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Summary
Fully processed, grain oriented electrical steel possesses a forsterite glass film and a 

phosphate-based insulation coating on both of its surfaces. The composition, quality 

and thickness of these layers, in addition to a preceding decarburisation oxide layer, 

are known to have a significant effect on the properties of the material on which the 

final product is assessed. This includes physical properties, such as appearance, as 

well as the magnetic properties upon which the electrical steel is routinely graded.

Due to their importance, methods of rapidly and accurately assessing these surface 

layers would provide great benefits as the characteristics could be monitored to ensure 

the optimum processing conditions are achieved. Unfortunately, it has previously 

been found that the complexity of the layers has made their analysis problematical, 

particularly in terms of accuracy and the time required for testing.

A number of experimental techniques have been investigated to establish their 

potential for the analysis of the aforementioned surface layers, including Fourier 

Transform Infrared (FTIR), Electrochemical Potential (ECP), X-ray Photoelectron 

Spectroscopy (XPS) and Sputtered Neutral Mass Spectrometry (SNMS). Further 

methods were also used to determine characteristics of the coated material such as 

magnetostriction and magnetic loss, which provided an insight into the stressing 

capability of the material. As a result of these investigations:

• Combining a number of techniques resulted in a correlation between ECP profiles 

and the composition and / or morphology of the decarburisation oxide layer.

• A link has been established between the transmittance levels of the FTIR spectra 

and the thickness of the forsterite glass film layer.

• FTIR absorption bands have been linked to the constituents of the insulation 

coating.

Further to the study into the feasibility of these methods, a number of the techniques 

were used to analyse material during the development of an alternative, chrome-free 

insulation coating, which has subsequently been adopted as the standard production 

coating for the grain oriented electrical steel produced at Orb Works.
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Chapter One

Review of Electrical Steels

1.1 Introduction

Electrical steels can be described as a highly specialised, magnetically soft material 

i.e. they can be magnetised easily but lose this magnetism as soon as the magnetising 

force is removed and they are subjected to any small demagnetising influence 

(coercive force). Laminations of electrical steel are punched from the strip and used 

in the construction of motors, generators and transformers.

The structure of electrical steel at room temperature is body centred cubic (unit cell 

with atoms at each comer and one in the centre of the cube). Regions of crystal lattice 

extend to form grains that vary in size, but can extend up to the order of a few of 

centimetres. The grains are sub-divided into domains based on their electron spins, 

as this acts to minimise the external field, thus minimising the stored energy in the 

steel. This causes a high degree of magnetisation within each domain, but no net 

magnetisation overall.

When the steel is exposed to an applied external field, as in its final application, the 

domains containing the spins that are aligned in the same direction as the field will 

preferentially increase in size due to movement of the domain wall. This will cause 

the magnetism to increase. At very small fields, this occurs reversibly, where the 

domain walls will move back to their original position when the field is removed. 

However, as the applied field is increased further, it will cause the domain walls to 

move away from the sites at which they were pinned. Eventually, a condition of
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magnetic saturation will be reached, where all of the possible domain wall movement 

has occurred, and the field has rotated any grains that were not mutually aligned when 

they were in their initial state.

Electrical steels require domains that can move unhindered when they are magnetised. 

Therefore every effort is made to minimise the number of unwanted inclusions 

present in the steel by improving the purity of the steel, reducing the levels of carbon, 

nitrogen, sulphur and titanium in particular.

Grain boundaries also hinder the domain movement, meaning that larger grains are 

generally better for electrical steels. However, an optimal size exists where further 

grain growth is detrimental to the magnetic properties of the steel. This is due to the 

wider domain spacing that occurs in large grains. In their final application, the 

domain walls will be required to move a greater distance, and therefore at a higher 

velocity, as this domain wall spacing increases and this results in higher magnetic 

losses.

The main difference between electrical steel and conventional carbon steel is the 

addition of silicon. The discovery that silicon improved the magnetic performance of 

electrical steel was in the 1900’s by Barrett, Brown and Hadfield [1, 2]. This 

improvement occurs due to the silicon causing the resistivity of the steel to increase. 

The variation of resistivity within Fe-Si alloys has previously been studied, and can be 

seen in Figure 1.1 [3]. The increased resistivity decreases the eddy currents that can 

flow in the core, which in turn decreases the overall losses. However, there is a limit 

to the amount of silicon that may be used (commercially ~ 3.4%) as it also decreases
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Figure 1.1: Diagram showing the effect that silicon content has on 
the resistivity of iron [3]
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the saturation magnetisation and permeability of the material, as well as making it 

more brittle and difficult to roll.

The steel is used in the form of punched or cut laminations, which are assembled to 

form the cores that carry the magnetic flux in electrical machines. The use of the steel 

in lamination form acts to further reduce the flow of eddy currents within the core, 

which again reduces the power losses of the core. Electrical steel can be found in 

almost every form of machinery from large power transformers to small components 

in an electric shaver.

The material processed at Orb Works site of Cogent Power Ltd., where the work 

described in this thesis took place, can be classified as being either grain oriented 

material or non-oriented material. These are described in greater detail below.

1.1.1 Non-Oriented Electrical Steel.

Non-oriented electrical steel contains a lower percentage of silicon than is found in 

grain-oriented steel. It has grains that are in a random arrangement and hence the 

strip can be magnetised easily in all directions (magnetically isotropic). This material 

is generally used for applications where low cost takes priority over efficiency. This 

category can be split further into (a) fully finished and (b) semi-finished material.

(a) Non-Oriented, Fully Finished Electrical Steel.

This is used for small generators and medium sized electric motors. As 

the name suggests, the strip is sold in a fully processed condition. The 

motor manufacturers themselves, or the intermediate ‘stampers’, punch 

the material into the laminations required, and the appropriate
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magnetic properties are achieved without further annealing of the 

sheets.

(b) Non-Oriented, Semi-Finished Electrical Steel.

This material is used in the construction of small and fractional 

horsepower motors. Unlike the fully-finished material, described 

above, it does not receive a final anneal before being dispatched. This 

anneal is instead carried out by the motor manufacturers or stampers 

themselves. This is vital to achieve the desired magnetic properties.

1.1.2 Grain Oriented Electrical Steel

The work associated with this thesis has been focussed exclusively on grain oriented 

material.

This product is used in the construction of power generators and distribution 

transformers used by the national grid. The material used for these applications must 

be of a very high grade as it is necessary for these machines to be very efficient and 

long lasting due to their cost [4].

Large grains are formed in this material due to the way in which it is processed. 

These grains are oriented to provide preferential magnetic properties along the rolling 

direction of the strip i.e. the material is magnetically anisotropic.

The idea of grain-oriented steel arose due to the discovery that certain chemistries and 

processing conditions could be used to produce material with highly directional 

properties. This discovery was patented in 1934 by Dr. Norman P Goss [5] who gives 

his name to the “Goss” [001 ](110) orientation, also known as the cube on edge (COE) 

texture. It denotes a texture with a [001] orientation close to the rolling direction and

5



(110) planes close to the sheet plane, shown in Figure 1.2. This is the arrangement of 

the crystalline structure of the iron that is highly desirable in electrical steels.

The orientation of the grains causes the material to show magnetic anisotropy due to 

the fact that there is an easy direction of magnetization along the edges of the cubes 

belonging to the iron crystals. This arrangement causes the material to be easily 

magnetised in the rolling direction, but magnetisation in any other directions proves 

very difficult. For this reason it is useful for applications that require a preferential 

magnetizing direction, for example a transformer core as shown in Figure 1.3.

Grain-oriented electrical steels can be split further into two separate categories. These 

are conventional grain oriented (CGO) material and high permeability (Hi-B) 

material. The Hi-B material was developed by Nippon Steel in 1966 and has a higher 

degree of orientation and a larger grain size [6] than CGO material. There are 

variations in the ways in which the two types of grain oriented steel are processed 

(discussed in Section 1.2), resulting in Hi-B having a superior grain orientation. The 

consequence of this is that Hi-B material exhibits lower hysteresis losses (see Section 

1.5) than CGO material.

1.2 Process Route

The various steps involved in the manufacture of the two types of grain-oriented steels 

[7] are shown in Figure 1.4.
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Figure 1.2: Diagram showing the Goss orientation of grains in grain 
oriented steel.
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Figure 1.3: A transformer core showing the rolling direction of the 
laminations.
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It can be seen that the processes are very similar. The main differences are that the 

CGO does not undergo the continuous annealing and fast cooling stage prior to cold 

rolling, and that the CGO route involves a two stage cold rolling process, either side 

of a continuous anneal.

Aluminium nitride (AIN) is also introduced into the Hi-B material at the steel making 

stage to act as a grain growth inhibitor. The restriction in the grain growth caused by 

the AIN addition increases the amount of stored energy. This energy is then released 

when the inhibitor is removed during the high temperature annealing stage, resulting 

in the growth of larger grains (i.e. it is beneficial to minimise the grain size in every 

stage up to the high temperature annealing stage).

1.2.1 Feedstock

The processes up to and including hot rolling are carried out on the site of the steel 

making itself. All of the remaining steps are carried out at electrical steel plants, such 

as Orb Works.

When the steel feedstock arrives at Orb Works, it is in the form of coils of 

approximately 20 tonnes in weight, and with a strip width of ~ 1050mm. At this 

stage, the thickness of the steel is ~2.1mm and the orientation within the material is 

generally random. It contains approximately 3.15% silicon, as well as impurities such 

as carbon, oxygen, nitrogen, manganese and sulphur.

An in depth look at each of the stages of the production process is given in the 

following sections.
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1.2.2 Anneal and Pickle Line

This process is carried out to remove the scale from the hot band and generate a 

surface at a standard that will facilitate cold rolling. The annealing also has the 

following effects on the material:

• To obtain a fine dispersion of the grain growth inhibitor (AIN).

• To obtain the correct amount of AIN precipitation.

• To cause the martensite and / or bainite phases to be precipitated.

• To develop equiaxed crystals at the surface layer

• To secure carbon and nitrogen in solution

The material first passes through a furnace that has a carefully controlled atmosphere. 

The gas used in the furnace is 3HN gas (3% hydrogen in nitrogen) as this prevents 

oxidisation. The furnace is heated to a temperature of ~1000-1100°C, using four gas- 

fired zones and six electrically heated zones. Upon leaving the annealing furnace, the 

strip must be cooled to a temperature of less than 100°C for a subsequent shot-blasting 

section. However, the strip should not be allowed to cool too much as this will result 

in it becoming too brittle, which could result in a snap. The required cooling is 

achieved using a number of water sprays and cooling fans.

It should be noted that CGO material very rarely undergoes this annealing treatment 

(unless it is of a very high grade), as the benefits that can be gained do not justify the 

cost of this operation.

Prior to pickling, the strip passes through the wheelabrator section where blasting it

with steel shot breaks down the surface scale. The purpose of this is to assist in the

pickling process, in which it passes through two pickling tanks where the strip is

sprayed with hydrochloric acid. Further cleaning of the strip using water and rotating
11



brushes follows the pickling, and ensures that all the acid has been removed. Before 

the strip is recoiled, oil is applied to the surface. This acts to prevent rusting of the 

strip prior to rolling and provides the required standard of surface quality for rolling.

1.2.3 Cold Reduction

The mills sited at Orb Works are four high cold reduction reversing mills.

This process is used to reduce the thickness of the strip to a precise, specified gauge. 

The range of material produced at Orb usually has a final gauge of 0.23, 0.27, 0.30 or 

0.35 millimetres.

Other advantages of cold rolling are that it increases the stored energy of the material, 

creating a homogeneous structure, and forms nuclei of secondary recrystallization 

with improved orientation of the crystals.

1.2.4 Decarburising Anneal (and MgO Coating)

This is a continuous process that is carried out in a furnace of approximately 140

metres in length. At Orb, a combination of gas and electrical heaters are used to

maintain the furnace at the correct temperature. Before the strip passes into the

furnace, it passes through a natural gas fired bum-off section (~6m) to remove any

milling oil and other dirt and debris from the surface. The main furnace section is

maintained at a temperature of ~850°C, and the atmosphere is carefully controlled to

be 75% hydrogen / 25% nitrogen. The gas is passed through a saturator before

passing into the furnace with the aim of controlling the dew-point of the atmosphere.

This is the temperature to which a gas must be cooled so that it will be saturated with

respect to water vapour. Any cooling below this temperature will result in the

formation of water vapour on the cooled surface.
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The strip speed on the decarburisation line is -50-55 m/min, meaning that this process 

causes the strip to be at elevated temperatures in the furnace for approximately 150 

seconds (including the time in the bum-off oven).

A diagram of this line can be seen in Figure 1.5 [8].

This process serves the following three purposes:

• Reduces the level of carbon in the steel from approximately 

0.05% to below -  0.0025%. This figure depends slightly on the 

material being processed.

• Promotes primary recrystallization, in which old grains disappear 

and new grains grow.

• Causes the formation of a surface oxide layer. This layer is very 

important in the context of this project, as it is directly related to 

the formation of a forsterite glass film at a later stage of 

processing.

Coating of the strip with a magnesium oxide (MgO) slurry [9] occurs at the end of the 

decarburising line, prior to the strip being coiled. This coating is required to prevent 

adjacent laps of the coil from sticking together in the High Temperature Coil Anneal 

(HTCA) furnace, which would cause defects along the strip.

Coating the steel with MgO also enables the amount of nitrogen absorbed in the steel 

during the high temperature anneal stage to be controlled, and also reduces the 

sulphur content.

The presence of the MgO powder is also influential in secondary recrystallization.

13
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The MgO is applied to the strip in the form of a slurry. This is formed by mixing a 

magnesia powder with water, and should contain -13% MgO in suspension. Grooved 

rubber rolls are used on both the top and bottom surfaces to impart a coating weight of 

~4.5gm' onto either side of the strip. Once coated, the strip passes through a furnace 

which is heated to approximately 650°C, which increases the temperature of the steel 

to ~140°C. This removes any excess water, leaving a white powder coating adhered 

to the surface.

As time passes within the mixing chamber, magnesium hydroxide will slowly be 

formed as the magnesium oxide powder hydrates. This magnesium hydroxide is 

useful as it stabilises the aqueous slurry of MgO and also promotes the covering 

activity. It is possible to use magnesium hydroxide alone, although it may decompose 

to produce a large amount of water. This would subsequently result in a reduction of 

the magnetic quality of the coated steel, as the water carried in the form of the hydrate 

will remain in this coating even after the drying process that occurs after coating.

The amount of hydration achieved is one of the variables that can affect the quality of 

the glass film that is formed at a later stage [10], as the forsterite grains are affected 

by the amount of water carried into the coil in the form of the hydrate. The amount of 

water carried into the coil in this way is determined by:

• Type of magnesia used

• Temperature of the slurry

• Time the MgO is held as a slurry

• The amount of magnesia applied

• The drying process

• Particle size distribution

15



Two or more different sources of magnesia are often mixed together to obtain the 

optimum properties.

It is undesirable that the magnesia should hydrate above approximately 3%. 

However, the amount of magnesium hydroxide should always exceed 1% by weight 

as it creates an electric repulsive force. This acts to repel the suspended MgO 

particles from each other.

To ensure that the correct amount of hydration is achieved, it is necessary to maintain 

the slurry at a temperature of between 10 and 20°C.

Magnesia powder is always provided with a statement of the range in particle sizes 

that is present in the batch. It is believed that the particle size distribution, and the 

shape of these particles, may also have an effect on the glass film that is formed. At 

present, current working practices state that 70% weight or more of the particles 

should be of a size of 0.5 microns or less.

It is desirable that there are no impurities in the MgO (for example chlorine and 

sulphur). However, the magnesia is often doped with various other elements to affect 

its properties. These doping elements, and their effects are listed below [11].

• Aluminium compounds (preferably 0.1-1%) may be used to provide a similar 

electric repulsive effect to that of the magnesium hydroxide. This is added in 

the form of aluminium hydroxide or aluminium nitride. However, the strip 

sometimes absorbs some of the nitrogen from the AIN compound, which 

obstructs secondary recrystallization. This results in fine grains, which results 

in poor magnetic quality of the final product.

• Magnesium nitrate may be used to stabilize the magnesia slurry. However, it 

is a necessity that the separator does not contain magnesium in any other
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forms such as magnesium chloride or magnesium sulphate as they will have a 

detrimental effect if they are absorbed into the steel.

• Boron, in quantities of less than 2.5%, is another element that helps to stabilize 

the solution. It also enhances the coating property and improves the magnetic 

properties of the strip. Another advantage of adding boron is that it can hinder 

the absorption of nitrogen into the strip.

• Sodium (in the form of a sulphide, hydroxide or thiosulphate) may be used in 

amounts between 0.005-0.2%. This decreases the core loss of the strip by 

greatly increasing the tension characteristics of the final coating on the strip. 

This effect occurs due to the sodium causing the particles of MgO to combine 

with each other. However, the amount of sodium added must be limited to 

0.2%. If the sodium exceeds this amount it will result in a reduction of the 

melting point of the ‘glass’ material formed in the HTCA. This will prevent 

the material from forming a forsterite glass film on the surface of the strip.

• The presence of ~5% Ti02 will stabilize the solution and enhance the 

magnetic properties of the strip.

• Lithium (0.02-0.7%) will enhance the magnetic flux density of the material.

In addition to these elements, the way in which the slurry is prepared may also affect 

the coating properties. For example, when preparing the aqueous slurry, a stirring 

impellor (rotating shaft and blades) is used. Past experience has shown that the 

quality of the coating varies according to the stirring speed.
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1.2.5 High Temperature Coil Anneal (HTCA)

During this process, the coils of MgO coated steel are placed in a furnace with their 

bore vertical and heated in a hydrogen atmosphere (Figure 1.6 [8]).

The HTCA furnace has a base made from refractory brick. This is surrounded by 

sand, which acts to provide a gas seal between the base and the inner cover that is 

placed over the coils. Each of these inner covers contains two coils, with the upper 

coil supported by a stalk and a stainless steel ‘mushroom’. Four of these covers are 

contained within the shell of one heating furnace, as shown in Figure 1.7.

Heating elements are located both within this shell and also within the base. Both 

water and sand seals are used to prevent gas or heat escaping from this furnace.

Current practice states that all parts of the coil should reach a temperature of 1180- 

1200°C, and soak at this temperature for at least four hours. However, due to the size 

of the coils, the outer laps attain this temperature much more quickly than the inner 

windings. It may take up to 30 hours for the whole coil to attain the correct 

temperature, and a further 24 hours for it to cool.

Under the correct conditions, selective secondary recrystallization will occur. The 

MnS in the steel acts as a grain growth inhibitor, which causes the grains with the 

desired Goss orientation to grow preferentially over others. Once this has occurred, 

the MgO acts to remove the remaining sulphur in the steel, ensuring that any sulphide 

inclusions do not remain, as these could inhibit movement of the domain walls.
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It is also the stage at which the forsterite “glass” film is formed [12, 13]. For 

forsterite to be formed successfully, the temperature must exceed 1003 to 1017°C, 

depending on the magnesia that is used [14].

1.2.6 Thermal Flattening and Final Coating

This is a continuous process, at the end of which the material will be at a stage where 

it is suitable for customer use (following the necessary slitting / punching processes). 

A schematic diagram of this processing line is shown in Figure 1.8 [8].

Before being coated, the strip passes through a cleaning section to remove any excess 

magnesia that remains from the high temperature annealing process and to prepare the 

surface. The strip is firstly brushed and washed with water, before passing into a 

pickling bath containing a dilute sulphuric acid (H 2 SO 4 ). As well as removing any 

remaining magnesia, this acid provides a light etch of the forsterite glass film, which 

helps the final coating to key into it. The strip is then rewashed to remove any trace 

of pickling acid, firstly with cold water and then in a hot water (90-95°C) rinse tank. 

It is then dried with hot air blowers, leaving it ready for the coating process. It is 

important to ensure that the strip is dried thoroughly after this process to prevent any 

rust developing on the surface during the time it is held within the storage loops. 

Water on the strip may also have an effect on the tracking of the strip if it is 

transferred onto the rolls contained within the loop storage section.

The coating (covered in more detail in Section 1.3.3.) primarily contains a phosphate 

solution, colloidal silica and water. These constituents are mixed on the site of the 

coating line.
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Following the application of the insulation coating the strip passes through a pre-heat 

furnace to ensure that it is fully cured before the first roll of the main furnace is 

reached. This is ensured by heating the strip in a furnace with a temperature of 

~650°C.

The main thermal flattening furnace has an atmosphere of ~3% hydrogen in nitrogen 

and raises the temperature of the strip to approximately 850°C for a duration of 25-30 

seconds. The atmosphere is purely to ensure that a clean processing environment is 

maintained and helps to ensure a good final appearance of the steel. The strip passes 

through a series of flattening rolls that penetrate the natural pass line of the strip. It is 

then cooled slowly to temperature of ~675°C, before undergoing a period of faster 

cooling. All that then remains is for the strip to pass through a section where its 

appearance is inspected before being re-coiled, ready for slitting and packing 

procedures.

1.3 Surface Layers

1.3.1 Decarburisation Oxide Layer

As described in Section 1.2.4, the strip passes through a furnace with an atmosphere 

of 75%H / 25%N and at a temperature of 850°C. These conditions promote the 

formation of an oxide layer on the surface of the steel.

A layer of amorphous silica will form adjacent to the surface of the steel. After a 

certain length of time in the decarburisation furnace, a layer of fayalite will be formed 

on top of this silica. This will occur to a greater extent if the dew point is raised to 

above its optimal level. Therefore the oxide layer will be more silicon-rich if the dew
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point of the furnace is lowered. The graph shown in Figure 1.9 [14] shows the effect 

that the dew-point (and also temperature) has on the oxide layer that is formed.

There is also a subscale presence of crystalline silica due to diffusive effects, which 

penetrates into the steel strip itself. Figure 1.10 shows a schematic diagram of the 

layers that are present in the oxide scale formed on the material produced at Orb 

Works.

A presence of iron oxides may also be found in this oxide layer. It is believed that 

optimum conditions should be those at which silica alone is formed because any 

fayalite formed will decompose into metallic iron and silica at later stages of 

processing. This conductive metallic iron will then reduce the insulation, as it will 

become embedded in the glass film.

As well as the dew point, the quality of this layer can also be affected by other factors, 

such as the atmosphere of the furnace and by the speed at which the strip passes along 

the line.

The oxide layer formed during decarburisation is the first of the three layers of 

interest for this thesis, as its composition has a direct effect on the formation of the 

insulating glass film layer.

1.3.2 Forsterite Glass Film

The ‘glass’ film is the first of the insulating layers to appear on the steel substrate. 

The name given to this layer is misleading, as it is not actually a glass at all; it is in 

fact of a crystalline nature and does not contain any glassy phases. It consists of a
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compound known as forsterite. It is formed when the magnesium oxide reacts at high 

temperature with the fayalite and silica contained in the oxide layer, formed 

previously in the decarburisation furnace.

Equation 1.1 shows the mechanism of the reaction involving fayalite.

Fe2SiC>4 + 2MgO + 2 H2 —► Mg2SiC>4 + 2Fe + 2 H2O Equation 1.1
(fayalite) (forsterite)

The reaction with the silica is similar, except that iron is not formed as a by-product. 

It has been found that a glass film will exhibit good properties in terms of appearance, 

bending adhesion, uniformity and insulation if the grains of forsterite are smaller than 

0.7 microns [15]. The size of the forsterite grains is proportional to the amount of 

water carried into the coil. This is affected by the amount of H2O and / or CaO 

present in the magnesia coating. The additives may cause the effect on their own, but 

the effect is greater if they are both present. To ensure the forsterite grains are of the

~ 9 •required size, the amount of water should be less than 1.2 g/m (both sides). CaO has 

been found to be the only addition to the magnesia that affects the size of the forsterite 

grains, and there should be no more than 0.08g/m2 present (both sides).

The glass film is a very important element of the final product. It is a layer that is 

both electrically insulating and stress inducing. It is advantageous to have an 

electrically insulating layer on the surface of the steel as it prevents the flow of eddy 

currents between adjacent laminations in the final application. The coefficient of 

thermal expansion of the glass film is different to that of the steel itself. Therefore as 

they cool, the layer becomes stress inducing due the tensile stress in the steel, coupled 

with the compressive stress in the forsterite. This reduces the amount of
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magnetostriction that occurs, which is the main source of transformer noise. It is 

caused by the expansion and contraction of the steel during the magnetisation process. 

This magnetostriction causes energy to be lost from the system, and therefore the 

stress induced by the forsterite results in a reduction in the final power loss data of the 

material. It also acts to modify the crystal orientation so that is in greater alignment 

with the desired Goss texture [14].

As well as these properties, a good glass film should have other desirable 

characteristics [16]. It is required to be heat resistant and non-oxidising in reducing or 

inert gases at 1000°C and above. It should obviously not modify the orientation of the 

grains to the detriment of the steel.

Although the glass film provides many benefits it is important that the forsterite does 

not become too thick, as this would cause the stacking factor of the core it is used in 

to decrease, as a smaller percentage of the core would be steel. This would have an 

unfavourable effect and decrease the efficiency of the core.

Despite the importance of the glass film, the quality of this layer is not routinely 

monitored. It is only examined to discover the cause of defects that arise in the film. 

When the glass film is of good quality, it is a dull mid-grey in appearance and is 

uniform across the width of the strip. It is also found to have good adherence to the 

strip. However, defects in this surface layer may sometimes occur, affecting the 

appearance and / or the performance of the steel [17].
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1.3.3 Final Insulation Coating

A further coating is applied to the strip on the final coating and thermal flattening line. 

It is coated directly on top of the layer of forsterite that has previously been formed in 

the H.T.C.A.

At present, the coating comprises mainly of colloidal silica, phosphate and water. The 

composition of the mix has recently been modified to remove all trace of chrome, 

which was used in the formulation at the time when this project commenced.

Once mixed, the coating passes onto the top surface of the strip and a weir spreader is 

used prior to the coating roll to ensure that the coating is distributed uniformly across 

the strip width. The excess coating is collected in a bottom coating tray beneath the 

strip, where it is applied to the underside of the steel after being picked up by a 

bottom coating roll. It is the pressure between the strip and these two grooved, rubber 

coating rolls that is used to carefully control the thickness of the coating, as well as 

the groove specification (grooves per inch and groove depth).

Previous research, illustrated in Figure 1.11 [18], has shown that the ratio between 

silica and phosphate in the coating mix considerably affects core loss values 

associated with the material. Therefore, a mix that does not contain the optimum ratio 

will result in material being produced that does not reach its full potential in terms of 

magnetic loss data.

The coating acts to improve the magnetic properties of the steel in two ways.

Firstly, the coating provides an insulating layer between laminations when they are 

assembled for their final application. This reduces the eddy currents that can flow 

within the core.
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Secondly, the coating acts to apply a tension to the surface of the steel that reduces the 

magnetostriction losses that occur during magnetisation. These losses occur due to 

the rotation of the magnetic domain walls, and are the greatest cause of transformer 

noise. When the transformer is assembled, compressive stresses are applied to the 

steel sheets that cause the magnetostriction effects to increase. However, a tension 

coating, such as those applied to the steel at Orb, minimises this effect, therefore 

reducing the losses.

In the case of this coating, and the forsterite that has previously been formed on the 

steel surface, the tension is applied upon cooling. Each of these layers has a lower 

coefficient of thermal expansion that the steel itself, ensuring that the steel will 

decrease in size far more that the surface layers as the temperature of the strip 

decreases.

1.4 Coating Defects

Some of the defects that can occasionally arise in the forsterite glass film are given 

below:

• Bright spot defects -  These vary in size from just visible to having a diameter 

of up to a few millimetres. They can be seen as an almost circular area of 

bright, metallic material. They occur on both the top and bottom surfaces, and 

are more commonly found around the centre of the strip. They sometimes 

occur in rows in the rolling direction. These bright spots are an undesirable 

feature as they have the effect of causing the steel to exhibit poor resistivity. It 

has been found that this type of defect is caused by local oxidation as a result 

of processing conditions favouring over-oxidation,
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• Dark spot defects -  These defects appear as almost round dark spots with a 

diameter of up to approximately 5 millimetres. It has been found that the 

coating is more readily removed (i.e. it is flakier) away from the defect. This 

defect is similar to the bright spot defect in that it is also caused by local 

oxidation.

• Bare edges -  As the name suggests, these defects occur at the edges of the 

steel strip. They are seen as a combination of bright and dark bands / lines. 

The quality of the coating within these bands varies greatly in terms of coating 

thickness and adhesion to the strip. The bare edge defects occur on the part of 

the coil that was hottest in the high temperature anneal phase. This is due to 

the atmosphere being too wet when the glass film is formed.

• Bright specks / Accretions -  These defects can appear randomly across the 

steel. At first, they appear to be a smaller version of the bright spot defect, but 

are found to be raised, metallic regions. They occur due to “pick-up” being 

transferred to the strip during processing on the decarburisation line.

• Powder grit -  These small (few mm), raised white spots are found across the 

width of the strip. However, they usually occur on just one surface. When 

scraped with a scalpel, they form a powder, which has been analysed to be 

MgO. Powder grit is caused by the settling of over hydrated MgO 

accumulating in the coating tray, prior to being transferred to the strip.

• Thin glass -  When this defect occurs, the underling grains of the steel can be 

seen. This defect causes a flaky coating, due to poor adherence, and causes 

the steel to exhibit poor resistivity. It occurs when the processing conditions 

of the decarburising line favour under-oxidisation. Upon analysis with a 

Transmission Electron Microscope (TEM), the grain size of the forsterite was
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found to be much larger than is optimal (a few microns compared to the 

favoured size of ~0.7 microns).

Bare patches and thin film occur mainly on the looser outer laps. This is because the 

steel is more exposed to the annealing atmosphere and the water vapour concentration 

is at a minimum. Therefore, to prevent this there must be an adequate amount of 

water vapour in the annealing atmosphere adjacent to the steel surface. It is only 

necessary for this water vapour to be present whilst the temperature is below that at 

which the silica and the MgO react to form forsterite glass film. Once this 

temperature has been reached, the presence of water vapour will have no effect.

The amount of water in the furnace atmosphere is given by the dew point. This is the 

temperature at which dew will form on a chilled mirror [19]. A high dew point 

temperature indicates a high concentration of water vapour in the atmosphere.

Raising the dew point of the annealing atmosphere can be done by:

• Increasing the water vapour concentration in the hydrogen atmosphere

• Allowing magnesia to hydrate further

• Coating the material with a suitable mix of magnesia and magnesium hydroxide 

The last two methods are preferable as they affect the area adjacent to the strip.

As well as the water vapour concentration, the temperature of the annealing furnace 

will also have an effect on the thickness of the glass film that is formed. It is found 

that once the temperature at which forsterite is formed has been reached, a further 

increase in temperature will result in a thicker glass film [14].
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1.5 Energy Losses

Once the material has been processed, it is tested and subsequently graded. The 

material is sold against stringent guarantees of its magnetic performance, in terms of 

both power loss and permeability. Data relating to a whole range of peak induction 

and frequencies is available for all material produced, although the results at induction 

levels of Bpk = 1.5 or 1.7 T, 50 or 60 Hz are considered most important.

These loss characteristics are determined by a combination of the glass film layer, a 

final insulation coating and the magnetic properties of the steel. Power loss is defined 

as the amount of power that is dissipated during magnetisation. Permeability is 

related to the size of magnetic field that is required to produce a specified induced 

magnetisation.

The main forms of power loss in electrical steel are hysteresis loss, eddy current loss 

and anomalous loss [8]. It can be seen in Figure 1.12 [8] that eddy-current losses and 

anomalous losses vary with frequency, whereas hysteresis losses are independent of 

the frequency.

Hysteresis loss is due to the structures within the material, and occurs when energy is 

dissipated due to the rapid motion of a domain wall. It is essentially the amount of 

energy required to change the magnetic state of the core to be in phase with the 

alternating magnetic flux. This may be explained more clearly by using the example 

of an a.c. transformer.

A flux density (B) is induced in a core when a current is passed through copper wire 

that is wound around that core. This is due to the magnetic field (H) that is created. 

Equation 1.2 gives the relationship between the magnetic field and the flux density.
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B = no(H + M ) Equation 1.2

Where: B = flux density (T)

jlio = permeability of the core (H/m) 

H = magnetic field strength (A/m) 

M = magnetization (A/m)

If an alternating current is passed through the windings of a transformer core, the 

magnetic field and flux density vary during one cycle as shown in Figure 1.13. This 

is known as a B-H or hysteresis loop and the difference between grain oriented and 

non-oriented material is shown.

The area contained by the loop is proportional to the power loss i.e. it is a measure of 

the energy lost during one cycle.

Eddy current losses are due to heat energy being dissipated due to the eddy currents 

that are induced within the core. There is a discrepancy between the magnetic losses 

that are calculated and those that are measured. This is attributed to anomalous loss 

and is due to the complex behaviour of the domains during magnetisation.

The energy lost due to eddy currents can be calculated using Equation 1.3, [20].

PE = ri (pdBf)2 / 6p W/m3 Equation 1.3

Where: Pe = eddy current loss

t| = loss anomaly factor (due to additional eddy-current losses) 

d = sheet thickness 

B = peak flux density 

F = frequency 

p  = resistivity
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As well as increasing the losses of the material, eddy current losses also create their 

own field that opposes the field that was originally applied and causes the flux density 

to decrease progressively towards the centre of the material.

Restricting their flow throughout the core can reduce the eddy current losses. This is 

the reason that cores are assembled from laminations instead of using solid cores. The 

effect of assembling n laminations to form a core reduces the eddy current loss by a 

factor of 1/n when compared to a solid core [21].

It is also the reason for applying an insulating coating to the surface of the steel.
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Chapter Two

Review of Measurement Techniques

2.1 Overview of Current Techniques

There are a number of techniques currently used for the analysis of the surface layers 

that are present throughout the production process of electrical steels. These are 

briefly reviewed in the following sections.

2.1.1 Decarburisation Oxide Layer

• Optical Microscopy

The oxide layer formed during the decarburisation process is most commonly 

analysed using an optical microscope. This can provide images such as that shown in 

Figure 2.1 [22]. It can be seen that the image does not contain a great amount of 

detail.

