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ABSTRACT

An experimental framework has been developed that allows investigation of a novel 

resistance bonding technique incorporating a metal powder interlayer as a means of 

forming sound joints between dissimilar alloys. Bonds have been produced between Ti- 

6A1-4V, Inconel 718 and super CMV steel. Ti-6-4, BurTi and Inconel 718 powder 

interlayer layers have been trialed. The use of diffusion barrier coatings and transition 

layers have been explored with particular interest focussed on the effect of tantalum. These 

trials were then compared to analysis of corresponding bond chemistries produced by a 

conventional hot isostatic pressing technique. It was found that joints between Ti-6A1-4V 

and Inconel 718 and super CMV were prone to the formation of intermetallic films at the 

interface (NiTi, Ti2Ni, Fe2Ti), resulting in poor bond quality. Whilst the use of diffusion 

barrier layers reduced reaction zone size, tantalum layers in particular were found to 

severely degrade joint integrity. Bonds produced between Inconel 718 and super CMV 

performed more encouragingly; achieving around 70% of Inconel 718 parent metal 

properties in the optimum condition. Comparisons between conventional HIP procedures 

and resistance bonding elucidated far better powder consolidation in the former. This was 

shown to be due to a ‘differential heating’ effect under resistance heating. A quasi isostatic 

powder interlayer bonding technique (QUIP) has been developed that has shown to 

substantially improve joint integrity. This is under continuing development.
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1 INTRODUCTION

Economic and technical constraints have lead to a slow down in alloy development 

over the last decade, compared to the boom in advanced alloy production associated 

with the 40 years prior to that. Whilst the most successful alloy groups such as the a-p  

titanium alloys, nickel base superalloys and hardenable steels provide exceptional 

performance each is limited to certain regimes, defined by temperature, load or 

component weight and size. For this reason attention is now being focused on 

combining these alloy groups in service.

Joints between dissimilar materials provide the opportunity to produce hybrid 

components with a wide range of specific heterogeneous properties. Examples of this 

technology include wear resistant coatings in gas turbine casings, radiation resistant 

alloys for panels of the ITER reactor and joints between dissimilar boiler tube materials 

in the power generation industry. The benefits o f these dissimilar joints have been 

recognised since the workable welding procedures were developed. For this reason 

dissimilar joining has received considerable attention, with varying degrees of success.

Typically, conventional welding procedures fall short of the joint integrity required for 

critical applications, particularly in relation to advanced alloys [1]. Their poor quality 

is normally due to both the rapid heating and cooling rates and wide heat affected zones 

associated with traditional fusion welding processes. Conversely, solid state diffusion 

bonding has been recognised for producing sound joints in dissimilar materials at 

temperatures significantly below their melting point.

Resistance butt welding, a variant o f diffusion bonding, has previously been shown to 

produce near parent metal properties in dissimilar joints between dissimilar titanium 

alloys and similar nickel and steel pairings [2, 3]. In a further development to this 

technique that draws on the technology o f field assisted sintering (FAST) and metal 

injection moulding (MIM), it has been suggested that introducing a powder interlayer

1



into the resistance butt welding technique may substantially improve bond quality 

between dissimilar pairings, as well as reducing pre-joint preparation times. These 

benefits have been recognised by the industrial sponsor of this investigation, Rolls- 

Royce Pic. The aim being to apply the technology to the production of hybrid aero­

engine components of high structural integrity. Consequently an experimental 

technique for evaluating this novel joining process will be developed in an aim to both 

produce a more industrially relevant process and asses the feasibility of joining 

industrially significant dissimilar steel, titanium and nickel alloys by this method.

2



2 LITERATURE REVIEW

2.1 Introduction to literature review

The primary deliverable of this investigation is to complete joining feasibility / 

compatibility studies on three separate alloy groups each exemplified by one alloy, Ti-6A1- 

4V, SCMV and IN718. These alloys have been chosen because of their importance in the 

gas turbine engine, specifically in rotor applications [4, 5]. This requires detailed 

knowledge of the alloy systems in terms of base metal properties, effect of alloying 

additions, behaviour during thermo-mechanical processing and the most pertinent alloy 

microstructures. This information is presented in sections 2.2 to 2.4.

The second deliverable of the project was to facilitate the development of a novel powder 

interlayer joining technique. As a result, the scope of this investigation covers a very wide 

range of manufacturing topics including, process development and design, experimental 

design, welding, diffusion bonding, resistance heating and powder metallurgy. These topics 

are covered in sections 2.5 to 2.8.

Finally, a review of the most relevant available literature on both the existing techniques 

for powder interlayer bonding and dissimilar joining between titanium, nickel and steel are 

presented in sections 2.9 and 2.10 respectively. Conclusions of the literature review are 

presented in section 2 .1 1 .
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2.2 Titanium and titanium alloys

2.2.1 Pure titanium

Titanium exists in two allotropic forms, a  and p. These two phases are distinguished by 

crystal structure with a  being hexagonal close packed (HCP) and p being body centred 

cubic (BCC). These two structures exhibit different mechanical behaviour, and their 

control results in a wide range of alloys with a wide range of properties and applications. 

The p transus temperature for pure titanium is 882°C. It has a high melting point and is 

extremely reactive and as a result it is a hard material to extract from its ores. This is 

reflected in the generally high price for titanium alloys compared to more conventional 

materials such as steels. However, it has very competitive specific strength and stiffness 

values (detailed in Table 2.2.1) and excellent corrosion resistance. These properties have 

driven the development of its alloys primarily for the aerospace industries but also in its 

pure form for specific corrosive environments.

Table 2.2.1: A comparison of mechanical properties between commercially pure titanium,
nickel and iron (data sourced from [6 ]).

Property Titanium Nickel Iron

Melting point (°C) 1665 1400-2002 1535

Density 

(Kg/m3 x 103)

4.505 8.89 7.86

Young’s modulus 

(GPa)

1 2 0 75 2 1 0

0.2% Proof stress 

(MPa)

340 103 185

Tensile strength 

(MPa)

440 380 340

Elongation (%) 29 40 39
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2.2.2 Alloy classification

The titanium alloys can be split up into five distinct groups that are defined by their 

microstructure. These are a, near a, a/p, near p and metastable p. Alloy type is determined 

by stabilising elements that promote the creation of either the a or the p phase. The effects 

of a and P stabilisers are detailed in

Figure 2.2.1 (a) and (b) respectively. Effectively, a  stabilisers act to push up the P transus 

resulting in a higher proportion of a  in the final microstructure, whereas p stabilisers 

reduces the transus temperature yielding more p.

Composition

a+  P

Composition
(a) (b)

Figure 2.2.1: Effect of (a) a  stabilisers and (b) p stabilisers.

The two most common stabilisers are aluminium (Al) (a stabiliser) and molybdenum (Mo) 

and as a result the effect o f other stabilisers are expressed in terms of Al and Mo 

equivalents (equations 2 .2 .1  and 2 .2 .1).

Al-equivalent = Al + (l/3)Sn + (l/6 )Zr +10(O+2N+C) (2.2.1)

Mo-equivalent = Mo + (0.67)V + (0.28)Nb + (0.2)Ta + (0.4)W + (2.5)Fe + (1.25)Cr +

(1.7)Mn + (1.25)Ni + (1.7)Co

(2.2.2)
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2.2.3 Commercial alloys [7]

By careful control of the alloying elements above, many useful alloys have been produced. 

These are detailed in Table 2.2.2.

Table 2.2.2: Some examples of commercial titanium alloys [8 ].

Microstructure Grade

Near a Ti-8 AM M o-l V (Ti -  811) 

Ti-6Al-5Zr-0.5Mo-0.25Si (IMI 685) 

Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si 

(IMI 834)

a/p Ti-6A1-4V (Ti - 6/4)

Ti -  6A1 -  2Sn -  4Zr -  6 Mo (Ti -  6246) 

Ti -  4A1 -  4Mo -  2Sn -  0.5Si (Ti -  550)

Near p Ti -10V-2Fe-3Al (Ti -10-2-3)

Metastable p Ti -  15V -  3C r-3 S n  - 3A1 (Ti -  15-3-3)

Typically the a  alloys display excellent high temperature performance (especially the Ti -  

834 and Ti -  685 grades) coupled with a low density (because o f the high Al content). The 

a/p alloys display high strength with good forgeability and excellent low cycle fatigue 

resistance. Near p and metastable P alloys also have good forging characteristics 

particularly at lower temperatures due to the stabilisation of the p phase at low 

temperatures.

2.2.4 Heat treatment processes

As well as making up the majority of engineering components in use today the a /p  

processed alloys also provide the most scope for thermomechanical processing. Most 

processing steps in this group o f alloys are designed to exploit the allotropic phase
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transformation to produce microstructures ranging from near fully primary a  to fully 

widmanstatten a+(3 structures. This results in a wide range o f  mechanical properties in the 

subsequent alloys. Whilst the m echanism s involved in the microstructural evolution o f  

these alloys is com plex and has received considerable attention in the literature [9-11], only 

a basic appreciation o f  these factors is dealt with here. An excellent review o f  processing in 

titanium alloys is presented by Lutjering [12] and the four main heat treatments that are 

applied to the a /p  range o f  alloys are detailed below. These are:

1. Mill Anneal (MA). This is the most com m on o f  all heat treatments 

applied to titanium alloys and serves primarily as a retained strain reliever. In this respect it 

results in an alloy with good fatigue properties, moderate fracture toughness and reasonable 

fatigue crack growth rates (FCGR). However, has less o f  an effect on microstructure which 

is primarily dependant on prior therm o-m echanical work.

2. Re-crystal I ise Anneal (RA). This involves an isothermal treatment in the upper a -  

(3 phase field followed by slow cooling resulting in coarse grained bi-modal structures. The 

treatment results in increased ductility, leading to increased dam age tolerance properties. 

This is offset by slightly reduced strength and fatigue performance. However, fracture 

toughness and FCGR are improved. A typical bi-modal structure is presented below in 

Figure 2.2.2.

Figure 2.2.2: Typical bi-modal structure observed in Ti-6242 [12].
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3. p Anneal (BA). p annealing (som etim es termed p processing)

involves solutioning the material in the p phase field and cooling to room  temperature. 

Though the subsequent properties o f  the alloys, are dependant on cooling rate, in general 

the BA heat treatment yields the most dam age tolerant materials. Strength is sacrificed and 

the fatigue strength is significantly degraded but fracture toughness and FCGR 

perform ance are both maximised. Three p annealed structures o f  different cooling rate are 

presented below in Figure 2.2.3.

‘ " £i§j§
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Figure 2.2.3: Three p annealed microstructures show ing the effect o f  cooling rate from the 
p phase field, (a) 1°C /m in (b)100°C/min (c) 8000 °C/min [12].

4. Solution treated and aged (STA).

Essentially a two stage combination o f  BA and RA this heat treatment provides com plete 

control over the microstructure and so can yield the broadest range o f  resultant mechanical 

properties. For this reason RA and STA microstructures can often appear very similar. 

Ftowever, recently it has been suggested the effect o f  prior mechanical processing on post 

HT mechanical properties in RA structures (specifically orientation effects), could account 

for differences in behaviour noted between similar RA and STA structures.



2.2.5 Application of titanium alloys in the aerospace industry

Advantages o f titanium alloys over conventional alloys such as weight and space savings, 

operating temperature, general corrosion and more specifically galvanic corrosion 

resistance lead them to be the materials of choice in demanding applications. Of course 

these superior properties come at an increased cost compared to alloys of iron and 

aluminium. These higher prices are dictated by both the difficulty of extraction of the pure 

titanium and to a greater extent the machining costs of titanium alloys components (which 

can be up to ten times the price for steels and aluminium). The use of titanium is virtually 

essential in many areas, such as components in a gas turbine engine. However, it is also 

applied in less demanding applications (purely because of its increased durability) where 

downtime can incur considerable cost e.g. in the power generation industry.

By far the biggest consumer of titanium alloys is the aerospace industry. Here all the 

advantages of titanium are exploited in different areas, from weight and space savings in 

the under carriage and fuselage of aircraft, to the high temperature performance in the gas 

turbine engines and corrosion resistance in the floor panels of toilets on commercial 

aircraft. Some of the most common alloy grades used in service will now be discussed in 

more detail.

2.2.5.1 The near a alloys

These alloys sit at the high temperature performance end of the spectrum of properties for 

titanium alloys. Annealed near a  alloys such as Ti -3-2.5 have exceptional corrosion 

resistance and good formability which lends them to use in non-structural applications such 

as hydraulic tubing. Nevertheless, the two most widely used a  alloys are Ti -6242s and IMI 

834. Ti-6242s is a popular material for discs, blades and rotors alike. This is mainly due to 

its good creep performance up to temperatures o f around 540°C, combined with adequate 

fatigue properties and good corrosion resistance. This suits it for application in the early to 

mid stages of the high-pressure compressor. IMI 834 has similar properties but its structure
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has been optimised to provide good mechanical performance at temperatures approaching 

600°C.

It is worth noting here that beyond 540°C titanium alloys fail to meet the demanding 

requirements o f the gas turbine engine (with the exception of IMI 834) and they are 

replaced by the nickel based super alloys in the super critical areas such as the combustor 

and turbine. This is because of a combination of factors, namely; the superior high 

temperature mechanical properties (i.e. fatigue and creep) of Ni based alloys, concerns that 

the titanium will ignite and bum, and oxidation problems leading to the formation of a ’ and 

a enrichment at the component surface severely degrading properties.

2.2.5.2 The a/p alloys

Due to their microstructural versatility the a/p alloys can be cast or forged. Castings tend to 

be used for more complex static components and forgings are used for the simpler rotating 

components. Ti-6-4 is the typical material of choice from the a/p range of alloys as it is the 

commonly employed alloy of the industry. It is easily super plastically formed, to form 

complex shapes with good corrosion resistance; in the exhaust system for example. 

Furthermore, its resistance to galvanic corrosion allows it to be incorporated into structures 

using carbon fibre reinforced composites (CFRC) as well as being utilised as a matrix 

material for metal matrix composites. One in-service example being the vertical fin of the 

Boeing-777 [13].

Other alloys in the a/p group include Ti-662, Ti-6-2-3, Ti-6-22-22, Ti-6246 and Ti-17. 

These are all alloys well suited to the demanding conditions of the aerospace industry and 

in fact some were specifically designed for it. Ti-6-22-22 for instance, was created in 

parallel with the construction of the American F-22 military aircraft. Unlike Ti-6/4 and its 

slightly stronger but less ductile partner Ti-662, Ti-6-22-22 offers strength coupled with 

excellent damage tolerance; evidently an important attribute in military aircraft. It has 

attracted considerable interest not only because of these properties but also because it
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maintains the super plastic ability shown by Ti-6/4 at low temperatures following specific 

(‘triplex’) heat treatments.

At the other end of the a/p alloy spectrum are the Ti-6246 and Ti-17 alloys. Ti-6246 offers 

high strength but only low damage tolerance. For this reason it has up until recently only 

been considered for military applications because the refits and checks required for civilian 

aircraft would become too costly. Ti-17 is a newer but more expensive alloy that has a 

slightly higher strength at an elevated temperature. Despite this advantage, the high 

temperature performance is the limiting factor for these alloys; this is mainly due to the 

creep performance at elevated temperature. Hence, although they can replace Ti-6/4 for 

strength, they cannot match the high temperature performance of Ti-6242s.

2.2.5.3 The p alloys

The applications of the p alloys range from landing gear and airframe components to their 

use as a spring material. The P-C alloy tends to be used for coil springs although it can also 

be shaped to rectangular springs for increased loads (at an increased cost). Ti-15-3 tends to 

be used in the manufacture of flat clock type springs, as sheet is its most popular form. It 

has excellent forming characteristics but tends to fail under triaxial stress conditions. 

Finally, Ti-10-2-3 is the most widely used of the p alloys. It is very versatile and can be 

produced at three different strength levels depending on the heat treatments employed. 

Typically companies favour the high strength variant as this results in weight and volume 

savings.

2.3 Nickel base Superalloys and Inconel 718

IN718 is part of the Nickel -  Iron based family of superalloys. All of these alloys share an 

(FCC) austenitic matrix composed of a solid solution o f Nickel and Iron (Ni-Fe). This alloy 

group employs all three of the fundamental strengthening mechanisms of metallurgy, 

namely:
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1. Solid solution strengthening.

2. Precipitation hardening.

3. Grain boundary strengthening (grain refinement).

All three of these mechanisms can be controlled by careful control of various alloying 

elements. The details of these elements and they’re exact role in alloy strengthening will be 

dealt with in more detail later. However, a summary of common alloying additions and 

their role in microstructural and mechanical property development can be seen below in 

Table 2.3.1 and Table 2.3.2

Table 2.3.1: List of elements and their effect on nickel alloys [14].

Matrix

Class

Gamma 

prime class

Grain Boundary 

class

Carbide

sub-class

Oxide scale 

sub-class

Ni X

Co X

Fe X

Cr X X X

Mo,

w,
V

X X

Nb,

Ta,

Ti

X X

A1 X X

c,
B,

Zr,

Mg

X
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Table 2.3.2: List of elements and their effect on nickel alloys [15].

Matrix

Strengthening

Increase in y* 

volume fraction

Grain

Boundaries

Other effects

Cr Moderate Moderate M23C6 and 

M7C3

Improves corrosion 

resistance; promotes TCP 

phases

Mo High Moderate MeC et MC Increases density

W High Moderate Promotes TCP phases a  et p 

(Mo,W)

Ta High Large Promotes laves phase

Nb High Large NbC Promotes y’ and 8  phases

Ti Moderate Very large TiC A1 improves oxidation 

resistance

A1 Moderate Very large

Fe y’->p, , Y” or 8 Decreases oxidation 

resistance; promotes TCP 

phases ct, Laves

Co Slight Moderate in 

some alloys

Raises solidus; may raise or 

lower solvus

Re Moderate Retards coarsening; increases 

misfit

C Moderate Carbides

B,

Zr

Moderate Inhibit carbide coarsening; 

improve grain boundary 

strength; improve creep 

strength and ductility
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The nickel -  iron family of alloys can be divided into four classes, these being;

1. Alloys strengthened by way of (FCC) y’ precipitation.

This class of alloys can be further subdivided into those that are iron (Fe) rich with nickel 

(Ni) contents between 25 and 30wt% and those which are Ni rich with Ni contents of 

around 40wt%. The Fe rich alloys (e.g. V-57) rely on titanium additions (to around 2wt %) 

for precipitation. Typically these alloys retain good mechanical properties up to 650°C. 

The Ni rich alloys (e.g. In-x750) utilise more solid solution strengthening with higher 

volume fractions of strengthening precipitates, resulting in improved strength and 

temperature capability over the Fe rich alloys.

2. Nickel rich alloys strengthened by (BCT) y”  precipitation.

This class includes IN718. Typically these alloys retain excellent mechanical properties 

from cryo-temperatures to 650°C.

3. Iron rich Fe-Ni-Co based alloys.

This group of alloys is also predominantly strengthened by y \  However, it combines high 

temperature capability with low coefficient of thermal expansion through elimination of 

ferrite stabilisers such as Cr and Mo. Unfortunately this comes at the expense of oxidation 

resistance on account o f the low Cr levels. Alloys in this group include Incoloy 903 and 

909.

4. Alloys strengthened by carbides and nitrides.

These alloys are strengthened solely by the formation of carbides throughout the 

microstructure and do not utilise any precipitation hardening. Hence their high temperature
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perform ance is far superior to that o f  the other alloys in the N i-Fe group with ceiling 

tem peratures o f  around 1000°C. Hastalloy X is a typical example.

2.3.1 Metallurgy

The metallurgy o f  iron -  nickel superalloys and in particular IN718 is complex, the 

following section deals with the most com m on constituents in detail, but also touches on 

the num erous minority phases which present in 1N718 specifically. The relationship 

between phases described in this section and the microstructure can be better visualised 

with reference to Figure 2.3.1 and Figure 2.3.2 below.

1̂ 2 3 ^ 6 M 2 3 C 6 N o d u l e

y -  F  o r m e r s  ► 2 . 5 T i , l . 3 A I  2 . 9 T i , 2 9 A I  3 5 T i , 4 . 3 A I  4 7 T i , 5 5 A I  1.5 T i , 5  5  A l ,  I 5  T o
C o r b i d e  F o r m e r s  ► 2 0 C r ,  2  5 T i  l 9 C r ,  4 M o , 2 9 T i  ! 5 C r , 5  2 M o , 3  5 T i  I O C r , 3  M o , 4  7 T i , I V  9 C r,  2  5 M o ,  IOW. I. 5  T o

E x o m p l e s  ► N i m o n i c  8 0 A  U - 5 0 0  N - 115 / U - 7 0 0 / R - 7 7  I N - I O O / R - I O O  M o r - M 2 4 6

Figure 2.3.1: Nickel alloy microstructure, 5000x [16].
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Figure 2.3.2: C om m on unwanted phases or structures, 5000x [16].

C e l l u l a r  M g j C e

2 5 T i , I 3 A !  2 9 T . . 2 9 A I  3 5 T i , 4 3 A I  4 7 T i , 5 5 A t  I 5 T i , 5  5 A I ,  I 5  To

2 0 C r , 2 5 T i  l 9 C r , 4 M o , 2 9 T l  1 5 Cr,  5  2 M o , 3  5 T i  l O C r . 3  M o , 4  7T i , I V  9 C r , 2  5 W o , lO W ,I  5 To

N i m o m c  8 0 A  U - 5 0 0  N - I I 5 / U - 7 0 0 / R - 7 7  I N - I O O / R - I O O  M a r - M 2 4 6

15



2.3.1.1 Austenitic matrix

As mentioned previously, the austenite matrix of Ni-Fe alloys can range from Ni lean 

(~35wt%) to Ni rich (>40wt%). This basic consideration is important as it has a large 

effect on both the alloy’s cost and its effective temperature range. Low carbon levels and 

high amounts of Mo and Cr (ferrite stabilisers) can force the minimum Ni content to 

25wt% in order to preserve the austenitic matrix. Additions of Co (and other) austenite 

stabilisers can reduce the Ni content required to considerably less than this. Iron rich 

matrices lack the stability of their Ni rich counterparts which limits the amount of solid 

solution and precipitation hardening elements that can be added. Typically as the Fe:Ni 

ratio increases, cost is reduced at the expense of corrosion resistance, but forgeability is 

increased.

2.3.1.2 Solid solution strengtheners

Cr (10-25wt%), Mo (0-9wt%) and to a lesser extent Tungsten (W) form the three main 

elements used for solid solution strengthening of the austenitic matrix. Chromium (Cr) acts 

to expand the lattice while Mo contracts it. Hence, the solubility o f the precipitation 

hardening elements such as Ti, Aluminium (Al) and Niobium (Nb -  Columbium) in the 

matrix is substantially reduced. This effect enables the use of solid solution strengthening 

elements in minimising the required level of these precipitation hardening elements. The 

alloying also helps to reduce stacking fault energies impeding cross slip at elevated 

temperatures. Generally it can be said that as well as strengthening effects, solid solution 

alloying elements have a considerable effect on precipitation hardening.

Aside from strengthening, Cr also has a large effect on oxidation resistance by the 

formation of a sacrificial oxide film. The threshold value for the formation of this film is 

around 9wt%, and generally Cr additions are well in excess of this value. However, it must 

also be acknowledged that increased chromium leads to an increased coefficient of thermal
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expansion. If this is to be minimised then low Cr alloys must generally incorporate a 

protective coating at temperatures in excess of 480°C.

2.3.1.3 Precipitation Strengthening

As previously mentioned the two principle phases used in precipitation hardening of Ni-Fe 

alloys are (FCC) y’ and (BCT) y” . Both precipitates are A3B type compounds.

y’ forms in the presence of Ti and Al, which are the principle age hardening constituents in 

alloys such as A-286 and A-901. As the Ti:Al ratio increases the y’ lattice parameter 

increases. To minimise the misfit between the y and y’ phases a high ratio is required. At a 

ratio of around 2 :1  a metastable y’ forms which can then transform to a hexagonal Ni3Ti at 

high temperature with a consequent detrimental affect on mechanical properties.

y” forms in the presence of Nb as the principle constituent for y” precipitation in alloys 

like IN718 and the IN706. In the case of In-718 certain amounts of Ti and Al are also 

included so that y’ and y” are able to coexist within the microstructure; for In-718 the 

y’:y” rations is between 2.5 and 4.0. It has been shown that below 0.2wt% Al y” 

predominates, while over 0.5wt% y’ is dominant. The large effect of small Al additions is 

due to the high solubility of Nb in Ni3Al compared to the low solubility of Al in Ni3Nb.

2.3.1.4 Other alloying elements

Boron (B), zirconium (Zr) and carbon (C) are the most significant o f the minority alloying 

elements in Ni-Fe alloys. Both Zr and B aid spherodization of secondary phases and 

precipitates leading to an increased ductility over platelet structures. Both are also key 

contributor to an increase in stress rupture strengths. It is worth noting that B content is 

generally restricted to low levels because it resists y’ formation. Carbon, and sometimes 

manganese (Mn), are typically used as a deoxidants. In the case of carbon this leads to the 

formation o f MC type carbides that are useful in pinning grain boundaries and hence
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refining grain size. Finally, small additions of magnesium (Mg) help to improve rupture 

strength and ductility by modification of grain boundary and secondary phase morphology.

2.3.1.5 Other phases

There are various different carbide types found in this family alloys the most popular of 

which is the MC type. These form with idiomorphic, irregular, large globular and film 

(highly detrimental) morphologies on solidification. The particles tend to form 

preferentially at grain boundaries Heat treatments and hot working appear to have little 

effect on these phases post freezing. Depending on alloying either NbC or TiC are the 

predominant forms of carbide though other carbides can form with Ta, V and Mo. Other 

less common carbides include M$C (which forms in the presence of Mo (3wt %)) that 

grows within IN718 grains and more importantly M23C. M23C carbides (mostly C ^ C ) 

grow at the expense of MC type films that can form during service, through specifically 

designed heat treatments. This results in vastly improved ductility and overall mechanical 

integrity.

Finally, compressibility factors in most Ni-Fe alloys can cause the formation of TCP (A2B 

type) phases e.g. o,p,x or laves. IN718 is particularly susceptible to laves phases which are 

considered to have a deleterious effect on mechanical properties. These and other minority 

phases o f importance will be dealt with later.

2.3.2 Strengthening mechanisms

2.3.2.1 y’ precipitation

As with all precipitation hardened alloys, for a constant volume fraction (Vf) of y’ strength 

increases as the y’ precipitate size increases up to an optimum size. Beyond this the 

strength decline rapidly and the alloy is termed over aged. This occurs as a result of 

optimum conditions for the precipitate to resist particle cutting and looping by dislocations
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passing through the matrix during deformation; similar to the formation of GP zones in 

precipitation hardened aluminium. FCC y’ is coherent with the matrix, but coherency 

strains are low and not a major source of alloy strengthening compared to that explained 

above.

2.3.2.2 y” precipitation

Ordered BCT y” results primarily as a result of Nb addition and is the principle 

strengthened in IN718. It is considered as a superior strengthening precipitate to that of y’, 

mainly due to its increased resistance to cutting by dislocations. This is due to the 

difference in long range order between the BCT and FCC lattices i.e. whereas FCC y’ 

requires only two a/2 <110> dislocations to be reordered in any direction, BCT y” requires 

two out of three directions for the super dislocation to progress. Furthermore, unlike y’, y” 

also provides strengthening through coherency strains between itself and the y matrix. 

Unfortunately, these strains are also a source of instability in temperatures above 650°C.

The presence of y”  precipitates also accounts for the excellent weldability of IN718 

compared to other superalloys. This direct influence comes through the slow age hardening 

characteristics of the phase, preventing hardening post welding. Commercial heat treatment 

processes aim to produce y”  precipitates with a disc morphology in IN718 with an 

optimum diameter of around 600A and thickness of 50-90A.

2.3.2.3 Over aging

As well as the more fundamental particle coarsening effects leading to reduced strength 

(Orowan [17]) that are observed in Ni based superalloys, other more complex phase 

transformations occur in Ni-Fe alloys as a result o f over aging. Metastable forms of y’ and 

y” can transform to rj and 5 respectively. The importance of these phases will now be 

discussed in more detail.
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2.3.2.4 The r\ phase

The HCP r\ phase can form as intergranular platelets (sometimes widmanstatten) or in 

cellular grain boundary forms. As with its parent phase, t\ formation is dependant on the 

level of Ti in a given alloy, with the r| proportion increasing with increasing concentrations 

of Ti. However, the other main y* former, Al results in r\ retardation as the HCP lattice has 

no solubility for Al. Hence r\ forms only as a result of diffusion of Al leading to local 

depletions. Furthermore the presence of Al also reduces the y-y’ mismatch and therefore 

the driving force for r| formation.

On the whole T| formation is considered to have a detrimental effect on mechanical 

properties. Growth of both (y+ri) lamellar and widmanstatten structures which have both 

been shown to degrade mechanical properties. Typically lamellar structures form between 

600 and 850°C, whereas widmanstatten structures tend to form at temperatures above 

800°C; an important consideration when dealing with Ti rich Ni-Fe superalloys. Even so r\ 

is sometimes used as a grain refiner by heat treating and quenching from around 720°C. 

The resulting intergranular platelet structure yields increased strength at the expense of 

rupture ductility.

2.3.2.5 The § phase [18]

Forming in a similar manner to that of r\ from y’, orthorhombic 5 (Ni3Nb) is an important 

phase with regard to the IN718 alloy. Typically, high silicon (Si), Nb and low Al contents 

promote 6  formation. In IN718 5 occurs between 650 and 980°C with platelet morphology, 

and to a lesser extent in randomly orientated globular forms at the grain boundaries. Below 

700°C 6  formation is slow, but above 700°C rapid acceleration in both 5 formation and y” 

precipitate growth occurs. At around 885°C y”  solutioning occurs and between 850 and 

950°C 6  formation is at its most rapid (resulting in a highly detrimental and widespread 

widmanstatten structure in a matter o f hours). Cellular forms of 6  are not observed in 

commercial alloys. Nevertheless, studies on experimental alloys have shown that cellular 

morphologies are dominant at temperatures below 700°C whereas platelet morphologies
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predominate at temperatures in excess of this value (this is consistent with the morphology 

relationship observed for the y’ to rj transition).

Increased forging below the 8  solvus (1000°C) results in rapid nucleation kinetics and the 

regular intragranular precipitation. This is effective in producing extremely fine 

microstructures. Forging and heat treatments also result in globular 5 which is found to 

both aid grain size control and prevent long range grain boundary sliding in IN718. 

Nonetheless, it is important to balance these benefits with the fact that the formation of 8  

gradually degrades properties over time as a result o f the decreasing y’ ’ proportion (as a 

result o f the y” to 5 transformation) and y” coarsening. It is also important to note that 

these effects accelerate considerably over temperatures o f 650°C; hence the quoted ceiling 

temperature for IN718.

2.3.2.6 Minority phase formation

Ni-Fe alloys are more prone to G,o,p and laves phase formation than the Ni based 

superalloys. All of these phases are considered to be detrimental to mechanical properties, 

causing severe embrittlement. The laves phase is promoted by increasing amounts of Nb, 

Ti and Si, and as such is especially relevant to IN718. Additions B and Zr go some way to 

counteract both laves and p phase formation. The complex cubic G phase (e.g. NiTi and 

NiSi) acts to reduce stress rupture life, but has little negative effects on other mechanical 

properties, o forms with a platelet morphology. Brittle fracture at the interface between 

these platelets and the parent material can lead to large scale embrittlement, but growth of 

the o phase can be retarded by careful control of Cr and Mo. While each of these phases 

have a real effect on overall mechanical properties, their formation during service is 

relatively rare. This is largely due to the fact that most Ni-Fe alloys operate at temperatures 

below 760°C. Furthermore, the lean nature of the alloys makes large volume fractions of 

these minority phases unlikely.
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2.3.3 Processing Ni-Fe alloys

2.3.3.1 Ingot production / purification

Vacuum induction melting (VIM), vacuum arc re-melting (VAR) and electroslag remelting 

(ESR) form the basis of clean homogenised ingot production [19]. VIM minimises light 

elements such as nitrogen (N) and oxygen (O) which may go onto form compounds at the 

expense of useful reactive elements such as Ti and Al. Crucially VIM also removes any 

pre-existing carbides to form CO which is extracted by the vacuum. VAR and ESR work in 

similar ways to increase homogeneity by systematically remelting an ingot to segregate 

unwanted impurity elements and carbides from the parent alloy. Subsequently, ingot 

breakdown incorporates thermal homogenisation (at 1100 to 1200°C) to remove G, a  and 

laves phases etc. This also helps to reduce a pre-existing local concentration gradients i.e. 

partitioning of Nb and Ti.

2.3.3.2 Structure / property control

As with all alloys grain size is the most important controllable metallurgical factor i.e. 

development of coarse grained microstructures for creep resistance and fine grained 

microstructures for fatigue resistance and increased strength. In this respect the main 

advantage Ni-Fe alloys over their Ni based counterparts is the use of the r\ and 8  phases in 

grain size control. During recrystallisation the temperature must bridge the y’ and y” 

solvus’. After this the temperature is kept below the r\ and 8  phase solvus’ so that these 

phases may then be used for grain size control. For instance, heat treating below the y” 

solvus in In-718 produces little or no grain growth because they are pinned by intragranular 

globular 8; such heat treatments tend to over aged the y” , resulting in reduced strength. 

Considering these factors, typical treatments normally involve forging followed by hot 

deformation and quenching to preserve the forged microstructure. This is termed ‘direct 

ageing’ and results in very high strength alloys.
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2.4 Cr-Mo-V Steels

Whilst the superclean Cr-Mo-V (Super CMV) system under investigation is a specialist 

alloy, much of its properties and material behaviour are controlled by fundamental 

metallurgy. The following sections summarise the pertinent issues relating to the SCMV 

alloy from this basic metallurgy through alloy development and onto more complex 

structure / property control considerations.

