02
(http://people.cs.vt.edu/~shaffer/TR.htmll. September 24, 1999

[Gropp99a] Gropp, W. Huss-Lederman, S. Lumsdaine, A. Lusk, E. Nitzberg, B. Saphir,
W. Snir, M. 1999. MPI - The Complete Reference Volume 1. The MIT Press.

[Gropp99b] Gropp, W. Huss-Lederman, S. Lumsdaine, A. Lusk, E. Nitzberg, B. Saphir,
W. Snir, M. 1999. MPI - The Complete Reference Volume 2. The MIT Press.

[Haimes91a] Haines, R. Giles, M. 1991. VisuaB : Interactive Unsteady Unstructured 3D
Visualisation. AIAA Paper 91-0794, Reno, NV. Jan 1991.

[Haimes91b] Haimes, R. Darmofal, D. 1991. Visualisation in Computational Fluid
Dynamics: A Case Study. IEEE Computer Society, Visualization ’91. October 1991.

[Haimes91c] Haimes, R. Giles, M. Darmofal, D. VisuaB - A Software Environment for
Flow Visualization. 1991. Computer Graphics and Flow Visualisation in Computational
Fluid Dynamics, VKI Lecture Series #10, Brussels. 16-20 Sept 1991.

[Haimes93] Haimes, R. Connell, S. Vermeersch, S. 1993. Visual Grid Quality
Assessment for 3D Unstructured Meshes. AIAA Paper 93-3352, Orlando, Florida. July
1993.

[Haimes94] Haimes, R. 1994. pV3: A Distributed System for Large-Scale Unsteady CFD
Visualisation. AIAA Paper 94-0321, Reno, NV. January 1994.

[Haimes95] Haimes, R. Sondak, D. 1995. Visualization Math Library User’s Guide.
http://raphael.mit.edu/pv3/vizmath.ps. April 1995.

[Haimes97] Haimes, R. Edwards, D. 1997. Visualization in a Parallel Processing
Environment. AIAA paper 97-0348, Reno, NV. January 1997.

[Haimes98a] Haimes, R. 1998. Visual 3 Advanced Programmers Guide.
http://raphael.mit.edu/visual3/advpro.ps

[Haimes98b] Haimes, R. 1998. Visual 3 Users and Programmers Manual.
ttp://raphael.mit.edu/visual3/user3.ps

[Haimes99] Haimes, R. Kenwright, D. 1999. On the Velocity Gradient Tensor and Fluid
Feature Extraction. 1999. AIAA Paper 99-3288, Norfolk, VA. June 1999.

233

C h a p t e r 11: B ib l io g r a p h y

[Hancock97] Hancock, D.J. Hubbold, R.J. 1997. Distributed parallel volume rendering
on shared memory systems. Future Generation Computer Systems, 13, pp. 251 - 259.
1997/98.

[Hanrahan90] Hanrahan, Pat. Haeberli, Paul. 1990. Direct WYSIWYG Painting and
Texturing on 3D Shapes. Proceedings o f SIGGRAPH 90, 24 (4), pp 215 - 223, August
1990.

[Hassan96] Hassan, O. Probert, E.J. Morgan, K. Peraire, J. 1996. Unstructured tetrahedral
mesh generation for three dimensional viscous flows. International Journal o f Numerical
Methods in Fluids, 39, pp. 549 - 567.

[Hassan99a] Hassan, O. Weatherill, N.P. Morgan, K. 1999. FLITE System Reference
Manual, Part 1 - Basic Theory. Internal Report.

[Hassan99b] Hassan, O. Weatherill, N.P. Morgan, K. 1999. FLITE System Reference
Manual, Part 1 - User Manual. Internal Report.

[Hassan99c] Hassan, O. Probert, E.J. 1999. Handbook of Grid Generation (ed. Joe
Thompson, Bharat Soni and Nigel Weatherill). pp. 35-6 - 35-9. CRC Press. 1999.

[HassanOl] Hassan, O. Bayne, L.B. Morgan, K. Weatherill, N.P. 2001. Improving the
efficiency of explicit schemes for 3D transient compressible flows with moving
boundaries on unstructured meshes. Computational Fluid Dynamics Journal, Special No.
2001, pp. 380 -389 .

[Hassan02] Hassan, O. Jones, J. Larwood, B. Morgan, K. Weatherill, N.P. 2002. A fully
parallel approach for the simulation of electromagnetic scattering using unstructured
meshes. Book o f Abstracts o f 5th World Congress on Computational Mechanics, 262,
Vienna, 2002.

[Henning99] Henning, M. Vinoski, S. 1999. Advanced CORBA Programming with C++.
Addison-Wesley Publishing Company.

[Hirsch94] Hirsch, C. Torreele, J. Keymeulen, D. Vucinic, D. Decuyper, J. 1994.
Distributed Visualization in CFD. SPEEDUP Journal, 8 (1).

[Hoppe98] Hoppe, H. 1998. Efficient Implementation of Progressive Meshes. Computers
& Graphics, 22 (1), pp. 27 - 36.

[Hsieh95] Hsieh, S-H. Paulino, G.H. Abel, J.F. 1995. Recursive Spectral Algorithms for
Automatic Domain Partitioning in Parallel Finite Element Analysis. Computer Methods
in Applied Mechanics and Engineering, 121, pp. 137 - 162.

