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Abstract

The coil coating process o f strip steel is a continuous and highly automated process 
in which the aim is to apply a paint layer o f uniform thickness onto metal sheet at 
high operational speed. However, the performance o f the coil coating process has 
been limited due to the occurrence of coating defects, such as ribbing and fat edges, 
which leads ultimately to a reduction in the operational speed of coating. Therefore, 
in order to enhance coating productivity, the complex flow behaviour of commercial 
paints needs to be fully understood. Consequently, the main objective o f this work 
was to obtain rheological parameters for the commercial paints using rotational 
Rheometers, Capillary Break-up Rheometer and Capillary Extrusion Rheometer to 
allow the characterisation o f the complex flow behaviour. This research project was 
tailored over its course to generate a solid knowledge foundation o f the rheological 
properties o f polyester resin based paints prior to the defining o f different 
experimental procedures so as to guarantee the reproducibility o f the data measured 
with various Rheometers. Once these rheological characteristics were fully 
understood for one paint, the project was moved forward by selecting other 
commercially available paints which were similarly analysed to allow a comparison 
o f the various rheological behaviours.

One key finding was that the commercial paints behaved in either a Newtonian or a 
Non Newtonian fashion. The Non Newtonian paints possessed a high internal 
microstructure which was reflected in the degree o f elasticity exhibited, whereas the 
Newtonian paint did not seem to exhibit any elasticity. Furthermore, a mutual, ideal 
operability window for the Capillary Break up Rheometer could be derived from data 
which was systematically collected by varying the input parameters including 
opening time, stretch profile and Hencky strain. Capillary Extrusion Rheometer 
provided extensional and shear information at very high strain rates. At the end, a 
steady state flow curve for both shear and extensional viscosity could be determined 
for a strain rate range o f 10'1 to 5 x 104, which is unique for the polyester resin based 
paints analysed in this work.
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M B H H ^ M B a n f in n E M i  •■ ■ ■ m n M i r a i  ■■wnn^vsmrarcTTCa

8.6 Conclusion...........................................................................................................150

8.7 Bibliography........................................................................................................151

9 Capillary breakup extensional rheometry o f organic coating............................. 154

9.1 Experimental procedure.....................................................................................154

9.2 Determination o f surface tension......................................................................157

9.3 Possible Effects causing measurement errors................................................ 158

9.3.1 Sagging effects highlighted by the bond number................................... 158

9.4 Occurrence o f instability defects..................................................................... 159

9.4.1 Evolution o f central bulge......................................................................... 160

9.4.2 Evolution o f recoiling.................................................................................161

9.4.3 Evolution of satellite drop......................................................................... 162

9.4.4 The effect o f oscillatory filament movement.........................................164

9.5 Repeatability o f the filament decays.............................................................. 166

9.6 The effect o f overshoot...................................................................................... 169

9.7 Results................................................................................................................. 170

9.7.1 Data of evolution o f midfilament diameter.............................................170

9.7.2 Comparing data obtained with the linear profile and opening time of
50m s............................................................................................................ 173

9.7.3 Diameter versus time..................................................................................174

9.7.4 Extensional viscosity versus opening time..............................................177

9.7.5 Evaluation o f dimensional number..........................................................180

9.8 Conclusion.......................................................................................................... 181

9.9 Bibliography........................................................................................................182

10 Experimental Outcome o f the Capillary Extrusion Rheometer...................... 185

10.1 Aim of the experiments..................................................................................185

10.2 Experimental protocol.................................................................................... 185

10.3 Principle o f capillary rheometer....................................................................186

10.4 Pressure flow rate accuracy........................................................................... 187

10.5 Experimental Method..................................................................................... 188

10.6 Results..............................................................................................................190

10.6.1 Pressure versus speed.............................................................................190

10.6.2 Bagley correction.................................................................................... 192

10.6.3 Shear stress versus shear rate average..................................................194

vii



i iioii ly i nyii wv/auiiy i ivv/^oggg
■ ■ ■ ■ ■ bb u d k o ssm  ■■ ■■■■■■■m mecBi?* ' ■ ■ ■ ■ ■ ■ n m i u u w n  -

10.6.4 Determination o f shear viscosity and extensional viscosity............196

10.7 Conclusion for the capillary extrusion rheometer.......................................197

10.8 Bibliography....................................................................................................198

11 Conclusion...............................................................................................................200

12 Future research....................................................................................................... 204

12.1 Bibliography................................................................................................... 205



v p u i i u o i i i y  i i i y i i  v / v a u i l y  i i u v / c o o u o

— — ■I'IMIilM I < ■ • i w^mmefsssjeM

DEDICATION

To my mother and my daughter who gave me the determination and 
energy to finish this thesis for them.



w p u i i mom ly  i uyi i w p c c u  v /u a u n y  r  i u w o o c o

Acknowledgments

This thesis is especially dedicated to my daughter Ffion and my mother Lieselotte 
who will always be important in my life. My daughter has given me happiness, 
strength and purpose in writing this thesis in the very difficult years 2010, 2011 and 
2012. Her unconditional love has given me the strength to focus my aim to fight for 
her. Especially thanks goes to my mother, (15th October 2008 t )  who taught me that 
you need to look forward even in the worse situations. You both have given me the 
determination to finish this thesis. Thanks for your belief in me.

My heartfelt thanks for all the professional, technical financial, emotional and moral 
support in this hard time goes to family, friends, supervisors and work colleagues. I 
owe an enormous debt o f emotional and moral support to my brother Sascha and my 
work colleague Ian who became a very close friend and advisor during my research 
year. Without them I would not have been able to finish this thesis.

I owe an enormous debt o f gratitude to my supervisor Dr. Rob English and my friend 
Tom Dobbie who showed a lot o f patience in teaching me the world of Rheology 
which was very strange for a Mechanical / Material and Design Engineer like myself. 
They have been a source o f inspiration in my research. Thanks to Saumil with whom 
I had a lot o f useful discussions about Rheology and Helen for her help in 
understanding some chemical processes. Immense thanks to the International 
Badminton Team who cheered me up during my writing-up phase.

Furthermore, I would like to express my gratitude to the Swansea University team, 
especially to my supervisor Prof. Dave Worsley and Beverley Williams. In addition, 
further thanks go to all the EngD-students who supported me during my 4 year 
course. Especially thanks to Sara and her husband Jonathan for the hospitality in 
their house. Also I am grateful for the support from Chris, Ian, Dyfyr, Adam and Joel 
during my learning phase in passing my modules. These pleasant memories from 
staying in Swansea and the Netherlands were only possible because o f your friendly 
and great personalities.

The financial sponsorships o f EPSRC, Tata/Corus and BASF are gratefully 
acknowledged. Especially thanks go to the industrial supervisors Dr. Jonathan 
Elvins, Joel Rousseau and John Crinson (Tata/Corus), Graham Swanston and Paul 
Davies (BASF). They provided me with some gratifying and interesting work 
experiences in the coil and paint industries.

My thanks for their supports also go to Ben, Dave, Dawn, Jennifer, Mauro, Shahid, 
Yatish and the rest o f my current work colleagues and friends from the Astute.

But last and not least, I would like to thanks Ronald, Rosemarie and Toni, Erika, 
Angela, Rita, Beate, Brigitte and Heinrich, Sonja’s family, Manfred’s family for their 
support and help from the years 2006 until now.

Jurgen Eckermann

x



List of tables

Table 4-1: Advantages and Disadvantages o f the geometries......................................47

Table 5-1: List o f devices, application ranges and limitations (adapted from Tropea et 

al. 2007)................................................................................................................................. 60

Table 7-1: Commercial paint specifications...................................................................116

Table 8-1: Data of the solid content o f paint in wt%....................................................149

Table 9-1: Overview of the types o f stretch profiles and parameters........................ 156

Table 9-2: Shows the dimensional set up parameters....................................................156

Table 9-3: Lists the average surface tension values from 10 measurements............ 157

Table 9 4: Variation of Bond number with different plate diameters........................ 158

Table 9-5: Deviation values in %  for each set o f run, a) using Hencky strain of 1.25 

b) using Hencky strain o f 1.54 and c) using Hencky strain o f 1.75.............................168

Table 9-6: Range o f viscosities from polyester paints..................................................173

Table 9-7: Statistical data relating to linear fits to filament lifetime versus opening 

time plots............................................................................................................................. 174

Table 9-8: Dimensionless numbers, material properties and values obtained by the 

model fits for the paints..................................................................................................... 181

Table 10-1: Provides an overview of all dies used........................................................ 189

Table 10-2: Results o f the linear regression fits on the relationship o f pressure versus 

speed and the degree of accuracy..................................................................................... 192

Table 10-3: Values o f Pe extracted from Bagley plot used for wall stress 

calculation 194

Table 10-4: Lists of ns for each volumetric flow, a) for a die diameter o f 0.5mm and 

b) for a die diameter of 1mm...........................................................................................196



I I I W I I  1 ^  I l l ^ l  I W ^ / W W V I  W V W U I  I I v w w w v w r

List of figures

Figure 2-1: Illustration o f the coating line with the different process stages................. 7

Figure 2-2: Schematic diagram of a direct roll coater (adapted from Wicks et al. 

2007).......................................................................................................................................10

Figure 2-3: Schematic work principle o f a reverse coating process -  2 Roll (Cohu 

and Magnin 1995)................................................................................................................. 10

Figure 2-4: Pre finished product with various types o f layers...................................... 11

Figure 3-1: Pictorial explanations o f different types o f polymer structures (Young 

and Lovell 1997)................................................................................................................... 18

Figure 3-2: Polymerization o f Polyethylene due to the breakup o f the weak double 

bound......................................................................................................................................19

Figure 3-3: Copolymer FEP made out o f two different monomers due to break up of 

the weak double bond...........................................................................................................19

Figure 3-4: Illustrates the requirement o f chemical compounds to obtain polyester 

resin (adapted from Weiss 1997)....................................................................................... 22

Figure 3-5: Schematic illustration o f various types o f network occurred in the

paint...................................................................................................................................... 25

Figure 4-1: Schematic models for explaining the shear rate definition...................... 29

Figure 4-2: Strain responses o f shear stresses cry and cr2 for a perfect elastic material

(Elley 1995)........................................................................................................................... 30

Figure 4-3: The strain responses o f shear stresses <7y and cr2 for an perfect viscous 

material (Elley 1995)........................................................................................................... 31

Figure 4-4: Schematic graph to show the response o f a viscoelastic material

subjected to stresses (Elley 1995)...................................................................................... 32

Figure 4-5: Comparison o f time independent fluids (Mezger 2006)............................34

Xll



Figure 4-6: Thixotropic behaviour illustrated by inducing high and low shear rate .35

Figure 4-7: Comparing the different empirical models as a function o f shear rate... 37

Figure 4-8: Example o f how stress overshoot dictates the degree o f elasticity and 

thixotropy behaviour............................................................................................................ 38

Figure 4-9: A classical creep curve with three distinctive response zones.................. 39

Figure 4-10: Definition o f stress and strain amplitudes..................................................40

Figure 4-11: An illustration o f extensional expansion....................................................42

Figure 4-12: Illustration o f the differences in behaviour o f a drop under extensional 

and shear influence.............................................................................................................. 44

Figure 4-13: Visualising various types o f extension flows............................................ 45

Figure 4 14: Comparison o f the differences between Parallel plate, Double concentric 

and Cone plate.......................................................................................................................47

Figure 5-1: Illustrates schematic the formation o f filament between two rolls 56

Figure 5-2: Schematic diagrams o f various extensional methods.................................60

Figure 5-3: Illustrates a sequence o f images captured by high speed camera showing 

some stages of the filament decay of a Newtonian silicon oil....................................... 64

Figure 5-4: Axisymmetric thinning o f a viscoelastic solution of polysaccharide in 

water (Vadodaria 2011)....................................................................................................... 66

Figure 5-5: Illustrates an operation window for fluids undergoing filament thinning 

and breakup created by the classical dimensionless numbers capillary number, 

Reynolds number and Weissenberg number (adapted by McKinley (2005))..............69

Figure 5-6: Schematic graph for an ‘operability diagram’ for capillary break-up 77

Figure 6-1: Schematic diagram showing flow streamlines and two distinctive 

locations which are dominated by either extensional deformation or shear 

deformation. Extensional deformation dominates in the blue area whereas a pure 

shear deformation occurs on the wall o f the green area..................................................84

xiii



Figure 6-2: Sectional cut view o f a capillary extrusion rheometer...............................87

Figure 6-3: A simplified illustration o f pressure losses within an extrusion rheometer.

(Mitsoulis et al. 1998).......................................................................................................... 91

Figure 6-4: Schematic presentation about velocity profiles from a Newtonian liquid 

(parabolic profile) (Kulicke and Clasen 2004) and a non Newtonian fluid (plug 

profile)....................................................................................................................................92

Figure 6-5: A classical Bagley plot under different conditions..................................... 94

Figure 6-6: Differences between a laminar and turbulent flow..................................... 96

Figure 6-7: Schematic diagram o f velocity profiles with presence and absence o f slip

................................................................................................................................................. 99

Figure 6-8: Determination o f slip velocity through the use of the Mooney method.101

Figure 6-9: Formation o f lip vortex and salient vortex.................................................105

Figure 7-1 a) Strain controlled rotational rheometer ARES is depicted in operation 

and b) a sketch o f the plate, paint and cone.................................................................... 117

Figure 7-2 a) Stress controlled rheometer ARES 2000 and the geometry b) a sketch 

of the plate, paint and cone........................................................................................... 120

Figure 7-3 a) Surface tension meter and b) Du Notiy ring in contact with liquid.... 122

Figure 7-4 a) Capillary break up rheometer and b) the main parts..............................154

Figure 7-5: Capillary extrusion rheometer with two pistols....................................... 124

Figure 8-1: Dynamic amplitude sweep for the paint obtained using controlled 

deformation Rheometer. G’ ([H),G” (A ), Go (O )......................................................... 127

Figure 8-2: Oscillatory behaviour o f white using controlled deformation Rheometer. 

G’ (D),G ” (A ) ...................................................................................................................128

Figure 8-3: Temporal evolution o f the shear stress growth function for different

applied shear rates ((---- ) 0.5 s'1 , (----- ) 0.7 s'1, (-----) 1 s'1, (-----) 2 s'1 (----- ) 5 s'1

(-----) 7 s'1 , (----- ) 10 s'1 , (----- ) 20 s'1) In each case, the sample was pre-sheared at



i ii^ ii iy i ii^ ii vjpwwu u u a i i i i y i i u u ^ o o ^ o

- M H ^ B H l E I A ^ i  ■ ■ ■ ■ H H H f f i f f i l  — l n  BlIU i l I MB

0.5 s-1 for 210s, followed by 1000s at rest before collecting data (350 data points 

collected over 3600s)......................................................................................................... 129

Figure 8-4: Temporal evolution of the stress growth function over a much shorter 

experimental duration for different imposed shear rates (350 data points collected 

over 3 s) shown as solid lines. The open symbols are from experiments run over a 

much longer duration (200 data points collected over 210s). Preshearing and sample 

equilibration conditions as for Figure 8 3. (— V ) shear rate = 0.1 s'1 (— O) = shear 

rate 1 s"1, (— A ) shear rate 5 s'1, and (— □ )  shear rate = 1 0  s'1...................................130

Figure 8-5: a) Illustrating the dependency o f stress growth on delay time. The sample 

was sheared for 210s at 0.5 s-1, allowed to rest for times of 10s (O), 100s (□ ) and 

1000s (□ ). b) Demonstration o f thixotropic recovery after commanded delay time 

which is illustrated by the increase in the stress overshoot. The sample was pre­

sheared for 210s at 0.5 s-1, followed by relaxation times (y=0) ranging from Is to 

4000s then the peak in the stress overshoot on re-shearing at 0.5 s-1 was 

measured.............................................................................................................................. 132

Figure 8-6: Variation in the magnitude o f the peak in the stress growth omax and of  

steady state stress asteady as function o f the imposed shear rate. The samples were 

pre shear for 210s followed by delay time (2000s for a max /1000s for Gsteady) before 

collecting the data. In both cases, the data showed a high correlation to a power law 

function (□  for Umax, O for Ggteady)-.................................................................................. 133

Figure 8-7: Temporal evolution of the shear stress growth function following the 

sudden imposition o f different shear rates expressed as dimensionless variables Shear 

rate (—) 0.1 s'1, (—) 0.5 s'1, (—) 1, (—) 5 s'1 and (—) 10 s'1...................................... 134

Figure 8-8: Comparison o f flow curves from controlled stress and controlled 

deformation experiments: (A ) controlled stress data (average o f data in Figure 8-9) 

(□ ) controlled strain rate data; (O) steady state data (controlled rate) obtained from 

transient experiment (Figure 8 3)..................................................................................... 135

Figure 8-9: Comparison o f flow curves obtained from average data points with cone 

diameter o f (O) 4cm, (A) 5cm and (□) 6cm: (V) represents the average value o f all 

diameters. Coincidence of data suggest an absence o f wall depletion (slip effect)...! 36

xv



Figure 8 10a Creep data ((□) trial 1, (V ) trial 2)) showing the lack o f reproducibility 

in the absence o f preshearing following sample loading. Imposed stress = 0.5623 Pa. 

Note the pronounced structural breakdown and transition to viscous flow. 137

Figure 8-10 b: Creep data showing the lack o f reproducibility in the absence of 

preshearing the sample and allowing full structural recovery. Imposed stress = 0.1 

Pa. Note the pronounced structural breakdown and transition to viscous flow. 138

Figure 8-11: Influence o f preshear stress on subsequent transient (creep) response, 

(a) 0.1 Pa preshear for 1000s, 1000s delay time followed by creep at an imposed 

stress of 0.1 Pa -  data from 3 separate experiments (b) 2 Pa preshear for 1000s, 

1000s delay time followed by creep at an imposed stress o f 0.1 Pa -  data from 3 

separate experiments. Note the lack o f reproducibility obtained with preshearing at a 

lower stress.......................................................................................................................... 140

Figure 8-12: Influence o f preshear stress on subsequent transient (creep) response, 

(a) 0.7 Pa preshear for 1000s, 1000s delay time followed by creep at an imposed 

stress o f 0.7 Pa -  data from 3 separate experiments (b) 2 Pa preshear for 1000s, 

1000s delay time followed by creep at an imposed stress of 0.7 Pa -  data from 3 

separate experiments. Note the good reproducibility obtained with preshearing. ..141

Figure 8-13: Steady state flow curves obtained under different experimental 

conditions: (□ )  stepped shear rate data (ARES) with steady state verified 

independently in transient experiments (O) ‘stepped shear rate’ experiments 

(AR2000) using feedback loop control (A ) stepped stress experiments (AR2000) 

with initial preshearing close to apparent yield stress...................................................142

Figure 8-14: Comparison o f flow curves generated under different conditions and 

devices. Illustrating average data from stress controlled Rheometer using pre strain 

rate o f 0.1 s-1 (O) and pre shear stress o f 0.1 Pa (A ) as well as average data from 

strain controlled Rheometer (□ )  for dark red paint, b) Showing average data from 

stress controlled Rheometer using pre strain rate o f 0.1 s'1 (O ) and pre shear stress o f  

0.1 Pa (A )............................................................................................................................144

Figure 8-15: Demonstrating the good repeatability o f each paints ((a) yield stress red 

and( b) Newtonian red) imposed a shear rate o f 10 s-1  ............................................. 146



Figure 8 16: Comparison between Newtonian paint and shear thinning paints with 

pronounced yield stress. Paint samples are (O) green, (A ) white, (□ )  dark red and 

(V ) red..................................................................................................................................147

Figure 8-17: Herschel Herschel Buckley fits on all samples delivering the yield 

stresses for (O ) green 0.42Pa, (V ) white 0.65 Pa, (□ )  dark red 2.2 Pa and (A ) red 0 

Pa...........................................................................................................................................148

Figure 8-18: Scaling o f stress growth as a function o f time for paints pigmented with 

red (A ), white (V), green (O) and dark red (□ ). Using sudden imposed strain rate 

of 10 s-1................................................................................................................................ 149

Figure 9-1: Digital images o f filament bridges at experiment start, using 4mm plates

................................................................................................................................................159

Figure 9-2 Formation o f central bulge during the filament thinning of a viscoelastic 

fluid (white)..........................................................................................................................161

Figure 9-3: Video capture o f a recoiling leading to a diameter increase at the end o f  

the test,.................................................................................................................................. 162

Figure 9-4 a) indicates a defect during the evolution o f midfilament, b) provides 

optically the reason for the occurrence o f a constant diameter................................... 164

Figure 9-5: Shows two phenomena o f defects: from step 1 to 2 the midfilament 

diameter rapidly decreases due to the downwards movement o f the upper plate. The 

sudden increase in the filament diameter between point 3 and point 4 occurs due to 

the strongly periodical movement. Afterwards, the weakly periodical movements are 

not detectable by the laser..................................................................................................165

Figure 9-6: Evolution o f filament decay o f green paint under two different test 

conditions. The first graph a) shows a wide scattering o f data points in the range 

from +14.8 % to -11.5 % (linear strike profile with an opening time of 110 ms) and 

the second graph b) a narrow scattering o f data points in the range +/-2.2% (linear 

opening time with a opening time o f 20 ms). Solid lines correspond to an average fit 

of 10 runs 167

xvii



phpotdhi i ■ i n i ^ B H B n n r a f i s m E i

Figure 9-7: Digital Images o f the complete overshoot o f the upper plate in a CaBER 

experiment with an exponential stretch profiles using fundamental rate 100 s-1 and 

opening time of 90ms. The target height throughout the sequence o f the picture is 

marked with the red dotted line........................................................................................169

Figure 9-8: A sequence o f digital images that captures an overshoot o f the upper 

plate in a CaBER experiment with a linear stretch profile using an opening time of 

90ms. The final height throughout the sequence o f the picture is marked with the red 

dotted line............................................................................................................................ 170

Figure 9-9: Comparson o f transient midfilament diameter curves as a function of 

time for a) dark red, b) red, c) white and d) green paints for linear opening times of 

(□ ) 20, (□) 50, (□) 70, ( □ ) 90 and (□ ) 110 ms. Papageorgiou and elastic fits are 

represented by black and blue lines respectively........................................................... 172

Figure 9-10: Linear fits to the filament data o f lifetime versus opening time: (□ )  dark 

red, (O) green, (A ) red, ( V  ) white paints; Hencky strain 1.54............................... 174

Figure 9-11: Evolution o f filament diameter at a Hencky strain o f 1.54 with a linear 

opening time of 50 ms. The symbols , A , V , O, □ represent the red, white, green 

and dark red paints..............................................................................................................175

Figure 9-12: Sequence o f digital images during the evolution o f filament 

thinning................................................................................................................................175

Figure 9-13: Illustrating the different extensional strain rates as a function o f time for 

each paint............................................................................................................................ 177

Figure 9-14: Graphs for extensional viscosity versus strike time for a) dark red, b) 

red, c) white and d) green paint........................................................................................179

Figure 9-15: Extensional viscosity at various strike time for red (A ), white(V), 

green (O), dark red(n) paints............................................................................................ 180

Figure 10-1: Calibration instruments and its accessories..............................................186

Figure 10-2: Illustrates the raw data in a pressure versus speed plot, a) red mark data 

obtained by using a die with a diameter o f 0.5 mm and a die lengths o f 50 mm (red),

xviii



20 mm (blue) and 5mm (green) b) Data points around the red dotted line were 

obtained with a die length o f 47mm (red), 20 mm (blue) and 5mm (green).. 191

Figure 10-3: End pressure corrections o f dark red paint through a Bagley plot for 

different volumetric flow and for a capillary die with a diameter o f 0.5mm and 1mm 

whose entrance angel was 180 ° at a temperature o f 20°C. Linear regression analysis 

of data deliver straight lines with R2 o f 0.99 for all curves......................................... 193

Figure 10-4: Flow curve o f dark red at 20°C after stress correction. Red tile were 

extruded through dies with O 5x 0.5, □ 20 x 0.5, t> 50 x 0.5, O 5x1, <1 20 x l and A  

47 x l. The result indicates a no slip boundary since the nearly all data from the same 

diameter and different lengths agree each other. Noise effect at shear rate 100....... 195

Figure 10-5: Shear and extensional viscosity functions o f the commercial paint (dark 

red) with the capillary extrusion rheometer: true shear viscosity (<] 1mm ,0  0.5mm ) 

and extensional viscosity (O  0.5mm,□ 1mm) after using Bagley and Rabinowitsch 

corrections versus shear rate.............................................................................................197

Figure 11-1: Comparison o f data measured by different devices shear viscosity (□) 

from deformation controlled rheometer, shear viscosity (□) and extensional viscosity 

(O) from capillary extrusion rheometer and extensional viscosity (O ) from capillary 

break up rheometer............................................................................................................ 202



List of symbols

Greek alphabet

a  Degree o f Deformation [°]

a c Angle o f the cone [°]

8 Phase angle [°]

y Shear rate [s'1]

Ya Apparent shear rate [s'1]

ye Strain due delay elastic response

Yi Initial strain

Y ^  True shear rate [s'1]

8to Opening / strike timescale [ms]

Yw Shear rate after Weissenberger Rabinowitch

correction [s'1]

Yo Strain amplitude

A1 Extended length [m]

AP Total pressure drop [Pa]

APcap Capillary die pressure drop [Pa]

APcorr Pressure drop correction [Pa]

APe Excess pressure drop o f the die [Pa]

APen Entrance pressure [Pa]

APexit Exit pressure drop [Pa]



I l l s J I I  i y  I I i y i i  W p ^ W V i  W C I U l i y  I I

8 Extensional strain

8 Extension rate [s'1]
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1 Introduction

All industry sectors in Europe are facing increased competition due to the current 

economic climate and only companies with new ideas and improvements are able to 

survive in such difficult times. For the manufacturing sector, one way to remain 

successful is to increase productivity and quality whilst simultaneously decreasing 

the costs associated with wastage due to defects. Considering the coil coating 

manufacturing processes such as tension leveller, hot water rinses and coating, all or 

some of these could be optimised which could lead to a better quality o f final product 

and subsequently reduce the likelihood o f defect products. For this thesis, research 

efforts were concentrated on the coating process in particular determining the 

rheological behaviour of the paints (Dockey 2009 and Friedersdorf 2009).

Shoff (2005) reflects the view o f how important the science o f rheology is in 

boosting the economic benefits for the coating industry, which had a turnover o f  

nearly 270 million tonnes worldwide in 2009.

Furthermore, the quality control for paint could be revolutionised by a better 

understanding o f the flow behaviour o f paints. New rheological devices which have 

been developed within the last two decades, for example, the capillary break up 

rheometer and the capillary extrusion rheometer make it possible to measure the 

extensional viscosity at very high strain rates which provide a better rheological 

understanding o f the samples (DRRheology 2011 and Cambridge Polymer Group 

2011).

This thesis focuses on both rotational and extensional viscosities in order to obtain a

general understanding o f how polyester resin based paints behave under the influence

of shearing or stretching. A rotational rheometer was used to obtain rheological

behaviour subject to a pure shear rate. Additionally, two techniques were employed

to measure the extensional viscosity o f paint under different extensional rate ranges.

The first technique used a capillary break up extensional rheometer (extentional rate 
0 1< 10 s' ) and the second technique used a capillary extrusion rheometer (extentional 

rate > lO V 1)
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1.1 Motivation

This long term research project has been divided into several major milestones in 

order to achieve the ambitious goal o f improving the roll coating process through 

rheological control; with motivation for the optimisation o f the roll coating process 

driven by the factors of quality and productivity improvement.

One o f the major milestones of this project was the generation o f fundamental 

rheological data which were attained by repeatable methods. The outcome o f the 

research project is hoped to be an increase o f production speed and quality 

performance which currently are held back by process instabilities caused by air 

entrainment, ribbing or other flow instability defects. At present, roll coating can 

achieve a speed of up to 120 m/min without the presence o f flow instabilities, 

depending on the properties o f the paint used. Therefore, the motivation is to enhance 

production speed (>120m/min) whilst still producing uniform stable films. The 

economic benefits o f such improvements are axiomatic and will make a significant 

contribution to the future competitiveness and profitability o f Tata/Corus’ Colorcoat 

operation. It would also be beneficial in terms o f sales price to the construction 

industry (e.g. roofing sheets and wall cladding systems), for domestic appliances 

(e.g. wash machines and ovens) and manufactured goods (e.g. lighting and office 

furniture) as well as for automotive (e.g. car doors and car bonnets).

Currently, the coil coating process is more o f an art form rather than a science 

particularly in terms of process control and quality optimisation, which depend on 

the experience o f operators to make the correct decisions regarding set up. The 

incentive o f the sponsors is to enhance knowledge about the behaviour o f paints and 

move a step closer to making coil coating a more scientific process in terms o f  

understanding.
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1.2 Achievements

Generally, the rheological characterisations for polyester resin based paints were 

successfully undertaken which was necessary for continuing the whole research 

project. A failure would have meant that the project would have come to a halt and 

new research activities would have not been able to carry out. With this new 

knowledge and derived experimental procedures, it was possible to provide 

trustworthy rheological data which were the basis o f further research activities.

To reach this successful outcome, several smaller milestones were required. The first 

milestone was to provide steady state flow procedures for stress and strain controlled 

rheometry whose results were identical.

Once suitable experimental procedures for the rotational experimental works were 

successfully established, four commercial polyester resin based paints were used to 

highlight the rheological differences and therefore the second milestone of  

comparing each paints was finally achieved. The results allowed yield stress and 

Newtonian behaviours to be assigned to the samples. The rheological classification 

of the commercial paints was one o f the project aims which was also successfully 

completed.

A significant achievement was to obtain an ideal operation window for the Capillary 

Break up Rheometer for polyester resin based paints which was the third milestone. 

There is now the opportunity for comparing paints in the field o f filament thinning. 

Additional information about the evolution o f filaments and the occurrence o f defects 

such as recoiling were captured by a high speed camera and which helped to increase 

the understanding o f the behaviour o f commercial paints.

During the fourth milestone phase, further successful rheological parametric 

characterisation was attained by using capillary extrusion rheometer with different 

die geometries and piston speeds. This instrument mimicked more realistically the 

flow behaviour between the rolls.

A steady state flow curve could be provided, utilising the different rheometers, for a

shear rate between 10"1 and 5 x 104 s'1, which is unique for polyester resin based

paint pigmented with dark red analysed in this work. This type o f flow map for this
3



commercial paint has not been published previously to the best o f the author’s 

knowledge.

1.3 Thesis structure

•  Preface : provides Abstract, Declaration, Statements, Table o f contents, 
Dedication, Acknowledgements, List o f tables, List o f figures, List of 
symbols

•  Chapter 1: outlines the introduction, motivation and achievements.

• Chapter 2: describes the coil coating line and includes a section on the

coating process and additional information is given about the product defects

and how this is driven by surface tension and viscosity.

•  Chapter 3: provides general information about the chemistry, components and 

inner structure o f commercial paints

• Chapter 4: aims to provide an understanding o f the general concepts o f the 

science o f rheology in particular the aspect o f the extensional and rotational 

effects.