Although useful in terms of determining thickness and any unexpected inclusions, this 

method is time-consuming and does not provide accurate information on the 

components of the layer.

• Oxygen / Nitrogen Analyser

The oxygen content of the decarburisation oxide layer is monitored on a routine basis. 

Discs of approximately 100mm diameter are punched from the end of each coil and 

subsequently analysed using the Leco apparatus located on-site within the Chemistry 

Laboratory. A number of smaller discs of 6mm diameter are then taken from the 

larger sample, weighed and placed into a carbon crucible. The sample is then heated,
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under a helium carrier gas, which causes the oxygen within the sample to form carbon 

dioxide by reacting with the carbon of the crucible. This amount of CO2 is then 

analysed by the machine (using infra-red technology) and compared against 

calibration standards to establish the oxygen content of the sample. Standard 

operating procedures suggest that the level of Oxygen should remain between 

approximately 500 and 590 p.p.m. for a sample of 0.30mm gauge, depending on the 

type of material being analysed. This oxygen level is believed to provide an oxide 

layer of a thickness that has the potential to produce a good quality forsterite glass 

film.

This method provides elemental results, and cannot therefore be used to determine the 

amount of fayalite or silica present. This is due to the presence of silicon and oxygen 

in both compounds making it impossible to attribute the presence of each element to a 

specific compound.

• Iodine / Methanol test

This technique is used to separate the oxide layer from the steel matrix using an iodine 

in methanol solution. Once the layer has been removed, the remaining oxides are 

fused with other compounds to make a glass. This glass is then dissolved in 

hydrochloric acid to form a solution that can be analysed using Atomic Absorption 

Spectrophotometry, which is an elemental analysis technique that utilises light 

absorption to provide details of the composition of a sample. The major disadvantage 

of this technique is that it is very time consuming.
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2.1.2 Forsterite Glass Film

A continuous on-line inspection process is undertaken on the final coating and 

annealing line. It is a visual inspection by the operators as the defects previously 

mentioned in Section 1.4 can be easily seen on the strip surface when their extent 

becomes problematic. A line operator prior to the sample being coiled carries out the 

inspection, and both surfaces of the strip are observed.

The forsterite glass film is also analysed using an optical microscope. However, this 

is carried out only when samples have been found to contain defects or when material 

does not reach the magnetic standards expected. It is not carried out on a routine 

basis.

2.1.3 Final Insulation Coating

A sample of the final insulation coating solution is taken approximately once per 

week. This sample is taken directly from the mixing tank, and is therefore in liquid 

form. It is analysed using Atomic Absorption Spectrophotometry, which analyses the 

composition in terms of the elements present. The levels of phosphorous and silicon 

are monitored to ensure that the coating formulations are mixed to the correct 

specifications.

The cured coating does not undergo any routine analysis, other than coating thickness 

using a Fischer Permascope.
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2.2 Techniques Used During This Investigation

2.2.1 Fourier Transform Infrared (FTIR)

The Fourier Transform Infrared (FTIR) instrument can be used to analyse materials 

and provide information about the compounds that make up that material. 

Compounds can be recognized due to their characteristic interaction with infrared 

radiation; each compound will absorb the radiation at a certain frequency.

This method is most widely used in the identification of organic materials but can also 

be applied to other materials.

Infrared is the term used to describe a region in the spectrum, which exists between 

the visible and microwave sections [23]. It is normally expressed in the units of 

wavelength or frequency, with units of microns and wavenumber respectively. The 

wavenumber is the number of waves per centimetre (cm-1). The complete infrared 

region spans from 6 to 13300 cm'1, although the section most commonly used for 

FTIR applications is between 400 and 4000 cm'1. This is known as the ‘fundamental’ 

region and does not include near infrared or far infrared.

All molecules are made up of a number of atoms that are held together by chemical 

bonds. Within a molecule, the atoms will vibrate and rotate with respect to one 

another. The chemical bonds bind the atoms together elastically and can be thought 

of as acting like springs between the oscillating atoms. The frequency at which this 

occurs depends on a number of factors including the masses and structures of the 

atoms and the strength of the bonds between them. Due to these variables, each 

molecule will have a characteristic frequency associated with it, and it is these 

frequencies that correspond to the same frequencies as the waves belonging to the 

infrared region of the spectrum.
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If infrared radiation is incident upon a molecule that has the same frequency, then the 

atoms are excited to a higher energy level as it affects the vibrations and other 

interatomic vibrations. Visible or ultraviolet light will cause electrons to be promoted 

to a higher orbital and microwaves affect the rotation. This occurs as a result of 

energy from the wave being transferred to the atoms. This is infrared absorption, 

which provides the basis for the Fourier Transform Infrared (FTIR) apparatus. The 

grazing angle technique allows the spectrum of infrared radiation to be detected after 

it is incident upon the specimen. By analysing the spectrum of the radiation that is 

detected, it is possible to determine the molecules present in the sample specimen, as 

the spectrum will show the frequencies of the electromagnetic waves that have been 

absorbed.

The difference between an FTIR instrument and a dispersive instrument is that it 

measures in the time domain, whereas a dispersive instrument measures in the 

frequency domain.

An FTIR spectrometer uses a Michelson interferometer, shown in Figure 2.2.

This produces an output signal that contains the same information as the original 

infrared signal, but of a much lower frequency. This output signal is known as an 

interferogram.

The radiation travels from the source to the beam splitter, where approximately 50%

of the beam is reflected onto the stationary mirror and back to the splitter. The rest of

the beam passes through the beam splitter and travels to the movable mirror, before

also returning to the splitter. The beam that is reflected from the stationary mirror has

a fixed path length along which it travels. However, the distance travelled by the

other split beam is variable. At the point at which they meet back at the beam splitter,
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they interfere with one another and recombine. Depending on the two beams, the 

interference may be either constructive or destructive. If the difference between the 

two beams is exactly one wavelength, or a multiple of a wavelength, then the 

interference will be constructive. Destructive interference occurs if the two beams 

have a path difference of half a wavelength. Therefore, as the movable mirror moves 

back and forth, it will cause a sequence of maxima and minima to be detected, with 

each maxima indicating a mirror movement of half a wavelength (as the beam travels 

back and forth). Therefore, if the mirror position is altered at a constant rate, the 

detector will receive a signal that varies sinusoidally. However, in practice, the 

interferogram produced will look like that illustrated in Figure 2.3.

This is due to the resultant interferogram comprising of a combination of each of the 

interferograms for each separate frequency contained within the polychromatic 

infrared radiation source. The large maxima at the centre, known as the centreburst, is 

due to all interferograms being in phase when there is zero path difference (ZPD) i.e. 

when the path length from the beamsplitter to the fixed mirror is exactly the same as 

the path length between the beamsplitter and the movable mirror.

This analysis technique gets its full name from the mathematical operation that is 

involved in converting a time function to a frequency function. In more practical 

terms, this procedure converts the interferogram to the infrared absorption spectrum. 

The mathematical operation involved is known as a Fourier Transform.

The apparatus used for the experimentation at Orb is a Perkin Elmer BX spectrometer, 

shown in Figure 2.4. It is a single-beam spectrometer. This means that all the 

wavenumbers of the background are measured at the same time, before all of the 

wavenumbers for the sample spectrum are measured at once. This is different to a
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Figure 2.3: Illustration of a Typical Interferogram for a 
polychromatic Infrared Source.

Figure 2.4: Perkin Elmer BX spectrometer, as used at Orb
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double-beam dispersive instrument where the spectra for the background and the 

sample are taken at the same time and ratioed as the apparatus progresses through the 

wavenumbers. It is capable of collecting data over the range of 7800-100 cm'1 and 

has a potential optical path difference (OPD) resolution of 1cm'1.

The detector used in the instrument is a deuterated triglycine sulphate, or DTGS, 

detector that is optimal for frequencies in the mid-infrared region.

2.2.2 Electrochemical Potential (ECP) Analysis

A method known as the electrochemical potential (ECP) method has been developed 

to evaluate the surface oxide layer formed in the decarburisation furnace, and this 

technique has been studied in great detail at Orb Works [24, 25]. This method utilises 

a working electrode and a reference electrode. The process that removes the oxide 

layer from the surface of the steel is similar to wet corrosion. It is a REDOX reaction. 

This is a reaction where one species will lose electrons (i.e. it will be oxidised) and 

the other will gain electrons (reduced). A computerized version of the technique has 

been developed as part of an M.Res project [25] run by Cogent and University of 

Wales, Swansea. The working electrode is a sample under investigation. It has 

dimensions of 130mm x 50mm and is taped with acid resistant tape to ensure that only 

the bottom 70mm and the top 10mm of the sample is exposed. The reference 

electrode is a mercury / calomel electrode. Both samples are immersed in 5% 

sulphuric acid at 70°C for a duration of 20 minutes. This temperature is achieved by 

placing the beaker of acid into a water bath. To ensure the temperature of the acid 

remains uniform throughout, it was stirred with a mechanical glass stirrer at a speed of 

266 r.p.m. The variation in the potential difference between the two electrodes is
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recorded by a P.C. and can be plotted graphically. Figure 2.5 shows the set-up of 

apparatus used for the electrochemical potential method.

The potential difference will vary due to the dissolution of the surface oxide layer on 

the steel. The results will be indicative of both the thickness and composition of the 

layer and give a ‘fingerprint’ of the layer.

2.2.3 X-Ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS), or Electron Spectroscopy for Chemical
[

Analysis (ESCA) as it is also commonly known, is a non-destructive testing technique 

used for the compositional analysis of the surface of a sample. It is both a qualitative 

and quantitative technique that provides compositional data based on all elements 

except helium and hydrogen. It also establishes the electronic state of the surface 

region.

The technique was developed in mid-1960’s by K. Siegbahn, who later won the Nobel 

Prize for Physics in 1981 for his work in this field.

The basis of this technique is provided by the photoelectric effect, first observed by 

Hertz in 1887 [26]. This describes the phenomenon whereby electrons are emitted by 

the surface of a material when light is incident upon it. Although observed many years 

previously, the photoelectric effect was not fully understood until 1905, when Albert 

Einstein postulated that light is made up of packets of energy known as photons. This 

theory suggested that each photon has a quantum of energy (E) calculated using 

Equation 2.1:

E = hf = he/ X Equation 2.1
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Where h is Planck’s constant (6.626x1 O'34 J.s), f  is the photon frequency (Hz), c is the
o  1

speed of light (3x10 m s ' ) and X is the photon wavelength (m).

The minimum energy needed by an electron to escape the material (in the case of 

XPS, it is a core electron that is removed) is known as the work function, O. This 

energy acts to overcome the attractive binding energy forces holding the electrons 

within the material. The electron may absorb the photon when it is incident upon the 

surface in an ‘all or nothing’ event i.e. either all the energy of the photon is absorbed, 

or none at all. Assuming that this energy is greater than the work function of the 

material, the electron is liberated, with any energy greater than F converting to kinetic 

energy (KE). This is shown by Equation 2.2:

hf = F + KEmax Equation 2.2

This technique uses soft x-rays as the source of monochromatic (fixed-energy 

photons) radiation. This radiation then irradiates the surface and bombards it with 

photons in an ultra high vacuum (UHV) environment. This results in the removal of 

electrons to a depth of approximately 5 microns, which approximately relates to the 

top 10 atomic layers.

Upon photo-ionisation, an electron energy analyser can be used to measure the 

distribution in kinetic energy of the emitted electrons, leading to the display of a 

photoelectron spectrum.

The binding energy holding the core electrons within each atom is very characteristic 

of a certain element, enabling the material from which the electron is emitted to be 

easily identified. It is also possible to obtain information on the oxidation state and
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other chemical information from small changes in the binding energy for each atomic 

orbital. This can be done using careful analysis of small shifts in the peaks of the 

spectra. Also, the intensity of the peaks is related to the concentration of a particular 

element within the sample, allowing the method to provide quantitative elemental 

analysis.

2.2.4 Sputtered Neutral Mass Spectrometry (SNMS)

Sputtered Neutral Mass Spectrometry involves the bombardment of a solid target 

sample by a beam of energetic ions, causing target atoms to be ejected into the gas 

phase. This occurs due to the exchange of momentum when the incident ions collide 

with the target atoms.

The neutral species emitted from the target sample when using the SNMS technique 

give a far more representative analysis of the sample than the ions used in other mass 

spectrometry techniques. They account for approximately 99% of the species emitted, 

but are not as readily attracted to the mass analyser as the ions due to their lack of 

charge. Therefore, it is necessary for these particles to pass through an ionisation 

region, where they undergo electron bombardment. This enables them to be analysed 

by a mass analyser in the normal way. Otherwise, the technique would rely on only 

the particles whose trajectory caused them to reach the detector.

SNMS generally has a reduced sensitivity when compared to other similar techniques, 

such as Secondary Ion Mass Spectrometry. For this reason, the incident beam used 

for SNMS is required to be of a high energy. This results in the technique eroding the 

surface of the sample under investigation (otherwise known as sputtering), enabling 

this technique to be used to produce a depth profile of the composition.
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The apparatus used during this investigation (Vacuum Generators SIMSLAB, shown 

in Figure 2.6) is based at Swinden Technology Centre (STC), Rotherham. It utilises a 

lOkeV argon ion beam to sputter material from the sample surface, which is generated 

from an argon/oxygen plasma. The beam current is maintained at 250nA, with the 

rate of etching controlled by the beam current density. Detection of the species is by a 

quadrupole mass spectrometer.

2.2.5 Magnetostriction

The term magnetostriction relates to the fractional change in dimension of a 

ferromagnetic material when it is magnetised. It is widely believed that this 

phenomenon has a considerable effect on the noise produced by a transformer core 

that has been assembled from electrical steel, and it is therefore highly desirable to 

reduce this effect.

A Magnetostriction Measurement System (Figure 2.7) has been developed as part of a 

PhD course in association with Cogent Power [27, 28], and is located at Orb Works.

thIt predominantly measures the magnetostriction (from the peak fundamental to the 5

harmonic) of a sample of standard Epstein size (305 x 30mm), but it has also been

designed to determine the power loss, specific apparent power and permeability of the

material. These measurements can be carried out at an applied compressive or tensile

stress, at intervals of IMPa over the range of -lOMPa to +10MPa.

To obtain the relative data, the sample under investigation is clamped into a fixed

position at one end, with the other end being attached to a low friction, non-rotating

cylinder. This cylinder applies the stress uniaxally along the length and in the plane

of the sample. The magnitude of the stress is controlled by the pressure of the

cylinder, which is in turn regulated by electro-pneumatic valves linked to a PC
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Figure 2.6: SNMS apparatus (Vacuum Generators SIMSLAB)
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Figure 2.7 (a): Magnetostriction Measurement System.

Figure 2.7 (b): Magnetostriction Measurement System, 
(highlighted area in 27 (a)).
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containing the related software.

The magnetisation is controlled by a PMS 19000 loss tester which controls the levels 

of induction and also provides the measurement system for characteristics such as 

power loss, permeability and specific apparent power.

2.2.6 PMS 3000 Single-Strip Tester

The PMS 3000 single-strip tester (Figure 2.8(a), 2.8(b)), used to measure the magnetic 

properties of various samples during this investigation, was custom built at Orb 

Works. It is a version of the standard PMS 3000 apparatus that is used to routinely 

test the material from each coil produced at Orb Works in accordance with British 

Standards [29]. It has been modified so that it tests just a single Epstein (305mm x 

30mm) sample, instead of the standard pack of 24 samples.

The sample under investigation is placed inside a solenoidal ‘tunnel’ containing the 

primary (magnetising) and secondary (sensing) windings. A flux closure yoke, 

manufactured using laminated electrical steel, is used to reduce the reluctance 

associated with the flux leaving the sample into air. The sample may then be 

magnetised according to the induction and frequency levels specified by the user. The 

associated software then produces a digital image of the B-H hysteresis loop. From 

this, the specific total loss, specific apparent power and permeability is automatically 

calculated and the results shown on screen.

2.2.7 Fischer Permascope

Coating thickness measurements at Orb, both in the laboratory and on the production 

lines, is manually measured using a Fischer Permascope (Figure 2.9). The magnetic
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Figure 2.8 (a): PMS 3000 single-strip tester

Sample

Figure 2.8 (b): PMS 3000 single-strip tester 
(highlighted area in 2.8(a)).
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Figure 2.9: Fischer Permascope and probe.
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induction method allows the non-destructive determination of coating thickness of 

non-magnetic coatings on a ferrous substrate, such as the forsterite glass film and final 

insulation layer found on electrical steels [30]. The base unit is linked to a probe, 

which is pushed down onto the surface of the coated sample. The probe contains a 

coil that generates a changing magnetic field. The magnetic flux density of this field 

is altered upon contact between the probe and the sample, and a secondary coil 

measures the change in magnetic inductance. Once the instrument has been calibrated 

using copper calibration foils of a known thickness, a microprocessor can convert this 

change into a value for coating thickness, which is shown on a digital display on the 

base unit.

The accuracy and reproducibility of the technique can be affected by characteristics 

such as surface roughness, silicon content and thickness of the steel, as well as 

uniformity of the coating. It is therefore necessary to ensure that the calibration is 

carried out on the same steel substrate that has been coated to minimise errors. Also, 

a minimum of 20 readings are taken from a selected area to produce an average value, 

and this is found to result in an accurate and reproducible coating thickness 

measurement.
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Chapter 3

3.1 Aims of Programme

The review of literature has given an introduction into electrical steels, and in 

particular the surface layers that are present at various stages throughout production.

It has been shown that the quality and composition of the decarburisation oxide, 

forsterite glass film and final insulating layers can have a great effect on the final 

material. This may be in terms of magnetic performance or appearance, both of 

which are factors that are likely to significantly influence the customers’ perception of 

the material produced at Orb. There are also many other characteristics of the surface 

layers for which certain standards must be achieved if the desired quality of the final 

product is to be attained. Therefore, the improvement of these layers in terms of both 

consistency and quality will give Cogent a distinct advantage over competing 

manufacturers of electrical steel.

For these reasons, it would be highly beneficial for Cogent to possess analytical 

techniques that can be used to accurately determine the composition and quality of 

each of the layers. This would enable the standards to be more closely monitored, and 

the processing parameters to be altered, where necessary, in order to produce a more 

optimum product.

At present, the decarburisation oxide layer is analysed in terms of only its oxygen 

content, and the forsterite glass film is only analysed if problems occur i.e. there is
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generally little assessment of these layers other than the crude classification of good 

or bad.

The final insulating layer is also only inspected visually on-line to directly assess its 

quality, although routine magnetic testing carried out on each processed coil might 

draw attention to any major deficiencies in the cured coating.

In the past, a number of analytical techniques have been evaluated in an attempt to 

provide a more accurate analysis of each of the layers. Unfortunately, they have been 

found to be extremely time consuming. In a continuous production environment such 

as that at Orb Works, it is necessary for analytical methods to provide a rapid 

assessment of the layers in order for any problems to be remedied as quickly as 

possible. Therefore, none of the techniques that had previously been found to be time 

consuming were considered to be a viable option, irrelevant of the accuracy that they 

could provide.

The present programme was therefore designed to evaluate a number of analysis 

techniques, and establish those that may be used to provide an accurate and rapid 

assessment of the composition and / or quality of the surface layers. Where 

applicable, the viable techniques can be used to determine the effect that varying 

certain parameters (such as final coating composition) has on the overall quality of the 

product.
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Chapter Four

Fourier Transform Infrared (FTIR) Analysis 
of the Decarburisation Oxide Layer

4.1 Introduction

For a number of years, there has been a Fourier Transform Infrared (FTIR) 

spectrometer located within the Chemistry Department at Orb Works. Its main use at 

present is to provide regular analysis of oils. However, previous work has been 

carried out which indicates that this method may have the potential to be used to 

characterise the oxide layer formed on the surface of the steel during the 

decarburisation process [31]. This characterisation could be in terms of the thickness 

of the oxide layer and / or its compositional make-up.

When the oxide layer has previously been analysed with the FTIR apparatus, it has 

been difficult to authoritatively analyse the resultant spectrum, as the bands associated 

with each of the components of the oxide layer have not been seen distinctively. It 

has been suggested that the use of a variety of grazing angle attachments may help to 

solve this problem. This is a piece of apparatus that causes the radiation to be incident 

upon the surface at a carefully controlled angle, which in turn alters the depth to 

which the infrared radiation penetrates into the surface. The attachment used ‘as 

standard’ for the analysis of coated samples at Orb provided a grazing angle of 26.5°. 

As this attachment was found to produce inconclusive results, an attachment 

providing a grazing angle of 80° was acquired to carry out a further investigation into 

the suitability of this technique for rapidly identifying the composition of the
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decarburisation oxide layer. This would allow the consistency of the material 

produced on the decarburisation lines at Orb Works to be quickly and easily assessed, 

enabling rapid detection of any variation in the oxide layer from what is expected for 

optimum glass film formation.

4.2 FTIR Apparatus: Effect of Scanning Parameters

4.2.1 Introduction

To ensure that any results obtained from the FTIR equipment would be valid, it was 

first necessary to establish the correct scanning parameters for the apparatus. Orb 

Works has recently taken delivery of a new FTIR spectrometer and discussions with 

personnel experienced in this field suggested that the default settings used on the new 

FTIR equipment at Orb might not be set to their optimum levels. The default settings 

described above are:

• Number of scans: 3

• Resolution: 4 cm"1

A visit to a different Corns site allowed observation of an FTIR set-up that been 

operational for a number of years. Discussions with employees that are experienced 

in the use of FTIR indicated that a minimum of 6 scans should be carried out on each 

sample (in order to provide sufficient data for a single spectrum), and the necessity of 

this was demonstrated on the apparatus in question. Also, it was recommended that 

the resolution used should be either 2cm'1 or 1cm'1, although time restraints prevented 

any scans being carried out at the time to confirm this.
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For these reasons, the effect that the variation of these parameters would have on the 

spectra obtained from the Orb apparatus was investigated.

4.2.2 Experimental Procedure

The FTIR spectrometer was used to obtain a spectrum from material with a variety of 

different coatings on the surface. This was carried out using the ‘standard’ 26.5° 

attachment, as more was known about this than the more recently acquired 80° 

attachment. It was found that the largest number of distinctive bands was observed on 

the spectrum obtained from a grain oriented sample coated with the final insulation 

coating. Although a requirement of the overall investigation was the analysis of a 

large number of decarburisation samples, it was decided that using final coated 

samples would provide a more accurate assessment of the required scanning 

parameters as the spectra relating to the oxide layer was too inconclusive at this stage. 

The spectra obtained from this material were not fully understood at this point in the 

investigation, but it was only necessary to use the bands to monitor the consistency 

between spectra when the scanning parameters were altered.

A single steel sample, coated with the insulation coating, was acquired from the end 

of the final coating line and cut to an appropriate size, ensuring that it would fit 

correctly in the standard reflectance attachment (26.5° grazing angle). This 

guaranteed that there was no bending of the sample whilst it was held in position, as 

this could cause minor discrepancies in the final spectra obtained. The sample 

remained fixed in the correct position while all scans were carried out, which ensured 

that the spectra obtained were representing exactly the same area of coating. This
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should theoretically result in identical spectra, which will differ only due to changes 

in the scanning parameters.

The first setting to be varied was the number of scans. These separate scans were 

carried out within a short time frame and are automatically averaged by a program 

contained within the FTIR scanning software to produce one spectrum. It was 

decided to vary the number of scans at each interval between two and six. This 

includes both the number currently used at Orb according to the default setting (three) 

and the number that has been recommended (six). This was first carried out using the 

default resolution setting of 4cm'1, and then repeated using a resolution of 2cm'1 to 

determine any effects that occur due to changing this second parameter.

4.2.3 Results and Discussions

4.2.3.1 Number of Scans

Figures 4.1 and 4.2 show examples of the variation in the spectra (transmittance 

against wavenumber) obtained as the number of scans was altered from two through 

to six. Figure 4.1 shows the spectra obtained when the resolution was set to 4cm'1, 

and Figure 4.2 shows the spectra when a resolution of 2cm'1 was used.

It can clearly be seen on both figures that each of the spectra are very similar, 

irrespective of the number of scans that were carried out. It should be noted that there 

are five spectra on each of the figures, all of which overlap very closely. The fact that 

it is difficult to distinguish between each of the separate spectra emphasizes the fact 

that very little variation was observed.

The only area of variation that can be seen on this scale is in the wavenumber range of

approximately 650 -  750 cm"1. The variation appears to be slightly more prominent
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when a resolution of 2 cm'1 is used. Figure 4.3 shows a more detailed version of this 

region of Figure 4.2, so that it may be seen in greater detail. It can be seen that the 

variation is not only in the size of the band at -670 cm'1, but it actually changes from 

a peak to a trough in the case where two scans were carried out. The reason for this 

effect change has not been confirmed, but it is expected to be a result of the apparatus 

itself, and not the sample being analysed as there is not practical explanation as to 

why there should be a change between a transmittance trough and peak.

Analysing the spectra in general, it is a trough that is of most interest in the case of 

these transmittance spectra, because a reduction in the %T value indicates the 

presence of a compound that is absorbing the radiation. It is unclear how changing 

the number of scans carried out would influence the spectra in the way seen in this 

investigation, and further research may be required if this effect has an influence on 

the data that is taken from the spectra. However, 670cm'1 is not in a region that 

affects the maximum height of the band upon which it occurs, and therefore may not 

be relevant when analysing this spectrum. Also, this feature is negligible in size when 

compared to the size of the band on which it is found. It should be noted that a band 

at this wavenumber was later observed on the spectrum for plain, uncoated steel. This 

evidence further suggests that this band is due to an effect of the apparatus, and not of 

the surface being analysed.

4.2.3.2 Resolution

Figure 4.4 shows a comparison between the spectra obtained using the two resolution 

settings (2cm"1 and 4cm'1). It can be seen that there is very little difference between 

the two sets of spectra, with only a very small offset between the two (each set 

contained 2 scans). This offset is negligible compared to the changes that may be
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seen along the length of a standard Epstein sample, as the effect on the areas of each 

of the bands, and also the maximum height of the bands, is very small.

Figure 4.5 shows a magnified region of these spectra, which displays a greater amount 

of detail. It shows that the spectra obtained when using a resolution of 4 cm'1 result in 

a much smoother line. This may show a small decrease in the accuracy of the 

apparatus, but the effect on the areas is negligible as the red spectra (2cm'1 resolution) 

just appears to oscillate slightly with respect to an average which would be almost 

identical to that shown by the black (4cm1 resolution) spectra.

4.2.4 Conclusions and Recommendations of Section 4.2

4.2.4.1 Number of Scans

As the number of scans does not appear to have an effect on the spectra obtained, it is 

recommended that the default setting on the apparatus at Orb remains at 3 scans, as 

this appears to be completely adequate. Increasing the number of scans on this 

apparatus fails to produce a spectrum with any greater detail, and also has the 

disadvantage that an increased number of scans is more time consuming. This is a 

significant drawback, as it is envisaged that this technique could eventually be used 

for routine analysis on a large number of samples. Therefore, 3 scans provide the 

optimal compromise between the quality of a spectrum and test duration.

4.2.4.2 Resolution

The effect of improving the resolution of the equipment is more noticeable than 

varying the number of scans, although it is still quite slight and only observed to have 

a prominent effect when the selected region is magnified.
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Therefore it is recommended that the default setting of 4cm'1 be retained as there does 

not appear to be any benefits gained from changing it to 2 cm"1. In fact, the reverse 

may be true as the oscillations may lead to further difficulties when trying to interpret 

the data.

The recommendations made from this investigation are only truly valid for the case 

being considered (i.e. phosphate-based coating analysis). This is due to the spectra 

having bands that are both quite large and clearly defined. As the number of coatings 

that are analysed using FTIR increases, it may be found that not all spectra are as 

clearly defined. In these cases, it is possible that there are situations where a change 

of resolution may be beneficial. Therefore, each case should be considered 

separately, although the variation caused by altering the scanning parameters in this 

investigation would only have a noticeable effect on very poor, undefined spectra 

which would probably not yield any useful results.

4.2.4.3 Comparison With Other Equipment

It was found that the initial recommendations, made by FTIR personnel based at 

another Corns site, did not improve upon the spectra obtained when using the initial 

default settings. The FTIR apparatus based at Orb Works has been recently 

purchased, and is therefore likely to be a more advanced version than the equipment 

upon which recommendations were based. It is likely that recent advances in 

technology have resulted in this type of apparatus being developed further in recent 

years, minimising the effects caused by scan number and resolution. Therefore, the 

spectra originally acquired when using the initial settings were already of such good 

quality that it was difficult to substantially improve upon them.
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Although this investigation concluded that no change should be made to the default 

settings, it also provides a good degree of confidence in the validation and accuracy of 

any future spectra.

4.3 Analysis of Decarburised Sheet

4.3.1 Experimental Procedure

A total of fifteen samples were selected from the decarburisation lines at Orb Works, 

nine from D5 line and the remaining six from D4 line. Each sample was chosen from 

a different shift as this would hopefully cover a range of processing conditions and 

therefore lead to differences in the spectra obtained.

The samples used were selected from decarburisation discs that are routinely used by 

the Chemistry Laboratory for oxygen analysis, since these were readily available and 

the oxygen content was already known.

Following advice from Chemistry Laboratory personnel, the top side of the sample 

was always taken as being the side on which burrs were present from when the disc 

had been punched from the strip, irrespective of which side had been labelled. This 

would allow any difference in trends between the two surfaces to be identified. This 

is a possibility as there may be a difference in the processing conditions experienced 

by each side.

The default scan of the apparatus is from 400cm'1 and 4000 cm'1, but all of the main 

bands were subsequently found to lie between 400cm'1 and 2000cm'1. Therefore, the 

scans were subsequently analysed in this wavenumber range. Spectra were obtained 

from both the top and the bottom surfaces of each of the samples using the Orb FTIR
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apparatus in conjunction with the 80° grazing angle attachment that has been 

specifically acquired for analysis of these types of oxide layers.

4.3.2 Results and Discussion

4.3.2.1 Identification of Bands

When the scans of all the samples had been completed, the spectra were each 

considered individually and then compared. Although there were many small 

indistinctive bands on each of the spectra, it was found that there appeared to be four 

main bands of interest that varied in size or shape between samples. These bands 

occurred at the following approximate wavenumbers:

1050cm'1 (band 1),

985cm'1 (band 2),

925cm'1 (band 3),

670cm'1 (band 4).

A typical spectrum of transmittance versus wavenumber for these samples is shown in 

Figure 4.6. The four main bands of interest have been labelled, each being observed 

as a trough as it is the reduction in transmittance that is of interest

4.3.2.2 Band Area

The area associated with each of these bands was established using the standard 

baseline method [32]. This utilises a baseline, which is drawn on the each spectrum 

between the two points where the trough of the band appears to start and finish, to 

define the remaining perimeter of the trough. Therefore, a specific area is outlined.
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The assumption must be made that the background radiation varies linearly with 

wavelength.

Following further research, the various parts of the spectra were identified:

Many small bands that appear at approximately 1350 -  2000 cm'1 are often associated 

with H2O.

Band 4 (in Figure 4.6) was found to be unrelated to the oxide layer and was in fact 

evidence of the presence of CO2 [33].

However, the remaining bands were associated with compounds expected to be found 

in the oxide layer, namely FeSiC>3 (band 1) and Fe2SiC>4 (bands 2 and 3) [31]. The 

compound Fe2SiC>4 is known as fayalite, after which the entire decarburisation oxide 

layer is commonly (and incorrectly) named.

Graphs were plotted to establish whether or not there was a relationship between the 

areas of any of the bands (Figures 4.7 - 4.12), as the conclusions above suggest that 

bands 2 and 3 should be linked. As expected, this confirmed that these were the only 

two bands that showed a clear relationship. This confirms that they are both due to 

the same compound (fayalite).

In some cases, it was found that there was also a small component of band 2 that was 

due to FeSiC>3 as the two absorption bands overlap slightly. This is due to the 

resolution of the instrument being lower than desired. However, this was not a 

significant effect as the area of band 2 was predominantly related to fayalite.

The FTIR results were surprising due to the fact that there appeared to be no large 

bands corresponding to silica (Si02). Previous metallographic work carried out at Orb 

Works has proven that this compound has previously been found in the oxide
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layer after the strip has undergone the standard decarburisation procedure on either 

one of the Works decarburisation lines. The SiC>2 in the oxide layer reacts with a 

magnesia (MgO) coating to form a forsterite (Mg2SiC>4) glass film at a later stage, and 

so poor glass film defects would have occurred on the coils from which the samples 

were taken if Si02 had not been present. This strongly suggests that traces of SiC>2 

should have been observed on these spectra. If this compound were present, the 

related bands would be expected between 1050 and 1250 cm'1.

When a trace obtained from Orb material is compared with a trace for Japanese 

material (see Figure 4.6 and Figure 4.13 (also [31]) it is clear that the content of Si02 

and fayalite is significantly different between the two specimens. It would initially 

appear that the Orb product is not of the optimum composition as the presence of Si02 

is beneficial for good glass film formation. The MgO can also react with fayalite to 

form the forsterite glass film, but this causes conductive iron particles to become 

embedded in the surface layer during the glass film reaction, thus reducing the 

insulation properties of the final product.

4.3.3 Conclusions of Section 4.3

Significantly, this work has proven that fayalite is present in the decarburisation oxide

layer, and that it can be clearly detected by using the 80° grazing angle attachment on

the FTIR apparatus located at Orb. However, there appears to be no evidence of

silica. From the results obtained, the most likely conclusion for this was that the

FITR could only ‘see’ the very topmost section of the oxide layer. It seems plausible

to suggest that the oxide layer is capped with a layer of fayalite that the infrared

radiation is unable to penetrate with the current apparatus.
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As mentioned previously, it is the grazing angle attachment that determines the angle 

at which the radiation is incident upon the surface of the sample; as the incident beam 

is varied towards being perpendicular to the sample, the greater the penetration depth 

of the radiation.

