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Abstract

Recently, a duality between N  =  4 Super Yang-Mills Theory and Twistor String 

Theory has been proposed by Witten [1]. This has led to the development of a num

ber of new techniques for calculating Tree and Loop scattering amplitudes in theories 

with N  = 4 Supersymmetries. In this thesis we examine how these techniques can 

be extended to calculate purely gluonic one-loop scattering amplitudes in theories 

with N  < 4 Supersymmetries. We explicitly calculate six-point N  =  1 next to MHV 

(NHMV) one-loop amplitudes, and certain n-point NMHV examples, and investigate 

their twistor structure. We find that the box coefficients of all Supersymmetric am

plitudes inherit the same Twistor Space properties, but that the Twistor description 

does not extend to the coefficients of the Triangle and Bubble functions that also 

appear in amplitudes in theories with N  < 4 Supersymmetries.

We also show how to use Supersymmetric Ward Identities to calculate amplitudes 

involving external fermions and scalars from the known purely gluonic amplitudes 

with the same helicity structure. We present explicit results for six-point N  = 4 

NMHV one-loop amplitudes and generalise these results to n-point amplitudes, pre

senting the full generalisation as a series of conversion factors that take amplitudes 

from the purely gluonic form to the case where there are two external fermions. Fi

nally we discuss how these factors can then be compounded to give amplitudes with 

more external fermions and scalars.
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Chapter 1

Introduction

Quantum field theory provides physicists with a mathematical framework for describ

ing the fundamental constituents of matter and their interactions, and has proved to 

be a very powerful technique. The predictions of quantum field theory match experi

mental measurements to a high degree of accuracy in many cases. Thus quantum field 

theory has been remarkably successful at describing physical phenomena at directly 

accessible energy scales.

In physics, one of the great successes of the 20th Century was the Standard Model 

of particle physics. This field theory draws together three of the four fundamental 

forces of nature; the strong, weak and electromagnetic interactions. The theory that 

describes the strong interactions is called quantum chromodynamics (QCD). The 

strong interactions bind quarks and gluons together to form hadrons, the constituents 

of nuclear matter, and also mediate the forces between hadrons, thus controlling the 

formation of nuclei. In the standard model there exist six flavors of quark. In addition 

to having flavor, quarks also carry one of three possible charges known as colors. QCD 

is obtained by taking this color charge to define a local symmetry, and is a non-Abelian 

gauge theory of the SU (3) gauge group.

The strong interactions are mediated by gluons. These also carry a color charge 

and thus interact with one another. QCD is therefore a non-linear theory, and is 

impossible to solve analytically. However, this does not mean that we cannot examine

1
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QCD at all. In particular QCD exhibits properties that allow physicists access to the 

theory, such as asymptotic freedom. In very high energy reactions, quarks and gluons 

interact very weakly. For QCD the strength of the interactions, defined by a coupling 

constant a s, increases as the distance between interacting elements is increased. Thus, 

at large energy scales (short distances) the coupling constant a s is small enough to 

allow perturbation theory to be used to accurately approximate the theory. To apply 

perturbation theory we use the technique of Feynman diagrams [2]. The principle is 

that we represent all of the processes we must consider graphically, by constructing 

diagrams from vertices and propagators. We do this order by order in the number of 

loops involved in a process. Each of the vertices we use is given algebraically by an 

expression that can be derived directly from the Lagrangian of the theory. Thus each 

diagram we draw can be related in full to an algebraic expression by simply following 

a set of rules for the form of the vertices and propagators required, where these rules, 

the Feynman rules, are derived from the Lagrangian of the theory. This approach has 

provided the most precise tests of QCD to date.

QCD remains a crucial theory. In the near future the Large Hadron Collider is 

scheduled to begin operation, becoming the world’s largest particle accelerator. Since 

everything at a Hadron Collider involves QCD, LHC is fundamentally a QCD ma

chine. LHC will facilitate collisions between protons with a centre of mass energy of 

14 TeV, several times greater than the collisions currently produced at the Tevatron 

at Fermilab. Likewise, the luminosity available at LHC will be between 10 - 100 times 

greater than that at Tevatron. Therefore, we can expect LHC to greatly increase the 

incidence of production of 100 -1000 GeV mass particles due to this increase in energy 

and luminosity. We expect LHC to produce such particles as top quarks and Higgs 

bosons. In addition, we also hope that LHC will produce new particles that corre

spond to physics that extends beyond that described by the Standard Model, such as 

Supersymmetry, which predicts a variety of new particles in the 100-1000 GeV mass 

range. To achieve a thorough understanding of LHC processes, including new and
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undiscovered physics, such as search strategies for the Higgs particle and for mani

festations of Supersymmetry, we require a detailed understanding of the production 

mechanisms and backgrounds calculated by means of QCD.

A number of the QCD backgrounds we are most interested in, particularly in 

the context of Higgs search strategies, involve the production of jets of particles. 

Therefore, to successfully detect and interpret any processes that correspond to new 

physics at LHC we must be able to quantitatively account for the Standard Model 

backgrounds for processes that produce jets of particles.

Asymptotic freedom gives us the opportunity to calculate high energy QCD scat

tering amplitudes by using a perturbative expansion in the coupling constant a s. 
However, for Hadron Collider cross sections the leading order terms in the a s expan

sion - corresponding to Tree amplitudes - are not sufficient to reduce the uncertainty 

to around 10%. In fact the corrections due to the next-to-leading-order terms are 

typically between 30 -  100% [3].

Thus, the desired quantitative understanding of LHC events will require cross 

sections to be evaluated at next-to-leading-order in the perturbative expansion. In 

addition to Tree amplitudes, this will require the calculation of one-loop amplitudes 

to reduce uncertainties to 10%. W hat’s more, if we require a more precise evaluation 

we must reduce the uncertainties to less than 10%. This would require the additional 

calculation of two loop amplitudes.

In principle, Feynman rules are all we need to evaluate the tree and loop am

plitudes. Indeed, for fifty years theoretical physicists have had use of this standard 

calculation technique. In the last twenty five years this has included the full devel

opment of how these rules are applied to non-Abelian gauge theories such as QCD. 

It would seem a fair expectation that all significant Standard Model scattering pro

cesses should by now have been calculated to the experimentally required accuracy. 

This is not the case, however. In particular most QCD scattering processes have been 

calculated only to leading-order in the strong coupling constant.
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In field theory, amplitudes serve as the input to leading-order and next-to-leading- 

order cross section calculations. As opposed to the full cross sections, it is these 

amplitudes that field theorists focus on calculating. The computation of tree and 

loop amplitudes should in principle be a straightforward exercise given knowledge 

of the Feynman rules. The practise is to draw all relevant Feynman diagrams for 

a given process and use standard loop integral reduction techniques to evaluate the 

subsequent expressions. However, in practise this quickly becomes both laborious and 

cumbersome. The process is increasingly inefficient as the number of external legs 

grows for a number of reasons.

The calculation of these processes is made particularly difficult by the large num

ber of Feynman diagrams which appear in the perturbative expansion. As an example 

Table 1.1 shows the number of diagrams contributing to the process gluon-gluon 

n-gluons [4].

n 2 3 4 5 6 7 8

#  of diagrams 4 25 220 2485 34300 559405 10525900

Table 1.1: The number of Feynman diagrams contributing to the scattering process 
99 -+ n g .

Additionally, non-Abelian gauge boson self interactions are so complicated that the 

structure of these vertices leads to an almost uncontrollable inflation in the number 

of terms which are generated. Likewise the large number of kinematic variables leads 

to arbitrarily complicated expressions. Indeed the intermediate expressions are sig

nificantly more complicated than the final result. Given the number of diagrams con

tributing and the complexity of the calculations involved, it is clear that the prospect 

of calculating multiple jet events using the Feynman diagram approach is unrealistic 

as the standard techniques of numerical evaluation and algebraic manipulation will 

quickly become redundant. It is the focus of many research groups to develop new 

calculational techniques to overcome these obstacles.
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Efficient techniques for calculating tree amplitudes have existed for a number 

of years. These include the organisation of amplitudes in terms of spinor helicity, 

color ordering and Supersymmetry, as discussed in Chapter 3. At one-loop, although 

these techniques still form an important part of the calculation, the picture is even 

more complex and calculations become more intricate. Exploiting the techniques so 

successful at tree level is often not enough to complete a calculation. Therefore, the 

development of new techniques for calculating loop amplitudes, to compliment the 

existing techniques for tree level calculations, forms an essential area of perturbative 

field theory research.

In this work we investigate new techniques for calculating one-loop scattering 

amplitudes in Yang-Mills theories. As we discuss in chapter 5, the recent interest in 

perturbative field theory was stimulated by the work of Ed Witten. In particular, 

Witten chose to examine why many QCD amplitudes are more simple than we would 

expect. For instance, Parke and Taylor [5] showed that tree level gluon scattering 

amplitudes have a particularly simple form. If the helicities of the gluons are all the 

same, or all the same bar one, the amplitude vanishes. We write this relation as,

A ^ ( l ±,2+,3+,... ,n +) = 0 .

( 1.1)

The first example of a non-vanishing tree amplitude occurs when exactly two of the 

gluons, labelled s and r here, have helicity that is opposite to the helicity of all of 

the other gluons. For the case where exactly two gluons have negative helicity, and 

the rest are positive, we call the amplitude a Maximally Helicity Violating (MHV) 

amplitude. Parke and Taylor proposed [5], and Berends and Giele later proved [6], 

that these MHV amplitudes have a particularly simple form,

^MHV _  ^ e e (1+j 2+ _  _ ^  ^  „ +) =  . (sr)‘
(12) (2 3)... (n 1) ’

(1-2)
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where the notation is as described in chapter 3, and momentum conservation is im

plicit. We also have the case where exactly two of the gluons have positive helicity

and the rest are negative. We call these amplitudes Googly MHV or MHV ampli

tudes. For the case above where s and r label the gluons of helicity different to the

rest, the MHV amplitude can be written as

[srf/iMHV _  4 tree/-. -  o -  +  +  - \  _  •
A„ - A „  U ,1  ) [j 2] [23]... [n 1] ’

(1.3)

The sheer simplicity of equations (1.2) and (1.3) convinced W itten that there must 

be some underlying structure that was not yet apparent. From his investigations, 

Witten proposed a duality between N  = 4 Super Yang-Mills theory and a topological 

string theory [1]. This becomes manifest by transforming amplitudes into twistor 

space where they are supported on simple curves, the degree of which is related to 

the number of negative helicities. Consequently, when expressed in terms of spinor 

variables paa =  AaAa, tree amplitudes are annihilated by various differential operators 

corresponding to the localisation of points on lines and planes in twistor space. This 

has led to significant progress in the computation of amplitudes in gauge theories.

At tree level, the structure of amplitudes would appear to be inherited from this 

twistor string description. This has resulted in many reformulations of tree level 

amplitudes. Most notably, Cachazo, Svercek and Witten [7] have proposed the use of 

MHV vertices instead of three and four-point Feynman vertices. Using this approach 

one obtains simpler, more compact expressions for tree amplitudes. This has been 

extended to include other particles, including fermions and scalars.

Over a number of years, various techniques have been developed to calculate 

loop amplitudes more efficiently than the conventional Feynman diagram approach. 

Many of these are simply continuations of the techniques used at tree level, although 

naturally the application of these techniques becomes more complex at one-loop level.

These techniques include the idea that an amplitude can be cut constructive - 

the principle that an entire amplitude can be reconstructed from a knowledge of its
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four dimensional two particle cuts. This was developed by Bern, Dixon, Dunbar and 

Kosower [8, 9].

A further technique is the use of generalised unitarity. The idea of generalised 

unitarity cuts has been investigated within various contexts since the 1960’s. How

ever a recent breakthrough was achieved by Britto, Cachazo and Feng [10] with the

observation that by analytically continuing tree amplitudes to a signature (------ H-)

and using these to calculate quadruple cuts, coefficients of integral functions that 

appear in the amplitude can be determined algebraically from products of on-shell 

tree amplitudes.

Likewise, we can use Supersymmetric Ward Identities (SWI) [11], which relate am

plitudes with the same helicity structure but with different external particles types. 

As we discuss in chapter 2, Supersymmetric Ward Identities place powerful con

straints on amplitudes, particularly MHV amplitudes where knowledge of the all 

gluon amplitude appearing within a particular SWI set ultimately determines the 

other two-gluino amplitudes that appear in the same set. For NMHV amplitudes 

(i.e. exactly three negative helicity gluons and the rest positive helicity) the SWI do 

not lead to such simple solutions. Applying the Supersymmetry operator leads to a 

system that has rank 2, so it can only directly give two of the amplitudes appearing 

in a particular SWI set in terms of the other amplitudes appearing in the same set. 

By itself, this relationship does not solve for the fermionic amplitudes unambiguously 

from the purely gluonic. However, with the application of further constraints we can 

obtain the fermionic amplitudes, as we discus in the results presented in chapter 7. 

Additional SWI can be used to determine amplitudes involving scalaxs or two flavours 

of gluino.

In addition to these, other techniques we shall discuss in later chapters include the

application of MHV vertices, and exploiting the “holomorphic anomaly” of unitarity

cuts. This derives from the observation by Cachazo, Svercek and W itten that the one-
*

loop amplitudes are not annihilated by the collinear operator F. They interpreted this 

as the MHV vertex approach not working at one-loop. However Brandhuber, Spence
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and Travaglini [12] were able to use the MHV vertex approach to caluclate a one- 

loop coefficient. This paradox was resolved by W itten et al [13] by observing that 

for theories with N  =  4 Supersymmetries differential operators acting within the 

loop-momentum integral yield 5 functions, producing rational functions as a result. 

Consequently it was observed that acting with the collinear operator upon both the 

cut and the imaginary part of the amplitude, and demanding consistency via the 

optical theorem, leads to algebraic equations for the coefficients of integral functions 

which appear in the amplitude, and which are extremely helpful in computing the 

entire amplitude.

The focus of this research is to continue the development of new techniques, in 

conjunction with those that already exist, that solve or simplify the calculation of 

one-loop amplitudes.

This thesis is organised as follows.

In chapter 2 we discuss Yang-Mills theory and introduce the idea of localising 

or gauging a symmetry transformation. We discuss how Yang and Mills used this 

principle to derive a non-Abelian gauge theory, defined by invariance under transfor

mations characterised by a continuous symmetry group. We review the formalism of 

Yang-Mills theory and state the Yang-Mills Lagrangian.

We also discuss the origins of Supersymmetry, and define the Supersymmetric algebra 

for normal and extended Supersymmetry. Finally we discuss the use of Supersym

metric Ward Identities to relate amplitudes with the same helicity structure but with 

different external particle types. In particular, we describe how to generate Super- 

symmetric Ward Identities using the N  = 1 and N  =  2 Supersymmetry algebra, 

including a simple example to demonstrate their application.

In chapter 3 we introduce a series of traditional techniques used to simplify cal

culations, that depend on keeping track of all information about external particles. 

We review the formalism of spinor helicity and set the notation used throughout this 

work. We explicitly define the spinor algebra in appendix A. We describe the color 

decomposition of amplitudes at tree level and state how this is extended to one-loop
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level. We define the properties and relationships satisfied by color ordered ampli

tudes and state how at one-loop level we can generate sub-leading color structures 

from leading order terms, thus reducing the amount of explicit calculation required. 

We describe how one-loop amplitudes can be organised by considering the contribu

tions from different Supersymmetric multiplets, focusing on manipulating the sum 

over internal spins of particles circulating in the loop and rearranging the terms that 

appear in the sum to simplify a calculation. We apply this to the N  = 1 chiral and 

vector multiplets and the N  — 4 multiplet and explicitly show that the contributions 

from these three multiplets are not independent.

In chapter 4 we discuss the analytic properties of amplitudes, in particular the fac

torisation properties of tree and loop amplitudes. We examine the unitarity properties 

of loop amplitudes and discuss the optical theorem and Cutkosky’s rules, explaining 

how these are used to solve for amplitudes using unitarity cuts. We state how, when 

performing a unitarity cut, we can relate loop amplitudes with different particles 

circulating in the loop via Supersymmetric p factors.

We also describe the traditional loop integral reduction techniques that allow am

plitudes to be expanded as a sum of known scalar integral functions multiplied by 

unknown rational coefficients and discuss the effect Supersymmetry has on restricting 

the type of scalar integral functions that may appear in the expansion.

Finally we describe the different bases of functions that we use in our calculations 

and how these are defined and labelled.

In chapter 5 we introduce the recent progress that acted as the stimulus for the 

work presented in this thesis. We begin by discussing W itten’s original conjecture 

that there is a duality between N  = 4 Super Yang-Mills theory and string theory. We 

discuss the motivation for this conjecture and describe the derivation of this duality 

at tree level, focusing on W itten’s principle of Fourier transforming amplitudes into 

twistor space. We discuss the geometric description of tree level amplitudes in twistor 

space, deriving the MHV case and stating the NMHV case. We also define the 

differential operators that act on amplitudes, defining their twistor properties.
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We discuss the continuation of this work by Cachazo, Svercek and W itten to give 

numerical values for amplitudes. We describe the CSW construction in terms of using 

MHV tree amplitudes as fundamental building blocks from which more complicated 

amplitudes can be constructed. We include a simple example of this technique to 

demonstrate its application.

We describe the Generalised Unitarity technique introduced by Britto, Cachazo and 

Feng, including a discussion of the key steps taken. In particular we discuss the

motivation for continuing from Minkowski signature to signature (------- +  +)• Again

we include a simple example to illustrate the application of this technique.

Finally we discuss the continuation of this picture to loop level amplitudes. We 

discuss the origin of the “holomorphic anomaly” of unitarity cuts and how this can 

be exploited to solve for amplitudes in theories with N  = 4 Supersymmetries. Finally 

we describe the twistor structure of the box coefficients for MHV and NMHV N  = 4 

one-loop amplitudes.

Chapter 5 completes the theoretical introduction to this thesis. We then move on 

to explicitly describe the new results we have obtained during the last three years.

In chapter 6 we present the first set of results for gluonic one-loop amplitudes in 

theories with N  < 4 Supersymmetries, based on the following publications:

•  N  = 1 S upersym m etric  O ne-Loop A m plitudes an d  th e  “H olom orphic 

A nom aly” o f U n ita rity  C u ts  [14]

W itten et al. resolved the paradox discovered by Brandhuber, Spence and Travaglini 

by suggesting the existence of a “holomorphic anomaly” in N  = 4 Supersymmetric 

amplitudes. Indeed he noted that the existence of such a feature could be used to 

derive algebraic equations for the coefficients of integral functions which appear in the 

amplitude, a very useful spin off. We extend this analysis to examine how the “holo

morphic anomaly” acts upon the cuts of N  = 1 Supersymmetric one-loop amplitudes, 

focusing on a six-gluon NMHV amplitude which had been previously calculated in

dependently from cut constructibility and collinear limit methods (this had not been 

published previously). We show that the anomaly must be taken into account when
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acting with differential operators on the cuts in order to satisfy the optical theorem. 

We suggest that as a calculational tool to evaluate amplitudes, application of the 

“holomorphic anomaly” yields differential equations for the coefficients of the inte

gral functions in the N  =  1 case, as opposed to the algebraic equations of the N  = 4 

case, and that the general solution to these differential equations contain homoge

neous parts which can be fixed by boundary conditions or physical conditions such 

as collinear limits.

•  T w isto r Space s tru c tu re  of th e  B ox Coefficients o f N  = 1 O ne-Loop 

am plitudes [15]

Many fascinating geometric features appear in the twistor space realisation of 

gauge theory amplitudes, which are of particular interest when determining scattering 

amplitudes. The coefficients of integral functions contained in an amplitude exhibit 

interesting structure in twistor space, particularly the coefficients of the I 4  integral 

functions. In theories with N  = 4 Supersymmetries it has been shown that these 

I 4  coefficients for next to MHV amplitudes have planar support in twistor space, 

behaviour that is analogous to that of the tree amplitudes. We investigate whether 

similar behaviour exists for theories with N  < 4 Supersymmetries by computing the 

I 4  coefficients for all six-point N  — 1 amplitudes and examining their twistor space 

structure. We find that for next to MHV amplitudes these coefficients have planar 

support in twistor space, confirming explicitly that the structure at N  == 4 persists to 

N  =  1. We are able to extend this analysis to include certain classes of n-point N  = 1 

amplitudes, where we find further support for the twistor space structure described.

•  One-Loop G luon S ca tte rin g  A m plitudes in T heories w ith  N  < 4 Su

p ersy m m etries  [16]

Although W itten’s proposed relationship between twistor string theory and per

turbative field theory has been observed at N  — 4, it is as yet unresolved as to what 

degree this relationship extends to theories with less or indeed no Supersymmetry. It 

is therefore reasonable to continue gathering information by studying the properties 

of amplitudes in such theories until a direct connection is uncovered. By focusing on
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the / 4 integral functions that appear in specific example amplitudes, and exploiting 

the generalised unitarity technique of Britto, Cachazo and Feng by using quadruple 

cuts, we compute the coefficients of these functions, and show that they satisfy the 

same collinearity and coplanarity conditions independent of the Supersymmetry. We 

demonstrate by means of a relatively simple proof that the N  =  4, N  = 1 and N  = 0 

cases for amplitudes that are “MHV-deconstructible” are inherently related, and as 

such one must only demonstrate that the expected twistor space properties are ex

hibited in two of the above cases to conclude that the third case must also satisfy 

these properties. Furthermore, we exploit the approach of Britto, Cachazo and Feng 

by using triple cuts to determine the coefficients of the fy and I 2 integral functions 

and present the full expression for an example one-loop amplitude.

In chapter 7 we present the final set of results for fermionic one-loop amplitudes in 

theories with N  = 4 Supersymmetries, based on the publications:

•  Supersymmetric Ward Identities and N M H V  Am plitudes involving 

Gluinos [17]

On-shell Supersymmetric Ward Identities (SWI) impose powerful constraints on 

amplitudes in gauge theories, giving algebraic relationships between amplitudes with 

the same helicity configuration but different external particle types. These constraints 

apply at any order in perturbation theory. From a Feynman diagram perspective, 

these relationships are most naturally employed to obtain purely gluonic amplitudes 

from amplitudes involving fermions. Motivated by the recent advances in calculating 

purely gluonic amplitudes, we reverse this process and generate amplitudes involving 

fermions from the purely gluonic ones. For some helicity configurations the SWI con

tain sufficient information to simply solve for the fermionic amplitudes. For example 

in N  — 4 gauge theory the Supersymmetric Ward Identities for MHV amplitudes 

could be easily solved and amplitudes with any external particles obtained from the 

purely gluonic MHV amplitudes by a simple multiplicative factor.

For other configurations, such as NMHV amplitudes, the SWI do not allow such
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simple solutions. However, we show how the SWI can be solved in a natural way 

to obtain amplitudes with two gluinos in terms of the purely gluonic case. We first 

apply this to the six-point tree amplitudes where we can connect to known compu

tations. Secondly we determine the one-loop six-point NMHV amplitudes in N  = 4 

Supersymmetric Yang-Mills theory which involve two gluinos. More generally there 

also exist SWI which involve amplitudes with two gluinos, four gluinos, two scalars 

and two gluinos plus a scalar. We explicitly determine the two scalar amplitudes. 

The SWI then give the remaining amplitudes directly in terms of known amplitudes. 

• O ne-Loop N M H V  A m plitudes involving G luinos and  Scalars in N  = 4 

G auge T heory  [18]
One-loop NMHV amplitudes in N  =  4 gauge theory can be expressed in terms 

of MHV-deconstructible diagrams and so can be evaluated using quadruple cuts and 

known MHV tree amplitudes. These amplitudes also satisfy SWI which can be em

ployed to minimise the number of independent diagrams that must be computed 

explicitly. We use these techniques to determine a set of conversion factors that re

late two-gluino box coefficients to purely gluonic ones. Analysis of quadruple cuts 

is then used to show how these factors can be compounded to give two-scalar and 

scalar-gluino-gluino box coefficients. Amplitudes involving more external fermions 

and scalars then follow from SWI.

Finally, we finish with some conclusions in chapter 8. The appendix contains the 

explicit spinor helicity notation and spinor algebra introduced in chapter 3.



Chapter 2 

Yang-Mills Theory and 

Supersymmetry

2.1 Yang-Mills Theory

The modern development of non-Abelian gauge theories began when Yang and Mills 

attempted to make hadronic isospin into a local symmetry. Although they were un

able to achieve precisely this, the eventual formalism they developed did turn out 

to describe a fundamental theory. Instead of describing the interactions between 

hadrons, they developed a theory that describes the interactions between the con

stituents of hadrons, namely quarks. To introduce the basic principles of their work 

we must consider the idea of gauging, or localising a symmetry transformation.

We can write a global symmetry transformation as,

• iaia  —
2 0 , (2 .1)

where the parameters a* are independent of space-time [19]. With such a transforma

tion, fields at different points in space-time transform by the same amount. We can 

promote this global symmetry to a local symmetry by insisting that the invariance

14
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of the theory hold for the same transformation except with ol% now a function of x , 

i.e. the symmetry transformations are now space-time dependent. We write the local 

symmetry transformation as [2],

ip —> V (x),tp(x), where V(x) = exp • i f  \ a  IOL (X) — (2 .2)

In 1954 Yang and Mills used this principle of gauging, or localising, a symme

try transformation [20]. They suggested that the central idea of the only existing 

field theory of the time, QED, i.e. the invariance under local phase rotation, could be 

generalised to invariance under transformations characterised by any continuous sym

metry group. This exhibits a fundamental difference to that of QED. The symmetry 

generators for transformations under a continuous symmetry group do not commute 

with each other. We refer to a field theory characterised by a non-commuting local 

symmetry as a non-Abelian gauge theory, the simplest example of which is called 
Yang-Mills Theory.

QED has an Abelian U (l) gauge symmetry defined by the transformations,

-► u % i>

-  v

F,w -> Fin*, (2.3)

where,

U = exp[ia(x)]. (2.4)

The covariant derivative is defined as,
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Dpip = (dp +  ieAp)ip, (2.5)

with symmetry transformation,

Dpi> -  UDptf). (2.6)

In 1954 Yang and Mills extended the U (l) symmetry of the QED model and 

generalised this to non-Abelian groups such as SU (N). In such a case we write,

U — exp[iaa(x)Ta], (2.7)

where T a are the generators satisfying,

[Ta,T b] = i f abcT c, (2.8)

and Z®6® are the structure constants for the non-Abelian group. The T a are normalised 

such that TV T aT b = \5ab.

Therefore wave-functions transform according to

ip —> exp [iaa(x)Ta]ip. (2.9)

To define a suitable covariant derivative, we must introduce definite force fields. For

each generator of the Lie algebra there is one independent gauge field AJ, often called
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a Yang-Mills field, which lies in the adjoint representation of the group. For solutions 

of the free particle field equations we write A* in the form,

A ^ x )  = e^(p)e~zp-x (2.10)

where eM(p), are the polarisation vectors.

With the gauging of the symmetry transformation the covariant derivative gener

alises to,

D^> =  (9„ -  ig’T A ^ .  (2.11)

where g is a coupling constant.

Under a gauge transformation, with U = exp[zaa(x)T“], we have that,

0  —► £70, (2-12)

and we require

-^UD^ip. (2.13)

This fixes the gauge transformation of A J. Writing A^ = A “T a we have simply 
that,

A„ — UA^U - 1 + -U d^U - 1  

g
(2.14)
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or in component form,

ACL (2.15)

The field strength tensor F^v =  F°vT a is defined as the commutator of two co

variant derivatives,

[Dm, Dv] =  —igFfflU (2.16)

Therefore we can write this as,

Fpi/ —  dpAv dvAfi ig[Afi,  AJ\, (2.17)

or in components,

P/h/ — — +  <7/ abc AbA ° A c[i v' (2.18)

Under a gauge transformation,

U F ^ U -1, (2.19)

so that the term TV [FIIVF m'] is a gauge invariant and Lorentz invariant quantity, 

suitable for using in a Lagrangian.
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We can now write down a Lagrangian which generalises to a non-Abelian gauge 

theory. We write the Yang-Mills Lagrangian as,

£  =  (2 .20)

This describes the interaction of Yang-Mills vector fields with fermions and depends 

on two parameters, the coupling constant g and the fermion mass m.
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2.2 Supersymmetry

Despite a lack of experimental evidence to support the idea, theories that include 

Supersymmetry remain the most accepted framework for describing physics beyond 

the Standard Model. That this is the case is due to the number of attractive properties 

of Supersymmetry, perhaps the most significant of which is that it appears to play a 

vital role in the only quantum theories that appear able to describe strong, electroweak 

and gravitational interactions; so called Super-string theories [21].

The origins of Supersymmetry are found in considering the allowed space-time 

symmetries of particle physics. In 1967 Coleman and Mandula [22] proved that, given 

certain assumptions, the only possible space-time symmetries of particle physics are 

“internal” global symmetries that depend on certain quantum numbers being con

served; the discrete symmetries C, P and T, and invariance under Poincare transfor

mations.
Coleman and Mandula’s conclusion can be avoided if we consider weakening their 

assumptions, in particular that the symmetry algebra can involve only commuta

tors. By allowing generators that were anti-commuting lead to the postulation of 

Supersymmetry, which is defined as the presence of such anti-commuting generators 

that transform in the spinor representation of the Lorentz group. It was subsequently 

proved by Haag, Lopuszanski and Sohnius [23] in 1975 that Supersymmetry represents 

the only new symmetry the revised set of assumptions allow. As such, Supersymmetry 

is considered to be the only possible extension of the known space-time symmetries 

of particle physics [24].

2.2.1 N  =  1 Supersym m etry

The essential property of Supersymmetry is that it relates bosons to fermions. The Su

persymmetry generators Qa , with spinor index a, are tightly constrained by Lorentz 

symmetry, which implies,
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[P^Qa] = 0  

\ M ^ , Q a] = - i ( a ^ t Q 0

[M'“',<5“] =  (2-21)

where we define =  {Qa)^•
Haag, Lopuszanski and Sohnius [23] proved that the Supersymmetric generators 

Qa must anti-commute. If Qa are to be non-trivial hermitiau operators then the most 

general possibility is,

{Qa,Qp} = 2(crM)a/jP /i. (2.22)

where the crM matrices are defined as in reference [21],

^  = {12, a) (2.23)

and <t are the Pauli matrices.

2.2.2 Extended Supersym m etry

We can consider the introduction of more than one Supersymmetry generator Qla, 

where i =  1, ...,N labels the number of generators. In this case the Supersymmetry

is said to be extended. The additional index i does not change the commutation
relations with the Poincare algebra,

IP*, 01} = o
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[M '-'.QjJ = - i { a n l Q in

\M ^ ,Q f]  = - i ( a n j Q l (2.24)

The anti-commutator eq. (2.22) now takes the form,

(2.25)

The most obvious difference from N  =  1 Supersymmetry is found in the anti

commutators {Q*a, Q^}, 0^}- These are now given by,

The Z tJ are antisymmetric, i.e. and are called central charges. The

central charges do not occur in the case of N  = 1 Supersymmetry, where the anti

commutators {Qla, Qp} and {<%, <5̂ } are therefore zero.