[IS088] International Standards Organisation. 1988. International Standard Information
Processing Systems - Computer Graphics - Graphical Kernel System for Three

234

C h a p t e r 11: B ib l io g r a p h y

Dimensions (GKS-3D) Functional Description. ISO Document Number 8805:1988(E),
American National Standards Institute, New York. 1988.

[Johnson98] Johnson, C. Berzins, M. Zhukov, L. Coffey, R. 1998. SCIRun: Application
to atmospheric dispersion problems using unstructured meshes. Numerical Methods fo r
Fluid Dynamics VI, M.J. Baines, ed., 1998.

[JohnsonOO] Johnson, C. Parker, S. Weinstein, D. 2000. Large-scale Computational
Science Applications using the SCIRun Problem Solving Environment. Supercomputer
2000.

[Jones98a] Jones, J.W. Weatherill, N.P. 1998. A flexible approach to expression
evaluation within a computational engineering environment. International Journal o f
Numerical Methods in Fluids, 28, pp. 1183 - 1197, 1998.

[Jones98b] Jones, J. W. Weatherill, N.P. 1998. Parallel visualisation of computational
engineering data. Advances in Computational Mechanics with High Performance
Computing, (ed, B H V Topping), Civil-Comp Press, Edinburgh, pp. 1 - 9 . 1998.

[Jones98c] Jones, J. Weatherill, N.P. 1998. The visualisation of large unstructured grid
data sets. Proceedings o f the 6th International Conference on Numerical Grid Generation
in Computational Field Simulation, (ed. M. Cross, P. Eiseman, J. Hauser, B. K. Soni and
J. F. Thompson), pub. NSF Research Center, Mississippi State University, USA, pp. 899
-914 . July 1998.

[Jones99] Jones, J.W. Weatherill, N.P. 1999. Visualisation of large unstructured grids
within a parallel framework. AIAA Paper 99-3289. Presented at the AIAA CFD
Conference, Hampton, Virginia, USA. June 1999.

[JonesOO] Jones, J.W. Weatherill, N.P. 2000. A parallel environment for large scale
computational engineering simulation. Proceedings o f the 7th International Conference
on Numerical Grid Generation in Computational Field Simulation, British Columbia,
Canada. September 2000.

[Jones02] Jones, J. Weatherill, N.P. 2002. Techniques for visualising large unstructured
grid data-sets. Applied Mathematical Modelling, 2002 (submitted).

[Karypis98] Karypis, G. Kumar, V. 1998. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reduced orderings of sparse
matrices, http://www-users.cs.umn.edu/~karvpis/metis/metis/files/manual.pdf.

[Karypis02] Karypis, G. Schloegel, K. Kumar, V. 2002. ParMetis: Parallel graph
partitioning and sparse matrix ordering library. http://www-
users.cs.umn.edu/~karypis/metis/parmetis/files/manual.pdf.

235

Ch a p t e r 11: B ib l io g r a p h y

[Keahey02] Keahey, K. Fredian, T. Peng, Q. Schissel, D.P. Thompson, M. Foster, I.
Greenwald, M. McCube, D. 2002. Computational Grids in Action: The National Fusion
Collaboratory. Future Generation Computer Systems, 18 (8), pp. 1005 - 1015, October
2002.

[Kommann99] Kommann, D. 1999. Fast and Simple Triangle Strip Generation. VMS
Finland, Espoo, Finland. 1999

[LarwoodOl] Larwood, B.G. Weatherill, N.P. Hassan, O. Morgan, K. 2001. The
generation of large unstructured meshes on parallel platforms. ACME 2001 Annual
Conference o f the Association fo r Computational Mechanics in Engineering, Univesity o f
Birmingham, pp. 45 - 48.

[Levine92] Levine, J.R. Mason, T. Brown, D. 1992. Lex & Yacc. O’Reilly & Associates.
October 1992.

[Maplesoft] MAPLE. Waterloo Maple Inc. http://www.maplesoft.com/main.shtml.

[Marchant96] Marchant, M.J. Weatherill, N.P. Tumer-Smith, E. Zheng, Y. Sotirakos, M.
1996. A Parallel Simulation User Environment for Computational Engineering.
Proceedings o f the 5th Intrnational Conference on Numerical Grid Generation in
Computational Field Simulation, Mississippi State University, MS. April 1996.

[MathWorks] MATLAB. The MathWorks. http://www.mathworks.com.

[Mehrotra98] Mehrotra, P. van Rosendale, J. Zima, H. 1998. High Performance Fortran:
History, status and future. Parallel Computing, 24, pp. 325 - 354. 1998.

[MezentsevOO] Mezentsev, A. Hassan, O. Weatherill, N.P. 2000. Geometric model
analyses for unstructured surface mesh generation. Proceedings o f the 7th Internation
Conference on Numerical Grid Generation in Computational Field Simulation,
September 2000, Whistler, BC.

[Microsoft95] Microsoft Corporation. 1995. The Component Object Model Specification
Version 0.9. http://www.microsoft.com/Com/resources/comdocs.asp. October 24, 1995.