To investigate the effect of varying the angle of the incident radiation, apparatus 

containing a variable grazing angle attachment was utilised to further investigate the 

potential for FTIR analysis of the oxide layer. This piece of equipment enables the 

angle of incidence to be varied between over the maximum range possible (i.e. 

theoretically from 0° to 90° with respect to the sample surface). This work is covered 

in Section 4.4.

4.4 Analysis of the Decarburisation Oxide Layer 

Using a Variable Grazing Angle Attachment

4.4.1 Introduction

In this chapter, the FTIR technique has been evaluated in an attempt to establish the 

potential for analysis of the oxide layer formed on the surface of the strip during the 

decarburisation process.

The FTIR apparatus at Orb possesses two attachments for the analysis of flat steel 

samples. These are a standard attachment, which provides an angle of incidence of 

26.5°, and a separate attachment with a grazing angle of 80°.

Work has shown that the standard attachment is unable to provide useful spectra as 

there are no clear bands observed. Use of the fixed grazing angle attachment (80°) 

has shown that only fayalite is detected, suggesting that only the uppermost section of 

the oxide layer is analysed. Therefore it was necessary to utilise the FTIR apparatus
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based at Swinden Technology Centre (STC), as this was complete with a variable 

grazing angle attachment.

The use of the variable grazing angle attachment allows the angle at which the 

infrared radiation is incident upon the sample surface to be varied, thereby altering the 

depth of penetration into the layer. It is envisaged that this would enable all the 

compounds contained within the oxide layer to be detected by the FTIR apparatus, 

with evidence of all of these compounds evident on the same spectrum. An 

investigation was carried out at STC to establish the effectiveness of this technique.

4.4.2 Set-up of Experimental Apparatus

The grazing angle attachment can be seen in Figure 4.14. It has the potential to 

theoretically vary the angle at any interval between 10° and 90° (with an error of 

-0.5°), although angles greater than -85° prove difficult in practice. Adjusting the 

height of two mirrors, made possible by rotating the two ‘arms’, varies the angle. For 

the apparatus to function correctly, it is necessary that the angle to the vertical must be 

equal for both of the arms. An angle of 10°, with the arms in an almost vertical 

position, gives the maximum infrared penetration depth, and a setting of 90° gives the 

minimum penetration. The variation in angles is shown in Figure 4.15.

Figure 4.16 shows the plan view of the spectrometer set-up, indicating the path of the 

infrared radiation as it passes through the apparatus from source to detector.

Before any meaningful spectra could be acquired, it was necessary to calibrate the

apparatus. With the aid of an in-built computer program, this was easily achieved

simply by obtaining a spectrum of the background. For this investigation, the

standard sample used during calibration was stainless steel. This would be sufficient
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Figure 4.14: Photograph showing the grazing angle apparatus 
located at Swinden Technology Centre.
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Figure 4.16: Plan view of the spectrometer set-up.
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for this work, as all the spectra were to be used in comparison with one another. 

However, for any future quantitative work it would be beneficial to use a sample of 

plain (i.e. uncoated) electrical steel.

The calibration was repeated during regular intervals throughout the investigation to 

minimise any variation in sampling conditions.

Initially, 32 scans were performed to produce each separate spectrum. This would 

give a high degree of accuracy, but seemed excessive as the number of scans believed 

to be adequate for the Orb apparatus is 3 (see also Section 4.2.4.1). Using a setting of 

32 scans was also very time consuming, considering the number of samples to be 

analysed. It was decided to reduce the number of scans to 16. To determine whether 

this would have an effect on the spectra produced, two spectra were obtained from the 

same area of a common sample, one with 16 scans, and one with 32. The two 

resultant spectra were compared, and it was found that the difference between them 

was negligible. These spectra can be seen in Figure 4.17, in which it is difficult to 

distinguish between the two spectra due to their high degree of similarity. Therefore, 

it was decided to proceed through the investigation with the reduced number of 16 

scans, as this would allow more samples to be analysed without compromising on 

accuracy. It should be noted that these spectra are measured in absorbance instead of 

transmittance, as this was the preferred method at STC and was recommended by 

personnel experienced in the use of this particular piece of equipment. This scale was 

used for all subsequent spectra obtained from this apparatus.

In this instance, the two methods of analysis are very similar, except that it is the 

peaks that are of note when looking at a spectrum measured in absorbance, instead of 

the troughs when transmittance spectra are observed.
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Another parameter to be considered was the strength of the signal received by the 

detector. As the angle was varied, the power of this signal can also vary, even if the 

remainder of the set-up remains unchanged. Therefore, each time the angle was 

varied, one of the ‘fixed’ mirrors was adjusted in very small increments using a 

sensitive screw-thread mechanism. This altered the intensity of the signal, which was 

depicted by a waveform on the computer display. It was therefore possible to ensure 

the optimal signal was used for each sample.

4.4.3 Experimental Procedure

A strip sample was obtained from the decarburisation line following a standard 

production run, and cut to an appropriate size for analysis. The magnesia (MgO) 

coating was brushed off, and the surfaces were cleaned with acetone. Once the 

sample was correctly positioned in the apparatus, the grazing angle was varied in 5° 

intervals between 85° and 10°. This should alter the depth of penetration of the 

radiation, which will ideally enable both the fayalite and silica layers to be detected at 

the same time.

Both the top and bottom surfaces of the sample were analysed to discover the levels of 

variation between the two surfaces.

4.4.4 Results and Discussion

The resultant spectra are displayed in Figure 4.18. Although spectra were obtained at 

every 5°, only spectra at intervals of every 10° are shown for clarity. It can be seen 

that these spectra followed a clear trend at higher angles, and the spectra at 5° 

intervals also agreed with this.
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There are very obvious absorption bands that can be seen on each of the spectra. 

These correspond with the approximate wavenumber regions of 1600cm'1 and 1350 - 

1400cm'1. The reasons for the presence of these bands is unknown, as they do not 

relate to any of the bands expected from researched literature, and have not been 

evident on the spectra obtained from the FTIR apparatus at Orb Works.

Further bands began appearing in the 50° spectrum, and increased in magnitude as the 

angle increased. The main band was at -750cm'1, with smaller bands either side at 

approximately 600cm'1 and 850cm"1. Again, these wavenumbers do not correspond 

with those expected.

4.4.5 Conclusions of Section 4.4

The results from these spectra appear to be incorrect, as the spectra seen do not 

correspond with any of the compounds expected. It was thought to be possible that 

the bands seen in all of the spectra could be related to the acetone that the samples 

were cleaned with prior to analysis. However, the sample was left to stand for a 

number of minutes prior to this analysis, in which time all traces of the acetone should 

have evaporated. Acquiring the spectrum for acetone confirmed that there was no 

link between this substance and the bands that were observed.

The spectrum for MgO was also obtained, as it was possible that traces of this may 

have remained, but none of the bands corresponded, ruling this compound out as the 

source of any of the bands.

It appears most likely that the unexpected results are be related to a change in the

apparatus, although the position of the bands should remain constant. It was the same

oxide layer being analysed, and this discrepancy could not be due to the sample under

analysis. Therefore, contamination of the analysis chamber appears to be the only
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plausible explanation. This hypothesis is also supported by the bands appearing to be 

almost identical in each of the spectra, suggesting that the contamination is at a 

constant level.

One interesting aspect of these results is the variation seen with the changing grazing 

angle. There is a clear increase in the size of band at approximately 750cm'1, 

suggesting that increasing the angles results in the compound responsible for this band 

being detected to a greater extent. However, this result also suggests that more of this 

compound is detected as the penetration depth decreases, suggesting that this 

unknown compound is found primarily on the very top surface of the oxide layer. 

From these results, it can be concluded that the layer responsible for this band is very 

thin, and requires the path of the radiation through the layer to be of a certain length 

before it registers on the spectrum. This path would increase in a thin top layer as the 

direction of the radiation got closer to the flat surface.

It is possible that this compound is a secondary oxide layer formed on the 

decarburisation layer in the time between taking the sample from the line and 

analysing it. However, it would be expected that any layer such as this would have 

been observed on the FTIR apparatus based at Orb Works.

The FTIR technique is most commonly used for the analysis of organic compounds, 

as many difficulties are experienced when looking at inorganic matter. It appears that 

these compounds are simply not suited to being analysed using this technique.

As these results have shown to be inconclusive, a further method was sought to 

establish a way of analysing a greater depth of the oxide layer to ascertain whether 

silica is in fact present in the decarburisation oxide layer. It appears that there is no
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method of doing this in a non-destructive manner. Therefore, it was decided that a 

further investigation should be carried out to discover the effect of partially pickling 

the decarburised material to remove the uppermost part of this layer. This work is 

discussed in Section 4.5.

4.5 Effects of Pickling on FTIR Spectra Obtained

4.5.1 Introduction

It was found that it was not possible to analyse the full depth of the decarburisation 

oxide layer using FTIR, when utilizing either the standard FTIR apparatus with fixed 

grazing angle at Orb Works or the maximum range of the variable grazing angle 

attachment located at Swinden Technology Centre. This was proven by the absence 

of silica bands on the spectra obtained. It was therefore necessary to develop a 

method that would allow the infrared radiation to access the lower reaches of this 

layer.

As the previous investigation had exhausted the available non-destructive methods, it 

was necessary to devise a way of removing the very topmost surface of the oxide 

layer. An investigation was carried out using brief acid pickling to achieve this.

4.5.2 Experimental Procedure

Sample J20254 was acquired from the end of the decarburisation line at Orb Works 

and brushed free of MgO. Both sides were then analysed using the 80° grazing angle 

attachment on the FTIR apparatus at Orb, previously found necessary to observe the 

bands relating to fayalite. The sample was then pickled, following the standard 

pickling procedure used by the Chemistry Laboratory, for 10 seconds in a mixture of
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sulphuric and hydrofluoric acid, which was heated to approximately 50°C. Once 

removed from the acid, the sample was rinsed with water and thoroughly dried using a 

hot air dryer. When pickling for such a short duration, only the very top of the surface 

oxide layer should be etched away, leaving further parts of the layer exposed. The 

sample was then analysed on the same FTIR apparatus to show the effect of pickling 

on the spectra obtained. It was envisaged that the pickling would cause a thinning of 

the fayalite, possibly allowing the infrared radiation to penetrate into the region 

occupied by silica.

4.5.3 Results and Discussion

The spectra obtained using the FTIR apparatus both before and after the brief acid 

pickle are shown in Figure 4.19.

It was expected that the spectrum of the pickled sample would be similar to the 

spectrum obtained from the sample in its pre-pickled state, with the bands decreasing 

in size slightly as the amount of oxide layer was reduced. Hopefully, evidence of 

silica would also be present.

It was also thought that there might also be some extra bands due to traces of the 

pickling acid that had not been fully rinsed from the surface and/or rust that may have 

formed following the sample being dried.

However, the spectra generated after pickling showed no signs of the three main

bands that had previously been linked to the oxide layer (Figure 4.6). There were

however two very large bands at approximately 500 cm'1 and 1200 cm'1. These bands

approximately coincided with the wavenumbers at which SiC>2 was expected to be

found [31]. There was also a smaller band at ~825 cm'1. Spectra obtained from [32]

suggest that this is related to SiC>2, although the same spectra show the main silica
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band at a slightly lower wavenumber than seen here (1130 cm'1 compared to 1200 

cm'1). However, from previously acquired knowledge relating to this oxide layer, it is 

inconceivable that the substance observed here would be anything other than silica.

4.5.4 Conclusions of Section 4.5

The infrared trace for the pickled sample, showing obvious bands relating to silica, 

confirms that the infrared radiation has not been able to penetrate the full depth of the 

oxide layer when a standard grazing angle attachment has been used. It also validates 

the theory that the oxide layer generally consists of a silica-rich layer directly adjacent 

to the steel, with a fayalite-rich layer on top. This layering effect has previously been 

observed under a microscope many years previously, but had not been confirmed at 

the exact processing conditions currently used.

Although it had been expected that the spectra obtained would be of the entire oxide 

layer, and that the spectra from before and after pickling would be somewhat similar, 

it can now be concluded that the infrared radiation is unable to penetrate the fayalite 

that is present on the top of the oxide layer.

Although these results have given an insight into the capabilities of the FTIR 

apparatus, it was considered necessary to carry out a further investigation, with 

spectra being obtained at smaller pickling intervals. This would enable the transition 

from the fayalite rich layer to the silica rich layer to be seen in more detail. It was 

decided that it would be best to do this by combining this investigation with another 

technique that is currently being developed, known as the Electrochemical Potential
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(ECP) method. This method is detailed in Chapter 5, and combined with the FTIR 

technique in Chapter 6.
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Chapter Five

Electrochemical Potential (ECP) Analysis of the 
Decarburisation Oxide Layer

5.1 Introduction

It is well known that the composition and thickness of the layer formed during the 

decarburisation process of grain oriented electrical steel has a direct influence on the 

glass film formed during the subsequent high temperature coil anneal. For example, 

the magnesia can react with both silica and fayalite contained in the oxide layer to 

form the forsterite glass film. However, the insulating properties of this layer will be 

improved if the reaction involves silica, as the reaction with fayalite will leave 

conductive iron as a by-product.

Due to these effects, it was considered necessary to evaluate the oxide layer of 

samples produced on the decarburisation lines at Orb Works to determine the 

consistency of the composition. It is highly desirable that the oxide layer is consistent 

from one coil to another, and also across the width of the strip, in terms of both 

thickness and composition. Unfortunately, the extent of this consistency is currently 

unknown. A greater understanding of the degree of variation would lead to an 

improved confidence in the product and is vital for good quality control.

In the future, it is likely to be considered necessary to carry out investigations into the 

magnesia slurry, and other parameters that may affect the quality of the resultant glass 

film. In order to do this, it will be necessary to ensure the starting material is the 

! same, and has a consistent oxide layer. Otherwise, any effects seen may be 

attributable to unknown changes in the oxide layer.
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The Electrochemical Potential (ECP) method of analysis has previously been 

developed to evaluate the oxide layer produced during the decarburisation process 

[34-39].

The cause of any variation in the oxide layer could be due to a number of factors, 

ranging from differences in the underlying steel throughout the length of the coil, to 

variable heat transfer across the strip width from the burners in the furnace. This 

investigation aims to examine the variation in the oxide layer both along the length 

and across the width of the strip. This should be seen by observation of the changes 

occurring in the ECP profiles relating to samples that have been selected from 

different areas of the strip. The potential difference between the sample and a 

reference electrode, measured against time for each sample, will vary due to the 

dissolution of the surface oxide layer on the steel surface. The resultant ECP profiles 

are therefore likely to be indicative of both the thickness and composition of the layer 

and give a ‘fingerprint’ of the layer.

A detailed description of the electrochemical potential technique was provided in 

Section 2.2.2.

5.2 Experimental Procedure

A large sheet of material measuring approximately 2.3m in length and of strip width 

(~950mm) was taken from the end of coil H77538 after being processed on the D4 

decarburisation line at Orb Works. This was then cut into smaller samples suitable for 

electrochemical potential (ECP) analysis. These samples measured 130mm x 50mm.
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Each sample was given an identification number so that its position from within the 

original sheet could be easily determined.

The following grid shows the way in which the samples were labelled on a section of 

the sheet.

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C1 C2 C3 C4 C5 C6

D1 D2 D3 D4 D5 D6

E1 E2 E3 E4 E5 E6

 ►

Rolling direction

Samples were selected which corresponded to both columns 2, 6,9,12 and 15, and to

rows A, F, K, Q and V (i.e. A2, A6 F2, F6 etc.). This gave a large number of

samples over the whole area of the sheet, and therefore enabled trends to be identified 

both along the length and across the width of the sheet.

The standard ECP procedure (described in Section 2.2.2) was followed. This 

involved immersing both the sample and the reference calomel electrode in 5% 

sulphuric acid at 70°C for a duration of 20 minutes. The apparatus used can also be 

seen in Figure 2.5.

The desired temperature is achieved by placing the beaker of acid into a heated water 

bath. To ensure the temperature of the acid remains uniform throughout, it was stirred 

with a mechanical glass stirrer at a speed of 266 r.p.m.
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The temperature of the acid was checked at regular intervals using a standard 

thermometer. The temperature variation during the course of a series of measurements 

was noted to be within ±0.5°C.

The acid was replaced after every 6 samples, as it has been shown previously that 

further use would lead to the possibility of incorrect results [34] due to degradation of 

the acid.

A precise area of the sample was covered with an acid-proof tape to ensure a 

consistent area of each steel sample was exposed to the acid (70mm x 50mm). The 

area of the sample above the tape (10mm x 50mm) was abraded to remove the oxide 

layer to ensure good electrical contact when it was clamped into place.

The reference electrode was a mercury / calomel electrode. This electrode was placed 

in the acid at least 90 minutes prior to each set of experiments to allow it to stabilise. 

It was suggested by Chemistry Laboratory personnel, experienced in the use of these 

electrodes, that this should eliminate the need for a sacrificial test sample.

5.3 Results and Discussion

5.3.1 General Shape of ECP Profiles

The ECP computer program takes a reading of the potential difference between the 

two electrodes every 5 seconds throughout the 20-minute duration of each test. This 

data can then be transferred into a Microsoft Excel file, enabling an ECP profile to be 

generated by plotting the potential difference against time.
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The plotted profiles were found to be similar for each sample, but small features 

allowed them to be categorised into four groups, shown in Figures 5.1 -  5.4.

It can be seen in Figure 5.1 that the potential difference drops until it reaches what can 

be described as a trough (ti, vi). At this point it begins to increase to a peak (t2, V2) 

before falling off steadily and levelling out to a ‘baseline’. This is the general trend 

seen in an ECP profile. The profile shown in Figure 5.1 shows what is described as a 

‘Type r  curve. If the profiles in Figures 5.1 and 5.2 are compared, it can be seen that 

a difference is clearly evident. In Figure 5.1, the value for vi is at a different level to 

the baseline where the trace levels out, but in Figure 5.2 these points are at a similar 

level. This is defined as a ‘Type 2’ curve.

Another difference can be seen in Figures 5.3 and 5.4 where a smaller second peak 

can be seen between the first peak and the baseline. This feature occurs both when 

the trough is at a different level to the baseline, and also when these two points are at 

the same level. These two profiles are categorised as Types la and Type 2a 

respectively.

The reasons for this variation need to be understood further, and the effect of this 

variation on glass film formation, if any, clearly needs to be established. Identifying 

and eliminating this variation should then allow consistent, optimum surface oxide 

and glass film layers to be produced.

5.3.2 Consistency of Material

It was considered that due to the way that the material is processed on the line, there 

should be less variation in processing conditions at the centre of the strip compared to
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the edges. For example, the edge burners utilised could have a large effect on the 

edge of the strip but may have little impact on the centre of the strip.

Observation of the bum-off oven indicates general turbulence in the oven and also a 

variation in the level of oil staining and contamination upon the strip surface. These 

effects could also result in a variable product, having an effect on all parts of the strip, 

not just at the edges.

The effect that this variability has on the oxide layer on the surface of the strip should 

clearly be shown by variations in the shape of the ECP profiles that are obtained.

The full set of ECP profiles obtained during this part of the investigation can be seen 

in Figure 5.5.

The characteristic parameters of each curve that were analysed were the time taken to 

reach the base of the trough (ti) and the time taken to reach the first peak (t2), along 

with the value of the potential difference at both of these points (vi and V2 

respectively).

The results are shown in Tables 5.1 and 5.2. The layout of these two tables shows the 

samples as they would have been seen on-line i.e. the columns are across the width 

and the rows are along the length of the strip.

The data seen in these tables is also shown graphically in Figures 5.6-5.13. It should 

be noted that the range of the y-axis (either potential difference or time, depending on 

the figure in question) has been kept constant for each parameter so that a direct 

comparison can be made. For example, it can be seen in Figures 5.6 and 5.7 that the 

range of both y-axes is from 45 to 85 seconds.

It can be seen that both parameters vary to a similar degree along both the length and 

the width of the strip. It was expected that one or both of the parameters might
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Column 2 Column 6 Column 9 Column 12 Column 15
Trough Peak Trough Peak Trough Peak Trough Peak Trough Peak

Row
A 60 170 60 175 65 185 70 215 80 195

Row
F 50 170 50 180 50 175 55 190 55 205

Row
K 70 190 50 165 75 235 70 185 70 190

Row
Q 80 195 50 155 — — 60 195 60 180

Row
V 75 190 55 180 50 160 50 160 55 175

Table 5.1: Time taken to reach trough and peak (seconds).

Column 2 Column 6 Column 9 Column 12 Column 15
Trough Peak Trough Peak Trough Peak Trough Peak Trough Peak

Row
A 0.520 0.533 0.521 0.532 0.522 0.533 0.518 0.529 0.511 0.531

Row
F 0.519 0.535 0.522 0.535 0.521 0.534 0.521 0.534 0.522 0.534

Row
K 0.501 0.526 0.515 0.529 — — 0.507 0.532 0.506 0.530

Row
Q 0.504 0.531 0.519 0.535 0.498 0.522 511.8 0.531 0.517 0.532

Row
V 0.507 0.532 0.521 0.532 0.522 0.535 0.524 0.535 0.523 0.534

Table 5.2: Potential difference at trough and peak (mV).
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increase as the strip width was traversed, but this does not appear to be the case. 

There do not appear to be any obvious trends in either direction.

However, it can be seen that there appears to be a correlation between the potential at 

which the peak and trough appear and the time it takes to reach each point (i.e. vi is 

linked to ti and V2 linked to t2). These parameters were plotted onto a graph to 

determine the extent of this correlation and the results can be seen in Figures 5.14 and 

5.15.

Figure 5.14 shows clearly that, for the samples in each of the rows, there is a clear 

trend for it to take longer to reach the base of the trough as the potential at this point 

decreases. This is as would be expected, as the potential has to drop a greater amount 

to get to the lower values and would therefore be expected to take longer.

The exception to this trend was the samples relating to Row F, but these points were 

in such close proximity to one another that a meaningful trend line could not be 

added. From the trend lines added to the data points for rows A, K, Q and V, the R 

values were 0.86, 0.79, 0.90 and 0.96 respectively, showing a good degree of 

correlation. If all the points from each sample in Figure 5.14 are added to plot a 

single line, a correlation can still be seen, although the R value drops to 0.62.

Figure 5.15 shows a somewhat surprising result. It would be expected to take a 

greater length of time to reach a higher potential at the top of the peak for the same 

reasons stated for the lower potential troughs discussed above, but in fact the opposite 

is true; it takes a shorter time. Again, all samples appear to show a similar trend, 

except for those originating in Row F. The R values for the fitted trend lines were 

0.75, 0.39, 0.58, 0.99 and 0.90 for rows A, F, K, Q and V respectively, with the R2 

dropping to 0.46 all these data points were plotted together.

105



<D
O
C
d)

0.52

<D
0.51

55

A
■ F
■ K
■ Q
■ V

Time to reach trough (seconds)

Figure 5.14: Correlation between the potential difference at the base 
of the trough and the time taken to reach that point.

>
E
<D
Oc
<D
<D

"O

c
0+■*o
Q.

0.524

0.52
150 170 190 210 230 250

Time to reach peak (seconds)

Figure 5.15: Correlation between the potential difference at the top 
of the peak and the time taken to reach that point.

106



It was considered that the value of ti might be an overriding factor, which would 

cause profiles taking a long time to reach ti to also exhibit high values for t2. Figure 

5.16 plots the time taken to reach the two positions on the profile against one another 

(i.e. ti versus t2). It can be seen that there is a slight trend towards this (R = 0.46) 

although the scatter is too great to be fully conclusive. If this correlation was correct, 

and ti was the overriding factor, then subtracting ti from t2 would provide data 

independent of the trough data (i.e. data based only on the peak). This calculation 

was performed and the resultant graph (Figure 5.17) shows that this is incorrect, as 

there appears to be only a very small correlation (R2 = 0.19). Therefore it can be 

concluded the potential reached at the top of the peak is independent of the ‘ti-t2’ 

value.

It was observed that the 4 differently shaped curves (i.e. Types 1, 2, la and 2a) 

showed no clear pattern as to where they appeared on the strip. The position at which 

each type of profile was observed is shown in Table 5.3. Some rows seemed to be 

reasonably consistent along the length (e.g. rows A and F are predominantly Type 1, 

and Row K is mainly Types 2 and 2a), but there were no clear trends that were seen 

overall.

The significance of these variations on forsterite formation and ultimate magnetic 

properties in not fully understood at present. To enable authoritative investigations to 

take place regarding glass film technology, it is clearly vital to start with a uniform 

product i.e. an oxide layer that is consistent in terms of both thickness and 

composition. Even though the curves may not be fully understood at this stage, at 

least regions of uniformity may be highlighted to enable further analysis to take place.
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Column
2

Column
6

Column
9

Column
12

Column
15

Row A 1 1 1 1 1 / la

Row F 1 1 1 1 1

Row K 2a la 2a 2 2

Row Q 2 1 — la/2a la

Row V 2 la 1 1 1

Table 5.3: Type of ECP profile at various positions on the strip 
Sample.
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If it is not possible to locate regions of good uniformity, a broader than desirable band 

of variation may need to be tolerated until a more uniform product is produced.

5.3.3 Further Investigation Into Sample Consistency

The investigation was extended by using the ECP apparatus to analyse further 

samples. A majority of the remaining samples from row K and column 9 were chosen 

in order to gain a more detailed knowledge of the variations across the length and 

width of the strip.

The ECP profiles for the samples originating from Row K are shown in Figure 5.18. 

These are taken from along the length of the coil, in the middle section of the strip. 

Therefore, it expected that the profiles should show very little variance. It can be seen 

that the profiles vary significantly in terms of ti, t2, vi and V2 . Two of the profiles also 

exhibit evidence of the smaller second peak.

The variation in these profiles can also be seen in Figures 5.19 and 5.20. These show 

the time taken to reach the trough and the peak for each sample, and the values of 

potential difference at these points. It can be seen that both of these figures show what 

appears to be a random scatter around a mid-point, with no particular trends observed.

Similarly, Figure 5.21 shows the set of profiles obtained from the samples in column 

9, and Figures 5.22 and 5.23 show the variation in the associated parameters.

It was expected that a significantly greater degree of variation would be seen across

the width compared to along the length of the strip, but it can clearly be seen that

there is a similar degree of variation in both directions. The data perhaps suggests
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that staining, surface roughness or other effects may be the cause of the variation, 

rather and temperature variation caused by the edge-bumers, as these effects are more 

likely to be randomly scattered at various positions on the strip. In this case, it would 

have been expected that the temperature would result in a gradual change in profiles 

as the width of the strip was traversed towards the centre.

5.3.4 Effect of Sample Order

It was considered that there might be a possibility that the parameters and / or shapes 

of the curves could be affected by the degradation of the acid (although degradation 

should be negligible in a batch of only 6 tests). Figure 5.24 shows the ECP time 

parameters (i.e. ti and t2) when the order in which the tests were carried out is taken 

into account. In this case, the position from which the sample was taken from the 

strip is not deemed to be relevant, which is a valid assumption based on the previous 

work. Figure 5.25 shows the corresponding values for vi and V2.

A change of batch is depicted on both graphs by a change from a filled shape (square 

for the peak data and diamond for the trough data) to a cross. For example, the 

samples corresponding to the final sample in a batch (i.e. the last sample to be tested 

before the acid was changed) are sample numbers 4, 10, 16, 21, 27, 33 and 39.

It can be seen in Figure 5.24 that the time to reach the base of the trough is quite 

regularly higher for the first sample in a batch than for the rest of the samples in that 

particular batch. This is also shown to be a trend when looking at the time to reach 

the peak data.
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In Figure 5.25, the first sample in each batch generally shows a lower potential 

difference. This is most obvious when looking at the potential of the trough.

Figure 5.26 shows the time difference between the base of the trough and the top of 

the peak (t2-ti). It can be seen that, in general, the time between these two points 

increases with the sample number in a particular batch. This suggests that the strength 

of the acid is decreasing as the number of samples tested increases, causing it to take 

longer to etch through the surface oxide layer.

A trend is also seen within each batch of samples in Figure 5.27, which shows the 

difference in potential between the base of the trough and the top of the peak (V2-V1). 

In this figure, the difference in potential between these two points decreases as the 

batch progresses. This could again suggest that the etching rate is decreasing as the 

batch progresses, causing the change from fayalite layer to silica layer to be less well 

defined.

5.4 Conclusions of Initial Trials (Sample H77538)

It was believed that the results of this investigation would show there to be a 

reasonable degree of consistency in ECP profiles along the length of the strip and a 

definite trend in the variation across the width. It was thought that this would occur 

due to the temperature differential across the width of the strip caused by the burners 

located at the sides of the furnace.

Therefore it may be concluded that the temperature differential is not as significant as

previously believed. The variation was found to be far more random, with little

correlation seen in either strip direction between the type of profile observed and the

associated profile parameters. This suggests that the effects causing the different

profiles are likely to me more localised, appearing arbitrarily at various points on the
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strip surface. The most probable cause of this type of effect is likely to be strip 

conditions such as surface roughness or staining.

From previous work [35] and the experimentation carried out so far in this 

investigation, the ECP technique is considered to be quite reproducible, but effects 

such as staining, temperature variations and other strip conditions could cause certain 

areas of the strip to be variable. It would appear that sections of the strip are 

reasonably uniform such that they could be used as a source of material for 

authoritative glass film investigation. However, analysis of numerous samples would 

be necessary to determine the extent of the variation, and these effects would need to 

be taken into account until such variations are eliminated. Effort should be made to 

establish and rectify the causes of the variations noted.

In view of the results relating to sample order, in particular Figures 5.24 and 5.25 

suggesting that the first sample may be affected differently by the acid than the 

remaining samples in the batch, it is suggested that a sacrificial sample is used during 

future experimentation. This should be carried out in the fresh acid for each new 

batch, prior to any samples of interest being tested. To further reduce any erroneous 

results caused by the effects of a new batch of acid, the reference electrode should still 

be left to stabilise in the acid prior to testing any further samples.

The number of samples per batch of acid should also be reconsidered for future work, 

to ensure that the degradation of the acid was not an overriding factor in the 

positioning of the parameters of the profile.
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It is also possible that the profiles obtained to date during this investigation have been 

more similar than it first appears, and that samples from different coils may result in a 

much more drastic variation in profiles than has been seen in sample H77538. In 

order to ensure that the results from this sample were not unique, it was deemed 

necessary to carry out an investigation to determine the extent of ECP profile 

variation on a further sample. This is discussed in Section 5.5.

5.5 Further ECP Analysis - Sample H77850

5.5.1 Introduction

An investigation has previously been carried out to establish the variation in the 

decarburisation oxide layer, both along the length and across the width of the strip 

(see Sections 5.1 -  5.4). It was expected that the oxide layer would show variation 

across the width if temperature gradients or other position dependant variations arose 

during processing. In general this was not found to be the case, as variations of a 

similar magnitude arose both along the length of the strip as well across the width. It 

appeared there was no trend as to where profiles of a certain type appeared on the 

strip, and it is thought most likely that the variation seen is due to effects such as 

staining or surface roughness.

It was recommended that a further sample be obtained from one of the decarburisation 

lines at Orb Works and analysed in a similar way to the previous sheet (H77538), 

using the same electrochemical potential (ECP) apparatus. This would demonstrate 

whether or not the results from the previous investigation were representative of the 

decarburisation oxide layer and also determine the level of consistency between coils.
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5.5.2 Experimental Procedure

A sheet sample was taken from coil H77850, which had recently been processed on 

the D5 decarburisation line at Orb Works. It measured approximately 2.2 metres in 

length and was of strip width (~950mm). Using a similar sized sample to that of coil 

H77538 would ensure that the area examined was kept constant, and the variation in 

profiles observed across similar distances.

The magnesia coating, with which the steel is coated on the decarburisation line prior 

to the coiler, was brushed off in the same manner as with the previous sample, until 

all visible traces had been completely removed. The removal of this magnesia should 

not affect the underlying oxide layer in any way.

The sheet was cut up and labelled in the same way as the previous sheet, with the 

rows (in the rolling direction) labelled numerically and the columns (across the strip 

width) labelled alphabetically.

During this investigation, the procedure was based around the standard practices 

described in Sections 2.2.2 and 5.2. However, the one noticeable exception to the 

method followed when analysing the previous sample was the use of a sacrificial 

sample. Following the conclusions drawn in Section 5.4, the recommendation was 

made that a sacrificial sample be used every time a new batch of acid was used to 

ensure that the acid was fully stabilised prior to any meaningful analysis was 

performed. This sample counted as one of the six to be used per batch of acid, thus 

decreasing the number of ‘useful’ samples that could be analysed to five per batch.

It was decided to keep the batch sizes the same based on previous recommendations 

from a separate investigation [35].
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5.5.3 Results and Discussion

An ECP profile shows how the potential difference between an analysed specimen 

and a reference electrode varies as the surface oxide layer of the sample is removed by 

pickling in acid. The profiles obtained during this investigation, relating to the 

samples from sheet H77850, can be seen in Figure 5.28.

It was found that the profiles could again be split into the four categories shown in 

Figures 5.1-5.4, and also that there was no pattern as to where each type of profile 

occurred on the original sheet sample. This is demonstrated in Table 5.4 where the 

location of each type is shown.

As with the previous sample, the profiles were analysed in terms of the time that had 

elapsed before two different points were reached. These points were the base of the 

trough and the top of the peak, which were designated as coordinates vi, ti and V2 , t2 

respectively, in relation to their values for potential difference and time.

Tables 5.5 and 5.6 show this tabulated data, which has also been plotted in Figures 

5.29 - 5.36.

It was again observed that the values of ti, t2, vi and V2 varied to a similar degree in 

both strip directions, confirming that the oxide layer did not vary according to any 

trend across the width of the strip for either of the two samples analysed.