• Chapter 5: informs the reader about the principles o f operation for the

different extrusion rheometers and especially focuses especially on the

capillary break up rheometer used in this study and the scientific background.

•  Chapter 6: Provides an understanding about the contraction flow phenomena 

and details about the capillary extrusion rheometer.

•  Chapter 7: summaries the test equipments which were used in the research 

and may be considered as a reference chapter. Additional test parameters for 

each experimental procedure were included.

•  Chapter 8: describes the development o f shear rheometry methodologies. It 

discusses the obstacles of measuring rheological parameters and gives 

solutions to overcome these problems.
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• Chapter 9: focuses on the rheological characterisation o f commercial paints 

analysed in this study by using the capillary break up rheometer. A 

description of the systematic methodology used is described, in particular the 

changing o f the set up parameters in order to obtain the ideal operational 

window.

• Chapter 10: deals with the analysis o f the raw data from a paint measured 

with a Capillary extrusion rheometer to provide a paint map with all the data 

obtained along with locations of the experimental instrument used.

• Chapter 11: outlines the conclusions from the thesis.

•  Chapter 12: suggests the future research work.
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2 Industrial background

2.1 Coil coating of strip steel

The coil coating o f strip steel is a continuous and highly automated process in which 

the aim is to apply a uniform thickness paint layer onto a metal sheet (Weinstein and 

Ruschak 2004). A coil coating line represents a capital investment o f several million 

pounds and involves a number of distinct operations which apply organic or 

inorganic coatings onto up to 30 tonnes coil o f metal. Typical operations are cleaning 

and treating the surface, applying and curing the coating layers (e.g. primer, top coat) 

and rewinding. Each coating run can process up to 1.6 km length o f metal. The width 

capabilities start from 100 mm and go to 1900 mm for steel and 2700 mm for 

aluminium. The gauge capabilities vary from 0.15 mm to 2.5 mm. Production 

capacities o f around 4550 tonnes of steel or 2750 tonnes o f aluminium per week are 

possible. (Vayeda and Wang 2007, Froehlich 1998, Graziano 2000, Drufke 2006, 

Meuthen and Jandel 2007). The majority o f coil coating lines use liquid paints based 

on organic solvents and as a consequence, harmful volatile organic compounds 

(VOC) will be released during the drying process in which the solvent evaporates. 

This requires VOC control equipment (such as solvent destruction systems extracting 

solvent laden air into chamber where it is converted into carbon dioxide and water 

through heating and burning the solvent laden air) in order to remove the harmful 

materials. A completely different set up is used with water based liquid paint. In this 

case, the coil coating lines are equipped with infrared ovens instead o f incinerators to 

remove the water and the level o f VOC emissions is almost zero in this case. Some 

coil coating lines can even be used for powder coating (Vayeda and Wang 2007, 

Froehlich 1998 and Drufke 2006).

The major advantage of pre-painted metal is that manufacturing plants are fully in 

compliance with the environmental regulations because it has an integrated facility to 

treat the VOC. In respect to the commercial side, the manufacturing cost for 

producing this product is relatively cheaper in comparison to other techniques such 

as a manual spraying process (Froehlich 1998 and Graziano 2000). In addition to the 

painting capability, modem coil coating lines can also laminate directly onto the
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metal substrate on either or both sides. The capabilities of printing and embossing are 

available to produce multicolour designs or wood grain appearances (Graziano 2000 

and Drufke 2006).

2.2 Processes in coil coating line

Reels

Stitcher

Figure 2-1: Illustration of the coating line with the different process stages

Before the material is fed into the coil coating line, the steel is coated with a metallic 

layer which provides sacrificial corrosion protection. Substrates such as Galfan (95 

% zinc, 5% aluminium) (Woldman and Frick 2000) and Gavalume or Zincalume 

(55% aluminium, 43.4% zinc, 1.6% silicon) (Cleary 1985) are typically used in the 

coil coating process. A metallic layer produced by hot dip galvanising normally has a 

zinc content of around 99.7% and an aluminium content of around 0.3%.

The first process in the coil coating line takes place in the pay off reel, where the

metal coil is unwound and fed into the line. To guarantee a continuous automated

process, a new strip will be stitched or welded to the previous material just before the

stock runs out. Each new roll undergoes a quality control check whose purpose is to

detect any damage that may have occurred during the transport before use.
7
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Additionally, the width and gauge will be manually measured (Froehlich 1998) to 

confirm the correct dimensions requested by the customer. Afterwards, the adhesion 

o f the paint to the metal will be enhanced by pre-cleaning the surface with alkali 

which helps remove any contamination and detritus (Vayeda 2007 and Goodwin 

1984). The remaining strong alkali will be removed under a shower o f water with 

temperature of around 50° C in the hot water rinse section.

The necessary time for the stitching process between the new and previous 

substrates, without stopping the whole coil coating process, can be gained from the 

storage section, labelled accumulator, which is the next process after the cleaning 

process (Froehlich 1998). Normally, the flatness o f the strip needs to be improved 

which can be achieved by the tension leveller (Wilshire 2006). A final cleaning 

process follows using hot water to rinse the remaining alkali and impurities away.

Now, the strip is ready for receiving a pre treatment layer resulting in enhanced 

adhesion and corrosion protection. Afterwards, primer or topcoat layers are applied 

in the coating section. Many coil coating lines have the capability to apply primer 

and topcoat on both sides using two separated coating sections with two different 

oven sections (Froehlich 1998). In the curing oven, the substrate is heated up to Peak 

Metal Temperature (PMT) or curing temperature. Consequently, the wet paint 

changes its aggregate condition from liquid into solid through evaporation o f solvent 

and hardening o f the polymer via cross linking o f the polymer chains. Correct curing 

conditions are important to obtain a coating layer which has sufficient adhesion to 

the substrate, hardness, flexibility and strength. An incinerator is also included in the 

oven to bum off the solvent emissions.

It is envisaged that the conventional curing will be replaced by radiation curing using 

electrode arc systems to produce ultraviolet light or electron beams to harden a 

solvent free coating film within seconds (Graziano 2000, Abbasian 2004, Glockner et 

al. 2008).

After curing, the coating is cooled down in the quench section (Froehlich 1998). 

Finally, the semi-finished product is ready for the quality control examination in the 

inspection area. The standard inspections include checking the gloss level and 

determining the colour level by visual or electronic methods. In addition, the
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adhesion and flexibility o f the coating will be measured for example according to 

cross cut test (ASTM D3359-07) and Erichsen (Froehlich 1998).

2.2.1 Types of roll coating

The outcome o f this research presents an understanding o f fluid behaviour in the 

coating section where rheology plays an important role in production performance, 

therefore, a short introduction in roll coating is essential.

There are two types o f roll coating, namely direct roll coating and reverse roll 

coating. The advantage o f direct roll coating is that the wet film thickness can be 

controlled more accurately than in reverse roll coating. Another advantage o f direct 

roll coating is that the applicator roll has a longer life expectance compared to that in 

a reverse roll coating system since the total friction force is smaller. However, 

reverse roll coating also has distinct advantages, for example the surface finish is 

better and a higher line speed performance can be achieved (Graziano 2000 and 

Wicks et al. 2007).

2.2.2 Direct roll coating

In this process, the direction o f movement o f the substrate is in the same direction as 

the rotation o f the applicator roll. The journey o f the paint begins under the effect o f  

adhesion and viscous lifting (Chong et al. 2007) from the pick-up roll via feed to the 

applicator roll from which the paint will be applied to the substrate. The gap between 

the feed and applicator rolls and the viscosity o f the paint determine the applied film 

thickness. The applicator rolls are normally made o f metal covered with a 

polyurethane elastomer, whose flexibility allows compensation for the variation in 

the thickness o f the substrate. The direct roll coating process is ideal for metal sheet 

and can be found in the can coating and metal decorating industries (Graziano 2000 

and Wicks et al. 2007).

9
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Pressure roll

Figure 2-2: Schematic diagram of a direct roll coater (adapted from Wicks et al. 2007)

Applicator i oil

►

2.2.3 Reverse roll coating

In this case, the substrate’s movement is in the opposite direction to that of the 

applicator roll’s direction of rotation. The wet film thickness is controlled by the gap 

between the pick up and application rolls and/or the rate of the rotation of the coating 

application roll (or pick-up roll) to the line speed of the substrate. The reverse roll 

coating technique is used, for example in painting, printing and embossing (Graziano 

2000).

Drum roll

Figure 2-3: Schematic work principle of a reverse coating process -  2 Roll (adapted from Cohu and 

Magnin 1995)

Before the industrial paint is pumped into the tray, the paint needs to be stirred to 

achieve a homogenous mixture. The pick-up roll, which is partly immersed in paint,

10
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Pick-up i oil
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transfers the complex fluid to the application roll covered with elastomer layer 

through a nip.

2.3 Pre -  finished steel products

Pre finished steel possesses several layers which can be seen below.

Top coat

Prune i

Metallic

&ubsti at

Metallic

Pi Ull ci

Backing

Figure 2-4: Pre finished product with various types of layers

The layers comprise:

• Metallic coated steel substrate

The main component of pre-finished steel is the steel itself. The steel gets its 

required mechanical properties by further treatments according to national 

and international standards (Corus Group 2007).

• Pre-treatment

Pre-treatment chemically changes the surface of the substrate through 

passivation leading to an improvement in adhesion of the applied paint and 

corrosion resistance. This is also known as surface activation.

coating

coating
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• Primer

The primer is the first paint layer to be applied and the main component is 

either epoxy or polyester resin (Goldschmidt and Streitberger 2003). The 

primer is used to impart a better corrosion protection to the substrate (Nanetti 

2006). Additionally, it enhances the adhesion between the metal and the top 

coat (Arimes 1994). A primer is especially suitable for metals intended for 

use in moist or wet environments.

• Top-coat

Finally, the top coat is applied which typically contains one o f the four 

following systems, PVC-Plastisol, Polyester melamine, Polyester isocyanate 

and Polyvinylidene Difluoride (Corns Group 2007). The dry film thickness o f  

all except o f plastisol is around 15 to 40 pm. A dry film made o f plastisol can 

achieve a thickness o f up to 300 pm (Goldschmidt and Streitberger 2003) but 

is normally between 100 and 200 pm. All samples examined in this research 

are used as top coats.

• Back coating

Back coats provide good adhesion and corrosion protection. Since the back 

coat is not fully exposed to the environment, the film thickness is much 

smaller than the top coat (Corns Group 2007) with a typical thickness o f 8 to 

10 pm (Goldschmidt and Streitberger 2003).

2.4 Product defects

The majority o f defects can be immediately detected after application or after the 

curing process when the film has dried. Unfortunately, a correction is not possible at 

this stage and the presence o f defects increases the scrap cost accordingly. Some 

common fluid instabilities or defects driven, for example by surface tension or 

viscosity are frequently observed in coating flow (Gutoff and Cohen 1995, Abbasian 

2004 and Schoff 2004). Many investigations o f flow instabilities or defects

12
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(Koschmieder and Biggerstaff 1986, Roper et al. 1999, Gostling 2001, Lopez and 

Rosen 2002, Ryntz and Yaneff 2003 Rouseau 2006, Schatz et al. 2008 and Lecuyer 

et al. 2009) have been conducted both experimentally and numerically. Despite these 

research efforts, there are still unexplained phenomena and flow processes in this 

area such as the effect o f viscoelasticity on the coating flow, flow dynamics in 

multilayer coating and product enhancement without defects. Some common defects 

are mentioned below (Lee et al 2010).

2.4.1 Convection or Benard cells

The appearance o f small hexagonal shapes on the surface is an unwanted effect 

driven by surface tension gradient (Schatz et al. 2008). These shapes are known as 

convection cells or Benard Cells. In the past, the explanation for this defect was that 

the difference in temperature o f the paint layer between the top surface o f the hot 

substrate and the paint -  air interface results in a density gradient. As a consequence, 

a layer o f convection or Benard cells are able to be formed in the layer (Koschmieder 

and Biggerstaff 1986). A more recent investigation shows that low viscosity and 

pigment flocculation promote the occurrence o f the convection or Benard cells 

(Ryntz and Yaneff 2003). Research by Gutoff and Cohn (2006) outlines methods to 

counter convection cell formation by either applying a thinner layer, using paint with 

a higher viscosity or increasing the drying time by adding lower volatility solvent or 

surfactants (e.g. fluorinated surfactants).

2.4.2 Fat edges or Picture framing

An accumulation o f paint at the edge o f a layer is described as fat edges or picture 

framing. In this area around the edge, surface tension is higher due to the higher 

concentration o f dissolved solids which leads to a flow stream of paint from lower 

surface tension area to the higher surface tension area. Reducing surface tension with 

surfactant prevents a flow towards the edge (Gutoff and Cohen 2006).

13
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2.4.3 Ribbing

Above a critical operation speed, the meniscus profile undergoes a periodical 

instability leading to an uneven coated film. As a result, a sinusoidal pattern in the 

direction o f coating can be detected on the surface which is classified as ribbing 

(Gostling 2001, Lopez and Rosen 2002 and Rouseau 2006). Currently, Newtonian 

and viscoelastic liquids have been used to investigate the ribbing instability in rigid 

and deformable forward roll coating processes. Parameters such as capillary number 

(see equation 5.7, in this case roll speed is used for the characteristic velocity) or roll 

speed, coating gap, hardness o f the complaint cover and viscosity all play an 

important role in the onset o f ribbing. For example, an increase in capillary number, 

increasing hardness o f the compliant roll and decreasing the coating gap will reduce 

the wavelength in Newtonian and viscoelastic liquids and, consequently, a reduction 

or even avoidance o f ribbing altogether (Lee et al. 2010 and Chong et al. 2007).
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3 A concise introduction to commercial paint

By looking around in our environment, colourful coated metals stand out as a 

beautiful appearance (instead o f having the typical dull metal colour) and their 

existence can be attributed to the variation o f available paint systems. Furthermore, 

the coating layers protect the metal from the aggressive atmospheric environment. 

Without the protection, the metal slowly starts to corrode and simultaneously loses 

its mechanical and chemical properties. Paint can be applied to the object either in a 

simple way by using a paint brush for instance or in a more sophisticated way by 

using automatic machine, whose technique is used in the coil coating process for 

example. Paint itself can be considered as a semi-finished product (Turner 1997). So 

before directly entering into the science o f paint, the first few subchapters are 

dedicated to the main components in the paint which are polymers.

3.1 A brief introduction to polymer science

As outlined in the previous chapter, the main component of paint is the polymer (also 

known as the macromolecule). Polymer is characterised by its large relative size and 

consists o f chemically bound smaller similar molecules or repeat units called 

monomers. Its skeletal structures can be linear or non linear such as branched or 

networked (also called cross linked). A linear structure is the simplest arrangement 

which has a chain with two ends. Branched polymers are more complex in nature due 

to small branches connected to the main chain. The connection points are named as 

branch points or junction points. In contrast to the before mentioned two dimensional 

structures, network polymers have a three- dimensional construction and each chain 

is linked to the other chain in this structure which is called cross-linked (Steven 

1990, Speer et al 1994 and Young and Lovell 1997).

a) Linear b) Branched c) Network

Figure 3-1: Pictorial representations of different types of polymer structures (Young and Lovell 1997)
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3.2 The classification o f polym ers in different aspects

Many further classifications of polymers exist but only a few should be mentioned 

for sake of simplicity. One way to classify polymers is to consider the repeatability 

o f monomers in the chain. In this group, a polymer formed by identical monomers is 

coined as homopolymer. An example is polyethylene (PE) which is made out of 

many single ethylene monomers and its polymerisation is illustrated in Figure 3-2. A 

copolymer consists of at least two or more varieties of monomer whose occurrence 

can be random, block or alternate in the chain. An example is fluorinated ethylene 

propylene (FEP) which consists of tetrafluoroethylene and hexafluoropropylene 

depicted in Figure 3-3 (Young and Lovell 1997).

H H
H H | |

^  Polymerisation

/  \
H H H H

Ethylene Polyethylene

Figure 3-2: Polymerisation of Polyethylene due to the break up of the weak double bond
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H H H H H

c  —-  C —  c  —-  c  —-  C

H H cf3 H H

FEP

Figure 3-3: Copolymer FEP made out of two different monomers due to break up of the weak double 

bond



Alternatively, polymers can be classified into thermoplastic, thermoset and elastomer 

by considering the properties. Thermoplastic polymer consists of linear or branched 

molecules and comprises polymers which can be melted or resolidified by increasing 

or decreasing the temperature. Another type is the thermoset polymer which has a 

network structure with a high degree o f crosslinking. As a result o f the connections, 

thermoset polymer possesses very rigid and brittle properties. They do not melt when 

heated but decompose irreversibly at high temperature. Most o f them do not dissolve 

or swell in solvents (Fischer 1990). Last but not the least, an elastomer consists o f  

crosslinked rubbery polymers. As a result o f their low crosslinking density, they are 

good at stretching and recovering after release o f the stress. Due to its structure, it 

will not dissolve but it will swell in some solvents (Speer et al. 1994, Young and 

Lovell 1997).

In terms o f polymerisation process, polymer can be grouped into condensation and 

addition polymerisation. A polymer formed with a release o f small molecules as a by 

- product is known as a condensation polymer (e.g. polyester). The exact opposite is 

the type o f addition polymer. In this case, an addition reaction forms the chain 

without the lost of any by-products (Nicholson 1994).

The final classification mentioned in this chapter considers the compounds o f the 

polymer. A natural polymer consists o f proteins, nucleic acids, cellulose 

(polysaccharides) or rubber (polyisoprene) whereas synthetic polymers are made o f  

organic compounds derived from mineral oil such as nylon, poly- (hexamethylene 

adipadime), Dacron, poly- (ethylene terephalate) and so on (Speer et al. 1994).

3.3 Introduction to commercial paint

Paint can be considered as a complex fluid that possessing two different systems

namely a dispersion phase also called internal phase and dispersion medium or

continuous phase (resin or resin solution) (Oldring 2000). Additional to the polymer

or binder (resin), solvent (carrier), pigment (colourant) and additive (e.g. flow agents,

dispersants) are needed to manufacture a commercial paint. To obtain a

heterogeneous blend, a special order for mixing the materials together needs to be
20
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followed. By not considering the order o f the mixing, lumps in the paint can occur

(Turner 1997).

3.3.1 Binders/ resins
iiI

The bulk o f a paint is made o f binder which occurs as a solid aggregate condition and 

only by using appropriate type o f solvents can the resin be dissolved. The main tasks 

of binders are firstly to hold the pigments together and secondly to provide the 

adhesion necessary to stay on the substrate. In addition, it has a strong influence on 

gloss level, durability, flexibility and toughness. Generally binder is made o f a tough 

amorphous polymeric material. Paint can be classified by the main binder (e.g. 

alkyds, epoxy and polyester). Only the properties and chemical reactions o f polyester 

will be briefly explained and illustrated in this chapter since paints based on 

polyester resins were used in our investigation. Polyester resin possesses good 

flexibility, good resistance against heat, stains and detergents. Furthermore, they give 

gloss coating as well as low permeability to gases and solvents (Scheirs and Long 

2003). Polyesters can be made in linear, branched or cross-linked structures. The 

samples which will be used and analysed for this project fall into cross-linked 

polyester category. However, there are two types o f cross-linked polyester namely 

saturated and unsaturated. The unsaturated polyesters are mostly used for producing 

fibres and composites whereas saturated cross-linked polyester resin find their 

application in paint manufacture.

A direct esterification describes the chemical reaction between an alcohol and an 

I acid, which forms an ester as a reaction product. This method is normally chosen for

| producing polyester resins used for making paints (Hall 1989). A good example of

polyester resin formation is the reaction o f terephthalic acid with ethylene glycol 

(alcohol) (Weiss 1997).
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Figure 3-4: Illustrates the requirement of chemical compounds to obtain polyester resin (adapted from 

Weiss 1997)

3.3.2 The task of solvent in paint and its occurrence

The main reason for using solvents is to liquefy the materials used for paints and 

under this liquefied condition, the paint can be coated over the substrate (McKeen 

2006). After the paint is on the product surface, the solvent is no longer needed and 

therefore will be removed by heating up the paint in an oven. In the coil coating 

industry, a high evaporation rate of solvent is desirable so that a fast dried paint film 

can be achieved (e.g. through oven drying or air drying) (Stoye and Freitag 2001). 

The common solvent groups are aliphatic hydrocarbons, aromatic hydrocarbons, 

esters, ketones, ethers and ether-alcohols, nitroparaffins and chlorinated paraffins 

(Koleske 1995). Some solvents are listed in the table below with data about the 

chemical formula, viscosity, boiling point and flash point and general information 

about the groups (Turner 1997).
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3.3.3 Types of additives and their purpose

Additives impart particular properties to the paint (e.g. UV stability) and an amount 

between 0.01 and 1% is normally added to improve and change the properties o f the 

paint (e.g. wet film or dried film which can affect flexibility, colour, fastness, gloss, 

solvent resistance, graffiti resistance, conductivity etc.) (Stoye and Freitag 1998).

Plasticisers and surfactants are some o f the important additives used. An improved 

flexibility can be achieved by the inclusion o f plasticiser molecules into the polymer 

matrix, which due to dipolar effects provides separation o f the polymers chains 

making them less tangled and allowing them to move more easily. More than 300 

different types o f plasticisers are available on the market and a typical plasticiser 

family is the phthalates, which give the PVC flexibility and durability. The surfactant 

reduces the surface tension resulting in an improved wetting o f surface by the paint 

(Koleske 1995 and Patrick 2005). Flow additives improve the spreading o f the paint 

with the result o f an enhanced surface quality. Furthermore, the presence o f surface 

defects can also be solved by using the appropriate type of flow additive which 

depends heavily on the resin (Turner 1997). The smallest size which can be achieved 

by the milling process ranges between 0.1 to 2 pm (Stoye and Freitag 2001).

3.3.4 Brief insight into pigments

Pigments are commonly used to give the paint the required colour and the amount o f  

pigment in paint depends on the type o f colour and its colour strength. Furthermore, 

pigments may strengthen the paint film or provide a better adhesion o f the film. Even 

increasing the corrosion resistance o f metallic substrates or lowering the gloss level 

is possible by using the right sort o f pigments (Turner 1997). The smallest particle 

size which is possible ranges from 0.1 to 2 pm (Stoye and Freitag 2001).
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3.4 The principle of a network structure occurring within paint

Disperse systems are thermodynamically unstable, therefore the pigments move 

around and start to build up in clusters (Muller and Poth 2006). Poor dispersion 

techniques can be the reason for the production o f clusters. A certain degree of 

network structure (e.g. flocculation) imparts elasticity to the paint which is desirable 

in some circumstances and furthermore it can prevent sagging and cratering (McKay 

1994). In contrast, a large number of clusters may settle to the bottom o f the paint 

and resulting in paint defects (Talbert 2007). Kaluza (1980) also reported that 

flocculation may increase the rate o f sedimentation and reduce the gloss level. 

Flowability is impaired and the occurrence o f the yield stress is accrued (Kaluza 

1980). Excessive flocculation prevents flowing and levelling and may cause streaks 

and blotches (McKay 1994). The structure o f flocculation can be broken down into 

primary structures like agglomerates and then further into primary particles. It is 

important to stabilise this state as most clumps are dispersed during the milling 

process for short while (Balfour 1995). The degree o f dispersion strongly influences 

the properties o f the final coating layer such as colour strength, opacity and gloss. 

Sang et al. (2001) also noticed a change in gloss level between two different inks 

made o f two dissimilar red pigments. The reason seems to be the variation o f the 

degree o f dispersion which naturally occurs for each pigment. The aim is to have a 

stable well dispersed state which can be gained by using dispersing agent (Liphard 

andRybinski 1991).

Pigment models have been proposed based on the various structural units o f particles 

occurring in a dispersed medium (Honigmann and Stabenow 1962). Figure 3-5 

illustrates the types o f pigment particles. The smallest units are called primary 

particles. Due to strong interaction forces such as electrostatic or Van de Waals, the 

primary particles in a dispersed medium start to attract each other forming clusters 

specifically aggregates or agglomerates. Agglomerates are made up o f single loose 

primary particles connected over a low contact area whereas aggregates consist of 

rigidly joined together particles, which are connected over large area o f contact. 

(Hunter 1989, Goldschmidt 2003). A small formation o f an opened aggregate is 

named a floe and occurs in a concentrated suspension (Nelson 1988 and Parfit 1981),
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further growth leads to a three dimensional network structure called a flocculation

(Everett 1988).

contact points

I
Primary particles Aggregation Agglomeration

Figure 3-5: Schematic illustration of various types of network occurring in paints

Kaluza (1980) provided two features to distinguish the flocculates from the 

agglomerates. The first feature is the presence of cavities which are filled with 

components of the dispersion medium in a flocculated structure whereas an 

agglomerated structure possesses atmosphere in the core instead of fluids. The 

second feature focuses on the stability. The agglomeration structure is more stable 

than the one for the flocculation and flocculation breaks down under the action of 

very low forces.

3.5 Bibliography

Balfour, J., & Huchette, D. (1995). Paint and Ink International 8 .

Bower, D. I. (2002). An introduction to polymer physics. Cambridge: Cambridge 

University Press.

Breuker, M. (1993). Rheological problems in the paint industry. AppliedRheology, 

48.

Christie, R. M. (1993). Pigments structures and synthetic procedures, (5th Edition 

ed.). Basingstoke: Oil & Colour Chemists’ Association.

25



Fischer, U. (1990). F a c h k u n d e  M e t a l l  (15th Edition ed.). Dusseldorf: Europa- 

Lehrmittel.

Honigmann, B., & Stabenow, J. (1965). Vlth FATIPEC Congress., (p. 89).

Hunter, R. J. (1987). F o u n d a t i o n  o f  C o l l o i d  S c i e n c e  (Vol. I). Oxford: Clarendon 

Press.

Kaluza, U. (1980). F l o c c u l a t i o n  w h i c h  f a c t o r s  i n f l u e n c e  i t ?  P a r t  1 , P i g m e n t  a n d  

R e s i n  T e c h n o l o g y .

Kheirandish, S., Gubaydullin, I., Wohlleben, W., & Willenbacher, N. (2008). Shear 

and elongational flow behavior o f acrylic thickener solutions, Part I: Effect o f 

intermolecular aggregation. R h e o l o g i c a  A c t a , 4 7 , 999-1013.

Koleske, J. V. (1995). P a i n t  a n d  c o a t i n g  t e s t i n g  m a n u a l  (4th Edition ed.). Ann Arbor: 
Garden-Sward

Liphard, M., Rybinski, W., & Schieferstein, L. (1991). F a r b e  a n d  L a c k  Hannove: 

Vinzenyz Network.

Lopez, F. V., & Rosen, M. (2002). Rheological effects in roll coating paints. L a t i n  

A m e r i c a n  a p p l i e d  R e s e a r c h , 3 2 ,  247-252.

McKay, R. B. (1994). T e c h n o l o g i c a l  a p p l i c a t i o n s  o f  d i s p e r s i o n s .  New York: Marcel 

Dekker.

McKeen, L. W. (2006). F l u o r i n a t e d  c o a t i n g s  a n d f i n i s h e s  h a n d b o o k .  Norwich: 

William Andrew.

Muller, B. (2009). A d d i t i v e  k o m p a k t ,  F a r b  u n d  L a c k  (3rd Edition, ed.). Hannover: 

Vincentz Network.

Muller, B., & Poth, U. (2006). C o a t i n g s  f o r m u l a t i o n :  a n  i n t e r n a t i o n a l  t e x t b o o k  

Honnover: Vincentz.

Nelson, R. D. (1988). D i s p e r s i n g  P o w d e r s  in  L i q u i d s .  Amsterdam: Elseveir.

Nicholson, J. W. (1984). T h e  c h e m i s t r y  o f  p o l y m e r s .  Cambridge: The Royal Society 

of Chemistry.



Oldring, P. T., Deligny, P., & Tu. (2000). R e s i n  f o r  S u r f a c e  C o a t i n g :  A l k y d s  &  

p o l y e s t e r s ,  (2nd Edition ed., Vol. II). London: John Wiley and Sons.

Osterhold, M. (2000). Rheological methods for charterising modem paint systems. 

P r o c e s s  in  O r g a n i c  C o a t i n g ,  4 0 , 131-137.

Sang, T. V., Bhaskar, V. V., & Ronald, R. A. (2001). Comparison o f methods to 

assess pigment dispersion. J o u r n a l  o f  C o a t i n g  T e c h n o l o g y , 7 3 , 923.

Speer, J., Kromm, J., & Maisel, J. (1994). C h e m i s t r y  (5th Edition ed.). McGraw-Hill.

Stevens, M. P. (1990). P o l y m e r  C h e m i s t r y  A n  I n t r o d u c t i o n  (2nd Edition ed.).

Oxford: University Press.

Stoye D., D., & Freitag, W. (2001). P a i n t s ,  C o a t i n g  a n d  S o l v e n t s  (2nd Edition ed.). 

Germany: Wiley-VCH Verlag.

Talbert, R. (2007). P a i n t  t e c h n o l o g y  h a n d b o o k .  CRC Press.

Turner, G. P. (1997). P a i n t  C h e m i s t r y ,  a n d  P r i n c i p l e  o f  P a i n t  T e c h n o l o g y  (3rd 

Edition ed.). London: Chapman and Hall.

Weiss, K. D. (1997). Paint and Coatings: A Mature Industry In Transition. P r o g r e s s  

i n  P o l y m e r  S c i e n c e , 22, 203-245.

Young, R. J., & Lovell, P. A. (1997). I n t r o d u c t i o n  t o  p o l y m e r  (2nd Edition ed.). 

Chapman & Hall London.

27



HtlMFG*

4 Introduction to rheology

The Researcher Professor Bingham invented the term Rheology, defined as

“The study of the deformation and flow of matter.” (Barnes 2000)

Many scientific disciplines and industry sectors (e.g. agriculture, chemistry, industry, 

oil industry) are involved in Rheology research for their products. For example, 

Geller and Goodrum (2000) used rheological method (e.g. to provide flow curves) to 

answer the question whether diesel can be replaced with traditional vegetable oils in 

terms o f its rheological properties. The conclusion was that one o f the tested 

vegetable oil (Captex 355) was more likely to be able to replace diesel fuel in respect 

to the rheological properties such as flow resistance. The scientist Newton (c.1700) 

introduced the term viscosity for describing the degree o f the flow resistance of a 

material subjected to an applied stress. The root o f the flow resistance is the internal 

friction within the microstructure o f the material. More detailed information about 

the theories and experimental works o f rheology have been well explained in the 

books by Barnes et al. (1994), Barnes (2000) and Whorlow (1992).

4.1 Mathematical rheological relationships

Basically, a force, F ,  acting on an area o f a body, A ,  causes a stress, cr, and if  the 

resulting stress is beyond a critical stress level, the material starts to flow. There are 

two main types o f forces which can be applied to the body namely extensional force 

(vertically away from the body) or a shear force (tangentially or parallel to the 

surface) which helps to provide useful information about either the extensional or 

shear rheology (Barnes 2000).