[Microsoft97] Microsoft Corporation. 1997. Distributed Component Object Model
Protocol-DCOM/l.O draft. http://www.microsoft.com/Com/resources/comdocs.asp.
November 1996.

[Microsoft95] Microsoft Corporation. 1995. Direct-X.
http://www.microsoft.com/windows/directx. 2002.

[MorganOO] Morgan, K. Hassan, O. Pegg, N.E. Weatherill, N.P. 2000. The simulation of
electromagnetic scattering in piecewise homogenous media using unstructured grids.
Computational Mechanics, 25, pp. 438 - 447.

236

C h a p t e r 11: B ib l io g r a p h y

[Nag] Numerical Algorithms Group. IRIS Explorer.
http://www.nag.co.uk/Welcome IEC.html.

[Neider93] Neider, J. Davis, T. Woo, M. 1993. Open-GL Programming Guide. Addison-
Wesley Publishing Company.

[Northall02] Northall, J.D. 2002. Overview of the SWIPE System. Rolls-Royce Internal
Memo. September 2002.

[Nye88] Nye, A. 1988. Volume One: Xlib Programming Manual for Version 11.
O ’Reilly & Associates, Inc. November 1988.

[Nye90] Nye, A. 1990. Volume Two: Xlib Reference Manual for Version 11. O’Reilly &
Associates, Inc. April 1990.

[Nye93] Nye, A. O ’Reailly. T. 1993. Volume Four : X Toolkit Intrinsics Programming
Manual. O’Reilly & Associates Inc. April 1993.

[OGL-ARB92] OpenGL Architecture Review Board. 1992. Open-GL Reference Manual.
Addison Wesley Publishing Company.

[OOC99] Object Oriented Concepts, Inc. 1999. ORBacus for C++ and Java Version
3.1.3. Object Oriented Concepts Inc. 1999.

[OSF93] Open Software Foundation. 1993. OSF/Motif Programmers Guide Release 1.2.
Prentice Hall PTR. 1993.

[OSF95] Open Software Foundation. 1995. OSF/Motif Programmers Reference Release
2.0. Prentice Hall PTR. 1995.

[Paxson98] Paxson, V. 1998. Flex, version 2.5.4 - A Fast Scanner Generator.
http://www.fsf.Org/manual/flex-2.5.4/flex.html. November 1998.

[PHIG88] PHIGS+ Committee (chaired by Andries van Damn). 1988. PHIGS+
Functional Description, Revision 3.0. Computer Graphics, 22 (3), pp. 125 - 218. July
1988.

[Plansky95] Plansky, D. 1995. Particle3 User’s Guide.
http://raphael.mit.edu/visual3/P3manual.ps. January 1995.

[Purdue02a] ELLPACK : Software for Solving Elliptic Problems.
www.cs.purdue.edu/ellpack.

[Purdue02b] PDELab. http://www.webpdelab.org.

237

Ch a p t e r 11: B ib l io g r a p h y

[RamakrishnanOl] Ramakrishnan, N. Watson, L.T. Kafura, D.G. Ribbens, C.J. Shaffer,
C.A. 2001. Programming Environments for Multidisciplinary Grid Communities.
Concurrency - Practice and Experience, 14, pp. 1 - 35. 2002.

[RavinshankarOO] Ravinshankar, L. Singh, K.P. 2000. Grid-View - An interactive
software for the visualization and analysis of 3D multi-block structured grids and flow
field. Proceedings o f the 7th International Conference on Numerical Grid Generation in
Computational Field Simulations, Whistler, BC. pp. 839 - 850. September 23-28, 2000.

[Reinhard98] Reinhard, K. 1998. Multiresolution Representations for Surfaces Meshes
based on the Vertex Decimation Method. Computers & Graphics, 22 (1), pp. 1 3 -2 6 .

[Rice86] Rice, J.R. Boisvert, R.F. 1986. Solving elliptic problems using ELLPACK.
Springer, New York, 1985. 1986.

[Risk96] Risk, I. 1996. CAESAR Final Report. BAE Systems Reference:
CAESAR/TR/BAE/IR961016/1. October 1996.

[Robb99] Robb, R.A. 1999. Visualization in biomedical computing. Parallel Computing,
25, pp. 2067-2110. 1999.

[Rossum02a] van Rossum, G. 2002. Python Tutorial.
http://www.pvthon.org/doc/current/download.html. 2002.

[Rossum02b] van Rossum, G. 2002. Python Reference Manual.
http://www.python.org/doc/current/download.html. 2002.

[Rossum02c] van Rossum, G. 2002. Python Library Reference.
http://www.pvthon.org/doc/current/download.html. 2002.

[Rossum02d] van Rossum, G. 2002. Extending and Embedding the Python Interpreter.
http://www.pvthon.org/doc/current/download.html. 2002.

[Rossum02e] van Rossum, G. 2002. Python/C API Reference manual.
http://www.python.org/doc/current/download.html. 2002.

[Rossum02f] van Rossum, G. 2002. Installing
http://www.python.org/doc/current/download.html. 2002.

Python Modules.

[Rossum02g] van Rossum, G. 2002. Distributing
http://www.pvthon.org/doc/current/download.html. 2002.

Python Modules.

[Rossum02h] van Rossum, G. 2002.
http://www.python.org/doc/current/download.html. 2002.