2.2.3 Supersym m etric Ward Identities

Supersymmetric Ward Identities (SWI) relate amplitudes with the same helicity struc

ture but with different external particle types [11]. The Ward Identities can be ob

tained by acting with the Supersymmetry generator Qa on a string of operators, Zi,

{ Q l Q f i  =

{<%,<%} =  ‘ap(Zijr (2.26)

where the e matrices are defined as in reference [21],

(2.27)
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which has vanishing vacuum expectation value. Typical choices are strings with an 

odd number of fermionic operators. Since Qa annihilates the vacuum we obtain,

0 = / [Qa, n  *i] ) = S ( Z1 ' ' • Zi ] ' "  Zn) • (2-28)
i  i

For N  = 1 Supersymmetry the commutation relations of the fields g±{p), A± (p) with 

the supercharge Qa, where g±(p) creates a gluon of momentum p and helicity =1= and 

A± (p) creates a gluino of momentum p and helicity ± , are given by the Supersymmety 

relations [11],

[Q{v),9 +(p) ] =  ~ r + (p,r;)A+, [Q(r}),g~(p)] =  T~(p,p)A~,

[Q(rj),A+(p)] = - T ~{p,T])g+, [Q(p),A~(p)] = r +(p,p)g~, (2.29)

where the Supersymmetry generator Q multiplied by a arbitrary spinor parameter fj 

defines Q(g) = fjaQa, and the T±{p,rj) are linear in p. The T are given by [3],

r  +(p,p) = [pp] , r~(p,7/) =  (pii) . (2.30)

where the notation is explained in the next chapter.

As an example of how effective the SWI can be, consider applying the Supersym

metry operator Qa to the MHV amplitude An(gL, g£, A3 , g f , . . . ,  g+) (i.e. a string of 

gluonic creation operators with a single gluino creation operator). We obtain,

0  ( 1 77) A n ( A j , g^ •> A 3 ,  <74 , . . . ,  gn )

+  (2  77) A n (g1 , A 2 , A3", g^ , . . . ,  g£) 

-  ( 3 » 7 ) i4 „ ( p r ,^ ,^ ,^ , . . . ,y + ) , (2.31)
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where we have used the fact that amplitudes with two fermions (one flavour) of the 

same helicity vanish. Choosing 77 =  1, for example, gives,

(31 )
Anid 1 5 -̂ 2 > A3 ’ 94 > * • ' 5 9n ) ^  ’ 92 ’ 9z ’ ^4 •> • - • ) )) (2.32)

and we can thus obtain the MHV two-gluino amplitudes from the gluonic amplitude.

For NMHV amplitudes the SWI do not lead to such simple solutions. To see this 

consider applying the Supersymmetry operator to A n( g i , , A J , . . . ,  g+). We

obtain,

0 =  (1 rj) Ai(Ar> 92 y 9z, AJ, gt ,  ■. ., gt)  +  (2 77) 4 n(^ f , A j, A j, &J",. . . ,  g+)
+  (3 T7> An(^r, 32, A3 , A J, . . . ,  p+) -  (477) A n(gi,

(2.33)

In this example the SWI can only directly give two of the amplitudes in terms of the 

other two. Thus, by itself this does not solve for the fermionic amplitudes unambigu

ously from the purely gluonic. However, when further constraints are applied, the 

fermionic amplitudes can be obtained, as we shall see later.

We can also consider N  = 2 Supersymmetric Ward Identities [11, 25]. Using 

Supersymmetry generators Qi, i = 1, 2, we have,

[Qi{'n),9+(p)\ =  - r + (p,r7)A^,

[Qi(v),g~(p) \ =  r~ (p ,77)At- ,

[Qi(v)> A+(p)] =  -T~(p,r])6ijg+ -  i r +(p,r))ei:i(j)+,

[Qi(v), Aj(p)] =  T+(p,rj)6 ijg~ +  iT~(p, »7)cij0_ ,

[Qi{ri)A+ {p)\ = - i r - ( p , 77)e0A t,

[Qiiv), <t>~{p)] =  +^r+ (p, v)ei jAj.  (2.34)
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where the T are given by eq. (2.30). We use these identities to determine amplitudes 

involving scalars or two flavours of gluino.

No perturbative approximations are necessary to derive the SWI. They there

fore apply order by order in the perturbative expansion. Since QCD is effectively 

Supersymmetric at tree level, these identities can be applied directly to QCD tree 

amplitudes, and are also a valuable tool that can be used to reduce the number of 

independent calculations required at loop level.



Chapter 3 

Organising Am plitudes

One of the major developments in calculating perturbative QCD scattering ampli

tudes has been the use of techniques that decompose amplitudes into simpler pieces 

by using the quantum numbers of external states, such as helicity and color. Calcula

tions can be simplified significantly by exploiting this idea, which is especially useful 

for computing amplitudes at loop level.

3.1 Spinor Helicity

The existence of compact representations for tree and loop amplitudes in QCD is 

largely due to the development of the spinor helicity formalism [26, 27, 28]. In this 

section we review the notation we use throughout this thesis [29]. For the full for

malism, notation and definitions of the spinor algebra see Appendix A.

The principle behind this choice of notation is straightforward. Traditionally, 

when we describe an amplitude, we use the four-momentum vectors p f as the ar

guments of the amplitude, i.e. A = From these four-momentum vectors we

construct the Lorentz inner products Sij = 2p* • pj as the relativistic invariants. In 

the massless case these are given by Sij = 2pi • pj = (p* +  P j)2, since p2 =  0.

However, instead of using p f , we can choose to use massless Dirac spinors. These 

are written as u±(pi), where u±(pi) defines positive energy solutions of the massless

26
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Dirac equation, see Appendix A. The ±  sign labels the helicity. The two-component 

(Weyl) version of these spinors is written as [29],

(Ai)a =  [u+(pi)]a, (A i)a = [u_fe)]d. (3.1)

Using the positive energy projector for massless spinors, u(p)u{p) =ft, the associ

ated momenta can always be reconstructed from the spinors. In the two-component 

notation we write this as [29],

P?(ffjad =  (^i)ad =  (K)a{K)a • (3-2)

where <rM are the Pauli matrices. Eq. (3.2) reflects the property that a massless 

momentum vector, when written as a bi-spinor, is simply the product of a left-handed 

and a right-handed spinor.

With this notation, we replace the Lorentz inner products, Sij = 2Pi •p j , with the 

spinor products [29],

(i j)  = = u-(Pi)u+{pj) = ea/?(A*)a(A j)0,

[ij] =  (i+\j~) =  u+{jpi)u-{pj) = e^(Xi)aCXj)p, (3.3)

where ea  ̂ and ea/3 are the SU (2) antisymmetric tensors defined in eq. (2.27). The 

spinor products are antisymmetric, i.e.

(»l )  = -  U i ) , [* j\ = ~  \j i] , (ii) = [i i\ =  0. (3.4)

and satisfy the identity

(i i) U *] =  \  TrW i>j\ =  2n  ■ pj =  s^. (3.5)
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Thus the spinor products are, up to a phase, simply the square roots of the Lorentz 

inner products, i.e.

(i j)  = , [ij] = ± y/s~je~t<l>ii. (3.6)

Therefore, by replacing the Lorentz invarients Sij we can rewrite amplitudes en

tirely in terms of these spinor products. Using spinor helicity, amplitudes do have an 

overall phase. However, physically this is meaningless as the cross section ultimately 

depends on the modulus of the amplitude squared i.e. \A\2. Writing amplitudes in 

this notation can drastically simplify calculations, as we discuss in Appendix A.
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3.2 Color ordering

3.2.1 Tree Level

We begin by describing the color decomposition of amplitudes at tree level [3, 30,

6, 4]. For the purposes of this work, we need only consider the color ordering of 

amplitudes where all particles transform in the adjoint representation. For a more 

general discussion, see [4]. Although the gauge group for QCD is SU(3), we often 

generalise this to SU(NC), where N c represents the number of colors. The generators 

of SU(Nc) in the fundamental representation are T a, the index a = 1,..., N% — 1 refers 

to the adjoint color index carried by gluons. The T a are traceless hermitian N c x Nc 

matrices, normalised as

For a generic QCD Feynman diagram there will be a number of standard vertices 

which we must rewrite using the above prescription. For each purely gluonic three- 

vertex there will be a group theory structure constant f abc from the Feynman term [2],

Tr (TaT b) = 5ab. (3.7)

^3 =  g f abc b r  (fc -  pY  + <T{k -  pY  + gm {k -  PY) (3.8)

where we define this structure constant by,

(3.9)

For each purely gluonic four vertex there will be pairs of structure constants 

from terms [2],
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= - i g 2  \ f ^ f ^ { gw sr - g ^ W  + f acef bde(g*'gpa- g * ,t f p)
+ f a d e f b e e { g » u gP*  _  g W g ™ ) } .

(3.10)

Many indices are contracted together by factors 8 ab appearing in the gluon propaga

tors, written as [2],

Eliminating the structure constants in favour of the group generators T° exposes 

the general color structure of an amplitude. At any arbitrary vertex the color structure 

function can be replaced using eq. (3.9), rewritten as,

Each leg attached to this vertex is either an external leg, or is an internal leg and 

is thus connected to another vertex. The color structure function associated with 

this next vertex is replaced using the T° associated with the internal leg from the 

previous vertex by writing it as fcdeT c =  —i[Td, T e\. This process is continued until 

all vertices in the Feynman diagram have been replaced in this way. We are left with 

a large number of traces of the form Tr(...T°...)Tr(...Ta...)...Tr(...Ta...). We can use 

the SU(NC) Fierz identity [31],

(3.11)

(3.12)

Ti{TaX ) rTi(TaY)  =  T r(X y) -  -J-Tr(X )Tr(F),
c

(3.13)
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to rearrange the contracted Ta,s and reduce the number of traces. Often, it may 

be more convenient to consider the gauge theory as U(NC) =  SU(NC) x U( 1). The 

new U(1) generator is proportional to the identity matrix. The U(Nc) generators still 

obey eq. (3.13) only now without the — l / N c term. As the supplementary U(1) gauge 

field commutes with SU(NC) i.e. = 0 for all 6, c; it carries no color charge and

is called the photon.

By making the substitutions eq. (3.12) and eq. (3.13), remembering to neglect the 

—l / N c term where appropriate, we are left with all possible permutations of a single 

trace. In this way any tree diagram for n-gluon scattering can be reduced to the 

sum of a single trace. We write the color decomposition of an n-gluon tree amplitude 

as [6],

^ ( f c i,Ai,a j) =  s " -2 £  Tr(T0”(I>....Ta,’<">)j4J1r“ (<7'(iAl)1 ...,<r(nA”)), (3.14)

where k{ and A* are the gluon momenta and helicity respectively, and g is the gauge
2

coupling given by a s =  Sn is the set of all permutations of n objects and Z n is 

the subset of cyclic permutations which preserves the trace. Summing over the set 

Sn/Z n includes all possible distinct cyclic orderings that appear in the trace.

By construction, the amplitude has been expanded into color dependent and 

color independent pieces. We may now focus on manipulating the partial ampli

tudes ^ “ (l*1, ...,nAn), which contain only kinematic information. Calculating these 

partial amplitudes still requires a lot of work. However, because these are now color 

ordered amplitudes they are much simpler, as they only receive contributions from 

amplitudes in which the gluons have a particular cyclic ordering. The possibilities 

for singularities of the partial amplitudes, such as poles (and for loop amplitudes 

cuts), are restricted as they must occur when cyclically adjacent momenta form the 

momentum channels.

These partial amplitudes satisfy a number of important properties and relation

ships. They are gauge invariant, so we have the freedom to choose different gauges
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for different partial amplitudes, simplifying calculations. The number of indepen

dent partial amplitudes that must be computed is reduced as they are invariant 

under cyclic permutations of legs and have symmetries such as parity; which al

lows us to reverse all helicities in an amplitude simultaneously; and reflection, i.e. 

i4̂ ree(nAl, ..., 1A") =  (—l)7M5lree( lAl, ...,nAn). They also obey group theory relations, 

such as dual Ward identities, that allow us to write partial amplitudes where two 

negative helicities are not adjacent in terms of a partial amplitude in which they are 

adjacent [3].

Exploiting these various symmetries and group theory properties greatly reduces 

the number of independent partial amplitudes that must be computed.

3.2.2 Loop Level

The color decomposition of loop amplitudes [31] is similar. Since all structure con

stants involving an extra U( 1) field must vanish, the U( 1) gauge boson decouples, and 

once again we can work with U(N ) instead of SU(N).  This simplifies the process as 

the U(l)  Fierz identities [31],

Tr(TaX ) T i (T aY) = Tr(XY) ,  (3.15)

Tr {TaX T aY)  =  Tr(X)Tr(F). (3.16)

are simpler than their SU(N)  counterpart eq. (3.13). At one-loop we now generate 

both single and double trace structures. For a closed loop we are contracting the

indices of two generators in the same trace. There are two possibilities for this process.

The first case is when the two generators sit next to each other, i.e.

Tr (T^1 T a«*TaiT aiT a m + 1  ^
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in which case the contraction on T aiT ai will produce a Casimir operator, in the U(AT) 

representation written as T aT a = N c . In this case we derive a single trace multiplied 

by the number of colors,

NcTr(Tai ...Tan). (3.18)

The alternative is that the two generators we contract are separated by other 

generators, i.e.

'J'Om'J'al ^ a2 J>a3 'jpdn'j ^

In this case we can use the second U(N)  Fierz identity eq. (3.16) to derive two traces,

rpan r̂j .̂ r̂pa2 ^  2Q̂

Following this prescription leads to the one-loop color decomposition. In this case 

there are two traces over color matrices and we must also sum over the different spins, 

J , of the internal particles circulating in the loop. When all particles transform as 

color adjoints, the result takes the form [31],

n /2+1

M { k u  A„oi}) =  j " E E  £  G r ^ e ) M ( e ) , (3.21)
J  C =  1 <tG-

where Zn are subsets of Sn that leave the single and double traces invariant, and the 

sum over c runs up to the largest integer that is less than or equal to n /2  4- 1.
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The leading color structure factor,

Grn, i( l)  =  iVcTr(Tai...T0n), (3.22)

is just Nc times the tree color structure factor, and the sub-leading color structures 

(c > 1) are given by

Grn;c(l) =  Tr(Tai...T0c_1)Tr(Tac...T0n). (3.23)

The partial amplitudes An.c are not the most basic objects in eq. (3.21). This role 

is taken by the An]i, called primitive amplitudes, which are color ordered just like 

the tree partial amplitudes A ^ree. We can generate the one-loop partial amplitudes 

Ai;c>i as sums of the An-i using an appropriate permutation sum [8],

+ = (3-24)
a e C O P { a } { p }

where on G {o;} =  {j  — 1,..., 1}, and Pi E {/?} =  {j, ...,n}. COP{a}{(3} represents 

the set of all permutations of {l...n} where n is held fixed that maintain the cyclic 

ordering of the on and the Pi within {a} and {P} respectively.

Therefore, to reconstruct the full one-loop amplitude, it is sufficient to consider 

only the An;i as they contain all the information required.
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3.3 Supersymmetric Decom position of Loop Am

plitudes

For the one-loop calculations required, even with the use of the spinor helicity notation 

and color ordering we have discussed, the algebra is still considerably complicated. 

We require an additional tool for organising loop amplitudes to help calculations go 

through.

QCD is a non-Supersymmetric theory, where, for purely gluonic amplitudes, this 

non-Supersymmetry becomes manifest at loop level. We can, however, still make use 

of Supersymmetry to manipulate the sum over internal spins of particles circulating 

around the loop, rearranging the terms that appear in the sum to simplify a calcu

lation. It has been shown [32, 33, 34] that the most simple way to determine gluon 

amplitudes is by evaluating contributions from different Supersymmetric multiplets.

For N  = 1 Super Yang-Mills with external gluons there are two possible Super- 

symmetric multiplets contributing to the loop amplitude, the vector and the chiral 

matter multiplets. These can be decomposed into the contribution from single parti

cle spins (for simplicity we consider the leading-in-color components of color ordered 

one-loop amplitudes),

AN=l vector ^  + j^ /2\

A N =1 chiral -  A \ l / 2] +  ^ [0 ] ( 3  2 5 j

where is the one-loop amplitude with n  external gluons and particles of spin J 

circulating in the loop. (We represent a complex scalar as spin 0 in this notation). In 

particular the N  = 1 chiral or matter multiplet contains one fermion and one complex 

(two real) scalars.

For N  — 4 Super Yang-Mills theory there is a single multiplet given by
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A -  411 +  4 4 1/2] +  3 4 0)- (3-26)

where the N  = 4 Super Yang-Mills multiplet contains a gluon, four gluinos and three 

complex (six real) scalars.

This decomposition has certain advantages that make calculations simpler. The 

Supersymmetric terms, A % = 1  vector, A % = 1  chiral and A ^ =A, obey Supersymetric Ward 

identities, as discussed in chapter 2. In addition to this they also have generic can

cellations between terms on a diagram by diagram basis. Therefore they are much 

simpler to compute than the non-Supersymmetric terms.

This technique allows us to replace a gluon propagating in the loop, i.e. a term 

A $ ,  with a scalar, i.e. a term plus Supersymmetric terms. For example [3], 

using eq. (3.25) and eq. (3.26) we can rewrite the internal gluon loop g, of a QCD 

loop amplitude in terms of a scalar loop s, and Supersymmetric contributions, i.e.

g =  (g +  4 /  +  3s) -  4 ( /  +  s) + s =  4 =4 -  44 =1 ■=“ "■* +  4°1 (3.27)

Thus we can solve for the QCD amplitude by calculating the Supersymmetric contri

butions A „ = 4  and A ^ = 1  ch%ral and the non-Supersymmetric term j4|°]. The scalar loop 

is more complicated than the Supersymmetric terms. However, since a scalar does 

not carry any spin information this term is simpler than the gluon loop, so overall 

the substitution has simplified the calculation.

The contributions from the three multiplets, A „ = 1  vector, A „ = 1  ch%ral and A%=4, are 

not independent. Continuing our policy of counting particles that circulate within 

the loop, we can write,

id +  / )  — (d +  4 /  +  3s) — 3 ( /  +  s). (3.28)
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Therefore the contributions from A%~x vector, A% 1 chtral and 4  satisfy,

J ^ N —1 vector  ___  A ^ ~ 4 —  3A ^ = ^ c*l*ra^ ^3 29 ^

Provided the N  = 4 amplitude is known, and this is usually the simplest non-trivial 

term to compute, we must only calculate one of the two possibilities for N  =  1. 

Therefore, by using this decomposition we can reduce the number of independent 

calculations we must complete to determine a particular scattering amplitude.



Chapter 4 

Analytic Properties of Amplitudes

Tree and loop level amplitudes have a number of factorisation properties that can 

be exploited to make calculations easier. Although they axe traditionally used as 

consistency checks, the analytic properties of amplitudes can sometimes also be used 

to derive information about amplitudes and thus help to construct their general form.

4.1 Tree Level

For tree level amplitudes the main factorisation properties occur as kinematic invari

ants vanish, i.e. as Kfj —> 0, where Kij =  +  ki+1 +  . . .  +  fcj). We call such a

property a pole. Poles in color ordered amplitudes can only occur in channels with 

cyclically adjacent momenta. There are essentially two types of pole that can occur, 

multi-particle poles and collinear poles. For channels corresponding to three or more 

momenta the pole is referred to as a multi-particle pole, whereas if there are only two 

momenta contributing to the channel then the pole is called a collinear pole.

4.1.1 M ulti-particle Poles

As K 2  —> 0 we write a multi-particle pole at tree level as [3],

38
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where the intermediate state has momentum K  and helicity A, with A reversed in 

going from one side of the pole to the other due the convention of always writing the 

helicity as that of an outgoing particle.

MHV amplitudes do not have multi-particle poles, since for MHV amplitudes we 

are always restricted to having only three negative helicity states to distribute around 

the pole. Since i4jfee( l± , 2+, ..., n+) = 0, this is not enough to prevent one of the 

factorised amplitudes vanishing. Therefore, for the special case of MHV amplitudes, 

only the collinear poles are present.

4.1.2 Collinear Lim its

We write a general collinear pole at tree level as follows. When the momenta of two 

neighbouring legs become collinear we write the resultant pole as [3],

a T U A A - ) £  S p U tL 7 (z ,^ jA0 X r-i(---, *■*,•••), (4.2)
A=±

where the two collinear legs are denoted by i and j  and Split1166 denotes a splitting 

amplitude. The momentum of the intermediate state given by the null vector K,  

helicity A, is simply the sum of the momenta of the collinear legs, i.e. K  = Pi+Pj.  

The collinear limit is defined by Pi = z K  and Pj =  (1 — Z)K.

We can use the collinear limits of known five-point amplitudes to derive the split

ting amplitudes in eq. (4.2). As an example [3], consider the p4 —► p5  collinear limit 

of the five-point amplitude 2~, 3+, 4+, 5+).

i t r e e / - i  —  n -  q +  a +  c + \  _  .•  2 )3+,4+,5+) =
(12) (2 3) (34) (45) (51)
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II   . . ____  x 4_______-__ -________
’ \Jz{\ — z ) (45) (12) (23) {3 K) ( K 1)

=  Split*_ree(4+,5+) x 2- ,  3+, K +).

(4.3)

Thus using the known five-point result we have derived the splitting function Split(fe6(i+, j + 

We can use other five-point amplitudes to derive the remaining g —* gg splitting am

plitudes, which are given by [5, 35, 36, 4],

S p i i t ^ ( r , r )

Split')ree(i+, j +)

s Pi i t ;“ (i+, r )

=  0 ,

< J z ( \ - z )  ( i j ) '  

(1 -  *)2 
^ z { \ - z )  ( i j ) ’

Split'.r« ( i+, j - )  =  -
yjz( 1 -  Z) [ij]

(4.4)

The splitting amplitudes for factorisations involving fermions are also easy to 

obtain from the limits of fermionic amplitudes derived from a SWI argument.

4.2 Soft Limits

The behaviour of QCD amplitudes in the soft limit, i.e. where a gluon momentum 

vector hi goes to zero, is also well understood. For amplitudes at tree level we get,

A ST ( . . . ,  a, i,b, . . .) Soft'ree(a, i, 6) ^ “  ( . . . ,  a, b, ...) . (4.5)

The soft factor,
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S o ft* r“ ( a , i , 6 )  =  - M - ,  ( 4 .6)
(ai) \i b)

depends on the neighbouring partons, a and b. of the soft gluon i. Since we are 

working with color ordered amplitudes now, to be precise this statement should read 

the color ordered neighbouring partons. In spite of this dependence on the partons 

a and b, the soft behaviour is independent of both the helicity of a and b and their 

particle type, i.e. whether they are gluons or quarks.
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4.3 Loop Level

The factorisation structure of loop amplitudes is analogous to that of amplitudes at 

tree level. However, the splitting of amplitudes around poles is not as clean as in the 

tree level case. Thus in generalising the results for multi-particle poles and collinear 

limits from tree level to loop level we shall see that the expressions are not as simple 

as before, since momenta on each side of the pole are not as segregated as in the tree 

level case. The factorisation properties of loop level amplitudes have been used as 

consistency checks on calculations, see [37, 8, 38].

4.3.1 M ulti-particle Poles

The multi-particle factorisation properties of loop amplitudes in a channel (fct +  fci+i +  
. . . + fci+r—1)2 =  A 2 0 can be written as [38],

^ o o p ^ J ?  Ea=± j^ o o p ^

+ A ^ ( k i , k i + r - u  K x) ~ A ^ +1( K - \  ki+T, fci.0 

+ A ^ ( k it k+ r-u K x) ^ A ^ r+1( K ~ \  ki+r, k ^ c v F ^ K 2-kh kn)

(4.

where Fn is the one-loop factorisation function, and the factor cr is given by,

1 T(l +  e)r2( l - e )
cr  = (4?r)2" c T(1 -  2e)

(4.8)

The inclusion of a factorisation function reflects the property that for loop amplitudes, 

momenta from each side of the pole still interact. As such, Fn is a function of all 

momenta ki...kn. Fn contains both factorising and non-factorising pieces, i.e.
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F„ =  F„fact +  F„non- ,act. (4.9)

For SUSY theories the non-factorising pieces vanish.

4.3.2 Collinear Limits

The behaviour of a one-loop amplitude at a collinear limit is analogous to that of 

a tree level amplitude. An n-point amplitude is reduced to a sum of n — 1-point 

amplitudes multiplied by splitting functions when two external legs become collinear.

For loop level amplitudes, the summation includes lower point tree amplitudes 

multiplied by loop splitting functions, and lower point loop amplitudes multiplied 

by tree splitting functions. We write the collinear limits of a color ordered one-loop 

amplitude as [38],

4 , 7 - ^  £ a=± (sp iit!!r(iAs  - - ( i + J)A-..)

+  Split 7 ( A i AjK “ ( - ( < + j ) A- ) ) .  (4-10)

where we define the collinear limit by Pi = z K  and Pj —> (1 — z )K  with K  = Pi+Pj,  
as in the tree level case. The helicity and momentum of the intermediate state are 

given by A and K  respectively.

For Supersymmetric theories the loop splitting amplitudes Split1°^p(aA“, bXb) are 

proportional to the tree splitting amplitudes,

S p l i t 7 ( a \  6**) =  Cr x Split^ ( a x‘ ,b^ )  x r | VSY(z, sab). (4.11)

and for particular multiplets, i.e. N  = 1 chiral the loop splitting amplitudes vanish. 

Thus we need only consider the first term in eq. (4.8). As is the case at tree level, the
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loop level splitting functions can be extracted from the collinear behaviour of known 

one-loop gluon amplitudes.
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4.4 Unitarity

The factorisation properties of loop amplitudes are similar to those of tree amplitudes. 

However, at loop level there is an additional, distinctive analytic property. One-Loop 

amplitudes have cuts as well as collinear and multi-particle poles.

4.4.1 The Optical Theorem  and C utkosky’s Rules

When expressed as a function of energy, a scattering amplitude has a branch cut on 

the positive real axis. The optical theorem states that the discontinuity across this 

represents the imaginary part of the scattering amplitude. Manipulating this theorem 

and applying the resultant technique of “cutting” amplitudes allows us to solve for 

certain amplitudes.

Unitarity of the S-matrix i.e. S^S =  1, leads directly to the optical theorem. From 

the unitarity constraint, we can see that the T-matrix, defined by S  =  1 +  iT, must 

obey the relation,

—i(T  — T*) =  T^T

(4.12)

From this we can derive the optical theorem, see [2] for a full treatment. This describes 

how the imaginary part of a scattering amplitude arises from a sum of contributions 

from all possible intermediate state particles.

We represent this diagrammatically as [2],
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21m

F igure  4.3.1: The Optical Theorem

where we must sum over all on-shell intermediate states / .

Cutkosky generalised this result to multi-loop diagrams [39]. In doing so he gave 

a set of cutting rules that allow us to determine the physical discontinuity across the 

branch cut of any Feynman diagram (see [2] for a more thorough description of how 

these rules are derived for Feynman Diagrams). Cutkosky’s rules are,

•  Cut through the diagram in every way that allows the cut propagators to be 

simultaneously put on-shell. Since the only imaginary contribution to a Feyn

man diagram comes from the i t factor in the pole denominator, the diagram 

must contain on-shell particles, where k2  = m2, for there to be an imaginary 

part for A4, i.e. the i t  factor must become significant.

• For each of the allowed cuts, replace the factor of l/(fc2 — m2 +  it) appearing 

in the cut propagator with a factor of —2ttiS(k2  — m2) and then carry out the 

loop integral.

•  Finally sum all of the possible cut contributions.

Cutkosky’s method is completely general and can be applied to all orders in pertur

bation theory.
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4.4.2 Performing a U nitarity Cut

When using these techniques there are some technical points to be aware of. In ref [8] 

the concept that amplitudes are cut constructible was introduced. At first sight the 

meaning of this term appears obvious, that one may calculate an amplitude from a 

knowledge of its cuts in all channels (see ref. [40] for a modern review). This means 

that if we calculate the cuts precisely and regularise them in the same fashion as 

the amplitude, then we can determine any amplitude. Specifically, if we regularise 

the amplitude by dimensional regularisation then, for consistency, in the cut Ci.„j we 

should use tree amplitudes with external momenta defined in four dimensions, while 

the momenta crossing the cut should be defined in 4 — 2e dimensions. These are not 

normal tree amplitudes. Fortunately, for N  = 4 and N  = 1 Supersymmetric gauge 

theory amplitudes it is not necessary to evaluate the cuts in this precise manner. Bern, 

Dixon, Dunbar and Kosower [8] showed that in Supersymmetric theories unitarity 

cuts can be calculated using amplitudes where the cut legs lie in four dimensions. 

This means that the cut can be evaluated using the conventional four dimensional 

tree amplitudes. This is an enormous simplification as the expressions obtainable for 

on-shell tree amplitudes in four dimensions are relatively simple.

The unitarity cut of an amplitude is written as the product of two tree amplitudes, 

one on each side of the cut, with the loop integral replaced by an integral over the 

phase space of the particles crossing the cut, i.e.

Ci...,- =  i / d J P S ^ & . M  +  l, . . . , i ,< 2) x A ,” H ! , i  +  l , i  +  2, ... , t -  1 ,-€ ,)

(4.13)

The helicity of each intermediate particle is reversed upon crossing the cut due to 

our convention of taking the helicity as that of an outgoing particle. We must con

sider each intermediate helicity configuration that can contribute and sum these to 

reconstruct the full amplitude.

There are a number of reasons why it is simpler to consider these cuts rather than
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a direct loop calculation. For instance, we can simplify the required tree amplitudes 

before substituting them into eq. (4.13). Likewise, the tree amplitudes are quite 

simple, and can be considered as effectively Supersymmetric, since at tree level there 

is no difference between a fermion loop and a bosonic loop as there are no loops at 

all. Thus even if the full amplitude is not Supersymmetric the amplitudes we use in 

eq. (4.13) are. Finally, as we have insisted that the intermediate legs be defined as 

being on-shell, there are various associated properties of on-shell momenta that can 

be used when computing eq. (4.13).

However, it is not always possible to use the cuts of an amplitude to reconstruct it 

in full. In addition to the known scalar integral functions that appear in loop ampli

tudes, there may also be functions that axe rational in the kinematic variables. These 

cannot be detected by the cutting technique. For Supersymmetric amplitudes this ef

fect is not present, but must be considered if we want to calculate non-Supersymmetric 

amplitudes in full. It is possible, however, to remedy this situation by demanding 

that an amplitude possesses consistent collinear factorisation properties in all chan

nels [3]. We can use these properties to isolate the rational terms and thus complete 

the calculation [37, 38].

4.4.3 Supersym m etric p Factors

As we have just discussed, the cutting technique we use to compute loop amplitudes 

involves the calculation of the product of MHV and MHV tree amplitudes. Recall 

that the purely gluonic MHV tree level amplitudes were given by Parke and Taylor [5]

as,

aMHV _  ■ (s r )4
(12) (2 3)... (n 1) ’

(4.14)

where s and r are the negative helicity gluons. The gluonic MHV tree amplitudes are 

given by [5],
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4 MHV • lS r l4
[1 2] [2 3]... [n 1] ’

(4.15)

where s and r now label the only positive helicity gluons in the amplitude.

For MHV tree amplitudes the contributions from non-scalar particles can be re

lated to that of the real scalar [11, 41].

If we introduce particles of helicity A, in positions r~ and t+} where A =  1 for a 

gluon, A =  1/2 for a fermion and —1/2 for an anti-fermion, and A =  0 for a scalar, 

then the tree amplitude eq. (4.14) becomes [41],

, M H V  =  . {sr)2+2X (s t)2- n  
^  (12 )  ( 2 3 ) . . .  ( n l )  ’

(4.16)

In effect, we have multiplied the purely gluonic term by a factor of [(st) /  ( s r)]2-2A. 

We use the scalar (i.e. A =  0) MHV, and the equivalent scalar MHV, tree amplitudes 

when performing loop amplitude cuts. By using this approach, we can account for 

the different Supersymmetric multiplets by multiplying the resultant expression by 

an appropriate factor, called the p factor. For the chiral multiplet the contribution 

relative to the real scalar has a factor,

/ = '  =  - X  +  2 -  1  =  - (* ~ 1)2 (4.17)

where

[iaea] / j bea\  
X =  liaeb]( jb(<>)'

(4.18)
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where i and j  are external legs of opposite helicity a and b that define either side of 

the cut as MHV or MHV, and where the terms £ represent the momenta crossing the 

cut.