2.4.1 Basic metallurgy

Like titanium, iron is allotropic and can exist in three different forms dependant on 

temperature BCC a  (ferrite), FCC y (austenite) and BCC 5 ferrite. Through the use o f a  

and y stabilisers both ferrite and austenite can be retained at room temperature but 8  ferrite 

exists so close to the iron melting point at such a narrow temperature window that it can be 

ignored in terms of physical metallurgy. Carbon remains soluble in these phases up to a 

point where orthorhombic cementite FeaC then becomes the most stable phase. As a result, 

carbon additions alone can then be used to produce a range of steels of vastly different 

properties. This can be better visualised with reference to the iron-carbon phase diagram 

below in Figure 2.4.1. Most conventional steels have carbon concentrations between 0.1 

and 0 .8 % as these are hypo eutectoid microstructures that retain primary ferrite and pearlite 

(a ferrite / cementite contiguously grown lamellar eutectoid microstructure). Increasing 

carbon content between these values will;

• Increase tensile strength

• Increase hardness

• Decrease ductility

• Decrease fracture toughness
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Figure 2.4.1: The iron-carbon equilibrium phase diagram.

In addition to this, carbon steels can also exist in two further microstructural forms via 

displacement transformations; these are martensite and bainite. BCT martensite forms as a 

result o f a displacive / military transformation that occurs when quenching from the high 

temperature austenite region to room temperature. The temperature at which martensite 

first forms is known as the Ms temperature and is a key materials property in steels. Whilst 

this can be controlled by advanced alloy additions, it is most strongly dependent on carbon 

content (equation 1.3.1). Several constitutive equations have been put forward that attempt 

to quantify the effect of alloying additions on the Ms temperature, one of which is shown 

below in equation 1.3.1. However, for the most part it is acknowledged that with the 

exception of cobalt all alloying additions act to depress the martensite start temperature.

Ms (°C) = 561 -  474C -  33Mn -  17 Cr- 21Mo (1.3.1) [20]
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Bainite forms by a combination of shear and diffusion to result in a plate or lath structure 

of ferrite and cementite. It exists in two states, feathery upper bainite which forms at higher 

temperatures over a short time and acicular lower bainite which is formed at lower 

temperatures over much longer times. Lower bainite tends to be much harder and less 

ductile than upper bainite. The influence of carbon on the martensitic and bainitic 

transformation can be seen in Figure 2.4.2.
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Figure 2.4.2: Relationship to Fe-C phase diagram (a) o f IT diagrams of eutectoid steel (b)
and steel containing 0.5% carbon (c) [21].

2.4.1.1 Martensite

Unlike the transformation between austenite and ferrite or cementite, room temperature 

martensite and high temperature austenite have the same carbon concentration as no 

diffusion occurs during the transformation. The concentration of carbon in austenitic iron is 

not stable at room temperature, so expansion in the FCC austenite lattice to produce a BCT 

crystal structure occurs to accommodate it. This creates an associated strain in the lattice 

known as the Bain strain. This strain is directly comparable to the amount of carbon present 

in the lattice (as more carbon atoms require more interstitial sites and so cause a greater 

lattice distortion). The Bain strain in the crystal results in shear, producing the displaced 

material as BCT martensite, hence the term displacive transformation. The nature o f this 

shear and subsequent microStructural features depend on the habit plains (crystal plains in
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the austenite on which displacive phenom ena occur) on which the shear occurred, 

dislocation density, temperature and most importantly the carbon content. These are in 

turn, defined by certain orientation relationships (K urdjim ov-Sachs and N ishiyam a) which 

will not be dealt with in detail here. However, as a result, martensite presents in two 

microstructural forms, plate and lath.

Plate martensite tends to form in alloys with a carbon concentration in excess o f  0 .6%  and 

consequently  at lower temperatures. A typical plate microstructure can be seen in Figure

2.4.3 (b). Typically the plates formed are relatively coarse i.e. easily viewed under

standard optical microscopy and also tend to form in quite irrational orientations and 

directions relative to the parent austenite structure. This is mainly due to the fact that the 

high carbon content (1 .5-2% C) associated {259}A habit plane on which they form has 

twenty  four variants; a variant being a different orientation o f  an {hkl} plane as defined by 

a different arrangement o f  the hkl indices e.g. (295), (529) and (592) etc. At slightly lower 

carbon contents (0 .9-1.4% C) the {225}A habit plane predominates, (12 possible variants) 

leading to less randomly orientated microstructure. Hence, within plate martensitic 

structures deductions can be m ade on carbon concentration depending on plate orientations.

Prior a u ste m le  g ra  n bountJary

I (Khun

Figure 2.4.3: Microstructures o f  (a) lath and (b) plate martensite [22].

Lath martensite forms in alloys with a carbon content less than 0 .6%  and consequently  at 

higher temperatures. Lath microstructures are more ordered and considerably finer in 

appearance and tend to align them selves parallel to one another. A typical lath structure can
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be seen in Figure 2.4.3 (a). With reference to this figure it is clear to see that whole parent 

austenite grains can be occupied by as little as two or three variants. The areas occupied by 

each variant are known as packets. In actuality each packet may be made up of up to three 

variants itself. These are variants of the {557}a irrational plane (close to {111}A). These 

three variants are clustered around the four {111 }A variants but have been found to have a 

misorientation of no more than 16°. This results in parent austenite grains being occupied 

by up to four packets defined by {111 }A variants which in turn contain up to three low 

angle {557}A variants. Typically increases in carbon content lead to an increasingly varied 

orientation of laths i.e. a greater number of packets, as the microstructure converges on that 

of plate martensite.

2.4.1.2 Bainite

The bainite formation may be thought o f as part displacive, part diffusional. As in the case 

of pearlite, bainite is made up of ferrite and cementite but unlike pearlite it grows in non- 

lamellar arrays that are dependant on temperature and local alloy element concentration. As 

such, the growth of bainite is controlled both by diffusional rejection of carbon from ferrite 

to form cementite and the temperature at which the growth takes place. The transformation 

may also be considered displacive in so much as feritic plates form with ordered 

dislocation paths and so to an extent rely on shear to form.

Upper bainite is characterised by the growth inter-lath cementite through the rejection of 

carbon into these areas. This results in a similar lath structure to that observed in high Ms 

martensite formation, but without the regularity of the purely military transformation. The 

upper bainite structure itself grows in austenite in a more feathered and less ordered in 

nature than that of martensite. Interestingly some steels will see some of the carbon 

enriched austenite between bainite laths remain stable at room temperatures. However, 

more often than not, any retained austenite in the structure during cooling transforms to 

martensite.
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Lower bainite forms at lower temperatures and is characterised by an acicular structure of 

large plates. It tends to be identified by the precipitation of carbides within the ferrite plates 

rather than between them. Furthermore, these carbides are much finer than the inter-lath 

carbides of upper bainite. This structure leads to a substantial difference in strength and 

ductility between the two bainitic forms.

2.4.2 Structure / property control

Heat treatment o f steels can produce a variety of microstructures, from simple hypo- 

eutectoid ferrite / pearlite microstructures though eutectoid steels to austenitic and duplex 

grades. Only those pertinent to this investigation will be dealt with in detail here, namely 

quenching or hardening treatments and tempering treatments for martensitic steels. 

Nevertheless, a basic appreciation of fundamental heat steel heat treatments is outlined 

below.
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Figure 2.4.4 summarises well the basic heat treatments applied to ferritic and pearlitic 

steels, though it is worth pointing out that normalizing also has beneficial effects on 

hardenable steels. Annealing is performed just inside the single phase austenite region 

(above AC3) and results in spherodization of the cementite phase. This improves both 

ductility by making the ferrite matrix more continuous and fracture toughness by removing 

intergranular cementite that promotes catastrophic intergranular failure. Homogenisation 

occurs during hot work well within the austenite phase field. This reduces solute 

segregation and concentration gradients and dissolves harmful carbides via a diffusion 

controlled process. Finally normalizing occurs just above the AC3 and A Ccm temperatures 

and is designed to produce uniform but fine microstructures consisting of ferrite and 

pearlite. Normalizing post hot work generally results in a fine prior austenitic grain size 

and so can be a useful tool in steel hardening. Unfortunately, normalising tends to result in 

the precipitation of harmful grain boundary carbides, these can be sperodized or solutioned 

during subsequent homogenisation.

2.4.2.1 Quenching / hardenability

Hardenability may be defined as the susceptibility to hardening by rapid cooling and is the 

single most important attribute in high strength steels. As mentioned in section 2.4.1.1, 

carbon is the most important element in controlling hardenability in steels. The relationship 

between carbon content and resultant hardness can be seen in Figure 2.4.5. Having 

established this relationship, it can then be balanced against process parameters such as 

quench rate (quench medium). As is shown in this section the effect of carbon content and 

cooling rate can then be further manipulated by the addition of other alloying elements. 

This enables comprehensive control of alloy properties within the hardenable steels sector.

29



1100

1000

900

800

700
Martensitic structure (quenched)

■g 600
50*

<8 500

5} 400 40 45

300 Pearlitic structure (air cooled)

200

100
Spheroidized carbide structure

0.20 0.40 0.60 0.80 1.00 1.20
Carbon, %

Figure 2.4.5: The effect of temperature and carbon content on plain carbon steels (hatched 
area denotes retained austenite as a result of high carbon content).

Given this relationship, cooling rate or more specifically ‘quench severity’ must be 

considered. Quench severity (H) is dependant not only on the medium but also crucially on 

material thermal diffusivity. As a result, cooling rates during a quench vary over a 

specimen cross section, being high at the extremities and gradually reducing towards the 

centre. In addition, local cooling rates are non linear and tend to follow the three stage 

process. This is characterised by slow initial cooling as a result of vapour insulating the 

specimen surface, rapid cooling as this ‘blanket’ breaks down allowing new media -  

surface contact and slow conduction / convection controlled cooling to ambient 

temperature below the medium boiling point. As a result of these effects, a considered 

choice of bar / specimen size, quench medium and any agitation to the quench (to disrupt 

the insulation effect) must be applied to alloys o f varying carbon content.

The fundamental goal of introducing alloying elements to hardenable plain carbon steels is 

to limit the ability of the material to transform from austenite to ferrite or mixtures of 

ferrite and cementite. This can allow martensite formation at far reduced cooling rates to
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those required for plain carbon steels. The effect o f some typical steel alloying elements on 

hardenability can be seen in Figure 2.4.6.

9.00

8.00

7.00

o 6.00
o>g 5.00
Q.
S 4.00

3.00

2.00 Nickel

1.00

%  of e lem ent 3.02.5 3.5
A bscissa  for higher nickel

Figure 2.4.6: The effect o f alloying elements on the quantitative hardenability of plain
carbon steels [23].

To better visualize this effect in real terms it is useful to observe the changes that alloy 

additions can have on the CCT diagrams. This is demonstrated with reference to difference 

between the positions of the phase fields in the experimentally derived CCT diagrams 

shown in Figure 2.4.7 and Figure 2.4.8. The extension of the martensite field to encompass 

oil quenches and even rapid air cools are immediately apparent as is the depression of the 

Ms temperature. Bainite evolution has also been depressed significantly and pushed to 

slower cooling rates. Perhaps most influential of all is the considerable retardation of ferrite 

and pearlite formation, strongly limiting the possibilities of its occurrence in the 

microstructure. The use of bar diameter to define transformation also helps to emphasise 

the real effect that shifts in the fields bring. Namely that bars of increasing diameters may 

be fully hardened (full hardening is accepted as a microstructure containing more than 50% 

martensite) at given cooling rate and therefore quantitative hardenability may be said to 

have increased.
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under a variety of quench severities. The effect of alloy additions are normally expressed as 

multipliers o f this value, as they are in Figure 2.4.6.

2.4.2.2 Tempering

Tempering can be defined as the heat treatment of brittle steels to improve ductility and 

fracture toughness. It is driven by the poor thermodynamic stability of martensitic phases at 

room temperature, with its high energy state allowing significant microstructural 

modification by diffusion even at relative low temperatures. Tempering is typically 

performed within two temperature windows around 150-200°C and 425-500°C. The lower 

window produces mild tempering associated with tool steel heat treatments, conversely the 

upper window is associated with a significant degree of softening and tends to be reserved 

for elevated temperature applications. It is important to note that the range between these 

two windows of around 350°C is associated with a hardening effect referred to as tempered 

martensite embrittlement or TME.

The tempering process may be considered temperature -  time interchangeable, i.e. 5 hours 

in the lower window may produce similar effects to 30 minutes in the upper window. This 

relationship is quantitative and can be described by equation 2.3.2.2 below. Phase evolution 

during tempering can be broken down into three stages:

1. e carbide precipitation with in martensite laths (150°C)

2. Transformation of retained austenite to ferrite and pearlite (200°C)

3. Replacement of martensite by ferrite and cementite (350°C)

Alloying additions can have the effect of retarding the softening effect during tempering. 

These are primarily carbide formers e.g. Cr, V and Mo. The effect o f these elements is to 

produce carbides which limit martensite decomposition by forming inter and intra lath 

carbides. The effect of various elements for the two main tempering windows is 

summarised in Figure 2.4.9 and Figure 2.4.10.
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tempering at 260°C [25].
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With reference to Figure 2.4.9 in particular, the impression is given that phosphorous is a 

useful element in retardation of tempering. However, its effect is so great that it can result 

in embrittlement effects summarised as temper embrittlement. Temper embrittlement (TE) 

is a major point of concern in processing steel, particularly those steels which require high 

temperature stability and hence undergo significant tempering (e.g. rotor steels in turbine 

engines). TE occurs within the high temperature window in tempering (375 -  575°C) and is 

associated with increased ductile / brittle transition temperatures. Embrittlement is a 

reversible process, for example, it could develop within an hour at 550°C but be eradicated 

in 15 minutes at temperatures in excess of 575°C. As previously mentioned TE relies on 

elements such as P, S, An, and Sn in small amounts and Si and Mn in large amounts to 

become prevalent, as these elements form carbides segregate to grain boundaries to induce 

brittle intergranular failure. In response to these additions of Mo help to form (Mo,Fe3)-P 

and Mo-P clusters that prevent segregation. To reinforce this effect, steps have also been 

taken to reduce Mn and Si to very low levels as they have also been found to directly 

segregate to grain boundaries to exasperate TE. These refinements tend to be achieved 

through VIM, VAR, ESR and ladle refining.

2.4.3 Alloy development and application

Whilst significant microstructure / property control is possible through the manipulation of 

carbon content in the early plain carbon steels, attention soon focussed on the benefits of 

tertiary and quaternary systems to further influence mechanical properties; in particular 

hardenability. As such alloying additions were controlled by the effects outlined in sections

2.4.2.1 and 2.4.2.2. This led to a progression in alloy development, from the early 

hardenable steels to the Super CMV alloy, which is outlined below.

Early forms o f the hardenable steels exclusively employed chromium and molybdenum 

such as the standard 2.25Cr -  IMo grades. Despite enhancement, these grades were shown 

to be susceptible to temper embrittlement and poor creep ductility. This lead to additions of 

vanadium and trace amounts of titanium and boron leading to the 2.25Cr-lMo-0.25V and 

3Cr-lMo-0.25V-Ti-B grades. These alloys displayed improved creep properties and so
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higher temperature capability [26]. Nevertheless, as demands on the materials increased a 

need for further improvements in strength and temperature capability was apparent.

It has been long recognised that inclusions and more specifically non-metallic inclusions 

have a deleterious effect on mechanical properties. The relationship between reduced non- 

metallic elements and improved creep, fracture toughness and fatigue properties are widely 

reported [27, 28]. As oxygen, phosphorous and sulphur are the most abundant residual 

elements and present the greatest problems in this regard, they draw the most attention. 

Many of the low alloy tempered steels (such as some tool steels) destined for sub critical 

application required little refinement beyond that which basic refining processes such as 

BOS and ladle refining could produce. However, for the more demanding aerospace and 

reactor vessel applications, the need for further alloy development through refinement was 

identified. This lead to the concept of clean steels.

As pointed out by Kiessling [29], this is a debatable concept and no steel may truly be 

considered clean. Conversely, given that the tensile strength o f pure iron is inferior to that 

of most steels, some may argue that steels can be ‘‘too clean’. Here its is noted that 

cleanliness cannot be considered purely in terms of concentration but in a more holistic 

manner that assesses inclusion size and distribution. Taking critical inclusion size as an 

example, steels of given oxygen content can exhibit lower critical size where refinement 

has lead to a wider distribution of inclusions. In an attempt to simplify these considerations 

it’s generally accepted that cleanliness may be considered to be a probabilistic concept 

dependant on application, i.e. steel may be considered clean when the probability of finding 

non-metallic inclusions is small enough to satisfy the needs of the application. This 

synopsis proves useful in putting clean steel development into perspective as in reality it is 

almost always the applications that drive the alloy development.

It is much along these lines that the Rolls Royce developed Super CMV alloy was 

produced. The reasoning behind the advance is summarised well by Ford [30]. As engines 

evolved from the Olympus, through the RB211 and on to the Trent series, demands on 

efficiency lead to higher bypass ratios and reduced core size. This in turn led to an 

increased demand on the shaft which also had to match the size constraints imposed by the
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bore of the HP turbine disc. As a result the shaft material would have to withstand twice the 

torque (in the LP shaft) and deliver on a 25% weight reduction. In addition to this, the 

material also had to withstand the bend and uniaxial stresses associated with takeoff and a 

built in contingency for the high cycle fatigue regimes associated with a blade off scenario. 

The Rolls Royce engineered S/CMV alloy was the material of choice through the Olympus 

-  RB211 era but it soon became apparent that this would not stand up to the demands 

placed on it by the Trent designs. As a result, the new Super CMV alloy was developed 

that was improved on the original alloy in three main areas:

1. Reduced tempering temperatures were employed to increase UTS which also 

produced an improvement in LCF life (Figure 2.4.11).

2. Alloy chemistry was adjusted to improve hardenability.

3. Triple vacuum remelting techniques were employed to improve cleanliness and 

hence enhance fracture toughness and HCF resistance.
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Figure 2.4.11: The relationship between tempering temperature and UTS for the S/CMV
alloy [30].

The result was an alloy that delivered on both strength and weight criteria and also 

crucially was able to be processed under the same route as its predecessor. These 

developments coupled with design alterations pertaining to splined couplings between 

shafts lead to excellent shaft components that are still in use today.
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2.5 Powder metallurgy

The primary role of powder metallurgy (PM) is as an alternative to conventional casting, 

facilitating solid state net shape component manufacture in materials for which 

conventional processes pose great difficulty. This includes materials susceptible to 

solidification cracking and hot tearing, refractory materials o f high melting point 

(ceramics) and materials requiring high permeability such as filters and metal sponges. The 

solid state nature of the process lends itself to application for materials prone to segregation 

(high alloy materials) during rapid solidification, resulting in smaller volume fractions of 

deleterious intermetallic precipitates and inter-dendritic segregates [31] (PM is limited to as 

cast / sintered components and can produce forgeable materials which can achieve 

exceptional mechanical properties such as alloy RR1000 [32]).

As with any process, powder metallurgy has its disadvantages. The nature of many of the 

alloys produced by powder metallurgy (especially ceramics) result in low defect tolerances. 

Whilst deleterious solidification microstructures can be avoided, porosity, the primary 

defect source in PM components, cannot. Although smaller mean particle sizes help to 

reduce this effect, often subsequent thermo-mechanical processing is required to remove 

these defects. It is generally accepted that the multiple steps involved in conventional PM 

processes from powder production, compaction, sintering (consolidation) and on to 

subsequent component heat treatment define an inherent complexity and cost for the 

process. However, despite these drawbacks, PM manufacturing is increasingly popular in 

the aerospace industry.

The following section details the most pertinent aspects of powder metallurgy technology 

as it is applied to this investigation. The two ‘second generation’ powder metallurgy 

processes of metal injection moulding (MIM) and field activated sintering (FAST) receive 

particular attention.



2.5.1 Production of powders

The fundamental goal in powder production is to make as uniform a powder as possible n 

respect of particle size, morphology (e.g. irregular, clustered, spherical) and size 

distribution. Generally, finer powders (of highest apparent density) are considered to result 

in the highest quality components [33] but wide particle size distributions have also been 

shown to be beneficial [34]. In reality, decisions on powder quality are made by 

compromise between application and price. For instance, the small net shape components 

produced in metal injection moulding processes tend to use smaller, more expensive 

powders (l-40pm), whereas for larger wrought components particle sizes in excess of 

100pm may be acceptable [35].

Whilst several commercial powder preparation routes have been developed (mechanical, 

chemical and electrolytic), inert / soluble gas atomisation processes are acknowledged as 

the most effective. Although there are many variations on the theme the basic principles of 

gas atomisation are depicted in Figure 2.5.1. Essentially, a molten metal held in a tundish is 

fed through an annular nozzle into the atomisation tower. On falling from the nozzle the 

molten metal is separated into discrete particles as it comes into contact with a fluidised 

bed of gas. The rapidly solidified particles are then drawn by gas flow to a collector for 

storage and subsequent refinement. The resultant particles are typically of near spherical 

geometry with relatively low levels of porosity [36].
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Figure 2.5.1: A schematic representation of the gas atomization process [36].

2.5.2 Compact consolidation -  sintering

Following powder production and subsequent selection, cold compaction of the powders 

(with and without the presence of binders and lubricants) result in ‘green’ compacts, these 

can be (and often are) formed to near to net shape specifications (allowing for shrinkage 

during compact consolidation). Compaction is achieved by a variety of techniques 

including powder rolling, powder forging and unidirectional / isostatic pressing. These 

compacts maintain a ‘green strength’ which can allow them to be checked for tolerances 

and stored prior to consolidation. However, little increase in apparent density is noted at the 

compaction stage. Green compacts that have incorporated lubricants or binders undergo a 

further debinding stage prior to consolidation whereby they are heated (often in the 

presence of a vacuum) to allow vaporisation and degassing. The resultant debound 

compacts are said to be in the ‘brown’ state and maintain a ‘brown strength’.
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Sintering is the heating of green or brown compacted metal powders to facilitate bonding 

between the particles within the compact. Traditional methods for sintering almost 

exclusively employ ambient / furnace heating and include, hot pressing, hot isostatic 

pressing and cold isostatic pressing etc [37]. However, over the last 20 years the 

implementation of electric current to facilitate consolidation through resistance heating has 

received increasing attention [38-41]. Known as field assisted sintering (FAST), the 

process has demonstrated significantly improved sintering capabilities at lower 

temperatures than that of its conventional counterparts [42]. Obviously, the mechanisms of 

FAST are of great relevance to this investigation. Consequently, inherent factors in PM 

such as inter-particle contact (and so particle size and shape), particle composition and 

particle structure will be discussed in the following section with particular reference to 

their role in the FAST process.

2.5.2.1 Powder considerations

Basic sintering process kinetics can be shown to be related to diffusion distance squared. 

Particle size determines the diffusion distance and hence has marked effect on the 

effectiveness and rapidity o f compact consolidation. Particle size becomes especially 

important when considering the homogenisation of blends where the particle size of a 

minor constituent isolated in matrix particles (left indiscernible by the compaction process) 

becomes crucial. Blending is of high importance to the quality of the finished product. 

Poorly blended powders tend to homogenise more slowly as the inter-diffusion distances 

are large. The proportion of minor constituent within a blend has also been shown to effect 

process kinetics, reducing them as its proportion decreases.

Particle structure also affects both contact area and the diffusion distance, as in the case of 

a hard particle that is not easily deformed during the compaction stage. Particle shape is 

less important as the diffusion field itself is a more dominant factor in determining process 

kinetics. Only extreme variations in particle shape cause the diffusion field to deviate from 

a spherical nature. Finally, individual particle composition also plays an important role as it

41



defines the initial heterogeneity o f the powder compact and so the concentration gradients 

that provide the initial driving force for diffusion.

In addition to these fundamental factors, further consideration is appropriate in FAST 

processes where heat is generated as a function o f compact resistivity and thermal 

conductivity. These properties are known to change throughout compact consolidation and 

so particle microstructure (and subsequent hardness) and local thermoelectric properties are 

o f importance [43]. Initial consolidation also depends strongly on complex local contact 

resistance effects at particle interfaces which will amplify the particle shape and size 

effects noted in conventional sintering. Finally, the use o f blends may also affect local 

electric fields depending on their electrical properties, though these effects have not 

received attention in the literature.

2.5.2.2 Process parameters

The primary influence of temperature in sintering is on atomic mobility, defined by the 

diffusion coefficient for the system, which can be given by the following Arrhenius 

relationship:

D, = D0 exp
' d k 'RT
v  /

Where Di is the inter-diffusion coefficient, Qi is the activation energy for lattice diffusion, 

Do is a material dependant constant, R is the universal gas constant and T is the 

temperature (K). Evidently, as temperature increases the rate of diffusion increases. Whilst 

these mechanisms apply to FAST it is important to note that the temperature profile is 

transient, being localised at inter-particle interfaces initially, and becoming more uniform 

throughout the process; therefore rates o f diffusion and consolidation kinetics behave 

proportionally [44]. This initial concentration of energy can be considerable resulting in 

micro level arcing between particles. Far from being deleterious, this behaviour is thought 

to be beneficial as it helps to break down surface oxides (discussed in section 2.8.1) at the

42



interfaces and is cited as one of the primary reasons for the improvement in consolidation 

kinetics associated with the process [45]. Aside from temperature, current flow itself has 

also been shown to increase atomic mobility and subsequent phase transformation kinetics, 

phase evolution, crystallisation and defect mobility [46, 47]. These effects are thought to 

improve latter stage consolidation through the promotion of lattice / grain boundary 

diffusion.

Mechanical working prior to, during and after sintering can all have a marked effect on 

final alloy quality. Increased pressure during compaction results in a higher compact 

density resulting in better inter-particle contact and hence increased inter-diffusion. Work 

during sintering both induces lattice defects (increasing inter-diffusion coefficient) and 

alters particle / overall compact dimension. The lattice defects tend to anneal out rapidly at 

the high temperatures employed in conventional heat treating processes and so have little 

effect on sub sequent component properties. Particle geometry on the other hand affects the 

inter-diffusion process throughout the process as it changes from spherical to tubular to 

planar. The increased area results in increased inter-diffusion, but the radical change in 

shape also transforms the diffusion field from 3D-2D-1D, reducing process kinetics. 

Nevertheless, large deformations that lead to these changes in particle geometry, usually 

result in increased homogenisation kinetics overall. More recently it has been shown that 

the plasticity o f materials can substantially increase in applied electric fields, due to the 

effect of an “electron wind” which improves dislocation movement at a given temperature 

[48].

Whilst time is a key factor in manufacturing, as a process parameter it exists in a 

constitutive relationship as a function of pressure and temperature. Hence, for cold pressing 

processes longer times and higher pressures tend to be employed and visa versa. Given its 

importance on an industrial scale, often pressure and temperature are optimised to provide 

the shortest time possible whilst still maintaining component quality. Information available 

in the literature to date suggests that FAST processing can result in reduced consolidation 

times for a given temperature, pressure and quality compared to conventional processes.
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2.5.3 Microstructural features of consolidated PM materials

The microstructure of alloys produced by powder metallurgy generally consist of:

• The matrix

• Pores

• Un-dissolved particles

• Films of bonding material

• Precipitates

• Impurities

Each of these features, properly studied, can elucidate useful information on original 

powder quality, the degree of mixing, green strength, sources of defects and the post 

sintering process history of the alloy.

2.5.3.1 Matrix

The appearance of the matrix material can vary from a multicrystaline granular structure to 

one that is almost indistinguishable from that of the powder compact that preceded it. In 

this respect it provides the most obvious indication of the quality of the alloy produced. 

However, there are other more discreet features of its make up that can reveal a great deal 

about the specific history of the alloy. For instance, twinning is possible as a result of 

extensive pressing of the alloy followed by sintering. Further, grain boundary migration 

can be indicated by a polycrystalline mass surrounded by filamentary porosity (explained 

later). On the whole, improperly developed structures serve as a sign of under pressing or 

under sintering, whereas well developed structures are a sign of proper sintering, often at a 

temperature approaching fusion.
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2.5.3.2 Pores [49]

The nature of powder metallurgy makes porosity the most important consideration in terms 

of the quality of the product. For this reason porosity defines the quality of an alloy 

produced by powder metallurgy. This leads to these alloys being grouped according to their 

total porosity levels:

• Materials with less than 10% porosity are termed high density material and tend to be 

applied to electrical contacts, magnets and hard carbides.

• Materials with 10-20% porosity form the majority of all parts produced as mass 

production engineering materials.

• Materials with 20-30% porosity generally have such high levels for a reason, porosity 

dedicated as oil reservoirs for self lubricating bearings for instance.

• Materials with around 70% porosity are reserved for specialised filter materials. [36]

Here it is worth noting that a material that contains 5% total porosity concentrated in a 

small area may have poorer mechanical properties than a material with 20% porosity 

distributed over a wide area. The total porosity must not only be quoted but defined. The 

fundamental factors to consider are outlined below.

2.5.3.2.1 Porosity type

There are four different types of porosity. Primary porosity comes as a result of pores that 

were present prior to sintering and were not removed by the sintering process. Secondary 

porosity forms during the sintering process, generally from the formation of gas evolved on 

heating or precipitated from a liquid on melting. Interconnected porosity occurs at the 

interface between the original particles, these pores are eventually eliminated by solid state 

diffusion and grain boundary migration. Finally, closed porosity occurs from a combination 

of the closure of filamentary pores and surface tension effects acting at the pore interface; 

these are often, but not always, spherical. The appearance of closed pores indicates that a 

steady state is being approached in the process.
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2.5.3.2.2 Porosity shape and distribution

Porosity shape is often defined by its mode of formation and can so elucidate information 

on process conditions:

• Filamentary porosity forms along the dividing lines between particle aggregates. They 

can be found in sintered or unsintered material.

• Irregular porosity is unsurprisingly related to neighbouring irregular particles. As 

sintering continues mass transfer, evaporation and surface effects lead to spherodization. 

Hence monitoring these irregular pores can help to monitor the progress o f the sintering 

process.

• Laminar porosity generally comes as a result of overlaying particles and more popularly 

from air trapped between flake material.

• Cuspoid porosity occurs at the mid-stage of the spherodization of irregular particles.

• Spherical porosity can occur initially as a result o f gas evolution but also forms as a result 

o f the spherodization of other pores and so generally gives an indication o f an approach to 

steady state transformation kinetics.

The distribution of pores throughout the structure is equally as important as the amount, 

shape, size and type o f the porosity present in the material. Generally a uniform distribution 

indicates good mixing, pressing and sintering techniques and is obviously a sign of a 

narrow particle size distribution. Variable pore distribution is mainly due to a wide particle 

size distribution, although uneven temperature distribution is also a factor. Similarly, 

random porosity is unintentional and undesirable but tends to be as a result o f the 

spherodization of isolated particles described above. Further to these general considerations 

four more specific pore locations are normally apparent:

• Myriad porosity accounts for minute pores created by gas evolution during sintering these 

are almost always o f a closed type.

• Inter-particle porosity is an example o f primary porosity, this is generally, but not always, 

a sign of poor sintering.
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• Intergranular pores act as grain refiners and tend to be as a result of shrinkage in the 

liquid phase or air expelled by an advancing liquid phase (especially if the pores are large).

• Intragranular pores are closed pores within a grain due to insufficient ability to escape via 

filamentary porosity prior to grain boundary migration.

Careful consideration of a combination of the factors affecting porosity during 

microstructural evaluation would help to refine the properties of a material to best suit its 

application without the need for large scale mechanical testing.

2.5.3.3 Other defects

There are two further defects traditionally associated with powder processed 

microstructures. These are un-homogenised particles and inter-particle carbide and oxide 

precipitation at prior particle boundaries (PPBS). In most cases impurities can be traced 

back to powder production in the form of surface oxides. Less likely, but still possible, is 

the introduction of impurities during the sintering stage. Impurities accrued at this stage 

tend to be due to inadequate atmospheric control.

2.5.4 Metal Injection moulding (MIM)

Metal injection moulding is a ‘second generation’ powder processing technique that is of 

particular relevance to this investigation. Derived from the conventional injection moulding 

technology of the polymer industry, the process has the ability to produce complex parts at 

high productivity levels. The fundamental working principles of PIM are outlined in Figure

2.5.2. The process involves the mixing of a powder with a binder which is injected into a 

die through conventional techniques. The compacted green parts are then subjected to a 

debinding stage and the brown parts are then sintered to full density to produce the finished 

component. Crucially, the process is not associated with post consolidation thermo­

mechanical processing which allows many hundreds of parts simultaneously and 

continuously in a production line setting.
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Figure 2.5.2: A schem atic representation o f  the M IM  process [50].

As a result o f  the aforem entioned m anufacturing benefits, the M IM  industry is grow ing 

rapidly. Recently, refinem ents in the process have lead to the production  o f  high quality , 

high to lerance com ponents w hich can com pete w ith that o f  investm ent castings. W ith 

relative densities o f  92 -  98% , these com ponents are now  being considered for m ore 

critical applications [51]. Som e exam ples o f  M IM  com ponents can be seen below  in Figure

2.5.3.

Injection moulding

Debinding

Figure 2.5.3: Exam ples o f  the com plex geom etry  com ponents that can be produced by the
M IM  process [52].
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2.6 Fundamentals of welding

Prior to the development of modem welding techniques the joining method of choice for 

metals came in the form of fasteners, normally bolts or rivets. For certain applications these 

are still the method of choice, in bridges and aircraft fuselage for instance. This is generally 

because the interconnecting but discrete panels or girders prevent large scale crack growth 

throughout entire structures which has been known to cause catastrophic failure in the past 

[53]. In this respect fasteners provide peace of mind but local joint strength is not 

comparable to that of a weld and crucially the level of productivity associated with welding 

is considerably greater. Careful choice of welding process, base metals, filler metals and 

joint design can yield excellent joined components rapidly and efficiently. Although 

conventional fusion welding does not fall under the scope of this investigation it is 

important to have an appreciation of these techniques when considering its findings. Some 

of the key aspects of welding / metallurgical joining are outlined in the following section.

2.6.1 Common considerations

The main considerations for welded joints can be broken down into the following areas:

• Joint design

• Joining process

• Metallurgical factors / joint chemistry

• Cleanliness

• Post weld heat treatments

• A summary of all the joint designs can be viewed in

Table 2.6.1; these are T, Butt, Comer, Lap and Edge joints. Each can be broken down into 

several subdivisions which will not be dealt with in detail here. Choice of design is often 

intuitive. Nevertheless, briefly:
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• Butt joints can be performed on a range of section sizes and tend to employ grooves 

to improve through section adhesion (

• Table 2.6.1).

