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Abstract

This thesis consists of two parts. The first one extends an idea developed by
J. P. Roth. He succeeded to construct a Feller semigroup associated with a
second order elliptic differential operator L(z, D) by investigating the semi-
groups obtained by freezing the coefficients of L(z, D). In Chapter 2 we show
that a modification of his method works also for certain pseudodifferential
operators with bounded negative definite symbols. Partly we can rely on
ideas of E. Popescu. In Chapter 3 we show that if a certain pseudodifferen-
tial operator —¢(z, D) generates a Feller semigroup (7%):»0 then the Feller
semigroups (Tt(")) 1o generated by the pseudodifferential operators whose
symbols are the Yosida approximations of —¢(z, £), i.e.

vq(z, )
v+q(z,8)’

—q(y)(x) E) = -

converge strongly to (T3) =0



Introduction

Pseudodifferential operators with negative definite symbols and their relation
to Feller semigroups are recurrent topics in this thesis. The motivation for
studying this connection can be found in the field of stochastic processes.
One may identify a Feller semigroup (7});»0, which is a positivity preserving,
strongly continuous contraction semigroup of linear operators defined on Co,
with a Feller process ((X:)eso, P:‘)z cgn- Lhe general idea is to use pseudo-
differential operators as generators of Feller semigroups and thus to associate
with reasonably “nice” pseudodifferential operators corresponding Feller pro-
cesses. Once this connection is established, one may then use the fact that
every pseudodifferential operator is uniquely determined by its symbol to use
properties of the symbol to study properties of the Feller process, see [8], [9],
[24]-[26] as well as [17]. '

Let us go into some more detail: A basic result from stochastic analy- -
sis is Kolmogorov’s extension theorem which gives us for every Markovian
semigroup of kernels (pt(x,A)) t;O’. z € R", A ¢ R™ measurable, the exis-
tence of a stochastic process. The interpretation of p,(z, A) is that of the
probability of being at the time ¢ in the set A when starting at ¢ = 0 in
z € R™. If we are now given a Feller semigroup (7t):>0 on Cy, We can obtain
such a Markovian semigroup of kernels by setting p;(z, A) := Tixa(z) where
the right-hand side is well-defined if we take a monotone approximation of
X4 by continuous functions. Vice versa if we start with a Feller process a
Feller semigroup (T})eso is given by Tyu(z) := E(u(X:)). Next we would like
to identify the generator of every Feller semigroup. We mention here that
there is no classification theorem that tells us that every Feller semigroup
is generated by a pseudodifferential operator with negative definite symbol.
But we may ask under which conditions certain pseudodifferential operators
generate Feller semigroups. :

The main tool for constructing operator semigroups is the Hille-Yosida
Theorem as stated in Section 1.4. It turns out that a result by Ph. Courrege
[6] is fundamental to make the Hille-Yosida Theorem work for pseudodiffer-
ential operators in order to construct a Feller semigroup. The result char-



acterizes pseudodifferential operators with negative definite symbols as the
only ones that satisfy the positive maximum principle, i.e. A: D(A) — Co,
D(A) c Cy, satisfles the positive maximum principle on D(A) whenever
for u € D(A) the fact that u(zy) = supgegn u(z) = 0 implies Au(zy) < 0.
Another important theory needed in this context is the symbolic calculus
for negative definite functions developed by W. Hoh in [10]. It is an exten-
sion of the classical symbolic calculus as presented in e.g. Kumano-go [19].
In this thesis we concentrate on the construction of Feller semigroups using
pseudodifferential operators with negative definite symbols.

Chapter 1 contains an explanation of the notation that we use and also
introduces other topics such as negative definite functions, Bernstein func-
tions, pseudodifferential operators and some operator semigroup theory. In
Chapter 2 we first explain how J. P. Roth in [23] succeeded to construct
Feller semigroups associated with a second order elliptic differential operator
L(z, D). Then we extend his method to pseudodifferential operators with

‘bounded negative definite symbols. In Chapter 3 we use a pseudodifferential

operators —q®)(z, D) whose symbols is the Yosida approximation of a given
symbol g, i.e.

(e, D) = ~(or)H 0 AEE gy

" and show that the sequence of corresponding semigroups (Tt(")) v >0,

; \ £207
that is generated by —q¢(*)(z, D), converges strongly to the Feller semigroup
(T})¢>0 for v — 0. We need to make the assumption that —g(z, D) generates
the Feller semigroup (Tt)t>0



Chapter 1

Preliminaries

The main purpose of this chapter is to fix the notation used throughout
this thesis and to introduce some of the concepts we need in later chap-
ters. We begin with explaining our notation in Section 1, whereas Section
2 treats negative definite functions. Section 3 introduces pseudodifferential
operators, the symbol of which are continuous negative definite functions
with respect to the co-variable. For these operators the corresponding sym-
bolic calculus is discussed. Section 4 contains some material of the theory of
operator semigroups and relations to the pseudodifferential operators under
consideration. In Section 2 we prove a new result about uniformly bounded
continuous negative definite funllctions which is needed for Roth’s method in
Chapter 2. The proof also serves as a nice example for how negative as well
as positive definite functions and convolution semigroups of measures. are
connected. We further would like to emphasize that the symbolic calculus as
described in Section 3 is not the classical symbolic calculus. In fact to some
extend one might consider the classical symbolic calculus as a special case of
the symbolic calculus related to negative definite symbols. This will be very
important for Chapter 3, but is not needed in Chapter 2.

1.1 Notation

Most of the notation we use is standard, hence we only point out the not
so common cases. The Index of Notation that we include at the end of this
thesis contains a short list of function spaces and notation related to the

-symbolic calculus of pseudodifferential operators.

Throughout this thesis we are going to study properties of (in general)
complex-valued functions of n independent real variables and their various
derivatives. In order to work conveniently with these variables, functions



and derivatives we use n.ultiinder notation. If we denote the variables by
Z1,...,Zn, or simply z, we may define a function u of these variables with do-
main R™ and write u(z), z € R™. For any multiindex a = (ay, ..., a,) € Ng,
Np := N u {0}, we define its length as the sum |a| = a; +. ..+, and its fac-
torial as the product a! = (ey!)-...-(a,!). Furthermore we write o < 8 € N¢
if one has o; < B; forall j = 1,...,n. For z € R™ and a € N} one defines
z® = z7* ... - z%. For the operation of taking partial derivatives, we write
olel
Oz ggen

0% :

We often work with smooth functions ¢ : R® x R® — R, (z, &) — ¢(z, &) and
want to consider partial derivatives with respect to the variable £ € R™ only.
In this case we write

ol
o€ - o

We also need binomial coefficients which are defined as follows: for a, b € Ny,

-2
(-

otherwise. For o, 8 € Nj one defines the binomial coefficients as products
AR YR oy
5 B)  \B)’
and finds that if 8 < o |
_<a) B al
8) " la—pA
- fa
= 0.
()
In Chapter 3 we often use two other results, the Binomial formula

(z+y)* =) (g)wﬁya‘ﬁ, | (1)

5g‘q =

if0<b<a,

and otherwise

B<a



where z and y € R™, and Leibniz’s formula

P ) = Y (g) () ). (1-2>:

B<a

for u, v € Clol. For Chapter 3 it is also useful to keep in mind that

;3;1 (g) - 2'%'. | . (1.3)

which follows easily from the Binomial formula (1.1). Furthermore for func-
tions u: R — R and v : R* — R" we find that
Sw
. (@) (1.4)
w!

where the second sum runs over all pairwise different multiindices

|o|

P (uow) = 3 u Zw' e ("’2;’)

J=

0+#p0,7...,weNy

and all dg, 0, ..., d, € N such that 0sg8 + 0,7+ ... + dyw = a and dg + 4y +
4+ 5 — ] R
Another central notion we use in this thesis is that of the Fourier trans-
formation. Let us introduce the Schwartz space S of C® functions that are
rapidly decreasing. We define on S the Fourier transform @ of a functlon u
and write

6O =IO - 0F | @ 08

We give (1.5) merely to avoid any ambiguity concerning the normalization
factor (2r)~%. Whenever we use a Fourier transform in this text it is meant
in the sense of (1.5). We do not want to go into any details of the theory of
Fourier transforms here, but will give further remarks whenever necessary.
Let us only mention here that one may also extend the Fourier transform to
S’, the space of tempered distributions, hence Fourier transforms of bounded
positive measures are also well defined. In Chapter 3 we need the follow-
ing properties of Fourier transforms: .let u,v € S, and denote by u * v the
convolution product of u and v defined as

@) = | ue- i) ey



further we use the convention %(z) = u(—z) and the operators D* = (—4)%l52.
Then

T-v = (21) "% (u ), (1.6)
T = (2m)3% -9, (1.7)
i=1 (1.8)
Dgu(§) = £4(¢), (1.9)
zou(€) = (~De)*a(£)- (1.10)

The most important tool that is at our disposal is the Plancherel formula
lullzz = ||z (1.11)

and it is central to obtain the results of Chapter 2 and 3. Note that one .
proves (1.11) first for u € S and extends first the Fourier transform and then
(1.11) to L% _ :

There are a few other things left to mention. For an imbedding result
concerning Sobolev spaces and at a few other places it is useful to have the
following classical result in mind: ‘

. 1
——————dz < © C 1.12
Jmn T2 " (112)

if and only if s > n. Additionally, if (X, | -|lx) is 2 normed space and z € X

- then we denote the norm of z with respect to this normed space with |z|x,

i.e. we will explicitly write as index which space we mean. As an example
take a function u € L?, then we would write ||u|z2 to denote the L2-norm of
U, l.e.

futzs = ( j " Iu(x)lzdx)%

For an operator S : X — Y we similarily write |S|x_y to denote the
operator norm ’

|Sllx=y := sup ||Sz|y.

lzlx <1

1.2 Negative Definite Functions

We begin with defining what a negative definite function is. There are several
ways of doing this, the first one we present is to use positive definiteness in

6



the sense of Bochner, and the second one is the Lévy-Khinzchin representation
formula. References for this section are N. Jacob [15] and Chr. Berg and G.
Forst [2]. We first state the Theorem of Bochner. The notation M’ (R") is
used to denote the space of bounded positive measures.

Theorem 1.1. A function ¢ : R® — C 1s the Fourier transform of a measure
p € M (R™) with finite total mass ||u|| if and only if the following conditions
are satzsﬁed

1. ¢ s continuous
2. © is positive definite.

Then 1t follows i
©(0) = (0) = (2m) 77 |l

Bochner’s Theorem identifies the continuous positive definite functions
with Fourier transforms of bounded measures. A more technical definition
of positive definiteness is the following.

Definition 1.2. A function ¢ : R" — C is called positive definite if for any
choice of k € N and vectors £1,...,£* € R™ the matrix (¢(& ——.6‘))jl=1 s
positive Hermitian, i.e. for all Ay, ..., A\x € C we have

k
Y @@ - &YX =o.
=1 .

Using the definition of pos1t1ve definiteness one may now define negative '
definite functions:

Definition 1.3. A function 79 : R® — C is called negative definite if
P(0)=0 |
and
£ (Qﬂ)—%e—tw(ﬁ)

is positive definite for ¢ > 0.

n

Note that the factor (27)~2 in the above definition is not mandatory.
One may choose any positive value. The factor we chose is convenient when
we work with Fourier transforms, see e.g. the Plancherel’s formular (1.11).
Another way to look at negative definite functions, and one that does not
involve positive definiteness, is the Lévy-Khinchin representation.

7



Theorem i.4. A function ¢ : R® — C is continuous negative definite if and
only if there exists a constant ¢ = 0, a vector d € R™, a symmetric positive
semidefinite quadratic form q on R™ and a finite measure p on R™\{0} such

that
1— e—z‘(z,{) _ 7‘<$7§> 1+ |$|2u(d$)
o T fef) Tlalr M

WE) = +i((dE) T a(6) + j |

R

As we have now seen how positive and negative definite functions are con-
nected, we next want to investigate the relation of negative definite functions
and convolution semigroups of measures. For this purpose we start with the
definition of a convolution semigroup. We denote with €q the Dirac measure
with unit mass in 0. ' .

Definition 1.5. A family (u;):>0 of positive bounded measures on R™, i.e.

p € M (R™), with the properties
L pe(R™) = | €1 fort >0,
2. pg* s = Hgyps for t,s >0,
3. lim;_q us = €9 vaguely, |
is called a convolution semigroup on R™.

It turns out that there is a one-to-one correspondence between convolution
semigroups (u:):=0 on R™ and continuous negative definite functions. This
identification is very useful and we frequently make use of it in Chapter 2.

Theorem 1.6. If (ut)eso s a convolution semigroup on R™, then there exists
a uniquely determined continuous mnegative definite function 9 on R™ such
that

B(E) = (2m) Bem¥® (113)

fort > 0 and & € R™. Conversely, given a continuous negative definite
function ¢ on R™, (1.13) determines a convolution semigroup ()0 on R™.

We remark that in the following we only work with continuous negative
definite functions. Examples of continuous negative definite functions and
corresponding convolution semigroups are given at the end of this section.
In the next corollary we summarize some properties and estimates for con-
tinuous negative definite functions that are needed later on. '



Corollary 1.7. Let 9 : R® — C be a continuous nejetive definite function.
A. Then C

P(E) =9(=§) and  Rev(§) = ¥(0)
for all £ € R™.

~ B. There exists a constant C > 0 such that

(I < C(L+[¢)
for all £ e R™.

Next we give a generalized version of Peetre’s inequality for negative def-
inite functions.

Lemma 1.8. Let ¢ : R™ — C be a negative definite function. Then we have
for &, ne R™ ‘

1+ 9@l _ . NN
——1+|¢(n)|<2(1+l¢(€ i) | (1.14)

Corollary 1.9 additionally summarizes some things that are mostly needed

only in the proof of Theorem 1.10. We quote these results for the readers

convenience but also give references.

Corollary 1.9. A.(Corollary 7.6 in [2]) Let % be a negative definite function
on R™. The function £ — () —¥(0) is negative definite. .
B.(Corollary 7.7 in [2]) Let ¢ be a positive definite function on R™. The
function € — ©(0) — (&) is negative definite.