For example, consider the cut,

Q

F igure  3.4.1: An Example Unitarity Cut

where £\ and i 2 are considered to be real scalar particles. The ( £ 2  ,p+, q , r ,£f)  side

of the cut is MHV, and is given by

ylMHV =  _____ [pll]2_[p 4 ]2_____  ,4 igs
%p]\pq\{qr][rt  i] [M 2] K ’

where p+ is the external leg that has defined the cut as MHV. The (£1 , d+, e+, /  ,£2 ) 

side of the cut is MHV, which we write as

/I MHV _   ( / I  l)  ( f t _2)________
(£1 d ) ( d e ) ( e f ) ( f £ 2)(£2£1) { ' U)
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where /  is the external leg that has defined the cut as MHV. Therefore, the X  factor 

for this cut is given by

(421)

which is obtained by following the procedure just described. 

The N  = A multiplet has a factor of

pN-* = X 2 - 4 X  + 6 - 4 ±  + T =  (4-22)

where X  is the same as in the N  =  1 case. Therefore, the p factors for the N  =  4 

and N  = 1 multiplets are simply related as,

/= 4  =  (i0N=l)2 (4.23)
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4.5 Loop Integral Reduction Techniques

Loop calculations with many external legs are very complicated. In particular, most 

of the complications arise when one is actually carrying out the loop integral. Thank-

sufficiently to allow the computations to be carried out much more easily. Although 

these techniques all differ in their application in some way, they share the same foun

dation, as discussed below.

For a one-loop n-point calculation the general integral in 4 — 2e dimensions is 

written as [3],

where the momenta ki through leg i is defined to be flowing out of the loop. The 

function P ( ^ )  is polynomial in the loop momentum.

For integrals of more than five external points, i.e. n >  5, we have at least four 

independent momenta, pi = ki, p2 =  Pz = ki + k2  +  fc3, p* = ki +  k2  +  +  fc4.
Following the method of [42], as discussed in [3], we expand the loop momentum P1 

in terms of a set of axial momenta v f , written as,

fully there exist a number of techniques that can be used to simplify these integrals

(2tr)4"2* P{ 1 -  k j 2  ... (£ -  kx -  k2  -  ... -  kn_0 2
P(0*)

(4.25)

where we have taken the convention [42],

e(l, 2,3,4) =  e,il/papltlp 2 Up 3 PP4a- 

We write the expansion as,

(4.26)
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( 4 ! , )

We now want to write P1 in terms of the propagator denominators of the general loop 

integral equation, eq. (4.24). We can achieve this by expanding the right hand side 

of eq. (4.27). In doing so we also pick up a term that is independent of the loop 

momentum. We get,

Substituting eq. (4.28) into the degree p polynomial P ( ^ )  in the general integral 

equation, eq. (4.24), the terms dependent on the propagator denominators now cancel 

top and bottom. This has the desired effect of reducing the original n  point loop 

integral with polynomials of order p into an (n — 1) point integral with polynomials 

of degree p — 1, plus scalar n-point integrals that are derived from the additional 

terms in the expansion that were independent of the loop momentum. If we repeat 

this procedure iteratively we can reduce n-point integrals all the way down to four- 

point box integrals plus the additional scalar pieces. Writing the loop momentum 

polynomial P(£M) in terms of the propagator denominators in this way is a general 

technique that allows loop integrals to be reduced without the need for excessive 

algebra.

Other similar techniques [42, 43, 34, 45] allow us to write the scalar integrals 

for / n[l] as a linear combination of integrals 7n_i[l]. Likewise we can write a scalar 

pentagon integral as a sum of box integrals, which can be reduced further either 

through a standard Passarino-Veltman reduction [46], or by using techniques like the 
one discussed above [47].

Each of these techniques shares the same fundamental approach, that the degree 

of the loop momentum polynomial Pifi1) is reduced by one in each step. The result
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of such analysis is the principle that amplitudes can be expanded in terms of integral 

functions representing scalar boxes, triangles and bubbles, i.e.

A = ^2  CiU +  d* J3 +  ^ 2  2 +  rational (4.29)

where / 4; I3 and I 2  are the scalar box, triangle and bubble integral functions.

One-loop amplitudes depend on the particles circulating within the loop. For 

Supersymmetric amplitudes there are generically cancellations between the bosons 

and fermions in the loop. For Supersymmetric Yang-Mills theories these cancellations 

lead to considerable simplifications in the loop momentum integrals [48]. In general, 

theories with more Supersymmetry have a more restricted set of integral functions.

For N  =  4 theories the series only contains scalar box functions, I 4, and hence 

is entirely determined by the box coefficients c* [8]. For N  = 1 Super Yang-Mills we 

have to consider the box functions together with scalar triangle and bubble functions, 

I3 and I2 [9]. For theories without Supersymmetry the amplitude may also contain 

rational pieces.
With this expansion, the computation of one-loop amplitudes is simplified by 

carefully considering the integral functions I{ that may appear, and by realising that 

the full amplitude is a linear combination of such functions with rational coefficients.
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4.6 Basis of Functions

As we have seen, one-loop amplitudes can, in general, be decomposed in terms of a set 

of basis functions, /*. with coefficients that are rational in terms of spinor products, 

and where the set of functions that appear in the summation can contain scalar 

boxes, I 4 , scalar triangles, I 3 , and scalar bubbles, I 2 . Ultimately, there is a choice as 

to which basis of functions to use. As most of the work in this thesis is concerned with 

calculating box coefficients we shall focus on these as we discuss the various bases we 

can chose to work with.

In general, we can organise box functions according to the number of legs with 

non-null input momenta and the relative labelling of legs. Specifically we have,

r im  r2me r2m h t  3m r4m
■*4 :i ^4:r;z J 4 :r;i M  :r,r',i -*4 :r,r',r"  ,i

(4.30)

with the labelling as indicated,

'i-2

j -1

i+r

i+r+rl

i+r
4:r,r ,i

1-2

1-1

i+r+r'

i+r
r4mL A. „ *.// „•4:r,r ,r ,z

i+r+r'+r"

where the indices r, r' and r" represent the number of legs at a particular comer.

We can consider three choices of basis, each of which has advantages in certain 

circumstances:
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•  D = 4 scalar box integrals.

• D = 6 scalar box integrals.

•  D = 4 scalar box F-functions.

The natural choice would be to use the D = 4 scalar box integrals, but D — 6 

scalar box integrals have certain practical advantages. For instance, determining the 

collinear limits of D =  6 scalar box integrals is particularly simple as they are IR 

finite. In reference [45], it was shown that the relationship between the D = 4 boxes 

and D = 6 boxes involves triangle functions and an overall factor. We can write this 

relationship as (see [45] for a full derivation and complete definitions),

where the are Feynman parameters (see [45, 49]), the integration variables in a 

Feynman parameterised integral. The variables 7* are given by [45, 44],

(4.31)

1 d A n
2 den ]Pij fixed

(4.32)

where the rjij are proportional to the inverse matrix p [45],

T)ij =  N n P i j 1

(4.33)

with pij defined by [45],

(4.34)

c
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where the symmetric matrix Sij is given by Sij = —l/2(ki  4-... +  fcj-i), i 7̂  j ,  Su = 0. 

The A4 are rational functions of the momentum invariants [45],

A*1? _  _2  ( 4-3  +  4-2  ~  t j 1 \  _  ^ ( h - i  +  h - z Y
2 n 4

a j s  _  „ A f c 11 -  «Srl)(« ft11 -  * fcr~21) + C T ? a) ' 
V « 2( ^ 1])2

tr(^i_l / t —l .„ t+ r —1 fc’—2 f  i— — l)
(fci- 2 +  ki- i)W _ i.. .4+r_ i)2

a-
2 J V 4  1 y . [ r + l ] / [ r + l ]  _

\  ’' i—1 ^ i+ r + l

(4.35)

where =  (ka +  ka+1 H h fca+p- i )2 =  F 2„a+P_i and PL..j = ki + . . .  + hj.
The four dimensional boxes have dimension —2. It is convenient to define dimen

sion zero F-functions by removing the momentum prefactors of the D — 4 scalar 

boxes [9],

tD = 4   ■*■771
1 4 -  T ^ 4K

(4.36)

where the prefactors for each type of box coefficient are given by [9],
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1713m
r3m o

■L A **/ 44:r,r',i i .[r+1] ,[r+r'] , [r], [n—r —r' —1]
"i—1 "i ^ i+ r + r '

7̂>4m  ̂ ^
Tzm = — 9rJ4:r,r',r",z ^ ' 1  ,[r+r'] ,[r'+r"]

i+ r

(4.37)

It is the coefficients of these F-functions which the twistor inspired techniques act 

on, such as the collinearity and co-planarity operators [7, 50, 51].

For the box functions it is easy to switch between bases since,

A\  — V " J 9=4 Td =4 _  ^>=6 Td =6
■̂ 11 boxes — i -*i ~  /  . Ci

(4.38)

Therefore the coefficients must satisfy,



Chapter 5 

A Gauge Theory -  String Theory 

Duality

As we discussed in the Introduction, many QCD amplitudes are more simple than we 

would expect. Parke and Taylor [5], and later Berends and Giele [6], showed that for 

a tree level gluon scattering amplitude to be non-vanishing, it must have at least two 

gluons of helicity opposite to the rest. Such an amplitude is called a MHV amplitude, 

and is given by,

(5.1)

where we use the notation described in chapter 3. The negative helicity gluons are 

labelled by s and r, and momentum conservation is implicit.

Such simplicity naturally leads us to question whether there is some underlying 

structure that is not yet apparent. This led Witten [1] to propose that there is a dual

ity between N  = 4 Super Yang-Mills Gauge Theory and a Topological String Theory. 

Instead of working with traditional space coordinates and momentum variables, to 

uncover this structure Witten transformed the amplitudes given in eq. (5.1) into the

I MHV   a t r e e /i +  « +  » ~ + \_- (®^*)
'(12) (2 3)... (n 1) ’

59
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twistor space of Penrose [52]. Exposing more of the structure of tree amplitudes in 

this way has given rise to new, more efficient ways to compute amplitudes.

We take this opportunity to study W itten’s transform, see [1] and [29] for a full 

analysis. In effect, we make a half Fourier transform. We exchange each left-handed 

spinor A* for the conjugate Fourier variable /^, and do nothing to the right-handed 

spinors A*. We define the transformation with the exchanging variables written as [29],

(5.2)

We work in signature (+  +  — —), as the transformation is made by a simple 

Fourier transform in this signature . From Quantum Mechanics we know we can write 

such a transformation between functions of A and functions of /z as [1],

A a — i
d

dpA
fir = i

d
d\a

r (P A
/(m) =  J  pexp(i/t“Aa)/(A).

(5.3)

By making this Fourier transform for each particle in the momentum space scattering 

amplitude j4(A*, A*) we derive the twistor space scattering amplitude A(A,, //*), i.e. we 

write the transformation as [1],

■̂ .(Aj, Â ) * A[\i) fii) — I J"J d\i exp(i//jAx)i4(Aj, Â ).
J i=1

(5.4)

Having done the Fourier transform, points pi in twistor space now label each 

external particle in the scattering process. We now write the scattering amplitude 

as a function of the pi. Witten recognised that the scattering amplitudes will only 

be non-zero if the points have geometric support in twistor space. In particular, he
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suggested that they were supported on an algebraic curve in twistor space where the 

curve has degree d, given by [1],

helicity gluons.

Following the method of [29], we can consider such a transformation for the most 

basic tree amplitudes we know, the Parke Taylor MHV amplitudes.

As the major term in eq. (5.1) contains only angle brackets, and thus depends only on 

the right-handed spinors A*, the only dependence on left-handed spinors A* comes from 

the delta function implicit in eq. (5.1) that represents the conservation of momentum. 

Explicitly we can write this S function as [29],

We can write a massless momentum vector as the product of a right-handed and 

left-handed spinor [29] using the positive energy projector u(k)u(k) = ft, i.e.

Therefore, the momentum conserving delta function can be rewritten as [29],

d — q — 1  + I,

(5.5)

where I is the number of loops involved in the process and q is the number of negative

(5.6)

(5.7)

=  /  d4xexp[tx“a 5 3 (A,;)a (Aj)<i|.
i=l i=l

(5.8)
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With this technique the MHV amplitudes, when transformed into twistor space, can 

be written as [29],

I dXj exp[yi,A,] j  rPx /lJfHV(At) expJiiA.A, 
J  1 = 1  J

f  dAx  i4jfHV(Ai) f  JJdA* exp [«(//* +  arA*)A*]
J J i=1

J < P x f [ s (Vi + x\i) .

(5.9)

Witten’s interpretation of this result was that the amplitude must be supported on 

a line in twistor space as a result of the constraints imposed by the product of 6  

functions, as shown in part (a) of the figure below.

(a) MHV (b) NMHV

F igure 5.1.1: The twistor space structure of Tree Amplitudes

Calculating more complicated amplitudes from these twistor transforms is par

ticularly difficult. Now we are aware of the existence of this structure in twistor 

space, we can propose an alternative approach. Let us allow a particular amplitude 

to have support in twistor space on a curve described by the polynomial equation
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Pi = P(Aj, A2, /x1, /x2) = 0. As Hi = id/dXi , transforming back into spinor space turns 

Pi into a differential operator.

Therefore if, when we apply the differential operator Pi to our original amplitude 

in spinor space, the result vanishes, then we have shown that the amplitude must 

have been supported on the curve in twistor space described by Pi.

Specifically we apply two particular differential operators to amplitudes in spinor 

space to investigate their structure in twistor space. If an amplitude is annihilated 

by the operator,

[FijkyV] = (i j )
d

dTk,V.
+  (j k)

d_
d \

+ ( k i )
d

d \
(5.10)

where 77 is some arbitrary spinor and where the square brackets indicate spinor prod

ucts rather than commutators, then the points i, j , and k are said to be collinear, i.e. 

they lie on a line in twistor space.

Similarly, annihilation by the operator,

K ijki = h ( i j ) e di d 9  d_ +  ( i l ) ^ > A .3 A\a A\b ' 1 P\a ' ' 0 \ad\%d\ \  dtf jdX] dXj dXl

+(jk)ei‘i A  J L  + -  { k l ^ A  A ]
dXfdX^ dX%dX\ dXf dXf 1

(5.11)

indicates co-planarity of the points i , j , h  and Z, i.e. they define a plane in twistor 

space.

Cachazo, Svrcek and Witten [1, 7, 13] used these operators to develop an under

standing of the twistor space structure of tree level amplitudes. They found that n 

gluon scattering amplitudes, where s gluons are of negative helicity, were supported 

in twistor space on a series of fines. They were able to extend this approach beyond 

the MHV case we have already discussed. For amplitudes with three negative helicity 

gluons, i.e. s = 3, which we call next to MHV (NMHV), they found a sum of terms.
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Each term is supported on a pair of intersecting lines, where the distribution of points 

can vary between the two lines for each separate term. This structure is shown in (b) 

of Figure 5.1.1.
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5.1 CSW  Construction

The twistor structure proposed by Witten offers a revealing insight into the fundamen

tal structure of tree amplitudes. However, it cannot be used to calculate numerical 

values for these amplitudes. Further study and consideration did, however, prompt 

Cachazo, Svrcek and Witten [7] to propose a set of rules that could fulfil such a pur

pose. The CSW rules describe how to calculate an amplitude using a series of CSW 

diagrams, where the entire amplitude can be constructed by calculating the sum of all 

CSW diagrams allowed for a particular process. Such an approach is clearly similar 

to that of Feynman diagrams and Feynman rules, but ultimately proves to be much 

more efficient.

Diagrammatically, we must denote the helicity of all gluons, internal as well as 

external, in a CSW diagram as 4- or —. Each vertex in a CSW diagram must be 

attached to two negative helicity gluons. An arbitrary number of positive helicity 

gluons may be attached to the vertex but there must be exactly two negative helicity 

gluons, These vertices are given analytically by the MHV tree amplitudes eq. (1.2), 

with an additional condition that we must take intermediate legs as off shell. To 

define this off shell continuation, we recall that we can write a momentum vector 

Pfj, in bispinor notation Paa- As discussed previously, this can be factorised into the 

right-handed and left-handed spinors Aa and A d, i.e.

Pad =  AaAfl

(5.12)

Each particle in a physical amplitude, like the MHV tree amplitudes used for the 

vertices, is considered on shell, and thus has a light-like momentum vector which we 

can rewrite as in eq. (5.12).

To make the off shell continuation we take an arbitrary left-handed spinor r)a. For 

the internal lines, which are off shell, a tree amplitude will remain invariant under 

rescaling of the A’s. Thus we can write the right-handed spinor of the momentum
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being taken off shell as Afl =  pa<jf• Using this approach we can define the off shell 

continuation we need to make to use the MHV tree amplitudes as vertices. We take 

an arbitrary left-handed spinor 77°. For an internal line of momentum paa we then 

define the right-handed spinor as,

Aa — P aaV  •

(5.13)

We rewrite all of the internal, off shell, fines in the same way using the same arbitrary 

spinor 77 to define Aa. With this definition of A we can now take the MHV tree 

amplitudes as the vertices in the CSW diagrams. Since we are using the MHV tree 

amplitudes as our building blocks, this approach works provided the number of gluons 

at each vertex (internal and external) is three or more. Conventionally we take each 

gluon, for both internal and external fines, at a vertex to be incoming and assign 

helicity as such. The helicity for outgoing gluons is simply reversed We use a factor 

of 1 /p 2  to describe the propagation of a gluon of momentum p along an internal fine. 

Since we have taken the convention that incoming and outgoing gluons must have 

opposite helicity, we must have positive helicity at one end of the propagator and 

negative helicity at the other.

With this approach, we are able to generate tree amplitudes beyond MHV level 

using just the simple form for the MHV tree amplitudes, given in eq. (1.2). For ex

ample, a NNMHV amplitude can be considered as three MHV vertices sewn together 

as we have described. This is shown in Figure 5.2.1.
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+ .

F igure  5.2.1: An Example of a NNMHV diagram, constructed using a MHV vertex approach.

Since we axe using MHV tree amplitudes as vertices, the twistor structure dis

cussed is manifest in this approach, with each MHV vertex in the diagram generating 

a particular twistor structure.

Although this approach is apparently similar to that of Feynman diagrams, it has 

proved remarkably more efficient. In particular, many Feynman diagrams are char

acterised by the same CSW diagram, so there are considerably fewer CSW diagrams 

to consider. Likewise, the algebra that must be completed to calculate a CSW di

agram is simpler than that required for a standard Feynman diagram. Thus CSW 

construction is a very efficient way to calculate amplitudes, and has been applied to 

a number of processes, see [53, 54, 55].

5.1.1 A Sim ple Exam ple

To illustrate the simplicity of the algebra required to compute a CSW diagram, let 

us consider a simple example [7], We study the four-point amplitude (+ — — —).

As we have already stated, Parke and Taylor showed that this amplitude vanishes in 

Yang-Mills theory. Thus, if we use the CSW approach to calculate this amplitude we 

should also find that the full amplitude equals zero. There are two diagrams we must
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consider, as shown in figure 5.2.2.

P i  +

P i  +

Figure 5.2.2: CSW diagrams that contribute to a (+ — — —) amplitude.

Let us begin by considering the first diagram. The momentum of the internal line 

is given by q  =  —p \  — P2 =  P3 +  P a - Our notation is to write the right-handed and 

left-handed spinors corresponding to this momentum as Xq and Xq.

Following the CSW approach just outlined, we introduce an arbitrary negative 

spinor i f  and write the right-handed spinor of the internal momentum as Xqa — qaaVa- 

Using the abbreviation that fa = XiaT)a [7], we can rewrite Xqa as,

X q a  —  — ^ l a ^ l  ~  X 2 a<f>2 ~  ^ 3 a ^ 3  +  ^ 4 a 0 4 ,

(5.14)
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Writing the propagator as 1/q2  and using eq. (1.2) for the vertices, we can write the 

amplitude corresponding to this first diagram as,

(^2 A q } 3  1 (A3,A4)3 (5 15)
(Xq, Ai) (Ai, A2) q2  (A4, Xq) {Xq, A3) 

From eq. (5.14), we have the identities,

<a2,a ,)  = - ( 21) *

(A,, Ai) = - ( 21) *

(A4, Xq) — (4 3 )* ,

(A„A3) = (4 3 ) * .

(5.16)

Substituting these into eq. (5.15), we get that,

0? (2 1)3 1 (34)3
020304(21) (1 2 )7 (4  3) (43)'

(5.17)

For the intermediate internal momentum q we know that q2  = (jpi -f p2)2. Since pi 

and p2  are on shell momenta, p2  — p2  = 0, and thus (pi +  P2 ) 2  =  2pi • p2. Using the 

notation set out in chapter 3, this can be rewritten in terms of spinor variables as 

2pi • p2  =  (12) [1 2]. Therefore, eq. (5.17) can be rewritten as,

 0 |_ ( 3 4 ) .
020304 [2 1]

(5.18)

where we have used the fact that (i j )  = — {j i) as discussed in chapter 3. The second 

diagram in Figure 5.2.2 similarly gives,
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0i (3 2) /r i g\
020304 [41]-  ̂ ^

This can be seen by simply swapping particles 2 and 4 in the first evaluation. Prom 

momentum conservation we have that,

E(3<>[»1] =  0.
i=l

(5.20)

Since (i i) =  0 and [i i] =  0, we can write this as,

X: <3*> [i 1] =  <3 2) [21] +  <34> [41] =  0.
1 = 1

(5.21)

Thus the sum of the two terms eq. (5.18) and eq. (5.19) vanishes, and the CSW 

construction for this process is in agreement with the expected result.
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5.2 Generalised Unitarity

As we discussed in chapter 4, an amplitude can be expanded into a sum of known 

scalar integral functions multiplied by unknown rational coefficients [8]. For N  = 

4 Super Yang-Mills theory, only scalar box integral functions can appear in this 

summation. Since the scalar box integrals are known, expanding the theory into this 

sum of integral functions reduces the problem of calculating the entire amplitude to 

simply finding the rational coefficients that appear in the summation.

We have also discussed how Supersymmetric one-loop gluonic amplitudes can be 

entirely determined from a knowledge of their unitarity cuts, i.e. they are said to be 

cut constructible [8, 9]. However, this technique suffers from the complication that 

more than one, and often several, scalar box integrals can have the same unitarity cut. 

Thus when we undertake the analysis, we are left trying to identify many unknown 

coefficients mixed together.

Britto, Cachazo and Feng [56] recently proposed a different way of computing the 

scalar box integral coefficients, using an enhanced version of the unitarity cut method 

discussed in chapter 4. They observed that box integral coefficients can be obtained 

from generalised unitarity cuts by analytically continuing the massless corners of 

quadruple cuts to signature (— — +  +), see [57, 58, 51] for detailed discussion of 

generalised unitarity cuts. -

We can review the principle behind their work here, see [56] for a complete descrip

tion. The problem is that many box integral functions can share the same unitarity 

cut. However, Britto, Cachazo and Feng noted that the leading singularity [57] of 

any scalar box integral function is unique. From this observation they realised that 

analysing the discontinuity associated with the leading singularity would isolate a 

particular integral function and allow the .coefficient to be calculated uniquely. To 

obtain the discontinuity of the leading singularity in a general Feynman graph, we 

must cut all of the propagators. For a scalar box integral function there are four 

propagtors, and thus we must perform a quadruple cut.

Of the distinct classes of box coefficients we discussed in chapter 4, Britto, Cachazo
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and Feng found that they could apply a quadruple cut quite simply to the N  = 4 four 

mass box to determine it’s coefficient. However, in Minkowski signature they could not 

apply this technique to any of the other classes of box integral function. The reason 

for this was simple. The distinctive feature of a four mass box coefficient compared 

to all other box coefficients is that it contains no massless legs. For the other box 

integrals there is at least one massless vertex. Thus when we make the unitarity cut 

and rewrite this vertex as a tree amplitude we are left with a three gluon amplitude. 

In Minkowski space three gluon amplitudes do not exist. Recall that with the bispinor 

notation paa =  AaAa, the inner product can be written 2 p • q =  (Ap Xq) |AP A j , as we 

have discussed already. At tree level we can write a three gluon amplitude with 

helicity (+ +  —) as [56],

IX, a J 3
A tT e e ( n +  n +  r ~ )  —  L p  q -l

(5.22)

Likewise, we can write the three gluon amplitude with helicity (— — +) as [56],

Al™(p-,q~,r+) =  {XrX^
(Ar Ap) (Aq XT)

(5.23)

We know that Ap and Ap for real momenta in Minkowski space are not independent, 

but are related by Ap =  dt Ap. Thus, since 2 p • q — (Xp Xq) |AP A9J, both (Ap Xq) and 

|AP A9] must be zero for the scalar product 2p • q = 0. Therefore in Minkowski space 

both eq. (5.22) and eq. (5.23) cannot exist, since (Ap Xq) = |AP A9] =  0 explicitly.

Therefore, if we work with Minkowski signature (— +  4- +), then we must use 

more general cuts, such as triple cuts (cut three propagators), to evaluate the box 

coefficients with massless vertices. Once again’ we are stuck with the disadvantage 

that these more general cuts do not uniquely isolate any one coefficient. Although 

we have simplified the problem, we have not achieved our goal.
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Britto, Cachazo and Feng realised that this could be resolved if we work in signa

ture (-------1—b), that is to say that the three gluon vertices causing the problem do

not vanish in this signature. If we reconsider our previous analysis, we note that for

real momenta in signature (-------b+), Ap and Xp are now independent. There must

now be two solutions that satisfy vanishing inner product, 2p*q = (Ap Xq) |AP Agj =  0. 

Either [Ap AgJ =  0 or (Ap Xq) = 0.

Conservation of momentum requires that p-q = p-r = q-r = 0. Thus if [Ap A9j =  0 

then we can say that |AP Arj =  0 and [Ar Agj =  0 must also be true and all three A’s 

are related to each other. Likewise, if (Ap Xq) =  0, then so do (Ap Ar) and (Ar Xq) and 

the A’s are all related as well.

Thus it is clear that the three gluon tree amplitudes with helicity (+  +  —) 

appearing in eq. (5.22) will not vanish in this signature if we take the A’s to be 

related to each other, and similarly the three gluon tree amplitudes with helicity 

(— — +) appearing in eq. (5.23) will also not vanish if we take the A’s to be related 

to each other

With this continuation to signature (— — +  +) Britto, Cachazo and Feng

were able to avoid the problem of vanishing three gluon vertices. Furthermore, they 

showed that the coefficients calculated in signature (— — +  +) could still be used 

in Minkowski space even though they were determined in a different signature, since 

the final term depends only on the spinor invariants A and A.

Their technique gives scalar box integral coefficients as a product of four tree 

amplitudes, i.e. specifically, for the scalar box integral function shown in Figure 

5.3.1,
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F igure  5.3.1: A Quadruple Cut on a one-loop scalar box integral.

the coefficient is given by the product of four tree amplitudes where the cut legs 

satisfy on-shell conditions,

£  =  - > ^ 2) X ^ * “ (4 , *3, . - , * 4, 4 )
1  s  v

xAtr“ ( 4 , i 5,... ,i6,4 )  x ,4tr" ( 4 , i 7,. . . , i8,4 ) ) ,

(5.24)

where S  indicates the set of helicity configurations and particle types of the legs i j  

giving a non-vanishing product of tree amplitudes. The analytic continuation allows 

this to be evaluated even when one or more of the tree amplitudes in eq. (5.24) is a 

three-point amplitude which would vanish in Minkowski signature. The sum is over 

all allowed intermediate configurations and particle types [56].

5.2.1 A Sim ple Exam ple

Let us illustrate a simple application of this technique. We perform a quadruple cut 

on the box coefficient shown in Figure 5.3.2.
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F igure  5.3.2: Example box coefficient.

We consider a scalar particle circulating in the loop. The quadruple cut for other 

internal particles circulating in the loop can be found by multiplying by the appro

priate p factor, as we discussed in chapter 4. We denote the momentum of the i th 

external gluonic particle as ki, and the internal scalar propagators as £{. Following 

Britto, Cachazo and Feng, we can write the Quadruple cut, Q, for this particular box 

as the product of four tree amplitudes, i.e.

Q = A tiee(£+, 5+,6+, l - , ^ )  x AtTee(ef, 2 V j )  x AtTee(£+, 3 " , ^ )  x AtTee{£+, 4 + ,^ )

(5.25)

Substituting Parke Taylor amplitudes for the tree amplitudes at each corner we find 
that,
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(1A)2 <14)2 [2 £i ]2 [2£2]2
W  {£4 5) <5 6) (61) (1 £ i)  ( t i  £4} [£i 2] [2 £2] [£2 £1]

(3£2)2 (3£3)2 [4^3]2 [414]2
<4 3) (3 e 3) ( e 3 e 2 )  [£34] [4 4 ] [ ^ 4 ]

(l^ i) <1 £4) 2 [2£1] [2£2] {34 ) (3£3) [44 ] [4£4]

(4  5) (5 6) <61) (£4 £4> [£2 £1] (£3 £2) [£4 £3] '

(5.26)

Momentum conservation at each corner requires that,

£ 2  =  t \  —

h  — £2 _

^4 =  ^3 —

1̂ -  4̂ P 561.

(5.27)

Total momentum conservation also implies that,

+  &3 +  &4 +  P561 — 0.

(5.28)

Since the fc’s and £’s are null, the massless corners immediately give the constraints,

1̂ • &2 — 2̂ * — 1̂ ‘ ̂ 2 =  0)

2̂ * &3 — 3̂ * &3 =  2̂ * 3̂ — 0>

^ 3  • &4 =  £ 4  ' =  £ 3  ' £ 4  ~  0 .

(5.29)
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As we discussed previously, we know that 2p • q = (Xp \ q) |Ap A j =  0. Working in 

signature (+ +  — — we can set the A* and A* independently, so we need only set 

one bracket to zero for the vanishing spinor inner product to hold.

For the three-point comer ( i f ,  2+,^2) we set,

(A2 A^) =  (A2 Â 2) =  (A^ \ i 2) =  0,

(5.30)

which is implemented by,

Â x =  CKA2 Â 2 =  (3 X2 -

(5.31)

where a  and /? are arbitrary complex parameters.

For the three-point corner >3- ,£f) we set,

[Â 2 A3] =  [Âg A3] =  [Â 3 A,2] =  0,

(5.32)

which is implemented by,

^ £ 2  = 7^3 Â 3 = 6 X3 .

where 7 and 6  are arbitrary complex parameters.

For the three-point corner , 4+,^4 ) we set,

(5.33)

(A 4  A £3 )  —  ( A 4 A 4 )  =  { X e 3 X £ 4 )  =  0 ,

(5.34)
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which is implemented by,

Â 3 =  /ZA4 Â 4 =  v  A2.

(5.35)

where fi and v are arbitrary complex parameters.

Furthermore, we can find the internal propagator spinors we do not know in terms 

of the others by rewriting momentum constraints in bispinor notation. We can write

£ 4  =  lz — &4 as,

Â4Â 4 — Â 3 Âg — A4A4.

Substituting for spinors Â 4, Â3 and Â 3 we get,

kA^A^ =  fib A4A3 — A4A4

r — A4
- A *  =  -----   .

Similarly, we can write l \  — £ 2  +  &2 as,

A/iA^ =  A^A ,̂ -F A2A2.

Substituting for spinors A^, \e2 and Â 2 we get,

aA2A^ =  /?ryA2 A3 +  A2A2

(5.36)

(5.37)

(5.38)
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T (#7^3 +  ^2-> At, =    .a
(5.39)

We can find the form of the arbitrary spinor parameter products /?7 and fiS from 

momentum conservation constraints as follows. Since the t s  and fc’s are null, from 

t \  =  £ 3  +  P 2 3  we know that 2 ^ 3 • P 2 3  =  —-P 2V  We can rewrite this as,

( 4 2 ) [4 2 ] +  ( 4 3 ) [4 3 ] =  - P 223 .