Figures 5.37 and 5.38 show the potential difference value relating to ti and t2 

respectively. It can be seen in Figure 5.37 that there again appears to be a good 

correlation between ti and vi, with R2 values of 0.77, 0.41, 0.76, 0.78, 0.83 and 0.15 

for rows F, H, K, N, Q and S, corresponding to an R2 value of 0.67 when all plotted 

together.
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Figure 5.28: A graph showing the collection of profiles obtained 
from sample H77850.
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Column
1

Column
4

Column
7

Column
10

Column
13

Row
F la 2 /2a 1

Row
H la 1 / la la 2a 1 / la

Row
K la la 2a la la

Row
N 2a la 1 / la 2a la

Row
Q la 2a la la 2a

Row
S la la la la  /1 la

Table 5.4: Type of ECP profile at various positions on the H77850 
strip sample.
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Column 1 Column 4 Column 7 Column 10 Column 13

Trough Peak Trough Peak Trough Peak Trough Peak Trough Peak

F — — 30 125 50 150 40 155

H 30 115 40 150 30 135 45 130 35 140

K 30 120 35 130 45 150 35 135 30 130

N 50 145 30 135 40 150 50 150 35 130

Q 30 135 45 135 35 150 35 135 50 155

s 35 115 35 140 35 130 40 150 40 140

Table 5.5: Time to reach trough (ti) and peak (t2)
(values given in seconds).

Column 1 Column 4 Column 7 Column 10 Column 13

Trough Peak Trough Peak Trough Peak Trough Peak Trough Peak

F — — 0.511 0.532 0.490 0.520 0.510 0.530

H 0.512 0.531 0.518 0.534 0.514 0.532 0.493 0.526 0.511 0.530

K 0.513 0.531 0.514 0.534 0.499 0.528 0.506 0.527 0.511 0.530

N 0.492 0.522 0.517 0.535 0.516 0.533 0.493 0.523 0.507 0.528

Q 0.509 0.528 0.500 0.531 0.513 0.533 0.507 0.529 0.492 0.522

s 0.505 0.529 0.517 0.534 0.512 0.532 0.509 0.527 0.508 0.526

Table 5.6: Potential difference at trough (vi) and peak (v2) 
(values given in mV).
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(across the width).
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However, Figure 5.38 shows no correlation whatsoever, suggesting that the time taken 

to reach the peak is independent of the potential that is reached.

When comparing Table 5.5 to the associated table for the previous sample (Table 5.1), 

it can immediately be seen that the time to taken to reach the points of interest was 

much shorter for the second sample (H77850) than it was for the first (H77538). An 

average was calculated for each strip sample. It was found that for sample H77538, 

the average values for ti and t2 were 61 seconds and 184 seconds respectively. This 

can be compared to the values of 38 and 138 calculated for the most recent sample. 

This could suggest that either the oxide layer on sample H77850 is not as thick as that 

on the previous sample or that the acid is of a greater strength and is therefore etching 

the oxide layer at a greater rate. It is deemed unlikely that the acid strength could be a 

factor in this variation as great care was taken in mixing the correct formulation. 

However, the etching rate could also be affected by the surface roughness of the oxide 

layer, as a surface with greater roughness would leave an increased area open to acid 

attack. Unfortunately, surface roughness data was not obtained from these samples at 

the time of analysis, but should be considered in any future investigation.

Analysing the data further, it can be seen that the variation in ti is of a similar 

magnitude for both samples, with the data points spread over a range of 30s for 

H77538 and 20s for H77850. However, when the values for t2 are analysed it can be 

seen that there is a much greater spread in values for H77538 where the range is 80s, 

compared to 40s for H77850. Although this may seem significant, it is likely that this 

is simply related to the increase in overall t2 values for the H77538 samples, and not a
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reflection of the accuracy of the technique being affected. However, it could also be 

linked to changes in the interface that causes this peak

When analysing the data for the values of vi, it was observed that the values for the 

second sample were slightly lower than those seen previously. However, the V2 

values averaged a slightly higher level than those seen for the initial sheet sample. 

This resulted in the troughs seen on the profiles of the samples from the second sheet 

appearing to be much sharper than those for the first sheet. This could suggest that 

the layers of fayalite and silica are more clearly defined for the second sample.

Although it has been found that samples H77538 and H77850 display the same 

shaped profiles, there has been no direct comparison to discover whether they occur at 

the same values of potential difference. A direct comparison of the actual ECP 

profiles from the two strip samples can be seen in Figure 5.39.

It can be seen that the sample from each coil exhibits a similar degree of spread. 

However, the graph shows that the two samples have separate distinctive bands that 

are offset from each other. It may be that this variation in the band containing the 

spread is the only clear distinction between different coils.

5.6 Alterations to Decarburisation Conditions
5.6.1 Introduction
Samples from a further three coils were analysed using the ECP apparatus, although 

not as thoroughly as the previous two sheets. The results are not discussed in detail 

here, but this extension to the investigation demonstrated that the extra coils also
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exhibited ECP profiles of the same shapes (i.e. types la, 2a, lb, and 2b). The 

averaged profiles for each coil are shown in Figure 5.40.

It remains unclear whether the profiles seen in this investigation show the amount of 

variation that is be expected to be seen between most coils, or whether the coils are 

coincidentally similar. It is possible that the conditions in the decarburisation furnace 

was stabilised over the time that the five analysed coils were processed. However, it 

is also possible that the ECP apparatus is not sensitive enough to detect subtle changes 

in the oxide layer.

As the material being produced at Orb Works was of a good, consistent quality, it was 

not feasible to alter the conditions of the production line in order to deliberately 

produce different oxide layers. It was therefore necessary to utilise a laboratory tube 

furnace, located at Orb, to simulate the decarburisation anneal. The aim of this work 

was to determine whether the ECP profiles would vary extensively if the material 

were decarburised under significantly different conditions.

5.6.2 Experimental Procedure

Due to operational practicalities, it was decided that the simplest way of altering the 

composition of the oxide layer was to vary the dew point by selectively passing the 

furnace gas through a saturator at different temperatures. This was done over the 

largest possible range in order to produce drastically different layers. The conditions 

chosen were:

• Dry hydrogen atmosphere (i.e. saturator bypassed),

• Hydrogen passed through a saturator at 22.5°C,

• Hydrogen passed through a saturator at 59.5 °C.
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The temperature of 22.5°C was related to the room temperature at the time of the 

investigation, and 59.5°C was the maximum temperature that could be achieved with 

the saturator that was used. This compares to an average dew point temperature on 

the production lines of approximately 68°C.

The temperature of the furnace was kept constant at a value of ~800°C to simulate the 

same temperature as found on the decarburisation lines at Orb.

The samples used were taken from two coils (42539 and 42655) at the entry of the 

Orb decarburisation lines (i.e. prior to them passing through the decarburisation 

furnace). Two coils would show whether changing the material would have an effect 

on the resultant oxide layer.

At the stage where they were removed from the line, the samples have no oxide layers 

present on the surface. They were cleaned with a solvent prior to entering the tube 

furnace to ensure that all traces of dirt, oil etc had been removed from the surface.

To ensure efficient and accurate transportation of the samples into and out of the hot- 

zone (geometrical centre) of the furnace, the samples were loaded into a custom made 

carriage. This ensured that the samples were held at the correct temperature, but also 

minimised contact with the sample itself.

To replicate the conditions on the production line, the samples were rapidly 

manoeuvred into the hot-zone and left at temperature for 4.5 minutes. This consisted 

of 2.5 minutes for the sample to reach the required temperature, and 2 minutes to soak 

at this temperature. They were then moved to another section of the furnace to cool 

for a further 1.5 minutes (still in a controlled atmosphere).

Two samples from each coil were used under each different dew-point condition to 

determine the level of reproducibility.
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Once annealed and fully cooled, the samples were analysed using the standard ECP 

procedure.

5.6.3 Results and Discussion

The resultant ECP profiles can be seen in Figure 5.41. A ‘typical’ profile from a 

sample obtained from the D5 decarburisation line is also included on this figure for 

comparison.

It can immediately be seen that differences can be seen between the profiles obtained 

from samples annealed under different conditions. The samples annealed under a dry 

atmosphere show the potential difference falling to a trough, before ascending to the 

baseline. The samples annealed with a furnace dew point at room temperature result 

in a profile that has two smaller peaks following the initial trough. However, the 

samples annealed with a dew point similar to that specified for the production line 

appeared to show a similar shaped profile to those seen previously on production 

material, with an initial drop in potential difference, followed by a peak and then 

another descent towards the baseline.

5.6.4 Conclusions

It should be noted that the differences in annealing conditions in this experiment vary 

by a much greater degree than would ever be seen on the production lines. However, 

this work does show that the ECP technique is sensitive enough to distinguish 

between samples annealed under different conditions, proving that the ECP profiles 

are affected by the changes in oxide layer composition.
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5.7 Chapter Summary

It had previously been expected that the oxide layer produced during the 

decarburisation stage would vary to a greater extent across the width of the strip than 

it did along the length, if temperature gradients were prevalent. However, there were 

no clear trends in the variation across the width, or in variations along the length of 

the strip. This may indicate an effect arising from staining due to mill lubrication, or 

surface roughness effects. The investigations carried out on samples H77538 and 

sample H77850 both gave similar conclusions.

Although the profiles of production samples were found to vary in terms of the time 

taken to reach specified points and the potential difference at these points, they all 

exhibited a similar shape i.e. they all displayed a trough followed by a main peak. 

Internal discussions have indicated that related previous work [36-38], carried out 

many years prior to this study into oxide layer variation, has shown profiles that vary 

to a much greater extent i.e. with extra peaks and / or troughs. This may indicate that 

the difference between the two coils is not as great as it first appears. It is possible that 

the two coils have very similar oxide layers, with only a slight difference shown by 

the offset bands of spread seen in Figure 5.40.

Further work using the laboratory tube furnace to vary the decarburising conditions 

confirmed that considerably different profiles would result from samples annealed 

under significantly different conditions. Therefore it seems likely that the production 

samples analysed in this investigation actually possessed very similar decarburisation 

oxide layers.
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The fact that the profiles are similar and no further peaks or troughs are seen for either 

of the two main production samples, or the three supplementary samples, suggests 

two possibilities. These are:

a. The processing conditions on the decarburisation lines are reasonably 

consistent over a number of weeks

b. The processing conditions experienced by the two coils from which 

the samples were taken were coincidentally similar.

To test this hypothesis, samples were occasionally taken from a number of coils over 

the remaining time of the Engineering Doctorate and analysed with the ECP 

apparatus. It was found that nearly all of the resulting profiles gave similar results to 

those seen previously, suggesting that the oxide layer remains consistent when the 

furnace conditions are unchanged. However, one production-led trial relating to the 

annealing conditions did take place a number of months after the initial investigations. 

Material was acquired from the trial coils, and resultant spectra from two of the coils 

that were processed under different conditions are shown in Figure 5.42. This 

confirms that the ECP is able to distinguish between changes in furnace conditions, 

not only in exaggerated laboratory trials, but also on a production basis.

It is recommended that effort should be made to determine the causes of the 

differences that do arise in the sheet samples when analysed using the ECP technique, 

and to establish how to eliminate such variations. It is likely that successfully 

implementing this would probably result in a more predictable glass film formation 

and hence less variable magnetic properties.
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Although the significance of the profiles is not currently fully understood, it has been 

shown that this technique is capable of distinguishing between different oxide layers. 

Therefore it is a useful tool for selecting samples for any investigations into the 

parameters that affect glass film, as it can be used to confirm whether the oxide layer 

on the surface is consistent on a selection of samples. This will eliminate one of the 

variables that could otherwise cause discrepancies.

To understand the significance of these profiles, and to determine the changes in the 

composition of the oxide layer that are required to cause the variation seen in this 

investigation, it is necessary to carry out further investigations to determine the 

relevance of the various characteristics of the ECP profiles. A number of analysis 

techniques were used to do this, and the work relating to this further investigation is 

described in Section 6 .
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Chapter Six

Interrupted Electrochemical Potential (ECP) 
Analysis of the Decarburisation Oxide Layer

6.1 Introduction

During the decarburisation process, an oxide layer, consisting mainly of fayalite 

(Fe2SiC>4) and silica (Si0 2 ), is formed on the surface of the steel strip. A technique 

known at the electrochemical potential (ECP) method is currently being developed for 

the analysis of this layer (see Chapter 5). The method produces results in the form of 

an ECP profile. This is a plot of the change in potential difference between a 

reference electrode and a sample under investigation as the oxide layer is etched 

away. An example of these profiles is shown in Figure 6.1. It can be seen that the 

profiles have distinctive peaks and troughs. However, it is not known how the shape 

of these profiles and other characteristics (e.g. position and levels of the peak / trough, 

rate of change of potential difference etc.) precisely relate to the composition of the 

oxide layer.

Effort has previously been made to utilise the Fourier Transform Infrared (FTIR) 

apparatus to analyse the full depth of the oxide layer (Section 4), as this could be 

related to the various characteristics on the ECP profile. Unfortunately, it was found 

that the penetration depth of the infrared radiation was insufficient to analyse the 

entire layer. However, when a sample was partially pickled in acid, it was found that 

the FTIR spectrum of the pickled surface was significantly different to that in its un­

pickled state. This suggests that the oxide layer produced on the decarburisation lines
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at Orb Works shows a definite layering structure consisting of a layer of 

predominantly silica-rich material, with a thin layer of fayalite on top.

It was therefore considered necessary to carry out an investigation to determine the 

exact structure of the decarburisation layer that would enable the validation of the 

electrochemical potential (ECP) method as a technique for the analysis of 

decarburised material.

The pickling previously undertaken for the FTIR investigation was carried out only to 

discover whether any changes occurred between spectra. Therefore, the accuracy 

with which this was done was not deemed a priority, and accurate measurements of 

the many variables (pickling rate, acid strength, temperature etc.) were not considered 

to be of particular concern. The only desirable outcome was that the lower layers of 

the oxide layer were exposed, and this was successfully achieved.

To study the oxide layer in greater depth, a more accurate, and therefore less rapid, 

method of gradual oxide layer removal was required. Through previous experience 

gained from using the ECP apparatus, it was known that the 5% sulphuric acid at 

70°C used for this technique caused the oxide layer to be etched away over a period of 

approximately fifteen minutes and would therefore be suitable. It was hoped that it 

would be possible to take advantage of this slow etching in order to combine the ECP 

method with a number of other analysis techniques in an attempt to establish the 

relevance of characteristics on the ECP profiles. This was achieved by carrying out 

‘interrupted ECP’.

Interrupted ECP is the name used to describe the manner in which ECP could be 

linked with other surface analysis techniques. The samples initially follow the 

standard ECP process under normal conditions i.e. submerged in 5% H2SO4 at 70°.
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However, instead of completing the full 20-minute duration of the test, it was 

interrupted at various stages of etching and the samples were removed from the acid. 

The times at which the samples were removed were linked to the position that the 

trace had reached on the ECP profile. This was carefully monitored as the experiment 

progressed. Upon removal from the acid, the samples were rinsed with water and 

dried immediately to prevent any further acid attack on the oxide layer. This left the 

surface of the oxide layer in a state that directly related to a particular point of the 

ECP profile. This could then be analysed to establish the elements or compounds 

present at the surface.

A number of techniques were used to analyse the surface at various points along the 

ECP profile. These are discussed in the following sections.

6.2 Combination of FTIR and Interrupted ECP 

Techniques

As discussed in Section 6.1, previous work has suggested that the Fourier Transform 

Infrared (FTIR) method may be used for the analysis of the decarburisation oxide 

layer, but the radiation is unable to penetrate the full depth of the oxide layer. This 

was initially seen as a disadvantage, but now provides FTIR with the benefit of being 

able to be used to look more specifically at the very surface of the layer at various 

intervals of the etching process.

Previous experimental work (Section 4) has identified the positions of the absorption

bands that are relevant. The major band associated with fayalite is expected to be
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found at -985cm'1, and silica related bands are expected at approximately 1250cm'1. 

It is also believed that the presence of any FeSiC>3 may result in a small band at the 

lower end of this range. This agrees with literature, which suggests that fayalite is 

found at the wavenumber specified above [31], and silica related bands are found in 

the approximate wavenumber range of lOSO-^SOcm' 1 [31, 33, 40 and 41].

This data can be used to determine what compounds are present at the surface at 

various stages as the oxide layer is etched away.

6.2.1 Experimental Procedure

A sheet of strip width was taken from the end of the decarburisation line and cut into a 

number of smaller samples suitable for ECP analysis (dimensions of 130mm x 

50mm). The samples to be analysed were taken from an area as small as possible, to 

minimise any variation in processing conditions that may alter the oxide layer. They 

were brushed free of the magnesia (MgO) powder coating, and prepared using the 

standard method for ECP analysis [35].

The samples were then subjected to the standard ECP conditions i.e. submerged in 5%

H2SO4 at 70°, but removed at predetermined times relating to their position on the

ECP profile.

The chosen times were

1 0  seconds -  very brief etch in acid

2 0  seconds - descending the profile towards the trough

30 seconds - further along the profile, close to trough being reached

60 seconds - point at which the base of the trough is reached

85 seconds - p.d increasing after trough has been reached

95 seconds - further increase towards peak
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125 seconds - point at which the top of the first (main) peak is reached 

215 seconds - p.d decreasing following the peak being reached 

275 seconds - profile levelling out before second peak is reached 

360 seconds -  descending towards baseline

One sample was also allowed to reach the baseline, as this could act as a reference 

sample. The p.d was allowed to stabilise to ensure that the entire oxide layer had been 

etched from the surface.

These positions are shown on the profile in Figure 6.2.

Upon removal from the acid, the samples were rinsed thoroughly with running water 

to ensure that no acid remained to further attack the surface. Once they had been 

dried using a hot air dryer, the samples were analysed using the FTIR apparatus at 

Orb Works. Since it was the oxide layer being analysed, it was necessary to employ 

the 80° grazing angle attachment for all scans.

Each FTIR scan was performed on the etched sample as soon as was possible 

following the drying process. A sample was not etched until an FTIR spectrum had 

been obtained for the previous sample. This ensured that the time between etching 

and obtaining the FTIR spectrum was kept to a minimum, therefore decreasing the 

time in which the surface could oxidise.

A spectrum was also obtained for a sample of un-etched material so that it was known 

what was present on the surface following removal from the line.
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Figure 6.2: ECP profile depicting the interrupted etching intervals 
for the FTIR investigation.
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6.2.2 Results and Discussion

The spectra obtained from each of the samples are shown in Figures 6.3 - 6.13. It 

should be noted that the transmittance scale is set to show the bands as large as 

possible so that the maximum amount of data can be extracted from each spectrum. 

Therefore the actual size of the bands may be different to how they appear on the 

following spectra.

From this data, it can be seen that at the specified points on the ECP profile:

• 0 seconds (un-etched, Figure 6.3) -  There is a prominent band at ~980 cm'1,

which is where the band for fayalite is expected. However, there is no 

evidence of silica, shown by the featureless area between 1050 and 1250cm'1.

• Descending to trough (Figures 6.4-6.6) -  The spectrum seems to have changed 

drastically from that described above; the band at 980 cm' 1 is no longer 

evident, but another band has appeared, centred around ~1135 cm'1. This band 

is observed to increase in size as the etching time increases. This peak is at a 

lower wavenumber to that seen in Section 4, but is likely to still be silica, 

based on other reference spectra [33, 41]. Further evidence for this link 

between this absorption band and silica is given by the appearance of an 

additional smaller band at approximately 490cm'1, as this is also related to 

silica [33,41]

• At the base of the trough (Figure 6.7) -  this set of spectra showed many

similarities to that which preceded it. Again there was a significant band close

to where it had been observed previously, but it appeared to have shifted from

the original position at ~1135cm'1 to a wavenumber closer to 1200cm'1. This

is closer to the wavenumber at which silica was expected to be observed,

according to [31,40], and where it had been observed experimentally in
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Section 4. The trough of this band had also become more rounded than seen 

previously.

The band at 490cm'1 was again seen and was sharper than other previous 

spectra. It should be noted that the scale on this spectrum is significantly 

different to those before it, and these two bands are now far more substantial 

in size.

A third band also begins to appear at approximately 800cm'1 (Figure 6.7). 

Evidence links a band at this wavenumber to silica [33,41].

• Ascending towards peak (Figures 6 . 8  and 6.9) -  Again the three bands similar 

to those previously observed were present. However, the band at -1200 cm' 1 

began rounded at the trough, but appeared to become sharper as the peak of 

the ECP profile was approached. The wavenumber at which this band 

occurred again appeared to increase, up to a maximum of -1250cm'1 for the 

sample etched for 95 seconds (Figure 6.9). There also appeared to be a slight 

‘shoulder’ forming at approximately 1 1 0 0 cm' 1 on this band.

The size and shape of the bands at 800 and 490cm'1 did not appear to alter 

much.

• Peak reached (Figure 6.10) -  Again, this spectrum shows quite a significant 

change. The band that was seen with its trough at -1200-1250 cm' 1 has 

continued to widen, and has now begun to separate into separate bands, the 

two main ones being centralised around approximately 1250 and 1080 cm'1. 

The evidence of any feature around 1130cm'1 now appears only as an almost 

negligible shoulder on the band at 1250cm'1. It is this wavenumber 

(1250cm'1) that silica was originally expected to be found, based on the work 

in Section 4. This is the most significant band in this area of the spectrum. Of
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the other bands that had previously been seen, the ones at~800 and 490 cm' 1 

had now increased in size, with the latter also shifting to a slightly higher 

wavenumber (-500 cm'1).

• Descending to baseline (Figures 6.11-6.13) -  The feature between 1000- 

1300cm'1 remained resolved into two separate bands immediately after the 

potential of the ECP profile descended following the peak, with the base of 

one of the troughs at -1080cm'1 and the other at -1250cm’1. However, the 

samples relating to points after the peak had been reached show the band at 

-1080cm'1 becoming far more prominent, with the adjoining band (1250 cm'1) 

becoming just a large shoulder upon it. This contrasted with the spectra 

related to the samples prior to the peak being reached on the ECP profile, 

where the band at -1250'1 was far more prominent.

The band at -800cm'1 appeared to have grown further, whereas that at 

-500cm'1 had remained almost unchanged.

In the sample etched for 360 seconds (Figure 6.13, just before the baseline was 

reached) it was observed that the two main bands at 1050 and 1250cm'1 

appeared to recombine and move to a wavenumber -1 150cm'1. This spectrum 

only showed very slight bands at approximately 800 and 490cm'1.

• Baseline reached -  The spectrum for this sample showed an almost straight, 

featureless line. This was as expected, as this sample is at the end of a 

completed ECP etch, and should therefore have the entire oxide layer removed 

from the surface.

The one feature present was a small band at -670 cm'1. However this band 

has been present on each of the spectra, suggesting that it is present at all 

stages of etching. This could suggest that there was slight contamination of
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each of the samples, although this effect appears to be negligible due to the 

size of the band.

6.2.3 Conclusions of Section 6.2

The results show that following only a small amount of etching, the fayalite in the 

uppermost section of the decarburisation oxide layer is removed. There are no 

fayalite bands shown on the relevant spectrum even before the trough on the ECP 

profile is reached. Instead, a band is observed at -1135cm'1. Although this is at a 

wavenumber lower than that observed in Section 4, many reference sources suggest 

that this band is related to silica (SiC>2).

Once the trough has been reached on the ECP profile, this main band shifts to 

approximately 1250cm'1 where it then subsequently appears to separate due to it 

comprising of two separate components. This occurs on the spectrum relating to the 

sample that was removed when the ECP profile reached its peak. At this point, the 

band that previous work has suggested is linked to silica (1250cm'1) was the dominant 

feature. However, as the potential difference decreases after the peak, the peak at 

-1080cm'1 becomes more dominant. This is a band that, according to a number of 

reference sources, also relates to silica. During comparison with the spectra obtained 

when analysing the separate constituents of the final insulation coating, it was also 

noted that the pure colloidal silica also exhibited bands at approximately 1050, 800 

and 500cm'1.

Discussions with personnel highly skilled in the analysis of FTIR spectra suggested

that it was entirely plausible that both of these bands (1080 and 1250cm'1) are related

to the presence of silica, but they would be of two different forms that would interact

with the infrared radiation in different ways. The presence of relatively constant
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bands at approximately 500 and 800cm'1 on the spectra containing bands at both 1080 

and 1250cm"1 lends support to this theory.

It may be that this band is due to the change between amorphous silica that is found 

on the surface of the steel and the crystalline silica that protrudes into the steel 

substrate itself. However, this is unlikely as the spectra related to the two different 

forms are expected to be quite similar.

An alternative view is that the band at 1050-1100cm'1 is confirmed as being related to 

silica due to the overwhelming support of a number of articles, but the band at 

1250cm'1 is in fact linked to a different, as yet undetermined, compound such as other 

silicates and / or oxides. However, this seems unlikely due to the limited number of 

elements that are present on such a material, and the fact that iron oxides do not 

appear to exhibit absorption bands on an FTIR spectrum.

An interesting feature of these results is that a link between changes in the FTIR 

spectra and the positions of the ECP profile can clearly be seen. The characteristic 

trough and peak of the ECP profile are found to coincide with the changes in the 

spectra where the main band of interest changes from its higher value (-1250cm'1) to 

its lower value (~ 1100cm'1). This suggests that the ECP technique can be used to 

characterise different decarburisation oxide layers.

6.3 Combination of Scanning Electron Microscopy 

(SEM) and Interrupted ECP Techniques
A further technique used in conjunction with the interrupted ECP method was

scanning electron microscopy (SEM). This is another surface sensitive method, and is
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likely to analyse only the uppermost part of the oxide layer. Therefore it would 

analyse only the exposed area at each etching interval, similar to the FTIR 

investigation described in Section 6.2. The results from the FTIR investigation led to 

possible conclusions as to the relevance of the different shapes and distinctive 

characteristics of an ECP profile. However, the conclusions that were drawn were not 

completely authoritative and required additional investigation in order to provide 

further evidence from which definitive conclusions may be drawn. Using the SEM 

technique enables the surface of the samples to be observed, which may be able to 

determine the differences between different forms of silica, and also analyses the 

composition of the surface layers. This compositional analysis could give the weight 

percentage of a number of elements, the main ones of interest in the oxide layer being 

oxygen, silicon and iron as these are the constituents of silica and fayalite. It is for 

this reason that SEM has been considered for the analysis of the decarburisation oxide 

layer.

6.3.1 Experimental Procedure

A length of strip was taken from a decarburisation line at Orb Works and cut into 

smaller samples for ECP analysis. The samples were again taken from a small area of 

the strip to minimise variations in the oxide layer. The experimentation was carried 

out using the standard ECP procedure, with the samples being removed at intervals 

relating to the ECP profile. These positions are shown on Figure 6.14. They 

corresponded to etching times of 5, 20, 40, 90, 150, 230, 300 and 1000 seconds. It 

can be seen that this material exhibited a smaller secondary peak, and a sample was 

deliberately taken at this point to determine the characteristic of the oxide layer that 

was causing it to be observed.
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Ideally, many more samples would have been taken at other etching times, but due to 

time constraints in analysing the samples with the SEM apparatus, this number of 

samples was considered adequate. Further samples would cause an excessive amount 

of time to elapse between the etching process and the SEM analysis. Upon removal 

from the acid, it was necessary to rinse the samples with water to ensure that the acid 

did not continue to attack the layer, and then thoroughly dry them using a hot-air 

blower.

Corns personnel performed the SEM analysis of these samples using the apparatus 

based at ECM2, Port Talbot.

6.3.2 Results and Discussion

The images of the oxide layer at various stages of etching (Figures 6.15 - 6.24), 

obtained using the SEM apparatus, proved to be inconclusive. This was due to only 

one area on each sample being considered for analysis (due to time constraints), and 

also the quality of the images themselves. However, there was still some useful 

information that could be extracted.

It can be seen that in Figures 6.15 - 6.18 that the lines associated with the rolling 

direction are clearly evident, with the rolling direction in Figure 6.17 being at 90° to 

that seen in the other three images. Many regions can be seen that show areas of 

depressions. This is similar to what is seen when using an optical microscope, and is 

related to the surface roughness of the material. These depressions are not merely 

holes through the oxide layer to the steel substrate below, but in fact also have an 

oxide layer formed on the surface within it. In many cases, certain parts of this oxide 

layer may be even thicker than on the rest of the surface due to the increased surface 

area of the curved depression.
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Figure 6.15: SEM Image 

Etching time: Os 

(Un-etched material)

Figure 6.16: SEM Image 

Etching time: 5s

Figure 6.17: SEM Image 

Etching time: 20s



Figure 6.18: SEM Image 

Etching time: 40s 

Bottom of trough

Figure 6.19: SEM Image

Etching time: 90s

Halfway between 
trough and peak 1

Figure 6.20: SEM Image

Etching time: 150s 
(# i)

Top of peak 1



Figure 6.21: SEM Image

Etching time: 150s 
(#2)

Top of peak 1

Figure 6.22: SEM Image 

Etching time: 230s 

Just after peak 1

Figure 6.23: SEM Image 

Etching time: 300s 

Top of peak 2

164



Figure 6.24: SEM Image 

Etching time: 1000s 

Baseline
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Figure 6.19 shows a number of darker spots spread across the area of the sample. It is 

likely that these correspond to areas of silica, found under the initial fayalite-rich 

layer. These darker areas then appear to cover a progressively increasing area of the 

samples as the etching time is increased, until that shown in Figure 6.24. This figure 

corresponds to the fully etched material (base steel substrate with no oxide layer 

present) and the SEM image relates to what is expected, with evidence of the grains 

being seen.

Energy-Dispersive X-ray (EDX) analysis was also carried out in conjunction with the 

above SEM work. This provided data relating the elemental content at the surface for 

each sample. However, analysis of EDX results is complicated by the fact that the 

technique supplies only data relating to the separate elements, and is unable to 

distinguish the compound in which each element is present. This causes particular 

problems when considering oxygen and silicon, as these elements are present in 

fayalite and silica, as well as some other compounds that may be present in smaller 

quantities (e.g. FeSiOs).

The variation in the amount of iron, oxygen and silicon as the ECP etching progressed 

is shown in Figures 6.25 -  6.27. Figure 6.28 shows the data from these figures on the 

same chart, enabling the trends to be easily compared.

The values for the un-etched material were slightly distorted due to the inclusion of 

magnesium. This was due to residual MgO powder that remained on the surface 

following cleaning. Ideally, this magnesium content, at approximately 4% (weight), 

could simply be removed from the calculations as it is not linked to the oxide layer. 

However, the situation is not that straightforward as the magnesia also contains
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Figure 6.25: EDX iron content at various etching times.
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Figure 6.26: EDX oxygen content at various etching times.
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Figure 6.27: EDX silicon content at various etching times.
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oxygen, and so it is not clear how much of the oxygen is related to the magnesia, and 

how much is present in the form of MgO, Fe2SiC>4 , SiC>2 or other oxides. Therefore, 

the data relating to the un-etched sample should be treated with some degree of 

caution.

It can be seen in Figures 6.26 - 6.28 that the trends seen for silicon and oxygen are 

almost identical. They both show the %Wt increasing at the same rate from 5-300 

seconds, with a sharp decrease at 1000 seconds. It is at this point that it is believed 

that bare steel has been reached. The only point at which these two sets of data 

significantly differ is for die un-etched material, where the oxygen content is far 

higher. This is likely to be due to the oxygen being combined with the magnesium to 

form MgO, as mentioned previously.

Figure 6.29 shows the correlation between the amounts (in %Wt) of silicon and 

oxygen present as the etching time increases. It should be noted that the data point 

associated with the un-etched material has been removed from this graph due to the 

potential errors in the oxygen content caused by the presence of MgO. It can be seen 

that the correlation is extremely good, with an R value of 0.996. It is also interesting 

to note the equation of the trendline that has been fitted to the data. The gradient of 

the line can be seen to be 0.9405 and intersects the x-axis very close to zero. If we 

consider the increasing content of silica and oxygen in terms of their atomic mass, it is 

found that it provides evidence that a majority of these two elements are present in the 

form of SiC>2. The atomic masses of silicon and oxygen are 28.1 and 16 respectively, 

but there are obviously two atoms of oxygen in this compound with a combined 

atomic mass of 32. Therefore, as the amount of silica present at the surface increases, 

the silicon and oxygen should increase with a constant ratio of 0 . 8 8  between them
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(calculated by 28.1 / 32). This is very close to the 0.9405 of the gradient of the 

trendline, which is easily within the errors associated with a semi-quantitative method 

such as EDX. Furthermore, if the trendline is adjusted to intercept at the x-axis at 0 

(as silicon would not be present without oxygen if this SiC>2 hypothesis were correct), 

then the gradient is altered to 0.92, which is even closer to what is predicted by the 

theory. The fact that this ratio is not identical to the predicted value for SiC>2 can be 

explained either by the errors associated with this technique, or by the possible 

presence of small amounts of other more oxygen rich compounds, such as SiC>3 or 

iron oxides. It is believed that these other compounds are often present in the oxide 

layer, but are in such small amounts as to be deemed negligible with respect to the 

amount of SiC>2 .

It is clear that the trend seen for iron, shown in Figure 6.25, is significantly different 

to that for oxygen and silicon. This shows a decrease in iron content from 5-300 

seconds, before a sharp increase at 1000 seconds. In fact, the graphs show that the 

data for the iron content was almost the exact opposite to the trend seen for the other 

two elements. As an example, Figure 6.30 uses the comparison between silica and 

iron contents to demonstrate this.

6.3.3 Conclusions of Section 6.3

From this work, it can be concluded that there are clear trends in the composition of 

the oxide layer as the layer is etched away.

The SEM images show evidence of darker areas at etching times greater than when 

the trough is reached. These dark areas are most likely to be associated with silica,
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and increase in number as the etching time is increased. The image observed for the 

sample at which the baseline has been reached shows a structure associated with the 

base metal, confirming full removal of the oxide layer.

Analysing the EDX data, it is clear that the silicon and oxygen show a distinct 

correlation suggesting that they are bonded together, with the expected SiC>2 being the 

most likely compound. Both of these sets of data begin to increase as soon as the 

etching duration begins to increase, until a maximum is reached at 300 seconds. After 

this point, the content of both silicon and oxygen drops dramatically when the sample 

that was etched to the baseline is analysed. This is where the steel substrate has been 

reached, and the iron content increases accordingly.