C.(Proposition 7.11 in [2]) A function ¢ : R® — C 1is negative definite if and
only if there exists a sequence (¥n)nen of functions ¢, : R® — C of the form

Yo =an + ‘Pn(o) = ¥n,

where an, = 0 and ¢, : R* — C is positive definite, such that lim, o ¥n ='1/1

pointwise on R™. ,
D.(Lemma 2.1.1 in [15]) For alla > 0 and t > 0 we have

1
< =a’t:

~ 3

e —1+at
' t

furthermore for z€ C, Rez < 0, we have

1€ <2

9



Up to this point we only considered functions ¥ : R® — C, £ — (&), but
what we are interested in are functions ¢ : R* x R™ — C, (z,£) = q(z,£),
which are continuous negative definite in the second component, i.e. £ —
g(z, €) is continuous negative definite for all z € R fixed. To simplify no-
tation and also to emphasize the connection to pseudodifferential operators,
we call such a function ¢ a continuous negative definite symbol.

‘Theorem 1.10. Let q : R® x R* — R, (z,¢) — q(z,€) be a continuous

negative definite symbol such that sup, gepn [q(z,€)| < C for C > 0. Then
there ezists a constant m > 0 such that for allz € R™, £ —» m —q(z,§) is
positive definite.

Proof. In the following let zo € R™ be fixed and assume that ¢(zo,0) = 0
If g(z0,0) # 0 we may use Corollary 1.9.A to be back in the previous case
again. For ¢ > 0 we consider the function

£ qu(20,€) 1=

| =

(]_ — e—tQ(Im,ﬁ))

which is by Corollary 1.9.B, see also the proof of Theorem 7.8 in [2], negative
definite. As q(zo,0) = 0 we have that e~*(=00 = 1 and £ > e~(%0%) is
positive definite. Then 1e~*(=04) is also positive d(eﬁmte and le~ta(=00) = 1
By Theorem 1.6 there ex1sts a, convolution semigroup (af® )t>o on R™ such
that

(2m)"3

o~ | =

e—tQ(onf) — (27].)—% J e__i<’”’5>af°‘(d:v),
ie.

1e“tq(ﬂﬂo:E) = J e~ X070 (dz).
t Rr .

Hence we get

[

tmo (Rn) — J e—i(z,O)afo (d.’II) —
R .

implying a;({0}) =0 as well as

1 1 1 , .
= (1 _ e—tq(ro,E)) = e ?e-th(onf) — J (1 — e—z<z,£)) af"(dx).
: R" .

10



Further we find with Corollary 1.9.D that

1 | * z.‘ e
la(zo, &) — q:(20,6)| = Z (ta(zo, &) — 1 +e ta °’€))' < EtQ(iEo,f)2
<l

as ¢ is uniformly bounded on R?". As this estimate does nelther depend on
the choice of g € R™, nor on £ € R, we get

lim sup |g(z,&) — q:(z,&)| = | (1.15)

t—0 5 £€Rm

An application of Corollary 1.9.C now gives us that

(20, &) = m;,zo + Prz0(0) — Przo(§) = Metze — Prz0(§)

where myz, = M, +¥2,(0) = 0 and @y 4, is co'ntinuous positive definite
for o € R™ fixed.

Let B(0) be a basis for the system of neighbourhoods of 0 in R™, and
choose for every V € B(0) a continuous positive definite function fy on R"

such that supp <« V, 0 < fy < 1 and fy(0) = 1. That such a function

exists is shown in [2], Chapter 2. By Bochner’s theorem, Theorem 1.1, there
exists a positive bounded measure oy on R" that is associated with fv, ie.

Gv(£) = (2m) 77 fy (€). As |
lov| = L" loy(dz) = jn e“i<°'m)av(dx) = (27r)%6x7(0) = fy(0) = 1.-

we find that oy has total mass 1. For t > 0 and V € B(0) we find

r

<UV: Qt> = qt (‘IO) f)UV(dg)
) JR™

_ J (1 - &) g2 (dz)o (de)

JR™

= | (1-Cnim@)d(d)

= | (- fi))ap ).

11



and it follows that

lim (av,qt(:co, )= lim Jn(lafv( )) a2 (dz)

VeB(0) VeB(0)

. = lim 1— fv(z))a™(dz
VeB(0) JR"\{O}( fV( )) : ( )

= J 1a;°(dz)
RM\{0}

= a;°(R"\{0})
= a;°(R").

" By (1.15) we know there exists for every € > 0 some ¢, > 0 such that for

z,6e R

9(z,6) — (@, ) <e

for all ¢ e]O,to['. We want to show that limyes){ov, q(zo,)) exists. First .
note that ‘

liminf (oy, ¢(zq,)) < limsup{oy, q¢(zo,)).
it v (@, ) < limoup (ov,g(zo, )

We find for zo € R™ fixed

lim sup {ov, g(zo, )) = lim sup{ov, q(z0, -) — ¢:(Zo, *) + q:(Z0, "))

VeB(0) VeB(0)
= lim sup{ov, g:(Zo, )>+hmsup<av,q(wo, )—qt(xo, o)
VeB(0) €B(0)

— a(R") + limsup J (0020,) = oo, ) ov(c6)

VeB(0)

< aP(R") + limsup j 10(20,€) — ae(z0,6)] o (d€)
VeB(0)

<a’R") +e,
recall oy (R") = 1. Similarily .

1‘1/121Bi(1()i)f<0V,Q($0, )y =a°(R") + l‘i}élsilgfj (a(z0,€) — Qt(xo,ﬁ))av(dﬁ) -

]R'n.

>a (Rn) — 11m1nfj lg(zo, &) — qi(z0, &)} Uv(dg)r

VeB(0)
= at(R") —

12



Hence for all 0 < ¢ < ¢y and all zp, & ¢ R? .
e < Tim in A Zo(TDN
e <liminf ((ov,a(=0,€)) — ai*(R™))

< lim sup (<0v, q(ﬂ?o, §)> —a;° (Rn)) '
VeB(0)

L E.

It follows that for every zo € R™

Mzy

Vlelg(lo)<<7v,‘q(x0,-)> -

exists with

— 13 o n

My, = %E’%at (R)

On the other hahd |

<UV7 q(xO) )> = J Q(xO) é.)O'V(dE),
]Rﬂ.

thus

Lﬂ q(zo,f)av(d§)’< CJ loy(dé) = C A‘

Rn

which follows from the uniform bouhdedness of our symbol. We conclude

= 1 I <
Mg vlelé?0)<a"’q(x°’ »<C

for all o € R™ proving the theorem. , d

Let us now turn our attention to another important topic, Bernstein
functions. These functions will be important in Chapter 3 when we discuss
the Yosida approximation. Similar to the case of negative definite functions,
there are several ways to look at Bernstein functions. We present two of
these here.

Definition 1.11. A C®-function f :]0,c0[— R is called a Bernstein functz’on
if and only if f > 0 and (—1)PdPf < 0 for all integers p > 1.

Theorem 1.12. A function f :]0, o[- R is a Bernstein function if and only
if there exist constants a,b = 0 and a positive measure u on )0, 00[ satisfying

: ds) < o
| Tiutan) <o

13



such that

[eo)

f(z) =a+ bz + J (1 —e™®)u(ds)

0
for x > 0. The triple (a, b, p) is uniquely determined by f.

Bernstein functions are a nice tool in the theory of negative definite func-
tions as they allow us to construct new negative definite functions out of
existing ones. In order to illustrate that in more detail, let us first look at
the following table that displays some continuous negative definite functions
¥ : R — C and the corresponding convolution semigroups ()0 on R. We

(Ht)ez0 Y:R—-C, & ()
e_atg() ) a' = 0 - - a
€at, a€ER ' ' iaf
1 z? . . .
(4nt)" e w dz £2
H+a?) e T
Z:):O e—ti_kgssk , $=0 . 1 — e~is€
X]o,oo[(IE)ﬁxt‘le‘“B dr - log(1 + €2) + farctan

Table 1.1: Negative Definite Functions and Convolution Semigroups

want to calculate one example explicitly. Let us takel'the third entry in Table
1.1, ie. let B '

zz N
pe(dz) = (4t)"7e~% dz,
and denote the density with

z2
gi(z) = (dnt) "2~ %
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-for z € R. Using Theorem 1.6 we reed to calculate the Fourier transform

B:(€) which is
(&) = (27 -3 “’é d =3 | e~ist () dz
i (€) = (2m) JR pe(dz) = (2m) L 9:(z)

. 2
= (271')_% J e"mf(47rt)'%e_ﬁ dz
R .
=3 e'—tf2
We find that the associated continuous negative definite function ¥ : R — C

is the function € — ¢2. Let us now present some examples of Bernstein
functions.

e z—z% e (0,1)

.. x»—»m,)\>0

e z— log(l+ z)

. zH\/Earctanv)‘;,)\}O.

With regard to Chapter 3 we are particularly interested in the BAernsteiri
function

T . '
— —  A>0. ' 1.16
v T (1.16)

In order to check that (1.16) is indeed a Bernstein function we use Theorem
1.12 with '.
TH+A—A 1 1
=) Al =—
(/\(z+)\ ) (,\ z+/\>
J —/\s —e (m+/\)s) dS
aQ

= J — e Ae M ds.
0 ,

For the derivatives of any Bernstein function f we have

lf(k)(i)KEéf(x), - (1.17)

where z > 0 and k € Ny. This estimate is needed in the proof of Theorem’
3.8 in Chapter 3.

The following result can be found in Chr. Berg and G. Forst [2], Remark
9.20-9.22, and also in N. Jacob [15], Lemma 3.9.9. It connects Bernstein
functions and continuous negative definite functions. »
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Theorem 1.13. Let f :]0,00[— R be a Bemstez’nvfunctz'on, and ¥ : R® >
C be a continuous negative definite function. Then fo1y : R* - R is a -
continuous negative definite function.

Let 7 : R* — C be a continuous negative definite function. Then by
Theorem 1.13 the function

Ap(€)
)\—-{-’QD—@ ) A > 0,

is also continuous negative definite. The function %” is nice as it is bounded
even if ¢ is unbounded, and one has the pointwise convergence

lim ¥}(6) = (6.

PR C, £

We will pick up this topic again in Chapter 3.

1.3 The Symbolic Calculus for Pseudodiffer-
- ential Operators '

~ We already mentioned in the introduction of this chapter that the material

covered in this section is not so much needed in Chapter 2, but is funda-
mental for Chapter 3. The symbolic calculus for negative definite symbols
was developed by W. Hoh in [10], another reference is N. Jacob [16]. Let us
first recall some basic things about pseudodifferential operators. Elementary

properties of Fourier transformation, compare (1.9), allow us to write for
ueS ' :

Dau(€) = €40(6).

As % =7, compare (1.8), this leads to

Dzu(e) = Diu(-o) = (2r) ¥ | oeODgulg)ct

= (2m)7% J <=0 £2q(¢) de.
Rn

Similaﬂy we find for the differential operator b(z, D) = 3.4 <m ba(z)D* the
following expression:

n

bz, Djula) = (2r) % [ 00, 1ale) e
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for u € S, where we call & the symbol of the operator b(z, D). One can
do pretty much the same calculations as above and finds that as b(z, D) is

" a linear partial differential operator, the symbol b is simply the polynomial

b(z, &) = Zlal <m 0a(T)E®. We are interested in studying properties of an
operator ¢(z, D) of the form

(@ D)ule) = (2m)°F | Otz ale)d
Rr

whereu € S and ¢ : R"xR"™ — C, £ — q(z, £) is a continuous negative definite
function for all z € R™ fixed. We call q(z, D) a pseudodifferential operator -
with negative definite symbol. One of the problems with pseudodifferential
operators that have variable coeflicients is that of finding inverses. Since
q(z,£)u(€) is no longer the Fourier transform of g(z, D)u, it turns out that
the operator we would get by using the symbol (q(:r,{:))_1 is not an exact
inverse of the operator q(z, D). This is one of the problems we will encounter .
in Section 1.4, when we discuss the Hille-Yosida theorem. .

Going back to our pseudodifferential operator ¢(z, D) with negative def-
inite symbol, it is clear that we need to restrict the class of allowed symbols
in order to develop a nice theory. In order to do so we have to impose
some conditions on the negative definite functions used to define our sym-
bol classes. Every continuous negative definite function has a Lévy-Khinchin
representation, compare Theorem 1.4, |

BE) = o+ i((d,E)) + q(€) + jw} (1-eeo - 228 Lol

~ which in case of a real-valued 7 can be written as

BO=cra)+ | (1eos(e, £)(ts)

where v(dz) = 1?2;'2 p(dz) is called the Lévy measure associated with 1. We

say that a continuous negative definite function 9 : R® — R belongs to the
class A if for all [ > 2 all absolute moments of the measure v exist, i.e.

M= J |z]'v(dz) < co. (1.18)
R™\{0}

In the formal definition of the symbol classes we also need the function p :
No — Ny, k — p(k) = k A 2. This function allows us later on to consider
asymptotic expansions of symbols. It will not be needed explicitly in any
calculation later on. Now we are ready to give the definition of a symbol
class. :
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Definition 1.14. A. Let m € R, ¥ € A and g be a C® coni@kx valued
function defined on R™ x R™. Then we say that ¢ is a symbol of order m,
belonging to S;”””, if for all o, B € Nj there are constants Cys such that

m—p(18])
2

0200a(2,6)| < Cap(1+¥(8))
for (z,£) e R™ x R™.

B. Let m € R, ¢ € A and suppose that ¢ is a C® complex-valued function
defined on R® x R™ such that

02004(z,6)| < a1+ 6)

holds for all o, 8 € N? and z,¢ € R™. Then we call g a symbol of class Sp¥.

m
2

Obviously we have S’;""" c 5’(',"”‘”. As we will soon see, the main difference

between symbols of class S7™¥ and Sp* ¥ is that in the latter case we do not
have any asymptotic expansion to work with. In other words, proofs that
use the asymptotic expansion of symbols, e.g. the Garding inequality, hold
only for symbols of class S},""p. The same will happen in Chapter 3, where
some results only hold if ¢ € S},""". We now show that the symbolic calculus
for negative definite symbols works similar to the classical one.

We begin with some further observations. The continuous negative defi-
nite function ¢ : R™ — R, £ — |£|2 belongs to the class A. This is easy to see .
as the Lévy measure associated with 1 through the Lévy-Khinchin formula

is 0. Now by definition a classical symbol g € ST, m € R, is a C*® function
. 1,0

q:R™ x R® — C such that

m-ig]
2208a(z,6)| < Cop (1 + €)™
Since for all m € R and £ € R™,

oy 18 m=p(|81)
A+1eP) 77 <(1+1EP) 7,

it follows that ST < SZ"’HZ c Sy ¥ In order to understand now how the
composition of two pseudodifferential operators with symbols of class Sm"p or

Sy ™% works and what the symbol of the composition looks like, we 1ntroduce
amphtudes, oscillatory integrals and some other related results.