(5.40)

Substituting for the spinors we know, this becomes,

/i <4 2) 5 [3 2] =  —i j 3

(5.41)

where we have used the fact that [j j] =  0 to remove the second term. Expanding the 

momentum P| 3 as discussed in chapter 3 we find that,

1*5 (42) [32] =  - ( 2 3 )  [23]

(2 3)
1 * 6  =

(4 2 )’
(5.42)

Similarly, from £ 4  = £\ +  P561 =  £\ -  P 2 3 4  we know that 2^  • P2 3 4  =  P234- We can 
rewrite this as,

(4 2) [4 2] + (4 3) [4 3] +  (4 4) [4 4] =  P2234

(5.43)
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>2
234

Substituting for the spinors we know, this becomes,

a  (23) — [2 3] +  a  (24} f  —  [34] +  — [2 4] J =  P2: 
a \  a  a  J

(5.44)

where we have used the fact that (i i) = 0  to remove the first term. Expanding the 

momentum P| 34 we find that,

(23) [23] +  /?7(24) [34] +  (24) [24] =  (23) [23] +  (34) [34] +  (24) [24]

(34)
f a  = (2 4)'

(5.45)

Therefore, the quadruple cut eq. (5.26) becomes,

a V /? 27V <*2 (12) (14)2 [2 3] [2 3] (3 2) (3 4) [4 3] [4 3]
Q = i/2Q!7 /3h6 (4 5) (5 6) (61) (2 4) [3 2] (4 2) [4 3] 

(12) (14)2 [2 3] (3 2) (34) [4 3]
(4 5) (5 6) (61) (2 4)"

(12) (14)2 (2 3)2 (34)2 [2 3] [43]
(4 5) (5 6) (61) (2 4)4

(5.46)

To complete the calculation we multiply this term by the appropriate Supersymmetric 

p factor. We must also sum over the different internal helicity configurations.
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5.3 The Twistor Structure of One-loop Am plitudes 

and the “Holomorphic Anom aly” of Unitarity  

Cuts.

As the techniques of CSW construction began to be applied to different loop level 

processes it became possible to develop an understanding of the twistor structure 

of one-loop amplitudes [13]. This is a much more complicated process as loop am

plitudes and generically more complicated than amplitudes at tree level. A further 

complication was introduced with the discovery of a “holomorphic anomaly” [59].

Brandhuber, Spence and Travaglini [12, 60] explicitly showed that the CSW ap

proach of using MHV vertices could be used to calculate the one-loop N  = 4 MHV 

amplitudes. This was in contrast to the observation of Cachazo, Svercek and Witten 

that application of the collinear operator F  to one-loop MHV amplitudes did not re

sult in their annihilation, even though naively it should have. More specifically, let us 

consider the operator F^+ i^+2 acting on the cut C*,... j  of a one-loop MHV amplitude. 

We can write this cut as,

Xj4MHV-,ree(_ 4 i  j  + + 2) ^  ^

(5.47)

Since F* ;+i *+2 annihilates both tree amplitudes on either side of the cut, we might 

naively expect it to annihilate the whole expression for the cut. However Brandhuber, 

Spence and Travaglini showed it explicitly does not.

This apparent paradox was resolved by W itten [61] by observing that when a 

differential operator acts within the loop-momentum integral it yields a S function. 

This “holomorphic anomaly” of the unitarity cut produces a rational function as a 

result even though the tree amplitudes within the cut are localised on lines in twistor 

space [61, 62, 50]. As a spin-off of this resolution, it was observed that acting with
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Fijk upon both the cut and the imaginary part of the amplitude, and demanding 

consistency via the optical theorem, leads to algebraic equations for the coefficients 

of the integral functions which appear in the amplitude. These algebraic equations 

can be used to compute an entire amplitude [50].

Due to the added complications imposed by the “holomorphic anomaly” , it has 

proved easier to consider a simpler approach when examining the twistor structure of 

one-loop amplitudes. As discussed in chapter 4, we can expand one-loop amplitudes 

into a series of scalar integral functions; boxes, triangles and bubbles (plus rational 

pieces for non Supersymmetric theories). We can then investigate the twistor struc

ture of the coefficients of these integral functions to build up an idea of the geometric 

description of one-loop amplitudes in twistor space.

As there are no triangle or bubble functions present in N  = 4 Super Yang-Mills 

theory, this is the simplest theory to begin examining. We need only consider the co

efficients of the box integral functions [8], which can be determined using the methods 

discussed previously, see [59, 51, 56, 63, 64, 8, 65]. The twistor structure of one-loop 

amplitudes in N  = 4 Super Yang-Mills has been extensively investigated [51, 63, 66].

For MHV amplitudes only the two mass scalar box integrals appear [29]. The 

coefficient for this class of integral function is simply an MHV tree amplitude, as 

described in eq. (1.2). Therefore, the coefficient of this integral function has collinear 

support in twistor space, that is all of the points lie on a line in twistor space, as 

shown in (a) of Figure 5.3.1.

For NMHV one-loop amplitudes, the picture is more complicated as the simplest 

box coefficients that exist are from the class known as three mass boxes [29]. The 

twistor structure for these coefficients involves three lines that intersect, and thus 

describe a plane in twistor space, as shown in (b) of Figure 5.3.1. These coefficients 

are therefore said to have coplanar support in twistor space.
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(a) MHV (b) NMHV

F igure  5.3.1: The twistor space structure of the Box Coefficients of N  =  4 One-Loop Amplitudes.

The picture described for the twistor space structure of one-loop amplitudes in 

N  =  4 Super Yang-Mills theory would appear to mimic that of tree level, i.e. the 

coefficients of box integral functions can be represented on a series of lines in twistor 

space.

Part of the challenge undertaken in this research was to develop the twistor space 

picture for theories with N  < 4 Supersymmetries, where we must consider the twistor 

space structure of the coefficients of the triangle and bubble integral functions that 

appear, in addition to the box integral functions, in such theories.



Chapter 6 

N  <  4 One-Loop Gluonic 

Amplitudes

In this chapter we focus on extending techniques that have been successfully used with 

N  =  4 purely gluonic one-loop amplitudes to theories with N  < 4 Supersymmetries 

and examine the effectiveness of these techniques in theories with less Supersymmetry. 

Where appropriate we also discuss the twistor structure of amplitudes calculated in 

theories with less than four Supersymmetries and consider whether these exhibit 

similar properties to amplitudes in N  = 4 theories.

We begin by considering the “holomorphic anomaly” of unitarity cuts. Witten 

noted that at N  = 4 differential operators acting within the loop momentum integral 

yield delta functions, and thus suggested the existence of a “holomorphic anomaly” in 

N  = 4 theories. Indeed he noted that the existence of such a feature could be used to 

derive algebraic equations for the coefficients of integral functions which appear in an 

amplitude. In the first section of this chapter we extend this analysis to examine how 

the “holomorphic anomaly” acts upon the cuts of N  =  1 Supersymmetric one-loop 

amplitudes, focusing on a six-gluon non-MHV amplitude which had been previously 

calculated by other collaborators involved in this work. We also examine the use

fulness of the “holomorphic anomaly” as a calculational tool to evaluate amplitudes, 

and compare the N  = 1 case to the N  = 4 case examined by Witten.

84
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In the second section of this chapter we examine the many fascinating geometric 

features that appear in the twistor space realisation of gauge theory amplitudes. It has 

been observed that the coefficients of integral functions contained in an amplitude 

exhibit interesting structure in twistor space, particularly the coefficients of the I 4  

integral functions. In theories with N  = 4 Supersymmetries it has been shown that 

these I 4  coefficients for next to MHV amplitudes have planar support in twistor 

space, behaviour that is analogous to that of tree amplitudes. In this section we 

investigate whether similar behaviour exists for theories with N  < 4 Supersymmetries 

by computing the I 4  coefficients for all six-point N  =  1 amplitudes and examining 

their twistor space structure. We explicitly determine the twistor space description for 

the coefficients of next to MHV N  = 1 amplitudes and discuss whether this behaviour 

implies a continuation of the twistor structure exhibited at N  = 4. We also extend 

this analysis to include certain classes of n point N  = 1 amplitudes and discuss their 

twistor space structure.

Finally, in the third section of this chapter we continue to study the twistor 

space structure for amplitudes in theories with N  < 4 Supersymmetries. Although 

W itten’s proposed relationship between twistor string theory and perturbative field 

theory has been observed at N  = 4, it is as yet unresolved as to what degree this 

relationship extends to theories with less or indeed no Supersymmetry. It therefore 

seems reasonable to continue gathering information by studying the properties of 

amplitudes in such theories until a direct connection is uncovered. By focusing on the 

I4  integral functions that appear in specific example amplitudes, and exploiting the 

generalised unitarity technique of Britto, Cachazo and Feng by using quadruple cuts, 

we compute the coefficients of these functions, and examine whether these amplitudes 

obey the same collinearity and coplanarity conditions as TV =  4 I 4  coefficients, i.e. 

are the collinearity and coplanarity conditions independent of the Supersymmetry. 

We demonstrate by means of a relatively simple proof that the N  =  4, N  =  1 and 

N  = 0 cases for amplitudes that are “MHV-deconstructible” are inherently related, 

and as such one must only demonstrate that the expected twistor space properties
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are exhibited in two of the above cases to conclude that the third case must also 

satisfy these properties. We further exploit the approach of Britto, Cachazo and 

Feng by using triple cuts to determine the coefficients of I 3  and fy integral functions 

and present the full expression for an example one-loop amplitude.

6.1 N  =  1 Supersymmetric One-Loop Am plitudes 

and the “Holomorphic Anom aly” of Unitarity  

Cuts

Recently, it has been shown that the “holomorphic anomaly” of unitarity cuts can 

be used as a tool in determining the one-loop amplitudes in N  = 4 Super Yang- 

Mills theory [13]. It is interesting to examine whether this method can be applied 

to more general cases. In this section we present results for a non-MHV N  = 1 

Supersymmetric one-loop amplitude. We show that the “holomorphic anomaly” of 

each unitarity cut correctly reproduces the action on the amplitude’s imaginary part of 

the differential operators corresponding to collinearity in twistor space. Furthermore, 

we show that the use of the “holomorphic anomaly” to evaluate the amplitude requires 

the solution of differential equations, rather than the algebraic equations found in [13].

The amplitude A^=4( l - , 2~, 3- , 4+, 5+, 6+) has been calculated [9], so we choose 

to examine the N  =  1 chiral matter multiplet contribution.

6.1.1 The Six-point A m plitude A N=l chiral( l - ,2 “,3 - ,4+,5+,6+)

For a six-point Yang-Mills amplitude there are a relatively small number of inde

pendent colour-ordered helicity configurations. The non-vanishing Supersymmetric 

amplitudes are either MHV, the conjugate of MHV (Googly), or have three negative 

and three positive helicities.

The MHV amplitudes are rather special cases and indeed the “holomorphic anomaly” 

of the three particle cuts of A ^“ 1’chî al( l - ,2 '',3 +,4+,5+,6 ',') is zero and is a rather
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uninteresting case. Consequently, we consider an amplitude with three negative he-

licities. There are three possible such color ordered configurations: A ( ----------b + + ),

A(  1----- 1—b) and A (— I---- 1---- b). We shall consider the effect of the “holomorphic

anomaly” on the first of these.

This amplitude is fairly simple in that it contains no box integral functions [14], but 

only L0 and Kq functions, which are defined by [9],

K°W =  * ( - « ) -  =  \  -  M ~ ») +  2 +  O(e) ,

L°M =  ? T  +  O W .1 — r
(6 .1)

The function Ko[s] is simply proportional to the scalar bubble function. The function 

Lo[r] has several representations; it can be expressed as a linear combination of bubble 

functions or as a Feynman parameter integral for a two-mass triangle integral, see [9]. 

Written in full, the amplitude is

A N =1 A iia l^  —12—>3—>4+ j 5 + >6+)  = aiK0[sei] +  02^ 0^ 34] — 2

. 7 ^ 0  [̂ 234/^34] . ,  -̂ O [^234/^6+02-----------------b 03

L q [S345/S61]
6̂1

S34 6̂1
1 J , 7 ^o[5345/s34]  b 04---------------

S34
(6 .2)

where the coefficients are

=  <J2 =  ^ “ (1- 2 - ,3 - ,4 +  5+ 6+), (6.3)
2

and

6, =  (6 |/>|3)2(6+l(5?f/>- / )^ ) | 3 +) = k + k + k
1 (2 |/>|5) [61] [12] (34) (45) P 2  ’ 345 _  3 +  4 +
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(4| J° |l)2<4+|( / )? / J — I P  / ))|1+) 
<2|/>|5) [23] [34] (5 6) (6 1 )P 2

{ i \ r \ \ ) \ i + w n - n m +)
<2| f|5> [2 3] [3 4] (5 6) <61) P 2  '

( 6 i m 2<6+i ( w - m ) i 3 +)
(2 |/> |5)[61][12](34)(45)P2 ’

P — P234 =

P  = -P234,

P = P3 4 5 . (6.4)

This amplitude was constructed in previous, unpublished work by D. C. Dunbar and 

L. J. Dixon by calculating the three-particle cuts together with an analysis of the 

infra-red poles. The six-point tree amplitudes appearing in the coefficients a* were 

calculated in [67].

The amplitudes we calculate in this thesis have an overall factor in dimensional reg- 

ularisation of (/z2)ecr, where

1 T(l +  e)r2( l - e )
^ ~ (4tt)2-« r(l — 2e)

(6.5)

Throughout this thesis we shall not explicitly include this.

We define sy  =  [ij] (,j i ), sijk = Pfjk =  [ij] ( j i )  +  [j k] (k j ) +  [ki\ (i k ) =  +

kj +  kk ) 2  and (a|JJ|c) =  (n+|^|c+) =  [a6](6c), where (i j )  and [ij] are the usual spinor 

helicity inner products, as discussed in chapter 3.

6.1.2 The “Holom orphic A nom aly” o f the U nitarity Cuts

The amplitude we are considering has three potential three-particle cuts: s i23 > 0, 

5234 > 0 and S345 > 0. The first of these vanishes identically for N  = 1 chirral: 

A|ree(^11, 1~, 2“ , 3 ~ ,^ 2) =  0 unless hi = /i2 =  1, which requires the states crossing 

the cut to be gluons, not fermions or scalars. The two non-vanishing cuts are not 

independent but may be obtained from one another by the symmetry 1 3,4 <-► 6.
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In order to examine the “holomorphic anomaly” , we compute the action of F5qi 

on the cut C561 (which is equal to C234). The cut for s56i > 0 (the imaginary part, or 

1/2 the discontinuity) is defined as

h
(6.6)

where i \  +  £ 2  = -P234 =  P  and h G {—1 /2 ,0 ,1/ 2}. Writing out all amplitudes in this 

expression and summing over the Supersymmetric multiplet we obtain

r  1 f . n tti M f W 2 .. [44]2[44]2
0561 2J aUl (56) (61) (14) <4 4 )< 4 5) [23] [34] [44] [44] [4 2 ] PN=1'

(6.7)

The factor pn=i may be obtained using Supersymmetric Ward identities [11], giving

(4IPI1)2
PN=1 = (14) [4 4] (14) [4 4]' (6'8)

Simplifying the expression, we can write C561 in a compact form

■K  f  , T m c N 2](H l)^561 =  t

where we define K  as

( 4 1 23411 )

r  -  i —  f  r lJ  j p g  i 2 J ( a  q \
c 56i * 2 y  [2 4 ] <5 4 > ’ ( )

K  =
[2 3] [3 4] (5 6) (61 )S234'

(6.10)

Next we act with the collinear operator [F56i  , 77] on this expression. We only pick up 

the contribution from the term with d / d \ 5q, so  that
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[Fsei, v]Csei =  ~ j  dLIPSt4^ 1£l) (61)[24
d

d\>
(6 .11)

The parametrisation of the Lorentz-invariant phase-space measure dLIPS is the same 

as that employed in [7, 62], i.e.

J dLIPS(-) =  J d ^ ( i  5w {i\) J<?t 2 5w (ll)5w (lx +  4  -  P)(»)

=  j  { x e i , d x t l ) { x e i , d \ t l } J d % s ^ ( e l ) 5 ^ ( e 1 + e 2  -  p)(.),
(6.12)

and we change coordinates, A —> A' and A —► t \ ' . then drop the primes. The integral 

becomes

[p 5 6 i ,^ ]C 5 6 i  — i - y  J  t d t  J  ( ^ i > d A ^ ) [ A ^ , d X ^ ]

x  I d l e 2 s ^ ( e l ) s ^ ( e 1  +  e 2 -
d

d'X5’V, (54)'
(6.13)

We now carefully follow the prescription of Cachazo [50]. We use the identity [50],

r 9  i 1 r 9  1 1
.0A5 (^15) ~ 9*e 1 . <*i5> ’

(6.14)

which can be rewritten using the Schouten identity [A B\ [C D] = [A C] [B D] — 
[A D] [B C\, so that

[A^dA^]
‘ d ~ d '

9 K ,ri.
— Xe,,

. d \ t x_
[ d x t l , n ]  -  [Aft,I?] d \ i , , - % -

. dAftj
(6.15)



CHAPTER 6. N  < 4  ONE-LOOP GLUONIC AMPLITUDES 91

where the first term does not contribute to the integral [50]. Hence inside the integral 

we can now write [50],

[A*a, d \^ \
d

d\c> < î5>
d

d \ h \ (^i 5)
=  [A/1>T7]27r<5((Â 1,A5» ,

(6.16)

and the integral becomes

[Fsti,v]Cm =  - i n K  J  tdt J (X ei,dXtl)

(6.17)

The 5 function in (A^, A5) reduces the integral to

[fM i.vlOai =  - i * K  P t d t  J  d*etH+'>($)Ht \ e l + t 2  -
Jo j  [2 t-2j \C2 Cl)

(6.1

We introduce a factor of ( £ 2  cl) /  { £ 2  a), which makes applying the 6  function in £ 2  

more transparent. Doing the integral in £ 2  using S ^ (£  1 -f £ 2  — P) we end up with

[F«n,n ] C ^  =  —vkK  (6.19)
Jo [2 C2J (■c-2

where £% =  P M — tkg, and hence £\ =  P 2  — 2tk 5  • P , where t =  p. Doing the 

^-integral yields

rF n1r ■ 1> (15) [5, 7,]P2 {2k, • P)(4\r\a) -  P 2<4| ?|a>
[Fta M C m  -  vkK { 2 k b . p ) 2  {2k5 .P){2\f>\a)-P^{2ma)

(4|/>|1)2 <15> [5,77] (4[/>|5)
[2 3][34](5 6)(2fc5 -P )2 (2 |/>|5)’ 1 Uj
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after reinstating the definition of K  and choosing a = 5, for example.

From the optical theorem, the cut C561 is equal to the imaginary part of the 

amplitude in the kinematic region S561 > 0 [39]. For our amplitude eq. (6.2), using 

Im ln(—s)|s>o =  —7r, this is

1 T  A i
7T Z

bs b2

_2 k5 • P  2ho • P.
(6.21)

Operating on eq. (6.21) with the collinear operator [F56i , rj\ we have

ImA«561>0 j
[^56i,^](&3) [-̂ 561 ? 7̂] (^2) b3 [F5 6 1 , V](2k5 -P)

2k5  • P 2k2 - P (:2 kb • P )2
(6 .22)

Using the solutions for b2  and 6 3 , eq. (6.4), we have

where

( 2 \ m  [23] [34] (56) (61) P 2  (2 |f |5 )
(6.23)

K '  =
K

v \ m
(6.24)

is annihilated by F561. and where

6 3  =  2J^2{4| |̂1> -  (2fc5 • (6.25)

Also,
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<2| / >|5) [23][34](56)<61)P2 (2| / , |5) '  I '* ’ * t r r ) \  )

where

(6.26)

62 =  —2P 2(4|y!|l) +  (2k2  ■ P ) (4 \p \ l ) . (6.27)

Using [Ps«i.v](2fct • P) =  (»?l/>|5>(16), we have

l*56i, # 3  =  2P2 (51 ) [F561, r/][45] -  {4\f>|l>[*561l>j](2fcs • P)
=  —2P2[?J,4] (16> (51) — (»j|/>|5) (16) (4 |/>|1 ) , (6.28)

and

[*561,#2 =  0. (6.29)

Inserting eq. (6.28) and eq. (6.29) into eq. (6.22), we find,

- i [ P 561)t?]Imyl =  - 1 - ^ 1 _ ( - 2 P 2[J?,4 ] (1 6 )(5 1 > -( )7|/>|5)(16>(4|/>|1)

= ^ <1p )l15> [ h m h  ■ p) + { n \m  [45]]. (6.30)

Combining [77,4] [P, 5] — [77, P] [45] =  [77,5] [P, 4] using the Schouten identity, we obtain



CHAPTER 6. N  < 4 ONE-LOOP GLUONIC AMPLITUDES 94

7r
[F5 6 u r)}lmA =

,K 'P 2 { 16) (15) (5, P)
(2h  ■ P f

= —I■ (4 |/>|1)2 (15> [5,7;] (4|/>[5)
[2 3] [3 4] (5 6) (2fc5 • P )2 (2|/>|5) ’

(6.31)

which matches the expression in eq. (6.20). Thus we have shown that the “holomor- 

phic anomaly” of the unitarity cuts correctly reproduces the action of Fijk upon the 

imaginary part of the amplitude.

6.1.3 R econstructing A m plitudes from Differential Equations

In N  = 4 one-loop amplitudes, appropriate collinear operators F^k annihilate the 

coefficients of the scalar box integral functions which span the amplitude [50]. This 

has the implication that the coefficients may be reconstructed by solving algebraic 

equations resulting from the action of the F^k operator upon the cuts equation. For 

N  =  1 we have a more delicate situation as the collinear operator Fijk in this case acts 

non-trivially on the coefficients bi in the amplitude. This means that to reconstruct 

the amplitude we will generally have to solve differential equations for the coefficients 

bi. In this section we explore the possibility of reconstructing the amplitude using the 

“holomorphic anomaly” of the cuts. In general N  =  1 amplitudes contain integral 

functions derived from box, triangle and bubble integrals. As for the N  = 4 case, we 

expect that the appropriate Fijk operators should annihilate the coefficients of the box 

integral functions. However, Fijk need not annihilate the coefficients of bubble and 

triangle functions. Instead, the action of F^k produces differential equations which 

these coefficients must satisfy.

To clarify the situation, consider the amplitude A N~X chlral(l~, 2- , 3~, 4+, 5+, 6+) 

which contains only triangle and bubble integrals. Consider the action of F$qi on the 

C561 cutting equation,
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(6.32)

Expanding the amplitude into the series of known scalar integrals multiplied by ra

tional coefficients, and keeping only those coefficients which have non-vanishing cuts 

in this channel, namely 62 and 63 in eq. (6.2), we have

iw \T? 1 (  b* b2

2 t 5615 ^  U fcg-P  2k2 - P — [P561» 7̂]C561- (6.33)

The right-hand side of this equation is a rational function of A* and Xj ,  determined 

via the “holomorphic anomaly” to be the expression given in eq. (6.20). In eq. (6.33) 

the functions multiplying the bi are rational functions — in contrast to the N  = 4 

situation where logarithms appear. Although the left-hand side is required to be 

rational this does not imply that Fijk annihilate the 6*. The bt must satisfy the linear 

differential equation

Z7T

~ 2

[^561,^1^3 b3 [F5 ei,rj\(2k5 • P) [F5 Qi,rj]b2

2 h - P (2 h  • p y 2k2 - P — [-^561? ^1^561 (6.34)

We can also act with the operator

{Pijk,rj) = +d \ k d\ i dXj
(6.35)

which produces an “anti-holomorphic anomaly” upon the same cut to yield

ITT

~ 2

(F2 3 4 , v)b2  b2 {F2 3 4 , 77)(2A;2 • P) (P234, vi)bz
2k2 -P (2k2  • P ) 2 2 k5 P — (-^234, )̂^561- (6.36)
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As a function of A5, A6, and Ai, we find explicitly that [F56i,??]C56i is a function of 

A s only. Similarly ( F 2 3 4 , fj)C^i is a function of A 2  only. The coefficients 6 2  and 6 3  are 

related by the symmetry of the amplitude to satisfy &2(123456) =  63(456123). Also 

note that (jF2345 ^) [^561)^1^561 =  0. This motivates us to separate the equations, by 

assuming that (^234, 7̂ )63 =  0 and [F56i, 77)62 =  0, to obtain the equation for 6 3 ,

ITT

~2~

[-^5611 6 3  [F 5 6 1 , 77] (2 fc5  * P )

2 k5  • P  ( 2 k5  • P ) 2
— [̂ 561 j ^1^561 (6.37)

(with the equation for 62 obtained by relabelling). To solve this equation, it is con

venient to define

63 =  K'  63 (6.38)

as in eq. (6.23). Note that K f is independent of A*, i =  5,6,1. Since eq. (6.38) is 

independent of A*, i =  6,1, we deduce that 63 depends only on A 5 . The right-hand 

side of eq. (6.38), from eq. (6.20),

[̂ 561 >v\C561 P 2(16>(15){5, P> r -I
 K>  m  (2* 5 '■ P f  1 [ ’ ]J ’ ( }

is of the form [X, 5]. So we make a trial solution for 63

63 =  [5, C], (6.40)

which implies

[*56i,#3 M^6i,J7](2*5 -P ) _  [5,P](P,5)[»/,C](61) [5,C](61)fo,P](P,5)
(2fc5 -F ) (2*5 - P )2 (2*5 - F )2 (2*5 - P f

= <6'41>
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Thus eq. (6.38) is solved by

Cb =  2P2{15)A4d, (6.42)

giving

&3 =  2P2(4|0|1) (6.43)

as a specific solution to eq. (6.38). However, this solution is not unique, as

63 =  2P2(4|$|1) +  (2fe5 ■ P) x A (6.44)

is also a solution, for any rational function A  not involving A*, i =  5 ,6,1. To also 

satisfy (^234,^)(63/ ( 2^  • P)) = 0, we must have;

(F2 3 4 ,fi)A = 0. (6.45)

This relation is not sufficient to fix A. Indeed, any function of Pa<i =  Yli=5 ,6 ,i{^i)a{^i)d 

will satisfy eq. (6.45). We have used the action of all Fijk functions which give 

rational functions acting upon the cut. The information in other cut channels is 

equivalent to this cut by relabelling. Thus we are led to conclude that the action of 

the F^k operators upon the cuts does not uniquely fix the coefficients without the 

input of further information. Examples of the constraints that 63 must satisfy are: 

dimensionality, spinor weight, collinear limits, multi-particle poles, etc. For example, 

the coefficient 63 must have dimension 2 and the spinor weight of +1 with respect to 

leg 4 , - 1  with respect to leg 1, and 0 for other legs. (Spinor weight is an additive
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assignment of +r  for each (Aj)r and — r for each (Aj)r in a product of terms.) The 

simplest solution to this condition is a quartic polynomial in the A*, A*, hnear in A4 

and Ai, with others appearing in the combination Â A*. The differential equation then 

forces a solution of the form

b3  = 2P2(4|?|1) +  a( 2 k5  • P){4|/> |1). (6.46)

The arbitrary coefficient a  can be fixed to be —1 by considering the collinear limit 

2 - 3 .

Thus we have demonstrated how the action of the “holomorphic anomaly” on the 

cuts can be used to provide information about N  =  1 Supersymmetric amplitudes. In 

general, we obtain differential equations; hence fixing the coefficients unambiguously 

does require the input of suitable physical information, such as the collinear limits.

6.1.4 A  term  in A ^ 1 chiral( l - ,2 - ,3 - ,4 +  . . .  ,n+)

As a further example let us consider the n-point amplitude A N = 1  2~, 3_ , 4+, . . . ,

and deduce some of its integral function coefficients. Consider the cut analogous to 

the previous case C$...ni which is

C,..nl = f / 4 L I P s g l M } ,  (6'47)

where now

K  _ ______ (4| /J234|l)2______  ,fi
[2 3] [3 4] <5 6) (6 7) • • • (n 1) S234 K !

Notice that on the cut the integrand is



CHAPTER 6. N  < 4 ONE-LOOP GLUONIC AMPLITUDES 99

[4*2] <l*i) _  (4+| &|2+><5+| * |l+>  _  (4+| f 2  7 Pim ? f i | l +> _
[2*j] {5 Ci) (2+| fe|2+)<5+| * |5+) (2+| ^23i|5+>(*2 -  f e W i  +  h f

(6.49)

The two propagators in eq. (6.49), plus the two cut propagators, make up a cut box 

integral. However, in the numerator of eq. (6.49), we can anti-commute and / i  

toward each other, to get

[4*21(1*!) (4+ | / W f t | l +> (4+ |? ^ 2 f234 |l+>
[2*j] (5*,) (2+1 P 234|5+)(*1 + h Y  (2+1 />234|5+)(*2 -  fc2)2

(4+ | 7 h ( h + h ) ? i  ?|1+)
(2+1 f234|5+)(*2-fc2)2(*l + fc5)2’

where we have used P234 =  h  +  2̂ in the last term, making it clear that it vanishes. 

Thus the cut reduces to a sum of two cut linear triangles, or in other words,

, A )  [S 2 3 4 /S 3 4 ] . 7 -^ o [$ 2 3 4 /$ 6 .. . l ]  62-----------------h 03'$34 $6...1

+ terms not contributing to the cut,

(6.51)

where S6-1 =  (fcfe +  £7 H h kn + ki)2. Acting upon C^.-ni as before with (P234>̂ )>

we obtain

(i?234,?7)C,5...„i =  - n r  K
P 2 [24][34j(2,q)(2|/>|1) 

(2 k t -P)*  <2|/>|5>
(6.52)

Applying exactly the same steps as before we have a trial solution
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h  =  - 2 P 2(4|?|1) +  a ( 2 k2  • P)<4|/>|1>, 

where we can fix a  =  1 using collinear limits.



CHAPTER 6. N  < 4 ONE-LOOP GLUONIC AMPLITUDES 101

6.2 Twistor Space Structure of the Box Coeffi

cients of N  = 1 One-Loop Am plitudes

We examine the coefficients of box functions in N  =  1 Supersymmetric one-loop 

amplitudes, presenting the box coefficients for all six-point N  = 1 amplitudes and 

certain n-point example coefficients. We also examine the twistor structure of N  = 1 

one-loop amplitudes and show that the box coefficients for “next-to MHV” amplitudes 

have coplanar support in twistor space.

6.2.1 Box Coefficients o f The Six-point N  =  1 A m plitudes

We can organise the six-point amplitudes according to the number of negative helici- 

ties; amplitudes with zero, one, five or six vanish in any Supersymmetric theory. The 

amplitudes with two negative helicities are the MHV amplitudes, which were com

puted previously [9], while those with four are the “Googly” MHV amplitudes which 

are obtained by conjugation of the MHV amplitudes. Here we present the remaining 

box coefficients and examine the twistor structure of all the six-point amplitudes.

The two independent types of six-point amplitude have rather different box struc

tures. The MHV amplitudes contain “two-mass easy” and single mass boxes, whereas 

the amplitudes with three negative helicities contain “two-mass hard” and single mass 
boxes. This feature does not extend to higher point functions.

M HV Am plitudes

There are three independent MHV amplitudes. In terms of the D = 6 boxes the box 

parts of these amplitudes are [9],
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A (l- ,2 ~ ,3 + ,4+,5+,6+)|box

^ ( l - , 2 +,3 - ,4 +,5+,6 +)|b<«

A ( l- )2+,3+,4 - ,5 +,6+) U

=  0
  u D = 6 r2m e . i ,D = 6 r im  u D = 6  r im
~  4:3 “t" ° 2  4:5 °3  i 4:3

=  C

where,

,D = 6 r2m e , nD —6 r2m e . „ D = 6  r im  , _D = 6  r im  
i 4:l *1_ 2 i 4:3 "1" c 3 i 4:6 f c 4 i 4:3

(6.54)

%
D = 6 Atree MHV̂ r+(l325) tr+ (1352)

~ 13 o „

b? = 6

*13*25
/itree M H V  r̂+(l326) tr+(1362)~ 13 .2 .