• T and comer joints are similar in nature and often require little preparation, but 

comer joints in particular are hard to set in position and so suffer from low productivity.

•  Lap joints are perhaps the most common joint designs for thin sections such as 

sheet. Easy lay up of these joints allows for exceptional productivity and lend them selves 

to high speed processes such as resistance spot / can welding.

Table 2.6.1: A summary of joint and weld designs.
Types of welds
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The results o f previous investigations have shown that cleanliness is a fundamental factor 

in joint quality [2] and as described in section 2.4.2 the elements associated with dirty 

inclusions (Si, C and S) can have a severe effect on base metal properties. The level of 

cleanliness for welds depends on application and operating conditions and can range from 

clean room type conditions for aero and nuclear applications to minimal efforts for non 

structural components.
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Metallurgical factors and standard heat treatments are discussed in the following sections 

with the plethora of the established welding techniques developed to date summarised in 

section 2.7

2.6.2 Weld microstructure and basic metallurgical factors

This section focuses on the typical metallurgical factors associated with fusion welds. 

Whilst some these may not have a direct bearing on the process under investigation many 

of them are pertinent, especially factors affecting the heat affected zone (HAZ). The two 

most useful theoretical tools for assessing metallurgical factors in welding are TTT and 

CCT diagrams. Of these the CCT diagram provides the most useful information, as 

isothermal transformations in welds are so short as to be non-existent. These diagrams are 

not referenced specifically in this section however it is important to remember that many of 

the factors touched upon herein can be deduced with reference to them.

2.6.2.1 Weld Structure

The typical weld structure was researched by Szekeres et al [54] who presented a 

methodology by which welds may be considered. This is summarised in Figure 2.6.1.

Composite zone

Unmixed
zone

^-Partially I 
melted zoneWeld interface Heat-affected

zone
Unaffected 
•base metal

Figure 2.6.1: A summary of weld structures as presented by Szekeres et al [54].
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The composite zone consists o f a mixture of base metal and filler metal, where the mixing 

occurs as a result of convection. As the name suggests the unmixed zone consists of 

solidified base metal that solidified before mixing. The weld interface marks the transition 

between the melted region or fusion zone and the HAZ and is generally bordered by areas 

o f partially melted material. Finally, the HAZ is defined as an area where microstructural 

changes have occurred as a result of solid state diffusion driven processes.

In the fusion zone the weld microstructure evolves through epitaxial growth of columnar 

grains from pre-existing lattice sites in the HAZ. The morphology of these grains can range 

from regular and perpendicular to weld direction with a well defined centerline (associated 

with a tear drop weld pool formed during rapid weld speeds), to more randomly orientated 

columnar structure (associated with a more spherical pool formed for low weld speeds). 

Generally high heat input and rapid weld speeds result in significant solute segregation to 

the centerline o f the associated microstructure and poor weld quality. The solidification 

structure of columnar grains ranges from dendritic to cellular depending on the amount of 

constitutional supercooling (CS). Interfacial stability with reference to CS is presented in 

Figure 2.6.2, but in general the rapid cooling rates associated with fusion welding tend to 

result in dendritic substructures. This can result in a number of detrimental effects 

including the retention of high temperature phases in weld microstructures that are 

preserved within solute rich dendrite cores such as 5 ferrite in steels.
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Figure 2.6.2: Effect o f thermal gradient on the mode of solidification in welds for a 
constant growth rate (a) planar growth (b) intermediate or cellular growth (c) dendritic

growth (d) solidification of the weld.

The HAZ microstructure shows the largest grain size immediate to the weld interface, from 

where grain diameter decreases with increasing distance. Aside from this effect the HAZ in 

single phase systems (such as Ni) is often indistinguishable from the base metal. However, 

the HAZ in allotropic systems (such as Fe and Ti) can show a wide variety of 

microstructures (sections 2.2.4 and 2.4.1) depending on local temperatures and cooling 

rates.

2.6.2.2 Typical Weld Defects

Unfortunately porosity is common in fusion welds and it tends to occur as a result of 

absorption o f ambient gases at high temperature which then precipitates at low 

temperatures and becomes trapped. For this reason porosity is associated with rapid cooling 

rates. Susceptible metals like titanium are those which exhibit high solubility for gases such 

as sulphur, hydrogen and nitrogen. However, gases may also evolve heterogeneously, from 

vaporization of any oils and / or volatile metals (Ga, Se, Pb) present. Less common but also
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of note is the homogenous evolution of gases through the reduction of metal oxides in the 

presence of hydrogen. Furthermore, it is not uncommon for porosity to occur in solid state 

joining processes for some binary systems [55].

Cold cracking is a phenomenon relative to hydrogen absorption and is a considerable 

problem in welding. Cold cracking results when hydrogen stored in weld material diffuses 

to vacancies created at stress concentrations where it agglomerates, resulting in crack 

formation. This cracking can be inter or trans-granular and can occur from 300°C down to 

sub zero temperatures. This effect is particularly prevalent in martensitic microstructures as 

they exhibit poor fracture toughness and high internal strains; hence it is of particular 

interest to this investigation. In welding specifically, the effect is known to occur as a result 

o f tensile shrinkage stresses. This effect can be avoided by preheating welds to allow gases 

time to diffuse to the metal surface. The trapping effect of MC type carbides has also been 

known to mitigate this effect [56].

The other common weld defects are reheat cracking and hot cracking. Reheat cracking 

occurs as a result o f precipitation hardening in the HAZ which weakens grain boundaries 

leading to intergranular cracking. Cracking in these cases can be initiated by internal 

residual stresses as well as applied stresses and is associated with residual elemental 

contamination [28]. Hot cracking is specific to fusion welding and affects alloy 

compositions with large solidification ranges where dendritic solidification structures are 

prominent [57]. Cracking is caused when inter-dendritic solute rich liquid is separated by 

solidification shrinkage effects prior to overall weld solidification. Hence alloys with large 

solidification ranges are harder to join well via fusion welding.

2.6.3 Standard heat treatment process

A wide variety o f heat treatments are applied to welds, the specifics of which depend on 

service conditions and metallurgical factors. However, one common goal in HT processes 

is stress relaxation. As pointed out above, residual stresses can lead to or exasperate a 

number of weld defects and the redistribution of strain through the destruction of

54



dislocation pile ups and lattice defects goes a long way to relieving these problems. Many 

of the common treatments have previously been touched upon, such as normalizing and 

tempering. Nevertheless, it is worth noting that other treatments such as solution treating 

and ageing to unify strength in precipitation hardenable alloys and specific treatments to 

counteract hydrogen embrittlement by outgassing are also employed.

2.7 Established welding techniques

A wide variety of conventional fusion welding techniques are applied to joining in the 

industrial sector from oxy -  acetylene welding, explosive and thermite welding to electro- 

a,rc based techniques and power beam (laser / electron heated) methods. Whilst the merits 

of some of the more basic processes are acknowledged those outlined below offer the most 

success in joining for high demand applications and specifically the ability to join 

dissimilar metal pairs.

2.7.1 Metal inert gas (MIG) welding

MIG welding is the most widely employed of the arc welding processes due to its high 

rates of productivity, low cost equipment and versatility. Heat is generated by the 

formation of an arc between a consumable metal electrode (which can also acts as a filler 

metal) and the metal surface. The arc itself is shielded by a controlled flow of inert gas 

(normally argon, helium or argon / hydrogen mixes) that flows around it. For optimum 

weld quality joining is normally carried out using direct current with both electrode 

negative and positive polarities (DCEN and DCEP respectively), with DCEN providing a 

greater degree of penetration for joints in thicker sections. Unfortunately the nature of the 

process makes it susceptible to contamination from the necessary electrode flux, short 

circuits between the electrode and the workpiece and excessive weld spatter from the 

electrode. An extension of this technology known as submerged arc welding (SAW) 

involves the metal electrode being submerged in a flux which prevents spatter and 

scavenges oxygen, nitrogen and phosphorus making it especially attractive for welding 

hardenable steels and nickel alloys.
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Although primarily applied to steels, MIG welding can be used for welding nickel alloys 

but care must be taken to ensure the electrode has seen a bake out procedure to prevent 

hydrogen evolution. MIG welding is often ignored for joining titanium due to its poor 

success in the past. Nevertheless its poor performance can be mainly attributed to the poor 

surface finish o f the titanium products that resulted in rapid tip wear. Modem titanium 

products no longer suffer from this problem and the advantages of MIG can now be better 

exploited.

2.7.2 Tungsten inert gas (TIG) welding

A schematic representation of the TIG welding process is outline in Figure 2.7.1. The 

configuration is similar to that of MIG welding except a non consumable tungsten 

electrode is employed. TIG welding of nickel base alloys is typically shielded in an argon 

helium mix utilising direct current electrode negative (DECN) conditions to allow close 

control of arc stability. Normally, shielding is sufficient for welds to be conducted in air, 

producing superior weld quality to that associated in MIG welding [58]. Further advantages 

over MIG welding include the ability to join reactive metals, less weld spatter (as a result 

o f the inert electrode), the use o f current pulsing to control heat in the workpiece and the 

ability to join without filler metals. Weld quality is achieved through sacrifices in speed 

and the low deposition rate can have adverse effects in thick sections.

TIG can be readily employed for all the materials under investigation here is ideally suited 

to welding titanium. In fact, if  stringent cleaning and shielding techniques are employed, 

titanium is one of the easiest metals to weld by this process. The low density of the material 

together with the high surface tension in the weld pool allow an excellent control of weld 

speed and quality to be attained. TIG has the added advantage that it can be operated 

manually or automatically as well as having very little weld spatter.
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TIG Welding
non consumbable 

tungsten 
electrode

filler rod 

molten pool

Figure 2.7.1: A schem atic diagram  o f  the TIG  w eld ing  process.

2.7.3 Plasma arc welding (PAW)

Heat is generated in PAW  through the creation  o f  an arc betw een an ionised (helium  argon 

m ixtures) gas and the electrode and as a result m uch higher heat intensities are possible for 

a given pow er input. D ecreased pow er input also facilitates m uch greater arc control at 

high tem peratures allow ing PAW  to m aintain  the high w eld quality  seen in TIG  at the high 

speeds productiv ities associated w ith M IG. Furtherm ore, the process does not suffer the 

tungsten contam ination effects associated  w ith TIG  w elding. T hese benefits have to be 

balanced against increased cost, reduced positional versatility , a greater required operator 

know ledge and skill and large torch d iam eter and associated  H A Z.

The use o f  plasm a also enables precise ‘key h o le’ w elds to be perform ed at critical areas in 

a com ponent. H ere the torch vaporises m aterial to produce a hole in the w orkpiece. A s the 

torch is m oved along the jo in t the m elt from  advancing  surface passes the torch and 

coalesces at its trialing edge through surface tension effects. T his allow s th ick  sections to 

be bonded w ithout the requirem ent for m ultip le passes and produces a uniform  w eld bead

workpiece

shielding gas
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with no cracking. U nfortunately, to shield the w eld, a backing inert gas is required for the 

underside o f  the w orkpiece.

Orifice Gas

Water

Figure 2.7.2: A schem atic diagram  o f  the p lasm a arc w eld ing  process.

2.7.4 Friction welding

As the nam e suggests, friction w elding involves the fusion o f  tw o species via their heating 

and softening due to  abrasive forces. The process encom passes over ten different 

techniques o f  w hich only the m ost pertinen t are described here. It is often applied to 

titan ium  alloys because neither a shield ing atm osphere nor filler m etal are required, unlike 

all o ther w elding processes involving fusion. In this respect it has also been used to jo in  

num erous d issim ilar system s as detailed in [59].

The sim plest o f  the friction w elding techn iques is rotary friction w elding. It involves the 

rapid rotation o f  a cylindrical p iece that is subsequently  abutted to a stationary  one w ith a 

slight induced pressure until m aterial at the interface has heated and softened. The forced is 

then increased creating the necessary contact for fusion o f  the bond w hilst expelling  flash
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m aterial from the interface. The technique offers exceptional w eld quality  but com ponents 

are lim ited to cylindrical sections.

A nother sim ilar incarnation is linear friction w elding. A gain, as the nam e suggests the 

technique involves one m oving piece oscilla ting  over a linear am plitude o f  around 2m m , 

abutted  to a second stationary piece. O nce the desired interface tem perature is reached, the 

m oving piece stops and a sufficient force is im parted on the jo in t to produce adequate 

fusion. This process has the added advantage o f  its ability  to jo in  m ore com plex 

com ponents, and is, in fact, currently  being used by Rolls Royce to produce integrally  

bladed com pressor discs [24].

A m ore m odern developm ent is friction stir w elding. The process involves the use o f  a 

tertiary  elem ent in the form a rotating disk. The disk passes over the jo in t betw een the 

bonding  species heating and softening m aterial in front o f  it w hilst depositing  the softened 

m aterial behind it to form  a continuous solid-state fusion zone. T his process is illustrated in 

Figure 2.7.3. The versatility  gained by th is particular technique allow s it to be em ployed 

w hen jo in ing  p lates and large sheets as well as m ore com plex com ponents. Friction stir 

w eld ing  is perhaps the m ost significant step forw ard for the process as a w hole. It offers 

m uch o f  the versatility  o f  o ther w elding processes such as TIG  and electron beam  w elding, 

w hilst still retaining the added benefits associated  w ith these techniques.

Suff ic ien t  dow nload  fo rce  
to main ta in  reg is tered contac t

Advan ced  side 
of weld  ^

Leading edge 
of the rotat ing  
tool

Shoulder

Probe

0 3 0  / Jo,n

Trai l ing e d g e ^  Ret reat ing  side
of ro ta t i ng to o l  of weld
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Figure 2.7.3: An illustration of the friction stir welding technique.

2.7.5 Power beam Processes

The two front-runners in this area are laser beam welding and electron beam welding. Both 

offer the added advantage of a focussed heat source and therefore minimal distortion and 

detrimental microstructural damage. Improved weld quality comes at a cost and both 

processes have high associated running costs. Typically, high-powered CO2 lasers are used 

for higher penetration joining, whereas Nd-YAG lasers tend to be used in low power 

intricate operations as they have the advantage of flexible fibre-optic delivery. Both offer 

exceptional weld integrity, yet suffer from weld spatter.

Electron beam processes have exceptional weld quality and sometimes parent metal 

integrity, with little oxide / nitride formation on account of the vacuum employed for the 

electron gun. Spot size for the beam can be refined to sub-micron resolutions resulting in 

exceptionally small fusion and heat affected zones with the associated high heat intensity 

allowing uniform single pass welds in thick sections. As a result of this highly concentrated 

beam EBW may also be used in a keyhole technique similar to that of PAW. However, it’s 

important to note that with such a small spot size tolerances in joint fit / preparation are 

considerably reduced. Unfortunately, the use of a vacuum limits the size o f the component 

to be welded and adds considerable cost to the operation through a low productivity. An 

additional consideration is that only non-magnetic / degaussed materials (e.g. clamps and 

jigs etc) can be employed within the chamber to prevent beam distortion through magnetic 

fields; this effect must also be considered when joining magnetic materials.
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Figure 2.7.4: A schem atic diagram  o f  the electron beam  w elding process.

Pow er beam  processes and in particu lar EBW  w elds in nickel base superalloys have show n 

considerable success [60]. H ow ever, EBW  o f  hardenable steels is not found to be 

susceptib le to significant HAZ cracking m ainly due to the rapid single pass through 

th ickness nature o f  the w elds produced, som e o f  these effects can be overcom e by 

preheating. Due m ostly to atm ospheric conditions, EBW  appears well suited to jo in in g  

titanium  com pared to o ther fusion w eld ing  processes [61] and in fact for thin sections can 

have low er associated costs than TIG w elds o f  sim ilar quality.

2.7.6 Resistance welding

T hough several resistance w eld ing  techniques are in use today  the m ost popular are spot 

w eld ing  flash w elding (w here the w ork pieces them selves transm it current) and seam  

w eld ing  (w ith electrodes in the form o f  w heels that allow  rapid continuous w elds, usually 

in thin sheet). These processes exploit the m ain advantages o f  resistance heating, w hich are 

its capability  for rapid w eld speeds and au tom ation . For this reason, resistance heating is 

the jo in in g  m ethod o f  choice for large au tom ated  assem bly lines in the au tom otive (spot 

w eld ing) and canning (seam  w elding) industries.
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Upper electrodeCurrent flow

Workpieces

Lower electrode

Figure 2.7.5: A Schem atic representation o f  the resistance spot w elding technique.

A schem atic representation o f  the spot w elding technique can be seen in Figure 2.7.5. 

Specific therm o-physical interactions in resistance heating are d iscussed in detail later in 

sections 3.2.1, how ever, in sim ple term s heat is generated in the w orkpiece as a function o f  

local resistance. The am ount o f  heat generated  is governed by the jo u le  heating equation

(2.7.1); w here H is the heat generated, 1 is the curren t flow, R is the local resistance and t is 

the tim e for w hich the current is applied. The electrodes provide the com pressive force 

necessary  for bonding, transm it current to, and conduct heat away from the w ork piece. 

The result is a four stage process:

Force  ► W e ld  ► Cool ------ ► Off.

H =  I2Rt (2 .7 .1)

Ignoring the resistance o f  interfaces briefly , the capacity  o f  a m aterial to heat under curren t 

flow  is controlled  by its resistiv ity  (p), as resistiv ity  increases so does the heat generated. 

The am ount o f  heat retained in the m aterial during heating  is controlled  by its therm al 

conductiv ity  (k), as therm al conductiv ity  increases m ore heat is rem oved from  the m aterial 

and the net tem perature decreases for a given resistivity . Flence, careful selection o f  

electrode m aterial w ith respect to k and p is required  to localise heating w ithin the w ork 

piece (copper alloys are generally  the preferred  choice). E lectrical factors m ust then be 

balanced against the strength required to exert force on the jo in t w ithout significant
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deformation of the electrode. Providing these conditions are met, heat within the work 

piece can be concentrated at the interface as a result of the high local resistance associated 

with the imperfect contact between the bonding species [62]. These factors must also be 

considered in joint design.

Resistance welding is employed in a wide range of application but tends to be concentrated 

on joining steels (as these are the most common automotive materials) [63]. Interestingly, 

steels are not ideally suited to resistance welding because of their high k and low p, 

meaning large amounts of power are required to join them. However, the productivity and 

automation associated with the technique out way these problems. Research has also been 

conducted into spot welding titanium in inert atmospheres [64] which revealed moderate 

integrity bonds in a material well suited to resistance heating in respect of k and p. Little 

research was noted on nickel base alloys.

2.8 Solid state joining processes (diffusion bonding)

Diffusion bonding may be defined as a process of joining without the creation of a liquid 

phase. As such it avoids many of the difficulties associated with fusion welding that have 

been detailed in the previous section. The overall reduction in joining temperature also 

results in less deleterious effects in the HAZ such as sensitization and cold cracking. In 

addition to this the heat affected zone can be considerably smaller than that observed in 

fusion welding, including the power beam processes. A well designed and completed 

diffusion bond can show so little microstructural disruption that it becomes difficult to 

identify the bond line. This allows truly ‘homogeneous’ components to be manufactured 

through diffusion bonding that exhibit parent metal properties [65]. An overview of the 

diffusion bonding process is outlined below, together with a discussion of the relevant 

articles pertaining to advances and developments in the field.
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2.8.1 Mechanisms of bonding

Investigation into the mechanisms involved in diffusion bonding have been the focus of 

much scientific attention in the last 20 years. For this reason a plethora of different models 

have been published dealing with a range o f different aspects of the process [66-69]. 

Universal agreement has been reached on the fundamental mechanisms controlling bonding 

which can be split up into three distinct stages:

1. Instantaneous deformation -  The flattening of asperities created during surface 

preparation to form mechanically stable (load bearing) surfaces between the two parent 

metal surfaces.

2. Time dependant deformation (Creep) -  The steady deformation of the asperities to 

establish intimate interfacial contact.

3. Diffusion -  Elimination o f the interface by diffusional mass transfer between the metal 

contacts to form a homogonous metal bond.

The mechanical behaviour in stage one can be shown to directly relate to the individual 

material hardness values. These values give information on the yield strength and the work 

hardening factor and so define the load bearing capabilities of the original aspirates, i.e. 

materials of high hardness (hardenable steels for instance) will undergo little stage one 

deformation compared to those of low hardness at a constant temperature for a given 

pressure.

Not all diffusion bonding occurs under forces that exceed the yield point of the material. In 

these cases creep can be the predominant mechanism in the deformation stages of diffusion 

bonding. Obviously creep controlled deformation stages lead to much longer overall 

bonding times but in reality the bonding time is most notably effected by time, temperature 

and surface preparation irrespective o f mechanical properties [68]. At high temperature and 

pressure there is an instantaneous local plastic deformation reducing the necessity for
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creep. In comparatively cold conditions, creep and diffusion are insignificant and stage one 

gains more importance.

There are several mechanisms suggested for stages 3 of the bonding process all involving 

diffusion by interstitial, vacancy and bulk (grain boundary) diffusion. Early models based 

on this three stage mechanism such as those presented in [66] described the deformation of 

asperities in terms of flattening a series o f spheres followed by a bulk diffusion from areas 

of least curvature to areas o f greatest curvature. These models, although adequate, were 

found to differ from experimental data during the deformation stages. New models such as 

that put forward by Hill and Wallach [67] moved to consider the space between asperities 

as ovals; this lead to a much better agreement with the corresponding experimental data. 

More recent developments have moved to consider power law creep in respect o f both 

mechanics and diffusion and have also found good agreement with experimental data [VO- 

72]. Not only do these models help in the understanding of the mechanisms but they also 

help visualise the micro processes at work during bonding, a summary of which can be 

seen below in Figure 2.8.1.

(b) (c)

Figure 2.8.1: (a) Asperities created by machining (b) Initial oval voids formed by the two 
mating surfaces (above) and voids after deformation stages (below) (c) Three separate 

examples o f bulk diffusion for final closure o f the voids at the interface [67].

Whilst the mechanisms described above are inherent to all diffusion bonding processes, 

they must be balanced against metallurgical factors. The two factors considered to have the 

greatest effect on bonding are the dissolution of surface oxides and recrystallisation. The 

argument for recrystallisation states that grain nucleation results in a new grain structure 

that forms over the existing interface, eliminating it. It is a likely model but cannot be the 

only mechanism at work, as excellent bonds have been produced in materials only
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m arginally  above their recrystallisation  tem perature [73]. Furtherm ore, these bonds have 

been produced w ithout evidence o f  any significant new grain grow th.

The m ain explanation for these observations has been the d isso lu tion  o f  surface metal 

oxides. This dissolution allow s near perfect contact betw een the metal surfaces and the 

production  o f  hom ogeneous bonds. D issolution m ay be considered as a tw o stage process 

o f  ox ide dissociation (M O  >  M + O 2) and diffusion o f  oxygen into the bulk m aterial. 

W hilst it has been show n that the d issociation  stage is significant at low tem peratures it is 

the diffusion o f  oxygen in the bulk m aterial that is the dom inant factor [74]. In fact, it is 

w idely claim ed that a m aterials affin ity  for oxygen is one o f  the m ost im portant factors in 

the ab ility  to jo in  it v ia diffusion bonding [72, 75, 76]. M aterials such as titan ium , copper, 

tantalum  and m ost steels either show  high oxygen affin ity  / w eak oxide layers and as such 

are m ore suited to d iffusion bonding. H ow ever, m aterials w ith tenacious oxides like 

alum inium  establish interfacial contact purely through m echanical break up o f  the oxide, 

m aking bonding inherently  harder. In nickel base superalloys a com bination  o f  effects is 

ev ident and w hilst the nickel base m atrix show s less oxygen solubility , oxides readily  form 

on its surface on account o f  the various reactive alloying elem ents it contains (Cr, Ti , Al). 

In these cases special oxide rem oval techniques need to be applied to produced high 

integrity  bonds [77].

c o n t i n u o u s  o x i d e  f i l m  o n  
b o t h  f a y i n g  s u r f a c e s

S t a g e  1

o x i d e  l a y e r  o n  s u r f a c e  a s p e r i t i e s  
j u s t  b e f o r e  i n i t i a l  c o n t a c t

S t a g e  2

m e t a l l i c  b o n d  f o r m a t i o n  b e t w e e n
•<- - - - - - -  r u p t u r e d  o x i d e  l a y e r s  d u e  t o  m i c r o p l a s t i c

d e f o r m a t i o n  o n  t h e  a s p e r i t i e s

Figure 2.8.2: A Schem atic illustration o f  the process o f  interfacial oxide break up [78].
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2.8.2 Effect of bonding conditions

There are three fundamental bonding conditions that control the speed and quality of the 

bonding: pressure, time and temperature. Careful control o f these variables enables a wide 

range of different materials to be bonded at a rate specific to the material and component 

requirements. Through the study of the investigations cited in section 2.8.1, and reference 

to more practically based reviews [79], a summary of the role of each o f these variables in 

controlling the mechanisms described above is presented in the following section.

2.8.2.1 Temperature

Changing temperature can have a profound effect on the physical, mechanical and 

transformational characteristics of a material. In addition, it is also an easy variable to 

control (especially in HIPing procedures). With reference to the mechanisms outlined in 

section 2.8.1, it is easy to see how great an effect temperature can have. Increased 

temperature results in decreased yield strength and therefore more efficient development of 

intimate contact between the metals, as well as increasing the diffusion rate at the interface. 

This in turn results in an increased bond integrity and increased bonding speed. Another 

effect particular to titanium alloys is the allotropic phase transformations that can be 

induced at increased temperatures. In the case of titanium and iron, this leads to the 

creation of the more ductile p / y phase (BCC / FCC) which have enhanced diffusivity 

compared to the low temperature HCP and BCC a  phases. Subsequent cooling through the 

respective transus temperatures may then result in grain growth across the interface leading 

to improved bond integrity. However, it is important to note that whilst in theory this is 

beneficial to bond strength, in practice it is much more important to preserve parent 

microstructures; for this reason super-transus bonding conditions are generally avoided.
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2.8.2.2 Time

Assuming that stage 1 is instantaneous; time can have a major effect on the quality of 

bonds produced. As discussed above, the creep dependence is reliant not only on time but 

also crucially on the mechanical properties. However, the stage three diffusion is heavily 

dependant on time. This dependence is illustrated by Fick’s first law of diffusion (equation 

2.8.3.1). The recovery and recrystallisation process described in section 2.8.1 plays a 

significant part in these stages. The driving force for recrystallisation at constant 

temperature diminishes due to a reduced internal energy in the system as the microstructure 

develops. During this process atomic mobility does not decrease significantly, but the 

thermodynamic driving force for bulk diffusion is reduced. In reality the bonding time 

depends much more on surface finish and the bonding apparatus used.

dm = —DA r  d c ^

\d x  j
dt

(2.8.3.1)

Where D is the diffusion coefficient of the material C is the concentration, t is the time and 

dm represents the mass diffused.

2.8.2.3 Pressure

The single biggest effect o f pressure in diffusion bonding is in the physical deformation 

stages. An increase in pressure at constant temperature and time produces better joint 

quality because it promotes the breakdown of asperities. It has also been shown that as 

deformation increases the recrystallisation temperature decreases [80], leading to an 

increasing diffusion rate with increasing pressure at constant temperature. This is achieved 

by lattice distortion. The distortion of the lattice creates more vacancies in the structure, 

increasing the rate of vacancy diffusion. However, these advantages do come at both a 

financial and technical cost because controlling higher pressures is both complex and 

costly.
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2.8.3 Common diffusion bonding processes [81]

Diffusion bonding processes can be separated into three groups that are defined by 

temperature:

• Cold welding (or deformation welding), which encompasses lap welding, slide 

welding (low deformation) and upset butt welding, applies to joining processes that are 

conducted at or close to room temperature. It is generally applied to soft inert materials 

(typically of FCC crystal structure) such as gold, lead and platinum. Normally 

deformations of 50% - 90% are required to produce sound joints under these conditions.

• Thermo-compression welding is conducted at temperatures up to around 0.5Tm and 

tends to be reserved for micro-joining processes in the electronics industry e.g. for PCBs.

• Forge welding refers to processes conducted at temperatures much closer to the 

melting point typically 0.7 -  0.9 Tm. On the whole these processes require much lower 

deformations of around 25%. Examples of these kinds of processes would be butt 

welding, roll welding and extrusion welding.

Bonds produced in these three regimes can be produced via a number o f practical 

techniques. The most commonly employed methods to date are roll welding, resistance 

bonding and hot isostatic pressing (HIP). Roll diffusion bonding is a common process 

which can be employed in both the cold welding and thermo-compression welding 

regimes. Roll welding is almost exclusively employed in cladding and has successfully 

been employed for various dissimilar metal pairs [82].

Resistance diffusion bonding by its nature relies on heating and so is generally carried out 

in the thermo-compression and forge welding regimes. Applications o f solid state 

resistance welding range from flash butt welding [83](e.g. engine ring manufacture) to

69



recent applications in the automotive industry which exploit the high productivity of 

conventional resistance welding on assembly lines [84]. Considerable research has also 

been conducted into solid state upset welding (and variations thereof) [85-89], the process 

employed in this investigation. Considerable success has been noted in joining previously 

“unweldable” alloys such as precipitation hardened aluminium alloys and Haynes 25 (high 

temperature cobalt superalloy) [85]. Critical applications range from sealing nuclear waste 

containers [90] to pressurised resistance welding for reactor fuel pin fabrication [89].

HIP is the most readily employed method of diffusion bonding for high integrity 

components, despite limitations on component size and its considerable expense compared 

to other processes. This is mainly due to the fact that isostatic pressure holds considerable 

advantages over other loading regimes. Namely, very little upset / whole scale deformation, 

unprecedented interfacial contact, an ability to collapse interfacial voids and the capacity 

to bond at lower temperatures, minimising deleterious microstructural effects [91]. The use 

o f evacuated cans and backfilled inert atmospheric furnaces also enables bonding of 

reactive materials. As such it is the solid state joining process to which all others are 

compared. HIP diffusion bonding has been exploited in this respect to provide information 

on the feasibility for joining various material pairs. These included, similar conventional 

materials [92] and ceramics [93], dissimilar alloys [94, 95] and ceramics [96] and ceramics 

to metals [97] most o f which have found success by this method. Applications of HIP 

diffusion bonding are almost exclusively reserved for critical components including layer 

structured panels for the ITER experimental fusion reactor, applying high wearing surfaces 

to valve assemblies, complex lay up copper heat exchangers and most notably its 

association with super plastic forming [98, 99].

2.9 Existing techniques for solid-state joining with powders

Joining with powders involves using metal powders as intermediate constituents of a bond 

between two solid pieces. The use of powders has been shown to produce bonds of near 

parent metal properties whilst minimising damage to the microstructure of the two bonding 

pieces. Controlling temperature can also lead to a wholly solid state bonding process
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resulting in high quality bonds produced at low temperatures. These solid state processes 

have received attention [100-107], the techniques employed in these investigations vary 

from conventional HIP bonding [106], co-extrusion [100], reactive sintering [107], pulsed 

electric current sintering [105] and auto vacuum welding [104].

Of particular interest here was auto vacuum welding, for which the joint design can be seen 

in Figure 2.9.1. The use of a sealed shell about the powder interlayer acted to both hold the 

powder in place and protect the interface from atmospheric contaminants. Within this shell, 

scavenging tablets (barium / aluminium compacts) were employed to help remove moisture 

and intrinsically evolved gases from the interface.

Figure 2.9.1: The powder interlayer arrangement used in bonds produced in [104]. (1/4) the 
solid substrates being joined, (2) the powder interlayer, (3) the protective shell, (5) a 

sealing joint, (6) gas absorbing tablets.

Crucially the investigation also explored powder interlayer resistance butt welds (similar to 

the process adopted in this investigation). The experimental setup for this process can be 

seen below in Figure 2.9.2. Of all the processes covered within this review this 

experimental design is the most pertinent. The investigation cites ‘good’ resultant 

mechanical properties of subsequent joints between steel and copper alloys; though neither 

specific mechanical properties nor alloy grades are presented. Interestingly, powders of 

high ohmic resistance and oxygen affinity (but undefined composition) were deliberately 

employed to improve thermal concentration oxide layer dissolution at the interface.
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Unfortunately this resulted in widespread melting of the interlayer in some trials, resulting 

in reduced mechanical integrity.

Figure 2.9.2: The powder interlayer resistance butt weld technique adopted in [104]. (1/5) 
the solid substrate materials (2) non conducting sleeve (3) powder (4) slit (6/7) current

conducting jaws.

Considerable success has also been found when integrating a controlled proportion of 

liquid phase to the process [108]. Liquid phase sintering is an established part o f powder 

metallurgy and cannot be considered as a joining technique in its own right. However, the 

majority o f powder joining techniques studied in this investigation have employed some 

form of liquid phase sintering. The main advantage of a liquid phase during sintering as 

opposed to a wholly solid state process is the increased densification and diffusion rates. 

This leads to production of more dense products, faster. Nevertheless, most materials 

formed by powder metallurgy are done so for a reason and a large proportion of liquid 

phase within the compact can lead to significant segregation of solute throughout the 

microstructure (and poor resulting mechanical properties). The aim in LPS is to control 

temperature and powder composition such as to produce some liquid, but not enough to 

completely fill the porosity of the compact simply by viscous flow and capillary action. 

Adequate densification then relies on a change in shape of the solid particles (Figure 2.9.3) 

to a point where the gas volume in the compact is low enough for it to be fully consumed 

by the liquid phase. The process is driven by the reduction in energy associated with the 

removal o f the liquid-gas interfacial area. The application of this technique in joining (with
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and without pow der interlayers) is referred to as transient liquid phase bonding (TLPB) 

[109].

ooo o 0o 0Q0
0 0 0 ^ 0 X 0 - 0 x 0ooo ouo cPo

Figure 2.9.3: A schem atic  representation o f  the liquid phase sintering process.