Oscillatory integrals are integrals of functions which are normally not
absolutely integrable, but still exist as a certain limit. The functions we want
to define integrals for, are products of an oscillatory term and an amplitude
with a controlled growth at infinity. For precise statements we need the
notion of amplitudes. As a reference we give N. Jacob [16].
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Definition 1.15. For.m >0 and a C® complex-valued function o defined
on R™ x R™ we say that ¢ € A™, the space of amplitudes of order m, if

3880y, m)] < Cap (1+ 1) F (1+ o) ¥

for o, B € Nj.

Now we can give the definition of oscillatory integrals and an important
estimate for Chapter 3.

Theorem 1.16. Letae A™(R"xR") and xe S(R™ XR") such that x(0,0) = 1.
Then the limit :

limj f e ¥ Pa(y, n)x(ey, en) dy dn

e—0

'exzsts 18 independent of x, and 1s denoted by Os— _[Rn f e iu ”>a(y n)dydn.

One has the estimate

OS—J J e\ Mq(y, 1) dy dn. < Cnllallm+2ns1, (1.19)

where

lolle = maox sup [(1+1) 7% (1+10) 7 50faty.m)|.

Oscillatory integrals behave in some respect like absolutely convergent
integrals, we have for example that for a € A™(R" x R"?) '

Op OS—J J e Mgy, 1) dy dn
: " IRT (1.20)

= (-1 OS_J J e_i@"’}@f,‘a(y,n) dy dn.

Another result that will be useful in Chapter 3 is
Theorem 1.17. Ifa € A™(R"™ x R"), then for c € R™ fized

—

J e ¥ Pq(y, c) dy dn
R™ JR™

= (2m)™" OS_JJ" —icuim, (77 c)dydn
= a(0, ).
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Before we proceed let us remark that if ¢ € Sy ”w, m = 0, we also have
that g € A™. This follows with Corollary 1.7.B from

02004(2,6)| < Cap(1 +0(©)) % < Cop (1+ ) ¥,

m
2

e SV c S’{,n ¥ = A™. The next Theorem enables us to define a symbolic

calculus for pseudodifferential operators with negative definite symbols

Theorem 1.18. A. Let € A and g, € ST, gz € S5¥. Then the oscillatory
integrals

r

41(2,€) = (2m)™ Os— j UM (5 —g.€ =77 dy dn,

R™ JR™

and

~

QI#qZ(x> g) = (2,"_)—77- Os— J ‘e—i<y,n.>QI (zi E - 77)(12(17 -1 f) dy d77:
JR™ n .

define symbols ¢t € STV and qi#qs € STHY, where q* is the symbol of the
operator g} (z, D) and q1#q is the symbol of the operator q,(z, D) o ga(z, D).

B. Letpe A and g, € ST¥, gy € ST¥. Then

g} (z,6) = 1 (z,€) + Zag, 2;4(2,€) + ar, (2, 5)

7j=1

where ., € S™*¥ and

a#a(z,8) = q(,8)a0(z,8) + Zas,_ql 7,8) Dy; 02(2, €) + ¢ry (3, €)

=1

—2
where g,, € Sy,

It is important to point out that we have asymptotic expansions only up
to order 2, whereas in the classical calculus we have expansions modulo a
term of order —co! At the end of this section we want to give some results
that are well-known to hold for pseudodifferential operators with classical
symbols, but can also be extended to the symbolic calculus with negative
definite symbols.

Theorem 1.19. Ifge S3™¥ andu e S, the formula
0o, D)uta) = (2r)F | Otz 200
defines a function q(z,D)ue S.
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The anisotropic Sobolev spaces H™¥ that are used in the next Theorem
are more thoroughly explained in Chapter 3, but their definition can also be
found in the Index of Notation.

Theorem 1.20. Let g € S?'¢, m € R, then for every s € R there exists a
constant Cs such that q(z, D)u € H>Y for allue H™ Y with ‘

lg(z, D)u|

H"'l’ < Cs ”u”H‘H-m,xb .

1.4 Op_erator Semigrou‘ps

As we mentioned in the introduction, our aim is to develop a theory of
pseudodifferential operators with negative definite symbols that allows us to
construct stochastic processes and identify their properties. This is done us-
ing operator semigroups, and we will use this section to explain the theory in
more detail. Of importance, also for Chapter 3, is the Hille-Yosida theorem,
a cornerstone of the theory. As references we give A. Pazy [20] and also N.
Jacob [15]. Let us begin with some simple definitions.

Definition 1.21. Let X be a Banach space. A one parameter family (T}):>0
of bounded linear operators from X to X is a semigroup of bounded linear
operators on X if

1. Tp=id
2. Ty4s = Ty o Ty for every s,t = 0.
The semigroup (7}):so is called a contraction sémigroup if
mi<1
for all t>0. Itis Called uniformly continuous if
iy |T; —id | = 0, (121
and strongly continuous if for every z € X | |
lim ITyz — z|x = 0. o (1.22)

Instead of (1.22) we also write “lim; T3z = z strongly”. A central
notion in the theory of one parameter semigroups is that of the generator.
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Definition 1.22. Let (T});»0 be a one parameter semigroup of operators on
a Banach space (X,| -|) as defined above. The generator A of (T3)sso is
defined by the strong limit

Tix—zx

Az =lim
t—0 t

with domain

D(4) := {a: e X ; lim 12
t—0 t

T . .
exists as a strong hmlt} .

Let us further say that a linear bounded operator S : X — X, where X
is a Banach space of real-valued functions, is positivity preserving if x > 0
implies that Sz > 0. Now we are able to give the definition of a Feller

semigroup.

Definition 1.23. Let (T1)s=0 be a strongly continﬁous contraction semigroup
on (Co, | - |lo) that is positivity preserving, i.e. for u > 0, Tyu > 0. Then
(Ti)iso is called a Feller semigroup.

Next we summarize some results for operator semigroups that are needed
later on. - ’ :

Lemma 1.24. Let (T3):>0 be a strongly continuous semigroup on a Banach
space (X, ||) and denote by A its generator with domain D(A) < X.
A. Forue X andt >0 it follows that fot Tsuds € D(A) and

t
Tiu—u= AJ Tsuds.
0

B. For u € D(A) and t = 0 we have Tyu € D(A), i.e. D(A) is invariant
under Ty, and : o

d ,
aTtu = ATyu = T, Au.
C. Forue D(A) andt > 0 we always get

t ‘rt
Tiu—u= J ATuds = J T,Auds.

0 0

Definition 1.25. A linear operator A : D(A) — X, D(A4) c X, is called
dissipative, more precisely X-dissipative, if '

o Du—Auly > Aulx (1.23)
holds for all A > 0 and u € D(A). |
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As there is a one-to-one correspondence between Feller semigroups and
Feller processes, compare e.q. [17], we may now state the aim of our theory
more clearly: We want to construct Feller semigroups that are generated by
pseudodifferential operators (defined on nice domains) with negative definite
symbols. One then hopes to find connections between the symbol of the
pseudodifferential operator and the corresponding stochastic process. For
results in such a direction we refer to W. Hoh [8] and [9], and in particular
to R. Schilling [24]-[27]. There are a few problems left to solve though. The
most obvious one is how one actually constructs a Feller semigroup. One way
is to use the Hille-Yosida theorem. Another way is to use Chernoff’s theorem,
refer to Chapter 2 for details on the construction, and yet another way is
discussed at the end of Chapter 3. But let us stick with the classical Hille-
Yosida theorem for the moment, which we give here in a slightly alterated
version that is due to Lumer-Phillips.

 Theorem 1.26. A linear operator on a Banach space (X, |-|) is closable and

its closure A is the generator of a strongly continuous contraction semigroup
on X if and only if the following three conditions are satisfied

A. D(A) c X is dense
B. A is a dissipative operator
C. R(A— A) is dense in X for some A > 0.

~ The first thing that should be noted is that this Theorem does not give |
us a positivity preserving semigroup. The next theorem by Ph. Courrége [5]
solves this dilemma.

Theorem 1.27. Every pseudodifferential operator

~q(z, Dyu(z) = —(2m)"} f

R"

X 9q(z, £)(€) d,

v

with a continuous symbol —q such that £ — q(z,&) is negative definite for
any = € R™ satisfies the positive mazimum principle on Cy (R™).

Hence we find that —q(z, D) satisfies on Cg° the positive maximum pﬁn—
ciple. It follows that —q(x, D) is a dissipative operator on CF°, i.e. it satisfies A

|2+ q(z, D)ullw = Mulwo

for all A > 0 and u € C°, compare e.g. Th. Kurtz and St. Ethier [7]. It can
be shown that the resulting semigroup is then positivity preserving, compare
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Theorem 4.5.3.in-[15]. As CF° < Cy is dense, condition. A of Theorem 1.26
is fulfilled as well. Hence it remains to show Theorem .26.C. This condition
means that for every f from a dense subset of C, we need to find a u € CP
such that

- M+ q(z, D)u = f, (1;24)

i.e. we need to solve this equation. This in turn means to find the inverse
of the pseudodifferential operator A + ¢(x, D), which is even in the case of
classical symbols far from easy to do. The strategy is to solve (1.24) on -
a larger domain than Cg°, on which Theorem 1.26.A and Theorem 1.26.B
are still satisfied. We are not going into any more details here but simply
remark that the solution is to consider pseudodifferential operators on certain
scales of anisotropic Sobolev spaces H%¥ and to solve (1.24) there. At the
end of this first chapter we present the theorem that allows us to construct
Feller semigroups as long as the symbol of the generating pseudodifferential
operator satisfies certain conditions. As a reference we give W. Hoh [10].

Theorem 1.28. Let ¢ : R® — R be a continuous negative definite function

in the class A, and suppose in addition that (&) = colé|™ for some ¢y > 0,
7o > 0 and large |€|. If q is a negative definite symbol belonging to Sg'w and

satisfies q(z,€) = 6(1 + ¥(£)) for some:6 > 0 and all € € R, [¢| sufficiently
large, then —q(z, D) defined on CP is closable in Cy and its closure is a
generator of a Feller semigroup.
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Chapter 2

On Roth’s Method for
Pseudodifferential Operators

‘with Bounded Negative

Definite Symbols

We use the term “Roth’s method” to describe a procedure used by J. P. Roth
in [23] to construct Feller semigroups that are generated by second order el-
liptic linear partial differential operators with variable coefficients. His idea is
to “freeze” the coefficients and thus obtaining a family of constant coefficient

~ operators. Then he constructs a corresponding family of Feller semigroups,

and uses certain estimates to “glue” these Feller semigroups together to ob-
tain a Feller semigroup that is generated by the variable coefficient differential
operator. This idea will be explained in detail in Section 1.

Section 2 describes how “Roth’s method” works if we replace the differen-
tial operator with a pseudodifferential operator that has a negative definite
symbol. We pick up some ideas suggested by E. Popescu in {21], and need
to make some other modifications to Roth’s original concept as outlined
in Section 1 as well. The most notable one is the use of a theorem of P. R.
Chernoff [4] that allows us to construct strongly continuous contraction semi-.
groups and to identify their generators. We work with uniformly bounded
symbols, i.e. sup, ¢egn |9(z, &)} < C, C > 0, hence we want to mention that
a similar result can be achieved by defining the semigroup as (e79(®D)),q
where —q(z, D) is the generator of the semigroup. As the title of this chap-
ter suggests we emphasize here the way of construction, and not so much

~ the final result. Roth’s method is also interesting in view of Chapter 3. We

already remarked at the end of Section 1.2 that the Yosida approximation of
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an unbounded symbol is a bounded one and that we have pointwise conver-
gence of the Yosida approximation to the original symbol. This connection

‘is explored further in Chapter 3.

2.1 Differential Operators

This section is based on work done by J. P. Roth [23]. Having Section 2.2 in
mind, we point out which argumentations and ideas can not be carried over
to the case of pseudodifferential operators. Let us begin with a definition.

Definition 2.1. Let a linear partial differential operator of second order

L - E () E
u(:r) el al](z)axiaxj ( ) ( )axl ( )
be given with coefficients a;; : R* — R, z — a;;(z) for ¢,j = 1,. ,n, and a

vector b(z) = (b(z)),_, _ inR™ The operator L is called uniformly elliptic
if for all z,£ € R,

n

Z z)&zgl CO|£|2

holds with some constant ¢y > 0 independent of z.
The main result of this section is the following theorem.

Theorem 2.2. Define on C%(R™) a uniformly elliptic second order linear
partial differential operator :

i )+Zb(:1:

Assume in addition that a;;,b; € O’,? for all 1,7 = 1,...,n such that for a
matriz P of order n we have A(z) = PT(z)P(z). Then L exrtends to the
generator of a Feller semigroup (T})i=0 on Co(R™). This semigroup is given
for ue Cx(R™) and t = 0 by the strong limit

(2.1)

T =lm (S:)" (@), | (2.2)

m—a0 m

where

Syu(z) = 7% J eIy (z + t.b(:z) — 2VtP(z)€) d¢

Rn
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I D e .

We are going to look at the above theorem more closely and explain how
'J. P. Roth arrives at this result. Let us first discuss the operator S;. Let
y € R™ be fixed and consider the operator LY defined by

D(I¥) = D(L) |
Pule) = 3 syl gl + Yt )

i.e. L = L®. Note that we have constant coeflicients now as y € R” fixed. It

can be shown that LY extends to the generator of a Feller semigroup (RY)i>o0
defined by

R™

RVu(z) =7~ % J e u(z + tb(y) — 2VEP(y)E) dé. | (2.4)

Assume S; is the operator on C,(R") defined by
Swl(e) = Riu(z), (25)

ie.

Su(z) =72 J e 16 u(z + th(z) — 2VEP(z)€) dE. (2.6)

That S; is linear and positivity preserving is obvious. The contractivity of
S; follows from the fact that (RY):so is a Feller semigroup for all y € R™. It
remains to show that t — S;u is strongly continuous for every u € C. This

follows from
|Seu(z) — Ssu(z)| ‘
< J ) el 'u(:r + tb(z) — 2\/¥P(z‘)§) — u(z + sb(z) — 2\/§P(x)§)‘ d¢,

and hence
lim Sy — Syl = 0.
Withvsome effort it can further be shown that

ERtu(x) = R} L%u(z). _ (2.7)

We obviously have R§ = id, hence an application of the mean value theorem
gives us for 8 €]0, ¢[ that

Riu(z) — u(z) = tR3, L*u(z).
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It follows that

Sru(z) — u(z) Fu(z) — u(z) '
— - Lu(z) = . — Lu(z)

*u(z) — Lu(z) = (Ry —id ) Lu(z)
= 2 aule) (Sogute) - ajaxju@))

“ula)).