The results obtained from the EDX analysis appear to correspond with those obtained 

from the FTIR analysis of interrupted ECP samples, which suggests that SiC>2 is 

present at each etching interval.

Although these results show the trends associated with etching through the oxide 

layer, it should be clearly acknowledged that these results are only semi-quantitative, 

and therefore do not provide perfectly accurate values in terms of %Wt. They may 

also be slightly distorted as the penetration depth varies slightly according to the 

atomic mass of the element under consideration.

6.4 Combination of X-ray Photoelectron 

Spectroscopy (XPS) and Interrupted ECP 

Techniques
X-ray Photoelectron Spectroscopy (XPS) was carried out on interrupted ECP samples

to complement the results from FTIR, SEM and EDX work carried out in Sections 6.2
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and 6.3. This technique provides both qualitative and quantitative data relating to the 

composition of the surface layer. The experimental aspect of this work was carried 

out using the XPS apparatus located at Swinden Technology Centre (STC). A

detailed description of this technique can be found in Section 2.2.4.

6.4.1 Experimental Procedure

The ECP apparatus was assembled at STC so that the samples could be quickly and 

easily transferred to the XPS equipment. In the case of both methods of analysis 

(ECP and XPS), the method and conditions used were as standard.

A representative sample from the sheet was first used as a sacrificial sample. This 

also provided information on the shape of the profile that was to be expected for all 

related samples. This was useful as a good estimate could be made as to the duration 

the sample would need to be etched before it reached the desired point of the profile. 

It was found that the material in question produced an ECP profile that exhibited a 

smaller secondary peak. The samples used in this investigation were from the same 

coil as those used for the FTIR investigation described in Section 6.2, and were etched 

to the same points on the profile as the FTIR samples. Therefore, the eleven points at 

which the samples were removed from the acid corresponded to those shown in the 

ECP profile in Figure 6.2. These times and positions were as follows:

A -  after 10 seconds, where the sample had only briefly been immersed in acid 

B -  after 20 seconds, further towards trough 

C -  after 30 seconds, just prior to the trough being reached 

D -  after 60 seconds, at the base of the trough

E -  after 85 seconds, where the profile has started to ascend following the trough
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F -  after 95 seconds, prior to the first peak being reached 

G -  after 125 seconds, at the top of the first peak 

H -  after 215 seconds, between the first peak and second trough 

I -  after 275 seconds, at the bottom of the second trough 

J -  after 360 seconds, descending towards the baseline

A further sample (K) was etched to the point at which the potential difference had 

stabilised at the baseline, where it is believed that the oxide layer has been completely 

removed.

A sample of the un-etched material was also analysed to determine what was present 

on the surface of the strip as it was taken from the decarburisation line. To minimise 

the likelihood of the results being distorted by the presence of magnesia on the strip 

(as occurred with the EDX results), the sample was cleaned in an ultrasonic bath prior 

to analysis. This was considered sufficient to remove any excess MgO.

As mentioned previously, the samples were rinsed with tap water upon removal from 

the acid and dried with a hot air dryer. To prevent contamination of the sample, they 

were not wiped dry with paper towels, or bought into contact with any other material. 

As soon as they were dry, an XPS sample (in the form of a disc measuring 

approximately 5mm in diameter) was punched from the ECP sample. This was then 

mounted on an appropriate unit using tweezers and placed within a preliminary 

vacuum chamber, before being moved into the main vacuum chamber where it could 

be analysed.
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6.4.2 Results and Discussion

It was found that the profile was of the type classified previously as a ‘Type la ’ 

profile (Figure 5.3), where the base of the trough is at a higher level than the baseline 

and there is a second, less-pronounced, peak following the first.

The results from the XPS analysis have been summarised in Table 6.1, and the data 

for the three elements of greatest interest (Fe, O and Si) is also shown graphically in 

Figure 6.31. Carbon was also included on this figure due to the magnitude of the 

amount present in the results.

In the table, the elements refer to the following orbitals:

Iron- 2p 3/2 Nitrogen - Is Calcium -  2p

Carbon - Is Sulphur - 2p Manganese -  2p A

Oxygen - Is T in- 3d 5/2 Magnesium -  2s

Silicon - 2p Chlorine - 2p Phosphorous -  2p

Figures 6.32 -  6.35 show the data for each of the separate elements for clarity. A 

representative ECP profile is also included on these figures so that a comparison can 

be made between the composition of the oxide layer and the respective position on the 

profile. It should be noted that the x-axis relates directly to the particular etching 

times, and is therefore not linear.

It can be seen from these results that:

• There is a relatively large presence of magnesium on the un-etched material, 

but not even trace amounts in any of the etched samples,
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Time Fe O C Si S Sn Ca N Cl Mn Mg p

0 5.69 56.92 21.87 1.00 0.00 0.00 0.00 0.00 0.00 0.00 14.44 0.08
10 18.09 49.47 30.12 0.63 0.28 0.03 0.58 0.10 0.12 0.30 0.00 0.29
20 17.76 51.64 27.89 0.37 0.44 0.12 0.59 0.34 0.00 0.31 0.00 0.54
30 16.60 48.71 31.37 1.32 0.30 0.06 0.77 0.18 0.13 0.28 0.00 0.26
60 15.61 53.68 25.27 3.38 0.44 0.00 0.76 0.29 0.15 0.27 0.00 0.15
85 15.76 52.32 23.71 7.04 0.16 0.17 0.42 0.10 0.00 0.32 0.00 0.00
95 9.47 47.44 35.16 6.64 0.00 0.06 0.75 0.19 0.00 0.13 0.00 0.15
125 7.13 51.30 28.96 11.83 0.00 0.00 0.61 0.07 0.00 0.11 0.00 0.00
215 2.56 56.38 23.41 17.00 0.00 0.05 0.30 0.17 0.14 0.00 0.00 0.00
275 1.14 62.19 15.97 20.30 0.00 0.11 0.18 0.06 0.00 0.05 0.00 0.00
360 10.94 48.27 37.46 0.92 0.57 0.05 0.52 0.40 0.00 0.45 0.00 0.42
1200 12.49 48.92 35.13 0.57 0.42 0.06 1.13 0.27 0.18 0.29 0.00 0.56

Table 6.1: XPS data from interrupted ECP investigation.
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Figure 6.31: Graphical representation of XPS data from 
interrupted ECP investigation.
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• The amount of silicon increases as the etching time increases, until the result 

for 360 seconds is reached, at which point it drops away to almost zero (Figure 

6.34),

• There are trace amounts of sulphur tin, calcium, nitrogen, chlorine, manganese 

and phosphorous, all of which do not appear to vary in any way that is related 

to the etching time,

• There appears to be a very high presence of carbon, varying approximately 

between 16 and 36% (Figure 6.35).

The magnesium that is present in the first sample is related to the magnesia coating 

applied to the strip following the decarburisation process. All visible evidence of the 

magnesia powder was brushed from the surface, but it appears that even subsequent 

ultrasonic cleaning could not remove all traces. It is likely that this is due to areas of 

particularly good adhesion between the magnesia and the surface due to the degree of 

roughness.

The results relating to the silicon are slightly surprising due to the low values for the 

last two samples. At these etching times, the profile was either close to, or actually at, 

the baseline. It was assumed that this baseline was related to the point at which the 

oxide layer had been completely removed and the base steel had been reached. 

Although the silicon content was expected to decrease as the oxide layer was 

completely removed, silicon values of 0.92% 0.57% were unexpected as the amount 

of silicon present in the base steel itself is approximately 3%.
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Due to the nature of the steel making process, it is not unusual to find trace amounts 

of a number of different elements. Those seen in this investigation are some of those 

commonly observed. Those observed here are not at levels that are significant to be of 

concern.

The carbon data is highly unexpected, as one of the main purposes of the 

decarburisation process is to remove carbon from the steel itself. It was thought 

possible that the carbon is only being removed as far as the oxide layer, at which point 

it is becoming trapped. This would have serious consequences in terms of the quality 

of the final product, and it was necessary to investigate this effect further.

Therefore, as an extension of this work, a representative sample of the un-etched 

material was also analysed using a technique known as Sputtered Neutral Mass 

Spectrometry (SNMS), described in Section 2.2.5. This could provide an elemental 

analysis of the oxide layer by sputtering through the material until the base steel was 

reached. The high-energy incident beam of ions used in this technique has an erosive 

effect that acts to etch into the surface layer. This provides a continual depth profile 

for the composition of the layer, without having to use the acid of the ECP method to 

etch through the layer in stages. It would clarify whether this technique would 

correlate with the unexpected carbon results obtained from the XPS investigation, and 

whether the XPS carbon data was the result of contamination.

The results from the SNMS analysis are shown in Figure 6.36, which shows the 

smoothed data. It should be noted that the elemental content for SNMS is in atomic 

percent (compared to weight percent for EDX), the scale on the y-axis is logarithmic, 

and the etching time for SNMS is completely different to that of the ECP etching
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times. For clarity, the data for the more relevant elements are shown in Figures 6.37 -  

6.40.

By comparing the SNMS data in Figure 6.36 to the relevant data from the XPS 

investigation (Figure 6.35), it can clearly be seen that the carbon data for these two 

techniques is not in agreement. The XPS data showed a presence of up to 

approximately 36%, whereas the SNMS data shows the carbon level to remain 

relatively steady at around 0.5 - 1%, and not increasing above 1.6%. This lower level 

is much closer to the level of carbon that was originally expected to be found.

Due to the sputtering nature of the SNMS, the oxide layer can only be contaminated 

on the very outer layer, as the lower levels have previously been unexposed to the 

atmosphere or any other potential contaminants. Therefore, these results suggest that 

the sample used for XPS analysis must have somehow been contaminated following 

the ECP etching process, but prior to the XPS analysis itself. It is not possible for the 

sample to be contaminated once it had been placed in the XPS apparatus, as each 

chamber was held under vacuum. Only the water with which it was rinsed and the 

apparatus used for punching the smaller disk from the etched sample came into direct 

contact with the surface to be analysed prior to XPS analysis. However, it is deemed 

highly unlikely that mains tap water would contain such high carbon content. The 

sample punch is used purely for this purpose and is regularly used in conjunction with 

the XPS apparatus. If this were the cause of the contamination, then it would occur 

on all samples analysed using this apparatus, which was not the case.

Another alternative is that the dryer used following the rinse could have dispensed hot 

air that deposited carbon-rich particles on the surface. Again, such a high level of 

carbon would not be expected from this. Following further investigation, the most
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likely cause of contamination is related to the tape with which a section of each ECP 

sample is covered to ensure a constant surface area is exposed to the acid. Although 

this acid-proof tape prevents acid from attacking the area that it covers, it has been 

noticed that the areas at the very edge of the tape begin to peel away from the steel 

surface during the etching process. This provides a possible mechanism for the acid 

to attack the underside of the tape and the associated glue, which can then be absorbed 

into the acid solution. The organic substances could then be deposited onto the 

surface of the sample.

As well as providing evidence of contamination in the XPS investigation, the SNMS 

data also exhibited a number of other interesting trends.

It was found that there was a very good correlation between the amount of iron and 

oxygen in the surface layer being analysed. Figure 6.41 clearly shows the expected 

result that the relationship between these two elements is inversely proportional, 

illustrating the difference between the oxide layer and the base steel. This is expected 

as the amount of oxygen, combined within compounds in the oxide layer, decreases as 

larger amounts of the base steel are exposed.

However, the SNMS data also showed data that contradicts the results of other 

investigations. It was found that the relationship between silica and oxygen was 

inversely proportional as shown in Figure 6.42, which was the opposite of what was 

established from the EDX results. This seems a strange result, as it is believed that 

the oxygen predominantly combines with silicon in the form of SiC>2, and therefore 

these two elements should increase in proportion to one another. It can be explained 

by looking at the amount of both elements present in the two investigations; the 

SNMS data appears to show evidence of a much higher proportion of oxygen in
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relation to the silicon content that the EDX data. This suggests that the oxygen is 

combining with other elements to form compounds other than SiC>2. In the first stages 

of the SNMS analysis, it is likely that a majority of this oxygen will be combined in 

the MgO, and this is the region that gives the greatest discrepancy. As the results are 

given in atomic percentages, it is likely that this MgO distorts the data for all of the 

other elements. As the amount of magnesium is seen to reduce to normal levels (i.e. 

after magnesia has been removed) it is seen that the composition of both silicon and 

oxygen level out and remain constant. This suggests that a region of Si02 has been 

reached.

6.4.3 Conclusions of Section 6.4

Although x-ray photoelectron spectroscopy (XPS) is a useful surface analysis tool for 

a number of applications, it was found that it could not be utilized in conjunction with 

interrupted ECP. This was due to the large amount of carbon detected at each stage of 

etching. The sputtered neutral mass spectrometry (SNMS) was used to prove that this 

amount of carbon was not a genuine constituent of the decarburisation oxide layer, but 

was present due to contamination of the samples. This contamination was most likely 

to be due to organic compounds contained within the adhesive of the acid-proof tape 

being deposited on the surfaces during the etching process. If further work on this 

apparatus is anticipated, a sample could be tested without tape to test this hypothesis. 

However, both techniques did show that, once the region relating to the surface 

magnesia had been passed, the levels of oxygen and silica remained constant in 

relation to each another.
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6.5 Chapter Summary

The investigation using the ‘interrupted ECP’ technique was proved to be more 

successful when combined with the FTIR and EDX methods of evaluation.

Due to carbon contamination of the samples, the results obtained from the XPS 

apparatus were uncertain, as the presence of such high levels of carbon distorted the 

results for all other elements of interest. The SNMS was used to prove that these high 

carbon levels were a result of contamination, and were not a constituent part of the 

oxide layer. However, it was found that both of these techniques showed a clear 

correlation between the presence of silicon and oxygen, agreeing with previous 

opinions.

It was found that the images obtained using the SEM technique were generally 

inconclusive, although they did appear to show changes in the silica as the etching 

time increased. The associated EDX analysis was proved to be a useful method of 

analysing the elemental variation at different etching times. It showed that the 

amount of both silicon and oxygen increased almost as soon as etching began, and 

also that they increased at similar rates of weight percentage. When the atomic mass 

of the two elements is considered, this suggests that the silicon and oxygen are present 

in the ratio of 1:2, and that the compound is silica (SiC>2).

Of all the techniques used in conjunction with the interrupted ECP, the FTIR method

of analysis proved to give the greatest insight into the compounds present on the

surface at various etching times. It established that there is a layer of fayalite on the

very surface of the oxide layer when the sample is in an un-etched state. However,

this is quickly removed when the sample is etched in sulphuric acid, and no trace of

fayalite is seen in the spectra relating to any of the etched samples. The spectra

relating to the samples etched to regions before the trough on the ECP profile showed
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evidence of a main band at around 1135cm'1. As the etching time increased, it was 

found that this band shifted to higher wavenumbers, reaching a maximum of 

-1250cm'1. This occurred on the spectrum relating to the peak of the ECP profile. As 

the potential then decreased towards the baseline, the band at - 1 100cm’1 again 

became more dominant. Interestingly, the change between these two bands appeared 

at the distinctive points of the peak and trough of the ECP profile, suggesting that 

there is a link between the composition and / or morphology of the oxide layer and the 

shape of the ECP profile.

Although the presence of the two bands (-1100 and 1250cm'1) initially appeared 

problematic, it is believed that both of these bands are due to the presence of silica, 

but relate to differing forms of the compound. Alternatively, the band at -1250cm'1 

could be linked to other silicates or oxides found in the oxide layer, although it has not 

been possible to obtain any spectra to prove this.
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Chapter Seven

Evaluation of Forsterite Glass Film Using FTIR

7.1 Introduction

The formation of the forsterite glass film occurs during a high temperature anneal, as 

a result of a reaction between compounds in the decarburisation oxide layer and the 

magnesia (MgO) coating. This is covered in greater detail in Sections 1.2.5 and 1.3.2. 

Due to the success in obtaining FTIR spectra from other surface layers, it was decided 

to establish whether this technique could be adapted to the analysis of the forsterite 

glass film layer. This could be adapted to give an insight into the consistency of the 

composition of the layer, or the variation in thickness.

7.2 Obtaining FTIR Spectra for Forsterite

7.2.1 Experimental Procedure

At this stage, it was unknown if an FTIR spectrum could be generated for a sample of 

forsterite coated electrical steel. Therefore a sample was taken from a coil that had 

been processed in the HTCA furnace where the forsterite is formed. This sample was 

taken at the entry of the final coating and thermal flattening line, prior to being coated 

with the phosphate coating. However, some of the magnesia that had not reacted 

during the formation of forsterite was still on the surface. This was removed simply 

by brushing.

The sample was analysed using the standard FTIR attachment (26.5° grazing angle), 

as it was established that this produced an adequate spectrum. Unlike the

189



decarburisation oxide layer, it was not necessary to use the 80° grazing angle 

attachment. A number of spectra were obtained from a selection of areas across the 

sample to establish the reproducibility.

7.2.2 Results and Discussion

It was found that all of these spectra were very similar in terms of both the position 

and size of the infrared absorption bands. Figure 7.1 shows the four spectra obtained 

for each surface. This figure illustrates the reproducibility of the results, with each 

spectrum being very similar to the other three in the set. It can also be seen that the 

position and relative sizes of each of the bands remains constant from one surface to 

another. Figure 7.2 shows one of these spectra, with the bands labelled. It can be 

seen that the major bands appear at 981, 864, 835, 607, 565 and 502cm'1. Other, less 

distinctive bands can also be seen at wavenumbers of 1008, 956, 886, 522 and 

477cm'1.

7.2.3 Effect of MgO

It was suggested that the sample might have been slightly contaminated by small 

amounts of magnesia, as brushing does not provide a thorough cleaning of the surface. 

Therefore, the sample that previously had MgO brushed from the surface was 

thoroughly cleaned using acetone. The three spectra obtained from this sample were 

averaged using the spectral calculator, which is a software program able to manipulate 

spectra according to standard mathematical principles (see Section 8.3 for further 

detail). This averaged spectrum was then compared to the averaged spectrum obtained 

when the sample was brushed clean. This comparison can be seen in Figure 7.3.
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The colours of the spectra relate to the two surfaces of each sample that were analysed 

(i.e. top and bottom), and it can be seen that the two cleaning methods resulted in very 

little difference in the spectra.

To further determine whether magnesia coating has an effect on the spectra, a sample 

was taken from the end of the decarburisation line. This has the oxide layer on the 

surface of the strip instead of the forsterite glass film, but a layer of magnesia several 

microns thick covers this. It is very unlikely that the radiation from the FTIR 

apparatus would penetrate through this magnesia layer, and therefore the resultant 

spectrum would be that of the magnesia coating. This can be used to determine the 

wavenumbers at which the magnesia-related bands would be positioned. This 

spectrum is shown in Figure 7.4. It can be sent that the main bands are located at 

wavenumbers of 1481, 1421 and 854cm'1, with smaller bands at 1647, 805, 581 and 

424cm'1, and that few of these appear to be in positions that would affect the forsterite 

spectrum. The bands at 1481 and 1421cm'1 are out of the wavenumber range of the 

forsterite spectrum shown in Figure 7.2. However, this scale was chosen as it 

contained all of the bands that were seen for forsterite. Therefore it can be concluded 

that these two bands were not observed in the forsterite spectrum. The only band that 

is similar to one seen in the forsterite spectrum is the one at 854cm'1, which is close to 

the forsterite band located at 864cm'1. However, as well as these two bands differing 

in wavenumber by 10cm'1, it would be expected that there would be more than one 

magnesia related band present, which did not occur. Therefore, it can be concluded 

that the forsterite spectrum as seen in Figure 7.2 is not contaminated by traces of the 

magnesia coating.
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7.2.4 Effect of Acid Pickling

During the production process, the strip undergoes a light pickle in dilute sulphuric 

acid to remove the magnesia coating prior to final coating. As it had been proved that 

the FTIR method could obtain a spectrum from forsterite, the effect of this pickling on 

the forsterite glass film could be established.

A sample was taken from the entry end of the final coating and thermal flattening line, 

and pickled in sulphuric acid under laboratory conditions. The conditions under 

which this was carried out were as close as possible to those that the strip experiences 

on the production line. Figure 7.5 shows a typical spectrum obtained from this 

sample, and compares it with typical spectra obtained previously in this investigation. 

It can be seen that the pickling appears to have had very little effect (in terms of the 

wavenumber at which the absorption bands occur) when this spectrum is compared to 

samples that were cleaned less vigorously by brushing and cleaning with acetone.

For an investigation to be carried out to establish the level of variation in the forsterite 

glass film layer, a large number of samples would be required from a number of coils 

to ensure a large degree of variation in the processing conditions. The most 

straightforward way of obtaining these would be to use the samples taken from the 

end of the final coating and thermal flattening line for magnetic testing. These are 

taken from each coil on a routine basis, and are of a size that is compatible with the 

FTIR apparatus. However, using the samples in this form is complicated by the fact 

that these samples have the final phosphate-based coating on top of the underlying 

forsterite layer.
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Following consultation with Chemistry Department personnel, it was found that 

sodium hydroxide (NaOH) could be used to pickle these samples in order to remove 

the phosphate coating without affecting the forsterite layer. A solution of 20% 

sodium hydroxide was heated until its boiling point was reached, and the phosphate- 

coated samples were submerged in this solution for 12 minutes. This was sufficient to 

remove all traces of the final coating from the sample, but leave the forsterite layer 

intact. However, it was not known whether this pickling process would have an effect 

on the resultant spectra.

The FTIR apparatus was used to obtain spectra from both surfaces of this sample, 

which were subsequently averaged using the spectral calculator. Again, the spectra 

on both sides of the sample were found to be very consistent. One of these spectra 

was analysed to determine the position of each of the bands, and the labelled spectrum 

is shown in Figure 7.6.

By comparing this spectra to the three sets of spectra previously obtained in this 

investigation i.e. removing magnesia by brushing, acetone and pickling in dilute 

sulphuric acid (Figure 7.7), it can be seen that the spectra are very similar, irrespective 

of the method that was used to expose the forsterite layer.

7.2.5 Conclusions of Section 7.2

From this work, it has been clearly established that it is possible to obtain an FTIR

spectrum from a sample upon which a forsterite glass film had been formed. This was

possible using the standard 26.5° grazing angle FTIR attachment.

A number of methods were used to remove the magnesia or final coatings from the

surface, thus exposing the forsterite. It was thought that the variation between these

methods might lead to differences in the resultant spectra. However, it has been
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proven that the different techniques have very little impact on the positions and 

relative sizes of the absorption bands. Therefore, there is no optimum method of 

exposing the forsterite layer in future investigations, as each of the four methods 

detailed here are equally as valid. However, the most convenient way to gain access 

to material from a large number of coils is to use the Epstein samples routinely cut for 

magnetic testing. A brief pickle in a dilute solution of sodium hydroxide (NaOH) has 

been shown to efficiently remove the final coating without detriment to the spectra. 

During this investigation, it was necessary to obtain a spectrum from a magnesia- 

coated sample. It was found that none of the bands associated with this magnesia 

appear to have an effect on the spectra in any of the four aforementioned cases.

From this investigation, it appears that forsterite produces a very distinctive spectrum. 

As the spectra were obtained from a number of samples, the spectra are seen to be 

very consistent, with very little variation in the size, shape or position of the bands. 

This suggests that the forsterite glass film layer varied very little in terms of 

composition between samples, and has no other significant compounds present other 

than the forsterite.

7.3 Forsterite Thickness Measurements Using FTIR

7.3.1 Introduction

The Fourier Transform Infrared (FTIR) apparatus at Orb has previously been used to 

determine the coating thickness of the final phosphate based coating. This application 

utilised the transmittance value at a specified wavenumber. Previous work has shown 

that this value has a direct correlation to the coating weights as measured accurately 

by chemical analysis and by the Fischer Permascope.
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Recent work has shown that a spectrum can be obtained from the forsterite glass film 

that is formed during the HTCA stage of processing (Section 7.2). These spectra 

exhibit a large number of distinctive peaks that are consistently found at the same 

wavenumbers. The bands that are observed are also sharp and well defined. These 

are both characteristics that aid the analysis of FTIR spectra.

It has therefore been decided to undertake an investigation to establish whether a 

method can be developed to measure the thickness of the forsterite glass film using 

the FTIR apparatus. If successful, this would provide a technique that would be 

significantly less time consuming than the methods that are currently used. However 

it is necessary that this be achieved without compromising on accuracy.

7.3.2 Experimental Procedure

Initially, four samples of forsterite-coated samples were obtained from the entry end 

of the M2 final coating and thermal flattening line. At this stage of processing, the 

material has been through the high temperature coil anneal (HTCA) process, and 

hence the forsterite glass film has been fully formed on the surface of the steel. This 

surface also has a layer of excess magnesia that did not react in the forsterite forming 

process, but has not been coated with the final phosphate-based coating at this stage of 

processing. The majority of the magnesia was removed simply by brushing, ensuring 

that the brush used was not abrasive enough to damage the glass film. To ensure that 

none of the excess magnesia remained, acetone was used to further clean the samples 

prior to analysis.

Once cleaned and cut to an appropriate size, the samples were analysed using the 

FTIR apparatus at Orb. Two spectra were obtained from different areas from each
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side of the four samples, and the spectral calculator software was then used to obtain 

an average spectrum for each surface.

The Fischer Permascope was used to provide coating thickness data with which to 

compare the FTIR spectra. This is a technique used as standard at Orb to determine 

the thickness of the forsterite glass film. When using this equipment, it is necessary to 

obtain a result by averaging a minimum of 20 readings, each of which is taken by 

holding a measurement probe in contact with the surface under analysis. At least two 

sets of measurements were obtained on each surface so that an average value could be 

calculated to increase the accuracy of this data. This number of samples was required 

to gain an accurate average value as the forsterite layer is quite undulating in nature, 

and there are also areas where the forsterite will protrude into the steel substrate, 

resulting in a greater thickness.

Due to the probe coming into physical contact with this technique, and a minimum of 

40 measurements carried out on each surface, it was decided to perform these 

measurements after the FTIR spectra had been obtained to ensure that any destructive 

effect that the probe may have on the surface does not affect the spectra.

7.3.3 Results and Discussion

At this stage it was possible to compare the results from the two methods. Upon

visual inspection of the spectra, it initially appeared that there was little correlation

between the area or positions of the distinctive bands and the thickness of the

forsterite layer. The bands all appeared to be at the same wavenumbers, with no

obvious shifts observed, and the areas were generally similar for a range samples with

varying forsterite thickness. However it was apparent that the thickness of the

forsterite appeared to have an effect on the overall transmittance level of the whole
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spectrum, particularly between the wavenumbers of 1300 and 400cm'1. This is 

demonstrated by the spectra shown in Figure 7.8. This shows the average spectra 

from two surfaces, with forsterite thicknesses of 1.10 and 1.73 microns, as measured 

by the Fischer Permascope. It is clearly seen that the spectrum relating to the greater 

thickness is seen at significantly lower levels of transmittance over the entire range of 

wavenumbers.

To test this hypothesis, the results were used in conjunction with FTIR software 

(Beer’s Law [42]). This enables concentration, or in this case coating thickness, to be 

compared with certain specified characteristics. The coating thickness values 

obtained from the Fischer Permascope are entered into the computer, along with the 

corresponding spectra. The software then performs calculations on the input data 

according to certain parameters set by the operator. In this case, it was the area above 

the curve that was specified. The result was that this software determined a very high 

degree of correlation between the spectra (in terms of area) and the thickness as 

measured using the Fischer Permascope. However, it was clear that an increased 

number of samples were required to prove the reliability of this method. It was also 

necessary to obtain samples that would increase the range of thickness over which this 

technique could be applied. For these reasons, a further three samples (i.e. six 

surfaces) were acquired and analysed in the same way, although one surface was 

found to be contaminated, and was removed from the investigation.

Preliminary visual analysis of the resultant spectra suggested that they followed the 

same trend as seen previously, and using the aforementioned Beer’s Law software 

confirmed this. This software is able to determine a coating thickness based on all

202



% 
T

ra
n

sm
it

ta
n

ce

100
1.10 microns 

1.73 microns

At

4000 1000 4003000 15002000

Wavenumber ( c m 1)

Figure 7.8: Spectra showing correlation between forsterite 
thickness and overall transmittance levels.

203



points of the spectrum. However, the range over which the calculations were based 

was refined to 400-890cm'1 following further analysis of all of the spectra.

A plot was obtained, comparing the calculated area with the measured forsterite 

thickness. This can be seen in Figure 7.9. It can be seen that the correlation between 

these two parameters is very good, with a correlation value, calculated by the 

software, of 0.988. This is particularly impressive when it is considered that the 

standard error of the Fischer Permascope is ! 0.1 microns.

The software uses this result to be able to predict a coating thickness based on the 

standards that have been set. Figure 7.10 illustrates the correlation between the 

measured coating thickness and that predicted according to the area calculations, 

based on the samples already observed.

The correlation remains good over the entire range of samples, from 0.76® to 2.21®, 

which covers a significant range of forsterite thickness that are expected to be 

produced under standard production conditions.

7.3.4 Conclusions of Section 7.3

From the work detailed above, it can be concluded that there is a clear correlation 

between the area above the transmittance spectrum for a sample with a forsterite glass 

film layer, and the coating thickness of that layer, as measured using a Fischer 

Permascope.

It has also been established that the Beer’s Law software, linked to the FTIR 

apparatus, can be used to take advantage of this relationship and predict the coating 

thickness of forsterite.
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7.4 Chapter Summary

The work performed in this chapter has shown that the forsterite glass film can be 

analysed using the 26.5° grazing angle attachment on the FTIR apparatus located at 

Orb works. The spectra obtained show that forsterite produces a very consistent 

spectrum in terms of the position, shape and size of the bands, whether it is brushed, 

cleaned with acetone, pickled in sulphuric acid to remove excess magnesia or etched 

in sodium hydroxide to remove the final insulation coating.

The spectra obtained appear to vary only in terms of the overall transmittance level. It 

has been proved that this deviation is due to the thickness of the forsterite glass film 

layer. Software linked to the FTIR apparatus can subsequently be used to predict the 

thickness of the layer based on the area above the spectral curve in the range of 400- 

890cm'1.
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Chapter Eight

Evaluation of Final Insulation Coating 
Using FTIR

8.1 Introduction

Once the grain oriented coils have been removed from the High Temperature Coil 

Anneal furnaces at Orb Works, the material passes through a line known as M-line, 

which is a final coating and thermal flattening line. For many years, the coating mix 

that has been applied to grain oriented material on this line has been a phosphate- 

based solution. This coating layer provides the dual benefits of reducing losses by 

inducing further tension on the surface of the strip, and also providing greater 

electrical insulation. Until the recent development of alternative chrome-free coatings 

(described in Chapter 9), the formulation that has been used to coat GO material at 

Orb Works has remained constant for approximately 25 years. This was the standard 

coating formulation that was used on a routine basis on production material at the 

time of this work, and is therefore the coating that has been evaluated in this chapter. 

This standard coating formulation comprises aluminium orthophosphate, colloidal 

silica, chromic acid and water, and these components are mixed at the site of the 

coating apparatus. It is believed that the final magnetic properties of the steel can be 

substantially affected by the ratio of aluminium orthophosphate to colloidal silica 

[18].

Although the coating is mixed according to strict practices on-site at Orb, it is possible

that some settlement may occur in the mixing tanks and coating overflow trays. This

causes the exact composition that is coated onto the strip to remain unknown unless
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very time consuming wet chemistry techniques are applied to the coated material. 

Therefore it is highly desirable to establish a method that can accurately and rapidly 

assess the final coating to determine if the optimum coating is being applied in terms 

of its tensioning capabilities.

During initial investigations, it was found that a suitable spectrum could be obtained 

from coated material using the standard FTIR procedure and attachment (i.e. the 26.5° 

attachment). It was envisaged that this technique could provide a rapid and 

straightforward method of determining variations in the coating composition.

The spectra obtained from these primitive investigations were observed to contain a 

large number of clear, broad absorption bands. However, the relevance of each 

separate peak and trough was unknown and could not be linked to any of the separate 

constituent components of the mix from this basic analysis alone.

Therefore, an investigation was carried out to determine the origin of these bands, so 

that the composition of the coating mix could be evaluated and monitored. This 

would enable an optimal coating mix to be maintained and would ensure that any 

variations in the final coating layer that may occur as a result of subtle differences in 

composition between mixes were reduced. Also, if the difference in density of the 

separate components is significant enough, the mix may change in composition as the 

coating in the tank is consumed due to a settling effect. This is a further effect that 

could be easily monitored if FTIR was established to be a suitable method of analysis.
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8.2 Separate Constituents

8.2.1 Experimental Procedure

To establish which of the spectral characteristics are related to each of the constituent 

parts of the coating, it was decided to first coat separate steel samples with the two 

substances thought to have an effect on the final magnetic properties (colloidal silica 

and aluminium orthophosphate). A number of Epstein samples (305 x 30mm) of 

grain oriented material were selected from a pack taken from M-line for routine 

magnetic testing and grading. These samples were pickled to remove both the final 

coating and the forsterite glass film from the surface. This provided samples with a 

clean base steel substrate, upon which the constituents could be coated. It also 

ensured that the base steel would be as similar as possible for each of the coatings in 

order to minimise any effect that the steel surface could have on the results.

The samples were coated with a steel coating bar with a groove depth of 3.5(Dm, with 

the colloidal silica and aluminium phosphate having been obtained from the same 

source as used for standard Orb Works production.

The samples were cured in a laboratory furnace at a temperature of 800°C. During the 

laboratory investigation, it was difficult to accurately reproduce the curing conditions 

experienced by the material on the process line. The time of cure in the laboratory 

furnace was therefore varied to ascertain whether the amount of curing would affect 

the spectra produced. The different times were 5, 10 and 20 seconds for both 

coatings, with an extra aluminium orthophosphate sample cured for 30 seconds to 

ensure that it was fully cured. Once cured, each sample was placed on the 26.5°
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grazing angle attachment and analysed using the FTIR apparatus located at Orb 

Works.