S l3 * 2 6

uD = 6   /jtree
° 2  ~  ^13

MHV̂ r+(1324) tr+ (1342)

sj 3 S24

(6.55)

,£>=6

  a tree— f l u

  a tree
^14

m h v  tr+(1436) tr+(1463)
*14 * 3 6

m h v  tr+(1435) tr+(1453)
*14 * 3 5

_ D = 6    a tree
2 ~  ^14

MHV̂ r+(1^25) tr+(1452)
* 1 4 * 2 5

.£>=6   4  tree— /ii4
M H V  t r+( 1426) tr+(1462)

* 1 4 * 2 6

(6.56)

where tr+(abcd) =  [ab] (be) [cd] (da). If we examine the coefficients of the F- 

functions we have, for example,

6f  =  A tree13
m h v  ^ tr+(1325) tr+(1352) _  ^ tree MHV  ̂ (3 2) (15) (3 5) (2 1)

* 1 3 * 2 5
L13 X

(13) (2 5)'
, (6.57)

which is a holomorphic function (i.e. a function of A alone).

Am plitudes w ith three minus helicities

There are also three independent amplitudes with three minus helicities: 

A (l- ,2 ^ ,3 ~ ,4 +,5+,6+), A ( l- ,2 - ,3 + ,4 - ,5 +,6+) and A (l- ,2 + ,3 -,4 +  5~ ,6+). Of 

these, the first consists only of triangle and bubble integrals [14] so we have a trivial 

box structure,
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v4(l- ,2 - ,3 - ,4+,5+,6+)|box =  0. (6.58)

The next amplitude, A( 1 ,2 , 3+, 4 , 5+, 6+), does have a non-trivial box structure, 

which we express in terms of D = 6 boxes as,

.4.(1-, 2~, 3+, 4“, 5+, 6+) Ibex ; 

where the integral boxes are,

D = 6  r2m h , ~ D =6  r2m  h , _ D = 6  r2m /i . „ D = 6 r im  . „ D = 6 r im  
°1  J 4:6 2 J 4\2 c 3 -*4:4 “r  c 4 -*4:5 i c 5 i 4:6 J

(6.59)

V 1 2\ / 3 2 \ / 3 4\ / 5 4 \ / 5 6\ / 1 4 5 ^ 1  5 6^

+c?=6 +c?=6 +cf=6

4 1 6 3 2 3 2 4 2

and we have computed the coefficients to be,

«3 i/> ii»2( 5 i m ( 3 i mr D=liC1

.£>=6

=  I -

(51)

=  I

(4 |f |5 > (2 |f |5 ) 
..«3|/»|4))*<6|/>|1>

[23] (56) (61) P 2’ 
[31] (64)

( l i m  [12] [23] (45) (56) P 2’

=  I
; ((6 |/’|4))2<2|/’|4 )(3 |f|2 ) [62]

=  %

<2[/>|3)<2|/>|5>
(<3|/>|l))2<2|f>|l)

(4 5) [61] [12] P 2  ’ 
(24)

P  = -̂ 234 5 

P  = -̂ 123 J 

P  = -P345,

=  I

( 2 \ m  (5 6) (61) P 2  [24]’
• ((6 |/>|4))2(6 |/>|5) [3 5]

(2|/>|5) [61] [1 2] P 2  (3 5) ’

P  — P2 3 4 , 

P  =  P3 4 5 ) (6.60)

where (a\fC\c) =  (a+\fC\c+).

The remaining amplitude, A(l~,  2+, 3“ , 4+, 5“ , 6+), contains all six one-mass and 

all six “two mass-hard” boxes,
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A / - i — r>+ Q— a +  c — c + \  __ ^ D = 6  r im  , „ D = 6  r im  , „-D=6 /-lm  , „ .D =6 r im
> 1(1 ,2  ,3  ,4  ,5  , 6  J b o x  —  O'l ^ 4 : 4  4"  < ^ 2  M : 5  a 3  ■‘ 4:6 ^4 M : 1

I „ D = 6  r im  . „ D —6 r im  . lD = 6  r2m /i ■ r D = 6  r2 m h
- t -a 5 J 4;2 « g  ■‘ 4:3 °1  4:3 "i" °2  i 4:4

i lJ 9 = 6  r2 m h  , iJD—6 r2m /i . u D = 6  r2 m h  ■ i.D —6 j2 m  h
'+'0 3 4:5 °4  -‘ 4:6 ° 5  J 4 :l “t" °6  i 4:2 •

(6.61)

Fortunately these axe not all independent and symmetry demands relationships amongst 

the a f= 6’s,

a? =6( 123456) =  a ? =6(345612), 

a?=6(123456) =  a f =6(345612), 

a? =6( 123456) =  d f =6(234561),

a f =6(123456) =  a f =6(561234), 

a^ =6 (123456) =  a f= 6(561234), 

a? =6( 123456) =  a ? =6(321654), (6.62)

where a f =6 denotes a f =6 with (i j)  [ij], Thus there is a single independent 

a f =6. Similarly we can use symmetry to generate all the s from 5 f=6. We have 

computed the expressions for a f =6 and b f = 6  to be,

n=6 =  ( 2 i m 2( i i m ( 3 i m  <3i>
1 <3|/>|6><1|/>|4>JP2 [13] (45) (56)’ 123’

rD=6 =  . (2 |f l5 )2(3lf|5)(2 |fl4)(4 |/> l3) 1
1 (3 |/>|6>(1|/>|4 )(3 |/>|4>P2 [12] (56)’ 123' K 0)

Googly M HV Am plitudes

The Googly MHV amplitudes can be obtained from the MHV amplitudes by con

jugation. These amplitudes are useful for testing hypotheses regarding amplitudes 

containing four minus helicities. For example we have,

A( 1+, 2-, 3+, 4 -, 5~, 6- ) U  =  6 f=67 | “ e +  6f=67 4̂  +  6?=6'4 ? ,  (6.64)
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 jy 0
with b f =6/ = bi ~ . The coefficients of the F-functions are anti-holomorphic functions, 

e.g.

b F , =  A u e e  x [3 2] [15] [3 5] [21]
1 24 [13]2 [2 5]2 ' ( ’ *

6.2.2 Higher Point Box Coefficients

In this section we evaluate some sample box coefficients for certain n-point amplitudes. 

This will enable us to examine whether the twistor space structure of the six-point 

amplitudes extends to higher point amplitudes.

For higher point amplitudes the number of helicity configurations grows quite 

rapidly with increasing numbers of legs. As our first example we will consider the 

specific amplitude,

A N= 1 chiral^-2- . +  ^ - 5 +  (6 .66)

We calculate the 123 • • - j -cut of this amplitude, i.e.,

C123...J = ~ J dLIPS E „e{- i /2,o,i/2} A ^ { i hu  1- , 2- ,  • • ■ , j +, O

A'™((-e2)h, (j  + 1 ) - ,  ■■■,«+, Ml)-'*),

(6.67)

The sum is over the particles in the N  =  1 chiral multiplet. The two tree amplitudes 

are a MHV amplitude and a MHV-Googly amplitude. For MHV amplitudes the 

different tree amplitudes for different particle types are related by Supersymmetric p 
factors, as we discussed in section 4.3.3. We obtain,
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Cm-.i =  | / d U P S y l tr“ MIW( ^ , l - , 2 V - - , ; / V ! )
X y 4 tree MHV G o o g l y ^ ^ ) ^  y  +  1 ) - >. . . t „ + _  ( _ £ , ) * )  X  pN=1

(6.68)

where,

^ = 1 =  _ I  +  2 _ I  =  j £ ^ ) ! ,  with (6.69)
X  X  { j i x ]  0  +  l« l)

so that,

, v = i  _  b ’ ^ i]  O' +  i ^ i )  / b 1 2 ] O' + 1 1 2 )  _  1   ( j | - P i 23- j b  + 1 ) 2_ _ _ _ _ _
^ b  ^ 2 ]  (j + 1 ̂ 2 )  v b  ^1] 0 + 1 £1) /  b  1̂] 0  +1  ̂ 1) b  ^ 2 ]  0 + 1 h )

(6.70)

This gives the integrand above as,

__________ b*i]2 b*2]2__________
[12] [23] - - - y  -  1 j] b ^ 2] [̂ 11]
x  0  +  H i) 2 O' +  H 2)2__________________

0  +  1 j  +  2) (7 +  2 j  4- 3) • • • (n — 1 n) (n ̂ i) (^i ^2) (̂ 2 j  +  1)
o iP m -.-b  +  i ) 2 

b  ̂ 1] O' + 1  ^1) b  ̂ 2] 0  +  1 ^2)
= ____________________ 01^ 123- j b  +  !)2______________________  M

[12] [ 2 3 ] . . . b - l i l 0  +  l j  +  2) (j +  2 j  +  3 > . . . ( n -  1 n) M ]
y  +  Hi)

(n ^ )
 _____________________ 0 1-̂ 123—j b +  I )2______________________

[12] [2 3] • • • b  — 1 j] 0  +  1 i  +  2> 0  +  2 j  +  3 ) - - - < n - l n > P 1223 
b^ i i (^ i i )  0  + 1  ii) [ii w] 

f t - W  +  W 2 ‘ 1
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This corresponds to the cut of a box integral with integrand quadratic in the loop 

momentum, i . e . ,

Cl23- ( j \ P l 2 3 - j \ j  +  1)'
[12] • • • [j — 1 j ]  ( j  +  1 j  +  2) <7 +  2 j  +  3) 

X (/!"*'*[[; e,\ 1)0 + 1 ti) [ti «]])cut •
{n -  1 n) j

(6.72)

The specific box integral is the “two mass-hard” depicted below,

with a non-trivial (quadratic in loop momenta) numerator. 

Rewriting the numerator,

(l+|F|n+> u i m
(6.73)

and commuting the cut momenta toward f  — (1 — $2 -,

h t f h h  =  (2 h - h ) f > M i - M i P M i  

= {2h  ■ i ) p M i  -  (2̂ 1 • K ) t f i  p +  n i W A

=  -(*1 -  h f p h t i  ~ (h + K f h h p  +  (Ml • P ) M i  %

(6.74)

In this expression the first two terms cancel a propagator yielding triangle integrals 

- which we discard for the present purposes - and the third term can be rearranged
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as (2 £i • P) = —(£i — P ) 2  +  £\ +  P 2  = —£% + £[ + P 2  = P 2  discarding momenta null 

on the cut. The remaining expression is a box with linear integrand which can be 

evaluated and the result expressed as a D =  6 scalar box function,

r  . =   0'l^i23-jl(j +  l) ) 2 (n \p\l )  [lj] (j +  1 n)______________
123"'J (11 f>\n) [12] [2 3] • • • [j -  1 j ] (j +  1 j  +  2) (j +  2 j  +  3) • • • (to -  1 n) P ^ . j

X (/4m/l,D=6) cut (6-75)

so we deduce, using the arguments of the previous section, that the coefficient of the 

box is

fD=6 =  •______________ U\P\U  +  l ))2(n \ P W  [1 j] O' +  l n )_______________
71 (1| ^ ln> [12] [2 3] • • • [j — 1 j] (j +  l j  +  2) (j +  2 j  +  3> • • • <n — 1 n> P 2 ’

(6.76)

where P = Pi2 3 -j-  This is a generalisation of the coefficient C2 within the six point 

amplitude ^4(1“ , 2_ ,3+,4~, 5+, 6+).

As a further example, by looking at the C n . . . j - \  cut we can deduce that the am

plitude,

A N =1  chtaU( r 2 -  , . . y  _  i r j + { j  +  1 ) +  . . . k -  . . . ( n  _  1 ) + n + )  _ {6  7 7 )

(where legs 1 to j  — 1 and leg k have negative helicity and the remainder have positive 

helicity) contains boxes,
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The first appearance of the two-mass easy box in non-MHV amplitudes occurs at 

seven-point amplitudes. The coefficients are

,£>=691 =  - i
{n\K\k ) 2  (n\K\n  — 1) (k n  — 1) [n — l j ]  (j k)

[n 1] [1 • • * j  -  1] ( j j  +  1) (7 +  1 • • -n -  1 )(j  -  l \K \n  -  1) (n -  l j )  P 2

(6.78)

n=6 _  ■____________________ -  l \K \k)( j \K \ j  -  1) [n j  -  1] (j  k)___________
2 [n 1] [1 • • • j  -  1] ( j j  +  1) (j +  1 • • - n -  l ) ( j  ~  l \K \ j ) ( j  -  l \K \n  -  1 )P 2

(6.79)

Using symmetry arguments various other box coefficients can be obtained from these 

expressions by relabelling.

6.2.3 Twistor Structure

It was observed by Witten [1] that the twistor space properties of amplitudes ex

pressed in terms of the helicity states (A*, A*) can be investigated using particular 

differential operators. Specifically, if points i , j  and k are collinear in twistor space, 

then the amplitude A(i , j, k) is annihilated by the operator

[FijkyV] = ^ j )
[ d \k

4- (ki)
dXj

(6.80)

where the square brackets indicate spinor products rather than commutators. Simi

larly, annihilation by the operator

Kijkl =  i  [ (ij}eibA r A  {ik)ê A r - A  + {il)ê .
'  4 L w /  Q\l Q\b '  ' ' 'dAjdA?

+0'*)e

d d 
dX^dXi  

d d
dXf dXf dXldXl

^  -  {kl)e°b̂ r , (6.81)
A? dXldXV
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indicates co-planarity of points i , j ,  k and I in twistor space.

Here we will explore the twistor space structure of the box coefficients of the N  = 1 

amplitudes. At tree-level an important implication of the CSW-formalism is that the 

twistor space properties of amplitudes are completely determined by the number 

of minus legs. For this reason we organise the one-loop amplitudes according to the 

number of negative helicities. We have investigated the twistor space properties for all 

the possible 5-point box coefficients and all the 6-point box coefficients together with 

the n-point coefficients of the previous section. This was carried out by generating sets 

of on-shell kinematic points consisting of specific values of A* and A* and determining 

the action of the operators at these points.

For the six-point amplitudes there are three different classes of amplitudes organ

ised by the number of negative helicities: MHV-amplitudes, next-to-MHV amplitudes 

and Googly MHV-amplitudes. For the n-point amplitudes we have extended certain 

six-point amplitudes by adding extra plus legs to the MHV side of the cut and ex

tra  minus legs to the Googly side. This produces the following classes of n-point 
configurations: (-------— I------ 1------1------ (-) and (-------— I----- 1-------(-).

For the MHV-amplitudes all helicity configurations for the box coefficients are 

holomorphic and are thus annihilated by any F^k and Kijki operator, as noted in [61]. 

The geometric picture of these configurations is simply a line in twistor space.

Now we consider next-to-MHV amplitudes with three minus helicities. By acting 

with the operators we find that the box coefficients are annihilated for any 

four-points,

i jk l
rF
'"next to MHV =  o, (6.82)

indicating a  geometric picture where all points he in a plane in twistor space.

The line structure of the box coefficients can be deduced by acting with the F^k 

operators. In the cuts we have used to determine these coefficients, there is a MHV 

tree amplitude on one side of the cut (the “mostly plus side”) and a Googly MHV tree
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amplitude on the other (the “mostly minus side”). The box coefficients calculated 

from each cut will be annihilated by F^k when i, j  and k are any legs lying on the 

mostly plus side of that cut, indicating that these legs define points in twistor space 

that lie on a line. Similar behaviour was found for the box coefficients in N  = 4 

amplitudes [51, 66].

For the q(> 3) minus configurations, the box coefficients are only annihilated by 

Fijk operators where all three of the points lie on the MHV, mostly plus, side of the 

cut used to calculate them. These points will lie on a line in twistor space. Hence the 

box coefficients are annihilated by any Kijki operator where three or more of these 

points he on the line. For generic points in twistor space, we have confirmed explicitly 

that only these Kijki operators annihilate the box coefficients. The geometric inter

pretation is thus of n  — g-points lying on a fine with no restriction on the positions 

of the remaining g-points. In general, if a box has a cut in the channel and 

AtTee( i . . .  j )  is a MHV tree amplitude, then the box coefficient is supported on con

figurations in twistor space where points i . . .  j  are collinear. If there are two or more 

such cuts, this would imply a support of two or more lines with the remaining points 

unrestricted. When any pair of these cuts have a common leg, the corresponding lines 

intersect at the common point.

We have presented explicitly the results for the N  = 1 chiral multiplet. Since the 

N  = 1 vector multiplet is a linear combination of this and the N  = 4 multiplet, the 

box coefficients of the N  = 1 vector multiplet will also have planar support for next 

to MHV amplitudes.
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6.3 One-Loop Gluon Scattering Am plitudes in The

ories with N  < 4 Supersymmetries

In this section we use Generalised Unitarity techniques [56] to calculate the coefficients 

of box and triangle integral functions of one-loop gluon scattering amplitudes in 

gauge theories with TV < 4 Supersymmetries. We show that the box coefficients in 

N  = 1 and N  = 0 theories inherit the same coplanar and collinear constraints as the 

corresponding N  = 4 coefficients. We use triple cuts to determine the coefficients of 

the triangle integral functions and present, as an example, the full expression for the 

one-loop amplitude A N=1( 1", 2~, 3“ , 4+, . . . ,  n+).

6.3.1 R elationships between the B ox Coefficients o f different 

Supersym m etric M ultiplets

We first show that the box coefficients for the three matter contributions are not inde

pendent for a certain class of box functions that we refer to as MHV-deconstructible 

boxes, where the term MHV-deconstructible simply refers to a box integral fuctions 

that reduces to four MHV tree amplitudes when a BCF quadruple cut is applied. 

Ultimtely, we will prove that the N  = 0 coefficient can be derived from the N  = 4 

and N  = 1 coefficients. For MHV tree amplitudes the contributions from the non

scalar particles can be related to that of the real scalar via Supersymmetric Ward 
identities [11, 41] and are simply,

=  (x)±2 hAt™((e1 y , i u . . . , i 2 , ( W ) ,  (6.83)

where h =  1/2 for fermions and h = 1 for gluons and x  = (l\ ia) /  (l2  ia) with ia being 

the negative helicity gluon leg. The contribution to the box coefficient will then be

(X )2h x real scalar contribution, (6.84)
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where X  =  X1 X2 X3 X4 , and Xj is the factor from the j- th  corner.

When we consider the contribution from a Supersymmetric multiplet to the loop 

amplitude, we must sum over particle types. For the chiral multiplet the contribution, 

relative to the real scalar, has a factor

p » = 1 = - X  + 2 - 1  =  - ( X ~ 1)2, (6.85)

whilst for the N  = 4 multiplet the factor is

p " - *  =  x *  _  4X - +  6  -  4 ±  +  i j  =  =  ( , * - ! ) * .  ( 6 .8 6 )

For N  = A boxes we also have solutions where the two cut legs attached to a corner 

have the same helicity. Such tree amplitudes axe only non-zero if the cut legs are 

gluons. We refer to such configurations as “singlet” contributions. It is the remaining 

“non-singlet” contributions which can be obtained from the scalar by applying a 

factor of p N==4. We thus have

£ N = 4 non—singlet    ^  AT—4 -  real scalar £  N = 1 chiral    ^  N =  1 ̂  real scalar  gy^

which given that p N=A = (p^ =1)2 yields

( X N —1 ch ira l\2

N = 0  = 2- h n  dj-T . (6.88)q  N = 4  n o n -s in g le t  v  '

This formula applies to any box which is MHV-deconstructible. It can be used to 

determine the N  = 0 (or scalar) coefficient from the two Supersymmetric coefficients 

provided we have identified the non-singlet contribution in the N  =± 4 case.
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Not all box coefficients are MHV-deconstructible. For example in the amplitude

A ( l- ,2 - ,3 +,4 - ,5 +,6+,7+) (6.89)

the box

will have a NMHV corner. The scalar tree amplitude at this corner is of the form

Ci C2
-̂ 671 ^712

(6.90)

where Ki.,j =  (ki + . 

of the form

-I- kj) and the amplitudes for other particles types [68, 69] are

h C* h C2
x \ t? t  + xxVfi-6 7 1

2 A''2 ’^712
(6.91)

which leads to box coefficients which are a sum of two terms

c — ca +  cb , (6.92)

each of which satisfy eq. (6.88) individually,

( X N = 1  c h ira l\2  ( ~ N = 1  ch ira l\2
z N = 0  _  o  \ CA___________________)_____  i  ~  N = 0  _  o  \ CB ___________________)_____  / f i  Q o \

A  ~  N=A non—singlet B  ^ N —A non—sing let ' V /

CA  CB

This formula has obvious generalisations to higher point box coefficients.
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6.3.2 Exam ple Box Coefficients

In this section we present some specific examples of “MHV-deconstructible” box co

efficients. We use color ordered amplitudes throughout and only present the leading 

in color expression.

As we discussed in section 4.5, there is a choice of representations for the box 

integral functions. There are scalar box integral functions and F-functions which have 

zero mass dimension and are related to the former by the removal of the momentum 

prefactors [8],

h  = L f . (6.94)

We denote the coefficients of the scalar box functions as c* and those of the F-functions 

as Cj. Both the di and c* satisfy the relations eq. (6.88).

In all cases we present the N  = 4, N  = 1 and N  = 0 results. For the N  = 4 case 

the results are generally already known [8, 9, 51, 71] whilst the six-point N  =  1 box 

coefficients appear in [15].

M HV box coefficients

Consider the case of MHV amplitudes where all box coefficients are known and 

we may check the relationship eq. (6.88). In general, the box functions are “two- 

mass-easy” boxes and single mass boxes. The N  =  4 non-singlet terms occur where 

there is a single negative helicity leg in each massive corner. The N  = 4 amplitude 

was calculated in [8] and the N  = 1 in [9] (the five-point amplitude appeared earlier 

in [34]) whilst the N  = 0 coefficient was computed by Bedford, Brandhuber, Spence 

and Travaglini [72]. Denoting the two negative helicities as i and j  and considering 

the box with two massless legs m i and m2, the coefficients of the F-functions are

C N = 4  =  4 t r e e x l j
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c

c

77117712

( ) (6.95)

where

77117712
(im i) ( im 2) ( j m i) ( jm 2) 

( u ) 2 (mi m2)2
(6.96)

and we use spinor inner-products, (j I) =  (j |/+), [ j1} =  {j+\l ). Clearly these 

amplitudes satisfy the relation eq. (6.88).

Six-point N M H V  box coefficients

All boxes for the six-point amplitudes are MHV-deconstructible and the box co

efficients are known for both N  = 4 and N  — 1 [9, 15], so we can apply eq. (6.88) to 

generate the coefficients of the scalar boxes. The amplitudes with all-positive helic- 

ity legs and those with one-negative helicity leg are non-zero in non-Supersymmetric 

theories, however these amplitudes are rational functions with no scalar box contri

butions. Thus, the two independent amplitudes with non-vanishing box coefficients 

are the MHV case (or MHV), which was covered in the previous section, and the 

NMHV case with three negative helicities.

There are three independent amplitudes with three negative helicity legs:

The N  = 4 amplitude only has singlet contributions in this case.

The second amplitude, A( 1~, 2“ , 3+, 4~, 5+, 6+), does have a non-trivial box structure,

A ( l- ,2 - ,3 - ,4 + ,5 +,6+), A (l- ,2 ~ ,3 +,4 - ,5 +,6+) and A (l- ,2 +,3~ ,4+,5 

these, the first has vanishing box coefficients for TV =  1 and TV =  0 [14],

ytJV=°’1( l - ,2 - ,3 - ,4 +,5+,6+)|box=  0. (6.97)
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A ( r , 2 ~ ,  3+, 4“ , 5+, 6+)|box =  c . F l t  +  c2F S “ +  +  < ^ 5 ,2 mh i „ r-i2 mh , ^ 771 lm  , „  zrilm

which is depicted

(6.98)

4~ c- +  Ci+ c,+  C2

Of these coefficients, only three are truly independent, since under flipping, conjuga

tion and relabelling,

c i  c 3 > C4  C5

Explicitly the independent box coefficients are,

(6.99)

Cl
N = 4 ,  non—singlet  ___

,  N —l  chiral 
' 1

= I

=  I

(3+ | / f | l +)4
[23] [34] (56) <61) < 2+ |/f |5+ )(4+ |^ |l+ )if2 ’ 

<51) (3+ |^T|l+)2(3+ |/('|5+)
[2 3] <5 6) <61) (2+|/f |5 +)(4+ |/f |5 +)2’ 

iv=o <15)2 [34] (3+|/f |5 +)2(4+ | / f | l +) l f 2

K  =  K 2U,

=  2 i
[23] <56) <61) (2+|/T|5+)(4+|/f |5 +)4 ’

(6.100)

N = 4 ,  non—singlet     (3+ lft'|4+)4_____________
2 [12] [23] (45) (56) < l+ |/i'|4+ )(3+ |^ |6+ )ff

N —l  chiral    • _
[31] <64) (3+ |/f |4 +)2 

2 [12] [23] (4 5) (56) ( l+ |/i '|6+)2’ 123’
n =0 =  n-[31]2 (64)2 <l+|/f |4 +)(3+|/f |6 +)A'2 
2 [12][23](45)(56)(l+ |/f|6+ )4 ’
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N = 4 ,  non—singlet 
c 5

N =  1  chiral
5

r N= 0  
c 5

The remaining amplitude, ^ 4 ( 1 2+, 3~, 4+, 5~, 6+), contains all six one mass and all 

six “two mass-hard” boxes,

'A (l“ 2+, 3",4+ 5 " ,6+)box =  £  Oi/i? +  £ ( 6 . 1 0 3 )
t=l t=l

These are not all independent and symmetry demands relationships amongst the s,

a3( 123456) =  a 1(345612), aB(123456) =  ^(561234),

a4( 123456) =  a2(345612), a6(123456) =  a2(561234),

a2( 123456) =  ^(234561), ^(123456) =  a 1(321654), (6.104)

._____________ (6+|/ f |4 +)4_____________
[61] [12] (34) (45) <6+|/f |3 +)(2+| fC\5+) K 2  ’

<6+| ft~|4+)2(6+| /T|5+)
[61] [12] <3 5)2 (2+| / f  |5+)i^2 ’

(6.402)
(35) [61] [12] (2+ |K \ 5 +) K 2

K  = K :345?

where ax denotes ax with (i j)  [ij\. Thus there is a single independent a{. Similarly 

we can use symmetry to generate all the b^s from b2. The expressions for ax and b2  

are,

N = 4 ,  non—singlet     (2+lffl5+)4______________
1 [12] [23] (45) (56) (l+|/fc'|4+)(3+|/i'|6+)A'2 ’

»-!.«*«« =  . (2+|/f |5 +)2( l+ |/t'|5+)(3+[ft'|5+)
1 [13]2 (45)(5 6)(l+ |/f|4+ )(3+ |/f|6+ )A '2 ’ 123’

a N=o =  [12] [2 3] ( l+|/ f |5 +)2(3+ |/f |5 +)2
: [13]4 (45) (56) <l+ |/f |4 +)<3+ |/f |6 +).ft'2 ’ K ' 1
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6N = 4, n on —sin g le t 
2

i JV=1, ch ira l 
° 2

t ______________ <2+l/t'|5+)4______________
[12] [23] (45) (56) <1+|/lT|4+> <3+1/f 1 6 + )^  ’ 

<2+|/t'|5+>2<3+[/r|5+><2+|/r|4+)
[12] (56) (3+ |/f|6+)(l+ |/f|4+)(3+|/f|4+>2 ’ 

[23] (45) (3+| | 5 +)2(2+ | / f  |4+)2jt'2 
[12] (56) (3+ |/f|6+)(l+[/f|4+)(3+ |/f|4+)« '

K  =  K 123. 

(6.106)



CHAPTER 6. N  < 4 ONE-LOOP GLUONIC AMPLITUDES 120

Two M ass-Hard Box
As an n-point example, we can consider the coefficient of the following box func

tion,
a+ r~ r 4- 1+ b~
2“-*l----------l * - n - l +

n +

which has two massless comers, a comer with a single external positive helicity leg 

and a corner with a single external negative helicity leg. This box is thus MHV- 

deconstructible and can be computed using quadruple cuts and the technique of 

Britto, Cachazo and Feng [56].

Solving for the box coefficients we find

P n = i  =

<i +i/^i™+) <a+i/^i6+)
K 2 [a 1] (nb) (K2 [a 1] {nb) -  < l+ |# |n +)<a+|/f|&+» ’

(6.107)

where K  =  Ki _r  and the box coefficients are given by,

JV=4 non—singlet   •______________________ Snl(fZ |/^|6_)______________ _________
[12] . . .  [r — 1 r] (r +  1 r  +  2) . . .  (n — 1 n) {l+\fC\r +  l +){r+\f{\n+) ’

N=1 chiral _  M  (bn) { K < 2  M ] (nb) -  (1 +\f i \n+)(a+\f i \b+) )Snl(K 2 ){a+\fi\b+ ) 2

*[1 2].. [r — 1 r] (r 4-1 r +  2).. (n — 1  n) {l+\f( \n+)2 (l+\fC\r + 1 +) {r+ \ f i \n +) ’

^ =0 _  ._______ [a l]2 (bn ) 2  (K 2 [a I] {nb) -  {l+\fC\n+){a+\f<:\b+) f  snl(K 2 ) 2________
^[l 2] . . .  [r — lr] (r +  l r  +  2) . . .  (n — In ) ( l+ |/ f |n +)4( l+ | / f | r  +  l +){r+\f(\n+) ’

(6.108)

The One Mass Boxes
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For a one mass box, adjacent massless legs must have opposite helicity [56] to 

yield a non-vanishing result. Using parity we need only consider the case where the 

massive corner is mostly positive. The case where exactly two of the massless legs 

have positive helicity is just the MHV case considered previously.

The remaining case where exactly two of the massless legs have negative helicity 

is a contribution to the NMHV amplitudes. Specifically we have the one mass scalar 

box:
1“

Using the quadruple cuts we can determine the coefficients in the three cases,

, N = 4, non —sin g le t __

, JV= 1 chiral

N=0

=  %

=  I

[12] [23] <45)... (ft +  1 ).. .  (n -  In) {l+\f(\i+)(3+\fi\n+)K2 ’
___________ (2+|ff|»+)2( l+ lftN+)(3+ lffH+)___________
[13]2 (4 5 ) . . .  (i i + 1 ) .. .  (n -  1 n> <1+1 |4+> (3+1 fC\n+) K* ’

=  2 i-
[12] [2 3] ( l+ |/fT|i+)2(3+ |̂ ST|i+):

[13]4 (4 5) ...(»* +  1 ) . . .  (n -  1 n) (1+| f(\4+y ( 3 +\fC\n+y K 2

(6.109)

with K  =  K 1 2 3 .

T he Two M ass-Easy Boxes

In the case of two mass easy boxes, there are no solutions to the kinematic con

straints if the massless legs have opposite helicity, so c Ar=0, c N=1, chiral and c 7V=4, non~sin9 iet 

vanish for such configurations. As an example of a non-vanishing two mass easy box 

we consider the box below, which has a single negative helicity leg at each corner.



CHAPTER 6. N <  4 ONE-LOOP GLUONIC AMPLITUDES 122

9 “ 1't

9 + 1+ fc-

Setting, K i  =  fc2 +  k3  + .. +  k} +  .. +  kq- i  and K 4  =  kq + 1  +  .. +  kk +  •• +  kn, we find,

c  N = 4, non—singlet =  / f 2K 4 |fc- ) 4 ,

N -lc H ir a l  _  < (g+l j +) (l + l f a \ j +) U + l f i # +) <g+l fa\>=+) ( T l^ # * ) 2
V  [I?]2

*=<, _  „ j (q+\ m m +\ m m +\ m +)2 (q+\ ^ 4 k + ) 2

V  [!,]« ’ (

where,

V =  K \ K \  (9+ | ^ 2|2+>(l+ | ^ 2|g - l + ) ( l + | ^ 4|g + l +)(g+ |/<:4|n+)

x (2 3) (3 4).. (q -  2 q -  1) (q +  1 q +  2) (q +  2 q +  3).. (n -  1 n ) .