The displacement o f a body is the response to the action o f a force and is described 

as strain. In Figure 4-1, a distortion o f a cube is depicted to illustrate the principle o f  

shear deformation. The ratio o f distance, W , along the force direction and the height, 

h , between the two force directions provides the dimensionless value o f the shear 

strain where tan a  indicates the degree o f deformation.
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wtan a  =y= — h Equation 4-1

X

Figure 4-1: Schematic models for explaining the shear rate definition

By considering the time during which the deformation takes place, the physical

parameter, velocity, V, comes into play and shear strain is converted into strain rate, 
•

/ ,  with the unit of s’1

Strain is converted into strain rate with respect to change in time (Barnes 1994).

_ W  y  _ dW ' dy V
 ̂ h dt ^ dt h

Equation 4-2 Equation 4-3 Equation 4-4

4.2 D ifferences between perfect, viscous and viscoelastic behaviour

A material can exhibit perfect elastic (solid like) behaviour or perfect viscous (fluid 

like) behaviour, which are the classical extremes of the material behaviours. A
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combination of elastic and viscous can also be found which is called as viscoelastic 

behaviour. Depending on the time scale, viscoelastic material can sometimes behave 

more elastic or more viscous (Malkin et al. 2006).

4.2.1 Characteristic feature for a perfect elastic solid behaviour

A perfectly elastic solid obeys Hooke’s Law which means that the applied stress is 

proportional to the strain. After releasing the stress, the stretched body returns back 

to its original shape. This implies that the deformation is reversible and any energy 

during the deformation is stored elastically by the structure, (i.e. no energy loss). 

Figure 4-2 illustrates an example of the response of a perfect elastic solid. As can be 

seen, the solid directly responds to the applied stress, 07, in the form of a 

deformation. When the stress, 0 2 , is reduced, a proportional reduction of the 

deformation occurs immediately. Such a relationship between stress, <r, and the 

resulting strain, y, is described by the Hooke’s Law equation as: (Barnes 2000)

cr = Gy Equation 4-5

Whereby the rigidity modulus, G, is a proportional constant which describes the 

stiffness of the material.

y

Yi

72

tjncrease ^reduction t

Figure 4-2: Strain responses of shear stresses a, and o2 for a perfect elastic material (Elley 1995)
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4.2.2 Characteristic feature for a viscous behaviour

A proportional relationship between applied force (shear stress) and rate of 

deformation (shear rate) portrays perfect Newtonian behaviour. For instance, water, 

air and gasoline behave as ideal Newtonian fluids and exhibit a constant viscosity 

which is independent of shear rates (Barnes 1994 and 2000). Figure 4-3 shows the 

response of a perfect viscous fluid. When stress, 07, is applied, the material starts to 

flow continuously. By removing the stress (a2 = 0) at tQff, the deformation in the fluid 

remains because all the energy is lost as heat.

t

Figure 4-3: The strain responses of shear stresses 07 and a2 for an perfect viscous material (Elley

1995)

The behaviour of a perfect Newtonian fluid can be described by the constitutive 

equations:

<J= Tjy Equation 4-6

where rj is the viscosity with a SI Unit of Pa.s

It is important to point out, that the normal stress differences do not exist in a pure 

fluid like material (i.e. Ni = 0 and N2 = 0 ).

At this stage of knowledge, a simple shear flow also called viscometric flow, can be 

fully described by considering the viscosity (see equation 4.11) and the elasticity of 

the fluid (see equations 4.4 and 4.5).
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4.2.3 Characteristic features for a viscoelastic behaviour

Last but not least, viscoelastic materials exhibit both viscous and elastic properties 

depending on the time scale of an experiment. In a fast experiment, the time scales 

are short so that the materials microstructure may not have enough time to rearrange 

in response to an applied stress and the material appears to have an elastic response. 

However, when the time scales are long enough for the microstructure to rearrange 

then the material appears viscous (Barnes 2000).

When a stress, 07, is applied to a viscoelastic material at time, ton,, the response 

regarding shear rate is not immediate. It will take a certain time, tx, until an 

equilibrium is established at a certain shear strain value, y/,. By reducing the stress, 

07, to 0 , the strain, y/, will go back to a certain strain, y2, but not to 0 because some 

energy is lost as heat through the viscous contingent (Barnes 2000).

Yi

72

ttx

Figure 4-4: Schematic graph to show the response of a viscoelastic material subjected to stresses

(Elley 1995)

4.3 Non- N ew tonian fluid

With regards to a non-Newtonian fluid, the rate o f shear does not have a proportional 

relationship to the stress o  =  r?(y)y■ Furthermore, non -Newtonian fluids such as 

paints and polymer solutions normally generate normal stress differences (Ni = -

Oyy and N2 — Oyy -  aa) under flow condition. Additionally, the viscosity will not
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change at a constant shear rate over a long time scale. By applying a wide spectrum 

of shear rate the following conditions may occur at such type o f fluids:

•  Shear - thinning or pseudoplastic

•  Shear - thickening or dilatant

A more complex fluid such as plastisol can have both shear thinning and shear 

thickening behaviour depending on the shear rate applied. At low shear rate (<10 s'1), 

plastisol exhibits shear thinning and at intermediate shear rate (from 10 s'1 to 100 s'1), 

shear thickening occurs (Barroso 2007).

4.3.1 Shear thinning

For a shear thinning fluid, the viscosity decreases with increasing shear rate normally 

between the lower and upper Newtonian regimes. The constant viscosity exhibited in 

the lower Newtonian region is often called infinite shear viscosity whereas the upper 

Newtonian regime is known as zero-shear viscosity. The power law describes the 

viscosity decreasing linearly on a log / log plot against shear rate or stress and can be 

expressed mathematically as: (Chhabra and Richardson 2008 and Barnes 2000)

a  — k y n  Equation 4-7

where k is the flow consistency index and n is power law index

4.3.2 Shear thickening

In contrast to shear thinning, shear thickening behaviour describes a material whose 

viscosity increases with the shear rate, attributed to the reorganisation o f the 

microstructure. At a lower shear rate, the viscosity is almost proportional to the shear 

rate. Generally, the dilatant material has a closely packed structure and possesses a 

small volume in the resting condition. By applying higher shear rates, the volume
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will increase through the induced deformation on the system. The liquid molecules 

between the particles will be forced to move out of their position. Consequently, the 

friction between the particles increases. A good example is wet sand. By applying 

stress on the wet sand, the sand particles will be moved closer together and even 

come into contact. This causes the water between the sand particles to be pushed out 

and the friction between the sand particles increases (Shay 1995).

4.3.3 Comparison between the time independent Newtonian and Non- 
Newtonian fluids

The following graph helps to visually demonstrate the differences between a 

Newtonian fluid and Non -  Newtonian fluids.

Newtonian
fluidsShear thinning

Shear
thickening

Shear rate

Figure 4-5: Comparison of time independent fluids (Mezger 2006)

4.3.4 Time dependent viscosity

Viscosity can increase or even decrease at a constant applied strain rate during the 

period o f time until the fluid reaches an equilibrium. The reason is that it takes time 

to totally rebuild the microstructure after the removal or reduction of shear rate 

through Brownian motion (Barnes 2000).
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The reduction of the viscosity over time at a constant shear rate is known as 

Thixotropy (Mewis and Wagner 2009). This type of behaviour can be encountered 

for example in the paint and food industry. A classical example from the food 

industry is Ketchup (Eley et al. 1995). On the contrary, a mixture o f cornstarch and 

water behaves with rheopecty.

Barnes (2000) considered two cases of responses in form of viscosity changes caused 

by suddenly applying the shear rate from lower shear rate to higher shear rate and by 

immediately reducing the shear rate from high level to a lower level. The first case 

means that the structure from the lower shear rate cannot react on the sudden higher 

induced shear rate. The consequence is that the viscosity (the resistance to flow) 

remains and causes a higher stress in the system. An overshoot or peak stress occurs 

as a result. Now the structure or flocculation starts to break, an activity is known as 

relaxation. In the second case, a build-up o f structure occurs when the strain rate is 

reduced from a higher level to a lower level and is governed by flow and Brownian- 

motion induced collision.

Shear

Stress 1
Output

Y
Shear Input

Time

Figure 4-6: Thixotropic behaviour illustrated by inducing high and low shear rate adapted from 
Barnes (2000).

4.4 Rheological M odels

The Newtonian model (see equation 4.11) and the Power Law model (see equation 

4.12) assume that the flow always starts at zero stress whereas the Bingham Plastic
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model and Herschel- Bulkley mode include an apparent yield stress which must be 

exceeded before any flow can be detected (Rao 2007 and Chhabra et al. 2008).

Bingham Plastic model Herschel-Bulkley model

•  m - 1

c r = c r y + K y  < j =  a y + B y

Equation 4-8 Equation 4-9

K, B, ay and m are the abbreviations for Bingham viscosity (also called plastic 

viscosity), Herschel-Bulkley viscosity coefficient, yield stress and shear rate index 

respectively.

The occurrences o f the yield stresses are strongly dependent upon the applied shear 

rate range selected. Barnes (1999) went a step further and reported that a true yield 

stress can actually be found in very few materials. Some previous statements about 

apparent yield stress free materials need to be revised with new improving 

technology which would allow yield stress to be detected at lower shear rates.
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Newtonian Model Power Law Model

Shear
stress

Shear rate

Shear
stress

Shear rate

Bingham Plastic Model

Shear
stress

Herschel -  Bulkley Model

Shear
stress

a,’y

Shear rate Shear rate

Figure 4-7: Comparing the different empirical models as a function of shear rate

4.4.1 Experimental procedure performed by rotational rheometer

Various procedures are available to obtain different rheological parameters from the 

samples. From the huge bulk of procedures, only the flow, creep and dynamic 

oscillatory test procedures need to be explained because these methods were used for 

this research.

4.4.1.1 Flow procedure

The flow tests use input variables such as strain, shear rate, stress rate and time to 

determine the viscosity, elasticity and normal stress (Barnes 2000). To obtain a flow 

curve, a wide spectrum of shear rate or shear stress within a specific time is step
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wisely applied on the sample. The subsequent curve depicted on a viscosity versus 

strain rate or stress rate graph is called steady state flow curve when the 

measurement o f the viscosity occurs in equilibrium. A step strain procedure applies a 

sudden strain rate on the sample to highlight the degree of the elasticity o f the 

material and the level of viscosity. The microstructure needs time to change from one 

state to the other. When the imposed strain rate is faster than the time scale of 

rearrangement of the microstructure, an overshoot occurs. Additionally, this type of 

test is used to determine time dependent (e.g. thixotropy) behaviour (Barnes 1997). 

Recently published research used this type o f procedure with lubricating grease 

(Moreono et. al. 2010) and with molten LDPE suspensions containing fibres 

(Keshtkar 2 0 1 0 ).

Stress

o

°oi
a 02

Strain rate

Y

Stress overshoot-^  elasticity

Thixotropic recovery of overshoot with 
increasing delay time

Time delay

Output

Input

Time [s]

Figure 4-8: Example of how stress overshoot dictates the degree of elasticity and thixotropy 

behaviour.

4.4.1.2 Creep test

In this type of transient experiment, a stress is quickly applied on the material and

kept constant for a long period of time. It is important to control the temperature

since viscoelastic materials are strongly temperature dependent. The result is
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displayed as a deformation y to time t graph. The main reason for using a creep test is 

to gain information about the steady state rate which is used to add missing values at 

very low shear rate or shear stress on the flow curve. A characteristic deformation -  

time graph divided into three phases namely immediate elastic response, delayed 

elastic response and steady -  state viscous response can be seen for a viscoelastic 

fluid in Figure 4-11 (Barnes 2000).

Deformation

Delayed Steady - state
elastic response viscous response

Immediate 
elastic response

Time

Figure 4-9: A classical creep curve with three distinctive response zones

At the first stage, the viscoelastic material responds directly to the applied stress. In 

the next phase, the deformation rate does not follow the input factor character and it 

becomes slower and slower. This second phase is called the delayed elastic phase. In 

the last phase, the steady -  state viscous response, the deformation rate is very slow. 

It is said the material has achieved its steady flow at this point (Barnes 2000).

4.4.1.3 Oscillatory test

The main objective of the oscillatory test is to probe the micro structure o f complex 

materials by quantifying both viscous and elastic like properties at different time 

scales. Thereby, stress or strain will be applied to the sample in a sine shaped form 

which varies harmonically in time (see equation 4.17). The value of the applied stress 

or strain is chosen in the linear viscoelastic regime where strain or stress is constant
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over a constant frequency range in which the microstructural “linkages” are not 

destroyed due to the low deformation.

o=o0 cos (cot) and y=y0 cos (cot-8) Equation 4-10

Where the stress amplitude is expressed as go, the angular frequency co (=  2jcn (n =  

frequency of the oscillation)), the resulting strain amplitude yo and phase angle S.

If the liquid-like-material is totally viscous then the phase-shift difference between 

the stress and the strain has a value of 90°. In the case of a solid like material 

(elastic), the input signal and output signal are in phase with each other, (i.e. 8 = 0). 

Generally, most materials exhibit viscoelastic behaviour, therefore the phase shift 

displacement usually is between 0° and 90° i.e. between solid and liquid like.

Stress and
Strain
amplitude

Stress

Strain

3 7t7t
2 2 2

Figure 4-10: Definition of stress and strain amplitudes

The two parameters storage modulus G ’ and loss modulus G ’ ’ help to describe the 

viscoelastic behaviour o f the system. G ’ represents elastic storage of energy and 

indicates how well a solid-like material is structured. If a material is predominantly 

elastic or well structured, then value of the storage modulus is much higher than the 

loss modulus. The degradation of its structures will cause G ’ to decrease. Storage 

modulus is also called elastic or rigidity modulus. A high loss modulus G ’ ’ can be
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found in a liquid like material and presents the loss o f energy or viscous dissipation 

(Rao 1999). Moduli are expressed in Pascals. Both mathematical relationships for 

storage modulus G ’ and loss modulus G ” are defined as:

G = q°°?- Equation 4-11
Y0

G = q° smS Equation 4-12
Y0

Where Go is used for the applied stress in wave shape, and yo is the resultant strain

Delta 8  describes the phase-shift difference between the input and output and can be 

expressed mathematically as:

<r0 sin 8

tan 8  -  —  = — ——  Equation 4-13
G '  cr0cosd

n

The loss tangent, t a n  8 ,  for liquid like behaviors (G” »  G’) approaches infinity 

whereas the loss tangent o f solid like materials (G” «  G’) tends towards zero.

The sum of the elastic modulus, G ’, and loss modulus, G ’ ’, provides the complex 

modulus, G*,

G* =G'+iG" Equation 4-14

The dynamic viscosity can be calculated from the equation:

G" Q -

t j ' =  —  =  —-s in  8 Equation 4-15
co c o y

given that, co is the frequency in s"1 (Barnes 2000 and Mezger 2006)
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4.5 Extensional param eters

4.5.1 Extensional strain

The extensional strain, e, for a body is the ratio of the difference between original 

length, lo, and final length, //, (corresponding to extended length, Al), and original 

length, Iq, i.e.: (Barnes 2000).

Al =/0-/,

Al
£  =  -----

L

Equation 4-16 

Equation 4-17

Figure 4-11: An illustration of extensional expansion

4.5.2 Extension rate

Similar to the strain rate, the time will be involved so that elongation strain, e, will be 

converted into extension rate e (Barnes 2000).

Elongation strain 

A/
£ = V = AI

Lr

Equation 4-18

dt

Equation 4-19

Extension rate

ds 
s -  —  

dt

Equation 4-20
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4.5.3 Extensional viscosity

Extensional flows are more common than shear flows in the practical environment 

because materials such as polymers are more likely to get stretched or elongated in 

their manufacturing process, for example blow molding and film extrusion (Barnes 

2000 and Cogswell 1994).

An extensional viscosity is defined as the resistance to flow which is generated by 

elongating or stretching the fluid. Therefore, extensional viscosity can also be called 

elongational or tensile viscosity (Barnes 2000 and Eley 1995).

To date, the existing test devices are unable to generate an extensional steady state 

flow. As a consequence, the term transient extensional viscosity as a function of t as 

well as £, ( r je ( t ,  i ) )  describes this situation in the best way (see chapter 6 for more 

information about extensional viscosity).

The journey o f a drop through the extensional and shear flows highlights the 

difference between them both. Figure 4-12 shows a drop in an extensional flow 

environment. The drop starts to stretch and deform before it goes into the smaller 

tube until it has achieved the maximum deformation. At the end o f the tube, the drop 

starts to expand to its original size again, provided that no deformation energy has 

been lost. In contrast to the drop in an extensional flow environment, the degree of 

deformation in a shear flow environment is small (Barnes 2000).
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Extensional
flow

at rest shearing
 ►

Figure 4-12: Illustration of the differences in behaviour of a drop under extensional and shear 

influence.

4.5.4 Type of extensional viscosity behaviours

The extensional viscosity can behave in two different manners:

• Tension - thickening

• Tension - thinning

A material with a tension thickening behaviour increases its extensional viscosity 

when the extensional rate increases, whereas, a material with tension thinning 

behaviour decreases its viscosity with increasing extension rate (Bames 2000).
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4.5.5 Types of extension flows

Uniaxial, biaxial and planar flows are the basic types o f extension flows which are 

explained below:

• Uniaxial

In a uniaxial extension, a force is applied in one direction away from the 

centre leading to a reduction in the sizes in the other two directions.

• Biaxial

Similar to the uniaxial extension, the applied force compresses the material in 

one direction causing an increase in the sizes of the other two directions. 

Radial tensile stress is produced during biaxial extension.

• Planar

During a planar extension, the width will always be constant while length is 

stretched and the height decreases as a consequence.

(Barnes 2000)

Uniaxial Biaxial Planar

e.g. thread pulling e.g. balloon inflation e.g. cylinder inflation

Figure 4-13 : Visualizing various types of extension flows

At small strains, the following relationships between extensional and shear 

viscosities for Newtonian fluids have been developed and proposed: (Dealy 1994,

Walters 1975 and Petrie, 1979):
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Equation 4-21

r|EB=6 r\ Equation 4-22

Equation 4-23

Trout (1906) discovered a proportional relationship between extensional viscosity 

and shear viscosity for Newtonian fluids qEU =  3q. Some recent investigations show 

that the Trouton ratio can even achieve a value o f 12 for a low solids concentration 

suspension (Della Valle et al. 2000) and even higher Trouton ratio ranging from 30 

to 60 has been detected for kaolin suspensions (O’Brien and MacKay 2002). From 

this point o f view, the trout’s number o f 3 is not valid for all material. However, if  

the trouton ration is known for a specific material then only a shear viscosity is 

needed to mathematically determine the extensional viscosity.

4.6 Rheometer

A rheometer is a device which can measure viscosity and viscoelastic properties over 

a wide range o f shear rate and shear stress. In contrast, a viscometer is an instrument 

which can only collect data o f viscosity over a limited shear rate range. Rotational 

instruments can be classified into controlled stress and controlled strain rheometers 

(see section 5.3 for information about extensional rheometers). It is very important to 

choose the correct geometries for experiments which are carried out with a rotational 

rheometer. There are many geometries available such as cone and plate, parallel plate 

and concentric cylinder (also known as cup and bob, or couette). The double 

concentric cylinder is ideal for fluids with a very low viscosity. Cup and bob is 

normally used when the sample has a low viscosity whereas parallel plate or cone 

plate find applications for samples with higher viscosity. Only parallel plate and cone 

plate are able to measure the normal stress caused by the normal force acting on the 

plates. (TA Instrument 2003).
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Parallel Plate Double Concentric

Cone Plate

Figure 4-14: Comparison of the differences between Parallel plate, Double concentric and Cone plate

A brief summary of the advantages, disadvantages and suitable materials for each 

geometry is listed in the Table 4-1.

G eom etries Suitable materials Advantages D isadvantages C om m ents

C one and plate single-phase  
hom ogeneous  
sam ples or sam ples 
subm icron particles

suitable for measuring  
normal stress, ideal for 
viscoelastic  m easurem ent, 
stress is uniform across the 
cone

only for low  
shear rate

bigger particles m ove in the 
truncated area (gap between  
plate and cone) and cause a 
jam.

Parallel plate sam ples w ith bigger  
particles

no truncated gap for 
particles to becom e  
jammed

stress is not 
uniform across 
the entire

set up the gap 10 x the 
largest particle size

concentric  
cylinder (or cup  
and bob or 
couette)

U sing for sam ples  
with low er v iscosity

m easuring for low  
viscosity , can apply high  
shear rate

can not be used  
for m easuring 
normal stress

ideal for measuring low  
viscosity

Table 4-1: Advantages and Disadvantages of the geometries (TA Instrument 2003)

For this research project, a cone and plate geometry has been used and therefore an 

explanation of the mathematical relationships for this geometry only will be given.

Equation 4-24 

Equation 4-25 

Equation 4-26 

Equation 4-27
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The angle o f the cone is expressed as a  and M  is the torque, co represents the angle 

velocity.

4.6.1 Slip

One of the main disadvantages o f cone and plate geometries with a smooth surface is 

that slip effects may give erroneous results. A roughened or serrated surface on the 

geometry prevents any slip during the experiment. Another approach to detect any 

possible slip effect is by comparing flow curve data using different size geometries. 

An agreement o f the data indicates a slip free condition. The attachment o f sandpaper 

on parallel plate is another possible way to reduce slip (Sofou et al. 2008). Under slip 

conditions, the measured viscosity tends to be smaller than the viscosity measured 

with the same geometry without slip effect. (Barnes 2000, Rides 2005). The 

occurrence o f slip the effect is common with complex fluid such as mayonnaise (Ma 

and Barbosa Canovas 1995) or vaseline (Chang et al. 2003).

There are two circumstances leading to slip in polymer flow.

4.6.1.1 Particle depletion

Depletion describes the reduced local concentration of particles by migration in a 

filled material close to a moving surface. As a consequence o f such particle 

migration, a lubrication layer may be created which leads to the well known slip 

effect. Regarding the paint, a solvent and resin -  a rich (fluid rich) layer acting as a 

lubricator is created on an adjacent wall, leaving the bulk o f particles less sheared.

4.6.1.2 Loss o f adhesion

A slip effect may arise by polymers losing adhesion to the wall.
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5 In tro d u ctio n  to ca p illa ry  rh eo m etry

Within less than one second, paint stored in a feeding pan will be transported from 

the pickup roll via a feed roll, over an applicator roll to the substrate (see Figure 2-2 

and Figure 2-3). During this very short industrial process, extensional flow combined 

with shear flow can be encountered in the coil coating process. Additionally, a thin 

liquid filament or thread is generated between the rolls which will be elongated and 

finally breaks (see Figure 5-1). A capillary Break-up Rheometer seems to be one of 

the commercial test devices that can closely simulate the complex free surface flow 

which is generated during the coil coating process.

Formation of 
filament

Figure 5-1: Illustrates schematic the formation of filament between two rolls

5.1 H istorical developm ent o f extensional rheom eters

A number of stretching devices were developed to obtain estimated extensional 

viscosities of fluids in the late 1980s and early 1990s. One of the devices is the 

falling cylinder device introduced by Matta and Tytus (1990) which generates an 

almost pure extensional flow. A small amount of fluid sample is inserted between 

two plates. Subsequently, the bottom plate moves downwards in free fall with a 

nearly constant force or acceleration due to gravity. The filament break up process is
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captured by a high speed camera to allow the determination of the liquid deformation 

rate and filament stress from which the extensional viscosity can be deduced.

A similar concept to the falling device is the Capillary Break-up Rheometer which 

was first described by Bazilevsky (Bazilevsky et al. 1990a) (fully described in 

chapter 5.3.3). Capillary breakup rheometry has previously been employed for the 

characterisation o f polymer solutions, wormlike micelle solutions and immiscible 

polymer blends (Miller et al. 2009 and Bhardwaj et al 2007).

A similar technique to the capillary break up rheometer is the filament stretching 

extensional rheometer also known as FiSER. In this case, one o f the end plates 

moves at exponential velocity upwards or downwards and the measured parameters 

are the force on the plate and the midfilament diameter. Sridhar and co-workers were 

the first to introduce the first filament stretching device which allows an exponential 

separation o f the plates (Sridhar et al. 1991b, Tirtaatmadja and Sridhar 1993). Similar 

styles of devices have been subsequently designed (Berg et al. 1994, Spiegelberg et 

al. 1996 and Jain et al. 1997).

Furthermore, devices have been constructed to create contraction and converging 

flow, stagnation- point flow (created by opposed Jet devices or four roll mills) and 

spinning flow to extract the apparent extensional viscosity (see methods in chapter 

5.3). The drawbacks o f these methods are the unknown deformation history which is 

mixed with the extensional flow and the fact that they do not allow the measurement 

of the extensional stress until the achievement o f the steady state (Gupta and Sridhar 

1988; 89: James and Walters 1994).

Currently, commercially available extensional rheometers such as Rheotens (Fiber 

spinning) from Gottfert, CaBER (Capillary breakup) from ThermoFisher, Sentmanat 

extensional rheometer (Constant length) from Xpansion Instruments and FiSER 

(Filament stretching) from Cambridge Polymer Group are on the market and are 

mainly employed to obtain extensional rheological parameters (see chapter 5.3).
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5.2 Experimental challenges in measuring the extensional viscosity

Considerable progress in measuring the extensional viscosity of complex fluids such 

as polymer solution with low viscosity, elastic fluids (r)s < 1 Pas), inks, emulsions 

and polymer melts have been made by improving instruments or optimising 

procedures over the last two decades (Bazilevsky et al. 1990a , Willenbacher et al 

1999, Rodd et al. 2004, Sentmanat 2005 and Niedzwiedz et al 2009). To theoretically 

determine extensional viscosity from the measured data at the end, good 

approximations are needed by using for example correction factors (described in 

chapter 5.8.7) or correcting the raw data (e.g Bagley correction see chapter 6.6.1). 

However, there are still challenges to create extensional flow which might never be 

overcome. One o f the challenges is to generate a pure extensional flow during the 

experiment. Currently, all extensional rheological devices generate a flow which has 

both extensional and shear components because o f the nature o f solid-fluid interface. 

(McKinley 2001). Another challenge is the measurement o f samples with low 

viscosity which may cause problems, for example due to the inertial effects leading 

to oscillation of the liquid bridge during filament thinning or the bead on string effect 

(Rodd et al 2004). Last but not the least, the insufficient test time or residence time 

may only allow the sample to achieve an unsteady state during the uniaxial 

extensional flow. However, it is common to have a transient flow in the industrial 

process. Therefore, the steady extensional viscosity, v \e , may not need to be 

considered to understand or improve the process where the rheological data from the 

transient flow is sufficient (Bird 1982, Laun and Schuch 1988). Previously, the 

assumption was made that steady state was achieved at the Hencky strain of 5 to 6. 

Further studies provided evidence that steady state was not achieved when applying a 

Hencky strain o f 7 (Meissner et al. 1981, Meissner 1985). Especially, a large number 

of melting polymers may cause problems in obtaining steady extensional viscosities ( 

Bird et al. 1987 (a)).
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5.3 Types o f  extensional rheom eter

Extensional rheometers can be classified into constant length or constant volume 

devices, filament stretching devices and capillary devices and even by range of 

viscosity. Materials with viscosities higher than 1000 Pas can be measured with 

length device. A filament stretching extensional rheometer is ideal for measuring 

materials with viscosities in the range between 1 and 1000 Pas. Capillary rheometry 

can be used for obtaining low extensional viscosity within the range of 0 .0 1 -1  Pas. 

(Tropea at al. 2007). Some examples of extensional rheometers are schematically 

depicted below and explained in the following subchapter.

Torque shaft

Master drum

Slave drum

Sample

Drive shaft

Plate moves until 
filament breaks

fixed plate

b) Filament stretching 

Constant volume

Plate moves to a 
final height

fixed plate

a) Filament stretching 

Constant length

Sample

Melt strand

Wheels

c) Fibre spinning d) Capillary break up
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Torque

Pivot AxisPiston
Moveable
Nozzle

Fixed
Nozzle

Pressure
Transducer

e) Entrance Flow f) Opposed jet

Figure 5-2: Schematic diagrams of various extensional methods

Device Type of Flow Shear
viscosity range

Limitations

Filament stretching, 
constant volume, 
medium viscosity

uniaxial extension, 
constant strain rate

1 -1000 Sample gripping, limited to 
medium to high viscosity elastic 
instability

Filament stretching, 
constant length, high 
viscosity

uniaxial extension, 
constant strain rate

>1000 limited to low strain rates, 
temperature control

Fibre spinning uniaxial extension >1 Low strain, non uniform strain 
rates, pre-shear history

Capillary breakup 
rheometry

uniaxial extension 0.01-10 Inertia and surface tension 
dominate at low end of viscosity, 
variable strain rate

Entrance flows uniaxial extension >1 Variable strain rate, mixed with 
shear

Opposed jet Uniaxial extension 0.01-1 Variable strain rates and strain 
histories, some shear

Tubeless siphon Uniaxial extension 1-1000 Pre-shear history, variable strain 
rate, low achievable strain rates

Table 5-1: List of devices, application ranges and limitations (adapted from Tropea et al. (2007 ))
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5.3.1 Filament stretching

The filament stretching devices can be divided into constant length and constant 

volume (see Figure 5-2 a and b). The constant length principle is exhibited by the 

Sentmanat Extensional Rheometer (SER) and is ideal for samples with viscosity 

higher than 1000 Pas. The device uses two drums namely the master and slave drum 

on which a sample film is clamped. By applying a rotational rate on the master drum, 

both drums connected through an intermeshing gear start to move and commence to 

stretch the sample. The stress which is derived from the cross sectional area o f the 

sample, the applied torque measured on the master drum and extensional 

deformation will be used to calculate the extensional viscosity (Sentmanat 2004). 

While the Sentmanat Extensional Rheometer has two drums at a fix position, the 

Filament Stretching Extensional Rheometer (FiSER) exponentially moves the plates 

apart and measures the force on one o f the plates and the diameter o f the filament. 

This device belongs to the group called filament stretching with a constant volume. It 

can measure viscosity between 1 and 1000 Pas. The previous version o f the FiSER 

devised by Matta and Tytus (1990) used a constant force to separate two plates. For 

fluid with a viscosity o f less than 1 Pas, the resolution o f the force transducer 

measuring the tensile force from a sample might find its limitation. A desirable shear 

free homogeneous transient extensional flow can almost be obtained by the filament 

stretching extensional rheometer developed in recent years. ( Sridhar et al. 1991, 

Tirtaatmadja and Sridhar 1993, Anna and McKinley 2001, McKinley and Sridhar 

2002)

Trevor et al. (2006) compared the data obtained by Filament Stretching Extensional 

Rheometer (FiSER) with the data measured by wind up extensional rheometer (SER) 

noting a very good agreement in the strain range from 0.7 and 1.9.