Documenting Python.

238

C h a p t e r 11: B ib l io g r a p h y

[RowseOO] Rowse, D. 2000. JULIUS Final Report - D5.1.4.6. Internal Report - BAE
Systems ATC-S Project Number 076126. June 2000.

[Schmidt95a] Schmidt, D.C. Vinoski, S. 1995. Object Interconnections: Introduction to
Distributed Object Computing (Column 1). SIGS C++ Report Magazine. January 1995.

[Schmidt95b] Schmidt, D.C. Vinoski, S. 1995. Object Interconnections: Modelling
Distributed Object Applications (Column 2). SIGS C++ Report Magazine. February
1995.

[Schmidt99] Schmidt, D.C. Wang, N. Vinoski, S. 1999. Object Interconnections:
Collocation Optimisations for CORBA (Column 18). SIGS C++ Report Magazine.
September 1999.

[Scott-McRaeOO] Scott McRae, D. 2000. r-Refmement Grid Adaptation Algorithms and
Issues. Computer Methods in Applied Mechanics and Engineering, 189, pp. 1161 - 1182.

[ShevareOO] Shevare, G.R. Bhagat, N. Kadam, N. Bakre, S. 2000. IITZeus: A Versatile
Geometric Modeling and Grid Generation Software. Proceedings o f the 7th International
Conference on Numerical Grid Generation in Computational Field Simulations,
Whistler, BC. pp. 861 - 869. September 23-28, 2000.

[Shimrat62] Simrat, M. 1962. Algorithm 112, Position of Point Relative to Polygon.
CACM, p. 434. August 1962.

[Sommer99] Sommer, O. Dietz, A. Westermann, R. Ertl, T. 1999. An interactive
visualization and navigation tool for medical volume data. Computers & Graphics, 23,
pp. 233-244 . 1999.

[SorensonOl] Sorenson, K.A. Hassan, O. Morgan, K. Weatherill, N.P. 2002. An
agglomerated unstructured hybrid mesh methopd for turbulent compressible flows.
Computational Fluid Dynamics Journal, Special No. 2001, pp. 690 - 699, 2001.

[Stevens90] Stevens, WR. 1990. UNIX Network Programming. Prentice-Hall Inc.

[Sturler97] de Sturler, E. Loher, D. 1997. Parallel iterative solvers for irregular sparse
matrices in High Performance Fortran. Future Generation Computer Systems, 13, pp. 315
-3 2 5 . 1997.

[Sunderam90] Sunderam, V.S. 1990. PVM: A Framework for Parallel Distributed
Computing. Concurrency: Practice and Experience, 2 (4), pp. 315 - 339. December,
1990.

[Tumer-Smith96a] Tumer-Smith, E.A. Zheng, Y. Sotirakos, M. Parallel Simulation User
Environment (PSUE) User Documentation. Internal Report. September 1996.

239

Ch a p t e r 11: B ib l io g r a p h y

[Tumer-Smith96b] Tumer-Smith, E.A. Zheng, Y. Sotirakos, M. Parallel Simulation User
Environment (PSUE) System Documentation. Internal Report. September 1996.

[Turner-Smith98] Tumer-Smith, E.A. Weatherill, N.P. Marchant, M.J. Jones, J. A
computer environment for unstructured grid generation. Proceedings o f the 6th
International Conference on Numerical Grid Generation in Computational Field
Simulation, (ed. M. Cross, P. Eiseman, J. Hauser, B. K. Soni and J. F. Thompson), pub.
NSF Research Center, Mississippi State University, USA, pp. 889 - 898. July 1998.

[Vilacis99] Vilacis, J. Govindaraju, M. Whitaker, A. Breg, F. Deuskar, P. Temko, B.
Gannon, D. Bramley, R. 1999. CAT: A High Performance, Distributed Component
Architecture Tookit for the Grid. Proceedings o f the HPDC’99. 1999.

[Vinoski97] Vinoski, S. 1997. CORBA: Integrating Diverse Applications Within
Distributed Heterogenous Environments. IEEE Communications Magazine, 14 (2).
February 1997.

[Walshaw97] Walshaw, C. Cross, M. Everett, M.G. 1997. Parallel Dynamic Graph
Partitioning for Adaptive Unstructured Meshes. Journal o f Parallel and Distributed
Computing, 47, pp. 102 - 108.

[WalshawOl] Walshaw, C. Cross, M. 2001. Multilevel Mesh Partitioning for
Heterogenous Communications Networks. Future Generation Computer Systems, 17, pp.
601 -623 .

[Walshaw02a] Walshaw, C. 2002. The serial JOSTLE library user guide : Version 3.0.
http://www.gre.ac.uk/~c.walshaw/iostle/iostleslib.ps.gz.

[Walshaw02b] Walshaw, C. 2002. The parallel JOSTLE library user guide : Version 3.0.
http://www.gre.ac.uk/~c.walshaw/iostle/iostleplib.ps.gz.

[Weatherill94a] Weatherill, N.P. Hassan, O. 1994. Efficient three-dimensional Delaunay
triangulation with automatic point creation and imposed boundary constraints.
International Journal o f Numerical Methods in Fluids, 37, pp. 2005 - 2039.