8.2.2 Results and Discussion

This procedure gave the infra-red spectra for pure colloidal silica and pure aluminium 

orthophosphate (i.e. no mixing, either with each other or with any other compounds), 

and should therefore show only the characteristic bands associated with each of these 

two components. These spectra are shown in Figures 8.1 and 8.2.

The scans were obtained over a range of 400-4000cm'1, although the wavenumber 

range shown in these spectra ranges only from 400-1500cm'1 as no relevant bands 

were seen at the wavenumber values omitted.

It can be seen that there are four clear bands associated with the colloidal silica 

spectrum. These occurred at approximately 1180, 1035, 795 and 450 cm'1.

The spectra relating to aluminium orthophosphate shows a greater number of features, 

although many of these are not as distinct as those seen for silica. They were located 

at the following wavenumbers: 1230, 1100, 933, 730, 710, 620 and 480cm'1. 

Therefore, it was observed that the two separate constituents had two distinctive 

spectra with no bands occurring at precisely the same wavenumber, although some, 

such as those at 450 cm'1 (colloidal silica) and 480cm'1 (aluminium orthophosphate), 

were in close proximity with one another which may cause difficulties when trying to 

distinguish which compound it relates to.

In theory, it is only the bands that have been observed at these exact wavenumbers

that can be related to the two components. However, this may not be as

straightforward as it appears, as mixing the components may distort the spectra. For
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example, when two or more components are mixed, the peaks and troughs of the 

bands that are related to each component will be superimposed onto one another. 

This may cause some features to disappear, or other features may appear to move, as 

the apparatus may not be able to resolve between each of the different peaks.

Furthermore, it was found that the length of time for which the samples were cured 

did not greatly affect the spectra obtained. This is demonstrated by the spectra in 

Figure 8.3. It can be seen that the spectra show certain bands at different levels 

dependant on curing time, but it is the position of the bands that is of interest and 

these generally remain constant. The only noticeable variation is between 

approximately 900 and 1100cm"1, when the curing time increases above 10 seconds. 

Under these conditions the shape of the trough changes slightly and a small band 

appears at approximately 1030cm'1. The size of this small band is almost negligible 

when compared to the size of the wider band within which it is located, and is 

probably not relevant for further studies, but note should be taken of this particular 

wavenumber in case any effects are seen in this region during further investigations.

8.3 Spectral Calculator

The ‘Spectral Calculator’ is a component of the software provided for the Perkin-

Elmer FTIR equipment. It allows a previously obtained spectrum, or a number of

spectra, to be manipulated in a way that is related to a basic standard numerical

calculator. For example, a chosen spectrum can be multiplied by a specific factor, or

a number of spectra may be added together or subtracted from one another. A

combination of addition and division of spectra may be used to provide an average

spectrum from a set of data (i.e. [spectrum 1 + spectrum 2] / 2 = average spectrum).
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The previous section (Section 8.2) described how the separate components of the 

insulating coating were coated onto steel samples under laboratory conditions. This 

enabled spectra to be obtained for 100% colloidal silica and 100% aluminium 

orthophosphate. However, these components are not applied to the strip on their own 

under production conditions, but are mixed according to a specified formulation.

The Spectral Calculator software has therefore been utilised to manipulate the spectra 

to produce a number of theoretical mixes that show how the spectra change as the 

ratio of the constituents is varied.

Figure 8.4 shows this variation as the theoretical mix varies from [100% colloidal 

silica + 0% aluminium orthophosphate] to [0% colloidal silica + 100% aluminium 

orthophosphate] in incremental steps of 10%. Although the ratio between these two 

components would be expected to vary over a much smaller range under production 

conditions, the combinations used cover the maximum range of variation possible, 

which gives the greatest chance of establishing the spectral changes that occur due to 

changing composition.

It can be seen that there are obvious changes to the spectra as the ratios of the 

constituents within the ‘mixes’ are varied. The most significant observations are:

• There are three points that stay approximately fixed as the mix changes (at 

approximately 1380, 1050 and 800 cm'1). This suggest that these regions are 

unaffected by either of the components. These points could prove useful as 

they have potential to be used as reference points to which other coordinates 

may be compared.

• There is significant variation between approximately 1380 and 900cm'1. The

spectrum relating to 100% colloidal silica shows two clearly defined bands at
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approximately 1180cm'1 and 1035cm'1. However, as the aluminium 

orthophosphate content increases, a number of changes are seen. Firstly, the 

band at 1180cm*1 becomes shallower, moves to regions of increasingly lower 

transmittance and also shifts to a slightly greater wavenumber. The band at 

1035 cm'1 also becomes less well defined, and appears to separate into two 

bands at 1100 cm'1 and 930cm'1. The level of transmittance in this region 

also decreases as the aluminium orthophosphate content increases.

• The band at -800cm'1 remains fixed at that wavenumber, although the depth 

of the trough decreases as the aluminium orthophosphate content increases.

• At -730cm'1, the band also remains at a fixed wavenumber. However, this 

band increases in depth as the amount of aluminium orthophosphate increases.

• The band at approximately 450cm'1 becomes broader and shallower as the 

aluminium orthophosphate content increases.

These spectra clearly demonstrate the benefits of the ‘Spectral Calculator’ software, 

and show that significant differences are seen in the FTIR spectra when the colloidal 

silica and aluminium orthophosphate spectra are manipulated to provide theoretical 

mixes. However, the variation seen here remains theoretical and requires practical 

experimentation to confirm the findings. This work is described in Section 8.4.
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8.4 L aboratory C oating M ixes

8.4.1 Experimental Procedure

An investigation was carried out to discover what the effect of mixing the main two 

components of interest (colloidal silica and aluminium orthophosphate) would have 

on the spectra obtained.

Three different formulations were chosen with varying A1(H2P0 4 ) 3  : SiC>2 (aluminium 

orthophosphate : colloidal silica) ratios. They were:

Mix 1: 30ml SiC>2 : 10ml A1(H2PC>4)3 (3:1 i.e. 25% Aluminium orthophosphate)

Mix 2: 30ml Si02 : 20ml A1(H2P0 4 ) 3  (1.5:1 i.e. 40% Aluminium orthophosphate)

Mix 3: 20ml SiC>2 : 20ml A1(H2PC>4)3 (1:1 i.e. 50% Aluminium orthophosphate)

It should be noted that the formulation of mix 2 was based around the approximate 

ratio used as the standard mix at Orb Works.

The three mixes were deliberately chosen to give a much larger variation in 

composition than would be found on production material. This was to ensure that any 

changes in the spectra could easily be seen. If they varied only by the slight amount 

that was expected to be found on the production line, then it is possible that the 

changes in the spectra may be too subtle to be detected. If this investigation were to 

show promise, the technique could be refined further, but at this stage it is only 

necessary to ascertain the feasibility of using this apparatus to determine changes in 

composition. Relating this to a production situation would require far greater study.
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Water and chromic acid were not used in the mix during this investigation, as it is the 

ratio of the colloidal silica to the aluminium orthophosphate that is of interest, due to 

its direct influence on magnetic properties. It was decided that the bands due to these 

other substances would only interfere with the bands of interest, making the 

determination of any changing features more problematic.

In each case, the aluminium orthophosphate and colloidal silica were mixed together 

by rapidly stirring the solution with a glass rod. This was carried out so there would 

be no localised areas of one particular component once the mix had been coated onto 

the steel. This would cause the spectra obtained to give misleading information.

The samples used in this investigation are known as Epstein samples. These are 

samples measuring 305mm x 30mm, and are routinely taken from each production 

coil for analysis after the final coating and thermal flattening line. In this particular 

investigation, the sheet sample they were taken from was referenced as MS399025. 

These samples were pickled in acid to provide a consistent, bare steel substrate for 

this investigation, as carried out when samples were coated with the two separate 

constituents in Section 8.2. The top surface of each sample was also coated using the 

same steel roll (3.5(Dm groove depth) that had previously been used. Curing was 

again carried out for a duration of 15 seconds in a laboratory furnace set at a 

temperature of 800°C.

To determine the reproducibility of results along the length of the sample, three FTIR 

spectra were obtained from each sample; one in the centre of the sample, and one 

towards either end. Each set of scans were taken in the same position along the length
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of each of the samples to ensure that the position in the furnace did not have an effect 

(i.e. different curing effects due to temperature differentials within the furnace).

Each coating formulation was repeated using a second sample to discover how 

reproducible the results were from one sample to another.

It was noted that, although the coating equipment utilized is commonly used as a 

standard method of one-sided laboratory coating, the coating sometimes appeared to 

coalesce in certain areas before it could be cured. This is an occurrence commonly 

known as de-wetting. It is possible that this may result in different spectra being 

obtained due to thickness effects at various points on the sample. However, the 

composition of each mix should remain the same and therefore the spectra should be 

similar for each sample coated with the same formulation, irrelevant of the non­

uniformity of the application. A thickness effect should only result in either an 

increase or decrease in the level of transmittance, depending on whether the coating 

was thicker or thinner. This is because as a thicker coating will result in a greater 

absorption of the radiation, and hence a decrease in the transmittance values on the 

spectra. The position of the bands themselves should remain relatively unchanged.

8.4.2 Results and Discussion

An average spectrum for each laboratory mix was calculated using the spectral

calculator software, explained in Section 8.3. A comparison between the average

spectra for the three different coating formulations is shown in Figure 8.5.

The consistency of the spectra for a particular mix, comparing both spectra from

different areas of the same sample and also between two different samples (Figure

8.6), appeared to be acceptable. This shows that the results given by this method are
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reasonably reproducible, which is often difficult to achieve under laboratory 

conditions such as these. It also confirms that there was not a large amount of 

variation along the length of each sample, which it was thought might potentially 

occur due to the different temperatures at various points within the furnace

In Figure 8.5, it can be seen that there is a definite trend in the variation between 

spectra when the amount of aluminium orthophosphate is considered. The general 

level of transmittance tends to decrease as the aluminium orthophosphate percentage 

increases i.e. from 25% for mix 1 to 50% for mix 3.

A number of changes in the shape of the spectra could also be seen. The main 

observations were:

• An increase in aluminium orthophosphate led to a widening of the band at 

-1100-1300cm"1. The right hand extremity of this band remained at a fixed 

wavenumber, but the left hand side moved significantly to higher 

wavenumbers. There also appeared to be a flattening of the base of the trough 

of the band, as if evidence of another band was becoming more apparent

• The band at -1050cm'1 showed a similar effect. The band appeared to become 

much broader as the amount of aluminium orthophosphate was increased. 

Mix 1, and to a slightly lesser extent Mix 2, showed quite a sharp band with 

what appeared to be a slight second band superimposed upon it at 

approximately 950cm'1. The spectrum relating to Mix 3 shows just one broad 

band where these two bands appeared to have joined.

• The area of the trough relating to the band at -800cm'1 changes according to 

the coating formulation. This is due to the transmittance at the right hand end

of the band reducing as the amount of aluminium orthophosphate increases.
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However, this may be difficult to use quantitatively, as it is affected by the 

band at 730cm'1.

• The band at 730cm'1 becomes much more apparent for Mixes 2 and 3, but is

hardly observed for Mix 1. However, the band relating to Mix 2 has a larger 

than that for Mix 3, signifying that there may not be a direct correlation with 

composition.

• The same is true of much smaller bands at approximately 640 and 580cm'1.

• The band at -450cm"1 becomes much smaller as the amount of aluminium

phosphate is increased. However, this may also be difficult to quantify in 

terms of area, as the point that defines the edge of the band appears to be at a 

wavenumber below 400cm'1, which is the lowest wavenumber at which this 

apparatus can scan.

As expected from the results of the separate constituents, it appears that there are clear 

and distinguishable differences between the spectra relating to the three mixes. It can 

also be seen (Figures 8.4 and 8.5) that there are many strong similarities between the 

results predicted from the theoretical mixes produced using the spectral calculator and 

the spectra produced by the practical laboratory mixes. The bands appear where 

expected, along with the variations in band size, the occurrence of band shifts and 

changes in the levels of transmittance all occurring as predicted.

There appeared to be five main bands of importance on the spectra relating to each of 

the coating formulations. It is the troughs of the bands that are of relevance in this 

investigation, as transmittance was being measured and the troughs show where the
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radiation is being absorbed by the coating. The base point of these troughs appeared 

at wavenumbers of approximately 1250, 1050, 800, 730 and 450 cm"1.

From the spectra obtained from coating samples with the separate constituents 

(Figures 8.1 and 8.2), attempts can be made to allocate certain bands to certain 

components of the coating mix.

• The band seen at -1250cm"1 is likely to be due to the silica. However, the 

broadening of this band to areas of greater wavenumbers is likely to be due to 

the aluminium orthophosphate.

• A similar occurrence is also seen with the band at -1050cm'1, which is mainly

linked to silica. The broadening of this band, this time in the direction of

lower wavenumbers, is again due to aluminium orthophosphate.

• The increasing depth of the trough at 800cm"1 is due to an increase in the silica 

content.

• The band at -730cm'1 is linked to aluminium orthophosphate.

• A deeper, sharper band at -450cm'1 is linked to increased silica content.

In all cases, visually analysing these spectra shows that the bands observed in Figure 

8.5 agree with predictions that can be made from the spectra of separate constituents. 

However, although the bands and trends can be attributed to certain components, a 

quantitative analysis tool must be able to link the characteristics of the spectra in a 

more mathematical manner. Therefore, it was necessary to analyse these spectra in 

greater detail.
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Two main characteristics of a band that may be used for quantitative analysis are the 

height and area i.e. a change in one or both of these parameters can be linked to a 

change in concentration between mixes. It is possible to test this hypothesis in this 

case as the coatings were mixed according to known formulations. Therefore, the 

area of each of these troughs was calculated using the standard baseline method in an 

attempt to discover a trend.

The areas of the troughs were plotted against the percentage of aluminium 

orthophosphate in the mix. The greatest correlation was found to be associated with 

the trough at ~ 450cm'1 (Figure 8.7). This provided an R2 value of 0.8262. However, 

it was found on a number of coated samples that there was not always a trough 

associated with this wavenumber due to the trough extending outside the region of 

which the apparatus can scan. Therefore using it for quantitative analysis would be 

unreliable.

All of the other trendlines associated with the graphs of trough area versus 

concentration had an R2 value of less than 0.6, and could not be used for future 

analysis of the coatings, as the scatter at each wavenumber would make it ineffective.

The ratios of the areas of each of the absorption were also calculated (e.g. area of the 

band at 1250cm'1 divided by the area of the band at 1050cm'1). Although there is still 

a degree of scatter about the trendline, Figure 8.8 indicates that there is a link between 

the amount of aluminium orthophosphate present, and the ratio of the bands at 1170 

cm'1 and 800 cm'1. The potential for this to be used to determine the composition of
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the coating would have to be further examined by establishing the same link on 

standard Works produced material.

Due to the nature of infrared analysis, each compound that is detected is associated 

with a number of bands at particular wavenumbers. In spectra obtained from a 

combination of two or more components, any shift in the position of the bands must 

be due to a change in composition of the coating being analysed. It was therefore 

considered that observing the effects at certain wavenumbers may be more relevant 

than the size of the troughs themselves, and so it was decided to use the transmittance 

(%T) values at the wavenumbers that appeared to be relevant. These wavenumbers 

were chosen to be 1373, 1278, 1130, 1035, 846, 795, 730 and 446 as these correspond 

to the positions that a majority of the peaks and troughs occur. When the 

transmittance value was analysed for each separate peak, it was found that a 

correlation with the amount of A1(H2PC>4)3 was only apparent for the troughs at 1373, 

1278 and 730 cm'1. The correlation, including the appropriate R2 values, is shown in 

Figure 8.9.

Other methods of analysis were used to determine the extent of any correlation 

between these spectra and the coating composition. This included calculating the 

ratios between the above transmittance values and also the wavenumber separation 

between the points. Again, the averaged data showed some promise in many cases, 

but the full sets of original data showed a large amount of scatter, meaning the 

accuracy of a single, one-off analysis was not quite up to the standard required.
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As the number of spectra observed increased, it became increasingly evident that, as 

well as the bands changing size, the spectra were also changing shape. This is an 

important observation, as it interfered with the area calculations in some cases. For 

example, when the band at approximately 1100-1350cm'1 on the laboratory mix 

spectra is considered, it can be seen that the height of the boundary of the band at 

~1100cm’1 varies according to the composition. This affects the calculated areas, but 

is directly influenced by the second band at 850-1100cm'1. Therefore it was decided 

to re-examine a large number of spectra to establish any trends as this could be a 

factor that is responsible for introducing errors

From this visual inspection, it was found that the band centred around 1200 cm'1 is 

more likely to start splitting into two separate peaks as the amount of silica decreases. 

This visual observation is far less exact than the calculations carried out previously, 

but should be considered when carrying out further work.

8.5 Evaluation of Works Mixed Phosphate Coating

The results obtained from the previous section (coating steel samples with a

laboratory mixed coating formulation) did not give a completely accurate indication

of the coating mix used during Works production. The laboratory mix consisted of

only colloidal silica and aluminium orthophosphate, as it is these components that are

believed to affect the properties of the coating. Using just two components also

allowed the basic understanding of their distinctive absorption characteristics to be

obtained more easily. However, the coating mix used on the Works production line

also contains water and chrome (in the form of chromic acid), which may have an

effect on the overall shape of the spectra obtained. Previous work has shown where

the bands associated with both colloidal silica and aluminium orthophosphate are to
228



be expected to be found, and has also shown some trends that are observed when the 

ratio of these two components is varied. However, it was necessary to investigate the 

different aspects of the coating under ‘real life’ conditions, and to establish the effect 

of these two extra components.

8.5.1 Experimental Procedure

Five samples of the coating mix were taken from the production line over a period of 

four days. The samples were taken as the coating was mixed, before being transferred 

to the main mixing tank. Each solution underwent chemical analysis in the Chemistry 

Laboratory in order to discover the content (%w/v) of silicon, aluminium and chrome 

present in the mix. If necessary, this data can be converted from these figures to give 

the amount of colloidal silica, aluminium orthophosphate and chromic acid that was 

used to make up the mix (i.e. the respective volumes).

The data is shown in the Table 8.1, including the ratio of silicon to aluminium that is 

believed to be the most important factor in relation to final magnetic properties. 

Figures are also shown for the target specification of the mix, according to the 

standard operating procedures for the production line.

A selection of Epstein samples were selected and subsequently pickled so that they 

could be used as a bare steel substrate. They were taken from the same Epstein pack 

as the samples used for the laboratory mixes in the previous investigations. 

Therefore, they would be expected to have the same steel chemistry. The various 

coatings were applied to the top surface using a roll with a 1.2 thou (30 microns)
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Mix (Shift, date) Si A1 Cr Si / A1 ratio

A 6-2, 10/4, 9.4 1.65 2.51 5.70

B 10-6, 11/4 9.6 1.47 2.29 6.53

C 2-10, 12/4, 10.7 1.38 2.35 7.75

D 10-6, 12/4, 8.9 1.71 2.44 5.20

E 2-10, 13/4, 10.3 1.31 2.38 7.86

Specification 8.2 2.20 2.0-2.1 3.73

Table 8.1: Composition of Works mixed coating solutions.
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groove depth, and the samples were cured at 800°C for 15 seconds. Each mix was 

used to coat two samples. The coated surface was then analysed using the FTIR 

apparatus. Three measurements were taken on each surface, one at each end and one 

in the middle, to establish the level of consistency along the length of the sample.

8.5.2 Results and Discussion

The spectra obtained from each of the coatings were compared by overlaying them 

using the FTIR software. Although the shapes of the spectra varied from one coating 

to another, a majority exhibited similar shapes based around four distinctive troughs. 

A typical example of these spectra is shown in Figure 8.10.

Initial observations found that these troughs occurred at approximately 1170, 950, 800 

and 450cm'1. Some spectra also exhibited a slight peak at around 730 cm'1.

When compared to the spectra of the separate components, it could be seen that each 

of these bands could be linked to one of the components, with the spectrum for 

colloidal silica showing the greatest similarity. Colloidal silica also exhibited bands at 

approximately 1170, 800 and 450cm'1, whereas the aluminium orthophosphate had 

bands at approximately 950 and 730cm'1 in common, as well as a possible similarity 

at 480cm'1 (compared to 450 in the Works mix spectrum).

It should also be noted that the spectra obtained with these mixes also showed good 

comparison with the spectra from mixes formulated with just two components in the 

laboratory (see Figure 8.5 for comparison).

The area of each of the troughs relating to each band was calculated using the 

standard baseline procedure, as with the laboratory coatings.
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Figure 8.10: A typical coating mix showing 4 main troughs.
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These areas were plotted against the Si:Al ratio of the mixes. It was found that the 

data points appeared to show almost random scatter, with the trend line showing the 

greatest correlation having an R2 value of 0.0083.

It was also considered that the ratio of the areas of various troughs might show a trend 

in their variation as the concentration of the mix changed. Ratios were calculated for 

each combination possible. However, again no trend was found, with the data points 

showing a similar degree of scatter. The highest value for R in this case was only 

0.0859.

During the examination of the spectra, it was noticed that the base of some of the 

troughs did not always occur in exactly the same place, in terms of both wavenumber 

(x-axis) and transmittance (y-axis). It was deemed possible that there may be a 

possible shift occurring due to the change in Si:Al ratio. For this reason, the 

coordinates of the base of each trough was found and was plotted against the Si:Al 

ratio.

There appeared to be very little correlation between the ratio and the transmittance, 

but when the wavenumber shift was considered the troughs at approximately 1260 

and 1170cm'1 appeared to show a slight trend. However, the variation averaged only 

~20 cm'1 on the x-axis, which is quite insignificant when the large range of coating 

compositions is considered i.e. small changes in coating composition would not be 

detected by using this method. The study of these peaks was also slightly hindered by 

the fact that they occasionally merged to a varying degree.
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The differences in wavenumber and transmittance values between the points at the 

bases of each trough were also calculated i.e. differences in height between troughs 

and distances between troughs.

When this data was plotted, it was found that there was a greater separation of the 

bases of troughs at ~1260 cm’1 and 1170 cm'1 (where the main peak appeared to 

separate in a number of cases) as the Si:Al ratio decreased. This had an R2 value of 

0.6336, which does not prove that this can be used as an accurate method, but does 

show that the change in composition of the formulations is having a clear effect on the 

spectra.

As mentioned previously, the shape of some of the troughs appeared to vary. This 

could also be affected by the Si:Al ratio. This appeared to be most obvious at 1160- 

1260cm’1 and 950-1050cm’1.

Upon further study, it was found that as the Si:Al ratio increased, the troughs at 

~1170cm’1 and -1260 cm'1 were more likely to merge with each other to form a more 

elongated trough. The spectra obtained from mix D (lowest ratio of Si:Al = 5.20) 

clearly showed two distinctive peaks, whereas the spectra of mix E (highest ratio 

Si:Al = 7.86) showed only one. The region of the trough(s) also appeared to get 

shallower as the ratio increased.

To a lesser extent, separation and elongation also occurred in the 950-1050cm’1 

region, but no link with the Si:Al ratio could be found. This was most likely due to 

the variation being much more slight, making the analysis more difficult.
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8.6 Analysis of Works Coated Material

The previous sections have shown the spectra obtained from the two main 

components of the final insulation coating, the combination of these two coating 

constituents, and also the standard coating formulation as mixed on the Works 

production line. This has given a useful grounding of what is to be expected. 

However, all of the coating and curing procedures that have been carried out as part of 

those investigations has been performed in the laboratory. The overall aim of this 

work is to establish whether the FTIR can be used to directly determine the 

composition of the formulations that have been coated onto the final product. 

Therefore, now that a greater understanding of the components has been gained, it is 

necessary to analyse the coated steel as produced on the Works production line.

8.6.1 Experimental Procedure

As mentioned previously, Epstein samples (305 x 30mm) are routinely taken from 

each coil that has been processed on the final coating and thermal flattening line so 

that the material can be graded for customers. This provided a convenient supply of a 

large number of coated, Works produced material from a wide range of coils. They 

were also of dimensions that could be easily modified to suit the FTIR apparatus.

A large number of these samples were collected, and analysed using the FTIR 

apparatus at Orb Works, in conjunction with the ‘standard’ 26.5° attachment used for 

all analysis of final coatings and their constituents.
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8.6.2 Results and Discussion

Once the spectra had been obtained from a number of samples it was instantly 

obvious that they were significantly different to what was expected. An example of 

one of these spectra can be seen in Figure 8.11. It is immediately apparent that there 

are far more bands present than had previously been seen for any other coating 

formulations. For example, the spectrum shown in Figure 8.11 shows at least twelve 

obvious bands. This was unexpected, as the work carried out in Section 8.5 had used 

a number of coating formulations taken from the mixing tanks on the same production 

line as these samples had been coated, and none of these had resulted in spectra of 

such complexity. Although the samples of the coating formulations were taken a 

number of weeks prior to these Epsteins being coated, it was deemed very unlikely 

that such a dramatic change of composition would occur. Therefore, the changes must 

be due to an effect that is unrelated to the composition.

Initial thoughts were centred on the coating and curing techniques, as the production 

conditions were significantly different to those in the laboratory, even though effort 

was made to replicate the same conditions. The coating was carried out with grooved 

rubber rolls and the curing was carried out at the same temperature as in the Works 

(800°C), but it was difficult to truly replicate the conditions due to the large scale of 

the production line.

The method of curing the samples could possibly introduce some discrepancies, as the

temperature gradient and heating rate experienced by the sample may differ when it is

static in a furnace, compared to when it is in strip form passing through a furnace.

However, previous work in this section has shown that curing may slightly affect the

levels of transmittance of a spectrum, but did not introduce any obvious new bands

such as those seen on the Works produced material. This was expected, as it would
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Figure 8.11: Spectrum obtained from material coated on Works 

final coating and thermal flattening production line.
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take a very high temperature to cause the formation of any different compounds, as it 

is only new compounds being detected by the FTIR apparatus that could cause new 

peaks to be observed. Therefore the possibility of the curing conditions being 

responsible for the unexpected spectra was eliminated.

Samples have already been coated with coating formulations taken from the 

production line, and it was therefore known that the many bands were not all due to 

the components that are mixed to form the solution. It was initially thought possible 

that the coating mix could be contaminated. However, an in-depth evaluation of the 

line did not show any areas in which this could occur. It was also deemed very 

unlikely that the coating could be contaminated either between coating and curing, or 

post-cure.

The reasons for the numerous bands became evident when previous work relating to 

the FTIR analysis of the decarburisation oxide layer (Chapter 4) was considered. In 

this work, it was found that the penetration depth associated with the grazing angle 

attachment that was used hindered the analysis.

When the spectrum for forsterite (obtained in Chapter 7) was re-evaluated with 

respect to the Works coated samples, it was found that a number of the bands 

coincided with the wavenumbers associated with the forsterite glass film. This is 

clearly shown in Figure 8.12. It can be seen that, not only do a majority of the bands 

appear to be a result of the presence of forsterite, but also that other bands are affected 

by forsterite bands, causing them to be distorted. This results in a majority of the 

bands being ineffective for quantitative analysis. However, the bands at 

approximately 730, 800 and 1200cm'1 appear to be relatively unaffected, suggesting 

that these could potentially be used to give an insight into the composition of the
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coating, although accurately determining the boundaries of these absorption bands is 

still problematic due to the underlying forsterite. The work carried out in Section 8.2 

has already confirmed that the bands at 800 and 1200cm'1 are most likely to be 

associated with colloidal silica, and the band at 730cm'1 is related to aluminium 

orthophosphate.

8.7 Chapter Sum m ary

The work carried out in this section has greatly increased the amount of knowledge 

relating to the FTIR analysis of the final insulating coating used on the final coating 

and thermal flattening line at Orb Works, as well as the separate constituents of the 

mix.

It has been shown that the FTIR apparatus at Orb, in conjunction with a 26.5° grazing 

angle attachment, is able to produce a clear spectrum for both of the coating 

components that are believed to have an effect on the final magnetic properties on the 

steel (colloidal silica and aluminium orthophosphate).

These spectra of the separate components could then be used to predict the spectra 

that would be produced when the constituents were mixed according to certain 

theoretical ratios, and this forecast was proved to be accurate when various mixes 

were coated onto steel samples under laboratory conditions.

Steel samples were also coated with a variety of coating solutions obtained from the 

Works production lines, and many of the spectra obtained also agreed with what was 

expected.

However, quantifying the results using the baseline method to calculate the peak areas

and taking the coordinates of the peaks and / or troughs proved very difficult. Many
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trends were found, although there was a high degree of scatter around the average 

value; it was only when the average value was calculated that a lot of the trends 

became evident. The reason for this is likely to be subtle variations in the spectra 

between scans and samples due to ineffective mixing of the constituents that make up 

the coating solution. In hindsight, although the samples appeared to be completely 

mixed, a more thorough mixing procedure should have been followed to eliminate the 

possibilities of localised areas with a greater content of a particular coating 

component.

Although it was difficult to predict the exact coating composition from the data 

extracted from the spectra, it was found that a number of changes could be observed 

when the ratio of components changed. This was particularly evident in the region 

around 1250cm'1, where the band became more elongated, and in some cases 

separated) as the concentration of aluminium orthophosphate increased.

FTIR analysis of samples coated and cured on the Works production line further 

complicated matters, as a much larger than expected number of bands was observed 

on the resultant spectra. It has been shown that a large number of these bands are 

related to the underlying layer of the forsterite glass film. It appears that the radiation 

can pass easily through the cured insulation coating, allowing the layer underneath to 

be detected. It is this underlying layer that results in the extra bands, and also distorts 

those that are present due to the coating solution.

At present, it is not possible to quantitatively determine the composition of the final 

insulating coating due to the detection of the underlying forsterite. It was initially 

believed that the Spectral Calculator may be used to subtract the forsterite spectrum 

from that of the coated samples, but the variation in final coating thickness prevented 

this from being a practical solution, as the thickness affected the degree to which the
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infrared radiation could reach the forsterite layer. However, the technology associated 

with FTIR is still improving, with a large number of software solutions entering the 

market. It is likely that these advances will shortly result in programs which can 

detect much more subtle variations in the spectra than can be seen visually, or can be 

discovered by the methods used during this work. The FTIR method has been proven 

to give results, both to a high degree of accuracy, and within a very short time frame. 

It therefore provides the correct type of analysis that is required for the constantly 

changing conditions of a production line, and effort should be made to exploit these 

benefits as the capabilities of FTIR equipment continue to improve.
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Chapter Nine

Development of a New Chrome-Free Coating

9.1 Introduction

The work carried out in Chapter 8 of this thesis has included an in-depth evaluation of 

the FTIR spectra obtained from samples coated with the final insulation coating. 

However, variations in the composition can have many different effects on the 

properties of both the coating and the final product, such as appearance, magnetic 

properties, adhesion etc. There are a large number of measurement techniques that 

are currently employed at Orb Works to assess the quality of the finished material, 

and it was envisaged that these could be utilised to determine the effects that would 

result from changes in coating composition.

It was decided that it would prove beneficial to combine this work with a more in- 

depth study concerning the development of a new, alternative chrome-free coating.

The coating applied to grain oriented electrical steel on the final coating thermal 

flattening line at Orb Works has, for a number of years, contained chrome as a 

constituent. The presence of chrome in the coating formulations improves a number 

of characteristics such as solution stability and wettability, and also aids curing. 

Furthermore, the use of chrome enhances the appearance of the cured coating and 

improves the magnetic performance of the material.

A number of recent directives that govern the use of chrome have recently been 

issued, such as WEEE (waste electrical and electronic equipment) and RoHS
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(restriction of the use of certain hazardous substances in electrical and electronic 

equipment) [43]. As a result of this, it has become evident that the use of hexavalent 

chrome should be eliminated at Orb, and hence removed from the coatings. It was 

therefore necessary to develop a replacement coating that satisfied all of the criteria 

specified by the standards of both Cogent and its customers.

The overall suitability of a new coating would primarily be assessed by the effect it 

has on improving the magnetic properties of the material. It is known that this will be 

largely dependent on the tension that it applies to the steel. However, other 

characteristics of the coating are of great importance, such as:

• A low enough curing temperature to ensure it would cure during production

• Constituents that mix easily

• Good adhesion to the strip when cured

• Good appearance when cured

• Good punching characteristics

Other safety considerations must also be taken into account, such as any heat and / or 

fumes given off when the components are mixed together.

In order to gain an insight into the substances that may be used for coating grain 

oriented electrical steel, a review of a large number of previous coatings was 

undertaken [44]. This included discussions with Technical personnel at Orb Works 

who have had a number of years experience of using different coatings, as well as 

reviewing published patents and Orb Research and Technical Reports which have 

been written since the 1970’s. From this, it became evident that a number of
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constituents are commonly used. These include magnesium or aluminium phosphate, 

MgO, phosphoric acid, silica, kaolin (aluminium silicate), gasil (powdered silica), 

boric acid and water, along with many other additions. It is on these components that 

the trial mixes were based.

9.2 Trial 1

As coating trials of this type had not been undertaken for a number of years, and each 

of the new the coating formulations had not previously been tested, it was necessary 

to undergo a preliminary investigation. This would enable the coating and curing 

procedures to be established, and the basic properties of various coatings to be 

ascertained.

9.2.1 Experimental Procedure

A number of sheet samples of both CGO and Hi-B types were cut from coils at the 

entry end of the final coating and thermal flattening line. At this stage, the strip has 

been annealed in the H.T.C.A to form the forsterite glass film on the surface, but has 

not yet been coated with the final coating. The sheets were still covered in excess 

magnesia, and so this was removed by brushing. These sheets were then cut into 

smaller samples with dimensions of 200mm x 80mm for coating. This size was 

chosen, as it would allow insulation measurements to be performed using a Franklin 

insulation tester. It was necessary to de-burr these samples to prevent any damage to 

the coating rolls. The samples were also annealed to remove shape defects caused 

from previous coiling operations.
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In order to replicate the conditions experienced on the production line prior to coating, 

the samples were briefly pickled in a weak sulphuric acid solution. This cleans the 

sample of any remaining magnesia and provides a surface that the coating is more 

able to key in to, improving adhesion. Following the pickling process, the samples 

were rinsed with water and dried using tissue paper and a hot air dryer.