5.3.2 Fibre spinning

This type o f flow (depicted in Figure 5-2 c) can be generated for example by the

Rheotens instrument manufactured by the company Gottfert, which is ideal for

samples with viscosity higher than 100 Pas. The melted polymer is confined in a
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container and is extruded downwards through an extruder die. As a result, a vertical 

melt strand is generated which is drawn at a constant extension rate by two counter 

rotating wheels on which a force transducer is mounted. Finally, the resulting tensile 

stress within the strand will be plotted as a function o f time or velocity o f the rollers

(Muke et al. 2001 and Gottfert 2002).

5.3.3 Capillary break up

For a very dilute or semi dilute fluid with a shear viscosity between 0.01 and 10 Pa.s.

, rheological data can be measured by Capillary break up Rheometer (CaBER). The 

sample is positioned between two plates; at least one o f them moves apart from the 

other to a fixed position, forcing a capillary flow within the fluid (illustrated in 

Figure 5-2.d). More details about the concept can be read in section 5.4. The 

manufacturer Thermo Fisher offers Capillary break up instruments for commercial 

and scientific research. It is a compact and robust device, suitable for daily use on the 

shop floor or in the laboratory. The simple design o f the device provides the 

possibilities for easy modification. Another positive factor attributed to the CaBER 

instrument is that the operation is very simple and the result can be obtained in a very 

short time without lengthy data processing. In additional, loss o f volatile solvent, 

occurrence o f phase separation or chemical change will not take place at very short 

experimental time. The determination o f extensional rheology can be obtained for 

fluids with lower concentration and low viscosity. (Anna and McKinley 2001, Clasen 

et al. 2006, Rodd el al. 2005 and Yesilata et al. 2006).

5.3.4 Entrance flow

The DrRheologyP9000 instrument creates an entrance flow (demonstrated in Figure 

5-2 e) by extruding the sample through a die whereby the pressure drop is measured 

with a pressure transducer. With well-defined approximate formula, the extensional 

viscosity can be determined from the parameter piston speed and the pressure drop. 

A more detailed explanation can be found in the whole o f chapter 6.
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5.3.5 Opposed jet

The commercially available device which measured extensional viscosity for fluids 

with viscosity from 0.01 Pas to 1 Pas in an opposed jet flow (see Figure 5-2.f) was 

the RFX instrument built by Rheometric Scientific. The tested sample is drawn or 

pushed through nozzles at a fixed volumetric flow rate. The torque rebalance 

transducer on the moveable nozzle measures the resulting torque from which 

ultimately the extensional viscosity can be calculated (Hermansky and Boger 1995 

and Eastman et al. 2000).

5.4 Differences between Newtonian and non -  Newtonian fluid during 
filament thinning

The thinning process o f Newtonian fluids is qualitatively different compared to that 

takes place in a viscoelastic fluid, which will be mentioned and explained in the 

following subchapter. A more detailed theory about the prediction o f transient 

midfilament for both Newtonian and viscoelastic filaments as well as a comparison 

between theory and experiment was published by several authors such as Entov 

(1999), Entov and Hinch (1997), Eggers (1997), Kolte and Szabo (1999) Tripathi and 

McKinley (2000) and Anna and McKinley (2001).

5.4.1 Newtonian fluid

The simplest filament thinning process occurs for a Newtonian fluid. After stretching 

a sample with Newtonian fluid behaviour, viscocapillary drainage occurs between 

the top fluid reservoir and bottom reservoir until filament breakup. (McKinley and 

Tripathi 2000). A distinctive feature o f a Newtonian fluid during filament thinning is 

that the midfilament linearly decays with a constant capillary velocity, vcap~a/r|s, 

when the inertia effect does not influence the process. Consequently, the apparent 

viscosity is constant during evolution o f the filament decay. The filament has an 

inhomogeneous axial profile which is typical for a Newtonian fluid. Its profile is
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shaped concavely which means that the diameter of the filament close to the plate is 

much greater than at the diameter between the plates (McKinley 2005 and McKinley 

and Tripathi 2000). Furthermore, the minimum diameter is located just above the 

midplane due to the gravitational effect (Anna and McKinley 2001). In Figure 5-3, a 

sequence of images shows the evolution of a Newtonian liquid film over time.

to= 0ms ti = 140ms t2 = 280ms t3 = 420ms

Figure 5-3: Illustrates a sequence of images captured by high speed camera showing some stages of 

the filament decay of a Newtonian silicon oil (V a d o d a r ia  2 0 1 1 )

5.4.2 Viscoelastic fluid

The inhomogeneous axial profile of the filament thinning of a viscoelastic fluid 

resembles that of the Newtonian profile at the beginning since the Newtonian solvent 

dominates at small strains (Yao and McKinley 1998). However, this initial profile 

starts to change into an axially uniform cylindrical filament which is linked to two 

almost hemispherical fluid reservoirs close to the endplates (Anna and McKinley 

2001). Filament thinning with a uniform cylindrical shape was especially observed 

for weakly viscous elastic fluids, for example dilute and semi dilute polymer 

solutions (Kheirandish et al. 2008, Oliveira et al. 2006 and Stelter et al. 2000).

Another distinctive feature is the more complex filament thinning process which 

consists of three regimes instead of one occurring for a Newtonian fluid. The first 

regime is called the initial viscous stage, followed by second regime named as the 

elastic or intermediate stage and the third regime described as final viscous stage. In 

the viscous stage, pure viscous stress in a dilute polymer solution is dominated by the

64



V #  ^ / k l l  I I I W I (  I  l l \ ^ l  I  W ^ / V V V I  V / V / W 4  I I I  1 ^  I  I v  W W W V W

■ H M B M B f f i H M m i n i i  ' n M H R M B s m a  ■ t* ■ — — — » m i i b m w i i i  :  — — b b i o t m i

solvent viscosity when the ratio o f early time (opening time) and longest relaxation

time is much smaller than 1. However, the elastic stress starts to grow whereas the

viscous stress decreases during the filament thinning to a point where both stresses

and capillary stress are equal. A smooth crossover to the elastic capillary balance
2occurs where extensional rate, i  =  — , remains constant until the polymer is fully3 Ae

stretched. The Weissenberg number,^ =  i X E , is 2/3 accordingly (Entov and Hintch

1997). In this elastic stage, the diameter of the filament exponentially decays and the 

relaxation time o f the polymer can be obtained by a model fit. (Stelter et al. 2000, 

Dontula et al. 1997 and Liang and Mackley 1994, Entov and Hinch 1997). Note, 

inertial, viscous and gravitational forces are considered negligible in their analysis.

Clasen et al. (2004) analysed a series o f polystyrene solutions with different 

concentrations and noticed that the influence o f elastic effects in a uniaxial flow 

driven by surface tension is noticeable when elastocapillary number (see equation 

5.13) is bigger than 1. The lifetime is increased by additional resistance o f elastic 

stresses within the thread against the surface tension (Rodd et al. 2004). Anna and 

McKinely (2001) reported a dramatic enhancement o f life time when the polymer 

molecular weight increases. After reaching the extensibility o f the individual 

polymer coils, the extensional strain rate rapidly diverges infinity. During this phase, 

the elastic stress is not able to grow due to the fully stretched polymer and therefore 

it cannot resist the increased capillary pressure. As a result, the midpoint diameter 

rapidly decreases until the filament breaks because the remaining viscous force 

cannot counteract against the growing capillary force. In this phase, the behaviour of  

the fluids can be described as very viscous anisotropic Newtonian fluids whose 

viscosity can be considered as a steady state extensional viscosity r|oo (Stelter et al. 

2000, Bazilevsky et al. 1997 and Entov and Hinch 1997). Samples can break up 

before the upper plate reaches the final height because the material is not viscous 

enough for the experimental condition (Rodd et. al. 2004). A classical filament 

thinning process was captured by a high speed camera and can be seen in Figure 5-4.
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T=0ms T=40ms T=80ms T=120ms

Figure 5-4: Axisymmetric thinning of a viscoelastic solution of polysaccharide in water (Vadodaria

2 0 1 1 )

5.5 G eneric m odel for the force balance

A generic model has been developed to describe the filament thinning in a 

mathematical way. Szabo (1997) provided a successful force balance, which was 

used in an international study conducted by Anna et al (2001) using a filament 

stretching device (see section 5.3.1). The following formula used in the international 

study for determining the viscoelastic tensile stresses is valid for a filament 

stretching extensional rheometer. The force transducer for measuring the tensile 

force is located on the stationary bottom plate (Szabo 1997, Anna et al. 2001).

( T z z —T r r ) =  ( lP P̂ V° \ ~ +  7 /  ^  Equation 5-1
7Z rr/ \nD2mid/4j  2 ( ^ / 4) Dmid/2 2

Whereas tensile stress difference is written as (tzz-Trr), the volume of the fluid sample

D ^
is calculated as V0=7tL0( - )  with length, Lo and diameter, D , os and p are

accordingly surface tension and density. Fp is the force for stretching the filament 

and Dmid is the midfilament diameter. The acceleration of the plate along the L- 

direction is expressed as Lp. The inertia effect is defined with the last term on the 

right side of the formula and influences only 1 % of the whole process which can be 

neglected. Furthermore, a uniform shape hints that the inertia effect has a low
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influence during the filament thinning (Szabo 1997). Renardy (1995) provided a 

generic model as stated below. As can be seen the inertia effects have been removed 

from the Equation 5.1.

3n d\.mid)  =3q e= ^Fz 2 -[Tzz"Trr]" Equation 5-2■s V Dmid dt J 's JiDjjud L 22 D^d H

Viscous stress = Tensile stress- Elastic / Non-Newtonian Stress -  Capillary Pressure

The formulation describing the balance o f forces employs the surface tension, o s, the 

tensile force, F z  which is applied on the column end, the Newtonian viscosity o f the 

solvent, rjs , and the total stress normal differences in a non-Newtonian fluid, [ t^  -

W -

In terms o f capillary break-up thinning where the tensile force will not be applied, 

equation 5-2 can be reduced further by removing the tensile stress.

H  ( - dJ - t O E(iuation 5-3

In this case, the tensile stress comes from the polymer while it gets stretched to its 

finite extensibility. For a classic Newtonian fluid which does not exhibit an elastic 

effect, the generic model for a self selected force balance will be shortened again to

3ri ( -  2 dDmlliV —  Equation 5-4
® '  D m id  d t  J  D m id  

Viscous stress ~ Capillary Pressure

5.6 Mathematical determination of apparent extensional viscosity

The Capillary break-up rheometer measures the midfilament diameter, D mid, from 

which the extensional viscosity is determined with the known surface tension of the 

fluid, <rs , which is mathematically expressed in equation 5.5 (Anna et al. 2001):

„  — 2q s/Dmid(t:)   qs U n m t ir > n  ^ ^app ( 2 dpmid(t)\ Dmid(t) Equation 5-5
( D̂ dW * ; dt
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For Newtonian fluid, the term, D ^ ^ /d t  remains constant until breakage because the 

midfilament diameter linearly decays over time and the surface tension maintances 

constant.

5.6.1 Calculation of strain rate

The terms in the brackets from equation 5.5 describes the extensional strain rate, s ,  

and is expressed in the following simplified way (Anna et al. 2001):

2 dDmidCt) ^  . c  £e= - - —— — -—  Equation 5-6
D m id C t)  d t  M

5.7 Description of capillary thinning using dimensionless variables

The use o f various appropriate dimensionless ratios o f forces/timescales simplifies 

the description o f the behaviour o f non-Newtonian and Newtonian fluids in a free 

surface flow. Furthermore, it provides an unambiguous terminology for describing 

the physical effect of flow behaviour and also gives a simple way for comparing 

different samples with different material properties. By combining the classical 

dimensional numbers, the number o f variables will be significantly reduced. 

McKinley (2005) illustrates an operating window for visco-elastic-inertia-capillary 

thinning and breakup based on dimensionless numbers as seen in Figure 5-5.
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Figure 5-5: Illustrates an operation window for fluids undergoing filament thinning and breakup 

created by the classical dimensionless numbers; capillary number, Reynolds number and Weissenberg 

number (adapted from McKinley 2005)

El=Wi/Re

5.7.1 Dependence of dimensionless Numbers on process kinematics

Initially, consider three dimensionless numbers, the Capillary number, Reynolds 

number and Weissenberg number which vary with different process speeds and 

depend on the type of material. Two of the three numbers are always involved in one 

of the flows mentioned in Figure 5-5. The capillary number, Ca, describes the 

relationship between viscous force and surface tension which acts across an interface 

(e.g. liquid/gas or immiscible liquid A / immiscible liquid B). By using the 

characteristic velocity, Vc, and capillary velocity, v  = zero shear viscosity, (rjo) /  

surface tension (crs), capillary number can be expressed as following:

r ^  Vc HnVc viscous force ^  nCa= — = —— = -------------- Equation 5-7
i) gs surface tension
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Filament thinning is driven by surface tension and the viscous force acts to balance 

capillary force to stabilise the shape. The degree o f the stability o f a fluid filament 

during stretching is given by the magnitude o f the capillary number. A capillary 

number less than 1 indicates that the viscous stress cannot withstand the effects o f  

the surface tension. As a result, the filament thread is unstable and is prone to the 

formation o f a liquid drops (McKinley 2005). As can be seen in Figure 5-5, the 

dimensionless number capillary number allows description o f the free surface flows 

of viscoelstic fluids and Newtonian fluids.

The magnitude o f Reynolds number provides information regarding whether the flow 

is dominated by inertial or viscous stress. It can mathematically be formulated as:

pVcl _  density * characteristic velocity * length ^ uation 5 8

T| viscosity

In the case of filament thinning, the diameter o f the filament is used as the 

characteristic length, /,. Furthermore the magnitudes o f the characteristic velocity, V c, 

the density, p, and viscosity, 77, influence the Reynolds number . The higher the 

viscosity o f the fluid the smaller the Reynolds number will be under the same 

condition. Bulk flows o f viscoelastic fluids and free surface flows o f Netwonian 

fluids can be characterised by the Reynolds number.

A further dimensionless number considered in this group is the Weissenberg number 

which describes the ratio o f the longest relaxation time, A , the characteristic 

velocisty, Vc, and length scale, /,

Wi_^Vc _  ^  Equation 5-9

The ratio o f elastic stress and viscous stress plays an important role in describing free 

surface flows of viscoelastic fluids and bulk flows o f viscoelastic fluids (McKinley 

2005).
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5.7.2 Independence of dimensionless Numbers on process kinematics

A number of characteristic ratios / dimensionless groups that are not a function of the 

characteristic velocity for the process, includes the Ohnesorge number, Deborah 

number, Elasticity number, Elastocapillary number and Bond number.

The first dimensionless number mentioned here is the Ohnesorge number and is 

defined as the ratio o f viscous time scale, t v (see equation 5.21), and Rayleigh time 

scale, t r (see equation 5.23):

Oh= ̂  Equation 5-10

The dimensionless Ohnesorge number relates to Reynolds number and Capillary 

number as

Oh'2= ^  Equation 5-11
rio Ca

and describes the slope in Capillary and Reynolds number plane o f the Cartesian 

coordinate system (McKinley 2005).

The ratio of Weissenberg number and Reynolds number provides the Elasticity 

number which can be written as

El= ̂ = “ I Equation 5-12

and corresponds to the magnitude o f the linear slope in the plane for bulk flows o f  

viscoelastic fluids. An indication o f the degree o f elastic or viscous effects is given 

by the ratio o f the two dimensionless numbers Deborah and Ohnesorge also denoted 

as the elastocapillary number and the corresponding equation can be seen below.

t-, De Axjs elastic force ,.  -  ,  ~Ec=— = —- =  -------—  Equation 5-13Oh t]qRo viscous force

After investigation o f solutions o f polystyrene in styrene oligomers at different 

concentrations, it was concluded that the dominance o f the elastic effect in flow is 

noticeable when Ec > 1 (Clasen et al. 2004). Ec is an additional value to characterise 

fluids which is assigned to the free surface flows o f viscoelastic fluids.
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The dimensionless Deborah number considers the time o f the deformation process in 

rheology and therefore it is the ratio o f the relaxation time o f the fluid, t c, and the 

characteristic time o f the experiment, tp  . For a given experimental time, a solid like 

material has a higher Deborah than a liquid-like material. Accordingly, the fluid 

appears more fluid when the Deborah number is getting smaller (Spiegelberg et al.

1996). The equation below uses the characteristic relaxation time, X c, the density, p ,  

initial radius, R o , and the surface tension, crs, to calculate the Deborah number.

D e=—= -p£= Equation 5-14
* B̂

 °S

Rodd et al (2004) suggested that the Deborah number needed to be around 1 to allow 

measurement o f the relaxation time of dilute and semi-dilute solution o f polyethylene 

oxide (PEO) with Capillary Break-up Extensional rheometry.

The ratio o f gravitational body force to surface tension force is expressed by the 

dimensionless Bond number, B o , .  It is a useful dimensional number in the CaBER 

experiment providing information about the “quality” o f the cylindrical shape of the 

filament between the plates at the beginning. A dominant gravitational force causes 

sagging and draining o f the filament. However, the desired cylindrical shape of the 

filament can be achieved when the surface tension, crs , dominates the gravitational 

force, g , .

Bo_ ApgRoJt) Equation 5-15
<*s

Where A p  is calculated from differences o f the density o f the bridge and ambient 

medium (Mahaj an et.al. 1999).

Plateau (1863) realised that a liquid bridge o f V0=7rRoL0 can have the maximum 

stable length o f Lmax=2;cRo when Bo is zero.

A smaller diameter o f the plate can help to reduce the Bond number and accordingly 

the gravitational effect.



5.8 Experimental consideration

In the evolution of midfilament diameter, the process o f filament decay depends 

strongly on length scale, time scale and dimensional parameters.

5.8.1 Length scales

The length scales comprise o f the aspect ratios and capillary length and they depend 

on the set up parameter o f the experiments.

5.8.2 Aspect ratios

Aspect ratio describes the geometrical relationship between the height and diameter. 

There are two aspect ratios namely the initial and the final aspect ratio. The initial 

aspect ratio, A 0 , is expressed in terms o f initial height, h o , and cylindrical plate 

diameter, D o , similarly the final aspect ratio, A f, is expressed in terms o f D o  and final 

height, h f,

An=;r Equation 5-16Do

Af=—- Equation 5-17

The ideal value o f the initial aspect ratio is 0.5 < Ao< 1 which has been determined 

from numerical simulations for filament stretching rheometry (Yao and McKinley

1998). When the initial aspect ratio is A0 «  1 , reverse squeeze flow within a fluid 

occurs during the separation time o f the plates. Consequently, the initial filament 

radius is smaller after cessation o f stretching and thus radial stress is higher (Yao and 

McKinley 1998). It is clear that the break up time o f the filament will be shorter 

accordingly. By increasing the initial aspect ratio, the axisymmetric filament o f a self 

similar shape goes closer to the endplates (McKinley and Sridhar 2002). Problems 

such as sagging and bulging o f the liquid occur at very high initial aspect ratios 

attributed to the effect o f gravity.
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5.8.3 Timescale

The whole process from separation o f the plate until the filament break-up goes 

through several characteristic timescale zones. For a viscoelastic fluid, the timescales 

include the opening, the polymeric relaxation, the viscous break-up and finally the 

Rayleigh time. In contrast, for a viscous fluid, the polymeric relaxation time scale is 

practically zero due to fact that it does not behave elastically.

5.8.4 The opening / strike timescale

The first timescale in the capillary break-up procedure covers the separation o f the 

plates. In our case, the Capillary break up rheometer allows an opening time or strike 

time of, S t0 >  0.02s (20ms). To guarantee that the filament will not break before the 

upper plate reaches the end position, viscous break-up time, t v, (see equation 5.21) 

must be longer than the opening timescale, S to ,. During this opening time, only the 

background solvent viscosity generates the viscous stress in the filament (Entov and 

Hinch 1997).

5.8.5 Polymeric relaxation time

An exponential filament thinning of a viscoelastic fluid can be detected before the 

final stage occurs. This relaxation stage is mathematically described as (Clasen et al. 

2004):

The characteristic relaxation time and elastic modulus are abbreviated to Xc and G

1996). The strain rate self selected by the material has the relationship of W t =  

e X c = 2 / 3  which is constant in this phase (Kheirandish et al. 2008).

k n id (0 Equation 5-18

respectively. R j  is the radius at time to + 5to and may be determined by the lubrication 

solution for a viscous Newtonian fluid as Ri ~  Ro (Lf / Lq)‘3/4 (Spiegelberg et al.
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Anna and McKinley (2001) and Stelter et al. (2000) carried out some experiments on 

different polymeric solutions to obtain information about the relaxation time. The 

experimental conclusion was that the characteristic relaxation time, Ac, o f a modelled 

elastic fluid (semi dilute PIB/PB Boger) closely agreed with the longest relaxation 

time, A , obtained at crossover point in the frequency sweep (Ac ~ A). A discrepancy 

between these parameters seems to occur which is perhaps due to the effect o f radial 

inhomogeneity influenced by the aspect ratio (Kolte and Szabo 1999). By choosing 

the optimal aspect ratio, the longest relaxation time from Rouse/Zimm for an ideal 

elastic fluid can be measured. Furthermore, the steady relaxation time can be 

extracted from the exponential decrease o f radius (Anna and McKinley 2001).

5.8.6 The viscous break up time

Throughout the final phase o f filament thinning, the elongated polymer chain 

maintained its finite extensibility condition and therefore additional resistance from 

the polymer against the capillary stress cannot be given anymore. The only source o f  

resistance is given by the viscous stress now which is noticeable through the linear 

decay o f the filament until rupture over the time (Entov and Hinch 1997). McKinley 

and Tripathi (2000) constructed a formula which describes the evolution o f the 

midpoint radius when the effect o f gravity is neglected (Rmid « l Cap).

Rmid(t)=Ro- Equation 5-19

o / i j s  is the capillary velocity which has the unit [m/s] and the correction factor X  for 

very simple Newtonian fluids is used. The critical time o f the break-up event is 

denoted as t c .

The following equation is valid for determination o f viscous break up time.

Equation 5-20

The previous assumption was that the value for X equals 1 (Bazileski et al 1990, 

Liang and Mackley 1994, Kolte and Szabo 1999) but the correction factor o f 0.7127 

introduced by Papageorgiou (1995) has been widely accepted for an inertia free

75



viscous filament (McKinley and Tripathi 2000). Using the X value from 

Papageorgiou, equation 5.19 can be rewritten as:

Where t v is the viscous break-up time as formulated in 5.21. The capillary velocity, 

v cap, provides information about the rate o f thinning in a viscous fluid. rjs is the 

viscosity and finally the surface tension is denoted as o s .

Eggers (1993 and 1997) mathematically formulated the pinching o f an axisymmetric 

fluid by considering capillary, viscous and inertia stress. As a result, the process 

which occurred within a jet or during the dripping of a faucet obeys the following 

relationship Rmid = 0.0304 (CTs/r|s)(tc-t). A different description o f evolution of 

midfilament radius for a Newtonian fluid is the equation; Rmid = (as/6r|s)(tc-t) which 

has been derived from the balance between capillary, elastic and viscous stresses 

(Entov and Hinch 1997). Whereas, Papageorgiou (1995) has considered only the 

balance between capillary and viscous stress during the thinning (see equation 5 22).

5.8.7 The Inertial or Rayleigh time

The Rayleigh time scale in which the inertia capillary thinning occurs, is formulated

as: (Rayleigh 1879)

A low number for tR  means that the evolution o f the necking and rupture process 

takes place very rapidly.

5.9 Operability diagrams for Caber

Rodd et al (2004) provided a two dimensional operability diagram comprising a 

relaxation time axis and a viscosity axis (see Figure 5-6). The development o f this 

diagram is based on a natural time scale, which includes viscous flow time, elastic

Rmid(t)=Ro- ■ ^ -t= R 0-^ t= R 0-0.0709ucapt Equation 5-21

Equation 5-22
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stress growth time and inertial oscillation time. Additionally, it was possible to 

specify the minimum requirements of relaxation time of 1 ms and viscosity of 

70mPas. However, these values vary with different aspect ratios. When the aspect 

ratio is outside of the suggested range of 0.5 to 1, inertial oscillations o f the liquid 

bridge or ‘bead on string’ phenomena are more likely to appear.

Relaxation Time, X

Feasibility limit of 
CaBER measurement

~ 70 mPa.s Viscosity, r |0

Figure 5-6: Schematic graph for an ‘operability diagram’ for capillary break-up

5.10 Problem s with low viscosity sam ples

The ‘beads on string’ morphology is one of the complex shapes that appears more 

likely for viscoelastic fluids with low viscosity due to the inertial effect (Li and 

Fontelos 2003 and Rodd et. al. 2004). Another drawback is that low viscosity fluids 

break before the final gap has been achieved and therefore monitoring of the filament 

decay is not possible. This implies that the viscous time scale, tv, is smaller than the 

opening time of the plate, St, (Rodd et al. 2004).
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6 T h e c o n cep t o f  an  in d u ced  ca p illa ry  ex tru sio n  flow

6.1 Introduction to contraction flow method

A capillary extrusion flow is generated when a fluid suddenly flows from an initial 

tube into a smaller tube causing a dominated extensional deformation in the 

convergence o f the streamlines and a shear deformation which dominates at the wall 

along the contraction (Binding 1988 and Binding and Walters 1988). During this 

process, the pressures in the initial tube experience a drop at the entrance of the 

smaller tube (see Figure 6-1). This incident o f the pressure drop is used to determine 

the transient extensional viscosity for various materials including polymer with high 

viscosity (Laun and Schuch 1989) and polymers solutions with low viscosity 

(Binding and Walters 1988)

extensional

shear

Figure 6-1: Schematic diagram showing flow streamlines and two distinctive locations which are 

dominated by either extensional deformation or shear deformation. Extensional deformation 

dominates in the blue area whereas a pure shear deformation occurs on the wall of the green area.

In the previous chapter, it was mentioned that the stretching method from a capillary 

break up rheometer can only apply an extension rate around 10 s '1, whereas in the nip 

of the coil coating roller, an extension rate above 10  ̂ s '1 will be achieved. In this 

respect, the contraction flow method can achieve a high extensional rate, which helps 

to more closely simulate the coil coating flow. Furthermore, a capillary extrusion
84

I Pressure drop

i — -...... .

p ipipilBifni

—  1.1 n . i . ......

Ascendance in 
deformation

Ascendance in 
deformation



rheometer can simulate the pressure gradient in the fluid that paint experiences when 

it passes through the converging and diverging geometry between the roll cylinders 

(see Figure 5-1). Moreover, both extensional and shear deformations take place in 

the coil coating process which the capillary extrusion rheometer can also mimic. 

Thus, these complex flow behaviours can only be understood when the full range of 

rheological properties can be obtained from different rheometers. (Ascanio et al. 

2006, O’Brien & MacKay 2002). One o f the other advantages o f this confined 

contraction flow method is that it is already widely accepted in the study of 

behaviour o f complex fluids such as paint, polymer melts, ink and melting of high 

density polyethylenes (Dealy 1982 and Ferry 1980, Hatzikiriakos and Dealy 1991, 

Willenbacher 1997 and Laun 2004).

6.2 Capillary rheometers principles

The common type o f a capillary extrusion rheometer consists of a piston, a barrel 

wall, a heater, a pressure transducer and a capillary die (also named as a capillary) as 

can be seen in Figure 6-2. The material is located in a confined bore from where the 

sample will be extruded through the smaller capillary die by the action o f the piston. 

A shear rate (flow rate) is maintained constant by keeping the piston speed constant. 

Due to the dissipation o f the energy in the material, a pressure drop occurs during the 

flow which can be measured by a transducer located just above the upper die face 

(Fuller et al 1987) (see Figure 6-3). By knowing the excess pressure drop, A P ,  and 

the volumetric flow rate derived from the piston speed and the size o f the bore, it is 

possible to determine extensional rate, e, by applying an analysis method such as 

those proposed by Binding (1988,1991 and 1993) and Cogswell (1972).

These methods were built up with assumptions such as isothermal flow, no slip 

boundary, pressure independency o f the viscosity and incompressible (isochoric) 

flow (see sections 6.11.1 and 6.11.2 for more details). However, in most cases, the 

collected raw data may need to undergo both shear and stress corrections due to the 

slip effect caused by wall depletion (explanation o f wall depletion see section 4.6.1) 

(Cogswell 1972) and excess pressure drop in front o f the entrance to the capillary
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(Bagley 1957) to obtain the true shear viscosity and extensional viscosity (see more 

details in section 6.5). Dissipation o f heat, compressibility and pressure dependence 

of viscosity may also need to be separated from the raw data. For example, the shear 

and elongational viscosity o f some polymers such as HDPE, LDPE, LLDPE, PP, PC, 

PMMA and PS are strongly affected by pressure (Sedlacek 2004).

Nearly 40 years ago, Cogswell (1972) suggested that the length to diameter ratio 

(L/D) needs to be in the range from 20 to 50 to obtain a fully developed flow in order 

to reduce any unwanted effects. In the case o f a L/D ratio of less than 20, flow may 

not be fully developed. Using L/D ratio above 50 may cause two unwanted effects 

during the experiments. Firstly, the pressure acting on the sample will be increased 

which may affect the viscosity o f sample. Secondly, a high pressure drop across a die 

increases the temperature in the material due to dissipative heating. Both the elevated 

pressure and dissipative heating are strongly coupled (Denn 1981 and Hay et al.

1999).

These effects were also detected during the work from Hatzikiriakos and Dealer 

(1992), and Laun and Schuch (1990). If the Nahme number
~  T zero shear viscosity *thermal coefficient * velocity characteristic of the flow . . . . ,(Na=------------ —— ---- -— -— —  ---------------------- ) is below 1 then viscous

fluid thermal conductivity * absolute Temperature

heating can be neglected (Winter 1997). Rides and Allen (2001) conducted some 

experiments with thermoplastic material and observed the effect o f low length to 

diameter ratio on the shear viscosity. The conclusion was that shear viscosity derived 

from the low length to diameter ratios ( L/D = 0.25) is almost the same as those with 

higher length to diameter ratios (L/D = 30).

The effect o f die geometry was investigated by Sombatsompop et al. (1997) who 

used rubber. One o f the findings was that the central velocity o f flow is smaller when 

using a die than without. By using different die diameters and constant die length, the 

flow pattern is generally the same (Sombatsompop et al. 1997). More studies with 

various materials are needed to provide a better understanding o f the effect o f dies. 

For very low length to diameter ratio, reasonable test results are guaranteed by using 

dies with a radius between 0.25mm and 2mm (Cogswell 1972). However, this is 

material dependent. For rubber materials for an example, die diameters o f 1.75, 6 and 

8 mm have been used for an extrusion capillary experiment (Sombatsompop 1997).

HSISSB
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A small die radius (< 0.25mm for paint) would extremely enhance the pressure in the 

systems which leads to a tremendous increase in temperature or may cause pressure 

related structural changes. From the practical point of view, dies with radii smaller 

than 0.25 mm are not ideal for pigmented systems due to susceptibility of blockages. 

But when using a bigger radius (>2 mm for fluid with low viscosity) the end result 

may suffer more noise due to the lower pressure drop (i.e. noise has more influence 

on the end result). Using dies with different diameters allows detection of slip effects 

in the system.