[Weatherill94b] Weatherill, N.P. Hassan, O. Marchant, M.J. Marcum, D.L. 1994. Grid
adaptation using a distribution of sources applied to inviscid compressible flow
simulation. Internation Journal o f Numerical Methods in Fluids, 19, pp. 739 - 764.

[Weatherill99] Weatherill, N.P. Tumer-Smith, E.A. Marchant, M.J. Hassan, O. Morgan,
K. 1999. An integrated software environment for multi-disciplinary computational
engineering. Engineering Computations, 16 (8), pp. 913 - 933, 1999.

[WeatherillOOa] Weatherill, N.P. Morgan, K. Hassan, O. Jones, J.W. 2000. Large-Scale
aerospace simulations using unstructured grids. Computational Mechanics fo r the 21st
Century, Chapter 12. Saxe-Coburg Publications, Editor B.H.V. Topping, 2000.

240

Ch a p t e r 11: B ib l io g r a p h y

[WeatherillOOb] Weatherill, N.P. Hassan, O. Morgan, K. Said, R. 2000. The generation of
large unstructured meshes by parallel Delaunay. ECCOMAS 2000: European Congress
on Computational Methods in Applied Sciences and Engineering, Barcelona, 2000.

[WeatherillOla] Weatherill, N.P. Hassan, O. Morgan, K. Jones, J.W. Larwood, B.G.
Sorenson, K. 2001. Next generation large-scale aerospace simulations on unstructured
grids. ICFD Conference, Oxford, UK, March 2001.

[WeatherillOlb] Weatherill, N.P. Hassan, O. Morgan, K. Jones, J.W. Larwood, B. 2001.
Towards fully parallel aerospace simulations on unstructured meshes. Engineering
Computations, 18, (3/4), pp. 347 - 373, 2001.

[Weatherill02] Weatherill, N.P. Hassan, O. Morgan, K. Jones, J.W. Larwood, B.G.
Sorenson, K. 2002. Aerospace Simulations on Parallel Computers using Unstructured
Grids. To appear, Special Issue o f IJNMF, 2002.

[Wolfram] Mathematica. Wolfram Research, http://www.wolfram.com.

[WrightOl] Wright, R. 2001. Computing with MAPLE. Chapman & Hall / CRC. 2001.

[XiaoOO] Xiao, Y. Ziebarth, J.P. 2000. FEM-based scattered data modelling and
visualization. Computers & Graphics, 24, pp. 775 - 789. 2000.

[Yang92] Yang, C.C. 1992. Effects of Coordinate Systems on Color Image Processing.
M.S. Thesis , Department o f Electrical and Computer Engineering, the University o f
Arizona, Tucson, AZ. 1992.

[Yang96] Yang, Z. Duddy, K. 1996 CORBA: A Platform for Distributed Object
Computing. ACM Operating Systems Review, 30, 1996.

[Yang97] Yang, C.C. Rodriguez, J.J. 1997. Efficient Luminance and Saturation
Processing Techniques for Color Images, Journal o f Visual Communication and Image
Representation, 8 (3), pp 263 - 277.

[ZhengOO] Zheng, Y. Weatherill, N.P. Tumer-Smith, E.A. Sotirakos, M.I. Marchant, M.J.
HASSAN, O. 2000. Visual steering of grid generation in a parallel simulation user
environment. Enabling Technologies fo r Computational Sciences; Frameworks,
Middleware and Environments, Chapter 27. Kluwer Academic Publishers, 2000.

241

Appendix A. Equation Editor - EQUATE
During the development of PROMPT and PSUE II, it became evident that there was a
requirement to allow the user to define his/her own mathematical expressions for data
such as solution variables, mesh analysis criteria and error estimators for mesh
refinement.

This would require an expression evaluation system that could compute expressions
based on edge-based, face-based, element-based, as well as the usual nodal values. To
meet these requirements a module, called EQUATE (EQUATion Editor) was developed.

During its development a number of key requirements were highlighted:

• The ability to cope with different data-types
To allow EQUATE to be utilised in these three different stages it must be able to
evaluate equations that are based on variables computed at nodes, edges, faces
and cells, even though the input data to EQUATE is always node based. This is
achieved by grouping the individual nodal values into tuples to represent the
higher level entities. For example, grouping nodes at either end of an edge into
pairs creates a pair (2-tuple) which represents an edge value. This would be useful
in mesh adaptation, where the rate of change of solution values along an edge
could easily by calculated by dividing the difference between the two end nodal
values by the distance between them.

• Completeness
To enable the user to quickly and easily define new variables EQUATE contains
all o f the usual mathematical operators (e.g. $+$, $-$, $*$, etc..) and functions
(e.g. log(x), qx, sin(x), etc.). A number of other functions which could be
defined using the generic operators and functions are included in EQUATE for
efficiency purposes due to their frequent usage (e.g. edge length, face area, cell
volume, dot product, etc.).

• Speed
Evaluating a particular variable in EQUATE on a large mesh will require the
same expression to be evaluated many millions of times. Obviously the time to
evaluate an expression must be as quick as possible in order to provide a
reasonable response time to the user.