(6 .111)

6.3.3 Twistor R elated Properties o f Box Coefficients

The results for the twistor structure of the box coefficients are relatively simple. We 

find that the box coefficients within the MHV amplitudes have collinear support in 

twistor space

Fijkc N=4 MHV = Fijkc N = 1  MHV =  Fijkc N=° MHV = 0, (6.112)

while box coefficients within NMHV amplitudes have coplanar support
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Kijkic N=4 NMHV =  K ijkic N = 1  NMHV = K ijklc N=° NMHV =  0 , (6.113)

in twistor space. The coplanarity of the box coefficients for the N  — 4 amplitudes 

was shown in [51, 66]. It was verified for the N  = 1 box coefficients in [15].

In the generic NMHV case, where we have a three mass box, the legs will have 

support upon three intersecting lines in twistor space, with the legs at each massive 

corner being collinear. The geometric picture of this is identical to that of N  = 4 [71].

6.3.4 Triangles from Triple Cuts

To obtain the coefficients of triangle integral functions we consider triple cuts [58]. 

This corresponds to inserting three 8[if)  functions into the four dimensional integrals. 

Specifically we consider,

J -  4  -  ffi)<54(4 -  4  -  K2)8(^)S(el)6(el)

xyl,lee(4 , ku . . . , k r, e 2 ) A u « ( - e 2 ,  kr+1, . . . ,  fcr., 4 M tree( - 4 , kr,+1, . . . ,  kn, - 4 ) .

(6.114)

Both triangle functions and box functions contribute to this triple cut. As a strategy, 

one can first determine the box coefficients from quadruple cuts and then subtract 

these from the triple cut to obtain the triangle coefficients. Unlike the quadruple

cuts case, the three 8{i^) functions do not freeze the integral, so we must carry out

manipulations within the cut integral to recognise the coefficient.

As an example application of triple cuts, consider the amplitude

A  2” , 3", 4+, 5+, . . .  , n +) . (6.115)
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This amplitude is particularly amenable in that it contains no box integral func

tions. This can be seen by examining the integrals in a two-particle cut [14] or, fairly 

obviously, by observing that there are no solutions to the quadruple cuts.

Consider the following triple cut:

with the momenta on the two massive legs being P  =  fcr+1 + . . .  + kn + ki and 

Q = &3 +  &4 +  . . .  +  fcr . Within the cut integral, where the cut legs are scalars, the 

product of the three tree amplitudes is

<l*i)2 CUr)2  ̂ <34}2 <34}2
(r +  1 r  +  2 ) . . .  (n 1) (1 £i) (£i £r) (£r r + 1) (3 4 ) . . .  (r -  1 r) (r £r) (£r £2) ( £ 2  3)

To obtain the contribution from the N  = 1 multiplet we must multiply this by p N ~ 1 

within the integral. Using

1 = [ilir]  J _  =  M  . 1 [ 4 2 ]  =  [ 4 2 ]

( t i t r )  P 2 ’ { h £ r )  Q 2 ’ a n  (r£r) (r  £r) [£r 2 ] (2+\ f>\r+y
(6.117)

this product can be rearranged to give

__________________________ FlU] x p N = 1 __________________________
(2+|P|r+> (2+ |P |r +  1+) (3 4 ) . . .  (r -  1 r> (r +  1 r  +  2 ) . . .  (n 1) P 2 Q2  l 2) '

(6.118)
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where much of the denominator can now be taken outside the cut integral and

F[4] =  (1 4 )  <14 )2 (3 4 )  (3 4 ) 2 <2 4 )  <2 4 )  [4  4 ]  [4 4 ]  [2 4 ] 2 . (6.119)

When combining the different particles’ contributions we have

^  < 2 «  (3 4 )  w_, ( ( 1 4 )  (2 4 )  (3 4 )  -  (1 4 )  (2 4 )  (3 4 ))*
(1 4 )  ( 2 4 )  ( 3 4 ) ’ p (1 4 )  (1 4 )  (2 4 )  <24) (3 4 )  (3 4 )  '

( 6 .120)

Thus the loop momentum dependent part of the integrand is

F[£i]pNssl _  <l*r> (3£-r) {M r \  [h 4 ]  [2 i r}2 ((1 £i) (2 i 2) (Sir)  -  {I £r) (2£1) ( s e 2) ) 2 

( Ixk)  ~  { M 2 )
(6.121)

To evaluate this we use the identity

( ( 1 4 )  ( 2 4 )  ( 3 4 )  -  (1 4 )  (2 4 )  ( 3 4 ) )  =  « 3 - |Q P | l+» ^ j | ^ , (6.122)

which is valid due to the momentum constraints. The part of the integrand which 

still depends on the loop momentum can be rearranged

(1 4 )  (3 4 )  [4  4 ]  [4  4 ]  <4 4 )  =  (l 4 )  [4 4 ]  <4 4 )  [4 4 ]  <4 3) 

=  < i - | 4 4 4 4 | 3 +> =  < i~ |/>4 4 # | 3 +) , 

(6.123)
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using +  p ,  and =  $2 ~  Finally we can reduce this to a linear function

by using f i  =  fo +  fe,

(6.124)

where we chose to perform the algebra in such a way as to reflect the symmetry of 

the diagram: this facilitates the identification of the triangle coefficients. To solve 

this triangle we first Feynman parameterise and make a shift of momenta

% ' _  kgaa -  (k2  +  Q Y a r+1 % —  -  k%a3  -  (k2  +  Q Ya r + 1  -  k%.

(6.125)

leading to

m 2 ) m +) x “r+i- (6-126)

Finally, the Feynman parameter integral I[ar+1] can be expressed in terms of the Lo 

functions

where we use the integral functions defined in eq. (6.1).

From the triple cut we can now identify the coefficient of the Lq triangle function as,

____________ « 3 - |Q P |l+» 2(3-|(Q (2P -  P2)P)|1+)____________
(2+|P|r+>(2+|P|r +  1+) (3 4 ) ... (r -  1 r) (r +  1 r  +  2 ) . . .  (n 1) P 2<52 '  ̂ ;



CHAPTER 6. N  < 4  ONE-LOOP GLUONIC AMPLITUDES 127

Similarly, we can determine all the triangle functions present in the amplitude using 

triplet cuts, obtaining the expression for the full amplitude

A tree a n—l t r+[r 2] /Ar l]i_  A (Ko(Sni) +  Ko(jm)) _  . E  Lofe /  h  1
^  * ---------A t o

A n=1 (1~,2~,3~, 4+, 5+, • • ■ ,n +) =

n—2
r=4

.  ^  L0 L„[4r- 2|M r_11]
9 9n,r W 9 2 ^ 'W  ,[r—i] ’r=4 r=4 * 3

(6.129)

which can be depicted in the following way,

^ lw=1( l- ,2 - ,3 - ,4 +  5+, . . . , n +) =  «j><K 0

n — 1 +

+ 2 Z  dn,

1"
2\

- 3 "

+ I^tree +
n + 5+ - 4 +

r  +  l +
n—2

r +  1+
n—2

+  5-* 9n,r /  \  +  h'n,.
3- r+ / [ a A  r  +  2+ £ 4  r+
4+ 3" n+ 4+
r + 2~ 1" 3-

where,

^n,r — 

9n,r ~

h.

________ ((3-|K-r-3 g r -3 |l+))2(3 - |/fr-3(fc2gr-3 ~  K r. 3 k2 ) K r. 3)|1+)________
(2+|K’r_3|r+)(2+|F r_3|r +  1+) (3 4 ) ... (r -  l r )  (r +  l r  +  2 ) . . .  ( n l )~K2r_3 K ? _ 3  ’ 

(S- \KiK i\l+)H3-\KiK i(kr+J ( r- S - K r_3 kT+1 )\l+) (i + 3 i  + 4) 
h  (2+IAil® +  3+)(2+ |/fi|i 4- 4+) (34) (4 5 ) .. .  ( n l )  K f R \

n,r ~  9 n,n—r+ 2  \ (I23..n)—+(321n,.4) >

(6.130)

with Ki = £3 +  £4 +  .. +  fci+3 and If* =  fc2 +  &3 +  .. 4- ki+s . We have checked that this 

expression satisfies the correct collinear limits.

We find that application of the Collinear and Coplanar operators to these triangle 

coefficients exposes no obvious twistor structure. This is consistent with the general
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understanding of the twistor structure of triangle coefficients. They satisfy differential 

equations which suggests there is no simple interpretation with respect to their twistor 

structure. This leads us to the conclusion that the twistor space structure exhibited 

in N  = 4 loop amplitudes extends only to the box coefficients of N  = 1 one-loop 

amplitudes.



Chapter 7 

N  =  4 Fermionic Am plitudes

On-shell Supersymmetric Ward Identities (SWI) impose powerful constraints on am

plitudes in gauge theories, giving algebraic relations between amplitudes with the 

same helicity configuration but different external particle types. These constraints 

apply at any order in perturbation theory. From a Feynman diagram perspective, 

these relationships are most naturally employed to obtain purely gluonic amplitudes 

from amplitudes involving fermions. Motivated by the recent advances in calculating 

purely gluonic amplitudes, we reverse this process and generate amplitudes involving 

fermions from the purely gluonic ones.

In particular, in this chapter we focus on NMHV one-loop amplitudes. As we 

discussed in chapter 2, application of the SWI for these NMHV amplitudes results in 

a system that has rank 2. Thus it would appear that we cannot solve a SWI set for 

NHMV amplitudes unambiguously. However, we show how the SWI can be solved in 

a natural way to obtain amplitudes with two gluinos in terms of the purely gluonic 

case.

We first apply this to six-point tree amplitudes where we can compare the re

sults to known computations. Secondly we determine the one-loop six-point NMHV 

amplitudes in N  = 4 Supersymmetric Yang-Mills theory which involve two gluinos. 

More generally there also exist SWI which involve amplitudes with two gluinos, four 

gluinos, two scalars and two gluinos plus a scalar. We explicitly determine the two

129
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scalar amplitudes. The SWI then give the remaining amplitudes directly in terms of 

already known amplitudes.

We then extend this principle of applying SWI to NMHV amplitudes to include 

n-point N  = 4 NMHV one-loop amplitudes, where we exploit the fact that one-loop 

NMHV amplitudes in N  = 4 gauge theory can be expressed in terms of MHV- 

deconstructible diagrams and so can be evaluated using quadruple cuts and known 

MHV tree amplitudes. We use the SWI to minimise the number of independent 

diagrams that must be computed explicitly. We use these techniques to determine 

a set of conversion factors that relate two-gluino box coefficients to purely gluonic 

ones. Analysis of quadruple cuts is then used to show how these factors can be 

compounded to give two-scalar and scalar-gluino-gluino box coefficients. Amplitudes 

involving more external fermions and scalars then follow from the appropriate SWI.

7.1 SWI and NM H V Amplitudes involving Gluinos

We show how Supersymmetric Ward Identities can be used to obtain amplitudes 

involving gluinos or adjoint scalars from purely gluonic amplitudes. We obtain results 

for all one-loop six-point NMHV amplitudes in N  = 4 Super Yang-Mills theory which 

involve two gluinos or two scalar particles. Additionally, more general cases are also 

discussed.

7.1.1 Six-point N M H V  Tree Am plitudes

In this section we demonstrate how to generate tree amplitudes involving two gluinos 

from purely gluonic tree amplitudes and then compare these to the known expres

sions [73, 74] which themselves agree with the Feynman diagram computations [75]. 

For color ordered gluonic tree amplitudes there are three independent NMHV helic

ity configurations. When we consider amplitudes with two fermions and four gluons 

there are considerably more depending on the position of the two fermions. We 

restrict ourselves to only consider adjoint fermions (gluinos).
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We first consider amplitudes derived from the gluonic amplitude [67],

Atiee(a~ a~ a~ a+ a+ __________6 U i> to , 9 3 , 9 i , 9 s , 9 ») <234 [23] [34] <56> <61) (2\K^yi\h)

i m ™ w  (7U
t612[6 1 ][1 2 ](3 4 ){4 5 )(2 |if3 4 5 |5 )’  ̂ ' 1

where, (A\Kabc\B) =  (A +\jka +  fa  +  jkc\B+) =  [Aa] {aB) +  [Ab\ (bB) +  [Ac] (c B ). 

The amplitudes involving two fermions which are related to this purely gluonic am

plitude can be obtained by conjugation, relabelling and flipping (i.e. v4(1234556) =  

A(654321)) from the following four,

^ ( A i , 92193 > A4 ,95,9e)i  A.gree(gx , A2 , g$ , A4 , g£, g$ ) , (7.2)

> 92 > A3 , A j , g t  :9q)i > A2 , <73 , g2 , Ag", pg"). (7-3)

The SWI relating the first three of these amplitudes to the gluonic amplitude is 

given by,

0 =  (lr/>An(A7, ^ , ^ , A J , ^ , ^ )  +  (2 T/)An(pf,A 2 ,^3 , A f , ^ , ^ )

+ (3 v) A„(pf > 92* A3  , AJ, gt) -  (4 rj) An(g i , g^, 93 , gt,  gt,  g})-

(7.4)

As we discussed in chapter 2, this SWI set has rank 2 and hence, in principle, is not

sufficient to determine the fermionic amplitudes in terms of the gluonic. However,

when we utilise their inherent symmetries, we can unambiguously determine these 

fermionic amplitudes. The basic idea is to look for identities of the form,

A  <177) +  B  (2rj) +  C (Sri) -  D  (477) =  0, (7.5)
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where the form of D  is motived by the terms in the numerator of the compact expres

sions for the gluonic tree amplitudes eq. (7.1). We shall search for solutions where 

A, B  and C  are polynomial in the spinor invariants {ij)  and [ij], so that the gluino 

amplitudes are free from spurious singularities and poles.

Equation (7.1) contains two terms which we examine individually. Writing the 

second term as {6\Kqi2 \3)X and focusing on the the (6|i^6i2|3) factor, the Schouten 

identity yields,

(6|Ke12|3> <4t?> =  -< 6|if612|i7> <34) +  <6|/fel2|4) (3r/>

=  <6|/f612|4> <3r/) -  [61] <34) ( I t ? )  -  [62] <34) (2r?). (7.6)

This implies that the following are solutions of the SWI eq. (7.4),

^r(A r,S2-,ff3 '.A 4.ff5+.S6+) =  — [61] <34>X

-Alsree(<?i j A2 , <73 , A J, g§ , Pg") =  — [6 2] (3 4) X

A r(9 r,S 2 ~ ,A i-,A + ?5+, ff6+) =  <6|tf612|4>X

A6r“ (sr>S2“ .S3_ ,S4'>ff5+,56+) =  (6 |if6i2|3 )X . (7.7)

Similarly, writing the first term as {4\K2 m\1)Y we find,

( 4 | i f 234| l ) ( 4 7 ?) =  < l | i f 2344 | >7)=t 234 ( l > ? > - ( 2 | J f 23 4 | l ) ( 2 7 J > - ( 3 | K - 234 | l ) (3» /> ,

(7.8)

which suggests a second solution to the SWI of the form,

Ag (A,, p2 > 9 3  > A4", f f s  * s t ) — 2̂34!̂
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4 reete r ,A 2- , s 3-,A + 9 t , g t )  =  - { 2 \K2 m\ 1 )Y  

A?ee(P r^ 2 ‘>A3 > A j ',^ ,^ )  =  -(3^23411)^

=  (4|^234|1>^. (7.9)

The two gluino tree amplitudes are thus,

i(41*:234|l)2(3|*:234|l)
*234 [23] [34] <56) (61)(2|if234|5) 

»(6|K-612|3)2(6|K-612|4)
*612 [61] [12] <34} (45) <2|tf612|5) 

»(4|ir234|l)2(2|K234|l) 
<234 [2 3 ]  [3 4 ] ( 5 6 )  ( 6 1 > ( 2 |A - 234 |5 )  

»<6|ir612|3)2 [26](34) 
[61] [12] (34) (45) <2|/T612|5)

   i(41-K234| l )2<234____
<234 [23][34](56)(61)<2|ir234|5) 

»(6|ft6i2|3)2 [16 ](3 4 )

<612 [61] [12] (34) (45) (2|if612|5) V ' ’

In principle there is some ambiguity in these solutions since the coefficients of 

(6|K6i2|3) and (4|lf234|l) are not unique, i.e.,

<6|fr6i2|3 )x  +  (4|A:234|i>y =  (6|Jf812i3) ( x  +

+  (7 1 1 >

However, by taking X  and Y  to be the values that appear in the gluon amplitudes 

we do not introduce any of the unphysical singularities/poles that arise in the general 

(Z ^  0) case. The remaining amplitude, Agree(g f, A2 , #3 , gt, A5 , g£), can be obtained 

from the SWI,

A(jree(<7i , #2 , A3 , A4 , g£, pg") 

j A 2i9z i A4 , g t  1 9q) 

A^CAj , g2 , 9z , A4 , g£, g£)



CHAPTER 7. N  = 4 FERMIONIC AMPLITUDES 134

0 =  ( l v ) A t6ree(A1 ,g2 ,g3 ,g t ,A £ ,g£ )  + (2'n)At([ee(g1 ,A 2 ,g3 , g f ,A £ ,g£ )

+ (3T7>^ree( ^ ,^ ,A 3 ,f l f J ,A J ,^ )  -  (5r7)A^ree( p r , ^ , p 3 - , ^ , ^ , ^ ) ,

(7.12)

which is obtained by acting with Q on Agree(pf ,#2 idzidti-h-ti9t)-  Here we use the 

identities,

<6|tf612|3><57,) =  (6 |if612|5 )(3 » j)-[6 1 ](35 )(l»?)-[62 ](35> (27 /), 

(41^23411X5^) =  (4|JT23415) <1 r,) -  [4 2} <15) (2 r?> -  [4 3] <15> (3 77) , (7-13)

to obtain,

tree( _ + A +  + , =  - » < 4 |^ 3 4 [ l ) 2 [4 2 ](1 5 )
As ( 9 i . A 2 , ff3, s 4 , A5 ,56 j t234 [2 3 ][34 ](5  6 ) ( 6 1 ) ( 2 | / f 234|5>

i<6|/f612|3)2 [62]<35)
*612 [61] [12] (34) (45) (2 |/f612|5)

This SWI also yields consisteijt but independent expressions for two of the amplitudes 

found previously. For example,

<234 [2 3] [3 4] (5 6) (61) (2 |/f234|5) 
<<6|K6i2|3)2 [61] (35)

*612 [61] [12](34) (45) (2 |/f612|5) 

The expressions eq. (7.10) and eq. (7.15) satisfy the consistency check,

(7.15)

y4gree(Ai ,p2 5#3 i 9 t-> Ajj’ipg’) — AtQee(g1 , A2 ,p3 , A4 ,<75", <75") . (7.16)
L J j - * j + 3
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Thus we have a self-consistent set of six-point, two gluino treie amplitudes for the

helicity configuration (----------b ++)•

Next we consider the helicity configuration (-------1----- b+) and obtain two gluino

amplitudes from the gluonic amplitude [67],

.tree, i<12)3 [56]3
6 ( 3 1 ' 9 2  ' 9 3  ’9i ' 9 5  ’ 9 6  > *123 (2 3) [4 5] <4|tf123| 1) (6 |if123|3>

_____________ i<3|Jir234|l)4_____________
*234 [23] [34] (56) (61) (2|/f234|5)(4|/C234|l>
______________ »(6|g612|4)4______________
*345 [61] [12] (34) (45) (6|Jft'6i2|3)(2|JFr612|5>'

(7.17)

Six amplitudes involving two gluinos are needed to generate all possibilities by rela

belling, conjugation and flipping,

^6ree(Ax, §2 ) A^, gA , g$ , g t ), Aeree(di , A2 , ,g4 ,gt:9t),

Aejree(<7i > 92 5 A3 , A4 , g£, gt),  ^ . ^ ( A ! , g2 , <73*, g4 , Ajf, gt),

A ? e(gi , A2 , g£, g4 , , gt ) , ^ ^ ( A j , g2 , <73", <74 , g t , Ag). (7-18)

These are related to the gluonic amplitude via the three SWI,

0 =  {lrf)Ati ee{Al,g2 ,At , g l ,g t , 9 t )  + (2 r})Ates{gI,A2 ,At ,g4 ,gt ,gt )  

+ (4 v) A 'r ig i , 92, AJ, AJ, gt, gt)  -  (3 rj) i4jree(^ f , g2 , g t , gX,9t,9t),  

0 = (lrj) A r ( A ^ , 9 2 ,9t,  91, K ,  9t)  +  (2 v) fo" A2, gt, gj,  A +, gt)

+ <4 77) A t ^ i g l i g ^ ^ t ^ i i A t ^ t )  -  (5r?) Att ee(g i ,g 2 , g t , 9 4  ,9 t ,9e ) ,

0 -  (1v) Af^iA^^^^gt,gl,9t ,At) F{2r})Att ee(gi ̂ 2  , 93 , 94 , 9 s ,A t )

+ (4 v) A m , 92 , gt, A4 , gt,  Ae) -  (6 v) A t ee(g{, 9 2 , gt, 9l , g t , 9t)-

(7.19)
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To solve the first of these, as before, we find two independent identities,

<6|tf6i2|4>(3»?> =  (6|if6i2|3) {477) — [16] <34) <1 rj) — [2 6] (34) {2 rj) , 

(3^(31^23411) =  *234 (17/>-(2|K-234 |1 )(2 jj)- (41^23411) (4»/>, (7.20)

which give the following solutions to the SWI,

[6 1] (34) X  +  £234F,

[6 2] ( 3 4 ) X - ( 2 | t f 234|l)y ,

(6 |tf612|4)X +  <3|tf234|l>Y, 

<6|tf612|3 > X -(4 |K 234|l>y. (7.21)

-^6ree(A i  j 92  j -^3 i 9 a j 9b ■> 9 q ) — 

■A^igi , A2 , A£,gA ,g£ , g$) = 

^ ( 9 1 , 9 2 , 9 3 , 9 ^ , 9 5 , 9 6  ) = 

^ 6ree(Pi , 9 2  jA3",A4 ,g £ ,g t )  =

We could rewrite the purely gluonic tree amplitude in the form 

(6|i^6i2|4)X +  (3 |tf234|l ) y  by using the identity,

( 1 2 )  [5 6 ] _  < 3 |X 234|1> | ( 6 | ^ 6 i 2 |4 )  2 )

(4|tf234|l)(6 |tf612|3) (4 |tf234|l>(2|if234|5> (6 |^ 612|3>(2|^612|5)-

However, it is more convenient and in line with our philosophy of not generating extra 

poles to use the Schouten identity to produce,

(3 n) (12) [5 6] =  (1 rf) (3 2) [5 6] +  (2 rj) (13) [5 6]. (7.23)

Whether we rearrange to use two identities or use three, we obtain the same solutions,

-  7+ -  + —i (12)2 (23) [56]3
6 ( 3 .»4 .S 5 .f f6 ) *123 (2  3 )  [4 5] (4|A'123|l) (6 |if123|3)
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* (31 A-23411) 3*234

+

-̂ •6ree( ^ i  j ^ 2  > 5 9 a i 9$  ■> 9 § )  =

+

+

■^6^(91  7 92 7 ^ ■ 3 *  7 ^ - 4  7 95 7 96 )  =

+

*234 [ 2 3 ]  [ 3 4 ]  ( 5  6 )  ( 6  1 )  ( 2 | t f 2 3 4 | 5 ) ( 4 | i < : 23 4 | l )

_________ *(6|ir6i2l4)3 [61] (34)_________
*345 [61] [12] (3 4) (4 5) (6 |if6i2|3)(2 |tf612|5) 

i (12)2 (13) [5 6]3 
*123 (2 3 )  [45] (4 |/r 123| l> ( 6 |^ 123|3) 

-^ (3 |^ 2 3 4 ll)3(2 lK 234|l)
*234 [23] [34] (56) (6 1) <2|/sr234|5>(4|iC234|l)
_________ *(6[^6i2l4)3 [6 2] (3 4)_________
*345 [61] [12] (3 4) (4 5) (6 | # 612|3> (2|X6i2|5) 

- z ( 3 |^ 234| l )3(4 |ii:234|l>
*234 [23] [34] (56) (61) (2\K2 3 4 \5)(4\K2 M\1) 

*(6 |^6i2|4)3(6|K612|3>
*345 [61] [12] (34) (4 5) <6|X612|3)(2|X612|5)

(7.24)

The remaining two amplitudes can be obtained similarly. 

For the final gluonic configuration,

Ae “ (9 i ,gi,gz,gi,gT>, 9 t )  =  *<2|ir123|5)

+

+

*123 [12] [23] (45) (56) (1|K123|4)(3|A'123|6)
_________  t (6 |/ir:B4|3)4______________
<234 (23) (34) [56] [61] (5|K234|2)(1|K'234|4)
______________ <(4 | g 345| l )4______________
<345 (61) (12) [34] [45] (31X34516) (51̂ 34512) ’

(7.25)

there are two independent amplitudes involving two gluinos,

Air { A . T , At,93<9t,96 ,9e)  , A ! T { 9 l M , 9 3 , 9 i ^ , 9 t ) ,  (7-26)

which we can obtain from the SWI,

0 =  7 0e') + (3 7 7 )^ ree(^1" ,A J ,A 3 ,p J ,^ ,^ )
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-  (2 7 7) Alree(g1 , g} ,g 3  , g£) +  <5 7 7) , A} > 0 3  ,dt, As 1 ^ )•

(7.27)

We solve this using the identities,

{2|/C123|5> <2 t7) =  <123 (5 17) -  (1|A'123|5) (1 77) -  (3 j/fm |5> (3 17)

(6|JC234|3> <2»7> =  <6|Ar234|2) (3rj) +  <23) [56] ( 5 77) — (2 3 )  [61] (It?)

<4 |t f 345|lM 2 *j> =  <4 |iC345|2 > <1 r/> +  [3 4] <12> <37 7 ) -  [4 5] <12) <5»;>, (7.28)

giving the tree amplitudes,

- i(2 |if l2 3 |5 > 3(l|/f l2 3 |5 )
/ i r ( A i . A2 , S3 .34 . 5s . 9e ) =

+

^ 6r“ (sr> Af, AJ, 5^, S3 ,96 ) =

+

+

/16r“  ( s f . AJ, fe , 3^, As . Sft) =

+

+

<123 [1 2 ] [2 3] (45) (5 6 ) (1|K l23\ i )  { Z \ K 123\6) 

-i(6|iC 234|3) 3 <2 3) [61]
<234(23) (34) [5 6 ] [61] <5|/<r234 |2><1 |4>
_________ »(4|A'345|l)3 (4|l<r345|2)__________
<345 (61) (12) [34] [45] <3|tf345|6)(5|tf345|2>

-2  <21 iC12315>3 <31JT12315)
<123 [1 2 ] [23] (45) (56) ( l |/f i23 |4)(3|tf123|6)
________ <(6|A'234|3)3(6|K'234|2)________
<234 (23) (34) [5 6 ] [61] (5 |/C 23412> <1 |J£T234|4) 
_________ i(4|jr345|l )3 [34] <12)_________
<345 (61) (1 2 ) [34] [45] (3 |A:345 |6 >(5 |/f345|2 )
 _____________ <(2|<^123 |5 )3<123_______________

<123 [1 2 ] [23] (4 5) (5 6 ) (l|tfi23|4)<3|tf123|6)
________  ̂<61 A~23413) 3 (2 3) [5 6 ]_________
<234(23) (34) [56] [61] (5|K234|2)(l|ir234|4)

—2<4| JC34511) 3 [45] (12)
<345 <61) (12) [34] [4 5] (3 |if345 |6 )(5 |A-345|2 >

(7.29)

The six-point two-quark amplitudes have been computed previously [75] and can 

be obtained in compact expressions using recursion relations [73]. Our results for
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adjacent gluinos match these exactly - demonstrating that, at tree level, by respecting 

the symmetries and factorisation structures of the amplitudes we can use the SWI to 

generate the correct results.

7.1.2 Six-point One-loop N M H V  A m plitudes w ith Two Gluinos

The SWI apply to all orders in perturbation theory, so we can apply our technique 

to one-loop amplitudes. Furthermore, N  = 4 one-loop amplitudes can be expressed 

as sums of box integrals with rational coefficients [8]. Since the box integrals are an 

independent set of functions the SWI for these amplitudes will apply box by box.

For the six-point, one-loop, NMHV amplitudes the only types of box contributing 

are the “two mass-hard” and one mass boxes. These appear in certain very specific 

combinations [9],

There are only three independent W®  since We,+3  ̂ =  Wq \  The W®  have certain 

features that will extend to amplitudes involving fermions. In particular, it was shown 

in [76] that the IR divergences of the W q, represented by the pole terms in e, are such 

that the loop amplitudes we calculate should be related to the corresponding tree 

amplitudes via the simple relation [76],

(7.30)
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a One loop  Aq — Cr
- 1  6

e * j = 1  \  s j , j + 1

(7.31)

This leads to the sum of the coefficients of the W®  being proportional to the tree 

amplitude [9].

The first set of amplitudes we shall consider are based on the gluonic amplitude,

^ = 4( l - ,2 - ,3 - ,4 +15+>6+) =  cr [BiW 6(1) +  B2W6<2) +  B3lV6(3)] ,  (7.32)

where,

and,

Bi

B 2

£3

=  B 0  = i- (*123)*
[12] [23] (45) (56) <1|^i23|4)<3|/T123|6> ’

=  f < w i > y s + + f M M V B . ,
\  2̂34 /  \  2̂34 J
/ " ( f e j s )  y  + / (i2 )[4  5iy  i
V 3̂45 J V 3̂45 J

(7.33)

B+ — B 0 \ j^j+i , B -  — B[

where the operation 1 implies [i j] +-> (j i). This amplitude has two symmetries,

(7.34)

51 : < “4( l - ,2 - ,3 - ,4 + ,5 +,6+) =  [ ^ ^ ( l ” , 2~, 3“ , 4+, 5+, 6+ ) ] ^ +3,

5 2  : ^ =4( l - ,2 - ,3 - ,4 +,5+,6+) =  [ ^ ( r ,  2~, 3 - ,4 +, 5+, 6+ ) ] ] ^ ,

(7.35)

which impose constraints on the coefficients. Under <Si, Wi —► Wi so we have,
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S  i  : B i  — ► B i (7.36)

whereas under S 2 , W\ —■► Wi and W2 W3 so that

S 2  '• B\  — > B 1, B 2  .63. (7.37)

The coefficients clearly satisfy these conditions when we note that B q itself satisfies,

Applying Si to the gluino amplitudes provides a set of consistency conditions that 

enable us to resolve the ambiguities that arise in solving the SWI.

As for the tree amplitudes, we can generate all the possible two-gluino amplitudes 

from a minimal set of four by conjugation, relabelling and flipping. These gluino 

amplitudes have a subset of the invariances of the gluonic amplitudes. Specifically, 

M9i,  A 2 ,9 3 ,9 4 , Af, g£) is invariant under Si and S2, while A(A7 , g£, # 7 , AJ, gt, gt) 
is only invariant under Si, A(gjj ,(7 7 , A7 , A4 ,g t ,g t)  is only invariant under S2 and 

A ( g i , Ajj", g  ̂1 A4 , gt  1 gt) is invariant under neither.
For this helicity configuration the SWI are,

'• B q  ----- > B q ,  S 2 : B q   ► B q . (7.38)

0 =  (1 rj) A 6 (A1 , g2  ,03 , A t , g t ,  g t )  +  (2 77) A6( ^  , A2 , g3  , A j , gt ,  gt )

+  (3 v) A 6 (gf , g£, A j, A J, g t ,  g t )  -  (4 rj) A 6 (gi,  & , & , gt ,  g t ,  gk) .