During the entire procedure, both extensional and shear deformation can be 

encountered in the capillary extrusion rheometer (Ramamurthy and McAdaml980).

Piston

Sample

Heater / Wall

Transducer 

Capillary Die

Figure 6-2: Sectional cut view of a capillary extrusion rheometer

6.3 Advantages and disadvantages o f capillary extrusion rheom eter

A capillary extrusion rheometer can give useful information about extensional 

viscosity at high shear rates of around 105 s"1, which is a huge advantage for 

understanding industrial processes such as roll coating and extrusion /injection 

moulding. Furthermore, it nearly mimics the flow in the nip between the rolls of the 

coil coating process. The execution of the whole test is user-friendly and therefore
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test preparation consists only o f loading the bores with the samples. The concept o f a 

capillary extrusion rheometer is regulated according to the ISO 11443 which 

indicates high standard.

A disadvantage of capillary extrusion rheometer is its limitations o f measurement o f  

fluids with viscosity lower than 1 Pas. This fluid with low viscosity will flow by 

gravity through the traditional vertical capillary die without any driving force coming 

from the piston. Furthermore, low-pressures are generated by samples with low 

viscosity, which is difficult to measure due to the limitations o f the pressure 

transducer.

6.4 Dimensionless Numbers for describing the fluid dynamics of the 
contraction flow

The most commonly used dimensionless numbers for describing the flow behaviour 

occurring in a capillary extrusion rheometer are the elasticity number, E l ,  Euler 

number, E u ,  and the Reynolds number, R e . All o f these have been used for 

comparison o f samples (Ascanio et al. 2002 and Della Vale 2000).

6.4.1 Elasticity number

The elasticity number expresses the ratio o f elastic to inertial stresses or the ratio of 

the Weissenberger number (see Equation 5.9) to the Reynolds number (see Equation 

6.3).

El= — = ^ 7  Equation 6-1
Re q1

From Equation 6.1, it can be seen that the elastic number is only a function o f fluid 

properties and geometry. Whereas process kinematics do not have any influence on 

it.
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6.4.2 Euler Number

Generally, the Euler number describes the ratio o f pressure forces to inertial forces 

and it is:

E u = ^  Equation 6-2

Where v stand for the velocity o f fluid which occurs in the orifice

6.4.3 Reynolds Number for convergent flow

The Reynolds number is the ratio o f inertial to viscous forces and can be expressed in 

terms o f the capillary rheometer with the variables density, p ,  velocity, v = Q / 7 i R d , 

inner diameter o f the die, d di and zero shear viscosity, rjQ, as.

pudd _  density ^velocity x diameter ^ uation 6 3
tj0 viscosity

When the Reynolds number is greater than 100, the inertial forces need to be 

considered due to the increased pressure drop in the capillary extrusion rheometer 

(see Equation 6.8) (Ascanio et al. 2006).

6.4.4 Determination of Deborah number for capillary extrusion rheometer

The Deborah number is the ratio o f characteristic relaxation time o f the fluid, X, and 

characteristic flow time, T ,. A high Deborah number indicates that the material 

behaves like a solid whereas a low Deborah number designates a viscous like 

material. The inverse o f the deformation rate just before the onset o f the contraction 

region determines the characteristic flow time. (Rothstein and McKinley 1999).
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6.5 Pressure drops in the capillary extrusion rheometer

The total pressure drop, A P ,  is one o f the important factors to determine the 

extensional viscosity. The magnitude of the pressure drop is measured above the die 

and it is the sum o f the pressure drops which occur before the entry, A P e, within the 

capillary die, A P cap, and at the exit o f the die, A P exit, .  A P e is used to push the material 

from the reservoir to the capillary die. The loss o f energy over the capillary is 

represented by the value o f A P cap. Equation 6.4 describes the mathematical 

relationship and Figure 6-3 schematically illustrates the split of the total pressure 

drop (Mitsoulis et al. 1998).

The exit pressure drop can be neglected for Newtonian and low elasticity fluids. In 

contrast for non-Newtonian fluids with a high amount o f elastic components, the exit 

pressure drop needs to be included. A highly elastic material shows noticeable die 

swell at the end o f the die. The exit effect seems to be get weaker with increased 

shear rate. This results in a lower fluctuation o f P exit and consequently the 

measurement precision increases (Han et al. 1973). Miller (1963) reported that the 

scale o f die swell using polyethylenes is more pronounced at zero die than at longer 

die. A step further was made by predicting the die swell ratio through a 

mathematically formula for a high density polyethylene melt. The outcome o f the 

theoretical results is obtained by the Equation

AP =  APe +  APcap +  APexit=  APcap +  APEnd Equation 6-4

Equation 6-5

where B  is the die swell ratio and shear stress, crw, (Liang 2000).
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Flow is fully developedAP

AP AP cap

exit

Piston

Capillary DieTransducer Wall

Figure 6-3: A simplified illustration of pressure losses within an extrusion rheometer. ( M i t s o u l i s  et  al.

1998)

6.6 D eterm ination o f shear stress and shear rate

The determination of both parameters stress and strain from the raw data is crucial to 

the determination of the extensional and shear viscosities. Special procedures 

including the Bagley Method and the Mooney Method (1931) need to be carried out 

to obtain the true extensional and shear viscosity. Before going into the details, 

general information are provided in terms of the maximum shear stress, C2h an^ 

shear rate, y, which will be illustrated Figure 6-4. It shows that the maximum values 

o f shear stress and shear rate can be found at the wall of the tube where the flow 

velocity is zero. Shear stress and shear rate tends to be zero towards the middle axis 

of the tube while the velocity achieves its maximum.
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Figure 6-4: Schematic presentation about velocity profiles from a Newtonian liquid (parabolic profile) 

(Kulicke and Clasen 2004) and a non Newtonian fluid (plug profile).

By using the total pressure drop, AP, the apparent shear stress, (Ja,u, at the wall within 

the capillary can be determined as:

Where R is the radius of the die and L is the die length.

Equation 6.6 was made with the assumption that the pressure gradient along the 

entire flow channel is constant, which can normally be found with high viscosity 

fluids (Barroso et al 2009). As mentioned in section 6.5, the total pressure is made up 

with several sub pressure drops that consequently do not give the true shear stress in 

the die. The Bagley Method provides a method to separate the pressure drop in the 

die from the entrance pressure drop (see section 6.6.1).

In terms of apparent shear rate, y , fluid flowing through a capillary can be

determined in a very simple way by using volumetric flow rate, Q (=7cR V), and 

geometric parameter, die radius, R, (Cogswell 1972) (see Equation 6.7).

APR Equation 6-6

Equation 6-7
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6.6.1 Stress correction according to Bagley

The reason for applying the Bagley method is to determine the entrance pressure 

drop from the raw data, which will then be subtracted from the total pressure drop 

(see equation 6.9). With this stress correction, the true shear stress can be calculated. 

The use o f at least three dies with constant inner radius but varying lengths is one of 

the approaches to obtain the magnitude o f the excessive entrance pressure, P e, . The 

purpose o f using different length dies is to obtain various total pressure drops under 

constant shear rate (see equation 6.7). The resulting total pressures are then plotted 

against the ratio o f length to constant radius, L / R const,. In an ideal case, a linear 

relationship between total pressure drop and L/Rconst exists. Hence, a straight line can 

be drawn through the data and can be extrapolated to the ordinate whose intersection 

provides the excessive entrance pressure drop, A P e, (see Figure 6-5).

However, such a linear relationship does not always take place due to the pressure 

dependence o f viscosity and viscous heating effects. An upward curvature on the 

Bagley plot indicates that the viscosity is dependent on pressure. In circumstances 

where viscous heating is significant, the Bagley plot is concave. Viscous heating 

effects mainly occur in highly viscous systems such as polymer melts. To get a good 

model fit for an upward curvature, a second order polynomial is used to obtain the 

magnitude o f A P e (Laun 1983, Laun and Schuch 1989).

To overcome the unwanted effects, a zero or orifice die (L/R = 0) is employed. 

However, there are three major disadvantages o f using this method. Firstly, the 

experimental error is extremely high because only a small amount o f material will be 

tested within a very small length scale. Secondly, the low pressure which exits at 

zero die might provide a different result than the longer die due to higher distortion 

of noise. Thirdly, the possibility o f a vortex appearing will be neglected. Without this 

additional information, a false conclusion can be drawn (Mitsoulis et. al 1998). In 

despite of the disadvantages, Binding et al (1998) used this method to finally 

conclude that the extensional viscosity o f polymers depends on pressure. The 

pressure drops between a zero and long die gives crucial information for the 

processing o f polymer because it highlights the presence o f compression effects 

(Sunder and Goettfert 2001).
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Slip is another factor which changes the Bagley plot into a convex curve 

(Hatzikiriakos and Dealy 1992) or depresses the slope of the linear curve. However, 

the magnitude o f intersection is the same magnitude which is derived by data without 

slip using a constant diameter (Shaun 1989) (see Figure 6-5). A very good example 

for a successful Bagley correction was published by Kang et al. (2005) and illustrates 

that the viscosity versus shear rate curves obtained from different L/D merge into one 

curve. This indicates the successful elimination of the end effects.

A power law relationship between pressure loss and shear rate was reported by Han 

and Kim (1971) A mutual agreement could be found that the entrance pressure will 

be affected by modifying shear rheology of the sample (Mitsoulis et al. 1998 and 

Rajagopalan 2001). Furthermore, the pressure drop is proportional to viscosity in a 

laminar flow with a low Reynolds number condition. Typically, this condition can be 

found with Newtonian fluids with high viscosity and low density. Above a critical 

Reynolds number, inertial effects dominate the flow and the pressure drop no longer 

depends on the viscosity (Della Valle et al. 2000).

A pressure drop correction according to the Equation 6.8 was undertaken for a high 

solid content suspension and coating colours when Re > 100 to account for the 

inertia effect (Ascanio et al. 2006):

APcorr=AP-pvQ Equation 6-8

Result
(no-slip condition) Result with end effects

(slip condition)Pressure
(MPa)

Result with negligible 
end effects

L/R,-const.

Figure 6-5: A classical Bagley plot under different conditions
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To convert the apparent shear stress into the true shear stress, the excessive entrance 

pressure drop, P e, needs to be subtracted from the total pressure. With P e subtracted, 

Equation 6.6 will be converted to:

(P-Pe)R APR P ^  now= ^ - = — Equati on 6-9

In Figure 6-5, e  is the point where the pressure curve intersects the L/Rconst axis. Care 

must be taken when using the value of e  because this value can only be used when no 

slip happens. The reason is that e  will increase with the slip condition as can be 

deduced from Figure 6-5.

6.6.2 Determination of the shear rate including the effect of the velocity profile

Determining shear rate is more complex with non-Newtonian fluids than with 

Newtonian fluids. In this case, the data from Equation 6.7 can only be considered as 

an apparent shear rate, ya(=4Q/7tR3) , which can be converted into the true shear rate 

by using the Weissenberg Rabinowitch shear correction. The Weissenberg 

Rabinowitsch correction takes into account the pseudoplastic (shear thinning) nature 

of a material. This means that it considers the actual plug like velocity profile instead 

o f the assumed parabolic velocity profile, which is based on the shear thinning effect 

(see Figure 6-4). The true shear rate with a no slip boundary can be obtained by 

modifying Equation 6.7 to:

= Equation 6-10

Where the Weissenberg Rabinowitsch correction factor, ns, can be calculated by

_ logow Equation 6-11
logya

For Newtonian fluids, ns = 1, which leads to ^ ^ ^ (G re llm a n n  & Seidler 1949).

The above equation is valid for the following assumptions. Firstly, there is no wall 

slip which means the velocity o f the fluid at the wall is zero. Secondly, the systems

will be considered as isothermal and that the flow is laminar and fully formed along

95



v_x yj L 11 I I I O I I  I I  v u a i l l  I V j  I I w u u o o u o

the whole length o f the die. This implies that fully developed flow begins from the 

entrance of the capillary and ends at the exit o f the capillary. However, a fully 

developed flow seems to be difficult to achieve. An investigation with a die o f a 

length of 45mm came to the conclusion that a fully developed flow from a polymer 

melt was only achieved around 5mm below the entrance of the die (Sombatsompop 

and Wood 1997 and Sombatsompop 1999).

6.7 Lam inar and turbulent flow

Laminar flow Turbulent flow

Figure 6-6: Differences between a laminar and turbulent flow

At present, there is not much information about the transition between laminar and 

turbulent flow for non Newtonian fluids. Re provides an indication of an onset of 

turbulent flow. The flow changes from laminar to turbulent when a critical 

disturbance velocity has been achieved and this effect can be reversed by falling 

below the critical disturbance velocity. The flow remains laminar when the Reynolds 

number is below 2300 (Baehr and Stephan 2006). However, this is only a 

generalised number and does not consider the different rheological flow 

characteristics which may affect the threshold between laminar and turbulent flow. A 

comparison of the flow transition between Newtonian (water) and non Newtonian 

(dilute polymer solutions) was made from the result that the transition Reynolds 

number is reduced for polymers. To date, the cause of the reduction remains 

unknown. However, an assumption is made in terms of the destabilisation of 

elasticity in the area o f the entry region of the flow (Draad et al. 2010).
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6.8 Wall depletion or slip effects in a capillary extrusion rheometer

The occurrence o f wall slip in the die o f a capillary extrusion rheometer is common 

for many suspensions (Barnes 1995), polymer melts (Kang et al. 2005) as well as 

rubber compounds (Ma et al 1985) and food materials including bread dough (Sofou 

et al. 2008). A statement was made by Mackey and Henson (1998) which reports that 

capillary rheometers are not able to accurately detect slip unless the slip is large. An 

appearance o f wall slip can only happen when a critical stress level is exceeded 

(Ramamurthy 1986). For instance, a slip was detected for bread dough after 

exceeding the critical stress level o f 5kPa (Sofou et al. 2008) and for polyethylene at 

around 100 kPa (Ghanta et al. 1998). The critical stress values for linear low density 

polyethylene (LLDPE) and high density polyethylene (HDPE) are in the region 

between 100 and 140 kPa (Ramamurthy 1986 and Hatzikiriakos and Dealy 1991).

There are some factors which lead to an increase o f slip velocity for example through 

an increase in the particle concentration (Lam et al. 2007). The slip can also be 

promoted or inhibited by the properties of the wall (Kraynik and Schowwalter 1981 

and Ramamurthy 1986). For a LLDPE, the apparent slip increased for capillary dies 

made out o f brass whereas the slip effect is less when the die is made o f stainless 

steel. Consequently the conclusion was drawn that capillary dies made out o f brass 

increase the apparent slip whereas dies consisting o f stainless steel reduce slip effect 

(Ghanta et al. 1999 and Ramamurthy 1986).

At present, an explanation for this phenomenon is not available. Surface chemistry 

(molecular distance) may play an important role but this is speculative (Ghanta et al. 

1999). Sufficient surface energy from the inorganic solid surface allows an 

adsorption of the coils in polymer melt on the wall. When the wall stress is high 

enough, coils closer to the wall start to stretch more than the inside o f the melt which 

leads to a layer o f coil stretching. In this area, the viscosity is smaller than the bulk 

viscosity (Wang 1999). Different outcomes were reported such that slip velocity in 

stainless steel capillaries is higher than in brass capillaries (Chen et al. 1992). 

Furthermore, the magnitude o f the slip velocity reported by Chen et al. (1992) is 

around 30 times higher than the value reported by Ramanarthy (1986).
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The differences between the results from Ghanta et al. (1997) and the results from 

Chen et al. (1992) could be because o f various die materials. Ghanta et al. (1997) 

used a stainless steel type 304 and brass CDA 464 whereas Chen et al. (1992) carried 

out the experiments with stainless steel type 303 and brass 3003 H14. Furthermore, a 

comparison o f data is not possible due to the lack o f information about the surface 

finish. To draw an explicitly and accurate conclusion about the effect o f die material 

on slip, further investigations with different materials needs to be carried out. A 

rough wall surface eliminates the presence o f wall slip but may lead to different 

effects. The surface can be roughened, for example with sand blasting or using a 

rough material attached to the smooth wall (Meyvis et al., 2001; Citeme et al. 2001). 

An increase in surface tension leads to a reduction o f slip because o f the work of 

adhesion (Chen et. al 1992).

6.9 Methods for detection of wall slip in a capillary extrusion rheometer

Several techniques are available to analyse the slip occurring on a smooth wall. One

of them is the Laser Doppler Velocimetry (LDV), which measures the direction and

speed o f fluids through the detection o f the frequency shift o f a laser caused by the

particles in the flow. It has been used for measuring wall slip during extrusion o f a

polyethylene melt (Miinstedt et al. 2001). The use o f LDV allowed Munstedt et al.

(2000) to observer the formation o f a vortex in the entrance of capillary flow of

different polyolefis for the first time. Another visualisation technique is the particle

image velocimetry (PIV). In this case, PIV captures two images from liquid with

seeded tracer particles within a very short time to obtain the travel distance o f the

particle within the time. By using this data, the velocity field can be determined.

Rodriguez- Gonzalesz et al. (2009) seeded solid copper sphere with a diameter less

than 10 pm into high density polyethylene so that velocity profiles can be obtained

with PIV. With this approach, it was detected that a slip velocity contributes 75% of

the total maximum velocity at a wall stress o f 0.240 MPa which occurred at a strain

rate o f 797 s'1. Interestingly, the detection o f the true plug flow was not made during

the experiments due to the shear thinning effect in the melt. Further fascinating flow

patterns captured and a list o f flow visualisation techniques were published by Kline

(1969) and explained more in details (Smits and Lim 2000). However, these devices
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are expensive and not always practical to determine the wall slip. Numerical analysis 

methods have been developed to obtain the wall slip from experimental data. The 

most well known method is the Mooney analysis which had recently been used for 

studying the extensional behaviours of bread dough (Hicks 2010) and ink

(Willenbacher 1997).

6.10 Slip analysis m ethod

The occurrence of slip in capillary flow has been explored both theoretically and 

experimentally. One of the theoretical views is that a slip flow phenomenon is caused 

by the creation of a very thin low viscosity region near the wall, (more information 

see section 4.6). By considering the apparent slip, the raw data can be corrected 

accordingly. In this section, the well known Mooney method will be explained which 

quantifies the slip. Before starting with the explanation, a sketch is provided to 

demonstrate the difference between slip free and slip flow in a tube as illustrated in 

Figure 6-7.

Figure 6-7: Schematic diagram of velocity profiles with presence and absence of slip

As can be seen in the Figure 6-7, the total velocity is made of the slip velocity and 

the true velocity. Slip effects at the tube can be quantified by the effective slip 

velocity, Vs, which is

Vs= - ^  Equation 6-12

Where Qs is the flow rate with slip appearance (Rides and Allen 2006)
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6.10.1 Slip analysis according to Mooney

The fundamental idea o f Mooney (1931) is based on the diameter dependency of 

shear viscosity which shows the degree o f slip. Therefore, the determination o f any 

slip effect can be done by using a set of different diameters. However, the ratio L/D 

needs to be constant so that the stress is always the same. Finally, the measured data 

will be plotted on a shear rate versus 1/R graph from which the slip velocity can be 

obtained as demonstrated in Figure 6.7.

As for many methods, there are some criteria which need to be fulfilled so that the 

Mooney method is valid. One o f the criteria is that the ratio o f die inner diameter to 

characteristic particle dimension should not be lower than 30 otherwise the validation 

of the Mooney method is doubtful (Corfield et al. 1999). Another important factor is 

that a linear Bagley plot exists to allow the use o f the Mooney method (Mooney 

1931). Furthermore, it is worth mentioning that small errors in wall shear stress have 

an enormous impact on the outcome of slip velocity result (Hatzikiriakos and Dealy 

1992 and Arai and Aoyama 1963).

A number o f researchers have used the Mooney method for some polymers 

(Ramamurthy 1986, Hatzikiriakos and Dealy 1992). A table with success and failure 

of Mooney method is provided by Martin and Wilson (2005) who also reported 

alternative route to obtain the slip effect.

The apparent slip shear rate, y a s , for a Newtonian fluid is the sum o f the slip 

velocity, Vs, (see Equation 6.12) and the true shear rate, y w , (see Equation 6.10) as:

Equation 6-13

For a non-Newtonian fluid, the apparent slip shear rate can be written as:

=  / 4n0c ^ \ 4V3+ M n _ V  
;a,s V 3n+l )  R V3n+1/ rW

Equation 6-14

Where, k and n are material constants.

1 0 0
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Figure 6-8: Determination of slip velocity through the use of the Mooney method

6.11 Determ ination o f entrance viscosity and extensional viscosity

A number o f approaches have been proposed such as by Cogswell (1972) and 

Binding (1988) to determine the extensional stress and extensional rate and so to 

finally obtain the extensional viscosity from pressure drop data. A good overview of 

additional approximate analyses can be found in Padmanabhan (1997).

6.11.1 Cogswell model

Several assumptions provide the foundation for the Cogswell model such as (Rao 

2007, Cogswell 1972 and Cogswell 1972)

1) The flow is assumed to be isothermal

2) The flow speed is so slow that the inertial effects are negligible.

3) There is no elasticity effect which means that normal stress is neglected.

4) The viscosity is independent on pressure which means it behaves as an 

incompressible.

5) The system is considered as slip free.

6) Shear and extensional flow relate to the entrance pressure drop. During 

the extrusion, the elongational viscosity remains constant.

7) Cogswell considered the flow in the converging region as locally fully 

developed.
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The following expressions are necessary to calculate the extensional viscosity

(Cogswell 1972 and Cogswell 1972).

The extensional stress, cte, is defined as

3
oE= -  (ng+1 )Pe Equation 6-15o

where P e is the entrance pressure drop and n e value can be determined from:

“'“ dtorfj* ) ' 1 Equation 6-16

Extensional rate is determined by means o f using the true shear stress, a w, (see 

Equation 6.9) and the apparent shear rate, y a, (see Equation 6.7) which does not 

include the Weissenberg Rabinowitch correction as explained in section 6.6.2

Equation 6-17

Finally, the extensional viscosity can be determined according to Cogswell method.

r|E= y  Equation 6-18

6.11.2 Binding model

Binding (1988) almost used the same assumptions as Cogswell (1972), however, one 

of the additional assumptions was that the relationship between shear viscosity and 

extension rate follows the power law. Furthermore, the extensional viscosity is 

described by a power law and the energy which is required for maintaining the 

vortex.

The extensional rate can be calculated as:

(3ne+l)(l+k)2 Oy, ^  i 0
8 = — | — -—t —5- y  Equation 6-19

3k2(l+ne)2 APe a n

1 0 2
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and the extensional stress as:

2 ^kCl+rie)2 APe ^  x.
aE= —— — —-r  —  Equation 6-20

11 (2ne+l)(l+k) Ink

The index k  comes from the power law function which belongs one o f Binding’s 

assumption and can be calculated with the Equation below:

d lnAPen/d Iny
k= >kp "• Equation 6-21

+ne"( d )

and if  ne (0 ,1 ), then /„* can be obtained by

, l+wg,k+1 tte(— -)
Ink= i— ”e ;     Equation 6-22“  2ne+(l+ne)(k+l) H

Later, Binding (1991) included the first normal stress difference, N i ,  which effects 

the pressure drop and reviewed his analysis two years later (Binding 1993). The

entrance pressure drop is replaced by the modified entrance pressure drop, P e :

Pj =Pe+ — :T iN i Equation 6-233ngJ+12 J (2ne+j+l)(37ie+j+2)

and j is defined as:

j = 7 .—” ; -1 Equation 6-24
J dlog(y )

6.12 Determination of the apparent extensional viscosity and true 
extensional viscosity

There are two types o f extensional viscosity, namely the apparent extensional 

viscosity, rja, and the true extensional viscosity, 77^ .  The apparent extensional 

viscosity is defined by the ratio of corrected shear stress (see Equation 6.9 Bagley 

correction) and the apparent shear rate (see Equation 6 .8 )

r|a= — Equation 6-25
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Subsequently, the true viscosity o f a non Newtonian fluid without any slip effect can 

be determined by:

rl T r u e =  ~  Equation 6-26

6.13 The occurrence of Flow Phenomena

6.13.1 Vortex flow

A vortex flow describes an area where the motion of a fluid recirculates. This means 

that the streamline is closed. In relation to Capillary Extrusion Rheometers, an 

unwanted closed region o f recirculation might appear in the comer o f the bore also 

known as a salient comer vortex which depends on the flow rate and rheological 

properties o f the fluid. Another flow sometimes occurs at the edge o f the die hole in 

the reservoir known as the lip vortex. Rothstein and McKinley (2001) analysed the 

flow behaviour of a polystyrene Boger fluid with axisymmetric contraction device 

and detected an elastic lip vortex at a contraction ratio of 2 whereas no lip vortex was 

observed at higher contraction ratios between 4 and 8. The most common occurrence 

of lip vortex can be found in non-Newtonian fluids.

Mtinstedt et al. (2001) conducted a quantitative analysis o f secondary flow patterns 

in a slit die using a laser Doppler velocimetry (LDV). The conclusion made from 

branched and linear polyethylene as well as branched and linear polypropylene was 

that strain hardening behaviour supports the development o f vortices and elasticity 

only has a minor influence on the formation of vortices. This correlation was 

qualitatively confirmed later by Hertel and Miinstedt (2008). The primary function of 

the vortex flow is to release stress within the fluid. When flow rate increases the 

shape of vortex starts to grow to compensate for the increase o f stress around the 

contraction.

An increase in temperature may also cause an increase o f the size o f the vortex (e.g. 

viscosity decreasing) which was observed at polyethylenes (Miinstedt et al. 2001). 

Rothstein and McKinley (2001) added another factor for vortex enhancement.
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During the investigation, it was noticed that the vortex increases with growing 

contraction ratio. In some cases, the salient vortex will be encapsulated by the lip 

vortex which finally plays the most important role in vortex enhancement (Nigen 

2002). As a consequence of the increases in vortex size, the pressure drop increases 

accordingly (Valle et al. 2000). Nigen (2002) studied the flow behaviour of 

viscoelastic (Boger fluid) and Newtonian material in axisymmetric and planar 

contraction apparatus. Vortex enhancement and pressure drop due to viscoelasticity 

were only detected in a Boger fluid and not in the Newtonian fluid. However, the 

vortex enhancement in the Boger fluid only occurred through an axisymmetric 

contraction. Consequently, the conclusion was drawn that axisymmetric contraction 

devices are more sensitive to elasticity than planar configuration (Cable and Boger 

1978). Due to the occurrence o f vortices, the residence time of a polymer increases in 

this region which has an adverse effect on polymer in terms of degradation (Hertel 

and Miinstedt 2008).

vortex
Lip Salient

vortex

Figure 6-9: Formation of lip vortex and salient vortex
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7 M eth o d o lo g y

This chapter gives a brief overview of all commercial paints and the devices that 

were involved in obtaining the necessary rheological parameters. The scientific 

background of the commercial paints and Rotational Rheometer, the Capillary Break 

up Rheometer and the Capillary Extrusion Rheometer has been provided in greater 

detail in the previous chapters 3 to 6.

7.1 Data o f C om m ercial Paints

The samples used for this research project were based on polyester resin. The 4 

colours o f the paints were used to label the samples. Therefore, samples were named 

as white paint, green paint, red paint and dark red paint. The main paints which were 

compared at the end had the same resin. Furthermore, all commercial paints used the 

dibasic ester solvent. Also the pigment sizes used for all paints were below 5 pm. A 

number of pigment types were used to obtain the correct end colour of the paint. The 

pigment to binder ratios ranged between 49% to 60%. The Table 4-1 below provides 

information about the commercial paints.

Part We^t Solids
(%)

Pigrnertto
BWer

SoKeris Pgnerts Pgrertsize

White 60% 1.14 Dibasic Ester
TtariumOxide T1O2, Iron Oxide 
Alpha FeOOHand Iren Oxide

FeA
<5 pm

Green 49% 0.33 Dibasic Ester

Qi-plthaloc}anine C32Hi6N8Cu, 

Tttaniim Oxide T1O2 and 
Qrorrirn Titanium Yellow 

01 Sb, C rA

<5 pm

Red 53% 0.55 Dibasic Ester
Iron Oxide FejOj, Chronim 

Titarim Yellow 01 Sb, C rA
and TtamrnQxide T1O2

<5 pm

EhrkRed 54% 0.48 Dibasic Ester
Iron Oxide FeA  > Iron Oxide 
Alpha FeOOH and H anm

Oxide TA
<5 pm

Table 7-1: Commercial paint specifications
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7.2 Experim ental M ethods

7.3 Strain Controlled Rotational R heom eter (ARES)

Figure 7.1 shows the strain controlled rotational rheometer, Advance Rheometric 

Expansion systems (ARES), and illustrates the set up from the plate, paint and cone. 

ARES is fitted with a force/ torque rebalance transducer, 10K STD with a range from 

10 to 10000 gem which operates at a frequency of 79.6 Hz. Temperature can be 

controlled in a range from -5°C to 90°C, with a fluid circulation bath using fluid 

consisting of 20% ethylene glycol and 80% water. A cone and plate geometry (50 

mm diameter, angle 0.04 rad) was fitted with a solvent trap made of polymer to 

prevent loss of volatiles from the sample.

Cone

Paint Plate

Figure 7-1 a) Strain controlled rotational rheometer ARES is depicted in operation and b) a sketch of 

the plate, paint and cone.

The test sample is located between the fixed cone and the moveable plate. The plate 

rotates at the set strain rate and whilst the cone measures the flow resistance of the 

sample (TA Instrument 2003).

Display

Force/Torque
rebalance
transducer

Cone

Drive motor 

Manual panel
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7.3.1 Overview of experimental procedures used for ARES

Strain controlled rotational rheometer was used to undertake

• Dynamic amplitude sweep procedure,

• Frequency sweep procedure,

• Transient response controlled deformation procedures

• Steady state flow curve procedure.

7.3.1.1 Test parameters for the dynamic amplitude sweep procedure

Strain from 0.02% to 200% was applied as a sinus shaped with frequency o f 1Hz. 21 

data were collected over the strain range applied to determine the onset o f the 

structure breakage, (see Figure 8-1)

7.3.1.2 Test parameters for the frequency sweep procedure

Once the linear elastic domain (LVR) was determined by the dynamic amplitude 

sweep procedure, a frequency sweep at a strain o f 0.1% chosen in this area was 

applied in the angular frequency range between 0.1 s'1 and 100 s-l(see Figure 8-2).