A .l. Definition of a Generic Mathematical Expression in
EQUATE
In EQUATE, a mathematical expression consists of classes of constants, variables,
operators and functions, i.e. a generic mathematical expression, E, is expressed as:

E = f(C ,V ,0 ,G) where
C = (cj, c2,..., cn) is the class of constants,

242

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

e.g. 1, 5, >i,7r, -1.5.
V = (vj, v2,..., vn) is the class of variables,

e.g. p (pressure), p (density).
O = (oj, o2,..., on) is the class of operators,

e.g. a + f3,a - p .a * f3 ,a lp , a p
G - fe i»S i > • • • > S n) is the class of functions,

e.g. sin(^), log(^), e*, min(^, qi)

For example, the equation:

p * + 2 V '5

is expressed in EQUATE as:

E = f(C ,V ,0 ,G) where

C = \ 1,2,3.5,A
C(c2 c3 c4

v =

0 =

G =

U p]
v vi v= y

(\
a + p , a - p ,a / p , a p

v ° l ° 2 ° 3 ° 4 y

log(a)
V Si J

where

f fvy V°4 (cy)+ (cj) 1 / \
E = -I—4 a4 . \ °'— A°4 (c/ J where j is the cardinality of the tuple

l>/r4£iWK2 (c{))

A.2. EQUATE Syntax and Semantics
As mentioned above, EQUATE can evaluate expressions based on data defined at nodes,
edges, faces or elements. The input to EQUATE consists entirely of nodal values; either
solution values produced by the equation solver or geometric values based on the mesh
itself.

In order for EQUATE to evaluate expressions based on entities other than nodes, the
nodal values are grouped into tuples of varying cardinality to represent the desired entity.
An example of the tuples formed to allow edge-based expressions to be evaluated is

243

A p p e n d i x A: E q u a t i o n E d i t o r - EQUATE

shown in Figure 229. Figure 230 shows a similar grouping o f nodes into 3-tuples for
triangular faces. O ther face and element types are constructed in a sim ilar manner.

50
Edge Node 1 Node 2
1 10 40
2 10 50
3 50 30
4 50 20
5 20 30
6 50 40
7 20 60
8 20 40
9 40 60

Figure 229 - Example of representing edges by forming node pairs

50

Face Node 1 Node 2 Node 3
1 10 50 40
2 40 50 20
3 60 40 20
4 30 20 50

Figure 230 - Example of representing triangular faces by forming 3-tuples of nodes

New variables can be defined using any valid combination o f constants, built-in variables
(both geometric and generic solver variables), operators and functions.

A.3. Syntax and Semantics of Expressions
An expression can be built from a num ber o f sub-expressions separated by semi-colons.
Each sub-expression (except the last) has an assignment section at the front. This causes
the value o f the sub-expression to be assigned to the specified local variable. The last
sub-expression has no assignment section since the result o f the entire expression is
automatically assigned to the resultant value.

The purpose o f the sub-expressions is to mimic the normal method o f constructing
mathematical equations, with the complete expression split into a num ber o f more

244

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

manageable components. It also means that is any sub-expression is used more then once
in the global expression then it needs to be calculated once only with the values being
stored for later use.

A simple example of this is shown below. The edge-based expression:

((D e n s i t y . n 2 - D e n s i t y . n l) / L e n g t h)
/ ((D e n s i t y . n 2 - D e n s i t y . n l) / L e n g t h - 1)

can be simplified to:

a = (D e n s i t y . n 2 - D e n s i t y . n l) / L e n g t h

a / (a - 1)

An expression containing sub-expressions is semantically valid if, and only if, the
expression would be valid if the sub-expressions were inserted into the global expressions
to form one expression.

A.4. Syntax and Semantics of Operators
In order to be able to build expressions using variables and constants, it is necessary to
combine them using mathematical operators and functions. The operators included in
EQUATE consist of the usual mathematical operators; a + b, a - b, a * b, etc.

Operators are like functions (in fact operators could be replaced with an equivalent
function) except that they have the restriction that the operands must be w-tuples of the
same cardinality with the result of the operator being an «-tuple with the same
cardinality.

The operators broadly fall into one of two categories, unary and binary. The unary
operators, in EQUATE, take one «-tuple as an argument and return one w-tuple as a
result. The only unary operator included within EQUATE is the negation operator which
is defined as:

Let A n =(al ,a2, . . . ,an)
then

- (A n')->Bn where B n = (- al, -a 2, . . . , -an)

EQUATE also contains five binary operators, a + b, a - b, a * b, a / b and ab. These have
similar definitions to the unary operator,

Let A ” =(a],a2, . . . ,an), and B n = (Z>j,&2,.
then

A n oB n —» cn where C n ={ax °b],a2 ob2,. . . ,an °bn)

245

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

where
x ° y = x + y , x - y , x x y , x + y , x y

As shown above, the two arguments of each of the operators must have the same
cardinality with the result of the operator having the same cardinality as the arguments.

A.5. Syntax and Semantics of Functions
There are a substantial number of functions built into EQUATE. These include the usual
exponential, logarithmic and trigonometric functions. The exponential and logarithmic
functions aree* ,loge(x)andlog10(x). The trigonometric functions

are sin(x), cos(x), tan(x), sin-1 (x), cos-1 (x) and tan-1 (x). The other functions do not fit
into a particular category so are classed as miscellaneous functions. These are
V x,m in (x,y) and m ax^ ,^).