(7.39)

and,

0 =  { l v ) A 6( A i , g 2 , g 3 , g t , A t , g t )  + ( ^ v ) A 6( g i , A 2 , g 3 , g t , A t , g t )  •

+  (3t?)A 6 {gi,g 2 , A z , g t , A t , g t )  ~  (577) A &{gjj ,g^,g^ ,gt ,gt ,dt)>

(7.40)
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To solve for B\  we need identities involving (477) and (577). These are,

*1 2 3 (477 ) =  ( l | ^ i 23 |4 ) ( l r 7) +  ( 2 | K 123 |4 ) ( 277) +  ( 3 | ^ i 23 |4 ) ( 377> ,

*123(577) =  (l|Ki23|5)(lr7) +  (2|K123|5)(277) +  (3 |^ i23|5>(377). (7.41)

We can check that these equations are consistent with the symmetries Si, if we have 

solutions,

,4(47?) =  B (177) +  C  (2 t?) +  £> (3 7?),

A ! ( 5 t?) =  B ' (17?) +  C ' (2 7,) +  D '  (3 7?), (7.42)

then we must have,

S, : ( B / A )  -7 ( B / A ) ,  S 2 : ( D / A )  -» ( D / A ) ,  S{ : (C '/A) -  (C 'M ). (7.43)

The coefficients in eq. (7.41) clearly satisfy these constraints. Thus we have solutions,

__________ *(*123)2(l|^123l4)__________
[12] [23] (45) (56) (1\K1 2 3 \4) (S\K1 2 3 \6 ) ’
__________ (̂*i23)2(2 |ifi23l4)__________
[12] [23] (45) (56) (1\K1 2 3 \4){3\K1 2 3 \6)'
__________ *(*i23)2(3 |ifi2314)__________
[12] [23] (45) (5 6) (1 |^ i23|4>(3|^123|6) ’
__________ *(*123)2(21-Ki2315)__________
[12] [23] (45) (56) (1 |^ i23|4)(3|X123|6)*

(7.44)

B \  (A-l ,92  , 93 y ^ 4* , 9$ , 9q) ~~

A 2 , 9z , A i ,  9 t ,  g t ) =  

B \ (9 \ , 92 , A 3 , A 4 , g t , g t )  =  

B \  (^1 ,A2,g3 ,gt, Â ", gt) =

To solve for the first three B 2  s we use the identities,
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(4|i^234|l) (4?7) =  2̂34 ( I 77) — (2|X234|1) (277) — (3|i^234|l> (3r;) ,

(2 3) (477) =  (4 3) (2 77) +  (2 4) (3 77) . (7.45)

Which give solutions,

8 2 ( ^ 1  )P2)53) -̂ 4 > 9$ 1 d t)  ~

8 2 ( 9 1  > -^ 2 > 9z ? , g t i 9 t )  ~

8 2 ( 9 1  > 92 »-̂ 3 j -̂ 4 5 ffct) =

The absence of a second term from the first coefficient is consistent with the ob

servation that this box coefficient does not have a singlet term when we consider 

two-particle cuts in the £234 channel. (This observation would naturally lead us to an 

identity that does not involve (177))

For the final B 2 box coefficient there are three identities we might use,

(41̂ 23411) (577) =  <4|Jsr234|5> <177> -  [4 2] <1 5> <277) -  [43] <15> <377),

(23) [56] (577) -  — (23) [16] (177) +  (6|i f234|3) (277) — (6|Ff234|2) (377),

(23) (577) =  (5 3) (2 77) +  (2 5) (3 77). (7.47)

Of these, only the first two have the correct behaviour under Si. Using these identities 

we find,

|1)3 [42] (15) n  , (2 3)3 [56]3 <6|K234|3)nt-------------- t f+ + -------------4--------------B +,
c234 r234

(7.48)

82(91 > A2 , <73 , g f , Aj", g t )  —
-(4|AT;234

/ (4 |ir234li)3\
V 2̂34 /

- (4 |a :234|i>3(2|a:234|i)
ti234

3,- ( 4 |at234|i >3(3|a:234|i >
234 B-L. +

\ 6 234
/  (23)3 <2 4) [5 6]4

V t i234 B l

(7
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which has the appropriate symmetries. This pair of identities also lead to the same 

forms for the other B 2  coefficients obtained previously.

For the B 3  coefficients, the identities,

(6IK34513) (47,) =  [61] (3 4) (1 ?,) +  [6 2] (34) (2r,) +  (&\K^\i )  (3rj), 

<12) [45] (4 7,) =  -< 51̂ 34512) (Ir,> +  {5| ^ 345|1) ( 2 »7> - (12) [35] (3r,), 

<61̂ 34513) (5r/> =  + [6 1 ](3 5 )(lr,)  +  [62](35>(2r;) +  (6|A'345|5>(37;>,

(12) [45] (5t?) =  -(1 2 >  [43] (37, ) +  {4|A-345|2) ( l » / > - <41̂ 34511) (2r;),

(7.49)

give the following solutions with the correct symmetries under Si,

b . w ,
\  l 345 J  \  r345 /

a f a r . s . A . - . J f . r f . r f )  -  ( a ^ i s g . . a ) b _  + ( ~ M ' ' p f  M )  a ,
\  C345 /  \  r345 /

„  , _ _ + t+ /<6|iF345|3)3 [6 2]<35>\ / - ( 1 2>3 [4 5]3 (4 |^ 345|1>\ t
Bz\9i j A 2 , 9 s  , 0 4  , A 5 , 0 6  ) = -------  74---------------------  } B -  +   ~A-------------- B'_.

\  l 345 )  \  r 345 /

(7.50)

Comparing these with the B 2  coefficients we see that the S 2  symmetry is also satisfied.

We can obtain the gluino amplitudes with helicity configurations (-------1----- b+)

and (— 1----- 1-----h) in a similar manner, i.e. by finding polynomial solutions to the

SWI based on the gluonic amplitudes that respect the symmetries of the amplitudes.

We have verified numerically that these expressions agree with those obtained using 

quadruple cuts. These coefficients are collected in section 7.1.5.

There are straightforward relationships between the box coefficients and tree am

plitudes. As we discussed in section 7.1.2, for the amplitude to have the correct IR 

behaviour the box coefficients must satisfy [9],
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Bi +  Bo +  Bo — 2Atree (7.51)

We have checked numerically that this is true by comparison with the tree amplitudes 

of section 7.1.1.

The twistor structure of the box coefficients is also rather simple. All the box 

coefficients satisfy coplanarity constraints,

KabcdBi = 0 . (7.52)

In fact this is satisfied by each of the terms within Bi individually.

7.1.3 Am plitudes w ith more than Two Fermions

We can use the SWI to obtain amplitudes involving four or more gluinos of the same 

flavour from those involving two gluinos. In the six-point case the tree amplitudes 

involving four and six fermions have been computed directly [77, 27] and also using 

recursion relations [78].

If we consider n-point NMHV amplitudes with negative helicities on legs m*, 

applying the N  — 1 Supersymmetry operator to,

■A-nid 1  J •  • •  } 9mi > • •  •  97712 ’  '  '  '  ^ 7 7 1 3  ’ ’ ’ • A + ...A +  (7.53)

gives the SWI,

0 =  (mi n) A ™ ' ' m 3 'r '3  + (m2 Tj) A™'m*'r's -  (rr)) ^ * 3;s -  (sjj) (7.54)
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where we define,

A^,m3;r,s _  ^ ( 3 + . . ., ^ , . . . , . . . ,  A^a, . . . A + . . . A + . . . , 5+),

A” 3*- =  An(5+ . . . , 5- 1, . . . f f - 2, . . . , A - 3, . . .A + . . . 98+ . . . >S+). (7.55)

This rank two system can be used to solve for the four fermion amplitudes in terms 

of the amplitudes with two fermions. For example choosing rj = mi  gives,

_  {r m l) ^m3\r (S77li) ^ m 3 ; s  g g v

n (m2mi) n (m2mi) n

Since we have used the N  =  1 SWI, all of the fermions in this amplitude have the 

same flavour.

To obtain amplitudes with six gluinos we apply the Supersymmetry operator to, 

- ^ 7 1  ( ^ 1  1 • ’ • 1 9m\ 1 ' • * ^ 7 7 1 2  » ^7713 J '  • * • ’ • ^ 5  * • * J • '  * 9 n  ) »

giving the SWI,

0 =  (mi 77) A™1,m2,m3’r,s,t -  (r rj) A ™ 2 '™ 3 '3 ' 1 -  {srj) A ™ 2 ’™ 3 ’’’’1 ~  (trj) A™2’m3'r's, (7.58)

which allows us to express the six fermion amplitude in terms of four fermion ampli
tudes. For example, choosing rj = r,
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Again the fermions are all of the same flavour. These relations are exact to all orders 

in perturbation theory in any Supersymmetric theory.

For amplitudes involving two fermion flavours we must be precise about which 

theory we are describing and in particular whether our theory contains scalars. Su

persymmetric amplitudes with two flavours of fermions must include at least one 

scalar. For N  > 2 (and indeed for N  = 1 with adjoint matter) the fermions have 

Yukawa couplings to the scalars which simultaneously change both the flavour and 

the helicity of the fermions. Such Yukawa couplings do not contribute to tree ampli

tudes with two gluinos, but they can contribute to amplitudes with four gluinos of 

two different flavours.

In N  =  2 we can generate a SWI by applying Q2  to,

> • ■ • ■ • • . A £ , .  • • AJ+ . . . A2+ . . .,£+). (7.60)

We obtain,

0 = (m1» ? )^ = 2(5ih, . . . , A ^ ; , . . . 5- 2, . . . ,A ^ , . . .A J + ...A 2+ . . . )9+)

+  (m2 jj) A” =2{gl , . . . ,  g~t , . . .  A ^ , . . . ,  A ^ , . . .  AJ+ . . .  A2+ . . . ,  g+)

-  i (m3ij) A%=2( g i , . . . , g - lt . . . g ^ , . .  . . .  AJ+ . . .  K2+...  ,g+)

-  {sn) A%=2{gt ....... g - 1, . . . g - 2, . . . , A 1-s, . . .A l + . . . g f  . . . ,g+),

(7.61)

which can be used to determine the two flavour, four fermion amplitude in terms 

of a two fermion amplitude we have already calculated and a scalar-fermion-fermion 

amplitude which we discuss next.

7.1.4 A m plitudes Involving Scalars

As noted above, for M  > 2 the fermions have Yukawa couplings to the scalars which 

simultaneously change both the flavour and the helicity of the fermion. At tree level,
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this vertex implies that amplitudes of the form,

,4£“ (0 ->A1+,A2+,s ±,...,<rt), (7.62)

need not vanish. These amplitudes will appear in the SWI and must not be discarded. 

In an N  = 2 theory there are two flavours of gluino, A \ Acting with Q2  on,

(7.63)

gives,

0 =  —i (117) A%=2{4*1,92,9$ ,<Pt ,gf , . - - ,gn)

+  (2 v) A n =2 CAl~ » A2~, 93 , 04 , a t , • • • , 9n)

+  ( 3  *7> An = 2 ( A l " > & >  A 3~> 0 4  » ^  * • ■ > 9n)

+  i (4 v) An =2(Ai~> PiT, Ps »AI+> Ps-, • • •»9n )• (7-64)

To solve this we need to find polynomial expressions of the form,

0 =  iA  (177) +  B  (2 77)  -I- C (3 77)  — (4 77) . (7.65)

Given such solutions, there will be relationships between the individual terms of the 

two gluino and two scalar amplitudes of the form,

4 r * ( * r . 9 2 , Si, <t>t, Si+, • • • ,g i )  = ( 5 )  4 r m(A}-,52- >ft", AJ+ ,Si+, . . . , ft.).

(7.66)
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If the appropriate solutions to eq. (7.65) are the same as those used to obtain the 

two-gluino amplitudes in section 7.1.2, then the scalar terms will be of the form,

^ ( ^ 9 2  > 93, <t>t > at, • • • > 9n) = (  j j )  < rm(9i , 92 1 93,9}>9£,---i 9n) •

(7.67)

For gluonic amplitudes of the form,

A t ° n = ' £ x i, (7.68)
i

we might expect amplitudes containing a pair of particles of spin h to have the form,

4 r pair = 'Z (a if - 2 hX i, (7.69)

where h — 1 for gluons, h =  1/2 for fermions and h =  0 for scalars. Such structures are 

apparent in tree amplitudes as can be seen in the results of [73, 74], For example, we

can generalise our two gluino tree amplitude for the helicity configuration (----- -+ + + )

to give,

AN=2(I1- -  -  TT+ + +1 _  (  *234 \ 2 ^ _________ »(4|Jt'234|l)3_________
6 4 .95 ,96) \  (41 ̂ ^23411) /  *234 [23] [34] <5 6> <61) <2|/£'234|5>

+
n i6 ] ( 3 4 ) \ 2 2h_________4(6|/C612|3)3_________
^<6|/Cai2|3>^ i6]2 [61] [12] (34) (45) <2|JftT612|5) ’

(7.70)

where H  represents a gluon for h = 1, a gluino for h = 1 /2 ,  a scalar for h = 0 and 

an anti-gluino for h = —1/ 2. Such formulae are extremely useful when computing 

one-loop amplitudes using cuts (see for example [15, 74]).
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This behaviour extends to the coefficients of the one-loop box functions and we 

give expressions for the box functions for two scalars in section 7.1.5. We have checked 

numerically for a representative sample that the box coefficients thus obtained match 

those obtained via quadruple cuts.

Once we have the two gluino and two scalar amplitudes, the SWI eq. (7.64) gives 

amplitudes such as,

A.(Aj ,A j ,g 3 (7.71)

directly. Given these amplitudes, the two flavour, four gluino amplitudes can be 

obtained directly from eq. (7.61).

7.1.5 Summary o f One-Loop Two Gluino and Two Scalar 

Six-Point A m plitudes in N  =  4 Supersym m etric Yang- 

Mills theory

The amplitudes for the N  =  4 theory are all of the form,

^ ( l ,  2 ,3 ,4 ,5 ,6) =  cr  [c, W ,6(1) +  C2 W , f  +  c3  W f >], (7.72)

with the coefficients q  depending on the helicity and type of the six particles. This 

combination of box functions is given explicitly in eq. (7.30). The amplitudes will 

have one particle denoted H  and a second denoted by H. Again, H  will denote either 

a scalar or A^. The amplitudes are obtained using the specific values of h as defined 
in table 1.
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H H h

9~ 9+ 1

A" A+ 1/2

0" 0+ 0

A+ A- -1/2

Table 7.1: The values of h for the choices of external particle H.

We express the box coefficients in terms of B q and B±  and their conjugates where,

D  _  ,•_______________________ j1 ™ ) 3 _______________________  ( 7  7 V .

0  [12] [23] (45) (56) <l+ |/if|4+)(3+|/(r|6+) ’ ^

and

B + — Bo\j->j+i , B -  — (7-74)

For amplitudes with helicity configuration (--------- 1- + + ) we denote the c* in the

purely gluonic case by B u

< = 4( l - , 2- ,3 - ,4 +,5+

where,

B l = Bo,

b 2  = B* + B*

b 3  = B f  + B* B  +  / B l .  (7.76)
V <345 )  '  \  ts* )
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For ease of presentation we shall denote the box coefficients with fermions/scalars as 

B fb when legs a and b are the H  and H  particles. The solutions for the B f b for gluinos 

were derived in section 7.1.2 and we present them here again in a form that also gives 

the two scalar amplitudes. For the four independent configurations, (ab) — (14), (24), 

(34) or (25), we find,

B}4 =  ( - ■ f 1223- - )  Bo,

B r  =
\  tl23 /

B f  =  ( <2|^ |5))  B o, (7.77)

.4 =  (  *234 V  2h aA

2 4  | - ( 2 | / r 23 4 |l> y -2' >  ( (4 3) \ 2-2,1 B
02 -  1 <4|*234|1> )  ^ + ( < 2 3 ) J  ^

2- 2/1 / / « Ji \ 2-2 h
p34 . / - ( 3 |^ 2 3 4 |1 ) V  , / < 2 4 > V
02 ~  V ( 4 | ^ | l >  )  ( (2 3 )  J 02 ’

25 _  / - [ 4  2 ]< 1 5 > y -2ft A / ( 6 | i f 234|3 ) \ 2- “  B
02 -  (  (41^3411) J 02 +  1723M 56T)  02 ’ (7'78)

p i4 _  <34> [61] \ 2 - 2 A  A  t ( - m u M Y - 2" nB
0 3  ~  \ m ™ m )  3  { (12) [45] )  0 3  ’

=  m p .qxy ~ 2ft^ +
V(6|A'345 |3 > ; 3 V <12) [451 )

,4 _  / '<6|JCM,|4)\ 2- *  4 . (  [35]\ 2- 2ft B 
3 “  l(6|if345|3)J B3 + r i 4 5 j J  3 ’
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25 (  [62] (35) \ 2"2* ( - m M5 \ l ) \ 2~2h B
B > ~  03 +  I  (12) [45] ) (7'79)

Next we have amplitudes with helicity structure (------1-----H-). In the purely gluonic

case, the amplitude is symmetric under,

S i : A%=\  1, 2,3 ,4 ,5 ,6) [ ^ = 4(6 ,5 ,4 ,3 ,2 ,l)]t. (7.80)

In this case we denote the coefficients of the by Dt. These are given by, 

D „ D i, +  D f  ,  +

DS = D$ + D i  =  g _ +  ( '<12) l35l '\ s f_ (781)
\  3̂45 /  \  3̂45 /

As above, we denote the coefficients of amplitudes with particle a of type H  and 

particle b of type H  by Df*. For this helicity configuration there axe six independent 

possibilities,

(oft) =  (13), (23), (43), (15), (25), (16). (7.82)

These six box coefficients are constrained by the system of three SWI eq. (7.19). In 

solving these we must find solutions which satisfy,
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S!  : D f ^ D f  (ab) = (34), (25), ( 1 6 ) .  (7.83)

The identities that give amplitudes with the appropriate symmetries are,

(31̂ 12314X 3 ^) =  t r a  (477) — <1|/£’123|4) (117) — (2|if i23|4) (2?;),

(12) [5 6] (3 77) =  (13) [5 6] <2 7,)+ (3 2) [5 6] (1 >?),

(31-ftT23411) {St/) =  <234 ( l^ )  — (2|-f^234|l) (277) — (4|/f234|l) (47)) ,

(24) [56] (37,) =  (34) [56] (27,) +  (23) [56] (477),

<6|tf345|4) (377) =  (4 3 )[6 1 ] ( l 77) +  (4 3 )[6 2 ] ( 277) +  (6|if345|3)(477),

(12) [35] (37,) =  -< 5|tf345|2) ( I 77) +  (5|K345|1> (2t?> -  (12) [45] <477),

(7.84)

(3|7f123|4)(577) = <3|if123|5) <477) -  [31] <4 5> <177) -  [32] <45) <277), 
<12) [56]<5t,> =  -  (12) [46] <47,) -  <6|/£T123|1) (277) +  (6|/<r123|2) <177) ,

- <3|jr234[l) (57?) =  (3[if234|5) (17,) — (15) [32] (277) — (15) [34] (4 77),

(24) [56] (57,) = - { 2 4 ) [ i e ] { l r , ) - { e \ K 2 3 i \ 2 } ( 4 r , )  +  { 6 \ K 2 3 4 \ 4 ) { 2 v ) ,

<6|itr345|4) <577) = (6|/f345|5) (477) + (45) [61] (17)) + (45) [62] (277),
(12) [3 5] (5 7,) =  — (12) [3 4 ] (47,)  — <3| JC345 jl) (2 7?) +  <31/^ 34512) (177),

(7.85)

(3 |tf123|4)<67,> =  <3|lf123|6)(47,)-[31](46)<l7 ,>-[32](46)<27,),

(12) [56] (6 7,) =  (12) [45] <4 t,> +  (5|ATi23|1) (2 77) — (5|K’i23|2) (17,),

(31̂ 23411) (6 77) =  (31̂ 23416) (177) -  (16) [3 2] (2 77) -  (16) [3 4] (4 77) ,

(2 4) [5 6] (6 7,) =  (24) [15] <17,) H- <5|/4r234|2) <4 77) -  <5|iC234|4> <2t,) ,
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(6| ^ 345|4) (677) =  —̂345 (4 rj) -  (11.K345I4) (1 Tj) — (2 |# 345|4) (277) , 

(12) [35] (677) =  -  [35] (61) (277) - [ 3 5 ]  (26) (177).

The box coefficients are then given by,

(  (1 |#123|4)\2- 2'1 A f (3 2 > \2- 2'1 -
r ( 3r a > J  i +  I p > ;  11

(  (2\Km \4 ) \2- 2h A ( ( 1 3 ) \ 2- 2h B
1 -  T M C T j  V<12> J  ”

D \ 3  =

2 - 2/1

Dt> =  l< 3 |J fm |4 )J D l ’
15 (  (45) [13] N*"* A ( m m \2 ) \2- 2h B

M /  <4 5> [2 3] \  2- 2ft A (  (6| K 12311) V “2" B
Di ~  I m r a J  Z5i +  r ' < T ^ M j  D "

~(5|Kia|i 
(12) [5 6]

*43   ( ___ll23 \  j 1,4

n i6 (  [31]<46>\2- 2A A f - ( 5 \ K 1 2 3 l2} \2- 2h B
U i  ~  r ( 3 i i f123i4) j  Ui + [ 1

d13 = (  *234 y ~ 2h A
\ <31 î 23411) / 2 '

23 (  (2 \K2 3i \ l ) V - 2h A ( (3  4 ) \ 2~2h B

° 2  ~  r < 3 j W l > J  l<24>/
D43 _ (  m 23i\p\2-2h (w \2-2h B
° 2 -  1, (3lKa.ll>; \(24> ; ^ 2>

„ 15 /< 3 |K a . |5 ) \1- *  A , M l B i y - 2'* B
1)2 -  t f s p O T ;  ! +  r M j  2 ’

25 /  [2 3] <15) \  2~2h A ( (6|K234|4) \ 2- 2'1
° 2  -  U | t f a . | l > ;  v (24) [56] ;  D

D «  _  f (3iK234i6)y - 2'‘ A (  [ s i ] y - 2ft B
° 2  ~  l (3 |K a . | l> ;  ° 2  +  {  [56]/ D > ’

(7.86)

(7.87)

(7.88)
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(  [61] (34) \ 2~2hp A l (  (5|^345|2> \2- 2'1 b
-  r w w j  3 + \ f w w )  3 ’

3 ^ (6|A-345|4)J 3 V <! 2> [3 5] J 3 ’

«  /<6|Jfr345|3> \2- 2'* ^ M 4 5 ] \ 2- 2'1 b
° 3  -  I w W j  3  + \ W ] J  3 ’

pi» ( [61] <45> y - 2ft A ( y ~ 2h pB
° 3  ~  ° 3 +  i w p t J  31

25 n 6 2 ]< 4 5 > V -2'‘ A (  <3|JK-«B|l> \ a-*h ^
° 3 -  v ^ r a > J  D3 + r i r ^ ) M j  31

f  W M 2- 2* A ( ( S 2 ) \ 2- 2h B 
r ( 6 i ^ i 4 > J  v < i2) /  ° 3 - ( 7 - 8 9 )

N e x t w e h a v e  a m p litu d e s  w ith  h e lic ity  s tr u c tu r e  ( —-\------1 b). T h e  p u r e ly  g lu o n ic

a m p litu d e  is sy m m e tr ic  u n d er ,

Sa : yl^=4(l, 2,3 ,4 ,5 ,6) —  ̂^ =4(1, 2,3 ,4 ,5 ,6)

S 2  : ^ = 4( l , 2 , 3 , 4 , 5 , 6 ) - ^ [ ^ = 4(l,2 ,3 ,4 ,5 ,6 ) |j ^ +1]t. (7.90)

In  th is  c a se  w e d e n o te  th e  co e ffic ie n ts  o f  W q in  t h e  p u r e ly  g lu o n ic  c a se  b y  G*. T h e s e  

are g iv en  by,

f t . o j i + o f .  ( a g s y a j + ( ! i | M y

f t . c j + c ?  -  ( < » ) '  » t  +  ( H H 1 ‘ B „
\  C234 /  \  ^234 J

G 3 =  G 3 +  G f  =  ^ 4 |^ 5 |1 ) )  B l +  ^ 3 ^ ) l 6 2 l j  s _ .  (7 .9 1 )
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Although there are only two independent configurations with two gluinos in this case, 

we present results for all the two gluino amplitudes appearing in the SWI eq. (7.27). 

Amplitudes with the correct symmetries are produced by applying the following iden

tities to the SWI,

<2|tf123|5){27,} =  ti2 3 < 5 r/)-< l|^ 123|5 )( l» 7 > -(3 |if123|5><3»/>,

<13) [4 6] (2 77) =  (2 3) [4 6] (1 f/) +  <12) [4 6] <3 77) ,

(6|tf234|3) (2 t,) =  - [6 1 ] (2 3 ) ( lf?) +  (6|/f234|2)(3»?) +  [56]{23){57?),

(51) [24] (277} =  - ( 5 1 )  [34] (3v) +  (4 |if234 |5 > (l» /> -(41^23411X5^),

(4|Jf345|l>(27?) =  <41^34512X17?)+ [34] <12X3 v > - [45] (12) <5>?),

<35) [62] (2t?) =  — (35) [61] (1 tj) — (6|Ar345|5> (377) +  (6|A'345|3) (5 77).

(7.92)

The amplitudes are,

12 ( <l|tf123|5>\2- 2'‘ A f(23))2-2h B
Cl -  Gl +  l o 3 j )  G”

r32 _  (  m ^ m 2- 2hr A  ( ( i 2 ) V - 2h B
Gi - rmraJ 1 vto 11

G f  =  (  ) 2- 2hG t  (7.93)

12 (  (2 3) [61] \  ^  A /  (4|Ar234|5) \  2~2h
°2 - h ( M j  G2 + (x̂ >M;
gp = ( « r o # +f-Mr<?

B  
2 >

1(61^23413); " 2 " v  [24i; ” 2 ’

52 _  / ( 2 3 ) [ 5 6 ] y - a ‘ ^  , (  (41^2341 i n 2- 2*
G2 = w m  G^ l - W f i ]  G* ( 7 - 9 4 )
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g \ 2  =
\ m w \ i ) )  [®2] /

32 _  /  [34] (12) \ 2~2ft /  (6|JjT345|5)\
V<4|K345|1>J 3 V (35) [62] )

y-r52 _  /  [45]<12> \ 2~ 2 h „ A  , f { 6 \ K ^ ) \
Ga V <4|^345|1)J 3 I <35) [6 2] /

B  
3 ’

2 - 2 / i

G

2 - 2 / i

G

The six-point box coefficients have been explicitly checked by numerically evaluating 

the quadruple cuts.

GQ 
co 

Gq 
co
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7.2 One-Loop NM H V Am plitudes involving Gluinos 

and Scalars in N  =  4 Gauge Theory

We use Supersymmetric Ward Identities and quadruple cuts to generate n-point 

NMHV amplitudes involving gluinos and adjoint scalars from purely gluonic am

plitudes. We present a set of factors that can be used to generate one-loop NMHV 

amplitudes involving gluinos or adjoint scalars in N  = 4 Super Yang-Mills from the 

corresponding purely gluonic amplitude.

7.2.1 Sum mary of N M H V  Gluonic A m plitudes

In this section we review the n-point one-loop NMHV gluonic amplitudes derived in 

[71]. Our gluino amplitudes will be derived from these.

In any one-loop NMHV box diagram there are seven legs with negative helicity - 

three external and four internal. As each massive corner of the box requires at least 

two legs with negative helicity to be non-zero, we can have at most three massive cor

ners. Further, the three mass boxes have a particularly simple form, with three mas

sive MHV corners and one massless MHV (or Googly) corner. Thus they are “MHV- 

deconstructible” - in that they can be determined using purely MHV vertexes and, in 

this case, quadruple cuts. The three mass box coefficient c3 m(mi, 7712, 7713; A, B,C, d) 

where A , B  and C  are the massive corners, d is the massless corner and m  1, m2 and 

m3 are the legs with negative helicity, is given by [71],

c3m(m i,m 2,rn3; A ,B ,C ,d )  =

x

m2, m3; A, B, C, d ) ] 4  

(12) (2 3 ) . . .  (n 1) K% 
(A - 1 B 1)

x (7.96)
(d-WAfCBlBlJid-lfCAfCBlCty

where A\  denotes the first leg of comer A  and 1 the last. When leg d has positive
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helicity, Ti is given by,

Ti =  0, ^ 1,2,3 £ -A,

=  0, 1711,2,3 e B,

=  (m im 2) m 1)2 E A, m3 E B,

= {m2 m 3) {d~\fCc fiB\rrit), mi  € A, m2)3 E B,

= (mi m 2) (dm3) K \ ,  m li2 E A, m 3 E C,

=  (m1m 2) (d_ |^ - ^ s |m j )

+  (m3m2) (d_ |^ c ^ B |m i') , m x E A, m2 E B,  m3 E C, (7.97)

and when leg d has negative helicity, d = ms, Ti is given by,

Ti = 0,

= (m im 2) (d“ |^Tc^s|rf+), 

=  (dmi) (d~\I/Cc^B\rr4 ), 

=  (dmi) (dm 2) K 2b ,

m i)2 E A,

m i)2 E B,

m i  E A, m2 E B ,

m x E A, m2 E C. (7.98)

The two mass-hard boxes are also MHV-deconstructible. As boxes with adjacent 

massless corners of the same type vanish, each non-vanishing two mass hard box has 

a massless MHV corner, a massless Googly corner and two massive MHV corners. 

Unfortunately, two mass easy and one mass boxes are not all MHV-deconstructible. 

However, all three types of box can be generated from the three mass boxes using IR 

consistency arguments [71]. For the two mass hard boxes the result is,

c?mh(A, B, c, d) = c3m(A, B,  {c}, d) +  c3 m(A, B, c, {d}), (7.99)
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where lower case letters denote massless corners and {} indicates that the corner 

should be thought of as the massless limit of a massive comer. This relationship has 

a simple interpretation in terms of the box diagrams: for each internal helicity config

uration, one of the massless corners of the two mass hard box will be MHV and can 

be thought of as the massless limit of a massive MHV corner. Summing over internal 

helicity configurations in general gives two terms. If one of the helicity configurations 

gives a vanishing contribution, the corresponding three mass box coefficient will also 

vanish.

The two mass easy boxes can also be expressed in terms of three mass boxes [71], 

c2 me(A,b,C,d) = £  <?m(b ,X (d) ,Y ,Z )  + c3 m(d,X(b) ,Y ,Z) ,  (7.100)
X , Y , Z  X , Y , Z

where the sum is over all clusters (maintaining cyclic ordering) where X(a)  contains 

leg a and Y  is massive. Finally, the one mass boxes are given by [71],

clm(A, 6, c, d) =  c2 me(A, 6, {c}, d) +  c3 m(A, {&}, c, {d}). (7.101)

These relationships are based on the IR properties of the box integral functions and 

thus carry over directly to amplitudes involving gluinos and scalars.

7.2.2 Conversion Factors from Supersym m etric Ward Iden

tities and Quadruple Cuts

We first consider amplitudes with a pair of external gluinos. These are related to 

purely gluonic amplitudes through the SWI obtained by acting with Supersymmetry 

generator Q on A(g^li, , A+,. ..),  where . . .  represents a string of positive he

licity gluons. The structure of the SWI is independent of the ordering of the legs, but
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there are different SWI for each distinct ordering. We will explicitly show the case 

where the first three legs have negative helicity. As the SWI apply box by box, we 

have,

{qn)c(g~t ,9~,,9~ 3 ,9q, .--) =

(^2 V') c{.9m\ ) ̂ ui2 ’ !••■)'

+  (m3»))c(5“ 1, 0“2,A ^3,A+ ...), (7.102)

where c is a generic box coefficient.