A powered coating unit, previously used by technical personnel for magnesia coating 

trials, was used to coat the samples. The rubber rolls used were re-grooved to an 

appropriate specification for final coating formulations (26 grooves per inch, 90° 

angle). The depths of the grooves on the two rolls were different, having depths of 

101 and 165 (Dm. This enabled both a thin and a thick coating to be evaluated from 

the two sides of the same sample.

The coating solutions were placed into a tray located beneath the bottom roller. When 

filled to the correct level, the lower roll was partially submersed in the solution, as 

shown in Figure 9.1. The coating was picked up onto the top roll from the bottom roll 

due to the contact between the two rolls. It was found that passing the sample through 

these rolls four times produced an adequate, uniform coverage.

The coating formulations were based on a number of previous trials, reports and 

patents. Seven types of coating mix were proposed, with varying proportions of each 

of the coating constituents. The coatings can be grouped according to their 

combination of components, as shown in Table 9.1.
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Figure 9.1: Schematic diagram of the laboratory coating unit.

Aluminium
Phosphate

Colloidal
Silica MgO Phosphoric

Acid Water

Type 1 Y X X Y

Type 2 X X Y Y

Type 3 X Y Y

Type 4 X Y Y Y

Type 5 Y Y Y Y

Type 6 Y X X Y Y

Type 7 Y Y X Y Y

Table 9.1: Coating formulations used in Trial 1.
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Water was added to each of the formulations in varying amounts. For each coating, 

the amount was chosen to ensure that the specific gravity for each of the coating 

mixes remained the same.

It was hoped that kaolin additions could be used for a number of these coatings, but 

upon mixing the particles were found to be too coarse to achieve a good coating mix. 

Therefore it was necessary to omit kaolin from the investigation.

The constituents of these coatings were mixed together in a large glass beaker using a 

magnetic stirrer. Some of these formulations were exothermic when the constituents 

were added together, and so each was left to cool to below 25°C before they were 

used to coat any samples.

Six different combinations for curing conditions were used for each coating 

formulation. Curing times of 5, 40 and 50 seconds were used in each of the two 

furnaces, which were set to maintain temperatures of 500°C and 800°C. These 

parameters were set for the following reasons:

• 5 seconds -  to ascertain any problems relating to under-cure at a time that the 

strip would be reaching the first furnace roll on the production line

• 40 seconds -  this is the time taken for the strip to pass through the furnace 

according to standard operating practice

• 50seconds -  discover the effects of possible over-cure. This could occur due 

to the necessity of reduced line spend
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• 500°C -  recommended by chemistry laboratory personnel who advised that 

curing effects would be seen more easily at this lower temperature

• 800°C -  this is the temperature at which the furnace on the production line is 

maintained.

Inside the furnace, two ceramic bricks supported the samples as shown in Figure 9.2. 

These were shaped to provide the minimum amount of contact with the sample whilst 

still keeping the sample flat.

The samples were manoeuvred into and out of the furnace using a set of tongs that 

gripped one end of the sample.

Once coated and cured, various properties of each of the samples were tested in the 

following ways:

• Insulation resistance using the laboratory Franklin tester. Two measurements 

were taken on each side of the sample. The coatings were graded between 

Grade 1 (greater than 29 ohm.cm2) and Grade 5 (all results less than 10 

ohm.cm2).

• Loss on boiling. An area of the sample measuring 50mm x 40mm was cut 

from the coated sample and weighed. It was then submerged in boiling water 

for 10 minutes before being re-weighed. The loss on boiling (LOB) value in 

grams/m2 is calculated by multiplying the weight loss by 500. A loss on 

boiling value of <0.2 grams/m2, and preferably 0.1 grams/m2, is considered to 

relate to a good degree of cure. This test also allows the free phosphate and 

hygroscopic tendency to be tested.
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Figure 9.2: Schematic diagram showing the sample being
supported by refractory bricks in the furnace.
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• Adhesion test using a 25mm diameter bar. Coatings were monitored 

following both compression and tension.

• Coating thickness using apparatus known as a Fischer Permascope. The 

thickness value for each sample was calculated from an average of a minimum 

of 25 readings from each surface. Recalibration was carried out before each 

set of samples.

• Surface roughness using a Surtronic 3 instrument. Roughness average (Ra) 

and peak count (Pc) values were obtained from both the ‘with’ and ‘against’ 

rolling directions. Only the top surface of the sample was evaluated due to 

time constraints.

• Appearance was evaluated visually. The colour of the coating was noted 

along with whether it was glossy or matt, uniform, and whether it had lines 

associated with the coating roll grooves.

• Stability of the coating solution was established by leaving the mix in a glass 

beaker without any stirring for a number of days and monitored on a regular 

basis. It could then be seen how quickly the solutions gelled, if at all.

9.2.2 Results and Discussion

Although some of the coatings appeared to gel slightly quicker than others, all of the 

coatings were found to be relatively stable. None were found to gel after 3 days 

which is the time considered adequate for use on production lines.

Other characteristics of the coatings varied between mixes, such as the surface 

roughness. It was found that the Type 1 coatings were generally smoother than the 

other formulations. Other variations between coatings are described below:
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Type 1

All samples were found to cure well at 800°C for 5 seconds, and the values for 

insulation resistance were satisfactory.

Appearance was generally good, although some samples exhibited a slightly whiter 

coating than others. Other coatings appeared to have a slightly pink appearance. It is 

thought that this must be due to an effect of the underlying material, as all other 

conditions remained consistent for each sample.

These results are for both CGO and Hi-B material. It can be seen that this type of 

coating appears to be quite promising.

Type 2

The appearance of samples coated with this type of formulation appeared to be good, 

and the insulation values for the CGO material were very good. However, the 

insulation values for the Hi-B material were not quite up to the same standard.

It was also observed that, although these coatings had been well cured after 40 and 50 

seconds at 800°C, none were reasonably cured after just 5 seconds. Therefore, at this 

stage it appears that this type of coating would be unsuitable for production methods.

Type 3

The insulation resistance values and appearance for these samples appeared to be 

good. Unfortunately, the loss on boiling assessment was unsuccessful and did not 

provide any useful results. Therefore the ability of this coating to cure in 5 seconds at 

800°C is unknown. However, the coating did not appear to be tacky, and so it is 

likely that the samples were well cured.
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Type 4

Insulation resistance values for this coating were found to be satisfactory, with the 

better results being seen on the CGO material. However, a number of samples were 

found to be of a tacky nature that caused the appearance to be poor. This was due to 

the samples being slightly uncured, as proved by the resultant loss on boiling analysis. 

This under-curing was found to affect not only the samples cured for 5 seconds, but 

also some of those cured for both 40 and 50 seconds.

Some of the samples appeared to be of a higher quality that others, and also with 

better curing, and so it is possible that this formulation could be re-evaluated in any 

further investigations.

Type 5

The samples coated with this formulation were of a grey matt appearance. The 

insulation values were found to be very good on both the CGO and Hi-B material, and 

the samples were well cured, even after 5 seconds.

From all of the samples evaluated in Trial 1, the samples coated with this formulation 

appear to show the most promising results.

Type 6

This coating provided good insulation results and was very well cured on the CGO 

material. It was similarly well cured on the Hi-B. However the insulation values 

obtained from the Hi-B material did not achieve the same standard.
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Type 7

This coating formulation is very similar to that of Type 6, and the results were also 

similar, with the insulation values for the CGO being an improvement on those seen 

from the Hi-B material. However, at one silica level on CGO, the coating was found 

to be under-cured and would therefore require further investigation. A number of the 

Hi-B samples also exhibited a slightly pink appearance, although this may be an effect 

due to the underlying material and not the coating itself.

9.2.3 Conclusions for Trial 1 (Section 9.2)

A comprehensive study has been carried out into different coating formulations that 

may provide a chrome-free alternative to the final coatings presently used. Many of 

the coatings evaluated during Trial 1 showed encouraging results. The only coating 

formulations which do not appear to be suitable for production material at present are 

those of Types 2 and 4 which both exhibited under-cured samples, particularly after 5 

seconds at 800°C. An under-cured coating caused by these curing conditions would 

be likely to cause an undesirable build up of coating on the furnace rolls. However, 

the under-curing was not seen on all samples, and requires further investigation.

From these results, the most promising of the seven types of coatings appeared to be 

the formulation of Type 5. However, it should be considered that this coating 

contains five separate components, which is more than any other formulation that has 

been considered. This may make the use of this coating formulation more 

complicated than others, and the practicality of using this coating would require 

further trials.
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Although many of these coatings show potential to be used on the production lines, 

further research is necessary. The effect of the tensioning properties of the coatings 

needs to be investigated, particularly for the Hi-B material. This further work was 

carried out as a second trial, detailed in Section 9.3, below.

9.3 Trial 2a

The trials carried out in Section 9.2 have shown a number of coating formulations that 

have the potential to be used on production material as a viable chrome-free 

alternative to the chrome-bearing coating that has previously been used. However, 

although previous work has assessed characteristics such as insulation resistance, 

appearance and ability to cure under certain conditions, it has not evaluated the 

tension that these coatings apply to the steel. This is one of the most important 

characteristics of the final coating, and can have a significant effect on the magnetic 

performance of the final product.

Therefore, further investigations have been carried out to assess the tensioning 

properties of a number of coatings that appeared promising.

9.3.1 Experimental Procedure

A number of Epstein samples were cut from the same Hi-B sheet that was used in 

Trial 1. It is possible to test samples of these dimensions on a single-strip tester to 

determine the magnetic properties of the material. This material had been taken from 

a coil at the entry end of the coating line and thermal flattening final, and therefore 

had a forsterite layer on the steel surface. The samples were annealed at 800°C to 

remove the shape defects caused by the coil-set, and then lightly pickled in dilute
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sulphuric acid as before. However, prior to coating, each of these samples were 

magnetically tested at Bpk = 1.7T, 50Hz using the PMS 3000 single strip tester 

located at Orb Works. This allowed them to be sorted into groups of 20 samples 

exhibiting similar properties. This provided groups that were essentially identical in 

terms of the mean loss and loss range of the samples, which would ensure that any 

variations observed would be due to the coatings and not the material on which it was 

coated.

The coating formulations used were made according to the types specified for Trial 1. 

However, a number of mixes used in the previous investigation were not used again 

during this investigation due to the poor results seen previously. For example, the 

formulations containing the certain proportions of each component that related to the 

under-cured coatings were not repeated. However, variations of coating mixes 

relating to some coating types that showed promise were increased to gain a further 

understanding of the effect of certain variations e.g. to discover the effect of 

increasing the colloidal silica content.

The coatings were applied in the same manner as Trial 1, and each sample was cured 

for 50 seconds at 800°C. These conditions would ensure that the coatings were fully 

cured, as the ability for these coatings to cure for shorter times had already been 

established.

Once coated, the samples were re-tested on the single-strip tester to determine 

whether the coatings had caused any changes to the properties of the steel.
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9.3.2 Results and Discussion

Following re-testing of the magnetic properties of each of the samples, it was found 

that none of the samples showed a significant loss reduction due to the coatings, as 

shown by the average values for each coating type shown in Table 9.2. This seemed a 

very strange result as the coatings were of types known to provide a tension on the 

steel surface, thus providing a reduction in magnetic losses.

A detailed evaluation of the coating procedure and other variables was carried out and 

a number of possible explanations for these results were highlighted. These are 

described below, along with remedial actions that were evaluated in an attempt to 

eliminate each effect.

Due to the necessity of sorting the samples into similar groups, it was essential that 

every sample for this entire investigation was pickled and single-strip tested prior to 

starting the coating procedure. It was thought that this delay might cause a layer to 

form on the surface of the samples that would affect the ability of the cured coatings 

to adhere to the surface. Therefore, a small number of samples were selected so they 

could be pickled, tested and coated within a much shorter time frame, thus reducing 

the delay prior to coating. However, it was again found that the applied coating did 

not result in a significant loss reduction.

The use of refractory bricks in the furnace ensures that the samples are kept flat when 

they are curing. However, when the samples are removed from the furnace, using a 

pair of tongs to grip one end, the samples bend until they are placed on a further set of 

refractory bricks for cooling. Although the samples were flat during cooling, it was 

considered possible that this procedure for removing the samples from the furnace 

may introduce stress into the material as it immediately starts to cool. It may also

257



Loss before Loss after % Loss
coating coating Reduction

1.026 1.104 -7.60
1.045 1.099 -5.17
1.06 1.056 0.38

1.065 1.093 -2.63
1.068 1.094 -2.43
1.074 1.085 -1.02
1.076 1.165 -8.27
1.08 1.064 1.48

1.084 1.055 2.68
1.086 1.059 2.49
1.09 1.089 0.09

1.094 1.06 3.11
1.097 1.111 -1.28

1.1 1.122 -2.00
1.106 1.117 -0.99
1.111 1.144 -2.97
1.115 1.127 -1.08
1.119 1.132 -1.16
1.125 1.196 -6.31

1.09 1.10 -1.72

Table 9.2: Average loss data showing no response for samples 
coated during Trial 2a.
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cause the sample to be in a bowed position when the coating starts to solidify, 

preventing the coating from providing its correct tensioning properties. To negate 

these possible effects, a number of stainless steel trays, upon which the samples could 

be placed, were fabricated. These provided support along the entire length of the 

sample from the moment the sample entered the furnace until it was cooled down to 

room temperature i.e. the sample was kept flat at all times that the sample was heated 

above room temperature. A further selection of samples was coated using this new 

technique, but it was found to have no effect on improving the magnetic losses.

It was possible that the single-strip tester, used to obtain the magnetic data for each 

sample, was not functioning properly and was not picking up the effects of the 

coatings. However, the apparatus was checked against a number of reference samples 

and was found to be functioning correctly.

To determine whether these results were due to the coating procedure, a number of 

samples were coated with the chrome-bearing coating that had successfully been used 

on production material for a number of years. Although it was known that this 

coating should reduce the losses of the material, no effect was seen on the samples 

upon which this coating was applied, even when the samples were pickled 

immediately prior to coating and when the supporting tray was used during curing. 

This suggested that it was not the coating or curing procedures that were responsible 

for the unexpected results.

It was therefore considered that the results must be due to the material being 

unresponsive, either due to the steel itself or the forsterite coating on its surface.
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9.3.3 Conclusions for Trial 2a (Section 9.3)

Each of the coating formulations, including the chrome-bearing coating used as 

standard on the Works production line, was found to have no effect on the magnetic 

losses of the data for the set of samples utilised in this investigation. Following a 

number of investigations into the possible causes of this, it can be concluded that this 

is an effect of the material itself being unresponsive. The reasons for this have yet to 

be established.

A number of other possibilities were suggested and discounted following efforts to 

eliminate the effects. Although it was eventually determined that the material was 

responsible, it is recommended that the improved coating and curing techniques (i.e. 

using a stainless steel supporting tray during curing and minimising the time between 

pickling and coating) are used as standard during future investigations as this will 

reduce the variability in the technique.

It still remains necessary for the tensioning properties of these coating formulations to 

be established. Therefore it is required that this investigation is repeated on a 

different material in order for valid conclusions to be made.

9.4 Trial 2b

Trial 2a was carried out in an attempt to gain an insight into the tensioning properties 

of a number of coating formulations. However, this trial was unsuccessful as the 

material was found to be un-responsive; each of the coating formulations tested, 

including the mix that had previously been used successfully on the production
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material, were not found to provide any loss reduction on this material. Therefore, the 

investigation was repeated using exactly the same formulations that were used in trial 

2a. In order to minimise the chance of un-responsive material being selected again, it 

was decided to use samples from more than one coil source.

9.4.1 Experimental Procedure

As the reasons for the material not responding to final coatings were unknown, there 

was no way of knowing which coils were most likely to respond. Sheet samples were 

taken from two coils at the entry end of the final coating and thermal flattening line 

(K39169 and K39170), from which Epstein samples were cut. A number of 

preliminary tests were carried out on this material using the coating mix used for 

standard production, and it was found that the material from both coils was 

responsive. The reasons for this were unknown, as there appeared to be no obvious 

physical differences between this material and the unresponsive material.

The same experimental procedure was followed as for trial 2a. The samples were 

pickled, magnetically tested and sorted into groups that were as similar as possible in 

terms of magnetic properties. A group of 20 samples was used for every different 

coating formulation. During this trial, the samples also underwent a very brief 

secondary etch prior to coating. This was to minimise any surface oxidation effects 

caused by the delays during magnetic testing. A preliminary study established that 

the effect that such a brief pickle had on the material was negligible.

The samples were coated with mixes of the same formulations as used in trial 2a, and 

cured in a furnace at 800°C for 50 seconds. This was carried out using all coating 

types, with the exception of the type 6  formulation as problems were encountered
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when trying to use this coating. The modified curing procedure, using a stainless steel 

tray to support the sample, was used.

The samples were then re-tested on the single-strip tester and evaluated in terms of 

appearance and coating thickness. The coating thickness measurements were carried 

out using the Fischer Permascope apparatus. Five readings were taken from each of 

the 2 0  samples in a group so that an average could be taken from the 1 0 0  separate 

readings. It was considered unnecessary to carry out further tests on the insulation 

resistance, as the grading for each coating type has previously been established in 

Trial 1.

9.4.2 Results and Discussion

The appearance of each type of coating formulation is shown in Table 9.3. This gives 

a general view of each particular set, but does not account for slight variations 

between samples.

It can be seen that a majority of the coatings were found to be too thick and that the 

uniformity over the area of the sample was also generally poor. It is believed that this 

is due to the coating rolls used, and is not necessarily related to the coatings 

themselves. It should be noted that samples coated in the laboratory generally tend to 

be of an inferior appearance to those coated on the production line.

It was found that the coating thickness on the bottom surface of the samples was 

significantly greater than that on the top surface. This was due to the greater groove 

depth on the bottom roll, which was a requirement of previous trials in order to assess 

two separate thicknesses of coating.
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Colour Uniformity Thickness Smoothness Gloss

Type 1 Grey Med - poor Too thick Smooth Shiny

Type 2 Grey Poor Too thick Variable Variable

Type 3 Grey / 
black

Poor Too thick Variable Matt

Type 4 Grey / 
black Medium OK Smooth Matt

Type 5 Grey / 
black Variable Variable Variable Matt

Type 6 — — — — —

Type 7 Grey Poor Too thick Rough Matt

Table 9.3: Appearance of samples coated during Trial 2b.
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For a particular coating type, subtle variations in the composition of the mix, such as 

varying the content of colloidal silica, were also found to have an effect on the 

physical characteristics of the coating.

For a Type 1 coating, it was found that a reduction in the proportion of colloidal silica 

resulted in a coating of improved uniformity, but with a less glossy appearance.

A lower silica content for Type 4 coatings resulted in a darker coating.

Type 5 formulations were also found to be affected by variations in the proportions of 

the components. Similar to Type 4 coatings, a decreased proportion of silica led to a 

darker coating. However, it also resulted in an improvement in the uniformity and 

smoothness of the coatings.

The results obtained from the magnetic testing, both before and after coating, are 

shown in Table 9.4. This data is displayed graphically in Figure 9.3. This shows the 

percentage loss reduction for each type of coating tested. In the case of some coating 

types, subtly different coatings were obtained by using the same components, but in 

different proportions. Increasing the colloidal silica content, while the amount of all 

other components in the mix remained constant achieved this. The lower case letters 

(i.e. a, b, c etc) denotes the different variations within each coating type.

It was thought possible that the thickness of the coatings might have an effect on the 

loss data. Therefore, the mean coating thickness was calculated for each coating 

(considering both the top and bottom surfaces) and plotted against the percentage loss 

reduction. Figure 9.4 shows that the effect of the coating thickness appears to have 

very little effect on the loss reduction achieved. This suggests that the coating only
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Type Reference
Original

Loss
Pickled

Loss
Coated

Loss
%

Reduction
Type 1 la 1.127 — 1.088 3.46
Type 1 lb 1.108 1.124 1.078 2.71
Type 1 lc 1.108 1.124 1.084 2.17
Type 2 2 1.108 1.115 1.078 2.71
Type 3 3 1.108 1.134 1.057 4.60
Type 4 4a 1.107 1.121 1.067 3.61
Type 4 4b 1.114 — 1.084 2.69
Type 5 5a 1.108 1.132 1.059 4.42
T\ pe 5 5b 1.126 — 1.063 5.60
Type 7 7 1.107 1.115 1.076 2.80

Standard
Production

Mix
Std. 1.095 — 1.052 3.93

Table 9.4: Appearance of samples coated during Trial 2b.
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has to be of a certain thickness to provide its maximum amount of tension, and any 

extra coating will have very little impact.

It was found that there was a spread of loss reduction values for each coating mix. An 

example of this is shown in Figure 9.5. The range over which the loss reduction 

varied can be seen to be quite large. It is believed that this variation is due to some 

underlying steel and / or forsterite being more responsive to coatings than others, as 

seen in trial 2a. However, it is considered that the number of samples used for each 

coating should give a good indication of the loss reduction that can be expected, based 

on averaging the data from each sample in the set.

It can be seen from the magnetic data that these coatings give a significant 

improvement in the magnetic properties of the samples, with the samples coated with 

coating mixes 3, 5a and 5b showing an improvement on the chrome-bearing 

formulation previously used for production coatings.

The sets of samples relating to coatings la, lb and lc were found to have loss 

reductions of 3.46%, 2.71% and 2.17% respectively. These coating mixes contained 

the same three components (aluminium phosphate, colloidal silica and water), but 

there is a clear trend that shows an increasing silica content is associated with a 

smaller loss reduction. Plotting this data (Figure 9.6) shows that there is a very good 

correlation between these two parameters.

The effect of silica was also seen in results for Type 4 coatings. These coatings 

consisted of silica, MgO, phosphoric acid and water, with Type 4a containing a

267



5
c
o
o3
■Q 3  __
a:
</>a)
o

S a m p le  N u m b e r W ith in  B atch

Figure  9.5: G rap h  show ing an exam ple of the sp read  o f loss values 
th a t occurred  w ithin a batch.

3.6 t -

co

(0
(0o

2.4 -

180160 170120 130 140 150

Colloidal Silica (ml)

Figure 9.6: Effect of silica variation for Type 1 coatings.

268



greater proportion of silica than type 4b. We can also consider the data for the type 2 

coating, as this can be considered as type 4 without the presence of any silica. 

Plotting this data (Figure 9.7) shows that the effect is the opposite to that seen for type 

1 coatings, with an increased silica content resulting in greater loss reduction values, 

although the correlation is not as good. These results do not contradict each other, but 

instead show the different effects that result from mixing assorted components to 

create a coating mix.

Silica content was also found to have an effect on Type 5 coating formulations, as 

shown in Figure 9.8. The Type 3 coating has also been considered here, as it is 

essentially a Type 5 formulation without any colloidal silica. Unlike previous trends, 

it suggested that there was potentially a certain amount of silica that resulted in an 

optimum formulation, with either more or less silica having a detrimental effect on the 

loss data.

It was noted that the formulation that provided the greatest loss reduction was also the 

coating with the best appearance. However, although Type 5b resulted in the greatest 

loss reduction, it can be seen that all three of these formulations give good results 

when compared to some other coating types.

9.4.3 Conclusions for Trial 2b (Section 9.4)

A wide selection of coating formulations has now been evaluated to determine their

ability to impart tension onto the steel surface. It has been established that all of the

mixes investigated in this trial had a positive effect on the magnetic performance of

the steel samples. The improvement in the losses ranges from 2.17%, which itself is a

considerable improvement, up to 5.60%. This latter value was in fact found to result

269



co
’’* 3

o
3

■O
CD

</>if)o

4

3.6

3.2

2.8

2.4
120100800 20 40 60

Colloidal Silica (ml)

Figure 9.7: Effect of silica variation for Type 4 coatings (Type 2 
data included).

c
.2
o
3
“O
0 )

(0
(0o

6

5.6

5.2

4.8

4.4

4
4003002000 100

Colloidal Silica (ml)

Figure 9.8: Effect of silica variation for Type 5 coatings (Type 3 
data included).

270



in an improvement of over 40% on the coating that had previously been used for 

production material. This is a significant outcome as it provides a replacement 

coating that is not only chrome-free, but also has the potential to improve the 

magnetic performance of the final product.

A number of trends were found that suggest that the proportion of colloidal silica in 

the coating mix has a significant effect on the loss reduction. Although a number of 

the results have been impressive, these trends should be used as an indicator of further 

formulations that should be investigated, as it may be possible to improve the coatings 

further still.

Type 1 coatings, consisting of aluminium phosphate, colloidal silica and water, 

showed a loss reduction of between 2.17% and 3.46%. The data showed that the loss 

reduction increased as the silica content decreased (i.e. a lower silica content resulted 

in the coating having better tensioning properties). Therefore, a further coating 

formulation should be tested with the silica content reduced further. This will 

determine whether the coating can be further improved, or whether the formulation 

for Type la is the optimum for this combination of components.

Analysing the data obtained from the Type 4 coatings (containing colloidal silica, 

MgO, phosphoric acid and water), plus the data for the Type 2 formulation 

(essentially a Type 4 coating minus the colloidal silica), it was found that an increased 

silica content caused an increase in the tensioning properties of the steel. Therefore, 

the potential of a coating of higher silica content must be investigated.
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The coating formulations containing various proportions of all five components 

(aluminium phosphate, colloidal silica, MgO, phosphoric acid and water) were also 

found to cause a variation in magnetic properties. The data suggested that there was 

an optimum level at which colloidal silica should be present in the mix, and any 

amount either side of this resulted in lower loss reduction values. As only three 

coatings of this type were considered (3, 5a and 5b) it is deemed necessary to evaluate 

a further formulation close to the perceived optimum in an attempt to establish 

whether further improvements are necessary.

From these results, it is clear that the proportion of silica within a coating mix can 

have a significant effect on the amount of tension that the coating imparts onto the 

steel. During this investigation, only one mix was made of a Type 7 formulation 

(aluminium phosphate, colloidal silica, phosphoric acid and water. Therefore, the 

effect of varying the colloidal silica content in this type of coating should also be 

investigated.

9.5 Trial 3

A number of previous trials have been carried out in order to develop a new chrome- 

free coating for use as a final insulation coating with high tensioning characteristics. 

Trial 1 established whether various formulations would satisfy a number of the basic 

requirements for a final coating, such as insulation, appearance, adhesion and the 

ability to cure within the required time frame. It was envisaged that trial 2a would 

give an insight into the tensioning properties of the different formulations. However, 

this trial was unsuccessful due to unresponsive material, and a further trial (trial 2 b)
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was required. A number of recommendations were made based on the results 

obtained in trial 2b that would lead to the optimum coating formulations. These 

recommended coatings were evaluated in trial 3.

9.5.1 Experimental Procedure

Further Epstein samples were cut from a sheet sample obtained at the entry end of the 

final coating and thermal flattening line. Once these samples had been annealed at 

800°C to remove coil-set, they were pickled, magnetically tested and sorted into 

groups containing similar magnetic properties in the same manner as for previous 

trials. However, in view of time constraints, groups containing 15 samples were 

deemed adequate, instead of the groups of 2 0  that had been used for previous trials. 

Coating and curing of the samples was performed following exactly the same 

procedure that was used during trial 2b, with the curing being carried out in an 800°C 

furnace for 50 seconds.

The coating formulations used during this trial are based on the recommendations 

from the previous trial, which can be found in Section 9.4.3. They are variations of 

Types 1, 4, 5 and 7; Type Id was chosen to have a lower silica content than the mixes 

of la-lc that have previously been used, 4c had an increased proportion of silica 

compared to other Type 4 formulations, 5c had a significantly lower silica 

concentration than 5a and 5b and coatings mixes 7b and 7c had lower silica contents 

than the original type 7. As it was only the effect of varying the silica content that was 

being investigated, the amounts of each of the other coating components remained 

unchanged.
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9.5.2 Results and Discussion

The coatings were all considered to have a reasonable matt grey appearance. They all 

appeared to be reasonably uniform, except for some of the samples that had been 

coated with the 7b and 7c formulations, which had a slightly blistered appearance, 

particularly on the bottom surface.

Insulation resistance values for each of the coatings, measured using the Franklin 

Insulation Tester, were found to be ‘infinite’. Although this is a very good result, the 

coating thickness values were found to average 6 .2 ® and 8.7® for the top and bottom 

surfaces respectively. These figures are higher than would be found on the production 

material, and this could account for the impressive insulation results. The bottom 

surface generally had a thicker coating due to the bottom roll having a different roll 

specification for the groove depth. It was also observed that the coatings containing 

MgO (4c and 5 c) were of a greater coating thickness than those not containing MgO.

Samples coated with each of the formulations were bent around a bar of a diameter of 

25mm to test the adhesion of the coating to the steel. The adhesion was found to be 

satisfactory in each case.

Testing the samples before and after coating using the PMS 3000 at Bpk = 1.7T, 50Hz 

enabled the loss reduction due to the coating to be calculated. The results are as 

follows:

Id = 2.51% loss reduction 

4c = 4.12% loss reduction 

5c = 4.83% loss reduction 

7b = 3.00% loss reduction 

7c = 2.01% loss reduction
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This data is shown graphically in Figure 9.9, which includes loss reduction results, 

obtained previously in trial 2 b, for comparison.

It can be seen that formulation Id did not perform as well as either la  or lb. Figure 

9.10 shows the effect of colloidal silica on Type 1 coatings. From the trend seen in 

trial 2 b, it was expected that the reduced silica content could potentially increase the 

reduction in losses. However, this was not found to be true. The loss reduction value 

for formulation Id (2.51%) was found to decrease significantly (by 0.95%) from the 

formulation with the next lowest silica content. Therefore, instead of a linear 

agreement between loss reduction and silica content, it appears that an optimum 

formulation is reached around that used for mix la.

The loss reduction that resulted from coating the samples with mix 4c averaged 

4.12%. This followed the trend seen in trial 2a, where increased silica content 

resulted in improved loss reduction figures. This trend is shown in Figure 9.11. This 

is an impressive result, and appears to reduce the losses by a greater amount than the 

chrome-bearing coating that had previously been used on production material 

(labelled ‘Std.’ in Figure 9.9).

It was found that variation in the proportion of colloidal silica in Type 5 coating 

formulations did not have a great effect on the loss reduction achieved, as shown in 

Figure 9.12. It appears that silica values in the middle of the range evaluated result in 

the greatest loss reduction, although all of these formulations have led to reductions of 

at least 4.4%, which is a significant improvement on the chrome-bearing coating 

previously used.
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The type 7 coating formulations shown in Figure 9.13 also appeared to exhibit greater 

results for silica contents in the middle of the range tested (100ml). However, these 

coatings produced a maximum loss reduction of just 3.00%, which is 0.93% below the 

standard set by the chrome-bearing coating.

9.5.3 Conclusions for Trial 3 (Section 9.5)

Following an in depth study into a number of different coating formulations, it has 

been found that a coating containing aluminium phosphate, colloidal silica, MgO, 

phosphoric acid and water (mix 5) results in the greatest reduction in losses. The loss 

reduction achieved by Type 5b averages 5.60%, which is a vast improvement on the 

chrome-bearing coating that has previously been used for coating the steel strip on the 

production line (3.93%). However, the silica content does not appear to have a great 

impact on the loss reduction, and all coatings of this type showed good results. It 

should be considered that as this coating mix contains all five components, it is likely 

to be more complicated and time consuming to mix, and may also have cost 

implications. However, the benefits may make the extra effort worthwhile.

Type 1 coating formulations are far simpler to mix, as they consist of just aluminium 

phosphate, colloidal silica and water. These coatings also showed potential, 

particularly Type la, although they could not quite attain the same loss reduction 

values as the chrome-bearing coating. This would be a useful coating to use if it was 

found impractical to use a Type 5 coating mix.

Type 4 coating formulations, containing colloidal silica, MgO, phosphoric acid and 

water, have also shown potential for application as a chrome-free alternative coating. 

At present, the formulation of this type resulting in the greatest loss reduction has 

been 4c with a loss reduction of 4.12%. This is already a greater value than the
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chrome-bearing coating, and there was a clear trend suggesting that increasing the 

content of colloidal silica could result in greater reductions in loss. However, the 

proportion of silica used in formulation 4c is already considered quite high and a 

further increase could possibly lead to problems associated with dusting.

Coating formulations have been developed that appear to have all the characteristics 

required from a final insulation coating. They have been found to have a satisfactory 

appearance, good insulation and adhesion properties, and are also fully curable within 

the required times. In formulations 3, 4c, 5a, 5b and 5c, coatings have also been 

observed to not only match the loss reduction provided by the chrome-bearing 

coating, but also actually improve upon it.

Project work on these chrome-free coatings has been completed with respect to the 

Engineering Doctorate scheme. Internal reports, containing recommendations for 

further work, have been written and issued to the relevant technical and production 

personnel [45-47]. Plant trials of coating formulation la  have taken place on the 

production line at Orb Works. This coating formulation was initially chosen over the 

other successful formulations due to the ease with which they can be mixed on the site 

of the coating unit. The resultant samples suggested that this coating provides a 

suitable chrome-free alternative to the coating previously used, and extended trial was 

carried out to determine the result of slight modifications. A chrome-free coating is 

now used on all coils as the standard production coating as a result of this work. 

Further coating materials have been ordered so that a coating trial can be carried out 

using the 5b coating formulation. It is hoped that the loss reduction achieved by this 

trial will correspond to the results achieved during this investigation. This trial will

281



also provide an opportunity for the production mixing and coating procedures to be 

assessed in order to establish whether it is practical to coat the strip using a more 

complex formulation.



Chapter 10

In-Depth Analysis of Two Alternative 
Chrome-Free Coatings

10.1 Introduction

Due to the introduction of recent legislation, the decision was taken to eliminate all 

traces of chrome from every process on-site at Orb Works. Work has previously been 

carried out to establish a number of recommendations for alternative chrome-free 

coating formulations, and this is described in Chapter 9. This work concentrated 

primarily on the more practical aspects of the coating, such as curability, wettability, 

adhesion to the strip surface etc.