+§1 (:1:)(

As t — Sy is continuous for all v € Cw(R™) and S = id, we conclude that
for we D(L) = CE(R™)

4 ) -

lim Seu(z) — u(z) _ Lu(z) =0,
t—0 t
and hence
PI%St“_(Z)t:}i@_) e (2.8)

Let us give some remarks before proceeding: It is tempting to say now that -
with (2.8) we have proven that L is the generator of the semigroup (S;)io-

But we have not actually shown that (S;):»0 is a semigroup, and indeed it is

not. What we do know however is that (RY);>o as defined in (2.4) forms a
Feller semigroup with generator L¥ as given in (2.3). As S; = RY, the family
(St)is0 is much harder to handle. We have merely shown in (2.8) a certain
convergence behavior, which however falls in line nicely with Definition 1.22.
Our next aim is to show that the family (S;):;»o almost defines an operator
semigroup, i.e. it is a semigroup modulo some error term. Using a limiting
process we then show that the error term vanishes. First we need some
estimates for the operator S;. Those are rather technical and we refer to J.
P. Roth [23] for details. We mention once more that it is possible to derive
these estimates explicitly because we work with a very specific operator S;,
see (2.6). For a detailed discussion and a comparison of the operators we use
in Section 2.1 and Section 2.2, see the paragraph below (2.28).

From now on we use for f € CZ(R") the notation |f| to denote the semi-
norm

1f1:= 19 Floo + 1H () o

where

Vf(z) = (a%f(:v), . %f(@) .,

28



and

H(f)(z) = J(V£)(2),

the Jacobian of the gradient of f. In the following the constant K does not
depend on the z variable in the matrix A(z) or the vector b(z). '

Lemma 2.3. There ezists a constant K > 0 such that for allw e D(L) and
te[0,1],

1Sl < (1+ Kt)lul

For Lemma 2.3 and its proof we refer to Lemma 1 on p. 240 in J. P. Roth
[23].

Definition 2.4. For all subdivisions A = .(to =a<t1<...<tm=0")of
the interval [a, b] we denote with S the operator

Sa = Stp—tmor © Sty 0...05 ¢

—~tm—2

If A is a subdivision of [a, b] then o(A) := m denotes the number of divisions
of A.

Lemma- 2.5. There ezists a constant K > 0 such that for all u € D(I;),
t € [0,1] and all subdivisions A of [0,1],

|Saul S)Klul.
This follows immediately from Lemma 2.3 as [0,t] < [0, 1].

Lemma 2.6. There ezists a K > 0 such that for allu € D(L) and s,t->
s+t<1,

|Ss o Spu — Ssysufy, < Kt+/slul.

For details concerning this lemma and its proof we note that it corre-
sponds to Lemma. 3 on p. 242 in J. P. Roth [23].

Lemma 2.7. For allue D(L) te[0,1] and all subdivisions Al,Ag of [0,¢]
there exists a K > 0 such that ,

[Sasts — Saytleo < Klultn/max((0(A), 5 (A)]).
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The proof can be found on p. 244 in J. P. Roth [23] Let us now define
for t € [0,1] and n e N, '

OS_:__O
m

L
g 2

2

T = (Ssz)Tn =S 0S5t }2m—terms, (‘2.9)

i.e. we have a subdivision of the interval [0,t] into 2™-pieces, each with a
length of k. It follows from Lemma 2.7 that

t t
1T, cu — Tm+1.t@||oo < Klult\ﬁlax ({Q—m, ot })
t
= Klulty[ 5=

~ As a result we find that for u € D(L) as m — oo, T, yu converges umformly

for t € [0, 1] to an element of Cn(R™), which we denote by Tiu, i.e.

lim T u = Thu
m—Q0 )

as a strong limit. Furthermore [Ty, | < 1, see (2.9), and as D(L) = C2 < Cq
dense, this uniform convergence holds for all u € Co(R™).

We obtain a family (T3)teqo,1) of positivity preserving operators on Ce(R™)
with | T} < 1. As t — Syu is strongly continuous for all u € Cy, we also have
that ¢ — T, ;u is strongly continuous for all m € N and all u € C. Hence
t — Tif is strongly continuous on [0,1] for all u € Cy as a uniform limit of
continuous functions. Moreover, Tp = id as Sy = id.

We now show that (T})swfo,1) has the semigroup property. Let-s,t > 0
such that s + ¢t < 1. Then it follows from Lemma 2.7 that

[(Toms © To) = Tl < Klul (s + 04
| By taking the limit m — oo we get for u € D(L)
(Ts 0 Tt)” = Tt+s“
Hence T, o Ty = Tyys and one may extend the famlly (Tt)tepo,1) to a Feller

semigroup (7}):=o-

“We are left with identifying the generator (A, D(A)) of (Ti)iso. This
is worked out in detail by J. P. Roth [23], p. 245-248, and in order to
be selfcontained we outline the basic ideas. The followmg Lemmas will be
helpful.
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Lemma 2.8. Let (an)neny be a sequence such that o, € DR, e, = 0,
Jgn @n(z)dz = 1 and supp a, < B (O ) where B(0,r) is the open ball with
center 0 and radius . Then there exists a K > 0 such that for all t € [0, 1]
and for all w € D(B),

5.0+ 0n) — o) » ] < Kl

Lemma 2.9. There exists K > 0 such that for allt € [0, 1] and all subdivision
A €[0,t] and allu e D(B),

1Siu — Sau| < Ktv/tul.
Denote by (JZ, D(g)) the operator
D(A) = {ue CAR™); 3*f € Co(R™) for |o] < 2}
and

Au(z) = Lu(z)

with L as in (2.1). We may use D(A) as domain of each of the operators

LY, compare (2.3), by our ellipticity assumption. In addition for f € D(A) it
follows that

lim Stf- —f

t—0 |t

= 45, v | (2.10)

compare (2.8). For the following we need a “nice” subset of Cx(R™). For
A > 0let E) denote the set of all f € C(R™) such that there exists a sequence

(fa)nen, fn € D(A) Ifl < Xforall neN, and limpo0 | f = fale = 0. Now
set L

E:i=|JBEc Cw(R"). (2.11)

A>0

Using Lemma 2.9 and the definition of E) we find that for all A > O all
f € E, and all t € [0, 1] it holds

ITef = Seflle < KAtV

implying that for f € FE the two limits

lim = (Tt f— f)
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and

hm (S'tf f)

exist either both and they are equal, or both do not exist. But for fe D(A‘)
we know lim,,01S5,f — f = Af implying that the generator (A, D(A)) of
(T;)=0 is an extension of (;1, D(/T))

Denote by (,Z—, D(.Z")) the closure of (Z, D(E)) in C(R™). We want to
show that (4, D(A)) = (E", D(E“)) and we know already A~ < A. Hence
it remains to prove that A ¢ A~. Since D(A) is invariant under T3, i.e.
Tt(D(A)) < D(A) and since by Lemma 2.5 we have for all A > 0 and all
t € [0,1] that Ty(E)) < Ekn., it follows that E is invariant under T; too, i.e.
Ty(E) < E. Hence E n D(A) is invariant under (7}):»0 and it is also a dense
subset of C(R™). Hence, by Th. Kurtz and St. Ethier (7] Proposition 1.3.3
the space E n D(A) is a core for (A, D(A)) and it is sufficient to show that
A~ is an extension of A|g~p(a)- Using the mollifier results from 2.9 we find

for f € Exn D(A), A > 0, and (an)nen as in Lemma 2.9 that for all ¢ € [0, 1]
it holds _
‘ KX
1Se(f * an) — (Sef) * o, < —t

implying for all ¢t € [0,1] and A > 0

< —.
n -

“’]:'(St(f ran)— f *’an) - i(Stf —f)*an

@

For n — oo we find f + on — f and A(f * an) — Af, hence f € D(A")
and A- f=Af ie. A~ is an extension of A proving that A~ = A as closed
operators. ' '

It should be mentioned that our result in the next section reads basi-
cally the same as Theorem 2.2, but the construction of the Feller semigroup
through a strong limit is completely different. The estimates from Lemma
2.4 to Lemma. 2.7 are only possible because we work with very specific opera-

tors S; — still the general ideas of this section can also be apphed in Section
2.2. :

2.2 Pseudvodiﬁ'erential Operators

We point out that most of this section can also be found in our joint arti-
cle with N. Jacob [18]. Let us begin with considering a pseudodifferential
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operator

(o, D)ula) = ()% |

Rn

eX*9q(z, £)a(€) d¢

for u e S(R™). In order to make Roth’s method work for pseudodifferential
operators we need to assume that ¢ : R* x R* — R, (z,§) — ¢(z,§), is a
continuous function satisfying ' :

1. £ — g(z,€) is negative definite for all z € R" - (2.12)
2. sup |¢(z,8)| <C. ‘ - (213)
z,6eR" ' )

Now we are in the position to use Theorem 1.7 to find that there exists a
constant m > 0 that does not depend on z, £ € R™ such that

£ > m—q(z,6) | (2.14)

is positive definite for all z € R*. Then the Theorem of Bochner, Theorem
1.1, gives us then the existence of a measure v* € M’ (R") such that

vi§) =m—qz,€ (2.15)
for all z € R™. Using Theorem 1.1 again and Definition 1.3 we find
[v*] = (2m)%=(0) ,

= (2m)% (m — q(z,0)) B (2.16)

<@m)im.
Let us pbint out that the estimate in (2.16) holds uniformly for all z € R™.
This fact in turn follows from the uniform boundedness of the symbol g,
(2.13). T

Next we use Theorem 1.5.C and find that for zo € R™ fixed there exists a
convolution semigroup (u;°):=0 on R™ such that

pE(€) = (2m) " emtal=d),  (217)
Furthermore, a Feller semigroup (V;"°);>0 can be associated with the convo-

lution semigroup (uf°):>o using the identity

n

) - | ue-uerey @
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for u € Cy. For more details see Example 4.1.3 in [15]. On S we find for the
generator A of (V;*°),50, compare Example 4.1.12 in [15],

e 0q(zo, E)U(E) dE.  (2.19)

Au(z) = —q(zo, D)u(z) = —(27r)“‘72lf

n

Using the equality (2.15) we find

. <2w>-%J 50 g(z0, €)i(€) de
= —(2n)72 J e (g(zo, &) + m — m)a(€) d¢
RTL

= (2m)7 f 00 (m — q(zo,))(€) ¢ — (2m)7F f eeOmi(€)

R»

~ (2m)"3 f O 52 (€)a(¢) dé — mu(a)

= Flwra)(z) — mu(z)

= (2m)7% (V" » u)(z) — mu(z)

~ (23 j u(z — ) (dy) — mu(a).

wl

(2.20)

In particular it follows as u € § is bounded and by (2.16) that

=a(e0. D)uta)] < (@2r)F | fute — )l (ey) + miu(o)

(2m) ™% [ullo |27 + muiheo
(2m) "% o (2m) T + mfjufoo
2m||u|eo,

NN

i.e.
lg(zo, D)uleo < 2mfuflco. (221

Our calculation in (2.20) gives us that we may write the operator ¢(zo, D)
in the following form :

oo D)ule) = () F | ey —mule).  (22)
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Using this representation, one obtains from (2.21) that the operator g(zo, D)

maps Cy into Cy.
Let us now define on S the pseudodifferential operator

n

Wou(z) = (2%)“%J ei<$’5>e‘tQ(””’5)ﬁ(£) d¢.

First we note that

Vi¥u(z) Ln u(z — y)u;°(dy)

_ j (2n)? J £IOR(E) d€ 2 (dy)

_ (23 f J U0 170 (dy) (E) de
R‘n n

- (m)‘fj e““”’of e 2 (dy) B(E) €

R" R"

- f 50 B ()a(€) a6

]R'n.
=(2w)_gJ ei(x.f)e—tq(zo',ﬁ)ﬁ(g) d¢, -

and observe for u € S,

Wiu(z) = Viu(z).

- (2.24)

(2.23)

(2.25)

When we described Roth’s method in Section 1 we made a similar observation
in (2.5), though compared to our situation now it was far more obvious. The
fact that our operators involve Fourier transforms makes them harder to

handle. Next let o € R™ be fixed and we find

Vi u(z)| =

J u(z — y)p° (dy)| < [uf oo
R» '

_and thus

sup |Viu(z)| < [[ufw.
zeR™ -

We use identity (2.25) to conclude for ue S

[Wiuleo = sup [Wiu(z)| = sup [Viu(z)| < |ule.
. zeR" : zeR" ] .
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Equations (2.26), (2.27) and (2.28) outline our strategy from now on: First
we freeze the coefficients at o € R™ and show an estimate for the operator
V;* that is independent of zo. Then we use (2.25) to arrive at the same
estimate also for the operator W;. With regard to Section 2.1 one could say
that the operator V;*° here is the operator R;° there, and the same holds also
for the operators W; and S, respectively. Let us explore this connection in
more detail. Recall that the operator LY was defined as

Date) = 3 ety P )Z()ax,()

compare (2.4). Then

LD¥u(z) = ﬁ(—x) = (2%)_%J @O Ly (€) dé.
]R'II.

As

Zvu(e) = i a,J(y)f[ ] 6+ Zb y)f[
 = z 0uy (W)EEA(E) — i Z b (W)EAE)

= (&, AW ~ i), ) l6),

o|©

it follows that

Lhu(z) = (2m)~% j <0y, €1i(E) d,
. R
where

Uy, &) = &, A(y)&) —ib(y), &)-

Let (p})i>0 be the corresponding convolution semigroup for y € R™ fixed:
AH(E) = (am) Fe 0

and define the Feller semigrdup (RY)i=0 by

R@u(x>=J u<x—z)p$<dz>=(2vr>-’%j 0107 (€) de
R® : JRn
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compare calculation (2.24). Set 7yu(z) := u(z -+ y), and note
Rfu(z) — (Qﬂ)—% J ei<r.€)6—t<€,A(y)f>ei<tb(y),E)a(6) d¢
= (2r)72 f ei<x»€>e—t(£,A(y)E>W(§) d¢.

The associated convolution semigroup (7)o with the negative definite func-
tion £ — |¢|? is the Brownian semigroup. As by assumption A(y) = P(y)T P(y),
we then get :

JR®
~@m) 3| Km0 P(y)TP(y)oTtb —u(E) de
JR®

= (2#)"% ei<r,£>e—th(y)Elzw(§) de
JR"?

n-

= | @O (e mu(E) de

JR"®
(\

= | () (= - POV (2)

— | u(e + th(y) - P)z) (4mt) 222 L 4

= (4nt)"2 Lﬂ u(z + tb(y) — 2vtP(y)€)e ¥ (2v/E)" de

=772 J | e'lﬂzu(z + th(y) — 2VtP(y)E).