These functions are either unary or binary functions and have the same properties as
unary and binary operators. The unary functions are defined as follows:

Let A n = (al ,a2, . . . ,an)
then

where B" =
where

/ (x) = ex, loge (x), log10 (x), sin(x), cos(x), tan(x), sin-1 (x), cos-1 (x), tan-1 (x), Vx

The binary functions are defined as:

Let A n =(al,a2, . . . ,an)andBn ={b^b2i.. . ,bn)
then

f { A ’ , B ’) ^ C where C" = (f (a l,b ,) , f (a„b1\ . . . , f { a n,bn))
where

f (x , y) = min(x, y), max(x, y)

There are also a number of functions in EQUATE that operate on an «-tuple and reduce it
to a single number (1-tuple). These are tmin(x), tmax(x), tavg(x) and trms(x). These
functions could be performed using a combination of EQUATE’s more basic functions
but since they are common operations they have been built in both for convenience and
efficiency. They are defined as follows:

Let A n = (<2 j , a2,..., an) and C1 = (<cx)
then

tmin(x) —> C1 where C1 = min(«.)

246

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

tmax(x;) —» C1 where C1 = max(<2 .)
/= i

V ”
tavg(x) -> C1 where C1 = — l-^—-

trms(x) -> C1 where C1 =
V " a 2 1

The last group of functions in EQUATE compress n single numbers (1-tuples) into one n-
tuple. These are given the names tuple!, tuple3, ..., tuple8 depending on how many
arguments they take. These are defined as:

Let Cj, c2,..., c8 be single numbers (1 - tuples)
then

tuple2(cj,c2) —> A 2 where A 2 = (ct ,c2)
tuple3(c,, c2, c3) -» A 3 where A 3 = (c,, c2, c3)

tuple8(c,, ? Cj, c^, Cj, Cg, ? Cg) y A where A (cj, c2, , Cg)

The cardinality o f the tuple that may be generated is dependent upon the semantic
requirements at that point in the expression. Any attempt to generate a tuple that is not
compatible results in an error.

A.6. Syntax and Semantics of Variables
There are two types of variable that may be used inside an expression:

Built-in Solver Variables
For node based expressions, these variables take on the solution value at each
mesh node in turn. For edge based expressions, the variables take on the form of a
pair of values at either end of each edge in the mesh. Face and element variables
are constructed in a similar manner.

Geometric Variables
These variables are constructed in the same way as the built-in solver variables
but instead of containing solution values they contain geometric quantities. In
EQUATE, there are three such nodal variables:

X - The .x-coordinate o f the node
Y - The y-coordinate of the node
Z - The z-coordinate of the node

A small number of higher-order variables were also included in EQUATE as
generic variables due to their frequency of use. These are:

247

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

Length(Edge) - The length of an edge
Area(Face) - The area of a face.
Volume(Cell) - The volume of a cell.
CentreX(y4// Types) - The ^-coordinate of the centre of the edge, face or cell.
CentreY(^// Types) - The ̂ -coordinate of the centre of the edge, face or cell.
CentreZ(All Types) - The z-coordinate of the centre of the edge, face or cell.

Syntactically the definition of a variable in EQUATE is the same as an identifier in the
language 'C \ i.e. a lower or upper case letter or underscore followed by any combination
of lower or upper case characters, underscores or digits.

Like a constant, the semantic definition of a variable is an «-tuple of numbers. Unlike a
constant, the cardinality of the tuple is fixed and if it is does not match the requirements
of the expression then an error is generated. The cardinality of a variable depends on the
data type it represents, as shown below:

1 (node)
2 (edge)
3 (triangular face)
4 (quadrilateral face / tetrahdral cell)
5 (pyramidal cell)
6 (prismatic cell)
8 (hexahedral cell)

Accessing Variable Sub-components
The sub-components of any variable with a tuple of cardinality greater than 1 may
also be accessed and used in expressions. This is achieved by adding a suffix . n,
. e or . f followed by the node, edge or face number to the end of the variable
name. An example of accessing the sub-components of an edge variable is
computing the gradient of the density along each edge in the mesh:

(D e n s i t y n 2 - D e n s i t y n l)
/ s q r t ((X . n 2 - X . n l A 2

+ (Y . n 2 - Y . n l A 2
+ (Z . n 2 - Z . n l A

2)

which could also be simplified to:

(D e n s i t y . n 2 - D e n s i t y . n l) / L e n g t h

V n = (e1,e2, . . . ,en) where n =«

248

A p p e n d i x A: E q u a t i o n E d it o r - EQUATE

A.I. Syntax and Semantics of Constants
To the user, constants are simply floating-point (real) numbers. However, in EQUATE,
constants are treated as a tuple consisting of one or more copies of the same value. The
cardinality of the tuple is automatically determined by EQUATE so as to satisfy the
semantic requirements of the expression. For example, when defining a node-based
expression a constant is stored as a single number (1-tuple); in an edge-based expression
a constant is stored as a 2-tuple consisting of 2 copies of the given constant.

In general an EQUATE constant is defined as an «-tuple:

Cn =
V n times J

where c is the constant value and n is chosen to satisfy the semantic requirements of the
expression.