7.3.1.3 Test parameters for the transient response controlled deformation 
procedures

A pre-shear rate o f 0.5 s'1 was used for 210s to erase the shear history o f the sample 

followed by a recovery time with zero shear rate for 1000s. Afterwards, data was 

collected under a single constant shear rate applied for 3600s. The outcome o f this 

procedure can be seen in Figure 8-3 with 8 different shear rates o f 0.5 s’1, 0.7 s'1, 1 s' 

l 9 2 s'1, 5 s'1, 7 s'1, 10 s*1 and 20 s'1. A similar test using only shorter shear rate time 

of 3s and 210s and applying 4 different shear rates o f 0.1 s'1, 1 s'1, 5 s'1 and 10 s'1 

was undertaken (see Figure 8-4). By varying the recovery times from Is to 4000s
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and applying the shear rate o f 0.5 s'1 for 210s, a different rheological view could be 

achieved (see Figure 8-5). A time delay o f 1000 s and 2000s and shear rates o f 0.1 s' 

l , 0.2 s'1, 0.5 s'1, 0.7 s'1, 1 s'1, 2 s"1, 5 s'1, 7 s'1 and 10 s'1 were also used as input 

parameters for this procedure (see Figure 8-6). Lastly the following stages pre -shear 

rate o f 1 s'1 for 1000s and shear rate o f 10 s'1 for 3s were used (see Figure 8-15 and 

Figure 8-18).

7.3.1.4 Steady state flow curve procedure

A pre strain rate o f 0.1 s'1 and followed by step strain rates ranged from 0.1 s'1 to 

100 s'1 were loaded to the sample for 90 s for each strain rate step (see Figure 8-8, 

Figure 8-14, Figure 8-16, Figure 8-17 and Figure 11-1).
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7.4 Stress Controlled Rotational R heom eter (AR2000)

The Rheometer AR2000 is equipped with a ultra low inertia drag up motor, thrust 

bearing, radial bearing optical encoder, normal force transducer and a peltier plate. 

The geometries cone and plate with different sizes (4cm, 5cm and 6cm with an angle 

of 2°) were available as accessories. The tailored solvent trap for these devices could 

be used to cover the geometry.

Force
rebalance
transducer

Drag cup motore

Peltier plate

Cone

Manual panel

Paint

a)
b)

Peltier plate

Figure 7-2 a) Stress controlled rheometer ARES 2000 and the geometry b) a sketch of the plate, paint 

and cone

The torque range available for the controlled stress selection was between 0.1 pN and 

200 mN.m and the range for the controlled rate was between 0.03 pN and 200 mN.m.
o

The Rheometer AR 2000 was able to apply an angular velocity in a range from 10" 

to 300 rad/s for a controlled stress option and from 10"4 rad/s to 300 rad/s for a 

controlled rate option. The tests were run with a displacement resolution of 0.04 

prad. Temperature could be controlled with an accuracy of +/- 0.1°C which was 

made possible through the peltier plate which allowed a temperature to be set 

between -40 °C and 200°C with a heating rate of 20°C / min (TA Instrument 2007).
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7.4.1 Overview of experimental procedures used for AR2000

Strain controlled rotational rheometer was used to undertake

•  Steady state flow curve procedures
• Creep procedures.

7.4.1.1 Steady state flow curve procedures

A 4cm cone was used to apply a wide range o f step shear stresses (from 0.1 Pa to 300 

Pa) on the samples. The time interval for each step was 90s (see Figure 8-8 and 

Figure 8-14). Additional investigation was carried out with the same test parameter 

and supplementary cone geometries o f 5cm and 6cm (see Figure 8-10). Pre-shear 

stress o f 0.5935 Pa was included with the previous test procedure which gave 

different outcome (see Figure 8-13).

7.4.1.2 Creep procedures

No pre-shearing and maintaining a constant stress o f 0.562 Pa for 7000s was the first 

set up parameters (see Figure 8-10). Using a pre-stress o f 0.1 Pa for method (a) and 

pre-sharing o f 2 Pa for method (b) for 1000s followed by a recovery time o f 1000s. 

Afterwards, a shear stress o f 0.1 Pa was applied for both methods for 3500s (see 

Figure 8-11). Additional creep experiments were carried out with a pre-stress of 0.7 

Pa for 1000s followed by rest time o f 1000 Pa before applying a stress o f 0.7 Pa for 

3500s. Furthermore, a pre-stress o f 2 Pa for 1000s was applied to the sample 

followed by a rest time o f 1000s before the data was collected at a constant stress of 

0.7 Pa (see Figure 8-12).
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7.5 Surface Tensionm eter

The static surface tension of the paint was measured with a Kriiss K8 static surface 

tension meter, using a platinum Du Noiiy ring with a radius of 9.545 mm and a 

circumference of 59.97 mm. Surface tension could be measured with an accuracy of 

0.1 mN/m .

Sample chamber
Force

Display

Position 
wheel

Levelling 
control eye

a)

Figure 7-3 a) Surface tension meter and b) Du Noiiy ring in contact with liquid

Before the surface tension was measured, the platinum ring was immersed into the 

liquid. This ring was then slowly moved upwards leaving a film around the ring 

when it was positioned above the surface of the liquid. This film would eventually 

break during the upwards movement of the ring under tension. Afterwards, the value 

of the surface tension could be read off the display (Kriiss 2007).

Liquid Film around the
b)
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7.6 Capillary Break Up R heom eter

Material with a shear viscosity between 10 mPas andlO6 mPas can be measured with 

a Capillary break up rheometer, which is able to apply a Hencky strain up to 8 = 10. 

This is achieved by a linear motor with a resolution of 0.02mm. The filament decay 

was monitored with a Class 1 laser micrometer using a wavelength of 780nm, 

produced by a power o f 1.7mW. Its resolution was 0.01mm. The systems response 

time was 10ms. The material could be heated from 0 °C to 80°C.

Photron MCI high speed (at 1000 frames / second) with a Nikon 14 -  85 f  2.8 -  4 

lens has been used to record high resolution digital videos and pictures of a filament 

break up. The size of the videos and pictures was cropped to 512 x 512 pixels with a 

pixel resolution of 26.2 pm.

Move direction

a) b)

Figure 7-4 a) Capillary break up rheometer and b) the main parts

The sample was held between the two plates see figure 7.4 b). A sudden uniaxal step 

strain was applied which caused the sample to stretch. Subsequently, the diameter of 

the filament would decay which was monitored by a laser (Caber 2002).

Moveable Plate

Step motor

Sample
chamber

Manual
micrometer Stationary Plate

Fluid Filament
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7.6.1 Overview of experimental procedures used for CaBER

A selection of exponential strike times of 20ms, 45ms, 90 ms with fundamental rates 

of 0.01 s’1, 100 s '1 and 1000 s’1 as well as a linear strike times of 20ms, 50ms, 70ms, 

90ms and 110ms were used for the separation of the plates whose initial distance was 

2 and the final heights were either 6.98mm, 9.34mm or 11.5mm (more details can be 

found in chapter 8).

7.7 Capillary Extrusion Rheom eter

The most important components of the capillary extrusion rheometer are the piston, 

transducer, capillary die and barrel made o f EN40 nitrided steel which has a bore size 

of 15 mm. The temperature can be controlled in a range of -60°C to 500°C. The 

pressure transducer in a range of ~0.7 bar to -20000 bar can be used. The maximal 

piston speed is 500m/min.

Motor

Manual panel

Piston

Barrel

Figure 7-5: Capillary extrusion rheometer with two pistols.
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The sample is confined within the bore and is pushed by the piston through the 

capillary die (see Figure 6-2). The maximum driving force is 150 KN with a 

maximum speed o f 200 mm/min attainable, with an uncertainty o f less than 0.1% 

achievable (DrRheology 2010).

7.7.1 Overview of experimental procedures used for capillary extrusion 
rheometer

The piston pushed the paint through dies with hole diameter o f 0.5 mm and the 

length o f either 5 mm, 20 mm and 50 mm or with hole diameter of 1 mm and the 

length o f either 5 mm, 20 mm, 47 mm with a speed ranging from 0.471 mm/min to 

333.346 mm/min.
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8 Results of rotational rheometer

8.1 Scope of rotational experiments

Industrial paints belong to the group o f very complex fluid causing a huge challenge 

for the rheologist to obtain trustworthy rheological data. As a consequence, the 

primary aim of this work was to find the optimal test procedure to characterise the 

rheological behaviour o f the polyester resin based paints. Due to the limitation o f the 

project time, the paint with the Ti0 2  pigment was used for carrying out a thorough 

investigation because o f its low production performance and quality in the past. 

Stress controlled and strain controlled rheometer were employed to get a better 

understanding o f the behaviour o f the industrial paint. The first step was to carry out 

an angle oscillation, one o f whose values from the linear region had been used for 

undertaking a frequency sweep. Transient, steady state step flow and creep 

experiments enhanced the understanding. Once established, the test procedure that 

had been developed for the white paint experiments was used for all the paints 

systems.

8.2 Rotational Experiments on white paint

8.2.1 Experimental Design

Controlled deformation experiments to obtain flow curves and step rate were 

conducted on a strain controlled Rheometer ARES (TA instruments) assembled with 

a dual range (10/100 gem) force balance transducer. Temperature control was 

maintained via a fluid circulation bath. A cone and plate geometry (50 mm diameter, 

angle 0.04 rad) was employed.

Further investigations running creep, dynamic amplitude sweep, amplitude 

oscillatory and flow curve experiments were carried out with a stress controlled 

rheometer, AR2000 Rheometer (TA Instruments), using different sizes o f cone and

126



w f j i i i  i  i i o i i  i y  i  i i v j 1 1  u p c c u  i i i i y  i  i u o c o o c o

plate geometry (4cm,5cm and 6cm with an angle of 2°) at 20 ± 0.1 °C. A solvent trap 

was used in each experiment to prevent drying of the sample.

8.2.2 Initial rheological evaluation

Firstly, a dynamic strain amplitude sweep was carried out with a strain controlled 

rheometer whose results are shown in Figure 8-1. A linear response can be observed 

for strain amplitudes up to 0.1% strain. Above this critical strain, the storage 

modulus, G \  monotonically decreases. Applying a constant strain of 0.1, the 

outcome of the frequency sweep can be seen in Figure 8-2. The data collected span 

the elastic plateau region through to the transient region. In the plateau, G’ is 

approximately 3 times higher than G” . The larger value o f G’ in comparison to G ” 

indicated the pronounced elastic properties off the paint. Due to experimental 

limitations, the terminal region was inaccessible because the data were below the 

range of the torque transducer (4 x 10" gem.). Therefore, the value of relaxation time 

could not be determined.
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Figure 8-1: Dynamic amplitude sweep for the paint obtained using controlled deformation Rheometer.
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Figure 8-2: Oscillatory behaviour of white paint using controlled deformation rheometer. G’ ([U),G” 

(A )

8.2.3 Transient response controlled deformation rate

Transient response controlled deformation rate experiments provide useful 

information about the elasticity and time dependent behaviour. The imposed shear 

rate was varied from 0.1 s '1 to 20 s’1, the results are presented in Figure 8 3. In order 

to get reproducible data, pre shearing the sample was required to eliminate loading 

and shear histories. Each experiment involved the application of the shear rate for 

3600s which was collected within a linear spaced of 350 data points (torque). These 

outcomes are characterised by a pronounced elastic response at short times evidenced 

by an overshoot in the stress growth function. However, the rate of data collection 

was insufficient to fully resolve the maxima in o+ (t). Consequently, experiments 

were repeated with a faster sampling rate (200 data points within 210s and followed 

by fastest sampling with 350 data points collected over 3s). In all cases, a steady state 

shear stress was eventually attained at long times (~250s) verifying the samples 

stability and also indicates that evaporation o f the solvent was negligible.
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Figure 8-3: Temporal evolution of the shear stress growth function for different applied shear rates ((

) 0.5 s' 1 , (...... ) 0.7 s ' , ( ) 1 s' ,  ( ) 2 s 1 ( ) 5 s' 1 7 , ( -) 10 s ’ , (-) 20 s’1 ),

the sample was pre-sheared at 0.5 s' 1 for 210s, followed by 1000s at rest before collecting data (350 

data points collected over 3600s).

Initial consideration of the outcome from an imposed shear rate o f 0.1 s '1 seems to 

suggest that the stress growth function shows simple monotonic (no overshoot) 

increase as seen in Figure 8-4. Further experiments with a higher deformation rate 

than 0.1 s '1 show a transition region with pronounced overshoot. This phenomenon 

seems to occur when the Weissenberg number Wt = Ay exceeds a critical value of 

unity (Lubrecht and Dalmaz 2003). The characteristic relaxation time, A, expressing 

the microstructral rearrangement, can be derived by the crosspoint from G’ and G ° 

in the transition to flow region. The stress overshoot of entangled polymers due to 

sudden applied shear rate analogous to the Weissenberger number Wj >1 is reported 

in many published documents (Boukany and Wang 2009, Ferry 1980, Osaki et al. 

2000a, 2000b, 2000c).
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Figure 8-4 Temporal evolution of the stress growth function over a much shorter experimental 

duration for different imposed shear rates (350 data points collected over 3s) shown as solid lines. The 

open symbols are from experiments run over a much longer duration (200 data points collected over 

210s). Preshearing and sample equilibration conditions as for Figure 8-3, (—X ) shear rate = 0.1 s' 1 

(— O) = shear rate 1 s '1, (—A ) shear rate 5 s '1, and (—f  ) = 10 s '1.

The transient response o f the paint on the sudden imposition of shearing was found 

to be significantly time dependent. The resulting maximum stress overshoot, (7max, 

was highly sensitive to the previous recovery time, tdelay, in which the shear rate was 

set to 0. This thixotropic behaviour was manifested by obtaining an increase in 

maximal peak stress, (jmax, with increasing recovery time, tdeiqy• An incomplete 

structural recovery was detected at shorter delay times. This is illustrated in Figure 

8-5a where the transient response (o+(t)) following delay times of 10s, 100s, and 

1000s are compared. A series of experiments were subsequently performed to 

ascertain the time required for complete structural recovery, i.e. where there was no 

further noticeable increase in c r ^  with tdeiay• A similar approach was employed by 

Stratton and Butcher (1973) who found also out that the magnitude o f the stress 

overshoot increased with the increased delay time. The evolution of omax with 

increasing tdeiay was well described by the Equation 8-1 which encompasses a 

characteristic time for thixotropic recovery,r (Stratton and Butcher 1973). The
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attainment of a stress peak plateau after a critical recovery time was also detected in 

ink (Pangalos et al. 1985). In Figure 8-5b, total structure recovery is achieved at a 

delay time of appr. 2000s. A good agreement between the model formula 8.1 

(Stratton an Butcher 1973) was possible with the parameters of IPa for ostart and 

5.126 Pa for <7* and 3000 for the relaxation time t .

4 d e i a y ) ( t ) = < J o o - [ (  )(o„-os!art) ] Equation 8-1
T ^

5

4
o3a.

3
-C
5

25020015050 1000

Time / s
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Figure 8-5: a) Illustrating the dependency of stress growth on delay time. The sample was sheared for 

210s at 0.5 s"', allowed to rest for times of 10s (O), 100s (I 1) and 1000s ( ). b) Demonstration of 

thixotropic recovery after a commanded delay time which is highlighted by the increase in the stress 

overshoot. The sample was pre-sheared for 210s at 0.5 s' 1 followed by relaxation times (y = 0) 

ranging from Is to 4000s, the peak in the stress overshoot on re-shearing at 0.5 s' 1 was recorded.

Once the timescale for thixotropic recovery of 2000s had been established, the effect 

of the magnitude o f the imposed deformation rate on the transient stress growth 

could be re-examined. Figure 8-6 illustrates the variation in the maximum in the 

stress growth function, omax, on imposition of strain rates between 0.1 and 10 s’1. The 

increase in omax with applied shear rate appeared to follow a power law, i.e.amax = 

a y n. The power law curve fitted well onto the transient peak data with a rest time of 

2000s when the power law constant value a = 8.33 and the exponent value n=0.45 

were inserted. For the steady state data at 1000s and rest time of 2000s, the constant 

parameter of 1.52 and the exponent value of 0.35 were used to obtain a very good fit.
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Figure 8-6: Variation in the magnitude of the peak in the stress growth, omax, and of steady state stress 

measured at 1000s, <jstead, as function of the imposed shear rate. The samples were pre sheared for 

210s followed by a time delay (2000s for omax and for osl,ad ) before collecting the data. In both cases, 

the data showed a high correlation to a power law function (□  for omax, O for aslecufy).

A further comparison of the transient response can be made using dimensionless 

variables. This is shown in Figure 8-7 where the stress growth function, o ", is 

normalised with respect to the corresponding steady state stress, osteady, achieved after 

a long timescale and plotted as a function o f strain,

The presence of an overshoot is now illustrated by a value of a +/ osteady which is 

greater than 1. This response even occurred at the lowest applied shear rate of 0.1 s’1. 

Transient elastic (overshoot) behaviour o f this type is usually the result of the 

insufficient rearrangement o f micro-structure within a short time scale (Barnes

1997).
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Figure 8-7: Temporal evolution of the shear stress growth function following the sudden imposition of 

different shear rates expressed as dimensionless variables Shear rate (—) 0.1 s '1, (—) 0.5 s '1, ( —) 1, 

(—)5  s' 1 and (—) 10 s' 1

8.2.4 Transient response controlled stress

In this subchapter, the focus is chiefly on the experimental data obtained from the 

flow curves and creep tests. The outcome of the flow curves [ 77(0-)] generated by 

three different approaches -  stress flow experiments using the controlled stress 

instrument (AR2000), shear rate flow experiments obtained using the controlled 

deformation and data taken from the steady state regime in transient start shear 

experiments (ARES, Figure 8-3) are depicted in the Figure 8-8 .

In each case, the intrinsic structure of the paint breaks down from low shear rate to 

higher shear rate perceivable through the viscosity decrease. However, the viscosity 

at low applied stress and the apparent yield stress measured on the controlled stress 

instrument were significantly higher than that measured in controlled deformation 

experiments. On the other hand, the data from all test procedures was in good 

agreement from a critical shear stress of 300 Pa onwards.
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Figure 8-8: Comparison of flow curves from controlled stress and controlled deformation 

experiments: (A ) controlled stress data (average of data in Figure 8-9) (I I) controlled strain rate data; 

(O) steady state data (controlled rate) obtained from transient experiment (Figure 8-3).

The results from the controlled stress instrument were verified for three different 

geometries (40mm, 50mm, 60mm cone and plate, 2° angle), which demonstrates the 

absence of wall depletion effects (slip). (Figure 8-9)
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Figure 8-9: Comparison of flow curves obtained from average data points with cone diameter of f  ) 

4cm, (A ) 5cm and ( ) 6cm: ( ) represents the average value for all diameters. Coincidence of the

data suggested an absence of wall depletion (slip effect)

The data from the shear rate flow experiment and the corresponding steady state 

values from transient experiments were in good agreement. This raised questions as 

to the accuracy of the viscosities measured in stepped stress experiments and 

suggested that the transient response to an applied stress (creep) should be 

investigated.

Firstly, the reproducibility of the paint’s response to an applied stress was 

investigated (Figure 8-10). In these experiments, no pre-shearing of the sample was 

performed prior to the creep experiment. Figure 8-10a shows data from two separate 

experiments (The sample has been changed between runs) using an applied stress of 

0.562 Pa. There are two features worth mentioning. Firstly, there was a clear lack of 

reproducibility, run-to-run. This suggested a strong influence of the samples shear 

history on the creep behaviour. As a result o f the highly thixotropic nature of the 

paint, one may speculate that slight differences in loading or compression which 

could have led to a variety of ‘non-equilibrium’ microstructures. Consequently, a 

distinctly different response occurred after imposing a given shear stress. Secondly,

n n n

n a * a n n n n n

10° 101 io2

Shear stress / Pa
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there was a pronounced structural transition from an initial viscoelastic deformation 

to viscous flow, associated with the attainment of a critical strain. This critical strain 

was again not reproducible run-to-run, in the absence o f pre-shearing, and it was 

associated with an abrupt increase in shear rate, presumably underpinned by a loss of 

microstructural connectivity in the sample. Another possible reason for the different 

critical strain values was the effect of gravity on the sample which caused an 

enhancement in slip effect for long term experiments (Barnes 1995). Figure 8-10b 

resulted from similar experiments, with a lower applied stress (0.1 Pa) conducted 

over a similar duration. Again, the lack of reproducibility was noted during the run- 

to-run. The shapes of both curves were identical. A similar deformation rate 

appeared to be attained after ~ 3000s, but the absolute value of the strain varied 

considerably. An incipient structural transition appeared again in both sets of 

experience outcome at around ~6000s, characterised by an increase in the apparent 

strain rate.
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Figure 8-10a Creep data ((□ ) trial 1, (V ) trial 2)) showing the lack of reproducibility in the absence 

of preshearing following sample loading. Imposed stress = 0.5623 Pa. Note the pronounced structural 

breakdown and transition to viscous flow.
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Figure 8-10 b: Creep data ((□ ) trial 1, ( ) trial 2)) showing the lack of reproducibility in the absence of

pre-shearing the sample and allowing full structural recovery. Imposed stress = 0.1 Pa. Note the 

pronounced structural breakdown and transition to viscous flow.

A further series of transient experiments including pre- shearing were then conducted 

on samples to achieve a reproducible material response. Different magnitude of pre­

shearing and a constant structural recovery time were applied prior to collecting the 

transient data. Figure 8-1 la  shows three repeat runs of the same experiment, 

involving the imposition of a relatively low pre-shear stress (0.1 Pa) for 1000s, 

followed by a recovery for a further 1000s. Most notably, there was again a lack of 

reproducibility between repeat experiments. In particular, the time at which structural 

breakdown and transition to viscous flow occurred varied from ~ 500s to ~ 2500s. 

The critical strain attained at this point was relatively invariant in this case. Clearly, 

the pre-shearing conditions applied here (stress/time) were insufficient to develop 

sufficient deformation in the sample to effectively ‘erase’ the system’s shear history. 

Again, this was consistent on consideration of Figure 8-8, as the pre-shear stress was 

well below the apparent yield stress of the paint, hence clearly insufficient to cause 

significant structural breakdown. In contrast, Figure 8-1 lb, shows a similar set of 

experimental data in which a larger pre-shear stress was employed (2 Pa, 1000s). A 

recovery period o f 1000s was again allowed, followed by the monitoring of the creep
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in the fluid on application of a shear stress of 0.1. In this case, reproducibility of the 

data was very good over three repeated experiments, indicating that the sample 

history effects were fully ‘erased’ in pre-shearing. This caused a sufficient degree of 

breakage of the inner structure to have the same start condition for all samples. The 

transition from structure breakdown to viscous started at around 2500s with a critical 

strain o f around 0.7.
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Figure 8-11: Influence of preshear stress on subsequent transient (creep) response, (a) 0.1 Pa preshear 

for 1000s, 1000s delay time followed by creep at an imposed stress of 0.1 Pa -  data from 3 separate 

experiments (b) 2 Pa preshear for 1000s, 1000s delay time followed by creep at an imposed stress of 

0.1 Pa -  data from 3 separate experiments. Note the lack of reproducibility obtained with preshearing 

at a lower stress.

The influence o f shear history was totally eliminated in the subsequent creep 

experiment using a much higher shear stress. A nearly perfect overlapping of creep 

data from different runs with shear stress of 0.7 Pa and 2 Pa is shown in Figure 8-12a 

and Figure 8-12b. There was not any further sign o f the structure breakdown to 

viscous transition in the time window from 0 to 3500s.
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Figure 8-12: Influence of preshear stress on subsequent transient (creep) response, (a) 0.7 Pa preshear 

for 1000s, 1000s delay time followed by creep at an imposed stress of 0.7 Pa -  data from 3 separate 

experiments (b) 2 Pa preshear for 1000s, 1000s delay time followed by creep at an imposed stress of 

0.7 Pa -  data from 3 separate experiments. Note the good reproducibility obtained with preshearing

The understanding obtained from the transition experiments enabled the flow 

procedure to be optimised for stress controlled rheometer. By using a higher pre­

shear stress of 0.5935 Pa for the stress controlled rheometer, the flow curve (Figure 

8-13) which was previously obtained with a pre-shear rate by the stress controlled 

rheometer was now shifted upwards to a steady state which was verified by the flow 

curve from a strain controlled rheometer.
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Figure 8-13: Steady state flow curves obtained under different experimental conditions: (1 1) stepped 

shear rate data (ARES) with steady state verified independently in transient experiments ( ) ‘stepped 

shear rate’ experiments (AR2000) using feedback loop control (A ) stepped stress experiments 

(AR2000) with initial pre-shearing close to apparent yield stress.

8.3 Conclusion for the w hite paint

A paint with TiC>2 pigments was characterised by using stress and strain controlled 

rheometers. Initially, a discrepancy between the flow curves was observed which 

prompted a deeper research activity. Additional outcomes from transient experiments 

indicated the complexity o f the sample and its sensitivity to historical handling. By 

applying a pre-stress of 0.5935 Pa, the effect of history was eradicated. Surprisingly, 

the occurrence of slip effect was not detected with different geometries sizes 

techniques. Therefore it seems that the paint has a very good adhesion to steel. The 

main benefit from this study was that by undertaking two different experimental 

procedures it was possible to obtain with confidence a flow curve with greater 

accuracy. Otherwise an incorrect conclusion may be drawn.
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8.4 Rheological investigation of different paints using rotational 
rheometer

In this study, two paints were chosen with respect to the production performance. 

One o f the paints was pigmented with red pigment, which shows an extremely good 

performance with respect to line speed. In contrast, the paint pigmented a with dark 

red pigment slowed down the production line and even generated fat edges probably 

due to its rheological properties. A flow curve procedure and transient response 

controlled deformation rate experiments were used to provide useful information 

about the rheological parameters.

8.4.1 Experimental results

Step flow procedure was carried out with stress controlled and strain controlled 

rheometers. Each sample underwent either a pre-shear of 0.1 s"1 or pre-stress of 0.1 

Pa to eliminate any loading histories. Afterwards the actual flow procedure directly 

started which involved applying a stress in the range from 0.1 Pa to 500 Pa or a strain 

rate in the range from 0.1s'1 to 500s'1. Figure 8-14a shows the viscoelastic flow 

behaviour o f a dark red paint with yield stress. Similar to the white, there are 

variations between flow curve results leading to the conclusions that the paint was 

sensitive to shear history. The flow curve obtained by stress controlled rheometer 

with a pre shear rate o f 0.1s'1 showed good agreement with the flow curve provided 

by strain controlled rheometer using shear rate of 0.1s'1. From the previous 

experience reported above, it can be assumed that loading history was sufficiently 

deleted at strain rate o f 0.1s'1. In contrast to the dark red paint, the red paint behaves 

as a Newtonian fluid and does not have any yield stress (Figure 8-14b). Measuring 

approximately provided a viscosity value o f 0.35 Pas for the Newtonian red and 

viscosity values o f 0.4 Pas for yield stress red (collected from infinite -  shear 

Newtonian Plateau).
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Figure 8-14: Comparison of flow curves generated under different conditions and devices, a) 

Illustrating average data from stress controlled rheometer using pre strain rate of 0.1s'1 (O) and pre 

shear stress of 0.1 Pa (A ) as well as average data from strain controlled rheometer ( ) for dark red 

paint, b) Showing average data from stress controlled rheometer using pre strain rate of 0.1s'1 ( ) and 

pre shear stress of 0.1 Pa (A).
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8.4.2 Step rate

Supplementary information about the elasticity and thixotropy were delivered from 

the step strain rate experiments whose results are depicted in Figure 8-15a and Figure 

8-15b. There were two main procedures namely break down and build up (Barnes 

2000). In this research, the break down procedure was chosen only for the well 

performing paint (Newtonian red) and the bad performing (yield stress dark red). 

Before the structural underwent a break down, the influence o f shear history was 

totally eliminated by shearing the sample at the rate of 1 s"1 for 1000 s. Afterwards, 

the structural destruction induced by an applied shear rate of 10 s '1 was observed in a 

time frame of 3s using a 350 data point resolution. The overshoot occurred at yield 

stress for the dark red and indicated an elastic effect, whereas the Newtonian red’s 

response was as a classic viscous fluid which did not accumulate elastic energy and 

therefore the red paint might have a higher line speed performance. The structure or 

flocculation of the dark red paint started breaking down until its equilibrium was 

achieved. The red paint showed a faster respond to the sudden shear rate increase 

which was noticeable by reaching the equilibrium stage almost immediately.
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Figure 8-15: Demonstration of the good repeatability of each paint ((a) yield stress red and (b) 

Newtonian red) imposed a shear rate of 10 s '1.

Similar to the coil coating process, the paint undergoes a high strain rate over a very 

short time. After leaving the nip between the rotating rolls, the paints are nearly 

Newtonian at high shear rates or behave like a thixotropic yield -  stress fluids. The 

defect which occurs between the rolls will normally be levelled out after the nip 

(Cohu and Magnin 1995). However, if  the degree of the defect occurring in the nip 

is sufficiently high then the levelling process of the paint will not be able to 

compensate for uneven surfaces before the curing oven in the time scale. This can 

lead to paint defects. The type of initial flow response to the sudden strain rate 

(absent or present o f overshoot) might dictate the degree of the defect on the 

substrate after the nip due to the elastic effects. Since the dark red paint seems to 

have a bad coating performance in terms o f line speed and fat edge occurrence in 

comparison to the red paint, it is interesting to see the difference in their response to 

the step strain procedure. Two features might be the reason for the different 

performance. The first reason is the stress peak showing an elastic behaviour and the 

second reason is the thixotropic behaviour leading to a delay in the decrease in the 

viscosity. Looking into the microstructure, the dark red paint has iron oxide alpha
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pigments whereas the red paint does not have this type o f pigments. This type of 

pigments might help to build a more structured system with a thixotropic behaviour.

8.5 A rheological com parison o f paints with different pigm ents

The steady-state viscosity data of paints (white, green, red and dark red) are 

illustrated in Figure 8-16 for a wide range o f shear stresses. Three out of four tested 

paints were highly stress-thinning in the ranges from 0.5 Pa to 200 Pa. whereas the 

red paint exhibited Newtonian behaviour in the range from 0.05Pa to 200 Pa. The 

strong shear thinning effect of yield stress red reflected the strong intrinsic complex 

network of the paint. White and green exhibited shear thinning behaviours in a much 

milder form. The majority of the viscoelastic paints did not have a zero shear 

Newtonian plateau, giving a hint o f yield stress and solid like behaviour (Yziquel et 

al. 1999 and Page et al. 2002). In these tests, the solvent based paints showed mostly 

shear thinning behaviour. In 1919, yield stress behaviour of paint was firstly 

mentioned by Bingham (1922) as shown by the dark red paint. Compared with the 

results from other commercial paints, the values of infinite shear viscosity of these 

results were very similar to the results of some of the coating paints (0.3Pas -  0.5 

Pas) provided by Lopez and Rosen (2002).
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Figure 8-16: Comparison between Newtonian paint and shear thinning paints with pronounced yield 

stress. Paint samples are (O ) green, (V ) white, ( ) dark red and (A ) red.
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Among the test samples, the dark red had the most pronounced yield stress with a 

value o f 2.2 Pa followed by white, 0.65 Pa and green, 0.42 Pa. The values of the 

yield stresses were abstracted from the Herschel Bulkley model (Figure 8-17) 

incorporating the Newtonian, Power law and Bingham equations and can be 

mathematically expressed as:

CT=CTv+TlHByr Equation 8-2

Whereas oy is the yield stress, rjHB is a constant viscosity value and n stands for rate 

index.