Now we can make our above statement precise. Given the specific symbol [
we arrive at exactly the same operator RY as in Section 2.1. For this case the
result at the end of this section reads the same as the result in Section 2.1,
we just use a different technique. Of course our result extends this result, as
we admit different symbols than [. :

We proceed with showing that the operator Wt maps C’oo into Cp. We will
give two different proofs, the second one was contributed by R. L. Schilling
28]

For the first proof we need to make one additional assumptlon on the
symbol g:

|9ga(2,8)| < Ca (2.29)
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-~ forall ¢ € N}, |a| € 2 and z,£ € R", i.e. for Lemma 2.10 condition (2.29)

replaces (2.13).

Lemma 2.10. Let g satisfy (2.12) and (2.29). Then for u € S the function
Wiu belongs to Co.

~ Proof. Since 4 € S the properties of T q(z, &) imply that z — Wiu(z) is

continuous. In order to prove that Wiu(z) — 0 as |z| — oo we observe

|z*Wu(z) = (27r)"3‘f jz|?eX=De =05 (€) d¢

R

=—(2m)"3 J AE (ei<r,€>) e M@OG(€) dé

_ _(27r);g J PR Ag (e—tq(i,ﬁ)g(g)) dé.

-

From (2.29) and as the Schwartz space is closed under multiplication by
polynomials, we deduce that A¢(e~*(=9%(¢)) is bounded by an L'-function
which is independent of z. It follows that T

|lz|*Wyu(z)| < C
for C' > 0 and all z € R™ and thus

lim ||z|Wiu(z)| = 0.
|z| e’ .
=

Together with (2.28) we now know that W; : § — Cy is a contraction ,
Le. [Wiufw < [lu|w forue S. As S © Cy dense we may extend the operator
W; and denote its extension again by W; : C, — Co, |[Wilcwoce < 1.

As mentioned before, the proof we now present was contributed by R.
L. Schilling [28]. Additional to assumptions (2.12) and (2.13) we need here
further. '

lim sup|a(z,0) — a(z,m)| = 0. (2.30)

—0 zeRn
Let us also introduce another definition , ,
Definition 2.11. A family (u%),ern of measures u® € M2 (R™) is called tight
if :
lim sup p*(B5(0)) = 0.

R—w reR?
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Lemma 2.12. Let ¢ satisfy (2.12), (2.13) and (2.30). Ifzp e R*, t > 0

and 1f° € ML(R") such that pi°(€) = (2r) 2e %08 then the family of
measures (14;°)zoern 1S tight.

Proof. Let f € C°(R™) such that

Ljel<1

f(z) =<2 ,whereze[0,1] for 1 < |z| <2
0 ,|z|>2,

then fi(z) := f(%) satisfies

1, z| <k
fe(z) =<z ,where z€[0,1] for k < |z]| < 2k
0 ,|z| > 2k.

Further we get, compare Lemma 3.1.9.B in [15], that fk(ﬁ) = k"f(k&). We
calculate that '

Ln Fr(y)us*(dy) = J | (2})-% J vei<x,e>1’c;(§)'d§ uf°(d§)

]Rn n
- 2m? j j 50 20 (dy) T (€) e
~ (2m)"3 J j e=1<= 6> 4 (dy) Fa(€) dé
n JRn E

- j B(6Tae) de.
]Rn
It follows that

4 (Ban(0) > | oo ()

=J 12 (—€) Fa(€) de
o

N

_ (2m)3 J R F(Re)etae0-9 dg
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where we used the change-of-variable theorem in the last step. Further we
have

®) = | 1) = | e

(271_)— a:o( ) e—tq(:z:o,O)’
as well as

1= £(0) = F{FI(0) |
= (2m)"% J ) eONf(nydn (2.32)

- nyt | Fen.
Using the equalities (2.31) and (2.32), and Corollary 1.6.D we find
ui° (Bi(0)) = i (R") — 17 (Bar(0))
< e — anyE | Faperalo®) oy
. R" ’

r

= (2m)7F | fn)e to=0 dn - (2W)_%J f(n)e'“’(@"%) dn
) JR™ R

r

— @)t [ fn) (e - etalzomB)

LY

<t |f n)l etatzo (1 — ¢HalemmR)-a0)) |
JRn '

<)t [ [F| |1 - e ol B o) ay

< (27r)‘7tJRn Foo||o (z0,—2) - aan,0)] cn “

As Lemma 1.5.B gives us that |g(z, §)| < C(1+]¢|?) we may apply Lebesgue’s
theorem on dominated convergence to find using (2.30)

o (= —5) ~a=0)

q (z —%).— q(z,O)' fin o

hm sup uf (Bsg(0)) < (2m)~%¢ hm sup J ) F)

—®0 peRn R—00 zeRn

< (27T)_%tJ ‘
Rn
= 0.

f(n)

hm sup
—0 zeR™
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Lemma 2.13. Let W; be the pseudodifferential operator as defined in (2.23),
where q satisfies (2.12), (2.13) and (2.30). Then W; maps Co(R™) into itself,
i.e. Wi Co(R™) — Co(R™).

Proof. From Theorem 4.5.7.B in [15] we know that
W, : CR(R™) - C(R")
is well defined. As C§° < Cy dense and (2.28) holds we may extend this
operator to
Wi : Co(R™) — C(R™).
It remains to show that
lim Wyu(z) = 0
|z|—c0
for u € Cp. Let € > 0,u € Co(R™) and K > 0 such that |u(z)| < ¢ for all
|z| > K. Then we have for all |z| > 2K, '

W) = |, ute - spuites) |

| we-vu@+| s
B (z) Bg(z) : '
< |ulleo 1§ (Bre(2)) + € uf (B (z))

< fullo (B (0)) +2.
The last inequality follows because for |z| > 2K we have Bk (z) < B%(0).
Moreover, u? is a sub-probability measure and hence uf(BZ(c)) < 1. We
get

Welo)] < s sup 13 (B (0) + .
T€eR™ .
Applying Lemma 2.12 we finally conclude that

lIm [Wiu(z)| <e
|z|—c0 . .

for all £ > 0. . - 0

Let us now continue to construct the Feller semigroup, either assuming -

. Lemma 2.10 or Lemma 2.13. The additional restriction imposed on the

symbol by both Lemma is not needed in the following proofs. As far as
similarities to Section 1 are concerned, this is the point where we have to go -
a different way. We simply do not have the estimates from Lemma 2.5 to
Lemma 2.7 at our disposal. A different way was proposed by E. Popescu in
[21] who used a theorem of P: R. Chernoff to construct the Feller semigroup.
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Theorem 2.14. Let (St)iz0 be a family of strongly continuous linear con-
tractions on a Banach space (X, | - |) with So = id. Assume that the strong
deriwative Sy is densely defined and suppose that

lim ” (S%)mu — T =0 _ (2.33)

m—Q0

holds for allue X. Then (T})is0 is a strongly continuous contraction semi-
group on X and its generator A extends Sy. Moreover the strong convergence
of (SL)m to T; is uniform for t in compact intervals.

This theorem basically gives us the existence of the limit similar to (2.2),
where S; should again be replaced by W;. Chernoff’s theorem also allows us
to identify the generator. Hence it is left to check the conditions of Theorem
2.14. In the following we need Lemma 2.15 and Lemma 2.16, as reference
compare A. Pazy [20]. ' '

Lemma 2.15. Let (S, D(S)) and (T, D(T)) be linear and bounded genera-

' tors’ of strongly continuous contraction semigroups (¢°),  and (&), on

t=0

the Banach space (X, || - ||) such that D(S) = D(T') = X. Then
"etS__etT" <t|S—T| B
forallt = 0.

Lemma 2.16. Let T be a linear and bounded operator on the Banach space
(X, || - ) such that |T| < 1. Then

|e"™ "z — T"z| < V/n|Tz ~ g

foralln =1 and for allz e X .

In order to use Chernoff’s theorem we need to show that

(7))

is a Cauchy-sequence for every u € Cy. This is done in the following Propo-
sition where we use some ideas of E. Popescu [21].

Proposition 2.17. Let g(z, &) ‘s‘atisfy conditions (2.12), (2.13), (2.29) and
consider the operators (W;, Co(R™)) and (Vi°, Co(R™)) as introduced above.
Then ' '

gm0 e

holds for u € Cx(R™) uniformly for t in compact intervals.
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Proof. Let u € Cx(R™) and ¢ > 0. We note that -

m l !
|(72) "= ()] |
< H (I/VL)mu _ "Wy ~id)u‘ + Hem(w;%_id)u - et(Wf _ld)un'
™ [e]
+ ” (W%)lu — el(W% —id)u“

By definition Wj is obviously linear and as shown in (2.28) we have |Wiullo <
|ullo- Applying Lemma 2.16 to A= W+,n=m, and to A = We,n =1, we
arrive at

" (We)"u-— em(W%_id)u” <+/m “Wiu - u“ , (2.35)
m [e0) m o0 .
and
,’ (Wt)lu ~ el(W?—id)u” <Vl NWgu - u“ (2.36)
respectwely For zo € R™ fixed we further get using (2.21) and Lemma 1.24.A
“that .
VEu(z) - u(z){ - J Vo (xo, D)u(z)ds| .
- 2.37)
< L vl latzo, Dyl (287
m
t .
<—=0Co ”Ulloo,
m
and

-~

Veous) (@) < & Colull

respectively. It follows that

‘W%u(x) — u(z‘)‘ -

Fu(e) - ()| < 1 O uuuw,
and

Wyu(a) - u(m)] 2 C lul
with some C > 0. Taking the supremum over z € R™ we find

Weu-u] < % Clulo and  |Wyu—uf_ ’; C Julw.
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Using the estimates in (2.35) and (2.36) we conclude

m t —i . t
lim ” (W) u- e™ W 1d)u” < lim — C|jufeo =0,
m—0 m o m—00 m

as well as

—i t .
tim [(Wy)'u - ™1 7u] < lim == C Jule =0
¢ 0 - 4/] ‘

-0 \/_

uniformly for ¢ in compact intervals. It remains to show that

. —i Wi —id
l—c0 ) @©
holds uniformly for ¢ in compact intervals. Now we temporarily set r :=

L s:= % and apply Lemma 2.15 to get

W —id Wy —id
t m"r t T
e ® u—e 1 u
[o0)
th—id tW,—id
=le"" r u—=e" s u
[e 0]
. . 2.38
: W, —id W, —id ( )
<t sup - vl [uleo
_ fvllo<1 r o ©
We —id W% —id
— m
=t sup TV — V| [t]-
vl m l ©

In order to handle

(e}

we want to use the fact that (Vi)is0, zo '€ R, is a uniformly continuous
semigroup on Ce(R™). This follows from Theorem 1.2 in A. Pazy [20]. Writ-
ing for a moment V; = e~%(%0.D) we find following A. Pazy [20] that

[V —id| = D) —id | < t|g(zo, D) =Pl (2.39)
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and from this derive for fixed o € R™

v _id Vo —id
—25—(z) = ———v(z)

e
—~lct

t .
i
VEq(zo, D)v(z)ds — % J VIq(zo, D)u(z)ds

0

I
|3
I

(Vi°q(zo, D)u(z) — g(zo, D)v(z)) ds

N
-3
o S>|

t
[

* ij (Vig(zo, D)o() ~ a(z0, DYu(z)) ds

0

t
l

%LH(VSTCD —id )q(z0, D)v(z) ds + éL-(V:o —id)q(zo, D)v(z) ds

<—Tt§i :z:oe ( "on id ” HQ(:E07 D)’U”w )
0<s<— )
It e e
+57 sup (I~ id] Ja(ao, Dvl)
0<s<T
< sup (s la(eo, D) =2 g, D)) ol
OSSS—

+ Sup( la(zo, D)|| 14PN |g(zo, D)) [o]o

a:oe
0<3ST

t t t | t
< = CF 5% ol + 7 CF €1 o]
It follows that

t t
lim (;n,— cs gm0 [vlleo + 7 ca giCo Ilvllw) =0.

m—Q0
>
Now : ,
Vi —id Ve —id Vi —id o vPe—id
™ T ol — ™ T
By — —|| = sup |[———v(z) — -———?——v(x)
m 1 e z

t
< m Co emCo Ve + 5 C'0 et 1]

45



and thus

Vit —id Ve —id
lim sup |[—= v— — vf =0
T soek™ | A
uniformly for ¢ in compact 1ntervais Since
Wi —id Wg ~id Vz id V%x —id
2r—(z) - ——v(z)| = —_t_-—v(z) - (=)
m l m l
we find
) w t — id W: —id
lim — v — U
m—Q0 -~ = .
- m l ()
Vi —id VE —id
< hmQo sup |—"5—v — v
'rln_’m zoER™ H 7 ©
= 0.
Remembering (2.38) we finally get that
. lim H m(W: -—1d) l(W%—id)u“_
7;1—»@
W, —id W,id
R s t—%
=limfe = u—e T w
m—0
|- : ©
W —id W: —id
<t hm sup = v— ———| |u|w
oo Ivlo<t m 1 ©
W t - id W3 —id :
<t sup lim o — ———|  [ufw
Plo<tZ' ] 1 w
=0
uniformly for ¢ in compact intervals. ' D

Observe that in Proposmon 2.17 the most difficult part is the estimate
for the middle term

| nem(w_y%—id)u B el(W%—id)u

[o o]
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Theorem 2.18. Let ¢(z,&) satisfy conditions (2.12), (2.13), (2.29) and de-
fine on S(R™) the operator —q(z, D) by

oo Dpula) = ~(20) % [ oo o0 2a)
Then —q(z, D) extends to the generator (A, Co(R™)) of a strongly continuous
contraction semigroup (T;)i=0 on Co(R™).

Proof. Let (Wi, Co(R™)) and (V/*,Co(R™)) denote the pseudodifferential

operators as defined in (2.23) and (2.18). We want to apply Theorem 2.14
to the family (W;);>0 and hence need to show that (W;):»o is a family of
strongly continuous linear contractions on Ce(R™) with Wy = id. Further it

is needed that ((W t )mu> converges to some limit Tiu. Since
m meN .