When applied to practical bonding  procedures more chemically  uniform powders tend to be 

used and external liquid feeding o f  a lower melting point melt is em ployed. This ensures a 

m inim um  liquid constituent and isothermal freezing via diffusion o f  melting point 

depressants  (M P D ) from the liquid phase throughout the microstructure as a whole. 

However, another technique gaining popularity is super-solidus liquid-phase sintering 

[1 10], w hereby pre-alloyed pow ders are blended with M PD powders to effect com pact 

consolidation. Finally, investigations into the use o f  M PD coated powders to effect TLPB 

have also shown success [111].

Although the general principles o f  jo in ing  with powders remain the sam e (whether it be 

w holly solid state o r not) a variety o f  different processes have been investigated. The most 

prom inent o f  these is liquid infiltrated pow der interlayer bonding (LIP1B) [1 12-114]. It was 

developed prim arily  by Z huang  and Eagar at MIT on the back o f  num erous previous 

investigations into pow der infiltration. The process is essentially a variant o f  TLPB with 

the exception that jo in t  w etting  is achieved by the p lacem ent o f  wafers o f  M PD  rich 

material at the interfaces between the pow der and the bonding species. The jo in t  design is 

illustrated in Figure 2.9 .4  (a) and (b). Heating the assem bly to a suitable tem perature leads 

to m elting  o f  the w afer and infiltration o f  the liquid through the pow der compacts. During 

infiltration, diffusion o f  M PD  from the liquid results in steady isothermal solidification and 

eventual com pletion  o f  the bond.
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Similar silver and copper bonds were produced using a Cu/Ag o f  eutectic composition as 

the infiltrate. C onsequently  concerns were raised regarding localised dissolution causing 

erosion or s lum ping  o f  the compact. Conversely, dissolution is thought to aid access to 

closed pores by dissolving solid-solid particle interfaces that would have left them isolated. 

One factor im portant to both considerations is that with rapid dissolution o f  solid material 

com es rapid saturation o f  the infiltrant and therefore a sharp reduction in mutual solubility. 

This in turn leads to a reduced infiltration o f  the liquid into the compact. It was found that 

by selecting M PD  level that was both sufficiently high to enable dissolution o f  closed end 

capillaries w ithout drastically affecting the mechanical properties o f  the jo int,  sound jo in ts  

could be produced.

(B)

Figure 2.9.4: T w o jo in t  designs em ployed for the L1PIB bonding technique.

By em ploying jo in t  design B, jo in t  widths o f  up to 22m m  were produced, ft was shown that 

subsequent heat trea tments further decreased the M PD concentration in the joint, 

theoretically im proving mechanical properties.
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2.10 Join ing  d issim ilar alloys

In principle, the advantages  o f  using hom ogenous dissimilar metal com ponents  in 

dem anding  applications are huge. In effect, one may be able to produce a series o f  

com ponents  that use the advantages o f  a range o f  different alloys in their most favourable 

positions on those  com ponents . For instance, consider a turbine disc operating at high 

tem perature. During service the disc will experience two principal mechanical loading 

types. T he CF loading exerts  a radial stress and hoop stress in the disc. At the centre o f  the 

disc the radial stress is at a m inim um  and the predom inant hoop stress will yield a low 

frequency fatigue cycle (LCF) during pow er up and pow er down o f  the engine. The 

exterior o f  the disc, w here the radial stress is m aximised, will experience extensive creep 

deform ation. It is known that a larger grain size yields better creep resistance as it reduces 

the num ber o f  grain boundaries that act as the principal m echanism  o f  creep deformation. 

In contrast, fatigue strength is maximised by em ploying a small grain size.

Increased grain size 
Increased amount of transformed material

P r o p e r t y  l e v e l ►

i f  
j m m

50% 85%
%  B e t a  P h a s e

Creep Resistance

Fatigue Resistance 
4---------- Beta Transus

Figure 2.10.1: A sum m ary  o f  microstructural effects on the creep and fatigue resistance o f
titanium alloys [115].

Taking titanium as an example , alloys that display a lamellar structure exhibit the best 

fatigue resistance, w hereas  alloys m ade up o f  larger grain widmanstatten structures provide
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better creep resistance (Figure 2.10.1). Previously this problem would be overcome by 

using duplex structures containing elements of each microstructure. However, employing 

this technique leads to inherent trade-offs between the two sets of properties. If a 

homogenous bond between two separate alloys, each displaying their own individual set of 

properties on the rim and core o f the disc were to be created, then these trade offs would 

become redundant.

Unfortunately, the practicalities o f creating these bonds are far from simple. The enormous 

metallurgical considerations presented in previous sections must be deliberated in selecting 

a joining method. This without even considering the subsequent process conditions that 

should be applied. Problems are also encountered when considering the optimisation of 

materials. Post-weld heat treatments that may be beneficial to one of the constituent 

materials in a component may be severely detrimental to the other e.g. bulk grain 

refinement effects on the rim of the above turbine disc. Hence, it is important that 

manufacturers optimise the structure o f the constituent materials before they are joined and 

that subsequent joining temperatures are not detrimental to the optimised structure of either 

constituent. This demonstrates the technological complexity faced when joining dissimilar 

materials before the issue of compatibility has even been approached.

2.10.1 Case studies on dissimilar alloy welds

2.10.1.1 Titanium to steels

Bonding titanium to stainless steels has received considerable attention. Most studies focus 

on bonding commercially pure (CP) titanium to conventional austenitic stainless steels. The 

aim being to enable increased strength and weight savings whilst maximising corrosion 

resistance, typically for demanding applications such as nuclear power generation. On the 

whole bonding trials have been successful. Nevertheless, some inherent difficulties in 

bonding the alloys have also been highlighted. The following paragraphs summarise a 

spectrum of the literature available to date.
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It has long been recognised that titanium may not be joined directly to steels by way of 

fusion welding [116]. This is primarily due to the evolution of brittle intermetallic phases 

and Fe-Ti eutectics, but crevice corrosion of iron rich areas in welds has also been 

highlighted [117]. For this reason developments in this area are focussed on solid state 

processes (with the exception of explosive welding [118]). Work has tended to focus on the 

bonding commercially pure (CP) titanium to both microduplex and 304 grade stainless 

steels. Though several parties have under taken research in this area, an especially 

comprehensive body o f research has been conducted by Ghosh and Chatteijee [119-123].

Initial work on CP titanium to 304 stainless steel reported optimum bonding conditions of 

850°C at 3MPa uniaxial pressure for 2 hours produced the best tensile strengths of 222 

MPa. It was noted that at temperatures above this, significant embrittlement occurred as a 

result of the evolution of Fe2Ti and FeTi type intermetallics. Significant diffusion of Ni and 

Fe into the titanium was reported with a lesser mobility of Ti in the opposite direction. 

Interestingly all bonds produced in these early investigations employed 1pm polished 

faying surface finishes. Later research moved onto the implementation of 300pm Ni 

interlayers which yielded a modest improvement in strength to around 302 MPa [124]. The 

main reason for this was that the introduction of the interlayer retarded intermetallic 

formation below temperatures of 950°C allowing a wider process window. Previous 

research that explored copper interlayers had noted a broad array of intermetallics in the 

joints but similar strengths [125]. However, the results were attributed to the improvement 

in interfacial contact associated with the softer copper interlayer.

Early work on bonding Ti-6-4 to Micro-Duplex stainless steels by Ohran et al [126] 

identified the evolution of Fe-Cr-Ti based intermetallic bands at the interface (Figure 

2.10.2) as the primary consideration in the process. Whilst bonds were said to be of “good 

quality” bond strength was not quantified.
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Ti-6A1-4V

Figure 2.10.2: The typical banding o f  intermetallics observed by Ohran et al in diffusion 
bonds between m icro-duplex stainless steels and Ti-6-4 [126],

Independent further w ork on the alloys [127] reported similar microstructural effects and 

bond strengths similar to those observed with 304 in [124]. Very recently research by 

Chatterjee et al [123] has shown that bonds between the m icroduplex alloys and CP 

titanium display com parable mechanical properties to those alloys tested in their previous 

investigations.

To the authors know ledge no evidence o f  studies on solid state diffusion bonds between Ti- 

6-4 and Super C M V  steel appears in the literature.

2.10.1.2 Nickel to titanium

Limited literature is available on w elds between nickel and titanium, dem onstrating  the 

difficulty in producing sound jo in ts  between the two groups o f  alloys. Even appreciations 

o f  jo in ts  between Ti-6-4 and IN718 (widely considered to be the most weldable grades o f  

each alloy group) are rare. However, several studies have noted excellent properties in 

bonds produced in similar [128-131] and dissimilar IN718 welds [132-135]. A greem ents in 

the findings pertaining to process conditions are outlined below:
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• Significant interfacial precipitation of 8 was observed at temperatures above 940°C

(particularly around 970°C, the y” solvus).

• Excessive grain growth occurred (and subsequent HAZ formation) in bonds

performed above 1030°C.

• Evacuated atmospheres were identified as beneficial on account of the adverse 

effects of interfacial oxide layers that were insoluble in the parent at temperature.

• Fusion welding processes all noted considerable laves phase formation in the HAZ.

Despite there being so much attention focussed on joints between dissimilar nickel based 

superalloys, little of this experience has been applied to joints between nickel and titanium. 

Studies on joints between bulk substrate materials are rare, however some investigations 

into three microscale bonding processes between Ti-6-4 and IN718 powders provide useful 

insight into interfacial features [136]. Here three techniques were investigated, laser 

powder deposition, wire welding and ultrasonic solid state welding of thin foils. All 

techniques induced interfacial cracks. The degree of cracking was related to reaction zone 

width at the interface, these zone were much more prominent in the fusion welds which 

displayed poor adhesion.

Of the few reports available to date on large scale joining the most useful are those 

presented by Zhang, Chatteijee and Locci [120, 137, 138]. The fusion welds presented by 

Chatterjee reported asymmetric weld shapes on account of differences in thermal 

diffusivity, poor mixing and macro segregation in the weld metal. Weld microstructures 

were dominated by eutectic phases and associated intermetallic formation. The solid state 

studies completed by Zhang and Locci also revealed significant intermetallic phase 

evolution but it was found to be concentrated at the interface. Locci found that reaction 

zone size may be limited by the use o f a vanadium interlayer. No qualification of joint 

strength was presented by these investigations.
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To date only one example o f a study on solid state diffusion bonds between Ti-6-4 and 

IN718 (concurrent to this investigation) has come to light [139]. As yet this work remains 

unpublished.

2.10.1.3 Nickel to steels

Compared to nickel -  titanium joints, investigations into bonds between nickel and steel are 

plentiful. Fusion welding processes such as those carried out in [140] and [141] reported 

modest weld quality. This was partially attributed to the formation of both the a  and laves 

phases, but mostly to solidification cracking susceptibility of the nickel based alloy. This 

susceptibility was caused by solute partitioning (Nb, Al) in the dendrite cores, which was 

found to relate to increasing iron content. Notably, titanium concentrations within the 

fusion zone in excess of lwt% were found to have a severely detrimental effect on bond 

strength.

Investigations into solid state welds such as that presented by Chandel et al [142] have also 

shown limited success. Here joints between IN718 and stainless steel were produced at 

1000°C for an hour at pressures up to 60 MPa. Whilst tensile strength reached 70% of the 

stainless steel all bonds failed in a brittle manner at continuous intermetallic films present 

on the interface. Chemical analysis at the bond line elucidated high concentrations of Nb 

and Ti. Brazing processes have shown more promising results [143, 144]. It was found that 

braze constituents such as boron and silicon aided inter-diffusion and restricted the 

formation of continuous oxide films. This resulted in an overall improvement in bond 

strength but promoted the formation of borides in the base metal and silicides at the 

interface.

To date no evidence of studies on solid state diffusion bonds between IN718 and super 

CMV steel appears in the literature.
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2.11 Conclusions of literature review

The following points , with direct relevance to the proposed theme of study, have been 

drawn from the extensive literature review:

• The a-p  titanium alloy Ti-6A1-4V has been shown to possess substantial versatility 

in respect of microstructure and mechanical property control.

• A review of Inconel 718 has suggested that although it is considered to be a 

weldable alloy, its microstructure and resultant mechanical properties are highly dependant 

on local concentrations of titanium, aluminium, molybdenum and iron, all present in 

SCMV and Ti-6-4.

•  Inconel 718 has also demonstrated the ability to form deleterious a , laves and s 

phases under certain thermo-mechanical process conditions.

•  Trends in the development of CrMoV steels have suggested that they are highly 

susceptible to microstructural anomalies during welding, with particular reference to 

temper embrittlement and the effect of alloying additions on microstructural stability.

• A review of field activated sintering processes has shown that it enables reduced 

sintering times for given pressures and temperatures compared to conventional sintering 

techniques, but that variations in electrical field can adversely effect heat generation and 

atomic mobility.

• It has been shown that apparent compact density and sintering kinetics are strongly 

dependant on powder particle size and size distribution.

• Conventional welding techniques have proved to be successful in joining various 

aerospace grade materials. Unfortunately, fusion welding processes have been shown to be
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characterised by various defects, including hot tearing, cold cracking and intermetallic 

phase formation.

• A review of the diffusion bonding process has highlighted the significant effect of 

pressure, temperature, time and crucially basic materials properties such as reactivity, 

ductility and creep behaviour on the mechanisms controlling bonding.

• Of the solid state processes available to date, resistance upset welding and HIP 

diffusion bonding draw the most attention due to their ability to produce high integrity 

bonds between previously un-joined alloy pairings.

• Previous investigations into solid state resistance butt welding of similar and 

dissimilar aerospace grade titanium alloys have noted considerable success and also made 

recommendations for process improvements which shall be considered for this 

investigation.

• Existing powder interlayer bonding techniques have been evaluated which have 

demonstrated excellent bond strengths in similar and dissimilar bonds between nickel 

alloys.

• Investigations employing powder interlayer resistance butt welding processes 

similar to that envisaged here have shown that sound bonds can be produced between 

dissimilar copper and steel alloys.

•  The available literature on titanium -  steel pairings suggests that moderate bond 

strengths can be achieved. However, significant intermetallic phase evolution was noted. 

The introduction o f a nickel interlayer was found to substantially retard this effect.

•  A review of titanium -  nickel joining investigations revealed that a limited amount 

of literature was available on the subject. However, studies noted considerable growth of 

intermetallics and deleterious phases associated with IN718.
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• The nickel -  steel literature also highlighted intermetallic film formation as a 

primary cause of bond failure during mechanical testing, and found that titanium 

concentrations greater than 1 % at the bond line severely degraded mechanical properties.
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AIMS OF THE PRESENT RESEARCH

In light of the technical background covering the joining of dissimilar metal alloys the 

feasibility of producing bonds between various titanium / nickel / steel variants will be 

explored in greater detail through the current thesis. A systematic investigation into the use 

o f a resistance bonding facility was suggested incorporating various metal powder / 

brazing foil interlayers. The sponsors of the research, Rolls -  Royce Pic, have initiated an 

interest in this area for the potential manufacture of hybrid components that would require 

the highest possible levels of structural integrity. Although through the use of a Gleeble 

1500 thermo-mechanical simulator the research builds upon previous studies performed at 

Swansea University [2, 3, 145] there are a number of unique aspects of the project. These 

include the use o f a versatile MIM type powder paste interlayer in joining dissimilar 

materials, the use o f resistance butt welding in joining dissimilar metal systems (in 

particular titanium to nickel and steel systems), and the development of novel 

experimental methods and unique bonding techniques.
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3 EXPERIMENTAL PROCEDURE

3.1 M aterial

The three main m aterials under investigation were Ti -6A1-4V, Inconel 718 and super 

C M V  steel.

3.1.1 Ti -6A1 -  4V (Ti-6-4)

The Ti-6-4 material was received in the form o f  cylindrical Gleeble samples, machined 

parallel to the extruded / rolling direction from conventional bar stock, produced by 

T IM E T  UK. The as received microstructure is presented below in Figure 3.1.1, exhibiting a 

bimodal structure elongated in the principle direction. N om inal com positions for the 

titanium material are detailed in Table 3.1.2 along with parent microhardness 

measurem ents and quoted mechanical properties in Table 3.1.1.

Figure 3.1.1: The parent microstructure o f  the Ti-6AI-4V material (nominal gleeble
specimen orientations indicated.

Table 3.1.1: A sum m ary  o f  mechanical properties for the Ti-6-4 material [7].

UTS
(M Pa)

Yield stress 
(M Pa)

Failure strain
(%)

Y o u n g ’s M odulus 
(GPa)

A verage Vickers 
Hardness (Hy)

1103 983 10 95-130 350
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Table 3.1.2: The nominal chemical composition o f  alloying elements in the Ti-6-4 material.

A1 V Fe O C N H
Max (wt %) 6.75 4.5 0.4 0.2 0.08 0.05 0.015
Min (wt %) 5.5 3.5 - - - - -

3.1.2 Inconel 718 (IN718)

IN718 Gleeble sam ples were received in the solution treated condition. Parent 

microstructures for the material are presented in Figure 3.1.2. The m icrostructure exhibits 

intragranular y’, intergranular y” and som e coherent carbonitride precipitation. A small 

degree o f  tw inning was also noted in the microstructure. N om inal compositions, average 

m icrohardness values and quoted mechanical properties for IN718 are presented in Table

3.1.3 and Table 3.1.4.

Figure 3.1.2: The parent microstructure o f  the 1N718 material (nominal gleeble specimen
orientations indicated).
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Table 3.1.3: Nominal composition for the IN718 substrate material.

Component W t. % Component Wt. % Component Wt. %

A1 0.2 - 0.8 Cu Max 0.3 Ni 50-55

B Max 0.006 Fe 17 P Max 0.015

C Max 0.08 Mn Max 0.35 S Max 0.015

Co Max 1 Mo 2.8 - 3.3 Si Max 0.35

Cr 17-21 Nb 4.75 - 5.5 Ti 0.65-1.15

Table 3.1.4: A summary of mechanical properties for the IN718 material

UTS
(MPa)

Yield stress 
(MPa)

Failure strain 
(%)

Young’s Modulus 
(GPa)

Average Vickers 
Hardness (Hv)

1375 1100 18 200 250

3.1.3 Super CMV steel (SCMV)

SCMV gleeble samples were received in the tempered martensitic condition, parent 

microstructures for the material are presented in Figure 3.1.3. A very fine lath martensite 

microstructure is apparent, with and average prior austenite grain diameter of 60 microns. 

Nominal composition, average microhardness and quoted mechanical properties are 

presented in Table 3.1.5.

Table 3.1.5: Nominal composition for the SCMV substrate material.

B i l l  ! C Si Mn P S Cr Mo Ni V Fe
Composition 
(wt %)

0.35-
0.43

0.1-
0.35

0.4-
0.7

<0.007 <0.002 3.0-
3.5

0.8-
1.10

<0.3 0.15-
0.25

Bal
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Figure 3.1.3: The parent m icrostructure o f  the SCM V  material (nominal gleeble specimen
orientations indicated).

3.1.4 Powder material

Three separate pow ders  were assessed during the investigation, Ti-6-4, BurTi, and IN718. 

All powder material received w as produced by gas atomisation at crucible powders, USA.

SEM  images o f  the supplied Ti-6-4, IN718 and BurTi powders, com plete  with their 

respective m icrostructures are presented in Figure 3.1.4. SEM  image analysis confirmed 

mean particle d iam eters  for the three variants as 42pm , 25pm  and 100pm respectively. 

Though particle size distribution w as not quantitatively measured, the BurTi powder 

appeared to have a much greater variation in particle size than either the IN718 or Ti-6-4. 

The BurTi pow der m icrostructure com prises o f  p  grains inter-dispersed with intergranular 

precipitates. Grain size is approxim ately  10pm. The Ti-6-4 powder microstructure shows a 

very fine W idm anstatten  structure with clearly defined packet size o f  approxim ately  10pm. 

Finally, the 1N718 pow der has a dendritic structure, elucidated by y” precipitation in the 

interdendritic spacings.
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Figure 3.1.4: Powder morphology and microstructure for as received (a) BurTi pow der (b)
Ti-6-4 powder and (c) IN 718 powder.
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3.1.5 Powder paste

The powder interlayer was incorporated into the bond by the use of a powder paste wherein 

the powder was suspended in a gelation binder to facilitate easy application o f the powder 

interlayer to one of the faying surfaces prior to bonding. This technique was derived from 

similar praticeses used in metal injection moulding (MIM).

The following binder composition was used for every bonding trial:

Table 3.1.6: Tabulated values for the gelation binder constituents

Binder content by weight relative to one unit of powder
Powder 1

Cellulose 3/400
Water 9/100

Glycerol 1/400

All powder pastes where mixed in ultrasonically cleaned glass containers placed on 

enclosed weighing scales accurate to 0.1 mg. All other mixing equipment was rigorously 

cleaned in acetone prior to use.

3.1.6 Coated material

A variety o f electro deposited coatings were applied to some of the super CMV and IN718 

substrate material, these included nickel, tantalum and a nickel-chromium-vanadium triple 

coating. In the case o f nickel and tantalum, the aim was to provide a diffusion barrier 

during bonding, leading to a thinner reaction zone that will help to avoid the development 

of harmful brittle intermetallic phases close to the bond line. The triple coating was 

investigated as a means of providing a common ‘buffer’ between two dissimilar materials 

(Ti-6-4 and SCMV) to facilitate transition joint production. The nominal coating thickness 

for each metal was 2pm in all cases.
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3.1.7 Brazed material

Some brazing trials were also conducted using both copper and Nicrobraz LM brazing 

alloys. These layers where electrodeposited with a nominal coating thickness of 2pm in 

both cases. The composition of Nicrobraz LM is presented in Table 3.1.7.

Table 3.1.7: The nominal composition for the Nicrobraz LM brazing alloy.

Element C Si C r Fe B Ni
Nominal

Composition
0.06 4.5 7.0 3.0 3.1 Bal

3.2 Bonding Apparatus: The Gleeble 1500 thermo-mechanical simulator

The use of the Gleeble 1500 thermo-mechanical simulator (Figure 3.2.1) during this 

research follows previous research conducted by Tuppen [145]. One of the major 

outcomes of his investigation was that the Gleeble system offers a convenient method of 

bond fabrication for laboratory scale research into diffusion / resistance bonding. The 

nature of the apparatus offers easy control o f all the fundamental bonding parameters of 

time, temperature and force. This facilitates a detailed ‘in house’ analysis of the factors 

effecting optimum bonding conditions. Subsequent to the extended research in this area [2, 

3], efforts are ongoing to replicate the Gleeble bonding conditions in the industrial 

manufacturing / repair environment.
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Vacuum cham ber

Com puter control unit

Figure 3.2.1 :The Gleeble 1500 therm o-m echanical simulator.

3.2.1 Resistance heating

M onitoring / control 
therm ocouples

Water cooled 
conducting copper jaw s

Resistance heated 
specimens

Stationary jaw  

Hydraulic ram

Figure 3.2.2: The interior o f  the vacuum  cham ber during bonding.
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Figure 3.2.2 shows how the Gleeble setup affects the resistance heating technique. A 

current (I) is passed through the copper conducting jaws. This is in turn passed to the 

specimens and then travels to the interface. There is an associated resistance (R) at the 

interface between the two specimens. The heat generated at the interface can then be given 

by;

E = I2Rt (3.2.1.1)

Where E is the heat energy in Joules, and t is the time for which the current is applied. A 

more accurate comparison has been made by Brown et al [146]. Here, a computational 

model was used to map the heat transfer across the specimen using steady state heat 

transfer equations. The heating effect was found to be parabolic with a suitably isothermal 

region of around 4mm astride the interface. Good agreement was found between the model 

and experimental data. A summary of the results can be seen below in Figure 3.2.3.
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Figure 3.2.3: The resistance heating profile as predicted by steady state heat transfer
equations (adapted from [146]).

Here the nature o f resistance heating can be clearly seen. This parabolic heating effect is 

typical of the technique, as resistance to electrical current will gradually increase with the 

distance from the copper electrode with a peak at the highest point of resistance, the
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interface. The parabolic nature of the heat comes from a combination of the increase in 

resistance and the conduction of heat away from the peak temperature condition at the 

interface. This non-uniform temperature condition should always be considered when 

working with resistance heating techniques and can be the cause of some considerable 

difficulty with some processes.

In reality the exact resistance at the interface would be virtually impossible to calculate 

accurately, so the use o f control thermocouples allows the use of a feed back system to 

monitor temperature. Resistance heating is essentially controlled by the electrical / physical 

contact at the interface and the area over which the current is acting; obviously a smaller 

interfacial area will result in a greater current density and increased temperature [146]. 

Good electrical/physical contact is required to prevent arcing at the interface, which would 

irrevocably damage the specimens and the solid state electrical control system.

3.2.2 Specimen geometry

All Gleeble specimens were produced using conventional CNC turning operations. 

Specimen geometry is set out in Figure 3.2.4 below. The faying surfaces were ground to a 

uniform 5pm finish perpendicular to the specimen length.

I__________ 65 mm__________ .

(       ” ' ] JlOmm

Figure 3.2.4: The dimensions o f the Gleeble specimens used in the bonding processes.

Monitoring thermocouples were spot welded to the specimens prior to specimen loading as 

close to the interface as practically possible. To further ensure reproducible results these 

welds were always placed in the same place and on the same side of the bond for each of 

the tests. Locations o f these welds are illustrated in Figure 3.2.5.
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Location o f  spot welds on specimen

Location o f  spot welded specimen during bonding

Figure 3.2.5: An illustration of the location of spot welds on Gleeble specimens.

3.3 Bonding Procedure

3.3.1 Gleeble specimen preparation

Cleanliness has been recognised as a major contributing factor to bond quality in previous 

research [2]. Prior to bonding and the application of the powder, all Gleeble specimens 

were thoroughly cleaned in an acetone ultrasonic bath. All cleaned specimens were then 

placed up right in an airtight desiccator. Specimens were transported throughout further 

specimen preparation in this manner until they were loaded into the Gleeble.

3.3.2 Preparation of powder interlayer

Prior to bonding, the powder interlayer was applied to the faying surface of one half 

specimen, preferably the most similar side metallurgically. A method of application was 

developed whereby interlayer thickness could be controlled to the nearest 50 microns. This 

involved the use o f a tube (into which the specimen fits) and a calibrated nut, that while 

being rotated on the thread of the Gleeble specimen reduces the height of the specimen 

below that of the tube; in doing so leaving a ‘cup’ of the desired depth. This cup can then 

be filled by the powder paste and subsequently compressed to both remove excess paste 

and give a durable powder layer onto the specimen of adequate packing density. This can 

be visualised with reference to Figure 3.3.1.
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Figure 3.3.1: A schematic representation of the powder application equipment.

Following powder application three different pre-bond routines were trialled. The first 

involved a debinding stage whereby powder coated samples were placed into a vacuum 

furnace in an attempt to both remove contamination and partially sinter the powder 

interlayer prior to bonding. The second involved natural drying whereby the powder topped 

specimen was stored in a desiccator for approximately 12 hours prior to bonding. In the 

third cases specimens where bonded immediately following powder application and an ‘in 

situ’ debinding cycle was employed. Further discussion on comparisons between these 

routes will be dealt with in both the Results and Discussion sections.

3.3.3 Loading / unloading of specimens

A strict loading and unloading procedure was employed. This ensured repeatable alignment 

and hence good surface contact between specimens. It also ensured that the preloading of 

the specimens was the same in all cases. The procedure is outlined below:
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1. Weld the monitoring / control thermocouples to one specimen half.

2. Screw hexagonal backing nuts onto specimens ensuring that the specimen with the 

monitoring thermocouples is on the right hand side.

3. Place two sets of copper jaws around each specimen.

4. Attach alignment jig (Figure 3.3.2) around each specimen taking care not to allow 

the two bonding surfaces to come into contact at any time.

5. Remove the glass lid of the vacuum chamber.

6 . Locate the specimen assembly into the hydraulic ram within the vacuum chamber.

7. Secure copper jaw on RHS into place using the first locking nut.

8 . Switch to stroke control on Gleeble 1500 servo control unit.

9. Move hydraulic ram backwards to locate copper jaws within it.

10. Secure LHS copper jaw with second locking nut.

11. Switch to force control on Gleeble 1500 servo control unit.

12. Apply lkN compressive holding force to specimen to ensure adequate alignment 

and interfacial contact.

13. Remove alignment jig.

14. Connect thermocouples to the servo control unit.

15. Replace vacuum chamber lid.

16. Set necessary compressive load for test.

17. Start test.

18. On completion of the bonding routine, carefully remove the joined specimen halves 

by reversing the procedure above.

irrm

Figure 3.3.2: A schematic illustration of the alignment jig assembly.
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3.4 Bonding trials

A m atrix  o f  resistance bonding tria ls was conducted in order to ascertain  the critical 

process param eters for successful bonding  and w here possible optim ise the process 

param eters. Full details o f  these tests is provided in Table 3.4.1.

T able 3.4.1: A full m atrix  o f  the R esistance bonding trials conducted .

Test Matrix
Test

Number

10

12

14

15

Description

Ti-6-4 to Ta coated IN718 with Ti-6-4 powder interlayer

Ti-6-4 to uncoated IN718 without interlayer

Ti-6-4 to Ta coated IN718 without interlayer

Ti-6-4 to Ni coated SCMV with Ti-6-4 interlayer 
(I KN for 2 min, backed off to 0.5KN 37 min hold)

Ti-6-4 to Ni coated SCMV with Ti-6-4 interlayer 
  same conditions, oxidation__________

solid dummy specimen cool jaws

solid dummy specimen hot jaws

Ti-6-4 to Ni coated SCMV with Ti-6-4 powder interlayer 
_________________(HOT JAWS LHS)
Ti-6-4 to Ni coated SCMV with Ti-6-4 powder interlayer 

__________ (Hot jaws : FAILED on grinding)___________

Max 
T emperature 

(oC)

Hold Time 
(mintutes)

Force (KN)

____

Ti-6-4 to Ni coated SCMV with BurTi powder interlayer 
(Hot jaws : failed on unloading)

Ti-6-4 to Ni coated SCMV with BurTi powder interlayer 
________________(Hot jaws : sucessful)_______________
Ti-6-4 to Ni coated SCMV with BurTi powder interlayer 

(5min debind at 200 - 57 at 925 lOmin cool : Failed thrcple off)
Ti-6-4 to Ni coated SCMV with BurTi powder interlayer 

 (As above : suceesful) ________
Ti-6-4 to Ni-Cr-V coated smcv with BurTi interlayer 

(5min debind at 200 - 57 at 925 lOmin c o o l: Failed no adhesion)
Ti-6-4 to Ni-Cr-V coated smcv with BurTi interlayer 

(5min debind at 200 5min at 500- 57 at 970, 10 Min cool : Failed 
________________________ thcple off)________________________

Ti-6-4 to Ni-Cr-V coated smcv with BurTi interlayer 

5min debind at 200 5min at 500- 57 at 970 
IN718 to Ta coated SCMV with a ln718 Interlayer 

Full in situ debinding procedure, Ten minute slow cool.
IN718 to Ta coated SCMV with a In718 Interlayer 

 No binder, Radial constraint employed______
Ti-6-4 to Ta coated IN718 with a BurTi interlayer 

Full in situ debinding procedure, Ten mintue slow cool

IN718 to Ta coated SCMV with a In718 Interlayer 
No binder, Wider radial constraint employed

_ _ _ —

_____
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Test Matrix (continued)
Max 

Temperature
(oC)

Hold Time 
(mintutes)

Force
(KN)

990 ----

Test
Number

Description

21 Copper coated Ti-6-4 to IN718 no interlayer

Copper coated Ti-6-4 to 1N718 no interlayer

Ti-6-4 to Ta coated IN718 with copper impregnated powder 

Full in situ debinding procedure, Ten minute slow cool.

Ti-6-4 to Ta coated IN718 with copper impregnated powder 

Full in situ debinding procedure, Ten minute slow cool.

Nicrobraz LM coated IN718 to uncoated SCMV 

No Interlayer________________

Nicrobraz LM coated IN718 to uncoated SCMV 

 No Interlayer - for mechanical testing_____

|  27 
   — -

Nicrobraz LM coated IN718 to uncoated SCMV 

________________ No Interlayer________________

Nicrobraz LM coated 1N718 to uncoated SCMV 

 No Interlayer________________

Nicrobraz LM coated IN718 to uncoated SCMV 

No Interlayer (control system failure - joined in semi-solid state) 

Nicrobraz LM coated IN718 to uncoated SCMV 

IN718 powder interlayer (full in situ debinding procedure)

3.5 Production of HIPed bonds

In addition to the bonds produced at Sw ansea U niversity, further bonds produced via a 

conventional H ipping route w ere produced at B irm ingham  U niversity . The aim w as to 

validate  not only  the com patib ility  o f  the bonding pairs but also the process as a w hole. It is 

w orth no ting that such com parisons have been m ade previously  [145], but not in relation to 

pow der in terlayer bonding nor bonding betw een w holly  d issim ilar metal system s.

3.5.1 Production route

A lloy pairs (coated w ith suitable barrier / braze layer if  applicable) being assem bled 

together w ith in  a m ild steel can w hich w as then evacuated for approxim ately  12 hours. 

T his con tainer w as then sealed and H IPed for 2 hours at 920°C under a lOOMPa isostatic. 

A ll sam ples w ere bonded under the sam e conditions. 22 d ifferen t pairs w ere bonded and 

these are sum m arised  in table 1.5.1 below .
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Table 3.5.1: Test Matrix detailing bonds produced via the conventional HIP technique.