The SWI eq. (7.102) has rank two, so it determines two of the box coefficients 

in terms of the other two. Our approach is to determine one of the two-gluino box 

coefficients using quadruple cuts and then use the SWI to generate the other two. As 

in the purely gluonic case, we can express all of our box coefficients as sums of the 

three mass ones, so we only need to evaluate the latter explicitly. As the three mass 

boxes are MHV-deconstructible, we can use Quadruple Cuts where we can determine 

any of the tree amplitudes we need using [41]. A generic box is shown in the figure 

below,

A B
h

h

h
d C

F igure  7.2.2.1: A Generic Three Mass Box Integral Function 

The massless corner is a 3-point Googly vertex, so we have the following useful results,

(7.103)
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( d h H h h m  = ( d r t f A f o l  W l k h m  = (dr\$c$B\, (7.104)

which allow us to evaluate expressions that are homogeneous in J*.

We label the purely gluonic boxes by the location of the negative helicity legs. 

The “AAB” box shown below has two negative helicity legs on corner A and one on 

corner B,

A {m1 ,m2 } B{to3}

Figure 7.2.2.2 : Example of an AAB Box Integral Function

When we relate this purely gluonic box to one with a pair of external gluinos, we 

must specify which g+ to replace by A+ and which g~ to replace by A- . Using m  

to label the external A-  leg, q to label the external A+ leg and L(q) to denote its 

location, the conversion factor is given by so that,

A", A+ . . . ) =  Rl%)mcx x x , g~, g ~ ,5,+,. . . ) .  (7.105)

The AAB box shown is an example of a “singlet” box, where only gluons can 

circulate in the loop and there is a single contribution to the purely gluonic box 

coefficient. We can immediately see that there is no possible routing for a fermion, 

A", from corner B to corner A or d, so we have,

n i t*  =  R *™  =  o. (7.106)
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The remaining R^mf  and Rdmf  then follow from the SWI. For R^mf  and there 

are either one or two possible fermion routings and one box in each class must be 

calculated using quadruple cuts before the other two can be read off from the SWI. 

The conversion factors for the other singlet boxes can be similarly evaluated. The 

results of these calculations are presented in table 7.2.1.

The ABC boxes are “non-singlet” and any particle in the N  = 4 multiplet can 

circulate in the loop. The purely gluonic box coefficients are obtained by summing 

over diagrams with all possible particles circulating in the loop. If the A+ and A-  

attach to the same corner, any particle can still circulate in the loop. Each comer 

remains MHV, but care must be taken with the flavour structure of corners with four 

non-gluonic legs as these amplitudes are flavour dependent. In all cases the MHV 

tree amplitudes can be found using [41].

Our results are presented in table 7.2.1. For each type of box the conversion 

factors have a common denominator. The factor appearing in each denominator also 

appears in the numerator of the corresponding purely gluonic amplitude, where it is 

raised to the fourth power. Conversion factors are presented for all distinct cases. 

The factors not explicitly listed can be obtained by flipping (e.g. AAB boxes flip 

into BCC boxes). The denominator of each conversion factor is given next to the box 

name and the numerators axe listed for each location of q and for each m.

AAB (d \ ^ c F B \ m ^ ) ( m i m 2)

A

fd

m i
m 2
m 3

(d~  I f i c  F b  lm 3" )  ( < ? m 2 )  

( d ~ \ f i c F B \m £ ) ( m iq )  
0

B m i

m 2

m 3

- ( d ~ \ F c F B \ m + )  (m3 q)

~  (d~ \ F c f i B \ m t )  t i m 3 )

(d~  |  f i c  F b  19+ )  {mi  m 2 )

C m i

m 2

m 3

( d ~ \ ^ A F B \q +)(m2m3) -  { d ~ \ f i c F B \ ™ i ) ( m 3q) 

(d~  | F a  F b \<P) ( m 3 m i )  -  (d~ \ ^ c F B \ m f ) { q m 3 )  
(d ~ \F A F B \q +){ m im 2) + ( d - \ f i c f i B \ q +) ( m i m 2) 

= - K 2B (dq){mim2)
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A A C ( < * 713)  ( m i  m 2 )

A m i K * ( d m 3){qm2)
Id m 2 K%{dm3 )(miq)

m3 0

B m i - ( d - | ^ ' A - ^ J 3 | m J ) ( q m 2 )  +  ( c T |  j r c # B | ™ 2  > ( m 3 9 >

m2 - ( d - | ^ A^ B |m + )(m ig) +  ( d - | ^ c | r B | m + > ( g m 3 )

m3 -  (d_ | F c  F b  | q+) {mi m 2)
C m i ~K% {dm2)(m3 q)

m2 ~  K% {d m i) (qm3)
m3 K 2b  (dq)(m im 2)

ABB - ( d  \yCc F B \ m D ( m 2 m 3)

A m i —(d~ 1 Fc F b  1 q+ ) ("i2 m 3)
/d m2 (d~ l i t e r s  Im ^K m ig)

m3 ( d - |^ c ^ B |m + ) ( q m i)

B m i 0

m2 -  <cT 1 Fc F b  ) (qm3)
m3 ~{d~ \FcF b  |m f ) (m2q)

C m i -  (cT | JtU J tB | q+ ) (m2 m 3)
m 2 ( d - \ F A F B \q+){rn3m i )  -  {d ~ \ F c F B \ m f ) { q m 3)
m 3 {<d - \ F A F B \q+)(Tnim2) -  (d_ |^ c -^ B |m ^ ) (m 2g)

ABd (d \FcFB\mt)(dmi)
A mi

m2
d

(d-\FcFB\mt)(dq)
0

(d~ I Fc F b  | m j ) (qm i)
B mi

m2

d

- ( d - | ^ C 7 ^ f l M + > ( g m 2 >

( d - | ^ c ^ B |g + )<dmi>

-  U r  | Fc F b  > (m 2 g>
C mi

m2
d

( d - | ^ ^ B | 9 + ) ( m 2 d )  -  (d~ | Fc F b  |d+ ) ( g m 2 )

-K%{dq){dmi)
{d~\FAFB\q+){mim2) -  {dr \Fc■ ^ B | m ] H ) ( m 2 g )

ACd K 2B (dmi){dm2)

A m i K%{dm2){dq)

771 2 0

d K 2B {dm2){qmi)
£ m i { d ~ \F A F B \q +){m2d)

771 2 - { d ~ \ F c F B \ q +){dmi)
d ~  {dr  |  J T y i  j T B  | m + ) (q m i) +  {d~ \ F c  F b  | m + ) (m2 q)

C m i 0

m 2 - K 2g  {dmi) {m2 q)
d - K ^ { d m i) { q d )
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B B d ( d - | ^ ^ B | d + > < m i 7 n 2 )

A 7711

7712

d

( d - \ F c F B \ m l ) ( d q )  

<■d- \ fC cF B\m + )(qd)  
— (d~  |  IjCc b  |<7+ )  ( m i  W 1 2  >

B 7711

7712

d

- ( d - \ f i c F B \ d +)(qm2)
- ( d - \ ^ c ^ B \ d ^ ) ( m iq )

0

C 7711

7712

d

+ ( d ~ \ ^ A fCB \m+)(dq) 

- { d - \ f i A fCB \mt){qcl) 

- ( d - \ J ^ A fCB \q+){mim2)

A B C (d \ f iA fCB \m +)(m im 2) -  (d 1 7 7 1 + )  ( 77127713)

A 7 71 1

7 7 1 2

7 7 1 3

( d - \ F A f i B \Tn£)(qm2) -  { d - \ ^ c ^ B \ q +){m2mz)
-K % { d m 3)(miq)

( d ~ \ fC c ^ B \rn^){qTn1)

B 7711

7 7 1 2

7 7 1 3

(d-\fCA f[ B \m+) (qmz) 
{d-\fCA fCB \m+)(™iq) -  {d~ \ f i c $ B \ m + ) ( 97713)  

-  ( d~  | JfCc  f tB  )  < m 2 q)
C 7771

7 7 1 2

771 3

- ( d - \ fC A fCB \m+)(m3q)
K \ { d m i ) ( q m 3)

(d~ \ ^ A ^ B \q+) ( m i m 2) -  (d~ \ ^ c f ^ B \m f ) { m 2q)
d 7711

7 7 1 2

7 7 1 3

- ( d - \ fC A f [ B \m+)(m3d)
K g ( d m i ) ( d m 3)

< d - | * r c J C B | m + ) < d m i >

Table 7.2.1: Numerators and Denominators For Conversion Factors R

The general effect of applying one of these conversion factors is to replace the 7i4  

factor in the purely gluonic box coefficient by where H  is the factor appearing

in the “switched” purely gluonic box coefficient, where leg q is a negative helicity gluon 

and leg m  is a positive helicity gluon. This is reminiscent of the behaviour of the 

MHV tree amplitudes, but in this case it appears at the level of the box coefficients.

So far we have only considered three mass boxes. As in the purely gluonic case, 

the two mass and one mass box coefficients for gluinos can be expressed as sums of 

three mass box coefficients. Given that the factors appearing in the SWI are simply 

determined by the momenta of the legs on which the Supersymmetry generator acts,
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we see that, when expressed in terms of three mass boxes, any SWI for (say) a two 

mass easy box is just a sum of the three mass SWI and thus trivially satisfied. We 

have explicitly calculated the n-point two mass-hard box coefficients with two gluinos 

using quadruple cuts and verified the consistency of the two approaches. We have also 

used the 6-point NMHV tree expressions of [17] to calculate both singlet and non

singlet example 8-point two mass-easy box coefficients using quadruple cuts. These 

results are also in agreement with those obtained by summing the appropriate three 

mass coefficients.

7.2.3 Beyond Two Fermion A m plitudes

The conversion factors in table 7.2.1 can be compounded to generate amplitudes with 

arbitrary numbers of external adjoint scalars and fermions. The first step is to note 

that the box coefficient for a diagram involving two external scalars can be obtained 

by simply squaring the conversion factor for the corresponding two gluino diagram,

c*XI(< T ,s- ,& < > • • • )  =  ( R m J 2 c*xx(g - ,g - ,9 n ,g t , . . . ) .  (7.107)

For singlet two-gluino diagrams with only one possible route for the fermion, the 

corresponding two-scalar diagram is obtained from the two gluino by replacing the 

single fermion line with a single scalar fine. As we only have MHV and Googly corners 

in the three mass boxes, this simply gives us the square of the factor relating the two 

gluino box coefficient to the gluonic. For two-gluino diagrams with two routes for the 

gluino, there are two-scalar diagrams where the scalar takes one of these two routes 

and additionally there is a diagram with a fermionic loop. The first two diagrams 

give factors which are the squares of the individual gluino factors, while explicit 

calculation shows that the last yields precisely the cross-term that arises when the 

sum of the gluino terms is squared. For the non-singlet diagrams, explicit calculation 

again shows that the two scalar box coefficients are also simply obtained by squaring



CHAPTER 7. N  = 4 FERMIONIC AMPLITUDES 168

the relevant conversion factor. Recalling that we can express all of our box coefficients 

in terms of the three mass ones, we see that all the two-scalar box coefficients are 

simply obtained by squaring the relevant factors in table 7.2.1.

To obtain SWI involving scalars we consider the action of a pair of Supersymmetry 

generators Q i and Q2  that generate an N  =  2 sub-algebra [11, 25].

The SWI then contain amplitudes involving two flavours of gluino and a single 

flavour scalar. In N  =  2 terms it is natural to denote scalars as 0+ =  012 and 

0 “ =  034. This notation is more compact than the full N  = 4 flavour labelling, but 

care must be taken when counting the negative helicities required for a MHV vertex. 

In particular, replacing a g+ by 034 effectively introduces an extra negative helicity. 

This is important in understanding the two-scalar ABC boxes, as all three of the 

diagrams shown below contribute to this two-scalar box coefficient,

A {9m1,4>f} B i9m2} A {9m1^ f }  B {SmJ A {9ml ^ f }  #  {SmJ '
IX

: + -; +

/ \7
+

d+ C {0“ } d+ C {0^}  d+ C {0i?3}

In these diagrams dotted lines represent scalars, while dashed lines represent fermions.

Next we consider the NMHV amplitudes with three non-gluonic external legs. 

These box coefficients are related to the purely gluonic ones by a pair of conversion 

factors,

9 - ,  f c  A+, A + ...)  =  9 - ,  9n, g+,g+ ■ ■■),
(7.108)

c “ * ( < T ,  A - , ,  a ^ 2 , * + . . . )  =  R % )miRE5 t o <? “ ( g - , g f , - - - ) -

(7.109)

For boxes with unique routings for the fermions, this result again follows directly from
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the form of the MHV amplitudes at each corner. For all boxes explicit calculation 

shows that the fermionic factors compound in this way.

Amplitudes involving four or more non-gluonic legs can now be generated directly 

from the appropriate SWI. We define the “level” of an amplitude to be the num

ber of external fermions plus twice the number of external scalars. Amplitudes with 

odd level will vanish and we use these as the starting points for our SWI. For ex

ample, acting with Q2  on the level 3 amplitude, A(A l~ ,g 2 ,g 3 , Ai+, As+ , ...) , gives 

A(A* , A| ,p3 , As4-, . . .)  and A(A{ ,g2 ,A% , A^4", As4-, . • •) in terms of known

amplitudes. We can work systematically, level by level, to generate amplitudes with 

any number of external scalars and fermions.



Chapter 8

Conclusion

We have described techniques for efficient analytical calculation of scattering ampli

tudes in gauge theories, with particular reference to QCD. Soon, the Large Hadron 

Collider will become operational at CERN, giving the physics community an experi

mental handle on high energy regions of the Standard Model never before accessible. 

This will allow us to examine the predictions of the Standard Model in this region as 

well as probe for new physics, such as evidence of the Higgs scalar or manifestations 

of Supersymmetry. To detect the signals corresponding to the new physics we must 

be able to recognise, and subtract, the signals corresponding to the standard QCD 

processes that will obviously occur at a Hadron Collider. Many of the events we 

are interested in involve the production of multiple jets of final state particles. The 

traditional approach to calculating cross sections in perturbative field theory, Feyn

man diagrams, is not sufficient to calculate such processes as the technique is quickly 

rendered ineffective by the sheer number and complexity of the calculations required. 

Thus, a new approach must be found if we are to be able to make use of the LHC 

data.

This new approach has been developed over a number of years, and draws on a 

variety of techniques, some of which are new and some more traditional. By using 

tools such as the spinor helicity formalism, the color ordering of amplitudes, factorisa

tion limits and unitarity cuts, Supersymmetric rearrangements and integral reduction
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techniques, we can greatly simplify calculations. However, by themselves these tools 

are not sufficient to complete the complex calculations required. In the last few years 

a number of new techniques have been developed that have led to significant progress.

The focus of this research was to examine these techniques in theories with less 

Supersymmetry than originally proposed, and to investigate the extent to which the 

twistor structure described by Witten extended to such theories. We focused on 

calculating one-loop amplitudes involving external gluonic particles in theories with 

N  = 1 Supersymmetries. Primarily we calculated six-point one-loop amplitudes, but 

were able to extend our analysis to include n-point examples of certain helicity con

figurations. In later work, we also calculated one-loop amplitudes involving external 

fermionic particles in N  = 4 theories

To begin with, we examined how the “holomorphic anomaly” , which was discov

ered at N  =  4, acts upon the cuts of N  = 1 Supersymmetric one-loop amplitudes, as 

discussed in section 6.1. To do this we focused on the previously unpublished six-gluon 

non-MHV amplitude A N = = 1 chlral(l~ ,2 - ,3~ ,4+,5+,6+), (that had been calculated by 

independent means). We showed that, when acting with the collinear differential op

erator on the cuts of an amplitude, in order to match the effect of the operator acting 

upon the imaginary part of the amplitude — as required by the optical theorem — 

the “holomorphic anomaly” must be taken into account. We found that as a calcula- 

tional tool for evaluating amplitudes, application of the “holomorphic anomaly” gave 

differential equations for the coefficients of the integral functions, unlike the TV =  4 

case where algebraic equations were derived. Furthermore we found that, since the 

equations were differential, their general solution contained homogeneous parts which 

could be fixed by boundary conditions or physical constraints such as collinear limits. 

We used this principle to calculate some of the scalar integral function coefficients for 

the n-point amplitude A N = 1  chiral(1~, 2_ , 3“ , 4+, . . . ,  n+).
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In section 6.2 we continued to investigate the twistor structure of the box co

efficients of N  =  1 one-loop amplitudes, as it had been observed that these co

efficients in particular exhibit an interesting twistor space structure. For exam

ple in N  = 4 gauge theory it had been shown that the box coefficients of next 

to MHV amplitudes have planar support in twistor space, behaviour that is anal

ogous to that of tree amplitudes. We investigated whether similar behaviour ex

ists for theories with N  < 4 Supersymmetries. In doing so we calculated the box 

coefficients for all six-point N  = 1 amplitudes and the n-point N  = 1 ampli- 

tudes A N = 1  chiral( l -  2 - , . . . , j +, ( j  +  l ) - , 5 +, . . . , ra+) and AN=l dliraJ(l~ , 2~, —

I ) - , j +, (j  +  1)+, . . . ,  k~, ■ ■ ■, (n — l )+,n+) and examined their twistor structure. We 

found that for next to MHV amplitudes these coefficients have planar support in 

twistor space, explicitly confirming that the structure of N  = 4 box coefficients per

sists to N  = 1.

In section 6.3 we continued to examine the twistor structure of amplitudes with 

N  < 4 Supersymmetries. Although relations with twistor string theories had been 

observed for N  =  4 Super Yang-Mills, it remained unresolved as to what degree the

ories with less or no Supersymmetry were related to a twistor string theory. There

fore, until a direct connection could be uncovered we felt it appropriate to continue 

to gather evidence by studying the properties of amplitudes. As we discussed in 

section 6.3, by computing some special examples, those that we describe as MHV- 

deconstructible, of box coefficients of the amplitudes A ^ 0,1̂ - , 2- , 3+, 4- , 5+, 6+) 

and A ^ 0,1̂ - , 2+, 3~, 4+, 5“ , 6+), we observed that even for non-Supersymmetric 

theories (but still massless) the box coefficients still satisfy the same collinearity and 

coplanarity constraints as in N  = 4 theories. As such these constraints can be viewed 

in one of two ways — as a consequence of the construction of box coefficients using 

unitarity techniques — or more significantly they may hint at an underlying structure 

compatible with the twistor description already seen at N  =  4 and to a lesser extent 

at N  = 1.
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For N  = 4 theories the amplitudes are completely determined from the box coeffi

cients. Thus the properties of these coefficients determine entirely the properties of an 

amplitude. For theories with less Supersymmetry the amplitudes contain additional 

functional information that plays an equally important role. As an example of using 

unitarity constraints in such a context, in section 6.3.4 we presented the full struc

ture of the simplest NMHV configuration for n-gluons in N  — 1 Super Yang Mills, 

J47V=i ( l - , 2~, 3~, 4+, 5+, . . . ,  n+) This amplitude was expressed entirely in terms of 

triangle functions. The coefficients of these functions were determined by carrying 

out triple cuts on the amplitude. We found that these coefficients did not have an 

obvious twistor property such as coplanarity, which suggests that it is only the box 

coefficients that inherit this structure in theories with less Supersymmetry.

The second part of the research presented here focused less on the twistor space 

properties of amplitudes and more on efficient techniques for calculating one-loop 

amplitudes directly. The recent progress in calculating purely gluonic one-loop am

plitudes in compact forms stimulated our interest in using Supersymmetric Ward 

Identities (SWI), together with the inherent symmetries of an amplitude, to generate 

one-loop amplitudes where the external particles are gluinos or adjoint scalars. In 

particular, in section 7.1 we calculated all the six-point N  = 4 NMHV one-loop am

plitudes involving two gluinos or scalars, i.e. we considered all combinations of the

helicity configurations (----- — +  + + ) , ( ------- +  — + + )  and (------ 1- — + ---- |-).

The amplitudes with four or six gluinos (of a single flavour) were given as linear 

combinations of these two gluino amplitudes. Although the results we computed are 

specific to Supersymmetric theories with adjoint fermions, they do still reduce the 

amount of computation required to obtain results in non-Supersymmetric theories 

with fundamental quarks.

In section 7.2 we then looked to extend this analysis to include all n-point N  =
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4 NMHV one-loop amplitudes involving external gluinos. Again we exploited the 

property that one-loop NMHV amplitudes in N  = 4 gauge theory can be expressed 

in terms of MHV-deconstructible diagrams. They can therefore be evaluated using 

quadruple cuts and known MHV tree amplitudes. We used the SWI to minimise the 

number of diagrams that had to be computed explicitly. We used this techniques to 

determine a set of conversion factors that relate two-gluino box coefficients to purely 

gluonic ones, and which are applicable to any number of external particles. We were 

also able to use our analysis of the quadruple cuts to show how these factors could be 

compounded to give two-scalar and scalar-gluino-gluino box coefficients. Finally we 

showed how amplitudes involving more external fermions/scalars would then follow 

from more SWI.

Although organising amplitudes in terms of helicity structure, particle type, color 

and Supersymmetry has helped enormously in understanding the structure of inter

actions in Yang-Mills theory, the list of simple amplitudes required to compute an 

experimental quantity is rather long. W hat we have shown is that SWI can be used 

to generate amplitudes without the need for explicit computation, and is thus a very 

helpful technique in this context.

Since Witten’s original paper on the subject, a number of new techniques for cal

culating scattering amplitudes relevant to LHC physics have been developed. All of 

these were strongly motivated by the twistor description of amplitudes. However, 

it is important to point out that there is no one tool that we can use every time, 

but rather there are now a number of techniques we can use which, when combined, 

can complete calculations that were previously unattainable. This includes the tradi

tional techniques we discussed previously, such as organising amplitudes in terms of 

spinor helicity and color ordering, Supersymmetric decompostions and loop integral 

reductions, as well as the new techniques developed more recently.
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Thus far, the new techniques we have discussed have been used primarily to calcu

late tree amplitudes — that could have been calculated by existing numerical meth

ods — and loop amplitudes in theories with Supersymmetry. Ultimately we want to 

calculate loop amplitudes in full QCD. As we have discussed, in gauge theories we 

can expand an amplitude as a sum of known scalar integral functions multiplied by 

rational coefficients. We have also seen that Supersymmetry restricts the different 

type of scalar integral function that can appear in this expansion. However, for non- 

Supersymmetric theories this expansion also contains rational pieces that we cannot 

calculate using the various methods discussed in this thesis. To reconstruct the full 

QCD amplitude we must calculate these rational pieces as well as the coefficients of 

the scalar integral functions. Thus there is much work left to be done. The tech

niques we have discussed in this thesis must be extended to N  = 0 amplitudes before 

they offer direct phenomenological applications. However, extending this analysis to 

N  = 0 amplitudes will be an extremely difficult and challenging task, as the scalar 

integral functions and their coefficients represent a smaller fraction of the information 
contained in an amplitude.

One twistor inspired method in particular has emerged as a promising technique 

for calculating loop amplitudes in full QCD. At the beginning of 2005, on-shell recur

sion relations were developed by Britto, Cachazo, Feng and W itten (BCFW) [79, 80]. 

The basic principle is that an amplitude can be represented as a sum of lower point 

amplitudes, evaluated on-shell, but for complex shifted values of the momenta. These 

relations are even more efficient than the CSW rules and lead to even more compact 

formulas for amplitudes. As the proof of recursion relations relies only on the fac

torisation properties of the amplitudes themselves and Cauchy’s integral theorem, 

extending the recursion relations to more general processes is relatively simple. This 

includes applying similar techniques to one-loop amplitudes in QCD.

BCFW’s method is particularly promising for completing the calculation of one- 

loop QCD amplitudes because it can be used to determine the rational pieces that 

appear in the expansion of an amplitude, once the coefficients of the scalar integral
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functions have been calculated by other means — for instance by using the techniques 

discussed previously in this thesis. Recursion relations have been used to calculate 

all of the one loop rc-gluon QCD amplitudes with up to two adjacent negative helicity 

gluons, the rest positive [81, 82]. In addition, their has been more recent success in 

using this technique to calculate other full one-loop QCD amplitudes, see [83, 84].

Despite the obvious difficulties involved, theories without Supersymmetry are the 

most interesting. The techniques we have discussed, if generalised sufficiently to be 

applied to theories with no Supersymmetry, may in principle determine amplitudes 

in such theories. Although practical computations remain sparse at this point, the 

recent progress made in this regard is extremely promising. It remains a huge, yet 

fundamentally important challenge to develop techniques and perform calculations 

for theories without any Supersymmetry.

More generally, significant recent progress includes the following work. Mason, 

Skinner, Boels and Hull [85] have shown how to construct new actions for N  = 4 

super Yang-Mills theories. The results of their work indicate the existence of a theory 

in twistor space which is exactley equivalent to spacetime N  = 4 super Yang-Mills. 

Bern, Dixon and Kosower [86] have led the way in extending the techniques that have 

been so sucessful at one-loop to higher loops. This work has shown strong links to 

N  = 4 integrability structures. Finaly, both Mansfield and Morris have contributed to 

the development of a lagrangian derivation of the MHV rules [87]. This is particularly 

significant as it provides conclusive proof of a technique that worked extremely well 

practically but which lacked credibility in some quarters due to a lack of a formal 

theoretical proof.

All of these research groups are actively engaged in the study of ideas stimulated 

by W itten’s original proposal of a gauge theory - string theory duality. That this 

original proposal has attracted such interest and continues to inspire research in ever 

more complex directions suggests that the unattainable calculations needed for LHC 

may soon be within our grasp.
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Appendix A

In this Appendix we describe the full notation discussed in section 3.1 and define the 

spinor algebra.

The massless Dirac equation

jp ^(p) =  =  0 P2  = 0 (9.1)

has plane wave solutions of the form

where ip(p) represents a four dimensional Dirac spinor, p denotes the 4-momentum 

and x  is defined as the 4-vector (£, x). This has both positive and negative energy 

solutions, ip = u(p) and ip = v(p) respectively. We can define two helicity states by 

acting with the chiral projection operators

u±(p) =  ^ (1±75  )u(p) 
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vT (p) =  i ( l ± 7 s M p)  (9.2)

For amplitudes involving a large number of momenta labelled pi, i = 1 , n, we 

can use the following notation, which we call the spinor helicity formalism,

u±(pi) = vT {pi) =  | p f)  = 1^)

u±(pi) = vT (pi) = (pf\ =  (^1 (9.3)

with normalisation,

\P±) = 2pM. (9.4)

The basic spinor products are defined by

(i j ) = b’+> =  u~(Pi) u+iPj)

[ij] =  (i+\j~) = u +{pi) u - (p j ) .  (9.5)

They are antisymmetric, i.e.

(ij) = ~  U i) » [ij] =  “  \j *] i (* *) =  [»*] =  0- (9*6)

Using the helicity projection operators and the properties of the Dirac algebra we can 

show that,
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(p^fc*} =  0. (9.7)

Using eq. (9.4) and the identity

it =  \p+)(p+\ + \p ){p |, (9.8)

we can write

(p+1 t  \q+) = \pk] (kq)

(P~ I t  k~) = (jpk)[hq]. (9.9)

We can define a number of useful identities for use with this notation, including,

(9-10)

found by applying the helicity projection operator eq. (9.2) to eq. (9.8). We can also 

define the following identities, which the spinor products must satisfy,

(i j) ti *1 =  <*” b'+>(i+l*“ > =  tr (\0 -  -  75) A  A ) = 2 Pi'Pj = s i j -  

( i j ) \ j k ] ( k l ) [ l i ] =t r - ( j f  j  # I/)

[i j ]{jk)[kl]( l i )  = tr+ (j/ j  $ 1/) (9.11)
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We can make use of a particular application of the Fierz rearrangement theorem. 

For any general spinors i, j , k , I satisfying our defined notation, we can expand the 

matrix | j+)(i+ | into a linear sum of terms, i.e.,

2 | j + ) ( i + l =  -  7 5 ) ( 9 -1 2 )

Multiplying both sides of eq. (9.12) from the left by (k~\ and from the right by 1l~) 

gives,

=  2(*+|r)(fc-|j+). (9.13)

We can also define an extremely useful identity called the Schouten identity,

( C \ j +){k-\ i+) =  < r |(+X *r |j+> +  < r |* +x r |J +>. (9.14)

Since the strong interactions do not violate charge conjugation the theory must be

symmetric when we interchange particles for their corresponding antiparticle, i.e.,

{i+\'f\j+) = (ri7Mio- (9-15)

We can now extend our spinor representation and introduce the massless gauge 

boson polarisation vector with helicity ±1 by writing this as combinations of spinors

=  =  (9-16)V2{q~\p+)  M  ’ V2(q+\p~)
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where p is the vector boson momentum and q is an arbitrary null “reference momen

tum” that satisfies q2 = 0 and p.q ^  0. This reference momentum drops out of the 

final amplitudes, which are gauge invariant. The gluon helicities are denoted by the 

positive and negative labels on the polarisation vectors.

The polarisation vector for any q is transverse to p, i.e.

such that complex conjugation reverses the helicity, i.e. (ej)* =  e~.
The most powerful feature of this formalism can be seen if we consider changing the 

reference momentum, q. We can observe the corresponding shift in the polarization

(9.17)

The polarization vectors are normalised,

(9.18)

vector if we consider the difference between two polarization vectors with different 

reference momenta q and qf ,

q f ) (qf ~\,in\p~) {q~\in\p~)
y/2{qf p) y/2 (qp)
{ q f ~ f a lp ~ )  (pg) +  ( q f  p ) (p+ I7m! g+ )

\/2 (qf p) {qp)

{ qf  " f a  *Hg+ ) +  { qf  ~l i  i M + )

a / 2  {qf p) {qp)
{ qf  ~ \ { i n , i v } \ q + ) v

y/2 {qf p) {qp)
\/2 (qf q)

{qf p) {qp)P>1
(9.19)
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Therefore, a change in the reference momentum produces a shift in the polarization 

vector proportional to i.e.

4  (P, 9' )  =  4  (P. ?) -  (9-2°)

This amounts to a gauge transformation. For each gluon momentum pt we can 

choose a seperate reference momentum <&. We must be careful and remember that as 

we are making a gauge choice we cannot change g* while calculating a particular gauge 

invarient quantity, such as a partial amplitude. We can, however, make different 

choices for calculating different gauge invarient quantities, and drastically simplify 

calculations with a suitable choice of reference momentum g* that makes some terms 

vanish. Using the identities defined, it can be shown that

e+(p,q) • e+(P',q) = e+{p,q) • e“ (g,g') =  0 (9.21)

This suggests that a particulalry convenient choice is to use the same reference 

momenta q for polarisation vectors of the same helicity, and for this to coincide 

with the external momenta of a polarisation vector with the opposite helicity. The 

remaining non-zero terms can also be written in the more compact spinor helicity 
notation.

Any amplitude involving massless external fermions and gluons can be expressed 

in terms of spinor products, defined for positive and negative energy solutions of 

the massless Dirac equation represented as massless spinors. We can compute a 

number of scattering amplitudes from each individual expression by using crossing 

symmetry, exchanging which momenta are incoming and which are outgoing. We 

must take care however. The helicity assigned to a particle is not independant of it’s 

chirality and ultimately depends on whether particles are considered to be incoming
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or outgoing, i.e. a positive energy massless spinor has the same helicity sign as that 

of its chirality, while a negative energy massless spinor has the opposite helicity sign 

to its chirality. To avoid confusion we define the convention that all particles are 

labelled with an associated helicity when they are considered as outgoing. In such a 

convention, incoming particles of a particular helicity are now considered as outgoing 

with the helicity reversed.
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