Wou(z) = (2m)"3 f o060 05(€) dg — F1[i](z) = u(z),
it follows that W, = id. The contraction property of ('Wt)tzo was proved in
(2.28) and Proposition 2.17, in particular (2.34), gives us the existence of a
strong limit. Hence for t > 0 we may define on C(R™) the operator
T = lim (Wi)mu.
m—so0 m

It remains to show that the family (W;):so is strongly continuous, i.e. we
need to check ’

1i¥1t1 [Wiw — Wiullo =0 (2.41)
and
ligl [Wiu — Wiu|o = 0. (2.42) -

For s < t and fixed xb € R™ we have
IVEou — ViPul, = [V ViZu — Vioul,,

= IV (ViZu — vl < [Vl IViZu — vl

leo
< "‘/tz—osu - u”oo .
As calculated in (2.37) we have that

ViZsu(z) — u(z)| < (¢ — ) Collulw
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which yields

lim sup sup |V%u(z) — u(z)| = lim sup |[V;®u — ull, =0
3Tt zoeR™ zeR™ STt zoeR™

implying

lim sup [|V;®u — Vu|, = 0.
stt zoeR™

Observing that
[Wiu(z) — Weu(z)| = [Viu(z) — Viu(z)]
we may deduce

li%r”Wtu - Wsu|lw =0

which proves (2.41). In order to prove (2.42) note that for s >t we have

Vi = VEoul, = [V Vome = Viulg, < IV Vi — ulg,

and we may argue as above. Finally, before we can apply Theorem 2.14 we
have to show that the strong derivative W] is densely defined. We show that
A =W} = —q(z, D), i.e. that

W —u —0

[o0]

lim
t—0

+ q(z, D)u

Since (V;*);» is a uniformly continuous semigroup we find using (2.39)

VtIOU(xZ —u(z) + q(z0, D)u(z)

- % L V7 q(zo, D)u(z) ds — g(zo, D)u(z) |

- % L (V= — id)q(zo, D)u(z) ds

1 .
<Zt( sup [V - id]) la(ao, D)ul
ZoER™ s
0<s<t

=(sup_s la(zo, D)| el g(ao, Dyul

ToER™
0<s<t

<t C2 €% |uoo.
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This implies

Vitu(z) — u(z)

lim sup sup + q(io,D)u(x) =0.

t—0 5 eRn zeRn

Since
W, - VE - ‘ |
tU(fL') 'U:(I) + q(a:,D)u(:v) —_ |t 'u,(:E) + q(z,D)u(m) < th etCo “u“w
t u(z)
we get
Wi —
lim | 2 "% 4 q(z,D)u| =0
.t—>0 ©
proving the theorem. | a

It is still left to show that the semigroup is positivity preserving. This
follows easily by the same argumentation that was given in Section 1.4, for
details we refer to Theorem 4.5.3 in [15]. Hence we may finally note

Corollary 2.19. In the situation of Theorem 2.18 the semigroup (Tt)eso 1S
a Feller semigroup.

Proof. Note that A = —q(z, D) satisfies on S(R™) < C(R™) the positive
maximum principle, compare Ph. Courrége [5]. Furthermore we have shown
that (A, ) (R”)) extends the generator of a strongly continuous contraction
semigroup (T¢)¢»0. Thus we may use Theorem 3.1 and get that R(A — A) =
Co(R™) for some A > 0. As S(R™) < Cx(R™) is dense this allows us to apply
Theorem 1.26 and we conclude that —g(z, D) extends to the generator of a
Feller semigroup (7T}):»0 on Coo(R™). , - O
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Chapter 3

The Yosida Approximation of
Pseudodifferential Operators

We explained in Section 1.4 how_to construct Feller semigroups that have as
generator a pseudodifferential operator with negative definite symbol. The
main tool we used was the Hille-Yosida theorem, Theorem 1.26, which gives

‘us the existence of a Feller semigroup under certain conditions. If one is

interested in details of the construction, one needs to examine the proof of
Theorem 1.26 more closely. This is discussed in greater detail in Section 3.1.
In Section 3.2 we then give an approximation procedure for Feller semigroups
by using the Yosida approximation of negative definite symbols. An impor-
tant role in this chapter plays the Hille-Yosida theorem, which we use here
in a different version than in Section 1.4. In Section 3.2 we heavily rely upon
the symbolic calculus we introduced in Section 1.3.

3.1 The Hille-Yosida construction

In this section we will talk about the Hille-Yosida construction of a Feller
semigroup. Note that Theorem 1.26 gives us first of all an existence result of a
strongly continuous contraction semigroup if the operator A satisfies certain
conditions. For further properties of the semigroup we will now look at the
proof of Theorem 1.26. As a reference for this section we give N. Jacob [15].
Let us begin with stating the Hille-Yosida theorem in two different version,
of which the second one is identical to Theorem 1.26. Both versions are
due to Lumer-Philips. The connection between both versions is explained
afterwards. '

Theorem 3.1. A linear operator (A, D(A)) on a Banach space (X 1) s
the generator of a strongly continuous contraction semigroup (T;)iz0 on X if
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ar:d only if the following three conditions hold
A. D(A) c X is dense,
B. A 1s a dissipative operator,
C. R(v—A) =X for some v > 0.

Theorem 3.2. 4 linear operator (A, D(A)) on a Banach space (X, ||-|x) is
closable and its closure A is the generator of a strongly continuous contraction
semigroup (Tt)sz0 on X if and only if the following three conditions hold

A. D(A) c X is dense,
B. A s a dissipative operator,
C. R(v— A) is dense in X for some v > 0.

Using the next Lemma it is easy to show that Theorem 3.2 follows from

.Theorem 3.1.

Lemma 3.3. Let A be a densely. defined linear dissz’pative‘ operator on a.
Banach space (X, |- |x). Then A is closable and R(v — A) = R(v — A) for
allv > 0.

Assume that the linear operator A is closable and satisfies the conditions

of Theorem 3.2. It follows that as D(A) — X is dense we also have that

D(A) c X is dense. Further, as A is dissipative, also A is dissipative. In
order to see this, recall the definition of dissipativity, i.e. we have to show

|vu — Au| , = v]ulx. . _ (3.1)

forallv > 0 and u € D(A). Now by definition we have Au = Au for u € D(A).
As D(A) = D(A) dense we find for every u € D(A) and approximating
sequence (Un)nen © D(A) such that limp e |tn —uly = 0 and Au, —
Au. But this proves (3.1). And with Lemma 3.3 we find that R(v — A) =
R(v—A) = X, ie. A satisfies all conditions from Theorem 3.1. With a
similar argument one can also prove the other direction, i.e. if A is the -
generator of a strongly continuous contraction sem1group, then A satisfies
the conditions of Theorem 3.2.

We are going to work with Theorem 3.1 from now on, but note that for the
actual construction of a Feller semigroup with pseudodifferential operators
we prefer Theorem 3.2, compare also Section 1.4. The reason is that our
operators g(z, D) are not closed on their domain, but closable. In order to
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understand how the proof of Theorem 3.1 works, we need the notion of the
Yosida approximation of A. Let us denote by p(A) the resolvent set of an
operator A which consists of all v € C such that v — A is surjective and has
a continuous inverse (v — A)~! defined on R(v — A) = X.

Theorem 3.4. Let A be a closed and dissipative opémtor which 1s densely
defined on a Banach space (X, | - |x). We assume that (0,00) < p(A). The
Yosida approximation of A is defined for v > 0 by

A, =vAv - A)™. (3.2)
It has the following properties

A. For all v > 0 the operator A, is bounded on X and the semigroup
(etA") 50 s a strongly continuous contraction semigroup.

B. For all v, u > 0 we have
AA, =AA,. (3.3)

C. For ue D(A) it follows that -

lir{.lo |Ayu — Aull, = 0. (3.4)

Let us make a few remarks. The first is that although the operator
A need not to be bounded, the operator A, as defined in (3.2) always is.

Secondly, it is nice to have commutativity as given in (3.3). Note that if

Q1,92 € Sy ¥ are two pseudodifferential operators with variable coefficients
then qi(z, D) o go(z, D) # g2(z, D) o gq1(z, D), i.e. q and go in general do
not commutate. This makes life in Theorem 3.13 much harder. Thirdly,
and this is most important, we have a strong convergence of A,u to Au for
all u € D(A), i.e. we may approximate the unbounded operator A by the
bounded one A, .

Now we are ready to give some of the details of the proof of Theorem 3.1.
Assume that the conditions of Theorem 3.1 hold. It follows from Lemma
4.1.26 and Lemma 4.1.27 in [15] that A satisfies the assumption of Theorem
3.4. Hence we may define the Yosida approximation

A, = vA(v — A)7 (3.5)
of A, and use Theorem 3.4.A to write

Ty = e, | (3.6)
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where (T} )0 denotes the strongly continuous contraction semigroup on X

- generated by A,. Note that it is a simple calculation to check that for every

bounded linear operator A : X — X, a uniformly continuous semigroup is
defined by (e‘A) and its generator is A. We may apply Lemma 2.15 to
find

t=0
1T u = Tfulx < tlAvu— Auully (3.7)
forallue X, t >0 and v, u > 0. As Theorem 3.4.C tells us that

Jimy 4,0 — Au] =0, 3

p—

we find that the strong limit

lim 7Y =: Tiu (3.9)

v—Q0

exists for all u € D(A). That (T3):»o is a strongly continuous contraction

semigroup with generator A can then be shown with some effort. We stop
here because only this first part of the proof is of interest to us.

Let us now look at the situation we are facing. We want to construct a
strongly continuous contraction semigroup using a pseudodifferential opera-
tor '

o(z, DYu(z) = (2m)" J £ D(z, £Y(E) de,

Wl

that is defined on a suitable domain, and where g € Sy’ id compare Defini-
tion 1.15. Right.now it is less important to remember what difficulties one
encounters when trying to show that the operator gq(z, D) satisfies the con-
ditions of Theorem 3.2, but to understand how the Yosida approximation is
used in this case. Recalling our previous calculations, (3.2)-(3.9), we may
first of all define :

-1
—qu(z, D) = —vq(z, D) (v + q(z, D)) , (3.10)
the Yosida approximation of the operator —g(z, D). Then one may write
T;u — e—tq,,(a:,D),
and as in (3.9) we find that

Ty := lim TVu = lim e t#@D)y
v— v—
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exists. One could remark now that we have a nice approximation of the
semigroup (7;):»0 by the semigroup (7} )i>o which in turn uses the Yosida
approximation ¢,(z, D) of —q(z, D). But the problem here is to actually
calculate g,(z, D)! ‘As (3.10) shows this involves finding the inverse of v +

q(z, D) which is hard to do in our case as we have variable coefﬁments One
important fact to notice is

a,(z, D) # ¢ (z, D)

where
(@, Dyu(z) = (2m)"% J e Oug(z, (v +a(5,6) AL, (311)

i.e. g (z, D) is not equal to the pseudodifferential operator with symbol
vq(z, &)
v+q(z,§)

The idea that we pursue in Section 2 is to use the operator ¢*)(z, D) as a
replacement of the operator ¢,(z, D) and to see whether we still have

vq(z,6) (v + q(z,8)) " =

Tou = lim e79 @Dy, (3.12)

V—0

for suitable u. If this works out it would confirm our intuition, as

q(u)(m’ 6) — VQ(III, 6)

YY) q(z,§)

for v — oo.

3.2 Approximation of Feller Semigroups

Before we proceed with explaining how the operator ¢*)(z, D) can be used to
approximate the Feller semigroup (73);s0, compare (3.10)—(3.12) for a short
outline of the idea, we introduce some new function spaces. We will mainly
work on scales of anisotropic Sobolev spaces and then use an 1mbedd1ng
theorem to extend our results to Cy. If we set

() = (1+9(9)* - (3.13)

where s € R and ¢ : R® — R is a continuous negative definite function, then
we call

HY = Y (R") = {ue S'(R"); | A2, < 0} (3.14)
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the anisotropic Sobolev space of order s € R associated with 1. In Theorem
1.20 we already gave one example that makes use of these spaces, i. e. The-
orem 1.20 tells us that the operator ¢(z, D) : H**™¥ — H%¥ is continuous
for all s € R, if ¢ € S§"¥. We will prove a result similar to that one later
on. It is also important to have estimate (1.19) in mind. Let us now explain

how the imbedding H*¥ — C, works. For convenience we quote Theorem
3.10.12 in [15]. In Theorem 3.5 the space B;'w is used which is defined as

By := BY(R") = {ue S'(R"); | X4, < o} (3.15)

Theorem 3.5. Let ¢ : R® — C be a continuous negative definite function
and suppose that for some m € Ny we have

(L+]-P?
(L+ ()

such that 1 < p < o and % + % = 1. Then it follows that B;"ﬁ c CT and the
estimate : '

L9

sup |0%u(z)| < cfufgow
zeR" P

holds for all o € N3, |a| <m, and ue BSY.

It is obvious that H*¥ = B;”p. Hence for our purposes set p = 2 and m =
0 in Theorem 3.5. Then ¢ = 2 and one needs to check that (1 + |¥(:)])"2 €
L?. To make this work we need that (&) > c|¢|” for some ¢ > 0, 7 > 0 and

sufficiently large |¢|. It follows that for 7s > n and constants ¢, ¢j, co > 0 we
find '

1 ? | 1
Lf? ((1 + W(f)lﬁ) %= J]R" (1 + (O a

1 1
< —‘_sd X A —_——Td
<J ETER €<C°Ln T ae %

and thus (1 + [(-)|)"% € L2 This allows us to apply Theorem 3.5 to find
that H¥¥ < Cy with [[u|w < c|ulgsv for u € H¥. But this gives us the
imbedding H*¥ <> Cy. Let us also remark that H%Y is dense in Cy, as S is
dense in H*¥ as well as in Cq,.

As we have just'seen, the function 3 has to satisfy some additional growth

condition for the imbedding result H5¥ < Cy. On the other hand, 9 has
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to be of class A, comparé Section 1.3, to be an admissible function for the
definition of a symbol class. It turns out that we need for our results a few
other conditions as well. Hence from now on let 9 : R* — R be a continuous
negative definite function such that

A. 1 is of class A, \ . (3.16)
B. 9(€) = ¢|¢]” for all ¢ > 0, 7 > 0 and sufficiently large |£]. (3.17)

Let g € Sg‘"” for m € R, where 7 satisfies conditions A and B above, such
that

C. g¢(z,8) = KAX™(€) (3.18)

for K > 0 and all :r,.f € R". Let us also observe
_ , v

¥ .= 3.19
q . (3.19)
and note that
2
_gw=_7 : 3.20
q—q s | (3.20)

If we denote by 1 the function (z, E) — 1,thenas 1 e S9¥ and 1 = (V+q)ﬁq

it follows that ;- € S7™. Hence we conclude that ¢*) € S as well as -
q-q" e Sy ' |

Now we are in a position to state our aim more clearly. We consider the
operators q(z, D) and ¢™)(z, D) on the Banach spaces H*¥, s € R, and want
to prove a convergence result similar to (3.4), i.e. for ue H™¥

i W) -
Vh_rilouq (z, D)u q(:v,D)ul 0.