The three parameter rheological model from Herschel- Bulkley was selected because 

it models more accurately the rheological behaviour of a yield stress fluid in 

comparison to the Bingham model (Hemphill et al. 1993).
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Figure 8-17: Herschel Buckley fits on all samples delivering the yield stresses for (O) green 0.42Pa, 

( ) white 0.65 Pa, ( ) dark red 2.2 Pa and (A ) red 0 Pa.

A structure or flocculation breakage occurs in order of longest duration for dark red 

paint, white paint and the green paint. For the Newtonian red paint, the indication of 

a breakage did not appear on the graph due to the fast rearrangement of the
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microstructure. By increasing the shear rate to a distinctive value, the likelihood that 

the red paint responds with the overshoot (indication of elasticity) would be high.
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Figure 8-18: Scaling of stress growth as a function of time for paints pigmented with red (A ), white 

( ), green (O) and dark red (□). Using sudden imposed strain rate of 10 s '1.

Samples Solid Content
White 59%
Green 46%
Red 50%
Dark Red 50%

Table 8-1: Data of the solid content of paint in wt%

Ascanio et al. (2006) reported that with four suspensions made with kaolin clay and 

aqueous solution the elastic modulus obtained by strain amplitude sweep was always 

higher with higher solid content coatings over a wide range of strain amplitude. In 

these cases, this statement is not reflected in the step procedure as seen in table 8.1. 

Yield stress red had one of the lowest solid content and appeared to have a higher 

elastic overshoot than the counterpart of Newtonian red with the same solid content. 

The green consisting of 46 wt% of solid content had a slight overshoot whereas
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Newtonian red with higher solid content had no elasticity. Therefore other 

ingredients must also play an important role to influence the flow behaviour.

8.6 Conclusion

The well performing red paint exhibited Newtonian behaviour whereas the worst 

performing dark red paint posed the highest yield stress among the paint samples and 

showed shear thinning behaviour. Consequently, it appears that the yield stress is a 

possible influencing factor for reducing the production performance by 10.4% in 

comparison to the red paint performance. Additionally, the degree o f elasticity o f the 

paint may also play an important role for classifying a well performing paint. A  

highly structured paint maintains a nearly constant flow resistance through the nip 

resulting in a different behaviour than a low structured paint. As a consequence, a 

significant defect in the nip may generate which takes more time to level out. 

Therefore the line speed used for the dark red is lower than the red paint to allow it 

more time to rectify the defect. Fat edges were only reported with dark red paint and 

this may be caused by high yield stress. However, more investigations need to be 

done to draw a final conclusion.

In terms o f the relationship between rotational findings and the commercial paint

specification (see Table 7-1) the following discussions can be initiated. The weight

solids content does not show any relationship whether a paint is shear thinning or

behaves Newtonian since the Newtonian paint posseses a weight solid content o f

53% and the shear thinning green paint has a lower weight solids content o f 49%.

Green paint has the same type o f binder. The red paint has a higher pigment to binder

ratio in comparison with the dark red and green paint. The question rose whether the

binder dictates the shear thinning behaviour up to a specific pigment to binder ratio.

The counterargument can be shown by using the pigment to binder ratio from the

white paint. However, in this case the promotion o f flocculation is much higher due

to the higher pigment to the binder ratio and the weight solid content. A definitive

answer to this assumption can be shown when the pigment to binder ratio from dark

red paint and green paint will be increased and tested afterwards. Another difference

between the red paint and dark red paint is the type o f pigments used. The amount o f
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iron oxide and titanium oxide in red paint is nearly the same as in the dark red paint. 

The only difference is that red paint has chromium titanium yellow pigment and the 

dark red paint has iron oxide alpha pigment. It would be interesting to undergo a 

further analysis on the basis o f the both types o f pigments. A subsequent question 

about the dependency o f iron oxide alpha on flow behaviour might be answered by 

reducing the amount o f the iron oxide alpha. If the degree o f shear thinning 

behaviour reduced or even disappeared this would indicate that this pigment has a 

strong influence on the flow behaviour.
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9 Capillary breakup extensional rheometry of organic coating

This part o f the research work aimed to create a reliable, repeatable experimental 

procedure for commercial polyester resin based paints tested by a Capillary Break up 

rheometer and comparing the end results. This device is one o f the simplest devices 

for measuring extensional viscosity. In chapter 6 , the operating principle was 

explained and therefore there is no a need to repeat it again. The first approach was 

to undertake experiments with both stretch conditions, namely exponential and linear 

strike profiles which are defined by opening time and growth constant o f the plate. 

At the beginning of the research, experiments were conducted to gain initial 

experiences o f a very complex fluid without any visual devices (e.g. high speed 

camera). In order to expose significant dynamic effects during the temporal evolution 

o f midfilament diameter, the application o f digital video imaging was needed and 

was then implemented in the experimental procedure. Now, the optimal work frame 

could be selected for polyester resin based paints accordingly. A range o f dynamic 

effects such as central bulge, satellite drop, recoiling o f the filament and unstable 

filament dynamic were discovered, which greatly influence the outcome. Complex 

filament shapes were also reported by Tuladhar and Mackley (2008).

9.1 Experimental procedure

A Photron MCI high speed camera operating at 1000 frames / second with a Nikon 

14 -  85 f  2.8 -  4 lens was employed to record the temporal evolution o f midfilament 

thinning. The size o f the videos and images were cropped to 5 1 2 x 5 1 2  pixels with a 

pixel resolution o f 26.2 pm. A connection transferred the data to an external storage 

device.

The capillary break up extensional rheometer ( C a B E R  7, Thermo Haake) was used to 

carry out capillary break-up experiments. A syringe helped to attain an acceptable 

liquid bridge during the loading process. A pre-shearing was imposed when the 

samples went through the needle o f an inner diameter, *7,, o f 1 mm with a volumetric 

flow rate, Q ,  o f 12.6mm3/s. Consequently, a shear rate o f 16 s' 1 (y=8 Q/7id,) occurred.
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A linear actuator was used to apply an axial step strain on the sample within a 

defined time and height. Subsequently, the middle diameter, D mid , o f the fluids 

started to decay, monitored with a resolution o f 1 0 pm by a laser sheet micrometer 

emitting infra red light at 780nm. The 1.4mW power infrared red laser had a laser 

beam of 1mm thickness. A thermostatically controlled bath kept the temperature of 

the plate constant at 20°C. The initial sample’s aspect ratio, A 0 = h Q/ 2 R 0 was 0.5,

calculated with initial gap, h 0 , o f 2  mm and plate diameter, 2R q , o f 4cm. The effect

of sagging and bulging o f the cylindrical sample can be neglected at this value. It is 

likely that, the initial reverse squeeze flow did not exist because the aspect ratio was 

in the bottom range o f the free reverse squeeze flow zone (0.5 < Ao< 1) (Harlen 

1996, Yao and McKingley 1998).

A series o f Hencky strains o f 1.25, 1.54 and 1.75, e f  = In( h f  / h 0 )  were applied to the

sample. The final heights, hf,  o f ~  6,95 mm, 9.3 mm and 11.45 mm respectively were 

below the maximum stable filament length o f 12.5 mm with the 4mm plate. Plateau 

(1863) predicted the maximal stable length f max=2/rR0 for a cylindrical liquid 

column of volume Vo=7rRo2Lo under the condition o f Bo = 0. The stability decreases 

with increased bond number (Slobozhanin 1993). The initial axial strain might not 

lead to a strain hardening effect when 8 f = In (Af /Ao) < 2. For small strain, Ef < 1, the 

dynamic o f the necking will be influenced by slumping and the quasistatic fluid 

reservoir (Anna and McKinley 2001). The chosen Hencky strain follows the 

suggestion from Ann and McKinley (2001) to keep the axial Hencky strain between 

1 and 2 .

Capillary break up rheometer (CaBER) provides the option to use different stretch 

profiles, such as exponential, linear and cushion. The exponential profile depends on 

the fundamental rate and time. Linear stretch profiles can be changed with the 

opening time.

The exponential strike performed by CaBER obeys the following formula.

(hf-h.) e ^ 1
h(t)=ho+— —  Equation 9-1
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Where, ho is initial height in mm, hf is final height in mm and t is time in ms, ts 

stands for opening time in ms and R is the fundamental rate in 1/s.

The linear profile can be defined by:

h(t)=h0+(hf-ho) -̂ Equation 9-2

The time scales for achieving the final height (also called opening times) were set to 

20, 50, 70, 90 or 110 ms for linear stretching. The exponential stretch profile is 

defined by the opening time (20, 45 or 90 ms were used in the experiment) and 

fundamental rate (0.1 s '1, 100 s '1 or 1000 s '1 used for the experiment).

An overview of the parameters set used for this research project is provided in the 

Table 9-1 and Table 9-2.

Stretch Profiles
Exponential Linear

Strike Time / ms Fundamental Rate s’1 Strike Time / ms
20 0.01 20
20 100 50
20 1000 70
45 0.01 90
45 100 110
45 1000
90 0.01
90 100
90 1000

Table 9-1: Overview of the types of stretch profiles and parameters.

Dimensional Parameters
Hencky strain Final Height /mm Initial Height / mm Plate Diameter / mm

1.25 6.98 2 4
1.54 9.34
1.75 11.5

Table 9-2: Shows the dimensional set up parameters
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During the experiments, adhesive failures of the fluid filament at the endplates were 

not detected. This phenomenon is more pronounced with wormlike micelle solution

(Mastrangelo 1993a and 1993b, Crossby et al. 2000 and Rothstein 2003).

Extremely volatile effects causing solidification of paints which were also not 

observed in contrast to the study of polymer solution from Tripathi et al. (2000).

9.2 Determ ination o f surface tension

Filament thinning is the result o f capillary pressure on the thread located between the 

widely separated upper and lower plate. To determine the apparent extensional 

viscosity (see Equation 5.3), it is imperative to know the surface tensions of each 

paint. A Kriiss K8 static surface tensiometer measured the surface tension with a 

platinum Du Notiy ring which was flamed to remove any surface contaminants 

before using it (Shaw 1992). For every tested sample, the average value was 

obtained from 10 measured surface tension values at room temperature of 20° C and 

is listed in the Table 9-3. Clearly, it could be seen that all paints possess a similar 

value of surface tension.

Samples Surface tension mN/m Deviation %

White 34 0.9/-1.5
Green 32 1.6/-1.5
Red 31 1 .1 /-1 . 8

Dark Red 32 1 .6 /- 1 . 8

Table 9-3: Lists the average surface tension values from 10 measurements

Ascanio et al. (2006) provided surface tension data of water based paint ranging from 

18.6 to 23.2 mN/m with a solid content between 52 % and 62% (Ascanio et al 2006). 

In comparison with the solvent based paints listed in Table 9-3, the surface tensions 

are around 50% higher whereas the solid contents are similar to the water based 

paints (see solid content Table 8-1).
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9.3 Possible Effects causing m easurem ent errors

9.3.1 Sagging effects highlighted by the bond number

Bond number, Bo, indicates the degree of influence of gravitational forces on the 

unstretched fluid bridge. A high bond number normally predicts sagging of the 

filament bridge. When the value of Bo is below unity, the shape of the unstretched 

thread is symmetrical due to the low influence of the gravitational effects (McKinley 

and Tripathi 2000). For each paint, the Bo was determined by mathematical
J •calculation using the formula, Bo=pgR^(t)/a; and its value is listed in Table 9-4. 

Unstable filament bridges due to the influence of the gravitational force were 

detected when using 6mm and 8mm plates because of the higher Bond number 

occurred. The use of a smaller sized plate helped to reduce the Bond number and, 

consequently, an improvement in the initial shape of the liquid bridge was 

noticeable.

Samples
3

Density kg / m
Bond Number

4mm 6mm 8mm
White 1330 1.5 3.5 6.2
Green 1180 1.4 3.3 5.8
Red 1170 1.5 3.3 5.9

Dark Red 1300 1 . 6 3.6 6.4

Table 9-4: Variation of Bond number with different plate diameters

Digital images were taken of the filament bridge which was built between 4mm 

plates at the start o f the experiments. Surprisingly, the degree of sagging or slumping 

was smaller despite the fact that Bo >1 which illustrates that the theory is material 

dependent.
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White Green Red Dark Red

Figure 9-1: Digital images of filament bridges at experiment start, using 4mm plates.

A study of liquid bridge stability was carried out by using a liquid bridge in an 

immiscible liquid bath. Yield stress fluids were still able to achieve stable bridge 

conditions when the distance between the plates becomes equal to 2jtr, where r is the 

cylinder radius (Lowry and Steen 1995 , Mahajan et al. 1999). At a stretch position, a 

flow between the two plates can only occur when the capillary pressure overcomes 

the magnitude o f the yield stress (Goldin 1972). In the case of polyester resin based 

paint, the capillary pressure was high enough to cause filament thinning.

9.4 O ccurrence o f instability defects

Whilst testing the samples, interesting instability set up processes during the elasto - 

capillary thinning were revealed by the high speed camera. One of them was the 

evolution of the bulge in the centre of the filaments, which was also noticeable on the 

diameter versus time graph through an increase in the filament diameter in the 

Newtonian region (see section 9.5.1)

Another reason for the diameter increase at the end of the test is the recoiling effect 
which is illustrated in

Figure 9-3. The occurrence of a satellite droplet after filament breaking also leads to 

a diameter increase. Periodic movement o f the filament created a peak in the linear 

region of the filament diameter decay curve, (see section 9.4.4)

At the beginning of the experiment, the diameter was partially axially uniform 

around the midplane of the filament. The effect of a non slip condition on the
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endplates prevents the filament from having constant diameter between two plates 

and causes the hemispherical fluid droplets. This can be seen on all digital images.

9.4.1 Evolution of central bulge

The result below illustrates the effect o f a central bulge akin to a bead on a string 

(Goldin et al 1969, Clasen et al 2006a and b, Wagner et al. 2005). Material was built 

up at the dimensionless filament diameter (D/Do) o f about 0 . 1  mm which occurred 

after around 60ms. Oliveira et al. (2006) used an aqueous solution of high molecular 

weight polyethylene oxide which is a low elastic material with low viscosity. During 

the investigation with this material, a similar phenomenon o f central bulge was 

detected. This defect is influenced by inertia, capillary and viscous forces and can 

only occur for fluids with low viscosity, low elasticity and high aspect ratio (Rodd et 

al. 2004). The occurrence o f central bulge in white paint with a viscosity o f 189mPas 

happened at a final aspect ratio o f 1.75 (see Figure 9-2). Before the central bulge 

could be seen, the filament exponentially decayed from point 1 to point 2 , afterwards 

the diameter started to increase. At point 3 a central bulge, situated just above the 

centre interconnected by long thin fluid ligaments to hemispherical fluid droplets 

attached to the end plates started to build up. Simultaneously, this bulge moved 

downwards until it achieved its maximum value (point 4 in Figure 9-2). Surface 

tension dominates in the spheres where the molecules are relaxed. However, in the 

ligaments or axially uniform thread, the dominant viscoelastic stresses cause an 

extreme stretching in the molecules. A similar observation o f central bulge was made 

with low Newtonian, polymer and inkjet fluids whose Ohnesorge number was below 

1, indicating significant contribution o f inertia (Tuladhar and Mackley 2008). A 

similar result o f an increase o f the midfilament diameter due to development of a 

central bulge has been reported by Rodd e al (2004).
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Figure 9-2 Formation of central bulge during the filament thinning of a viscoelastic fluid (white).

9.4.2 Evolution of recoiling

A clear and long exponential decay can be seen until Point 2, where normally a 

transition phase from elastic capillary thinning decay to viscocapillary thinning 

occurred. However, the decrease of the thread radius over time came in rest for 

around 0.003 s. During this time, a necking process just below the middle centre 

(point 2) o f the filament started until separation of the filament. The upper mass of 

the string was now drawn upwards through the elasticity of the paint. The detector
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recorded an increase o f diameter during the elastic recoiling phase (Point 3) until the 

string began to move outside of the laser beam range. As a consequence, the value of 

the filament diameter started to decrease again (point 4).

,0
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•2
1 0
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Time / s
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Figure 9-3: Video capture of a recoiling leading to a diameter increase at the end of the test

9.4.3 Evolution of satellite drop

The first picture in Figure 9-6 shows an almost axisymmetric filament apart from the 

region near the end plates, which is caused by the no slip condition on the surface of 

the plates. Without any initial sign of instability defects, the exponential decay of the
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filament diameter (point 1) stopped (point 2) after ~ 70 ms. For about 10 ms the 

diameter was unchanged. The thin fluid ligaments which connected the central bulge 

with the hemispherical fluid droplets attached to the end plates started to thin faster 

around the central bulge until its disconnection (point 3). The resulting satellite drop 

of material maintained its position for a fraction o f a second until gravitational force 

overcame the inertial force and the ball moved towards the lower plate (point 4). The 

same phenomenon can also be seen in a very low viscous sample (50% glycerol/ 

50%. Water) in which the inertial and capillary forces act (Tritaatmadja 2006). A 

thorough study with different concentration of PEO in solutions shows that increased 

elastic stress can suppress the formation of satellite drops in a dripping experiment 

(Tritaatmadja 2006). Derived from the finding by Tritaatmadja (2006), the maximum 

elastic stress of the white paint still seems to be low to avoid the formation of 

satellite drop accordingly.

,0
1 0

■2
1 0

0.06 0.08 0.100.00 0.02 0.04
Time / s
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Figure 9-4 a) indicates a defect during the evolution of midfilament, b) provides optically the reason 

for the occurrence of a constant diameter

9.4.4 The effect of oscillatory filament movement

After the upper plate had achieved its final height, a sudden normalised diameter 

drop from 1 mm to around 0.5 mm was recorded within a fraction of a second. 

Furthermore, gravitational drainage becomes important during the opening process, 

noticeable by material accumulation below the midplane of the fluid filament (Kolte 

and Szabo 1999) as seen in Figure 9-5. The bottom mass dragged the upper mass 

downwards (from point 1 to point 2) due to the gravitational force. From point 2, an 

exponential thinning started until inertial capillary oscillations of the filament 

occurred whereby a diameter increase was detected. Shortly afterwards, the 

oscillation movement came to a halt and the filament decay progressed as usual.

164



W  I I I v J I I  I V j  |  I I V_̂  I I W U  I I I  I V^  I I W V / v O O v O

§Q

1 0 °

1 0

■2
1 0

0.00 0.02 0.04 0.06 0.08 0.10
Time / s

Figure 9-5: Shows two phenomena of defects: from step 1 to 2 the midfilament diameter rapidly 

decreases due to the downwards movement of the upper plate. The sudden increase in the filament 

diameter between point 3 and point 4 occurs due to the strongly periodical movement. Afterwards, the 

weakly periodical movements are not detectable by the laser.
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9.5 Repeatability of the filament decays

The optimal operation window was assessed by collection o f a matrix o f data from 

tests in which test material and parameters were varied. To quantify the repeatability, 

filament break up time was used instead o f considering the whole curve o f filament 

decay for the sake o f simplicity. Based on the average filament life time calculated 

from 1 0  runs, the minimum and maximum life time values were converted into 

percentages with Equation 9-3 and entered into Table 9-5.

deviation in %= x j 00% Equation 9 . 3
average break up tune out of 10 runs

Two sets o f raw data results from green paint have been selected to demonstrate 

variations in repeatability as a function o f experimental parameters. Using a linear 

opening time of 110 ms as an example for bad repeatability (see Figure 9-6 a), the 

calculated deviations were +14.8 % and-11.5 %  reflecting widely scattered break up 

points within a time scale ranging from 0.062 ms and 0.082 ms. A much better 

repeatability can be seen in Figure 9-6 b. which has a deviation o f +/- 2.2. The 

degrees o f repeatability in percentages for all used Hencky strain and stretch profiles 

are presented in Table 9-5. Areas coloured green were chosen to mark any deviation 

below +/- 3%, orange indicates a deviation o f below +/- 5%, repeatability above +/- 

5 %  is marked as red. The table with the results obtained with a Hencky strain o f 1.75 

are chiefly coloured red which indicates that high variations were common for these 

experimental procedures. The best mutual agreements were obtained by a linear 

stretch profile with an opening time o f 20ms. However, the recorded filament decay 

with the high speed camera divulged that the plate massively overshoots the final 

height and introduced an unwanted effect. Figure 9-7 and Figure 9-8 illustrate the 

overshoot in a sequence o f pictures. To avoid this extreme effect, the linear profile 

with an opening time of 50 ms seemed to be the best alternative. The effect o f  

gravitation is more pronounced at higher opening time and higher Hencky strains 

which may be the reason for the higher deviations. A filament break up before the 

upper end plate reaches its final position occurred under the test condition with a 

Hencky strain o f 1.75 and opening time 90 ms or 110 ms for some samples.
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a) Green linear opening time of 110ms b) Green linear opening time of 20ms

Figure 9-6: Evolution of filament decay of green paint under two different test conditions. The first 

graph a) shows a wide scattering of data points in the range from +14.8 % to -11.5 % (linear strike 

profile with an opening time of 110 ms) and the second graph b) a narrow scattering of data points in 

the range of +1-2.2% (linear opening time with a opening time of 20 ms). Solid lines correspond to an 

average fit of 10 runs.

Hencky strain 1.25
White Green Dark Red Red

Stretch Profile max. / % min. / % max. / % min. / % max. / % min./% max. / % min. /%
Exp. F=100, S=45 2.3 -1 .9 5.4 -6.9 4.8 -3.9 4.7 -4.4
Exp. F=100, S=90 7.9 -7.7 9.1 -9.9 9.2 -10.9 7.4 -6.9
Exp. F=1000, S=90 4.7 -4.3 7.8 -8.0 5.4 -6.2 4.5 -5.3

L20 3.8 -5.4 5.6 -8.1 4.4 -4.3 5.6 -3.7
L50 4.3 -4.3 6.7 -6.4 3.7 -3.6 5.3 -5.6
L70 5.6 -6.9 6.8 -6.0 3.3 -3.9 2.8 -2.4
L90 3.8 -2.8 10.3 -9.6 3.2 -4.7 3.8 -2.5
L110 19.5 -17.1 8.5 -6.6 3.6 -5.1 1.8 -3.3

a)
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Hencky strain 1.54
White Green Dark Red Red

Stretch Profile max. / % min. / % max. / % min. / % max / % min. /% max. / % min. /%
Exp. F=100, S=45 1.9 -2.2 4.2 -3.5 4.6 -6.7 4.7 -3.9
Exp. F=1000, S=45 6.5 -5.8 4.6 -4.1 9.2 -9.5 2.4 -3.9
Exp. F=1000, S=20 6.6 -4.9 3.1 -2.9 3.1 -3.0 1.8 -2.2
Exp. F=100,S=20 3.3 -5.6 2.9 -2.6 3.7 -4.0 2.1 -2.5
Exp. F=100, S=90 9.4 -13.2 4.4 -5.7 5.0 -5.1 10.5 -11.9
Exp. F=1000, S=90 2.7 -2.5 2.9 -1.5 3.9 -3.4 2.1 -2.4
Exp. F=0.01, S=90 12.2 -9.1 4.4 -6.2 4.8 -5.4 6.0 -8.3
Exp. F=0.01,S=45 2.8 -2.8 3.6 -4.4 4.5 -6.3 1.9 -2.4
Exp. F=0.01, S=20 5.5 -4.8 3.7 -2.9 14.2 -17.1 1.4 -2.1

Un. S=20 3.3 -2.6 2.3 -2.2 3.6 -4.1 2.3 -2.5
Un. S=50 4.4 -4.1 4.0 -3.2 3.8 -2.6 3.3 -3.7
Un. S=70 4.5 -5.5 8.5 -7.0 3.0 -3.2 11.1 -7.8
Un. S=90 7.4 -7.5 6.3 -6.3 4.1 -5.2 8.5 -8.5
Un. S=110 6.1 -8.5 14.8 -11.5 9.0 -7.5 11.9 -16.1

b)
Hencky strain 1.75

White Green Dark Red Red
Stretch Profile max. / % min. / % max. / % min. / % max / % min. / % max. / % min. /%
Exp. F=100, S=45 10.2 -11.5 6.6 -6.3 6.5 -7.7 4.6 -7.7
Exp. F=100, S=90 7.9 -10.1 24.1 -13.1 16.0 -14.9 8.3 -12.1
Exp. F=1000, S=90 4.4 -5.3 4.8 -5.2 4.6 -5.0 7.9 -6.6

L20 2.6 -2.6 4.4 -6.4 2.8 -3.9 10.9 -9.4
L50 5.6 -6.7 5.5 -6.9 12.0 -10.8 12.5 -12.1
L70 5.2 -5.2 4.8 -8.1 36.5 -21.5 8.7 -11.7
L90 12.1 -13.5 19.1 -11.7 49.1 -50.3 4.5 -5.1
L110 2083.4 -950.6 32.5 -32.1 46.8 -43.5 9.4 -8.8

c)

Table 9-5: Deviation values in % for each set of run, a) using Hencky strain of 1.25 b) using Hencky 
strain of 1.54 and c) using Hencky strain of 1.75; (F= fundamental rate in 1/s , S = strike time in ms 
and L = linear profile)
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9.6 The effect o f overshoot

While analysing the data o f the digital images and videos, an artefact was noticed. 

The upper plate moves upwards and did not stop in the correct location. Eventually, 

the plate rebounds to its corrected location. This bouncing effect manipulates the true 

results and therefore cannot be used for further investigation. Two sets o f sequences 

of pictures demonstrate the overshoots that occurred at an exponential stretch profile 

with a fundamental rate of 100 s '1 and opening time of 90 ms (Figure 9-7) and 

exponential stretch profile with opening time of 20 ms.

Figure 9-7: Digital images of the overshoot of the upper plate in a CaBER experiment with an 

exponential stretch profiles using fundamental rate 100 s '1 and opening time of 90ms. The target 

height throughout the sequence of the picture is marked with the red dotted line.
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Figure 9-8: A sequence of digital images that captures an overshoot of the upper plate in a CaBER 

experiment with a exponential stretch profile using an opening time of 20ms. The final height 

throughout the sequence of the pictures is marked with the red dotted line.

9.7 Results

9.7.1 Data of evolution of midfilament diameter

A linear strike profile was employed with various opening times, St, ranging from 20 

to 110 ms to understand its effect. The sample was stretched from the initial height o f 

2 mm to the final height of 9.34 mm corresponding to a Hencky strain of 1.54. The 

evolutions o f midfilament diameter from different paint samples are plotted by 

normalised diameter versus time graphs (see Figure 9-9 a to d) including the elastic 

and Papageorgiou fits.

The rapid initial viscous dominated phase was absent from all tested material at the 

start o f measuring. Each paint starts with the exponential filament thinning obeying 

Rmid(t)=Ri exp (-t/3A,c) (kc = characteristic relaxation) at an intermediate time scale 

which can been seen in Figure 9-9. During this time scale, the drainage is controlled 

by a local force balance between surface tension and elasticity. It was not possible to 

obtain the longest relaxation time, A/, from oscillatory experiments and therefore a 

comparison with the characteristic relaxation, Xc, was not possible. A comparison of 

these two fluid parameters has been done with PIB/PB Boger fluid showing that Xc is 

similar to Xi by Kolte and Szabo (1999). The amount of discrepancy between the
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values o f X c and X i  indicates the degree o f radial inhomogeneity in the stretched 

material (Kolte and Szabo 1999). Liang and Mackley (1994) used polyisobutylene 

solutions and found out that the relaxation time X c was nearly three times higher than 

the longest relaxation time X \ .  In this case, it was not possible to apply the concept o f 

Kolten and Szabo (1999) because o f the unknown data o f longest relaxation time.

A clear and fast crossover from elastic to viscous stress which tries to counteract the 

capillary stress driving the flow is shown in Figure 9-9. Interestingly, the time scale 

of the exponential filament decays increases with decreasing opening time for all 

paints. This implies that it takes longer to achieve the finite extension limits o f the 

polymers. Accordingly, the magnitude o f characteristic relaxation time increases. An 

almost pure, viscous capillary behaviour always occurs at an opening time o f 1 1 0 ms 

after stretching. This implies that the finite extension limit is achieved before the 

measurement begins. Unsurprisingly, the lifetime o f a filament strongly depends on 

the opening time. The following statement can be made without any doubt: the 

longer the opening time the shorter is the lifetime. A possible explanation for this 

phenomenon is that the longer opening time allows gravitational force to act longer 

on the sample filament before the actual measurement starts.

Dark red paint possesses the highest yield stress among the samples, reflected in the 

longest lifetime. Quite the contrary was observed for red paint without a yield stress, 

its lifetime being the shortest (see Figure 9-11). The build up o f capillary pressure 

o/Rmin to exceed the yield stress might take longer and might explain this outcome. 

In the step rate test experiment, it was detected that the red paint does not have any 

elasticity which normally extends the life time. However the dark red paint possesses 

the highest elasticity which can be confirmed with the outcome o f the step strain 

experiments (see Figure 8-15).
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Figure 9-9: Comparison of transient midfilament diameter curves as a function of time for a) dark red,

b) red, c) white and d) green paints for linear opening times of (□ ) 20, (O) 50, (A ) 70, ( V  ) 90 and 

(0 ) 110 ms. Papageorgiou and elastic fits are represented by black and blue lines respectively

Data for each single filament decay curve were analysed by fitting with the 

Papageorgiou model to obtain extensional viscosities. The average value of 

extensional viscosity was determined from the average filament decay curve 

calculated from 10 single runs. Eventually, a graph could be created with the derived 

extensional viscosity as a function of opening time (Figure 9-14). At a first glance, it 

is noticeable that the repeatability becomes worse at higher Hencky strains. Due to 

filament breakage before the end plate achieved its end position, some experiments 

were invalid, highlighted by missing data points at a Hencky strain of 1.75 (see 

Figure 9-14 b, Figure 9-14 c and Figure 9-14 d). This implies that the elastic time 

and viscous time scale were shorter than the opening time scale for this condition. In 

Table 9-6, the viscosity ranges are listed from measurements which were undertaken 

with Hencky strains o f 1.25, 1.54 and 1.75 and strike times of 20, 50, 70, 90 and
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110ms. The well performing red paint possesses the lowest apparent extensional 

viscosity, followed by white, green and then dark red.

Paint Extensional
Sample Viscosity Pas
White 1.05-1.75
Green 1.2-1.75
Red 0.75-1.25

Dark Red 2.5-2.75

Table 9-6: Range of viscosities from polyester paints

9.7.2 Comparing data obtained with the linear profile and opening time of 
50ms

For comparison purposes for each paint, the linear stretch profile with an opening 

time of 50 ms was used. The deviation of each test has been made visible by using 

error bars. The extracted information from the various paints was compared in terms 

of extensional viscosity versus opening time (for Hencky strains 1.25. 1.54 and 1.75), 

filament life time versus opening time and normalised diameter versus time. 