Test Matrix (HIPed Bonds)
Test

Number
Description

1 Ti-6-4 to Ta coated SCMV With 250pm Ti-6-4 interlayer without
binder1I1I1IS

2 Ti-6-4 to Ta coated SCMV With 500pm Ti-6-4 interlayer without
binder1

3 Ti-6-4 to Ta coated SCMV With 500pm Ti-6-4 interlayer With
binder

4 Ti-6-4 to Ta coated In718 With 250pm Ti-6-4 interlayer without
binder

5 Ti-6-4 to Ta coated In 718 With 500pm Ti-6-4 interlayer without
binder

6 Ti-6-4 to Ta coated In718 With 500pm Ti-6-4 interlayer With
binder

7 Ti-6-4 to Ta coated SCMV without interlayer
1

8 Ti-6-4 to Ta coated In 718 without interlayer

9 T-6-4 to Ta coated SCMV substrate With 250pm BurTi interlayer 
without binder

10 T-6-4 to Ta coated SCMV substrate With 500pm BurTi interlayer 
without binder

11 Ti-6-4 to Ta coated SCMV With 500pm BurTi interlayer With
binder

12 T-6-4 to Ta coated In718 substrate With 250pm BurTi interlayer 
without binder

13 T-6-4 to Ta coated In718 substrate With 500pm BurTi interlayer 
without binder___ _ _

14 Ti-6-4 to Ta coated In718 With 500pm BurTi interlayer With 
binder

15 Ti6-4 substrate to SCMV substrate

16 Ti-6-4 Substrate to In718 Substrate

17 SCMV substrate to In718 Substrate

IS SCMV substrate to Ta coated In718 Substrate

19
SCMV to Ta coated In718 with 500pm In 718 powder interlayer 

Without binder
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3.5.2 Specimen preparation

Post HIPing samples were wire cut from the mild steel can and sectioned perpendicular to 

the bond line. They were then ,metallographically prepared for inspection. Selected 

specimens were also sectioned and mechanically tested for means of comparison.

3.6 Bond Characterisation

Bond characterisation was carried out primarily on appropriately sectioned specimens that 

were then prepared using various metallographic techniques. These sections were initially 

assessed via both optical and electron microscopy and in some cases both chemical and 

crystallographic information on the specimens was obtained via EDX and EBSD analysis 

respectively. Mechanical integrity using monotonic tensile, fatigue and Vickers 

microhardness testing. Fractured specimens were inspected via SEM fractography and 

selected specimens were sectioned and metallographically prepared.

3.6.1 Sample preparation

Metallographic characterisation of bonded pairs encountered significant difficulty as a 

result o f the vast differences in specific metallographic preparation routes associated with 

each material. As such new preparation procedures were devised that found a compromise 

between preparation time / complexity and surface finish between the material pairings.

3.6.2 Sectioning

All specimens were sectioned perpendicular to the bond line using a Struers Secotom - 10 

sectioning machine and the sectioned samples were subsequently mounted in conductive 

Bakelite. This high performance sectioning machine was employed because of its accuracy 

and because o f the hardening effects observed in some bonds (up to 700Hv). For this 

reason, sectioning the bonds proved to be challenging. Cuts would often tend to drift due to 

the large differences hardness between the materials and it was found that starting the cut
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in the harder material was beneficial. Choice of cutting medium was also complex. No one 

wheel material was found to adequately cut all three materials and as a consequence slow 

cutting speeds were adopted to allow wheels to be changed mid-way through the cuts for 

longer sections. Although time consuming, this proved to be the most efficient method and 

helped to prevent costly wheel replacements and machine damage. Generally silicon 

carbide wheel material was found to be most suited to the titanium material, whereas the 

steel and nickel material was better sectioned with an aluminium oxide based wheel.

3.6.2.1 Grinding procedures

The first major problem to contend with whilst preparing metallographic sections through 

dissimilar pairs was the difference in hardness between the two materials as it results in 

differences in height across a specimen as one material is worn away more easily than the 

other. In more extreme cases a noticeable step appeared at the interface between the two 

materials. Whilst small differences could be tolerated for optical inspection alone these can 

pose severe difficulties when conducting more detailed mapping techniques such as EDX 

chemical analysis especially EBSD. On a more basic level one has to consider that when 

studying an interface with a large difference in height the two sides the observed 

microstructures are not related and the image is not wholly representative. It was found that 

the effect predominated at the fine grinding stages. Although wheels, tables and counter 

rotating auto grinders were trialled, it appeared that the method of grinding had little 

bearing on the outcome and that in fact the best way to avoid the effect was to do as little 

grinding as possible. Hence the refined sectioning techniques outlined above. For the most 

part samples were prepared by hand on grinding tables to allow close control o f the 

grinding procedures.

3.6.2.2 Polishing Procedures

Most common alloys such as the ones under investigation here have specific polishing 

routines that are universally employed. It was found that both the steel and nickel alloys 

under investigation shared similar techniques but that the titanium was more distinct. Both 

the nickel and the steel could be polished to a mirror finish using standard 6 pm and 2 pm
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diamond pastes on fine cloth polishing wheels with a paraffin lubricant. However, when 

titanium was prepared in this way it resulted in significant pitting. This could then be 

removed by using a standard colloidal silica slurry, which when acting on the nickel 

produced a negligible effect but when acting on the steel produced a significant degree of 

pitting itself. For the small number of successful titanium to steel bonds produced it was 

found that pits left in the titanium after the initial preparation were eradicated to an 

acceptable degree during etching.

Where a finer surface finish was required (for EBSD analysis for instance) a two stage sub­

micron polishing regime was adopted whereby the pairs were polished with two types of 

colloidal silica suspension. Firstly, Struers OP-S solution mixed 10:1 with hydrogen 

peroxide and then subsequently with Bueler Mastermet. It should be acknowledged that 

repeated re-polishing of the bonds resulted in the interfacial step outlined in the previous 

section and as a result it was important to use the appropriate procedure first time to avoid 

re-preparing the sample from scratch.

Finally, also o f note was the ‘balling’ of hard carbo-nitride precipitates from the IN718 i.e. 

carbides pulling out of the matrix which resulted in considerable scratching both to the 

IN718 matrix and its bonding pair. Although there are some specific recommended 

polishing techniques to prevent this from happening they are impractical and add further 

complexity to the preparation technique. In an attempt to minimise this effect, careful 

control of polishing force was employed.
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3.6.2.3 Etching procedures

All three alloys investigated required different etches to reveal their microstructure. These 
are outline below in 3.6.1.

Table 3.6.1: Details of etching procedures for all materials.

Material SCMV Ti-6A1-4V IN718 BurTi

Etch Name Nital Kroll’s Reagent
1 0 %

Orthophosphoric
eletro-etch

KrolTs Reagent

Etch
Composition

2 % HN03 in 
distilled water

2% H N 03 and 
1% HF in 

distilled water

1 0 % h 3p o 4

In distilled water

2% H N 03 and 
1% HF in 

distilled water

Etching time Approx 30 seconds Approx 30 
seconds

Approx 60 
seconds at 5 V 

EMF

Approx 60 
seconds

Unfortunately, for the titanium to steel and nickel to steel combinations, a simple two stage 

etching process proved to be insufficient on account of the susceptibility o f the steel 

substrate to over etching by the Orthophosphoric and KrolTs reagents. This was overcome 

by masking the steel with Teflon tape for the initial etch and performing a secondary Nital 

etch which minimal effect on either the titanium or nickel substrates. Whilst the technique 

was successful, the precise nature of the masking required to preserve the interfacial 

microstructures (between 20 and 500pm wide) meant that often two or three iterations were 

required for each bond. This can account occasional uneven etching observed in the 

microstructures presented in the results.

3.6.3 Optical microscopy

Initial optical inspection each bond was carried out using a Reichert-Jung Mef3 optical 

microscope at magnifications ranging from xlO to xlOOO with images recorded with a 

Nikon digital camera.
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3.6.4 Scanning electron microscopy (SEM)

Closer inspection of the bond was achieved through scanning electron microscopy using 

the JSM 6100 scanning electron microscope. Images were captured on a PC control unit 

linked to the microscope using an Oxford Instruments ‘ISIS Link’ unit that allowed close 

control of image size as well as scanning speed and resolution. Magnifications between 

x200 and x20,000 were employed. High magnification inspection of the bond allowed 

detailed assessment of grain interactions and assimilation as well as helping to identify any 

micro porosity present at, or around the bond line. All samples were thoroughly cleaned 

with pressurized air prior to inspection.

3.6.5 Chemical analysis (EDX)

EDX spectro-chemical analysis was employed to study both elemental diffusion across the 

bond line and fracture initiation sites in fractured samples during the optimisation process. 

The analysis was carried out using a JSM 35C scanning electron microscope incorporating 

ISIS link hardware. Readings were taken at 2 pm intervals either side o f the bond line. 

Sampling was continued until levels of alloying elements reach typical levels for the parent 

alloys. Each sample was rigorously cleaned prior to the analysis to avoid surface 

contamination.

3.6.6 M icrohardness testing

Hardness traverses o f the bond were performed at 0.2mm intervals using a Leco M400 GI 

Vickers microhardness tester. Microhardness traverses were performed only on bonds 

produced under an optimised set o f conditions. Hardness tests were also be performed on 

the parent materials to provide a means of comparison for the bond traverse results.

3.7 Mechanical testing

Due to material constraints, only selected optimised bonds were mechanically tested using 

non standard, strip specimens. The strips were sectioned across the bond line using milling
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and grinding techniques to produce samples of approximate size 60 x 5 x 2 mm. It is 

acknowledged that these tests give only a comparative indication of bond strength and 

cannot provide standardised mechanical properties. All tests were performed on a 

calibrated ESH servo hydraulic test rig employing an MTS extensometer with a 12mm 

nominal gauge length. Rates of extension of lmm/min were employed for all tests.
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4 RESULTS: Resistance bonded joints

During this section each bonding trial shall be referred to by the test numbers assigned in 
Table 3.4.1.

4.1 Debinding procedures

For definitions /  descriptions of brown /  green strength refer to section 2.5.2 o f the 
literature review.

A s m entioned in the previous section, the pow der interlayers w as subjected to three 

separate debinding  routes prior to bonding. The first o f  these w as the use o f  a vacuum  

furnace, w ith an aim  to both debind and partially sin ter the green pow der interlayer. The 

equipm ent used can be seen in Figure 4.1.1 below .

F igure 4.1.1: The vacuum  used during initial deb inding  trials.

Initial trials on this debinding  route illustrated problem s w ith the green strength o f  the 

pow der com pact, as it was found that the interlayer w ould  pull aw ay from  the surface o f  

the specim en w hilst establishing the vacuum . T his effect is illustrated in Figure 4.1.2. In an 

attem pt to im prove green strength prior to debinding  a drying tim e o f  approxim ately  12 

hours w as im posed. This im proved green strength sufficiently  to  facilitate a full debinding 

procedure. D ebinding  tim es and tem peratures can be v iew ed in Table 4.1.1.
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Figure 4.1.2: D isintegration o f  the pow der in terlayer during vacuum  debinding.

Table 4.1.1: A sum m ary o f  process variables for the debinding trials perform ed.

C ondition T em perature
(°C)

Hold tim e at m axim um  
tem perature (hrs)

Initial (1) 500 4
Long tim e (2) 500 14

High tem perature and long tim e (3) 700 14

Follow ing the initial trials it becam e evident that the process variables w ere sufficient to 

facilitate com plete debinding, but the brow n strength o f  the resulting  in terlayer was not 

sufficiently  strong to prevent its disin tegration prior to bonding. A s a result debinding  tim es 

w ere increased to 14 hours. U nfortunately, although brow n strength had im proved it w as 

still not satisfactory. C onsidering  th is tem perature w as then increased to 700°C (the ceiling 

tem perature o f  the equipm ent in use). Follow ing these trials a fully debound in terlayer was 

produced that m aintained the necessary strength to be applied during bonding  trials. SEM 

and ED X  analysis o f  the com pacts (the results o f  w hich can be seen in F igure 4.1.3 and 

F igure 4.1.4) show ed both good packing density  and low  relative levels o f  the carbon based 

binder.
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200um

Figure 4.1 .3 : SEM  im ages o f  the debound brown pow der com pacts produced at high
tem perature over 14 hours.
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Figure 4.1.4: R esults o f  ED X  chem ical analysis o f  the brow n com pacts debound at
condition 3.
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4.2 Tantalum coated Inconel 718 to Ti-6-4 with Ti-6-4 powder interlayer

4.2.1 Surface analysis

Figure 4.2.1 show s a m acroscopic im age o f  T est 1. The sam ple failed on rem oval from  the 

G leeble im m ediately after the bonding  procedure. C onsiderable upset had accrued in the 

T i-6-4  specim en, to the ex ten t that the IN 718 sam ple had becom e em bedded in its surface. 

S ignifican t ox idation w as also noted.

5mm5 m m

Figure 4.2.1: Plan and transverse m acros o f  T est 1.

SEM  and ED X  analysis o f  the bond surfaces can be seen in Figure 4.2 .2  and Figure 4.2.3 

respectively . W ith reference to F igure 4.2.2 (a) and (c), partial sin tering and adhesion 

betw een the pow der and the substrate m aterial w as observed on both halves o f  the bond. As 

w ould  be expected  the degree o f  adhesion w as greater betw een the T i-6-4  pow der and its 

substrate counterpart, w ith only a thin layer o f  sintered pow der on the surface o f  the IN 7I8  

m aterial. A lso a varied degree o f  pow der consolidation w as observed over the area o f  the 

bond as a w hole. T his can be clearly  seen in the d ifferences betw een Figure 4.2.2 (a) and 

(b), as well as in Figure 4.2 .2  (c). This effect is also  noticeable from  the ‘pa tchy ’ 

appearance o f  the bond surfaces on trhe m acroscopic scale, F igure 4.2.1.
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(a) (b)

Figure 4.2.2: (a) T i-6-4 sin tered to T i-6-4  substrate (b) less consolidated  T i-6-4  pow der on 
T i-6-4 substrate  (c) T i-6-4  pow der bonded to 1N718 substrate.

Ti-6-4 Surface Map In 718 Surface Map

70
60
50
40
30
20

10

0 I
60 

o 50

40

30

> 20

J
C Al Si Ti V Cr Fe Ni Cu Rb Mo C Al Si Ti V Cr Fe Ni Cu Rb Mo

Figure 4.2.3: ED X  Surface m aps for both fracture surfaces in T est 1.

E lem ental m easurem ents w ere taken o f f  e ither face o f  the board i.e. ED X  focussed upon 

the T i-6-4  and IN718 halves respectively . The ED X  analysis indicated a sign ificant degree 

o f  d iffusion  betw een the tw o halves, especially  in the case o f  nickel and iron w hich 

appeared to d iffuse freely at the surface o f  the T i-6-4 interlayer. The exceptionally  low
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relative levels o f  carbon w ere also noted and w ere further evidence o f  the success o f  the 

debinding  process em ployed at this stage.

4.2.2 Metallography

The failure o f  Test 1 led to a m ore fundam ental approach and the pow der in terlayer w as 

excluded. H ence, jo in t quality  w as assessed by d irect diffusion bonding betw een the 

substrate m aterials. T est 2 is a d iffusion bond betw een IN718 and T i-6-4  w ithout a 

tantalum  braze. Test 3 is the sam e bond incorporating a tantalum  braze. The bonding force 

was also decreased as a result o f  the excessive upset accrued in the T i-6-4  m aterial during 

Test 1. Both bonds show ed good initial adhesion and w ere successfu lly  rem oved from  the 

apparatus. Sections from  the bonds w ere polished and etched and can be seen in Figure

4.2.4 and F igure 4.2.5.

(a) (b)

Figure 4.2 .4 : Sections through the bond line in T est 2 at (a) low and (b) high m agnification.
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(a) (b)

Figure 4.2.5: Sections through the bond line in T est 3 in (a) norm al secondary electron and
(b) backscattered electron m odes.

Figure 4.2.4 (a) and (b) clearly  show  fracture o f  the bond at the interface. T his fracture 

probably occurred in the m ounting press during preparation o f  the section. An overview  o f  

the bond show s a d istinctly  unetched / under attacked region in the T i-6-4  im m ediately 

adjacent to the bond line. The other m ajor feature is the m icrostructural d isruption  observed 

in the In 7 18 at the interface. On closer inspection this d isruption w as revealed as a porous / 

depleted zone. This can be clearly  seen in Figure 4.2.4 (b).

Test 3 displayed increased adhesion w ithout any evidence o f  fracture at the interface. A t 

low' m agnification the bond appeared sim ilar to that o f  T est 2. H ow ever, on closer 

inspection (seen in Figure 4.2.5 (a) and (b)) the ex istence o f  a m ore m ulti layered interface 

m icrostructure becam e apparent. T his is reinforced w ith reference to Figure 4.2.5 (b) w here 

the backscattered electron m ode reveals m ore noticeably  the changes in chem istry  close to 

the bond. Figure 4.2.6 show s how  this im age relates d irectly  to variations in chem ical 

concentration  over the bond line. S ignificant diffusion o f  nickel and iron over the interface 

has occurred, w ith relatively low levels around the depleted  zone, suggesting  the 

susceptib ility  to K irkendall porosity  [55].
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In718

Figure 4.2 .6 : An ED X traverse m atching a high m agnification  backscattered im age o f  Test
3.

4.3 Nickel coated SCMV to Ti-6-4 with Ti-6-4 interlayer

Follow ing  the results gained above and those from supplem entary  research, a m ove w as 

m ade aw ay from  Inconel to titanium  bonds, and tow ards Ni coated SC M V  m aterial to 

titan ium , again  using a T i-6-4 pow der interlayer. A fter practical issues relating to the 

brow n strength  o f  the pow der in terlayer produced via vacuum  debinding  route trialed for
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T est 1, these bonds w ere produced w ith interlayers that had been solely subjected to a 12 

hour dry ing  tim e. A gain , a reduced force w as applied to attem pt to m in im ise upset in the T- 

6-4. Both bonds trialed  under these conditions failed prior to rem oval from  the apparatus 

and a very low level o f  adhesion  w as noted. In all cases the pow der in terlayer adhered well 

to the T i-6-4  specim en. A m acro o f  the typical appearance o f  the bonds can be seen in 

F igure 4.3.1. Follow  up SEM  im ages can be view ed in Figure 4.3.2.

SC M V  Ti-6-4

1 5  m  i n

Figure 4.3.1: A M acro o f  Test 4.

F igure 4 .3 .2 : An illustration o f  the differential heating effect observed in T ests 4 and 5
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4.3.1 Surface Analysis

(a) (b)

Figure 4.3 .3 : SEM  im ages o f  (a) T i-6-4  pow der on T i-6-4 substrate and (b) a backscattered
im age o f  adhesion sites on SCM V  substrate.

W ith reference to Figure 4.3.1 a sm all heat affected zone can be clearly  seen in the SCM V 

specim en. This w as due to a non-uniform  heating effect observed in both tests conducted  

under these conditions. The resistance heating effect w as concentrated  in T-6-4 m aterial, 

w ith com paratively  less heating occurring  in the SCM V . This effect w as m ost no ticeable at 

the beginn ing  o f  the tests, gradually  norm alising during  the bonding process. N evertheless, 

after the full hold tim e was com pleted  th is effect w as still significant. F igure 2 .3 .2  show s 

the appearance o f  the bond approxim ately  m id-w ay through the hold tim e.

M inim al upset has accrued in either specim en especially  the SCM V . C onsiderable  

oxidation w as noticeable on the T i-6-4 specim en. T his m ay be due to out-gassing  from  the 

b inder during  bonding. An SEM  im age o f  the surface o f  the pow der in terlayer can be seen 

in Figure 4.3.3 (a). Poor consolidation is noted com pared to Test 1. O nly lim ited sin tering 

appears to  have taken place. Furtherm ore, only a sm all proportion o f  the com pact appears 

to have m ade contact w ith the SCM V  m aterial. This is characterised  by the sm all fracture 

surfaces apparen t on individual particles. To corroborate this, the SCM V  faying surface 

revealed areas o f  adhesion and subsequent fracture on its surface. B ackscattered electron 

im ages such as that seen in Figure 4.3.3 (b) helped identify com positional d ifferences 

betw een these areas o f  adhesion and the non-connected  parent m aterial.
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EDX chemical analysis confirmed these indications, finding that the adhesion sites on the 

SCMV show much higher levels o f  titanium and reduced levels o f  iron and nickel as 

compared to the surrounding material. The results o f this analysis can be seen in Figure 

4.3.4. Relative levels o f  carbon in these tests were also much greater than those recorded 

for Test 1.

N o n - C o n n e c te d  S u r f a c e  (SCM V) A d h e s io n  s i t e s  (SCM V)

60a)
c 50to
?  40

|  30

> 20

1 10 
a:

Ti V Cr Cu Mo

(a)

50
a>
£ 40

30

a> 20 
>

75 10 
a: D I

Ti V Cr Fe Ni Cu Mo

(b)

Figure 4.3.4: A comparison between EDX chemical analyses o f adhesion sites on the 
SCMV surface and the substrate SCMV.

4.3.2 Metallography

A section o f  the Ti-6-4 powder compact from Test 4 is presented in Figure 4.3.5. The very 

poor consolidation o f  the powder interlayer is immediately apparent. Some inter-particle 

joining has occurred (see high magnification image inset), providing enough strength to 

both maintain the integrity o f  the interlayer and hold it onto the substrate o f  the specimen. 

However, the resultant faying surface area has been significantly reduced. The poor degree 

o f  consolidation remains consistent throughout the interlayer suggesting that the whole 

compact has seen insufficient temperature / force to facilitate consolidation. Despite this, 

some microstructural effects were noted in the Ti-6-4 substrate, indicating that conditions 

in the substrate would have been sufficient to induce elemental diffusion.
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Figure 4 .3 .5 : A m etallograph ic section o f  T i-6-4 pow der on T i-6-4  substrate in Test 4 w ith
high m agnification im age inset.
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4.4 Differential Heating

The relatively poor quality of Tests 4 and 5 compared to Test 1 raised questions, 

particularly in relation to the non uniform heating that was observed. It seemed likely that 

the main reason for the poor adhesion in these tests was that not enough heat was being 

equally distributed across the interface. To better understand the reason for these effects 

and the process as a whole a more fundamental appreciation of the process was required. 

This is outlined below.

As outlined in section 3.2.1, the resistance bonding process is in turn governed by the Joule 

heating effect (equation 3.2.1.1). When broken down to its fundamental components, this 

effect is in turn reliant on both the applied voltage and the thermo physical properties o f the 

material to be bonded. The following series of equations show how each of these factors 

relate to each other and the relative effects of their interactions.

As a nominal voltage V is applied to a continuous specimen at any one instance in time, a 

steady state electrical field is established where by its separate components can be defined 

by Laplace thus:

5 V  + a ¥ + ^ = o 4 4 ] ]

dx dy dz

From this established electrical field, current density vectors (/* ip i j  can then be 

calculated for each component by references to a materials resistivity |3.

. = ± d F  . = J _dV_ . = ± d V  4 4  ! 2

y p  dy p  dx p  dz

A nominal current density vector can then be given by Pythagoras:

i2 =i:2,+ /% + /2, 4.4.1.3
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This value may then be incorporated into a joule heating term with the Fourier heat transfer 
equation to give the temperature at any instance in time.

A L - A .
dt cp

( d2T d2T d2̂
 T~*------ T ̂  Tdx dy dz

+ tn
cp 4.4.1.4

For a given span B (figure 4.4.1) the temperature gradient across the specimen can be given 
by:

dT k ( d T  Y  B'
x ----

dx cp \ d t  j
4.4.1.5

At B/2 (the midpoint o f the specimen) —  = o i.e. there is no heat flow and no temperature gradient
dx

The result would then be the parabolic temperature profile illustrated in Figure 3.2.3.

B/2
Figure 4.4.1: A schematic representation o f the jaw / specimen configuration of the Gleeble

1500.

Although these equations relate to a continuous sample where no interface is present, they 

give a crucial insight into the factors affecting resistance heating; these being, resistivity 

(p), thermal conductivity (k) and specific heat capacity (c). Considering these factors and 

their importance then elucidates the considerable difficulty to be found in maintaining a 

uniform heating effect between two samples with different thermo physical properties. This 

led to the assessment of material compatibility with respect to these properties set out 

below in section 4.4.1.
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4.4.1 Material compatibility

Using the principles set out above attention was then focussed on their relevance to the 

materials under investigation. Table 4.4.1 both gives values for the three fundamental 

properties to be considered in terms of resistance bonding for each material. It also draws 

comparison between these values in terms of the differences between the values for each 

bonding pair.

Table 4.4.1 : Thermo physical property data for Ti-6-4, IN718 and SCMV.

Material
CTE

(Mm m'^C'1)

Electrical 
Resistivity 
(pQ cm'1)

Specific 
Heat 

capasity 
(J g 'V )

Thermal
conductivity
(W m 'V )

COa>D
CO>
c

Material
CTE 

(pm m'1°C'1)

Electrical 
Resistivity 
(pCI cm'1)

Specific
Heat

capasity
( J g 'V )

Thermal
conductivity
(W m 'V )

(0 SCMV 8c Inconel(0 10-13 2.30E-05 0.46 26.1 4.4 5.30E-05 0.091 4.7T3
s

Steel1 £Q
to Ti-6-4

DC
Inconel & SCMV
718 2

13 1.25E-04 0.435 11.4 15
B
S

to Ti-6-4 3.4 1.55E-04 0.066 19.4

Ti-6AI-4V
Eo CMVto

3 8.6 1.78E-04 0.526 6.7 O Inconel 1-2 1.02E-04 0.025 14.7

Of all three pairs it appears that SCMV to Ti-6-4 would be the most incompatible 

especially in terms of thermal conductivity and electrical resistivity, the two most 

important properties to consider in heat generation through resistance bonding. Inconel and 

Ti-6-4 were the most compatible in terms of heating related properties, but less so in terms 

of more general joining factors such as specific heat capacity and coefficient of thermal 

expansion. Conversely, SCMV and Inconel showed the exact opposite relationship. It was 

acknowledged that these comparisons do not take into account effects of chemistry and 

physical factors such as specimen morphology. Nevertheless, it was important that they 

were considered for future bonding trials.

1 Data sourced from Thyrotech 2 Data sourced from Timet UK 3 Data sourced from special metals
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4.4.2 Experimental design modifications
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Figure 4.4.2: Temperature profiles for the standard copper jaw configuration.

To try and properly examine the integrity the of these SCMV to Ti-6-4 bonds despite the 

associated difficulties outlined above, a new jaw system was introduced to the Gleeble 

apparatus; the aim being to produce a more comparable heat between the SCMV and Ti-6 - 

4 material. The jaw system achieved this by providing a smaller heat sink to the SCMV 

side of the bond. These were termed ‘Hot jaws’. To examine their effect, trials (Tests 6  and 

7) were conducted on solid specimens using both the original and hot jaw assemblies. 

Temperature profiles were recorded using the gleeble logging system. The results of these 

trials are illustrated in and Figure 4.4.2 and Figure 4.4.3.
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Figure 4.4.3: Temperature profiles for the
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uniform hot jaw configuration.

The result o f the hot jaw configuration is a heating effect biased towards the hot jaws. This 

can be clearly seen in the comparison between the two sets of temperature profiles. This 

was then employed in bonding trials for Tests 8  and 9 to offset the differential heating 

effect.
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4.5 Ti-6-4 to Nickel coated SCMV with Ti-6-4 / BurTi interlayer

Tests 8 and 9 w ere perform ed using hot jaw s on the SC M V  side o f  the bond. M acros from 

these tests can be seen in Figure 4.5.1 and Figure 4.5.2. F igure 4.5.1 show s the heating 

d istribution  across the bond w hilst using the new  hot ja w  assem blies (LH S). It is clear here 

that the SC M V  m aterial is subjected  to a vastly  increased heating com pared to the original 

ja w  configuration .

-  d
C°PperJaw syg

SCMV

Figure 4.5.1: The effect o f  the hot jaw  configuration on the visib le tem perature profile.

Ti-6-4 SCMV

Figure 4.5.2: A m acro o f  T est 9.

F igure 4.5.2 show s the resu ltan t bond m acro. The heat affected region o f  the specim en has 

increased substantially  com pared  to that v iew  in prev ious tests (F igure 4.3.1). Furtherm ore,
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both tests w ere successfu lly  rem oved from  the apparatus w ithout failure. U nfortunately , the 

bond strength  w as not sufficient enough to prevent fracture o f  the bonds during  sectioning. 

Im proved consolidation  o f  the T i-6-4  pow der com pact w as evident, F igure 4.5.3. H ow ever, 

pow der adhesion  to the SCM V  w as again lim ited as in T ests 4 and 5.

Figure

Follow ing  these unsuccessfu l results a burn resistant titanium  alloy (B urT i) in terlayer w as 

trialled  and bonding  cond itions w ere m odified, apply ing  an increased force to try and aid 

pow der consolidation . M acroscopic im ages o f  these early  BurTi in terlayer bonds can be 

seen in Figure 4.5.4. As in Test 1 sign ificant deform ation has occurred in the titanium  

m aterial w hich has enveloped  the SC M V  specim en, F igure 4.5.4. O f  m ore concern w as the 

severe oxidation  on the T i-6-4  m aterial. Follow ing the failure on sectioning o f  previous 

bonds an attem pt w as m ade to grind through the bond to prevent excessive stress being 

im parted on it. N evertheless, although specim ens w ere successfu lly  rem oved from  the 

apparatus, fa ilure occurred  during this g rinding procedure. Finally, a large heat affected 

zone w as once again  noted in the SCM V . Subsequent V ickers hardness m easurem ents 

confirm ed a considerab le hardening o f  this m aterial up to 700H V.

4.5 .3 : SEM  fractography o f  T i-6-4 pow der on T i-6-4 substrate.
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SCMV

15 mm
5 mm

Figure 4.5.4: M acros o f  initial BurTi in terlayer trial, w ith a section illustrating  the
deform ation in the T i-6-4  m aterial.

In an attem pt to reduce oxidation and im prove bond quality , an in situ debinding  stage was 

applied to the follow ing tw o tests. Figure 4.5.5 show s the m acros o f  (a) T est 12 and (b) 

Test 13. A 5 m inute debinding stage at 200°C w as em ployed for Test 12, w hereas tw o 5 

m inute debinding  stages at 200°C and 500°C w ere em ployed for T est 13. A t the end o f  the 

bonding sequence a 10 m inute cooling  ram p to room  tem perature w as also  incorporated to 

try and prevent the hardening observed in the previous tw o tests. A clear reduction in the 

degree o f  oxidation was noted. D espite this, the degree o f  pow der consolidation  did not 

increase betw een the tests. N o decrease in the degree o f  hardening  w as noted either. 

Pow der interlayers rem ained bonded to the m ore com m on T i-6-4 side in all tests w ith a 

typical appearance o f  that seen in Figure 4.5.6.

1 0 m m 10 m m

(a) (b)

Figure 4.5.5: M acros o f  Tests (a) 12 and (b) 13
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f  igure 4.5.6: Consolidation at the BurTi to SC M V  interface.
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4.6 Chemical compatibility

During this stage of the investigation, results of supplementary work had shown that 

satisfactory bonds could be produced by adopting the same process variables to those 

previously employed to manufacture homogenous Ti-6246 bonds [149]. Conversely, 

despite altering a range of different process variables little effect seemed to have been 

made on improving bond quality in this investigation. This suggested that the problems 

experienced here may be due to chemical differences / incompatibilities at the interface. 

The primary cause o f poor bond quality appeared to be due to brittle phase evolution at the 

bond line. These phases were often found to have fractured before the bonds had left the 

apparatus, suggesting that other factors may have contributed to the cracking in these 

phases. The most plausible explanation is that differences in coefficient of thermal 

expansion between both titanium and steel (Table 4.4.1), have led to residual stress in the 

phases. This stress may then result in failure of the bond following the removal of the 

compressive bonding pressure. A review of the relevant literature showed that ‘transition 

joining’ techniques incorporating multilayer brazes lead to improved bond qualities in alloy 

pairings that are difficult to join [147]. Consequently a decision was made to investigate 

the use of a triple brazed Ni-Cr-V layer that was to act as a buffer between the two 

materials.

4.6.1 Comparisons to conventional HIP technique

During the course o f the investigation, the bonds produced using conventional HIPing 

techniques had yielded superior results in respect of powder consolidation. The 

fundamental difference between this HIPing technique and resistance bonding was the 

increased force applied. However, the HIPing equipment used allowed the implementation 

of a long (twelve hours) ‘cold’ vacuum debinding stage prior to bonding. All other bonding 

parameters were similar to the conditions employed in the Gleeble. Preliminary results 

showed some structural integrity.
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C om pared to  th is HIP techn ique the fundam ental factor lim iting the force to be applied in 

the G leeble w as the severe upset that occurred  under large loads. This coupled w ith the 

d ifferential heating  effect m ade T i-SC M V  pairings less practical. On these grounds m ore 

attention  w as then focussed  on SC M V -IN 718 and T i-6 -4 -lN 7 18 pairs. Furtherm ore, early 

plans for the deve lopm en t o f  an isostatic force condition  (detailed in section 4.6.2) w ere 

under developm ent. In addition , the continued success o f  sim ilar T i-6246 resistance heated 

pow der in terlayer tria ls suggested  that chem ical incom patib ility  m ay be a m ajor factor in 

contro lling  bond quality .

4.6.2 Further modifications

The HIPed bonds had suggested  that increases in applied  force provided considerable 

im provem ents in bond quality . Therefore a m ethod w as devised by w hich these conditions 

may be replicated  in this investigation. The isostatic force w as achieved by applying a 

radial constra in t in the (form  o f  a sleeve) to the bond w hich, during  upset, resisted radial 

flow , creating a quasi isostatic force condition. A schem atic o f  the sleeve can be seen in 

Figure 4.6.1.

Powder interlayer Thermocouple

Figure 4.6 .1 : A schem atic diagram  o f  the sleeve design.

A t th is stage o f  developm ent the sleeve w as m achined from m ild steel and coated w ith a 

refractive pow der lubricant to  prevent bonding betw een itse lf and the specim ens. H ow ever, 

it is the intention to  m anufacture a sleeve w ith a ceram ic inner section. This will help to 

both reduce sleeve -  specim en adhesion and will also electrically  insulate the sleeve from
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the specim ens m ore effectively . Finally, the sleeve also holds the pow der interlayer in 

place, negating  the need for a b inder and reducing overall bond contam ination.

4.7 Ti to Ni-Cr-V (triple) coated SCMV with BurTi interlayer

The m acro o f  Test 14 can be seen in Figure 4.7.1. W ith reference T able 3.4.1 th is test was 

carried  out under the sam e conditions as the prev ious bonds. The bond had failed prior to 

its rem oval from the apparatus. C onsiderab le oxidation w as noted on the SCM V  side 

although again the degree o f  ox idation in the T i-6-4 appears to have been lim ited som ew hat 

by the debinding  procedures. The severe oxidation w as noted only in the region o f  the 

trip le  braze.