To further develop the chrome-free coatings, further investigation was necessary to 

establish the effect of the coating formulation on magnetic loss reduction. It was 

found that some of the formulations were not just able to satisfy the practical 

requirements of a coating, but also provide a loss reduction equivalent to the previous 

chrome-bearing S2 coating, and in some cases surpass it.

A number of coatings were found to provide the characteristics suitable for use on 

production material. One formulation was subsequently recommended and now 

provides the basis for the coating that is currently being used as the standard coating 

on the production line at Orb Works.

Although the chosen chrome-free coating appears to be a satisfactory replacement, it 

is necessary to further investigate this coating with respect to its effect on magnetic
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loss reduction. It is also desirable to establish the effect of the coating on the 

magnetostriction properties of the steel, as this affects the noise that the material will 

produce when assembled as the core in a transformer.

10.2 Analysis of Magnetic Loss Reduction

The magnetic losses of the chrome-free coating currently used at Orb is to be 

evaluated using the PMS 3000 single strip tester, as has been used in previous 

investigations. The chrome-bearing S2 coating that was previously used on-site is to 

be used to provide a direct comparison. A further coating known as ‘Mix 26’ is also 

to be used, as this provided the basis for the formulation that resulted in the greatest 

loss reduction in the previous investigation.

10.2.1 Experimental Procedure

Strip samples were taken from four Hi-B coils at the entry end of the final coating and 

thermal flattening line at Orb Works. All samples were taken from the front end of 

the coil, with the exception of one coil where a sample was also cut from the middle 

section. Although the mid-coil samples are desirable due to the possible reduction in 

variability, it is not viable to obtain these samples from a large number of coils due to 

the disruption that it causes to production.

At this stage of processing, the steel had a forsterite ‘glass film’ on both surfaces, and 

was covered in MgO from the decarburisation line. A majority of this magnesia was 

removed simply by brushing (the remainder was removed with the samples 

undergoing a brief pickling prior to coating).
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Each strip sample was labelled with a letter as follows:

Sample Coil Section Gauge

A L04125 Front 0.30

B L04126 Front 0.30

C L04126 Mid 0.30

D L04128 Front 0.27

E L04136 Front 0.27

The samples were to be coated as Epstein sized samples (305x30mm), and so samples 

of the correct dimensions were cut from the strip and labelled as shown in Figure 10.1 

(coil A used for example).

It is believed possible that the strip may be more consistent along the length that it is 

across its width. Therefore, approximately 20cm was removed from each edge prior 

to Epstein samples being cut to ensure that the samples were as similar as possible.

For each coating formulation, ten samples were selected from each of the 5 coils used 

(A-E). Therefore, there were 50 samples to be coated with each formulation, and 150 

samples in total. The samples were chosen in a way that arranged them into groups 

with similar characteristics. Therefore S2 was coated onto A4, A7, A10 etc, chrome- 

free onto A5, A8 , A ll etc and Mix 26 onto A6 , A9, A12 etc.

To investigate the effects that the different coatings have on the material, it was 

necessary to analyse the samples both before and after coating. However, prior to any 

testing, it was necessary to stress relief anneal the samples to remove any coil-set. It 

was also necessary to pickle the samples for approximately 6  seconds in 5% (w/v)
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Figure 10.1: Diagram illustrating the labelling system for the 
samples.
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sulphuric acid at 70°C. This is to replicate the production process at the entry of the 

final coating and thermal flattening line, and remove the remaining MgO from the 

steel surface. It was decided that the samples should be pickled before the testing was 

carried out, as this would give a more accurate representation of the results for the 

samples in their ‘before coating’ state.

The samples were first tested on the PMS 3000 single-strip tester to assess their initial 

magnetic properties prior to coating. Following this, they were analysed on the 

magnetostriction test-rig located at Orb Works. This was able to provide information 

on the magnetostriction, magnetic loss, permeability and VA’s at intervals of -IMPa 

over a stress range of -lOMPa to +10 MPa. Although it has the function for 

measuring the losses of the material, these are not calibrated against the PMS 3000 

apparatus and would only give relative results, instead of being fully quantitative.

The testing parameters for both of these techniques were Bpk = 1.5T and 1.7T, 50Hz.

After these tests had been performed, it was necessary to pickle the samples for a 

further 1-2 seconds. This was necessary to clean the surfaces due to the time taken for 

the testing, as it was possible for oxides to form on the surface. This could cause 

problems with de-wetting or prevent the coatings from adhering to the surface 

correctly. This second pickle was for a much shorter duration than the first, main 

pickle, and previous work has shown that the effect of this pickle on the properties of 

the steel is negligible.

Samples were coated using a mechanically driven, laboratory, two-roll coating

system. The rolls used were grooved rubber rolls (see Section 9.2.1 for further

details), and the roll pressure could be adjusted using a screw mechanism. The
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bottom roll was submerged in the coating, which was held in a coating tray. The top 

roll was lowered so that it was in contact with the lower roll, causing some of the 

coating solution to be transferred onto the top roll. This allowed 2-sided coating of 

the sample.

Prior to the coating of each of the groups of samples (one group per coating 

formulation), a number of preliminary samples were coated and cured to assess the 

coating weights that were achieved at various roll pressures. When the results had 

been obtained, the apparatus was adjusted accordingly so that the desired coating 

weights could be attained.

Each sample was passed between the rolls twice, turned over, and then passed through 

again (twice). This was to ensure that both sides of the sample were coated as 

uniformly as possible.

Once coated, the sample was placed onto a metal support tray that acted to keep the 

sample flat throughout the curing process. The support tray was also designed to 

minimise contact with the sample, so that as little of the coating as possible was 

affected prior to the sample entering the curing furnace.

The tray supporting the coated sample was placed onto refractory bricks within a 

laboratory furnace set at 800°C, for a duration of 30 seconds, to ensure that the 

coating was fully cured.

Once coated and cured, the samples were re-tested, both on the PMS 3000 single-strip 

tester and then on the magnetostriction apparatus. Again, the tests were carried out at 

Bpk = 1.5T and 1.7T, 50Hz.
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10.2.1.1 Coating Thickness

The coating rolls used for previous coating trials had a groove depth of 4.5 thou 

(114p), which was a similar specification to the rolls used on the production line. 

However, it was believed that to match the coating weights attained on the production 

line (8 - 1 0 g/m2 for both sides combined), the roll specification would have to be 

changed, as previous trials have resulted in coating thicknesses greater that those 

required.

Before this investigation could begin, it was necessary to carry out an investigation to 

establish the coating weight that would be generated by the current rolls.

Six plate samples (approximately 70mm x 200mm) of Hi-B material were selected 

and pickled in 5% (w/v) H2SO4, according to the standard procedure followed for 

previous coating investigations. This was to remove the excess MgO powder and 

prepare the surface for coating. The samples were taken from the entry of M-line, so 

had not been coated with the final coating.

The first two samples were coated with the rolls set so that they were just touching, 

allowing the maximum amount of coating solution to be deposited on to the surface. 

The top roll was then lowered to its mid position, decreasing the gap between the 

rolls, and the next two samples were coated. For the final two samples, the top roll 

was lowered once more so that the gap between the rolls was as small as could be 

achieved. A slight modification was made to the position of the top roll between the 

coating of the final two samples, as it became clear upon coating that the roll was not 

completely horizontal.
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The results were as follows:

Sample 1 23.1 g/m'

Sample 2 22.5 g/m'

Sample 3 15.3 g/m'

Sample 4 14.9 g/m'

Sample 5* 18.6 g/m'

Sample 6 11.5 g/m:

*
Top roll not horizontal. Adjusted prior to coating sample 6  

These are total coating weights, and include both surfaces.

The desired coating weight is between 8  and 10 g/m , as this is what is regularly 

achieved on the production line. It can be seen that none of these results were within 

the range required.

The coating weight for sample 6  was the closest, and was probably within a range that 

would be tolerable for this investigation. However, it was the opinion of the operator 

that this thickness would not have been achieved consistently and that the average 

would have been somewhat higher.

It was therefore necessary to obtain coating rolls of a different specification, with a 

groove depth of less than 4.5 thou (114p).

In previous investigations, coating had also been carried out with a bar coater with a 

groove depth of 1.2 thou (30p). It was known that this had resulted in coating weights 

slightly less than that required in this investigation, which further refined the grove 

depth range that was necessary to achieve a coating weight of 8 - 1 0  g/m .
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Due to the time constraints of this project, it was decided to re-grind the rubber of the 

existing rolls instead of having new rolls fabricated. The grooves were skimmed off 

to give a smooth surface before further grooves could be cut. All parameters except 

for the groove depth were kept the same as the previous specification (i.e. 26 grooves 

per inch, 55° angle, rounded edge).

It is believed that the coating rolls may give a variation in coating weight due to the 

variation in viscosity between the three coatings. Therefore, to ensure the correct 

coating weight could be achieved, two different roll groove specifications were 

chosen. These were of groove depths 2 thou and 3.5 thou (51 and 89 microns 

respectively). The rolls were re-ground with two different sections on each half of the 

roll, ensuring that the areas of each roll with the same specifications matched up (see 

Figure 10.2). This was to guarantee that both the top and bottom surfaces of any 

sample would have a similar coating weight.

With the two different groove specifications and control over the roll pressure, this 

set-up allowed an accurate adjustment of coating weight over a wide range of values, 

particularly around those required for this investigation.

10.2.2 Results and Discussion

Each group of ten samples from each coil, and for each coating, were averaged. From 

these values, the percentage loss reduction was calculated. The results for the tests at 

Bpk = 1.5T, 1.7T, 50Hz are shown in Tables 10.1 and 10.2 respectively. They are 

also illustrated in Figures 10.3 and 10.4.
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Figure 10.2: Schematic diagram of the 2-section coating rolls.

292



S2 Cr-frei* Mix 26
Before

Ct.
After

Ct.
%Loss
Red.

Before
Ct.

After
Ct.

%Loss
Red.

Before
Ct.

After
Ct.

%Loss
Red.

Coil A 0.887 0.867 2.20 0.894 0.888 0.66 0.886 0.836 5.73
Coil B 0.955 0.924 3.30 0.952 0.923 2.99 0.944 0.887 6.01
Coil C 0.959 0.910 5.14 0.958 0.926 3.31 0.968 0.894 7.65
Coil D 0.925 0.884 4.35 0.925 0.898 2.87 0.930 0.888 4.56
Coil E 0.866 0.809 6.61 0.852 0.844 0.66 0.876 0.851 2.88

Average 0.918 0.879 4.32 0.916 0.896 2.10 0.921 0.871 5.37

Table 10.1: Loss reduction values for samples measured at Bpk 
=1.5T, 50Hz using PMS3000.

S2 Cr-fre<1 Mix 26
Before

Ct.
After

Ct.
%Loss
Red.

Before
Ct.

After
Ct.

%Loss
Red.

Before
Ct.

After
Ct.

%Loss
Red.

Coil A 1.168 1.152 1.38 1.173 1.164 0.80 1.160 1.079 6.98
Coil B 1.234 1.197 2.98 1.234 1.202 2.58 1.212 1.123 7.33
Coil C 1.268 1.213 4.35 1.271 1.225 3.55 1.274 1.156 9.24
Coil D 1.198 1.159 3.28 1.200 1.164 3.02 1.201 1.145 4.62
Coil £ 1.166 1.094 6.18 1.148 1.137 0.74 1.178 1.141 3.05

Average 1.2068 1.163 3.63 1.2052 1.1784 2.14 1.205 1.1288 6.24

Table 10.2: Loss reduction values for samples measured at Bpk 
=1.7T, 50Hz using PMS3000.
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It can be seen that, for each coating formulation, there is a variation in the percentage 

loss reduction between different coils. However, the performance from coil to coil is 

generally matched for each of the coatings. For example, the highest loss reduction 

for each coating occurs on Coil C, which is incidentally the only material taken from 

the middle of the coil and is therefore likely to be of the highest quality. This effect is 

seen for the results from the tests at both Bpk = 1.5T and 1.7T, 50Hz. The only point 

on the graphs that does not follow the trend is that of the S2 coating on Coil E. The 

reasons for this cannot currently be explained, but it is suspected that it is a result of 

malfunctioning of the single-strip tester, as the trends for every other data point seem 

to be so respectable.

If the data point discussed above is omitted, it can be seen that the percentage loss 

reduction results for the S2 and C-ffee coating currently used on the production line 

are very similar, particularly at Bpk = 1.7T, 50Hz. The results for S2 are generally 

the higher of the two in this investigation, but no noticeable effect in the magnetic 

losses has been observed on production material when the standard coating has 

switched from S2 to the chrome-free coating.

The loss reduction results of the ‘Mix 26’ coating are seen to be significantly better 

that seen for the other two coatings, with a maximum loss reduction of 9.24% 

achieved on Coil C. This confirms the findings of the previous investigation, and is 

significantly better than any coating formulations that have previously been trialled at 

Orb. Most promisingly, it suggests that the percentage loss reduction on Hi-B 

material could approximately be doubled if the ‘Mix 26’ was employed.
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10.3 Magnetostriction Apparatus -  Shift of the
Fundamental Component of Magnetostriction

The samples analysed in Section 10.2 were also used to investigate the effect that the 

different coatings had on the magnetostriction properties of the steel. This was done 

by using apparatus that had been specifically built at Orb Works for the measurement 

of magnetostriction. The magnetostriction apparatus varies the stress from +10MPa 

(extension) to -lOMPa (compression), and takes readings of the magnetostriction and 

magnetic loss at intervals of approximately IMPa. The magnetostriction results 

consist of the fundamental (100Hz for 50Hz excitation), which is commonly believed 

to be related to transformer noise, along with the 2nd, 3rd, 4th and 5th harmonics. 

Values of VA/kg and permeability are also given at each stress value.

Effects of the higher harmonics are very important but at present it is uncertain how 

best to combine the harmonics of magnetostriction to best relate to noise.

One method for evaluating the magnetostriction curves has been based around the

stress value at which the magnetostriction value becomes positive (the stress

intercept). However, a problem was encountered with the software associated with

the magnetostriction apparatus during this investigation, as it was failing to correctly

distinguish between positive and negative magnetostriction values that were close to

zero. Further to discussions with the system designer, it was decided to modify the

results that were generated by altering some of the signs (i.e. changing between

positive and negative). Some of the values were simple to interpret as having an

incorrect sign, as they were far more negative than considered possible for electrical

steel. However, other data points were not as straightforward. Unfortunately, the

stress value at which the magnetostriction became positive was now a direct result of
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personal interpretation of the data, and specifically which values were made positive. 

Therefore, this parameter was not used for the analysis of the data obtained.

It was decided to only consider the fundamental component of magnetostriction and 

also to make each magnetostriction value positive in order to ensure that each curve 

was smooth. This is shown in Figure 10.5, which shows the curve in its original and 

modified forms. Note that pS = microstrain = 10'6.

Although this was not a conventional technique, it was considered acceptable to do 

this in this incidence since it mainly affected the data that had magnetostriction values 

close to zero, and it is the higher values that are of most interest. It is aimed to 

establish the difference between coated and uncoated samples, and not provide 

definitive, quantitative data for one-off samples.

Other techniques for analysing the curves have been based around the 

magnetostriction value at either -5MPa (5MPa compressive stress), or the point of 

inflection (which commonly occurs at a similar stress value). However, the variation 

in magnetostrictive properties of a material over the entire range of stress is of interest 

in this investigation, not just at one particular value.

It was decided that the optimal method for demonstrating the effect of coatings on the 

magnetostrictive properties over the entire stress range was to calculate the 

magnetostriction shift (on the vertical axis) between the absolute (positive) values of a 

particular sample, when comparing the sets of data for both the coated and uncoated 

sample. This resulted in a small value when the curves were similar, and a higher
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value with improvement due to the coating. Hence, the greater the magnitudes of the 

magnetostriction shift, the greater the influence of the coating on reducing the 

magnetostriction.

Figure 10.6 shows the adjusted curves for sample A44, both uncoated (red) and when 

it had been coated with the S2 formulation (blue). The green curve on this figure 

shows the difference in the magnetostriction value at each stress value.

This shows an example where there is a significant difference in the magnetostriction 

curves, particularly at compressive stress >4Mpa. Two similar curves would result in 

a shift curve that was far more flat.

The magnetostriction shift values were calculated for a large number of samples. 

However, due to the large number of samples and certain time constraints, it was 

decided to concentrate only on those results obtained at Bpk = 1.7T, 50Hz. Also, only 

the samples from coils A, B and C (all 0.30mm) were selected to be analysed in this 

way. Although this prevented a large number of samples from being considered, it 

was still sufficient to provide a large amount of data on all three coatings, and their 

effects on material from two different coils, including material from both the end and 

the middle sections of one of these coils. Coil C also relates to the material which 

exhibited the highest values for magnetic loss reduction, and so the magnetostrictive 

properties of this material are of particular interest.

It was found that for the 10 samples from the same material and with the same 

coating, there was a large amount of spread for the magnetostriction shift curves. 

This was expected due to minor fluctuations during the testing procedure, unavoidable 

differences in the pickling, coating and curing of the samples and the variation in the
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characteristics of the base steel. However, this variation between samples was not 

seen to be problematic as the data for the 1 0  samples was averaged, giving a good 

overall view of a particular group.

The averaged magnetostriction shift data for coils A, B and C can be seen in Figures 

10.7, 10.8 and 10.9 respectively.

In each of the three Figures (10.7-10.9), it can be seen that the greatest 

magnetostriction shifts (in relation to the fundamental component), and therefore the 

greatest reduction in magnetostriction, are for the samples coated with the S2 

formulation. The chrome-free coating gives the second greatest shift, with the least 

difference in magnetostriction curves being seen for the samples coated with the ‘Mix 

26’ formulation.

For each of the three coils, the ‘Mix 26’ formulation appears to have very little effect 

on the magnetostriction at all, with it having a negative impact for most of the stress 

values for coil C i.e. the magnetostriction curve of the coated sample is actually worse 

than that of the uncoated steel.

In each graph, it is apparent that the magnetostriction in the areas of tension (positive 

stress values) is largely unaffected by coating the samples, and that the main shifts 

occur under compression.

An interesting observation, particularly apparent for coil A (and to a lesser extent for 

coil B), is the behaviour of the curve relating to the chrome-free formulation. It 

appears to remain close to the curve for ‘Mix 26’ when under tensile stress and then, 

as the compressive stress increases, steps up to a similar level as the S2 coated
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samples. This effect is also seen when considering the data that has been averaged for 

each coating formulation across all three coils, shown in Figure 10.10.

These magnetostriction shift curves are not as expected, as it has previously been 

considered by various personnel that the magnetic losses and the magnetostriction are 

closely linked. However, it can be seen that the coating that resulted in the lowest 

loss reduction (chrome-free) did not have the least effect on the magnetostriction. 

More evidently, the ‘Mix 26’ formulation has the least effect on the magnetostriction, 

even though it clearly gave rise to the greatest loss reductions seen from any of these 

coatings.

10.4 Conclusions

This investigation has shown that the ‘Mix 26’ formulation may be used as a final 

insulating coating on grain oriented electrical, and will result in substantially greater 

reductions in magnetic losses than those previously achieved. However, it appears 

that there will also be a corresponding reduction in the effect that this coating will 

have on the magnetostrictive characteristics of the material. Therefore, the benefits of 

this coating must be weighed up against this effect, and the viability of this coating 

will depend largely on the requirements and priorities of the customer.

The contradictory results between the magnetic losses and the magnetostriction curves 

were unexpected. These results warrant further investigation, which is due to be 

carried out on new magnetostriction apparatus that has recently been commissioned.
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Chapter 11

11.1 Conclusions

This investigation had studied the feasibility of using a wide range of different 

analytical techniques for the assessment of various surface layers on grain oriented 

electrical steel. From this work, the following conclusions can be drawn:

11.1.1 Decarburisation Oxide Layer

• Fayalite (Fe2SiC>4) is found in the uppermost section of the decarburisation oxide 

layer, and is the only compound detected when a decarburised sheet is analysed 

using the 80° grazing angle attachment in conjunction with the Fourier Transform 

Infrared (FTIR) apparatus. The underlying layer of silica is only exposed upon 

subsequent acid etching of the sample, due to the rapid removal of the fayalite. It 

was established that use of a variable grazing angle attachment was not able to 

sufficiently alter the penetration depth of the infrared radiation in order for the 

entire oxide layer to be examined using FTIR.

• The Electrochemical Potential (ECP) method has been used to assess the 

consistency of the surface oxide layer formed during the decarburisation process. 

It has been found that the Works produced material generally results in ECP 

profiles that can be separated into four slightly different categories, but that these 

different profiles appear to show no trends in relation to the position on the strip 

from which each sample originated. However, analysis of samples annealed under 

varied atmospheric conditions in a laboratory tube furnace showed significantly 

different ECP profiles. This suggests that the technique is reproducible, and that
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the consistency of the material on the Works production lines might be better than 

was initially anticipated, as the variation in the four types of ECP profiles was far 

less than seen in the laboratory furnace trials.

The ECP technique is therefore very useful for the classification of groups of

samples for studies relating to decarburisation layers.

• The ECP technique was found to provide a successful method for closely 

monitoring the slow etching of the decarburisation oxide layer. This effectively 

enabled analysis to be carried out at various depths within the layer.

■ Images obtained from Scanning Electron Microscopy (SEM) were

generally inconclusive, but the associated Energy Dispersive X-Ray 

(EDX) showed an increase in both silicon and oxygen as the depth within 

the layer increased. They increased consistently according to an atomic 

weight ratio of 1 :2 , suggesting that the compound could be identified as 

silica (SiC>2).

■ X-ray Photoelectron Spectroscopy (XPS) also showed a link between the 

silicon and oxygen present in the lower regions of the oxide layer. 

However, this technique could not be used quantitatively, as subsequent 

analysis using Sputtered Neutral Mass Spectrometry (SNMS) proved that 

the XPS results were distorted due to carbon contamination.

■ Fourier Transform Infrared (FTIR) analysis provided a useful insight into 

changes in the composition of the oxide layer. It was found that the 

fayalite on the very surface was removed as soon as the sample was 

etched in the acid. Further etching showed that the ECP profile was 

directly related to the observation of two separate absorption bands,
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believed to be two different forms of silica, with the peak and trough of 

the profile associated with the points at which the spectra changed from 

one band to another. This proves a direct link between the ECP profiles 

and the composition and / or morphology of this surface oxide layer.

11.1.2 Forsterite Glass Film

• Use of the FTIR apparatus, in conjunction with the 26.5° grazing angle 

attachment, has proved that the forsterite glass film produces a very consistent 

spectrum in terms of the position of its absorption bands. Software associated 

with the FTIR apparatus has enabled this fact to be exploited by using a section of 

the spectra (400 to 890cm'1) for the determination of the forsterite thickness 

using.

11.1.3 Final Insulation Coating

• The main constituents of the coating (aluminium orthophosphate and colloidal 

silica) were found to give distinctive spectra when analysed using the FTIR 

apparatus. These spectra were used in conjunction with a software program 

(Spectral Calculator) to produce a theoretical prediction of specific mixes of these 

components, which was subsequently found to exhibit a good correlation with the 

spectra obtained from laboratory mixes.

• When the FTIR technique was used to analyse material coated on the Works 

production line, it was found that the resultant spectra could not be used to 

determine the ratio of silica and aluminium orthophosphate as desired. This was 

due to the presence of many absorption bands relating to the underlying forsterite
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glass film layer, which caused the bands associated with the coating to be 

distorted.

• A number of trials were carried out to develop a chrome-free insulation coating. 

Many techniques were used to assess a number of characteristics of the cured 

coatings in order to establish whether they were a viable alternative to the 

chrome-bearing solution. Once their practicality had been proven (solution 

stability, wettability etc.), the potential coating formulations were assessed to 

determine the effect that they had on the magnetic properties of the steel. It was 

found that there were a number of coatings that exceeded the results produced by 

the chrome-bearing coating, including a formulation that gave an improvement of 

approximately 40%. As a result of this investigation, an alternative chrome-free 

coating is now used as the standard production coating on all grain oriented steel 

produced at Orb Works.

11.2 Future W ork

11.2.1 Decarburisation Oxide Layer

• The work combining the FTIR and ECP techniques appeared very promising 

in terms of assessing the decarburisation oxide layer. It is necessary to make 

an attempt to definitively identify the compounds relating to the spectra at 

various stages of etching. This would enable an exact correlation to be made 

between the shape of the ECP profiles, and particularly the points of inflection, 

and the composition of the oxide layer.

• A large number of samples were analysed using the ECP method. However, 

the aim was to analyse a large number of samples from a small area of strip.
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This work needs to be developed to determine the variation in ECP profiles 

between a much larger number of coils. To achieve this, the ECP technique 

should be used on a more routine basis to analyse a few samples from many 

coils over a number of months.

11.2.2 Final Insulation Coating

• FTIR analysis of the Works coated material was found to be problematic due 

to the underlying forsterite glass film distorting the absorption bands 

associated with the final phosphate coating. This is due to the penetration 

depth of the infrared radiation being too great. Therefore attempts should be 

made to utilise variable grazing angle apparatus to vary the penetration depth, 

in a similar way as was used in the investigation for the decarburisation oxide 

layer. Reducing the power of the infrared source could also have a similar, 

beneficial result. Due to the mixing of the coatings, the cured coatings should 

be of a consistent formulation throughout, suggesting that the FTIR apparatus 

could be used to determine the composition if the effect of the forsterite could 

be eliminated.

• The loss reduction results from a number of alternative chrome-free coatings 

were very promising, and one of the formulations now provides the basis for 

the standard production coating. However, this was not the formulation that 

provided the greatest loss reduction, but the one that could be applied on the 

production line with most ease. Therefore, coatings remain that have shown 

great loss reduction potential, but further investigation is needed to determine 

the requirements for them to be used under production conditions.
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• During the evaluation of various formulations of the final coating solution, the 

loss reduction was calculated from a number of samples, taken across a range 

of 5 different coils. It was found that some of the coils appeared to show a 

better response to the coating than others. The reasons for this are currently 

unknown, but establishing the reasons for this would be highly beneficial 

when trying to consistently reduce losses to the minimum that is achievable for 

each production coil. Therefore, an investigation should be carried out using a 

number of coils with known differences in a number of characteristics, such as 

surface roughness, grain size etc. to determine the reasons for this effect.

• The magnetostriction apparatus located at Orb was originally commissioned as 

part of a PhD project, and was not intended for long term use, and has also not 

been used on a routine basis for more than a year. A new magnetostriction set­

up has recently been commissioned and is currently being built. With further 

advances in technology and knowledge of the system, it is hoped that this 

apparatus will measure the characteristics of both magnetostriction and loss to 

a greater degree of accuracy. Once this new apparatus is operational, further 

measurements can be taken to confirm the results obtained during this 

investigation, and modifications can be made to the coatings, where necessary, 

in order to satisfy the customers needs.

310



References

1. W.F.Barrett, W.Brown and R.A.Hadfield, Scientific Transactions, Vol 7, p67, 
1900.

2. W.F.Barrett, W.Brown and R.A.Hadfield, Journal of Elec. Eng., Vol 31, p674, 
1902.

3. T.D.Yensen Trans. Amer. Inst. Elect. Eng 34 2601, 1915.

4. K.Honma et al, Development of Non-Oriented and Grain Oriented Silicon 
Steel, IEEE Transactions on Magnetics, Vol. MAG-21, No.5, September, 
1985.

5. N.Goss, US Patent 1,965,559, 1934.

6 . S.Taguchi, A.Sakakura and H.Takashima, U.S. Patent 3,287,183, 1966.

7. A.J.Moses, Electrical Steels: Past, Present and Future Developments, IEEE 
Proc. Vol 137, Sep, 1990.

8 . Philip Beckley, Electrical Steels, European Electrical Steels, 2000.

9. Victor William Carpenter and John Martin Jackson, Production of Insulative 
Coatings on Steel Strip, Patent Specification, March 11 1959.

10. Armco International Corporation, British Patent 810 039, March 1959.

11. MgO-based Annealing Separator for Grain Oriented Silicon Steel Strips, UK 
Patent Application, 2 041 343 A, 1979

12. Robert.G.Hirst and George.J.Desnoyers, Insulating Coating and Method of 
Making the Same, U.S.Patent, Dec 12 1972.

13. Ichida et al, Method of Forming a Forsterite Insulating Film on the Surface of 
a Grain Oriented Steel Sheet, U.S. Patent, Feb 10 1981.

14. R.A.Chapman, The Formation of an Inorganic Insulating Coating on Electrical 
Sheet Steel, PhD Degree Thesis, 1973.

15. Method for Forming Forsterite Insulating Film on an Oriented Silicon Sheet 
Steel, United states patent, Feb 26,1980.

16. S.Akatsu, Methods of Deposition of Silicon Oxide Films on Silicon Sheet 
Steel, 1967.

17. P. Cummings, Coating defects in Fully Finished GO Material, Internal Cogent 
Power Research Report No.004, 1997.

311



18. O. Tanaka, H.Kobayashi, E.Minematsu, New Insulating Coating for Grain
Oriented Electrical Steel, J.Mater.Eng. 13:161 -168, 1991.

19. M.J.Davies et al, Measurement of Coatings and Surface Oxide Layers on 
Grain Oriented Electrical Steel, Ironmaking and Steelmaking, Vol.25 No.2, 
1998.

20. Developments of Grain-Oriented Silicon Steel Sheets With Low Iron Loss,
Kawasaki Steel Technical Report, No. 22, May 1990.

21. Dan S. Loudermilk and Robin A. Murphy, Overview of Technology of
Insulating Coatings for Grain-Oriented and Non-Oriented Electrical Steels, 
Conference Proceedings, 15th Annual Conference on Properties and 
Applications of Magnetic Materials, 1996.

22. Obtained by technical personnel (P. Cummings) at Orb Works.

23. R.W.Hannah and J.S.Swinehart, Experiments in Techniques of Infrared 
Technology, Perkin-Elmer Corporation, 1974.

24. P.Beckley and H.Boniface, Electrochemical Assessment of Oxide Layers, 
British Steel Technical Note No. E/309, 17th June 1982.

25. Nigel Martyn, The Electrochemical Potential Analysis of Decarburised 
Surface Oxide Layers Of Electrical Steel, EPSRC MRes Degree Thesis, 2000.

26. Young and Freedman, University Physics Ninth Edition, Addison-Wesley 
Publishing Company, Inc., 1996.

27. Philip Anderson, A Novel Method of Measurement and Characterisation of 
Magnetostriction in Electrical Steels, Ph.D. Thesis, 2000.

28. P.I. Anderson, A.J. Moses, H.J. Stanbury, An automated system for the 
measurement of magnetostriction in electrical steel sheet under applied stress, 
Journal of Magnetism and Magnetic Materials Vol 215-216 pp 714-716, 2000.

29. Methods of Measurement of the Magnetic Properties of Electrical Steel Sheet 
and Strip by Means of an Epstein Frame, British Standard, BS 6404: Part 2: 
1996, IEC 404-2: 1996, Magnetic Materials. Part 2, 1996.

30. Website: Products Finishing Online, Coating Thickness Measurement: The 
Fundamentals, http://www.pfonline.com/articles/0206qfl .html.

31. G. Thomas, Determination of Fayalite Layer Composition Using Infrared 
Analysis, Orb Technical Note, 1997.

32. Perkin-Elmer Spectrum™ User’s Reference, January 1998.

33. Website: http://webbook.nist.gov/chemistry - NIST Chemistry WebBook.

312



34. P. Beckley and H.Boniface, Electrochemical Assessment of Oxide Layers,
British Steel Technical Note No. E/309, 17th June 1982.

35. Nigel Martyn, The Electrochemical Potential Analysis of Decarburised 
Surface Oxide Layers Of Electrical Steel, EPSRC MRes Degree Thesis, 2000.

36. D. Snell, Preliminary Evaluation of Surface Oxide Layers on Decarburised
Conventional Grain Oriented Electrical Steel, British Steel Technical Note No. 
E/348,12th September, 1986.

37. D. Snell, Further Assessment of Surface Oxide Layers on Decarburised Grain
Oriented Electrical Steel Using the Electrochemical Method, British Steel 
Technical Note No. E/351,1st October, 1986.

38. D. Snell, Assessment of Surface Oxide Layers on Decarburised Grain
Oriented Electrical Steel Using the Electrochemical Potential Difference 
Method, Orb Electrical Steels Ltd. Technical Note No. 179, 22nd February, 
1994.

39. D. Snell and H. Silverthom, Comparison of Different Methods of Assessment
of the Surface Oxide Layers on Decarburised Grain Oriented Electrical Steel 
Using the Potential Difference Method, Orb Electrical Steels Ltd. Technical 
Note No. 218, 6 th September 1994.

40. H. Toda, K. Sato and M. Komatsubara, Characterisation of Internal Oxide 
Layers in 3% Si Grain-Oriented Steel by Electrochemical Methods, Journal of 
Materials Engineering and Performance, Volume 6  (6 ), p. 722- 727, December 
1997.

41. J. R. Ferraro., The Sadtler infrared spectra handbook of minerals and clays, 
Philadelphia, Pa: Sadtler, (ISBN 0-8456-0080-x), 1982.

42. Perkin-Elmer Technical Publication, Spectrum Beer’s Law User’s Reference, 
January 1998.

43. http://www.rohs.gov.uk/content.aspx?id=9

44. D. Snell, Review of Chrome Free Coatings for Grain Oriented Electrical 
Steels, Cogent Internal Research Note (RN 348), 19/5/05.

45. D. Snell, D. Poultney, A. Nolan, A. Green, D. Power and G. Thomas, 
Laboratory Evaluation of Chrome Free Coatings for Grain Oriented Electrical 
Steel RN 350, June 2005.

46. D. Snell, D. Poultney and A. Nolan, Tension Coatings for High Permeability 
Grain Oriented Electrical Steel, Cogent Internal Research Note (RN 356), 30th 
March, 2006

313



47. D. Snell, D. Poultney and A. Nolan, Further Trial on Tension Coatings for 
High Permeability Grain Oriented Electrical Steel, Cogent Internal Research 
Note (RN 357), 24th April, 2006.

I

314