Hesw

This is done in Theorem 3.9 which relies heavily on Theorem 3.8. For The-
orem 3.8 it is vital to have an L*-estimate for pseudodifferential operators
which is given in Theorem 3.7. There are several L*-estimates for pseudo-
differential operators in the literature, see e.g. [12], [3], but the one we choose
is taken from [13] by I. L. Hwang. We made this choice because the esti-
mate for the pseudodifferential operator involves the estimate of its symbol,
see Definition 1.14. We also present the proof here, as we use a different
normalization of the Fourier transform and it is the constant in the estimate -
that we are interested in. But we want to point out that Theorem 3.7 is not
our result, and can be found in [13]. For the proof of Theorem 3.7 we need
Lemma 3.6
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Lemma 3.6. If v — U(v) is a semilinear form on S satisfying |U(v)] <
Cllv|z2, then there exists a unique u € L? such that U(v) = (u,v)r2 for
veS, and one has |luf;2 < C.

This Lemma is a variant of the Riesz representation theorem.

Theorem 3.7. Let g € C**(R") be such that
1620%(,€)| < Cag
for all o, B € {0,1}*. Then the pseudodifferential operator q(z, D) satisfies

la(z, Dyulz < 273 mdn Y (Dca,,uuuy. (3.21)

a,B,7€{0,1}"

Proof. We set

n
Xe(z) == =0T [(1 +izy) ™
j=1

and for u € § we define

(o, ) = J xe(z — y)uly) dy.

R™ '

Further denote by 7,u the function ryu(z) = u(y ——:r) We want to show that
¥ € L?(R?") and hence calculate

o= | | 190 e e

“LL

_ J ,. J ,, J O Eule - 2) b

— (27)3 J ) L (2m) "2~ H=O J

— (2m)3 J n Lﬂ IF [xo - o] (=€) dwdé = JJ |
= J JN |7 [ + 7] (€)° dédz = '(27r)%Jn J ) BE7E)| dedr
-0 || momer i - @n? | | he@nu@P deas

2
dz de

2
dz d¢

2

dz d¢

e @Oy (2)pu(2) dz

n

(% » ) (~6)| dmd
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=00 @ (| me-ore)

-t ] | |5

—| d¢;
izl 1+ ’ij

= (2m) 2" fulZ,

1
Wl - g

Hence ¥ € L2(R?") with & norm equal to 237 4™||u/| ;2. For the moment define

9(z,&) =02 (e7*9U(g, ),

as R
1

1+ g

and calculate

loiza= | f s(oPdsc = | | oz (OU(w, &) dzd

roop 2
=[] Je (o[ e monate-vntay)| asae
JR™ JR™ R™ <
o . o 2
= [ [ ][ oot - st a| asas
JR™ JR™ |JR™
r n 9 .
= f e74e=28) (32x0(2)) ou(z) d2| dzdé
R™ JR™ |JR™

= | | leniF[@ex) - mau) (<) dodg

(- ) (-0 awe= | |

7@ ] @ @

2
dzdg¢ = (2m)3 J J

—

2 x0(€)Tu(€)

FEro()Fue)| dode

n 2 1
= (2m) 2 ||u|? f 00 ——| d§;
A e
= (QW)%WTLQ_'O‘INUH%Z,
as for h(z) = o we have W'(z) = —ry +n)2, hence |W'(z)| = 7y and

thus

3

[ Weras = a1
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Therefore 0% (e7*¢¥(z,§)) € L2(R™) with a norm equal to 2:1‘__:1317'(%71"’11,”1,2.
Further we note that

<ﬁ(1 + aeﬂ) U(z,§) = <ﬁ(1 + 55,»)) J ) Xe(z —y)uly)dy

j=1 Jj=1

= | [la+ 55,-)) f eV Ox0(z — y)u(y) dy
j=1 R™ i

(1+ @) (€549 xo(z — v)uly) dy

I
s

JR™

r

.
I
-

(14, (1 + i@~ ) ™9) xo(a — y)uly) dy

<
Il
N

I
,:jz

JR®

r

I
—1°

(1 +i(z; ~y) e O T (1 +i(z; - 9y) " ul) dy
JR™ 4 j=1

= (2m) 2 eX=0q(¢).

1
—

Next we define for v € S the function

n

B(z,6) = (2m)1 J alE = n)3(n) di.

In a similar Way as before we get

||<I>||iz=j f B(z, &) dode

r r

2

<2w)*%f 10— m)d(m) dn| dzde

JR™ JR

r r

2
dz dé

(W?j e () r3(C) dC

. JR™ JR™

= |F [xo0 - 7e9] (z)|* dz dé
JR™ JR™

-ei] |,

(%+70) (@) dzaz
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F [>’<3 73] (@) dmd

e[ o
[

j [xo(z)i(E - 2)|? do dé

] |
LR

n

- J,,'XO( )7z [dzd§

JR"
ol ([ )P d»s) dz = |’U||L2J bo(2)[? d

JR"™

— o,

* dpde

Xo\Z ( TEU SU)

R™

which means that ® e L?(R*") with a norm equal to 78 7 | L2
Furthermore,

(e

zm'“L [1(1-2.) (€572) xole — n)otn) dn

Xo(f 77)”(77)
- (2m)1 j H(m n))e—“ﬁmﬂm ) o) dn

.u':z

) iL‘ §) (ﬁ( - a:z:j)> (271-)_% J . X—:z:(§ - 7))77(77) d77

J=1
(

I
—

(1 a —Z(E -nz) _ (—1)(51 — nl)e—i(é—n,rr))

b::

SCOR IR O
= e X=0y(z).

Now we define

(a5, D) o= o) F | | 0q(a, 9atnto) an ek,
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and get by using the previous calculations and estimates

(o Dju) = (2% | | c@0(a,aleynle) doc

n

— (27r)"3 J ) J ] ei<z'5>q($, §)e‘i<i’5> <H (1 + 651.)> (\If(z, f))

Jj=1

i) (ﬁ (1- azj)> (3(x,€)) dzde
= (21)"3 f J q(z, g)e—«w ()ﬁ(l +a£,.)> (¥(z,9))
- (ﬂ (1- azj)> (2(=,8)) dz d¢
“et[ [ (H (1+3, ) (2,€))e"=OU(z, )
| (H (1 -azj)) (B(z,€)) dode |
ot o] [ eresona (fl0-a)

pefo,1}n j=1

 (@(z,6)) dod | | ~_
-t ¥ | | z(affJ(w,E)e“i(”’o‘I’(x,E)) Be, ) dode

B.ye{0,1}~
et Y (—1)""() (e, 0 (OU(w, )
a,B,7¢{0,1}" : ¢/ Jrn Jrn . i ,
- B(z,6) dzdg |
-t Y ()| | B o)
a,B,7€{0,1}» JR"® JR" .

-1 (=Y (z, €)) dz dé.
We want to apply Lemma 3.6, hence we need to show that

|(a(z, D)u, v)| < Cyllulzz v 2.
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<emt T e (7)] | ol

a,B,76{0,1}*

-|or*® (e—i<”£>\ll(z,§))[ dz d¢
<@t ¥ (D Cos LA J 8@ 6]l (0@, 9)| dode

alﬁ”ye{oil}n

28q(z, 6)1

<emt ) (D Capl@lzz |77 (7= T)

a,8,7¢{0,1}"
SCORIEDY (7) Coprm? ol 122" i ]
aBrer \F
-3 3 : |
_oign Y (7> Coglulzz o]z
‘ a,8,ve{0,1}™ “ '

Using Theorem 3.6 we conclude that

loe, Dylzs < 2wt T (V) Coslulin

o,B,7e{0,1}"
0o

From now on we will only be interested in symbols g € 56”"” where m > 0,
as for m < 0 the symbol ¢ and its derivatives are bounded, and there are
several ways to construct a corresponding Feller semigroup, conipa,re e.g.
Chapter 2. ' ‘

Theorem 3.8. Let 9 be a continuous negative definite function satisfying
(3.16) and (3.17). Moreover assume q € Sg*¥, m > 0, satisfying (3.18) is

‘glven.

A. For every s € R there exists a constant C, independent of v such that
(q — q("))(z, D)ue H*V for all ue H*™3¥ with

1
[(a=4*) (5 D)l up < 5 Colulamesny,

i.e. the operator (¢ — ¢™) (z, D) maps the space H*™**¥ continuously into
the space HSY.
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B. For every s € R there ezists a constant C; independent of v such that
(g — ") (z, D)ue H* for allu e H™ ¥ with

(g - a“)(z, D)y

i.e. the operator (q - q(”))(x, D) maps the space H™ ¥ cdntinuoﬁsly into
the space HY.

< C.;”“”H"‘*’Sv“’v

Heb

Proof. Let k € {m,2m} and define
rr(u) P AS)“ﬁ# (q — q(u)) #}\‘N—Sﬂl’.
As r® e SO¥ we may use Theorem 3.7 to find

[(@~a®) (2, D)ul oy = [X*¥F [(a = ¢*) (z, D)u]] .,
= |F[»**(D) (¢ - ¢*) (=, D] . = [X*¥(D) (¢ = ¢") (=, D),
= [X*¥(D) (¢ — ¢¥) (z, D)A™">¥(D)X***¥(D)u] ,
< 2¥(D) (g~ ™) (2, DAY (D) oy o X% (D)
= [, D)o |7 [X*¥(D)ul]| 2 = [ (2, D) 1

= llr(”)(x D)”LL.Lz [ grmetsie -

‘X‘“"”u

|- 7Y P 1

Note that for part A of the theorem we take x = 2m and for part B we take
k = m. Now it remains to show that

1
I, Dyul,, < 2Culu

In principle this is just an application of Theorem 3.7, but we are partlcularly
interested in the —-decay of the constant

C, = 2-ingin Z (7) Cap
' ape(oyn N

compare (3.21). In the.above expression we want to explicitly calculate the
constant C,p. Going back to Theorem 3.7, we find that this constant is

derived by estimating 9207r(*)(z,£), hence this is the expression we want to

investigate more thoroughly!
Let us begin with writing

T(U) — )\SJP# (q _ q(U)) #)\—n—s,w
—_ )\s,‘lﬁ# ((q _ q(l/)) #/\—n—s,d)) -
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Note that with Theorem 1.17
((a=a*) #r™¥) (,¢)
R n )

= (2m) AT (E) OS—J

J e (g — ¢ (z,& —n) dydn
R n

=A% (E) (g — ¢¥) (2, £ - 0)
= (¢ - qV) (z,) A% (¢),

~ as well as for q1, ¢, € SO

207 (Q1#Q2) (z,6) |
= (2m)™" OS—J J e~ (8;”5? q1(z, € —n)ga(z = y,£)) dydn
n JrRn ) .

= (2m)™" OS—J ) J ) e~y Z <§1>a;a (3) 63‘167‘?1@(9:,5 ) |

_ A<
02 P gz —y, &) dy dn |

=2, 2 (51 ) (31) ((5315§1q1) # (63‘“*(3?‘"1@)) (z,£).

fisfoai<a

Hence we get

02081, )|

=y ()

| ((63 ) # (g o= ) #A'““?"”)) @o‘

- B\ [«
) ﬁlZSﬂ alzsa <:Bl> (al)

(= (040 (o0 50 dya

05| [ o (amapraesie )

Set

coelyym) = (000X (E =) (00 (4 - 4*) (6 -9, OA(9))
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we want to check that ¢, ¢(y,7) is an amplitude and use the estimate (1.19)
with the oscillatory integral above. We need the estimate

|0 0ncz.¢(y, )]

02, ((a::l BN E—n))

(COICE
. (6;5,“51 axa—ala?—ﬁl(q — q(")) (z — y; §)A‘k—s’w (5)) )‘

B

<oy

Grarer g (g —q¥) (3 -y, OV (E)|.
It is easy to see that |
a8 3 08 e (€ — m)| < GBI (€ — ) < OV (E—n). (3.22)

For the second factor we get

a;—'h az'-‘& a:—al 5?-& (q _ q(u)) (:I: — v, 5))\_"‘_8’¢ (£)|
o ((‘73_7‘ 00 (- V) (3 - 2,6)) /\"5_8"”(6)) ‘ :
(B~ ﬂl) '
<
ﬁ2é§;‘ﬁl ( b

e ) -]

BN (E)|

Again we look at both factors and get that

laé’“‘“'w(s)l < CAT B () < CAT(g), (3.23)
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as well as

G P (= ) (2 - ,6)

1
— |7 f8-81 ya—a1 58—B1—P2 _ 2
0y "0y "0y 0; q(z —y,¢) e
-1 —01 ya—ay /B_ﬁl—ﬁ2 ﬂ3
~grataey (70T (@ ver)
Ba<p—L1—P2

. —B1—B2-B3 1
(af V+Q(x—y,£)>

3 B—P—F2\(a—a N I
2, 2. ( Bs )( o )az o

B3<f—P1—P2 a2<a—a1

| ((0::2 otz —67) (oot f>)> l

©neranrani 5 CRTCE)

Ba<PB—P1—P2 ca<a—ay 525661 T2<7—1

) (’)’ ;2’)’1> afyyzaf’zaggag:tq(x —, 5)2‘

) a'Y—’h—7255—51—52aa—al—azaﬁ—ﬂl—ﬁz—ﬁs ’
-‘y 7 : ¢ v+q(z—y,¢)
We get,
et -ved <coemie (a2

as q> € Sg™ for g € Sy"¥. Now define a function f® :]0,c0[— R as

1
v+z'

f(z) =

and note that f) is a Bernstein function, compare Section 1.2. Thus we
may use the estimate (1.17) to find

@< L@ (325
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Then for ¥ = (y —m — 72,6 — 61 — o, — oy — ap, B — B1 — f2) € N§* and
k = 2m we get, using (1.4), (3.18) and (3.25), | .