SCM V

2 0 m m

Figure 4.7 .1 : A m acro o f  Test 14.

C onsidering  the poor results from T est 14, tem peratu re and pressure w ere increased for 

bond 16 in an attem pt to im prove bond quality . Som e difficulty  w as encountered in 

bonding titanium  at these tem peratures as the w elds betw een the control therm ocouples and 

the titanium  specim en tended to fail close to these tem peratures. A successful bond was 

produced (T est 16) and the m acro o f  this can be seen in Figure 4.7.2. N evertheless, bond 

quality  did not im prove.
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2 0 m m

Figure 4.7.2: A m acro o f  T est 16 bonded at 970°C.

T i-6-4 SCM V

The results o f  SEM  fractography along w ith corresponding  surface ED X analysis can be 

seen in Figure 4 .7 .3 . A gain , consolidation o f  the pow der in terlayer is poor. Only low levels 

o f  consolidation are seen w ith sm all contact surface areas betw een particles. The surface o f  

the SCM V show s correspond ing  adhesion sites. B ackscatter analysis again revealed these 

to be d ifferent in com position  to the substrate m aterial, indicating partial diffusion and 

bonding o f  the pow der in terlayer to the trip le coated SCM V .

Triple coated Burti Interiayer 970C: Ti-6-4 Side

I wm
D _ |_| [~j
C Al Ti V Cr Fe Ni Mo

Triple coated Burti Interlayer 970C : SCMV Side

80
70
60
50
40
30
20
10
0

C O  Al Ti V Cr Fe Ni Mo

Figure 4.7.3: SEM  fractography and corresponding  ED X  analysis o f  fractured specim en
halves from  T est 16.
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The first feature noted in the ED X data w as the relative carbon levels found both in the 

com pact and the areas o f  adhesion on the SCM V . Though the levels are h igher than that 

found after fully debinding the in terlayer prior to bonding, they are also less than those 

found in bonds produced w ith no in situ debinding procedure. This indicates som e level o f  

success in that respect. The second noticeable feature is the m irror im age noticed betw een 

the tw o with respect to levels o f  titanium  and vanadium . Indicating the presence o f  a 

secondary interface at the point o f  fracture.

A section o f  the BurTi pow der in terlayer can be seen in Figure 4.7.4. C om pared to the 

perform ance o f  Test 9, overall com pact consolidation has substantially  im proved. 

H ow ever, the degree o f  consolidation  decreases approaching  the bond line, resulting  in the 

d istinct particles view ed in the plan view  o f  the BurTi in terlayer in Figure 4.7.3.

F igure 4.7.4: A m etallographic section o f  BurTi pow der on T i-6-4 substrate in T est 16.
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4.8 Tantalum coated SCMV to Inconel 718 with Inconel 718 powder

Follow ing the failure o f  previous bonds, and considering  the com patib ility  issues raised in 

section 4.4.1, further trials looked at bonding attem pts on m aterials w ith a m ore sim ilar 

com patib ility  with respect to the resistance heating  effects. All o f  these tests w ere 

conducted  w ithout needing the ‘h o t’ jaw  configuration . M acros o f  Test 17 can be seen in 

figure 2.8.1, w ith corresponding  fractography in Figure 2.8.2. The strength o f  both 

m aterials at high tem perature allow ed an increased force to be used w ithout fear o f  

sign ifican t upset. D espite this, bonding w as still unsuccessful, and the bond had failed 

before the specim ens w ere rem oved from  the apparatus. The pow der in terlayer rem ained 

attached to the com m on Inconel. SEM  im ages revealed poor consolidation o f  the com pact 

and low effective bond area with reference to the adhesion sites seen in F igure 4 .8 .2  (b). 

A gain the backscattered im age (inset) show ed a m inor degree o f  m aterial transfer onto  the 

SC M V  specim en.

SCM VIN718

2 0 m m

Figure 4.8.1: A m acro o f  Test 17.
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(c)

Figure 4.8.2: SCM  V im ages o f  (a) IN 7 18 pow der on IN 7 18 substrate and (b) adhesion sites 
on SCM V  substrate w ith a corresponding  backscattered im age (c).

4.9 Quasi isostatic forces during resistance bonding (QUIP)

T ests 18 and 20 w ere initial tria ls o f  the quasi HIPing procedure proposed in section 4.6.2. 

T he tests w ere conducted successfu lly  and the bond /  sleeve assem bly  w as rem oved from 

the apparatus intact. The bond w as also successfully  rem oved from  the sleeve w ithout 

dam age, how ever, it fractured during subsequent evaluation . The m acros o f  Test 18 can be 

seen in Figure 4.9.1. The d iscolouration o f  the area surrounding  the interface w as partly 

due to oxidation  but also to the considerab le build up o f  the pow der based lubricant used 

w ith in  the sleeve. Plan view s o f  the bonds also indicate both a h igher degree o f  pow der 

consolidation  and adhesion to the uncom m on m aterial. T his w as reinforced w ith SEM
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analysis o f  the fracture surfaces as seen in Figure 4.9.2. F igure 4.9.2 (a) clearly  show s an 

increased degree o f  adhesion  betw een the Inconel pow der and the tantalum  coated SCM V 

specim en. F igure 4.9 .2  (b) show s both low and high (inset) m agnification o f  the surface o f  

the Inconel specim en. A superior degree o f  consolidation is evident.

SCM V

Figure 4.9.1: A m acro o f  test 18.

IN718

5 mm

(a) (b)

Figure 4.9.2: SEM  im ages o f  (a) IN 718 pow der on uncom m on SCM V  substrate and (b) 
well assim ilated  IN 718 pow der on IN718 substrate w ith a h igher m agnification im age

inset.

D espite these p rom ising  results, som e difficu lties w ere encountered  during  the bonding 

process. T he m ost s ign ificant o f  thee w as the length o f  the sleeve. It appeared during  

bonding that the sleeve w as not suffic iently  w ide to  cover the w hole expanse o f  the ‘h o t’ 

zone w ithin the G leeble. T his m eant a reduced force w as required to prevent upset around 

the sleeve. In o rder to overcom e th is problem  Test 20 w as conducted using sim ilar
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conditions but a w ider sleeve, in the hope that th is w ould allow  the use o f  h igher forces 

during bonding. The results o f  th is test can be seen below .

Figure 4.9 .3 : An optical m icrograph o f  the IN718 pow der - IN 7I8  substrate interface
view ed under polarized light.

2 0 m m

IN 718 SCM V

Figure 4.9 .4 : A m acro o f  T est 20.
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(a) (b)

Figure 4.9 .5 : SEM  analysis o f  (a) IN 718 pow der on IN 718 substrate and (b) adhesion sites
o f  SCM V  substrate for T est 20.

Surprisingly , m uch less consolidation w as noted in th is test com pared to its low er force 

counterpart, Test 18. Friction o r bonding betw een the sam ple and the sleeve is the m ost 

likely reason for this. U nder these high tem perature /  high force conditions it is likely that 

som e bonding betw een the sleeve and the specim ens occurred  before restabilising 

interfacial contact reducing effective bond force. D espite this, a significant degree o f  

adhesion w as recognised on the SC M V  m aterial.
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Figure 4.9.6: A high m agnification  optical m icrograph o f  the SCM V  - IN718 pow der
interface.

4.10 Tantalum coated Inconel 718 to Ti-6-4 with BurTi powder

A nother pair attem pted was the tantalum  coated Inconel to T i-6-4 with a BurTi interlayer. 

C onsidering  the poor perform ance o f  the bonds previously  attem pted using the original 

technique, th is test w as conducted at high force over a long period o f  tim e to ascertain  

initial m aterial com patibility . The heating effect betw een the m aterials w as m ore uniform  

than that observed betw een T i-6-4  and SCM V  confirm ing  the link betw een the values in 

Table 4.4.1 and real heating effects. D espite this and the high force, little o r no adhesion 

w as observed, w ith the bond failing  prior to being rem oved from  the apparatus. M acros o f  

the bond can be seen in Figure 4.10.1. An apparen t d ifference in upset betw een the tw o 

specim ens is noted. SEM  im ages show ed low degrees o f  pow der consolidation  and sim ilar 

areas o f  adhesion on the uncom m on Inconel specim en to those seen in previous tests. 

These can be seen in F igure 4 .10.2. High m agnification im ages o f  the adhesion sites ( 

F igure 4 .10.2  (b) and inset) show ed a fibrous appearance that w as com m on to m ost sights 

in all fracture surfaces o f  a sim ilar appearance.
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T i-6-4 SCM V

2 0 m m

Figure 4.10.1: A m acro o f  T est 19.

.

A'-

(a) (b)

Figure 4.10.2: SEM  im ages (a) BurTi pow der on T i-6-4  substrate and (b) an im age o f  an 
adhesion site on the SCM V substrate w ith a high m agnification im age inset.

Figure 4.10.3: An optical m icrograph o f  the BurTi pow der in terlayer on T i-6-4  substrate
with high m agnification detail inset.
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Figure 4.10.4 : A high m agnification optical m icrograph o f  the tantalum  coated IN718 bond
half.

4.11 Copper impregnated powder interlayers

In T est 21 T i-6-4  w as bonded to T a coated 1N718 using an im pregnated pow der interlayer 

in an attem pt to  see how  this w ould effect both pow der consolidation and bond integrity. 

The technique is essentially  one o f  transien t liquid phase bond as described in section 2.9 

w hereby m elting  point depressan ts are m ixed into the pow der to aid d iffusional m ass 

transport and facilitate jo in t w etting. The copper pow der w as m ixed w ith that o f  the T i-6-4 

at 6%  by w eight. The im pregnated pow der w as then m ixed w ith the b inder and the bond 

w as perform ed under the conditions outlined in table Table 3.4.1.

The resulting  m icrographs can be seen below  in Figure 4.11.1 and Figure 4 .11.2. Figure

4.11.1 (a) show s an overview  o f  the pow der com pact. Im m ediately recognisable is the 

substantial im provem ent in pow der consolidation , in fact no porosity  w as view ed 

throughout the interlayer. H ow ever, F igure 4.11.1 (a) show s how  despite this radical 

im provem ent the fracture o f  the bond appears again to have occurred at a brittle 

in term etallic  at the interface w ith portions o f  this clearly  visib le at the IN 718 interface.
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(a) (b)

Figure 4.11.1: An overv iew  o f  bond 21 from  (a) the T i-6-4  side and (b) the IN 7 18 Side.

Figure 4 .11.2  show s detailed photom icrographs o f  (a) the pow der com pact and (b) the 

com pact to  IN718 interface. C onsidering  (a), for the m ost part a m ixture o f  fine equiaxed 

prim ary a  and coarse a  lath dom inates the m icrostructure w ith localised areas o f  significant 

grow th o f  a coarse w idm anstatten  transform ed (3. This is particularly  ev ident in Figure

4.11.2 (b) at the pow der / IN718 interface w here a coarse 50pm  band o f  w idm anstatten  

structure g ives w ay to the in term etallic interfacial structure. T here appears to be evidence 

that the structures are related as grow th o f  a  needles into the interm etallic can be seen.
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Figure 4.11.2: Detailed view s o f  the m icrostructures o f  (a) the im pregnated pow der 
com pact and (b) the pow der to IN 718 interface.
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4.12 Titanium substrate to IN718 substrate using a Copper braze interlayer

This bond chem istry  exhibited m inim al adhesion as can been seen in figure 2.12.1. A 

relatively  high degree o f  oxidation o f  each specim en w as again noted w ith a characteristic 

darkening  o f  the 1N718 specim en in particular. C rucially , m acroscopically  these bonds 

produced w ithou t pow der show  little d ifferences in appearance to those previously 

produced w ith pow der.

1 Omm

Figure 4.12.1: A m acro o f  bond 26.

D etailed fractography o f  the interface o f  each alloy w as conducted and this is presented in 

figures 2 .12.2  (a) and (b). The sm ooth surfaces suggested  that the braze had successfully  

w etted the jo in t. With reference to (b) the backscattered im ages show ed sim ilar am ounts o f  

the braze had adhered to each faying surface.

(a) (b)

F igure 4.12.2: (a) A high m agnification SEM  im age typ ical o f  the faying surface condition 
post bonding (b) a corresponding  backscattered im age.
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A lesser degree o f  m icrostructural d isruption w as noted in these bonds in com parison to 

those em ploying  an im pregnated copper interlayer. D iffusion o f  copper into the titanium  

appears to be lim ited to a 70 -  100 pm  band im m ediate to the interface, w hilst a clear band 

can be seen along  the faying surface o f  the IN718 in figure 2.12.3 (b). A gain the im m ediate 

interface betw een the tw o pairs show s a sim ilarity  to that o f  the copper im pregnated 

pow der in terlayer bonds described above.

40um

(a) (b)

Figure 4 .12.3: (a) A m edium  and high (inset) m agnification m icrograph typical o f  the 
appearance o f  the T i-6-4 side and (b) the interfacial m icrostructure o f  the IN 7 18 side o f

bond 21.

4.13 IN718 Vs SCMV using a Nicrobraz LM braze

The use o f  the N icrobraz braze in IN718 to SCM V  bonds w as adopted after reported 

im provem ents in bond quality  through the use o f  silicon and boron based brazing alloys 

[133]. Detailed inform ation on N icrobraz LM is presented in section 3.1.7.

All these bonds show ed som e level o f  adhesion and w ere the first to produce specim ens 

suitable for m echanical assessm ent. U nfortunately  the num ber o f  tests allow ed by the scale 

and num ber o f  the resistance bonded specim ens w as lim ited. For this reason non -  standard 

m echanical tests pieces w ere m achined to allow  each bond to be assessed 

m etallographically  and m echanically . T he technique proved useful and it is suggested that
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this could be employed in future investigations also at the developmental stage. A matrix of 

the trials performed is laid out below in table 2.13.1.

Table 4.13.1: A Summary of the bonding conditions for bonds produced incorporating
Nicrobraz.

Test
Number

Time
(Minutes)

Tem perature
CO

Force
(KN)

25,26 
(Two Bonds 
Produced)

60 970 3

27 60 990 3

28 60 990 5

29
(Test Failed at TC)

60 1050 5

30 1 0 990 3

Initially bonds were produced that aimed to match the bonding parameters set out for the 

titanium to steel bonds (Tests 9 through to 16). After brief metallographic examination it 

became clear that the scope for increasing temperature and pressure without severe 

microstructural damage and significant upset was large. Test 29 was denoted as a high 

temperature test but failed when a thermocouple became detached during the bond. This 

lead to a malfunction in the temperature control system resulting in the melting of the 

specimen. Despite this apparent ‘failure’ the bond was included in the investigation as a 

means of comparison to more conventional welding techniques (flash butt welding). Macro 

images of some of the bonds produced are displayed in Figure: 4.13.1 below.
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60 Min 970°C 3KN 26 H O  Min 990°C 3KN 30

10 m m

60 Min 990°C 3KN 30
Powder interlaver

B B H

Figure: 4 .13.1: M acro im ages for post bond appearance o f  various N icrobraz brazed SCM V
to IN 7 18 jo in ts.

The four bonds presented  show  varying degrees o f  oxidation  w ith Test 4 show ing the least 

ox idation due to  its short tim e at tem perature. Interestingly Test 6 produced the greatest 

am ount o f  ox idation  w ith apparent carburization  o f  the b inder products and a soot residue 

over the specim en surface. W hilst these bonds w ere produced at sign ificantly  higher 

pressures than those involv ing  titanium  com paratively  little upset w as d isplayed in any o f  

the 6 bonds.

■    ■

10mm

4.13.1 Bond microscopy

Bond m icroscopy revealed in teresting and once again com plex m icrostructural features. 

The figures below  characterise  som e o f  the com m on features observed in the bonds 

concen trating  prim arily  on interfacial m icrostructures. H ow ever, o ther m acro scale 

m icrostructural anom alies w ere also observed w hich are dealt w ith in detail in section 4.14.

C onsidering  first the IN 718 side and w ith particu lar reference to Figure 4.13.2 a 

considerab le increase in precipitation o f  secondary and tertiary  phases is evident. This 

precip itation is h igh ligh ted  particularly  well by polarized light as it tends to  d ifferentiate 

betw een y” and tertiary  5 phase w ell. H ere a m ass pro liferation  o f  both these precipitates 

can be seen in a band approxim ately  50 pm  w ide spanning  the w hole interface (F igure

F ailed  TC t e s t
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4.13.3). A lso  shown are signs o f  interfacial porosity  (indicated). Interestingly, when 

considering  the SCM V side o f  the bond little or no m icrostructural d isruption is apparent. 

F inally , the absence o f  any rem ainder o f  the N icrobraz braze at the interface w as o f  

interest. T his is in stark contrast to the interface m orphology in the pow der in terlayer bonds 

displayed in Figure 4.13.4.

Figure 4.13.2: A polarized light m icrograph o f  the interface betw een SCM V  and IN718
pairs using a N icroB raz braze.
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Figure 4.13.3: An overv iew  o f  the interfacial m icrostructure o f  a N icrobraz brazed SCM V  
to IN718 bond w ith high m agnification detailed im age inset.

In Figure 4 .13.4  three m arked differences in m icrostructure w ere observed com pared to 

that seen in the bonds not em ploying a pow der interlayer. Firstly, the N icrobraz Braze layer 

appears to be intact at the IN718 pow der /  parent interface. Secondly, the level o f  

precipitation  in the IN718 observed in o ther tests w as not noted at the IN718 / pow der 

parent interface. Thirdly, a good level o f  adhesion w as noted betw een the In718 pow der 

and the SCM V  parent m aterial. H ow ever, there also appeared to  be ev idence o f  a thin band 

o f  an ind istinguishable phase created  at the interface.
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Figure 4.13.4: An overv iew  o f  the interfacial m icrostructure for a N icrobraz  B razed bond 
betw een SCM V  and 1N718 em ploying a pow der in terlayer w ith high m agnification detail

inset.

F inally, considering  Figure 4.13.4  variable levels o f  pow der consolidation w ere observed 

across the bond line. A lthough the m ajority  o f  the pow der in terlayer appeared to sinter 

w ell, the packing density  dim inished tow ards the flanks o f  the bonds.

Figure 4.13.5 represents the typical pore size found w ithin the pow der interlayer. W hilst 

the size is representative the d istribution is not and in actuality  the location o f  such pores 

w as w idely  scattered.
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30um

Figure 4.13.5: An im age o f  the representa tive pore size found w ithin the pow der
interlayers.

4.13.2 Mechanical testing

Figure 4 .13 .6  show s engineering  stress strain curves for each o f  the bond trials conducted 

em ploying  a N icrobraz Braze. The fundam ental m echanical properties are also sum m arised 

below  in Table 4.13.2. R eferring to both, a clear correlation  can be seen betw een increasing 

tim e, tem peratu re and pressure and im proved m echanical response. T his trend continues up 

to the vastly  superior perform ance o f  the fusion w eld w hich, w hilst not perform ing well in 

com parison  to parent m etal properties, show s m arked increases in ductility  and UTS. The 

ex trem ely  low ductility  o f  the solid state bonds is the prim ary indicator o f  poor bond 

strength.
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Nicrobraz Lm-3 Brazed In718 to Uncoated SCMV
700

600

500 ♦ 3kn 10m in 
990 

■ 3kn 970
as
|  400

5kn 990w 300 
0)

1050 
(melted) 

x 3kn 990

CO 200

1 0 0

0.5 1 1.50 2
Strain (%)

Figure 4 . 13.6: Engineering stress vs strain plots for all N icrobraz brazed trial bonds
produced.

T able 4 .13.2: A sum m ary o f  m echanical properties for all N icrobraz brazed trial bonds
produced.

Condition Yield
Stress
(MPa)

UTS
(MPa)

Modulus
(GPa)

Failure
Strain

(% )

10 M in 990° 3 KN N/A 130 240 0.05*

60 M in 970° 3KN N/A 292 250 0.12*

60 M in 990° 3KN N /A 360 210 0.15*

60 M in 990° 5KN 329 368 144 0.37

Failed Test (M elted) 375 639 227 1.57

Elastic strain
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All bonds, including the fusion weld, failed at the bond line. Subsequent SEM inspection of 

the bond fracture surfaces revealed some areas of non-fusion. However, it appeared that in 

the majority of cases the bonds were simply overloaded over the whole interfacial area, 

displaying a uniform fibrous appearance throughout. An example of such a fracture surface 

can be seen in Figure 4.13.7. The other interesting feature of this fracture surface is the 

subtle ridges or asperities running across the fracture surface. These are evidence of both 

poor initial deformation required for good interfacial contact and low interdiffusional mass 

transport during the bonding process. These asperities appear in the high magnification 

SEM image inset to Figure 4.13.7, which also shows evidence of both non-fusion defects 

(indicated at 1) and hot spots (indicated at 2), likely created by foreign inclusions. These 

defects were typically between 5 and 25 pm in diameter. Whilst their presence was noted, 

no evidence that they contributed directly to the bond failure was found during the post 

failure fractography.
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(b)

Figure 4.13.7: An SEM  image typical o f  the fracture surface found in failed SCM V  to 
IN718 N icrobraz brazed jo in ts  (b), with evidence o f  non-fusion defects (a).
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For consistency Figure 4.13.8 shows a high magnification image o f  the fractured pow der 

interlayer test. T he two most important features o f  this fracture surface were both the 

decrease in consolidation towards the specimen edge (as noted in the m icroscopy in Figure 

4.13.4) and the appearance o f  asperity m arking across the sample as was seen in the 

substrate to substrate bonds. It is also worth noting that a clear transition in fracture surface 

m orphology w as noted approxim ately  150 pm from the edge o f  the specimen.

Figure 4.13.8: A high magnification image o f  an SEM  image o f  the brazed pow der 
interlayer trial (plan view o f  fracture surface).

In term s o f  providing useful insight into the secondary effect o f  bonding, the fusion weld 

test provided the most interesting results from the fractography conducted, particularly with 

reference to the FIAZ banding observed and its likely effect on macro mechanical 

properties. The far superior strength o f  the jo in t elucidated interesting inhomogenieties in 

the mechanical response o f  the test piece. Figure 4 .13.9 shows the fracture surface o f  the 

jo in t  from the IN718 side. The differences between this and the surfaces seen in the solid 

state bonds are clear. The level o f  ductility at the bond line is clearly increased, there is no 

evidence o f  bonding asperities on the fracture surface and fracture o f  the bond appears to 

have occurred within both substrates. Whilst this fracture surface m orphology appears 

more fibrous and ductile in nature Figure 4.13.10 show s this is not where the majority o f
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the bond ductility com es from. Indicated at location 1 is a concentrated area o f  

deformation through the thickness o f  the specimen immediately adjacent to the bond 

is likely that the majority o f  bond ductility is as a result o f  this deformation.

plastic 

line. It

Figure 4.13.9: The fracture surface o f  the N icrobraz brazed fusion weld (plan view).
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SCMV IN 718

Figure 4.13.10: A section through the failed Nicrobraz brazed fusion weld mechanical test
piece.
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Figure 4.13.11: An area o f  non-fusion observed in the I N 7 18 side o f  the melted trial bond.

Finally, the fusion bond also displayed an interesting area o f  what appears to be non-fusion, 

Figure 4.13.11. The typical fibrous fracture surface surrounds the non-fused (1) area which 

exhibits a granular shaped texture effect. Flowever, in zone 2 an intermeadiate region is 

noted with fine equiaxed particles visible.
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4.14 Heat affected zones (HAZ)

Throughout the project attention was drawn to the formation of HAZ’s across the width of 

bonded specimens (both successfully bonded and not). Typically these bands were only 

elucidated subsequent to metallographic preparation and etching as they tended to be 

attacked much more readily by chemical reagents. Whilst initially the effect was noted and 

some metallographic characterisation was undertaken, at the time attention was more 

focussed on bond adhesion and banding was designated a secondary consideration. 

However, once successful bonds had been produced that also displayed this effect, 

attention was refocused on their detailed characterisation. The production of the thin 

mechanical specimens aided this investigation as it was possible to metallographically 

prepare whole bonded specimens for a full and thorough microstructural and mechanical 

assessment. The following section details the results of this inspection.

Figure 4.14.1 shows an intact bonded specimen that has been sectioned perpendicular to 

the bond line, metallographically prepared and etched using both Nital and 

Orthophosphoric acid. The banding that can be seen on both materials was found to closely 

correlate to the width of the hot zone across the specimen during Gleeble bonding. As such, 

this effect is herein referred to as heat affect zone banding or HAZ banding.

Starting from the top of the IN718 side of the bond parent microstructures were observed in 

areas outside the HAZ as one might expect. In fact this microstructure remained consistent 

until less than 100pm prior to the visible band within the IN718 (1). The band itself is very 

distinct, appearing over a narrow area. Microstructurally the ‘band’ appears to have been 

formed as a result of concentrated and dense intragranular precipitation. This phase appears 

to be precipitating at the expense o f the gamma matrix alone as both grain boundary and 

pre-existing intragranular precipitates seem to be generally unaffected. Interestingly, 

towards interface of the bond the microstructure begins to normalize again despite 

experiencing higher temperatures. Nevertheless, this region does show a lesser degree of 

twinning and intragranular precipitation. This microstructure remains consistent until the 

bond interface (described in section 4.13.1) is reached.
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On the SCMV side of the bond a alternative banding was observed but it was much more 

diffuse in nature (2). Furthermore, the banding also appeared closer to the bond line than in 

the IN718 which is likely to be due to the differential heating effect. Micrographs revealed 

a coarsening o f the martensitic structure in the area immediate to the bond line, with a  

ferrite laths at least doubling in size. As the banding gradually intensifies it is noted that the 

microstructure becomes refined and evidence of primary precipitation, possibly of 

cementite carbides becomes more prevalent. There a band consisting of a complex 

microstructure o f coarse a  laths, primary carbide precipitates and retained martensite was 

observed. Finally this gave way to parent microstructure over a similarly short distance to 

that observed in the IN718 material.
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EV718

ipllp

Figure 4 .14 .1 : A  full m icrostruc tural assessm en t o f  H A Z  band ing  in a bond  be tw een  
S C M V  and IN718 em ploy ing  a p o w d e r  interlayer.
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Further to the microstructural assessm ent a m icrohardness traverse was also em ployed to 

try and quantify  the microstructural changes that were observed. This yielded very 

interesting results which are displayed in Figure 4.14.2. Whilst the IN718 side showed a 

softening (compared to parent properties) in the less precipitated material close to the bond 

line a considerable increase in hardness was displayed in the ‘band’. This increase 

developed slowly in the IN718 H A Z before falling sharply to parent properties on the cold 

side o f  the band, correlating well with the microstructural features that were observed.

Powder interlayer hardness 
measurements

Figure 4.14.2: A Vickers m icrohardness traverse across a bonded specimen displaying
HAZ banding.

The effects in the SC M V  material were considerably more severe. Following a hardness 

m easurem ent o f  approxim ately  350H v for the powder interlayer the hardness then double 

in the space o f  50pm  to over  700Hv within the area corresponding to the coarse 

m icrostructure seen in Figure 4.14.1. The hardness then falls to approxim ately 2/3rds its 

initial value, around 230Hv. Finally as the traverse leaves the HAZ the hardness then 

returns to approxim ate parent properties o f  around 500Hv.
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Following the observations made for the IN718 to SCMV bonds, the microstructures of the 

Ti-6-4 to IN718 and Ti-6-4 to SCMV bonds were reviewed to see if any HAZ banding 

effects were noted in these tests. The SCMV and IN718 halves of these bonds presented 

banding in all tests. In contrast, only one condition revealed significant microstructural 

changes in the Ti-6-4 material, this being the hot jaws configuration employed for the Ti-6 - 

4 to SCMV trials. With reference to Table 3.4.1, the crucial parameter was temperature, 

which was 970°C in this case. The observed microstructural features and corresponding 

hardness traverses are presented in Figure 4.14.3 and Figure 4.14.5 respectively. Starting at 

the powder -  substrate interface, a substantial amount o f primary a  was noted up to 2 0 0  

microns from the interface (a). This is rapidly replaced by a typical p annealed structure 

dominated by transformed product with a clearly defined prior p grain structure (b). This 

remained consistent for approximately 2-3 mm before primary a  nucleation at the prior p 

triple points was observed (c). Over the next 10 mm primary a  grain size was seen to 

increase steadily at the expense of the transformed product to around 40pm in diameter (d -  

f). Coarsening of the laths o f transformed product was also noted. Finally over the next 

5mm the microstructure becomes dominated by primary a  which tends to the elongated 

grain morphology associated with the parent material (g).
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0 5 10 15
Distance from Interface (mm)

Test 16 Ti-6-4 side Hardness Traverse

Figure 4 . 14.5: A m icrohardness traverse across the heat affected zone in Ti-6-4
substrate from Test 16.

C om pared to the changes noted in the SC M V  and the IN718 substrates, the 

microstructural changes in the Ti-6-4 substrate appear to have less effect on variations 

in m icrohardness over the heat affected zone. Significant reductions in hardness close 

to the pow der - S C M V  and pow der - Ti-6-4 interfaces were noted. The subtle effects o f  

the changes in the bimodal microstructure aw ay from the bond line are reflected in only 

m inor variations in the hardness throughout the remaining HAZ (Figure 4.14.5).

4.14.1 IN718 / SCMV post weld heat treatm ent (PWHT)

As a result o f  the distinct HAZ observed in IN718 /  SC M V  bonds a limited assessm ent 

o f  post weld heat treatments was performed. The goal was to eradicate the sharp HAZ 

banding effect whilst  trying to maintain parent properties in the substrate materials. All 

heat trea tm ents w ere  carried out in radiant furnaces capable o f  tem peratures in excess 

o f  1000°C. The simplest and most effective o f  these was a soak at 1000°C for 15
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m inutes followed by quenching in water. The results o f  this heat treatment are dealt 

with in the following section.

A micrograph o f  the typical SCM V  structure can be seen below in Figure 4.14.6. The 

two main features o f  note are the more prom inent prior y austenite grains and the grain 

boundary segregation o f  cementite that helps to define them. Also o f  note was the 

differing m orphology o f  the martensitic structure itself appearing more equiaxed close 

to the bond line but taking on a more tem pered structure further from the bond line, 

such as that seen in Figure 4.14.7.

Figure 4.14.6: PW H T m icrostructure o f  SCM V  closer to the bond line.
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Figure 4.14.7: P W H T  structure o f  SCM V  remote o f  the bond line.

800

As bonded 
condition

As bonded

PWHT

Heat treated 
condition

-30 -20 -10 0 10 20 30 40
Distance from the bond line (mm)

Figure 4 . 14.8: A com parison o f  m icrohardness traverse for the as bonded and heat
treated condition.

A com parison between the m icrohardness traverses for the as bonded and post weld 

heat treated condition can be seen in Figure 4 . 14.8. The traverses have been overlaid on 

images o f  polished and etched specim ens to display the marked differences in both

166



material properties and microstructural features. Clearly, on a microstructural level 

banding has been com plete ly  eradicated as confirmed by the m icroscopy presented 

above. Furthermore, the stark peaks and troughs in hardness have also been normalised. 

Nevertheless, w eakening  o f  the material at the interface is evident in both bonding 

species. The SCM V  has suffered more in this regard and displayed an overall drop in 

parent hardness o f  around 75 Hv. Finally, a comparison o f  the tensile stress -  strain 

response o f  the two conditions can be seen in Figure 4.14.9 below with mechanical 

properties sum m arised in Table 4.14.1. A clear im provem ent in mechanical properties 

was observed as a result o f  the heat treatment. However, the mechanical properties o f  

the heat treated condition m ay still be considered to be poor in respect o f  parent metal 

properties or those observed in the fusion weld produced in the original trials.

H eat T rea tm en t Trial
350

300

250

|  200
■ PWHT 
♦ As bonded2? 150

100

0.02 0.04 0.06 0.080 0.1 0.12 0.14 0.16 0.18
Strain (%)

Figure 4 . 14.9: A com parison  o f  Engineering stress- strain behaviour between the as

bonded and PW H T  conditions.
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Table 4.14.1: Mechanical properties for both the as bonded and the heat treated
conditions.

C o n d itio n Yield S tress 
(MPa)

UTS
(M Pa)

M odu lus
(G Pa)

F a ilu re  S tra in  (%)

10 Min 990 3KN 
(A s B o n d ed )

N/A 130 240 0.05

10 Min 990 3KN 
(H ea t tre a te d )

273 312 254 0.16
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5 RESULTS: HIPed joints

In this section, joints manufactured via a HIP process utilising similar alloy pairings to 

those employed for the previously described resistance bonding experiments will be 

described. Overall bond quality and microstructures appeared similar with the 

exception of powder consolidation where marked differences in the degree of 

consolidation, interfacial contact and interparticle diffusion were noted.

5.1 Tantalum coated Inconel 718 to Ti-6-4 with Ti-6-4 powder interlayer

Figure 5.1.1 shows an overview of the microstructural features of the Tantalum coated 

IN718 to Ti-6-4 bonds with a more detailed high magnification image inset. The first 

noticeable feature is the prominent band of secondary acicular a  within the Ti-6-4 

immediate to the interface. The a band is approximately 150pm in width and spreads 

nearly half way into the former powder interlayer. The powder interlayer itself is 

approximately 350 -  400 pm in width and shows very little sign of porosity. The 

interface between the powder interlayer and the Ti-6-4 substrate (indicated at 1) is 

contiguous and of high quality. The IN718 substrate shows minimal microstructural 

damage in the majority of the as bonded material. However, the interfacial 

microstructure shows similar growth of precipitates perpendicular to the bond line as 

those seen in the resistance bonded specimens. With reference to the inset high 

magnification image at 2 , growth of acicular a  laths through the tantalum rich 

intermetallic band was observed; this effect was also observed for various other bond 

chemistries (Figure 5.5.3). These laths grew in a similar manner across the bond line 

and were associated with a highly brittle intermetallic zone. This zone was fractured 

throughout the majority of the bond although it cannot be ascertained as to when this 

fracture might have occurred.