Constants may also be defined directly as a tuple by surrounding a list of comma-
separated constants with curly brackets. The number of entries in the tuple must satisfy
the semantic requirements of the expression. Examples of constants are:

1 2 , 1 2 . 4 5 , - 1 . 2 e - 5 , { 3 . 0 , - 1 , 5 e 2 , - 1 E 0 . 5 }

A.8. Some Implementation Details
In order to maximise efficiency, the input expression is parsed once using a combination
of Flex [Paxson98] and Bison [Donnelly02] to produce a tokenised form of the
expression which is then stored in a tree-like structure. This structure is then traversed for
each set of data items to compute the results. Input data is stored in flat arrays
dimensioned n by m, where n is the number of values in the tuple and m is the number of
data items.

A.9. Performance Figures
As mentioned previously, one of the key requirements for EQUATE was performance. In
order to evaluate the performance of EQUATE a number of test expressions were created
ranging from simple expressions (with simple operators) through to more complex
expressions (with functions that are known to be more compute intensive). These were
than evaluated on a mesh containing four million nodes and 11.9 million edges using
both EQUATE and a hard-wired C code.

The results, along with the relative speed comparisons are shown below. The tests were
performed on a Silicon Graphics Challenge with 512Mb of memory.

Simple Expressions
The following sets of expressions are very simple using only the basic arithmetic
operations. These expressions were chosen in order to highlight what was to be

249

A p p e n d i x A: E q u a t io n E d it o r - EQUATE

expected the worst-case scenario for EQUATE where the overhead for the tree
traversal was expected to be significant.

Equation
EQUATE

time
(s)

Hard-wired
C-code
time (s)

Relative
Speed

1 D e n s i t y +
T e m p e r a t u r e

8.6 2.8 3.1

2 D e n s i t y . n l *
T e m p e r a t u r e . n 2 +
P r e s s u r e . n 2

47.3 22.7 2.1

3 (D e n s i t y . n 2
D e n s i t y . n l) /
L e n g t h

50.6 25.6 2.0

Complex Expressions
These expressions are somewhat more complex than the previous examples in the
sense that the functions that are used are known to be more compute intensive.
These expressions were expected to show EQUATE fairing a little better against
the C code since the overhead for the tree traversal should be less significant
compared with the time computing the functions.

Equation
EQUATE

time
(s)

Hard-wired
C-code
time (s)

Relative
Speed

1 s i n (D e n s i t y) A 2
+ c o s (D e n s i t y) A 2

40.9 29.5 1.4

2 (l o g (T e m p e r a t u r e . n 2 A4)
+ l o g (T e m p e r a t u r e . n l A2)

) a 2

201.2 161.2 1.25

3 D e n s i t y . n 3 2 A D e n s i t y . n l
/ (T e m p e r a t u r e . n l -

T e m p e r a t u r e . n 2)

128.6 98.6 1.3

Explanation of Times
As can be seen from the timings, the hard-wired C code was quicker in every case
than EQUATE, but this was to be expected. For the simple expressions EQUATE
was approximately 2 - 3 times slower, but this dropped to only 1.2-1.5 times
slower for the more complex expressions.

The reason for this behaviour is easily explained if the total execution time is split
into two parts:

T = C + F
where T is the total execution time,

250

A p p e n d ix A: E q u a t i o n E d i t o r - EQUATE

C is the time evaluating actual operators and functions and
F is the time spent executing the surrounding flow constructs.

We shall use TEq™plex to denote the total execution time for the complex
expressions using EQUATE; similarly for F and C.

We shall represent the relative speed of EQUATE to the hard-wired C code as,

Tg _ J Hard

TEquate

It is obvious that CEquate = CHard for the same expression whether simple or
complex since the same operators and functions are being evaluated. Therefore
the relative speed, S, is directly dependent on the difference between FEquate and

FHard • I* is als° obvious from the results that as the expressions gets more
complex (but still has the same number of operands) the relative speed of
EQUATE to the hard-wired C code increases, i.e. S Complex < S Simple.

Expanding the above we have,

rp Complex . (- 1Complex rp Simple . /-iS im ple
r Hard + ^ Hard < r Hard ^ Hard
rpComplex . Complex rpSim ple . Simple

Equate Equate Equate Equate

Now c Equate = c H a r d »therefore substituting A, for CEquate and CHard, we have;

in Complex . o Complex jp Simple , o Simple
r Hard A ______ r Hard "l~ A
rp Complex , * Complex rp Simple , i Simple

f Equate + ^ P Equate

Rearranging, we have;

p Complex _j_ ^ Complex p Complex _j_ ^ Complex

p Simple Simple ^ p Simple ^ Simple

Since the expression has the same number of operands, FSimple - FComplex we can
perform a similar substitution to the one above, leaving us with;

^ + * c°mplex j ^ + A c°mp,ex
1 , o Simple a , n Simple
r Hard + * <PEquate + *

251

A p p e n d i x A: E q u a t i o n E d i t o r - EQUATE

Now, (f>Hard and (f>Equate are constant regardless of the complexity of the expression;
therefore it can be seen that as the complexity of the expression increases the two
sides of the relation converge to equality.

252