Y—v1—2 J0—81—82 Ja—a1—az H8—P1—PF2
gy it g =on f

v+q(z —y,§)‘

19 |
<Cy Z )(f(”))m (a(z - y,é'))‘

Z H‘@A'(?B‘ac‘aD’q z—v, E)l

A+ +Aj=y-n—712 I=1
Bi+.. +B, =§—01—02
Cl+...+Cj=a——a1—a2
Dy1+..Dj=F—p1—P2—83

|9 j] 1
<C — -
| 4; 9z -,y v+q(z—-y¢)

Z H IaA’aB‘ﬁc‘ﬁD‘q z—vy, f)’ (3.26)

A+ +Aj=y—11—72 I=1

Bi+.. +BJ d—01—02

C1+...+C'j=a—a1—az .
Dsy+...Dj=B—p1—P2—PB3

19| o 63‘ 60'65‘q(z -4,6)

. 1 | ’i
§C4;]!V+q(m—y,£) 3 n a(z ~v,6)

A+ +4=1—n—72 I=l
B +...+Bj=5—51 —d&2
- Cy +...+Cj =a—-0a1—02
D1+..Dj=B~p1—P2—B3

A | (3.27)
19 ;
.1 Cep ™ ,¢(§) |
< I— . UBDA TT\S)
<G .ZJ'U o Z H KA (€ - (3.28) |
7=l Art.tdj=1-n-72 I=1
Bi+...+Bj=0—61—02 :
Cl+...+Cj=a—a1_a2
. D1+..Dj=p—p1—B2—P3
1 _ |
AL ' , - (3.29)

For k = m we need to estimate the above différently. The estimate from
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(3.27) to (3.28) changes to

19 | j ]a;'a,fftafta?‘q(z - 1,6

, 1
04;]’!V+q(w—y,f) 3

A+ +Aj=r-n-712 =l - a(z = y,¢)
Bi+.. +B =6— 51 8o
Ci+.. +C,=a ar1—ag
D1+..Dj=B—P1—P2—P3

||

, 1 7 Cpp, ™ (€)
<C4j;]!q(x—y,§) 3 H Kxm¥(¢

A1+...+Aj=’y—'71—'72 {=1

By +...+BJ' =§—8,—67
Cr1+..+Cj=a—a1—02
D1+...Dj=p—-p1—P2—P3

- S CIAT™Y(g). 530
3.30

For k = 2m we collect the estimates (3.22), (3.23), (3.24), (3.26), and using ..
Peetre’s inequality (1.14), we finally end up with

| =

. [5393%,5 (v, 77)' < ZCg \¥¥ (€ - n))\‘zm—s,¢(§)A2m,¢(§)

14
- %cﬁ XV (E = m)A—s, P(§)
<SG BN () (A (€)

_ Ly ol )
14

< %cs 2 (1 + |n|2)IEL (1+ |y|2)L5’l

Then following Theorem 1.16 we get

”l Cre |“ |s|+2n+1 = ly +5|I<I|l.ﬁ‘?|-{2n+l yi]léllk?"

Bl _lsl
(T+ )77 1+ )% 8 caely,n)

< max
|y+61<|s|+2n+1 v, nelR"

< —C'7.
14

Ce 9lsl|
v
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By the estimate (1.19) this yields

8°‘r9ﬁr(”> x,é)l

< LEZG)C)er
< T % (5)(&)ostleaelines

LB ar<a

1

Os— J J e~ e, ¢(y,n) dy dn
n Rﬂ

A\

/
af-

Now we use this result together with (3.21), and conclude for the operator
r®)(z, D) that ' :

, 1,
O I D W (LA

a,B,ve{0,1}»
1
< = Cy ||lu| 2.
V .
This proves part A of the Theorem. For part B, take k = m and collect the
estimates (3.22), (3.23), (3.24), (3.30), and use Peetre’s inequality (1.14) to
find .
|0 05ca.6(y, M| < CEAP (€ = mA™™ S H(E)ATH (A (€)
= CeA*P(E = n)A™*¥(¢)
< Cl 9lsl ,\lsl,«#(n)‘,\s,w@) A—SY €)
= Céngl)\ISI,zl’(n) ‘ :
tsl lsl
< Cg2P (14 In|®) 2 (1 +y)) ?

Following Theorem 1.16 we get

o . :
. 2\ 77 D12y T2 0
lewellisrsoner = max,  sup |(1+nl")"% (L4 1ol) ™% Ofdncac(v, )
< max up | Cq 2|5||
ly+0[<s|+2n+1y, neRn
<Oy
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Estimate (1.19) then yields

<3 5 (D)) ctecdiveann

fisfou<a
< 1

Now we use this result together with (3.21), and conclude for the operator

r)(z, D) that

af-
P, Dyl <2t (7)ot
a,B,v€{0,1}™ @

< Cf |lul| g2
This concludes part B of the theorem. | O

Theorem 3.9. Let 1 be'a continuous negative definite function satisfying
(3.16) and (3.17). Moreover assume q € S§*%, m > 0, satisfying (3.18) is
given. Then for every s€ R and u € H™ Y we have

lim |g(z, D)u — ¢%)( ) (z, D)u = 0.

Vv—0

Ho

Proof. First note that since C¢° is dense in H™™¥ as well as in H mtad,
and H?™rs¥ < ™% we find for every u € H™*¥ a sequence (u,)uen,
u, € H*™+¥ such that u, — u in H™"*¥ as y — co0. Then by Theorem
3.8.A we get for ue H™¥ and se R
||q (z, D)u — q(")(z D) u| o = " (q q(")) (, D)u|
= (2~ 4*) (& D)(u = s + 1) | 1o
II (2-4Y) @ Dyl gy + (0 = ¢) (2, D)~ )]

C "uu"HzmH'ﬁ + " (q q(u)) (z, D)(u - uu)l

Hs¥

H

//\

How -

Asu e H™ and u, € H™¥ we ﬁnd that u — u, € H™*¥. Thus it
follows from Thereom 3.8.B that

”q(z, D)u — ¢™)(z, D)u[

H“l’ O ”Uu|[H2m+.s¢ +. C/”U u“”Hm-i-azp,
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where C' is independent of v. Taking first the limit v — co we find

limsup |¢(z, D)u — ¢¥(z, D) VU g < Ol — 1| grmts.

v—a0

He¥
For yu — oo we conclude now

lim sup |q(z, D)u — ¢“)(z, D)ullH o S hm C'|u — upl grm+sw =0,

v—0

implying
= 0.

Jim la(z, D) ~ ¢ (z, D)u s

O

Using Theorem 3.8 we may now prove how to approximate an existing
Feller semigroup that is generated by a pseudodifferential operator —q(z, D).
We emphasize that we do not show the existence of the Feller semigroup. This
has to be shown first, see Section 1.4. We give further remarks concerning
this topic at the end of this section. The following theorem can be found in

N. Jacob [16].

Theorem 3.10. Let ¢ be a continuous negative definite function satisfying -
(3.16), (3.17) as well as hmm_,Qo P(€) = co. Moreover assume q € SP¥,
m > 0, satisfying (3.18) is given and real-valued. Then for s > —m we have

Kz

— lelzmess < lla(z, Dyulfrew + Cllul Hmeh

for allu e H™ ¥,

Lemma 3.11. Let ¢ be a continuous negative deﬁmte function satisfying
(3.16) and (3.17). Moreover assume q € Sm"", m > 0, satisfying (3.18) is
gwen. Then for alll> 1 and k € N with | — km < 0 we have for u € H"Y

lul s < Ci|g(e, D)*ul, + Cillua.

Proof. Asl—km > —km we may use Theorem 3.10 to find

K2 9 k
T”U"Hhxﬁ ||q z, D) u]lH, —kmy T C'1||UHH1_, " (3.31)

< Hq(x, D)kunL2 + C’1 || 2 Cid

As 2/ —1 > 0 and hmlﬂ_,o“ﬁ(f) = o0, we may find for € > 0 and large €]
that
NI (E) < eX(€) + Cle),
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which leads to

g = | VHOROR e < | (@910 +06) ) <

]Rn
= elulzny + Ce)ulz

Then it follows from (3.31) that

KZ

2
T”““?{w < |a(z, D)*ul;, + CrelulFns + CLC(E)|ull3:,

and thus, as -}—i—z- — Che > 0,

[ K? -1 2 [ K*? -1
bl < (5 - 0i¢) " late, D)l + (5 - i)~ Gio@mit:

Hence we have
lulzew < Cila(z, DY*ul . + Cilulza,
-1 —1 1
where C; = (£° — C1£) 72 and C) = (£2C16) 72 (C1C(¢))?. - O
The next Theorem is the main result of this chapter. . |

Theorem 3.12. Let 9 be a continuous negative definite function satisfying
(3.16) and (3.17). Moreover assume q € Sp¥, m > 0, satisfying (3.18) is
giwen. Assume also that the pseudodifferential operator —q(z, D) extends to
the generator of a Feller semigroup. Then if s > max {2, -;—}, k € N such that
2m +-s — km < 0 we have for u € HF™¥ .

v 1
He‘t"( @Dy — e"t""("D)uH < =C|u| grrem,v.
2o} v

Proof. Let us note that by our assumptions it follows from Theorem 3.5 that
H®¥ < Cy and further we have H*™¥ < H*¥. For u € H*¥ we may use
Lemma 1.24 ‘

e~ (=), _ e—tq(z.mu”
' [e o} .

N

rt i -

“ e—ta®(z,D) H
Jo Lo—L®
rt .

C1 |(¢™(z, D) - q(z, D)) e ¢-9@D)y| dr.

|(¢*)(z, D) - g(=, D)) ™=l dr

N

J0
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Then, using Theorem 3.9 and Lemma 3.12, we find
[(¢¥(z, D) - q(=, D)) =P
<G (¢"(z, D) — qlz, D)) =Pl
1
<Ola et P
< 20,0, (Jote, Do 1P, 4 JeereD] )
10,0, (Je-t-raeP, Dy, + oMo )
As H™¥ < [2 it follows |
% CoCs (e~ ¢9EP) g (g, DYeul|, + [e~C 9Dy )

- :
< 50203 ne_(t—r)Q(x’D) “Lz_,Lz (IIQ($7D)k“||L2 + ||u||L2)
1
< -1;020304 (Ja(z, D)‘kU"Lz + [lufL2)
< 20l s
v

Finally, we conclude

Corollary 3.13. In the situation of Theorem 3.12 we get for u € Cy

~lim “e“tq(")(z'D)u — e“t"("D)u“ = 0.
v—00 [oo]

Proof. As H*™¥ < C,, dense, we find for every u € Co 8 sequence (u,)en © H km,p
such that lim, e [|u — uulle = 0. Then it follows from Theorem 3.12 '

—tad ) (z _
et @D)y, _ , tq(x,D)uN
(e o]
—tg®) g —tg®) -
= |[e tq (sz)u — e tq (le)u# + e tq (I»D)u# —e tq(zrD)u#
©

—tqg(¥) —tq(¥) —tq(¥) -
e~ta @Dy _ o=td®@D)y | 4 “e @Dy ¢ tq(z,mu#“
0

+ |etat@ Dy, — e~ta@mDly)

—tg®)
’e tq (I,D)“

N

[oo]

N

1
=l + 2O
+ ”e—tq(z'D) ||L°°—>L°° lu = upfleo

1
< lu = vl + > Clluufsmy + o = wy]oo-
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When taking the limit we get for p € N fixed

lim sup ”e’tq(")(m’D)u - e_t‘I(”D)u“ < 20w — Uy oo
e o)

v—0

We conclude

N ) _ :
lim ”e @Dy, _ e tq(”D)u“ < lim 2y — uyfeo = 0.
V—0 © )

a

Going back to Section 3.1, in particular (3.12), we have now suceeded in
showing that a Feller semigroup (7}):>o that has as generator an extension
of —q(z, D), is given by ' :

Tu = lim Tt(")u = lim e~%"@D)y,
v—0 v—0
for u € Cy. In contrary to (3.10) it is easy to write down the operator
¢¥)(z, D), compare (3.11). One last remark we want to make is that our
approximation only works if we already know that the Feller semigroup exists.
In order to use our approximation to prove also the existence of the semigroup
(T})¢=0 With generator —q(z, D) one would need to show that

lim H et @D),, _ e—tq(")@D)uN =0
v—0 . [o o]

for u € Cyp, but the fact that ¢)(z, D) and ¢(™(z, D) do not commutate
makes things difficult.
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Index of Notation

Geometry of R® and Multiindices

For z = (z1,...,z,) € R™, |z| = (:vf+...;i-a:,2,)%, Br = {z € R™; |z| < R},
and for £ = (&1,...,%a) € R, (2,&) = 1161 + ... + oy for a,b € R, (a,b)
open interval in R, [a, b] closed interval in R;

Fora=(as,...,on)eNg, la|=a1+... 4+ an, al =(a1!) - (an]), a < .
x

a; < B for all 7, (g) = (a+ﬁ'),ﬁ, if B < a, (ﬁ) = 0 otherwise.

‘Spaces of functions defined on R”

S :={ue C%; |ulx := maxX|atg)<k SUPzern [220Pu(z)| < 00 for all ke No}

Cg = {ue C®; supp (u) is compact} |

Cm:={ue C™; for all ¢ there exists a compact set K < R" such that
|0°u(z)| <eif z € K for |a|.<m }

Cit:={ue C™; ®u is continuous and bounded for all |a| < m}

LP := space of measurable functions u such that the norm
1
il = (| 1utop)
. Rﬂ

lulze = [ullo = sup fu(z)]
z€R™

ifl<p<owor

is finite. Furthermore we use the notation
(u,v) = J u(z)v(z) dz
if uv e L.
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Spaces of distributions deiined on R"

S': space of tempered distributions, i.e., space of semi-linear forms on ‘
S 3¢+ (u,p) € C such that

(v, p)| < Clo|n

o<}
L2

Amplitudes, oscillatory 1ntegrals and pseudo-
differential operators :

for C >0 and N € Ny.
Ho = {u €S Julgow = ||(1 +y() e

m

(1+151?) " (1 + %) 2

A™ = {a e C®(R™); |lallx = MaX|q+8j<k SUPy neRn
6gﬁga(y,n)l <o forall ke No}

05— [ Jon €¥™a(y, ) dy dn := lime_q [gn [gn €Y a(y, n)x(ey, en) dy dn
where x € S(R*") such that x(0,0) = 1-

A= {¢ R™ — R™; v continuous negative definite such that (1 18) holds}
s = {g e Co(®); |o2dfalz, (2,6)| < Cas(1 + %)) ¥ for e,
a,8€ NP and z,£ € ]R"}

m=p(l8

2000(z,6)| < Cap(1+ (€)™ F forye A,
aHEN"andzfeR”} '

S = Unmer S0 5 S5 := Niner S

gt (2,€) = (27) 7" 08~ [gn [ge ¥ q1(z — y,€ — 1) dy dn

(@#0:)(z€) = (27)™" Os~ Jan fan €% q1(2, € — M) ga(z — y,€) dy dn

e = {ae 5P

Miscellaneous

M’ .= space of positive bounded measures on R"
M? := space of positive measures on R™ with total mass 1
lul == u(R™) for pe M5
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