Figure 5.1.2 shows two bonds produced without a powder interlayer, one of which 

incorporates a tantalum interlayer (Test 8 b). Both tests provide an interesting 

comparison to the results seen in both Test 5b of the HIPed bonds and Test 1 of the
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resistance bonds. Clearly, the tantalum coated bond suffered from cracking on a brittle 

intermetallic as did the powder interlayer test. The width of the acicular a  band in both 

bonds was approximately equal, however, the laths appeared coarser in the tantalum 

coated case. Whilst banding at the interface was evident in both trials it was larger and 

more distinct in the tantalum coated test. Finally, when comparing the microstructures 

seen in Figure 5.1.2 to those seen in Figure 4.2.4 and Figure 4.2.5 (Tests 2 and 3), it is 

interesting to note that the resistance bonded samples cracked example without a 

tantalum coating but showed an improvement in those where tantalum was employed.
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IN 718

LU-III

T i-6-4

(b)

Figure 5.1.1: O verview  (a) and detailed interfacial microstructure (b) o f  bond 5b, 
HIPed, IN 718 to Ti-6-4 with Ta interlayer.
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IN 718

T i-6-4

(a) (b)

Figure 5.1.2: Optical m icrographs o f  (a) Test 16b with no tantalum interlayer and (b)
Test 8b with a tantalum interlayer.

5.2 Ti-6-4 to SCMV with Ti-6-4 / BurTi Powder interlayer

Figure 5.2.1 shows the typical microstructure observed in the SC M V  - BurTi - Ti-6-4 

F1IP specimens. The powder interlayer consolidated to a thickness o f  approxim ately 

350 -  400 pm despite the relatively coarse average pow der particle size o f  around 

100pm. Close inspection o f  the interlayer revealed excellent consolidation with very 

few pores evident. Indications o f  the size o f  the prior pow der particles were visible at 

the SCM V  to BuTi interface, in contrast to the BurTi pow der / Ti-6-4 boundary.
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BurTi
Powder

Figure 5.2.1: An overview  o f  Test 1 lb.

There is remarkably little microstructural disruption for this bond pairing. Detailed 

microscopy o f  the interface can be seen in Figure 5.2.2. The most striking feature is the 

significantly m ore diffuse transition between the BurTi pow der and the Ti-6-4 substrate 

compared to that noted between BurTi and SCM V. Although som e acicular growth was 

noted at the Ti-6-4 - BurTi interface, it was limited. Figure 5.2.2 (b) shows clearly the 

tantalum coating at the BurTi - SC M V  interface. It appears wider than the 2pm  initially 

deposited and is therefore likely to be an expanded intermetallic phase. Finally, 

minimal microstructural alteration seems to have occurred in the SCM V  virtually no 

evidence o f  inter diffusion beyond the tantalum rich band.
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Figure 5.2.2: High magnification optical micrographs o f  (a) the Ti-6-4 substrate to 
BurTi pow der interface and (b) the SCM V  to BurTi pow der interface.

5.3 Tantalum coated SCMV to IN718 with IN718 Powder interlayer

This bond configuration provides a useful comparison to the QU IP bonding trials 

conducted under resistance heating (section 4.9). Figure 5.3.1 (a) shows the interface 

between the IN718 pow der and the uncoated IN718 substrate. Here a clear band has 

formed which acts as an easy path for crack propagation, suggesting the formation o f  a 

brittle intermetallic layer. This is interesting considering there should be little or no 

difference in chemistry between the pow der and the substrate, (b) Shows the interface 

between the IN718 pow der interlayer and the tantalum coated S C M V  substrate. The 

majority o f  the 1N718 pow der interlayer com pares to that seen at the IN718 substrate 

interface (Figure 5.3.1(a)). However, local modification is noted at approxim ately 60 

pm  from the SCM V  interface. At the interface itself PPBs becom e more noticeable and 

in som e cases distinct particles appear. The interface is m arked by a narrow band o f  a 

tantalum rich phase, confirmed by EDX , which appears to have ingressed into the 

SCM V  substrate at certain points such as that indicated at 1 in (b). Finally the SCM V  

substrate microstructure whilst som ewhat tem pered from its parent condition, does not 

show any signs o f  significant microstructural disruption.
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Figure 5.3.1: High magnification optical m icrographs o f  Test 19b at (a) the IN718 
substrate to IN718 powder interface and (b) the IN718 powder to tantalum coated

SC M V  substrate.

0*718 
SUBSTRATE

Figure 5.3.2 shows the typical pore size found within the compact. This com pares  well 

to the pore size and distribution found in the Nicrobraz brazed pow der interlayer bond 

between SCM V  and IN 7 18 using resistance heating (Figure 4.13.5).

______
30 jam

Figure 5.3.2: A high magnification optical m icrograph o f  Test 19b illustrating the 
typical pore size found in the pow der interlayer.
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5.4 Tantalum coated IN718 to Ti-6-4 with BurTi interlayer

Pow der consolidation in these bonds was very successful. In this case PPBs can be 

clearly seen within the compact. This illustrates that in som e locations as few as two 

particles span the interlayer. Despite this, evidence o f  deformation o f  the largest 

particles was noted (indicated on Figure 5.4.1).

iteiW

Visible prior 
BurTi 
pow der 
particles

BurTi
Powder

*■ FI

IN718
m- f '•

Figure 5.4.1: An overview  o f  the interfacial m icrostructure o f  Test 14b.

Microstructural detail for this bond configuration is displayed in Figure 5.4.2 (a) and

(b). Figure (a) shows the BurTi - 1N718 interface. It shows that the disruption to the 

IN 7 I8  microstructure is near identical to that seen in bonds between IN718 and Ti-6-4. 

However, the BurTi does not display the interfacial acicular structure o f  the Ti-6-4, 

instead exhibiting precipitates which gives w ay to an intermetallic band that is at first 

marked by an extremely fine dispersion o f  two indistinguishable phases much like that 

seen in bond 2 (Figure 4.2.5). Figure 5.4.2 (b) shows the interface between the BurTi 

pow der interlayer and Ti-6-4 substrate. A lthough the interface appears diffuse a thin 

band o f  acicular a  still remains at the interface and evidence o f  growth o f  a  laths across 

the interface was also noted.
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(a) (b)

Figure 5.4.2: High magnification optical m icrographs o f  the interface between (a) In 7 18 
substrate and BurTi pow der and (b) BurTi pow der and Ti-6-4 substrate.

5.5 Ti-6-4 to copper brazed IN718 without powder interlayer

The HIPed bonds for this configuration were produced at by a different sub contractor 

(Bodycote) on beha lf  o f  Rolls Royce rather than at B irm ingham  university. 

Unfortunately the parent Ti-6-4 alloy used contained a different microstructure to that 

used in the o ther bonding trials up to this point (Figure 5.5.1 shows the bond overview). 

However, it does allow comparison to the interfacial characteristics o f  the resistance 

heated Tests 21 and 29 As with previous HIPed bonds, good initial adhesion was 

observed in contrast to that seen for the same bond chemistry under resistance heated 

conditions. A section o f  this HIPed bond was subjected to tensile testing in an attempt 

to ascertain the microstructural fracture path. The results o f  which can be seen in Figure 

5.5.2.
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Figure 5.5.1: An overview o f  the interfacial microstructure o f  Test 33b (IN718 to Ti-6-
4 including Cu braze).

Figure 5.5.2 shows sections o f  each h a lf  o f  the fractured specimen. The similarities 

between these microstructural features and those observed in Figure 4.13.3 are strong. 

Both exhibit similar fracture characteristics across the same band. Both have similar 

sized areas o f  acicular a ,  intermetallic band w idths and IN718 precipitate morphology. 

M ore specifically they both also show  growth o f  a  laths from the Ti-6-4 through the 

intermetallic bands and into the IN718. This has been noted in several o ther bond 

coatings. This can be seen more clearly with reference to Figure 5.5.3. A reciprocal 

effect can be seen in Figure 5.5.2 (b) where voids from the growth o f  such laths 

(indicated) were also observed.
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(a) (b)

Figure 5.5.2: Optical micrographs o f  the interfacial microstructure o f  (a) the copper 
brazed Ti-6-4 substrate and (b) the 1N718 substrate.

20pm

Figure 5.5.3: A high magnification optical micrograph showing evidence o f  primary a  
growth remote o f  the Ti-6-4 substrate material.
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6 DISCUSSION

The following section will discuss pertinent aspects of the experimental techniques 

employed during the present study and the fundamental physical / chemical processes 

controlling diffusion across the bond interfaces o f interest. From the outset it has to be 

recognised that despite the guidance given from the industrial sponsor, none of the 

requested dissimilar alloy pairings provided joints with any reasonable structural 

integrity. However, it is important to discuss the reasons for such incompatibility in 

order to influence future directions of research.

6.1 General considerations

6.1.1 Design of experiments

The key goal in the design process was to formulate relatively simple, reproducible and 

robust experimental methods that could be applied to a wide range of materials on a 

laboratory scale. The use of resistance heating and in particular the Gleeble 1500 in 

previous investigations has highlighted that the technique offers an excellent method 

for producing small scale laboratory trials with relative ease. However, these tests had 

so far been restricted to similar bonds or bonds between dissimilar alloys of the same 

system [2, 3]. Though this study incorporated many of the procedures developed during 

these investigations it also took on board their recommendations, specifically in relation 

to cleanliness and repeatability. The incorporation of a powder interlayer required some 

novel modifications to the process. The aim being to bring together the two 

technologies of metal injection moulding and solid state resistance butt welding. As 

highlighted in the literature, previous techniques have been developed that employ 

powder interlayers and some aspects of these processes were explored in this 

investigation. Drawing on this, the novel the use of powder pastes provided both the 

most convenient and industrially suitable method in this respect.
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6.1.2 Resistance heating in the experimental and industrial fields

The literature has pointed to the various applications of resistance heating in industry 

from spot welding through to seam welding. Its advantages in high productivity and 

versatility have been highlighted as the main reasons it receives great attention in 

industry. The localised nature of the heating effect also lends the process to 

investigations at laboratory scale. The one most significant advantage o f using a 

homogenously generated heat source such as that produced by the Gleeble 1500 is that 

it its effect remains consistent for a given test piece geometry. This meant that tests 

produced in the laboratory could be used as a direct reference for the industrial 

scenario; i.e. the process could be accurately scaled to give the required joining 

parameters (nominal current, heat sink geometry and interlayer thickness for instance) 

to commission a large scale industrial process.

These factors were kept in mind at all stages of the investigation; however, the primary 

goal was to assess the compatibility of the bond pairs proposed. In this respect 

resistance heating was found to have considerable advantages over other solid state 

processes such as HIPing, pressure welding and roll bonding, specifically in the relative 

simplicity of the process. This allowed many different process designs and bond 

chemistries to be assessed within the bounds of the project.

6.1.3 Considerations for the powder interlayer

The powder interlayer posed several problems during the investigation. The most 

prominent of these was that the Gleeble 1500 has a horizontal load train. This meant 

that if the powder was to stay between the two test pieces then it would have to be 

supported in some manner. In many ways this provided a useful proof for the process 

on an industrial scale. Applying the technology of metal injection moulding (MIM) and 

powder metallurgy, a binder was employed. Whilst this technique has been proven for 

MIM by maintaining green strength (Figure 4.1.3), the use of a binder for adhering to 

metal substrates had not. Initially it was found that merely spreading the paste onto the
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surface of the specimens was not sufficient enough to hold it in place nor provide 

adequate packing density in the compact (designated a key consideration in MIM 

[148]). More importantly it did not give any real control of interlayer thickness. This 

lead to the development of the powder application process described in section 3.3.2 

which provided enough force to hold the powder compact in place and yielded a 

compact with adequate packing density of uniform thickness that could be controlled to 

within 50pm.

Having established this application procedure, attention focussed on a debinding route 

that would grant a brown strength (the strength of the debinded powder) adequate to 

allow subsequent bonding. It was known that the HIPed bonds produced in parallel to 

this investigation were to undergo a 1 2  hour / overnight debinding stage prior to 

bonding. It was felt that it was important to replicate these conditions as closely as 

possible to improve the validity of any subsequent comparisons that were to be made 

between the two processes. Still, it is important to note that the debinding stages for the 

fully contained HIP bonds were not required to generate any brown strength prior to the 

bonding procedure itself.

EDX analysis o f the compacts produced showed that the procedures could adequately 

drive off the binder and any associated contaminants, but struggled to maintain brown 

strength. Though the process window imposed by the equipment did restrict 

temperature during these trials, it is likely that the lack of pressure on the compact 

during debinding was a contributory factor here. The fired compacts showed little or no 

inter-particle joining (Figure 4.1.3) except at the small areas of direct contact which 

accounted for the small degree of brown strength associated with the most successful 

trial. On reflection, had this debinding trial been conducted employing negligible 

uniaxial pressure under resistance heating then heat would have been concentrated at 

these contact areas, which would have likely resulted in an improved brown strength. 

Whilst one bond was successfully produced with a prior debinded interlayer, the merits 

of the procedure were not thought to out weigh its extensive and complex nature. 

Nevertheless, a debinding stage was still a recognised component of the process as a
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whole which is why it was revisited within the investigation at a later date (Section 

4.6).

6.1.4 Cleanliness and noise factors

Great care is taken in the powder metallurgy industry to ensure that the powders 

produced contain very low levels of contamination and defects not just within the 

powder particles themselves but also foreign particles introduced to the powder post 

processing. Therefore, it was important that these levels of purity were maintained 

through the paste preparation and application stage, through to the sample loading and 

subsequent bonding procedures. The significant effect of foreign contaminants on solid 

state resistance butt welds has already been documented [2 ], so several steps were taken 

to avoid these factors during this and any subsequent investigations into the technique. 

These included:

• Wearing new nitrile based powder less gloves whilst handling experimental 

equipment at all times.

• Storing bonding equipment in sealed containers to prevent contamination.

• Regular cleaning of the Gleeble 1500 vacuum chamber and all associated 

tooling

• Sterile storage areas for all powders, specimen halves and binder constituents.

• Rigorous cleaning of all powder application and mixing apparatus prior to every 

use.

• Wearing lab coats at all stages up to and including bonding and avoiding loose 

clothing or items which may shed fibres and contaminate the bonds.

There was some concern that these steps may affect the industrial relevance of the 

process as such conditions are both hard to achieve in an industrial setting and 

adversely affect productivity. However, isolating and removing factors from the 

process was deemed to be a more important consideration and in fact no defects 

resulting from of foreign induced contamination were found during the entire 

investigation.
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Testitiment to the success of the process developed for this investigation is that it has 

been applied to three subsequent investigations. One of which has been published 

during the course of this investigation [149]. These additional studies have shown that 

when applied to more compatible materials the technique can result in near parent metal 

mechanical properties in both monotonic and cyclic loading regimes. As a result, the 

process is now being considered for industrial scale commissioning studies. This 

implies that the lack of success in performing bonds between the dissimilar alloy 

pairings of current interest was not a consequence of experimental procedure -  but 

instead due to more fundamental incompatibilities of chemistry.



Having dealt with the wider aspects o f  the process as a whole this section will now 

concentrate on the physical and chemical processes relating to specific dissimilar 

bonding pairs.

6.2 Ti-6A1-4V to Inconel 718

Overall bond quality for Ti-6-4 to IN718 pairs was poor. None of the trials showed 

significant strength after bonding and many fractured during remoal from the apparatus. 

Unfortunately, this gave no option for optimisation and so attention had to be focussed 

on the reasons for the failures themselves. To examine the possible reasons for the 

failures a selection of bonds that displayed differing degrees o f success, produced under 

various conditions have been selected (Table 6.2.1). These joints were further analysed 

through EDX chemical analysis and microhardness traverses. Only the most relevant of 

these results will be considered within the bounds of this discussion but all data is 

presented in full in Appendix 1 and Appendix 2.

Table 6.2.1: Selected experiments to describe IN718 to Ti-6-4 joints.

Test
No. Coating Powder

Interlayer

Conditions
CommentsTime

(Min)
Temperature

(°C)
Force
(KN)

1
Ta on 
IN718 Ti-6-4 37 925 1.25 Cracked

2 None None 37 925 0.5 Cracked

3 Ta on 
IN718 None 37 925 0.5 Not Cracked

19 Taon
IN718 BurTi 57 970 2

Poor
Consolidatio

n

24 None Ti-6-4
6 %Cu 57 925 1

Excellent
Consolidatio

n

2 2
Cu on 
Ti-6-4 None 57 925 1 Cracked

8 b Ta on 
IN718 None 1 2 0 920 100 (MPa) 

HIP Cracked

16b None None 1 2 0 920 100 (MPa) 
HIP Not Cracked
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6.2.1 Effects of interlayers / brazes

EDX traverses were performed to establish reaction zone size. Whilst the use of EDX 

analysis for mapping light elements (C,0,B etc.) is acknowledged to be difficult it can 

map very accurately local fluctuations in both the most significant alloying elements 

across the bond lines. Traverses were conducted on the representative bonds 

highlighted in Table 6.2.1, to elucidate trends in inter diffusion and to help isolate the 

deleterious phases that have caused compromised structural integrity.

6.2.1.1 Tantalum interlayer

Tantalum layers were employed during the investigation as a barrier coating, aiming to 

prevent the formation of deleterious brittle phases at the bond line. Considering the 

brittle nature of the fracture surfaces noted within this group of trials it is obvious that 

the tantalum has not performed satisfactorily in this regard. Nevertheless, it is important 

to ascertain whether this brittle fracture was as a result of, or in spite of, the presence of 

these layers. To do this it is necessary to assess the microstructure associated with these 

bonds without the complication of the powder interlayer. Hence Tests 2 and 3 

(resistance bonded) and Tests 8 b and 16b (HIPed) are selected here.

For clarity the EDX traverses for these bonds were separated into two plots; one for the 

minority and one for the majority elements. Full traverses are displayed in Appendix 1. 

The tantalum appears to have surprisingly little effect on the local trends in inter­

diffusion at the interface, which remained fairly consistent across all four bonds. 

Reaction zone sizes are detailed in Table 6.2.2, which show that tantalum has in fact 

increased the mobility of nickel in titanium. Conversely, reaction zones in the nickel 

were all limited to within 40pm before returning to parent levels. Titanium solubility in 

Ni, Cr and Fe is notoriously poor which is the likely reason for this, coupled with the 

presence of A1 in the IN718 resulting in a lower concentration gradient and 

subsequently a lower mobility.
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Table 6.2.2: A sum m ary  o f  reaction zone size for Ta coated and uncoated Ti-6-4 to
IN 7 18 bonds.

Test N um ber Diffusion o f  
nickel into 

titanium (jim)

Majority element 
reaction zone

( m )

Minority element 
reaction zone 

(Em)
2 200 240 35
3 90 130 60

16b 275 315 70
8b 400 440 55

Test 2 Minority Elements
Ti-6-4 IN718

Nb
Mo

-20-40 20 40
Distance from Interface (microns)

Test 2 Majority Elements

100 -r

Q) O 
C  
03 T3 
C  =3 

_Q 
<  
ro 
c (D
E
0)
LU

60

40

20

-40 -20 0 20 40
Distance from Interface (microns)

Figure 6 .2 .1: E D X  traverses for minority and majority elem ents in Test 2.
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Test 16b Minority Elements IN718Ti-6-4

Mo
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0 20 

Distance from Interface (microns)
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Test 16b Majority Elements
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■O 60

40

20

20 40-20
Distance from Interface (microns)
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Figure 6.2.2: ED X traverses for minority and majority elem ents Test 16b.

Local inter-diffusion trends between the two uncoated trials 2 and 16b (Figure 6.2.1 and 

Figure 6.2.2) are rem arkably  similar. Both show high concentrations o f  niobium, 

m olybdenum  and chrom ium  between 2 and 5 pm into the nickel at the expense o f  

nickel, followed by higher concentrations o f  aluminium. These profiles correlate well 

with the orientated precipitates observed in the m icros in sections 5.1 and 4.2.2, 

suggesting the presence o f  N b  rich 8 phase. The relatively high and consistent levels o f  

titanium observed up to 10pm into the nickel are also important given the 

microstructural sensitivity to titanium associated with IN718.
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Finally trends were also noted in elemental concentrations o f  the intermetallic films at 

the interface, all o f  these concentrations are presented in Appendix  3. Tw o com m on 

profiles can be seen in Figure 6.2.3 and Figure 6.2.4 indicating the presence o f  NiTi and 

Ti2Ni intermetal lies respectively. M icrohardness traverses conducted on the bonds also 

highlight this effect with large increases in hardness at the interface. The hardness 

traverses for Test 16b can be seen in Figure 6.2.5.

Test 2

45
40

Fe Nb Mo

Figure 6.2.3: Spot EDX analysis on intermetallic films found in Test 2.

Test 8b
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40
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—

r~a i—, □  1 1 n
Al Ti V Cr Fe Ni Nb Mo Ta

Figure 6.2.4: Spot EDX analysis on intermetallic films found in Test 8b.
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Figure 6.2.5: Microhardness traverse across the interface o f  Test 16b.

In summary the tantalum braze has not had a beneficial effect on bond quality and has 

in fact acted to increase the reaction zone size. The tantalum layer was also found to 

have very little effect on local inter-diffusion trends and did not restrict the formation o f  

brittle intermetallics on the bond line.

6.2.1.2 Copper braze

As described in section 4.12 the Ti-6-4 to IN718 bonds incorporating a copper braze 

were wholly unsuccessful showing little or no adhesion on removal from the Gleeble 

apparatus and displaying brittle fracture characteristics. Intermetallic films are again 

believed to be the primary reason for these failures. Microstructural modification / 

growth o f  coarse acicular a  structures were also noted in the titanium. This was 

concentrated in a band roughly 50 microns wide adjacent to the interface. This specific 

area o f  modification is likely to be due to copper diffusion at the interface. Copper is 

known to be an effective (3 stabiliser in concentrations above 2% [150] and so is likely 

to have caused a local depression in the [3 transus, which on cooling allowed the growth 

o f  a coarse acicular structure from the local p solutioned region. Comparisons between 

the microstructures presented in section 4.12 and the results o f the EDX traverse 

confirm this.
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C om parisons between the EDX traverse o f  minority elem ents (Figure 6.2.6) and the 

m icrohardness traverse (Figure 6.2.7) elucidate the effect that copper diffusion can have 

on local mechanical properties. With the exception o f  anom alies at the interface the 

m icrohardness traverse shows a steady transformation in bond strength across the 

interface, a feature desirable in d issim ilar bonds. Conversely, coupled with this is 

significant hardening o f  the titanium through the acicular region. The hardening is also 

observed beyond the acicular region and decreases to parent levels in partnership with 

copper concentration, suggesting that the hardness is affected by copper content 

directly and not ju s t  by its effect on the microstructure.

Test 24 Minority Elements

Ti-6-4 IN718

C u
N b
Mo

-200 1 5 0 1 0 O  - 5 0  O

Distance from Interface (microns)
SO

Figure 6.2.6: A minority elem ent EDX traverse o f  Test 24.
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Figure 6.2.7: A microhardness traverse o f  Test 24.

Specific EDX analysis o f  the fractured films (Figure 6.2.8) suggested the formation o f  

intermetallic NiTi com pounds. This was reinforced by the high hardness noted near the 

interface in the IN718 on the m icrohardness traverse. So although the use o f  copper 

brazes certainly improves the transition between IN718 and Ti-6-4 it also cannot 

prevent the formation o f  deleterious phases at the interface.

Figure 6.2.8: EDX spot analysis o f  fractured intermetallic films in Test 24.
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6.2.2 Powder consolidation and chemistry

6.2.2.1 Ti-6A1-4V and BurTi powder interlayers

In terms of physical consolidation Test 1 proved to be the best powder interlayer trial 

performed between IN718 and Ti-6-4. The results showed levels of consolidation 

which would have been considered adequate for some degree of adhesion between the 

specimens. Detailed inspection of the fracture surfaces showed that interfacial contact 

area between the powder and the IN718 substrate had improved significantly. However, 

the fracture surfaces of the powder particles displayed a characteristic brittle fracture, 

and the EDX data presented in section 4.3.1 and high resolution SEM (Appendix 4) 

strongly suggests the presence of a Ti2Ni intermetallic on the particle / substrate 

surfaces.

Whilst the formation of intermetallics can explain the poor bond strength, the 

incomplete consolidation o f the powder was also a concern. Transverse sections of the 

powder interlayer showed that consolidation worsened closer to the IN718 substrate. 

Also when conducting the microhardness traverses it was noted that indenting particles 

that had bonded to IN718 substrate resulted in their fracture with little or no sign of 

deformation. No hardness data could be taken at these points such was the fragility of 

these particles. This indicates that a particle hardening effect may have occurred, which 

prevented those particles from deforming sufficiently to allow complete consolidation. 

EDX and microhardness traverses of the powder compact revealed a reaction zone size 

of 140pm. This is lower than that observed for Tests 2 and 16b indicating that a powder 

interlayer is beneficial in reducing reaction zone size.

The BurTi interlayer trial displayed only minor consolidation, considering the extreme 

bond parameters. When compared to the consolidation of Ti-6-4 in Test 1, the 

explanation for this may be attributed to the particle size, and most importantly the 

particle size distribution. Valverde et al [151] have shown that for small loads, particle 

size plays a key role in developing inter-particle adhesive forces. At low forces inter­

particle contact is extremely important as diffusional mass transport accounts for a
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great deal of the consolidation within the compact. The figures in section 4.10 clearly 

show some areas of good consolidation, however very few small particles are present in 

the less consolidated areas. This is crucial as large particles result in larger inter-particle 

gaps relative to interlayer thickness, meaning that the effective contact area is reduced, 

diminishing the interlayers ability to conduct electrical current and heat; reducing the 

likelihood that it will consolidate effectively. Test 14b employed the same bond 

chemistry but was produced by HIP. Consolidation in the BurTi powder interlayer was 

much better but the clear prior particle boundaries (Figure 5.4.1, section 5.4) revealed a 

similar lack of small particles. This indicates that consolidation in this test relied much 

more on significant deformation of pre-existing particles, rather than diffusional mass 

transport.

6.2.2.2 Copper Impregnated Ti-6AI-4V powder

Of all the interlayers employed in the investigation the transient liquid phase bonded, 

copper impregnated powder interlayer displayed the best consolidation. However, this 

consolidation came at the expense of microstructural stability. As seen in Test 21 

(Figure 4.11.2) the p stabilising effect of copper can be considerable in titanium and 

this was displayed in the micrographs presented in section 2.11. Here a mixture of 

coarse widmanstatten a  and equiaxed primary a  can be clearly seen. Microhardness 

traverses (Figure 6.2.9) showed that this resulted in a greater variation in hardness in 

the powder interlayer compared to that displayed by the parent microstructure. Also a 

gradual increase in hardness was observed leading up to the bond line. This correlated 

well with copper concentration, reinforcing the link noted in the analysis of Test 21. 

The general degree of disruption was certainly greater than that observed for Test 21 

and EDX analysis (Appendix 7) confirmed that concentrations of copper remained 

consistent in the powder interlayer at about 2.5%.
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Whilst pow der consolidation was effective, the overall jo in t  strength was poor. Brittle 

failures at the interface were again found to have propagated along intermetallic films 

that EDX spot analysis resolved as a Ti2-Ni-Ta com position profile.

6.3 Ti-6A1-4V to Super CMV steel

Bond integrity was notably varied in these jo in ts  com pared to that o f  the IN718 to Ti-6- 

4 pair, particularly in relation to pow der consolidation. Three coatings were trialled; 

nickel, tantalum and triple coated Ni-Cr-V  transition interlayers. As well as the Ti-6-4 

pow der interlayer, BurTi interlayers were also trialled as it was believed that they 

would provide closer, intermediate chemistry and thermo-physical properties between 

the steel and titanium (transition joining). A crucial factor controlling bond quality was 

found to be the inherent electric and thermal properties o f  the materials under 

investigation, which resulted in differential heating. All bonds were found to have 

failed along brittle phases evolved at the interface. The bonds identified for further 

consideration in respect o f  these general trends are detailed below in Table 6.3.1.
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Table 6.3.1: Selected experiments to describe SCMV to Ti-6-4 joints.

Test
No. Coating Powder

Interlayer

Conditions
CommentsTime

(Min)
Temperature

(°C)
Force
(KN)

4 Ta on 
SCMV Ti-6-4 37 925 0.5 Good consolidation. 

Failed during Met-Prep

9 Ni on 
SCMV Ti-6-4 57 925 1

‘Hot jaws’ employed. 
Cracked

16 Ni-Cr-V 
on SCMV BurTi 57 970 1

‘Hot jaws’ employed. 
Cracked

7b Ta on 
SCMV None 1 2 0 920 1 0 0

(MPa) Cracked

6.3.1 Thermo-physical effects -  Differential heating

The differential heating effect presents unique problems for the resistance bonding 

process when applied to dissimilar materials. Whilst crude design modifications to the 

Gleeble wedge grips were employed to counteract this effect which improved powder 

consolidation and interfacial area, they resulted in substantial heat affected zones in the 

substrate materials (section 4.14). A small or non-existent heat affected zones 

associated with diffusion bonding presents one of the primary advantages o f the 

process, and for this reason should be avoided at all costs.

Given adequate time it may have been possible to construct a system of heat sinks that 

could have produced a uniform temperature profile across each test piece. However, 

transferring this capability from simple cylindrical test pieces to more complex sections 

would prove very difficult. Applying conventional heat sinks to non-homogenously 

heated specimens may be relatively simple. Conversely, in tests pieces with a 

homogenously evolved heat source the effect o f heat sink contact on local current 

density (and therefore heat) would have to be evaluated in addition to thermal 

conductivity. This twofold effect must be considered at every step of in the design 

process of dedicated bonding apparatus and would both influence grip and additional 

heat sink geometry and materials selection. Further to this, well designed macro 

circuitry would be required to enable good control of heat generation. Industrial scale
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equipment design has yet to be considered, and it is suggested that the factors described 

above would require further research before such designs are attempted.

6.3.2 Effects of interlayers / brazes for Ti-6-4 powder interlayer joints

Three separate interface structures were investigated for the Ti-6-4 to SCMV pairing. 

Early reports on the HIPed bonds produced at Birmingham university had suggested 

that Ta coatings had resulted in poor joint quality. To further understand this, Test 7b 

has been chosen as an example for further investigation. Work was concentrated on 

nickel coatings following the research by Chatterjee et al [120-122]. These trials were 

complicated by the differential heating, so for clarity both Test 4 (conducted with 

copper jaws) and Test 9 (conducted with hot jaws) have been considered in detail. 

Following the poor performance of these trials attention was focused on the production 

of transition joints following evidence of their benefits in dissimilar joining metals 

highlighted in the literature [119]. As the use of hot jaws had been shown to be 

beneficial to powder consolidation in previous tests they were employed for these trials 

and Test 16 will be discussed as an example.

6.3.2.1 Tantalum interlayer

Comparisons between microhardness and EDX traverses of Test 7b are presented in 

Figure 6.3. In contrast to its role in the IN718 to Ti-6-4 bonds the presence of tantalum 

at the interface in this system successfully prevented significant inter-diffusion of the 

base elements iron and titanium. In this respect it has certainly prevented the formation 

of the deleterious Ti-Fe type intermetallics (FeTi, Fe2Ti, a ) that have been associated 

with previous attempts to join the materials [120]. Furthermore microstructures of the' 

specimens suggest that interfacial (3 titanium stabilization has also been retarded. 

Unfortunately this has not prevented embrittlement at the bond line. As indicated in 

Figure 6.3.1 it appears that the tantalum itself has formed intermetallics with the two 

base metals, namely FeTa and Ti2Ta phases. The inability o f these phases to
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accommodate strains associated with thermal contraction during cooling is considered 

to be the likely cause of the fracture observed in the tantalum coated bonds.

Also of interest was the peak in microhardness noted in the bond approximately 2 mm 

from the interface in the SCMV substrate indicated at 1 in Figure 6.3.1. EDX analysis 

revealed no discrepancies in composition at this point so the peak must be attributed to 

microstructural variation. This provides interesting comparison to the HAZ banding 

effects discussed in detail later in section 6.5, especially considering the uniform test 

piece temperatures associated with the ambient heating employed for the HIPed bonds.
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6.3.2.2 Nickel interlayer

As mentioned previously, Tests 4 and 9 provide an interesting comparison both in 

terms of powder consolidation (sections 4.3.2 and 4.5) and microstructural evolution. 

This is because of the very different temperature regimes they experienced on account 

of the differential heating effect. Direct comparisons between the chemical and 

hardness profiles of the two bonds reveal definite trends in phase evolution and powder 

consolidation that highlight the inherent difficulties in balancing the two 

considerations. The comparisons for Test 4 and 9 can be seen in Figure 6.3.4 and 

Figure 6.3.5 respectively.

The majority element traverse for Test 4 shows how the nickel coating diffuses 

primarily into the SCMV at the expense of aluminium and iron. Reaction zone size in 

the titanium is comparably limited, possibly as a result o f the poorly consolidated 

powder interlayer Figure 4.3.5, providing an inadequate diffusion path. The 

microhardness traverse also shows little evidence of a well developed interfacial 

microstructure with no transition between the hardness values of the substrate 

materials. The poor powder consolidation and interface structure appear as a result of 

the differential heating effect.

Comparisons between these conditions and the significantly higher temperatures 

observed in Test 9 allow an assessment of the continually evolving microstructure. The 

first point of interest on the elemental traverses in Figure 6.3.5 is the reduction in size 

of the reaction zone in the titanium powder despite its significantly improved 

consolidation. This is due to the extensive inter-diffusion of nickel and iron occurring 

in the SCMV substrate. Chemical trends elucidate a migrating band of Ni2FeCr that has 

progressed into the SCMV substrate over the course of the bonding time. The nickel 

enrichment and iron depletion in front of the advancing band (Figure 6.3.2 zone 1) 

indicate that at longer bonding times this migration may continue. Surprisingly the 

elemental composition of the material in zone 2 shows near parent SCMV composition. 

Even more interesting is that the microstructure in zone 2 shows remarkable similarities 

to parent microstructure. Fracture can clearly be seen to have occurred within the
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SCMV substrate away from the interface. In contrast to the microhardness traverse of 

Test 4, a smooth transition in hardness across the bond is noted in Test 9 suggesting the 

development of a more accommodating interfacial microstructure.