Filament life time versus opening time was plotted in Figure 9-10. Dark red paint has 

consistently the highest life time over all measurements whereas the shortest life time 

was exhibited by the red paint. The maximum life time of the dark red paint occurred 

at a linear opening time of 20 ms and was 0.208s whilst the shortest life time of the 

red paint was 0.0143s occurring under a linear opening time of 110 ms. A linear 

decrease in filament life time was observed with increased opening time. This linear 

behaviour might be able to be controlled by the initial opening condition.
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Figure 9-10: Linear fits to the filament data of lifetime versus strike time: ( ) dark red, (O) green, 

(A ) red, ( V  ) white paints; Hencky strain 1.54

A simple linear regression was fitted to the data providing slope and an intercept 

point. The following relationship between filament break up time and opening time 

could be found.

Samples Linear Regression Fit R2 value

White =-0.000640881 lx  +0.100509918 0.98
Green =-0.0007650492x+0.1301893443 0.98
Red =-0.0007545902x+0.0965723112 1 . 0 0

Dark Red =-0.0008301148x+0.2276518033 0.98

Table 9-7: Statistical data relating to linear fits to filament lifetime versus opening time plots

9.7.3 Diameter versus time

The evolution o f midfilament diameter of all paints used is illustrated with a Hencky 

strain o f 1.54 in Figure 9-11 and the sequence o f digital images during the evolution 

of filament thinning can be seen in Figure 9-12. The red paint that exhibits
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Newtonian behaviour when it is subjected to shear underwent a more rapid filament 

breakup than the non-Newtonian fluid. One o f the reasons for the shorter life time 

may be due to the low polymer concentration in the paint. Normally, the lifetime of a 

filament increases with higher polymer concentration (Kheirandish et al. 2008). The 

capillary velocity, v = a/no, decreases with increased life time. In this respect, the 

red paint with the shortest life time thins with the fastest capillary speed of 0.094 

m/s, the white paint with 0.072 m/s, green paint with 0.065 m/s and the lowest 

capillary velocity occurs at dark red paint 0.037 m/s. Furthermore, the dark red paint 

possesses the longest time scale in the elastic capillary region (see Table 9-8 ).

Figure 9-13 illustrates the evolution of extensional rate over time. For the dark red 

paint the extensional rate slowly increases until 0.17s after which the gradient of the 

extensional rate grows rapidly. Whereas for red paint, the gradient is steep from the 

beginning.

,0
1 0

1 0

-2
1 0

0.0 0.20.1

Time / s

Figure 9-11: Evolution of filament diameter at a Hencky strain of 1.54 with a linear opening time of 

50 ms. The symbols , A , V , O, □ represent the red, white, green and dark red paints.
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To 1/3 Tc -2/3 Tc Tc

Figure 9-12: Sequence of digital images during the evolution of filament thinning.
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Figure 9-13: Illustrating the different extensional strain rates as a function of time for each paint. The 

symbols , A , , O, □ represent the red, white, green and dark red paints.

9.7.4 Extensional viscosity versus opening time

An opening time dependency o f extensional viscosity could not be detected during 

the experiments. Error bars indicate the range of deviation that occurs within a single 

experiment procedure. From the error bars, it can be seen that the repeatability of the 

whole data set worsened at higher the Hencky strains due to the occurrences of flow 

instability. Some filament decays could not be monitored at Hencky strain of 1.75 

and higher opening time (depending on the samples) because filament break up 

occurs before the end plate achieved its final height.
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Figure 9-14: Graphs for extensional viscosity versus strike time for a) dark red, b) red, c) white and d) 

green paint
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In Figure 9-15, the extensional viscosity is plotted for various strike times. The dark 

red paint has the highest viscosity of around 2.6 Pas and red paint the lowest 

viscosity o f approximate 1.05 Pas. Use of error bars demonstrates the degree of 

repeatability of the outcome. The extensional viscosities of the paints in decreasing 

order are dark red (2.6 Pas), green (1.5 Pas) white (1.4 Pas) and red (1.05 Pas) at 

Hencky strain of 1.54 and opening time of 50ms.

20 40 60 80 100 120

c/j 303
CL,

•t—>

c3Co
33c<u
x

20 40 60 80 100 120

Strike time / ms Strike time / ms

Figure 9-15: Extensional viscosity at various strike time for red (A), white(V), green (O), dark 

red(a) paints.

9.7.5 Evaluation of dimensional number

Sufficient viscous stress is needed to stabilise the thread during the filament decay 

which can be related to the Ohnesorgen Number (Oh) (see Equation 5.11). A highly 

viscous fluid will be defined when Oh > 1, whose values were calculated for all 

paints listed in Table 9-8. The Oh number of the white paint is below 1 indicating for 

a low viscous fluid. Digital pictures show also an additional evidence of the stability 

of the thread for the paints which has Oh < 1. Since the red paint possesses the 

lowest relaxation time, X, and the lowest surface tension among the samples, 

consequently the Deborah number (see equation 5.14) is also the lowest whereas the
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dark red paint has the highest. The Weissenberg number is 2/3 in the relaxation scale

(Entov and Hinch 1997) (see section 5.4.2).

White Green Red Dark Red
3

Density, p  / kg m’ 1332 1181 1172 1299
Surface tension, o / N m"1 0.034 0.032 0.031 0.032
Viscosity, rf 1 Pa s 0.24 0.32 0.34 0.42
Length scale, r / m 0.002 0.002 0.002 0.002
2 / s 0.017 0.023 0.014 0.045
Wi = A£ 2/3 2/3 2/3 2/3
De = \  /V(pr3 / a) 0.96 1.34 0.81 2.50
Oh =T| / /V(pro) 0.8 1.2 1.3 1.5

Table 9-8: Dimensionless numbers, material properties and values obtained by the model fits for the 

paints

9.8 Conclusion

Caber is a useful device to characterise paint in terms of extensional viscosity and 

elastic components quantified with relaxation time. However, care must be taken 

when interpreting the data because there are plenty of unwanted effects which can 

distort the results. A very good approach is to use the filament life time for 

comparing the repeatability. Despite the good reproducibility from an exponential 

profile with the fundamental rate of 1000 s '1 and strike time of 90ms, it is not ideal 

because o f the dynamic process imposed by the instrument.

The best condition in consideration of the overshoot seems to be the linear strike

profile with an opening time of 50 ms because exponential strike profiles are more

prone to overshoot. Interestingly, the filament life time was linearly dependent on the

opening time. The dark red paint possessed a pronounced yield stress and the highest

infinite shear viscosity, it has the highest filament life time and relaxation time. The

fastest filament decay was detected at the Newtonian red paint which has the lowest

infinite shear viscosity, furthermore, the extensional viscosity of dark red is 2.5 times

higher than the red and this may be the reason for the different production

performances within the coil coating process. The higher extensional viscosity might

not allow levelling out of the paint in a short time. As a consequence, the line speed
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compared to the red paint’s line speed is reduced by 10.4% to increase the travel time 

from application roll to the curing oven.

The detection o f instability defects during the filament break up experiments at a 

specific set up parameter might relates to paint defects such as misting /spatter 

defect. It would be interesting to discover a possible correlation between instability 

defects and the paint defects.
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10 Experimental Outcome of the Capillary Extrusion Rheometer

10.1 Aim of the experiments

The main focus of this study was to obtain reproducible extensional Theological 

parameters from a commercial paint using the capillary extrusion rheometer. In our 

case, the dark red paint was chosen and because o f its apparent yield behaviour, an 

interesting result was expected. A twin bore capillary extrusion rheometer was 

employed to measure the pressure in the barrel which was finally used to extract the 

extensional viscosity under the consideration o f Bagley and Rabinowitsch 

corrections.

10.2 Experimental protocol

A pressure transducer made by Dynisco was subject to calibration before 

commencing the experiments. The calibration instrument from Fisher consisted o f  

weight disc, weight holder, transducer and voltage meter as illustrated in Figure 10-1. 

The weight holder and the transducer were directly connected to the instrument. By 

placing additional weights on the weight holder the inner pressure within the fluid 

board linearly increased accordingly to a known value. The transducer detected the 

increased pressure which was converted into a voltage that was displayed on the 

voltage reader. This value was compared to the nominal value and, if  needed, the 

transducer was calibrated to the accurate value.
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Figure 10-1: Calibration instruments and their accessories

10.3 Principle o f capillary rheom eter

The capillary rheometer (DRRheology P9000) was employed to study the 

extensional flow behaviour in a contraction flow. It is equipped with twin bore 

barrels whose inner diameter of 15 mm and a length of 210 mm allow approximately 

350 ml of material in total to be extruded through two different die sizes during a 

single run. A piston pressed the sample confined in the bore through a die with speed 

controlled by digital motor driver. The occurrence of any pressure loses due to 

leakage was eliminated by fitting a high pressure seal (viton rubber o -  ring, able to 

withstand the corrosive nature of some of the paint formulations) on the piston to
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close the gap around the interface between transducer and bore. As a consequence o f  

the high rate o f wear and tear that occurred on the o - ring, it was crucial to regularly 

replace the pressure seal to avoid any “noise effects”, in particular, pressure drop 

caused by leakage.

The magnitude of the pressure occurring in the bore dictates the type o f pressure 

transducer selected and that transducer was located just above the orifice via the 

small hole o f 8  mm bored in the reservoir. Initially, a number o f various melt 

pressure transducers from the Dynisco with an output o f 3.33mV/m were employed 

to measure the pressure generated in the bore. The three pressure transducers used 

were capable o f measuring pressures in the range o f 0 - 50 psi (3.45 bar / 0.35 MPa), 

0 - 500 psi (34.5 bar / 3.45MPa) and 0 - 1500 psi (103.42 bar / 10.3 MPa) and were 

connected to a PC which recorded the pressure drop. As a precaution, the initial test 

sequence was performed with the highest pressure transducer ranging from 0  psi to 

1500 psi (103.42 bar / 10.3 MPa) to avoid damaging the sensor in the case that high 

pressure occurred. However, the drawback for using this type o f transducer was its 

insufficient sensitivity at lower pressures, which also occurred during this 

experiment. At the end, only two pressure transducers which covered the range o f 0 - 

50 psi (3.45 bar / 0.35 MPa) and 0 - 500 psi (34.5 bar /  3.45MPa) were deemed 

sufficient to measure the data. Using a relative large membrane diameter o f 8 mm 

provides the ability to measure low pressure. Repeatability o f a data set could be 

achieved with fresh samples.

10.4 Pressure flow rate accuracy

The quality o f the results strongly depends on accuracy and choice o f the pressure 

transducer used. The first pressure transducer used for measuring low pressure up to 

3.45 bar had an accuracy o f ± 0.125% and the second could measure pressure up to

34.5 bar with a tolerance o f ± 1.25%. Both transducers may be adversely affected by 

viscous dissipation around the membrane which leads to an incorrect measurement of 

pressures. Therefore, a heat exchanger was integrated into the capillary extrusion 

rheometer to control the temperature and consequently, minimise the effect o f the 

viscous dissipation.
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Vortex enhancement and pressure drop due to viscoelasticity were detected at Boger 

fluid which flowed through an axisymmetric contraction (Nigen 2002). In this case, 

the occurrence o f the vortex cannot be excluded from the experiments with the fluid 

o f interest since Non-Newtonian fluids are prone to vortex development (Miinsted et. 

al. 2001) (see section 6.13). Currently, there is no research about the absence o f 

vortices in polyester resin based paints.

10.5 Experimental Method

A strict set o f test procedures were followed to ensure that the initial conditions were 

kept constant which provided a good repeatability and accuracy o f the data. 

Whenever the bore were filled with the sample, it was necessary to avoid or 

minimise air entrapment, which was achieved by using a syringe. All samples were 

kept within a heat exchanger at a constant temperature of 20°C. Under this 

isothermal condition, the viscous heating effect is minimised and does not affect the 

mobile systems. Different die set ups were used to obtain different pressure drops 

and also to detect any possible slip effects. The chosen lengths o f the die for these 

experiments utilised the findings o f Sunder and Goettfert (2001) who advised the use 

of die lengths that are not so close together to avoid the accumulation o f measured 

errors. The longest dies of 50 mm and 47mm were chosen to allow high pressures to 

be obtained within the sample.

The danger o f compression effects as mentioned by Sunder and Goettfert (2001) (see 

section 6.6.1 for more explanation) with LDPE is not given in our case since the 

paint has a more characteristic liquid behaviour (low viscosity). For a high viscous 

material PP, Sunder and Goettfert (2001) used an L/D ratio o f 30 and could not 

detect any compression effect.

The dimensions o f dies used for this research are listed in Table 10-1 resulting in 

contraction ratios o f 15:1 and 30:1 and L/D ratios between 5 and 100. Due to 

experimental limitations, in relation to amount of sample in the bore, the range o f  

piston speed from 0.417 mm/min to 333.346 mm/min could not be used in a single 

experiment. Consequently, a whole bore filling was needed to obtain 2 or 4 data
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points at higher piston speeds. Before measuring the actual data, the sample 

underwent a pre-run to provide the same starting condition for all experiments. In 

this case, a piston speed of 0.417 mm/min (corresponding to a shear rate of 12.5 s_l ,

for a die diameter of 1mm or 100 s '1 for a die diameter of 0.5mm, where y =1 tiR

was sufficient to eliminate the loading and pre shear history resulting in good 

repeatability o f the data. Different pressure transducers were employed to cover a 

wide range o f pressure drops, which occurred during these experiments.

Die systems
Length / mm hole diameter / mm

5 0.5
20 0.5
50 0.5
5 1

20 1
47 1

Table 10-1: Provides an overview of all dies used

Turbulent flows with Reynolds numbers (Re = p*v«d/r|oo) higher than 100 would 

additionally affect the resulting pressure drop. As a result o f the additional effect,
• 9further correction is needed with the formula (APcorr=AP-0.5pv ) (Ascanio et al. 

2002). In this case, the Reynolds numbers ranges from 0.014 to 7 which are very 

low, therefore, the pressure drop correction due to the absence o f turbulent flow was 

not necessary. Low Reynolds numbers indicated that viscous force dominates the 

inertial flow in the contraction flow. Generally speaking, the flow could be 

considered laminar, incompressible and axisymmetric.
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10.6 Results

10.6.1 Pressure versus speed

The software from the extrusion rheometer usually supports data collection of the 

pressure drop measured with the pressure transducer positioned just above the 

entrance. Several runs were undertaken to determine the repeatability o f the results 

with different die diameters and lengths. Each data point was measured under 

equilibrium conditions, indicated by the constant pressure in the barrel at the constant 

flow speed. The results o f the raw data illustrated in Figure 10-2 showed an excellent 

repeatability and encouraged an analysis of the values. More confidence was 

provided due to the fact that the pressure increased with increased die length and 

smaller die diameter. Data around the dotted line coloured with red occurred at die 

lengths o f 47 mm (1 mm die diameter) or 50mm (0.5 mm die diameter), blue at 

20mm and green at 5mm.

03
CU

,0
1 0

..jQf
1 0

•2
1 0

10 1 0 0

Speed / mm/min

a) dark red, diameter 0.5 mm
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Figure 10-2: Illustrates the raw data in a pressure versus speed plot, a) red mark data obtained by 

using a die with a diameter of 0.5 mm and a die lengths of 50 mm (red: A= I. run, V  2. run, O 

3. run, □ = 4. run and D> = 5. run), 20 mm (blue: A = 1. run, V = 2. run, 0 = 3 .  run, □ = 4. run and t> 
= 5. run) and 5mm (green: A  I. run, \  4. run and t> 5. run) b) Data

points around the red dotted line were obtained with a constant diameter of 1mm and a die length of 

47mm (red: A = 1. run, V  = 2. run, 0 = 3 .  run, □ = 4. run and l> = 5. run), 20 mm (blue: A = 1. run, 

V  = 2. run, 0 = 3 .  run, □ = 4. run and D> = 5. run) and 5mm (green: A= 1. Run. \

3. Run, □ 4. Run and [> 5. run).

The mathematical linear relationships between pressure and speed for the dark red 

paint are listed in Table 10-2. Very good agreements between the linear fits and raw 

data were attained throughout the whole data set with a tolerance below ±10%. At 

lower pressure, the degree of scattering is more visible due to the fact that the lower 

measurement limit of the transducer is reached and also any noise had a higher 

impact at the lower pressure.
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Die Sizes Linear regression fit R2
Diameter / mm Lenght / mm

0.5 5 y = 0 .00429x+0.039 0.998
0.5 20 y = 0 .00836x+0.0884 0.996
0.5 50 y = 0.017 9 6 x + 0.05226 0.998
1 5 y = 0.00041x+0.01287 0.993
1 20 y = 0.00101x+ 0.0386 0.997
1 47 y = 0.00198x+ 0.05064 0.996

Table 10-2: Results of the linear regression fits on the relationship of pressure versus speed and the 

degree of accuracy.

10.6.2 Bagley correction

The design concept of Bagley (1957) was used to determine the Pe. To obtain the Pe, 

the resulting raw pressures were plotted against L (where D was kept constant) as 

illustrated in Figure 10-3 followed by extrapolation to the pressure axis (L = 0) 

whose intersection value gives the entrance pressure drop Pe at zero length die. This 

entrance pressure drop was subtracted from the total raw pressure drop measured by 

the transducer. The entire data set is listed in the Table 10-3. At this point, it is worth 

mentioning that the influence of the vortex on the pressure drop cannot be ruled out 

during this analysis, which normally increased the magnitude of the entrance 

pressure drop.
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Figure 10-3: End pressure corrections of dark red paint through a Bagley plot for a different 

volumetric flow and for a capillary die with a diameter of 0.5mm and 1mm whose entrance angle was 

180 ° at a temperature of 20°C. Linear regression analysis of data delivered straight lines with R2 of 

0.99 for all curves
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For the dark red paint, the Bagley curve obtained with different volumetric flow rates 

and various lengths to diameter ratios seemed to be almost linear over the entire 

range which indicated that the pressure has minimum or no effect on the viscosity of 

paint (see Figure 10-3). A non linear upward curve is the result o f a pressure 

dependence of viscosity (Laun 1983, Laun and Schuch 1989). The effect of viscous 

heating is suppressed by the use of the temperature controlled device and the absence 

o f a concave Bagley plot provides evidence that this effect is eliminated 

(Hatzikiriakos and Dealy 1992).

Dark Red
D= 0.5mm D= 1mm

Pe / kPa Q / mmVs Pe / kPa Q / mm Vs

518.4 613.6 85.7 981.3
357.1 368 52.8 687
151.18 116.4 32.9 449.7
37.8 36.8 20.5 294.4

6.4 98.1

Table 10-3: Values of Pe extracted from Bagley plot used for wall stress calculation.

So far, all this data processing has been necessary to calculate the shear stress, ctw = 

(P-Pe) R / 2L in the capillary die. According to Han (1976), the Bagley end 

correction factor (in this case Pe) will increase with increased shear rate; the dark red 

paint follows this trend.

10.6.3 Shear stress versus shear rate average

In a flow curve plotted as stress versus strain rate, the occurrence of slip effect can be 

simply detected through comparing the data obtained with different die diameters. In 

the absence of slip, a good agreement between data exists whereas slip effects cause 

a lack of correlation between the data. A good example of slip and no slip effect
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within one flow curve is given for low density polyethylenes where slip starts above 

a critical stress of 0.09MPa (Hatzikiriakos 1994).

Figure 10-4 displays the flow curve of shear stress versus shear rate for dark red 

paint with different diameters. A linear increase o f shear stress with increased shear 

rate can be seen at a constant temperature. Interestingly, all data (after Bagley 

correction) seemed to agree over a wide range of shear rates. This implies that a slip 

correction was not needed for red dark paint. In contrast to this study, the ink 

samples used by Willenbacher (1997) developed slip condition during the 

experiments, which caused a reduction in runnability performance. As expected, 

there are no upstream instabilities, also named melt fraction, at higher shear rate 

which was reported with high density polyethylenes since there is no change in the 

slope of the stress -  shear rate curve at high shear rate (Hatzikiriakos and Dealy 

1992).

20000

15000

Q_

£ 10000

10000 20000 30000 40000 50000 600000

Shear rate / s

Figure 10-4: Flow curve of dark red paint at 20°C after stress correction. Dark red paint was extruded 

through dies with O  5x 0.5, □ 20 x 0.5, t> 50 x 0.5, O 5x1, 20 xl and A 47 x l. The result

indicates a no slip boundary since nearly all the data from the same diameter and different lengths 

agree with each other.
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10.6.4 Determination of shear viscosity and extensional viscosity

Before the shear viscosity can be determined, the shear rate needs to undergo the 

Weissenberg Rabinowitsch correction (see equation 6.10) to consider the actual plug 

like fluid behaviour. As can be seen from equation 6.10, ns needs to be calculated 

from the equation 6.11. Table 10-4 provides the results o f these calculations.

Die Diameter 0.5mm

Q [mm3/s] Log (cw) L o g (Y a ) Hs

36.8 6.82 8 . 0 1 0.85
116.4 7.98 9.16 0.87
368 9.14 10.31 0.89

613.6 9.67 1 0 . 8 0.89

a)

Die Diameter 1 mm

Q [mm3/s] Log (aw) Log(ya) Us
98.13 5.78 6.91 0.84

294.45 6.87 8 . 0 1 0 . 8 6

449.45 7.29 8.43 0.87
687.04 7.69 8.85 0.87
981.29 8.04 9.21 0.87

b)

Table 10-4: Lists o f a, for each volumetric flow, a) for a die diameter of 0.5mm and b) for a die 

diameter of 1mm

For the determination o f extensional viscosity, the Cogswell model has been chosen

for simplicity. The temperature was kept constant so that assumption 1 in section

6.11 was fulfilled. Furthermore, pressure dependence could not be detected and there

is no slip effect, therefore, assumptions 4 and 5 were also fulfilled. The Reynolds

number is below 8  and therefore the inertial effect can be neglected. Assumption 7
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cannot be confirmed since it is not known whether the flow in the converging region 

is fully developed. However, at this stage, it was considered that a fully developed 

flow existed. In order to calculate the extension viscosity according to Cogswell, the 

equations 6.15, 6.16, 6.17 and 6.18 are needed. The outcome is illustrated in Figure 

10-5. The last data point may indicate an extensional thinning behaviour or a 

measurement error which needs to be investigated in the next project phase. The 

shear viscosity seems to be constant over a very high shear rate 

(K fV 1 <y < 504s' ')  and has a value o f 0.3 Pas.
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Figure 10-5: Shear and extensional viscosity functions of the commercial paint (dark red) with the 

capillary extrusion rheometer: true shear viscosity ( 1mm ,0 0.5mm ) and extensional viscosity (O  

0.5mm, 1 mm) after using Bagley and Rabinowitsch corrections versus shear rate

10.7 Conclusion for the capillary extrusion rheom eter

The extrusion capillary rheometer provided an additional source of information of

rheological features for commercial dark red paint. As expected, the pressure

increased with increased piston speed. The full linear Bagley plot over a wide range

suggests the absence of pressure dependence of viscosity or viscous heating. As a

result, an action of correcting the data was not needed. The absence of slip effects
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was a surprise for a high flocculated structure system, however, slip effects did not 

occur during rotational experiments and therefore supports the credibility o f the 

results gained by the extrusion capillary rheometer. Overall, more commercial paints 

need to be tested to allow a comprehensive understanding o f the flow behaviour in 

such a contraction device. A comparison with the red paint is not possible at this 

stage. Therefore the effect o f the weight solid content, pigment to binder ratio and 

the types o f pigments on the capillary extrusion flow cannot be related.
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11 Conclusion

The work presented in this thesis has contributed to the knowledge enhancement o f  

commercial mobile systems through rheological characterisation with particular 

emphasis on those used in the coil coating process. Various rheometers such as 

rotational (see chapter 8 ), capillary break up (see chapter 9) and capillary extrusion 

rheometer (see chapter 1 0 ) were employed to obtain a thorough understanding o f the 

flow behaviours.

Some interesting and very detailed outcomes o f experiments on polyester based paint 

pigmented with titanium dioxide (Ti0 2 ) are presented in Chapter 8  and highlight the 

repeatability o f the rheological data produced. Creep experiments highlighted that the 

main cause for the lack o f repeatability in results is primarily due to shear history. 

Using a test procedure with an adequate magnitude of pre-shearing provided a good 

agreement between the flow curves obtained from a stress controlled and a 

deformation controlled rheometer. These findings were used and applied to perform 

experiments on additional samples such as dark red, red and green paints. Despite the 

fact that all the paints had the identical resin content, their rheological properties 

seemed to differ. Green, dark red and white paints possess high structures within the 

mobile fluid, recognisable through the overshoot in a response to a sudden applied 

shear rate and subsequent shear thinning. Additionally, apparent yield stress and 

thixotropy were detected on these samples. Also the duration of the structure 

breakage until equilibrium was provided with this type o f experiments. It showed 

that dark red paint is more resistant to structure breakage when compared to the other 

paints. A possible conclusion can be made by stating that the defects occurred in the 

nip might have been caused by the resistance to the structure breakage leading to a 

higher flow resistance within the nip. The contrast could not be greater with the red 

paint, which exhibited Newtonian behaviour and did not show any elasticity. 

Apparently, the red paint appears to have the best coating performance although this 

statement requires more evidence by comparing the process parameters with the 

rheological data. By the current knowledge, the coil coating line speed difference 

between red paint and dark red paint is 10.4%. The reason for the reduction in the 

line speed may be needed to allow the levelling out process more time. By only 

comparing the pigment to binder ratio (see Table 7-1), the binder might dictate the
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degree o f  resistance for structure breakage and line speed performance accordingly. 

Another factor which might play a role is the usage of iron oxide alpha pigment 

instead o f chromium titanium yellow.

In Chapter 9, the systematic approach that was used to obtain an ideal operation 

window for CaBER when used with polyester resin based paints is presented. To the 

author’s knowledge, work o f this kind has not been published elsewhere. During the 

experimental work, a video camera was used to capture the effect o f an undesired 

machine dynamic causing an overshoot of the moving plate beyond the defined 

separation height. This phenomenon presented itself with a test set up consisting o f a 

separation time o f 20ms. To eliminate the influence of the machine dynamic on the 

outcome, the opening time needed to be increased, thus, all experiments were carried 

out with an optimal opening time of 50ms. As a result, the shortest filament life time 

occurred for the Newtonian red paint which has the lowest infinite shear viscosity. In 

contrast, the yield stress for dark red paint possessed the longest filament life time 

and also had the highest infinitive shear viscosity. The pigment to binder ratio for the 

dark red paint is lower than the pigment to binder ratio for the red paint. 

Furthermore, the iron oxide alpha pigment was added into the dark red paint whereas 

the red paint does not have this type o f paint. These differences might be the factors 

which determines the life time o f the filament and the relaxation time. Whilst 

observing the filament decays, interesting filament thinning defects such as the 

evolution of central bulge, recoiling and satellite drop were captured. Without the 

support o f a digital high speed camera, it would not have been possible to highlight 

such defects. Therefore, a good approach is to use a digital high speed camera for 

samples which have not been previously tested with a capillary break up rheometer 

to allow finding an ideal operation window which is not influenced by unknown 

defects. The onset of the occurrence o f instability effects under a specific condition 

might provide a hint for the appearance o f the coating defects .

The work presented in Chapter 10 focused on an abrupt contraction flow within a 

capillary extrusion rheometer. The dark red paint provided the initial experimental 

data, by using the capillary extrusion rheometer. Surprisingly, the slip effect did not 

occur due to the good adhesion o f dark red paint to steel and the absence o f particle 

depletion and therefore a slip analysis was not needed. However, this result was
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representational o f only one type o f paint and therefore, a final conclusion cannot be 

drawn.

The comparison o f the data o f dark red paint measured by different rheological 

devices can be seen in Figure 11-1. Furthermore, the shear viscosity curve obtained 

by the rotational rheomter continuously followed the shear viscosity from the 

capillary extrusion rheometer. The extensional viscosity showed a Newtonian 

behaviour which is measured by both capillary break up rheometer and capillary 

extrusion rheometers.

10
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Figure 11-1: Comparison of data measured by different devices shear viscosity (□) from deformation 

controlled rheometer, shear viscosity (□) and extensional viscosity (O) from capillary extrusion 

rheometer and extensional viscosity (O) from capillary break up rheometer

Currently, it can be said that rheological properties o f polyester resin based paint can 

be measured with the mentioned rheometers using the previously defined 

experimental procedures.

Since the solvent and the pigment size were all the same for the paints used, the 

influence factors for changing the flow behaviour can only be the weight o f solid 

content, pigment to binder ratio and the types o f pigments. It is more likely that, the
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pigment to binder ratio and the types o f pigments play an important role for the flow 

behaviour. The white paint seems to be a special case due to the high amount of  

titanium oxide and the high pigment to binder ratio.
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12 Future research

Looking to the future, additional, interesting research activities could be expected 

from the outcomes o f this project, in particular, by making use o f the knowledge 

gained during the research activities which were undertaken, including:

The rheological characterisation o f commercial complex polyester resin based paints 

enabled a thorough distinction and classification o f these products in a scientific 

manner. The result from this project also provided evidence o f the feasibility of 

capturing rheological data using both rotation and capillary break up rheometers. 

However, further experimental investigations on polyester resin based paints using a 

capillary extrusion rheometer are required to fully complete the feasibility study of 

capturing rheological data with different rheometers used in this project. In addition, 

an observation o f the contraction flow within the barrel o f the capillary extrusion 

rheometer could increase the understanding o f the flow characteristics o f different 

paints.

Commercial, solvent based paints which are used for the coil coating process are not 

only produced from polyester resins. Therefore, the scope o f rotational and 

extensional experimental work could be extended to different “paint families” (i.e. 

paints manufactured from polyurethane resin or epoxy resin) using a similar 

methodology to that employed for this project. Additionally, the trend to reduce 

volatile, organic compounds (VOCs) which is driven by environmental regulations 

has led to a ‘new’ generation o f water based paints being developed. This new 

generation o f paint will also require in depth rheological assessment.

For both scientific and commercial interests, effort could be made to develop an 

empirical model, capable of predicting the production performance o f a paint in the 

coating process by using its fundamental rheological properties. However, a 

significant amount o f both process and rheological data would be required to create, 

validate and finalise a suitable empirical model. Therefore, in order to achieve this, 

the next step for future research should be the simultaneous collection o f rheological 

and process data.
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In terms o f future paint development, finding a relationship between a paint’s 

components and the rheological data presented in this project would provide a more 

detailed understanding o f  the impact o f material’s properties on its flow behaviour. 

Once the “ideal flow” behaviour for the coil coating process has been established, 

paints could be modified to achieve this ideal flow behaviour by using knowledge 

regarding the influence o f a particular paint’s components.

Additionally, an investigation into the effects o f temperature on the rheological 

behaviour of commercial paints could produce interesting data which could be used 

to further optimise the coil coating process.

Further to this, the critical slip effect o f polyester based paint, which may occur in 

other samples would also provide a very interesting area o f research as it may occur 

undertake which might happen on both application roll and pressure roll. 

Willenbacher et al. (1997) found out that poor runnability occurred with increased 

viscosity, pressure losses and wall slip effect.

By undertaking some or all o f these suggestions for further research, it may be 

possible to improve the coil coating production, in particular productivity and 

quality, which was the main goal o f this research project.
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