To understand more about the reason for the fracture in the Ni-Fe-Cr band further 

information is required on its properties. Due to its prevalence in steels and nickel base 

alloys the system has received much attention in dedicated supplementary research. 

Reference to the Ni-Fe-Cr ternary phase diagram shows the composition lies in and 

area of mutually soluble y phase field (point A on Figure 6.3.3) close to bond 

temperature. However, on cooling the y phase is known to decompose to peritectoid y + 

Cr rich BCC a ’ resulting in subsequent embrittlement of the material [152]. This 

embrittlement appears to have lead directly to the fracture of the bond.

The comparison of these two tests highlights the inherent difficulty in matching 

materials for powder interlayer bonds. Here it has been shown that differential heating 

can result in poor powder consolidation and interfacial contact, but negating differential 

heating whilst resulting in improved powder consolidation results in complex brittle 

phase evolution within the reaction zone. Hence deducing optimum bonding parameters 

for this alloy pair would require further dedicated research and new apparatus designs 

that build on these initial findings.
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6.3.3 Triple layer transition joints employing a BurTi powder interlayer

Following the poor results of the tantalum and mixed performance of nickel interlayers 

triple layer transition joints were performed that also employed the new hot jaw 

configuration. It was hoped that the intermediate properties and composition of the 

BurTi alloy powder together with the triple braze of intermediate composition with the 

SCMV substrate (Ni-Cr-V) would improve bond quality. The idea being to allow sound 

joints to form at the two separate interfaces Ti-6-4 : BurTi and BurTi: (V-Cr-Ni coated) 

SCMV without the formation of deleterious phases associated with the more direct 

joining techniques that had been previously attempted. Unfortunately, this technique 

again proved to be unsuccessful though some promising indications for improvements 

in future bond quality can be highlighted.

Initial analysis of the bond (presented in section 4.7) showed that relatively good 

consolidation had occurred in the BurTi powder close to the Ti-6-4 substrate but that 

this worsened on approaching the SCMV substrate. This mirrors the findings presented 

for the BurTi interlayers employed in IN718 to Ti-6-4 bonds that are discussed in 

section 6.2.2.1. However, Test 16 displayed markedly better powder consolidation than 

Test 19. The difference is again likely to be due to differential heating, as a result of 

their greater compatibility in respect of thermal physical properties (Table 4.4.1) on Ti- 

6-4 to IN718 bonds but which is not significant enough to warrant employing the hot 

jaws configuration. Further to this, evidence o f a wider particle size distribution was 

noted on the fractured surface of the BurTi interlayer which will have contributed to its 

improved consolidation. This improved consolidation has come at the cost of severe 

microstructural modification in both the Ti-6-4 and SCMV substrate materials and 

these effects will be discussed further in section 6.5.

Comparisons o f chemical and micromechanical features are presented below in Figure 

6.3.6. Encouragingly, the interface between the BurTi powder and the Ti-6-4 substrate 

appears to be of high integrity. Elemental diffusion across the interface appears to be 

even with no evidence of deleterious phase formation. Whilst the corresponding 

microhardness traverse shows some fluctuations, these are most likely due to
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microstructural features. Acicular a  growth that has so far been associated with high p 

stabiliser concentrations (vanadium in this case), noted in other BurTi interlayer trials 

(Figure 4.10.3) is the likely reason for the hardening in the Ti-6-4 substrate. The cause 

for the softening effect is not so easy to isolate but may be due to a relaxation of 

residual strains at the interface. Other than these minor fluctuations no evidence of 

embrittlement was noted at the powder substrate interface.

Fracture of the bond occurred at the interface between the BurTi powder and the 

vanadium coating on the SCMV. EDX measurements taken directly from the fracture 

surface (Figure 4.7.3) showed an inverse relationship in titanium and vanadium 

concentrations indicating the presence of a distinct interface at the point of fracture. 

This data indicated poor inter-diffusion between the vanadium layer and the BurTi 

powder resulting in poor local bond strength. This coupled with the reduced interfacial 

area on account of the poor consolidation is the likely reason for the failure. Although 

the microhardness traverse indicated spikes at the bond line these appear to be due to 

the pre-existing triple layer as opposed to brittle intermetallic phase formation. Aside 

from this fracture, the chromium and nickel layers appear to have performed reasonably 

well. The nickel has inter-diffused with iron without the formation of Ni2FeCr bands 

observed in Test 9. Although the chromium coating has remained fairly distinct it has 

prevented large scale inter-diffusion of iron to the interface and showed some 

intermixing with the nickel which is likely to have improved adhesion between the 

coatings.

In general, these transition joints have shown many positive aspects despite the poor 

interfacial strength in this case. This suggests that modifications in joint design may 

yield dissimilar powder interlayer joints between Ti-6-4 and SCMV with improved 

properties. Nevertheless, it is important to reiterate that none of the Ti-6-4 to SCMV 

bonds produced under the conditions imposed in this investigation matched the 

mechanical integrity of the best substrate/substrate joints presented in the literature 

[124,125].
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6.4 Inconel 718 to Super CMV steel

Of the three alloy system pairs investigated, IN718 to SCMV proved to be the most 

successful. This success is reflected in the considerable attention that steel - nickel 

based joints have received in the literature. Bonding two alloys that maintain their 

strength at temperature also allowed for more freedom in applied force and 

temperature; this no doubt contributed to the quality o f the bonds produced. Initially, 

problems with powder consolidation (Test 17) resulted in trials of a novel quasi­

isostatic powder interlayer bonding technique that showed early signs of success in 

terms of powder consolidation and subsequent interfacial contact. Despite these 

improvements bonds were still found to fail at powder substrate interfaces as a result of 

trialling the tantalum interlayer. Bonds produced using the conventional HIP technique 

mimicked this behaviour. Unfortunately, it was not possible within the scope of the 

project to develop the technique. Finally, study of the literature had elucidated the 

benefits of boron and silicon rich brazes in improving joint quality which resulted in the 

use of the Walcomanolay developed Nicrobraz LM braze for both substrate - substrate 

and powder interlayer joints. These proved to be the most successful of the joints 

produced in the entire investigation and had a mechanical integrity sufficient enough to 

permit non-standard mechanical evaluation to be performed.
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The trials picked for detailed consideration in respect o f these trends are outlined below 

in Table 6.4.1.

Table 6.4.1: Selected experiments to describe SCMV to IN718 joints.

Test
No. Coating Powder

Interlayer

Conditions
CommentsTime

(Min)
Temperature

(°C)
Force
(KN)

19b Ta on 
IN718 IN718 1 2 0 920 1 0 0

(MPa) Cracked*

18 Ta on 
IN718 IN718 57 925 3

Good consolidation. 
Poor interface 

strength.

Ni5 Nicrobraz 
on IN718 None 60 990 5 Good adhesion. 

UTS = 350MPa

Ni5 Nicrobraz 
on IN718 None N/A 1050* 5

Melted: Control 
system failure. UTS 

= 639MPa

30 Nicrobraz 
on IN718 IN718 60 990 5 Good consolidation. 

UTS = 360MPa

6.4.1 Quasi-isostatic powder interlayer bonding (QUIP) and continuing 
development

The results of the QUIP trials are presented in section 4.9 with corresponding HIP trial 

analysis in section 5.3. During Tests 17-20 a new IN718 interlayer material with a sub 

50 micron mean particle size was employed with an aim to improving large scale 

consolidation. It was also felt that the in situ debinding stages had benefited the 

procedure as a whole and these were subsequently used in these tests.

Initial results for the IN718 - IN718- Ta coated SCMV pairing (Test 17) were 

disappointing. Fractography of the faying surfaces revealed poor inter particle 

assimilation, poor large scale consolidation, low effective interfacial area and low 

interface strength. Little or no adhesion of the powder compact to the uncommon 

substrate (SCMV in this case) was noted, something that was apparent to a limited 

degree in all tests performed up to this point. It appeared that the very fine particle size 

had not helped to aid consolidation. Insufficient temperatures and pressures are the
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most plausible explanations for this anomalous behaviour. Nevertheless, this result 

suggested that the process window for joints with Ti-6-4 would be noticeably separate 

from that of the SCMV to IN718.

Tests 18 and 20 were perhaps the most promising of the bonds conducted in the 

investigation up to that point. Powder consolidation was excellent in comparison to all 

other tests, and Tests 18 was the only test in the investigation at that point to show 

substantial powder adhesion to the uncommon substrate material (SCMV). These 

results come in contrast to those of the conventionally formed bond in Test 17. The 

most obvious reason for this would be the higher pressure conditions imposed during 

bonding, but the absence of a binder was also important. EDX traverses for the test can 

be seen in Figure 6.4.1. Direct comparisons between the HIP and QUIP techniques 

were complicated by misplacement of the tantalum layer in the HIP bond, away from 

the interface. However, comparisons between the compact microstructures and porosity 

were favourable; indicating that in terms o f powder consolidation the QUIP trial had 

performed well even under a reduced stress. Parallels can also be drawn between 

microstructures at the IN718 powder -  SCMV substrate interface (Figure 4.9.6 and 

Figure 5.3.1). A significant degree of coarse precipitation was noted in both tests 

(though to a greater degree in the HIP bond) which has highlighted PPBs within the 

compact. Carbide precipitation is the likely explanation given both the high carbon 

content non-equilibrium SCMV microstructure and the high affinity o f IN718 for 

carbide precipitation. The greater degree o f precipitation in the HIP bonds is possibly 

due to absence of a tantalum coating on the SCMV substrate preventing excessive inter­

diffusion. This precipitation was coupled with increased niobium concentrations 

(Figure 6.4.3) suggesting secondary NbC formation which is common at grain 

boundaries and PPBs in IN718 [154]. Other research has indicated that oxidation of 

NbC grain boundary precipitates results in complex brittle niobium oxide formation, 

which has been linked to a degradation o f mechanical properties at high temperature 

[155]. This behaviour is certainly worth taking into account for future investigations. 

Also of note is the apparent presence of a film at the interface in the HIP bond. Local 

EDX analysis of the film was inconclusive due to its very fine nature, but the EDX
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traverse presented in Figure 6.4.1 shows a very small reaction zone at this interface 

which is likely to be linked to this film formation.

Problems with frictional effects during Test 20 were noted and both a redesign of the

constraint sleeve (to incorporate a refractive ceramic layer) would be suggested for

continuing trials in this area.

6.4.2 Effects of interlayers / brazes with IN718 powder

6.4.2.1 Tantalum interlayer

The placement of the tantalum interlayer in Test 19b still produced results which 

further highlight its deleterious role when combined with IN718. Continuous fracture of 

the bond was observed along a distinct intermetallic film at this interface. With 

reference to the Ni-Ta-Ti ternary phase diagram (Figure 6.4.2); EDX data (Figure 

1 6.4.1) clearly indicates the presence of a body centred tetragonal NiTa intermetallic

phase. These brittle phases are known to have a negative effect on mechanical
i
| properties in nickel base superalloys [156].
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The role o f  tantalum in Test 18 showed similarities to the behaviour discussed for 

nickel coatings in Tests 4 and 9. The com positions at the IN718 -  tantalum coated 

SCM V  substrate interface presented in Figure 6.4.3 show  a tantalum rich migrating 

zone that has diffused aw ay from the SC M V  surface. As in Test 9 the composition o f  

the material immediately adjacent to this tantalum rich zone displays near parent metal 

properties. C om positions  observed in this band suggest that hexagonal C14 laves phase 

may be present, which is often associated with poor mechanical properties in jo in ts  

involving IN718 [157].
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6.4.2.2 Nicrobraz LM braze

The poor integrity o f  Tests 18, 20 and 19b coupled with evidence o f  laves phase 

formation reinforced concerns raised in the literature as to its negative effect on as 

welded mechanical properties. Som e papers had noted that the use o f  boron and silicon 

based brazes had successfully retarded laves phase formation and improved mechanical 

properties [133, 143]. N icrobraz LM was chosen as a coating for IN718 -  SC M V  bonds 

because it fulfilled these criteria. Following the trends established for o ther nickel -
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steel joints in the literature, a substantial improvement in joint quality was noted for 

this group of bonds.

Examples of interface structure and microstructural features are presented in section 

2.13. With reference to figure 2.13.2 and 2.13.3 the most prevalent feature of the 

microstructure was the highly precipitated band occurring within the reaction zone of 

the IN718 substrate as defined by the EDX traverses Figure 6.4.4. Comparison to the 

minority EDX traverse reveals that this precipitated zone correlates to increases in local 

niobium concentrations. This is similar to the precipitation observed at the powder 

interface of Tests 18 and 19b. However, in Test 28 intragranular rather than grain 

boundary precipitation predominates. This suggests y” formation as opposed to Nb 

carbides. This precipitation provides a plausible explanation for some areas of non­

fusion identified at the interface, in that the continuing hardening of the material at 

temperature prevent the deformation necessary to close these voids.

Evidence of an increased degree of twinning at the interface was also noted in the 

microstructures. Twinning is common in strained IN718 due to its high stacking fault 

energies so it would be expected that the highly strained areas of the bond would show 

more twinning. This has encouraged growth of deleterious a  phase which forms 

preferentially at the twin boundaries. Increased a  precipitation has also been promoted 

by the high local concentrations of iron in the reaction zone.

As with most of the trials performed in the investigation the reaction zone in the SCMV 

is much smaller, with the nickel diffusion zone limited to 40pm. Importantly, though 

peaks in nickel concentration immediate to the interface are apparent, the high nickel 

content of the braze layer has not resulted in the bulk nickel diffusion and intermetallic 

formation noted in the nickel coating trials (Tests 4 and 16). This is likely due to silicon 

diffusion from the braze layer which was noted in the SCMV. Silicon diffusion was 

seen to correlate with a local reduction in hardness within the SCMV reaction zone as 

highlighted on the microhardness traverse presented in Figure 6.4.4. However, this 

softening was not seen to be significant in subsequent mechanical assessment.
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Continual hardening of the SCMV substrate was noted away from the reaction zone 

which fits well with the HAZ banding effects described in section 4.14. Nevertheless, 

both the EDX and hardness traverses indicate a much smoother transition between the 

materials when compared to their tantalum coated counterparts. Finally, none of the 

analysis conducted on the bonds noted the presence of continuous intermetallic films or 

deleterious phase evolution, which is one of the primary reasons for the relative success 

of this specific dissimilar pairing.
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Comparative EDX and microhardness traverses for the IN718 powder SCMV substrate 

interface are presented below in Figure 6.4.5. As observed in Test 18, IN718 

compositions remain fairly constant over the IN718 powder -  IN718 substrate 

interface. Iron concentration in the powder compact fluctuates much more, peaking mid 

way between the two interfaces. These iron levels may account for the increased 

hardness values some distance away from the compact compared to the parent IN718. 

Iron diffusion was encouraged by the more diffuse nature of the IN718 powder -  

SCMV substrate interface compared to that observed in Test 28. The interface 

composition suggests a (Fe-Ni)2Cr type structure on the boundary of the y phase field as 

defined by the ternary phase diagram (Figure 6.3.3), indicating that some peritectoid y 

> y + a ’ decomposition may have occurred on cooling. However, the microhardness 

traverse across the bond line does not suggest significant evolution of hard, brittle 

deleterious phases with a similarly smooth transition to that noted in Test 28 (Figure 

6.4.4). Furthermore, comparisons between the mechanical performance of this bond 

and bonds containing no interlayer suggest that this has not degraded mechanical 

properties.

The more diffuse nature of the powder interlayer bond compared to its non-interlayer 

counterpart comes in contrast to the results noted previously where reaction zones in 

powder interlayer bonds were retarded (Table 6.2.2). The three most plausible reasons 

for this are:

• Increased powder consolidation (improving diffusion paths)

• Increased temperature (increasing atomic mobility)

• The presence of silicon spanning the interface which was found to aid iron 

mobility in Test 28.

Aside from these differences, there are common features between the interlayer / non­

interlayer tests. Dense precipitation coupled with high local niobium concentrations 

were noted at the powder interface, though encouragingly a lesser degree of twining 

and a  precipitation was noted.

218



100 Test 30

IN7 18 powder -  SCM V  
substrate interface

Fe
40

Nb
Mo

-50 50 150 250 350 450
Distance from IN718 powder-IN718 substrate Interface

(microns)

High Nb concentrations near the

Test 30 (Minority Elements)

IN718 pow der -  SCM V  substrate 
interface

150 200 250 300 350
Distance from IN718 powder -IN718 substrate Interface

(microns)

vuOC
03-od
_Q
<
ro
c
CD
EQJ

L U

Test Nlcropowo
m 7 m :
f/i vAJ
Q) cnn ; ♦ ♦ ♦ 4
"P q y i
~r a nn ♦♦-L- *4UU
to 4► ♦ ♦ ♦
95 ♦ ♦ ♦ ♦
"O z u u

innX IUU
nu

-500 -400 -300 -200 -100 ( 
Distance from IN718 powde

(IVSa

i i i i i
D 100 200 300 400 500 
jt - IM718 scbstrate Irterfaoe 
rons)

Figure 6.4.5: A comparison between EDX traverses for minority and majority elements
and an EDX traverse for Test 30.

219



6.4.3 Mechanical integrity

The improved performance of the Nicrobraz LM bonds allowed non-standard 

specimens to be extracted for mechanical characterisation. The results of tensile tests 

performed on the bonds (Figure 4.14.9 and Table 4.13.5) showed that UTS increased 

proportionally with increasing bond time and temperature. Aside from one test, 

modulus values remained consistent over all process conditions. However all bonds 

exhibited exceptionally poor ductility.

Results from a previous investigation by Chandel et al [142] had produced tensile 

strengths in uniaxially pressed diffusion bonds of up to 720 MPa between IN718 and a 

martensitic stainless steel. Bonding temperature, time and pressure were 1000°C, 

60mins and 40MPa respectively. Due to the non-standard nature of the specimens 

produced, no valid comparisons can be made between the quoted mechanical 

properties. Nevertheless, observations made between the data show interesting trends. 

Solid state bonds produced under comparable conditions in this investigation presented 

approximately 50% of the properties in [142] in respect of both mechanical strength 

and ductility. Comparison between this data and the semisolid flash butt weld test is 

much more favourable, showing very similar bond integrity. SEM analysis of the 

fracture surfaces revealed some of the areas of non fusion that had also been evident in 

the microscopy (Figure 4.13.9 and Figure 4.13.10). Whilst the reduction in effective 

joint area will have had a small effect on tensile strength it is unlikely to have resulted 

in the 50% relative properties that occurred. Typically, such areas of non fusion are 

associated with variation in ductility, but do not have the same considerable negative 

effect on tensile mechanical properties as they do in low cycle fatigue loading regimes 

[2].

Fundamentally, the only difference between the two investigations was the heating 

method employed (ambient/ furnace heating vs. localised resistance heating). 

Considering that the purely solid state bonds produced such poor comparative 

properties under similar conditions it seems that the heating method must have a 

significant effect on this outcome. It is significant that the properties of the semisolid
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test were much more comparable to that of diffusion bonds produced in [142], despite 

vastly different process conditions (much shorter time, much higher temperature). This 

improved performance coupled with its similarity to joints produced by a conventional 

flash butt welding process imply that resistance heating is much more suited to rapid 

and intense joining processes for dissimilar materials.

6.5 HAZ and macro scale microstructural effects

The microstructural banding apparent on the specimens can be clearly linked to the 

parabolic heating effect associated with the joining technique. The presence of the 

bands raises the question as to whether these bands were formed through macro-scale 

diffusion to up to a point of low mobility. The EDX traverses presented in previous 

sections show that this is unlikely, with reaction zone size limited to 550pm. Despite 

this, localised EDX data was acquired in the banded region of a range of specimens to 

determine whether there were any local peaks in elemental concentrations. This 

revealed parent metal compositions in all cases (Appendix 8 ). Therefore the 

microstructural changes must have occurred isothermally during the course of the 

bonding. To better understand these effects the TTT and CCT diagrams, as well as heat 

treatment and processing principles will be considered in an attempt to both make 

recommendations for future work, and predict the possible effect of such banding in a 

successful bonding scenario (e.g. similar resistance bonds).

The band noted in the IN718 substrate materials was found to be caused by dense 

intragranular precipitation, but little or no coarsening of the intergranular precipitates 

was noted. The reasons for this can be better appreciated with reference to the IN718 

TTT diagram presented in Figure 6.5.1. Though the temperature evolved in the material 

at the point of the band cannot be accurately quoted, it can be assumed that it is 

significantly below that measured at the interface (925-990°C). The diagram shows that 

grain boundary 8  formation occurs primarily at these interfacial temperatures along 

with the laves phase that was also formed in the interfacial microstructures. At the 

lower temperatures experienced away from this interface the TTT diagram shows both 

y” and y’ to be the predominant phases evolved. This behaviour is reinforced with
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reference to Figure 6.5.2, where the effects of both solution heat treatments and aging 

are described. The microstructural differences between the more solutioned y + 8  

microstructure noted in the area between the band and the interface (fig 4.14.1) and 

highly precipitated band at lower temperature conform well to the behaviour described 

in the diagram. The gradual increase in the density of y” precipitation followed by its 

rapid disappearance can be accounted for by the parabolic heating effect which results 

in increasing thermal gradients with increasing distance from the bond line, but may 

also be explained by the distinct phase fields associated with material.
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Figure 6.5.1: A TTT diagram for hot rolled IN718 bar [158].
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Figure 6.5.2: Phase relationships and the effect o f  heat treatments in IN718 [158].

With reference to figures 4.14.2 and 4.14.1, the radical changes in the SC M V  

microstructure and properties are m ore drastic and less concentrated in nature. All 

bonds in the SCM V  exhibited similar microstructural trends. The fully martensitic lath 

structure close to the interface briefly gives w ay to a tempered structure similar to the 

parent (this microstructural change is mirrored in the microhardness values), before the 

banded region o f  what appears to be acicular ferrite dom inates the microstructure. This 

m ore dam age tolerant structure results in the large reduction in local Vickers hardness 

m easured in the band. This softening is likely to be due to the reduced local
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tem peratures remote o f  the bond line that were high enough to drive diffusion based 

growth o f  the ferrite phase, but not so high as to harden as a result o f  cooling through 

A 3. T he m icrohardness values then recovered to near parent properties further from the 

bondline as the local tem perature drops below levels sufficient to induce 

microstructural modifications.

Analysis o f  the rapid semisolid test (29) provided an interesting com parison to the more 

extended solid state trials. Further analysis o f  the bond revealed that unlike the other 

IN718 -  SCM V  bonds no banding was noted in the IN718 material, but that the HAZ 

structure in the SC M V  was very similar to that o f  bonds produced at much longer 

times. This is exemplified by the m icrohardness traverse o f  the semi-solid bond 

presented in Figure 6.5.3. The hardened zone adjacent to the interface shows slightly 

increased Vickers hardness levels com pared to the longer tests, probably a result o f  the 

increased tem peratures and cooling rates. The expected dip in hardness did occur, but 

not to the extent observed in the longer tests (where hardness dropped to 250FIv). The 

non-equilibrium martensitic microstructure m aybe driving the rapid transformation 

close to the interface, however, the lesser degree o f  softening indicates that slower 

diffusion based processes are dom inating this effect.
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Figure 6.5.3: A hardness traverse the HAZ o f  Test 29 (rapid, semi -  solid condition).
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Compared to the heat affected zone in the IN718 and SCMV materials the 

microstructure of the titanium substrate is considerably more diffuse. Moving from a p 

annealed structure at the interface, gradually through a recrystallised annealed section 

and on to a primary a  dominated elongated (unaffected) parent microstructure. The 

gradual nature of the transition can be accounted for by the wider a+p phase field 

associated with the alloy, allowing various degrees of a  growth during the isothermal 

condition. Differing cooling rates would also be experienced during the cooling of the 

bond with material closer to the copper heat sinks cooling more efficiently than 

material at the interface. However, specific cooling rates at all positions are hard to 

gauge on account o f the interaction between exponential Newtonian cooling and the 

proximity of an area on the specimen to the heat sink.

6.6 Recommendations for Industrial Employment

Finally, comment should be made concerning the industrial application of the dissimilar 

alloy bonded pairs characterized during the present investigation.

During the course of this investigation it had come to light that the experimental 

processes adopted in this investigation were shown to produce bonds of exceptional 

quality in similar Ti-6246 bonds. These bonds were shown to consolidated fully 

employing bonding parameters that fell significantly below those required for 

conventional HIP processes in respect of time, temperature and pressure. This suggests 

that the process of resistance heated powder interlayer bonding has considerable scope 

for future industrial employment / commissioning studies for use with similar bonding 

pairs.

However, based on the results of this investigation, it is difficult to envisage the 

employment of either Ti-6-4 to SCMV or Ti-6-4 to IN718 joints, whether processed via 

resistance heating or HIP techniques, for any application where structural integrity is a
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design requirement. Furthermore, given the chemical incompatibility demonstrated by 

the diffusion profiles it appears highly unlikely that process optimisation alone could 

circumvent these problems in the joint chemistries trialled here.

In the case of resistance heating this is partly due to the vastly different thermo-physical 

properties between the substrate materials. Under laboratory conditions these problems 

may be circumvented by the use of current and heat sinks as discussed previously. 

However, in an industrial scenario, when applied to real components of complex cross 

section, these techniques are likely to encounter considerable difficulty. These issues 

represent a fundamental restriction for resistance heating of dissimilar metal pairs in the 

industrial sector.

IN718 to SCMV bonds performed more encouragingly, both in respect of joint 

chemistry and thermo-physical properties, and whilst joints conducted via solid state 

resistance heated powder interlayer bonding are not advised, joining these alloys 

through more conventional processes (flash butt welding) provides scope for further 

research and possible future industrial employment.
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7 CONCLUSIONS

•  A viable experimental bonding procedure based on the Gleeble 1500 thermo­

mechanical simulator that facilitates resistance heated powder interlayer trials 

and further process optimisation has been established.

• Refinements to the procedure have been developed allowing close control of 

new process variables such as interlayer thickness and contamination.

• Bonding trials have been conducted between Inconel 718, Ti-6A1-4V and super 

CMV steel with tantalum, nickel and Ni-Cr-V diffusion barriers employing Ti- 

6A1-4V, Inconel 718 and BurTi powder interlayers.

•  Bond quality has been shown to be adversely effected by increasing powder 

particle size.

• Preliminary findings have indicated that in situ debinding procedures can have 

deliver improvements in bond quality with certain vulnerable material pairings.

• The use of copper impregnated interlayer powders substantially improved 

powder consolidation characteristics, but resulted in considerable 

microstructural modification of the Ti-6-4 compact microstructure.

• Inconel 718 -  Ti-6A1-4V bond quality was poor in all tests conducted, attributed 

to NiTi and Ti2Ni intermetallic formation at the interface.

• Ti-6A1-4V -  SCMV bond quality was poor in all tests conducted, with 

intermetallic phase formation identified at the interface.

• Transition joints employing BurTi powder interlayer joints and triple layer Ni- 

Cr-V brazes were found to substantially retard intermetallic phase formation
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and reduce reaction zone size in Ti-6A1-4V -  SCMV bonds. However, these 

bonds were still found to fail in a brittle manner.

• Difficulties in bonding dissimilar materials (in particular Ti-6A1-4V to SCMV) 

in relation to their thermo-physical / electrical properties have been highlighted. 

The effect has been termed differential heating.

• Materials more similarly matched in these respects have shown the most 

potential for resistance bonding processes, eg. IN718 to SCMV and IN718 to 

Ti-6-4.

• Nickel coatings were shown to reduce reaction zone sizes in Ti-6A1-4V -  

SCMV bonds, but preferentially formed intermetal lies that progressively diffuse 

into the SCMV substrate creating a secondary interface.

• Tantalum coatings severely degrade bond integrity in all alloy combinations 

leading to the formation brittle intermetal lies at the bond interface.

• Brazing trials employing copper coatings between IN718 and Ti-6A1-4V were 

unsuccessful as a result of intermetallic formation at the interface.

•  Bonds employing a Nicrobraz braze layer have proved the most successful. 

However bond strengths indicated that better results may be possible using 

standard welding techniques such as flash butt welding.

• HAZ banding effects related to the parabolic nature o f the resistance heating 

effect have been observed in all resistance bonded specimens. It has been shown 

that these have a direct effect on mechanical properties and deformation 

behaviour. However, these can be removed by standard post weld heat treatment 

techniques.
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•  Limited use of a novel quasi isostatic bonding technique, indicates substantially 

improve bond quality. This technique is now being adopted in ongoing 

investigations into powder interlayer joining of similar titanium aluminide 

material.
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8 RECOMMENDATIONS

8.1 Further Experimental design and process optimisation

During the course of this investigation it was suggested that a concise, robust 

experimental design be employed in the case of further experimentation on more 

successful alloy pairings. It was proposed that further experimentation should be 

focussed on process optimisation. The factors under investigation should be the three 

fundamental variables of bonding; time, temperature and force/pressure. It was 

recommended that bond integrity for each of these preliminary bonds should be 

assessed by means of low cycle fatigue testing, due to its ability to elucidate defects 

through fatigue crack initiation. Subsequent to this a full array of mechanical tests 

(tensile, fatigue, torsion and Charpy impact testing) could be performed on bonds 

produced using the optimised process variables. This design could then be employed 

with an aim to producing statistically comparable, representative results.

A factorial experimental design was prepared at the beginning of the investigation; 

however, the poor quality of the bonds produced meant the matrix was soon abandoned. 

It was envisaged that it would enable a full statistical approach to the optimisation 

process. The design requires each variable to be tested at four different levels. This 

allows for the occurrence of non-linear interactions between the parameters. Finally the 

test order is randomised to avoid any false interactions that might occur by performing 

similar tests sequentially. Table 2.4.1.1 shows the detail of the design. The coded 

values have been included because they most clearly represent the design as a whole. 

A, B and C represent the variables of time, temperature and force respectively. The 

appearance of their lower case counterparts in the far left column indicates that their 

levels are set high.
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Table 8.1.1: The full statistically based testing matrix for optimisation of all bonding
pairs.

Actual Values Coded values Test
OrderTime

(min) Temperature (°C) Force
(KN) A B C

- 24 910 0.84 -1 -1 -1 7
A 51 910 0.84 1 -1 -1 12
B 24 940 0.84 -1 1 -1 14

Ab 51 940 0.84 1 1 -1 2
C 24 910 1.7 -1 -1 1 1
Ac 51 910 1.7 1 -1 1 3
Be 24 940 1.7 -1 1 1 8

Abe 51 940 1.7 1 1 1 13
0 37 925 1.25 0 0 0 4

ap1 15 925 1.25 -1.68 0 0 9
ap2 60 925 1.25 1.68 0 0 5
bp1 37 900 1.25 0 -1.68 0 11
bp2 37 950 1.25 0 1.68 0 15
cp1 37 925 0.5 0 0 -1.68 10
cp2 37 925 2 0 0 1.68 6

The envelope for the range of values for each variable has been established with 

reference to previous research conducted by Pleydell-Pearce [4] and Tuppen [3]. 

Neither the effect of powder interlayer thickness nor atmospheric pressure was meant to 

be studied at the preliminary stage of the investigation, since powder interlayer 

thickness was envisaged constant at 500pm and all tests were carried out under hard 

vacuum ( 1 0 '5 mbar).

A modified variant of this experimental design is now being implemented in an 

investigation of similar Ti-6246 powder interlayer bonds, following on from the work 

by Forsdike [149]. Early signs are that the optimised bonds produced match parent 

metal mechanical properties in both monotonic and cyclic loading regimes.
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8.2 Further dissimilar bonding trials

It is recommended that further investigation into powder interlayer bonding between 

Ti-6A1-4V and SCMV or IN718 should not be attempted under resistance heating 

conditions without considerable modifications to the experimental technique (see 

section 7.3). This is primarily on account of the differential heating effect, which has 

been shown to adversely affect powder consolidation and effect interfacial contact area. 

Indications that electromagnetic fields may promote intermetallic phase formation in 

alloy combinations known to be prone to their formation also detracts from the 

possibility of using resistance heating. Nevertheless, it must be acknowledged that it 

was not possible to explore all avenues in respect of intermediate joint chemistry and 

further work examining a wider range of chemistries may yield more promising results. 

It is recommended that interlayers with significant mutual soluability o f both parent 

base elements are prioritised if this work is to be initiated.

In contrast, the scope for development of IN718 to SCMV is slightly more optimistic. 

Early trials have shown that bonds of moderate strength can be produced in 

conventional diffusion bonds and powder interlayer bonds between the two alloys. 

However, the most successful parameters for bonding more closely resemble a flash 

butt welding technique, which should be prioritised for any further assessment.

8.3 Revisions for the resistance heating technique

Resistance heating has been shown to provide exceptional solid state bond quality with 

relative ease compared to conventional processes in both the standard diffusion bonding 

and the powder interlayer variants. However, these successful trials have been 

conducted on similar material pairs or dissimilar alloys within a particular group. This 

investigation has highlighted that this is not the case for vastly dissimilar metal 

systems, where differential heating leads to poor joint quality and non-uniform heat 

affected zones. These factors must be taken into account when considering resistance 

heated solid state bonding for industrial applications, as overcoming them would
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involve adding considerable complexity and cost to the process (two primary factors 

which have generated much of the industrial interest in this technique to date).

8.4 Quasi isostatic powder interlayer bonding

Whilst only simplified trials of this technique were conducted during the investigation 

the technique showed scope for further development. It was shown to substantially 

improve powder consolidation and overall bond quality in material pairs shown to be 

incompatible under other resistance heated techniques. For this reason it was suggested 

during the course of the investigation that the process could be developed further by its 

application to more compatible bonding pairs. Subsequently the technique has been 

adopted as part of an investigation into similar powder interlayer joints in y titanium 

aluminide alloy Ti-45 -2 -2, which is ongoing and remains unpublished at present.
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Appendix 2: M icrohardness Data for selected IN718 to Ti-6-4 bonds
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Appendix 3 Concentration Profiles for Intermetallic phases found in IN718 to Ti-6-4 joints.
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A ppendix  4: Exam ples o f  interdiffusion zones betw een T i-6-4  pow der partic les bonded to IN 718
substrate.
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